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ABSTRACT 

A means of assessing the effectiveness of methods used in 

the numerical solution of various linear ill-posed problems is out

lined. Two methods: Tikhonov' s method of regularization and the 

quasireversibility method o£ Lattes and Lions are appraised from 

this point of view. 

In the former method , Tikhonov provides a useful means for 

incorporating a constraint into numerical algorithms. The analysis 

suggests that the approach can be generalized to embody constraints 

other than those employed by Tikhonov. This is effected and the 

general "T-method" is the result. 

A T -method is us e d on an extended version of the backwards 

heat equation with spatially variable coefficients. Numerical com

putations based upon it are performed. 

The statistical method developed by Franklin is shown to have 

an interpretation as aT-method. This interpretation, although 

somewhat loose, does explain some empirical convergence proper

ties which are difficult to pin down via a purely statistical argument. 
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INTRODUCTION 

A problem is well posed in the sense of Hadamard if it satis-

fies the criteria of existence, uniqueness and stability of solution; 

that is, if it has a unique solution depending continuously upon the 

data. >:c I£ a problem lacks any one of these solution properties, it is 

said to be ill posed. Three categories of ill-posedness are immedi-

at;ely suggested. One encounters the modifiers 11 overdetermined, 11 

11 underdetermined11 and "unstable" in description of the cases of 

nonexistence, nonuniqueness and instability of solutions respectively. 

A hasty appraisal of what is implied by ill-posednes s might 

give one the impression that such problems are to be given a wide 

berth because of the difficulties inherent in their solution. In point 

of fact, virtually all scientific investigators will encounter ill-posed 

problems in their work and in most instances will come to terms 

with them rather easily. Consider the following hypothetical situa-

tions. 

An experimenter, plotting his data on a graph, expects his 

points to lie on a straight line whose slope is of interest. What he, 

in fact, discovers is that because of errors in his measurements, 

the points are not quite colinear. Undismayed, he draws a line pass-

ing through some and quite clos e to the others. 

A draftsman is asked to pass a smooth curve through a col-

lection of isolated points. He does not vociferously protest that any 

number of such curves might be drawn. With the aid of a French 

curve, he simply makes an eminently reasonable choice of one. 

* In any application, this statement would require further clarification. 
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A freshman differentiates cos x. He does not trouble himself 

with the fact that a very small perturbation of £ sin~ x to cos x 

will produce a huge perturbation of f cos(~ x) 
£ 

In the three situations, problems arose 

£ 

in his answer. 

which were (in order 

of appearance) overdetermined, underdetermined and unstable. In 

the first two cases, simple mental readjustments of intent were 

made and the ill-posedness was .effectively exorcized. In the third 

case, data were exact and a means was available for exact solution 

in the abstract. Under these circumstances, instability will never 

be given the opportunity to make itself felt. However, where com-

puter solution is envisioned, such instability will always be relevant. 

Inasmuch as numerical roundoff will always be a source of error, 

data can n ever be regarded as exactly given, even should no other 

source of error be present. 

In coping with ill-posedness, we recognize that asking for 

a solution to the original problem per se is very naive. Either a 

solution does not exist, there is more than one, or a small but ines-

c a pable source of error in the data could lead us to arbitrarily 

erroneous answers. There is still hope, however, that useful infor-

mation may be obtained via the solution of a related well-posed 

problem: a well-posed extension. 

The ideas involved in such extension need not be profound. 

If our experimenter performed a least squares fit, his extended 

problem would have been to find that line coming as close as pos-

sible (in a well - defined mathematical sense) to all the points. But 

he may prefe r to simply" eye-ball" the points and then to draw his 
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line. In that instance, precise mathematical description of the ex-

tens ion would be quite impossible. He is, in effect, drawing that 

line which in passing close to the points optimizes his peace of mind. 

That will likely apply to the draftsman's curve, the only difference 

being that the choice is made from the class of solutions to the 

original problem rather than from a class of "near misses." This 

kind of vague thinking was perfectly adequate in the modest appli-

cations considered. But as the problems get harder, the thrust of 

results obtained by unsupported intuition becomes increasingly 

nebulous. The need for a sounder basis of operations becomes 

more keenly felt. 

This work deals with linear inverse problems in which in-

stability is the essential source of ill-posedness. Numerical methods 

for inverting equations of the form Kf
0 

= g
0 

(where K is a linear 

operator mapping from one Hilbert space into another) are discus sed. 

In thos e examined, existence and uniqueness will be assumed so . 
that were g 0 known exactly, a unique f

0 
would exist satisfying the 

e quation. However, g
0 

will be assumed known only approximately. 

K will invariably be such that some information crucial to the de-

scription of f
0 

can not be found from our approximate knowledge of 

g
0

. Furthermore, the class of admissible f (consistent with our 

knowledge) includes pairs f 1 and f 2 vastly different from one another. 

The effect of K is to reduc e their difference f
1 
-f

2 
so much that 

K(f
1 
-f

2
) is hidden in the small uncertainty as so cia ted with g

0
. A 

well-posed extension must provide us with a means of providing 

the information missing. Directly or indirectly, assumptions will 
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be made about the solution f
0

. The class of admissible f' s will be 

made much smaller than that satisfying just Kf ~ g. In analyzing 

a method geared to numerical solution, a first step is to identify 

those additional assumptions. Ultimately, we will wish to know 

how accurately, in light of this additional information, a solution 

computed using the method approximates f 0 . 

In Chapter 1, an overview of the problems to be considered 

and the kinds of measures to b e taken in their well-posed extension 

is provided. In Chap t e r 2 Tikhonov' s method of regularization is 

introduced and its a pplication to a few specific problems c onsidered. 

This motivates the subsequent discussion in Chapter 4 of what is 

b e lieved to b e a new numerical app roach to the backwards heat 

equation with spatially variable coefficients. T his, in turn, moti

vates a generalization of Tikhonov' s method to utilize solution set 

constraints other than those suggested by Tikhonov . This theory is 

used in Chapter 6 to explain certain convergence phe nomena encoun

tered in the apparently unre lated statistical method developed in 

Franklin [ 6 1. Chapte r 3 stands somewhat apart f ro m the others. 

It is a c ritique of a class of techniques known collectiv e l y as quasi

reversibility m ethods illustrated with two which are perhaps the 

most famous. 
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CHAPTER 1 

GENERAL DESCRIPTION VIA FUNCTIONAL ANALYSIS 

The aim of this chapter is to provide an overview of unstable 

problems w hich will motivate subsequent treatment . A few basic 

results from functional analysis afford considerable insight into the 

instability phenomenon and the kinds of measures one takes in at 

tempting to denature it. 

The machinery needed for this discussion is developed in the 

references: Riesz-Sz. -Nagy [21] , Simmons [ 23] and Taylor [27] 

Although these will be freely quoted, the scope of their theorem 

statements will often be contracted. For clarity of focus, generality 

transcending our requirements will be sacrificed. That may cause 

some of the facts stated to appear rather weak to a nyone acquainted 

with the full power o f their sources. 

For completeness, all relevant concepts standard to func 

tional analysis will be defined. However, to avoid unwieldiness in 

this chapter , such definition will be relegated to Appendix A. Any 

underlined word will be appearing for the first time (in the main 

text) and will be defined in Appendix A. 

1.1 Description 

Let B 1 II · 11 1 and B 2 II · 11 2 be Banach spaces and K a linear 

operator (K : B
1 

--- B 2 ). Consider the problem of finding fin B 1 such 

that Kf = g for some g in the range of K (Ran K). Our attention will 

b e restricted to those K's with the following properties: 
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a) K is one to one (injective) 

b) K is bounded (continuous) 

c) K's inverse (K-l: RanK -B
1

) 1s unbounded 

d) The range of K is dense in B
2

. 

1.2 Restriction of Data 

(1.1.1) 

The range of an operator K having the properties ( l. l. 1) can 

not be all of B
2

. (K can not be an onto (surjective) mapping). There 

will be g in B
2 

for which no f exists satisfying Kf = g. We get this 

from the following theorem: 

Theorem l. 2. l 

Let B 
1 

II · II 
1 

and B
2 

II · II 
2 

be Banach spaces and K a bounded, one 

to one linear operator whose domain is B
1 

and whose range is all of 

- l 
Then K exists and is bounded. 

Proof. Taylor [27] page 180; Simmons [23] page 236. 

This considered, one can not admit properties l. 1. 1 a) through c) 

and ontoness. The range of K must be a dense but proper subset of 

L3 Compactness 

Many of the K' s of interest to us will be compact operators. 

This is a stronger prope rty than boundedness. Such K's map weakly 

convergent sequences in B
1 

onto (strongly) convergent sequences in 

B
2

. If the Banach space B
1 

is norm-reflexive, that mapping of 

sequences characteristic can be used as an alternative means of 

defining compact operator (to that given in Appendix A). (Taylor 

page 287). 
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l. 4 Well-posed .Extension 

Suppose there is some g
0 

in the range of K whose inverse 

image f
0 

is desired. Suppose too that our knowledge of g
0 

is some

what limited and, for one reason or another, we actually have g as 

data, knowing only that llg-g0 liz ~£ for some small number£.* 

Since g may not even be in the range of K, 11 solving" Kf = g is imme-

diately a dubious idea. By 1. 1. l d) our neighbourhood of g will 

contain an infinit e class of points in the range of K. If all of these 

points have an equal claim on being identified as g
0

, we will be in 

a most unhappy situation because the inverse image under K of those 

points will be an unbounded set in B 
1

. This unboundedness of K - l 

is, of course, the central is sue in all this work. It is a fact of life 

that in the absence of additional information, we are hopelessly 

stuck. Approximate knowledge of g
0 

is not sufficient to yield for 

us approximate knowledge of £
0

• 

Suppose we can add the additional requirement that f
0 

lie i n 

some admissibility set A contained in B 1 . The only elements in 

N£ (g) which will be considered "candidates for being g 0
11 will have 

inverse images in A. This procedure will define a well-posed 

extension if in view of the restriction to A, our knowledge of f
0 

become s better and better as our knowledge of g
0 

improves. More 

precisely: 

>:<The s e t of eleme nts h in B
2 

satisfying II g-h II 2 ~ £ will be denote d 
N£ (g). 
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D e finition l. 4. l 

D e noteby qA( g , t } - sup //£1 -£2 /1 1 

f
1
,£

2 
E A 

K£1 , K f
2 

E Ne: (g) 

An extension by this restric tion to A will be said to be well-

pos e d (converg e nt} if rrA(g, e: } -o as e: -o. 

The following theorems will give us an idea of the kinds of 

extensions likely to be h e lpful. 

Theorem 1. 4. 2 

L e t K : B 1 - B 2 b e linear, o n e to one and bound ed and let A be a 

compact s e t in B 
1

. The n the restriction of K to A has a continuous 

inve rse. 

Proof: 

Let {fn} be a s e quence in A whose image under K {Kfn}C B
2 

con

v e rges to a limit g . So Kfn -g. S i nce A is comp act, { fn} has a 

convergent subs e quence {f } whose limit shall be denoted by£. 
n 

p 
Suppose the entire seque nce does not converge to f. Then the re is 

a subsequence bounde d away from f from w hich we can extract a 

further subsequence {f } converging to a limit h nec e ssarily 
mk 

diffe rent from f. But K is bounded so lim £ = h ~ lim K£ = 
P. -ro mP. k -ro m P. 

Kh and lim f = f ~ lim Kfn = Kf. Since {Kf } and 
n m 

p-ro p p-ro P P. 
are both subsequences of {Kf} whose limit is g, Kh = g = Kf n 

and by the one to onene ss of K, h = £. This is a contradiction so 

the entire sequence £ had to be converg e nt. 0 
n 

The orem l. 4 . 3 

Let K : B
1 

- B
2 

be linear, one to one and compa ct. Let A be a 
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closed, bounded set in B 
1 

having the property that any sequence in A 

whose image under K is convergent is itself convergent. Then A is 

a c ompact set. 

Proof: 

Let { fn} be a s e quence in A. The image of A under K has compact 

closure so { Kf } has a convergent subsequence { Kf } . By hypoth-
n nk 

esis this would make{£ } convergent and hence every sequence in 
nk 

A has a converge nt subse quence. So A is compact. 0 

We see then that restriction to a compact set will lead to a 

w e ll-posed extension for all bounded operators K of interest to us 

and that if K is compact, our restriction must be to a compact set 

if we are to produce a convergent extension. 

1. 5 Spectral Theory 

In many instances, B
1 

and B
2 

will be one and the same. K 

will be an injection from a Banach space B into itself. In the prob-

lems to be examined later, B will, in fact, be a Hilbert space 

2 
(usually L ). 

Spectral decomposition of operators is often useful in analy- · 

sis of methods and in ultimate numerical solution of the extended 

problem. 

Definition l. 5. 1 

The spectrum of a bounded linear operator K : B - B (where 

B II · II is a Banach space) is the set of (complex) scalars A. for which 

K-A.I does not have a bounded inverse. The spectrum is denoted a(K) 
\ 

and i ts complement (the resolvent) by p (K). 

*Here I refers to the identity mapping Ix = x. 



-10-

The spectrum is subdivided into three subsets. 

Definition 1. 5. 2 

a) The point spectrum a (K) is the set of A for which K-AI 
p 

fails to be one to one (has a non-trivial null space). 

b) The continuous spectrum a (K) is that subset of a(K) for 
c 

which K-Alis one to one and the range of K-Alis dense 

in B. 

c) The residual spectrum consists of those A in a(K) for 

which K-Al is one to one and the range of K-Al is not 

dense in B. 

It is at once apparent that all operators K of interest here 

have 0 in their continuous spectra. We shall not encounter K having 

(non-empty) residual spectra. A few useful results about the spectra 

of particular classes of K (in our domain of interest) will now be 

listed. Their proofs are scattered through the references and will 

not be given here. 

Theorem 1. 5. 3 

The spectrum of a bounded operator K is contained in a closed circle 

of radius r (K) = lim a IIKnlll/n. 
n -oo 

When B is a Hilbert space H ( , ), it makes sense to talk 

about normal operators KK* = K*K and self-adjoint operators K = K*. 

Theorem 1. 5. 4 

If K : H- H is bounded and normal, its residual spectrum is empty. 

For compact operators, we get the following results. 

Theorem 1. 5. 6 

The spectrum of a compact operator is at most countable with 0 as 
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the only possible accumulation point. 

Theorem l. 5. 7 

If H is a separable Hilbert space and K : H- H is a compact opera-

tor, the null space of K-A.I is finite dimensional for A. in a (K). 
p 

This leads to the spectral decomposition theorem. 

Theorem 1. 5. 8 

Let H ( , ) be a separable Hilbert space and K : H - H be a compact, 

self-adjoint, linear operator. Let the point spectrum of K be de-

noted by the sequence { A.n} ({ /A.n /} non-increasing). Let { (/) } be 
n 

orthonormal eigenvectors, qJ corres·ponding to A. . * Then K has the 
n n 

00 
decomposition defined by Kx = L: A. (x, qJ )({) (x arbitrary in H). 

n=l n n n . 

1. 6 An Example 

To illustrate the ideas of this chapter and how they tie in 

with a practical problem, a famous example (the backwards heat 

equation) "solved" by the technique generally referred to as "Simple 

Spectral Cut-off" will be considered. The point of view outlined in 

the previous sections will be the one adopted. "Spectral Cut-off'' 

will be appraised as an extension method of the kind described. 

The "forwards heat problem" to be inverted will be the 

simplest one imaginable. If we were required to solve 

u = u 
t XX 

for t > 0 x € ( 0, 1r ) 

u(O, t) = u(1r, t) = 0 

u(x, 0) = f(x) f 

( 1. 6. 1) 

*Possible multiplicity of eigenvalues is accounted for by allowing the 
same eigenvalue more than one index in that eventuality, i.e., 
A. = A. 

1 
is possible. 

n n+ 
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for some t = T> 0, we would find, by separation of variables, 

u(x, T) = ~ e-n
2

T (f, _{f sin n x) _fi sinnx 

n = 1 "7T "?T 
( l. 6. 2) 

Here the inner product ( , ) used is defined by: 

2 L [0,1r]. ( l. 6. 3) 

The inve rse problem would be: Give n u(x, T) = g(x), 

( l. 6. 4) 

find f(x) such that g ( x) = ~ e - n 
2 

T ( f, - f"f sin n x ) JI sin n x . 
n=1 "7T "?T 

Identify: B 
1 

= B
2 

= L
2 

[ 0, 1r] = H, a separable Hilbert spac e. 

K is the (forwards) h e at ope rator. 

K f is defined by 1. 6. 2 
2 

Kf(x) = L e -n
2

T (f, JZ sin nx'- @_ sin n x . 
n=1 "7T ~7T 

I . 1 -n T . h ts e1genva ues are e w1t corresp onding orthonormal eigenve c-

_{2 . 
tors "7T s m n x. We recognize the spec tral decomposition form of 

Theore m l. 5. 8 and indeed, K is a compact, linear, self-adjoint 

ope r a tor. 

If g
0 

is exactly g ive n, solving this proble m i s e asy. W e 

c ould simp ly rec ove r the Fourie r sine series for f
0 

by : 

_{2 oo -n2T _{2 
(g 0 , "?T sinm x ) = ~ e (f0'"7T sinn x ) 6m 

n=1 n 
2 

- m T .f2 = e ( £0 , "?T s in m x ) ( l. 6 . 5) 

(l. 6. 6) 

( l. 6. 7) 
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If g 0 is perturbed by £ lr sin p x (p integer; norm of pertur-

2T J2 2T 
bation £ ), f 0 would be altered by ep £ liT sin p x (norm eP £ ). 

p2T 
By choosing p large enough, e £ can be made arbitrarily large. 

If g 0 is perturbed by ~ £ 8 ~~~sin nx, (of norm£), fO 
n=l lT 

oo ./6 n
2

T ~2 
would be altered by 2:: El:Z ~ rr sin n x which does not repre-

n=l lT 
oo 2n2 T 

sent an L
2 

[ 0, lT] function. ( 2:: £ 
2

· -~ e2 is a rapidly diver-
n=l Yrr2 

n 

gent series. ) This is a manifestation of the data res t riction men-

tioned in section 1. 2. 2 
The range of K can not be a ll of L [0, lT] and 

l. 6. 7 can only be applied sensibly to g in the range of K. The range 

of K will be dense in L
2 [0,lT]. For any gin L

2 [0,lT], choosing N 

l a rge enough enables us to approximate g arbitrarily accurately by 

N 

L: 
m = l 

(g, ~sin mx) ~~sin mx which is the image under K of 

N 

L: 
m=l 

m 
2

T ( _ {2 . ) _/2 . 
e g, lrr sm m x liT sm mx. 

Since the ill-pos edness arose from high frequency perturba-

tions, simple spectral cut-o££ rules these out by truncating l. 6. 7 

after a finite number of t erms: 

N 2 
fN(x) = ~ em T (g, lr sin mx) lr sin mx 

m=l 
( l. 6. 8) 

The only f' s this method considers as possible solutions are 

thos e lying in theN dimens ional subspace of L 2 [0,lT] spanned by 

J 2 . y.; sm mx m = l, ..... , N. The image under l. 6. 8 of the unit ball 

about a data point g will be a hyperellipsoid within that subspace. 



-14-

The closure of the hyperellipsoid will be compact and can be identi-

fied as the admissibility set A of section 1. 4. 

Assuming f
0 

is in A and is mapped to some point g
0 

within 

£ of our data g, applying 1. 6. 8 to g gives an estimate of f
0

. Having 

mad e these assumptions, our estimate can be out by at most 

N 2 T 
rrA(g,£)= sup llf1 -f2 11 which, by inspection, is 2£e Simple 

f
1
,f2 £A 

Kf1 KfzE N£ (g) 

spectral cut-off is thus a convergent extension. 

To be sure, there are more sophisticated spectral cut-off 

methods than this; (hence the modifier "simple") . It may seem 

rather crass to make a restriction of this sort except as an approx-

imating endeavour. However, this was only intended as an illus-

trative example of an extension method. 

l. 7 Additional Rema rks 

The point of view of well-posed extension methods the pre-

ceding sections may lead one to adopt is a trifle too narrow. It is 

important to realize the limitations of such analysis. 

First of all, not all good methods are convergent. Suppose 

in solving a related probl em to Kf
0 

= g
0

, we could demonstrate an 

error estimate of the form: rr + p(£) (where£ is the error asso-

ciated with our knowledge of g
0

, p( £ ) - 0 and 11 is some small bias 

inherent in the method and independent of £ ). Depending on the 

size of 11 and the speed with which p(E) - 0 with £ , we may be quite 

satisfied with such a method. After all, in practical problems the 

£ 's encountered are non-zero, the whole point being that the data 
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is not perfect. Having to live with the fact that TJ + p(O) = TJ is non-

zero need not be any great hardship. An example of such a method 

for the problem of section 1. 6 would be to place a non-zero bound 

on the "tail" of f 0 ' s Fourier sign series, i.e. , ~ (f
0

, ~ sin nx) 
J2 n=N+l 
l~ sin nx has norm ~ TJ. Then our error estimate for the solution 

N
2

T 
by spectral cut-off would be T) + 2£ e If a functional dependence 

2 
ofT) on N were assumed, a minimization of TJ (N) + 2£ eN T would 

indicate where we should cut off the series. 

The previous sections will not, however, be irrelevant to 

the appraisal of these biased methods. The assumptions made about 

£
0 

are not quite commensurate with our genuine knowledge of f
0 

but 

do lead to a convergent extension to which all the foregoing applies. 

Having done so, we will be left with assessing the bias in producing 

our two-part error analysis . 

Our knowledge of g
0 

may be statistical in nature in which 

case our estimate made for f
0 

should be statistical too. If all we 

know about g
0 

is that our actual data g is a sample of a Gaussian 

random variable with mean g
0 

and variance a, it will not be pas sible 

to put a d e terministic e rror bound on whatever estimate of f 0 is 

made. Different yardsticks will be required to measure the success 

of a statistical method from those described thus far. 

The relevance of the value judgements to be made on the 

ext ension methods to be considered in later chapters will remain 

s lightly subjective. That being understood, such assessment will 

be made without further ado . 
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CHAPTER 2 

SOME OBSERVATIONS ON TIKHONOV'S 

METHOD OF REGULARIZATION 

2. 1 Overview of the Method 

Conside r the Fredholm integral equation of the first kind: 

b 
J K(x, y) f 0 (y) dy = g 0(x) 
0 

(2.1. 1) 

where f 0 is in B 1 II · 11 1 (a Banach subspace of L 
2 

[a, b] ); g
0 

is in 

L
2

[c,d]; K(x,y) is an L
2 

kerne l (is in L
2
{[c,d] x [a,b]} ). 

Equation 2. 1. 1 can also be wri tten in operator notation: 

(2. 1. 2) 

2 
K so define d 1s a compact mapping from B

1 
to L [c, d] (proof 

in Taylor [27] page 277) and will be self-adjoint if the kernel is 

symmetric (K(x, y) = K(y,x) a. e.). We assume that Kf
0 

= 0 has only 

the trivial solution in B
1

. 

In Tikhonov [28] , a convergent extension method was intro-

duced via the "regularizing assumption" that f
0 

belongs to a class of 

functions f E B
1 

satisfying: 

2 b 2 2 2 
Q (f)=: J {p(x) [f'(x)] + q(x)f (x)} dx ~ w 1 (2.1.3) 

a 

for some real number w
1

• (Here p(x) and q(x) are positive and con

tinuous on La , b] • ) 

The very d e finition of B 1 is incomplete until the norm II · 11
1 

is s pecifie d. A convergent extension will be achieved via this re-

striction whene v e r 2. 1. 3 defines a compact set in the norm topology 
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Definition 2. 1. 4 

The assumption 2. 1. 3 will then be said to regularize K under 

the norm II · II 1 . 

If we take B 1 to be the absolutely continuous functions with 

square integrable derivatives on [a, b] and associate the norm 

II f II 1 = max I f(x) I 
XE[a,b] 

(2.1.5) 

the family defined by 2. 1. 3 is equicontinuous; uniformly bounded and 

hence compact by Ascoli's theorem. 

In Franklin [ 8 ] , attention was paid to the effectiveness of 

the regularizing assumption on various · operators K. The notion of 

a rate of convergence was introduced and calculated for a few 

examples. Following the notation of that paper, the norm II • II 
1 

will be denoted !J.( • ). The effect of the norm !J. on convergence will 

be of paramount importance here. 

2. 2 Applying the Method 

It is supposed that K(x, y) is known and a function g given 

* satisfying II g-g
0 

II .:::; E for some E > 0. Then a number 01 is chosen 

related to E by the inequalities: 

2 2 
C l E ~ 01 ~ C

2 
E ( 2. 2. 1) 

for two positive constants c
1 

and c 2 . The function f which minimizes 

>!'Unless otherwis e specified II· II will denote the L 
2 

norm 

2 b 2 II g II = J g (x) dx • 
a 
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the quantity 

(2.2.2) 

is taken as the approximation to fo. Using the fact that n and II • II 
d e fine norms obeying the parallelogram law, Franklin demonstrated 

the uniqueness of the minimizing function f. 

Since f minimizes 2 . 2. 2, f
0 

must satisfy: 

(2.2.3) 

1
2 2 12 2 2 2 II K£- g I + an (f) ~ II g 0 - g I + a w ~ £ + a w • 

From this we obtain: 

(2.2.4} 

and 

2 2 2 1 2 an (f) .:::::£ +aw .:::::: a (c+w) 
1 

(2.2.5) 

From 2. 2. 4, 

(2. 2. 6) 

2 1 2 
And from 2. 2. 5, n (f) .:::::: C + w 

1 
(independent of £ ) • ( 2 .2.7) 

If 2. l. 3 defines a compact set in the norm topology of B 
1 

f.L( · ), 2. 2. 6 

and 2. 2 . 7 enable us to apply theorem l. 4. 2 to conclude f.L(f-f0 ) - 0 
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In Chapter 1, rapidity of convergence was measured by 

11 A ( g, E ) = sup fl ( f 1 - f 2 ) 

fl, f 2 E A 

where A is the compact set in 

which f 0 is assumed to lie. Here 

Kfl, Kf2 E NE (g) _ { I 2 1 · 2} A = A( w l ) = f E B l rl (f) ~ C + w • 
1 

The f minimizing 2. 2. 2 lies in A(w1 ) as does f
0

• 

For regularization, Franklin ( 8 ] introduced the following 

measures of convergence. 

Definition 2. 2. 8 

The modulus of regularization p (E) is given by: 
fl 

p (E)= sup 
fl 

IIKfll ~ E 

n 2
(f) ~ 1 

fl (f) • 

Tikhonov' s method provides a mapping T 
0! 

2 
L (c, d] - B 1• 

Definition 2. 2. 9 

The modulus of convergence a (£,a) is d e fined by 
fl 

a fl (£ , a )= sup fl (Ta g -f0 ) • 

II g-Kfo II ~ £ 

n2
(f

0
) ~ 1 

2 2 
If the bound on n (f

0
) is w (not n eces sarily 1), we notice that 

sup f.L(Ta g-f0 ) = 

II g -Kfo II ~ £ 

2 
~ w 

= 
£ 

w a (- ,a ). 
f.LW 
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Definition 2. 2. l 0 

The rate of convergence is given by wa (~, a) • 
f.J.W 

Franklin proved that the modulus of regularization and rate 

of convergence are related by the inequalities: 

wp(Ejw) ~ wa(£/w,a)~w'p(£ 1 /w') (2.2.11) 

(l + ~1 2 ) (1 where £' 
aw 

~ + ~1 + c2 w2) £ (2.2.12) - +-;z £ 

(1 + ~1 + £22) w ( 1 +~ 1 and w' - ~ +~ )w . (2 .2.1 3) 
aw C 1w 

All we wish to know about the rate of convergence is known 

once we have found the modulus of regularization. In practice, 

asymptotic estimates of p (£) valid as £ - 0 are what we try to fJ. . 

obtain. We seek a function h(£) (with which we have some famili-

arity as £ - 0) for which we can exhibit constants r 
1 

and r 2 sa tis-

fying 

(2. 2. 14) 

for sufficie ntly small £ . The function h( £ ) typically proves to be a 

power (Ex for some x< 1) or logarithmic : ( - log£ )-y for some y > 0. 

Sinc e p(x) a nd q(x) are pos it i ve and continuous on [a, b] , they 

take on maximum values (denoted by P and Q respectively) a nd mini
b 

{J .. 2 
mum values (denoted p and q). Clearly then, min(p;q) lf' (x ) + 

2 } 2 {b 2 2 } a f (x)] dx ~ Q (f
0

) ~ max (P, Q) J [£' (x )+f (x)] dx . So choosing 
a 

the functions p(x) and q(x) to be othe r than identically 1 gives a value 

for Q
2 (f

0
) which can be r e late d to that obtained with p(x) == q(x) == 1 by 
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scale factors . The effect of changing w by a modest multiplicative 

factor on the rate of convergence is not profound as is seen from a 

glance at 2. 2 . 11. Generally, p(x) and q(x) are chosen to be identi-

cally l unless convenience suggests otherwise. 

2. 3 The Modulus of Regularization for the Maximum Norm 

Although it is often easiest to bound the modulus of regulari-

zation (in the manner of 2. 2. 14) for the L 2 norm, f.L( • ) = II · II, we 

are often more interested in the maximum norm defined by 

f-Loo (f) = 

tinuous 

max lf(x) I (which exists since f E B
1 

are certainly con-
x E [a, b] 
on [a, b] ). Denote, fer convenience, p (r.) = sup f.l. (f) and 

00 00 

~i(f) ~ 1 

IIK£11 ~£ 
sup 

~l(f) ~ 1 

IIKfll ~ £ 

Theorem 2. 3. 1 

If p = min p(x), 
X E (a, b) 

small r.. 

Proof: 

Let x and y be arbitrary points in La, b] and f satisfy ~i(£) ~ l. 

Then 

L e t y b e such that the minimum of If J on [a, b] occ urs at y. The n 

den oting this minimum by fmin• f(x ) sati sfies: 
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{ 
II£ 11

2 
2 

f 2 (x) ~ £2 . 2 II f II ) - m1n + - . ~ f.!. ( f ~ -.:-- + -..JP oo o-a ..JP 

= 1/£1/t p~~ + ~}t 
1 

1 {"q+ _z_r So p (e: ) = sup fJ. (f) ~ sup 11£11
2 

00 00 

n2 (£) ~ l n2(f) ~ l 
~..JP 

IIK£11 ~ £ IIK£11 ~ £ 

1 

[~ + ~J t ~ ~ sup 11£11
2 sup 

n 2 (£) ~ 1 n
2

(f) ~ l 
b-a ..JP. 

IlK£ II ~£ IIK£11 ~ £ 

1 { Pz(' I z}t = [p2(e: )]2 + -b-a ..JP 

For small enough e: , 
Pz(e:) 2 
b -a 

~ - and the r esult follows. 0 
.JP 

1 

Since Jlfll ~ f.1.
00

(f) (b-af2 , we have a lower bound on p
00

(e:) of 

1 • 

(b-a)2 

2. 4 An Example 

The general notion of when the regularizing assumption re-

sults in a convergent extension remains somewhat elusive. For the 

following problem, related, (as will be shown), to a backwards 

problem of heat flow with variable coefficients, this issue can be 

approached in a more concrete fashion than our appealing to the 

topological property of compactness. 

Consider the linear two p o int boundary value p roblem: 



-23-

d 
dx [p(x) g'(x)] - q(x) g(x) = f(x), for a< x < b 

1 * p(x) positive and in C [a, b] (2. 4. 1) 

q(x) positive and in c 0 [a, b] 

subject to the boundary conditions g
1
(a) = i(b) = 0. (2.4.2) 

If we are asked to find g(x) given f(x), (assuming the homogeneous 

problem with f(x)= 0 has only the trivial solution), our problem would 

be well-posed. A Green's function representation 

b 
Kf(x) = J G(x, y) f(y) dy = g(x) 

a 
(2.4.3) 

for the solution g(x) would exist. Since the problem is self-adjoint, 

G(x, y) will be symmetric. The spectral decomposition of the oper-

a tor K defined by 2. 4. 3 is obtainable numerically. Indeed, the Sturm-

Liouville system: 

Lu(x) = _i_ [p(x) u 1 (x)] - q(x ) u(x) = 
dx 

1 
- ~ u(x) (2. 4. 4) 

1 
u'(a) = u'(b) = 0 has a countably infinite set of eigenvalues -

An 
and an associated orthonormal s e t o f e i genfunctions \.(; • The \.(; w ill 

n n 

be complete in L 
2 

[a, b). Expanding both sides of 2. 4. 1 in the \.(; 
n 

g ives: 

00 

L ( ~ (g, l(;n)l(;n) 
n=l 

* p(x ) has a continuous first d e riva tive o n [a, b] ; q(x ) is c ontinuous o n 
[a, b] . 
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00 

whence g = 1:: A ( f, tj; ) tj; = Kf 
n=l n n n 

(2. 4. 5) 

and we recognize the form of Theorem 1. 5. 8 for compact self-adjoint 

operators K. In passing, we note that 

= Jb [-f(y) ~ A tj; (x) tj; (y)J dy 
l 

n n n 
a n= 

00 

and we identify G(x, y) = 1:: A tj; (x) tj; (y) . 
n=l n n n 

The ill-posed problem to be considered here is the inverse 

problem: given g find f. Of course, if the data are exact and we 

know how to compute the derivatives analytically, this is no problem 

at all. Our proble m is to invert Kf
0 

= g
0 

given g such that II g- g
0 

II < E, 

assuming a regularizing condition. 

The nice feature of this problem is that if 

2 Jb 2 2 2 r.l (£
0

)= [p(x) f 0 (x) + q(x) f 0 (x)] dx ~ w (2. 4. 6) 
a 

and we choose our functions p(x) and q(x ) to be the same as in 2 . 4. 1, 

r.J
2

(£
0

) has a convenient representation. 

r.J
2 (f

0
) is derived f rom the inne r product: 
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b 
(f, g)= J [ p(x)II(x)g'(x) + q(x)f(x)g(x)] dx (2. 4. 7) 

a 

rl(f0 ) = (£0 , f 0 ). The lj;n are orthogonal in this inner product; in fact, 

b 
Nn' lj;m) = J [p(x)lj;~(x) lj;~(x ) + q(x) lj;n(x) lj; (x)] 

a m 
dx 

b 

= [ p(x) lj;n (x) lj;~ 
a 

= 0 

00 

= ~ 
n=l 

(2.4.8) 

W e will consider re gularization with respect to norms of the 

form: 

(2 . 4. 9) 

(The fJ. are to be real and positive.) Bounded sequences {fl. } will 
n n 

give ris'e to norms fJ. satisfying m llfll
2 ~ f-L

2
(f) ~ M 11£11 2 

and hence 

equivalent to the L 
2 

norm. More interesting are the cases where 

f-Lu - oo. For the sum 2. 4. 9 defining fJ.(f) to converge, the (f, lj;n)
2 

must tend to z ero correspondingly quickly. 

Now we a s k, "Under what conditions on the fJ. does the regu-
n 

larizing assumption ~i(fm) ~ 1 ensure that f-L
2
(fm)- 0 when IIKfm 11-o 

for a sequence { fm} C B 1 ? " 

Theorem 2. 4. 10 

A nece ssary and sufficient condition for n2
(f) ~ 1 to regularize 

the ope rator K (defined in 2. 4. 3) under the norm fJ. (defined in 2. 4. 8 ) 
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1s that lim X. ll. = o. nr-n 

P r oof: 

n -oo 

First of all, assume l im 
n -oo 

}.. f.L = 0 and defi ne: n n 

sN = sup 
n > N 

f.L }.. • n n 
Then l im sN = 0 by hypothesis . 

N-oo 
Let {£ } be 

m 

a sequence of {unctions satisfying !;}(fm) ~ l; II Kfm II - 0. Fo r 

all m, 

sup 
n~N 

T] 

1-Ln 
Jj K£m lJ

2 
00 

(fm' lj;n)2 
l 

~ sup 
}..2 

+ SN I: ~ 
n ~ N n =N+l n n 

~ IIKfm iJ
2 1-Ln 

+ SN sup 
}..2 

. 
n~N 

n 

For any 'Tl, the re exists NT] such that sN < 1 if N ;::::: N. 
T] 

1-Ln 

}..n2 
is some finite number; call it M • 

T] 
Let m b e chosen 

l arge enough so that Then for sufficiently large 

m, !1+!1 - .,.... 2 2 - . ,. 

Conversely, suppose lim 
n -oo 

}.. f.L > s > 0 . Then for any N, 
n n 

there exis ts n > N such tha t }.. f.L > £. So a subsequence o f { }.. f.L } n n n n 
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exists which is larger than ~ - call it {A. 1-1 } • Consider the 
nk nk 

sequence fk = ..J\ljJ . IIKfkll =A. 
3

/
2 -o ask -oo. rl(fk) = 

nk nk nk 

zero as k - oo. 0 

The proof of 2. 4. 10 gives us the following estimate (upper 

bound for p ( £ ) ) . 
1-1 

2 
p ( £) 

1-1 

2 1-Ln 
~ inf { sup £ - + sup 1-1 A. } 

N n~N A.2 n > N nn 
n 

2 
For the L norm, all the 1-1 are identically 1 and 

n 

2 
p 2 (E) ~ inf 

N { 
sup 
n ~ N 

The A. are decreasing so 
n 

Thus 2. 4. 12 becomes: 

2 
£ 

A.2 
n 

sup 
n ~ N 

+ sup 
n > N 

2 
£ 

A.2 
n 

= 
2 

and 
A.2 

N 

£ 

(2. 4.11) 

(2 .4.12) 

(2. 4.13) 

Assuming £ is at least small enough that A. 1 ?: (2£ 2 )~, there 

2 ·.!. 
exists n 0 such that A.n

0
+1 ~ (2£ )3 ~ A.n

0
• So + 

(2£ 2)~ = ( 2\ + 2~)£ 1. 
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(~ + i~-)i 
23 

(2. 4. 14) 

Now consider the sequence of functions 

it is required that £
2 2 3 

If, in fact, £ = A.k for some value k
0 

of 

1 

k, then II fk II = £3 • So there is an infinite sequence of £ - 0 for 
0 

1 

which p
2

(£) is bounded below by £3 . This is the same power law 

1 

as demonstrated for the upper bound m 2. 4. 14. Although £3 may 

not be a lower bound for all values of £, there is little value 1n 

carrying the analysis of p
2

(£) further. In making error estimates, 
2 

one proceeds as if p
2

(£) obeys, (for all£ 

A.3 
~ _l)' 

2 

1 

We identify the form of 2. 2. 14 with h(£) = £3 . 

2. 5 The Backwards Heat Equation 

(2. 4. 15) 

The main reason for considering regularization of the fore-

going problem is that it is related to the backwards problem of heat 
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flow with variable coefficients. Consider finding u(x, T) satisfying 

ut = (p(x)ux)x - q(x)u for a < x < b; 0 < t (2. 5.1) 

(p(x) and q(x) as in 2. 4) subject to the initial condition u(x, 0) = f
0

(x) 

and the "no-flux" boundary conditions u (a, t) = u (b, t) = 0. 
X X 

This problem is well-posed. By separation of variables, its 

solution is readily found to be : 

oo -s T 
u(x, T) = :6 e n (f

0
, ljJ ) ljJ (x) 

n=l n n 
(2.5.2) 

where s and ljJ (x) are respectively the eigenvalues and orthonormal n n 

e igenfunctions associated with the Sturm-Liouville problem: 

-s ljJ (x) 
n n 

(2. 5. 3) 

subject to ljJ (a) = ljJ (b) = 0. 
n n 

2[ 2 · This defines a compact operator KT L a, b]- L La, b] • 

-s T n 
e ( fO ' ljJ ) ljJ n n 

(2. 5. 4) 

K T has the same eigenfunctions as the Sturm-Liouville problem 
_r T 
. '='n 

2. 5. 3 but the eigenvalues s of 2. 5. 3 become e for the operator 
n 

K T. KT has the integral representation: 

b [ oo -s T J b J f(y) :6 e n ljJn(x) ljJn(y) dy = J f(y)K(x , y) dy 
a n = 1 a 

00 

where the (symmetric) kernel K(x, y) = :6 
n = 1 

(2.5.5) 
-snT 

e ljJ (x) ljJ (y). (2. 5. 6) 
n n 

The inverse problem would be to recover f 0 given g ~ g
0

• To 

use Tikhonov' s method, we would make the regularizing assumption: 
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2 b 2 2 2 
r.l (£

0
) = J [p(x) £' (x) + q(x) f (x)] dx ~ w ( 2. 5. 7) 

a 

By the same method used m section 2. 4, we find 

(2.5.8) 

while 

(2. 5. 9) 

In considering regularization with respect to the norm f.!(£) defined by 

n -oo 

1-Ln 
sn = 0. 2. 4. 9, a necessary and sufficient condition is that lim 

In Franklin [ 8 ] , the L
2 

modulus of regularization p 2 (£) for 

the case p(x) = q(x) = 1; [a, b] = [0, 1r] was found to go down like 
1 

(-log £) -z-. Not surprisingly, this more general case can 'be shown 

to exhibit the same behaviour. This is extremely slow convergence. 

To use regularization as a numerical method for this problem would 

be a mistake. We generally expect our convergence estimates to b e 
1 

somewhat modest; £
3 convergence means, roughly speaking, that 

our solution will have i as many decimal places of accuracy as our 

data and this would be a reasonably successful application. However, 

requiring data accurate to order e-lO to get a solution accurate to 

order 10 -l is most unsatisfactory. To get a better return for our 

data accuracy, we will require stronger restrictive assumptions. 

That is the subject of Chapter 4. 
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CHAPTER 3 

SOME OBSERVATIONS ON QUASIREVERSIBILITY METHODS 

3. l Quasireversibility Methods 

Among the extension methods for solution of the so-called 

"backwards problems of evolution" (e. g., the backwards problems 

of heat flow) are the quasireversibility methods. 

Lattes and Lions [ l 7] developed such a method and were 

likely the first to use the term "quasireversibility. " Since then, 

the term has become generic in describing a class of related 

approaches. In all quasireversibility methods, a differential op-

erator is perturbed by the addition of an extra term modified by 

a small parameter. Appropriate additional boundary and/or initial 

c<;>nditions are added if the extra term has changed the order of the 

equation. In this chapter, two such methods will be applied to the 

backwards heat problem and analyzed from the point of view of 

Chapter l. 

It is possible to be fairly general in the description of the 

backwards heat problems to be tackled with no inconvenience. The 

following problem will thus be considered. 

Let L be a linear differential operator of the form: 
X 

(3.1.1) 

where p(x) is positive and continuously differentiable on [a, b] ; q(x} 

is continuous on [a, b] . Let B(u, c.) = 0 denote a linear boundary 
J . 

condition of the form 
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B(u;c . ) =ct. u (c.)+ j3. u(c . ) = 0 
J J X J J J 

for J = 1' 2 . 

The problem of interest is to find u(x, 0) = f
0

(x) such that 

u = L u 
t X 

subject to 

for 

B(u;a) = B(u;b) = 0 

a < x < b ; 0 < t < T 

(3.1.2) 

(3. 1. 3 ) 

and u(x, T) = g
0

(x). (Our actual data will be g(x) ~ g
0

(x). ) The prob

lem of finding g
0

(x) given f
0

(x) would be the well-posed forward heat 

problem. 3. l. 3 is, of course, ill-posed. 

3. 2 Outline of the M e thod of Lattes and Lions 

The related problem to be solved is that of findin g u(x, t; 11) · 

satisfying 

L L 2 u 
Ut = X U + 'I) X for a < x < b; 0 < t < T 

subject to 

B(u;a) = B(u;b) = 0 

B(L u;a) = B(L u;b) = 0 , 
X X 

(3. 2. 1) 

and u(x, T) = g(x) • 

Here 11 is some small parame t e r. The QR app roximation taken for 

£
0

(x) is f(x) = u (x , 0;1) ). Lattes and Lions demonstrate that the prob-

1em 3. 2. 1 is well -pos e d. 
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3. 3 The QR Method of Latt~s and Lions as a Well-posed Extension 

Consider the Sturm-Liouville system: 

L w = -s w 
X 

subject to B(w;a) = B(w;b) = 0 . 

( 3. 3. 1) 

It has a countably infinite set of eigenvalues s and an asso
n 

ciated orthonormal system of eigenfunctions ~ . These eigenfunc
n 

tions are complete in L 
2 

[a, b] . 

Through separation of variables in 3. 1. 3, we find that f
0

(x) 

and g
0

(x) are related by 

( 3. 3. 2) 

the forward heat operator (through time T ), being defined by 

(3.3.3) 

Separation of variables 1n 3. 2. 1 leads to the system: 

2 
T]L v+L v=-A.v 

X X 

subject to 

B(v, a) = B(v;b) = 0 (3. 3. 4) 

and B(L v;a) = B(L v;b) = 0 . 
X X 

The eigenfunctions of 3. 3. 1 are also eigenfunctions of 3. 3. 4. 

Certainly, B(~n;a) = B(~n;b) = 0 and B(Lx~n;a) = B(-sn~n;a) = 0. 

(B(L ~ ;b) = 0 similarly.) The associated eigenvalues A. for 3. 3. 4 
x n n 

2 
are related to the s of 3. 3. 1 by A. = s - TJS • So the solution n n n n 
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00 

f(x) = u(x, O;TJ) = L: 
n=l 
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2 
(s -TJs )T n n 

e (g,4; )4; (x). 
n n (3.3.5) 

(It is interesting to note in passing that were we solving a forwards 

version of 3. 2. l, it would be ill-posed!) Equation 3. 3. 5 enables us 

to define a QR operator QT;TJ whose domain is all of L 
2
[a, b] by 

2 
~ (sn -TJsn)T 

f = QT ;Tl g = LJ e ( g, 4; n) 4; n ( 3. 3. 6) 
., n=l 

In estimating f 0 by f, there are two distinct sources of error. 

One stems from the inexactitude of our knowledge of g
0 

- the fact 

that our data g is only approximate - //g-g
0 

II ~ e:. The fact that a 

different problem is being solved also gives a "bias" error. Q g 
T;TJ 0 

will not be precisely f
0

• Specifically, 

( 3. 3. 7) 

The first term is our error from our data; the second is our 

bias. As TJ- 0, we expect the bias to g
0 

to zero and our IIQT;TJ II to 

become infinite. Indeed as TJ - 0, the original problem 3. l. 3 is 

recovered; hence no bias but complete instability. How quickly bias 

disappears and how quickly instability returns as TJ - 0 are key 

questions in gauging the effectiveness of the method. 
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First, II QT II will be computed. , T] 

sup 

n 

2 
2(~ -TJ ~ )T n n 

e 

2 
2(X-Y]X )T 

= 

;::; sup e 

x>O 

where x is a continuous variable. 

2 
2(X-Y]X )T 

T 

By calculus, sup e 
X 

3. 3. 8 results. 

does not exist. 

Furthermore, a lower bound valid uniformly in TJ 
2 

The maximum of e 2 (X-YJX )T 1 
occurs at x = 2 TJ. 

T 

Since ~ - oo 
n ' 

for appropriate TJ, there will exist ~N = iT] in which 

case IIGT, YJLj.JN II will achieve the bound 3. 3. 8. 

Now, the bias will be considered. For f
0 

in L 2 [a, b], 

2 
2 00 ( ~ - TJ ~ )T - ~n T 2 2 

II(QT· KT-I) fO II = L [e n . n e - 1] (fO,Lj.Jn) 
•ll n=l 

So for fixed f 0 , the bias goes to zero as TJ - 0. This occurs, how

ever, in a highly nonuniform fashion in f
0

. If the value of TJ is fixed 

and f 0 taken to be f 0 = jjf0 jj Lj.Jm, IIGT;YJKT-I) llf0 11 LJ;m//
2 

= 

2 
-TJS T 2 

llf
0

/1
2 

(1 - e . m ) This quantity approaches 1 as m-oo so for 

any TJ > 0, //GT; TJ KT-I II = l. The c onve rge n ce of the bias to zero 

may be arbitrarily slow in TJ depending on the value of £0 . 
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The QR method has no built-in mechanism for restricting the 

f
0

•s to some admissibility class. It is thus not surprising that this 

nonuniform bias occurs. One might consider adjoining, in an ad hoc 

fashion, some restrictive assumption. This can assuredly be done. 

For example, bounding lifo II and adding a spectral cut-of£ assump
N 

tion: f
0 

: ,6 (f
0

, ljJ ) ljJ will control bias. But then one would have 
n=l n n 

no particular reason not to use straight spectral cut-of£. The beauty 

of the QR method lies in the ease of its implementation. Its extended 

problem is easily solved numerically through finite difference 

schemes. Additional restrictions will tend to get in the way; to 

compromise that desirable feature. If the restrictions are conducive 

to some other approach, the usefulness of the QR method will be 

largely obviated. 

The other quasireversibility method to be examined improves 

upon the bias estimates but at some cost to stability. 

3. 4 The Method of Gajewski and Zacharias 

This approach, described in Gajewski and Zacharias [ l 0] 

extends the p roblem 3. 1. 3 as follows. Find u(x, t;11) satisfying 

for a<x < b 0 < t < T 

subject to B(u;a) = B(u;b) = 0 (3.4.1) 

u(x, T) = g(x) . 

The approximation for _i0 (x) taken is f(x) = u(x, 0;11 ). This will be 

denoted the G-Z method. 

Separation of variables leads to the system: 
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-">-.(w-T) L w) = L w 
X X 

B(w;a) = B(w;b) = 0 (3.4. 2) 

Again, the eigenfunctions tV of 3. 3. 1 are eigenfunctions of 
n 

this system. The eigenvalues ">-. of 3. 4. 2 are related to the s of 
n n 

3. 3. 1 by -">-. (l + T)S ) = -s or">-. = 1 }n~ • By separation of vari-
n n n n T) n 

abies, the solution to 3. 4. 1 is 

whence 

00 

u(x,t;T))= l: 
n=1 

00 

f(x) = u(x, 0; T)) = l: 
n=1 

This defines 

00 

= I: 
n = l 

e ST g ,T) 

S T n 

The bias for the G-Z method will be, (for a given f 0 ), 

II (ST, 
11 

KT -I) f 0 II· This is given by 

s T n 

( 3. 4. 3) 

(3.4.4) 

(3.4.5) 

(3 . 4.6) 
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A glance at 3. 3. 9 shows this bias estimate is always superior: 

However, there is still the problem of nonuniformity in the conver-

gence of the bias to zero and, in fact, 

The stability of the G-Z method depends upon the norm of 

s 
T' YJ 

From 3. 4. 5, 

00 

L: 
n=l 

zs T n 

e sup 
x>O 

2xT 
l+T]X 

e 

where x is a continuous variable. This sup is approached as x- oo 
2T 

and is easily seen to be e """Tl No better estimate is possible . 

This bound is approached as m-oo by liST 4; II· 
,T] m 

This is worse than the QR method by a power of four. 

For the G-Z method, the counterpart to the overall error 

estimate 3. 3. 7 (for the QR method) is 

T 

= e T'1 £ + II(ST;YJ KT-I) foil (3.4.7) 

3. 5 Summary 

In studying these quasireversibility methods, one is immedi-

ately impressed by the simple elegance of the underlying ideas and 

the ease wit~ which they can be implemented numerically. 

When the analysis is carried further, one discovers the dif-

ficulties mentioned with bias error. That argument, however, is by 

no means a compelling reason for abandoning the QR or G-Z method. 

Competitive methods, of the kind described in Chapter 1, make 
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restrictive assumptions about the solution £
0

. I£ a m e thod's con1-

f->al"li:!Oll is to be fair, then thos e restrictive assumptions should b e 

invoked as side conditions in working out QR or G-Z bias. Why 

should one method be made to cope with outlandish possibilities 

which its competition disallows? It will be possible, with appro-

priate restrictions, to make our bias error behave linearly in the 

>:< 
small parameter T] as T] - 0. So at this level of discussion, quasi-

reversibility might still compare very favourably. 

Allowing the linear bias estimate, our QR full error esti
T 

mate 3. 3. 7 would take the form £ e 4 T'l + rTJ where r is some con-

stant. It is natural to choose TJ(£) to minimize this quantity. By 

calculus, one finds that this minimum occurs when TJ has the value 

Tlo satisfying 

2 
4rTJo 
--;y- + r Tlo· 

-T 
Tlo ~ 4log£ 

£ ...:£._ e-k = r, 
4TJz 

the value of the minimum being 

The value of Tlo can be found approximate ly 

The behaviour of our error estimate, granting 

the se quasireversibility methods a ll possible concessions, becomes 

logarithmic in £. We are unable to improve on Tikhonov' s method 

by either QR or G-Z. 

The difficulty is not easily shrugged off. At the outset it 

was known that stability would be lost as the small parameter TJ 

went to z ero. The misfortune is that it is lost so very rapidly as 

TJ becomes small. The exponential growth in norms of the significant 

*Bias which is O(TJ) a s TJ - 0 is the b e st behaviour one can force 
through restrictions on £0 of the kind considered. 
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operators QT and ST is unacceptable and in any natural imple-
,TJ ,T] 

mentation, the effect on computed solutions will be quite unavoidable. 

Quasireversibility methods might be found which will give 

better results. Such a method would have somehow to avoid the 

exponential growth of instability possessed by QR and G-Z. It is 

not at all obvious how this should be done. 
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CHAPTER 4 

THE BACKWARDS HEAT EQUATION- A NUMERICAL SOLUTION 

The methods discussed in Chapters 2 and 3 give logarithmic 

convergence when applied to backwards heat flow problems, To 

imp rove upon this, strong restrictive assumptions about our class 

of admissible solutions will be required. 

In fact, such an improvement has been around since the 

mid 1950's when John and Pucci were active in ill-posed problem 

theory. The first part of this chapter (sections 4. 1-4. 3) will be, 

in a sense, going over old ground in discussing this extens ion; 

logarithmic convexity and spectral analysis, (now standard methods 

in the field), will be used to establish its effectiveness. The rest 

of the chapter will be concerned w ith numerical solution of the 

extended problem. Section 4. 4 introduces a related problem whose 

solution is shown to approximate that of the extension. This related 

problem is amenable to numerical solution. Computations per-

formed on it are presented in section 4. 5. 

4. 1 The Problem and Its Ext ens ion 

Define the linear differential operator L by 
X 

L u = qu - (pu ) ( 4. l. l ) 
X XX 

1 0 
where p(x) > 0, q(x) > 0 on [a, b]; pE C [a, b) ; q E C [a, b]. As 

in Chapter 3, boundary conditions will be applied having the form 

'i,' We rule out the trivial cases a 1 = 13 1 = 0 and a 2 = 132 = 0. 
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and these will be denoted B(u;a) = B(u;b) = 0 for convenience. 

Let p(x) be positive and continuous on [a, b] and consider 

the problem of finding uo(x, T) for some T in (0, T) given that 

= -L u 
X 0 for O<t<T; a<x < b 

subject to 

(4. 1. Z) 

and 

This problem is ill-posed: unstable with respect to pertur-

bations in g
0

. We shall, of course, assume that our knowledge of 

g
0 

is approximate; that we, in fact, know g ~ g
0

. 

To treat this problem it will be convenient to define a different 

z 
inner product on L [a, b] . 

Definition 4. 1. 3 

zl. Let f and g be in L a, b] . 

b 
(f, g)= J f(x) g(x) p(x) dx 

a 

Define the inner product (f, g) by 

and denote its accompanying norm by II · liz· z 
< II f II = < f, f) ). 

z 
In terms of our usual inner product ( , ) (corresponding to 

the norm II· II), we would have (f, g) = (f, pg) and II f liz = II..JP f II· 

*In this chapter, a function's dependence on a spatial variable will 
not be displayed when it is being considered as an element of a 
function s~ace. The function w(x, t) if being considered as an ele
ment of L [a, b) would b e denoted w(, t). 
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Since p(x) is continuous on [a, b] it has upper and lower bounds: 

cl > 0 and c2 > 0. Thus, the norms II· liz and II. II are comparable: 

~ II f II :s; II f II 2 :s; -JCi II f II. Both kinds of inner product will be 

used. 

I£ one seeks a solution to 4. 1. 2, he will be led to the Sturm-

Liouville system: 

(pw) +(:Xp -q)w=O (4.1.4) 
XX 

subject to B(w;a) = B(w;b) = 0. This system has a set of eigenfunc-

tions cp , complete and orthonormal with respect to the inner product 
n 

( . , . ) and norm II · II 2 . 

Noting that any eigenfunction cp and its as so cia ted eigenvalue 
n 

one sees that any fin the domain of L satisfies 
X 

00 2 
(f, L f) = L: A (f, cp ) • 

x n= 1 n n 

So (f, L f) will be positive £or all f in the domain of L if and only if 
X X 

all the eigenvalues of system 4. 1. 4 are positive. In such an instance, 

L will be said to be positive definite. 
X 

It is now possible to define the extension to 4. 1. 2. Find any 

u (, T) satisfying 
0 

for 0 < t < T a < x < b (4.1.6) 
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subject to B(u
0

;a) = B(u
0

;b) = 0, 

and 

It is assumed that a solution exists to 4. l. 6. Physically, 

we would be asking for the temperature profile at time T in a finite 

rod given the measured profile at time T > T, assuming that at time 

0, the net heat contained in the rod was bounded by some known 

quantity. If L is positive definite, heat will be dissipated in the 
X 

rod, any initial profile gradually decaying away as time progresses. 

4. 2 Logarithmic Convexity 

Inasmuch as .the solution to 4. l. 6 is not unique, we need to 

know how far apart its solutions can be. The simplest and perhaps 

most elegant means of assessing this is by a logarithmic convexity 

argument. What one obtains is an upper bound for the error inherent 

in the extension. A more detailed appraisal by spectral analysis 

)~ 

will show us that it is not just an upper bound but the best one we 

can, in general, obtain. 

We need a few interim results at this point. 

Lemma 4. 2. l (Self-adjointness of 

Let h
1 

and h
2 

be in c 2 
[a, b] 

B(h.;a) = B(h.;b} = 0 for j = l, 2 • 
J J . 

and satisfy 

Then (h
1

, Lxh2 ) = (h2 , Lxh1 }. 

·~The meaning of that statement will be clarified in section 4. 3. 

t Proof is well-known. See, for example, Stakgold [ 24] . 
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Now we can prove 

Theorem 4. 2. 2 

Let u(x, t) satisfy 

pu =-L u t X 
for O < t<T; a <x< b 

2 
subject to B(u;a) = B(u;b) = 0 and u(, 0) = f E L [a, b] . Then 

log II u (, t) liz is a convex function of time. 

Proof: 

d2 
It is sufficient to show that -

2 
log (u(, t), u(, t)) ~ 0. 

dt 

d2 
- 2 log (u(, t), u(, t)) = 
dt 

d
2 

d 2 
( u(, t), u(, t)) z ( u(, t), u(, t) ) - [ dt ( u(, t), u(, t) ) ] 

dt = ----------~~------------~----------------2 
(u(, t), u(, t)) 

:t (u(, t), u(, t)) = 2(u(, t), ut(, t)) = z(u(, t), put(, t)) 

L u(, t) 
= -2 (u(, t), L x u(, t)) = -2(u(, t), x p ) 

By hypothesis, 

so, 

B(u(,t);a) = B(u(,t);b) = 0 =9 B(ut(' t); a) = B(ut(, t);b) = 0; 

(by Lemma 4. 2. 1 ), 

d2 
- 2 ( u( , t), u( , t)) 
dt 

(
L u(,t) 

= -4(ut(,t), L x u(,t)) = 4 x p 

L u(,t) L u(,t) 
= 4 (X ' X ) • 

p p 
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dz 

The denominator of the expression for log (u(, t), u(, t) ) 
dt

2 

is positive; the numerator is 

L u(,t) L u(,t) L u(,t) 2 
4 ( u(, t), u(, t)) ( x p , x p ) - 4 ( u(, t), x p ) 

>!< 
This is non-negative by Schwartz' inequality. 0 

Now suppose u
1 

(, T) and u
2

(, T) are both solutions to 4. l. 6. 

Their difference (u
1

-u
2

) (x, t) will satisfy the differential equation 

and boundary conditions. Furthermore, 

and 

By theorem 4.2.2, log ll(u
1

-u
2

)(, t) 11 2 is a convex function of time so 

T-T T 
~ 'I' log 2M + T log 2£ 

T-T T 

= log [(2M)---;y- (2£? J 
T-T T T-T T 

5> II (u
1 
-u

2 
)(, T) II 

2 
~ (ZM)---;:y- (2£? = 2M ---;y- £ T 

So, two functions satisfying the conditions of the extended 

T T-T 

problem 4. 1. 6 can differ by, at most, 2£ T M ---;:y- at time t = T. 

>!<Applie d to (u(, t), 
L u(, t) 2 

X > 
p 
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4. 3 JO: stimate by Spectral Analysis 

This extension can be examined from the viewpoint of Chapter 

1. Section 4. 2 has given us an upper bound on the uncertainty asso-

cia ted with a solution of 4. 1. 6. However, is this the best we can 

claim? The answer will prove to be yes, but it is not yet obvious 

that such is the case. 

Define a heat operator Kt mapping (forward) through time t 

as follows. The solution to 

pu = -L u t X 
0 < t < T 

subject to B(u;a) = B(u;b) = 0 

a<x < b (4.3.1) 

and u{, 0) = f, evaluated at t = 'T will be K f. Separation of vari-
'T 

abies leads to the spectral representation 

K f= 
'T 

oo -A T 

L: (f, cpn) e n 
n=l 

where the cp and A refer to the Sturm-Liouville system 4. 1. 4. 
n n 

Its inverse will be denoted by K (the backwards operator) 
-'T 

but care must be taken in all manipulations that K is only being 
-'T 

applied to elements in its domain C L 
2 

[a, b] . 

In this notation, 4. 1. 6 can be reformulate d. Find u
0

(, T) 

satisfying 

II KT -'T uo (' 'T ) - g II 2 ::!; E 

such that IIK_
7 

u
0

(,T)II
2 

exists and is bound e d by M. 

In this form, 4. 1. 6 can readily be cast into the language of 

Cha pter 1. Specifically, identify the ope rator K of Chapter 1 as 
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K and the set A to which our solutions will be restricted as 
T-'T 

the closure of the set 

We wish to compute T]A(g; £)defined by 

sup 

fl ;f2 E A 

KT f 1 ; KT f 2 E N (g) 
-'T -'T £ 

and, by the definition of A, this is 

= sup II K'T (hl-hZ) liz 

llhl II ~ M; IIhz II ~ M 

IIKThl - g II ~ £ ; IIKThZ-g II ~ £ 

~ sup IIK'T(hl-hzllz 

= 

llhl-h2 II ~ 2M 

IIKT(hl -hz) II ~ 2£ 

sup 

llhll ~ 2M 

IIKT h II ~ 2£ 

(h
1 

;h2 respectively 

K -T f 1 and K -'T f 2 ) , 

and denoting h 1 -h
2 

by h, this is 

Under the restrictions llh II ~ 2M II KTh II ~. 2£ , 
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oo z -2A_ T N z -2A_ T 2A_ (T-T) 
= L (h, cpn) e n = L (h, cpn) e n e n 

n=l n=l 

+ 
00 2 - 2A_ 'T L (h, cpn ) e n 

n= N +l 

(4. 3. 2) 

This estimate is valid for all N; so we have that 

sup II KTh liz ;::-; 

llhllz;::; 2M 

IIKTh liz;::; 2£ 

Since the A. are monotonically increasing to oo as n- oo, 
n 

there exists a value n
0 

o£ N for which 

A ;::-; _1_ log [ M2T J ;::-; A 
no 2T Ez(T-T) no + l 

( 4. 3. 3) 

(provided that E is small enough that A 
1 

;::-; 2
1
T log [ 2M

2 
'T ] • ) 

E (T - T) 

So bounding in£ using the above estimate with n 0 , 
N 

\ 
'T T -T 

sup IIKThll
2 

;::-; 4(£
2 ? (M

2 )-----r-

llhllz ;::-; 2M 

(a fter some algebrai c simplification. ) 
I 

( T he v alue x 0 
l [ M

2
T J = ZT log. ~z---

E ( T - T ) 
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. h 2 -2x(T-T)+M2 -2xTtl . . . l 1s w ere t:: e e ·a<es on 1ts m1n1mum va ue; hence 

the interest in A. near that point.) 
n 

So we get the estimate: 

T T-T 
T -r l 

1 
2 

11A (g; t::) ~ Zt:: M 
l - ..!.. ..!.. 

(l-!....) T (2:_)T 
T T 

The factor in braces goes between l and ..J2 as T goes from 0 to ~ 

and is symmetric about T 
T 

= 2. This estimate is larger than that of 

section 4. 2 because at least one of the inequalities in 4. 3. 3 is strict. 

The effect is giving up a factor of (up to) ..J2 in the estimate. 

Now consider the sequence {hk} = {2Mq7k}. Certainly 

-A.k T 
l!hk II = 2M for all k and IIKThk II = 2Me . 

-A.kT 
2£ , k must be such that 2Me ~ 2£. This implies - A.k T ~ log ~. 

-A.k T 
Let k

0 
be the smallest such k. e 0 will be 

T 

app roxima tel y ( ~) T if 

1 1 £ (. 1 A.k ::::J - T og M 1. e. , comes c ose 
0 

to satisfying the cons t raint 
T-T T 

exactly). In this case IlK hk II ::::J 2M -y £ T 
T 0 

There will be a 

sequence of£- 0 for which - ~log :.r is precisely an eigenvalue. 
T-T T 

Then the estimate 2M -y £ T will be attained. For a general small 
T-T T 

E, the lowest bound we can guarantee for T]A(g;t::) is 2M-y t::T ~ 

,.,A (g; E ). We can not improve on the bound obtained so easily and 
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cleanly through logarithmic convexity. 

4. 4 A Related Problem for Numerical Solution 

In its form 4. 1. 6, the extension does not l end itself to numer-

ical computation. Many solutions exist and what we now seek is a 

good numerical algorithm giving a discretized approximation to any 

one of them. 

Suppose we sought to minimize IIKT -Tu-g II 2 subject to the 

constraint that IlK -T u II 
2 
~ M. Then u

0
(, -r) of 4. 1. 6 would satisfy 

IIKT -T u
0

(, -r )-g II 
2 
~ £ . The minimum would do at least as well and 

we might hope that this minimum u and u
0

(, -r) would be close together; 

that something analogous to logarithmic convexity might prevail. In 

Franklin [ 8 ] , it is pointed out that Tikhonov' s method of regulari-

zation has an interpretation as a constrained extremum problem 

and the parameter a may b e thought of as a Lagrange multiplier . 

This motivates the following r e lated problem. 

Find u(, -r) minimizing the quadratic functional 

* ( 4. 4. 1) 

(It must be stressed that the foregoing argument was purely of moti-

vational intent. A more thorough analysis will soon be given. ) 

The minimum of 4. 4. 1 is readily found through spectral 

analysis. Indeed, if w is in the domain of K and denoted 
-T 

>:<For w not in the domain of K --r' take II K -T w 11 2 as being infinite . 
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(w = (w, cp ) n n 

then 

2 2 

II KT w-g II + 0! IlK w II 
-T 2 -T 2 

This is 

2 
-}. (T -T) J n e g 

- - 2}. ( T -T ) n 2}. T 
n n 

e + a e 

+ 

- 2}. ( T -T) 2}. T 
e n + ae n 

(by a process of completing the square term by term in the w ). 
}. T n 

Cancelling some e n factors and splitting into two parts, we get 

00 

~ 
n=l 

-2}. (T-T) 2}. T [ n n 
(e +ae ) w 

n + 

00 

+ L 
n=l e 

The second term is independent of w, the first will vanish if 

-}. (T+T) 
n 

w 
n = 

e gn 

-2}. T 
e n +a 
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otherwise the first term is positive. w, so represented, is an L 2 

function; is in the domain of K and solves the minimum problem. 
-'T 

Thus 

OJ 

u(, 'T) = ~ 
n=l 

-~ (T+T) 
(g,cpn)e n 

-2~ T cpn 
e n +a 

(4. 4. 2) 

Then we observe that 4. 4. 2 is the spectral representation of the 

solution w to 

( 4. 4. 3) 

Solving 4. 4. 3 thus replaces the problem of minimizing 4. 4. l. 

We may do this either by taking a few terms in the expansion 4. 4. 2, 

(taking care to account for error in truncating the series), or we 

may develop a finite difference ·method for direct solution of 4. 4.3. 

In 4. 4. 2, a linear operator is defined . 

OJ 

F g = u(, 'T) 
'T,Ol 

= ~ (g, cpn) 
n= l '-

-A. (T+T) 
n 

e 
-2~ T 

a +e n 

Call it F 
'T,O! 

F is bounded and hence 4. 4. 3 is well-posed. 
'T,O! 

In fact, 

sup 
n 

This can be bounded by 

-x(T+T) e 
sup -2xT 

x>O e +a 

which is 

-2A. T 
a +e n 

(4. 4. 4) 
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- (-2.1 - __!__) ( -2.1 + _I_) (.!.-_I_) 
2T 2T ..,. 2 2T a (-z.1 + _!_) (.!.- --') 

2T 2 2T 

)
,, ,, 

( 4. 4. 5) 

Now let u
0

(, T) be any solution to 4. l. 6. The error made in 

solving 4 . 4. 3 will consist of two parts: a bias associated with solving 

a different problem and an error associated with the uncertainty in 

our data g (the fact that £ is non-zero). 

Specifically, if g
0 

= u
0

(, T ), then 

( 4. 4. 6) 

The first term is bounded by II F II £ ; the second is the bias. To 
-r,a 

bound the bias, use the fact that g
0 

= KTu0 (, 0) with !lu0 (, 0) 11 2 ~ M. 

Then 

~ !IF KT-K II M. 
T, a T 

The operator F KT -K is bounded and has the spectral represen-
-r,a -r 

tation define d by 

>!<This bound on 
1- a 

is valid for 0 < T ~ l+a T. All our T 1 s will 

be in that range . 
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oo [ -An(T+ T) 

(F KT -K )h = \' e 2A T 
T, a T LJ

1 
-

n= n 
e +a 

00 

= ~ 
n=l 

sup 
n 

-A T n 
-a e 

e 
-ZX. T 

n +a 

-X. T 
n a e 

-ZX. T 
e n +a 

-A T -A T] n n 
e -e (h,cp )cp 

n n 

~ sup 
x>O 

2 
(hEL [a,b)) 

-XT 
a e 

-ZxT a+e 

( 4. 4. 7 ) 

So finally, 

(4. 4.8) 

So far, no relationship has been specified between a, e: and M. 
1 

A look at 4. 4. 8 suggests taking e:a - 2 = M. Then 4. 4.8 becomes 
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'T _.:r__/- {T} + (__I_)2T ( l 
2T 2T 

'T T -'T 

T M--;:_r r(I_ ) (4. 4. 9) = £ . T 

Here 

for 0 < f.l < 1. As f.l goes from 0 to ·L r(f.L) goes from ito t 3-i and 

r(f.L) is symmetric about f.l = t · 

For all 'T which will be of interest to us, 

'T T -'T 

II u(, 'T ) - uo (, 'T ) liz ~ i £ T M ----;y-

At first glance, this seems too good to be true since even were u(, 'T) 

an exact solution to 4. 1. 6, it could only be guaranteed that it is 

'T T -'T 

- h" 2 T M~ f ( ) Wlt ln £ 0 u 0 , 'T • The explanation is as follows. The 

solutions to 4. 1. 6 are contained within a region in L 
2 

[a, b] whose 

'T T -'T 

diameter is 2£ T M ----;y-. This method simply chooses a point from 

somewhere in the middle of that region. 
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4. 5 Numerical Solution 

The numerical problem from 4. 4 is to find u(, 'T) solving 

(KZT +ai)u(,r) =KT+r g. 

The solution has the expansion 

co 
u(, T) = ~ 

n=l 

-A. (T+T) 
n 

e (g,~n) 

-2X. T 
Q' + £ 

n 

(4.4.3) 

~n ( 4. 4. 2) 

where the ~ and A. refer to the Sturm-Liouville system 4. l. 4 and 
n n 

2 2 
a is £ /M ( cf. 4. l. 6 ). 

For the simple examples to be tried in testing the method, 

the numerical "path of least resistance" seemed to be straightforward 

application of 4. 4. 2. It will be pointed· out, however, that there are 

cases where one should not do this. (Had this been fully appreciated 

at the outset, more effort would have been devoted to direct solution 

of 4. 4. 3. ) 

Denote the m term approximation to an L 
2 

function f in the 

m 
eigenfunctions ~ of 4. 1. 4 by f : 

n 

If u
0

(,T) solves 4. l. 7 and u(,T) solves 4. 4. 3, we need to know 

llum(,T)-uo(,T) liz· 
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The first term gave nse to the estimate 4. 4.9; the second is the 

truncation error. Since u
0

(,T) solves 4. 1. 6, 

00 

= I: 
n=m+l 

The truncation error after m terms satisfies 

e 
-ZX. T 

n 

In calculations performed, T was taken to be l as was M. 

The truncation error after m terms will then be smaller than error 
- X. T 

from other sources if e m+l ~ £7
• 

1 
X.m+l ~ log£. (4.5.1) 

-16 
The values of£ to be considered will be no smaller than e so 

we'll take X.m+ l ~ 16 as our cut-off criterion. In fact, the drill 

will be to compute eigenvalues and eigenfunctions until an eigenvalue 

as large as 16 is encountered. Then we will be taking at least one 

term more than is needed for 4. 5. 1 to be maintained and the trunca-

tion error's relative importance will be very slight. 

To get a rough idea of where our cut-off point will be, an 

a priori estimat~ of the nth eigenvalue is needed. Sturm-Liouville 

theory provides such an estimate but it must be used with some 

caution. 

The eigenvalues come from the system 



-59-

(4. 1. 4) 

subject to 

b [ ~l 
D efining the constant 13 by 13 = { E~~D 

2 

dx, the An go up at least 

as quickly as is suggested by the asymptotic formula (for large n). 

(4.5.2). 

The danger in using this for small n is that the constant in 

0( 1) may be very large. One can readily construct an example in 

which it bypasses any specified number. (This typically happens 

when jq I is much larger than p and p. t) Provided q is comparable 

to p and p and we do not expect too much from 4. 5. 2, it seems to 

work fairly well in providing a rough idea of the cut-off point. It 

proved quite satisfactory in all the examples tried. 

tions: 

one expects to cut off at that value of n for which 

~ 16. Call this value n . 
c 

Actual computations were performed on the following equa-

2 (' (n-i ) 1r)2 

>:<They may go up like (~7r) + 0(1) or l3 + 0(1). 

t See Appendix B. 
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u = u - u 
t XX 

[a,b] =[0,7T] 

=9 13 = 1T and n = 5. c 

1 1 
- u =(xu ) +- u 
X t X X X 

=9 13 = log 2 and n = 2. c 

[a,b] =[1,2] 

1 . 2 
- ut = ( .JX u ) - x u [a, b] = [ 1, 2] W X X 

=9 13 = 2 ..J2 -2 and n = 2 . c 

sec x ut = (cosx u ) - log(i + x)u 
XX 

~ 13 = log ( 1 + ..J2) and n = 3. 
c 

(4.5.3) 

(4. 5. 4) 

(4.5.5) 

[a, b] = [ 0, %1 (4.5.6) 

It will now be apparent that one should not use the expansion 

4. 4. 2 when 13 is large for then n will also be large and too many 
c 

eigenfunctions will have to be computed. This is an expensive nu-

merical proposition if more than a few are required. 

Numerical computation of eigenvalues and e igenfunctions was 

performed using the methods outlined in Chapter 5 of Keller [ 15]. 

The approach for finding cp and A solving 
n n 

(pw ) + (Ap-q)w = 0 
XX 

(4.5.7) 

subject to a
1
w(a) + 13

1 
p(a)w'(a) = 0 and a 2w(b) + 132 p(b)w'(b) = 0 is 

by a shooting method. Solve the initial value problem: 

( p w ) + (A p - q )w = 0 
XX 

(4.5.8) 



subj e ct to w(a) = 131 p(a) 
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l 
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for a given value of A. Call the solution w(x;A). w(x;A) satisfies 

the differential equation and left-hand boundary condition of 4. 5. 7. 

If A is an eigenvalue, cp (A)= ~2w(b;A) + j3
2

p(b)wx(b;A) will be zero. 

An ingenious approach is given in Keller [ 15] whereby Newton's 

method can be used to locate the zeros of cp (A) . cp (A) and cp '(A) are 

both obtained in the solution of a single initial value problem. (If 

A ( v) denotes the )h iterate by Newton's method, the (v+l )st iterate 
n 

is given by 

c:jJ'(A(v).) 
n 

So each iteration requires the solution of an initial value problem. 

The first guess is quite critical. Newton's method gives 

quadratic convergence when w e are near a zero. A special initial 

guess routine was employed using the following algorithm. Assume 

that the asymptotic expansion of the nth eigenvalue goes like 

1r 2 
l) If n = 1, take (j3) as the initial guess. 

(£) (n-1 )1r 
2 

(f) 
2) If n > 1 , compute A - ( ) (A 

n-1 f3 n-1 

tion computed for An_ 1 ). This should give 

being the final approxima

c2 
roughly c 1 + 2 + .... 

(n-1) 

>:<The bounda ry condition s actually used were compatible with this 
assumption. If othe rs had bee n us e d, we might have needed 

[(n--i ) i }2 
or [(n-1)-&]

2 
as the first term in the expansion. 
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(if A~fll is an accurate approximation to An-l ). Then take 

as 

so 

A(O) 
n 

2 
= (n7T) + A(f) 

13 n-1 

2 
((n-1 )7T ) 

13 

an initial guess. We expect An - A~O) = c~ - cz 
2 

+ ... = O(~) 
(0) n (n-1) n 

A becomes a good initial guess when n attains a modest size. 
n 

Usually 1 or 2 iterations of Newton's method were sufficient to give 

adequate approximate eigenvalues and eigenfunctions. Seven decimal 

places of accuracy were good enough for these computations. 

Also needed was a forward heat-equation solver. Some 

very minor modifications of the scheme presented in Keller [ 16] to 

include a variable p(x) were required; it proved tailor-made for this 

job. If hand k are respectively, the space and time step sizes, this 

"Box Scheme" is accurate to O(h
2

+k
2

). Richardson extrapolation 

was used to increase the accuracy to O(h 
4

+k 
4

). Sufficient accuracy 

was obtained with hand k chosen to be (b-a)/100 and T /6 0 (T = 1 ). 

In each nume rical example the procedure was: 

1) Begin with an initial profile f = u
0

(, 0). 

2) Use the box scheme to compute u
0

(, 0. 1 ); u
0

(, 0. 25); u(, 0. 5); 

uo(,. 667), uo(,. 75) and uo(, 1. 0). 

3) Calling u
0

(, 1. 0,) = g
0

, perturb it by an amount £ and call the 

result g. 

4) Map g backwards via the truncated expansion of 4. 4. 2 obtaining 

m m 
u (, . 7 5), u (, . 6 6 7), etc. 

5) Compute Jlum(,T)- uo(,T) liz and compare with predicted values. 

Four different standard initial profiles u 0 (, 0) were used for 

each equation. They were: a parabola concave down, a sine w ave, 
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a triangular wave and a constant. All were scaled to ensure that 

It will suffice to tabulate the results of one such computation. 

* Problem 4. 5. 6 is as interesting as any having the coefficients 

p(x) = cos x; p(x) = sec x; q(x) = log(-!- + x). The boundary conditions 

used were u(a) = u(b) = 0. t Table 4. 5. 9 lists the results obtained 

with£ = 3. 0 x 
.I_ 

-6 
l 0 and a constant initial profile. Predicted error 

is r(T) £ T ( cf. 4. 4. 9 ). 

TABLE 4. 5 . 9 

'T COMPUTED ERROR 

0.00 1.2 

o. 10 1.3 X 1 0-l 

0.25 2.0 X 10- 2 

0.333 7.0 X 10- 3 

o. 50 8.6 X l 0- 4 

0.667 1.0 X 10- 4 

o. 75 3. 7 X l 0-S 

PREDICTED 
ERROR 
BOUND 

1.5 

4.2 x 1 o- 1 

6. 3 X 10- 2 

2. 2 X 10- 2 

2.6 X 10- 3 

3. l X 10- 4 

l.l X 10- 4 

The numerical work does not claim completeness in any 

sense. No such claim would be made until, at least, the matter of 

what to do when 13 is larger than 1r by a significant amount was 

~.< Problems 4. 5. 3 and 4. 5. 4 were used primarily to test the various 
subprograms. Their Sturm-Liouville probl ems can be solved ana
lytically. 

tThis corresponds to a 1 = a 2 = 1; 131 = 132 = 0. 
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satisfactorily resolved. A few ideas for direct inversion of 4. 4. 3 

have been conceived but to implement them, much thought and some 

consultation with numerical specialists will be required. In their 

present form, they do not merit expounding here. 

4. 6 Remark About Time-Dependent Coefficients 

Other workers have interested themselves in cases where p 

and q are allowed to be time dependent. Agmon and Nirenberg, by 

a more sophisticated convexity argument (see Friedman [ 9 ] , page 

182) developed the much less generous estimates applicable to such 

cases. 

if fl('T) 

In particular, with p = 1, constants c and m exist such that 

cT 
= e -l , then two solutions u

1 
(, 'T) and u

2
(, 'T) to 4. l. 6 with 

ecT_1 

these coefficients will satisfy, (for 0 < 'T < T ), 

1 

m'T 
e 

-mT fl('T)-1 1 
e fl('T) M fl('T) e; fl('T) 

The significant factor is e; fl('T) which tells us what kind of con ve r-

-1 
gence rate is being realized. If c is small, then [fl('T)] ::::::J ; 

1 'T 

yielding the approximation e: fl('T) ::::::J e T the rate obtained when p 
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and q were time independent. The point is that, depending on the 

nature of the time dependence, c may be large. Suppose we can 

CT CT 
approximate e -1 ~ e 

CT 
and e -1 

l 
Then tJ.(T) 

- c(T -T) 

One still has convergence by a power law but the power may be 

l 
-- -c(T-T) 

rather small (E tJ.(T) ~ £ ~ ). 

The attitude one will adopt in this eventuality might be to 

seek a method obtaining this very modest rate of convergence. But 

he might also decide that 4. l. 6 will not do for the general time-

dependent case and set;:k a more effective extension. That is largely 

a matter of individual persuasion. 

4. 7 Some Related Work on the Problem 

As was mentioned earlie r, the extension 4. l. 6 has been known 

for some time. Not surprisingly, it has attracted the attention of 

theorist and computational specialist alike . A few key references 

will be given here but no semblance of completeness to the list is 

claimed . A massive bibliography appears in the excellent survey 

paper on the ill-posed problem methods:- Payne [ 191. Many of 
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these are relevant to this chapter. 

It will already be apparent that the theoretical results needed 

to establish the well-posedness of 4. 1. 6 are known. Agmon, Niren-

berg and Payne have carried logarithmic convexity much further 

than needed for this modest application. Besides logarithmic con-

vexity and the spectral theory, one can exploit functional analysis 

to demonstrate well-posedness. This was done in Franklin [ 7] and 

Saylor [ 2 2 ] • 

Computational work on the "simplest case'' ut = u began 
XX 

with John [ 13]. It has become more popular in recent years to look 

at the (spatially) variable coefficients case (considered here). 

Buzbee and Carasso [ 2 ] tackled 4. 1. 2 by introducing a related 

fourth order boundary value problem in space-time. Their method 

works on the time-dependent coefficients case as well. (However, 

see section 4. 6 ). Douglas [ 5 ] develops a linear programming 

technique employed by Cannon [ 3 ] in actual computations. Good 

results were claimed by both the above parties. 

There have been numerous contributions, (especially to the 

operator theory side of ill-posed problem methods), by Russians. 

It has already been mentioned that Tikhonov [28] motivated the 

establishment of the related problem 4. 4. 1 (- 4. 4. 3) as a means 

of finding an approximating algorithm for 4. 1. 6. Bakusinskii ( 1 

introduces a regularized approach for a wide varity of abstract ill-

posed problems on Hilbert spaces. Applying it in a straightforward 

manner to 4. 1. 2, one can be led to the analogue of 4 . 4. 3 
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(K2 T_ 2 T + al) f = KT-T g. (4. 7.1) 

More will be said about this in Chapte r 5. For the moment, it 

suffices to say that 4. 7. 1 is a well-posed operator equation in 

L 2 [a, b] which degenerates appropriately when a is set to zero. 

To the best of our present knowledge, solution of 4. 1. 6 via 

4. 4. 3 has not been attempted by others. To be truthful, the error 

estimates of Cannon [ 3 ] and Buzbee and Caras so [ 2 ] were not 

subjected to careful scrutiny before the computations of section 

4. 5 were perforrned . Certainly for the examples tried, there 

would be no embarrassment in ·any comparison with other methods. 

Quite apart from the application to this problem per se, however, 

this chapter introduces a means for incorporating a variety of 

solution set restrictions into numerical computations in a very 

natural way. It will make the motivation of Chapter 5, an attempt 

to expand Tikhonov' s method, much easier. Now we have familiarity 

with what will prove to be a special case of the theory to b e pre

sented there. 
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CHAPTER 5 

T-METHODS 

We saw in Chapter 2 how Tikhonov incorporated a solution 

z z* 
set constraint n (f) ~ w into a numerical algorithm. In Chapter 4, 

the same principle was exploited to impose the constraint 

2 t 
(f,K_27 f)~M 

on solutions to the backwards heat equation. The success of the 

application in Chapter 4 encourages an attempt at some generaliza-

tion. The host of regularizing algorithms to be constructed in this 

chapter will be given the generic name 11 T -methods, 11 Tikhonov' s 

method being the model. 

Before beginning, however, a comment must be made about 

a mathematical pitfall into which there is a very real danger of fall-

ing. One can so easily become far too enamoured with what amounts 

to mathematical formalism. We know that a convergent extension 

to K£
0 
~ g results, (K: B 1 II· 11

1
-B2 11· 11 2 ), whenever f 0 is constrained 

to lie within a compact set (see Chapter 1 ). That leaves us with an 

impressive array of "suitable" constraints if convergence is our 

sole concern. However, convergence had better not be our sole con-

cern. If there is a tendency for us to snub the practical man who 

asks "Why the restriction chosen as opposed to any other?", then 

we have forgotten or failed to appreciate a most important feature 

*see section 2. 2 for the definition of n2
(f). 

t See s e ction 4. 4 for the definition of K 2 . 
- T 
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of ill-posed problems. The effect of K 1s to cause information 

necessary to the approximate description of fa to be lost in the un

c e rtainty associated with g. The nature of the information about fa 

put back via the constraint is e very bit as important as whatever 

convergence prope rties a re realized in so doing. 

What follows assumes a useful constraint of a particular form 

has been found and then constructs an approximation for the elements 

fa satisfying Kfa :::::: g subject to said restriction. 

Quite apart from the construction of new algorithms, how-

ever, this theory has another application. A method whose moti-

vation has a different philosophical origin may turn out to have an 

interpretation as aT-method. Sometimes, this alternative inter-

pretation adds to one's comprehension of the method. 

5. 1 The General T -method 

Let B 1 II· 11 1 be a Banach space and Hz(·,.) be a Hilbert 

space . Let II· II X be a norm defined on a subspace of B 1 which 

satisfies a parallelogram law on its domain of definition. 

Let K : B 1 - Hz be a bounded, linear, one-to-one operator 

whose range is dense in H
2

. Consider finding fa in B 1 satisfying 

(£ andy positive numbe rs) 

for some gin B
2

. Assume such an fa exis ts. 

If llfallx ~ y h as compact closure in the 11·11 1 topology on B 1 , 

this repre s e nts a c onvergent extension as £ -a of Kfa :::::: g . 
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2 
Introduce a parameter a related to [ by 

and look for u =fin B
1 

minimizing the quadratic functional 

* 

(5. l. 2) 

(5. l. 3) 

The f minimizing this quantity is unique. The proof given in 

Franklin [ 8 ] for Tikhonov' s method generalizes immediately. It 

will b e given here for completeness. 

Lemma 5. 1. 4 

The minimum to 5. l. 3 occurs for a unique f in B
1

. 

Proof: 

Suppose f 1 and f 2 both in B 1 minimize 5. 1. 3. A norm II· II 
defined on a normed space B satisfies the parallelogram law if, 

for all pairs u 1 and u
2 

in its domain of definition, 

With 11·// = II· 1/ ; B = B 1 , pick - X 

then 

2 f - f 2 

II + II 1 2 If X 2 X 

2 

= i II f 1 II X + i 

>!<For u not in the domain of II· /1 X, adopt the convention [lu 1/ X = oo. 

Such a u will not be considered a candidate for minimizing 5. 1. 3. 
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With II· II= II· liz; B =Hz , pick 

so 

Add** to a time s* and use the hypothesis that £1 and fz both mini

mize 5. l. 3. The n 

= the minimum value of 5. l. 3. 

fl +fz . . . 
So Z also m1n1m1zes 5. l. 3 and £

1 
-fz = 0. 0 

Because f minimizes 5. l. 3, it must satisfy 

z z z z 

IIK£-g liz+ a ll£11x ~ IIK£0-g liz + a ll£o llx (5. l. 5) 

z z 
~ £ + ay 

One is led to 

z z z 
II Kf- g II Z ~ £ ( 1 +Cz y ) and (5.1.6) 

z 1 z 
ll£11x ~ S + Y (5.1.7) 

z 
So if II£ II X~ constant has compact closure in the II· Ill-topology, 

the minimization of 5. l. 3 is a convergent extension as £ - 0 of 
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The machinery developed in Franklin ( 8] for assessing the 

effectiveness of Tikhonov' s method on various problems K£
0 
~ g 

generalizes to all T-methods. Let Ta: H 2 - B 1 denote the solution 

operator to the minimization problem 5. 1. 3. That is 

f = T g a 

where f minimizes 5. 1. 3. Make the following definitions. 

Definition 5. 1. 8 

The modulus of regularization p(£) will be given by 

p(£) = sup 

IIKfo II z ~ £ 

lifo II x ~ 1 

Definition 5. 1. 9 

The modulus of convergence cr(£, a) will be given by 

cr( £,a) -

Definition 5. l. 10 

sup 

IIKfo-g liz~ £ 

llfollx ~ 1 

The rate of convergence will be the name given 

sup 

II Kfo- g liz ~ £ 

lltollx ~ Y 

(y replacing 1 in 5. l. 9) • 
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The results quoted in Chapter 2 for Tikhonov' s method re-

lating p( £ ), a(£, a) and the rate of convergence hold here as well. 

£ 
The rate of convergence in 5. l. l 0 is ya(-, a) and 

'Y 

where 

5. 2 T B-Methods 

2 
+ ay 

2 
£ 

and 

A useful subclass ofT-methods is that in which B
1 

II· II 
1 

= 

H 1 (•, · )1 is a separable Hilbert space and II · II X is deriv ed from an 

operator X : H 1 - H
1

. X is to be self-adjoint, positive definite 

and have 0 in its continuous spectrum. 

range of X by 

-1 
(u, X u)l 

Define II u II for u in the 
X 

(5.2.1) 

T-methods of this sort will be called "TH-methods 11 because a Hilbert 

space H
1 

is involved. 

The quadratic funct ional 5. 1. 3 to be minimized by u = f has 

the form 

-1 
(Ku-g, Ku-g)2 + a(u,x u) 1 

* K will have an adjoint operator K : H 2 - H 1 defined by 

(5.2.2) 
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* (K g, f)l = (g, Kf)z for f E H 1; g E Hz . (5. 2. 3) 

Consider perturbing f minimizing 5. 2. 2. by 6f in Ran X• (II 6f II 
1 

is 

not necessarily small. ) For any such 6f, 

1 . 
(K(f+6f)-g, K(f+6f)-g)

2 
+ a(f+6f, X- [f+6f] )

1 

Expanding out the inner products and simplifying, 

-1 -1 
2 ( K 6 f, Kf- g ) 

2 
+ a ( 6 f, X f) 

1 
+ a ( f, X 6 f) 

1 

-1 
+ (K6f, K6f)2 + ( 6f, X 6f) 1 ~ 0 

* -1 -1 2(6f,K (Kf-g) +ax f) 1 + (K6f,K6f)2 + (6f, X 6f)1 ~ 0. 

A necessary and sufficient condition for this to occur, (as 

is seen by taking 6f = ±TJ
2 

6f : 116f II 
1 

== 1; TJ- 0) is for all 6f in 

Ranx, 

* - 1 (of, K (Kf-g) + a X f) 1 = 0 . 

Ran X has a trivial orthogonal complement for, if h J.. Ran X• 

then 

since X is positive definite. So our minimum f satisfies 

- 1 
K*(Kf-g) + a X f = 0 

>I< -1 * (K K + a X )f = K g . (5. 2. 4) 
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h I 1 * -1 T is equation s so ution is unique since K K + a X has a 

trivial null space . If no extraneities are introduced by multiplica-

tion by X, 5. 2. 4 becomes 

* * (XK K + al)f = XK g (5.2.5) 

* If -0! is not in the spectrum of XK K, 5. 2. 5 is a well-posed 

operator equation for f minimizing 5. 2. 2. Another approach to 

solving 5 . 2. 4 is to set f = xh solving 

* * (K Kx + al}h = K g (5.2.6) 

for h. 

There would have been little value in introducing T- or TH

methods if no good means for finding f existed. The utility of a T H

method rests on the solubility of 5. 2. 5 and/or 5. 2. 6 (numerically or 

otherwise). 

is 

So the solution operator T for the minimizing problem 5. 2. 2 
Q! 

T 
Cl! 

* -1 * * -1 * = X(K KX + al} K = (XK K + al) xK • 

5. 3 Examples 

To illustrate T and T H methods, let us look at some examples 

amongst the problems encountered in previous chapters. 

Example 5. 3. 1 Tikhonov' s Method 

Certainly, the foregoing must apply to the original model 

T-method. Making the appropriate identifications is easy in this 

case; it will be seen that many o~ the t e rms in Chapter 2 are given 
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the same labels as their counterparts in this chapter. 

First, let us quickly review section 2. 1 in which Tikhonov' s 

method was introduced for the Fredholm equation of the first kind: 

b J K(x, y)f
0

(y)dy = g
0

(x) (2. 1. 1) 
a 

where £
0 

is in B
1 

f.l.(·) (a Banach subspace of L 2[a, b]), g
0 

is in 

L 2 [ c, d] ; K(x, y) is an L 2 kernel. 

In operator notation, 2. 1. 1 was written 

(2. 1. 2) 

defining a compact operator K 
2 

B
1
-L [c,d]. It was assumed that 

K had only a trivial null space. 

In solving K£
0 
~ g, the regularizing assumption 

(2. 1. 3) 

was imposed : -

p E c 1 La, b]; q E c 0
[a, b]; p(x) > 0; q(x) > 0 on [a, b]. 

* So now, identify: (see section5.1) 

K=K (the integral operator) 

(A family of f.!.(· ) was discus sed as 

well as f.!.(·)= II· II and f.!.(·)= II· II 
2 00 

the standard L -norm. ) 

>:<Ite ms pertaining to Chapter 5 appe ar on the left of 
,_, 
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(The standard inner product 
2 

on L ). 

In the special case B 1 f.l( •) = L 
2 

[a, b] II· II, Tikhonov' s method 

2 
becomes a TH-method for then we have H 1 (•, · )1 = L [a, b] (·, ·); 

K : H
1

- H
2 

as required. We wish to identify the operator 

2 2 x: L [a,b] -L [a,b] 

for which 

Integrate by parts. 

b 2 2 
= J {p(x) [f0(x)] + q(x) f 0 (x)} dx 

a 

b 

= [ 
a 

Can a X be found for which the following identification is legal? 

for 

Since X -l is a differential operator, it is natural to look for an inte-

gral operator X• In fact , 
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h - -l f f - (pf
0
' )' o-X o=qo 

means that the Green's function for the boundary value problem * 
supplies the operator X· Call this Green's function X(x,y). So X 

is given by 

b 
xh0 = J x<x, y)h0 (y) dy. 

a 

X is self-adjoint; positive definite as it should be. 

Applying 5. 2. 5 to find f minimizing 5. 2. 2, 

* * (X K K + a I) f = X K g , {**) 

* will clearly give us a Fredholm equation of the second kind - xK K 

* is an integral operator and xK g is a known right-hand side. A 

simple choice of p and q in the regularizing assumption (like p= q= 1) 

will enable us to find X {x, y) analytically. The Fredholm equation 

** is well-posed. 

Example 5. 3 . 2 The Backwards Heat Problem of Chapter 4 

In Chapter 4, the heat operator KT was defined by 

0 < T < T 

where u
0 

satisfied 

pu
0 

= qu - (pu ) 
t X X 

for 0 < t < T 

subject to 
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a 1 u(a, t) + 13
1 

ux(a, t) = 0 , 

and 

u(;O) = £0 . 

Here p, q and p are positive functions on ['a, b] and 

1 0 0 
p E C [a, b] ; q E C [a, b]; p E C [a, b] • 

An inner product (·, •) was defined on L 2 [a, b] with pas the weight 

function: 

b 
(f1 , f 2 ) = J f 1 (x)f2 (x)p(x)dx 

a 

Invers e operators to the Kt were denoted by 

2 
K_t: Ran Kt -L [a, b] . 

The operators Kt are self-a9joint and sub-additive . That is 

2) 

Desired was an approximation for u
0
(, 'T) 0 < 'T < T given 

u
0

(T) ~ g and u
0

( , 0) bounded in norm, specifically, 
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This is soluble via a T H-method. 

K = K · T -T ' 

z 
£ 

Identify 
:l,c 

z z 
H 1(·,·) 1 = L [a,b] (·,· ) ;Hz (·,·)z =L (a,b] (·,· ) 

z 
II u II = < K u, K u) = < u, K z u) X -T -'T - 'T 

-1 
So X = K Z =9 X = K . 

- 'T ZT 

Applying 5. Z. 5 gives 

* * (XK K + a!)£ = xK g 

and we recognize 4. 4. 3. Recall that in Chapter 4, it was discovered 

by spectral analysis. 

Example 5. 3. 3 Bakusinskii' s Method 

This regularizing algorithm is introduced in Bakusinskii [ 1 

in slightly more general terms than will be considered here. Let 

H
1 
(·, ·) be a separable Hilbert space and Hz(·,·) be a separable 

Hilbert space having an orthonormal basis { cp }. 
n 

*Items pertaining to Chapter 5 on left- hand side of 
,_, 
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Let K H
1

- Hz be a linear, one to one, bounded operator. 

Assume 

has a solution. 

The idea is to find the projection of f
0 

onto the span of the 

* * elements K rp 1 , .••.• ,K rpn. That is, find 

£0 = ~ c.K* rp. 
N i=l 

1 1 

where the c. are to be determined from the equations 
1 

j=l, ...... ,N. 

Since this system is ill-posed with respect to perturbations in the 

data g
0

, replace it with the regularized system: 

N * * ~ c.[a6 .. + (K rp., K rp.) 1] = (g,rp.) (*) 
i = l 1 1J 1 J J 

where 0! > 0. (Note that g
0 

has been replaced by g.) Denote by fN the 

resulting approximation to £
0 

• 
N 

Let us specialize the problem to K compact. 
~:c 

Then K is 

* 0 * compact and KK w1ll be a compact mapping, (KK :Hz-Hz), which 

is self-adjoint. Choose the {rp } to be the orthonormal eigenelements 
n 

>:< 
of KK and let A.n > 0 be the corresponding eigenvalues. The system 

* becomes 

~ C. [a 6 .. + 6 .. A. . ] = 
i=l 1 1J 1J J 
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So 
* . ~ (g, cp. )2K cp. 

f = ~ _ _____.],____ J 
N . 1 (~ +>t. 

J= J 

Let N- oo to get the approximation f for £0 suggested by this approach: 

0) 

f = ~ 
J=l 

This says that f satisfies the equation 

* * ( KK + a I )Kf = KK g 

* * ( K K + a I)f = K g . ** 
Taking the problem of Chapter 4, K=KT , gives 

-'T 

(K2T_ 27 + al)f = KT--r g 

as quoted in section 4. 7. 

Compare ** with 5. 2. 5 and observe that X= I makes those 

equations identical. But X = I is not suitable to give rise to a con-

vergent extension of Kf
0 
~g. 

Indeed, the set of points f
0 

satisfying 

will simply be a closed ball in H 1• If H
1 

is not finite dimensional, 

this is certainly not a compact set. 

This suggests that as the error £ in the data g tends to zero, 

this method pulls a point from a closed ball which may wander about 

within it never settling down about a fixed location. 
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That appraisal is not entirely fair, however. The fact that 

the sum was truncated after a finite number of terms suggests that 

spectral cut-off was meant to accompany the regularizing algorithm. 

No connection was suggested between £ .and a so none should perhaps 

be attached. Instead, just take a as a small parameter. Note that 

as a- 0, Kf- g
0

. Furthermore, for a finite value of a, the expres

sion for f is prevented from blowing up by a's damping effect if too 

many terms in the sum have been taken. 

Certainly in that sense, this technique will be an improve-

menton simple spectral cut-off. Maybe it was never envisioned as 

being more than that. 

5. 4 A Few Convergence Results for TH-Methods 

A few results will be given here which will help to decide 

when a T H-method will give good convergence properties and which 

will facilitate error estimation in applications. 

Theorem 5. 4. 1 

Let H(', ·) be a separable Hilbert space and {cp } be a com
n 

plete orthonormal set of elements in H. Let y > 0 be given and {A } 
n 

be a sequence of positive numbers tending to zero. Then the set A 

defined by 

00 2 1 2 * 
A = { f E H j L (f, cpn) x- ~ Y } 

n=l n 

has compact closure. 

*The sum does not converge for all f E H. 
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First of all, we observe that A is bounded. Let f E A, 

2 
y sup A 

n n 

and the A are bounded by hypothesis. 
n 

Let {£
1

} be a sequence of elements in A and show that there 

is a convergent subsequence. The £
1 

are bounded and thus have a 

weakly convergent subsequence f
1 

(see Taylor [27], page 209). 
k 

Denote the (weak) limit by f. We must show 

The (weak) limit f is itself in A. For any positive integer M 

by the weak convergence of £
1 

to f. This is true for all M so 
k 

Now consider the difference 

2 ~ 2 ~ 2 
llf- fn II = LJ (£-fn 'cp ) + LJ (f-fn > cp ) 

Lk . n=l Lk n n=N+l Lk n 

N 2 00 1 2 
~ L: (f- f n , cp ) + sup An ~ "'n (f-£1 k, cpn) 

n=l Lk n n > N n=N+ l A 

N 2 2 
~ ~ (f-fn , cp ) + 2y sup 

n =l Lk n n > N 
A n 
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The second term can be made arbitrarily small by choosing N large 

enough. Having chosen N, choose k large enough that the first term 

is made small by virtue of (f-fn , cp ) - 0 for each n ~ N. So 
xk n 

* llf-f.R. II- 0 ask -oo. 0 
k 

An immediate consequence of 5. 4. l is that if the operator X 

in 5 . 2. 1 should have the form 

for :1\. positive - 0 
n 

<{ cpn} some complete orthonormal system in H
1 

), then the extension 

5. 1. l is convergent for any operator K of the kind discussed. The 

T H-method for obtaining an approximate solution will also be con

vergent. In particular, one can see that X compact, self-adjoint 

and positive definite will always work. 

In the language of Chapter 2, Theorem 5. 4. l provides a suf-

ficient condition that the operator K be regularized under the norm 

11·11 1 by the assumption (f, X-lf) ~ y. In that chapter, the family of 

norms of the form 

was discussed. The result 5. 4. l has a simple generalization to the 

norm j-L( • ) . The set A of 5. 4. l will be compact in the !-L( ·)-topology if 

*This elegant proof was suggested by Professor Franklin. 
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The proof of 5. 4. 1 only needs to be altered where we show that weak 

convergence in A implies convergence in the norm f.l(· ). 

Z N Z 00 f.l Z 
f.l (f-f

1 
) = 2:: f.ln.(f-f1 , cp ) + 2:: An An (f-f

1 
, cp ) 

k n= 1 k n n=N+l n k n 

N Z Z 
~ 2:: f.ln (f-f. , cp ) + Zy sup f-ln An 

n=l .r.k n n>N 

and the rest of the argument is much the same. 

Write f.ln = t- and define an operator ~ by 
n 

00 '1 00 

~(f) = 2:: (f, cpn)- cpn = 2:: (f, cpn)sn cpn. 
n=l f.ln n=l 

The norm f.l( ·) is then generated by 

z -1 
f.l (f) = (f, ~ f) . (5. 4. Z) 

Boundedness in the norm topology generated by X yields 

compactness in the norm topology generated by~ when the eigen-

values A of X go down faster than those s of ~. ( ~ and X having n n 

the same eigenelements cp corresponding to s and A respectively). 
n n n 

When the foregoing is put together with Theorem 1. 4. Z, the 

following convergence result for T B-methods is obtained. 

Theorem 5. 4. 3 

Let H
1 

(·, ·)
1 

and Hz (·, · )z be separable Hilbert spaces and 

let K : H
1

- Hz be a bounded, one - to-one operator whose range is 

dense in Hz. Let {cpn} be an orthonormal basis for H 1 and norms 

II· II X and f.l( ·) be defined on subs paces of H 1 by 

z 00 

llfll = l: 
X n=l 

1 2 z 00 
1 z 

- (f, cp ) and f.l (f) = L y- (f, cpn) 
An n n=l ~n 
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where A ; t; > 0 for all n. A sufficient condition that the operator K 
n n 

be regularized under the norm fl. by the condition (f, x- 1f) .::::; yz is that 

A 
lim n 

t;n 
= 0 • 

n-oo 

Having obtained an idea of when regularization is obtained 

and hence solution via a T H-method is feasible, it would be useful 

to get a feeling for what sort of convergence rates will be obtained. 

Observe that, in 5. 4. 3, a detailed description of K is not needed. 

The details of K' s structure within the broad limitations imposed by 

5. 4. 3 will not affect whether or not convergence occurs but have a 

great deal to do with the rate of convergence. Knowing that the 

modulus of regularization (see section 5. Z) is of great interest in 

this respect , a few cases will be considered wherein bounds upon 

it can be imposed. Only regularization under the norm II· 11
1 

will 

be treated. At first glance, all situations will seem rather special. 

Reflection on the experiences of past chapters, however, shows 

them to occur rather frequently in practice. 

Theorem 5. 4. 4 

Let H
1 
(•, · )1 and Hz(·,· )z be separable Hilbert spaces and 

let K : H
1 

-Hz be one to one, bounded, linear and compact. Let the 

eigenvalues of K*K be denoted {A. } and its corresponding orthonormal · 
n 

eigenelements by {<pn}. Let the norm 11·11 X be defined by 

for 

*II£ II X = oo if the sum does not converge. 
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where T) is a positive sequence; T) - 0 as n- oo. Assume the A 
n n n 

are monotone non-increasing. Recall that p(e:) is defined by 

p(E) :::; sup 

IlK£ liz ~ E 

II£ llx ~ 1 

sup 

* 2 (£, K Kf) ~ E 

llr liz ~ 1 
X 

a) If there exist positive constants C and p such that 

then 

T'l ~ cx.P 
n n 

for 

1 1 
cp+1 c2(p+l) 

p(E) ~ " 

forE ~ 
E±l 

C A 
2 

p n 
0 

b) If there exist positive constants C and p such that 

then there exists a sequence of E values tending to zero for which 

p(e:) has the lower bound: 

1 ___E_ 

( ) C
Z(p+l) p+1 

p E ~ E • 

c) If there exist positive constants C and p and R > 1 such that 

-[ _g_ ]P 
T)n 

An ~ R for n ~ n 0 , 

convergence is (at best) logarithmic. 
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d) If there exist positive constants C and p and R > 1 such that 

- [~]p 
'Tln 

An ~ R for n ~ n
0 

, 

convergence is (at worst) logarithmic. 

* Proof of a) and c) 

a) 

If 11Kfll 2 ~ £ and llfll~ ~ 1, then for all N ~ n 0 , 

llfll21~ 1 £2+ sup 11 ~ 1 £2+C"X.PN+l (*) 
"X.N n>N n AN 

~ 
(by hypothesis). If £ ~ CpA 2 , there exists N ~ n

0 
such that 

1 no 

[ 
2 J p+1 

AN+ 1 ~ ~ p ~ AN • 

Substitute into * and the result follows. 

c) It will be shown that an infinite sequence of values of£ tending 

to zero have p(£) bounded below by a logarithmic function of£. 

Then 

Let f -
m 

£ 

\['it 
m 

1 2 
£ 

, x-
m m 

>!<The same ideas are involved in proving 2) and 4) left out for brevity. 
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Let us maximize £ subject to 
~ 

m 

c!Sl. 

Fix attention on those £ for which £
2 = X. 11 for some m. There 

m m 

are infinitely many such £ and they do define a sequence tending to 

zero as m-oo. Then 

£ 

~ m 

For such an £, ~ will be a lower bound for p(£), 11 can be 
m m 

bounded above under our hypothesis 

-[~f 
2 11m 

£=X. 11 c!S11 R m m m 

about the A • 
n 

For C, R, p as specified, the function 

-(~)p 
X 

z(x) = x R 

rises monotonically from 0 to oo as x goes from 0 to oo. 

There is thus one root x 0 (£) to 

-(~ )p 
£2 =X R X 

and x 0 (£) will be ~ 11m· An asymptotic formula for x 0 (£) valid for 

small £ can be found. 

c p c p 
2log£ = log x

0 
- tx-) logR,..., - (-x-

0
) log R 

C (-logR\~ + 

0 

( 1 \~ 
xo = · 2log£j 0 

- log£/ 
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So for sufficiently small £ which happens to be X. TJ for some m, 
m m 

1 

( £) ;:<: ....._ C (log R ) p 0 P -2log£ 

Every rate of convergence discussed in Chapters 2 and 4 could 

have been speedily estimated using 5 . 4. 4-a) and 5. 4. 4-b). The 

statement to the effect that Tikhonov' s method gets logarithmic con-

vergence on the backwards heat equation follows from 5. 4. 4-c) and 

5. 4. 4-d ). 

A consequence of 5. 4. 4-a) is that if T) goes down faster than 
n 

any power of A , then for small enough £, p(£) tends towards lin
n 

earity. It goes without saying, however, that £ may have to be 

unrealistically small (from the point of view of numerical compu-

tation) before anything like linear behaviour prevails. 

One is not always able to apply 5. 4. 4 conveniently - or indeed 

at all. However, the following estimate is always available: 

p 
2 

(£) :::>; in£ [£ 
2 

sup -:}- + sup T)n] 
N n:::>;N n n>N 

(5. 4. 5) 

For £ 1 s of sizes encountered in computations, direct use of 5. 4. 5 

will often be, by far, the best way to find p(£ ). The A and 11 need 
n n 

not be monotone although lack of monotonicity will make the estima-

tion more difficult. 
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CHAPTER 6 

SOME OBSERVATIONS ON A STATISTICAL METHOD 

A few approaches for dealing with linear, ill-posed problems 

of the form Kf
0 
~ g have now been examined. As we have seen, the 

K' s of interest to us suppress crucial information about f
0 

in an 

irrecoverable fashion; successful extension entails, among other 

things, a replacement of missing information, 

The methods studied so far seek to accomplish this by placing 

very definite restrictions on f
0

, forcing f
0 

to lie within some admis

sibility class if it is to be cons ide red an allowable solution. Let us 

call these "D-methods." * 
Suppose, however, that our physical application is such that 

we have access to a wealth of statistical data about the solutions to 

be encountered and the errors associated with our knowledge of g. 

Then we might well seek to give a statistical estimate of f
0

, replac

ing the information suppressed by K statistically. A classic case 

is that of mathematical weather prediction t where the accumulated 

records compiled over the years by meteorologists are available. 

Many problems involving interpretation of distorted signals also 

suggest this approach, planetary radar and photographic image en-

hancement being two suitable areas of application. 

The idea of applying statistical methods to ill-posed problems 

goes back at least to Sudakov and Kalfin L26] ( 1957). Lavrentiev [18] 

>:'"D" is for deterministic. There is no possibility admitted that f
0 

might lie outside the admissibility class. 

tSee Courant and Hilbert [ 4 ] , page 231. 
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mentions their work and suggests a statistical approach of his own. 

He points out how D-methods can be thought of as limiting cases 

wherein the probability that the solution lies in some set goes to 1 . 

This set would be identified as the D-method's admissibility class. 

Strand and Westwater [25] worked on statistical extension of Fred

holm integral equations of the first kind. There are several 

meteorological references in their bibliography. 

Many of the earlier workers in the field discretized their 

problems by suitable quadrature techniques as a preliminary step 

to their analysis. That made the problem finite dimensional, the 

)~ 

ill-posed operator K typically replaced by an ilL-conditioned matrix. 

A statistical approach which addresses itself directly to the original 

problem will require the notion of a random process over an infinite 

dimensional space. (See Gelfand [11] and Lavrentiev [18].) 

The method of Franklin [ 6 ] , developed for direct extension 

of problems on Hilbert spaces will be the subject of this chapter. 

As far as is possible, discussion of statistics will be avoided as the 

work of previous chapters lends itself to the appraisal of D-methods 

only. An interesting fact to be brought to light is that a T H-method 

is readily constructible whose solution is the estimate suggested by 

Franklin 1 s method. On its own, the T H-method would be unmotivated 

mathematical extension but, in this context, it becomes somewhat 

more respectable. Its usefulness lies in the alternative viewpoint 

it affords of the statistical estimate. What we know about convergence 

*See Conclusions for further discussion of this point. 
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in T -nH~ thoda can be invoked to account for certain stability features 
H , 

in Franklin's method which are not obvious from the statistical stand-

point. In section 6. 4, the problem of harmonic continuation on which 

computations were performed by Franklin will be discussed in an 

illustrative capacity. 

6. 1 Franklin's Method 

For the purposes of this discussion, a very sketchy outline 

of the method will suffice. (Anyone interested in pursuing the 

details is referred to Franklin [ 6 ] • ) 

Let H 1 (·, • )1 and Hz(·,· )Z be Hilbert spaces and K : H 1- Hz 

be bounded, linear, and one to one. The equation K£
0 
~ g is re-

placed by 

K£
0 

+ n = g (6.1.1) 

Having carefully defined random processes over Hilbert 

spaces and their correlation operators, Franklin views f
0

, n and g 

as samples from processes referred to respectively as the signal, 

noise and data processes. 

Labeling these processes P
1

, Pz and P
3

, one relates them by 

(6. l. Z) 

(u
3 

= g would represent a particular sample from the data 

process P 
3

• ) Sought is a best linear estimate (in a well-de fined 

sense) o f the signal u
1 

in terms of the data u 3• It is assumed that 
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the autocorrelation operators R
11 

and R
22 

(of the signal and noise 

processes respectively) are known as is their eros s -correlation 

operator R
12

. 

The solution to this best linear estimate problem is found. 

For a sample u
3 

= g from the data process, u
1 

should be estimated 

by 

(6.1.3) 

The c orrelation operators have the following properties : 

a) R .. H . -H. are bounded. i, j = 1' 2. (6. l. 4) 
1J 1 J 

b) R . . 
:0:< 

i, j 1, 2. = R .. = 
1J Jl 

c) (h . , R . . h . ) . > 0 for 0-:F- h . E H . . i = 1' 2. 
1 11 1 1 1 1 

In actual computations, further restrictions are usually im-

posed on the operators R . . . In effect, assumptions about the signal 
1J 

and noise processes are made which are reasonable for most appli-

cations and which make the implementation easier. Specifically, 

a) 

b) 

R
12 

= 0 (signal and noise a re uncorrelate d) 

R
22 

= v 
2

I (where v is a small parameter). 

(6. 1. 5) 

6. l. 5-b) is referred to as the 11 white noise condition, 11 v being the 

11 white noise amplitude. " 

Under these assumptions, 6. l. 3 becomes 

* * 2 -1 f = R 11 K ( KR 1 l K + v I) g. (6.1.6) 
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6. 2 An Equivalent TH-Method 

At this point, the question confronting us is, 11 How can 6. l. 6 

be interpreted as an attempt to find an approximation £ to £
0 

satisfy-

ing 

IIK£o-gll2 ~ e: (6. 2.1) 

-1 2 
(£0, X £0)1 ~ 'Y 

via the minimization of 

2 
IIKf-g liz+ a(£, X-

1
£)1 ? 11 (6. 2. 2) 

Here X : H
1 

- H
1 

it to be a positive definite, bounded, self-adjoint 

linear operator. It is also required that a be related to e: by 

(6.2.3) 

for positive constants cl and cz. 

Answering this question entails identifying X, e:, a and y, 

within the framework just outlined, in terms of R
11 

and v in 6. l. 6. 

We know from Chapter 5 that the solution to the minimization problem 

6. 2. 2 will be given by 

* -1 * f=(xKK+al) xKg (6. 2. 4) 

as a consequence of 5. 2. 5. 

Let us therefore try to arrange that 



2 
a Rll = v X 

So choose a and X: 

2 
a = v ; X = Rll . 
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>,'< >,'< 2 
X K ( KR ll K + v I) 

(6.2.5) 

The operators K and x. (now fixed), determine the modulus of regu-

larization p(E ). When E, y and a have been specified, the difference 

between £(given by 6. 2. 4) and any £
0 

satisfying the conditions of 

6. 2. 1 is bounded by the rate of convergence y cr(~ , a). This is 

related to the modulus of regularization by the inequalities: 

(6.2.6) 

where (see section 5. 1) 

There is still considerable leeway in how E and y must be 

specified. In fact, there are many problems 6. 2. 1 whose solutions 

by 6. 2. 4 with a = v2 
would lead to the same approximation £. In 

identifying a companion for Franklin 1 s method, choose one giving 

good e rror estimates in terms of v. What interest error estimates 

are in understanding a statistical method has not yet been made 

clear - that being the subject of section 6. 3 - for the time being, it 
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will suffice to note that choosing 

Y =Yo; £ = y v ; 
0 0! = v 

2 

is legitimate and causes 6. 2. 6 (in view of 6. 2. 7) to become 

(6. 2. 8 ) 

(6.2.9) 

At first glance, it appears, somewhat alarmingly, that y
0 

is 

a fr e e parameter and that the error estimate y
0 

a(v, v 
2

) can be made 

arbitrarily small. This is not the case, however, since it was 

assumed in deriving the relationships 6. 2. 6 that f 0 existed satisfying 

6. 2. 1. Taking y 0 too small will cause the sets 

a) (6. 2. 10) 

and 

to become disjoint. For the estimate 6. 2. 9 to be valid, y 0 must be 

chosen larger than some value y . (v, g). If g is in the range of 
m1n 

Kx, a value of y
0 

can be found which is applicable for all values of 

v. Indeed, if 

for hE H 1 

Yo = (h, xh) 

satisfie s 

for all v 



and 

2 
= 'Y 0 
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So, if g E RanK x, there is always at least one choice of f
0 

satisfying 

the two constraints 6. 2. l 0 whatever the value of v. 

If g is not in the range of Kx, it is indeed possible for 

'Y min(v, g) to approach infinity as v- 0. Fortunately, for practical 

purposes, this pathology can never make itself felt. Our£ 's can 

never be smaller than the limitations imposed by the machine rep-

resentation of g. The actual machine description of the data always 

refers equally well to any of a collection of points in the abstract 

Hilbert space some of which will be in the range of Kx. This entitles 

us to say "Without loss of generality, assume g is in the range of 

Kx." 

In what is to follow, an intuitive understanding of certain 

qualitative phenomena is all that is desired; the estimates to be made 

will be very liberal. It will be assumed throughout that a modest 

value of y 
0 

(order l) exists for which Franklin's m e thod can be 

viewed as equivalent to a T H-method, the rate of convergence sat

isfying 6. 2. 9 for any v of computational relevance. 

6. 3 Insensitivity of Estimate to Certain Statistical Assumptions 

Franklin observed in his numerical computations that the 

solution f to 6. 1. 6 was rather insensitive to the statistical assump-

tions made. In particular, the white noise amplitude v could be 

varied over several orders of magnitude without notably affecting f. 

We are now in a position to explain this. 
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The white noise amplitude has now been identified as a small 

convergence parameter. For each value of v, an element f is as so
v 

cia ted by way of 6. l. 6. As v - 0, f approaches some limit. When 
v 

v is small enough, f is quite near the limit and making it smaller 
v 

will not have much effect. 

Let v 
1 

> v 
2 

be distinct values of v corresponding to fv 
1 

and 

f • Let f
0 

satisfy 
v2 

(6. 3. 1) 

(y
0 

as discussed in section 6. 2). Then by 6. 2. 9, 

(6. 3. 2) 

This is a very crude estimate, the distance between f and 
vl 

f being bounded by the sum of their distances to a third (pes simis
v2 

tically located) point. Nonetheless, 6. 3. 2 does tell us that stability 

of the kind mentioned will be observed in computations if the regu-

larizing effect of R
11 

on K yields a good modulus of regularization. 

At this point, it would be desirable to see what sort of con-

vergence occurs with the R
11

's and K's typically used . In the next 

section, we shall delve into the computational example actually 

worked by Franklin and c heck this out. 
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6. 4 The Numerical Example of Harmonic Continuation 

The ordinary Dirichlet problem for the unit circle is to find 

u(r, 8) satisfying 

.6.u = 0 for 0 < r < 1 o ~ 8 < 211' (6.4.1) 

subject to u( 1' 8) = fo(8 ). 

The solution is given by the well-known Poisson formula : 

1 211' 
u(r, 8) = -2 J 

11' 0 2 
1-2r cos(8 -cp}+r 

Suppose we were given 

(6.4.2) 

on some interior circle of radius p < 1 and asked to recover f
0

. That 

is, find f
0

(cp} satisfying 

1 
211' 

2 
( 1-p ) f

0
(cp) 

------------~2~ dcp • 
1-Zp cos(8-cp)+p 

This is a Fredholm integral equation of the first kind. 

Let us write this in operator notation : 

(6.4.3) 

(6. 4. 4) 

K, regarded as a mapping from L
2

[o, 2rr] into L
2

[o, 2rr], is self-

n 
adjoint, compact; has the eigenvalues p , (n a non-negative integer), 

and the orthonormal eigenfunctions : 
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1 

.J2rr 
Po--1- . 1"'\""""'1* corresponding to the eigenvalue '\111.., 

cosn8 

sinn8 

corresponding to pn for n ~ l - .JX2 n 

corresponding to pn for n ~ l - .JX 
2n+l 

K will thus have the spectral decomposition: 

Kf = (f, _1_) _1_ + ~ [pn{f, cosne) cosne + pn{f, sinne) sinne] . 

.J21T .J21T n = l ..J7i ..J7i ..J7i .J1i 

(6. 4. 5) 

(All these facts about K are easily discovered when separation of 

variables in r and 8 is performed in solving 6. 4. 1 ). 

In passing, let us see what convergence Tikhonov' s method 

would achieve. Take the simplest regularizing functional: 

Iff has the Fourier series: 

f~ (f,f!;) {fr + ~ [(£, cosne) cosne + (f, sinn8) sinne] 

n = 1 .J1i .J7i ..[7r ...r:i 

then 

-1 = (f, X f) 

* Recall that An was the designation in Theorem 5. 4. 4 of the eigen

values of K*K = K 2 (in this case). 
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where X has the spectral representation: 

(X) 

x£ = (£, _1_) _1_ + :6 ~ (£, cosne) cosne + _1_ (£, sinne) sinne 

.J27i .J'27r n=1 1 +n ..[; ..[; l +n
2 ...r7T fi 

The eigenfunctions of X are: 

l 

.J2ir 
corresponding to the eigenvalue 1 

cosne corresponding to 
1 

.J1T l+n
2 Tl ?- 1 

sinne 
corresponding to 

1 
--2 

..[; l+n 
Tl ?- 1 

* c= Tl ) l 

(= Tl2n+l) 

(6.4.6) 

K*K = K 2 has the same eigenfunctions as x, the eigenvalues 

Ak of K*K are monotone non-increasing . Thus 5. 4. 4 is applicable. 

The eigenvalues to be compared are Ak and Tlk identified here by 

2n 2n 
Al=l;:A2n=p ;A2n+l=p n ?-1 

. l 1 
Tl1 = 1 ; Tl2n = --2 ; Tl2n+l = --2 

l+n l+n 
n ?- 1 

1 
Denote p = R ; R > 1. 

Let C = 2; p = t. 

Now let C = 1 ; p = 1. 

- [-1-] -[-c-3P 
A =R-2n?-R-(n2+l)=R Tl2n =R Tl2n 

2n 

>:<Recall that the Tlk are the eigenvalues of X defining H · /IX in 5. 4. 4 . 
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The same calculations hold with A.2n and , 2n replaced by A.
2

n+l and 

,
2

n+l" By Theorem 5. 4. 4 (parts c) and d)), convergence will be 

logarithmic if Tikhonov 1 s method is used. This observation was 

made in Franklin l ]. Note how slowly the T)k go down as compared 

with the A.k. This is in marked contrast to what we shall observe 

when the X = R
11 

of Franklin 1 s computation is taken as the regu-

larizer. 

The operator R 11 used was defined by 

27r 2 
R 11 f(8) = J 0! exp{-(3sin [}(8-cp)]} f(cp) dcp 

0 

which is the convolution h*f of f with the function h: 

(6.4.7) 

(6. 4. 8) 

The parameters a and (3 were related to how large and how oscillatory 

the anticipated solutions would be on the average. The 11 size 11 and 

"'< 
11 roughness 11 associated with R

11 
were defined., and shown to be equal 

to ~ and ~ respectively. Computations were performed with 

size = 1 and roughness = 1, 2, 5 and 7. So Q! = 1 and (3 ranges in value 

from 2 to 98. p was chosen to be } . 

To get the Fourier series for R
11 

f from f and hence obtain 

the spectral decomposition of R 11 , use the convolution theorem for 

Fourier series. That is, if f 'has the series 

>:<Size and roughness will not be defined for this non-stati stical dis
cussion. 
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and 

then h>.'<f has the series: 

h*f rv ...[27i foho 1 + ~ r.J?T (f h -f lh 1 )C0Sn8 +.J7i'(f lh +f hi ) Sinnel. 
\{21i n=l l n n n n .J1i n n n n ..J1r J 

So all that is needed to complete the spectral representation of R
11 

is the Fourier ex pans ion of h. The h 1 are zero since h(rp) is 217 
n 

periodic in rp and is even when extended to negative values. To get 

the h , evaluate 
n 

21T 21T J cosnrpaexp[f3sin
2 fJ drp = aJ cosnrpexp[-(3( 1 -c~srp)] drp 

0 ' 0 

-~ 1T ~cosrp - ~ 
= 2 a e 

2
1r.!:.. J e

2 
cosnrpdrp = 21rae 

2 
I (~2 ) • 

1T 0 n 

(I is the nth order modified Bessel function.) 
n 

h = 2.J1i a e n 

So R 11 has the form: 

-~ 
R

11
£(8)=21Tae 2 I (~)(£, -

1 
) - 1-

0 2 .J2ir ~ 
00 -~ 

+ L: 21ra e 
2 

I (~) 
n=1 n 2 

(f, sinne) sinn8 

..J1r .J1i 
(6. 4. 9) 
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* R 11 has the same orthonormal eigenfunctions as K K and we identify, 

for purposes of applying Theorem 5. 4. 4, 

Tll 

Tl2n 

= 271' a e 
-~ 

2 I (~) 
0 2 

-~ 
2 I (~) 

n2 

- ~ 
Tl2n+l = 271'a e 2 I 

n 

The comparison will this time be between 

and 

n ?- 1 

n ?- 1 . 

From the series expansion for I (x), (an entire function), 
n 

00 C!x)2k 00 (ix)k 
I (x) = (i x)n l: ~ (ix)n-+ l: n 

k=O k!(k+n)! n. k=O k! k! 

(ix)n l 
I
0

(x) = . 
n! 

Comparison of the behaviour in n of 

-~ n 
271'ae ~ 

(4) n! 

(6. 4.10) 

shows that the Tlk go down much more rapidly than the Ak. For small 

enough values of its argument, the modulus of regularization p(E) will 

exhibit very rapid (-linear) convergence to zero with E. But what of 

-3 - 6 
values to be encountered in computations such as E = 10 or E = 10 ? 

Asymptotic estimates are not helpful here and we are not in a position 

to usefully exploit Theorem 5. 4. 4. Instead one appeals to 5. 4. 5. 
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That 1s, use the es timate for p(e:) g ive n by 

1 + sup - sup 
A.k 

k~N k>N 

(5.4.5) 

Our A k and Tl k are monotone . In fact, they are such that the above 

r educes to 

2 
in£ {e: 

2 1 
Tl2n+2} p (E) ~ 

A.2n+l 
+ 

n 

~ 
in£ {e: 

2 2n 2 13 } (6. 4. 11) = R + 21rae 1n + 1 (z) 
n 

For specified value s of £, a, 13 and R, the above in£ can be found 

numerically. Let us find it for the following values of the parame-

ters: 

~ = 1 ;4;25;49, (6. 4. 12) 

E = 

0! = 1, 

R = 2. 

The variable parameters are E and 13 so denote the modulus of regu

l arization p (£; ~). 

The computed results appea r in Table 6 . 4 . 13. 
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TABLE 6 . 4.13 

13 E ~ p(e:;~) log p(e:; ~)/lo ge: 2 

l.O 10- 3 
2.97 x 1 o- 2 

. 509 

1 0- 6 
2 .80 X 1 0- 4 

. 592 

4 . 0 10- 3 
9 . 4 1 X 10- 2 

. 342 

1 o- 6 
2. 35 X 10 -3 

. 43 8 

25.0 1 0- 3 
l. 36 X 10 -l . 136 

10 - 6 
6.55 x 1 o- 2 

. 197 

4 9 . 0 10 - 3 
2 . 02 X 10- 1 

. 1 16 

1 0- 6 
1. 36 X 1 0 - 1 

. 1 36 

An intere sting quantity is the ratio of the log of p( e: ; ~) to loge:. 

It is a measure o f the fraction of significant figures of accuracy in 

the data , a T H -method retains in the solution. W e expect it to go to 

~' 1 slow ly in e: since in the linea r limit, 

p ~ e e: ~ logp ~ loge + loge: 

=9 l o g p ~ l oge + 1 = 1 + o(e:) . 
loge: loge: 

For a ll the value s o f ~ c onsidere d, this ratio did increase as e: was 

- 3 -6 
l owe r e d from 10 to 10 . 

>:<For this exam p l e , we do obta in linea r lirniting beha viour. 
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The tabulated values of log p(£)/log£ woul d tend to suggest 

that the srnaller ~ is chosen to be, the better will be the conv ergence. 

This corresponds to making statistical assumptions favouring low 

frequency oscillations. Interestingly enough, this postdiction is not 

borne out by Franklin's computations. This TH-analysis very defi

nitely has its limitations. 

Roughly speaking, "too many possibilities" are admitted by 

the combined assumptions: 

a) 
-1 2 

(fo, X fo) ~ y 

b) IIKfo-g 11
2 ~ £ 

for a really good comparison with the statistical method. In the spec-

tral decomposition of f
0

, high frequency terms are damped by the 

assumption a) and low frequency ones are pinned down by the assump-

tion b). For small enough values of£, assumption b) locates arbi-

trarily many low frequency terms arbitrarily accurately. (That is 

why spectral cut-off works.) But exceedingly small£ 's may be re-

quired before the combined effects of a) and b) really give a good rate 

of convergence. (One must beware of asymptotically pleasing esti-

mates.) 

The statistical viewpoint would have us focus attention on a 

range of frequencies with a lower as well as an upper bound. Perhaps 

replacing a) with 
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would be more appropriate but then the analysis would become more 

difficult. 

Rather than trying to push a point further, let us just accept 

the fact that all qualitative features of the statistical method w ill not 

be explained through the TH-interpretation. We merely make the 

·observation that the statistically constructed R
11 

is an excellent 

regularizer for this operator K. Whatever the mo re appropriate 

D -analogue happens to be, the regularizing effect of R 11 can be ex

pected to force rapid convergence. 
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CONCLUSIONS 

This work has been concerned w i th ill - posed linear p roblems 

r e sulting from an attempt to invert compact mappings between Banac h 

spaces . The mechanism for well-posed ex tension has been the impo-

sition of an additional constraint that admissible solutions lie within 

given compact sets. Ultimate numerical solution of appropriate 

r e lated p roblems has been in the background of all discus sian. 

Whe n the .mapping is between separable Hilbert spaces (as is 

so often the case), compact restric tion involves suppressing the 

contributions from most of the terms in the expansion of allowed 

e l e ments. The mathemat i c al study in Hilbert function space s such 

2 as L [a, b] would n e cessarily begin and end with supp ression of high 

frequency modes. It began w ith simple spe ctral cut- off and ended 

with T B-methods. 

Motivation of constraints is truly of p aramount importance 

although the pre ponde rance of effort has been upon the analysis of 

the i r e ffects and upon the ir incorporation v ia relate d (w ell-pos e d) 

p roblems . The condition Kf0 ~ g is very weak; satisfied by an e nor 

mous and divers e colle ction of f o' s. An a stronomer a sked to a pprox 

imate the location of a star g ive n only that it lay in a de signate d 

unbounde d sector of the unive rse w ould be confronte d w ith no more 

impossible a task. In r e aching into that morass of f
0 

1 s and p ulling 

one out, w e m ust h a ve a r e ason for fo c using our atte ntion on t he 

one chosen. If w e have no s uch r e ason , a n yone e ls e 's choice is at 

l east a s g ood as ours . 
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0rder of priority in the reduction of a problem to a form 

suitable for machine computation is a topic meriting some mention. 

Numerical discretization must sooner or later be performed and a 

finite dimensional problem solved. At what stage in the analysis 

should this be considered done? Many are in favour of discretiz ing 

immediately, much happier in dealing with ill-conditioned matrices 

than with compact operators. This approach is not endorsed here. 

::::::: 

We know that incorporation of additional information about the solution 

will be necessary. That information, be it statistical or determinis

tic, will be in the nature of statements about elements in the Banach 

space in which the problem was initially cast. It is difficult to 

imagine a means whereby the information can be utilized without 

loss in authenticity. It is recommended instead that we hold off on 

the numerics until our interest has been established in a well - defined 

element in the Banach solution space, that element being the solution 

of a well-posed problem. Then finding a numerical approximation 

for that quantity becomes a worthy and plausible goal. 

One who adopts the philosophy of this work with regard to ill

posed problems must find the subject discouraging until he learns to 

be content with rather meagre returns. He must learn to call a 

method good when in his answer he expects 11 only'' to lose half the 

significant figures of accuracy supplied in his data. 

When strong restrictions in aD-method promote very rapid 

convergence, it means that good a priori knowledge of the solution 

*It was touched obliquely in the opening remarks of Chapter 6. 
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was available. Under no circumstances 1s something given to us for 

nothing. Very simply, there is a limited amount of information 

present in the statement Kf
0 
~ g. What little there is can be coupled 

with whatever else we know in our attempt to propose approximate 

solutions. The optimal campaign of action towards this end will so 

often yield results below the expectations of one whose past experience 

is with well-posed p roblems. We must not be disappointed just be

cause our honestly established claims of accuracy prove to be rather 

unspectacular. It may be impossible to do significantly better. 



-114-

APPENDIX A 

* A FEW DEFINITIONS FROM TOPOLOGY 

AND FUNCTIONAL ANALYSIS 

It is assumed the reader has some familiarity with linear (vector) 

spaces, elementary set concepts, convergence of sequences of real 

numbers. 

A. 1 A ilorm II· II defined on a subset V of a linear space X is a 

rule assigning real numbers to elements v
1 

;v
2 

E V which has 

the properties: 

a) II v 1 II ~ 0 ; II v 1 II = 0 only if v 1 = 0. (positive definiteness) 

b) llav1 11 = jaj llv1 11. (homogeneity) 

c) llv1+v2 11 ~ llv1 11 + llv2 11. (triangle inequality) 

A. 2 An inner product (·, ·) defined on a linear space X is a 

complex-valued function defined on XxX with the properties: 

a) (x
1

+x
2
,x

3
) = (x

1
,x

3
) + (x

2
,x

3
). (bilinearity) 

b) (x 
1

, x
2

) = (x
2

, x 
1 

) . (conjugate symmetry) 

c) (ax
1
,x

2
) = a(x

1
,x

2
). 

d) (x
1
,x

1
) ~ 0; (x

1
,x

1
)i= 0 ifx

1
i=O (positive definiteness) 

x
1
,x

2
,x

3 
EX. (A norm II· II will be defined by 

llx
1 

II 2 = (x
1

, x
1 

). Inner product spaces are thus normed 

spaces. ) 

A. 3 A normed linear space X II· II is a linear space X on which 

a norm II· II is defined. 

*It will actually be definition interspersed with remarks about prov 
able facts. Only points which will be required to understand the 
main t ext are raised. 
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A. 4 A linear inner product space X (·, ·) is a linear space on 

which an inner product (·, ·) is defined. 

A. 5 A Cauchy sequence in a normed space X II· II is a sequence 

of elemerits {xn}C X with the property that for each£ > 0, 

there exists N(E) such that 

llxn -xm II < £ if n;m ~ N(E) 

A. 6 a) A subset V of a normed linear space X II· II is said to be 

closed if all Cauchy sequences {v } C V converge to an 
n 

element contained in V. That is, if {v } C V C X is a 
n 

Cauchy sequence, there exists v E V such that 

llvn-v II -0 as n- oo. 

b) The smallest closed set containing a given set V is called 

the closure of V and is denoted V. 

c) A normed space X II· II which is closed is said to be complete. 

A. 7 A complete, normed, linear space is called a Banach space. 

A. 8 A complete, normed, linear, inner product space is called 

a Hilbert space. 

A . 9 A subset V of a normed space X 11·11 is said to be dense in 

A. 10 

X if each element x in X is the limit of a sequence in V. That 

is if for each x E X, there exists {v } C V such that 
n 

llvn-x ll-o as n-oo. 

An operator K mapping from a subset V of a space X into 

a subset W of a space Y is a rule which associates a unique 

element w = K(v) or Kv E W for each v E V. The largest subset 

v C X on which K is defined is called the doma in of K and is 

denoted DomK. The subset W C Y defined by W = { yE Y I y = Kv 
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for some v E DomK} is called the range of K and is denoted 

Ran K. Write K : Dom K -- Y 

{ Kv E Y / VE VC Dom K} = KV (the image of V under K). 

A. 11 a) An operator is onto (surjective) if RanK = Y. 

b) An operator is one to one (injective) if for v
1
,v

2 
E Dom K. 

Kv
1 

= Kv
2 

only if v
1 

= v
2

. 

c) An operator K is linear if for all v
1

, v
2 

E Dom K and all 

scalars a and [3, 

K(av
1 

+ [3v2 ) = aKv
1 

+ j3Kv
2

• 

A. 12 If K : Dom K C X-- Y is one to one, then for each wE RanK, 

. -1 
there is a un1que element v E Dom K; denote v = K w. The 

-1 
operator K so defined is called the inverse of K. 

A. 13 A topology on X is a class T of subsets of X satisfying : 

a) The union of every class of sets in T is a set in T. 

b) The intersection of every finite class of sets in T is a 

set in T. 

A. 14 An open set 0 in a Banach space B 11·11 is a set with the property 

A. 15 

that for each x E 0, there exists a positive scalar £ such that 

The class T of open sets of B /1 · 11 defines the norm topology 

on B II· II· 
A subs e t V of a Banach space B II· /1 is compact (in the norm 

11·/1 topology) if every class of open sets whose union contains 

V has a finite subclass whose union contains V. 
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A linear operator t<.: x l- x2 where xl II· II. and X z II· liz 

are normed linear spaces is said to be bounded if there exists 

a real number M ('?- 0) such that for all x
1 

E x
1 

, 

The smallest such M is d e noted IlK II and is called the norm 

of the operator K. 

A linear functional F defined on a linear space X is a linear 

operator whos e range is contained in the space of scalars and 

whose domain is X. The space of bounded linear functionals 
,., 

defined on a normed space X II· II is denoted X'. 

A seque nce {x } C X is said to be weakly convergent to 
n 

"'" x E X if for all bound ed linear functionals F E X , 

IF(xn}-F(x} 1-o as n-oo. Denote x ~ x. 
n 

A linear operator K : xl- Xz where xl II· II 1 and Xz 11·11 2 

are normed spaces is said to be compact if the image KV of 

every bounded set V C x 1 has compact closure in Xz. That 

is if KV is compact (in the II liz-topology). 

Lef B 1 II· 111 and Bz II· II Z be Banach spaces and T : B 1 - Bz 

be a bounded linear operator. D e fine the a djoint operator 

>~ =>:c * 
T : Bz - B 1 by 

,., 
T'F(b

1
) = F(Tb

1
) 

* * for all FE Bz ; b 
1 

E B 1 . (It is easily shown that T is bounded, 

* 1 in ear, and T 
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R e rnark 

In a Hilbert space H(·, ·), a general theorem due to Riesz 

* says that any member of H can be identified with a member of H. 

':c 
Specifically, for F E: H , there exists f E H such that for all h E: H, 

F(h) = (h, f) • 

>::: 
H and H are thus identified. 

If H 1 (·, ·) , and Hz(· , · )z are Hilbert spaces and T : H 1 -Hz 

* 1s a bounded linear operator, then T : Hz - H
1 

is defined by 
,., 

(T, hz, hl )1 = (hz, Thl )z 

for h 1 E H 1 ; hz E Hz. 

A. Zl Let H(·, ·) be a Hilbert space and T be a bounded linear 

operator mapping from H into itself (T : H- H). 

* >:c 
a) T is said to be normal if TT = T T. 

b) T * is said to be self-adjoint if T = T . 

Remark 

In all the foregoing, details which will not be needed are 

omitted. Convergence, unless otherwise specified, is in the norm; 

compactness will always be in the norm topology; open and closed 

sets have been defined for the norm topl:)logy. Ill-posed problem 

theory could be generalized to much mo r e abstract topologies; con-

vergence in nets considered - indeed, work of this sort has been 

done . Abstraction was carried as far as practical utility seemed to 

suggest. 
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APPENDIX B 

Remark on the Estimate of Sturm-Liouville Eigenvalues 

In Chapter 4, the following estimate was given for the nth 

eigenvalue :.\ of the Sturm-Liouville problem: 
n 

(pw ) + (:.\p-q)w = 0 
XX 

subject to 

~ being given by 

* + 0( 1) ' 

b .!. 

~ = J [~~~~r dx 
a 

(4. 1. 4) 

(4.5.2) 

It was mentioned that this formula's application in deciding a trunca-

tion value in a series expansion (see section 4. 5) should not be taken 

too seriously; that the constant in 0(1) could be large. Here, a couple 

of instances are cited in which this is the case. 

First take : 

[a, b) = [0, 7TJ 

2 
q = Q = constant . 

>:<It was stated that for large n, eigenvalues increase at l e ast this 
rapidly. 
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That gives the system: 

w" + 2 
(A - Q ) w = 0 

w'(O) = w 1 (7r) = 0. 

The eigenvalues A and the eigenfunctions cp (normalized) are easily 
n n 

found to be: 

cpl -
1 

corresponding to Al = 0 2 

.[i 

cp = ~g cos [ (n-l )x] corresponding to A = (n-l )
2 + Q

2 
n > l 

n l7T n 

f3 = 71, 

4. 5. 2 would have A 
n 

2 
= (n-l) + 0( l) and the constant in 0( l) is identi-

fied as Q
2 . This may be chosen arbitrarily large at will. 

Now take: 

l 
p(x) = x; p(x) = 

X 

That yields the system: 

q(x) 
X 

d d A o2 

dx (x dx w) + (x - x) w = 0 

w 1 (l) = w'(2) = 0. 

(Q
2 = const. ) 

[a,b] = [1,2] 

The eigenvalues A and e igenfunctions cp (normalized; weight function 
n n 

1 
p(x)=-)are 

X 
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cpl = {;I; corresponding to 

"'n = _/2 [(n-l)?T£nx] ..,. l£!12 cos .!'n 2 

2 
A = [(n-l)?TJ + 0 2 

n .!'n 2 

2 

i3 = ~ 
1 

1 z 
(z) dx = 
X 

in 2 • 

corresponding to 

for n > 1 • 

2 
4. 5. 2 yields An = [(n£-~ 11T J + 0( 1) and the constant is again identified 

as a 2
; arbitrarily large. It is easy to see that, in general, increasing 

q by Q 2
p(x) will increase the eigenfunctions by a2 

in any system 

4. 1. 4. 
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