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ABSTRACT 

A study is made of solutions of the macroscopic Maxwell 

equations in nonlinear media. Both nonlinear and dispersive terms 

are responsible for effects that are not taken into account in the ge o­

metrical optics a.pproximation. The nonlinear terms ca~ depenciing 

on the nature of the nonlinearity, cause plane w aves to focus when 

the amplitude varies across the wavefront. The dispersive terms 

prevent the singularities that nonlinearity alone would produce. 

Solutions are found which de scribe periodic plane waves in fully non­

linear media. Equations describing the evolution of the am.plitude, 

frequency and wave number are generated by means of averaged 

Lagrangian techniques. The equations are solved for near linear 

media to produce the form of .focusing waves which develop a singular­

ity at the focal point. When higher dispersion is included nonlinear 

and dispersive effects can balance and one finds an1plitude profiles 

that propagate with straight rays. 
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CHAPTER I 

INTRODUCTION AND GOVERNING EQUATIO~S 

I. 1. Introduction 

The interest in nonlinear effects in electromagnetic theory 

at optical frequencies has evolved from several roots. The most 

obvious one is the practical application of these effects that is now 

possible due to the invention of the laser, a high intensity source of 

coherent light, without which the effects are too 3mall to be detected. 

Some aspects of the theory were developed before the laser, however, 

as the study of electromagnetic waves at radio frequencies involves 

the use of nonlinear effects . The simila.rity between the optical 

effects and those found in fluid mechanics is striking; many 

resear c hers are producing material in both fields. The pioneering 

work in self-focus ing beams, with which this thesis is concerned, 

was done in the contex t of the propagation of elect:-omagnetic waves 

in plasrr..a, a field which gained impetus from the s t udy of t he r e lation­

ship between the ionosphere and long range communication. In that 

respect it might be said that the study of electric discha!"ge s in gases 

and the invention of the vacuum tube have played a part in the evolu­

tion of interest in nonlinear optics. 

In this first chapter the equations for the classical theory of 

electromagnetic waves are introduced. These are accompanied by 

difierential equations describing the model chosen fa:- the mediwn. 

The medium is r e presented by a continuum of oscillating dipoles, 
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the negatively charged particle responding to the electric £ield and to 

the potential well created by the positive core of the atom. The 

potentials for the electric and magnetic quantities are introduced so 

that a Lagrangian may be found. The Lagrangian and associated 

variational principle will be the rnain tool in the analysis of the non­

linear phenomena. 

In Chapter II, periodic plane wave solutions to the governing 

equations are derived. The special cases of linear and circular 

polarization are discussed and various special forms of the nonlinear 

terms are studied in detail. For cubic restoring forces, exact solu­

tions in the form of Jacobian elliptic functions are found. The case 

ln which the cubic term is small is then dealt with using a much 

sirnpler approximate method where the periodic waves are taken as 

sinusoidal. This case is referred to as near linear. For purposes 

of illustration the general solution is expanded for small values of 

the cubic term of the restoring force to reproduce the near linear 

solution. 

The averaged Lagrangian technique is introduced in 

chapter III. This technique is used to obtain equations governi:::1g 

the slow variation of amplitudes , wave number and frequency, 

quantities that are constant in the case of periodic plane waves. 

The consequences are studie d for the ti:::ne -dependent modulations 

of nonlinear plane waves. These are concerned with the way in 

which modulations and wave packets propagate and how nonlinearity 

affects the more familiar linear results. 
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In chapter IV methods are applied to beams where self­

focusing is the phenomenon of most interest. They may be considered 

as spatial modulations similar to the tlme -like modulations of 

chapter III. The features of the general two-dimensional and three­

dimensional radially symrnetric cases are discussed, and the near 

linear problem is used as an illustration. An analogy is drawn 

between these equations and the equations of fluid mechanics; 

methods taken from the theory of fluid mechanics are then adapted 

to optics. The equations are solved to produce representations of 

self-focusing beams . A solution is produced for the case of a near 

linear beam of large width whose rays bend significantly before 

focusing and a review is made of treatments of thin bean~s whose 

rays never deviate greatly from being parallel to the axis of propa­

gation. 

The first order theory of modulations leads to singularities 

which are resolved by including higher order effects of dispersion. 

These questions are taken up in chapter V. Averaged Lagrangians 

are found both in the case of linear and circ1.1.lar polarization. 

Special solutioas are found which ha·.re straight parallel rays but 

whose amplitudes va.ry in a variety of ways . For example, time­

independent solutions are found where the beam is localized about the 

axis of propagation and propagates without distortion and also solitary 

wave envelopes are found. 
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I. 2. The Equations for the Clasai.cal M o del 

The problem that will be dealt with throughout the thesis is 

concerned with the propagation of classical electromagnetic waves 

through a medium which will be modeled by a continuous distribution 

of electric dipoles. The electromagnetic fields will be described by 

the macroscopic Maxwell equations in vacuum. The medium will be 

felt through the source terms. 

The equations take the form 

Y' • H = 0 

aH 
{I. 1) 

Y' X E = - 1-Lo at ' 

All the dependent variables are functions of x, y, z and t. The 

dipole moment at each point is that of a finite sized dipole with the 

positive particle fixed at the point and the negatively charged particle 

located in a potential well centered at the positive particle. The only 

force on the negative particle considered is that of the electric field. 

The magnetic effects, the distortion of the lattice and dissipation are 

neglected. The potential at a displacement R is given by the general 

function U(R}. The form of the power series expansion of U(R) is 

crucial in dete rrnining the effects that occur. When U is quadratic, 

leading to a. line ar restoring force, this is the Lorentz theory of dis-

persian. When the series contains higher than quadratic terms the 

problem is nonlinear. Chiao_::_! al. [ 1] indicate some of the physical 

effects responsible for tl1e nonlinear terms and list the n1agnitudes 
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for some of the materials that show nonlinear properties. 

The expression of Newton's law for the oscillators is 

,.,2R 
0 • 

m---1 + 
at2 

au 
tJRi 

= eE. 
l 

(for i = 1 ,2,3) 

where m is the mass of the electron and e is its charge. It is con-

venient to work with the polarization, P = - NeR, where N is the 

density of oscillators. In terms of the polarization Newton's law 

becon1es 

where we have defined 

and 

+ ov = 
&P. 

l 

2 
E w Ei 

0 p 

N2e2 
V(P) = -- U(R) 

m 

2 
w = p 

(I. 2) 

It remains to relate P to the sources J and p and then (I.i) and 

(I. 2) will form a complete set of equations. 

hence 

Current density is due to the motion of the negative particles, 

8R 
J = - Ne at 

aP 
=at 

Then the first equation of (I.i) gives 
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EV'·E=-V'·P 
0 

which replaces the last equation of (!.1}. The substitution of J into 

Maxwell 1 s equations produces the terms that normally arise from the 

constitutive prope rties of the medium. The equations governing the 

electromagnetic fields now stand as 

aE aP 
V' X H = E" at +-== '\7. H = 0 

0 at 

aH 
(I. 3} 

V'XE= - P. o at € V'· E= v. p • 
0 

I. 3. The Potential Representation and the Lagrangian 

The equations will be placed into potential form so that a 

Lagrangian may be found. Using the V' • H equation of (I. 3), H 

may be written in terms of a vector A · such that 

p. H='VXA. 
o-- -

Using the V' X E equation and the potential representation for H, E 

may be determined by A and a scalar ~ such that 

a A 
E = - -=- - V'cp • - ot 

(I. 4} 

By means of the potentials A and ~. two of the equations (I. 3) are 

satisfied identically and the remaining two give the equations 
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A gauge condition for A is permitted since only y X A is deter-

mined. Here the Lorentz gauge is chosen: 

Using this condition and the identity 

V X \l X A = W · A - v 2 
A 

a final form of the working equations is produced: 

2 a A. 
J. 

- € J.!. --
0 o at2 

2 a 2.~.. 1 aPi 
Vcp-EfJ. ~ =0 

o o at 2. - € o ~ , 

The Lagrangian for this system i.s 

where 1 
EofJ.o = ---z · 

c 

€0 2 
A. tP. - -~ (<f>t 

l, l ZcL. 

p 2 

+ _1--=z ( -~' t - V(P}) 
€ w 

0 p 

(I. 5} 

(I. 6) 

Ft>r a two-dimensional problem E, P, A and R have only 

z components and are functions of x, y and t; the scalar pote ntial 

qJ is zero. The equations reduce to 
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Ett - c
2

(E + E } 
XX yy 

1 =- -P 
€ tt 

0 (I. 7} 

The scalars E and P are the magnitudes of the z c01nponents of 

E and P. The Lagrangian reduces to 

p 2 

- A P + - 1
-- (-t- - V(P)) , (I. 8) 

t 2 2 
€ w 

0 p 

where E = - At' and the scalar A is the magnitude of the z com­

ponent of A. 
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CHAPTER II 

PERIODIC PLANE WAVES 

II. 1. Line_arly Polarized Waves 

In chapter I the equations for electromagnetic waves in non-

linear media were derived. We now wish to study exact periodic 

solutions to these equations in detail. These will be referred to as 

fundamental solutions since they play an important role in methods 

to be used later in the study of more general solutions to these 

equations. We shall find p e riodic waves propagating in the x- direction. 

When we corne to use these fundamental solutions in the techniques of 

chapter III we shall note that waves propagating in any direction pro-

duce the same averaged Lagrangian, hence the approach taken here 

is sufficiently general. 

The equations for the one-dimensional problem are: 

P + V' (P) = € w 
2

E • 
tt 0 p 

This is the case of linear polarization since the path traced out by the 

head of the vector E is a straight line. We constrain E and P to 

be functions of e where 

8-- KX-wt, 

K and w being given constants. Enforcing this constraint r e sults in 

the new form of the working equations 
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2 2 2 
(w - c K )E

98 

2 w P 
99 

+ v'(P) 

2 
=- ~p 

E ee 
0 

2 = E w E 
0 p 

Equation (II.i) is integrated twice to produce 

2 2 2 w
2 

(w- - c K )E = -- P + A9 + B • 
€ 

0 

(II.i ) 

(II. 2) 

(II.3) 

For E and P to be periodic the secular term must be suppressed 

by setting A = 0. For E= 0 and P = 0 to satisfy the system, B 

must be set to zero, hence B represents the displacement due to a 

constant electric field. We shall disregard for the moment, the case 

where this constant field is present. Having set A and B equal to 

zero in equation (II.3), we use this result to el!.minate E in equation 

(II. 2). One integration then leads to 

2 2 
2 2 w w 2 

w P e + 2 ~ 2 P + 2V(P) = 
w - c K 

M. (II. 4) 

The integration constant M determines the amplitude of P{9). The 

equation is solved for p e and integrated to give the following im.plicit 

form for P(9): 

s: 
0 

w dP 

w2w 2 
"'""2 _""'Pz 2 p2 - 2V(P) 

w - c K 

= e . 

Examination of (II.4) shows that P(9) oscillates between simple 

(U. 5) 

zeros of the denominator of the integrand of (II. 5) . .LiiLiting cases 

where zeros coincide -.::orre:spond to profiles wher~ P approaches a 
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constant as 9 becomes infinite and are not oscillatory . Such "soli-

tary waves 11 will appear in a different connection later. The lower 

limit of integration, P , fixes the phase. 
0 

The period in 9 is not 

yet ~ormalized and on choosing it arbitrarily to be 21!' one has 

h w dP 

y ; · WLWP 2 2 
M- 2 2 2p -

w - c K 

= 2Tr ' (II. 6) 

2V(P) 

where the notation f denotes integration through the values of P 

over one complete cycle. Different norn1.alizations of 9 are com-

pensated by changes in the meaning of K and w. (II-6) i-s a state ment 

of the dispersion relation and relates K. w and M. When K, w and 

M are chos e n to satisfy (II. 6), then (II. 5) gives a periodic solution of 

(II.1) . and (II. 2) where K indicates the numb e r of waves contained in 

a distance 2rr in the x-direction and the frequency w indicates the 

number of waves passing a fixed point in a time 2rr. 

A typical case is the form 

w 2p2 4 
0 -~ 

2 4 
V(P) = {II. 7} 

For this case exact solutions are known in terms of Jacobian elliptic 

functions. This case also arises as the first two t e rms i~ the near 

linear approximation for V when V is symmetric. Placing (II. 7) 

into (H. 5) we examine the form of the functions to illustrate the 

periodic features of the exact solutions. 

The exact solution to {II. 1) and (II. 2) is given implicitly by 
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r>P 
\ · w dP 

Jp- (ww2 ) 
0 p ..J.. 2 :-7. 

M - - 2 2 2 ' wo p-
w - c K 

= e. (II. 8) 

The particular Jacobian elliptic function that the solution becomes 

depends on the signs of the zeros of the quadratic form in P 2 in the 

denominator of the integrand of (II. 8). We define these roots by 

where 

Since the relevant cases in later developments are for small y, 

we take D
2 > 2 jy I M in this example. The sign of 't :s deterr-'lined 

by the medium, hence a medium supports only one of the following 

waves. For y > 0 a periodic solution is 

P = R sn (1M- 9 
2 wR

2 

2 

.~) 
R 2 

1 

Of course translations of the origin also yield solutions. The second 

argument of the elliptic function is the modulus squared. For y < 0, 

one of the roots for P
2 

is negative. We set S 
2 

2 

a positive real quantity. Then a solution is 

( 
)M(R 

2 
+ S 

2
) 9 R 

2 
) 1 2 1 

P = R c n , ---:::---~ 
1 wR 1 S 2 R 2 + S 2 

1 2 

Again translations of the origin merely change the phase. 
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II. 2. The Direct Approach for Near Linear Equations 

Periodic solutions to the near linear equations may be found 

in a more direct manner than by the general procedure of section II. 1. 

In anticipation that the s elutions are nearly sinusoidal, we substitute 

sinusoids directly into the equations of motion. The near linear 

equations are found by placing potential (II. 7) i r::.to the equations (II . 1} 

and (1'1.2), and y is taken as a small parameter. They become 

2 2 2 
(w - c K )E

89 

2 
w 

=- € Pea 
0 

2 = E w E 
0 p 

The periodic solutions are represented by Fourier series 

00 

E = l {a sin n8 +c cos n8} 
n n 

n=1 
00 

p = l (bn sin n8 +d cos n8} , 
n 

n=1 

and we anticipate that successive coefficients involve increasing 

(II. 9) 

powers of '(. The constant terms have been omitted as in the fully 

nonlinear case. The effect is to suppress terms where n is even. 

Further, fixing the phase by setting c 1 = 0, d 1 = 0 suppresses all 

the cosine terms. Placing the first two remaining terms of each 

series in (II.9} and equating coefficients of sin 9 and sin 39 

results in the equations 
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2 2 
c K )a1 

1 2 =-- w b 
E" 1 

0 

2 2 2 1 2 
(w - c K )a3 = - € w b 3 , 

0 

3 . 2b + 3 b b z, 
- 4 °1 3 2 1 3 i = 

Elimination of a
1 

and a
3 

produces, to O(y), 

b3 = y b 3 
32w

2 1 

2 
E" w a 1 , 

0 p 

(II.10) is the near linear dispersion relation which must be the 

(II. 1 0) 

approximate form of (II. 6) for small y, and the io'ourier series is 

similarly expected to be the expanded form of (II. 5} for small \'• 

This expansion for the near linear approximation of the fully nonlinear 

forms will now be carried out for illustrative purposes at this stage 

of the problern. It will be rnentioned in later sections when fully 

nonlinear forms arise, that the expansion for the near linear case 

produces the same results as the direct use of leading terms of 

Fourier s erles in the relevant procedures. Each situation involves 

the expansion of elliptic functions and elliptic integrals and follows 

the san1e course that is presented in section II. 3. 
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11.3. Expansion of the Fully Nonlinear Solutions for the Near Linear 

Case 

As stated in section II. 1, an exact periodic solution to 

equations {II. 1) and (II. 2) is given by (II. 5). To reduce to the near 

linear situation the potential V is expanded in a 1vfaclaurin series 

and the first two terms are retained. The case of interest is when 

V(P) is an even function of P; hence the quadratic and quartic 

terms are kept, the quartic term being srnall. As in section II. 2, 

we use the parameter y to represent the small quantity in the 

quartic term of V and we expand with respect to '(· If the potential 

V were not symmetric the first term leading to a nonlinear restoring 

force would be cubic and the periodic solutions would still be exp::-es-

sible in terms of Jacobian elliptic functions. We now proceed to 

expand the exact solutions for small y to reproduce the solutions 

obtained by direct substitution of sinusoids into the equations. 

Repeating the implicit form of the exact solution with the near linear 

potential (II. 7}, we have 

w dP 

2 
I w 2) 2 _ ., p + ~ p 

2 2 2 0 
w - c K 

4 
+ yP 

2 

= e 

and the zeros of the denominator of the integrand were given by 

= D ± Jn 2 
- Zy M 

y 
where D= 

2 2 
w w 2 

2 p2 2 + wo 
w - c K 

We set P 
0 

= 0 to coincide with the choice of phase in the direct 

(II. 8) 
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P- R u - 2 

simplifies (II. 8} to the convenient form 

R 2 
2 2 

= e . 

---- u 
R 2 

1 2 

( 

R 2 2 ) -1/2 
1--- u 

R 2 
1 · 

Now it is apparent that both R 2 and 

(II. 11) 

are to be 

expanded for small '{. The latter expansion of a function of u within 

the integral leads to integration of a series term by term. Retaining 

terms of 0(-y). one obtains a formula for e. which when inverted 

and P resubstituted for u, becomes 

setting 

P ('1M+ 9 "M
3

/
2

) . {-e ~ } 
= ~ D 32 DS/2 s1n :fn (1 + 38:~)-

The normalization of the period to 2-i; is carried out by 

-7-=-(1 +~) = 1. 
vD 8D.:. 

(II. 12} 

(II.13) 

For comparison with the result of section II. 2 we denote the amplitude 

of the sinusoid by b and use it as a para.."Ueter in place of M; hence 
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we set 

(II. 14) 

When (II. 14) and the definition of D are used in (II.12) we have 

this is the near linear dispersion relation and is exactly the form of 

(II. 1 0). Now (II. 1 2) reads 

b 3 2 
p = b sin a + ~ sin 38 + 0()' ) 

32w 

and the coefficient of sin 39 coincides with b
3 

of the direct approach. 

Of course (II. 1 0) must also result from expansion of the 

exact dispersion relation (II.6). Using the change of variable (II.i1}, 

the loop integral becomes 

-z---
R2 2 

--- u 
R 2 

1 

= Zr. • 

Expansion of this complete elliptic integral for small '( in the san1e 

·manner as before, and the use of (II~ 14) to eliminate M, produce 

(II.10) once again as expected. 
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II. 4. Orbitally Polarized Uniform Plane Waves in Fully Nonlinear 

Media 

So far in chapter II we have dealt with the case of linear 

polarization, the z- component of the electric field being the only non-

zero cornponent. The case of circular polarization occurs when the 

head of the electric .field vector traces out a circle, and similarly, 

when an ellipse is traced out, the polarization is called elliptical. 

In a nonlinear medium the figure traced out by the electric field 

vector may not be closed; in fact, only exceptional cases are closed. 

While the magnitude of the electric field is periodic in x and t, 

the individual y and z components are not in general. We na.Ine 

this orbital polarization due to the similarity with the trajectory of a 

particle in a central force field. 

We recall the three-dimensional equations (I. 5): 

(II. 15) 

2 
a pi + 8V(P) = 
aT aPi 

We wish to find the form of a uniform plane wave propagating in the x-

direction where we are permitting the electric field to have non-zero 

y and z components. To do this we set 



-19-

where 9 = Kx- wt. It will turn out that A
2

(9) and A
3

(9) are not in 

general periodic in 9, but we expect that they oscillate. From the 

first equation of (II. 15) we see that the form of P must be 

From the Lorentz gauge condition we find that cpt must be zero, and 

choosing cp to be zero is consistent with (II. 15). We obtain from the 

first and third equations of (II. 15) 

2 2 2 
(w - c K ) A 2 , 99 = 

2 2 2 
(w - c K )A3 , 99 = 

-~P 
€" 2,9 

0 

(II. 16) 

As in section (II. 1) we integrate the first two equations of (II.16) and 

set the constants of integration equal to zero as they repre sent secular 

terms relating A and P. These integrated equations are pla.ced 

into the third a.nd fourth equations of (II.15), eliminating A 2 , 9 and 

A3 , 9 • to produce 

p 
2P + av 2 + 

w 2,99 aP -p-

p 
2P + av 3 + 

w 3,99 aP v 

2 2 w w 
p p - 0 

2 22 2-. 
w - c K 

2 2 
w w 

""""2,-'P,___,2........,2or p 3 = O • 
w - c K 

(II. 1 7) 

At this point the set of equations is in the form of a single particle 
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with displacement P, orbiting in a central force field of strength 
2 2 

av wp w 
aP + 2 2 2 P. To integrate these equations we set 

w - c K 

and now we shall have that P(9) is a periodic function of 0, while 

lj.J(9) has a term linear in 9 and a term periodic in 8. Placing 

these definitions in (II. 1 7), two independent equations become: 

2 2P w w 
2(P p. 1, 2) + av:- + __,_"'-P__,=--= = 0 w ee - 't'e aP 2 2 z 

w - c K 
(II.18) 

The second equation of (II. 18) has the integral 

2 
P y.;e = h , (II. 1 9) 

where h is a constant which is equivalent to angular momentun'"l in 

mechanics. Using (II. 19) to eliminate y;
9

, the first equation of (II. 18) 

takes the form 

2 2 2 2p 
2 w h av w w 

w Pee - -=-r-P + aP + 2P 2 2 = 0 · 
w - c K 

One integration gives 

= M. (II. 20) 
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As in the case of linear polarization, the constant of integration, M, 

determines the amplitude of P(9). Now (II. 20) is solved for P e 

and integrated a final time to give 

w 
p 

2 2 2 
w - c K 

= 8 • 

This is an implicit form for P(9). (II. 19) may be written 

h 
dl(J = =t. de , 

p 

(II. 21) 

and (II. 20) gives d9 in terms of dP. Placing (II. 20) into the equation 

above, and integrating, results in 

wh dP 
(II. 22) 

Finally, the period in e is normalized to 2lf; thus 

~ wdP = 2lf 

I 2 2 w 2wlp2 
M - w ~ - 2V(P) - _.,..,2P'--:2 2 . 

P w -c K 

(II. 23) 

is the dispersion relation. 

(II. 21) and (II. 22) give the magnitude and angle of the polariza-

tion vector. It is clear from (II.19) that l(Je is of one sign, hence the 

rotation always continues in one direction. This indicates that l(J has 

a secular and a periodic term. The magnitude P oscillates between 
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the zeros of the denQminator of (II. 21). Due to the singularity at 

P = 0 in that expression, P oscillates between positive values and 

does not go to zero when h is not zero. The speed of precession 

of the orbit may be found from (II. 22). When P oscillates from a 

ma..ximum to a minimum and back to a maximum the angle through 

which lj; moves is 

wh dP 

It may be shown that ~0 is 2lT if V(P) is quadratic in P or pro­

portional to 1 /P . and not otherwise. [See Landau and Lifshitz [ 2] ] • 

The angle of precess ion per period in P is lj; - 2tr. 
0 

m 
If ljJ = -2lT, 

n 

where m and n are integers, then the orbit closes after n rotations 

of P. 

In the special case of circular polarization P is constant and 

ljJ is linear in 8. The integrated forms (II. 21} and (II. 21) become 

degenerate since P does not vary. Rather than using (II. 23} to 

define K and w we shall set lj; = 8 and then K and w will measure 

the number of oscillations of each component of P in an interval of 

2v in x or t. The solutions are no'v 

P 2 = P cos e , p3 = p sine • 

The first equation of (II. 18) gives the dispersion relation 

-- 0 • (II. 24) 
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This form exhibits the nonlinear behavior that we have seen before. 

·when V is quadratic the phase velocity becomes independent of the 

amplitude P. 

We now examine the special case of potential (II.?) which leads 

to a cubic central force: 

W 2p2 4 
'{ p 

V(P) = -0~-2 - -"4 

Theimplicitform, (II.21), for P(9) becomes 

\p w dP 

~p} w2h2 
w 2p2 

4 w Zw2p2 
+ yP - p o M - -Pz - 0 2 2 2 2 

w - c K 

= e . 

Multiplying the numerator and denorninator by P we obtain 

p2 1 
d(P 2 ) sp 2 

-zw 

F2 = = e. 
w2h2- w 2p4 

6 w Zw2p4 
0 + yP - :e 

0 2 2 2 2 
w - c K 

The denominator of the integrand is the square root of a cubic 

in P 2 , hence the inverse form P
2

(e) may be written in terms of 

Jacobian elliptic functions. For exarnple if we choose P 
2 = b and 

0 

write the contents of the square root in the factored form 

'{ 2 2 2 2 (a - P )(P - b)(P + c) , 

then we make the substitution 

2 2 
P = (b + c)nd u - c , 
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where the modulus of the elliptic function is . 2 
lc 

integral collapses to give 

1 -zw 
9--

fl 
Then the elimination of u gives 

2 
---==-(u - b) • 
[;.- b 

a- b -a-:rc. 

2 ( f[ /a-be) 
p (e) = - c + (b + c) nd 

2 
b + 2 

w • 

The 

The function nd oscillates between a minimurn of one and a maximum 

greater than one. From the factored form, P oscillates between a 

maximum of fa and a minimum of ../b . l(i is given by the integral of 

(II. 19) and becomes a very complicated function. 

In the case of circular polarization we use the special form 

of V(P) in (II. 24) to obtain the dispersion relation 

2 2 
2 2 w w 

w - w + --=~P--=-__,.-
o 2 2 2 

w - c K 
0 . (II. 25) 

II. 5. Uniform Plane Waves with Circular Polarization in Near Linear 

Media 

Uniform plane waves in near linear media are found by the 

direct approach by inserting sinusoids, as the first term of a Fourier 

series, into the three-dim.ensional equations. We found in section II. 4 

that the exact solutions for the components of P are sinusoids, and 

hence we have the correct forms already. The near linear solutions 

are 
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A 2 == a sin 9 , P
2 

= b cos a , 

A 3 == - a cos a , 

The dispersion relation is just {II. 25) expanded for small y. This 

result is 

2 2 2 ( c K = w 1 

2 2 2 2 2 
w w ) ~w w b + p + p --2--2 _..._2~--:::-2 • 

w -w w -w 
{II. 26) 

0 0 

By comparison with (II. 1 0), the near linear dispersion relation for 

linear polarization, we see that the dispersion relation for circular 

polarization differs only by a nwnerical factor in the amplitude 

dependent term. 
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CHAPTER III 

THE LAGRANGIAN APPROACH AND MODULATIONS 

The goal of this chapter is to develop the equations governing 

the amplitude, frequency and wave number for nearly periodic wave 

trains. The idea to be used is due to Whitham [ 3] , [ 4] , [ 5] and 

consists of insertion of the periodic functions found in the last section, 

into the Lagrangian and the averaging of this quantity over one period, 

the parameters being regarded as constants. The averaged Lagrangian 

is then used to generate differential equations in the parameters which 

are then regarded as slowly varying. The last paper [ 5] puts this 

idea lnto the framework of two-timing and the averaging becomes the 

integration of the Lagrangian over one of the domains, the fast time. 

The first three sections deal with the near linear problem 

where it is known beforehand that the fundamental solutions are s inu­

soidal. These are substituted directly into the Lagrangian and the 

averaging over one period is performe d with known functions. Vari­

ation with respect to the amplitudes then gives equations relating them 

to the other parameters. Variation of the frequency and wave number 

produce a further equation, the variation being constrained by the 

requirement that these quantities be derived from a phase. 

The second part of the chapter deals with a fully nonlinear 

approach in which the integrals of the Euler equations are used in the 

averaged Lagrangian to produce an integrable form. The equations 

resulting from the variation of the averaged Lagrangian relate the 
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slowly varying frequency, wave number and the integration constants 

that measure amplitude. The fast oscillations are now the Jacobian 

elliptic functions found in chapter II. For the case of linearly 

polarized waves, we follow the work of Knight and Peterson [ 6] . 

We then deal with orbital polarization. 

In chapter II we disregarded the possibility of a constant com-

ponent of electric field in addition to the oscillations. Now that the 

amplitude, frequency and wave number are allowed to vary slowly, 

it is not clear that no constant field is gener2.ted even if it is absent 

at some initial time. This is the case if the potential V(P) is an 

even function of P and we leave to the appendix the demonstration 

that this is so. Knight and Peterson correctly disregard the possi-

bility of a constant field. The taking into account of constant fields 

requires the introduction of pseudo-frequencies which are also 

explained by Whitham [ 3] , [ 4] , [ 5] • 

III.i. The Near Linear Formulation for Linearly Polarized Waves 

We use potential (II. 7) with y a. small parameter to form the 

ne2.r linear problem. Inserting this into Lagrangian (I. 8), we obtain 

the near linear Lagrangian for linearly polarized waves: 

p2 
L=~o{A2-c2(A2+A2)}-AP+ 1 {-t __ 

L. t X y t 2 2 
E w 

0 p 

2 2 
wo p yP4} 

2 
+ ~ • (III. 1) 

Following the theory, we substitute the periodic solutions into the 

Lagrangian. We kno w from chapter II that the periodic solutions are 

nearly sinusoid, hence we set 
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A= a cos 9 + . . . , 
(III. 2} 

p = b sin e + •••• 

Temporarily we set 9 = Kx - wt where K and w are constants. 

Defining the averaged Lagrangian by 

1 s 2'Jf 
t = 2 1r O L d9 , 

we insert (III. 2} into {III. 1) and perform the integration. The result ts 

.S: = :o (w2- c2K2)a2 - o~b + 4€ ~ 2 [<J- wo 2)b2 + 3~b4 J • 
0 p 

(III. 3} 

The averaged Lagrangian was derived by inserting into the two-

dimensional Lagrangia.l. the form of a periodic plane wave propagating 

in the x-direction and averaging over one period. Had we set 

9 = Ki x + K2y - wt and defined K
2 = Ki 

2 + K2 
2

, then the same result 

{III. 3) would have been reached. The averaged Lagrangian is inde-

pendent of direction of propagation and direction of polarization of the 

fundamental solution and hence the correct general form has been 

found. 

S, is now a function of the constants w, K, a and b. At this 

point we relax our view of these quantities and allow them to be slowly 

varying. The slowly varying definitions of !i_ and w are generaliza-

tions of their definitions as constants. We shall take 

ae 
=- t By 

w:.:: 



-29-

The new form agrees with the original one when K
1

, Kz, K
3

, w 

are constants. Consistency relations resuJting from these definitions 

are: 

8K 
+ ow = 0 '\1 X K = 0 at ax • (III. 4) 

The expression (III. 3) for S. is regarded as a Lagrangian for the 

functions a, b, w, K1 , K2 , K
3 

and the consistency relations become 

side conditions that must be enforced when variations of S.. a:r-e per-

formed. The Euler equations for S.., subject to {III.4) are 

s., =0, a 

One of the am.plitude s a and b may be eliminated from the 

{III. 5) 

Lagrangian by means of the Euler equations. If we choose to elhni-

nate a then we would obtain a new Lagrangian, .t(w,K,b). The Euler 

equations 

and 

are, respectively , the disp e rsion relation {II. 1 0) and the wave action. 

It is more convenient 1 however 1 to retain a rather than b. The 

second equation of {III. 5) is used to reduce S. to 
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and this form is varied to produce the working equations 

~ = 0 ' a 
a _ ,s, 
at w 

~ s. = o. ax K 

These are the dispersion relation and wave action and take the form 

{III. 6) 

{( 

w 2w 2 ) } a op . 2 a 2 2 
at 1 + 2 2 2 wa + ax ( c K 1 a ) 

(Lv - w ) 
0 

It should be mentioned that this procedure may be carried through to 

any degree of accuracy. The form (III. 2) could have been chosen 

to be an entire Fourier series with undetermined coefficients. The 

independent variation of each of these coefficients then produces a 

sufficient number of equations to solve for each in terms of the 

coefficient of the lowest mode. For example. the form of the next 

term as found in (II.1 0) is easily produced. The Lagrangian which 

retains one more t e rm in the Fourier series is 

The equations obtained by varying a
3 

and b 3 are 
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9 2 2 2 3w 2 ~ 
0 

(w - c K )a3 - T b 3 = 0 , 

3w 1 ~ 9 2 
'·) 

2
b b 3 3b 2 

'"'o2 3+t (-++3b12b3 +---f-)f = 0. - T a3 + 2 2 w b3 
~ w 

0 p 

Elimination of a 3 and retention of only significant term.s produces 

b
3 

= yb1 
3

/32 w
2 

as required to agree with (II.10). 

III. 2. The Near Linear Formulatio:-1. fo:- Circular Polarization 

In section III. 1 the averaged Lagrangian for linearly polarized 

waves was found by substituting a periodic plane wave propagating in 

the x-direction into the Lagrangian and averaging over or.e period. It 

was noted that the resulting form was independent of the direction. 

We now produce the averaged Lagrangian for circular polarization by 

substituting a circularly polarized plane wave propagating in the x-

direction, into the three -dim.ensional Lagrangian (t. 6), with 

V(P) = (u.> 2
P 2 

/2) - (yP
4 

/4). The Lagrangian is 
0 

The plane wave solutions from section (II. 5) are: 

A
2 

= a sin 8, P 
2 

= b cos e, 

A
3 

= - a cos 8 P 3 = b sin 8 , 

<!> - 0 , 
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where 8 = Kx- wt. Temporarily regarding a, b, K and w as 

constants, we perform the integration 

to produce 

i s2lT 
~ =- L de 2lT 0 

Elimination of a from the Lagrangian by means of an Euler equation, 

and then variation of the new Lagrangian with respect to b, would 

reproduce dispersion relation (II. 26). We wish, however, to retain 

a rather than b, as in the case of linear polarization. vVe use the 

Euler equation .£b = 0 to eliminate b, giving the reduced form of .£ : 

2 2 

(
E' 2 2 2 w w ) 2 

S.= 2° ( w - c K )+ -.:;.,~-___,2 a 
w - w 

0 

3 6 4 4 
yE w w a + 0 p 

B(w 2 - w2)4 
0 

The wave action is the same as in (III. 6). The dispersion relation 

differs by a numerical factor in the nonlinear term and we absorb this 

into a new small parameter y 1. We rewrite (III. 6) as 

2 

w2) 
2 6 3 2 

2 2 2 ( 
w y 1 r. w w a 

CK =w i+w 
p + 0 p 

2 ( 2 2)4 w - w 
0 0 

(III. 7) 

where 
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3 
'( 1 = 

4 
'( for linearly polarized waves, 

= '( for circularly polarized waves , 

III. 3. The One-Dimensional Time-Dependent Problem 

We now neglect the y and z dependence in (III. 7) to produce 

the problem of a uniform plane wave that varies only in its direction 

of propagation. The more interesting steady two- and three-dimen-

sional problems are left to chapter IV as the symmetries in those 

equations produce tractable problems that lead to some closed form 

solutions. 

Whitham [ 4] worked with an averaged Lagrangian similar to 

.£(w,K,a) of eections III..i and III. 2. He dealt with the dispersion 

relation in the form 

2 
w = w

0 
(K) + ")1 (K)a 

but due to the simplicity of K as a function of w, we shall reverse 

the roles of K and w and of x and t. Hence we write the first 

equation of (III. 7), the dispersion relation, as 

(0) (1) 2 ' 2 
K = K (w) + '( 

1 
K (w)a -t-O('{ 1 ) 

and we transform the second, the wave equation, into the form 

2 aa a ( -1 2) -;:;----- + ,_-t C (w)a = 0, 
OX 0 0 

(III. 8) 

where 
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{0} 
C -1(w} = 8K (w) • 

0 aw 

The consistency relation in one dim.ension is written 

(III. 9) 

Now (III. 8) and (III. 9) are the one-dimensional equations and we can 

see how the nonlinear features enter since the linear problem is 

recovered by setting 'Yi = 0. Then we read that C is the charac­
o 

teristic velocity for both equations and that the determination of the 

characteristic direction is independent of amplitude. Returning to 

the nonlinear form of (III. 8} and (III. 9), the system can be placed 

into the following characteristic form: 

2 aa + 
ax 

The inverse of the characteristic velocities are given by 

C -1 _ c -1 . J<c -1>, (1) . - . ± a . )'1K • 
0 0 

This is a typical feature of nonlinear wave systems, the splitting of 

the group velocity. Since the system is hyperbolic when characteris­

tics are real, then it is hyperbolic when (C 
0

-
1) ''Y 

1 
}(( 1) > 0 and elliptic 

-1 1 (i) 
when (C 

0 
) 'Y 

1 
K < 0. When exarnining this condition one must take 

care that real values of K and w are taken. The dispersion relation 

is sketched in the diagram and it can be seen that the interval 
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w
0 

2 < w
2 

< w
0 

2 + wp 
2 

is a forbidden region for the frequency w. The 

turning point for hyperbolicity is a complicated expression that falls 

I / 
I / 
.~-" 

"I 
/ I 

/ l 
"/ I 

/ I 
.1/ I 

,. I 

" I / I 
'// I 

I 

/ 
/ 

Y. / 
, Cl / .... ,/ 

"~ / 
,/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 

" / 

within this region, 

hence the system is 

hyperbolic for 

'~1 > 0 J w < wo 

l' 1 <0,w> 2+ 2 w w 
0 p 

and elliptic for 

2+ 2 w w 
0 p 

w • 
0 

A feature of the 

elliptic case is that 

small sinusoidal 

modulations grow 

exponentially and 

hence are unstable. 

III. 4. The Full~nlinear Formulation for Linear Polarization 

We proceed to find the averaged Lagrangian for the fully non-

linear problem for linearly polarized waves. The integrals of the 

Euler equations are used to manipulate the Lagrangian into an inte-

grable form and this is equivalent to placing the periodic solutions 

of chapter II directly into the Lagrangian. The fully nonlinear two-

dimensional Lagrangian is given in chapter I as 
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and we shall take V(P) as an even function of P. Considering A 

and P as periodic functions of a = KX - wt where K, w are tempo-

rarily regarded as constants, we exan'line the Euler equations for the 

form of A and P to be placed into L. In the same manner as in 

Chapter II we produce the integrated forms 

2 2 2 w 
(w - c K )A = - - P a € 

0 

2 2 
w w 

w 2 P a 2 + 2 v < P) + ---::2_,P,__-:::2,..--:;2:­
w - c K 

(III. 11) 

(III. 12) 

The constant of integration in (III. 11) has been suppressed to avoid 

the constant electric field. The definition of the averaged Lagrangian 

is 

1 s2lr 
S, =- L d8 

2'71" 0 

and hence its form will .be 

de . 

Aa is eliminated by means of (III. 11) which leaves the form 

1-= 1 s
2

lr 1 { 2 2 
2r. o 2€ w 2 w P a 

0 p 

2 2P2 } w w 
~ 2 2 - 2V(P) de 

w - c K 

and (III. 12) is used in the following successive forms, first to 

eliminate V(P) and then to remove P a: 
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1 "
2 1T 1 { 2 2 ) t \ 2 Zw P 9 - MJ> d8 = 21TJo 2£ w 

0 p 

--.,....:..---,2::---;:.2 P 
2 

- 2 V ( P} d P - 21r M l . (III. 1 3) 
- c K \ 

The pararneters w, K and M are now rega"!."ded as slowly 

varying quantities and the averaged Lagrangian is varied with respect 

to them subject to the constraint that w and K are derived from a 

phase 9. The Euler equations for this averaged Lagrangian are: 

(III. 14) 

~! +~.£ =0 
Clt w 3x K • 

III. 5. The Two-Timing Approach 

We mention at this point how the two-timing method fits into 

this framework since higher order terms than those included here will 

be retained in chapter V. We consider the problem as having two 

time and space scales related by a small parameter € such that 

X= EX, y = E"y, z = cz' T = Et. 

The slowly varying functions K, w and the amplitude of the waves 

depend on the 11 slow variables 11 X and T and the oscillations will be 

periodic functions of the n £as t H variable 

9 = ..!_@(X, T) 
€ -

where 



-38-

a@ 
K=-- ax and w= 

The original variational principle 

00 

5 s s L dx dt = 0 

-00 

a® 
- aT · 

(III. 15) 

is now modified by the standard two-timing procedure of neglecting 

the relation between the fast and slow scales and regarding them as 

independent. The intuitive extension of {III.! 5) is 

00 211' 

5 s s iTT SO L de dX dT = 0 

-00 

and WhithaJTI [ 5] has shown this to be equivalent to the straightfor-

ward application of two-timing. The periodic functions being known, 

the e integral 

1 s21!' s. = 2 11' 
0 

L de 

can be performed leaving S, a function of the slowly varying quantities. 

The new variational principle is then 

00 

5 s s ! dX dT = 0 • 

-oo 

III. 6. The Equations of the System and the One-Dimensional Time­

Depende nt Problem 

In order to display the form of the Euler equations we use the 

notation of Knight and Peterson and define 
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2 
--=<'~-2:<""'"""'::=:.2 P - 2V(P) dP • 

- c /( 

The averaged Lagrangian (III. 13) becomes 

t, = wJ(M, w, K) 
2 

2€ w 
0 p 

M 
2 • 

2€ w 
0 p 

The Euler equations (III.14) become 

and 

- ~t (J + wJ ) + :- (wJ ) + :- (wJ ) + :- (wJ } = 0. 
o.: w ox K 1 oy K

2 
oZ K

3 

Accon1.panied by the consistency relations 

\lXK=O 

(III. 16} 

(III. 1 7} 

(III. 18) 

they form a complete set. The dispersion relation {III. 16) is used to 

eliminate one variable from the differential equations (III. 1 7) and 

(III.18}. Since J is a function of K/w it is convenient to introduc e 

the index of refraction 

CK 
n =-. 

w 

Now w is eliminat ed by (III. 16) and the w/K dependence becomes 

dependence on n. In these variables the set of differential equations 

is 



-40-

a a ( cni ) a ( cnz ) 
"'JI;7" (nJ - J) + "1> . - J + - - J 
01; n ux n n ay n n 

a(1) a(.::) 
()..?5_ J M + ot cJ M = O 

{III. 19) 

We now examine the one-dimensional time-dependent problern 

which is produced by neglecting the y and z dependence in equations 

(III. 19). The analysis of Knight and Peterson proceeds by carrying 

through the differentiation of equations (III. 19) to produce 

The characteristic form is 

where 

8M+ X. 8M ± ~can+ X. on)= O 
at ± OX ./ J~ at ± ax 

X. = ± 
c 

This differential equation states that there are two types of character-

istic curves given by 

dx 
dt 

(III. 20) 

and along the corresponding curves, the Riemann invariants R±(M,n), 
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given by 

dR = dM ± ~nn dn 
± JM :~. M 

(III. 21) 

are constant. When the curves (III. 20) are real the system is hyper-

bolic and when they are complex it is elliptic. 

When JMMJ < 0 the system is elliptic and constant solu­
nn 

tions are unstable in the sense that small sinusoidal oscillations grow 

exponentially. When JMMJnn > 0 the system is hyperbolic and there 

are two characteristic velocities given by (III. 20). In the limit of 

small amplitude both J and JMM go to zero leaving only one nn :1. 

value of A., the group velocity of the linear system; hence the non-

linear feature of the splitting o:f the group velocity is displayed. 

Simple waves occur when a wave packet has an initial profile 

that satisfies one of the conditions 

~± f/nn = 0. on MM 

Then one of the Riemann inv ariants, say RI, will be constant initially, 

and characteristics o f type I, will carry the constant value forward 

in time, so that RI is constant in all space and time. Along 

characteristics of type II, RII is constant. Both RI and RII 

being constant r e quir e s M and n to be constant, and hence the 

characteristics of slope "-II are straight. Since the value of RII 

varies with the choice of characteri s tic, different characteristics of 

type II have different constant slopes Arr 
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We consider the case where >..
1 

is the slow velocity and A.II 

the fast one. For a well behaved system, simple waves of this type 

steepen toward the front of the pulse since large amplitudes are far 

from linear and hence travel much faster than the linear wave speed; 

smaller amplitudes have speeds closer to the linear wave speed. One 

can imagine more complicated systems in which A.II is not monotonic 

with amplitude. There would be regions of amplitude values where 

speed is monotoni.c with amplitude and the tendency to steepen switches 

from one end of the pulse to the other when the amplitude enters a new 

region. When ~ is the fast velocity and ~I the slow one, steepening 

occurs at the trailing edge in simple systems. When the character is­

tics of type II eros s, the slopes of the pulse become vertical and 

multiple valued solutions arise. The solutions are continued by fitting 

dis continuities, but when this takes place the slowly varying as sum.p­

tions break down and must be replaced by other physical considerations. 

Across the shock energy and momentum must be conserved. 

III. 7. The Fully Nonlinear Formulation for Orbitally Polarized Waves 

The procedure in this section combines the Lagrangian tech­

niques of section III. 4 for the linearly polarized but fully nonlinear 

waves, and the integration techniques of section II. 4 where orbitally 

polarized plane waves were found. The three-dimensional Lagrangian 

(I. 6) is 
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1 
+--=2 

~ w 
0 p 

P. 2 
l,t 
2 - V(P) ) . 

The uniform plane wave propagating in the x-direction takes the form 

,4..- 0 't'- , 

where 8 = Kx- wt. Placing the plane wave into the Lagrangian, we 

obtain 

1 ( w
2 

2 2 ) 
+----=-2 . T (P2,8 + P3,8 ) - V(P) • 

~ w 
0 p 

The Euler equations are the same as (II.15). The first two equations, 

those produced by variation of A
2 

and 

2 2 2 
{w - c K }A2 , 68 = ~p 

~ 2,8 
0 

2 2 2 
(w - c K )A3 , 88 

~p 
~ 3,8 

0 

As in chapter II we integrate each equation once with respect to 8 

and suppress the constant of integration since we des ire A 2 , A
3

, P 2 

and P 
3 

to have bounded oscillations. (The bounds will be slowly 

varying when we are finished, of course.) A 2 , A 3 , P 2 and P 3 will 

not be periodic in general. The integrated forrns 
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{w 
2 2 2 ~p - c K )A2 ,a - -

€ 2 
0 

(w 2 2 2 ~p - c K )A3 ,a - -
€ 3 

0 

are placed into L to eliminate A 2 , a and A
3

, a· The new form is 

1 ( w
2 

2 2 ) L=---...,.2 y(P2,a +P3,a)-V(P)-
€ w 

0 p 

The variables P 2 and P
3 

are expressed in polar coordinates: 

P 3 = P sin tY , 

and this form is placed into L to give 

Variation with respect to P and tY give the Euler equations (II. 1 7). 

We use the two-timing formalism to set up the form of the slowly 

varying quantities. We found in chapter II that the uniform plane 

wave solutions were of the form 

P = P(a), tY = va + 'lt(8)' a = Kx - wt • 

P and \}i are periodic functions of 9 with period 2rr and v, K and 

w are constants. We wish to consider solutions that are slowly 

varying in the sense that, if 
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T = Et, X =Ex 

are slow scales and E is a small parameter determined by the rate 

of change of boundary data in tirne and space, then we have solutions 

of the form 

P = P(8,X,T) 

4J = E-i!;(X,T) + 'li(S,X,T). 

p and ~ are periodic in the fast tim.e e, and 

v (X,T) = !;®' K(X,T)-@ - X, (III. 22) 

where the slowly varyi.ng function @ is given by 

®(X,T) = €8 , 

but this last relationship is neglected in the two -timing procedure' e 

and @ are considered as independent quantities. The "two-timed n 

Lagrangian becomes 

L= 1 {w2 
p 2 

2 2 e 
€ w 

0 p 

The Euler equations, 

are integrated to give 
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t./P 
2 

2 2 
-...---9- + w h + V{P) 

2 -zpr (III. 23) 

2 
P ( v + '!!a) = h , (III. 24) 

where the "constants 11 of integration are functions of X, T. The 

averaged Lagrangian is given by 

_1_ s 2Tr 1 { w2 p 2 + w2 ( v + '!! ) 2p2- V(P)-
21r 

0 
2 2 a 2 8 

€ w 
0 p 

2 2p2 } w w 
p 

2 2 2 d 8 • 
2(w - c K ) 

First (III. 24) is used to eliminate 'lr 
8 

from S... That form is 

w w 2 2p2 } 
- V(P} - P2 2 2 . d8 • 

2(w - c K ) 

Then (III. 23) is used to produce the following forrn: 

We use (III. 23) to convert one factor of P 
8 

in the first term into 

an expres sian in P; the other converts P 
8 

de into dP. In the 

7 
second term, (III. 24) is used to eliminate P'-' and the constant third 

term is integrated directly. S.. becomes 

!= 1 ~ 1 { c.}h
2 

- M - -- - 2 V(P) -
21T 2 p2 

€ w 
0 p 

d9 -
M 

2 • 
2 E ul 

0 p 
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Since 'lF is periodic in 9 with period 2lT, the integral over '11 e 

vanishes. The final form of S- is 

{ 

2h2 w 
2

w
2

P
2 

} 1/2 r, = _1_ C: _w_= M - _w __ - 2V'P) - p dP 
2r. y 2 p2 \ 2 2 2 

€ w w c K 
0 p 

+ 1 ( 2h 2 w 
€ w 

M 
- -z) . 

0 p 

(III. 25) 

To produce the Euler equations we must vary S., with respect to the 

slowly varying functions M, h, ~· w, v, subject to the consistency 

relations which result from conditions (III. 22). These relations are 

a a 
]X (vw) + at (v K) = 0 • 

It becomes convenient to subtract the first from the second and use 

that in place of the second. The ones we shall use are, therefore, 

(III. 26) 

w~v + K ~ = 0. 
ox - ot 

We enforce (III. 26) as side conditions on the variation of S- by means 

of Lagrange multipliers. We write 

Now .\: * must be varied freely with respect to M, h, K, w, v, A. and 
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1:.· The resulting equations are 

i- = 0 M 
(i) ;_v - w V • X. - K • X. = 0 (v) 

- - -t 

.i:h = 0 {ii} W V + KV = 0 (Vi) 
X -t 

(iii) w + K = 0 • (vii) 
X -t 

X. and J.1. must be eliminated from (iii), (iv) and (v) to produce the 

equations of motion. First, elimination of f.l from (iii) and (iv) 

produces 

a 
- -8 S. + V · : - >... • v + V • X.v = o. t W X -t X -t 

(viii) 

Now condition (vi) indicates that the terms in X.t and 'V • X. in 

equation (v) are proportional to those in equation (viii). Elimination 

of the common quantities from (v} and (viii) using (vi) gives 

a - --: + v . at w 

v 
;_ +-...!l. :::0. 

K w v 

The equations of the systern are the Euler equations 

: - 0 M- l. - 0 h-

a + a (I vt 
-~l. ""l'i':":" ... +-l. =0, 

ot w ox K w v 

together with the consistency conditions 

(III. 2 7) 
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Chapter IV 

Beams 

IV.l The Nonlinear Equations in Two and Three Din1ensions 

The time-independent equations can be treated in s orne 

detail and one setting is the important problem of nonlinear effects 

on beams. When the phase velocity decreases as amplitude 

increases, a localized beam travels more slowly at its center. 

Accordingly, a surface of constant phase progresses slowly at the 

center of the beam and the faster outskirts are caused more and 

more to converge toward the axis of the beam. ·when a focusing 

point occurs, the second derivatives of amplitude which were 

neglected as small in the last chapter become · important terms and 

must be included to continue the solution. This will be done in 

Chapter V. 

IV.l. i The Two-Dimensional Equations 

The fully nonlinear equations of Chapter III are examined in 

two dimensions with their time derivatives · set equal to zero. The 

form in which they now stand 1s: 

La = 0 , (IV. 1) 

......§_ L L 
( KKK 1) + _§_(_K Kz) = 0 ' (IV. 2) OX ay K 
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aK2 aK 1 

ax - oy = 0 ' (IV. 3) 

w = constant. 

Since L depends only upon a and K, a convenient proc e dure . 

is to set p = l LK l / K and to use p as a variable instead of a. The 

dispersion relation (IV.l) is solved for p as a function of K. In the 

special case of near linear the averaged Lagrangian is 

Variation (IV.l) gives 

The near linear set of equations takes the form 

a a 
a~ (pK1) + ay (pKz) = 0 

(IV. 4) 
oK2 aK 1 

ax· - ay = 0 ' 

(IV. 5) 

where K 

wz 
wZ P 

is the constant (l + ) and T is the small para.meter cz Woz -wz 
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T has the same sign as y, the parameter 

fixed by the medium. Equations (IV. 4) hold for the fully nonlinear 

system. The near linear form of the dispersion relation (IV. 5) 

fixes attention on the near linear problem. 

We place the system (IV. 4) into characteristic form to find 

its type. That form is 

where 

c = 
KlKz - ----

pK -- + r-pz -pp K K K 

The system is hyperbolic when there exist real curves 

dy 

dx = c 

along which equations (IV. 6) become ordinary differential equations. 

·That condition is that C be real, hence the system is hyperbolic 

when 

K ap 
+ 1 < 0 

P aK 



and elliptic when 
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!i 8p 
+ 1 > 0 . p 8K 

The condition for the near linear system is 

+ 1 < 0 

for the set to be hyperbolic. Sence T is small and p is positive, 

the sign of T always determines the type; a given medium supports 

a system of equations of only · one type. When T > 0 the system is 

elliptic and when T < 0 the system is hyperbolic. 

We note that the phase velocity is found by moving with the 

waves so that 8 is held constant. The magnitude of this velocity 

is given by ~ and it is the speed that a wave front moves perpen­
K 

dicular to itself. The direction of the velocity is the direction if 

K We see from (IV. 5) that for w constant, when T > 0 , 

and when r < 0 , 

~ decreases with increasing p 
K 

i increases with increasing p . 

It is apparent from the heuristic description at the beginning of 

this section that the case in which beams focus is T > 0 and the 
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system is elliptic; the defocusing case is T < 0 and the system is 

hyperbolic. 

IV.l. ii The Three-Dimensional Equations 

We now wish to consider the radially symmetric problem. 

The variational principle is 

o J J L r dr d 'z; = 0 . 

The Euler equations for the time-independent problen~ are 

L = 0 
a 

_Q_ Kz a Kl 
(r -L ) + -(r- L ) = 0 

or K K Clx K K ' 

oK 2 oK 1 

OX or = 0 
' 

w = constant 

Kz is now the component of Ji in the radial direction. The only 

difference between this case and the two- dimensional case is th e 

appearance of the factor r in the s e.cond equation. Its effect is to 

add a forcing function to the right side of the characteristic 

equations, which, using p as before, now read: 
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where 

c = 

K, Kz 

pK~- + ...f -pz -ppKK 

K lz 

PKK+ p 

The conditions on the type are the same. We shall see that in the 

focusing case, focusing is faster than the two-dimensional problem, 

but in the defocusing case, divergence is slower. 

IV.l. iii Analogy with Fluid Flow 

The equations of two-din>ensional, irrotational, isentropic, 

steady fluid flow are 

0 ' 

a a ax (pu) + ay (pv) = 0 ' 

where u and v are the x and y c01nponents of particle velocity, p 

is the density and q 2 = u 2 + v 2 • The similarity b e tween the first 

two equations and (IV. 4) is immediate. The third equation gives 
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the form of p (q). Thus a number of methods developed in fluid 

mechanics can be adapted here. Each of the following two sections 

outlines a method taken from fluid mechanics and pursues the 

solutions that result. 

IV. 2 Solution of the Beam Equations 

We now outline a method which produces solutions in which 

rays are allowed to bend significantly from being parallel to the 

axis of the beam. In contrast, in Section IV. 3 we shall study a 

method which treats 11 thin beams, 11 where the angle of the rays 

never deviates far from parallel to the axis. 

IV. 2. i Method of Shock Dynamics 

An approach to problems dealing with the propagation of 

shock waves in channels has been developed by Whitham [8] for 

use in the equations of gas dynamics. We shall use it to obtain 

solutions to the two-dimensional problem. 

The es s entia! idea of the method is to transform the coordi­

nates x and y to a coordinate systern in which the first equation of 

(IV. 4) is algebraic. Lines whose ·direction is always in the 

direction of K are called rays. The diagram shows a two-dimen-

sional ray tube bounded by two neighboring rays and having eros s­

sections at the ends of A 1 and A 2 • Applying the divergence 

theorem over the area of the ray tube and using the first of (IV. 4), 



-56-

we find 

0 = J J \l · (Kp) dxdy = g5 Kp · .!! d£ . 

Since K • .!! = 0 on the sides of the ray tube, only the end contri­

butions to the line integral remain and we have 

(KpA)z- (KpAh = 0 . 

Thus KpA is constant along a ray tube. We choose the rays as a 

coordinate systein since the first equation of (IV. 4) becomes 

algebraic. The quantity KpA depends only upon the coordinate 
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orthogonal to the rays. Since the ray pattern is stationary, the 

successive positions of a peak, say, of the oscillations will be 

the surfaces of constant phase perpendicular to the rays. Using 

a as a length scale along a ray we must make da proportional to 

dt so that the new value of a still corresponds to a constant phase 

surface. Choosing 

da = wdt 

we find that the physical distance measured by da is the phase 

velocity multiplied by dt. 

ds - ~ dt 
K 

da = K 

The other coordinate is {3, measured along the surface of constant 

phase. The width of the ray tube is Ad/3, A being the area density 

of the two-dimensional ray tube. The angle 8 is the angle that the 

rays make with the x-axis. The local change of variables is a 

rotation given by 

dx = case da 
K 

- Asin8df3 

dy = sin8 
K 

da + Acos8df3 

(IV. 7) 



-58-

X 

On introducing a variable A, the first equation of (IV. 4) gave 

pKA = f({3) (IV. 8) 

and this is the condition that A conform to the width of a ray tube. 

We obtain another equation by using (IV. 8) to elimi nate pK cos8 and 

pK sin8 from the first equation of (IV. 4) and converting to a, f3 

coordinate s by 1neans of (IV. 7). This results i~ 
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ae aA 
of3 - K aa = 0 · (IV. 9) 

Transform.ation of the second equation of (IV. 4) to a, {3 coordinates 

by (IV. 7) gives 

0 . (IV. 10) 

Equations (IV. 9) and (IV.lO) are geometrical statements about the 

coordinates . Accompanied by (IV. 8) and the equation giving the 

form of p(K) , (IV. 5), they form a complete set of equations. The 

two algebraic equations will be used to eliminate two dependent 

variables leaving two first order equations in two unknowns. Ha vi.ng 

solved this set, the original coordinates are recovered by inte-

gration along rays and surfaces of constant phase: 

a 
cos9{a 1 

1 ~} 
{3 

x(a,{3) = ~ K(a 1 ,{3) da 1 - J A(O, {3 1
) sin8(0, {3 1 )d{3 1 

0 

(IV. ll} 
a 

sin9{a1
, ~} d 1 

{3 
y(, {3) = ~ K(a 1 , {3) a + J A(0,{31 )cos8(0,{31 )d{3 1

• 

0 

IV. 2. ii Solution by Separation of Variables 

The rnethod of S e ction IV. 2. i has reduced the awkward set of 

equations (IV. 4) to equations that are more easily handled and we note 

here that these rnethods apply equally well to the fully nonlinear 

equations derived in Chapter III as to the near linear ones. The 
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resulting equations for the near linear problem, however, have 

some closed forrn solutions which we proceed to derive. 

The complete set of equations in a, {3 coordinates that we 

have produced is: 

(IV. 5) 

pKA = f({3) (IV. 8) 

8e 
K 

8A 
0 8{3 - = 8a (IV. 9) 

89 1 8K 
0 

8a - K 2 A 8{3 = (IV.lO) 

We have introduced the coordinates a and {3 which parameterize 

distance along the rays and along the surfaces of constant phase, 

the angle 9 that rays make with the x-axis, the area density of 

ray tubes, A, and the arbitrary function f({3) which fixes A for 

some initial value of a. The choice f({3) = 1 is used here since it 

has been found to produce all the separated solutions that other 

choices can produce. We now use the two algebraic equations 

(IV.5) and (IV.8) to eliminate KandA from the two differential 

equations leaving only 9 and p as dependent variables. The exact 

form is not required, however, as (IV. 5) contains a small para-

meter. The new form is 
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~~ - (Tp + 0(,-2) ) ~ = 0 , 

(IV. 12) 

ae (l .QQ. a {3 + P z + o ( T) ) &a = 0 . 

The coefficient of ~ in the first equation has a leadi!lg term 

proportional to T due to the differentiation of K in (IV. 10), its 0(1) 

term being constant, and in this way T becomes a parameter of the 

problem. The terms written as "0(T)" and "0(T2 )" are neglected 

as they display more accuracy than the near linear equations 

contain. 

The effect of transforming form x, y to a, {3 coordinates has 

been to consolidate the equations to two terms each, a form in 

which the variables separate. The set (IV. 12) is nonlinear so that 

a separated solution is a special one. Solutions for different 

values of the separation constant cannot be superposed and no 

general solution is found by this method. \Ve nofe, however, that 

reversing the roles of dependent and independent variables changes 

the form of the derivatives but leaves the coefficients unchanged, 

the coefficients now containing only independent variables, and the 

new set is linear. This approach is discussed in Section IV. 2. iii. 

We reduce (IV.l2) to one second order equation in one 

dependent variable by satisfying one equation by a potential and 

substituting in the other. It makes no differ ence which equation is 

identically satisfied by the potential and r..o further solutions are 

generated by doing it both ways. 
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We set 

Xa = e , xf3 = 1/ P (IV.l3) 

to satisfy the second equation of (IV.l2). Substitution in the first 

produces 

Xaa + ;~ Xf3{3 = 0 . 

We set 

X = U (a) V({3) 

and separate variables to find the equations 

II 

U 2 U . + c = 0 ' 

(IV. 14) 
If 

TV 
V(V 1 )3 = c 

where C is the separation constant. We require C > 0 to form a 

beam and for C > 0 we find the first integrals of (IV. 14) : 

ul = - .f2C j b· + D 

I 

v = 1 
~vz 

Po - 2T 

(IV.l5) 
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A further integration gives the implicit forms of the solution. The 

form of the integrals depends on the sign of D. 

When D > 0 

where ao is found by setting a= 0' u = 1. 

When D < 0 

a- a0 = 

In b9th cases the other integral is 

c~_ 
(3 = Po V - 6T 

(IV.l6) 

(IV.l7) 

(IV. 18) 

We have chosen U to be 1 and a = 0 so that the constant of integ-

ration Po in (IV.l8) is the maximum value of p at the initial 

surface a = 0. While the hodogr·aph method was not used to obtain 

these solutions, the implicit form is typical of that method and 

multi valued solutions have been studied extensively in this connection. 

The inversion of (IV.l8) gives a multivalues function for V and 

hence p and 9 are multivalued. The edges of the fold are called 

limiting lines and they form the edges of the finite beam. We 

accept the branch of the solution that is symmetric about (3 = 0 and 

fit a zero solution to extend from the edge of the beam to ·infinity. 



-64-

From the definition of X• (IV.l3), we find 

I 

e = u (a) V({3) p = U(a) V' ({3) 
1 

(IV. 19) 

The analytical formulas are best found by using U and V in place 

of a and {3 in (IV. ll) to return to x, y coordinates, but before doing 

that we shall examine the qualitative features of the solution dis-

played in (IV.l6), (IV.17) and (IV.l8). 

The following diagrams illustrate the two cases which we 

have labelled A for D > 0 and B for D < 0. The functions U, U 1 , V 

and V' are sketched in figures 1 to 4. In figure ZA, U 1 is always 

negative while in 2B U' crosses zero. Figures 3 and 4 are the 

same for both cases. In figure 3 the cross strokes indicate 

branches that are extraneous; the branch that is symmetric about 

the origin is the desirable one. Then using (IV.l9) we obtain 

sketches of e and p. e is the product of figures 2 and 3, and p is 

the inverse of the product of figures 1 and 4. Finally, figure 7 

indicates the ray pattern which results. The successive profiles of 

p are mapped onto the successive surfaces of constant phase which 

are perpendicular to the rays. All the rays focus at a single point 

and a singularity in amplitude occurs there. Figure 7 A illustrates 

that rays are always convergent while in 7B the rays are parallel 

somewhere and have a focal point before and after that plane. 

The inverted form of U and V indicates that they are the 

convenient variables to use in r-=covering x and y rather than using 
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I "a 
I 

u' 
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Fig. 7A 
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Fig. 7B 

Sketches of Solution for D < 0 

'u' 

Fig. 2B 

Fig. 4B 

Fig. 6B 
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a and {3. Then (IV. 11) becomes 

u 
cos8(U 1 V} da 

X = Jl dU K(U, V) dU 

u 

-

sin8(U 1 V} da dU y = ~ + K(U, V) dU 

v 
Jo A(l, V)sin8(1, V) ~ dV 

' 

v 
.ilii Ia A(l, V)cos8(l,V) dV dV 

Now we use integrals (IV.l5) to produce the parametric form of 

the solution: 

8 = - ../2C fl/U + D V , 

cvz 
Po - -z,=-

p= u 

cos (lzc(I/U+D) v) dU 

.J l/U+D 

(IV. 20) 

l 1 sin(fzc (1/U+D) v) 1 V 
Y = - ---1 dU + - f cos (.J 2C(fc+-D)V) dV . 

K{2C U /1/U+D · K o 

The integrals do not have a closed form for V-:/= 0 but may be 

performed by expanding the sine and cosine in a 11aclaurin series 

and integrating term by term. 
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The interesting feature that may be found exactly is the 

focusing distance. On the axis, V = 0 and under this condition the 

second and third equations of (IV. 20) give x(p) in closed form. 

That form is: for D > 0 

' . 

and for D < 0 (IV. 21) 

x= 
1 

{ cos-
1
finfU-cos- 1/iDI +~I D I U(l- i DIU)-~ I D I (1-l D I)} 

K{2C y]/z 

and p = p 0 /U. At the focal point p- oo and the focusing distance is 

given by setting U = 0 in (IV. 21). Thus for D > 0 

xf= ---=-1--{ log(..[D +..fi+D) -{D(l+D)} 

K.fZC D3/z 

and for D < 0 

xf= 
1 {~-cos1 ..fiDT-.Jfnj(l-jDj)} 

KrzGj Dj3/z 

(IV .22) 

All beams for which D < 0 ~ay be classified as "thin" beams 

which are beams in which gradients in y are steeper than gradients 

in x. This occurs for D < 0 because there is a value of x for 

which the rays are parallel and the changes in angle after that 

point are due to the interaction between gradients in y and 
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nonlinearity. In near linear theory these changes must be small. 

The only way to have other than a thin beam is to have the rays 

sufficiently convergent at minus infinity and then amplitudes at the 

origin can be rr10derate while the angles of the rays may be large. 

This is the case when D = 0(1/ T) in our equations. 

In Section IV. 3 we shall deal with thin beams and, as it 

happens, we shall produce the same thin beam solution that we 

have just found. As a point of comparison we set D = -1 which 

makes the rays parallel at the origin. Then 

(IV. 23} 

follows from setting U = 1 in (IV. 20) as the initial amplitude profile. 

In Section IV. 3 we shall, in fact, look for quadratic profiles 

directly. If we take w as the half width of the beam then (IV. 23) 

gives 

and this may be used to eliminate C from (IV. 22) to give a focusing 

distance of 

which we shall compare to other thin b eams .. 
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We conclude that the theory just presented for use with moderate 

amplitude beams entering nonlinear media is necessary when the 

beam has passed through a converging lens. In most other cir-

cumstances the thin beam theory should be sufficiently accurate. 

For fully nonlinear bearns, however, (higher than "moderate" 

amplitude) the theory just presented is es s entia!. 

IV. 2. iii The Hodograph Method 

Equations such as (IV.l2) may be transformed into linear 

equations by the hodograph transforn1ation in which a and {3 are 

treated as functions of p and e. This has been Inuch developed in 

fluid mechanics. While the resulting equations are linear and 

solutions may be superposed, it is not clear how to form a solution 

representing a beam. We note the first steps just to indicate what 

would be involved. 

We recall that equations (IV. 12) are 

8e .fu?_ 0 - T = 8a 8{3 . 
(IV.l2) 

8e 1 .fu?_ 0 8{3 + pz 8a = . 

The roles of the variables are reversed by the transformation 

= JiQ 
J 

{iQ_ 
J 
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a 
=_Q_ 

J 

~th J = a ~ 8 -a8B . p . p Since the set (IV. 12) is hon10geneous in 

derivatives the Jacobian cancels out leaving the equations 

a a l M 0 ap + pz ae = ' 

(IV. 24) 

M - Tp a a 
ap ae = 0 

They are now linear and solutions may be superposed. Separation 

of variables is used here and a suitable approach is again to 

introduce a potential to satisfy one of the equations. Again the 

choice of which equation to satisfy identically is irrelevant; no 

further separated solutions are obtained by reversing the roles of 

the equations. The introduction of X such that 

Xe = ~ • 

satisfies the second equation of (IV. 24) and substitution in the 

first produc e s 

= 0 . 

Separation of variables is accomplished by setting 
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X = R(p) T(8) 

with the resulting separated equations being 

pR 11 -R 1 -c 1 R = 0 , 

c1 

T'' + - T = 0 ' 
T 

(IV. 25) 

where c 1 is the separation constant. Regarding c 1 as positive we 

solve these equations and then augment the solutions by those 

found with c 1 nega.ti ve. For convenience we set Cz = -c 1 in the 

latter case. The first equation of (IV. 25) is placed into standard 

form by the substitution 

with the result 

uss + ui + (1 - tz) u = 0 

which is a Bessel Equation of the second order. The second of 

{IV. 25) has sinusoid solutions so that elementary solutions for the 

separated factors of X take the form 

R = pJz (2~p ) and R - pYz (2 JZ;P) 
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T = sin( fi 8) and T = cos ( fi 8) • 

The form of a and {3 is arrived at using Bessel function identities. 

The elementary solutions are 

and 

l 
a = 

FP 
J 1 (2r;:;p) cos ( ~ 8) 

V T 

{3 = - pJ z (2rc-;p ) sin( {§;_ 8 ) "V;-----:;: 

a = 1 
Y 1 (2-fZ;p) cos(~ 8) , . .r;p 

{3 = -p Yz (2..rc;p-) sin( {§j. 8) . 
V T 

The cases of {3 being proportional to cos (fi 8) have been discarded 

since we wish to deal with ray patterns which are syn1.metric about 

the x-axis. 

In the same way we operate with -c 1 = cz > 0 to produce 

{3 = p J 2 (2 Vc;P) sinh(~ 8) 

and 
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a = ,--· ;c;. 
Y 1 (2 v c 2 p ) cosh( y" ---:;:- 9) 

These elementary solutions turn out not to resemble a beam. To 

form a beam from them would presumably take a complicated super-

position of them. 

IV. 2. iv The Radially Symmetric Problem 

We shall not attempt to solve the radially symmetric three-

dimensional problem by the preceding method. ·we note that the 

equations that one obtains in ray coordinates are 

1 
pKA = 

r 

Kz = KZ (1 + 2Tp) 

8e 1 8K 
8a K2 A 8{3 = 

8e - K 8A = 0 
8{3 a a 

. 

0 
' 

r is eliminated from the first equation by the integral transfor-

mation from a, {3 coordinates, 

a {3 
r = J sinO da + ( A(O, {3) cos8(0, {3)d{3 

o K Jo 
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The resulting system is very complicated. We observe from the 

first equation, however, that energy density within ray tubes 

decreases as the inverse of distance from the axis of the beam. 

If the beam is heading toward the axis, the change in energy 

density due to nonlinear effects is augmented by an increase in 

energy density due to a ge01netrical decrease in the area of the 

ray tube. (A ray tube is now the region between the surfaces of 

revolution of close rays.) The focusing effect is increased over 

that of the two-dimensional case. Similarly, when a ray heads 

away from the axis of the beam, amplitude decreases dispropor­

tionately from the two-dimensional case. 

A 

A Three-Dimensional Ray Tube 
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Solution of the Thin Beam Equations 

A method that we now outline was devised in the fluid con-

text for treating a steady flow that differs little from a mean flow 

and will be adapted to beams whcse rays are always close to 

parallel. In contrast to the first approach, we shall obtain a 

solution for the radially symmetric beam as well as the two-

dimensional beam. 

IV.3.i The Thin Bean> Equations 

We recall the system of equations 

8K 1 8Kz 

ar- ax = 0 • (IV.26) 

K2 = K 2 {l + 2 T p ) , 

where m = 0 for two dimensions, 

m = 1 for three dimensions and radial symmetry. 

We introduce the potential ¢ to satisfy the second equation of 

(IV.26) in the form 

(IV. 27) 

Kz = K :~ 

We seek solutions of the problem in such form that the derivatives 

of ¢ are small corrections tc a mean wave number K for waves 

propagating in the x-di rection. The dispersion relation, the third 



equation of (IV.26), gives 
-77-

{IV.28) 

A straight linearization would take :! and ~* as comparable 

ocf> 
small quantities and (IV.28} would require that we set T p = ~ • 

ux 

This leads to p being constant and does not exhibit the crucial 

::~:::: :~:::s~ (1~)s: ·:f(:t:: r. in:::::::::::::::erm of 
each component of !5_ in (IV.28} is related to p • The significance 

is that we become interested in beams where gradients in r are 

steeper than gradients in x. This is the case of thin beams and 

is analagous to the case of thin jets in fluid mechanics. The 

significant terms of (IV.28} give 

.l (8¢ y + 
a or J 

ocf> 
ax 

Now retaining first order x derivatives and second order r 

derivatives in the first equation of {IV.27) gives 

ocf> 
or = 0 • 

(IV. 29) 

{IV.30) 

The set (IV.29) and (IV.30} are the thin beam equations that have 

been analysed by Russian researchers [10]. There are several 

interesting exact solutions to these equations which v;e outline in 

the next two sections. 

The essential difference between this method and the one 

outlined in section IV.2 using ray coordinates is seen from (IV.28). 
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In section IV.2 (while we did not display this form) the three 

derivatives of </> in (IV. 28) were allowed to be 0(1) quantities 

but their sum had to be the small quantity 2T p; the speed was 

nearly constant but the direction was allowed to change significantly. 

Here, in the thin beam case, the derivatives of cf> are all small; 

the rays are nearly parallel and the phase velocity does not change 

significantly over all space. 

We proceed with the solutions of the set (IV.29) and (IV.30). 

Most of the work has been contributed by Akhmanov et al. [10), who 

derived the equations directly as the thin beam approximation of the 

oscillatory equations rather than an approximation to the averaged 

ones. We have filled in several computational details that they 

have omitted. The first method treats the two-dimensional equations 

by means of hodograph transformations and separation of variables. 

The second one, which applies also to the three-dimensional 

cylindrical beam, involves a two term power series in the radial 

coordinate and turns out to produce an exact solution to the thin 

beam equations. 

IV.3.ii A Special Solution by Hodograph Transformations and 

Separation of Variables 

We consider the two-dimensional case by setting m = 0 and 

r = y in (IV.29) and (IV.30). This set has three terms in each 

equation, but to separate variables there must be only two. In 

order to condense the form, Akhmanov made a transformation that 

allowed terms to b e grouped. To make the set homogeneous in 

derivatives he differentiated the first equation with respect to y and 



then set 
8¢ 

u=-oy 
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in both equations producing the set 

OU + U OU _ T ~ = O 
ax &y ay • 

a p au 8 p 
-+p-+u-::z:O. ax ay ay 

This set is familiar in the context of shallow water theory but 

differs in the sign of T. Due to that sign the equations are elliptic 

rather than hyperbolic, a feature that has been preserved from the 

full equations. The significance of each terrn containing one 

derivative factor is that the roles of dependent and independent 

variables may be reversed by a hodograph transformation and the 

Jacobian will cancel out of the equations. {See section IV.2.iii). 

The re suiting form 

.£.y_ ox ox 
a P - u a P - T a~ = o • 

ItY. + ox ox 
au p a p - u au = 0 • 

may now be condensed by grouping terms. That form is 

a ax 
a p (y-ux) - T 8u = 0 ' 

a a 
au (y-ux} +a p ( px} = 0 • 

The change of variables 

S = y-ux ' 71 = px (IV. 31} 

leaves the equations in the separable form 

0 • 

0 • 
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While the equations are linear and superposition is permitted to 

form a general solution, the fundamental solutions of this set are 

found in terms of Bessel functions and do not resemble a beam. A 

further hodograph transformation leaves the set in separable form 

and produces a rnore satisfactory solution but since the new set is 

nonlinear it is a special one. This transformation leaves the set in 

separable form and produces a more satisfactory solution but since 

the new set is nonlinear it is a special one. This transformation 

again switches the roles of dependent and independent variables to 

give the form 

au ap 
p--T-· =0, a17 a; 

au 
-a~ = o • 

Using a potential lj; to satisfy the second of these we have 

u=-1/;' 
TJ 

and substitution in the first equation produces 

alj; a
2

lj; 8
2

1/J ar- aTJz + T as, z = o • 

This is separated by setting 7/J = N(TJ)E(s) and obtaining the 

equations 

Integration produces 

Nn = 2T 
w E" = 

N =.!. TJz +bTJ +PoW , 
w 

E =tanh~ 
w 

2 El E • 
w 

where w, b and Po are arbitrary constants, w and Po being 

positive to produce a beam. Now the potential 1/J is given by 



Using the definition of rf; we obtain 

p = (...!.._ pz xZ + £ px + p ) z w 0 
w 

z ( ux \ 
sech Y~ ) 

Akhmanov does not display the b term which gives the orientation 

of the rays at x = 0. For x = 0 the amplitude profile is 

y 
p = p 0 sech2 

:; 

which is localized about the x-axis. In contrast, the separated 

solution for thicker beams (IV.l8) is of finite Vlidth being forced to 

zero by a fold of the function in ray coordinate space. Within the 

approximation for thin bean1s, however, these shapes are similar 

and comparison may be made. Before focusing takes place u = 0 

on the x-axis, hence at y = 0 the expression for p is 

For real values of p 

T z b 
p =- p?.x + px +Po • 

wz w 

z 
w 

z 
X ~ 0 • 

When this condition is at the point of breaking down it gives the 

focal point: 
w 

(IV.32} 
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For b = 0 the rays start parallel to the x-axis ar..J. the comparison 

1rW to the thicker beam focusing distance of-...;.:...:..;___ is unusually close 

4~ 

considering that the starting profiles are only roughly similar. 

Returning to the full form of (IV.32), we see that for b <- 2~T 
there is no focal point to the right of the given data and the rays 

"never come down. 11 This is the case where the rays are so 

divergent at the start that they escape trapping. For b > 0 the 

rays are convergent to begin with and focusing is hastened. 

IV. 3.iii Solution by Truncated Power Series 

We repeat the thin beam equations for convenience: 

8¢ 1 (~)2 
. . -+- ~ =Tp ox z. or 

( 

2 ) .. 8 ¢ m 8¢ 
0 p 8¢ 8 p -- +- - = 0 ' - +- - + p !:'> 2 r 8r ax ar or vr 

where m = 0 for two dimensions, 

m = 1 for three dimensions. 

(IV. 33) 

Akhmanov noticed that nonlinear terms occur only with second order 

r derivatives or with a first order r derivative and a factor l/r. 

The significance is that there is an exact solution of the form 

2 
¢ = £0 (x) + £1 (x)r 

2 p= g 0 (x) +g 1 (x)r 

since any term can accumulate no more than second powers of r. 

First powers of r in the above solution are not permitted in the 
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cylindrical beam in order to avoid discontinuous derivatives at the 

center but would be permitted in two dimensions (slab shaped beam) 

if one were interested in nonsymmetric beams. 

When </> and p are placed into equations (IV.33), equating 

like powers of r produces the following relations: 

(i) (iii) 

(iv} 

Equations (ii) and (iv} establish f 1 and g 1 , and then g 0 and 

finally f 0 are determined in terms of £1 • We assign the following 

initial conditions on the beam.: 

Po 
go (0} = Po • g1 (O} = - 2 

w 

Then the amplitude profile is parabolic with maximum p 0 and has 

edge at r = w. For </> we assign 

£0 (0} = 0 , 
.-[T 

fl(O} =-2R. 

The value for f
0 

is arbitrary but f 1 is chosen so that K2 will be 

o(.JT). 
have 

Using (IV.27) and the relations between f 0 , f 1 , g 0 , g 1 we 

K ,( 0) " K t +T (p o ( 1 - :: ) - ZIR, ) ] 

Kz (0) = .JT Kr 
R .. 

For R < 0 we have an initially converging beam and for R > 0 it is 

initially diverging. 

Eliminating f 1 from {ii) by means of (iv), we obtain 



4+rn 
g~' - 3+m 
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z + (6 + 2m)T g 1 = 0 • 

The awkward second term is eliminated by the substitution 

to give 

= 0 
~z +m wZ 

The initial data are ~(0) = 1 , ~' (0) = ~ • In terms of ~ the 

other quantities are given by 

~D-(l+m) f'- -(l+m) 
• go = Po ~ • o- T Po 

Integrating the ~ equation we have 

~I : ± 
4T p 0 T 4T p 0 ---..:.-:::...---+C , where C =- ------

(l+m) wZ ~ 1 +m RZ 
(l+m)w z 

and another integration gives 

(IV.34) 

This integral is now evaluated explicitly for m = 0 and m = 1 and 

the sign of C must be taken into account. For m = 0 , 



when C > 0, x - x 0 

-85-

~ v-;;;;; 

( ~-- log v-4-r-p--;- + 

and when C < 0 , x - x 0 

) 

Cw2 ~ 
1+--

4T Po 

_._lc ...... l_'-'·-' 2_~ 1--

(IV.35) 

x 0 is given by setting x:: 0 , ~ :: 1 • We note that this is the same 

expression as (IV.21). For m = 1 we have 

X - Xo = ± 1 -J 2 T p 0 + C ~ 2 1CT . 2 w 
(IV. 36) 

{for either sign of C) and the use of the boundary condition and 

rearrangement produces 

~2 = (;, z.JT x + 1 
R 

which can be used to recover the form of p and cf> in closed 

form. 

In this example the focal point occurs where ~ = 0 and the 

amplitude p becomes infinite. (In the first example for thin 

beams the amplitude at the focal point was finit e but became 
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complex beyond the focal point. It need not be singular for thin 

beams as the conservation of energy within ray tubes is only 

approximate.) Integral {IV.34) is so arranged that ~· = 0 for 

x = x 0 • This coincides with p 1 = 0 and is the value of x for 

which the rays are parallel. This point can be moved off to infinity 

for different values of the parameters, hence x 0 is not chosen to 

be the origin. The situation for R< 0 is illustrated. 

Ray Pattern for R < 0, C > 0 

Ray Pattern for R < 0, C < 0 
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The rays always focus since ~' (0) is negative and no) is positive. 

From (IV.34), ~' becomes more and more negative until ~ = 0 

and focusing occurs. Going backwards in x from x = 0 , if C > 0 

we find that ~ increases vvi thout bound and ~' becomes 

asymptotic to - ..fC. If C < 0 , there is another focal point, 

hence rays eli verging from a focal point may again converge. 

x 0 is half way between the focal points by the symmetry of (IV.34); 

the sign of the square root switches at x = x 0 • The focal distance 

is the distance from the origin to the focal point. 

For R < 0, C > 0 , two dimensions: 

~ {7"" -E.z ) 1 -log /--:-:.: - l w 

4p0 R
2 

4p0 R
2 J 

and for three dimensions: 

Rw 
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For R < 0 , C < 0 , two dimensions: 

Xo = - I lc I 3 z :wz .f --4-;.;..;.0_:-2-

The positions of the focal points are 

In three dimensions 

and the positions of the focal points are 

X = -f 
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For R > 0 the rays are divergent at x = 0 • The effect is to reverse 

the sign of x in the solutions already found. The two diagrams 

reflected in the plane x = 0 illustrate this situation. 
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CHAPTER V 

THE LAGRANGIAN APPROACH 

WITH NONLINEARITY AND lllGHER DISPERSION 

It has been discovered in Chapter IV that focusing occurs when 

the nonlinear theory is applied to waves whose amplitude is not constant. 

Near the focal point the formulation is invalid sine e the amplitude is 

greater than 0(1) and the carrier wave is not sinusoidal. It is noted 

by Akhmanov et al. [ 10] that this situation is not remedied by including 

more terms in the Fourier series, nor does dissipation prevent singu­

larities. We shall study examples in which singularities do not occur 

when higher derivative terms of the slowly varying parameters are 

retained. 

Solutions will be derived in the two- and three-dimensional 

cases, for plane waves whose amplitudes vary in time and space. In 

the case of two dimensions we shall find plane waves whose time­

independent envelopes take the form of Jacobian elliptic functions in 

the direction transverse to the direction of propagation. The limiting 

form is a beam localized about an axis and which propagates without 

distortion. We shall also find waves with periodic envelopes that travel 

with constant speed. These become solitary wave packets in the limit 

as the period of the envelope oscillations becomes infinite. A combina­

tion of these effects produces a solitary wave packet which is localized 

about the axis of propagation. Similar effects are found in the three­

din'lensional radially symmetric case but the general form of the en­

velope of the plane waves is not periodic but decays from a maximun1. 
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even when the envelope is oscillatory. This case is complicated by 

not having closed fonn solutions. 

V. 1 Waves with Linear Polarization 

When higher dispersion terms are reta.i;:J.ed the system loses 

some of the symmetries that it had without these terms. When waves 

are linearly polarized the direction of polarization becomes a favored 

direction. There can be two-dimensional waves when the direction of 

polarization is the direction in which quantities are constant. Simi-

larly, radial symmetry about an axis can occur only with circular 

polarization. We shall find time-independent solutions for these two 

distinct cases separately, the two -dimensional beams in this section, 

the radially symmetric ones in section V. 2. Then having some famil-

iarity with the features of the system, we shall examine sorne time-

dependent solutions for both cases in section V. 3. 

V. 1. i The Near Linear Lagrangian in Two Dimensions 

We shall proceed in a similar fashion as in Chapter III, substi-

tuting sinusoidal forms into the Lagrangian and then averaging over one 

period. The periodic forms (III. 2) are modified by an additional small 

term which does not appear in the periodic plane wave solutions. 

The Lagrangian in tvvo dimensions is (III. 1 ): 

P 2 p2 4. 8 
o { 2 2 2 2 } 1 { t Wo yP -} 

L = z At -c (A +A ) -AtP+ -y z --2--+-----;r- . 
X y E:W 

0 p 

The form of the periodic plane wave propagati ng in the x-direction that 

we shall use is: 

J\. = a cos e, 
(V. I) 

p = b sin e + € b cos e 
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where 8 = Kx- wt, and the slow s cales are X = E:?5J T = E:t. We retain 

terms of O(s
2

) in the Lagrangian and we take lrl = 

the derivatives of A and P is 

At = wa sin8 + E: aT cos G, 

A = Ka sinG + E: aX cos G, 
X 

A = E:ay case, 
y 

pt = 25 -( -wb +E: T}::os G+ E: (~ +wb )sinG 

2 
E: . The form of 

(V. 2) 

Placing these forms into the Lagrangian and integrating over 2rr, we 

obtain 

2 2 
wab (wo-w ) b2 

--2- - 2 
4E:,. w 

"' p 

2{E: o 1: 2 2 2 2 J aTfi 1 c - 2 
+E: 4~T-c (~+~). - - 2 - ---_,2,.,...(2wboT-(bT+wb) 

4£ w 
0 p 

To reduce this to a useful form the Euler equations obtained by variation 

of band 5 are used to eliminate those variables. Then we are left 

with a Lagrangian in terms of a, K and w which is used in the normal 

way to generate the dispersion relation and wave action. Since w e are 

looking for plan e w ave solutions we shall not be concerned with terms 

involving WT and WTT' hence these are neglected. 
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Algebraic difficulty is minimized by observing the form of S., 

and eliminating b first. We write the averaged Lagrangian in the 

form 

= 
2 2 2 -

Q
1

a +2Q
2

ab+Q
3

b +e .r:
1

(a,b,b) 

Variation with respect to b gives 

b 

2 (" -
e ""! b (a, b, b) , 

Placing this back into the large terms of S, produces 

= 
Q2 

2 

Q3 

and only the significant terrn of b need be substituted into s., 1 • The 

full form of£ is now 

1 ---z 
4 € w 

0 p 

+ 

3 6 4 4 
3ye w w a 

0 p 

Variation with respect to b gives 

f) --

2 2 2 
€ W (W + W ) 

0 p 0 

( 
2 2)2 aT w -w 

0 

Placing this into S- produces the working form 



The consistency relations remain 

ow 
ox + 

or<: or<: 1 2 
ay:-- ox = 0 . 

V. 1. ii Time-Independent Solutions in Two Dimensions 

(V. 3) 

(V. 5) 

There are convenient solutions which represent plane waves 

propagating in one direction without distortion. To obtain these solu-

tions we set time derivatives equal to zero to produce a time-independ-

ent envelope. To have propagation in only one direction we set K2 = 0 

a.nd K 
1 

= constant. To satisfy the second equation of (V. 4) we must 

have a = a(y), and now all of (V. 5) are satisfied. The remaining equa-

tion gives the distribution of amplitude transverse to the direction of 

propagation. That equation is 
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2 6 4 3 

2 3ye w w a 
0 p 

c a + --...,2..----;,2-4-:-----
yy 4(w -w ) 

0 

= 0 

This equation describes the time-independent bearri found by Townes 

[1 ]. We write this in the form 

where 

and 

a 
yy 

D 

,. 

- Da + 1" a 
3 

= 0 

2 

K2 
2 w 

= - 5E2 (1 + E 
2 c w

0 
-w 

2 6 4 3ye WE w 
0 

= 
4 2( 2 2)4 c w -w 

0 

(V. 6) 

2) 

D may be positiv e or negative but T has the sign of y and is determined 

by the medium. 

One integration of (V. 6) gives 

2 a 

+ Da
2 

'Ta4 
- -2- + -;r- = 

and a further integ ration gives 

a 

s 
a 

0 

du 

A 
2 

= y 

The conten ts o£ the square root are factored to give 

2 4 2 2 
A Du 'T"U A(l u u + --2- = - =-z-Hl -R2 

Rl 2 

where 
2 D ~A Rl 2 = ± , ,. ,. 

I 

(V. 7) 

(V. 8) 

(V. 9) 

The form of (V. 7) is the s ame as the equation governing the oscilla-

tions of the pola ri z ation (II. 4) and the description in that connection 
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applies here also. The solution oscillates between simple roots of 

(V. 9). It is important to bear in mind that the solutions found in 

Chapter II are the fast oscillations while we are dealing here with 

variations in the envelope of these oscillations. 

The zeros of (V. 9) are 'lA. = ± R 1 and u = ± R 2 . These are the 

values of a at which a = 0 and hence simple roots will be extreme 
y 

values of the wave form. The integ:>:al (V. 8) diverges as a goes to 

the value of a double or higher order root, hence all roots are extreme 

values but multiple roots may be reached only in the limit as y -• ± ao 

and these solutions are not oscillatory. This is the case of "solitary 

waves" which we played down when dealing with the fast oscillations 

in Chapter II. In the present context the solitary wave envelope is the 

very ilnportant case of a localized beam. We itemize the different 

cases of values of the parameters '1", D and A by the following tables. 

The arrows indicate the values of the roots of (V. 9) on the sketch of 

the waveforms. 

The first table is for the case '1" > 0, the focusing medium, the 

second for 'T < 0, the defocusing medium. 
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We now give a more detailed description of the bounded solution:; 

shown in the tables. 

Case (a): '!" > 0, D > 0, A> 0; Periodic Wave Form 

R 2> 2 2 2 From (V. 9), 
1 

0, R 2 < 0. We set s 2 = -R2 and for real 

a and y we have 

The implicit form of the solution is 

R1 

fd!;2 
a ~~-R~~~·s.,2 

1 2 

=JAy . 

In terms of Jacobian elliptic functions the solution is 

( 
J"A (R~ +Si) 

a = R 1 en R S 
1 2 

y, 2 
1 

2 . 
R2 ) 

R1 +S2 

Case (b): '!" > 0, D > 0, A= 0; Solitary Wave Form 

For. real a, y we have 

The implicit form is 

= y 
'1" u<t"-
-~-

but in this case the solution has the integrated form 

/2f) 
a = f T s ech ,JD y . 

(V. 1 0) 

(V. 11) 
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D2 
Case (c): 'T > 0, D > 0 0 >A> - - · Periodic Wave Form , 2,- ' 

R 1
2 

> 0, RJ > 0. For real a, y there are the regions 

The implicit form is 

Written in the form of Jacobian elliptic functions this is 

(v1A1 R 2_R 2 ) Rl dn 
1 2 

a = y, 
R2 R2 

2 

(V. 12) 

This completes the cases for the focusing medium. We emphasize that 

· the preceding waveforms are supported by one type of n1edium, the 

following by another. 

Case (d): 'T < 0, D < 0, A = Solitary Wave Forrn 

R
1 

= R
2 

> 0. For real a, y is real everywhere. There are 

unbounded solutions for initial conditions outside the region between 

the roots and a bounded, nonoscillatory solution inside that region. 

The implicit form is 
a 

and it i n te g rates to 
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a = J ~ tanh ( JT¥ y) 

D2 
Case (e) T < 0, D < 0, >A> 0; Periodic Wave Form 

2 1-r\ 

R 1 > 0, R 2 > 0. For real a, y is real in the regions 

The central region has periodic solutions and the implicit form is 

The form in terms of Jacobian elliptic functions is 

a = 
( 

2 ) JA" R2 
R2 sn R y, -2-

2 R 1 

(V. 13) 

In review, the focusing medium has solutions which os ciliate 

through zero in case (a) and about a positive value in case (c). These 

oscillatory solutions represent parallel beams propagating without 

distortion. The solitary wave form of case (b) represents an isolated 

beam propagating without distortion. Townes [1] has named this a 

self-trapped beam. In the defocusing medium there is an oscillatory 

solution in case {e) which likewise represents parallel beams. The 

solitary wave forrn is the hyperbolic tangent of case (d) and is nonzero 

at infinity. It cannot represent an isolated beam; hence, self-trapped 

beams do not exist for defocusing rnedia. 
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In heuristic terms, in the foc-1.1sing medium a be3.m tends to 

focus due to nonlinearity but to defocus due to dispersion. When 

these effects are in balance a beam is self-trapped. In the defocusing 

n1edium both nonlinearity and dispersion cause the beam to spread. 

V. 2 Waves with Circular Polarization 

As we mentioned in the introduction to section V. 1, in this 

section we shall set up the equations for circularly polarized waves 

with higher dispersion. We shall examine the time-independent equa-

tions to find radially symmetric solutions that represent self-trapped 

beams. 

V. 2. i Averaged Lagrangian for Circular Polarization 

The near linear Lagrangian as found in Chapter III is 

L = 
8 o 2 2 2 8 o 2 2 2 
-2 (A. t- c A. ) -A. tp . - -2 ('f't -c ¢ )-c/J P . 

1; 1 1 X., 1 1 1 2 X. X. 1. 
.K c 1. 1 

+ 1 (P 2 _, 2 P2 2'.(P2~2 ) 2 .tw . + 2 · 1 
2 E: w 1, 0 1 1 

0 p 

We now substitute the form of a circularly polarized plane wave propa-

gating in the x-direction into this Lagrang ian. As in the two -dim.ens ional 

case, the forms found in Chapter III are modified by additional small 

terms. The solution that we shall take is 

Al = 0 ~1 = 0 

A2 = a sin8 P2 = b cose + E: 62 sine 

A3 = -'3cose p3 = b sine + E: b.., 
.) 

cos e 

and 8 = Kx-wt. We must also have 

c/J =E: cPl sine +E: r/12 cose 
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~ 
1 

and r/>
2 

may be determined from the Lorentz gauge 

'V. A = 1 
2 ~t 
c 

Using the prescribed forms for A we find 

and hence 

2 
e: c (ay sine - az cos8) , 

2 
= - ££.... (a cos e + az sine )+0 (€ 

2
) w y 

This is the same result that we would obtain by placing ¢
1 

and ¢ 2 into 

the Lagrangian and varying with respect to these functions. The deriv-

ative terms that are used in the Lagrangian are 

A2 t = - wa case+ e: aT sine , 
A 2,x = Kacose+ e: ax sine 

A 
2, y = e: ay sine 

A2, 2 = e: az sine 

c2 c2 
¢ = e:(- Kay sine--Kazcose) 

X W W 

P 2 t = wb sine+ e:(bT-wtz)cos9 + , 

p 
2, y 

= -wb cos e + e: (bT +wb3 )sine + 

2 
= € by cos e + e: b2 y sine , 

A 3 t = - wa sin8 - e: aT cos e , 
A = K a sine - e: aX cos 8 3, X 

A 
3, y e: ay case 

2-
p = e: bz sine + e: b3 z cos e 3, Z 1 

Substituting these forms into the Lagrangian and integrating over 2'IT, 
. 2 
we obtain, to 0 (e: ) and 0 (y). 
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= 

In the same way as in the case of linear polarization we observe 

the form of the Lagrangian in order to simplify the procedure of elim-

inating the extraneous amplitudes. The form of the Lagrangian is 

This is identical to the structure of S, in the case of linear polarization. 

The variation of b and resubstitution produces 

2 
Q2 2 2 

S, = (Q 1- -Q )a +e: J:l ' 
3 

Q2 
where the first approximation b = 

03 
a is placed into £.

1
. 

form is 

This 



Variation with respect to 

aT 
- -z- -
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6
2 

and 6
3 

gives 

2 
w aT 
-z--z -
w

0 
-w 

2 2 
w -w 
_.!l_z Ez = o 
Ze: w 

0 p 

2 2 
w

0
-w 

---2 63 = 0 
Ze: w 

0 p 

These are used to eliminate 62 and 63 from .S:to give 

2 2 2 2 2 
8 o [ 2 _':'-'_E_ 2 2] 2 2{ 8 o r; j> Wo (wo +3 

W )] 2 
.S: = T W (l+ --z--z)-c K a +e: 2 ~+ 2 2 3 aT 

w -w (w -w ) 
0 0 

22 2 2 3 644 
e: o c ax e: o c ( 3 - c 2 K 2 2 ~ ) 2 2 } 'Y e: o wp w a 

2 4 \ 2 2 2 (ay +az) + 2 2 4 
w w -w 4(w -w ) 

0 0 

The Euler equations resulting from the variation of S. are 

2 2 2 2 2 

[ 
2 wp 2 2]. ( w c.th ( w c + 3 w ) ) 

W ( l + 2 2 ) - c K a - l + ~2 2 '3 a tt 
w -w (w - w ' 0 0 

The consistency relations are 

aw -- + ax 
oK 
at· = 0• 7xK = 0 (V. 15) 
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V. 2. ii Time-Independent Solutions for Circular Polarization 

There are two special forms of time-independent solutions for 

circular polarization. These are the two -dimensional beam that was 

found for linear polarization and a cylindrically symn1etric beam. 

Disposing of the two -dimensional beam first we set K: 
1 

=K, K
2 

= 0 and 

take K: and was constants in equations (V. 14) and (V. 15 ). Then if we 

take a = a(y) the only equation not satisfied identically is the first o£ 

(V. 14) which becornes 

2 ? 2 2643 

[ 
2 W 2 2] 2 ( 2 K: ~ 2 w '\ y e: w w a 

w (1 +--!-2)-c K a+ T 3-~- n;a + ~ p2 4- = 
w -w w w -w YY (w -w ) 

0 0 0 

We write this in the form 

where 

D 

and T 

a 
yy 

= 

= 

2 

c
2

K
2 -w 2 

(1 + 
Wp 

w 2.~w7 ) 
0 

2 ( 2K2 2 w 2 

) c c E 2 3- ---z- - 2 2 w f.J.'o -w 
2 

c
2

K
2

-w
2

(1 + 
Wp 

2 2 w 
0 

-w 

2 2 4 2 c 2 K2 2 W 
2 

(w -w) c (3- -z-- -~ 2 ) 
o w C.t.lo -w 

This equation is identical in form to (V. 6). While the fornmlas for 

D and T differ slightly, the sign of T is still the sign of y. All the 

0 . 

solutions that applied in section V. 1 apply here and again self-trapped 

beams exist only for the focusing medium. 
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The second and more important time -independent s olution has 

radial symmetry about the x-axis. To obtain this special solution 

we set K 
1 

= K , K 
2 

= K 
3 

= 0 and take w and K as constants. Setting 

2 2 2 
r = y + z, we take a= a(r). When the solution is localized about 

r = 0, this represents a cylindrical beam with circular eros s -section 

which propagates without spreading or converging. This beam was 

also found by Townes [1 ]. Again all equations of (V. 14) and (V. 15) 

are satisfied identically by this simple form except the first of (V. 14) 

which will give the profile a(r). This equation is 

which we write as 

where 

and 

a 
rr 

D = 

T = 

2 6 4 3 ye: W W a 
+ 0 p = 0 

a 
r 

( 2 2)4 wo-w 

- Da + '1" a 
3 

= 0 

2 
w 

p ) 
2 2 

w -w 
0 

2 6 4 
2 y e: .,_, w 

0 ~ p 

2 2 4 C
211'2 

(w
0 

-w ) (3 - --"'2- -
w 

2 
2 w ) 1 

- 2 p2 (a + -a ) rr r r w -w 
0 

(V. 16) 
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We proceed with the study of the equation 

1 
a + -a = 0 .rr r r 

We have scaled (V. 16) by the substitution 

* a 

* r 

= 

= 

J~ a 

r 

(V. 1 7) 

and we then drop the asterisks. In Townes 1 classic paper [ 1 ], he 

discussed (V.l7) and solved it numerically to produce a solution 

symmetric in r and decaying monotonically to zero. Further work 

by Ha.us [12] on an analogue computer produced symmetric profiles 

that fall from a maxirnum at r = 0 but eros s the zero level a finite 

number of times, then decay to zero. His work indicates that there 

is an eigenfunction corresponding to zero, one, two, etc., zero 

crossings, the higher eigenfunctions having greater amplitude at the 

center of the beam and greater energy. These cylindrically symmetric 

beams have a bright central spot and periferal rings that decay in 

intensity toward the edge. The existence of these eigenfunctions is 

critically dependent on the quantities D and T being positive. There 

are no such self-trapped beams in defocusing media (T < 0). 
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/ .. ----
......... , /.. _/ ........ --

'. - / 
' · :><. / .................... · '·-· 

Eigenfunctions of Orders 1 to 4 

We now derive an approximate analytic solution to (V. 17). The 

Lagrangian for (V. 17) is 

2 2 a 4 
£ = r (a r + a - T ) 

where the leading r is just the Jacobian for polar coordinates. £ is, 

of course, the averaged Lagrangian subject to the restrictions that we 

have introduced. Vie now produce a ''best fit" for a trial solution. 

The nature of the technique involves placing possible s olutions into 

the variational principle with undetermined pararneters. Variation 

with respect to these parameters then produces equations for them. 

The variational principle for the Lagrangian is 
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co 

oJ = 0 ~ {r(a: +a
2 

_a: )}dr = 0 

0 

The trial solution that will be substituted is 

where a 1, a 2 , b
1, b 2 are constants to be determined. 

Placing (V. 19) into (V. 20) one uses the integrals 

00 2 
S x e-x dx = ± and 

0 

to obtain 

2 
al 

J -- 2 + 

2 
-x 1 

e dx = 2 

as the quantity to be minimized. Now the solutions to 

(V. 18) 

(V. 19) 

(V. 20) 

provide the numerical values for the parameters in (V- 19 ). This is a 

complicated s ystem which is reduced considerably by the following 

substitutions which allow two quantities to be elirninated: 

The resulting form of (V. 20) is 
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2 2 

~+d2] a1 [ + 8 cd + d2] + a1 [ J = -2- 1 4 b 
1 + 2 l+c c (1 +c) 1 

4 
12d

2 
16d 3 

d4] a1 ~ 16d 
-16b1

1 + 3+c + ~ + 
1+3c 

+-
c 

2 4 
2 a1 

F2 
a1 

F = a1 F1 +-
-~ b1 3 

where F
1

, F 2 and F
3 

depend on c and d. Variation ofa
1 

and b
1 

produce 

= 0 

and 

These equations yield solutions 

= 
F1 

(V. 21) 

(V. 22) 

which represent the best choices of a 1 and b 1 for given c and d. These 

solutions are replaced into (V. 21) to eliminate a 1 and b 1 . The resulting 

form 

J = 

is varied with respect to c and d. Thus 

must be solved for c and din some nurnerical way. The results of 
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calculation on a desk calculator are 

c = 4. 7335, d = 1. 55005 

Substitution into (V. 22) produces 

a
1 

=. 848763 and b 1 = . 249505 

Finally the solution has the form 

a= .848763 e-.249505 r2+ 1.315625 e-1.181031 r2 

This result is plotted to compare with the numerically integrated 

result. 

t.·O 
---Numerically Integrated Solutionl 

----Approximate Analytic Solution I 

1·0 

--
0 -~'-~-~---L--L---L--~--~---L---L-~L-~--~--~--_J 

0 1·0 Z·O J·O 

Order Zero Eigenfunction 
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Haus gives the power for the first five rnodes where power is defined 

by 

These values are 

00 

P = ~ a 
2 

r dr 

0 

Mode Number Power 

1 l. 86 

2 12.25 

3 31. 26 

4 58.57 

5 94.23 

Vve note that the power for the lowest mode is very much lower than 

the other modes, hence if a large beam becomes unstable it seems 

likely that it will break up into beams of the first type. For comparison 

with Haus 1 work, the power of our approximate solution is l. 869 corCJ.-

pared to his 1. 86, while Townes 1 figure is 1. 834. 

V. 3 Time-Dependent Solutions 

Having found some special solutions for the time-independent 

problems we proceed with some examples of time-dependent solutions. 

These examples will all be stationary solutions; the envelope pattern 

will move with a constant speed. The first case will be a one-dimen-

sional wave, all quantities being constant in y and z. We shall then 

consider solitary waves that are localized near the x-axis and travel 

with constant speed. These are short pulses that are self-trapped 

in the nonlinear medium. 
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V. 3. i Stationary One-Dimensional Wave Envelopes 

We shall deal w ith both linearly and circularly polarized 

waves. Fi.rstly, we consider solutions of the equations of linearly 

polarized waves, (V. 4) and (V. 5), which are independent of y and z 

but vary in a time-dependent manner in the x-direction. If we define 

a new variable T) by 

'tl = X - Vt 

where Vis constant, then any wave pattern that depends only upon T) 

will translate undistorted in the x-direction with velocity V. We take 

K
2 

= 0 and K
1 

= K and was constants. The second equation of (V. 4) 

becomes 

To satisfy this equation we set 

2 c
2 K 

v = ----------~----2 

[ w
2

(1 + ~P 2 ~ 
wo-w j w 

The first equati on of (V. 4) becomes 

a 
t1Tl 

+ 

2 6 4 3 
3 y s w w a 

0 p = 0 

This is the equation for stationary waves found by Ostrovskii [ 11 ]. 
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We write this as 

where 

D = 

and T = 

a - D a+ 
TlTl 

3 
'T" a 

2K:2 c - w
2

(1 + 

= 0 

2 
WE ) 2 2 

w -w 
0 

2 2 2 
w w +3w) 

c:2-v2(I + E o 
( 2 2)3 wo-w 

2 6 4 
3 y € w w 

o E 
2 2 4 

4 (w 0 -(.l.l ) 

) 

2 2 2 n 
2 2 ( wp w0 (w 0 +3 w ) 

c -V 1 + 2 2 3 
(W - W ) 

0 

This is the form of equation (V. 16 ). Where we had parallel beams in 

space in section V. 1 we now have a series of pulses and where we had 

an isolated beam we now have a solitary wave. 

We use the same definition ofT] in the equations of circularly 

polarized waves, (V. 14) and (V. 15), and we proceed in the same 

fashion. Exactly the same expressions are found for V and D, and 

T differs in that ~ y is replaced by y. In both cases we find that 

solitary waves exist only in focusing media. 

V. 3. ii Localized Solitary Waves in Two Dimensions 

We combine the ideas of the preceding parts and obtain station-

ary solutions by setting Tl = x - vt, but now we seek solutions that are 

radially symmetric in the variables t'j and y. The radially symmetric 

pattern that results propagates w ith speed V. If the solution is local-

ized in the radial variable then we have a pulse that propagates with 

constant speed. Again we take Kz, = 0 and K
1 

= K and was constants. 
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The second equation of (V. 4) produces the same value of Vas found 

in section V. 3. i: 

v = 
r 2 wp J Lw (I+ 2 2 ) 

w -w w 
0 

The first equation of (V. 4) produces 

2 . 2 2 2 2 
w ) 2 2] 2E wp wo (wo + 3w ) J ~~ - c K a-V 1+ 2 2 3 ai 

w -w (w - w ) 1Tl 
0 0 

2 2 4 3 
2 2a + 3 "Y 8 o i:> W a 

+ c a'T"\1'1 + c -
'I ' I YY 4 ( 2 2 )4 w _,!) 

0 . 

= 0 

We set r2 = y2 + (1 

to obtain the form 

where 

and 

a 
rr 

D 

,. 

+.!_ 
r 

= 

= 

a 
r 

- Da + ,. a 
3 

= 0 

2 
w ,....e..__,,- \ 
2 2 ) 

w -w 
0 

2 6 4 
3ye w '-!J 

0 p 

4 2 ( 2 2 )4 c w -w 
0 

. This is equation (V. 16) which we have found to have solutions localized 

about r = 0. There are such localized pulses only in a focusing medium. 

V. 3. iii Localized Solitary Waves in Three Dimensions 

We make the substitution Tl = x - Vt, where V is the same quan-

tity as in V. 3. i and V. 3. ii, in the equations of circular polarization 
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(V. 14) and (V. 15). I£ we assume radial symmetry between y and TJ 

with no z dependence, then we obtain a similar two -dimensional solitary 

wave as in section V. 2. ii. The more interesting case results from 

assuming spherical symmetry between t), y and z. Here we set 

2 
r = 

2 2( 2 3 2) w w w + w + p 0 0 

( 
2 2)3 w - w 

0 

-1 2 -1 
'\l . 2 f( 2 ( 2 K 2 2 w )] 2 2. 
)J t1 +LT 3 - ~-z- ·- 2 pz (y +z > 

w w -w 
0 • 

In this variable we obtain 

+~a 
r r 

2 6 4 3 ye: w wa 
+ o~~P~~---

( 2 2)4 w - w 
0 

= 0 

for the first equation of (V. 14), while the rest of equations (V. 14) and 

(V. 15) are satisfied by the chosen form. We have the case of a pulse, 

localized about the x-axis, propagating with speed V. We write this 

as 

where 

and 

a 
rr 

D 

1" 

0 2 
-;--

r 
a 

r 

= c2K2 

2 ye: 
0 

= 
( 2 wo 

2 

w
2

( I 
w 

) + 
p 

2 2 
w

0 
-w 

6 4 w w p 
_ w2)4 

This equation has been studied in connection with elementary particle 

physics. Finkelstein et al. [ 13] have shown through phase plane argu-

ments that this equation has analytic, symmetric eigensolutions that 

are asyrr1ptotic to zero at infinity and have one, two, three, etc., zero 

crossings as in the case of solutions to (V. 17). Schiff et al-[14] 
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display the follow ing approx imate solution for the lowest eigensolution 

obtained by Teshima by Lagrangian techniques in the same manner as 

we did in section V. 2. ii with equation (V. 17): 

a [ 
-r -4. 1 Or J 

= 2. 6060 (e - er ) + (2. 33r-l. 360)e - 4 · lOr . 

This profile is sim.iiar to the lowest eigenfunction s elution of equation 

(V. 1 7) but it has a higher central maximum and is thinner. The higher 

eigenfunctions represent pulses that are ellipsoidal with sets of ever 

weakening ellipsoidal shells sur rounding the1n, the whole pattern 

moving with constant velocity. 
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APPENDIX 

THE QUESTION OF PSEUDO-FREQUENCIES 

In Chapter III it was m.entioned that a constant electric field 

cannot build up if its .value is zero everywhere at some starting time 

and the potential V (P) is an even function of P. We now prove this 

by applying Whitham's procedure [5] including pseudo-frequencies 

which represent the slowly varying 11 constant 11 component of the field. 

The relevant Lagrangian is (III.l): 

2 
l {pt } 
~ z- V(P) • (A. 1) 
E: w 

0 p 

Following the standard procedure of Whitham, the functions A and P 

are considered periodic functions of 8, but the potential A is allowed 

to have a secular function added to it. They are written 

P = P(8,X, Y, T) 

(A. 2) 
A = <P (X, Y, T)+A(8, X, Y, T) 

where X, Y and T are the slow scales defined by 

X = e:x, y = e:y , T = e: t . 

e is the fast variable defined so that 

8 x = K I (X, Y, T), 8 y = K 2 (X, Y, T ) , 8 t = -(.u(X, Y, T ) 

and the secular function <P is defined by pseudo-frequencies f3 1, f3 2 , y 

such that 

<p X = p l (X, y, T ) , <p y = f3 2 (X, y, T ) J <p t = -y (X, y, T ) . 
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Substitution of (A. 2) into (A. 1) produces the explicit form 

L = 

We use Whitham's Hamiltonian formulation to simplify the work. This 

method produces integrals of the Euler equations quickly so that certain 

variables in the Lagrangian may be eliminated. One may differentiate 

the integrals we produce to justify the method. Whitham defines 

TT BL 
2 = a A- • e 

and then the integrals of the system are 

H = M 
and 

The explicit form of these functions is 

2 w P 8 
2 

E: w 
0 p 

8
o { 2 2 2 2 2 2 2 I 

H = 2 (w -c 1\ )A
8 

- (y -c f3 ) J- yP + 

= 
M 

2 
2 E: w 

0 p 

2 2 
1 {w Pe 

2 2 
E: w 

0 p 

+ V(P)} 

(A. 3) 

(A. 4) 

(A. 5) 

The integrals (A. 4) and (A. 5) are used to eliminate P
9 

and A
9 

from 

(A. 3) for use in the following form of S-: 



= 
1 

27T 
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M 
2 

2 e: w 
0 p 

Substitution gives the explicit form of £ as 

1 § W 2 ffdP - M 2 
e: w 2e: w 

0 p 0 p 

= 2rr 

where 

2 2 2 2 2 2 
F = M - 2 V (P ) + 2 e: "~{, yP + E: w ( y - c 13 ) 

0 L 0 p 

The Euler equations are 

£ = 0 
M 

(A. 6) 

(A. 7) 

(A. 8) 

Our purpose is to show that (A. 8) is s atisfied identically by setting 

B == 0, y = 0, l3 = 0. This condition w oul d leave (A. 7) as the s et of 

equations that w as d ealt with in Chapter III. 

The first equation of (A. 8) is 

- _I );.. 
27T 'j 

w 
2 2 2 

E: (W - c l\ ) 
0 

+ boundary terms = 0 



The second is 

- :t { in§ w 

+ 2 2 2 
W -c K: 
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1 { 2 2 -- w P+e:w y ff p 0 p 

1 ( 2 2 
- I -e: w c (3 JF '- 0 p 1 

+ boundary terms = 0 

Setting B = 0, y = 0 and ~ = 0, the integrands in all four loop integrals 

become odd if V(P) in the factor F is even, so that each loop integral 

is zero. In the terms that we have called "boundary terms 11 there is 

always a factor of ff from the integrand of (A. 6). These terms are 

evaluated at the roots of F and hence are zero. Thus each term of the 

equations is zero and the equations are satisfied identi c ally. 
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