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Abstract 

In Part I a class of linear boundary value problems is considered 

which is a simple model of boundary layer theory. The effect of zeros and 

singularities of the coefficients of the equations at the point where the 

boundary layer occurs is considered. The usual boundary layer techniques 

are still applicable in some cases and are used to derive uniform asymptotic 

expansions. In other cases it is shown that the inner and outer expansions 

do not overlap due to the presence of a turning point outside the boundary 

layer. The region near the turning point is described by a two-variable 

expansion. In these cases a related initial value problem is solved and 

then used to show formally that for the boundary value problem either a 

solution exists, except for a discrete set of eigenvalues, whose asymptotic 

behaviour is found, or the solution is non-unique. A proof is given of the 

validity of the two-variable expansion; in a special case this proof also 

demonstrates the validity of the inner and outer expansions. 

Nonlinear dispersive wave equations which are governed by variational 

principles are considered in Part II. It is shown that the averaged 

Lagrangian variational principle is in fact exact. This result is used to 

construct perturbation schemes to enable higher order terms in the equations 

for the slowly varying quantities to be calculated. A simple scheme 

applicable to linear or near-linear equations is first derived. The 

specific form of the first order correction terms is derived for several 

examples. The stability of constant solutions to these equations is con­

sidered and it is shown that the .correction terms lead to the instability 
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cut-off found by Benjamin. A general stability criterion is given which 

explicitly demonstrates the conditions under which this cut-off occurs. 

The corrected set of equations are nonlinear dispersive equations and their 

stationary solutions are investigated. A more sophisticated scheme is 

developed for fully nonlinear equations by using an extension of the 

Hamiltonian formalism recently introduced by Whitham. Finally the averaged 

Lagrangian technique is extended to treat slowly varying multiply-periodic 

solutions. The adiabatic invariants for a separable mechanical system are 

derived by this method. 

• 
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I. SINGULAR PERTURBATION PROBLEMS INVOLVING 

SINGULAR POINTS AND TURNING POINTS 

1. Introduction 

In recent years singular perturbation problems have appeared 

in many branches of Applied Mathematics. These problems occur when a 

limit process expansion (see [1]) fails to approximate the solution 

uniformly throughout the region of interest. 

There are two main types of such problems and a different 

technique has evolved to treat each . A typical problem of the first kind 

appears when the limit process expansion fails to satisfy one of the 

boundary conditions of the problem. One then constructs another limit 

process expansion valid in the boundary layer near to this boundary, and 

satisfying the conditions there. Both of these expansions will be under­

determined in general and they are matched (see [2] for the fundamental 

theory) when both are fully determined. A uniform expansion can then be 

constructed from these two expansions. This is not of the limit process 

type. 

The second type of problem involves the long time behaviour of 

slowly varying oscillatory solutions. The limit process exp1msion then 

breaks down over large times due to cumulative effect of the slow varia­

tion. Here a uniform expansion is constructed directly using the two­

variable expansion procedure (see [1]), which is not of the limit process 

type. 
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In Section 2 we consider problems which are apparently of the 

first type but where the method of matching limit process expansions 

breaks down. It is shown in Section 3 how asymptotic solutions can 

still be constructed using two-variable and limit process expansions and 

the concept of matching these expansions. 

The difficulty here is an unusual turning point problem. The 

idea of using two variable and limit process expansions, and matching 

these expansions in turning point problems appears in [1]. In the problem 

considered there the procedure is equivalent to the W.K.B. procedure used 

in Quantum Mechanics [3]. Fowkes [4] has recently shown how this procedure 

can be refined so that only a two-variable expansion is needed in that 

problem. Although we have also independently used a similar refinement, 

it is shown that one still needs to use the idea of matching in the more 

complicated problem considered here. An equivalent remark is that the 

W.K.B. procedure fails ·in this case. 
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2. Failure of limit process expansions 

We consider the problem of constructing a uniform asymptotic 

expansion, as € ~ O, .of the solution y(x,£) to the two-point boundary 

value problem 

£Y 11 + p(x)y' +q(x)y • 0, (1) 

y(O,€) = O, y(l;£) = 1 . (2) 

Here £ is a small positive parameter and the expansion is to be uniform 

for o ~ x ~ 1 (unless otherwise stated we shall restrict x to this interval 

in Part I). · We require that p > 0 for x > 0, p and q being ·sufficient ly 

smooth in this range. It is assumed that 

(3). 

as x ~ O, where the powers of x in the leading terms have been labeled i n 

a convenient manner. The further assumption is made that the corresponding 

expansion for p' i s obtained by differentiating (3). The equation has 

been scaled so that p • 1 . 
0 

We attempt to solve this problem using limit process expansions 

in the manner described in [1], Chapter 2, whose terminology we also 

adopt. The first step is to construct an outer expansion 

as £ ~ 0, which we expect to be uniformly valid for 0 < A < x ~ 1. Here, 
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and throughout Part I, we denote arbitrary constants by upper case 

letters and known constants by lower case Greek letters, unless otherwise 

indicated. In the above we have anticipated that the boundary layer 

will be at x = 0 since p(x) > 0 for x > 0 and this implies that it is 

impossible to match any other boundary layer to the outer expansion. 

It is found that 

f
0 

(x) • exp (f 1 !litl. d t) 
X p(t) ' 

fn (x) = fo (x) ~ 1 P (t) t (t) . {fn-1 (t) }"dt 

where f
0 

(1) = 1, f (1) Cl 0. 
n 

We note that 

f 'V ll a < 8 , 
0 

'V yx-qo a "" 8 p 

'V exp( q~{l-k>(l))} 
(a-8) xa-8 

a > 8 . 

as X + o. When a ~ 8, qo < 0 we find fo(o) = o. In this special case 

the outer expansion is the required uniform expansion to O(en) for all 

n when a > 8 or a • 8; a ~ 0; and for n < (-q
0

/a) ~ n + 1 when a • S, 

a > 0. 

The remaining cases are 

f 'V ll a -<- e (4a) 0 , 

'V yx-qo 
i ' a • e, qo > 0 : ' (4b) 
' 

'V exp (g0 {1-k>(l) )', a > 8, qo > 0 (4c) 
~a-8) xa-8 

. 
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The outer expansion is not uniformly valid near x = 0 in 

these cases and we attempt to describe this region by · an inner expansion. 

Thus we put 

and (1) becomes 

~ + oa xa-1 ~ + ~ xS-2 Y "' o . 
dx2 £ dx £ 

(5) 

We attempt to choose o(£) so that oa/£ or oS/£ is 1, .whichever is the 

dominant order. The inner expansion is then 

(6) 

where the{~ (e:)}form an asymptotic sequence. The . {~ (e:)} and any unknown 
n n 

constants in the expansion are to be determined by matching with the outer 

expansion. When this procedure is successful a uniform expansion can be 

constructed from the two expansions. 

The problem, for the cases where f
0

(0) + 0, now falls naturally 

into three main classes defined by certain ranges of a and S. The first 

class is that range for which the inner expansion can be found and matched 

to the outer expansion. The second is where no such inner expansion can 

be found and the third is when the inner expansion can be found but cannot 

be matched to the outer expansion. 

The first class · corresponds to (4a) and (4b) when a> 0. Here 

oa/e: is of equal or larger order than oS/£; therefore in (5) we choose 
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The inner-outer procedure outlined above then goes through in the usual 

manner, the details are given in Appendix A. 

The second class arises in all the cases (4a), (4b), (4c), 

when a ~ 0 or a ~ 0 according to which is the smaller. The difficulty 

here is due to the strong singularities of p and q at x ~ 0 and, there­

fore, we examine whether such equations even admit non-trivial sqlutions 

which are zero at x = 0. 

We discuss this question for the equation 

(7) 

using the theory of regular and irregular singular points (see [5]). 

Since (1) behaves like (7) near x = 0 we speculate that the results we 

derive for (7) can be extended to (1). When a and a are rationals the 

equation can be transformed by a new independent variable z = x0 to one 

in which the coeficients are integer powers of z (we assume it is 

sufficient to consider this case). The above theory then confirms that, 

with one exception, no non-trivial solution exists which is zero at x = 0. 

The exception is (4c) with a > 0, a ~ 0. In the exceptional case the 

solutions are zero at the origin but are not identically zero; this case 

will be studied in Section 3. Apart from this, we conclude that no 

solution of the boundary value problem exists .for this class. 

We now concentrate on the third class, which is the case (4c) 

with e > 0. We choose 
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when it is found that 

(8) 

However, here the outer expansion increases exponentially as 

x ~ 0 while the inner expansion performs damped oscillations as x t oo 

and so the two expansions cannot be matched, in contrast to the first 

class of problems. In view of the fact that this technique copes with 

the latter class, one might query the existence of y(x,E) for the former 

class. We note, however, that an initial value problem for the same 

equation is well posed and can be handled by the same technique for the 

p~oblems in the first class while it again breaks down in the present 

case. Thus we conclude that the difficulty is due to an incorrect 

perturbation scheme. 

A few remarks can be made about the existence of y. We first 

transform to v(x,E) so that the problem for v involves an inhomogeneous 

equation with homogeneous boundary conditions, the homogeneous problem 

being self-adjoint. Thus a solution v exists, and is unique, if no solu­

tion to the homogeneous problem exists, that is if there are no eigen­

values {En} for sufficiently small E. Standard arguments show that there 

is at most an enumerable set of eigenvalues with a limit point atE • 0, 

at least when p' and q are continuous for 0 ~ x ~ 1 (see [5]). The 

correct perturbation scheme applied to an appropriate initial value 

problem will then decide the existence of these eigenvalues . 

We examine the failure of the matching in the hope this will 

lead us to the correct scheme. One can interpret the failure in two ways: 



-8-

either the regions of validity of the first terms of the two expansions 

cannot be extended sufficiently so that they overlap, or the expansions 

are not in fact asymptotic to the exact solution as assumed. The fact 

that the expansions can be extended is guaranteed by Kaplun's Extension 

Theorem (2], but this does not ensure overlap. 

We expect the outer expansion to be asymptotic to the exact 

solution. since it is valid away from x = 0 and is not influenced by the 

behaviour of p and q at x c 0. Since the inner expansion is oscillatory 

we examine its validity by discussing the oscillatory nature of the 

solutions of (1). 

We first reduce (1) to standard form by writing 

y(x,E) = exp [-~x ~~s)ds] u(x,E) , 

when it follows . that 

(9) 

(10) 

Sturm's oscillation theorems (see [5]) then show that, at least when p' 

and q are continuous for 0 < x ~ 1, the solutions oscillate in the region 

0 :S. x < O(El/(2a-f3)) when a 2:. f3, ·:q
0

> 0. 

If we denote the number of oscillations by n(E) then n(E) a 0(1) 

when a a f3 while n(E) a 0(£-(a-f3)/(2a-f3)) for a > f3. Unless otherwise 

stated it is understood that q0 > 0 for the rest of Part I. In the 

latter case n{E) ~ 0(1) for the range 0 ~ x :s_ 0(£ 11f3) which is exactly 

the property of the inner expansion. The ,analysis therefore indicates 
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that the inner expansion is asymptotic to the exact solution and the 

difficulty is the non-overlapping of the expansions due to a turning 

point at x • O(El/(2a-B)). 
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3. Expansions near turning points 

Here we define a turning point of order m as a zero of order m 

of the coefficient of u in (10). We note that for the Sturm-Liouville 

type equation 

u" +. { !J& + s (x) } u = 0 (11) 
e:2 

the turning points are defined in [6] to be the zeros of r(x). Our 

perturbation scheme will be based on the knowledge of the turning points 

and it is crucial to use our definition here. For (11) it is shown in 

Appendix B that the two definitions are equivalent. 

We can write the coefficient of u in (10) as x8-2F(x,e:) where 

F(O,e:) is finite and non-zero and F has a simple zero at x = x (e:), 
0 

Thus we have a turning point of order one at x = x0 and a 

turning point or singularity of order je-2j at x a 0, corresponding to 

e > 2 or e < 2 respectively. The alternative definition would not give 

a turning point at x = x
0

• 

The distinction between the cases a s and a > e now becomes 

clear . In the former the turning point at X a O(e:l/(za-8)) = O(e:l/a ) 
0 

occurs inside the boundary layer where x c O(e:l/a) . Thus in the region 

between the two expansions both are monotonic functions and matching is 

possible . In the latter case, however, this turning point is outside the 

boundary layer. It is clear that neither of the expansions can describe 

the solution near x = x
0 

and so the expansions do not overlap. We need 

another expansion to describe the region near x • x 0 • 
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In Appendix B the asymptotic form of the solutions to (11) in 

a region including a first order turning point is derived. If the turning 

point is at x = x
1 

then a two-variable expansion (see [1], Chapter 3) is 

used with fast variable e = 0(x)/c and slow variable x, where 0(x
1

) = 0. 

We attempt to use a similar procedure here and we first 

change to a new independent variable s such that if s • s 0 (c) corresponds 

to x = x0 (£) then s 0 a 0(1). Thus we write 

X 
s ... -~--,.-

e:l/(2a-8) 
(12) 

and (10) becomes 

_d_2u_ - --~h~(~s~·~e:~) ___ 
e:2(a-8)/(2a-8) 

u- 0 • (13) 
ds2 

Here 

where the order symbol holds uniformly for s • 0(1). 

We then write 

u • U(e,s,e:) 

where 

e = 0(s,e:) 1 0 ' · 0 > • e:2(a-8)/3(2a-8) 
(15) 

Equation (13) then becomes 

- .. _a_2u __ e:2JJ/30" au _ e 4JJ/3 a2u 

(0') 2 ae (0') 2 as2 
(16) 

aeas 
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where~ • (a-S)/(2a-S). 

We choose 

(8') 2 El .. h, (17) 

so that (16) becomes 

(18) 

where the right hand side of (18) coincides with that of (16). 

The solution of (17) is 

(19) 

where El(s
0

,£) = 0. Here we could replace h by h 0 (s,£) where h = h
0 

+ 

o(£~) uniformly for s = 0(1). One might have expected that h-h
0 

would be sufficient but in fact a secular term el/2£~/3 occurs and the -

more stringent error bound is required. The order symbol in (14) also 

indicates that h 0 will change as a - 8 - 1 increases through integer 

values. These points, together with the observation that using h simpli-

fies the higher order terms, lead us to use h rather than h 0 • 

We solve (18) asymptotically by considering 8 and s as inde-

pendent variables and requiring the expansion to be uniform for 

8 ~ 0(£-z~/ 3 ), s • 0(1). This expansion is then a uniform expansion of 

(13) for s = 0(1). 

Thus we assume 
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and we find 

C Ai(S) + D Bi(S) u = 
0 (0')1/2 

(20) 

where Ai, Bi are the Airy functions of the first and second kind respec-

tively. 

It is seen, however, that 

as s + 0, and therefore either U
0 

or U
08 

are singular at s = 0 for 

S > - 2, unless S = 2. This breakdown is due to the turning point or 

singularity at s = 0. The region near s = 0 is described by the inner 

expansion for S > 0. In the case S = 2, (20) contains the inner 

expansion and is uniformly valid at least for o ~ s ~ E < oo. Thus for 

S > 0 we have completely described the region o ~ x ~ 1, since these 

expansions can now be matched and a uniformly valid expansion constructed. 

We now discuss the case a > 0, S ~ 0, for which no inner 

expansion can be constructed. It is seen that the behaviour of u0 near 

the origin is precisely that of the exact solution, as predicted by the 

theory of singular points, and so we expect u0 to be valid near the origin 

for this case. 

We note that in fact the asymptotic expansion of the general 

solution to (1) can be constructed by these methods. The outer expansion 

is replaced by a two-variable expansion with fast variable ftp/2£)dt and 
1 

slow variable x. One linearly independent solution is f 0 and the other 

is exponentially small. Each expansion now contains two arbitrary constants 
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and so we can examine any bou~dary or initial value problem using these 

techniques. 

We consider first the initial value problem 

y(x,O) a O, y'(x,O) a R(E) , (21) 

when it is sufficient to use the outer expansion 

where 

In performing the matching a further classification has to 

be made since h
0 

needs to be defined in matching the two-variable and 

outer expansions . The matching has only been carried out for the cases 

0 < a - a < 1, 1 < a - a < 2, as the computation involved increases 

rapidly with a-S but no theoretical difficulty was foreseen for the cases 

not treated. 

The matching shows that y is exponentially small for x > O(El/a) 

unless R(£) ~ O[exp(T/£~)], where T > 0. Thus in order to solve the 

boundary value problem we need R~£) to be exponentially large. It is 

seen that, by choosing an appropriate value of R, a formal solution to the 

boundary value problem can be constructed to first order except when 

(22) 
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Here €n ~ € as n t oo. 
no 

We note that this sequence has zero as a limit point and so we 

have formally demonstrated the existence of the eigenvalues discussed 

earlier. 

In general s
0 

will not be known exactly and we can replace it 

by a known approximation. Thus for o < a e < 1 we write 

and to the order considered we find 

·..!.2_ + Y1 
€n~ a n1/~ _n_(_1_/-~+--1-) ' 

where 

- 0 - q t - t dt ~ lf4q )1/(za-8h[ 8 20./4]112 } (2a-a)/(a-t3) 
1T 0 t 0 

A similar expansion for the case 1 < a - 8 < 2 results in an 

intermediate term of O(n-{(1/~)-(1/[a-8])}) in the expression for €n • 
0 

We also note that a similar expansion can be used to eliminate s
0 

from 0 

for the cases o < a - t3 < 1, 1 < a - 8 < 3/2. However, for the case 

3/2 ~ a- 8 < 2 although so can be replaced by a known approximation, the 

expansion in terms of integrals of (s2a/4 - q
0
s8)1/2 becomes non-uniform 

when s- s
0 

= 0(€1/(2a-8)). A uniform expansion involves integrals of 

{s2a/4 - q
0

s8 + €l/(2a-8) (p 1s2a+1/2 - q 1s8)}1/2. For any given value of 

s these integrals may be expanded further but there is no uniform 
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expansion of these integrals for the whole ra~ge. To explain this further 

classification we note that near s .. s 0 ,y can be approximated by a limit 

process expansion in terms of 

when o < a - S < 3/2, and in terms of 

z = .=.s_-_(:....;4;.;;Jq..u0 J..) _1 1_(_2_a_-_s_) _-....:Ca;;e::....l_/_(_2a_-_s_) 

e;2JJ/3 

for 3/2 :S a - S < 2. 

Here integrals of the type 

I • !so (-h)l/2dt 
p 

are expanded by O(e:lJ) by noting that 

I fso-o(e:)(-h) 112dt + O(o 312), 0
3/ 2 = o(e:JJ), O<a-S<l , 

0 

and choosing 6 so that (-h) 1 /2 can be expanded uniformly in terms of 

(q
0

t8 - t2~/4) 1 12 in the remaining integral. Thus we require 

e:lJ << 6 << e:2JJI3. Upon expanding (-h) 112 , integrals of the type 

appear, which can· be cewritten as 

J =j(4qo)l/(2a-8) · {qote- t2a/4} dt , 

0 

to the order considered. For the range 3/2 s a - 8 < 2 we cannot find 
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such a o for integrals of the type {so (-h) 1 / 2dt. Here we puts 
s 0 

- ~£l/(Za-e) - o as the limit of integration when s = 0. We shall discuss 

a more sophisticated procedure for expanding such integrals in Part II. 

The difficulties in the case 3/2 ~ a - a < 2 do not appear there to the 

order considered due to the fact that here the expansion involves integral 

and non-~integral powers of £il while the integrals in Part II contain only 

integral powers of £. 

It finally remains to treat the case a > a, a > 0, a ~ 0. 

Here the two-variable expansion is valid near the origin and both the 

leading terms in this expansion are zero at x = 0. In fact, in terms of 

the boundary value problem, it is seen that D (see (20)) is determined 

by matching with the outer expansion while C is still arbitrary. Here 

the term Ai(S)/(0') 112 is an eigenfunction in the sense that it is zero 

at x = 0 and is exponentially small at x = 1. Thus we see that formally 

there is a continuous spectrum of eigenvalues and that a solution y(x,£) 

exists but is non-unique. 

In Appendix C we give a proof of the validity of the two-

variable expansion. For a special case this also confirms the validity 

of the inner and outer expansions. 

We note that if we choose initial conditions so that D = 0 and 

R(e) = 0(1) then u is exponentially small for x > 0(£l/(2a-a)). This 

rapid damping can be expressed in a physical manner by noting that the 

equation 

qo > o, a < 1, ~ + 0 , 
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when expressed in terms of u, can be rewritten as 

d2u {E - V(i)}u --+- - .. o 
dz2 , :£2 

(23) 

where 13- 2 ... -y, E:= e:(y-1)/~ E"" -q
0
2/(2-Y)J4, z a xJe:lfYq

0
1 /(a.-2) . and 

V (z) = -1/zY. 

Equation (23) is the non-dimensional Schrodinger equation 

(see [3]) for the wave function u describing the stationary states of 

the one-dimensional motion of a particle in a potential V(z) .with an 

energy E. It also describes the e-states of a particle in a central 

force field with potential V(z), where z is the radial co-ordinate. Since 

E < 0 we expect that bound states are possible and this corresponds to ' 

D = 0. The region z > 0(1), or x > O(e:l/( 2a-B~ is the classically excluded 

region and we expect that u will be small there since £ is small and so 

the motion is quasi-classical. The rapid damping is therefore due to ari 

extremely steep potential well. For any energy of 0(1) the particle has 

very little chance of being in the region x • 0(1). 
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Appendix A 

Here we display the results for the cases S > a> 0 and a = S, 

a > 0, q > 0 which can be treated by using the inner and outer expansions. 
0 

that 

We consider first the case a • S, a > 0, q > 0 where we find 
0 

-q /a 
lJO(e:) • 

0 
e: J 

~ 1 
+ qo 1 - a 

} J g <x> 1 F1 
+a X 

II: nx ---
0 a a a 

where 1F 1 is the confluent hypergeometric function. (The notation is 

that of (<i)). 

Thus we note that for the initial value problem where R(e:) = 
q / a 

O(e:-l/a), and hence llo = 1, the outer expansion will be O(e: 0 
). Thus 

the outer expansion diverges algebraically as x ~ 0 and is algebraically 

small for an appropriate initial value problem, in direct analogy to the 

case a > S, q > 0, when "algebraic" is replaced by "exponential". 
0 

In the remaining case we find 

lJ (e:) - 1 J 
0 

g <x) 
0 

x ta 
T f exp[- .-} ~t. 

0 o! a 

The interest here is in ' the second term of the expansions. We 

can require that ail the gi, i · > ' 1, s~tisfy 1 inhomogeneous · equations by 
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1 + ~ (€) + •••• ' 
1 

and choosing the ~i to ensure matching. 

It is then found that 

~1 (€) - €1/a. 

<a-a.> Ia. 
- € 

' a. - a :: - 1, 

-1 < a. - a < o. 

We consider the matching to 0(~ 1 ) and it is seen that ~ 1 is not needed to 

match f • However, 
0 

and therefore 

as x -t 0. 

1 
f 

1 
(x) • f 0 (x) ~ 

f "' 0 xa-2a. 
1 0 

{ 
q

2 
. 1 _9.;r · } i)3" - p (p) dt, 

a < za., 

"' 0 1n .!.+ 02' a - 2a , 
1 X 

"' 0 a > 2a • . 
3 , P 

In the first of these three cases it is seen that~ = o(~ ) . 
1 1 

The second case corresponds to a - a. - a. dnd we find ~ a o(~ ) for a. > 1 
1 1 

and 
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ii .. F e: ln .!.. , 
1 e: 

for 0 < a < 1, where ~ • e:. 
1 

Finally in the case 13 > 2a, corresponding to a - a > a, we find 

for -1 < a - a < 0 and a - a < - 1, 0 < a .S 1; -~1 
• o(~ ) for the remaining 

1 

cases. 

We note that in general we have 

ta 
g c H /x exp[- --] 1 go - o a { 

t ta 0 2 } f exp [--] (v
1

q i:~->- g (t) + -a. g
0
' (t) ).dt dt o a o o v2plt 

where \)1 = 1 for -1 < a - ~ < o, \)2 . = 1 for a - e.::: - 1 and otherwise are 

zero. 

All the unknown constants .have been determined by matching. 
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Appendix B 

We consider here the derivation of the asymptotic form of the 

general solution to (11). A derivation is given in [1] for the case 

where r(x) has a simple zero at x = 0. We shall first briefly review this 

and then show how a more simple form can be derived. 

We first note (11) can be rewritten as 

d
2

u + [r(x) + e: 2s(x)]u • 0, 
dx:.1. 

X X a 

e: 
(B-1) 

and therefore, if r(o) f 0, a limit process expansion with x fixed exists 

but is non-uniform when x = 0(1). Thus we assume a two-variable, expansion 

u "' u 0 (e, x) + • . • • » 

where 

e :::: e(x) 9(o) -e:-' o, e' > o, 

and we note e = O(x). For r > 0 we require u to be periodic in e of 

period 2TI. The period must be independent of x to preserve uniformity [7]. 

If r < 0 we demand that to 0(1) the equation must be independent of x, 

again to preserve uniformity. 

It then follows that 

0(x) fx jr(t)j 1/2 dt ~ 
0 

and it is found that, for r > 0, 
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A cos 8 + B sin e = ~~~~~~~~~ 

Thus the expansion breaks down at the zeros of r(x), as might have been 

expected since the original limit process expansion in x is no longer 

valid and e' 0 there. 

We consider the case where r has a simple zero at x = 0. The 

region near x = 0 is then described by a limit process expansion based on 

x = xf€2/3. The two expansions are then matched and a uniformly valid 

expansion is constructed for x = 0(1). 

We note that in the above two-variable expansion the dependence 

of u
0 

on 8 is exactly that of the first term of the corresponding limit 

process expansion on x. Thus since the above expansion in x has as first 

terms Airy functions of negative arguments, we expect to replace this by 

a two-variable expansion 

u= u(e, x, E), e "" e' > o , 

which is uniformly valid for x = 0(1) and where 

Equation (B-1) then becomes 

., 

2€: 2 / 3 a2u _ e 213e" ·au 

e ' a e as < e '· ) 2 a 8 
f:. 
4/3 a2u 

, (B-2) 
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and upon choosing 

we find 

(B-3) 

as required . Here 

We now solve (B-3) asymptotically by assuming 

. . . . , 

and it is found that 

U ~ C Ai(S) + D Bi(S) • 
o (G')l/2 

We note that G' > 0 and thus U
0 

has no singularities. Thus it is seen 

that U is a uniformly valid first approximation to u. This result has 
0 

also recently been obtained by Fowkes [4] for essentially the same 

equation. We also note that the higher order terms can be simplified by 

replacing r(x) by r(x) + :E2s(x) in the equation for G. 

It is easily seen that in general if r(x) has an nth order zero 

at the origin then we define 
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0(x) 
a 

when it is seen that 

In Section 3 we noted that the two definitions of turning points 

are equivalent for this equation and we now discuss this point. It is 

obvious that if ~ is in the region ~ ~ 0(1) then the limit process expansion 

with ~ fixed is equivalent to that based on ~, and it is obtained by writing 

x = ~ (~). Thus if we can show that the turning points defined by our 

method are inside the region x = 0(1) then either definition shows that 

a limit process expansion based at the turning point together with a two-

variable expansion leads to a uniformly valid expansion. This is equivalent 

in the problem just considered to noting that either r(x) or r(x) + e2s(x) 

can be used in the equation for 0. 

If r(x) + e2s(x) ~ xn + e2xm for x ~ 0, where n > 0, m ~ 0, 

then our definition shows there are turning points at x = 0, m > 0, and 

at x = O(e2l(n•m)) for n > m, considering x = o (1) only . The other 

definition shows that x = x/e2/(n+2) and the result follows. 

We note that the method of using the two-variable expansion 

together with the limit process expansion is a formal way of describing 

the W.K.B. technique (aee [3]) while the second method involved is 

essentially a formal description of Langer's ideas [8]. It is seen there- ' 

fore that the problem considered in . Section 3 cannot be treated by the 
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\v .K.B. technique while .the idea of matching, which is essential, is not 

used in the Langer theory; the idea there being to construct a uniform 

expansion directly, but it is not at all obvious how this could be done . 

We now make a few remarks in general about turning point problems 

for the equation u"- · e:":"2q(x,e:)u = 0. One first constructs the two-variable 

expansion valid away from the turning points. This will break down a t 

the turning points according to the other definition. If our definition 

does not introduce any new turning points outside the region where the 

limit process expansions around these turning points are valid, then t hese 

e xpansions can be matched to the two-variable expansion. If only one n ew 

turning point is introduced outside these regions on either side of the 

turning point, then we proceed as in Section 3. In more complicated 

cases an application of the ideas of Section 3 should enable the problem 

to be solved. 
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Appendix C 

We give here a proof of .the validity of the two-variable expan-

sion For the special equation 

Cl ;:: 4, Cl = 3 , (C-1) 

this expansion is uniformly valid over the whole range and in proving 

this we demonstrate the validity of the inner and outer expansions. 

We note that two formal linearly independent solutions to the 

equation for u were shown to be of the form . 

u 
1 

u 
2 

Thus we wish to prove 

ti = 1 

Ai (a) + 0 (e: 4~ /3) Ai I (e) 
(0 I) 1/2 

Bi(6) + 0(~4~/3) :M'(G) 

(0')1/2 

with a similar expression for u 2 . 

O<L<s :::s , , 
0 

The proof follows the same lines as that given by Langer [8] for 

(11) when s • 0(1) . We note · that Ai(e)/(0 1
)

112 
and Bi(e)/(0')

112 
are the 
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two linearly independent solutions to the equation 

where 

j h (s, E) 

I e:21.1 
- g (s, e:) f u .,. 0 , 

g - (0')1/2 
{ 

1 } II 
(0')1/2 ·• 

We then rewrite (13) in the form 

_ ~ h(s,e:) 

l e:21.1 
- g(s,e:) ~ u = g(s,e:)u , 

and solve by variation of parameters to find 

u ,. Ai(8) - 1Te:
2 1lf 3 1s. {Bi(8)Ai(8r)-Ai(8)Bi(8r)} 

1 g(r,e:)u1 (r,e:)dr. 
. (0')1/2 (0')1/2 K (0 ' )1/2 

r 
(C-2) 

Here we have written 0f =0(r,e:) and er "" 0r/e:21.1/3 ; A similar equati9n can 

be derived for u2 • The lower limit of the integral is then s in orde r 
0 

for the ensuing method to wo r k. We assume p'" and q" are continuous for 

x > 0 when i t is seen that the kernel of the Volterra integral equation (C-2 ) 

is continuous and the general theory of such equations ensures that there 

exists a unique continuous solution (see [9]). Such a solution satisfies (13). 

We first consider the region s ~ s 0 and we put 
' 

Ai (8) 
(0')1/2 ' 



when (C-2) becomes 

2 13 J s · {Bi (e)Ai (6r)-Bi(6r)Ai (e)} 
v = 1 - 1T e: ).1 1 K ( e •. ) 1 I z Ai ( e ) 

r 

(C-3) 

Since lv1 1 is continuous on a closed . interval s
0 

S s ~Kit attains its 

maximum N(e:) at some point s'. Thus we find 

N(e:) ~ 1 + 1re:2\.l/3 N(e:) !K !Q(s',r,e:)!dr 
s' 

where we have written the kernel of (C-3) as Q(s,r,e:). Upon using the 

bounds 

l ~·i<es,) ~r<6 r> 
Ai(es ,) 

M 

e 1/2 
r 

~ M , es' ~ 6(s',e:) , 
e 1/2 

r 

where M denotes a generic constant, we find · t.· rt ', 

IQI < · lgl e:\.l/3 • 
- 1/2 

h 

It is then seen that lgl is uniformly bounded over the whole range while 

h has a simple zero at s = sq and is uniformly bounded away from zero 

otherwise. Thus we conclude that N(e:) is bounded and hence (C-3) can be 

written as 
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as required. 

We now examine the region o < L ~ s ~ s .• The above procedure 
0 

fails here since Ai(e) has zeros in this region. We revert to (C-2) and 

write 

and in the second integral we use the bound 

A. (6) 
1 

I ull <H 1/2 ' 
(0') 

just derived. Here we use the facts that Ai(e), Bi(e) and g are uniformly 

bounded for L ~ s ~ s
0

, while e' is uniformly bounded away from zero, to 

deduce that u 1 is uniformly bounded in the range considered. 

Thus we find 

and we use the bounds 

to deduce 
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lql < 

(-h)1/2 

The required result then follows and it is equally well written 

o < L ~ s < s 0 • 

In exactly the same manner the results for u 2 can be obtained. 

The change in the lower limit is to ensure that Ai(es')Bi2(er)/Bi(es') 

is bounded~ for s ~ s • 
0 

We now restrict ourselves to (C-1). Here we replace Kin 

(C-2) by £-1 12 (a-1 ), c~rresponding to x = 1. Over this extended range it 

£-1/2(a-1) 1; 2 is again seen that g and f h- dr are uniformly bounded and 
so 

h . "f 1 b d d F h < < £-1/2_(a-1) ence u 1 ~s un~ orm y oun e • or t e range s 0 - s - we 

again arrive at the result 

/

£1/2 (1-a) 
< M £).1 . I &I bi72 dr. 

s 

Thus upon using the sharper estimates 

lgl 

r >. 21/(a-1) + o, o > 0, 
I 

the result 
' I ., 

(C-4) 

follows for s > 21/(a-1) + o. For s0 4 ~ s ~ 2 1/(a-1) + o the above integral 
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is bounded and so we find (C-4) holds uniformly for s
0 

~ s ~ £-1/2(a-1). 

The range o ~ s ~ s
0 

is treated in the same manner as before. 

Thus we have shown that 

Ai(8) 
(0')1/2 

so < s < £-1/2 (a-1) , 

and hence in particular when x = 0(1), that iss • 0(£1/2(a-1)) • . w~ find 

u = 1 

It is finally seen that 

Ai(8) 

(0')1/2 
{1 + 0(£)} • 

y1 = y(£)xl-a. exp[- xa.- 1 ] {1 + 0(£)} , 
a£ (a.-2)xa.-2 

which is exactly the exponentially ~mall part of the two-variable 

expansion which replaces the outer expansion, with 0(£) error as required. 

Similarly we have 

and we deduce 

where xis the inner variable and v 1,v2 are 0(1). Thus we have also 

displayed the validity of the inner expansion. 

In attempting to derive the same results for u 2 the change in 

the lower limit forces us to accept the weaker result, 
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It seems likely that in fact the integral equation (C-2) defines o(e)u2 , 

where a(£) = 1 + 0(£~), and not u2 , but this is only speculation. 

Perhaps a more careful examination of the error would eliminate the 0(£~) 

terc; however, we can still deduce 

and therefore we have displayed the validity of the outer expansion with 

a weakened error bound. We deduce the same form for the inner expansion 

from y2 as for y
1

• 

In general the validity of the inner and outer expansions will 

be proved in a similar way but with other integral equations. The formal 

procedure used is then justified if it can be shown that the various 

expansions overlap. 
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II, ON THE AVERAGED LAGRANGIAN TECHNIQUE FOR 
I 

NONLINEAR DISPERSIVE WAVES 

1. Introduction 

Linear dispersive systems are distinguished by the fact that 

all dependent variables have solutions of the form 

U = a COS 8, 8 a KX- Wt + n, W = W(K) ~ (1) 

for arbitrary wave number K, amplitude a and phase shift n. The general 

solution is then given by Fourier integrals. Here we assume w is real 

and w"(K) . $ 0 . Each Fourier component (1) travels with a different phase 

velocity c(K) = w/K and hence a local disturbance tends to 'disperse' 

into its various components. 

To obtain information from the Fourier integrals the method 

of stationary phase may be used to derive an asymptotic expansion for 

large x and t, x/t fixed. The resulting form is 

u ~ a cos 8, k = 8 x ' 
w = w(k), (2) 

where a(x,t) and k(x,t) are slowly varying functions of x and t. The 

sense in which a, k are slowly varyi ng will b e made precise later . Thus 

for large x and t the general solution is given locally by (1). 

It is therefore natural to look directly for solutions which 

are locally of the form (1) for all x and t, but which vary slowly o,ve r 

large x and t. Such solutions can be found approximately by the W.K.B. 

technique. That is we assume 
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0 
.... ) cos 

E 
(3) 

and upon substituting (3) into the differential equations we derive partial 

differential equations for the slowly varying functions, K, w and the ai, 

where K = 0x/E, w = -0t/E. Such concepts as group velocity can then be 

developed from these slow modulation equations. 

We now discuss how these ideas can be extended to nonlinear 

dispersive equations. The equations considered admit uniform periodic 

wavetrain solutions of the form 

a = KX - · wt + n , (4) 

where U
0 

is periodic in a, and the Ai are constants of integration . We 

cannot superpose solutions here and so we look for solutions which are 

locally of the form (4) but which are slowly varying, as in the linear 

case. 

Thus we assume 

u ~ u (a, Ai, w, K) + ... . 
0 • (5) 

where 8 is no longer a linear function of x and t and K = ex, w = -St 

and the A are slowly varying. Whitham [1] has shown how to derive the 
i 

slow modulation equations by averaging the differential equations 

expressed in conservation form . Subsequently he developed a simpler and 

more general approach by formulating the original problem as a variational 

principle [2]. The slow modulation equations then follow from an averaged 

variational principle whose Lagrangian is the average of the original 

Lagrangian over e. In particular for a .linear system the averaged 
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Lagrangian can be written down explicitly and this results in an improved 

view of the linear theory. All this discussion is limited to the first 

approximation. 

In [1] Whitham treated several examples and restricted his 

discussion to the cases where the slow modulation equations were 

hyperbolic. These equations have multi-valued solutions and he argued 

that in some cases these would correspond to shock waves. In [3] 

Whitham showed that constant solutions to the modulation equation were 

stable or unstable according to whether these equations were hyperbolic 

or elliptic. He used this result to examine the full water waves problem 

and to derive the change in stability of the Stokes waves at a finite 

depth from instability in deep water to stability in shallow water. 

However, he did not find the cut-off in the instability for sufficiently 

large side-band wave numbers as predicted by Benjamin [4] using the near-

linear interaction theory. 

In Part II we are concerned with constructing higher approxima-

tions to the averaged Lagrangian used by Whitham in such a way that these 

lead to corrections to his slow modulation equations rather than a 

sequence of such equations. These corrections involving higher order 

derivations of w, K and the Ai will be important in the study of the shock 

waves and stability results mentioned above . The perturbation schemes 

are applied directly to the variational principle. Two schemes are 

developed, one a simple scheme for linear or near-linear problems the 

other a more sophisticated theory for ful~y nonlinear problems. 

i 
Luke [5] had previously devised a perturbation scheme for fully 
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nonlinear problems to apply directly to the original differential equations. 

In principle this leads to a sequence of slow modulation equations but 

he only displayed the first order equations. He did, however, show that 

these equations are equivalent to the Euler equations 6f the first 

order averaged Lagrangian. The procedure was continued to higher 

orders for the nonlinear Klein-Gordon equation. Certain integrals were 

set equal to zero which upon using the 8 dependence of the solution 

would, in principle, yield the sequence of slow modulation equations, 

but this last step is laborious to perform. Thus although Luke placed 

the first order averaged Lagrangian in a consistent perturbation scheme 

he left undecided the question of how to improve upon this approximate 

Lagrangian. 

In Section 2 we derive the result that the averaged Lagrangian 

is exact if the exact solution is used in the averaging. This forms the 

basis for the perturbation schemes we use. 

Sections 3 and 4 contain a derivation of the corrected set 

of equations for typical near-linear examples where the Lagrangian 

depends either on one function or on two functions, one being a potential. 

The perturbation scheme here involves expanding the original Lagrangian 

in a Fourier series. The Benjamin cut-off is found where predicted by 

that theory, the pres ent derivation is simpler than the interaction approach, 

however. 

In particular the theory is applied to the problem in nonlinear 

optics discussed by Ostrovskii [6] who seems to be the first to discover 

the Be njamin cut-off by the corrected equations a pproach. However, h i s 
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equations were derived by an ad-hoc averaging technique and they are 

criticized by comparing with the results of the present method. 

We remark that the approach taken here enables a general 

stability criterion to be given which explicitly shows the circumstances 

under which the cut-off occurs. It is also seen that the stationary 

solutions found for a simple example also apply to a wide class of 

problems. 

In Section 5 we consider fully nonlinear equations using the 

Hamiltonian formalism developed by Whitham [7]. This formalism is extended 

to the exact solution, rather than the first approximation considered by 

Whitham. The exact form of the averaged Lagrangian is then deduced. The 

per turbation scheme used is unusual in that this exact Lagrangian is 

expanded rather than the actual solution. Also the solution is not explicitly 

solved for in this calculation, which is in the spirit of Whitham's original 

theory. 

The Hamiltonian formalism was also introduced independently by 

Bisshopp [8] who also derived the result that the averaged Lagrangian is 

exact . He then performed an iteration scheme directly on the equations 

and derived a set of integral conditions similar to Luke's. Each iterated 

set are then shown to be the Euler equations of an iterated averaged 

Lagrangian. However , he does not derive any slow modulation equations and 

his scheme still involves solving explicitly for the solution . It is shown 

in Section 5 that a direct attack on the variational principle leads to. 

a much simplified and more fundamental theory. We finally note that 

Bisshopp's analysis is restricted to Lagrangians depending on a single 
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function, while our approach extends to more general Lagrangians. 

Finally in Section 6 a few remarks are made about the exten­

sion of the method to deal with slowly varying multiply-periodic solutions. 

In particular the adiabatic invariants for a separable mechanical system 

are derived. 
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2. The exact averaged Lagrangian 

We consider dispersive wave equations which can be derived from 

a v a riational principle. All known dispersive equations are of this type. 

To begin with we consider the class of equations governed by a variational 

principle of the form 

(6) 

(Throughout Part II we restrict ourselves to one space dimension, but the 

extension is straigh tforward). 

The corresponding Euler equation is 

a (B!__) + ~ (B!__) 
ax aux at aut 

aL 
-- = 0 ' 

au 
(7) 

and we first give a review of Luke's procedure for solving (7). A two-

variable expansion is used and. we put 

u (x, t, e:) = u· (e, x, T, e:) , (8) 

where 

e = 0 (X,T) 
X = e:x, T a e:t, K = 0X' w = -0T ' 0 (0,0) = 0, ( 9 ) 

£ 

a nd U is pe riodic in e. Here £ is small positive parameter which is 

supposed introduced through the initial or boundary conditions. We note 

that e = O(x,t) and so the slow variations occur over times and distances 

of O(e:-1) . Thus £ is the ratio of the time scale of the oscillations to 
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1 

that of the modulations. 

Upon using (8) we find (J) becomes 

a (i!:_) a (i!:_) a (~) a (i!:_) ' dL Kae +£ 
ax - w ae- + E: - - .= 0 au au . au aT au au X X t t 

or 

a (.£b_) a (1L) +1_ (.£b_) aL 
ae + ax - - .. 0 au

6 aux aT auT au (10) 

where 

The idea is to consider (:10.) as an equation in the three independent 

variables e. X and T. A uniform expansion of U is then constructed for 

6 0(£- 1 ); X,T = 0(1) which along the surface 6 = 0(£x, £t)/£. X= £x, 

T £t, is seen to be a uniform expansion of (7) for x,t · .. O(c- 1), as 

required. The expansion is kept uniform by requiring that U be periodic in 

6 of period 2rr . 

Luke then assumes 

U rv U
0 

(6, X, T) + £ u
1 

(6, X, T) + .... 

and requires that each U be periodic in 6 o.f period 2rr. This requirement 
n 

leads to the nonlinear dispersion relation when applied to U . Each U 
o n 

can be solved for explicitly but is not automatically periodic. The 

explicit form contains two integrals of the form J 6
F(j)d6, j = 1,2, and 

o n 

in order for U to be periodic of period 2rr we must ensure that 
n 1 
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(11) 

where F(j)depends on the Ui, i < n, and the derivatives of U 1and U • 
n · n- n-2 

These conditions are called secular conditions and when the e dependence 

of the F(j) is used to evaluate the integrals they give rise to the 
n 

sequence of slow modulation equations mentioned previously. The dispersion 

relation together with the above condition for F(l) forms the set of slow 
1 

modulation equations for w,K and A= A(X.T), where A is the first integrai 

of the equation for U • 
0 

It is crucial for our scheme that we _modify Luke's formalism and 

write 

e = 0 (X, T, e)/e 
' 

A = A (X, T, e) 

when it is seen that 0(X,T,e) and A(X,T,e) are the two slowly varying 

functions of the problem. Luke's procedure involved a sequence of slowly 

varying functions which result from expanding 0 and A for small E. 

We now apply those considerations directly to the variational 

principle. Thus we look for extremals of (6) which are of the form (8). 

In analogy with the above we search for a variational principle in the 

three independent variables e,X,T, whose extremals eva luated along the 

appropriate surface are extremals of (6). Intuitively one would consider 

(12) 

and we show that the Euler equation of (12), correspondi ng to the 

variation of U, is (10), thus confirming our intuitive ideas. In fact (12) 

becomes 
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0 , 

and by the usual arguments we deduce (10), for arbitrary oU which are 

p e riodic of period 2n i n e and vanish on · the boundary of the (X,T) region, 

which is mapped from the original (x,t) boundary. A direct derivation 

of (12) from (6) is given in Appendix D. 

We now consider (12) as the basic variational principle of 

the problem. We note that the normalization of the period to 2n restricts 

the class of functions 0 , this restriction can be found by varying 0 

independentlyof U in (12) • . Since 8 = e(X,T,£) is independent of ewe find 

and therefore we deduce 

0 (13) 

for arbitrary 80 vanishing on the boundary of the (X,T) region . We note 

(13) is an exact secular condition. If we expand 0 and A for small £ then 

(13) leads to a sequence of secular conditions of the type derived by Luke. 

If the dependence of U on e can be found then (13) becomes an exact equation 

for the slowly varying functions 0 and A. 

We note from (12), in a similar manner, t"1at if the e dependence 

of U is known then the exact siow modulation equations are given by 

cS ! ! ~ dXdT • 0 , (:l.4) 



-45-

where 

(15) 

and the right hand side of (15) is evaluated using the known functional 

dependence of U on e. Thus ~ is not a functional of U but a function of 

the slow varying quantities. In general it ts seen that ~depends on ~ ,A 

and their derivatives. This will become clear in the next section. 

We remark that (15) will only be used as it stands for linear or 

near-linear problems. For fully nonlinear problems the Hamiltonia n 

formalism mentioned earlier will be developed. 
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3. A near-linear Klein-Gordon equation 

The concepts introduced in the last section are further 

developed and applied to a near-linear Klein-Gordon equation. We note 

th at (14) is deceptively simple in that an exact solution is rarely 

known and the asymptotic form of U is usually very complicated. The idea 

is to avoid explicitly solving the Euler equation for U as a function 

of e. 

For a near-linear equation this is achieved by using a Fourier 

series expansion of U. This is practical since to first order only one 

harmonic appears and a limited number of harmonics appear at the next 

orde r. Obviously this procedure will be impractical for a fully nonlinear 

equation . 

To illustrate the ideas we consider the linear Klein-Gordon 

equation [9) 

(16) 

where 

or 

where ~ 

The exact form for U is 

U a a(X, T,E) cos 9 (18) 



-47-

when it is seen that 

(19) 

is the exact averaged Lagrangian. Thus the exact Euler equations of (14) 

are 

(20) 

(21) 

corresponding to the variations of a and 0 respectively. 

We pause here to note that the Euler equation of (17), corresponding 

to variations of U, is 

0 ' 

(22) 

and upon using (18) in this equation we deduce (20) and (21). This is a 

slight variation on the usual W.K.B. technique in that we have not expanded 

a(X, T, ~) for small ~ and derived a sequence of equations, and that we have 

let 0 depend on ~ which enables both first harmonics to be treated at the 

same time. These are trivial differences for the linear theory but are 

important for the near-linear theory. 

The only correction in (20) and (21) to the equations discussed 

by Whitham is the 0(~2 ) term in (20). 

We must add the consistency relation 

(23) 
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to complete the set of equations. We do not discuss these equations here 

as a more general set will be examined in connection with the near linear 

equation which we consider next. 

We first consider the nonlinear equation 

2ny 
-2n-l 
u • 0 , n integer, n > 1 , (24) 

for small amplitude motions 

u = au, u 0 (1) ' 

where Y is a constant and a is a small positive parameter. Equation (24) 

then becomes 

2n-l 2n-l 
utt - uxx + u + a 2ny u • 0 , (25) 

which is the required near-linear equation. 

Thus 

and we write 

00 

U = a(X, T, E) cos8 +a + E (a cos ne + b sin n8), 
o n=2 n n 

where the a
1

, bi are functions of X, T, ~ and are O(a2n-l). Therefore 

~a2 ~£2 2n-l 2n 2n-l 2(2n-l) :i.= 
2 

(~ - 1) + - 2- <a4 - ai) - a ~ya + 0 (Ea ,, a ) (26) 

or 
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where (19) is written as ;1.... = ;L, and 

,_Y = ~ 

Thus to the order considered ~ is calculated using the linear solution. 

We consider the case where a 2n-l = e:2..,when the nonlinear term.:~ · and the 

dispersion terms enter at the ' same order, and we work to O(e:2) in what 

follows. The corresponding Euler equations are then 

and (21) . Thus the only effect of the nonlinearity is to modify the 

dispersion relation. We eliminate w from (21) and (22), using (27), to 

leave 

KT + 
K K + e:2 2Y(n-l)a2n-3 e:z a ( "xx - aTT) = o, ~- --

I(K2+1) X 
I(K 2+1) 

2 ax ai(K2+1) 

(28) 

a (Ka2) a ('(<2+l)a2 + 0 2 
nya2n - e;2 a <-xx - •rT>) = 0. +aT ax I(K2+1) 2/(K 2+1) 

(29) 

These equations can be considerably simplified by considering 

a restricted class of solutions corre~ponding to a modulated monochromatic 

wave. We illustrate how this simplification arises by writing 

0(X, T, e:) • 0 (X, T) + e: e(X, T, e:) ., 
0 

0 ... 0 (1) ' 
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We are free to choose 0 (X, 0) as this still leaves A(X, 0, e:) and G(X, 0, e:) 
0 

to satisfy initial conditions. The class of solutions mentioned above 

corresponds to choosing 

or 

Equation (28) also shows that 

K 
0 K oT + _ ___.:. __ 

I(K 2+1) 
0 

0 

and the solution of (31), subject to (30), is 

K (X, T) = K 
0 0 

Similarly 

w (X, T) ·• /(K + 1) = w 
0 0 0 

and therefore 

e K x - w t + G (X, T, : t::) • 
0 0 

Finally we drop the bars on K and w and we write 
0 0 

K = K + E:K 
0 

when (28) and (29) become 

(30) 

(31) 

(32) 

(33) 

(34) 
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a 
~ + e: 2w 

0 

0 , 

0 ' 

(35) 

(36) 

where we have ignored the O(e: 2 ) terms in these equations. It is therefore 

seen that for solutions of the form (34) it is sufficient to use the first 

order equation of the linear theory 

(37) 

instead of (29), to the order considered. 

Stability 

We note that K = O, a = a = constant are solutions of these 
0 

equations and we examine the stability of such solutions (any constant 

value of K can be absorbed into K ). Thus we put 
0 

K = K ei(RX - ST) a= a 
0 

+ ~ i(RX - ST) a e , 

and keep terms linear inK and a in (35) and (36). Such solutions exist 

if the dispersion relation 

(38) 

is satisfied,where we have ignored O(e: 4) . We solve for S = S(R, e:) to 

O(e: 2 ) when it is seen that Sis real, and hence the solutions are stable,if 



I 
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R 2 + 4yn(n-l)w2 a 2n- 2 > 0 • 
0 0 

(39) 

Whitham [10] previously gave a general stability analysis for 

equations of the type considered where the effect of the higher order 

derivatives was not included. Thus his theory corresponds to ignoring 

the R2 term in (39) and shows that the solutions are stable if y > 0 and 

unstable if y < 0. 

The -extension of Whitham's theory given in (39) still predicts 

that the solutions are stable for y > 0. However, for y < 0 the higher 

order derivatives stabilize the previous instability for sufficiently high 

wave numbers R > R where 
0 

4n(n-l)(-y) (40) 

This is the cut-off effect corresponding to the Benjamin side-band instability. 

Stationary solutions 

We now investigate the stationary solutions of (35) and (36). 

Thus we put 

and we choose 

K = ~(n), · a = a(n), n • X - V(e:)T, 

K 

V(e:) = ~ + e:V1 
w 

0 

when (36) integrates to 

(41) 

(42) 

(43) 
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Upon using (42) and (43) it is found that (35) reduces to 

a" = 
Ja2n+2 _ Da4 + c2 

a3 
? = 2yn(n-l)w2 , 

o·· 
(44) 

where C, D(V 1) are constants of integration. This equation is analyzed in 

the phase plane, which is symmetrical about a= 0, a ' = 0. 

It is immediately seen that if C + 0 then no solutions exist 

at a = 0. For y < 0 all solutions are periodic. Such solutions are also 

found for y > 0 together with solitary wave solutions which tend exponentially 

to a1 as n ~ ± oo where a = a1 is the larger positive singular point (all 

singular points are on a' = 0). 

We now consider the case C = 0, when K = v1w3 , where solutions 
0 

exist at a = 0. For yD ~ 0 all solutions are periodic oscillating in 

Ja J :2 a2 for every a2 > 0. We also find such solutions for yD > 0 with 

restricted ranges of a2. In the case y < O, D < 0 there are also periodic 

solutions not passing through a = 0 and solitary waves tending exponen-

tially to zero as n ~ ± oo, Finally in the case when y > 0, D > 0, there 

are step function type solutions which tend to a 3 and -a3 as n tends to 

+oo and -oo respectively, where a= a3 is the singular point away from a = 0. 

Since we have found periodic solutions it follows that (35) and 

(36) are nonlinear dispersive equations. It is therefore rather surprising 

to find the step function type solution. Its presence here is due to the 

fact that the dispersive terms are not linear and contain the nonlinearity 

-1 a . However, we note that in terms of A = a 2 these solutions are solitary 

waves, and since A is related to the physical energy the step function nature 

of the solutions in a has no physical significence. 
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We note that since (44) has the form of a nonlinear oscillator it 

can be solved implicitly to yield n as a function of a, X, T. Then the 

corresponding dispersion relations for the periodic solutions can be found. 

Finally we note a few points about the perturbation scheme . 

As mentioned earlier, Luke's formulation involved expanding a(X, T, c) and 

O(X, T, c) as limit process expansions 

a~ a (X, T) + ca1(X, T) + ••• • , 
0 

0 ~ 0 (X, T) + c01(X, .T) + ••••. 
0 

The above solutions can also be expanded in this manner but the expansions 

become non-uniform in general when X, T = O(c-1). Thus our procedure 

appears capable of extending the uniformity of the expansion over X, T 

larger than O(c- 1). In this respect it seems to generalize the ideas of 

Cole and Kevorkian [11] for near-linear ordinary differential equations. 

In Appendix E we describe an approximate method of solving (35) 

and (36) which reduces the set to a single equation, whose stationary 

solutions are studied. The analysis is based on the derivation of the 

Korteweg-de Vries equation from the Boussinesq equations [12]. 

We now briefly discuss the situation when the nonlinearity appears 

at a lower order than the dispersion terms. Thus we return to (25) and put 

a 2n-1 = c; we work to O(c2 ) as before. We again write 

00 

u a cos 6 +a + E (a cos ne + b sin ne), 
0 nm2 n n 

where the ai and bi are O(c). However, since 

n-1 
j;O c2j+l cos (2j + 1) e , (45) 
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it follows that the only harmonics which contribute to ! 2
rr u 2n de to O(e: 2 ) 

0 

are those displayed in (45) . Thus we write 

u a cos e + E: 
n- 1 -

E a cos(2j + 1)8 + O(e: 2), 
j=l 2j+l 

a = e:a 
2j+l 2j+l 

(46) 

when it is seen that 

where we only need to know u to O(E:) to calculate ';/_to O(e:2). Here 

~ 1 2rr cos2n-le cos(2j+l)8 de . 
Tr 0 

The variations of each a 2j+l are then used to reduce (47) to 

(48) 

where 

Thus the dispersion relation is 

and we solve this equation for w. Thus we can elimi nate w from ( 2 3) and 

the Euler equation corresponding to varia tions in .3:,to leave two equations 

i n K and a . We note that (23) then takes the f o rm 
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0(£) , 

and therefore the nonlinearity enters in the equation at 0(1). One then 

proceeds to analyze these equations in the same manner as above. 
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4. Extension to systems of equations 

\ole now extend the ideas discussed in the previous sections to 

the more general case where 

L = L(u, u , u , ¢ , ¢t) • 
X t X 

In (49) we have followed Whitham [2] in noting that for all known 

(49) 

Lagrangians of nonlinear dispersive systems, which depend on n functions, 

(n-1) of these are potentials. 

The corresponding Euler equations are (7) together with 

The slowly varying solution for ¢ is 

~~~(X~,_T~,~E~) ( ) + ell 6, X, T, E 
E 

(50) 

(51) 

27T where f Qd6 = 0, with the same form for u as before. This choice is 
0 

dictated by the requirement that L be periodic in e, and 0(1). This 

implies cj> and cj> must satisfy these conditions and (51) then follows. We 
X t 

define 

~T - -y(X, T, E) ~ (52) 

so that 

(53) 
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Thus (50) becomes 

or 

(54) 

It is seen that (12) is still the required variational principle 

with L defined by (53). Then (14) determines the slow modulation equations 

with£ as the average of (53). 

We illustrate the ideas with a linear example,as before. The 

equation considered is 

v + v = 0 • . (55) 
t XXX 

which is the Korteweg-de Vries equation linea~ized about V = 0. Whitham 

[10] has shown that 

where u = vx, ·:·v ¢ . It then follows that 
X 

An exact solution is 

u = a(X, T, E) cos e 

b(X, T, E) cos 8 + b(X, T, E) sin 8 • 

(56) 

(57) 

(58) 

(59) 
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and it then follows that 

(60) 

The variation of ~ implies that 

eT.- Yx = o • (61) 

and using this together with the consistency relation, 

enables ~ to be determined. That the equivalent of (61) uncouples ~ is 

seen to be true for all linear problems . In fact here 

~ = ~ (X, E) + ~l(T, E) • 
0 

TI1e variation of b shows that b = O(E) and to eliminate b 

from~ we only need b to O(E). In a similar manner b is also eliminated 

from 1.... to leave 

3 
;t. = (~ + 1) 

w 

(62) 

In (62) we have anticipated that we shall only consider solutions 

of the type (34) when g, which is a homogeneous function of the derivatives 

of wand K, can be neglected to O(E 2 ) . This is due to the fact that the 

O(E2) term in~ is neglected in the 0 variation (see(37)) and g will be 

O(E) in the a variation. This is not necessary to the method but simplif ies 
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the algebra. In the remainder of this section we work to O(e:: 2 ). 

We now consider the nonlinear equation 

Vt + V + T(n·+ l)(n + 2)vnV • Q 
XXX X 

for small amplitude motion,when it becomes 

n n 
vt + v + u T(n + l)(n + 2)v v = 0 , 

~X X 
(63) 

with the same notation as in Section 3. Thus n = 1 corresponds to the 

Korteweg-de Vries equation while n = 2 is the model equation used to demons-

trate the side-band instability . 

Thus we have 

L 1 ~ ~ ~ + ! u 2 + n ~n+2 2 ~x~t + ~xux 2 a Tyx 
(64) 

and we b egin by considering the case an = e:: 2 , when the nonlinearity appears 

at the same order as the dispersion terms. It is then seen that, as in the 

previous section, we evaluate~ using the linear solutions (58) and (59). 

Thus we find 

- TK 2n+4 n+2 
~ = -£_ + e::2 a 

n+2 
(65) 

w 

where (62) is written as ~ = ~ and 

T = (-l)n+2 

Here we have written S = e:: S, y = e::y, so that, to O(e:: 2), S and Y satisfy 

(61) and c a n then be ignored in~. Thus we are considering solutions 

v = - Kb sin e + O(e::). We note that Tis zero if n is odd and in order t o 
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treat this case we must take an = ~ to bring in nonlinear effects. 

The correspondi~g Euler equations are 

K3 
l)a + ~ 2 T(n+2) 

K2n+4 
n+l £2r3< 3K 3 K3 ~Tl o, (.-+ s. - -a +-- 8 XT 

+- = (66) w wn+2 w XX w2 w3 

(67) 

and we note that these have the same form as (27) and (37). We show later 

that (65) is the general type of Lagrangian for near linear equations with 

nonlinearities of O(e:2), when solutions of the form (34) are considered. 

Thus we defer a discussion of (66) and (67) until then. 

We now briefly treat the n case a = e. We use the same reasoning 

as for the single equation case to write 

(n+l) /2 
U .. a cos 8 + ~ L: a2j cos 2j 8 + 0 (e: 2) , 

j•l 
(n+l)/2 

(68) 

<1> = b cos 8 + b sin 8 + e: L: b 2j cos 2ja . + 0(~2) , (69) 

j=l 

where b2j = b 2j(X, T, e:). 

It follows that 

i. = -l- e:2Sy + e:2'T Kn+l B bn+l - e:22K I: {2wn+l bn+l j2 'T b2j + 
0 j 2j 

e:Z 2 (n+l)/2 
+z- {a2j + 8j2K2 j~l a2j b2j} • 

where 

1" 
0 

•(n+2) 12TI sin n+l 8d8 , 
7T 0 

•(n+Z) J2TI sin n+l8 sin 2j8d8 • 
TI 0 

The variation of ~ leads to the equation 



-62-

a 

1 
~ K2(n+l) 

an+l ~ as 0 = 0 ax y -
n+l aT 

, (71) 
w 

and this equation no longer completely uncouples t3 and y. We use 

to find 

- 2.(n+l) 
TOK n+l 

Y = ------~-- a 
2wn+l 

In a similar manner we eliminate Yx from (71) and use (67) to express aX 

in terms of aT, to find 

2n+3 
TO K n+l __;;; ___ a 

6wn+2 

The variations of each b
2

j allow them to be expressed in terms of 

a and we finally find 

;t = -i..+ 2.o n+l 
£ 1a (72) 

where t > 0 and t = f(-r 2 ). We defer a discussion of the Euler equations of 

(72) until the general theory is discussed. It is noted, however, that (72) 

has the same form as (65). 

Some general results 

We now discuss the general form of £. for a linear system of 

dispersive equations governed by (49). Thus Lis a qQadratic form, the 

terms u ux, u ut being omitted as they are divergence expressions. In 
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order for the system to be dispersive L cannot contain terms both of t h e 

type u $ and u~ t. Thus we have two classes of Lagrangians: one in which 
X t 

u 2 
L = L (u , u , ~ , ~ ) - v 

2 0 X t X t 0 

where L is a quadratic form and the other in which 
0 

P u 2 
L = L1 (u , ut) + L2 (~ , ~)+ ·Au~ + T u~ - ~2 X X t 0 X 0 t 

where L1 and Lz are quadratic forms,v , A , T , p being constants. 
0 0 0 0 

In both cases an exact form is 

u = a cos e 

~ b cos e + b sin 6 , 

(73) 

(74) 

(75) 

(76) 

b ut in t h e first class b O( e ) while in the second class b = O( e ) . We 

shall display f he analysis for the first class of Lagrangians, the e x tension 

to the second class is immediate. Here we put ~ = 0 since the equation for ~ 

uncouples in general for a linear system to admit this solution. Thus we 

consider the first class and we write 

~ = b cos 6 + Eb sin 6, b 0(1) • (77) 

The results we derive also hold for the second class when we write 

b sin 6 + e b cos 6 • (78) 

The final form of the Lagrangian will be seen to be the same in 

both cases; here we work to O(e 2 ) as before. 
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It is then seen that 

where fi = fi(w, K); g1 is a linear form in aX' aT' bX' bX; g2 and g 3 

are similar functions of a and b, and ~lis a quadratic form in 

aX, aT' b X' bT. Here, and in what follows, all functions gi have co­

efficients depending on w and K . 

We can then rewrite~ in the form 

whe re g4 is a linear form in the derivatives of a, b, w, K with coefficients 

depe nding on a and b. The variation of b is used to eliminate b . to leave 

a2 b2 2 
~ = f 1 2 + f 2 ab + f 3 2 + e: g5 ' 

where g
5 

is a quadratic form in the derivatives of a, b, w, K with coefficients 

depending on a and b. The variation of b then shows 

and it then follows that 

b2 
f 2 ab + f 3 2 .. 

to the order considered. Thus upon eliminating b from~ we find 

(80) 
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wl1ere g
6 

is a quadratic form in the derivatives of a, w, K with coefficients 

depending on a. Thus f
4 

= 0 is the dispersion relation. In particular 

if we restrict ourselves to solutions of the form (34) · then, in deriving 

the equations forK and a to O(c), we use 

(81) 

If we now consider such a system of equations with nonlinear 

terms of O(c 2 ) it is seen that 

(82) 

-
where we assume that S = cS, y = . cy as before, and (81) is written as~=~. 

The corresponding Euler equations are 

( 83) 

(84) 

Equation (83) is solved for w to leave 

(85) 

where 

wz = + h (a, K), j:i: (86) 
a 

Whitham [10] has shown that (84) can be rewritten as 

(87) 
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In terms of K , (85) and (87) become 

w = 

0 . 

Thus the equations in K and a are 

KT + {w~(K0) + e:·w~(K0);} ;X+ e:w2X = 0, 

e:w"(K ) 
aT + {w' (K ) + e:w" (K );} a.. + 0 0 

0 0 0 0 X 2 

where 

(coaXX + claXT + c2aTT) 
w2 + h(a) 

a 

the c. being known constants. 
). 

We again examine the stability of the solutions K = 0 , a 

and the resulting dispersion relation is seen to be 

The solutions are then stable if 

In Whitham's previous theory [101 he considered 

h(a) 

and , ignoring the term in R2 , (93) reduces to his result 

(88) 

(89) 

(90) 

(91) 

a , 
0 

(92) 

(94) 
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It is obvious from (93) that a cut-off of some type exists when 

a h' (a ) 
0 0 

> 0 . 

It is seen that there is the possibility that the higher 

(95) 

derivatives can be de-stabilizing but no examples of this have been found. 

It is possible that the implicit restriction that the system is dispersive 

rules this out. 

In particular if w"a h' (a ) < 0 and (95) holds, it is seen that 
0 0 0 

the solutions are stable for R > R , where 
0 

2 R 
0 

a h' (a ) 
0 0 

(96) 

thus the previous instability in (94) is stabilized for sufficiencly high 

modulation wavenumbers. 

For the Lagrangian in (65) it follows that (93) becomes 

- n 
·rn(n+2)a 

0 

and thus the equation is stable for T < 0 and for sufficiently high 

modulation wavenumbers when T > 0. 

(97) . 

In particular for the case n = 2, T m 1/4, which corresponds to 

0 , (98) 

('17) Decomes 
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We note that,since u"' vx,we find to 0(1) 

when (99) becomes 

a 
v ... - sin e "' a sin e ' 

Ko 

which is exactly the result of the Benjamin theory, (see [ln)). 

Similarly for the Lagrangian in (72) it is seen that the 

(99) 

solutions are stable for f > 0 and hence are stable independent of the 

sign of T• In particular this result holds for the Korteweg-de Vries 

equation. 

We finally examine the stationary solutions of (90) and (91). 

Thus we put 

K = ;(n), a= a(n), n • X- V(g)T, (100) 

and we choose 

(:1.0:\.) 

when equation (91) integrates to 

K (102) 

Equation (90) then becomes 

w"c2 

_o __ + w2 ... D(Vl) 
2a4 
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where 

2 

w" 
0 
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(103) 

In particular if h "' cram then (103) is precise.~y (44) if fl > 0. 

We note that fl depends only on £and for (62) we have fl > 0. Hence the 

corresponding equations for (63), derived from (65) and (72), have exactly 

the same solutions as (.44). Other cases arise if fl < 0 since c2 is replaced 

by -c2 in (44). 

A physical example 

We now apply these general results to the problem in nonlinear 

optics considered by Ostrovskii [6]. 

The governing equations are 

0 • (104) 

(105) 

where E is the electric field, P/4IT is the polarization, w,w are constants 
p 

and a is a small parameter. 

The corresponding Lagrangian is formulated in terms of the 

vector potential A, E =At, and is found to be 
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A2 c2A2 p 2 
t - ____ x_ + AtP + t 

2 2 
2w2 . p 

(106) 

~.Je note that this belongs to the second class of Lagrangians. We consider 

a = O(e 2) and as before we evaluate ~to O(e2) using the linear solutions 

A a cos e , (107) 

P = b sin e + e b cos e . (108) 

In exactly the same manner as described in the general theory, 

we deduce 

w2w2 
c2K2 - w2 - p 

w2 w2 

where 

s = l + 

g = = 

are defined in order to compare with Ostrovskii's work. 

The variation of a then leads to the equation 

We solve this equation for w to find 

W = W (K) -
0 

w' ( K) 
0 

2Kc 

(109) 

g 

(110) 

(111) 
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where it is seen that the condition for stability (9 3) becomes 

~ 
sz _ 4~Az ~ w a 

> o, A 
0 

(112) = --
w2 2 

0 

which is the result obtained by Ostrovskii, corrected for a slight 

algebraic error. Thus the 0(1) equations which are unstable for (g/x) > 0 

are stabilized at sufficiently high modulation frequencies by the higher 

order derivative terms. 

We also note that ~ > 0 and thus the stationary solutions are 

exactly the solutions of (44). 

In Ostrovskii's paper he considered the case a = O(E) but he 

still used the solutions(l07) and (108). However, as seen earlier, we 

must write 

A = a cos 8 + Ea
3 

cos 38 + 0(£2 ) , 

P = b sin 8 + Eh cos 8 + £b
3 

sin 38 + O(E 2 ) , 

and therefore we find 

'1.. = -j_ + wya6 , (113) 

" where we have written (109) as~= ~andY is a known constant. The new 

term in (113) does not appear in Ostrovskii's equations, which therefore 

seem to be inconsistent . The stability result is not affected by this new 

term. 



-72-

5. The Hamiltonian approach 

1-le now consider how to derive higher approximations to (15) for 

fully nonlinear equations. We begin by considering Lagrangians of the 

form (6). The procedure used is based on the Hamiltonian formalism 

developed by Whitham [10]. As the analysis there was only given to the 

first order we shall review the theory and remove this restriction. 

The basic variational principle is (12) and we define 

IT 

This equation is then solved for 

which is used in defining 

H(rr, u, £Ux, £UT' w, K) = rru6 - L. (115) 

An equivalent variational principle to (12) is then 

6 !!!2
n (ITU - H) d8dXdT = 0 , 

o e (116) 

where IT, U, 0 are to be varied independently . 

The equivalence of (116) and (12) is easily seen from the Euler 

equations. The independent variations of IT and U in (116) lead to the 

equations 

()H 

an' (117) 

(118) 
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Since H is explicitly independent of e we deduce the conservation law 

ae 
a (u ~) a < aH ) ax e au . + aT u e au-- • 

X T 
(119) aH -= 

by using Noether's theorem (see[l3]). These equations have also been 

derived independently by Bisshopp [8). 

It follows from (119) that 

a e aH a e aH 
H = A(x, T, e:) +ax <£ u6 aux de) +a-T<£ u6 auT de) ·(120) 

We then consider the averaged variational principle 

c5 ! ! ;f_ dXdT = 0 , (121) 

where 

(122) 

From (120) it is seen that 

.ElL de' de} au • 
T 

and therefore 

~ = ~ ITdU - 2nA , (123) 

since a divergence expression does not contribute to the Euler equations. 

In (123) it is assumed that we can solve forTI as a function of U, the 

slow variables w, K and A and their derivatives. 

We also note that the variation of 0 in (116) leads to the 

exact secular condition 
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a (f2TT .Cl.H dB) 
ax o aK a (!2n ~ de) = o 

ClT o Clw • (124) 

It is seen, however, that ClL/ClK = -ClH/ClK, ClL/Clw = - ClH/ Clw and therefore 

(124) is just (13) . 

At this stage another exact secular condition can be deduced. 

If we can also solve for UX, UT, as functions of IT and the ai(w, K, A 

and their derivatives), then (117) expresses ue as a function of the same 

variables. Thus the periodicity condition 

1 1 
'f' dU = 2n , 

ue 
(125) 

is the other exact secular condition. Here ~ denotes the integral over a 

complete period of U. 

-1 We remark here that since ClH/ClK = ~ u
6

( aH/ ClUX) and ClH/aw 

-1 
-~ u

8
( aH/ aUT) we can rewrite (124) in the form 

0 . (126) 

Thus (125) and (126) form the complete set of slow modulation equations 

for A and 0, or for A, w, K when the consistency relation (23) is added. 

We shall discuss later how these conditions can be expanded to yield 

higher approximations to the slow modulation equations. 

We now discuss the first approximation to (123), we ignore 0( ~ ) 

throughout this discussion. The idea is to solve (120) for IT = IT (U, ai), 

where to higher orders we also have to solve (117) for UX' UT as functions 

of the same variables. To first order it suffices to solve 

H (IT, u' w, K) .. A ' 
0 

(127) 
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where 

H (IT, U, w, K) = [H) O • 
0 £= 

We assume (127) is solved for IT resulting in 

Thus (123) becomes 

IT • IT (U, A, w, K) • 
0 

and we assume that n
0 

is zero at the zeros of U
08

, U = U
0 

+ 0(£). In 

the integral u varies "there and back" between the values, uol(A, w, K), 

U02 (A, w, K), of U at these zeros. 

The corresponding Euler equations are 

an 
1 ClAo dU = 27T , 

a 
ax 

an 
dU) - ~T <1 awo dU) = 

(129) 

0 ' (130) 

and we show that these are the first approximations to (125) and (126) 

respectively. 

We differentiate (127) with respect to A to find 

aH 
__ o = _ ___,1_ 

an /aA ' 
0 

an 
0 

and upon using (117) the required result for (129) follows. 

In a similar manner we deduce 
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aH an aH 
0 0 0 an a;c- = - a;c-, 
0 

aH an 
0 0 an- aw- = 
0 

aH 
0 ---ow 

and the corresponding result for (130) then follows from (123), or from 

(126) upon relating oH
0

/oK, 3H
0

/ow to oH/oUX' oH/oUT as before. 

We now show how to construct higher approximations to (128) and 

to illustrate the procedure we consider the nonlinear Klein-Gordon equation 

u - u + V'(u) = 0 tt XX (131) 

where V(u) is a potential allowing stationary periodic solutions. 

or 

where ll 

Thus we have 

L = ; (u~ - u~ - V(u)) , 

= w2 - K2 as before. 
' 

We then find 

n2 ciT ~ 2 2 ~ 2 2 2 
H = -- + V(U) + -- (WU + KU ) + -- (wU + KU ) - -- (U - U ) 

2ll ll T X 2ll T X 2 T X 

(133) 

and we rewrite (120) in the form 

where u
1 

and u
2 

are zeros of u6• 

In (13~ it is understood that IT, UX' UT are expressed in terms 
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of U and the a .• Thus a;ax is now evaluated keeping U and T fixed, 
l. 

similarly for a/aT. Thus upon using (133) it is seen (134) becomes 

ITz 
V(U) = A + e: 

a cE. Ju ITdU) a . (~ !U ITdU) -+ + £ 2 ax ~ - aT ~ - . 

ul ul 

+ £2 a <~ Ju (wUX + KUT] dU) + e:2 
a cE. /' (wUX KUT) dU) .(135) ax aT + 

~ - ~ -
ul ul 

We note that if we attempt to solve for IT, for small e:, from (135) 

t hen the expansion becomes non-uniform near the zeros of IT = {2~[A- V(U)] }1
/

2 • 
0 

Terms eventually appear which have non-integrable singularities at these 

zeros and therefore this expansion cannot be used to evaluate ~ ITdU. Also 

there is the added difficulty that the zeros of II may not lie between 
0 

u1 and u
2

, the zeros of u 6 . It is therefore seen that we must expand ~ ITdU 

for small e:, this is achieved using contour integration. 

We first note that U oscillates between two simple zeros of 
0 

U
06

. It is then seen that similarly U oscillates between two simple zeros 

of u
6

• Ynus u
6 

is a double valued function of U, U~ being single valued. 

We now show that UX and U are single valued functions of U. T . 

that ue is known so that 

u 
6 

... F (U , a i) , 

and we solve for 

We note that (136) can be integrated to yield 

e - I. u ~ dU • 
ul 

We assume 

(136) 

(137) 
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We then write the identity 

U = U(S[U; a. ], X, T), 
~ 

and differentiate both sides with respect to X, keeping U and T fixed. 

Thus we find 

u sx + ux .. 0 t 
8 

or 

u ... -F .a_ (£u ~ dU) X ax 
Ul 

(138) 

Similarly 

UT -F .a_ 
aT 

(f.u ; dU) (139) 
ul 

and it follows that UX and UT are single valued when the periodicity 

condition (125) is used. 

In our special case 

(140) 

and so IT is a double valued function of U. 

Thus we consider ~ TidU as a contour integral in the complex 

U-plane cut between u
1 

and u2 , the countour is then around the cut. 

The contour is then deformed, using Cauchy's theorem, to a contour C on 

which A- V(U) = 0(1). We then use the expansion of IT to V(8 2) found by 

solving (135) asymptotically. Here in general it is preferable to use U 

instead of u
1 

as the lower l:!.mit in (135), where V(U),. O, s i nce the path 
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of integration in the integrals appearing there can then be deformed so 

that A- V(U) = 0(1) on the path. However, it is more convenient here 

to proceed as in Part I and note that the range of integration where 

A- V(U) = O(e:) does not contribute to O(e: 2 ). Any integral which has an 

- -integrand with a non-integrable singularity at u 01 and U02 is rewritten 

as the derivative with respect to A of an integral with an integrable 

integrand at these zeros. Each integral is then evaluated in the U-plane 

cut between uol and uo2 by deforming to an integral around the cut. 

This results in the asymptotic expansion of 9 TidU to O(e:2 ). 

Thus we find 

~ TidU 

where 

n
1 

= L{.L <~ ru n dU) + .Lc~ /u n du)}, n ax ~ - o aT ~ - o 0 uol 0ol 

+ ~T (~ £u [wn1 + K(wU
0
x + KU0T)]du)}· 

uol 

(141) 

(142) 

(143) 

In solving for TI we also have to solve (140) for UX and UT using (138) 

and (139) and we find 

(144) 

All integrals now have a range of variation from U01 to U02 and back again. 

We show that ~ n
1

dU is zero by virtue of the fact that n1 has 
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the same value at corresponding points on each side of the cut. This would 

not be true if we used U instead of u
1

• In general this is true for 

functions of the form 

A(TI ) !U B(TI )dU , 
0 0 

uol 

where A, B are odd functions and p BdU .. 0. We note here that all 

such terms which appear in the ni must be such that ~ BdU ~ 0. In our 

case this is assured by (130) which takes the form 

for our special equation. 

It has not been possible, as yet, to work ~ n
2

dU into a manag­

able form for the fully nonlinear problem. We can make some progress, 

however, if we agree to evaluate ~ n
2

dU using the linear solution. This 

will certainly be valid for a near-linear equation and seems reasonable for 

at least some range of finite amplitudes. 

We note that for the linear equation we find 

(~ 
, (145) 

to 0(~ 2 ). In order to compare with the earlier linear theory we note that 

[H) 8=0 A , 

and upon using the linear solution (18) ~e find 

A 
a2 ~2 
- - (aT2 - aX2) • 2 - 2 

(146) 
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Then using (146) in (145) it is seen that the corresponding Euler equations 

are equivalent to those previously derived. 

Thus for the nonlinear problem to 0(£2 ) we consider 

1/2 2 1/2 
~ = (~ G(A) - 2nA) + £ n~ 

2 2 
.AT-~} 

+ 4A 

when the Euler equations are 

2 1/2 
~112 G' (A) - 2n - £ n~ 

4A2 
(~- ~) 2 () [-~ 1-:-,-/2 Ax-=] 

+ £ TI ()X 2A 

= 0 

• (14 7) 

(148) 

(149) 

1 1/2 
where G(A) = ~ ( TI /~ )dU. 

0 
These are to be solved together with the 

consistency relation (23) . These equations have not been investigated; 

we note that they are reversible so that it is not clear what relevence they 

have to the irreversible shocks found in the 0(1) equations by Whitham. 

In investigating shock structure solutions the assumption of slowly varying 

solutions breaks down and all terms in ;f. are of equal importance. It may 

be that in spite of this (148) and (149). do describe. the qualitative nature 

of the solutions but this is only speculation. 

We note that (148) and (149) can be derived using the exact 

secular conditions (125) and (126) where the integrals are expanded in the 
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same manner a s ~ TidU . Here though one must calculate UX and UT to O(e:) 

in order to derive (148) and (149). Also the technique of rewriting the 

integrals as derivatives of other integrals with respect to A appears 

at this stage. These disadvantages are to be weighed against the fact that 

ft ti ~ IT dU one still has 1 h E 1 · a er compu ng r to eva uate t e u er equat~ons. 

Extension to more general Lagrangians 

We now extend the technique just described to cope with Lagrangians 

of the form (49). The basic variational principle is (12) and we define 

(150) 

(151) 

These equations are then solved for U
8 

and ~e as functions of 11
1

, 11
2

, U, 

w, K, 13, y, e:UX, e:UT, e:~X and e:~T' and the . resulting expressions are used 

to define 

An equivalent variational principle to (12) is 

(153) 

where rr
1

, n
2

, U, ~. 8, ~ are to be varied independently. The Euler 

equations 

(154) 

(155) 
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(156) 

ClH 
11 e = an (15 7) 

2 

correspond to the variations of U, 11, IT 
1 

and IT 
2

• The variation of El 

leads to the exact secular condition (124) while ano~her exact secular 

condition, 

a C!2TT aH de) = 0 , 
aT o ay 

(158) 

follows from the variation of ~. In the same manner as before we also 

deduce the conservation law 

We integrate (155) and (159) to yield 

H = A(X, T, 
() Ue {U ~+ 11e E) +-ax 0 e aux 

a Ue {U ~+ <lH 
+aT ~e ~} 0 e auT T 

Thus we finally conclude 

()H l._ (£U Ul dU) J l dU - 2TTA 
- <l<I>T 3T u

1 
e 

de) 

To first order (160) and (161) become 

(159) 

(160) 

.E.!!_} 
a11x 

de) 

(161) 

(162) 
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TI1us upon solving (164) for 

The corresponding Euler equations are 

an 
l~dU 
'f aA 27T • 

arr 
1 ~ dU = 0 , 
'f aB 

a an 
(~ ~ dU) 

ax aK 

a 
an 

(~ ~ dU) 
ax a(3 

a 
aT 

a 
aT 

(163) 

(164) 

(165) 

(166) 

(167) 

(168) 

an 
(~ ~ dU) 0 = aw , (169) 

an 
(~ ~ dU) 0 • 

ay 
(170) 

We note here that two more exact secular conditions can be deduced, 

that is (125) and 

4> 6 
~ -u dU = o , 

6 
(171) 

where it is assumed that the integrands are expressed in terms of U and 

the ai (A, B, w, K, (3, y, and their derivatives). 

In the same manner as before we deduce that (167) and (169) are 

first approximations to (125) and (124). It remains to show that (168) 
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and (170) are the first approximations to (171) and (158). This result 

follows from the relations 

aH arr1 aH __ o ____ o + __ o = 
0 arr

10 
ClB ClB ' 

aH arr
1 

aH __ o ____ o + __ o 
arr

10 
Cly ay 

0 

which are derived from (164). 

It remains to discuss how to derive higher approximations to 

(166). The idea is to expand the integrals in if... in the same manner as 

before , expanding rr
1 

and rr 2 from (161) and (160) at the appropriate stage. 

We also need to solve for UX and UT from (156) and ~X and ~T from (157) 

as functions of U and t he a .. It remains therefore to solve 
~ 

for ~x· It is seen that 

and hence 

or 

~X 

The analysis now proceeds in the same manner as before. Alternatively 

we can expand the four exact secular conditons (125), (126) , (158), (171) . 
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6. Slmvly varying multiply-periodic solutions 

We now consider the extension of the previous ideas to deal 

with equations which admit multiply-periodic solutions. The idea is then 

to derive more general solutions where the parameters in this solution 

are allowed to vary slowly. Here we restrict ourselves to a single 

equation when a multiply-periodic solution takes the form 

where 

and U is periodic in the 8 . . For simplicityof presentation we restrict 
0 1 

ourselves to n s 2, the extension to arbitrary n is immediate. 

The central question here is whether such solutions do in fact 

exist for a given equation. We shall assume, however, that such a solution 

is known and display the formalism needed to derive the more general 

solutions mentioned above. 

where 

Thus we look for a solution of the form 

0. (X, T, E) 
1 

K = 0 wi = - 0iT , i - iX ' 

and U is periodic in the 8i of period 2n . 

The related differential equation is then seen to be 

(172) 
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+ a (~) a (~) aL 
e: ax au + e: aT' au - au = 0 • 

X t 

aL 
--:::a au 0 , 

It is immediately seen that the required related variational 

principle is 

0 , (173) 

where U, 0
1 

and 0
2 

are to be varied independently. Thus if we can 

determine the' dependence of U on e1 and~, the slow modulation equations are 

governed by the averaged Lagrangian 

(174) 

although again this form will only be used directly for linear or near-

linear problems. 

We digress here to consider a class of problems from classical 

' 
mechanics to illustrate some ideas that may be useful in the above problem. 

We consider a conservative mechanical system with two degrees of freedom 

executing a finite motion. Such a system is governed by a Hamiltonian 

H (p, q). To begin with we restrict ouselves to separable systems, that 

is systems whose Hamilton-Jacobi equation can be solved by separation of 

variables. 
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The existence of multiply-periodic solutions p., q. to such a 
1 1 

system is guaranteed by the theory of canonical transformations. It is 

shown [14) that such a transformation to action-angle variables results 

in the p., q. being multiply-periodic functions of the angle variables, 
1 1 

the action variables being constants. Here we have assumed that the q. 
. 1 

are single valued functions of the position of the system, that is angle 

type co-ordinates are excluded. 

We deduce, from solving the Hamilton-Jacobi equation, that 

i = 1, 2 , (175) 

where the aj are constants, and we assume that each Pi is zero at the 

-2 
zeros of qiS' Pi being single valued. 

The canonical transformation then shows that 

(176) 

where 

j = 1, 2 

and 

I. 
J 

~ p ,dq . 
J J 

(177) 

The v. and o. are constants here. 
J J 

If v
1 

and v
2 

are commensurable then the pi, qi are periodic in 

t. The system is then said to be degenerate. 

We now consider such a system in which the parameters are allowed 
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to vary slowly. The motion is governed by Hamilton's principle 

(178) 

We look for solutions of the form 

(179) 

(180) 

where Pi and Qi are periodic of period 2TI in 61 and 62 and 

8 (T, e:) 
6 = _i __ _ 

i e: 
e:t • 

The corresponding variational principle is 

(181) 

We note that 

(182) 

(183) 

and we work to 0(1) from now on. 

In the usual manner we deduce two conservation l aws from (181) 

which we rewrite as 

aH a c:P 1' Ql) 
+ 

ac:P2 , Q2) 
-- = w2 a(61 , 62) a(61 , 62) a61 

(184) 

ClH - wl .£!!.._ --= 
()62 w2 a61 

, (185) 
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and upon using (183) we conclude 

(186) 

Thus we find 

(187) 

We now evaluate the integrals 

J . . = !2w P.Qi8 d8 , 
1J 0 1 . J 

J 
j + i • 

and we shall show that J .. = 0. It is shown in [15]that if we increase 
1J 

8 . by 1 then Q. completes a period but Q. returns to its initial value with -
1 1 J 

out completing a period. In Jij' ai is fixed, and we convert to an integral 

over Qi to find 

Here we assume aj = 0 corresponds to a zero of Pi, say Qil' and the region 

of integration C is then from Qil to Qi} and back to Qll where Qi} < Qi2 ; 

- -
Qi2 > Qil being the other zero of Pi. Thus Pi is a single valued 

function of Qi on C and hence J 12 o J 21 = 0. 

or 

Thus (187) becomes 

~= ~ w.I.- 2nE. 
1 1 1 

The Euler equations corresponding to (189) are 

(188) 

(189) 
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(190) 

(191) 

The first of these equations expresses the fact that the Ii are the 

adiabatic invariants of the system, while the second is the same as that 

predicted by the action-angle variables treatment when A is constant. 

Obviously our derivation extends to systems of the same type with n degrees 

of freedom. We note that from (181) we deduce, to 0 (1) , 

! Zn ; 2 n E p Q de de ~ constant, j 
o o i i iej 1 2 

1, 2, (192) 

as the Euler equations corre sponding to the variations of 0
1 

and 0
2

. If 

for a system which is not separable, in the co-ordinates considered, a multiply-

periodic solution exists, then (192) is also valid in that case. 

We finally note that derivations of (190) are given in [14] 

and [15]. However, Born restricts his result in general to systems where 

w
1 

and w
2 

are never commensurable. I~ seems as though in the cases where 

w
1 

and w
2 

do not satisfy this condition, that the perturbation scheme 

breaks down. ~1ether this is due to the fact that no slowly varying 

multiply-periodic solution exists, or that the perturbation scheme is 

incorrect, is not clear. 

We now return to the waves problem and note that from · (173) we 

immediately deduce the two exact secular conditions 

a (f2n f2n ~ de de ) 
ax o o aK. 1 2 

~ 

a (f2n f2n ~ de de ) 
aT o o aw. 1 2 

~ 

0 . (193) 

It is not clear, however, how to evaluate (193) without knowledge of the 

explicit form of the first order solution .for fully nonlinear equations. · 
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Appendix D 

Here we give an alternative derivation of the related 

variational principle (12). We look for extremals of the original 

variational principle of the form 

u(x, t, e:) = U(e, X, T, e:) (D-1) 

where U is periodic of period 2n in e. We can therefore expand U, and 

hence L, in a Fourier series in 8, 

where 

+ S sin ne} 
n 

00 

(D-2) 

c 
0 

.L J 2n Ld8 C 
2TI o ' n 

.! J2
TI L cos ne d e , s = .! J2n L sin n 8 d B . 

TI o n TI 0 

Thus Ci and Si are functionals of U, with X, T as parameters, and functions 

of w and K , 

We rewrite (12) as · 

0 

and use (D-2), where L depends ultimately on X and T, in the form 

L c 
0 

oo 8 n 8 
+ E {C cos ~ + S sin --} 

n=l n e: n e: 

We now show that the extremals of 

o J! C dXdT 
0 

0 , 

(D-3) 

(D-4) 
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are also the extremals of 

6 !! {C 
n 

·no nO 
cos--·+ ' S sin--} dXdT = 0 , 

e: n e: 
(D-5) 

for every n. 

We rewrite (D-5) in the form 

6 !ff2
n L cos n (6 - 0

) d6dXdT = 0 , 
0 e: 

(D-6) 

when the 8 variation implies 

a (fin aL n (e _ 0 ) d 6 ) 
aT o 3; cos e: 

- ~ J 2
n L sin n (6 - 0 )d6 = 0 , 

e: 0 e: 

or 

! 27T (a cl!!) _ a (~) J 
o ax aK aT aw cos n (6 - Q)d6 

e: 

+ ~ J 2
7T (K l!! + w ~ - L] sin n (6 - Q)d6 = 0 . 

e: o aK aw e: 

The second integral in this equation is then integrated by parts to leave 

which is satisfied by the extremals of (D-4) since the variation of U in 

(D-4) yields (10). 

The variation of U in (D-6) then shows that 

C6 - _e) a aL a (.£.!:__) a (~) - L] cos n [ae- <au-) + ax + aT e: 6 aux auT 

(6 8 [.£.!:__ - ~ ~ + ~ .£1:_] 0 - n sin n -) = . 
e: au6 e: aux e: auT 
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The second bracket vanishes identically and the first vanishes along the 

extremals of (D-4). 

Thus the extremals U(B, X, T) of 

when evaluated as functions of X, T, are extremals of (D-3). 
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Appendix E 

We discuss the derivation of a Korteweg-de Vries type equation 

from (35) and (36) for the case Y > 0. We combine (35) and (36) so that 

the first order derivative tenus are in characteristic form, that is 

K c n-1) 2w 13an-2 
[ "T + 

K c n-1) J KT + ......£.+ £ .!:.___ + 13 a 
Kx ± ~+ K + 13 a e: -- a w 

'u~ w~ 
0 w w3 w2 X 0 0 

0 0 

e: a (~- aTT) • (E-1) = ----
2w ax 

0 a 

We integrate along the backward facing characteristic and assume constant 

initial conditions to find 

2w 13 
a = 

) ; ! a ll/ (n-1) 
l f.> } + 0 (e:) ' 13 0 ) I 13 = n-1 

where a is a constant. 

We then write 

a 
= {; ! a} 1/ (n-1) 

~-' + e:b(X, T, e:), 

and choose b so tha t (35) and (36) are identical to O(e:). 

where 

e:a(n-1) 

2w3 
0 

- n.-1 ] + e:(n+l) 13K 

2w3 
0 . 

K = 
X 

a+ O(e:) • 

(E-2) 

Thus we find 

( E-3) 

An attempt to derive an equation in a leads to an equation without the 
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higher derivative terms. The corresponding value of b is given by 

K 

bT + ~ b =­w X 
0 

\-le again look for stationary solutions of the form 

K 

K = K(n) , n = X- VT , V = wo + 8Vl , 
0 

(E-4) 

and it is immediately seen that such solutions cannot lead to stationary 

solutions forb if b = 0(1). Thus although we find stationary solutions 

for K there are no corresponding stationary solutions for a. However, 

given K it is a simple matter to solve (E-4) for b and we have therefore 

derived more general solutions. 

In fact 

b 
T 

~ F(a + 8V
1
s)ds (E-5) 

where a = X - (K /w )T is held fixed in the integration and 
0 0 

F(n) (l-V2 ) ( ;")' 
2w SKn-2 

0 

The equation governing the stationary solutions i s 

{(" = I< { ~K2(n-l) + VK(n-1) + 0} . (E-6) 

where ~ > 0 is a known constant, v = v(V
1

) and o is a constant of integra­

tion. This equation is analyzed in the phase-plane and similar types of 

solutions to those found in the previous analysis are discovered. That 

is, periodic solutions both passing through zero and bounded away from zero; 
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solitary waves and step function type solutions. Here solutions of the 

l as t type exist which tend to zero and K as n tends to ± 00
• It is not 

_ 0 

clear what significence the last solutions have; they cannot be dismissed 

out of hand here as in the previous case. Their relevence is probably 

·2n-1 
best investigated by considering the case a = ~, when the nonlinearity 

appears at 0(1) in (E-3). If these solutions persist for that situation 

then they may have some relevence to the shocks found by Whitham. However, 

(E-3) will again be reversible while the shocks are irreversible so it is 

not clear what the connection is. This case has not been investigated, 

however. 
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Appendix F 

We derive the adiabatic invariant to all orders for a conservative 

mechanical system with one degree of freedom, executing a finite motion, 

when a parameter of the system is slowly varied. It is assumed that the 

co-ordinate describing the system is not an angle type co-ordinate. 

The motion is governed by Hamilton's principle 

o f L {q,q; >-.(t::t)} dt 0 , (F-1) 

and when ).. is constant the motion is periodic. Thus we look for solutions 

of the form 

q Q(e, T, E), (F-2) 

where 

0(T, E) e = - w "' 0' , 0' > 0 , T = Et • 

and Q is periodic of period 2n in e. The corresponding variational principle 

is 

and 

2n · o f b L(Q, wQ
8 

+ EQT, >-.(T)) dSdT = 0 • 

We convert to a "pseudo" Hamiltonian formalism by putting 

R = wQ e 

aL p =- = aR 
aL 
aq . 

(F-3) 

(F-4) 
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An equivalent variational principle to (F-3) is 

where 

and R is solved as 

6 J b2
n (wPQ6 - H) d6dT - 0 , 

H(P, Q, e:Q ; >.) = PR - L(Q, R + e:QT; >.), 
T . 

R = R(P, Q, e:QT, >.) , 

(F-5) 

(F-6) 

(F-7) 

from (F-4), in defining H. We note that Pis the usual momentum but 

that H is not the usual Hamiltonian. 

In (F-5) P, Q and 0 are varied independently and the 0 variation 

gives the exact secular condition 

r2n PQ
6
de t t b = cons an , (F-8) 

since His independentof w. If P can be solved as a function of Q and 

the ai(E, wand their derivatives) then (F-8) becomes 

9 PdQ - constant • (F-9) 

We now show how to solve for P as a function of the above 

variables and then deduce (F-9) from the averaged Lagrangian. 

The fact that H is explicitly independent of 6 leads to the 

conservation law 

aH -= 
ae 

(F-10) 

or 



Cl H ae-= - £ 
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(F-11) 

since =-L =-e:P. 
QT 

If (F-11) is averaged over a period of e then 

(F-8) results. 

We integrate (F-11) to find 

H = E (X, T, e::) - e:: L (1 e PQ de ) aT o e (F-12) 

and therefore 

t.. = wp PdQ - 21TE • (F-13) 

We then rewrite (F-12) as 

H E- e:PQ - e: :L_!Q PdQ T aT Q (F-14) 

We note, however, that (F-4) implies 

p = p ( Q , R + e:: QT ' · A ) 

which is solved for R to yield 

R = S (P, Q, A) - e: QT • 

Thus (F-6) becomes 

H = PS(P, Q, A)- e:PQT- L(Q, S, A) , 

= H (P ' Q' A ) - e; PQT ' 

and therefore (F-14) simplifies to 



-101-

~(P, Q,_ A) = E - E :T ([Q PdQ) 
Q 

(F-15) 

We now solve for P from this equation and we note that P is 

independent of w and its derivatives. Thus the variation of 0 in the 

averaged variational principle leads to (F-9). The expansion of~ PdQ 

proceeds as before where we put ~(0, Q, 0) = 0. 
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