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ABSTRACT

This dissertation consists of three parts. In Part
I, it is shown that looping trajectories cannot exist in
finite amplitude stationary hydromagnetic waves propagating
across a magnetic field in a quasi-neutral cold collision-
free plasma. In Part II, time-dependent solutions in series
expansion are presented for the magnetic piston problem,
which describes waves propagating into a quasi-neutral cold
collision-free plasma, ensuing from magnetic disturbances
on the boundary of the plasma. The expansion is equivalent
to Picard's successive approximations. It is then shown
that orbit crossings of plasma particles occur on the bound-
ary for strong disturbances and inside the plasma for weak
disturbances. In Part III, the existence of periodic waves
propagating at an arbitrary angle to the magnetic field in
a plasma is demonstrated by Stokes expansions in amplitude.
Then stability analysis is made for such periodic waves
with respect to side-band frequency disturbances. It is
shown that waves of slqw mode are unstable whereas waves of
fast mode are stable if the frequency is below the cutoff
frequency. The cutoff frequency depends on the propagation
angle. For longitudinal propagation the cutoff frequency

is equal to one-~fourth of the electron's gyrofrequency.

For transverse propagation the cutoff frequency 1s so high

that waves of all frequencies are stable.
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PART 1

NONEXISTENCE OF LOOPING TRAJECTORIES IN

HYDROMAGNETIC WAVES OF FINITE AMPLITUDE



&
1. INTRODUCTION

The existence of hydromagnetic finite amplitude solitary waves
propagating across a magnetic field in a quasi-neutral collision—free
cold plasma was shown by Adlam and Allen [1]. The wave velocity
lies between the Alfvén speed and twice the Alfvén speed. The lower
bound ensures that the wave exists as a solitary pulse, while the up-
per bound ensures that the particle trajectories do not loop. When the
wave velocity exceeds twice the Alfvén speed, Adlam and Allen's so-
lution indicates the formation of a single, symmetric loop in a parti-
cle's trajectory, contrary to the original formulation for the problem
which assumes a single stream at each point of space for the ions and
electrons. Besides the solitary waves, there exist also periodic
waves, discussed by Davis, Liist, and Schliiter [2]. The validity of
their solution is also restricted to certain ranges of the parameters
characterizing the momentum and energy of the waves. Outside that
range, their solution indicates the formation of an infinite train of
loops. It is interesting to investigate whether a solution in which the
particles execute loops exists or not. Our analysis shows that such a

solution with nonoverlapping loops does not exist.
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2. EQUATIONS

We assume the trajectories for elecfrons and ions in the shock
frame have a loop not overlapped with neighboring loops. Then we
proceed to demonstrate a contradiction. Quasi-neutrality of the plas-
ma requires that loops in the electron trajectories must be accom-
panied by corresponding loops in the ion trajectories. We consider
the region of x, where there is an isolated loop. Suppose the loop
occurs in the region x; <x< X, (see Fig. 1). So in the region x<xl 5
there is only one stream for each fluid, subscripted by 1 henceforth.
In the region X <X <X, there are three streams subscripted by 1,
2, and 3. In the region x > X5 there is again only one stream, sub-
scripted by 3. Superscript + refers to ions and superscript - refers
to electrons. Summationzk will mean Zi=1 in x < X1 Zi:l in
X <x < X5 and 212:3 in x> X5 We confine attention to the case in
which the trajectories lie in the x-y plane, the magnetic field B is in
the z-direction, and the electric field has x-component E and y-com-
ponent F.

Referred to the shock frame which moves with the wave ve-
locity U, the wave is stationary, and all variables are independent of
time and functions of x alone. The equations in rationalized mks
units to be satisfied are:

Continuity equations

]
o
-
™
N

d(n;u;)/dx

(2)

1l
(o)

d(n.l;ul—{)/dx
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Momentum equations

m ) du) /dx = q+(E+v1B), (3)
m+u'£dv;/dx = q+(F-uiB), - (4)
m-ulzdul-;/dx = —q-(E+v1—<B), (5)
m—u.;dvl_{/dx = -q_(F—ulzB); (6)

Maxwell's equations (with the quasi-neutral approximation)

O = % (q+n;ul‘i - q-nl:ulz) s (7)

dB/dx = -y Zk: (q+n£v.1i - q-nl-;vlz) ; (8)
dF/dx = 0 , (9)

0 = 1; (q+n;—'q_n];); (10)

where n is the particle density, u is the x-component velocity, v is
the y-component velocity, m is the particle mass, q is the particle

charge, and u is the permeability of vacuum. Equation (9) gives F =

F Equations (1), (2), and (7) and the fact that stream 2 is the con-

0"

tinuation of stream 1 and stream 3 is the continuation of stream 2

give

ktl + + + _ ktl - - -
(=) q nu = (=) qnu = GO.

Both FO and GO are constants characterizing the wave.
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3. CONDITIONS AT THE LOOP EDGES

At the loop edges, two streams of ions and electrons have zero
velocities in the x-direction; hence, their particle densities are infi-
nite. However, the infinities are integrable, being inversely propor-
tional to the square root of the distance from the loop edge, and yield
no accumulation of charges and currents at the loop edges. There-
fore, both the electric field and the magnetic field are continuous

there. To show this, we observe that by Egs. (3) and (5), as x = x1+0,

we have
it
ul = -[2(q" /m’ NE+vB)x-x,)17
i
ug - [2(q+/m+)(E+V;B)(x-xl)]3 "

P
ug - -|:-?_(q--/rn-')(E+V-2-B)(x--x1)]2 .

3
- [-Z(q-/m—)(E+v;B)(x—x1)] 2

By
+ o+ - o
L S Y2 s
L,
The corresponding charge densities are of the order of (x-x;) 2 which

is integrable at x = Xy
Similarly, as x - X, - 0, we have
2
b = [-2(q" /mt BV B, -x)1F

L
2

~ -[-2(q" /m " (E+vEBIG,-x)1E

u+
2

i
uI - EZ(q_/m-)(E-i—vZB)(xZ-x)]Z .

(Y]

u, = -[2(q /m )(E+v2B)(x2-X)J :
+_ 4 - -
3T Vg e bb Dk

Differentiation of Eq. (10) and substitution of Egs. (3) and (5)
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give _ _ I
Z}{(—)k“uq*/m*)v;(uﬁ) 24 (a7 m )73

E

s - -~ S — . (11)
B Zk(—)”lt(qﬂrn*)(ulﬁ) Y4 (g™ fm )]

In the regions where there is only one stream of ions and electrons,

u-]*:=u-1- in x<>~:1 and ug =u; in x>x2 ; hence,
+, 4, + - = -
(@ /m )v1+(q /m )v1

I T = - - at x
q /m" +q /m

|
1l
"
—

(¢ /o W] + (a7 /m7 )]

|t
|
o
=%
b
|
b
48]

+ =y
q+/m + q /m
With the conditions at the loop edges, Eq. (11) gives

["(E/B+V£)/(E/B+v§)]%v;ﬂm' q+/m+q')%v£

at x=xl,x2.

| B

[-(E/B+v£)/(E/B+v“£)]%+(m'q+/m+q- )%

Solving for E/B, we get
+, +, + - ==
E (@ /m v, +(q /m v,
= o at x=xl,x2 .

E q+/m++ q /m”

Therefore, by continuity of E/B at the loop edges, we have

+ -

-S—+ (v-; - v-{l-) = iT (v-l. - vg) at x =x; , (12)
+ -

-C‘L_*_- (V; - v-lz-) = iT (vé - v;) at x = x, . (13)
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4. PROOF OF A CONTRADICTION
In the looping region, the time for a particle in the stream k

to traverse its trajectory is

x
. 2kt i H el
Tk=f-—u+—dx or Tk:f—u_———dx.
X1 k x1 k
Equation (10) gives
kt1 kt+1
S ey
> - s
k Tk k
Integration from x = x; to x = x, gives
+ - S - - _
T1 + T2 + T3 = T1 + T2 + T3 = T say. (14)

That is to say, it takes the same amount of time for either an ion or
an electron to traverse its whole loop.

Equation (4) gives

+ 4
d(v, - v,) +
1°¥2 | 4 e (i L
dx - +F0< -7 +) ’
+  _+
d(v, - v,) +
3°Y &gl L
dx - +FO( + +) *
Integration from x = x) to x =x, gives
+ S + +
v, - vli ) = (q /m JFo(T; + T,) (15)
X=X
1
+ _ 4, + + -
v -VZI = (q /m )FO(T3+ TZ) . (16)_

X':-XZ

Similarly, Eq. (6) gives

d(v, - v.) -
1 - V2! 11
—_— _-_L_FO(__.-.__),
m u;ou,
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T - rg(d -2

dx
rp ug u,

1l

Integration from x x| to x = x, gives

Il

vy = Vg (@"/m7)F,(T] + T3) , (17)

(a"/m7)Fy(T; + T,) . (18)

Combining Eqgs. (12) - (18), we get
(q" /m®)2(T] + TH) = (a7 /mDA(T] + TS , (19)

+, +.2, 4 - =2, -
(@ /mH)H(Ty + TS = (@7 /mHAT; + T) . (20)
From Egs. (14), (19), and (20), we get
+ + - - -
(@ /m T+ T) = (¢ /m )T + T})
hence,
m'q Y
[( — ]T+( )T - (21)
m q
For rn+q_ /m-q+ > '\/E‘ as is the case for plasmas in physical reality,

the above equation cannot be true because its left-hand side is less

than T while its right-hand side is greater than T . Thus we obtain

a contradiction.
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5. CONCLTUSIONS

For solitary waves, a symmetric looping trajectory would im-
ply that the final state behind the wave is identical to the initial state
ahead of the wave, and an asymmetric looping trajectory would imply
a shock transition. We have shown that trajectories with nonover-
lapping loops, either symmetric or asymmetric, cannot exist in hy-
dromagnetic wavés propagating across a magnetic field in a quasi-
neutral cold collision-free plasma. Thus, when the wave speed has
such a value that the Adlam-Allen solution or the Davis-Lust-Schliter
solution no longer holds, the trajectories must be either multi-looped
with neighboring loops overlapped or, as is more likely, the waves

must be unsteady.
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FOR ELECTRONS

FOR IONS

Figure l. Assumed Trajectories for Ions and Electrons.
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PART II

BREAKING OF WAVES IN A COILD

COLLISION-FREE PLASMA IN A MAGNETIC FIELD
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1. INTRODUCTION
Wave propagation in a cold collision-free plasma
in a magnetic field has been studied by many authors in
recent years. Because of mathematical difficulties, so
far the analyses have been restricted to steady solutions.
Adlam and Allen [1] have found transverse solitary waves,
Davis, Lust and Schlﬁter [2] have found transverse peri-
odic waves, propagating across a magnetic field. Saffman
[3] has found longitudinal solitary waves, and Ferraro [4]
has found longitudinal periodic waves, propagating along
a magnetic field. As to unsteady solutions, the previous
work has been done by numerical integrations of partial
differential equations. Adlam and Allen [5] havé calcu-
lated a numerical solution for a magnetic disturbance on
the boundary which increases linearly in time, and found
that orbit crossings of plasma particles occur on the
"plasma boundary. Auer, Hurwitz and Kilb [6], Jones and
Rossow [7] have calculated numerical solutions for various
disturbances on the boundary, and found that orbit cross-
ings occur inside the plasma in their examples. All these
calculations are for the case of transverse propagation.
In this paper we consider the magnetic piston pro-
blem for a plasma. The time~-dependent solutions represent
plasma motions ensuing from magnetic disturbances on the

plasma boundary. In Chapter 2, we formulate the governing
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equations of the plasma motion in the Lagrangian coordi-
nates, as well as the proper initial conditions and the
boundary conditions. In particular, we show that the mag-
netic disturbance on the plasma boundary will set up an
electric field immediately inside a quasi-neutral plasma.
This initial electric field is a part of the initial con-
ditions, which provides the initial acceleration to the
charged particles. In Chapter 3, using Picard's iteration
method+ we present the solutions in series expansion. The
same results are obtainable by formal expansion of the so-
lution in a dummy parameter which serves the only purpose

of grouping various terms in the expansion. The boundary
data enter the solution in the form of various convolutions,
For large disturbances, the partial sum of the first few
terms of the series is a good approximation to the sum of
the series. We are not concerned with the uniform validity
in time of this approximation, because at finite time the
wave breaks, thereafter the equations no longer describe

the motion. In Chapter 4, we extend the method to the
general case in which the initial magnetic field is at an

arbitrary angle to the direction of propagation of the

disturbance.

t I am indebted to Professor Whitham who pointed out
that the formal expansion in a dummy parameter is equivalent
to Picard's successive approximations.
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The magnetic piston problem for a plasma is an
analogy to the piston problem for a gas. In the piston
problem for a gas, neutral particles are accelerated by
the pressure gradilent, whereas in the magnetic piston
problem for a plasma, charged particles are accelerated
by the Lorentz forces in an electromagnetic field. The
initial electric field set up immediately by the magnetic
disturbance on the plasma boundary initiates the motion of
the charged particles from rest. Once the particles are
in motion, the Lorentz force due to the magnetic field
will enhance the motion. Since the initial electric field
decays exponentially inside the plasma as a sheath pheno-
menon of a plasma, particles near the boundary are acceler-
ated more in the initial stage, so that particles on the
boundary will overtake inner particles if the magnetic dis-
turbance is sufficiently strong. For weak disturbances,
6rbit crossings of particles might occur inside the plasma.
In an ordinary gas a shock wave begins to develop at the
point where orbit crossing of particles occurs. In a cold
plasma multiple streams appear as a result of orbit cross-
ings. It is plausible that an avalanche of such wave break-

ings will lead to a plasma turbulence.



"
2, THE GOVERNING EQUATIONS OF PLASMA MOTION
We consider one-dimensional unsteady motion of a
plasma in a magnetic field. The plasma is treated as a
cold collision-free, two-fluid mixture of ion gas and
electron gas. The governing equations of the plasma mo-
tion are the continuity equations, the momentum equations

and Maxwell's equations. In mks units, these are

8 =4 =

5T P+ * ox &% = 0,

8 1= —

o7 P- tex B =0,

2 o4t 2 ppuu, = St (E + u x B)
5T P+W+t ox P+ReU+ = T P4 e . :
z_Tp_g_Jrg_XP_a_u_:_;:p_ (E+w x B),
8 = a ™

2_ a8y E =

aT = ax ~ 0.

— l - —— q_ —
'e‘zﬁE‘“a%c‘xB:%}&“* T o P
-E=0,

2 = _ G+ = g
€ex * T o Pt Tt P,

where T and X are the time and distance variables in the

Eulerian coordinates, my and q4+ are the mass and the charge

of an ion or an electron, p and € are the magnetic permeabi-

lity and the electric permitivity of wvacuum, p+ and
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Uy = (ug, ve, wi) are the mass density and the velocity of
the ion gas or the electron gas, B = (¢, B, H) and
E = (E1, E2, E3) are the magnetic field and the electric
field.
The approximation of quasi-neutrality of the plasma
makes possible an equivalent one-fluid description of the

plasma in terms of the mass density p defined by p = p++ [

the velocity @ = (u, v, W) defined by pu = p4U; + p-u- ,

e " ——_q-f- — q_ .
the current density J defined by J = E:' pLu, - — P-Y_s

the magnetic field ﬁ} and the electric field E. We shall
use o to denote the inverse of p. With this approximation,

the ion gas and the electron gas have equal longitudinal

velocities u = u, = u_, because zero displacement current
+ B _

gives pLuy "ﬁ: p_u_ = 0 while zero charge density gives

Qe Q. +

E: Py = ﬁ: p_ = 0. Thus, the governing equations become

2 ) _
TP T PRB=D

2ipU+Z pTu=TXE,

e _ 2_ = - =t
=T+ 2 T u o p(E + ux B) ( - +) JX B,
8 = 2 =

8_B+2_ xE=o,

aT - aXx X

12 xB=7.

B 8X

There 1s no longitudinal current as a consequence of the
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quasi-neutrality approximation. 1In the one-dimensional
problem, the longitudinal magnetic field is constant be-
cause both its time derivative and its spatial derivative
vanish.

We shall normalize the above equations with res-
pect to some reference values. SupPpose Prer and Bref gre
typical values of the mass density and the magnitude of
the magnetic field in the problem, we may use them as the
reference values for the mass density and the magnetic
field. Accordingly the reference values for other variables

are defined in terms of them as follows.

Xref =Jm+m_ - ?
449 B pref

o _ [mym_" 1
ref — Jq,q_ B ’

ref

a. = 1 »

ref  Prer

ref nf?gg}

ref mm_ TR ref®

o — ref

ref ﬁfW;;;}

Using these reference values as normalization factors, we
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obtain the following set of normalized equations. Hence-

forth all notations are normalized gquantities.

o ) _
st P Tax P =0

2_ouU+8 pdu=4JXB

aT P aX P ’

(1) 8 7,2 FTu=p(E+UXxB) -T"TxE,
aT s % aXx P
2_B+2_XE=o0,
aT B aX
g_x B =7,

X
meq_ m_qJ?
where .. ¥
re _/m 94 +q_

We shall transform these equations from the Eulerian
coordinates (T, X) to the Lagrangian coordinates (t; x) by
the contact transformation defined by

dt = 4T and dx = p(dX -udT).

The inverse transformation is
dT = dt and dX =0 dx +u dt.

Accordingly, 8__2_ 4 ,2_ andg _1lea_
t aT aX ax P aX

In the Lagrangian coordinates, equations (1) become
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(2) -2—503=§+GX'1§- cJ X B,
a8 = a = 8 =
O"B—'EB-u'giB'f'—e—xXﬁ.-—o,
2E_xB=oJ.
8x

Upon elimination of T and E, we obtain the following equa-

tions in scalar components.

o ~-=—1u-=0,

2_ a
st ax
2 2
8 3. 8 =
2. v - 8.8 = 0;
at 8X
(3)
-8-—-W—G§—H=O,
st ax
o 82 ( 82 )
L2 -0B) + G H+ 8 v) =0,
at (axz 2 ) r = ax
ax
2

o a

8x

Upon further elimination of u, v and w, we obtain the follow-

ing equations for o, B and H.

-
z_tzo+%£z(B2+H2)=0.

(&) 8—2—'(-8—2—B-0'B)+.9__2._(PG9_H+G2B)=0
at2 ax2 axz A% ’
82 82 2
;—EZ(-Q—XZH_GH)+§;Z(-PG§—EB+GH)=O.
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We are interested in the plasma motion caused by
a magnetic disturbance on the boundary of a plasma filling
the right half space at rest initially. In the quasi-
neutrality approximation, the disturbance on the boundary
sets up a transverse electric field instantaneously inside
the plasma, as shown later. This 1is expected, because this
approximation is tantamount to putting permitivity zero,
hence the propagation velocity of the electromagnetic dis-
turbance is infinite. The charged particles in the plasma
are accelerated by this electric field from rest, and then
also accelerated by the magnetic field when they are in mo-
tion. In the Lagrangian coordinates, each moving trans-
verse plane inside the plasma is described by a constant
value of x. We shall let x = 0 be the moving boundary of
the plasma. Outside the plasma, the magnetic field has no
spatial variation in virtue of Maxwell's eguations in
vacuum.

We use the initial values of the mass density and
the magnitude of the magnetic field as the reference values.
Thus the initial conditions of the plasma can be described

as

—

= e Ylt=0

Glt=0 = 0,

Blt=0 = (cos @, sin6cos ¢, sin 6 sin ¢ ).



1.

where 6 is the propagation angle between the direction of
the initial magnetic field and the direction of the propa-
gation of the disturbance, ¢ is the inclination angle of the
initial transverse magnetic field in the transverse coordi-
nates. With the quasi-neutrality assumption, the electric
field and the current density are determined by the mass
density, the velocity and the magnetic field according to
the third and fifth equations of (2). Suppose the magnetic
disturbance on the plasme boundary has a magnitude f(t)
with an inclination angle Y(t), then the boundary condi-

tions are

B <o = (c0S 8, sin6cosé +f cosy, sin6sin¢+rsiny),
B

|x=oo = (cos 6, sin6cos$ , sin6sind).

To show the immediate setting up of an electric
field inside the plasma by the magnetic disturbance on the

boundary, we substitute the initial conditions that o= 1,

and 2Uu 8y 32w, , 20 = o into the following equations
8X’ 38X’ 8X' 8X’ 8x
32 aB 2B au 2H
22 - o282 - B 22 + cose &Y + gL =
o2 et - 95t T P ax 5x 1100z = o,
ax
92 2H sH au W 2B
Sowirt i % = H = <+ aw _ — =
Zot  Tat T Fox T 00805 ~Teos87 =0,

which are obtained from (3), and we get
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(B = 13 (82 = 0,
8_};2' at £=0

2
(B = 13 (22 = 0.
;? at £=0

Using the boundary conditions that

o8 - a_ - a_
(a—')t.—.o = (0, (gg T cos¥ )t=0' (g T sinv )t=o)'
x=0
(gé) = 0,
6=0(__

we obtain

(0, <%:g £ oos¥f ) _5° (G5 £ siny )y e

It

0 dat

which is obtained from the fourth equation of (2) with the

initial conditions, we obtain

(E%=O = ( 0, (%g £ sin\y)t=o, -(%E £ COSV/)t:O) o-X

because E vanishes at x = oo. That the longitudinal com-
ponent is zero comes from the third equation of (2).

Therefore, equations (4) are supplemented by the

initial conditions
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o MRE 1, Blt=0 = sin®cosd, H| _, = sin® sind,
(5)

2o = ab 1 X

2 0, = (dtfcosW) e —,

t=0 t=0 t=0

oH d =5

L = (& f sinV ) e .

et _ dat £=0

and the boundary conditions

sin® sing+rfsiny,

le=0 sin® cos ¢ + f cosy, H Ix=0

(6)

sin ©cos ¢, sin ©6sin ¢.

- lx=oo - ]x=oo
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3. THE TRANSVERSE CASE
Equations (3) permit solutions with U = (u, o, o),
J = (o, 0,J), B= (o, B, 0) and E = (E1, o, E3) which des-
cribe waves propagating across a magnetic field. The mag-
netic field has no longitudinal component and the trans-

verse component is plane polarized. Accordingly equations

(3) reduce to

_9_—.. __9__u=
st @ ax b
2
2_ 4+ L2 &
(7) at b 2 8Xx = Os
2

2 /8
—( B - o B) = 0.
at axz

~Upon elimination of u, we obtain

92 1 92 2

R B Sl
(8) o o2 .

a‘(;?B-O'B)—O.

With 6 = %, ¢ = 0 and ¥= 0, the initial conditions (5)

become

(9)

a0

cl =1,
£=0 atT £=0

and the boundary conditions (6) become

(10) le=o =1+ (), B __=1.

The second equation of (8) can be integrated once,

thus we have



(11)

Il
I
=

) -
S B o B
ax

Equations (11l) may be written as

2 2

1l s .-

(12) 3—-G=——-—Zb ,
9t2 - ax

with the initial conditions

o =1, e =0,
t=0 at £=0
and
92
(13) (__§ -1)B=-=1+3B(oc-1),
2x

with the boundary conditions

Bl o =1+ £(t), 5]X=a>= 1.
Substituting
2 t t! 2
c=1-%2| at B*(x, th)dgn
8% Jo o

obtained from (12) into (13), we have

5% 1.2 [F v 2
L - 2 i 1
(14) (;2‘ L 1) B = =1 -Z-B-a—x—z-J’ at? J B (Xa t! )dt’ .
(e} O

Picard's iteration method may be used to solve equation

(14). Many iteration schemes are at our disposal. Ve
take

- 1,
K5 800 21 4 £(p) &F
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as the initial approximation, and define the successive

approximations by the solutions of the following eqguatious.

2
(n) _ pln)
(16) 2 o) - p(R),

with the initial conditions

(n)
o) e = Ls a0 = o,
- et =0
and
2
(17) (8—? -~ 1) B(n) = Q(n),
ax
Wwith the boundary conditions
(n) _ (n) B
B L=O =1+ £(t), B . L,

in which P(n) and Q(n) are specified functions determined
by the chosen iteration scheme. 1In terms of the increments

of iteration defined as

(0)’

S
o
Bo = B .
o, = c‘n) - G(n-l) for nzl,
y = B(n) - B(n_l> for n=1,
we have
(n) =
Io = '
2= %
(n) L2
B = B 3
éo a
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Subtracting (16) and (17) with n replaced by n-1 from (16)
and (17) respectively, we obtain the following equations

for the increments.
32
ot
with the initial conditions

a0,
4 n =
“n t=0 “ BT =0,

and
2
(19) (2= - 1) By = Q,
ax

with the boundary conditions

3 =0 , B =0 ,
0lx=0 8 X=aD
in which
n
_ _(n) (n-1)
Qn = Q -Q .

The right-hand sides of (12) and (13) suggest the

following iteration scheme



PG

(" - 1) = -1+ fiam_lu ia):
m=1 m= i

and correspondingly

1 32 n ZEl n 2n-
B o= = [ElB B+ B 1B, ]
n 2 axz L man m ey g 3 k m ;q m;;\.—n-ﬁ—l%{-m
n 2n-1 n 2n-3 n-1
¥ ZGmBrl—m + E ;: TnBem E Z‘ % Bicom
m=1 k=n+1 m= -n+l =n m=K-n+2

for ( an 1) and (ZBm 1)(Enqn) can be written as
=1

an n

Z Z Bm 1Bk ~m T Z Z: Bm—lBK-m and

k=1 k=n+1 m=k-n+1

n k 2n-1 n
Z EGmBK-m + Z Y, OmBem -
k=1 m=1 k=n+1 m=k-n+1

Instead, we shall use an iteration scheme such that

192 n
P = - __.ZE:Bm_B_
a Zex m=1 L =

(20)
n

Q, m2=1 %WBiom

corresponding to

Il

-, 5
P o 1 2_2_[ @y @d) Z (5(m _ B(m-l))B(n-m—l)]
ox m=1
— 1 82 L ﬁ B BK
T B el e -1%-m °’
(21) o ‘gi m=l
Q(n) o ol i ( (m)_ G(m l)) (n-m)
m=1
n k
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2
which approach - Ll e - and -1+B(o-1) respectively as n-w,
8x
n K n o
because Y Bm—lBk—m has the same limit as ( z&Bm—l) .
k‘=_f. m= m=
n n

K n
and Z;- Z%éth_m has the same limit as () B_1)( Z;Oh)’
k=1 m= m=1 m=

The same results using this second iteration scheme

can be obtained by substituting the following formal expan-

f? m
. a o,
m=
®
m
Bo + 2; ® Bm X
m=

into the following equations

sions

q
I

(22)
B

92 I 92 B2
g+ = a = 0 ,
a2tl 2T R
(23)
2
£ . B-ocB=-1,
X

which are equations (11l) with the insertion of a dummy
parameter a. This dummy parameter serves in grouping
various terms in the expansions only and eventually we
shall put a=1l. Equating the resultant coefficients of
various powers of a in equations (23) after substitution of

(22) to zero, we obtain

2
(24) ge 05 =0
st

with the initial conditions



=0 at ’
L t=0
and
32 |
(25) (-—7'— Ob) Bo = =1
8Xx
with the boundary conditions
B = 1 + £(t) , B = 1
2 x=0 © =00 ’

as well as equations (18) and (19) with P, and Q, siven by
(20).
The solutions of (24) and (25) are (15). By in-

ox m= iy

. ~-KkKx £ -kx
binations of the form E: a X e and.zg by s X8 "

Therefore the solutions for (18) and (19) have the follow-
-'-

ing form'.

G B
- 1 " 1" L _-kx
05-°'g;iq§;[j;dt 50 ak’a(t )dt ]x e

t -kx
(26) ~ =1§1 qz;)[t o ay  (8)] X e,

By =) 2P, () [S‘x,@(x) e
k=1 azo

n n
duotion,—% 2—2 Bm—an-m and g;i cﬁB are finite com-
L

kx =5
- Sk’[(o) e } 4

t The convolution operator is defined as

t
f(t) o g(t) = J £(t*) g(t-t')dt?
o



B

where
g+l
{1 n .
-~z 2 5 M E=il,
(x) 2 n=1
S xX) = ¢
{ -n+1 { -n+1
K, 0 4 (%) - (2 :}22_ if k> 2,
2 £ 'B-T K+1 !

are polynomials which satisfy
2 1
) -l
(& . - 1) s (x)e{x=x2e “
3 & k1"
X

We display the first few terms of the solution as

follows
-X
BO =1 + f e ,
= 2 9 =x -
Blztof(%xex)+t°f(§e —%e X)
-X -2X - -
+ £(tor)(3e -%—e ) + £(to F)(Fe*- e —F),

and

o =1 ,

(o]
0'1=-to:f‘e-x-2t pRa=E

-X 2 o =
o, = toter(l- %—x)e + totof [- %e R %e ZX]

+ tOf(tOf)[-%e- + (e— - 2x)e ZX]
+'t0f(t0f2)[-%e-x _ %e-ZX " %ge-BX]
-2x -BXJ

+ tof (tof) [ % + 3e

2 2 -2x ~4x
+ tof (tof )[-e + Le ]
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On the boundary x=0, we have

60(0» t) =1,

2
01(0’ t) = =(tef + 2tef ),
2
0‘2(0, t) = te (Lof + 2tof ) + tof(3tef + ;jétof )
+ tof (%tof + 3tof )3
- 2 e 16 2
0‘3(0, t) = —toto(tof + 2tof®)= totof(3tof + -:j_t°f )

- totofz(%tof -+ 3t0f2)
=1

o>l 22—0 02 -L'IiO
t [E(tof) - 3(t f)(tef ) 4 g(tef

tof[%(tof)2+ %%(tof)(tof2)+ %g(tofz)z

+ to (%}tof - %?tofz)

+ tof(%}tof +%%9tof2)
+ tor? (Ftor + %ﬁgtsz)]
2 2.2
tor?[ L (tor) %+ %(tof)(tof )+ E(tor”)

?gtOf )

+ t o(lqt £+

4 tof(l51tof ¥ lg7tof )

+ tOfZ( Stef + —ito )].

Our main interest is concerned with the crossing of
the particle trajectories. Trajectory crossing occurs at
the point where o = 0, i.e. the mass density becomes in-
finite. Because the mass confined between two transverse
planes moving rigidly with the particle's longitudinal mo-
tion is constant before they penetrate each other, and at
the moment of crossing, the distance between them is zero,

hence the mass density is infinite there. After the cross-
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ing occurs, two streams of particles penetrate each other,
the equations formulated to describe the plasma under the
assumption of a single stream at each space point are no
longer valid. So the wave breaks at the crossing point.
To find whether the wave breaks, and when and where breaking
occurs we look for the first zero of o.

We shall confine our attention to the range of the
disturbance strength such that the partial sum of the first
few terms in (22) is a good approximation to the sum of the
infinite series up to the occurence of wave breaking. The
criterion for the accuracy of the approximation is that the
last retained term should be small compared with the pre-
ceding terms. Thus o is reasonably approximated by
1l + oy + oy * 03 provided that the magnitude of 03 is small
comparedwiﬂ1cl and 05«

Our calculations below show that breaking will
occur eventually on the plasma boundary if it does not
occur inside the plasma previously, provided the distur-
bance is sufficiently strong. To show this, we consider
responses to step function disturbances and linear function
disturbances.

For step function disturbances: f(t) = g for t>0.
oy = _B%;e-x _ 2B2%§e—2x )

X

4 " 2¢% . _
g, =£3£T(l - %x)e + B %T[-e = + (6-2x)e 2x]



. 2 _ & |
J 3. = 2x 45 -3x £ -2x_ , -bx
+B g:—-!—[— Ee * -4 +—-L-f-e ]+ BZL—Q- -C + Le ],
6
- npt Z _ 2._ 2, =X
Ty BZT(-l + gx - X e
6
3 - 365 2, =2
+ 52%7[(% - %x)e £ & [w iﬁ) + %?x - %x )e X]
3t6 121 1 -x, 254 =X . 1709 , 10 -3x
+ gt (- T~ — gXle +(—‘§—-14x)e (- =t + '“"iz x)e 7"

6 - - u

- ,3“%?[-e"x+(- %Z—%x)e 2, 105e BX+(— Z(6)—2%-283;)6 4;{]
6 .

- 65%7[- é%e—x - 10~ % l%ﬁe-%x+ 56e-4X- g%%ie-SX]

6.6
19 -2 ~lf 69 -6x
+B-Z_T[-—I%ex+14ex—-zge [

Accordingly,
0, t) = - (B+ 280
Gl( ’ = -—é—’--
I
0,0, t) = (p+58% +78° + 380k
4 2 - b 62,5, 29,6 ¢°
03(0, t) =—(§+%ﬁ+ -213§B3+§Z]&ZB+TB +?,QB )'ET y

Now, 1 + 01(0, t) + 02(0, t) vanishes when t= J5%-J8 + O(lz),
. . _ 29 (4-JB)3 1
while 03(0, t) is equal to o i_ET___ 4 O(E). Therefore,

for strong disturbances, namely B>» 1, o will vanish on the

boundary approximately when t = 1'282 and at that time, the
magnitudes of the various terms are o= -1.1716, 02=—O.l716
and 03=-0.0108.

For linear function disturbances: f(t) =t for t>0.

3 o 4
o, = gt =X _ t -2x
1 Bt 4B I7e



-36-

5 =
Oé -ﬁ%T(l— %x)e X
6
t 8 -x 56 _ 2x
+ﬁ2 a7l 3-6 + () 8x)e ]
= -2X 285 -3x
+f - gem - 20T 4 ]
8 E
+5L’lé.!-[-60e 2X 4 240e Ll—x] ,
_at! 7 1,2ye™%
o5 —-{3,7.!.(-1 + Lx - gxT)e
8 . .
2 14 4 -x 2, -2x
+P -g—!—[(-g-—?x)e * (-%2+63x - 13x7)e”
g : 3
+;33 5T (- 335 gx)e (123“’O 224x )e x+(—1—8§9—+i%}-x)eﬂ]
10
gt B[ £20 &7 (- 2320 z20%)&” 2K, o605 ( R0+ T3 ]
1o:
55 ![- 1—26ie'x-5840e‘ X+155,25e'3x+3)+560 g - 172" 5X}
6 tlz . -2X ~-4x 6 -b6x
+p Ty [-6450e "7+ 61200e - 79650e T ].
Accordingly,
£ 24
0, (0, t) = -p=y - MogT s
5 2. 260 ,3¢7 48
0,(0, t) =ﬁ%_,. + 168 Fy + S5p % + 1808 £y .

7 2,8 3.9
- t 7 t 4588, t
(53(01 t) = "1,577-1— o _;BBT - _g_.ﬁ .9_!.

10 B4 8 12
_ 11036 Lt ~ 5% 6
3 A 104 l4400ﬁ 114

Now, 1 + cl(O, t) + 02(0, t) vanishes when

4/ 56~ 1120' 1 1
£ = 2=l = 4+ 0(=) while 0,(0, t) is equal to
35 JF B 3
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- 24910(56 —Iii§5)3 - O(l). Therefore, for strong distur-
NEF ) 3 B 2 .
bances, namely B>>1, 0 will vanish on the boundary approxi-
mately when t = ;7%22 » and at that time the magnitudes of
the various terms are iy = -1.2518, o, = 0.2518 and

63 = -0.0220.

Numerical calculations, displayed in Figures 2
through 6, show that breakings occur on the boundary for
strong disturbances (compared with the initial magnetic
field) and inside the plasma for weak disturbances. Figure
1l displays the magnitudes of the first three terms in the
series on the boundary for a strong step function distur-
bance. Figures2 through 6 are o versus x plots with time
as parameter. When the magnetic disturbance increases
linearly in time as f(t) = t, our calculation, displayed in
Figure 4, shows that breaking occurs at t=1.67. For the
same disturbance, by direct numerical integration ofpartial
differential equations, Adlam and Allen [5] obtained that
the wave breaks at the boundary shortly after t=1.6, using

a mesh size of At = 0.2. Both calculations are in good

agreement.
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4, THE GENERAL CASE
When the magnetic field has a non-zero longitudinal
component, its transverse component can not be of plane
polarization. We shall solve equations (4) with G= cos 6
supplemented by the initial conditions (5) and the boundary
conditions (6). Following the procedure in the transverse

case, we write the first equation of (4) as
2 2 2 2
& _o=-12 (8 +58 ,

atz 2 axz

with the initial conditions

I
Il
(@]

=1 ,

ct

(o2
Wl #% =0

write the second equation of (4) as

2 2 2 2
8 ;o _ o ) 2 2
——2( - 1) B = B(o - 1) - 2([Ccos ® 2_H + cos“e B) ,
5t? 2x2 atz axd( st )

with the initial and boundary conditions

- aB - 8 =X
B !t=o sin®6cos ¢ , =T o (Rf cos ¥ )t=Oe .
B]x:O = 8in®cos ¢+ fcos vy, BL(=oo= sin® cos¢ ,

and write the third equation of (4) as

2 2 2 2
B (8 =-1)H=2 (o - 1) + & (Tecs 02 p - 26
8t2 9X2 ;;2 ;;2 i o8 GH) ’

with the initial and boundary conditions

I — aH -X
H|,_, = sin® sin¢, =l = (%Efsin\y)tzoe ,
HIX:O = 8in© sin ¢ 2 fSin\V g H x=oo= sin esin¢ .
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To use Picard's iteration method, we take

o(o) =1,
(0) -X
(27) B = sin® cos¢$ + fcosVe .
(©)
H = sin®siné+ fsinve™

as the initial approximation, and define the successive
approximations by the solutions of the following equations.

2 @

8
(28) 5 g = P
with the initial conditions
N T
t=0
and
= ne @ (0

(29) iz -V 3B =9

with the initial and boundary conditions

(n) _ 5B d -x
B ey = B8 écos ¢ , zF— _ = (E:Efcosxjr)tzoe '
@)
B 'lg—g = Sinsé cos b + fcosy , B@lx=oo= sin® cos¢ ,
and
2 2 (n)  _(n)
(30) 2 (2 = 1) H ‘=R
with the initial and boundary conditions
(n) of (n) :
. _ H _ -X
H lt=O = sinesincp ) - (%_Ef sin\}/)tzoe .

t=0

, n
sin esin¢ + f sinV, H( )lx—oo= sin €sing,
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, () i (n) : . "
in which P y @ and R are specified functions deter-
nined by the chosen iteration scheme. In terms of the in-

crements of iteration defined as

(O)’

. = &
o
5 =39,
o
. H(O),
o}
%, = (n)_ O'(n_l) for el
(n) (n-1)
Bn=B - B for ny1,
n-1
H =H(n)--( ) fior n'zld,
n
we have
n
bel
B e o
=0
@ _ &
B = ’
m= %
(n) L

and as n — @
oo
o = o
2oy m
00
B = 2: Bm
m=0
leo)
H = Hm
m=0

Subtracting (28), (29) and (30) with n replaced by n-1 from
(28), (29) and (30) respectively, we obtain the following

equations for the increments.



] -

(31) g 5 O = P

with the initial conditions

aa;

. n
ni,_ 2 —_— =0 ,
t=0 st £=0
and
92 32
ot  ox

with the initial and boundary conditions

B ) aBn

_n B s B
Hle=0 ot

t=0 Blx=0 X=00

and
2

(33) .z—t?(z—tz - 1) Hn - Rn

with the initial and boundary conditions

H °"n H H
Dlg=o © ®F |t=0 ' "Blx=0 ' an=a>
in which
_ p(n)_ _(n-1)
P, =P '-P
_ A(n)  _(n-1) |
Q=2 '-Q
_ k) L in-l)
B, =R '-R .

We use an iteration scheme such that

P - 5 82 n
o > .2 Z: (Bp_1Bpp * Hp-1¥n ) >
8X m=1l
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2 n 2
= 8 _ 8 ) 2
(34) Q, = E?r);—:men-m ;;Z(FGOS © 2:H, , + cos 6B,_1) »
82 n i 92 - >
B, = e n;lamﬁn_m + =z (Fcos © =tBn-1 - cos OH, 1)

corresponding to

P(l'l) - _ 12 [B(O)B(n—1)+ H(o)H(n_l)
2 gx°"
n-1
(m) ,(m-1),,(n-m-1)
Ll L )B
=
n-1 -1 1)
+ _l(H(m) (m ))H(n m :]
(35) ,
= 1los L B -
2 ox? kzg m=1 “n-17k-m m~-1"k-m
(n)— 82 - (IIJ) (m—l), (n—m)_ 32 e?__H(n-l) 263(1’1—1)
Q = ;é‘g‘m;: (0 = )B ;—;-2.({*005 25 — )
22 & X

= vy o B A H N B .) .,
at ;1 ngl m-k-m exz ﬁ;é:l m-1 mgl m-1

2 n m-1) (n-m) .2 - -
R(n)— 8—'2‘ Z;L( Cf(m')-c( JH ?—T(FCOS@?——B(YI 1)— cosze g l))
et” 4=
82 2 n
gl Zchkm —"Z(r"’ﬁzlml"lem_l)’
=lm= m=
2 2 ) . cq@
which approach - - (B +h ) & —2- B(o-1)- (r'cose H+ 6B)
7 %
2 2
and 2 H(o—l)+2—2(Pcos€3E_B-coszeH) respectively as n — o, .
ot2 p's et
n k n >
because kg m;Bm—lBk-m has the same limit as ( _ZiBm—l)

k

n
and kz:lzlcmBk_m has the same limit as ( Zf ) ( Z _1)-
=} =
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The same results using this iteration scheme can be

obtained by substituting the following formal expansions

@
o= o +§—'am0'

(] m'_=_'1 m
® m
(36) B = B, + E: & B
m=1
@
H=H + 2: amH
o m
m=1

into the following equations

32 1 o 2 2
-2?-2- o + -é—a—-—z(B + H ) =0
2%

2 4 2
(37) 2_§(€_§B - oB) +a 9—§(Pcos69§EH + coszeB) =0
at”™ ax ax
32 aZ 22 2] 2
(=l = o H} + & Zx(-[008 BB + cos®0 H) = 0
5t% ax? ax oL

which are equations (4) with the insertion of a dummy
parameter a. This dummy parameter serves in grouping
various terms in the expansions only and eventually we

shall put a=l1l. Equating the resultant coefficients of

various powers of a in equations (37) after substitution of

(36) to zero, we obtain

2
(38) 2o =0
ot

with the initial conditions



Ly~

and
2 2

(39) E5(%—% - o5) By = 0
ot 88X

with the initial and boundary conditions

@B
B, - = sin® cos¢ , ato ( f cosY) =E
a t=0
BOJ = sin6cos¢ + f cosy, B, = sin 6 cos ¢,
x=0 X=00
and
2

40 - -oc )H =0
(#0)  “mllz - %) H,

with the initial and boundary conditions

eH
H = sin®sin¢ , 92 ( &£ sin Jene X
Olt=0 4) 2t t=O ‘{’
Hol_ = sin@sin ¢ + fsinV, Hol = sin6sin¢ ,
x=0 X=00

as well as equations (31), (32) and (33) with Po» Q, and Rn

given by (34).
The solutions of (38), (39) and (40) are (27). By

induction, P " Q and R are Tinite combinations of the

kx Ly 0 =kx
form (t)x & " b (t)x e
¥ z: X, (t)x e~KX, Therefore the solutions of (31}, (32)
k=1 =0 Xt
and (33) have the following form

, and

kx

i
= toa (t)]x e ’
kgl Q};o[ o ]

= 5 L[ 50 (][5, (00°77 5y (0067 ],
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- toh. . (£)1[S. . (x)e""* _ 8  (o)e~%7 ,
= =

where S Q(x) are polynomials defined in Chapter 3.

We display the first few terms of the solution as

follows
B, = sin® cos¢ +f cosye™®
—[31nzecos¢ tof cos(V- ¢)+co§%tofcosv+rcoseofSinYM]- )
+ sinecos¢(tof2)(§ - 3 e~2%)
+ fcosV¥ [tef sin® cos(\}’—cb)](%e'X - %e—Zx)
+ fcosW’(ton)(%e-X - %e-BX) :

H = sin 9sin¢ +f sinye ™

H1 =[sinzesin¢tofcos(W—¢)+co§3etofsinW-Fcoseofcoswy%xe‘x)
+ sin@sin4>(t°f2)(%e - ge-Zx)
+ fsiny[tofsinecos(w-¢)](%e_x - %e'zx)
- fsinY(ton)(%e'x - %e"BX) ;

and
gy = 1,
o, = -[tef smecos(¥-p)Je™F - 2(tor?)e 2" ,

o, =[totofsineoos(W—¢)+r%tnfsﬂnecosesin(w-¢)](l- %x)e'X
+ tofcosze[cosW(tofcosW)+ s‘11r11}/(tofsin\l/)](.2—2>c)e_ZX
+ tofcos® [cos¥([Mofsiny) - sinY(PofcosW)](Z-Zx)e-ZX
+ totofzsinze[-%e'X + %e-sz
+ tofsineoos(+-¢)[tofsinecos(w-¢][- e” 1;—2x)
+ tofsinecos(Y ¢)(tof )[ e =% _ §e-2x . %F 3x
+ tof? [tefsinecos (¥-4)] [- % 2% 4 3e '3X]



=l 6=

x

= + be” ] -

- tofz(tofz)[—e_

For strong disturbances, the dominant parts of o,, o, and

Bl
o, ar
3 %%° , ,
Gl ~ tef (—28— X) ’
o, x totl(tor?) (- X + 4e™*F)
2 2 2 -2 -4 -
oy = tof"[tef”(tor")] (2% + 2¢7H _ 6e by

because they are the parts which contain the strongest
dependence on the disturbance f(t) and g(t). By induction,

using the following recursive equations

2 2
o g =X s =R
= - B L
;2- O'n ;;?( fCOS\Pe e, + fSinlye Hn'—l)
- ) 0 toonye~
—_Z(——E - 1) B, = £ fcosye "o 5
at” ax % et .

2 2
a 2
‘“7(——7 - 1) H
at  @&x A

Q

82 -X
——ZfsinYe o,
st

with o 80y B aBn 7 aHn " B _
P ’ A at t=0 and B_, H = 0
no3x no oot n° 3% n’ “n

at x=0, it can be shown that

o % (2)PtorP[ter? (L. tor. )]

with n times of convolutions

We conclude that breaking will occur approximately
at the first zero of the following expression.
= 2 = ~lys
1 = 2t0£2e ™% 4 tofP(tef?) (~e 2% 4+ he¥X)

provided the disturbance is sufficiently strong.



=43

Figure 1. Plots of 0o, =0y, 0, and --1003 versus t

at x = 0 for a step function disturbance

=5 for t >0,
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Figure 2. Plotsof 0 versus x for a strong step

function disturbance f=5 for t> 0.



49~

Figure 3. Plots of 0 versus x for a strong linear

function disturbance f = 5¢t,
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o .0 2.0
X
Figure 4. Plots of 0 versus x for a strong linear

function disturbance f=t.



B

Figure 5. Plots of 0 versus x for a weak linear

function disturbance f = $t.



A

Figure 6. Plots of 0 versus x for a weak linear

function disturbance f = T% t e
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PART III

ON STABILITIES OF PERIODIC WAVES IN A COID

COLLISION-FREE PLASMA IN A MAGNETIC FIELD
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1. INTRODUCTION

Recently there have been some discussions on weak
interactions of nonlinear dispersive waves. Benjamin
and Feir [1l] have found the instability of Stokes waves on
deep water with respect to a disturbance of sideband fre-
quencies. Zakharov [2] has found the instability of Lang-
muir oscillations in an isothermal plasma without a magnetic
field and the instability of ion-sound waves in a cold ion
gas imbedded in an isothermal electron gas. For Stokes
waves on water of finite depth, Whitham [3] and Benjamin
[4] have found a cutoff frequency such that the wave is
stable or unstable according to whether the wave frequency
is less or greater than the cutoff frequency.

In this paper we analyze the stabilities of peri-
odic waves in a cold plésma in a magnetic field. In the
limit of linear theory, there exist two modes of waves in
a cold quasi-neutral plasma: slow waves and fast waves,
characterized by different dispersion relations. In general
when the main wave and the disturbance waves are in differ-
ent mbdes or when their frequencies differ largely, thé
coupling between them is weak so that the main wave is
stable from the disturbances. However when they are in the
same mode and their frequencies differ only slightly, the
coupling between them may be strong enough to cause large

transfer of energy from the main wave to the disturbance
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waves with the consequence of instability of the main wave.
OQur results show that slow waves are always unstable, where-
as fast waves have a cutoff frequency for their stabilities.

In Chapter 2, we show that waves of permanent form
in the Eulerian coordinates also appear as waves of perma-
nent form in the Lagrangian coordinates and vice versa.This
allows us to do the stability analysis of periodic waves in
either coordinates. Iﬁ is simpler to do the calculations
in the Lagrangian coordinates, since in those coordinates
the equations of plasma motion can be reduced to those for
the inverse mass density and the magnetic field only. In
Chapter 3, we demonstrate the existence of periodic waves,
which are propagated at an oblique angle to the magnetic
field, by constructing their Stokes expansions in amplitude.
The stability analysis 1s presented in Chapter 4.

Both water waves and plasma waves have a cutoff fre-
quency, beyond which they are unstable to sideband distur-
bances. The cutoff frequency depends on the water depth or
on the electron's gyrofrequency. In this parallelism plasm
waves propagating across a magnetic field correspond to wa-
ter waves on shallow water, both are stable. Indeed this
parallelism is clear from Whitham's paper [5] in which he
has shown that the averaged equations for Boussinesqg equa-
tions for shallow water waves and those for plasma waves of

transverse propagation are identical in structure.
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2. WAVES OF PERMANENT FORM

The governing equations for one-dimensional unsteady
motion of a plasma in a magnetic field have been derived as
(1) and (2) in PART II. The contact transformation em-
ployed between the Eulerian coordinates and the Lagrangian
coordinates, together with the continuity equation gives
such a kinematic property that waves of permanent form in
the Eulerian coordinates also appear as waves of permanent
form in the Lagrangian coordinates and vice versa.

Suppose a wave of permanent form in the Eulerian
coordinates is described in terms of a phase variable

$ =WT + KX
in which W and XK are ‘the frequency and wavenumber in the
Eulerian coordinates. Then
(1) d&=Wd4dr + KdX .
Using the contact transformation that dT = dt and
dX =g dx + udt, we get

pd®= p(W + Ku)dt + Kdx .
The continuity equation 'in the Eulerian coordinates

%E(WP + Kpu) = 0
can be integrated to

p(w + Ku) = W + KU
in which U 1s the value of u at the place where p is equ
to 1. Accordingly
(2) pd® = (W + KU)dt + Kdx |
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Therefore, from (1) and (2), d&= 0 gives the phase veloci-
ty in the Eulerian coordinates

ax _ _ W
(3) ar = "~ K

and the corresponding phase velocity in the Lagrangian

coordinates
L ax _ _ W _
(4) at K - U

which is a constant. Hence the wave also has permanent
form in the Lagrangian coordinates.
Conversely suppose a wave of permanent form in the
Lagrangian coordinates is described by a phase variable
O = wt + xx
in which w and k are the frequency and wavenumber in the
Lagrangian coordinates. Then
(5) ad =wdt + kadx .
Using the inverse transformation that dt = 4T and
dx=p(dX - udT), we get
ocdd = (wo - ku)dT + kadX.
The continuity equation in the Lagrangian coordinates
%(wc-ku) =0
can be integrated to
Wo - ku = w - kU,
using the fact that u=U at the place where c'=‘% = 1.

Accordingly
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(6) cgdd= (W - kU) AT + kdX.
Therefore, from (5) and (6), d0=0 gives the phase velocity
in the Lagrangian coordinates

(7) dx - _ @

dt k

and the corresponding phase velocity in the Eulerian

coordinates
X - _ @4+ U
(=) dT k

which is a constant. Hence the wave also has permanent
form in the Eulerian coordinates.
From (3) and (4), or (7) and (8), we have

ax _ dx
aT dt

+ U .
Thus the phase velocities in the two coordinates differ by
U which may be identified as the streaming velocity of the
plasma. If we identify the frequency in the Lagrangian
coordinates with the frequency in the Eulerian coordinates

w =W,
then from (5) and

W e WK

TFROP 4B WA oot &

it is seen that the wavenumber in the Lagrangian coordi-

nates 1s related to the wavenumber in the Eulerian coordi-

nates by
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and the two phase variables are related by

4 = gy P A

which can be integrated to give § as a function of & ,

because p is a function of P .
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3. PERIODIC WAVES OF OBLIQUE PROPAGATION

It is well known [6] that waves of permanent form
.can be propagated across a magnetic field. All such waves
of transverse propagation are periodic waves with symmetry
at wave crests and wave troughs, including the solitary
waves as the limlt case when the wavelength is 1nfinite.
It is also known [7] that periodic waves can be propagated
along a magnetic field. We shall show that the equations
of plasma motion also admit a solution in the form of
Stokes expansion in amplitude which represents a periodic
wave propagating at an oblique angle to the magnetic field.

For waves of permanent form with phase variable

b=t + kx, equations (3) in PART II become

i i _
aw(mc - ku) =0 ,
4 (8% + 8%)] = 0
E$&”u + k(B )] ,
d - XGB) =0 ,
amuuv <GB)
(9) .
am(ww - kGH) = 0 ,
‘d (wk2d2 B - woB +T"k2Gd H + kGv) =0
LA T |
> 2
d o} @ B + xGw) = 0 .

(D“Snl =~ WOR ~[ k%G
CTASY 30
Suppose u, v, w, B, H take the values U, V, W, b, h at the

place where o 1s equal to 1, then equations (9) have the
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following integrals

wo ku =w - kU ,
wu + %_k(B2 - Hz) =wU + %-k(b2 - hz) .

wv kGB =wV - kGb ,

wWw - kGH =wW - kGh .

Accordingly,

2 2

wlo + 1<2(B By = +12(b e

2 .2 2 2
2 b +h B +H
(6°- 2fn + B4H)]8)

2

Il
o

2
(10) 76{(»1{ S Mk G-TﬁH+[ 64k

a a2 Lo (2= on” | B4l
-+ G - I .
q,{wk T H- [wk G—q;-B [- — + =—2)]E) =0

We shall use the quiescent values of the mass den-
dity and the magnitude of the magnetic field as the refer-
ence values in normalization. Hence G = cos©, b=sin®cosy ,

h= sin 8 sin¥ in which © is the propagation angle.

Equations (10) are invariant under the transfor-

mation B — B, H — -H and § — -0, hence with the condition
dB

a9 Jg=0

metric with respect to the plane ¢ 0. Among these symmetric

=0 and H ¢ O=O the solutions are reflectively sym-

solutions, there are periodic solutions, as shown later,
which represent periodic waves propagating at an oblique
angle to the magnetic field.

To construct periodic solutions, we substitute the
following expansions

B=D5»b+ a B(l)+ 323(2)+
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(1) & azH(Z) "

(11) H h+4+aH

w=ﬂ+a()_(l) +a2Q(2) * awres 3

into equations (10). The equations satisfied by B(l) and

(1)
H are

d[22d2 2 2. .2 2

1 2 v, _
ao Nk -d—q)-z - .(22+k G +k b )B( )+(r_(1k26d +k"bh)y ] =0 ,

1)

e 5 5 .
%@[(ﬂzkzg—y = Qz+k2G?+k2h2)H(l)+(—r'ﬂk w%_qs + k bh)B( )]= 0

which can be combined to give

2 2 2.4 2
(12) %[(QZKZ-ZT)Z - Qz+k2G2+k2b2)(n k ?17(;5 -0 +k2G2+k2h2)
2 4 242 b 2,295 _

' 2
+ kG -k bh |B
a?

Equation (12) admits sinusoidal functions as solutions. We
may normalize the period to 2T by making ( satisfy the

following dispersion relation

(02 (1241) k2 (242 )l Eo+1) -k (400 ] -rPelie B Pn? = 0 .

With Q so satisfied, the general solution of equation (12)

is a linear combination of 1, cos¢ , sin¢ , cos V{ and

sin V0 in which I’=jkl+G2+P2G2)/Q? - 2/k2 - 1 . Periodicity
of period 2T rules out the appearance of either cos'V¢ o
sinV{ in the solution. Hence the solution can be written

as

1
81 2 pyp + Be Byt

b

and accordingly,
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(1) _ i

where blO and th are undetermined real-valued constants,

bll is an undetermined complex-valued constant, and

-TYQk G- 1k2bh —Q (k +l)+k2(G2+b2)b

P11 T G (k%+1) k2 (G2+h?) P11 = FQk“G - ik bh 1%
' The equations satisfied by B<2) and H(z) are

2
%@[(Q kZ%F - 022 +* BB s 4 2 1205 @@

(13)
2
%W[(szzd_z PP Er i yu P mszd+kzoh)B +Q(2)] 0,

where

P(2)=Q( )[ 26i( 2%52 1)B(D+f'12@w«{(l)]+k b(3B(1?B(14—H H%thHm]

= Ppg + Re(P21e1¢ + P22e12¢) ,

(l)(l) Qo . 00

2
( L CL) [ZQ(kW—l)H(l) -rkzea%a‘m kz[h(ﬁH H -ZB B WbH B

= Q, + Re(iQ21e1¢ + 1Q22e12¢) ,

in which
21— [2a0fa) b prifan 4d [b(3g iy gy +hlhy g by 1 ) T

- B 3.2 1,2 .1
P,p= K°[b(gbl - §h7q) + 1zhd

118111
@, 2 2. 1,02
Qz1=-0 [200K L Tk Gy ]+ K n Ghyp -1y o1 Wb (gl -2 )]

52 2 1.2 1
Q= k [1h(&nll - §b5q) + &bhggbyg] .

Equations (13) can be combined to give
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2 2
a 2. 24 2 22 2 2. .2 94 2. 2.2 .2 2
= (@ el -Q+k G +k h

8 2
+I"2Q2k4G2-d—¢2- B kubzhsz( } gt )5
d

where
(2) ,.2 24°
R ‘=(

0k
TS
(R

2 (2)
- 02 Bfnd® . (rak G% + x°Ph)Q

+ RZlei¢ + R e12¢) .

= Re 22

20

in which

2, 2 2, 2 2 2 Z
R, = -[@7(x7+1) -k (6T+nT) Py + (MQKG - 1k"bh)Qy,

2

2 2 2, L & 2
Ry,= -[Q7 (4k"+1)-k (G +h )] P,, + (2rQk G - 1k"bh)Q,, .

To avoid secular term, it requires that R21=O. Then the

solutions for (39) are

(2) _ 10 i20
B = b20 + Re (bZle + bzze )

(2) id 120
hZO + Re (ih218 - ihzze )

H

where b20 and h20 are undetermined real-valued constants,

b21 is an undetermined complex-valued constant, and

s -R22
b,, = .
22 [Q2(4K%+1) -k~ (%41 ) ] [Q7WE+]) -G AP R - thF b
2 2
. _ Qrq - (rQkx™G + ik~ bh) b, ,
21 iy o it

n _ Q22 - (2PQk2G+ik2bh) b22
- Q°(4k%+1) - k2(G2+n2)

In general



ol

(n) e imd

B =Db_+Re ) b e .
no m=1 nm
(n)

H

im¢
h + Be 1 §: h__e ;
no f= pm
The four sequences of undetermined constants

!Q(l)t Q(Z): "'5' 3 blon bzo, “ o 59 { hlo, hzo, c..} and

{b b21, 5% % } are to be determined by three constants

11’
which characterize the wave, say the values of B, H and

a3 gt ¢=O. and the requirement that Rnl=0 to ensure the

as

boundedness of the solution. Suppose Bl¢=o, H,¢—O and

%%I¢=O have the following expansions
| BI¢=o=b+a5(l)+a26(2)+... ;
Hl¢=o =h + a 7(1) + a27(2) sk
%%l¢=o = apgt LA,

1
Then blO’ bll’ hip and (5 ) are determined by the following

algebraic equations

. akdl

blO + Re bll =B ’

Re ib = i

11 8 ¢

(1)

th + Re ihll =Y ’

Bog =P »

recalling that hll and RZl are known in terms of blO’ bll’
(1) (2)

h10 and O . And b20' bs1, hyo and 0 are determined by
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_ ate)
b,, + Re (b21 + byy) =B

Re 1(by, + 2by,) =00

(2)

h + Re 1(h21 + h22) =7 ;

20
R31 =0 .
In general, bno’ bnl' hno and Q(n) are determined by
2 . (n)
b, + Re Z_:lbnm:' B ,
m=
n xn)
Re 1 ) mb,. =13( ‘
m=1
B, (n)
hno+Rej‘2hnm=7l ’
m=1
Bre1,1 =9 -
Both bn,l and Rn+l,l have real parts and imaginary parts.

Thus at each stage there are five algebraic equations to

determine the five undetermined constants, b o Reth

n 1’

(n)
Im bnl' hno and 0 -

Finally for symmetric waves satisfying the condi-

tions
B'®=O = sin@ + a ,
Hlp=o = © >
p=0
this corresponding to a choice of ¥=0, we may make B(n) a

(n)

linear combination of cos n, cos(n-2)0,... co%(b- and H
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a linear combination of sinn¢, sin(n-2)0,... g%ﬁ%g if n is

gggn , and Q(n) equal to zero if n is odd by requiring that
n n An n

Im2%1=0 for all n. Then B( )¢=F =(-) é ) and H( )¢=n =0

which show that B=sin € - a, H=0 at 0=, We display the re-

sults below for the first two terms.

[Q (k +1) -k° ][Q (k +1) -k~ cos e ]- r2n%x*cos®e = 0
Big =9 » Byy =1
FOk%cos 6
h =0 , h B e coi . ¢
10 11 0Q%(k“+1)-x“cos®e
boo = “Ppp v Py =0

[Q (4k +l)-kzcos 9}(2 - in 1)sin9-rnﬁﬁh:sinecose

i
b =
. [Q (b x® +1)'k.”0 (&k2+1)_k200329] 4T0°K " cos“0
T 2
B =0, By B e B Pagf18 @ - A %, ,008 8 .

“d 21 22 T 0Z(4x%+1) - XPcos?e

Using the first equation of (10), we obtain
(1) (2) .

o=1+4+aoc + a (o} .
where
il 3
c( ) = - Re Slle ¢ 9
(2) i2¢
o~ =-Re (S0 * Spe ),
in which 2
_k
sll = Q—'ZZ sin 6 »
_k 1 1,2
s _“62_(E + ghyy + byysiné ),

N

_ Xk 1123 .
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In general, G(n) is a linear combination of cosné¢,

cis(n=-2)¢ see. 0%84>if n is S3g°

For the transverse propagation 6= %, the above

results become

0% (x%+1) - x° =0 ,
2 2
k~+1 k +1
b = 1 N b =-——'2—- o b = §
i 20 Lk 22 4k2
2 @
8. =B . & =l . o zKta

which is the expansion of the solution discussed by Davis,

List and Schluter [6] .

For the longitudinal propagation 6=0, the above

results become

[0f (k2+1) - %% - Pof* =0

by =1 ,byy=0 , by, =0 ,
hy, =%l , hyg=0 , by, =0 ,
2 ;
_ e ~
Bag =0 20 38 7 P2 =0 o

2
which is the expansion of the solution o=1 - %az %? 5

B=acos¢, H= %a sin ¢ with.a?(k2+l)-k2(1+ %a?)?l‘wk2= 0

discussed by Ferraro [7] .
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4, STABILITY ANALYSIS OF PERIODIC WAVES
The governing equations for plasma motion in a mag-

netic field have been derived in PART II as

2 2 2 2
g oc++2 (B +H)=0,

at2 2 ax
92 82 92 r 62 1 2
(14) —_7(_—53 - 0 B) + =—(I"cos SH + cose B) =0,
ot &% ox
i 2
23—(§E—H - cH) + 8 (-|ﬂcos€9§—B - coszeH) = 0 .
2 2 . A et
at” ex ax

We consider wave motions which can be decomposed
into components that are periodic in space. Suppose that
there are three main components with wavenumbers kl’ k2
and k3 related by

k=% , k, =k +K , k3 =k - K

1 2

Their amplitudes have a magnitude of order 0(a). The self-
interaction of the component of wavenumber kn will produce

components of wavenumber Nkn wWhose amplitudes have a

magnitude of order O(aN). Then the mutual interaction will
produce components of wavenumbers NkniMkm whose amplitudes

N+M

have a magnitude of order 0O(a ). Therefore we may write

3
_ 4, an 5 3 knmx 3
o = o, + Re (éz o, + S € ) + 0(a”) ,

nm
(15) ik, x S sint
B =B, +Re () .Bpe ¥ + ) Bye 0)+ o(a’) ,
n= nm
1k-x o P
H= Re ( Hpe T Hype o I - 0(&3) ’

n= nm
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in which %% means summation over nm=11, 22, 33, 12, 13, 21,
23, and knm=2kl, 2k2, 2k3, kl+k2, kl+k3, kZ'kl’ k2-k3
correspondingly. Later we shall use k31=kl—k3.and

k32=k3+k2. Also in (15), o, and B, are real-valued con-

stants, which can be written as

_ 2 4
o, = 1 + a*a&, + 0(a™) ,
_ 2 4
B, = sin6+ a Bo + 0(a’) ,
Oy, » Bn and Hn are complex-valued functions of t whose ampli-

tudes have a magnitude of order 0(a), - Bnm and Hnm are
complex-valued functions of t whose amplitudes have a mag-
nitude of order O(az).

We substitute (15) in (14), and regroup terms

ik-x k
according to e 1 5 ei ZX,
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