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Abstract

This thesis presents a novel framework for state estimation in the context of robotic grasping and

manipulation. The overall estimation approach is based on fusing various visual cues for manipula-

tor tracking, namely appearance and feature-based, shape-based, and silhouette-based visual cues.

Similarly, a framework is developed to fuse the above visual cues, but also kinesthetic cues such as

force-torque and tactile measurements, for in-hand object pose estimation. The cues are extracted

from multiple sensor modalities and are fused in a variety of Kalman filters.

A hybrid estimator is developed to estimate both a continuous state (robot and object states)

and discrete states, called contact modes, which specify how each finger contacts a particular object

surface. A static multiple model estimator is used to compute and maintain this mode probability.

The thesis also develops an estimation framework for estimating model parameters associated

with object grasping. Dual and joint state-parameter estimation is explored for parameter estimation

of a grasped object’s mass and center of mass. Experimental results demonstrate simultaneous object

localization and center of mass estimation.

Dual-arm estimation is developed for two arm robotic manipulation tasks. Two types of filters

are explored; the first is an augmented filter that contains both arms in the state vector while the

second runs two filters in parallel, one for each arm. These two frameworks and their performance

is compared in a dual-arm task of removing a wheel from a hub.

This thesis also presents a new method for action selection involving touch. This next best touch

method selects an available action for interacting with an object that will gain the most information.

The algorithm employs information theory to compute an information gain metric that is based on

a probabilistic belief suitable for the task. An estimation framework is used to maintain this belief

over time. Kinesthetic measurements such as contact and tactile measurements are used to update

the state belief after every interactive action. Simulation and experimental results are demonstrated

using next best touch for object localization, specifically a door handle on a door.

The next best touch theory is extended for model parameter determination. Since many objects

within a particular object category share the same rough shape, principle component analysis may

be used to parametrize the object mesh models. These parameters can be estimated using the action

selection technique that selects the touching action which best both localizes and estimates these



viii

parameters. Simulation results are then presented involving localizing and determining a parameter

of a screwdriver.

Lastly, the next best touch theory is further extended to model classes. Instead of estimating

parameters, object class determination is incorporated into the information gain metric calculation.

The best touching action is selected in order to best discern between the possible model classes.

Simulation results are presented to validate the theory.
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Chapter 1

Introduction

1.1 Motivation

Robots are more frequently asked to carry out complex tasks in unstructured environments. During

tasks that involve grasping and manipulation of physical objects, accurate knowledge of the robot’s

and the grasped objects’ pose is critical. Accurate knowledge of these poses is made difficult by

common limitations of modern robotic systems. Kinematic errors due to joint sensor errors, tendon

slack, calibration errors and perception errors in practical systems affect the quality of manipulation

and grasping tasks, often leading to a poor grasp and task execution.

Particularly, when precise manipulation of objects is needed, a filtering and estimation framework

is required to maintain accurate state estimates from a diverse set of sensors. Precise estimation

requires a filtering and measurement system. Many available robots are equipped with multiple

visual and kinesthetic sensor modalities. A framework to fuse the measurements from these multiple

modalities is needed to provide an accurate state.

A common problem faced with grasping is the uncertainty in the position of the object in question.

Visual pose estimation is often noisy and is not accurate enough for delicate grasping or manipulation.

The use of touch before a grasp is made can be used to accurately locate the object relative to the

hand. The choice of where to touch is an obvious problem.

Humans can easily identify objects they have not seen before, but such identification is currently

still a difficult problem for machine vision. Similarly, grasping of unknown objects is very much

an open research problem. Before grasping and manipulating these unknown objects, deliberate

interaction with these objects such as touching and/or probing to build a geometric model may be

used in order to find appropriate grasp-points for grasping.

This thesis develops a framework for estimation of both the manipulator and object state using

multiple sensing modalities. The problem of touch is localizing with touch is also addressed.
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Figure 1.1: Dual-arm robot provided by DARPA for the autonomous robotic manipulation software (ARM-S)
competition.
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The above problems and issues were faced during the DARPA autonomous robotic manipulation

software (ARM-S) challenge. The first phase of this challenge consisted of creating a software system

composed of various algorithms thereby endowing the government furnished ARM-S robot, shown in

Figure 1.1, with the ability to autonomously complete various tasks requiring precise manipulation,

such as key insertion and drilling a point on a block of wood.

1.2 Review of Existing Literature

The ability to detect, localize, and track an object to be grasped or manipulated has been an

important research thrust for some time. Earlier work focused on one primary sensor, namely

vision [1–6]. Recently, a few works have considered the fusion of sensors which might naturally

comprise a robotic grasping system. Most papers that discuss utilizing multiple sensors often use

them at different stages of a grasp task. Allen et al. [7] used vision and tactile sensing to estimate the

finger contact position and applied forces. In further work, Allen et al. [8] extends the sensor suite

to include a force/torque sensor, however they do not develop a framework to combine the sensors

synchronously. Prats [9] combines vision, force/torque and tactile sensors in a control scheme for

manipulation tasks such as sliding a door open. Their work did not seek to accurately localize the

object. Control is done via a virtual visual servoing method (VVS) in which they track an edge of

the door. Fusion is not done in a traditional sense; first it done with only the vision and tactile

sensor and then the results are then used as an input in an impedance force controller. Schmid et

al. [10] also incorporates a multi-sensor control framework towards opening a door, however, the

vision sensor is only used to detect the door handle.

In object localization work, most have not focused on using multiple sensors. Petrovskaya [11]

uses only tactile sensors to localize an object using a novel particle filter approach. Similarly,

Gadeyne et al. [12] uses a robot with force sensors only for object localization using Markov local-

ization techniques. Corcoran [13] expanded the above work by proposing a model to incorporate

hand-object tracking and does not incorporate any other sensors to the suite.

A hybrid system formulation is a natural approach in grasping and manipulation tasks. A large

portion of the literature involves hybrid control in such tasks [14–18]. However, only a smaller

portion concerns hybrid estimation. Gadeyne et al. [19] relates most to the contributions of this

thesis - they incorporate a hybrid probabilistic framework for estimating various contact formations

of a grasped object in compliant motion tasks. The approach in this thesis differ in that it applies

a multiple model approach, and works well with an extended Kalman filter. While I implement a

static estimator that is sufficient for the experiments presented in Chapters 3, a more sophisticated

hybrid estimator such as a generalized pseudo-Bayesian estimator (GPB) or an interacting multiple

model (IMM) [20] can be used for manipulation and tracking tasks.
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In the field of computer vision research, shape and appearance have been a natural combination

for both object modeling and object detection [21], [22], [23], as opposed to object tracking.

Appearance-based tracking, which typically refers to tracking in images, is a vast subject. Cootes

[24] utilizes active appearance models, which are shape-free texture patches that are learnt from

annotated training images and are iteratively matched in candidates images. These appearance

models can only deform in ways which are expressed in the training set, and are inherited by active

shape models [25]. Appearance based tracking of 2D blobs has also been popular, especially with

the use of the mean-shift algorithm [26] and the extension through scale space [27]. Similarly, kernel-

based approaches have also been implemented successfully [28]. The use of histograms have been

widely used in visual tracking. [29] used color histogram in a probabilistic framework.

Similarly, the combination of shape and silhouettes has been used for model reconstruction [30],

[31]. The use of silhouettes has had a large impact on people tracking [32], [33]. Using silhouettes as

a method for tracking hand and manipulator have also been considered. Camarillo et al. [34] used

silhouettes for tracking a flexible tendon manipulator to obtain its shape. Our experiments [35] on a

tendon driven BarrettTMWAM arm show a benefit from using silhouette information, the fusion of

additional appearance, depth, and tactile information provides superior results. Sudderth et al. [36]

estimated hand pose using a probabilistic framework based on nonparametric belief propagation.

Their use of a Gibbs sampler may not lend itself to online tracking. Athitsos [37] estimated hand

pose in a probabilistic manner as well, but uses an offline database of synthetic images to provide a

ranked list of plausible poses, and is not a tracking framework.

Since vision can provide a large amount of information for accurate pose registration [38], many

researchers have naturally used vision in one way or another for robotic grasping and manipulation.

However most prior works have not combined multiple visual techniques and/or sensors. Kragic [2]

used model-based pose estimation using vision by tracking edges to estimate grasp location of block

objects. Saxena [3] learnt grasping points from 2D imagery using supervised learning on a training

set of synthetic images. Multiple views are triangulated to provide grasp points to the objects.

Saxena [4] also learnt orientation of objects using 2D imagery deemed useful for object grasping.

Collet [39] used local descriptors from a set of training images to build a metric 3D model. Pose

registration is done by matching the local descriptors and a novel combination of the RANSAC and

mean-shift algorithm. Visual hand tracking has been quite popular for gesture recognition [36] but

has also been researched for manipulation [40]. Prats [9] combined various sensors for multi-sensor

controller used vision for pose estimation and used the method of virtual visual servoing. Our

previous work [41] similarly used multiple sensors but for object pose estimation. The visual sensor

tracked 3D SIFT features of objects in the hand to provide a pose-based measurement.

One of the most recent and comprehensive studies of object and manipulator pose estimation

has been done by Krainin et al. [42], who estimate both the object’s pose and the joint angles
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of the manipulator for the application of object modeling. The approach in this thesis differs in

that it combines multi-sensory data with different techniques for extracting information from the

available images. We also fuse visual data with tactile data for accurate object pose estimation

in manipulation tasks. To the author’s knowledge, combining such information for tracking both

object and manipulator has not been addressed previously.

The process of online manipulator tracking based on mechanism shape is a form of on-line

calibration. There is a vast literature on calibration of robotic manipulators and is thought as a

well-studied field. Early work dealt with parallel mechanisms and Stewart platforms. Visual based

calibration is a natural form of calibration and has an extensive literature. Zhuang [43] attempted

to calibrate both the visual sensor and the manipulator simultaneously to reduce error propagation.

On-line calibration is often coined self-calibration in that there is no external measurements and/or

ground truth data. A classic paper on self-calibration is by Ma [44] in which calibration is solved for

the hand-eye (head-eye) geometry and the intrinsinc parameters of the camera. This only applies

to one kinematic chain ending at the camera. More closely to our problem is the work by Bennett

et al. [45] where they analyze the closed chain between the manipulator and the vision system. For

an overview of robot calibration in general, the reader is directed to a reference [46].

There is a vast literature in kinesthetic and tactile estimation. Early works include Grimson

[47], which used tactile sensors to identify and localize polyhedral objects, and early work of Allen

[7, 8, 48], which combined vision with tactile sensors to identify and localize objects. Gadeyne [12]

use a Markov based approach for force controlled robots and demonstrated localization on a box.

Gorges [49] used tactile and force sensors to explore an object using skills of continuous and discrete

movements (for example, following an edge). Recently, tactile localization has become increasingly

prevalent with the advent of better sensors. Corcoran and Platt [13,50] introduce a particle filter and

a novel measurement model for localizing an object in hand on Robonaut. Lastly, Petrovskaya [51]

localizes a box based on tactile sensors and a novel particle filter to overcome the computational

complexity - this work adopts their measurement model.

Action selection refers to choosing the best action from a set possible actions or behaviors which

maximize a cost function. The problem of selecting actions is often encountered in the motion

planning literature. While there are various ways to perform action selection, the approach in this

work is based on expected information gain. Generally, information gain has been used extensively

in the next best view problem, in which a robot actively chooses where to view or look next in order

to gain the most knowledge of the problem at hand. In visual active search, Davison [52] used

information theory with Gaussian uncertainty models for guided image processing, such as feature

tracking. In the domain of active recognition, early work by Arbel [53] on gaze planning used an

entropy map to create a trajectory that maximizes disambiguation of object recognition. In recent

work, [54] optimizes a cost metric based on information gain to determine the best action for model
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identification and pose estimation of a certain object. In terms of model generation, Krainin [42]

uses the change in entropy to determine the next best view in order to build a 3D surface model of

a grasped object.

Information gain has been extensively used in robotic motion planning and exploration. Thrun,

Fox and Burgard [55] proposed to actively sense and navigate in a localization context of occupancy

grids by minimizing entropy to determine the next best actions. A major difference between our

work is that for each choice of action, we make no assumption that the action will complete. More

recently, in the domain of exploration, Stachniss et al. [56] also uses the expected information gain

to determine the best action to explore. Here, a Rao-Blackwellized particle filter is used to localize

and map the environment. The novelty of this paper is computing the expected gain on two random

variables, the pose of the robot and the map of the environment. However they too, also assume

that each action will complete.

In the context of manipulation, Hsiao’s [57] tactile exploration of objects implemented a decision-

theoretic approach and an approximate POMDP, instead of information theory, to select actions for

exploration. Schneider [58] uses a bag-of-features approach that combines tactile sensors with an

information gain to determine a grasping strategy for object identification.

The contribution of this thesis is automating touch-based localization by exploiting information

theory to determine the next best touch action. Also, unlike previous work with information-gain-

based action selection, we consider actions as nondeterministic, since the interaction with the object

is modeled to be stochastic due to the uncertainty in the state of both the object and robot.

1.3 Thesis Organization and Contributions

The remainder of this thesis is structured as follows. Chapter 2 reviews the technical background

material and notation on traditional pose registration methods, camera models, and various filtering

frameworks used to develop the thesis’ contributions and experimental results.

Chapter 3 develops a novel framework for simultaneous object and manipulator tracking. First,

the assumed system configuration used for experimental results is discussed, followed by the grasping

and object models used for estimation. The general state representation used in this thesis is

described. Next, the state predictive model for grasped objects is developed.

The measurement models used in the estimation process are broken down into their 3 parts:

Section 3.5.1 visual manipulator tracking, Section 3.5.2 visual object tracking and Section 3.5.3

kinesthetic measurements. Visual manipulator tracking is further broken down into 3 sensory cues.

The first is appearance-based that utilize features on the manipulator and hand. These features are

found in left and right images of the stereo system using the technique described in Section 3.5.1.1

The disparity from the left and right images is computed and used to produce a 3D pose of these
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features. The second cue is shape-based and exploits the sensory information from a 3D-RGB

camera. Section 3.5.1.2 discusses how points are extracted from the cloud of points produced by

3D-RGB sensors that match the shape of the manipulator and are used in a variant of articulated

iterated closest point. The corrected joint angles are then used to as the measurement. The last cue

uses the silhouette of the manipulator. The silhouette of the manipulator’s model is first rendered

using an offscreen OpenGLTMframework to produce a binary image. The contour of which is easily

extracted and iteratively, matched using a technique described in Section 3.5.1.3, to edges in the

real camera image.

Section 3.5.2, visual object tracking, is similarly broken down into 3 sensory cues. The first is also

feature based, in which SIFT or SURF features are detected and matched to a learnt set of features

for each object. The 3D locations of the features found from the stereo cameras are then used as

measurements. The second cue is also shape-based but uses a one-step closest point matching, which

is described in Section 3.5.2.2. The third is also silhouette-based in which the offscreen renderer,

renders the object model at various sigma points and the contours of which are matched to the

image of the real camera image. Section 3.5.2.3 describes this process in detail.

The kinesthetic measurement models are described in Section 3.5.3. First, the force-torque

measurement model is derived for use with the force-torque sensor. Second, the tactile measurement

models are also described that match the tactels location and normal to the object surface and surface

normal in Section 3.5.3.2. Lastly, in Section 3.5.3.3, when tactile information is not available, finger

position can be used as a pseudo-measurement of the joint measurements of the hand.

Hybrid estimation theory is developed for finger contact modes (how fingers contact the object’s

surface) and is described in Section 3.6. A state multiple model (SMM) estimator manages the

discrete state of the finger contact modes and maintain a mode probability over time.

Next, model parameter estimation is developed for estimating non-dynamic quantities such as

mass and center of mass of the grasped object in hand. Two frameworks are described in Section 3.7.

First, joint estimation typically augments the state vector to include these model parameters and

the same filter of choice is used. Second, dual estimation maintains another filter that run in parallel

that updates only the model parameters.

Sections 3.8 develops a novel estimation framework for two arm manipulation. While preceding

sections dealt with single-arm, single-object grasping, this section explores tasks that require two

handed manipulation. One framework involves running two filters in parallel, one for each arm, and

the second framework augments the state vector to include both arms. To use the predictive model,

both frameworks maintain two estimates of the object’s pose relative to each hand. Since these two

states represent the same object, the states must be constrained to point at the same pose in space.

The two independent filters compute a simple mean estimate the same location in space, while the

augmented filter has the ability to include nonlinear constraint equations into the filter. Both of
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these methods are described in Section 3.8.1 and Section 3.8.2, respectively.

Chapter 4 develops a novel method for action selection involving touch. This new algorithm,

termed next best touch, selects the best touching action which attempts to gain the most informa-

tion from interacting with an object. Using information theory and an estimation framework, an

information metric is derived based on a probability belief that depends upon the task. This belief,

representing the certainty, may be on the pose of the object, a model parameter or a model class of

an object. Section 4.1 investigates the next best touch for localization. Section 4.4.1 extends this to

include an unknown model parameter and Section 4.4.3 extend the theory to model classes.

Chapter 5 reviews the contributions of the thesis and discusses future research directions.
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Chapter 2

Background

This chapter provides background and context for the contributions of this thesis. Since the the-

sis concerns the pose estimation of grasped objects and the pose of manipulators, standard pose

estimation techniques are described in Section 2.1 and Section 2.2. Secondly, since many of the

measurement models employed utilize visual information, the CAHVOR camera model used in the

experiments is discussed in Section 2.3. Lastly, since the core of the thesis concerns estimation, the

various filters used in the experimental results are described in detail in Section 2.4.

2.1 Iterated Closest Point

Iterated Closest Point (ICP) is a classical method for geometric alignment of two sets of 2D or 3D

point data. ICP is often used as a pose registration tool to align point cloud data (typically in

3D). Pose registration of objects is common problem in robotics, particularly in manipulation. ICP

matches two point clouds, one being the point cloud of the object model and the other being the

sensed data of that object. Although many variants of ICP have been proposed (an overview of

these variants may be found in [59]), the general aim is to minimize a cost function that describes

the alignment between the two point clouds.

A brief overview of the ICP algorithm by Besl [60] is described. ICP attempts to align the

model points X = {xi}, i = 1, . . . , Nx and the sensed data points P = {pi}, i = 1, . . . , Np assuming

Nx = Np where pi corresponds in some way to a matching point xi with the same index. The cost

function typically takes a mean square form:

E(q) =
1

Np

Np∑
i=1

‖xi −R(q)pi − t‖2 , (2.1)

where q is the quaternion representing a rotation, between point cloud frames with R(q) representing

the SO(3) rotational matrix and t is the vector representing the translation. To minimize Equa-

tion 2.1, it will be required to calculate the center of masses of both the model points and the sensed
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(a) Initial starting point. (b) Intermediate matching point.

(c) Intermediate matching point. (d) Final matched model.

Figure 2.1: Iterative closest point matching process of flashlight model points, xi (red) to the data points,
pi (green)

data points:

µx =
1

Nx

Nx∑
i=1

xi and µp =
1

Np

Np∑
i=1

pi . (2.2)

The cross covariance between the model point X and the data points P is:

Σpx =
1

Np

Np∑
i=1

[(pi − µp)(xi − µx)T ] (2.3)

=
1

Np

Np∑
i=1

[
pix

T
i

]
− µpµTx . (2.4)

An anti-symmetric matrix Aij = (Σpx − ΣTpx) is formed and is used to form a column vector ∆ =

[A23A31A12]
T

. The cross covariance and the column vector are used to form the symmetric 4 x 4

matrix Q(Σpx):

Q(Σpx) =

tr(Σpx) ∆T

∆ Σpx + ΣTpx − tr(Σpx)I3

 . (2.5)

The unit eigenvector that corresponds to the maximum eigenvalue of Q(Σpx) is the optimal quater-

nion, q. The optimal translation is thus:

t = µx −R(q)µp . (2.6)
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2.2 Articulated Iterated Closest Point

Figure 2.2: General formulation for articulated iterated closest point (AICP) diagram with two articulated
cloud of points. The key variables and frames are shown

Articulated Iterated Closest Point (AICP) is simply an extension to the general ICP algorithm

discussed in Section 2.1. Instead of minimizing an error function to solve for the 6DOF pose of an

object, AICP aims at minimizing a similar error function but to solve for joint parameters of a rigid

articulated body like a manipulator. Manipulators are commonly constructed from 1DOF rotational

joints (Θ). In this case, one can formulate the error function as:

E(Θ) =

NL∑
l=1

Npl∑
s=1

min
i
‖GBl(Θ)ml

i − dBs ‖ . (2.7)

This function is the sum of squared distances between model points ml of lth link to the closest

sensed data point in the world frame FB . The minimization of this error function may be done via

a gradient descent approach or an often used variant like the Levenberg-Marquand algorithm [61].

Section 3.5.1.2 discusses the derivation of such a gradient descent type approach as well as a fast

matching approximation specialized for cylindrical links.

2.3 CAHVOR Camera Model

In utilizing monocular or stereo cameras as part of the estimation system hardware, a model must

be used to calibrate the cameras both extrinsically and intrinsically. The simplest is the thin lens
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model. The most common is the pinhole camera model, where the lens model’s aperture is shrunk

to zero or realistically infinitesimally small. Other camera projections often used are perspective

projection and orthographic projection. Perspective projection preserves linearity and parallel lines

do not stay parallel. On the contrast, orthographic projection becomes similar to a perspective

projection when the distance to the scene is much larger than the focal length.

Two popular complex camera models are the Tsai model [62] and the family of CAHV models that

was originally published by Gennery [63]. The CAHVOR models add corrections to lens distortions,

which are not included in the CAHV model. The CAHVORE model is an “E”xtended version of the

CAHVOR models and can handle very large distortions that are found in fish eye lenses.

Each letter in the model name, represents a parameter in the model. The C component specifies

the vector that represents the translation of the origin of the world coordinate system to the focus

point of the camera. In other words, it specifies the camera center of focus, i.e., the 3D coordinates

of the pinhole focus point.

The A component specifies the vector that points in the normal direction of the sensor plane.

The H and V components specifies vectors about the Horizontal and Vertical information vectors.

Although, these vectors seem arbitrary, they provide an efficient way to compute the 2D image point

(x) from a 3D world point (P ):

x =
(P − C)H

(P − C)A
. (2.8)

The O component specifies the optical axis, which is used only for lens-distortion correction.

This is typically nearly equal to A.

Finally, the R component specifies the radial lens distortion coefficients.

2.4 Estimation Frameworks

Sections in the remainder of this thesis uses different estimation frameworks and an overview of these

frameworks are described below. These frameworks aim at computing a belief about the state of the

system, which reflects a model of the robot’s internal knowledge about the state of the environment.

The Markov assumption is commonly used in practice and is used throughout this thesis. The

assumption postulates that if the state is known, then all past and future measurements are inde-

pendent of the state. The assumption allows for simplification of the following frameworks.

In addition, some frameworks, particularly the Kalman variants, require a predicted measure-

ment. To avoid confusion in the notation throughout this thesis, Z is used to denote predicted

measurements and z is used to denote actual measurements.



13

2.4.1 Bayes’ Filter

The Bayes’ filter is the most general algorithm for calculating the state probability distribution (also

referred to as the state belief). The Bayes’ filter is discrete time and is recursive. The Bayes’ filter

possesses two essential steps. At each time step, k, the first step is to process the control input

uk by calculating a belief over the state Xk based on the prior belief over the state Xk−1 using a

predictive model, and is often called the prediction step. The second step is to process the sensory

measurements by calculating the posterior belief based on the belief in the prediction step using a

measurement model. This step is often called the measurement update step. The algorithm is simple

- for all Xk compute the posterior probability p(Xk|z1:k, u1:k):

Prediction: p(Xk|z1:k−1, u1:k) =

∫
p(Xk|Xk−1, z1:k−1, uk) p(Xk−1|z1:k−1, uk−1) dXk−1 (2.9)

Update: p(Xk|z1:k, u1:k) =
1

η
p(zk|Xk, z1:k−1, u1:k) p(Xk|z1:k−1, u1:k) , (2.10)

where η is a normalizing factor, which need not be usually computed as the belief can be normalized

after calculating the entire distribution. If η needs to be explicitly calculated:

η = p(zk|z1:k−1, u1:k) =

∫
p(zk|X̂k, z1:k−1, u1:k) p(X̂k|z1:k−1, u1:k) dX̂k. (2.11)

p(Xk|Xk−1, z1:k−1, uk) is the state transition probability, which is based on a predictive model.

It specifies how the environment state evolves as a function of the control inputs, uk. Robot en-

vironments are stochastic, and that is why the state transition is not deterministic, but rather

probabilistic. The measurement probability, p(zk|Xk, z1:k−1, u1:k), based on a measurement model

which captures the probabilistic relation between zk and the state, Xk.

2.4.2 Histogram Filter

The histogram filter is a discretized version of the Bayes’ filter for continuous state spaces and is the

simplest nonparametric filter. This filter quantizes and approximates the continuous state space,

Xk, into a finite regions: dom(Xk) = x1,k ∪ x2,k ∪ . . . xN,k and represents the posterior belief over

each region as a single probability value at time tk.

Here xn,k is the nth bin of the N total bins that comprise the state space quantization. The

histogram filter as an approximation can be formulated as the discrete Bayes’ filter:

p(Xk=xi|z1:k−1, u1:k) =

N∑
j=1

p(Xk=xi|Xk−1 =xj , z1:k−1, uk) p(Xk−1 =xj |z1:k−1, uk−1) (2.12)

p(Xk = xi|z1:k, u1:k) =
p(zk|Xk=xi, z1:k−1, u1:k) p(Xk=xi|z1:k−1, u1:k)∑N

j=1 p(zk|X̂k−1 =xj , z1:k−1, u1:k) p(X̂k=xj |z1:k−1, u1:k)
. (2.13)
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2.4.3 Kalman Filter

One the most widely used Bayes’ filters is the Kalman filter [64] for both linear and gaussian type

systems. The Kalman filter and its variants are used to compute the belief of continuous states and

are not suitable for discrete state like the histogram filter. In addition, alone it cannot handle hybrid

states spaces, but can be combined with other Kalman filters in parallel as discussed in Section 3.6.

The Kalman filter represents the belief at time k by a Gaussian PDF for Xk with mean Xk

and a covariance Pk. The predictive dynamic model that leads to the state transition probability

p(Xk|uk, Xk−1) must be linear and with added Gaussian noise. Provided it is linear, the state

transition can be expressed by:

Xk = FkXk−1 +Bkuk + wk . (2.14)

Fk and Bk are matrices of size L×L where L is the dimension of the state vector Xk. The random

variable wk is a zero mean Gaussian random variable which models the process uncertainty having

covariance Qk.

The measurement equation that leads to the probability p(zk|X̂k, z1:k−1, u1:k) must be also linear

with added zero mean Gaussian noise ζk, that is, it takes the following form:

Zk = HkXk + ζk . (2.15)

Hk is the measurement matrix of size k × L, where k is the dimension of the measurement vector.

The random variable ζk describes the errors on the measurement models and is assumed to be a

multivariate Gaussian with zero mean and covariance Rk.

The mean and covariance of the filter are propagated via Equations (2.14) in the following

manner:

µk = Fkµk−1 +Bkuk (2.16)

Σk = FkΣk−1F
T
k +Qk . (2.17)

The update step uses Bayes Theorem with Equation 2.10 along with the measurement equa-

tion 2.15. The Kalman gain matrix Kk is a variable that determines how the filter should weight

the measurements. Highly uncertain measurements will yield a low Kalman gain and vice versa,

Kk = ΣkH
T
k

(
HkΣkH

T
k +Qk

)−1
(2.18)

µk = µk +Kk (zk −Hkµk) (2.19)

Σk = (I −KkHk) Σ . (2.20)
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The optimal Kalman filter can illustrate the benefit of fusing complementary sources of data.

Provided that the measurements are complementary and the underlying system is first order, the

optimal Kalman filter fuses the measurements optimally according to the sensor’s uncertainty char-

acteristics [64,65].

2.4.4 Extended Kalman Filter

The extended Kalman filter is an approximation for nonlinear state transitions and measurement

update:

Xk = f (Xk−1, uk) + wk (2.21)

Zk = h(Xk) + ζk . (2.22)

The key is to linearize these function about the current state point. The Jacobian matrices

produced from the linearization of functions f(·) and h(·) are:

Fk =
∂f

∂Xk
, Bk =

∂f

∂uk
, Hk =

∂h

∂Xk
. (2.23)

In this case, the mean and covariance of the filter are propagated in the prediction step in a

similar manner:

µk = f (µk−1, uk) (2.24)

Σk = FkΣk−1F
T
k +Qk . (2.25)

In the updating step, the Kalman gain matrix is also computed a similar fashion, and the updated

mean and covariance for the Gaussian PDF on Xk are given by:

Kk = ΣkH
T
k

(
HkΣkH

T
k +Qk

)−1
(2.26)

µk = µk +Kk (zk − h (µk)) (2.27)

Σk = (I −KkHk) Σ . (2.28)

2.4.5 Sigma Point Kalman Filter

The Sigma Point Kalman Filter (SPKF), a non-linear filter which uses the unscented transform, was

first introduced by Uhlmann and Julier [66]. The SPKF represents the state probability distribution

as Gaussian using a set of deterministic sample points. The points capture the mean and covariance

of the gaussian random variable to the 3rd order (in Taylor series expansion) when propagated

through a nonlinear system. The unscented transform is a mathematical method for recapturing the
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Figure 2.3: Unscented transformation of sigma points through prediction and measurement models.

lower-order statistical moments of a random variable after mapping by a nonlinear function. These

deterministic sample points are referred to as sigma points and are sampled from the covariance of

the state distribution.

In the same fashion as the discrete-time Bayes’ filter, there exists prediction and measurement

update steps. Assume there exists a nonlinear dynamic predictive model f , which is a function of the

system state Xk and control inputs uk at time tk. Similarly, there exists a nonlinear measurement

model h relating measurements Zk at time tk to state Xk.

Xk = f(Xk−1, uk−1, wk) , wk ∼ N (0, Qk) (2.29)

Zk = h(Xk, ζk) , ζk ∼ N (0, Rk) . (2.30)

The discrete time Gaussian white noise processes, wk and ζk, respectively, model process and mea-

surement uncertainty, while Qk and Rk represent their respective covariances. An estimate of the

state Xk and the belief of the state Pk are propagated as sigma points χ in two stages of prediction

and update.
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2.4.5.1 Prediction

As a first step to predict the state forward in time, the state and covariance are augmented to form

the augmented state, Xa and its augmented covariance, P a are constructed as follows:

Xa
k−1 =

Xk−1

~0

 , P ak−1 =

Pk−1 0

0 Qk

 . (2.31)

The 2L+ 1 sigma points, with L = dimXa, are constructed from the augmented state as follows:

χa0,k−1 = Xa
k−1 (2.32)

χai,k−1 = Xa
k−1 +

√
(L+ λ)P ak−1

i

(2.33)

χai+L,k−1 = Xa
k−1 −

√
(L+ λ)P ak−1

i

, i = 1 . . . L (2.34)

with λ = α2(L+ κ)− L ,

where χal,m is the lth sigma point vector at time tm, and the square root should be interpreted as

the matrix square root. the notation
√
· i implies the ith column of the square root matrix. The

variable α determines the spread of sigma points, and κ is a secondary scaling parameter usually set

to zero.

As the state was initially augmented, separate the resulting augmented sigma points to obtain

the state, χi, and noise, Wi, portions:

χak−1 =

χi,k−1

Wi,k−1

 , (2.35)

to pass the state sigma points through the dynamical model and obtain the predicted sigma points:

χi,k = f(χi,k−1,Wi,k−1) . (2.36)

From these predicted sigma points, the predicted state and belief can be appropriately combined:
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Xk|k−1 =

2L∑
i=0

πi χi,k (2.37)

Pk|k−1 =

2L∑
i=0

πi [χi,k −Xk|k−1][χi,k −Xk|k−1]T (2.38)

where πi =


λ

L+λ if i = 0

1
2(L+λ) otherwise .

2.4.5.2 Update/Correction

In the update step the sigma points are propagated through the measurement model to produce a

set of predicted sigma measurements.

Zi,k = h(χi,k), i = 1 . . . L . (2.39)

The mean predicted measurement and the innovation covariance may be calculated in the usual way:

ẑk =

2L∑
i=0

πi Zi,k (2.40)

Pzz,k =

2L∑
i=0

πi (Zi,k − ẑk) (Zi,k − ẑk)
T

+Rk . (2.41)

In order to compute the Kalman gain Kk, the cross state-measurement covariance must be computed

by:

Pzx,k =

2L∑
i=0

πi
(
χi,k −Xk|k−1

)
(Zi,k − ẑk)

T
(2.42)

Kk = Pzx,k Pzz,k . (2.43)

The updated state and covariance may be found using the Kalman gain Kk:

Xk = Xk|k−1 +Kk (zk − ẑk) (2.44)

Pk = Pk|k−1 −Kk P
T
zx,k . (2.45)

2.4.5.3 Update for High-Dimensional Measurement Vector

Since part of the sensor data generated by the stereo vision and 3D ranging sensors consists of

“point clouds”, the dimensions of the measurement vector can potentially be very large. In this case,

the Kalman gain computation is costly due to the matrix inversion of a potentially large matrix.
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Therefore we adopt the serial processing method of [67], which uses the Sherman-Morrison-Woodbury

identity to alleviate the large matrix inversion. As with the standard UKF, the predicted sigma

points are passed through the measurement model to produce a set of N predicted measurements,

with N being the number of actual measurements:

Zni,k = h(χi,k), n = 1 . . . N, i = 1 . . . L . (2.46)

The mean predicted measurement, ẑnk , and its statistical Jacobian factor, Znk , are found as:

ẑnk =

2L∑
i=0

πiZni,k (2.47)

Znk = [ . . .
√
πi (Zni,k − ẑnk ) . . . ] . (2.48)

Finally, the updated state and belief are obtained using the following serial computation by process-

ing each actual measurement znk and the associated noise covariance, Rn,k sequentially (summation)

as opposed to stacking all measurements:

Ck =

N∑
n=1

(1 + Znk
TR−1

n,kZ
n
k ) (2.49)

dk =

N∑
n=1

Znk
TR−1

n,k(znk − ẑnk ) (2.50)

Xk|k = Xk|k−1 + XkCkdk (2.51)

Pk|k = XkCkXT
k (2.52)

where znk is the nth actual sensor measurement at time tk, and Xk is the state statistical Jacobian:

Xk = [ . . .
√
πi (χi,k −Xk|k−1) . . . ] . (2.53)
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Chapter 3

Estimation for Grasping and
Manipulation

This chapter discusses the problem of state estimation for robotic grasping and manipulation. The

assumed robotic system sensory configuration is first discussed, followed by corresponding object

and state models used in the estimation process. Both the predictive and the various visual and

kinesthetic measurement models implemented are presented in detail. A hybrid estimation scheme

for estimating both continuous states (such as the grasped object pose) and discrete states (such as

the discrete object contact modes), respectively, are presented. Experimental results are first shown

for the case in which the robot grasps an object statically. Dual estimation principles for estimating

both state and model parameters simultaneously are presented. Specifically, the estimation of the

robot, the grasped object state and the center of mass parameter are discussed. Estimation for

coordinated dual-arm grasping and manipulation is also presented. Specifically, details of the dual-

arm predictive models, the measurement models and the use of non-linear constraints into the two

arm estimation framework are presented. Lastly, visual arm tracking, dual estimation and dual-

arm estimation experimental results are presented using the DARPA ARM-S robot described in

Section 1.1.

3.1 Assumed System Configuration

The estimation approach developed in this thesis is based on the following assumptions and assumed

general system configuration (see Figure 3.1). A serial chain manipulator is rigidly affixed to a base,

or to a (possibly moving) torso. The manipulator is assumed to possess 6 or more internal degrees of

freedom (though the technique could be adapted to a kinematically insufficient manipulator which

possesses 5 or fewer DOF.).

• Let Θ denote the joint variables of this mechanism.

• Let FB denote a reference frame rigidly affixed to the base or torso which supports the arm.
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(Θ,θ)

FP
FO

GPO

(Φ,φ)

FV

FB

XXXXy

Figure 3.1: System configuration and state representation

• Let Φ denote the joint variables of the neck mechanism.

• Let FV denote a frame attached to the sensor suite.

• Let FP denote a “palm” reference frame attached to the manipulator’s distal end.

It is assumed that an articulated multi-fingered robot hand is attached to the manipulator, with

a fixed offset relative to the palm frame. It is also assumed that a visual sensor suite (defined above)

is rigidly attached to the end of an articulated (serial chain) pan-tilt or “neck” mechanism. The

base of the neck is rigidly attached to the same base or torso as the manipulator. The robot shown

in Figure 1.1, which is the system used in the experiments of Section 3.9, is representative of the

assumptions just described. The geometry of this mechanism is shown in Figure 3.1. We further

assume three commonly available sensors: namely a stereo camera, a lidar based (or RGD-D1)

camera, which generates a dense set of range points, and a higher resolution monocular camera.

Let GBP (Θ) denote the forward kinematic model relating the palm frame FP to the base frame,

FB . That is, GBP defines the net spatial displacement between FP and FB as a function of the

manipulator joint angles, Θ. Similarly, let GBV (Φ) denote the neck mechanism’s forward kinematic

model, which relates the visual sensor frame, FV , to frame FB . The method developed in this

thesis assumes that the measured joint angles may be in error due to low precision joint sensors.

Similarly, flexibility in the joints (such has arises when using a tendon drive mechanisms). The

model GBP (Θ) represents the idealized model of the mechanism. Similarly, small flexibilities in the

1RGB-D cameras provide synchronized depth (D) and color (RGB) with each pixel. The KinectTMis an example
of such a sensor.
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links may contribute to mechanism modeling errors, which are approximated at small joint errors.

3.2 Object and Grasping Model

The geometry of the object to be manipulated, O, is assumed to be a priori known. Although this

formulation allows for objects’s geometry to be learnt adaptively, such work is not addressed in

this section. The surface of object O is modeled using a standard polygonal mesh M consisting

of a fixed number of faces {Fi} (i = 1, . . . , nF ), edges, {Ej} (j = 1, . . . , nE), and vertices {Vk}

(k = 1, . . . , nV). A reference frame, FO, is rigidly attached to the object model (see Figure 3.2).

Each link of the manipulator is endowed with its own link reference frame, Fl (l = 1 . . . nL). The

rigid link is similarly modeled as a separate polygonal mesh.

3.2.1 Contact Modes

I assume a prehensile grasping model where each finger of the robotic hand contacts the object

surface at a single point (on the finger tip) on a unique object face. More than one finger is allowed

to contact a single face. If the hand has nF fingers, then there are nF · nF possible pairings of

fingers and object faces. Each pairing is termed a contact mode, where Cz,f denotes the contact

FO

Fcm Vi

Fi

Ei

Ei

Figure 3.2: Polygonal object mesh model
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mode which pairs the zth finger with the f th object face. If the zth finger does not contact any

object surface, it is assigned to the null contact mode, C0,z. The contact modes define a discrete

set of binary states (e.g., Cf,z = 0 if the zth finger does not contact the f th face, and Cf,z = 1 if

the finger does contact the face) which must be estimated along with the continuous model states.

Correct estimation of these contact modes constrains and improves the object’s pose estimate.

3.3 State Representation

The aim is to accurately estimate and track the pose of the object, the state of the finger-object

contact, and the state of the robot arm. As shown in Figure 3.1, for single-arm manipulation, the

continuous estimator state, X, is chosen to be:

X = {XO, XR} = {GPO,θ,φ} , (3.1)

where XO are the object-related states and XR are the robot states:

• GPO is the pose of the object relative to the manipulator’s palm frame. This state directly

measures the movement of O within the hand when the object is grasped.

• θ is the set of “errors” in the arm angles.

• φ is the set of “errors” in the neck angles.

Since I use a 3-parameter parameterization of SO(3) (axis-angle representation), the estimator state

vector has dimension L = 17 (13 without including the neck angles) for the robot shown in Figure 1.1.

When contact modes are to be estimated using sensory data, the position of the finger contacts

on the object surface, βf , must also be estimated.

(a) Barrett hand grasping stapler

1 23

4

(b) Nearby contact modes of finger grasping stapler

Figure 3.3: Polygonal mesh and highlighted contact modes of prehensile grasping of a stapler
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• βf are the parametrized positions of the finger contacts on the object face, Ff (The coordinate

system is shown in Figure 3.17).

• The discrete state to be estimated consist of the contact modes, {Cf,z} (f = 0, . . . , nF ;

z = 1, . . . , nz).

Estimation of the continuous states requires the specification of both dynamic and measurement

models. The discrete state estimates are managed through a static multiple model (SMM) framework,

which is described in section 3.6.

3.4 Predictive Dynamic Model

For the experiments described in Section 3.9, the following straight forward dynamic model, similar

to a random walk model, is used when the object is grasped inside robot’s hand:


GPO

θ

φ


k+1

=


I 0 0

0 fm(∆Θk) 0

0 0 fn(∆Φk)



GPO

θ

φ


k

+ wk , (3.2)

where ∆Θk and ∆Φk are the differences in the commanded manipulator and neck angles from

time step (k − 1) to k and fm and fn are matrix functions that evaluates to 0 < fm(∆Θk) < I

for ∆Θk > 0 and fm(∆Θk) = I otherwise. These matrix functions produce stable and attracting

matrices, such that the eigenvalues of the matrices are less than 1, and are chosen by the user. These

matrix functions are used as a forgetting factor, since the arm and neck states are highly dependent

upon the current configuration of the object, arm, and neck. The matrix functions are used and

activated when the ∆Θk and ∆Φk are above some threshold, which typically indicate dynamic

movements to another configuration. Throughout this thesis, when the object is not grasped, the

governing dynamics will depend upon the application.

3.5 Measurement Models

A key contribution of this thesis is the development of the measurement models which allow various

visual cues to be integrated into an estimator. Models are developed for manipulator arm tracking

as well as object tracking.

3.5.1 Visual Manipulator Tracking

In the following sections, three methods for visual manipulator tracking will be developed. Manip-

ulator tracking entails the localization of the manipulator over time using visual sensors.
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• Appearance-based tracking involves locating a template, or “patch”, that is distinct on the

arm and hand in stereo images, and then triangulating the template to obtain a 3D location.

• Shape-based tracking is form of articulated iterated closest point that matches the shape of

the sensed point cloud with the mesh model of the manipulator.

• Silhouette tracking involves rendering a 3D model of the manipulator into a virtual camera.

The contour can easily be extracted from this rendering. The contour is then iteratively

matched to an edge image of the original image.

Subsequently, these three methods will be combined into an estimator.

3.5.1.1 Appearance-Based

Many manipulators, such as the Barrett WAM arm, have distinct and recognizable visual features

which can be used for tracking and localization. Alternatively, fiducial markers can be placed

on arm/hand surfaces. For this appearance-based component of the tracking system, I adopt a

technique of [68] to detect and then localize fiducial features on the manipulator body using a stereo

camera. A feature patch template in a template-fixed reference frame FT , is parametrized by points

ti = [ti,x, ti,y], (e.g., see Figure 3.4b), which includes the center of the template tc. The template is

first projected onto the left and right camera image planes using the nominal measured arm angles,

Θ, and neck angles Φ.

(a) Barrett hand with matching templates (b) Inner and outer templates

Figure 3.4: Appearance-based arm tracking template method

In detail, the projected template points pi in the camera image (e.g., see Figure 3.4a) are com-
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puted with the following projection:

pi = PV B(Φ)GBT (Θ,Φ) ,


tx

ty

0

1

 , (3.3)

where, PCB is the projection matrix which takes base frame (FB) coordinates into the visual camera

frame (FV ) using the neck joints Φ, and GBT is the kinematic transformation of the template points

in the template frame (FT ) into the body frame (FB) using the nominal manipulator joint angles Θ

and the nominal neck joint angles Φ. The camera projection is computed using the CAHVOR model

and method found in [63] and reviewed in Section 2.3. The projected template point locations, {pi},

are then correlated across a square window (w) defined in pixels, in the image. The correlation

score ∆p̂ , is computed as the summation of directional derivatives (perpendicular to the edges

of the chosen template) similarly as in [68] and the displacement, ∆p, which maximizes the score

represents the best match:

∆p̂ = arg max
∆p

∑
i

[
I
(
pouter
i + ∆p

)
− I

(
pinner
i + ∆p

)]2 ∀∆p ∈
[
−w
2
,
w

2

]
, (3.4)

where pinner
i and pouter

i are the inner and outer template points used to query pixel values in the

image. An example of these templates are shown in Figure 3.4b.

An exhaustive search is done over the window w and the image location of the highest correlation

score is chosen. A disparity, as defined as the difference in columns of a matching feature in two

images, is obtained by computing the best match in both the left and right images of a stereo

camera. The disparity is then used to triangulate the 3D location of the template. The measured

palm location zappearance is reported in the visual frame FV . Therefore, the measurement equation

for this type of measurement is:

Zappearance = GV P + ζappearance , (3.5)

where GV P is the homegeneous transform of the palm frame FP as seen in the visual frame FV
and ζappearance is zero mean Gaussian noise, whose variance is scaled to match the uncertainty in

the template matching process. Figure 3.4a shows the projected templates at their best matching

location for the example of a BarrettTM hand knuckle features on the BarrettTM arm.
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Figure 3.5: Articulated iterated closest point (aicp) diagram with key variables and frames

3.5.1.2 Shape-Based Measurements

Manipulator tracking via shape can utilize another common sensor available on many current

robots. RGB-D sensors found in the KinectTM sensor, in addition to flash lidar sensors (e.g., Swiss

RangerTM), provide 3D coordinates of points on the manipulator mechanism surface. Our method

to use these 3D measurements is a form of articulated icp (aicp) which others have used successfully.

However, Pellegrini [69] uses a traditional ICP approach [60] on each link separately with selection

policies and Krainin [42] uses a Kalman filter along with the Levenberg-Marquandt optimizer, that

does not make explicit use of the manipulator’s Jacobian.

In this aicp approach, estimates of the joint variables are obtained by minimizing the error

between the model points of the manipulator (e.g. created by randomly sampling link mesh models

offline) and the S sensed data points from the 3D sensor:

E =

S∑
s=1

(dl(s)s −ml(s)
s )T (dl(s)s −ml(s)

s ) (3.6)

=

N∑
s=1

[GBl(Θ)(dls −ml
s)]

T [GBl(Θ)(dls −ml(s)
s )] (3.7)

=

N∑
s=1

[GBC(Φ)dCs −GBl(Θ)ml(s)
s ]T [GBC(Φ)dCs −GBl(Θ)ml(s)

s ] , (3.8)

where d
l(s)
s and m

l(s)
s , respectively, are the 3D coordinates of the sth data point and it’s corresponding

model point, as described in the lth link frame. The data association variable l(s) specifies how the
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lth link frame is associated with the sth point. The vector dCs describes the 3D coordinates of the

sth data point in the camera reference frame FC . GBC and GBl are the homogeneous transforms

from the robot base frame to the camera frame and from the robot base frame to lth link frame,

respectively. Note that the equality between Equations (3.6) and (3.7) arises from the distance

preserving property of the mapping GBl.

Figure 3.6: Point cloud (green and red) and matching model points (blue and pink). Optimized model
(white) and original model (black).

The best joint angle estimates are derived by minimizing the collective error in Equation 3.8:

Θ∗ = arg min
Θ

E(Θ) . (3.9)

The experiments presented in this thesis use a gradient descent method to minimize the error

function E. The iterative gradient descent procedure is as follows:

Θ̂j+1 = Θ̂j − γ
∂E(Θ̂j)

∂Θ̂
(3.10)

= Θ̂j + 2γ

S∑
s=1

[
∂GBl(Θ̂)m

l(s)
s

∂Θ̂
]T ·

[GBCd
C
s −GBl(Θ̂)ml(s)

s ] ,

where Θ̂j+1 is the estimate of the “correct” joint angles at iteration j + 1, and γ is a positive

constant, which controls the convergence process. The derivative may be further analyzed:

∂GBl(Θ̂)m
l(s)
s

∂Θ̂
=
∂pBl(Θ̂)

∂Θ̂
+
∂RBl(Θ̂)

∂Θ̂
ml(s)
s , (3.11)
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where pBl and RBl are the positional and rotational components of the homogenous transform,

GBl and their derivatives can be found using the hybrid Jacobian of the manipulator mechanism.

The matching model points can be found in two ways. The first method is the traditional method

Figure 3.7: Cylindrical articulated iterative closest point matching points. The matching point ml (blue)
on the cylindrical surface of link l with radius R to the data point dls (red).

of finding nearest point in the model or using a ”nearest” metric to the model. This approach

is unacceptably slow unless one uses a kD-tree or other approximate nearest neighbor algorithm.

Our method exploits the primitive shapes of the manipulator links. In this case of a BarrettTM

WAM arm, there are 3 cylinders in the arm mechanism profile. There is an analytic expression

for the nearest point on a cylindrical surface. Without loss of generality, assuming that the z-axis

of the link frame is collinear with the cylinder axis, the nearest model point will have the same z

coordinate of the data point to which it will be matched. Mathematically, this can be written as

m
l(s)
s,z = d

l(s)
s,z , which specifies the z component of the model and data point described in the lth link

frame, respectively. The matching point will have the following x and y coordinates:

ml(s)
s,x

m
l(s)
s,y

 =
R√

(d
l(s)
s,x )2 + (d

l(s)
s,y )2

dl(s)s,x

d
l(s)
s,y

 . (3.12)

A diagram of the matching point coordinates on the cylindrical surface is shown in Figure 3.7.

The iterative procedure in Equation 3.10 is terminated when the difference in joint angle updates

reaches a tolerance set by the user. The shape measurement model is simply the direct observation

of the state, the arm joint error variables, θ. The measurement is found by taking the difference of

the joint variables from Equation 3.9 at the end of the gradient descent, Θ∗ and the current nominal

joint angles, Θ, to form the state variable θ:

Zshape = θ + ζshape (3.13)

= θ∗ − θ + ζshape , (3.14)
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where ζshape is zero mean Gaussian noise on the shape measurements.

Figure 3.6 shows the optimized match of the manipulator to a set of point cloud data points,

where the data points are green and red, and the model points are blue and pink. The original

manipulator configuration is shown in translucent black and the optimized configuration is shown

in grey.

3.5.1.3 Silhouette-Based Visual Measurements

(a) Manipulator model rendered in OpenGLTM (b) Manipulator model edge image

Figure 3.8: OpenGLTM rendering of manipulator

The silhouette of an object or body is projected on the current viewing plane with the outline

of the object and the interior being featureless. Silhouettes have been used extensively for tracking

purposes, from object tracking to people tracking. Using a silhouette for manipulator tracking relies

on fast rendering of the manipulator’s geometric model. Using OpenGLTM, a virtual camera is

created using camera parameters from the calibrated CAHVOR model. Specifically, the CAHVOR

parameters are converted into a more standard camera model such as the Tsai model [62]. Parame-

ters such as focal length and center image point are then used to construct a viewing frustum, which

is a region of space in the modeled world that will appear on the image plane or screen. Using the

current nominal joint angle measurements of the manipulator and a geometric model of the manip-

ulator, the arm and hand mechanism is rendered into the virtual camera. Using just a depth buffer,

the rendered depth image in OpenGLTM is simply a binary image and the extraction of a silhouette

is trivial using a simple edge-based detector. Figure 3.8 shows both the rendered manipulator and

the subsequent edge image.

The idea is to minimize a distance metric between the rendered image silhouette and that of

the silhouette in the actual image. Since the rendered model images are binary, a fast distance

transform [70] can be used to quickly and efficiently compute an approximate distance metric. The

transform computation is based on the convoluting of the edge image (EI) of the model with a
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Figure 3.9: Distance masks for the distance transform. Left: Euclidean distance mask. Middle: manhattan
distance mask. Right: chamfer 5-7-11 distance mask

distance mask. The distance mask is square patch that is often 3 × 3 or 5 × 5 and represent the

various distance metrics as shown in Figure 3.9. The resulting convolution is the distance image

(D).

Since an analytical gradient of this distance metric as a function of joint angles is difficult to

calculate, a numerical difference-based optimizer is chosen to compute the manipulator’s joint an-

gles Θ, which best match the rendered silhouette with the visual silhouette. Specifically the Nelder

Mead simplex algorithm [71] is used. The technique is a heuristic search method that converges to

non-stationary points. It is based on evaluating a function at vertices of a simplex which iteratively

shrinks until better points are found which satisfy a tolerance set by the user (tol). Algorithm 1

summarizes the computation of the measurement. The measurement model derived from this pro-

cedure is the direct observation of the state, the arm joint error angles, θ. The measurement is

found by taking the difference of the joint angles at the end of the optimization, Θ∗ and the current

(a) Silhouettes of optimized model (red), initial
model using nominal measured joint angles (blue),
original edge image (green)

(b) Original image with matched silhouette.

Figure 3.10: Matching of the silhouette of the manipulator in the image
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Algorithm 1 Silhouette-based Manipulator Tracking

Require: Image (I) and Joint Angles (Θ)
Compute edge image (EI) on I
Compute distance transform (D) of EI
while (Θ̂j+1 − Θ̂j) > tol do

M = render model(Θ̂j)
EM = compute edge image(M)
Sum = D ∗ EM
Θ̂j+1 = nelder mead simplex(Sum, Θ̂j)

end while
return Θ∗ = Θ̂j+1

nominal joint angles Θ to form the state variable θ:

Zsilhouette = θ + ζsilhouette , (3.15)

where ζsilhouette is zero mean Gaussian noise on the silhouette measurement.

Figure 3.10a shows the initial contour using the nominal joint values, Θ in blue, the optimized

silhouette using Algorithm 1 shown in red and the edge segments shown in green. Figure 3.10b

shows the optimized and matched silhouette overlayed on the original image.



33

3.5.2 Visual Object Tracking

It is valuable, and in some cases necessary, to simultaneously track both arm and object states

particularly during the process of grasping. This section describes the analogous visual techniques

I use for object tracking.

3.5.2.1 Feature-Based Object Tracking Measurements

For the purpose of object detection, localization, and ultimately tracking, the rigid body models

described above are augmented by a set of visual features that can be observed by the stereo vision

system. Visual appearance features such as SIFT features [72] or SURF features [73] are augmented

by their 3D location in the camera frame so as to estimate the object’s 6DOF pose. Each feature

takes the form:

Di = {di d̃i} , (3.16)

where di = [dx dy dz]i is the 3-D location of the feature and each feature d̃i ∈ R128 in the case of the

128-dimensional SIFT feature descriptor or d̃i ∈ R64 in the case of the 64-dimensional SURF feature

descriptor. This descriptor captures color, texture, and orientation of the object’s appearance around

the feature point. The object model and features are learnt during a training phase where SIFT of

SURF features of the object are selected from multiple camera viewpoints. The 3D position of these

features is obtained using sparse stereo. A database, D, is built of these 3D features (Cartesian

Figure 3.11: Example of learnt visual features (yellow) and the tracked object (in green box)
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location and feature descriptor):

D = [{d0 d̃0} {d1 d̃1} . . . {dN d̃N} ] . (3.17)

To visually learn the object, the training phase may be carried out using a fixed camera and a

turntable for rotating the object to obtain multiple viewpoints.

The vision measurements are the analagous 3D features Zk = [{z0 d̃0} {z1 d̃1} . . . {zN d̃nk}]

where zi = [zx zy zz] in the visual camera frame, FV . Lowe’s [74] Best-Bin-First scheme is used to

match the observed SIFT features with those in the database providing the correspondences J ∈ Z+

so that J(i) = j links the database features dj with observation zi.

Therefore, the measurement model consists of matching the position components of both the

database and observed 3D SIFT features. Assuming at time tk there are mk matches from the

Best-Bin-First algorithm, the measurement process can be modeled as:


z0

z1

...

zmk

 =


GV O(Xk) dJ(0)

GV O(Xk) dJ(1)

...

GV O(Xk) dJ(mk)

+ ζv

≡ Hv(φ, θ, GPO ,J) + ζv ,

(3.18)

where ζv is a zero mean Gaussian noise associated with the stereo measurements.

Figure 3.12: OpenGLTMrendering of sensed point cloud (green points) from SwissRangerTMcamera matching
to mesh model cloud (white).
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3.5.2.2 Shape-Based Object Visual Measurements

For object tracking I use a point cloud association procedure similar to the iterated closest point

algorithm. Experiements have found that due to the large range in feature scale often experienced

in manipulation tasks, classical features (e.g., SIFT and SURF) [41] do not perform effectively

— descriptor matching often produces inconsistent matches, resulting in poor object tracking. In

addition, lighting conditions affect performance especially when lights conditions are different from

when features were first learnt. Therefore, I propose an approach to use more robust methods. Using

point clouds for matching, our predicted measurements are simply:

Zshape
i = xBO +RBOv

O
i + ζshape (3.19)

= GBPGPO

vOi
1

+ ζshape , (3.20)

which relates the matched point vOi in the object’s mesh, M, to the sensed data point zshape
i ,

obtained from from a stereo vision system and flash lidar, and ζshape is a zero mean Gaussian noise

on the shape measurement. The variance is determined by empirically measuring the noise of the

camera used. Figure 3.12 shows the model (white points) at the current estimated position and the

filtered stereo point cloud points (green points).

(a) Matchings points — large measurement innovation (b) Matching points — small measurement innovation

Figure 3.13: Depiction of the matching process used during shape matching. The red lines connect 3D shape
data points (green dots) and their associated mesh model points (white dots).
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(a) Object model rendered in OpenGL (b) Object model edge image

Figure 3.14: OpenGL object rendering for a specific sigma point.

3.5.2.3 Silhouette-Based Object Measurements

This silhouette approach used for object localization is similar to Algorithm 1, but the object model

is now rendered at the various sigma points (Section 2.4.5 reviews the sigma point filter) instead

at various values as determined by the Nelder Mead algorithm. The contour/edge points closest to

the zeroth sigma point in the actual image is approximated as the measurement in the UKF. As the

actual image has many edge responses, selecting the edge associated with the silhouette can be a

difficult process, which is not addressed in this thesis. One way to improve the selection of these

edge measurements is to use optical flow, image differencing, and/or background subtraction. The

sigma-point matching method produces reasonable measurements despite other edge responses, as

shown in Figure 3.15b.

The measurement model of the object silhouette matching process consists of the contour image

points:

Zsilhouette = C(GV O, O) + ζsilhouette (3.21)

= C(GV B(φ)GBP (θ)GPO, O) + ζsilhouette , (3.22)

where C is the computation of the contour points and GV O is the transform relating the object’s

reference frame FO in the visual reference frame FV and ζsilhouette is zero mean Gaussian noise on

the silhouette measurement. C is computed by first rendering a model of the object, then projecting

into a virtual camera frame and then computing an edge image. The pixels of this edge image

constitute the contour points.
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3.5.3 Kinesthetic Measurements

A wrist-mounted force sensor and tactile pads on the multi-fingered hand surfaces may be available.

If so, this section describes the measurement models that can be associated to these sensors.

3.5.3.1 Wrist-Mounted Force-Torque Sensor Measurements

A wrist-mounted six-axis force-torque sensor will be sensitive to the gravitational forces acting on

the object and the multi-fingered hand, which is mounted on the distal side of the sensor. Note that

up to the first mass moment of the object, the 3 torque measurements are the only measurements

which provide information about the object location. The net wrench measured at the wrist,

Ww =

Fw

T w

 , (3.23)

(a) Original edge image (b) Original image with extracted contour (red)

Figure 3.15: Depiction of the silhouette-based object estimation showing the canny edge image and high-
lighted matched contour in red.
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has the following relationship with the gravitational load on the object and hand mechanism. Ne-

glecting dynamic loads on the hand and the object, these wrenches may be decomposed into:

Ww = WO
w +WH

w

=
[
FwO

]ROW FW g

0

+WH
w

=

 RwW FW g

p̂wO ROW FW g

+WH
w ,

(3.24)

where WO
w and WH

w are the measured wrenches due to the object and hand mechanism, respectively.

FW g is the gravitional force acting on the object, as measured in the world reference frame, RwW

denotes the orientation of the world frame with respect to the wrist frame, pwO is the displacement

of the object frame origin with respect to the wrist frame origin, and p̂wO is the 3×3 skew symmetric

matrix such that the vector p̂wO v = pwO × v. FwO is the force transformation or adjoint matrix

that transforms forces in the object frame FO into the wrist frame Fw. It is defined as:

FwO =

 RwO 0

p̂wO RwO RwO

 (3.25)

Let WH
w denote the gravitational load of the hand on the force-torque sensor. Practically, the

gravitational load due to the hand mechanism is incorporated via a look-up table of the resting force-

torque values at steady-state temperature found for various orientations of the hand and fingers.

Note that the torque measured at the wrist sensor, T w, is the only portion of the force-torque

measurement that is dependent on the object pose. Therefore, the measurement equation for relating

force-torque sensor measurement to the object pose takes the form:

T w = p̂wO ROW FW g + T H
w + ζT

≡ HT (GPO,θ) + T H
w + ζT ,

(3.26)

where T H
w represents gravitational torque due to the hand mass, ζT represents measurement noise.

3.5.3.2 Tactile Sensor

There are many different technologies used for implementing tactile sensors [75–80]. This section

uses a simple model of tactile sensing that should apply to many different devices.

In addition to visual information, a simple tactile measurement update can be integrated if it is

available. Many robot hands, such as the BarrettTM hand used in the experiments described below

contains tactile arrays on the fingers and palm. Here, a binary tactile measurement model is used
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Figure 3.16: A process which matches the active tactels to the model provides valuable measurements.
Activated tactels shown in red with mesh model in white.

to indicate whether or not each tactel is in contact with the object. The measurement model for

the tactile sensor update is implicitly used to construct the pose measurement, meaning that the

actual sensor measurement ztactile is required to compute the predicted measurement Ztactile. The

modeling goal is to find the closest point/vertex, vP , on the object mesh at the given state estimate,

GPO, to the tactel sensor position, ztactile
i , in the palm (FP ) reference frame:

Ztactile
i = arg min

vP
‖vP − ztactile

i ‖+ ζtactile (3.27)

= GPO arg min
vO
‖GPO

vO
1

− ztactile
i ‖+ ζtactile , (3.28)

where ζtactile is zero mean Gaussian noise on the tactel measurement. The noise variance is deter-

mined empirically by measuring noise over multiple measurements. Figure 3.16 depicts the measure-

ment process. Similarly an active tactel can be used to infer the object surface normals. A second

measurement model involves exploiting the mesh vertex normal, nP , corresponding to the normal

vector of the closest point/vertex, vP , in the object’s mesh at the given state, GPO, to the tactile

sensor position, ztactile
i :

Zn,tactile
i = arg min

nP
‖vP − ztactile

i ‖+ ζn,tactile (3.29)

= GPO arg min
nO
‖GPO

vO
1

− ztactile
i ‖+ ζn,tactile , (3.30)

The actual measurement is the normal of the active tactel in the palm frame.
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Figure 3.17: Barycentric coordinates.

3.5.3.3 Hand Mechanism and Manipulator Linkage Joint Measurements

Measurements of the state of the arm and hand linkages (e.g., rotations or displacements of joints

in the hand or robot arm) are used, via the use of forward kinematic equations, to produce pseudo-

measurements (since the actual measured value is the joint angle) of fingertip locations or wrist

locations. I assume that the forward kinematic model is in error due to both joint sensor inaccuracy

and unmodeled kinematic errors.

Measurements from the joints located in the finger linkages, (θz), may be used to provide a

pseudo-measurement of the fingertip locations by means of forward kinematic equations.

To include the interaction between the fingers and the object, I include the finger-surface location

into the measurement model. I assume a simple contact sensing process (e.g., using finger strain

or active tactels) which can determine if the zth finger is in contact with the object. This contact

detection may be implemented via tactile sensor measurements, joint strain measurements, or by

monitoring current drawn in the finger actuator. When the finger is in contact with a surface, I use

a closure equation for the zth finger in the wrist frame coordinate system, w, taking the form:

pwz(θz) = pwO +RwO pOz(M) + ζz

≡ Hz(θ , βi , GPO) + ζz ,
(3.31)

where pOz(M) is the surface location of the finger z in the object’s reference frame, and the

coordinates of the contact location may be found using a surface parameterization. For example,
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using barycentric coordinates as the surface parameters, βf = {λ1, λ2, λ3}, and the three vertices

v1,2,3 that are defined by the contact mode Cf,z, the finger location can be parametrized as:

pOz(M) = λ1v1 + λ2v2 + λ3v3 . (3.32)

Barycentric coordinates are a form of homogeneous position coordinates that are quite suitable

for parameterizing triangular meshes. In these triangular meshes, (see, e.g., figure 3.17), barycentric

coordinates are essentially area coordinates. Each barycentric coordinate defines the areas formed

by the rays joining the vertices of the triangle to a point within the triangle. Barycentric coordinates

are frequently used in graphics engines since they can quickly determine whether a point is inside

the triangle or not. Barycentric coordinates are subject to the constraint:

λ1 + λ2 + λ3 = 1 . (3.33)
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Figure 3.18: General static multiple model estimator.

3.6 Hybrid State Estimator

Since no assumptions are made regarding how the fingers contacts the object, the estimation filter

must be able to estimate which surface is in contact with each finger (i.e., which contact modes

are active), in addition to the continuous state variables. This combinatorial matching of finger

to surface can be posed as a hybrid state estimation problem wherein both the continuous states

and discrete contact modes must be jointly estimated. While a variety of hybrid system estimation

algorithms and architectures have been proposed, the experiments in this thesis use a static multiple

model estimator (SMM) [20]. Each possible finger-surface contact combination is associated to a

model. Each model in turn has an associated measurement model to describe how each finger might

contact the associated object face. The SMM estimator is based on a Bayesian framework which

leverages prior probabilities of each model being correct to update and obtain posterior probabilities

based on sensor measurements. The SMM estimator assumes that the system will obey only one of

the possible models, such that there are no switching during the estimation process (i.e., the fingers

are assumed to not change contact modes during the estimation interval). Although the particular

mode that is in effect is assumed to stay fixed (static), each model can have its own dynamics,

making the estimator essentially a dynamic process.

While the SMM assumes only one model to be in effect during the estimation process, the

particular active contact mode is initially unknown. The prior probability on each of the possible

contact modes can be selected by the user and for example, the prior might be provided by a grasp
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planner. The ensuing experiments choose a uniform prior:

P
(
Mm |z0

)
= µm0 =

1

N
, (3.34)

where z0 is the available prior information (e.g. from grasp planners), µm is the mth model proba-

bility and
∑N
m=1 µ

m
0 = 1. The mth model here, specifies a set of contact mode for all fingers. Using

Bayes’ formula, the posterior probability of model m being correct given measurement data up to

time k is given by:

µm(k) ≡ P
(
Mm |z1:k

)
=

p
(
zk |z1:k−1,Mm

)
P
(
Mm |z1:k−1

)∑N
i=1 p

(
zk |z1:k−1,Mi

)
P
(
Mi |z1:k−1

)
=

Λmk µmk−1∑N
i=1 Λik µ

i
k−1

,

(3.35)

where Λmk is the likelihood function of mode m at time k. Assuming that the system uncertainty

(Pmk ) under each model m is Gaussian with zero mean, the mode likelihood may be computed as:

Λmk ≡ p(νmk ) = N (νmk ; 0, Pmk ) , (3.36)

where νmk is the residual (innovation) caused by the discrepancy between the actual measurements

and the predicted measurement values from mode m and Pmk is the mth mode measurement covari-

ance.

The SMM maintains a separate filter for each candidate discrete mode. For more complex objects,

the complexity of the SMM may be reduced by considering only local surface features near each

estimated finger tip location. Figure 3.18 illustrates how the previous state estimate and covariance

may be used to compute the next estimate and covariance given multiple modes and their filters.

The filter associated to each mode produces a mode-conditioned state estimate, X̂m, and associated

covariance, Pm, and the mode likelihood, Λm. Under the linear-Gaussian system assumption, the

pdf of the object state is a Gaussian mixture using the Theorem of total probability:

p
(
X |Zk

)
=

N∑
m=1

µm(k)N (Xk; X̂m
k , P

m
k ) . (3.37)

The optimal minimum mean square error (MMSE) of (3.37) provides the overall state estimate and

covariance formulae:

X̂k =

N∑
m=1

µmk X̂
m
k (3.38)
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Figure 3.19: Dual unscented Kalman filter (UKF) framework.

Pk =

N∑
m=1

µmk {Pmk + [X̂m
k − X̂k][X̂m

k − X̂k]T } . (3.39)

The overall hybrid estimation process updates each continuous model state estimate, as well as

the discrete mode estimator after each measurement.

3.7 Model Parameter Estimation

It is sometimes desirable to additionally estimate additional quantities such as model parameters.

During object pose estimation, it is natural to estimate quantities such as the mass of the object and

its center of mass location. There are two common approaches to simultaneously combine the state

and parameter estimation processes. The first is called dual estimation in which the parameters Yk

are estimated in a separate filter using a Markov random walk model:

Yk = Yk−1 + ξ (3.40)

Xk+1 = f(Xk, Yk, uk, wk) , (3.41)

where is Xk is the state, Yk are the model parameters at time k, f is the dynamic predictive model,

and ξ is zero mean Gaussian noise.

The second approach is called joint estimation, in which the parameters Yk are concatenated
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onto the state vector Xk to form a new augmented vector, Xa
k :

Xa
k =

Xk

Yk

 . (3.42)

Therefore one filter is used to jointly estimate both the state and the parameters. As discussed

in [81], the joint filter approximates the MAP estimate by maximizing the joint density of the state

and parameters. An augmented dynamic predictive model can now be formed by augmenting the

original predictive model F with the predictive model of the parameters, which is identity:

Xa
k+1 =

f(Xk, Yk, uk, wk)

I · Yk

 . (3.43)

With either dual or joint estimation, assuming that the parameters are constant over time, any

type of filter (e.g. Kalman or particle) may be used, and the choice ultimately depends upon the

application.
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Figure 3.20: Dual-arm state representation.

3.8 Dual-Arm Estimation

I investigate multiple approaches to dual-arm grasping, which are described below. Dual-arm grasp-

ing requires both arms to interact with the object. During joint contact of the arms with the object,

the state system must be augmented to estimate the state of both arms and to model the interaction

from both arms. A predictive model must be augmented to include both additional states, the arm

state and object state of the other arm:

GP lO

GP rO

θl

θr

φ


k+1

=



I 0 0 0 0

0 I 0 0 0

0 0 fm(∆Θl
k) 0 0

0 0 0 fm(∆Θr
k) 0

0 0 0 0 fn(∆Φk)





GP lO

GP rO

θl

θr

φ


k

+ wk , (3.44)

This model generates two estimates for the object location in the base frame FB . The two estimates

must be consistent and point to the same location in space. This requirement is handled through a
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constraint that is described below.

3.8.1 Dual-Arm via Independent Filters

Since each robot arm is independent from the other arm until a firm dual-arm grasp is made, two

filters may be run in parallel to estimate each arm’s state. Each filter runs the single arm estimation

described starting in Section 3.3 with the following left and right arm states:

X l
k =


θl

φl

GP lO

 Xr
k =


θr

φr

GP rO

 (3.45)

This allows for a multi-threading implementation, but also requires constraining both object state

estimates to specify the same object frame in space. Therefore, a simple procedure to couple the two

independent estimates can be obtained by fusing both left and right estimates using the uncertainty

of each estimate, as weighed by the inverse of their covariances:

G†BO =
Σ−1
GPrO

GBP r (θ
r)GP rO + Σ−1

G
PlO

GBP l(θ
l)GP lO

Σ−1
GPrO

+ Σ−1
G
PlO

, (3.46)

where ΣGPO is the square sub matrix pertaining to the object state GPO of the full covariance matrix

P :

P =


Σθ Σθφ ΣθGPO

Σφθ Σφ ΣφGPO

ΣGPOθ ΣGPOφ ΣGPO

 (3.47)

To obtain the object state relative to each palm frame, another transformation is applied:

G†P rO = G−1
BP r (θ

r)G†BO (3.48)

G†
P lO

= G−1
BP l

(θl)G†BO . (3.49)

Similarly, each filter constructs its own neck state estimate, φ. To ensure each estimate is

consistent and to ensure that visual measurements are correctly and consistently processed, the

neck states must be fused together similar to Equation 3.46:

φ† =
Σ−1

φrφ
r + Σ−1

φl
φl

Σ−1
φrφ

r + Σ−1
φl

φl
, (3.50)

where Σφ is the square sub matrix pertaining to the neck state φ of the full covariance matrix P .

While independent filters provide a computational benefit of parallel execution, there is a major
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disadvantage in that each filter does not know the state of the other arm. Hence, each filter cannot

update the object state using kinesthetic data, like tactile and force-torque measurements, of the

opposite arm.

3.8.2 Dual-Arm Augmented Filter

Instead of dual independent filters, another option is to augment the single arm filter with the second

arm and object state:

Xk =



θr

θl

φ

GP rO

GP lO


. (3.51)

Similar to the independent filter approach, it is still necessary to produce a consistent estimate.

Therefore, it is required to use the state estimate, Equation 3.46, in the filter.

Julier and LaViola [82] introduced an approach to incorporate these types of effects into a Sigma

Point filter. See Chapter 2 for a review on sigma point filters. Their two step approach utilizes

a sigma point transform that first constrains the probability distribution of the belief and then

constrains the conditional mean of the belief distribution. An equality constraint between the state

variables may be written in the form:

c(Xk) = 0 , (3.52)

and presumes the existence of a projection function w(Xk) such that

c(w(Xk)) = 0 ∀Xk ∈ Rn . (3.53)

Assuming that the unconstrained state X∗k and the covariance P ∗k have already been calculated,

the projection operator is applied to every sigma point in the unconstrained state distribution. The

additional constraints reduce the uncertainty of the state distribution and causes the covariance to

decrease. Letting χ†k = w(χ∗k) be the constrained sigma points, the mean and covariance of the

constrained state are given by:

X̂†k = E [w(χ∗k)] (3.54)

P †k = E
[
(χ†k − X̂

†
k)(χ†k − X̂

†
k)T
]
. (3.55)

The mean constrained state and covariance estimates in Equations 3.54 and 3.55 are calculated
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using the regular sigma point transform as presented in Section 2.4.5:

X̂†k =

2L∑
i=0

πi χ
†
k (3.56)

P †k =

2L∑
i=0

πi [χ†i,k − X̂
†
k][χ†i,k − X̂

†
k]T , (3.57)

where πi are the sigma point weights. For a review of the sigma point filter, please read Section 2.4.5.

The expectation of the constrained distribution may not lie on the constraint surface, therefore

the projection operation is applied again to X̂†k and similarly, the covariance is increased to account

for the fact that the minimum squared estimate is adjusted:

X̂k = w(X̂†k) (3.58)

Pk = P †k + (X†k − X̂k)(X†k − X̂k)T . (3.59)

For dual arm estimation, the projection function w(χ∗k) is the object frame fusion Equation 3.46,

but using the unconstrained sigma points χ∗k:

G†BO =
Σ∗−1
GPrO

GBP r (θ
∗,r)G∗P rO + Σ∗−1

G
PlO

G∗BP l(θ
∗,l)G∗P lO

Σ∗−1
GPrO

+ Σ∗−1
G
PlO

, (3.60)

to produce the full constrained state:

X†k =



θr

θl

φ

G†P rO

G†
P lO


=



θr

θl

φ

G−1
BP r (θ

r)G†BO

G−1
BP l

(θl)G†BO


. (3.61)

The constraint equation for this projection function specifies that the object frame for both left and

right estimates be at the same location. This is essentially a kinematic closure equation:

c(X†k) = G†P rO −G
†
P lO

= 0 . (3.62)

It is important to note that the projection function and constraint equation be applied to the

unconstrained sigma points χ∗k.
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Figure 3.21: Experimental setup for hybrid estimation results with static grasping

3.9 Experimental Results

The following subsections details the experimental results of the preceding theory. First, experiments

are shown using hybrid estimation theory on static grasps. Second, visual arm tracking results are

presented. Lastly, single arm and object estimation is presented, which is followed by dual arm and

object estimation.

3.9.1 Hybrid Estimation Results with Static Grasping

This experiment only verifies and demonstrates a subset of the algorithms described above. I im-

plemented this subset on the following system. The grasper is a 3-fingered BarrettTM hand, model

BH-8, with internal strain gauges in each finger. These sensors allow one to infer if a finger contact

is active. Joint encoders are located at the proximal joint. An ATI omega 6-axis force-torque sensor

is mounted at the manipulator wrist. In this static experiment, the wrist is fixed rigidly to a frame,

though the frame can be moved to simulate the motion of an arm. A Point-Grey Research Bum-

blebee 2 is mounted above the working area and is also fixed rigidly. The experimental object is

an aluminum rectangular block (length: 15.24 cm, width: 5.08 cm, height: 5.08 cm) whose center of

mass location is known accurately. The block is covered with stickers provides texture for the vision

system. The block is placed at an appropriate height to be grasped by the Barrett Hand. At the

outset, the vision system is already providing a vision estimate of the object pose. Once grasped,

the combined filter begins to incorporate measurements from the fingers and the force-torque sensor.

The initial conditions are chosen to be at the camera sensor origin. Figure 3.11 illustrates a

typical grasping scenario. The upper right hand corner is a rectified image of the stereo pair and

the bounding box is displayed around the object. The lower left corner depicts the block with
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learnt SIFT features (yellow dots), current detected SIFT features (red dots), and estimated finger

locations on the object (large blue circles). Figure 3.22 shows the state estimate of the object pose
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Figure 3.22: Estimate of object pose using a static multiple model estimator

in a static grasp. The ground truth position was measured with respect to a known location in the

camera’s frame. The mean error in the position estimate was 5.2 mm. The ground truth orientation

was measured by visually aligning the axis of the block to a known orientation in the hand. The

mean error in orientation was 1.51◦ assuming the ZYX angles were (90, 180, 0).

A second experiment was performed to test the basic tracking capability of the system. The block

was grasping in a similar position for a few moments, and then it was rotated manually in the grasp

by 90◦ about the Z-axis. The block is then rotated back to the original position. Figure 3.23 shows

the time varying state estimate of the object position, demonstrating this rotation inside the grasp.

The mean error after a few seconds when the estimator steadies is 6–7 mm. The mean orientation
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(b) ZYX Euler angles

Figure 3.23: Estimate of object pose, where object undergoes 90◦ planar rotation within grasp at tk = 540
and tk = 1080
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error is again about 1.58◦. A third and similar grasp is performed except that the block is rotated

in increments of 45◦ up until 180◦. Figure 3.24 shows the orientation estimate, with a mean error

of 2.21◦.
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Figure 3.24: Orientation state where object undergoes 180◦ planar rotation in 45◦ increments within grasp
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(b) Finger positions assuming Mode 1

Figure 3.25: Contact mode and finger position estimation on a regular block

At the instant the object is grasped, an SMM is initialized to handle the possible finger contact

states. To demonstrate the SMM, a subset of the possible contact modes are chosen, allowing all

antipodal point grasps resulting in 6 possible contact modes. Antipodal grasps are a pair of grasp

points on an object whose normal vectors are collinear and point in the opposite direction. Figure

3.25a illustrates a typical grasp in which the correct mode, mode 1, is quickly found. The mode

estimate converges to a probability of 1 in less than a second, assuming a measurement rate of ∼ 25

Hz.

The various sensors used for this experiment were enabled in different combinations to addition-

ally evaluate the contributions of each sensor to overall performance as shown in Figure 3.26. The

visual estimate using feature-based measurements (SIFT) with a stereo camera produces a noisy,

estimate of the pose with about 1cm jumps. When a force-torque sensor is enabled, the estimated
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Figure 3.26: Contributions of multiple sensors to overall estimated signal. The red dashed line is vision alone.
The green wide dashed line is vision and force-torque sensors. The blue solid line is vision, force-torque, and
tactile sensors.

signal becomes slightly less noisy but with ∼ 1 cm jumps. Lastly, pseudo-finger measurements were

enabled with both the force-torque and visual measurements, the signal became quite steady, and

was not subject to noise cause by stereo and force-torque sensors.

3.9.2 Experiment with Single-Arm Visual Tracking

The performance of the different visual cues used in manipulator tracking as discussed in Sec-

tion 3.5.1, is assessed by evaluating each cue’s contribution to the estimate of the manipulator

 
 

(a) Mars Science Laboratory fiducial (b) Detected fiducial on manipulator shown in red

Figure 3.27: Fiducial tracking for ground truth
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configuration. The ground truth is computed by using a fiducial on the end-effector and tracked

using the stereo camera. The fiducial was not used by the estimator. The fiducial is identical to

the Mars Science Laboratory (MSL) fiducial as shown in Figure 3.27a. The system setup for this

analysis was done using a multi-sensor head, a BarrettTMWAM arm and hand. The sensor head is

comprised of a high-resolution ProsilicaTMGC2450 (2448× 2050 pixels) used for silhouette tracking,

a Point-GreyTMbumblebee2 color stereo camera (684 × 512 pixels) used for template tracking and

lastly a Asus Xtion RGB-D camera (640× 480 pixels) used in articulated ICP (shape tracking).

The ground truth fiducial detector works by matching gradients in the image to the gradients

of the fiducial. The fiducial is matched against the inner and middle circles and the perpendicular

edges. An initial estimate of the pose of the fiducial is required (which is computed using the

forward kinematics of the manipulator) so that it can be projected into the image using a CAHVOR

model (see Section 2.3). It is then matched in a region of interest in an area determined by the

initial projection. The matching is done in the left and right images and consequently a disparity is

calculated and finally from the disparity, a 3D location of the fiducial can be calculated.
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(d) Magnitude of error in x,y,z position of end effector
with RMSE = 6.8 mm

Figure 3.28: Dynamic tracking of manipulator end-effector using articulated ICP and appearance
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Table 3.1: Error in end-effector position from various visual cues

Visual Cue(s) Error (cm)

Silhouette 1.13

Silhouette + Template 0.5

Silhouette + AICP 0.7

Template 0.5

Template + AICP 0.4

AICP 0.6

Silhouette + Template + AICP 0.3

The first experiment tested dynamic tracking of a single arm using both shape (articulated ICP

from the Xtion camera) and appearance (templates used in the stereo camera). The results are

shown in Figure 3.28. The fusion of both cues was done using the Unscented Kalman Filter (UKF),

which was discussed in Section 2.4.5. The x and y tracking is extremely accurate (RMSE of 3.9 mm)

while there is some uncertainty and noise associated with depth (z). The depth accounts for the

majority of the error. This can be attributed to a couple of reasons. First, the error might be due to

an incorrect extrinsic calibration of the cameras. Secondly, the ground truth measurements are not

filtered and hence have slight incorrect jumps in the output. The root mean square error (RMSE)

of the combined AICP and Template tracker is 6.8 mm.

The second experiment is a comparison of the fusion of various visual cues of the same manipula-

tor as experiment 1, but in a static scene, where the arm and neck are not moving. The performance

of the cues is summarized in Table 3.1, which apportions contributions of each measurement type

to overall system error. The visual arm tracking measurements are filtered and fused using the

Unscented Kalman Filter as discussed in Section 2.4.5 and are compared against the ground truth

measurements of the fiducial. This error is computed by compute the magnitude of the error vector

between the 3D position of the end effector as determined by the fiducial and the visual arm tracking.
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3.9.3 Results with Single-Arm and Object Manipulation

To further investigate and validate this approach, a manipulation task was chosen which involves

autonomous drilling of a red circle on a block affixed to a table. In this task, the robot hand/arm

must grasp the drill from an unknown position, find a red dot, and position the drill point on

the circle before advancing the drill bit. The robot system is the DARPA ARM-S robot which

consists of a multi-sensor head, a BarrettTM WAM arm and BarrettTM hand, equipped with a wrist-

mounted force-torque sensor and tactile sensors on the palm and distal joints of the hand. The

sensor head is comprised of a high-resolution ProsilicaTM GC2450 (2448 × 2050 pixels) , a Point-

GreyTM bumblebee2 color stereo camera (320 × 240 pixels) and a Mesa ImagingTM Swiss Ranger

SR4000 (176× 144 pixels).

The drill and block are placed on the table. The objects are detected and their poses are initially

determined, using vision, which leads to some uncertainty about their initial poses. Grasp points

are then generated based on these poses. A plan is then generated to position the hand of the

manipulator to a chosen grasp point which minimizes a particular cost function. Once grasped, a

plan is then generated and executed blindly to bring the drill tip over the red dot. Also, at the time

of grasping, the estimation process is started but it is not used as a visual servo correction. Once

the drill is over the red dot, the process is stopped to allow for measuring the actual blind error.

The estimated error is used as a visual servo Cartesian command. This error serves as a check on

the estimator performance because the red dot location can be measured as a ground truth, and

if a visual servo command was issued, there might be additional error associated with this motion.

(a) Drilling into block flat on table with red
dot

(b) Drilling into block standing up on table with red dot

Figure 3.29: Drilling into block experiments.
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Table 3.2 summarizes the results of the experiment.

The computation for this experiment was done on Dual Quad Core Intel Xeons (3.33 GHz)

with 24 GB DDR3 RAM and a 1.5 GB NVIDIA Quadro FX4800 graphics card. The algorithm is

implemented on two main threads. The first thread operates on the acquired imagery, computes

stereo, acquires point clouds from the visual sensors, and computes the manipulator kinematics.

The second thread implements the filter thread. With combined measurements for both object and

manipulator running, the filter runs at 7–8 Hz.

Table 3.2: Estimated drill tip distance and contribution of different cues

Trial Blind Error Shape Shape+Tactile Shape+Contour+Tactile
x y x y x y x y

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1 0.0 -39.8 8.6 2.2 8.4 2.2 6.8 0.2

2 -29.7 -48.6 -4.1 10.1 4.3 7.9 6.8 5.7

3 8.3 -22.0 12.4 6.7 11.9 4.1 6.5 3.7

4 -38.12 -57.1 -10.4 14.9 11.2 6.4 17.7 0.2

5 14.0 -46.8 1.9 12.5 2.5 7.3 2.1 5.0

RMSE 49.96 mm 12.8 mm 9.8 mm 6.9 mm

Table 3.2 shows the drill tip position error realized with the various combinations of sensor cues,

and the blind error (open loop). The blind error is the error without no visual corrections and is

the largest at 4.9 cm. The shape cue using the Swiss Ranger camera produced an error of 1.28 cm

and the shape and tactile fusion produced 0.98 cm. Using shape, tactile and the contour cue from

the monocular camera, the error was down to 0.69 cm.

3.9.4 Experiments with Parameter Estimation

One crucial parameter that is often difficult to explicitly estimate is the grasped object’s center of

mass. This parameter play an equally important role to mass itself, as the center of mass affects the

wrenches applied on the joints of the manipulator, and has a strong influence on grasp stability. Often

times with heavier objects, proper planning of the trajectory is required so as to not over-torque

the motors. Therefore, center of mass estimation is often required for objects with complicated

geometry, especially with novel objects that the robot has not experienced.

The experimental validation involves using a Dual Unscented Kalman Filter which estimates

both the robot state and the object state as described in Section 3.3. The state vector is X =

{XO, XR} = {GPO,φ,θ}, where the parameter estimated is the center of mass of the object, O,

as seen from the object reference frame FO. Naturally, to be able to estimate such a quantity the

force torque measurement model is used as described in Section 3.5.3.1. The initial state of the dual
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(a) Initial object state and center of mass frames

(b) Estimated object state and center of mass frames. Note that they are
overlapping and appear as one

Figure 3.30: Before and after dual estimation of center of mass, object, and robot state

estimation is the rough location of the object in hand, which might be provided from a previous

estimation sequence or an ICP fit as shown in Figure 3.30a. This initial estimated object location at

the beginning of the estimation process is on the order of centimeters from the ground truth location.

The initial starting location for the center of mass parameter is also on the order of centimeters from

the ground truth location. The object to be estimated is the same block as used the experiments in
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truth vs. filter iteration.
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(b) Object position relative to the palm and ground truth vs.
filter iteration

Figure 3.31: Center of mass position relative to object frame and object position relative to palm

Section 3.9.1, as the mass and the center of mass is crucial for the ground truth of this experiment.

The estimated location and center of mass should naturally coincide as the chosen object frame FO
is at the center of mass. The two are shown overlapping with each other and the point cloud data

in Figure 3.30b after iteration of the parameter estimation equations.

Since the force torque measurements and subsequent state updates rely heavily on accurate

knowledge of the location of force-torque sensor, it is important to estimate the manipulator state

accurately. Manipulating heavier objects tends to deflect the robotic arm, as in the case of tendon

driven manipulators such as the Barrett manipulator, and hence visual arm tracking must be used

in order to obtain meaningful estimates of the object and center of mass locations. Accurate arm

location is also crucial for fusion of kinesthetic and visual sensors, and hence provides more evidence
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(a) The nominal kinematic robot state. Note the hand
and arm not lining up with the visual point cloud data.

(b) The estimated robot state. Note the matching of the
model to the visual point cloud data.

Figure 3.32: The nominal robot state and the estimated robot state used in model parameter estimation.

for the need of visual arm tracking in manipulation. Figure 3.32 portrays the difference in the

nominal robot state and the estimated robot state demonstrating the improvements realized. Note

how the robot model overlays perfectly with visual point cloud data in Figure 3.32b, whereas the

robot model that uses the nominal robot state is elevated away from the visual data, shown in

Figure 3.32a.

The performance of the dual estimator is shown in Figure 3.31. The object position relative to

the palm (position portion of GPO) is shown in Figure 3.31b. The mean error of this estimate is

6.4 mm. The center of mass position is shown in Figure 3.31a. The mean error of this estimate

is 11.5 mm. This is primarily due to the y estimate having an error of 11 mm. This is due to the

fact that the y axis as seen in Figure 3.30b is parallel to the axis along which gravity acts. This

represents a subspace in which the position cannot be estimated from the force torque sensor. A

possible solution to fully estimate the center of mass is to move the object to multiple different

orientations.

3.9.5 Two Arm Estimation Experiments

The system used in this experiment was similar to the system described in Section 3.9.3. This

system consists of a multi-sensor head, two BarrettTMWAM arms and hands each having a force-

torque sensor at the wrist and tactile sensors on the palm and the distal joints of the hand. The

sensor head is comprised of a high resolution ProsilicaTMGC2450 (2448 × 2050 pixels) , a Point-

GreyTMbumblebee2 color stereo camera (684 × 512 pixels) and a Asus Xtion (640 × 480 pixels)
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Figure 3.33: Dual-arm grasping of a wheel during wheel-hub disassembly

Figure 3.34: Fused wheel location estimate superimposed on Xtion sensor data and system model.
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(a) Left and right estimates from two independent filters (b) Left and right estimates from augmented filter

Figure 3.35: Dual-arm grasping wheel assembly experiments.

RGB-D camera.

The experiments included the task of removing a wheel from a hub as shown in Figure 3.33. This

is naturally a two-arm task since the object is too large and heavy for one arm to manipulate it.

Also, the experimental setup is such that the wheel can be precisely attached to a frame, and hence

its location can be measured externally to provide a ground truth.

The experiment begins as the robot identifies and roughly locates the wheel with ICP. Subse-

quently, a dual-arm trajectory plan is generated and executed to grasp the wheel. At this point,

both estimators as described in Sections 3.8.1 and 3.8.2 are then executed, and their performance is

compared using the ground truth measurements.

Table 3.3: Estimation errors for independent and augmented filters.

Trial Independent Augmented
x y z x y z

(cm) (cm) (cm) (cm) (cm) (cm)

1 91.7 2.6 6.0 92.1 2.7 6.2

2 91.7 2.6 6.0 92.1 2.7 6.2

3 91.7 2.9 5.9 92.1 2.3 6.3

4 91.7 2.7 5.9 92.1 2.7 6.1

5 91.9 3.5 5.9 92.1 2.8 6.2

Mean 91.7 2.8 5.9 92.1 2.66 6.2

Ground Truth x: 91.7cm y: 2.1cm z: 6.2cm

Error 0.0 0.7 0.3 0.4 0.5 0.0
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The state being estimated is the robot state and object state as in Section 3.3: X = {XO, XR} =

{GPO,φ,θ}. The robot state is estimated using visual arm tracking as discussed in Section 3.5.1,

specifically Section 3.5.1.2, in which the data from the Asus Xtion is used in an articulated ICP

approach. The object measurement updates used the point cloud data from Asus Xtion and updates

to the state are described in Section 3.5.2.2. The tactile locations were also used to provide contact

location on the object and were used to update the state as described in Section 3.5.3.2. In both

filters, the object state is estimated relative to each palm, that is: GP rO and GP lO. The left and

right estimate of both filters are shown in Figure 3.35. Note that the left and right estimates of the

augmented filter are slightly more in agreement with each other than the left and right estimates

of the two independent filters. Both filter fuse these two estimates to provide one global estimate

of GBO relative to the body. The fused estimate can be seen superimposed on the point cloud

data in Figure 3.34. This fused estimate is then compared against the ground truth. Both filters

were compared over 5 trials and the RMSE error of the independent filter was 7.6 mm, while the

augmented filter had an RMSE of 6.4 mm. Table 3.3 shows the position of the estimates, ground

truth of this experiment and the errors of each filter. This modest performance improvement suggests

that the extra complexity of the augmented filter does not increase performance enough to merit its

use for static scenarios. This may prove different for more dynamic tracking situations, and this is

future work to be investigated.

(a) Left stereo image of wheel removal task with fidu-
cial detection

(b) Right stereo image of wheel removal task with fidu-
cial detection

Figure 3.36: Left and right stereo images of wheel being removed from hub. Fiducials are detected in each
image and are outlined in red.

A second experiment was done in a dynamic setting. The experiment involved removing a

wheel from its hub and tracking the wheel as it is removed. The ground truth for this experiment

was obtained using the fiducial as described in Section 3.9.2. The fiducial was attached to the

wheel and it’s location measured relative to the object frame FO. The augmented dual-arm filter

(Section 3.8.2) was used for this experiment that included tactile and shape measurements. Arm
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tracking did not have much impact on performance, as the majority of the arms were not in view

during this experiment.
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Figure 3.37: Estimation error of wheel tracking during the wheel removal task. X error shown in red with
circles, Y error shown in blue dashed line, and Z error shown in black.

The tracking error in position between the filter estimate and the tracked fiducial is shown in

Figure 3.37. The largest error in each axis is about 1cm. This might be due to the fact that wheel

is rotationally symmetric and since the estimator used only consisted of shape measurements and

not features, this error may be larger than in actuality. Overall, the RMSE for tracking the wheel

as it is removed from its mounting hub is 3.9 mm.
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Chapter 4

Next Best Touch

This chapter introduces a method for selecting the best action to touch/probe/interact with an

object in the robot’s environment in order to learn more about it. This paradigm, termed the next

best touch, leverages information theory and an estimator to choose a touching/sensing action that

would gain the most information about that object. This is useful when the robot’s visual pose

estimation is too poor for accurate manipulation.

First, the problem of localizing a known object using touch is considered. This approach is based

on an information gain metric tailored to the application, and is computed using relative entropy.

The next best touch is chosen as the action which maximizes the expected gain in the metric. The

probability used in the relative entropy calculation requires state estimation. The algorithm uses

a Bayes’ filter, specifically a histogram filter, to update state estimates after each measurement.

The measurement models incorporate the tactile sensing models described in Section 3.5.3.2 and

the binary contact model described in Section 4.1.2. Simulation results with synthetic data are

demonstrated for the task of localizing a door handle in Section 4.2. Experimental results obtained

during the task of localizing and opening a door are presented in Section 4.3.

Section 4.4.1 explores extending the next best touch algorithm to select the next best action to

not only localize the object, but also to estimate model parameters, associated with the object. For

example, the robot may be presented with novel objects, but within a known object category or

model class, and must be able to grasp and manipulate these new objects. Many object categories

contain exemplars that roughly have the same shape. Principle component analysis (PCA) can be

used to parametrize the mesh models of similarly shaped objects. A belief is then formed for the

object state and these parameters. This belief is then used to compute the information gain metric.

Simulation results using synthetic data are shown in Section 4.4.2 on a screwdriver.

Section 4.4.3 further extends the next best touch framework to include an unknown model class.

This extension might be useful for situation in which the robot is unable to discern a particular

object using vision. This might occur when the robot’s viewpoints are limited, or when a robot

reaches into a bag. A belief is derived for both the state and the discrete model class. Using this
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Figure 4.1: The next best touch algorithm flow diagram

belief, a similar information gain metric is computed. After each touch, the model class probability

is updated until this probability exceeds a user-defined threshold.

The simulations used for the demonstration of the theory was developed using OpenGL models

of the robot and objects and rendered in a viewer.

4.1 Next Best Touch (NBT) with Known Object Model

Object localization requires a state estimation framework which first forward predicts the state of

world based on a new input action a, and then updates the state based on new measurements, ẑ.

The general Bayes’ filter maintains a state belief or posterior probability, p(Xt+1|z1:t, ẑ, u1:t, a) and

consists of two steps: dynamic prediction and update. The prediction step uses a generative dynamic

model to propagate the state belief:

p(Xt+1|z1:t, u1:t, a) =

∫
Xt

p(Xt+1|Xt, z1:t, a) p(Xt|z1:t, u1:t) dXt , (4.1)

where p(Xt+1|Xt, z1:t, a) is the dynamic or predictive model. The update step uses the measurement

models described in Section 4.1.2, consisting of both tactile and contact measurements, which take

positive and negative information (“positive information” indicates contact occurs, and “negative

information” indicates lack of contact) into account. While this thesis explores contact and tactile

sensors, this method maybe extended to use other visual sensors that have been used in the next

best view literature. After a measurement, the state is then updated in the usual manner:

p(Xt+1|z1:t, ẑ, u1:t, a) =
p(ẑ|Xt+1, z1:t, u1:t, a) p(Xt+1|z1:t, u1:t, a)∫

X̂t+1
p(ẑ|X̂t+1, z1:t, u1:t, a) p(X̂t+1|z1:t, u1:t, a)dX̂t+1

. (4.2)
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While this formulation does not require a specific type of filter, a discrete histogram filter is chosen

for our implementation. In this histogram filter, the continuous state is binned into cells/divisions

which form a partition of the state space and which are used in a discrete Bayes’ filter. An advantage

to using a histogram filter is that in the discretization of the state the implementer can specify the

precision of the filter, however as a result the computational cost grows exponentially.

Figure 4.2: Candidate touching action directions and surfaces to contact. The BarrettTM hand surfaces
(palm tactels, finger tactels, side and back surfaces) contacting surfaces of door handle

4.1.1 Generate Candidate Actions

Definition 4.1. Candidate touching actions are comprised of a Cartesian motion direction ~nO and

a hand pose, namely the hand joint angles (ΘH) and the hand (palm) transform (GBPa). �

The generation of candidate actions requires models of the object O and the robot R. Both are

modeled using a standard polygonal mesh model M consisting of a fixed number of faces {Fi}

(i = 1, . . . , nF ), edges, {Ej} (j = 1, . . . , nE), and vertices {Vk} (k = 1, . . . , nV). A reference frame

Fo is rigidly attached to the object model. First, surfaces on the object modelMo, are chosen (which

may also be selected by the user) and the normals of each surface are chosen as candidate touching

directions. The hand pose of the touching actions are chosen by specifying preferred surfaces of the

robot’s model,MR, which will contact the object (These surfaces will typically be the palm and/or

the surfaces of the fingers). Conceivably, these surfaces can also lie on other parts of the robot

structure, such as the forearm, etc. The normals of these surfaces are then aligned with the action

directions ~nO (shown in Figure 4.3). Since this construction does not lead to a unique hand pose

GBPa , the minimum rotation from the hand’s initial pose (at GBP i)to the aligned action direction
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is chosen, i.e.:

RP iPa = arg min
R

GP iPa .

This minimum rotation may be computing the axis-angle (ω̂, Ω) rotation by aligning the rth robot

surface normal ~nrR (with the robot in the initial state) to the oth object surface normal ~noO both in

the base frame FB :

Ω = cos−1(~noO · ~nrR) (4.3)

ŵ = ~noO × ~nrR . (4.4)

To provide a range of hand poses, since some may not be feasible, the rotation along the aligned

axis ~noO is sampled to provide a number of possible orientations about the touching action direction.

Figure 4.2 illustrates some possible ways the hand may contact the object. Actions in which the

hand collides with other objects are pruned out of the candidate touching actions.

In addition, human users may add extra information by specifying which surfaces/edges of the

object and hand are advantageous to contact. Similarly, surfaces that are undesirable to contact

may be specified.

4.1.2 Information Gain

The relative entropy of state X is the Kullback-Leibler divergence of the posterior and prior proba-

bilities of X given new actions and measurements:

IG =

∫
x

p(Xt+1|z1:t+1, u1:t+1) log
p(Xt+1|z1:t+1, u1:t+1)

p(Xt|z1:t, u1:t)
. (4.5)

I.e., IG measures how much information is gained from the process of taking a specific measurement.

In order to calculate the posterior belief, a new measurement is used to update the prior belief. Using

the Bayes’ filter equations (4.1 and 4.2), the information gain may be expanded using Bayes’ rule

and the Markov assumption:

IG =

∫
x

p(ẑ|Xt+1) p(Xt+1|z1:t, u1:t, ai)

p(ẑ)
log

p(Xt+1|z1:t, ẑ, u1:t, ai)

p(Xt|z1:t, u1:t)
. (4.6)

Here, the new measurements are denoted by ẑ and the possible action is denoted by ai. However,

in the context of finding the next best action a∗, these new measurements ẑ are in the future

and are always hypothetical. Since the specific value of these measurements cannot be known, the

expectation of the relative entropy yields the expected gain in information due to a candidate action,



69

a1

a2

τ

∑
o

Figure 4.3: Touching action directions. Ellipse represents pose uncertainty and black dots represent the
hypothetical points of contact with the object.

ai:

Eẑ[IG(ẑ, ai)] (4.7)

=

∫
ẑ

p(ẑ)

∫
x

p(ẑ|Xt+1) p(Xt+1|z1:t, u1:t, ai)

p(ẑ)
log

p(Xt+1|z1:t, ẑ, u1:t, ai)

p(Xt|z1:t, u1:t)
.

=

∫
ẑ

∫
x

p(ẑ)
p(ẑ|Xt+1) p(Xt+1|z1:t, u1:t, ai)

p(ẑ)
log

p(Xt+1|z1:t, ẑ, u1:t, ai)

p(Xt|z1:t, u1:t)

=

∫
ẑ

∫
x

p(ẑ|Xt+1) p(Xt+1|z1:t, u1:t, ai) log
p(Xt+1|z1:t, ẑ, u1:t, ai)

p(Xt|z1:t, u1:t)
,

where p(ẑ|Xt+1) is the likelihood of the corresponding measurement model, p(Xt+1|z1:t, u1:t, ai) =

p(Xt+1|Xt, ai) p(Xt|z1:t, u1:t) is the intermediate belief after the state prediction of action ai, and

p(Xt+1|Xt, ai) is the prediction likelihood arising from the system’s governing dynamics, in response

to action ai.

Similarly, the time and location of the end of an action (the moment of contact) is also unknown

as the object’s location is uncertain. We lump the time and location together and denote τ as

the time/location at which collision occurs along the action direction. Hence the information gain

formulation must take into account the uncertainty in the time of contact.

Eτ,ẑ [IG(ẑ, τ, ai)] (4.8)

=
∑
τ

p(τ)

∫
ẑ

∫
x

p(ẑ|Xt+τ ) p(Xt+τ |z1:t, u1:t, ai) log
p(Xt+τ |z1:t, ẑ, u1:t, ai)

p(Xt|z1:t, u1:t)
,

where p(τ) is the probability density of ending the action at time τ , and may be found using:

p(τ) =

∑
Xt+τ

C(τ) p(Xt+τ |z1:t+τ , u1:t+τ )∑
τ

∑
Xt+τ

C(τ)p(Xt+τ |z1:t+τ , u1:t+τ )
. (4.9)

The function C simply indicates collision between the two bodies (represented by polygonal mesh
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models, M), namely the robot (R) manipulator when it lies at state XR and the object (O) to

touch positioned at state XO at the time of contact τ can be determined by simulating contact

using a computational contact detection algorithm. A binary function is constructed by determining

intersections between two meshs or primitive shapes:

c = C(τ) = C(Mo(x
o
t+τ ),MR(xRt+τ )) =

0 if Mo ∩MR = ∅

1 if Mo ∩MR 6= ∅
. (4.10)

A world model with accompanying computational mechanics algorithms is used to support the

collision detection algorithm. The simulation and experiments presented in this chapter use the

third party Bullet1 software. Polygonal meshes models of the objects and of the robot are used with

Bullet to detect collisions.

The measurement, ẑ, is comprised of contact (ẑ1 ∈ R1) and tactile (ẑ2 ∈ R3) measurements

which are typically used in touching. While a contact measurement could be determined from

tactile measurements, force-torque sensors in the manipulator can also be used to infer contact.

Therefore, the measurement likelihood can be described as:

p(ẑ|Xt+τ ) = p(ẑ1, ẑ2|Xt+τ )

= p(ẑ2|ẑ1, Xt+τ )p(ẑ1|Xt+τ ) . (4.11)

The contact measurement likelihood can be described using the following binary detection model of

an imperfect measurement process:

p(ẑ1|Xt+τ ) =



P (ẑ1 = 0|c = 1) = β

P (ẑ1 = 1|c = 1) = 1− β

P (ẑ1 = 0|c = 0) = 1− α

P (ẑ1 = 1|c = 0) = α ,

(4.12)

where α and β are the false positive and true negative error rates, respectively, and c is a binary

variable that indicates an intersection/collision of the object and robot hand; this can be simulated

using the contact detection method, C.

Similarly, the tactile measurement likelihood is adopted from [51] and can be decomposed into the

1Bullet Physics Engine (http://bulletphysics.org/wordpress/)
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1. 2.

3. 4.

5. 6.

Figure 4.4: The belief distribution after a series of null contact measurements (1–5) and a positive contact
at 6. Note the disappearance of possible states as the hand descends in 1–5, the change in states below the
hand in 5 and the peaked distribution in 6. Blue indicates low belief and red indicates high belief.

contact position, ẑp2 and the contact normal, ẑn2 by independence p(ẑ2|ẑ1, Xt+τ ) = p(ẑp2 |ẑ1, Xt+τ )p(ẑn2 |ẑ1, Xt+τ ).

p(ẑp2 |ẑ1 =1, Xt+τ ) =
1√

2πσp
exp

(
−1

2

dist(ẑp, Fi(Mo(x
o
t+τ )))

σ2
p

)
(4.13)

p(ẑn2 |ẑ1 =1, Xt+τ ) =
1√

2πσn
exp

(
−1

2

‖ẑn−ni(Mo(x
o
t+τ ))‖2

σ2
n

)
, (4.14)

where Fi(Mo(x
o
t+τ )) and ni(Mo(x

o
t+τ )) are the face and normal most likely to cause the measure-

ments at xot+τ given the mesh Mo.

The best action a∗ may be selected that causes the highest expected information gain IG, while

also minimizing some cost C(a) incurred by taking that action:

a∗ = arg max
a

[
IG(a)− γ C(a)

]
, (4.15)

where γ is a constant to specify the relative importance of action costs to information gain.
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(d) Wide prior along diagonal z − y axis

Figure 4.5: Depiction of the BarrettTM hand and 4 actions touching the door handle located on a door. Four
example choices of prior belief (left) and the corresponding best action (right) chosen by the method. The
posterior belief (right) after a positive contact is also shown. Blue indicates low belief and red indicates high
belief.



73

4.2 Simulation Results

In order to calculate the information gain of each candidate action, each action must be simulated.

For each action, the belief of the object state is updated using a series of null contact measurements

(ẑ1:(τ−1) = 0) occurring in the interval prior to the time/location (τ) at which contact is made and the

information gain is to be calculated. I.e., as the robot progresses along the action direction at times

t+ 1, t+ 2, . . . , t+ τ − 1, the measurements consist of null contacts, and the approach is continued

until contact. At contact time τ , all possible measurements are used in Equation 4.8 in order to

be integrated out of the expected information gain. Figure 4.4 illustrates the belief distribution

changing as a result of null contact measurements (1–5) and finally (6) a positive contact (The

rainbow color map is used with blue indicating low values and red indicating high values of belief) .

Null contacts are used to update the belief (negative information) and is shown by the reduction of

highly probably states in frames 1–5 of Figure 4.4. The belief changes shape, and change in belief

is most evident in frame 5 as discretized states right below the hand turn to red (indicating high

probability). Finally, when a positive contact between the hand surface and the object is made in

frame 6 of Figure 4.4, the states in contact increase in belief and the states not in contact decrease

in belief.

Secondly, Figure 4.5 shows the best action determined by the algorithm given various initial

prior distributions. Given sharp beliefs (i.e. low uncertainty), approaches in the z and y axis

directions, Figures 4.5a and 4.5b shows, as one might expect, the best action which provides the

most gain of information about the pose of the door handle is the action that approaches the door

handle while passing through the majority of the uncertainty ellipse. However, Figures 4.5c and

4.5d illustrate that the greatest information gain does not necessarily accrue in the direction of the

largest uncertainty. As a result, both the shape of the object and the hand pose plays a role in the

information gain calculation, as illustrated by the action chosen in Figure 4.5d.
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4.3 Experimental Investigation

The next best touch algorithm described in previous sections was implemented on the DARPA

ARM-S system and tested on the task of localizing a door handle and opening a door whose a priori

location, while unknown, was located near the robotic torso. The robotic torso consists of a Barrett

arm with seven joints, a 3-fingered Barrett hand with four actively controlled joints, and a four-jointet

neck, totaling fifteen individual degrees of freedom. Objects are initially located in the environment

using a suite of perception sensors that include a low-resolution stereo camera, flash lidar, and a

high-resolution gigE camera. A six-axis force-torque sensor located at each hand-arm interface is

used to detect contact with objects in the environment. Contact with the object or environment

results in easily recognizable sensor signals. The computation is done on Dual Quad Core Intel

Xeons (3.33 GHz) with 24 GB DDR3 RAM and a 1.5 GB NVIDIA Quadro FX4800 graphics card.

κ1

κ2

κ3

t1

t2

t3

κ =
[
κ1 κ2 κ3

]T
t1 =

[
t1 t3

]T
t2 =

[
t2 t3

]T
Figure 4.6: Action constraint and trajectory sequences for information gain planning. An action constraint
sequence is an ordered list of state constraints (κ). A trajectory sequence is a continuous sequence of
trajectories (t1, t2). κ1 is the initial state of the robot, κ2 is the end of the freespace maneuver, and κ3

is the end of the interactive maneuver. In this example both t1 and t2 satisfy the state constraints in the
constraint sequence κ.

4.3.1 Motion Planning for the Next Best Touch

To demonstrate the next best touch framework, the technique is integrated with a motion planning

algorithm that samples in the space of continuous parameterized trajectory sequences [83]. Each

trajectory sequence is composed of a freespace motion κ1κ2 and an interactive motion κ2κ3. The

freespace motion maneuvers the manipulator to the initial state of the interactive maneuver without

interacting with the target object. The interactive motion is executed until collision with the surface

of the target object is detected. To accurately detect collisions with the six-axis force torque sensor

of the DARPA ARM robotic torso, the orientation of the hand is fixed during the interactive motion.

The motion planner first forms a set of action constraint sequences κ. The first constraint

κ1 in each constraint sequence is the initial state of the robot. The second, κ2, and third, κ3,

constraints are the boundary states of the interactive motion. Additional constraints on the neck

motion are developed by a view planner that minimizes occlusions between the manipulator and
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(a) Three valid minimum-time tra-
jectories with unique terminal wrist
poses that intersect with the door
handle

(b) The terminal state of the
freespace maneuver for the
minimum-time trajectory with the
maximum predicted information
gain

(c) The terminal state of the inter-
active maneuver for the minimum-
time trajectory with the maximum
predicted information gain

door handle

6

maximum information
gain trajectory sequence

?

Figure 4.7: Motion planning for the next best touch is applied to the DARPA ARM-S robot. A set of
trajectory sequences is generated and sorted to efficiently select a motion that will result in the maximum
expected information gain of an object. Blue spheres indicate terminal and intermediate wrist poses. Red
lines indicate two suboptimal information gain trajectories. Green line indicates the highest information
gain trajectory.

the sensor head. An example of an entire sequence is shown in Figure 4.6. A family of trajectories

are generated between each neighboring constraint pair by sampling the intermediate and terminal

state space of redundant joint angles. A trajectory sequence is a set of trajectories that satisfy all of

the constraints in a constraint sequence. The set of all trajectory sequences that satisfy constraint

sequences in the constraint sequence set is called the trajectory sequence set.
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Figure 4.8: The evolution of belief distribution during a task to localize a door and door handle (Left column
shows snapshots from the sequence of touching actions. Right column depicts the belief after each touching
action. The belief map was marginalized over x for clarity. Regions of dark blue imply low belief and regions
of dark red imply high belief.). The initial distribution is chosen as uniform. The first action touches the
side of the door handle, and the next two actions touch the door handle from the top at different locations.
At this point, the uncertainty is less than a small threshold, and the door is then opened.
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Figure 4.9: The covariance evolution. The sum of the eigenvalues of the covariance matrix is plotted at each
action update. The uncertainty decreases until the threshold is met at which point the door is then opened.

4.3.2 Experimental Results

The algorithm was tested on the DARPA ARM-S robot with the task of opening a door. The robot

planner was initialized with a model of the door and door handle. Before the touching sequence

began, the door and door handle were both detected with their poses initially registered using vision.

Unbeknownst to the robot, the door was then displaced manually after the initial registration in

order to add additional error. The prior distribution in this experiment was chosen as uniform

to add additional uncertainty in the location of the door handle. Note that the method does not

preclude the use of other prior uncertainty models relating to the vision system used. The robot’s

hand motion was planned to an action starting location near the initially estimated door handle

location. From there, action constraints and subsequent candidate actions were generated based on

acquired sensory data. These actions were pruned for collisions with other objects in the scene.

Figure 4.8 illustrates the sequence of touching actions and the corresponding updated beliefs. A

series of three touching actions was determined by the algorithm. The first action attempts to touch

the door handle from the side. The subsequent two touching actions were initiated from above the

door handle but in different locations. During each action, the belief is continually updated with

contact measurements. The evolution of the belief after each action is also shown in the right column

of Figure 4.8. The belief was marginalized over the state x for plotting clarity. As the belief peaked,

the uncertainty of the door handle location decreased below the set threshold, at which point the

door is then opened. Figure 4.9 plots the decrease in uncertainty (the sum of the eigenvalues of the

covariance matrix) at each touching action.
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4.4 Next Best Touch (NBT) with Unknown Model

In addition to touch-based localization, model and model parameter estimation may be necessary.

For example, from certain views the robot maybe incapable of determining whether a particular

object might be of a particular subclass of similar objects. A simple example is a travel thermos

that may or may not have a handle, as shown in figure 4.16. As such, without knowing if the object

has a handle or if it is not possible to view the handle, it might be particularly beneficial to touch

the object before a grasp is selected and executed in order to detect presence of the handle.

Instead of exploiting the relative entropy of the belief of the object state for the next best touch

in object localization, we exploit the relative entropy of the joint belief of the object state and model

parameter m or model class M . This concept is developed and demonstrated in the remainder of

this section. First, a parametrized model class is considered, followed by the case of unknown model

classes.

4.4.1 NBT with Unknown Model Parameter

First consider the problem of estimating key parameters in a family of objects, e.g. screwdrivers.

Similar mesh models, M, within a object model class, M , has been shown to be parametrizable

using an Active Shape Model (ASM) developed by Cootes [25]. An example of a parametrizable

object such as a flathead screwdriver is shown in figure 4.10, where the parameters are shown. The

basic principle of ASM is the use of principle component analysis (PCA). A PCA decomposition of

a model class is computed in the following manner. The mesh points, vi, of each model M, called

Figure 4.10: Similar objects that are parameterizable by multiple parameters.



79

shape vectors, are stacked to form a 3N vector, where each shape vector contains the same number

of points N :

v = [v1,v2, . . . ,vN ]
T
. (4.16)

Assuming that we have K similar models, Procrustes analysis2 is done to align the shape vectors.

Next, a mean shape vector can be computed:

v =
1

K

K∑
k=1

v(k) . (4.17)

A semi-definite matrix representing the model covariance maybe computed a similar fashion:

P =

K∑
k=1

(
v(k) − v

)(
v(k) − v

)T
, (4.18)

where v(k) is the kth model shape vector. A variability matrix V consists of the E eigenvectors of

matrix P corresponding to the E largest eigenvalues. With this matrix, a shape of a new object in

the class may be defined as:

v = v + V · λ , (4.19)

where λ can be interpreted as the model parameters, m. These parameters may be unknown a priori

and must be estimated. Therefore, a joint belief should be computed in order to estimate both the

object state and the parameters. The joint estimate of object state and object parameters may be

accomplished using a dual estimation technique or jointly by augmenting the state vector to include

the model parameters.

The information gain of Equation 4.8 is modified to incorporate a joint belief, and an analogous

derivation to Section 4.1.2 is carried out to develop an appropriate expression for the expected gain

in information due to a candidate action, ai, at time t+ 1:

2Procrustes analysis is a statistical shape analysis used to analyze the distribution of a set of shapes.
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Eẑ[IG(ẑ, ai)]

=

∫
ẑ

p(ẑ)

∫
x

p(Xt+1,m|z1:t, ẑ, u1:t, ai) log
p(Xt+1,m|z1:t, ẑ, u1:t, ai)

p(Xt,m|z1:t, u1:t)

=

∫
ẑ

p(ẑ)

∫
x

p(ẑ|Xt+1,m) p(Xt+1,m|z1:t, u1:t, ai)

p(ẑ)
log

p(Xt+1,m|z1:t, ẑ, u1:t, ai)

p(Xt,m|z1:t, u1:t)

=

∫
ẑ

∫
x

p(ẑ)
p(ẑ|Xt+1,m) p(Xt+1,m|z1:t, u1:t, ai)

p(ẑ)
log

p(Xt+1,m|z1:t, ẑ, u1:t, ai)

p(Xt,m|z1:t, u1:t)

=

∫
ẑ

∫
x

p(ẑ|Xt+1,m) p(Xt+1,m|z1:t, u1:t, ai) log
p(Xt+1,m|z1:t, ẑ, u1:t, ai)

p(Xt,m|z1:t, u1:t)
.

(4.20)

As before, the end of the action is not known and the expectation must be taken over a distribution

of stopping times:

Eτ,ẑ [IG(ẑ, τ, ai)]

=
∑
τ

p(τ)

∫
ẑ

∫
x

p(ẑ,m|Xt+τ ) p(Xt+τ ,m|z1:t, u1:t, ai) log
p(Xt+τ ,m|z1:t, ẑ, u1:t, ai)

p(Xt,m|z1:t, u1:t)
.

(4.21)
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Figure 4.11: Primitive collision objects (rectangles, cubes, and cylinders) on robot and on object. Note the
radius of the primitive cylinder on the screwdriver.

4.4.2 Simulation Results with Unknown Model Parameter

One task of the DARPA ARM-s program was to grasp a novel screwdriver that the robot had not

seen before. As a result, knowledge of one of the key parameters, the handle radius, would have

helped for accurate grasping of the screwdriver while it lies on the table. The visual system could

not accurately ascertain this radius at the typical distances at which the screwdriver was located

(a) Screwdriver touching action a1 — de-
scending down in z

(b) Table touching action a3 and
pinching action a2

Figure 4.12: Three feasible candidate actions to determine both the location and model parameter (screw-
driver handle radius). The blue cloud represents the discrete belief of the screwdriver position and the handle
radius of the screwdriver prior to any touching actions.
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Figure 4.13: Information gain values for actions 1,2, and 3

a1 a2 a3

relative to the cameras. As a result, this is an excellent example for touch-based parameter and

state estimation.

As mentioned in Section 4.4.1, one can learn the parameters of the mesh using active shape

models. In the case of a simple screwdriver example, one obvious parameter is the radius of the

handle. For the calculation of collision detection, one can use a mesh model, or with simpler objects,

such as the screwdriver, the objects can be decomposed into shape primitives. These primitives

provide a fast and analytic way to compute intersection between objects. Figure 4.11 illustrates the

screwdriver decomposed as cylinders, which can be parametrized by their radii.

(a) Belief after action a3 (b) Belief after action a2 (c) Belief after action a1

Figure 4.14: Belief evolution after 3 consecutive touchings.
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Figure 4.12 depicts 3 feasible candidates actions for the NBT with unknown model parameter,

as well as initial uncertainty used in this simulation. The first action, a1, is a straight down action

in z − direction to touch the handle, with fingertips. The second, a2, is a pinching action (or

action primitive) that is used on symmetric objects, The fingers close evenly until contact is made.

The third action, a3, is a table or surface touching action since the exact height of the table is

equally uncertain. Touching the table is appropriate in this case as the relative positions of the table

and screwdriver are constrained via with a planar constraint. The blue point cloud in Figure 4.12

surrounding the screwdriver depicts the discrete belief of the screwdriver position and handle radius

parameter, with blue depicting low probability and red depicting high probability.

Figure 4.14 illustrates the belief distribution after each of the three candidate actions along

the proposed action directions. Each panel shows the decrease of uncertainty after every positive

measurement (i.e. contact is sensed). The simulation was able to infer the correct location (x:

0.74 m y: -0.35 m z: 0.49 m) and correct parameter (radius: 0.01 m) of the model screwdriver after

an initial wrong x and z location ( x: 0.75 m y: -0.35 m z: 0.48 m) and parameter values (radius:

0.02 m).
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Figure 4.15: Covariance evolution of screwdriver belief after each action. The dotted lines indicate the
start/end (boundary) of an action. Each discrete position in the plot is a waypoint (discretized motion) of
the particular action within the boundary.

Figure 4.15 illustrates the decrease of uncertainty (calculated as the trace of the covariance

matrix), after each discretized movement of the hand along each best action ai. This shows the

decrease of uncertainty after every negative measurement and positive measurement. At each red

(dotted) line there was a positive measurement (contact occurred). After each red line, the next

best action is computed and simulated. This figure shows considerable decrease of uncertainty of

both the location and the parameter of the model.
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Figure 4.16: Two similar objects are shown except one object has a feature only discernible from certain
viewpoints.

4.4.3 NBT with Unknown Model Class

Now consider the problem of determining the category of an object (i.e. screwdriver or pipe, mug

or glass). This is particularly useful if the robot has a limited view of an object or does not have

the visual precision to discern the exact object class.

As before in Section 4.4.1, a joint probability must be computed consisting of the state X and the

model class M , p(X,M |z1:t, u1:t). The joint expected information gain due to hypothetical action

ai, may then be computed as:

Eτ [IG(τ, ai)] (4.22)

=
∑
τ

p(τ)

∫
Xt+τ

∑
M

p(Xt+τ ,M |z1:t, ẑ, u1:t, ai) log
p(Xt+τ ,M |z1:t, ẑ, u1:t, ai)

p(Xt,M |z1:t, u1:t)
.

The joint belief may be broken into two probabilities using the product rule. The first is the

state belief distribution over the object, and the second is the probability of the model.

p(Xt+τ ,M |z1:t, ẑ, u1:t, ai) = p(Xt+τ |M, z1:t, ẑ, u1:t, ai) p(M |z1:t, ẑ, u1:t, ai) . (4.23)

The first term is simply the belief of the object state X under hypothetical model M . The second

term is the model probability and can be found using Bayes’ rule:

p(M |z1:t, ẑ, u1:t, ai) =
p(ẑ|M, z1:t, u1:t, ai) p(M |z1:t, u1:t, ai)∑
M p(ẑ|M, z1:t, u1:t, ai) p(M |z1:t, u1:t, ai)

. (4.24)

The first term in Equation 4.24 is the data likelihood and is the normalizer in the measurement

update Equation 2.10 in the Bayes’ filter, but under model class M . The data likelihood may be
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found by marginalizing over the state Xt given the model M :

p(ẑ|M, z1:t, u1:t, ai) =

∫
Xt+τ

p(ẑ|Xt+τ ,M, z1:t, u1:t, ai)p(Xt+τ |M, z1:t, u1:t, ai) dXt+τ . (4.25)

The first term of Equation 4.25 is simply the measurement model likelihood by making the Markov

assumption that past and future data is independent if the state is known. The second term is

simply the intermediate probability after the prediction step of the Bayes’ filter.

The second term in Equation 4.24 is the model probability from the previous time step and hence

can be computed recursively. Lastly, the denominator of Equation 4.24 is a normalizer (abbreviated

below by p(z)) and need not be computed explicitly for updating the model probability.

The expected information gain Equation 4.22 can be simplified into a form which can be easily

computed. The joint belief in Equation 4.22 can be substituted with Equation 4.23 to yield:

Eτ [IG(τ, ai)] =
∑
τ

p(τ)

∫
Xt+τ

∑
M

p(Xt+τ |M, z1:t, ẑ, u1:t, ai) p(M |z1:t, ẑ, u1:t, ai)

log
p(Xt+τ |M, z1:t, ẑ, u1:t, ai) p(M |z1:t, ẑ, u1:t, ai)

p(Xt,M |z1:t, u1:t)
. (4.26)

Further breaking down this information gain, the belief conditional on the model class (the first term

in Equation 4.23) can be substituted for the measurement update equation that is also conditional

on the model class:

Eτ [IG(τ, ai)] =
∑
τ

p(τ)

∫
Xt+τ

∑
M

p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M)
p(M |z1:t, ẑ, u1:t, ai)

log
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M)

p(M |z1:t, ẑ, u1:t, ai)

p(Xt,M |z1:t, u1:t)
.

(4.27)

Similarly, the measurement zτ is not known, it must be integrated out in the expectation of the

information gain:

Eτ,ẑ [IG(ẑ, τ, ai)] =
∑
τ

p(τ)

∫
Xt+τ

∑
M

∫
ẑ

p(ẑ)
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M)
p(M |z1:t, ẑ, u1:t, ai)

log
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M)

p(M |z1:t, ẑ, u1:t, ai)

p(Xt,M |z1:t, u1:t)
.

(4.28)

To further simplify the above, the model probability may be substituted using Bayes’ rule and

conditioning variables that do not matter on the probability expressions (z1:t and u1:t) are omitted
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for clarity:

Eτ,ẑ [IG(ẑ, τ, ai)] =

∫
τ

p(τ)

∫
Xt+τ

∑
M

∫
ẑ

p(ẑ)
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M)

p(ẑ|M) p(M)

p(ẑ)

log
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(ẑ|M) p(Xt,M |z1:t, u1:t)

p(ẑ|M) p(M)

p(ẑ)
.

(4.29)

Canceling out terms in the numerator and denominator, the final expected information gain is thus:

Eτ,ẑ [IG(ẑ, τ, ai)] =

∫
τ

p(τ)

∫
Xt+τ

∑
M

∫
ẑ

p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai) p(M)

log
p(ẑ|Xt+τ ,M) p(Xt+τ |M, z1:t, u1:t, ai)

p(Xt,M |z1:t, u1:t)

p(M)

p(ẑ)
. (4.30)

This equation can be computed using the measurement model p(ẑ|Xt+τ ,M), which may be the

binary contact model given in Equation 4.12. The discrete prior model probability is denoted by

p(M) and the prior joint probability conditioned with the model is denoted by p(Xt,M |z1:t, u1:t).

The intermediate probability is also conditioned on the model M , denoted by p(Xt+τ |M, z1:t, u1:t, ai)

and p(ẑ) is the normalizer in the model probability calculation of Equation 4.24.
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(a) Indiscernible view of mug (b) Indiscernible view of cup

(c) Distinguishable view of mug (d) Distinguishable view of cup

Figure 4.17: Particular views from the robot of the mug and cup in which both are visually indistinguishable

4.4.4 Simulation Results with Unknown Model Class

One challenging issue is to be able to discern objects when they are quite similar. Even when similar

objects are in full view, disambiguating features may be too noisy, or only in partial view, to be used

to discern the particular object. For example, while grasping objects within a bag, vision cannot be

used. Therefore, it is sometimes valuable to use touch for identifying a particular object.

A simulation experiment was designed to demonstrate how this version of NBT might be used to

distinguish between a mug and cup in the case they were placed at a pose in which the distinguishable

feature (the handle) was not in view. As a result, in order to disambiguate between the two possible

object, the robot must interact and touch the object.

The expected information gain calculation of Equation 4.30 is used to infer which is the best
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action to disambiguate between the two objects. For this demonstration, the prior model probability

is assigned to be equal amongst both models: P (M) = 0.5. The geometry of this simulation is shown

in Figure 4.17 in which the handle of the mug was out of view, thereby making the cup and mug

visually indistinguishable by shape alone, as the object models share the same cylindrical shape by

design.

(a) Action 1 touching the area near handle (b) Action 2 touching the side of the

mug/cup

(c) Action 3 touching the top of the

mug/cup

Figure 4.18: Actions generated for next best touch with unknown model class with mug and cup

Actions are automatically generated based on the objects normals and surfaces and the choice of

surfaces of the fingers and hand of the manipulator as described in Section 4.1.1. The three actions

that satisfied all of the constraints are shown in Figure 4.18 and can be qualitatively described as (1)

touching the handle, (2) touching the side of the mug/cup, and (3) touching the top of the mug/cup.
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For each candidate action, the expected information gain in Equation 4.30 was determined using

the binary contact model in Equation 4.12 and the model probability distribution was chosen as

uniform (each model is equally likely). Given the actions in Figure 4.18, action a1, which touches

the handle, provides the most information gain as shown in Figure 4.19. While actions a2 and a3 do

not touch the discriminating feature, there is some information gain due to the uncertainty in pose,

since the information gain calculation is based on the joint belief between the model class M and

object pose X.
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Figure 4.20: Model probability evolution for mug and cup for actions 1, 2, 3 given NULL contact measure-
ments
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As the information gain is computed while the robot moves along a particular action direction, it

is important to note that in order for the action to continue, it assumed that the measurements are

NULL contacts as described in Section 4.1. If there were to be a positive contact, then the action

would end. With this in mind, Figure 4.20 shows the evolution of the model probability during

each action 1, 2 and 3. Since there are no positive contact, the model probability for the cup gains

favor in action 1. This is due to the fact that action 1 interacts with the handle and if there are no

contact, then it is more likely that the object is the cup since the cup has no handle. The contrary

is also true, in that since there is contact, it becomes less likely that the object is the mug. Finally

note that actions 2 and 3 do not interact with the discernible feature (handle) and hence will not

contribute to the model probability. For these actions, the model probability for each object remains

at 0.5.
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Chapter 5

Conclusion

5.1 Summary of Thesis Contributions

The are two primary contributions of this thesis, both of which relate to grasping and manipulation

problems. The first contribution is an estimation framework for aspect of grasping and manipulation.

The second relates to object interaction and involves action selection. This action inference theory,

termed the next best touch uses kinesthetic inputs and information theory to choose the best touching

action to gain the most information about the object.

The estimation framework in Chapter 3 combines multiple visual cue and multiple sensors pro-

vides more accurate results. There are several contributions from this estimation framework and

be thought of in two parts: manipulator tracking and object tracking. The manipulator tracking

involves the use and fusion of multiple visual cues from different sensors. The advantages of each

sensor are leveraged. A stereo camera system is excellent at finding depth to individual features

through point-wise/sparse stereo matching. Technologies such as 3D cameras, like the KinectTMor

XtionTMprovide remarkable accurate point clouds with little noise. Monocular cameras which are

high resolution can discern small features that stereo cameras or RGB cameras from 3D cameras

may not pick up or where depth is not important. A contribution of this thesis is fusing appearance

features from stereo cameras, shape measurements from 3D cameras and contour/silhouette mea-

surements from a high-resolution monocular camera to provide robust and accurate manipulator

tracking. In addition, such a framework can be used as an online-calibration technique

The contribution to object tracking involves a similar fusion of the above cues and modalities:

features, shape and silhouette. My contribution also fuses kinesthetic sensors such as tactile and

force-torque sensors, since with grasping physical interaction is inherent. The tracking of both

manipulator and object using a variety of sensors and cues is a novel contribution.

Another contribution is the implementation of a hybrid estimation framework for continuous

states, such as the robot and object state but also discrete states, such as finger contact modes.

These finger contact modes are useful for inferring how each finger is contacting the grasped object’s
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surface and valuable for grasping metrics. Theory and results are presented using sensor fusion and

a static multiple model estimator.

In addition to state estimation, parameter estimation is also explored in the context of grasping

and manipulation. Results in determining center of mass of a grasped object are presented using a

dual estimation filtering framework. Another contribution is a filtering framework for dual-arm ma-

nipulation that utilizes nonlinear constraints. Two methods are compared and results are presented

from a wheel changing task.

The last contribution is a new paradigm called next best touch which is an action selection

method for object interaction through the use of touch. This method leverages information theory

and selects the next best action to localize the object by touching using an information gain metric.

Simulation and experiment are presented with the problem of locating a door handle on a door.

Another extension to this paradigm is that in addition to object localization, model parameter

determination also becomes the goal. Many objects within an object class share the same rough

shape. These similar object models can be parametrized to an extent. Simulation is presented to

show that the method performs by localizing and determining a parameter of an unknown screw-

driver.

Lastly, new theory is presented to determine the best action to touch in order to best localize

and discern which class a particular object belongs to.

5.2 Opportunities for Future Work

The estimation frameworks used in this thesis employed various type of Kalman filters. A new

direction might be determine whether a particle filter might provide added performance or the

flexibility to employ more complicated measurement models. The moment of grasping of an object

is complicated dynamic event and the flexibility of the particle filter formulation may allow for a

more intelligent reasoning.

The methods used in manipulator tracking, particularly articulated iterated closest point and

silhouette rendering are methods used independently and are unaware of the convergence of each

other and other objects in the environment such as another arm or a grasped object. This can

lead to mismatchings in all methods and ultimately poor performance. To prevent this and to

possibly improve performance , the Iterated Sigma Point filter may be used to fuse these cues

iteratively, rather than after convergence of the silhouette and aicp methods. This fusion may speed

up convergence and improve the rate of the filter.

The tactile measurement models employed in this thesis are simple but effective models. However,

there is more information to be exploited from these tactile sensors such center of pressure, total

force, and features. Features such as edges and sharp points may provide increased performance
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since they are more discriminative that the surface of models (vertices of the object mesh) employed

in this thesis.

For parameter estimation, it was shown that for center of mass estimation that multiple object

orientations were needed for accurate estimation. Future work will include placing the object in

multiple poses in order to fully ascertain the center of mass.

There are several future directions for the next best touch. The first is naturally to extend the

model class determination and demonstrating it on a physical robot. The second is to address

objects that are articulated and to use information theory to select actions that both localize and

learn the model parameters of the articulation.
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