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Abstract 

In Part I the kinetic theory of excitations in flowing liquid He II 

is deve loped to a higher order than that carried out previously, by 

Landau and Khalatnikov, in order to demonstrate the existence of 

non- equilibrium terms of a new nature in the hydrodynamic equations. 

It is then shown that these terrns can lead to spontaneous destabili-

zation in counter currents when the relative velocity of the normal 

and super fluids exceeds a critical value that depends on the tem-

perature, but not on geometry. There are no adjustable parameters 

in the theory. The critical velocities are estimated to be in the 

14-20 n1/sec range for 
0 

T ~ 2.0 K, but tend to zero as T- TA.. The 

possibility that these critical velocities may be related to the experi-

1nentally observed "intrinsic" critical velocities is discussed. 

Part II consists of a semi-classical investigation of roton-

quantized vortex line interactions. An essentially classical model 

is used for the collision and the behavior of the roton in the vortex 

field is investigated in detail. From this model it is possible to 

derive the HVBK mutual friction terms that appear in the phenomena-

logical equations of motion for rotating liquid He II. Estimates of 

I 

the Hall and Vinen B and B coefficients are in good agreement with 

experiments . The claim is made that the theory does not contain 

any arbitrary adjustable parameters . 
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I. Higher Order Kinetic Theory of Excitations in He II and 

Spontaneous Instability in a Counter Current ,;, 

l. Introduction. 

Recently, considerable attention has been given to the subject of 

"intrinsic" critical velocities (i.e., those which do not depend on channel 

size) in the flow of superfluid He II [l-4, ll]. Notarys [ 4] and Kukich et al 

[ll] have experimentally shown the existence of an intrinsic critical 
0 

velocity at temperatures between 1.3 K and the A. point; while Langer 

and Fisher [ 2] have suggested a theory involving a mechanism for the 

spontaneous creation of quantized vortex rings. 

The purpose of the present investigation is to examine the question 

of whether intrinsic critical velocities can be predicted on the basis of 

Landau's two fluid model of Helium ll, in which the normal fluid is 

regarded as a gas of excitations moving in a superfluid background. A 

set of dissipative hydrodynamic equations has been derived by Khalatnikov 

[5-6], by using a Boltzmann equation for the excitations and general 

conservation laws. These equations reduce exactly to those of Landau 

[7], which were derived from purely continuum considerations, when 

the dissipative terms are put equal to zero. However, Khalatnikov' s 

equations do not appear to predict an intrinsic critical velocity. 

We shall show that the methods and ideas of Khalatnikov can be 

extended to derive a higher order version of the Landau-Khalatnikov 

-·-The material of Part I is to appear in Annals of Physics (N.Y.) 

1970 , in joint authorship with P. G . Saffman. 



-2.-

equations which contain terms of a new nature. The t erms ar e dissipative 

in the sense that they arise from a lack of thermodynamic equilibrium in 

the excitation gas, but n e v ertheless predict that some disturbances in a 

rapid counter current will g row in amplitude. Thus they provide a means 

of interpreting the phenomenon of critical velocities within the mathe­

matical framework of a set of equations of motion derived in a c onsistent 

manner from the two fluid model. However, it will be seen that the 

critical velocities predicted by a rough calculation are larger than those 

observed, and there are differences in the dependence on temperature. 

The physical significance of our results is still therefore an open question. 

In Section 2 we will derive the extended kinetic-hydrodynamic 

equations of motion. Section 3 contains an analysis of the dissipative 

terms which appear in the equations . In Sections 4 and 5 we analyze the 

effect on second sound waves in an unbounded medium in a counter 

current, and show that critical velocities arise at which second sound 

becomes spontaneously unstable . S e ction 6 will contain an analysis of 

the b ehavior of disturbances in flow through a t wo dimensional channel 

as d e scribed by a simplified version of the extended equation s . Critical 

v e locities found this way are similar to those given by t he second sound 

instability. Finally, Section 7 will be devoted to a critical discussion of 

the extended e quations, and a comparison of our results with experiments. 
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2. The equations of motion. 

The Landau-Khalatnikov non-linear, dissipative equations of 

motion for H e lium II can be written in the form, 

QQ + div j at = 0, 

at - - \i' P - div(p v v + p v v ) + div _7r n-n-n s-s-s 

(1) 

( 2) 

(3) 

Equation (1) expresses the conservation of mass, where p is the density 

and ,L the momentum density. In equation (2), v denotes the super -s 

fluid velocity, and is the velocity associated with the ground state or 

background in which the elementary excitations comprising the normal 

fluid move. Equation (2) is an e quation of motion for the irrotational 

super fluid. The velocity of the normal fluid is denoted by yn. The 

momentum density i s expressed in terms of a density p of the normal 
n 

fluid by 

(5) 

w h ere and it is also convenient to write 

J = Pn (y n- .Y. s) = Pn Yi (6) 
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where w = v - v is the relative velocity of the normal and super fluids. - -n -s 

Equation (3) expresses the conservation of momentum for the entire fluid 

and Equation (4) expresses the conservation of energy whe r e E is the 

energy density (energy per unit volume) . The quantities <j>, ~ and 5!. 

are dissipative terms or fluxes which arise when depa r tures from local 

the rmodynamic equilibrium are not infinitesimal. 

The symbols JJ., P, S, T denote the chemical pote ntial, pressure, 

e ntropy density, and tempe rature, and are r elated by 

TdS = d(E - J.. · v -s dJ.. - pdp ' (7) 

l 2 
P = ST + w · J.. + JJ.P - (E - J.. · ~s --zp~s) , (8) 

w hen the departures from thermodynamic equilibrium are negligible. In 

this c a se , the equations can b e d e rived from general considerations o f 

Galilean invariance and the c onse rvation of mass, momentum, e nergy 

and e ntropy [7]. 

The equations can a lso b e derived from a mode l of Helium II in 

which the normal fluid i s treated as a gas of excitations, each of w hich 

has momentum £. and e n ergy (in the labora tory f r ame) 

e = € (p, p) + E v -s (p = IE I) (9) 

E (p, p) i s giv en by the Landau spectrum. The density of excitations in 

phase s pace , n(~, E , t) sa tis fie s a Boltzmann equation 
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8(n) = 8n + ( oE + v ) 8n _ (8E _Qe_ ovsk) on _ l(n) 
8t 8p. si ax. 8p 8x. + pk ox. 8p. - (10) 

1 1 1 1 1 

where the right-hand side of Eq. (10) gives the rate of change of n du e 

to collisions between the excitations. When the excitation gas is dilut e , 

the equilibrium distribution (for Bose-Einstein statistics) is 

(11) 

and the thermodynamic properties of the e xcitation gas follow from 

standard methods of statistical mechanics. Using the fact that collisions 

between excitations conserve momentum and energy (but not necessarily 

nurnber) and the assumption that the super fluid background has zero 

entropy and is irrotational, one can use Equation (10) to derive (1)-(8), 

w ithout the dissipation terms, where n 0 is used for the distribution of 

the excitation gas. 

In this model, the dissipative terms arise from deviations 

between n and the equilibrium value n 0 , which occur when the flow is 

neither steady nor uniform. The energy and momentum of the excitation 

gas are still well defined quantities, and it is convenient to define the 

remaining thermodynamic variables of state (including yn) by the 

equilibrium functions of energy and momentum. One can the n show [8} , 

that the motion is given by Equations (1)-(8), and the dissipative terms 

are given by 

(12) 



-6-

J <1€ d;e 
+j oE d;e 

'Trik::: 0ikP (n - n)-
h~ (no - n) p. a h 3 ' o op 1 pk 

(13) 

ji J (no-n) 
oE d;e +I OE d;e 

q. = op h3 (n 0 - n)(E - :Q. • ~) op. h3 1 
1 

(14) 

In thes e expressions, the integ ral is over momentum spac e and h 

denotes Planc k's constant. We shall refer to II:: as t he viscous stress 

t e nsor and .9:. as the heat conduction vector. Further detail s of the 

d e rivation can be found in (8]. 

From e quations (4) and (5), one obtains the e quation for 

entropy change, 

oS + div(Sv ) = 1._ divq ot -n T -

v. 01( . . p 
111 ~ s \7 - -T .::y • v <l> T ox. 

J 

(1 5) 
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3. The dissipation terms. 

The collision term i n the Boltzmann equation for the excitations is 

not known with any certainty, and even if given, the Boltzmann equation 

is difficult to solve. We shall therefore proceed by assuming that depar-

tures from equilibrium are small and that the integrals (12), (13) and (14) 

can be evaluated with the s tandard approxin1ation (see [ 8]). 

__ Tn0 (l+n0 ) { _(E_-_E_· _w_) 
( aT + v . \7T) 

kBT T at - n 

(16) 

where T is a relaxation time which depends on the details of the excita -

tion collisions. For consistency, T must be independent of p, but can 

depend on density and/ or pressure. Substitution of Equation (16) into the 

expressions for the dissipation terms then gives these t erms as linear 

combinations of the gradients and time derivatives of T, w, yn and p, 

the coefficients being integrals of n 0 , E and E over momentum space. 

At this stage, Khalatnikov simplifies by linearizing in the 

velocities and spatial derivatives, and using the l inearized 1inviscid1 

forms of Equations (1)-(4) to eliminate time derivatives. For our pur-

poses it is necessary to work to a higher order of approximation. The 

use of Equation (16) gives expressions 
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aT w --
m ox_e 

(17) 

(18) 

(19) 

(<\>) (q) 
The terms A , .•. , Eik are integrals of n 0 , E and E and are there-

fore scalar or tensor functions of T, p and w alone. For example, 

(71') _1_ f oE (oE ) dE_ 
Dl.k"m = T no (l+no) P·R --=-- -;------ w h3 

x kB 1 m upk up1 i. 

(q) 
B 1 f ik = k T 2 

B 

and so on. Symmetry requirements will r educe the numbe r of 

(20) 

(21 ) 
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independent coefficients. The t e nsor dependence on w has b e en partially 

accounted for in writing Equations (17}, (18}, and (19}, so that all the 

tensor coefficients are finite and non-zero as w - 0. 

To a satisfactory approximation, the excitation spectrum can be 

approximated by two branches 

E = c1p for phonons, (22} 

and 
z 

(p- Po} 
E = !::.+ 

2tJ.o 
for rotons, (23) 

where c 1 is the velocity of first sound. Typical values of the para-

meters in the roton branch are in c.g.s. units [9]: 

-15 
!::. :::: l. 2 X 10 , 

-19 
Po :::: 2. 0 X 10 , {24) 

but there is a variation with density. (Neutron scattering experiments 

show a dependence on temperature. This is presumably due to inter-

actions or 1 dense gas effects 1 • The use of an excitation spectrum which 

depends on temperature is not consistent with the Boltzmann equation or 

the equilibrium distribution Equa tion (11) ). 

It is clear from the equilibrium distribution that the magnitude of 

the relative velocity w must be less than the minimum of E/p {the 

Landau criterion). We suppose now that w = \ w\ is significantly less 

than the Landau critical velocity and that the coefficients {4>) (q) 
A ' ... ,Eik 

may be replaced by their v alues for w = 0. We then find after consider-

able labor that 
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£! (aT s aw "' = + v · 'VT) + 
2 

w · V'T + s3 w · (--= + v · \/w) 't' T ot - n T - - ot - n -

k(22.. _, ) + s 1, di v ~ n + p at ,- ~ n. \7 p ' (2 C)) 

·where the coefficients s 1 , ••• , £5 are functions of p and T and 

independent of w 2 • All coefficients have the dimensions of kinematic 

viscosity, except s 3 which is kinematic viscosity divided by velocity 

squared, i.e., time. 

41T T J n 1 (l+n1 )E 
OE 2 ~ SI = kBT ap 

p h3 

4-rr T J oE 2 ~ 41T T J I (1+ I) Qs Qs 3 
QQ Sz = kBT 

n 1 (l+n1)E- p h3 + 3kBT n n op op p h3 ap 

4-rr T J (}E & 3~ 
(26) 

3kkT2 n' (l+n1 )(1+2n') E-
ap p h3 ap 

4-rr T J oE 4 QQ. s3 = - 3k2 TT n'(l+n' )(l+2n') - p h3 
B ap 

4-rr T J & 8E 3 ~ s4 = n 1 (l+n')-- p 
kBT ap op h3 

2 
4-rr T J n' (l+n') ( oE ) 

2 ~ ss =p-- p h3 kBT op 

In these expressions, E as a function of the scalar p can be approxi-

mated by Equations (22) and (23), and n' denotes the equilibrium distri-

bution (Equation (11) ) for w = 0. The dependence of roton parameters 
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and velocity of first sound on density is d i scuss ed by Wilks [9]. 

Similarly , we find that 

(27 ) 

where 

2 

ll = 411" T I n' (l+n ' ) ( ~Ep) p 4 ~h3 
15kB T u 

J 8E 2 4 .9B. 4 11" T I 8E 2 4 .sill. 
n 1 (l+n')(l+2n' )E(0P) p h 3 - l Sk T n ' (l+n ' )(a) p h 3 ,(28) 

B p 

411" T I oE 5 ~ lh = 15k2 T 2 n' (l+n' )(l+2n') - p h3 
B 

op 

411" T 
p f n ' (l+n' ) k oE 3 dp 

lls :::: 

3kBT 
p h3 . ap ap 

All coefficie nts have dime n s ions o f viscosity, except n3 which is 
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2 
viscosity/ (velocity) . 

For the heat flux vector, w e have 

z;,J ow. 
+A-. . K 8T + -w. (8T + v . c; T) ( 1 ) qi '+' .Ji = ox. T 1 at -n v + S3 Dt + ~n· V wi 

1 

ov 
+ s 41 6 w -.....!!!!!. - r (w \7) v ikim k oxi '=' 42 _ . ni 

where 

2 
4-rr T I n 1 (l+n 1

)E
2 
(~) 

2 dp 
K = 3kBT2 p h3 

s1 = 3t; TT2 J n 1 (l+n' )(l+Zn') E2 oE 3 .9£. - 2r)l ap P h3 ' B 

S3 = r)l 

(29 ) 

ss = p(sl + sz). (30) 

The coefficie nts S, 1 , • •• , 1;,5 all have the dimensions o f viscosity. 

The e xpressions (26), (28) and (30) depend specifically on the 

solution (16) of the Boltzma nn equat ion. Also, the n e glect of the w 2 
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dependence in the coefficients is a 10-20 o/o error when w is o f order 

kB T/p0 ~ 10m/ sec. However, the labor required to ren1ove this lattc r 

er ror does not seem justified in view of the uncertainties inherent in the 

Boltzmann equation and its approximate solution. In fact, the p urpose of 

the above calc ulation is to provide a basis for the hypothesis that the 

'viscous' terms are of the form (25), (27), (29), where the coefficients 

s 1 , ••• , ss are properties of the Helium and functions of p and T. In 

the temperature range where the use of a Boltzmann equation and the 

approximate solution (16) are valid (this is probably the case between 
0 

1. 2 and 1. 6 ; above this temperature the excitations ar e dense and 

b e low this temperature phonon collisions, which may not be well 

described by (16), are important), we can use (26), (28) and (30) to 

estimate the coefficients. But outside this range, we make the hypothesis 

that the dissipation terms have the stated forms with coefficients that 

remain to be found. 

When the non-linear terms and the terms involving w are neg-

l ected, the 'viscous' terms reduc e essentially to the forms given by 

Khalatnikov [8]. This approximation seems most reasonable and 

estimates of the new coefficients (see Sections 4, 5, and 6) verify that 

the extra terms are small when velocities are small compared with the 

speed of second sound. However, the new terms contain qualitatively 

different properties. For instance, they can produce negative damping 

and thereby lead to destabilization of a laminar flow. Thus althoughthey 

are small and apparently dominated by the familiar viscous and heat 

conduction damping terms, they can produce new effects . In the present 

work we shall confine the discussion to the propagation of second sound 
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in an unbounded fluid, and the behavior o f incon1pres s ible disturbances 

in flow through a two-dimensional channel, and demonstrate the existence 

of critical values of a counter current above which the dissipation terms 

give negative damping and an exponential growth. 
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If we estimate the coefficients in (28) and (30) wjth the roton 

spectrum, and suppose that velocities are small compared with the 

speed of second sound, we find that the dominant terms in the irrevers -

ible momentum and energy transfer terms (27) and (29) are 

OV 11} ~T 
""' s: s: __!!.!!:!. s: u 

1r ik + P't' vik = vik£ m ll ox
1 

+ vik T at + 

where 

and q. +<I> j . 
1 1 

The substitution 

~~ 
k T' 

B 

TS div v 
pC -n 

(31) 

(3 2) 

(whe r e C = specific heat) which follows from the linearized non-dissi-

pative equations, convert the first two terms on the ri gh t -hand sides of 

(31) and {32) into the standard expressions given by K..~alatnikov [8]. 

Also, the t erms involving ~; can be neglected to a first approximation 

so that <1> can be taken as zero. 

We now consider how the extra terms, which involve cross 

products of Y:!... with the gradients of temperature and normal velocity, 

will change the attenuation rate o f second sound in a heat current. We 

neglect the non- linear terms in the convective terms; the approximation 
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is not completely self-consistent, but is sufficient for our purposes. One 

then finds that the temperature fluctuation T 1 (here and following, 

primed quantities denote p erturbations) satisfie s 

02 T' 2 2 
-- u ~ T' at2 - rr v (3 3) 

2 2 2 
where uii = (S Tp /Cp p ) is the speed of second sound. The right-hand s n 

side of (33) is e valuated by subsituting from (31) and (32). 

For a wave of second sound in which all quantities vary like 

i( k · x -wt) 
e - - , we find after some alge bra that the value of Im(w) is 

Im(w) = 
2p p 

n 

n1sk
2 

(p + 2p ) 
+ n s 

2p p c 
n 

(34) 

where W k is the component of the undisturbed counter current in the 

direction of Js. The attenuation rate is proportional to -Im(w). Thus 

a wave propagating against the c ounter current decays more slowly. 

Further, if the counter current were increased sufficiently far, the 

attenuation c ould become negative so that spontaneously g rowing waves 
0 

would appear. At 1. 4 K, the expression (34) becomes zero when Wk 
is about 14m/sec. However, the approximations leading to (34) are 

suspect for such large values, and in the next section we carry out a 

consistent approx imation to find the critical value of the counter cur rent 

for instability. 
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5. The instability of second sound in a counter current. 

W e consider small perturbations about a state of unifo rm mot ion. 

It is convenient to take a f r ame of r efe rence moving w i th the normal 

fluid, so that y s = W, say, in the undisturbed state. F or the sake of 

simplicity, we shall only consider plane waves propagating parallel (or 

anti-parallel) to the counter current . Also, we shall neglect the coeffi-

cient of thermal expansion and the isothermal compressibility; this also 
2 

include s the dependence of p on w . (These approximations appear to 

b e good to within a few microdegrees of T 'I\..) Then with p =constant, the 

equations of motion (1), (2) , (3) and (15) give 

I I I 

Pn vn + Ps v + Wp = 0, s s (3 5) 

I I 

av av I t 
pn ' s s 1 aP + aT a , 1 fuL 

---at + w ax=- s w- (v- v) 
p ax a x p ax n s ax' 

(36) 

I 2 I 1 
p + w p + 2p Wv =1Tll 

' s s s (3 7) 

1 1 
I av aql Ps 

1 

.ih__+ n 1 w<i9>_ s 
s 

ax = ax 
+- (s = -) 

at pT pT ax p 
(38) 

where the pri1ned quantities are the departures from the uniform und i s -

tu rbe d va lues. In addition, we have from the differential equation of 

state 

p = n 
- o 

' S ( ap ) I (ap ) ( 1 1) 
= 0 ; T - 2 W a::Z vn - vs , (39) 
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(40) 

From the ide ntity 

dP Pn z 
dtJ. = - - s dT - dw 

p 2p 

it follows that 

since we are taking p to b e constant. 

When the dissipation terms are neglected, we find afte r some 

a l gebra that the velocity c of a wave propagating in the positi ve x-

direction is given by the quadratic 

C
z { 1 z ap )] a z . ap )z 

P [_Pn + 2 w ( ovJ e~ - w ( a; } 

(41) 
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I I I 

Moreover , the relative values of vn, vs and T are 

-I 

-I 

1 
{ as [ 2 

( apn )] ( apn) _ wp
2 

c ( ~PTn)
2

} = -vs caT pn + 2 W awl -Ws aT u 

[ 

2 ap J ap 
s Ps - 2W ( a:Z) + w c ( a;) } 

-I 

(42) 

In (41) and (42), all function s should be given their equilibrium 

values for given P,T, and W. For all reasona ble flows , it can be 

shown that the quadratic (41) has real roots, so that second sound always 

exi sts in a counter current . Equation ( 41) was given by Khalatnikov [13 J 

(see also [7] ) but only up to O(W). 
2 

We retain the W terms for the 

sake of consistency . 

We now include the dissipation t erms . Since these are small, 

they can be evaluated by substituting the ratios (42) and relating time 

and space derivatives by :t = - c a: ' where c is a root of (41). It is 

clear that these terms will make c complex. For W small, the 

dissipation terms will r educe to the familiar viscosity and h eat c onduc-

tio n ,terms, which will produce an attenuation or damping of second 

sound. But as W increases , the possibility exists that the imaginary 

part of c will change sign, which implies a spontaneous amplification. 

We now find the equ ation for w, 
c 

imaginary part of c changes sign. 

the critical value a t which the 

Eliminating p
1 

and writing a~ = -c a: , we can write (3 '5) - (38) as 
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v
1 

[s +We { apn)] _ v
1 

[We ( opn)J -T
1 

[c osl= _1 q
1 n p \ 8T s p 8T oTj pT 

The dete rminant form e d by the t e rms in square brackets is the quadratic 

(41). The condition for Im(c) = 0 is that the three equations in (43) 

arc linearly dependent when the determinant vanishes. This gives 

1 I psW I 

f -q + -¢} 
L pT 1 pT 

r 1 1} { z( apn) opn 
+1..1r n+ p¢ sps- 2sW awl +We aT}= 

For this equation, we have from (29) that 

a ndfronl. (27) 

I 

I 

+ p<\> = 
a [ cT) 1T 

3T) vnl - T ox 
w 1 Tlzz 

- 3 T)z i T T + T 

I I 

0 . (44) 

(46) 

I 

The ratios of v 
n 

v and T a re given by (42) , and c is a root of (41). 
s 

For given values of the dissipati on coefficients, equation (44) gives the 

critical values of W. If we accept our approximate solution of the 

Boltzmann equation, the coeffic ient s are given by the i ntegrals (2 8) and 
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(30). Note that only the ratios of the coefficients enter, so the results 

are independent of the relaxation tirnc T. 

These equations were too cornpl:icated to cxan:1inc anaJytica1ly 

and \VCrc therefore studied on the IBM 360/7S cornpnler over a tcn1pcr·-
0 

aturc range between l. 4 K and T A.. The results are shown by the full 

curve in Fig. 1. 

Some of the assumptions used in the numerical analysis should 

be mentioned explicitly. The viscosity coefficients were evaluated using 

a relaxation time T that was assumed independent of the excitation 

n:1o1nenta. Under this assumption it was found that the roton contribu-

tions don1inated the numerical evaluation of the viscosity integrals. 

It was not possible to find formulas or experimental data giving 

the dependence of the various thermodynamic quantities on the relative 

0 

velocity w for temperatures above about 1.4 K, although Khalatnikov 

[8] has derived formulas valid at lower temperatures. Fig.l was com­

puted using the experimental data of Donnelly [10] up to 2.0 o K, and 

that of Glow and Reppy [14] near T A." These data are essentially that for 

w = 0. It was felt that this approximation, although crude, was the most 

consistent one we could make for all temperatures. 

0 0 

W was also com­
e 

putecl at 1.40 and 1.80 using the Khalatnikov formulas and good 

agree1nent was found with Fig.l at these temperatures. It should be 

noted that both the experimental approximation and the Khalatnikov 

formulas are extremely rough near 2 . 0 K where W ~20m/sec. 
c 

Since no experimental data were available for the quantity 

2 
3p /ow 

n 

0 

we used the Khalatnikov formula up to 2 .0 K. Although this is 

a dubious approximation at such high temperatures, this term was found 

to have only a srnall effect o n W c anyway, so the error involved here is 
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probably not very large. It was felt that this term should decay to 

A small zero rapidly near TA. and was simply dropped above 2.0°K. 

discontinuity in W at this temperature has been smoothed out in 
c 

Fig. 1. 

The behavior of W above 2.lOoK is due to the fact that the 
c 

first coefficient in Equation 
3p 

(41) can change sign for relatively small 

n aT ~ oo values of W sinc e as [14] . This r esults in a 

discontinuity which changes the sign of the net damping effect, a s i s 

n1ost easily s een from an analysis similar to that of S ection 4 . The 

decay of We near T A. is roughly 

1 

w 
c 

4 3 
10 (1-T/TA.) as T ~ TA.. (4 7) 

As an independent check, the full set of hydrodynamic 

Equations (l), (2), (3), and (15) were also analyzed on the computer. 

These equations were pe r turbed about the same equilibrium flow 

described at the b eginning of this section, but without the sirnplifying 

as sun1ptions that l e d to Equations ( 35) to (38) by enabling the second 

s ound n1odes to b e uncoupled from thos e of first sound. The crit ical 

ve loc ities obtained from this a nalys is agreed c losely with thos e shown 

in Fig. 1 and seem to verify the a ssumptions u sed in this section. 

It should be mentioned that there do n ot seem to b e any 

i ns tabilitie s in f irst s ound below the Landau critical velocity. 
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6. Stability of flow through a channel. 

An analysis of the complete set of viscous thermohydrodynamic 

equations for flows in more than one dimension with boundary conditions 

is extremely involved. In this section we will give a stability analysis 

for a very simplified form of the equations in a two-dime nsional channeL 

We simplify the viscous terms by retaining only the shear viscosity 

r) a nd the destabilizing viscosity 7') 21 in the total momentum equation. 

All other viscous terms will be dropped. 

We further reduce the equations with the a ssumption s that s = 

canst. and that both the normal and super fluids are incompressible (see 

Landau and Lifshitz , [ 7] ) . 

More explicitly, under the above approximations, the equations 

of motion become: 

P =canst, ps=const, p=const, s=const, divv =divv =0, n -n -s 

OV -s 
at + v · \lv = -s -s 

\lP Pn z - + s \lT + - \lw 
p Zp 

(48) 

We consider a channel in two dimensions with walls at y = ± 1 ; 

the x -axis being taken as the center line. (Using ± 1 results in no loss 

of generality since the final r esult will be independent of the c hannel size.) 

We assume the followin g undisturbed state 
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v = 0, 
-no v = Ue -s0 -x 

T = T 0 = canst, P = P 0 = canst . (49) 

For boundary conditions at the wall, we use the insulating wall 

conditions at y = ± 1 : 

v = 0, 
sy 

v = v = 0 . nx ny ( 50) 

Assuming that the super fluid is irrotational allows us to use the 

super fluid potential cp defined by 
s 

v = \l cp + Ue -s s -x 

We try the following form.s for the 

cps = ci>(y)eia{x-ct) 

! P(y)eia(x- ct) p = 

! T (y)eia(x-ct) T = 

v = D lP(y)eia(x - ct) 
nx 

fluctuations 

v = -ia lP(y)eia{x-ct), 
ny 

where 
D = ___g_ 

dy 

(51) 

(52) 



-26-

Note that Equations (48) have the steady state inviscid solution 

I 2 2 
P +!pn vn + 1-Ps ~ = const on streamlines , (53) 

const everywhere . (5 4) 

Substitution of (52) into the super fluid equation in (48) gives 

p u 
(- iac + ia U - ia np ) ~ = - : + s T 

p u 
n 
p 

DljJ . (55) 

Substituting (52) into the total momentum equations in ( 48) 

r esults in 

(56) 

and 

[ 

2 2 J Un21 
-ia -iapn c - l') (D -a) ljJ = - DP - iaps (U - c )D <.P - 2 i a ---;y;;- DT • ( 57) 

Using Eqs. (48), (50)-(57) we e liminate ~. P, and T to obtain: 

U . ,1, ± 0:' A. y s1ng '+' oc e , substituting into Eq. ( 58), a nd cancelling 

common factors gives 
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spn a 2 Un21aR 2 

i 
(1- A. ) + ------'n= ( 3c + A. U) 

iT 0 
for A. :f:. 1. 

Note that for A.= 1, Eq. (58) is satisfied identically. 

If we assume the explicit form 

ljJ = A sinh a y + B sinh a A. y 

for ljJ then Eqs . (50, (52), and (60) applied at the wall produces the 

determining equation for A. : 

A tanh a = tanh a A • 

Eq . (61) has the real roots A. = 0,1 and the complex roots A. = ill r-n ' 

where 
n7T 

fJ. =- + E ' n a n 

immaterial here. ) 

n = 1, 2, .. . , (The exact values of E are 
n 

(59) 

( 6 0) 

( 61) 

The flow will be unstable when Im(Ctc) > 0 (see (52)). From 

(59) the condition for neutral stability is 

2 spT0 n 
u = (62) 

For U larger t han u 
c 

given by (62), the fluctuations (52) are un-

bounded in time. 

The critical velocity found for this problem is very similar to 

the one in Section 5 for second sound in a counter current . In the ten> -

0 0 

perature range between 1.4 K and 2. 0 K both velocities increase 
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roughly in proportion to T, are independent of any geometric length 

scale, and are of the order of about 10-2 0 m/ sec. 

It should be noted that the thermodyna1nic assumptions us cd her e 

cannot possibly produce the wave m.odes experimentally observed for 

He II in very sn<all channels (i.e., fourth sound and the fifth, or "no 

sound'', wave mode [12] ) . The equations of motion were also analyz ed 

for narrow channel instabilities without the thermodynamic and inc om­

pressibility assumptions made at the beginning of this section. Only 

the n and n21 viscosity terms were retained, but all quadratic inertia 

t erms were dropped. The analysis was extremely involved and it was 

only possible to solve the problem for the two lowest modes. These 

proved to be stable for U less than the Landau critical velocity. As 

yet, it is in1possible to say anything about the higher modes. 
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7. Discus sian. 

The critical v elocities found in the preceding sections do not 

secrn to correspond to any of the critical velocities known to exist 

in He II, although there are sotnc ~ in1ilarities with the intrinsic 

critical velocities observed by Claw and Reppy [1], Kukich et al. [11], 

Notarys ( 4], and Jinchvelashvili et al (3] . All of these experimental 

critical velocities are of the order of a few meters per second and 

decay to zero at TA.. (See dotted curve in Fig,l). The observed 

decay near T A. is, in (1] , (11] , and ( 4] , somewhat faster than the 

calculated values shown in Fig.l. The experiments described in ( 4] 

and [11] consider temperatures well below TA.' but they observe a 

decrease in the critical velocity as T increases, and not the increase 

shown in Fig.l. It should be noted, however, that the first three 

expe riments us e finely porous flows and so differ very considerably 

from the flows analyzed in Sections 5 and 6. Jinchvelashvili et al. 

used narrow, rotating annuli and found a wide variety of results that 

give both faster and slower decays than shown in Fig.l. 

The only other theory of the intrinsic critical velocity, that 

of Lange r and Fisher [2], tries to associate the critical velocity with 

the spontaneous nucleation of quantized vortex rings by thermal 

fluctuations. Notarys, in a private communication, has pointed out 

a serious inconsistency in this theo ry. It can be shown that these 

rings would have to be larger than the channel size and it is not 

clear how they could fit in. 

In light of this we feel that we have either predicted a new 



-30-

critical velocity for the breakdown of superfluidity, or have found an 

old one theoretically, but have obtained poor numerical correlations 

w ith experiments because of the crudeness of some of our approx-

imations or because the flows analyzed in Sections 5 and 6 are so 

different from the experiments. If we have found a new critical 

velocity, it is of limited importance since it occurs at high velocities 

and is masked by the earlier occurrence of other critical velocities. 

Accepting the basic structure of the equations, which depends 

on the approximations made on the collision terms in the Boltzmann 

equation in Section 3, we see that different choices of values for the 

viscosity coefficients could produce instabilities at critical velocities 

that would a g ree well with experiments . That is, if we r egard the 

viscosity coefficients as adjustable parameters, they could be c hosen 

so that the calculated W would fit any experimental data. 
c At the 

high ten1peratures considered her e there is no question that the us e 

of the integrals (26) to (30) is only a rough approximation. Even 

accepting these integrals, it may be necessary to evaluate them using 

more sophisticated methods. In particular, the T =I= T(p) assumption 

might be dropped in some consistent manner (see Khalatnikov (5] , 

(6], (8]) and reevaluation of these viscosity integrals might give a 

very different W (T) curve. 
c 

The re does not seem to be a simple physical picture for our 

instability. All we can say is that it appears that for W > W the 
c 

kinetic e n e rgy of the relative motion feeds energy into a small 

disturbance or fluctuation faster than the dissipative viscosities can 

drain it out. Of course, the disturbance cannot grow indefinite ly, 
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but we are not able to predict what would happen once the flow 

becomes unstable. 

Lastly, we would like to point out the unusual qualitative 

nature of the " cross " terms involving r] 21 and s41 in Eqs. (27) and 

(29) respectively. These "vorticity" terms have no c ounterparts in 

the theory of classical fluids. Their existence appears to d epend o n 

the peculiar nature of liquid He II, and they can be destabiliz:;ing. A s 

yet, we have not been able to analyze their effects mathematically in 

three dimensions or interpret them physically. 
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II. A Semi-Classical Model of the Roton-Quantized Vortex Line 

Interaction with an Application to Rotating Liquid He II. 

1. Introduction. 

It is a well established experimental fact [1] that, on a macro-

scopic scale, the superfluid equilibrium motion in uniformly rotating 

liquid He II closely resembles the solid body rotation exhibited by 

classical liquids. Other experiments also seem to indicate the 

presence of vorticity in the superfluid. 

These experimental observations have been explained by Onsager 

and F eynman [2] in a manner that allows us to retain the irrotation-

ality condition 

almost everywhere. 

\)Xv =0 -s 

Their model introduces circulation into the 

(1) 

superfluid by postulating that the helium is threaded by a distribution 

of vortex lines of microscopic dian1.eter which behave very much like 

ideal c lassical vortex lines except that the ir circulation is quantized 

in units of Planck's constant h, i.e. 

r= rf:. v ·<tt= j -s 
h 

n--
mHe 

n=l,2,3, . .• (2) 

These quantized vortex lines (QVL) are c onsidered to be part of the 

super fluid. 
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In the rotating vessel cxpcri1nent these lines are t h o u g ht to 

h ang parallel to the axi s of rotation and be stationa1:y in a fram e 

r otatin g w ith the container . The distribution of the vo rtiv(· s is 

chosen so that the circulati o n a r ound any 111acroscopic close<! cu r· v(· 

in the liquid h e lin1n is t h e san1e as that a roun d an identical cu r·vc i.n 

a liquid n1oving with a solid b o dy r ota tion . Thi s results in a line 

Lknsi ty per unit a r ea perpendicu l ar to the axis of rotation given by 

N - (3) 

w h e r e w 0 =angula r velocity of th e bucke t, a nd r 0 is give n by Eq . (2 ) 

with n = 1. (Ene r gy argun1ents s how that the n = 1 case is much more 

like l y than any of the l arger quanta o f circulation. ) It can then be 

argued that the superfluid velocity f i e l ds of these lines i m itate solid 

body rotation on a n1acroscopic scal e (see [1] and [ 2 ] for complete 

details ) . 

If this model of rotating h e lium is correc t, then it would b e 

reasonable to s uppose tha t these QVL would act as scatt ering centers 

for the thermal excitations that constitute the norma l fluid. The 

ve locity field _:;!_s of a QVL w ould influen ce the moti o n of a nearby 

excitation throug h the .12. • ys inte raction t e r m i n t h e excitation 

Hamiltonian, When th e excitations have a mean drift velocity 

relative to the vortex lines, we would expect a significant momentum 

transfer b e t ween the excitations (normal flu i d ) and the vortex lines 

( supe rfluid) . This momentum exchange b etween the two fluids is 

con11nonly called tnutual fr i ction. The line ' s "massiveness" and 



tens ion should keep it fairly rigid during a collision with an. exc ita-

tion, and it would be expected that there would be no (or a very 

small) con<ponent of mutual friction parallel to the vortex line (axis 

of rotation) since _ys would have no component in this direction. 

Hall and Vinen [3] performed experiments on the attenuation o f 

second sound in a uniformly rotating sample of liquid helium, and 

found an extra attenuation due to rotation whiih could be qualitatively 

explained by this theory of mutual friction. Quantitative agreement 

between their experiments and the Landau hydrodynamic equations 

could be obtained by adding an ad hoc force of the form: 

lw0 X(~ -~ )] 
~ -n-s 

( 4) 

to the superfluid equation. In ( 4), v and v are values of the - n -s 

normal and superfluid velocities that have been averaged over regions 

whose dimensions are large compare d to the distance between vortex 

lines, but small compared to the size of the experimenta l apparatus 
I 

(hydrodynamic velocity fields). B and B are chos e n to fit the experi-

mental data and are functions of the temperature T . 

If this F is due to excitation - QVL collisions, then Eq. (4) 

should be derivable from microscopic considerations of such a 
1 

scattering and B and B should be numerically predicted by this 

de ri vat ion. This is what we have tried to do here. 

We shall first review earlier work on this problem. Then in 

Section 2, we will consider an individual encounter between a thermal 

excitation and a QVL using an essentially classical model for the 
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interaction. In Section 3, we further describe the mechanism 

responsible for mutual friction and give a derivation of Eq. (4) which 

I 

produces expressions for B and B that do not contain any arbitrary 

adjustable paran<eter s. Finally, Section 4 contains a critical dis-

cussion of our theory that includes comparisons with experiment and 

previous work on the problem. 

The expe riment by Hall and Vinen [3) mentioned earlier only 
I 

1neasures B quantitatively. Snyder and Linekin [ 4] have measured B 

from mode splitting experiments on second sound in a rotating cavity. 

T sakadze [5] has verified the strongly anisotropic character of 

mutual friction from an oscillation expe riment that shows that any 

force component parallel to the axis of rotation must be at l east 

two orders of magnitude smalle r than the components normal to the 

axis. Hall and Vinen also observed this, but were not able to make 

any measurements. 

By using general conservation laws and the assumption that the 

internal energy is increased in a manner proportional to the averaged 

local superfluid vorticity, Bekarevich and Khalatnikov [ 6] were able 

to derive hydrodynan<ic equations which include the force given by 

Eq. (4). However, theirs is a purely forma l continuum derivation 

that neither c onsiders the microscopic nature of mutual friction nor 
I 

does it predict B or B . 

Hall and Vinen [7] analyze the excitation-QVL interaction using 

I 

a Born approximation and derive expressions f or F, B, and B from 

classical kinetic-hydrodynamic arguments. Lifshitz and Pitaevskii 

[8] use the same classical derivation as [7], but use a quasi-
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c lassical approximation to calculate the excitation-QVL cross section. 

It can be shown [ 9] that the quasi-classical 1nethod is appropriate to 

this inte racti on, whereas the Born approximation is not. Iordansky 

(see [ 4]) uses a quantum kinetic analysis applie d to a dilute weakly 

I 

inte racting Bos e gas to find B and B . None of thes e analyses have 

I 
been very successful in predicting B . In addition, there are several 

aspects about the work in [ 7] and [8] that appear to be unsatisfactory . 

In particular, both of these papers use cross sections that contain 

arbitrary adjustable parameters which are very important to their 

c alculations. Thes e points will be discus sed further in Section 4. 
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2. The Roton- Vortex Line Inte raction. 

All the experiments on Inutual f riction have b een carried out 
0 

with T > 1.1 K. At such ten1peratures the roton contribution to p 
11 

is at least two orders o f n1agnitudc greater than the phonon c o ntri -

bution [10], and it appears safe to simplify our analysis by only 

conside ring roton-QVL e ncounte rs, as was done in (7] and (8]. Also, 

as will b e s hown, phonons w ould not be capable of undergoing the 

strong and long range scattering c haracteristic of rotons. 

In treating the interaction between a single roton and a QVL, 

we shall regard the vortex as a fixed center of forc e , and the roton 

as a point particle with a free particle energy given by the Landau 

s p ectrum [ll] 

E (p) = !:::.. + (5) 

where p = roton momentum and p = I p 1. The parameters in (5 ) will 

b e take n as constants with the following values in c. g. s. units [12] : 

1:::.. !::! (1. 2) 10 -IS 

Po 2 . 10 -}9 (6) 

fl-o 1.1 · 10- 2~ 

T h e motion of the roton will be influenced by the superfluid velocity 

field produced b y the vortex. In the presence of such a v fi e ld the -s 

r oton Hamiltonian is given by [10]: 
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H = E (p) + ~ · y s , (7) 

as seen in a fran1e in which the line is stationary. The QVL will be 

assurned to be perfectly straight and its velocity field taken as the 

planar counterclockwise field of a classical vortex line in an ideal 

fluid (13]: 

(vsx' vsy) (8) 

where r 2 = x 2 + y 2 , and the line has been taken to lie along the z 

axis. 
. -3 

In c. g. s. umts r 0 !::::.10 (see Eq . (2) ). 

0 

The vortex is assumed to have a core of radius a 0 .::::. 3A, 

inside of which there is no superfluid. This choice of a 0 is made on 

the assumption that the superfluid velocity at the edge of the core is 

equal to the Landau critical velocity [14] for the destruction of super-

fluidity, i.e. a 0 is the solution of the equation 

Po 
60 m/sec . .!':::::. = 

This choice of a 0 is consistent with all known estimates of the core 

radius. 

If the line is moving, it is assumed to do so with a velocity 

ys' defined following Eq. (4). The roton-line collision will alw ays b e 

analyzed in a frame in which the line is stationary, i.e. a frame 

moving with v . -s 
In such a frame the superfluid velocity is given by 
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Eq. (8). 

We will assume that all the momentum transfer takes place 

b e t w e en the rotons and the core, i.e. that there is no direct transfer 

of n1on1e nturn frorn the rotons to the superfluid. T he n1ornenlurn rnay 

actually be conside red as g oing into the irnpulse of the entire vortex 

sys tem, and thus eventually ends up in the superfluid considered as 

a whole. What cannot happen is that the roton loses momentum 

directly to the superfluid in its immediate neighborhood. This would 

produc e a rotational flow in the superfluid. 

Other points, such as a possible Magnus effect, will be 

considered later. 

The approach described so far must be considered inadequate 

for at least one reason. In our model we are only considering 

mOinentum transfer due to the line's field acting on the roton. The 

roton, howeve r, is not a point particle, and the presence of the 

"finite" roton must alter the velocity field produced by the vortex 

and therefore have some kind of effect on the line. For example, 

the line might be bent so that its velocity field would no longer be 

s trictly t w o dimensional. Unfortunately, our knowledge of the 

structures of both the roton and the vortex core is much too incom-

plete to take such effects into account. However, from w hat we do 

know about rotons and QVL' s, we do not expect this to be a serious 

problem as far as this investigation is concerned. The scattering is 

probably v e ry similar to that of a light particle by a rigid structure. 

To a certain degree, this analysis may be regarded as a test of this 

assumption . 
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One 1nay also feel son1ewhat uncomfortable about treating a 

QVL as a classical vortex line (except, of course, for its quantized 

circulation and microscopic core siz: e ). Here again, our ignorance 

of the line structure precludes any better approxirnation. However, 

thi s n1odel has proven itself extremely successful in the past, and it 

is felt that it should be adequate for the purposes of this investigation. 

Such blending of quantum and classical mechanics has become so 

characteristic of the whole subject of liquid helium that it is difficult 

to imagine understanding helium phenomena without such a mixing of 

ideas. 

We shall now consider the scattering of a roton from an 

initial momentum state .e_ to a final state !: r Our analysis will 

depart fr01n standard scattering treatments in two important ways. 

First, we will follow the detailed motion of the roton as it passes 

through the vortex "interaction region" (say r ~ L, with the possi-

bility of L- o:> ); and , secondly, we shall assume this motion to be 

governed by the classical Hamilton's equations 

whe re 

q . 
1 

= aH 
ap . 

1 

{ q) = { x, y' z} 

aH 
Pi= - aq. 

1 

Before trying to justify the use of Eq. (9), we must first 

(9) 

consider what happens near the core. Absolutely nothing is known 

about what g o e s on when a roton g et s near the core, so the best we 
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can do is guess. We will take the attitude of trying to do the 

simplest reasonable thing we can think of. Rotons pas sing near the 

core will a lso be assumed to be g overned by classical mechanjcs and 

rotons that actually hit the c ore will be assun1cd to b e absorbed, i. e. 

the y give up their entire momentum to the vortex. We don't e xpect 

this model to pass for rigorous quantum mechanical "truth"; the 

"actual11 interaction might involve some sort of weird bound state. 

What we are saying is that we expect some very strong interaction to 

take place near the core, and we guess that it should be something 

like an absorption. We hope that this model will be a reasonably 

good approximation as far as a phenomenological description of He II 

is concerned. This investigation can be considered to be a test of 

this, and, in fact, is a test to see just how far we can go in using 

the simple, s e mi-classical, Landau-Feynman two fluid model to 

account for macroscopic hydrodynamic phenomena. 

Given our model of a rotan and the core, it is relatively easy 

to make a roug h test of the applicability of classical mechanics to 

··-
our scattering situation. For an arbitrary potential, it can be shown. 

(s ee [17]) that a classical approximation is reasonable when 

1i 
2b6p < < 1 , 

w here b is the impact parameter (the distance at which the rotan 

would pass the QVL if there were no interaction between them), and 

C:..p is the mome ntum transferred during the collision as calculated 

-·­.,. 
This derivation include s a detailed consideration of Uncertainty 

Principle effects. 
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from c lassical mechanics. Our analysis w ill produce typical values 

for the l eft h and side of the a bove relation that are b e tween .02 and 

.10 for all b. Lifshitz and Hall [9] have carried out a somewhat 

rnore detailed c alculation and found essentially the same result. So 

the use of a c las s ical mode l seerns r e asonably jus tified . This r esult 

is not really that s urprising sine e rotons essentially ob ey Maxwell-

Boltzrnann statistics. 

Substitution of (5), (7), and (8) into (9) pro duces: 

dx 
(p -po) px r o y 

dt J.lo p 2-rr r Z 

dy (p-po) ~y_ ro X 

dt - + 2-rr rz J.lo p 

dp ro ro ro x y 
~- - Px - 0 - Py 2-rrr2 +p dt 1T" y 2-rr 

dpy - ro 1 ro yZ ro 

P x 
- rZ - Px -:; r4 +p -

dt 2-rr y 1T" 

The z e quations show that p = constant. 
z 

z 
X 

r4 

xy 

r4 

(10) 

(ll) 

(12) 

(13) 

Eqs. (10 ) to (13) can b e made dimensionless with the variables 

X p 
2S. = p -

Po 

1 

t - z 
ao 

t • 

Substitution of these variables into (10) to (13) yie lds: 



dx' 
= dt' 

dy' 
dt' = 

dp' 
X 

dt' = 

dp'y 

dt' = 

ao Po 
whe r e A= 

rof.!o 

px 
A(p 1 -1) 

p' 

P'y 
A(p'-1) pt 

l 
[ I ~ -px r 14 or 

l [p~ l 
2r' 2 or 

5.4 . 
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I 

l y 
- -;::12 2or 

1 
I 

X + Zor rl2 

(14) 

l ' x'z] - p 
2r12 + Py r•4 y 

y'Z 
- Px r•4 

I ~] + Py r'4 , 

The scattering of a raton by a QVL takes place as follows. 

The rotan starts out at infinity in an initial state p and with an 

impact parameter b. The subseque nt motion of the rotan is governed 

by Eqs. (14). The rotan passes the QVL, has its state altered, and 

has its final state E£ recorded when it returns to infinity. The 

n>omentum transferred to the core is simply .E- .Ef· If a raton hits 

the core, its e ntire momentum is assumed to be absorbed by the 

line. We do not have to worry about conserving the numbe r of 

rotons . This total absorption and the large loss of momentum 

suffere d by rotons passing very close to the core is similar to the 

"hard" cross section guessed at in [8]. This will be discus sed 

again in Section 4. 

Although too nonlinear and strongly coupled to be treated 

analytically, Eqs. (14) could easily be solved numerically on a high 

speed computer. This was what was actually done. A large number 

of numerically accurate solutions for different p and b were 
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necessary to cOinpute the cross sections to be describe d in Section 3. 

It was also possible to solve highly simplified forms of these 

equations analytically. 

It was found that all the rotons were scattered as small 

deflections, hits, or "snap-backs" as shown in Fig. l (in two dimen-

sions) . The particular course taken by a roton depended on its 

initial state p and its impact parameter b. The scattering was 

found to b e unsymmetric about the forward direction. Note that a 

roton can approach the QVL even if E is pointed away from the core 

if p < p 0 (see Eq . (10) ). The p >Po and p < p 0 cases have different 

asymmetries about the forward direction, and there is almost no 
0 

scattering through angles near 90 . 

The snap-back scattering is peculiar to rotons. This behavior 

is a consequence of the strange dispersion relation (5) and the form 

of the Hamiltonian (7). This can be explained qualitatively as follows. 

Since H is not explicitly time dependent, (9) implies that 

H = ~ + + p v = const. -s (15) 

At infinity ys = 0, so that ~ · ys = 0. As roton b 3 (as shown in Fig.l) 

moves toward the core, jv s l increases, we find ~ · ys > 0, and this 

term becomes more positive as the roton moves closer to the core. 

The only way to keep H = const is to have p decrease, i.e . the roton 

moves toward (p0 , ~) on the dispersion curve as shown in Fig. 2. 

Just how far the roton moves along this curve is a function of p and 
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Po 

FIG. 2 

Some can be moved across the p = p 0 point. 

p 

From (10) ':' we see 

that these rotons come to a stop and start backing up. F r om Eqs. 

( l-4) it c an b e s hown that s uch a rotan continues to move back in the 

direction it came from. Not all rotons, of course , do this . Some 

have large enough p or b so that they can pass the QVL before they 

move across p = p 0 on the dispersion curve. These rotons then 

s tart to move back up the curve and e ventually end up w ith pf = p. 

Note that p need not change direction for one of these turn 

arounds to occur. All we need is a relatively small force to just 

barely push the rotan across p = Po on the dispersion curve before it 

passes the QVL. But the amount of momentum lost by the rotan in 

this process is sizeable. In this way w e can have a fairly strong 

interaction at large distances (on an atomic scale) from the core. 

For example, a fairly strong rotan, with an impact parameter of 

0 

60 A, can transfer lOo/o of its total momentum to the core. 

':'The second terrn in Eq. (10) is gene rally much smaller than the first. 
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In the next section we will use this model of the roton-QVL 

inte raction to quantitatively calculate the force of mutual friction . 
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3. The Force of Mutual Friction. 

If the two fluids are moving together, i.e. :!:!_b.. in- ys = 0, 

then the distribution function for the excitations that collide with a 

QVL can be taken as the Bose-Einstein equilibrium distribution 

function [14]: 

-1 

no (p) = - l J (16) 

where kB = Boltzmann's constant and T = absolute temperature. Eq.(l6) 

has no directional preference so a raton with momentum p is just as 

likely to collide with a QVL from any direction, and there would be 

no net force on a line because the collision intensity is the same for 

all angles. 

When u = v - v =f; 0, the excitation distribution function -n - s 

becomes [14]: 

n(p, p ·~) z. e 

1 - -- (€ -p. u) 
kBT _-

For a given p, it follows from Eqs. (16) and (17) that: 

n(p,p·!!;.) > n 0 (p) for 

and 

n ( p' E . :!:!_) < no ( p) for 

(17) 
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The intensity of excitations colliding with a vortex now varies with 

direction and we expect this to produce a n e t force on the line. The 

force of mutual friction will be identified with the total force on all 

the line e l en1ents in a unit volurn e of the liquid. 

Our n1ethod of c alculating the force of mutual friction is as 

follows. We assume high e nough temperatures, so that phonon effects 

can be neglec t ed , but these tempe ratures should be low enough so 

that the roton g as may still be considered dilute. This roughly 
0 0 

restricts us to the range 1. 1 K ~ T < 1. 6 K. The interaction 

between the rotons and a QVL will be considered in a frame moving 

w ith the line, i.e. moving with v -s Momentum transferre d by a 

roton to the line during a scattering will be calculated as describe d 

in Se c tion 2 . Eq . (17) will b e assumed to govern the distribution of 

incoming rotons. The effects of these collisions will then be inte -

grated over all p, b, and inc oming directions. In this w ay, we shall 

cal culate the force per unit l e n gth on a single line. The force p er 

unit volume (the force of mutual friction) can then be calculated from 

a knowledge of the l e ngth of vortex line per unit volume (see Eq. (3)) . 

P h ysically , thi s method has the advantages of being very direct and 

picturesque. 

It can b e argued [7] that the momentum transfe r mechanism 

desc ribed h ere would lead to a Magnus force on the line, so that the 

vortex would move w ith a velocity ~ L which is slightly different 

from v -s However, such a Magnus force correction can b e shown 

to be e ntir e ly n egligible in the temperature region whe r e our theory 

0 0 

is most likely to be valid , i.e. for 1.1 ~ T < 1.6 . Hall and Vi.nen [ 7] 



-51-

found that the Magnus effect is only important near T A.. 

We will also assume that the rotons do not interact with each 

other, although we will take some account of this later . This 

assun1ption seems reasonable for the temperature range considered 

he1·e, since the raton density is low. 

We assu1ne u to lie in a plane perpendicular to the QVL (as 

it does in most experiments). The generalization to arbitrary ~ is 

not difficult ( 7] . It is convenient to divide the calculation of the 

force per unit length, J, on the vortex into x and y components, 

parallel and perpendicular to ~ respectively (see Fig. 3) . The QVL 

lies along the z axis. We show the de ri vat ion of f for p > p 0 in 
X 

complete detail. The other force components can be calculated in 

e x actly the same way. 

If a single rotan, with an impact parameter b, undergoes a 

scatt ering from the state E to the state Ef' then the momentum 

transferred to the core in the x-direction is given by: 

~ p (p, b) = 
X-

. i 
-x (p > Po) 

w hich can be rewritten in the convenient form: 

(see Fig. 3). 

i . -x 
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Using Fig. 3, we can rewrite the last equation as follows 

+ + 
f). WllpcOS<p + wi psin<p (18) 

+ + 
Eq. (18) defines Wll (E_, b) and w..l (~-'b). The + superscript denotes 

the case p > p 0 , and a - superscript will denote the case p < p 0 • The 

W' s are the quantities that are calculated on the computer. They are 

independent of <p. 

By an elementary kinetic argument (see, for example, [18]) 

the number of rotons in unit z depth with 12. E [£_,.E. + d~-] and 

bE [b , b+ db) that will interact with the core per unit time is given by 

d_E 
n(_E, _E.·~) h 3 db vG sin~ , 

where h =Planck's canst., 
p-p 

and v = .!:..._KQ 
G fJ.o 

is the group (particle) 

velocity of the rotons. The distribution function n is given by 

(19) 

Eq. (17). From (18) and (19) we find the force per unit length on a 

vortex due to all rotons with p E [_E., p + dE_) : 

So that for all p such that p > Po , we have 
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fx(p > p 0 ) = J J J :~ n (_p_,E_ · ~) vG p sin t(! [ t
11 
cos q> + 't1 sin q> J 

p > po 

whe r e 

+ + 
o·ll (p ) = J db w

11 

+ 
and + J d b wj_ !Tj_ (p) = 

(2 0) 

(21 ) 

It can be shown analytically (see Appendi x A), using a small 

angl e scat teri n g approximation [ 15], t hat t _.L and ;j_ diverge l ogarith-

mically as b - oo. This makes it necessary to u se a cut- off or 

screening radi us o n the ys field produ ced b y the vor tex. 

t h e following cut-off pot ential to replace Eq. (8): 

We c h oos e 

ry rx 
(v v ) = (-~ - 0 

) r :< L 
sx' sy 21rr2 ' 27Tr2 ' --= 

(22 ) 

= 0, r > L, 

where L = a typ ical roton- roton mean free path in the T range 

w h e re we expect our theory to be most v alid. This choic e is bas e d 

on the assumpti on that t he weak QVL potential i s not felt beyon d L 

b ecause it is screene d by s t ron g roton- roton collisions. W e take 

0 

L = 150 A, w h ich corresponds to the r o ton- roton mean free path for 

0 

l. 2 K or 1. 3 K as calcu late d from the K h alatnikov the ory [14]. Our 

final results are ins e nsitive to the exact c hoic e of L as l o n g as 



-5S-
2 0 

L::::::. 0(10 A), since the roton-QVL interaction is v e ry w eak. at these 

distances. (We suspect that the dependence on L is loga t·ithnlic). 

The cross sections (21) n1ake the explicit evaluation of (20) 

extremely difficult and complicated. However, the presence of th e 

factors ti and vG results in the fact that only a very small range of 

p contributes to the integrals (2 0). The o- 1 s vary slowly over this 

range, and we will make the major computational simplification of 

factoring out average values of these quantities from Eq. (20). Our 

method of averaging will be to evaluate Eqs. (21) for p = p, where 

p is the momentum corresponding to the average group velocity, 

- 1/, 
(v(;) 1 2 , of a rotan in thermal equilibrium at a given temperature. 

More explicitly, p is a solution of: (see Ref. [16]) 

2 

~~ = ( p::o) = (23) 

+ Of course, the p > p 0 solution is used for o- and the p < p 0 solution 

for o-. This is the same procedure used in [7] and probably in [8], 

and produces values for p that fall close to the center of the con-

tributing p range. The calculation of B and B' is not very s e nsitive 

to the particular n1ethod used to determine the ave rage value of p 

used to evaluate (21). Changes in B and B
1 

with T come entirely 

from the quantities N and I shown in Eqs. (27) and not from the 
r 

cross sections. 

After r e moving the average o- ' s from (20) we have 



fx(p >Po) = t
11 

(p) J J J 
p>po 

Noting that 

p . i -x 

and 

p i -y 

= 

= 
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sin <p { 24) 

p sin 4J cos <p • 

-p sin 4J sin <p 

we recognize the two integrals in (24) as the x and -y components of 

JJJ 
dp 
h3 n{E_,E_ ·~) vG E. {25) 

Such integrals can be shown to only have a component along ~. and 

since u = u i the second integral in (24) must equal zero. - -x 

can also be verified by direct integration. 

This 

The integrals in Eqs. (24) or (25) can be evaluated in a 

straightforward manner using the techniques of Khalatnikov (14]. 

This involves an expansion of n(E_, E.·~) in powers of u. Assuming 

u to be small and retaining only the first non vanishing term in ( 24) 

we find 



fx(p > Polix = 

= 

D. 

+ 
NR and I in ( 2 6) are 

NR = 
and 

+ 
I = 

where 
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+ Iff 
dp p-po 

(Til h3 n(E_, E · ~)(--;;;--) E. 
p>po 

4 
NR + + Po 

(Til 
(!J.okB T)l2 

I (yn- Y s) 
3..[2; 

+ + 
a- II A (y n- .Y s ) 

given 

% 
2(27T) 

00 4 

J n 

by 

~ 2 
(!J.okB T) Po 

h3 

<n -1) 

a= 

a 2 
- - <n-1) 

T e 

2 

Po 

_ _f:L 

e 
kBT 

dn , 

The quantities in ( 27) are easily e valuated. 

( 26) 

(27) 

Repeating the derivation for the p < Po case and for the y 

component of l r esults in the final force per unit length on a 

Feynman vortex. We find 

I 

f = D(v - v ) + D i X (v - v ) -n -s -z -n -s (28) 

where 
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+ + 
D = all A- 011 A 

( 29 ) 

t + + 
D = 0:L A- o-..L A . 

+ 
A has the same form as A 

+ 
except that the integral I is replaced 

-
by I, where 

I = 
C!' 2 

- - <n-1) 
J

. I 4 T 
n (n -1) e dn 

0 

Fron1 Eq. ( 28), we c alculate the force per unit volume .f. 

For the rotating bucket experiment we can immediately conclude that 

the length of line per unit volume is given by Eq. (3) . So then 

2w 0 2w 0 2w 0 1 
F = f = -- D(v - v ) + -- D i X(v - v ) . 

ro - ro - n - s ro - z - n - s (30) 

In order to conform with the established notation, w e rewrite (30) as 

( 31) 

"vhere 
2p 

B = pspnro 
D, 

(3 2) 

t Zp ' B - p spnro 
D 

t 

B and B were compute d f rom the preceding equations for 
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0 0 

four temperatures b etween 1.1 K and 2.0 K. About 400- ~00 rotons 

were run on the co1nputer and used to c alc ulate the n ' s . It was 

+ 0 • 

found that 0"!1.::::: 10 A, wh1le all the other cross sec tion::; had rnagnitucks 
0 0 

in the ZA-3.5 A range . In Table 1, we collect our corr1puted values of 
I o o 

B and B for a 0 = 3 A and L = 15 0 A . Various data from Donnelly (12] 

were us ed in s ome of the nume rical calculations. 

0 I 
T( K) B B 

0 

1.1 1 . 30 . 62 
0 

1.4 1. 35 . 55 
0 

1.7 1. 7 5 .70 
0 

2.0 4 .00 1. 35 

Table L 

For con1.parison, we list, 1n Table 2, the experimental values 

I 

for B found by H a ll and Vine n [ 3] , and for B found by Snyder and 

Linekin [ 4] . ' Note the large error bounds on B . 

0 ' T( K) B B 
0 

1.2 1.5 .73±.15 
0 

1.4 1.4 . 47±.2 5 
0 

1.7 • 9 .23±.15 
0 

2.0 1.0 .36± . 2 5 

Table 2. 
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4. Discussion. 

We have plotted various expcrin1ental and the oretical value::; 

I 

for B and B in Fig. 4. 

Our results, curves d ?Lnd e, compare well with the experi-
0 0 

ments for 1.1 ,;:; T < 1.6 , but differ considerably up near 2.0 K, 

where the rotan gas is more than ten times as dense as it is at 

0 

1.4 K. Of course, it is not surprising that our simple kinetic 

picture fails at such high densities. From curve b, we can see 

that Hall and Vinen had the same problem. They tried to correct 

this by taking into account a Magnus effect, which is complet ely 
0 

negligible for T ,;:; 1.8 K, and the 11 dragging of the normal fluid near 

the core, 11 which improved their agreement considerably. 

Use of this 11 dragging 11 effect would also improve our high 

temperature results, but we find this correction disagreeable. We 

could also lower our values for high T by taking into account the 
0 

fact that L decreases as the raton density increases. At 1.9 K L 
0 

is about 1/10 of its value at 1.4 K. Such a drastic reduction in L 

would decrease our cross sections somewhat and improve our 

experimental agreement. Howeve r, it is not really possible to use 

0 

our simple kinetic picture with a mean free path of about 10 A 

Also, Eqs. (5) and (6) may not hold for high rotan densities. 
I 

The existence of a nonzero B from the Hall and Vinen theory 

(curve c) is a consequence of the Magnus effect. They found the 
I 

rotan scatte ring to be s ymmetric, and this would give B = 0 without 

the Magnus correction. 

It was found that our results were more sensitive to the value of 



-"C 

-CD .. 
CD 

-CD -
....... 

' " ' \ 

- ,_i_-

-CD -c -
CD -

\ 
\ 
~ 

-~ 
0 - -

CD 
t-

-u 

<l 

<l 

<l 

<l 

0 

C\1 

C\1 

0 
C\1 

<.D . -

v 
-

C\1 

0 

~-

(.!) 

LL 



0 ar c 

6. arc 

Curve 

-62-

Fig . 4 

cxpcrino.ental values for B fron1 Hall and Vincn [ 3] . 
I 

expe ri1nental values for B fro1n Snyder a n d Line kin l4 J . 

a(B) a r e the theor e tical values of B obtaine d by Hall and 

Vinen [7] from a derivation w hich includes c orrections fo r 

Magnus effect and normal fluid dragging n e ar the c or e . 

Curve b(B) are the the ore tical values of B obtained in [7] without 

their Magnus and dragging corrections. 

Both curves a and b have b een fitted to the experi m e ntal point [9.] 
by an appropriate choice of an arbitrary parameter in the 

Hall and Vinen theory. 

I I 

Curve c (B ) are the theor etical values of B from [7] . 

I I 

Curves d(B) and e (B ) are the theoretical values of B and B 

calculated in Section 3. 
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r 0 than to either a 0 or L. There are two sources of r 0 in our 

calculations, Eqs. (3) and (22). Our work the n seen1s to indicate 

that r 0 cannot differ appreciably fron1 
h and that Eq. (3 ) for 

n1He 

the line density in a rotating v es sel must be e s scntially correct. 

The closest things to arbitrary parameters in our calculations 

are a 0 and L, both of which were chosen a priori in a rational 

1nanne r. Physical conside rations limit these quantities to values 

that must be near the ones that were picke d. Our calculation is 

very insensitive to the choice of L (probably a log arithmic depen-

d e nce), and we estimate that a different reasonable choice of a 0 

o I 

(say 4 A) would not change our values of B or B by more than 
0 0 

10-15% . Most known estimates put 2 A ~ a 0 ~ 4 A for the t emper -

ature s we are considering . 

On the other hand, the analyses of Hall and Vinen and of 

Lifshitz and Pitaevskii contain very important adjustable parameters 

whose choice is equivalent to choosing values for their cross sections 

to fit the experimental data. It should be noted that the cross 

I 

sections used in their calculations for B and B are not e qual to 

thos e that they derive from the Born and quasi-classic al approxi-

mations. 

In its original form, the quasi-classical analysis of Lifs hitz 
I 

and Pitae vskii produces poor values for B and B , y e t our calcula -

tion gives good results . Lifshitz and Pitaevskii give no details of 

the ir analysis, but the difference between their r e sults and ours 

seems to stem from the fact that they did not treat the very strong 

interactions near the core. They improve matters by hypothesiz ing 
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that rotons passing near the core must give aln1ost all the ir n10rne n-

tum to the vortex, and on the basis of this they simply add an 

arbitrary constant to one of the ir cross sections. The constant i s 

then chosen to fit the experimental data. If, in our analysis, w e 

exclude rotons with impact parameters le ss than about an atomic 

0 

spacing (.::: 4 A) then we get the same poor values that Lifshitz and 

Pitaevskii found at first. Our g ood results therefore seem to be a 

consequ e nce of the strong snap-backs and rotan absorptions that 

occur in the cor e region. Of cour se , we do not c laim that our 

model is strictly correct from a quantum mechanical s tandpoint; 

but, like so many other semi - classical models used in the study of 

liquid Helium II, it seems to be perfectly adequate from a phenome na-

logical standpoint. 
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Appe ndix 

Small Angle Roton- Vortex Line Scatte ring 

For large impact parameter b, the vortex field i~ weak and 

the rotons are deflected through very small angle s . In this section 

we shall analyze small angle roton-QVL scattering and show that the 

cross section 6:...1.. (Eq. (21)) diverges logarithmically as b- co. We 

follow the method of Landau and Lifshitz [15]. 

The QVL shall be considered stationary and the x-axis taken 

as the direction of incidence of a roton in the initial state E. (see 

Fig. A-1). The angle of deflection 8f is given by 

pfy 
p 

in the small angle approximation. 

Using the roton Hamiltonian 

H = f (p) + !: • y s ~ E + V 

we can integrate the Hamilton equation 

dpy 8H av 
::: - ::: 

dt 8y ay 
, 

to obtain co 

Pfy = J - av dt 

-oo ay 

(A-1) 

(A-2) 
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Since the vortex field is weak for large b, we can assume 

the particle is essentially undeflected from its initi al path so that 

a nd 

for all time. 

y .::: b 

dx __ p-po 
dt f-lo = vG const (A-3) 

In our approximation we can rewrite V(x, y) as a function of 

r only (see Fig. A-1) so that 

oV = 
oy 

_ ov y_ 
8r r - -

Using (A-3) and (A-4), (A-2) becomes 

Pfy = 
00 

J ov dx --or r 

av _g 
or r 

(A- 4) 

(A- 5) 

From V = E · ys, Eq. (8) of Section 2, and Fig. A-1, we find, 

in this approximation: 

so that 

v = 

av 
or =--. 

71' 

b 
r3 

(A- 6) 



00 

J dx 
-oo 

i.e. 
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Using we have dx = r dr and 

00 zJ dr. Then from (A- 5 ) and (A-6) we have 
b 

00 

dr 1 
Pfy = 7rVG b ' 

(A- 7) 

As far as boundedness is concerned, is essentially equal 
L 

to J so that 

o-1..- lnL-oo, as L-ao. 

This proves the statement made at the beginning of this section. 

The deflection angle c an be calculated from Eq. (A-1) . 
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