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ABSTRACT 

The nonlinear partial differential equations for dispersive 

waves have special solutions representing uniform wavetrains. An 

expansion procedure is developed for slowly varying wavetrains, 

in which full nonl~nearity is retained but in which the scale of 

the nonuniformity introduces a small parameter. The first order 

results agree with the results that Whitham obtained by averaging 

methods. The perturbation method provides a detailed description 

and deeper understanding, as well as a consistent development to 

higher approximations. This method for treating partial differ­

ential equations is analogous to the "multiple time scale" meth­

ods for ordinary differential equations in nonlinear vibration 

theory. It may also be re garded as a generalization of geomet­

r i cal optic s to nonlinear problems. 

To ap ply the expansion method to the classical water wave 

prob l em, it is crucial to find an appropriate variational prin­

ciple . It was found in t he present investigation that a 

~agrangian function e qual to the pressure yields the full set of 

equations of motion for the problem. After this result is de­

rived, the Lagrangian is compared with the more usual expression 

formed from kinetic minus potential energy. The water wave 

problem is then examined by means of the expansion procedure. 
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PART I 

A PERTURBATION METHOD FOR NONLINEAR DISPERSIVE WAVES 

1. Introduction 

Special solutions representing infinitely long, periodic 

wavetrains are readily obtainable for many partial differential 

equations of interest in water wave theory, plasma dynamics, and 

other fields. For the usual linear examples these are ainu-

soidal, and a general solution may then be constructed by super-

position of these wavetrains in a Fourier integral. Since the 

different uniform wavetrains generally have different velocities 

of propagation, a local disturbance expressed in this way tends 

to break up, or disperse, into its various component waves. The 

saddle-point or stationary-phase approximation shows for typical 

examples that a nearly uniform wavetrain eventually develops in 

any locality. 

Knowledge of the fam ily of uniform wavetrain solutions also 

aids examination of such dispersive wave behavior for nonlinear 

equations, but an approximation becomes necessary since super-

position method s do not apply. The approximation of interest 

here is the case of a nearly uniform wavetrain. Whitham [1] 

1. G. B. Vfuitham, Proc. Roy. Soc. A, vol. 28; (1965), PP• 2;8-
261. 
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showed one way to obtain approximate equations for the slow, 

large-scale variation of amplitude, wavenumber, etc., for such 

a wavetrain. A subsequent method [2] allows these results to 

be obtained in a simpler and more satisfying manner by appli­

cation of an averaging procedure to the Lagrangian of the orig­

inal system. The desired equations then arise directly as the 

Euler equations of the averaged Lagrangian. The averaged 

Lagrangian method is shown in §2 for a simple example . 

For more precise and deeper understanding of the averaged 

Lagrangian method it is necessary to know how the same results 

may be obtained directly from the differential equation as the 

first approximation in a formal perturbation expansion procedure. 

The present dissertation provides this for certain classes of 

equations. It should be remarked, however, that the averaged 

Lagrangian method gives the result in an elegant form that is 

not immediately evident from the expansion procedure. 

The background material in §' explains why a certain form 

of expansion was chosen, but §4 contains the essential ideas of 

the expansion method. A simple example is worked in detail and 

the result compared with that given by the averaged Lagrangian 

method. In Part II, the material of §7, which gives a 

2. G. B. Whitham, J, Fluid Mech., vol. 22 (1965), PP· 27,-28). 
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variational principle for the water wave problem, is really 

a separate item and may be read independently of the rest [3]• 

;. The material of §§4, 5, and 6 is to appear in Proc. Roy. Soc. 
A, (1966). The material of §7 has been submitted to J. Fluid 
Mech. 
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2. The Averaged Lagrangian Method for Nonlinear Dispersive Waves 

For comparison with results to be obtained in §4 by an ex-

pansion method, Whitham 1 s [4] averaged Lagrangian method will now 

be applied to the simple variational problem 

( 2. 1 ) 

for which the Euler equation is 

u - u + V 1 (u) = o. 
tt XX 

(2.2) 

(One may visualize u(x,t) as the displacement of a stretched 

string subject to a nonlinear restoring force V1 (u) per unit 

length; however, other nonlinear terms are sometimes of impor-

tance in such a problem.) 

First consider special solutions of (2.2) of the form 

u(x,t) = U(e), 

the phase variable e being set equal to KX - wt for some 

constants K and w. Such uniform solutions , in which u · is 

constant on lines of constant e, are typical in problems that 

are invariant under x and t translation. Substitution of 

(2.)) in (2.2) gives 

2 2 
(w - K) Uee + V1 (U) a O. (2.4) 

Equation (2.4) is nonlinear, but may be solved implicitly with 

4. Loc. cit. 
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the aid of an energy integral. Multiplication of (2.4) by Ue 

and integration gives 

2 2 2 t (w - K ) Ue + V(U) = E, (2.5) 

where E is an energy-like integration constant. Then solution 

of (2.5) shows that 

. u .l. 

(w
2 

- K
2 )t J {2(E - V(U' ))}- 2 dU' ~ Tj, e (2.6) 

where Tj is a phase-like integration constant. Inversion of 

(2.6) gives a family of solutions of (2.4), which may be denoted 

by 
(2. 7) 

In the case of interest, U oscillates between two zeros of 

E - V(U) and is periodic in e. In the linear case, where 

V(u) = i u2 , (2. 7) is simply a sinusoid. 

Through use of the above family of uniform, periodic solu-

tions, one may now examine the behavior of nearly uniform wave-

trains, in which the amplitude, frequency, and wavenumber change 

slowly over large distances and times. Whitham [5] obtained 

equations for the slow variation of these quantities by applying 

an averaging procedure to the Lagrangian in (2.1). In this pro-

cedure, E, K, and w are temporarily treated as fixed param-

eters, and L is averaged over one oscillation of the uniform . 

5· Ibid. 
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solution to give 

..t. . 

£(E,K,w) = (w
2 

- K2 )t § {2(E- V(U))}
2
dU- E. (2.8) 

Then E, K, and w are allowed to be slowly varying functions 

of x and t. For convenience this will be expressed here by 

writing E(X,T), K(X,T), and w(X,T) as functions of "stretched 

coordinates" X and T. Finally, the averaged Lagrangian (2.8) 

is interpreted as giving a new variational principle for the 

quantities E(X,T) and 8(X,T), where K = ®X and w = - ®T. 

The Euler equation for E-variations is 

' _.l.. 
2 2.=.!{ } 2 (w - K )

2 ~ 2(E - V(U)) dU "' 1 • (2.9) 

In the linear case, V(u) = i u2 , the functional relation (2.9) 

between E, K, and w reduces to the usual dispersion relation 

4n2 (w2- K2 ) a 1, with no dependence on E. The Euler equation 

for ®-variations is 

.l.. 

+ ~x {~ecw2 - ~e 2 )-t§ (2(E- v(u))tdu} .. o. (2.10) 

Equations (2.9) and (2.10), together with the condition 

form a set of coupled equations for E, K, and w. 
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)· Differential Equations with Slowly Varying Parameters 

Numerous expansion methods have been used for ordinary 

differential equations with slowly varying parameters. The 

objective is to generalize one of these methods to partial 

differential equations and then to obtain, as the lowest 

approximation of the expansion, the same results as in §2. 

Several expansion methods are discussed below from the stand-

point of such a generalization. 

Because of its applications in quantum mechanics and 

p lasma physics, the theory of adiabatic invariants has been 

widely examined. The traditional treatments of this problem 

dep end heavily on the formalism of Hamiltonian mechanics. A 

well-known result [6] is that, for certain systems, an "adia­

ba tic i nva riant" of the form ~ p dq remains nearly constant 

as pa r ameters of the system a re slowly varied. Thus, for ex-

ample, when a pendulum we ight swings from a string of length 

S, the amplitude of small oscillations varies approximately 

A 
as S4 if S is gradually changed. The theory of adiabatic 

invariants is also ap plicable to the full nonlinear problem. 

The tre a tment of adiabatic invariants given by 

6. See, for example, L. D. Landau and E. M. Lifshitz, 
Mechanics. London: Pergamon Press (1960). 
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Gardner [7] is an example of the conciseness obtainable by 

Hamiltonian methods. In that treatment, a canonical transfer-

mation is used to map the q-p plane onto the q 1 -p 1 plane in 

such a vmy that each level curve of the Hamiltonian function 

H(q,p,A(t)) maps to a circle of corresponding area. If the 

parameter A changes slo\'lly with time, the l .evel curves of 

the transformed Hamiltonian H'(q' ,p' ,A(t)) deviate only slight­

ly from the circles, and it then follows that §p dq is an 

adiabatic invariant. Repetition of the procedure shovts that 

the result also holds to higher approximations if the comparison 

of amplitudes is made between successive times at which all 

derivatives of A are zero. 

It appears that methods like that of Gardner cannot be ex-

tended readily to partial differential equations, where several 

independent variables would be involved, for Russmann [8] has 

determined that only trivial canonical transformations (the 

point transformations) are available when Hamilton's equations 

are generalized to more than one independent variable. For 

this reason, some direct approaches that avoid canonical trans-

formations will now be considered. 

7· C. s. Gardner, Phys. Rev., vol. 115 (1959), PP• 791-794. 

8. H. Russmann, Arch. Rat. Mech. Anal., vol. 8 (1961), PP• 353-
357· 
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The methods of Krylov and Bogoliubov [9] are a well-known 

direct approach to slightly nonlinear ordinary differential 

equations. For the equation 

( 3.1 ) 

\vhere € is a small parameter and T = et is the 11 slow time, 11 

an expansion of the form 

2 
u =a cos e + e u1(e,a,T) + e u2 (e,a,T) + ••• , 

da 
dt 

de 
dt 

2 w(T) + e B
1

(a,T) + e B
2

(a,T) + ••• , ().4) 

is typically used. The quantities B1 , B2 , ••• are determined in 

such a way as to eliminate secular terms proportional to time, 

which would othenlise destroy the uniform validity of the expan-

sion. Because the lowest approximation in ().2) is arbitrarily 

taken as a sinusoidal function, the method is limited to problems 

that are only slightly nonlinear. 

For linear partial differential equations , the expansion 

is commonly used to derive the results of geometrical optics 

9· See, for example, N. N. Bogoliubov andY. A. Mitropolsky, 
As utot ic Methods in the Theor of Non-linear Oscillations. 
Delhi: Hindustan Publishing Co. 1961 • 
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from the wave equation or to obtain equations of classical 

mechanics as an approximation to wave mechanics. Expansions 

similar to (3.2) and (3.5) have also been used for simple, 

sliEhtly nonlinear partial differential equations [10], but 

such a procedure quickly leads to complicated algebra. 

To combine some of the advantages of the previous methods, 

it seems reasonable to use a direct expansion resembling (3.2) 

and (3.5), but to attempt the full nonlinear problem as in the 

examination of adiabatic invariants. Kuzmak [11] has done this 

for a class of ordinary differential equations. In that 

approach, the same e dependence is kept as in (3.2), but the 

cosine function is replaced. Kuzmak considered asymptotic 

solutions of the equation 

d2u ( du 
dt2 + e g T,u) dt + G(T,u) o, (3.6) 

where e is a small parameter, T = et is the "slow time, 11 and 

g and G are prescribed functions. The dependence of G on 

T represents the slow variation of an external parameter, as 

in the problem of adiabatic invariants, and the function g 

10. D. Montgomery and D. A. Tidman, Phys. Fluids, vol. 7 (1964), 
PP· 242-249. 

11. G. E. Kuzmak, Prikl.l-lat. Mekh., Akad. Nauk SSSR, vol. 23 
(1959), pp.515-526. (Translated in Appl. Math. Mech., vol. 
23 (1959), PP• 730-744.) 
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gives a small frictional damping effect . Following Kuzmak, 

let us use an expansion of the form 

u(t) = u(e,T) + € u1(e,T) + ••• , 

e .. w(T). 
t 

The expanded terms 

2 
ut = u8w + €(UT + u18w) + 0(€ ), . 

2 2 2 
utt = u88w + €(U8wT + 2U8Tw + u188w ) + 0(€ ), 

2 
G(T,u) = G(T,U) + € Gu(T,U) u

1 
+ 0(€ ), 

(3· 7) 

(3.8) 

are substituted into (3.6) and the various powers of € equated 

to zero to give 

u
88

w2 
+ G(T,U) o, 

2 u
188

w + Gu(T,U) u1 = - U
9

wT - 2U8Tw - g(T,U) U8w. 

(3·9) 

( 3.10) 

Although integration of (3.8) is eventually to give the depend-

ence of e on t as 
t 

e = J w(€t' ) dt', 

the crucial idea of the me t hod is to satisfy (3·9) and (3.10) 

by treating U, u1 , ••• as functions of two indep endent variables, 

8 and T. Then (3.9) and (3.10) may be rega rded as ordinary 

differential equations with e a s the independent variable, T 

be ing a parameter. The appropriate approximating functions U 

and U, as vrell as w(T), a re eventually to be determined f'rom 
1 

these equa tions. 

The solution of' (3.9) involves a 11 constant of' integration" 
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which is a function of T; it may be taken to be essentially the 

energy E(T). This is undetermined from (.3.9). Ho;.rever, in the 

next order equation (.3.10) it turns out that a satisfactory u
1 

requires a type of orthogonality restriction on the right hand 

side of (3.10). This gives a first order differential equation 

for E as a function of T. If g = 0 it leads to adiabatic 

invariance. 

Kuzmak's [12] appro ach extends readily to partial differ­

ential equations, and the analogous problems concern dispersive 

waves. This extension of the expansion method is the main 

objective of Part I. The motivation and derivation are so 

similar to those for ord inary differential equations that we 

shall give the full discussion for a simple dispersive wave 

problem, instead of continuing the discussion of Kuzmak' s ;.rork. 

Only partial differential equations of a variational nature will 

be considered, however, and so, for comp leteness, Kuzmak's 

treatment of slightly dissipative ordinary differential equa­

tions will be indicated at the end of §4. 

When the expansion method is applied to partial differen­

tial equations, the lowest approximating functions turn out to 

be just the uniform wavetrains considered in §2. For some 

12. Ibid. 
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simple problems, these periodic wa.vetrains are known exactly, 

for example , in terms of elliptic functions. Then the slowly 

varying but fully nonlinear problem may be examined. Often, 

of course, the uniform wavetrains for a nonlinear problem are 

not known in closed form; typically, only the small amplitude 

approximations are known. Even in that case, it may still be 

desirable for clarity and for reduction of algebraic complexity 

to treat the uniform solutions as known and thus to defer the 

expansion in terms of small amplitude to the last step. 
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4. The First Order Expansion for utt - uxx + V' (u) = 0 

The simple partial differential equation 

utt- uxx + V'(u) = 0 (4.1) 

will now be examined by means of a pe rturbation expansion. As 

shown in §2, for typical choices of the function V(u), equation 

(4.1) has solutions in the form of uniform, periodic wavetrainss 

that is, 
u(x,t) = U(e), (4.2) 

the phase variable e being set equal to KX - wt for some con-

stants K and w. 

The objective is to describe slow variation of a wavetrain 

over large distances and times by letting U also depend on 

11 stretched coordinates, 11 X = ex and T = et, where € . is a 

small parameter. The form of u is then anticipated as 

u(x,t) = u(e,X,T) + e 
2 U

1
(e, X,T) + e u

2
(e,X,T) + ... ' 

(4.:;) 

,.;here u
1

, u
2

, ••• are higher order corrections. The derivatives 

of 9 are now also allowed to depend on X and T, so that 

e 
X 

K(X,T), et =- w(X,T), (4.4) 

with 
KT + wX = 0; (4.5) 

equivalently this means e = e-1e(X,T). The idea of the expan-

sion (4.:;) is to include the relatively fast 11 local" oscilla-

. tions through the dependence on the variable e, while 
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dependence on X and T takes care of the slow variation in 

11macrosco pic 11 quantities like amplitude, frequency, and wave-

number. A naive expansion 

u(x,t;e) = u
0
(x,t) + e u

1
(x,t) + ••• 

leads to s ecular terms in u
1

, etc. 

The expansion and coll e ction of powers of & is straight-

forward, all functions, of course, being assumed sufficiently 

smooth . Substituting the expanded terms 

into 

u 
XX 

u99 K
2 

+ e(UeKx + 2UexK + u169K
2

) + o(e
2

), 
2 2 2 

utt u99w + e(- U8wT- 2U9Tw + u196w ) + O(e ), 

V1 (u) = V' (U) + e u
1
V11(U) + O(e 2 ) 

} (4.6) 

(4.1) and e quating the various powers of e to zero gives 

the equations 

and 

where 

2 K) u96 + v•(u) = o 

K2 ) U + V11 (U) U = F1(e,X,T), 196 1 

(4.7) 

(4.8) 

F1 = 2wU8T + 2KUeX + wTUS + KxUe: (4.9) 

Equations (4.7) and (4.8) are essentially similar to equations 

(3·9) and ().10) used by Kuzmak for the examination of ordinary 

differential equations. 

Although integration of (4.4) is eventually to determine 

the dependence of 9 on X and t, the crucial idea in the 

method is to satisfy (4.7) and (4.8) by treating U, U , ••• as 
1 
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functions of three independent variables, 9, X, and T. Then 

(4.7) and (4.8) may be r egarded as ordinary differential equa-

tions with e as the independent variable, X and T being 

parameters. 

Equation (4.7) has already been examined in §2 and the 

solution indicated in (2.7); however, the quantities U, K, and 

w, as well as the integ ration "constants" E and ~' now depend 

on the parameters X and T. Thus, the form of the solution 

for U may be written as 

2 2 
u(e,x,T) = f(e + ~,E,w - K ), (4.10) 

in which the function f is imp licitly known but the functions 

~ (X,T), E(X,T), w(X,T) and K(X,T) are as yet undetermined. 

In §2, the e quations governing the large-scale behavior of 

E, K, a nd w aro s e by an averag ing technique; the same equations 

will now arise in the e xpans ion method as conditions necessary 

f or t h e uni f orm v a lidity of the expansion. The periodicity of 

u with respect to e means tha t 

U(e + nP,X,T) = U(e,X,T), (4.11) 

\.;he re P is the period and n is any integer. Partial differ-

entiation of (4.11) with respect to X and e, and combination 

of these two results shows that 

(4.12) 

· Unless PX is zero, UX(e + nP,X,T) will be unbounded for large 
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n, and hence for large e, and the uniform validity of the 

assumed expansion (4.3) will be destroyed. Thus the period P 

must not be allowed to depend on X or T, and may be normal-

ized to unity. From (2.6) this condition implies the relation 

(4.13) 

between w, K, and E. Requirement (4.13) is simply the disper-

sion relation given before in (2.9). 

The next requirement arises from (4.8); hOi.,rever, the full 

solution of (4.8) is not needed until later, when higher order 

results \.,rill be considered. The information needed for the 

first order result may be obtained quickly by deriving one con-

dition that is necessary to avoid unbounded secular terms. The 

key to this is to note from (4. 7) that ue is a solution of 

the homogeneous equation for u1, that is, 

(w 2 
- K2) ueee + v•(u) ue = o. (4.14) 

Then a substitution U
1 

= wU
8 

in (4.8) leads to a first order 

equation for we: 

2 2 (w - K )(U
8
w

88 
+ 2U

88
w

8
) = F1, 

or, better, 

2 2 0 . 2 
(w - K ) oB (U8 w8 ) = U8F1• 

On replacing w by u
1
;u

8
, this shows that (4.7) and (4.8) imply 

(w2 - K
2

) ~e (U18u8 - U 1 U8 ~) = U8F1 • (4.15) 

Now, it is clear from (4.15) that u
1 

or u
18 

will be unbounded 
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unless the integral 

(4.16) 

is bounded for large 9. Since U is periodic in e, it 

follows from (4.9) that u
8

F
1 

is periodic in e, so that (4.16) 

is bounded only if 
1 

Ju~l 1 de ... o. 
0 

(4.17) 

This condition, involving the integral over one period, is thus 

necessary so that secular terms proportional to 9 may be 

avoided. 

Unless condition (4.17) holds, the unboundedness of u
1 

or 

u
19 

will destroy the uniform validity of the assumed expansion 

(4.)); however, the functions w, K, and E satisfy only two 

relations (4.5) and (4.13) so far, and (4.17) can be imposed. 

This is the crucial step in the analysis. With the expression 

for F
1 

substituted from (4.9), condition (4.17) becomes 

1 

~T {w Ju6
2

de} + = o. (4.18) 

0 

Requirement (4.18) is equivalent to the equation (2.10) given 

previously, as follows by a change of the variable of integra-

tion from 8 to U and by the use of (2.5). Thus, when 

applied to the simple partial differential equation (4.1), the 
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expansion method agrees with Whitham's averaged Lagrangian 

method and yields the set of coupled equations (2.9)- (2.11). 

\fuen using the direct expansion method presented here, 

one should beware of a possible source of confusion that is 

inherent in the approach: namely, to assure that the solution 

is correct to a certain order of precision, it is not enough 

to satisfy the original equation to the same precision. It 

turns out that it would be sufficient to satisfy the original 

equation to a precision two orders higher, although this is by 

no means necessary. The full pattern is explained at the end 

of §5, but, as an example, let us consider now the present 

status of the procedure if K(X,T), w(X,T), and E(X,T) are 

regarded as determined by (2.9)- (2.11). Equation (4.7) has 

already been satisfied. So that the original equation (4.1) 

may be satisf ied except for terms of order 2 e , we should also 

determine a function u
1 

so as to satisfy (4.8). Here caution 

is required, for at this stage in the procedure, the determi-

nation of u1 is not unique; two undetermined functions of X 

a nd T arise in the integration of (4.8). If the objective 

is merely to satisfy the origina l equation to the stated pre-

cision, these undetermined functions may be set to zero (or 

arbitrarily specified), but it must be remembered that this 

does not necessarily give the correct expression for u1• To 
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assure this would require the use (although not the full solu­

tion) of the next two higher order equations following (4.7) 

and (4.8). Actually, at the present stage in the procedure, 

even the lowest order approximation U(e,X,T) is not fully 

known, for the function ~(X,T) that appears in (4.10) is not 

yet determined . 

Knowledge of the family of uniform wavetrains provides 

enough information so that it is easy to integrate (4.8) in 

closed form; in fact, the solution, u1 , may be obtained in 

several alternate forms . One of these is obtained by per­

forming an indefinite integra l on (4.15) and then solving the 

resulting first order, linear differential equation in the 

usual way. In this form only one solution, u
9

, of the homo­

geneous equation is used. This solution, u
9

, is related to 

the dependence of the family of wavetrains on the parameter 

~· Two solutions of the homogeneous equation are available, 

however, and if both of them are used, u
1 

assumes a second, 

more convenient form. The higher approximations will be de­

rived in t his way in §5. The second solution of the homoge­

neous equation is related to the parameter E; because of this, 

the alternate form for u
1 

seems to use more systematically 

the information provided by the family of uniform wavetrains. 
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The first form for u
1

, which was used by Kuzmak [13] in the 

treatment of ordinary differential equations, would be awkward 

for higher approximations because the factor ue-2 causes 

difficulties of an artificial nature at the zeros of u . e 

For the slightly dissipative ordinary differential equa-

tion (;.6), Kuzmak obtained the result 

1 1 

~ T { w J U e 2 
d8} + w J gU 8 

2 
d8 = 0, ( 4. 19) 

0 0 

which is analogous to (4.18) and follows by similar steps. If 

g(T,U) = g(T), this may be integrated to 

1 

J
. 2 

w u8 de (constant) exp{ - Jg dT}, (4.20) 
0 

which shows how the 11 adiabatic invariant" on the left side 

changes due to the effect of the damping term. 

13. Ibid. 
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5· Higher Order Approximations 

In more . detail, substitution of (4.)) into (4.1) leads to 

the set of equat ions 

where 

and 

~u99 + v•(u) = o, 

~u 9 + V"(U) U = F (e,X,T), for n-1,2, ••• , ne n n 

F2 = 2wU19T + 2KU19X + wTU19 + K:XU19 

+ UXX- UTT- tV"' (U) u12. 

For n = 2,), ••• , F is of the form 
(n+1) 

( 5· 1 ) 

(5.2) 

(5-)) 

(5.4) 

(5·5) 

+ u(n-1 )XX- u(n-1 )TT - u,u~vur (U) + F(n+1 )(e,X,T)' 

(5.6) 
where f(n+ 1 ) rs a polynomial in u1, u2 , ••• , u(n- 1) , and the 

derivatives of the function V(U). 

The function f(w,E,~) was defined in (2.7) so that 

u(e,x,T) = f(e + ~,E,~) 

satisfies (5.1) for all e, and for general E and ~· For 

concreteness, let the lower limit of the integral in (2.6) be 

chosen as a zero of E - V(U), so that from (2.5) fW(O,E,~) = 0, 

and f(-w,E,~) = f(~,E,~). 
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The full solution of (5.2) follows from the observa tion 

that are both solutions of 

the corresponding homogeneous equation, since differentiation- of 

(5.1) shows that 

(5· 7) 

(5.8) 

(Here the differentia tion with respect to E is with E and ~ 

independent, not related by (4.1)).) To obtain the solution by 

va riation of pa rameters, it '"~ould be sufficient to employ fW 

to reduce the order of (5.2) as indicated in §4; however, the 

full solution assumes a more convenient form if both and 

fE are used in a trial solution of the form 

(5-9) 

Here, both parameters a and ~ are allowed to depend on ~' 

but the relation 

(5.10) 

is i mp osed between them to .make the expression for une aim-

plify to 
"' a (5.11) 

Then calculation of Unee and substitution in (5.2) shows that, 

in addition to (5.10), a and ~ need only satisfy 
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After solution of (5.10) and (5.12) for a and ~' substitution 

into (5.9) gives the general solution of (5.2) in the form 

U (e,X,T) = U (* - ~,X,T) 
n n 

where the integration constants ~ (X,T) 
n 

and E (X, T) 
n 

yet determined, and where the Wronskian 

is independent of *' as follows by calculation of w* 

aid of (5·7) and (5.8). 

are not 

(5.14) 

with the 

The integrals in (5.13) obviously lead to secular terms 

unless conditions are imposed; the first of these conditions, 

1 

J F1f* d* = o, 
0 

was obtained in §4 . In the linear case, where V(u) = t u2 and 
1. 

f = (2E)2 cos(*~- i), 

the boundedness conditions are simply the orthogonality condi-

tions 

1 

JFn cos 2TT* d* 
0 

0, 

1 

JFn sin 2n* d~ a o. 
0 
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However, in the nonlinear case, it is not sufficient to require 

the two integrals in (5.13) to be zero over one period, since it 

turns out that fE itself is no longer bounded. For, partial 

differentiation of 

(5.15) 

with respect to E and w implies that 

(5.16) 

(As noted after equation (5.8), fE must be calculated before 

the normalization condition P = 1, relating E and ~ by 

(4.13) is applied.) Then (5.16) shows that the function g 

defined by 

is bounded and periodic, and the expression of fE in the form 

shoHS explicitly the secular term proportional to w· In the 

linear cas e, of course, P is independent of E and the secu-

lar term in fE does not arise. After substitution of (5.18) 

into (5.13) to eliminate fE' and after integration by parts to 

remove w from within the integral, (5.13) assumes the form 



u 
n 
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~ 

+ g {E - --
1 s F f dw'}. 

n !Jo\'l n w 
0 

(5.19) 

The conditions for avoidance of secular terms follow from 

(5.19)· The coefficients of and g may be treated sepa-

rately since the zeros of these functions do not coincide. If 

is also Fn has the same periodicity as f, the integrand Fnfw 

periodic, and so the integral over one period is required to be 

zero: 

(5.20) 

If this condition on the coefficient of g is satisfied, the 

requirement 

1 

J ( d$" ) d$ 1 = 0 (5.21) 
0 

then folloi1S from the periodicity of the integrand of this inte-

gral. If the above conditions hold, 

odic in 1Ji· 

U is bounded and peri­
n 

The recursive nature of the expansion procedure now becomes 

clear; two undetermined functions, E and ~ , arise at each 
n n 
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stage, but the t\'TO conditions (5.20) and (5.21) for the avoid-

ance of secular terms provide equations to relate functions 

previously left undetermined. In the first order result 

obtained in §4, the dispersion relation (4.13) and condition 

(5.20) for n=1 provide equations to relate E, K, and w. 

(To make the pattern more evident, the phase .function 8 might 

instead have been labeled ~_ 1 .) In the second approximation, 

condition (5.21) for n=1 and condition (5.20) for n=2 

relate E
1 

and ~· Similarly, condition (5.21) for n=N and 

condition (5.20) for n=N+1 provide a set of equations for 

~ and ~N- 1 , although it is not immediately clear that (5.20) 

does not also involve ~N· 

For approximations higher than the first, the attempt to 

obtain explicit coupled pairs of equations by substitution in 

(5.20) and (5.21) leads to tedious algebra, which will be indi­

cated only briefly. To show that, for n=N+1, (5.20) indeed 

does not involve ~N' one may substitute in (5.20) 

vrhere the function UN is regarded as known at the corresponding 

stage of the procedure. Then after appropriate derivatives of 

(4.7) and (4.8) are used to eliminate V"'(U) and V"(U) from 

the integrand, all terms involving ~N integrate to periodic 
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functions, so that the integral of these terms around one cycle 

vanishes. The further algebra is then straightforward; however, 

it should be remarked that the results simplify somewhat because 

f(*,E,~) is an even function in *• This causes several of the 

integrands to be odd, periodic functions , whose integral over 

one period vanishes. As a result, the second approximation has 

the trivial solution E
1 

= O, ~ = 0. 
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6. General Variational Equation of Second Order 

The expansion method might be applied to several more gen­

eral classes of problems ; §6 deals with a single second order 

equation of general variational form. The case of two or more 

variational equations is mentioned at the end of §6 but not 

otherwise treated. Several other questions arise but have not 

been examined. For example, use of the Hamiltonian rather than 

the Lagrangian formalism in a direct expansion method would 

allow comparison with other results given by \fuitham [14]. 

Also, a proof that the perturbs.tion procedure does asymptoti­

cally approximate an actual solution of the original equation 

would be of interest both for ordinary and partial differential 

equations. Finally, Kuzmak [15] allovred a small frictional 

damping term in the case of an ordinary differential equation, 

and this could presumably be done also for partial differential 

equations. 

For a function u(~) = u(x1 ,x2 , ••• ,xn) consider the varia­

tional problem defined by 

1 4 • Lo c • cit . 

1 5. Lo c • cit. 

( 6.1 ) 
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where L is a given function, A is a possible parameter (or 

set of parameters), and the arguments q and r are here 

given by 

q = u(~), 

The corresponding Euler equation is 

As in the special case considered in §§4 and 5, let 

be "stretched coordinates" and set 

where 

and the functions K. satisfy 
~ 

- K. = O. 
JXi 

(6.2) 

ex. 
~ 

(6.4) 

(6.5) 

(6.6) 

No a dditional compl ica tions arise if L exhibits a slow para-

metric dependence on the independent va riables--slO\v to the same 

approximation that the quantities K. are to be slowly varying. 
~ 

This will be expressed by writing A = A.(~)· The appearance of 

such a parameter is of interest, for example, in the problem of 

;.raves propagating through a slowly varying medium. 

The expansion proceeds much as before. First let 

u(~) = u(e,~) and, correspondingly , set 
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in (6.;;), which may then be rewritten as 

Lq- ( Lri)BKi- e(Lri)Xi = o. 

Now set 

so that 

(6.7) 

(6.8) 

} (6.10) 

in equation (6.8). Taylor series expansion gives the equation 

L + eL u1 + e(ux. + u19 KJ.. )Lqr. 
q qq J. J. 

- e.(L ) r. X 
J. i 

2 
= O(e ), 

in which the arguments in L(q,t,A.) are no"' 

(6.11) 

A. = A.(~). (6.12) 

On equating the various powers of e to zero in (6.11), the 

equations 
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(6.13) 

and 

(6.14) 

are obtained. 

Solution of these equations proceeds as for (4.7) and (4.8). 

The energy integral is 

(6.15) '· · .. 

Let 

Ue = H(U,E,!£,A.) (6.16) 

indicate the inverse function of (6.15). Then the inverse 

function of 

e = J dU - T)(X) 
H -

(6.17) 

gives the desired solution of (6.13), which may be indicated as 

u(e ,?;) = f(e + Tl(?;) ,E(?;) ,!£(?;),A.(?;)). (6.18) 

The dispersion relation, corresponding to (4.13), is 

P(E,[,A.) - 1 : ~ - 1 = O. (6.19) 

Multipli cation of (6.14) by u9 and integration around one 

cycle then gives the condition 
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o, (6.20) 

which corresponds to (4.16). 

Comparison with the averaged Lagrangian approach [16] 

reveals that (6.20) can be placed in a much more elegant form , 

\1hich is by no means evident from the above expansion method. 

The middle term of (6.20), after integration by parts, combines 

i·Ti th the first term, so that (6.20) assumes the form 

dB .. 0. (6.21) 

Then the first term of (6.21), after integration by parts, 

combines with the second term, giving 

(6.22) 

in wh ich the arguments of L(q,r,A) are still g iven by (6.12). 

After a change of the variable of integration, (6.22) assumes 

the form 

Q__ { § Lr. dU } = O, axi l. 
(6.23) 

in which L(q,r,A) has the arguments 

16. Whitham, lac . cit. 
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r = K H(U,E,K_,A), 
i i 

(6.24) 

This result agrees with that obtained from the Euler equations 

of the averaged Lagrangian 

(6.25) 

where Ki = eX. and L(q,~,~) has the arguments (6.24). 
~ 

Variation of E gives the Euler equation 

and variation of e gives 

Since (6.15) and (6.16) make 

E = K L H L 
j rj 

(6.26) 

E § HK·H-
2
du}. 

~ 

(6.27) 

(6.28) 

an identity, (6.26) simplifies to (6.19), and (6.27) simplifies 

to (6.23). The equations (6.6) are implicit in the definition 

of e. 
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The equations of the higher order approximation have not 

been derived for the more general case of §6. The symmetry of 

U about the zeros of U , which made f an even function in e 
the special case of §§4 and 5, does not hold in general, so the 

corresponding simplifications of the higher order result would 

not be expected . 

The more important examples analyzed by Whitham [17], such 

as the Boussinesq approximation for waves in shallow water, 

involve several equations, so the derivation of §6 for a single 

equation does not apply. In the case of two or more equations, 

the conditions have not been determined under which the uniform 

solutions have the desired pe riodicity, and this appears to be 

the main difficulty in a thorough examination of the problem . 

For the Boussinesq case , periodicity results because the veloc-

ity potential ~(x,t), not being a physical quantity, is absent 

from the Lagrangian. For such s pecific examples in which the 

uniform solutions have the desired periodicity, the application 

of the perturbation procedure appears to be straightforward. 

17. Ibid . 
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PART II 

THE CLASSICAL WATER V/AVE PROBLEM 

7• A Variational Principle for a Fluid with a Free Surface 

To app ly t he expansion method to the class ica l water wave 

problem, it is crucial to find an appropriate variational prin-

ciple. It was found in the present investigation that a 

Lagrangian function equal to the pressure yields the full set 

of equations of motion for the problem. Several previous 

authors [1 8 ] have applied such a Lagrangian to motion within 

a fluid, but it seems not to have been explicitly indicated 

that the free surface boundary conditions follo'tl similarly. 

The formulation below is also related to that given by Fried-

richs [19] and Garabedian and Spencer [20], who used a vari-

ationa l principle to obtain the pressure condition at the free 

surface in steady flows. 

For the ca se of irrotational motion, let ~(x,y,t) be the 

velocity potential of a fluid lying between y = 0 and 

18 . A. Cl e bsch, J, re i ne u. angew . Mat h ., vol. 56 (1859), PP• 
1-10; R. Ha r greaves, Phil. Kag . (6), vol. 16 (1908), PP• 
436-444; H. Ba teman, Pa rtia l Diffe renti a l Equations. Cam­
bridge: Cambridge University Press (1964). 

19. K. Friedrichs, Math. Ann., vol. 109 (1933), PP• 60-82. 

20. p. R. Garabedian and D. c. Spencer, J. Ratl. Mech. Anal., 
vol. 1 (1952), PP• 359-409· 
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y = h(x,t), with gravity acting in the negative y direction. 

Then the variational principle is 

t2 x2 h(x,t) 

oJ = oJ J JL dy dx dt 
t, x, 0 

t 2 x2 h(x,t) 

oJ J J<t cp/ + t cpy
2 

+ cpt + gy)dy dx dt = o, 
t, x, 0 

( 7.1 ) 

where cp(x,y,t) and h(x,t) are allowed to vary subject to the 

restrictions ocp = 0, oh = 0 at x1, x
2

, t
1

, and t
2

• The only 

change from earlier formulations using an expression for the 

pressure is that h(x,t) variations are allowed here. 

According to the usual procedure in the calculus of vari-

ations, (7.1) becomes 

t2 x1 
oJ =I s,_ct 'Px2 + t 'Py2 + 'Pt + gy]Y=h oh 

t, x, 
h(x,t) 

+ J<cp ocp + cp ocp + ocpt)dy} dx dt 
X X y y 

= o. 
0 

(7 .2) 

Certain natural boundary conditions arise at y = h and y = 0 

if the integrated terms are carefully retained when (7.2) is 

integrated by parts. Thus 
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h 

I(~ + ~ )&~ dy } dx dt = o. 
XX yy 

0 

Setting the coefficients of &h and &~ to zero, we have 

for y = h, 

- h ~ + ~ - h 0 for y = h, 
X X Y t 

- ~XX - ~yy == 0 for 0 < y < h, 

- ~ = 0 for y = o. y 

(7.;) 

(7.4) 

(7·5) 

(7.6) 

(7-7) 

These are the equations f or the classical water wave problem. 

No satisfactory solution seems known for the general prob-

lem of finding suitable Lagrangian functions. For the water 

wave problem, in particular, the pressure function used in (7.1) 

is more productive than the traditional form of the Lagrangian, 

L, equal to kinetic minus potential energy. It is clear that 

t 2 x2 h(x,t) 

0 = 6 J J J L dy dx d t = 

t, x, 0 

t
2 

x
2 

h(x,t) 

= oJ s S<t ~x2 + t ~y2 - gy)dy dx dt 

t, x, 0 

(7 .8) 
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must give the correct equation within the ~luid, for the inte-

grals in (7.8) and (7.1) differ by the expression 

t 2 x2 h(x,t) 

- J J J(2gy + cpt)dy dx dt, 

t1 x1 0 

(7·9) 

which integrates, leaving only boundary terms.. However, (7 .9) 

contributes boundary terms at y = h, so that (7.8), as it 

stands, does not give the correct surface conditions. 

To see the difference in the boundary conditions, it is 

-necessary instead to relate L to the negative of L. From 

(7.1) and (7.8), the integral of L + L is 

which, after integration by parts, becomes 

h h h 

-s q> ( q> + q> ) dy + ~ J<p q> 
XX yy uX X dy + ~t s q> 

0 0 0 

(7.10) 

dy } dx dt. 

(7.11) 

The key to the difference then appears to be conservation of 

mass. If conservation of mass is introduced by varying <p and 

h only among those functions that satisfy (7•5) - (7•7), the 
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difference expression (7.11) vanishes except for the last two 

terms , and the last two terms are of no consequence since they 

contribute only at the x and t boundaries. In this way L 

is made equivalent to L and yields (7.4), but only at the 

expense of assuming the other three equations of motion (7.5) -

(7•7) at the outset. 

Only the irrotational case has been treated above. For the 

rotational case, Clebsch [21] expressed the velocity as 

~ = 'il<p + ct 'ilS· Then the va riational principle, in a form sim-

ilar to that given by Bateman [22] is 

oJJJJ f(cpt + cti3t + t '3,
2 

+ gy)dy dx dz dt .. o. (7.12) 

Bateman further generalized the variational principle to baro-

tropic flow, that is, to flows in which the pressure is a func-

tion of the density alone. To extend his results to free sur-

faces it is again merely necessary to include the surface ele-

vation among the quantities to be varied. 

21. Loc. cit.; or see J. Serrin, "Mathematical principles of 
classical fluid mechanics," Encyclopedia of Physics (ed. 
s. Flugge), vol. VIII/1, P• 125. Berlina Springer­
Verlag (1959)· 

22. Op. cit., P• 164; H. Bateman, Proc. Roy. Soc. A, vol. 125 
(1929), PP• 598-618. 
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8. Application of the Expansion Hethod to ':later \'laves 

The theory of linear dispersive waves arose historically 

from the \vater wave problem, and the nonlinear development is 

of corres ponding interest. From a mathematical standpoint, the 

distinctive feature of this problem is that the velocity poten­

tial ~(x,t,y) depends on the vertical coordinate, y. In the 

Boussinesq approximation, ~ is nearly constant with y, so 

that only ~(x,t) need be considered. By means of the averaged 

Lagrangian technique, \Vhitham [23] derived average d equations 

for the infinitesimal (Stokes wave) ap proximation. To explore 

the generality of the perturbation method, we shall treat the 

full nonlinear prob lem below; however, this yields no additional 

results of practical interest since the functions that charac­

terize the uniform wavet rains are known only approximately. The 

infinitesimal approximation is used eventually, in §10, to ob­

tain a comparison with Whitham's results. 

An initial attempt to carry out the perturbation expansion 

directly from the Euler equations of the variational principle 

(7.1) was unproductive; the simplification analogous to (6.20)­

(6.2)) was by no means evident. It is much easier to consider 

first the varia tional problem of the slightly more general form 

2). G. B. Vlhitham, (To appear). 
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u = rn (x,y), Ty-

where cp(~,y) represents the velocity potential, and h(~) 

( 8. 1 ) 

(8 .2) 

represents the surface elevation. Only the vertical coordinate, 

y, is singled out; the other space coordinates and the time co-

ordinate are g iven by the v e ctor x. The plan is eventually to 

set x
0 

= t, x
1 

= x, and, if needed, The problem de-

fined by (8.1), (8.2) will be treated in the remainder of §8. 

Finally, in §9, the results of §8 will be specialized to the 

water wave probl em . 

Let us sup pose that L is zero for y outside of the re-

gion of interest, so that no boundary terms arise from integra-

tion by parts. Then the Euler equations of (8.1) are 

ocp: ( -L ) - ( L ) "' 0, 
si xi u y 

oh: ~q JL dy = o. 

The Euler equation for 6h assumes this slightly unusual form 

because h does not depend on y; with respect to h the inte-

gral rather than the function L might be thought of 

as the Lagrangian function. 
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In the uniform, periodic solutions, the velocity potential 

~ is generally not periodic; because only the derivatives of 

~ are physical quantities, an additional term ~ixi, linear in 

x., is appropriate in the expression for ~· For slowly varying 
1 

wavetrains it is then natural to introduce a phase-like variable 

*' just as the phase variable e was introduced in (4.2) and 

(6.4) as a generalization of the linear phase term K
1

x1 • The 

expansion is then attempted in the form 

~ = w + ~(e,~,y) + e ~ 1 (e,~ ,y) 

h H(e,~) + e H 1 (e,~) + ••• , 

+ ••• ' } (8 .4) 

where 

=K.(X), 
1 -

= ~·(X). 
1 -

The same procedure used previously in §6 gives the lo\orest order 

equations 

( -L ) K. - ( L ) = 0, 
si e 1 u y 

} (8 ·5) 
hs I Lq dy 0 

and the first order equations 
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cp: 

(-L iJ?1eK. )ef\. - (L iJ?1 )eKi - (L iJ? f:<:.) - (L iJ?1 ) s.s. J ~ s.u y us. 19 ~ y uu y y 
~ J ~ ~ 

-(L H ) K - (L H ) 
siq 1 e i uq 1 y 

.. F, (8.6) 

h: 

J(L iJ? 19~1 + L iJ? 1 + L H1 ) dy = G qsi qu y qq (8. 7) 

in which L(s,u,q,y) has the arguments 

q = H, (8 .8) 

and where 

G = J<- L iJ?x )dy • 
qsi i 

The first order equa tions are of the form 

(8.10) 

where Opcp and Oph represent the two components of a linear 

operator on iJ? 1 (e,~,y) and H 1 (e,~). By integration by parts 
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it may be verified that this linear operator is self-adjoint, 

that is, that it satisfies the identity 

JJA Opcp[A,B] dy d8 + JB Oph[A,B] d6 

= JJA: Opcp[A,B] dy d8 + SB Oph[A,B] d8 

for general functions A(6,y), B(6), A(8,y), .B(8). 

(8.11) 

It may be remarked, as a digression, that the self-adjoint-

ness of the linear operator (8.6),(8.7) is closely related to 

the variational nature of the problem. Specifically, Op and 
cp 

Oph may be obtained by linearization of the lowest order equa­

tions (8.5) about ~ and H, and the lowest order equations, in 

turn, may be derived directly as the Euler equations with respect 

to ~ and H of the variational principle 

s. 
~ 

o JJL(~,u,q,y) dy d8 = O, 

q = H. } (8.12) 

Operators obtained by linearization of the Euler equations of a 

variational principle are, at least for very general classes of 

problems, necessarily self-adjoint. This is precisely analogous 

to the fact that if a vector N is the gradient of a potential 
(){ 

function J(x1 , ••• ,xn)' then it satisfies the condition 

for ot,~ = 1,2, ••• ,n. (8. 13) 
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An alternate statement of (8.1?) is that the linearization of 

N about 
Ci 

x~, that is, the linear operator 

Op [A , ••• ,A ] 
a 1 n 

satisfies the identity 

A Op [A,, ••• ,A J =A Op [A,, ... ,A ]. a a n a a n 

(8.14) 

(8.15) 

Conversely, if for a given function N 
Ci 

condition (8.15) holds 

for linearizations about general x1 , ••• ,xn' then a potential 

function J(x1 , ••• ,xn) may be found. Kerner [24] has shown 

that the analogy extends to Hilbert space. One might ask by 

analogy whether the self-adjointness of all linearizations of a 

nonlinear differential operator N is then also a sufficient 

condition so that a Lagrangian may be found whose Euler equations 

are K = 0. At least for some simple cases this statement holds 

and the Lagrangian may then be written in terms of integrals. 

Unfortunately, this procedure seems to be of little use in the 

practical probl em of finding a Lagrangian that yields a given set 

of equations, because seemingly trivial manipulations of the 

system of equations can change the operator under consideration 

and destroy the self-adjointness property. 

24. M. Kerner, Ann. of Math. (2), vol. ?4(1933), PP• 546-572. 
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In the previous applications of the expansion method in §§4 

and 6., the family of solutions for uniform wavetrains could be 

indicated at least implicitly, but the classical water wave 

problem is essentially more complicated. To obtain secular 

conditions for the first approximation, however, we do not need 

to consider the uniform solutions in detail.. It is sufficient 

to note that additive constants in e and ~ do not affect the 

lowest order equations (8.5). Thus the family of uniform solu-

tions must depend on two trivial parameters corresponding to 

these constants. It follows that two solutions of the homoge-

neous equations 

Opcp[~ 1 ,H1] "' O, 

Oph[~ 1 ,H 1 ] "' O, 
} (8.16) 

corresponding to small changes in the two trivial parameters, 

are 

and 
ip ::: if> ' 

1 e 
(8 .17) 

Necessary conditions for elimination of secular terms follow 

through substitution of (8.10) and (8.17) in the self-adjoint-

ness relation (8.11). These conditions are 

(8.18) 

IIF dy d8 = o. 
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After simplification by means of the same steps as in equations 

(6.20) - (6.2)), these conditions become 

p 

~X. s s L ~ dy d8 = o, 
si e 

~ 0 

(8.19) 
p 

~x.J J L 
l.O si 

dy d8 = 0, 

in which L has the arguments (8.8). This result will be 

specialized to the water wave problem in §9. 

Although the lowest order secular conditions have thus been 

obtained by clear analogy with previous examples, it is by no 

means clear whether higher approximations might be solved. In 

§5, sufficiently many solutions of the homogeneous equation were 

available so that higher approximations could be constructed 

directly. This appears not to be true for the classical water 

'llave problem. It is not known whether this is an essential 

breakdown of the method or merely an inconvenience. If the ex-

pans ion procedure were to break down at the next stage, the 

meaningfulness of the first order r esults might also be in ques-

tion since at the first stage of the expansion procedure the 

original equations are not yet satisfied even to the first 

approximation. 
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9· Specialization to the Water Wave Equations 

The Lagrangian for the classical water wave problem, as 

obtained in §7, is integrat ed only over the region 0 < y < h 

in the variational principle (7.1). Clearly, the derivation of 

§8 vr ould have been much more tedious if such a variable region 

of integration had been explicitly included in (8.1). For this 

r eason, t he variable boundary was considered there to be incor-

porated directly into the Lagr angian, L. This may be done 

with the aid of the Heaviside 11 step function," S(x), defined by 

S(x) 0 

S(x) = 1 

for x < 0, 

for x 2: 0 

and its 11 derivat ive 11 the Dirac delta function, vrhich will be 

denoted here by S 1 (x). Then the varia tional principle (7.1) 

may be re-exp ressed as 

J·sJ· 2 2 6 (t ~x + t ~y + ~t + gy) S(h - y) S(y) dy dx dt = O. 

(9.2) 

Thus, to use the results of §8, let us set x0 = t, x
1 

x, so 

that, by compar ison with (8.2), 

L(~,u,q,y) = (i s 1
2 

+ i u2 
+ s 0 + gy) S(q- y) S(y). 

(9-3) 

The Euler equations (8.3) may then be rewritten as 
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ocp: 
(9.4) 

oh: 
o, (9·5) 

'\'There 
cr(y) = S(h- y) S(y). 

The pressure condition (9.5) is clea rly the same as (7.4). By 

performing the differentiations in (9.4) and equating the terms 

involving S'(h- y), S'(y), and cr(y) to zero, one may obtain 

the equations for mass conse rvation in the more usual form given 

by (7.5) - (7.7). The equi valence has not been rigorously 

checked, but, pre sumably, the use of singularity functions in 

this manner may be rega rded as only an alternative notation in 

which integration by parts is pe rformed under the guise of 

differentiation. 

The ~ain r esult of §8 , the two conditions (8.19) for t he 

avoidance of secular terms, may novT be s pecialized for the water 

wave problem. Using the arguments (8.8) in (9·)), and noting 

that K
0 

=- w, K
1 

= K, ~O =- y, ~ 1 =~'etc., we obtain the 

two conditions 

p H p H 

~T J J ~e dy d9 + ~X J J (~ + <J?
9

K)<I?
9 

dy de 0, 

0 0 0 0 
(9.6) 

pH': p H 

~T J J dy d9 + ~X J J (~ + ~eK) dy de = o. 
0 0 0 0 
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The four-parameter family of uniform \'Javetrains may be de-

scribed with the aid of the two triads of parameters 

(K ,w,a) and (9.7) 

where a is related to the amplitude of the \'laves and h 
0 

is 

the mean height. The requirements that ~ be periodic and 

that e change by a fixed amount over one period give two func-

tional relations among the six parameters; let us suppose that 

these are solved to give 

U) 

y 

w(K,a;~,h0 ), 

y(K,a;S,h ). 
0 

} 
Then (9.6), (9.8), together with the equations 

KT + wx = o, 

r ST + Yx = o, 

form a set of six equations for the six parameters (9.7). 

(9.8) 

(9·9) 
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10. Approximation for Sma ll Amplitude 

The results of §9, for the full nonlinear problem, are not 

immediately useful, because the f unctions tha t characterize the 

uniform wavetrains are known only approxim~tely. To obtain more 

practical results, we now use the usua l infinitesima l (Stokes 

v;ave) approximation for these functions [25]. First consider 

the special class of those uniform solutions for which S = 0 

and h = 0; the classical water wave problem (7.4) - (7-7) has 
0 

the approximate solution, which depends on parameters k and a
1

s 

\1here 

~(x,t,y) c- Ct + ~(e,y), 

h(x,t) = H(e), 

e = k(x- ct), 

He,y) A
1 

sin e cosh ky + A2 sin 28 cosh 2ky 

+ O(a
1
3), 

H(e) + a
1 

cos e + a
2 

cos 29 + O(a
1
3), 

T = tanh k, 

(10.1) 

25. See, for example, J. V. \'lehausen and E. V. Laitone, 
"Surface waves," Encyclopedia of Physics (ed. S. Flugge), 
vol. IX, p. 446. Berlin: Springer-Verlag (1960). 

J 
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By virtue of the scaling properties of (7.4) - (7.7), it is 

poss ible to generate from (10.1) the full family of uni f orm 

wavetrains; we rescale dimensions to make h arbitrary and 
0 

add a cons tant translational velocity to make S arbitrary. 

Thus it may be verifi ed that if (10.1) satisfies (7.4)- (7.7), 

so also does 

~ * + ~(e,y), 

h H(e), 

-1 ( -1 - ~) e kh X - kSh + kch 2 t, 
0 0 0 

W Sx - (i S2 + h C) t, 
0 

~(e,y) c(h 3)iA
1 

sin 8 cosh kh- 1y 
0 0 

~ ~ 1 
+ (h /) 2 A2 sin 28 co sh 2kh- y 

0 0 
+ O(a

1
3), 

+ O(a
1
3). 

(10.2) 

Writing k = Kh 
0 

and a 1 = a/h
0

, we find that the family of 

uniform solutions, depending on the four parameters K, s, a, 

and h , is ap proximately given by 
0 



cp = t + <I?(e,y), 

h , H(e), 

6 KX - wt, 

'if sx - yt, 

where, for T = tanh Kh , 
0 

- .l.. 2 w = K~ + (KgT) 2 + O(a ), 

Y = t s2 

4?(e,y) 

H(e) = h 
0 

+ a 
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(1o.;) 

(10.4) 

sin 26 cosh 2KY 

Now it is possible to calculate approximately the integrals 
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2n H 

ro 2n s s dy de = h , 
0 

0 0 

2n H 

r1 
1 s J q?e dy de 

..1.2 J.. 
O(a4 ), 

2n: 
= i g2a (T~)- a + 

0 0 

(10.5) 

2n H 

I2 J J 2 dy de = ~e 2n 
0 0 

2 2Kh0 
) + O(a4 ). = ~ (1 

4K.2 + sinh 2Kh
0 

In terms of (10.5),the first order conditions (9.6), for 

avoidance of secular terms in the expansion of the classical 

water 'dave problem, may be r ewritten as 

(10.6) 

o. (10.7) 

These ag ree ·vii th averaged equations obtained by V/hi tham [26]. 

26. Loc. cit. 


