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ABSTRACT

The general theory of Whitham for slowly-varylng
non-linear wavetrains 1ls extended to the case where some
of the defining partial differential equations cannot be
put into conservatlon form. Typlcal examples are con-
sidered in plasma dynamics and weter waves 1n thch the
lack of a conservation form 1s due to dlssipation; an
additlonal non-conservative element, the presence of an
external force, 1s treasted for the plasma dynamics exam-
ple. Certain numerlcal solutions of the water waves
problem (the Korteweg-de Vrlies equation with dissipation)
are considered and compared with perturbatlon expansions
about the linearized soclution; 1t 1s found that the first
correction term in the perturbation expansion 1s an
excellent gqualitative indicator of the deviation of the
digsipative decay rate from linearity.

A method for derlving necessary and suflfilcient condi-
tions for the existence of a general uniform wavetrain
solution 1ls presented and illustrated in the plasma
dynamlcs problem, Peaking of the plasma wave 1s demon-
strated, and it 1s shown that the necessary and sufficient
existence conditions are essentially equivalent to the
statement that no wave may have an ampllitude larger than
the peaked wave.

A new type of fully non-linsar stability crilterion
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is developed for the plasma uniform wavetrain. It is
shown explicitly that thls wavetraln 1s staeble in the
near-linear limit. The nature of thils new type of
stability is discussed.

Steady shock solutlions are also considered. By a
quite general method, it 1s demonstrated thsat ﬁhe plasma
equations studied here have no steady shock solutlons
whatgoever. A speclal type of steady shock 1s proposed,
in which a uniform wavetrain jolns across a jump discon-
tinuity to a constant state. Such shocks may indeed
exliat for the Korteweg-de Vrlies equatlon, but are barred
from the plasma problem because entropy would decrease
across the shock front.

Finally, a way of including the Landau damping
mechanism in the plasma equations 1s glven. It involves
putting in a dissipation term of convolution integral
form, and parallels a similar approach of Whitham in
water wave theory. An lmportant application of this
would be towards resolving long-standing difficulties

about the "collisionless" shock.
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Part 1

Introduction

Non-linear dispersive waves are a well-known phenomenon
in practically every branch of physics. The usual,
and often the only, analytical approach which was made
to such waves before the last decade was through various
forms of perturbétion theory beginning from the line-
arized solution. These small-amplitude analyses are
certainly useful, and relevant, but the non-linear features
of the wave phenomena were illuminated only dimly, at best.
In the past decade, new and powerful methods for
dealing directly with non-linear dispersive waves have
been developed. Among these are the averaging method,
the averaged Lagrangian method, and the modified two-
timing method of Whitham and his student§9’10’15’16’17’181
These methods are reviewed in Part II. As originally
conceived, they apply to systems of partial differential
equations in conservation form. One of the primary objec-
tives of this thesis is to extend these methods to systems
in non-conservation form, in particular dissipative
systems. For this purpose, we consider two examples,
one drawn from the theory of water waves (Part I1T)
and the other from the theory of plasma waves (Part IV).

The plasma waves example has the added interesting feature



of being in non-conscrvative form even before dissipation
is included,

The water wave problem considered in Part III is
basically the Korteweg-de Vries equation, in which a small
model dissipation term has been added. We shall begin
our discussion with a brief review of linearized theory
in general and as 1t applies to the Korteweg-de Vries
equation in particular, and then move on to the steady
progressing solutions, both with and without dissipation.
These all are previously known results. Then, in §3, we
shall apply the modified two-timing method to the
Korteweg-de Vries equation with dissipation, and derive
the resulting averaged equations in terms of elliptic
integrals. For a specilal case of these averaged equa-
tions, numerical solutions are prescnted, whose quali-
tative features are predicted directly from a small-amp-
litude analysis as well.

The plasma equations studied in Part IV are the first
three moments of the Boltzmann-Vlosov equation with no
magnetic field. Their derivation is presented in §4,
and possible terms for modeling the dissipation are
considered. In particular, a new method of consistently
including Landau damping is offered. Selected results
from the linearized thecory follow, including a study Qf

the dispersion relation when a derivative dissipation



term is included. Stecady and unsteady shock solutions
of the plasma cquations are considered next, in %6 and
§7.C. In particular, a new type of steady shock involving
the joining of a uniform wavetrain and a constant state,
found in 32 for the Korteweg-de Vries equation, is proved
in 87.C to be impossible for the plasma wave case. It
is further argued that no steady shock whatever exists.
The existence of breaking solutions for properly rigged
initial conditions is nevertheless demonstrated, leading
one to suspect unsteady shock solutions. A method used
to obtain some of the preceding results considers steady
shocks to be solutions joining two singular points of a
system of differential equations; while probably not new,
this approach is useful in classifying the different kinds
of steady shock.

A complete analysis of the uniform wavetrain solution
is presented in §87.A and §87.B. Both the approach of
§7.B and the results of 87.A and §87.B are new. In these
sections, we shall obtain simple inequalities delimiting
the region of parameter-space in which a uniform wavetrain
solution may exist, which is important not only in and of
itself but also for the analysis of stability (see §9).
The phenomenon of peaking in the uniform wavetrain will

also be uncovered, and examined in some detail.
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§5, 86, and §7 form rather a unit, in that each con-
siders an important aspect of the plasma equations, and
each helps to illuminate the general structure of those
equations, The rest eof Part IV, with the exceptien of 8§11,
is based upon the uniform wavetrain solution of §7. Using
the modified two-timing method (see Part II) we are able
to obtain the averaged equations for a slowly-varying
wavetrain both without and with dissipation. In each
case, we deal with equations in non-conservation form,
and the extension of the averaging method to such equations
in new. We shall then put the averaged equations in
characteristic form, which leads directly into some very
important stability considerations in §9. Finally, we
shall demonstrate how the small-amplitude 1limit can be
performed directly on the averaged equations, and analy:ze
a few of the results so obtained.

The method of the averaged Lagrangian can be used in
place of the Luke two-timing procedure in dissipationless
problems. In 811, it is indicated how one might approach
the plasma equations from this standpoint. The Lagrangian
given there is somewhat unusual, and is an interesting

result in its own right.



Part, LT

The Averaging Method and Two-Timing

Many systems of partial differential equations have
steady propagating wave solutions in which each dependent
variable is a function of just a single independent var-

iable, 0, where .
= K~ X » wk

K is the vector wave number, and w the frequency. Such
waves are also variously called uniform wave trains,
steady progressing waves, or just steady waves. The
various terminologies will be used interchangeably in this
thesis.

These solutions are the non-linear generalizations

of the familiar el(Eﬁﬁ'wt) (r

plane wave") solutions of
linearized theory. As the amplitude of the non-linear
steady wave tends to zero, it will reduce to its corre-
sponding linearized solution.

Uniform wave train solutions are of interest from
the physical point of view because they can usually be
excited and observed in the laboratory with relative ease;
and also from the mathematical point of view, beccause

they represent an important subclass of solutions of the

system of partial differcential equations under study. In
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fact, it is well-known in linear problems that any solu-
tion of the system whatsoever may be built up, via the
Fourier integral, from members of this sub-class. This
felicitous situation does not unfortunately persist into
the non-1linear regime, partly for lack of an appropriate
non-linear generalization of linear superposition, and
partly because of the greater variety of non-linear phen-
omena (most notably breaking and the formation of shocks).
Nevertheless, steady wave solutions have been and will
continue to be an important key to the understanding of
non-linear phenomena.

In general, finding the steady wave solution of a
system of partial differential .equations reduces to the

(15)

solution of a single ordinary differential equation

2
(1)9 = F((P, K, w, OL].)

(I1.1)

where F is a rational function of ¢ involving k, u, and

the parameters (constants of integration) oy - Only in the
simplest cases, for example when F is a cubic or quartic
polynomial in ®, can (II.1l) be solfed in terms of known
functions. Yet a great deal of information about the
possible forms of solution of (II.1) can usually be ex-
tracted from (II.1), as we shall see in connection with the
lukewarm plasma wave in §7.A and §87.B. In general, ¢(8)

will be oscillatory, oscillating between two zeros of F.



We shall now consider the more general case of non-
steady waves, but under the simplifying assumption that
the amplitude (which is some unknown function of the ai),
the velocity U = %% , and other physically meaningful wave
parameters all vary slowly in space and time. By "vary
slowly," we mean that the relative change AC/C of a par-
ameter C over one wave-length A = 2r/k and over one period
T = 2n/w 1is smail. We make the assumption of slow vari-
ation in preference to the more usual one of linearization,
because we would like to retain the distinctly non-linear
features of the problemnm.

The theory of slowly varying wavetrains has been
(15, 16, 17, 18)

developed in a series of papers by Whitham

and he has called his method the averaging method after
£23)

the Krylov-Bogoliubov method of the same nam For 01~

dinary differential equations. Another approach, which
rigorizes the averaging method in the sensc of making it
the first step in a perturbation procedure, was developed

e(9)_

by Luk Luke's procedure we shall call two-timing, in

analogy with a method of the same name in ordinary dif-
0

ferential equations .
We shall present a brief resum& of the averaging
and two-timing methods below, which will be sufficient to

our purposes in this thesis. For a deeper discussion and

some historical perspective, the teader 1s referred te the



original referenceég’ 18 L8y 18, 17, 1@.

Suppose we have a system of n partial differential
equations (hereinafter abbreviated to p.d.e.'s). There
are n dependent variables ¥y (x,t) depending on a spatial
coordinate x and the time t. (We consider one-dimensional
problems exclusively, although in principle there is no

(1 5)_ )

difficulty in applying the method in more dimensions
Suppose further that uniform wavetrain solutions yi(e)
exist. These uniform wavetrain solutions will depend on n
constants of integration Ai in addition to K and w, making
for a total of n+2 parameters. Qne of these parameters,
say A_, is merely an additive constant to 0, from the
integration of an equation like (II.1). It will drop out
in the averaging method when integrals are taken over a
full cycle of 8. In addition, a constraining relation will
be found to hold among the parameters of the problem on
account of specifying the as yet arbitrary period in 0.
This constraining relation is derived as follows.

Suppose, in (II.1), that the roots &; and ¢, of F(?%, K, w,

"2
ui) form the limits of the oscillatory solution. Then
assume that 8 increases by A in one complete cycle. If

(I1.1) is written

G(d) =[ F: ) (11.2
o
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then it is clear that G(%) is a monotonic function of ¢,

G{¢) > 0. This tells us that as ¢ goes from @1 to @2, half

a cycle, 8 will increase monotonically by an amount A/2,

G(o,) = G(o,) = % (11.3)
which is equivalent to
ta
Jf do  _ A _
» vﬁ; . (11.4)
This is the promised relationship. It is implicit, since

we cannot usually do the integral. (II.4) will be called

the non-linear dispersion relation in this thesis, since

in the small-amplitude limit it reduces to the relation-
ship between w and k commonly called the dispersion rela-
tion. There is a non-linear dispersion relation for all
nén-linear dispersive wave problems.

Because of (II.4) and the disappearance of An, the

uniform wavetrain solution will involve only n independent

parameters. We shall obtain a set of n p.d.e.'s to de-
scribe the slow time and space variation of these n par-
amecters.

Begin by extracting n p.d.e.’'s in conservation form

oP . 3Q.
._._._1_+ 1 et

o e 0 (i=1,...,n) (I1.5)




10

from the original system. This often involves somc in-
genuitélm. The Pi and Qi will be related algebraically to

L Yy Now assume that ecach of the ¥y is replaced by the

uniform solution, yi(ej. Average (II.5) over one cycle of
8,
A A
2 1 g 1 _
TR f P, 08 * 5= 3 [ ; @’ = o (11.6)
o} o
which we write as
- <P ¥ d < = 0
7 HyT T g Wy < (I1.7)

where the definition of <> is obvious. An approximation
has been made here, which is that the averaging operation
commutes with 3/t and 3/9x; this approximation is just-
ified in(lsl But if we accept this approximation, we
immediately have our desired system. For <Pi> and <Qi>
involve only k, w, & and thus (II.7) is a system of

equations for the variation of these parameters. These

will be called the averaged equations.

The system (II.7) is unwieldy for even the simplest
problems. Whitham was able to shecw, however, that tremen-
dous simplifications could be made by introducing a master

function W into the formalism.
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A typical form for the master function would be

W = 55_@9 do = f\/F(cb, < wy oy) do

where the integration is over one complete cycle of ¢.

It then proved possible, in the numerous physical examples
considered, to express all the <Pi> and <Qi> in terms

of Wand its partials with respect to the parameters of
the problem. Pufthermqre, the averaged equations from
widely disparate physical theories exhibited a remarkable
unity when this was done.

The existence of this underlying unity suggested
that the master function derived from some fundamental
structure common to all physical problems. Such a struc-
ture is furnished by the Lagrangian formalism, and Whitham
was able from these clues to show that W is none other than

the averaged Lagrangian of the system in questioé162

The Euler equations of this averaged Lagrangian with
respect to variations in the &, (i=1,...n-1) and in # then
could be reduced to (II.7). Or, (II.7) could be obtained

(3,

directly by an application of Noether's Theorem
the averaged Lagrangian. Either way, the averaged
Lagrangian approach furnishes an esthetically satisfying

approach to the derivation of (II.7), and at the same time

simplifies the computations significantly.
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We shall not actually use the averaged Lagrangian
approach in this thesis. We shall point out the Lagran-
gian for the dissipationless plasma case in 8§11, but the
master function for that case will be introduced in an

ad hoc manner in 88, For the water waves case, §3,

the master function was already known from the work of
Whitham.
Instead we shall use the variant of the theory due

to Luk e(9>

, the two-timing method. This is because our
primary concern in this thesis will be directed towards
problems with dissipation, and it is well-known that such
pfoblems do not possess Lagrangians. On the other hand,
as we shall see, the two-timing approach operates per-
fectly well when dissipation 1is present.

The two-timing method introduces an expansion of the

form
y =y, (8, X, T) +ey; (8, X, T) + ... (II.8)
for each variable Yo where
X = ex T = gt

‘X and T are the ""stretched'" or "slow' space and time
variables. The phase 8 can no longer be written down

explicitly as wkx-wt; instead we assume that
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[en}
I

=gy [ ¥:T)

(I1.9)

1]

6

L= < (X%T)

There is a precedent for this treatment of the phase,
6, in the WKB method for ordinary differential equations.

é@

There it would be writte
jt
0= w(T) dt

where w(T) would be the slowly-varying frequency of some
harmonic oscillator. Note that because of the definitions

(1I1.9) the p.d.€,

d

+

K "
e = (I1.10)

e
[

holds automatically. Because it will be redundant with
the n averaged equations, it must be implied by them.
This always turns out to be the case.

The three variables 8, ¥, and T are regarded as

independent in the Luke method, much as the two time

variables are regarded as independent in ordinary two-
timingﬁz This is a key assumption in the application of
the expansion (II.8). We illustrate this point by ap-
plying the Luke method to a conservation equation

aF . B

ot PTlad1}

Q2
e
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With /0t and 9/9x written to reflect the independence
of 8, X, and T, the expanded form of this conservation

equation is

3 9 . .
* E'é—rf) [PO (Q,R,T) * E:Pl (e’}\yT)

(-w Y] $500] F
(el + €23 [0 (8,X,T) + £Q; (8,X,T) #...] = 0
30 P g L9k 1 (8%, '

Equating the coefficient of each power of & to zero gives

3P 3Q,
- Bgy kg T Y
2P, . 3Q, ) 8P ) 3Q,
% T8 30 W X

The first equation is the same one we would obtain if we
were just looking for the uniform solution, only now

when we integrate it

-wP_ + KQ, = A(X,T)
we see that the parameters of the uniform solution, like
A, will depend on X and T. From the second equation, we
deduce that (mPl - +<Q1) will be bounded as 8-+« if and
only if

6 8P 8Q,
L= [ (g + gx) 40
(o]
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is so bounded. Since PO and Qs being the uniform solution,
will be periodic of period A in 8, I will be bounded as

8 -« if and only if
A

P aQ,
/(8T+8X ) de

o]

1
o

or, because 8, X, and T are independent,

A A

3 3 }

= ‘/~ P_dB + 3y j( Q, d8 = 0
(0] (0]

This is the same result we would have obtained by avera-
ging.

Thus the averaged equations have the alternatc inter-
pretation as non-linear elimination-of-secularity condi-
tions [for a discussion of secularity, see (6) or §1]7.
In other words, the averaged equations arise naturally
upon enforcing boundedness on the g(e) term in a per-
turbation expansion whose (1) term is the uniform sol-
ution. Unfortunately, the two-timing method gives no
hint of the simple way in which the averaged equations
can be re-formulated, using the master function. Hence
the averaged Lagrangian approach and the two-timing method
complement each other, the former showing how the results

may be simply formulated and the latter showing how we may
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consistently proceed to higher orders.

We have said nothing about the situation in which
we cannot for one reason or another obtain all n p.d.e.'s
in conservation form. This can happen because of dis-
sipation, external forces, or other causes. We shall deal
with such situations in §3, &§8.A, and §8.B, and we reserve
comment on this §ituation for those sections.

It may be noted that the averaged equations are
only the first of a hierarchy of boundedness conditions.
Suppose, in (II.11), that P and Q) unexpanded, are both

functions of 6, X, and T. Then (II.11) becomes
9 (- 9P , 39y .
el (-wP +x Q) + E(BT + BX) 0

Integrating this from 0 to A, and assuming that P and Q

are perivdic inm 8, we sbtain

A
3P . 3Q .
~/‘ (g7 + 3x) 48 = 0

(o}

Now if we expand P and Q, we get the infinite set of

boundedness conditions

(i=0,1,...).
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Part IIT

Uniform and Slowly Varyving Wavetrain Seolutions

of the Digsipative Korteweog-de Vries Bguation

For the case of relatively long water waves,

7)

Korteweg and de Vries' ‘derived the equation

cy 3M In? [Ghn = ()

ﬂt + gho (l + 2ho) T}X =} G o o oo

for the elevation n of the water surface above the undis-
turbed depth ho. By suiltable re-definition of the vari-

ables, this equation may be transformed to

N, et M T O . o O )

We shall be interested primarily in a slightly modified

form of this equation,

= (LET.2)
Ty ™ 6nnx & Myesexe e

t X3E @

in which a model dissipation is included, proportional

to a damping coefficient v. The Korteweg~de Vries equa-

tion is one of the simplest estamples of a non-linear

digpersive wave equation and, as such, has been considered
(11,15) gynitarly, the modified £

by many authors. Similarly, the modifie oxrm (3.2)

which we shall consider contains, in a simple fashion, the
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three physical effects whose interplay is important in
almest all fiuid mechanices problems; namely, non-lin-
earity (MM, term), dispersion (nxxxterm), and dissipa=-
tion or diffusion (V1. term). Thus, this equation has
the virtue of being physically meaningful and yet not
mathematically impenetrable. In the present work we

shall try to illuminate the problem of uniform and slowly-

varying wavetrain soluticns of (III.2).
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gl. Linearized Theory

The linearized theory of (III.2) is a typical and
easy example of the application of perturbation methods
to non-linear digpersive wave problems. These methods
are used extensively, and form a backdrop and limiting
case for the more general non-linear considerations to

follow.

Steady solutions are those solutions which depend
only on a single variable @ = Kx-wt., The linearized
steady solutions cof equations like (III.1l) and (III.2)
fall into two categories:

(i) exponential solutions, which are only valid for a
semi-infinite range of €, including either € = - co
or 6 = + oo but not both;

(ii) sine and cosine solutions, which are valid for allé®,

Solutions of the first type can only be fragments of

solutions which are essentially non~linear, e.g. the

tails of shocks. We shall be concerned primarily with
the second type of solution, and its'non_linear generali-
zation, in this thesisy that is, with uniform wavetrain
solutions that are pericdic in 6. We shall take the
arbitrary period of the solution in € to be 2 unless

otherwise stated and, as we shall see, this fixes the
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dispersion relation uniguely.

Take (III.l) as an example. Steady linearized solu-

tions of it must satisfy

i

n -2 7= const.
K3

In order to have sine and cosine solutions of period 2w,

we must reguire

which is the dispersion relation of the Korteweg-de Vries

equation,

The linearized solution can be made the first term

in a perturbation expansion of the form
M= €N (o) + e?n,(@) + eMg(e) + oo (1.1)

bﬁt, if we actually substitute this expansion into (III.1)
and carry out the calculations, we shall find secular terms
(B8sin®, 8 cos 8) appearing in M, or 73, which destroy the
uniform validity of the expansion in €. The remedy for
this situation is well known, and consists in assuming w
to depend (analytically) on the amplitude € as well as on

the wavenumber K. Hence
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and, with the extra latitude afforded by(ﬁl,tuz, et ey
we are able to eliminate the secular terms. The seqguence

of equations generated is

n||s+nlt=0

1

tre 0 ok % - '
Myr et &+ Mor = ;:BL’_[“’?_nl' + WMyt = 6w(My7M,) 1]

Without loss of generality in the computation oftul, we
may take

Wl = A + B sin 8

so that the second eguation of the sequence becoﬁes

g =l + B sinG) ~ S48 ¢ B atn i)
n2 o+ n2 K3E01(A B sin @) 3K(A + B sin 6 ) ] + C

The coefficient of sin 8 on the right-hand side must vanish

to prevent secularity. This requires

W, = 6KA ,

so that the first-order sghift in the frequency is directly
proportional to the mean level of 7M;. Without extra loss

of generality in the computation of Wy, we may take

N = D = B2 cos 20,
2 2
2K



Putting this and M; into the equation for M5, we require
the coefficient of sin B8 on the right-hand side to be

zero to eliminate secular terms, This leads to

2
Ww. = 6KD + 3B |

2 2K

The mean height D of ﬂz enters just as did A in W,;. The
second term show; how the amplitude B of Wl cduples into
the frequency. Continuing in this manner, we will obtain
a uniformly wvalid small-amplitude exXpansion of 7, and a
concomitant expansion of w. Later, in %10 , we shall see
the method whereby the expansion of w may be extracted

directly f£rom the results of the averaging method,

Let us now.consider the digsipative form (IIL.2) of
the Korteweg-~de Vries egauvtion. If we try an expansion
of the form (1.1) in (III.2), we shall f£ind the problem
of secular terms no longer exists, for the first order
solution‘%l is now of the form

mo
e

m::-—~—-—(},i }v "i‘tl) (U.:%) -

The former secular terms are now terms like eeme, which
cause no trouble. Of course, the expansion will now be

valid only in a semi-infinite range of(303~*+ oo for =
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sign in m, 8 —= - @ for the + sign in m) and it describes
only a fragmént of a solution. Note that a dispersgion
relation is no longer engendered, because there are no
periodicity in & reguirements, and that W and ¥ now only

appear in the combination U = W/K,

More sophisticated techniques are necessary when the
damping coefficient v is the small parameter of the prob-

lem. An expansion of the form

N = vnl(e) + vznz-(e) + e

applied to (III.2) leads to secular terms in ﬂz. If we

expand the frequency w as before,
- 3 4 2
W= - K 4 VWI(K) + oY wZ(K) s

we find that there is no way in which we can prescribe the
U to eliminate the secular terms. The additional lati-

tude necessary to eliminate secularity can be cbtained by
introducing an additional independent variable T = vt into

the expansioézﬂa

M= vn,(8,T) + v, (8, T) + «+- (1.2)

and treating ®and T formally as distinct independent vari-

ables. In keeping with our original physical idea that
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the freguency w is amplitude-~dependent, it would seem
reasonable to assume w = W(T). It is not necessary to

do this in first order (unlike the fully non-linear casel),
however, for reasons which we shall presently see., It is

sufficient to take w = = K3

Putting the expansion (1.2) into (III.2), the follow-

ing sequence of eqguations is generated:

871 d
__ﬁm + MEL = 0
59 06
3
s o 2 \
"2 o 22 . o (@2 e 3__’2;,,.,2.’1{__.)
893 a6 3 362 ‘1 36 o1
83773 o On5 - 1 Kz.—a Tz 9y ek é_ﬁ”__zﬁ_g__),
3e3 38 K3 3.6° 3T de

.
.

»

The scolution for N, may be written

nl = A(T) + B(T) sin [e + ¢(T)}

Putting this into the second equation,

a7 N, '
5 e PP | rﬁ¥+(dB + K2B) sin (8 + ¢)

353 T 9% T 7 3laT
o
& E(%% + 6kA) cos (8 + ¢) - 3kB2 sin 2(8 + 9|

If we are to eliminate secular terms from Wz, it is clear

that we must require



: ar = ©
aB o ol
ag
= D o=
ar t 6K 0

These lead to
A = const. = AO
2
~ - KT
B = B_e (1.L)
¢ = -6kA T -+ ¢O
-2

We shall see the e * amplitude decay again in the lin-
earized limit of the fully non-linear scheme (§3). We
shall also find in $3 that A = const. reflects a fully
non=linear result, which is that the mean level of 1 will
nét ever vary on the slow time scale T if there is no
X~dependence. Finally, the result for ¢ explains why w
did not need to be expanded. For, by properly grouping
terms,

e+ ¢ =KX+K3t-—6\<AOT+¢O
=KX - (—H? + 6KA V)t + @
o o

it becomes apparent that we have tacitly assumed an ex-

pansion of w in taking ¢= ¢(T). Unfortunately, to proceed
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to higher orders, it is necessary to re-introduce the

expansion of  in powers of v.
We may solve for 7,

ﬂz = A2(T) + C(T) sin (8 +¢) + D(T) cos (8 +¢ )

2
- B2(T) cos 2(8+¢)
2K2
and use this and the result for ﬂl in the right-hand side
of the n3 - equation. The three conditions that M4y have

no secular terms may then be seen to be

dha
—t = 0
ar
dac 2
—_— 4 B 6
ar i
an > W 3 g3
m+ = o & -'-'——"BT
= R R (w, 6KA)B(T) = ()

To ensure the uniform validity of the assumed expansgion, we

2
must bar cocefficients like T K T (see (6)). This means

whereupon the solutions for C and D become

2m
- =KL
C = Coe
3
2 3B e 2
= e a5 o KT
D = Doe + 3 .
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For the sgpecial case in which the first term ﬂl acts as a
driver for the higher terms, meaning all arbitrary con-
stants that arise in ﬂz, ﬂ3, etc. are set to zero, our

expansion beccomes

2
—— o RKET s
n—-vho~+vBoe sin ©
% 2
3B o 1B B ~22T
+ o 03 g2t cos 8 - p2 == e “ " cos 26
4K 2K
+ O(u3)
where
w = - K3 + GKA UV
O L]

After a sufficient length of time, only the first two terms
are significant. We see here the familiar rhenomena of
corrections to the fundamental wave and higher harmonics
of the fundamental wave (third and fourth terms respec-—

tively).

This has all been, of course,; the linearized limit of
the Luke expansion procedure (Section 1}« The X =vx%
-~ dependence could be introduced, at the expense of dealing
with partial differential eguationsg, but this is not nec-

essary to eliminate secularity.
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In the non-~linear case, the procedure parallels
that for the‘linear case., Because of the complexity, how-
ever, we shall be content there to stop with the conditions
analogous to (l.3), and so study only the first term of the

exXpansion in 7.
§2. Uniform Solutions

The uniform solution of the Korteweg-de Vries equa-

tion (IXI.1l) satisfies
—wnt + Ryt + Kyt = 0

which integrates to

K3 72 = ag(- 73 +2£JE’72 + BN ~- A)
= - 2k(M - my) (9 - m2)(n - my) {2.1)

where A and B are constants of integration, and where the

m, are roots of the cubic which are constrained by

>

my ot M, fomg = {233

N

K
We assume without loss of generality that my < My < My

The solution of (2.1) is then an elliptic function
n=rmy + (m,y = mq) Cﬂ2(68’2¢ k) 2B}
1 ¥ (my =~ my) en”(pe+0, .

where ¢ is a constant of integration and
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M., ~ Moy
p=ky/o2 (2.

M= Ty
_.\/_2_% L (0L k< 1) (2.5)

t

~
i

The notation for the elliptic function corresponds to

that of Whittaker and Watsonfzo\

The solution (2.3) is
oscillatory, oscillating between the pair of zerces my,
m.., of the cubic and is the famous "cnoidal wave"” solu-

2
(73

tion. It will be the fundamental solution for our inves-

tigations of §3.

The function cnz(u,k) is periocdic of periocd 2K(k)} in

u, where

KLy
K (k) =Jr /Q o
= 1 - k%sin’x
(K(x) is the complete elliptic integral of the first kind).

Since we are regarding our periodic soclutions as having

pericd 27 in 8, this means from (2.3) that
27w B = 2K(k) (2.6)

We call this the non~linear dispersion relation since it
ig derived just as in the linear regime from reguiring
the period in © to be 2w. If we took the small-amplitude
limit (mgy - mq)—® 0 we could recover the ordinary dis-

persion relation w = =|<3 from (2.6).

I\
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’

Consider now the dissipative case (III.2). As per

the comments of $1, it is sufficient to consider the solu-

H

tion to be of the form 7n(X), where X X - Ut, The egua-

tion then bhecomes

—'UT’. + 677?,]! B n!rr :anl' -

By the transformation

n = 7/7\ ¥ =

wic

£
M U
this can be written in terms of a single parameter B,

A Az

7 EN, + =0
£t n% n n ’
where B = V/ﬁ?r. A trivial arbitrary change in level has

been ignored. We re-write this as a system

an -
dE ¥
ot E (2:7)
SY = By - %
Y ¥ =1 n

It turns out that this system has shock solutions, that is,
solutions which approach different asymptotic values as

£ — 4+ oo and £-—e - o00. The shock asymptotes are singular
points of the system; that is, points at which the right-

hand sides vanigh simultaneously. Clearly, these are
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In the vicinity of Pl, the solutions are exponentials

eAE, where

s)

In the language of differential equation theory,
P, is a saddle point and is an unstable eguilibrium point
of the system. All solutions in the neighborhood of Py
diverge away Lfrom P, as t—=% oo except two special
sclutions, which approach Pl as £-—w + o0 and as { — - W
respectively. We shall single out the one which approaches

P; for §{ —=+ oo for study.

In the vicinity of P, the solutions are exponentials

e s Where

A= [B{"‘m ]

2

For BZ:=4, P, is thus a "nodal" pointf5) stable for ¢ —w=

-~ 00, in which limit all solutions in the neighborhood of
P2 approach P2 . For E~wm*& o, all soluticons in the
neighborhood of P, diverge from P,, so P, may not be a
shock asymptote for & -—# + oo, Thus, if we fix our solu-

tion by requiring it to enter the singular point P, as
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§ —o - 00 and Py as £ -—= + oo, it is uniquely defined,

and has the general shape shown in Figure 1.

n Pl
—————————————— — 1=l
Figure 1. Smooth
shock solution of
g (ITYIS2) s
£

A more interesting case is that in which B2 = 4. Then the
singular point P2 is a "spiral" or "focal" point55>and the
same shock solutions look as shown in Figure 2., Note that
as the damping p increases,; the wiggles behind the shock
fr&nt become less pronounced and the solution tends toward
the smooth solution of Figure l. In the other limit, as

V —o= 0, the solution tends toward a cnoidal wave (2.3)

A
oscillating about 77 = 1 connected across a discontinuity

A
to the constant state 7= 0.

Solutions such as those in Figure 2 have been observed
experimentally in water wavesSlI) However, the model dissi-
pation term of Eg. (IXI.2), which represents an “eddy vig-
cosity,” falls short of being able to give the correct
dissipation by a factor of 10 or soflg) Hence, in spite of
the experimental evidence, not much physical significance

can be attached to the model (II1.2).
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2. DOseillatery Shock Solutiens of Equation (1112}
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A final comment needs to be made regarding our ear-
lier discussiom of singular points. One might ask, why
did we only consider solutions jeining the twe singulaxr
points Pl and Pz? The answer is, because these are the
only solutions which are uniformly bounded for = Co={ = .
Rather than prove this, however, we merely appeal to
physical considerations for justification. Because the
system (2.7) contains damping, we expect that everything
at £= - oo and £ = + oo will have settled down to a cons-
tant state. In particular, derivatives will e zero.
Thus, the left-~hand sides of (2.7) will be =zero at‘§=:f e s}
ané so the shock asymptotes must indeed be singular points

of the system.
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§3. Slowly-Varying Wavetrain Solutions

We shall now apply the averaging method (in the guise
of the Luke two-timing expansion) to slowly-varying wave solu-
tions of theKorteweg-de Vries equation with dissipation, Eq.
(III.2). The dissipationless case, Eq. (III.1l), has been
studied by Whithaéla, and various of his results will be used

without derivation to simplify the presentation.

Expand n according to

. ® n,o(e,X,T) +~Jn1(9,x,fr) P s

where

Ot = = wX.T)
GX =k (X,T)

X = vux

T = vt

The expansion is for small damping,v + 0.

The zero=order solution Ng Will just be the uniform
solution (2.3), where now the various parameters which occur
there (ml, My, Mg, K, ) will be functions of X and T. To
derive the secularity conditions that the first-order solu-

tion"ql be uniformly bounded in 6, we turn to modified forms
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of two of the conservation equations derived by

Whitham for the Korteweg-de Vries equation. They are

2
ke ¥ L0 Mgd o #F Wy (3,13
1.2 3 1.2, _ el
(Gndy * QR 30l = (0], bk (3.2)

and may be derived from (III.2). We write (3.1) and (3.2)

symbolically as

9P . 3Q _
ot ¥ 90X vnxx

1l

i

5 BN
0X

@l @

1 2 2
Uﬂgn )xx T Vg

The expansions of these equations take the form [a la Eq.

(I1.12)]

(—}u%%y-+ﬂ)é%ﬁ J (B, + VP, R
9 ) _ ] 8 52
+ kg * v Qo VQytes ) T VEggtr) " (gt VIpEe)
2 ‘3 — =
('U’ﬁg +V3T)(EO+'vPl+-J

5 B 5 .9 .2 2
t Koy * v%?)(QO+VQ1+...) = %ﬂ<3§+V3¥) (ngfvnp*--+)

d d 1%
‘V{&:ﬁg + “32) (no+vnl+... }
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The two O(v) equations out of the previous set are
2
2 geury = & e _ To_ X%
00 iL i 2 9T 09X
a8
3 (epebp = £ 2 - (e} e B
3 1 1 Z 2 o a8 aT aX
30
As explained in Section II, these lead to the two boundedness

conditions

21 2
( 2 9 "o _ BPo ~ aQo)
I ~a2 oT aX
o
2T
T ul O PR el
2 892 o) o8
o)

dg = 0
3P 3Q

o _ 0 -
T sx] 48 .

Because no and Bﬁo/ag are periodic in 8, the first term in

each condition drops out, leaving

2
P dQ+,a
(o} aX

0

a_
T

A

Q, 48 = 0 L&
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27 2

2m

= 2 — 7 an

Fodo vy f Toaor  f(Te) ae
o o

il

s A
an
6]

We now go back to (3.1) and (3.2) to obtain the

1l

0 (3.4)

specific values for the P's and Q's:

PO =7
2
- 2 2 3'n
Q. = 30" + g — =]p+ B
o] 392
- 1.2
Py = 3N
3.5)
2 9 T
- 3 3°n 2
= 2 + — i [EH
g = &N il 2(39)
The subscript "0 is dropped here and hereafter. In these

formulas, (2.1) has been used to substitute for the deri-

vatives of . The equations (3.3) and (3.4) then become

2
)
i)

(o}

13 2T
nde+%;§fwn+mde=o (3.6)
O
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2 2
i— —1—r12d9+ (n+f\)de+k7( 8 =0 (3.7)
T % oX '
o
At this point, following Whitham(lsl we define
2m
= 80 gn = - L 32
W= - o5 §2an - mf(ae) e
0

99 y/n +7Un #Bn-A  dn

It then proves possible to write (3.6) and (3.7) as

3 0

57 (Ki5) + 5y (WUWR-B) = 0 (3.8)
-@—(w\)+-’f’—(mw—A)+mw=o (3.9)
Hi X U :

These are similar to the equations for the "dissipationless
case, the only difference being the extra term KW. It
was fortuitous that the dissipation term could be represented
in terms of W. ‘In general, this will not be so.

There are four wvariables A,B,U, and K to determine.
In addition to (3.8) and (3.9) we need two more relations

among these variables. The non-linear dispersion relation



Lo

(2.6) furnishes one. The other may be taken as the conser-

vation of waves

d

?}-}E (KU) = [

9K
7T "
which follows from the definitions of k and w.
Because W may be written as an elliptic integral, it
is possible to make some analytical headway into the present

eguations. The natural variables to use, however are m m

e TET

and My, in terms of which n is written explicitly

in (2.3), rather than A, B, and U. Thus the forms (3.8)
and (3.9) are of little use for calculation. We return
instead to (3.6) and (3.7) and put the expression (2.3)
for n directly into the integrals. We eliminate all
explicit dependence on A, B, U by using the first forms
of Qo and éo in (3.5) rather than the second forms. The
rest is a matter of using the properxr elliptic function
identities, and the details may be found in Appendix G.
What we obtain, after using (2.6) to eliminate one of
the variables, is a set of three guite complicated

partial differential equations:

aM oM



2 3 . _
gt g My = 0 (3 12)
3 K ow
T b = D (3,13

where
_ 3 B 2 )
M = Ty + 2 R (k) {E(k) (1-%k2) K(L)}
_ 2,4 2 : 2 Tl 2
M, = 3mm, > + 2 @K(K) E(k) {3ml+ﬂ2 w2 (2k%-1) K (k)}
+ 2 2a-?) o {eemgrdy @ 2-367) K% (o)
T
~ 2 2 ‘ 2 4 2,2
My = 12 [; & Bk Bk) {3ml % =5 my (2k%-1) ®KqK)
4 - k% (23k4-23k2+8) K4(k)}
157
+ 2 @r%m) (1-kx%) {-3m 2 + 2 ;o k% (2-3x%) &2 (k)
i 1 TT2 1
o B . K (15x%-19k2+8) K4(k)}
157
3 3
+ Tfrﬂ.l :l - -2" M4
M, = 325 P ey [2(k4—k2+l) E(k) - (1=k?) (2-k2) K(k)]
S

W o= 2K [3ml + 35-;<2 (2kZ-1} Kz(k)]

=



Bg. €3511) comes frem (3.6), (3.12) frem {(3.7), and (3.13)
from (3.10).7 The three variables to be determined by these
three equations are K, mq and k, where k was defined in
(2.5). The fourth unknown has been eliminated, as noted,
by using the nonlinear dispersion relation (2.6). The
expression for @ in terms of mq and k follows from (2.2)
after some manipglation.

We do not propose to solve the system (3.11-13). It has
been written out in detail to give some indication of the
difficulty of the averaged equations, even for this simple
case. In general it is not even possible to write the
averaged equations in terms of known functions, as we have
done here. This is because the master function is a hyper-
elliptic integral in almost all cases of physical
interesélSX and so are its derivatives, which are what
enter the averaged equations. Nevertheless, the picture as
regards numerical solution is quite bright. We shall
illustrate 1in the present problem using the special case
of no X-dependence in (3.11-13). Physically, this means
we are more intérested in the damping than in the propaga-
tion, for the damping will be primarily a temporal effect.

g

For =% = 0, it follows immediately that
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K = const.

Ml = const.

so that we need only consider a single differential eguation

dM

2 -
sty = U (3.14)

Furthermore,fronﬂ Eq. (3.6), the physical interpretation

of M, is as the mean value of n, which we may without

1
loss of generality take to be zero. Ml = 0 may then be

solved for m, :

m, = _2_5 KzK(k) [(1—-]{2) K(k) - E(k)] (3.15)
= m

This may be used to replace my in the expression for M2’

whereupon (3.14) becomes a differential equation involving

only one dependent variable, k. After some manipulation,

and the use of the formuiaééo)

. E(k) - R(k)
a B(k) - (1-k?) K(k)

k (1=k2)
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this differential equation may be brought into the form

ak _ 8¢ k(x4 kroo [e-x% a-x®) ko - 20-k%+kY 2]

o 512 6E (k) [K(k)-—E(k)] [E(k)—(l—-kz) K (k)

{3.16)

Before proceeding to the numerics, let us examine
the small-amplitude limit of this differential equation.

: e
Since a = m,-m, is the amplitude, and k goes like a” by

2
(2.5), the appropriate limit is k =+ 0. Using the expansionézm

K(k) = % (l+—31;]<:2+-g—5k4+§—§-g};6+...) (3.17)
L5 i 12 3 4.4 B 6
we find for k> o0
2 2
dk _ _ ¥~ K3 5
- 5= 5 # k™ + 0(k™)

The solution of this differential equation is

g 3}2 5K2
= F 1.5 3° g ~g %
k = koe = ko e + O(kO e ) (3 187
where either ko is small or T is large. We see that the

correction term from the non-linear effects tends to make
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dk/d7T less negative, so that k decays less rapidly than
the linearized solution.

No direct physical interpretation may be placed on k.
The guantities which are of more interest physically are
U=/ kx, the velocity; a, the amplitude; and ml, the
level of the wave troughs. Eg. (3.15) gives

us mq in terms of k; hence from (3.19) and the expansions

(3.17) and (3.18) we deduce the small-amplitude expansion

of m; s
2 2 2
_ [ . 2~¢ér_ 1. 4-2¢&0 6_-3 2T
My = q— [ ko e + 7 kO e + O(kO e )| (3.20)
From the relation 8 = K(k) and the definitions (2.4)
and (2.5) of B and k, one may obtain the amplitude a
as a function of k,
& 2

a = m,-my; = 2 %E-k K(k)f { 3:. 271

Its small-amplitude expansipn is
KZ[ 2 - &@T 6 —3%°T
a = ko e + O(kO e ) (3229

Note that the first-~order correction term vanishes and
hence that the deviation from linearity will be felt only

through higher—-order terms. Tinally, from the relations



L6

following (3.13),

g =2« 2| + S 2~ K20
K il TT2
(3.23)
42 2
= K (k) [(2mk ) Kk} = 3E(kq
2
i
which in the small-amplitude limit becomes
(3.24)
ve- 213 4281 15 6 -3 K2T+ ok 8a—tKT
= 57 iy © 556 o iy = )

TheAnegative velooity ag T ~ = 1s only because of the
normalization of N used here. If we took the mean height
ﬁ to be non-zero, then ﬁ would be added to the right
hand side above and U could be made positive.

What about the other limit in which K (k) and E(k)
can be simply approximated, that in which k = 1? It
turns out this is not a meaningful limit for our problem
without the gualification that X + 0 at the same time.
K(k) has a logarithmic singularity at k = 1, which means
that the amplitude, by (3.21), blows up there. In reality,
we know that the Korteweg-de Vries equation has a uniform
wavetrain solution of maximum amplitude, the solitary
(11)

wave, which is formed when the roots my and M, coalesce

But by the definition of k, (2.5), my = M3 implies k = 1.
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So why does the amplitude come out infinite instead of
finite at kX = 1? The reason is, that the solitary wave
has infinite wavelength (& = 0) and we have tacitly
assumed fixed and finite, It would be perfectly fine
to study the k » 1 limit if we required K > 0 at the
same time. But we cannot let k~+ 1 for fixed «x .

Since this limit is rather complex, we shall not study it
here. |

Let us now look at a few numerical solutions of
Eg. (3.16) . In Figure 3 are plotted three solutions of
(3.16) corregponding to initial values kX (0) of .5, .7,
and .9. The effect of the non-linearity is more pronounced
the larger the starting value of k, as we might have expected:
We see that the deviations from the linearized approximations
follow the patternpredicted by Eg. (3.19), that is, the wval-
ues of k fall below the linearized values.

In Figure 4 we have the variation of the trough level
my with T. This is computed from the solutions for k
using (3.15). Again, we see that the deviations from
linearity are bf the sign predicted by (3.20).

Finally, in FPigure 5, the amplitude a has been plotted
against T for solutions II and III of Figure 3. It is computed
from Eq. (3.21). No prediction was made as to the sign of
the deviation of a from linearity because the first-order

correction term vanished (see (3.22)). However, it
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Figure 4. The decay of the trough level m, with T for the three
solutions of Figure 3. The dashed straight lines are
the linearized approximations into which the true
solutions merge.
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is clear that the deviation of a 1s considerably smaller
than that of k or m, . This is in keeping with the deviation
being a second~orxrder effect, It is interesting to note

that the true amplitude is larcger than the linearized
version, a circumstance we find also in the plasma wave

case ( ¢f., Appendix C and Figure B-2, Appendix B).

Even though‘the gsolutions plotted do not exhibit
a high degree of non-linearity (the largest starting ampli-
tude was .13) the gqualititative behaviours observed
here persist throughout the non-linear regime. Thus
small-amplitude expansions such as (3.19) are seen to
be useful tools even in highly non-linear problems.

The problem of slowly-varying wavetrain solutions of
the Korteweg-de Vries equation with dissipation i1s certainly
a problem of interest in its own right. However it also
serves as a model, a paradigm, of how the calculations
should go for the more complicated plasma problem to be
considered next. Such analogies are often possible in
non~linear dispersive wave problems because of the undexr-
lying unity of ﬁheir mathematical formulation, as brought

out by the averaged Lagrangian method (see Part II).
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Part IV

Uniform and Slowly-Varying Wavetrain Solutions of

the Lukewarm Plasma Equations

There are many different approximate sets of equations
which are used to study plasmaémz All of these have appli-
cability in one 1limit or another of real plasmas, e.g.
as the temperature goes to zero. In the present part we
shall examine in some detalil one such set of equations,
which is derived in §4 from the Boltzmann-Vlasov equation.
We shall be interested in this set of equations perhaps
more from the mathematical point of view than the physical.
It affords a reasonably difficult test of the method devel-
oped in §3 for treating small dissipation, and at the same
time brings out new features of the averaging method, in
particular the handling of equations in non-conservation
form (88). It also has a distinctly non-trivial uniform
wavetrain solution, which nevertheless can be completely
analyzed by the methods of &7, which are quite general.
This in turn allows one to render judgment on the possi-
bility of steady shocks, whose existence is suggested by
the results of §6 but finally barred by the arguments of
§7.C, The treatment in §7.C parallels that in §2, and,
again, may be expected to apply to a wide variety of pro-

blems. Thus the plasma equations we shall consider are
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somewhat of a backdrop for the mathematical methods to be
considered ligre; the ultimate goial is fTo 111USEPate new
methods of attack upon systems of partial differential
equations.

The later sections of this part, §8.C, 8§89, and §10,
are devoted to the properties of the averaged equations
derived in 88.A and §8.B% of particular note is the dis-
cussion of non-linear stability in 89. We conclude in
§11 with a derivation of the Lagrangian and averaged
Lagrangian for the plasma equations, which would be an
alternate starting point for the derivation of the aver-

aged equations.
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§4. Derivation of the Lukewarm Plasma Equations; Possible
Choices. for a Damping Term
In sub-section A we shall derive the system of plasma
equations which we shall study in the ensuing seven sec-
tions. This system shall be an appropriately truncated
system of moment equations of the Boltzmann-Vlasov equa-

tion. In sub-section B, we shall comment on an ad hoc

procedure for including Landau damping in the equations.
A. Derivation of the equations

The Boltzmann-Vlasov equation, or '"collisionless"

Boltzmann equation, is, in one dimensioé4)

of ' e e 3f U g

it MR '
at! o ax! m Jv?

aB' _ _
B2+ = dre (n ff' av')

where £' (x', #', t') is the distribution function and E°
is the electric field. It may be non-dimensionalized by

the following transformations:

[ kT
x' = AD X = ————9? P
4wnoe
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E '

I

JﬁwnokTo B

o] kTO
leading to
of af af _
5t P Vgx " Ew 0 (4.1)
3 _ "
=== 3 = L[f dv (4,23

In the above formulas, Ap is the Debye length, Wy is the
longitudinal plasma frequency, e and m are the electronic
charge and mass, TO is the electronic temperature, and n,
is the number density of ions. The ions are assumed
fixed in place in this model, providing a uniform back-
ground of positive charge in which the electrons move.
This is a reasonable approximation at frequencies of the
order of the plasma frequency, for the ions cannot begin
to follow such rapid oscillations.

The type of plasma being considered is classical
(non-quantum aﬁd non-relativistic), does not interact
with the radiation field, and is described at equilibrium
by a Maxwellian velocity distribution. The induced B-

field (from the changing E-field) is neglected.
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The word '"collisionless'" attached to the Boltzmann
equation in (4.1) is somewhat of a misnomer. The collisions
that are being neglected are the binary ones, the short
and violent impacts which in a plasma are much less impor-
tant than the continuously-acting and long-range Coulombic
interactions. Each electron is constantly '"in collision"
with all the other electrons inside its Debye sphere;
each electron follows a trajectory determined by the ex-
ternal fields plus the smoothed-out fields produced by all
the other electrons in the plasma. This is of course an

approximation (called the self-consistent field approx-

imation because the charge density in Poisson's equation
(4.2) is determined by f) but it is not a 'collisionless"
approximation.

We shall work with only one velocity component here,
that is, the model will be truly one-dimensional. This
simplifies the mathemgties & little. AL the ehpd of the
derivation the minor modifications necessary to incor-
porate the full three dimensions 1in velocity space will be
indicated.

We begin by defining the moments of £ in the usual

manner:
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n is the number density of electrons, u is their mean
velogity, p is the pressure, and § 1s the heat flux. The

last two may be re-written using the first two:

p+nu2 f\rzfdv

vas f dv

Using (4.3}, the first three moments of (4.1) may be

(4.3)

q * Jpua * nus

written down immediately:

By * (nu)X =0 (4.4)
2
(nu)t + (nu” + p)X + nE = 0 (4«5}
(nuz + p]t e [nus + Spar #+ q)X ¥ ZpuB = 0 (4.6)

The terms involving E come from integrations by parts.
These three eduation describe the conservation of mass
(or charge), moméntum, and energy, respectively.

Using n = 1 - Ex in the first term of (4.4) and

integrating through, we, obtain

Et = nu {4 T )

An arbitrary function of t has been set to zero becausc that



58

is its value at equilibrium (E=u=0). Iq. (4.7) will be

called the current equation. It is basically just one of

Maxwell's equations.

Replacing nu by E, in the last term of (4.6),

2 3

(nu +p+E2)t + [(ny +3pu+q]X = 0 _ (4., 8)

This is the conservation form of the energy equation. It
is not possible to put the momentum equation, (4.5), in
conservation form. This is because it requires an external
force to hold the ions fixed in place, and through the me-
dium of the ion-electron field E, this external force com-
municates itself to the electrons. Momentum cannot be
conserved in the presence of an external force. On the
other hand, it is still perfectly reasonable that we have a
conservation form energy equation (4.8), for the ions are
immobile and hence the external force does no work on the
system.

We are now faced with the usual problem of closing our
system of moment equations. There are 5 unknowns n,u,p,E,
and q, and only four equations (4.2) and (4.4-6). It is
standard@)to assume that the heat flow q is zero. This is
justified if the plasma is not too hot, and we make this
assumption here. The resulting closed system of p.d.e.'s

we shall call the lukewarm plasma equations, or LPE's for

short.
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We can use the continuity equation (4.4) to simplify
the momentum cquation (4.5), and the momentum and con-
tinuity equations together to simplify the energy equation

(4.6). The result is:

t
Px
By *wy, ¥ # E =0 (4.9)
Pe * Up, + 3pu, = 0 (4.10)
EX = 1 - n

This is almost the simplest form in which the LPE's can be
written, One further simplification is possible. We note
that if E = 0 these equations become essentially the Euler
equations of fluid mechanics (with y = 3 rather than v = 5/3).
In the Euler equations it is convenient to introduce the
entropy S as a monotonic function (usually the logarithw )

of p/pw'. For our problem we shall simply take

S =r% (4.11)
n

It then proves possible, using the continuity equation, to

reduce (4.10) to

S, +usS_ =0 (4. 1.2)

By adding n times (4.11) to S times (4.4), we obtain the

equation for conservation of entropy
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(nS)t + (nuS)X =0 {2.15)

Either (4.12) or (4:13) may be taken in place eof (4.10).
What about using a three-~dimensional velocity space?
he Boltzmann equation (4.1) is unaltered in form, only now

vV means v, and £ 1s a function of vy and v, as well as Wi

Poisson's equation (4.2) is unaltered. The moments become
n = /‘f dSV
_ 3
g, = j‘vaf d v
= _ _ 3
POtB = j‘(va uu) (VB uB) ¥ d v
_ y ) 2 _ 2 _ 2 3
ag [v u) v u)? o+ vy-u)? v v u?y g
; : 2 2 2
Multiplying (4.1) through by 1, Vo Vy’ Vs and (vx +Vy i )
and integrating over velocity space, and assuming in accor-
dance with one-dimensionality that uy =B, = 0,
on d _
s + o (nux) = 0 (4.13)
2
3 3 (nu + p..) + nE =0 (4.14)
3t (M) *ax 0 X X%
ap
Xy _ ‘
5% 0 (4.15)
ap
’a‘f{ = 0 (4.16)
3 (nu g + )
= % Pxx Pyy Pyy
(4.17)
d T
ooy MUyt Uy (3p,., * Pyy Ll T R * 2nu, E =0
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The pressure tensor Pug will be diagonal, as suggested
by (4.15) and (4.16), because of the spatial one-dimension-

ality. The diagonal elements B B and p,, are what

4 4
we usually think of as pressures, that is, normal forces
across an area perpendicular to the x-, y-, and z-direc-
tions respectively, Unless there is some preferred direc-
tion in the problem, caused say by an impressed magnetic

field, there is no reason to suppose the pressure will be

anisotropic. Hence

which makes (4.17) read

L
5t

2 3 3

(nuX + SPXX) + gg(nux Sup

ot ¥ qx) + ZnuXE =0 (4.18)

When this is reduced to a form analogous to (4.10), it

becomes (with q = 0 and dropping the xx-subscript)

L

Py + up, ¥ pu, = 0

¥,

Thus the only chénge in going to three dimensions is the
replacement of 3 by 5/3 in (4.10). (Dropping the x-
subscripts in (4.13) and (4.14) makes them identical to

(4.4) and (4.5).]) This willmean ; of course, that the
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entropy will be p/n5/3, and it is to avoid dealing with

such fractional powers that we restrict ourselves to the

one-dimensional case.

B. Possible choices for a damping term

If dissipation is to enter the LPE's, it must be
through the term q we have dropped, for otherwise the LPE's
are exact consequences of the Beltzmann-Vlasov equation.

To make a sound choice for this term, we must go back to

the underlying microscopic description (4.1).

Laﬁdaéa linearized (4.1-2) by assuming
f = fo (v) + F (X,%,t)
where £ << fo and where fO(V] is a Maxwellian. In the

present units, fo(v) is

' i ~l.~,v2
By L) = J7 ©
The linearization leads to
of of . g .
w Ve "Efwm T
dE _ _ i =
‘é‘g i h/‘f d\’
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Then by essentially studying fundamental solutions of the
form

T = g (v) oI xx-ut)

Landau was led to his famous damping term in the Jdispersion
relation. For k + o, this dispersion relation assumes the

asymptotic form

" . A8 |
Who= 1 3¢ = o9 Pl guy) (4.19)

where

a=le'3/2
V2

The teal part of w? has been expanded to two terms here
to reproduce the dispersion relation of the lineadrized
LPE's (see 8§5). It would actually be legitimate to
expand the real part to any number of terms, while keeping

only the one term for the damping, because

1

e’ 2 = o( (4.20)

as k= 0 for any n > 0.

The last is an interesting point. Iach time we
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enlarge our our system of moment equations by one, by
truncating at the next higher level, we gain an extra term
of accuracy in the real part of the dispersion relation,
as «k=>0. But becausé of (4.20), the procedure which we
shall give below for including the damping will be useful
for arbitrarily large moment systems.

If the form of g which we picked to reproduce
(4.19) consisted only of n, u, p, E and their partial
derivatives, the best we could hope for would be a damping
term of O (rp) as k= 0. This is because the dispersion
relation for any system of p.d.e.'s, on account of the

renlacement

—+ -1

8
3t

will always be simply a polynomial in w and in k  And
it can be shown that the roots w of any such polynomial
always behave as a power of «k as k- 0.

Thus no system of partial differential ecquations could
have (4.19) for its dispersion relation. One must, there-
fore range more widely in choosing a form for q. A

similar situation prevails in water wave theory, where
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the cxact dispersion relation 1s transcendental and cannot
be correctly given by the various approximate theories
(shallow water, Boussinesq, Korteweg-de Vries, etc.)
There Whitham has suggesteélg)the use of an integral term
of convolution form in the approximate theory, which is
constructed to give the correct dispersion relation. A
similar approach can be used here.

Naturally the construction of the convolution is to
a large extent arbitrary, since it must only reproduce
the correct linearized limit. We give only the simplest

form which could be chosen:

(- f xue a (4.21)
where
. = -];“—2 - 1 KX
. o - B 1, 7w
K (x) = S pﬁ e d e (4.22)

The LPE's become a set of integro-p.d.e.'s with this
definition of g, and of course no analytical solution is
possible. We convolute with u rather than n,p, or E
primarily because the dispersion relation (4.19) then drops

directly out of the equations with no further approximations.
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Integrals of the form (4.22) occur throughout the

24,25,26) d(zz)

literaturse and have been tabulate They always

occur in connection with a Maxwellian velocity distribution

[the damping term in (4.19) comes from putting v = E%

& i
in e v /@ and expanding w]. The standard form is obtained
from making the change of variables K = %:

O 4
. a w| 1 T @
K 2K
=0 o)

[e2) o o ]

2 1.2 1 2 1.2 3
= %El 4( u"exp(- Su” o+ —%) du +v/nu exp (- U —l%)du

From these forms one may obtain the asymptotic expansionéza

%6-3/2 (l-%xz +‘@:x3) + O(X4) X0
K(x)~|~
i 3 /3 .
é@ﬁ 572 e 2/3 o~ & . (3\;3 - 213 _ %) Dl

A feasonable approximation might be to replace K(x) by

its asymptotic formula for x*» , since it is a rule-of-
thumb that x-+« corresponds to «k =+o under Fouriler trans-
formation, and the damping term is correct for wo. The
whole question of approximating kernels for complicated

o)

integral equations is in its infancy, howeve and there



67

does not seem to be any rigorous justification for such
a procedure at the moment.

With the integral term in the LPE's, it is no longer
possible to do even some of the simple things that we
can do with p.d.e.'s. For example, we can no longer find
characteristic velocities, do geometrical optics expansions,
or obtain steady solutions. A numerical approach is the
best we can hope for at this time, and even this is
complicated by the non-local nature of integro-p.d.e.'s.
Still, we judge that this approach of including an integral
term merits attention because it holds promise of eluci-
dating the effects of Landau damping on non-linear plasma
phenomena, most notably the '"collisionless'" shock wave.

We close with some brief remarks on another possible
type of damping term. Supposc a mock collision term of

27)

the Krook typ is put into (4.1),

£, & wE = Efv = v(fo—f) (4.23)

where v is the collision frequency, fg ¥y ®, i, T)
is a local Maxwellian and T is the temperature. Such an
equation has been considered by Weitzne414) Without

going into the details, we merely state that if one applies

the Chapman-Enskog procedurc to (4.23) and carries it out
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to the Navier-Stokes level, one may compute an approxi-

mation for q
q = =B (p/m), (4.24)

in which the eleet¥ic fiesld drops out entirely. The
coefficient B depends on the temperature, but to a good
approximation it may be treated as a constant. The
validity of (4.24) is formally in the 1limit wv-e, thus
binary collisions are assumed to be dominant. This is
not the limit we wish to consider, as explained earlier,

but in spite of that the form (4.24) of the damping is

useful. It is simple, unlike (4.21), and it is more
amenable to analytical calculations. In addition, it
may be expected to hold for moderate v's. Finally, any

truc description of a plasma will have to contain some of
both kinds of damping terms, the collisional (4.24) and

the Landau (4.21).
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§5. Linearized Theory

In the next three sections (85, §6, $7) we shall
study different aspects of the LPE's which throw light
on their general structure. In the present section we
shall study the linearized theory of uniform wavetrain
solutions (sub-section A) and the dispersion relation
when the model dissipation (4.24) is included (sub-
section B). The first is valuable because any linear
and near-linear solution can be constructed as a super-
position of uniform wavetrains. The second will show
the inherent limitations in any derivative-like dissipation.
We will go on to consider breaking and shock solutions in
§6, and again in §7.C. These discussions are important,
not only because shocks are an important sub-class of
non-linear solutions, but also because the metheds for
Qetting at them are important. We shall conclude that

there are no steady shock solutions of the LPE's, but

’
that unsteady shocks are possible. And finally, in §7.2
and §7.B, we shall completely analyze the uniform wave-
train solution of the LPE*s. Again, the methods used are
worthy of note (in particular the Sturm sequence method
of €7.B). Each of the three different kinds of solution,

linearized, shock, and uniform wavetrain, adds a piece

to the total picture, and each is a kind of solution which
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we are accustomed to observing experimentally.

We may linearize the LPE's by assuming

n=14%nmn u = U p = S+ B E = E

where each of the tilda~ed guantities is small compared
to unity. The mean level of p is of course arbitrary.
'he linearized forms of (4.4), (4.9), (4.,10), and (4,.2)

hecome

which can be reduced to a single equation for, sav, D:
- o 8 '] < F p

= _3505 + D=0 {6.1]

This is a Klein-Gordon, or telegraph, eguation, and its

< i 3 ; ;
solutions have been well—studled.{ ) Its dispersion
relation is

== '\1/‘— - 35 !:—2—
“o 4w ey (8323

It is interesting to note that the entrance of E into the
equations leads to the term P in (5.1} and hence to disper-

sion (5.2). Thus the plasma case is qualitatively different
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from the gas-—dynamic case E = 0, in which sound waves

propagate without dispersion.
A. Small-anplitude uniform wavetrains

When all variables n, u, S, E in the LPE's depend
only on & = Kkx - wt, we have from the entropy equation
(4.12) and from the current (4.7) and Poisson (4.2)

equations that

as .
F7- 0 {5.3)
u = U(l - 1/n) (5.4)

where U = wW/K. These can be used to reduce the number of
variables in the momentum equation (4.9):

2
8] d
K(3SDn - ;3) i

n B e
5 + B = 0 (5.5}

This, together with Poisson's equation

dE
Ka-*e"zl-n, (5.6)

forms a set of two equations for n and E.

We expand n and E as in §1,

o]
1l

= 2 £ ¢ o o
1 Gnl(e) + € nZ(B) +

B 2

il

EEl(B) + € 32(6) ¥ wws
We also expand w as in §1

.
u):cno(K) + fwl(K) + € wZ(K) * aaa
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to allow for the elimination of secular terms. Putting all

these expansions into (5.5) and (5.6), we have in O(€)
n,(6) = A cos 6 + B sin ©

El(e) =-A/K sin 6 4+ B/K cos 8

It is sufficient for our purposes to take A = 0, Then, in
2 .
O(€“), the solution of

d2n2

ae?

. 2w B
. w 4 £
+ N, = ZuB lB sin 8 + 3(1 + .SOK JB® cos 286

gives Nye If n, is to have no secular terms, we must take

= 0

Wiy

whereupon

: 2y
- B - o s 4 [
= A, sin 8 -+ BZ cos © (1L + 45 K”)B“ cos 286

2
With a similar solution for EZ' one then obtains the follow-

ing eguation for Ngt

2

d™n 2w W
—2 ey =524 302 - 2a 45431752 oin 0
ae < B

+ () sin 28 + ( ) sin 36
The choice

32p” 2 2
Hy & *QIT“(lﬁso‘K * SSO) b8 7
s)

makes the coefficient of sin € vanish, and so eliminates
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secular terms from n3. Later we shall derive this same

result from a small-amplitude expansion of the non-linear

dispersion relation (§10).
B. With dissipation

Let us now consider the linearized form of the LPE's

with a small derivative dissipation

«8)

(93]

q=-€p, (

analogous to (4.24). The properties of the linearized
solution are not particularly sensitive to the choice of ¢
in terms of derivatives of n, p, and u, so we use the

simpler form (5.8) rather than (4.,24).

With this dissipation, the linearized LPE's can be
reduced to a single equation for, say, p:

~

Pegr ~ 3pxxt *t Py = €(pxx = pxxtt) (5.9)
S _has been set to onefor simplicity. We begin by investigating
O -

steady-profile solutions
P = plx - UL)

For such solutions, (5.9) becomes an ordinary differential
equation satisfied by exponentials

mi{x - Ut) (5.10)
e

The equation for m is
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€uin’ + U(U2 - 3)m? + €m + U = 0

. 2 _ ‘
Assuming U" =3, we can write the expansions of the three
rookts for m as € —= 0O,

2 ‘
m ——-U ---;+ o(€)

o Ue€

£ 3 gf 5+ 0l€?)
Vg2 32U~ 3)

The root m; gives the proper decay of (5.10) as (x - Ut)
-—fm~-+ oo, and the roots m,, Mg give the proper decay as
(x - Ut) —= - ®. A&As mentioned earlier, (§1), these expo-
nentials can only be fragments of non-linear solutions.
Thus it is possible to envision a steady-profile solution
described in its forward tail by (5.10) with m = m; and
in its rear tail by (5.10) with m = m, OF M = my. It
would look somewhat as in Figure 6.

DO~

<//d}L1inear JL“-~h_g
r‘/—\/\

D N~

Figure 6. A possible steady
profile solution.

It can be shown that m; is strictly real for €——= 0, so
the tail in front is strictly a decay. m, and mo have
imaginary parts, however, and so lead to decay with oscil-

lation at the other end.
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In the gas-dynamic "limit" E — 0, the equation
(5.9) simplifies to

lad 3~ . As
Pt Pux = €Pyrxt
steady-profile solutions of this have but a single decay

constant

Since this matches m, for € —= 0, it is reasonable to

that the forward tail of the LPE solutien is "gas-~dynamics

say

déminated,“ that is, that the effect of the electric field

is negligible there.

We now consider the dispersion relation of (5.9).

In the usual manner, it may be found to be

2
m3 + iEK%u_ - (3K2 g 1) e i€K2 = 0 {(5.11)

The expansions of the three roots for € —» G are

ctl

2

W, = - i€ ——— 4 0(€%)
3k 4+ 1
4
3
.. . = V3K2+ T o R el s O(€2)
Zr 3 o
2(3 K7+ 1)

All the imaginary parts here of the correct signs to produce

; . ilkx-wt)
damping in e .

The introduction of damping has thus produced a new,

purely diffusive mode w,, and added damping to the propa-
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gating modes w, and W, . This is similar to what happens

wheq we introduce the Havier-Stokes damping terms into the
: : & {28}
Euler equations of fluid mechanics. The root locus

of (5.11) in the complex w-plane, as K increases, is also

similar to the MNavier-Stokes case, and is shown in Figure 7.

The arrows indicate the directions of increasing K.

Re w
Im w
§ W.
1
]
3 W
2
Figure 7. Root locus of dispersion
relation (5.11) as ® in-
creases (arrows indicate
direction of increasing K).
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The roots w, and w., travel in almest exact semi-
~

2
circles until they both simultaneocusly hit the imaginary
axis at,l<=‘<0, Then w2 heads back up the imaginary axis,

approaching the limiting value

fs 53
l[‘§?+ / (5¢) “l] (5.12)

as K—= . W, heads down the imaginary axis, having the

asymptotic behaviour

v
w3~ -~ 1 €K

as K—= . aﬁ travels strictly down the imaginary axis,

appioaching the limiting value

Z2
3 3
-1[33- (-?:?)-1]

as R —™ o, which is zbove the limiting value (5.12) for

(.|J2'.

As € increases from small values, the radii of the
semi~-circles in IFigure 7 decrease approximately as 1l/¢ .
By the time we reach € = 3/2, the semi-circles have shrunk
to vanishingly small radii. If we increase € any farther,
the whole qualitative picture of Figure 7 is altered. This

might be guessed from (5.12), since the square root term

becomes imaginary for € > 3/2. We shall not go into the
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case ¢ > 3/2 here, since our o®ject is to consider mod-
erately small damping.

The behavior of the value Ko as a function of
damping € can be deduced in the limit € — 0 from the

discriminant of (5,11)., When this discriminant vanishes,

ub = w3. Hence we set the discriminant to zero and find
K as a function of € for € ——= (0, This leads to
K A,\le
(o] €

as € —= 0, a formula which turns out to be quite accurate

for O=€«=3/2 (as substantiated by numerical calculations).

20 ¥l

only for O <K<K, . The damping Im(w) increases with Kk for

Propagation can take place (on the branches W

0 =K g P These facts agree gqualitatively with experi-
ment (shorter waves experience a larger danmping) but of
course no sharp cut-off is observed. The sharp cut-off
St }<=|<o lies in the nature of the model., Similar cut-
offs are cbserved for sound wave propagation when more

detailed kinetic theory models are made (cf, 12, 28).

The general features noted above, in particular,
the existence of a cut-off wavenumber, can be expected in
any derivative dissipation model. This would be difficult

to prove rigorously, but enough examples have accrued
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to make a pretty strong case for it. The meaningfulness

of all such models after cut-off, that is, for K m-KO,

is extremely dubious. Thus they will suffer from inaccuracy
in regions where the solutions vary too rapidly, either
spatially or temporally. In particular, derivative dissi-
pation models cannot be expected to be useful for calcu-

lating detailed shock structure.
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§6. Breaking and Shocks
We shall demonstrate two properties of the LPE's in

this section:

(1) there is no possibility of a shock solution

which is just a simple jump in level;
(2) <certain solutions of the LPE's break.

The second property shows that shock solutions of the
LPE's may be possible. The first shows that if shock
solutions do exist, they will not be as simple as in gas
dynamics.

For the first, we shall show that there is only a
single constant-state solution of the LPE's. Putting a/dt
and 3/3x to zero everywhere, we obtain from the momentum
equation (4.9) that E=0. This in turn leads, through
Poisson's equation (4.2), to n=1, and through the current
equation, (4.7), to u=0. Thus if there is a constant
state both before and behind the proposed shock front, it
must be the same constant state in both places. This
means neither n, .nor u, nor E experiences a jump across
the shock front. Thus, there -is no-shock front, and shocks
of the simple jump discontinuity type do not exist.

For completeness, it should be mentioned that a jump
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in the pressure is allowed by the equations. It is, however,
difficult to imagine a jump discontinuity in pressure
propagating through an ‘otherwise quiescent (n=1, u=E=0)
medium.

The reason a step solution does not exist is its
inherent instability. If we set it up at time t=0, it
would decay almost instantly, because the charge imbalance
caused by the deviation of n from unity would result in
a large restoring electric field, which would always
act to pull n back to one. Hence, oscillations are possible,
but not extended regions in which n>»1 or n<l permanently.
Plasma oscillations and steady progressing steps are in-
compatible phenomena,

In spite of the non—existencé of steady progressing
step shocks, we still suspect the existence of breaking
solutions of the LPE's, simply because they afe a hyper-
bolic system. Hyperbolic systems are well-known to have
breaking solutions whenever ﬁeighboring characteristics
36{

belonging to the same family cros The characteristic

form of the LPE's may be found to be

(ugtc,u) 1

+ X +‘V§5; (Pt+c+px) *E=0 (6.1)



{ut+c_ux) - ;%EH (pt+c_px) + B = @ {(H.2)
n =
(ntﬂmx) & ’3“5 (pt+upx) = 0 (6.3)
Et -nu =0
or (6.14)

where - - o Ry
=u * n
c, Y 30/
The families of characteristics are thus the '"particle

paths"

and the sound-wave characteristics

E - usqfsp/m (6.5)

so-called because -JBp/n is the soundspeed for y = 3. The

characteristic form (6.4) indicates a characteristic velocity
of either u or zero. Whichever we pick, it amounts to
somewhat of a degeneracy, since there are only 3 non-zero

characteristic velocities for 4 equations.
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Eq. (6.3) is equivalent to

which says that S is constant along particle paths, as
in gas dynamics.

While we can prove nothing about the general case,
as regards crossing of characteristics and breaking, it
is possible to demonstrate breaking for a special class
of solutions. This class consists of solutions which are
initially weakly discontinuous; that is, have initial
discontinuities in slope. We study such solutions in

the neighborhood of the wavefront

o(x,t) = 0

by use of the following geometrical optics expansions:

L nl(t) 0 + nz(t) %é < QPR H£>0
n =
i 8< 0
@2
ul(t) g uz(t) AR o> 0
u =



2
C]
1+ pl(t) 0 + pz(t) A 6 >0
p =
i 0<0
@2
Ez(t) 2T + . 0> 0
E =
0 86<0
The initial discontinuities in siope'are seen
from these expansions to be
0=0+
[n,Jg=p- = ng = n;(0) 6, (x,0)
G=g+ - ;
[u Jg=p- = Ug = uy(0) O _(x,0) (6.6)
=0+ _ _ .
[PX]@__.O_ . ps = pl(o) QK(X,O)

Note that the initial discontinuity in E has been assumed
to occur in its second derivatiive, not its first. This

apgrees with Eq.(4.2), which says that E x = ~Dy» SO

that a discontinuity in n, is matched by a discontinuity

in E

ot Ex behaves like n, and so is continuous.
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We put the geometrical optics expansinns into the
LPE's of §4, and group terms accérding to the power of @
that they multiply. In this procedure,.we assume O
and @X are O(1l). as:. © > 0, This assumption is later
validated by our choice of ©. We then set the coefficient
of each power of 0 to zero.

The procedure is illustrated for the continuity equation

(4.4, For & = 0,

o
Il

n, + (nu)x

ni(t)@ + nl(t) Ot + nz(t)e@t

+ug(t) o + [u,(t)+2n;(thu  (t)]e o + 0(6%)

= ] 2
= Ny 0, + uy By * [n1+n2©t+(u2+2n1ul)ex]6 + DLa™)

Hence

n,0, + u,0_ =0 (6.7)

i}
o

nl'(t) * nz(t)et + (anul * uz)OX (6.8)

L
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Eq. (6.7) is one of the set of three "éikonal" equations

for the LPE's (there is no eikonal equation resulting from

Ex =1 -.n). They may be manipulated té yield
Py (t) = 3ny(t) (6.9)
ul(t) =+ A/3 nl(t) (5. 310]
0, + af3 B = 0@ (6.11)

The + sign corresponds to the possibility of the waves
traveling either to the right or to the left. We pick
the plus sign for definiteness, corresponding to right-

ward motion. Then the general solution of (6.11) will be
Bix,t] = $(x-v3 1)

I1f we assume the wavefront started at x=0 at time t=0,

and if we assume @ can be written
Q(x,t) = t-W(x)

then ¢ is uniquely determined as

olx,t) = t - Z% (6.12)
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Using (6.12), the three remaining equations of the

type (6.8) are

2 2 . _
ul'(t) # anul +u, - 7% M ~JE P T 0 [6.18)
g
Pl'(t) ;4 U Py -3 Uy & Pg = 0 (6.14)
E, - J3 ny = @ (6.15)

Multiplying (6.13) by Y3 and adding it to (6.14), the
variables u, and Py drop out, leaving an equation in nq,
U, and Pq only. Then uy and py may be written in terms of

ny using (6.9) and (6.10). The resultant equation for n

i,
is

' -
n, (t) an

whose solution is

1

n; (t) = - 53¢
where ¢ is a constant, c¢ may be evaluated from (6.6)
and (6.12) as
1
(3 T (6.16)

S
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It is clear that if ¢ is negative, nl(t) will become infinite

at time

while if c is positive nl(t] will decay to zero smoothly
as t »», Since nl(t) is proportional to the jump in
derivative n_ across © = 0 at time t, this means that :
becomes infinite at t = ty when ¢ < 0, which is what we
call breaking. The solution becomes a shock front at
this point, and the LPE's must be supplemented by shock
conditions if we wish to continue the solution beyond

t = tg. We shall have more to say about shock solutions
in 7.0,

In terms of the initial discontinuities, the breaking

condition ¢ < 0 becomes

from (6.6) and (6.9-10). Thus when
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@) (b)

Figure 8. Form of breaking and non-breaking disturbances
’ 'in the LPE"s.

n,u, and p have initial disturbances of the form of Figure
8(a), the rightward-propagating disturbance will break at
time t = ty. When they have initial disturbances of the
form of Figure 8(b), the break in derivative will smooth
out like 1/t as it propagates rightward.

It might be remarked that the above results do not
depend in any essential way on E. Thus the breaking is
purely a fluid mechanical phenomenon. The form of shocks,

etc., will of course depend on E.
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§7. Uniform Wavetrain Solutions

In this section we shall study the steady progressing
wave or uniform wavetrain solution of the LPE's (see
Part II for definitions). In sub-section A, we shall
formulate the LPE's in a way which facilitates the study
of uniform wavetrain solutions. Then we shall explore
the solutions themselves, noting in particular the
limiting cases of the solitary wave and the peaked wave.
In sub-section B necessary and sufficient conditions for
the existence of such waves will be formulated, using
the method of Sturm sequences. And finally, in sub-sec-
tion C, we shall show the impossibility of joining a
steady wave solution across a jump discontinuity to a
constant state, a rather unusual type of shock suggested
by the analogous solution in the Korteweg—de’Vries

problem (cf. §2).
A. Equations for the uniform wavetrain

It is desirable, when finding steady-wave solutions
of a system of partial differential equations, to express

as many of the equations in conservation form

@, 0, e

as possible. For when all variables are functions of

@ = KX - wt, this becomes
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—vge FtKge?=0

and the integration is immediate:
KQ - WP = const. (7.2)

Added motivation for seeking equations in conservation
form comes ffom the fact that they are the most natural
framework within which to study slowly-varying wavetrains,
as we shall do in the next section. Also, the constants
occurring in the integrated forms (7.2) turn out to be
useful parameters for describing the steady-wave solu-

tion.

We have already obtained three of the LPE's in
conservation form. These were the Continuity equation
(4.4), the energy equation (4.8), and the entropy equa-
tion (4.13). Hence these equations integrate immedi-
ately to

Knu - Wn = const. (7.3)
3 2 2
K(nu~ + 3pu) - w(nu™+ p + E°) = const. (7.4)

KnuS - wnS = const. (7.5)
Using (7.3) in (7.5), it follows that
S = const.

We will therefore take S to be one of the parameters of

the problem.
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For a steady wave, the current (4.7) and Poisson
(4.2) equations become

dE

~w3 = nu (7.6)
dE
36 = l-n (7.7)

Eliminatiﬁg dE/d® between these, we obtain
KNu - wn = - W
Thus the constant in (7.3) is -w , and so we have finally
n(u - U) = -1U (7.8)
where U = wW/K.

Before passing on, we note that the physical restric-
tion of a positive number density, n=0, requires that

u<<U .

This follows from (7.8) when we, without loss of generality,
assume U>=0. Since the pressure p is likewise positive,

(4.11) gives the restriction S=>0.

We remarked in $4 that the momentum equation could
not be put in conservation form. It proves possible,
nevertheless, to obtain a "pseudo-conservation" form which,
for our present purposes, has the same properties as a
conservation form. Beginning from Eqg. (4.5), we replace

n in the last term by (1 - EX) to obtain
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(nu)t + (nu2 + Sn3 - 1/2 EZ)X + E =0 (7.9)
Combining Egs. (4.9) and (4.11), we obtain

2 3
u, + (1/2 u )X + 1/n{(Sn )X + E =0

Subtracting the last two equations,

i

{(n-l)u;t #fmu® - 172 w® 4 sn® - 172 E?}

3
- 1/n (Sn )X =0

It would be desirable to have the last term in this
eguation merely involve S since we know S is constant
for the steady wave. And indeed, this can be achieved by
absorbing part of the term under the x-derivative:

3 2

= 172 B° « 3/2 8n°}

{(n—l)u}t + fnu2 - 1/2 u2 + Sn

+ 1/2 nzsx -0 (7.10)

Now, for the steady wave, this equation is effectively in
conservation form (this is what we meant by "pseudo-conser-
vation form"). It integrates immediately to

2 2172 u® 4 snd - 172 B2

-w(n-1)u + K{nu
~ 3/2 Sn%) = -kA  (7.11)

where A 1is a constant.

By substituting for u in terms of n from Eq. (7.8),

we may solve for E2 in Eq. (7.11) entirely in terms of n,
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2

2
B® = ZA + s(2n3 - 3n2) - U2 {n-1)7

n2 (7.12)

Reversing the process, we may obtain E? entirely in terms

of u,

2 2 25U° 3502

28 - u - - (7.13
(e=u) (u-m)? )

E

It

With E given by either of the above formulas, Poisson's
equation

KE'(0) = 1-n = —— (7.14)

leads to a single differential equation in either n or u.

In terms of u, it is

s o/ S

Kug = — éU-u) - Voa - w2 4 25U - 35U .
38U° - (U-u) (U-u) (U-u)
—(U=u)3/2 )

= > Q(u)= R(u) ' ~ §Tad5)

38U° - (Unu)4

where Q(u) is a fifth-degree polynomial in u which we shall

use in the wvarious forms

Q(u) = (U—u)3 (28 - uz) - S(U3 = 3U2u) (7.16)

2

(U—u)3 (a= - u2) - S(u3 - 3Uu2) (7-17)

3

= - ws + 2Uw4 + (2a - Uz)w3 - 35U2w + 28U (7.18)

and where

a” = 2A - S =0
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We identify a as a measure of the amplitude of the oscil-
latory solutions to be expected from Eq. (7.15). This is
an extrapolation from the linearized théory, where we find

a to be proportional to the amplitude.

The linearized theory is obtained by first noting
that u = 0 is the equilibrium point. We expand the ex-
pression under the radical in the first form of Eq. (7.15)
to O(uz) as u —& 0, and approximate the expressibn in front

of the radical by its value at u = 0:

U~ 35 2

Rilg, = —E}L——-“VQZA ~ §] = 5= g (7.19)
™. a8 U

If 2A-8 = a2==0 and U2==BS, the solutions of this equation

are seen to be sines and cosines with amplitudes proportional
to a. This is what one should obtain, as may be verified

by a direct linearization of the lukewarm plasma equations.
No other senses of these inequalities will lead to the cor-
rect linearized solution and assuming that the non-linear
solution develops continuously from the linearized one by
increasing the quantity a, we deduce that these inequalities

will hold in general.

Since V3Sn2 is the sound-speed for this problem,

U2:=35 is the familiar statement that the wavespeed is

larger than the linearized sound-speed.,
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The statement was made above that the solutions of
(7.15) will Ee oscillatory. This is because the slope,
which equals R(u), vanishes at certain well-defined values
of u; namely, the real roots of Q(u)(u=U is not a possi-

bility on the physical grounds that n is infinite there).

Approximating the differential equation in the neigh-
borhood of a simple root ud"of o(u), ug oc u,-u, we see
that the local behavior of the solution is parabolic tangency

to u,, as indicated in Figure 9.

Figure 9. Behavior of the steady wave

solution near a simple root
u, of Q(u).

Hence the solution is "turned around" whenever it hits a
root of Q(u), and so must travel back and forth between
two adjacent roots of Q(u) endlessly. The only restric-

tions are that u<=U everywhere and that Q(u) be positive



o7

between the two adjacent roots of interest (this since we

are taking its square root in the differential eqguation).

These last two restrictions are sufficient to eliminate
all but one of the possible solutions of (7.15). To show
this, consider the following deductions from Descartes'

Rule of Signs applied to the forms (7.16) and (7.18)
of Q:
1. Q has 3 or 1 real roots less than U.

2. © has one real root less than zero.

In case Q(u) has only one root less than ﬁ, the solution
would approach u = U as 6 —®o00, which we disallow.

In case Q has 3 roots less than U, 2 of them will be
positive because of statement (2). We designate the

3 roots as u,;, u,, u,, and assume the following ordering:

ul<0 c:u2<=u3<U

(the case u, = uj represents a peaked wave, which is
treated in Appendix B)}. Then since

0(0) = U3a2 =0 .

we have

Q(u) = 0 for u, < u =u

The only possible solution is thus that oscillating between

u, and u,, for Q(u) = 0 in u =< u; and in u, < u < u,, so
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that these regions are disbarred. Any solution in u=u,

must eventually approach u = U, which we again disallow.

The above analysis has tacitly assumed that the rel-

evant root of the denominator of R(u) in Egq. (7.15),
1l/4

2
u, = U - (3sU%)

does not lie in the range of oscillation [ul,uz]. Since

=
Yo~ O

because U2==BS, u  cannot coincide with u,; let us assume

that it also does not coincide with u,, but lies in (0,u,).

Obviously, ug = o for u = u_. Let us inquire how ug

approaches infinity as u e Near u, Eg. (FelB)

becomes Wf_————-
. Q(uoo) [ 1
T e
which integrates to 1/2

8- via BN

u-u°°2={2n(3suz)3/85 AT

We note that this solZ may not continue past 6 = 90 (60
an arbitrary constant of integration). Since it may not
just "stop dead" in its tracks, its only recourse is to
become multivalued as in Figure 10, which is allowed be-

cause \/60— 6 may have either sign. But multi-valued-ness

must be rejected on physical grounds. Hence U must not
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penetrate the region (O, u2).

OF————
[¢>]

Figure 10. Behavior of a steady wave -
solution which crosses

u o= u .

Up to this point we have left open the question of
whether Q(u) does indeed have three real roots u< U, 1In
sub-~section B, a necessary and sufficient condition for

this assumption to be true is given. It is

a - 2A =S5 _1/i_4y3
5 2 =3(1-8)" (3 +6) (7.20)

2)1/4

where B8= (35/U This condition, as a byproduct,

helps us to locate the position of u relative to u, and

o0 2

u For, from Egs. (7.17) and (7.20), we find

’

30

Q(ucj) Q(u - BU)

]

- (Bu)3 {a2 - Uz(l—B)z} + SUS(1-8)2(248)
: 3

_ (ﬁU)3[a2— L (1-a)3<3+5)] it B
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Since uoo='0 the only way Q(uoo) can be negative is if

u

so that, when an oscillatory solution exists, the problems

connected with uoof(O, uz) never arise.

Numerous additional inequalities concerning the
roots of Q(u) can be found, requiring varying levels of
ingenuity. We mention only two simple ones which will be
of use in sub-section B:

a=|uy |

(7.21)

a< u
2

They are obtained by noting, from the form (7.17) of Q,
that Q = 0 for - a = u = a. It follows that the roots

u,, u, must lie outside of [- a,a].

We have said nothing of the special cases u, = u

2 3
and U, = U . These are the cases of the sclitary wave
(wave of infinite wavelength, with only one crest or one
trough) and the cusped peaked wave, respectively, as may
be verified by an analysis similar to that leading to
Figures 9 and 10. These cases are treated in Appendices

A and B. The conclusion reached there is that neither

case may occur, independently, so that the coalescence
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of any two of Uy, Uz, u_g entails the coalescence of all
three. The type of wave produced when this happens is

as illustrated in Figure 11, that is, a peaked wave with

112,113,11&:)

Figure 11, The steady wave solution
of maximum amplitude.

a finite peak angle. This peaked wave is also the solu-
tion of maximum amplitude. For, from Appendix B, the
parameters of the peaked wave solution are constrained by

2
a X 3
- -3-(l—ﬁ) (3+8)
U
and taking note of inequality (7.20), it follows immedi-
ately that for fixed B and U, the peaked wave is the solu-

tion of maximum a, that is, of maximum amplitude.

A picture of the development of the non-linear solution
from the linearized one may now be formed. We consider the
entropy S and speed U of the wave to be fixed, and observe

the movement of u,, u,, and u; as a increases from small
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values (where uzﬁ:— ulﬁﬁa). The results are indicated
schematically in Figure 12, They are borne out by the

numerical experiments of Appendix C.

u=u
u3 \\s
h v~
S
\\
u=uoo -
/
/
/
/
/
/
/
/
/
/
F 4
//
u2 /
u=0
u
1 \\
W
N
N\
N
~
RS
N
N
. N
= = =a. >
a al a 82>&1 a 3 82

Figure 12. Movement of the roots u,,u,,u,
of Q(u) as the amplitud& a
increases from small values.
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We close this sub-section with a brief derivation of
the average values of n, nu, and E for a steady wave. To
begin, we note from Eq. (7.14) that when u is oscillatory,
so also is the electric field E, Hence, when we integrate

Poisson's equation over one wavelength A of the steady wave

fAKE'(G)dB n fk[l—n(e)]de

(o) (o]
the left-hand side vanishes by periodicity, and we are
left with

A ' ;
l/A_/ﬂ n{e}dse = 1 (7.22)

(e}
This says that the average value of n over one cycle is
unity., A similar procedure applied to the current equation,
(7.5), yields X

fnu de = 0 (7.23)

(o}

which says that there is no mean mass flow in the wave.

To obtain the average of E, we go back to the momentum

equation in the form (L4.9),

I
o

n(u_ + uux) + p, + nE

t

For steady waves, this becomes

0

(kp —uuﬂe + nE

Integrating this over one cycle gives

A
j; nE d8 = 0 (7.24)
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Replacing n via Poisson's equation, this reduces to

A
f EAde =0 (7.25)
(o]

which says that the average value of E over one cycle

is zero.

B. Necessary and sufficient conditions for the
existence of a steady wave

In sub-section A, we assumed that Q(u) had exactly
two roots, u, and u,, on (0, U). Upon this assumption
hinged the existence of a steady wave. Now we shall
develop a necessary and sufficient condition for this to

be true.

We shall employ for this purpose the method of Sturm
sequences, which is a device for finding the number of
zeroes of a polynomial on the interval (a, b) of the real
axis. For a typical nth degree polynomial P(x), the

1)

Sturm sequence assumes the form

{e(x), P16, 2300, ..., Bt p_ .}
where Pn+l is a constant. Then if V(xo) denotes the
number of sign variations in the Sturm sequence when it
{21}

is evaluated at x = X,, we have the result

No. of roots of P(x) on (a,b) = v(a) - v(b).
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This method is often referred to in numerical analysis
literature as a way to obtain starting iterates for
rapidly?converging polynomial root-finders. It can also

be a powerful analytical tool,however, whenever one is
concerned with findiﬁg conditions for a parameter-dependent
algebraic equation f(x,al,...,ak) = 0 to have a specified
number of roots on a specified

interval of the real x-axis. (The extension of the method
to algebraic eqguations is possible because of the possi-
bility of obtaining excellent low-order polynomial approxi-
mations to most transcendental functions.) It makes pos-
sible analytical, as opposed to trial-and-error numerical,

parameter studies.

The construction of the sequence proceeds somewhat

{13)

along the lines of the Euclidean algorithm for finding

the greatest common divisor of two integers. Taking the

first two members of the sequence to be P;(x) = P(x)},
P,{x) =p'(x), the rest are given by(Zl)
P, {x} P ()
k k+2
o g U)o = (k&= 1,8, sms,0-1) (726)
Progg b2t~ " Pra1 (%)

where qy(x) is the quotient and Pk+2 is the remainder. In
other words, pk+2(x) is the negative of the remainder ob-
tained upon dividing Py(x) by Bk+l(x), and is a polynomial

of lower degree than Pk+l(x). Sturm sequences are of course
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not unique (e.g. any member may be multiplied by a posi-

tive constant) but the sequence generated by Eq. (7.26)

proves convenient,and has the virtue of relative simpli-

city.

In case the iteration process (7.26) terminates, in

the sense that P (x) £ 0 and P (x)=
m-1 m

one or more multiple roots of P(x) are

fact, if the last j members of a Sturm

identically, then we can say that P(x)

roots of multiplicities m, L A,
N
3 (m,-1) = 3
i=1

Thus, for a given j, there are as many
bilities for the set {mi% as there are

non-zero integers which sum to j. For

0 for m = n+l, then
indicated. In
sequence vanish
will have N multiple

such that

different possi-
combinations of

example, for j=2,

the possibilities are one triple root (N=1, ml=3) or two

double roots (N=2, m = 2) of Pi{znl.

= Py

For j=1, there is

no ambivalence, however, and the statement there is: P(x)

has one double root and no other multiple rocots if and

only if

P =0 and Pn(x) i: 0

The above result might seem tc have some merit in the

study of the solitary wave, where Q(u)

has a double root
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on (0,U). The situation is actually the reverse in prac-
tice, however; a direct investigation of the double-root
case (Appendix h) without benefit of Sturm sequences
leads to a condition_much simpler than Pn+l = 0, This
simple condition can then be used to go back and factor
Pn+l in a non-obvious way. This brings us to an unfor-
tunate fact of life for the method of Sturm sequences,

at least in the present case, but probably in general:

it produces overly complicated expressions, which recquire
considerable skill and ingenuity to simplify. The advan-
tage of the method is that it unfailingly vields necessary

and sufficient conditions in various guestions of root

existence, complicated as those conditions may be.

For the present case, the method was useful because
it provided, after some lengthy manipulations, a single
relatively simple necessary and sufficient condition for
Q(u) to have two zeroes between u = 0 and u = U, That

condition is derived in Appendix D, and is

a< 2% - 8/3 p+l (7.27)

where
1/4
)

<
W

It may be transformed into an inequality on the amplitude
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which is Eg. (7.20) of sub-section A. The assumptions

used in deriving (7.27) were that u < U and that

S>»0 (7.28)
Uz>3S (7.29)

a
o - % BT >0 (7.30)

which were all deduced in sub-section A. The last is

merely a restatement of a2>-0 in terms of « and f.

The inequalities (7.27) through (7.30), taken to-
gether, delimit a region in the ap-plane, which is shown
hatched in Figure 13. Because of (7.28) and (7.29) it is
only necessary to consider 0=p=<1l, and (7.27) and (7.30)
then give thg upper and lower bounding curves of the region,
respectively. It is only for &« and B within the region so

delineated that a steady wave may exist.

It is interesting to note from Figure 13 that, as
fp—=1, both the range of possible amplitudes and the pos-
sible amplitudes themselves become exceedingly small.

Since P —1 corresponds to U —=V3S, this has the physical
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Figure 13. The region defined by inequalities (7.27) through
(7.30). A steady wave solution is only p0551b1e
for e and B within this region.
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interpretation that waves travelling near the soundspeed
must have very small amplitudes, as we would expect in the
sound wave limit. Even for U = 2'V§E, the maximum amplitude
(actually amplitude-velocity ratio, a/U) is only about 0.17.
At the other extreme, as B—=0 and hence U —=oc0, the maxi-
mum possible amplitude

BTNy =t X as p—=0,
and we have

a . = o (U)

as U —s=00. Of course, in reality, excessively high ampli-
tudes and velocities would not occur because the assump-
tions used in deriving the LPE's would break down. In
particular, dissipative mechanisms, represented by the
neglected term g, would become active because of large
temperature gradients; and furthermore, because of the
large associated electric fields, it would no longer be
reasonable to assume the ions to be immobile. Thus the
region shown in Figure 13 shcoculd be even further delimited
by model breakdown, but we have not attempted to estimate

this effect.

C. A Shock-like solution compounded of a steady wave
and a constant state

Earlier, in §6, certain solutions of the LPE's were
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shown to break, namely, those with an initial discontinuity
in slope of the proper sign. At the same time, the impos-
sibility of a steady shock joining two constant states was
demonstrated. It is of course possible that breaking solu-
tions of the LPE's produce only unsteady shocks; but before
reaching this conclusion ﬁe shall examine the one other
possible type of steady shock, that in which a steady wave

solution is joined onto a constant state.

We receive some motivation in this direction from a
possible steady solution of the Korteweg-de Vries equation
with damping (Eg. (III.2)). This solution is shown in
Figure 2(4§2), and is a true bore joining two different
water levels. The solution only exists for a limited
range of the damping coefficient v(for fixed velocity U
and water depth ho). What is of interest for us is that
as V —=0 the solution becomes a steady wave at the upper
level joined across a jump discontinuity to a constant
state at the lower level. It is for such solutions that

we shall search in the LPE case.

The type of solution we are seeking is shown sche-
matically in Figure 14. It is the only remaining possi-
bility for a steady shock, since the only steady solutions
of the LPE's are the constant state

n, = 1 u, = 0 S=SO EO=O
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and the steady wave of sub-section A. The change of level
will not be as pronounced as in the Korteweg-de Vries case,
as we have tried to indicate in Figure 14. This is because,
taking u as a typical example, the steady wave solution
oscillates between levels u, and u, above and below the
constant state value of u=0. The oscillation is not sym-
metric about u=0, but its mean level does not differ much

from u=0 either.

Figure 14. Steady wave joined to
a constant state

For solutions such as shown in Figure 14 to exist, it
is necessary that mass, momentum, and energy be conserved
across the shock front. It would also be reassuring if
entropy increased across the shock front. We shall there-
fore formulate these conditions for the proposed solution,

beginning from the LPE's in the form

n, + (nu)x =0 (731)

2 3
(nu) + (pu”+ Sn7) + nE = 0 (7.32)
(nu2+ Sn3+ Ez)t + (nu3+ 3Sn3u)x =0 (7331
E = 1l-n (7.34)

X
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and then see if all these conditions can be satisfied

simultaneously.

There is a standard body of theory concerning the
derivation of shock conditions from equations in conser-

vation form (see, for example, Ref. 3). For an equation

op A0
T =0

there is a corresponding shock condition
[e) = v[e]
connecting the discontinuities[P] and[Q] across the shock
with the shock velocity, U. For Egs. (7.31) and (7.33)
these formulas become
] = ofo
[nu2+ 3Sn3u] = U[nu2+ Sn3]

or, using the subscript 'sg' to refer to quantities on the

L

steady-wave side of the shock front,

nu-nu =Uln-n)
s s o o s o
nu, = U(ns— 1) ‘ (7.35)
and
3 3 2 3 2
m B " 3SSnS n, = U(nsuS + SsnS + ES - So) (7.36)

These account for the conservation of mass and energy,

respectively.
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The condition (7.35) is really no restriction at all

on the location of the shock front, for it is identical

to Eq. (7.8) and thus holds everywhere in the steady wave.

From relation (7.11) for the steady wave, we obtain

1 2 3. & 2. B
U(ns—l)uS - BT S ou- SsnS + 5 ES + 5

The first two terms cancel by (7.35), leaving

2 3 2 2
us - ZSSns + 3Ssns + ES = 2A

From Eqg. (7.36), again using Egq. (7.35),

3u
2 3 s 2
u "+ s_n_ (1~ 5 ) + E_" = 8

Substracting the last two equations,

w5 p 2 3
ZA"So = SsnS @2ns+ 3---ns + G nsus)

o 2 2 ]

=5 Ssns [nsuS e U(l—ns)

Using Eq. (7.35) once more, this reduces to

2A - S =0
o
But
a2 =2A -S_=0
s
from sub-section A, so that
S =5
o] 5

A

(737

This says that the entropy must decrease across the shock

front, a result which is contrary to thermodynamics. Hence
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we reject shock solutions of the proposed form.

To add to the weight of the argument against steady
shocks, we shall show that it is not possible to obtain
a smooth shock solution by adding the dissipation (4.24)
to the LPE's. The proof will be patterned after the dis-
cussion of §2; we shall obtain a system of ordinary dif-
ferential equations and then show that it has but one

singular point.

With the dissipation term (4.24) for g in the LPE's,
we look for solutions which are functions of ¢ = x - Ut,
The integrated form of the continuity equation, (7.8),
is unaltered:

n(u-U) = = U

as are Poisson's equation

E' = 1-n
and the momentum equation (4.5)

(- Unu + nu’+ p)' + nE =0

The integrated form of the energy equation (4.8) contains

the contribution from q:
2 2 3
- U(nu+p+E”) + nu”+ 3pu - glp/n)' = - B
where B is a constant.

By defining
Q =p/n
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it is possible to reduce the preceding four equations to

a system of three ordinary differential equations:

pQ' = F(Q,u,E)
E; = (7.38)

w o [ — F(Q,u,B)]
where

3u-U

2. a2
F(Q,u,E) = B-U(u"+E")-UQ T

The singular points of (7.38) are where the three
right—hand sides vanish simultaneously. One may quickly
find that

’ Q = B/U

is the only singular point. Since a shock solution must
have two singular points, one to start from aad one to

arrive at, the system (7.38) has no shock solutions.

The non-existence of steady shocks indicates that any
shock solutions of the LPE's must be unsteady. We found
evidence of breaking in §6, so unsteady shocks are a distinct
possibility., There might even be an unsteady shock of the
type shown in Figure 14, only with the wavetrain behind the
shock moving relative to the shock front, carrying away
momentum and energy to preserve the shock conditions. We

shall not pursue such questions here, however.
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£8. Slowly-Varying Wavetrain Solutions; The
Averaged Equations

The last section was devoted to the uniform wavetrain
solution. The present section will consider the slowly-
varying wavetrain, using the two-timing method of Part II,.
We shall derive the averaged equations in sub-section A.
Then we shall show how an arbitrary but small dissipation
can be taken into account  in the averaged equations, in
sub-section B. Finally, in sub-section C, we shall put the
averaged equations into characteristic form and study their
type (elliptic, hyperbolic, parabolic). This will lead

naturally into a discussion of non-linear stability in §9.

There are numerous reasons for considering slowly-
varying wavetrain solutions. Foremost of these is the
likelihood that, for a suitably restricted class of initial
distrubances, the solutions of the LPE's develop asymp-
totically (as x,t —= oo ) into slowly varying wavetrains.
This is a reasonable extrapolation from the result in
linearized LPE theory (and indeed in any linear dispersive
wave theory) that all localized initial disturbances dis-
perse into slowly varying wavetrains as x,t — oo, x/t
fixed (proved by'the method of stationary phase). The
entrance of non-linear distortion brings with it the possi-
bility of breaking into a shock, however. Thus our re-

stricted set of initial disturbances would be those for
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which the dispersion would dominate the non-linear dis-
tortion. We have already seen an example of the trade-off
of these two effects in our study, (§6), of solutions of
the LPE's with an initial discontinuity in slope. For one
sign of this discontinuity, non-linear distortion dominated
and the solution steepened and broke; for the other sign,
the solutioh smoothed out with time. The latter solutions

are of the type that develop into slowly-varying wavetrains.

Another important application of the slowly-varying

wavetrain theory is in deducing stability criteria for the

uniform wavetrain. We shall have more to say on this matter
in §9.
A. Deduction of the averaged equations

Proceeding via the Luke expansion or two-timing method
of Part II, let us expand each and every variable in the
lukewarm plasma equations according to the following pat-
tern:

s = 8§_(8,X,T) + €5,(8,X,T) + ... {(8.1)

The zero-order quantities in each expansion will be the
uniform wavetrain solutions of §7, only now the various

parameters A, U, etc. will depend on X = €X and T = €t.

We shall apply the Luke expansions (8.1) to the LPE's
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in the form:

3 2.2 1 .2 3 3.2 1.2 1. 288
gz[(lwn)u] + ax[nu - Fu+ Sn~ - 5 Sn - 5 E ]“ =~ 5 0 T
-§E(nu2+ snds E2) + “a%c-(r:u3+ 35n3u) = 0 (8.3)
g%(nS) + g%(nus) = 0 (8.4)
E = 1l-n (8.5)

Equation (8.2) is the modified form of the momentum eqguation
derived in the previous chapter. It is useful because its
right-hand side is @(€), so that in Q(l) it is a conserva-
tion equation. Equation (8.3) expresses the conservation

of energy; it may be derived directly from the Boltzmann
equation (§4). The last two equations are the entropy and
Poisson equations, respectively, just as they were used in

the previous chapter.

The absence of the continuity equation from this set

may be noted. This is because its averaged form

27 2r
-ggfnd8+§a§f nau de = 0
o 0

becomes

o) IS
sE(ZW? + §§(0) = 0

or simply a tautology, using the results (7.22) and (7.23)

of the last chapter.

(8.2)
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Any choice for the lukewarm equations would lead, with
patience, to the results we shall obtain here. In these
types of problems, however, a wise initial choice of equa-
tions can often save one a good deal of calculation. This
is partly a matter of experience, but there are certain
guidelines that one may follow, most important of which is
that equations in conservation form are desirable. That
is why as many of the LPE's as possible have been written
in this form (including the unnatural pseudo-conservation

form (8.2) of the momentum equation).

For equations in conservation form

we showed in Part II that the condition that the solution

be bounded in first order was

27 27
9 f 9 _
ST ) PO ds T ax.jz QO de = 0 (8.6)

where PO and QO are the zero-order terms in the expansions
(8.1) of P and Q. Equivalently, (8.6) may be obtained by
the averaging method (Part II). In any case, from the con-
servation equations (8.3) and (8.4), we have the averaged

equations
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9 er?Q u 2+ S n 3+ E )de 4+ Jr (n u + 3S n 3u )de = 0
T J, oo oo 3R o oo e
(8.7)
3 2m 5 2T
3T JC n s, ae + 5 JE nouosode =0 (8.8)

To simplify Eg. (8.8), we must note that So' being the zero-
order solution for the entropy S, is independent of 8 accor-
ing to the preceding section, so that it depends only on X

and T. Then (8.8) becomes

3 2m 3 2w
—B-T SO ./c: node + —aﬁ SO j(; nouode = 0

From the results (7.22) and (7.23) for =n = and <= nou, =,

this reduces to

aso
=T = 0 (8.9)
Thus S = S_(X), that is, so retains its initial distribu-

tion for all time.

For dealing with the momentum equation, an expression
for asl/ae in terms of zero-order quantities will be needed.
We therefore expand the particle-path form (4.12) of the

entropy equation

) o)
(-urg— arl,)( + €S, + p—.

+ (uo+ €u; + ...)(ng ie ;5 (SO+ ESl AA—

It
o

"
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and take the 0(€) equation, using (8.9) to simplify:

SEN as_
(Kug =®) 55 = = ¥ 3x

Multiplying this through by ng and using (7.8) of the last

section, we arrive at

1 aso
W-—===nu 3% (8.10)

The modified momentum equation (8.2) can be written

aﬂv
51O

%— +2n =0 (8.11)

which is expanded to become

-3

o)
(—hﬂg@ BT

) (P K 6P1 teoa)

+ (b<é% + eg%)(Qo + le RS |

3 )

1(n % 2en giptess) (KSs + € )[s (%) + €5 +...] -0

1

Setting the 0(1) term to zero gives
oP 00

O O

which we integrate as in the last section to obtain

Q, - UP_ = A(X,T)

Fotice that the dangling Sx term does not contribute in

0(1), but only in O(€), as we mentioned earlier. The O(€)
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equation is

ap oQ ap 39 ds as
1 1 fo) de 2 1
'w"'é_é' +K 89+'8T+ a}x+ (K ae+ aX) = 0 (8.11.1)
Replacing asl/ae using (8.10),
dp o) n u ds
o o 1 2,0 0 o
BG(KQ wPl)"'__aT"'__'—aX'l'zno (U + 1) aX“O
With By, B T = (U/no), this reduces to
oP Q oS
3 : o o 1 3 o
36(KQ-WP) = - 357 - 3% -2 % 3%

By the same argument as before, the condition that

(KQl—(dPl) be bounded as 6 —e= o0 is

3 27 3 27 aso 2 3
ﬁ,/;PodB+_5§ 0Q0d6+—a—xj; 1/2n0 de =0 (8.12)

where, from (8.2),

P = (n_- 1)u
o o o
2 1 2 3 3 2 1 2
S= T 0.~ 5 ¥y + BB, =5 S8, - 5 By

It is interesting to note that this is similar to what we
would obtain from averaging (8.11) diréctly, the crucial
difference being the extra factor of n we obtain in the
third term. This in turn comes from the aSl/ae term, which
would be missed in a naive application of averaging to

8,213,
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Supplementing the three boundedness conditions (8.7),
(8.9), and (8.12) will be the non-linear dispersion relation
derived in Part II. The equation analogous to (II.1l) for
the present problem is (7.15). However, it is preferable
to work with n_ in the present calculation, so we re-phrase

(7.15) in terms of n_ . Transcribing Egs. (7.12) and (7.14),
2

n -1
2 3 2 2| o -
Eo = 2A + SO(ZnO - 3no ) - T (“E;_) __F(no) {8.12.31)

oE -
K —=—= = l-n (8.12.2)

it is clear that the equation for ng is

ano 2(l—no)\/F(nO)

K =358 = F'(n_) (8.13)

Yow, dropping zero subscripts from here on, the non-linear
dispersion relation for (8.13) is

Kjﬂ £ (n) = (8.14)

dn
ny 2(1-n)y/F(n)

which is (II.4) with.- A= 2m; the limits n, and n, are roots
of F(n), since n=1 can be shown to be an unsatisfactory
limit of oscillation {e.g., using (7.22)], and n; and n,

must be roots of the right-hand side of (8.13).

Equation (8.14) together with the three aforementioned
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averaged equations (8.7), (8.9), (8.12), furnish a suffi-
cient number of equations, in principle, to determine A,

5, U

, U, and K as functions of X and T.

Before proceeding, let us take a moment to discuss
the reformulation of integrals like {8.14) as complex loop
integrals. . The subject is well treated in some of the
older analysis texts (e.g. (29)) under the title of hyper-
elliptic integrals. We begin by taking n to be a complex
variable. Then, to make ‘VFTET single-valued in the n-plane,
we put cuts from n; to n, and from the other roots of F(n)
to oo (Fig. 15). For definiteness, take WJFTET positive on

the top side of the branch cut. Then (8.14) may be written

K./. E' (n) én =m (8.15)
I

1 Z(l"n)\/F(h)

where Ii goes from ny to n, along the top side of the branch

cut (Fig. 15(a)). But 7\/F(n) takes exactly the same values
just below the branch cut as it does just above, only with

the sign reversed. Hence we also have

Kf F'(n) dn = (8.16)

L, 2(1-n) \p(n)

where ré runs from n, to n, just below the cut (Fig. 15(a)).

Adding (8.15) and (8.16),
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K F'{n)

d
' 2(1-n)/F(n)

n=2m (8372

where I'is a closed contour hugging the branch cut (Fig. 15(b)).
We have omitted the simple proof that the contributions from

the vanishingly small circles around n, and n, vanish.

3 Vo ™ 3
_._3_;.]:_:___ / .._N__I:.. _t._\\
e s S e e
n n \ Hs
L, N
= e e

(a) (b)

Figure 15. The complex n-plane; branch
cuts and contours used in
converting certain hyper-
elliptic integrals along the
real axis to complex loop
integrals.

But once the integrals are in the form (8.17) there
is no longer any need to tie the loop contour down to the
branch cut. It may be any closed contour surrounding the

cut, by Cauchy's Theorem, such as the contour [' of Fig. (15(b)).
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Thus from now on we shall write loop integrals without

reference to any particular contour.

There are several advantages to using these complex

loop integrals, among which are:

(1) numerous techniques of complex analysis (e.g.

Laurent's Theorem:see§l0) become available to us;

(2) certain integrations by parts, 1llegal along the

real axis, may be performed;

(3) derivatives with respect to a parameter, say A4,
commute with the loop integral, but do not with

the real integral bhecause ny and n, depend on A,

As an illustration of (2), and to set the equation

up for further work, let us integrate (8.17) by parts:

_.Kj(—iiiﬁl dn = 21 (8.,18)

(1-n)?
The apparent singularity in (8.17) at n=1 was removable;
now it is genuine, and (8.18) would be nonconvergent along
the real axis, because n=1 (the equilibrium value) will

always lie between ny and T e

We will now derive the master function W for this
problem from (8.18). Our procedure will be essentially
ad hoc, but could be justified by an appeal to the averaged
Lagrangian (§11) which is equivalent to W. The derivation

consists basically in noting that the canonical form found
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by Whitham for the non-linear dispersion relation is(lS)

KW, =1 (8.19)

where A is the integration constant from the conservative
form of the problem's momentum equation. In our problem
A was only the integration constant from the pseudo-conser-
vative form of the momentum equation (7.11), but it turns

out the trick works anyway. Identifying from (8.18)

Wy = - Elf j{ ~AEAnd in;_ di (8.20)
(1-n)

and noting from (8.12.1) the A-dependence of F(n), we deduce

3/2

1 P (n)

- R f R - © NN (8.21)
ot {1-1:)"%

With this form of W, it is possible to write the averaged
equations (8.7) and (8.12) in terms of W and its partials

Wy W

Tyr W First, however, let us manipulate the definition

S.
of an averaged quantity into a form which is convenient for
us. We begin with a general quantity P(n,u,E) such as occurs

in (8.7) or (8.12), and substitute for u and E according to
U - U/n (8.22)

A
to produce a quantity entirely in terms of n, say P(n).

u

1l



|
3Ix
e
L Kie)
33

=

A

.. - 8 P 1 4
- % E(n)dn(l—n) dn

"4 % P(n)+(1-n)B* (n)
= - -2—“_}( '\F(n) (1_n)2 dn
(8.2L)

To get from the first line to the second, we converted to a

loop integral in the complex plane and used Poisson's equa-
tion. Then we did an integration by parts, and finally
used (8.23).

The computations of the averages < P(n,u,E) = for the
specific P's of (8.7) and (8.12) are relegated to Appendix E.
It is also shown there how these averages may be written in

terms of W, W., etc. The results are

U
3 2 g 25
ST (KWU) + aX(KUWU—A) = KWS = = 0 (8.25)
& [k, + v - ] + 2 [kuow - w] = o (8.26)
ST A ‘U X U - B . ‘

Equation (8.25) comes from (8.12), and (8.26) comes from (8.7).

Coupled with

these form a completely determinate system for A, S,K, and U,
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Since the identity (II.1l0)

%_+%f—§=-g—;+%(—‘§}i=0 (8.27)

holds from the definitions of w and K, it must follow from
the four preceding eqﬁations. This can be demonstrated by
expanding (8.26) and using the other three equations to

simplify the result. One must note in so doing that

ds
+ W ST

|
i
=
aﬂ@
=1 b
+
=
oqw
3l

with a similar expression for JW/QX.

The conservation law (8.27) is called the conservation
of waves., It says that the number of wave crests K/2mAX
in a length AX of the wave may only change due to the net

flux 1/2W[

KU - KU -
( )X+AX ( )X} of wave crests across the boun

daries of this interval. This explains why the slowly-
varying theory will generally hold for late times, t —= oo,
if it holds at all. For (8.27) assumes_that no waves are
being created or destroyed; if they were, (8.27) would need
a source term on the right-hand side. Thus (8.27) cannot
be valid near t=0 for an initial value problem, for the
initial disturbance usually requires a period of time to
resolve itself into its component wave trains. Similarly,
the slowly-varying theory would only be valid sufficiently

far from a boundary at which waves were being created
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or absorbed.

Using (8.27), (8.25) may be simplified to
oW awU N5

U _ oA ¢ 95 _
Kom & RU =g = 55 « KW ST S 0 {8.28)

We take this together with

Ok . a(ru) _

ST + X = 0
%—% = 0 | (8.29)
KWA = 1 < (8.30)

as our simplest set of averaged equations. If desired,
K may be eliminated from this system entirely by using

(8.30). The result is

U U oA as
3Tt U 3x "~ Max " Weg3x =0
oW oW ‘
A A QU
57t U 3x -~ Wagx=0 (8.31)
é% -

Even with S=constant, this system is inaccessible to our
present-day analytical tools, We shall deduce some facts
about its charactcristic velocities in £8.C, about its
stability in @9, and about its small-amplitude limit in

€10, but we shall not attempt to solve it in this thesis.
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One remarkable result about the averaged equations
is that it is possible to put the first of (8.31), which
comes from a non-conservative momentum equation, into

conservation form:

aWU b(UwU) é#, W ds g, éH
B ¥ YT T Mg By T 9% ~ "w X
oW
U o)
= W 4 aX(UW - W) = 0

We elose with some remarks about the physical inter-
pretation of the partials of W. Starting from the formula

(8.24) for a general average, we deduce:

T _K_j: '\JF(n

=k (1- n)2

Uf'\lf'(n)
2

dn = KWA

S oen e ——

=u—===U - —E dn = - KWU

<p =-:¢=Sn3=- = %} (21‘13— 31’12) '—‘*'E"("E'%—— dn
. (n-1)
= = ZKSWS

Pln) + %(l-n)F'(n)

<F >= <'\/F(n)>- e an
L (L)

= 0

The last result follows from Cauchy's Theorem since the
integrand is analytic. Thus the three partials of W have
physical interpretations as the average values of n, u, and
p. (We had already deduced the average of E was zero, Eq.

(7.25), but the present derivation is more straightforward.)
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B. The inclusion of dissipation

When there is dissipation in a system, it is not
possible to write down a Lagrangian for that system, and
the method of the averaged Lagrangian is no longer strictly
applicable. Provided that we consider the dissipation to
be sméll, of 0(€), however, the Luke expansion method can
still be applied. The results can no longer be written
strictly in terms of a single quantity W and its partials,
as in the first section; but the equations are substantially
the same, with only the addition of an extra term to the
entropy and momentum equations. This term takes the form

of a weighted average of the dissipation term.

The application of the Luke method to the Korteweg-
de Vries equation with a small dissipation term has been

considered as an example in §3.

The reason we must consider the dissipation to be small
is that, if it were significant, it would destroy the possi-
bility of a steady-profile wave over an extended region of
space and time. Any such wave would decay too rapidly for
us to use it as a basic solution and consider slowly-varying
perturbations of it. The whole idea of slowly-varying
perturbations becomes meaningless in such a situation. When

the dissipation is 0(€), however, a steady wave may persist
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for many cycles, ardits amplitude will only decay slowly,
so that this decay fits into the category of a slowly-

varying perturbation.

From the mathematical standpoint, the presence of dis-
sipation generally alters the form of the conservation

equations to -
== + 3= + R =0 (8.32)

The "dangling" term R describes the dissipation, and causes
the quantity P not to be conserved. If R is 0(1), the

averaged form of Eq. (8.32) is

O=P>  2=Q= __9=p> 9=0=
B3t T Tap TEASRETgs +E g4

4+=R=>= (0

This is clearly inconsistent, since all terms are not of

the same order, unless we require

<R== 0
which means that the dissipation has no net effect on the
wave; such a dissipation would be unphysical. Thus, to use

the averaging method, we need to have
<R> = 0(€)

For the present, we shall achieve=R = = 0(€) by taking
R to be explicitly proportional to €. This need not neces-
sarily be the case, however. In the dissipationless case,

Eq. (8.2) was of the form of Eq. (8.32) with
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2 Jds
R=1/2 n =

Because of the special circumstance that SO was independent
of 8, the averaged form of this term was 0(€). Thus we may
make the general observation that for systems of p.d.e.'s
in non-conservation form like Eq. {(8.32), the averaging
methoa is still applicable, provided only that the averages
of the dangling terms are 0(€). This holds whether or not
the dangling terms represent dilsslpation, and whether or not

they are explicitly proporticnal to €.

In our derivation of the LPE's from the "collisionless"

Boltzmann equation, we noted that the energy equation was

(nu2+ p + Ez)t + (nu3+ 3pu + q)X =0 (8.33)

where
3
q =.j—(v-u) f dv

and £ = £(x,v,t) was the distribution function. For the

dissipationless LPE's, we took g=0. Now we assume

q=¢€¢r (8.34)

where r depends on n,u,p,E and is to model the dissipation
in the system. Two physically reasonable forms of g were
discussed in §4, but the success of the method to follow

is independent of the nature of g.
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The only two equations among the LPE's which are

altered by taking a non-zero ¢ are the energy equation

(8.33) and the entropy equation, which becomes

€xX

: x _ &
St + uSX - n3 = 0 (8.35)

We now reconsider the Luke expansion of each of the LPE's

which are affected by dissipation.
Writing the modified energy equation as

B (0 ) 0
£ 4+ (Q + €r -

we may apply the Luke expanéion just as before
O el (D 4 B
(~w5z + e55) (P + €P) +...)

+ (Kaae +e§x)(Q +te + er +eee) = 0

The 0(1) result is clearly unaltered by dissipation. The
0(€) result is |
A
a % aP aQ 6r
FTWP-KY) = 57 + 3x +K5g
-
To prevent (wPl~;<al) from being unbounded as 8 —== o , we

nmust require

A
8PO 50 ar
(-"——+'-§-“"-IK-3—') de = 0

The term involving r, clearly integrates to zero, and we
are left with the same result (Eq. (8.7)) as in the dissi-

pationless case., This may at first glance seem surprising,
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but it is perfectly reasonable, for the energy that is
lost from the wave motion due to dissipation is gained
by the random thermal motion, which is measured by p.
No energy disappears from the system, with or without

dissipation.

Omitting the details, we note that in O(1l) the
entropy equation, (8.35), reproduces the dissipationless
result

—é—g =0 (8.36.1)
and in O(€) yields
or

Js o5 3s
. ____]_._ S | o K (o]
(w"Kuo) e - o7 T Y% ox T no3 o6

Multiplying through by n_ and using Eq. (7.8)

no(uo - U) = -1U (7.8)
leads to
ds os s or
w e n 2 + nu = b K O 8.36
38 = B BT o% oX 2 96 (8.36.2)
s
The condition that Sl be bounded as 8 —= oo 1is then
am 350 BSO K Bro
.[O (no 'a—T_ -+ nouo aX -+ 2 ae de = 0

n
o
By virtue of Eq. (8.36.1) and results (7.22) and (7.23) for

-n andcznoug>, this reduces to

aso
—é_f:D (8.37)
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oo~ [21 %o o
- 27 2 o8
o n
fo)
” 2?‘2ro ano 2r an
O no

The second form of D follows from an integration by parts.,
Putting (8.37) back into (8.36.2) and using (7.8), we obtain

s 350 @ Ar

Lg-g"i% = nOD + U(no-—l) 5% + - 5 ag (8.39)
o

Since the momentum equation is unchanged in form, the
0(1) and Ole) results (Egs. (7.11) and (8.11.1) ) from the
previous sections still apply. Now, however, we must replace

851/58 in Eq. (8.11.1) according to Eg. (8.39), leading to

ap 2Q n D as or
o o A 2l o o K o
Se@P1- KOp) = 5 + o e [ v YT ER Tt 2 ae}

Un
o
The boundedness condition associated with this equation is

o A 3,D 0y . X o\ a9 =

2mdp g 3s dr
f‘*—*—a—+ n, g+ 3% +20 36/ ¢

The term involving r, integrates to zZero. Putting in the

5 and-t%vn03>- from Appendix E

just as in the dissipationless calculation, we arrive finally

expressions for-='P0=- '<Qo>

at

-éa—T(wa) + X(KUWU— A) - kW (%;’—{ + %) = 0
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The complete set of averaged equations for the LPE's

with dissipation are thus

-a%‘-[K(UWU— W)+a) + Béx_ [kutu,- m] = o (8.40)
g% = D (8.41)

S% (ki) + g% (RUW,; - A) - KWS(§% 4 %)‘= 0 (8.42)
KW, =1 | (8.43)

Equation (8.40),unchanged from $8.A, comes from the energy
equation. Equations (8.41) and (8.42) were derived above.
Equation (8.43) carries over unchanged from the dissipation-
less case. If we expand Eq. (8.40) and simplify it using
Eqs. (8.41), (8.42), and (8.43), we recover the conservation
of waves equation

% + %(KU) -0 (8.44)

exactly as in the non-dissipative case. This may be used

to simplify Eq. (8.42) to

ow oW
gl AR g 88 By (8.45)

Equations (8.41), (8.43), (8.44), and (8.45) then form a

simpler set to investigate than the original four equations.
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For the special case of no X-dependence, the system

simplifies to

K(U’WU - W) + A = const, (8.46)
ds
AWy,
W DUy = 0 (8.48)
KWA = 1 (8.49)

Since K is constant (by Eq. (8.44)), there are only three
variables, A, S, and U, to solve for. Thus, as in the
Korteweg-de Vries problem; (83), we would only need to

solve a single differential equation (probably Eq. (8.47),
sincerit is simplest). The remaining variables would then

be determined by algebraic relations, Egs. (8.46) and (8.49).
While analytic solution eludes us even in this special case,
it is no problem in principle to solve (8.46 - 49) numerically

as we did in the Korteweg-de Vries case, §3.

It should be noted that the dissipation term could
be an integral, as suggested in.§4, Eg. (4.21). Some extra
work in computiné D would result, but it seems tractable
enough numerically. Tt would be of great interest to see

how this integral term controlled the damping.
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C. Characteristic form and group velocities

We shall obtain the characteristic form for the dissi-
pationless averaged equations (8,.31), which we transcribe

here for convenience: -

oS
a7 = ©
awA | anA . @}_{ .
ST *© oxXx - "Aox T
aWU aWU AA 95

- X - =
3Tt U S~ Wadx ~Wgax= "¢

The first equation is already in characteristic form. It
has a characteristic velocity of zero. We expand the
derivative terms in the second and third equations according

to the example

Oy _ W %A v, Uy 98
ex - "aAA oX ‘AU SX AS OX

and add A times the second equation to the third one to

obtain .
(Wt )\WAU){%% + (U - ﬁ %E} (8.50)
W
+ (WAU+ )\WAA) %—% + (U - m) gi}
+ (U - ﬁs—l— AUV, ) i;s- e 0 t

To make this the characteristic form, we must choose A such
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that

AW W
A A
CEU - m—2— = U = e (8.51)
WUU+ )\UAU WAU+ AW

which becomes a quadratic in A

A WAA - WUU = 0

with roots

Using these values of A, we find two characteristic veloci-
ties from {(8.51)%

Wy

Tau * ViaaWyy

. = I =

The corresponding characteristic forms are, from (8.50),

- -~ [w
da UU au as
ar *Vw _artfrax =0 (8.53)
AA
n ax . & where 4. . .% + C el and
OR g7 = 4o ar - 9T + OX
da Yuu au as
da _1\/ U0 du . d5 _ g (8.54)
ar Wy OF - ax
ax a 3 po)

on g7 = C_ , where aF =37t C_ 3% and where
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Uye- Wot A, UW, ¢

WAU+ )\i_ WAA

fi =

The various quantities involved in this calculation

can be found directly from W to be

dn
W = - 1/2’\1"{-——-———
o (n-1)2 JF
dn
W = U/27r jg ————
AU n2 I+

2
2 (n-1)
W = =U /Zﬂién—————— dn
1819 n4 {E

Wy = - 1720 j( dn
(n—l)
U2 dn
n F
21 = 35
W = - 1/4T|'j{ dn
a (n-1)%VF
2n-3
W = U/4TTj§-——*«h1
uUs 5
2n" - 3n2
WS = - 1/4W§ 5 \/F dn
(n-1)
By inspection, all but YWan and Wyg can be re-expressed as

integrals along'the real axis simply by shrinking the con-
tour of integration back down around the branch cut (Fig. 15).
For WA and WS' a preliminary integration by parts is nec-
essary, for n=1 will most assuredly lie on the branch cut.
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These partial integrations eliminate the double poles at
n=1 at the expense of introducing VF into the denominator
of the integrand, which means square root singularities at
the ends of the branch cut. This is all right, because

such singularities are integrable. But for WAA and WAS'

3/2

the same integration by parts leads to an F in the

denominator, and the singularities at the ends of the

branch cut are no longer integrable.

It is especially important to be able to calculate

WAA' as we shall see in.§9. Therefore Appendix H gives a

method for so doing, which would be especially suited for
numerical computations. We shall proceed here to investi-
gate the signs of the other derivatives of W needed in the

calculation of C+ .

-—

The sign of W, is the same as the sign of ¥, from (8.30).

Since we may without loss of generality take K=0, it follows

that

-
Wy 0

The quantities W and W may be re-expressed as integrals

AU uu
over 8 by the following ploy:

’ 2m ng
W = U/Zﬂf —— dh
Ry 0 n2 F(n
27
- _ 72 2

—_—
° YV TFM) ©
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Then if we take dn/d6 from (8.13), with the actual expres-

sion for F'(n) inserted, these reduce to

1 2T n
W, . o= = R m— T
AU zmoo Y
. =-.A..[2” (n-1)% _ 4
b Sl n[l-(ﬁn)4]

where g = (3-S/U2)l’/4

as:hz@?. The denominators in the
integrands would vanish if n = 1/8, which by (7.8) translates

to

u=U-)9U=uOO

But in § 7 we showed that u<=u§O for the steady wave, which
by (7.8) becomes Sn<1l. Thus the denominators of the
integrands are positive. So are the numerators, so that

with K> 0 and @ = kU> 0 we have immediately that

i >
WAU 0

{8.55)

< 0
WUU

It follows from (8.55) that the characteristic velocities
(15)
'

or non-linear group velocities g

C+ will only be real if

-—

WAA< 0 (8.56)

If this is true, then we can say something about the rela-

tionship of the group velocities to the phase velocity U.

)1/2

If W, .. <(W the group velocities flank the phase

AU an'uu
velocity

C < U=C
+ -
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)1/2

while if W =’(WAAW they are both less than the

AU uuU

phase velocity
C =€ <Y
- +
The latter situation parallels the linearized case,in

which

a5 sk _Visask® %

di K K
Vit3sk?

and hence that would be the situation we would expect to

hold in the small-amplitude limit.

The type of the averaged equations becomes parabolic

1/2 3y it g
exactly at Wp., = (WAAWUU) . Then C_ is infinite and the

averaged quantities would diffuse and tend to smear out as
they propagated at the single velocity C+. We would thus
not expect shocks to form in the averaged quantities

(see (15)) at or even near this parabolic limit.

It is also of note that the parabolic case does not

mark a transition between the elliptic and hyperbolic cases.

e

For both W 2=-W and V < W the averaged eguations

au ~ "aafuy 2u < YaaPuu
are hyperbolic. On the other hand, the actual transitional

case between elliptic and hyperbolic regimes, WAA = 0, is not

parabolic. It is a degenerate hyperbolic case in which C+

= C_, that is, both propagation speeds are equal.
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§9. Stability of the Plasma Wave

An extremely important application of the preceding

work (§8) is to give truly non-linear stability criteria
for plasma waves. The familiar stability considerations
of linearized theory center around determining the sign

of Im(y) in gt (kx-wt)

type solutions. These consider-
ations are useful as far as they go, but it was not until
the work of Whithaé15’16’17’18)that anyone formulated
stability conditions, or even defined stability rigorously,
for fully non-linear wavetrains, Now we have such a defin-
ition, and it is simply:

Uniform wavetrains are unstable if the type

of the averaged equations is elliptic.
Thus, from (8.56), the condition that the uniform wave-

train in the present problem be stable is

W,, < 0 (9.1)

AA

To understand the above definition of stability,
consider for a moment the hyperbolic case. In-a hyper-
bolic system, small-amplitude disturbances, sound waves,
are well known to travel out along the characteristics.
They may be represented by

eiu(x—ct) (9.2)
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where ¢ is one of the (real) characteristic velocities.
Now consider what happens when the system becomes
elliptic. The characteristic velocities c become
complex conjugate pairs, and small disturbances like
(9.2) will grow with time. This is the sense in which
the uniform wavetrain is unstable when the averaged
equations are elliptic. If we have a uniform wavetrain
propagating along, and all of a sudden it is subjected
to some minute slowly-varying perturbation, such as
entering a medium whose properties vary slowly, the
wavetrain will be unstable to this perturbation. It
will most likely break up and dissipate its organized
motion into turbulence.

The above instability was demonstrated by Whithaﬁ17)
for Stokes waves in deep water, a hitherto unexpected
result. It agreed with an inability to manufacture these
waves in the laboratory which had long frustrated exper-
imenteréﬂg{ It appears likely that similar dividends
may be reaped by such stability analyses of uniform
wavetrains in other areas of physics. Plasma physics,
which is particularly fraught with instabilities of all
kinds, seems an especially fertile hunting ground.

We cannot, unfortunately, push the stability condition
(9.1) very far analytically. The difficulties in even

writing WAA as an integral along the real axis were
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explained in §8.C, and there we referred to Appendix H
for a technique for so doing. The result obtained in
Appendix H is, however, quite formidable, and seemingly
only suited for numerical evaluation. It is possible,
nevertheless, to make a determination of stability in

the small-amplitude limit. In §10 we shall see
explicitly that the characteristic velocities are real
when we take the small-amplitude limit of the averaged
equations. In the meantime, we May note that result will
be only a special case of a general theorem noted by

Whithaélgl which is that:

Small-amplitude stability holds if and only if
mo"(‘) w2(~3:>0, where wb and wo come from the expan-
sion of the frequency as

2

w = wylx) + a% wy(x) +

as a power series in the amplitude a in the near-linear

limit a = 0.

The details of the computation of Wy, Wy, etc. are given

in 81 and 85.A. In particular, in 85.A, we found
w, (x) =V1+35«2
Bl
g, (k] = 5B (188% % & 58)
2 4m0

from which it may be easily verified that the stability

criterion wo”(nz > 0 is satisfied.
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Thus, at least in the limit of small-amplitude slowly-

varying perturbations, the uniform wavetrain solution of
the LPE's is stable.

In general, when we formulate stability criteria for
non-linear wavetrains with parameters 0., one of two
situations will hold: (1) it will be immediately obvious
that the stability criterion is or is not satisfied from
an examination of the integrands, for example as in §8.C
when we proved that Wyy < 0; (2) it will not be obvious,
and the stability criterion may or may not be satisfied
depending on the ay - In the latter situation, which
pertains to the plasma case, an analysis of the sort of
§7.B is essential. Such an analysis determines the region
R in parameter-space (ui—space) for which a uniform
wavetrain exists. Armed with this information, one may
then test the stability criterion just over R, analytically
if the inequalities defining R are simple enough, other-
wise numerically. This will delimit the sub-region of R in

which waves may be expected to the stable.
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§10. Small Amplitude Expansions

In order to do small amplitude expansions of the non-
linear dispersion relation (sub-section A), the averaged
equations (sub-section B), and the averaged equations with
a model dissipation (sub-section C), it is necessary to
expand the hyper-elliptic integrals represented by W, WA'
etc. for small amplitudes. The method which we have found

useful for these expansions is given in Appendix F. It will

be used without further reference below.
A. The non-linear dispersion relation

The non-linear dispersion relation for the plasma

waves, written out in detail, is Eq. (8.18)

1 = - “2!% —-—~1—~§‘\/2A 8 B D) — U‘Z(-r-‘ii)2 &
(n-1)

We begin by changing to a variable centered on the branch
cut between n; and n, (Fig. 15). Since <n== 1 from

(7.22), it is certain that n=1 lies on the branch cut, so

we take
n =1+ ;

which leads to
1 = - $L~$:J;-\/Cz_ pe L2, 3(25 . ) 4% (10.1)
o Ez a § -+ % e 1 4%)2 % 4 1

a

where

I
N
el
1
1))
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That 2A-S =0 was discussed in connection with the linearized
solution (§7.A). It was also noted there that U2-3S%0
and that a is a measure of amplitude. We will want to

expand, then, for small a.

We regard the contour of integration, for the moment,
to be wrapped fairly closely around the branch cut; this
ensures that % is small, that is,% = 0(a) as a —= 0. One
can readily convince oneself that b = 0(1) as a —=0
(otherwise there is no linearized solution). This means
that the first two terms under the root in (10.1) are
O(az), while the third is 0(a>). Thus we are led to
expand the root in terms of the third term divided by the
sum of thé first two terms. To implement this idea, we

transform

2
T b

e 7
a
- 2 + =M
1=-%9¢ L 17 ad)zs + v¥F —2—) am
ki 1]2 b
, (a2 ¥2
b
Now expand the contour of integration away from the branch
cut so that 7= z 1l do not lie on or near the contour.

Then we may take a factor (1 - ﬂz) out of the root and

expand for a —=0:

- _ Kb 41 Vy_42
1 = > "z 1-7m 1 +

N1

3 a
(ngb)z 28 4+ UZ 2+ 57
= = {14 %nF

+ ...] dn
J
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Each individual term of the expanded radical must also be
expanded for a —»0, which yields

3 2 4
l::....@..f._}..?_ 1-7’]2[1+aih _a2_3_1_1__)l.

2mJ b3 1.1 257 Lt
3 gl
- a® U 5+ O(a3)]dn (10.2)
2b” (1-17)
where
c =5 4+ U2

Since an asymptotic expansion may be in%egrated
term-by-term, we may integrate term-by-term in (10.2).
The individual n-integrals are then done by the Laurent

method outlined in Appendix F, yielding

%
1 = kb {1 = éég (s2+ 550%) 4+ 0(a4)}
ab |

If, in this equation, we substitute the expansion

¥

2
W = wO(K) + awl(‘s{) + a wZ(K) b pww (10.3)

of the frequency wW(K,a), which now depends on a because

this is a non-linear problem, we may solve for the h&. In

particular,
nv, 2
w, = 1 + 38K
Lwy; =0
o IR 2.2
w, = Ty (16S“K” + 58) (20.4)

Upon comparing (10.4) with the corresponding result (5.7)
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obtained by a direct linearization and elimination of secular
terms, we see that it is necessary to identify €B=ka to
make the tweo expansions of w agree. This means that the

assumed form cof expansion of n there,

n l + €B sin B8 4+ ...

becomes here

n=1+Ka Sine+ LI
in terms of the amplitude a.
B. The averaged equations

In order to obtain the small-amplitude expansion of
the averaged equations, we shall find it convenient to
replace the variable A by a, where a was defined earlier
as WJEK:§>. The set of equations we shall work with then

becomes (see (8.27-29))

oW oW 2
U U 1 Qa 1, 88
37+t Y Sx "2k ox - st = © A8
oK )
s
$ =0 £i6,.7}

There are three equations for three unknowns, X, a, and S.

’

We are going to regard U as completely determined in terms

g : ; ; ; 2
of the other wvariables, via its expansion in powers of a

from sub-section A.
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The conservation form of the momentum equation
Oy,
=T * '5% (UWU- W) =0 (10.8)

which follows (8.31), turns out to be more convenient for
calculation than (10.5). This advantage is seemingly
offset by the necessity of expanding W, however, for W
does not appear in (10.5). There is a trick, however, by
which such extra effort can be avoided. If we look at W
as a function of A, U, and S, we find that (see Eg. (8.21)

for definition of W)
wiA2a, A%s,Av) = A%w(a,s,v)

If we differentiate this result with respect to X, and set

Azl, we arrive at

ZAWA + ZSWS + UWU = 3W

or

Z = g
a WA + s(wA + 2%5) + UwU = 3W (10.9)

This is merely a modification of the device used by Euler
to study homogenecus functions. With (10.9), we are able

to get the a —*=0 expansion of W from those for WA' Wyr Wg,

with comparatively little effort.

Using either (10.5) or (10.8), we shall need a pair

of the following small-amplitude expansions:
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(16 K28% 4+ 589" & wa™

(15 4+ 95 SK? + 14482Kf1)a4 + 0(a6)

3 B 4
We = = 5z~ 7 Ka fo(a)

These were obtained by the method of sub-section A, or
Appendix F. To carry these expansions to more terms
would require expanding the dispersion relation out to
O(a4); that is, @, would be required. The dispersion
relation to O(az) has been used to replace U everywhere
in these expansions, so that only K, S, and a2 are in-

volved.
Keeping only O(az) guantities, and assuming that

f = Qaz

2
3T 5% o(a”)

the averaged equations becone

5%{:% wO(K)a2> % —§: <% SKa2> e g

%% + ;;<;E(K) + azub(K)> =0 (10.10)
as
H—O

to O(az). The third equation is already in characteristic

form:; the other two equations may be put in characteristic

-+8ﬁ3\/“%w2 da2 awo .
= 35 ar + 35 S'(%) =0 (10.11)

form:

o}
X

|

[o
|
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on
B g = éfé *a 38&5 + O(az)
ar - T+ = oK oy 2
(s}
where
4 _ 3 -
ar - 27 ¥ 4 3

Only quantities consistent with the order of the approxi-
mation have been retained. In particular, C+ is only
correct to two terms, andqhas been so expand;d from the
form in which it may be obtained from Egs. (10.10).
Likewise Eg. (10.11) is not the exact characteristic form

obtainable from Egs. (10.10), but rather an expansion of

that exact form consistent with the order of the approxi-

mation. Note that because wb:-o and Qb=*0, it is explicitly

verified here that the characteristic velocities C+ are

real as a —=0 (see §9).

In the special case S(X) = const., we can find
Riemann invariants for our problem, Replacingcvo and w2
by their expressions in terms of Kand S, Eg. (10.11)

becomes

dk + .2 - 2 da _
dr + 1 2 V(14350?) (5+165:%) 92
which may be integrated

a ¥ F(K) = const.
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where

P(K) = j' — ,
K/ (14+35Kk2) (5+165k%)

F(K) is an elliptic integral of the third kind. By use of
the transformation which reduces elliptic integrals to -
standard form, which in this case is

sk? = 5= ctn®e

16
we arrive at tan_l / .l .
)" 16SK - 2
FIK) = - 4\é8d[ tan 6 ae
W/l— -y cosze
16 =

A quite good approximation to F(K) is possible if one

expands the square root and integrates term-by-term:

F(K) = - 45 5 jrtanze(l + f% c0529 teew) 08

&3/ B - B 1 4
~8p rem 7 = ial—
168K V5 K 54+168K

The terms omitted are of the form

R

anjrsinze cose de (10.12)

where n = 2,4,6,... and a. is negligikly small, the lar-
gest being a, which is approximately 1/700. Since in
general

5 - n. M
£in“6 cos O 46 = z: ,% sin 76 cos 7 ©
J
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and since 5 1/2
16SK

CcOS e = e
5 + 165K

we see that the integrals in (10.12) are O(1) for all K,
so that the omitted terms (10.12) are indeed uniformly

small for all K.

Knowing explicit expressions for the Riemann invari-
ants, it is possible to study simple wave solutions, ec.,
just as in gas dynamics. DBecause a is small, both sets
of characteristics will be forward-leaning. This leads
to some interesting situations, including the prediction
of shocks for mary sets of initial conditions. This is
in sharp contrast to our usual experience with small-ampli-
tude theories, for we are accustomed to regarding shocks
as a finite-amplitude phenomenon. It is important to
remember here, however, that we are considering not the
LPE's themselves but a derived set éf equations which
assume slow variations in the relevant wave parameters of
a non-linear wave. In the case of shock formation, it is
necessary to ask whether the assumption of slow variation
is still justified., The answer is no, because then a, U,
etc. would expefience large changes and/or large gradients
over small distances. Yet, in the Euler equations of fluid

mechanics, a similar situation was dealt with quite success-
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fully by putting in jump discontinuities and shock condi-
tions. From their derivation from the Boltzmann equation,
it is clear that the Euler equations are only valid for

slow variations of P, u, T with respect to a mean free

’
path and mean free time, and gasdynamic shocks violate

these restrictions. Because of the success of this

method in gas dynamics, Whitham proposed it for the
averaged equations as well.(lS) The experimental evidence
is not yet in, however, and it might well be that the
tendency to shock formation in a, U, etc. would be unstable,

in the sense that it would tend to destroy the underlying

uniform wavetrain.

We have only considered the averaged equations to
O(az). To proceed to higher orders would involve a
marked increase in the algebra with no corresponding in-
crease in understanding. For finite amplitudes, it is
probably better to do a numerical solution anyway, which

would then naturally cover the small-amplitude case.
C. The averaged equations with dissipation

We consider the averaged equations with dissipation

only in the case of no X~-dependence

dWU
U I " WSD = 0 (160.13)

as

ar = D (10.14)
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A + K(UWU - W) = const. (10.15)

k is constant in this case, and

B 2 m
D=——K-. _Oﬁedg
2w 5
o n
o
2r
=-—’K" ‘_""'9"(3.1'1
2T - 3 o
(@]

For definiteness, we pick a model dissipation term

of the form

S

so that

dn,
To = KT FE

Putting this into D, and dropping the zero subscript fronm

now on, we have

2 n
oK 8
D=—fnf—j(;§d“

oK F1/2(n)
TS gl amb
U™- 3Sn

The small-amplitude expansion of D is, by the method of
sub-section A,
D = oﬂé a® D2a4 + 0(a®)

where

®lw

® (2 + 375K%+ 17652K%)
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The small-amplitude expansion of the energy equation,

(10.15), is

35Kt

8

S + (l+3SK2)a2 + (20+lllSK2+ 14452K4)a4 = Z:+ 0(a%  (1ae)

where Z: is a constant. It is clear from (10.16) that S

is given correctly to O(az) by

s =¥ - (143Y k%1% (10.17)

If we use this expansion for S in the second and third
terms on the left-hand side of (10.16), we obtain S cor-

rectly to 0tat)
s=Y% -L,a"+ L, a" (10.18)

where

Z =LI.+3ZI’(2

w12
24 - —%—(&42%{2 MEATTeM L 144(2!(2)3)

Inserting only the two-term expansion (10.17) of the

entropy into tﬂe entropy equation (10.14),

2
da 4 .2 4
_ZZ aT ::G"K A R O(L )

whose solution is

B gy T (7:0&(4/22) (10.19)

This result is consistent with the assumptions used in its

derivation if a <<1 or T is large. In particular, then



In this order of approximation, the entropy is
2 I s
S =Z-— (1+3ZK )ao e

which increases monotonically to its limiting value E:

as T —so0.

By taking the three-term expansior (10.18) for S
and the two-term expansion for D and putting them into

the entropy equation, we have

2

2 dT 2

The solution of this, to the order of approximation that
we are considering, is
a” =a” e +aa e (10.20)

where

3K , 2 | .3 2.3
= ?i [18 + BlEK" + 65(EK )J° + 240(TK") ]

The fact that the correction is strictly positive indicates
that the non-linear solution decays less rapidly than the
linearized one. To this same order of approximation, the
entropy is

- Z_-Zz aoz Pl g (zza -24)&1 ol R

o]

Since 5

Zza _ 24 - ‘3“85'[10*472"2* 176 (%2 384(ZK2)3]
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which is strictly positive, we see that the entropy also
decays more slowly to its asymptotic value as a result of

the non-linearity.

Qualitative arguments concerning the effect of the
non-linearity, such as those presented above, were showﬁ
to be quite useful in §3, where explicit numerical solu-
tions were available for comparison. They may be expected
to be equally useful for the plasma case. Of especial
interest would be the effect of the Landau damping term

(4.1) on the non-linear decay rates.

The behavior of the damping coefficient

4
oK

1+35 &

with K is of some interest, for it turns out that this
behavior is the same for all reasonable forms of the
damping term, e.g. (4.24)., For short wavelengths, K—=o00,
the damping becomes infinite like KZ, while for long wave-
lengths, K —=0, it goes to zero like K4. Thus in the long-
wavelength limit the damping is quite small compared to

the frequency, although the disparity is nowhere near as

large as that found by Landau (Eg. (4.19)).

It is also found that the general effect of the non-

linearity is independent of the particular form of deri-
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vative dissipation chosen. That is why we used r = -on_
rather than (4.24). 1In all cases it is found that the
non-linearity decreases the decay rate from its linearized

value.
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$11. Variational Formulation of the Lukewarm

Plasma Equations

The whole subject of wvariational principles in con-
tinuum mechanics has received a thorough treatment by
Seliger and Whitham in Ref. 10. Of particular note is
their general conclusion that, for any system of partial
differential equations, about half should be identically
satisfied by defining appropriate potentials, while the

other half should follow from the wvariational principle.

In the present problem a rather unusual situation
prevails, in that the electric field itself acts as a
"potential.” Looking at the problem of introducing a

potential to satisfy the continuity equation

n, + (nu)x =0,

we see that this may be done by defining

- - t— s/
n Wk nu qt S

But, from the current equation E, = nu, it is clear that
¥ will equal E to within a function of x. By the trivial
redefinition

n=1- wx

it is clear that the continuity equation, Poisson equation
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Ex = 1 - n, and current equation E, = nu are satisfied
by the choice ¥ = E. Thus we shall formulate our varia-
tional principle as in Ref. 10 with n and u assumed to be

replaced everywhere according to

n=1-E (11.1)

U 5 o——— (11.2)

We shall have to obtain two additional equations

out of the variational principle, the equation of motion

3 -
n(ut + uux) + (Sn )x + nE = 0 (11.3)
and the equation of entropy conservation
(nS)t + (nuS)x =0 . (11.4)

The latter we shall take as a side condition on thervariam
tional principle, by adding it to the Lagrangian with a
Lagrange multiplier 7 . The basic Lagrangian itself we
take to be the difference of the kinetic energy and the
sum of the_poteptial energy in the electric field and the

random thermal energy measured by p :

= J - -1 E -
L =1 nu 2 sn E® +7[(ns), + (nus)_] (11.5)
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where n and u are assumed replaced according to (11.1)

and (11.2). The variational principle is then

_SI[L dx dt = 0 (11.6)
R

where R is some region of x - t space.

Variations &7 with respect to 7 lead to the entropy
conservation equation (11l.4), as expected. Variations

$§S in S lead to the Euler equation

which becomes an equation for 7

nt +oun, + % n®- = 0 , (“'7)

For variations §E in E, the Euler eguation is
oL S = €11 ,8)

Before dealing with this eguation, let us write the

Lagrangian in the partially integrated form

301 .2 .
Sn~ - 5 E” = Snlily + unx) (!l.?)

oy
It
=
z
i
i

which is suggested by integration of (11.5) by parts in
(11.6). We note in passing that this eliminates double

derivatives of E and that the new Lagrangian still gives
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(11.4) and (11.7) upon varying % and S, respectively.

In terms of E, thils new Lagrangian is

2
E
S T ST S ST, L AN R e
L= 5 1 -EB, 2 ‘ 2 2 e x) =SBy
Then (11.8) becomes
__a_(_fﬁ___ S’Tx) + __a_(_l; j'-.i___ + 3 5(1 ~ E )2+s'q + E=0
3t\l - By OX\Z (1 - g )2 2 x k.

Translating back to n and u and cancelling a pair of terms,

du

J 2 3 2 _
€ " Sﬁﬂx + S;( W™= b 5 Sn“) + SX‘Q + E =0

t

N

Replacing 7, according to its Euler eqguation (11.7) and

using the entropy equation,

25+ E =0

3 2
u, + uu_ + 3(Sn )X -

£ X

'Y

The latter is the equation of motion, (11.3), in an expanded

form.

Note that if we formally insert the Euler equation
(11.7) for m back into the Lagrangian (11.9), it reduces

to
L=%nu -%E2 (11.109)

which is the traditional form of the Lagrangian as the
difference of the kinetic and potential energies. This

is a purely formal manipulation, however, for (11.10)
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gives neither the entropy equation nor the equation of

motion of the system.

We will now see how the master function W arises
from the averaged Lagrangian

27
) =_l__f L ae
2T Je

when all the variables in L are assumed to take their
uniform wavetrain forms n(®), u(®), etc. We repeat here
for convenience certain relations among the uniform wave-

train solutions which we shall need:

u = u=21) | (11.11)
n

2

BE% = F(n) =-28 + 28n3

= BER® - U2(n_g._l)2 (11.12)

Using the form (11.9) of L, it then follows that

2

<L> = %<nu - Sn3 - E2

- ZSnne(Ku -w)>

1 2 1 2 3
= 2<Un(B—==) =~ Sn” - F(n) + 2wsn,>

2 n

The last term vanishes, since

4 2r

o de

2T [179

(o]

S [(2m) -m(0)]

=< 716>

and this vanishes by the pericdicity of 7. Then <L >
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reduces to
- 1.2
<L = = & + %<<U2(n % 1)(E—E—i) - 35n%(n - 1)>. (11.13)

We now invoke the definition of an average developed

in (8.24), which reads

_ K [ = P(n) + (1 - n)P"(n)
<P > = = — F da
(n) 2_”,9’ V— (1 - n)2 =

Using this on (11.13), we find

: 2

K U
L = e A - = F (35n - d 11,14
<L> 2#3[\/ (3Sn ;3) n ( )

It may be verified that

The last result, put into (11.14), and followed by an

integration by parts, leads to

3/2
LS B B E.Lm)_dn (11.15)
8 E i}

From the definition of W, (8.21), we see that what we

have obtained is essentially W:

<L>= - A + KW

From this the various averaged equations may be derived

as EBEuler equations. The details of the method are sup-

plied by Whitham 26
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Part V

Conclusion

Our attention in the preceding pages has been primarily
focussed on specific physical problems, first in the theory
of water waves and next in plasma waves. The volume of
detail in these investigations has perhaps tended to obscure
the fundamental methods and ideas which were to be illustra-
ted. It is, therefore, the function of the present section
to establish a certain perspective on the results which we
have obtained.

Unquestionably the most important result of this thesis
is that the averaging method of Whitham can, in the guise
of the Luke two-timing procedure, be extended to systems
of partial differential equations which are not expressible
in conservation form. This extension must, however, be
qualified by the proviso that the '"dangling terms" (see
§8.B) are, or can be made to be, O(g), so that in 0(1)
all equations appear to be in conservation form. It is
incidental whether or not these dangling terms represent
dissipation, as far as the method is concerned, but of
course as far as‘physical applications are concerned dis-
sipation is of exceeding interest. We discussed the effect
of certain model dissipation terms on both the water waves
and the plasma waves. For the former, numerical solutions

for the case of no X-dependence were found and compared with
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results from the small-amplitude limit, which took the form

T T

t 36"V % f 37T & .. V.1)
We discovered that the second term of the small-amplitude
expansion provided a very reliable'qualitative description
of the deviation from linearity, even in highly non-linear
situations. It would be reasonable to expect this to be
the case for most wave problems with dissipation.
Non-linear corrections to the linearized damping, 3 1la
Eq. (V.1), were also derived for the plasma waves, and in
both the plasma waves and the water waves the effect of
these non-linear corrections was to decrease the decay rate
from the linearized value. That is, all the quantities
of interest decayed more slowly than the linearized solution
(the one exception was the amplitude of the water wave,

which, however, had the small-amplitude behaviour

{ 38~ Y & { 38721 &

. s

so that the increase in its decay rate was the result of
higher-order terms). Again, we may take these results as
indicators that the general effect of non-linearity will be

to decrease decay rates.



17l

In connection with dissipation, a method was proposed
for consistently including Landau damping in the plasma
equations. What it amounted to was setting the heat flux q

to be an integral

%} . f K(x - &)u (&£,t) d& (V.2)

where u(x,t) was the velocity and K(x) was a kernel which
could be expressed in terms of certain tabulated functions.
The equations become unmanageable analytically with this
form of q, so that a numerical solution is called for; one
was not attempted here, however.

A second important area considered in connection with
the plasma problem was that of the stability of the uniform
wavetrain. The method of deducing fully non-linear stability
criteria was illustrated, and it was shown that for the

plasma case a single inequality

WAA <0 (V.3)
guaranteed stability, where W was the master function
introduced in §88. While (V.3) proved intractable analy-
tically (see Appendix H), it was possible to deduce that
at least in the small-amplitude 1limit the plasma waves are

stable.
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Tied in closely with the stability question is the
problem of deciding what inequalities must be satisfied
by the parameters o5 of the uniform wavetrain soclution,
in order that that solution may exist. It would be sense-
less to test the stability criteria in regions where these
inequalities are not satisfied. In fact, one could be
led to erroneous conclusions of instability if one tested
the criteria with no knowledge of the permitted region of
a;-space. Thus the delimitation of o, -space ig yital. Tt
was possible to obtain a completely satisfactory answer
to this problem in the plasma case, using the method of
Sturm sequences. The answer was that: (1) the wave
velocity U must be greater than the sound-wave velocity
Vgg; (2) the "linearized'" wave amplitude a must be positive;
(3) the actual wave amplitude must be less than or cecqual
to the amplitude of the peaked wave. The method used in
obtaining these results is recommended highly for all sim-
ilar investigations. The results themselves are also of
great importance because they are so simple and so seemingly
general. Perhaps the set (1) - (3) would be sufficient to
delimit ai—space-for a wide variety of physical problems.
The extension of the averaging method to non-conser-
vative systems, the studies of dissipation in the non-
linear regime, the stability considerations, and the oj-

1

space results form the essential elements of the present
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thesis. Certain less major elements are nevertheless

also of interest. Foremost of these is the discussion of
steady shock solutions where a uniform wavetrain is joined
to a constant state (see 82 and §&87.C), a situation which
can occur in the water waves case but is disallowed for
plasmas because the entropy would decrease across such a
shock. The analysis of the peaked plasma wave (see Appen-
dix B) has some special twists to it which make it rather
unique, among which is the possibility of all peak angles,

including 6 0 in the 1limit of large velocity U.

peak
The small-amplitude expansion of the hyper-elliptic inte-
grals in the averaged equations (see Appendix F and §10)
is also a technique worthy of note, for it often furnishes
the only analytical hold we can get on the averaged equations,
And the discussion of the plasma dispersion relation in the
presence of dissipation (§5.B), and of the Lagrangian for
the plasma (§11), are both interesting sidelights.

It would be of great interest to obtain many of the
same results we have found for a derivative dissipation
using the integral dissipation of (V.2). In particular,
to shed some 1light on the long-standing problem of colli-
sionless shocks, we would like to be able to demonstrate
or disallow breaking in the presence of (V.2). We would

also like to know how expansions such as (V.1l) are affected

and whether the steady wavetrain is still stable or not.
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The answers to questions such as these await new techniques

in the theory of integro-differential equations.
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APPENDIX A: The Solitary Wave Solution of the LPE's

The mathematical characterization of the solitary wave
solution of an equation like (7.15) is that the quantity
under the radical, here Q(u), must have a double root, call
¥E u . Then it may be shown that in the neighborhood of
u = ug the solution approaches u = u, exponentially, so that
it never turns back, as it would if u = u, were a simple root.
Thus the wave consists of a single crest or trough with expo-
nential tails. This presumes, of course, the existence of
a second root of Q(u), u = uq, which forms the other bound

of the "oscillation."

The condition that ug be a double root of Q(u) may be

expressed by the two statements

Il
o

Q(u,)
Q' (u,)

]
(]

which in terms of W, = U - u, (see Eq. (7.18)) become

- w2 & Wt # (2A-USywS - 3s0%w + 280° = ¢
0] O- 0 O

4 3 25,2 " .
Swo - 8UwO - 3(2A-U )wo + 38U = 0

The second of these may be solved for (ZA—UZ),



181

swd - 8sUWS + 3SU2
0 (0]

2A-0U° =
SWZ
0

and the result put into the first equation to yield

&> = Uwg i 3SU2wO + 350° = ¢

2]

This may be factored
_ 4 2y -
(wO U)(wo 35U°) =0
The candidates for w, are thus

" 2.%
w, =U, £ (3SU")

ot 1n terms of ug s,

u, = 0, U(1:p)

where B = (3S/U%)%;

We reject the root U(1+B) because it is larger than U
(the reason for only considering roots smaller than U is
given in §7.A). The root U(1-B) is none other than u_, and

the case when u_ is a double root is treated in Appendix B

(the solution then is not a solitary wave). So we are left

with u, = 0 as the only possibility. When we set Q(0) = 0,



182

we find

so that the quantity we thought of as a measure of amplitude
is here zero. Accepting this, we put az = 0 back into Q(u)

to obtain
Q(u) = u?p(w)

where

P(w) = -w~ + Sw + 2SU

The other "limit of oscillation"™ u = uq must be a root of

P(w) = 0.
Q(u) must be positive in the interval between u = 0
and u = uq for a solution to exist. This means

3

P(w)l = - U + 38U > 0
u=0

or U2 < 35(B>1). Thus the conditions az > 0 and U2 > 38 are
both violated, and if a solitary wave solution exists, it
cannot be developed continuously from a linearized solution

(see Eq. (7.19)).
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From two applications of Descartes' Rule of Signs,
once to P(w) as given and once to P(w) as a function of u,
using B > 1 we are able to show that P(w) has only one root
in u < 0 and no roots in 0 < u < U, Thus the root in u < 0

must be ug .

This presents a problem for, because B > 1, we also
have u_ = U(1-8) < 0, and as we expléined in 87.A, u_ may
not lie within the range of oscillation of the solution.
Thus a solution will exist only if u_ 53140. It is a simple
matter to check the location of u_  relative to Uq s for we
know that

>0 wu, <u=x<2 o

1

< 0 u < uq

(A.1) P(w)

from the last paragraph. Thus the sign of P(w) evaluated at

u = u_ Will determine the location of u_. We find
P(w_) = - (BU)> + SpU + 2SU
or, writing S in terms of U and B from the definition of B,

Pw,) = 3 (BU)® (B+3) (8-1)

Because 8§ * 1,

Pl J > D
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which places u_ between u = uq and u = 0 according to (A.1).

Thus no solitary wave solution is possible.
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APPENDIX B: The Peaked Wave Solution of the LPE's

The peaked wave solution comes about when the upper
limit of oscillation, u,, coincides with u,. If this were
the whole story, then it could be demonstrated from Eq.(7.15)

that the solution would behave near u = u, = u, as indicated

in Figure B-1; that is, it

would have a cusped peak

u
formed from two parabolic

Upoley F-7" =7 77 77 B
arcs (a ''square-root cusp').

// N It turns out, however, that

i}

u, u_ necessarily implies

u so that the solu-

2 - Ugo
Figure B-1. Cusp Peak tions are peaked waves with

finite peak angles.

If we demand that u_ = U, then u_ 1s a root of Q(u),

and the equation
Q) = ofua-et = o
can be reduced to

(B.1) o

ZB™ -~ + 1

| o
™

where
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I1f we now factor Q(u),

Q) = (u-u )P, (u)
then we shall discover that P4(u) contains an additional

factor of (u-u ), giving finally
QCu) = (u-u,)?P, (w)

where, with w = U-u,

3 2

(B.2) PS(W) = - w- + 2(1-8)Uw

+ B(% “B)UPw + % g2y3

and where of course A has been replaced according to (B.1).
Thus if u_ is a single root, it must be a double root, and
§ifE8 uq is the only other available positive root of Q(u),

it must be that

Because U2 > 38, we have 0 < B < 1, and for this range
of B it may be shown that the discriminant of Pz(w) is posi-

tive. This means that_PSCW) has only one real root, W, and
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so of necessity w; = U - uy,where u; is the root referred to

in §7.A. We may write down an expression for w, from the

1
cubic formula

(.3) w = 2| Eee) 3 (mee) /3 2(8—1)]

where

B« 18g° - 128 + B

1
1l

28 /98> + 158% - 288 + 24

[#p]
]

The discriminant is proportional to the quantity under the

square root in G.

A quantity of some interest for this spéecial case,
primarily because we have explicit formulas for its calcula-
tion, is the amplitude Uy - up T ou, - Uy of the wave. In

[ee]

the limits B - 0 and B >~ 1, it is found to be

7 2
u, - uy = 20 - 3-UB + 0(B7) as B =+ 0

- % u_ + o{(l-ejz} as B+ 1

where u, = Ufl-8). The limit g < O'corresponds o 1 -~ P

and is the large-amplitude limit. In that limit, uq aﬁd u_
are about equally spaced on either side of u = 0. The small-
amplitude limit corresponds to B - 1 (U » ¥3S), and in that

limit u_ is approximately twice as far from u = 0 as u, 15,
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ampli-
tude

Figure B-2. The true amplitude (u, - u,) and the lin-
earized amplitude a_Of the peake? solu-
tion plotted agains® B = (3S/U2)!/*“
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making for a somewhat top-heavy wave. The exact amplitude
for all B, scaled by U, may be computed using Eq. (B.3) and
u_ = U(1-8); the results are plotted in Figure B-2. The

co

approximate linearity of the curve should be noted.

On the same graph, we have plotted the amplitude which
would be deduced from linearized theory. From the linearized
form (7.19) of the steady wave equation, this amplitude can

be seen to be
o 1 4

W = i fUt2A-8) _ , [2A-s _ L, [*73

g U2-38 1-p4 1-p%

When a is replaced according to Eq. (B.l1) and the resultant

polynomial in B factored, this reduces to

a = ZU(l-B)\/ Ll
° 3(1+8) (1+8°)

Again, the scaled amplitude aO/U is plotted in Figure B-2,.
The two curves are in reasonably good agreement, showing that
the amplitude from linear theory is a good approximation to
the fully nonlinear wave amplitude (this holds generally,
although we have.only demonstrated it for the peaked case).
The form of the peak may be deduced from the governing
differential equation (7.15). Approximating to this equation

in the neighborhood of u = u

o ?
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iw3/2
Kug ; (u-u_) /Psiwwi
4wy (u-u_)
(B.4)
/Psiwmi
® dw3 2

The * sign comes about because J(u—um)2 may be of either

sign. And at u = u_, a solution may in fact switch branches
continuously, from the branch with the + sign to the branch
with the - sign or vice versa. This is indeed how the peak

is formed.

From Eq. (B.4), the peak is clearly made up of two

straight line segments of slopes,

VP (W )
(B.5) + 3> _ 41 /1-8
’ " da 3L 2 - 2 B
[ee]
u (the second expression being
Uyl ,Uzl— — — —_—— obtained by using the
/ BpX explicit form of P;). These
/ \
6 .segments meet and form a
; finite peak angle 6_, as
Figure B-3. Local behavior of p
the peaked solution : indicated in Figure B-3. The

formula for ep is easily found from (B.5) to be

% B
tan 73 = 214 /5v¥—>=
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Figure B-4. The peak angle ©_ as a function of
B = (SS/U2)1/4.
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which is plotted in Figure B-4. Notice that the peaks are
very flat (ep + m) in the small amplitude limit B - 1, and

very accentuated (ep + 0) in the large amplitude 1limit B - 0.

Since small amplitudes are certainly allowed in the
present case, the question might well be asked, why are
peaked solutions not found in the linearized theory? The
answer is, the linearized theory as derived from (7.19) or
directly from the linearized LPE's ignores the existence of
u_. That is, it regards B as fixed, and u_ as fixed, and
then lets the amplitude go to zero, so that we have u, < ug
and in fact u, << u,. The failure of the linearized theory

to come up with peaked solutions thus lies in the nature of

the limiting processes implicit in linearization.
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APPENDIX C: Numerical Calculations of Root Structure of Qu)

By defining

=1
]
ce

Q(u) becomes
2
: Q(u) = Us[u—a“)f’(i—z -6 - 3 3462(6—3)}

where B = (SS/UZ)%. Hence U functions primarily as a scale
factor for u and for the amplitude a, and so for our present
purposes we may without loss of generality take U = 1. Then
for three values of g, B = %, %, %3 we watch the development

of the roots Ujs Uy, Ug of Q(u) as a increases from small

values. The results are presented in Table C-1.

In all cases the roots u, and U, and hence the actual
wave height Uy-ug, increase in approximate proportionality
to a. This bears out the assumption of §7.A that a is a
good measure of amplitude. Actually, u, increases somewhat
more rapidly than the first power of a as it nears u_,
because the wave is becoming more peaked and yet must still
satisfy the areaAconservation equations (7.22) and (7.23),

21
1 B
§~ﬁjon(6)d6 =1
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2T
J'n(e)u(e)de = 0

o
independently of a. While these do not directly imply any-
thing about the area under u(6), the data seem to indicate
that that area varies little with a, so that the peaks,
which enclose less area, must rise more rapidly than the

troughs in order to keep the balance.

Table C-1 also provides quantitative substantiation
for various facts about the roots deduced in §7. For
example, it is clear that U, < u, < ug, that u, > u, from
below and that Ug > U from above as a increases, and that
when a increases beyond the point where U, = ug; = u

there is no longer a solution, so that u, = uz =u repre-

sents the solution of maximum amplitude.
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APPENDIX D: The Sturm Sequence Calculation for Q(u)

We shall not only obtain the direct results of the
Sturm sequence calculation here, but also demonstrate how
these results may be tremendously simplified using various

results of §7.A and Appendix A.

We shall work with a scaled version of Q(u)

P(V) = - V° + 2vt + (a-1)v? - phv o+ Zgt
where
2A 38, %
o= ZA 8 = 55
o =

and which is related to Q(u) by

P (V) ;—g Q(U-UV)

This is essentially the form (7.18) of Q with W replaced by

UV to eliminate U as an independent third parameter.

]

The inequality a2 2A-S > 0 becomes 1in the present

notation

a’ L4

(D.1) > = o - R F 0

c

which proves to be extremely useful in what folliows.
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proceeding according to the algorithm of §7.B, we

derive the members of the Sturm sequence as:

P, (V)
Py (V)

P, (V)

e,
I

awl
Il

where

(@
I

)
I

2

In these
positive
sequence
positive

(OL_%B[L) ’

=pr(v) = -svt o« evd + s(a-1yvE - 6t

= —(50+3)V° - 3(a-1)V? + 108% - = g

= 3 {(10a+6)64 : 3u(a-1)2} vZ - gt (11a+3)V
+ gt (3024520+9)

CV + D

129688 - 8(8102+414a+17)8% + 81(a-1)*%

3608° + 2(9962+496a-3)8% - 9a(a-1)2(30-11)

648% - 2(1110°%+328a0+9)8% + 27a(a-1)°

computations, use has been made of the fact that a
factor may be dropped from any member of the
without loss of generality. In particular, two
factors have been dropped from P6. One of them is
which is positive by Eq. (D.1). The other is
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(D.2) {(10a+6)34 : 3u(u-1)2}2

which we may note is the square of the leading coefficient of
P4(V). It is quite natural that the leading coefficient of
P4 should be a factor of P6’ for if it vanishes, then P4
will be linear in V, P5 will be a constant, and P6 will
vanish. However, this type of reasoning cannot be pushed
back another step, for there are no factors of (50+3), the
ieading coefficient of Pr, in P6‘ Thete 15, héwever, a
double factor of (5a+3) in P5 (in both C and D) which has

been dropped. Thus the general rule seems to be, that the

leading coefficient of Pn is a factor in Pn+2‘

It is also natural that (a—%ﬁ4) is a factor in P6’ in
light of the interpretation placed on P6 in §7.B. There it
was stated thatAthe vanishing of P6 signaled a double root
of Q(u). Going back to the form (7.17) of Q(u), we see that

when a = 0, u = 0 is a double root of Q(u). Thus P6 has to

fanish when o %64 (a = 0).

The reasoning in the last paragraph can be extended to
obtain two more factors of P6‘ In Appendix A we found that,
in addition to ﬁ = 0, Q(u) might have the double roots
= U(1-8) and u

u = U{1l+B). Each of these situations leads

I II
to a constraining relation between o and B, which is conven-

iently expressed by
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UPpLE) = Bsus(u-262+%s—1) = 0

Qup)
Q(UII) = USP(—S) = -BSUS(G—ZBZ—%B-]_) - 0

Thus it is logical to seek factors (a—282+§ﬁ—1) and

(a—ZBZ-%B—l) in P Such factors are indeed found, and the

6

resultant factored form of P6 1s

P, = 9(a-262+38-1) (a-26%-$8-1) {0 (1-0-26%) 2+6462}
Since the last factor is strictly positive, we drop it, leav-

ing P6 in the final form

(.3) P, = (a-28%+38-1) (a-28%-38-1)
We may now proceed to the evaluation of the variation-
of-sign functions v (0) and v(1), from which we will obtain
the number of roots of P(V) between V = 0 and V = 1 (which
means the number of zeroes of Q(u) between u = 0 and u = U).

Evaluating the Sturm sequence at V = 0 gives

P(0) = xB" >0 P, (0) gt (30%+520+9) > 0
P,(0) = -BY <0 P (0)

. _ 4
33(0) = - = B < 0 P6(O) P6

1l

D

o
N

1l



while for V

P(1)
P, (1)
P, (1)
P4 (1)
Py (1)

Pg (1)

il

4

a-%ﬁ >0

200

3(a-38") > 0

16 1.4
- gg Lesgh’) 9 D

. 9(&—1)2(a-%84) < 0

72(&—%84){4B4+(a—1)2} > 0

Pg

PS(l) is the only one of the quantities given (other than P6

and D) which required factoring, and in view of the four

results immediately above 1t,

find it had the factor (u4%84).

it was not too surprising to

The variation-of-sign functions obtained from the above

data are

v(0)

v(1)

The number of roots between V

by

1]

Il

Z 4if
{ 3 4t
4 if
{2 if
3

1£

and P6 >0
and P6 > 0
0 and V = 1, which is given
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No. roots = v(0) - v (1)

will equal two if and only 1if the inequalities

b <20

P, >0

6
are fulfilled.

We may simplify the inequality P6 > 0, and then show
that the inequality D < 0 is redundant. Beginning with
P6 > 0 and Pe in the form (D.3), it is clear that either
both factors in P6 must be positive or both negative.
Because B > 0, one of the factors is always greater than the

other

a - 2B + =8 -1 >a - 2R” - =8 - 1
and so the case where they are both positive reduces to
(D.4) o > 28% + 38+ 1
while the case where they are both negative reduces to
(D.5) & € 2p% - %B £ 1

The inequality (D.4) may be rewritten
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2
a _ 1 .4 _ 1 .4 2 . 8
= A A L L R L
= 2(3-8) (1+8)° = F(p)
2

Now since U® > 35S, B < 1, and over the interval 0 € B < 1

the function F(B) takes an absolute minimum of unity (at
B = 0). Hence

(D.6) a?

z # 4

e

But in §7.A it was remarked that u2> a, so that we are

forced by (D.6) to conclude that
u2>U

which is not allowed. Thus the case (D.4) is physically un-

realizable, and P6 > 0 reduces to (D.5).

The inequality D < 0 may be put in the form

2+3280+9) 8% - 2648% > 0

G(a,B) = 27a(l-a)> + 2(1llla

Using o > %84 in the first term of G leads to

G(a,B) > 84[5(1—a)3 + 2(11ia%+528a09] - 26484]
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Using —84 > -3a in the last term,

v

G(a,B) 84[9(l—a)3 + 2(111a2+328a+9) = 792@]

5% <903+ 24962 - 1630227

i}

8% (36-152(27-a)

Hence G > 0 automatically provided that o < 27. But in fact
o < 1, as can be verified from (D.5), for over the range

0 <8 =1 the function (282-%B+1) takes an absolute maximum
of unity. Hence the inequality D < 0 is implied by (D.5),

and may be dispensed with entirely.

Therefore the single necessary and sufficient condi-

tion for Q(u) to have two zeroes on (0,U) is

& < 28% - % B+1

Nothing has been assumed in this derivation beyond the posi-

tivity of (U%-38), (e-38%), S, and U-u.



20l

APPENDIX E: Computation of the Averaged Quantities for
the Lukewarm Plasma Equations

The values of the following averaged quantities are

needed in terms of W and its derivatives:

A1 = <nu2 + Sn3 + E2>
5
A2 = <nu- + 3Snu>
A3 = <(n-1)u>
_ 2 1 .2 3 3 2 _ 1 42
A4 = <nu- - 5 u + Sn 5 Sn 5 B>
AS = <%— n3>

A1 and A2 are needed in the averaged energy equation
(8.7)% AS’ A4, and A5 are needed in the averaged momentum
equation (8.12).

The last three averages are simpler, and so we shall

do them first. Eq. (7.11) of §7.A, which is

nu2 * l»uz + Sn° - - Sn2 ~ 5 B - U(n-1) u = -A
2 2 2
allows us to simplify A4:
B, = U =(n-1Tjw= - 4
LB 1)
= UA, - A

3

Then with Eq. (7.8), which may be solved for u,



n {E«2)
we have

A = U (_.(_rl__l_).2>
£ n

The form (8.24) of the averaging operation

Lp)y = - F fVEm B OP g, (el35)
(1-n)°
produces .the following results for A:5 and A5
H
kU v%(n)

Ag = = ﬁ dn
K 2n3-3n2

AS = 3= f SN . vF(n) dn

(n-1)

The U- and S-derivatives of W may be computed from (8.21)

as

VF( VF (n)
wU Zﬂ = dn
We = ﬁ 2n°-3n’ -~ VE(@m) dn
& 1o n)

whereupon we may identify immediately that

]

AS = KWU

A5 =- KWS
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From (E.1) we then have

A4 = KUWU—A

The energy equation averages Al and Az are harder.
We begin by reducing them to '"n-form" using (E.2) and

Eq. (8.12.1) to replace u and E in favor of n:

: 3
A = 2A + 2 <—(£"r;%l % & 38 <nUentr
8 _Pasljs 5 2
A2 = U < 5 >+ 35U <n -n">
n
These are patently related,
A, = U(A{-2A) (E.4)

Using (E.3), the last expression for Al assumes the loop

integral form

A= 24+ F“ﬁ (3sn + v® 221y /F dn
n

From the formula for Wy above, this simplifies slightly:

2
- K U /
Al = 2A + ZKUWU + ;»ﬁ (3Sn ;?) F dn

We may now identify the last term of Al as a modified

form of W. A straightforward integration by parts applied

to the original form (8.21) of W yields
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W = %— ELLEL VE dn
] l-n

1 g
= 5— (= - 3Sn)VF dn
2 3
n
This result may be substittuted into (E.5) to yield

Al = 2A + ZKUWU - 2¢W

Then from (E.4) we have finally

A, = U(2 0N, - 2)

Collecting all of our results,

Ay = 2(A + AW, - W)
A, = 2 (UW; - W)
Ay = Wiy

Ay = WWy - A

P
1
1
A
p e
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Appendix F: Manipulation of Loop Integrals in the Complex
Plane

We consider here integrals of the general form

b
Bix) i
VRGO 713

where P(x) and R(x) are polynomials of arbitrary degree
and a, b are simple real roots of R(x).

To illustrate the techniques involved, it will be
sufficient to consider the special cases in which P(x) = 1
and R(x) is a quadratic or a cubic. The methods employed
for these two special cases will then be readily extensible
to the more complicated iﬁtegrals of the type (F.1l).

The first example we shall consider is

b
dx
I. = :
d f Vx-a) (b-x)

a

By the transformation

_— a;b @ b;a "
this becomes
g
I =./f dz
1 _lx;lﬂzz

If we cut the complex z-plane from -1 to +1, and define
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1-z° to be positive on the top side of the cut, then Il
may be viewed as an integral along the top side of the cut.
Since \/l-z2 is then negative on the bottom side of the cut,
I1 is also the negative of the integral along the bottom

side of the cut. This suggests writing I

las
il dz
1, = 3§
1 2 s
Pl 1—22
where Fl is the closed contour shown
/"’ \‘s.
AN
/ \
z-plane r / z-plane \
! I
Wad / : \
(S e W R j
q——*—“ﬁf———q 1 = +]
\ !
\ /
X F
\i\ ,'k:
S~ —

Flgure F-1.
e Figure F-2.

in Figure F-1. A rigorous argument, using the usual van-
ishingly small loops around the branch points, shows this
to be correct.

But now, since there are no other singularities of the

integrand in the finite part of the plane, we may write Il

as



where T, is any closed contour enclosing both

branch points; this follows from Cauchy's Theorem.

Dy taking T, to be a contour outside |z| = 1, as shown in
Figure F-2, we may take advantage of Laurent's Theorem,
which holds in the annulus 1 < |z]| < « where 1/|/l-z2
is analytic. Laurent's Theorem guarantees that 1/V1-22

has an expansion of the form

1 T
B :Z anZn (F.2)

in 1< |z]| <«, and that furthermore this expansion is

uniformly convergent (in any closed sub-annulus). This
latter property allows us to integrate the expansion term-

by-term

¢. L 25 a, ¢~ 2" dz = 2wia_1

2 1~32 n=-o PZ
The expansion of l/Jl—z is readily found for

[zl ® 1:

1
__2__1__ 1

= +

L 1
= = (1-35) -
G_ZZ x § .2 iz 2i2°

Since the Laurent expansion 1s unique, this must be identi-

cal to (F.2). We identify a_; = 1,

+
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whereupon

Iy = Gig o = 1

1 1

Now consider the integral

b
I, = i
< JZ Vﬁx-a)(b-x)(c-x) (F.3)

where c>b>a. By the same transformation as before,

1
dz

3 v(1-22) (1-B2)

where

=

b-a
2c-(a+b)

A = B =

To move into the complex plane this time, we need an addi-

tional branch-cut from z = % (we can easily show that
% > 1) to z = ». Thus the annulus in which we apply
Laurent's Theorem is now finite, 1 < |z]| < %. Otherwise,

everything goes through the same as before, and we may



al2

Figure F=3.

calculate as follows:

A ﬁ dz
Ty V(1-22) (1-B2)

-
1l
B =

cjaf, o
Ty A1-22) (1-Bz)
1 1 o TI(ntk &
=37 A_ﬁ T L Lin ) > Tloty)  (m2)®
FZ n=0 n: F( ) Z m=o m' (L)
o I‘(n+/z)F(m+%J m m-2n-1
21 Z Z T st B ’r g dz
n=0 m=o s ! 2
- B F'(n+:s)T (m+%) m
71 2 z B 2mid ,zn
= o Tl m]
n=0 m=o
- 8 25 F(n+%)r(2nf%) BZn
n=o n! (2n)! (F.4)

where the contours 'y and Fz are illustrated in Figure F-3.
The coefficients in the series (F.4) are 0(1/n) for n-»« , so
it will be slowly converging unless B is fairly small, i.e.

not near one. But the case B << 1 is equivalent to the case
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b-a << 1, which is the small-amplitude case discussed in
the main text. So what we have really obtained in Eq. (F.4)
is an expansion of I, in powers of the amplitude (b-a).

It is not necessary to know the roots of the denomi-
nator of the integrand in order to obtain an expansion like
(F.4); this is fortunate, for in all but the simplest
cases we do not know these roots explicitly. Let us re-

consider IZ’ written in the form

b
dx

2 ./F
a vé;Sx+Tx2+x3

and show how we can obtailn an expansion like (F.4) assuming

no knowledge of the roots.
We first center the variable of integration somewhere
between a and b (the equilibrium value X, of the variable

X always lies between a and b, so we use that):

C(xgma) SRS ERT ESE

The small-amplitude limit now amounts to the assumption that
the 1limits of integration in this integral are O (g) as

e » 0 (where ¢ is an order-of-smallness parameter). Then
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R' = 0(e?)

1l

T 0(1)

1

because R' is the product of the rosts of the cubic, two of
which are (b-xo) and -(xona), and T' is the sum of the
roots, one of which is 0O(1l) by assumption. S', which is
the sum of the pairwise products of the roots, can be

shown to be O(ez) as long as

- a+b
o] 2

= O(Gz)

which we certainly expect to be true, since X, is the equi-
librium and this is the linearized limit.
Using these results, we have immediately that
R', T'& = 0(e?)

stg, 2 = 0(e)

since the variable of integration £ is clearly O(e).

Hence the proper small-amplitude expansion of the integrand
would clearly seem to consist in extracting (R'+T'£2)

from the cubic ana expanding the integrand in terms of the

O(e) ratio

. 3
Fley = _S__Ei__g =y
RY%TY £
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as follows:

(b-x_)
X, ik

'z " 5T 1
S(xgma) (RT1EDT (14£(8))7

V23
=~[. 1 1 - 1 S'+T'¢ T
5 1/ 2 ——
- (x,-a) (R'+T'E7) *s

(b-x_)

If we attempt to integrate this expansion term-by-term,
however, we will find in general that all terms after the
first will involve non-convergent integrals. This is due
to the fact that the roots of the factor (R'+T'£2) will
generally lie on the path of integration [a—xo, b-x,1,
which means physically that the linearized amplitude will
be less than the true amplitude (this is demonstrated
explicitly for the LPE's by Table C-1 of Appendix C, where
a is the linearized amplitude and u, the true amplitude).
It may also be noted that the fact that (R'+T‘£2)
has real roots comes from a consideration of the linearized
limit, in which it is established that R'> O and T' < o.
The difficulty which we have encountered above may
be eliminated by, as before, allowing I2 to become a loop

integral in the complex plane, We first transform
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and then make I, into a loop integral, The result is

. i’ dn

2V-T i n +a(n S'T'ns)

where

Sl
ar— v S

Since n is now an 0(1l) variable, and (R'/S'T') = 0(1), the

term multiplying o is 0(1), and so we may expand in powers

of a:
. = [R'/S'T" 0"
Fin i ¢ i 1- & 7 %a g o AL (F.5)
“ 2w JVIn?Z : e
Now we move the loop contour out beyond |n| = 1, so that
n = + 1 do not lie on the contour. Then; if o is small

enough, the series in curly brackets in (F.5) converges

uniformly on the contour, and we may integrate term-by-term

f n-(R'/S'T')n’

1. = 1 -ﬁ dn _ o f
2 v P Vi 4T (-5} -

dn # sc::: [B:8)

to obtain the small-amplitude expansion of I,.
The individual loop integrals in (F.6) are done by
Laurent's Theorem, just as before. For example, the second

integral is done as follows:
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i

%’n—(R'/S‘T')n3 Ji

‘ﬁ n—(R‘/S'T')n3 -
2y3/2

13n3(1—l7)3/2

(1-n -

' 1 R' 3/2
= fi(S - R #3428 L) an
Il n

i R I3R! 1
i ¢ C-grpv * (-35rpr)—5 *+ ---) dn
n

The procedures given above extend in a straightforward

way to integrals of the more general form (F.1).
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Appendix G: The Details of the Slowly-Varying Wavetrain
Calculation for the Korteweg-de Vries Equation
With Dissipation

We shall be concerned here with the expression of

five integrals from 83 in terms of the fundamental

integrals
T/2
K (k) =/ dx
o} Ql«kzsinzx
m/2
2 . 2
and E (k) =/ Jl-—k sin x dx
o}

(which are the complete elliptic integrals of the first
and second kind, respectively). The five integrals are

those occurring in Egs. (3.16) and (3.17):

2T 27
I =f P de = j nde
1 o

(o] @]

2T 27 5 2m
1, =f o as = (3n2e® =0y a8 = 3n 2de
2 o ' 3

o o ] O

2T
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iﬁ
2 ,dn 2
o)
2T 2T
2 2

_ = e von3y 2 &N K 30,2

) 0

27
_ 3.3 2 Ay
_j [2n 5 K (89) ]de

lo}

21

_ 3q-3
(o]

Integration by parts and the periodicity of n were employed

to simplify 15.

We re-write Eg. (3.9) here for convenient reference:

n=mn; +a cn2 (Bo+2, k (H.1)
where
a = m,~m;
b = m2—m3

{H.2]
- Lofb
B = K‘[;
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It is possible to write Iy through I as linear combinations

of integrals of the form
21

K =/ cn’™ (Be+9, k) ase
o

n

This follows immediately for all except T, upon substituting

the form (H.2) of n:

=)
1l

2mm, + ak

1 1 1
I = 3(2mm 2+2m akK +a2K )
2 1 i [ 2
I3=%Iz
I5 = 2(2wm13 o+ 3m12 a Kl + Bml a2 K2 + a3 KB) — % I4
For 14, we need to refer back to Eg. (3.7), which is

2 n, 2
2

K(ae. = 2(n-ml)(m2—ﬂ)(n~m3)

Using this, I, becomes
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2T

I, =2 -/. Flcn2(89+®ﬂ Ia-a cn2(86+¢)1[ml—m3+a cn2(89+¢ﬂ de

o]

2

= 2a [}ml*mB) Kl - (ml—m3—a) Kz-aK3]

It merely remains to find Kl, Ky K3 in terms of

K(k) and E(K). We first reduce Kn to standard form, as

follows:
27
K =/ cn?® (go +0,k) 46
o
2TR+O
= % cnzn(u,k) du
0]
2K (k)
= % cnzn(u,k) du
o

The non-linear dispersion relation (3.12) has been used
to replace 1B by K(k) in the upper limit, and the fact
that 2K(k) is a period of cnzn(u,k) has been used in
setting ¢=0 in the limits.

The fundamental formulae we shall need in our attack

on K K2' and R3 are:;

lf
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2K (k)
E(k) = %/ dn® (u,k) du (H.4)
(@)
dnz(u,k) = 1 = k2 + kzcn2 (u,k) (H.5)
i 4° 3 2 2 2 2 4
5 —3 cn faekF = 2 = k" + 2(Z"~l)en " (u.k) - 3K wen {u.k)
du
(H.6)
1 a2 4 2 2 2 4
7 — 3 °cn (u,k) = 3(1-k7) cn”™ (u,k) + 4(2k"-1) cn (u,k)
du

(H.7)
- 5k2 cn6(u,k}

(H.4) is a modification of Whittaker and Watson's definition
[section 22.73] of the elliptic integral E(k) . (H.5)

is the definition of the elliptic function dn(u,k).

(H.65 and (H.7) were suggested by Example 4, Section 22.72,
of Whittaker and Watson, but may be verified directly by
differentiation if desired. We make use of (H.6) and

(H.7) by integrating each from 0 to 2K(k). The left hand
sides integrate immediately and drop out by the periodicity

properties of elliptic functions. We are left with

STy Bk + 3Tk Bz<l.-3k2-51<

o
i

2

(o]
l

3(1-xH)pK, + 4(2k”-1) BK, - Sk°BK,
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From these it is clear that we may express K2 and K3 in

terms of Kl:

_ 2 2B 2_
o 2 e . P
oxy = L (8 (x2-1) a-x?) ko + (23x%-23x +8) Bx |

Hence we only need to know K, in terms of elliptic integrals.

But from (H.4) and (H.5), this is easy. The steps are

2K (k)
! '
E(k) = 3 {1-k2n2en? (@, k)| au
o
= (1-k%) K(k) + %kZBKl

BK

1 2_2 [E(k) - (1-k%) K<k}]

P

Collecting the preceding results, we may write the
sought-after integrals, Iy through Ig, as
2im, + 22— [E(k) - {1k K(k)]

1 1 k2£

H
Il

2

2rm) + 2KY2B (B0 - (k%) KO0
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1, = 2 [3mm® + 2« 2b {34 2x>-1 } B0
+ ky20 (k%) {-emprb(2-3k7) | k()]

_ a2 4572 |20tk o0 - (k) (2% k)
'l

2
_ 3 2 2 b 4 . 2
1, = 4[m 7+ b {Bml +am b (2k%-1) + P (23kt-23k +8)} E (k)
+ k20 (1-k2) {-3m.%m b(2—3k2)—Ei (15k2-19%%+8 } K (k)
| iy iy 15 ) ]
3
-5 1,

Some simplifications have been wrought by wuse of the
identities (H.2). The natural set of variables which arise
in this calculation are m,, b, k, ¥ #ather than My, My,
Mok e

One would probably want to avail oneself of the

information in the nonlinear dispersion relation
™ = K(k)

which can be solved for b
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B = -2-—2- Px2 (k)
s

to eliminate b frxom I, through I This is presumed to

il 5"

have been done when these formuae are introduced in §3.

The integrals 1I; are used in (3.16) and (3.17) as

follows:

aT 0X
9T oL
o PN
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APPENDIX H: Reducing WAA and Similar Integrals to Real

Form.

Wyp was computed in §8.C to be

Mg = = o s BB

AA 2T
' " (n—l)2 YG:

It was noted that 1in neither this form nor in the inte-

grated-by-parts version

. U dn

could the loop contour be shrunk back down around the
branch cut, between n, and n, say, on the real axis. For
the £irst form, this_;és pr;zluded by the double pole at
n = 1, and for the second form, by the non-integrable
singularities of the integrand at ny and n, (which are
roots of F(n)). N o

Let us, therefore, go back to WA and see what went

wrong. WA is given by

dn

3

2
. B
Wy = - 3 ¢'(35n ns)

which can be shrunk back to an integral along the branch

o

1 n Z
W = = = f . (3SH‘U—3-) d—n UI.l)
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where n, and ng will naturally depend on A. If we now

try and take the A-derivative of this integral by the

usual rule, that is

n
) _ 2 . 1 9
FA’f din] 4= = Qlayl 5x Qny) 37 +f % dn
nl nl

we see that the first two terms are infinite and the third
is a non-convergent integral. We must, therefore, seek to
transform the integral in some way before we take its
A-derivative.

One way to do this is to fix the limits by trans-

forming
n n
T Bl R, Tl g (H. 2)

To keep the calculations siﬁple, we illustrate how this
works on the integral
"

f dn

Ry Va + bn + cn2 # 1

=
]

3

Do

_ dn
nl‘[tn-nl) (nz—n) (ns—n)

*1
dé

J n,+n N=>=1
1¥a- e (ng-—t - 2 1)
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Since A is one of the coefficients of F(n), it will be

analogous in the present problem to consider 9I/93a:

+n n,-mn
d 17" 3 2™y
9l _ 1 == (n,- 3+ o= | 1€
==-3 j' 9a ‘'3 2 3a 2 4 (H.3)
_ 5 n,+n n,-n 32
1af1-¢ [n - 12 2 z2 1,

The roots n;, n,, ng can always be found very accurately
on a computer; numerical differentiation tends to be
quite inaccurate, however, and so we show how the ani/aa
can be expressed in terms of the n. themselves.

The coefficients of the cobic in I in terms of its

roots are

a = -nyn,ng
b = nln2+nln3+n2'n3
C = -ny-n,-ng

Taking the partial of each equation with respect to a,

aﬁl an

an
"Dyfig gg= - 0ylly gz= - N0y z== = 1

an on an
a

(i) o # (N #) weo * (Matn,) 5 = o
Ls™Bel Fa 145! . Fa i Rl 3
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on on on

1 2 3

e s gt g ¢ H

This system can be solved for the Bni/aa:

anl 1

oa (ns—nl) (nl-nz)

with the other solutions given by cyclic permutation of
the indices. Putting these back into (H.3), we have a

convergent integral for 9I/9%a involving only the n; .

We can proceed in the same way for BWA/BA. In the

form (H.1) of W we write

A?
_ b
F——Z"P(n)
n

where

4

25n5 = &Sn= + (ZA—UZ)n2 + 2U2n - U2

P(n)

]

n

28 (n-nl) (nz-n) (ns—n) (n—n4) (n-ns)

By expanding the factored form of P(n), we find

3 i
go, = n.
2 =5 b
(11.5)
0 =§ ninj

U“-2A _ <~
el o LN
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.
§ T Lngngmeny
-Lﬁ=nnnnn
25 112%™

where the sums after the first are over all possible

combinations of {1, 2, 3, 4, 5} with no two indices the

same. For example,

z:ninjnknl = N N,n N, *+ N n,n.ng

+ ]’111'121’141'15 + n1n3n4n5

¥ Colflgfglis
Taking the partial derivative of each equation in the set
(H.5) with respect to A, we obtain a system of linear

equations similar to those in (H.4) for the &n;/3a.

After considerable manipulation, we find that

Z
Wy 4 g (H.6)
A S (nl—nz) (nl—ns) (nl—n4) (n1~n5)

where the other solutions may be obtained by four succes-
sive cyclic permutations of the indices. The computations
are considerably simplified in this case by performing col-

umn operations on the determinants involved to obtain these
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determinants in factored form. We may illustrate this

point using the determinant of the coefficients in (H.4):

“Hghhy gty e
D = gty HySug gy
1 1 1

Subtract the first column from each of the other two,

“n,n. ns(nz-nl) nz(ns-nl)
D = Ty *Tg g~y ny~Ge
1 0 0
Tiog (g4 ) Ty (B g 0y.)
= Ry e
= (ny-ny) (ny-ny) _:3 -22

= 4 (nl_nz) (nl-n3) (nz_ns)

The manipulations follow the same pattern for the larger

system (H.5).
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Replacing F(n) in Wy by the equivalent expression

F(n) = 25 (n-n;) (n,-n) Q(n)
n :

where Q(n) is a cubic with roots Nz, Ny, Ng

Qn) = 28(nz;-n) (n-n,) (n-ng)

we obtain

1 y[nz g _ Ut dn
W, = - = (3Sn” - —) —&=
A “ n?” Yn) (m,-n) Q)

B

Transforming this according to (H.2Z),

By = By o P
(a= 2 38 & 2 )
L 2
W= - L [ [sseeese)? - 2 ] e
% T (1 («+€)*" Y (1-£%) Qa+pE)

It is now an easy matter to take the A-derivative, follow-
ing which we transform back to the original variable n.

The result is
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Wop = —J’ Hlam - gm 5 g+ + 2 +
e
o/ 2A an4/8A anS/BA -
J(n) (5 n, e n-n, ].J(n n;) (n,-n) Q(n)
2
where I(n) = 6Sn + 2U3
n
gty = L (ssn? - O
(n) = 5 (3Sn" - =)
n
By substituting the values of o, B in terms of Ny, Ny,
this reduces to
Mo ™ — say [ © [T(n) - S L] 1
AA o, | Q) |
o |

n,-n 9n =71 on ’
2 i f 1 2
X \/n—nl BA_T/nz—n oA ] dn

o n, anS/BA 3n4/8A BnS/BA F
T j; I ( ng * n-h, . n-ng ) v%n—nl)(nz-n]Q(n)

where the ani/SA are assumed to be replaced according to
(H+6) .

The numerical evaluation of the integrals in Wan
presents no great difficulty, once we decide which of the
roots n; to take for ny and no; and that question is

answered in our study of the steady-profile solution.
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There are excellent Gaussian quadrature formulas for
integrals with square-root singularities at the end-
pointézﬂ which may be used.

It might be noted that the sign of WAA is of great
interest because it determines the stability (WAA < 0)

or instability (WAA > 0) of the fundamental wavetrain to

slowly varying perturbations.





