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Abstract

In Part I the kinetic theory of excitations in flowing liquid Hell
is developed to a higher order than that carried out previously, by
Landau and Khalatnikov, in order to demonstrate the existence of
non-equilibrium terms of a new nature in the hydrodynamic equations.
It is then shown that these terms can lead to spontaneous destabili-
zation in counter currents when the relative velocity of the normal
and super fluids exceeds a critical value that depends on the tem-
perature, but not on geometry. There are no adjustable parameters
in the theory. The critical velocities are estimated to be in the
14-20 m/sec range for T < Z.OOK, but tend to zero as T — T)\. The
possibility that these critical velocities may be related to the experi-
mentally observed "intrinsic" critical velocities is discussed.

Part II consists of a semi-classical investigation of roton-
guantized vortex line interactions. An essentially classical model
is used for the collision and the behavior of the roton in the vortex
field is investigated in detail. From this model it is possible to
derive the HVBK mutual friction terms that appear in the phenomeno-
logical equations of motion for rotating liquid He II. Estimates of
the Hall and Vinen B and ]I':”:l coefficients are in good agreement with
experiments, The claim is made that the theory does not contain

any arbitrary adjustable parameters.
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I, Higher Order Kinetic Theory of Excitations in He II and

Spontaneous Instability in a Counter Current

1. Introduction.

Recently, considerable attention has been given to the subject of
"intrinsic" critical velocities (i.e., those which do not depend on channel
size) in the flow of superfluid He II [1-4,11], Notarys [4] and Kukich etal
[11] have experimentally shown the existence of an intrinsic critical
velocity at temperatures between 1.3’ K and the X point; while Langer
and Fisher [2] have suggested a theory involving a mechanism for the
spontaneous creation of quantized vortex rings.

The purpose of the present investigation is to examine the question
of whether intrinsic critical velocities can be predicted on the basis of
Landau's two fluid model of Helium II, in which the normal fluid is
regarded as a gas of excitations moving in a superfluid background. A
set of dissipative hydrodynamic equations has been derived by Khalatnikov
[5-6], by using a Boltzmann equation for the excitations and general
conservation laws, These equations reduce exactly to those of Landau
[7], which were derived from purely continuum considerations, when
the dissipative terms are put equal to zero. However, Khalatnikov's
equations do not appear to predict an intrinsic critical velocity.

We shall show that the methods and ideas of Khalatnikov can be

extended to derive a higher order version of the Landau-Khalatnikov

*The material of Part I is to appear in Annals of Physics (N.,Y.)

1970, in joint authorship with P, G, Saffman.
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equations which contain terms of a new nature, The terms are dissipative
in the sense that they arise from a lack of thermodynamic equilibrium in
the excitation gas, but nevertheless predict that some disturbances in a
rapid counter current will grow in amplitude. Thus they provide a means
of interpreting the phenomenon of critical velocities within the mathe-
matical framework of a set of equations of motion derived in a consistent
manner from the two fluid model. However, it will be seen that the
critical velocities predicted by a rough calculation are larger than those
observed, and there are differences in the dependence on temperature,
The physical significance of our results is still therefore an openquestion.

In Section 2 we will derive the extended kinetic-hydrodynamic
equations of motion., Section 3 contains an analysis of the dissipative
terms which appear in the equations. In Sections 4 and 5 we analyze the
effect on second sound waves in an unbounded medium in a counter
current, and show that critical velocities arise at which second sound
becomes spontaneously unstable. Section 6 will contain an analysis of
the behavior of disturbances in flow through a two dimensional channel
as described by a simplified version of the extended equations. Critical
velocities found this way are similar to those given by the second sound
instability. Finally, Section 7 will be devoted to a critical discussion of

the extended equations, and a comparison of our results with experiments,



2. The equations of motion,

The Landau-Khalatnikov non-linear, dissipative equations of

motion for Helium II can be written in the form,

p jy § o=

ot +d1v;]__- 0, (1)
aXs , 2

o= Vit iv,+é), o
9)

o = S VP =divip e ¥ + pY ¥ )+dive , (3)
OE . ; 1

= -div(pi+ TSy + dv i+ v (v - i) -py (v - v ))+V-g (4)

Equation (1) expresses the conservation of mass, where p is the density
and j the momentum density. In equation (2), X denotes the super
fluid velocity, and is the velocity associated with the ground state or
background in which the elementary excitations comprising the normal
fluid move. KEquation (2) is an equation of motion for the irrotational
super fluid, The velocity of the normal fluid is denoted by Y- The

momentum density is expressed in terms of a density Pn of the normal

fluid by

+p v _, (5)

v
sS—™S =1

where p_ = p-p_, and it is also convenient to write
s n

W, (6)
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where w = i k. 4 is the relative velocity of the normal and super fluids.
Equation (3) expresses the conservation of momentum for the entire fluid
and Equation (4) expresses the conservation of energy where E is the
energy density (energy per unit volume). The quantities ¢, m and g
are dissipative terms or fluxes which arise when departures from local
thermodynamic equilibrium are not infinitesimal,

The symbols u, P, S, T denote the chemical potential, pressure,
entropy density, and temperature, and are related by

TdS=d(E -1 v

b
« o _gpw ), (8)

when the departures from thermodynamic equilibrium are negligible. In
this case, the equations can be derived from general considerations of
Galilecan invariance and the conservation of mass, momentum, energy
and entropy [7].

The equations can also be derived from a model of Helium II in
which the normal fluid is treated as a gas of excitations, each of which
has momentum p and energy (in the laboratory frame)

e=e(p,p)+pP- ¥ (= |p]). (9)

s
€(p,p) is given by the Landau spectrum. The density of excitations in

phase space, n(x,p,t) satisfies a Boltzmann equation
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ov
_%e de  9p sk 8n _

Bm) = 8p t sy (Bp 8x TPy Bxi E)pi =Hm) {10)
where the right-hand side of Eq. (10) gives the rate of change of n due
to collisions between the excitations. When the excitation gas is dilute,
the equilibrium distribution (for Bose-Einstein statistics) is

=3

n, = { exp [{e -p- y.)/kB'r] =t (11)

and the thermodynamic properties of the excitation gas follow from
standard methods of statistical mechanics, Using the fact that collisions
between excitations conserve momentum and energy (but not necessarily
number) and the assumption that the super fluid background has zero
entropy and is irrotational, one can use Equation (10) to derive (1)-(8),
without the dissipation terms, where n, is used for the distribution of
the excitation gas.

In this model, the dissipative terms arise from deviations
between n and the equilibrium value n,, which occur when the flow is
neither steady nor uniform, The energy and momentum of the excitation
gas are still well defined quantities, and it is convenient to define the
remaining thermodynamic variables of state (including Xn) by the
equilibrium functions of energy and momentum. One can then show [8] ,
that the motion is given by Equations (1)-(8), and the dissipative terms
are given by

dp
- [me-m) & =, (12)



dp dp

= Be = - e =
T = O J o o 55+ [ (momm)py g 15 (13)

dp dp

— _ e = Y W - e =
qi = Jif(no n) ap h3 +J (ﬂo n)(e E'.V_") ) h:-} (14)

In these expressions, the integral is over momentum space and h
denotes Planck's constant. We shall refer to g as the viscous stress
tensor and q as the heat conduction veci;or. Further details of the
derivation can be found in [8].

From equations (4) and (5), one obtains the equation for

entropy change,

9B . givisw )= = di MMy % gy (15)
ot I TTL T T OB, T ¥ 7.

J



3., The dissipation terms.

The collision term in the Boltzmann equation for the excitations is
not known with any certainty, and even if given, the Boltzmann equation
is difficult to solve. We shall therefore proceed by assuming that depar-
tures from equilibrium are small and that the integrals (12), (13) and (14)

can be evaluated with the standard approximation (see [8]).

ng -n = ‘rB(no)

Tn0(1+n0) (e 0 W) (8T

S+ %, -VT)

¥ %E ) VT+P(W+Vn'VW&>
ov_.
* P (Bpk Wk) 'a_xf _%(%%J’Xn'vf’) ; (16)

where T 1s a relaxation time which depends on the details of the excita-
tion collisions. For consistency, T must be independent of p, but can
depend on density and/or pressure., Substitution of Equation (16) into the
expressions for the dissipation terms then gives these terms as linear
combinations of the gradients and time derivatives of T, w, Ey and p,
the coefficients being integrals of n,;, € and p over momentum space.
At this stage, Khalatnikov simplifies by linearizing in the

velocities and spatial derivatives, and using the linearized 'inviscid'
forms of Equations (1)-(4) to eliminate time derivatives, For our pur-

poses it is necessary to work to a higher order of approximation. The

use of Equation (16) gives expressions
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_ AT . @) ., 8T @), |
= (81: P ¥n VT) F o T ax; s (MR UT e vwi)
@) 2Vni @) (20
+ Tle axk + TE ot + M vp) ; (17)
e (r) (8T e (m) aT_
B = PR Ny ¥ TAik(at L VT) ¥ B b Wiy ox,
ow ov
(m) 4 (r) " ng
* Tclkﬂrn Ym\ ot id Yn VW) + il ikfm Sx
+ 7B 7”( -vp) , (18)
(q) (q)
- oT 0T
q; = ¢Ji+ TA Wk(8t+v VT)+ Bk 8Xk
( Ow. (q) v
k nf
+ ik (8t v Vwk) + TD. W

+ TE(E) k( n'vp) : s

(a)
The terms A(¢), w3 Eik are integrals of n,,e€ and p and are there-

fore scalar or tensor functions of T,p and w alone. For example,

dp

(‘Tf) . T
Ditrm = 5ot J Po(l4no) Pip, ap (Bp ) W 20
B k OB
(C.l) 1 2 9
. — 3 oe =
Bie =wgme J molmoe-prw) 5 (5o w ) 5 - (21)

and so on, Symmetry requirements will reduce the number of



s
independent coefficients. The tensor dependence on w has beenpartially
accounted for in writing Equations (17), (18), and (19), so that all the
tensor coefficients are finite and non-zero as w — 0,

To a satisfactory approximation, the excitation spectrum can be

approximated by two branches

€ = c,;p for phonons, (22)
and
2
(P-Po)
€ = AP g for rotons, [23)
CAT

where c¢; is the velocity of first sound., Typical values of the para-
meters in the roton branch are in c.g.s. units [9] :

A=1.2%X1077%, py=2.0x107"7, p xl1x107%, (24)

but there is a variation with density, (Neutron scattering experiments
show a dependence on temperature. This is presumably due to inter-
actions or 'dense gas effects!, The use of an excitation spectrum which
depends on temperature is not consistent with the Boltzmann equation or
the equilibrium distribution Equation (11) ).

Itis clear from the equilibrium distribution that the magnitude of
the relative velocity w must be less than the minimum of €/p {the
Landau criterion), We suppose now that w = |w| is significantly less
than the Landau critical velocity and that the coefficients A(d)), T E(fi()
may be replaced by their values for w = 0. We then find after consider-

able labor that



10T £2 a5
¢ = T(Ge Iy VI) + F w VT + &5 w- "é‘?*in’w"—)
. Es (90
by divy, + (4 -Vp) (25)

where the coefficients &;, ..., & are functions of p and T and
independent of w2, All coefficients have the dimensions of kinematic

viscosity, except £, which is kinematic viscosity divided by velocity

squared, i,e., time,

£, = ﬁﬁ J n'(+n)e %’? 3 %‘? ,
£, —flkl‘”—'jr? n=(1+n')€-g-% pz %Jrg}:rg‘rr 'n'(l+n‘)§'§‘g%133%pi
; ﬁ,g;z I n'(1+n')(1+2n')€g‘% g% p (26)
By = —%‘E_—?’I_T? f n'(1+n*)(1+2n") 'g—ef; p4 -dh% s
gé:-ﬁi% fn’(l+n')%%?3% ,
£, =p§;% n'(l+n') (“g‘%; Pz %‘%

In these expressions, € as a function of the scalar p can be approxi-
mated by Equations {22} and (23), and n' denotes the equilibrium distri-

bution (Equation (11) ) for w=0. The dependence of roton parameters
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and velocity of first sound on density is discussed by Wilks [9].

Similarly, we find that

+p¢6 1]rdrn'n 8;13;11+ 6ik%‘£(§%‘+xn.vT)
* Oikem n"? ! é%f“n " Sk n;j we VI Blkzmnsv‘k(?;:m' +vw)
4 611«:% (%QE G VP) , (27)
where

5., & o B + &

5 ik fm if "km im 6k£ 4

ikém

2
4 T i O€ % d
TS e T J ntTmY (50) P W

= 3
Awr J n'(l+n') € -a—E—p dp

W B, T op P nd ¢

oy -l—g%%—%-z n'(L+n')(1+2n') € (25 ) p' 28 - 1—"‘15;!;% n'(1+n1)(g§fp“ & (28)
M2z = N1 »

Ny = é—k'";;f; n'(l+n')(1+2n') g—; p B

_ATm T %e 9 3 dp
Ms = 3T Tpfn(”n)apap Py -

All coefficients have dimensions of viscosity, except n; which is



2
viscosity/(velocity) .

For the heat flux vector, we have

pT 5! (aT By

y i gy ™ ox, T Vilae ! Xn'VT) i g3( ot +-v-n'vwi)

ov
—nm
t Tn 6ik£m Wk 8x£ Caz (E'V)vni

Ts o
9
+-p~wi(§%+ zn'Vp) ) (29)
where
2
_ 4w T e (€Y # 9D
ST & J n'(nt)e (ap) P 33 o

- 4T T 2 2¢ 3 dp _
t, = 3szTz n'(I+n")(1+2n') e Bpp h 2n; ,

T3 = My

Cs1= M21 »

La2= M1 »

Ts = p(E1 + E2) . (30)

The coefficients ;, ..., Lz @all have the dimensions of viscosity,
The expressions (26), (28) and (30) depend specifically on the

solution (16) of the Boltzmann equation, Also, the neglect of the w?
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dependence in the coefficientsisa 10-20% error when w is of order
kBT/Po ~10m/sec. However, the labor required to remove this latter
error does not scem justified in view of the uncertainties inhcerent in the
Boltzmann equation and its approximate solution. In fact, the purpose of
the above calculation is to provide a basis for the hypothesis that the
'viscous' terms are of the form (25), (27), (29), where the coefficients
€1, ..., Ls are properties of the Helium and functions of p and T. In
the temperature range where the use of a Boltzmann equation and the
approximate solution (16) are valid (this is probably the case between

1. 2.0 and 1. 60; above this temperature the excitations are dense and
below this temperature phonon collisions, which may not be well
described by (16), are important), we can use (26), (28) and (30) to
estimate the coefficients. But outside this range, we make the hypothesis
that the dissipation terms have the stated forms with coefficients that
remain to be found.

When the non-linear terms and the terms involving w are neg-
lected, the 'viscous' terms reduce essentially to the forms given by
Khalatnikov [8]. This approximation seems most reasonable and
estimates of the new coefficients (see Sectiones 4, 5, and 6) verify that
the extra terms are small when velocities are small compared with the
speed of second sound. However, the new terms contain qualitatively
different properties. For instance, they can produce negative damping
and thereby lead to destabilization of a laminar flow, Thus althoughthey
are small and apparently dominated by the familiar viscous and heat
conduction damping terms, they can produce new effects. In the present

work we shall confine the discussion to the propagation of second sound
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in an unbounded fluid, and the behavior of incompressible disturbances

in flow through a two-dimensional channel, and demonstrate the existence
of critical values of a counter current above which the dissipation terms

give negative damping and an exponential growth,



g

4, The effect of 2 counter current on the attenuation of second sound,

If we estimate the coefficients in (28) and (30) with the roton
spectrum, and suppose that velocities are small compared with the
speed of second sound, we find that the dominant terms in the irrevers-

ible momentum and energy transfer terms (27) and (29) are

Tak T POy = éikﬂmna;r:; i GikiTl T i n_;l ¥y 5851;’ el
where 21 -

n kBT’
and q + ¢, = x%;f; 85 g 21 Wy ?ai?' (32)
The substitution

-a-%‘- el 5 divv_,

(where C = specific heat) which follows from the linearized non-dissi-
pative equations, convert the first two terms on the right-hand sides of
(31) and (32) into the standard expressions given by Khalatnikov [8].
Also, the terms involving g—é can be neglected to a first approximation
so that ¢ can be taken as zero,

We now consider how the extra terms, which involve cross
products of w with the gradients of temperature and normal velocity,
will change the attenuation rate of second sound in a heat current. We

neglect the non-linear terms in the convective terms; the approximation
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is not completely self-consistent, but is sufficient for our purposes. One
then finds that the temperature fluctuation T' (here and following,

primed quantities denote perturbations) satisfies

2
pSTS 0 Mg
2 ?
P pnC Sxi Bxk

L L 1.0 ..
a2 -uHVT'=*F;“E“a*jC-d1V9_—

(33)

2 2 2
where L (S TpS/Cp pn) is the speed of second sound. The right-hand
side of (33) is evaluated by subsituting from (31) and (32).
For a wave of second sound in which all quantities vary like

el(é.ﬁ_mt), we find after some algebra that the value of Im(w) is

2 2 2
3/" nZIUHWA, Kéz 377/9 Pg TIIS;\’ (Pn+2PS)
R T 2pC " 2pp. T T2ppC g

Im(w) = (34)
where WA is the component of the undisturbed counter current in the
direction of é . The attenuation rate is proportional to -Im{w). Thus
a wave propagating against the counter current decays more slowly.
Further, if the counter current were increased sufficiently far, the
attenuation could become negative so that spontaneously growing waves
would appear. At 1.4°K, the expression (34) becomes zero when VV;|
is about 14 m/sec. However, the approximations leading to (34) are‘
suspect for such large values, and in the next section we carry out a

consistent approximation to find the critical value of the counter current

for instability.
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5. The instability of second sound in a counter current.

We consider small perturbations about a state of uniform motion.
It is convenient to take a frame of reference moving with the normal
fluid, so that ¥, & W, say, in the undisturbed state., For the sake of
simplicity, we shall only consider plane waves propagating parallel (or
anti-parallel) to the counter current, Also, we shall neglect the coeffi-
cient of thermal expansion and the isothermal compressibility; this also
includes the dependence of p on WZ . (These approximations appearto

be good to within a few microdegrees of T Then with p=constant, the

)

equations of motion (1), (2), (3) and (15) give

b v +p v+ Wp = 0, (35)
v, v, ' ' :
av:’ +W§§=—§%F;—+s-%%—z—nwéa;(vll-v;)'%s (36)
P'+W2ps'+zpswvs'=w;1, (37)
r e 2q, '
SIS A AR -

where the primed quantities are the departures from the uniform undis-

turbed values. In addition, we have from the differential equation of

state

neons ()T VG (en) . o9
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From the identity

dpP Pn 2
dpp = == = gd'Il === dw
= p 2p

it follows that

since we are taking p to be constant.
When the dissipation terms are neglected, we find after some
algebra that the velocity < of a wave propagating in the positive x-

direction is given by the quadratic

8 ¥ \2
S o[ 2w i(5)] 3 - (58) }
s
9p dp o W ap 2
-2We { ps(ﬁ)-pn[r’s 'sz(gﬁ):}gi-r' np (a—;) b

2, 9p 2
=p [ps" 2W (5\;% :I s . (41)
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1 1 L
Moreover, the relative values of e B and T are

1

9 ¢ Bp 27
1 is_ 2 pn W c pn .
vyl et [Ps ZW(awzﬂ“L 3 (BT) b
d d 2 _8p B
' Q_S_ 2 Pn Pn W ¢ Pn 1
Vol © ot [F’n+zw (awz)]"ws(aT) " T (aT) f

=1

T { S[ps- sz(%)}rwc(a_;%) + : (42)

=7

il

11

In (41) and (42}, all functions should be given their equilibrium
values for given P,T, and W. For all reasonable flows, it can be
shown that the quadratic (41) has real roots, so that second sound always
exists in a c.ounter current. KEquation (41) was given by Khalatnikov [13]
(see also [7] ) but only up to O(W). We retain the V\f2 terms for the
sake of consistency.

We now include the dissipation terms. Since these are small,
they can be evaluated by substituting the ratios (42) and relating time
and space derivatives by 58; = -c _8%: , where c¢ is a root of (41). It is
clear that these terms will make ¢ complex. For W smmall, the
dissipation terms will reduce to the familiar viscosity and heat conduc-
tion terms, which will produce an attenuation or damping of second
sound. But as W increases, the possibility exists that the imaginary
part of ¢ will change sign, which implies a spontaneous amplification,
We now find the equation for Wc’ the critical value at which the
imaginary part of ¢ changes sign.

1
Eliminating p and writing 585— = -C 8_(1 , we can write (35)-(38) as
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) ]
1 o2 P Y n 2 9P ' 1
_vnl:W(pn—ZW W)] vs[pc +(p ZW ) -] ]:SP w ﬁ] Tated . (43)

The determinant formed by the terms in square brackets is the quadratic
(41). The condition for Im(c) = 0 is that the three equations in (43)
arc linearly dependent when the determinant vanishes., This gives

r 1 ! pw 3 .,Bpn
{ 57 +51 o} {opc+2W pC(a 2) + 2Wp o - 4W p (527)}

P ' P apn apn
+lﬂn+p¢}{SpS'ZSW("é§l’2)+WCﬁ'}=0. (44)
For this equation, we have from (29) that
1 L a 1 1 !
q; + p,Wé = 3= KT + & C.I -cls (Vn' Vs)‘(3§41‘§4z)wvn ; (45)
and from (27)
!
' 1 9 1 cn; T Wt 22 !
7T].1 +p¢ = —.8_1‘; [3n Vn = T _3n21 '—,I,— T + T WT ] " (46)

1 1 1
The ratios of o1 T and T are given by (42), and c¢ is a root of (41).

For given values of the dissipation coefficients, equation (44) gives the
critical values of W. If we accept our approximate solution of the

Boltzmann equation, the coefficients are given by the integrals (28) and
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{30). Note that only the ratios of the coefficients enter, so the results
are independent of the relaxation time T.

These cquations were too complicated to examine analytically
and were therefore studiced on the IBM 360/75 computer over a temper-
ature range between 1.401{ and T)\. The results are shown by the full
curve in Fig. 1.

Some of the assumptions used in the numerical analysis should
be mentioned explicitly, The viscosity coefficients were evaluated using
a relaxation time 7 that was assumed independent of the excitation
momenta., Under this assumption it was found that the roton contribu-
tions dominated the numerical evaluation of the viscosity integrals,

It was not possible to find formulas or experimental data giving
the dependence of the various thermodynamic quantities on the relative
velocity w {for temperatures above about 1.40K, although Khalatnikowv
[8] has derived formulas valid at lower temperatures. Fig,l was com-
puted using the experimental data of Donnelly [10] up to Z.OOK, and
that of Clow and Reppy [14] near T)\' These data are essentially that for
w = 0, It was felt that this approximation, although crude, was the most
consistent one we could make for all temperatures. \/VC was also com-
puted at 1.40° and 1.80 using the Khalatnikov formulas and good
agreement was found with Fig.1l at these temperatures. It should he
noted that both the experimental approximation and the Khalatnikov
formulas are extremely rough near Z.OBK where WC—"i 20 m/sec.

Since no experimental data were available for the quantity
apn/ ow  we used the Khalatnikov formula up to 2 0 K. Although this is
a dubious approximation at such high temperatures, this term was found

to have only a small effect on W _ anyway, so the error involved here is
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probably not very large. It was felt that this term should decay to
zero rapidly near T)\ and was simply dropped above 2,0°K. A small
discontinuity in Wc at this temperature has been smoothed out in
Fig., 1.
The behavior of Wc above 2.10°K is due to the fact that the
first coefficient in Equation (41) can change sign for relatively small

9p
values of W since ajrj‘l — w0 as T — T?\ [14]. This results in a

discontinuity which changes the sign of the net damping effect, as is
most easily seen from an analysis similar to that of Section 4. The

decay of Wc near T, is roughly

X

=

4 3
W_ ~ 10 (l-T/TK) as T—-T,. (47)
As an independent check, the full set of hydrodynamic
Equations (1), (2), (3), and (15) were also analyzed on the computer,

These equations were perturbed about the same equilibrium flow
described at the beginning of this section, but without the simplifying
assumptions that led to Equations (35) to (38) by enabling the second
sound modes to be uncoupled from those of first sound. The critical
velocities obtained from this analysis agreed closely with those shown
in Fig. 1 and seem to verify the assumptions used in this section.

It should be mentioned that there do not seem to be any

instabilities in first sound below the Landau critical velocity.
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6. Stability of flow through a channel,

An analysis of the complete set of viscous thermohydrodynamic
equations for flows in more than one dimension with boundary conditions
is extremely involved. In this section we will give a stability analysis
for a very simplified form of the equations in a two-dimensional channel,

We simplify the viscous terms by retaining only the shear viscosity
n and the destabilizing viscosity n,; in the total momentum equation.
All other viscous terms will be dropped.

We further reduce the equations with the assumptions that s =
const. and that both the normal and super fluids are incompressible (see
Landau and Lifshitz, [7] ).

More explicitly, under the above approximations, the equations

of motion become:

B = const, Py = const, p =const, s=const, divvy _=divv =0,

o, ’ 8¥., 2 Nz1
Pn ot % Pan’QXn‘*PS ot * Ps ¥ 'VY-SF b Xn+ T diviz VEY:
ov P
~s . . 2P m o2
56 FM YVE, = - +sVT+2pvw, (48)

We consider a channel in two dimensions with walls at y = + 1 ;
the x-axis being taken as the center line, (Using + 1 results in no loss
of generality since the final result will be independent of the channelsize.)

We assume the following undisturbed state



Ty = const, P =

For boundary conditions at the wall,

conditions at y = £+ 1:

v
sy

P, = const ., (49)

we use the insulating wall

(50)

Assuming that the super fluid is irrotational allows us to use the

super fluid potential ®q defined by

where

V(pSJrU

c_ .
-_x

(51)

We try the following forms for the fluctuations

Ps

1

P

1}

&(y)e
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T(y)e
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D y(y)e

-ig dly)e

ia(x-ct)

x-ct)

ig(x-ct)

(x-ct)

ig(x-ct)
2

(52)
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Note that Equations (48) have the steady state inviscid solution

const on streamlines, (53)

'.’f:< L
I

2
¥, = const everywhere, {(54)

+
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H
-
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Substitution of (52) into the super fluid equation in (48) gives

' p. U p. U
(—iac+iaU~iaLp)<D=~—§+ST—~—%—D¢. (55)

Substituting (52) into the total momentum equations in (48)

results in

2 2 . 2 Una, 2 2
-igp. ¢ -nN(D-a) (DY = ~ieP+ap (U-c)® - —=——(D-3a2) T, (56)
Pn Ps T

and

Unaz;,
To

2 2
-ig [*iapnc -n(D -« )}p = ~-DP - iapS(U-c)D§ - 2ia DT . (57)

Using Egs. (48), (50)-(57) we eliminate ®,P, and T to obtain:

2
2Unz, o2 z7 2 Unzi 2 2 p UD = =
sp _Z 2 e T g n (D-e) |
(0,2 iTa )lipn(Uﬂ-cH ia'(D a):|D4J—I:sp+iaT(D 3¢ )][pnc-’r N _14;
(58)
Using  oc s )\Y, substituting into Eq. (58), and cancelling

common factors gives
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spd) o 2 UﬂZIQPn
(I-)) + ”TT;—

2
panC = T (3C+)\U) , for N # 1. (59)

Note that for \ = 1, Eq. (58) is satisfied identically,

If we assume the explicit form
Y= Asinhay + Bsinhal\y (60)

for  then Egs. (50, (52), and (60) applied at the wall produces the

determining equation for X :
Ntanh a = tanh a\ . (61)

Eq. (61l) has the real roots X\ = 0,1 and the complex roots \ = ip

n bl

where By = I;—ﬂ + € n=1,2,..., (The exact values of €, are

2

n

immaterial here,)
The flow will be unstable when Im(dc)> 0 (see (52) ). From
{59) the condition for neutral stability is

2 sple n
v = m—— (62)

For U larger than Uc given by (62), the fluctuations (52) are un-
bounded in time,

The critical velocity found for this problem is very similar to
the one in Section 5 for second sound in a counter current, In the tem-

[+ o
perature range between 1.4 K and 2.0 K both velocities increase
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roughly in proportion to T, are independent of any geometric length
scale, and are of the order of about 10-20 m/sec.

It should be noted that the thermodynamic assumptions used here
cannot possibly produce the wave modes experimentally observed for
He II in very small channels (i.e., fourth sound and the fifth, or "no
sound", wave mode [12] ). The equations of motion were also analyzed
for narrow channel instabilities without the thermodynamic and incom-
pressibility assumptions made at the beginning of this section. Only
the n and n,; viscosity terms were retained, but all quadratic inertia
terms were dropped. The analysis was extremely involved and it was
only possible to solve the problem for the two lowest modes. These
proved to be stable for U less than the Landau critical velocity., As

yet, it is impossible to say anything about the higher modes,
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7. Discussion,

The critical velocities found in the preceding sections do not
secem to correspond to any of the critical velocities known to cxist
in He II, although there are some similarities with the intrinsic
critical velocities observed by Clow and Reppy [1], Kukich et al. [11],
Notarys [4], and Jinchvelashvili et al [3]. All of these experimental
critical velocities are of the order of a few meters per second and
decay to zero at T,. (See dotted curve in Fig,l). The observed
decay near T, is, in [1], [11], and [4], somewhat faster than the
calculated values shown in Fig.l. The experiments described in [4]
and [11] consider temperatures well below T)\, but they observe a
decrease in the critical velocity as T increases, and not the increase
shown in Fig.1l, It should be noted, however, that the first three
experiments use finely porous flows and so differ very considerably
from the flows analyzed in Sections 5 and 6. Jinchvelashvili et al.
used narrow, rotating annuli and found a wide variety of results that
give both faster and slower decays than shown in Fig.l.

The only other theory of the intrinsic critical velocity, that
of Langer and Fisher [2], tries to associate the critical velocity with
the spontaneous nucleation of quantized vortex rings by thermal
fluctuations. Notarys, in a private communication, has pointed out
a scrious inconsistency in this theory. It can be shown that these
rings would have to be larger than the channel size and it is not
clear how they could fit in.

In light of this we feel that we have either predicted a new
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critical velocity for the breakdown of superfluidity, or have found an
old one theoretically, but have obtained poor numerical correlations
with experiments because of the crudeness of some of our approx-
imations or because the flows analyzed in Sections 5 and 6 are so
different from the experiments., If we have found a new critical
velocity, it is of limited importance since it occurs at high velocities
and is masked by the earlier occurrence of other critical velocities,.

Accepting the basic structure of the equations, which depends
on the approximations made on the collision terms in the Boltzmann
equation in Section 3, we see that different choices of values for the
viscosity coefficients could produce instabilities at critical velocities
that would agree well with experiments., That is, if we regard the
viscosity coefficients as adjustable parameters, they could be chosen
so that the calculated Wc would fit any experimental data, At the
high temperatures considered here there is no question that the use
of the integrals (26) to (30) is only a rough approximation, Even
accepting these integrals, it may be necessary to evaluate them using
more sophisticated methods. In particular, the T # v(p) assumption
might be dropped in some consistent manner (see Khalatnikov [5],
[6], [8]) and reevaluation of these viscosity integrals might give a
very different WC(T) curve,

There does not seem to be a simple physical picture for our
instability. All we can say is that it appears that for W > WC the
kinetic energy of the relative motion feeds energy into a small
disturbance or fluctuation faster than the dissipative viscosities can

drain it out. Of course, the disturbance cannot grow indefinitely,
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but we are not able to predict what would happen once the flow
becomes unstable.

Lastly, we would like to point out the unusual qualitative
nature of the "cross" terms involving n;; and 4; in Eqgs. (27) and
(29) respectively, These "vorticity" terms have no counterparts in
the theory of classical fluids. Their existence appears to depend on
the peculiar nature of liquid He II, and they can be destabilizing. As
yet, we have not been able to analyze their effects mathematically in

three dimensions or interpret them physically.
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II. A Semi-Classical Model of the Roton-Quantized Vortex Line

Interaction with an Application to Rotating ILiquid He II.

1. Introduction.

It is a well established experimental fact [1] that, on a macro-
scopic scale, the superfluid equilibrium motion in uniformly rotating
liquid He II closely resembles the solid body rotation exhibited by
classical liquids. Other experiments also seem to indicate the
presence of vorticity in the superfluid.

These experimental observations have been explained by Onsager
and Feynman [2] in a2 manner that allows us to retain the irrotation-

ality condition

UXv =0 (1)

almost everywhere, Their model introduces circulation into the

superfluid by postulating that the helium is threaded by a distribution
of vortex lines of microscopic diameter which behave very much like
ideal classical vortex lines except that their circulation is quantized

in units of Planck's constant h, i.e.

h

’ n:192)39“- . (2)
He

These quantized vortex lines (QVL) are considered to be part of the

superfluid.
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In the rotating vessel experiment these lines are thought to
hang parallel to the axis of rotation and be stationary in a framec
rotating with the container. The distribution of the vortices is
chosen so that the circulation around any macroscopic closcd curve
in the liguid helium is the same as that around an identical curve in
a liquid moving with a solid body rotation. This results in a Jinc
densily per unit arca perpendicular to the axis of rotation given by

4

2(&)0

N = &, (3)

where wg = angular velocity of the bucket, and I'; is given by Eq. (2)
with n=1, (Energy arguments show that the n=1 case is much more
likely than any of the larger quanta of circulation.) It can then be
argued that the superfluid velocity fields of these lines imitate solid
body rotation on a macroscopic scale (see [1] and [2] for complete
details).

If this model of rotating helium is correct, then it would be
rcasonable to suppose that these QVL would act as scattering centers
for the thermal excitations that constitute the normal fluid. The
velocity field Vo of a QVL would influence the motion of a nearby
excitation through the p - /o interaction term in the excitation
Hamiltonian, When the excitations have a mean drift velocity
relative to the vortex lines, we would expect a significant momentum
transfer between the excitations (normal fluid) and the vortex lines
(superfluid). This momentum exchange between the two fluids is

commonly called mutual friction. The line's "massiveness" and
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tension should keep it fairly rigid during a collision with an excita-
tion, and it would be expected that there would be no (or a very
small) component of mutual friction parallel to the vortex line (axis
of rotation) since 2. would have no component in this direction.

Hall and Vinen [3] performed experiments on the attenuation of
second sound in a uniformly rotating sample of liquid helium, and
found an extra attenuation due to rotation Whi%h could be qualitatively
explained by this theory of mutual friction, Quantitative agreement
between their experiments and the Landau hydrodynamic equations

could be obtained by adding an ad hoc force of the form:

p.p. woXlweX(v -v )] 1 PP ——
s Pn 0 0 n S = B Sn@ox( )} (4)

P Wo P

to the superfluid equation. In (4), ¥ and Es are values of the
normal and superfluid velocities that have been averaged over regions
whose dimensions are large compared to the distance between vortex
lines, but small compared to the size of the experimental apparafus
(hydrodynamic velocity fields). B and B' are chosen to fit the experi-
mental data and are functions of the temperature T,

If this F is due to excitation - QVL collisions, then Eq. (4)
should be derivable from microscopic considerations of such a
scattering and B and B| should be numerically predicted by this
derivation. This is what we have tried to do here,

We shall first review earlier work on this problem. Then in
Section 2, we will consider an individual encounter between a thermal

excitation and a QVL using an essentially classical model for the
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interaction., In Section 3, we further describe the mechanism
responsible for mutual friction and give a derivation of Eq. (4) which
produces expressions for B and B' that do not contain any arbitrary
adjustable parameters. Finally, Section 4 contains a critical dis-
cussion of our theory that includes comparisons with experiment and
previous work on the problem,

The experiment by Hall and Vinen [3] mentioned earlier only
measures B quantitatively. Snyder and Linekin [4] have measured B‘
from mode splitting experiments on second sound in a rotating cavity.
Tsakadze [5] has verified the strongly anisotropic character of
mutual friction from an oscillation experiment that shows that any
force component parallel to the axis of rotation must be at least
two orders of magnitude smaller than the components normal to the
axis, Hall and Vinen also observed this, but were not able to make
any measurements,

By using general conservation laws and the assumption that the
internal energy is increased in a manner proportional to the averaged
local superfluid vorticity, Bekarevich and Khalatnikov [6] were able
to derive hydrodynamic equations which include the force given by
Eq. (4). However, theirs is a purely formal continuum derivation
that neither considers the microscopic nature of mutual friction nor
does it predict B or B|.

Hall and Vinen [7] analyze the excitation-QVL interaction using
a Born approximation and derive expressions for ¥, B, and BI from
classical kinetic-hydrodynamic arguments. Lifshitz and Pitaevskii

[8] use the same classical derivation as [7], but use a quasi-
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classical approximation to calculate the excitation-QVL cross section.
It can be shown [9] that the quasi-classical method is appropriate to
this interaction, whereas the Born approximation is not. Jordansky
(see [4]) uses a quantum kinetic analysis applied to a dilute weakly
interacting Bose gas to find B and BT. None of these analyses have
been very successful in predicting B‘. In addition, there are several
aspects about the work in [7] and [8] that appear to be unsatisfactory.
In particular, both of these papers use cross sections that contain
arbitrary adjustable parameters which are very important to their

calculations. These points will be discussed further in Section 4.
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Do The Roton-Vertex Line Interaction.

All the experiments on mutual friction have been carried out
with T > l.lDK. At such temperatures the roton contribution to Ph
is at least two orders of magnitude greater than the phonon contri-
bution [10], and it appears safe to simplify our analysis by only
considering roton-QVL encounters, as was done in [7] and [8]. Also,
as will be shown, phonons would not be capable of undergoing the
strong and long range scattering characteristic of rotons,

In treating the interaction between a single roton and a QVL,
we shall regard the vortex as a fixed center of force, and the roton
as a point particle with a free particle energy given by the Landau

spectrum [11]

2
- (P-Po)
& it o e e 5
2 21 (3)
where p = roton momentum and p = |p|. The parameters in (5) will

be taken as constants with the following values in c.g.s. units [12]:

A= (1.2)10°°

Do 2+ 107" (6)

we = 1.1-107%

The motion of the roton will be influenced by the superfluid velocity
field produced by the vortex, In the presence of such a 4 field the

roton Hamiltonian is given by [10]:
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H=e(pp)tp-v_, (7)

as seen in a frame in which the line is stationary. The QVL will be
assumed to be perfectly straight and its velocity field taken as the
planar counterclockwise field of a classical vortex line in an ideal

fluid [13]:

I‘Gy I;’x
(VSX, VSY) = (— 211.1.2 > Zﬂ,rZ) ) (8)
where 1?2 = x%2 + yv?®, and the line has been taken to lie along the =z
¥ g

axis. In c.g.s. units I‘O:10-3 (see Eqg.(2) ).

The vortex is assumed to have a core of radius a, = 31&,
inside of which there is no superfluid. This choice of a, is made on
the assumption that the superfluid velocity at the edge of the core is
equal to the Landau critical velocity [14] for the destruction of super-

fluidity, i.e. a, is the solution of the equation

To

A
Zirag = P—o = 60 m/sec.
This choice of a, is consistent with all known estimates of the core
radius.

If the line is moving, it is assumed to do so with a velocity
Es’ defined following Eq. (4). The roton-line collision will always be

analyzed in a frame in which the line is stationary, i.e. a frame

moving with Es' In such a frame the superfluid velocity is given by
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Eq. (8).

We will assume that all the momentum transfer takes place
between the rotons and the core, i.e, that there is no direct transfer
of momentum {rom the rotons to the superfluid, The momentum may
actually be considered as going into the impulse of the entire vortex
system, and thus eventually ends up in the superfluid considered as
a whole. What cannot happen is that the roton loses momentum
directly to the superfluid in its immediate neighborhood. This would
produce a rotational flow in the superfluid,

Other points, such as a possible Magnus effect, will be
considered later,.

The approach described so far must be considered inadequate
for at least one reason. In our model we are only considering
momentum transfer due to the line's field acting on the roton. The
roton, however, is not a point particle, and the presence of the
"finite" roton must alter the velocity field produced by the vortex
and therefore have some kind of effect on the line. For example,
the line might be bent so that its velocity field would no longer be
strictly two dimensional. Unfortunately, our knowledge of the
structures of both the roton and the vortex core is much too incom-
plete to take such effects into account. However, from what we do
know about rotons and QVL's, we do not expect this to be a serious
problem as far as this investigation is concerned. The scattering is
probably very similar to that of a light particle by a rigid structure.
To a certain degree, this analysis may be regarded as a test of this

assumption,
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One may also feel somewhat uncomfortable about treating a
QVI, as a classical vortex line (except, of course, for its quantized
circulation and microscopic corc size)., Here again, our ignorance
of the line structure precludes any better approximation. However,
this model has proven itself extremely successful in the past, and it
is felt that it should be adequate for the purposes of this investigation.
Such blending of quantum and classical mechanics has become so
characteristic of the whole subject of liquid helium that it is difficult
to imagine understanding helium phenomena without such a mixing of
ideas.
We shall now consider the scattering of a roton from an
initial momentum state p to a final state P 4. Our analysis will
depart from standard scattering treatments in two important ways,
First, we will follow the detailed motion of the roton as it passes
through the vortex "interaction region" (say r < L, with the possi-
bility of LL— o0); and, secondly, we shall assume this motion to be

governed by the classical Hamilton's equations

G TRl v BEeps 4 (9)

where

{a;} = {xy,2y and {p}={p.p.p,}.

Before trying to justify the use of Eq. (9), we must first
consider what happens near the core. Absolutely nothing is known

about what goes on when a roton gets near the core, so the best we
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can do is guess. We will take the attitude of trying to do the
simplest reasonable thing we can think of. Rotons passing near the
core will also be assumed to be governed by classical mecechanics and
rotons that actually hit the core will be assumed to be absorbed, i.c.
they give up their entire momentum to the vortex. We don't expect
this model to pass for rigorous quantum mechanical "truth"; the
"actual" interaction might involve some sort of weird bound state,
What we are saying is that we expect some very strong interaction to
take place near the core, and we guess that it should be something
like an absorption. We hope that this model will be a reasonably
good approximation as far as a phenomenological description of He II
is concerned. This investigation can be considered to be a test of
this, and, in fact, is a test to see just how far we can go in using
the simple, semi-classical, Landau-Feynman two fluid model to
account for macroscopic hydrodynamic phenomena.,

Given our model of a roton and the core, it is relatively easy
to make a rough test of the applicability of classical mechanics to
our scattering situation. For an arbitrary potential, it can be shown

(see [17]) that a classical approximation is reasonable when

2bAp<<1’

where b is the impact parameter (the distance at which the roton
would pass the QVL if there were no interaction between them), and

Ap is the momentum transferred during the collision as calculated

*This derivation includes a detailed consideration of Uncertainty
Principle effects,
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from classical mechanics. Our analysis will produce typical values
for the left hand side of the above relation that are between .02 and
.10 for all b, Lifshitz and Hall [9] have carried out a somewhat
more detailed calculation and found essentially the same result. So
the use of a classical model seems reasonably justified. This result
is not really that surprising since rotons essentially obey Maxwell-
Boltzmann statistics.

Substitution of (5), (7), and (8) into (9) produces:

g _ PP Py To ¥ i
dt = pug ) 2w - ’ 0
dy  (p-pe) P To =
T e e = (11)
dt i P 2ar £ 2
2
de Iy xvy Ty I, x
dt - " Px w r* T Py 2qr? * Py 27 % (A%
dpy To To v* To xy
at =~ Px 27w 2 Px g A7 Py ' rt W3

The =z equations show that B, = constant,

Eqgs.(10) to (13) can be made dimensionless with the variables

1 rO

X P
x = — ,p=—,t=—7t,
- a E Po ay?

Substitution of these wvariables into (10) to (13) yields:



dax! e o o oede X
ar = Al 2w PR i
1
dy" Py 1 x'
dt! = sdptel) e 2w r'¢
(14)
dp! 1
1 1 x‘![' 1 l 1 X 2
'X = = TP 2 ~ P w2 Tt P, 53l
dt ™ X T vy 2r yr
dp' 12 L
i S T T T . ''xy
dt! I I:px 21.12 PX r|4 i PY r|4} ’
29 Po
where A = =~ 5.4
T ko

The scattering of a roton by a QVIL takes place as follows,
The roton starts out at infinity in an initial state P and with an
impact parameter b, The subsequent motion of the roton is governed
by Eqgs. (14). The roton passes the QVL, has its state altered, and
has its final state _.Ef recorded when it returns to infinity, The
momentum transferred to the core is simply P-Py- If a roton hits
the core, its entire momentum is assumed to be absorbed by the
line. We do not have to worry about conserving the number of
rotons., This total absorption and the large loss of momentum
suffered by rotons passing very close to the core is similar to the
"hard" cross section guessed at in [8]. This will be discussed
again in Section 4,

Although too nonlinear and strongly coupled to be treated
analytically, Eqs. (14) could easily be solved numerically on a high
speed computer. This was what was actually done. A large number

of numerically accurate solutions for different p and b were
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necessary to compute the cross sections to be described in Section 3.
It was also possible to solve highly simplified forms of these
equations analytically.

It was found that all the rotons were scattered as small
deflections, hits, or "snap-backs" as shown in Fig. 1 (in two dimen-
sions)., The particular course taken by a roton depended on its
initial state p and its impact parameter b. The scattering was
found to be unsymmetric about the forward direction. Note that a
roton can approach the QVL even if p is pointed away from the core
if p<py, (see Eq. (10) ). The p> p, and p < p, cases have different
asymmetries about the forward direction, and there is almost no
scattering through angles near 900.

The smnap-back scattering is peculiar to rotons., This behavior
is a consequence of the strange dispersion relation (5) and the form
of the Hamiltonian (7). This can be explained qualitatively as follows,

Since H is not explicitly time dependent, (9) implies that

+ P o T const, (15)

At infinity ¥ = 0, so that pry, =0, As roton b, (as shown in Fig,1)
moves toward the core, IKSI increases, we find P-v¥_ >0, and this
term becomes more positive as the roton moves closer to the core,.
The only way to keep H = const is to have p decrease, i.e. the roton

moves toward (py,A) on the dispersion curve as shown in Fig. 2.

Just how far the roton moves along this curve is a function of p and
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A
P TP
(o)
FIG. 2
b. Some can be moved across the p = py point. From (10)* we see
that these rotons come to a stop and start backing up. From Egs,

(14) it can be shown that such a roton continues to move back in the
direction it came from. Not all rotons, of course, do this. Some
have large enough p or b so that they can pass the QVI before they
move across p = pg on the dispersion curve. These rotons then
start to move back up the curve and eventually end up with Ps = P.
Note that P need not change direction for one of these turn
arounds to occur, All we need is a relatively small force to just
barely push the roton across p = p, on the dispersion curve before it
passes the QVIL. But the amount of momentum lost by the roton in
this process is sizeable. In this way we can have a fairly strong
interaction at large distances {(on an atomic scale) from the core.
For example, a fairly strong roton, with an impact parameter of

60 ji, can transfer 10% of its total momentum to the core,

*The second term in Eq, (10) is generally much smaller than the first,
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In the next
secti i
ion we will use this model of
of the roton-Q
-QVL
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3. The Force of Mutual Friction.

>

e I

If the two fluids are moving together, ie., u o 5

then the distribution function for the excitations that collide with a
QVL can be taken as the Bose-Einstein equilibrium distribution
function [14]:
elp) ;£
k,T

I
ng (p) = [e B —1} ~ e B . (16)

where kg = Boltzmann's constant and T = absolute temperature. Eq.(16)
has no directional preference so a roton with momentum p is just as
likely to collide with a QVL from any direction, and there would be
no net force on a line because the collision intensity is the same for
all angles.

= z # 0, the excitation distribution function

When u=yv
=" = s

becomes [14]:

= (€-p-u)

€E-p-u =1 kBT
n(p,p-u) = [eXP —“—) -1:] = e (17)
p =
For a given p, it follows from Egs. (16) and (17) that:

n(p,p-u) > ng(p) for p-u>0
and

n(p,g-g)<no(p) for E-u(O.
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The intensity of excitations colliding with a vortex now varies with
direction and we expect this to produce a net force on the line. The
force of mutual friction will be identified with the total force on all
the line elements in a unit volume of the liquid.

Our method of calculating the force of mutual friction is as
follows. We assume high enough temperatures, so that phonon effects
can be neglected, but these temperatures should be low enough so
that the roton gas may still be considered dilute, This roughly
restricts us to the range l.loK = T< 1.6°K. The interaction
between the rotons and a QVL will be considered in a frame moving
with the line, i,e. moving with Es. Momentum transferred by a
roton to the line during a scattering will be calculated as described
in Section 2, KEq. (17) will be assumed to govern the distribution of
incoming rotons. The effects of these collisions will then be inte-
grated over all p,b, and incoming directions, In this way, we shall
calculate the force per unit length on a single line, The force per
unit volume (the force of mutual friction) can then be calculated from
a knowledge of the length of vortex line per unit volume (see Eq.(3)).
Physically, this method has the advantages of being very direct and
picturesque,.

It can be argued [7] that the momentum transfer mechanism
described here would lead to a Magnus force on the line, so that the
vortex would move with a velocity Xy which is slightly different
from Es' However, such a Magnus force correction can be shown
to be entirely negligible in the temperature region where our theory

is most likely to be valid, i.e. for 1.1 < T <1.6 . Hall and Vinen [7]
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found that the Magnus effect is only important near T)\,

We will also assume that the rotons do not interact with each
other, although we will take some account of this later, This
assumption seems reasonable for the temperature range considered
herc, since the roton density is low.

We assume u to lie in a plane perpendicular to the QVL (as
it does in most experiments). The generalization to arbitrary u is
not difficult [7]. It is convenient to divide the calculation of the
force per unit length, f, on the vo‘rtex into x and y components,
parallel and perpendicular to u respectively (see Fig. 3). The QVL
lies along the z axis, We show the derivation of fX for p>py in
complete detail. The other force components can be calculated in
exactly the same way,

If a single roton, with an impact parameter b, undergoes a
scattering from the state p to the state Py then the momentum

transferred to the core in the x-direction is given by:

ap (p.b) = (p7py) - 1, (P > Po)

which can be rewritten in the convenient form:

Ap,(p,b) = [(E‘Bf) 'iB:liB i

¥ [‘E‘Ef)'—im ]im Pl

(see Fig. 3).
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Using Fig. 3, we can rewrite the last equation as follows

Pilp " Pslp
o )pcos;a

(B‘—i-BJ_'Ef'—iBL
p

+

) pPsing

+ +
%W"pCOSqa+WLpS.1n(p . (18)

% +
Eq. (18) defines W, (p,b) and Wj_ (p,b). The + superscript denotes

I
the case p > py, anda - superscript will denote the case p < pg. The
W's are the quantities that are calculated on the computer, They are
independent of ¢.

By an elementary kinetic argument (see, for example, [18])

the number of rotons in unit z depth with pe[p,p+ dp] and

be [b,b+db] that will interact with the core per unit time is given by

dp
n(p,p-w) 3 db vy sing, (19)
where h=Planck's const,, and Vo = I:L;PQ is the group (particle)
0
velocity of the rotons. The distribution function n is given by

Eq. (17). From (18) and (19) we find the force per unit length on a

vortex due to all rotons with pe[p,p+dp]:

dp + +
n(p’B.E) B Vo f dbpsiny [WHCOSQD + W_L Sing{l .

So that for all p such that p > Pg, We€ have
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dp +
- — : : iy
fX(P>Po) = fff ) n(p,p *u) Vo pSlnL’bI:UHCOS(p-]_U.L 51n(pj| " (20)
P~ Po
where
. +
o (p) = j db W,
(21)
+ ’ 5
and O’J_(P) = J db WJ_ :

It can be shown analytically (see Appendix A), using a small
angle scattering approximation [15], that _cl;L and (;'J_ diverge logarith-
mically as b — oo. This makes it necessary to use a cut-off or

screening radius on the L field produced by the vortex. We choose

the following cut-off potential to replace Eq. (8):

'y I"Ox
= (525 , 57— <
(sts VSY) Zﬂ_rz 3 2,”,1.2) » T L
(22)
= 0, =>1L,
where L = a typical roton-roton mean free path in the T range
where we expect our theory to be most valid. This choice is based

on the assumption that the weak QVL potential is not felt beyond L

because it is screened by strong roton-roton collisions. We take

L = 150 A, which corresponds to the roton-roton mean free path for
1.201\’ or 1.3QK as calculated from the Khalatnikov theory [14]. Our

final results are insensitive to the exact choice of L as long as
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2 o
L ~ 0{10 A), since the roton-QVL interaction is very weak at thesc
distances. (We suspect that the dependence on L is logarithmic).

The cross sections (21) make the explicit evaluation of (20)
extremely difficult and complicated, However, the presence of the
factors n and Yo results in the fact that only a very small range of
p contributes to the integrals (20). The ¢'s vary slowly over this
range, and we will make the major computational simplification of
factoring out average values of these quantities from Eq.(20). Our
method of averaging will be to evaluate Eqgs. (21) for p = E, where
i)— is the momentum corresponding to the average group velocity,
(;é)l’/z, of a roton in thermal equilibrium at a given temperature.

More explicitly, p is a solution of: (see Ref, [16])

—_ 2
St e S R s (23)
G Mo 77’ o

Of course, the §> pg solution is used for & and the 5< P solution
for ¢. This is the same procedure used in [7] and probably in [8],
and produces values for E that fall close to the center of the con-
tributing p range. The calculation of B and B' is not very sensitive
to the particular method used to determine the average value of p
used to evaluate (21). Changes in B and B' with T come entirely
from the quantities Nr and I shown in Egs.(27) and not from the
cross sections,

After removing the average o's from (20) we have
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+ = dp P-Po _
£p>po) = &y ®) [[[ Fn@p-w(— ) psinycosy
P> Po
dp P~Po
+ - . z . . 5
+ o, (p) fff 3 n(P,p-u) o )p31n¢ sin g (24)
P>Po
Noting that
L. F psiny cose ,
and
w i = -psiny sing ,
RPriy P Y @

we recognize the two integrals in (24) as the x and -y components of

JJ] waepwvgpe . (25)

Such integrals can be shown to only have a component along u, and
since u = u_i_x the second integral in (24) must equal zero. This
can also be verified by direct integ.ration,

The integrals in Egs. {24) or (25) can be evaluated in a
straightforward manner using the techniques of Khalatnikov f14].
This involves an expansion of n(P_,E-lJ._) in powers of u. Assuming
u to be small and retaining only the first nonvanishing term in (24)

we find



dp P-Po ~N
' . A
fP>padl = 0y jff 0 np,p-u) o )B
P> Po
4
= o 57 Ly, ~¥,) P (26)
3V 27 (MokBT) 2 E
AT ;L(TJ -3 )
= | e J
_+.
NR and I in (26) are given by
% % 2 - W )
. _ 2(27) (FLOkBT) Po kBT
R ~ 3 # >
h
and . 2 (27)
+ fo A - n-1)
I = [ nmDe dn >
1
where 2
Po
A e Y

The quantities in (27) are easily evaluated.
Repeating the derivation for the p < p, case and for the vy
component of f results in the final force per unit length on a

Feynman vortex, We find

-v.), (28)

where



+ -
+ -
= o Aw A
H & o s 5 sk g
(29)
+ -—
1 + =
I = o A - L'A'
= et &

A has the same form as A except that the integral I is replaced

by I, where

" .1 4 - g n-1)
I= | nn-1)e dn
0
From Eq. (28), we calculate the force per unit volume F.
For the rotating bucket experiment we can immediately conclude that
the length of line per unit volume is given by Eq. (3). So then

2wy 2wg

E = ‘?‘;_=T~0—D(2n”.‘is)+_1‘o_D izx(zn_ Xs)' )

In order to conform with the established notation, we rewrite (30) as

p P, woX [weX(y ~v )] o' PsPn

F=-B—= P leox(x _-¥ .1, (31)
where
2p

PP To ’
(32)

] 2 1

B = - PF D

PsPn 0

1
B and B were computed from the preceding equations for
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four temperatures between l.loK and Z.OQK. About 400-500 rotons
were run on the computer and uscd to calculate the o's. It was
found that g”: 10 A, while all the other cross sections had magnitudes
in the 24&.“3.5;& range., In Table 1, we collect our computed values of
B and B for a,=3A and L =150A, Various data from Donnelly [12]

were used in some of the numerical calculations.

o 1
T( K) B B
1.1 1.30 .62
1.4 1,35 . 55
1.7 1.75 .70
2.0 4.00 1.35
Table 1.

For comparison, we list, in Table 2, the experimental values

!
for B found by Hall and Vinen [3], and for B found by Snyder and

Linekin [4]. Note the large error bounds on Bl.
T(K) B B'
1.2 1.5 | .73&.15
1.4 1.4 | .47x.25
1,% .9 | .23x.15
2.0 1.0 | .364+.25

Table 2.
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4. Discussion.

We have plotted various experimental and theorctical values
for B and B' in Fig, 4,

Our results, curves d and e, compare well with the experi-
ments for 1.10 = T 1.60, but differ considerably up near 2.0°K,
where the roton gas is more than ten times as dense as it is at
1.40K. Of course, it is mnot surprising that our simple kinetic
picture fails at such high densities. From curve b, we can see
that Hall and Vinen had the same problem. They tried to correct
this by taking into account a Magnus effect, which is completely
negligible for T < 1.8°K, and the "dragging of the normal fluid near
the core," which improved their agreement considerably.

Use of this "dragging" effect would also improve our high
temperature results, but we find this correction disagreeable, We
could also lower our values for high T by taking into account the
fact that L. decreases as the roton density increases, At 1.901{ 1L
is about 1/10 of its value at 1.40K. Such a drastic reduction in L
would decrease our cross sections somewhat and improve our
experimental agreement. However, it is not really possible to use
our simple kinetic picture with a mean free path of about 10;& |
Also, Egs. (5) and (6) may not hold for high roton densities,

The existence of a nonzero B! from the Hall and Vinen theory
(curve c) is a consequence of the Magnus effect. They found the
roton scattering to be symmetric, and this would give B'E 0 without
the Magnus correction,

It was found that our results were more sensitive to the value of
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o arc cxperimental values for B from Hall and Vinen [3].
1
A are experimental values for B from Snyder and Linekin L4].

Curve a(B) are the theoretical values of B obtained by Hall and
Vinen [7] from a derivation which includes corrections for

Magnus effect and normal fluid dragging near the core.

Curve b(B) are the theoretical values of B obtained in [7] without

their Magnus and dragging corrections.

Both curves a and b have been fitted to the experimental point E‘:
by an appropriate choice of an arbitrary parameter in the
Hall and Vinen theory.

1 T
Curve c(B ) are the theoretical values of B from [7].

1
Curves d(B) and e(B ) are the theoretical values of B and B'

calculated in Section 3,
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T'y than to either a; or L. There are two sources of I'; in our

calculations, Eqgs. (3) and (22). Our work then scems to indicate

that I'j cannot differ appreciably from and that Eq, (3) for

m
the line density in a rotating vessel mustI_lI)i essentially correct,

The closest things to arbitrary parameters in our calculations
are apz and L, both of which were chosen a priori in a rational
manner. Physical considerations limit these quantities to values
that must be near the ones that were picked., Our calculation is
very insensitive to the choice of L (probably a logarithmic depen-
dence), and we estimate that a different reasonable choice of a,

(say 4AR)-wou1d not change our values of B or B| by more than
10-15% . Most known estimates put IA % ag < 4A for the temper-
atures we are considering.

On the other hand, the analyses of Hall and Vinen and of
Lifshitz and Pitaevskii contain very important adjustable parameters
whose choice is equivalent to choosing values for their cross sections
to fit the experimental data, It should be noted that the cross
sections used in their calculations for B and B' are not equal to
those that they derive from the Born and quasi-classical approxi-
mations.

In its original form, the quasi-classical analysis of Lifshit=z
and Pitaevskii produces poor values for B and B', yet our calcula-
tion gives good results, Lifshitz and Pitaevskii give no details of
their analysis, but the difference between their results and ours
seems to stem from the fact that they did not treat the wvery strong

interactions near the core. They improve matters by hypothesizing
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that rotons passing near the core must give almost all their momen-
tum to the vortex, and on the basis of this they simply add an
arbitrary constant to one of their cross sections. The constant is
then chosen to fit the experimental data, If, in our analysis, we
exclude rotons with impact parameters less than about an atomic
spacing (= 4;&) then we get the same poor values that Lifshitz and
Pitaevskii found at first, Our good results therefore seem to be a
consequence of the strong snap-backs and roton absorptions that
occur in the core region. Of course, we do not claim that our
model is strictly correct from a quantum mechanical standpoint;
but, like so many other semi-classical models used in the study of
liquid Helium II, it seems to be perfectly adequate from a phenomeno-

logical standpoint.
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Appendix

Small Angle Roton-Vortex Line Scattcering

For large impact parameter b, the vortex field is weak and
the rotons are deflected through very small angles. In this section
we shall analyze small angle roton-QVL scattering and show that the
cross section g_L (Eq. (21)) diverges logarithmically as b—- o. We
follow the method of Landau and Lifshitz [15].

The QVL shall be considered stationary and the x-axis taken
as the direction of incidence of a roton in the initial state p (see

Fig. A-1). The angle of deflection Bf is given by
6, = sin @, = L gL § (A-1)

in the small angle approximation.

Using the roton Hamiltonian
H=¢€p +p-v, 4A€E+V,

we can integrate the Hamilton equation

Yy _ _ 8H _ _ 8V
dt oy =~ oy
to obtain 54
- _ 9V "
Pgy = f 5y 9t - (A-2)
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Since the vortex field is weak for large b, we can assume

the particle is essentially undeflected from its initial path so that

v = b
dx _ P"Po _ ~ : 2
and dt = = Ve = const (A-3)

for all time.

In our approximation we can rewrite V(x,y) as a function of

r only (see Fig. A-1) so that

ay = _ AV or 9V Y . 8YDb -
T ey T dr oy rr 9r r (Att)
Using (A-3) and (A-4), (A-2) becomes
o
- . b [ 9V dx -
Pegy = Vo .] or r (A~5)
-0

From V = P'Y,, Eq. (8) of Section 2, and Fig. A-1, we find,

in this approximation:

By
L~
so that
plo
gy B . (A-6)
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Using r? = x%?+ b?, we have dx = ———— and

,/ r2 _bz

00 o
f dx — 2] dr. Then from (A-5) and (A-6) we have
-0 b

Qo
2T, p b2 e T
= — el g e B A-7
Py T g 4 mymw Do b B
. ol
i, e, Pry b .

As far as boundedness is concerned, o, 1is essentially equal

L

to db so that
f pfy

o, In L—- o0, as L — oo.

This proves the statement made at the beginning of this section.

The deflection angle can be calculated from Eq. (A-1).
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