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ABSTRACT .

A theory of two-point boundary value problems analogous
to the theory of initial value problems for stochastic ordinary
differential equations whose solutions form Markov processes is
developed., The theory of initial value problems consists of
three main parts: the proof that the solution process is
markovian and diffusive; the construction of the Kolmogorov
or Fokker-Planck equation of the process; and the proof that
the transistion probability density of the process is a unique
solution of the Fokker-Planck equation.

It is assumed here that the stochastic differential equation
under consideration has, as an initial value problem, a diffusive
markovian solution process, When a given boundary value problem
for this stochastic equation almost surely has unique solutions,
we show that the solution process of the boundary value problem
is also a diffusive Markov process, Since a boundary value
problem, unlike an initial value problem, has no preferred
direction for the parameter set, we find that there are two
Fokker-Planck equations, one for each direction., It is shown
that the density of the solution process of the boundary value
probvlem is the unique simultaneous solution of this pair of
Fokker-Planck equations,

This thecry is then applied to the problem of a vibrating

string with stochastic density.
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I. INTRCDUCTION

1.1 Stochastiec Boundary Value Problems

Almost all equations used to describe and analyze physical
situations are of course only approximations; in particular
they often contain parameters or functions which must be determined
experimentally, or they may be derived from assunptions such as
homogeneity or isotropy which cannot hold exactly. For this
reason there has recently been increased interest in stochastic
or random versions of these equations; the aims are to investigate
the errors made by using the deterministic equations, and possibly
to develop a more accurate theory through the modeling by some
stochastic process of a complex situation whose exact structure
we cannot hope to learn,

Some of these investigations have dealt with boundary value
problems and eigenvalue problems for stochastic differential
equations., The methods used have been classified [15] into
"honest"™ and "dishonest"™ methods. An "honest" method is one
in which the stochastic equation is solved for all allowable
values of the random parameters or functions, and then the given
statistics of the stochastic quantities are used to find the
statistics of the solution., A "dishonest™ method, on the other
hand, uses the stochastic equation directly to obtain equations
for the desired statistics. Since these derived equations are in
general an infinite coupled system, some closure assumption, which

most often cannot be justified, is necessary.
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For example, let 02_’ be a linear self-adjoint differential

operator, and consider the equation

{10 Aoty & %k und = O,

for 0<x41 with boundary conditions at x =0 and x = 1. Here
h(x) is a stochastic function. Equation (1.1) has been treated
[41 by a "dishonest" method as follows: Let G(x,S ) be the
reen's function for 4 with the given boundary conditions,
Taking h(x) =1 + 7(x), where M(x) is a zero-mean stochastic

function, the equivalent Fredholm integral equation is

|
(1.2) Wiy = )\Soﬁ(x,s\(\ + MD)W 43,

The expectation of (1.2) is taken in the form

cNumy = S G [ <umy + <pnumy) &S,

&)

By assuming that both ?\-‘ and "')(x) are uncorrelated with

u(x), this reduces to

|
TR o Py = & GOLT) <wmy 4.

Hence, under the above assumptions, the eigenvalues A and
eipenfunctions u(x) of the stochastic problem have expectations
equal to the eigenvalues and eigenfunctions of the deterministic
equation with 7(:c) = 0,

Higher moments of wu(x) and A\ can be obtained by taking
moments of the iterates of (1.2). The result is of course an

infinlte coupled system; several truncation methods for such
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systems have been studied [12,22].

"Honest" analyses of equations such as (1.1) have included
the following techniques: If %(x) is almost surely bounded,
then elementary comparison theorems give bounds on the eigenvalues
[10]; classical asymptotic estimates for the large eigenvalues
have been used f3,5]; as have variational descriptions of the
eirenvalues [3]; and by taking h(x) =1 + «-7 (%), a perturbation
expansion in the parameter « yields approximations for the
eigenfunctions and eigenvalues [3,4].

A somewhat different "honest" method is the use of "stochastic
Green's functions" [1,2]. It is assumed that the response y(t)
of the system under consideration to a stochastic input =x(t)

can be written in the form
400

yik = &\\N‘f&‘...,t\ %0 &t

=co
where d,(E,... are random parameters. When the process  x(t)

is stationary and independent of K33 yeaey the spectral densities

$, and ¢1 of {x} and {y} satisfy

4 0O

ﬁ%(Q\ = &KH(%.¥3¢Q(Q ds

oo
The kernel KH’ called a "stochastic Green's function," is the
spectral density of the function h, Unfortunately, KH is
seldom easy to determine. Also, this approach is of course
limited to linear systems.

One way to bypass the closure problem of "dishonest" methods

is the use of a generating or characteristic functional Y161.
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For example, if we are interested in

Zumy + hmuw = %00,

where g(x) 1is a deterministic function while h(x) is stoctastic,

then we can consider the generating functional
FLsml = < eoxpls, + o, .

Then we can show formally that

§E S ¥
o T & ST
Z 3[w® STM I e,
S . .
where <gxg denotes a functional derivative, However, functicnal
differential equations do not seem to be easy to solve (sce,

for example, [18], in which an approximation which involves only

first-order functional derivatives is treated).

1.2 The Initial Value Approach

Now the solution of a boundary value problem for an ordinary
differential equation is also the solution of an initial value
problem for the same equation — but of course the initial values
are not known a priori, This idea is the basis of the well-known
"shooting method™ for the numeriecal solution of boundary value
problems and has also been used to prove existence and uniqueness
for solutions of some non-linear boundary value problems [3].

The treatment of boundary value problems via the theory
of initial value problems has often been successful because the

theory of initial value problems is well—developed, Because a
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great deal is known about initial value problems for stochastic
differential equations whose solutions are Markov processes,
we might hope that a theory of boundary value problems for these
equations could be constructed by utilizing the known theory of
initial value problems for Markov processes., This approach is
the one we shall take,

Since initial value problems for stochastic differential
equations are customarily discussed with the "time" t as the
independent variable, we shall consider stochastic differential
equations on a time interval, say t € (0,1}, with boundary
conditions at t =0 and t = 1, Of course most boundary
value problems of interest have "spatial® independent variables,
but our choice will make the relation between initial value
and boundary value problems clearer.

Because we shall make extensive use of the initial value
theory, we summarize its main results at this point.

A stochastic process x; is called a Markov process if

its conditional distribution functions P satisfy

P T et - een 3T

™Min, L‘Mw\

\x\‘.\_. o ke 5 T, B )
(1.3)

= P(r:\s\'.\—-m\'\’n = .; \_‘\v\;,\'*.w\lq\\.\*‘w\.,*"\'w\,

fOI‘ &ny t1 <t2< s0 e <tm<tm+1<. eoe <tm+n' Here the [_L

are sets in the space wherein Xz&i} takes its values,

One consequence of (1.3) is the Chapman-Kolmogorov equation



&

for the transistion distribution function P(T",t| :,w), t>T :

(1.4) PAT L 1%, &) = S PIT 4,1k &) Pldxg, © < ki B 5

for any t.<t,<t,. Further, if we have a transistion distribution

1 273
function which satisfies (1.4), then we may construct a consistent
set of conditional distribution functions satisfying (1.3), so
that (1.4) is essentially equivalent to (1.3).

If we have a markovian transistion distribution function

P(U ,t| 3,T) which has a density p(x,t| %, T) and which

also satisfies the diffusion condition

(1.5) Pr(U&,- 3Wl2cr0ls,x)—= 0 as +—T

then it can be shown [21,23] that the transistion probability

density p(x,t| 3, T) satisfies a pair of partial differential

equations:
3 \ _
5% b —Ezbk‘(i"wﬁw i‘li-,ﬂ
and
-~
i% - —\2—_ T_ ai@x‘[b"ﬂ“ *'\PW z 3 ,;(‘5_‘*& ?\

|
These equations are called, respectively, the backward and forward
Kolmogorov equations; the forward equation is also known as
the TFokker-Planck equation.,
The coefficients in the Kolmogorov equations are the incremental

moments of the process xg_c,tl 2



Consider now a vector ordinary differential equation with

independent variable 1,

(1.6) o= e+ FONW

and initial condition

e o= B,

Here N(t) is gaussian white noise with the formal properties
EW(t)) =0, E[NM)N(<)] =20 $&-T), where D isa
constant, The concept of white noise can be made precise in
several ways,

Usually we say that (1.6) is a shorthand notation for the

integral equation
& X

(1.7) L) = 3 4 &f&(ms\,s\ ds & Sca_ms\,s\ AW(S)
T T

where %w(t)} is the Weiner process (whose formal derivative
has the properties of white noise). The last integral in (1.7)
is called a stochastie integral and has been given precise
definitions by Ito (7] and by Stratonovich [22]. From (1.7)

the method of successive approximations shows, under certain
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regularity conditions on the function £ and g, that there is
a Markov process ix(t)k which satisfies (1.7) and has continuous
sample paths with probability one [7). - Further, this solution
process is diffusive.

Then we immediztely have the Kolmogorov equations; the
inecremental moments which appear in these equations can be
caleulated directly from the stochastic equation (1.6). Finally
it can be shown without further assumptions that the Kolmogorow

equations with the initial condition
?(L,t\"}_ﬁ,\ = S${-3) at =T

have unigue solutions EjT]. To complete the theory of initial
value problems for some specific stochastic differential equation,
we need only solve the appropriate Fokker-Planck equation.

Therefore, if we are to develop an analogous theory for
boundary value problems, the answers to the following questions
are crucial:

(1) Wnen, if ever, is the solution of a stochastic boundary
value problem a Markov process? Since this solution clearly must
depend on its value at a time in the future, namely t =1, it
is not obwious that the solution will be markovian.

(2) 1If the process is markovian, is it diffusive? That is,
does its transistion probability density satisfy the appropriate
Kolmororov equations?

(3) 1If the solution if markovian and diffusive, how do

its Kolmogorov equations differ from those for the initial value
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problem for the stochastic equation under consideration?
Specifically, then, our aim in the following is to answer

these three questions.

1.3 Notations and Conventions

For simplicity, we shall worlk with probability densities —
that is, the assumption or proof that some distribution exists
will also mean that it is absolutely continuous with respect
to Lebescue measure.

Any intecral written without limits is over eudlidean space
Rn; the dimension n will be clear from the context. Ve assume
that all interrals are sufficiently well-behaved that the order

of interration in multiple integrals and the order of integration

and differentiation may be interchanged.
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JI, THE GAUSSIAN BOUNDARY VALUE PROBLEM

2.1 The Boundaryv Value Density

We begin our discussion of boundary value problems for
stochastic differential equations with the special case of a
gaussian process. In this case we can explicitly display all
the quantities of interest and find the equations they satisfy.
Further, the equations raised in §1.2 can be reduced to a
set of matrix equations,

Let
n

43
Z = ZQJ\KUC\—G v dw=1
e
be a linear n-th order differential operator with infinitly
differentiable (deterministic) coefficients d'} on the
interval t ¢ (0,1], and let © be some set of functions

(n=1)
C

in Y_O,‘]-\ determined by linear homogeneous unmixed boundary

conditions at t =0 and t% =1 such that
Ly =0 5, ye @,

implies

yiw = o , teflon]

Let h(t, T) be the Green*s function for oL with the

boundary conditions Q :

Wk, = Sik-1),
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where h(t,T) € & for each 0 <T <1 except that h(t,<T)
) =
is only in C [0,<T) and ¢V (< ,1].

Then the system

Lry = N , xe @,

has the unique solution

\

(2.1) e = S Wik ) N &

Here N(t) is gaussian white noise with the formal properties

E (N(t)] =0, E[N(t)-N(=)] =2D S(k-T), Of course (2.1)

is only a formal solution, since the intepral will not exist

as a Lebespue-Stieltjes integral, To be completely rigorous,

we would need either to define a new type of stochastic integral
(the Ito [7] and Stratonovich ([R2] integrals are not appropriate,
since the upper limit on the integral here is not t); or to let
N(t) be a process with small but non-zero correlation time and

to let the correlation time tend to zero. Either approach

will of course yield the same results as the formal calculations
we shall make; it is only when a white noise process appears as

a coefficient in the operator that care must be exercised (ef. [6]).

From (2.1), which we call the boundary value process, we

easily obtain the means:

IRFUS)
E{_ —m] 2 O 5 - = OfWlw-gy

and the covariances:
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Ai' A Aﬂ KL
a &~ a4

quE

‘ .
~ 4
_ 2“3 2wk BRSNS AN ,

2+~ 5 Ly = 0=,
oK

The probability density pb(z) of the vector process

-
X = (x,%%.,...,éligh) is then the normal density with zero

mean and covariance matrix K, = (kij)' We shall assume that
Kt is non-singular for 0<t<1,

For example, the boundary value problem

% o= N
(2.2) ) WOy =R = O
has covariance matrix
0= Le-N{2e-10/3
K = 27
= £ (k- D(2-D/z ok vy

with

dok TR = #0q « Sy

Now this probability density is just the quantity we would
like to find in all cases; from it we can calculate any moment
desired., However, the above calculations can be carried out
only in the gaussian case, Ideally, we desire an equation which

the probability density of the boundary value process will
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satisfy —-- and if the boundary value process were markovian, the
corresponding Iokker-Planck equation would be the equation to
consider, In the gaussian case, we can proceed in reverse —
that is, find the transistion probability density of the boundary
value process, determine whether or not it is markovian, and

then find its Fokker~Planck eguation.. The boundary value density

pb(z) should also satisfy this Fokker-Planck equation.

2.2 The Boundary Value Transistion Probability Density

The calculation of the transistion probability density
of the boundary value process (which we shall henceforth refer
to as the b.v.t.p.d.) is straightforward. Let x be the n-vector

M-

(x,%i_,...,ézigg ) at time ¢, and let Xy be this vector at
time t,< t. From the formal solution (2.1) of the boundary
value problem, we obtain as before the mean and covariance
of the 2n-dimensional process (z,;o). If pb(z,zo) is the
corresponding normal density, and if pb(zo) is the boundary

value density evaluated at time +t_., then Bayes' law gives the

O’
bovitapad. p;(g ZO) as#

Pold, XY

?J‘_ L LQ -
b B A2 Py, (o)

The details of this calculation are in Appendix A.1;

p; is of course gaussian, and we find that its mean is glven

by .
ELXIA] = MKi o

* The "+" notation means that pg is the density for transistions
from time t,5 to time t for >

to.
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and its covariance matrix by
(2.3) L= R — MR ™

Here Kt is again the covariance of x with itself, and
M= M(t,to) is the covariance of x and Xqe

Now setting A = ()\‘;\) =k, we have

to:—{O

Elxlx 2 m“\

S (1\3“2‘ \‘““*‘\ ) We ) dc
o 1=©

e & as a function of t,

and similarly for the expectation of the derivatives of x.
Thus, E{x| :_l:O] satisfies the appropriate boundary conditions.
(Although if we have evaluated the integrals giving the elements
of M(t,to) for t>tgy, then only the boundary conditions at
t =1 will be satisfied by the resulting expressions.) The
same is clearly true for the covariance matrix L.

To show that the boundary value process is markovian, we

need only show that p:)' satisfies the Chapman-Kolmogorov equation
A- & A
() P (RIR) = S P (AR P (R lR) dAc

for any t3<T < t. It is easily shown that (2.4) will hold

if and only if
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-\
(2.5) Ml @) Ke = Mibk) Mit,e) |, ko<t <k

Letting Q(t,%) = M(t,T)KI' , (2.5) becomes

(2.6) Qle, ) Q\T, %y = Glk,k,)

Now Q(t,t) = I, so if the matrix

= . ol ' ™M A

is independent of T., then Q(t,T) will be the fundamental

matrix solution of

2& _
R——EEQ . Q\ = T

and (2,6) and (2.4) will hold.
In fact, (2.6) does hold; the proof is in Appendix A.2.

There we also find the the elements @,_-\ of % are given by

Q.. = SM\\I,'-\ sy & = olNin-2)
J-“ (an 3

e . ' h = -\
A\ & B\, “

where the Fi are determined by

n-l 4
. 3 Rk 0
L = 20 — = o(Nln=-\
K=o GK K-\ B"‘-\o -\ ' \
and a2lso satisfy the relation
-\ K
é h\'k' 1'\‘0\ .
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For example, for the system (2,2) we find

B =3
Fo= T » Bv: o
and since
\‘\\'&..“L‘\ = {°K¥_—'\ b} Jﬁ'..>'k'-o Y
we have
! K
> Wk L) -3
e e e . k) = .
i.:‘ P i W - &) o -io)

2.3 The Upward Equation

Now if the boundary value process were diffusive, then,
being markovian, it would have a Fokker-Planck equation [211.
Roughly speaking, a diffusive process has no jumps in its sample
paths; the precise condition is given by equation (1.5). Rather
than verify the diffusive nature of the boundary value process,
we shall instead show that pz satisfies its formal Fokker-—
Planck equation. Since the diffusive property is only a sufficient
condition for the validity of the corresponding Fokker-Planck
equation, this approach will show that the boundary value process

is what we shall call weakly diffusive: +the appropriate Fokker-

Planck equation holds.

The formal Fokker-Planck equation for p; has the form

b?.\. =\ ,B-;_ MN=\
ks = A - N | .P«- - ) (a: A
S K. - g;oévu_'}n:\ 1 bw AZ’O}XL h?\o}
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where (xi) = x and the a; and bij are the incremental
moments of the boundary value process X.

We can calculate
these moments explicitly:

. -\
a(xa) = O [ M OK - TR
= M ML+ A ) =Mk -
Ao % Kk LS
_ bW\Uz,"Q\ ) K-;_)}_
>t b o
= ) x
As we have seen, ‘?.i.‘\ = %uin,4 for i 3% n-1. Thus

except for an—1 the incremental means a, will be the same

as in the initial value Fokker-Planck equation:

Rk = B lig . A= DUn-2)

The matrix B of second incremental moments is easily

found from the formula (2.3) for the covariance of po

Py *
B o= &;»OAA_'{_K*_...Q"M\HIAA)K_; M\ua,k\-‘-

T M (0T, Ml &

— (% EW\‘L M kv s &Y

— M an, 0K (X))
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Since M(t,t) = Kt’ this becomes

B = M ‘E_K‘M\km,um\ - M\uu,u\Q an.u‘\

A—=o0

2 2R - 2 Mt
2T sl ok Tak *
The only non-zero element of B is b . Because
-1,n-1
=t n =\
2 . 2p 2 MO Y i,
5 Y R K20
> i, W <
ST M T 2D 30—.— - :L;_D oy 1K) Vg

=)
and since the jump in B__ ALY across t = is 1, we have
2 &M

B‘f\--?."l'\-\ = ZD

Trus we have the formal Fokker-Planck equation

a9 el — ERW
2.8) %o _ ° % iy © .
( ) B )L = D BY\,‘:\_‘ Z‘bxk*\ 37\\:, - .a.’\“-‘ K_( .(9_‘ L} P\r:. -l b

where the vector ¥ 1is the last row of &\\), and has k-th
component = oy W) + (B¢W) , kx = 0(1)n-1.
For example, the system (2.2) yields

IR ER)
((?1 1—‘-\ = (\*k.\t - (\_,&\

To show that p; does indeed satisfy (2.8), that is, that

the boundary value process is weakly diffusive, we note that
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since p; is gaussian, we need only verify that the first and
second moment equations implied by (2.8) are satisfied by the

moments of p. . ese equations are easi o ne y integration
t.f;Th 4 1y obtained by integrat

of (2.8):
(2.9) = ELRIXG] = a%jga?;mmc\r_\_ = $WElxIN,]
and

(2.10) €Al R = B + T-ElRR O] + % AN

-2 3

Of course, (2.9), being equivalent to the markovian nature

of the process, holds, Since by (2.3)
\ =\ - % T
ELaXin,) = K - MY ™M+ MK (X2 YK M
and since
ML LY

o
8 2L

_ [ s 5
[ 2o v 2 l“\&,‘t_\]

’C:t
= ZLMED) e M|
¥ T=t P Ll N

D 23
+ 2o My 2 oM |

= B % 53\(*_-\-\(*_3;?1—

=4



20
we also have (2.10) and conclude that the boundary value process
is weakly diffusive,

Now there are two essential questions we must ask about
the boundary value Foklker-Planck equation (2.8):

(1) Is the boundary value density Py of 8§2.1 a unique
solution of (2.8) and the appropriate boundary conditions? If
so, then we could use this equation to determine all the properties
of boundary value processes, using the same techniques that are
applied in initial value problems.

(2) How may we find the incremental moments that appear
in (2.8) without knowing the transistion probability density
a priori? This question will be answered in chapters III and
IV, TFor the present, it is interesting to note that the only
difference between (2,2) and the initial value Fokker-Planck

equation for the same stochastic differential equation is the

conditioned mean of the (zero-mean) noise process N(t)., For
a boundary value process, then, the conditioned mean is not an

average across all samples, since the conditioning variables

contain information about the samples under consideration.
However, the conditioned variance of N(t) is apparently
unchanged, for it yields the same second-derivative terms in
the Fokker-Planck equation,

The answer to question (1) is in faet no: (2.8) with the

appropriate boundary condtions does not uniquely determine pb.

As before, we need only consider the moment equations, which
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are just (2.9) and (2.10) without the conditioning.. Since

K., the actual covariance of py, satisfies (2.10), we set

N= BT — K

Tren we have

(2.11a) -C‘;\‘—*‘EKL} =  $w elx]
and

N
(2.11b) C—i— = &N <+ NE'

Thus p,, which bas mean zero, will uniquely satisfy (2.8) if
and only if the two equations (2,11) with the appropriate
boundary conditions have only the trivial solutions.

Unfortunately, the general solution of (2.11a) is

Elr] = QWw,o) e,

for an arbitrary vector egj. As we have seen (82.2), Q(1,0)20
will satisfy the boundary conditions at t =1 for any gp;
and tre boundary conditions at t = 0 will of course not
determine L= uniquely (unless we have the degenerate case
where the houndary value problem is actually an initial value
problem),

In fact, we could satisfy many boundary conditions at t =0
by choosing g4 appropriately. It will turn out that p; and
its Fokker-Planck equation (2.8) are independent of the conditions

imposed at t = 0 (see chapter IV).
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Also the general solution of (2.,11b) is

N = o. ME,o ML, o)

for any constant &, This expression matches the boundary
conditions at both t+ =0 and t =1, since M(t,O)T = M(0,t).

Therefore we shall need more information, preferably another
equation for Pys in order to determine the boundary value density.
Up to this point, we have not taken into account one of the
essential differences between boundary value and initial value
problems: For a boundary value problem, there is no preferred
lime direction. Hence, it should be possible to carry out all
the above analysis for transistions from time tO to time
t for t0> t.

For this reason p; will be called the upward b.v.t.p.d.
and (2,8) the upward equation; there should also be a dovmward
equation, that is, the Fokker-Planck equation for the downward

bev.t.p.d., which will be denoted by p; -

2.4 The Downward Eguation

We proceed as before, with the downward b.v.t.p.d. given by

R (2l = Pulb, 2o for ty>t.
To o)

Then Py has mean

25 T =y
e = M) K %,

(-]

and covariance
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FY X -1
L o= Ky - Mokl X M)
and satisfies the Chapman-Kolmogorov equation

TNk = S?;u\_\m B R\ 8a) dfn & wtE <,

From this we obtain in the usual way |23] the Fokker-Planck
equation for p,; :

_ 2%y - L“_\ S‘ S B =) i—(& ?_j
whe ZZT‘-.DQFT«W‘*?“\ - B, e,
where
o \
=S5 = 0%y = N—so B EY_E{_,,‘E*_\EJ;L—{,
B = (o) = ﬁi"\‘c —\A—-E\_K\Et_a’\’_‘h\\ﬁ&,&"La\ﬁt‘l,
Defining
Ty = 2o

=\
}
L (M\ko.ﬂ )

~

we find that the elements “Pj{ of & are given by

~

Rug = = SBumk ko= WG,
Also as before, the matrix ,ﬁ, has only one non-zero element,
which is

~

\O'Y\—l,'v\-.\ = Z0.

Then the downward equation (which is an equation of backward
parabolic type) is



ET’\: 'é)L L% b '\ <
—_— — — ’D ._~_\?_. =i % i 'P\o I 73 . i
(2.12) Sy 0 B, Es Lk SR, * BT\Y\-IXK&E—”&\P\D-\

2

where ‘© is the last row of & .
For example, the system (2,2) yields

~ ‘5 ¥ “5
(2, %) X +

It is clear that we also could have obtained (2.12) by
finding the upward equation for the system produced from the
original stochastic differential equation by the transformation
t —»1-t and then inverting this transformation.

Of course (2.12) does not have a unique solution any more
than the upward equation (2.8) did. However, they do have a
unique simultaneous solution, as is easily seen:

The moment equations from (2,12) are, corresponding to (2.11),

(2.138) vl LA N SR P
A_N = - N'N = N'?E;T
(2.13b) S &

ESY

Since clearly ® % - @ (® is singular at t =1 and
at t = 0), the only simultaneous solution of (2,11) and (2.13)
with the appropriate boundary conditions is E[x] =0 and

N = 0, This means that the unique similtaneous solution to
(2.8) and (2.12) with the appropriate boundary conditions is

Just Pps the boundary value density.

2.5 Summary of the Gaussian Case

The results obtained from consideration of gaussian boundary



i
value processes may be summarized as follows:

(1) The boundary value process is markovian and weakly
diffusive,

(2) The boundary value density p, is the simultaneous
solution of two Fokker-Planck equations, an upward equation
and a downward equation.

(3) The upward and downward equations are parabolic equations
of forward and backward type, respectively. They are identical
with the corresponding initial-value Fokker-Planck equations
except that the conditioned mean of the driving noise process
is non-zero.

Our aim is to show that these three statements also hold

in the non-gaussian case.
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III., FIRST-ORDER FINAL VALUE PROBLEMS

3.1 The Final Value Densities

In searching for a way to extend the properties enumerated
in 82.5 to non-gaussian boundary value problems, it is natural
to consider the simplest possible case. As we have noted in
<§2.3, the gaussian b,v.t.p.d. p; and the upward equation
which it satisfies are independent of the boundary conditions
at t = 0., This suggests the study of what we shall call final

value problems: a Markov process L’Et} for t increasing,

t<1, but with boundary conditions at t = 1. For simplicity
we treat first-order final value problems.

Consider the system

(3.1) X & S"()Q = N\ ,

for t<1, with the final value

W1) = %,

The final value density pf(xt) will of course be just the

transistion probability density for the process in reverse
time,

(3.2) Y- R = NW,

That is, if a(y,t| yy) 1is the transistion probability density

for (3.2) with t>0, then
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Bl = 00 -xy,

However, our main interest is in ‘the transistion probability
density p; of the final value process., Letting p(-|- )

be the indicated densities for the process (3.1), we have

(3.3) PORIN) = PORINL %) o k> &,

We assume that (3.1), as an initial value process, defines

a Markov process.,* Then (3.3) becomes

PO =11 PO LR vy )
PUA, -t %y )

(304) P;- (X{.\’\to\ =

Here p(x,t| xb) is the (initial value) transistion probability
density for (3.1); we note for later use that is satisfies the

backward Kolmogorov equation

z

P
PRkt = ‘D%% — SO S

as well as the Fokker-Planck equation

- o
(3.6) = =D 2e 2
SCPOOMI = DR+ R | §ooe] |

The Chapman-Kolmogorov equation for p; follows immediately

from the representation (3.4), since for to‘:T:<Lt,

* This has been proven only when f(x) is essentially linear —
i.e.,  |f(x)] < (const.) (14x2)%{7].,
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_ "D(v\l\‘f\-\h ’
¥ PTG ) PRI el IR iy
T

T Dy T k)

e
= '\jg‘("\t\xto}.

Hence the final value process is markovian; we must now find

its Fokker-Planck equation and show that the process is markovian.

3.2 The Upward Equation

To find the formal Fokker-Planck equation for p; (which
will be an equation of upward type), we need only find the
incremental moments of the final value process, Because we shall
later make use of uniqueness theorems for the solution of
Fokker-Planck equations, it is not sufficient to find any
parabolic equation which p; satisfies; we must construct
its Fokker-Planck equation,

The incremental mean is

p\'w-\b

\
ok, L) = A0 T\:—‘—*-\-Au—xt\*t\

_ X \ S%?\%)MY‘\ p\x.,\-t-a\ﬂg

A—o & P, V=X
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; Pk, 1 -%\S) B
s £ ( S‘% PS8 TR 4 Y‘E

- s
) éTth“‘\ \s A3
Ll ey 8"- i3, 81X Bk, 1= N '

Thus we have

Y | SLSAERARY _ \,\%
ax,y) = Ko & —Ei Sg \)(‘S‘Ml\ ?(1\'\-L\‘L\A%
(3.7) o O A=)
PR . i
P(Y\h\—*..\i\l\\

To evaluate this limit, we need a small-t expansion of

p(x,t\ xo). For this purpose we note that p satisfies the

integral equation L

(3.8)  POLAIRG = T(%-%o &) xg Sru-a,L\-w\%ﬂ_m\p(z,«\nﬂéigw,

o

where ' 1is the density of the Weiner process,

rn = eel- %o/ wot)

The integral equation (3.8) is related to the parametrix method
for solving parabolic equations (see [8,9] ) and has also
appeared in the theory of Weiner measure Kﬁ@]. It is clear that
the Neumann series for (3.8) will yield a series in t.

We have

L
PG = Tl-Xo,A) +L§r(va,&,-ﬂf.—i—\g(z\?(%-x.,,crﬂésA«

4 O
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Integrating by parts, N

POLEINGY = P (x-Xo, &) * %& k\"(x-?._x_-ﬂ (D) D3 -%, TV d3 T
+ Ol

Upon using the relation

CI"‘\'\"\-Y\o G"‘L )

Pl PIpda ) = Plen i TN~ =25 » 15

we obtain
o
(3.9) PO = TOx N+ L2 [Pien, ) a0
1+ o\

where

QR L) = & %5\“5 T (5 -(en + 00X, ’t.t,h-n]\ 4% dx

\
= fa N+ OW).

Substituting the approximation (3.9) into the formula

(3.7) for the incremental mean, we have

PO N=L D)

PN L= LI 43 ‘*%

afk L) = M—‘-\E TS =%, 4)

A—»o &

' = ?(\k\,\—&\i\
¥ i‘i‘“o S‘s S;;X&mﬂ'ﬁ"- d\?u.,\—km o

%‘ ?W\\,\-'LW\\
p(‘l\h\- LY

¥ %
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AR, ) = &Q':)w; _LKS PN -\ E) — % PO N -EAK)
PO, V=R

T‘ (% ‘Y‘;ﬁ)ég

~ L &MDS %—XE PO A -1 8]

PO, V-2 ) V=5, S5

)
A 5o _-BT?(\\‘\-*‘\‘\ /?(‘&“ \ -\'._\‘L\

)
_ _5_%_[*‘ ‘3(‘1\‘.\-’&:‘\’\\] o \ 3= m %, a) 4
PO, =R b=e) " s §

L
'\‘— Z oY RS ?(‘ﬁl,\—t‘l\‘l . L

PO, V=L | R) u—»ogg’:q T3¢, 0dg

o
— 4 gz‘_hp(x\,\-tml
PO, L=E\N)

A S-'a_\—:l‘k p(‘k.,\-t\‘&\]
'P(‘Kt, V- IR

L

= A [ 5
PO, -1 O S P -
o)

420 2 P, L -k
PO, L -2 AN

- £
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S
o 1% \-t‘\\k\

AA) = =zp =2x T — LW,
O, V=

since the expression in brackets at the bottom of page 31 is
just the Kolmogorov equation (3.5) for p(x1,1—t X) o

For example, the linear final value problem

o

Eex = N L bl K = %,
has incremental mean
L a2 ET A\
2 P“*\ ~h e ¢ )e ¥
alh,k)y = -Zpb — T
| - e ¢

2.@(\-*3
£ 23 ”
= e SRR ¥ S FU- —plny ™

The evaluation of the second incremental moment proceeds

in a similar manner:

\o()‘\,iﬂ = s J—'EK.”‘U.L”*‘\:\-LW‘&.]

A—>op

I ¥ A P, V=t =81 E)
Ao A {&s’ pis, 8 PO, V=51 4% -

oy Nossia \
& A—>vo O E“Kkm***_\‘fw]
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b (%, 4) = Soosan A X X 2 [y, % ~ANE) 1}
] Y __‘k
Loy S P -
P, V=R
s Bk XZ’b S Pl AR S(m}
PO, V- AR

= L \ S S PG — X Pk, -
=~ ‘ : T (3-x,0)43
ik o P 0, V=1 '

2T (3-%,8) oy, 1 -11%) is

)\..LAM T
v S0 h_wgg PO, -RIT)
33 ?("‘|'\—*—k\\

op

D
Y Se e - AR SR e 4 2x M

- ?—E—-(Y\z?\ /p — -‘;(\Q%(f?\/‘)

~
+ X g% _4—’\31\23;—/? s 24 e

[ ¢
- T [o3R - f3E v )
+ 2T

= 29

gince once again the expression in brackets is the Kolmogorov

equation (3.5) for p = p(x,,1-t| x).
Therefore, the upward equation for the first-order final
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value problem (3.1) is

Pl - ’th *]

el RN >
2% v TSUM‘?‘DM \ng.

(3.10) e S PO, =R
It is easily seen that the representation (3.4) for p; satisfies
(3.10), upon taking account of the equations (3.5) and (3.6).

Thus the final value process is weakly diffusive,

Also, we note that the term

20 2P, 1= [ etk 1=k

can be intepreted as the conditioned mean of the white noise
process N(t), and that the conditioned variance of N(t) is
the same as for the initial value problem, at least insofar as
it affects the Fokker-Planck equation.

We note that the term we have identified as the conditioned
mean of N(t) vanishes at any point which is a relative minimum
or maximum in x of p(xq,1-t| x). This observation allows
us to make a further interpretation of this term:

Consider a process ixkl in decreasing time t<1 starting
from x4 at t =1, Suppose that all samples pass through
some point x,  at time t. Then if we consider {xi} as a
final value process in increasing time, the expectation, conditioned
on %, of the zero mean process N(t) will be zero, because
the expectation will be over all samples. Also, if no samples
pass through Xy at time t, then the conditional expectation

of the noise will again vanish, since in this case the conditioning
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set is empty, Therefore the term 2D- Pk, A is
2 0, V- k)

seen to be the generalization of these situations to the case
wherein more samples pass through some points than through
others,

We now have a procedure for finding the upward equation
from a representation such as (3.4) for the upward transistion
probability density. Thus we are prepared to consider two-point

boundary value problems.
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IV. SECOND-ORDER BOUNDARY VALUE PROBLEMS

4.1 The Boundary Value Process

In chapters II and III we have obtained several results
which we expect may be true for stochastic boundary value problems
in general, and we have developed some methods for verifying
these results, We now consider a second-order stochastic
two-point boundary value problem,

o=y

{4.71) o<t <« |

\5 =~ % (‘k\ L{_\
with the boundary conditions
(4.2) REOY = %o, W) = X,

Here {_zﬂ_} is an n-dimensional diffusive Markov process; we
take a fixed initial condition 2z(0) = zy for { 51;7‘ so that
f(x,gt) will be, for each sample of "&t} , a given function
of x and te¢ (0,1]. As usual, we assume that (4.1) as an
initial value problem defines an (n+2)-dimensional diffusive
Markov process X(xt,yt,_gt)} . Let X, = (xt’yt,"?'t.)’

Our first requirement is that (4.1) with (4.2) shall have
unique solutions for each sample of ? gb} ¥ The simplest
condition to insure this is [13] that =3~ $(MZ) be jointly
continuous for all x and all t ¢ [0,1], and be non-negative

L
there, If %f«; is jointly continuous for all x and te& {0,1],

% Actually we only need unique solutions for almost all samples.
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then [17] it is sufficient to require §—f> - W ¢ If
f(x,z) = g(z)-x + h(z), then a sufficient condition for uniqueness
is g(zy) and h(gt) continuous for  t € {0,1] and either
g(zy) > =T or -n'wty glz,) > ~(n+ N\ Tt for some
integer n, for all t ¢ {0,1].
When we do have unique solutions to (401) with (4.2), then

the boundary value process is just the unique solution of the

integral equations

\‘t = %, * J(J\_Y\\—lo .\,&‘ln‘t—l\ ";(\&T—'i’-L\AT‘]

L
v (o gike, 2 de
\ t
\j.\_ = X, =%, ¥ &“—"‘\ &(*‘L,?_:-_c\ét'(, *S%(\k‘)éb\‘\-{’

(assuming that these integrals exist and are well-behaved).

In particular, for fixed x5, x4, and 2, yo will be the

random variable
}

No = M=% + Skt—ﬂ T, 20 do

&)

4e2 The Boundary Value Densities

Let (4.1) with the boundary conditions (4.2) have unique
solutions, Then the density p(yo| xO’xH’EO) will exist, and

for 0<t<1 we will have the following relations between

¥ In (7] 1t is assumed that f(x,zy) is infinitely differentiable,
but only two derivatives are need for the proof of existence and
uniqueness given there.
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the indicated densities

POX s No |l Ko Koy Bo) = ‘P(Lk,\\_":.o" %) Pl\ﬂo\\f\o,*nq_'—_ow

= plh N k). piYe ke, %y, &)
P(y\‘\l‘-o\

= ?U“\Lt\ P(_\‘:b\éb ?‘\&"\#\%\f\‘léo\
=10 SR . PR

where we have used the markovian nature of (Et} « The density

Py of the boundary value process is of course just the marginal

density
Pylly) = Svths.m\%o,*\.iﬁ 4,
Therefore
\\ﬁo 7\\ %:o)
(4.3) R (% - m.\m-S (R \ve Yo, & Pl s
‘o k.\ P L 'P --*.\ \\5 3 —-0\ ?(‘lq\y\o.‘\sn,?o\ jo

Now (4.3) will also hold if we replace X, by the

2(n+2)=vector (;t,_r,to) for t>t,. This allows us to find

+
the upward b.v.t.p.d. pb , 8ince

‘P\o(i\_\}"\-o\ —— ‘P“"\"\'L“L,"a
P (b )
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Now

P\all&"t- ) .\E_,‘_o\

Il

_‘,
Pb (LL\.Y_‘-X_O\- Pb“&*-o\

POMAIRLY pUR g 1X4)

. SP(}_to\\ko'jo‘é')\?(\(a\\ko'y\\,i_oﬁ c\

POG\Re Yo 2 e

Using the representation (4.3) for pb(zto), we obtain

(4-4) BU Rk = POIRO PO
PRV R L)

which has exactly the form of the corresponding expression

(3.4) for the first-order final value problems. In particular,
p; is independent of Xq and 255 the boundary values at
t = 0. In fact, (4.4) would have followed immediately (by the
same argument that led in 33.1 to (3.4)) if we had known
this a priori. Further, the Chapman-Kolmogorov equation is
again immediate.

We shall also need the downward b.v.t.p.d pg ; here
there are two final conditions, x(0) = %, and z(0) = Zo
to be met. Letting q( - ) be the densities for (4.1) in

decreasing time,* we obtain

* Although reversal of the sense of time in a Markov process
yvields a Markov process, the process in reverse time does not
necessarily have a transistion function. To obtain the existence
of the densities q in our case, we may either apply our usual
assumptions to the stochastic differential equation (4.1) in
reversed time; or we may note that the existence of the densities
p implies the existence of the transistion distributions for

the process in reversed time [19].
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(4.5) TP lry) = gc““".io\it\_“9*“-\01-,*5.‘3;3 A0, %, \xox..t.ﬂ;\ju\ \
, FMe, Z M N, 2N T T

and for t<t0,

7 (x R0 B 1) TR )
q (No, 2o\ Xg)

(4.6)

Clearly p'b' is also markovian.
To obtain the backward equation satisfied by the (initial
value) transistion probability density gq, we derive it in the

usual manner [21] from the Chapman-Kolmogorov equation

Qlhe, el &) = j%(ﬁo,kokﬁ,x\ (3, TR ANSS

which holds for any 't.0<‘c < t. Then
F (3o, Lol X Lxd) — glXe, L. K,L)

= S { SR NE P -1 (‘_k,u,ica\v_\,ﬁ} (3 L% +aa)dl

and we obtain

(47 Fralterlra =L Z\ b 9y
\ A.« —b
where
a., = 3;‘_:’:) %E\Y\;Lt\—‘f\;,\k’r&\\-&b»al

b= + Bl —xp e (W -x ) |1 urs}

—

&
0
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Thus bij and -a, are just the incremental moments of

p(x,t | :_co), whose Fokker-Planck equation is

= : ' e
(4.8) %E— = “Z z m,\(\oq‘ ?\ 4 Z; B%\Q,u ’\35 .

Le3 The Upward and Downward Equations

For simplicity, we assume that th\ is a one—dimensional
diffusive Markov process 121-,} with infinitesimal generator

(backward Kolmogorov operator)

<=

ps)
- &

&Dﬁ-_\ = Q-o(;':)%_

We shall use the vector notations x = (x,y,z), ZO = (XO,YO, Zo)
and 3=(3,M,%).
The incremental mean of =z is

a(dv ) = A—> 0O %{‘Ekium‘ih\i&.-\

B PO -LLE) - k
= 3*““_:,0 T{ &‘s IS NEN FTESEY i -z

2 ;
S PO -RLL)
Pk = BY)

In order to proceed as we did for first-order final value
problems, we need a small-t expansion of p(x,t| 30), which
satisfies the Fokker-Planck equation (4.8); this equation now

becomas
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e - = _y O il
(4.9) ;E“ = T?-_\—(\OKBP') - Di\%(t\ﬂ ¥ Q(K,L\o\ﬁ

Unfortunately, the only third-order systems whose TFokker-Planck

equations have been solved are linear systems, Accordingly,

we assume that lzt} is an Ornstein-Uhlenbeck process with
Wiz = O s & () = —(51

Let T (x,t) 350) be the (gaussian) density of the initial

value problem

Xe

(<
5
&
1}

e

]

=
£

~Z e

(4.10)
i =-( 4 N

Then from (4.9) we see that p(x,t| x;) satisfies the integral

equation

L
P LIAD = TR LILY + S XF(E#-T\}_\ v(3) %‘i%_—**““"'\ss_gr

©

= TL AN — XJC

(e}

&\:(i\ P31 2T A3 e

+ o) |

where F(x) = z - f(x,2z). Now the gaussian density 1 (x,% | g_co)

has mean
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O R (e_ﬁt—\-ﬁ-('s‘t.\/(;‘
Elr\%,| =
1 o L {1 = e_"(’l‘ﬁ/(s Xo
O e) E__(s&;
and therefore
2 A S0
bjo ‘\-‘(l,*_\_‘o\ = ﬁ r X SY

Also, for 0< v < t, the following holds for the densities

g(- ) of any homogeneous markov process X_y,h} :

(% L-a\3) q(3 o\ Xo)

= C&(i\_"k. 5 },\G’\lo‘o\‘

— ck(},(r\l,“t.'. ‘_’_‘_0,0\' C‘XQL‘*_\LD\)

vhere g(3, ¢ | X,t5 X;,0) is just the downward transistion

probability density for the process I_J_ct}

final value problem x(0) = x, . Hence, if we let G(3, o | xt;

considered as the

%470)

be the downward t.p.d. for the system (4.10) with the final value
x(0) = Xys then
£,

PR LYY = S (i— 4 &-i.-ﬂ%]\?‘l&.ugn\&\f(g G 43] e
TR AN + OW®)

= 0(h i) 4+ 0 ‘F(LQ;—\{P(Y_\\'\_\\&A

+ DU,
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Therefore the incremental mean of 2z 1is

a = M _\_SS\’“‘»‘"“Q# 2 Pl 1) s AKY 4TS
Deopy & PR, V=R

‘ 2 ok, -\ 3
= T e & S s PO 2 S SNEANS
PR, V= LE)

¥ Z aa&. Pl 1 -1k

P0G\ =LY
= y2 =R + G/
2% L >N
—G?- %(i‘-?\/p 4 DE‘ (i?\/"p

ek % oy
5
_@Lg% * ahl/?
>
+ 20 §5/fp —B%

%—p(v\\,\qux\
-~ &L
Bk, V-0 %,

—J Z’D

since the expression in brackets is just the backward equation

for p=rp(x, 1-t| x).
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Similarly, we find the other incremental means:

b'\w \-\7‘\:«-15“ \“{_ &_-1 >

A—>O
: - - Yo, V=R
== b S __\__S 3 P“\I,\ £ E) R Pl Y‘(E,h\‘fé\‘&z
hriie & ETHEERTS
V(3 0l%) (R V=D)L
TR &g e Ty S
M LA
2
r A S;L/?
= i N —BT () & % »3\3 ) — @z %(xﬂ
>
& ‘DQ——? (hp) — F‘().Q‘kg% - Y\?f'—}/\;
= j 5
and
\
Aove B E&\j*-“\ - \‘Sk \lhl

h \‘5 209 U e ST NP

AD P = TO Z-0e SSEYL

— -g(‘f\, i} ‘
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The second incremental moments are also found exactly
as they were in the case of first-order final value problems,

We then obtain the following upward equation:

A
2R S ol 2 A _ g 9%
L L s
(4.11)
_ta m‘a?:‘, -3 %?Lx.,\-t\ﬂ 4
Y 2% | el -oEs B

It is easily seen from the representation (4.4) for p; that
the boundary value process is indeed weakly diffusive in the
upward direction.

From the representation (4.6) for pg we obtain in the

same way the downward equation,

DPC > Po B oy ot 2%
alf = =0 3-\; Y P35z (2P,) -VY 35X

(4.12) )
R LA S L R

Q (Xo, 2ok 1)

%, D
-{l‘k.i.\;\r + 2D ;z_[

For our special case there is a simple relation between
the density q(xo,zol X,t) which appears in (4.12) and the
upward initial value density p(x,t | _)_co). From the backward
equation (4.7) for q(zO\ %,t), which for the case under

consideration is

Bq(Reld) 2], .2 2%
e Nt
o 3
we see that the function eﬁ. q(zo\ x,t) satisfies the Fokker-
Planck equation (4.8) for p(;,t] zb). Hence, from the initial

condition

% |
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%\XO‘%‘Q\Y_““\;J = Slx‘\ko\ Stz'io\\
'\_=D

and the uniqueness of solutions to the Fokker-Planck equation

1{11), we have

_ak ‘
(4.13) S (he, Bolk &) = <@ XP(B.*L\M.\S.,, ) 4y, ,

and the integral must exist.

We have conjectured that the boundary value density Py
is the unique simultaneous solution of the upward and downward
equations together with the appropriate boundary conditions.
Hence we must now investigate the simultaneous solutions of

(4.11) and (4.12).

Lot Solutions of the Boundary Value Fokker-Planck Eguations

Now both the upward equation (4.11) and the downward egquation
(412) have, as initial value Fokker-Planck equations, no more
than one solution [11]. The solution ’ﬁh of the upward equation
with the initial condition

?L(i,fﬂt_o = S(X-¥%o) S(Z-Eg) pay)

(which is the correct boundary condition for the boundary

value density P at t =0) is

Polr &) = SS(B-xD\%(S—io\ MmP:(L,ui,o\ 43
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or

S ?(‘51t\ﬁo,"?’ -Lc‘)
Pb(ﬁ)&) - P(*\W\—t\\—&\ S ‘P(XI} 'L\‘ﬁo,"?] -Lch /M.l"?) A‘?

for any probability density /(y) for which the integral
exists and has the derivatives appearing in the upward equation.
Of course, %Jb also satisfies the appropriate boundary

condition at t =1 =

pla TR, =)

~ _ ey Yy dv .
e, gy = S | B teloa i dy
Then we have
2= Dok 1=t %) XP“\ ) %o, M, 2o)
- N ) >, S o { A
>t Y SR T WA Ly

(
-+ 'P(‘k.‘\—t\"_\\-& 5;9(5*\*0-;1,1@\_ A407)

4
S PG %o M, 2:) ki

= -o2% g3 qeal a2

(A 1Ro M =)
+ZD%_I©(7\.)\-UL\$ &p . M clvz} ’

= P(X\.l\ﬁo."'}‘ Z5)
where we have used the backward and forward equations for
p(x,t] %).

Hence P, will satisfy the downward equation (4.12) if
and only if there are functions o(x,y,t) and X (x,y,t)

such that
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%
(X A\ Xo, ), 2, d e W ] __é_s___
(4.14) jpu.,x\xo.*?. 20 MY 3o, 212 40 e,mp{'}{ Su Polty,5,0)

Now as z— * oo , both the left-hand side of (4.74) and

a(xy,2q| %,%) will vanish, and by (4.13) they will go to

0. But from the Fokker-

zero at the same rate. Hence
Planck equation for p(x,t| xy) and the backward equation

for q(xo,zol *,t), we see that K must satisfy

TR FOD T = @l
Since o 1is independent of 1z, g—%— = 0, and then %—é— = 0.
Thus & = Noe.(&, where o, is a constant depending only
on Xy, Xq, and Zge
At t =0, (4.14) becomes
T b = o, SI-XA S -4

?(X.‘l\lo,\sllu\
Hence (y) = o, p(xq,1 | %0,¥,20); and (4.14) is just (4.13):

Qe 218 A = &F gvmu*cn,m 4.
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it is necessary and sufficient to require that the initial
condition /u(y) be normalized, That is, we take

-1

(‘4'16) 0<o X Py, 1\\"0,72, ioﬁ c\-r?

if this integral exists.
Hence, a necessary and sufficient condition for the existence
of a unique probability density satisfying both the upward
and downward equations as well as the appropriate boundary
conditions is the exicstence of the integral (4.16).%* We must
now relate this condition to the boundary value problem (4.1).
Suppose that (4.1) has unique solutions. Then we have

two alternative representations for the boundary value density

-

pb -
’P(\_’o \Y\o‘\{\\\ Lo c\
ik Yo, s, o)

\ S Wt N Re, X1, o)
q (Yo, o1 %y, Yoo B

(4e3) Pk, &) = ?w.,\-ux\&?m,um Vo

(4.5) = Qo Z. % ) “glz&,t\h. il

J
both of whiech of course satisfy the boundary conditions. Now
the representation (4.3) satisfies the upward equation, and
(4.5) satisfies the downward equation. Since p, is a
probability density, Py = 5% is the unique density satisfying
both the upward and downward equations.

thermore, we see from (4.15b) that

(4.17) S P“—“—s*-\”\o#o,io\{&o P lRe N, 20 } Jy, = O.

?(\"\I \Y\O,\%u\ia\

* From the representation (4.15a) we see that %% is sufficiently
differentiable to satisfy the equations.

dz

\
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In general, the expression in brackets in (4.17) does not
vanish identically, as o, is independent of Yo However,

we may interpret (4.17) as an analog of the formula

P i Re, Yy B _ pleliNe, BaY _ g%
'\3(7\; \Y\o,\io, o) P(Y\\\\"\o. £l c&\Jo

which would hold if there were a relation %y = xT(yO), with

x1(yo) a strictly increasing function of y,, and all these

densities existed. This analogy is further strengthened by

the observation that for a deterministiec boundary value problem

of the type (4.1), the existence of a one-to-one function

x1(yo) is a sufficient condition for the uniqueness of solutions.
Of course we may also obtain the dovmward versions of

(4.16) and (4.17); these are respectively,

(4.18) L, = Sg 9 (Xo, Eo %1 7, 5, 1) "1"1 45

and

2_(3’(.. q‘_(v"SIXO,\;\l,{o\}A = O
j‘[qr(x\t\m,m‘ﬂ[occe = qr(xo]ia\x,.’z,ﬂ *Tcw '

Most important, however, is the simple expression we now

have for the boundary value density,
aL
(4.19) P\,(Ys,%;\ = o,e p(ﬁi,\utlﬁ 9 (ho, 21 % ,-h\
To sumrarize, we have proven the
Theorem: If the boundary value problem (4.1) has unique solutions,
then there is a unique probability density satisfying both

the upward and downward equations with the appropriate boundary
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conditions; this density is the boundary value density and is
given by (4.19).

The converse of this result — that the existence of the
integral (4.16) implies that the boundary value problem (4.1)
has unique solutions — has not been proven. We might argue
that if p(x1,1\ xO’yb’ZO) is a density is yg, then for

fixed Xos *ys and 2z, there must be a unique Y for almost

0
all samples; however, all attempts to express this reasoning

in a precise way have failed.

L.5 A Gaussian Example

The gaussian boundary value problemn
X = b
= - >\17\ 4+ + *‘O\l:Y‘o, \KK\XTK\) iko\_"—au>

= NI

(4.20) Y
-3
will have unique solutions as long as P AW ; B = 1;R5e0es

Taking A % 0, we have

B e l

P EIR) = o
where
o = —Bo{ah - 4sndh o 2RERT
Ve see that
o, = S PO LYo, Yo, 20) 4y,

will exist as longz as sin A ¥ 0; i.e., as long as (4.20) has
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unique solutions. Of course, the integral (4.13),

S‘P(L‘k\:{‘_o\ A\ﬂu

must exist for all + and 811 N . In the present case,

the coefficient of y02 in the exponential of p(z,t& 50)

is
2 "y
- M l ;- lm__iz\_i B A"
which vanishes only at ( At) = O; here K, is the covariance

of with itself for the initial value process.

‘LN



o4

V. EXAMPLES

5.1 The Vibrating Strine with Stochastic Density

We now consider the transverse vibrations of a taut linearized
elastic string with constant unit tension and fixed ends on
the unit interval O0<x<1. This problem has been treated
by both "honest™ [3] and "dishonest" [4] methods. The

displacement w(x,t) of the string satisfies

O w = ™ (x) o . W0, ) = wibL Y = o,
B R 1

Here t 4s time, x is the spatial variable, and m(x), the
mass per unit length, will be a stochastic process with parameter
set O<x<1.

Let m(x,s) be the Laplace transform of w,

’7(&,3\ = S WX, 1) c_slc' 4k .

o

Then we have the ordinary differential equation

%
5.1a 2 _ _ Dw (X&)

with the boundary conditions
(5.1b) 2o, 2 = M, ) = O

We consider the "plucked" string,

o/

= 2. -
WY, 08 =  §(x=-%) a&—.\ = O,
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Our conventional notation for stochastic boundary value

problems is obtained by the following transformations:

X —
33 —r T

) — F2YN

F Bl
Then (5.1) becomss
c‘i = Y
(5.2) y = S HEan o+ sz sk
oY = kN = o, ZE® = Z,.

Since i‘(gt) represents a physical density, we must have
f(gt) > 0. Then (5,2) will have unique solutions when the
real part of s 1s positive,

Let {_g_b} be the Wiener process, and take zy = 0.
The boundary value density, Pps of the process¥ described
by (5.2) is, by (4.19),

Bld, 8 = olo PIX, V=R 1R) G (Ko, ol X, X))

where x = (x,¥,2), X, = x5 = 25 = 0, and where

o o 2 )
(5.32) - ST;P(K\,\-U‘E\ o5 Dﬁ_\:‘: + N S% +i51¥(;_\\;\ 4+ s{® S\_{-L\]gif

* Since the solution samples have a jump across t =T, the
process is not diffusive (although it is piecewise diffusive).

To be rigorously correct, we should replace the &-—function with
a sequence of continuous function tending to the S ~function.
Instead we proceed in a formal way, using the & -function to
simplify the calculations.
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o) = o9 . S
(5.3b) S X, Zolh 8 = DS% o ods [s LEAT N 3%\1\%&—1\]3\%
with the initial conditions
p\{zl = S0, gl = Sk S{z-2)

Let @(x,t] %y) be the solution of

Sq R _ o2
(5-4) = W ) ey \1 ﬁ_ 5 {(LX’D\‘S \ QL- = S(};‘io\.
Then for %< 7T, aqlx,,z5| %,t) is given by

R S T LA MO RN E

Integrating (5.3b) in t across t =T, we obtain

" o9
I, ., W, - st5H,
Hence
G ho, 2o |X 0 = G Mo 2oy X 1) + RIL-TVG, (Ko, 203%,T, X)

where H 1s the Heaviside unit step function and where
D
R (R0, 203 %, T, 8) = - s& @(%, t-T|3) %&ﬂgﬂms,t\xon‘. ) dn'd3

Since the function

P Lir) = @k t-%lN)

satisfies



_2_'41 = Db;:‘z_ \i%—% % s‘ﬂi\%—;\i
we similarly obtain
PULI-LIRY = Bk A %) Hit-4) g (% £, %)
where
PRGN = S&@mn,s,\-ux\ dm 45
and

Bk x,T, 8 = —S&\?k'i,—\.-kklk\ ‘?\33%8&“?(%.‘]'.5‘\“1\3\ dn' 437 4% .

It is clear that both p and q are normalized probability

densities, Further, we need only solve the equation (5.4)

to obtain Pye

The normelizing factor «, for p, 1is, by (4016),

-\

0(0 - § "P(Y\‘] 1\Xo.\fo, 7—:;\ c\\{h

= Sgg LQ‘XHT].,S, 1-\\!‘°.\lt'.‘J 10\ A"’l 43S A\{o

— 9 X\L‘?(i,ik\f\o,\{o, io\'

o Rilemnsis) v 45y,

According to (4.18), &, is also given by
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&& q (Yo, 2o 1%, 7, S, 1) AT] LS

&&&“‘?\Mms, 11X, Yo, 2) 4 43 4y,

-5 3&&%\,\3. 3 ,\_n\‘:s_\K\Sl%gmts_,x\xo,\jo,m dy, 43 dyde

- S“ Q(%1, M, S, Lo, Yo, 20) dm 435 dy,

+5&&‘?(3,1\*o.‘{o.£°\ %\S\%SX“?W%. L -TiE)dydeds dy,

where the last line is obtained by integrating by parts on

‘7 « Therefore the second term in a(;‘ vanishes, and we have

= J{{emmi st Yo 2 4y ds 4y,

The boundary value density Py is now given by

(5.5) o«

Poli, ) = o, Pl%,k;X)q, (Ko, as 80D

T \-\\*'--QP\“‘\')*‘) \5-\ %1(*‘0. -Eo"')t.,‘c,, %

b oo W R 00 TR (e, 205 X4,

However, the term o p 9y is, aside from normalization,

the boundary value density for the problen
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¥ o= N
(5.6) Qj = s {E% (o) = RN = (O =0
$ = NW

Since the only solution to (5.6) is the trivial one, x =0,

y =0, &=1N(t), we see that p_]q_] is proportional to

SO S TizL

where ' is the density of the Wiener process.
In particular, then, the expected solution, <x7, of

the boundary value problem (5.2) is given by

L S‘k PG, G (Ko, 205 %, T, X) X

L¥P =

oy =

o Sx 800 0T, XY g (Ko, 25 5,0 dy

Let us write the boundary value density for t<=<T in the

form

“LPRq = (L) - ( &QK\.&,’&\‘M,W, E o) C\W)

LsT

t<t

St?(‘i ,t-k\ﬁ\i~ s {(3) ga:?—ggtp(&nj’, % 1-Ti3) A*]'A'S' d3

We may interpret the various term as follows: The quantity

© (i,t -'b\ %) 1is of course the density for upward transistions
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from (x,t) to (5,T), and the integral

({ @i, v ete) oy 3y

is the density for a further transistion from (3,T) to

the upper boundary condition x(1) = X, The expression

- s ?‘g\ggr describes a jump of magnitude S§(5) in the
derivative of x, The density Pos then, is the density for
transistion from (x,t) to (3 ,T), for a jump in y of s{(9)
at that point, and for transistion from there to (x1,1).
Since q1, which is the density for downward transistions
from (x,t) to the lower boundary conditions X, and 3z,
mltiplies Pys it appears that the transistions upward from
(x,t) and downward from (x,t) are independent, Finally,
the constant o, vanishes when these two latter sets of
transistions are mutually exclusive, (Actually, we have only

shown that «_ > O when these two sets are almost never

mutually exclusive.,)

5.2 The Ixpected Solution

One of the main drawbacks to the Fokker-Planck approach
to stochastic systems (aside from the difficulty of solving
parabolic equations) is the problem of modeling physical situations

by functions of Markov processes, We shall take

LB = \c’; yoeq® 2z © for all z,

where € 1is small, Assuming that the expectation of g(z)
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vanishes, that is

Sca(u Mz, dx = O

we shall show that the expected solution of the boundary value

problem is, up to order e* , identical with the solution

for ¢ =0,
Let p = sky. Then LV(;;,t\:_:O) satisfies
5S¢ = o®
Sv= O - 45 - TeAUDRSY
The solution @, (x,t\ ) of
Q, >0 Qs _ 2 E‘Qo AT A
%T = 1 '311. —\j B\.L /k X \&;,:o
is
QIR = Tlz-z )W (60 L e, )
where
;/u'b* gM'L /ﬂ&a ﬂ‘t )
Vo (KoY, £\ %o, ¥o) = 3(*—*‘1—“ * ‘5_—*‘2/» = %

{'.. 'E —'/.(t p.{',
-— \ID .

Then © 1s given by

il

LQ(!‘-\t'\}.!u\ L?o &L\*"\lu\ ¥ QLQ\(:&\*-\XQ\

where
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4,
5
® (X, e\ = — 513 &Qb(i,k.—r\‘i-) 3(3\25@{3‘0"\‘50\ 3% dr,
Now
(o eiads = By

L
- ex “\bou,wﬁ.n\ 3 %3%{3\@\3,0‘\ 14343 dnde

and

Schmmx,m,owz - Y AT | g TR de v 0l

= OLlo).
(5.7)

Thus, the normalizing factor o, is, by (5.5),

Ly = S&&Q\*“{.l.i\“o, Yo, ) d% dy N

R R R A R T

& ( e,-e_ )A\S + OLeD)

2
- \ gffkf~\ + Oleh)

- €
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For real and positive /‘- we thus have

-1 2 p z
o e/—‘-_ c—/-‘-

Hence, o, is given for Re(u) 2 0 by

Y = i
Ry = == & DLEY.
2 pue

The expected solution for t <T is

£y = —Suco[_E°+ Q(E.—k—\;?_-\-E.s—\- E‘_\]w

where

(5.8) E, = S*{ ( S‘Po(v_\,uio\cl\jn)

e gqa,[g,—n-um%Hgtpou\,q',s’,x—z\é\éq'c\S]A E} dt

& = gy\{[ [EXERETR c\io)

: &LPo {E,T«-'u f\ %\KX%XSSQDK\L"T: ‘S:\'n\‘i\éw\"‘\s}é‘%} é}g ?

6, = gx- {( &(QIKL,H‘AD\ A\,c,).

15, S‘Q,(E.t-‘t\‘&\ %ﬂ SS @, (%, M) 5, =T E) Iy'd S’-lg 3} dx,
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k& = SX{( Sk&(a,uxo\ Jyt,)-
e S@‘(g,t-uz\%[ T x-zlEHn'JS'Jch; dx |

E - Sx{ ( St@.,(\s,uxo\cl\{“)-

.k;&apoai,t-tm %—HS\Q‘ (%95 |-tt§_)3q'as']4§zcli .

Then
By = (&S WD Pl5-2, w4 pra gy dz Ax>.

. [ ”X{( Sxp,(x.y,t\xo,‘f.)é‘ia)'

-ﬁ\k,li,*),‘vt 1%, Y) E-PTSK\),(L, =% \3,7m) dyr g 3.47}& J\j] :

and singe
S q (%) [F(‘S»i,‘c~t\f‘(i.t\ dz 43
N Sc&m PO, o) J%
= 0,

we have



65

B, = ¥ S&*R & \&Q‘(LL\LO\JL]JYD

&& Weki,q,t-t\x,\l\% S\p,u.,q',\-t\z,n\ Aq’] 4% .LJ dxdy.

and as we have seen previously (eq. (5.7)) that
&Q\k\ﬁs"-li‘o\ cSl = O(E\,

we see that

By = olg) .

Also

B, = k “x{( Sm\;ﬂ(m,uto.\{o\éﬂu)-

“[ S&“”—-’d @, v-L1w) de AS].

, \% X'\leo(vn,*)’,\—t\%_'q\ c\*’]']cﬁivﬂx de dy

and
gg T2 Q 3 t-L10dz 4%

-t
= & \SN%,O S S‘?Qki_,t&—v\‘:ﬂ 4(s)3

[0}

oW (W e Y) TS, AT de e ds
?"’I’

4. Bie)
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-t
{ “\\’"“"7"‘t"’“'-’l’\‘%'%;b—“‘slvicr\m\As;cm'}‘

' {&g'}\s') M(3-% v-t-aY. 77, Lo A’S'cﬂ'\g deo

+ ol9)

= OlRYy.

B = K S&*{( Sxyagx\\j.uxo.‘{o\ Ajo>
, SS"\%H.")»""-\‘“‘J\ :

: %& K“S @, kY, T -Tis) P(s-2,T-4)
TR0 Az 33 IS dy 43 Aﬂ dx dy,

= Ol

since

S“Whm', ST PR O (S-2,e-4) Mp Us JY

= et sy res vy as oy

= 0OlQ)

as in the evaluation above of E3.
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Hence

Cay ST - A = (5

EO of course is just the solution for & = 0, which is known.
However, it 1s reassuring to find that the complicated integrals

of (5.8) give the correct result:

. = ¥ S&\ x'( &Wo(*m‘!,’t\“v.‘lo\ J\Jb).
: “%H,q,t-ux,\ﬂ.

: 5‘3:]—3\\30(\1,,*)"\-1\%,7\ Aq' 4% A*} } A dy

B 2_,“_&’; e"‘lut+ E.F.L e—-f‘_te/“‘t
- —éﬂu-m e,uu-t)' w s (Y‘ s sl I L ey )

Z 2‘,“'
& _/u.(t:-‘L) /u(c-{‘_) _/.A('C*f—) ,u,('c-t)
& S %-e_____f_:e_‘—————— s 17 € - € _ *)‘
z 2
_#(t*_t)e,u(t-t) _/u(t_{-_l- e/“(t_t)
y S(glu- € > + '17 € = s j)

) (I - t _ut
k> (eﬁlau ﬂ'm)'(eﬂ—eﬂ)

2 (- Y
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Therefore ; ‘ ‘
(e_,a(:-E CPU-U)'[CP -e._P )

G = skt
Zp (e )

+ o), <.

The leading term is just the solution of

Lxy = M5+ sKD s, we =XV =0,

for t<t , Similarly we find that for t> T ,

MT  —HTY ( eP(I—tZ e«-/u.((-ﬂ)

4 Ole).

x le
&y = sk
i S 2./1. (e,u.a e—-ﬂ-)

5.3 The Case of Non-Unigue Solutions

We have shown that the normalizing factor «, does not
vanish when the boundary value problem has unique solutions
for almost all samples, As we noted in 4.4, the converse
of this result has not been proven. Unfortunately, no Fokker-
Planck equations of the form of (5.4) have been solved in any
reasonable exact way, so the construction of possible
counterexamples to the converse is not feasable.

However, it is possible to solve (5.4) approximately in
at least one case of non-uniqueness, and, as we shall show,
®o =0 in this case, Of course, the important questions
are: For an eirenvalue problem, does &, vanish identically
in a neighhorhood of the deterministic eigenvalues, or only
at isolated points? And if the latter is the case, how are

these points related to the deterministic eigenvalues? Further
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investigation will be needed to answer these guestions.

Consider now the problem

¥ = N

§ = S0 4 ea) + s(k* + e2)sk-0
(5.9)

= = NLIL)

W) = ‘;\L\\ = Z(6) = O.

For some samples of {2z}, 242 -koz/g for 0<t<1, and
so (5.9) will have a unique solution for each of these samples,

for Re(s) > 0. However, for some other samples (5.9) will

not have unique solutions,

Equation (5.4) becomes in this case

BQ B@ B“(l) v X_\Q_. - S"-ca 'Z‘.Y\ég .
where M= sko as before, The transformations

ks —pmk
A= 3 eﬁ‘ +me a

y = /(,((Se_ﬂt— "?e__/uh)
go = ([('lxb i \{b\/zlu.

M = (M%e - Yol 2pm

¢ = 9]2\(,
T L= %£
D = s

i

= 3, ¥ €3

3
‘7' = ‘7,, + E.’\Q
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and the assumption that ¥ can be represented by

Q\B't\!“’\ == L\)qu'b-i.t\ + < \\)| l‘\‘\o‘i‘-(_\ B I

results in the equation

< \(nT. - \10"(, - \(-o-c KT 3090
oW, _ D*b_lb_f_ _1[§De + o )(ﬁ %%-e 5% )
3T DY

with the initial condition

b, = ) S S 8(2-20)
L ou 2 eV
-1
Now 'kPD is the density (normalized to m,_ ) of
the gaussian system
z’-— - (sao + Y)o 61\401)1 > alo) = o 5
o 2k.T
b = (Sce =+ Moz |
biol % o,
% e N > Z2(0) = 5.

Let <av, <b7 be the means of a,b, respectively, and let
L be the covariance matrix of a and b, Then the marginal

x,y-density of Wo 1is

LQ.“\,\“_-‘Q\‘AO'\{O. o) = S'\\)D c\;_
ik ,
xadfp HY 5, - ercad\  [xadle oS, - eiday
-\ =1 2. Z
e : "il eJu = Yo — €' &1 /| *‘2‘/}* e‘ﬂ,% - €<y

—
-

2w [ ded L\‘h' (- 2pm <)
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Then the marginal =x-density is, for t =1 and Xg =X = Zq =0,

S\Q\(D,xt\l\o,\‘;c,, o) dy

Q209 =
-\ (g e—'ﬂ)t/ﬁr}f
L T s
- Tor & WA 45
where
N D 2 MM, s
S - zpmk‘z & < (_E'ﬁ—- 2. 4- E ‘3}

+{ B2 & H[ Lo~

It is clear from the approximations we have made that
our solution will be a reasonable solution only for small /% »
Since S =0 at M=0 but does not vanish for small

|| % 0, we see that
0(.0\ = SQ'L‘\M “l‘{u

only exists for € =0, for small |m| ¥ 0. When € =0,

we of course have

T
0 = 5(Ye )

and
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Therefore, in at least this case, «, +vanishes when the
boundary value problem does not have unique solutions for

almost all samples.
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APPENDIX: THE DETAILS OF §2.2

A.1 The Mean and Variance of p;

We want to find the mean e and covariance matrix L

of the conditional gaussian density

Pi%, %)

z
X =
(2.1) P, (X1%0) o(%0)

Here p(x,%y) is a 2n-dimensional gaussian density with zero
mean, and p(g_co) is its n-dimensional marginal density.

Let the covariance of p(x,) be K, and that of p(g,;_.{o)

be K, If we partition k=1 into n¥n Dblocks,

-1 K. | E

Then (A.1) becomes
L -1
Formm e 5 (U0, -}

(4.2) K™ {
= e O

+ Lz'( [K-o‘_ K'S‘k-‘&o, l‘_o)

and from this we have

L = K,
(A.3)
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The other relations we could obtain from (A.2), namely

(Cle. o) = ([Ky-¥o1 %o, %o

20, —0
and

WLl o= 1K) ik

are of course implied by (A.3) and the fact that p(Zb)
the marginal density of p(x

is
1%g) .

In the notation of 82.2, K is partitioned as follows:

K =

The inverse of K in partitioned

factoring K :

: -\ -\ T :

¢ = [P LikBs mi/fT 1 ©

S ' : P gt
'. T T G oo PRy

Hence
i , ,
o (T- K MK, M) : <

[, = o SF sl e g e e s AT R S
O (T-K MK, M)



or

Thus we have

and

A.2 Proof of Eguation 2.6

We want to show that the matrix

- oMkt .
(A.4) Bl = St Tk

is independent of t Since M(t,t) = K. and the elements

0.
of M are continuous, there is an € >0 such that M is
non-singular for O<t-ty < € . When we have shown that (A.4)

holds in this range, then we have, writing Q(t,to) = MKb: 5

QL) Qle,ky = QL R, 4, €T & %,

Hence M will then be non-singular for all O Ctog <,

and the proof of (A.4) will be valid for 0<t.<t<1.

0
Let M= (mij)’ w1 = (mid), anda & = (LPA'\), where

the indices run from 0 to n-1, For 1 ¥ n-1,
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2-Wy = 2D ‘B"& TR Pl

b‘\'.- 6& a__k_u b'&:\o
and so
n-i K\:\
(Q*‘\ —_ “)\.&\,Km = SA‘“‘:&
K:O
Now let
Croax = = W)+ Ok )

where the &, are the coefficients of the operator

" C\K
g, = Z_o LW f s =

It =

™\

A.\l.-'\

& S e,

1

k]

whose Green's function on the space O is h(t,to). We have

9 \
A Ne=iy = “P -\ R
>t A }——;o nohve TRy
n-! ' & "
Shik ) YWk
= =20 Eod‘\{\go —y SO
-\
+ \(z-‘—:o (5‘“\\‘-\ n-\
> . S Wo )y
Thus
M-l X
> Rk 1)
(G y = _
(4.5) ?;o(a LAmey = 29 o

Differentiating (A.5) with respect to ty for 3

we obtain

n-1,

= ol -1



7

“ - -
I« 2 h\ k\k L9 =1
(A.6) 2 ok N\(X = 290 Jt_\\l - }_4 (5\(“\\( = O
=0 o Y=o
for j = 0(1)n-2.
Now defining
P ML

Pk e ) = f_ Bkt T

(A.5) becomes

\ ) 3
o ke o Mlko b o T
So‘: k'\'.’*.o"(_,\' -—b-’{'—\o———— c\t = s*d_\o Al _X

Then we have

‘ = 3 Wik 1)
;Zio{\r\\ko,*,\] = &‘:\&,ko.x\ f ol \Lo) T de

o ¥ 2.6 o
‘ " Wke 1)
. Pl ks =Y Ly
- a%.“

| -\
F (e D hik, 1

= ¥l *o k) + S
3 3 L E&() _a"(j;-l A-C—
(R.7)
We now set
ot e = { F( o o) ke 1) de

As a function of %, Nltot,®\  gsatisfies

(A.8) Ly (MY = Fleo L) YXe®

and also
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\é.&'\‘oiki '*-u\ == \\\Jﬂ.o,&\.

ES
Let ¥ be any function in the domain 8 of the
. ™
ad joint, x , of .f , and let IV = M s
from (A.8)

Then we have

\

\
| Fieamia s, - {2 o e

= Sx\{o’i,ﬂ Z 9 o

= | pIN ek A

N q = .
ow set to

\

|
S'FH,’%,&OW\&Q\ dh, = & M) Xlko Lk, 4k,

0

|
= SQ !\A\*-c\ \'\\‘ko‘{) cxl"-g

= WY,

*
Since the spaces @ and hence © are determined by linear
homogeneous unmixed boundary conditions at +t+ =0 and t =1,

k]
it is clear that @ contains all the infinitely differentiable

functions with compact support in (0,1-1. Therefore
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(1.9) Flh,to £a) = 3lh-%,).

But then from (A.7),

-
o S‘ aF o 3 Wlhem) o
e 3'\-'0 é}m“'k-o
"M -\
__\___ S .;i_\?'_‘(_ ™
- zD ?ﬁ B D

This last equation, combined with (A.6) and the non-singularity

of M dimplies

EE\: - o X = o=t

3+, ’

Hence, & (t,to) is independent of t_; and the boundary

03
value process is markovian,

Of course, once we have evaluated the elements of M(t,to)

for t»>%,, then instead of (A.9) we shall only have
w-1\ X
Ty 2k
X=o0 B‘k\f ?

for tr%

O.
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