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ABSTRACT

Some aspects of wave propagation in thin elastic shells are consi-
dered. The governing equations are derived by a method which makes their
relationship to the exact equations of linear elasticity quite clear.
Finite wave propagation speeds are ensured by the inclusion of the aﬁpro—
priate physical effects.

The problem of a constant pressure front moving with constant
velocity along a semi-infinite circular cylindrical shell is studied. The
behavior of the solution immediately under the leading wave is found, as
well as the short time solution behind the characteristic wavefronts. The
main long time disturbance is found to travel with the velocity of very
long longitudinal waves in a bar and an expression for this part of the
solution is given.

When a constant moment is applied to the 1lip of an open spherical
shell, there is an interesting effect due to the focusing of the waves.

This phenomenon is studied and an expression is derived for the wavefront
behavior for the first passage of the leading wave and its first reflection.

For the two problems mentioned, the method used involves reducing
the governing partial differential equations to ordinary differential equa-
tions by means of a Laplace transform in time. The information sought is
then extracted by doing the appropriate asymptotic expansion with the Laplace

variable as parameter.
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If people bring so much courage to
this world the world has to kill them to break
them, so of course it kills them. The world
breaks every one and afterwards many are strong
at the broken places. But those that  will not

break it kills.

Hemingway



INTRODUCTION

The work presented here deals with approximations to the solu-
tions of two transient dynamical problems, one involving a thin elastic
cylindrical shell and the other a spherical shell.

The shells are described by approximate theories which include
the effects of transverse shear deformation and rotatory inertia. This
results in a system of hyperbolic equations, and thus disturbances in the
shells are propagated with finite speed. The equations used for the
cylindrical shell are essentially those derived by Naghdi and Cooper{l ].
Prasad I l.:Igave a set of equations for a spherical shell, but some
important terms had been neglected. These omissions are rectified here,
and the resulting equations are found to agree exactly with those derived
by Naghdi{3‘]. The latter author derived his equations in a general co-
ordinate system using a variational principle due to Reissner‘:ﬁ-]. The
equations used here are obtained directly from the three-dimensional theory
of elasticity.

The development of the subject has followed a definite pattern.
Once the equations for spherical shells were derived, most of the work
concentrated on the natural frequencies for the various theories. We make
mention of Lamb [5’], Silbiger[ b ], and Baker[:7 ], who discussed the
membrane theory. Kalnins E_Sllinvestigated the effect of bending on the
frequency spectrum, and Wilkinson Eﬂld]extended the latter's analysis to

include the effects of transverse shear deformation and rotatory inertia.
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The representation of the transient response in terms of these modes was
done principally by Prasad EIL ]and Wilkinson and Kalnins[iil]. On the
basis of the membrane theory, Huth and Cole Eii-}and Mann—Nachbar[:is ]
studied the response of a spherical shell to an acoustic pressure wave
using a modal approach. The method used inf:13 Jdid not lend itself to
an analysis of the pressure distribution in the acoustic medium. Hayek
took up this point and complemented the work in[ﬂ4‘].

Investigations concerning the dynamical behavior of circular
cylindrical shells proceeded along similar lines with initial efforts
aimed at modeling more accurately the behavior at higher frequencies and
shorter wavelengths. We mention the work of Herrmann and MirskyEIS'], Lin
and Morgan{lé 3, and Naghdi and Cooper{ i j, all of whom compared the modes
of the approximate theory with those predicted by the three dimensional
theory of elasticity.

Paytoni}ﬂlsjtreated transient propagation in the circumferential
direction of a cylindrical shell by transform techniques. Berkowitzi:iq ]
studied the membrane theory of a longitudinal impact on a semi-infinite
circular cylindrical shell. TUsing bending theory, Jones and Bhuta [10 ]
examined the resonances involved in a ring load moving with constant velo-
city down such a shell. 1In a paper by Tangi}ﬂl], the problem of the dynamic
response of a cylindrical tube under internal moving pressure is studied.

He obtains a steady-state solution which is very similar to certain of our
results in Chapter II, and then analyzes the transient response by a numer-
ical method. Finally, Keer, Fleming, and Hermann [ll:]extend Payton's
work E%Iﬁ]to include the bending effects, using a technique of Flugge and
Zajac [l3_]for getting wave-front approximations and extending slightly

their interval of wvalidity.
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The methods of attack on transient problems in the above refer-
ences have been basically of two kinds. In one the solutions are repre-
sented in terms of an infinite series of modes, and in the other an inte-
gral transform is used. For the latter approach, inversion presents
difficulties and various types of approximations on the inversion integral
are introduced. The revieW'EQ‘?iby Miklowitz gives an extensive account
of the work of this type in the general area of elastic wave propagation.

The simplest concept of wave propagation is that of a wave pro-
gressing into a region of quiet in a stretched string. One is struck by
the dearth of such representations in transient shell analysis.

As mentioned above, only a limited amount of information is
gleaned even after the trouble of getting an exact representation of the
Laplace transform of the solution. If, from the outset, we decide that
only a certain limited type of information is wanted, e.g., wave-front
behavior or long-time information, then it would seem‘more logical to work
on the equations governing the motion and extract the information directly
from them by the appropriate asymptotic procedure. By this means we would
expect to bypass many extraneous details and in so doing keep the equations
simple and capable of closed solutions in terms of convenient functions.
The thesis presented here is a contribution in this direction.

Chapter I concerns itself with the derivation of a set of equa-
tions governing the motion of an elastic spherical shell. These equations
are derived directly from the exact three-dimensional equations of the
linear theory of elasticity for an homogeneous, isotropic body and include
the effects of bending, transverse shear deformation, and rotatory inertia.

In Chapter II the problem of a pressure front moving with con-

stant velocity down a semi-infinite circular cylindrical shell is treated.
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The information sought is specifically confined to all wave-fronts in the
problem. In particular, it is found that the main long time contribution

5 4 ; ; g £\
travels with the velocity of very long longitudinal waves in a bar C= = )

k
where E is Young's modulus and i is the density of the material of the

shell. An expression for the behavior of the solution in this region is

given.
We consider a constant moment applied to the lip of an incomplete
spherical shell in Chapter III. Attention is confined to the leading wave-

front only. Expressions are given for the wave-front behavior of the

~

moment as it moves down the shell, into the pole B =/ , and is then re-

flected.

The effects of bending in the problems treated can be traced

through a parameter >‘o = B



CHAPTER T.

A set of equations governing the motion of a thin elastic
spherical shell is derived from the equations of the three-dimensional
linear theory of elasticity for an homogeneous isotropic body. The ob-
ject is to find a theory which preserves the finiteness of the speed of
propagation of disturbances. This is done by taking account of the ef-
fect of transverse shear deformation and rotatory inertia and results in
a system of totally hyperbolic partial differential equations. The theory
thus corresponds in certain qualitative respects to the Timoshenko theory

for beams[&f].

51.1. Notation
o

Let @z Q‘ﬁ)be spherical polar coordinates (Fig. 1) related to

the (x,y,z) cartesian coordinate system by

x = 4 sin 9 cos¢
y= vsinD sine
z= TYTcos §
0<% sl O £ £aw, 3 0.

= A - . - - -
=, B , @ are unit vectors in the directions of increasing Y 0, re-

spectively. )(T is the component of the wvector 2& in the direction
of "i—"\' . XB ~ Xq, are similarly defined.

For convenience we list here the notation to be employed in the

derivation to follow.



AV ‘\, -
X, denotes = X = 22
, denotes = 3 vs T Suma,
I ’bo. N ge
E F EF ) ; Lod £ ;
r =0y, Ip, 7o is the body force vector per unit volume.

| 3 n 5. .
i dis the thickness of the shell.

+< R is the equation of the midsurface of the shell.

h and R are both constant.

(—' is the density of the material of the shell.
= (_u\_) Ug, u(?) is the displacement vector,

:.:f: - (-{:-.-. {:B' J;q)) is the acceleration vector, where

’ e e

ferUnee , fo Y56, To * Ye bt

(4, v, w) 1is the displacement vector for the midsurface of the shell.

2] . - ﬁ;_ -
533, P are the rotations of the normal to the midsurface in the § , ¢
]

directions respectively, during deformation.

A) }u. are the Lame constants for the material of the shell.

A
Y= 20 ) is Poisson's ratio.
Cry, Evp, EQ‘P etc., are the strains.
bew, deo; Lo etc., are the stresses.
NB‘, N‘P i Ngq;' 09) Q‘P are the stress resultants.

MB, MCP_, ME"P are the stress couples.

- 3A+2
il "t‘—%—_'_%ﬁ is Young's modulus.

gl
b = A (i-o™)

is the bending rigidity of the shell.

c, = E. _is the speed of propagation of longitudinal waves in a

e (=¥

plate.



Ca = / /% is the speed of propagation of distortion waves in an
~
unbounded medium.
! 11):"
R, = |+ (7? i

, _i__’a)’-
Ry = l(.’“-7--0(»“2-

Non-dimensional Quantities.

i - »- YL (op
No = 5 Ne ) g En e
R N [-o*
i S £ =
MB N _5 MG J \'{9 E h &3" )
e i = _‘.“_{. 14 -
o = R , w T By = B
y £ .l:Ce,
t = x
+
{ 1=»
o =
L = R,
where Redh

is the applied load per

-
unit area in the =¥ direction.

b
[{?CE)JG_ means f(b) - f(a).

i ,—’;(%)L P X: = 5-—2‘.
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1.2,

The Ecuations of the Classical Three-dimensional Linear Theory of
Elasticity.

The momentum equations expressed in spherical polar coordinates
are as follows [-? b J

! L | o . ;
Lre,r Tt Famb «l?rcp,@ + ¢ Avop t {“-hrr’tqﬂ? tye +Ers “’w}

+I‘"r = € ?\_ , (1.1)
ks { o
dep, v 4 m kmtp Yoy bf‘rﬁ,é i f?i*‘br““%'tw)“wf
- 12
‘f'_'FPJ f {“B : ( )
t ot R i b '
<rg, T L i‘?‘?,‘? ¥ e Yty {S‘C!“‘{’ *a.tw Cof.‘Gj
. i
+Fop = ¢ fo (1.3)
The stress—-strain relations are
]:Y‘\’ = (’.A 1"'1}"-) err + A(‘?Qs + e‘?“?)
by = (vwap) g v A (B + Eo)
‘bt{)t? = (A 'i-&'lk) e(px.‘) + A(err'i' e{}B) (1.4)
.4!:9‘? = Q.r- eo?
&T‘-P = J.’A. e‘-q)
&Ye =

A}A erg



strain-displacement equations are

v

\O

£1.3.

-

and its thickness is h .

Momentum Equations in Terms of Stress Resultants and Couples.

The midsurface of the spherical shell is defined by r=K

length along the midsurface) are defined by integrating the

per unit
stresses
3
Reah
S’ \:-
= -
Fre
~&h
o,,LL'
N T o
r -
J =
- r g
B2z
[ TR |
f\‘: "u- 4
~
- ",9
bep i~

through the thickness of the shell.

@

o

(La5)

3

The stress resultants (representing the force

(1.6)
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g‘*;:a
P _ ( e W §
= A L - e v
NB ‘)2,;:;‘ o~ [~
o . ey
N Ton (1.6)
Q(ID = g TET J‘\‘. \.-Q? Oq\‘-" :
R -k

Similarly, the stress couples are defined by

R+dh
X P c:) ! f
M = = Ar=s ) L, BT
) SN VRO
El R—i—k ¢ v
R+ah

1.7)

The momentum equations (1.1), (1.2), (1.3) are integrated
through the thickness of the shell and advantage is then taken of the defi-
nitions (1.6) and (1.7) to rewrite them in a form in which the T dependence
has been removed. It is just this that we have in mind when we use the
phrase ''derived directly from the three-dimensional linear theory of
elasticity."

T’\—
As a sample case, (1.1) is multiplied through by /ﬁ and then

integrated with respect to ¥ over (R‘SH\, R*ik) .
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Using definitions (1.6, this

O gl

N T L o O
'T' , ;”' A " ¥ 'S L 0
—= i- dv + e S o -F &p n 7~\gp oo v

L LAYR i h vge o

Te-n
ot
) Rizxn

‘ X
r =] ......T.-_.. P H
= 3 @
.S_f)___;j K’ N T‘('
N o=l
Integration by parts gives
R+
12y Y E 4 F e b
), & Frov T AR G jde o frr]
- L R R-3h .

Then the equation is

N Rrah
iy L + & = @1 .
{ A P

-~
R+3n
R+&h = .
4+ _ F - = C R v ¥
R v 5 )
5 S

(1.8)



In the same way, equations (1.2) aad {(1.2) lead to

o _Rezth
|95 = N o Al &
‘L R JLY‘S.J [} Lo C‘D W\.'h-n..uj ] Vud.J ik CAU K L \, == N } CDL B
R+:{-;‘_ 5 ‘.\ - o "
\f' ™ ' i ‘i) r’ 4 - N
+J T T, o = C = 7. or (33)
s i & Joan N g
R-d-h N Tl
and
R‘i‘il"u
T N R 2 £
7 < o Lowed o+ Iy + &, + o
L R "‘?Jg-ua;t * g et + pgp T bp + Al
<y
. Rrxh
2+.a’:l~.\j_ _ o o~ (1.10)
- f . i o i
-+ j’ . .R lc.) a ¥ = jﬁ 3 C R -FC‘) oy
Q-‘*L\' ;\J’uz-‘u

The stress couples, defined by (1.7), are used as follows: Equation (1.3)

o,
is multiplied through by %? (T’—R) and integrated with respect to 3 over

(R-2h, Reah) .
Rizh \.1.

! ot
jﬂ_% (r- R)). ‘b\"-?f :},;3 Lo @t “59@,9
] Rach
e (3‘&'@9 "‘°7~Jc bo cot 9)]0‘" ‘s J i) R [r ?)
R+t

LL C %? = R) ;;D “r

Utilizing (1.7), this equation, after a little manipulation, may be re-

written as
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Following the same procedure, we get from (1.2) that
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e - 4 T 14 Co&le i 7
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s(Mp-Me) ety + | T OF dr
B !,,.\ ok P__E::— (g‘_:’\ P 5{4-
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At this stage we point out that ecuatiouns (1.8) to (1.12) are exact and

no approximations have yet beea made.

tions.

Assumption (a): =" <<

Assumption (b): The Transverse Normal Stress, o on the curved sur-—

s D
v

¥

1

face of the shell is negligible when cecmpared with L . and G

C_

¥
"
.

throughout the thickness of the shell.
Assumption (c): Mv.ﬂa'uﬂijgcﬁ'q; , independent of ¢ .

bl» ~ u\_.,,e:,”_j ‘linear in ™ .

Uep ~ v (g ) =6
Assumption (a) is just the definition of a thin shell, i.e., that the
thickness of the shell is very small compared with the radius of its
middle surface.

We give the background to assumption (b) by quoting firstly
from Landau and LifshitzE&?}, p.44. They are discussing a thin plate
referred to cartesian coordinates and the z-axis is normal to the sur-
face of the undeformed plate.

Since the plate is thin, comparatively small forces

on its surface are needed to bend it. These forces
are always considerably less than the internal stresses

*Since brr on the surface of the shell is the applied pressure, it must
be verified a posteriori that the applied pressure is negligible compared
with €5, , G . That this is so in the very simple case of the equili-
brium of a spherical shell under a uniform external pressure is shown in
7-7 of[zyj. Reference may also be made to the results of §2-L




caused in the deformed plate by the extension and
compression of its rts. ... Thus we must have
on both surfacc., of ww T Gy ®

&, = 0 . Since the plauu is thin, however, these
quantities must be small within the plate if they
are zero on each surface.

Secondly, Fung[&? 3, p. 456, says,

A principal feature in straining a plate or shell

is the relative smallness of tractions acting on
surfaces parallel to the middle surface as com-

pared with the maximum bending or stretching stresses
in the body. ... When a plate is very thin, the
smallness of tractions on the external faces implies
the smallness of tractions on any surface paralle

to the middle surface.

Further evidence in support of the reasonabieness of assumption
(b) is given by Sokolniko fE ’}, p. 255, where he discusses the concept
of plane stress in relation to a plate. Friedrichs and Dressler[Jo 3,
when examining the equilibrium of a thin piate under mnormal pressure on

L
the surfaces, exhibit explicitly the fact that ¢, throughout the plate

5
Sa
1 b _
is negligible compared with XL, and C.. (the midsurface of the plate
N

is in the x-y plane).

Boundary layer phenomena which are typical for thin cylindrical
or spherical shells are associated with the length Rh . Furthermore,

it is outside the domain of thin shell theory to include the effects of

stresses which have rapid variation over a length of the order of the

thickness of the shell[gi 1. Hence, the fact that Evr' is negligible on
the curved surface of the shell implies that brr is mnegligible throughout

the shell.

Assumption (c) incorporates the following statements.
(i) Plane sections remain plane after deformation and
(ii) normals to the midsurface before deformation are not necessarily

normal to it after deformation.
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It is this latter remark which allows us to include the effects of trans-
verse shear and rotatory inercia.
By inverting the first three of equation (1.4), the strains evv,

; - ; S . !
inear rfunctions of the stresses C.. ,

T
rt
[
Lob
o
i
=
&

CQD , and \’.9(‘,, may be wri

1 o ra L & 4 . .
b,o, and EQ? . By assumption (b), ¢.. is neglected in comparison with
v v

] 4 1 1 ) s .
o and Cop * We then have the three strain components crr’ eaé , and

€u, in terms of the two stress components éb& and &@u . Then frr may
i i
be eliminated in favor of f%g and a@@ . On inverting these final equa-

tions, we find

_:\ b— T‘:-." / > \ = \
Lo T Tpx L Teo TY Seel
£l13)
toe = 5 (Yoo + Yig,)
Note, further, that
&+ e E g
- a_ = N
&4 (i P
4 - _E e .
Yo -~ 1+ v (1.14)
.&‘, - E ¢ )
¢ Y Y

Assumption (c), together with (1.13) and (1.14), is now used to obtain
expressions for the stress resultants and couples in terms of 4w , w ,
e ’@& ,F?, and their derivatives.

For example, using (1.6), (1.13), (1.5), and assumption (c), we

find
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R+ & :‘u o {'5\1.767-\-
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¥ R-&h v RO-59 4,
L)
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= K (=R 8 W #Vowd {1 V2 Z
= > _»‘) . LM"“ A n\).,g,’)dd < ldL G ‘}':(‘9 QE'J
(-v 7 o} i
~ ~ o

Thus, since (v~ 2) has a zero average througn the thickness of the shell,
we have

L

Eh T
N, ey 6wk

U
-

A similar calculation gives

E ;"‘ T L?] . o o . a
- = Y u, +~ W wiu Clﬂ))’bv - Cofec ‘\J“..a
N(P R(l"»z} L \.

« Elk
Na‘?

I

&3 - Eh [,, , rj

Ek T s el
Qo = 0w L lg“’ + R (Wip @wed v)]
Also _ ' ]
My = [ Lo v 7 ond foe w0f cotd
‘ DTy 8, + R Gpsesl &8y cof?aj
Mo = _R—Z_ Fed Tree ['o
_ =)D " coch - Bo @td]
Moe * %.72‘ fap + Po,p @i fo



Many writers introduce an averaging coefficient, R.

n

expressions for &é} and g . For example, PrasadL :[,writes

s
)

= b - ;
= A ; I i -
EQ hd Lt | o ¥ R 4”43
e’ Q.Cn"ﬁ"ﬂ‘_} Ny & i v N
. e 0 ! S )
without further comment on «®; . Naghdi|3 jtakes K;= F which he

says is consistent with the assumptions under which the equations were
derived. Other authors, e.g., Herrmann and Mirsky i)ﬁ'} , following a pre-
cedent set by Mindlin[;z.j, use this factor to make the frequency of very
short waves in the lowest mode in the shell theory coincide with the corre-
sponding frequency of the three-dimensional theory. This is equivalent to
adjusting the shear wave speed to equal the Rayleigh wave speed. Lin and
Morgan.[lb ]take another viewpoint. They use the value ?ﬁs = %@ which
they claim was experimentally determined by Filon, and quoted by Timoshenko
EBS], for the case of a bar of rectangular section. We have kept the
factor hs equal to unity for convenience, see equation (1.15), as it
does not affect our results in any essential way.

With assumption (c), the right hand sides of (1.8) to (1.12)
become

! 1 3
e hK R, Wy * T Ch fori
3

Q]f\{\)kn Yaorg *F T Ch fort



% ‘el'\ RL . T 3{:2',:. i@c‘;; j

3 - ;
'-L' * [ = u ) ~~ :\:‘ ‘: ej
m 0o RL 7 Y v fgun )
respectively.

Sg 1.5. Summary of Equations.

The momentum equations are

r - 4\+ oi-it

1S 7:) D) D -+ Cﬁ! ]
\% ’-“rJR Ll Qé,ﬁ TR S QG i
Righ (G
IF de = phRE w1,
- [i‘\/gf/'i/go) T+ ‘[;".3«. & Tu B ¢ Gk 8L , (1.8)
Resh
tiﬁ’_ 2?v('i’-) L *' N@CP, @ wsacd r N’b p ¥ [\ i (Nch‘a) wtd
R-&
vah o 3
ki . .-D.; ; E‘: 7 L
+RiL—é—FBdr - ehR R, rdeh By (1.9)
Redh
ii:-%\ & .._..] *N@(g C-D-ﬁCD lL'NP (gg -+ &m 'f’olNgCo CD&B
' R-&
R+h 2
| =L P
'J;Z £k ;; Fq‘)d“ - fm{‘)""‘gt«t rteh Pt (1.10)
e

mek P
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and
C vk
E«Evg - (\"'R.) - R Q:} v Mi.‘;tv:- P! L.)..,‘:Cg + M@,Q
R._ik LV B
;J-":- -i:‘ P - F
- - M ) ":'3"" ‘:"" f -
‘-C\/}a\ H I(? Cat’g € Jz?'-a,:!‘ X ( ‘ h) d‘ (1.12)
s dealo) e, 2b :
= R A KR S TR fo, e J .
?'l""\‘ i 7517“"‘
We note that the term Lﬁf DV"JR.&A in (1.8) will be replaced

later by R.ﬂ,, where q/ is the applied pressure. In almost all appli-
cations of shell theory &yg and Er? are zero on the surfaces of the
shell and so would not appear im (1.9) to (1.12). The expressions for the
stress resultants and couples in terms of the displacements are

Eh . T " -
Ny = Rl=v™) L w,, + vu wtd W+ v cosecd Vg |

G
i

Fuold ()W + wsecd *U:q]

_ Eh
i R (1-v%) ): 0

Eh T
! A + v o L_Q

72
u

& a.(lw) [Fé v -}f{ (Mja'uj] ' (1.15)

[ ué’- + 7<"' (4«’30 wsecd ~ \r)]

.

2
-6
!

a.( H-D)

MB = %[ {gng + v oxd foq ”’Fe kb |



M - (I—V)JB [, B epsech— 8 G,g_,:'j (1.15)

Substitution of the quantities in (1.15) into the equations (1.8) to (1.12)

would give a system of five simultaneous partial differential equations for

{.—: s T, A, Fa’ {3(?'

s 1 - .
91.6. Symmetry in €2 , Scalinc, and Final Equations.

We consider only problems which are symmetrical in C? , and in
which there are no shearing tractions on the surface of the shell. The
body force effects, which are mainly due to gravity, are also supposed

negligible. We accordingly assume that
and that all physical quantities are independent of <P . Then the stress-—
i

strain relations (1.15) become
ElL |
PR ). 8 oot @+ 1Y) s
NB (-7 [uJa v ord { ]

N Eh

¢ % Pl [Vu-‘@ ru wkd f‘(“‘li)'w']

(1.16)
PJB‘? = D
£Eh A
Ry = = [ Byt F (-]
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R8s =0
s Lof b
My = % Lo #2f otd)
s D7 98« + 2 estd ] (1.16
Mq? = -'?{ L \)}-*.5)9 v ;.as C-v(.UJ )
MB(@ ® OB

The momentum equatioms, (1.8) to (1.12), reduce to the following three

equations:

&9‘9 + Qg, CD{‘:Q - {N’ ‘}}\K}) = \O.. /‘iR k"ﬂ‘}:t_{: "‘RG‘

3 e N, 3
NQ,G T Qe + [Nb'-la\!(?) Cbg’a = \‘?Al\ Ny E-»;t,_\c ftf‘h igs‘ Lt

The assumptions that &VQ ::&ﬂ? = O on the surfaces of the shell, and
that F\‘ < FB & Fc(; = O have been used to obtain equations (1.17).
We recall that

ko= 1+ E &Y

%

y JE Fhy
k*r: b+ 5 (R)

When using equations (1.17), we shall henceforth set

kl '-’-év- = |

since, by assumption (a), the neglected part is always small compared with

and

1. On the other hand, the term
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in the second equation of (1.17) is not neglected since we cannot assume,
a priori, that 69' and L are of the same order of magnitude. Further-
more, by hindsight we know that by retaining this term the characteristics
for the set of equations (1.17) will all be distinct, and this fact will
help to simplify subsequent analysis.

The basic length in the system is f{ , the radius of the mid-
surface of the shell. The two speéds involved are C? and CQ and we

1/

choose CF' as the unit of speed. A dimensionless time, © , is then auto-

matically

-
o

~
]

’r"
R

4
1

e

Of course, W and W™ are scaled by X to give dimensionless displace-
ments. IEQ , being an angle of rotation, is dimensionless and so is
left untouched.
/ ( / M
Ng 5 NS’ 5 &;’} are dimensionless stresses and ig is a
dimensionless moment, while ﬁ' is a dimensionless pressure.
v

With the scalings introduced in §l.l., we find that the dimen-

sionless stress resultants and couples are given by

Ng' = u’)e v ot # ()’

f i 5 1 !
N‘-P = vu, s b8+ [ev) 4
(1.18)
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o)
L)
1]
p(T
, <A
T
e
1l
RS
]
g—
.

For simplicity, we have now written ? instead of ?B

equations, after the appropriate scalings, become

i ] 1 r, .( K>
N&& +(N5-N‘P)m£8 r8 =u .1—«2:;4%.1:,

S L

! ! { % i o
QB,B +@é wd —(NQ-:- N(?) +<Z - W Ry

o

! ( ' 14 = i - {
Me,e + (Mg ‘M@B Wl - A, &y - W, +FJI:'E'_

The substitution of (1.18) into (1.19) yields

o 141 + -y, 24V - 2
V‘&"(a +mt9)u+ B + =~ u-'};thl&Fét:t

x 4 (1+v) )
V& - e 5 4 FJB +¢|£mti-) = [u,ewcobl})

(1.18)

The momentum

(1.19)

(1.20)

2
=i (Wi -1

and

L 1 =V \=

VF—()H(A‘: B)F e ,\,‘J [ﬁ-&-w}a -uw) = F-‘tt AU,
where
v =t ) - o

N = b+ +(.a'CB,0—.—,a J ‘\o = 7

and, for convenience, all primes have been dropped. The investigation of

(1.20) with suitable boundary and initial conditioms will occupy us in
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Chapter III.
By examining the highest order derivatives, it is readily seen
that the structure of the system (1.23) for * , &~ , and ﬁ is that

of a totally hyperbolic systani3‘?] with characteristic speeds of

+ -V . '!L
= == 3 * (12.2 5)
We note that if we set € = 0 formally in (1.20), the third equation of

that system then implies that

g = - (1.21)

Under this condition, assumption (c) on u@ in §l.4. becomes (after due
account is taken of the scaling)

U = (B ) ¥(F-0(w-5,) (1.22)

Then, on referring to equations (1.5), using relation (1.22) for qa and

ur = wr , it is found that

c = O

Vo
Equation (1.22) is thus recognised as one of the Love-Kirchoff hypotheses
{3;], viz., that points lying on the normal to the undeformed midsurface
remain on the normal to the deformed midsurface. We also note that (1.21)
implies that QQ =0.
If (1.21) is used to eliminate F from the first two equations

of (1.20), the result is
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y 1 a ,.‘\ ey i
N i, = (V'f“ ot U) L+ []v.r”/’Lf;@ = (—l) t
£1.23)

Uy +uctd +aw e s W P D T

These are the dynamical '"membrane" equations for a spherical shell as used

by Huth and Cole [Jl], except that in their equations W is positive radi-

ally inwards. We note that the speed G (i-») does not appear in (1.23).

If 4 1is regarded as known, then the first of (1.23) is a wave equation

for W with speed of propagation equal to unity. If, on the other hand,
. is regarded as known, then the structure of the second of (1.24) is

that of an undamped linear oscillator with natural frequency w = a(1+v)
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CHAPTER II.

We turn our attention to the problem of a constant pressure
front moving with constant velocity, {2 ,» along a semi-infinite circular
cylindrical shell. The equations governing the motion will be formulated
to take advantage of the symmetry in the problem. Since the derivatiop of
the governing equations is entirely analogous to the work of Chapter I, it
will be given in considerably less detail.

The object of the analysis is to obtain information along all
the wave fronts in the problem. It is quite clear that one should examine
the behavior of physical quantities along the characteristics. The appro-
priate asymptotic procedure yields this information. It becomes evident
from this analysis that the dominant disturbance does not travel with either
of the characteristic velocities. A procedure is given for determining the
velocity of the dominant disturbance and the behavior of the various physi-
cal quantities in this region. The behavior of the solution immediately

under the constant velocity pressure load is also found.

SS 2.1. Notation.

The notation introduced in Chapter I is still relevant here. We

now only add whatever has not been previously mentioned.

Let @”,BJX) form a circular cylindrical coordinate system as in Figure 3.

The geometry of the shell is described by the inequalities

R-4&kh <« r ¢ R &h
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059501‘?, D &X <&,

The resultant stresses and couples (shown in Figure 4) are Nx . Ni} 5

'l."‘/sx s g\}ig J

b3 . : - p . §
‘L e & H(,t""-o'} is the applied lcad per unit midsurface area, where

S . T, . jons
H (%) is the Heaviside unit step function.

\ R(O1-°% A
Qy = Erh >

= 1;%(1-9) represents the speed of propagation of distortion

(shear) waves in an unbounded medium when scaled by C, .
i

a = f1-o" represents the speed of propagation of very long longitudinal
waves in a bar when scaled by Cg?

EL
- *

G-:

-~ 1is the radial displacement of the midsurface, positive outwards.

is the displacement of the midsurface in the x-direction.

{3 is the change of slope during deformation of the normal to the midsurface.

§2.2. The Equations of the Three-dimensional Linear Theory of Elasticity.
The momentum equations in cylindrical polar coordinates are [A {'»:g
L, ! - -ef
"trf,r ¥ v érs,a T lex,x T o WUlpr i\éf)) 2 -
! !
teo v T ri%,@ +Lyxyx * 7w o ‘f'pg

(2.43

8 S0 =k
Lex, ¢ T r'é‘éx,& '*i‘xx)x + ¥ty f]c;;
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here Brr s brg o bex o bip 0 dps o 4
where YY o Yo °* Srx > ApD ’-%33 » Agx are the stresses. The

body force terms have not been included as they shall be neglected in
the subsequent analysis.

The components of the acceleration vector are
£ .t . L

The stress-strain relations are
.E—r\_ - (A -hl'}-(,) e\_‘. i A (\?93 * e;w\)

-&69 = (A'*’clf&) 6’99 'k'e\(ek;\‘s'-evr)

e
k.
x

]

O"’a-["') &ux TN (eves €s5)

(2.2)
i?rB - g Crp
tex T AP Cry
Lo = Ap g

Let the displacement vector have components QY- - {19 " ux .
The problem treated in this chapter will be axisymmetric, and hence Uy =0
and all physical quantities shall be independent of 9

. With this in
mind, the strain-displacement equations are

gy <
TR T
o = ¥ U

\p

2.3)
exx = ax; X (



(2.3)

5]
-
<«

u

D
@
b

(t

O

§]”3. Momentum Equations in Terms of Stress Resultants and Couples.

The definitions of the stress resultants are
R+ah
Xy R !
N C ar
X X X
R-dh R
Radh k (2.4
N, = j.f%:ik g dr
and R++h

By = i ..

The midsurface of the cylindrical shell is defimned by Y = R and its inner

]

~ L :
R *rx ar

L
and outer surfaces are Y = R-ak and ¥ = R +ih , respectively.

The stress couples are defined by

Razdh
2T i
?z (73'2:)"bg@ c{r

tl

Mo fk-ik

R+zh (83
L 7
& . ¥ (r-R) by de

Mx

We shall assume that there are no shearing tractions on either curved sur-
face of the shell. TFurthermore, the second equation of (2.1) is now vacuous
due to the symmetry assumption. By the same procedure as was given in full

detail in Chapter I, the momentum equations may be written as



R+ah
N = e = ‘{“._, e
%X - C &
2"'“z~
- s > -t.:- r " —
Q&X TR NB Sgwu LR T BY ‘?/
L €2:6)
Rrih
- A J
MX)X o Qx SR__,L_L e R Ly a\-)-F d\"

é 2.4, The Basic Approximations and Final Equations.

Just as in Chapter I, it is assumed that
(a) e <<
(b) {:rr on the curved surface is negligible compared with tKK

throughout the thickness of the shell.

(c) u (rnxt) = w(R x,t

Ux (v, % &) = wlR xk) +(-RIFR xt)

With conditions (a), (b), (c), the resultants (2.4) and (2.5) become

v
—é'- Ny = Uy, TF -}?85"IS'JX
4
-CL;-NB = T W VU,
Eh 2.7)
- o )
By a(1+v) ( Ix +§

I~
<
>
It
)
| &3
x
+
xﬂ~
5
>



32

We define non-dimensional stress and couple resultants by

AL ; - by o

Nx = G NX 5 ﬁ\la = 8 }\/J

9 )

{ )—l’ ’ { ~

-— — u - —
Qe = &, My 3 My

and

L ) i 25
75 and )

and the dimensionless time is

{ {:Cr
£ o= */R
The relations (2.7) may now be written
NS = o +yuw’ + g8
X - Ix! TE P
/ {
Ng = ' + 0wy
{ . i
@X = e (_'W'Jx, +’f:’.)
My = % !
X - R ('F5X‘ +U-Jx1

and the momentum equations (2.6) become

(

{ jp
E— - .
Nx, x Uypp * € GJ E
{

&

2 (- v
X,.x'

EkL

{ il —
"NB 1

i

(2.8)

(2.9)
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{ 1 1 / 1 2 {
= Ty - = 'y 314 VLL ,l)
MXJX' R x€.> &x N ((Jt‘c' T, (2.9)
The substitution of (2.8) dinto (2.9) then gives
e = b )
Upyx t+ V¥, raﬁjxx = U, . e by
(v, + ) = (wavu, ) =g, - "DLE
sxx ) - ) =My T gL R
{2:10)

A ] =
FJXK * u*xx - Ax:c' C‘f,k "'i”-) > F.}tt"‘ tht,

where, for convenience, all the primes have been dropped. The equations
(2.10) are those given by Naghdi and Cooper [ l~]except for a few differ-
ences. These authors, for example, do not include the term EIFJtt in
the first equatiomn, or qu% in the third equation. At a later stage, we
shall write a single sixth order equation for each of & ,w , and ﬁ 5
and we will find that a more appropriate time to decide on whether to
neglect certain terms or not.

The system (2.10) is a hyperbolic system of partial differential
equations with single characteristics corresponding to speeds of * ¢, and
double characteristics corresponding to speeds of #1.

If we now set £=0 (or equivalently, )\D= co ) formally in equa-

tions (2.10), they become

(TR ‘i-D’A-J;x =

IX X ulbb
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v
c* [“raxx *ig.\x) - (w3 Vi) = W - —5\. R’%

A0 o 2 -
NJX TP = 0

After eliminating [ from these equations, we obtain

u 1-\}15:”‘ = U,

XX Ite
o (2.11)
"“*)LD
45, ) o = — Rag
st TW O Vi En 1 -

Equations (2.11) are the dynamical '"membrane" equations governing the axi-
symmetric deformation of a circular cylindrical shellL36 ].
The system (2.10), with suitable boundary and initial conditioms,

is the fundamental set of equations which shall be used to analyze the

problem to be formulated in the next section.

ﬁ-2.5. Statement of the Problem.

The circular cylindrical shell, X,;&D , is dnitially at rest.
Then at t =0 , a pressure front ‘z': = & H(_t"‘ T:j‘ s Where & is a con-
stant force per unit area and ) is the constant velocity at which the
front travels, is incident at x = 0. At the end x = 0, the direct stress
resultant, qu, the shear stress resultant, th , and the stress couple,

}ﬁx , are maintained equal to zero throughout the ensuing motion. We

wish to describe the features of this motion which were mentioned in the
introductory remarks to this chapter. The effects of bending can be traced
through the parameter & Ccv Ao) » in view of the reduction to membrane
theory when € = 0, as noted at the end of the previous section.

The mathematical statement of the problem is as follows.

The momentum equations are



Ve
IX X +V 45 FJ)\X

C:L (('LGXK +FJX) — (_4J'+ VUJX)

(2.12)
e - A
= By -, H( u)
and
\- 3
with initial conditions, at t = 0
u:u)t = :LJ'Jt :F:iﬁ) = O O &£ X < | (2.13)

The boundary conditions of zero

direct and shear stress resultants ( &
and qu ) and also zero couple stress ( pﬁx) are, at x

=0, for t7 O

MX = YV {ng +qu =

Ny

qu + YV =0

(2.14)

&x t}(_'td;x +F) =D

We further impose a radiation condition that there are no waves coming from
X =+ Q0 . (2.12), 1€2:13),

(2.14) with the radiation condition constitute
the complete statement of the problem

.
92.6. A Particular Integral.

By straightforward elimination the basic differential equations
(2.12) may be reformulated as follows:

_&L W = [a(: €. (’BX"“%I:L")L" c"(%»'%*)]&“(ﬁ'%})

(2+15)
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_81. 4P —t -i.UCz%jQDH[é-ﬁ.)

L
el > L‘ u = 2_ rax ‘-5)(1' eb.l.'v
(2.15)
y i 'D 2
-ELp - Evddat (5 -Z)Q, -5
where the operator - &1]_‘ is defined by
‘a" =
i ‘L(E I) 2, - ___)

.
-gL; = 51(5"")("57& 'ar./('bx

L ot Lot - v X /v ~r s "
e Tk VE = oy Malco W) Bl A By " = W Ve —
ot P D Sl ¥ v x> at 2XE

It is now clear that terms involving & in the operator -Ez'i..‘ may be safely

neglected. Thus, we are led to define the operator L by
& e ~* 2" \-
L = XM 'at")( A ’AC" ¥ ('Bx" 'at")
(2.16)
e e

"’(A‘;a;: 'zx )( e 'M;”) ¥ Ax - & ax’ ot |

.
Er on the right hand side of (2.15).

We may also neglect terms involving

The equations (2.15) for 4 , w , and IQ may now be rewritten as

(- 20 % e (e -Z0]ahE-5)

L
(2.17)

La =[i’;—_‘i 2 (2. 2y - v R ek o, Ko -5,
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-
-
w

LF « = (S dev) X (‘:Sc‘- %") Q HiE-) ) Sh LA

where the opportunity has been taken to multiply both sides of (2.15) by
A

Some pertinent features of the operator L_ will now be noted.
Its characteristic speeds are *1 and * ¢ . When we recall that all the
speeds have been scaled by CP , we see that unity represents the velo-
city of 16ngitudinal waves in an igfinite plate, and ¢ represents the
velocity of distortional waves in an unbounded medium. We note, further-
more, that a speed "a" has appeared in the last term in L . This speed
represents the velocity of propagation of very long longitudinal waves in
a barE37]. Its significance will emerge later in the analysis.

The time dependence in the problem will be suppressed by means

of a Laplace transform. We define

oD "Pt
— I
F by = e wlen) b
where F is a complex variable, as the Laplace transform of 1f(&,iﬁ .
A bar over a dependent variable will always denote that the Laplace trans-

form has been taken.

Taking note of the initial conditions (2.13), the Laplace trans-

form of the equation for 4~ in (2.17) is

S
e
)
i - 5
v
Berp
o
&
Cv
P
e,
i
r—grr—,
Wt
| =)
<
n 1
¥

L& =]

? (¢2.18)

where



e . < (2.19)
P2 W o ‘::; 1;*) . \'-'- K= y O _5,— - "3-)
'}Ooc }’ * ",‘X»Xa:x»-». ¥ oy B Ax™ r/.
We may write, as a consequence of linearity,
— i, e =% J.
(g p) = Wy lap) + W () (2.20)

where i}}{ﬁ,w is a particular integral of (2.18) and :% [x,%) will

satisfy the homogeneous equation

with boundary conditions on 1Jh so chosen that the boundary conditions
of 4 satisfy equatioms (2.14).

Let

€2..21)
and then, using (2.18) and (2.19), we find
(G-DF + &2
W - e <4 c- i 2 . _\,_'.(\\--‘L \-\QL—U"
P PG -)G ) P G0 dalf 1R 5 (2.22)

The zeros of the denominator are determined by
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= | = k¥ L
L > ’ L v v o\ 0 gl
—EU‘-‘ B o> +'<\.;C."f (UL-‘"’U‘_"ADQ") ..4-——-0_“ .Q.u:) A.C‘

T
RGP Grvoig)

Se g -

Jor a very thin shell, Ab is large compared with unity and we may approximate

the zeros, b, , by writing

oY
s - =5 + 0l4)
and (2.23)
4

(-0¥)- )
We may now write

~ bx

Qo (n-0F+3, ¢ v)

Rl (=¥ - )

B B PR P
A‘o" 3 ' -\: AIC\ - X
* — — - . . E: “UEE e 0
F LF TR TR w e

2
It is noted that h_ >0 when a<U <& and H‘Lo otherwise. Also

}:_"’ >0 when c¢¢Uc«l , and pr¢o if U>I or U< ¢ . The Laplace inversion

P o 1
of T is p, ainh )’tt and the inversion of i + gives
P be : b-be bt by
eb*b + p:ht . Thus hyperbolic functions are typical of the intersonic range,

while trigonometric functions are typical of the subsonic and supersonic ranges.
When the problem of a traveling force on a Timoshenko beam was examined by
Florence [59], he also found this change in character of the solution. The
exponential growth in the intersonic range does not cause any difficulty since
account must still be taken of the solution of the homogeneous equations with

the appropriate boundary conditions, and these latter are generated by the
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4G

funci.oas Jest discussed. The final results presented are applicable for all

vaiues of U excep: U=i and U-=c¢

Foilowing the notation of (2.20) and the procedure similar to (2.21),

~¢ is found that

- pPX
- _ o W & + V'JAOC 6)
&, o py = [ o = ](_}' E - B (2.24)
~ad ~JE%
% x . BNar¥ -
F? [.x, \(’) = It} ( Acc + D) (P"P:-X\’" F:) (2.25)

—_—

Br

and the definitions (2.8) that

We shall denote the stress and couple resultants corresponding to {?} 5 GP 5
~§ =P — ()
by A&‘, Qx , and pﬁx . Then it follows from (2.23), (2.24), (2.25),

_kk) PQO oo - - v'\ g Qo
Mx i L ( \") ) l-_u-._ _] @\_’ EXP\._P:)
- bx
"[&C%’-U*f——“—& R & U7 -
= PO~ ] = pye- D
(2.26)

= () - &, Y -0t . e
Qe =~ R [LYp-v]

(F- EXE-RD

The remarks in §2.6. which led to the definition of L. imply that the term

‘o 3 4 § o X a
€2, in Ny 1is negligible, as well as the terms € f, ~and & F‘

irst of (2.10).

in the
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§2.7. Behavior along the Characteristics.

The resultant stresses and couplies induced by the particular

integrals of the last section at x = 0 are, from (2.6)

— o B8y o .  REG r;;:' @
f'ﬂx}‘)co.:)’) = L 1:.[_)‘- (Q' ~ -“Moc) - ]

(P~ ?_)Lb )

Wi (;} Y _ » 8, foL S0 R
Nx [ ( ) b (1-0%) ](F-EXII}E)

(2.27)

(- B F- 1D

—

We may decompose qu 3 fo 3 @x as follows:

Me(xb) = My ~ ™™

X )

= — (p) = (H)

‘
&L‘(&)?) = &>c + 87

Then, for example,

= LR) = =

M - » Fﬁ_) x +

X

B, X

—

and FH ,» Uy

with (2.17):

are solutions of the homogeneous equations associated

The boundary conditions at x = 0 then take the form
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—— ( —— 1 .
M Ep) = =M ol

roy s cta
N:j’“ (O, }’) = - Nxfatol }))

J

and
= (H) = (P
Q, (e p) = -QX (0, b |
The boundary value problem to be solved is
- — A,
“’HJXX +VWH;X P u, ,
o a4 - - 2~ _
‘ (w“ﬁxx * Fﬂax) - (w» “'””m) ~pwy =0, (2.28)

FH t T‘HJ“‘ - 'A‘oc:'(_l_ftbx +T3H ) - F‘(“‘EH{C«H) = 0

— (H) - = '--—q’)
My = PPux T == My @b,
~ (H) - - —
N, = Uy, vV, =-Nr(o,)°))
(2.29)
" = c"- C“Jﬁ)x %FH> = - QK (0))}) .

The radiation condition is built in by accepting only negative exponentials

in x as solutions.

No attempt will be made to solve the system (2.28), (2.29) exactly.

Instead, the behavior of the solution near the characteristic wave-fronts

will be found by doing an asymptotic expansion of the ordinary differential

equations for large F . As well as being of interest in itself, it will
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serve as an introduction to the more difficult analysis involved in the

problem for the sphere which will be treated in the next chapter.

If the resultants given in (2.27) are expanded in a power series
-
in ? , it is found that

R L

— P}

- N, (e, p) N, -+ ;Tf—; N, +-

1]
~)- )=

- (p) . -
= Qx Lo, }’) = ‘on * EJS' xi
where
- Eo + - = %
Ma = — Ca.-c-VdUC- :

! (2.30)

X
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where
X = px.

In terms of the variable 3{ , after division by %L , equations (2.28)

become
EE' ig = U = ¥ —‘. - = D
X X o P Byx )
B — 5 L7 R . TS
c W e =W, TG B, - v TV, o em— =0
% H Hal K f i
HyR X poormE T ) (2.31)
= - o . - 0 2
3 +u . -Uu = L(""‘ ; 2 '> =
Fryin Pz “Fy 9 TS Gk v Bl = o
The boundary value problem for the first approximation is
Up _ . =Yg + Vv W, _ = 0
) X X v X )
& . - ar =0 (2.32)
%X X - .
Fo ol _.F t Uy . ~Uy — gL C W, - =0
P XX b 4 X X 2 Lok ,
with
e~ u -— =
\’FOJX U %X pqoi
= 1Y 2.33
uo“s{ + v 1J—D i\o‘ ( >
kS
¢ Wy _ = &
5 % xo'

at x = 0.
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Bearing in mind the radiation condition, the solution to (2.32)

and (2.33) is

P |
5, (x) = - ¢ QKD e

-X
Wo(X) = (M- 25 Qu)e -—= 8

-~ X0 )

cCi+A;) V-~

ﬁo (x) o~ +c ‘)i o -5 (- N:o)j

#
1
1
—~—

4 .?’_‘91_ (v+ a <) \’;
Hence
—(H) i Q - e D (“—‘—3)
Qx x,p) = B Sxo € ¥ ? )
—H T - 2 n
NX (%) = _‘[CN e Bpl® e %o € ] +o(1"+) (2.34)
— () ) T ulva) - px
M (XI}“\' “[M +9X0{vlcr." :C:-—{‘) ] o

- px
A (»-1) < ‘
- P3 &KD z‘c——‘ * i(‘,_x)} + O(_F‘*)

The inversion of (2.34) can be done immediately to give the following short-
time approximations.

Q) = O (E-E)Ht-2) + O -2V

CH) ; v )
Ny &E) = = (Mo - 25, Qo) (E-xT R + O (k- (2.35)

vt 25 G (£- ) HEE-2) 4 O
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MB by = LMo+ O 208 ¢ 20 i f Hie-x)

- e(i~c")

- veds | v 5 g i (2.35)
& Of 2%+ 22 (kAT HlE-2)

co(t«y «O-2)

Ui Lii)
where Mo g Mg &)xc are given by (2.30). We note that &x - Nx -
(#
and x are continuous across the wave-fronts. Also, the presence of

35 (/)
>\° in Mx will give a sharp rise in the moment behind either wave-front.

If we continue the asymptotic procedure on equations (2.31), we

-X
find that U, (X) and F, (X) have terms involving X € and that W, (&)
g S -
has a term involving X & . Since X = fn( , this means that the second
terms in the expansions for GH 5 :rﬂ , and 63 are of the same order

of magnitude as the first. We obviate this by introducing mew variables

~ A
KX and X where

~s =

X = (l'*‘ _;_,&-Q-C)X (3-311103)

A =
X = F X,

and ..D.,; are constants. We assume an expansion for MH f‘i, }’) of the

form

Tyxp) T F R ¢ P ER )

with similar expansions for aﬂ and FH . The two variable expansion
procedure [38]:15 then used to find the terms of the expansion. The
calculation of "D'L is inherent in the procedure (and, in fact, is its

essence). The first term in the expansion for “H will be
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Q, b+ {f;])

-~ i i
‘J;;E‘“%C?,X,)"? —_—
L2/
-
We note [_5§1 that for Re ¥ >~ , the inversion of 1: ' - P is
~%V i\’ ty 1) - -'—n-/
_f)_a' o Iv (&-D- lt t) and the inversion of }’va 2 }) is

_D:tv Jl',iv j; (.1 —Q_.’Lt'l‘) . Thus, if “Q.? >0 the expression for J‘-‘?—H in-
volves integrals of modified Bessel functions, and if .Jla < O it involves
integrals of Bessel functions. These replace the simple powers of (t-x)
in equation (2.35). A result of this kind was obtained for beams by Zajac
{33:], and for cylinders by Keer, Fleming, and Herrmann{gJ.]. The results
just cited were obtained from a representation of the exact solution in
‘contrast to the method indicated here. We do not pursue the details of the
calculation as nothing essential is gained. The interval of validity of
the approximation is extended slightly, but a more precise statement is
difficult. A calculation of a very similar nature is given in the next

chapter when dealing with a spherical shell.

2.8. Preamble to the Long-Time Solution.

Some features of a paper by Whitham_E37-]are now reviewed as a
prelude to examining the operator L defined in (2.16).

Suppose that the wvariable CP(X,E) satisfies the equation
D,.2VY2 ? - —"2) =
('3{; "’C"ax)('ai:* Cl'ax>cp+ A (’b’c *%ax) P o (2.36)

The characteristics are the lines x—c,lr = constant and X-Gt =

constant, which correspond to waves propagating with speeds ¢, and C, ,
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respectively.

TE )\ = O , then the solution of (2.36) is

? g (x-¢,t) + 9 (x-¢t) (2.37)

On the other hand, if A is large then it is very tempting to take

(3t +o )9 = ©

as an approximation to (2.36), with the corresponding solution

e = f(x-at) (2.38)

For any A between these two extremes (A:. o, )‘:.q;)we would like to know
how the lower order terms affect (2.37) and how the higher order terms
modify (2.38).

A wave motion traveling with speed WV satisfies the equation

(st *Va)e =o

We may interpret this observation as follows. For a wave motion traveling

-

with speed V , the derivatives ‘S?'-t and —V% are approximately equal.
Let us now consider the motion described by (2.36) and we fix attention on
the wave motion along the characteristic ray X-C,b = constant. Along

such a ray, ,%:ot and =—c, ,;-—b;( are equal. We may then rewrite (2.36) as

24 o
(52 +o &) (G-a) £ 4 X (ae-0) 52 =0 (2.39)

and a solution of (2.39) is

QC‘ C,-Cy

- glb-R) ep[- 2 e 4] @.40)
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It is plausible to expect that (2.40) is a good approximation to the exact
solution of (2.36) in the neighborhood of the ray X-¢t = constant.

Similarly, an approximation of the form

@ K -2 Go-C -J
%, * & (t-2) ‘?“"H_ % et (2.41)
should be useful near the ray X-‘LE = constant. The sub-characteristic

%-a, b = constant is relevant for the lower order terms in (2.36), and

-
replacing ot by ~a é%{ in the higher order terms results in

(€ -a,)(A0- G) A )
2 Ao cPJxx - (Bt # QDQX)C'D~ (2.42)

The transformation
f=qat"x P ’?_"t
puts (2.42) into the form
— r_o
KSrr =%y
where K = 'k (ﬁ-a.)(go—C;) . It is thus seen that (2.42) represents

diffusion about X-@ot = constant. In fact, the solution of (2.42) is

T bl =
%o 43 5‘% ;){. 4K x/af, ) (2.43)

which we expect to be a good approximation to the solution of (2.36) near
to X—a,t = constant.
ILf X >0 and C, €Q, <, , then the approximations given by

(2.40) and (2.41) are exponentially damped along the rays x-ct = constant
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and X-¢,t = constant. In contrast to this, FPg4 as given by (2.43),

[
has diffusion about X-@,& = constant and the damping along this ray is
. ~'h

proportional to X

Clearly, it now makes sense to say that the dominant disturbance
described by (2.39) is the one which travels with speed Q, . We rephrase
this statement to say that the dominant disturbance in (2.39) travels with
the speed of the lowest order term. The higher order terms then produce
a diffusion of this wave.

A precise meaning is now given to the above somewhat vague remarks.

The solution P(x,E) to (2.36) may be represented by

- _ bt
e(xt) = FFi ,(g Flhx e df (2.44)
%,

where Br is the familiar Bromwich contour. Substitution of (2.44) into

the equation (2.36) shows that CTDU’:, x) has the form

P x Rl x
e and e

where E(P), -Pa_(-t’) are solutions of the equation
6o, P @radp s da}P s p(PHA) =0 (2.45)

and

—E P b/c_’ . -P.'). = b/Ca_

for large i:' with A fixed.

The form of E(f’) for large %> is
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Ly~ Ca

and so near the wave-front X=¢ T the behavior of the solution is

_— _2\_ C =~ Qy
S e = X ,
CP - 2 C,~Cq L—_rgo Lt-c"> q Wi
This agrees exactly with C.i’c‘ of equation (2.40). The same procedure

using 'F;LID) will give the solution as in (2.41).
Thus th f making > o i
us the ruse of making S and - V4 approximately
equal yields the wave-front behavior of the exact solution in the case when
V is a characteristic speed.
Equation (2.44) is now rewritten as

!
—_—

@(xt) = I dp (2.46)

where R (P) is determined by (2.45). We examine the asymptotic form

of the right hand side of (2.46) as C—>0 along the rays 'é' =

constant. The method of steepest descents EJ.-O] is used to this end, and
by keeping f = constant we are able to deduce wave properties.

The saddle point is at i:- h where
. 4R
b F b (&Y =0 (2.47)

X
and I = e
By solving (2.47) for h , one gets
J -
}’I = h ()
i.e., the saddle point is a function of the ray one is considering. The

first term in the asymptotic expansion of (2.46) then is L‘?-O]
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(2.48)

We would now like to find the ray on which, for fixed t, the exponential
in (2.48) takes its maximum and also its value thereon. This value of &

is given by

[0
o

4P { |+ § %? ({3(}))} 3 P, (bhesy)

df
Hence, by (2.47),
P (k&) =¥
If we now set 1:)= O in (2.45), we are left with
p(p+AY =0
Thus P'—‘- o or f):‘ -~ A . It may be checked that }D-—- = A correspdnds
to }2 (P(Il)=<>, so we disregard this value of F . § is now cal-
culated from (2.47) to give
!

f’ f(h“’) A

g
%

(b=

We differentiate (2.45) with respect to P and then set ¥>‘= % =0 to
give %‘E‘(h“) - 'a_xl; . Hence [ =@, for _P= o , which is
just the speed in the lowest order terms of equation (2.36). Thus, the
exponential in (2.48) has its maximum on the ray X- aaf =0 . Along this
ray, the expression (2.48) has a decay proportional to qut . Exactly
this behavior is exhibited by q%o given in (2.43).

At this stage we can say that the approximate solution found by

()

o
equating L and -~ 2% when V 1is the lowest order speed in the
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equation is equivalent to maximizing over all the rays the first term of
the asymptotic expansion for large t of the exact solution. The value of
the heuristic approach is that ome can tell at a glance which is the most

important group of terms in the equation under consideration.

§2.9. Examination of the Operator L.

In the previous section we examined a simple operator and showed
the equivalence of two approaches. The prime lesson learmed was that the
maximum disturbance moves with the speed of the lowest order terms. Atten-
tion is now turned to the more complicated operator L defined in equation
(2.16).

We note immediately that the speed in the lowest order term is
a, and so it is to be expected that the dominant disturbance described by
L will travel with speed a. This conjecture will be verified first. The
Laplace transform of Lw will be written as T_{? . On noting the initial

conditions (2.13),

_ - A % __ :i? V- =
Lo - (S -PXE e . (BFYw
2z 4k cil }( d PI)‘:‘-_ i X‘ L[q‘-_é?.—})") 4‘7.
+ (.Au c P + Y ;Ge_ CT;\,' 0 € dx*
- _ P x
We wish to solve L& =0 . Let 4 = € , then }>(%)

satisfies

(@ P - P PF-FY + (P-FY

(2.49)

]
o

¥ QL e Feo Y P-F) + X e (@F-F)



54

Following the procedure laid out in §2.8., we set ?>==O to find the

corresponding values of P from (2.49). The equation satisfied by #

is
b Lo i C -
}; —}: (l- ch + >‘D c i’ = 0 (2.50)
Thus
rl s /4 \ \‘L - =
|; = 0O or F‘L = 3" ‘J' );: C-") = /&l- RDC‘S 4‘A° G" } (2.51)
Equation (2.50) for #} yields complex values of % . Now the method used

involves taking a maximum and so it is tacitly assumed that all quantities
are real. Hence we accept only the root ﬁ: o from equation (2.50). We

differentiate (2.49) with respect to F and set }Dﬁ-k = 0 . This yields

P & 8
%F (p=0) = *'la (2.52)

and then equation (2.47) gives
F(p=od = a
Thus, as anticipated, the speed of the dominant disturbance is a.

Further differentiations give that

A.'L
"'—3.) (b=e) =o (2.53)

and

d.3P 3 .‘-Q\') i '
= (b= = 3 L”/“"] (2.54)
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where

. 2 T v l4y]
/"0 = 55 }. 3 + &= —
A Sl-an) a a ; (2.55)

(1]

The bending terms involved in the operator L are represented here by the
term /4, . For a thin shell /Ho <& 1, as can be seen by the presence
of }; in (2.55). Thus, as far as the calculations here are concerned,
the membrane equations are adequate. The bending terms enter through the
boundary conditions (2.29).

The equation L =0 , where L is given in (2.16), is a linear
dispersive equation. Consequently, it iIs usual to look for solutions of
the form :;(."{'x- wk)
45 = €
where k is the wave number and «w is the frequency. The equation

La =o then gives w as a function of R . This relationship, w=w(k),

is called the dispersion relation. The phase velocity, Cﬁm , is given by

_::i : Cp v : (2.56)

and the group velocity, C& , 1s defined by
G (kY = %
The group velocity is the velocity at which the energy in the system is

transmitted[‘?l]. From (2.56), it is seen that

W = kc},ﬂ (2.57)
and thus
dw el Cyl,
. B9 . g 4
Cs = 4k ph R 4R
d

Therefore, Ca = C}k ks = CF“ =0 . DNow, the phase velocity a is
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the speed of very long longitudinal waves in a bar. Since the wavelength

is very large, the wave number, h » equals zero. Equation (2.57) with

ka - Qa and k=o implies that w =0 . Thus, the phase velocity,

a, with very long wavelength corresponds to wW=o, R

C(kx-wt)
On substituting W= €

= o -

into the equation Lw =o we

obtain

Cw‘—o‘k”)(w"- ) N 3 kh)t - (Xdws N

oW \-__1'"':1 -
+).°c. (wr-a k) 0.
Then, for W = R =0 ,
dw
Cc - — = &
P dR -,
JP«) I
dk* T
and y
dPw
< 0 .
dle’

Thus, along the ray x-at =0 , the group velocity equals the phase

velocity and the group velocity has its maximum value.

The disturbance associated with a stationary value of the group

velocity has been called the "Airy phase'" by Pekeris E#L]. The motion is

characterized by its regular period, namely, that corresponding to the

stationary group velocity.

Naghdi and Cooper[ i jhave examined the mnatural vibrations of a

shell described by (2.10). They say that for very long waves the character-

istic equation yields for the lowest mode of motion a speed‘/P-v — which
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is our speed a. TFigure 1(b) in their paper is a plot of phase velocity
=i
versus (wavelength) . It can be seen that for the lowest mode as the

wavelength tends to infinity, the phase speed tends to a and the curve has

Joa

zero slope at this point, i.e.,

%k = 0 . This again confirms that

R

O

Ct'i" = Cg = Q,

‘They do not give a corresponding plot involving the group velocity.

§2.10. The Behavior Near X1=at.
We know that when _f is near a, % is near zero. Thus, Dby

Taylor's theorem with (2.52), (2.53), and (2.54),

-PU: (I)) = '—#G') % “"‘CN}&) ﬂ,(s) * OLF) (2.58)

when { is near a. The saddle point equation, (2.47), determines % as

a function of § . With the aid of (2.58), equation (2.47) becomes
ke e 3 "“L( ke =
1+ F[-d +3 F pdptnr + ] =0
Therefore,
-*/:. J
z 2-
I =
h[ ) ﬁ (’ QL)CH"H)( }') 5 (2'59)

and

2\

[‘g‘)/m— (i~ = k= ) ) (2.60)

The exponential part of (2.48) themn is constant for chxf, decaying for

px) s FP(ho)
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X>at , i.e., in front of the wavefront, and oscillatory for X <al ,

i.e., behind the wavefront.
When [ # & , the first term in the asymptotic evaluation of

(2.46) is given by the formula (2.48) in which the amplitude decays like

X”‘ along the ray. As { —> & , two saddle points coalesce and (2.48)
is no longer applicable. The first term of the asymptotic formula for
this case is given by Jomnes {43-]on p. 445, Without giving the exact
expression, we note that the decay factor is Xﬂh . Thus there is a non-
uniformity in the asymptotic expansion of (2.46) as I tends to a.
Chester et. él.[‘+4‘j have examined just such a situation and have given
a method of obtaining an asymptotic expansion which is uniformly valid as
§—>a . We will give here the mechanics of the calculation, but we do not
attempt a full exposition. It is noted that the form of the solution pre-

sented here makes the application of the technique very simple.

With the aid of (2.58), the right hand side of (2.46) may be

written as

LL0- 2050 +AFE (1) +]
ar, g t dp (2.61)

ol
v

where

A I-G-L{‘)-j-luo)_

a?.o:?

{3

We define

Qb5 = (- Lh(D +AFE @), (2.62)

For a very thin shell, }b 4< | and we are essentially dealing with the

membrane equatioms. The Bromwich contour in this case is given in Fig. 5,
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There are no singularities in the right half plane. The points % ¢ and
*la are branch points of the integrand and the appropriate branch cuts

are shown. Equation (2.61l) may now be written as

1o »
t & (hd *}
am f % b (b

o

ET )

and we have shown that the major contribution to this integral comes from
h-..o, I:Q..
Following the method in.{“%], the variable Vv is introduced by

the relation

Q(p, ) = ‘1'71:'3 - T(®Dv + v(3). (2.64)

If this is to be a regular (1,1) transformation we must have éﬁ +0
-

or o , where

28Q db | a4
YT \IEE (2.65)

28
Now ,;F (h,f) vanishes at the two saddle points P (F) i;_ {3y s
[}

iy

while ﬁ}-_I(I) vanishes at V = Y (i) . If the transformation is to be
regular, these points must correspond, and so we have from (2.64) the equa-
tions

& (bl »~ F T e v ()

and

QD = F 1@+ v(D
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to determine J(f)and v(f). Solving for V and ¥ yields

av(@® = 0- %) b +hd + AT(K b1

and
: - r
£ 50 - (- )(Roh) rAT(E -8,
Since, by (2.59), ﬁ_:-— #+ ", we obtain
v(I) =0

(2.66)

and

2(ry = 2R[0-%)+ ATE].

Since the variable of integration in (2.63) is changed to W , we write

dh S . oy e ;i N
il Pl T) (v 1) e ?,1‘51’)1"("“5) (2.67)
dv M0 ) =0

‘I
and we now proceed to calculate “(Lo and %0 . On putting V'=%7Y L(j)

and }:’ = Fi (%) we find from (2.67) that

(:_";L s D+ TV g, (5) (2.68)

!
and the left hand side is known when e_“ﬁ is known at v = # S/" (I) g
v

But, from (2.65),

~Q (dh)l- 28 dp

== —_— + — = av

’3}7‘ dv raf’, du* g
and then

since



By (2.62) "
TR L 4ATR(D
?p,
and then
i
R 25 @) 2600
dv /4 AT B, ’
and

(ﬂ’-)‘ , =ai"
dv /- bAT ’ (2.69)

Substitution of equatioms (2.69) into equations (2.68) yields

I].‘_

_&Lo [I) = jAIP* and ‘Zo [I)

U

0. (2.70)

We now gather up the fragments. Equation (2.63) is transformed

into
o e [ T+ (8] db
= g‘ € —  dv
ATi ) dv
-Lm

by the transformation (2.64). The functions {(§) and V(I) are given by

(2.66). is approximated by the first term in the expansion (2.67),

av
i.e., we write

db L P (F) o+ vy, (D)

dv

and ‘ho » {, are given by (2:70)s
Using formula (2.3) ofE4+], equation (2.63) may now be approxi-

mated by
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o €
ks Yoo LF) _-%xf[i:(}‘\rs-fv):f dv
Qe ':S:oe—jr?h

oo (5) T
- L s A [ 7 58] ) (2.71)
since Il
w ¢
Mty s g [ wlieege]
s e—:’;'in

[\L(&) is the Airy function and is discussed in [4}]. The final result

may be stated now as

e ap o~ - b D AL D] (2.72)

—_—
as t =30 and f is in the neighborhood of a. With A = 'I_l—:i C“‘[*o) , we
find on using (2.66) and (2.70) that
I
g e & =1

and

hotey = @Ay

Thus, for TDC#) given by equation (2.49)
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‘ t{lwr FP(p)]
aTi Y €

¢ o % :/a"""
L (SAI)“ A [ £ (3Af)"’]

as T =% and § is near a. This expression is uniformly valid as f—>a .

The situation described here near the ray x=al is entirely anala-
gous to Kelvin's ship-wave pattern as expounded by Ursell.E+Si. We quote
the relevant part of his introduction.

When a concentrated pressure travels with constant velo-
city over the free surface of water, it carries with it
a familiar pattern of ship-waves. Let viscosity and sur-
face tension be neglected, let the free-surface condition
be linearized, let the depth of the water be assumed
infinite, and let initial transient effects be ignored.
Then, the wave motion everywhere can be found by standard
methods in the form of a double integral. The wave pat-
tern at a great distance behind the disturbance can be
found by an application of the ordinary method of sta-
tionary phase, which shows that the wave amplitude is
considerable inside an angle bounded by the two horizontal
rays 8= £ 0, from the disturbance, where 0, = sin'Y
= 19%°. But the method fails near the critical lines
=* 8., . ... Near the critical lines the surface
elevation at a greater distance behind the pressure point
can be expressed in terms of Airy functions, and this ex-
pression goes over into the known wave pattern inside the
critical angle. It is shown that near the critical lines
the crest length increases as the cube root of the dis-
tance, and the separation between crests remains constant.

The last statement here refers to the regular period of the Airy phase which
is due to the stationary group velocity. This point is discussed by

Pekeris [42 ] and Newlands Y_‘H: ]

§ 2.11. The Long-Time Solution.

—(f)
Since we are dealing with linear equatioms, qu (*gbﬂ satisfies

the equation
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I_ MZ”CK, }’) =0

and " s
— " —
MX(OJ }’) - MX (Qa}‘j
— P
where .Mx lD,}’) is given by (2.27). We may thus write

(H!

M) ~ thq” AL, -]
e X(O,'c) Hl iop T
(v}

(A" (2.73)

!
g 3 ‘b
(2)° (3A8)
for L —>e in the neighborhood of the ray x-at = constant, where, by

inversion of (2.27)

Q, (-&-vagc) .

by
£y = " cosh pt - coshpt
Mx["») U"[i’_,_',) J_ Pi' P ]
v, Q, [- ( Rt -pt i Rt -pt
i A (N P S < Lla-p -
vl {2-¢ J .;.*{ e -e }])
and p,_ , P are given by (2.23). We note that the bending effects,

1
represented by Ac , enter in a fairly imocuous fashion. (It had been
hoped at the outset that Ab would enter in such a way that (2.73) would

be valid for At >>) and then we would not have been restricted to very

large t |
In a similar fashion, the expressions for Nx(x,t) and &x (x.t)
are
Nt ~ = s, [ A ik, oadt]
b (2" Gagy™ x 0™ Al Garys T @aw
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where

¢

) i 2
Nx (e,t) = %2({5’_’_\)) Ewsﬁ {:*'t- wsﬁ}:_k]

it
B

v & X, U - bt -pt hE bt
ke K el R T S e
= LAF_”{"?’ e -e" } 2P:_{.’Z e - e })
and
Qtnl(gf) - v, | A [ o1 t"/:a’ ]
. U (3 ean® MLleap” (2.75)

(2.74) and (2.75) are valid for large t in the neighborhood of the rays
X - at = constant.

We examine QxCX,'IT) to get a better feel for the formula in (2.75).

The others are similar.

For f=a , i.e., along the ray x-at =0

Q[w(x E) ~ — v 8, Ac (o) ~73
b's ']

VR Ga® T
and so the amplitude decays like tilli . Also the amplitude is proportional
to ?;: due to the presence of P:- . There is an exponential decay in
front of X-at =0 and an oscillatory behavior behind x-ak =0 as re-

marked subsequent to equation (2.60).
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CHAPTER IIT

Attention is now fixed on a spherical shell which is described
by the equations derived in detail in Chapter I. The inclusion of the
effects of transverse shear and rotatory inertia in this description led
to a system of simultaneous equations for the displacements which is total-
ly hyperbolic. Thus it makes sense to examine the behavior of a disturbance
in the shell as it moves into a region of quiet. We are interested in the
focusing effect which results from the geometry of the shell, and especially
in the influence of bending on this effect. To this end, the problem of a
constant moment Ma =M, applied at the lip B = 90 >0 of a spherical
shell is studied. From the outset, the objective is limited to the leading
wavefront behavior of F49 as it makes its first traversal from B:—Eg
to & =T , and its first reflection therefrom. This objective is achieved
by the appropriate asymptotic expansion without recourse to any representa-

tion of the exact solution. See Fig. 6 for a picture of the situation.

§3.1. Notation.

The notation of Chapters I and II is again relevant here. In

addition we have the following.
b = F{B -8,) s F:is the Laplace transform variable.
8 = pli-8)

B+= {1+ 1%_)@ , JL is a constant.
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U
‘L:’ (}+J£)L ¢
a, = I -£L .
o, = G oy :
B o
= i.e., -
M e & o AeaiBey

W(b, p) = sin B (s b)

MDLW'F) is the wvalue of MB (s, t)

§ 3.2. Statement of the Problem.

traces the wavefront.

¥ o= a,+l>, 5

at the leading wavefront.

The momentum equations derived in Chapter I are as follows.

VLU. -~ C%ﬁ +t'd)u -1-3‘8 + ‘—'L—_-”«'-J‘

oo alnw) _ 34V
V w —— u'+F)B + potd =

28

C“(Je +uwt0) = -C-‘;U"tt

— S
= q“bt 1&8[5)&*‘

(3.1)

VLF - (veofa)p - (frafp-w) @A R vany,

Equations (3.1) are valid for 0<8,<8

P4

=

7]

and for Esop s

The pressure

term 9q, in (1.20) has been set equal to zero and it has been assumed that

the motion is independent of ¢ . Again, we note that
T
%+ pi 2 )
v = 4 ebbh —
\Y 2 B* «@ 28

We assume that the sphere is initially at rest in its undeformed state

corresponding to the initial conditions
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fofg=ws=w,= B, «8 ¢, (52}

The sphere is to be loaded by a suddenly applied uniform bending moment at

the edge D - 90 :

b=08, : Mo = B4 vBold = M, H(E) :

/

Ny = 4y +vuotd ) =0 (3.3)

|
o

=
Qg" ‘.‘CF'I'U:\B =)
Furthermore, the radiation condition that the leading wave be moving into
an undisturbed region on its first traversal from 0O 1-30 to § =7 1is
enforced.

The problem is to be attacked by reducing (3.1) - (3.3) to a set

of simultaneous ordinary differential equations on the interval 90 e8 &7

by means of a Laplace transform in time. We define

~pt
nlop = | ulat) eF at

with corresponding ‘definitions for ‘:}'CB,H and F[B, H .

The boundary value problem after the Laplace transform is taken is

Al

-+ o+ i ¥ o - ~ A
VUL-CE_—- + ot 8)a +E"F+§i¥ 6~[°u- &E}’F =0 (3.4)
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- - alive = = 4 B4V e o P
N & ’IJ"Q-FJQ'PP(ALQ 1’13-("‘,9*““56)"?“"5"

cl-

V‘-F - (v+ wt‘g)p - (g & ,{336_-‘1) C1)lt _};-F -AF«I . (3,43

for Bo ¢ § & , where we have now written

P 4
v-d9”+wt9d9'

the boundary conditions are, at B8 = 50

7 !

FJ9+VF63(,'9 w—i:M

U +vhotd +(w)&F =o
20 (3.5)

-{; +:‘:°B - =D

The radiation condition is now put in the form that for & < T -—90 5

the Laplace transform of any variable should have the form of a decaying
exponential in b -90 for large values of the Laplace variable ’:
We further impose the condition that all solutions U [8,p),
‘_%(G,l:) , and 47 (§, p) and their derivatives with respect to 8 are
bounded functions of P for Bg ¢ & &7 where f> is just considered as
a parameter, In other words, sclutions of the ordinary differential equa-
tions for &(8,p), F[B,js) , and 4r [Q,;ﬂ which have a singularity in the range
8, L0 <7 are not acceptable.
The problem is now fully specified by equations (3.4) and (3.5)
and the subsequent remarks. |
It is not proposed to find the exact solution of the problem just

posed. Instead we shall consider the asymptotic structure of the solution
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for large P . Before proceeding to the approximate solution, a few re-

marks on asymptotic expansions may not be out of place.

§3.3. On Asymptotic Expansions.

It is the intention here to remark on what may be termed the
hierarchy of sophistication in regard to asymptotic expansions of ordinary
differential equations involving a large real parameter. In particular,
we are interested in an approximation which is uniformly valid on the range
on which the differential equation holds.

Consider the equation

ol}&

7 ffwg_ =0 (3.6)

over the range X, $X ¢£X, , where A is large and real.

1 {fw>e in [x, x], then [47]

. "y, & Yy
4~ G ffoo ] * cos { Af[{-'oo] dx} Ry, +siu{Af[?ou]/ Ax} _ (3.7)
If {lx) {0 in [X” X;] , then

Y~ {gu,jy*[cj exp {3 [-Fod] "l |+ ¢, onp AT Rl dx | (3.8)

If now -F(_Xo) =0 for X, € (,X;_, Xa) with {\(K) >0 for
X€ (Xo, %] and fd<o for X€ [x, %) » then (3.7) is an asymptotic
approximation in any closed interval to the right of X, , while (3.8) is
an asymptotic approximation in any closed interval to the left of X, .

The problem of finding a uniform asymptotic expansion over [X“ X;J 5 O
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in other words, to find the relation comnecting ¢, , ¢, .to <, c$ was
solved by Jeffreys[ﬁ?g:]among others. An asymptotic formula which is valid
over[xu x;]may be written in terms of Airy functions, see Erdelyi[47’].

The basis for future progress was laid by Langer in a series of papers
beginning in 1931 E4?J5é] when he introduced his method of the '"related
equation." The rough idea is to construct a related equation which approaches
the given equation asymptotically, with the idea of being able to solve the
related equation explicitly. Then, under certain circumstances, a solution

of the related equation is asymptotically equivalent to a solution of the
given equation.

If -ﬁx) in (3.6) is now allowed to havea regular singularity, the
problem of the asymptotic behavior is more complex. The uniform asymptotic
approximation to the exact solution can be written in terms of Bessel func-
tions, as shown by Thorne[gﬂ ].

An account of the historical development of the subject is given
by Pike [53,53:[ as well as a proposed new existence theorem. Since the
differential equations (3.4) have a regular singularity at B =T , and
since our objective is to obtain an asymptotic approximation which is uni-

formly valid in Bo ¢ 8 ¢T , we may expect to become involved with Bessel

functions.

§3.4. The First Order Approximation Uniformly Valid in 6, ¢« Deulm .

The variable u[ﬂ,kj is introduced by the relatiomns

G p) = u(gp) wpl-& [wté d6]

i.e.,

wlb p) = o8 T (s, ) (3.9)
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Similarly we define

L]

w6 h) = aind (6},

and

p (6 )

It is now noted that

(3.9)
oin™8 F(3.1).

G q, = — - LubB-Fu g (ats) -
%395 + b “o T oind [u‘éé F1 % dB( ] (3.10)

Thus the transformation in (3.9) eliminates the first derivative terms in

R
the operator V . Equations (3.4) and (3.5), with the aid of (3.9) and
(3.10), may now be written as

Yo -[Zwte r3 #]u o+ 'C%CGI-&F}F') + 52 [, ~ 4w wold)

=0
1 Q.CGL 1
“ipe [#att +a "= ‘;'»}’]‘w' +ﬁ_,9 ti p kb
- 2% (4, +iu otb) =0 (3.11)
2 8
Pang ™ [f_ b8 -+ + SN +|>"](3 o - [ujeﬂi.u-wtﬂ-u]
- Q.F-(—L =0
with the boundary conditions at B =08,
th i
._;; Mp nin Ba = F}B - (:-P‘) rg w{:g
! (3.12)
D -

u’e ~ (_i-v)u kB + (4+¥) w
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o = f-u T, Taw wid {3.12)

We consider F to be very large and & (hence Ao ) fixed. The
approximation to the solution of (3.11) and (3.12) which is valid near
O =0, is first obtained. It will be found that this approximation is
not valid at 8 =7 .
We define
B = pLb-8,)
and then assume the following expansions for u , 4 , and F in terms of

-

the variable 8

alg, Py = W (B + % u B + -

X !

u(g.l’:) = “0 [B) +'F 4J‘.['L5) R

Lok = g (B) +£ (B +

The substitution of these expansions into equations (3.11) and (3.12)

yields the following boundary value problem for the zeroth order approxi-

mations U, , W, , and F° E

S
u%é@ -4, - &g Fo =18
A &y ks =
0‘55 > “'\ro 2]
3..13)
o = 0
FD) 55 - ﬁb ‘Quo



‘g". [ T;i Mo "”*‘-l/‘ 90

uo — = o

’9 (3.14)
s =

OJB o

43
<
A, = Ao <
-9, 8 ~9.08
B = B 2 +8, e
18 1.0
W =a(g-08 e +i(f-)e
where ‘L:' = J+Q E and ‘f; T I-&& , The exponentials which increase

-

with 8 have been rejected since they do not represent waves going into

the region B > 8, .

The boundary conditions (3.14) determine the coefficients Ao "

3, , and R:_ and the final result is that

A5, =0
_ . -1,8
g, = _'\_2__" _E_LT pin™B, e
@ P 1 C‘i:"i.,,) %
e 2 =
SMe Gim g OB .15

P 9. (- 7))

™ 2 = 9
U = M: (-, ) pin'*B, e v
P aq (- 9 _
LSUR VL i )
- ™M, (2 [)(‘L"‘) a'm.hrso e

PYoag, (9-0)
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If we now revert to the dependent variables W& , @ , '-?'. , we see,
for example, that the first approximation to I"E(G, b) is /J'anLQ ‘90 é)
and this has a singularity at 8=7 . We could have foreseen this non~
uniformity by noticing the terms involving Cot-\@ in equation (3.11).
These terms were neglected in comparison with F' , for F large, but this
is valid only when O is bounded away from W

The variable

5 = b(u-0)

is introduced to rectify this difficulty, and expansions of the following

form areassumed for W , F , and AJ : ‘
i It l o 1 - .
ar(6, p) = 15, (0) % a [§) +

(8) + -

W, (B) +

~F
=2

w(9, p)

g (5,3)

}
-
(-4
e
(=2
|
ot
~F
P
.
o
—
-

The ordinary differential equations for ‘:S‘O , U, , and F° then are

~

Yoy "5 G -adf =°
«’}0)33 v (Ee ) 4 =0
(3.16)
-~ 3 ~ )
‘go‘“a'"é - Lq—-—b"' +1) fo -l =0

We note that the main difference between equations (3.13) and (3.16) is
that the latter have a term involving '/5; which is there to represent

the regular singularity at © =W in the original equations (3.11).
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Solutions of (3.16) are

~ ™ ~'i |~
o o= A, 8 I, (EE)

2
2

-~ ‘}3-

—_— ~ ~ ~ia G
1,3,8) +8 06 1 (43)

)
°

1
;Ub

(3.4.7)
~ ] 7 '\-"jl- ~
U, = a8 6 Iyb)
A L '}'
+ 3 ( g I (.‘L )
where Io, I, are modified Bessel functions. The functiomns Ko) Kj are

rejected as solutions of (3.17) as they are singular at 5 =D
The approximation (3.17) is valid at least in a neighborhood of
’{Ej =o , i.e., near H=17 , while the approximation (3.15) is valid on
any closed interval which excludes the point @ =% . Thus the two ap-
proximations have a common interval of validity. By matching equatioms
(3.17) to equations (3.15) on this common interval of validity the coeffi-
~ i ~

cients Ao . B’ , and B:_ are determined.

We fix O # 7T and let lﬁ>>l , then

I, (48) =1, (gp(m-8)
q,f:(ﬁ-G)
~ (__t + O(—)]

/a.u 1}3'(.“ -8)

Thus, for D # Il

~ = ——
fy ™ 3,@ € + BLJ&T{‘L;— & :



T

~s

This expression for Fo may be written as
. ~ | bt‘ ch' O) =it }:‘{-0'30)
fo ™ B & 7, © &
- ; 2p(T%) <9, p(8-0,)
+ B 2 &

and on comparison with (3.13) it is evident that

E _ LA'_O_ (ﬂ).h_ 1‘;'_ ) 9 e*- 1. p (-6,)
/ %'l. i’ i‘; _ 1—:
and
’E M (aﬁ' )l‘“ g =i " - Lap (7-Bo)
L Nk P — ' [ e
b }) 712_ ‘f,_' ‘f;

Thus, the first order approximation which is uniformly wvalid in B in the

range 90 ¢ B2 oas }>—->m is given by

ey =0
fo £ -0\ b;}’[” BD)
F [B ﬁ) = ’;3/; ?:. g~ (&ilolnﬂ') (/m.G I [i‘},(ﬁ-_a}]
~ - he g p (7 -0,
- B B uameS(IR) HRICED (.18

b 1 m .-a -8 LP(” 90)
e = e G (2 Y T T b

_ Mo (§=)E) (Z ,);,\905’»(‘"‘ 9) ~1ap (T “JI[ (o))

3 = 19
A e
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We have written F" = Nin D Ig“ and similarly for 30 and 473‘0 "
The essence of an asymptotic expansion is that the succeeding
terms are diminishing so that each term is a small correction to the pre-
ceding ones. If we now proceed to calculate the second terms u,LﬁJ and

ﬁ.(ﬁ) of the expansion valid near O = 9ﬁ , we will find, for example,

" = 9,0
that F#ﬁ) will have a term of the form & & . Due to the defi-
nition of .é 3 -
e, "'1-:@ "“LQ
? B e = (9 "90) €

and so the second term in the expansion has the same order of magnitude as
the first. We could term this a ''resonance'" phenomenon. This defect may
be obviated, and at the same time the effect of higher order coupling terms
in the equations is obtained, by the two-variable expansion technique

originated by Cole and Kevorkian and described by Kevorkian [33] .

3.5. Uniformity by the Two-Variable Expansion Method.

We consider a linear oscillator with a driving force, viz.,

ﬂ.\bt +[l+£);£ = /:,'m,'t
where & is a small number. The frequency of the driving force is very
close to the natural frequency of the oscillator. Since €<« | , we may
approximate the given equation by

$ive * 3 = 2int,
Solutions of this equation are unbounded as tE —» o due to resonance,
whereas solutions to the original equation are bounded. If we followed a
naive asymptotic procedure in powers of £, such as the one in the previous
section, then the first approximation would lead to the resonance phenomenon.
The resonance thus obtained is not inherent in the original equation, but

appears as a result of poor mathematics. It is a difficulty such as this
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which arises when we try to construct the second terms in the expansions
proposed in the previous section. The source of the difficulty is made
patent by the simple example cited. A device must be found to correct the
argument of the solution of the homogeneous equation given by the first
approximation and then resonance does mnot occur.
With these remarks in mind, we introduce the new independent

variables,
L = 1,2,3

where JQ.; is constant and, as before, B = #[9"&9. Further, let
P ,

b = ';J—ﬁ

If &= o (B) and we assume an expansion for o of the form

a A
«(B) = oolBieY) + F & (h, 7)) v
then
do l
—= % B == ol b o
d-é- OJB+ P C“DJ'B\ + JJ9+> + F" (_D_ do"a:'- + ‘Ja +°LQJB+>
+ -
and
4 i
T et F (B Tp0)
[
-+ —
¥ (20 o i+ ko 55 sk g+ o Y+

Equations (3.11) are rewritten using 0 as independent variable.

They become
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Fugp -Laflrd) v F+ Pl + ploasp)

I+ T i fA _-9: =
+ TLF“’;@' J_ucau[ub-&?)] =R

[‘J}_‘ &1(901-%) +-‘--.‘?'_°". -c' ]‘U‘ " ;’FJQ

v 48 at(s, +_.) - B [hyy vdu ol .g".)]

-~

F—lgaéi -Léut"ceof—?- +u+c,\ +§»]3
- 1;8'[}3%‘35—;_'-1-{ wt(_&o+%) —'L\_] - .;LF'— w =0

The boundary conditions (3.12) become: At 8 =0

FMonin™8 = bas - (39 wt(8+ L)

B = Fu’é —(é-o')uwl'(sb-k%) + (1+V) s
- = p-u +1[>4~S}§ s wi‘(so*%)

We now assume that the following expansions are valid.

gD = R (B.07) +E B (3, 81 -
w(d,p) = uo('é, B:') + Lf’ (3, 8 ¢

“(Eni’) = A5, [s/ 9;) 4 "‘P—U‘l L@,B;)%—-'-

(3.19)

(3.20)

Then the first approximation to the system given by (3.19) and (3.20) is
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+
ul". a.;.eq. - Uy = N Fa =0
o, o* o p W, =0
Bo, gugs fo A =°
with
=0 . th 3=
F‘h Mo P gD = FC:‘ 3+
) 3 ugJ a.'.
L Ry
e 9 pt

The general solution is

- "c'-'e:
4, = A, e
-1,8/ -4,8}
B, = B B e +3,B e
2.6

U, = 3 (.‘L.:-"l) Bw(a) e o +3 (f;‘) B.ché)

and the boundary conditions require

A, ) =0

L
B, .oy = 55 == L Sm.'l"' 3
0 e T ‘

= %i. B;}

(3.21)

(3.22)
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i Mo og,l-l 1Y)
B oy = =% ¢ : nin B
v . o 322
S T (3.22)
A A
where, for example, A,,U’) means AJO(Q) evaluated at & =0 . We note

that the first order approximation given by (3.21) and(3.22) differs from
(3.15) in some simple, but yet essential, aspects. The expressions for

w5, F" , and «, in (3.15) are fully determined. In contrast to this,

-\

the solutions given by (3.21) and(3.22) have a ) dependence which has
. LS S

not yet been fully determined and &, 2%, Qg are as yet unknown since the

o2 associated with each must be found. We propose to use this indeter-

minancy to impose the condition that there be no resonance in the second

term of the asymptotic expansion. The remainder of this section concerns

itself with the details of this calculation.

The boundary value problem for «, , ﬁ' » and 45 is

U - 4V .
gt TN -a¢ i * " 2 T T e =
A4S ~ L o — S%¥ 5 ..
Lotet & *F“ha* Ao fopr * R %o* 3 =6 (3.23)
B -8, -au, +af - & =0
bB+B* Fl [ OJBLE o °, o
with

By ) fo kb,

(3.24)

uu 6: T (3 -v) U, “’L-gp — [}
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<50 =
l n+ - Yy "Fo "';" oy, c,ogi:ﬁ'o (3.24)

A

+ 4
at P =0 =0. On using the forms of w5, ,Fu » Up given in (3.21),

(3.23) may be written as

3 - 8F -
- -det = :‘ﬁ.’ o © % 4 'Q‘G.BJ.
P i 2 = A, B v, () B, e
N / ""LLB:
* ?/;_ L ‘Iq,-’) B-lb e
al 2. ! —é 9: -U Q;.. '?-;_9:
‘19;9; T Y = T Alo e L BID e *7’2_810'&
-8 ~%.8]
- 3 v T - &
2 [FnE) 8 +dq (f0) B |
(3.25)
4 -4 Q,* ! -‘L_Q,*
F,J o o7 o F‘ = du, = 3.1‘ 3“, e -t--'LdiL ga—o e
_é_q:
= Si>c Auo e
A
b .

where a prime denotes differentiation with respect to

The right hand side of the equation for -} in (3.25) has a

-+
’ =8,

A
T A,o i which will give a resonance on integration. This

term

difficulty may be avoided by setting
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i.e.,
A(o (_,3) = ‘—‘"\Stq'\-h = A,o (o) .
For similar reasons, we set
] !
Bo‘o = B.:.b =0
and hence
B (B) = Bty 8,3 = By (o).

Thus, the coefficients in the first approximation have been determined, and
the undesirable terms in the equation for the second approximation have been
eliminated at one stroke. This is the first aspect of the flexibility al-
lowed us by the two-variable technique.

At this stage, we have

Ao 2 A8y = o

4 - ‘~
Bio = 80 (B) & -'{":" = L N Pin 90
o
& (3.26)
-4 Y i~
Bao = BLB) = -3 He B+ 8,
N -

To complete the first approximation we must yet find L1, ,.ILL ,-flz

Equation (3.25) now becomes

u RS -
I)B:Q: -u. Eecd 26‘3, = 0

-1,8) -1L9
Wby "Hw ot LBe€ T vy b,

-9.87

’QL [:1_.' L"L:"‘)gmé L *ii:. (.?- ’-) gz.oe' ]
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‘gl_. o o7 —jga =y, =0

Solutions to these are

R 7 - =1,8F
@l = B“(B) e + gﬂl (91 =
—7" BJ:P - 7’1 93,+
w = T8, e Tl g.;. =
-8} %, -1, 8} 1. -3 4 .20
4 = AH LB) L= ¥ ti‘::-_'/‘.__'a. 8(0 < + ?‘1._ s BLD € ‘
&
_ oz r %, () é‘lﬁf NS -1.0
ac }_ &-(_1“‘- v to a_(_-f; - 72) 20 & ]

and the boundary conditions (3.24), together with the result W, =o , imply

- T4 g,-.(") =g g,, @ = (k-v) wtb, ( Bio *+ 8;0)
£ 4, () Byt -, (250) B0 = (%) wkbds [#63-1) Bio +H550) 8.0

L. £
- t Ayt +a B, +a, 8, =z2(¢3)8, +3(1,-2) §.0

where

= T
a, = N 7 (4-1)

1= 2 de o § 11‘.__ )
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and
(L\_
= ™
By = = » 2 .:L_"__C..L"')_
‘L\; - ‘/‘_:. e N C.‘i:,- 1/(})

In particular

Aues = e[ fa-t(5-018, r{a (0] £.,]

(3.28)

When cognizance is taken of the fact that g and F° are inde-

A
pendent of g and 4S5, =0 , the equatioms for Fz s W

afl, u *alU an o+ Uy
et

IO B ¥ Y arpp

1+ ™ IV
- U, +cﬁ°-1£{3,_ + =5 4-5_‘,9},_

& W N S 2 i
] 0;3 t s, o b s ) oF ta Fa “&90

- 34V
e

(2 wt's, +2L)u,

Uy ge + E ot ) =

, and w

AJ)-r Fo, gf 5;4- 'I'QF,JB;;- B + ‘ng B,* 3;# b [i ,;051190 __3'....9 +X‘;C—‘] F"

_Fz—,x-oc_]'(‘»(‘jhgf -Llo) ‘AUL

The second of these equations is

are

(3.29)



87

-k - - - ~L
-w;‘ 6y & e = i, 68 Puor ~x fo et
~-+0*
3
The term € does mnot occur in Fo 5 F' s Uy 0 W o,

and so a resonance will not arise from these terms. On the other hand,
4, does have such a term. As before, we may eliminate the resonance by
demanding that f\ﬂﬁ)be independent of 3 , or equivalently, that /Mﬂﬁs
constant = /\HLPJ . Thus, is given by equation (3.27) where
A, (8 is replaced by A, (®) and A, (®) is given by (3.28).
If we consider the first and third equations of (3.29), there

are resonant terms present. These may be grouped as follows on the right

hand side.

?-|B+ *q«a.@_
[ =% (‘i; -1) 3“ +q, R, + q“] + [‘i, LL,')R;; AP Y +a,4 ]
= CLJQT -~ ?,Lg,q-
* 05 € +Q, <€
and
-q,9" ? o /
ell‘ [ &% w ¥ b “Q +bn] . Ldil&J +a3111 +I+
- ‘L 9: - 1':. 5
+ng$‘ € + B]L e

where
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- - -Ewha +3‘, --
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____” lrl ( vl g
™
Gc 2 (, ‘;: : yg“) 8

e 7]
G et} {
L (g, 18, +

= ‘L: C?.:") ea.o

+ p 3 ﬂ)“ q::: (?-L"J
_/3 Y\ Lfo% it e A
- -Gefn DL B
LS
&7 REBY ‘LJ
~ [ E[o = 5 i‘b_:/‘g_. Eib
i
(™
TR o 3Y 1a
= € Py T qu - ifr "
bo
= R‘L-:' 8

h'i‘» c\_\.-
= - (3 S R W TR :'-’/%’: ‘o
‘1‘ «

= 2. ?.:; BLI

No €95
—3- 1 N i T ° + (s} ke
e - (705, Ly + 5D By 7T ,/LR

= e '1('[:'"/:.”3 sto +A0C- 2.(3 "") gm

e ¢, (72-0)

ANt L Yp
% T A, c .L(_‘t “)0
oAty T I

As before, some of these terms may be eliminated by setting

{ I

gn = g:.; = 0



89

Thus,

8u (B) = Bn (o)

and (3.30)
Ra, (8Y = Ry, (o)

(4]

At this stage, the equations under consideration may be written as

-2, 0 - ~3..0
q’l}B -u - AE‘[& 2 ' Lq,,JL‘ +dn]+ € - [Q,S.Q.L 1‘0‘:1]

Sl
_1.9 ( )

- <9 0T
{3”}9 —F - U = e [_ L,, £, 'f‘d:u] e lb,g‘ﬂl 2 ‘JLL}

where d“ = Q‘_.L Q-

diy = G+ 9
da = by # bye
°(1_L = bl‘l- t ‘b“ .

All the coefficients of the right hand side of (3.31) are constants.

If we can now choose "Q‘l and -D-z. so that the only solutions
to the non-homogeneous equations (3.31) are the solutions to the homo-
geneous equations, we will have achieved our purpose of eliminating the
terms giving resonance.

If we eliminate W , say, from (3.31) and write a non-homogeneous
fourth order equation for ﬁ , then the non-homogeneity may be removed by

choosing L, and QQL as solutions of the algebraic equations
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gl b R s dy ] v Law R+ dy ] co

il
©

3 (q.t")[ b,g £, "'d:..:—] + EQIS"Q-L s D'\n.]

Then

~i
_Q, = % [ Qu S,S.L(‘it") daa + du.}" {_SLL(?-T")“‘-‘ '*d”}ql-’-]

and (3.32)

D, = D {0 du+daJE €00 b = {3 (£330 4ol JEGF0b, ]

where

B = L(-db,a,; - F(f-Jdaub,

The determination of -IL3 follows in the same way at the next order of the
approximation.

We now see that the zeroth order approximation is fully determined
and the first correction to it does not have any undesirable growth.

To sum up in general terms, the two—variable expansion technique
gives an indeterminancy in the coefficient multiplying the solution func-
tion and also in the argument of the solution function at the zeroth order
of approximation. The rule that resonance cannot be tolerated determines
the coefficient at the first order, and the argument at the second order.
Then, the correct expansion has been found.

The expansion for F(ﬂ, b) now is



JEDIEEN NS F RO

]

/.)m."sL F te '9'*3 +_é-;3 ;3:3"'"]

kT 4 Mo el g U
OIV\. [ lDL ‘ q’:.—fi?' ANin [+]
+
Mo =) o h L
"_f'}- _1’_?- é'—‘l" sin B, € . ] (3.33)
where = (H' )}’(ﬁ ~8s) and 2,

is given in (3.32). The

expansion given in (3.33) is not uniformly valid in B for D,¢0 T

but this is easily rectified. The argument of the modified Bessel functions

in equations (3.18) is changed from F(F"&) to Qi- 2‘—;'5_)15(17-9'_)

Then,
for example,
F ('9}3) zh. ‘L.,_ CRH ’-"RB) C
T e
X e I [ u b0 3)]
_ Mo + -B (3.34)

(&n nind )h (

t‘ %' OH\.B
-, plr-p, )(li—
X e L [opa-a(r r.i)j
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and
EJ ['BJ P) f
= (5) s p—>m, 0, ¢ B <7, (3.35)
= | P
B, (0,b
where F" is given by (3.34) and ?i has a similar structure. A state-
ment such as (3.35) could not be made about Fa as given by (3.18) when

—

{3‘ has a similar form.

If we had not made the transformation (3.9), then the procedure
of the preceding section would not have yielded a solution uniformly wvalid
in 19‘, s8 <7 . In the present section, when the transformation (3.9)
was made, the procedure gave an ordinary differential equation for A,D("'jj,

5,0 (:é) , and 330(3) which resulted in all three quantities being constant.
If (3.9) had not been used, then this latter procedure would again have
given an ordinary differential equation for Sm (_5) , say. But this time
the solution of the equation would have given the factor sin-." 6 5

We now examine whether we may expect to get terms in the solution
(3.34) which represent disturbances reflected from b= . Firstly, a
simple example from E3‘I-], p.5a7, is given just to fix ideas.

We consider, for the interval ©0 ¢X s , the problem of solving
the partial differential equation

CPJ Et T Uxx =0
with the initial and boundary conditions
®(x,0) = ? . (ko) =0
(ot) =1 . B (4,8) =o0

-pt
Let C.-P CX‘M = SOOCP[XVL‘J eﬁ‘ d-t , then
>
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-Px _plad-x)
— cosh p(L-% )
('P(XJP) = Ti,— _—IL-?,—- = '_g » el-e
et ! e et
(3.36)
L - pbx | o oM —p (avd-x) -p(x+¢v€)
=t e +y2L0]e - 8 ]
V=i
On performing the inversion of this, we find
oo Vo
cplxt) = HlE-x) + 2 (=) [H(;’:m-av-@)—l—l(b-x-w@,):}.
v=/ 4
We rewrite the right hand side, and then
@lot) = Hib-x) +H({Et-GL-w) - H(E~Cxwald) + --
Now the first term represents a wave going from X = © to X =4 ; the
second term is the reflection of this wave from X = 4 and so on. Thus

the negative exponentials in (3.36) correspond to the various reflections
of the wave at X = o and )(—__—3 3
The type of function that has been met as solutions to the problem

defined by (3.4) and (3.5) is

-1,F[W"95) -
f e T [apo] (3.37)

The question is whether the modified Bessel function is rich enough to
account for reflections of the wave from & =7 and B =8, . Watson{ﬁ"l—],

p. 203, gives the asymptotic formula for ];;(33 when % is large and

=0 <arg 3 <37,
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-+ (v+Fre

L6~ (o] - [re 0],

[ .larg,

Even though the second term in the asymptotic formula given is exponen-
tially small compared with the first, it is crucial for our results.

We may write formula (3.37) for i’: large and 8+ 7 as

-1 (7-6,) -
{46 < g T [qbta-0/]

W) [ -9p(8-6) -tip(aT -&-Boh.&ﬁj

Janwqpla-0)

The first term is recognized as the representation of a wave going from

-—

a-_. Bo to B =T ; the second term represents its reflection from

§ 3.6, Me [9,#) at the Wavefront.
We let € —> o and then < and 3 both tend to unity. Then we
2

get from (3.34) that

~pla -0,

f.::n.aﬂ ) i I R ')] (3.38)

B (6

Let
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and

M, (6, p) Moy (8,0) # 7 P, @)

Then

M,g(6.p) = ?30‘9 r v wtb

For the remainder of the work, .Q—, is set equal to zero as nothing essen—
tial is lost and the details are less tedious.

Note that

§IW - Lw- 3L

so that
—_ ‘th 17 -0 Y2, "PU"'Ha) “fy -~
M 4 (6_‘}:') = Mo (a.Wa:n.ﬂc) <'f.’37:9 e }‘ -I-OL}‘LW"B‘\]

n-b P{” ~0,)

+ M, {Io”"e) [u 61- t>(a inD FAI #[" BJ]

I'L i- '/L -'ib[“ 0) ~3fy
-y Mb (.'zﬁomﬁo)/ (_,-1;‘_;3_9) wtb e %3/ Ilfﬁfﬁ-a)_] (3.39)
hpwo e PR "
- M, (av omﬂ)l'(;i-:s e ftz/"(ﬁ'-ﬂ) I:[‘“" -9)] :

We examine the terms in (3.39) to see which give the major contribution.

Let # be fixed and let Y tend to N
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In the first term:

(om.B' is bounded as © —> 7

and

£ T b)) - }:"”- + D@ -8) as

In the second term:

(rT g EB)(:;- [ is bounded as

and

b T [he0] =3 F-6) + DGi-6) ae

In the third term:

A _
(—”———? is bounded as O —> 4
Din

and

coto T [pl50) - otOZF ) + D8

In the fourth term:

i -b '/L =
( ) is bounded as B =>7
omnf

8T

O—sT.

D —=>W.

(i1)

(iii)
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and

F"('ﬁ-s) Lom-0] <55 + O ()

- -a)
The inverse Laplace transform of # = iSJ%? t = 5

as 9"'1‘-‘.17, (iv)

We recall that the

speed has been scaled to unity and that t=0 1is at the wavefront. Then

for B=T , at the arrival time of the first wavefront

(i) has a square root singularity.
(ii) is equal to zero.
(iii) has a square root singularity.

(iv) has a square root singularity.

Thus in getting the wavefront contribution to pqe [ﬂ,t)
the second term.

Some formulae for the inversion of

- p(7-8,)

e L[ bmo]

and

-P(l?“’ea) 25
e I, [bG-0]

are needed. These are supplied by Erdelyi et. gl.[SS'],

For Bl >& Z ©

we can neglect

p. 276.
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e-,i (a,+b) } I, (t(b-a)b]

o o<t <qg

t.a-.l
o8 [ o Lo by
N hl"'al

. ; : b
F(t'Q,)h- (_b,-t)h— Qy, & b * ]
o -é >‘h
Thus
ey Lew
- a'k, T (L“e()ll'(_a’- t)/z_ ok <
e I (bh)~
o ) otherwise
and
t-a
- b (k-3 (- )™ , « ¢t ¢vx
e Lk ~
o ) otherwise

where

o = q-b =8-8,
and

¥ «~ a +b = ai-8-9
with

-._9.

Aside: Had we kept .CL' in (3.38) then the formula in p. 133 of Erdelyi
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et. a_l.IS'S‘j would have been used, viz.,

t e
P g (pe ) ~ f( ) T, [2 at -y ] da

where
gy ~ L.
It seems superfluous to remark that

gy~

means "the inverse Laplace transform of g(f) is Lty

Thus

=2 -a, ;b o
b e I,(L. Py ~ T L Jee-eytu-ao-u (3.40)

and

A 2
-3, -a,p & [ (t-w)” (u-a,)
e b ~ 3 olu
}: I,( P T b 2 Jumlr-w) (3.41)

Let W =

then

. J‘J‘ ot R g’
3fa - A T
L " j(t-u)(u-d}L?-u) /(3’*} / (:-w-)(_l - W)
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where

H

“

.
Now let W = sin and

Wt
{ & ol z J’ do
Y = 3/a e .‘_
7]_,,3/:. if(;_u)(-u_— pL)CB" w) m (3’—&) o / 1= e 0Oln C‘O .
Thus
Ly e 5 o
b e T® ~ rg - (3.42)

where K [“"‘-) is the complete elliptic integral of the first kind ([s’é,],

p. 590). Also

g‘t (:t"u-gz(“'an)
o j(u- ol M ¥-u)

-

§ =g J,.' {l__w-{d-a, +(.i:-°‘-)“~f} g[w"

(¥ “D’«.)'h JU (i- T W)

(=

Near the wavefront
L£-a <<

and hence we neglect the (-} term in the numerator compared with ok- @, .

Then
Tif

2 ()l { =t S
4]

~34 -aii’ I L
#) € i(-‘}’) NTI_-V:.LI (X_&)'IL }I-W\. A'H:CP

(3.43)
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We now denote the wavefront contribution to MB (0,{:) by Me (w{‘) . Then,

from (3.39) with (3.42) and (3.43) in mind,

Mg (W) = M, (a7 ind,3" ( M) [ gy K

o

(£-adlt-a,) cos” @
5 r ' J J (3.44)
-(vetd + 75) Py Tooan (m—c@ ]
Note y-oL =i-8) ; «-a;, = -(r-8) , and for O, ¢ B¢l ,t=a

is the wavefront. Then, for §,¢8 ¢ , at £t=0-B, , M, (wl)
reduces to

Ill— 2
M, (aT a.uao) (ma) T K@

or

My (W) = M, (‘”"9")% (3.45)

oin b

i.e., a growing discontinuity in Me is propagated with the wavefront.

For D =7 when £ =0-0,

L

My (WF) = ™M, (a7 oin 8, [ Zrgar

| l:f

3/v
0 + )-————*L
ot + —
(th n_& TTJ/I'LT'--B)

i
2t (n-p)"™ +.

{4-0-00H-tr-0} ;]
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ot t- (W-8,)
_ pin ~Bo L inhd vetd + 7 ) —m=
= Mo (7 _9)'11_ * Ja MD Din 90 C " h-o (7 _B)‘IL
-l},‘_
lim M, (WE) = I (m-8)
Y] (3.46)
where
h I+Jz V)
]{ = MO din Bo C J_—_f'—- = E) )

By (3.46), the effect of the focusing on the applied moment is to give a
square root singularity at O=7 at the arrival time of the first wave.

It now remains only to get the reflected wave. So far

“hA -
- Sad L
¥ - ol
and since .—f: = ol is the wavefront, -m = p on the wavefront for
b, ¢6 ¢ T . Now
koo £ -
ME L y-a AT -6 -8, - o
Let
! [ —
p=1T-8 8, ¢ 8 <,

The time for a wave to leave 8 =8, , go to D=7 , and be reflected

4

back to H= 11-6 is

-0, +8 = Ki-¥9 -8
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since the speed is unity.

Thus it is reasonable to interpret o7 -0 "90 as the time for
a reflected wavgfront and so in this case, we set YW= ) as a determina-
tion of a once reflected wavefront.

Then, by (3.44),

h (TB\> __ 2
Mgy (WF) = M, (@t sind, ) (——~) R I o)™ K (1)

oind
Now from E5’6], p. 591,

Kimy = -3 102,(1-%) + Ouy as m 7 l,

Thus, for 7] ¢ B < Qi -8

o ?

Oinld (3.47

'H\.ol/""
MB(WF) - %4“2 (0 9) [ogU'“'\-) m Tl

i.e., there is a logarithmic singularity on the reflected wavefront.
(3.45), (3.46), and (3.47) have all emerged from (3.35), and the
function which synthesizes these is ¥<thm) i
G.N. Ward[S”?] has considered the internal supersonic flow past
a tube of nearly constant radius. The motion is governed by the wave equa-
tion. If '%’LT,B, b) is the scalar potential suitably scaled, then the

Prandtl-Glauert equation for <P is

Y I B}
Ree T 7 Ny "B * B

When cp = qak =p for E¢o » the Laplace transform of this equation
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is

T -

- L D o
The solution for E% which is independent of 8 is

e, = AL D + C Klpr)

where :I; and l<° are modified Bessel functions. The solution,
E?(r,?) , appropriate for internal flow, i.e., the axis ¥ = p 1lies in

the region of interest, at zero incidence is

(e p) = AL G
Ward goes on to examine the derivatives of the potential given by

(”_a_?) . T, (3

ot 7 I, (}ﬂ
and

? P i I,

PDY ’? I‘d,)

where n is a constant. On taking the inverse Laplace transform of

these two quantities, he finds

o e j;CAn’r)
= T J’)'{‘t+z

—_— ADin )igt }
n=+ A‘\n, j;' (A-“_>

and

> & T C ™)
'—?%E- = 37){;‘_1" +%} A“II(A“) CMAwt}

where >\u is the nth zero of I(R)=D, Ae =D .
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After a somewhat involved analysis, Ward finds that on the first

wavefront, both ‘ﬂt and ﬁzr carry a discontinuity of magnitude ?é;

Then for the wave reflected from T =0 , q%t has the behavior

5 log [ ~1] and ¢ has the behavior 2 log |T-1) where
- F] -

T v 7T
Y =] at the wavefront of the reflected wave. These results are found in
Table 3 of Ward's paper. In Table 4, we find the square root singularity

at the point =0 at the arrival time of the wave. These results confirm

ours as given by equations (3.45), (3.46), and (3.47).
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Appendix A.

In connection with assumption (c) of §Jd4., it is reasonable to
ask whether the inclusion of a tefm linear in r in the assumed form of u,_
would significantly alter the resulting equations. To examine this we trace
the effect of such an additional term and show that it is indeed negligible
to the order considered.

For simplicity, the analysis is restricted to the axisymmetric case

and assumption (c) is revised so that the basic assumptions now are as follows:

(a) We <<
(v) t,. is negligible compared with éaa and .h¢¢ %
(&) Uy ~ wlo k) + (r-R) w5 (g¢)

uy, ~ ult) + (v-R) F(ﬁ,&) L

Assumption ®h implies

E
Loy * For (fae + Y ege)

E

€ry ” "T%b ( €6 + ﬁ?ﬁe)

Since erf = ur‘,r ’
v
T (€0 + eocp)

Assumptions (d) and (¢) together with definitions (1.6) and (1.7)

yield
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NG &, :(.‘:,\-) [u)B + vu wk® + (1+v) w]

Nep = RFEIEL\") [\’“‘e v+ ucokd + (wvar]

N ® a(il:) g+ & -w)] .
M, = |:%:é;k {F-‘e v bl + (W) ]

e - uif‘m [ g = flosks + domlis ]

These differ from equations (1.16) only in the additional term involving 1,
in MB and M‘P

The momentum equations now become

Rop *8  bd — (N +Np) 4Ry = chR g, +FelWas,,,

Ngo + 8 + (N, -Ne) wté

(]

ehRuy + ¢ ek’ o

Mes * (Mp-Mp)utd -R 8, T CL‘-S'Q[% hig ¥ ﬁ»u—]

An order of magnitude analysis will now be made on these equations to decide
which terms are comparable.

For the problem of the static equilibrium of a spherical shell under
an external pressure E , it is known that Ne-O(_RE,), (see§7—7 of [28]). The
static analysis of a uniform moment M°=M° applied to the edge of an incomplete
spherical shell yields Mg = O (M,) (see [58], P. 547). These observations are
the motivation for the introduction of suitable dimensionless variables in equa-
tions (A.4). The definitions of Ne and Mg show that Me= O(h Ne), so that, for

example, in the case of a sphere under external pressure, we shall have
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MB = D(RP,) and Ma = OU\RPO) . Analogous results hold for the case
o &an applied edge moment. Since we do not consider boundary layer phenomena
ana since‘it is assumed that the wavelengths involved are large compared with
the thickness of the shell, derivatives with respect to angle or time will
heve the same order of magnitude as the undifferentiated quantities.

Equations (A.l) and the definitions of Ne and Nq; give that
wy = =2 (N + ) B

We shall make use of a "typical"” stress resultant magnitude, N , in doing
tne subsequent scalings. For the pressure case N =RR , and for the edge
moment case N= lﬂvm . Non-dimensional quantities will be denoted by primed

variables. Using (A.3), (A.4), (A.5), we introduce the dimensionless quan-

tities by
L 1
NCP N ¥ il N N‘P
(] /
Qe T N ae
P N M'
MB T l-v™ 8
N '
Wy ¥ ek Y
RN '

)
"
m
=
»

RN §
u = @ — w
Eh
45 = ﬁ_i 140‘"

m
>
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t = Tt

When written in terms of the primed quantities, the momentum equations are

' | Coagt G-»9)R RY e (1-vY gk J
Rp,g + 8 t® ~ O+ ) ¢ VN v = TE L ey "(R)”;’*""]

!

L 1 t 1 - KL Q(I-U\) '
Noy +8, +(Ny-Npleokd = &2 |

L h A
™ € “er ' TR ﬁu—‘e’-]
' - Y U S o (0 I b
Me‘a + (Ma- M‘P) D&B h QG -'—'l— E [F,l"b' + a—g- u.Jytl]
where
NB' = u;a e vd wbd ¢ (1+y) '

N‘P = vu:e +d oty o+ () w'

= R ! [}
Q = L:.‘VCTF‘*'“"JG -u')

M; = F:e + vF'mt'B +(|+v)%4-f,'
' L B bl r (eY)
My = vpja + pw UHY) o Wy

The momentum equations in terms of the displacements are

" VL,‘;' {—(.3_:9 1-‘8'@['93 o= -;%L: £ (“.“B .,u,'ut'a)

_ 4(1+v) ' (H-D)R‘l - a(m)e K" ' R (A.6)
Y ew! +ae ot < 2 ;_—‘_(81.)’%.‘_,+6£1J;u_,t,)
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Evlu' —E(%? +cob\3)u' +iﬂ’ su‘ia + E‘_.V F'
= O- vh)e R 4 &8

eV - & prafa)p - () (fveas) - ed)

|-—D"Jt KL o, 2 ¢
- ("é' = (g raduy)

where €= k/k . If only the terms of order &° s, € , and ¢ are retained,

these equations are replaced by

&V"“r' *(F:G *F’“be.)" .:-:-u o (“‘;g sl b} = 4+(1+v) cigt

-v 1~

(+vIRgy a(iw)p g

t
taE - T BV
T +y 1 24y ‘
e Vu -e (2 +at's)e + ¢ v, + Y F
= (=»") e 21 CE g o= (A.7)
— Lpr * o f t‘t' .

e* VLF' - (v +c»l:‘6)f' - 60 ( p'+ £ ”-:a -ed' )

= (-»te a‘
E F’bt

The equations (A.7) are bereft of w; . Thus, -, occurs only in the boundary
conditions and even there it is of smaller order. The effect of %, as con-

tained in the boundary conditions can be traced through in the problems consi-
dered and can be shown to be inconsequential in so far as first approximations

are concerned.
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The final equations (A.7) have a double characteristic CP=}E%%39 .

In carrying out the calculations, we include the term Je’tﬂ,yh- of the third
equation of (A.6) simply as a calculational aid, since this has the effect of
splitting the double characteristic. The final results are obtained by allow-

ing the characteristics to coalesce once again.
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Figure 6
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