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ABSTRACT 

Consider a sphere immersed in a rarefied monatomic gas with 

zero mean flow. The distribution function of the molecules at infinity 

is chosen to be a Maxwellian. The boundary condition at the body is 

diffuse reflection with perfect accommodation to the surface tempera­

ture. The microscopic flow of particles about the sphere is modeled 

kinetically by the Boltzmann equation with the Krook collision term. 

Appropriate normalizations in the ne.ar and far fields lead to a per­

turbation solution of the problem, expanded in terms of the ratio of 

body diameter to mean free path (inverse Knudsen number). The dis­

tribution function is found directly in each region, and intermediate 

matching is demonstrated. The heat transfer from the sphere is then 

calculated as an integral over this distribution function in the inner 

region. Final results indicate that the heat transfer mav at first 

increase over its free flow value before falling to the continuum level. 
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PART I 

INTRODUCTION TO THE PROBLEM 

Perturbation methods are of special interest to those who 

seek to analyze problems involving physically interesting phenomena 

in the field of rarefied gases. Such methods in general attempt to 

find a clas's of solutions dependent upon a set of parameters (usually 

just one) which take on certain limiting values. By making use of the 

size of these parameters, one may obtain a set of ordered equations 

to solve, which hopefully will be simpler than the original one. Many 

examples of such applications of perturbation theory appear in the 

literature, but they seem to have had limited use in solving problems 

in rarefied gas dynamics. 

A rarefiecl gas is one in which the mean free path(/\), which 

is a measure of how far molecules ·travel between collisions, is large 

compared to othe r length scales in the particular problem being 

solved. Thus, 1\ is a natural parameter on which to base some sort 

of perturbation sche me. 

It is virtually impossible to consider in detail the exact micro­

scopic behavior of gases, but because of the large number of molecules 

usually present in the flow field one is led to a probabilistic formula­

tion of the problem. This is the realm of kinetic theory. 
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The basic aim of kinetic theory is to find the probability distri-

bution function of the gas. This function, usually denoted by the symbol 

f, is a six dimensional density measuring how many molecules lie in 

the cross product of a three dimensional increment of physical space 

(.6.x, .6.y, .6.z) with a three dimensional increment of velocity space 

(.6.£ , .6.£ , .6.£ ) where 
X y Z 

x, y, and z locate the molecules in a cartesian 

coordinate system and and s describe their velocities with z 

respect to those cartesian axes. From this distribution function may 

be found the various physically interesting quantities such as density, 

temperature, and macroscopic velocity. These quantities are referred 

to as moments of f and are defined by the following integrals: 

p = s fd3 s 

To obtain an equation for £ certain restrictions are imposed: 

1) binary collisions between molecules, 2) molecular chaos, 3) a finite 

molecular cross section, and 4) the assumption that f varies slowly 

over a molecular dimension. [l, p.B] These limitations lead to the 

derivation of the famous Boltzman equation for the distribution function 

of the gas. This equation may be written symbolically 
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a£ t: a £ + t: a £ a£ 
at + '='x ax '='y ay + ~ z az 

= Of 
&t call. 

in cartesian coordinates for no external force field. It is to be noted 

that this form of the equation holds only in cartesian coordinates, and 

as shown later it must be transformed carefully into other coordinate 

systems. 

The term +! denotes the change in f along a molecular 
call. 

trajectory due to collisions between the particles. It may be express-

ed in terms of an integral involving f and thus the Boltzmann equation 

is actually an integra-differential one. The complexity of the collision 

integral makes exact solution all but impossible except in certain 

very special cases such as the two dimensional gas studied by 

Chahine. [z] The linearized, non-steady case has been considered 

extensively and Sirovich has found formal solutions for the initial-

value problem. 
[3] 

In order that solutions of the Boltzmann equation be found 

it has been proposed that the collision term be replaced by expressions 

which model its behavior to the extent that reasonable results may be 

expected. [ 4J To be a good model certain basic requirements must 

be met. [s • P· 66~ First, mass, momentum, and energy must be 

conserved. In terms of the collision term this means that it must 

possess the same five collisional invariants as the full collision term, 
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Symbolizing the invariant by <I> and the collision 

term by of these conditions are summarized by the equation 

s q,. 6 f d3 £ = 0 

This guarantees that the same macroscopic equations of motion 

will be obtained from the model equation as from the full Boltzmann 

equation when the appropriate moments are taken. Second, we 

require that the distribution function should tend towards a Maxwellian 

in the equilibrium · situation. Third, application of a Maxwell distri-

bution to the model should produce results which agree as much as 

possible with the exact solution for the same case. Once these 

general require~ents are satisfied, it may be necessary to apply 

further ones based on the particular problem being studied. 

1. 1 The Krook Model 

Perhaps one of the most famo~s models of the Boltzmann 

equation is that proposed by Bhatnager, Gross , and Krook. This 

representation is most often referred to as the Krook Equation and 

it has found much use in the solution of gas dynamical problems. The 

Boltzmann collision term contains the exact intermolecular force field, 

which in practice is not known a priori, although one may think that 
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it should be. In place of this exact field some sort of model is usually 

proposed which brings out the esseil;tial features of binary encounters 

and which duplicates to some reasonable extent the expected physical 

properties of the gas such as viscosity and heat conductivity. The 

assumption of the Krook model~ however, is that no fine prescription 

of the force field is needed and that only a statistical model for the 

. . . d (6, p. 1318] scatter1.ng process l.S requ1.re . 

Such a model is given by the expression 

of 
ot = A p (f -f) m 

coll. 

where P is the density, f is a Maxwellian evaluated at the local m 

density, temperature, and velocity and A is a parameter dependent 

on the state of the gas. Narasimha presents an argument which leads 

to the conclusion that 

A = c 
pA. 

C = mean thermal velocity of the gas 

for hard sphere molecules. [ 5 ' PP· 84- 85] Using this fact one arrives 

at the so-called single-relaxation time Krook equation, 

of 
ot 

coll. 

= -;- (f -f) 
m 
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by noting that c/ A is the collision frequency v and presuming that 

-some average value of v , v , may be substituted for v • The name 

is derived from the fact that all moments of the distribution fu11-ction 

f except the density, temperature, and velocity decay on a single 

time scale. Note also that relaxation to the equilibrium Maxwellian, 

prescribed by the Krook equation, satisfies one of the requirements 

of a good model. Of course, the assumption of being able to substi-

tute an average value for v would not be valid for any flow with wide 

variations in the state of the gas, such as those present in a shock 

wave. [6, p. 1318] 

1. 2 Methods of Solution 

When a problem and a model equation have been chosen, the 

method of solution must be considered. The particular ·approach 

depends on many different factors. Generally, however, some sort 

of reasonable linearization is necessary to overcome the highly non-

linear nature of the basic equation. In steady state problems, such 

as the one to be examined in this thesis, careful consideration must 

be given before proposing an expansion of the solution. 

The sort of linearization involving the mean free path as a 

parameter often leads to a perturbation method for the solution. 

There are two distinctly important limits on A . If a is some typical 

physical dimension in the problem being studied, such as body 
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diameter or flat plate spacing, one usually defines the so-called 

Knudsen number 

K = "A/a 

or 

E = 1/K = ajlt 

We will confine our attention to E. As E -o the mean free path 

becomes quite large and the flow approaches what is termed free flow 

in the limit E = 0. Free flow is characterized by complete negligibil-

ity of inter-molecular collisions. All physical quantities such as 

density, temperature, and velocity may be calculated by strict! y 

geometrical considerations. On the other end of the spectrum is the 

case €-co , the continuum limit, where intermolecular collisions 

dominate. In the limit E =co the need for a statistical model vanishes 

and the flow propertie s may b e calculated strictly from the equations 

of motion such as the N a vier-Stokes equations. 

For large E the famous Hilbert expansion is applied directly 

to the Boltzmann e quation. After appropriate scaling of the physical 

space by A one obtains 

and Hilbe rt looks for solutions of the form 
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l l 
f = f 0 + fl + 2 f 2 + 

€ € 

Inserting this expansion into the equation one finds that the successive 

terms are determined uniquely when the initial fluid conditions are 

specified. 

Enskog also proposed a more general solution 

requiring that· 

n 

2: 
i=O 

f . 
1 

be a solution for n = 0 , 1, 2, • • • of certain subdivisions of the 

collision operator. The division, of course, is not unique and is 

made in such a way that t he resultant e quations are soluble. It is 

in fact somewhat of an iteration scheme, where it may be shown 

that f
0 

is a Maxwellian. [7 ' P· 109] 

For small E many procedures have been suggested. One of 

·these is the moment method. First a representative form for the 

distribution function is chosen as a function of 1" and the basic 

moments: p, T, u . Then this form of the solution is put into the 

model equation and the various moments are taken, arriving at a set 
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of equations to solve for these unknown quantities. This method has 

been used notably by Lees [s] in rarefied gas heat transfer and his 

results agree remarkably with experiments performed by Takao. [9] 

Alternatively one may take the approach suggested by Grad[lo] 

and used by Rose [n] when the analysis involves steady flow about a 

body which is Maxwellian at infinity. The model equation uses Krook' s 

collision term and is linearized about the distribution function and 

moments at infinity. Being essentially a far field analysis, the body 

is represented in the flow field by a source term in the eqLtation 

whose strength may be calculated approximately by a knowledge of 

the zero order solution near the body (free flow). The Fourier 

transform of the linearized equation is taken resulting in an expression 

for the perturbation to f, which is then integrated to provide a set of 

equations for the moments. These moments depend directly on the 

source strength. This set of equations is then solved using the 

approximate source term. If the moments found are put back into 

the model equation, it can be solved directly for f by integrating along 

the characteristic curves determined by the geometry of the problem. 

A new source term may now be calculated to iterate the moment 

solutions previously found~ A comment on the method as used by 

Rose appears at the end of this thesis. 

In a well known paper by Baker and Charwat [lz] the method of 

''first collisions" is used to obtain the first correction to the drag of 

a sphere in nearly free molecular flow over its value for free flow. 
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Their approach is a combination of geometrical considerations and 

elementary scattering theory which attempts to count certain domin-

ant types of collisions, such as those betwee n oncoming molecules 

and ones emitted from the surface of the sphere, which seem to 

contribute the majority of the first order drag perturbation. This 

seems to be a rather crude approach and the result is questioned 

b W "ll" [l3] y 1 lS. 

The Boltzmann equation is used by Liu, Pang, and Jew [l4] 

to solve the problem posed above by Baker and Charwat. They apply 

the method of Knudsen iteration in which the exact collision integral 

is calculated using the free flow solution, allowing the equation to be 

solved for the first order perturbation. The non-uniform validity 

of the free flow solution limits the validity of this solution to a region 

near the body, and in fact only the first correction may be calculated 

in three dimensions by iterating from free flow. [l' P· s] 

Another method to solve the problem of sphere drag was 

presented by Rose in her Ph. D. thesis [lS] but being an approach 

similar to that of Baker and Charwat leaves its validity open to the 

same questions. 
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1. 3 Choice of the Problem 

The original intent of this investigat ion was to solve the 

problem of high Mach number nearly free mole cular drag of a 

sphere, chosen because of its interesting physical applicability. 

The aim was to apply a straightforward, mathematically sound 

procedure to some good model equation and to obtain a result which 

could be compared with known results, both experimental and 

theoretical. This problem at first proved intractable and it was 

decided to develop a successful method on a simpler proble m 

which then could be used to solve the more difficult one. This 

thesis examines the heat transfer of a sphere immersed in a rare­

fied gas at rest macroscopically. The problem is posed and a 

method of solution is presented in the next part. 
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PART II 

SPECIFICATION OF THE PROBLEM AND ITS SOLUTION 

Consider a sphere immersed in a rarefied monatomic gas 

with zero mean flow. Let the molecules an infinite distance f rom the 

body be governed by a Maxwell distribution. Further, let the density 

and temperature at infinity be specified along with the body tempera-

ture. It is desired to calculate the heat transfer from or to the 

sphere. 

Before proceeding with the problem it is necessary to chose 

a model equation, a method of solution, and a boundary condition to 

prescribe the re-emission of the molecules from the surface of the 

body. 

2.1 Surface Condition 

Two general types of surface conditions are usually considered: 

specular reflection and diffuse reflection. In the former the molecular 

velocity component parallel to the body is left unaffected by the surface 

interaction while that perpendicular is reversed in sign but keeps the 

same magnitude. Rose points out [ls] that this approximation is valid 
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when the deBroglie wave length of the incident particles is either 

equal to or greater than the surface. irregularities or equal to the 

grating space of a scattering crystal. fu diffuse reflection the 

incident molecules are "absorbed" by the surface and instantaneously 

re-emitted with a Maxwell distribution at some temperature between 

the incident temperature and that of the surface. It seems experi-

mentally that the assumption of diffuse reflection is valid for many 

engineering surfaces and common gases [lb' pp. lO-ll]: thus, it will 

be assumed in this problem. fu addition, the thermal accommodation 

coefficient, which indicates how much the incident molecules are 

"accommodated" to the surface temperature is very close to unity 

for most of the above surfaces, so it is reasonable to assume re-

flection at the surface temperature (perfect accommodation). 

2. 2 Model Equation 

It is well recognized that the Krook equation satisfies the 

desirable properties of a good model of the Boltzmann equation. 

Further, it is particularly applicable when the flow properties do not 

vary too widely over the physical region in which a solution is de­

sired. Finally, a quote from Narasimha is appropriate here. 



-14-

"It may be concluded, -therefore that the Krook model, in 
spite of its simplicity, describes the real behavior of gases fairly 
well both near the continuum limit and near the free molecule limit. 
Use of the model throughout the range between gasdynamics and 
gaskinetics may therefore be reasonably expected to be justified and 
worthwhile. 11 [5, p. 85] 

For the above reasons the Krook equation was chosen as the 

model for this problem. Constant collision frequency is assumed so 

we will be concerned with the single relaxation simulation. 

2. 3 Method of Solution 

The usual method of solution of a problem of this type would 

be to apply some sort of far field or near field analysis to obtain the 

heat transfer. :The former may require the specification of a source 

term such as Rose uses and an application of Fourier transforms, 

while in the latter case it could be appropriate to iterate the known 

free flow solution by means of a technique such as Knudsen iteration. 

The inadequacy in these methods is that they only provide a 

first correction and one which is not uniformly valid in the flow field. 

One is led to conclude, therefore, that this is a good opportunity to 

make use of the inner-outer variable expansion procedure and the 

matching condition of Kaplun and Lagerstrom. [l71 



-15-

Basically, the idea behind this perturbation theory is to 

choose (1) appropriate normalizations of the variables of the 

problem, valid respectively in the region close to the body (the 

inner region) and in the region far from the body (the outer region), 

along with (2) a parameter which may be used as the basis of an 

asyn1ptotic expansion of the solution. The correct choice of the 

above will lead to two sets of equations, ordered in the parameter, 

one valid in each of the two regions defined. When solutions have 

been found, it is hoped that there will be some common region of 

validity, defined through a limit applied to the equations. Intuitively, 

this amounts to letting the inner solution expand to infinity while 

letting the outer one contract to the origin~ to find the terms common 

to both expansions. More exactly it means defining an inte rmediate 

limit and an intermediate set of variables which remain fixed under 

this limit, so that the common terms may be evaluated. Very often 

this allows certain unknown functions in either region to be evaluated. 

A uniformly valid solution may then be constructed by adding 

together the outer and inner solutions and subtracting out the common 

part. 

The parameter to be used in the expansions is the ratio of 

mean free path to body diameter, E, the inverse Knudsen number 

defined previously. Since the distribution of molecules far from the 

body tends towards a Maxwellian defined by the density and tempera­

ture at infinity, it may be thought adequate at first to linearize about 
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this infinity Maxwellian, f , 'in the outer region. It is found, how­
oo 

ever, that this is not a good choice due to the non-uniform approach 

to £
00 

in velocity space. This occurs apparently through the propa­

gation of the discontinuity in the free flow solution into the outer 

region. There is, in fact, a finite contribution to the density and 

temperature perturbations which depends solely on this non-uniformity. 

In addition, it is assumed often that one may linearize about the free 

flow solution, with f governing the incoming distribution of particles, 
00 

in the inner region. This usual assumption is verified mathemati-

cally in the present work by assuming an arbitrary incoming function 

and showing through intermediate matching that it indeed must be 

PhysicC!lly one would require that the solution very close to 

the sphere be governed by the free flow equations, while that far 

away must tend toward the continuum solution given by the linearized 

equations of motion derived from the model equation. This is shown 

to be true in the analysis of the next part. 

The equations for the outer region as well as those for the 

inner region are solved in a recursive manner by integrating along 

the characteristics determined by the strictly geometrical considera-

tions of the problem. Note that no equation of state is presumed for 

the gas. Also, although the equations of motion for the continuum 

region are displayed, they are unnecessary for the solution of the 

problem, as shown after the matching is demonstrated. 
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Part III examines the foregoing considerations in detail and 

presents the comple te solution to the proble m. B e cause of the 

form of the solution for the distribution function, consisting of many 

complicated expressions left in integral form, both in the inner and 

outer regions, no uniformly valid solution for f is written down 

explicitly. Matching is demonstrated exactly, however and the heat 

2 transfer is found to order € • 
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Part III 

CALCULATION OF THE DISTRIBUTION FUNCTION 

3. 1 Transformation of the B a sic Equation 

This problem will b e solved using the Krook model of the 

Boltzmann equation. Two basic forms of the equation will be con-

sidered he r e. The se will b e of use later. Written in spherical coor-

dinates (see Appendix I), making use of the spherical symmetry of 

theproblemin (r,0,<j>) space, 

g 2 + g 2 g 2 cot e s s s ~ + e <P 8f + p - r e 8 f 
r or r 8sr r 8se 

- s <j> r 

hl = hds,r) 

h 2 = h 2 (£,r)- f 

8 f = h. ar- 1 
<P 

i = 1, 2 

s is the vector quantity (sr' s e' s<j> ). Making use of the 

symme try e x pec ted in ( sr' s e• s<j>) space wr i t e 

f ( s , s e• s ; r ) = F ( r, s , s T ) 
r <fJ r 

( 3.1) 
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Now apply this transformation to the equation. The resulting expression 

is given by 

(3 . 2) 

This equation will be integrated along a characte r istic cur ve, but to 

facilitate the cal c u lations to follow, make the further transformation 

w = - r£ /£Z r 

Carrying out t h e transformation 

i = 1, 2 

h 1 = H 1 (£, w) 

h 2 = H 2 (£, w )- g ( 3 . 3 ) 

The characteristi c equations for ( 3. 3) are 

dw - d£ dsT dg r 
£Zw £Zw T = 

~r 
= 

~~~T 
= h. 

1 

Solving this system w e obtain the following set of results 

2 2 

sr + ST = - z 
cl ( 3. 4) 

wsT 

~ 
= Cz ( 3 . 5) 

g = S H 1 ( £,w) dw + k 1 for i = 1 ( 3. 6) 

g=-ewSHz(£, w ) e-wdw+kzew f o r i=2 (3.7 ) 
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Note 

kl = kl (cl, C',> 
( 3.8} 

k, = k, (c11 "C,> 

The following section discusses division of the problem into 

two regions in the spirit of the perturbation methods used in many 

fluids problems. The small parameter in this case is a/'ll., the ratio 

of body size to mean free path, which tends to zero as the gas becomes 

more and more rarefied. 

3. 2 The Inner Region 

The region near the body where distanc e s are measured in 

terms of the body diameter and are small compared to 'A. is referred 

to as the inner region. The appropriate normalization, linearization 

and resultant equations are discussed below. 

Normalization, 

r = r / a 

~=~,/coo 
p=p/poo 

T = (T I T ) 7 = T/ T . ' oo a 
f =£/ A 

The Krook equation is written 

s·'Vf = v(fo-f} 

fo = (27TRT)3/z 

A = p /(27TRT }% 
00 00 

v = c /'A 
00 

exp (- zfT) 
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Normalized as above, it becomes 

,.., 
~ . \lf = € ( fo - f) 

,.., 0 
~2 

0 ~rsT s . \l = s - + ! -- -r ,..., ,.., 
9r r 3£ r 

r 

The linearization may be expressed in the form 

,.., ..., 

f = f 1 + a 2 ( €) f z + a3 ( €) f3 + • • • ( 3. 9) 

( 3.10) 

..., 
P = P1 + cz(E)pz + c3(E)p3 + ( 3.11) 

( 3.12) 

To obtain the distinguished* limit for the system of equations resulting 

from this expansion of the system, we choose az (E) = E, and the non-

dimensional ordered equations become 

,..., ,..., ,..., 
0 (1): s . \l fl = 0 

0 (E): s • \l fz = T3/zexp 

0(€): 
.... 

T3fz exp ~ . \l £3 = 

+ 
3 
2 T ~z 

* Since az must be of specific order and not just restricted to a 
certain class of orders. 

( 3.13) 

(3.14) 

(3.15) 
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where we have used the f act that a 2 = b 2 = c 2 = E, which follows from 

the moment definitions presented below, and a 3(E) = € 2 which is part 

of the distinguished limit. 

3. 3 Solution of the Free Flow Problem 

The 0(1) equation is that of free flow 

...., 
£ . \l fl = 0 (3.16) 

The boundary condition to be applied here is that f 1 = f 1 i(~z)~~T) on a 

sphere of radius f<.. for ~ < 0. f<.. 
r 

has the following properties: 

f<.. - oo as E - 0 

Ef<.. - 0 as E - 0 

Solving ( 3.16) we obtain s elutions of the form, 

The boundary condition above ne e d only be stated for 

( 3.17) 

s < 0 since the 
r 

free flow calculation gives us the outgoing flow at any point. To solve 

the 0 (E) equation it is necessary to find p 1 and T 1 , but they are 

completely determined in terms of £1 • by the geometry of the body and 
1 

by the boundary condition on its surface. In this particular case the 

1 h . d[l4,p.790] 01 d.££ £1 usua cone, sp ere geometry 1s use . n y 1 use re ection 

with complete accommodation is considered. 

Before proceeding let us formulate the integral definitions of the 

moments needed in the calculation. 
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Inner Region 

pR T = f i ~ 2 f d3 ~ 

3 3/z - ...., 
P 1 = ( ~ 1T ) I f l d3 ~ 

3 % ...., - ...., 
piTI = 7(271") J fl~2d3~ 

- 3 3/z -
Pz = (27T) J fz d3 ~ 

3 % -- ...., 
= T(Z71") J fz ~z d3 ~ 

In a later section we will set down the corresponding formulas valid in 

the outer region. 

Preliminary Considerations: 

Once f 1. is known we have f 1 for all r since the flow is 
l 

collisionless. The usual assumption is that f 1 is the free flow solution 

:!c 
with f 1 . = f • This assumption will be justified at a later stage during 

l co 

the matching process to be defined. 

Calculation of the free flow p 1 and T1 

Let f be the reflected distribution on the body, a Maxwellian 
r 

at the body temperature. Let f. be the incoming distribution on the 
l 

body. Applying the diffuse boundary condition along with the condition 

that the incoming and outgoing flux of particles must be the same, we 

obtain, 

~ E[- co, 0] 
r 

-oo -co 
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'!< 

S ince f. = f by assumption, 
l 00 

00 0 

N. = ss d~cp d~ e s ~r exp( - ~ ~z ) d~r 
l 

-oo - oo 

N . = 2 7r/9 
l 

H ence, 

( 3.18) 

T = T /T oo a 

The density at any point may now be found by i nte grating f 
r 

and f. over t he regions i n velocity spac e i n which they are valid. 
l 

R e gion I: - particles coming from the body 

>:C 
Region I~: n 1 - particle s missing the body or dire cted towa r d i t 

Figure I 

The density is 

(3 .1 9) 



* [ -I 1] Q :-.9-E O,sin ; 

cpE [0,27T] 

[ 
-I 1 J sin ; , 7T 

cp E [o, 21r] 
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(Region I) 

(Region II) 

For the sake of convenience, the integral has been expressed in 

spherical coordinates for evaluation in velocity space. Carrying out 

the integration in (3.19): 

PI= t(l+'TYz) + t(l-'TYz)(l-h)Yz (3 .20) 
r 

Likewise, 

(3.21) 

Integrating, 

P1 1i = i{ 'T Yz + 'T ) -f t ( 'T- 'T Yz ){ 1 - ~ z ) Yz ( 3. 2 2 ) 
r 

In the following sections asymptotic solutions for r- ro will 

be found for f~ and f 3 but first it is necessary to define the inter-

mediate limit matching process under which these solutions are found. 

The exact solutions can be written as a series of quadratures, but they 

are useless for matching to the outer solution unles s simplified. 
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3.4 The Matching Process Defined 

Far from the body, where distances are measured in terms 

of X we define the outer variable r* = r/X. Recalling :; = r/a we propor:e 

the intermediate limit: 

fixed as E- 0 

(3.23) 

1 > , (€) > € 

Then 

r = r /11 - co , 
* r =E r /'rl-+ 0 , as E-o (3.24) 

The matching condition for the inner and outer expansions is then 

lim [ -, r*-o Outer Exp. _ = 
lim 

[Inner Exp. ] (3.25) 
r-eo 

under the condition r fixed. 
T) 

Note that this limit process is used 

explicitly or implied in all of the subsequent asymptotic ·treatment. 

3. 5 Asymptotic Solution for f2 in the Inner Region 

Exact formulation: 

- -- = .,% exp [- ~ T !z l fi7. 0 (E): 5· \l fz - fl (3.26) 
Tl- T z 1 

P1 = i{(vl->tl) - (7\->-1)(1-.: )\->} 1 
rZ , 

( 3. 2 7) 

-- Yz ~ Yz 1 Yz} 
P1 T1 = .,.2 {(/z+1)+ (T -1}(1--;::-) 

rZ 
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f 1 is the free flow solution and may be written: 

( 3. 28) 

H = the Heaviside function. 

The solution fz is found by applying (3. 6) and is written as 

a sum of two solutions: a particular one expressed as an integral and 

a solution to the homogeneous equation written as an arbitrary function 

of c 1 and Cz. 

.... [ 3/. [ 3 ~2. -, 
fz. p = - f T z exp [ l T T 

1 

_ • (3 . 29) 

( 3 . 30) 

here 

r 

-Note that f 1 is constant along the characte r istics of the equation since 

it is the solution to the homogeneous problem. Hence, 

.... -
Since p 1 and T1 are now known we may find f z by integrating the 

right hand side of (3.~9). This integration will be carried out as 
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r-oo with r 
"1 

fixed. The expression thus found will be used in 

matching. 

as r-oo 

Introducing {3.31) and (3.32) into the right hand side of (3.29}: 

~ . ~ fz = £*00 { 1 + ~ fx-- i B ~;I} - ~ + 0 {1)4} 
- rZ l J 

A= - 1
- [sr- 2l7-- 3] 

s..fT 

B = -
1- [r-1] 

4-IT 

,.., 
Matching determines f2H. 

,.., 

3. 6 Calculation of pz and T2 

as r-oo 

{3.31) 

( 3. 32) 

{ 3. 33) 

{3. 34} 

The 0(E2 ) equationfor £3 , (3.15), cannot be solveduntil 

- -Pz. and T2 are found. Again for matching we need only find f3 as 
,.., ,.., 

r-oo, hence equation { 3. 34) will be used for f 2 to calculate p 2 arrl.T2 • 
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define 

Consider 

Change the integral to polar coordinates, 

00 

s 
0 

~2 f:[_A-~B~2]dj~j s 
'~' 

n: IJ"E [o,1r] 
tp € 1 o, 21r J 

-1 
cos (sin'\J") . ~.:rd-0-d 

• ~C>- Slnv v tp 
s1n v 

making the change of variable 13- = ~ - x it is clear that the integral 

vanishes. Consider 

~ = f* in n* 1 
00 

f1 = -r 2 exp (- ~ 7~ 2 ) m rf' 

where n*, 0*1 are defined on p. 25. Using (3.36) in (3.35}, 

Integrating, 

hence, 

1T 
~{1-"7.) 
3r 

(3 . 35) 

(3.36) 
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3 % 1T 
Pz = PzH + ( l7T) ~ (1-r) 

3r 

Now for Tz note from the moment definitions 

(3 . 37) 

and the integrals may be evaluated as above. In this case two of them 

vanish leaving us with 

where, 

(3. 38) 

3. 7 Solution of the 0 (E 2 ) Equation . 

Now that Pz and Tz are known ( 3. 37), ( 3. 38) we may solve 

the 0(E2 ) equation for £; as r-oo. Introducing (3.31), (3.32), (3.37), 

(3. 38) into the right hand side of ( 3 . 15 ): 

Again, the solution f3 may be written as a sum of two solutions: a 

particular one expressed .as an integral and a solution to the homo-
.... 

geneous equation written as an arbitrary function of c 1 and Cz. 
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Define: 
..., 

- f - H 

Then, 

£; p = - S ~ f~ [ fH + ~ ( ~ - i ~ z) ] -~} d ~ (3.39) 

f;H = f;H(;;'~, ~) = f;H(~z, ;~T) ( 3.40) 

Rewriting (3. 4)~ (3. 5), (3. ;31) in terms of the inter:rp.ediate variable, 

we obtain 

( 3. 41} 

Noting (3. 41), the integrals in ( 3. 39) may be readily evaluated. 

Define 

Note 

1. 

= - ~ log [ 
cl 

2. 

3. 
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Observe 

Then 

r ~T = also a constant. 

Hence, 

dw = l S -1 ~ !"' ..., tan { r £,Jdw 

= 

= 

Summarizing the integrals, 

as r- co 

3.8 The Outer Region 

In the region of physical space which is far from the body, 

that is, many me an free paths away, we must choose a normalization 

and linearization which are different from those in the inner region 

where the free flow solution is the dominant term. We expect the 

solution to tend in some way to the continuum behavior at infinity. 



-33-

The presumption that this occurs uniformly in velocity space has led 

previous calculations based on linearization about f * to error. In 
co 

fact, the velocity space must again be divided into n* and n* 1 as 

noted below. 

Figure II 

rl*: -\J-E [o, sin 
-1 E/r >:'] 

cpE [o, zn] 

-1 r2 *I: {)-E [sin I ,:c E r , n] 
cpE [o, zn] 

n = r2* + n* 1 

As shown in the following section, the linearization about £* co 

is valid in r2 * 1 , while that in n * must be about another function yet 

to be determined. 

Normalization, 
>';: 

r/A. r = 
£* = £/ceo 

p 
>{< = pfpco 

T"'" = T/T 
a> 

£* = £/A 
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Linearization, 

* f = g 1 + a 1 (E) gz + ... 

* * T = 1 + J31 (E)T1 + ..• 

* * p = 1 + 'Yl(E)pl t ... 

f: = /'c {1+-yl(E)pic- 32 J3l(E)Tl*{l-g*z)} /f' =exp(- 23 g*z) 
00 ' 00 

Note that T* and p* may be linearized about "one" since the con­

tributions to them from n:i< are second order as will be shown. Again, 

following from the moment definitions we must have 

and the non-dimensional ordered set of equations to be solved becomes 

The boundary condition to be applied to g 1 

{3.42) 

(3.43) 

is that it approach f* as 
00 

r*- oo. That imposed on gz requires its vanishing at infinity. 

Solution of the 0 (1) equation presents no particular problem. Letting 

* h = gl - f ' 
00 

* * g . \] h = -h 

which from p. 19 has the solution 

. * * 
* * ( r sr) h = K(c 1 , cz) exp - T' or 



* >:< where K (c 1 , c 2) is to be determined by matching. Applying the 

intermediate limit just to the first terms of f and £* tells us that, 

* * ..... f + K(c 1 , 0) = f 1 00 

...., 
where f 1 is the free flow solution previously found. Hence 

and we may write 

* f in rz. * 1 
00 

g1 = 

r* ,_ 

+ (£1 
00 

f 1 = 

* f 
00 

* * * ( r ~ ) f ) exp -~ 
00 £ 2 

-r2exp (- i T~*z) 
* 1n rz. 

in * rl 

* * noting that there are no problems with the exponential since £ > 0 inrl. . 
r 

* K has only been found as a function of c 1 . Expanding K in 

the form 

and using this expansion in the final matching proce ss shows that it is 

* reasonable to assume K is a function of c 1 only and hence is d e ter-

mined completely by the above expression found by the first order 

matching. 
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3. 9 The Equations of Motion 

Before solving (3.43} we must have and Tj< explicitly. 

The contributions to these moments from IT" 1 , in which the linear-

ization is about the continuum solution, are governed by the continuum 

equations which will be derived below from the Krook equation. The 

f ~< 
part o Pi and TI coming from n* is determined by integrals over 

g 1 in that region. Also we expect the equation of state to hold in n*I. 

Subsequent matching will demonstrate that it is not necessary to con-

sider either the equations of motion or the equation of state in order to 

find the distribution function. This section is included in order to 

verify that the resultant solution does indeed approach that required by 

the linearized equations of motion derived from the Krook model. 

Another interesting derivation of the equations of motion where there is . 

a macroscopic velocity is presented in Appendix II. 

Define 

We must have 

* * * p 1 = p 11 + p 12 

* T* --Pu• u "contribution from n* 1" 

* * P 12, T 12 : 11 COntribution from n* II 

P * * T::!< u=Pu+ 11• 

the linearized equation of state. The following form of the Krook 

equation will be used in deriving the equations of motion: 

s * a f 
r &;"* 

c. *c. * ""r ""T a f 
r* a?'= 

T 

(3.44} . 
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Multiplying { 3.44) by one and integrating over all ~ space in cylind-

rical coordinates 

In~egrating by parts 

{3.45) 

further, 

* * ur = uT = 0 [no mean flow] 

hence (3.45} is satisfied identically. Similar reasoning tells us that 

the momentum equation is satisfied for p= constant. To obtain the 

energy equation, multiply (3. 44) by ~*z and integrate. 

Define 

Heat flux 

The moment equation obtained is 

( a z ) •:c 
--.:c + * qr = 0 
or r 

or 

1 a ( *z >:< ) - 0 __,.,....- - r q -
'~"z or r 

r 

* We expect qr , the contribution to the heat flux from the region n * 1, 
1 

to satisfy this equation. Henc e , 

= 
constant 
~.:c-z--



Using the further relation 

we find 
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* =-kdT,1 
dr ,.. 

( 3.46 ) 

* where T 11 satisfies the Navier-Stokes equation. Utili z ing the fact 

~( ):.: 
that the pressure is constant and that T 11 and p 11 obey the linearized 

equation of state, we find 

(3.47) 

Subsequent matching will tell us that we must choose a 1(E) = E z. To 

simplify the next calculation let u s assume this subject to verification. 

Moment Definitions in the Outer Region 

and we identify 

>:C 

Pu ( 3.48) 
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3 * ~:c 
f l = T 2 exp ( - l T S 2) 1n 0 

,... .., .. 
r ''s -~ 

exp (- --7) 
s' 2 

):c 
Proceeding along the same line with T 1 

,;, >!< 3 %s >:< >!< >:C 
p T = (-) s z f d3 s 

271' 

and comparing both sides of the equation, 

(3.49 ) 

(3.50) 

(3.51 ) 

[linearized eqn. of state] (3.52) 

(3.53) 

(3.54) 

>!::: * 
both T 11 and p 11 are known from p. 38 . It remains to calculate 

::c ::< 
T 12 and p 12 following the same routine as in previous integrals. 

3.10 Evaluation of and 
:>:~ : :::: 

small 

r S 
For the purposes of matching we will expand exp (- ~ * ~) 
* '=> r and retain only those terms of appropriate order. The 

for 

exact 

expression for these moments will be displayed later. The results 

follow. 
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%. 
=- t(l-,:~Vz) + 7T,~ (1-'T) </7T) + ~ ('T%._1) + 0(~) 

r z. 3r ·• 
(3.55) 

1 1-'T 'TVz-1 3 3/ 7T /I:~ € -- -v-+ ---- ('T Z. -1) - -, (1-T)(-) + 0 (-) 
4r >:'z. 'T ~z. 8 8 3r >i< Z7T l1 

>): 

T IZ. = (3.56) 

The exact calculation reduces to a single quadrature. 

Noting 

. -I € 

00 ~< s1n ~ 

S - * 21r Is I * r e*z. (£ 1 -£ ) --·-- ( r cos:ff\ 
~ 00 r* exp - ls*l-/ 

0 0 

27T SO) * 3 
[- * 1 r c-r* € z ~) c -r* )J 

r * 0 I g I £1 -£00 Lexp 11*1(1-?Z) -exp "i1*i:~dl s* I 

3% 
Multiplying by (

2
7T) 

1 
·-p: . * and nohng that E 2 / r 2 is small compared 

to one, we obtain 

(3.57) 

- 3 * 
£1 = ,..z exp (- 2 'T g z.) \ 

* 3 * £ = exp ( - - g z ) 
00 2 

( 3. 58) 

* * * * T 12 is the same as p 12 with s z. replaced by g 4 in the integral. 
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3.11 Solution of the 0 (t:2 ) Equation 

Repeating here equation ( 3.43 ) 

and using (3.46), (3.47), ( 3. 55 ), (3.56) 

(3.59) 

* * * ( 1- 'TYz ) 7r 3 % 3 % E 
p 1 = Pu- K 1/r -:} ~ + -::---:r.-(1-'T)(-) + -('T -1)+0(-) (3.60) 

r 'Z 3r"i< 2rr 8 r) 

1/ . 3/ 3/ * 1 1 'T / 2 -1 3 -r 1Z-l Tr 3/z E = K 1/r + ~-rr (1-'T)+ ---- - -(1- 7)~ + 0(-) ( 3 .61) 
4r,.. 

7
;z 8 8 1 3r* 2rr l1 

Following p.19 

( 3.62 ) 

( 3.63} 

* We set Kz = 0 because this term has the wrong b ehavior for r - oo 

* when £ < 0. Examine now the terms in the integrand. There are 
r 

three basic forms of integrals involved. 

1. s * -w * Ce dw C = Constant ( 3. 64) 

s c * 2. 
* 

e-w dw* ( 3. 65 ) 
r 

s c * * ( 3 . 66 ) 3 . -w dw 
r*z 

e 

Following ( 3. 41) we define 

Yz 
>!< ( z ) - c 1 c 2 l1 + w~ . ( 3 . 67) 
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The first integral is of course easily evaluated. 

1. -w >' -w Ce dw oc =-Ce S 
>:< >',< 

Expressing the second in terms of the intermediate variable, 

E 

2. 

3. 

--w 
e 77 77 dw 

= c s-~,..----...:.77_,...,_ ,,. z z 12 
- cl (c Zn + wn) ; z S C -w*d * 

--;JC e w 
r 

~ - 0 so expanding 
n 

= 
c 
-log c* 

1 

S 
>:< c -w d ,.,. 

*z e w 
r 

E 
w 

C S 
e n n dw 

= n ·(22) 
*z z z E 

c 1 (c 
271

+w
71

) 

Expanding the integrand again, 

= ( n) c E c>'.<z 
1 

Putting 1-3 into (3. 62) and collecting togethe r all the constants, we 

have the f ollowing result in which only terms of the indicated order 

have been retained. 
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A l 
[ 5., - 2. .,Yz - 3 J = g.,% ' 

B l 
[ 7-l] (3.69) = 

47% 

- 3 % 7T(l-7) 
(J' = ( 27T ) 3 

* cl = cl 

3.12 Intermediate Matching 

The inner and outer solutions are now known and it is possible 

to show that they match under the limit defined in (3.25). Note that 

the intermediate limit has been applied in both regions to obtain explicit 

solutions necessary for matching. The exact forms cannot be 

expressed in terms of elementary functions. 

Before proceeding with verification of (3.25), we summarize 

the results found thus far. 

Inner Region: 
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1/z 
p-1-1. (1-T )+E{pH+r ~(1--r)} +0(n4 ) 

4 ; 2 2 3r 

- - { * [- 3 - - ] c 0 s - I (~ T/t '[I ) 
f - f 1 + E £

00 
A- z B S 2 _..:, r·- ·- + 

r£T 

{ 
- - ( 5 3 - 2) + E 2 -%J+ cr 2 - 2 S . 

where 

- * £1 = free flow with £
00 

incoming 

Outer Region: 

* p - 1 + '{ 1 (E) 

* T - 1 + [3 1 (E) 

(3.70) 

(3.7 2) 

(3.73) 

(3.74) 
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(3.75) 

In each term of the inner expansion there occurs a term of the 
-n 

n w ):< -
form E - 1 (f - £1). The number of terms of this type to be included n. co 

in the asymptotic expansion is determined by the class of intermediate 

limits, since written in the intermediate variables we have 

w n 
---4- (/" -f 1) (~) and 
n . co 'f1 

n E . (-) < E 2 
'f1 

(3 .76) 

for the expansion t .o be valid to E 2 • It is also clear from (3.70), (3.71) , 

(3. 7 2) that 

The terms of form (3.76) are matched by the term 

* ):( 00 

- >I< (-r Sr) '\' Wn >:C - En 
(fl-fco> exp *2 = L nt (fco-£1> <n> 

S n =O 

in the outer r egion. Term by term matching of the density yields the 

following results: 
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(A} y 1 (E} = E 2 

(B} = 0 

The physically reasonable conditions that the perturbations vanish for 

'T -1 and r •:< - oo requi r es , 

(D) 

The density now matches to 0 (E) . There i s still a t e rm of O(EZ), 

~ ( 'T 
3/z -1), l e ft unmatc hed but it will be shown to come from f 3 H, a 

term in the distribution function y e t to be found. 

Term by term matching of the temperature yields 

(A) {3l(E)=EZ 

(B} K 1 = 0 

agr e eing w ith the assumption y 1 (E} = {3 1 (E). The rest of the unknow n 

~ ~ ~ 

functions, gH, f 2H, f 3 H, etc., are found by comparing (3.72), (3.75) 

which give the intermediate limits on f in the inner and outer regions, 

respectively. 

It is concluded, 
,,, 

(A) fl =£'" in 
00 

>:C n l verify,ing the previous assumption. 

(B} a 1 (E) = E Z a gain verified 

(C) Kl = 0 

>!< 
Note that the density and temperature computed from f3 H, p3 H and 

* T 3 H, are (use (3.48}, (3.52} ) 

>!< 3 ( 31.., -1) 
P3H = S 'T 1-.. 
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* 1 1/ 3 3/ 
T3H=g('T.Iz_l) -g('T/2-1) 

which account for the presence of these terms in the outer region. To 

find the density and temperature to 0(€2) it is necessary to integrate 

the distribution function found above to 0(€2). 

3.13 Comments on the Boundary Conditions Applied to f 2 and f3 

The boundary condition applied to the functions f 2 and f3 in 

the inner region for particles in 
>:C 

Q 1 is given on a sphere of radius 

R with the following properties: 

R = R /a - 00 as E- 0 

R*;, R ;x. 0 as E- 0 

i.e. 

R- 00 

R'J,c 
ER- 0 

on the sphere 

E f2 = F2 (~ ' R_) 

- - R.) E 2 f3 = F3 (£ ' 

and we require 

F 2 (~. R)- 0 as € 0 

F3(~,R,)- 0 as E 0 

A check of the inner solutions found previously verifies this boundary 

condition. 

The boundary condition applied to f 2 and f3 in o* is that of 

diffuse reflection at the body. This condition along with the equality of 

incoming and outgoing flux of particles tells us 
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:N.(_.2_) ,.z 3 -
f = exp ( - - 7' S 2 ) 
r 1 Zrr 2 

1 s"s' r 00 0 

N. = ~ £. d3 ~ I = -s s s ~ £. d3 ~ 
1 r 1 r 1 

-00 -00 -oo -00 

f - reflected distribution 
r 

N. - incident flux 
1 

~ E: [ -oo , o] in N. 
1 

Thus, such quantities as heat transfer to (or from) the body may 

easily be evaluated by solving the inner equations near the surface to 

obtain the incoming distribution and then applying the above conditions 

to find fr , finally taking the appropriate moments desired. Part IV 

examines the heat transfer in this manner. 
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PART IV 

HEAT TRANSFER 

4. 1 The Inner Solution on the Body (r = 1) 

In order to find the heat flow from (or to) the body, it is 

necessary to know. f near r = 1. Following the same procedure as on 

pp. 26-32 we simplify the right hand side of equations (3.14), (3.15) 

-under the limit r - 1 and then evaluate the characteristic integrals. 

-0(1): £1 is again the free flow solution and no furt}fer simplification is 

necessary. 

O(E): Using (3. 20), (3.22) 

as r- 1 

(3.29) yields 

( 4.1) 

To find f Jp• Pz and Tz are needed. They are evaluated directly 

from fzp• remembering that fZH was found to be zero. The density 

is given by, 
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[r- ro Pl. = r J 

-r:; [( r 2 exp(-rf ~'l[~[d[~[ r 
n >:< 

r7T 
Pz - -::::- (1-'T) 

3r 

-Finding T z in the same manner: 

we find the integral to be zero, hence 

Tz = -pf:Tl 

PI 

sin'\J- cos"\.? d 19-d qJ + 

as r - 1 

-as r- 1 
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From previous calculations (p. 31 ) 

S d5' =_+log [ ;(1~1+ ~r) J 
r Is I s2 

_ ( 5 3 11 _ ) rrr(l- r) % ( 3 11 _ 
f3 - - - - T (2. S 2 _ T exp - - T ( 2. S 2 ) • 

p 2 2 31£1 2 

· log 

as r- l (4.2) 

(4.3) 

The next sections outline the calculation of the heat transfer. 

First, the free flow heat transfer is found. Then, as observed 

previously, it is necessary to find the incoming flux from f 1 , f 2 , and f3 

which in turn allows the reflected distribution to be displayed. Finally, 

the heat transfer is calculated from the incident and reflected distri-

butions on the body. 

4.2 Free Flow Heat Transfer and Corrections to 0 ( EZ) 

The heat flux (heat per unit time per unit area) at any given 

place in the flow field is defined as 

Note only the radial component is consider ed sinc e the flow is spheri-
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cally symmetric. Defining, further, the dimensionless quantity 

we have 

The free flow heat transfer is calculated in the same way as 

-p 1 and T1 (pp. 24-25) 

00 

qr
1 
= So ln5 'T 2 exp(-~ 'T~2)dl~l S * sin.:Tcos.:Td~dcp + 

n 
00 

S -5 3- - s 
1£1 exp(-z-£ 2)d 1£1 >!< sin~cosl7dvdcp 

o n 1 

= 

The incoming flux is defined as 

00 0 

N i = I S S d~ e d~ cp S ~ r ~ d~ r I 
-oo -oo 

- -f. = f 1 + € f 2 + € 2 £3 
1 

at r = 1 

Three separate integrals must be done. Using (4.1), (4. 2), (4.3) 

J/ 1/ -- * ['T /4(l+'Tf2) 3 ~- >!<] £ f.=f +E 
2 

exp(--
2

'T 2 £ 2) - f r 
1 00 00 --2 

* £ 
+ < z [ £

1
';; [ (ls/lz -12- 3.,-V> ) + ~' (3.,-Y> -9 .,.% +6 )] + 

5 3 11 ,.._ rn-(1-'T) 3/ 3 11- [ l ~l+~r J 
(---'T~'2 £2) _ 'T/4 exp(--T~'2 £ 2 ) log _ + 
2 2 31£1 2 ~2 -

r = 1 

(4.4) 

(4. 5) 

( 4. 6) 

(4.7) 
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To facilitate integration, we write 

(4.8) 

After laborious integration, one obtains 

m= 
-xZ 

e log xdx 

00 

S 4 - xZ 
n = x e log xdx (4. 9) 

0 

and the reflected distribution on the surface is given by 

~ ~ 9 3 ~ 
f = N. - 'T z exp (- - 'T s z) 
r 127r 2 (4.10) 

Since the free. flow heat transfer is known, it is only necessary to 

calculate that due to fz, f3 , and fr. Observe 

00 

qr = S 1~1 5 dl~l S fsin\5-cos-trd\J"dcp 

o n 
where f is the distribution function on the surface of the sphere. 

00 

= S 1~1 5 dj~l S. ~ sin~cos\Jd~dcp 
o n""1 

00 

+ S 1~1 5 

d 1~1 S., .. fr sintJcos'1J d 'l.9' dcp 
o n 

(4.11) 

(4.12) 
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N . = N. +EN. + cZN. 
~ 11 ~.a ~3 

f = N .. .J.. r2 3 ,. ~ 2) 
rj 1J lor 

exp(- 2 

f. = f . +Ef. + c2 f. 
1 11 l 2 13 

- -qr = q + € q + €2 q r1 r.a r3 

q = free flow heat transfer 
rl 

co 

s 
0 

f .. siniJ cos \J d -&-dcp 
~J 

Evaluate the above integrals, using the fact that the expressions m and 

n may be found in terms of the Euler psi function, which is tabulated, 

1 •th l . d t•t• f .1. [18,p . l97 (3.723)] ,[l9,pp.255- 258] a ong w1 severa 1 en 1 1es or 't' . 

m = ~7r (2 + tV ( %> ) 

lJJ( i ) == -1.96 

qr = ~; [; - 1] + 36Err [ 4 -3 'T _,.Vz] + E2 [?±,. . 
· (3'T% + 'TVz -4) + 71"(;-'T) (. 069 + ;

6
1og 'T- 'T

6

1

/z 

+ _1I._ (3r%. + ,.%. + 2r1,4 - 2r - 4)] 
· 36r 

(4.13) 
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To obtain the total heat transfer to the sphere, use 

Q = qr · area of sphere = qr. 4 7r (4.14) 

In order to compare the above result with that found by other investi-

gators, make the further assumption that 

T = l-,6. 
(4.15) 

.6. <<1 

That is to say that the body is only slightly hot compared to the free 

stream. Introducing (4.15) into (4.13), retaining only the linear 

terms in .6. yields the following expression for qr 

( 4.16) 

Now normalize by. ~; so that this may be equivalent to that obtained 

by Lees in his paper on the moment method. [8 ] 

whereas, Lees finds 

27 
8;r 

(4.17) 

( 4.18) 

It is at first discouraging to note the difference in sign found in 

the 0(€) corrections. However, the moment method is of questionable 

validity for E < < 1. In a slightly more complicated fashion, Takao [ 9] 

obtains a result which may be expressed as those above, after extensive 

investigation into his notation. According to a comparison of his 

theoretical calculation with experimental values he obtained, it appears 
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that there is good agreement, even for small E • In our notation, 

Takeo' s result becomes 

= 6. { 1 + • 216 € } ( 4.19) 

Note here that the sign agr e es with that in (4.17). 

For the sake of comparison, the following figure illustrates 

(4.17), (4.18), (4.19). The experimental points are omitted since they 

are for a diatomic gas. 

q 

1.040 

1.020 

1.000 

• 980 

.96 0 

.940 

.920 

.900 

• 1 • 2 . 3 

Figure III 

Takao 

Present 
Theory 

L ees 

E 
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In Appendix III it is shown that in the continuum limit q may 

be written as 

q = f 
E 

where f is a numerical factor close to unity. The next figure shows 

the behavior of q from the very near free flow region, where the 

present theory is valid, through the near free flow and transition regions, 

where the theory of Lees and Takao holds, to the continuum, where the 

heat transfer is found by a simple physical calculation. 

q 

1.0 

. 5 

Very Near Free Flow 
I 

Near Free Flow 

Transition 

l 10 100 

Figure IV 

Continuum 
€ 

1000 
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PART V 

CONCLUSIONS AND FURTHER COMMENTS 

From a com paris on of the present theory with existing ones, 

reasonable results have been obtained for the heat tra11.sfer from the 

sphere. This confirms the apparent increase of q over its fr e e flow 

value for a small range of E, approximately (0, • 4), found also by 

Takao. It does not seem that there is any simple physical argument 

which can support this behavior, such as that which explains the 

eventual decrease in heat transfer caused by collisions {the shielding 

effect of molecules colliding in front of the body). In fact there are 

no experimental data at present which can either confirm or disprove 

the initial increase. 

There is an interesting comparison between the sign of the 

first correction to q and the sign of the first correction to the 

hypersonic drag of a cold blunt body in nearly free flow. The author 

has recently examined a most interesting paper by Willis [l3] d e aling 

with this. The problem considered is nearly free flow drag of a 

cold blunt body in a hypersonic stream, and, in particular, sphere 

drag is analyzed. It is s hown that the sign of the drag correction 
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is different as obtaine d by the two method s considere d: l ) the B-G-K 

model solved by the transform m e tl?-od of Rose and t h e fir st c ollision 

method of Baker a nd Charwat a nd 2) t h e B-G-K m ode l solve d b y 

Knudsen iteration. Se veral r e asons a re given for the anomaly, and 

it is conclude d that eithe r Knudsen iteration is not valid for th e 

problem or the B-G-K model fails in highly non-line ar or non-

equilibrium flows. 

[11 p. 126 71 
Referring critically to Rose's paper ' J, howeve r., 

can cast some doubt as to whe ther the anomaly r e ally exists or not. 

In order to do her calculation of the d r ag, s h e obt ains the mom ents 

-p , T. and u through the transform method and then u s es them to go 

back and find the distribution function. The lat ter calc ulat ion relie s 

heavily on an integration along the characteristics of th e Krook e q u a -

t i on and cannot conceivably b e correct since she h as writ t e n down t h e 

wrong equation. In transforming the Boltzmann e quation to spherical 

coordinates, the derivatives with respe ct to the velocity coordinate s 

have been omitted. There may be justifia ble grounds for l e aving 

these terms out in some sort of far field analysis, yet many of her 

crucial steps, such as finding the source function, rely on being close 

to the body. It seems, then, that Knudsen iteration may have given 

the correct result. 
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Equations of Motion and State 

It is to be noted in the final analysis that neither the equations 

of motion nor the equation of state were necessary to solve the 

problem. The equation of state, in a linearized form, follows from 

the moment definitions and the linearization of the distribution function 

(see 3. 52). Matching shows that the dependence of the solutions on 

the equations of motion (through K1) is non-existent, since K1 = 0. 

In addition, the existence of the logarithmic singularity in 

the present solution for f should be no mystery and is supported by 

Yu [zo' P· 24 73] . Although Yu has considered the Boltzmann 

equation and not the Krook model, he obtains terms of the form rn 

and rn log r in agreement with those found above. He points out that 

the fluid behaves like a macroscopic fluid for large r, concurring 

-1 with the present theory which indicates a r decay in the density and 

temperature perturbations. 

Extension of the Method 

The perturbation method used in this thesis should be applica­

ble to many similar problems in rarefied gasdynamics. In particular., 

it could be used to solve the hypersonic drag problems considered by 
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Rose above. Admittedly, the simplicity of the present work, due 

to the comple te spherical symmetry involved, would not always 

be present; however, the case of sphere drag in a uniform free 

stream possesses cylindrical symmetry which makes the equations 

a bit easier to solve. 



-6 2 -

APPENDIX I 

The Boltzmann Equation in Various Coordinate Systems 

Expressed in cartesian coordinates, the Boltzmann equation 

is written 

6£ 
£ · vf = ot ' 

where of/ ot denotes the change in f due to collisions between parti-

cles. We are interested in the form of the left hand side of the equa-

tion when the coordinate system is not cartesian, but still an orthogo-

nal curvilinear system. At first glance one might make the naive as-

sumption that it is only necessary to express 11 \1 11 in the various co-

ordinate systems. However, on further consideration, it is noted 

that in both cylindrical and spherical systems, the six independent 

variables on which f depends are not independent of each other and, 

thus, derivatives with respect to the velocity coordinates will now ap-

pear even in the absence of an external force field. 

To give an example of the necessary calculations, the Boltz-

mann equation will now be transformed to cylindrical coordinates. 

f = f (x, y, z;£ , £y, £ ) = f(r, <j>, z;£ , £"', £ } . 
x z r 'I' z 

In transforming the derivatives, we use 
a a aq. = J 

ax. aq. ax 
l J i 

q. 
J 

= 

r = 
sin <I> 

COS <j> 

( r • <j>, z;£r' £<1>, £z) 

(x2 + y2f~· 

= y/r 

= x/r 
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<I> tan 
-1 

y/x = 

sx = sr cos <P - s<j> sin <I> 

sy = sr sin <I>+ s<j> cos <I> 

sz = sz; 

sr = S COS <j> + S Sin <j> 
X y 

s<P = -s sin <I> + s cos <I> 
X y 

sz = sz 

Calculating all the appropriate derivatives, 

a 
OX = cos <I>~ - sin <P ~ + sin <I> s a - sin <P s a 

ar r a<j> r r ar; r <j> ~ 

a 
ay = sin <I>~+ cos <I> ~ - cos <j> s _a_+ cos <P s _a_ 

or r o<j> r r a;<j> r <I> a;r • 

Hence, the equation becomes 

Of= s ~+ 
ot z az 

We may arrive at the same result in a different manner by 

using the Lagrangian formulated Boltzmann equation developed by 

Pao [1, pp. 7-9] . Briefly, he derives the Boltzmann equation in gen-

eral orthogonal curvilinear coordinates as follows: 

dynamical state of a particle. If f(x.;s.) is the distribution function of 
l l 

the flow, then the change of f along the particle 1s path is due to inter-

molecular collisions. We may write, then 

df _ of 
dt - ot · 

Following f along the path of a particle, we have 
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elf = a£+ ± (si ~ + ~ af ) 
dt at . l g . ax. i ac 

1= 1 1 1 

where it is now necessary to evaluate ~- in terms of x. and £ .. 
1 1 1 

This may be done using Lagrange's equations . For no external force, 

d~ ( :~ ) - :~ = 0 
1 

L = T-V 

T = kinetic energy of the particle 

v = potential energy of the particle 

3 
L = ( 2: E2.g2)- v 

k=l 2 k 

m = mass of the particle. 

Using Lagrange's equations, it follows that 

and finally, 

af + ± si ~+ ±, 2. [t sk(s agk _ £. agi) _ _!..._ av] af = of 
at . · -1 g. ax. · -1 g. k - 1 gk k ax: 1 axk max. ac ot 

1- 1 l l- l - l 1 l 

In the cylindrical coordinate system , 

(x
1

, x
2

, x
3

) = (r, <j>, z) 

(gl' g2' g3 ) = (l, r , l), 

and exactly the same equation is found as on page 6 3. 

In the spherical coordinate system, 

(x1, x 2 , x
3

) = (p, 9, <j>) 

( g 1 , g 2' g 3 ) = ( 1 , p' p s in e ) , 

and the Boltzmann equation becomes 
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8£ 
a; e -

The above result may be verified by a simple but somewhat 

tedious calculation similar to that on the previous pages. 
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APPENDIX II 

Derivation of the Equations of Motion from 

the Linearized Krook Equation 

The purpose of this appendix is to examine the equations of 

motion derived from the linearized Krook equation. The lineariza-

tions used are those of the outer region and the distribution function 

}-',: 

is expanded about f • Normalization also follows the pattern in the co 

outer region. In this case, the fluid is presumed to have a non-zero 

..... 
macroscopic velocity u. The moments are defined as follows: 

density 

velocity 

..... J 3 pu = sfd s 

pressure tensor 

f ..... ..... 3 
IP = <s-u) .{s-u) .fd s 

1 J 

pressure 

l 
p = 3 trace 1P 

heat flux vector 

lf -2 ..... 3 q = 2 (s-u) <s-u)fd s 

The pressure tensor and heat flux vector may be linearized in the 

same way as the previous thermodynamic quantities. 

1P = p o . . +IP 1 00 lJ 
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LPl = j cicjg2d3 c 

f = f . + g 
co 2 

c = 
_, s - u 

p = Pco + P1 

p = pco +pl 

T = T co + T 1 

1 _, ... 
q = - (Q - 3u p + 2u

1 2 l 
_, _, _, 
u = u co + ul 

Q = 1 f 2 3 3 ci cjg2d s 

T he linearized Krook equat ion is written 

og2 s . Y'g2 = 6t , 

. IP) 

and to obtain the equations of motion, it is multiplied by l , c , and 
. 

2 
c , and then integrated over £ . After t he first integration 

V' • (~lpco + ~copl ) = 0 ' 

which is the linearized continuity e quation, where the expansion is 

about the infinity variables. The second integration yields 

This equation is obtained from the momentum equation by lineariza-

tion and application of the continuity equation. When the Krook equa­

tion is multiplied by c
2 

and integrated over £ , the equation of motion 

resulting from this moment is 
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'il ' [ Q + ~cop l } = 0 ' 

After appropriate linearization and use of some vector identities , the 

Navier-Stokes energy equation reduces to the following form 

To be equivalent to the above de rived equation of motion, we must 

choose y = 5/3 , the value appropriate to a monatomic gas. 
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APPENDIX III 

Heat Transfer in the Continuum Limit 

The equation fo r the heat flux is 

q = 
r 

- K dT 
dr 

Integrating the equation under the restri ctions , 

T = T a t r = a 
a 

T = T at r = CX> 
(X) 

Q/ 4 Tf r 
2 

(spherical symmetry ) , qr = 

we obtain 

Q = 4 TraK[T -T ] . 
a co 

Normalizing and making the substitution 

T 
(X) r-= 1 - 6. = "(" 
a 

6.. << 1 

the heat transfe r may be written at the surface of the body 

6.. 3f ( -i!:r ) 
Pr Re--z 

where use has been made of the expressions 

Pr = c ~J, /K 
p 

Re = c · a/\1 . 
(X) 

F r om kinetic theory 

\1 = dz . icA. 

c = c I 1. 09 
(X) 
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d
1

, d
2 

are numerical factors close to unity. 

Finally, q • as plotted in Figure IV, can be written 

l = q ,....,;­
e 
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T 

T 
00 
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R 
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00 

r 

w 
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LIST OF SYMBOLS 

sphere radius 

mean free path 

a/"'A (inverse Knudsen number) 

density 

temperature 

radial heat transfer 

body temperature 

temperature at infinity 

T /T 
oo a 

gas constant 

3/2 
(3RT ) mean square speed at infinity 

00 

density at infinity 

[p
00

/(2'1fRT
00

)
3

/
2
]exp(-£

2
/2 T

00
) 

spherical radius 

radial velocity component 

tangential velocity component 

-r£ /£
2 

characteristic coordinate 
r 

intermediate expansion parameter 

divisions of the velocity space 

p oo/ (2-rrRT o)3 /2 

Numerical Constants: 



B 
1 

- 1 [T-1] 
4,-a 

- ,. 
(] r-[1-'i] 

3 

r 
3 3/2 

( 2,- ) 

Inner Normalization: 

,.._, 
r/a r 

,.._, 

s sic 
00 

p p/ Poo 
,.._, 

T/T T a 

1 £/A 

w -;'t /t2 
r 

c1 It I 
c2 -;'t 11 2 

T 
3 

qr 2q /rp c r oo oo 

Outer Normalization: 

r 

>'< s' 
p 

w 

r/A 

sic 
00 

p/ p 00 

T/T 
00 

£/A 
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outer pressure perturbation 
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Intermediate Variables and Constants: 

~ ..:_.z - r ~/' Is ,:,z w -r s Is = 
11 11 r 11 r 

r r l11(e:} 
'11 

w tTl~ 
~:< ':c 

cz,., = w11sT/Sr 71 r 
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