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ABSTRACT

A study is made of solutions of the macroscopic Maxwell
equations in nonlinear media. Both nonlinear and dispersive terms
are responsible for effects that are not taken into account in the geo-
metrical optics approximation. The nonlinear terms can, depending
on the nature of the nonlinearity, cause plane waves to focus when
the amplitude varies across the wavefront. The dispersive terms
prevent the singularities that nonlinearity alone would produce.
Sclutions are found which describe periodic plane waves in fully non-
linear media. KEquations describing the evolution of the amplitude,
frequency and wave number are generated by means of averaged
Lagrangian techniques. The equations are solved for near linear
media to produce the form of focusing waves which develop a singular-
ity at the focal point. When higher dispersion is included nonlinear
and dispersive effects can balance and one finds amplitude profiles

that propagate with straight rays.
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CHAPTER I

INTRODUCTION AND GOVERNING EQUATIONS

I.1i. Introduction

The interest in nonlinear effects in electromagnetic theory
at optical frequencies has evolved from several roots. The most
obvious one is the practical application of these effects that is now
possible due to the invention of the laser, a high intensity source of
coherent light, without which the effects are too small to be detected.
Some aspects of the theory were developed before the laser, however,
as the study of electromagnetic waves at radio frequencies involves
the use of nonlinear effects. The similarity between the optical
effects and those found in fluid mechanics is striking; many
researchers are producing material in both fields. The pioneering
work in self-focusing beams, with which this thesis is concerned,
was done in the context of the propagation of electromagnetic waves
in plasma, a field which gained impetus from the study of the relation-
ship between the ionosphere and long range communication. In that
respect it might be said that the study of electric discharges in gases
and the invention of the vacuum tube have played a part in the evolu-
tion of interest in nonlinear optics.

In this first chapter the equations for the classical theory of
electromagnetic waves are introduced. These are accompanied by
difierential equations describing the model chosen for the medium.

The medium is represented by a continuum of oscillating dipoles,
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the negatively charged particle responding to the electric field and to
the potential well created by the positive core of the atom. The
potentials for the electric and magnetic quantities are introduced so
that a Lagrangian may be found. The Lagrangian and associated
variational principle will be the main tool in the analysis of the non-
linear phenomena.

In Chapter II, periodic plane wave solutions to the governing
equations are derived. The special cases of linear and circular
polarization are discussed and various special forms of the nonlinear
terms are studied in detail. For cubic restoring forces, exact solu-
tions in the form of Jacobian elliptic functions are found. The case
in which the cubic term is small is then dealt with using a much
simpler approximate method where the periodic waves are taken as
sinusoidal. This case is referred to as near linear. For purposes
of illustration the general solution is expanded for small values of
the cubic term of the restoring force to reproduce the near linear
solution.

The averaged Lagrangian technique is introduced in
chapter III. This technique is used to obtain equations governing
the slow variation of amplitudes, wave number and frequency,
quantities that are constant in the case of periodic plane waves.

AThe consequences are studied for the time-dependent mecdulations
of nonlinear plane waves. These are concerned with the way in
which modulations and wave packets propagate and how nonlinearity

affects the more familiar linear results.
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In chapter IV methods are applied to beams where self-
focusing is the phenomenon of most interest. They may be considered
as spatial modulations similar to the time-like rﬁodulations of
chapter III. The features of the general two-dimensional and three-
dimensional radially symmetric cases are discussed, and the near
linear problem is used as an illustration. An analogy is drawn
between these equations and the equations of fluid mechanics;
methods taken from the theory of fluid mechanics are then adapted
to optics. The equations are solved to produce representations of
self-focusing beams. A solution is produced for the case of a near
linear beam of large width whose rays bend significantly before
focusing and a review is made of treatments of thin beams whose
rays never deviate greatly from being parallel to the axis of propa-
gation.

The first order theory of modulations leads to singularities
which are resolved by including higher order effects of dispersion.
These questions are taken up in chapter V. Averaged Lagrangians
are found both in the case of linear and circular polarization.

Special solutions are found which hawve straight parallel rays but
whose amplitudes vary in a variety of ways. For example, time-
independent solutions are found where the beam is localized about the
axis of propagation and propagates without distortion and also scolitary

wave envelopes are found.
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1.2. The Equations for the Classical Mcdel

The problem that will be dealt with throughout the thesis is
concerned with the propagation.of classical electromagnetic waves
through a2 medium which will be modeled by a continuous distribution
of electric dipoles. The electromagnetic fields will be described by
the macroscopic Maxwell equations in vacuum. The medium will be
felt through the source terms.

The equations take the form

8E
VXH=J+e =/, Ve H=0 ;
— = o ot e
L. 4
o s (1.1)
vX-——_-""o_c'aT’ —-E;°

All the dependent variables are functions of x, y, z and t. The
dipole moment at each point is that of a finite sized dipole with the
positive particle fixed at the point and the negatively charged particle
located in a potential well centered at the positive particle. The only
force on the negative particle considered is that of the electric field.
The magnetic effects, the distortion of the lattice and dissipation are
neglected. The potential at a displacement R 1is given by the general
function U(R). The form of the power series expansion of U(R) is
crucial in determining the effects that occur. When U is quadratic,
leading to a linear restoring force, this is the I orentz theory of dis-
persion. When the series contains higher than quadratic terms the
problem is nonlinear. Chiao et al. [ 1] indicate some of the physical

effects responsible for the nonlinear terms and list the magnitudes
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for some of the materials that show nonlinear properties.
The expression of Newton's law for the oscillators is

.
5R; 3y
,at2+ ﬁz—eEi, {for i=1,2,3)

m

where m is the mass of the electron and e is its charge. It is con-
venient to work with the polarization, 2 = = Ne_13_, where N 1is the
density of oscillators. In terms of the polarization Newton's law

becomes

8°P,
T +§1~¥ =€ ZEi’ (I.2)
ot i P
where we have defined
2.2
vip) = X € y(R)
and
© 2 - Ne2
P €, m

It remains to relate P to the sources J and p and then (I.1) and
(I. 2) will form a complete set of equations.
Current density is due to the motion of the negative particles,

hence

8R

- Ne gr
oP

=3t -

ey
1

Then the first equation of (I.1) gives



"

e V-E=-V-P
o — —_—

which replaces the last equation of (I.1). The substitution of J into
Maxwell's equations produces the terms that normally arise from the
constitutive properties of the medium. The equations governing the

electromagnetic fields now stand as

BE 9P
VXH=< 5 T Ve H=
1.3
E o vV.E 3 o
VX_-—po—é-E—, EO ‘f_—-V‘—-

I.3. The Potential Representation and the Lagrangian

The equations will be placed into potential form so that a
Lagrangian may be found. Using the V- H equation of (I.3), H

may be written in terms of a vector A  such that
p H=V X A.
o—— —_—
Using the V X E equation and the potential representation for H, ¥

may be determined by A and a scalar ¢ such that

2A
E-_-_—&:—VCP. (1-4’)

By means of the potentials A and &, two of the equations (I.3) are

satisfied identically and the remaining two give the equations

8%a 8 oy, O
VXVXA= €k, —F ~Sbopt v ? THo BE

2 9 1
VitV A=V E.
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A gauge condition for A is permitted since only V X A is deter-

mined. Here the Lorentz gauge is chosen:

= % 8¢
v LA

Using this condition and the identity

VXVXA=VV-A-Va,

a final form of the working cquations is produced:

2
87A, P
2 i 3,
VA1=-€OFO_T— +p.o-5t—-=0,
ot
2 3P,
2 K i i ‘
Vib-ebo 7t ww, D0 Ehal
ot o i
%P 8
i+aV=_€w2( 1+a¢_>
Btz 8Pi op ot axi
The Lagrangian for this system is
€ €
2 2 2 o 2 2 2
L =eus (A, - c“A, ) - A, P, - (4"-c% -9 P
2 s o L%, it 1 2% t X Xy k
1 Pi tz
st (Bt vm) , (1. 6)
€ w
op
1

where e, = ? .
For a two-dimensional problem E, _1?_, _A_ and R have only

z components and are functions of x, y and t; the scalar potential

¢ is zero. The equations reduce to



2 1
- + —
Ett € (Exx Ey'y) = P

(I.7)
2
! = 2
Ptt + ViY{P) = Eowp X,

The scalars E and P are the magnitudes of the z components of

E and P. The Lagrangian reduces to

€

2
P
o 2 2,. 2 2 1 t )
- — = i + ey i
L= (At c“(a, tA )) AP sz(z v(P)) , (I.8)
o'p

& and the scalar A 1is the magnitude of the =z

where E = - A

com-
ponent of A.
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CHAPTER II

PERIODIC PILLANE WAVES

II.1., Linearly Polarized Waves

In chapter I the equations for electromagnetic waves in non-
linear media were derived. We now wish to study exact periodic
solutions to these equations in detail. These will be referred to as
fundamental solutions since they play an important role in methods
to be used later in the study of more general solutions to these
equations. We shall find periodic waves propagating in the =x-directiorn.
When we come to use these fundamental solutions in the techniques of
chapter III we shall note that waves propagating in any direction pro-
duce the same averaged Lagrangian, hence the approach taken here
is sufficiently general.

The equations for the one-dimensional problem are:

K -czE =—-1—P
€
o

tt XX i T

2

' -
Ptt + VI(P) = Eowp E .

This is the case of linear polarization since the path traced out by the
head of the vector E is a straight line., We constrain E and P to

be functions of 6 where
0 = Kx - wt,

K and w being given constants. Enforcing this constraint results in

the new form of the working equations



O

2
2 2.2 W
(w - C K )Eee S 'E_o' Pee ’ (II.1 )
WP, + VI(P) = € w °E (II. 2)
00 op : ‘

Equation (II.1) is integrated twice to produce
2

s ~ CoR)E = - L Ptas+s. (I1. 3)
(o]

For E and P to be periodic the secular term must be suppressed
by setting A =0. For E= 0 and P =0 to satisfy the system, B
must be set to zero, hence B represents the displacement due to a
constant electric field. We shall disregard for the moment, the case
where this constant field is present. Having set A and B equal to
zero in equation (II.3), we use this result to eliminate E in equation
(II. 2). One integration then leads to

wa 2

%P +-——-—pZ-—ZP2+2V(P)=M. (I1. 4)
W - & K

The integration constant M determines the amplitude of P(8). The
equation is solved for Pe and integrated to give the following implicit

form for P(8):

gp sl =0 . (IL. 5)
P wlew 2 2
> M-—-Z——%—gp'-zwp)
w” -~ e“K°

Examination of (II.4) shows that F(8) oscillates between simple
zeros of the denominator of the integrand of (II.5). Limiting cases

where zeros coincide correspond to profiles where P approaches a
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constant as 0 becomes infinite and are not oscillatory. Such "soli-
tary waves" will appear in a different connection later. The lower
limit of integration, Po’ fixes the phase. The period in © 1is not

yet normalized and on choosing it arbitrarily to be 2w one has

= 2w s (1I. 6)

where the notation § denotes integration through the values of P
over one complete cycle. Different normalizations of 8 are com-
pensated by changes in .the meaning of Kk and w. (II-%) is a statement
of the dispersion relation and relates K, w and M. When K, w and
M are chosen to satisfy (II.6), then (II.5) gives a periodic solution of
(II.1).and (II. 2) where Kk indicates the number of waves contained in
a distance 2w in the x-direction and the frequency w indicates the
number of waves passing a fixed point in a time 2m.

A typical case is the form

w 2P2 4

P
V(P) = °Z -l4-—. (I1. 7)

For this case exact solutions are known in terms of Jacobian elliptic
functions. This case also arises as the first two terms in the near
linear approximation for V when V is symmetric. Placing (II.7)
into (II.5) we examine the form of the functions to illustrate the
periodic features of the exact solutions.

The exact solution to (II.1) and (II.2) is given implicitly by



wl 2w

F w dP

2. 2
P ww -
O fm e P 4wy 2)P2 L XYE
2 2,2 o 2
@w = C K

The particular Jacobian elliptic function that the solution becomes

= 8. (I1. 8)

depends on the signs of the zeros of the quadratic form in P2 in the
denominator of the integrand of (II.8). We define these roots by

2 wzwz
R zzDiJD - 2yM D=w 2+4_P

1,2 Y ¢ ‘wme o '~ Z 2.2

Since the relevant cases in later developments are for small vy,
we take D2> 2 lyl M in this example. The sign of y is determined
by the medium, hence a medium supports only one of the following
waves., For y> 0 a periocdic solution is

2

e R

2 sz R1

Of course translations of the origin also yield solutions. The second
argument of the elliptic function is the modulus squared. For v <0,
one of the roots for = is negative. We set SZZ = - R,Z, S2 being

a positive real quantity. Then a solution is

MER.2+5.5 0 B, =
P=R, cn : = d
1 R[S, T s

Ry

Again translations of the origin merely change the phase.
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II.2. The Direct Approach for Near Linear Equations

Periodic solutions to the near linear equations may be found
in a2 more direct manner than by the general procedure cof section II. 1.
In anticipation that the solutions are nearly sinusoidal, we substitute
sinusoids directly into the equations of moction. The near linear
equations are found by placing potential (II.7) irto the equations (II.1)

and (I1.2), and y is taken as a small parameter. They become

2
2 2.2 . ow
(w “CK)Eee—‘-E;PBe
{1X. 9}

The periodic solutions are represented by Fourier series

oG
E= Z (a sin n® + c_ cos nB)
n n

n=1

e}
P=Z(b sin n® +d_ cos nb) ,
n n
n=1

and we anticipate that successive coefficients involve increasing
powers of y. The constant terms have been omitted as in the fully
nonlinear case. The effect is to suppress terms where n is even.
Further, fixing the phase by setting gy = 0, d1 = 0 suppresses all
the cosine terms. Placing the first two remaining terms of each
series in (II.9) and equating coefficients of sin ® and sin 30

results in the equations
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(0™ - czlcz)a = --——wzb 5
1 i
o
2 2.2 i 2
(OJ -Cl{)a3=-?—wb3,
o
2 3. 3 3. 2 3 2, _ 2
(0w " - w )b1 \(-‘—I—b1 -z Py by -i--Z—bib3 ) = eowp ags,
2 2 1.3 3.2 5. 2 2
(w, " = )by ~ylgby” ~5by by -7 bg") =€ 0,2, .
Elimination of ay and ag produces, to O(y),
By = 2“’13 '
32w
2 2
w 3yw_"w b
e“k® = o (1 4P - i - Beie N (IL. 10)
2 2 2 252
w - w 4w “ - w7)

(II.10) is the near linear dispersion relaticn which must be the
approximate form of (IL. 6) for small vy, and the Fourier series is
similarly expected to be the expanded form of (II.5) for small «y.

This expansion for the near linear approximation of the fully nonlinear
forms will now be carried out for illustrative purposes at this stage
of the problem. It will be mentioned in later sections when fully
nonlinear forms arise, that the expansion for the near linear case
produces the same results as the direct use of leading terms of
Fourier series in the relevant procedures. Each situation involves
the expansion of elliptic functions and elliptic integrals and follows

the same course that is presented in section II. 3.
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11.3. Expansion of the Fully Nonlinear Solutions for the Near Linear

Case

As stated in section II.1, an exact periodic soclution to
equations (II.1) and (II.2) is given by (II.5). To reduce to the near
linear situation the potential V is expanded in a Maclaurin series
and the first two terms are retained. The case of interest is when
V(P) is an even function of P; hence the quadratic and quartic
terms are kept, the quartic term being small. As in section IL.2,
we use the parameter y to represent the small quantity in the
quartic term of V and we expand with respect to y. If the potential
V were not symmetric the first term leading to a nonlinear restoring
force would be cubic and the periodic solutions would stiil be expres-
gible in terms of Jacobian elliptic functions. We now proceed to
expand the exact sclutions for small y to reproduce the solutions
obtained by direct substitution of sinusoids into the egquations.
Repeating the implicit form of the exact solution with the near linear

potential (II.7), we have

P
S G dF = g (II. 8)
P wz'w 2 2 > P4
o ' P . Y
M‘("z"‘“‘z"z*% )P e o
w - C K

and the zeros of the denominator of the integrand were given by

2 2
2 ww
]:'{1 22’—‘- Eoa . ZYM, where D = > pZ 2+w02.
. Y w - c K

We set Po = 0 to coincide with the choice of phase in the direct
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approach. The substitution

u (I1. 1.4)

P:R2

simplifies (IL. 8) to the convenient form

S,
Sy -__2. 2

2

R -1/2
Now it is apparent that both R, and <1 - —-2—2 u2> are to be

Ry

expanded for small y. The latter expansion of a function of u within
the integral leads to integration of a series term by term. Retaining

terms of O(y), one obtains a formula for ©, which when inverted

and P resubstituted for u, becomes

Pz(M 9ﬂ;7/?2'> {ﬁ.(fﬁﬂg)}

8D

3/2

+ YN; > sin 30 TN +O(y2) : (II.12)
32D/ % @ + Yz)

8D

The normalization of the period to 2w is carried out by

setting

3'yM _
-‘7.5 (1 + =1. (I1.13)

For comparison with the result of section II. 2 we denote the amplitude

of the sinuscid by b and use it as a parameter in place of M; hence
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we set

5t 32 s = (II.14)

When (II. 14) and the definition of D are used in (II.12) we have

w - 3Yu2w ZbZ
CO TR S e
2.2
W - w 4(wo -w)

this is the near linear dispersion relation and is exactly the form of

(II.10). Now (II.12) reads

3

P =bsin 0 + Y2 sin 30 + O(y?)
32w

and the coefficient of sin 30 coincides with b3 of the direct approach.
Of course (II.10) must aiso result from expansion of the
exact dispersion relation (II.6). Using the change of variable (II.{1),

the loop integral becomes

4R2wS~1 du
= 29T .
VM 0

—— R,“
Ji V/ &
—u —-——-—Zu
R,

Expansion of this complete elliptic integral for small y in the same
‘manner as before, and the use of (II.14) to eliminate M, produce

(II. 10) once again as expected.
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II.4. Orbitally Polarized Uniform Plane Waves in Fully Nonlinear
Media

So far in chapter II we have dealt with the case of linear
polarization, the z-component of the electric field being the only non-
zero component. The case of circular polarization occurs when the
head of the electric field vector traces out a circle, and similarly,
when an ellipse is traced out, the polarization is called elliptical.

In a nonlinear medium the figure traced out by the electric field
vector may not be closed; in fact, only exceptional cases are closed.
While the magnitude of the electric field is periodic in x and t,

the individual y and z components are not in general, We name
this orbital polarization due to the similarity with the trajectory of a
particle in a central force field.

We recall the three-dimensicnal equations (I.5):

2

%A 252, _ 1 P,

atz i €5 ot

2 oP
9—2? = czvzq): = cz-g-;{—i (11.15)
ot 1
a’p 8 A

i, v _ _ . wz( i, 8¢
Btz 5P, “o%p \ Tt oz, 7 *

We wish to find the form of a uniform plane wave propagating in the x-
direction where we are permitting the electric field to have non-zero

y and z components. To do this we set



-19-

where 6 = kx - wt. It will turn out that AZ(G) and A3(6) are not in
general periodic in 8, but we expect that they oscillate. From the

first equation of (II.15) we see that the form of P must be
P = (0,P,(0),P,(0)) .

From the I.orentz gauge condition we find that ¢t must be zero, and
choosing ¢ to be zero is consistent with (II.15). We obtain from the

first and third equations of (II.15)

z2 2.2 . m
(@' - chT)A, g9 = - P, g
O
2 22 .
(0™ - ¢k )A3,ee"E:P3,e’
" (IL. 1 6)
2 sy T2 2
wFo et TP =99 4,80
P
2 BV ©3 2
“Ps3 007 TP T " 0% 23,0

As in section (II.1) we integrate the first two equations of (II.16) and
set the constants of integration equal to zero as they represent secular
terms relating A and P. These integrated equations are placed

into the third and fourth equations of (II.15), eliminating AZ 0 and

A3,6’ to produce
2 2
P W W
2 ov ~ 2 P _
P sstgpE T —zF,=0.
Ww -C K
o 5 2 (I1.17)
2 9V "~ 3 Y @

P _
wPs3 op +'8'1_3T5‘+:2__:27<TP3“0'

At this point the set of equations is in the form of a single particle
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with displacement P, orbiting in a central force field of strength
2 2

by +-—-—w£—(—‘-)—P To integrate these equations we set

2 2.z g se eq S

F2

P cos ¢

Fa

P sin ¢

and now we shall have that P(6) is a periodic function of 0, while
U(0) has a term linear in 6 and a term periodic in 9. Placing

these definitions in (II.17), two independent equations become:

2 2

P
2 2, .0V, “p @ T _
w(Pgg -Plg ) tgp *t——753=0

w -cK

(I1.18)
2P gyg *Plgg = 0 .
The second equation of (II. 18) has the integral
2

Py =h, (II.19)

where h is a constant which is equivalent to angular momentum in
mechanics. Using (II.19) to eliminate q.:e, the first equation of (II.18)

takes the form

2. 2
25 ~w2h2+av+wpwP_o
©Tee g3 TP Z_Z2
w =-C K
One integration gives
s 2 G2p2 e T
w Py 2 +2V +—2 >— =M. (11. 20)
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As in the case of linear polarization, the constant of integration, M

td

determines the amplitude of P(8). Now (II.20) is solved for P

0
and integrated a final time to give
XP N =0 (II. 21)
P_ 2,2 w 2ulPZ ’ ’
/M - ==— - 2V(P) - —2——
=4 2 2.2
w = CK

This is an implicit form for P(8). (II.19) may be written

dq,:-gzde,

and (IL.20) gives d@ in terms of dP. Placing (II.20) into the equation

above, and integrating, results in

P
g = S L . (11. 22)
B s w2n2 _wp4w2P2
PM-—g-2VIP) - 555
w - C K

Finally, the period in 6 is normalized to 2=; thus

w dP = D (I1. 23)
ey
thZ wpzco =2
M——I—)-Z——-ZV(P)- S B
W =c K

is the dispersion relation.

(II. 21) and (II.22) give the magnitude and angle of the polariza-
tion vector. It is clear from (II.19) that q;e is of one sign, hence the
rotation always continues in one direction. This indicates that { has

a secular and a periodic term. The magnitude P oscillates between
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the zeros of the denominator of (II.21). Due to the singularity at

P =0 in that expression, P oscillates between positive values and
does not go to zero when h is not zero. The speed of precession
of the orbit may be found from (I1.22). When P oscillates from a
maximum to a minimum and back to a maximum the angle through

which ¢ moves is

& ___§ wh dP
@ > 2h2 w ‘u)/‘lﬂ
P M = -—2-"’ -2V(P) - 2 —
P = - g

It may be shown that L'po is 2w if V(P) is quadratic in P or pro-
portional to 1/P and not otherwise. [ See Landau and Lifshitz [ 2] ].
The angle of precession per period in P is Lpo - 2w, If = %—Zv,
where m and n are integers, then the orbit closes after n rotations
of P.

In the special case of circular polarization P is constant and
¢ is linear in 6. The integrated forms (IL.21) and (II.21) become
degenerate since P does not vary. Rather than using (II.23) to
define K and w we shall set =6 and then X and w will measure
the number of oscillations of each component of _12 in an interval of

2w in x or t. The solutions are now

P2=Pcose, P3=P51n6.

The first equation of (II. 18) gives the dispersion relation

waZP
2 av P _
-0 Ptgp st = 0.
&) - c K

(II. 24)
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This form exhibits the nonlinear behavior that we have seen before.
When V is quadratic the phase velocity becomes independent of the
amplitude P,
We now examine the special case of potential (II. 7) which leads
to a cubic central force:
w 2P2 P4

V(P) =—'0_2‘_" 1-4—- "

The implicit form, (II.21), for P(6) becomes

(‘P w dP

=8 i
J 2, 2p2
Po/ thZ 2 2 N YP4 wp w&P

- —— - ) -

p2 o 2 wZ _ CZKT
Multiplying the numerator and denominator by P we obtain

5 p2 %w ae?)

2 ,
o
o /MPZ _ thZ _ w02P4 4 yP~ ™

P

2 2 2.2

The denominator of the integrand is the square root of a cubic
in PZ, hence the inverse form PZ(B) may be written in terms of
Jacobian elliptic functions. For example if we choose Po2 =b and

write the contents of the square root in the factored form

Y (a - PH(P% - 0)(P? +o),
then we make the substitution

P* = (b % clnd®a - © ,
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where the modulus of the elliptic function is k2 = : ;b . The
¢

integral collapses to give

N
€

——E—-—(u-b).

N

tf< l

Then the elimination of u gives

.

2 " E\me
Po(8)=<=¢ +(b + c)nd (b+ = )
The function nd oscillates between a minimurmn of one and a maximum
greater than one. From the factored form, P oscillates between a
maximum of vya and a minimum of «/g . Y is given by the integral of
(II. 1‘9) and becomes a very complicated function.

In the case of circular polarization we use the special form

of V(P) in (II.24) to obtain the dispersion relation

(S )
woz-wz +—2L—ZT-YP2=O. (II.ZS)

II.5. Uniform Plane Waves with Circular Polarization in Near Linear

Media

Uniform plane waves in near linear media are found by the
direct approach by inserting sinusoids, as the first term of a Fourier
series, into the three-dimensional equations. We found in section II.4
that the exact solutions for the components of f_ are sinusocids, and
hence we have the correct forms already. The near linear solutions

are
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A2=asin9, P2=bcos9,
A3=—acose, P3=bsin9.

The dispersion relation is just (II. 25) expanded for small y. This

result is
o 2,2 o 2wn?
2kl = 2 (1 +_.Iél 2)+—Pz—2 i (I1. 26)
(A)o - W Q)o - W

By comparison with (II. 10), the near linear dispersion relation for
linear polarization, we see that the dispersion relation for circular
polarization differs cnly by a numerical factor in the amplitude

dependent term.
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CHAPTER III

THE 1. AGRANGIAN APPROACH AND MODULATIONS

The goal of this chapter is to develop the equations governing
the amplitude, frequency and wave nurnber for nearly periodic wave
trains. The idea to be used is due to Whitham [3], [ 4], [5] and
consists of insertion of the periodic functions found in the last section,
into the Lagrangian and the averaging of this quantity over one period,
the parameters being regarded as constants. The averaged Lagrangian
is then used to generate differential equations in the parameters which
are then regarded as slowly varying. The last paper [ 5] puts this
idea into the framework of two-timing and the averaging becomes the
integration of the Lagrangian over one of the domains, the fast time.

The first three sections deal with the near linear problem
where it is known beforehand that the fundamental solutions are sinu-
soidal. These are substituted directly into the Lagrangian and the
averaging over one period is performed with known functions. Vari-
ation with respect to the amplitudes then gives equations relating them
to the other parameters. Variation of the frequency and wave number
produce a further equation, the variation being constrained by the
requirement that these quantities be derived from a phase.

The second part of the chapter deals with a fully nonlinear
approach in which the integrals of the Euler equations are used in the
averaged Lagrangian to produce an integrable form. The equations

resulting from the variation of the averaged Lagrangian relate the
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slowly varying frequency, wave number and the integraticn constants
that measure amplitude. The fast oscillations are now the Jacobian
elliptic functions found in chapter II. For the case of linearly
polarized waves, we follow the work of Knight and Peterson [ 6] .

We then deal with orbital polarization.

In chapter II we disregarded the possibility of a constant com-
ponent of electric field in addition to the oscillations. Now that the
amplitude, frequency and wave number are allowed to vary slowly,
it is not clear that no constant field is generated even if it is absent
at some initial time. This is the case if the potential V(P) is an
even function of P and we leave to the appendix the demonstration
that this is so. Knight and Peterson correctly disregard the possi-
bility of a constant field. The taking into account of constant fields
requires the introduction of pseudo-frequencies which are also

explained by Whitham [3], [4], [5].

III.1. The Near Linear Formulation for Linearly Polarized Waves

We use potential (II.7) with y a small parameter to form the
near linear problem. Inserting this into Lagrangian (I.8), we obtain

the near linear ILagrangian for linearly polarized waves:

2
€ @ “P 4
1_=-22{At2-c2(Aj+AYZ)} - AP +—1 2{ ;f el +Y4P } (ITI. 1)
€ W
o“p

Following the theory, we substitute the periodic solutions into the
Lagrangian. We know from chapter II that the periodic solutions are

nearly sinusoid, hence we set
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A

acos ® + e ;
(I11. 2)

P=bsin® +....

Temporarily we set 6 = kx - wt where Kk and w are constants.

Defining the averaged Lagrangian by

{ 2
= 5x 1 de ,
0

we insert (IIL. 2) into (III.1) and perform the integration. The result is

€ . 4
PR VIR N S [(wz_m 2,2 4 3yb 1 (%, 55
4€_w ° .
o“p

The averaged Lagrangian was derived by inserting into the two-
diménsional Lagrangian the form of a periodic plane wave propagating
in the x-direction and averaging over one period. Had we set
0= KX + sz - wt and defined Kz = K12 + KZZ, then the same result
(III. 3) would have been reached. The averaged Lagrangian is inde-
pendent of direction of propagation and direction of polarization of the
fundamental solution and hence the correct general form ha; been
found.

£ is now a function of the constants w, kK, a and b. At this
point we relax our view of these quantities and allow them to be slowly

varying. The slowly varying definitions of Kk and w are generaliza-

tions of their definitions as constants. We shall take

_ 9 _ 006 ~
» KTy K3TEz o Y7 T EE

mlm
®lo

K1=



< 50

The new form agrees with the original one when Ki» Kys K3y
are constants. Consistency relations resulting from these definitions

are:

= ow
st T2 20, Vxk=0. (IIL. 4)

The expression (III.3) for £ is regarded as a Lagrangian for the

functions a, b, w, Ki’ KZ’ K, and the consistency relations become

3
side conditions that must be enforced when variations of £ are per-

formed. The Euler equations for £, subject to (III.4) are

s +58 ¢ +%s: = 10 . (I1I. 5)

] 2]
ot Yo T e, T ey

One of the amplitudes a and b may be elimimted from the
Lagrangian by means of the Euler equations. If we choose to elimi-
nate a then we would obtain a new Lagrangian, &(w,k,b). The Euler

equations

9 _
S:b:o and .a_t_.s',w- £ =0

ik
N

are, respectively, the dispersion relation (II.10) and the wave action.
It is more convenient, however, to retain a rather than b. The

second equation of (III.5) is used to reduce & to

2 2 3ve 3, 6,44

€ < 2 22 By ) 2 A OVE, O, ®
w a + > )
32(m° - w

)4
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and this form is varied tc produce the working equations

_ 9 _
£,=0, =& - .cﬁ_o.

1%l

These are the dispersion relation and wave action and take the form

2 2 > wz 3 € w6w4a2
CK =w <1+ P + k.
2 2 2 2.4
w - w 4(w° - w’)
(I11. 6)
9 “o “p 2 9 , 2 2,.,0 ,2 2 9 , 2 2 _
—gt—{(i +m wa +3_X.(C Kia)+§—};—(c K23)+-5-Z(C K3a )—0.
o

It should be mentioned that this procedure may be carried through to
any degree of accuracy. The form (IIl.2) could have been chosen

to be an entire Fourier series with undetermined coefficients. The
independent variation of each of these coefficients then produces a
sufficient number of equations to solve for each in terms of the
coefficient of the lowest mode. For example, the form of the next
term as found in (IL.10) is easily produced. The Lagrangian which

retains one more term in the Fourier series is

€
Bo. 2 2 A B, B w
£1 = = (w™ - c“k )(a1 + 9&.3 ) - > (aibi 3 3a3b3)

4\8 1 2
€ w
o P

3b, %b, 2 }

2 o b,3b
1 o 2 7. 4 2.2 y<3 4 Py O3
ot {-—4 (b,249b,%) - 2-(b,%+b,%) +X(3p,*-

1 3 3. 4
el 2 +'§b3)

The equations obtained by varying aj and b3 are
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9 2 zZ 2 3w _
‘-'2‘ Eo(w o C K )a.3 - —2— b3 = 0 ’
2 3 Z
b b 3b
3w 1 {9 2 “ P3 .y 1 2 3
°oP

Elimination of ag and retention of only significant terms produces

b, = Yb13/32 & am required to agree with (II.10).

III. 2. The Near Linear Formulation for Circular Poclarization

In section III.1 the averaged ILagrangian for linearly polarized
waves was found by substituting a periodic plane wave propagating in
the x-direction into the Lagrangian and averaging over one period. It
was noted that the resulting form was independent of the direction.
We now produce the averaged Lagrangian for circular polarization by
substituting a circularly polarized plane wave propagating in the x-
direction, into the three-dimensional Lagrangian (I.6), with

V(P) = (wOZPZ/Z) - (YP4/4). The Lagrangian is

€ €
8 2 2 2> o .. 3% 2. A
L =—|A, - c“A, -A, P -— (-9 ) -9 _P
2(1,t 1,xK i,t7 1 202 t xi xii
2 2., 2 2.2
/
+ i (Pl,t “o Pi +Y(Pi ) )
2 2 ST 4 .
€ w
op

The plane wave solutions from section (II.5) are:

A1=O, P1=0,
A2=asin6, Pzzbcoso, é=0,
A, =-acos9® P,=bsgin©,
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where 0 = Kx - wt. Temporarily regarding a, b, K and w as

constants, we perform the integration

{ 2w
=—2-; 1L d9
0
to produce
€5, % 273 2 1 2 2.2 , ybE
S:—zg-(w - c“Kk)a —wab+———-—2[(w - w )b +l——-].
2€ w ° “

o P

Elimination of a from the Lagrangian by means of an Euler equation,
and then variation of the new Lagrangian with respect to b, would
reproduce dispersion relation (II.26). We wish, however; to retain

a rather than b, as in the case of linear polarization. We use the

Euler equation £b = 0 to eliminate b, giving the reduced form of & :

€ W YE Tw_ wa
-( © 2 2 2 P 2 o p
'“("z"(w 'CK)+””Z—"2)3 * -
W, w

2. 2 3 6 4. 4
w

The wave action is the same as in (III. 6). The dispersion relation
differs by a numerical factor in the nonlinear term and we absorb this

into a new small parameter Yq- We rewrite (III.6) as

wZ Y(__.Zm 6w3a2
c:ZKZ___MZ(i_i_ P 2>+ 170 ™p

Z T a
w - w (w = - w)
O o
(IIL. 7)
L2 2
5 o “p 2( .8 ,2 20,8 2 2 .8 .2 2 _
?t‘<1+(wz_wz)z>°’a tox €Tk a7) +go(cTkya) g7 (eTk32™) = 0,



¥i = -Z Yy for linearly polarized waves,

=y for circularly polarized waves.

III.3. The One-Dimemnsional Time-Dependent Problem

We now neglect the y and z dependence in (III. 7) to produce
the problem of a uniform plane ‘wave that varies only in its direction
of propagation. The more interesting steady two- and three-dimen-
sional problems are left to chapter IV as the symmetries in those
equations produce tractable problems that lead to some closed form
solutions.

Whitham [ 4] worked with an averaged Lagrangian similar to
&(w,k,a) of sections III.1 and III.2. He dealt with the dispersion

relation in the form
w=w (k) +tw (K)a2
o i

but due to the simplicity of Kk as a function of w, we shall reverse
the roles of ¥ and w and of x and t. Hence we write the first

equation of (III, 7), the dispersion relation, as
K = K(O)(w) +Y1K(1)(w)az + O(Yiz)

and we transform the second, the wave equation, into the form

_353};_ + 2 (c. Hwa?) =o, (III. 8)

where



The consistency relation in one dimension is written

204 2 (D sy Mty <0, (I11. 9)

Now (III. 8) and (IlI.9) are the one-dimensional equations and we can
see how the nonlinear features enter since the linear problem is
recovered by setting Yy = 0. Then we read that Co is the charac-
teristic velocity for both equations and that the determination of the
characteristic direction is independent of amplitude. Returning to
the nonlinear form of (III.8) and (III.9), the system can be placed

into the following characteristic form:

2
L (c0’1 - aJ(co‘i)'yixm> e

The inverse of the characteristic velocities are given by

-1 -1 -1

- , 1, (1)
C "= Co * a (Co )YiK .

This is a typical feature of nonlinear wave systems, the splitting of

Since the system is hyperbolic when characteris-

tics are real, then it is hyperbolic when (Co—i)'yik‘(i)

the group velocity.
> 0 and elliptic

when (C - Yi (1) < 0. When examining this condition one must take
care that real valuesof K and w are taken. The dispersion relation

is sketched in the diagram and it can be seen that the interval



5
w2<w2<w“+m2
o o P

is a forbidden region for the frequency w. The

turning point for hyperbolicity is a complicated expression that falls

N

P ——————— e -

P

111. 4.

Wrewy

within this region,
hence the system is
hyperbolic for

Y4 20, e W,

y1< 0, w> w02+w 2

and elliptic for

Y4 >0, w> woz+w 2
Y4 <0, < wo.

A feature of the
elliptic case is that
small sinusoidal
modulations grow

exponentially and

hence are unstable.

The Fully Nonlinear Formulation for Linear Polarization

We proceed to find the averaged Lagrangian for the fully non-

linear problem for linearly polarized waves.

The integrals of the

Euler equations are used to manipulate the ILLagrangian into an inte-

grable form and this is equivalent to placing the periodic sclutions

of chapter II directly into the Lagrangian.

dimensional Lagrangian is given in chapter I as

The fully nonlinear two-
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€

_ © 2
I‘_T A

t

At Ayl ap+
X y t

L RS

3——2"—- V(P)% (ITI. 10)
and we shall take V(P) as an even function of P. Considering A
and P as pericdic functions of 6 = kx - wt where K, w are tempo-
rarily regarded as constants, we examine the Euler equations for the

form of A and P to be placed into 1. In the same manner as in

Chapter II we produce the integrated forms

(o - cPkPag=- 2P (III. 11)
€
(o]
wapez +2v(P) + B PP=m (ITL. 12)
w ~-C K

The constant of integration in (III.11) has been suppressed to avoid
the constant electric field. The definition of the averaged Lagrangian
is
{ 2w
£ = —Z—g 1 49
Ty

and hence its form will be

~ 2
217(6 w P
i o 2 2 2 2 i o ©
€ W
o p
AB is eliminated by means of (III.11) which leaves the form

1 2w 1 > > wp w P ]
£=T7.Tr 2 "’Pe —'_2——7_2'2‘/(9) de
0 Z‘EOL;)13 w - C K
Iy

and (III.12) is used in the following successive forms, first to

eliminate V(¥) and then to remove PG:



2y 2e w ®
o Pp
2 2
i wp @ 2
:—-———2 2(,0 - 7_—_2—.—2:? o ZV(P) dP - ZTI'M . (III. 13)
41r€owp w - C K

The parameters w, K and M are now regarded as slowly
varying quantities and the averaged Lagrangian is varied with respect
to them subject to the constraint that w and Kk are derived from a

phase ©. The Euler equations for this averaged Lagrangian are:

£M=0,

(III. 14)

o] 7]
"ttt

III.5. The Two-Timing Approach

We mention at this point how the two-timing method fits into
this framework since higher order terms than those included here will
be retained in chapter V. We consider the problem as having two

time and space scales related by a small parameter € such that
X = €x, Y = ey, Z = ¢z, T = et.

The slowly varying functions K, w and the amplitude of the waves
depend on the "slow variables” X and T and the oscillations will be

periodic functions of the "fast" variable

- lg
0 = ZO(_}E:T)

where
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_® _ ®
_IS - ‘5?}-'(- and W= - —a—,f .
The original variational principle
fes)
55§Ld_}_<_dt=0 (IIL. 15)
-

is now modified by the standard two-timing procedure of neglecting
the relation between the fast and slow scales and regarding them as

independent. The intuitive extension of (III.15) is

co 2T
5&81 %—S‘ L do dX dT = 0
m 0 —
- Q0

and Whitham [ 5] has shown this to be equivalent to the straightfor-

ward application of two-timing. The periodic functions being known,
the O integral

{ 2
T
can be performed leaving & a function of the slowly varying quantities.

The new variational principle is then

o
GSS.&d_}de:O.
- Q0

L. 6.

The Equations of the System and the One-Dimensional Time-
Dependent Problem

In order to display the form of the Euler equations we use the

notation of Knight and Peterson and define
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; prwZ 5
J(M,(.Q,K) = 2—-1T§ M - :Z—T—C—ZK—ZP - ZV(P) dP W

The averaged Lagrangian (IIl. 13) becomes

L wI(M,w, k) M
2 e
Zeowp Zeow
The Euler equations (IIl.14) become
wJM =1, (III. 16)
and
9 ) 0 9
= + —_— e e = 1
-5—t-(J wa) s 5 (wJKi) + By (wJKZ) + 52 (wJK3) = 0. {TiT, 17)
Accompanied by the consistency relations
wx+5{=0, VXk=0 (I11.18)

they form a complete set. The dispersion relation (III.16) is used to
eliminate one variable from the differential equations (III.17) and
(III.18). Since J is a function of k/w it is convenient to introduce

the index of refraction

n =

ck
=
Now w is eliminated by (III.16) and the w/k dependence becomes

dependence on n. In these variables the set of differential equations

is
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) 8 (™ ) e(cnz ) a(°n3 )
el - Bt T T W vl =0

N (IIL. 19)

e (7o) *+ 2 (ar)
— +—;—~ :O
ox JM ot CJML

We now examine the one-dimensicnal time-dependent problem
which is produced by neglecting the y and z dependence in equations
(III.19). The analysis of Knight and Peterson proceeds by carrying

through the differentiation of equations (III.19) to produce

oM on oM on _
Iy = IM 5t T ™ot T IMn o T Tanmx 0

oM

: on -
oIy 3t P O I 3 T ST T T3 2 0 -

The characteristic form is

o
oM oM nn on on
+ A = —_— N = )= O
ot *+ O0x JMlVi ot + 9x
where
c
n, = .
= Tid
n -

JMn - 8, JMMJnn

This differential equation states that there are two types of character-

istic curves given by
== = X (III. 20)

and along the corresponding curves, the Riemann invariants Ri(M,n),
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given by

J
nn
J

MM

dR, = dM # dn (I11. 21)

are constant. When the curves (IIl. 20) are real the system is hyper-
bolic and when they are complex it is elliptic.

When JMMJnn < 0 the system is elliptic and constant solu-
tions are unstable in the sense that small sinusoidal oscillations grow
exponentially. When JMMJnn > 0 the system is hyperbolic and there
are two characteristic velocities given by (III. 20). In the limit of
small amplitude both Jnn and JMM go to zero leaving only one
value of \, the group velocity of the linear system; hence the non-
linear feature of the splitting of the group velocity is displayed.

Simple waves occur when a wave packet has an initial profile

that satisfies one of the conditions

oM % Jnn =0
on ‘iMM

Then one of the Riemann invariants, say RI’ will be constant initially,
and characteristics oi type I, will carry the constant value forward

in time, so that RI is constant in all space and time. Along
characteristics of type II, RII is constant. Both RI and RII

being constant requires M and n to be constant, and hence the

characteristics of slope \.. are straight. Since the value of R

11 I

varies with the choice of characteristic, different characteristics of

type II have different constant slopes )"II’



L.

We consider the case where )‘I is the slow velocity and )‘II
the fast one. For a well behaved system, simple waves of this type
steepen toward the front of the pulse since large amplitudes are far
from linear and hence travel much faster than the linear wave speed;
smaller amplitudes have speeds closer to the linear wave speed. One
can imagine more complicated systems in which )\II is not monotonic
with amplitude. There would be regions of amplitude values where
speed is monotonic with amplitude and the tendency to steepen switches
from one end of the pulse to the other when the amplitude enters a new
region. When X.I is the fast velocity and )"II the slow one, steepening
occurs at the trailing edge in simple systems. When the characteris-
tics _of type II cross, the slopes of the pulse become vertical and
multiple valued solutions arise. The solutions are continued by fitting
discontinuities, but when this takes place the slowly varying assump-

tions break down and must be replaced by other physical considerations.

Across the shock energy and momentum must be conserved.

III. 7. The Fully Nonlinear Formulation for Orbitally Polarized Waves

The procedure in this section combines the ILagrangian tech-
niques of section IIl. 4 for the linearly polarized but fully nonlinear
waves, and the integration techniques of section Il.4 where orbitally
polarized plane waves were found. The three-dimensional Lagrangian

(I.6) is
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€ €
o 2 2 2 o v 2 2 2
L=-2(A, “- c%A, ) - A P.-— (" -c"¢ ") -¢ P,
2 i,t J.,xk i,t i 2c2 t Xi Xi i
;B2
+ 5 (—=— - V(P) ).
€ W
o P

The uniform plane wave propagating in the x-direction takes the form
A=(0,A,(6),4,(0), P=(0,P,(0),P,(0), ¢=0,

where 6 = kx - wt. Placing the plane wave into the Lagrangian, we

obtain
€ ,2 22 2 2
T (&’E(P 24P, B - vid)
Z \Z2 Y%2,8 3,0 !~ .
€ W
o'p

The Euler equations are the same as (II.15). The first two equations,

those produced by variation of A2 and A3, are

2 2 2 _ w

(@7 - c7KT)A, g = - EOPZ,G’
2 22  w

(0™ - c7k )Aa,se“'e'o Pieo-

As in chapter Il we integrate each equation once with respect to ©
and suppress the constant of integration since we desire A,, A3, .P2
and P3 to have bounded oscillations. (The bounds will be slowly

varying when we are finished, of course.) AZ’ A3, PZ and P3 will

not be periodic in general. The integrated forms
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2

2.2 _ w
((a.) - C K )Az'e = - -€—- PZ ’
o
2 2.2 _ w
(0) - C K )A3’e = - 'E—- P3 3
o
are placed into L to eliminate AZ 0 and A3 0° The new form is

wz(P22+P

pA

i (w 2 2

1. = — (P + P )-v(p))_
2 2 3 3

_ 2,0 3;96 2€o(w2-cK)

The variables PZ and P3 are expressed in polar coordinates:

P

2 P cos y,

o

Psiny,

and this form is placed into L to give

1 o s 3 2.2 o, 20?P?
L= —(-—(P + P “P%) - V(P))- -2 ;
z2\Z Yo 0 Z 22
E‘owp 2(w” - c“K7)

Variation with respectto P and { give the Euler egquations (II.17).
We use the two-timing formalism to set up the form of the slowly
varying quantities. We found in chapter II that the uniform plane

wave solutions were of the form
P = P(9), = ve + ¥(e), 0= Kx - wt .

P and V¥ are periodic functions of & with period 2w and v, Kk and
w are constants, We wish to consider solutions that are slowly

varying in the sense that, if
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T = et, X=ex

are slow scales and € is a small parameter determined by the rate
of change of boundary data in time and space, then we have solutions

of the form

P

"

P(s,X,T)

b = (X, T) +(0,X,T) .

P and ¥ are periodic in the fast time 6, and

v(X,T) = §®, X, T)=-® KX, T)=® (III1. 22)

T’ X’

where the slowly varying function @ is given by
®(2(_: T) = €6 ,

but this last relationship is neglected in the two-timing procedure, 6
and ® are considered as independent quantities. The "two-timed"

Lagrangian becomes

L 2 it

w 2, w 21452 P
— P, t5—(v +¥, )P - V(P) - —5——— .
212 8 2 0 Z(wz—czl{z)j

{2 2 waZPZ
€ W
op

The Euler equations,

2.2
2 > > . w_ w P
wpee_w(v+§/e)P+v'(P)+

o 2
'§§(P (v +\Ife))=0 ’

are integrated to give



iy

wZPez thZ a) ZwZPZ M
Tt t VP + —F - = (II. 23)
2P 2(w - c7k")

P2(v + Te)=h, (ILL. 24)

where the "constants” of integration are functions of X,T. The

averaged lagrangian is given by

2 22
2 7 2 w w P
£= 1 _1_2{9_}? 2+°’7.(v+\119)2P2_V(P)___P______}d9.

2 3] 2 2 2
0 €owp 2{w"-c“k")

First (III. 24) is used to eliminate ‘I’e from 4&. That form is

{ (Z'sr 1 wZPBZ thZ prwZPZ
Y =.-2—1_—r > 5 + 5 = V(P) - . do .

Y0 € w - 2P Z(w& %y
o“p

Then (III. 23) is used to produce the following form:

2. 2
1 i 2 2, @ b M
5o 50 > {w Pe +-—2— Z}de

P

We use (III. 23) to convert one factor of Pe in the first term into

an expression in P; the other converts Pe de into dP. In the
2
second term, (ITI.24) is used to eliminate P“ and the constant third

term is integrated directly. & becomes

. 1 2,2 g Sfme PAIR
£=_._§;___2 Mo~ 1 -, g SR dP
v €

am w PZ wZ-CZKZ
o p
2 wh(V+‘I’) M
de - — "
) > >
2€ w
P o P
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Since ¥ is periodic in 6 with period 2w, the integral over \I'e

vanishes. The final form of &£ is

2 Busl
2,2 w “w'P" ) 1/2
_1 w w h [ P
..‘1..——2.‘_r > {M - ) - 2V(P) = s 2} dP
5% w -cK
1 2 M -
+——7€ > {w™h ’—2) (III. 25)
°p

To produce the Euler equations we must vary & with respect to the

slowly varying functions M, h, K, w, vV, subject to the consistency

relations which result from conditions (III.22). These relations are

oK
dw -
x+3t =0

2 (ve) + o (vk) = 0.

It becomes convenient to subtract the first from the second and use

that in place of the second. The ones we shall use are, therefore,

t
- (I1I. 26)

av ov
w3z T Epe =0

We enforce (III. 26) as side conditions con the variation of £ by means

of Lagrange multipliers. We write

£ =L£ 4+ (wvx+£vt) tpoe (w_>_<_+-£t)'

*x
Now & must be varied freely with respect to M, h, K, w, V, _)_\ and
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p- The resulting equations are

£M=0 (i) Sv—wV'A-ﬁ-At=0 (v)
.Yih =0 (ii) wv, 'F‘_;_c_vt = 0 (vi)
S tAy p =0 (1i1) o tk =0, (vii)

g +—X.‘V -1 =0 (iv)

A and p must be eliminated from (iii), (iv) and (v) to produce the

equations of motion. First, elimination of p from (iii) and (iv)
produces

a . .
--8T£w+v S'x_-lt v

PV Av =00 (viid)

Now condition (vi) indicates that the terms in }\t and V * A in
equation (v) are proportional to those in equation (viii). Elimination

of the common quantities from (v) and (viii) using (vi) gives

v
£ +7 8 #.58 =0 .
w K w

v

2
ot

—

The equations of the system are the Euler equations

£M=0 ‘£h=0

(IIL. 27)

) ) Vi o _
- ts +3:—E£_’£+—J£ =0,

w 1%

together with the consistency conditions

oK

dw | °% .
< "5t = 0 “ogx TEpe =0

€

I
I
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Chapter 1V

Beams

Iv.1 The Nonlinear Equations in Two and Three Dimensions

The time-independent equations can be treated in some
detail and omne setting is the important problem of nonlinear effects
on beams. When the phase velocity decreases as amplitude
increases, a localized beam travels more slowly at its center.
Accordingly, a surface of constant phase progresses slowly at the
center of the beam and the faster outskirts are caused more and
more to converge toward the axis of the beam. When a focusing
point occurs, the second derivatives of amplitude which were
neglected as small in the last chapter become important terms and
must be included to continue the solution. This will be done in

Chapter V.

IV.1l.i The Two-Dimensional Equations

The fully nonlinear equations of Chapter III are examined in
two dimensions with their time derivatives set equal to zero. The

form in which they now stand is:
L =0, av.1

—(—"fcl)+8%<—'— K;)= 0, Iv. 2)
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9K, 9K,
= Fy‘— =0, (IV.3)
w = constant.

Since /[ depends only upon a and K, a convenient procedure

is to set p = lLKI /K and to use p az a variable instead of a.

The
dispersion relation (IV.1l) is solved for p as a function of K. In the
special case of near linear the averaged Lagrangian is

€o w? - Yi€o® w; wtat
s s ] ieB G - S 1 3
L = 4[w(1+%z_wz) c:KJa + 8(og? ~?) .
Variation (IV.1l) gives
w; Zylecmé’ w*p
2% s P
C°K w® (1 + Oz_wz) (02-w?)2c?
The near linear set of equations takes the form
9 9
By (PE1) + By (pkz) = 0
(IV.4)
9K, oK,
_ - — =0 3
ox oy
B = K21+ 2vp) , (IV.5)

2
2 w
where K is the constant %5 1+ Z;?E_;Z) and T is the small parameter
0
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yleowp"w‘*
> T has the same sign as vy, the parameter
b ;
w? c4(1+w 27 ) (@o ~w?)

fixed by the medium. Equations (IV.4) hold for the fully nonlinear

system. The near linear form of the dispersion relation (IV.5)

fixes attention on the near linear problem.

We piace the system (IV.4) into characteristic form to find

its type. That form is

P k1K
ox T ¢ oy ! P K12 <8x * aY)=O .6
K+
where
KKz _ o
P "k tV-pi-opp,k
C =
K,? .

Pk TP

The system is hyperbolic when there exist real curves

along which equations (IV.6) become ordinary differential equations.

‘That condition is that C be real, hence the system is hyperbolic

when



and elliptic when

9p
Kk T
Bt 1> 0

The condition for the near linear system is

1+ 271p
mm—nes g 1€ D
T
for the set to be hyperbolic. Sence T is small and p is positive,

the sign of 7 always determines the type; a given medium supports
a system of equations of only one type. When 7v> 0 the system is

elliptic and when T < 0 the system is hyperbolic.

We note that the phase velocity is found by moving with the
waves so that 6 is held constant. The magnitude of this velocity
is given by _7(—) and it is the speed that a wave front moves perpen-
dicular to itself. The direction of the velocity is the direction if

K . We see from (IV.5) that for w constant, when 7> 0 ,
-‘;{—) decreases with increasing p

and when v < 0 ,

xI€

increases with increasing p

It is apparent from the heuristic description at the beginning of

this section that the case in which beams focus is T > 0 and the
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system is elliptic; the defocusing case is T < 0 and the system is

hyperbolic.

IV.1l.1i The Three-Dimensional Equations

We now wish to consider the radially symmetric problem.

The variational principle is
6§ [[Lrdrde =0 .

The Euler equations for the time-independent problem are

K
8 = Bt _
or (rKLK)+ Bx(rK LK) 0

9K, oK 4

— e = ),

ox or

w = constant

K, is now the component of K in the radial direction. The only
difference between this case and the two-dimensional case is the
appearance of the factor r in the second equation. Its effect is to
add a forcing function to the right side of the characteristic

equations, which, using p as before, now read:
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Ppf1¥a o
oK, ok, —K— L7505 k 0K, Ok,

KZ pK

K B K
=TSt S ax+car>"rpx+pK/<1’
K g T8
where
KiKp _
Pk Tkt YopToepyk
C = Klz
PK_- K + p

The conditions on the type are the same. We shall see that in the
focusing case, focusing is faster than the two-dimensional problem,

but in the defocusing case, divergence is slower.

IV.1.1ii Analogy with Fluid Flow

The equations of two-dimensional, irrotational, isentropic,

steady fluid flow are

v _ Bu _
9x oy

0 0
g((pu) + '5:);(pV) =0,

2
max

where u and v are the x and y components of particle velocity, p
is the density and q? = u?+ v?. The similarity between the first

two equations and (IV,4) is immediate. The third equation gives
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the form of p(q). Thus a number of methods developed in fluid

mechanics can be adapted here. Each of the following two sections
outlines a method taken from fluid mechanics and pursues the

solutions that result.

IV.2 Solution of the Beam Equations

We now outline a method which produces solutions in which
rays are allowed to bend significantly from being parallel to the
axis of the beam. In contrast, in Section IV.3 we shall study a
method which treats "thin beams," where the angle of the rays

never deviates far from parallel to the axis.

IV.2.i Method of Shock Dynamics

An approach to problems dealing with the propagation of
shock waves in channels has been developed by Whitham [8] for
use in the equations of gas dynamics. We shall use it to obtain

solutions to the two-dimensional problem.

The essential idea of the method is to transform the coordi-
nates x and y to a. coordinate system in which the first equation of
“(IV.4) is algebraic. Lines whose ‘direction is always in the
direction of K are called rays. The diagram shows a two-dimen-
sional ray tube bounded by two neighboring rays and having cross-
sections at the ends of A; and A,. Applying the divergence

theorem over the area of the ray tube and using the first of (IV.4),
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we find

0= [[ V- (kp)dxdy =F kp-nads .

Since K+ n = 0 on the sides of the ray tube, only the end contri-

butions to the line integral remain and we have
(KPA)Z-(KPA)I = 0 .

Thus KpA is constant along a ray tube. We choose the rays as a
coordinate system since the first equation of (IV.4) becomes

algebraic. The quantity KpA depends only upon the coordinate



5T

orthogonal to the rays. Since the ray pattern is stationary, the
successive positions of a peak, say, of the oscillations will be

the surfaces of constant phase perpendicular to the rays. Using

@ as a length scale along a ray we must make da proportional to
dt so that the new value of @ still corresponds to a constant phase

surface. Choosing

da = wdt

we find that the physical distance measured by do is the phase

velocity multiplied by dt.

The other coordinate is 3, measured along the surface of constant

phase. The width of the ray tube is AdB, A being the area density
of the two-dimensional ray tube. The angle 6 is the angle that the
rays make with the x-axis. The local change of variables is a

rotation given by

ds = —C—"f—eda - Asin0dg
(IV.7)
dy = e da + Acos6df

K
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¢
P
o
Adp
(2]
X = x
d
T

On introducing a variable A, the first equation of (IV.4) gave

pkA = {(B) 1v.8)

"and this is the condition that A conform to the width of a ray tube.
We obtain another equation by using (IV.8) to eliminate pKcos® and
pK sin® from the first equation of (IV.4) and converting to a, f3

coordinates by means of (IV.7). This results in
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80 _  BA _ i
38 K 30 ™ 0 . (IV.9)

Transformation of the second equation of (IV.4) to @, B coordinates
by (IV.7) gives

96 _ _1 08K _

o KZA BB 0 . (IV.10)
Equations (IV.9) and (IV.10) are geometrical statements about the
coordinates. Accompanied by (IV.8) and the equation giving the
form of p(k) , (IV.5), they form a complete set of equations. The
two algebraic equations will be used to eliminate two dependent
variables leaving two first order equations in two unknowns. Having
solved this set, the original coordinates are recovered by inte-

gration along rays and surfaces of constant phase:

a ' B
x(a,ﬁ) :j; C_?{%Q da' - fo A(0, B') sinB(0, B')dB’

(IVv.11)

a . v B
y(,,B) = fo il'%%,a—’gsﬁda' +foA(o,ﬁ-)cose(o,5')dﬁ' .

IV.2.ii Solution by Separation of Variables
‘ v P .

The method of Section IV. 2.1 has reduced the awkward set of
equations (IV. 4) to equations that are more easily handled and we note
here that these methods apply equally well to the fully nonlinear

equations derived in Chapter III as to the near linear ones. The
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resulting equations for the near linear problem, however, have

some closed form solutions which we proceed to derive.

The complete set of equations in @,3 coordinates that we

have produced is:

Kk =K3(1+ 27p) {(IV.5)
oKA = £(8) (av.s)
%g- - k22 = o (Iv.9)
e s =0 (IV.10)

We have introduced the coordinates o and 3 which parameterize
distance along the rays and along the surfaces of constant phase,
the angle 6 that rays make with the x-axis, the area density of
ray tubes, A, and the arbitrary function f(8) which fixes A for
some initial value of @. The choice f(8) =1 is used here since it
has been found to produce all the separated solutions that other
choices can produce. We now use the two algebraic equations
(IV.5) and (IV.8) to eliminate K and A from the two differential

" equations leaving only 8 and p as dependent variables. The exact
form is not required, however, as (IV.5) contains a small para-

meter. The new form is
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g—g-(Tp+0(TZ))§%=o,
av.12)
%§—+(51-5+ o) ) -

The coefficient of -g—% in the first equation has a leading term
proportional to T due to the differentiation of Kk in (IV.10), its O(l)
term being constant, and in this way T becomes a parameter of the
problem. The terms written as "O(7)" and "O(7%)" are neglected
as they display more accuracy than the near linear equations

contain,

The effect of transforming form x,y to 0,3 coordinates has
been to consolidate the equations to two terms each, a form in
which the variables separate, The set (IV.12) is nonlinear so that
a separated solution is a special one. Solutions for different
values of the separation constant cannot be superposed and no
general solution is found by this method. We note, however, that
reversing the roles of dependent and independent variables changes
the form of the derivatives but leaves the coefficients unchanged,
the coefficients now containing only independent variables, and the

new set is linear, This approach is discussed in Section IV, 2.iii.

We reduce (IV.12) to one second order equation in one
dependent variable by satisfying one equation by a potential and
substituting in the other. It makes no difference which equation is
identically satisfied by the potential and no further solutions are

generated by doing it both ways.



.
We set

Xg =0+ xg = Vo (1v.13)

to satisfy the second equation of (IV.12). Substitution in the first

produces

Xaa+£gxﬁ,8=o'

We set
x = Ula) V()
and separate variables to find the equations

vty + c=o0,

(IV.14)
1
TV _
vivip = C ;
where C is the separation constant. We require C> 0 to form a
beam and for C > 0 we find the first integrals of (IV.14):
U =-v2¢ /++D ,
v U
(IV.15)
! 1
VoS cv2
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A further integration gives the implicit forms of the solution. The

form of the integrals depends on the sign of D,

When D> 0

o gy = 57 (1og(VT + V1/D+0)-JUDVITUD ) (IV.16)
V2CD '

JH

where @, is found by setting =0, U=1.

When DO

0-a, = ——1————-<cos_lwf|D|U+J|D!U\/1—|D]U ) (Iv.17)

vya2c |1313/2

In both cases the other integral is

_ _Ccv?
B =poV 6T

(IVv.18)
We have chosen U to be 1 and @ = 0 so that the constant of integ-
ration py in (IV.18) is the maximum value of p at the initial

surface ¢ = 0. While the hodograph method was not used to obtain
these solutions, the implicit form is typical of that method and
multivalued solutions have been studied extensively in this connection.
The inversion of (IV.18) gives a multivalues function for V and
hence p and © are multivalued. The edges of the fold are called
limiting lines and they form the edges of the finite beam. We
accept the branch of the solution that is symmetric about 8 = 0 and

fit a zero solution to extend from the edge of the beam to infinity.
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From the definition of x, (IV.13), we find

1

e =Ula) V{B) , p = Tl@) V' (B)

(IV.19)
The analytical formulas are best found by using U and V in place
of @ and 8 in (IV.1l) to return to x,y coordinates, but before doing

that we shall examine the qualitative features of the solution dis-

played in (IV.16), (IV.17) and (IV.18).

The following diagrams illustrate the two cases which we
have labelled A for D> 0 and B for D< 6. The functions U,U',V
and V' are sketched in figures 1 to 4. In figure 2A, U' is always
negative while in 2B U' crosses zero. Figures 3 and 4 are the
sam'e for both cases. In figure 3 the cross strokes indicate
branches that are extraneous; the branch that is symmetric about
the origin is the desirable one. Then using (IV.19) we obtain
sketches of © and p. © is the product of figures 2 and 3, and p is
the inverse of the product of figures 1 and 4. Finally, figure 7
indicates the ray pattern which results. The successive profiles of
p are mapped onto the successive surfaces of constant phase which
are perpendicular to the rays. All the rays focus at a single point
and a singularity in amplitude occurs there. Figure T7A illustrates
that rays are always convergent while in 7B the rays are parallel

somewhere and have a focal point before and after that plane.

The inverted form of U and V indicates that they are the

convenient variables to use in recovering x and y rather than using
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@ and 3. Then (IV.1l) becomes

U s
_ cosO(U,V) da .., _ v dg
x = f1 (0. V) 3 au fo A(1,V)sin8(1,V) 95 dV

’

v = fU sinB8(U, V) da ¥
1

kKU, V) au dU + i

A(1,V)cos6(1,V) —5 av .
0

Now we use integrals (IV.15) to produce the parametric form of

the solution:

e = -J2C Vl,;U+DV .

(IV.20)

: ) cos(420(17U+D) v)dU LV
x=—— [ -x [ sin(VZC@DIV)av
Kv2C “U v 1/U+D 0
: 51n('2C (1/U+ D) V) L
y = U+ -ﬁ - («/ ZC(T»D)V) av .
Kv’ZC U JI/U+D

The integrals do not have a closed form for V# 0 but may be

performed by expanding the sine and cosine in a Maclaurin series

and integrating term by term.
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The interesting feature that may be found exactly is the
focusing distance. On the axis, V = 0 and under this condition the
second and third equations of (IV.20) give x(p) in closed form.

That form is: for D> 0

’ .

= — L {logQ{@—)- vD(1+D) + YUD(1+UD) }
KV3E D3/~’- U+V1l/D+U

and for D< 0 (IV. 21)

x = —1——{co§‘J|D|—ﬁ-cos"«f|D| +J|D|U(1-1D|U)-I|D](1-lD()}

3
Kv2cC D/2

and p = po/U. At the focal point p— o and the focusing distance is

given by setting U =0 in (IV,21). Thus for D> 0

x; = ————IT{ log(VD +VI+D ) - JD(1+D)} (1V.22)
Kv2C p72
and for D<K O
xf=——i—<12’-—co§‘J|D| -'\/.iD{(l—lD]) } '

K\/'ZTID|3/2

All beams for which D < 0 may be classified as "thin" beams
which are beams in which gradients in y are steeper than gradients
in x. This occurs for D < 0 because there is a value of x for
which the rays are parallel and the changes in angle after that

point are due to the interaction between gradients in y and
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nonlinearity. In near linear theory these changes must be small.
The only way to have other than a thin beam is to have the rays
sufficiently convergent at minus infinity and then amplitudes at the
origin can be moderate while the angles of the rays may be large.

This is the case when D = O(l/-r) in our equations.

In Section IV.3 we shall deal with thin beams and, as it
happens, we shall produce the same thin beam solution that we
have just found. As a point of comparison we set D = -1 which
makes the rays parallel at the origin. Then

CK?
P=rPo - S y? (IV.23)

follows from setting U =1 in (IV.20) as the initial amplitude procfile.
In Section IV.3 we shall, in fact, look for quadratic profiles
directly. If we take w as the half width of the beam then (IV.23)
gives

o — 2Tpg
v CK?

and this may be used to eliminate C from (IV.22) to give a focusing

distance of

™ W
2/ Tpo

Xf—

which we shall compare to other thin beams,
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We conclude that the theory just presented for use with moderate
amplitude beams entering nonlinear media is necessary when the
beam has passed through a converging lens. In most other cir-
cumstances the thin beam theory should be sufficiently accurate.
For fully nonlinear beams, however, (higher than "moderate"

amplitude) the theory just presented is essential.

IV.2.iii The Hodograph Method

Equations such as (IV.12) may be transformed into linear
equations by the hodograph transformation in which ¢ and 8 are
treated as functions of p and 0. This has been much developed in
fluid mechanics. While the resulting equations are linear and
solutions may be superposed, it is not clear how to form a solution
representing a beam. We note the first steps just to indicate what

would be involved,

We recall that equations (IV.12) are

(Iv.12)



=T

_ . %
PB J
with J = apBe-aeBp. Since the set (IV.12) is homogeneous in

derivatives the Jacobian cancels out leaving the equations

% 1 838 _ ,

9p '~ p% 098 T "
(IV.24)
B . L, S
9p P e =0
They are now linear and solutions may be superposed. Separation

of variables is used here and a suitable approach is again to
introduce a potential to satisfy one of the equations. Again the
choice of which equation to satisfy identically is irrelevant; no
further separated solutions are obtained by reversing the roles of -

the equations. The introduction of x such that

ngﬁ’ szTPa

satisfies the second equation of (IV.24) and substitution in the

first produces

PXop ~ Xp ¥ TXgp = 0 -

PP

Separation of variables is accomplished by setting




-72-
x = R(p) T(8)

with the resulting separated equations being

(IV.25)

where c; is the separation constant. Regarding c¢; as positive we
solve these equations and then augment the solutions by those
found with c¢; negative. For convenience we set c, = -c; in the
latter case. The first equation of (IV.25) is placed into standard

form by the substitution
- L R = {2u
P Z‘él ) g s

with the result

u
g 4
u + =+ (1 - <F)u =0
gt
which is a Bessel Equation of the second order. The second of

(IV.25) has sinusoid solutions so that elementary solutions for the

separated factors of x take the form

R = pJ(2c,p ) and R = pY,(2c;p)




<75 =

T = sin( /-C;L 8) and T = cos(\/:c__ljl—e).

The form of @ and 3 is arrived at using Bessel function identities.

The elementary solutions are

1
o = — T, 2y clp)cos(v/% 0),

TP

B = -pJ(2Vcyp ) sin(y/%}- 9)
and

- £3
a—m YI(ZVclp)cos(\/je) 5

B =-p Y,(2Vc,p )sin(\/—gl— Q) .

(=
The cases of 3 being proportional to cos(\/—g ) have been discarded

since we wish to deal with ray patterns which are symmetric about

the x-axis.

In the same way we operate with -c; = ¢, > 0 to produce

a =F1 JI(Z\/czp)coSh(\/-E—_r—EG) ,

TP

B = p T (2Vcp) sinh( f—20)

and
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R
I

Fl Y, (2Vezp ) cosh(/i—j— o) ,

TP

B = pYz(2Vcyp) sinh(/fge) "

These elementary solutions turn out not to resemble a beam. To

form a beam from them would presumably take a complicated super-

position of them.

IV.2.iv The Radially Symmetric Problem

We shall not attempt to solve the radially symmetric three-
dimensional problem by the preceding method. We note that the
equations that one obtains in ray coordinates are

1
pKA—r ’

k? = K2(1+ 27p) .

80 _ 1 3k _
oa ~ K*A o8 ~ "’

98 _  BA _
o8 " X 8a 79 -

r is eliminated from the first equation by the integral transfor-

mation from @, [ coordinates,

_ @ 5ing B
r= [ = da + [ A(0,B) cos6(0,B)dB
0 (]

X
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The resulting system is very complicated. We observe from the
first equation, however, that energy density within ray tubes
decreases as the inverse of distance from the axis of the beam.
If the beam is heading toward the axis, the change in energy
density due to nonlinear effects is augmented by an increase in
energy density due to a geometrical decrease in the area of the
ray tube. (A ray tube is now the region between the surfaces of
revolution of close rays.) The focusing effect is increased over
that of the two-dimensional case. Similarly, when a ray heads
away from the axis of the beam, amplitude decreases dispropor-

tionately from the two-dimensional case.

A Three-Dimensional Ray Tube
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Iv.3 Solution of the Thin Beam Equations

A method that we now outline was devised in the fluid con-
text for treating a steady flow that differs little from a mean flow
and will be adapted to beams whcse rays are always close to
parallel. In contrast to the first approach, we shall obtain a
solution for the radially symmetric beam as well as the two-

dimensional beam.
IV.3.i The Thin Beam Equations

We recall the system of equations
) ()
g (r™ pky) b (rpk,) =0,

oK, 0K,
s - =0 » (IV.26)

K =K2(l+271p),

where m = 0 for two dimensions,

m =1 for three dimensions and radial symmetry.

We introduce the potential ¢ to satisfy the second equation of

K, = K

(IV.26) in the form

(IV.27)

o:lo:
H |-

We seek solutions of the problem in such form that the derivatives
of § are small corrections tc a mean wave number K for waves

propagating in the x-direction. The dispersion relation, the third



equation of (IV.26), gives =l

2

¢ 9¢

- w2 - w©2 it e (Rt
K; = K°(1+2Tp) =K I:l+28 -}<8>

2
+<-Z—(§> ] . (Iv,28)

: )
A straight linearization would take = and -5% as comparable
o
small quantities and (IV.28) would require that we set Tp = 3?;- %

This leads to p being constant and does not exhibit the crucial

nonlinear effects. These effects are included by looking for

9 92
solutions where O é—i = O _8_%8 » and then the leading term of
5

each component of K in (IV.28) is relatedto p . The significance
is that we become interested in beams where gradients in r are
steeper than gradients in x. This is the case of thin beams and
is analagous to the case of thin jets in fluid me chanics. The

significant terms of (IV.28) give

2
99 09 .
z (é‘£> t ek TP - (IV.29)

Now retaining first order x derivatives and second order r

derivatives in the first equation of (IV.27) gives

®
°
°
mlo:
R |-
@

Re}
b
©-
@

[ 2V

©-

—_— o —

= 0 . (IV.30)

The set (IV.29) and (IV.30) are the thin beam equations that have
been analysed by Russian researchers [10]. There are several
interesting exact solutions to these equations which we outline in

the next two sections.

The essential difference between this method and the one

outlined in section IV.2 using ray cocordinates is seen from (IV.28).



In section IV.2 (while we did not-giss-play this form) the three
derivatives of ¢ in (IV.28) were allowed to be O(l) quantities

but their sum had to be the small quantity 2Tp; the speed was
nearly constant but the direction was allowed to change significantly.
Here, in the thin beam case, the derivatives of ¢ are all small;

the rays are nearly parallel and the phase velocity does not change

significantly over all space.

We proceed with the solutions of the set (IV.29) and (IV.30).
Most of the work has been contributed by Akhmanov et al. [10], who
derived the equations directly as the thin beam approximation of the
oscillatory equations rather than an approximation to the averaged
ones. We have filled in several computational details that they
have omitted. The first method treats the two-dimensional equations
by means of hodograph transformations and separation of variables.
The second one, which applies also to the three-dimensional
cylindrical beam, involves a two term power series in the radial
coordinate and turns out to produce an exact solution to the thin

beam equations.

IV.3.ii A Special Solution by Hodograph T ransformations and
Separation of Variables
We consider the two-dimensional case by setting m = 0 and
r=yin (IV.29) and (IV.30). This set has three terms in each
equation, but to separate variables there must be only two. In
order to condense the form, Akhmanov made a transformation that
allowed terms to be grocuped. To make the set homogeneous in

derivatives he differentiated the first equation with respect to y and
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e}
then set u = 5—3— in both equations producing the set

ou , . Ou

9
Lo TN - Sl PR,
ox oy oy

9p ou Sp
3x " PEy Uy 7O

This set is familiar in the context of shallow water theory but
differs in the sign of T. Due to that sign the equations are elliptic
rather than hyperbolic, a feature that has been preserved from the
full equations. The significance of each term containing one
derivative factor is that the roles of depvendent and independent
variables may be reversed by a hodograph transformation and the
Jacobian will cancel out of the equations. (See section IV.2.iii).

The resulting form

9y _ 9% _ . 9x_
Bop " %8, “TBa" Y ¢
9y & 9% _
Bu | P 9p ' ou R 3

may now be condensed by grouping terms. That form is

The change of variables

£ =y-ux, 7 =px (Iv.31)
leaves the equations in the separable form
) on
A E‘% TH -0

og  On  _
3?1'+8p = 10,
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Wkile the equations are linear and superposition is permitted to

form a general solution, the fundamental solutions of this set are
found in terms of Bessel functions and do not resemble a beam. A
further hodograph transformation leaves the set in separable form
and produces a more satisfactory solution but since the new set is
nonlinear it is a special one. This transformation leaves the set in
separable form and produces a more satisfactory solution but since
the new set is nonlinear it is a special one. This transformation
again switches the roles of dependent and independent variables to

give the form

s L
pan—'r g-—O,
9p, Bu_
ot o 0.

Using a potential ' to satisfy the second of these we have
u=-Yps p= Ve
and substitution in the first equation produces

oy 8y .- 92y )
ag 81]2 8&,2

0 .

This is separated by setting ¢ = N(n)E(§) and obtaining the

equations

Integration produces

-
N=-€’nz+bn+pow »
E=tanh§- s

w

where w, b and p, are arbitrary constants, w and p, being

positive to produce a beam. Now the potential ¥ is given by
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Y(E,n) = (vlv n®+bn+ pow) tanh = .

Using the definition of ¢ we obtain

sl X, Bk B 2 y—ux)
p—(sz+wpx+po>sech (W ’

\i4
_ 2T % y=-ux \
u= - [(— px+b] tanh ) .
W W

Akhmanov does not display the b term which gives the orientation

of the rays at x = 0. For x = 0 the amplitude profile is
b
= 2 &
p= pysech =

which is localized about the x-axis. In contrast, the separated

solution for thicker beams (IV.18) is of finite width being forced to
zero by a fold of the function in ray coordinate space. Within the
approximation for thin beams, however, these shapes are similar
and comparison may be made. Before focusing takes place u=0

on the x-axis, hence at y = 0 the expression for p is

¥ b
p= p2x2+ = px +p, .

For real values of p
2 4poT

(%x-l)— ) xzzo.

w

When this condition is at the point of breaking down it gives the
focal point:

. (IV.32)
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For b = 0 the rays start parallel to the x-axis ard the comparison

to the thicker beam focusing distance of — s unusually close

aNTp,
considering that the starting profiles are only roughly similar.
Returning to the full form of (IV.32), we see that for b<- 2N g7
there is no focal point to the right of the given data and the rays
"never come down." This is the case where the rays are so
divergent at the start that they escape trapping. For b >0 the

rays are convergent to begin with and focusing is hastened.

IV.3.iii Solution by T runcated Power Series

We repeat the thin beam equations for convenience:

2ot (3]

ax 2 \ or =Te o

(IV.33)
2
ap 9% dp <?——92 +E:—f>=o ,

ox T5r Br T P\or? T

1]

where m = 0 for two dimensions,

]

m = 1 for three dimensions.
Akhmanov noticed that nonlinear terms occur only with second order
r derivatives or with a first order r derivative and a factor 1/r.

The significance is that there is an exact solution of the form

¢ = f,(x) +1;, ()"

2
p=golx) +g (x)r"
since any term can accumulate no more than second powers of r.

First powers of r in the above solution are not permitted in the
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cylindrical beam in order to avoid discontinuous derivatives at the

center but would be permitted in two dimensions (slab shaped beam)

if one were interested in nonsymmetric beams.

When ¢ and p are placed into equations (IV.33), equating

like powers of r produces the following relations:

fo =78y, (i) gl +2(1+m)g,f; = 0 , (iii)

O =

£} +2f%2 = vg, ,(ii) g} +(6+2m)g,f; =0 . (iv)

Equations (ii) and (iv) establish f;, and g; , and then g, and
finally f, are determined in terms of f;, . We assign the following
initial conditions on the beam:
€,(0) = po » £1(0) = - £2.
w
Then the amplitude profile is parabolic with maximum p, and has

edge at r=w . For ¢ we assign

VT

£,(0)= 0, £,(0) =%

The value for f, is arbitrary but f; is chosen so that kK, will be

O('\f'r ) . Using (IV.27) and the relations between f,,f,,g,,g; we

SRS
K,00)= K |1+7 p0(1--—2->--1—2~ )

K,(0) =NT KI-{E -

have

For R <0 we have an initially converging beam and for R >0 itis

initially diverging.

Eliminating f, from (ii) by means of (iv), we obtain



-84-

+(6+2m)T g = 0 .

Po
g1 = -
wzg3 +tm
to give
eny 2Tp, )
g2 tm w2
The initial data are £(0) =1, ¢'(0)=~g— . Interms of { the
other quantities are given by
g' -(1+m) -(1+m
i =5F ’go=Po§( )’fo=TPo( ; .
Integrating the ¢ equation we have
4T 4T
§'==t.\/ £o ——+C , where C =75 Sl - N
2 1 +m
(I+m)w? ¢ * (1+m)w 2
and another integration gives
¢
+ dag
EE~Xp o (Iv.34)

1

47 po
(14m) wegl+m * 5

This integral is now evaluated explicitly for m = 0 and m =1 and

 the sign of C must be taken into account. For m =0,
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4 C w2
when C>0,x—xo==‘= Fo % s 3
C 2 VVz 4Tp0 41'p0
Cw2¢ Cw?¢
- +
].Og T’H)-O— + 1 4Tp0 "
(IV.35)
4T w2 52
and when C<O,x-x0=:t 3/&0 [C” 4 l_'.lgl_v__§
G zVVZ 4Tpo 4Tp0
2
+cos™? Clw?¥
47T p,

X, is given by setting x =0, ¢ =1. We note that this is the same

expression as (IV.21). For m = 1 we have

1
X—Xo=i ]C] ‘\/Vi;po_*_cgz (IV.36)

(for either sign of C) and the use of the boundary condition and

rearrangement produces
§2==<3; —Elﬁﬂ> x2 + 2%;:& +1
R w2
which can be used to recover the formof p and ¢ in closed
form.
In this example the focal point occurs where ¢ = 0 and the
amplitude p becomes infinite. (In the first example for thin

beams the amplitude at the focal point was finite but became
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complex beyond the focal point. It need not be singular for thin
beams as the conservation of energy within ray tubes is only
approximate.) Integral (IV.34) is so arranged that §' = 0 for
x = X, » This coincides with p' = 0 and is the value of x for
which the rays are parallel. This point can be moved off to infinity

for different values of the parameters, hence x, is not chosen to

be the origin. The situation for R< 0 is illustrated.

Ray Pattern for R<0, C> 0

—

Ray Pattern for R< 0, C<O0

I
/
/
3
i —
//#_;,___""—:*—‘___T—*T\ «
w
. —
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The rays always focus since {'(0) is negative and {(0) is positive.
From (IV.34), §' becomes more and more negative until § = 0
and focusing occurs. Going backwards in x from x=0, if C>0
we find that £ increases without bound and {' becomes
asymptotic to - NC. If C<0, there is another focal point,
hence rays diverging from a focal point may again converge.
X, is half way between the focal points by the symmetry of (IV.34);
the sign of the square root switches at x = x; . The focal distance

is the distance from the origin to the focal point.

For R<<0, C>0, two dimensions:

47 Po
xf = —
3
C /2 w’
2 2
- log — s 1 i l
4po R 4poR J
and for three dimensions:
% = Rw

f Lt .

Nt (w +N2p, R)
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For R0, C<K0, two dimensions:

+ cos’

1 /

. = 47 pg
1 = ICI 372Wz .

The positions of the focal points are

In three dimensions

x, L J=

c| " Rre
1 P
o ——— i&n..
2 |c| v w?
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For R >0 the rays are divergent at x = 0. The effect is to reverse
the sign of x in the solutions already found. The two diagrams

reflected in the plane x = 0 illustrate this situation.
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CHAPTER V
THE LAGRANGIAN APPROACH

WITH NONLINEARITY AND HIGHER DISPERSION

It has been discovered in Chapter IV that focusing occurs when
the nonlinear theory is applied to waves whose amplitude is not constant.
Near the focal point the formulation is invalid since the amplitude is
greater than 0(1) and the carrier wave is not sinusoidal. It is noted
by Akhmanov et al.[10] that this situation is not remedied by including
more terms in the Fourier series, nor does dissipation prevent singu-
larities. We shall study examples in which singularities do not occur
when higher derivative terms of the slowly varying parameters are
retained.

Solutions will be derived in the two- and three-dimensional
cases, for plane waves whose amplitudes vary in time and space. In
the case of two dimensions we shall find plane waves whose time-
independent envelopes take the form of Jacobian elliptic functions in
the direction transverse to the direction of propagation. The limiting
form is a beam localized about an axis and which propagates without
distortion. We shall also find waves with periodic envelopes that travel
with constant speed. These become solitary wave packets in the limit
as the period of the envelope oscillations becomes infinite. A combina-
tion of these effects produces a solitary wave packet which is localized
about the axis of propagation. Similar effects are found in the three-
dimensional radially symmetric case but the general form of the en-

velope of the plane waves is not periodic but decays from a maximum
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even when the envelope is oscillatory. This case is complicated by
not having closed form solutions.

V.l Waves with Linear Polarization

When higher dispersion terms are retained the system loses
some of the symmetries that it had without these terms. When waves
are linearly polarized the direction of polarization becomes a favored
direction. There cé.n be two-dimensional waves when the direction of
polarization is the direction in which quantities are constant. Simi-
larly, radial symmetry about an axis can occur only with circular
polarization. We shall find time-independent solutions for these two
distinct cases separately, the two-dimensional beams in this section,
the radially symmetric ones in section V.2. Then having some famil-
jarity with the features of the system, we shall examine some time-
dependent solutions for both cases in section V. 3.

V.1l.i The Near Linear Lagrangian in Twc Dimeﬁsions

We shall proceed in a similar fashion as in Chapter III, substi-
tuting sinusoidal forms into the Lagrangian and then averaging over one
period. The periodic forms (III. 2) are modified by an additional small
term which does not appear in the periodic plane wave solutions.

The Lagrangian in two dimensions is (III. 1):

€ Pzw

P2 4

s 2la® P ® 2}_ -1 {__E_-O_Zl?;}

L = > J.‘.Lt (o4 (Pa.x +AY) AtP-I- w‘Z‘ 5 2 o+ 4 .
op

The form of the periodic plane wave propagating in the x-direction that

we shall use is:

A = a cos §
. (V.1)
P = bsinb+¢ebcoshb



.
where 6 = £x-wt, and the slow scales are X = ¢x, T = e¢t. We retain
terms of O(ez) in the Lagrangian and we take |'y] = 62. The form of

the derivatives of A and P is

At = wa sinB + ¢ aTcose,
A = Xa sinb + € a5, cosb,
X X
(V.2)
AY = ancos&
2 = .
Pt = (-wb+e BT):os B+ ¢ (b,I,+wb )sinf

Placing these forms into the Lagrangian and integrating over 2w, we

obtain
€ uoz aF)
g = o(wZ_CZKZ) 2 _wab _ bZ
4 2 4 2
600.)
€
_ 2{ o[ 20 Bl 2 ]_ 1 2
te T a.T-C (aX +aY) " wz (ZbiT—(bT+wE)
€%

3 wz bz)} —l——z .
32 ¢ w
To reduce this to a useful form the Euler equations obtained by variation
of b and b are used to eliminate those variables. Then we are left
with a Lagrangian in terms of a, K and (@ which is used in the normal
way to generate the dispersion relation and wave action. Since we are
looking for plane wave solutions we shall not be concerned with terms

involving W and W hence these are neglected.
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Algebraic difficulty is minimized by observing the form of £
and eliminating b first. We write the averaged Lagrangian in the

form

2 2 2 -
£ = Qla +ZQ2ab+Q3b + e £1(a.,b,b)

Variation with respect to b gives
QZ € .L'] ! a,b,b)
s ( E 2 /

b = 5 S El =
Q, 2Q,

Placing this back into the large terms of £ produces
2

Q
£ = (@ = wo=)a® +e” £ b5 ,
1 Q3 1
and only the significant term of b need be substituted into £1. The
full form of £ is now
€ abz € a b
_ of 2 P )_ 2 2‘ 2 o[ ]_ T
£ = I [w (1+ > c K la"+e I BT - (ax+aY) >
w_ -w
2 2 =
2e w wab € w._ wa 2
1 o p T (—o P T -) 2-2
el R “\T 2z twhb) fub
€pr wo - w wo -w
3 6 4 4
3ye, w, w
4
2 2. 4
32(w, - w))
Variation with respect to b gives
€ wz(w 2+ )
=
5 = - -2 B O a
2 2.2 T
(w, -w)

Placing this into £ produces the working form
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2
€ w "
£ = == wz(l + —-B—)-CZK’“ "
73 z 2
W, -w
€ wzwz(w2+3w )
2 “offi, P o' o .2 2, 2 2“
te” |\t 53— Ryt @gptag) |
(wo W)
3 6 4 4
3ve wp w a
+ . (Ve 35)
32 ( Z_ 2)4

The Euler equations resulting from the variation of & are

wz wz wz(w2+3w2)
2 2.2 [ p "o o k
[“’ (1 + —3 2>'C b Ja'\l * e
w_-w (w_ -w)
(o] (o]
2 6 4 3
2 S¥ eo W, @ a
+ca__+a )+ P =0 |, (V. 4)

r 2
VY s low®?

2
2
3 2 “’p> a}__B_{Z z}azz}_
F)t"{l:“’ 1+ L, ZJ77x c K +‘a"y[° ot J=8 «
wo—w

The consistency relations remain

B aml s BKZ BKL- oK > .

B 3t ey e T % 5y
V.1l.ii Time-Independent Solutions in Two Dimensions

There are convenient solutions which represent plane waves
propagating in one direction without distortion. To obtain these solu-
tions we set time derivatives equal to zero to produce a time-independ-
ent envelope. To have propagation ip only one direction we set K, = 0
and Ky = constant. To satisfy the second equation of (V.4) we must
have a =a(y), and now all of (V.5) are satisfied. The remaining equa-

tion gives the distribution of amplitude transverse to the direction of

propagation. That equation is
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2

2

w

[w2<l + —21‘:-'-——2 >-c2'r€2]a + cza. + 2
W -w

o 643
p )
> d =0

3ve

2
V4w )

This equation describes the time-independent beam found by Townes

[(1]. We write this in the form

3
a -Da+7a” =0 V.6
vy ( )

where
2/ wz \
- w2 W
B )
C W -Ww
(e}
and 3 2 6 4
YeE W w
T = e
2.4

2, 2
4c (W -w )
D may be positive or negative but T has the sign of y and is determined

by the medium.

One integration of (V. 6) gives

- 2 + 4 =

2
a 2 4
%r Da Ta 12\. (V. 7)

and a further integration gives

a
S gy "y i (V. 8)

ao )/;. + Duz- 'ru4/2

The contents of the square root are factored to give

2 Tu4 u2 112
A + D - T = A(l -~ —-—z—)(l - —z ) (V. 9)
o R

2
2 _ b, /p* 2
where Rl,Z = ? + -:-2' +7——-

The form of (V.7) is the same as the equation governing the oscilla-

tions of the polarization (II. 4) and the description in that connection
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applies here also. The solution oscillates between simple roots of
(V.9). It is important to bear in mind that the solutions found in
Chapter II are the fast oscillations while we are dealing here with
variations in the envelope of these oscillations.

The zeros of (V.9) areu = % R1 and u = & RZ' These are the
values of a at which ay = 0 and hence simple roots will be extreme
values of the wave form. The integral (V. 8) diverges as a goes to
the value of a double or higher order root, hence all roots are extreme
values but multiple roots may be reached only in the limit as y = +
and these solutions are not oscillatory. This is the case of ''solitary
waves! which we played down when dealing with the fast oscillations
in Chapter II. In the present context the solitary wave envelope is the
very important case of a localized beam. We itemize the different
cases of values of the parameters T, D and A by the following tables.
The arrows indicate the values of the roots of (V.V9) on the sketch of
the waveforms.

The first table is for the case T > 0, the focusing medium, the

second fer T < 0, the defocusing medium.



D>0

D<o

o

A>o0 A=0 OAY-E A--E  Ac-X2
2T ~ 2 2T
—
i e Eoee or NO SOLUT/ON
—— l[ —— b
—_— 11
2 real roots 4 recl roots 2 double, 4 complex
2 zero roots real roots roots
Case (b} Lase (C)
o
— - { MNO SoLuTIoN
Zveal roots QuadruHe zero root 4 complex
2 ima:. rools roots
Case ()

1 Z Zerd r‘oc«fs

2 imaz. roots

NO soLur/oN

4 complex

roaés

ANe soLvrron

4 complex

roots

NO SOLUTION

4 complex

roots

Table for T > 0




D>0

(o}

(v}
I

D<o

2
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A> 5 A. D DA A
Ziel =50 zm R -0 A<@
WBOUNDED UNBOUNDED UNBCUNDED \
SoLution SoLurion Sovrurion /"
4 oomplex 4 imogq 4 imaa. 2 zers raots
voots rools roots 2 -'-oﬁ. voots
UvBoun bED bF
e . '7T
Sorvrion
4 complex 4 zero voots 2 real reots
rooks 2 inaz. rools
N
Unsounbed —""‘:'—‘/4—“‘ - —
o —\- (o3 3 S —
Sovvrion | S -
i paN e e o
4 complex 2 double, 4 real roats 2 veal roots
roots real roots Z revo vools
Case (d) Case (e)

Table for T <0
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We now give a more detailed description of the bounded solutions

shown in the tables.

Case (a): 7T>0, D>0, A>0; Periodic Wave Form

From (V. 9), Rl'2 >0, R22 < 0. We set SZZ = -RZ2 and for real

a and y we have

-Ry, sa &R

1 1

The implicit form of the solution is

Hg
f du
7 2
f‘ = /1 e
a
By Sy

In terms of Jacobian elliptic functions the solution is

= JE 4

JK(RZ +SZ) R2 '
% = B, en Rl : (V. 10)
. R 5; ’ R12+SZZ

Case (b): 7> 0, D> 0, A =0; Solitary Wave Form

R1 > 0)8 R2 = 0. For reala, y we have

—RISaSRl.

The implicit form is RI

but in this case the solution has the integrated form

a = }/-Z,FI—) sech /D vy . (V.11)
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2

Case (c): T>0, D>0, 0>A> - %_;

2 2
R1 >0, R, > 0. For real a, y there are the regions

Periodic Wave Form

R, £a SR1

2

-Rl <a SRZ

The implicit form is
1
du
= ,/|A| y
u2 /[ ul 1
L

17 By

Written in the form of Jacobian elliptic functions this is

Bén?
a = R,dn ’ y, =2 . (V.12)
2 R,

This completes the cases for the focusing medium. We emphasize that
the preceding waveforms are supported by one type of medium, the

following by another.

2
Case (d): 7T<0, D<O0, A= D ; Solitary Wave Form
2|7|
R, =R, > 0. For reala, yis real everywhere. There are

1 2

unbounded solutions for initial conditions outside the region between
the roots and a bounded, nonoscillatory solution inside that region.

The implicit form is
: a

f du _
= W
D 2

(o] ) (—T—-u)

and it integrates to



2
Case [€) T<0, D20, 2w > A >0; Perioflic Wave Form
2|7
R, >0, R, > 0. For real a, y is real in the regions
a<-R;, -R,<a <R,, a2R, .

The central region has periodic solutions and the implicit form is

a
d
f = = VA y
1 -2, /1-2
> R [ w2
1 2
The form in terms of Jacobian elliptic functions is

RZ

VA 2

E—— Y -——'z' . (V. 13)
2 R,

In review, the focusing medium has solutions which oscillate
through zero in case (a) and about a positive value in case (c). These
oscillatory solutions represent parallel beams propagating without
distortion. The solitary wave form of case (b) represents an isolated
beam propagating without distortion. Townes [1] has named this a
self-trapped beam. In the defocusing medium there is an oscillatory
solution in case (e) which likewise represents parallel beams. The
'solitary wave form is the hyperbolic .tangent of case (d) and is nonzero
at infinity . It cannot represent an isolated beam; hence, self-trapped

beams do not exist for defocusing media.
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In heuristic terms, in the focusing medium a beam tends to
focus due to nonlinearity but to defocus due to dispersion. When
these effects are in balance a beam is self-trapped. In the defocusing

medium both nonlinearity and dispersion cause the beam to spread.

V.2 Waves with Circular Polarization

As we mentioned in the introduction to section V.1, in this
section we shall set up the equations for circularly polarized waves
with higher dispersion. We shall examine the time-independent equa -
tions to find radially symmetric solutions that represent self-trapped
beams.

V.2.i Averaged Lagrangian for Circular Polarization
The near linear Lagrangian as found in Chapter III is

-e°A AP——-€°(222)¢9
L = 5 "B Pz B e 0y
{04 1 p §

2 ZA

£t~ 2)
» X

i,

1 2(
+ iz
2e W it
o p

2 2its 2.2

w P+ L@y ) :

“ T g (Pl)
We now substitute the form of a circularly polarized plane wave propa-
gating in the x-direction into this Lagrangian. Asinthetwo -dimensional

case, the forms found in Chapter III are modified by additional small

terms. The solution that we shall take is

Al = 0 , P, = 0,
A, = asind , P, = bcosd te 52 sinf ,
A3 = -a3cose 5 P3 = b sinf + 653 cos 9 ,

and 6 = Kx-wt. We must also have

¢’—'€d1 Sin9+€¢2c059 .
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dl and qSZ may be determined from the Lorentz gauge
1
V.A = - — dt .
¢

Using the prescribed forms for A we find

2 3
qSt = -€c (aY sinf - aZ cosB) ,
and hence
ecz 2
g = - - (aY cosf + a, sinf)+O(e ) .

This is the same result that we would obtain by placing ¢$1 and ¢2 into
the Lagrangian and varying with respect to these functions. The deriv-

ative terms that are used in the Lagrangian are

AZ,t = - (wa cosB + ¢ ar sinB A3,t = -wa sinb - ¢ ar cosf
AZ,x = Ka cos6+€aXsin6 A3’X=Ka sinf -€ay cos €
AZ,y = eay sinf A3’ - = -eay cosH
AZZ:ea sinf A = -¢€¢a, cosf
I i 2 - 2
¢x= Q(E— KaY mn@-—(—u—wazcose) ¢Y = Ofe) ¢2 = O(e")
PZ,t = wb sinf + e(bT-wEZ)cose + &2 EZ, - sinf
P3, g = -wb cosf + e(bT +w53)sin9 + (-:2 53, T cosf
PZ,y = ebycosf+ ™ 52, v sinf P3, , = €b, sinf + 6253’ 5 cos®

Substituting these forms into the Lagrangian and integrating over 2w,

.We obtain, to O(sz) and O(v).



2 2
€ Ww_ -Ww
2
£ = _Zo_ (wz-czK )a.‘2 + wab - 2 b2
2e w
o°Pp 2
& 2 2 Lo g . cey 2 2 2)
+ez{-—§—[a'T-C (a +a +a. )] s(a Tb3)- (l-w aY+aZ
Z
<& (aybyta b )+ E’2+2b By o= )—wcz’—w('zfz)
- = yrazPz pt2bwby 1B ) -——(B, 1y
4
MR-
4 e W
o P

In the same way as in the case of linear polarization we observe
the form of the Llagrangian in order to simplify the procedure of elim-

inating the extraneous amplitudes

The form of the Lagrangian is

£ =0 af

2
1

+2Q ab+Q b+€£(abb b)

This is identical to the structure of £ in the case of linear polarization

The variation of b and resubstitution produces

2
Q
2 2, 2
& = (Ql--q)a+€ £l 3
Q
where the first approximation b = - o @ is placed into .511. This
3
form is
wz €
- -29- [w2(1+ _ZLZ)_C2K2]a2+€Z{_Zo_ [a,]z:,—cz(ax+a.l,+a. )]
wo )
Czeo L 22 2 >
- 2apby-aghby)- —= (1 - 5=+ — , oyt z)
W o—w
2 ,.4,2 Ve il 1l
[ w~a | wea
1 o ("‘b owp = ]
e e p N (bz,T by )- T" (b +b3) }
owp (o) o p 6 (fat
. °‘$

2 2.4
4(w, -w )
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Variation with respect to 52 and 53 gives

a wza wzwz
T T o~ _
T Tz 7 b, =0
wo'w GOUJP
. 2a 2 2
By T o .
=g F ey e g by =8 s
w, W 2€ow

These are used to eliminate b, and 53 from $£to give

e wz € 2 wz(w 2+3 wZ)
2 2.2 2. 2 ﬁ:
£ = —To[w (1+w—%w2)-c K ]a +e {79[1-!- 2 14
o

2
Z 2.3 ]aT
(W, -w)
& cZaZ " CZ 2 2 2 2 ‘)’63(.060.!43-4
_ _o X o (3_ K _ “b >(a2+a2)}+ o "p .
4 X Z 2 Y Z 4( 2 ‘2)4
wo— wo w

w2 wzuz(w 2+3w2)
2 b 2.8 ( b 4o '\Wo >
W, -w (w0 -w )
2 2 6 43
2 2.2 2 Y W W 2
+ cZ a_ + 9—2—<3--C—§ - a +azz)+ —_OZ—P—Z-Z— = 0
W - 37 (wy -w")
2

(V.14)
2
5%—{[20 (1+—2L2>] %}-F %(CZK a.2
wo w

8 , 2 2 9 . 2 25
1 )+ W(C Kza )+ 5—-2-(C K3a ) =0
The consistency relations are

9w oK _ :
—8-_35_— + 3t = O, yxKk = 0 (V.IS)
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V.2.ii Time-Independent Solutions for Circular Polarization

There are two special forms of time-independent solutions for
circular polarization. These are the two-dimensional beam that was
found for linear polarization and a cylindrically symmetric beam.
Disposing of the two-dimensional beam first we set K1=K, K:2=0 and
take Kand was constants in equations (V. 14) and (V. 15). Then if we
take a = a(y) the only equation not satisfied identically is the first of

(V. 14) which becomes

2 6 4 3
2 2
< e 2,2 & czK @5 YEL W w
w (1 +—§————)-c K ]a+ (3— - a =0
2 2 2 / .
W, -u w_-u vy (w(‘:' Y &

a -Da+Ta =0
where wZ
2
kw1 + —FP—)
w-w
D = e
Sf_(3 e’ pr >
- S =2 Z
2 wz CL‘O-(.O
2
2 2 w
K -w “*‘2?“"2‘)
wo-w
and T = g
2.2 2pnd
2.4 2 K w
(WS -w) (3 S5 - )
w wo—w

This equation is identical in form to (V. 6). While the formulas for
D and T differ slightly, the sign of T is still the sign of . All the
solutions that applied in section V.1 apply here and again self-trapped

beams exist only for the focusing medium.
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The second and more important time-independent solution has
radial symmetry about the x-axis. To obtain this special solution
we set K =K, K, =K, =0 and take w and K as constants. Setting

r T2 3
2 2 2 . : :
+ z , we take a = a(r). When the solution is loclized about

=y

r = 0, this represents a cylindrical beam with circular cross-section
which propagates without spreading or converging. This beam was
also found by Towne§ [1]. Again all equations of (V.14) and (V. 15)
are satisfied identically by this simple form except the first of (V. 14)

which will give the profile a(r). This equation is

2
o 2 2.2 2w
2 22 c ( c K p) 1
[w (1+——-§—Z)—c K]a+ 5= 3 - = 5% (arr+;-a.r)
W - w W W
o o
2 6 4 3
€ w w
+7 2 P a = 0
( 2 2)4 2
wo—w
which we write as
1 3
a +—a -Da+Ta” =0 (V.16)
rr r r
where wz
S R
w -w
(o)
D = 2
2 2.2 2w
C c K
Zz G- 2)
&) w -Ww
762106 4
1S
and T = 2.k
2.2 2w
2 2.4 c K
(wO -w ) (3 b 5 = ) 2)
w w -Ww
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We proceed with the study of the equation

1 3
arr+ -a_ -ata = 0 . (V.17)

We have scaled (V. 16) by the substitution

* £
a'«/ﬁa’
ES
r=«/Dr’

and we then drop the asterisks. In Townes' classic paper [1], he
discussed (V.17) and solved it numerically to produce a solution
symmetric in r and decaying monotonically to zero. Further work
by Haus [12] on an analogue computer produced symmetric profiles
that 'fall from a maximum at r = 0 but cross the zero level a finite
number of times, then decay to zero. His work indicates that there
is an eigenfunction corresponding to zero, one, two, etc., zero
crossings, the higher eigenfunctions having greater amplitude at the 7
center of the beam and greater energy. These cylindrically svmmetric
beams have a bright central spot and periferal rings that decay in
intensity toward the edge. The existence of these eigenfunctions is
critically dependent on the quantities D and T being positive. There

are no such self-trapped beams in defocusing media (T < 0).
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Eigenfunctions of Orders 1to 4

We new derive an approximate analytic solution to (V. 17). The
Lagrangian for (V.17) is
4
_ 2 2 a
& = r(ar +a - = )

where the leading r is just the Jacobian for polar coordinates. & is,
of course, the averaged Lagrangian subject to the restrictions that we
have introduced. We now produce a '"best fit'" for a trial solution.
The nature of the technique involves placing possible solutions into
the variational principle with undetermined parameters. Variation

with respect to these parameters then produces equations for them.

The variational principle for the Lagrangian is
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co
4
2 Z a 1
6J=68{r(ar+a "T)Idrzo (V.18)
(o]

The trial solution that will be substituted is

; (V.19)

where ag, 25 bl’ b.Z are constants to be determined.

Placing (V. 19) into (V. 20) one uses the integrals

o0 2 o 0]
- 3 -x2 1
Sxexdx:é—and Sxe dx = 3
o o
to obtain
2 2 2 ; 2
ay 43.lazb1b2 a, 2y a,a, a,
b= =t 2 " 7 Y 13, pm, Tim,
(b, +b,) 1 1"72 2
1""& {(V.20)
Z 2 3 4 :
4 3
) —1—[ a; . 4a.1 a2+ 6 a; a, . 4ala2 +a2
4_ 4b1 3b1+b2 2(b1+b2) b1+3»b2 4b2

as the quantity to be minimized. Now the solutions to

provide the numerical values for the parameters in (V.19). This is a
complicated system which is reduced considerably by the following

substitutions which allow two quantities to be elirmminated:

The resulting form of (V. 20) is
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a.2 az 2
T = 12 [1+8Cd2+d2]+ 4:) [1+ 14:1 +§._]
(1+c) 1 e
e 2 3 4
1 [1+16d & 124 3 16d +d_]
16b1 3+c 1+e 1+3¢c =
2 4
21 41
= a F, +-— F, -=— F (V.21)
1 71 2 3
1 1
where Fl, FZ an d F3 depend on ¢ and d. Variation of ay and b1
produce
4 3
?_al a
Bay By dop— Fy=rpgoFy =0
1 1
d < F F, =0
- 1 F2 7% f3 °
These equations yield solutions
¥ F
2 2 _ T2 -
a.l = F_3 " bl = F_l (V.ZZ)

which represent the best choices of a; and b1 for given ¢ and d. These

solutions are replaced into (V.Z21) to eliminate ay and bl' The resulting

form

is varied with respect to ¢ and d. Thus
(B Foly Fg - (B Fp)Fg 4=0

(FyFp), Fg = (FF)Fy =0

must be solved for ¢ and d in some numerical way. The results of



-112 -

calculation on a desk calculator are
c =4; 7335, d =1,55005

Substitution into (V. 22) produces

a; = . 848763 and b1 = , 249505

Finally the solution has the form

-. 249505 r2 -1.181031 r2

a =.848763 e + 1.315625 e

This result is plotted to compare with the numerically integrated

result.
sl S Numerically Integrated Solution
———_ Approximate Analytic Solution
r—
10—
o 1
0

Order Zero Eigenfunction
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Haus gives the power for the first five modes where power is defined
by

o)
P=Sa2rdr .
o

These values are

Mode Number Power
1 1.86
2 12, 25
3 31.26
-4 58.57
5 94. 23

We note that the power for the lowest mode is very much lower than

the other modes, hence if a large beam becomes unstable it seems
likely that it will break up into beams of the first type. For comparison
with Haus' work, the power of our approximate solution is 1. 869 com-

pared to his 1.86, while Townes' figure is 1. 834.

V.3 Time-Dependent Solutions

Having found some special solutions for the time-independent
problems we proceed with some examples of time-dependent solutions.
These examples will all be stationary solutions; the envelope pattern
will move with a constant speed. The first case will be a one-dimen-
sional wave, all quantities being constant in y and z. We shall then
consider solitary waves that are localized near the x-axis and travel
with constant speed. These are short pulses that are self-trapped

in the nonlinear medium.
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V.3.1i Stationary One-Dimensional Wave Envelopes

We shall deal with both linearly and circularly polarized
waves. Firstly, we consider solutions of the equations of linearly
polarized waves, (V.4) and (V.5), which are independent of y and =z
but vary in a time-dependent manner in the x-direction. If we define

a new variable n by

n = x -Vt

where V is constant, then any wave pattern that depends only upon m
will translate undistorted in the x-direction with velocity V. We take
KZ = 0 and Kl = K and was constants. The second equation of (V. 4)

becomes

2

w
-V{[w2(1+——22-—2>] aa}+2c2Kaa =0 .
N n
wo‘w w

To satisfy this equation we set

The first equation of (V.4) becomes

2 2 2
w (w +3w )
wz(l o+ _'p_ZZ )- [ —V2 1+ wP wo - ) m
4

—w)
3ye¢ w aj
4w &

w
+

6
P
Z

2

O
2
o—w)

This is the equation for stationary waves found by Ostrovskii (1117,
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We write this as

aTm-Da+'ra. = 0
where 2 2 > wz
Fe? - w1+ —2o)
_ W, -w
S % 73
2 2 wpwo+3w)
g =¥ <1+ w2y )
wy -
3vye w6w4
ZEZ4
and T = dlwo -w ) .
2. . 2 2 2.)
2 2 ww(wo+3w
c-V(1+ P )
2 2.3
(o-w)

This is the form of equation (V. 16). Where we had parallel beams in
space in section V.1 we now have a series of pulses and where we had
an isolated beam we now have a solitary wave.

We use the same definition ofn in the equa£ions of circularly
polarized waves, (V.14) and (V.15), and we proceed in the same
fashion. Exactly the same expressions are found for V and D, and
T differs in that :3}—7 is replaced by ¥. In both cases we find that
solitary waves exist only in focusing media.

V.3.ii Localized Solitary Waves in Two Dimensions

We combine the ideas of the preceding parts and obtain station-
ary solutions by setting m = x - vt, but now we seek solutions that are
radially symmetric in the variables 1 and y. The radially symmetric
pattern that results propagates with speed V. If the solution is local-
ized in the radial variable then we have a pulse that propagates with

constant speed. Again we take KZ =0 and K, = K and w as constants.

1
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The second equation of (V. 4) produces the same value of V as found

in section V. 3.1:

l:wz(1+ L—O—:ZE?EZ—)]

The first equation of (V.4) produces

2 2, 2 2
2 w 2 w W (w +3w)
[w <1+ :Ia.VE+ 2 73 ]a
w -w ) m
o~ %y
4 3
2 2 3'y€: ui)w a
+ & a + c a >4 =0
i vy 4w -w®)
2 2 =
2 2 vip Wy w "°c>2+3‘°) * 5
We set r =y+<-—2—E+p2 53 ])n
c (w_ = -w)
o
" to obtain the form
a +-1—a -Da+Ta =0
rr r r
2 wz wz \
where D = K __..2.<1 +___.z..L2_/
(o w -Ww
(o]
2
3'yeow6w4
and S gy
4c (wo-w)

. This is equation (V. 16) which we have found to have solutions localized
about r = 0. There are such localized pulses only in a focusing medium.
V. 3.iii Localized Solitary Waves in Three Dimensions

We make the substitution 11 = x - Vt, where V is the same quan-

tity as in V. 3.1 and V. 3.1ii, in the equations of circular polarization
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(V.14) and (V.15). If we assume radial symmetry between y and n
with no z dependence, then we obtain a similar two-dimensional solitary
wave as in section V. 2.ii., The more interesting case results from

assuming spherical symmetry between 1, y and z. Here we set

2 2 2 wpzwow +3w) 2k sz =
2 [C -V (1+ 2 23 /] "7 {“3"-2— —2—-25](y+z
(wo -w) w W -w
In this variable we obtain
7€2w6w4a3
I:w 1+ >CZK2a+arr+%ar+ ZC.) p24 =0
—w (W™ - w")

for the first equation of (V. 14), while the rest of equations (V. 14) and
(V.15) are satisfied by the chosen form. We have the case of a pulse,

localized about the x-axis, propagating with speed V. We write this

as
a -:--Z—a. —Da+Ta3=O
rr r
wZ
where D = csz-w2<1+_TR_Z>
W ~-Ww
(e}
7"2w6w4
_ o P
and T = > > &
w, -w’)

This equation has been studied in connection with elementary particle
physics. Finkelstein et al.[13] have shown through phase plane argu-
ments that this equation has analytic, symmetric eigensolutions that
are asymptotic to zero at infinity and have one, two, three, etc., zero

crossings as in the case of solutions to (V.17). Schiff et al-[14]
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display the following approximate solution for the lowest eigensolution
obtained by Teshima by Lagrangian techniques in the same manner as

we did in section V. 2.ii with equation (V. 17):

-4,.10r

o
a8 = 2.6060[(e -2 ) 4 (2.33r-1.360)e'4‘1°r:|.

This profile is similar to the lowest eigenfunction solution of equation
(V.17) but it has a higher central maximum and is thinner. The higher
eigenfunctions represent pulses that are ellipsoidal with sets of ever
weakening ellipsoidal shells surrounding them, the whole pattern

moving with constant velocity.
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APP ENDIX

THE QUESTION OF PSEUDO-FREQUENCIES

In Chapter III it was mentioned that a constant electric field
cannot build up if its value is zero everywhere at some starting time
and the potential V(P) is an even function of P. We now prove this
by applying Whitham's procedure [5] including pseudo-frequencies
which represent the slowly varying '""constant' component of the field.

The relevant Lagrangian is (III. 1):
2

€ P
o 2 2..2 2 } 1 { t }
L = —2— {At -C (AX+AY) = AtP + ;_? —2— - V.(P) é (A. 1)
°oP
Following the standard procedure of Whitham, the functions A and P

are considered periodic functions of 8, but the potential A is allowed

to have a secular function added to it. They are written

P

P(6X,Y,T) ,
(A.2)

A = 3(X,Y, T)+A(5, X, Y, T)

where X, Y and T are the slow scales defined by
X = ex, Y =ey, T=¢et .

0 is the fast variable defined so that

QX = KI(X, Y, T, ey = KZ(X, Y, T), et = -w(X, Y, T)

and the secular function ¢ is defined by pseudo-frequencies pl, Bz, 0%

such that

¢ = [51(X, ¥, T, @Y = ﬁZ(X, X, T) @t & 9%, X, T)
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Substitution of (A.2) into (A. 1) produces the explicit form

. |
L o= 2 {rrwag? - e e AgP-cP@, 4k, A%}

2.2
1 el ]
t (ytwA P + > { > - V@) .
eowp
We use Whitham's Hamiltonian formulation to simplify the work. This
method produces integrals of the Euler equations quickly so that certain

variables in the Lagrangian may be eliminated. Omne may differentiate

the integrals we produce to justify the method. Whitham defines

”1 5 e M. - oL , H=P, ”1+Ae”2-1,

&)Pe 5

and then the integrals of the system are

ﬂ sze
| = — (A. 3)
e W
o p
M. - WY+ WA )-¢ 2K (B +K. A )-€ c’K,(B,+K A )4wP = B (A. 4)
g T B, WT ARG B L By iRy TReRe iR 8 RalPs Thallys .

2.2
€ w P
2 2,.2..72 2 2.2 b
€ W
o p
= M . (A. 5)
Zeowp

The integrals (A.4) and (A.5) are used to eliminate P8 and Ae from

(A.3) for use in the following form of £:
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£ = =0 ”dP- M
2T 1

2¢ w

o'p

Substitution gives the explicit form of £ as

" w M
£ —-—2—1;§ i I s (A. 6)
€ W 2 e w
9 P o P
where
2 2 2.2 @22
F=M-ZV(P)+2€O¢Q97P+€OLOP(7 -c Pp)
w 2 2 2
- By B lwy <Pt 8 4,850 T-wP )
w -c K
The Fuler equations are
.SZM = 0
(A.7)
9 0 -
-—5T£w+3;{£nl+5—y—£KZ—O
S’B =0
: (A. 8)
9 9 0
- &t == £, + 5= = 0
st Yyt Ex Bt By e,

Our purpose is to show that (A. 8) is satisfied identically by setting
B=0, y=0, B =0. This condition would leave (A.7) as the set of
equations that was dealt with in Chapter III.

The first equation of (A. 8) is

{B-e [wy-c®(k,B,+08,)]-wP]
1 § w & Ll .

2
so(w -c K) N E

+ boundary terms = 0
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The second is

; [_1_§ —w 1 [.2p .. w2
L2 pr '\/_ET‘IP opy

%o

e B 2 Mo )
+ KZIS—KZ‘I:B = B loy-c ("1‘31+K2‘32))"’~‘Pj}dpf

8{1§ W 1. I 2 2
=y ———— e Y=l C (3
ox 2w wZ JF“\ o P i

P
2
+ C—pr—ﬁz-[B-e( —c? (k. B, +K B )- P]}dp}
022 ¢ o W Y Py T g e

8{1§ w l{ 2 2
i@ 2 e w B
ay 2m wpz ﬁ— o p 2

2 .2
c g Ky %
+ 2—%——2— (B - eo(wy-c (K1[31+K262))—wP]}dP}
w-c K
+ boundary terms = 0

Setting B =0, v =0 and § =0, the integrands in all four loop integrals
become odd if V(P) in the factor F is even, so that each loop integral
is zero. In the terms that we have called '"boundary terms' there is
always a factor of ,/F from the integrand of (A.6). These terms are
evaluated at the roots of F and hence are zero. Thus each term of the

equations is zero and the equations are satisfied identically.
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