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ABSTRACT

A means of assessing the effectiveness of methods used in
the numerical solution of various linear ill-posed problems is out-
lined. Two methods: Tikhonov's method of regularization and the
quasireversibility method of Lattés and Lions are appraised from
this point of view.

In the former method, Tikhonov provides a useful means for
incorporating a constraint into numerical algorithms. The analysis
suggests that the approach can be generalized to embody constraints
other than those employed by Tikhonov. This is effected and the
general "T-method" is the result.

A T-method is used on an extended version of the backwards
heat equation with spatially variable coefficients. Numerical com-
putations based upon it are performed.

The statistical method developed by Franklin is shown to have
an interpretation as a T-method. This interprétation, although
somewhat loose, does explain some empirical convergence proper-

ties which are difficult to pin down via a purely statistical argument.
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INTRODUCTION

A problem is well posed in the sense of Hadamard if it satis-
fies the criteria of existence, uniqueness and stability of solution;
that is, if it has a unique solution depending continuously upon the
data.* If a problem lacks any one of these solution properties, it is
said to be ill posed. Three categories of ill-posedness are immedi-
ately suggested. One encounters the modifiers ""overdetermined,"
""underdetermined'" and '""unstable'" in description of the cases of
nonexistence, nonuniqueness and instability of solutions respectively.

A hasty appraisal of what is implied by ill-posedness might
give one the impression that such problems are to be given a wide
berth because of the difficulties inherent in their solution. In point
of fact, virtually all scientific investigators will encounter ill-posed
problems in their work and in most instances will come to terms
with them rather easily., Consider the following hypothetical situa-
tions.,

An experimenter, plotting his data on a graph, expects his
points to lie on a straight line whose slope is of interest, What he,
in fact, discovers is that because of errors in his measurements,
the points are not quite colinear. Undismayed, he draws a line pass-
ing through some and quite close to the others.

A draftsman is asked to pass a smooth curve through a col-
lection of isolated points. He does not vociferously protes‘t that any
number of such curves might be drawn, With the aid of a French

curve, he simply makes an eminently reasonable choice of one,

*In any application, this statement would require further clarification.
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A freshman differentiates cos x. He does not trouble himself

with the fact that a very small perturbation of ¢ sin —1-2— x to cos x
€

will produce a huge perturbation of El cos(l—2 x) in his answer,

In the three situations, problems arose which were (in order
of appearance) overdetermined, underdetermined and unstable. In
the first two cases, simple mental readjustments of intent were
made and the ill-posedness was effectively exorcized. In the third
case, data were exact and a means was available for exact solution
in the abstract. Under these circumstances, instability will never
be given the opportunity to make itself felt. However, where com-
puter solution is envisionled, such instability will always be relevant.
Inasmuch as numerical roundoff will always be a source of error,
data can never be regarded as exactly given, even should no other
source of error be present.

In coping with ill-posedness, we recognize that asking for
a solution to the original problem per se is very naive. Either a
solution does not exist, there is more than one, or a small but ines-
capable source of error in the data could lead us to arbitrarily
erroneous answers, There is still hope, however, that useful infor-
mation may be obtained via the solution of a related well-posed
problem: a well-posed extension.

The ideas involved in such extension need not be profound.

If our experimenter performed a least squares fit, his extended
problem would have been to find that line coming as close as pos-
sible (in a well-defined mathematical sense) to all the points. But

he may prefer to simply ""eye-ball" the points and then to draw his
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line. In that instance, precise mathematical description of the ex-
tension would be quite impossible. He is, in effect, drawing that
line which in passing close to the points optimizes his peace of mind.
That will likely apply to the draftsman's curve, the only difference
being that the choice is made from the class of solutions to the
original problem rather than from a class of '"near misses,!" This
kind of vague thinking was perfectly adequate in the modest appli-
cations considered. But as the problems get harder, the thrust of
results obtained by unsupported intuition becomes increasingly
nebulous. The need for a sounder basis of operations becomes
more keenly felt,

This work deals with linear inverse problems in which in-
stability i;.a the essential source of ill-posedness. Numerical methods
for inverting equations of the form KfO =g (where K is a linear
operator mapping from one Hilbert space into another) are discussed.
In those examined, existence and uniqueness will be assumed so
that were g known exactly, a unique fO would exist satisfying the
equation. However, o will be assumed known only approximately.

K will invariably be such that some information crucial to the de-
scription of fO can not be found from our approximate knowledge of
gg- Furthermore, the class of admissible f (consistent with our
knowledge) includes pairs fl and f2 vastly different from one another.

The effect of K is to reduce their difference fl—fz so much that

K(fl—fz) is hidden in the small uncertainty associated with ggr B

well-posed extension must provide us with a means of providing

the information missing., Directly or indirectly, assumptions will
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be made about the solution fo. The class of admissible f's will be
made much smaller than that satisfying just Kf % g. In analyzing
a method geared to numerical solution, a first step is to identify
those additional assumptions. Ultimately, we will wish to know
how accurately, in light of this additional information, a solution
computed using the method approximates fo.

In Chapter 1, an overview of the problems to be considered
and the kinds of measures to be taken in their well-posed extension
is provided. In Chapter 2 Tikhonov's method of regularization is
introduced and its application to a few specific problems considered.
This motivates the subsequent discussion in Chapter 4 of what is
believed to be a new numerical approach to the backwards heat
equation with spatially variable coefficients. This, in turn, moti-
vates a gen‘eralization of Tikhonov's method to utilize solution set
constraints other than those suggested by Tikhonov, This theory is
used in Chapter 6 to explain certain convergence phenomena encoun-
tered in the apparently unrelated statistical method developed in
Franklin [ 6 ]. Chapter 3 stands somewhat apart from the others.
It is a critique of a class of techniques known collectively as quasi-
reversibility methods illustrated with two which are perhaps the

most famous.
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CHAPTER 1

GENERAL DESCRIPTION VIA FUNCTIONAL ANALYSIS

The aim of this chapter is to provide an overview of unstable
problems which will motivate subsequent treatment. A few basic
results from functional analysis afford consider.able insight into the
instability phenomenon and the kinds of measures one takes in at-
tempting to denature it,

The machinery needed for this discussion is developed in the
references: Riesz-Sz.-Nagy [21], Simmons [23] and Taylor [27].
Although these will be freely quoted, the scope of their theorem
statements will often be contracted. For clarity of focus, generality
transcending our requirements will be sacrificed. That may cause
some of the facts stated to appear rather weak to anyone acquainted
with the full power of their sources.

For completeness, all relevant concepts standard to func-
tional analysis will be defined. However, to avoid unwieldiness in
this chapter, such definition will be relegated to Appendix A. Any
underlined word will be appearing for the first time (in the main
text) and will be defined in Appendix A,

| DescriEtion

Let B ” . ”1 and B be Banach spaces and K a linear

1 2 ” : “2
operator (K : B, —>B2). Consider the problem of finding f in B, such

that Kf = g for some g in the range of K (Ran K). Our attention will

be restricted to those K's with the following properties:



a) K is one to one (injective)

b) K is bounded (continuous)

(1.1.1)
c) K's inverse (K-1 : Ran K —*Bl) is unbounded

d) The range of K is dense in B,.

1.2 Restriction of Data

The range of an operator K having the properties (1.1.1) can

not be all of BZ' (K can not be an onto (surjective) mapping). There

will be g in B, for which no f exists satisfying Kf = g. We get this

from the following theorem:

Theorem 1. 2.1

Let B1 ” & “1 and B be Banach spaces and K a bounded, one

P

to one linear operator whose domain is B; and whose range is all of

1

B Then K_1 exists and is bounded.

>
Proof. Taylor [27] page 180; Simmons [23] page 236.

This considered, one can not admit properties 1.1.1 a) through c)
and ontoness. The range of K must be a dense but proper subset of
BZ'

L3 Compactness

Many of the K's of interest to us will be compact operators.
This is a stronger property than boundedness., Such K's map weakly
convergent sequences in B1 onto (strongly) convergent sequences in

B If the Banach space B, is norm-reflexive, that mapping of

2°
sequences characteristic can be used as an alternative means of

defining compact operator (to that given in Appendix A). (Taylor

page 287).



1.4 Well-posed Extension

Suppose there is some 8o in the range of K whose inverse
image f0 is desired. Suppose too that our knowledge of g9 is some-
what limited and, for one reason or another, we actually have g as
data, knowing only that ”g-go “2 < ¢ for some small number e, *
Since g may not even be in the range of K, ''solving" Kf = g is imme-
diately a dubious idea. By l.1.1 d) our neighbourhood of g will
contain an infinite class of points in the range of K. If all of these
points have an equal claim on being identified as Bg» We will be in
a most unhappy situation because the inverse image under K of those
1

points will be an unbounded set in Bl' This unboundedness of K~

is, of course, the central issue in all this work. It is a fact of life

that in the absence of additional information, we are hopelessly

stuck. Approximate knowledge of g, is not sufficient to yield for
us approximate knowledge of fO.

Suppose we can add the additional requirement that fO lie in
some admissibility set A contained in B,. The only elements in
N, (g) which will be considered ""candidates for being gq" will have
inverse images in A, This procedure will define a well-posed
extension if in view of the restriction to A, our knowledge of fO
becomes better and better as our knowledge of g9 improves. More

precisely:

*The set of elements h in B, satisfying |e-h “2 < ¢ will be denoted
N_(g).
€



Definition 1. 4.1

Denote by -qA(g,s_) = sup ”I —IZ ”l .

fl,fz € A
Kfl, Kfz € Ne(g)
An extension by this restriction to A will be said to be well-
posed (convergent) if 'qA(g, e) ~0as e —0.
The following theorems will give us an idea of the kinds of

extensions likely to be helpful.

Theorem 1.4. 2

Let K : Bl --BZ be linear, one to one and bounded and let A be a

compact set in B Then the restriction of K to A has a continuous

B
inverse.

Proof:

Let {fn} be a sequence in A whose image under K {Kfn}C B, con-
verges to a limit g. So Kfn — g. Since A is compact, {fn} has a
convergent subsequence {fn } whose limit shall be denoted by f.
Suppose the entire sequencepdoes not converge to f. Then there is
a subsequence bounded away from f from which we can extract a

further subsequence {fm } converging to a limit h necessarily
k

different from f. But K is bounded so lim fm =h= lim Kf

I — fi k—o My
Kh and lim { = =f=> lim Kf, =Kf, Since {Kf } and
P& P B ==
{Kf } are both subsequences of {Kf } whose limit is g, Kh = g = Kf
P

and by the one to oneness of K, h = f. This is a contradiction so
the entire sequence fnL had to be convergent.[]

Theorem 1.4. 3

Let K: B, —B, be linear, one to one and compact. Let A be a

1
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closed, bounded set in Bl having the property that any sequence in A
whose image under K is convergent is itself convergent. Then A is
a compact set.
Proof:
Let {fn} be a sequence in A, The image of A under K has compact
closure so {Kfn} has a convergent subsequence {Kfnk}. By hypoth-
esis this would make {fn } convergent and hence every sequence in
A has a convergent subsjquence. So A is compact. [J

We see then that restriction to a compact set will lead to a
well-posed extension for all bounded operators K of interest to us
and that if K is compact, our restriction must be to a compact set
if we are to produce a convergent extension.

1.5 Spectral Theory

In many instances, Bl and B2 will be one and the same. K
will be an injection from a Banach space B into itself. In the prob-
lems to be examined later, B will, in fact, be a Hilbert space
2
(usually L"),
Spectral decomposition of operdtors is often useful in analy-
sis of methods and in ultimate numerical solution of the extended

problem.

Definition 1. 5.1

The spectrum of a bounded linear operator K : B — B (where
B ” . ” is a Banach space) is the set of (complex) scalars \ for which
K-\l does not have a bounded inverse. The spectrum is denoted o(K)

and its complement (the resolvent) by p(K).

*Here I refers to the identity mapping Ix = x.
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The spectrum is subdivided into three subsets.

Definition 1.5. 2

a) The point spectrum op(K) is the set of A\ for which K-\I

fails to be one to one (has a non-trivial null space).
b) The continuous spectrum OC(K) is that subset of o(K) for
which K-\I is one to one and the range of K-\I is dense
in B,

c) The residual spectrum consists of those \ in o(K) for
which K-AI is one to one and the range of K-\I is not
dense in B.

It is at once apparent that all operators K of interest here
have 0 in their continuous spectra. We shall not encounter K having
(non-empty) residudl spectra. A few useful results about the spectra
of particular classes of K (in our domain of interest) will now be
listed. Their proofs are scattered through the references and will
not be given here.

Theorem 1.5, 3

The spectrum of a bounded operator K is contained in a closed circle
of radius rG(K) = lim ”Knlll/n.
n — oo

When B is a Hilbert space H( , ), it makes sense to talk

about normal operators KK* = K*K and self-adjoint operators K = K*,

Theorem 1.5.4

If K : H—H is bounded and normal, its residual spectrum is empty.
For compact operators, we get the following results.

Theorem 1.5. 6

The spectrum of a compact operator is at most countable with 0 as



1=
the only possible accumulation point.

Theorem 1.5.7

If H is a separable Hilbert space and K : H —~H is a compact opera-
tor, the null space of K-\I is finite dimensional for \ in GP(K).
This leads to the spectral decomposition theorem.

Theorem 1.5. 8

Let H( , ) be a separable Hilbert space and K : H — H be a compact,
self-adjoint, linear operator. Let the point spectrum of K be de-
noted by the sequence {)\n} ({ ,)\nl} non-increasing). Let {rpn} be
orthonormal eigenvectors, ?, corresponding to )xn. * Then K has the
decomposition defined by Kx :nozlol )\n(x, gon)qon (x arbitrary in H).

1.6 An Example

To illustrate the ideas of this chapter and how they tie in
with a practical problem, a famous example (the backwards heat
equation) "solved" by the technique generally referred to as '"Simple
Spectral Cut-off'' will be considered. The point of view outlined in
the previous sections will be the one adopted. "Spectral Cut-off"
will be appraised as an extension method of the kind described.

The "forwards heat problem'" to be inverted will be the

simplest one imaginable, If we were required to solve

uo=u fort>0 x € (0,7)
u(0,t) =u(r,t) =0 {l.6.1)
a(x, 0) = £(x) £ e L°[0,r]

*Possible multiplicity of eigenvalues is accounted for by allowing the
same eigenvalue more than one index in that eventuality, i.e.,

N, = )\n+1 is possible.
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for some t = T> 0, we would find, by separation of variables,

R niT 2 2
u(x, T) = Z e (f, J; s"mnx)‘/; sinnx . (1.6.2)

n=1
Here the inner product ( , ) used is defined by:
4 2
(£ . £] = fofl(x) £,(x) dx for f,f, L7[0,]. (1. 6. 3)

The inverse problem would be: Given u(x,T) = g(x),
(1. 6. 4)

K nZT 2 2
find f(x) such that g(x) = ) e’ (f, ‘Esinnx) ‘/-;smnx .
n=1

Identify: B, =B, = LZ[

K is the (forwards) heat operator.

o0} 2
Kf is defined by 1. 6.2 Kf(x) = ), e T (f,@ sinnxy\E- sin n x.

ZT n=1

0,n] = H, a separable Hilbert space.

Its eigen&alues are e with corresponding orthonormal eigenvec-
tors @ sinnx. We recognize the spectral decomposition form of
Theorem 1.5. 8 and indeed, K is a compact, linear, self-adjoint
operator.

1f o is exactly given, solving this problem is easy. We

could simply recover the Fourier sine series for f(} by:

0 2
2 s _ -n T 2 m
8y J; sinmzx) = Z e (fO’\/:r sinnx) &

n=1
» e_sz (f Jz sin mx) (1. 6. 5)
0 Y7 e
2 . m?T 2
= (£4 J—; sin mx) = e (8g: ‘/—7; sinmzx) . (1. 6.6)
R mir Z . Z ..
whence fo(x) =mZ:1 e (go, # 51nmx)4~; sinmx . (1.6.7)
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If o is perturbed by ¢ an sinpx (p integer; norm of pertur-
> 2
bation ¢), fO would be altered by eP X 3 ‘/é sin px (norm eP Ts LB

2
By choosing p large enough, eP Te can be made arbitrarily large.

If g9 is perturbed by Z ‘f > o ‘/— sinnx, (of norm €), fo

would be altered by E ‘/ 5 J—mnnx which does not repre-
o ZnZT
2 ’ 2. |6 e ; 3 .
sent an L [0,7] function. ( E e * 5 5 is a rapidly diver-
n=1 ™ n

gent series. ) This is a manifestation of the data restriction men-
tioned in section 1. 2. The range of K can not be all of = [0,m] and
1. 6.7 can only be applied sensibly to g in the range of K. The range
of K will be dense in LZ[O,T\“] . For any g in LZ[O,Tr], choosing N

large enough enables us to approximate g arbitrarily accurately by

(g, J_g sin mx) ‘/1% sin mx which is the image under K of

2 ik _—
m T 2 S
(g, ‘/F sin mx) {F sin mx.

Since the ill-posedness arose from high frequency perturba-

1

Bz 3z

tions, simple spectral cut-off rules these out by truncating 1. 6. 7
after a finite number of terms:
Fol) = % esz (g, J%sinmx) J% sinmzx . (1. 6. 8)
m=1
The only f's this method considers as possible solutions are
those lying in the N dimensional subspace of LZ[O,W] spanned by
‘/—f- sinmx m=1,iss0s ,N. The image under 1, 6. 8 of the unit ball

about a data point g will be a hyperellipsoid within that subspace.
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The closure of the hyperellipsoid will be compact and can be identi-
fied as the admissibility set A of section 1, 4,

Assuming f. is in A and is mapped to some point g0 within

0

e of our data g, applying 1. 6.8 to g gives an estimate of f Having

0
made these assumptions, our estimate can be out by at most
2

nA(g,e)E sup ”fl -f_2 ” which, by inspection, is ZseN T. Simple

fl,fzaA

Kfl Kfze Ne (g)
spectral cut-off is thus a convergent extension.

To be sure, there are more sophisticated spectral cut-off
methods than this; (hence the modifier '"simple"). It may seem
rather crass to make a restriction of this sort except as an approx-
imating endeavour. However, this was only intended as an illus-

trative example of an extension method,

1.7 Additional Remarks

The point of view of well-posed extension methods the pre-
ceding sections may lead one to adopt is a trifle too narrow. It is
important to realize the limitations of such analysis.

First of all, not all good methods are convergent. Suppose

in solving a related problem to Kf we could demonstrate an -

o~ 8p’
error estimate of the form: mn + p(e¢) (where ¢ is the error asso-
ciated with our knowledge of Bp> p(e) — 0 and n is some small bias
inherent in the method and independent of €)., Depending on the
size of 1 and the speed with which p(e) — 0 with ¢, we may be quite

satisfied with such a method. After all, in practical problems the

£'s encountered are non-zero, the whole point being that the data
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is not perfect. Having to live with the fact that n + p(0) = n is non-
zero need not be any great hardship. An example of such a2 method
for the problem of section 1. 6 would be to place a non-zero bound

©
on the "tail" of f.'s Fourier sign series, i,e., Z (f ,‘/Z sin nx)
0 n=N+1 EF g

Jﬁz sinnx has norm <m. Then our error estimate for the solution
2
by spectral cut-off would be n + Z¢ eN T. If a functional dependence

2
of n on N were assumed, a minimization of n(N) + 2¢ eN - would

indicate where we should cut off the series.

The previous sections will not, however, be irrelevant to
the appraisal of these biased methods. The assumptions made about
fO are not quite commensurate with our genuine knowledge of fO but
do lead to a convergent extension to which all the foregoing applies.
Having done so, we will be left with assessing the bias in producing
our two-part error analysis.

Our knowledge of gy may be statistical in nature in which

case our estimate made for f. should be statistical too. If all we

0
know about g9 'is that our actual data g is a sample of a Gaussian
random variable with mean g, and variance o, it will not be possible
to put a deterministic error bound on whatever estimate of fO is
made, Different yardsticks will be required to measure the success
of a statistical method from those described thus far.

The relevance of the value judgements to be made on the
extension methods to be considered in later chapters will remain

slightly subjective. That being understood, such assessment will

be made without further ado.
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CHAPTER 2

SOME OBSERVATIONS ON TIKHONOV'S

METHOD OF REGULARIZATION

2.1 Overview of the Method

Consider the Fredholm integral equation of the first kind:

b
{) K(x,y) £y (v) dy = g4(x) (2.1.1)

5 “1 (a2 Banach subspace of 1.2 [a,b]); gq is in

where fO is in Bl l
L%[¢,d]; K(x,y) is an L® kernel (is in LY[c,d] x [a,b]} ).

Equation 2,1.1 can also be written in operator notation:
Kf =8y - (2.1.2)

K so defined is a compact mapping from B1 to Lz[c, d] (proof
in Taylor [27] page 277) and will be self-adjoint if the kernel is
symmetric (K(x,y) = K(y,x) a.e. ). We assume that Kfo = 0 has only
the trivial solution in B,.

In Tikhonov [28], a convergent extension method was intro-

duced via the '"regularizing assumption" that £, belongs to a class of

functions f € B1 satisfying:
B B 3 2 2
Q%) = [ {px) [£x)]" + ax)"x)} dx < ] (2.1.3)
a
for some real number W, . (Here p(x) and g(x) are positive and con-

tinuous on |a,b].)
The very definition of B, is incomplete until the norm n : [[ 1
is specified. A convergent extension will be achieved via this re-

striction whenever 2.1, 3 defines a compact set in the norm topology
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of B, | - ||l

Definition 2.1. 4

The assumption 2. 1. 3 will then be said to regularize K under
the norm ” 4§ ”1

If we take B, to be the absolutely continuous functions with

1

square integrable derivatives on [a,b] and associate the norm

Hf”l: max [f(x)| , (2.1.5)
xela,b]

the family defined by 2. 1. 3 is equicontinuous; uniformly bounded and
hence compact by Ascoli's theorem.

In Franklin [ 8 ], attention was paid to the effectiveness of
the regularizing assumption on various operators K. The notion of
a rate of convergence was introduced and calculated for a few
examples. Following the notation of that paper, the norm ” . ”1
will be denoted p(- ). The effect of the norm p on convergence will

be of paramount importance here.

2.2 Applying the Method

It is supposed that K(x, y) is known and a function g given
K
satisfying ”g-gon < ¢ for some € > 0. Then a number o is chosen

related to ¢ by the inequalities:

C a° = asczsz (2.2.1)

for two positive constants C, and CZ' The function f which minimizes

*Unless otherwise specified ” ” will denote the L2 norm

b
lell® = | &%) ax.
a
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the quantity
”Kf-g“z +a92(f) (2.2.2)

is taken as the appro'ximation to 'fo. Using the fact that 2 and ” ¢ ”
define norms obeying the parallelogram law, Franklin demonstrated
the uniqueness of the minimizing function f.

Since f minimizes 2, 2. 2, fO must satisfy:

2

[Ki-g % + a9®(0) < ||Kf,-g || % + an®(£,) (2. 2. 3)
Agsasiig Qz(fo)s o’ and Ki, = g,, this implies:

|Ke-g [ + a2®(f) < [lgy-g|f + aw’< e+ aw® .

From this we obtain:

[Ke-g[®< ® +aw® < &% (14 c,w%) (2. 2. 4)
and

@) s £ + pols “(?1:"1' + W%y . (2.2.5)
From 2. 2.4,

le-go | < (K- + [le-goll< (1+C,u%)2 + ¢ - (2. 2. 6)
And Frora 2. %5y RO £ %I Bl (independent of ¢) . (2.2.7)

If 2.1.3 defines a compact set in the norm topology of B1 w(e), 2.2.6

and 2, 2.7 enable us to apply theorem 1. 4. 2 to conclude p.(f—fo) —==

as “g—go ” — Q.
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In Chapter 1, rapidity of convergence was measured by

nA(g,c) = sup p(fl-fz) where A is the compact set in

fl,fZ € A

Kt , Kf, € N_(g)

which fO is assumed to lie. Here

= 2 1 2
A = A(w1)={feB1|Q (f)sc—1 + w°}.
The f minimizing 2. 2. 2 lies in A(wl) as does fo.

For regularization, Franklin [ 8 ] introduced the following

measures of convergence.

Definition 2. 2. 8

The modulus of regularization pE-L(E) is given by:

pH(E) =  sup p(f) .
Jic] < o
Q%(f) < 1

Tikhonov's method provides a mapping T, : Lz[c,d] —B,.
Definition 2. 2.9

The modulus of convergence GH(E ,) is defined by

o €,a)= supp (T g-f)) .

81
”g-KfO | < e

Q%(f

<1

o)

If the bound on Qz(fo) is mz (not necessarily 1), we notice that
‘fO £
sup (T, g-fy) = © sup u("lica £t = waigalk
g 0 s
le-Keg || < ¢ e - &1 =3

% 1
Q°(f,) S w Q% (—) < 1
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Definition 2.2.10

The rate of convergence is given by wop(%, a).
Franklin proved that the modulus of regularization and rate

of convergence are related by the inequalities:

wp(e /w) <€ wo (e /w,a)<wp(e'/w') (2-2.11)
ozwz 2
where g' = (1 + ¥ 1 4 7 )6 < (1 + ¢yl + Czw )E (2. 2. 12)
€
52 1
and w' = 1+ V1 + 5 | w < l+‘/l+ Z)m. (Z2+2413)
aw Clw

All we wish to know about the rate of convergence is known
once we have found the modulus of regularization. In practice,
asymptotic estimates of pH(E) valid as ¢ — 0 are what we try to
obtain. We seek a function h(e) (with which we have some famili-

arity as € — 0) for which we can exhibit constants Ty and T, satis-

fying ,

|h(e) < p (e) <7, h(e ) (2.2.14)

for sufficiently small e. The function h(e) typically proves to be a
power (cx for some x< 1) or logarithmic : (-loge:)'y for some y > 0.
Since p(x) and q(x) are positive and continuous on [a,b], they
take on maximum values (denoted by P and Q respectively) and mini-
mum values (denoted p and q). Clearly then, min(p; q){fo‘ (x) +
fz(x)]dx} < Qz(fo) max (P, Q) {f [f' (x)+f (x)] dx} So choosing
the functions p(x) and q(x) to be other than identically 1 gives a value

for Qz(fo) which can be related to that obtained with p(x) = q(x)= 1 by
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scale factors. The effect of changing w by a modest multiplicative
factor on the rate of convergence is not profound as is seen from a
glance at 2.2.11. Generally, p(x) and q(x) are chosen to be identi-
cally 1 unless convenience suggests otherwise.

2.3 The Modulus of Regularization for the Maximum Norm

Although it is often easiest to bound the modulus of regulari-

zation (in the manner of 2, 2. 14) for the LZ norm, p(+) = ’

I, we

are often more interested in the maximum norm defined by

Hoo(f) = mfx | lf(x)l {(which exists since f € B1 are certainly con-
x € |a,b .
tinuous on [a,b] ). Denote, fcr convenience, poo(s) = sup Foo (f) and
Q%(f) < 1
e <
pz(e)?_ sup ”f" .
Q%(f) < 1
” Kf " <€
Theorem 2, 3.1
A,
Ifp= min p(x), PoolE) < ——ZL—— [_pz(s)]2 for sufficiently
x €la,b] P*
" small €.
Proof:

Let x and y be arbitrary points in |a,b] and f satisfy Qz(f)s 1.

Then

|x) - £(y) | = | jy2ff'(t)dt | < Z{frfz(t)dt}% {jyf*z(t)dt}
P-4 X X

1
1 2 z | £
<2 B = p(x) £9(t)dt & 2 ]
| ”\/5 {’Ly } Np

=

Let y be such that the minimum of Ifl on {a,b] occurs at y. Then

denoting this minimum by f .i,, f(x) satisfies:



1> I

2 1

2 2 2 17 2 2
x) < £, +\/—5— £ = pyf) < {75.? +\/__ £l

1 =
ik {%ﬂL : 2—}3

1]

Np
So poo(e) = sup ”oo(f) <  sup ”f”% {“f”+ 2 2z
o2 2 Gl Np
£7(f) = 1 Q7(f) =1
el <e ke < o
< (e ) (e [H, o]
b-a
Qz(f) <1 Qz(f) <1 \3
e ] < e <
1 PZ(E) 2 %
= {p (5)]2 { = g ——} =
2 b-a \/E'
Pz(s) 2
For small enough ¢, < — and the result follows.

b2 e

g
a8 Since ”f” < pm(f) (b-a)2, we have a lower bound on poo(a) of
2

b -a)2

2.4 An Example

The general notion of when the regularizing assumption re-
sults in a convergent extension remains somewhat elusive., For the
following problem, related, (as will be shown), to a backwards
problem of heat flow with variable coefficients, this issue can be
approached in a more concrete fashion than our appealing to the
topological property of compactness.

Consider the linear two point boundary value problem:
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2. [p(x) g'(x)] - a(x) g(x) = f(x), for a<x<b

dx
.. . 1 *
p(x) positive and in C [a, b] (2.4.1)
_— : 0O,
q(x) positive and in C" [a, b]
subject to the boundary conditions gl(a) = gl(b) = 0. (25 4 &)

If we are asked to find g(x) given f(x), (assuming the homogeneous
problem with f(x)= 0 has only the trivial solution), our problem would
be well-posed. A Green's function representation
b
Ki(x) = [ Gx,y) fy) dy = g(x) (2 42 3)
a
for the solution g(x) would exist. Since the problem is self-adjoint,
G(x, y) will be symmetric. The spectral decomposition of the oper-

ator K defined by 2. 4. 3 is obtainable humerically. Indeed, the Sturm-

Liouville system:
Lot Ed%z [p(x) w'(x)] - qix) ulx) = - %u(x) ; (2. 4. 4)

u'(a) = u'(b) = 0 has a countably infinite set of eigenvalues ll—

n
and an associated orthonormal set of eigenfunctions Lpn. The x,pn will

be complete in Lz[a,b] . Expanding both sides of 2. 4.1 in the Lpn

gives:

[e.0] (0 o]
L), (g )= 2 (B )b,
n=1 n=1

*p(x) has a continuous first derivative on [a,b]; q(x) is continuous on
la,b].



[0 0] 1 (e 0]
L () 5 Wy, = Zl (5,4 Vo,
=

=
1
S (BU) 5 = (E4) = (LU IA_ = (g4 )
@©
whence g = 112:1 A (£ ) b = Kf (2.4.5)
and we recognize the form of Theorem 1.5, 8 for compact self-adjoint

operators K. In passing, we note that

o0 b
g(x) an{f b (VE(y) dy} W (x)
n=1 a

bpr fo o)
[f(y) YA Lpn(an(y)} dy
a n=1

I
—

and we identify G(x,y) = )tn q;n(x) Lpn(y).

a8

1
The ill-posed problem to be considered here is the inverse

problem: given g find f. Of course, if the data are exact and we

know how to compute the derivatives analytically, this is no problem

at all. Our problem is to invert Kfo = 8g given g such that ”g—go ” £e,

assuming a regularizing condition,

The nice feature of this problem is that if

b
22 (£,)= [ [px) £°(x) + () £2(x)] dx < (2. 4.6)
a

and we choose our functions p(x) and q(x) to be the same as in 2. 4.1,
Qz(fo) has a convenient representation.

Qz(fo) is derived from the inner product:
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b
(f.g)= [ [P (x)g'(x) + q(x)f(x)g(x)] dx ; (2.4.7)
a

2 . L
Q (IO) z (fo,fo). The b, are orthogonal in this inner product; in fact,

b
(W) = £ [Py ) WL () + q(x) b (x) ¢ __(x)] dx

b
b d
- [p(x) b () Gl (x) - £¢n(x){g§ Po) G x) - ) gy ()
a
L2 =1 1 m
=0 - £ ‘Pn‘x)[x; ¢m(x)] dx = 5 5
2 St 2
so @°(£,) = E_ XL (£gr)° (2. 4. 8)
‘ n=1 n

We will consider regularization with respect to norms of the

form:

2 R 2
wo() = Zl TRCATIY (2. 4.9)
n=

(The B, are to be real and positive.) Bounded sequences {p‘n} will
give rise to norms K satisfying m “f”z < p.z(f) <=M ”f”z and hence
equivalent to the LZ norm. More interesting are the cases where
By, 0. For the sum 2. 4.9 defining p(f) to converge, the (f,tpn)z
must tend to zero correspondingly quickly.

Now we ask, "Under what conditions on the T does the regu-
larizing assumption Qz(fm) < 1 ensure that pz(fm) — 0 when ”Kfm ”—-O
for a sequence {fm} C B, 2"

Theorem 2.4.10

A necessary and sufficient condition for Qz(f) < 1 to regularize

the operator K (defined in 2. 4. 3) under the norm . (defined in 2. 4.8)
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is that lim N . =0,
n'n
n — oo
Proof:
First of all, assume lim A p_ =0 and define:
n'n

n —

E'N = sup p M. Then Lim §N = 0 by hypothesis. Let {fm} be

n>N N — oo
a sequence of functions satisfying Qz(fm) < 1; ”Kfm ” — 0. For
all m,
[o'e] N
2 2 2.2 Py
W) = Y by Epebp) = ) ) A 5
n=1 n=1 N
n
2 1
) (E L)Y s u
n=N+1 ™ % )\n = &
Hn 2 R Z 1
<  sup — ||Kf “ + & Z (£ _,¢. )" —
n<DN 7\121 Nn:N+l e on Kn
2 M
< ”Kf ” sup "‘% +§N .
n<N Kn

. 1 .T_] .
For any n, there exists Nﬂ such that §N <> 1f N = Nn.

V)
sup —2 is some finite number; call it M_n. Let m be chosen

n<N An
n

2 n -
large enough so that ”Kfm ” S syt Then for sufficiently large

n

2
m, p (fm)S 12]—+

NE!

:Tl_

Conversely, suppose lim LN T € > 0. Then for any N,
n — o

there exists n > N such that Kn“n > £. So a subsequence of {Kn;.tn}
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exists which is larger than § - call it {?\n Py } Consider the
k

Il

3/2 2
sequence fk \v‘?\nkupnk. ”ka ” = )‘n / —0as k ~o00., £ (fk) =

k
_i_];_.(\/i—n—)zzlandpz(f
n k

zero as k —oo. [

) = pk)\nk> € so [.J.Z(fk) does not tend to

The proof of 2, 4,10 gives us the following estimate (upper

bound for ppt(e )).

2 s 2 Mn
(¢) < inf sup ¢ — t+ su N q (2.4.11)
PH 2 L% IJ‘n n
N n <N Kn n>N

For the LZ norm, all the b, @Te identically 1 and

2
02 (e) < inf{ sup S5 + sup xn} . (2.4.12)
N n<N 7\n n>N
e i
The A are decreasing so sup —w = —5 and sup \A_ =\
n n<N )\2 )\2 asN B N+1
_ n N
Thus 2,4.12 becomes:
2(€) < inf fi + A (2.4.13)
P2 N 2 N+l
N
2 1
Assuming ¢ is at least small enough that }\l Z (2e7)3, there
21 52 £2
exists n,. such that )\ £ (2¢“)®* < x_ . So + A < 2 +
0 n0+l ng 7‘31 n0+1 (252)3
21 1 1\ 2 0
(2¢7)® = \— +23)£3.
23
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1 1\z
pyle) < € (l—a + 23‘)8 s (2.4.14)
23
Now consider the sequence of functions {fk} = { XE-— ¢k}.
k
2
2
It ll =5 %60 = =5 Mgl = 5
k
ts:

For fk to satisfy the constrain
=1,
of

2
Q°(f,) <1 and |Kf
SE: lue k
= e Oor some value 0

it is required that :-:2 < Kg. If, in fact, €
So there is an infinite sequence of ¢ — 0 for

1
= g3

[

k, then ”fk ”
0
which pz(e) is bounded below by €. This is the same power law

=

as demonstrated for the upper bound in 2.4.14. Although ¢3 may

not be a lower bound for all values of ¢, there is little value in
In making error estimates,

carrying the analysis of pz(s) further.
.
one proceeds as if pz(e) obeys, (for all ¢ < ——1—) ;
2
1
1 1{ kg
e? < p2(5)553(—-2-+23) (2.4.15)
23
1

We identify the form of 2, 2. 14 with h(e) = &*

2.5 The Backwards Heat Equation
The main reason for considering regularization of the fore-

going problem is that it is related to the backwards problem of heat
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flow with variable coefficients. Consider finding u(x, T) satisfying

u, = (p(x)ug), - 9(x)u fora<x<b; 0<t (2.5. 1)

t
(p(x) and q(x) as in 2. 4) subject to the initial condition u(x, 0) = fO(x)
and the "no-flux" boundary conditions ux(a, t) = ux(b, t) = 0.

This problem is well-posed. By separation of variables, its

solution is readily found to be:

(o) —?_I,nT
T2 ) & T G (2.5.2)
n=

where L and lpn(x) are respectively the eigenvalues and orthonormal

eigenfunctions associated with the Sturm-ILiouville problem:

& (G, ()= alx) g, 6) = L ¢ (%) (2.5.3)

n

subject to q;n(a)‘: _(b) = 0.

This defines a compact operator K_, : L2 [a,b] — L2 [a;:Db]

T

«© -Z_’,nT
Kpfg = ) e (£go0) b - (2.5. 4)

KT has the same eigenfunctions as the Sturm-Liouville problem
-0
2. 5. 3 but the eigenvalues gn of 2.5.3 become e  for the operator

K.,. K_ has the integral representation:

T I
b @ M b
Kpfolx) = £ f(y)[nZ;l e 7y, (x) wn(w]dy_ =£f<y)K<x,y) dy
(2.5.5)
oo -gnT
where the (symmetric) kernel K(x,y) = Z e q)n(x) lJJn(y’). (2.5.6)

n=1

The inverse problem would be to recover fO given g~ gg- To

use Tikhonov's method, we would make the regularizing assumption:
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b

QZ(fO) = f [p(x) f'Z(x) + q(x) fz(x)] dx <€ w” . (2.5, 7)
a

By the same method used in section 2.4, we find

2 x 2
Q°(fy) = nZIl L (Egat,) (2.5.8)

while

2 Q0 -2t T >
[y =n21e (NS S (2.5.9)

In considering regularization with respect to the norm p(f) defined by

M
2.4.9, a necessary and sufficient condition is that lim .
n — oo g’1r1

In Franklin [ 8 ], the L, modulus of regularization pz(e ) for

2
the case p(x)=q(x)=1; [a,b] =[0,7] was found to go down like

1
(-log ) 2. Not surprisingly, this more general case can'be shown
to exhibit the same behaviour. This is extremely slow convergence.

To use regularization as a numerical method for this problem would

be a mistake. We generally expect our convergence estimates to be
1

somewhat modest; €3 convergence means, roughly speaking, that
our solution will have 3 as many decimal places of accuracy as our
data and this would be a reasonably successful application. However,
requiring data accurate to order e-lo to get a solution accurate to
order 10“1 is most unsatisfactory. To get a better return for our

data accuracy, we will require stronger restrictive assumptions.

That is the subject of Chapter 4.
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CHAPTER 3

SOME OBSERVATIONS ON QUASIREVERSIBILITY METHODS

3.1 Quasireversibility Methods

Among thé extension methods for solution of the so-called
"backwards problems of evolution" (e.g., the backwards problems
of heat flow) are the quasireversibility methods,

Latteés and Lions [ 17] developed such a method and were
likely the first to use the term "quasireversibility." Since then,
the term has become generic in describing a class of related
approaches. In all quasireversibility methods, a differential op-
erator is perturbed by the addition of an extra term modified by
a small parameter., Appropriate additional boundary and/or initial
conditions are added if the extra term has changed the order of the
equation. In this chapter, two such methods will be applied to the
backwards heat problem and analyzed from the point of view of
Chapter 1.

It is possible to be fairly general in the description of the
backwards heat problems to be tackled with no inconvenience. The
following problem will thus be considered.

Let Lx be a linear differential operator of the form:

L u
x

1]

= (p(x)uy) - a(x)u, (3.1.1)

where p(x) is positive and continuously differentiable on [a,b]; q(x)
is continuous on [a,b]. Let B(u, Cj) = 0 denote a linear boundary

condition of the form
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B(u;cj) = aj ux(cj) + [3j u(cj) =0 for i=1,2 . (3:.1.2)
The problem of interest is to find u(x, 0) = fo(x) such that
i =1L u for a<:;:<b; 0<t< T (3.1.3)
subject to
B(u;a) = B(u;b) =0

and u(x,T) = go(x). (Our actual data will be g(x) = go(x). ) The prob-
lem of finding go(x) given fo(x) would be the well-posed forward heat
problem. 3.1.3 is, of course, ill-posed.

3.2 Outline of the Method of Lattés and Lions

The related problem to be solved is that of finding u(x, t;n)

satisfying
2 .
u =L _ u+nL_u for a < x< b; 0<t<T
t x x
subject to

B(u;a) = B(u;b) =0
B(Lxu;a) = B(Lxu;b) = 0 (3.2.1)

and u(x, T) = g(x) .

Here n is some small parameter. The QR approximation taken for
fo(x) is f(x) = u(x, 0;n). Lattés and Lions demonstrate that the prob-

lem 3.2.1 is well-posed.
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3.3 The QR Method of Latt®s and Lions as a Well-posed Extension

Consider the Sturm-Liouville system:
LXW:-E.W (3.3.1)

subject to B(w;a) = B(w;b) =0 .

It has a countably infinite set of eigenvalues gn and an asso-
ciated orthonormal system of eigenfunctions W - These eigenfunc-
tions are complete in Lz[a,b] 2

Through separation of variables in 3, 1. 3, we find that fo(x)
and go(x) are related by

_gnT
Go(x) (3.3.2)

(0.0]
go(x) = ux, T) = n;(fo’%) e %

the forward heat operator (through time T), being defined by

fo') -E T

g = Ky £, = nz_;l g (fgotb ) W - {8, 3.3)

Separation of variables in 3. 2.1 leads to the system:
2
nL v+L v=-\v
x X
subject to
B(v,a) = B(v;b) =0 {3 3. 4)

and B(L w3;a)=B(L_wv;b)=0.
x x
The eigenfunctions of 3. 3.1 are also eigenfunctions of 3. 3. 4.
Certainly, B(y_;a) = B(y,5b) = 0 and B(L_y ;a) = B(—ﬁnLjJn;a) = 0,
(B(Lprn;b) = 0 similarly, ) The associated eigenvalues ?\n for 3.3. 4

2 ;
are related to the gn of 3.3.1 by N, = én = ngn. So the solution
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to 3. 2.1 1is

2

©® (E_-nE )T

f(x) = u(x,03m) = ) e 7T (g, ) (x) . (3. 3. 5)
n=1

(It is interesting to note in passing that were we solving a forwards
version of 3, 2.1, it would be ill-posed!) Equation 3. 3.5 enables us

to define a QR operator QT“n whose domain is all of Lz[a,b] by
2

x  (§,-mE )T

) e (8,4 ) W - (3.3.6)

n=1

f:QT;'q g

In estimating fO by f, there are two distinct sources of error,
One stems from the inexactitude of our knowledge of g - the fact
that our data g is only approximate - ”g—go ” < e, The fact that a
different problem is being solved also gives a "bias" error. Q’T;n g0
will not be precisely fO. Specifically,

”f_fo “ B ”Qng ) f0 ” - ”QT;n(g_gO) ¥ QT;ngO'fo ”

Y (R T

N

120, I le-soll + Qg &g -1 5,

”QT;‘I’] ”E . ”(QT;T]KT—I) fO ” . (3.3.7)

The first term is our error from our data; the second is our
bias. As n— 0, we expect the bias to g0 to zero and our ”QT;n ” to
become infinite. Indeed as n — 0, the original problem 3. 1.3 is
recovered; hence no bias but complete instability. How quickly bias

disappears and how quickly instability returns as n — 0 are key

questions in gauging the effectiveness of the method.
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First, ”Q " ” will be computed.
?

T
2 2 o 2(§n—n§r21)'r .
[ep. . 1= suw Jlo, g]”= sup e (g,4,)
:Tl T, T] 2 n=1 Y
el =1 e fl*=2
2(6 -n£2)T ® 2(8, -nE2)T
n~"%n 2 n~"n
< sup e sup E (8,4, )" =supe
2 n=1
. lel® =1 n
Z(X—T]XZ)T
< sup e where x is a continuous variable,
x>0
Z(X-T’]XZ)T -23 41
By calculus, sup e = e“" and the estimate ”QT"W ” < ™M
’ X : )
3. 3.8 results. Furthermore, a lower bound valid uniformly in 7
2
does not exist: The maximumm of e & IT Goovrs at e = 21—11
Since én — o0, for appropriate n, there will exist {iN = ilﬁ in which

case ”QT anN ” will achieve the bound 3. 3. 8.

Now, the bias will be considered. For f, in Lz[a,b] ;

00 (En—néi)T -6 T
3 e

P 2 2
[@p; KD L7 = ) e 117 (£ 0,)
2
R _ngnT 2 L)
- % T e

So for fixed fo, the bias goes to zero as 1 — 0. This occurs, how-

ever, in a highly nonuniform fashion in fo. If the value of n is fixed

2
and £, taken to be £, = [, ¥ . ||QT;nKT-1) £l ¥l =

2

2 —ngm
”fo “ (1-e ) . This quantity approaches 1 as m — oo so for
anyn > 0, “QT_nKT—I” = 1. The convergence of the bias to zero

may be arbitrarily slow in n depending on the value of fO.
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The QR method has no built-in mechanism for restricting the
fo‘s to some admissibility class., It is thus not surprising that this
nonuniform bias occurs. One might consider adjoining, in an ad hoc
fashion, some restrictive assumption, This can assuredly be done.
For exampllti], bounding ”fO ” and adding a spectral cut-off assump-

tion: fO = Z (fO, q,:n)w,pn will control bias. But then one would have

no particular reason not to use straight spectral cut-off. The beauty
of the QR method lies in the ease of its implementation. Its extended
problem is easily solved numerically through finite difference
schemes, Additional restrictions will tend to get in the way; to
compromise that desirable feature. If the restrictions are conducive
to some other approach, the usefulness of the QR method will be
largely obviated.

The other quasireversibility method to be examined improves
upon the bias estimates but at some cost to stability.

3.4 The Method of Gajewski and Zacharias

This approach, described in Gajewski and Zacharias [10]
extends the problem 3.1. 3 as follows. Find u(x,t;n) satisfying

u =L u+n L_u for a<x<b 0<t< T

Tt X x t

subject to B(u;a) = B(u;b) =0 ; (3.4. 1)

u(x, T) = g(x) .

1l

The approximation for ’fO(X) taken is f(x) = u(x, 0;m ). This will be
denoted the G-Z method.

Separation of variables leads to the system:
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-NMw-n wa) = wa
B(w;a) = B(w;b) =0 . (3. 4.2)

Again, the eigenfunctions {7 of 3. 3.1 are eigenfunctions of

this system. The eigenvalues )\n of 3.4.2 are related to the &n of

En . .
3.3.1 by -x (1 + ngn) = —ﬁn or \ = —1—+?€: . By separation of vari-

ables, the solution to 3.4.1 is

g‘.'(TI.
© TWE. (T -t)
ux, tin) = ), (85 b, Mo (%) (3.4.3)
n=
whence
£E.T
Qo 1+'r|€n
£(x) = u(x, 0;1) = 21 e (8,4 M (%) - (3. 4. 4)
n=
This defines an operator ST o by
EnT
oo 1+n£n
Sp o= n};__l e (8,0, ) ¥ - (3.4.5)

The bias for the G-Z method will be, (for a given fO),

WST,WKT-nfO”. This is given by

€.T
fo's} 1+ng -£_ T
Sy  Ko-DElI% = ), {[e B oo Ry u0,¢nﬁ2
n=
—n&i
QO
= % 4te TEn ) (e (3. 4. 6)
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A glance at 3. 3.9 shows this bias estimate is always superior.
However, there is still the problem of nonuniformity in the conver-
gence of the bias to zero and, in fact, ”ST, nKT_I” =1 just as before.

The stability of the G-Z method depends upon the norm of

S . From 3.4.,5,
T, n
ZénT
2x'T
© IT+nE s
“ST ”2 = sup E e n (g,q,un)z < sup el+"’1X
R =

where x is a continuous variable. This sup is approached as x—+ o
2T
and is easily seen to be e . No better estimate is possible.

This bound is approached as m — oo by ”ST,n b ”
This is worse than the QR method by a power of four.
For the G-Z method, the counterpart to the overall error

estimate 3. 3. 7 (for the QR method) is
“f‘fo ” = ”ST,T] ” = & ”(sTm KT'I) f() ”

i
= 5" 8 “(ST;11 BEo-11 55 - (3.4.7)

3.5 Summary

In studying these quasireversibility methods, one is immedi-
ately impressed by the simple elegance of the underlying ideas and
the ease with which they can be implemented numerically.

When the analysis is carried further, one discovers the dif-
ficulties mentioned with bias error. That argument, however, is by
no means a compelling reason for abandoning the QR or G-Z method.

Competitive methods, of the kind described in Chapter 1, make
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restrictive assumptions about the solution fO. If a method's com-
parison is to be fair, then those restrictive assumptions should be
invoked as side conditions in working out QR or G-Z bias. Why
should one method be made to cope with outlandish possibilities
which its competition disallows? It will be possible, with appro-
priate restrictions, to make our bias error behave linearly in the
small parameter n* as n — 0. So at this level of discussion, quasi-
reversibility might still compare very favourably,

Allowing the linear bias estin%ate, our QR full error esti-
mate 3. 3. 7 would take the form e eZG'_ + rm where r is some con-
stant. It is natural to choose n(e) to minimize this quantity. By

calculus, one finds that this minimum occurs when n has the value

uh satisfying e —I——Z edn = r, the value of the minimum being

2 “n
4rn0
—— t T, The value of Mg can be found approximately

e & i , )
M9~ Zloge ° The behaviour of our error estimate, granting

these quasireversibility methods all possible concessions, becomes
logarithmic in e. We are unable to improve on Tikhonov's method
by either QR or G-Z.

The difficulty is not easily shrugged off. At the outset it
was known that stability would be lost as the small parameter 7
went to zero. The misfortune is that it is lost so very rapidly as

n becomes small. The exponential growth in norms of the significant

*Bias which is O(n) as n —+ 0 is the best behaviour one can force
through restrictions on fO of the kind considered.
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operators Q and ST is unacceptable and in any natural imple-

>N

T,n

mentation, the effect on computed solutions will be quite unavoidable.
Quasireversibility methods might be found which will give

better results. Such a method would have somehow to avloid the

exponential growth of instability possessed by QR and G-Z. It is

not at all obvious how this should be done.
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CHAPTER 4

THE BACKWARDS HEAT EQUATION - A NUMERICAL SOLUTION

The methods discussed in Chapters 2 and 3 give logarithmic
convergence when applied to backwards heat flow problems. To
improve upon this, strong restrictive assumptions about our class
of admissible solutions will be required.

In fact, such an improvement has been around since the
mid 1950's when John and Pucci were active in ill-posed problem
theory. The first part of this chapter (sections 4. 1-4. 3) will be,
in a sense, going over old ground in discussing this extension;
logarithmic convexity and spectral analysis, (now standard methods
in the field), will be used to establish its effectiveness. The rest
of the chapter will be concerned with numerical solution of the
extended problem. Section 4.4 introduces a related problem whose
solution is shown to approximate that of the extension. This related
problem is amenable to numerical solution. Computations per-
formed on it are presented in section 4. 5.

4.1 The Problem and Its Extension

Define the linear differential operator /‘x by

/_Xu = qu - (pu)_ (4.1.1)

1 0
where p(x) > 0, q(x)>O0on [a,b]; pe C [a,b] ;g€ C [a,b]. As

in Chapter 3, boundary conditions will be applied having the form

oy u(a) + [31 ux(a) = 0* and o, u(b) + [32 ux(b) =0

*We rule out the trivial cases oy = ﬁl = 0 and o, = [32 = 0,
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and these will be denoted B(u;a) = B(u;b) = 0 for convenience.
Let p(x) be positive and continuous on [a,b] and consider

the problem of finding uo(x,'-r) for some 7 in (0, T) given that

putz—LxuO for 0<t<T; a<x<b

subject to

B(uy;a) = B(uy;b) = 0 (4.1.2)

This problem is ill—poééd: unstable with respect to pertur-
bations in ggr We shall, of course, assume that our knowledge of
gp is approximate; that we, in fact, know g = go*

To treat this problem it will be convenient to define a different
inner product on Lz[a,b] .

Definition 4. 1. 3

Let f and g be in L2 la,b]. Define the inner product (f,g) by

b
(f.g)= [ f(x) gx) p(x) dx
a
2
and denote its accompanying norm by ” g ”2 ( ”f” = (f,1)).
2
In terms of our usual inner product (, ) (corresponding to

the norm ”-”), we would have (f,g) = (f,pg) and “f”2 = ”'\]B— f”

*In this chapter, a function's dependence on a spatial variable will
not be displayed when it is being considered as an element of a
function space., The function w(x,t) if being considered as an ele-
ment of L.“[a,b] would be denoted w(, t).
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Since p(x) is continuous on [a,b] it has upper and lower bounds:
Cl > 0 and c, > 0. Thus, the norms ” . ”2 and ” . ” are comparable:
‘\fC_2 ”f” < ”fHZ < \IE; ”f” Both kinds of inner product will be
used.
If one seeks a solution to 4. 1.2, he will be led to the Sturm -

Liouville system:
(pw ) t+t@Ap-q)w=0 (4.1.4)

subject to B(w;a) = B(w;b) = 0. This system has a set of eigenfunc-
tions @ complete and orthonormal with respect to the inner product
(.,.) and norm ” . ”2.

Noting that any eigenfunction N and its associated eigenvalue

A, satisfy
L oo =x_po_, (4.1.5)
one sees that any f in the domain of Lx satisfies
X 2
(L B :nzlln £ 0"

So (f, Lx f) will be positive for all f in the domain of Lx if and only if
all the eigenvalues of system 4. 1.4 are positive. In such an instance,
Lx will be said to be pOSitive’ definite,

It is now possible to define the extension to 4.1.2. Find any

uo(, T) satisfying

pu, ==L ug for OufxTy adusdh (4.1.6)
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subject to B(uo;a) = B(uo;b) = 0,

”uo(,T) = g”z < € 4
and Jug.O) ||, < M.

It is assumed that a solution exists to 4. 1. 6. Physically,
we would be asking for the temperature profile at time 7 in a finite
rod given the measured profile at time T > 7, assuming that at time
0, the net heat contained in the rod was bounded by some known
quantity, If Lx is positive definite, heat will be dissipated in the
rod, any initial prlofile gradually decaying away as time progresses.

4.2 Logarithmic Convexity

Inasmuch as the solution to 4. 1. 6 is not unique, we need to
know how far apart its solutions can be. The simplest and perhaps
most elegant means of assessing this is by a logarithmic convexity
argument. What one obtains is an upper bound for the error inherent
in the extension. A more detailed appraisal by spectral analysis
will show us that it is not just an upper bound but the best one*we
can, in general, obtain,

We need a few interim results at this point.

Lemma 4.2.1 (Self-adjointness of LX)T

Let h, and h, be in c?[a,b] and satisfy
B(hj;a) = B(hj;b) =0 forj=1,2.
Then (hl,Lxhz) = (g, L By )

*The meaning of that statement will be clarified in section 4, 3.

t Proof is well-known. See, for example, Stakgold [ 24].
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Now we can prove

Theorem 4, 2.2

Let u(x, t) satisfy
x

put:—Lu for 0<t<T; a<x<b

subject to B(u;a) = B(u;b) = 0 and u(,0) = f € L2 [2,b] . Then

log [u(,t) “2 is a convex function of time.

Proof:
2
It is sufficient to show that 94— log (u(,t),u(, t)) > O.
dt
d‘2
_Zlog <u(st): u(:t)> =
dt
2
(ul, t), u(, £)) ‘3‘2‘ (ul, t),u(, 1)) - [2= (u(,t),u(,t))]°
~ ¢
(ul, ), u(, )y
d
S (uG,uG D) = 2¢ui 1), wGt) = 2(a ), puyl,t)
L, t)
=] -2(\1(,1:), Lxu(:t)) = —2(11(, t), Xp >
g’ )
L2 (o) = -2(u, 0, Lu0) -2(a 0, Lun).

By hypothesis,
B(u(t);a) = B(u(,t);b) = 0 = B(w(, t);a) = B(u,, t);b) = 0;

so, (by Lemma 4.2.1), /
2 u‘(: t)
d X
;’2_ <u(rt):u(: t)> “4(ut(s t)s LXU-(, t)) = 4( p ! Lxu('t))

Lugt)y  Lout)
*4 P ’ P

{1
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2

The denominator of the expression for —(LZ» log (u(,t),u(, t))
dt
is positive; the numerator is
L a6y L ugt) L ut) 2
4<u(:t)su(’t)> < 1 > —4(11(,":), __"_“_—> .

P P P

3
This is non-negative by Schwartz' inequality. [

Now suppose u,(,7) and u,(,7) are both solutions to 4. 1. 6.

2(’
Their difference (ul -uz) (x, t) will satisfy the differential equation

and boundary conditions., Furthermore,

e, (. T)-u, o, Ty -, + u,. T)-g|, < 2¢,

D, <

and
”ul(,O) u,(, 0) ”2 ”u (,0) ”2 ¥ ”uz( 0)”2 ZM .

By theorem 4.2.2, log ”(ul -uz)(, t) ”2 is a convex function of time so

log [[(u-u,)(,7) ||, < S=T log || () -u,)(, 0) ||, + & log [[(w,-u,)(, T) |,
< -'I—|—-,1:-I log 2M+—,;~log 2¢€
I-7 P
= mgﬁzmmtr(sz]
T -7 T L=F T
= Ju w6 T, < E T ey =R T &7

So, two functions satisfying the conditions of the extended

T T-7T
problem 4, 1.6 can differ by, at most, 2T M T attimet =r.

[ u(,t) 2

*Applied to (u(,t), “3%“"—> .
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4. 3 Iistimate by Speciral Analysis

This extension can be examined from the viewpoint of Chapter
1. Section 4,2 has given us an upper bound on the uncertainty asso-
ciated with a solution of 4.1.6. However, is this the best we can
claim ? The answer will prove to be yes, but it is not yet obvious
that such is the case,

Define a heat operator Kt mapping (forward) through time t

as follows. The solution to

put=-[_xu 0<t<T; a<x<b (4.3.1)

subject to B(u;a) = B(u;b) =0
and u(, 0) = £, evaluated att = 7 will be KTf. Separation of vari-
ables leads to the spectral representation
@© =X T

K_f= nZ=:1 (foo)e ™ g
where the @ and )\n refer to the Sturm-Liouville system 4. 1. 4.

Its inverse will be denoted by K—'r (the backwards operator)
but care must be taken in all manipulations that K—'r is only being
applied to elements in its domain (C Lz[a,b] ¢

In this notation, 4.1.6 can be reformulated. Find uo(,q')

satisfying
”KT_TuO(,T) - g”z < e

such that ”K—'r uo(,q—)“2 exists and is bounded by M.

In this form, 4.1.6 can readily be cast into the language of

Chapter 1. Specifically, identify the operator K of Chapter 1 as
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KT . and the set A to which our solutions will be restricted as

the closure of the set

2
{foe L%[a,b] |foe Dom (K ) ;

We wish to compute nA(g; e) defined by

r]A(g;a) = sup ”fl -—fz ”2
fl;fze A
Eppfi By % ¢ Nl

and, by the definition of A, this is

sup “ KT (hl-hz)“2
Iy I < M By || < M

”KThl-g ” €E; ”KThz'g” s

N

sup ”KT (h] -h2 ”2
”hl—hz | < 2m

| Ky -by) | < 2e

| sup ”K'Th“2 a
] < 2n

”KT h " < 2¢

Under the restrictions ”h” < 2M

|&-7 £,] < M} .

(h1 ;h‘2 respectively

K Tfl and K_T fz) i

and denoting h1 —h2

by h, this is

”KTh I < 2e ,



2 e 6] -Z2x.r N -Z2A_ T 2x (T-71)
2 n 2 n n
’K h“ = (h,e_)" e = (h,e )" e e
| . 221 o n=1 n
0 -2X. T
2 n
+ (h,p ) e
n= §+1 B
2A.(T-7) -2X T
sdgt g B PP P (4. 3. 2)

This estimate is valid for all N; so we have that

2N, (T -7) -2\
sup ||K7_h”2=§ 4 inf [62 z i + 1\/[2 e NJFIT].
[R],< 2M

”KTh HZS 2¢

Since the )\n are monotonically increasing to co as n — oo,

there exists a value ng, of N for which

2
1 M7
B ﬁlog[ez

AT ) ey (4. 3. 3)
0 (T-T)] Bt

2

2
(provided that € is small enough that A, < —1— log __M“_I__ e
1 2T e2(T-7)

So bounding inf using the above estimate with ngs

d T-r

sup [|K b, < 4T a®) T 1

Z
I, < 2m a-I) T DT
[ Kph||,< 2e

j 2
(after some algebraic simplification.) (The value x, = 2 log ‘:——I\—/I——T-—]
& 4% e Z(T -7)
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is where 52 e*ZX(T'T)JrMZe-ZXT

takes on its minimum value; hence
the interest in )\n near that point.)

So we get the estimate:

r 2% :
nA(g;e)S_ZeT M & ]1-1 T 3
- Tt
The factor in braces goes between 1 and N2 as 7 goes from 0 to %
and is symmetric about 7 = % . This estimate is larger than that of

section 4, 2 because at least one of the inequalities in 4, 3. 3 is strict.
The effect is giving up a factor of (up to) v/2 in the estimate.

Now consider the sequence {hk} = {ZMcpk}. Certainly

=X T
”hk ” = 2M for all k and “KThk ” = 2Me k

-A T
2e, k must be such that 2Me R < Z2e. This implies —)\k’I‘ < log _If_/f

. To satisfy ”KThk ” <

N T =
Let ko be the smallest such k. e 0 will be approximately (EM)T if

- 2 log = (i. e., comes close to satisfying the constraint
kO X e =7

exactly). In this case ”K-Thk ” = 2M T g™ . There will be a
0

X

sequence of € = 0 for which - %1og h_jf is precisely an eigenvalue,
T-7

T
Then the estimate 2M T T will be attained. For a general small
a=F
g i i T
e, the lowest bound we can guarantee for nA(g; e) is ZM e <

'qA(g; e). We can not improve on the bound obtained so easily and
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cleanly through logarithmic convexity.

4.4 A Related Problem for Numerical Solution

In its form 4. 1.6, the extension does not lend itself to numer-
ical computation. Many solutions exist and what we now seek is a
good numerical algorithm giving a discretized approximation to any
one of them.

Suppose we sought to minimize ”K

T -r
constraint that "K_q_u”2 < M. Then uo(,'r) of 4, 1.6 would satisfy

u-g ”2 subject to the

“KT—'T uo(,-r)-g ”2 < €, The minimum would do at least as well and
we might hope that this minimum u and uo(,-r) would be close together;
that something analogous to logarithmic convexity might prevail. In
Franklin [ 8 ], it is pointed out that Tikhonov's method of regulari-
zation has an interpretation as a constrained extremum problem

and the parameter o may be thought of as a Lagrange multiplier.

This motivates the following related problem.

Find u(,7) minimizing the quadratic functional

2 2 "
I'KT-TW'g||2+O‘||K_.,W||2- (4.4.1)

(It must be stressed that the foregoing argument was purely of moti-
vational intent. A more thorough analysis will soon be given., )
The minimum of 4. 4.1 is readily found through spectral

analysis. Indeed, if w is in the domain of K_T and denoted

*For w not in the domain of K , take ” K 2 ”2 as being infinite.
_'T -
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£
il

n__ (W, §0n> 3 gn5<g’ (Pn>)

then
2 2 A (T-7) 2N T
n 2 n 2
”KT—T W-g”2 + “K-'TWHZ = nZ‘J_‘l(e wn—gn) +ae W
This is
A (T-7) -
) -2\ (T-7) 2\ T e g,
i (e + ae )| w, - TS +
n=1 n n
e + ae
. ZN T 2
+ © ®n
-2\ _(T-7) 2N T
n
e + e

(by a process of completing the square term by term in the wn).
AT

Cancelling some e ™ factors and splitting into two parts, we get

A (THr) 42
o -2N (T-7) 2N T e g
Z (e @ tae ™ ) |w_ - H +
=1 n —ZXnT
n= e + o

fo'e) o gz

n
* Z_:l 23T 5
S e + o

The second term is independent of w, the first will vanish if
A (T+T)
n
— e gn -
n ~2)\nT s
e +a
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otherwise the first term is positive. w, so represented, is an L#

function; is in the domain of K o and solves the minimum problem.

Thus
- N _(T+7)
n
xR (g9 e |
u(,7) = E T ., - (4. 4. 2)
n=1 n
e +a

Then we observe that 4. 4. 2 is the spectral representation of the

solution w to

(Ko + @al)w = K (4. 4. 3)

2T T4r &

Solving 4. 4. 3 thus replaces the problem of minimizing 4. 4.1,
We may do this either by taking a few terms in the expansion 4. 4, 2,
(taking care to account for error in truncating the series), or we
may develop a finite difference method for direct solution of 4. 4.3.

In 4. 4. 2, a linear operator is defined. Call it F’r -
-Rn(T+'r)

Qo
g =u,7)= ) (£90) 7 (4. 4. 4)
n=1x\ o +e B

T,®
¥ - is bounded and hence 4. 4. 3 is well-posed. In fact,

’ A (T+7)
7, oll = s9p “——5— -
L ogte *

This can be bounded by
e—X(T+T)

sup ————
<> 0 e~2,xT+a

which is



L, T 1, T
a-(z 21 (z +_'f_("' for) (

-_I_)
(3 = ) = (4. 4.5)

e
3

o

Now let uO(,'r) be any solution to 4.1.6. The error made in

solving 4. 4. 3 will consist of two parts: a bias associated with solving

a different problem and an error associated with the uncertainty in

our data g (the fact that ¢ is non-zero).

Specifically, if g, = u,(, T), then

”u(:T)"uo("T) ”2

1%, o8- K r_ry 8l

1

£, 4le-gg) +(F, ,-K

(T-7)%0l2

<

~

”FT,C!” ”g-gO “2 + ||(FT,Q"K_(T_T))80”2-

(4.4.6)

The first term is bounded by ”FT o “ e; the second is the bias. To

bound the bias, use the fact that g = K uy(, 0) with ||u0(, 0) ”2 < M.
Then

T,G,"K-(T..-T))g() ” = ”[F’F,Ol_K—(T—'T)] KTuO(’O)HZ

< |7, JKr-K, | M.

The operator FT,aKT"KT is bounded and has the spectral represen-

tation defined by

—— : : l- : :
*This bound on ” F'r;cz ” is valid fér D< s < T T. All our v's will

be in that range.
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_)\_ T
X - e 2
= E 2N T (h,o ) ¢, (hel%[a,b])
n=1 n
e + o
SO
-N T
ae ° a e X7
”FT,OLKT-KT ” = sup S < sup — 5% T
n n x>0 a+e
e +a
T
i T 1o
= == 2T
= @2T (12T T
= o (7)) (1 - > ; (4.4.7)
So finally,
] Lo T 1 T
. ET2T &= 2T
laGm)-ugGrfly < e G+ z7) z - z7)
T 5 ;
2T , 7 2T T 2T
*Ma"" (zF) T (- 57
ke i Ly L. : S o | .
_ 2T "2y Ty 2T 1 7% 2T  \p 7 42T, 7, 2T
= a {ea & +55) 3 - 3 M=) (1- 7 .

(4.4.8)
So far, no relationship has been specified between @, ¢ and M.,

i
A look at 4. 4.8 suggests taking e 2 = M. Then 4. 4.8 becomes



% b
“u(,T)-UO(,T)HZ S () - M >7) (z - 27)
i 1--T
P 2T T 2T
i T-T
T
et M T oxd . (4.4.9)
Here
1,p 1_p B 1-p
_ &0 2 2 2 2
=G+ “G-5H T+ Ha-H
3
for 0< p< 1. As p goes from 0 to 1, r(u) goes from-g—to 3 3% and

r(p) is symmetric about p = 1,

For all 7 which will be of interest to us,

T T -7

A T

”u(’T)—uO(’T)HZS% £ M .

At first glance, this seems too good to be true since even were u(,7)

an exact solution to 4. 1.6, it could only be guaranteed that it is
T T-1
within 26T M ' ofuy(,7). The explanation is as follows. The

solutions to 4.1, 6 are contained within a region in Lz[a,b] whose

T T -1

diameter is 2 * M & . This method simply chooses a point from

somewhere in the middle of that region.
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4.5 Numerical Solution

The numerical problem from 4. 4 is to find u(,7) solving

(KZT + al)u(,7) :KT-PT g (4. 4. 3)
The solution has the expansion
wk {(T¥T)
n ;
X e (g 9,)
u(,7) = ), e ? (4.4.2)
n=1 n
a+e

where the ¢, and )..n refer to the Sturm-Liouville system 4. 1. 4 and
o is s-:Z/I\/I2 (cf, 4.1.6).

For the simple examples to be tried in testing the method,
the numerical "path of least resistance" seemed to be straightforward
application of 4. 4. 2. It will be pointed out, however, that there are
cases where one should not do this. (Had this been fully appreciated
at the outset, more effort would have been devoted to direct solution
of 4.4.3.)

Denote the m term approximation to an L2 function f in the
eigenfunctions N of 4.1.4 by £

m
£ = nzzll GE, qun) Py -

If uo(,'r) solves 4.1.7 and u(,7) solves 4.4, 3, we need to know

™G m)-ug ) ||,
”um(’T)"uo(:T)Hz = ”um(rT)_uBn(sT)"}"ugn(:T) "uo(:'r) ”2

< [uGmr-ugm) |l + el Gm)-ugGr ], -
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The first term gave rise to the estimate 4. 4.9 ; the second is the

truncation error. Since uo(,'r) solves 4.1.6,

- 2 fo'e] > oo -Zhn'r >
lug Gr)-ugr) | = ) (uglm)e )= ), e (ug(s 0), @)
2 n=m+l n=m-+1l
_th+17 7z

M- .

N

The truncation error after m terms satisfies

- T
”u(r)n(,q-)~u0(,7)”2 < e vl M.

In calculations performed, T was taken to be 1 as was M.

The truncation error after m terms will then be smaller than error

~Xrind™
from other sources if e < €7,
-\ T
m+1 T 1
e < e ] )\m_H?«logE—. (4.5.1)
The values of ¢ to be considered will be no smaller than e-16 SO
we'll take )\m+1 2 16 as our cut-off criterion. In fact, the drill

will be to compute eigenvalues and eigenfunctions until an eigenvalue
as large as 16 is encountered. Then we will be taking at least one
term more than is needed for 4. 5.1 to be maintained and the trunca-
tion error's relative importance will be very slight.

To get a rough idea of where our cut-off point will be, an
a priori estimate of the n™ eigenvalue is needed. Sturm-Liouville
theory provides such an estimate but it must be used with some
caution,

The eigenvalues come from the system
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(pw, ), +(\p-qw=0 (4.1. 4)
subject to
@ w(a) +p,w_(a) = 0
a,w(b) + B,w (a) =0 .

b z
Defining the constant f by B = f [g%;—%] dx, the )tn go up at least
a

as quickly as is suggested by the asymptotic formula (for large n).

2
(n-1)7 *
A~ (_B_) +0(1). . (4.5.2).

The danger in using this for small n is that the constant in
O(l) may be very large. One can readily construct an example in
which it bypasses any specified number. (This typically happens
when |q| is much larger than p and p. T) Provided q is comparable
to p and p and we do not expect too much from 4.5. 2, it seems to
work fairly well in providing a rough idea of the cut-off point. It
proved quite satisfactory in all the examples tried.

So one expects to cut off at that value of n for which
((—“é—)”)z > 16. Call this value n _.

Actual computations were performed on the following equa-

tions:

2 (n-1) 7Y
*They may go up like (F) + O(1l) or B + O(1).

TSee Appendix B.



u =u_ -u la,b] =[0, 7] (4.5. 3)
= ﬁ:'rrandnC=5.

Zu =(xu) t=u [a,b] =[1,2] (4. 5. 4)

=>[3:10g2andnC:2.

iut:(\l}?ux)x_xzu [a,b] =[1,2] (4.5.5)

X

> p=2V2-2andn_-=2.

sec x u_ = (cosx u_) - log(3 +x)u [a,b] =[O0, —Z—] (4.5.6)

%ﬁ:log(lir\]_z_)andncz?a.

It will now be apparent that one should not use the expansion
4, 4.2 when B is large for then n_ will also be large and too many
eigenfunctions will have to be computed. This is an expensive nu-
merical proposition if more than a few are required.

Numerical computation of eigenvalues and eigenfunctions was
performed using the methods outlined in Chapter 5 of Keller [15].

The approach for finding ?, and )Ln solving

subject to alw(a) + ‘31 pa)w'(a) = 0 and azw(b) + [32 p(b)w'(b) = 0 is

by a shooting method. Solve the initial value problem:

(pw, ), t+ (Ap-q)w =0 (4.5.8)
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subject to w(a) = 431 p(a)

for a given value of A. Call the solution w(x;X). w(x;)\) satisfies
the differential equation and left-hand boundary condition of 4.5, 7.
If A is an eigenvalue, ¢(A) = azw(b;h) + ﬁzp(b)wx(b;h) will be zero.
An ingenious approach is given in Keller [15] whereby Newton's
method can be used to locate the zeros of ¢p(X). @(X) and ¢'(A) are
both obtained in the solution of a single initial value problem. (If
)st

Al(lv) denotes the vth iterate by Newton's method, the (v+1 iterate

is given by

(v)
edl) ey PRy
A.n "'A.n ) "'_'7(_‘_}_5-)

o (0

So each iteration requires the solution of an initial value problem.
The first guess is quite critical. Newton's method gives

quadratic convergence when we are near a zero. A special initial

guess routine was employed using the following algorithm. Assume

that the asymptotic expansion of the ntI’l eigenvalue goes like

nm 2 %
ln (F) + C1 + -1:2 i
T2 e
1) If n =1, take (E) as the initial guess,
2
2) If n> 1, compute Af}l - ((—né—l—)ﬁ) (xilf_)l being the final approxima-
C
tion computed for A ). This should give roughly ¢, + —5 + wsis.g
n-1 1 (n-1 )2

*The boundary conditions actually used were compatible with this
assumption. If others had been used, we might have needed
]2 as the first term in the expansion.

[(n—%)g—]z or [(n-1)F
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(if A;f_)l is an accurate approximation to kn—l)' Then take
2 2
(0) _ aom (f) (n-1)mr
ln - (ﬁ ) + lﬂ—]. - ( ﬁ )
c c

as an initial guess. We expect A_ - )L(O) -~ - 2 Bomi s B O(—L)

n n v 2 3

(0) n (n-1) n

so )\n becomes a good initial guess when n attains a modest size.

Usually 1 or 2 iterations of Newton's method were sufficient to give
adequate approximate eigenvalues and eigenfunctions. Seven decimal
places of accuracy were good enough for thése computations.

Also needed was a forward heat-equation solver, Some
very minor modifications of the scheme presented in Keller [16] to
include a variable p(x) were required; it proved tailor-made for this
job. If h and k are respectively, the space and time step sizes, this

"Box Scheme" is accurate to O(h2+k2). Richardson extrapolation

was used to increase the accuracy to O(h4+k4). Sufficient accuracy

was obtained with h and k chosen to be (b-2)/100 and T /60 (T = 1).
In each numerical example the procedure was:

1) Begin with an initial profile f = uO(, 0).

2) Use the box scheme to compute uo(, 0.1); uO(, 0. 25); w(, 0.5}

uo(, .667), uo(, .75) and u,(,1.0).

o

3) Calling uO(, L O‘) = gq> perturb it by an amount € and call the
result g.

4) Map g backwards via the truncated expansion of 4. 4. 2 obtaining
u™(, . 75), ", .667), etc.

5) Compute ”um(,q-) - uO(,'r) “2 and compare with predicted values.

Four different standard initial profiles uO(, 0) were used for

each equation. They were: a parabola concave down, a sine wave,
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a triangular wave and a constant, All were scaled to ensure that
Iluo(’ 0) ”2 = 1.
It will suffice to tabulate the results of one such computation.
Problem 4. 5,6 is as interesting as any;== having the coefficients
p(x) = cosx; p(x) = secx; q(x) = log(% + x). The boundary conditions
used were u(a) = u(b) = 0. T Table 4. 5. 9 lists the results obtained

.0 x 10"6 and a constant initial profile. Predicted error

is r(T) ¢ (cf. 4.4.9).

TABLE 4.5,9

T COMPUTED ERROR PREDICTED

- ERROR
BOUND
0. 00 1.2 1.5
_1 -1
0.10 1.3 x 10 4.2 % 10
0.25 2.0 % 10~2 6.3 x 10~ 2
0. 333 7.0 x 10 3 2.2>-<10”2
0. 50 8.6 x 10”2 2.6 x 1073
0.667 1.0x10"4 3.1 x 10”2
0.75 3,7 %1072 1.1 x 10°4

The numerical work does not claim completeness in any
sense. No such claim would be made until, at least, the matter of

what to do when B is larger than 7 by a significant amount was

%“Problems 4. 5.3 and 4, 5, 4 were used primarily to test the various
subprograms. Their Sturm-Liouville problems can be solved ana-
lytically.

fThis corresponds to @, =a, = 1; [3'1 = 52 = 0.
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satisfactorily resolved. A few ideas for direct inversion of 4. 4, 3
have been conceived but to implement them, much thought and some
consultation with numerical specialists will be required., In their
present form, they do not merit expounding here.

4,6 Remark About Time-Dependent Coefficients

Other workers have interested themselves in cases where p
and q are allowed to be time dependent, Agmon and Nirenberg, by
a more sophisticated convexity argument (see Friedman [ 9 |, page
182) developed the much less generous estimates applicable to such

cases. In particular, with p = 1, constants ¢ and m exist such that

eCT-l
if p(r) = e
e -1

, then two solutions ul(,T) and u,(,7) to 4. 1.6 with

2
these coefficients will satisfy, (for 0 < 7 < T),

-mT  p(r)-1 1
T oB(T) g B(T) u(T)

lu, ) - )|, < 2 ™

1

The significant factor is EIJ'(T) which tells us what kind of conver-

-1
gence rate is being realized. If c is small, then [p(7)] = %

1 T

yielding the approximation e k() ] eT , the rate obtained when p
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and q were time independent. The point is that, depending on the
nature of the time dependence, ¢ may be large, Suppose we can

cT cT cT cT 1 -c(T-7)
approximate e -1 = e ande -1=e . Then i) R oe

One still has convergence by a power law but the power may be

1 =efT-7)

rather small (e R(7) ~e® )e

The attitude one will adopt in this eventuality might be to
seek a method obtaining this very modest rate of convergence. But
he might also decide that 4. 1. 6 will not do for the general time-
dependent case and seek a more effective extension. That is largely
a matter of individual persuasion.

4,7 Some Related Work on the Problem

As was mentioned earlier, the extension 4. 1.6 has been known
for some time., Not surprisingly, it has attracted the attention of
theorist and corhputational specialist alike. A few key references
will be given here but no semblance of completeness to the list is
claimed. A massive bibliography appears in the excellent survey

paper on the ill-posed problem methods: — Payne [ 19]. Many of
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these are relevant to this chapter.

It will already be apparent that the theoretical results needed
to establish the well-posedness of 4. 1.6 are known. Agmon, Niren-
berg and Payne have carried logarithmic convexity much further
than needed for this modest application. Besides logarithmic con-
vexity and the spectral theory, one can exploit functional analysis
to demonstrate well-posedness. This was done in Franklin[ 7 ] and
Saylor [22].

Computational work on the ''simplest case! b = began
with John [13]. It has become more popular in recent years to look
at the (spatially) variable coefficients case (considered here).
Buzbee and Carasso [ 2 | tackled 4. 1.2 by introducing a related
fourth order boundary value problem in space-time. Their method
works on the time-dependent coefficients case as well. (However,
see section 4,6). Douglas [ 5 | develops a linear programming
technique employed by Cannon [ 3 | in actual computations. Good
results were claimed by both the above parties.

There have been numerous contributions, (especially to the
operator theory side of ill-posed problem methods), by Russians.

It has already been mentioned that Tikhonov. [28 ] motivated the
establishmént of the related problem 4.4.1 (— 4. 4. 3) as a means

of finding an approximating algorithm for 4.1.6. Bakusinskii {1 ]
introduces a regularized approach for a wide varity of abstract ill-
posed problems on Hilbert spaces. Applying it in a straightforward

manner to 4.1, 2, one can be led to the analogue of 4. 4.3



(K +al)f=K (4.7.1)

2T-27 T-n B

More will be said about this in Chapter 5. For the moment, it
suffices to say that 4. 7.1 is a well-posed operator equation in
L2 [a,b] which degenerates appropriately when a is set to zero.
To the best of our present knowledge, solution of 4, 1,6 via
4. 4. 3 has not been attempted by others. To be truthful, the error
estimates of Cannon [ 3 ] and Buzbee and Carasso [ 2 | were not
subjected to careful scrutiny before the computations of section
4.5 were performed. Certainly for the examples tried, there
would be no embarrassment in any comparison with other methods.
Quite apart from the application to this problem per se, however,
this chapter introduces a means for incorporating a variety of
solution set restrictions into numerical computations in a very
natural way. It will make the motivation of Chapter 5, an attempt
to expand Tikhonov's method, much easier. Now we have familiarity
with what will prove to be a special case of the theory to be pre-

sented there.
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CHAPTER 5

T-METHODS

We saw in Chapter 2 how Tikhonov incorporated a solution

2*
w

set constraint Qz(f) < into a numerical algorithm. In Chapter 4,

the same principle was exploited to impose the constraint

T
(LE_, f) <M

on solutions to the backwards heat equation. The success of the
application in Chapter 4 encourages an attempt at some generaliza-
tion. The host of regularizing algorithms to be constructed in this
chapter will be given the generic name "T-methods, " Tikhonov's
method being the model.

Before beginning, however, a comment must be made about
a mathematical pitfall into which there is a very real danger of fall-
ing. One can so easily become far too enamoured with what amounts
to mathematical formalism, We know that a convergent extension
to Kfj ~ g results, (K : B, ” “1 =B, ” ”2), whenever f, is constrained
to lie within a compact set (see Chapter 1). That leaves us with an
impressive array of "suitable" constraints if convergence is our
sole concern. However, convergence had better not be our sole con-
cern. If there is a tendency for us to snub the practical man who
asks "Why the restriction chosen as opposed to any other ?", then
we have forgotten or failed to appreciate a most important feature
®see section 2, Z for the definition of G°1H).

TSee section 4. 4 for the definition of K—ZT
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of ill-posed problems. The effect of K is to cause information
necessary to the approximate description of fo to be lost in the un-

certainty associated with g. The nature of the information about f

0

put back via the constraint is every bit as important as whatever

convergence properties are realized in so doing.

What follows assumes a useful constraint of a particular form
has been found and then constructs an approximation for the elements
fo satisfying Kfo ~ g subject to said restrietion.

Quite apart from the construction of new algorithms, how-
ever, this theory has another application. A method whose moti-
vation has a different philosophical origin may turn out to have an
interpretation as a T-method. Sometimes, this alternative inter-

pretation adds to one's comprehension of the method.

5.1 The General T-method

Let B1 ” “1 be a Banach space and H ,+) be a Hilbert

A

space. Let ” ”X be a norm defined on a subspace of B, which

1

satisfies a parallelogram law on its domain of definition.
Let K : B1 *HZ be a bounded, linear, one-to-one operator
whose range is dense in H Consider finding f_ in B1 satisfying

2° 0

[Kiy-gll, < e (5.1.1)

(e and vy positive numbers)

5ol <
for some g in BZ' Assume such an fO exists.
If “fO ”Xs v has compact closure in the “ ” 1 topology on Bl’

this represents a convergent extension as ¢ — 0 of Kf, =~ g.



7

Introduce a parameter a related to s:z by
C. sascza (5sla2)

and look for u = f in B1 minimizing the quadratic functional
b
lu-g |+ o fuf® . (5.1.3)
2
The f minimizing this quantity is unique. The proof given in
Franklin [ 8] for Tikhonov's method generalizes immediately. It
will be given here for completeness.

Lemma 5.1.4

The minimum to 5. 1. 3 occurs for a unique { in Bl'

Proof:

Suppose f. and f2 both in B, minimize 5.1.3. A norm [

-l

1 1

defined on a normed space B satisfies the parallelogram law if,

for all pairs uy and u, in its domain of definition,

2 & 2 2
”ul+u2 ” ) ”ul—uz ” = 2( ”ul ” ¥ ”uz ” ) -
with || = |- s B =B, piek

u =31 andu, = 3f,;

then

f.+f 2 fao—f. 2 2 2
1 72 1 2
=20+ =220 =2 el + 4 Il - oo

For u not in the domain of “ adopt the convention ”u” x = .

I

Such a u will not be considered a candidate for minimizing 5. 1. 3.
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with |- = |- |,; B = H,, pick

a, = %(Kfl—g) and u %(Kf -g);

1 2

SO

fl+f £, . 2 B
(I ) gHZ # HK( H2:=5(HKf1-gH2 + [[KEy-g ). Gek)

Add % to a times % and use the hypothesis that fl and f2 both mini-

mize 5.1.3. Then

2 f +f 2 f
1 72 12
%« %gh+aﬂ—y—H+HK( w2+aﬂ HX=
= the minimum value of 5, 1. 3.
f1+f2
So 5 also minimizes 5.1, 3 and fl —f2 = B
Because f minimié.es 5.1. 3, it must satisfy
2 2 2 2
Ie-gll, + e el < <58l + @ N5l (5.1.5)
< EZ + Ol')/2 "
One is led to
- 2 2
”Kf-g"Z < €7 (14C,v") and (5.1.6)
nfn TREaE (5.1.7)
So if Hf"X < constant has compact closure in the ” ” l—topology,

the minimization of 5.1. 3 is a convergent extension as ¢ — 0 of

KfO ~ g.
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The machinery developed in Franklin [ 8 | for assessing the
effectiveness of Tikhonov's method on various problems KfO g
generalizes to all T-methods., Let T,: H, =B denote the solution

2 1

operator to the minimization problem 5. 1. 3. That is

fETag

where f minimizes 5.1. 3. Make the following definitions.

Definition 5.1, 8

The modulus of regularization p(e) will be given by

p(e) = sup ”f0”1 .
Kty ||, < e
”follxS 1

Definition 5.1.9

The modulus of convergence o(e, @) will be given by

o(e, ) = sup ”Ta g-1, ”1
”Kfo’guz < €

Definition 5.1.10

The rate of convergence will be the name given

sup ||Ta g-f, ||1 (y replacing 1 in 5.1.9) .
“Kfo—g HZ < ¢

”fo"x = 7



B
The results quoted in Chapter 2 for Tikhonov's method re-
lating p(¢), O(e, a) and the rate of convergence hold here as well,

The rate of convergence in 5.1,.10 is 'YG(;—,O!) and
_E < _E'_ < ! g’_l
Ypi3) vo(y,oz) L4 p(.y,)

where

5.2 TH-Methods

A useful subclass of T-methods is that in which B, ” ”1 =
H(-," )l is a separable Hilbert space and ” ”X is derived from an
operator x : Hl —+H1._ X is to be self-adjoint, positive definite

and have 0 in its continuous spectrum. Define ”u”x for u in the

range of x by
. -1
||u||XE(u’X u); - (5.2.1)

T -methods of this sort will be called "TH—methods” because a Hilbert
space I—Il is involved.
The quadratic functional 5.1. 3 to be minimized by u = f has

the form
(Ku-g, Ku-g), + oz(u,x‘lu)1 . (5.2.2)

£ .
K will have an adjoint operator K : H, —H, defined by
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K g, £). = (g KE for £ : 5.2
(K g, ), = (g, Kf), orf e Hj; g€ H,. (5. 2. 3)

Consider perturbing f minimizing 5. 2. 2. by 6f in Ran . ( ”6f”1 is

not necessarily small.,) For any such &1,

(K(£+65)-g, K(£+65)-g), + a(£+55, x [ £+sf] ),

{ (Ke-g, Ki-g), + a(f, x 10} 20
Expanding out the inner products and simplifying,

& 2(Kof, Kf-g), + a(bf, X 16, ta x of)

1 1

+ (K6f, K6f), + (81, X '6£), > 0
* il -1
& 286, K(Kf-g) + ax ) + (Kbf, Kof), + (85, X 68), > 0.

A necessary and sufficient condition for this to occur, (as
is seen by taking &f = 2n° 5 : I82]]; = 1; m— 0) is for all & in

Ran ¥,
* -1
(61, K (Kf-g) + ax f); =0

Ran X has a trivial orthogonal complement for, if h L Ran ¥,

then
hixh = (h,xh)1=0 = h=0
since x is positive definite. So our minimum f satisfies

K*(Kf-g) + « x‘lf = i)

=  (Kr+texhi=x"g . (5. 2. 4)
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This equation's solution is unique since K K + @ x ~ has a
trivial null space. If no extraneities are introduced by multiplica-

tion by x, 5.2.4 becomes
4 *
(xK K+al)f = xK g. (5.2.5)

sk
If -« is not in the spectrum of xK K, 5.2.5 is a well-posed
operator equation for f minimizing 5,2.2. Another approach to

solving 5.2, 4 is to set f = xh solving
% %
(K Kx t+aol)h =K g (B« 2. 6]

for h.

There would have been little value in introducing T- or TH—
methods if no good means for finding f existed. The utility of a TH-—
method rests on the solubility of 5. 2.5 and/or 5.2.6 (numerically or
otherwise).

So the solution operator Ta for the minimizing problem 5. 2.2
is

T, = XK Kx +aD) 'K = (xK'K + oD (K"

5.3 Examgles

To illustrate T and TH methods, let us look at some examples

amongst the problems encountered in previous chapters.

Example 5. 3.1 Tikhonov's Method

Certainly, the foregoing must apply to the original model
T-method. Making the appropriate identifications is easy in this

case; it will be seen that many of the terms in Chapter 2 are given
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the same labels as their counterparts in this chapter.
First, let us quickly review section 2.1 in which Tikhonov's

method was introduced for the Fredholm equation of the first kind:

b
J Kix, y)ig(y)dy = ggx) C L 13
a

where £, is in B p(- ) (2 Banach subspace of Lz[a,b]), gp is in

Lz[c,d] ; K(x, y) is an 1.2 kernel,

In operator notation, 2.1.1 was written

Ki, =g, (2.1.2)

defining a compact operator K : B; — Lz[c, d]. It was assumed that
K had only a trivial null space.

In solving Kfow g, the regularizing assumption
2. _ P . 2 2
2°(f,) =£ {pex) [£h(x) 17 + q(x)fo(x)} dx < @] (2.1.3)
was imposed: -
1 0
peCla,bl;qeC[a,b];px)>0;q(x)>0on{a,b].
So now, identify : (see section 5.1)

K=K (the integral operator)

Bl ” [ 1= Bl w(e) (A family of p(- ) was discussed as
| 2nd 1) = |-

the standard L." -norm., )

well as p(-) = “

*Jtems pertaining to Chapter 5 appear on the left of '='.
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H,(-,"), = LZ le,d] (+,*) (The standard inner product
2
on L),
2
2
g = £2 57
IS -a%
Y = Wy .

, Tikhonov's method

In the special case B, u(+) = Lz[a,b] ”f

becomes a T_.-method for then we have Hl(- 4% )l = Lz[a,b] (<,°);

H
K : H, —H, as required. We wish to identify the operator

1 2
X 1 Lz[a,b] —*Lz[a,b]
for which
(£, X" £g); = Q°(F,)
lntegraté by parts.

2%(5) = [ {pex) [£5e01% + ae) 1500} ax

il

b
P}y ()G (x) + f £, G Q) () - = [p ()t )] } e

Can a X be found for which the following identification is legal?

-1
X" £y = afy - (pE))'

0( (b) =0 for fO € Ran ¥.

Since X—l is a differential operator, it is natural to look for an inte-

gral operator x. In fact,
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hy = x " 'f, = af, - (pfy)' (%)
£,(2) = £,(b) = 0,

means that the Green's function for the boundary value problem %
supplies the operator x. Call this Green's function x(x,y). So x
is given by
b
xhg = £ X (%, y)h(y) dy .

X is self-adjoint; positive definite as it should be.

Applying 5. 2.5 to find f minimizing 5, 2. 2,
%* *
(XK K+al)f=xK g, (k)

will clearly give us a Fredholm equation of the second kind - XK*K
is an integral operator and xK*g is a known right-hand side. A
simple choice of p and q in the regularizing assumption (like p=q=1)
will enable us to find X(x, y) analytically. The Fredholm equation
Yok is well-posed.

Example 5. 3.2 The Backwards Heat Problem of Chapter 4

In Chapter 4, the heat operator K7 was defined by
KTfozuO(.'r) O<7< T

where u0 satisfied

pu0=qu—(pu) for 0<t<T

t X'X

subject to
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ozlu(a,t) + [31 ux(a,t) =0 ,

ozzu(b,t) + [32 uX(b,t) =

|
o

and

u(;0) = fo .

Here p, q and p are positive functions on [a,b] and
1
pe Clabl; qe ca,b]l; pec®a,b].

An inner product (-,-) was defined on Lz[a,b] with p as the weight
function:

b
(Eys By = £f1(x)f2(x)p(x)dx for f3f, € Lz[a,b] '

Inverse operators to the'Kt were denoted by

K_, : Ran K —~L°[a,b] .
The operators Kt are self-adjoint and sub-additive. That is
1) K = K

2) K, K, =K .

Desired was an approximation for uO—(’T) 0< 7« T given

uO(T) ~ g and uo(, 0) bounded in norm, specifically,
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(Kp_ ug(7)-8, Kp_ - ul7)-g) < &=

(K__uy(m), K__ug(,r)) < M°

This is soluble via a T -method. Identify :

Applying 5. 2.5 gives

% %
(xK K + aI)f = xK g

* *
= (K, Kp_ K. +teDf=K, K. g

=~ g tallE=Ee, g

and we recognize 4. 4. 3. Recall that in Chapter 4, it was discovered

by spectral analysis.

Example 5. 3.3 Bakusinskii's Method

This regularizing algorithm is introduced in Bakusinskii [ 1 ]
in slightly more general terms than will be considered here. Let
Hl(- ,*) be a separable Hilbert space and Hz(- ,*) be a separable
Hilbert space having an orthonormal basis {gon}.

*Items pertaining to Chapter 5 on left-hand side of '=',
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Let K : H1 —*HZ be a linear, one to one, bounded operator,

Assume

gOeHz

has a solution.
The idea is to find the projection of fo onto the span of the

) b
elements K ¢ ,.....,K ¢_. That is, find

-
£ = % c.K o.
Qo g2y = B

where the c, are to be determined from the equations

N

% * .

iZl CI(K ¢1’K¢J)1_(80’(p3)2 J“lx------:N-
Since this system is ill-posed with respect to perturbations in the
data g replace it with the regularized system:

I}\__I: [a6.. + (K o, K¢.).] =
where ¢ > 0. (Note that go has been replaced by g.) Denote by fN the

resulting approximation to fON.
Let us specialize the problem to K compact. Then K* is

compact and KK* will be a compact mapping, (KK.x< : HZ——HZ), which

is self-adjoint. Choose the {(pn} to be the orthonormal eigenelements

of KK and let ln > 0 be the corresponding eigenvalues. The system

% becomes

' % s s o oOns Na | = , @
L ;Lo CHE 613RJ] (8, #;),

% Cj(a +A—J) = (g, QDJ)Z
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(g,¢.),K o.
So £ :% Il (PJ
a+)\j

Let N— oo to get the approximation f for fO suggested by this approach:

o] (g,fﬂj)
t= Z‘.l Sk ok

This says that f satisfies the equation

(KK® + aI)Kf = KK ' g

* %
- (K K+al)f=K g . Yook
Taking the problem of Chapter 4, K=KT—T’ gives
(K2T~27— + al)f = KT—'r g

as quoted in section 4, 7.

Compare %k with 5. 2.5 and observe that x= I makes those
equations identical. But x =1 is not suitable to give rise to a con-
vergent extension of Kfom g.

Indeed, the set of points f_  satisfying

0
(f T o) < v & gl <

will simply be a closed ball in H;. If H, is not finite dimensional,
this is certainly not a compact set.

This suggests that as the error ¢ in the data g tends to zero,
this method pulls a point from a closed ball which may wander about

within it never settling down about a fixed location.
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That appraisal is not entirely fair, however., The fact that
the sum was truncated after a finite number of terms suggests that
spectral cut-off was meant to accompany the regularizing algorithm.,
No connection was suggested between ¢ .and @ so none should perhaps
be attached. Instead, just take o as a small paraméter. Note that
as ¢ —+ 0, Kf — gg- Furthermore, for a finite value of o, the expres-
gsion for f is prevented from blowing up by a's damping effect if too
many terms in the sum have been taken.

Certainly in that sense, this technique will be an improve-
ment on simple spectral cut-off, Maybe it was never envisioned as
being more than that.

5.4 A Few Convergence Results for Tyj-Methods

A few results will be given here which will help to decide
when a TH—method will give good convergence properties and which

will facilitate error estimation in applications.

Theorem 5,4, 1

Let H(*,") be a separable Hilbert space and {(pn} be a com-
plete orthonormal set of elements in H. Lety> 0 be given and {An}
be a sequence of positive numbers tending to zero. Then the set A

defined by

%

2 1 2
)" — <V
=]

(0.0}
A = {feHlE (£, ¢
n=1

has compact closure,

*The sum does not converge for all f € H.



Proof:

First of all, we observe that A is bounded. Let f e A,

°.t fo'e)
”f”z - Z (£, (‘Dn)2 = Z An Al_ (£, ¢n)2 < VZ sup 7tn
n=1 n=1 - o

and the A are bounded by hypothesis,

Let {fg } be a sequence of elements in A and show that there
is a convergent subsequence. The fl are bounded and thus have a
weakly convergent subsequence flk (see Taylor [27], page 209).

Denote the (weak) limit by f. We must show

B, < #g {fﬂk}CA = fik—-fask—»oo.

k
The (weak) limit f is itself in A, For any positive integer M
M

1\24{“’)21__ lim ) (£, ,9 )P <7y
n=1 *'n >tn k — oo n=1 ﬂk 4 ln

2

by the weak convergence of fg to f. This is true for all M so
k
X 21
(f,0p )" =— <v = {e A,
n’ A
n=1 n

Now consider the difference ”f_fi “2 :

Je-5, % = lfj (£-5, o )%+ OED (f-f, .o )
ik n=1 U n=N+1 kK o
N fo’o)
1 2
< (f-f, ,@ )"+ sup A = (f-£, @& )
nzzl Ly “n n>% nn=§+1 xn Ty “n

A
o]
™
1
Ha
-~
]
b‘l
[}
+
™
<
w
fory
e}
>
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The second term can be made arbitrarily small by choosing N large
enough. Having chosen N, choose k large enough that the first term
is made small by virtue of (f-fﬂ . gon)-—- 0 for eachn < N, So
%
|f-£, || =0ask —o. O
Ly
An immediate consequence of 5.4.1 is that if the operator X

in 5. 2.1 should have the form
©
xf = n2=1 (f, (pn)l )Ln ¢ for fe Hl; An positive — 0

({gon} some complete orthonormal system in Hl), then the extension
5.1.1 is convergent for any operator K of the kind discussed. The
TH-method for obtaining an approximate solution will also be con-
vergent. In particular, one can see that x compact, self-adjoint
and positive definite will always work.

In the language of Chapter 2, Theorem 5, 4.1 provides a suf-
ficient condition that the operator K be regularized under the norm
” ||1 by the assumption (f, X—lf) < 7. In that chapter, the family of
norms of the form

w2 (8) = Oi bp (s <Pn)z

n=l1
was discussed. The result 5.4.1 has a simple generalization to the
norm p(-). The set A of 5.4.1 will be compact in the p(:)-topology if

lim lnp =0.

n, ==

*This elegant proof was suggested by Professor Franklin.
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The proof of 5. 4.1 only needs to be altered where we show that weak
convergence in A implies convergence in the norm p(-).

wE(e-t )—%u(f—f 0 )+ ci)o By et e )
e oo B pE U By L’

N 2 ., 2
Lo (B, L0 )"+ 277 sup o d

k n>N

and the rest of the argument is much the same.
Write b, = g— and define an operator ¢ by

n
QO 1 (00)
()= ) (o) e, = ) (fe)t e

n=1 n n=1

The norm u(-) is then generated by
B -1
p(f) = (f,@ °f) . (5.4, 2)

Boundedness in the norm topology generated by x yields
compactness in tﬁe norm topology generated by & when the eigen-
values ln of x go down faster than those ?;n of &, (2 and x having
the same eigenelements ?h corresponding to C‘n and ln respectively),

When the foregoing is put together with Theorem 1. 4. 2, the
following convergence result for T . -methods is oEtai.ned.

H
Theorem 5.4. 3

Let H1 (5 -)1 and H be separable Hilbert spaces and

2 (':')2

let K : Hl — H., be a bounded, one-to-one operator whose range is

2

dense in H Let {qp } be an orthonormal basis for I—I1 and norms

2°
” “X and p(-) be defined on subspaces of Hl by

2
———(f,qp

il MB

el -5 3 ey wna w0 = 3
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where ln;gn > 0 for all n. A sufficient condition that the operator K

be regularized under the norm p by the condition (f, X_lf) < 'yz is that

A

lim g—ll = 0,

n-—" oo n

Having obtained an idea of when regularization is obtained
and hence solution via a TH-method is feasible, it would be useful
to get a feeling for what sort of convergence rates will be obtained.
Observe that, in 5, 4. 3, a detailed description of K is not needed.
The details of K's structure within the broad limitations imposed by
5. 4. 3 will not affect whether or not convergence occurs but have a
great deal to do with the rate of convergence. Knowing that the
modulus of regularization (see section 5. 2) is of great interest in
this respect , a few cases will be considered wherein bounds upon
it can be imposed. Only regularization under the norm ” ”1 will
be treated. At first glance, all situations will seem rather special,
Reflection on the experiences of past chapters, however, shows

them to occur rather frequently in practice.

Theorem 5.4.4

Let Hl(' , -)l and HZ(- , -)2 be separable Hilbert spaces and
let K : I—I1 —-HZ be one to one, bounded, linear and compact. Let the
eigenvalues of K*K be denoted {kn} and its corresponding orthonormal-
eigenelements by {(pn}. Let the norm ” ”X be defined by
2 ®
MR

n=1 'n

> %
(f,(pn) ; for f € Hy
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where , is a positive sequence; Yy, = 0 as n +o. Assume the }Ln

are monotone non-increasing. Recall that p(e) is defined by

ple)=  sup Il = sup el -
IKi], < e (f, K Kf) < e
2
”f”xsl ”f”xsl

a) If there exist positive constants C and p such that

n n 0’
then 1
2
1 1 1
ale) & Ep+l CZ(p+1) pp+l P p+l
ptl
fore < CpA £ .
%o

b) If there exist positive constants C and p such that
= p e
nn,CAn for n=ng,

then there exists a sequence of ¢ values tending to zero for which

p(e) has the lower bound:

1 p
2(p+T) _p+I

ple) = C

c) If there exist positive constants C and p and R > 1 such that
Cp
21

A <R = forn?no,

convergence is (at best) logarithmic.
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d) If there exist positive constants C and p and R > 1 such that
(=P
n

A =R o forn=n, ,
n 0

convergence is (at worst) logarithmic.
-3

Proof of a) and ¢)

a) J£f2 = ) 2 Ee )+ OEO = (£, 0,)

n=l n n'l n=N+1 Tn nd
s—l—ooh(f,w)-*wpnofl—(ffﬂ)
RNn:l n n>N n=1 Mp T Tn’l

If ||Ki]l, <e and ”fl[; < 1, then for all N = n

0!
2 1 2 1 2 P
”f“lsr €+ sup nnér € -I-C)\N+1 (%)
N n>N N
)
(by hypothesis)., Ife < Cphnz , there exists N = n, such that
1 0 ‘

E2 ptl
L [?p] S Ay
Substitute into ¥ and the result follows.

c)} It will be shown that an infinite sequence of values of ¢ tending

to zero have p(e) bounded below by a logarithmic function of ¢.

£

Let me 8
lm
Then
2
2 1 ¢ 3
%ellz = =% Mmlly = 52 53 Mmli= =
m

*The same ideas are involved in proving 2) and 4) left out for brevity.
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I.et us maximize

subject to

NI
m

2

m

< 1.

3

Il

X
m

Fix attention on those ¢ for which 52 = kmnm for some m. There

are infinitely many such ¢ and they do define a sequence tending to

zero as m —o. Then

For such an €, \/nm will be a lower bound for p(e). n,, can be

bounded above under our hypothesis about the )Ln.

For C, R, p as specified, the function
Cp
=Lz

z(x) = x R

rises monotonically from 0 to co as x goes from 0 to co.

There is thus one root xo(e) to
C

-

e =x R

and xo(e) will be < M An asymptotic formula for xo(e) valid for

small ¢ can be found.

2loge =1 C\P 1opr P on
oge = logx, - (7) log - () log

L 1
N e -logR\p : 1 \p
= Ry = (Zloge) i o( loge .
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So for sufficiently small € which happensto be . - for some m,
1

N log R \p
ple) = C(———-Zlogs) . ]

Every rate of convergence discussed in Chapters 2 and 4 could
have been speedily estimated using 5.4, 4-a) and 5. 4.4-b). The
statement to the effect that Tikhonov's method gets logarithmic con-
vergence on the backwards heat equation follows from 5, 4. 4-¢) and
5.4.4-d).

A consequence of 5. 4. 4-a) is that if n, goes down faster than
any power of An’ then for small enough ¢, p(e) tends towards lin-
earity. It goes without saying, however, that ¢ may have to be
unrealistically small (from the point of view of numerical compu-
tation) before anything like linear behaviour prevails.

One is not always able to apply 5. 4. 4 conveniently - or indeed

at all, However, the following estimate is always available:

p2(€)$ inf ez sup Kl— + sup 71 . (5. 4.5)
N n<N “n n>N ©

For ¢'s of sizes encountered in computations, direct use of 5, 4.5
will often be, by far, the best way to find p(e). The An and Ty need
not be monotone although lack of monotonicity will make the estima-

tion more difficult.
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CHAPTER 6

SOME OBSERVATIONS ON A STATISTICAL METHOD

A few approaches for dealing with linear, ill-posed problems
of the form Kfo ~ g have now been examined. As we have seen, the
K's of interest to us suppress crucial information about fo in an
irrecoverable fashion; successful extension entails, among other
things, a replacement of missing information.

The methods studied so far seek to accomplish this by placing

very definite restrictions on f , forcing fo to lie within some admis-

0’
sibility class if it is to be considered an allowable solution. Let us
call these "D-methods." *

Suppose, however, that our physical application is such that
we have access to a wealth of statistical data about the solutions to
be encountered and the errors associated with our knowledge of g.

Then we might well seek to give a statistical estimate of £ replac-

O:
ing the information suppressed by K statistically. A classic case

T

is that of mathematical weather prediction ' where the accumulated
records compiled over the years by meteorologists are available,
Many problems involving interpretation of distorted signals also
suggest this approach, planetary radar and photographic image en-
hancement being two suitable areas of application.

The idea of applying statistical methods to ill-posed problems

goes back at least to Sudakov and Kalfin [26] (1957). Lavrentiev [18]

#"D" is for deterministic. There is no possibility admitted that fo
might lie outside the admissibility class.

tSee Courant and Hilbert [ 4 ], page 231.
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mentions their work and suggests a statistical approach of his own.
He points out how D-methods can be thought of as limiting cases
wherein the probability that the solution lies in some set goes to 1.
This set would be identified as the D-method's admissibility class.
Strand and Westwater [25] worked on statistical extension of Fred-
holm integral equations of the first kind. There are several
meteorological references in their bibliography.

Many of the earlier workers in the field discretized their
problems by suitable quadrature techniques as a preliminary step
to their analysis. That made the problem finite dimensional, the
ill-posed operator K typically replaced by an ill-conditioned matrix. .
A statistical approach which addresses itself directly to the original
problem will require the notion of a random process over an infinite
dimensional space. (See Gelfand [11] and Lavrentiev [18].)

The method of Franklin [ 6 ], developed for direct extension
of problems on Hilbert spaces will be the subject of this chapter.
As far as is possible, discussion of statistics will be avoided as the
work of previous chapters lends itself to the appraisal of D-methods
only. An interesting fact to be brought to light is that a TH-method
is readily constructible whose solution is the estimate suggested by
Franklin's method. On its own, the TH—method would be unmotivated
mathematical extension but, in this context, it becomes somewhat
more respectable. Its usefulness lies in the alternative viewpoint

it affords of the statistical estimate. What we know about convergence

*See Conclusions for further discussion of this point,
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in T“—muthoda can be invoked to account for certain stability features
in Franklin's method which are not obvious from the statistical stand-
point. In section 6.4, the problem of harmonic continuation on which
computations were performed by Franklin will be discussed in an
illustrative capacity.

6.1 Franklin's Method

For the purposes of this discussion, a very sketchy outline
of the method will suffice. (Anyone interested in pursuing the
details is referred to Franklin [ 6 ].)

Let Hl(- . -)1 and HZ(- 5 be Hilbert spaces and K : I—Il—-—H

)2 2

be bounded, linear, and one to one, The equation Kfo R gis re-

placed by
Kf,+n=g (6.1.1)
foeHl;neHz;geHz.

Having carefully defined random processes over Hilbert
spaces and their correlé.tion operators, Franklin views fo, n and g
as samples from processes referred to respectively as the signal,
noise and data processes.

Labeling these processes Pl’ P2 and P3, one relates them by

Ku, +u =ug (6.1.2)

(u, = g would represent a particular sample from the data

3

process P3. ) Sought is a best linear estimate (in a well-defined

sense) of the signal u, in terms of the data us. It is assumed that
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the autocorrelation operators Rll and R, (of the signal and noise

22

processes respectively) are known as is their cross-correlation

operator RlZ'

The solution to this best linear estimate problem is found.

For a sample u, = g from the data process, u, should be estimated

3 1
by
f=(R, K+R,,) (KR, K +K * K" =k 6
# (B B Ry o GRRLy (N SRR Ry g YBipal B (6 1 3)
The correlation operators have the following properties:
a) Rij : Hi ——.Hj are bounded. 1i,j =1, 2. (6.1.4)
b) R.. =R . i,j=1,2.
ij ji
&) (hi; R::h:): > 0 for 0+ h: € H.. 1i=]1,;2,
i i i

In actual computations, further restrictions are usually im-
posed on the operators Rij' In effect, assumptions about the signal
and noise processes are made which are reasonable for most appli-

cations and which make the implementation easier. Specifically,

a) R12 = 0 (signal and noise are uncorrelated) {6:.1.5)

b) R22 = vzl (where v is a small parameter).

L}

6.1.5-b) is referred to as the "white noise condition, " v being the

"white noise amplitude. "

Under these assumptions, 6.1. 3 becomes

£ #* -
f=R K (KR K g vo1y "t (6.1.6)
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6.2 An Equivalent Tyy-Method

At this point, the question confronting us is, "How can 6.1.6

be interpreted as an attempt to find an approximation £ to fO satisfy-
ing

[Kfy-gll, < ¢ (6.2.1)

-1 2

(£50 X £l < ¥
via the minimization of

. 2 _1

[Ki-gl, + a(f, x” £), 2" : (64 2 2)

Here X : H1 —>H1 it to be a positive definite, bounded, self-adjoint

linear operator. It is also required that o be related to e by

Clszs as< G, &= (6.2.3)

for positive constants C, and CZ'
Answering this question entails identifying X, €, @ and v,

within the framework just outlined, in terms of R, and v in 6.1, 6.

1
We know from Chapter 5 that the solution to the minimization problem

6. 2.2 will be given by
f=(xK'K +o1)"! xk¥g (6. 2. 4)

as a consequence of 5,2.5,

Let us therefore try to arrange that



T

s ¥ . B..-1 % S
Ry, K (KR ;K +v°I)7" = (XK K + al)” xK
sle £ B S
& (XK K+a) R K = xK (KR K +v°])
* 2 %
= aR, K =v7ixK .
ey @R, =v°
11 X
So choose o and x:
2-
@ =vy X =Ry (6. 2.5)

The operators K and X, (now fixed), determine the modulus of regu-
larization p(e). When e, ¥ and a have been specified, the difference

between f(given by 6. 2. 4) and any f, satisfying the conditions of

0
6.2.1 is bounded by the rate of convergence ’YG($ ,a). This is

related to the modulus of regularization by the inequalities:

‘)’p(%)SYO(.-?;,G)SY'p(;—:) (6.2.6)

where (see section 5.1)

2
s’:(l+ 1+%—)eand y':(1+ 1+82)y.(6.2.7)
€ ay

There is still considerable leeway in how ¢ and Yy must be
specified. In fact, there are many problems 6. 2.1 whose solutions
by 6.2.4 with o = v? would lead to the same approximation f. In
identifying a companion for Franklin's method, choose one giving
good error estimates in terms of v. What interest error estimates
are in understanding a statistical method has not yet been made

clear - that being the subject of section 6. 3 - for the time being, it
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will suffice to note that choosing
¥ 5% 8 & =Ygd o =v (6.2.8)
is legitimate and causes 6. 2.6 (in view of 6. 2. 7) to become
2 :
Yo P(v) S 70, vT) S v (1 + NZ) p(v) . (6,2, 9)

At first glance, it appears, somewhat alarmingly, that Yo is
a free parameter and that the error estimate Yo 0'(v,v2) can be made
arbitrarily small, This is not the case, however, since it was
assumed in deriving the relationships 6. 2. 6 that f

0 existed satisfying

6.2.1, Taking Yo too small will cause the sets

a) {£, e By | [Key-gfl, < vy} (6.2.10)
and
b) {5 ¢ H, | (5, X7 '£g), <75}

to become disjoint. For the estimate 6. 2.9 to be valid, Yo must be
chosen larger than some value ymin(v, g). If g is in the range of
Kx, a value of y, can be found which is applicable for all values of

v. Indeed, if

g = Kxh forh«sHl

Yo = (B, xh) s £, = Xb
satisfies

|kf,-gll, = 0 < vy, forallv
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and
-1 2
(fol X fo) - YO .

So, if g € Ran K x, there is always at least one choice of f, satisfying

0
the two constraints 6, 2. 10 whatever the value of v,

If g is not in the range of KX, it is indeed possible for
'ymin(v, g) to approach infinity as v — 0. Fortunately, for practical
purposes, this pathology can never make itself felt, Our e's can
never be smaller than the limitations imposed by the machine rep-
resentation of g. The actual machine description of the data always
refers equally well to any of a collection of points in the abstract
Hilbert space some of which will be in the range of Kx. This entitles
us to say "Without loss of generality, assume g is in the range of
Ky, "

In what is to follow, an intuitive understanding of certain
qualitative phenomena is all that is desired; the estimates to be made
will be very liberal. It will be assumed throughout that a modest
value of Yo (order 1) exists for which Franklin's method can be

viewed as equivalent to a T . -method, the rate of convergence sat-

H

isfying 6. 2.9 for any v of computational relevance.

6.3 Insensitivity of Estimate to Certain Statistical Assumptions

Franklin observed in his numerical computations that the
solution f to 6. 1.6 was rather insensitive to the statistical assump-
tions made. In particular, the white noise amplitude v could be
varied over several orders of magnitude without notably affecting f.

We are now in a position to explain this.
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The white noise amplitude has now been identified as a small
convergence parameter, For each value of v, an element fv is asso-
ciated by way of 6.1.6. Asv —0, f  approaches some limit. When
v is small enough, fv is quite near the limit and making it smaller
will not have much effect.

Letv, >v, be distinct values of v corresponding to £, and

£, - Let £ satisly '
[Kig-gll < vovg<vy7g (6.3.1)
(fo’Rn_l"fo) <7,

(v, as discussed in section 6,2). Then by 6.2.9,
“f'vl' b, I, < ||fvl folly + ”fo'fvonl
s (1 +N2Z) vy levy) +p(vy)] (6.3.2)

This is a very crude estimate, the distance between fv1 and
fvz being bounded by the sum of their distances to a third (pessimis-
tically located) point. Nonetheless, 6. 3. 2 does tell us that stability
of the kind mentioned will be observed in computations if the regu-
larizing effect of R,;onK yields a good modulus of regularization.

At this point, it would be desirable to see what sort of con-
vergence occurs with the Rll's and K's typically used. In the next

section, we shall delve into the computational example actually

worked by Franklin and check this out.
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6.4 The Numerical Example of Harmonic Continuation

The ordinary Dirichlet problem for the unit circle is to find

u(r, 0) satisfying
Au=0 for <<l 0LB< 2y (6.4.1)

subject to u(1,0) = fO(B).
The solution is given by the well-known Poisson formula:

2
2 (l-r7)f (@) ,
u(r,6)=-2—17-r-f g 5 do . (6. 4.2)
0 1-2r cos(0-¢)+r

Suppose we were given

g0(0) = u(p, 0)

on some interior circle of radius p< 1 and asked to recover fo. That

is, find fo(qp) satisfying

5 = A J.Zvr (1-p%) fole) "
g ) = — d(P . ( . 4. 3)
0 A 0 1-2p COS(Q—¢)+p2

This is a Fredholm integral equation of the first kind.

Let us write this in operator notation:

Kf = (6. 4. 4)

0o~ %o
: 2 : 2 .
K, regarded as a mapping from L“[0, 2w] into L"[0, 27|, is self-
adjoint, compact; has the eigenvalues pn, (n a non-negative integer),

and the orthonormal eigenfunctions:
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: corresponding to the eigenvalue pO =1= \!7{1 i
N2
et corresponding to p” forn =1 = N

N
gmdy corresponding to pn forn=1 = \’h2n+1

N

K will thus have the spectral decomposition:

Kf = (f

1 1 X n cosnb , cosnf n sinn@, sinn
, ——)—+ ), [p (£, ) + ph(s, 2222 E1EE0 |
NZ7m N27m n=1 NT N NT N7
(6.4.5)
(All these facts about K are easily discovered when séparation of
variables in r and 0 is performed in solving 6. 4. 1).
In passing, let us see what convergence Tikhonov's method

would achieve. Take the simplest regularizing functional:

2 2T 5 2
Q°(f) = fo {£9(0) + [£'(0)]1°} dx = (£, £) + (£, £')

If f has the Fourier series:

fes) ; .
f~ (f, -2}.7}_) ‘/.2_1.; F Z [(f’ COSDG) cosnb (£, smne) 51nn6:|
n=1 N NT NT o N7

then

2 fo'0) 2 .
() = (5, Yz=) *+ ), [(f,ﬁ‘”——“ﬂ) (n%s1) + (£, 1008, (n2+1)]
3 N7

*Recall that A was the designation in Theorem 5. 4. 4 of the eigen-
values of K*K = K2 (in this case).
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where X has the spectral representation:

w0 . .
xf =, _1__) "_L + E 12 (f, cosne) cosnb + 12 (f’smne) sinn®
N2r N2 n=1 l4n NT N l+n N N7
(6.4.6)

The eigenfunctions of x are;

P
— corresponding to the eigenvalue 1 (= -r]l)
NZw
gosnt corresponding to —l—z— n=1 (=n,.)
NT l+n 2n
sinn® . 1 =
corresponding to > n=1 (= n2n+1)
N7 l+n
* 2 ; . ;
K K = K" has the same eigenfunctions as x, the eigenvalues

%
A of K K are monotone non-increasing. Thus 5. 4.4 is applicable.

The eigenvalues to be compared are Ak and um identified here by

A _ 2n_ _ 2n
Ay T Ao =P 3 Apgai =0 nE
' 1 1
m, =hin, =—=:M = — nzl
1 2n l+n2 2n+1 an
DenotepE%;R>1
Lt © = 23 p=3.
2.p 2 . '
X, :R—Zn___R-[ZCn] sR-[C(n +1)] 2
n
Now let C =1; p = 1.
1 c P
i T B
A, =R e g @ Hl.g 8oy T

*Recall that the n, are the eigenvalues of X defining ” ”X in 5, 4, 4,
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The same calculations hold with ?LG and Mon replaced by A d

2n+1 el

PR By Theorem 5, 4. 4 (parts c) and d)), convergence will be

logarithmic if Tikhonov's method is used. This observation was
made in Franklin | ]. Note how slowly the Ny 8° down as compared
with the )Lk. This is in marked contrast to what we shall observe

when the x = R, . of Franklin's computation is taken as the regu-

11

larizer,

The operator R, ., used was defined by

11
2T 2.
R, £6) = [« exp{-psin® [1(6-9)]} f(¢) do (6.4.7)
0
which is the convolution h¥*f of f with the function h:
m¢psaexpﬁﬁsm2%} . (6. 4. 8)

The parameters o and B were related to how large and how oscillatory
the anticipated solutions would be on the average. The "size" and

"roughness" associated with R, ., were defined * and shown to be equal

11
to Vo and ‘/-g respectively. Computations were performed with

size = 1 and roughness =1, 2, 5and 7. So & =1 and  ranges in value
from 2 to 98, p was chosen to be 3.

To get the Fourier series for Rllf from f and hence obtain

the spectral decomposition of R,,» use the convolution theorem for

Fourier series. That is, if f has the series

*Size and roughness will not be defined for this non-statistical dis-
cussion.
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1 R 9 inn@
ety 2§ [ come o]
NZTr n=l N7 NT
and
he~h 1 oi [ cosn@ . sinne]
0 yZz 1=l N7 N

then h*f has the series:

h¥f~ NZT fhg e Z [d" (£,h -f 'h_ St \j;(flrlhnﬁnh;l)&ne]_

NZz  n=l N N7
So all that is needed to complete the spectral representation of R11
is the Fourier expansion of h. The hA are zero since h(g) is 27

periodic in ¢ and is even when extended to negative values. To get

the hn’ evaluate

For 2 = : 1-cos
cosng texp| Bsin %] de = oef cosneg expi_—ﬁ(-——i] de
0 0
E- 7 Bcosg _B
=2a e 277—1- f ez cosnedg = 2T e = I (E)
L ngt "

(I_ is the n™® order modified Bessel function, )

n
N 3
Sohy=\NZr a e I, (-g-) ho=2vTaee 1 &) .

So R has the form:

11
2 e . L o5 -3 g 0 0
R..f(6)=27rae I.E)(f, —) — + P e I ( )(f’cosn )cosn &
H SN N F X nzil N
o -t o o
n Z 2rae %1 (%) (£, s1nn9) sinn® (6.4.9)
n=1 B \['J—T- »J}F
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‘ Y
R11 has the same orthonormal eigenfunctions as K K and we identify,

for purposes of applying Theorem 5. 4. 4,

- B

2
n, = Zr o e IO (}%)
. %. 8
n2n=27ra:e 1(2) n=1
= % 8
n2n+1:27rae L (2) 3 n=1

The comparison will this time be between

2n = %.
p = (f{_) and 21 e In(

QO 1 2k Qo0 1 k
L) = () ) —2X < g LY Gx)
n k=0 k!(k+n)! B ksp &%
= (éx)n -ri—l IO(X) .

Comparison of the behaviour in n of
I
2nae (E)n
4

n!

2n

€) and (z)

Iy R

shows that the M, 80 down much more rapidly than the Ak.

(6.4.10)

For small

enough values of its argument, the modulus of regularization p(e) will

exhibit very rapid (— linear) convergence to zero with €.

values to be encountered in computations such as € = 10"

But what of

= 10'6?

Asymptotic estimates are not helpful here and we are not in a position

to usefully exploit Theorem 5. 4. 4, Instead one appeals to 5, 4, 5.
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That is, usc the estimate for p(e) given by
pz(s) < inf{ (-:2 sup )ti + sup nk} . (5.4.5)
= k<N 5 k>N

Our and n, are monotone. In fact, they are such that the above

reduces to

2 1

: 2
p (e) = 1nf{e = + n }
- )L2n+l 2n+2
2o 2 ‘%
% n
= inf {¢“ R“™ + 2rae . (%)} - (6.4,11)

n

For specified values of ¢, @, p and R, the above inf can be found
numerically. Let us find it for the following values of the parame-

ters:

B = 154525549, (6.4.12)
T s

= 1,

R=2.

The variable parameters are € and 3 so denote the modulus of regu-

larization p(e; E) s

B

2 : 2 n T2
p (e;%)s 12.{{5 47 + 27e In_l_l(Pz—)}

The computed results appear in Table 6. 4. 13.
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TABLE 6.4.13

% 3 = p(s;%) log p(e;%)/loge

1.0 1973 2.97 x 102 . 509
10~ 2.80 x 10~ . 592
4,0 10'3 9,41 x 10'2 . 342
10'6 2.35 x 10'3 .438

-3 1
25.0 10 1.36 x 10 . 136
tge 6.55 x 10~2 197

3 <1
49.0 10 2.02 x 10 116
ig~® 1.36 x 1071 . 136

An interesting quantity is the ratio of the log of p(E;%) to loge.
It is a measure of the fraction of significant figures of accuracy in

the data, a TH—method retains in the solution. We expect it to go to

b
1 slowly in € since in the linear limit,

p ~ Ce = logp ~ logC + loge

logp _ logC -
= 5 N +1=1+o0() .

For all the values of % considered, this ratio did increase as ¢ was
lowered from 10" to 10_6.

*For this example, we do obtain linear limiting behaviour,
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The tabulated values of log p(e)/loge would tend to suggest
that the smaller § is chosen to be, the better will be the convergence.
This corresponds to making statistical assumptions favouring low
frequency oscillations. Interestingly enough, this postdiction is not
borne out by Franklin's computations. This TH—analysis very defi-
nitely has its limitations.

Roughly speaking, '"too many possibilities” are admitted by

the combined assumptions:

-1 2
a) (f5, X fp) <7

b) Iks,-gll® < ¢

for a really good comparison with the statistical method. In the spec-
tral decomposition of fO’ high frequency terms are damped by the
assumption a} and low frequency ones are pinned down by the assump-
tion b). For small enough values of ¢, assumption b) locates arbi-
trarily many low frequency terms arbitrarily accurately. (That is
why spectral cut-off works.) But exceedingly small ¢'s may be re-
quired before the combined effects of a) and b) really give a good rate
of convergence. (One must beware of asymptotically pleasing esti-
mates. )

The statistical viewpoint would have us focus attention on a
range of frequencies with a lower as well as an upper bound. Perhaps

replacing a) with

2 -1 2
vy <X ) < 7p
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would be more appropriate but then the analysis would become more
difficult.

Rather than trying to push a point further, let us just accept
the fact that all qualitative features of the statistical method will not
be explained through the TH-interpretation. We merely make the
-observation that the statistically constructed Rll is an excellent
regularizer for this operator K. Whatever the more appropriate

D-analogue happens to be, the regularizing effect of Rl] can be ex-

pected to force rapid convergence.
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CONCLUSIONS

This work has been concerned with ill-posed linear problems
resulting from an attempt to invert compact mappings between Banach
spaces. The mechanism for well-posed extension has been the impo-
sition of an additional constraint that admissible solutions lie within
given compact sets. Ultimate numerical solution of appropriate
related problems has been in the background of all discussion.

When the mapping is between separable Hilbert spaces (as is
so often the case), compact restriction involves suppressing the
contributions from most of the terms in the expansion of allowed
elements. The mathematical study in Hilbert function spaces such
as Lz[a, b] would necessarily begin and end with suppression of high
frequency modes. It began with simple spectral cut-off and ended
with T'H—methods.

Motivation of constraints is truly of paramount importance
although the preponderance of effort has been upon the analysis of
their effects and upon their incorporation via related (well-posed)
problems. The condition KfO ~ g is very weak; satisfied by an enor-
mous and diverse collection of fo‘s. An astronomer asked to approx-
imate the location of a star given only that it lay in a designated
unbounded sector .of the universe would be confronted with no more
impossible a task. In reaching into that morass of fo's and pulling
one out, we must have a reason for focusing our attention on the

one chosen. If we have no such reason, anyone else's choice is at

least as good as ours.
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Order of priority in the reduction of a problem to a form

suitable for machine computation is a topic meriting some mention.
Numerical discretization must sooner or later be pefformed and a
finite dimensional problem solved. At what stage in the analysis
should this be considered done? Many are in favour of discretizing
immediately, much happier in dealing with ill-conditioned matrices
than with compact operators. This approach is not endorsed here.
We know that incorporation of additional information about the solution
will be necessary. That information, be it statistical or determinis-
tic, will be in the nature of statements about elements in the Banach
space in which the problem was initially cast. It is difficult to
imagine a means whereby the information can be utilized without
loss in authenticity. It is recommended instead that we hold off on
the numerics until our interest has been established in a well-defined
element in the Banach solution space, that element being the solution
of a well-posed problem. Then finding a numerical approximation
for that quantity becomes a worthy and plausible goal.

One who adopts the philosophy of this work with regard to ill-
posed problems must find the subject discouraging until he learns to
be content with i'ather meagre returns. He must learn to call a
method good when in his answer he expects "only" to lose half the
significant figures of accuracy supplied in his data.

When strong restrictions in a D-method promote very rapid

convergence, it means that good 3 priori knowledge of the solution

#It was touched obliquely in the opening remarks of Chapter 6.
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was available. Under no circumstances is something given to us for
nothing. Very simply, there is a limited amount of information
present in the statement Kfo ~ g. What little there is can be coupled
with whatever else we know in our attempt to propose approximate
solutions. The optimal campaign of action towards this end will so
often yield results below the expectations of one whose past experience
is with well-posed problems. We must not be disappointed just be-
cause our honestly established claims of accuracy prove to be rather

unspectacular., It may be impossible to do significantly better.
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APPENDIX A

A FEW DEFINITIONS* FROM TOPOLOGY
AND FUNCTIONAL ANALYSIS
It is assumed the reader has some familiarity with linear (vector)
spaces, elementary set concepts, convergence of sequences of real
numbers.

Al A norm ” ” defined on a subset V of a linear space X is a

rule assigning real numbers to elements vyiv, €V which has

2

the properties:

a) [[vy]| =05 [v,]| =0onlyifv, =0. (positive definiteness)

b) flev, || = [a] v, - (homogeneity)

c) [lvyrvo |l < vyl + IIvo | - (triangle inequality)
A.2 An inner product (-,-) defined on a linear space X is a

complex-valued function defined on XxX with the properties:
a) (xl+x2,x3) = (xl,x3) + (xz,x3) - (bilinearity)
b) (xl,xz) = (xz,xl) . (conjugate symmetry)

c) (axl,xz) = a(Xl'XZ) :

d) (Xl’xl) =2 0; (Xl’xl) # 0 if x,# 0 (positive definiteness)
X)Xy, X3 € X . (Anorm “ ” will be defined by
”x1 ”2 = (xl,xl). Inner product spaces are thus normed

spaces. )
A3 A normed linear space X ” “ is a linear space X on which

a norm " H is defined.

#It will actually be definition interspersed with remarks about prov-
able facts. Only points which will be required to understand the
main text are raised.
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A linear inner product space X (-, -) is a linear space on

which an inner product (-, ) is defined.

A Cauchy sequence in a normed space X ” ” is a sequence

of elements {xn}C X with the property that for each e > 0,
there exists N(eg) such that
“x -x “ < g if n;m = N(eg) .
n m

a) A subset V of a normed linear space X ]

-|| is said to be
closed if all Cauchy sequences {vn} (_ V converge to an
element contained in. V. That is, if {vn} Cv(CXisa
Cauchy sequence, there exists v € V such that

”vn—v” —+ 0 as n —oo0.

b) The smallest closed set containing a given set V is called
the closure of V and is denoted V.

c¢) A normed space X “ ” which is closed is said to be complete.

A complete, normed, linear space is called a Banach space.

A complete, normed, linear, inner product space is called

a Hilbert space.

A subset V of a normed space X ” ” is said to be dense in
X if each element x in X is the limit of a sequence in V. That
is if for each x € X, there exists {vn} (_ V such that

”vn—x ” — 0 as n —oo.

An operator K mapping from a subset V of a space X into
a subset W of a space Y is a rule which associates a unique
element w = K(v) or Kv € W for each v € V. The largest subset
V( X on which K is defined is called the domain of K and is

denoted DomK. The subset W (_ Y defined by W= {ye P’ 'y’ =Kv
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for some v € DomK} is called the range of K and is denoted
Ran K. Write K: Dom K =Y
{Kve Y |ve VC Dom K| = KV (the image of V under K).

A.1l1 a) An operator is onto (surjective) if Ran K = Y.

b) An operator is one to one (injective) if for v,,V, € Dom K.
Kvl = KVZ only if vy =V,
c) An operator K is linear if for all ViV, € Dom K and all

scalars a and B,
K(a{vl + sz) = osz1 + BKVZ.

A, 12 IfK:DomK({ X—7Y is one to one, then for each w € Ran K,
there is a unique element v € Dom K; denote v = K_lw. The
operator K—l so defined is called the inverse of K.

A.13 A topology on X is a class T of subsets of X satisfying:

a) The union of every class of sets in T is a set in T,
b) The intersection of every finite class of sets in T is a
setin T,

A.14 An open set Oin a Banach space B ” ” is a set with the property

that for each x € O, there exists a positive scalar e such that
{beB | |lb-x|| < e} C 0.

The class T of open sets of B ” ” defines the norm topology

on B ” : ” .
A.15 A subset V of a Banach space B ” ” is compact (in the norm

“ “ topology) if every class of open sets whose union contains

V has a finite subclass whose union contains V.
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A lincar operator K Xl —>X2 where Xl ” ”, and X2 ” ”2

are normed linear spaces is said to be bounded if there exists

a real number M (= 0) such that for all X € Xl 2

K x < M||x

1z il
The smallest such M is denoted “K “ and is called the norm

of the operator K,

A linear functional F defined on a linear space X is a linear
operator whose range is contained in the space of scalars and
whose domain is X. The space of bounded linear functionals
defined on a normed space X ” ” is denoted X*.

A sequence {xn} (_ X is said to be weakly convergent to
x € X if for all bounded linear functionals F € X*

2

]F(x ) - F(x) I—*O as n —+oo. Denote x_— x.
n n

A linear operator K : X1_~X2 where Xl ” and XZ ” “2

ly
are normed spaces is said to be comEact if the image KV of

every bounded set V X, has compact closure in X,. That
is if KV is compact (in the ” Hz—topology).

Let”Bl ” “l and B be Banach spaces and T : B, —B

215 3 ~* g

be a bounded linear operator. Define the adjoint operator

TF T el %
.B‘2 1 y

T*F(bl) = F(Tb,)

3 E
for all Fe BZF; bl € Bl' (It is easily shown that T ) is bounded,
i< ES 3
linear, and T . B2 --*Bl i)
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Remark
In a Hilbert space H(-,-), a general theorem due to Ries=z
says that any member of H* can be identified with a member of H.
Specifically, for F € H*, there exists f € H such that for all h € H,
F(h) = (h, f) .
H and H* are thus identified.

==

are Hilbert spaces and T : H,y 2

If Hl(' ,*), and HZ(' ; ')2
is a bounded linear operator, then T>=< : H2 —>H1 is defined by
(8 gy ) = s Th T,
for hl € Hl; h2 € HZ'
A, 21 Let H(-,+) be a Hilbert space and T be a bounded linear
operator mapping from H into itself (T : H — H).
a) T is sgid to be normal if TT* = 'I‘*T.
b) T is said to be self-adjoint if T = T*.
Remark
In all the foregoing, details which will not be needed are
omitted. Convergence, unless othefwise specifiéd, is in the norm;
compactness will always be in the norm topology; open and closed
sets have been defined for the norm topology. Ill-posed problem
theory could be generalized to much more abstract topologies; con-
vergence in nets considered - indeed, work of this sort has been

done. Abstraction was carried as far as practical utility seemed to

suggest.



-119-

APPENDIX B

Remark on the Estimate of Sturm-Liouville Eigenvalues

In Chapter 4, the following estimate was given for the nth

eigenvalue )Ln of the Sturm-Liouville problem:

(pw_)_+ Rp-q)w =0 (4.1.4)

subject to

ozlw(a) + Blw'(a) =0
azw(b) + ﬁzw'(b) =0 —
(n-1)7 4 *
?Ln”“ (——5————) + O(1) , (4.5.2)

p being given by

3

o= [ -

It was mentioned that this formula's application in deciding a trunca-
tion value in a series expansion (see section 4, 5) should not be taken
too seriously; that the constant in O(1) could be large. Here, a couple
of instances are cited in which this is the case.

First take:

*It was stated that for large n, eigenvalues increase at least this
rapidly.
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That gives the system:
(N 2
w''+ A -0Q7)w=0
w'(0) =w'(m) = 0.
The eigenvalues )Ln and the eigenfunctions @, (normalized) are easily

found to be:

corresponding to A= QZ ;

1l

Ql-

?

2+2

<
]
il
|

= cos[(n-1)x] corresponding to A, = (n-1)

[}

T

= }-Exzw.
B = {) (11 @

4.5, 2 would have )\n = (n—l)2 + O(1) and the constant in O(1) is identi-
fied as Qz. This may be chosen arbitrarily large at will,

Now take:
p(x) =x; p(x) =§ ; A(x) = % (Q% = const. )

a, =a,=0; B, =B,/1; [a,b] =[1,2] .

That yields the system:

2
d d A Q -
WEHEW G -FIw=0

w'(l) =w'(2) =0,

The eigenvalues )Ln and eigenfunctions ?, (normalized; weight function

p(x) = -}12) are
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¢, = ﬂlﬁ corresponding to 7{1 = QZ
= —— cos El:-l—)—lr—{?—x—— corresponding to
%n = Vinz in2 p g
2
A, = [-(%-z)l—] +B*% fewpu e L,
2 1
B= [ () dx=um2.
1l x
(n-1)m 2

4.5.2 yields An = [

In?2

:’ + O(1) and the constant is again identified

as QZ; arbitrarily large. It is easy to see that, in general, increasing

q by sz(x) will increase the eigenfunctions by Qz in any system

4.1, 4.
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