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ABSTRACT 

Some aspects of wave propagation in thin elastic shells are consi­

dered. The governing equations are derived by a method which makes their 

relationship to the exact equations of linear elasticity quite clear. 

Finite wave propagation speeds are ensured by the inclusion of the appro­

priate physical effects. 

The problem of a constant pressure front moving with constant 

velocity along a semi-infinite circular cylindrical shell is studied. The 

behavior of the solution immediately under the leading wave is found, as 

well as the short time solution behind the characteristic wavefronts. The 

main long time disturbance is found to travel with the velocity of very 

long longitudinal waves in a bar and an expression for this part of the 

solution is given. 

When a constant moment is applied to the lip of an open spherical 

shell, there is an interesting effect due to the focusing of the waves. 

This phenomenon is studied and an expression is derived for the wavefront 

behavior for the first passage of the leading wave and its first reflection. 

For the two problems mentioned, the method used involves reducing 

the governing partial differential equations to ordinary differential equa­

tions by means of a Laplace transform in time. The information sought is 

then extracted by doing the appropriate asymptotic expansion with the Laplace 

variable as parameter. 
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If people bring so much courage to 

this world the world has to kill them to break 

them, so of course it kills them. The world 

breaks every one and afterwards many are strong 

at the broken places. But those that -will not 

break it kills. 

Hemingway 



INTRODUCTION 

The work presented here deals with approximations to the solu-

tions of two transient dynamical problems, one involving a thin elastic 

cylindrical shell and the other a spherical shell. 

The shells are described by approximate theories which include 

the effects of transverse shear deforma:ion and rotatory inertia. This 

results in a system of hyperbolic equations, and thus disturbances in the 

shells are propagated with finite speed. The equations used for the 

cylindrical shell are essentially those derived by Naghdi and Cooper[ I ] . 

Prasad [~]gave a set of equations for a spherical shell, but some 

important terms had been neglected. These omissions are rectified here, 

and the resulting equations are found to agree exactly with those derived 

by Naghdi [3 ]. The latter author derived his equations in a general co­

ordinate system using a variational principle due to Reissner [ 1"]. The 

equations used here are obtained directly from the three-dimensional theory 

of elasticity. 

The development of the subject has followed a definite pattern. 

Once the equations for spherical shells were derived, most of the work 

concentrated on the natural frequencies for the various theories. We make 

mention of Lamb [ 5* J, Silbiger [ b J, and Baker [ '7 ] , >-rho discussed the 

membrane theory. Kalnins [ 2 ] investigated the effect of bending on the 

frequency spectrum,and Wilkinson L~'o]extended the latter's analysis to 

include the effects of transverse shear deformation and rotatory inertia. 
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Th e representat i on of the transient response in terms of these modes was 

done principally by Prasad [ ~ ] and Wil:zi n son and Kalnins [ II ]. On the 

bas is of the membrane theory , Ru th and Cole [D .. J and Mann-Nachbar [ IS J 
studied the response of a sph eri cal shell to an acoustic pressure wave 

using a modal approach. The method used in[ 13 ]did not lend itself to 

an analysis of the pressure distribution in the acoustic medium. Hayek 

took up this point and complemented the work in [ J+). 
Investigations concerning the dynamical behavior of circular 

cylindrical shells proceeded along similar lines with initial efforts 

aimed at modeling more accurately the behavior at higher frequencies and 

shorter wavelengths. We mention the work of Herrmann and Mirsky [IS' J, Lin 

and Morgan l J b ], and Naghdi and Cooper [ J ], all of whom compared the mod es 

of the approximate theory with those predicted by the three dimensional 

theory of elasticity. 

Payton [1"'/J 18] treated transient propagation in the circumferential 

direction of a cylindrical shell by transform techniques. Berkowitz[ 19 J 
studied the membrane theory of a longitudinal impact on a semi-infinite 

circular cylindrical shell. Using bending theory, Jones and Bhuta [~o] 

examined the resonances involved in a ring load moving with constant vel o­

city down such a shell. In a paper by Tang [ .;z I], the problem of the dynamic 

response of a cylindrical tube under nternal moving pressure is studied. 

He obtains a steady-state solution which is very similar to certain of our 

results in Chapter II, and then analyzes the transient response by a numer­

ical method. Finally, Keer, Fleming , a nd Hermann [ .2.2.] extend Payton's 

work ~~~~to include the bending effects, using a technique of Flugge and 

Zajac [ .l3 ]for getting wave-front approximations and extending slightly 

their interval of validity. 
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The methods of attack on transient problems in the above refer-

ences have been basically of two kinds. In one the solutions are repre-

sented in terms of an infinite s eries of modes , and in the other an inte-

gral transform is used. For the l atter approach, inversion presents 

difficulties and various types of approximations on the inversion integral 

- , 
are introduced. The review L~~~ Jby Miklowitz gives an extensive account 

of the work of this type in the general area of elastic wave propagation. 

The simplest concept of wave propagation is that o f a wave pro-

gressing into a region of quiet in a stretched string. One is struck by 

the dearth of such representa tions in transient shell analysis. 

As mentioned above, only a limited amount of information is 

gleaned even after the trouble of getting an exact representa tion of the 

Laplace transform of the solution. If, from the outset, we decide that 

only a certain limited t ype of informa tion is wanted, e.g., wave- front 

behavior or long-time informa tion, then it would seem more logical to work 

on the equations governing the motion and extract the information directly 

from them by the appropriate asymptotic procedure. By this means we would 

expect to bypass many extraneous d e tails and in so doing keep the equations 

simple and capable of closed solutions in terms of convenient functions. 

The thesis presented here is a contribution in this direction. 

Chapter I concerns itself with the derivation of a set of equa-

tions governing the motion of an elastic spherical shell. These equations 

are derived directly from the exact three-dimensional equations of the 

linear theory of elasticity for an homogeneous, isotropic body and include 

the effects of bending, transve rse shear deformatio~ and rotatory inertia. 

In Chapter II the problem of a pressure front moving with con-

stant velocity down a semi-infinite circular cylindrical shell is treated. 
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The info~mation sougt~ is speci fically confined to all wave-fronts in the 

pro~lem . In particular , it is found tha~ the main long time contribution 

travels with the velocity of v ery long longitudinal waves i n a bar(~~) 
where E is Young's modulus and \ is the density of the material of the 

shell. An expression for the behavior of the solution in this reg ion is 

given. 

We c onsider a constant moment applied to the lip of an incomplete 

spherical shell in Chapter III. Attention is confined to t he l eading wave-

front only . Expressions are given for t h e wave-front behavior of the 

moment as it moves down the shell, into the pole 8 --n , and is t hen re-

fleeted. 

The effects of bending in the problems treated c an be traced 

through a parameter 
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CliAPTER I . 

A set of equations governing the motion of a thin elastic 

spherical shell is derived from the equations o f the three-dimensional 

linear theory of e lasticity for an homog eneous isotropic body. The ob-

ject is to find a theory which preserves the f initeness of the speed o f 

propagation of disturbances. This is done by taking account of the ef-

f eet of transverse shear deformation and rotatory inertia and results in 

a system of totally hyperbolic partial differential equations. The theory 

thus corresponds in certain qualitative respects to t he Timoshenko theory 

for beams[.:ls]. 

f 1.1. Notation 

Let (~ 8, cp) be s pherical polar coordinates (Fig. 1) related to 

the (x,y,z) cartesian coordinate sys tem by 

x "'\"' sin f) cos cp 

y v sin B sin cp 

z = , cos e 
...., 

0 6- () s J/ j r ~D. 

are unit vectors in the directions of increasing re-

spectively • X-r is the component o f the vector ~ in the direction 

.... 
of i"' X6 , Xcp are similarly defined . 

For convenience we list here the notation to be employed in t he 

derivation to follow. 



F 
h 

X.>,, denotes 
<i 

6 

is the body fo~ce vector per unit volume . 

is the thickness of the shell . 

- - 0 • - 1\. is the e quation o f the midsurface of the shel l • 

h and R are both constant . 

\ is the density of the material of the shell. 

~=- LLI.\-
1 

1.11}
1 

L\<.0 ) is the displacement vector. 

f' ( r r r ) i s the acceleration vector, where 
"J -:. 1",. 1 '\"e , tcp 

f r -:.. l..t yJ H , +o- -- Li0j l:·t. tc:p -:. u.~ .. t-1: . 

(_u. , u-1 -w-) i s the displacement vector fo r the midsurface of the shell. 

"" .... are t he rota tions of the normal to the midsu rface in the {) , ~;. 

directions respectively , duri ng deformation . 

are the Lame constants for the material of the shell. 

i s Poisson ' s ratio . 

e'rr> eY" 9 ~ e&<f etc . , a~e the strains . 

.t '('('I l '( G1 
];i} <p etc., are the s tresses. 

N{} , Ncp I /'J~ <pl &ii ) &c.p are the stress resul tant s . 

f'~'J a) Mcp M~tcp are the stress couples . 
,I 

E '::: 
t_ (3A+~f-') 

is Young's modulus. 
>- +~ 

]) 
E l-,J 

is the bending rigidity of the shell. 
""" l.:l.. ( 1- 1> ... ) 

is t he speed of propagation of l ongitudinal waves in a 

plate . 
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c. = jQ, 
i s the s peed of propagation of d istortion waves in an 

unbounded medium. 

k, = J + fl. (1·t 
3 (.!!1.. y-k I + -:: .l.O R . a. 

Non- dimensional Quantit i es . 

N~ 
1- ))l. 

Ne -:: 
EJ, ) 

I f - ))1.. 

l\l,? Nco :: . Eh. 

M, R 
Me -= .)) e 

t;l 1-l.>l. 

&& : 
{) Eh. .I 

u.' ~ I •:..s-
::. ·w- :: 

R I R fb ':. p 

I I 1: cr 
:c = ~ 

0 1 
/-~"I.. 

R't-:: -l,. Ek 

where Rd·h 

'L :: l (f r c'( ~] I 

R-~ h. 
is the applied load per 

"'\ 
unit area in the -r direction . 

means f(b ) - f(a) . 

) 
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§ 1 . 2 . The Equations of the Classical Three-dimensional Linear Theory of 

Elasticity . 

The momentum equations expressed in spherical polar coordinates 

are as follows[~ h]. 

+1:" 
It (1.1) 

(1. 2) 

I l + _I t 
+ "(' l)j)\ 9 <{><el 'f "(" .t ~'-PI f} 

= e fcp (1.3) 

The stress-strain relations are 

-b lr'J .,. (). + d.p-) fse -4 c\ ( e .... r + eceq>) 

tcp<f ':: (c\ + ~,...) e~\f + >. [ e.,r- + f&-& J (1.4) 

..t~tp = ~,... eo Cf 

_fJ.. 

"'.-~ 
;; .:tr e '"'-" 

..t \"I) 
':. ~r ev-a 
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The strain- dis ?laceme;:1:: cc;,uz.::ion.:; are 

e\"'B ..!--;::. 
~ 

...L 
e,-"'~ :;:' 

Cl. 

( I 

\-

(~ 

u 

u'~' c.o 
J ~ 

r-j 8 

u\0 ~ -i . 

- '- L.< ·i-·- <.? I i 

I U .• -;- L: . ) 
Y'" v ;,;I y 

) 1·" 
(.,~ (•) ~ .c..u r u -~-

'('" \ 

(1. 5) 

I ue.~'\?) r ..{jV~_ e 

§1.3. Momentum Equat ions i n Ter ms of St ress Resultants and Couples . 

The midsurface of the spherical shell is defined by r~ R 

and i ts thickness is h . The stress resultants (representing the force 

per unit length along the midsurface) are defined by integrating the 

stresses through the thickness of the shell. Thus 

R+±k 
N, 

SR-±h. 
,, 

tDS ol\'" ':: 

R v 

0 -r ,!. h. 
...... c;}.. 

Nc., S? __ ~.., 
,-

Cc")<..O d \'"" -:. R (1. 6) • • • 
1\. .;.. "'-

K: t.t~ 

N[} c.p rR-tl.. 
"'(" J 

-;::. - C'B-~ J. -r !? 
i'\. 



~J 

~.~ ;1:!.., 

~R- ci" ~ .. --- j 

QB ::: i-< .A:;:;; -! · -
~- ' 

K'+ ..!-h_ l ~ .....- (1. 6) 

Q<.O ' = R .J( \'(f) ot '{'" 
I • R _.t. ' 

~"" 

Similarly, the stress couples a re defi ned by 

R;-±t 
Sn _.!... ) 

i<i. ~"' 

(l. 7) 

o + .. !.. l~ 
1\, ....... 

S ; [r- R) -t~a,o ctf" 
R- t k 

The momentum equations (1.1), (1.2), ( 1 .3) are integrated 

through the thickness of the shell and advantage is then taken of the defi-

nit ions (l. 6) and (l. 7) to re>vrite them in a form in which the 1"" dependence 

has been removed. It is just this that we have in mind when we use the 

phrase "derived directly from the three-dimensional l inear theory of 

elasticity." 
:\. 
~1, 

As a sample case, (1 . 1) is multiplied through by /~ 

integrated with respect to ~- over (R - ~~ ~ R t .tl) 
and then 



I 
.../~-:'V . ...:_') .. ;- _!.... ).. ,_ "-·- 0 ,, 

~ • I 0 

, ..J._ 
"ty 

, . ~ {J -~ -J. 
......, .. i.J .) 

~· .i . ,.. 
~- . 

Using definitions (1 . 6), this equa:io~ is 

~< +t 1\ 

r r) _ -LJ... 
'::;' 

' '" i).. 

Integration by parts gives 

Then the equation is 

'-'("' 

( R 

= 

{_ , 
ol. I . 

R.-r~l 

1 ,..,.. ] R- j.J.. . 

(1.8) 
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In the sa:u1 E:. r.v:c.y, e(j_uations (L 2) lead to 

-;- &: .-. -;- ( N - N,~ 'J c.uf:-8 
(J '" J 'l 

;< -rik 
r ,_-.... 
i c 

(' . 
..J,_ o/.. '(" - ~ J& J I 

. ·; - -i- l 

(l. 9) 

I ""' "" 

'K+±h_ 

S ·0 ,-"'~-- f 
-= c R I()) 

·') I I I 
\\ - ;;r r .. 

(1.10) 

The stress couples, defined by (1.7), are used as follows: Equation (1.3) 

~'- ( 
is multiplied through by R ,-- R) and integrated with respect to I"' over 

(R-;tk) 'K -t.il) . 

R +ik "('"~- -s R (;-R)L ~yq> ~ 
R -,th_ • 

~ ~ (3-tr-q> ..,_ ~ t~q> ~t &)] c1 r 

'R+±h. 

= Se-tl 

):.C.O<f>, Cf y -¢:" l(}cp~ e 

'R-+il \.. 
-1- SR-±l ; (f"-1?) f="cp & r 

f> ,-"~- ( -r - 7(\ I 
'- R .J lcp ci r . 

Utilizing (1.7), this equation, after a little manipulation, may be re-

written as 



dr 

= 

With the aid of (1 . 6), this reduces to 

' ;\ll -.- ; ,.. . ~ 
, •;. \. . .J 

li.J ' 

(1.11) 

·~ , .. /~ !.. .. .... ... 
rR- -!· ; 

,_ 

Cr- R) r ' - e --- d.r-R 1(o 
~ 

., ~ """"' 

Following the same procedure, we get from (1.2) that 

R-rth. 
.f"cy--R)] 
K R-±h. 

t f<l 
!.:) (0 c.o 
v 'J I 

(1.12) 



At this stage we point out ~hat eqaatio~s (1.8) to (1.12) are exact and 

no approximations have y e t ·:>22::-. made. 

1.4. The Basic Approximatio~a ~= t~2 T~2o~v . Ex~r2ssions for Stress 

Resultants and Couples, and I~er:ia ~2r~s . 

He shall now derive a theoTy o£ shells based on three assump-

·tions. 

Assumption (a): 
!.., 

It << J. 
I 

Assumption (b): The Transverse XoTmal SL:ress, CY"•t , on the cm~ved suT-

face of the shell is negligible when compared with 

* throughout the thickness of the shell. 

Assumption (c): 

and 

Assumption (a) is just the definition of a thin shell, i.e., that the 

thickness of the shell is very small compared with the radius of its 

middle surface. 

He give the background to assumption (b) by quoting fi r s tly 

from Landau and Lifshitzfl? J , p.44. They are discussing a thin plate '" .... 
referred to cartesian coordinates and the z-axis is normal to the sur-

face of the undeformed plate. 

Since the plate is thin, comparat ively small forces 
on its surface are needed to bend it. These forces 
are always considerably less than the internal stresses 

* ' Since b~~ on the surfa ce of the shell is the applied pressure, it must 
b e verified a posteriori that t he applied pressure is negligible compared 
with t~& , co/~ That this is so in the very simple case of the equili-
brium of a spherical shell under a uniform external pre ssure is shmvn in 
7-7 of[~ ~]. Reference may also be made to the results of j:J..(.. 
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caused in the deformed plate by the extension and 
compression of ~t3 pa rts. Thus we must have 
on both surfac ... ~ ._; o f the pla t e .JX:z. -:.. ~~~ --= 

~~4 ~ o . Since the p late is t~in, h owever, these 
quantities must be s mall within the plate if they 
are zero on each surf ace. 

Secondly, Fung[.29 ], p. 456, says, 

A principal f eature in straining a p l a te or she ll 
is the relative sma llness of tra ctions acting on 
surfaces parallel to the middle surfa ce as com-
pared with the maxi mum bending or stretching stresses 
in the body. When a plate is very thin, the 
smallness of tractions on t h e external faces implies 
the smallness of tractions on any surface parallel 
to the middle surface. 

Further evidence in support of t h e reasonab leness of assumption 

- -, 
(b) is given by Sokolnikoffl~b J• p . 255, where he discusses the concept 

of plane stress in relation to a ?late . Friedrichs and Dressler[3o ], 

when examining the equilibrium of a thin plate under normal pressure on 

the surfaces, exhibit explicitly the fact that throughout the plate 

• is negligible compared with /~X~ 

is in the x-y plane). 

l 
and c , . ._. 

<i .;,-
(the midsurface of the plate 

Boundary layer phenomena which are typical for thin cylindrical 

or spherical shells are associated with the length jR~ Furthermore, 

it is outside the domain of thin shell theory to include the effects of 

stresses which have rapid variation over a length of the order of the 

thickness of the shell[ 3l ]. Hence, the fact that l.n.. is negligible on 

the curved surface of the shell implies that tYr is negligible throughout 

the shell. 

Assumption (c) incorporates the follmving statements. 

(i) Plane sections remain plane after deformation and 

(ii) normals to the midsurface before deformation are not necessarily 

normal to it after deformation. 
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I t is t h is l at ter rema r k which allows u s t o inc l ude t he e f fects of trans-

verse shear and rotatory i n6r tia . 

By inverting t he f i:.:: .s:: t::r 2 e of equatio:.:1 (1.4)' t h e strains eYI" ' 

e &9, and 0 may be wri t te:: as l i nea r £un c tions of t h e s tresses c'l''\" "Cc;>l\o , 

l;r,o ' and t~Cf . By assumpt ior. (b ) , ~ \_\_ i s neglected in comparison with 

bi}Q and b~<f . We then have t h e t hree s t rain componen ts CV'\"" ' e G-D and 

e<i''f in terms of the two stres s componen t s .b;;& and 4cf 
be eliminated in favor of On inverting these final equa-

tions, we find 

(1.13 ) 

E.. 
( 

.. ':1 t 

\. \? ( •) .... . . 
Note, further, that 

-tG-<p ~r- ei}<p 
£ 

e i}cp -:: -::.. 
/-}-)) 

-t '(/) 
E 

e\'" o ;:' 

J+V (1.14) 

~l'"<p E. 
e \'(0 

: 
J+V ' 

Assumption (c), together wit h (1 . 13) and (1.14), is now used to obtain 

expressions for the stress resultants and couples in terms of ~ , ~ 

V" , ~(7 , fcp, and their derivatives. 

For example, using (1. 6), (1.13), (1 . 5), and assumption (c), we 

find 



K-<~1-.. 

st<-ih. 
~~ 

Na -l.. -:. R. 
l. df (. ' -

l;{ v 
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. r- ~-) , . 1 ... -,- 0 - ,, ~ ... ,. --,- """ 
;,-' .,), i.l 
i 

' !'\ i i • . •. !.\-- ';)\ D 1 l ...... ')) -z.s- -:- ') C{J .:o L ...... • \.! "-) F D .J 

Thus, since (\-- R) has a zero average t h rougn the thicknes s of t h e shell, 

we have 

A similar calculation gives 

- -v u:>t e] 

~e = Eh. 
[ fu {- R l ~D - u)] 

ct( IW) 

~<p 
E~ 

[ fcp -L ("'JJ (A),!;.e c-e - v)] = ;t (i w) + R J(p 

Also 
+ v fe wi:-B] M& 

:J) [ ~ ' & t ~ C.OS..e <.. f) f;;? CCI = 1< I Ci.l ' . 
f1 : .]) [ v p e-, ~ -1- f '(-J C.? v;; ~c8 -+ r tJ VJteJ 

'P R 

M&<f 
:: 

(1- \:>) )> [ ~ "?J a + f "' <..0 (.();-e (. [) - fcp wt8] 
.;tR "' . 
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Many writers introduce &~'l c.ve:;:-c.gin6 coeff icient:, Rs , in the 

expressions for ~S 

E h r 
L 

For exarr.ple, Prasad[?. J writes 

without further comment on Naghdi [ 3 ] takes which he 

says is consistent with the assumptions under which the equations were 

derived. Other authors, e.~., Herrmann and Mirsky [;s], following a pre­

cedent set by Mindlin (!2.], use this factor to make the frequency of very 

short waves in the lowest mode in the shell theory coincide with t he corre-

sponding frequency of the three-dimensional theory . This is equivalent to 

adjus ting the shear wave speed to equal the Rayleigh wave speed. Lin and 

L- } I ] IJJ,,_ :. 9<7 Morgan o take another viewpoint. They use the value /~ /~ which 

they claim was experimentally determined by Filon, and quoted by Timoshenko 

[33], for the case of a bar of rectangular section. We have kept the 

fact or equal to unity for convenience, see equation (1 . 15) , as it 

does not affect our results in any essential way . 

With assumption (c), the right hand sides of (1.8) to (1.12) 

become 

e h. R h 
"'J ~!;i 

ehR kl LlJI;l: 
3 

+ t e h fej 'd. 

J 

e h ~ kl ~cl; -·· ..J... e l1 f'i>d;t I 

"' 
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respectively. 

§ 1.5. Summary of Equations. 

[f &~ C-4>/; 9 

.o~'i) .h. A..,. l . ~ l\. Ki t.'\1 J t 1: 
) 

(1.8) 

(1. 9) 

(1.10) 

+ fVJtJ,.o e 
J 

(1.11) 
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and 

(1.12) 

I , :: I -~ ' 11 ] 
-- - I() 0 I ~ /.;1 -1.. .~... {; &' \ ' lA i ' .~ 1.;: I l I .. ... 

~~ '- q ·\.. L X. ; c·o: • l " " 

We note that the term in (1.8) will be replaced 

later by R~ , where c~ is the applied pressure. In almost all appli-

cations of shell theory ~~ 0 I 
and t r (? are zero on the surfaces of the 

' 
shell and so would not appear in (1.9) to (1.12). The expressions for the 

stress resultants and couples in t erms of the displacements are 

Ne = Eh. [ R {;--v1-) UJ9 + Y u wt9 r- (1~~)-w- -r v (.{)~ec. e ~'P] 

N'f = Eh. I \> u .j,. u. c.oc D .;. {t-:-v)-w- -r ws~c.B OV:~] 
R {J--v..._) ) t) I 

N~c_p = Ek l u~<-f Gi>::.~c,[) ··'- \f - -v- cut 9 ] 
0). [l.;.v)R Jg 

Ek [ P~ . .L c--...r - l;: ) J (1.15) 
~& -= -I' 

o1..[1tl.1) 
1?. J{j 

t;)<f 
Ek [ ~~~ ;'- t ( -v:;<f Cduc. e - "") J = 

a{ J+v) 

.]) -
~eJ e -( .)) {..() !)! c.J) 

f) i J) f(} ~t:L1] 
Me :' TL f 'P, 'f 
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(1.15) 

Substitution of the quant ities in (1.15) into the equations (1.8) to (1.12) 

would give a system of five simultaneous partial differential equations for 

u. ~<..? • 
I 

f 1. 6. Symmetry in cp , Scaling, a nd Final Equations . . 

We consider only problems which are symmetrical in cp , and in 

which there are no shearing tractions on the surface of the shell. The 

body force effects, which are mainly due to gravity, are also supposed 

negligible. We accordingly assume that 

and that all physical quantities are independent of 9P . Then the stress­

strain relations (1.15) become 

(1.16) 

_L 

R 
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= 0 

(1.16) 

M'&cp - 0 

The momentum equations, (1.8) to (1.12), reduce to the following three 

equations: 

(1.17) 

The assumptions that /; i·G -:::: tr<;l) -.:. 0 on the surfaces of the shell, a nd 

that F ..... -=- fa = Fq> ~ o have been used to obtain equations c1.17). 

We recall that 

and 

When using equations (1.17), we shall henceforth set 

since, by assumption (a), t he neglected part is always small compared with 

1. On the other hand, the term 
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in the second equation of (1.17) is not neglected since we cannot assume, 

a priori, that fS and UL are of the same order of magnitude. Further­

more, by hindsight we know that by retaining this term the characteristics 

for the set of equations (1. 17) wLUall be distinct, and this fact will 

help to simplify subsequent analysis . 

The basic length in t he system is F( the radius of the mid-

surface of the shell. The two speeds involved are C? and CQ and we 
• 

choose Cp as the unit of speed. A dimensionless time , l:;' , is then auto­

matically 

t;' 

Of course, (..(. and "W'" are scaled by F( to give dimensionless displace-

ments. being an angle of rotation, is dimensionless and so is 

left untouched. 
I 

N<i , are dimensionless stresses and 

dimensionless moment, while ~ ' i s a dimensionless pressure. 
v 

is a 

With the scalings introduced in §1.1., we find that the dimen-

sionless stress resultants and coupl es are given by 

N' = B 

-r [tt l)J "'w 1 

(1.18) 
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I 

M'-f :: v ~)(j i- & c.ot- e 
I 

(1.18) 

t/ ~ [ ~ 
I I , 

: -;- 'iS" - LL J e ~ J (} 

For simplicity, we have no>v >rritten F instead of fa The momentum 

equations, after t he appropriate sca lings , become 

(1.19) 

- x- &' 
0 9 

The substitution of (1 . 18) into (1 . 19) yields 

(1. 20) 

and 

\l p - {-v-t uee) f - I.;.Y A: (_ ~ + l.lj& -u.) 

where 

,) 

and , for convenience, all pr i mes have been dropped. The investi gation of 

(1 . 20) with suitable boundary and initial conditions will occupy us i n 
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Chapter III. 

By examining the highest order derivatives, it is readily seen 

that the structure of the system (1.23) fo r Ul , ~ and f is that 

of a totally hyperbolic system [3..:'r] with characteristic speeds of 

± 
) 

t 

We note that if we set ~ = 0 formally in (1.20), the third equation of 

that system then implies that 

=- 0 

i.e., 

(1. 21) 

Under this condition, assumption (c) on u
0 

in ~1.4. becomes (after due 

account is taken of the scaling) 

(1.22) 

Then, on referring to equations (1.5), using relation (1.22) for 4
9 

and 

u. -::. 1J" , it is found that 
I" 

Equation (1.22) is thus recognised as one of the Love-Kirchoff hypotheses 

(3~]· viz., that points lying on the normal to the undeformed midsurface 

remain on the normal to the deformed midsurface. We also note that (1.21) 

implies that ~G = 0 . 

If (1.21) is used to eliminate p 
of (1.20), the result is 

from the first two equations 
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(1.23) 
_,_'IS" + -.!... q 
1+V Jtt H-V v 

These are the dynamical "membrane" equations for a spherical shell as used 

by Ruth and Cole [Jl.. ], except that in their equations -w- is positive radi­

ally inwards. We note that the speed i1;(1 -J>) does not appear in (1.23). 

If ~ is regarded as known, then the first of (1.23) is a wave equation 

for ~ with speed of propagation equal to unity. If, on the other hand, 

LA. is regarded as known, then the structure of the second of (1.24) is 

that of an undamped linear oscillator with natural frequency ~ ~J~Cit~ 
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CHAPTER II. 

We turn our attention to the problem of a constant pressure 

front moving with constant velocity, lJ , along a semi-infinite circular 

cylindrical shell. The equations governing the motion will be formulated 

to take advantage of the symmetry in the problem. Since the derivation of 

the governing equations is entirely analogous to the work of Chapter I, it 

will be given in considerably less de·tail. 

The object of the analysis is to obtain information along all 

the wave-fronts in the problem. It is quite clear that one should examine 

the behavior of physical quantities along the characteristics. The appro­

priate asymptotic procedure yields this information. It becomes evident 

from this analysis that the dominant disturbance does not travel with either 

of the characteristic velocities. A procedure is given for determining the 

velocity of the dominant disturbance and the behavior of the various physi­

cal quantities in this region. The behavior of the solution immediately 

under the constant velocity pressure load is also found. 

§ 2.1. Notation. 

The notation introduced in Chapter I is still relevant here. We 

now only add whatever has not been previously mentioned. 

Let ('t' 1 BJ x) form a circular cylindrical coordinate system as in Figure 3. 

The geometry of the shell is described by the inequalities 

R-et~ ~I ~ R-f±h.. 



28 

The resultant stresses and couples (shown in Figure 4) are Nx , N~ , 

Mx • Mg. 
'[,-: ~ H (t- ~) is the applied load per unit midsurface area, where 

H(J) is the Heaviside unit step function. 

= 

represents the spee d of propagation of distortion 

(shear) waves in an unbounded medium when scaled by cr 
Q~JJ-P~ represents the speed of propagation of very long longitudinal 

waves in a bar when scaled by 

'wr is the radial displacement of the midsurface, positive outwards. 

~ is the displacement of the mid surface in the x-direction. 

~ is the chang e of slope during deformation of the normal to the mi d s urface. 

§ 2.2. The Equa tions o f t he Three- dimensional Linear Theory o f Elast i city . 

The momentum equations in cylindrica l polar coord inate s are c~ {;.] 

....f:.,"(,;"\"' t ~ trs~a L 
T ~,;\"X; X. -r i: ( brr- .. f:-t,e) ~ e{-

~reJ, 1- t -foo,~ + l~~x 1" .1::. rye -: e f'i' 'r 

(2 .1) 

..t r x,~ t' ...L ~") (} -1 l:: X X X -;. 
..L tV' X -; e t~ + i r 

.) 
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where are the stresses . The 

body fo r ce t erms have no t been included as they shall be neglected in 

the subs equent anal ysis. The components of the acce~tion vector are 

The s t ress-strain relations are 

(2 . 2) 

J:. rf) ::" ;).r ei'o 

{rx. ": ~f e '~' x. 

..&~..~ ::; ~f ex. n 

Let t he displacement vector have components L<v- , U ~ UX 

The problem treated in this chapter will be axisymmetric, and hence u0 ~o 

and all phys ical qu a n t i ties shall be independent o f e Wi th this in 

mind , the s t rain-di splacement equations are 

e vr ":: Uvj ,~ 

eea -:: ..!..- U.y-~ 

exx. = UxJ x 
(2 . 3) 
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e'fx -= i ( u.,.)Y" + UYJX) 

(2.3) 

ere :: 0 c8x :.. D 

§1.3. Momentum Equations in Terms of Stress Resulta nts a nd Couple s . 

The definitions of the stress resultants are 

R -ret h. 

SR-cth. 

,_ 
)._ 

Nx = R cxx c{, 

SR.+~k 
(2.4) 

Ns "; te-e d.r 
t<.· ~l 

and R+ci.:k. 

5 R- .±k 
""r 

..tf"X d.\"" Qx. "' R 
The midsurface of the cylindrical shell is defined by \"-:: R and its inner 

and outer surfaces are "\= R-ctl... and I~ R + .f: h. respectively. 

The stress couples are defined by 

{(_-iih. 

Me fR-ik. 
' ( -r- R) .l:-&.9 cl r -= R: 

Rii.l... 
(2.5) 

Mx -:: t.il._ '\'" ("" -R) .t XX ol. i /[ 

We shall assume that there are no shearing tra ctions on either curved sur-

face of the shell. Furthermore, the second equation of (2.1) is now vacuous 

due to the symmetry assumption. By the same procedure as was given in full 

detail in Chapter I, the momentum equations may be written as 
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Rt.±l 
N~x s .... - t>\ -:; e g olr-

R-cth. 

" r R i,_ ck 
' (2.6) 

M - ~X 
)(.1 X 

§ 2 . 4 . The Basic Approximat ions and Fin a l Equations. 

Just as in Chapter I, it is assumed that 

(a) <::< I 

(b) Cyr on the curved surface is negligible compared with ti\X 

throughout the thickness of the shell. 

With conditions (a), (b), (c), the resultants (2.4) and (2.5) become 

_,_ 
Nx u.Jx 

).) 

-r rc ",_ PJ x. c. = "tfl1..> 

..L. 
NfJ 

.J_ 
1J""' + v u. 

G. = R J,\o; 

~X 
Ek. 

(14_lx -;-f) (2. 7) 

= ~(ltV) 

I 

Mx f.)x + 
_, 

u.)"' .]) = R 



We define 

N' X 

Q' 
X 

and 

non-dimensional stress and 

.1. Nx. -;: c. 

J-l>'\.. 
: -EA. 

) 

~X .J 

R M 
1) e 

I 
N l ' & = 

'\.A ' 
J l X 
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couple resultants 

-a. Na 
9 
t'- Mx -;: 

J) 

The dimensionless distance and displacements are 

and 
) 

and the dimensionless time is 

t;' ';:: t c?/R 

The relations (2. 7) may now be written 

I I I ~ 

Nx ": uJ x.' .,. )) £V -l-
E. ~.) >< ' 

N' v' v ( 

~ = .,.. u. j 'X.' 

Q' 
)( 

:: (!.,_ 
( "W"~ x' + ~) 

M~ I 

( f~x~ +u~x') ::: 7[ 

and the momentum equations (2.6) become 

( c l. 

N X) x.' 
-;:... u.J ft1 "} 

£ ~,) t'·t' 
I - IV; 

I R {t - -v"') 
t &X.rx.' 

":" 
1-.).J l:' t' Eh. 

by 

( 2 . 8) 

(2.9) 
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The substitution of (2.8) into (2.9) then gives 

(2. 9) 

(2.10) 

where, for convenience, all the primes have been dropped. The equations 

(2 .10) are those given by Naghdi and Cooper [ I ] except for a few differ­

ences. These authors, for example, do not include the term c~fjtt in 

the first equation, or Ujtt in the third equation. At a later stage, we 

shall write a single sixth order equation for each of Ll , V" , and f 
and we will find that a more appropriate time to decide on whether to 

neglect certain terms or not. 

The system (2.10) is a hyperbolic system of partial differential 

equations with single characteristics corresponding to speeds of± c, and 

double characteristics corresponding to speeds of ±1. 

If we now set C.:. o (or equivalently, Ao:. oo ) formally in equa-

tions (2.10), they become 

u.. 
.lXX 
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After eliminating f from these equations, we obtain 

U..> X. X i" v 1Sj ~ -;:. u J i::; 
(2.11) 

-1S.) t:t t-W" + 'V u.) x ":. 
i -'V'- R 
E h 'j, 

Equations (2.11) are the dynamical "membrane" equations governing the axi­

symmetric deformation of a circular cylindrical she11[3 b J. 
The system (2.10), with suitable boundary and initial conditions, 

is the fundamental set of equations which shall be used to analyze the 

problem to be formulated in the next section. 

§ 2 . 5. Statement of the Problem. 

The circular cylindrical shell, X~O, is initially at rest . 

Then at t == 0 , a pressure front ~ =- 6{ H Lt- ~) , where ~ is a con-

stant force per unit area and U is the constant velocity at which the 

front travels, is incident at x = 0. At the end x = 0, the direct stress 

resultant, Nx, the shear stress resultant, {;),X , and the stress couple, 

~X , are maintained equal to zero throughout the ensuing motion. We 

wish to describe the features of this motion \vhich were mentioned in the 

introductory remarks to this chapter. The effects of bending can be traced 

through the parameter E. [w >.o) , in view of the reduction to membrane 

theory when c = 0, as noted at the end of the previous section. 

The mathematical statement of the problem is as follows. 

The momentum equations are 
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(2.12) 

and 

with initial conditions, at t 0 

(2.13) 

The boundary conditions of zero direct and shear stress resultants ( QX 

and Nx ) and also zero couple stress ( Ml() are, at x = 0, for t ~ 0 

Mx '= 'V ~JX ;-LI.)x ::..D 

Nx :: u)x "t vu =-0 
(2.14) 

&)( : c (~X -~-f) -::. D 

We further impose a radiation condition that there are no waves coming from 

X = +CO . (2.12), (2.13), (2.14) with the radiation condition constitute 

the complete statement of the problem. 

r 
~ 2. 6. A Particular Integral. 

By straightforward elimination the basic differential equations 

(2.12) may be reformulated as fo llows: 

(2.15) 
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(2.15) 

where the operator- ~L1 is defined by 

.d. 
It is now clear that terms involving £' in the operator -l"L, may be s afely 

neglected. Thus, we are led to define t h e operator L by 

(2.16) 

We may also neglect terms involving E+ on the right hand side of (2.15). 

The equations (2.15) for ~ , u and may now be rewritten as 

(2.17) 

Ltt 
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(2.17) 

where the opportunity has been taken to multiply both sides of (2.15) by 

Some pertinent features of the operator L_ will now be noted. 

Its characteristic speeds are ±1 and ± c When we recall that all the 

speeds have been scaled by Cp , we see that unity represents the velo­

city of longitudinal waves in an infinite plate, and c represents the 

velocity of distortional waves in an unbounded medium . We note, further-

more, that a speed "a" has appeared in the last term in L This speed 

represents the velocity of propagation of very long long itudinal waves in 

a bar[37 J. Its significance will emerge later in the analysis . 

The time dependence in the problem will be suppressed by means 

of a Laplace transform. We define 

where r is a complex variable, as the Laplace transform of 1J(X., XJ . 
A bar over a dependent variable will always denote that the Laplace trans-

form has been taken. 

Taking note of the initial conditions (2.13), the Laplace trans-

form of the equation for 1-.J in (2.17) is 

-.10.. 
l e u 

(2.18) 

where 
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L 

(2.19) 

We may write, as a consequence of linearity, 

(2.20) 

where .v-,. (><; ~) is a particular integral of (2 .18) and ~ (X.) r) will 

satisfy the homogeneous equation 

L -v-H ':> 0 

with boundary conditions on so chosen that the boundary conditions 

of~ satisfy equations (2.14). 

Let 
_b_ 

u 
(2.21) 

and then, using (2.18) and (2.19), we find 

(2. 22) 

The zeros of the denominator are determined by 



v , v )}.. , .... ul. " l. 

-L.t-~-l + ua. -~-~~cl. ±- Cu-.. -• +-u ... +~~,a. --f~·~ ~;c." 
;t (% -I)( ~'" - I) 

"J'or a very thin shell, A
0 

is large compared with unity and we may approximate 

the ze ros, Pt , by writing 

and 

We may now write 

Q.'- u'" 
l- u .... 

~~ cl. u+ 
(c."-u'"X1- u"') 

I ) L'L ,... \,. ( u"' - ' r + "C) c. 

(p'"- r!" )( ~,- ~~ > 

(2.23) 

+ 0 (t) 

b 
u 

-h 
-e v 

It is noted that ~: >o when o.<.l)<.J and p_!- <. o otherwise. Also 

r~ >o 
p 

when c <. U <. 1 , and 

o i p"- 'p~ is 

p~ < o if U > I or l) ~ c . The Laplace inversion 

I 
and the inversion of ~-p1' + gives 

~tt- -I>J: t 
-e. + e . Thus hyperbolic functions are typical of the intersonic range, 

while trigonometric functions are typical of the subsonic and supersonic ranges. 

When the problem of a traveling force on a Timoshenko beam was examined by 

Florence [59], he also found this change in character .of the solution. The 

exponential growth in the intersonic range does not cause any difficulty since 

account must still be taken of the solution of the homogeneous equations with 

the appropriate boundary conditions, and these latter are generated by the 

---.,-------
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:.:unc .: .• ,:,.:..s :., · ... s·.: discus sed. The final results presented are applicable for all 

and 

Fol lowing the no~ation of (2.20) and the procedure similar to (2.21), 

:i..:. found t hat 

(2.24) 

... . ~c 

(2.25) 

We shall denote the stress and couple resultants corresponding to ~p , ur , 
- 1.\>' - lP' - £1>l 

~r by N.1..., cQx. , and Mx. Then it follows from (2.23), (2.24), (2.25), 

and the definitions (2.8) that 

(2.26) 

-h 
e. u 

Toe remarks in f 2. 6. which led to the definition of L imply that the term 

N . '"B. ~8 in lC is negligible, as well as the terms £ P-x.x and ~ fJI:t in the 

fi~st of (2.10). 

-----~--...------- --
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§ 2.7. Behavior along the Characteristics . 

The resultant stresses and couples induced by the particular 

integrals of the last section at x = 0 are , f rom (2.6) 

M lj>) (o) h) -L 1> &o f. -.. .._ )..,_ l.) v >.~ c'- 6)" J ' 
X r -= u).. lQ.-c. -V 'o(. - 1-U ... T (f"-r~xr--r~) ) 

(2 . 27) 

-
We may decompose M>~- , Nx {;)X as follows: 

Mx ( >s P) fv1 ~r) - l\i J 
""" i- M)( 

Nl< cJ(J r) - l~) -<.H> 
': Nx 1- N'>\ I 

- -q .. ) -(.H) 

Q.>r. (~J t) :::.. @)( + ~X . 

Then, for example, 

- lH> 
fti.> X M~ -:. ).) 

i- U.HJX 

and ~ll 

with (2.17): 

are solutions of the homogeneous equations associated 

) 
L u.H :;. 0 . 

The boundary conditions at x 0 then take the form 



and 

and at 

- CH) 
M)( (o, f) 
-cHI Nx co; p) 

&~H}(o; r) 

The 

Lt 
ftJXX 

X = 0 

boundary 

4 2 

- CpJ I 

= - JV1x. (o, f) 
I 

-ct0 
::: - N >< (o, rJ J 

:::: 
- q·> 

- QX. (D) ~). 

value problem to b e solved is 

: 0 

-Ut) 
v fh_,x 

- tp) 

Mx ..,. + u ' ::: - M " co) J>) , ti J X 

- (li) -lt> 
Nx "; ~ "'1- v i:ffi = - N (o, ~) J 

tJ J )( 

- (fj) 1. l "\.ftt .>X i- ~ij ) 
- \.j:>l 

Qlc. :: G '::. - Glx_ co) p) . 

(2.28) 

(2.29) 

The radiation condition is built in by ~ccepting only negative exponentia ls 

in x as solutions. 

No attempt will be mad e to solv e the s y stem (2.28), (2.29) exa ctly. 

Instead, the behavior of the solution nea r t h e characteristic wave-fronts 

will be found by doing an asymptotic expansion of the ordina ry differentia l 

equations for large r As well as being of interest in itself, it will 
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serve as an introduction to the more difficult analysis involved in the 

problem for the sphere which will be treated in the next chapter. 

If the resultants given in (2.27) are expanded in a power series 
-I 

in f , it is found that 

= + .... ' 

- <.~} I 
No 

I 

Nl Nit. l o) j>) = 1 -t ~ + .. . 
I 

- (~) I 
!}~, \) 

I 

bJ X I Q ~ co, f) ::r f~ 
T -:r -; ... 

f 
where 

M" 
&o ( ~'"- ,'-- )) A: c."'-) I = u~ 

No '::' 
No ( :? -r'l> ul-) 
l)~ l- I (2 . 30) 

Qx.o 
Qc.) 

c...._ ( t - u-a. ) = u.".il 

Correspondingly, we may assume expansions of the following form for ~J 

u l-t • and Fn-

..w=-lf (x~ p) - ;3 '\.Jo ('X) -r · (~ -w-t (X. ) -r · · • 

¥u (x~ r) I I p, {x) + ... 
'::: 

t+ ~\) (X. ) i' 7 
Ci, t) I 

Uo (r) _L_ u~ [ ~) 
l.\H 

-= + -i- •.• 

r"~- · ~ r 
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where 

px . 
In terms of the variable X after division by f~ , equations (2.28) 

become 

~\.{ -­H,)X .l\ 

,.. - -
C. 1-S"u - - - 'ZJ IJ ,, J ~ X ,, 

i" h )) 1-.rJi, -
I t J X 

...,. D 

-..L r :: C> 

The boundary value problem for the first approximation is 

- D 

with 

\)Po~ x _,... Uo -
J ~ 

-==M 0 i 

Uo- -r 'V -t.S""o -:::. N 
.I ~ o, 

l. 
't.fo Qx o c. ::: 

) ~ 

at x 0. 

J (2 . 31) 

(2.32) 

(2.33) 
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Bearing in mind the r adiation condition, the solution to (2.32) 

and (2.33) is 

= - ..!... c 

uo (x) 

Hence 

-LHI 
N (X;~) 

X (2.34) 

v('.>-t) } - ¥ 
+ c.( t-c}·) e + 0(})_ 

The inversion of (2.34) can be done immediately to give the following short-

time approximations. 

= 6) Xo ( t - f ) H ( t - t) + 0 Lt ~ i) 

(2.35) 



where M0 
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-.d. &x.o { \) c .\~ ~ \) (Y-l) ] (t - .2:. r H Lt- ~) 
J-c.:l- C.(J-c.') <: 

:l 
i-0(1:-x) 

No , [;)Xo are given by (2. 30). 
ltil 

We note that &X 

(2.35) 

Ml!) 
and ~ are continuous across the wave-fronts. Also, the presence of 

,,_0 M(HI 
o in x will give a sharp rise in the moment behind either wave-front. 

find that 

has a term 

If we continue the asymptotic procedure on equations (2.31), we 

u, (x) and p. (x) 
->vc. 

involving x e 

-X. 
have terms involving x e and that V 1 (X.) 

Since , this means that the second 

terms in the expansions for UH ' "'S'H ' and 1 H are of the same order 

of magnitude as the first. We obviate this by introducing new variables 
,., ..... 
y... and X where 
" ...., 

(I + t-...n.L) X. ( i. J, l, 3) X· .... "' I. 

..... _,_ 
X )( = p 

and are constants. We assume an expansion for 

form 

with similar expansions for ~~ and ~H The two variable expansion 

procedure [ .3 8 ] is then used to find the terms of the ex pans ion. The 

calculation of ..0... ... is inherent in the procedure (and, in fact, is its 

essence). The first term in the expansion for ~H will be 
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- ~ [?+ ~) 
e 

note [s-.s-] that for R-e '\) >- I FY-I .Jlfj> 
We , the inversion of e is 

-i~ l.i v lv ( ~ ..n.•l~. t' 1-..) F'"'~' 
_JLJp 

..n. and the inversion of .e. is 

1"\- t \) .L i \1 J y l ... ...o..'l'l. .L ·I ... \ • 
-1.L. -'\. tl4 I. J Thus, if _Q3 > o the expression for -".Jij in-

volves integrals of modified Bessel functions, and if ~3 < 0 it involves 

integrals of Bessel functions. These replace the simple powers of (t-~) 

in equation (2.35). A result of this kind was obtained for beams by Zajac 

[.;:~3], and for cylinders by Keer, Fleming, and HerrmannL.:t.l.]. The results 

just cited were obtained from a representation of the exact solution in 

.contrast to the method indicated here. We do not pursue the details of the 

calculation as nothing essential is gained . The interval of validity of 

the approximation is extended slightly, but a more precise statement is 

difficult. A calculation of a very similar nature is given in the next 

chapter when dealing with a spherical shell. 

2.8. Preamble to the Long-Time Solution. 

Some features of a paper by Whitham [3CJ ] are now reviewed as a 

prelude to examining the operator L defined in (2.16). 

Suppose that the variable cp(~~) satisfies the equation 

(2.36) 

The characteristics are the lines X -c); constant and 'X- col./; :: 

constant, which correspond to waves propagating with speeds c, and c~. , 
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respectively. 

If A -=- 0 , then the solution of (2. 36) is 

(2.37) 

On the other hand, if A is large then it is very tempting to take 

as an approximation to (2.36), with the corresponding solution 

(2.38) 

For any i\ between these two extremes ( t\=- o~ ~ :. «> ) we would like to know 

how the lower order terms affect (2.37) and how the higher order terms 

modify (2.38). 

A wave motion traveling with speed V satisfies the equation 

( '0~ + y 'CoX ) 'f = 0 

We may interpret this observation as follows. For a wave motion traveling 

with speed V , the derivatives ;t and - Y ..]_ 
'0~ 

are approximately equal. 

Let us now consider the motion described by (2.36) and we fix attention on 

the wave motion along the characteristic ray X- c, b = constant. Along 

such a ray, and -c o 
I 'OX are equal. 

( 
0 ) 'O'f ~t +- c, ?~ ( c.l - c,) cox. 

and a solution of (2.39) is 

cpc 
' 

= 

We may then rewrite (2.36) as 

(2.39) 

x] . (2.40) 
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It is plausible to expect that (2.40) is a good approximation to the exact 

solution of (2.36) in the neighborhood of the ray ~- c,t ~ constant. 

Similarly, an approximation of the form 

(2.41) 

should be useful near the ray X-ca.c -::: constant. The sub-characteristic 

)C.- a
0 

b -= constant is relevant for the lower order terms in (2.36), and 

replacing by - Q0 ~ in the higher order terms results in 

(2.42) 

The transformation 

f = a.,!; - x 

puts (2.42) into the form 

K ~IF-~., =-0 

where K = ;. (c,-a.)(a.,- Ca.) It is thus seen that (2.42) represents 

diffusion about X-Q0 t : constant. In fact, the solution of (2.42) is 

'fa 
0 ) (2.43) 

which we expect to be a good approximation to the solution of (2.36) near 

to x-o"b '::constant. 

If ). > o and c, ~ Q0 <. C:z... , then the approximations given by 

(2.40) and (2.41) are exponentially damped along the rays X-Gt ~ constant 



so 

and x-c~t = constant. In contrast to t h is, as given by (2.43), 

has diffusion about X-Q 0 t = constant and the damping along this ray is 

proportional to 
-'I X ~ 

Clearly, it now makes sense to say that the dominant disturbance 

described by (2.39) is the one which travels with speed Q0 • We rephrase 

this statement to say that the dominant disturbance in (2.39) travels with 

the speed of the lowest order term. The higher order terms then produce 

a diffusion of this wave. 

A precise meaning is now given to the above somewhat vague remarks. 

The solution cp("~l;) to (2.36) may be represented by 

_,_ 
= ~1r i. (2.44) 

where B~ is the familiar Bromwich contour. Substitution of (2.44) into 

the equation (2.36) shows that cp(~ x) has the form 

~[p) X 

and € 

where are solutions of the equation 

(2.45) 

and 

P, """ ?!c. 
I 

p "' -
l. 

'i>Jc._ 

for large p with A fixed. 

The form of r=: (r) for large ~ is 
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and so near the wave-front X= c, t the behavior of the solution is 

-~ 
c., 

-e 

c,- Cl.o 

c,- c., 
c.O U: - t. ) + •.. 
'o 

This agrees exactly with of equation (2.40). The same procedure 

using P,.<.r> will give the solution as in (2.41). 

Thus the ruse of making and ~ 
- y '7>X approximately 

equal yields the wave-front behavior o f the exact solution in the case when 

Y is a characteristic speed. 

Equation (2.44) is now rewritten as 

(2.46) 

where is determined by (2.45). We examine the asymptotic form 

of the right hand side of (2.46) as 
I c -"> o.;. along the rays t = 

constant. The method of steepest descents (+o] is used to this end, and 

by keeping f -: constant we are able to deduce wave properties. 

The saddle point is at r.., h where 

and .r :: i 
By solving (2.47) for 

I+ I 
_l ""D 
(;{ l J 

db t 

l-. one gets r. J 

f, -;: Jp, ( ! ) 

-:. 0 (2.47) 

i.e., the saddle point is a function of the ray one is considering. The 

first term in the asymptotic expansion of (2. 46) then is [ 4-o] 
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(2.48) 

We would now like to find the ray on which, for fixed t, the exponential 

in (2.48) takes its maximum and also its value thereon. This value off 

is given by 

{ 1-+ f :. 0 

Hence, by (2.47), 

If we now set P '= 0 in (2.45), we are left with 

~(p+~) :::0 

Thus r -=- 0 or p-:: - A . It may be checked that p = - A corresponds 

to ~ [ p (I.)) : o , so we disregard this value of r } is now cal-

culated from (2.47) to give 

~ t = I (fpo) 1\=' 
~ f' (h "o) 

We differentiate (2. 45) with respect to r and then set to 

give d. "P. (h :o) 
cfp ' ':'- ao Hence for P::. 0 ~ which is 

just the speed in the lowest order terms of equation (2.36). Thus, the 

exponential in (2.48) has its maximum on the ray X- a0 r ... o Along this 

ray, the expression (2.48) has a decay proportional to - '/l. X Exactly 

this behavior is exhibited by 'Pa
0 

given in (2.43). 

At this stage we can say that the approximate solution found by 

equating and 
'() 

-v ~x when v is the lowest order speed in the 
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equation is equ ivalent to maximizing over all the rays the first term of 

the asymptotic expansion for large t of the exact solution. The value of 

the heuristic approach is t hat one can t~ll at a glance which is the most 

important group o f t erms in the equation under consideration . 

~2 . 9. Examination of the Operator L. 

In the previous section we examined a simple operator and showed 

the equ ivalence of two approaches. The prime lesson learned was that the 

maximum disturbance moves with the speed of the lowest order terms. Atten-

tion is now turned to the more complicated operator L defined in equation 

(2.16) . 

We note immediately that the speed in the lowest order term is 

a, and so it is to be expected that the dominant disturbance described by 

L will travel with speed a . Thi s conjecture will be verified first . The 

Laplace transform of Lw will be written as -L w On noting the initial 

conditions (2.13), 

l (c'l.. cL'- - r-a.X cL'l. j-'-)1. .;;.;- C cL). - F'" )\. 1.J"" + ~ ... 
t>~"" Jx ... Jx.l. 

'L rll. :'\. pl.) + (;( , ... ~1. 1- V fxl,. )( r'-)v + ~'l.. '~-[o.-a. ~ """· ~ 

0 c. J.x."~-clx'"' 

We wish to solve L 14- =-o Le t 

satisfies 

(2.49) 

= c 
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Following the procedure laid out in ~ 2. 8., we set 'P =- 0 to find the 

corresponding values of f from (2. 49). The equation satisfied by p 
is 

-:::: 0 (2.50) 

Thus 

or (2.51) 

Equation (2. 50) for f" yields complex values of r Now the method used 

involves taking a maximum and so it is tacitly assumed that all quant]ties 

are real. Hence we accept only the root 

differentiate (2.49) with respect to r 

... ± '/a. 

and then equation (2.47) gives 

= a.. 

p = o from equation (2. 50). We 

and set ? ... f -=- D • This yields 

(2.52) 

Thus, as anticipated, the speed of the dominant disturbance is a. 

Further dift'erentiations give that 

(2.53) 

and 

(r ~c) 
(2.54) 
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where 

+ Q.- ~y] 
~ . (2.55) 

The bending terms involved in the operator L are represented here by the 

term For a thin shell fo .(<::. 1 , as can be seen by the presence 

of in (2.55). Thus, as far as the calculations here are concerned, 

the membrane equations are adequate. The bending terms enter through the 

boundary conditions (2.29). 

The equation L1.r = 0 , where L is given in (2.16), is a linear 

dispersive equation. Consequently, it is usual to look for solutions of 

the form 

where k is the wave number and w is the frequency. The equation 

l '\.of' ::. o then gives w as a function of !:< This relationship, w ... w(k ) 

is called the dispersion relation. The phase velocity, Crh , is given by 

"x. 

t 

and the group velocity, 

= 

(2.56) 

is defined by 

The group velocity is the velocity at which the energy in the system is 

transmitted[~l]. From (2.56), it is seen that 

(2. 57) 

and thus 

cl~.> 
crk 1 k cLCtpt.. 

ca :: ~ 
__,__ 

cJ.k d~ 

Therefore, 'a .. cr~._ if 
cL 

cr"'- :.() Now, the phase velocity a is 
4~ 
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the speed of very long longitudinal waves in a bar. Since the wavelength 

is very large, the wave number, k , equals zero. Equation (2 . 57) with 

and k -:. o implies that c.v =- o • Thus, the phase velocity, 

a~ with very long wavelength corresponds to tV ""u , k -=- o . 
~ (lax- o..lt) 

On substituting 1J' "' e into the equation L '\.,1" ';. 0 , \.;Te 

obtain 

~ Ll..\1. 
+ (£..) - ;(. .) -

Then, for w ':. k -= 0 
~ 

cd 
d. c.> 

:: dk -=- ~ 
I 

d.l. t.) 

d.~l. 
,. 0 

and 
J.. l c..J 

cili' 
G 0 

Thus, along the ray x-~t -::.0 the group velocity equals the phase 

velocity and the group velocity has its maximum value. 

The disturbance associated with a stationary value of the group 

velocity has been called the "Airy phase" by Pekeris [ 42.]. The motion is 

c haracterized by its regular period, n amely , that corresponding to the 

stationary group velocity. 

Naghdi and Cooper [ I J have examined the natural vibrations of a 

shell described by (2.10). They say that for very long waves the character­

istic equation yields for the lowest mode of motion a speed~ -- which 
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is our speed a. Figure l(b) in their paper is a plot of phase velocity 

-I 
versus (wavelength) . It can be seen that for the lowest mode as the 

wavelength tends to infinity, the phase speed tends to a and the curve has 
I 

Gt. 
zero slope at this point, i.e., c"', .... o 

d. R •" 
This again confirms that 

· They do not give a corresponding plot involving the group velocity. 

§2.10. The Behavior Near X-:. a.t. 
We know that when I is near a, 

I r is near zero. Thus, by 

Taylor's theorem with (2.52), (2.53), and (2.54), 

+ (2.58) 

when I is near a. The saddle point equation, (2.47), determines h as 

a function of 1 

, + r[- ~ 

Therefore, 

and 

+.1 
~ 

With the aid of (2.58), equation (2.47) becomes 

:. c 

-~-~ - J 3 

p, (I) t fPC p. Cll) 

(2.59) 

(2.60) 

The exponential part of (2.48) then is constant for )(-::: a..t , decaying for 
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X >a.t , i.e., in front of the wavefront, and oscillatory for )(.:::. a.C 

i.e., behind the wavefront. 

When r =j: a. , the first term in the asymptotic evalua tion of 

(2.46) is given by the formula (2.48) in which the amplitude decays like 

-'h ... X along the ray. As I -> ~ , two s a ddle points coalesce and (2.48) 

is no longer applicable. The first term of the asymptotic formula for 

this case is given by Jones L 4-3l on p. 445. Without giving the exact 

expression, we note that the decay factor is Thus there is a non-

uniformity in the asymptotic expansion o f (2.46) as J tends to a. 

Chester ~· al.( +4- J have examined just such a situation and have given 

a method of obtaining an asymptotic expansion which is uniformly valid a s 

I-'> a. • We will give here the mechanics of the calculation, but we do not 

attempt a full exposition. It is noted that the form of the solution pre -

sented here makes the application of the technique very simple. 

With the aid of (2.58), the right hand side of (2.46) may be 

written as 

!:. [ (J - 1/a.) f: (I ) + A I ~l (I) + •. . ] _,_ 
~Ti ~ 

e ~h (2.61) 

where 

A = 
1- a.).. 
~o! (l+fo) . 

We define 

(2.62) 

For a very thin shell, fo <:< I and we a r e essentia l l y dealing with the 

membrane equations. The Bromwich contour in this case is given in Fig. 5. 
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There are no singularities in the right half plane . The points ± i. and 

~~~ are branch points of the integrand and the appropriate branch cuts 

are shown. Equation (2.61) may now be wcitten as 

(2.63) 

and we have shown that the major contribution to this integral comes from 

~-:.o, r = Q.. • 

Following the method in (+4 J, the variable '\l"" is introduced by 

the relation 

Q (p,,I.) = t v 3
- r(I)-u- + vCJ). 

If this is to be a regular (1, 1) transformation we must have d.P, -4:- o 
711'" 

or cP where 

(2.64) 

(2.65) 

Now vanishes at the two saddle points r- (!} • 

while ,;..•_ J(J) vanishes at If the transformation is to be 

regular, these points must correspond, and so we have from (2.64) the equa-

tions 

and 

:: 
2.. 

J 

3),_ 

r CI) v (l) 

1/\. 

T (.I) + }) {I) 
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to determine r (f) and 'V [I) . Solving fo:L l and );) yields 

and 

Since, by (2.59), p_ =- p .. 
-v[Ij ; o 

, \ve obtain 

and (2.66) 

! 11
). (f) = ~ f._ [(I- fa.) + A I P~ J . 

Since the variable of integration in (2.63) is changed to ~ , we write 

and we now proceed to calculate t~ and Q 
L-o 

and h ~ h (!) we find from (2.67) that 

( ~?') d.u- + 
= ~o (I) 

•/'L 
+ r [1) 'Lv ( J) 

(2.67) 

'I 
On putting "\1"'-= ~ :f ~ (J) 

(2.68) 

and the left hand side is known when is known at r'11. cr) . 
But, from (2.65), 

+ ;:. 

and then 

+ ~ s '}1.-

since 
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o& r, f>t = 0 .... or, 
By (2.62) 

'01.& 
6 A J h (I) - :: 

rof,"'" 
and then 

(« r.y- 'i1. 
tJ. J (J) 

'::: 

d\i + 6 A r r-~-
(2.69) 

and 

(dhr ')~ :; -- .:2. 
-:: 

cJ.Il" - b A If>- (2.69) 

Substitution of equations (2.69) into equations (2.68) yields 

it-o (Jj : 
3 AI P• 

and ~o [I) "; 0 .. (2.70) 

We now gather up the fragments. Equation (2.63) is transformed 

into 
L()() t [f 'U'"

3
- !{l)\J" +V (IJ] d.?, I r - -e. c:l.l.i 

c>trri. d.IJ" 
- ~ "0 

by the transformation (2.64). The functions j(I) and v{:r) are given by 

(2.66). is approximated by the first term in the expansion (2.67), 

i.e . , we write 

'+-~~ (I) + '\) ~i) [J) 

and ~0 , ~0 are given by (2.70). 

Using formula (2.3) of[4+], equation (2.63) may now be approxi-

mated by 
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:fiT\. 
ooe 
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- ...!..- ..~Ao c n S . ~~r [ l c i \r"l - Su-)J cJ.If" 
~!T'i. 1~ ~Til'-' 

oo-e 

= 

.QJ-;.f [ j lt 3 - }ru.. J Ju.. J 
- i ·"ll"i. 

ou e 

(2. 71) 

A~(~) is the Airy function and is discussed in [41]. The final result 

may be stated now as 

-· 0\lii. 
(2. 72) 

as t -> Oo and J 
1-a. "\. 

is in the neighborhood of a. With A'" .._
4
! ( 1"'f-o) , we 

find on using (2.66) and (2.70) that 

and 

(JA r')'1"J 

- •/f:, 
(J AJJ 

Thus, for ~(r) given by equation (2.49) 
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t'/.3 ( 3 A I)''' 
J/a. -I J 

(.lA!)'/:1 

as t -'>oc. and I is near a. This expression is uniformly valid as J -> ~ . 

The situation described here near the ray X ,..o..t is entirely anala­

gous to Kelvin's ship-wave pattern as expounded by Ursell [4s]. We quote 

the relevant part of his introduction. 

When a concentrated pressure travels with constant velo­
city over the free surface of water, it carries with it 
a familiar pattern of ship-waves. Let viscosity and sur­
face tension be neglected, let the free-surface condition 
be linearized, let the depth of the water be assumed 
infinite, and let initial transient effects be ignored. 
Then, the wave motion everywhere c an be found by standard 
methods in the form of a double integral. The wave pat­
tern at a great distance behind the disturbance can be 
found by an application of the ordina ry method of sta­
tionary phase, which shows that the wave amplitude is 
considerable inside an angle bounded by the two horizontal 
rays f) ::: :t 9c. from the disturbance, where e, = sin' '!3 

19~0 • But the method fails near the critica l lines 
$ = ± e, . Near the critical lines the surface 

elevation at a greater distance behind the pressure point 
can be expressed in terms of Airy functions, and this ex­
pression goes over into the known wave pattern inside the 
critical angle. It is shown t hat near the critical lines 
the crest length increa ses as the cube root of the dis­
tance, and the separation between crests remains constant. 

The last statement here refers to the regular period of the Airy phase which 

is due to the stationary group velocity. This point is discussed by 

Pekeris [ 4l.] and New lands [4 (, ]. 

§ 2.11. The Long-Time Solution. 
-<HJ 

Since we are dealing with linear equations, Mx (x~ p) satisfies 

the equation 



and 

where is given by (2.27). We may thus write 

(HI 

M lx.t-) "o) -

')( (2.73) 

for t -) oo in the neighborhood of the ray X- Q. t constant, where, by 

inversion of (2.27) 

and ~r , ~- are given by (2.23). We note that the bending effects, 

represented by , enter in a fairly inrocuous faslriPn. (It had been 

hoped at the outset that ~b would enter in such a way that (2.73) would 

be valid for ~t >>I and then we would not have been restricted to very 

large C ) . 
In a similar fashion, the expressions for N X (x,t) and ~x ( X;t;J 

are 

(2.74) 
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where 

and 

(2.75) 

(2.74) and (2.75) are valid for large t in the neighborhood of the rays 

X- a. t == constant. 

We examine ~xCx~r) to get a better feel for the formula in (2.75). 

The others are similar. 

For r '= ~ , i.e., along the ray x- o.t =O, 

Ai. {_o) 

(3 A a.)''' ) 

- •IJ 
and so the amplitude decays like t Also the amplitude is proportional 

to 1-.._l.. due to the presence of r- There is an exponential decay in 

front of X- a.t -= o and an oscillatory behavior behind x - a.l:: ::. o as re-

marked subsequent to equation (2.60). 
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CHAPTER III 

Attention is now fixed on a spherical shell which is described 

by the equations derived in detail in Chapter I. The inclusion of the 

effects of transverse shear and rotatory inertia in this description led 

to a system of simultaneous equations for the displacements which is total­

ly hyperbolic. Thus it makes sense to examine the behavior of a disturbance 

in the shell as it moves into a region of quiet. We are interested in the 

focusing effect which results from the geometry of the shell, and especially 

in the influence of bending on this effect. To this end, the problem of a 

constant moment M9 -=- Mo applied at the lip 8 ~ 80 > o of a spherical 

shell is studied. From the outset, the objective is limited to the leading 

wavefront behavior of Me as it makes its first traversal from {) -:. Bo 

to 8 ~II , and its first reflection therefrom. This objective is achieved 

by the appropriate asymptotic expansion without recourse to any representa­

tion of the exact solution. See Fig. 6 for a picture of the situation. 

§3.1. Notation. 

The notation of Chapters I and II is again relevant here. In 

addition we have the following. 

e = r le -&o) 

~ ': p (ii -&) 

e+ = (1 + 1-:a..re 

pis the Laplace transform variable. 

, Jl. is a constant. 
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"" e -:: f' a 

•/,_ 
'L, = (H.1e) 

tj,_ 

'L. : (/-J.£) 

a, " ii -f) 
0 

I Ji-FJ ;;:., .,... 

rl. = Q, -b, (( ':: a, -rb, 

~ 
.c-~ 

~ ':: 

' i.e., 
>f- o(. 

traces the wavefront. 

Me[Wf) is the value of M8 [e, i:-) at the leading wavefront. 

§ 3.2. Statement of the Problem . 

The momentum equations derived in Chapter I are as follows. 

(3 .1) 

Equations (3 .1) are valid for 0 < 80 ~ g 6 ii and for t > o • The pressure 

term ~ in (1.20) has been set equal to zero and it has been assumed that 

the motion is independent of cp • Again, we note that 

We assume that the sphere is initially at rest in its undeformed state 

corresponding to the initial conditions 
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(3. 2) 

The sphere is to be loaded by a suddenly applied uniform bending moment at 

the edge e "=' ()0 

EJ-=- e~ Ms -:. f)o ~ vp U>te -:: Mo I-1 (t;.) 

Ne :s UJG + v (..(. c...tB ;- [J+)>) ~ c.o (3.3) 

&e -:::: 
"\. c. ( f + \J'" 

JB -u.) '::. 0 

Furthermore, the radiation condition that the leading wave be moving into 

an undisturbed region on its first traversal from e ~so to e '::. ii is 

enforced. 

The problem is to be attacked by reducing (3.1) - (3.3) to a set 

of simultaneous ordinary differential equations on the interval 90 f {) 6 7i 

by means of a Laplace transform in time. We define 

with corresponding ·definitions for -iS' [9Jp) and p [ei ~) 

The boundary value problem after the Laplace transform is taken is 

'\/.,__ C I·H' e·eJ -
"V u... - "3::"" + C4) 1.4 = 0 (3 .4) 
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=o 

::.0 
(3 .4) 

, where we have now written 

the boundary conditions are, at 

(3.5) 

-1.4. :.o 

The radiation condition is now put in . the form that for t .:. jj -9 
0 

the Laplace transform of any variable should have the form of a decaying 

exponential in for large values of the Laplace variable p 
We further impose the condition that all solutions 'ti [B,~J , 

f (&,p} , and .:w- (8
1 
~) and their derivatives with respect to [) are 

bounded functions of e where r is just considered as 

a parameter. In other words, solutions of the ordinary differential equa-

tions for ute~J>), F te~~) , and -o- ceJJ>) which have a singularity in the range 

are not acceptable. 

The problem is now fully specified by equations (3.4) and (3.5) 

and the subsequent remarks. 

It is not proposed to find the exact solution of the problem just 

posed. Instead we shall consider the asymptotic structure of the solution 
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for large ~ Before proceeding to the approximate solution, a few re-

marks on asymptotic expansions may not be out of place. 

§ 3.3. On Asymptotic Expansions . 

It is the intention here to remark on what may be termed the 

hierarchy of sophistication in regard to asymptotic expansions of ordinary 

differential equations involving a large real parameter. In particular, 

we are interes ted in an approximation which is uniformly valid on the range 

on which the differential equation holds. 

Consider the equation 

(3. 6) 

over the range x, !r )( 6 X.a. , where A is large and real. 

If {\x) > 0 in r 'l',, )(~ 1 , then [ 47 J 

(3.7) 

If fcx) ~ o in [ )(1> X :a. J , then 

(3 . 8) 

If now f(x 0 ) ""o for for 

. XE..(XoJX;,..] and ft~t)<o for X€[x,.~xJ, then (3.7) is an asymptotic 

approximation in any closed interval to the right of X0 , while (3.8) is 

an asymptotic approximation in any closed interval to the l eft of X0 

The problem of finding a uniform asymptotic expansion over[x,Jx:a..], or, 
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in other words, to find the relation conr..ecting C.1 , c • .. to Cz , c~ was 

solved by Jeffreys [ 48'] among others. An asymptotic formula which is valid 

over l x,J xl-1 may be written in terms of Airy functions, see Erdelyi [ 4~"1 ] • 

The basis for future progress was laid by Langer in a series of papers 

beginning in 1931 [ 4~ 
1 
s-o] when he introduced his method of the "related 

equation." The rough idea is to construct a related equation which approaches 

the given equation asymptotically, with the idea of being able to solve the 

related equation explicitly. Then, under certain circumstances, a solution 

of the related equation is asymptotically equivalent to a solution of the 

given equation. 

If fcx) in (3.6) is now allowed to h avea regular singularity, the 

problem of the asymptotic behavior is more complex. The uniform asymptotic 

approximation to the exact solution can be written in terms of Bessel func-

t ions, as shown by Thorne [!:'I J. 
An account of the historical development of the subject is given 

by Pike [s-.;~.,sJ] as well as a proposed new existence theorem. Since the 

differential equations (3.4) have a regular singularity at e -:..Ti , and 

since our objective is to obtain an asymptotic approximation which is uni-

formly valid in 8u ~ 8 ~ 1J , we may expect to become involved with Bessel 

functions. 

~3.4. The First Order Approx imation Uniformly Valid in eo ~ () 6/i 

The variable u l fJ, f) is introduced by the relations 

u. (e, />) = u.(e,j>J ~"'r c -.s s tote d.e J 
i.e., 

u (f), I>) . ,,.., 8 - [FJJ ~) :::: /.)I.N\. u. (3. 9) 
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Similarly we define 

and (3. 9) 

It is now noted that 

(3 .10) 

Thus the transformation in (3.9) eliminates the first derivative terms in 

the operator \7~. Equations (3.4) and (3.5), with the aid of (3.9) a nd 

(3.10), may now be written as 

with the boundary conditions at e ~ e~ 

0 

t-...1.. 
ol. 

(3 .11) 

(3.12) 
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0 (3 . 12) 

We consider p to be very large and £.. (hence ~0 ) fixed . The 

approximation to the solution of (3.11) and (3.12) which is valid near 

D ~eo is first obtained. It will be found that this approximation is 

not valid at 8 ~ 7T • 

We define 

and then assume the following expansions for (.(. , '\J" , and ~ in terms of 

the variable a 

t.A[G,p) ; Uu ( S J 
"'" 

..L 4 1 LB) + . .. 
~ 

-we) Cs) + t -t.r, on + · · · 

: 

The substitution of these expansions into equations (3.11) and (3.12) 

yields the following boundary value problem for the zeroth order approxi-

mations L(0 , 1J"0 , and fo · 

Uo -- - L(o - ~ E'l. fo =o 
J 9 8 

"""o -L """o : i) 

IP9 c:" 
(3 .13) 

- ~0 

with the boundary conditions at '& -=- 0 
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~o, 9 = ..!_ 
Mo 

,, ... g 
r IJiSo~. 0 

Uo- = 0 
J9 

-w-
OJ G ... 0 

Solutions of (3.13) are 

..w-0 

Po = 

l.to = 

- -te 
Ao e 

&, 
- 't, 8 

.e, + 

-cz. g 
.1..( '1.. 0 B I ~ ~,-1 1 e 

gl. 
- t.G 

e. 

.1.. r '1.. ) -t.a 
Tol.LZ-1 -e. • 

(3.14) 

where t~ : 1+.1 E and The exponentials which increase 

with 9 have been rejected since they do not represent waves going into 

the region e > Bo • 

The boundary conditions (3.14) determine the coefficients Ao , 
B, , and E._ and the final result is that 

~0 = 

...wo ': 0 

C't>I)L'Z,';_ -I) 

4 t, ( t~- <t~) 

-t,e 
e. 

_ M., ('!.>1 :X.1.";_.-d 
'-F"" il '!.. .... ( ~-> t"j 

(3.15) 
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If we now revert to the dependent variables ~ , p , we see , - _,, ... 
for example , that the firs t approximation to r (Gi p) is Ail\. B Po (jj 
and this has a singularity at fJ o::. Ti We could· have foreseen this non-

uniformity by noticing the terms involving coc' B in equation (3 . 11) . 

These t erms were negl ected in comparison with f~ , for f large , but this 

is val id only when e is bounded away from u 
The var i able 

,-v 

e = !> Cii - e) 

is introduced to rec tify this difficulty, and expansi ons of the following 

f orm are a ssumed for u. f and -w-

..v-Le, p} = .w-0 <-e J +-L r ~ (fi) + ... 

u.leJ p) "" on + ...L -u, c e) + ... :::: U u r 
~ ( 9) ~ } 

-.; 

Ce.) +...L.. f~ (9) -:: ~() + · "' j> 

"" 
The ordina r y di fferent ial equations for ~0 , ~0 , and ~ 0 then are 

,v 

- ( l ... -t- 1) 
,..., '\.. "' 

v.o - "' Uo - ~ E. f l) 
J 9 e 4f B ,_ 

""' (..1- - ' ) 
....., 

-\.So..., ,... + 4 9'&. c. ... 1.J" i> 
J a e 

(3.16) 

~0 ~~ ( 4~ a. +I) fc ,..., - - a.ul> 
J 9 e 

We note that the main difference between equations (3.13) a nd (3 . 16) is 

'/2i~ that the latter have a term involving D which i s there to represent 

the regular s i ngularity at e -::.. il i n the original . equations (3 .11). 
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Solutions of (3.16) are 

= 

(3 .17) 

= 

where Io
1 

I 1 are modified Bessel functions. The functions K0.) K
1 

are 

rejected as solutions of (3 .17) as they are singular at 9 :. 0 . 

The approximation (3.17) is valid at least in a neighborhood of 

'i} ::. o , i.e., near & -= 7i , while the approximation (3 .15) is valid on 

any closed interval which excludes the point 8 -=-If Thus the two ap-

proximations have a common interval of validity. By matching equations 

(3.17) to equations (3.15) on this common interval of validity the coeffi-

,.., "' 
cients A~> , B, , and S:l. are determined. 

We fix £J :f:. iT and let p >). I , then 

I)) C t 'if) == 

'V 

Thus, for B ~ II 

I.v ( '!, f (il-17)) 

Cf. p (Ij -9) 

e. 
Jan 't p Ui-&J 

[I+ O(t) J 

'ia. r (li -e) 
e. 
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"V 

This expression for fo may be written as 

and on comparison with (3.13) it is evident that 

and 

By a similar procedure 

"' A -:: 0 
0 

Thus, the first order approximation which is uniformly valid in 8 in the 

range e 0 ~ fT ~ 'ii as r -> 00 is given by 

M""
0 

le, p) -=- o 

M t ..... -I •!1.. ( i"i -e )''.,_ - '/.1 J>[ir-Bo) 
~D[8J) = rl/: t~~t: (aii.oiAeo) ~ e I, [~.~(il-81] 

(3.18) 
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We have written and similarly for U0 and :t:r
0 

• 

The essence of an asymptotic expansion is that the succeeding 

terms are diminishing so that each term is a small correction to the pre-

ceding ones. If we now proceed to calculate the second terms u,[$) and 

of the expansion valid near 8 : ~0 

that f
1 
(S) will have a term of the form G 

nition of S 

, we will find, for example, 

-'l,l i} 
e Due to the defi-

and so the second term in the expansion has the same order of magnitude as 

the first. We could term this a "resonance" phenomenon. This defect may 

be obviated, and at the same time the effect of higher order coupling terms 

in the equations is obtained, by the two-variable expansion technique 

originated by Cole and Kevorkian and described by Kevorkian [3 8 J . 

3. 5. Uniformity by the T'tvo-Variable Expansion Method. 

We consider a linear oscillator with a driving force, viz., 

= f.)jl-\_ t 
where f is a small number. The frequency of the driving force is very 

close to the natural frequency of the oscillator. Since E <: <.. J , we may 

approximate the given equation by 

-:: ;:) .I h. i . 
Solutions of this equation are unbounded as l:: -';oo oo due to resonance, 

whereas solutions to the original equation are bounded. If we followed a 

naive asymptotic procedure in powers of t , such as the one in the previous 

section, then the first approximation would lead to the resonance phenomenon. 

The resonance thus obtained is not inherent in the original equation, but 

appears as a result of poor mathematics. It is a difficulty such as this 
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which arises when we try to construct the second terms in the expansions 

proposed in the previous section. The source of the difficulty is made 

patent by the simple example cited. A device must be found to correct the 

argument of the solution of the homogeneous equation given by the first 

approximation and then resonance does not occur. 

With these remarks in mind, we introduce the new independent 

variables, 

~ (1 + ~) 9 .(. -:::: I, 2.1 3 

where J1 '- is constant and, as before, 9 ~ p (lr -&c>). Further, let 

and we assume an expansion for o( of the form 

ollS l :: ( ...._ +-) 4 t o( I [ {)':\J 11;. \ + o\o e. {) (' 17 J 

then 

+ ... 

and 

Equations (3 .11) are rewritten using 8 as independent variable. 

They become 
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(3.19) 

The boundary conditions (3 .12) become : At 9 -=- D 

I M ,,,_ C\ f o ni 1\. vo 

0 (3. 20) 

We now assume that the following expansions are valid. 

Then the first approximation to the system given by (3.19) and (3.20) is 



with 

0 

0 

at e-+ -::. 0 

The g eneral solution is 

"" -= A,~ c.eJ 

= 

..!.. {\ .. 
- c. "' e .l 

a nd the boundary conditions require 

A lo (o} 

1.. 
'tl,.-1 

-.::: 

._. 

"' 

81 

":.0 

:::.o 

~OJ e+ 

(.(") ii' .. 

14'" 
cPJ If;. 

. ., .... ll 
S1~ o

0 

(3.21) 

(3. 22) 
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IV'1o 
... 

g~o (.o) ...!... 'ti - l . ,,.._ f) 
'::: r .. /J '""' ~ "'... /.,l.. 0 

1,,.. - I 
( 3. 22) 

where , f or exampl e , A,0 (o) mean s A,o l o J 
.-'\ 

evaluated a t e -:::. 0 We note 

that the firs t or der approximation given by (3.21) and(3.22) differs from 

(3 .15) in some simpl e , bu t yet essential, aspects. The expressions f or 

-w"v ' fb ' a nd '-4o in (3 . 15) are fully determined . I n cont rast to t his, 
..... 

the solutions given by (3 . 21) and(3 . 22) have a e dependence which has 

e"~- i. '4-
not y e t been f ul l y det ermined and , ~ , eJ are as ye t unknown since the I 

~ associated with each must be found . We propose to use this indeter-

minancy t o impos e the condition that there be no resonance i n the second 

term of the asymptotic expansion . The remainder of this section concerns 

itsel f wit h the details of this calculation. 

The boundary value problem for U 1 , ~ ~ , and 1-SJ 

.. .- f ~ .HV ........ ~ o.+ - ::-... ..r., + 0 -- 1.{ 
, 17 .. " ..... J a-+ ~ ".. o, G"" 

with 

-tJ'o + 
J & 

-::. o 

-::.0 

is 

(3 . 23) 

(3.24) 
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:: (3.24) 

at On using the forms of -t.S"0 , fu , (..( 0 given in (3. 21) , 

(3.23) may be written as 

+ 
~it. {) 

A e ~ 
10 

I - 'l-t f): 
+'L, C~-1) B10 e 

~~ e• f)+ 
J I I 

- -L ... c" ... , 

- ~· - otu, 
I 

'::. .;tt, B,o 

-

- t..&: 
e 

-t, f;,-t I 

e. +-.J..<t.:~.. g:I..O 

:1.. A,b 
-i o; 

Ao~ e 

...... 
where a prime denotes differentiation with respect to 9 

-y,~9/ 
e 

(3. 25) 

The right hand side of the equation for ~ in (3.25) has a 
- .L s• 

:~... A' e. c. ;J term ~ 10 which will give a resonance on integration. This 

difficulty may be avoided by setting 

I 
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i.e., 

For similar reasons, we set 

= 0 

and hence 

I 

Thus, the coefficients in the first approximation have been determined, and 

the undesirable terms in the equation for the second approximation have been 

eliminated at one stroke. This is the first aspect of the flexibility al-

lowed us by the two-variable technique. 

At this stage, we have 

0 

I Mo 
'\.. ., ... {) C[,. -1 

::' 
r~ t, 

L pi~o.. 0 

'L~- t~ 
(3 . 26) 

I Mo 'Z.~ -1 ,, .... B 
: - p""" -- C>ik. 0 

't.~ t~- t~ 

To complete the first approximation we must yet find Jl, , Jl..l. , ..0...3 • 

Equation (3.25) now becomes 

u. - u., .;l€."1.~. ';:. 0 ,, f) ... ~· 
• .I. 

e t , a: ... 
I .B,o + tl. 8.0 

-'h.G, 
..w-,JI}~ .j).j. -(} t..r, -:: 't, e 

'J ~ 
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- «.u, 

Solutions to these are 

~I 

u, 

...t.J", 

--!.G.._ 
'2 c. z Au ltt) e. 

(3.27) 

and the boundary conditions (3.24), together with the result ~0 ~o , imply 

where 

- '!.T l .. v 
a.. '::. ... -t> I ;)..c..."-

~~ 

cz.~ ('L, .. -1) 

2. l't> i'c;.") 
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and 

Ql. = + 'l..~ Ct~-·) 

J.. Ct';.-'fc.-...) 

In particular 

A, (o~ (3.28) 

When cognizance is taken of the fact that Uo and ~o are inde-

" pendent of a and -u-0 -::-o ' the equations for ~~ L<l.. , and w-J.. are 

-=-0 

(3.29) 

The second of these equations is 
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~~ f) .. li .. ..L 
V'l.. -:: -~ ~ .... - P~~ ()t -± Po c.vt&o G~ 1 ll,~ B J a 

;. ~ (u,~ii-t +± '-'o ~{)o) 
-fG.t 

d... C. ... 

The term e. does not occur in ~0 ' fl Uo ' or u., 

and so a resonance will not arise from these terms. On the other hand, 

~ does have such a term. As before, we may eliminate the resonance by 

demanding that A11 cBlbe independent of e .., 
, or equivalently, that A11 <.B} 

constant -= A11 Lo) Thus, ~ is given by equation (3.27) where 
-1 

A11 (8) is replaced by A, (o} and A,, (o) is given by (3. 28). 

If we consider the first and third equations of (3.29), there 

are resonant terms present. These may be grouped as follows on the right 

hand side • 

... 
- 't, e. [ ,_ ) , e. -t, [?.,-1 Bu 

and 

- <t, f), .. 
[ -clt, 

I 

+ b/1 -12..., +bn] 
-cz ... fJ: [ -1 , -rb,3 .Jl, "tb,.,._ 

e gil + e. - t:~. E.l., 

+ ... 
- 't., gl.. - tl.. l}J.. 

~ ..b,S" e + b,l. e 

where 
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~ - c..1 Gl>e a + 2..) -1- ( q ,_-1) g 'f- 11 _. ;;L. '-1 I() 

c"'. E,o l-tV' 'L~ E,o Q,s- = - - '!.~- '/, ... 2.. 

'\ 8~0 ill 'L~ fS.u> Q'" = c.. 4.. cz."- - '/. \. .. ' 

b., "'" €u ::: ;l. t , 
>.4. " \.. 

(~ 
').. \.. 'L.) g + 0 c 't, E,o bn.. = c..t lio- ±+'V 1" no C.. 10 

t~· lf,~ 

b,l ~ .;t t~)o< & l.l 

i\'1. "I. '-

b,~ ( ~ c,.,~1 8«~ .. ct7-)) '* ~c.') ~~t> + 0 c tl-o 
g~ :: - f ·. 'I"' 

).. ' 

b,s-
.J +-)} t," [ ~ ... 1) 

Blo + A';. Gl. t ( 'f.> I) € lt> ~ 
.l.c}· "" ( t> 'l ,;~....) 
.J+V 

As b efore , some o f t h e se terms may be e l iminated by s e tt ing 
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Thus, 

and (3.30) 

At this stage, the equations under consideration may be written as 

= 

R -B. - «.u. 1-) e-e r 

where du '::: ql-4 i- a.,S" 

du. = 4',4 + q,& 

d~, ::. b,l. -1- b,s-

o('l.l.. ;. b,+ + bd. 

All the coefficients of the right hand side of (3.31) are constants. 

If we can now choose -0..1 and Jll.. so that the only solutions 

to the non-homogeneous equations (3.31) are the solutions to the homo-

geneous equations, we will have achieved our purpose of eliminating the 

terms giving resonance. 

If we eliminate ~ , say, from (3.31) and write a non-homogeneous 

fourth order equation for ~ then the non-homogeneity may be removed by 

choosing Jl.1 and _Jl:l. as solutions of the algebraic equations 
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Then 

and (3.32) 

where 

The determination of -IL3 follows in the same way at the next order of the 

approximation. 

We now see that the zeroth order approximation is fully determined 

and the first correction to it does not have an y undesirable growth. 

To sum up in general terms, the t wo-varia ble expansion technique 

gives an indeterminancy in the coefficient multiplying the solution func-

tion a nd also in the argument of the solution function at the zeroth order 

of approximation. The rule t hat resonance cannot be tolerated determines 

the coefficient at the firs t order, and the argument at the second order. 

Then, the correct expansion has been found . 

The expansion for p (.{)1 ~) now is 
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_L [ Mo 
.... ,,.._ D -'l.,fi/ -L t,-1 -:::. .oi\1\. ~ e rl. 1.) j VI. 0 e t, 'l. "\.. -l]. ... 
,.. ' 

I Mv 'l,.~- I .,.,_ - t,.-o/ 
] - f~ 

~-i~ 
~il\. &o e. + -· (3. 33) 'i-l.. 

where s;*' ::: (l+ 1=.:..) r (a -tJ.o) and ..12.., is given in (3.32). The 

expansion given in (3.33) is not uniformly valid in tJ for '80 f. 9 £ 7i , 

but this is easily rectified. The argument of the modified Bessel functions 

in equations (3.18) is changed from rCii-B-) to (1 t 't-Jt {ii-8-J Then, 

for example, 

(3. 34) 

X 



and 

f, {~J p} 

~ol&Jp) 
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(3. 35) 

where ~0 is given by (3.34) and ~ ~ has a similar structure. A state-

ment such as (3.35) could not be made about fu as given by (3.18) when 

~I has a similar form. 

If we had not made the transformation (3.9), then the procedure 

of the preceding section would not have yielded a solution uniformly valid 

in In the present section, when the transformation (3.9) 
-1 

was made, the procedure gave an ordinary differential equation for A,0 (ej, 
-1 -1 

810 (.8), and 8~0 (8) which resulted in all three quantities being constant. 

If (3.9) had not been used, then this latter procedure would again have 

"" given an ordinary differential equation for 810 lB j , say. But this time 
_., 

the solution of the equation would have given the factor sin ~ & 
We now examine whether we may expect to get terms in the solution 

(3.34) which represent disturbances reflected from fJ::. 7i Firstly, a 

simple example from [3-f J, p.S~, is given just to fix ideas. 

We consider, for t .he interval 0 6 X ~ ~ , the problem of solving 

the partial differential equation 

- CfJl(.)C. 

with the initial and boundary conditions 

ce colt:) =-- t 

Let = Iao ct> (xJ ..C) 
L> 

cpJ)< (J.J t-) 

e~:~t d.i7 

-=-0 

, then 
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I 

~T 

(3.36) 

, i \H-I L- -j>(.l.V~-x) -p(X+-t~.e)] 
+ - C.-r) e - e 

f V-::. 1 

On performing the inversion of this, we find 

We rewrite the right hand side, and then 

Now the first term represents a wave going from X-=- o to )( -::. -2 ; the 

second term is the reflection of this wave from X -::. ~ and so on. Thus 

the negative exponentials in (3.36) correspond to the various reflections 

of the wave at )( -:. o and X -:.. ..f 

The type of function that has been met as solutions to the problem 

defined by (3.4) and (3.5) is 

- t r (ir-tfo) 

tC.BJ -e. (3.37) 

The question is whether the modified Bessel function is rich enou gh to 

account for reflections of the wave from [)- -=- ii and f) ":. /J.0 • Watson [s-4-], 

p. 203, gives the asymptotic formula for Iv ( 3-) when & is large and 

~~n < arg ~ <. t ii , 
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-1-+-(V-r.fJlT~ 
-e.. 

Even though the second term in the asymptotic formula given is exponen-

tially small compared with the first, it is crucial for our results. 

We may write formula (3. 3 7) for r large and 8 :f=. 7i as 

- 't, p(ii-Oo) _ 
.f(B) -e I, L t ~ ( ii-&J] 

J ~ii'[)(ii-9) 

The first term is recognized as the representation of a wave going from 

e-=- 8
0 

to B -::. ii ; the second term represents its reflection from 

9 3. 6. Ma [SJI;) at · the Wavefront. 

We let f -i> o and then £., and '[,~ both tend to unity. 

get from (3.34) that 

Let 

Then we 

(3. 38) 
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and 

Then 

For the remainder of the work, -DL 1 is set equal to zero as nothing essen-

tial is lost and the details are less tedious. 

Note that 

so that 

(3.39) 

We examine the terms in (3.39) to see which give the major contribution. 

Let ~ be fixed and let f) tend to Ti 
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In the first term: 

is bounded as fJ -:> 7i 

and 

r''a. I [ ] l _,,.... 0 ) r . (1 r Oi -&) ... r -+ Ui -e as e -'> ii. (i) 

In the second term: 

( 

I ) ( Ti - f} Jlj.,_ 
- + u/;8 --
ii-8 4i ~a is bounded as e -') 7[ 

and 

as EJ-> 1i (ii ) 

In the third term: 

( E..:l)'lz.. 
/Ji "-9 

is bounded as 6 -~ ii 

and 

as 8 -::>7J. (iii) 

In the fourth term: 

is bounded as B -~ 7i 
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and 

fl}.._ 
The inverse Laplace transform of r 

as fJ ~ Ti (iv) 

We recall that the 

speed has been scaled to unity and that t "" o is at the wavefront. Then 

for e ""7i , at the arrival time of the first wavefront 

(i) has a square root singularity. 

(ii) is equal to zero. 

(iii) has a square root singularity. 

(iv) has a square root singularity. 

Thus in getting the wavefront contribution to ~e [~t) we can neglect 

the second term. 

Some formulae for the inversion of 

and 

are needed. These are supplied by Erdelyi ~· al. [S's-], p. 276. 

For b
1 

> Ci'1 );. 0 
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0 

0 

Thus 

7i (i; -Jih·(;r- tj'h .. 

0 ) otherwise 

and 

J 

otherwise 

where 

-::. {) - 90 
) 

and 

with 

' = ii-e. t>, 

Aside: Had we kept JCL, in (3.38) then the formula in p. 133 of Erdelyi 
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et. al.[S'.s-] would have been used, viz., 

where 

It seems superfluous to remark that 

means "the inverse Laplace transform of d (~) is t(t) 

Thus 

and 

I. ,,.._ 
-:If'J. -a,r 1 b 2. 

l.. .e_ I l I ~) ~ 1/a. r r ,, &lJ 

t: 1/.,_ 

f (I; -u.) lu.- a,) 

ol.. j<u.-ol.)()f'-u.) 

Let 

then 

II 

I 

lTlh.. 
r' d 

)0 J.w-[1-:)(..-"""'- w-) 

(3.40) 

(3. 41) 



where 

'l.. 
Now let ~ sin cp 

1: - oL 

(f-rJ.. 

and 

t elM. 

[Jit .... x.-- ~x.--w 
Thus 

100 

(3. 42) 

where K ( ~J is the complete elliptic integral of the first kind ( (.s- b J, 
p. 590). Also 

k -oL 

( ~ - rJ . .)" ,_ 

Near the wavefront 

( 1 F-W" { C>L- a, + (./; -~) -1S"} 

Jo J-u- (1- ~w-) 

and hence we neglect the (.C-ol) term in the numerator compared with fl..· Q 1 • 

Then 

(./; -o~..)(ci -a,) 

(<t' -cJ..)",. (3. 43) 



101 

We now denote the wavefront contribution to M~ (01 t) by M& (Wf) . Then, 

from (3.39) with (3.42) and (3.43) in mind, 

Note 

( t -oL)[ci.-a,) 

L¥-ol..)'h. 

is the wavefront. Then, for £)0 ~ 0 ~ 7i 

reduces to 

or 

(3 .44) 

, and for Be> 6 l7 4. ii , t =-ol.. 

(3. 45) 

i.e., a growing discontinuity in ~& is propagated with the wavefront. 

For 9 = Ti when 
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(3. 46) 

where 

M . •/..,_ 1\ ( I+ JL y ) 
/.)1~ C1 -- - -

0 II [2: ,[2: · 

By (3.46), the effect of the focusing on the applied moment is to give a 

square root singularity at e "'7i at the arrival time of the first wave. 

and 

f) I) 

Let 

It now remains only to get the reflected wave. So far 

since ..t .. oL is 

' e ~ II . Now 

.t--ot 
-M = ¥-ol 

- a' e -:. 11 -

the 

-::: 

1-cJ. 
((-ol. 

wavefront, 

..C-rJ.. 

~':. 0 

d..Tj- G ·So- ol.. 

( 

f e ~ 7J 

on the wavefront for 

The time for a wave to leave ~ -~ {)0 , go to f)-:. iT , and be reflected 

back to f)= Ti -8' is 

:: 
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since the speed is unity. 

Thus it is reasonable to interpret ~n-O-B 
0 as the time for 

a reflected wavefront and so in this case, we set ~~ 1 as a determina-

tion of a once reflected wavefront. 

Then, by (3.44), 

·;.,.. ( rr -e )''1- 2--
=- M 0 c~ n "in. -8 ~ - . -~~ · _ ~"J. ~,., .. u- e)1

' ... o ,o, i'l.u rr ~ 11 .. K c.' l 

Now from [s b J, p. 591, 

• OoJ a ~ 'h.'\ 't I . 

Thus, for 1j l {) "- .;(lj - 8 
0 

, 

"""'- 'J' I (3. 47 

i.e., there is a logarithmic singularity on the reflected wavefront. 

(3.45), (3.46), and (3.47) have all emerged from (3.35), and the 

function which synthesizes these is K l'ho\.) • 

G.N. Ward[.s-7] has considered the internal supersonic flow past 

a tube of nearly constant radius. The motion is governed by the wave equa-

tion. If cp (:'r'~ $, l::) is the scalar potential suitably scaled, then the 

Prandtl-Glauert equation for Cf is 

When for 1: ' 0 
, the Laplace transform of this equation 
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is 

The solution for <f which is independent of e is 

where }
0 

and Ko are modified Bessel functions. The solution, 

'Cf(,-, j>) , appropriate for internal flow, i.e~, the axis '\"'"-:;. o lies in 

the region of interest, at zero incidence is 

Ward goes on to examine the derivatives of the potential given by 

(~) "S I I 

and 

where is a constant. On taking the inverse Laplace transform of 

these two quantities, he finds 

0~ 
00 Yo ( .\)\. '\'") 

'A~t} ~l) { t L_ :: -+- /.) i 1'\. 
'Ot .).'\<\. 

J 
1\,.0:./ J;' ( ).~~) 

and 

00 ::r, ( ).\'\.,..) 'Ocp 
d. "I { .J.t' L ~ :X?\.t} :: + 

>-~ r,' (~M.) or a. 
'\IL..:. I 

>-~ is the 
th 

of J;C~)-=o, >.0 ': 0 where n zero 
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After a somewhat involved analysis, Ward finds that on the first 

wavefront, both ~ t and ~> r- carry a discontinuity of magnitude ~Jf . 

Then for the wave reflected from ~ ~ o has the behavior 

7r ~ log J l'_ - J ) and has the behavior log ) !_- I } where 

!_ ~ at the wavefront of the reflected wave. These results are found in 

Table 3 of Ward's paper. In Table 4, we find the square root singularity 

at the point ~~ o at the arrival time of the wave. These results confirm 

ours as given by equations (3.45), (3.46), and (3.47). 
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Appendix A. 

In connection with assumption (c) of f 1.4., it is reasonable to 

ask whether the inclusion of a term linear in r in the assumed form of u..­

would significantly alter the resulting equations. To examine this we trace 

the effect of such an additional term and show that it is indeed negligible 

to the order considered . · 

For simplicity, the analysis is restricted to the axisymmetric case 

and assumption (c) is revised so that the basic assumptions now are as follows: 

(a') 

(1:1) tt'T is negligible compared with ~a 9 and ..t:C9Cf> • 

c c) "y 'V -1.r te ,.!> + ("" -..,) -t.J, l aJ r) 

«0 "" u [8;~) -t- (""-R) ~ (6J r) . 

Assumption (H) implies 

Since eorv- ~ «.t"i 't' 

~ _ - .~)) ( e& 8 1- ecpq>) 

Assumptions (d) and (d) together with definitions (1.6) and (1.7) 

yield 
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NG 
E.~ 

[ lA, & + v "' CoD I: e + (r..v) -w] ;. 
R(•-vl..) 

N £k. 
[ \H4,& + l.l totS + ( ,,. v) '\J" J ':. 

~ R. (t-v"} 

Q "" E"'- [ ~ ..L 
( '\J"") 9 - u.~ J + R Q it(t+V) 

(A.3) 

Me 
£1! 

[ p>& +vp (.OH +(l+v).....r,] ::; 

u.(t-v"H~ 

M<f : 
Ek:r 

[)) ~)8 + ~ <.ot 9 + (l.U.I} iJi J 
11. {I· u') R 

These differ from equations (1.16) only in the additional term involving~ 
I 

in M9 and M<f . 

The momentum equations now become 

An order of magnitude analysis will now be made on these equations to decide 

which terms are comparable. 

For the problem of the static equilibrium of a spherical shell under 

an external pressure ~ , it is known that N9-: O(R~), (see f 7-7 of [ 28]). The 

static analysis of a uniform moment M&~~o applied to the edge of an incomplete 

spherical shell yields JV\ 8 :- 0 (M0 ) (see [58), p. 547). These observations are 

the motivation for the introduction of suitable dimensionless variables in equa-

tions (A.4). The definitions of N9 and M9 show that f\1} 9 : D(h N8), so that, for 

example, in the case of a sphere under external pressure, we shall have 

I ·~-·- •- ~--· - - - ·~-~---... ~,.. -- -...-· 
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and fv11J -: 0 lk R Po) . Analogous results hold for the case 

o~ an applied edge moment. Since we do not consider boundary layer phenomena 

a~Q since it is assumed that the wavelengths involved are large compared with 

the thickness of the shell, derivatives with respect to angle or time will 

h~ve the same order of magnitude as the undifferentiated quantities. 

Equations (A.l) and the definitions of Na and N<f' give that 

(A. 5) 

We shall make use of a "typical" stress resultant magnitude, N , in doing 

t "ne subsequent scalings. For the pressure case N -:. R ~ , and for the edge 

·moment case Non-dimensional quantities will be denoted by primed 

variables. Using (A.3), (A.4), (A.5), we introduce the dimensionless quan-

tities by 

N& 
_,_ N N' :. ,_..,~ 

{) 

Ncp -·- N N' ':: 
·-1)"3.. <f 

Qe -= 
__!_.. N 6)' 
1- """' 9 

Ma "'II -!...-- h N M~ 
11 (1- )ll.J 

N ....r' -£.S, : 
Eh. I 

p RN 
~· : 

E~ 

RN 14! u -: --
Ek 

-1J" 
RN ' -= w-
Ek. 
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When written in terms of the primed quantities, the momentum equations are 

. I I 

+- (N~-rv~)~t9 
R..'&.. t (1-v") 

[~l-'1:' I h. ~: !-' 1:' ] N&;e +- G9 =- .. -
~ T"' E " 

I 

t (M'&- M~) CMt9- llR Q' I. e ( 1-v') [ I h. r J 
Me,e ': 

T'" -- -til-l4 h 9 e: P' t' e R J ~· e 

where 

N' e ; u' 
'9 

.... v u.' (;) l; 8 ... (l+li) ...... 

~ = I v u,9 
... u' U>rB + (1 ... v) -c.r' 

Q~ ~ ( -1.- ~· + ' -<A.') tr 
.CVJ9 • 

M' 
I , I,. I 

-:: ~,)8 + v ~ c.otB + (IHI) R -w, 
9 

I I p' (.4t 8 
) h. , 

M~ ':: vf. .. 't (I+ v R 1J"I 
)I) 

The momentum equations in terms of the displacements are 

l+Y ( I 1 L ) --E.. u.. +'4(.0~9 
J- \) '9 

(A.6) 

. , --~~-------" ·-- ... 
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+ 

£."" (\)+ c.ol:'e)f' - '{1-,) ( ~, + E ""'"~e- t~) 

(1- 1)1.. J t 
-r-

where If only the terms of order f 0 
, £ , and 

these equations are replaced by 

J+)) ,_., 

I 

£,. 1.r'J t I 1:' 

~\.I (1+'' l'leJ I+-:;-.,•<)1.,... .. .-)(lo + l~"f1' E. v u. - £. -;: + c. 'C' u. .. :. "' ..., ., ... " r 

(A.6) 

J. 
£. are retained, 

(A. 7) 

The equations (A. 7) are bereft of -t..r, • Thus, -w; occurs only in the boundary 

conditions and even there it is of smaller order. The effect of ~ as con-

tained in the boundary conditions can be traced through in the problems consi-

dered and can be shown to be inconsequential in so far as first approximations 

are concerned. 

-· ---· ·-· --- ·- --· . - ------------------- - - --- - -
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The final equations (A.7) have a double characteristic c -~ 
r.:J~> . 

"' J I In carrying out the calculations, we include the term ... € 4) t-' t' of the third 

equation of (A.6) simply as a calculational aid, since this has the effect of 

splitting the double characteristic. The final results are obtained by allow-

ing the characteristics to coalesce once again. 
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Figure 1 
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Fi gure 2 
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R+th.---- -....,.;-o;;;;:::-------------
R~.th- - - - - - -

Fi gure 3 
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R+~h r------r-z'>_M:e_--' 

R-ih ----~~--------~ 

X 

Figure 4 
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z' i / ,> ( l ,. z' »' 

z'llz'z'lz'l 

l 
II\ 

lr- -- - - -- -- ->R~p 

/ l z' ,' , z' / z' t' / / ) -i.,a., 

I 

::t:::::t' B>' t±l ·~· z'bl /~/ ;E/ /~/ •'±/ Ez' J -\, 

Figure 5 
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