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ABSTRACT 

The problem of the slow viscous flow of a gas past a sphere 

is considered . The fluid cannot be treated incompressible in the 

limit when the Reynolds number Re, and the Mach number M, tend 

to zero in such a way that Re ~ o(M2 ). In this case, the lowest 

order approximation to the steady Navier-Stokes equations of motion 

leads to a paradox discovered by Lagerstrom and Chester . This 

paradox is resolved within the framework of continuum mechanics 

using the classical slip condition and an iteration scheme that takes 

into account certain terms in the full Navier-Stokes equations that 

drop out in the approximation used by the above authors. It is 

found however that the drag predicted by the theory does not agree 

with R. A. Millikan's classic experiments on sphere drag. 

The whole question of the applicability of the Navier-Stokes 

M 
theory when the Knudsen number is not small is examined. A 

Re 

new slip condition is proposed. The idea that the Navier-Stokes 

equations coupled with this condition may adequately describe small 

Reynolds number flows when the Knudsen number is not too large is 

looked at in some detail. First, a general discussion o£ asymptotic 

solutions of the equations for all such flows is given. The theory 

is then applied to several concrete problems of fluid motion. The 

deductions from this theory appear to interpret and summarize the 

results of Millikan over a much wider range of Knudsen numbers 

(almost up to the free molecular or kinetic limit) than hitherto 
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believed possible by a purely continuum theory. Further experi -

mental tests are suggested and certain interesting applications to 

the theory of dilute suspensions in gases are noted. Some of the 

questions raised in the main body of the work are explored further 

in the appendices. 
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Chapter I 

Introduction 

§1. The problem of the flow of a viscous fluid past finite bodies 

is one of the central problems of fluid mechanics. Stokes was the 

first to solve a particular case of it . If the Reynolds number of 

the flow is large, the problem is complicated by many difficulties 

and in the present state of knowledge, very poorly understood. On 

the other hand, when the Reynolds number is small, some progress 

can be made. When the Reynolds number is small, a compressible 

fluid is characterized by the Mach number of the flow in addition to 

several other, less important, parameters. The Mach number 

measures the compressibility effects on the flow as well as the 

continuum nature of the fluid. From a kinetic point of view, the 

ratio M/Re is equal to ~/L , where A. is the mean free path of the 

fluid and L is a typical linear dimension of the finite body around 

which the fluid flows. This ratio, which is also called the 

Knudsen number, must be small if the flow is regarded as the 

flow of a continuous medium around the body. Stokes himself 

gave a theory which has since been extended and developed by 

others, 
M 

of flows for which Re < < 1 and Re < < 1. An account of 

this theory may be found in [1] . The question now arises whether 

M 
we can give a theory of flow past finite bodies when Re is 0(1) or 

even larger . Traditionally, the statement is made that in this 

regime, the continuum hypothesis does not hold any more and that 
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therefore the Navier-Stokes equations are inapplicable . Kinetic 

theory has been used under these conditions to calculate flow 

properties like drag coefficients when ~ > > l 

§ 2. The usual calculations of kinetic theory (not involving the 

actual solution of the Boltzmann equation subject to given boundary 

conditions) neglect the effect of the body on the mean velocity of 

the flow. Again, they do not lead to any details of the flow field . 

It is therefore of interest to examine whether the Navier - Stokes 

equations provide a useful picture of the flow. There are reasons 

to believe that this may be so. If one writes down the Boltzmann 

equation and tries to solve it by the method of moments, the 

simplest set of moment equations are the Navier - Stokes equations. 

In fact, it has been found that including a few higher moments 

usually yields results that are not as good as the Navier - Stokes 

results. A discussion of these and experimental results obtained 

by R . A. Millikan and other workers are given in [2] . The limits 

of continuum theory are discussed in l3], where it is stated that 

the problem of the transition of continuum to free molecular flow 

is still unclarified. 

§3. The first attempt to solve the Navier-Stokes equations for a 

flow past a sphere when Re < < l , M < < l , 
Re 

and Mz < < l was made 

by Lagerstrom and Chester l4]. This attempt will be b riefly dis -

cussed in the following pages. It ran into certain paradoxes. These 

paradoxes could be removed by a modification of their technique if 

one assumes a ''slip condition'' given in [2] . It will, howevt>r, be 
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shown that the solution so obtained contradicts available experi­

mental evidence. 

§4. At this stage, a new slip condition is proposed and the 

Navier-Stokes equations are solved for various Re, M . Re is 

always restricted to small values. The results will be compared 

with experiment, and with kinetic theory, where appropriate. This 

new condition is very simple and goes over smoothly into the 

classical no-slip condition at the appropriate limit. It also appears 

to be a rather natural one. 

The contents of the following chapters are briefly summarized 

here. Chapter II contains a statement of the equations to be used 

and a brief description of the Lagerstrom-Chester theory. In 

Chapter III the modification of this theory to resolve the paradoxes 

in it is described. The results so obtained are found to be in dis-

agreement with experiment. Chapter IV contains a full discussion 

of a new slip condition and an asymptotic theory of low Reynolds 

number flows of a compressible fluid past finite bodies. In Chapter 

V we discuss the ''outer" or Oseen expansions of such flows. 

Applications of these methods are made to concrete cases in 

Chapter VI. Comparison with experiment is also made. 
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Chapter II 

The Formulation of Lagerstrom-Chester Theory 

§5. In the following chapters we shall use the non-dimensional 

form of the Na vier-Stokes e quations for a perfe ct gas. W e shall 

assume the Prandtl number to be a constant. The coefficients of 

viscosity and the ratio of specific heats vary somewhat with tem­

perature but we shall replace them with constants, an approxi­

mation which is probably justified for most steady flow problems . 

We shall also restrict the Reynolds number of the flow (to be 

defined below) to be small and shall in fact use it as a pertur-

bation parameter . Only steady flows past finite sized bodies will 

be considered. The boundary condition at infinity is simply a 

uniform flow. The conditions at the body will be discussed as they 

arise naturally in the problem. The Navier-Stokes equations are 

discussed in detail in [1]. External force fields in addit ion to the 

body as well as heat sources could be easily included in the theory 

but will be left out in the interests of simplicity. 

§ 6. The equations of steady flow of a gas with the properties 

stated above are 

\} · pu=O, 

p u · \7~ + \7p = \7(>-..\7 · ~) + \} (!J.(def~))) 

= 1--l \7z~ + (A+!J.) \7(\7 ·~) 

(6 . 1) 

( 6. 2a) 

( 6. 2b) 
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p 
p u · V'(e + -) - u · vp = k\72 T + <I> ) 

p 

~2 
<I>= A.( \7. u) 

fJ. ( oui ouj )
2 

+ -2 L, -;--- + -;-
uX. ux. 

. . J 1 
1, J 

p=RpT, 

h = C T 
p 

e = C T 
v 

(6 . 3) 

(6. 4) 

( 6 . 5) 

(6. 6) 

We non-dimensionalize these equations in the following way. Let 

L be the typical linear dimension of the body and let p , T , U, 
00 00 

p denote the values of the flow variables at infinity. 
00 

* X ~( p * p 
T* X = p = p = = L poo poo 

fJ.C cP fJ. 
Pr .:...____2 Re = = " , = Q' .) = k c A.+fJ. v 

uz 
= yT R 

00 

We find then, 

>~ >!c- >'f 
\] pu =0, 

Define, 

T 
T 

00 

pUL 

fJ. 

*__.. >:c *____.. >';:: Re ~' * *2 ___.. * 1 * >::: --. * 
Re p u \] u + yM2 \] p = \7 u + a v (v · u ) 

( 6. 7) 

(6. 8) 

( 6. 9) 
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* >): l >!' :0:< >!' 
\l P = Pr \l 2 T + ("y-l)M2 q?, (6.10) 

where Re, -y, M, Pr, a are parameters. We also have 

'!:: * ~' 
p = p T . (6. ll) 

At Infinity , 

-->!' 
u - i and T 

>:' 
l . (6.12) 

The solutions of these equations will be sought for fixed -y, Pr, a and 

Re < < l . 

§ 7. The stage is now set for a discussion of the results of 

Lagerstrom and Chester l4] . We shall use equations (6. 8), (6 . 9), 

(6.10), (6.ll) and (6.12) omitting the stars, however. The variables 

used henceforth will be non-dimensional unless stated otherwise. 

We therefore consider a steady flow past a sphere of unit radius 

together with the following assumptions. 

Re <<l Re 
' -yMz = E < < l . ( 7. l) 

UR = 0 on R = l ) U 8 = 0 on R = l > (7. 2) 

T = l on R = l . (For example) . ( 7. 3) 
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To the lowest order we obtain the following equations (if for the 

moment we retain the E term) : 

v· p u = o, (7. 4) 

E \7 p ' ( 7. 5) 

p = pT . (7. 7) 

These are the so- called inner equations of perturbation. The neglected 

inertia terms may not be neglected at infinity and hence the solution 

of the full equations to leading order, in order to be uniformly 

valid, must include an outer part which would be matched with this 

one. A brief discussion of the outer part will be given later. 

Since the temperature equation may be solved for separately, 

we will not discuss it any further. Lagerstrom and Chester solve d 

(7. 4), (7. 5) together with the boundary conditions assuming that 

E \7 p is a small term. However, they were led to a density p 

which became infinite on the surface of the sphere in such a way as 

to make the flux into the sphere finite: clearly a physical contra-

diction. 

Taking a spherical co-ordinate system as shown in Fig. 1. 

and assuming the boundary conditions stated above to hold, 
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Figure 1 

Lagerstrom and Chester arrived at these flow fields. 

u(L) 
R = 

u(L) 
8 = 

p 
(L) 

= 

( 1 -
3 (l+CY) 1 1 (!&)) cos 8 (R) + 2+3a 2+3a 

( -1 + 
3(l+2a} 1 1 ( i 3 )) sin8 (R)+ 2(2+3a) 2 (2+3a) 

Az 
(R-R2 ) (R - R3 ) 

1 
2+3a 

As 
(R-1) 

- 1 

1 
2+3a 

.) 

= (2+ 3a)R2 + 1 
(2+ 3a)(R2 - R 3 ) ' 

(2+3a)R3 +1 
A 3 = (2+3a)(R

3
-R2 ) > 

X 

(7. 8) 

(7. 9) 

(7.10) 

(7. 11) 

( 7. 12) 

From these expressions, the following facts emerge. The 

density has a singl'larity at R = 1 and the flux into the sphere is 

finite at any point. 

The sphere is not a stream-line but is a locus of stagnation 

points. Any attempt to improve the solution by iteration fails as 

\} p has a worse singularity and the resulting equations for-;- hav<> 
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no solution. This situation arose from neglecting the pressure 

term in (7. 5). If one could solve (7.4), (7.5) with this term, the 

solution might not give a physically meaningless result. However, 

if this term is included, a non-linear, elliptic -hyperbolic system 

results. It is doubtful if an exact solution could be found. In the 

next chapter an iterative method of solving these equations will be 

presented and the results of a leading order calculation will be 

given. In Appe ndix IV another approximate method equivalent to 

the iteration scheme is given. 
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Chapter Ill 

The Solution of the Lagerstrom- Chester Paradox 

§ 8. In the regime of flow we are considering, physical experience 

indicates that the fluid slips at the surface of the sphere. The 

mathematical expression of this fact derives from certain con-

side rations in kinetic theory . In the literature (for example in [2]) 

the boundary condition is always quoted in the form (see also [5] ): 

f3 U tangential = Tangential Stress . (8. 1) 

where f3 is a surface constant. f3 - oo gives the no - slip condition. 

For the present chapter we shall assume this condition and attempt 

to solve the Lagerstrom-Chester problem. The approximate 

solution obtained will then be compared with experiment and will 

be shown inadequate. We will then examine (8 . 1) more carefully 

and find an improved slip condition which leads to agreemen t with 

experiment. The present chapter is interesting from a mathematical 

standpoint, however. 

§9. Assuming the thermal equation to have been solved already, 

the equations to be solved are: 

'V ·pu=O. ( 9. 1) 

- 1 -\72 u +a \7 (\7 · u ) = E \l pT , ( 9. 2) 
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u = i at oo p = 1 upstream, oo , (9. 3) 

1 
T :=--

1+ 13 
with E < < l . 

Before we proceed to the method of solution of (9.1), (9. 2), (9. 3) we 

collect a few general facts. Write J 

u = v + \i'cp ) (9. 4) 

with 

-\7·v =0. (9. 5) 

This decomposition is unique up to a harmonic function. Substituting 

in (9. 2), we have 

(9. 6) 

(9. 7) 

Where, (9. 8) 

since \l·v =0. (9. 9) 
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We therefore have the following "correlation" with Stokes equations 

of incompressible flow: 

u = v + \74> .) (9.10) 

with \7 . v = 0 (9. 11) 

( 9. 12) 

and (9.13) 

X is a harmonic function - 0 at oo . Although v satisfies the 

Stokes equations, it is coupled to 4> through the boundary conditions. 

By a suitable choice of the decomposition, it is possible to have 

vR = 0 on R = 1. But v 
8 

and 4> are still coupled via the boundary 

condition. These correlation equations generalize earlier results 

of Lagerstrom and Chester. In fact, the fields given in (7. 8), 

(7.9), (7.10) may be obtained rather simply from (9.10), (9.11), 

( 9. 12)' ( 9. 13). Dropping the pressure term, we solve, 

( 9. 12) 

\7·v =OJ (9.11) 

subject to v cT at oo where C is an undetermined constant. and 

v = 0 on R = 1. This gives X· We then solve 
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Ci. 
\7z. <j> + Ci.+ 1 X = 0 ' 

subject to 

<j> = 0 on R=l. 

ca. 
\7<j> thus obtained _.. 2 (l+Ci.} i at infinity. 

Hence we have 

c = 2(l+Ci.) 
2+3Ci. 

(9.13) 

(9. 14) 

(9.15) 

(9.16} 

The solution with the slip condition proceeds in a similar 

manner. The velocity fields so obtained (by dropping the E term) 

have a remarkable fore-and aft symmetry. uR is odd in f - 8 and 

. 7T 8 u 8 lS even 1n z - . p is spherically symmetric. The equations 

(9.1), (9. 2 ), (9. 3) do not possess this symmetry. 

§10 . The equations (9.10) etc . are complicated not only on 

account of their non-linearity but also because the boundary con-

ditions mix <j> , and -;;. Moreover, the 11 inner equations" obtained 

by dropping the E term in (9. 13) have a singular density even in 

the case of finite slip. However, for the case of finite slip, the 

sphere is a stream-line and not a locus of stagnation points. The 

search for a straightforward perturbation procedure runs into great 
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difficulties (see, however, Appendix IV for such a scheme). An 

alternative iterative procedure is suggested here. For the lowest 

order calculation, the procedure leads to a physically meaningful 

density. Owing to the great complexity, higher order calculations 

were not carried out though the procedure itself is well-defined. 

We write the equations in the following form. 

(~ + \7<1>)· \7p + p{~ (pT-1) 
1+ a 

l 
(1+ -)\7 2 <)> = E(pT-1)-x a 

X 
} = 0 . 

(10. l) 

(10. 2) 

(10. 3) 

(10. 4) 

The basic idea is the following. The term E (pT-1) is important in 

governing the behaviour of density gradients near the sphere; it 

does not affect the velocities near the sphere very much but it does 

affect the divergence of the velocity to which it is closely related. 

We now proceed to solve (10.1), (10. 2), (10. 3), (10. 4) in an iterative 

way. Note that (10. 3) involves only the velocities explicitly (and, 

of course, x). We determine p to the lowest order from (10. 3) by 

using the Lagerstrom-Chester approximation to the velocity (with 

slip) and to X· This differs from the Lagerstrom-Chester treat-

ment in two essential respects: i) the approximate velocity fields 

used correspond to slip flow ii) the term E (pT-1) which governs 
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the behaviour of p near the sphere, is taken into account in (10. 4). 

It will now be indicated how one might improve the solution. 

Let v 
n 

<l>n , pn be the fields at any stage of the iteration. To 

get the fields for the next stage one solves the following set of 

equations. 

'Vz-;­
n+ l = 'V Xn+l , 

= 0 

(l + _l_) \1 2 <1> =E(p T-1)- X • a n+l n n+l 

(10. 5) 

(10. 6) 

(1 0. 7) 

(10.8) 

The equations for the velocities are always linear, inhomo-

g e n e ous. The equation for p 
1 

is a quasi-linear partial differen­
n+ 

tial equation, the characteristics of which are the stream-lines 

cor responding to the velocity field ~ 
1

. 
n+ 

This quasi-linear equation 

is in fact a linear equation for a variable o-
1 

= - 1
-

n+ Pn+l 

reads, 

= { E T
1 

l+a 

Then, it 

(10. 9) 

This i s a linear inhomogeneous p. d . e . One integrate s it as an 

o. d. e. along the characteris tics from the upstream end. W e will 

have obtaine d a solution if thi s ite ration sch e me c onve r ges. Thi s 
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appears to be quite difficult to establish. The method of solving 

(10. 5), (10. 6), (10. 7} is by calculating the Green's function which 

may be obtained by a slight modification of a technique given by 

Proudn1an and Pearson. This is done in Appendix ll. 

§ 11. Now we give the results for the lowest order. Take, 

1 
Po = T 

= 0 on R = 1 . 

1 8<J>r 8 1 8<J>r 
VIe + R 88 = T 8R (vre + R 89) on R = 1 . 

(p 1 T-1) 

1+ l 
a 

Xr 
1 

1 +­
a 

} = 0 • 

Solving (11. 2), (11. 3), (11.4) subject to (11. 5) we get for 

B C 
= ( 1 + R + R 3 ) cos e , 

= ( l 2a + 1 B + C ) . e 
- - 2(a+l) R 2R3 sm 

(11. l) 

(11.2) 

(11. 3) 

(11. 4) 

(11. Sa) 

(11. Sb) 

(11. 6) 

(11. 7) 

(11. 8) 
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B cos8 

XI = R2 (11. 9) 

3(l+T)(a+l) 
where B = .J (11. 10) 

(2 + 3a) -+- T( 4 + Sa) 

1 - T(l + 2a) 
and c = (11. ll) 

(2 + 3a) + T( 4 + Sa) 

In this form of the scheme, it is not necessary to assume 

E < < 1 so long as we start with s orne initial density distribution. 

However, we shall proceed to calculate PI assuming E to b e small. 

The stream lines corresponding to -;-I are given by 

Ao AI Az ~ 
R (R -1) (R-a2 ) (R-a3 ) sin8 = const .. 

' 

where !::A. = 1 , A 0 = - i , AI > 0 and-- 0 as T - 0. 
1 

are factors of R 3 + BR 2 + C . 

where r is the distance of the point of intersection of the 

(11. 12) 

(ll. 13) 

stream-line with the plane 8 : 1r/2. We may therefore introduce 

r as the labelling parameter and use s as the distance along the 

stream-line from (8 = 1r/2 , r) to (8, R). 

dR Rd8 --- = = v(r, s) 
ds 

(11. 14) 
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The stream-line r = 1 is a limiting case and will be treated 

separately. s is negative for 8E [ 71', 71'/2] and positive in the aft 

part. Incidentally, all known functions of R, 8 may now be 

expressed in terrns of the stream-line coordinates (r, s). 

following we will assume this to have been done. 

The equation for <T 1 now reads, 

= 1
1 [ET(r,s) - (E+x 1 (r,s))<Tr] v(;,s) 

1+-a. 

In the 

(11. 15) 

In (ll. 15), r is me rely a parameter. The boundary condition is 

For r > 1 v(r, s) > 0 and E + XI (r, s) > 0 for 

s < 0. E + XI may be positive or negative for s > 0. 

Introducing the notations 

1 
v(r, s )(1 + -) a 

= H(r, s) 
ET(r,s) 

1 v(r, s)(l + -) 
Q' 

= G(r,s), (ll. 16) 

the solution for r > 1 is given explicitly by the following expressions~ 

s t 
I H(r, t)dt s I H(r, u)du 

<T 1 e 0 =1 G(r,t)eO 
0 

dt+ F(r) , (ll.l7) 

where F(r), a function of r alone is found from the boundary con-

dition to be given by the following expression: 

oo -I X H(r , -u}du 
F(r) = 1 G(r,x)e o dx 

0 

(ll. 18) 

The integral exists as a positive number for any r > 1. The 
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solution is known for s > 0 and - 1 as s - + oo. 

value of p 1 at (r, 7r/2). 

1 
F(r) 

is the 

There remains the case of the limiting stream-line. This 

is done in three steps. We integrate first from upstream to the 

front stagnation point. Using the stagnation pressure so deter-

mined, we integrate around the sphere. Finally, we continue the 

solution downstream. The solution for the first step is done most 

simply by considering the first and the third equations of (11.14); 

with e = 7r. We therefore have, 

do-l 
dR + H(R)o- 1 = G(R) 

H(R) = 

G(R) = 

B 
-(E -RZ) 

B C 
(1 + R + R2) 

ET(R,7r) 

1 
1 1+­
a 

1 B C 
(l + -)(1 + - + -) 

a R R2 

The solution may be shown to be, 

where 

00 

o- 1 (R) W(R) = j G(t) W (t) dt 
R 

W 1 (R) = H(R) W(R) • 

(11. 19) 

(11.20a) 

(11.20b) 

(11. 21) 

(11. 22) 
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We find o- 1 (ao) = 1 and 

0"1 (1) 
T(l , 7T) 

= B > 0. 
1--

(11.23) 

E 

The solution from the stagnation point at front to the aft 

stagnation point is obtained by considering, 

= 

where R = 1 and 

where 

where 

do-l 

T(l,?T) 

1- B 
E 

dS - o-1F(8) = -E Q(8) 

F(8) = 
E+Bcos8 

( 1 + l)u 1 s in8 
Q 

- u 1 8 
= U 1 sin8 

T(l,8) 
Q(8) = , 

(1 + l)u 1 sin8 
Q 

u 1 = --------
(2+ 3a)+ T(4+5a) 

Setting x = cos8 1 the solution may be written explicitly. 

X 

[ 
1 J l+x 2 }] E j.I.ill. (,(t) 

o- 1 exp 2u (1+_!_) 1E log(1_)-B log(l-x) = U (l+..!...) l-t2 e dt . 
I Q 1 a -1 

( E +Bt) 
l-t2 

(11. 24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

(11.30) 
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The integral is convergent at both ends. 

o- 1 - oo at x = 1 but is otherwise > 0. From the equation for 

p, we see that we must put p = 0 for the stream-line from the 

rear- stagnation point to downstream to fit this s elution. This 

completes the calculation of the lowest order density. 

The limit of this solution for the no-slip case is discussed 

in Appendix III. Let us now discuss the qualitative featur es of 

this first iterate. For one thing, the velocity field is identical to 

the Lagerstrom-Chester solution with slip. The density field how-

ever, is quite different. It is always positive (except on the 

stream-line through the rear stagnation point where it is zero). 

It is finite over the entire flow field. For small E the stagnation 

pressure is O(l). 
E 

The dependence of the density on E is quite 

complicated. 

structure. 

The density also possesses a complicated wake 

1 
At infinity, this density tends to 1 as Rz 

This approximate solution must be matched with an appro-

priate solutionof the Oseen equations. Such a matching will be 

carried out in Chapter VI. To compare this solution with experi-

ment, we estimate the drag. From the form of the density on 

the sphere, it is clear that there will be some form drag due 

to E p term in addition to the viscous skin drag due to the stress es . 

§12. The skin drag provides a lower estimate on the total drag. 

The form drag due to the pressure in the slip case appears to be 

of lower order than the skin drag. The skin friction is estimated 
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as follows. 

(12. l) 

where 
au. 8u· 1 1 _J o . . (12.2) T = ox. + ax. + (- - 1) \} u 

Q 1J 
J 1 

Defining 

T'RR 
2auR 

(12. 3) = aR 

T'Re = 
( 1 OUR aue 

R 8"9 + oR - ~) (12 .4) 

v· 1 ()~ (RZ uR) + 
1 :e (sin8 ue) (12 .5) u = RZ R sine 

From (12. 1) it follows that, 

(12 .6) 

where Sis a sphere of very large radius. From (12. 6), using 

(ll. 7), (ll. 8), (11.10), (ll .ll ) we obtain, 

D = - 41rB) 

121T(1 + T)(a + 1) 
= (12 .6) 

(2+ 3a)+ T(4+5a) 

This corresponds to the Stokes drag on a sphere of unit radius 



when the velocity at infinity is 

- 23 -

2 B - -3 . From the correlation 

theorems of §9 we see that the drag arises entirely from the 

solenoidal field -;;and that \7<P, the irrotational component does not 

contribute to the drag, even though it does contribute to the stresses. 

Putting back dimensions, the drag force on a sphere of 

radius a, is 

12 'lr (1+ T )(a+ 1) 
D = (UafJ.) . (12. 7) 

(2+3a)+ T(4+5a) 

The drag coefficient is, 

D = ( 1211"(1+ T)(a+l) ) (~e) ' 
(2+3a)+ T(4+5a) 

(12. 8) 

z Re 
where Re,M <<1 and yMz <<1 

Now, kinetic theory and experiments [2], require that the 

drag coefficient of a body in this regime be independent of the 

Const . Reynolds number and vary with M like M Equation (12. 8) 

does not agree with this result for any positive value of T since 

2411"(1+ T) (a+ 1) 
2+ 3a + T(4+ 5a) 

varies between two constants for any positive T. 

Re 
When yMZ is large, the continuum theory may be expected 

to apply. When ~~z is large and Kn is small, Basset [5] has given 

the following formula for the drag coefficient: 

(12.9) 
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This formula agrees with experiment when Kn is small and T is 

taken proportional to Kn. However, if one extrapolates it for 

moderate or large Kn, keeping y~~ large, the agreement no longer 

exists. The formula (12. 9) is also derived in a systematic way 

under more general conditions in [10]. 

Since density does not appear in (12. 7), it would seem that 

we have a finite drag on the sphere as the gas became increasingly 

rarified. This of course contradicts facts as well as physical 

intuition. Goldberg [9] refers to this as an inherent paradox of 

the Na vier-Stokes theory. In the next chapter we will show how to 

use the Navier-Stokes equations as they stand and yet obtain drag 

coefficients that are in qualitative agreement with the experimental 

results by the use of a new slip condition. We note here that 

another consequence of the theory is a high stagnation pressure at 

the forward stagnation point. This certainly appears to contradict 

physical intuition about flow of a rarified gas past a sphere. 
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Chapter IV 

A New Slip Condition 

§13. In this rather long chapter, we propose to discuss a general 

theory of low Reynolds number flows presumably valid for 'arbitrary' 

Knudsen numbers. We noted that for a particular class of flows, 

the Navier-Stokes equations and the classical slip condition imply 

drag coefficients in disagreement with experiment. We have two 

alternative hypotheses before us: i) the Navier-Stokes equations 

are inapplicable to all flows where Kn < < 1 is not satisfied , what­

ever be the boundary condition, ii) the Navier-Stokes equations may 

be used so long as the mean free path is of a larger order than 

the molecular dimensions (we are explicitly discus sing gases) of 

the fluid molecules which are also assumed to be much smaller 

than the finite body immersed in the flow. Up to the present time 

it has been assumed that i) is correct. It is one of the aims of 

this thesis to question this position and to suggest that hypothesis 

ii) may in fact be valid. It is clear that such a suggestion must, 

1n order to be in harmony with established experimental facts, 

supply some boundary condition different from the slip condition 

previously used. We shall discuss such a condition and endeavour 

to show that hypothesis ii) does lead to results which are in agree­

ment with facts. 
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§14. The objections to a Navier-Stokes theory for moderate or 

large Knudsen numbers are two-fold. First, we may discuss the 

a priori objection that for moderate Knudsen numbers, the medium 

is no longer a continuum and therefore a microscopic theory 

should be used. It is clear however that a gas, say air, does not 

lose its overall continuum properties if we immerse in it an object 

(say, a Millikan oil drop) whose dimensions are much larger than 

that of a gas molecule but is of the same order or even smaller 

than the mean free path of the gas. To be sure, the flow near 

the object will differ a great deal from the case when the Knudsen 

number is < < l. The difference consists in the different inter-

action of the gas molecules with the surface of the object in the 

two cases. In other words, the presence of the boundary will 

affect the gas differently in the two cases. The Navier-Stokes 

equations describe the mean motion of the gas adequately if we do 

not look for microscopic fluctuations. These microscopic fluctua­

tions will be small in a gas so long as the number of molecules 

in the microscopic volume we look at is large. The 'microscopic' 

volumes therefore have to be much larger than molecular dimen­

sions but should be much smaller than the dimensions of the finite 

body. This is possible in many cases and for such cases it is 

difficult to see why i) should be true a priori. The calculations 

using Navier-Stokes equations in a tremendous variety of situations 

have been remarkably accurate. In fact, (see (2) p . 32) the 

Navier-Stokes approximation with suitable boundary conditions 

appears to be much better than higher moment theories of the 
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Boltzmann equation. This may be due to the fact that Navier-

Stokes equations may be derived independently of any molecular 

theory from laws of conservation of mass, momentum, energy, 

the laws of thermodynamics, isotropy and homogeniety of space 

and the additional hypothesis of linear stress -rate of strain 

relations. In such a derivation, there is always an implicit 

neglect of fluctuations. We have seen above that moderate or not 

too high Knudsen number flows do not contradict such an assumption. 

The second objection to the Navier-Stokes theory is that the 

results it gives with the standard slip condition do not agree with 

experiment. In fact, this objection must be qualified. For flat 

plates (see [z], l3] ) the agreement is good. For spheres, as we 

have seen, the agreement is very poor. The case of the flat 

plates has been dismissed as a 'coincidence.' This may be true. 

The aim of this investigation is to show that it may not b e a coin­

cidence or at least, if it is one, then it is a very striking one. 

§15. In this section, we discuss the modifications in the slip 

condition. The proposals here are in no sense a derivation from 

some fundamental theory. They are more in the nature of pheno-

menological statements. They must stand or fall according as they 

agree with or contradict existing experimental evidence. In addition 

we expect to make new predictions which may be experimentally 

tested. 

Consider first a general formulation of the slip condition of 

the preceding chapters. The Navier-Stokes stress tensor (in 
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S .. 
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(15. l) 

Consider an elementary area dA on the boundary with normal n. 
1 

drawn into the fluid . 

S .. n. = F. is the total stress vector at dA • 
1) J 1 

(15. 2) 

From F. one constructs the tangential stress vector G. through 
1 1 

G.= F.- (F.n.)n .. 
1 1 J J 1 

(15. 3) 

The boundary condition (8.1) is therefore stated in the general form 

f3 u. (A) = G. 
1 1 

(15. 4) 

Gi is not linear 1n ni and f3 has the dimensions r . For 

flat surfaces, with u. n. = 0 , 
1 1 

ou. 
1 

ui a:: on 

From this case, it follows that f3 should be positive to be physically 

meaningful. As we have seen, this condition agrees with experi-

ment for flat plates only, and many 'kinetic' derivations of it apply 

to the flat plate case. 



-29-

We now notice that (15. 4) is not the simplest boundary con-

dition that can be stated in terms of u. , its first partial deriva-
1 

tives and n. , which would give correct results for flat plates. 
1 

Consider, for example, 

-;-(A) = 
L(A) 

-(curl u)x n • (15. 5) 

Here L(A) is some length which may vary from point to point on 

the boundary. For L(A) > 0, we have from (15. 5) that -;-(A)·-;-= 0. 

For flat plates we have 

as before. 

The fact that (curl -;- )x ~ vanishes for irrotational flow 

implies that for L > 0, the vorticity and the velocity must vanish 

simultaneously on the surface. For L- oo, curl-;--o on the 

boundary. For L- 0, the no- slip condition is recovered. 

consideration of the following theorem shows that the vortex 

traction T = (curl ~)x ~ arises quite naturally. 

A 

Theorem: Consider an incompressible viscous flow past a finite 

object S such that the velocities -0 sufficiently rapidly at infinity 

and (15. 5) holds on S. The kinetic energy is a monotone decreasing 

function of time if w ~ 0. 
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Proof: The governing equations are 

'V · u =0, (15. 6) 

a-;{ - -at + w xu = -'V CJ - f.l. curl-;;;, (15. 7) 

Taking a dot product of (15. 7) with~ and integrating over the 

infinite volume of fluid, 

curl Z: dv . (15. 8) 

Now, 

'V · (AxB) =B · curlA- A· curlB. (15. 9) 

Hence, 

_Q_ l ~2 J - - j'--- dv = + f.J. \l · ( u Xw )dv - f.l. w 2 dv • 
at v 2 v v 

(15. 10) 

(15. 11) 

where the surface integral over the infinite sphere vanishes by 

-hypothesis and n is the normal drawn into the fluid. Hence from 

(15. 5) ) 

:t J ~2 
dv =- f.J.J L(s) ~2 ds- f.l. J-;; 2 dv. 

s v 
(15. 12) 
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The theorem is proved. 

Cor: From (l5.ll) it follows that if the Navier -Stokes equations 

(15. 6), (15. 7) have an irrotational solution with ~: = 0 on S and 

satisfying the conditions of the theorem at infinity, the kinetic 

energy is conserved. In fact, for irrotational solutions of the 

equations (15. 6), (15. 7) the following conservation law holds. 

(15.13) 

The slip boundary condition may be formulated in general as 

follows. 

(15. 14) 

where k 1 , 
I 

kz, k 3 are surface parameters. T = c if u = o. (This 

is proved, for example, in [1] p. 46) . In ge neral, they will be 

linearly independent. The last term describes a phenomenon 

known as 'thermal creep.' Similar conditions apply to temperature. 

For flat plates, the two different vectors T and G give th e same 

results. 

In the following, we shall not consider the most general 

condition (15.14) but propose to discuss the consequences of the 

one parameter theory given by 1 

~(A) = (15. 15) 
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One reason for this specialization is that the theory with as few 

arbitrary parameters as possible is not only simpler to handle 

mathematically but is also adapted very well to experimental testing. 

If necessary, other refinements could be added on as corrections. 

Once and for all, we start with (15. 15). 

We noted that k 1 had the dimension of a length. If u be a 

typical velocity and L a typical radius of curvature of the body, 

u 
the vorticity is of the general order L near the body. The length 

k 1 is a sort of interaction length between the surface and the fluid 

molecules. Its general order depends on the mean free path of the 

gas. Rarer the gas, the more difficult it is for the body to 

transfer vorticity into the fluid. 

~(A) = 
A. 

We may therefore write, 

k(curl--;) x n 
l 

(15. 16) 

where k
1 
is a surface roughness parameter and A. is the mean free 

path. k
1 
is now non- dimensional. In non- dimensional variables, 

(15.17) 

k here is essentially arbitrary but it may in fact be some function 
1 

M 
(depending on the shape of the body) of the Knudsen number Re = Kn. 

It is clear that for small Knudsen numbers we have Stokes flow. 

For large Knudsen numbers, the flow is one of compl ete slipping 

and unlike the classical slip condition we obtain irrotational flow as 

the limit. The explicit dependence of the slip coefficient on Mach 
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number is not necessary but the fact that the Knudsen number enters 

explicitly in (15. 17) will affect the drag coefficient in a very funda-

mental manner. 

The boundary condition on the temperature is the usual one 

T(A) M 
= TWALL(A) + kz Re 

in non- dimensional variables. 

8T 
8n 

(15.18) 

We shall proceed to study the solutions (6. 8) etc. subject 

to these conditions, with the general restriction Re < < 1. 

§16. We first consider the case when Re < < 1 and Kn is 0(1). The 

equations are then the following: 

\] · pu = 0 ) 

- 1 - 1 -Re pu · \]u + \7p = \]2 u + - \] (\] · u ) -yKnM a 

- (-y-1) 
R e p u · \7T - -- Re-;­

'Y 

l 
\7p =- \72 T + {-y-1)M2~ , 

Pr 

p = pT , 

u = k 1 Kn cur1~X-;; on S. 

-u = i at oo 

p, T = l at oo • 

aT 
T = T W + kz Kn an on S. 

(16. 1) 

(16. 2) 

(16. 3) 

(16. 4) 

(16. 5) 



-34-

To solve these equations we assume the formal expansions, 

T = T 0 + f 1 (M)T 1 + £2 (M)T2 + 

P =Po+ f1(M)p1 + 

u = Uo + fl (M)t:;l + 

(16. 6) 

We shall show only the methods of obtaining the leading terms. 

These asymptotic expansions are done in just the usual way and no 

new ideas are needed to calculate in principle the higher approxi-

mations. Note that Re < < l Kn · 0(1) = > M < < l. M 
Re = -­Kn 

Substitution of the expansions gives the following leading 

order equations. 

'Vz To = 0 ' (16. 7) 

with T 0 = l at infinity and 

3T0 

T 0 = T W + k 2 Kn on on S 1 (16. 8) 

p = l + £1 (M) PI • (16. 9) 

Hence) 

Po = (16.10) 

We then have the following: 
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f 1 (M) = KnM , (16. ll) 

\l · Po Uo = 0 > (16.12) 

(16.13) 

(16.12), (16.13) are solved subject to the boundary conditions on the 

velocity since T 0 may be obtained by solving (16. 7), (16. 8). The 

equations are linear though their solution may be quite complicated 

in the general cas e. These solutions are to be matched with 

appropriate outer expansions. The next order equations are some-

what long to write out, though they involve no difficulty of principle. 

For the following particular case of a slightly heated body, 

the solution is more manageable. Let 

= 1 + eTw 
1 

+ 8 2 T + · · · Wz 
(16. 14) 

where 8 is a small parameter. We then expand T 0 in powers of 8. 

(16.15) 

(16. 16) 

(16.12), (16.13) reduce after expanding u 0 



-36-

-(o) -(I) 
u 0 = UO + 9 Uo + • • • J (16. 17) 

to the Stokes equations : 

-(o) 
\l · u 0 = 0 (16. 18) 

= _l_ \lp (o) 
'I I 

(16.19) 

with 

__... (o) = _...,.1. 

u 0 at oo J 

(16. 20) 

These equations are tractable for simple geometries. If a 

solution exists it must be unique. 

Theorem: Let , 

\J ·u =0, 

- curlZ: = 

-

l 
\lp l 

'I 

have a s elution u 0 at oo sufficiently rapidly and let 

- - -u = f3(curlu ) X n on S. Then u = 0. 

Proof: J ~ · curlZ: dv = 0 
v 

(13 > 0). 

(16. 21) 

(16. 2.2) 

(16.2.3) 
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This is possible iff 

w - 0 and u = 0 on S • (16. 24) 

-This implies for sufficiently smooth S, u = 0. 

We shall give explicit solutions to some of these problems 

for certain simple bodies in the next chapter. The case of the 

heated body where T W > l is of interest but the equations are quite 

complicated. 

The next case we consider is when Re < < 1 
Re 

yM2 = E fixed. 

Here Kn = M 
Re 

is 0(-
1
-) and M < < 1 . 

EM 
We write, 

-u = Uo + Mu1 + ... 

T = To + MT 1 + ... 

p = Po + Mpl + .. . 

We substitute these expansions into (note Re = 0(EM2 ) ). 

\] · pu = 0 , 

- -Re p u · \]u + E \7p - 1 -= \}2 u + - \} (\7 . u ) 
Q 

y-1 - 1 
Re pu · \7T- (-) Reu · \7p =-\72 T+(y-1)M2 <I> 

y Pr 

p = pT • 

(16 . 25) 

(16. 26) 

(16. 2 7) 

(16. 28) 

(16. 29) 

(16. 30) 

(16.31) 
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To leading order we have 

\}• Po Uo = 0 , (16. 32) 

E 'VPo = 'Vz~ + .l. 'V('V uo ) ' (16. 3 3) 
a 

1 
'VzTo 0 (16. 34) 

Pr = . 

The boundary condilions on S reduce to 

-'{MU = --curl u X n (16. 35) 

= kz oT . 
on E 

(16. 3 6) 

Hence we have 

curl-;- X-;;- = 0 
0 

on s -with u · n = 0 . 
0 

(16. 3 7) 

We also have 

= 0 on s . (16. 38) 

The leading term of the solution is very simple and is written 

Po = 1, To = 1, Po = 1 1 

(16. 39) 
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-where <f>o is a harmonic function. In fact, u 0 is the potential flow 

- -s elution past a finite body with u 0 - i at infinity. 

As the leading order is so trivial (no drag for instance) we 

calculate the next order. The boundary conditions dictate that we 

should have an O(M) term. The equations we get are the following : 

\l · ( P 1 V'<l>o) + \l · ul = 0 ) 

l \lz T I = 0 
Pr 

PI = PI + 

kl 

T I ' 

- -'Yuo = 
E 

curl u 1 x n ) 

kz oT 1 
(l- Twh = -- ) 

E an 

-ui' TI' e tc- 0 at 00 • 

(16. 40) 

(16. 41) 

(16. 42) 

(16. 43) 

(16. 44) 

(16. 45) 

(16. 46) 

In fact, {16. 46) may have to be replaced by a matching condition; 

the T 1 equation is a standard problem in harmonic functions. We 

may eliminate PI from (16. 40), {16. 41) and attempt to solve for ~ 

and p 1 • 

We split 
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(16. 47) 

where we put as usual 

\J • VI = 0 . (16. 48) 

Substitution gives the following: 

(16. 49) 

X I + (1 + ; ) \} 2 <I> I = E (pI + T 1 ) ) (16. 50) 

\l <l>o • \lp I + \72 <I> I = 0 · (16. 51) 

The problem for vI is a Stokes problem - with 

-vI n = 0 on S l 

(16. 52) 

- -E yu0 = k 1 curl vI X n , 

with vI - 0 at infinity. This gives XI. We eliminate 'V2 <I> I from 

(16. 51) using (16. 50) . We obtain the linear first order p. d. e. 

1 
1 

l +­
a 

= 0 • (16 . 53) 
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The particular integral of this equation ...- 0 at oo is found. We then 

solve (16. 50) with ~: = 0 on S and \7<P - 0 at oo. From an order of 

magnitude estimate, we see that the drag coefficient must b e of the 

form, (to leading order) 

CD = canst · i.e. (16. 54) 

where the constant depends on the shape of the body. These results 

C 
_ canst 

replace the results of the previous chapter where we found D Re 

§17. As a final case we consider the following situation. Re<<l 

M is not necessarily small. This is a somewhat academic case as 

the flow is at the extreme free molecular limit. It is interesting 

however, to see just what results the equations of fluid mechanics 

and our slip condition predict in this case. Here, we have the 

small parameter Re and accordingly our asymptotic expansions are 

in terms of Re. 

P = Po + fi (Re )pI + · · · (17. 1) 

U = u 0 + fi (Re) ~I + · • · ; (17. 2) 

T = T 0 + fi (Re)T 1 + · · · (17. 3) 

Substitution into the equations of fluid mechanics gives , (to leading 

order) J 
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'\l " p o Uo = 0 ' 

-\)Z~ +.l_ 'V( '\l . uo) = 0) 
a 

'V · 
1 

(Pr 'VT o) + ('y-l)Mz ci?o 

-curl uo Xn = 0 on s ; 

-Uo . n = 0 on s 

implies oT = 0 on S · 
on 

= 

(17. 4) 

(17. 5) 

0 ; (17. 6) 

(17. 8) 

(17 . 9) 

The condition at infinity must be determined (as also the asymp-

totic sequence) from matching as usual with suitable outer solutions. 

We note that the nonlinear (only formally nonlinear) equations 

-(17 . 4), (17 . 5) may be solved for u 0 = i at oo and (17 . 7), (17 . 8) in 

the following manner. Set 

Uo = \J <Po ' (17 .10) 

Po = 1 • (17.ll) 

The equations and the boundary conditions are satisfied if 
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(17.12) 

with> 

'V<Po - i at oo and on 0 . (17.13) 

But this is the classic irrotational, incompressible flow of a 

uniform stream past the finite body S. One then has the Poisson 

equation (17. 6) with an adiabatic condition at the wall. We may 

impose the condition T 0 - 1 at infinity. Since the l'vfach nun1ber is 

no longer negligible, we must take into account the heat produced 

by the stresses in the fluid. This is precisely why we have a 

source term in (17.6). 

If we set f 1 (Re) = Re, we obtain the next set of equations. 

\7 · u 1 + \7 P 1 • \7 <Po = 0 ' (17.14) 

(
'V<Po

2 
To ) 

\7 -2- + yM2 = (17. 15) 

with, 

(17. 16) 

(17. 17) 

(17. 18) 
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oTI 
To - T W = Mkz on (17.19 ) 

Th e v e loc ity-de nsity e quations can be solved simply in the foll o wing 

way. If 

(17 . 2 0) 

s u c h that 

\} • VI = 0 , (17.21) 

the n, 

(17.22 ) 

with> 

(17. 2 3 ) 

(17 . 24 ) 

H e re J XI is a harmonic function with a constant value at infinity 

. b 1 l 
g1ve n y i + yM 2 

l 
It tends to this value like R z. 

Now we solve the Stokes problem for vI with the conditions 

VI - 0 at 00 • (17. 25) 

(17. 26 ) 
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This gives XI. However' in equation {17. 23)' v<l> I may not in 

general - 0 at oo but to a constant. The outer solution must be 

found to match this constant . This constant arises from the fact 

that our perturbation expansion is not uniformly valid at infinity 

1 
ancl if the left hand side of {17. 23) - 0 at infinity like R . There 

is no solution which will make \7<!>1 - 0 at oo. This is the analogue 

of Whitehead's paradox and it is solved in the usual way. We now 

solve the thermal equation {17. 18) using the fields al':"eady found. 

The density may be found independently of the velocity from {17. 14) 

and {17. 23), and it too will in general have non-uniform behaviour 

at infinity. Certain difficulties also arise for R = 1. {See § 25). 

This concludes the discussion of the inner equations of these sn1all 

Reynolds number flows. In the next chapter we will consider the 

relatively simpler problem of the finding the outer solutions corres -

pending to these problems and the matching to leading order. It 

must be mentioned however that the simplicity is only in the frame-

work which reduces to solving classical types of equations. These 

equations are linear but sometimes their solutions can be very 

complicated. Only the simplest concrete problems are dealt with 

in details but the general framework is given. 
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Chapter V 

Formal Theory of tl'le Oseen Equations 

§ 18. In this chapter we discuss methods for finding appropriate 

outer solutions to the Na vier- Stokes equations. These solutions 

must then be matched with the inner solutions in the usual manner 

to obtain uniformly valid solutions. For information concerning the 

Oseen equations the following references are useful: [l], [6], llO], 

[ll], and [12] . We shall only indicate the methods for constructing 

the leading order terms or terms at most one order higher than 

the leading order. Many of the formal techniques used here are 

described in [13]. The notation of generalized functions will be 

systematically exploited in connection with certain fundamental 

singular s elutions. The use of these functions can be made quite 

rigorous. (See, for instance, Chapter II in [14] ). 

§19. When we consider the outer problem, we are confronted with 

the following physical situation. We have a uniform stream in which 

a very small object is immersed. The perturbation of the flow due 

to the object will depend on the size of the object. Moreover, 

beyond a certain distance, the inertia terms are important in the 

equation. With these observations in mind, we look at the equations 

of §16 in terms of a new space variable. Define, 

_. 

x = Rex. (19. 1) 
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The tilde will henceforth denote Os een variables . If F (-;:) is any 

-function of x, we define, 

~ """ """ 
F(x)=F(x). (19. 2) 

In terms of this new variable, the typical linear dimension of the 

body is O(Re). This of course implies that the body is a small 

object in the uniform stream. In lieu of equations (16. l) etc . we 

have the following: 

V' ·P' li =o, (19. 3) 

(19. 4) 

r u · v T' 
(y-l) ;::: 

- - y- u V'p = Plr vzT + (y-l)M2 ~, (19. 5) 

P' = P T'. (19. 6) 

The boundary conditions at infinity are the free stream conditions: 

u = i ) (19. 7) 

p = l I (19. 8) 

T=l. (19. 9) 

In fact, these values actually satisfy the equations . The typical 
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dimension of the object is Re and hence one expects the solution 

of these equations to have an asymptotic expansion with the small 

parameter Re . We assume therefore, 

- -u = i + Re g 1 + f 2 (Re) g 2 + · · ·, 

p = l + Re w 1 + . o o , 

p = l + Re S 1 + · · · > 

T = l + Re 8 1 + · 

The Oseen equations for the first order perturbations are: 

'{- l 

'Y 
l ~ z 81 • 

Pr 

(19. 10) 

(19.11) 

(19. 12.) 

(19. l3) 

(19.14) 

(19 . 15) 

(19.16) 

(19. 17) 

Our task will be to find solutions for these equations which match 

up with appropriate inner s elutions . Henceforth we will discuss 

only genuine three - dimensional problems. The special case of 

cylinders with radii O(Re) will be considered separately in the 
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next chapter. If the inner equations of the previous chapters have 

solutions going to free stream values, we already have matching 

0(1). 

l 

These solutions tend to the free stream values in general as 

R" 
This means that to match them O(Re) , we must solve (19.14), 

(19.15), (19.16), and (19. 17) in a suitable manner. V·{ e shall indicate 

how this is done for various cases. 

For the first case we have M - Kn is 0(1) . 
Re 

From (19.16) 

it follows that w 1 = 0. If however we write, 

p = 1 + Re3 WJ + · · · (19.18) 

the outer equations reduce to 

(19. 19) 

(19. 20) 

+ (19. 21) 

....., (19.22) 
ox 

These equations correspond to (16.10), (16.12), (16.13) and (16. 7) 

respectively. They ultimately reduce to 

= 1 ~zeJ ' Pr 
(19. 23) 
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= 0 ) {19. 24) 

{19 . 25) 

The method of matching should now be intuitively clear. Certain 

solutions of these equations written in terms of R will look like the 

expansion of the inner solutions for large R. Arbitrary constants 

in the solutions will be found by the matching principle. l13] . We 

now introduce the fundamental solutions of the linear equations 

{19. 23), {19 . 24), {19 . 25) . These are immediate generalisations of 

potentials due to point charges in Potential Theory [15]. These 

fundamental solutions are solutions of the following equations: 

= 0 ) {19 . 26) 

{19 . 27) 

= c 6 { ~ ) + - 1 ~2 e Pr 1 {19 . 28) 

where 6{ ~)is the 3-dimensional delta function and a, 1s a constant 

vector and C a constant number . If we utilize the 1nterpretation 

of the equations as conservation laws, we see that these equations 

describe the res p onse {to the highest order) of a free stream 

- -subjected to a concentrated volume force Re a 6 { x ) and a heat 

source ReC 6{ 7) . 
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-The component of -a parallel to i is known as the drag 

and the perpendicular component is the lift. Physically we are 

replacing the tiny body by a point force on the fluid and art' de: s-

cribing the fact that it is heated by a point thermal source. 

Mathen1atically, these are the simplest singularities one may put 

in. We shall get other singular solutions by the principle of super-

position in thC' same way one obtains n1ultipolc potent1als fron1 mono-

pole potentials by differentiation. 

First, let us specialize to the case of axisymmetric flow 

for which the lift is zero by symmetry. The singular force is 

then FT o( ;z ). We solve the equations by splittin g the velocity and 

the force fields into their scalar and vector potentials. 

We have then, 

where, 

<P = _Q_ (-1-) 

a~ 4or.R 

(19. 29) 

(19. 30) 

-(This decomposition is unique up to an arbitrary gradient in f ). 

The last equation s may immediately be verified on noting that 

(19. 31) 

Set 1 
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(19. 32) 

We obtain the following set of equations. 

= 0) (19. 33) 

(19.34) 

(19. 3 5) 

(19. 36) 

We may reduce these equations to a more familiar form with the 

substitutions, 

We then obtain the following~ 

1 +-w y 3 

1 
41T 

(19. 37) 

(19. 38) 

(19 . 39) 

(19. 40) 
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a a- F v 2 (J (19.41) = + a; 41rR 

Setting 

v 2 (J 
oo- F (19. 42) = - = X ,...., ,...., ) 

OX 41rR 

we get, 

.... 
V2 X .h ,...., 

- = F 6( X ) ) 

a; 
(19. 43) 

,...., - "' a a- -7 
v2 (J) \7XA 1 = \7 - 1 

"' ox 
(19. 44) 

Fv 
1 

= --+ V'X - 1 X 
"' 41rR 

- "' gl = V'X - i X + \7lfJl I • (19. 45) 

We shall call equations (19. 39), (19. 40), (19. 43) and (19 . 45) the 

defining equations of Lamb correlation. They are extensions to 

compressible flow of Lamb1 s theory of the Oseen eq·u.ations of 

incompressible flow. ([5], p. 610~ Equation (19 . 40) may be simplified 

further. 

OlfJI I 

(19. 46) 

If we solved for lf! 1
1

, 8 1 , X using 
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-Fo(;') 

,....., 
ax 

- 1- ~2 e = c s:: ( ""x ) Pr v I u , J 

w 3 would be determined from (19.46). In fact these equations arc quit(• 

simply solved utilizing the fundamental solution of (19. 43). This 

equation has a solution, 

X = (19 . 47) 

Utilizing essentially the same result, 

(19. 48) 

We also have, 

ljJ 1 I 
1 el (F - C) = + Pr ,...... 

47TR 
(19. 49) 

,....., 
1 ,....., 

(F-C) C - -Pr(R-x) = -- e z + 
47TR 47TR 

The flow field is given by the follo·wing formulae . 

(19. 50) 
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......, 

F 
1 ......, 

- -(R-x) e 2 (19. 51) X = 

lfl 1 I ~ = ......, 
_ _!_ Pr(R-;) 

e 2 + (F-C) 
,...., (19. 52.) 

4?TR 4?TR 

C Pr 
1 ,...., ,...., 

81 
- - Pr(R-x) 

= e 2 J 

"' 
(19. 53) 

4?TR 

a [(l+ ~) 81- ljJ1'] w3 = y-= . 
OX 

(19. S4) 

If the inner equations can be solved and the solution 1s 

expanded for large values of R, we can determine F, C by writing 

these variables in terms of the inner variables. For example, if 

This implies that C = 0. F is then given directly 

by the drag formulae of the inner solution. In general, to match, 

the outer solution does not consist simply of the above fundamental 

s elution. There may be higher multipoles involved in the match. 

We note that in the overlap region, to match the leading term of 

the Stokes expansion to 0(1), one needs in general more than one 

term in the O s een expansion. Onc e we match, we may be sure 

that the error is uniformly O(Re). We shall discuss the higher 

multipoles briefly here. 

§ 20 . For the sake of simplicity we restrict ours elves to the 

axisymmetric case. The higher multi poles are certain singular 

solutions (with singularities of certain types at R = 0) of the 

equations (19.14) through (19.17). Consider the following formal 

equations: 



-as 1 
--+ 
a~ 

l 
yM2 

y-l 

y 

\J WI 

"' +\l 

00 - \' = 1 
LJ 

k=o 

+ 
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( 2.0. l) 

( 0 (~) ) ) (2.0 • .?.) 

ak 
(o (~) ) fk rvk ox 

00 k -
v (I. a "' 

vk - (o (x} 
k=o "'k OX 

( 2.0 . 3) 

(20. 4) 

where pk, fk , vk , tk are constants and the formal series arc 

usually finite. These equations define an axisymmetric Os een flow 

with mass, force, potential and thermal multipoles. 

As usual, we write 

,..._. 
gl = vx1 - i XI + \ll\JJ I (2.0. 5) 

,..._. 
~2 XI 

0X1 
~2 l\Jl 1 • \l . gl = - + ,..._. (2.0. 6) 

ox 

Set> 

= {20. 7) 
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The equations then lead to 

oS 1 ,....., 
-- + \72 ,1, I 

"' 't'l 
( 20. 8) 

OX 

(20. 9) 

,..._, (20. 10) 
ox 

The solution of these equations can be obtained by Fourier trans-

forms. An example is given in Appendix V. 

The general method of matching is now clear . If one has 

the general solutions of the above, one writes the flow fields in 

terms of the inner variables and gets the constants pk , fk , vk , 

tk from matching the far field expansion of the Stokes solutions. 

This gives a uniformly valid solution to leading order. Examples 

of this process will be given in the next chapter. 
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Chapter VI 

Applications 

§21. In this final chapter we shall apply the methods of the 

preceding chapters and find explicit solutions to some simple 

problems. The results will be compared with experiment where 

possible. We shall find that the slip condition introduced in 

Chapter IV is simpler to handle than the classical one. First we 

shall find an outer expansion for the Lagerstrom-Chester solution . 

§22. A general investigation of the problem shows the following 

features. The inner solution (approximate, of course) matches 

with the free stream to zero order. We may try to go one step 

further and put in multipoles in the outer solution and match up to 

O(Re). We are only matching an approximate, zeroth iterate. 

This fully matched 'solution' will in general differ from the exact 

solution of the equations by terms depending on 
Re 

E- -­- yMz In view 

of this fact and in view of the complexity of the general case , we 

consider the following special problem of isothermal flow . We 

assume that Pr- 0 so that the heat conduction dominates in the 

entire flow field. 

The outer equations for this simplified pro blem are 

as 1 
\J• gl +--;:: = 0 l 

OX 
(22. 1) 
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......, (2 2 . 2) 
ax 

For R ct 0 . We set 

-g 1 = V'Xl - i X 1 + 'VljJJ I ) (2 2 . 3) 

with 1 

If we set 

for R-:1= 0. 

2 
\7 X 1 - -= 0 

s1- -­
a~ 

fo r R * 0 . (22. 4) 

(22. 5) 

(22. 6) 

(22. 7) 

0 > (22. 8) 

Now suitable solutions of (22 . 5) (22. 6) (or equivalently (22. 8) 

must be found for matching. These equations correspond to (20. 7) 

(20. 8) and (20. 9) with w 1 = S 1 • Let us note the following facts . 
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W(~) = 

with, 

function 

co 1 J 47T2 
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W(~) defined by 

r-J 

itx K 0 (mp)dt; e 

it2 (1--yM2 ) 

1 
(1+ -) -yM2 

Q 

t -
i 

1 -yM2 (1+ -) 
Q 

K 0 (mp) is the solution of 

1 
p 

dK0 

dp 

the integ ra1, 
>i< 

p2 = y2+ ~2 (22. 9) 

(22. 10) 

0 . (22. ll) 

This function w(;) 1s discussed 1n Appendix V. For values of 

R ,....., O(Re), we have 

W(~) l [ R~ + l l ~ ( R2) + 0 • ·] • 4
7T l +- 8x 

Q 

-
We also define Y(~) by the solution of, 

Such that Y ....... 0 at infinity . 

... . ,. 

(22.12) 

(22.13) 

This work follows the methods given in a different context in (10]. 
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For small R 

l 
(2.2..1--±) 

W c• note that 

"' BY ...., 
\72 W + - = - 0 (X) l ( 2 2.. l')) 

a;. 

aw Y 1 ,..... 1 -;: 
+- - (l +;;;) \72 W + (l + ;;;) o(x) (22.16) ...., yMZ - u. u. 

OX 

In the notation of the previous chapter, X , W, Y are solutions with 

f 0 = 1 where X is the solution of 

(22.17) 

aw 0~ are solutions of the same equations for PI = -l v 1 = (l+ ~) 
OX 

with other parameters zero. We now assume the solution in the 

following form: 

g I = \7 XI - i XI + ~ ljJ I (22.18a) 

X1 = (22 . l8b) 

II rv B"aw AW(x) + 
a~ 

(22. 19) 

For R rv O(Re) ' 
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~ l l + - ~ { - + ____:;;.___ 
47T it l + l 

a 

B
11 

"' () l l L ( R ) +- v {- (-) + --
47T a~ R l+l a~z 2 

a 

(22. 20) 

This may be written in the form, 

-::: 7 [ c" 1 c" 1 .A' ( 1 ) 1 B" 1 J u = 1 l + (Re)(-
4 

)(-;:::)- (Re)(-
8 

)(-;:::)+ (Re)(-
4 

) 1 (-;:::)- (Re)(-
4 

)(-;:::-) 
7T R 7T R 7T 2(1+-) R 7T R 3 

a 

c'' ,..., 1 c" ,..., ,..., 1 
- (Re)(47T) v (-;:::) - (Re)(-8 ) X v(-) 

R 7T R 

(22.. 21) 

One of the simplest ways to match this with (ll. 7), (ll. 8) is to 

resolve (22. 21) in the radial direction and write R = (Re)R. 

We then obtain the following results . 

.A'= c'' ... (2.2. 2.2.a) 

( 2.2.. 22.b) 
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Thus, 

II 12?T(l+T){l+Ct') 
-A=-------- (22. 23a) 

(2+ 3Ct')+ T(4+ Sa) 

and 

II 
2?T [1- T(l+ 2a)) 

B = -------- (Re2 ) • (22. 23b) 
(2+ 3a)+ T(4+ 5a) 

This match checks with u
8 

, and p expansions for large R. The 

errors are now uniformly O(Re). This concludes the discussion of 

the Lagerstrom-Chester flow at small Prandtl numbers to leading 

order. 

§23. We consider now the approximate solution of flow past a 

slightly heated sphere using the new slip condition. Consider first 

of all Kn '""0(1). We assume the following expansions: 

- -u = u 0 + Reu 1 + · · • (23. l) 

(23. 2) 

P = Po + ReP 1 + · · · (23. 3) 

p = Po + R e p 1 + . • • (23.4) 

Substitution gives the leading order equations: 
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\l· Po uo = 0 ' (23 . ')) 

( 23. 6) 

\}2 To = 0 ' (23. 7) 

Po = 1 = Po To · (23 . 8) 

The next order equations are 

\l · Po U1 + \l · P 1 Uo = 0 ' ( 23. 9) 

Po Uo 
- 1 2 - 1 -\luo + yKn2 \lp2 = \7 ul +a \l (\l. ul)' (23.10) 

Po uo · 'VTo - (y~l) (28.11) 

Consider first the case of the unheated sphere T W = l. \72 T 0 = 0. 

8T0 
T 0 (R=l) = 1 + k 2 Kn aR (R = 1). (23. 12) 

Hence, 

T 0 = 1 Po = 1 · (23.13) 

-We are thus left with Stokes equations for u 0 , p 1 and the boundary 
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condition on the sphere is (R = 1)~ 

= 0 ; 
1 ouo R) . 
R 88 

The solution with the free stream velocity at infinity is 

= [-1 + (_]_) ( 1 ) + (i- krKn)(-1 )] sJ·n8 
4 R 1 + k 1 K n 1 + k 1 K n 2R 3 . 

yKn2 

= - l. cos 8 
Pr 2l+k 1 Kn(~) • 

(2.3.14) 

(2.3. 15) 

(23. 16) 

(23.17) 

67T 
Drag = l+ k

1 
Kn (in the Stokes variables). The outer equations are 

derived from the full Navier-Stokes equations in the variable 

R = ReR . We now have the expansions 

p = Po + Re Pr + · • · • (23. 18) 

T = T0 + Re 1\ + · · · • (2.3. 19) 

"'"' "'"' u = u 0 + Re u I + · · · , (23. 20) 

p =Po+ (Re}pi + fz(Re)pz (23. 21} 

We find that p 0 = 1 T0 = 1, u 0 = T and Po = 1. We also find that 

PI = 0 and p = 1 + (Re)
3 p2 • This implies 
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The outer equations for the perturbations are: 

......, 
ox 

+ 'V 

1 ......, z ......, 
Pr 'V T I . 

To match with the inner solution, we set 

Then 'V u 1 = 0 • 

If, 

!Yhere, 

and 

(2.3. 2.2.) 

(23. 23) 

(23. 24) 

(23.2 5 ) 

(23.26) 

(23. 27) 

(23. 28a) 

(23.28b) 
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We have 

(23. 29) 

We choose 1 

(2.3. 30) 

Then, 

Hence 1 + (Re)3 Pz written in inner variables becomes 1 + (R e)p 1 • 

We also choose X according to the equation: 

(23 . 31) 

It turns out that we need a doublet to make the error uniformly 

O(Re). Take, 

(23. 32) 

X = 
(2.3 . 33) 

'"' 8 1] + B \l --;::, (-;:_:) . 
8x R 

(23. 34) 
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For R"'O(Re), we have, 

,.._, I 
.-,.._, - .,....,. l - c l 
u (R),....,. i + (Re)(C)'V(-;:) + i (Re)(z) (-;:::) 

R R 

1.. ,....,.,....,. l - c! l + <tc,(Re) x 'V (-;:::)- i (Re)( H;::-) 
R R 

I"' l .- I l + (Re) A 'V (-) - i (B)(Re)(-) 
it it3 

,....,. ,.._, l I 
- x 'V (- )(Re)(B) + O(Re) 

R:3 

Resolving in the radial direction and writing R = (Re)R , 

with , 

I I c = -.N. • 

Comparing with (23.15) we get , 

I 3( l ) I 3( l ) 
C = 2 l + k 1 Kn ' A = - 2 l + k 1 Kn ' 

(23. 35) 

and 
l- 2k1 Kn 

Bl = (ReZ )(4(1+ klKn)) • (23. 36) 

~8 ( (Re}R) checks automatically. 
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3 ( 1 ) a 1 (Rea) [ (1- 2kl Kn)J az 1 
= -(2) l+k

1
Kn --;::::.(-,::) + 4 4(l+k Kn) ~(,::;-) ox R 1 ox 2 R 

(l3. 37) 

Hence 

We can therefore be sure that the pressure matches the Stokes 

value with the error uniformly O(Re). 

For a slightly heated sphere we have (h <<1), 

(23. 38) 

We write, 

00 

I: - k Uo = sk(x)h 
k=o 

(23 . 39) 

00 

L - k 
Po = sk(x)h , 

k=o 
(l3. 40) 

So = 1 
' so is the solution given by (23.15), (23.16). 

(23. 41) 

where 

; nk- o at oo , 
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and 

ank 
= ~(8) + kz Kn oR (R = 1, 8) , (23. 42) 

P (cos 8)(Emk). 
m Rm+l 

(23 . 43) 

Emk are related simply to the Legendre expansion of ~ . Now 

that To is known in terms of the boundary data, the equation 

1 
determines sk in (23 . 40). We will indicate the solution of Po -To 

(23. <;), ( 23. 6) when Po is given in the form (23 . 40). We have 

already determined So. 

(23.44) 

(23. 45) 

\} . ~ s~1v = 0 (23.46) 

~+v=k 

S, 1 , B 1 satisfy the equations : 

v · ~ + 'fa · vs 1 = o ) (23.47) 

(23 . 48) 

For a specific £1 , these equations may b e solved by a correlation 

method . 
l 

For example, let S1 = R Let "f1 = -; + \} q.. with \} · -; = 0 
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(23. 49) 

In spherical coordinates, 

1 8 (R 2 ~) 1 8 ( . 8 ~) 1 _Q_ (R
2 

U R ) 
R 2 oR oR + R 2 sine 88 sm 88 + R 2 oR R 

1 _Q_ ( ue sin8) 
+ R sin9 88 R = 0 . (23. 50) 

Here uR , u
8 

are given by {23.15), (23.16). If we put <j> = f(R)cos8, 

we get 1 

(23. 61) 

1 d 2v 
Where H(R) = R 2 dR (Ru) + R 2 where u(R), v(R) are functions of R 

in the equations (23.15), (23 . 16) . A ctually H(R) is of the form, 

c I c2 c 3 

H(R) = R 2 + R3 + Rs (23.56) 

D2 D3 
A particular integral o£ the form D 1 + R + R 3 exists where D 2 , D 2 , 

D3 are simple functions of c 1 , c 2 , c 3 • Now all that is necessary 

is to solve 

-'V·v=O, 

-;; - 0 at oo and 

- --v + 'V<j> = k 1 Kn curl v X n on the sphere :, 

df 
vR + dR cos8 = 0 on R = 1 ~ (23. 57) 
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These equations fully determine the field now. We ha.ve, 

1 
= X - (1 + -) \J z cj> 

cr 

The details will not be given. 

§24. 
Re 

The next case is yMZ = E fixed. Re < < 1. 

Kn = M = 
Re 

1 

..f yE Re 

(23.'iH) 

(23. S9) 

The boundary conditions on the sphere are: (for the velocity field) 

( 24. 1) 

Corresponding to (16. 25), (16. 26) etc. we have, 

u = u 0 + {Re ~ + · · · ( 24. 2) 

T = T 0 + {Re T 1 + · · · • ( 24. 3) 

P = Po + .[Ii:; P 1 + · · · , ( 24. 4) 

P = Po + ..j R e P 1 + · · • • ( 24. 5) 
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Substitution into the equations gives, 

To = Po = Po = 1 ; uo = V <Po (24. 6) 

where , 

1 
<Po = R cos8 + 2R 2 cos8 . (24 . 7) 

The next order equations (16. 40, et seq) are, 

(24. 8) 

- 1 -'V2
u 1 +a V (v· u1) = E'Vp 1 , ( 24. 9) 

1 \72 T1 = 0 
Pr v ' (24.10) 

= 0 (24. 11) 

,.-- oT 1 (1 - T ) Y yE = k -
w 2 aR (24.12) 

P1 = P 1 + T 1 • (24.13) 

Consider the simple case T = 1. 
w 

T 1 = 0. p 1 = p 1 . Even 

for this simple problem, the exact s elution of the correlation 

equations (16. 49), (16. 50), (16. 51) for the sphere is a complicated 

expression though in principle it is simple to obtain. W e will 
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avoi d the complicated formulae and give only the vortex pa r t v 1 of 

the solution. For this part we have) 

= 0 (2.4.14) 

with ~ - 0 at oo . 

( B C ) 8 = R + R3 cos J (24.15) 

= (- 2~+ 2~3 )sin8J ( 24. 16) 

B + C = 0 

c 3 .fYE = 2kl 
( 24. 17) 

B = - _3_ ryE 
2kl 

(24.18) 

B cos8 
XI = RZ (24. 19) 

The drag due to the vortex part is , 

D = (24. 20) 
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The outer solution is complicated in the general case just as in 

§ 2 2. As before, we will assume now that Pr -- 0. The outc'r 

expansion now looks like the following: 

u = i + Re% ul + . . . } (24. 21) 

p = 1 + Re3/z 
PI + ... (24. 22) 

p = 1 + Re% PI + ... 
' (24. 23) 

T = 1. From which we have PI = pI. 

The outer equations of perturbation are 

aP'1 
"' 

"' 
+ \l ui = 0 ) (24. 24) 

ax 
"' 8ui 

_E_ i"J ,....._, 1 ,....._, ~ "' + \l PI = 'V2 u +- \l(\l· U I) 
a'; Re I a (24 . 25) 

These are the same as (22.1), (22. 2). The matching can proc eed 

in a similar manner if the inner solution is known. If E is small 

as for the Lagerstrom-Chester field, we attempt a perturbation 

expansion in E. 

Xt + (1 + ~) V'2 <I>I = E (pI+ T 1) ) (24. 26) 

( 24. 27) 
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If T I - 0 (Pr- 0 say)1 we procee c: as follo·ws: 

To solve (24. 26), (24 . 27) perturbatively, we expand <:>I, PI in 

powers of E • 

(24. 2H) 

The solution of this equation is similar to (23. 49). 

B cos8 
X I = R2 

(l + l)IR12 ddR(R2 dF) _ 2F(~)J + B
2 

= O • 
a ~ dR R R 

F = tB 
1 

2(1 + -) 
Q 

B cos8 Dcos8 
1 + R 2 

2(1+-) 
Q 

(24. 29) 

( 24. 30) 

(24. 31) 

8-"(o) 
Wh e r e Dis determined from _'+'_I_ = 0 on R = 1. D = 0 

B cos8 
aR 

(o) 
<!> 1 = 

2(1 + l) 
singular~ty in 

This velocity potential however gives a logarith-

mic PI if one uses (16. 51) to compute PI . This is 

analogous to Lagerstrom 1 s paradox and is resolved in the same 

way . 

O(B) 
E 

= IY 

In this theory, B is O(VE). The stagnation pressur e PI is 

i. c. 0 ( -
1
-) . 

..fE 
h 1 . . O(.ff{e ) Hence t e rea stagnahon pressure 1s --

.[€ 
M . · . the stagnation pressure is O(M). This con trasts with 

the Lagerstrom- Chester theory which gives stagnation pressures of 
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§25. To illustrate the case of §17, we once again consider Pr-O 

and assume the expansions of §17. W e obtain) 

( 25. l) 

Po = 1 ; uo = 'V'<Po 
1 

<Po = R cos8 + 2R 2 cos8 ( 25. 2) 

The equations then give as 1n §17, .f 1 (Re) = Re . 

-\7 · u I + \J P I • \7 <Po = 0 ) ( 25. 3) 

( 25. 4) 

ui . n = 0 u 0 = k I M cur 1 ~ X -;:; . ( 25. 5) 

The splitting gives, 

-\7 · VI = 0 , ( 25 . 6) 

(25.7) 

2 
('V<Po ) To 

2 + yM2 = XI + (1 + ~ \}2 <i>I ' ( 25. 8) 

(25.9) 

(2.5 . 10) 
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= ( ~ c - 2R + 2R3 ) sin8 (25. ll) 

c 3 
B 3 = 7 = 2k1 M 2k1 M 

( 25. 12) 

1 1 B cos8 
XI = 2 + yM2 + Rz ( 25. 13) 

Notice now that equation (25. 9) has in general a singularity at. th <" 

stagnation point where \7¢0 = 0. 

This possibility was not discussed in the general theory. 

The reason for this singularity is that in general \72 <p 1 * 0 at. t.he 

stagnation point. Equations (25. 8), (25. 9) have no solution which 

is non- singular with the conditions we have imposed. This may 

imply a genuine breakdown of the continuum theory in this r egime. 

It may also be that the particular p e rturbation scheme adopted is 

unsuitable for these boundary conditions. At these extreme free 

molecular limits (Kn = O(ie) ), we feel little inclination to speculate 

about this matter. It is possible to impose the condition that the 

pres sure be bounded on the sphere instead of T 0 = 1. 

For example, to make '\72 ¢ 1 = 0 on R = 1, we impose the 

following condition on T 0 : 

To 
1 

yM2 = X1 = 2 
1 

+ yM2 + B cos 8 on R = 1 (25.14a) 

we have, 

(25.14b) 
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Then J 

+ t(~ -1) = 
1 

(1 + -) \72 "' 0:' '1' 1 (2.5. He) 

(25.14c) is a Poisson problem. However, \72 c:p1 -f. 0 at oo owing to 

1 
the R term. This has to be matched with a s uitab1e Os een flow. 

(25. 9) however may be solved now without singularities at 

R=l. Again, PI -f. 0 at infinity and must be suitably matched. We 

will not consider this matter further. It is however an interesting 

problem from a purely mathematical standpoint and deserves a 

more careful and thorough investigation. 

§ 26. As an example of a two dimensional flow, we consider the 

flow past a circular cylinder. We only give the results for Kn"-'0(1). 

We must solve (16.12),(16.13) for two dimensional flow. For TW = l, 

we have Po = 1. 

The solution which is appropriate is the following: 

UR = (BR - 2 
+ C logR + D) cose I ( 26 . 1) 

ue = (BR - 2 
- C 1ogR - D - C) sine , ( 26. 2) 

2Cy 

PI = R 
cose ) (26. 3) 

using an obvious cylindrical polar system . B, C, D are arbitrary 

constants. One has, 

B + D = 0 1 s1nce = 0 on R =1 . ( 26. 4) 
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(B- D-C)= k 1 Kn( - B-C-D-C) , 

B- D = k 1 Kn(-2C) + C 

= C ( l - 2k 1 K n) · 

Now for matching with Oseen flow T at infinity we need) 

we have J 

u = R 

c = l 
l log ­

Re 

B+D=O, 

B - D = _ _..:::...1_1_ 
log­

Re 

B = 1 (l 
1 

2log Re 

(1 - 2k 1 Kn) · 

2k 1 Kn) , 

1 
-~-----::-1- (1 - 2k 1 Kn) , 

2log Re 
D =-

1 r (1- 2k1 Kn) (1- 2k1 Kn) J 
1 1 log R + 2R 2 - 2 cos S , 

log- ... 
Re 

1 [ (l-2k1 Kn) (l+2k 1 Kn)J 
us=- l logR- 2R 2 + 2 sinS, 

1og-
Re 

(26. 5) 

(26. 6) 

(26. 7) 

( 26. 8) 

( 26. 9) 

(26.10) 
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cose 
R ( 26. 11) 

Instead of matching with T we leave C for the moment undetermined. 

Now we go back to the Os een equations . The method is the same 

as for a sphere. We write first of all (following Proudman and 

Pearson), 

u = i + Re ~I (R, Re) + · · · (26. 12) 

where u 1 is not independent on Re but has coefficients that may 

depend on Re (even for the sphere this was so). We only require 

that o( Re ~l(R, Re)) should be uniformly o(l) when Re ~ R < 00. 

Following Lamb, we write 

~I (R, Re) = ~X- T X+ ~ ljJ ( 26. 13) 

where R: ~ --coshw 
C(R ) 2 Joo e 2 dw X = e e 

0 

~ 
R: 2 = C(Re)K0 (z:l e (26.14a) 

where C(Re) is a function of Re. Also, 

"' a "' ljJ = Ao (Re)(log R) + ( --;::::,log R) AI (Re) (26.14b) 
ox 
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Now we look at the inner limit of the velocity (E is Euler's constant). 

( 26. l ')) 

Resolving in the R direction, 

[ 
( R ) C A I l 2A 1 l C R 

"' ez (logR) + ( ) ( ) l- (R) ( 1 E l ( e)) uR Re R 2 - Re R 2 + e 2 z-- - og 4 

+ (Re) ~ - (Re) ~] cos8 , 

with, 

A 0 = C . 

From (26. 4), (26. 5) we have, 

2B = l - 2k1 Kn , c 

2D 
c = - (l- 2k1 Kn) , 

These two equations determine A 1 , C. 

c 
(Re) 2 = l 

b.=------~---
1 R e 
i - E - log ( 4 ) + k 1 K n 

(26.16) 

(26.17) 

(26. 18) 

(26. 19) 

(26. 20) 
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(l - 2k 1 Kn) 

2 

=(_£_)b. 
Re 

The drag is given by 27r ReC. 

Drag = 47rb.. 

( 26. 21) 

(26. 22) 

(26.23) 

This is of course drag/unit length. Hence we have the formula 

D = 
1 Re 
2 - E - log 4 + k 1 K n 

(26.24) 

§ 27 . Finally, we shall consider flows past ellipsoids. The 

solution of Stokes equations with no slip condition is discussed in 

Lamb [5] (§339). Apparently, the problem has not been solved 

with slip. We shall give the details of solving equations (23 . 5}, 

( 23. 6) for p 0 = 1 for the following boundary condition. Let 

x2 y!:_ z2 
F(x, y, z) = 7 + b 2 + -z2 = l , (27.1) 

be the equation to the ellipsoid with a, b, c being non- dimensional 

principal semi-axes. 

The problem of solving the equations with 
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u = k 1 Kn(curl--;{ X-;{) ( 27 . 2) 

appears to be quite difficult if k 1 is taken constant . Note that 

! 'VF\ is 0(1) on the ellipsoid. We shall consider the problem of 

solving the Stokes equations with 

u = k 1 Kn(curl--;{ X \i'F) (27. 3) 

where k 1 ' is constant. This problem happens to have a very simple 

solution. The gross features of the flow should not differ from the 

solution with (27.2). The two Ansatz made here are in a sense 

indistinguishable macroscopically. The simpler solution may give 

us a feel for the flow in question. 

Let the flow at infinity be T. We wish to solve , 

\i'"U =0 , (27 . 4) 

l 
= yKnZ 'VPI . (27.5) 

Following Lamb, we assume the following form for the solution. 

u = 1 
- orl + B X \7 X - i B X + A \7 ox (27 . 6) 

where 1\}2 X = \}Zfl = 0. A, B are undetermined constants . 
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00 

X = abc JA. 
dT 

.6( T) 

where A. is the positive root of 

1 . 

l 
2 

.6(7) = { (a2 +T) (b2+T) (c2 +T)} • 

n is the gravitational potential of a homogeneous ellipsoid. 

n(x,y,z) = 1T abc Joo (-F- + bt+z T + ~ -1) dT 
A_ a + T C z + T .6( T) 

( 27 . 7) 

( 27 . 8) 

( 27. 9) 

(27.10) 

These are classical results due to Dirichlet in the theory of the 

gravitational potential. We see immediately that by virtue of the 

fact that X and S1 are harmonic functions, u is solenoidal. Equation 

( 27. 5) may also b e satisfied. Note that 

curl-;-= 2Bix V' X = -2B \7X(i X) (27.11) 

Hence , 

- - \lz-;-- curl curl u = - \7(\i'·U )+ 

ax 
= \7(2B a) 

if PI = 
ax 

2yKn2 B-ax (27. 12) 
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The Stoke s equations will be satisfied by the solution for all A, B. 

It r e mains to satisfy the boundary conditions on the ellipsoid. (The 

fr e e str e am condition is r e adily seen to be satisfied). Now 

\7F ~ , ~~) on >- = 0 . 

( 
2a2 2b2 

\?x = - v >- = - ---;- , Y 2c
2

) -- on>-= 0 . 
' z 

- -curl u X\] F = - \]F X ( i X \?x) 2B 

= -2B{i 'VF. 'Vx- 'Vx T · 'VF} 

- 2x } = - 2B { -12 i + ~ \7>. on >- = 0 . 

an= 
ax 27T a X , 

- - - - 27TX u (>-=0) = i - B i Xo- Bx 'V>- + 2?Ta0 Ai - --2 A \7 >-
a 

W e the r e for e obtain 

(27.13) 

(27.14) 

(27.15) 

(27.16 ) 

( 27.17) 

(27. 18) 
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1- Bxo + 21ra0 A = 24Bk 1 'Kn, 

4B =-- k 'Kn a 2 1 • 

(
4kl'Kn 9 27rA 

B 2 -1 = -2-
a a 

a 2 (4k1 'Kn ) 
A= 27r a2 -1 B 

B = 1 

(27 .19 ), (27. 20) solve the problem. 

00 dT 
Xo = abc 

Jo b.,( T) 

00 dT 
ao = abc J (a2 + T)b..(T) 0 

The s e formulae agre e with Lamb if Kn = 0. 

Drag = 16 1r abcB 

= 
2 (4k1 'Kn ~ 

Xo- a ao a -J;+ 24k 1' Kn 

(27.19) 

(27. 20) 

(27.21) 

(27.22) 

(27.23) 
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Re 
It may be noted here that for the case when yM2 = E is 0(1), the 

vortex part ~ may b e obtained in an exactly similar manner, onc e 

-u 0 has been determined by classical methods. The details of this 

calculation are not given here. We also note that the case of the 

free stream flowing at an arbitrary orientation to the e llipsoid is 

solved simply by superposition. This closes our discussion of 

applications. In the n ext and final section we make some comparison 

with experimental results. 

§28. In this concluding section we compare the results deduced 

in the preceding sections with experiment . The s elutions of 

Navier-Stokes equations with the classical slip conditions are valid 

only for Kn < < l. Some attempts have been made ( [9], [20]) to 

understand phenomena when this condition does not hold. Kinetic 

theory has proved to be an unqualified success when Kn > > l. The 

intermediate range has not received an equally consistent treatment. 

Goldberg's work [ 9] is based on Grad's moment technique applied 

to the Boltzmann equation. It is not clear whether this is really 

applicable when Kn is 0(1). In any case, Goldberg's formula does 

not agree with Millikan's results ( [16], [17], [18] ) except at the 

continuum end. 

It would appear therefore that there is a need for an inter-

polating theory that is simple to calculate with and which gives a 

theoretical interpretation to Millikan's classic researches on 

spheres. The proposal of this thesis is that the Navier-Stokes 

equations may b e used provided Re and M are restricted to b e 
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small with Kn varying from zero to values that are not too large. 

Kn cannot be > > 1, for then, the fluctuations would be of the san1c 

order as the mean flow quantities. The boundary conditions to be 

used in conjunction with the equations are assumed to be the ones 

stated in Chapter IV. These contain two arbitrary parameters k 1 , 

k 2 which may in fact be slowly varying functions of Kn. The 

consequences of this model have been derived in the preceding 

chapters and are collected together below. 

We concentrate attention on the case Kn ~ 0(1). For finite 

bodies, the drag coefficient CD is defined as follows: 

( 28. 1) 

From § 2 3 we have , 

(28. 2) 

The non-dimensional pres sure coefficient is 

3 -yKnz 

= 2 (Re) 1 + k
1 
Kn ( 28. 3) 

Thus, 

( 28. 4) 
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For cylinders, 

87T 
( 28. 5) 

(Re) 4y Kn2 

(28. 6) 

For ellipsoids (with the conditions of § 27) we have 
1 

CD 
327T abc = 

Re [xo +a0 a 2 + Kn(24k 1
1 -4aoki~)] 

( 28. 7) 

(Re) (4yKn2 a) 

cP = 
[xo + a2ao + k 1

1 Kn(24 - 4a0 )] 

(28. 8) 

The main experimental results in this regime are summarized in 

[2]. R. A. Millikan in a series of classic papers ([16], [17], [18]) 

determined drag coefficients for spheres for Re < < 1, M < < 1. He 

was able to summarize his experimental results with a remarkably 

simple empirical formula that appears to fit the data very well. 

Apart from Goldberg 1 s work already quoted, no theoretical inter-

pretation for this formula appears to exist. As was already men-

tioned, Goldberg 1 s formula deviates from the Millikan result in the 

range we are cons ide ring. In the papers cited Millikan gives the 

empirical formula 
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12 7T (28.9) 

The constants A, B , G (independent of Re, M or Kn) have been 

determined to within a few percent. The formula is usually [ 22] 

written in terms of i which differs from Kn by a numerical factor. 

l27T (28.10) 

with 1 

A = l. 23 B = 0. 41 G = 0.88 (28.ll) 

According to Millikan, the experiments may in general be 

fitted by 

(28.12) 
Re[l + f(Kn)] 

In the theory proposed here, we would interpret £(:::) as k 1 , 

the surface interaction parameter. While Basset's results agree 

with (28.10) only for Kn < < l, it will be noticed that (28. 2) has the 

same form for all Kn. Since we do have an extra arbitrary param-

eter k 1 at our disposal this agreement must only be taken to 

mean that the theory is in qualitative agreement with experiment 

and summarizes the results in a compact form. The formula ( 28. 4) 
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is a test of the theory since only measurable quantities appear in 

it. Cp appears not to be available in this regime . It is cone ei vable 

that this might be measured by observing motions of balloons in 

the higher atmosphere. Atassi and Shen [20] use an ansatz on the 

Boltzmann distribution function and calculate in the continuum 

approximation the drag coefficient for circular cylinders . 

(28.13) 

for Kn << 1 , which is almost the same form as {28. 5) . The 

specific form of the functional dependence of k 1 on Kn will depend 

somewhat on the conventional element involved in the definition of 

Re. 

W e may mention here certain interesting applications of the 

foregoing theory to the theory of aerosols. We had already noted 

that when Kn - 0(1), the classic Einstein formula for the diffusivity 

of an aerosol would have to be modified. From (28. 2) we see that 

the new formula would be (if a is the radius of the sphere) 

Kn = M 
Re 

·, (28.14) 

(28. 15) 

(Note that this definition of Kn differs from that of [ 2] where >-.. is 
a 
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called K). Thus the diffusivity is enhanced by the factor 

-G 
e a/}:_) following ( 28 . 10), we obtain 

the e n1pirical correction to Cunningham's kinetic formula given by 

Knudsen and Weber [19]. 

We also note the results of a calculation (using a method 

due to Landau and Lifshitz [22] (§22) ) of the viscosity of dilute 

suspensions of very small particles (Kn "" 0(1) ) in gases. This 

involves the solution of the Stokes equations for flows past spheres 

when the flow at infinity is a uniform shear flow. The viscosity 

of the suspension is denoted by fJ. and has the value: 
s 

where > 

a 

4 = - 1r a3 C 3 

= radius of the spherical particles , 

C = number of particles/unit volume , 

( 28. 16) 
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Here we see again that Einstein's classic ~ is diminished by the 

1 
factor l+ 3k

1 
Kn . We may eliminate k 1 Kn between (28. 14) and 

(28.15) and get a relationship between purely observable quantities. 

Such a relation ought to provide a sound check on the validity of 

the model . If we write, 

(28. 17) 

(28.18) 

we obtain the following equation: 

(28.19) 

Finally, we summarize the results forE taking on moderate or small 

values. In §12, we mentioned that the Lagerstrom-Chester theory gives 

a drag coefficient CD oc Rle. This result directly contradicts experj-

ment and free-molecular flow theory that applies to this regime. 

The results of § 24 show that the present condition predicts a drag 

coefficient given by (24. 20) that goes over smoothly into the free-

molecular value. The leading order potential stresses that exist 

in this theory contribute no drag. This is an unsatisfactory feature 

that must be investigated further from a microscopic point of view. 

Pending such investigation, the results must be looked upon with 

due suspicion and caution. It will be noticed that the stagnation 

pressure predicted by the work of §24 are O(M) unlike the 0(~) 



-95-

stagnation pressure of the Lagerstrom-Chester theory. 

In this work, only the leading terms of asymptotic expansio ns 

were worked out. These deductions should be unambiguously checked 

out with experiment and theoretical analysis using kinetic theo ry 

where possible, b efore one proceeds with higher approximations. 

C ertain phenomena like thermal creep have been left out in the 

interests of clarity and simplicity. There are indications that for 

certain problems, the more general condition (15. 14) is appropriate. 

The results on aerosols may conceivably find use in chemical 

physics or e ven environmental science. Under certain conditions, 

it is not impossible that these results could be applied to astro-

physical problems involving dust and gas. It would be interesting 

to extend these ideas about slip flow (particularly, the slip condition) 

to regimes of flow which may not satisfy Re < < 1 and also to un­

steady problems. A microscopic justification of the slip condition 

appears to present formidable difficulties and is not attempted. 
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Appendix I 

We collect certain formulae here for reference . 

Cylindrical Polars: R, ¢, z If u, v, w are the respective 

velocity components, we have 

1 a 1 a a 
R oR (Rpu) + R 8¢ (pv) + a;: (pw) = 

The vorticity components are 

- au - ow 
YJ - oz oR ' 

The shear rates of strain are: 

1 a r =-- (Rv) 
'=' R oR 

0 . 

1 au 
R 8¢ 

1 au 
2 eRR =oR' 

OW 
l. e = az ' 2 zz 

(AI. l) 

(AI. 2) 

- ]_ OW + a v = au + OW a v 1 au ( 
e<bz- R 8¢ oz' ezR oz oR' eR¢ = R oR(R) + R 8¢' AI . 3 ) 

The Navier - Stokes momentum equations are: 

OU v 2 
w---= oz R 

(\.L •• \ a -+ ~- ('V. v) ' 
P aR 
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(A.+JJ.) 
+ p 

1 a -- (\7. v) .I 

R o<P 

ow+ ow v ow ow - 1 QQ + ~ <:72 w + (A.+ JJ.) _Q_ (" . --;;) • 
at u oR + R o<j> + w az = p az p v p az v , 

where, 

Spherical Polars: R. e, <!>, velocities u, v, w respectively 

1 a(z > 1 a 1 a 
R 2 oR R pu + R sine ae (pv sine)+ R sine o<j> (pw) ::: O 

n = --- (Rw) l { aaucp} l a 
R sine R oR 

l a l au s = R oR (Rv) - R ae 

(AI. 4) 

(AI. 5) 

(AI. 6) 

(AI. 7) 
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1 au 1 1 ov u 1 1 ow u v cote 
-zeRR = oR ' zeee = R ae + R ' ze<j><j> = R sine o<j> + R + R 

sine 0 w 1 av 
ee9 = ~ Be( sine)+ R sine o<j> 

1 au 0 w 
e<j>R = -R-s""""i;_n_e o<j> + R oR (R) 

The momentum equations are the following: 

au au v au w au 
at+ u oR + R ae + R sine 8<j> 

=-JaP+f(\lzu_2u _ _L~ev_R2v2 cote- 2 ow) 
paR p R 2 R 2 u R 2 sin8 8<j> 

(X.+jJ.) a -+ -- - (\7• v) 
P aR 

av av V av W av UV w 2 cote 
at+ u aR + R ae + R sine a<j> + R - R 

+ (X.+ jJ.) _l_ _Q_ (\7 . -;-) 
P R ae 

2 cos8 
R 2 sin2 8 

(AI. 9) 

(AI. lOa) 

(AI. lOb) 



-99-

aw aw v aw w aw wu vw cote 
at + u 8R + R as+ R sinEl o<j> + R + R 

1 a -- (\7. v) 
RsinEl o<j> 

(AI . lOc) 

Methods of writing these equations down for arbitrary coordinate 

systems will be found in [l]. We will use only the above results. 
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Appendix II 

Calculation of an Axisymmetric Green's Function 

We wish to solve the following problem: 

- l -
\}

2 u + - V' (V' · u ) = g = V'w • 
D.' 

u - i at infinity. uR = 0 on R = l. 

(All. l) 

R=l. w is a function 

of R, 8. H e re the origin of coordinates is at the centre of th e 

sphere, and the polar angle 8 is measured from the positive x-axis . 

i is th e unit vector along the x-axis. The correlation equations 

reduce to 

\72 -v = 'Vx • 

-\} " v = 0 (All. 2) 

l 'V2<P X+ (l + -) = w • D.' 

where , 

u = V'<P + v (AIL 3) 

The boundary conditions involve both -:;and cp . We solve (All. 2) 

using a slight adaptation of a method due to Stokes, used extensively 

by Proudman and Pearson. We split the potential cp into two parts , 
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with , 

and 
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<j> = ~ + <I>II . 

l (1 + -) \}2 <I> 
a I = w j 

<I>
1 

= 0 on R = l. 

(AIL 4) 

{All. s ) 

W e shall assume that the w' s we deal with in our work die out 

sufficiently rapidly at infinity for this problem (Poisson prob lem in 

an unbounded domain) to have a unique solution. The solution of 

this problem utilizes the classic methods of potential theory and 

will be assumed known. 

Now we have to solve: 

(All. 6) 

\7 . v = 0 
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a ( 1 a <l>n) = T aR ve + R Te R = 1 

Since w is a function of R, e, so is <l>
1

. 

symmetric. 

The entire flow is axi-

Writing , 

1 a-w-
VR = R2 sine ae 

(All. 7) 

1 8"1¥ 
ve = R sine 8R 

(All. 8) 

we have , 

(All. 9) 

x = cose. X is calculated if w is known. The general solution of 

(All. 9) subject to appropriate regularity conditions on the sphere is 

w(R, x) 
X 

= ~ l\J.(R) J P.(t)dt 
j=l J -1 J 

(All. 10) 

{P.} are the orthonormal Legendre polynomials. 
J 
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(All. 11) 

We also have the expansions, 

~II = L: ~(_II) (R) P.(x) 
J J J 

j=O 
(AIL 12) 

I. 
P .(x) 

X = X· ~ 

j=l J Rj+l 
(All. 13) 

H ere {x.} are constants which are known in terms of the constants 
J 

of integration in \If. (R). 
J 

This expression follows from the fact that 

X is a harmonic function . 

Substitution into (All. 6) utilizing an expansion of ~ similar 

to (AII.l2), gives ljJ., ~~1 , X· · 
J J J 

We need to solve only simple 

algebraic equations among the various constants which are in fact 

related linearly. Since the calculation is the same for any w(R, 8) 

we will have effectively calculated the axisymmetric Green's 

function . 
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Appendix III 

The No- slip Limit of p 1 on R = 1 

According to the point of view adopted in this work, the 

density distribution p 1 on the sphere is to be obtained by taking th e 

limit of T- 0 in (11. 29) and (11. 30). We note that S,(-1) = - oo and 

S,(+l) = -oo and S,(t) has a maximum at t = - ~ From (11. 29) we 

deduce that for x < x 0 where x 0 = - .£. the leading term in the 
B' 

asymptotic expansion of <T 1 is , 

E T(x) 
E + Bx 

(Alii. 1) 

which is also the leading term outer solution of (11. 26) with T as 

the small parameter. When x ~ x 0 , it is convenient to use Watson's 

lemma on (11. 29) to get, 

<T ie 

1 r 1+ x 2 J 
1 L E log l-x - B log(l-x ) 

2U1 (1+ -) 
Cl 

---=1'--- [ l 1 + X 0 
1 E og 1-x 

E (T (x0 )) (e 2 ~ (1+;;) 
0 

u l (1+ ~) l-x2o 

X Joo e S.'' (xo)u2 du 

-oo 

(Alii. 2) 
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1 

p 1 (x0 ) - 0 like T '-

For x....,. x 0 , p(x) is transcendentally small in T. 

l 
l-x ... 

2 
Udl+;l) 1 I -B 

P 1 (xo) - ~( ) ( -- 1 ' 
- Xo E ~ U (l+-) (l- X 2 ) 

I a 0 

Xo = ..§.. 
B 

(Alii. 3) 

(Alii. 4) 

{Alll. ')) 

This expansion is valid for T- 0. We note that the limit process 

is T- 0 for small but fixed E • 
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Appendix IV 

On Certain Asymptotic Expansions 

In Chapter Ill we studied an iterative method for the solution 

of the system (10. 1) to (10. 4). An equivalent perturbation scheme 

is presented here. It appears to be worth studying for its own 

sake. Consider the following system of equations: 

\l·v =0, 

(AIV. 1) 

X + (1 + 1)\l <j> 
a 

1 = E (- - 1) 
(J" 

The boundary conditions are the same as for (10. 1) - (10. 4). Here 

E < < l. But the parameter ~ is arbitrary. Suppose we attempt to 

solve this by the following simple perturbation scheme : 

- \' Ev v = LJ v ) 

v 

I , v 
X = XvE 

(AIV. 2) 

L: v 
(J" = (J" E 

v 

<!> L: <!>v 
v = E 



-107-

The functions {x } , {cr } etc . will in general depend on 6.. Suppose 
v v 

that the solution so found is an asymptotic solution to (AIV.l) for 

all ~ > 0. We would then obtain an asymptotic solution to the set 

{ 10. 2} by setting ~ = E • The underlying idea in this scheme is 

the same as in the iteration scheme of Chapter III: we do not wish 

to neglect the effect of the density fluctuations in the equation of 

continuity. The equations to leading order are : 

-'V · v0 = 0 

Xo cro 
'Vcro + --1 = 

1+-
Q' 

~{l-cro) 

1 
1 + -

Q' 

(AIV. 3) 

The velocity is the Lagerstrom-Chester field. The next order 

equations are : 

-'J " VI = 0 

Clearly cr 0 is a func tion of ~ . 

1 
1 +­

Q' 

XI cro 
(~ + 'Vcpr) · 'Vcro - 1 

1 + 

(AIV.4) 

The higher terms are calculated 

similarly. The relationship of the iterative procedure to thi s 
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perturbation procedure is evident. The question of convergence 

seems just as difficult a problem as before. The equation for o~ 0 

has an exact solution calculable as in Chapter Ill. The n ext order 

equations are not difficult to solve in theory but are very compli­

cated in practice. The solution to the original problem is obtained 

by a "confluence" of the solution to (AIV.l) by setting t:,. = E • We 

note that the dependence on t:,. is in general very complicated and 

hence the resulting expansion is not a simple limit process type 

expansion in E • 
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Appendix V 

Fourier Transform Solution of the Oseen Equations 

We indicate below the simple Fourier transform solution of 

the Oseen equations. The order of the singularity is deliberately 

left out. The equations are: 

.§_§.. + V'z tjJ = 0 
"' 

, 
ax 

~ + 
l 

(l + ~) V'z ljJ , -- w-
ai 

yMZ - (A V.l) 

ae ( y-1) ow 1 "-' 
=- \7z 9 ~ 

ai Y ai Pr 

w=s+9· 

We express s' ljJ, w, 9 in terms of their Fourier transforms , 

l J ik· 
X d3 k S(k); k = (t, r, s) , s = (21T )3 e 

ljJ 
l J ik· 

X d3 k W{k) (A V. 2) = ( 21T )3 e 

9 l J ik· 
X d3k e (k) = (21T)~ e 

If we substitute and get a single equation for S(k) we find that we 

may choose 
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it 
S(k) = 

it 
S(k) = 

it 
S(k) = 

Henceforth we will consider 1 

w(x) (A V. 3) 

Here the function F(k, t) is defined by the following equation. 



F(k, t) 

If Pr- 0, we 

Pr, F(k,t)-
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] 0 

get the function defined in Chapter VI. 
y-1 Pr [-t(l+l/a)] 
(-} Mz . for large t, k. 

y y --~1----r-
t - yMZ (1+ 1/ a) 

(A V. 4) 

For small 

Hence for small Pr, F(k, t) can be absorbed in m 2 • For large 

Pr, we should consider a slightly different definition of S and w. 

We would still be able to express w in terms of an integral 

involving k 0 • For moderate Pr, it is convenient to evaluate the 

integral over k by residues. The resulting integrals are more 

complicated. The asymptotic expansion of w near its singularity 

is obtained by studying the asymptotic expansion of its Fourier 

transform for large I k 1. The nature of the singularity can now be 

explicitly found. From the definition of S(k) it is easily seen that 

it is the Fourier transform of Y(x). This concludes this brief 

discussion of the transform theory of the Oseen equations. 
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Appendix VI 

A Mathematical Model 

The Lagerstrom-Chester problem is characterized by the 

fact that if the pressure term in the momentum equations is 

dropped entirely, the density is singular. The following mathe-

matical model illustrates the crucial importance of 11 small" terms 

in certain equations and the variety of phenomena they may describe. 

The model can be related to a Lagerstrom-Chester problem wher e 

the kinematic viscosities are taken constant. 

Consider the simple linear equation , 

dy 

dx + x 2 (1-x) 
EY l 

(A VI. l) = 1-x ~ 

O < E<<l, y(O)=O, intherange [0,1]. If we drop the E term, we 

obtain 1 

dy 

dx 
l 

l-x ~ y =- log(l-x) (A VI. 2) 

which apparently fits the initial condition but is infinite at x = l. 

1 
The exact solution is easily obtained and it shows that lim y(x) = 

x-1 E 

We also note that this solution cannot be iterated as the singularities 

compound. It is also true that the solution gives y(O) correctly; how-

ever, y'(O) = 0 from the exact solution and here we see behaviour 
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similar to the Lagerstrom-Chester velocity field which is a good 

approximation to the velocity but not to the divergence of the 

velocity. 

We now give a uniform representation. At X= 0: 

Set X= XE y = EY. 

We get 

dY y 
= 1 . --;:+ 

dx ~2 

1 
X 

J 
1 

e r dt (A VI. 3) 

0 

+ s_ ~ 1 
y = E e x J e t dt (A VI. 4) 

0 

This is the leading order inner solution. It is easy to see the 

matching. 

At x = 1: The layer here is not of a classical type and this 

illustrates the fact that the usual "stretching and matching" procedure 

may not always work. Put 1 

X = 1 - eS 
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dy E y 
= -1 (A VI. 5) 

dS, (1-es)z 

Put. 

s ~ 
y 

= y = E E 

dy 

dz + y = + 1 • 

1 + B 
-z 

y = e 

_.!._ (1 
E 

y = + B(l-x) ) . 
E 

Now for x * l as E- 0 this tends to -log(l-x) if B = -1. from 

matching, in this "transcendental layer", 

y = l_ (1 - (1-x)E ) + O(E) • 
E 

(A VI. 6) 

we have the three regions where we have found y to leading 

order. 

predicts. 

The last solution shows that y(l) 

Again, Y is 0( ~z) as x- 0. 

= 1 as the exact solution 
E 

An equation very similar in structur e arises in the following 

context. 

(Et~J-x> 

l + 1 
Q' 

= 0 (A VI. 7) 



where X = B cos8 
Rz 
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u is the Lagerstrom-Chester field, say. If we 

consider the limiting streamline from infinity to the stagnation 

point at the front, t.he equation along characteristic is very 

similar to the model if one makes a variable change from R to 

R = l 
X 

Equation (A VI. 7) is obtained from 

E 'Vp = p v \}2-;{ + p (v + K) \}(\} • -;;). 

where v, K are constant; the variable w = log p is introduced. 

model is only of academic interest. 

(A VI. 8) 

(AVI.9) 

This 
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