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ABSTRACT

The box scheme proposed by H. B. Keller is a numerical
method for solving parabolic partial differential equations. We give
a convergence proof of this scheme for the heat equation, for a linear
parabolic system, and for a class of nonlinear parabolic equations.
Von Neumann stability is shown to hold for the box Scheme combined
with the method of fractional steps to solve the two-dimensional heat
equation. Computations were performed on Burgers' equation with
three different initial conditions, and Richardson extrapolation is

shown to be effective.
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INTRODUCTION

This thesis deals with the numerical solution of parabolic equa-
tions by the box scheme. Chapter I is devoted to the analysis of prob-
lems in one space dimension. We begin with a description of the box
scheme and list some situations in which it would be preferable to
other methods of computation. We then give three convergence proofs
for the box scheme. In each proof we use discrete analogues of energy
inequalities to show that the finite difference solutions are accurate
approximations of the continuous solutions. Energy inequalities are
generally used to prove uniqueness of solutions of initial value prob-
lems; however, in our work we have used modified forms for initial
boundary value problems with inhomogeneous terms. Section 1.2 gives
the derivation of such an energy inequality for the heat equation. In
Section I.3 we show how the energy inequality can be used as a model
for finite difference equations. We then generalize the convergence
proof for the heat equation to a linear parabolic system. Section I.4
gives a derivation of an energy inequality, and Section I.5 shows how

the energy inequality may be discretized with some complications to



yvield a convergence proof of the box scheme for parabolic systems.

The emphasis of Sections I.6 and I.7 is on the computation of
the finite difference solution. In Section I.6 we prove that an upper
and lower block triangular matrix factorization may be used to solve
the finite difference equations for a special linear equation. Using
an argument involving principal error functions, we also show how to
resolve a problem about the ""smoothness'' of the finite difference
solution that arises in Section I. 5. Finally in Section I.7 we give a
constructive proof that the nonlinear difference equations resulting
from applying the box scheme to a particular class of nonlinear para-
bolic equations have a unique solution. The mean value theorem
enables us to adapt the convergence proof for linear systems to this

class of nonlinear equations.

In Chapter II we give an example of how the box scheme may be
extended to solving the heat equation in two space dimensions by using
the method of fractional steps. We show that the initial value problem
with periodic data leads to a numerical scheme which is stable in the
sense of von Neumann. With this type of problem our numerical
scheme is consistent to second order accuracy so that the numerical
solution will converge to the continuous solution with second order

accuracy.



In Chapter III we present the results of computations on Burgers'
equation with three different initial conditions. We sought to identify
the formation of a shock numerically —that is, without looking at a
graph of the solution— but have not obtained a conclusive result. We
have also performed Richardson extrapolations with solutions from
successively refined nets and have found empirical conditions under
which the extrapolations appear to be most effective for producing

more accurate solutions.




CHAPTER I

THE BOX SCHEME IN ONE

SPACE DIMENSION

I.1 A Basic Description of the Box Scheme

The box scheme for the numerical solution of parabolic equa-
tions was originally proposed by Keller [1971]. Since this scheme is
of fundamental importance in this thesis, we present here a brief
review of the method and indicate some of the ways in which it is
superior to other numerical methods for solving parabolic problems.
We consider the following special problem defined in the rectangle

0<x=1 and 0=t < T:

gtlj . 'a% (a(x) gg) + o) + S, £, (1. 1a)
U(x, 0) = g(x), (1.1b)
a,U(0,t) - 5oa(O)Ux(0,’C) = go (t), (1. 1e)
@ UL, ) + Bra()U_(Lt) = g (). (1. 1d)

An important step in the method is to reformulate the problem as a

first order system of equations:



ax) 2 = v,

& - B cwu -sx ),
Uiz, 0) = gix),

Vix, 0) = a(x) SE&)

o U(0,t) - Bo V(0,t) = go(t),
@, U(1,t) + By V(1,t) = g1 (t).

We define a mesh over the rectangle:

0 = X1<X2< e e < x ]_,

J

0 = L <tg < -+ <t i

N

The mesh spacings are then defined by

h. =x. -x. ,,
j j j-1

k =t -t
n n n-1

for j=2,++, Jandn =2,-++, N. For net functions

coordinates of the net we use the following notation:

we X
. = 3(x. +x, )
jxz S R - S
t = 3t +t )
n+3 2V n+1’’

I}

1 n n

(L

(Ls

(Le

(1.

(1

(1.

(1.

(1.

(1s

(1.

(1.

2a)

2b)

2c)

. 2d)

2e)

2f)

< 3a)

3b)

3c)

3d)

4a)

4b)

4c)



1
027 = Lol *h), (1. 4)
j j 4
n n
D~ o = ij -ij—l
p, = 5 3 (1. 4e)
X 7j .
j
& -cpn_l
O, g = A J ., (1. 4f)
t 7j En

For functions V(x,t) defined everywhere in the rectangle we use the

notation
W? = Vet (1. 4g)
q/n
jhg = Ve L1t (1. 4h)
n:*:—é- - :
\Vj i \l/(XJ, tni%)' (1.4‘1)

The box scheme for the numerical approximation of problem (1. 2) is
given in terms of the net functions {u;l} and {v;l} with all the dif-
ference approximations centered in the middle of the box

[Xj—l’ xj] X [tn-l’ tn] or on an appropriate edge of the box when

coefficients do not depend on the time variable. We have

s (1.5a)

1
n=z

[ [E

-S

n
R 3 = C s 1
J=z

N “ u
X ) t J-2 3=

- . (1. 5b)
-

[N
n

for 2 <j<J and 2 <n £ N. The initial data are taken as



1
. = s 1:5
iy g(x;) (1.5¢)
dg(xj)
v, = aj st (1. 5d)
for 1 <j <J, and the boundary conditions become
@ up - Bo Vi = g, (1. 5e)
n n n
a, uJ' it ﬁl VJ' = gl (1. Sf)

for n<2 < N.

We immediately see two advantages of this method over other
numerical methods which have been proposed. First the mesh
spacings need not be uniform so that we may use a finer net in regions
where we expect rapid changes in the solution. Second, the scheme
is well adapted for problems in which a(x) is not continuous. For
instance in a diffusion problem where a(x), the diffusivity of the
medium, is discontinuous, g%} ‘will also be discontinuous, but the
flux a(x) %% which is one of the dependent variables in the box scheme
will be continuous so that we need not make any special modifications

for discontinuous coefficients other than to pick the points of dis-

continuity to be mesh points.

There are other desirable features which are not so apparent.
Being implicit, the method will be unconditionally stable. The method
has second order accuracy even with nonuniform nets. Richardson

extrapolation is valid if the continuous solutions are sufficiently
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differentiable and yields an improvement of two orders of accuracy
for each extrapolation. Both U(x,t) and B_Ig:_;,_t_) are approximated
to the same order of accuracy. Although the box scheme requires
a little more computation than the Crank-Nicolson scheme, it will
nevertheless be preferable for the types of problems described in

the preceding paragraph.

All of the virtues cited for the box scheme are discussed by
Keller [1971]; however, he does not give the complete convergence
proof. Subsequently Varah [1971] presented a general stability result
for difference approximations to mixed initial boundary value problems
for parabolic systems and included as an example the box scheme.
This result uses Fourier transforms in x and t and requires the
net spacings to be uniform. Once a finite difference scheme has been
shown to be stable, we need only check its consistency with a par-
ticular problem to show its convergence to the solution of that prob-
lem. That is to say, stability is a property of a difference scheme
only and does not refer to any particular parabolic problem. Con-
sistency on the other hand refers to a specific problem and tells
whether or not the difference equations accurately approximate the
differential equation and boundary conditions as the mesh is refined.
Stability and consistency together imply convergence of the finite
difference solution to the continuous solution as the mesh is refined.
Obviously convergence is the behavior we seek when we compute
approximate solutions to differential equations, and we would like to

have an a priori guarantee of convergence whenever possible. Our
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goal is to enlarge the class of parabolic problems for which we can
guarantee convergence of the box scheme. We shall give a different
proof for the convergence of the box scheme for the heat equation and
then show how it can be extended to a parabolic system and to a class
of nonlinear parabolic equations. There will be some mild restraints
on the net spacing, but basically we will be allowing nonuniform time

and space steps.

Implementation of the box scheme will entail the solution of
linear systems of algebraic equations. While stability or convergence
will imply that the systems are nonsingular and have unique solutions,
it still remains for us to choose an appropriate algorithm for obtaining
these solutions. In general an algorithm for solving a linear system
will require that further conditions be satisfied in addition to non-
singularity before we can prove that it will produce the desired solu-
tion. We shall use the method of factorization of block tridiagonal
matrices recommended by Keller [1971]; however, we shall give an
alternative proof based on an analysis suggested by Varah [1972] that

this algorithm will work.
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I.2 An Energy Inequality for the Heat Equation

The convergence proofs which we shall present are based on
energy inequalities. Energy inequalities are often used to prove well-
posedness of initial value problems or to show that a solution depends
continuously on the initial data of an initial value problem. It is
frequently possible to construct a discrete analogue of an energy
inequality which can then be used to prove convergence of a finite
difference scheme. Indeed, this is how we shall obtain our conver-
gence proofs, and to this end we wish to study thoroughly a simple
parabolic equation - namely the heat equation - beginning with an

energy inequality.

We consider the following problem:

v = WU (2. 1a)
Ve = U, (2. 1b)
U(x, 0) = g(x), (2. 1¢)
V(x, 0) = idg? ) (2. 1d)
ao U(0,t) - Bo V(0,t) = go(t), (2. 1e)
a; U(l,t) + B, V(L) =g (t), (2. 1f)
g

sz = 0 (2. 1g)



[

— > 0. (2. 1h)

The conditions (2. 1g) and (2. 1h) are physically natural requirements
for a mixed boundary condition. If these quantities are for some
reason less than zero, our energy inequality would contain integrals
along the boundaries x =0 and x = 1. With the present assumptions
these integrals will have signs such that they can be dropped from the
inequalities we will derive. The case of Dirichlet boundary conditions
where B, or P; 1is zero is actually simpler than the mixed case and
would require only minor modifications of the proof. We therefore

consider only the mixed case.

Typically, an energy inequality argument is used when one
wishes to show problem (2. 1) has a unique solution. If we assume
U and V are one solution pair and u and v are another solution

pair and define the difference functions

il

e(X: t) U(X: t) - u<x) t) ’ (2' Za)

1l

f(x, t) Vix,t) - vix, t), (2. 2b)

we find that e and f are solutions of

f = e_; (2. 3a)

(2. 3b)

elx;, 0) = 0 ; (2. 3¢)
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f(x,0) = 0, (2. 3d)
a, e(0,t) - Bo£(0,t) = O, (2. 3e)
a; e(l,t) + B, £(1,t) = 0, (2. 3f)
276)

5o =z 0, (2.3g)
51

— = 0 2

B, - (2. 3h)

One then notes that the integrals with respect to x of the squares of

e and f are zero at time zero and must be non-increasing functions
of time. Since these square integrals are non-negative, they must be
zero; therefore, e and f are zero for all time, and the solution
pairs must be identical. This, however, is not the manner in which
we wish to use the energy inequality. Let us suppose instead that

u and v satisfy (2.1) but that U and V satisfy only the boundary
conditions (2. le) and (2. 1f). Then we would have the following rela-

tions governing e and f:

e, = f+ps; (2. 4a)
- ' (2. 4b)
@, e(0,t) - Bo £(0,t) = O, (2. 4c)
a, e(l,t) +B, £(1,t) = O, (2. 4d)
(246)

= = 0 (2. 4e)

Be
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a;

= 2 0, 2.4f
N ( )
p = Ux -V, (2. 4g)
o = Vx =~ Ut' (2. 4h)

The terms p and 0 account for the fact that U and V do not
necessarily satisfy the differential equations. Before proceeding
with the derivation we should like to furnish some motivation by saying
that in the finite difference problem u and v will be solutions of the
finite difference equations while U and V will be the solutions of
the continuous system we are modeling. That is, u and v are to
be the computed approximations to U and V. Since the difference
equations are only approximations to the differential equations, we
cannot expect U and V, the solutions of the differential equations,
to satisfy the difference equations exactly. The extent to which they
fail to satisfy the difference equations is embodied in the truncation
errors p and 0. The terms p and O are generally small. Specif-
ically, fbr the box scheme, they are O (h®). Usually e and f are
zero at time zero, but we shall not assume this. With this interpre-
tation of the various terms in (2.4), we see that the results we need
are bounds on e and f at times greater than zero in terms of p, O,
and the initial values of e and f. This is called a convergence
result because p and 0 can be made arbitrarily small by taking a
sufficiently fine mesh and because the initial error also can presum-

ably be made arbitrarily small. Then since e and f go to zero as
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the mesh is refined, the finite difference solution must converge to

the continuous solution.

Our plan is to derive an energy inequality from (2. 4) and then
try to duplicate the derivation for a discrete system. It turns out

that it is convenient to take the time derivative of (2. 4a):
ey = ft + Py (2. 41)

If we multiply (2.4i) by f and (2.4b) by e, add the products, inte-
grate with respect to x from 0 to 1, and make a substitution using

1 2
(2. 4a), we obtain, with (@, ¥) = [ 0x)V(x)dx and || = (p, ),
0

'

2 2 / -
P el s 22l = - 6py) - (e 0)
y (2. 5)
1 1
tlEedo - (Eae,) + [ef] - (65 - (p, £).

Further substitutions, a careful examination of the boundary conditions,

a time integration from 0 to t, and the Schwarz inequality lead us to

t
HaMP+MmW+ZQM§W+Hﬂ%w

t
s G+ 2 LUl -llegl +lel- ol + el ol 2.6)
+|£[ +[lpll }ds,
where
a, Qg
c = |le@)||2+]£(0)]|® +5z— e3(1, 0) +=— e>(0, 0). (2. 7)

Ba Po
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We recognize that on the left side of (2.6) we may change t to T
without destroying the inequality provided 0 < 7T < t; Then we inte-
grate both sides with respect to T from 0 to t. Also the four terms
on the right side of (2. 6) may be separated using the generalized
arithmetic-geometric inequality ab < %(G:a,2 s %be) where € is an

arbitrary positive number. In two cases we take ¢ = (2t) , and in

the other two we take ¢ = (4t)". We then find

t t t
%{)He”ads - %{)fonads <Ct+ 2t {) Ilc]lads

. (2:8)

t t

+4t® [llpl*as + 44 [o]*as.
0

Starting again with (2.6) we find a judicious use of the generalized

arithmetic-geometric inequality gives
t
le@ll? + £®] < € + {3 /llel2as

' 0
1 ¢ 2 . 2 8 : 2

-3 [llE Pasp + [ e lds + 3 [ llo]|® ds (2. 9)

0 0 0

t

+ [llell® as..
0

The final energy inequality results from substituting (2. 8) into the

braces in (2. 9):

" t
le®ll® + ll£@ll* < ca+e) + [ llp,J|?ds
. 0 . (2. 10)
+(2+62) [ [lollPas + (1+4¢%) [ [|p]l® as.
-0 0



I i ox

If we restrict t to lie between 0 and T, we see that the three terms
involving the truncation errors can be bounded independently of t.
Referring to (2. 7) we note that C is determined by the initial errors
and can be made small. Hence the energy inequality (2. 10) is in the
form we need for a convergence proof of the difference equations.

The derivation given in this section was suggested by Lees

[1960] and Lees [1961].
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1.3 Convergence of the Box Scheme for the Heat Equation

Let

approximate U and V respectively.

{u?} and {v?} be net functions which we shall use to

equation then takes the form

Vn 1 = D- ur-lx (3'
J=2 X )
- n-% n
-3 _ .-
x Vi 0T Pe Yyage S
ut =l (3.
J
dg(x.)
v B meede (3.
j dx
n n
ap u; =P vy = go, (3
n
a’luJ+f31VJ-=81: (3
g}
— = 0, (3
Bo
31
- 2= 0, (3
B1
Let U and V be the solutions of (2.1) and define the error net
functions
e’ = Ux,t)-ul, (3.
J J> n )
£ = Vix,t)-ve. (3.
J Jn J

The box scheme for the heat

la)

1b)

le)

14d)

.le)

« h1E)

. 1g)

. 1h)

23a.)

2b)
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{e?} and {f;l} are then solutions of

D_ el = f1.11+p1.1_1_,
J ] =2 J=2
n-3 - n-3
D f.72 =D e 1+a0. £
x t J-3 @ j=%°
e. = 0,
£ = 0,
J

[\
o

where the local truncation errors are defined by

oU(x. 1,t )
n o - ) i-¥ 'n }
pj ‘% {Dx U(Xj’tn) ox
1
+ {V(Xj-%’ tn) - a[V(xj,tn) + V(xj—l’ tn)]},
g 1
-2 = 1 -
Gj—% = {2 DX [V(xj,tn) + V(xj,tn_l)]
OV(x. 1,t 1) AU(x. 1,t 1)
= J-2 n-g }+{ 122 n=s
9x ot

5 s
-3 Dt [U(xj, ’cn) + U(xj_l,tn)]} .

(3.

(3%

(5

(3.

(3

(3

(3.

(3.

(3%

(3.

3a)

3b)

3¢)

3d)

3f)

3g)

3h)

3i)
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If we apply the operator D,; to (3. 3a), we obtain

I
= = n-z
D.D_el' =D fi1+ C ,, (3. 3k)
J t J-2 J-—Z‘
1
n-z . .
where (| is defined by
3=z
n 1
-1 _
= (V. (x it - D, V.
QJ_% { tbﬁ—l _%) e }
(3.34)
- - D
+ {Dt Dx Uj - Uxt(xj-%’tn-%)}'

It is possible to give alternate expressions for the truncation
errors if we use Taylor expansions in the above definitions. First,
however, we wish to introduce some new notation. Let h = max hj v

J

and for some fixed r > 0 we assume maﬁx kn = rh. Let 8(x) and ®(t)

be piecewise continuous functions such that for some fixed 6> 0 we

have

h, = 08(x. 1
J i e
(3. 4a)
6§ < fBx)< 1, 0<sx<1,
k, = ®t,_1h, 2=n<N,
(3.4b)
6 < wt)<=<r, 0<%t =<T

Proceeding as in Keller [1971] we assume U and V have piecewise
continuous derivatives of order M where any jumps must occur at the

net points. Then if 2m + 2 < M, we can show that
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2V
5 PO
noo- D (B) R tuvix st }+om®™t
Pi-1 7 yZ1 N2 v iV pt,}+ Ol )
T m 2v
o E = L hY's (uvix. .t l}+0(h2m+2),
= 2 v =
J ™ v=1 J=2 =2
il m 2y
an — i (}:,_1—) ZV{U,V;X._l,t l}+0(hzm+?‘)
J=2 v=1 1=z ~2
where
Zv 2v+1
R0, P al = B - [y « Byt
(2v)! ax
_ 82\)\/ 3% t)}
ox ¥ ’
Y cpr 82\)—2”’
s,{uVvixt)} = & ZL. =
B=0 (2u)12v-2u!
{ . 82\)+1 V(x, t)
2v - 2u+l ax2\)-2;.1,+1 81:2“
1 a2V U b))
2u + 1 ;Zv 2u 8t2“+1 I
-2u 52
v 2v - H g cH
z {U, Vix,t} = 2 CP() (x) .
¥ B=0 (2u)! (2v-2u+1)!
peVE e ) 529 oo 4

JL2u+l 8t2v_2“+1 ax2/,1,+1 Zv-2u+l o 2p

ot

(3. 5a)

(3. 5b)

(3. 5¢)

(3..54)

(3. 5e)

(3. Bf)

For the purpose of this section the most important feature of the

truncation errors is that all three errors are O(h®).

We next introduce an inner product for net functions

and {\V? }:

{wj }
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"1 h. (3. 6a)

i
L

©®

Pt
s

n n
(P ¥y

[

1
(N1
—

n
i-2

If a net function is differenced, we will have

no5- = n,pT Y h.. 3.6b
(C‘D’Dx\lf)h jgsz'% X\VJ J ( )

The norm associated with this inner product is

n 2 _ n n
o™, = @, e, (3. 6¢)
We note that (3. 6c) is actually a seminorm rather than a norm since
a net function which oscillates along the mesh can have norm zero
without itself being zero. We shall say more about this after the

convergence proof. Finally, with our inner product the following

identities hold:

i

(D, @ ¥y = [opvy-m¥] - @ D V), (3. 7a)

1 2
- n n-3 = L oy Bt
(D, ©, 9" %), = 3D [le"ll, . (3. 7b)
As mentioned earlier our plan is to construct a discrete
analogue of the energy inequality derived for the differential equations.
The first step then is to construct the energy quantity exactly as was

done for (2.5):
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3 D] [le™)2 + & D] %)

- (Dxe

n-+ n-1 n-+ _ -
Lo 2)h + !—fJZ Dte

= 2 2w

n
J

J J

[

n-z

" i

A~ N3
L (P7E (0E

1 1 1 1
_ - n-3 _=-n [ n-3mn-z  n-
(Dxfn ,Dye) + e 2t e,

Beyond equation (3. 8) the discrete nature of the variables causes

some difficulties which did not occur before.

We therefore intro-

duce new quantities which will help us notationally:

1
2
£ Hh

1
2,

Sy

1

it

1]

il

0,

2

0,

1 k 1
e e i

k
m

1.3 ks 3 1
EHOa“h + 'Z—k_l' HOZ ”h =g HG

jw

Iy

{3

(2

3.

(S

(3.

(3.

(5

(3.

8)

9a)

« 9b)

9¢)

9d)

9e)

9f)

9g)

9h)
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This notation plus additional substitutions, careful examination of the
boundary conditions, a time summation from t; to tn, and the Schwarz

inequality lead to the analogue of (2.6):

Il + ™G + 2 © s (Ip #7232 (3. 10)

m-4 2 .
+||f auh)gngzl k_.

{1272 |, <l ¢ |, + || DD €72, [l™ ]|,

F R - o™ E ¢ e ™, s}

where

1 @

o (o7
¢ = ety + 81+ (e}) + 5= (e} )",

Bo B (B 113

We see that on the left side of (3. 10) the index n may be changed to i
where 1 <i <n yielding a set of valid inequalities. We then multiply
both sides by ki and sum fromi =1 toi=n. We again apply the
arithmetic-geometric inequality to each of the four products on the

right side of (3. 10)5 With the notation D = 1:n + k; we now obtain
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n n .
§ m||2 2
2 Tk lle™lly + 2k (17 (3. 12)
n 1 n 1
m-3 2 - m-32
- 2 R - Dk (Ip] 7 <

n : |
2 m-32
CD + 2D E=1 k_|lc ||h

v D2 D kMR 202 D K |lp™E
m=1 m h m=1 m P h

n
+ 2D 2 k 52
m=] ™ m

2
(3.12) corresponds with (2. 8) but has additional terms in Hmeh and
-2
Hfm ZHh because a cancellation which occurred in the continuous case
does not occur for discrete equations. Returning to (3.10) we use the

arithmetic-geometric inequality with different parameters to deduce
1€ + €202 < €+ {2 2 x_[le™? 313
e Iy h 2 fiFmlle iy 3« 13}

21’1: I m-3 2 Zl\: - m-32)
- k£, - I k_lID_ £772], ¢

n m_l 2 m__l_ 2
v 2ok I s 2 ox ol
m=1 m=1

n (o2
Inequality (3.12) is still valid if we omit the term Zm:l ka “h
from the left side. We then substitute the remaining inequality into

the braces in (3. 13). With the notation
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P L _1 1
T = 2| PTE + l0™, + 2™ (3. 14a)

1 k 1 2
-5 1 L
+2(Hlo™ 2], + L o™t ),

2k
m
T2(n) = max T2 ” (3. 14b)
l<m<n
we conclude the result
2 P 5
le™l, + 1%, < @+t +k )l:Hel I (3. 15)

a2 (X 12 a2
e R
+ [t ke )+ t tki]7%(n) .

(3.15) is the convergence result we sought. It says that the errors at
a given fixed time may be made small if the initial errors are small
and if the truncation errors are small. The latter error we noticed
earlier was 0(112) and can be made smaller by refining the mesh. We

note also that k /krn is bounded by r/§; hence, no further condi-

m+l
tions are needed to guarantee that T(n) is O(hz). If the initial data
are approximated to O(h®) or better, then we see Hen]]h and anHh

are also O(hz Yo

There remain two points which must be clarified. The first is
to show that there exists a unique solution of the finite difference
problem (3.1). We shall defer this to a later section. The second is

is a seminorm rather than a norm. This latter problem

that

h
is fully discussed by Keller [1971], but we will reproduce the
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explanation here since possible oscillations in the finite difference

solutions are of concern in practical computation.

Two net functions {wj} and {\l/j} satisfy Hcp - \y||h =0 if and
only if cpj = \yj + (—l)Jp for some constant p. Thus if ||en-€n|]h =0

and an-’fvnﬂh = 0, there exist p and q such that 2:? = e?

+(-1) p
and 'f;n = fjn + (—1)-] q. In order that {ejn}, {fjn}, {E‘J.n}, and {'f;n}

satisfy the boundary conditions we must have

|
o

aop -PBoq =
(3= 16)

|
(=]

a,pt+Piq-=

Four cases can occur. First, if ay B; +@; Bo #0, then p =q =0,
and the seminorm is actually a norm for net functions satisfying (3. 3e)
and (3.3f). Second, if By B; = 0, then p = 0 so that {vjn} but not

{ujn} may have oscillations. Third, if aga; =0, then q =0, and
{u;x} may have oscillations. Finally, none of the above may happen

so that both {u?} and {v;1 } could have oscillations. In the latter

cases oscillations are eliminated by averaging neighboring values.

Define
o= el ) (3.17a)
i-3 2 17> :
gt ¢ . n
vj-'a‘ = a(vj + v 1), (3. 17b)
for 2 <j £J. Then HEth = Hun”h and || ;th = |l vn||h, but now
| o is a norm for net functions defined on {x._1: 2<j<J}. Any

h i~z
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oscillations are now removed, and (3. 15) therefore tells us the
errors are not worse than O(h®)if U and V are piecewise four

times continuously differentiable.
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I.4 An Energy Inequality for a Linear Parabolic System

We now wish to extend our analysis to a larger class of para-

bolic equations. Consider the following problem:

A(x)U, (x5, t) = Vixt), (4. 1)

V. xt)= Uxt) - Cx) Uk,t) (4. 1b)

-EXx)V(xt) -Skxt),

U(x, 0) = g(x), (4. 1c)
. d g(x)
Vi(x, 0) = A%(x) , (4. 1d)
dx

@ U0, 1) - Bo V(0,t) = golt), (4. le)

@y U(Lt) +B1 V(L) = g, (), (4. 1f)

-1 -1 %

Bo  and p; exist, (4. 1g)

A%(0)B5 ap and Ag(l)B; @, are positive semi- (4. 1h)
definite and symmetric,

A(x). is symmetric and positive definite uniformly (4. 1i)
in x

Here U, V, S(x,t), go, and g1 are vectors of dimension p and
A(x), C(x), E(x), ag, Po, @1, and B; are p Xp matrices. The
domain of the problem is 0 <x <1 and 0 <t <T. Condition (4. 1h)
has been imposed so that boundary integrals which will arise will have

signs such that they may be dropped from inequalities in which
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they would otherwise have to be retained. (4.1h) is a convenient

assumption but not an essential one.

We now seek an energy inequality which we can use as the
basis for a convergence proof. As before we suppose u and v are
functions which satisfy the differential equations, the initial conditions,
and the boundary conditions. ILet U and V be another pair of func-

tions which satisfy only the boundary conditions. We define

E(X: t) E(X, t) - E(X: t) ) (4' Za)

I

fix,t) = Vi t) - vixt). (4. 2b)

We find that e and f satisfy

Ae = f+p, | (4. 3a)
ki = g~ Ce~EL+g, (4.3b)
APe , = £, 4+C, (4. 3¢)
ap e (0,t) -Bo£(0,t) = O, (4. 3d)
a, e(l,t) +B,£(1,t) = 0, (4. 3e)
p = AU _-V, | (4. 3f)
g = ~X—Qt+CLJ+EY+§, (4. 3g)

(4. 3h)

e(f\\

i

ro
(o
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p, 0, and [ are error terms resulting from the fact that U and V

—_—

do not necessarily satisfy the differential equations. If we take the
dot products of f with (4.3c) and A®e with (4.3b), add the results,

integrate over 0 <x <1, and integrate by parts, we arrive at
+ Ll = - €0 (4. 4)

+ (A®e, Ce) + (A%e, Ef) - (A%e, 0)

1 A
B 2 _ B
+[A® £ "e'tjo (AxAi, gt) (A—Axf, ?_t)
2 2 .
- (A *f-x’st)Jr[A eof] -(AXAg_,f)
2
-(AAXE,,Q)-(A e f).

We introduce the notation ||A|| for the maximum for x €[0,1] of the
Euclidean norm of the matrix A(x). Let € be the positive arbitrary
parameter in the generalized arithmetic-geometric inequality. Define

constants K, C,; and C; as follows:
1 -1 y® 1 2
K = 2 max{l +3lacA™ || + gHAXH (4. 5a)
. _1!2 y - . 1.2
tzllaa_a™ | +3flca™ || +z2faca™]
2 2 2 3 2
lagl + el +1+2)a ]l +3laa |
34 @
+ B32lja A"},
(4. 5b)

g
C. = 2+4|A|l . (4.5¢)
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We next make substitutions using (4. 3a) and (4.3b), simplify (4. 4)

/
i

using the boundary conditions, the Schwarz inequality, and the gen-
eralized geometric inequality, multiply both sides of (4.4) by the inte-

grating factor Ze-Kt, and integrate both sides from 0 to t:

2 2 t 2
laewm| + | £®ll +geK“‘“<ﬂumﬂl (4.6)
2 2
+ Gy llaf_(s)] )as < 55 A e(0)]

gy + K6 o oo

+ 2[|Ae(s)

Aa(s)| + 2] f(s)

(lics)l

1
+ lp(s)ll ) + 2[AZ%(x) £(x, s)-gt(x, s)]o} ds .

We have assumed ¢ has been chosen so that C; is positive. In further

simplifying the boundary terms it will turn out that C;, another constant,

arises naturally:
Ca = A(0)Bg o e(0,0)-e(0, 0) (4.7)
+ A%(1) B o e(1,0)-e(1, 0)
2 2
+llae@)] + [ £0)

Inequality (4.6) is also valid if we replace t by T on the left side and
if 0 <T <t. We integrate 7 from O to t, simplify the boundary

terms, and use the arithmetic-geometric inequality to obtain
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t ) 2
({(llAg(s)H + 1 £(s)]| )ds =2 Gy t eXF

t 2
+ 4t eKt /e_Ks Cs HQ(S)H ds
0
t 2 2
r 2% 2K fe KBS [ag(s) + 2] cis)]]
l 3

2
r2p )] Jas.

(4.8)

Inequality (4. 6) may also be reduced using the geometric inequality

to

2
lae®) + | f@) <y X

t
+ e J e {callae)® + ¥ flag )]
r 2e7K8 [ @) + 2 K pio))7} as

t y
L dllaeEf + | £(e)]*)as } .

Inequality (4. 8) is now substituted into the braces in (4. 9):

lae®) + | £@)° < cs eBF (1 + 2t 8

t
+ Co et (1 + 4t Xty [ e K| (s)|%as
0
t
bRt 4 o2¢2 eZKt) / e_ZKSHAQ(S) I7as
: :
t .
5 PeB] + 242 eZKt) fe_ZKS Ic(s)%as
0 ' —

t
+ 265N + 85 250 7 o BE Iy P s
H P

(4. 9)

(4.10)
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(4.10) is the desired form of energy inequality. It tells us that e
and f can be bounded for a fixed time t in terms of p, 0, {, and

C; which depends on the initial conditions.

In conclusion we give a brief summary of the technique of
energy inequalities as used in our work. One first derives a differ-
ential inequality for suitable variables such as ||A g(t)Hz + |]£(t)||2.
The differential inequality is solved in the manner of Gronwall's in-
equality. This process can be used both for continuous and discrete

equations, but since the discrete case tends to be more complicated,

we first derive the continuous inequality to use as a model.
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I.5 Convergence of the Box Scheme for a Linear Parabolic System

In this section we wish to analyze the convergence of the box
scheme applied to problem (4. 1) using a discrete analogue of the
energy inequality derived in Section 4. Let {g.jn} and {!1;} be net
functions approximating LI and V the solutions of (4.1). We make
the same assumptions on the matrices as before - namely (4. 1g),

(4. 1h), and (4. 1i). The finite difference equations are

AZ ;D 0% = & 3, , (5. 1a)
j=2  x ~j ~j-3

D vi?2 = D uli1-C. 1u 2 (5. 1b)
X =) t ~)=3 J=2 T7j-3

n-4 n-+
- E. 1V, f - S " 2]. )
J=2 7)-2 ~3=2

&
u, = x.), 5.1c
g £ (5.1c)
. . dg (x.)

Vo= A (xj)—l-(le , (5. 1d)
@ uy -Bovy = golt)), (5. le)

1
@y wT B V= g (k) (5. 1f)
We define the errors

n n

e = Uk, t -u., 5. 2a
gf = Bt -L; (5. 2a)
7 = Vix,t)-vh (5. 2b)
=3 j ma]
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The errors {g_?} and {irjl} satisfy

A® ;D e = f +py 1, 5.3
j-z % ~j ~j-3 " Bj-% {8 389
_ 1 -1

D- f%72 = D e 1-C.1e. ¢
x =~ t ~)~3 }=2 ~j=32

1 1 (5. 3b)
-E, z £ F +0, ¢,
i-z -z i~z
n_i

D, A® 1 D e" - &y 3 ° 5.3

=3 Tx =) t ~j-z  2j-1 )

@y ey ~PBo f1 = 0, (5. 3d)

@y e +PB £] = 0, (5. 3e)
n n l’l-l

where {P_- l}, 12}, and {Q_ f} are truncation errors. As
™z ‘j 2 ~)=3

in the case of the heat equation, they will all be O(h®). In place of the

function exp(-Kt) we will use its discrete analogue:

g = 1,

" n 2-K k
= g(tn) 112<2+Kk >forn22,

where km< 2/K for all m.

o
Il

1
We begin by taking the dot products of fn f with (5.3¢c) and
1 =2
.
Aj2 1e. ':‘ with (5. 3b), adding the products, mu1t1p1ying by hj’ and
T2 T2

summing from j =2 to j =J. We would like to sum by parts

1 . 1 1
R Y - =, n 2 N3 - n~=3

(A° £ 5 Dx Dt g )h and (A%e . Dx-f» l)h, but now we are faced

with the problem that, for instance, Azin_i means evaluating A®
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1
at xj 1 and multiplying by the averaged value of f::]'l-z and fj
~3 ~3-
1
n-=-2

rather than averaging A® (x i 1)f ‘a‘ and Az(x ) f The summation

by parts formula (3. 7a) requires the latter qua.ntlty. In order to

I ]
proceed we shall reinterpret A®f 172 and AP g_n-z to fit the formula,

[N

I
but we shall then have to accept new terms \En- and Y_n-z which

account for the difference between the terms we actually have and

i
the terms we need for summation by parts. An analysis of Y{n—z

Ed
and xn_z is not needed now so that it will be postponed to a later

1 -
section. At the present time we simply accept \Lvn-z and Xn S as

net functions which make the following modified summation by parts

formulas true:

o]
(A® fn-, D D e [Az n- Dt-gn]
1
(5. 5a)
1
2 M=% - By n-3 - n
- (D A* £27%, D ™), - w72, D_D ") .
J
(a7 7%, D £77), = [a® & -Ln'%]
- 1 (5. 5b)

With (5.5), the analogue of (4.4) becomes



=
o
&+
B
|®
B
5o
+
(Y]

+

= =

DIl = - (£77F F)

(5.6)

As a result of the modified summation by parts formulas, the A~

in the next to last term on the right side of (5. 6) means the average

of A® (xj) and A® (xj 1) rather than A% (x. 1). Thus we cannot use
- =2

(5. 3a) to substitute for A® D;{ En-z in this term. As a matter of

fact, we really should have a different notation for this

A2

since it

has a different meaning in this term than in the other terms of (5. 6).

Define

~
We define "BJ' i1
=3

A® 1 D
J—

5 X

2(A%6x) + A% (k1))

/A's_
jeg

by means of

(=

(5. T73a)

(5. 7b)

(5.8)
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We claim now that
Py = pi1 + Om7), (5. 9)

although the proof will be postponed. The validity of (5. 9) depends
both on the smoothness of A° (x) and the (yet to be defined) ""smooth-

ness' of the {_ef.‘ }. We add at this time that the terms containing
1

}yn'i and Xn—i will also require '"'smoothness'' on the part of the

finite difference solution. These points will be fully discussed later.

Define two constants K and C; by

K = max{[Z + laca™ |2 + || Zca™|f (5.10a)
+lca™|® + || 0z a%A™ %), LI X7 D] a2
+ |aE|® + |XE] + 3] D] 42| +1+llEPI},

C, =1+ |\ili||2. (5. 10b)

Substitution of (5.3b) and (5. 8) into (5.6) followed by applications of
the Schwarz, arithmetic-geometric, and triangle inequalities and
1
multiplication by 2 g2 yield
- n n 2 2
D, 1&g ae™s + 1215} = (5.11)
n-3 2 n-%, - nJ 2 D=3 _ negd
g" {20a% FTE DI 4 20ate T 1M
n-; n n-3 n-%+
= -2 T Ty = =2 = -2
2(w" ¢, D D, e’)y 2y % D f h

I ke e
F2ll7E ) IR+ ER R )

n-ky )
Ac s -

n-z 2 n-+
b Gyl RE 4 2la R -



~39-
Let
-1 =
Ca = A®(0)B, ao_‘jll'EJ}'Jf A2(1H3110’1 El'el

J ~J

(5.12)
1]l 12
S o P

Then a time summation of (5.11) and an analysis of the boundary

terms lead to

lae™y + 1 £0, = = s (5.13)

ot ( —‘ + _l_ % k m-3z ,
L 4 e h_J gnm:Z mg
m-+ m-3 2
(AGPE| 1 [l E|2

[2]|ae™ 2| -
L = h

Fll™E L ERTE L + IETE L)

Let k;, = kp and define

Oy B 4= (:———m—> (5. 14)

2<m<N
m-1
On the left side of (5.13) we change n to i then sum from i =2
to i =n. Also we use the geometric inequality and the triangle

inequality in order to get norms of time averages:
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n T il &
Z k (lae™ 2l + 1£772,) < (5.15)
m=
t Co(1+C3) = P
: + Gk (lagt],+ I1£],)
g
2t (1+C3) n A= i
2900 B gmedfiemd o] oy e,
g m=2 e
s =8, o7 ]
y T h
Cl (1+C3 )t n 1 2
Tl m=> TYL=
; - K g™E|o™
g m=2
2
t2 (14Cz) =n 2
o k€77 ag™ 2
(g")? m=2
2 t2(14C3)® n Lz & 8 12
+ —n—nz— Z km(gm 2) (| ¢™ 2y, + Hgm 2[}, )
(g) m=2

{(5.15) corresponds to (4. 8). To find the discrete version of (4. 9) we
return to (5. 13) where we estimate the terms involving truncation

errors with the arithmetic-geometric inequality:

Ia ™, + IR, < jn G 5. 16)
- .3 % k gm_% [:Wm-%, D D_em) +( m-% D"fm"—?f') :,
gnm=2 m - X = h Z’ £ X~ h
2
+ —lﬁ % K gm'% {zgm‘a Hgm‘%uh
g m=2 m
m- ~m-1,2 m-%,2 — m-L1 2
b2 g™TEFTE 4 gl g™ E|, 4 g™ lag ™, }

1 n 1.2 _1 2
¢ S A{Z, kL dlae™ L ¢ ™))
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The terms in the last set of braces are estimated with (5. 15).

we define

i i -
A [l N I R et
T°(Mn) = max T _,
2<m <n
2 (14Cq )?
C4 (tn) = max _2; 1+n_n3— 5
g (g)?
5 t (14+Cy)
ER TS M |
n n
g g
t2 (1+4C5 )?
+llafpf 1« B
(g)

Then the final inequality may be written as

lael, + I£7,

t (1+Cg)
1 i
s (1 e s \[:Azl)ﬁl ay ej- €
“ g

+ AP ey eleel |

1
+ L (14ce) (1 + 2 (fal? + )¢ 15 )

g g
g (1+C3)\ B,
3 _1
__2_(1+n_____>2 1e grn 2
n gn m=2 ™

h . _ ik _ i

+ Calt )T7 (n).

Suppose

5..17a)

(5. 17b)

(5: 17c)

(5.18)



42 -
(5.18) tells us that the error at time tn can be bounded by an ex-
pression involving three types of quantities. The first type consists
of the errors {glj} and {j‘_;} made in the initial values. The second
type consists of {\_gjl:_zl_z} and {23:2} combined with { J and { }
which arose when we summed by parts two terms for wh1ch the summa-
tion by parts identity was not really valid. The third type involves the

) & 0l l ~mn
truncation errors { } {Q_ } and {Rj L} . It is clear that
—2

I
=2
the first type of term can be made O(h®) by a sufficiently accurate
approximation of the initial condition. The third type will be O(h®)
if the iEJml} do not differ from the {Qij} by more than O(h?) as
=2 -2

has previously been claimed. We must investigate further the net
1
AR {x7
, , and
RJ -3 Fy-3 ) Lj- EJ

functions

We start with {Eml} . It can be shown by Taylor series ex-
J-2
pansions and (5.3a), (5.7a), (5.8), and (5. 9) that
h? 8% A%(E, 1)

1
¥ ‘ )
x>

~m _ m
£ . = E_j_

1
J=2

s (5:19)

- n
e.
X =]
where ij 1 is some point between x -1 and Xj' If the second
-2
derivative of A®(x) is uniformly bounded and if D; Er} is O(l), then

L X
the {B, } will be O(h®). As for the ‘Lw :2} and {xr;_l_%‘"}, their

treatments are similar so we shall consider {Wj e
~J)"2

alone. Again

using Taylor series expansions, we find



X
72 4 (072
AP e ATzl -
ik 2 (5. 20)
. i
A% (x.) 72 + A®(x, 1) £} 2
1-g ~j=l
2
h 9 A% (x. 1) T 1
+ . - [fn‘z 172
7 Bx Siwd T 23

e
wjn-f is defined as all the terms on the right side of (5. 20) except
=3~z

o n
the first one. The same definition holds for y_? ¢ with f. re-
-2

1 N = _1
placed by €72, If D e and D_f. are O(1l), then w' £ and
) %) %= J

s

J

occur in inner products and time summations with D; Dt_ g_j and

1 1 21
z?__g will be O(h®). Furthermore, the {\E?’_l%a 1 and {Zjﬂ_l%z}
n

D; _1;1; . These latter must be O(l) to guarantee that our terms of
the second type be O(h®). If U and V are continuously differentiable

in x and the cross derivative of U is continuous, then our three

conditions are that D_ u, D_v., and D_ D  u” be O(l) as h—=0
x X ~ x t =)

for {yf;} and {y_r;} solutions of the difference equations. We shall

show in the next section that these conditions can be satisfied.
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1.6 Solving the Linear Finite Difference Equations

Problem (5.1) may be written as a block tridiagonal linear
algebraic system of equations with 2p X 2p blocks. We would like
to show that factorization into upper and lower block triangular
matrices can be used to solve this system; however, we currently
have a proof only for the case p = 1. In this section we restrict
ourselves to an equation with constant coefficients and a net with
uniform space steps h and uniform time steps k. In the next
section on nonlinear parabolic equations we will generalize the proof
to include variable coefficients and nonuniform meshes. After we
show that the finite difference solution exists and is unique, we can

show that it is ""'smooth'' in the sense described at the end of Section 5.

In this section we consider the equation

utzauxx+bux+cu, (6.1)

where a, b, and c are constants with a > 0. One can show that the

matrix of the system of linear difference equations is

- )

B, Ci
0
Ap B2 Cz
As Ba Cs,
z = o.. ’... ’0.. ) (6. Za)
¢ M e, el
“A "B
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where the Aj’ Bj’ and Cj are given by

1e) -Bo
B, = s (6.2b)
h _ch 1 - bh
k 2 2
0 0
Cl = > (6. 2C)
h ~ch _; _bh
k 2 2

(6.2h)
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for j=2 to J - 1. We wish to show that el can be factored in upper
and lower block triangular matrices with 2 X 2 blocks in the following

manner:

A= LU (6. 3a)

¢ | A
L ¢
o ) (6. 3b)
5 ’o.... .°'o...
) Ly I )

Uy Cy
*
-
..’.
Uz %, 0
.0 ‘.
*
’ o, %, (6.3c)
=< * *
0 .‘.. Q".
- *
0. .C .
%o 2
*
*
.Q
..
U
\ ")

If some right hand side vector f is given, then we could solveg,(’igg = f
by first solving Q‘E = f for w and then solving 02/5 = Ww. & is
clearly nonsingular so that w can be found by working recursively
down through &. The back substitution to find x will require each
of the Uj to be nonsingular. As a matter of fact, OZ/ca.rmot be con-

structed unless each Uj is nonsingular for j =1 to J - 1. What we

shall do is verify the block tridiagonal factorization and then check
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UJ for invertibility. Once this is done we will know that Jfg = f

has a unique solution for each f or that the box scheme advances

the solution uniquely for each time step.

If we multiply & and @l, we see that the following relations
‘must hold:

Ul = Bl » (6. 4a)
L. = A U’ (6. 4b)
J 3
j = 2’ e o o 4 J
U, = B.-L.C. 6.4c
j j -l ( )
Define
det B]_
2 _ P
€ - h ag (6. 5a)
Bo + Fa
It can then be shown by induction, which we omit, that
(L)(E-Q) b (-1 _@x_l_)
e, k 2 2a 2 e;
a1 1
U. = 3 (6. 5b)
! h _ch ] _kh
k 2 2
det Ui
e. = - . (6. 5¢)
1+1 ) 1}_ g (l) <1 . & N h2 ) Ch2 LY
a e 2 2ak 4a )

These recursions were suggested by Varah [1972]. The first step is

to show that all of the e,

are negative. We start with e; which is

the first of the e



My . (6. 6)

e; will be negative under our hypotheses if h is sufficiently small.
Let us suppose that e; < -M where M 1is a positive number. We can
show under a mild restriction that all of the e, will be less than or
equal to -M. From (6.5c) we see that this would imply all of the Uj

at least through J-1 would be nonsingular. Eliminating Ui between
(6.5b) and (6. 5c) results in

&, ={ei——.ch+b—-<—b+— (6. 7)

k 2

_chy, } { _h | }_1.(
2a> €1 ) . a ei+2 b
. ﬁ)}'l

ak 2a .

We assume e; < -M. If we ask that e.

i+1 also be less than or equal

to -M, then we are imposing a condition on the right side of (6. 7).

We find that this condition implies

kK « & (6. 8)

2
DL & Kibba
a

A similar examination of det UJ shows that it is negative if we take
into account the boundary conditions and if h is sufficiently small.

Hence for a sufficiently fine net s nonsingular.
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Now that the {ujn} and {vjn} are known to exist uniquely,

n

we return to the question of whether D;{ uJ. o

, and Dt— D; uJ. are
all O(1). An examination of the difference equations shows that it
would be sufficient to show D; vjn and Dt- vjn were O(l) for all

j and n. We will do this in an inductive manner using an argument
similar to one given by Strang [1960]. The essence of the argument
is to interpolate the finite difference solution {ujn} and {vjn} at
time t with functions U and V. We insist that U and V be
sufficiently smooth at time t and that the coefficients and boundary
conditions of the differential equation be sufficiently smooth so that

U and V will have five continuous derivatives at time t The

n+l °*

and {v?“} and V

+1 S
difference between {ul:; } and U at time tn+1

at time t will then be equal to the first principal error terms

n+l1

which are O(h?) plus some residual terms. The point of the argu-
ment is to show that the residual terms are at worst O(h®). Then

= = n

since U and V are smooth, {uj+1} and {v;l+1} will be "'smooth''

also.

We begin by introducing additional notation. Let

1S 18

n
< n) be a vector consisting of the {ujn} and '{vjn} -

n
Let <?—n> be a vector consisting of continuous functions U(x,t) and
\'

_ (1, n)
V(x,t) evaluated at x. and t_. 2 are the first principal
J n f(l, n)

error terms for U and V in the Richardson extrapolation of the
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k4
finite difference solutions at time t_ [Keller, 1971]. APt2 is the
( r
matrix multiplying the vector of unknowns "Lugﬁl} and JLVI.Q-H} .
n+y . : G [ . n) f.n
B is the matrix multiplying the vector of knowns Luj | and 'ij .
I
£n+2 is a vector of inhomogeneous and boundary data. We define \En
by
E‘n 'Qn 5?‘(l, n) )
- _ = + w . (6- 9)
Y‘n Xn £ (1, n) ~

(6. 9) says that the difference between the net functions “[ujn} and
{vjn} and the functions U(x, t) and V(x, t) evaluated at the net points
is equal to the first principal error terms which involve U and V
plus some residual vector \Lvn. The system representing all of the
finite difference equations and boundary conditions in the box scheme

for advancing from time t to t can be written as

+1
un+1 ; un
L X 1 u 1l
An+2 - _ Bn+?_ N + £n+2 (6. 10)
v v

— —~

For the single parabolic equation considered earlier in this section

1
n+3

A would be <& for all n. At time tn we construct a smooth
function of x which interpolates {ujn} and has derivatives matching
{vjn} . Let this function be an initial condition for an initial boundary
value problem starting at time L and having the same boundary
conditions as the continuous problem we are discretizing. Let U and
V be the solutions of this problem, and let them have five continuous

derivatives. This will in general require the initial condition, bound-

ary data, and inhomogeneous terms in the differential equation to
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satisfy some differentiability conditions. Notice that U and V are
not the same as U and V. The latter are solutions of an initial
boundary value problem starting at time zero and which we are trying
to approximate by {ujn} and {vjn} while the former are solutions
of a problem starting at time t) with ini’:ial data based on {ujn} and
{vjn} . The principal error terms are génezially functions of U and V,

but here we are substituting U and V. Combining (6.9) and (6. 10),

we can show that

1 e L
An+2 En+1 _ Bn+2 Wn +{ £n+2
_ _ (6.11)
1 Un+1 1 o
A2 |~ + B"T2
\—fn+1 -n
L[ Lt L/ oLm)
An+2 =2 + Bn+2 =
((1,n+1) ((1,n)

By definition of the principal error terms, the quantities in the braces

must add up to a result which is O(h*). Our choice of U and V
LI

guarantees that \En = 0. Therefore ‘En+1 is equal to (An+2) o

multiplying a vector whose terms are O(h*). The norm of the inverse

! n+l

of AP2 5 at worst O(h—g) so that w = O(h®). Since the first

{
pri\ncipal error terms are also O(h®), the left side of (6. 9) must be

O(h®). In particular since V is smooth and vJ.n+l differs by only

- +1 =
), D vjn and Dt an+1 must be O(1l);

2 :
O(h*) at the point (Xj’ tnJrl -

hence, the desired smoothness conditions on the finite difference

solutions can be satisfied, and the convergence proof is essentially
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complete. For the linear parabolic system where p > 1 and for which
we do not have a proof of nonsingularity based on block factorization,
we will include nonsingularity as an assumption. The proof of smooth-

ness will then be formally identical to the one we have just given for

p = 1,

A further remark is that while U and V may be taken to
have an arbitrary number of derivatives, the magnitude of the deriva-
tives need not be O(l). In particular if at time zero there is a sharp
change in the initial data over an interval of length h, then our present
analysis is not adequate to show that the finite difference solutions
will be smooth. On the other hand if the derivatives of the solutions
U and V are small compared to the inverse of the mesh spacings,
then the preceding argument when applied at each time step for O(h_l )

time steps shows that no oscillations greater than O(h) can form. We

.

is a seminorm and that

h

for certain boundary conditions {u;l} or {vjn} might have oscilla-

recall from an earlier discussion that i

tions. It is now clear that these oscillations will not be worse than
O(h) unless U and V have derivatives which are large compared
to h ™. Finally, it should be noted that such small amplitude oscilla-
tions are allowed under our definition of smoothness for net functions;

that is, smoothness and freedom from oscillations are not equivalent.

We summarize the results of Sections 4, 5, and 6 in the

following theorem.
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Theorem 1: Assume (1) that the box scheme formulation (5.1) of the

linear parabolic system (4.1) has a unique solution and (2) that the

coefficients of (4. 1) are sufficiently smooth so that an initial boundary

value problem posed at any non-negative time with piecewise five times

continuously differentiable initial functions will have solutions which

are also five times piecewise continuously differentiable. If points of

discontinuity ot the derivatives are always taken to be mesh points,

then the box scheme solution converges to the continuous solution of

(4.1) as the mesh is refined, and the errors are O(hz).
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I.7 Nonlinear Parabolic Equations

In this section we wish to study the problem

v = a(x, U)UX s (7. 1a)
vV, = U -S&xtUV), (7. 1b)
U(x, 0) = g(x), (7.1¢)
Vi 0) = alx gh) B (7. 1d)
a0 p(0,t) - PoV(0,t) = golt), (7. 1e)
ay UL t) + B V(L t) = g1 (t), (7. 1)
Qg

A > 0, (7. 1g)
a

= = 0, (7. 1h)
0<a, <a(xU)<a” <w, (7. 1i)
la, (x, )| < 2 <w, (7. 1j)
IS, t, U, V)| 5" <o, (7. 1)
Sytet U, V)| <5¥ <, (7.12)
sy 6t U, V)| < s* (7. 1m)

Where in (7. 1i) through (7. 1m) the inequalities hold uniformly in x, t,
U, and V. The box scheme applied to this problem yields the following

finite difference equatiohs :



el mell gl
alx. 1,u. 1)D 1 = V., 1 (7. 2a)
=z )=z X ) 17z 2

- g -7 n-3 n-I
D v, © = D,u  r~-8x. 1t s W T 5% s 7. 2b

x j t%-37 30y Lt L L vy L) 5. 8k
uo= glx.) (7. 2¢)

§ & Seg '

§ , dg(x.)

;= a8 %, 3 7.2d
ki ( ; g( ; ) = ( )
o) u{l - Bo Vln = go (tn) ’ (7. 2e)

n n
ay U.J. + ﬁl VJ. = g1 (tn) . (7. Zf)

The domain of this problem is 0 <x <1 and 0 <t < T. The netis

the same as that used earlier.

We would first like to discover under what conditions (7. 2)
will have a unique solution. Furthermore we would like to know how
to construct the solution. Let us then consider the matter of advancing
the finite difference solution from time tn-l to time t - Basically we
have a nonlinear system of equations in the form F(y) = 0 where y
is a vector consisting of the unknown {u?} and {v;l} arranged in the
order (uln, vln, ugn, vén, e e e, u;, an)t. The equations are ordered
in the following way:

Fily) = @ u -Bo vi - go (7. 3a)

=~



I
F,. = -2h.ID_ v272 _p_d®
220 j j By ol
N (7. 3b)
b ose_nt n w3, v ]
J-2 1n-2 J== J=2
n—% n-+ n—%
F,. = -2hla(x. 1,u. D u., 2-wv, ] 7.3¢c
By-1"} ([ T I R i-z d (7. 3¢)
= n - n
Forly) = @y uf +Bivy-gl, (7. 3d)

where j ranges from 2 to J. We wish to solve this system itera-
tively using the chord method so we next calculate g, the Jacobian

of F. The order of the unknowns and the equations was chosen so that

gwould be block tridiagonal:

(B 1 C T \
Ax Bz Ca
0
AG BS‘ C 3
g - 0#..... 0..... 00~... ( 7 X 4a )
0 Yoy o KN . ..'o =
.’o.. .°0,. CJ -1
- ."A . ...' .
J J

\ J

: 5 (7.4b)
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(7. 4c)

(7.44d)

l

If we use the notation

(7. 4e)

il
| -
1

g -

(7. 4f)

il
~-|oa =l

g3

(7. 4g)

(7. 4h)

]

|
I GN 1

g >

the matrix elements take the form

(7. 4i)
(7. 4j)
(7. 4k)
(7.414)
(7. 4m)

1_31_2
'
n»d.J
I+l
|
1
nu.J
U
A
—-|a =N
1 1
e 57
]
- N
o Bmw al - h‘ld
3 _ = '
M Il il 1l il
= ™ Al Y -
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h.
2 _ .1 _
Aj = 5 . (7. 4n)
h. i _ -t
B} = -lal™ p_ u? - ay £, (7. 40)
o -2
J~2
- By
1 h.
BY = - uftlgii gl (7 49)
J 2 u X k
J+1—Z n
h'+l n-3
B = . —J?_— g¥8 i1 , (7. 4r)
: Vi+l-3
c? = B® , (7. 4s)
j J
h'+1 n-
c* = -—dls gh™2 -1 . (7. 4t)
J 2 Vj+1 1
-2

Since the matrix gcomes from linearizing a system of equations, it
has the same general form as the matrix for the box scheme solution
of a linear parabolic equation with variable coefficients. We have
already examined the special case of a linear equation with constant
coefficients and uniform net spacing, and we shall use the previous
study as a model for the current nonlinear problem. As before we
wish to show that j can be factored asQOZ/where &L and YU are
lower and upper block triangular (in fact bidiagonal) matrices. We

shall use the same notation as in (6.3) and (6.4).

As before we define a sequence {ej:j S 2, Ve J} by
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e, - ) (7. 5a)

i

Bl + L ¢ B2 4t &3 I
j S & -
v, = , (7. 5b)
’ B3 B?
j j
det Uj
ej+l = - ) i . " . (7.5c)
e 2 - 3
Aj+l( By~ e Cj—1>+Aj+l<Bj+ej Cj—l)

We wish to show that all the ej will be negative. This is equivalent
to showing Uj is nonsingular for j =1, <<+ | J-1. We start with
es. In the case where B, = 0, e, will be negative for hy; sufficiently

small. If By # 0, it will in general also be required that

1,

2

i1 >0 (7.6)
2

as hy; @ 0 so that e; < 0 for sufficiently small hy,. We shall say
more about this requirement later. Let us assume now that

e; < -M where M > 0. We wish to show that ej <-M for j=2,°°°,7J.
Let us then assume it is true for j and see what condition is neces-
sary to insure it for j + 1. Multiply the numerator and denominator

1

1 .
on the right side of (7. 5c) by (Aj+1 Cj4_1/ej) . We introduce new

notation for several important groupings of terms:



= 1 4 1 4 =1
Dy = B B (Aj+1 1) (7. 7a)
» 2 3 1 4 -1 =1
Eii = BB (AJ.Jrl cj_l) hj , (7. 7b)
L it 2
A, . BY - B, A®
= jtl j i+l
c'j+1 B Al £ 5 ’ (7. Te)
jtl 7j-1 7
k C’,Bf-B’C’,
Hj+1 = = N - » = SO e (7.7d)
J Aj+1 j=1
A2 . &
N +1 wl
L = ~ ] (7. 7€)
A5+1%5-1

g <k
D72 Lt f = O(M) as h =0, then D,

J+120 and Ej+1 <0 for

hj and hj+1 sufficiently small. If we assume this is the case, we

can estimate ej+1 by

ey = {-DJ.+1M+hJ.Ej+1M (7. 8)

3 1 4 -1 4 3,41 e § <
i B Gy Y By - Byl g) }

2 3 p 4 -1
{1 PRy Gy 8 = Ry G5 W5 B ) }-
Under our current assumptions Gj+1 <0 for hj and hj+1 sufficiently
small. If we also assume H. <0 for h., h. ;, and k_ sufficiently
j+1 j j+1 n
small and if we ask for the right side of (7. 8) to be less than or equal

to - M, we arrive at the condition
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i+l -l—hj Ej+1+hj IJ.H)M (7.9)

2) 1-1

Ej+1 and Ij+l remain bounded as k_—0 if and only if hj+1/kn is
bounded which we have already assumed. GjJrl

15 is O(l) as kn - 0. We are thus left with showing that Dj+1 -1

is O(hj) as kn - 0 in order for the right side of (7.9) to be bounded

is independent of kn.

H

as kn - 0. If we write out Dj+1 -1, we will discover that it is O(hj)
b

L
if u?;f - u?-a = O(h). We find therefore that if the net function {ujn}

is smooth, then for sufficiently fine net spacing all of the ej will be
less than or equal to -M. The requirement that u?;_% - u?_% = O)

is a result of the discretization of U(x, t). It arises only in conjunction
with the a, terms and corresponds to a difference approximation of
the derivative. This discrete condition is analogous to asking U(x, t)
to have a continuous x derivative. At any rate we now know that the
factorization of g is possible. It further turns out that det UJ <0

without any additional assumptions so that gis nonsingular.

We wish to find the solution of F(y) = 0 by the chord method.

This is an iterative method of the form

1 s
ey oAt ). (7.10)

We take XO, the initial guess for the solution at time tn’ to be the
same as the solution already known at time t -1 In the chord method

A is chosen to be the Jacobian of F evaluated at the initial guess
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y_o. If {u?_l]" is smooth, then A will be nonsingular for a suffi-

ciently fine net. Let

gly) = y - A" Fly), | o (7.11)

where y is any vector of length 2J. If we can show that g is a con-
tracting map in some neighborhood containing Zo and that g maps
the neighborhood into itself, then we will know there exists a unique
solution of the nonlinear difference equations in that neighborhood.

Let S and t be vectors.

gls) -glt) = s-t-A " [F(s) - Ft)]. (7.12)

t:

g(s) -glt) = A” |[A-—=-|(s - ¢t). (7.13)

We define the matrix M to be the matrix in the brackets in (7. 13).
Let the vector r have the components {ruj } and {rvj} . We proceed

to evaluate the matrix elements Mi

L, m = W
o= L, e e . 2T . (7. 14a)
MZJ,m: 0 .
YT n-; n-3
Maj_2, 253 = [Sub-ts bt WoE VIIF )
(7. 14b)
-S (%, 1,t 1,rTu. 1,1V ;)],
u J-2 n-3 J=23



o] n-i n-i
Maj 2,252 = 2 et p L)
(7. 14c)
-8 (% 1,t 1,¥u. 1, rv l)‘-!,
v J)=2 n-2 J=2 I~g"
My 2, 25-1 = ~Mge 2530 (7. 144d)
MZj—Z, 2j 2j~2, 2j-2 (7. 14e)
for j = 2,9+, J. All other MZj-Z ; are zero.
] n-z 5 -l
e - 2 - -
M25-1, 2§-3 2 12052 95000, b
= ‘l (7. 14f)
-au(xj 5 ruJ._%)DX ruJ. i
s
+la ,u. £)-a , ru. :l,
Monaa 251 = Magop, 25-3 (7. 14g)
for j =2; %+ ~, J. All other M, are zero. Thus the matrix

2j-1,1
M is block tridiagonal with 2 x 2 blocks. The terms in the even

numbered rows can be made arbitrarily small by taking h small
enough. The odd numbered rows require in addition that Y? and r
be smooth. If s and t are restricted to be near Xo, then r will
smooth, and if h is sufficiently small, we find that g is contracting
in a neighborhood of z_o. The fact that M 1is block tridiagonal guaran-
tees that its maximum absolute row sum can be made small even as

h goes to zero. Our previous investigation of the linear algebraic

_l "
system shows that A exists as h goes to zero so that the norm
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af A (not necessarily the maximum absolute row sum) must be
bounded in the limit. The size of the neighborhood in which con-
traction occurs for any pair of vectors s and t ie essentially pro-

ok S
portional to (a ).1

However, we wish to avoid smoothness assump-
tions on s and t so we shall restrict them to a smaller spherical

neighborhood of radius R about y° where R is some fixed multiple
r, of h. We will specify r; shortly. Let d = Hyj— XOH. We note

that d is O(h) provided g, and g; are continuous. Thus for suf-

ficiently small h we can choose r; so that R > d. We then take

an even smaller h so that we also have ||A™| M| <1 - (d/R).

Then

lg(s) - g@)ll =@ - %)' s -t (7.15)

for s and t in the sphere. If s is taken to be y°, we find

Hyvl - g_(QH is less than or equal to R-d. Hence if t is any vector
within a distance R of xo, g(t) will also be within R of xo. In
other words there is a neighborhood of yf which is mapped into
itself by g and in which g contracts. Therefore g has a unique fixed

point in this neighborhood, and the nonlinear difference equations

have a solution.

We further note that as with the linear parabolic equation we
may ask the linearized initial boundary value problem to have very
smooth solutions given sufficiently smooth initial data when posed at
times greater than or equal to zero. As before, we can then show
that the iterates are smooth by studying a series of linear problems -

one for each iterate. Indeed this study is necessary for an inductive
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proof of the existence of a solution of the nonlinear difference equations
for succeeding time steps, but it has the further implication that the
matrix A might be re-evaluated at each iteration rather than at each
time step as in the chord method. In fact the Jacobian of F can be
shown to be nonsingular in a neighborhood of zo under certain conditions
of smallness on h and smoothness of the '""point'' of evaluation. The
previous methods can again be used to show contraction of the series
of maps &v and of the mapping into themselves of successive neighbor-
hoods. Of course we may have to start with a smaller initial neighbor-
hood or equivalently a finer net spacing to insure that successive
Jacobians remain nonsingular, but otherwise the use of Newton's

method is justified.

Returning now to the question of convergence, we find that
nearly all of the analysis we exhibited for linear systems can also be
adapted to the present nonlinear problem with the use of the mean
value theorem. As before u is the finite difference solution and U
is the continuous solution. The mean value theorem must be applied
several times, but since it is not necessary to keep track of each
application, we will use u as a generic symbol to indicate some
function value intermediate to u and U. The three basic equations

involving the truncation errors may then be written as

S _ _1 _1 _1
a(x. ,u2)D_e. 2 = £ F +p F (7. 16a)
j-2" Tj-z Tx ] j=z  Fi-2
KT ST & T
-[a (x. 1,u’32)D_ u? 3Je. £,
u j-2" j-z %} j-z



1 1
D £872 = p el.l_r_ + O.nla
X ] t J-2 J=2
. SR S, -
-8 (x. 1,t. 1,u, f, v. 1°)e. F
J=g MR-z J~2 J~2 J=2

1 _ = oo
a(x, 1, 0 )D,D_ e’ = D £ 5 +C7%
3=z =2 t J=2 1-2
L — n n-1
- 2 o .
Dt (au(x l’uj-l )Dx 3 )] eJ_g
- S N |
_ 2 =2 =
_au(xJ _;_,uj_% )Dxuj :lDt eJ_%
- —D-a.(x L, U ):ID_ el.l-% s
Lt i J
where
el = U(x.,t)-u?l,
J J n J
£ & Vix.t )-v.
J J n J

1
We multiply (7. 16¢) by f?—f h;, multiply (7.16b) by
=2

1.
eJ.n_—f hj’ add the results, and sum from j =2 to J:

n

(7.16b)

(7. 16¢)



(7.18)

Equation (7. 18) has the same form as (5. 6) except for the variable
coefficients depending on the solution. This means additional appli-
cations of the mean value theorem will be necessary in order to carry
out the analysis of Section 5. As before, the requirement of smooth-
ness on the finite difference solution arises and is handled as in the
linear case by an examination of the system of linear algebraic equa-
tions obtained from the Jacobian of the nonlinear system and by
requiring U and V and solutions of the linearized initial boundary
value problem to have x derivatives which are small compared to the
inverse of the net spacing. The results of this section are summarized

in the following theorem.
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Theorem 2: Assume (1) that the nonlinear problem (7.1) has a unique

solution and (2) that the linearization of problem (7.1) at any piecewise

five times continuously differentiable U and V results in a differen-

tial equation with coefficients sufficiently smooth so that an initial

boundary value problem posed at any non-negative time with initial

tions both piecewise five times continuously differentiable will have

solutions which are also piecewise five times continuously differen-

tiable. 1f the points of discontinuity of the derivatives are always taken

to be mesh points, then for sufficiently small h the box scheme formu-

lation (7.2) of the nonlinear parabolic problem (7.1) has a unique solu-

tion which approximates the solution of (7.1) to Q_(l’ﬁ).
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CHAPTER II

THE TWO DIMENSIONAL

HEAT EQUATION

IL..1 The Method of Fractional Steps

The numerical solution of multidimensional parabolic problems
is of concern to scientists and engineers because there are many
physical processes in which boundary conditions or properties of
materials prevent realistic modeling by one-dimensional equations.

In particular we are interested in two space dimensions. We could

of course write various sets of difference equations coupling net points
in both space directions, but this means we would have to solve a large
algebraic system for all the net points in the domain at each time step.
Instead we restrict ourselves to a rectangular domain and ask if the
two-dimensional problem can be reduced to a series of one-dimensional
problems. Just such a reduction is accomplished by the method of
fractional steps. This method has not yet received a complete theo-
retical justification for all the problems in which we would like to use

it and is still undergoing active investigation. The reader is referred

to Yanenko [1971] for an exposition of the techniques and applications
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of the method of fractional steps. For our present purposes we shall
present a simple example using this method. In this case the method

will be theoretically justified.

Consider the equation
U =0 + U (Lo.1)

on the domain D=[0,1] X[0,1] inthe (x,y) plane. We require U
to bhe zero on the boundary of D for all time t= 0. At time t=0,
U(x,y,t) is equal to some given function g(x,y). As is well-known,
this problem can be solved by separation of variables and Fourier
series. The solution is then represented as a sum of terms of the

form

2 2. 2
- +
e (m™+n ) tsin mwx sin nmy , (1.2)

where m and n are positive integers. Now pick two different points

3 >
in time ’c1 and t2 such that t:2>t1 = 0, t1 and tZ need not be

close together. We pose two more problems. First

Vtzvxx on D X [tl’tZ] . (1.3a)

V(x,y,t) =0 on 8D, (1.3b)

Vix,y,ty) = U(X.y,ti) . (1.3c)
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This is a heat equation in one space dimension with y as a parameter.

V is chosen to coincide with U at time t,. Now consider the second

|
problem:
Wt=Wy_Y on Dx[tl’tZ] " (1.4a)
W(x,y,t) =0 on 8D, (1.4b)
W(x,y,ti) = V(x,y,tz) 2 (1.4c)

This is another one-dimensional heat equation but with x as a
parameter. Notice that the initial value of W 1is the value of V at

t We now assert that

2"
W(X9Yot2) =~ U(X,Y,tz) . (1-5)

This is an example of how the method of fractional steps reduces a

two-dimensional problem to two one-dimensional problems. We can
easily verify (1.5) for this simple case when separation of variables
is legitimate. A component of the form (1.2) when used as an initial

condition for the V problem evolves to

2 2 2 2
-m o tz—n mt
e sin mnx sin nwy , (1.6)

where the factor exp (-nzwzti) acts as though it were a multiplicative

constant. When (1.6) is used as an initial condition for the W prob-
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lem, the other factor, exp (-mzwztz), acts as a multiplicative constant

so that at time t, we get

-mzwztz- nzwzt

e sin mwx sin nwy . (1. T)

Thus we see that Fourier components of the two-dimensional problem
evolve to the same extent as Fourier components of two successive

one-dimensional problems.
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1T. 2 The Box Scheme and the Method of Fractional Steps

Having reduced the two-dimensional heat equation to two one-
dimensional heat equations with parameters, we easily see how to
apply the box scheme. We place a rectangular grid over the unit
square D. For each horizontal grid line we solve an equation in x,
then we change directions to solve an equation in y for each vertical

grid line. The procedure is then repeated for the next time step.

The box scheme requires however that we give the derivatives
of the initial data as well as the data themselves. For a sweep in the
x direction we deal with u and u s but when we wish to perform a
sweep in the y direction, we must give uy as part of the initial con-
dition. What we must do is ignore u after an x sweep and con-
struct u_ using the computed values of u. We have chosen Lagrange
interpolation as a way to do this. At any net point take the value of
u and combine it with the values of u at the next two nearest net
points on the grid line to form the Lagrange quadratic polynomial
which interpolates all three function values. We then use the derivative
of the quadratic. Furthermore we do not change directions at every
half step since it is not really necessary. Suppose for instance that
in solving for u at tz we start at f:1 and perform an x sweep
followed by a y sweep. It will be necessary to fabricate y derivatives
when changing directions; however, in moving from tz to tj, we
perform the y sweep first followed by the x sweep. Proceeding inthis

way, we need create derivatives only once per time step rather than

twice.
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We have performed computations on the two-dimensional heat

heat equation with the following initial condition:

3
gix,y) = Z N - sin mwx sin n (2.1)
24 2m +3n Y - ‘
m,n=1

The continuous solution is

U(st9t) =

3
Z 5 —(m2+n2)1r2t

e @ sin mwx sin nwy . (2.2)

m ;e 4
Using several different mesh spacings we have found that the error of
the computed solution u is O(hz) where h was the size of the steps

in both space directions and in time.

In the present problem there is no doubt about the consistency
of the numerical scheme with the continuous problem since the
fractional steps are theoretically correct and since the box scheme is
consistent with one-dimensional heat equations to second order; that
is, the truncation errors are O(hz). Convergence however is yet to
be shown. For this problem we choose to show that the numerical
scheme is stable in the sense of von Neumann. This stability analysis
is appropriate for difference schemes with constant coefficients and
which correspond to pure initial value problems with periodic initial

data [ Isaacson & Keller, 1966] .
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II.3 Von Neumann Stability

The basic idea of a von Neumann stability analysis is to de-
compose the finite difference solution into Fourier components and
then to show that none of the components can grow in amplitude as
time increases. In this section we will use complex harmonics and

coefficients rather than sines and cosines with real coefficients. We

shall study the evolution of the general harmonic emxelﬁy where

i= \/-1 and o and P are fixed, arbitrary real numbers. We assume

that all steps in the x direction are of size hx, all steps in the vy

direction are of size hy, and all time steps are k. Let u? and v"

be the net functions at time tn which approximate U and Ux' Let

~n+ ~n+
u : and w' ) be the net functions after a half time step which

+
approximate V and Vy' Finally let un+1 and w" 4 be the net

functios at time tn which approximate U and Uy' These net

+1
lax ipy

functions must each be some multiple of e evaluated at the

net points:

o = C?eiaxeiﬁy ) (35 1a)
o= Crzleiaxeiﬁ}’ , (3.1b)
t‘ln"‘i _ ';1;1+1ei0xeip}’ , (3.1¢)
oot zr;ﬂeiaxeiﬁy , (3.1d)
un+1 _ CTHeiaxeipy i | (3.1e)

ntl _ n#l iax ipy . (3.1%)

e =3
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The above net functions are involved in going from time tn to t 44
n

with an x sweep followed by a y sweep. We in turn proceed from

time th to tn‘*_2 with a y sweep followed by an x sweep. That

is, one complete cycle covers two time steps. Now suppose ¢ and

|
cD are given. The difference scheme will determine cn+2 and cn+2.

y.A 1 2
+
What we must show is that cri1 o does not exceed crl1 in amplitude and

+
121 £ does not exceed crz1 in amplitude. This would then imply

that no harmonic can grow in amplitude; hence, the numerical scheme

that c¢

is stable.

We introduce two symbols which we shall use in simplifying

notation:
1
9 = —2- ahx 3 (3 ° Za)
1
¢ == Bhy . (3.2b)

Since y derivatives are constructed from the most recent values of

u and do not involve any information about Ux or its approximation,

~ ~n+
it is clear that c;+1 can depend only on cin 1. In fact
’;’ nti
~nti 1 '
= . 3 L 3
c3 e i sin Bhy ( )

(3.3) and the substitution of (3.1a) through (3. 1d) into the finite
difference equations for an x sweep yield the following relations

between the coefficients:
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zn+1 B
1 1 i
IE .A ’ (3.43.)
~n+l n
3 “Z
where
a = 22 sin29 + —112 COQ2 8 , (3.4b)
hx
Hy By
A= 3 (3.4c)
Ay By
1 2
A1 = 3 cos g ; (3.44d)
i
A2=—h-}—{-sm9cos @, (3.4e)
A, = - . sin Bh c0329 (3. 4f)
37 hyk Y ’ ’
1
A4=-msin Bhy sin 6 cos 6 . (3.4g)

Similarly the substitution of (3.1c) through (3. 1f) into the difference

equations for a y sweep yields

Cn+1 'E’n+1
1 = %. B 1 ¥ (3.5a)
Cn"'i ’;n+1
3 3
where
b=—2—251n2¢+ Ti(-cosch s (3.5b)
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By P
B= s (3.5c)
Sy By
i 2
B, = pcos" o, (3.5d)
B Y i e
2 " hy St ecos e, (3.5€)
B, = o in ¢ C 3.5¢%
37 Ry kP eese G50
2 2
B4=—7sin @ . (3.5g)
hy

These two transformations must be composed and followed with two
more similar transformations representing the progression from time

t to t We shall not give-the details, but we write the com-

nti nt2°

position of the four transformations symbolically as

Cn+2 n
: -af '), (3.6)
Cn+2 Cn
2 2

where G is a 2X 2 matrix. One of the eigenvalues of G is zero.

The other is

1 2 2 B 1 2 2 iZ
-Ecosﬁ-hxzsune -Ecosqv—hzan:
.y

( z sin29+ - cosze) ( 2 sinz + 1COSZ(P
. & k_ gy 7K
hx n hy
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(% cosZG - -;]—}1?- sin 0 cos 6 sin ahx)

2 2 i 2
——= sin“f + —~ cos“ @
( z S 13 )
hx

i 2 1
L Cos @ - ;1;2- sin ¢ cos ¢ sin ﬁhy)

2 - i 2
<-};2- sin“p + % cos (p) 5 (3.7)

It will be found upon study that each of the four terms in braces must
lie between -1 and +1; hence, the eigenvalues of G are real and
are less than or equal to one in magnitude. Since a and B were
arbitrary, we have shown that no harmonic can increase in amplitude,

and the numerical scheme is stable.
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CHAPTER III

BURGERS' EQUATION:

COMPUTATIONAL EXAMPLES

III.1  Burgers' Equation

In this chapter we shall describe the results of computing on
Burgers' equation with three different initial conditions. Burgers'

equation is

2
ouU oU _ 90U
3t Ve 0V, 2 t1.1)

where U= U(x,t) and v is a positive number. This equation is
discussed by Cole [ 1951] who describes its applications and its
general solution. His result is that if 6(x,t) is any solution to the
heat equation
86 _ 8

5 =V > (1.2a)
ox

then

6
U(x,t) = -2v—9’£ (1.2b)
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is a solution of (1.1). We shall use this result in our third computa-

tional example.

We are particularly interested in the situation when v is small

compared to unity. In fact let us first examine the case when v = 0O:

%%‘)‘U-a;:o . (1-3)

The characteristic ordinary differential equations are

dx _

a—g'—U, (1.43)
%%:1 , (1.4b)
%g:o. (1.4C)

If we take the initial condition x =1 at time t=0 and if U(x,0) =

Uo(x) , we find

x=n+§ Uy, (1.5a)
t=§¢, (1.5b)
U= Uyln) - (1.5¢)

£ is a parameter along the characteristic curve in the (x,t) plane on
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which U is a constant. An interesting feature of (1.5) is that
characteristics originating at two different points Ny and n, on
the x axis at time t =0 can intersect at (x,t) where x and t

are given by

(1.6a)

_ (nz‘ T'i)
o Uo(nz) - Uo(ﬂﬂ :

s

(1.6b)

Since we are interested only in positive time, we restrict our attention
to initial functions Uo(n) such that intersection times t are positive.
This means UO should be a decreasing function of m in some range of
N. The first instant in time at which an intersection occurs is deter-
mined by the greatest negative slope of Uo. We may see this by
allowing ny and n, to approach each other in (1.6b). At this point
we gsay a shockis forming in the solution; that is, the solution will
become discontinuous. The initial function U, determines which
characteristics will lead into the shock and what the magnitude of the
discontinuity will be. We note that the value of U must always lie in
the range between the minimum and maximum values of UO so that if
Uo(n) has a bounded range, the jump in the solution must also be
bounded. The speed with which the shock propagates is determined

by the values of U just ahead of and just behind the shock. We re-

write (1.3) as



-83-

au 1 9
Ptz e U =0, o (1.7)

If we seek a steadily propagating solution of the form U= U({) where

t =x-vt, (1.7) becomes

3
El4

B o8

U+ts5US=0 (1.8a)

| =

-
which we integrate from {, to I,

vl uL,) - ue ] +31U%e,) - v = o. (1.8b)
(1.8b) may be solved for v:

1
v==[UL,) +Ult,] . (1.9)

If §.1 and §,2 are chosen on opposite sides of the shock, then (1.9)
tells us that the velocity of a steadily moving shock is equal to the

average of the function values just ahead of and just behind the shock.

If v> 0, we no longer have shocks in the sense of intersecting
characteristics. Nevertheless, if v 1is small, we should be able to
see shocks trying to form. The small amount of diffusion will prevent
the complete formation of a shock. On the other hand if U0 is a step
function, the diffusion will smooth the step into a continuous function.

We shall demonstrate both of these situations in the computational

examples,
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III.2 Example 1: Smoothing of a Sharp Front

The domain for all three examples will be 0 =< x=< 1. In this
example the initial function U0 is 1 for 0=x=0.48 and 0 for
0.52=x=1. In the interval 0.48 < x < 0.52 Uo is the unique
cubic polynomial with value 1 at the left end, O at the right end, and
zero derivatives at both ends. The boundary conditions are U(0,t) = 1
and U(1,t) = 0. We take v =3 X 10_3. With the exception of the
initial condition, this example is the same as that given by Swartz &
Wendroff [ 1969] . Their initial condition was a step function. We use

a cubic transition function instead because we need to specify x

derivatives as initial data for the box scheme.

We have performed the computation using both uniform and
nonuniform net spacings in the x direction. The time spacing was
always taken to be uniform. Newton's method was used for solving
the nonlinear difference equations. in all of the examples. All compu-
tations were performed in double precision on an IBM 370/155. The
first four figure31 show the solution for uniform meshes. The curves
were plotted at intervals of 0.1 time units so that the last curve cor-
responds to time t = 0.5. The oscillations which appear most promi-
nently in Figure 1 are actually a part of the numerical solution since
according to our boundary conditions we cannot have any oscillations

of constant amplitude over the entire net which must be averaged out.

1Ta.bles and figures are at the ends of the sections in which
they are discussed with tables (if any) preceding the figures.
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In Figures 5 through 8 we show a nonuniform mesh which is succes-

sively refined. These curves are also given at time intervals of 0.1.

In Figure 8 we see most clearly the behavior of the solution.
The "corners" of the initial function are quickly rounded off, and a
shock-like profile is moving to the right with speed one half. For
an economical computation, one should probably change the space net
as the shock propagates by deleting net points behind the shock and

interpolating additional points in the neighborhood of the shock.
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11L.3 Example 2: Formation of a Shock

In this example the initial function Uo is

1 for 0.0 <= x=<0,1
Uo(x) = % (1 + cos %)‘;—1 w)) for 0.1 = x=<0.5 (3.1)
0

for 0.5 x=<1.,0./ ;

The boundary conditions are U(0,t) =1 and U(1,t) = 0. We again
take v =3 X 10-3. If we examine the characteristics when v = 0,
we learn that a shock will start to form at (x,t) = (0.4273,0.2546) and

will be fully developed at (x,t) = (0.5,0.4).

For this example we have used uniform nets consisting of
100, 200, 300, and 400 space steps. The time step k was always
equal to the space step h. Figures 9 thi‘ough 12 show plots of the
solution for the four meshes. The curves were plotted at time inter-
vals of 0.1 so that the rightmost curve corresponds to time t = 0.8.
Visually it appears that by time t = 0.4 the solution has reached its

final shape and is traveling to the right at speed one half without further

change.

This leads us to ask whether or not it is possible to detect
numerically when a shock has formed; that is, can we tell when the
solution has reached a steady profile. We decided to recompute the
case h=k =0.01, but now at each time we performed an inverse

Neville interpolation on the solution for five different values of U:
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0.10, 0.25, 0.50, 0.75, and 0.90. In other words we ask for what
values of x does the solution take the five prescribed values. We
then took time differences over one time step to approximate the speed
at which each of the five given values of U moves to the right., We
point out that when v = 0, a point of the solution will propagate to the
right at a speed equal to its amplitude. For example, the point

U = 0.6 will appear to move at speed 0.6 to the right until it is ab-
sorbed into the shock after which it moves at the speed of the shock.
When v # 0, we would hope to see the speed decrease gradually (or
increase gradually when U < -%) to speed one half, and we would want
it to reach this ultimate velocity at or before time t = 0.4 when the
shock for v = 0 would be fully formed. In Table 1 we give the results
of these computations. In the first column are the time values midway
between the time mesh points. In the succeeding columns are the
velocities found by inverse interpolation and time differencing. These
numbers are presented graphically in Figures 13 and 14. We have
plotted also a line segment from the first velocity point to the value on
the velocity axis to which it corresponds. We add that the values
U=0.25and U=0.75 should be absorbed into the shock at (x,t) =
(0.4333,0.2667). Since it appeared that the velocities were oscillating,
we decided to average them over two time steps or equivalently to
difference the locations over two time steps. Table 2 gives these
results. The time in column one is the midpoint of two time steps.

We see that on the average these five points of the solution do approach

speed one half though it is difficult to say when. One further compu-
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sation was dofe wikh ¥ = 3X40™* and theee prescribed values of U.

These results are presented in Table 3 and Figure 17. We see that

with greater diffusivity the velocities no longer oscillate.

We are also interested in achieving more accurate solutions

through Richardson extrapolation. Suppose u, is a finite difference

1

solution and is related to the continuous solution U by

ui(x,t) = Ulx,t) + hzfz(x,t) + h4f4(x,t)

+ h6f6(x,t) +omd) . (3.2)

uy of course is defined only for (x,t) in the mesh. The principal

errors fz, , and £6 are defined for all x and t and are independent

f4
of h, but in (3.2) they are used only at mesh points. We are'assuming
k=h. If u, denotes the finite difference solution for the same prob-
lem but with the mesh refined by cutting all intervals in half, then u

2
must satisfy

2 4

u,(x,t) = Ulx,t) + -};—fz(x,t) + .?.6 £,(x,t)
6
+ '22 £,(x,1) + o(m®) . (3.3)

We can now take a combination of uy and u, at each of the net points

of uy in such a way as to eliminate the O(hz) term leaving us with

an O(h4) approximation to U at those mesh points. The combination
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is (4u2 - ui)/3. If we divide the basic mesh into thirds and quarters,
we can compute u, and Uy which will have expansions similar to
(3.2) but with h replaced by h/3 or h/4. With four finite difference
solutions we have six possible pairs which we can extrapolate to O(h4),
or we might take three solutions and extrapolate to O(hé). Even though
we do not know what U is, we can perform the extrapolations and look
for an agreement to a greater number of significant figures in the
extrapolated solutions than in the original finite difference solutions.
Let us introduce a notation for extrapolated solutions where subscripts

indicate the u, used. For example, u is extrapolated from u

14 |

and u,.

4 Y24 is extrapolated from Uy, Uy, and u,-.

In this example we have selected the solution at (x,t) =
(0.35, 0.1) for extrapolation. The results are given in Table 4.
In Table 5 we give the equivalent extrapolations for the flux V. We
see that pairwise extrapolations give very good agreement, but for our
particular data an extrapolation of three solutions appears not to yield
much further improvement. Iterations in Newton's method were
stopped when the relative change in two succeeding iterates was less
than 2 X 10—7 except we did not compute the relative change for com-

9

ponents less than 8 X 10”7 in magnitude. Since the maximum value of

the solution is very nearly unity, the maximum absolute error in any

7

component should be 2 X 10~ ', and for most components it should be

even less. This assumes that round-off error can be neglected.

We also performed extrapolations in Example 1, but the
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increase in agreement was not as great as in Example 2. Another
computation in which the transition from 1 to 0 was spread out over a
wider interval yielded better extrapolations. On the basis of‘a
limited number of computations involving different initial functions
and different values of v, we believe, although we cannot prove, that
the deciding factor in whether or not Richardson extrapolatioa will
yield a significant improvement is the ratio of the magnitudes of the
derivatives of the solutions (including their initial values) to the
inverse of the mesh spacing h. Examination of seven computations
indicates that this ratio should not exceed 1/10. We therefore pro-
pose that in the numerical computations of shocks in the presence of
a small amount of diffusion, an examination of the solution should be
made every few time steps to detect regions of rapid change and that
new net points should be interpolated in accordance with the empirical

ratio given above.
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Table 1, Part 1

PROPAGATICN VELOCITIES GF PCINTS GF THE SOLUTION
TO BURGERS® EQUATION COBTAINED BY DIFFERENCING
OVER ONE TIME STEP

T Uu = .10 U= .25 U = .50 U= .75 U = «90
0.005 0.131896 0.263950 0.500229 0.735932 0.867148
0.Cl15 0.133366 0.264944 0.500385 0.735190 0.865906
0.025 Je134943 0.2660651 0.500418 J.734038 0.864276
0.035 0.136955 0.267448 0.500454 0.7326175 0.862196
0.045 0.139206 0.2689417 0.500494 0.731170 0.859946
0.055 Jel4l434 0.270197 J.500539 Je 729910 0.857525
0.065 0.144154 0.272047 0.500589 0.728056 0.854938
0.075 0.146622 0.274142 0500644 0.725949 0.852194
J.085 J.1490138 0.276230 0.500704 0.723863 0.850064
0.095 0.150915 0.278279 0.500771 0.721798 0.847822
0.105 0.154249 0.281238 0.530844 0.718828 0.844465
0-115 0.157861 0.284647 0.500927 0.715464 0.840790
0.125 0.161544 0.287128 0.501012 0.712926 0.836811
C.135 0.165826 0.291021 0.501101 0.709069 0.832552
0.145 0.169377 0.296058 0.501209 0.704125 0.828908
0.155 0.170938 C.300379 V501313 0.699780 0.826832
Q.165 J.175538 0.304443 J«501428 0. 665773 0.821377
0.175 0.181671 0.312055 0.501507 0.688387 0.815165
0.185 0.188251 0319649 0501691 0.680944 0.808207
0.195 0.195237 C.322264 0.501701 0.678189 0.800558
0.205 0.197095 0.334374 0.501983 0.666758 0.799516
0.215 0.202681 0. 345836 0.501764 0.655675 0.791408
0.225 0.213199 0.344235 0.502387 0.656417 0.779761
C.235 0.226338 0.366175 0.501641 0.637038 0.765761
0.245 J.240473 0.371462 0502931 0.629535 Q.757152
0.255 0.232511 0.373649 0.501104 0.628673 0.756301
C.265 J.251871 0.4141S6 0.503774 0.594255 0.733844
0.275 J.284354 0.374014 0.5033J032 0.620296 0.703383
0.285 0.295886 0.432928 0.504988 0.579894 0.714271
0.295 0.265C01 0. 405740 04982174 0.583154 0.699956
J«305 0.3521930 0.433709 0.506678 0.583511 0.637966
0.315 0.348102 0.464705 0.495878 0.520129 0.679412
0.325 0.276E67 0.403774 J.508778 0.615186 0.648747
0335 0.514069 0.533543 0492992 0.486143 0.538052
0.345 0.182232 0.360312 0.511175 0.62C607 0.720932
0.355 0543654 0.564241 0.489895 0464828 0.514237
0.3¢5 0.273807 0.351342 0.513646 0.617004 0.660511
0.375 0.477959 0.591057 0.486864 0.449309 0.534815
0.385 0529732 0.342818 J.516205 0.611680 0.550754
0.395 0.248122 C.613707 0.484124 0.438972 0.606499
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Table 1, Part 2

PROPAGATICN VELCCITIES OF PCINTS CF THE SOLUTION
TO BURGERS' EQUATICON OBTAINED BY DIFFERENCING
OVER ONE TIME STEP

T U = .10 U = «25 U= .50 U= .75 U = .90
0.405 0.8773813 0.335297 0.518C95 0. 605468 0398020
0.415 -0.072516 0.632246 0.481803 04432635 0.724722
0.425 0991424 0.328991 0519848 0.599165 0.289208
J.435 -0.159028 0.647034 Je479933 064290177 0.804172
0.445 1.096824 0.323949 0.521249S 0593422 0.255958
0455 —0.236592 C. 658456 0478493 Ce427235 0.813541
0.465 1.189696 0.320022 Je522329 0.588570 0.231211
0.475 -0.303239 Qs 667245 0.477415 0.42€63174 0.819653
0.485 1.2684917 C.317076 0.523140 C.5E4678 0.213138
0.495 -0.357689 0.673741 0.476632 0426016 0.823654
0505 1.332260 0.314878 0.523732 0.581711 0.200089
0.515 -0.400985 0.678557 0.476071 0425854 0.826185
0.525 1.382645 0.313301 0.524162 0.57948C 0.190796
0.535 -0.433887 C.682015 0475679 0.425874 0.827933
0.545 1.420732 0.312150 0524465 0577886 0.184145
0.555 -0.458746 0.684542 0.475406 0.425880 0.828987
0565 1.449442 0.3113¢2 0.524681 0.576715 0.179499
0575 —-0.476675 0.686304 0415220 J425900 0.829816
0.585 1.470C86 0.310772 0.524830 0.575922 0.176159
0.595 -0.489877 C.687591 0.475092 0.425907 0.830251
0.€05 1.485286 0.310384 0524936 0.575334 0.173886
O0e€15 —0.499025 C.688460 0475007 0.425919 0.830683
C.625 1.4G6579C 0.310097 0.525006 0.574961 0.172218
0.635 -—-0.505721 0.689104 0.474949 0.425916 0.830845
Ce.€45 1.50350C 0.309915 0.525057 0.57467C 0.171133
0.655 -0.510187 0.689521 D.474911 0425920 0.831093
0.665 1.508¢623 0« 309775 0525089 0574504 0.170299
0.675 —0.513504 0.689841 0.474885 0«425912 0.831132
0.685 1.512446 0.309692 0.525114 0.574359 0.169798
0.695 -0.515613 0. 690036 0.474869 0.425914 0.831228
0.705 1.514862 0.309623 0525129 0.574291 0.169376
0e715 —04517240 0.690195 04748517 0425906 0.831273
0.725 1.516745 0.309587 0.525141 0. 574216 0.169157
0.735 -0.518203 0.690282 0.474851 0e425908 0.831379
0.745 l1.517845 0.309553 0.525147 0574192 0.168937
C.755 -0519004 C. 690363 0474846 0.4259C1 0.831343
0765 1.518776 0.309538 0525153 0.574151 0.168851
0.775 -0.519426 0.690399 0.474843 0.4259C3 0.831421
0.785 1.51925¢ 0« 309520 04525155 Q574147 0.168731
0.795 -0.519826 0.690441 D.474841 0.425898 0.831380
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Table 2, Part 1

PROPAGATION VELOCITIES OF POINTS OF THE SOLUTION
TO BURGERS' EQUATICN OBTAINED BY DIFFERENCING
OVER TwO TIME STEPS

T U = .10 U = .25 U = .50 U= .75 U = 90
0.010 0.132631 0.2644417 0.500307 0.735561 0.866527
0.020 0.134154 0.265517 J.500401 0.734614 0.865091
0. 030 0.135949 C.266769 0.500436 0.733356 0.863236
0.040 0.138C80 0.268197 0.500473 0.731922 0.861071
0050 0.140320 0.269572 0.500516 0.730540 0.858735
0.060 0142794 0.271122 0.500564 0e 728983 0856231
0.070 0.145388 0.273094 0530616 0.727002 0.853566
0.080 0.147820 0.275186 0.500674 06724906 0.851129
0.09¢C 0.149G66 0.277254 0.500737 0.722830 0.8489473
0.100 Q152582 0.279758 0.500837 0.720313 De846143
0.110 0.156C55 0.282942 0.5008385 0.717146 0.842627
0.120 0.159702 0.285887 0.500969 0.714195 0.838800
0.130 0.163685 0.289074 0.501056 0.710997 0.834681
0.140 0.167601 0.293539 0.501155 0. 706597 0.830730
0150 0.170157 0.298218 0.501261 0.701952 0.827870
0.160 0.173438 0.302411 0.501370 0.6G7776 0.824104
0.170 0.178804 0.308249 0.501467 0.692080 0.818271
0.180 0.184G61 0.315852 J.501599 D. 684665 0.811686
0.190 0.191744 0320956 0501696 0.679566 0.804382
0.200 0.196166 0.328319 J.501842 0. 6724173 0.300037
0.210 J. 199888 0.340105 0.501873 0.661216 0795462
0.220 0.2C7940 0.345035 0.502075 0.656046 0.785584
0.230 0.219768 0.355205 0502014 0.6467217 0.772761
J.240 0.2334J5 0.368818 0502286 J.633286 0.761456
0.250 0.236492 0.372555 0.502017 05629104 0.756726
0.260 0.242191 G.393922 0.502439 0.611464% Oe 7145072
0.270 0.268112 0.394105 0501903 0.607275 0.718613
0.280 0.290120 0.4034171 0502510 0.600095 0.708827
0.290 0.280443 0.419334 Je501631 0.581524 J.707113
0.300 0.308595 0.419724 05024176 0.583332 0.668961
0.310 0.350146 0.449207 0.501278 0.551820 0.658689
0320 D0.312484 0.434239 0.502328 05676517 0.664079
C.330 0395468 0.468658 0.500885 0. 550664 0.593399
C«340 0.348150 0.446G9217 0.502083 0.5533175 0629492
0.350 0362943 0.462276 0.500535 0.542717 0.617584
0.360 0.408730 0.457751 0.501770 0.540916 0587374
0.370 0.375883 0.471199 0500255 0.533156 0597663
0.380 0.503845 0.466937 Je501434 0530494 0.542784
0.390 0.388927 0.478262 0500064 0525326 0.578626
0.400 0562152 C.474502 0.5011C9 00522220 0502259
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Table 2, Part 2

PROPAGATICN VELOCITIES OF PCINTS OF THE SOLUTION
TO BURGERS' EQUATION CBTAINED BY DIFFERENCING
OVER TwhO TIME STEPS

T U = .10 U = .25 U = .50 U= .75 U= .90
0.410 0.402434 0.483771 0.499949 0.519051 0.561371
0.420 0.459454 0.480618 0.500825 0.515900 0.506965
0430 J.416198 0.488012 J.499890 Je514121 0546690
0.440 0.4688S8 0.485491 0.500591 0511249 0.530065
C.450 0.430116 0.491222 0499871 0.510328 0.534749
0.460 De476552 0.489259 0.500411 C.507902 0.522376
04170 V443226 0.493633 0.499872 0.507472 0525432
G.480 0.482629 0492160 J.500277 0.505526 0.516395
0.490 0.455404 0.495408 0.499886 0.505347 0.518396
0.500 0.487286 0.494309 0.500182 0.503863 0.511871
J.510 J.465638 0.496717 J.499901 0.503802 0.513137
0.520 0.4SC830 0.495929 0.500116 0.502687 0.5C8490
0.530 0.474375 0.497658 0499920 0.502677 0.509364
0.540 J.493422 0.497282 J«500072 0.501880 0.506039
C.550 0.480993 0.498345 0499935 0.501383 0.506566
0.560 0.495348 0497947 0.500043 0.501297 0.504243
0.570 0.48€6331 0.498828 0.499850 0.501307 0.504657
C.580 0.496704 0.498538 0500025 0.5C0911 0.502987
0.590 0.490105 0.499181 J.495961 Je 5300914 0503205
0.600 0.497704 0.498987 0.500014 C.500620 0.502068
0.€610 J.49313¢C 0.499422 0.4996G71 0.500626 0.502284
J.620 J.498383 J.49921738 J.5J32006 0. 500440 J.501450
0.630 0.495035 0«4996C0 0.499977 0.500438 0.501531
0.640 J.458890 0499509 0.500003 0.500293 0.500989
J.650 Je 456656 0.499718 J.499584 0.500295 0.501113
0.66C 0.499218 0.499648 0.500000 0.500212 0.500696
0.6170 0497560 0.4998038 0.499987 0.5002Cs8 0.500715
J.680 0.499471 0.499766 0499999 0.500135 0.500465
C.€90 0.458417 O.4998¢4 0499991 0.500136 0.5005113
3.709 0.499625 0.499829 0499999 0.50301Q02 0500302
0.710 0.498811 0.4999C9 0499993 0.500098 0.500324
0.720 04961752 0. 499391 0.499969 0.500061 0.500215
J.730 Je499271 0.499934 0499996 Je 500062 0.500268
0.740 0.496821 0499917 04999599 C. 500050 0.500158
0.750 0.499421 Ve 499958 0.499996 0.500046 0500140
0.760 J.49G5886 0499950 0499599 0.500026 0.500097
O0.770 0.499675 0499968 0.499998 0.500027 0.500136
0.780 0.499915 0.499959 0499399 J. 530025 0.500076
0.790 0.4GS5715 0.499980 0.499998 G.500022 0.500055
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Table 3, Part 1

PROPAGATICN VELOCITIES GF PCINTS OF THE SCLUTION
TO BURGERS' EQUATION OBTAINED BY DIFFERENCING
OVER CNE TIME STEP

T U= .25 U = .50 U= .75
0.005 0392306 044998136 0.607234
0.015 J. 405520 J.499951 0.594442
0.025 Ce419353 06499956 0.58C0939
0.035 0.432555 0.49998S 0.568132
J.045 0.444864% J«500059 0.555963
0.055 0.455285 0500159 0.545359
0.C65 0.464216 0.500256 0.536250
0.075 0.471848 0.500321 0.52848¢4%
0.C85 0.478C82 0.500354 0.522167
0.095 0.483595 0.530363 0.516598
0.105 0.487853 0.500357 0.5123C9
0.115 C.491322 0500342 0508316
0.125 0494684 J.530322 J.505455
0.135 0.497534 0.500299 0502517
0.145 06499445 05002177 0.5007C3
0155 0501464 0.500255 0.498617
0.165 0.502738 0.500234% 0497421
0.175 0.504203 0.500214 0.455904
0.185 0.504805 0.500197 0.495173
0.195 0.506253 0500180 0494071
0.205 0. 506550 0.500167 0. 493655
D.215 0.506812 J.500151 0.4G2861
0.225 0.5C7502 0.500143 0492657
0.235 C.5084172 0.500127 0.492096
0.245 0.507854 0«500123 0.492032
0.255 0.508197 0.500116 0.491649
0.265 C.508744 0.500091 0.491676
0215 0.508641 0.500127 0.491432
0.285 0.508358 0.500114 0.491512
C.295 0.508976 Je499986 0.491379
0.305 0.508747 0.500102 0.491488
0.315 C.508325 0.5002¢€6 0.491444
0325 0508544 Je4999380 0.491563
0.335 0.5(08810 0.499854 0.491593
0.345 C.508348 0.500254 0.491708
0.355 0.508091 0500238 0.491802
0.365 C.508277 0.499854 0.491908
0375 0.508178 0.500008 492027
0.385 0.507919 0500234 0.492153
0.395 0.507722 0.499G96 0.492357
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Table 3, Part 2

PROPAGATICN VELOCITIES OF POINTS OF THE SOLUTION
TO BURGERS' EQUATICON OBTAINED BY DIFFERENCING
CVER CONE TIME STEP

T U= .25 U = .50 U = .75
0405 0.507758 0499991 0.492325
0.415 0.507514% 0.500209 0492563
0.425 0.507436 0.500019 0492791
0.435 0.507186 0.499881 0.492921
0.445 0.507187 J.500178 06492731
0455 0.506891 0500212 0493249
0.465 0.5069Q0 0499904 0493423
0.475 0.506590 0.499943 0.493392
0.485 0.506626 0.500198 0.493308
0.495 C.506292 0.500119 Je 493952
0.505 0.506353 0.499942 04938631
0.515 0.5060C2 0.500020 Ce493943
Je525 0.506385 0.500127 0+494048
0.535 0.5057138 0.500621 0494456
0.545 0505825 0.500007 0.494156
0555 0505444 J.500047 0494633
0.565 0.505571 0500072 0.4946951
0575 0.5051178 0.500047 0.494834
0585 0505326 0503039 00494599
0e595 0.504921 0.500048 0.495273
Ce 605 0.505089 0.500051 0.495140
0.615 0.5046174 0500044 0495264
00625 0.5C4859 0.500044 0.495124
0.€635 0.504434 0.500044 0465752
0645 0.504635 0500044 0.4954G8
0.655 C.504201 0.500041 0.495754
0.665 0.504416 0.500041 0.495611
C.675 0.5039172 0.500038 0.496131
0.685 0.504200 0500037 0.495851
0.695 0.503745 0.522033 Je 496222
0.705 0.503982 0.500031 0.496021
Qs 715 C.503514 0.500027 0.496481
0725 0.503756 0500023 0.496202
0+735 0.5032174 0.500017 0.496627
0.745 0.503516 0.500011 0.496372
0.755 0.503015 0530302 0.4G6817
0.765 0.5032¢1 0499994 0.496529
C.775 0.502725 0.499580 0.496972
0.785 0502943 4999617 0496680
0.795 0.502384 0.499948 0497127
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Table L

Richardson Extrapolations

of Example 2 at

(X, t') = (0035: 0.1)

uy = 0.50032235050
ey = 0.50008107259
uy = 0.50003613622
u), = 0.50002035943
Uy, = 0.5000006L662
v, = 0.500000359LL
uy), = 0.50000022669
Upg = 0.50000018712
), = 0.50000012171
ug), = 0.50000007L499
) 0q = 0.50000012969
Wy T 0.50000008672
Wy T 0.50000005602
Uy, T 0.50000003761

= 0.500000031L7
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Table 5

Richardson Extrapolations

of Example 2 at

(x, t) = (0.35, 0.1)

23
124
V13l
23L
V1231

-0.0185401499230
-0.018499265130
-0.018491656850
-0,018L8899L690
-0.018485520430
-0.018485551553
-0.01848556105)
-0.018L85570226
-0.018L85571210
-0.018L85571913
-0.018485576L51
-0.018L85574595
-0.018L485573270
-0.018L485572475
-0,018485572210
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III. 4 Example 3: Interaction of Two Shocks

In (1.2) we gave a transformation which converts solutions of
the heat equation into solutions of Burgers' equation. This transfor-
mation has been used to advantage by Whitham [1972] to construct an

exact solution of Burgers' equation representing the overtaking of one

shock by another. This solution is

i 1
(x-3)  gg¢ (x-3) 5
1~ 720v T~ 400v 1~ T av T 16V
W(X,t) = {To- e G -2- €
3 1
(x_g') (X— 2) . 99t
T 2v } { T T 20v 400v
+ e L e
1 3
i (x 2')_ 3t ) (X-‘g') -1
& 5 4v 16v % s 2V (4.1)
In the limit as v goes to zero we have the initial condition
S 1 for x < 0.25
W, (x) = % for D.25 < %<D.5 (4.2)
1
Tﬁ fOI' 0.5 < X :

For v = 0 the solution would be a shock moving at speed 0.75 and
starting at x = 0.25 overtaking a shock moving at speed 0.3 and
starting at x = 0.5. The shocks would merge at (x,t) = (2/3, 5/9)

and continue as a single shock of strength 0.9 and speed 0.55. For a
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small, positive v the initial condition would resemble a staircase

function with the corners rounded.

In Example 3 we take v = 3 X 10"3. The initial and boundary
conditions are

U(X’O) = W(X,O), (4. 3a.)

U(o0,t) = W(0,t), (4.3b)

Ul ,t) = W(l,t). (4.3c)

We use uniform meshes consisting of 100, 200, 300, and 400 space
steps over the interval 0 = x = 1. We always take k = h. Graphs of
the solutions for each of the four nets are given in Figures 18 through
21. The curves are plotted at time intervals of 0.1 so that the right-
most curve, which goes off the right edge at about U = 0.96, cor-

responds to t = 1.2,

As in Example 2 we have selected a point at which to perform
all of the possible Richardson extrapolations with four solutions
Ugs Uy, Ug, and Uy These are given in Tables 6 and 7. We notice
that uy 5 is more accurate than uy- In order to find if this might be
true in general, we select twelve different points, and at each tenth of
a time unit, for comparison. In Table 8, Part 1 we give ugs u,
and u3. In Part 2 we list Uy U, and Uyse We see that uy has at

best three digit accuracy as is the case with Ugye We conclude that
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w5 gives roughly the same number of correct digits as Uy This is
a significant result when we recall that the amount of computation
required by various meshes is proportional to the square of the ratio

of steps. In particular u, requires four times as much computing

2

as ug, and u, requires sixteen times as much as u Thus if u

4 1° 12

is comparable to u, in accuracy but requires only 5/16 as much

computing as Uy it will clearly be preferable to compute uy and u,

and to extrapolate rather than to compute u, with a very fine mesh.

4

We note incidentally that Uy, Uy, Ug and u, become progressively

4
more accurate. This means we have not yet refined the mesh to such
an extent that the increased amount of computation causes significant

round-off errors. For reference, Part 3 gives two more extrapola-

tions involving us.
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Table 6

Richardson Extrapolations
of Example 3 at

(x5 &) = (056, 0.2)

uy = 0,302253652LL
Uy = 0.30059271979
ug = 0.3002663273L
u), = 0.30015060111
uj, = 0.30003907557
By = 0.30001791170
W), = 0.30001039769
u,, = 0.30000521338
Uy, = 0.30000322822
Ug), = 0.3000018102
LI = 0.30000098061
Uy, T 0.30000083839
W " 0.30000073681
Uss), = £.30000067586
g T 0.30000065555

Exact Solution: U = . 20000056686
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Table 7

Richardson Extrapolations

of Example 3 at

(x, t) = (0.56, 0.2)

Y123y

Exact 3olutiocn:

-0,020013461931
-0.020008700290
-0.02000LL357C6
-0.02000266L316
-0.020007112076
-0.020003307053
-0.0200019LL275
-0.02000102L039
-0.020000652325
-0.020000386815
-0.02000026303L
-0.020000221675
-0.0200001.92132
-0.02000017L406

-0,020000168L,98

\'4 =

-0.02000018220
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Table 8, Part 1

Example 3
| Y2
0.15162932809 0.1:5213909765
0.L9260003939 0.L928L,055156
0.L4737.6918L8 0.L7L6LL22617
0.1:2107292706 0.12301439573
0.3396L5L03L5 0.3L4073709968
0.323473215370 0.32641931827
0.14725589532 0.1:3114939356
0.60225117856 0.5913L1196L3
0.7L6L57L9560 0.7L3950119L7
0.855L1977691 0.856508357L9
0.L4512538L19 0.442816511566
0.992L8L61873 0.98966518105

u

3

0.1:52238136L3
0.49288720790
0.47L818600L0
0.42335725720
0.24090349587
0.32523826859
0.L2808375L8L
0.588821496729
0.7L323L37130
0.8567L65L929
0.L2Lh9112335L
0.98983381566
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0.k

0.6
0.7
0.8
0.9
1.0
1.1

1.2
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Table 8, Part 2

Example 3

!
0.L5227329626
0.L929037L0L2
0.L7L88B025263
0.L23L7622629
0.2L095825381
0.32L85439735
0.L270202292),
0.58790276€99L
0.7L296136L13
0.8568328038L
0.12378L37932
0.99015L577L7

0.45231905503
0.19292520906
0.L7L9600L4739
0.L23628LL757
0.34102590553
0.3243828993L
0.1:2566L,8866
0.586685585L9
0.7L425916L202
0.8569L563756
0.L42235376627
0.991611,8L779

Y12
0.L:523090208L
0.19292072228
0.L7L9L332873
0.L42366155195
0.3L4110099842
0.323648L1313
0.L4257805596L
0.58770493572
0.7L311L327L3
0.85687121768
0.112251169282
0.988725368L9
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Table 8, Part 3

Example 3

u

23

0.L52317367L5
0.19292453297
0.47L95809978
0.L42363154638
0.3L103661282
0.324293,0L85
0.L256312386
0.58681174398
0.7L266177276
0.85693710273
0.4223081278L
0.98996872335

u
123

0.15231841078
0.1:9292500931
0.L7L9599L616
0.112362779568
0.34102856L62
0.32L37L02881
0.42561257939
0.58670009501
0.7L2605203L3
0.856911533836
0.L2228268222

0.9901241)271
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