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ABSTRACT

Two separate problems are discussed: axisymmetric equili-
brium configurations of a circular membrane under pressure and
subject to thrust along its edge, and the buckling of a circular
cylindrical shell.

An ordinary differential equation governing the circular mem-
brane is imbedded in a family of n-dimensional nonlinear equations.
Phase plane methods are used to examine the number of solutions
corresponding to a parameter which generalizes the thrust, as well as
other parameters determining the shape of the nonlinearity and the
undeformed shape of the membrane. It is found that in any number of
dimensions there exists a value of the generalized thrust for which a
countable infinity of solutions exist if some of the remaining parameters
are made sufficiently large. Criteria describing the number of
solutions in other cases are also given.

Donnell-type equations are used to model a circular cylindrical
shell, The static problem of bifurcation of buckled modes from
Poisson expansion is analyzed using an iteration scheme and pertubation
methods, Analysis shows that although buckling loads are usually
simple eigenvalues, they may have arbitrarily large but finite multi-
plicity when the ratio of the shell's length and circumference is rational,
A numerical study of the critical buckling load for simple eigenvalues
indicates that the number of waves along the axis of the deformed shell
is roughly proportional to the length of the shell, suggesting the possi-
bility of 2 ''characteristic length.' Further numerical work indicates

that initial post-buckling curves are typically steep, although the load
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may increase or decrease. It is shown that either a sheet of solutions
or two distinct branches bifurcate from a double eigenvalue, Further-
~'more, a shell may be subject to a uniform torque, even though one is
not prescribed at the ends of the shell, through the interaction of two
modes with the same number of circumferential waves, Finally,
multiple time scale techniques are used to study the dynamic buckling
of a rectangular plate as well as a circular cylindrical shell; transition
to a new steady state amplitude determined by the nonlinearity is
shown. The importance of damping in determining equilibrium configu-

rations independent of initial conditions is illustrated,
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INTRODUCTION

This study is concerned with two separate problems. The first
is motivated by equations which model the behavior of a circular mem-
brane. The resulting equation is imbedded in a c¢lass of equations, and
the existence of multiple solutions is analyzed for this class. The
second problem is to study the static and dynamic buckling of a circular
cylindrical shell under axial loading,

For the first problem, we are concerned with studying the
possibility of muitiple equilibrium configurations of a circular shallow
elastic membrane whoese surface is subject to an axisymmetric pres-~
sure, A radial thrust is specified along the membrane's edge, and the
edge is restrained from deforming normal to its midplane. Only axi-
symmetric deformations of the membrane are considered,

In chapter 1 we study the case of an initially flat membrane
under a variable pressure. The situation of a flat membrane under
constant pressure has been studied by A, Callegari, E. Reiss, and
H. Keller [2]. In chapter 2 we consider a membrane which is not

initially flat and is subjected to a variable pressure,

The reader is referred to the references [1, 2] for a derivation
of the membrane theory. Notes on the final formulation of the problem

are given in Appendix C. The resulting equation is

4d_ (el s G _ 2
dr (r dr) A (1-u)? = \Brg (C. 6)
The bouﬁdary conditions are
S oo b mrE sl (C.72)

dr



ok
u{l) = 0 {C. 7b}
When G{r) and ¢(r) are of the form to be prescribed in chapters
1 and 2, it is found that equation (C, 6) can be transformed into a
second order autonomous system which is amenable to phase plane
analysis. This method was first used by Gel'fand [4] to study solution
multiplicity in certain problems arising in the theory of chemical

reactors, viz,

L ST )"0 L, n=1,2,3 7}
55
2.0 atr=o0 0. 1)
u(l) = 0 J
He found that there exists a value A, > 0 such that there are
(a) no sclutions when )\ > 9 (h= 1, 2,.3)
(b) one solution when X\ = ), (n =1, 2, 3)

(c) two solutions when 0 <A <}, (n=1,2)
(d) a countable infinity of solutions when X =iA_ =2 andn =3
(e) a finite but large number of solutioﬁs when n = 3 and
l)& - )\ml is small,
A, Callegari, E, Reiss, and H, Keller [2] applied this method to
study an initially flat circular membrane under constant pressure,
modeled by

1 d 3du
3 dr(r dr

) +2(1-u)® = 0

Here the differential operator is a Laplacian in four dimensions (n = 4),
They found the behavior can be described by (a), (b), (d), and (e) with
A, = YT&/9
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Joseph and Lundgren [8] studied {0.1) and

L

1 d n-1du, |, : Ll '
el @ T @ PMI-ew =0 -2

for arbitrary positive integers n and for 8 > 1, >0, For (0.1) they
found that (a) and {b) hold for n =1, that (d} and (e} hold for 2 <n < 10
with A =n(n-2), and that for n = 10 there exists one solution for

A <2(n-2). For (0.2) they found (a) and (b) hold for n = 1, (d) and (e)
hold when n-2 < f(8), and for n-2 = £f(p) there is only one solution in

o< < )\*, Here
£(B) = 4113-[3;1—) 4 VEE;—l

(Note: [8] also includes a similar study for @ < 0 and B < 1),
In chapters 1 and 2 of this study we find that equation (C, 6),

for appropriate functions G and &, is of the type

‘;E-l‘a('ii“ o=t Wy 4 2Pt (1-au)t P - yA 2 HF2)/P (0. 3)
¥ of

with p > 1 and ¢ # 0. We investigate solutions of (0. 3) for all real },
thereby generalizing the results of [8], Of particular interest is the
reéult that for @ > 0 there exist values p* (forn =2 1) and Ay (for n = 3)
such that if y > p* or A > Ay, then the situation may be described by
(a), (b), (d), and (e) with appropriate X _. (The cases of A large and
n =1, 2 are not investigated here.,) From this we see that the possi-
bility of an infinity of solutions persists in all dimensions, We
summearize our results below,
For A = 0 there exist )}, and p* such that, for n = 1, there are

(a) no solutions for akﬁ > a:\f >0

(b) one solution for o.'}\.p < 0
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{c) finitely many solutions fcr 0 < a.\g < o.'}\g’ if p < p

(d) 2 countable infinity of solutions when A = Ay ifp > pE

(e) 2 finite but large number of solutions if l)\—?\m! #0 is smnall
and p > p¥,

Here p* is such that §(u*+2) = 0, where

g(v) = -4(B-1)[v+3p(n-2)]° + 8% (n-2)° (1.23)
For A #£ 0 we restrict B to integral values and take n > 2, When !AI
<< 1 the situation is the same as for A = 0, except that p* depends on
A, For !AI sufficiently large we find

(@) podd, A>0, a>0: For A >0 there exist \_ and A, as above,
For A < 0 either there exists one solution for all ) or
A, exists such that no solutions exist for A < A, and
finitely many exist for )\:; <)\ <0.

(b) B odd, A <0, a>0: For A >0, ), exists but there is no A
and hence there are only finitely many solutions. For
A <0, there exists one solution for all A.

(c) P even, A >0, o> 0: K*, A.s and X:; as above all exist,

(d) B even, A >0, a <0: For A >0 either there exists one
solution for all A or A, exists but Ay does not, For A <0
there exists one solution for all ),

The cases omitted may be found by transforming ¢ + -a, A = -\ for

B odd and A =+ -A, )\ = -\ for B even.

For the second problem, we are concerned with studying the
buckling of a circular cylindrical shell under axial loading, The funda-

mental equations for a Donnell-type model are develcped in Appendix A,
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In chapter 3 we consider the static problem. The classical solution
known as Poisson expansion is introduced, and the problem of the
bifurcation of equilibrium states from this solution is formulated, We
analyze the multiplicity (i, e., the number of independent eigen-
functions) of eigenvalues or buckling loads and find that although they
are typically simple, an arbitrarily large albeit finite multiplicity is
possible when the ratio of the shell's circumference and length is
rational. A numerical study is made of the mode corresponding tc the
critical buckling load, and it is found that the number of waves along
the axis of the shell is roughly proportional to the length of the shell,
suggesting the possibility of a ''characteristic length" over which
buckling occurs. An iteration scheme developed by H, Keller and
W. Langford [13] is utilized to calculate the initial post-buckling curve
for simple eigenvalues, We find that the load may increase or decrease,
but regardless, the load-deflection curve is usually very steep. A
pertubation scheme is used to study the number of bifurcating branches
when the buckling load is a double eigenvalue. Several possibilities
occur: there may exist a one or two-parameter ''sheet! of solutions,
or else there exist precisely two branches of solutions. A final calcu-
lation shows that, through the interaction of two modes with the same
number of circumiferential waves, the shell may be subjected to non-
vanishing uniform torque even though no torque is prescribed at the
ends of the shell,

Chapter 4 treats the dynamic problem when the load is such that
Poisson expansion is unstable. The load is taken to be a ''small

distance'' into the unstable regime, and a pertubation scheme employing
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multiple time scales is utilized. This method was first used by

B. Matkowsky[14], We first apply it to the dynamic buckling of a
rectangular piate, and the results are compared to those of a study by
Reiss and Matkowsky[15] of the buckling of rods. The equation
governing the amplitude of the unstable mode is found to be a second
order autonomous equation in the abhsence of damping. However, the
equilibrium points depend on the initial conditions, which contradicts
the fact that equilibrium configurations satisfy the time-independent
steady state eguations., When damping is present, the terms depending
on the initial conditions vanish exponentially, and bounded solutions
are shown to be asymptotic to the critical points of a reduced auton-
omous system. A similar discussion applies to the problem of a
circular cylindrical shell, Qualitatively the two problems differ in
that the reduced system for a plate is two dimensional, but that of a
cylindrical shell is four dimensional, Also the plate has two physically
distinct stable equilibrium configurations, but the cylindrical shell has
only one. (For both problems we assume that the critical eigenvalue

is simmple.)
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CHAPTER 1: INITIALLY FLAT MEMBRANES

In this chapter we will analyze the number of equilibrium
configuratious of an initially flat membrane subject to a pressure
distribution of the form

p(r¥) =p_ (r%/R)°

for ¢ 2 0. Substituting this into the formulae given in equations {C, 1)

results in

G(r) = rp'+3 _
P - 2 (pmax\u(g_)g
iep \ E)\B

where we have set p = 2c, A flat membrane is described by g(r) = 0;
hence equation (C, 6) becomes

2 M
du_i_;_d_u_*_)\g_'___r =0

g? T (1-u)?

subject to boundary conditions (C. 7).
- d° 3 d : e .
Recognizing a2 + T3 @%@ spherically symmetric lL.aplacian

in four dimensions motivates the following simple generalization of the

membrane problem:

2
du+£1:_1_%‘l+xf3rP(1_au)l'ﬁ=o ,0<r<l (1.1)
dr= % o
. 1 du
llmr_'ot?a?!< e (1.2)
u(l) =0 ' (1.3)

The regularity condition (1. 2) only mildly strengthens the previous
boundary condition (C. 7a). We assume a # 0 so that the problem is
truly nonlinear; furthermore, we retain the assumption that u = 0.

Finally, we restrict B such that § > 1; this restriction on the form of



-5-

the nonlinearity will play a strategic role in certain of the arguments
to follow.

We seek a solution ue C%{0, 1), so equation {1,1) implies that
l-au(r) 0 for 0 <r <1, u(l) =0 and continuity then imply that 1-ou >0
in (0, 1], We extend this and require

loau(r)>20 - 0=sr<1l (1. 4)
Elementary considerations using the theory of lie lead to the following

change of variables:

x = logr (1.5)
vix)= (1-cu)r’ (1. 6)
where
v o= -(ut2)/B (1.7)

Note that v < 0. These new variables transiorm equaticn (1.1) into

the equivalent autonomous equation

2 -
< Y @y +2en) G F v (V420 - PP o p
dx
or 5
L v+ + vov-arPyl P g (1.8)
dx
where we have defined 8= v-{n-2) (1.9}

Boundary conditions (1.2) and (1. 3) become respectively

lim = yw| < os (1.10)

-(y+2)x l_c_l_x_c
Kb~ © dx

and

v=1 atx =0 (1.11)
Remark also that condition (1.4) implies

v+ asx - (2,12}

since v < 0,
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Although it is possible to study egquation (1. 8) in the phase plane

directly, one last change of variables proves to greatlv simplify the

analysis., Set

y(x) = u:)_ﬁv_rj
z(x) = ;1}— 3;;

We find that equation (1. 8) is equivalent to the system

y = -pyz = i{y, z)

z=vy-(z-vX{z-9) = g(y, z)

f

where differentiaticn with respect to x is indicated by a dot.

boundary conditions become

y ~(v+2 -1/
11n1X4_ e )x(z-\-‘)ly] /B s &)

y(0) = arP
Furthermozre, {1.12), {1.13) and the hyponthesis § > 1 imply

y 230 as x =+ -

(1.16)
(1.17)

(1.18)

In making the transformation (1. 13) we have tacitly assumed that

A #0. When A = 0 it is easily verified that equations (1.,1),

{1. 3) have the unique solution

u(r}y =0 , O0=r<l

(1.2} and

for n > 0, In the remainder of the chapter alﬁ # 0 will be presurned.

Depending on the dimension, three cases arise in the phase

plane analysis, namely: n>2, n=2andn =1,

The case n > 2

From (1.9) we see that 6§ <y < 0. System (1.15) has three

critical points in the finite plane:

Pyt y =0, z =Y



Py,: v=0, z =20

=]

Py: y=v6, 2z =20
In figure 2 we indicate the field of tangent vectors corresponding to
system (1.15), including the locus " where z = gly, 2z} = 0. Note that
v &0, z = -(z-v){z-6) provides three exact solutions whose trajectories
completely cover the z axis; consequently no trajectery can cross the
z axis,

Next consider the local behavior about each critical point. We

£

readily compute b = -Bz, fz = -fBy, gY =1, g = -2z+v+6 and so the

equaticn for the characteristic exponent £ at the critical point (yq, za) is
-Pzo -4 -Byo |

l -ZZD +'\{+e"ﬁ;

=0 (1.19)

For Pi, vo =0, Z2o =¥y and (1,19) becomes

-By-4 0

1 B-y-2

which has roots £ = 2y = -By and £ = £, = 8-y . Now -By =u+2 >0 and
B-Y =-(n-2) <0 forn>2, Consequently P; is always a saddle point,

For Ps, vo =0, zp = 8 and the roots are £ = -B6 and 4, = v-8,
f>1and 8 <0 mean 43 >0, v-8 =n-2> 0 forn>2 mean £L; >0,
Consequently, P, is an unstable node. Furthermore, p>1 andn > 2
imply that P; is an improper node, for recalling the definitions of v
and 8 we find

g1 = -BO = By + B(n-2) = (p+2) + B(n-2)
>n-2=v -5 = 4,

To describe the behavior near Py in more detail, set
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Figure 2 The field of tangent vectors for n > 2
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Figure 3 §(v)forp>1, n>2
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We obtain the linearized form of equations (1.15)
£ =-p6¢g
C=§+ (n-2)C

which has solutions
=

g = g PoE L
¢ =pel2i s _-Bbx e R

= e +n-2 ©
Since P, is an unstable node, trajectories approach Py for
x =+ -, This, and the relation -6 > n-2 > 0 imply that trajectories
are tangent to the { {or z) axis unless b = 0, in which case there exist
two trajectories tangent to the line & + (PS5 + n-2)C = 0.

For Pa, vo = Y6, zZo = 0 and the characteristic equation is

£2- (v+9)L +pYe =0

2y = B(y+8) + 3 (v+8)° -4pve
4z = B(y+9) - B (v+8)° -4pve J

Now 4Bvy8 = -4(n+2)8 > 0 so that the real parts of £; and £; always have

which has roots

(1.21)

the same sign; consequently P3 is always an attractor (i.e., a spiral
point or a node), Furthermore, Y+9< 0 so that P; is a stable attractor.
Consider first when Pz is a spiral point, i.e.,
(vy+6)° -4py8 <0 .
This relation is equivalent to the following inequality in terms of the
original parameters f, p and n:
(pt+t2) <0 (1. 22)

where

3(v) = -4(B-1)[v+3p(n-2)1°+p" (n-2)? | (1.23)

W
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Figure 3 shows the qualitative behavior of #(v) for > 1, n > 2. 1In the
region v > 0, & decreases monotonically, so for given § and n, we have
a spiral for all u 2 p* if and only if $(u++2) < 0. In particular, Pz is a
spiral point for all p = 0 if (2) << 0, and this can be shown to be
equivalent to
B® (n-2)(n-10) + 88(n-4) +16 <0 (1.24)

For the membrane problem originally proposed, n =4 and p = 3; it is
a simple matter to verify that (1.24) is indeed satisfied for these values
of the parameters. More generally, for given values ofn >2 and g > 1
there exists a value p* such that for all p > p*, Pz is a spiral point.

Next we consider the structure of the phase plane near Py when
it is a node. (It will turn out that the local structure about Pz critically

determines the number of equilibrium solutions of the membrane

problem.) Sety =Y8 +§, z = (; the linearized form of equations (1.15)

is now

6 -6

¢ 1 y+8 C) .
Eigenfunctions P

EY . X fc
satisfy

(B 6
1 Y+e—£ Cg) G
or c; = [£-(y+8)]cy. Note from equations (1.21) that

4 -(v+8)

i

=%
Lz -(y+8) = -4
The linearized theory in the neighborhood of P53 thus provides the

approximate relations
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(%) & aefrlx (-,32) § befagx (—L’l\\
¢ 1 1)

for some constants a, b for a given trajectory. Since £5 < i; <0, we
can conclude from this that in a neighborhood of Pz all trajectories are
tangent to the line y - y6 + 45z = 0, except {or one pair of trajectories
which is tangent to the line y-v8 +4,2z = 0.

In the special case that £; = £; <0, there is only one eigen-
vector, and the general theory for critical points shows that Py is
again an improper node with all trajectories tangent to the same line,

In figure 4 we summarize the above results about the behavior
of trajectories in a neighborhood of each of the finite critical points.
Some reference to figure 2 may also be helpful. We note in passing
that the tangent line to I" at P; is y - v8 + (Y+68)z = 0. A justification
that the linearized theory does in fact accurately describe the behavior
of the solutions of the full nonlinear equations in neighborhoods of each
of the critical points can be found in a standard reference, such as
Coddington and Levinson [3].

By combining the results of figures 2, 4a, and 4b we can
ascertain that the phase plane for y < 0 has the qualitative form of
figure 5, regardless of the behavior at P, We now concentrate on
completing the phase plane for y > 0. First we show that no limit cycles

exist, Introduce m = log y and compute

f=y/y = -z = F(n z)
}(1.25)

y - (z-YNz-8) = e" - (z-y)(z-8) = G(n z)

]

z
Suppose a limit cycle exists (necessarily it must lie entirely within the

region v > 0), Then its image in the 7m, z plane must also be a simple
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(a) near P, {b) near P,
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{c) near P3, spiral case

/

(d) near P5z, node with distinct (e) near Pz, node with a
eigenvalues double eigenvalue

=

Figure 4 Phase plane structure near the critical points
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Figure 6 Non-existence of limit cycles
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closed curve, say C, inclosing anr area S. We calculate, integrating
over one period in x:

0

"

r 'r."._‘;"_,.idx:r .“d —'dn =r Fdz-Gd
[ (hz-zf)dx = [ (fdz-zdn) = [ (Fdz-Gdn)

qumj z) * (F, G)dndz {(using Green's theorem)

1l

drs(-22+ y +08)dndz

Consequently the limit cycle cannot lie wholly above nor wholly below
the line z = 3(y+8). (This is true in eiiher phase plane, since mnis
merely a rescaling of the y axis,) However from either equation (1,15)
or figure 2 we conclude that z > 0 along the half-line y > 0, z = 3(v+8).
This means that a trajectory can only cross this line in one sense
(Cf. figure 6). It follows that no limit cycles exist,

Now consider the {unique) trajectory eminating from the saddle
point P, into the region y > 0. From the vectcr field we see that ¥ > 0,
z > 0 initially, Now either this trajectory intersects the y axis in some
finite x, or else z < zy =0 for all x, in which case z &+ z5 as x -+ +=,
But fhen we must also have z + 0 and y »+ +=, This is inconsistent with
z =y- (z-Y){z-8), so in fact this trajectory must intersect the y axis
at a finite point (necessarily to the right of the spiral point Pa), From
the vector field (cf, figure 2) we can see that the trajectory then moves
upward to the left, intersects T in the region 0 < z, continues downward
to the left, intersects the y axis in 0 < y < v8, and then continues down-
ward to the right, intersecting T" in the region vy < z < 0. Finally, the
trajectory again moves upward to the right, We can now argue that the
trajectory is bounded and, in the absence of limit cycles, necessarily

spirals into Pj.
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1f we take any peint on T in the region y > 0, = < § and foliow the
trajectory through such a point as x <+ 4=, exactly analogous arguments
apply. If we follow such a trajectory for x =+ -=, the vector field forces
it directly into the unstable node P;. This discussion and the results
illustrated in figures 2 and 4 permit us to construct the phase plane
illustrated in figure 7 when P3 is the spiral point. When P3 is = node,
the plane remains qualitatively the same except in the neighborhood of
Pz, where trajectories either tend directly into the critical point or
spiral about it at most a finite number of times before tending into it,

Two possible families of trajectories may exist which have not
yet been discussed, their locations are indicated in figure 7 by region I
and region II, First we consider a point in region I, Necessarily as
x -+ +o@ the trajectory through such a point tends to Pz, We have not
argued, however, that such a trajectory intersects the curve " (in the
regiony >0, z > 0)as x + -o, If this does not occur, then y = +o and
z »+ +t= as x + -2, Similarly, the trajectory through a point in region II
must tend to P, as x + -, We have not argued that such a trajectory
intersects I (in the region y >0, z < 08) as x =+ +», Should this not
occur, then y » +® and z + -® as x » +to, Fortunately, it will turn out
that these two possibilities are irrelevant to the boundary value problem
posed, and so further investigation is unnecessary.

We now search for trajectories in the full plane satisfying
boundary conditions (1.16) and (1,17), as well as the derived condition
(1.18), Consider first (1.18), viz, y(-«) = 0, This eliminates all
trajectories except the two eminating from the saddle point P; and

those emanating from the (unstable) node P,. In particular, this
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eliminates the possible trajectories in region I mentioned above,
Consider trajectories tending to PP, as x = -, Along them
z -y -*0-v#0, someeting boundary condition {1, 16) is equivalent to

-x(v+2)|y!! “1/B ¢ asx » -, We derived in equation

Box

satisfying e
(1.20) the asymptotic relaticn y = £ ~ae’ near P;, The trajectories
satisfying a = 0 locally are, in fact, segments of the z axis with y = 0;
hence they cannot satisfy (1.17)., Near P, boundary condition (1, 16)
thus reduces to

e-(y+2)x(e—pex )”1/‘3 _ - (v42)xtOx

oYl x A (y-nt2)x _ -mx o, o

But this is not possible for n > 2, so that no trajectory tending to Pg
as x - -= can satisfy (1.16)}. In particular, this also eliminates the
possible trajectories in region II desc;'ibed above,

Our only hope for a solution, then, lies with the two trajectories
emanating from the saddle point Py, Withy = §, z = v + { the linear-

ized.equations for (&£, C) are

£ = Byt = (ut2)

C =& +(8-Y)C = £ -(n-2)¢
with solutions
£ = ae(l»'"i'z)X - ae“ﬁYX
_ -(n-2)x a (pt+2)x
C=be + mp+n e
In the parameter domain n > 2 trajectories tending to § = { = 0 as

x + -o must have b = 0. Thus as x + -=



and

e-(y+2)X|Y! -1/p IZ"'Y1 - e—(y+2)xeyxe(p+2)x - - '
as x = -o for p 2 0, Thus these two trajectories do indeed satisfy the
boundary condition at ¥ = -» {corresponding to r = ().

In figure 8 we graph these two trajectories when P; is a spival
point. In figures 9 a, b, and ¢, we graph some typical examples when
P; is a node. In these latter cases the trajectory in the right half-
plane may tend directly into Pz or may spiral about (at most) a finite
number of times before tending into P;. The analysis presented here
is insufficient to determine precisely how many times P; is encircled
in the case of a node.

The remaining boundary condition, (1.17), is trivial to satisfy;
it merely requires that the solution trajectory intersect the line y = a'f‘:B
when x = 0. If a trajectory intersects the line y = alﬁ, then the trans-
lation invariance of the autonomous system (l.15) implies that a
solution exists for which x = 0 at the point of intersection,

The que stion of the number of solutions to equation (1.1) with
boundary conditions (1,2) and (1, 3) is thus reduced to counting the
number of intersections of the trajectories emanating from P; with
the line y = a?\s (each distinct point of intersection corresponds to a
different transformation back to the independent variable 0 = r <1
a;nd hence a distinct solution).

Regardless of whether P3 is a spiral point or a node, precisely
one solution exists for every value of cz?\.ﬁ < 0. We noted earlier in
the chapter that when A = 0 the unique solution u(r) = 0 exists. It is

equally simple to treat the linear problem resulting when « = 0 to get
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Figure 8 Trajectories satisfying (1.16) and (1.18),
P; is a spiral point
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Figure 5§ Trajectories sétisfy'i11g (1.16) and (1.18), P53 is a node
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the unique soluticn

(r_p.+2 - 13
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) (1 +2)p +n)
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Hence we see that even when aA™ = 0 a unique scolution always exists.
The number of solutions for rJe,\[3> 0 is of considerably more
interest--particularly when Pz is a spiral point {i.e. equation (1,22)

is satisfied). Inspection of figures 8 and 11 shows that there exists

a sequence of numbers {znj}

mg = - < Q <m2<m4<,..<mm<...<n‘13<m1 <1'n_1 =+
such that
for a?\p = rnj j solutions exist j=1,2,.,.=
for m,y < a)\ﬁ S*In2k+2 2k+1 solutions exist k =0, 1, 2, ...
<P < - o el ot e =
for My <al Mo g 2k solutions exist k=0,1, 2, ,..

In figure 10 these results are summarized graphically, It is evident

p

that m_ is the abscissa of Ps, i.e. for ar" = m_ = Y5 a countable
infinity of solutions exists.

We remark in passing that it was found earlier that for the
flat membrane P; is a spiral point for all values of p, Consequently,
figure 10 depicts the distribution of equilibrium configurations for
various edge thrusts and pressure distributions,

When P; is a node the situation for o.f?\f)> 0 is somewhat less
dramatic and, unfortunately, more vague, As can be seen from
figures 9a, b, and ¢, the separatrix connecting P; and P; can »tend'
directly into Pz without any spiral behavior, or it can spiral a finite
number of times before tending into P3;. Consequently, a similar

sequence of rnj can be constructed, with the difference that only a

finite number of D’)i exist and the number of solutions for arbitrary
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values of Q‘.}\_‘S is bounded for given values of B, n, anc y,

The case n = 2

In this case B = y < 0 (cf. equation (1,9)) and the critical points
P, and P, coalecsce into a single point, say P%, with coordinates
vy =0, z =¥. The characteristic exponents at P* are £; = p+ 2> 0 and
2, = 0; since one of the exponents vanishes P* is not an elementary
critical point and a special analysis will be necessary,

The characteristic exponents at P;z are given by equations (i, 21)
with 68 = v; this yields

L,z = YFYW-BFT

Since -B+l1 <0, P3; is always a spiral point, unlike the case n > 2. The
previous argument that no limit cycles exist is still valid,

The tangent field is illustrated in figure 12, To discuss the

behavior near P* sety =&, z =v +{. Then
€ = -ByE - PEC
% " } (1.26)
¢ =8=¢

It is convenient to introduce local polar coordinates
£ =rcosg , ¢ = rsing

in terms of which (1.26) becomes

H
I

r(-Bycos®d+cosgdsing) + r®(-p cos®d sing -sin®¢)

rR(g) + 7 p(g)

il

. (1.27)
# = (cos®d +Bycosgsing) +r(B-1)(sin®4 cos @)
= S(g) + ro(p)
The ( axis is covered by two trajectories satisfying £ =0, Q = -(_'_,2,

so that all other trajectories lie entirely within either the half-plane

£ > 0 or the half-plane §{ <0, Consider trajectories tending to P* as
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Figure 12 Tangent field, n = 2

Figure 13 Phase plane in a neighborhood of P*

U
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x ++o, Itis a standard result {e.g, see Hartman [5]) that as r(x)+ 0
either ];é(x)l +« or else p{x) » g, where gy is a solution of S(gy} = 0,
The first aiternative, that a trajectory spirals intoc P¥ 1is impossible
since no trajectory can cross the ( axis, To find two possible angles
of approach we solve

0 = S(po) = cosgo(cosgo +PBY singy )
to conclude either cosgy =0 or tan go = -1/Bv = 1/{n+2). The first
possibility yields ¢ = £T/2. We have already observed that the
positive ( axis is covered by a trajectory tending to P*asx = +=
along go = T/2, and the negative { axis is covered by a trajectory
tending to P* as x = - ® along go = -11/2,

It is also a standard result that at least one trajectory exists
which approaches P* along $ = @, if, in addition to S(go) = 0, it is
true that S'(fo) # 0. Suppose that tangs = -1/pY and in addition

0 =S"(fo) = -2 cosgosingo + PY cos 28,

or tan2@, = By. The trigonometric identity

tan 2o = 2tana /(l-tan®a)
yvields

BY = (-2/BY)/(1-1/B%v?)
which is impossible for 0 < -1/By = 1/(n+2) <1, Consequently, taking
into account the directions of the tangent field, we can conclude that
there exists at least one trajectory T7 in the half-plane £ > 0 and at
least one trajectory T in £ < 0 such that Ti tends to P along the
line tango = 1/{u+2) as x + -,

We can show that the trajectories ’I‘i are, in fact, unique by

evoking a theorem due to K, A, Keil (see Sansone and Conti [7], page
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257)., Consider the system for x(t), y(t)

X

kx + £(x, v)

¥

g%, y)
where k # 0, If the origin is an isclated singular peint of this system,
iff, ge C'ina neighborhood of the origin, and if in addition f = g = fx
= fy of gy = 0 at the origin, then there exist two and only two
trajectories with equations y = y(x) defined to the right and t;o the left
of x = 0, respectively, tangent to the x axis at the origin. It is simple
to show that equations (l.26) satisfy the hypotheses of this theorem
under the transfcrmation
x=£ , y=§&+pyC

where the x axis corresponds to the line £ + By( = 0.

We are now in a position to construct the local phase portrait
about P* shown in figure 13, A solution trajectory must satisfy (1, 16),
(1.17), and (1.18). Equation (1,18) implies that the trajectory eman-
ates from P*, Consider first trajectories tangent to g = -T/2 as
x =+ -2, Setd =-m/2 +g% Asx + - @*0; hence cosg ~ g* and

sing ~ -1, From equation (1, 27) we get asymptotically

r~rgE+r° (1.28a)
g~ -y g (1.28b)

Equation (1.28b) implies
¢=‘.=~e—[3yx asx =+ -® (1.29)

Substituting this into (1. 28a) we get the further asymptotic relation
r o~ (1.30)
which implies

r~(xo-x)-l~ 1X|—1 as X - -» (1.31)
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The result that r decays algebraically is consistent with the assump-
tion that
rg* = o(r?)

which was made in deriving (1.30) from (1, 28a). Also

£ =rcosd ~rgx

CE ¥ sin;ﬁ ~ -T
We can now use equations (1,29) and (1, 31) to check whether

or not trajectories tangent to g = -T/2 as x + -= satisfy (1,16).

e R M AT I
o m (VAR (g -1/P
e om (Y2 (B-1)/B vx
e B BB o g o

Thus such trajectories do not satisfy boundary condition (1.16],

+
Next consider trajectories T which are tangent to the line

£ = Byl as r =+ 0. Equations (l.26) yield
£ ~-BYE +£7/y

~ -BYE
¢ ~-ByC- &
~ -BYC

which imply
| £ e BYE oo oBYE_ (n42)x

Checking equation (1,16), we calculate

e"(Y"‘z)Xg Ig I']'/‘3 .
e-('y+2)xe(p.+2)x YX

eP* < o asx + -
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for p. 2 0, Thus trajectories T  meet this boundary condition,
We can now see that the case n = 2, for all values of p > 1
and p 2 0, is identical with the case n > 2 when Pz is a spiral point
and can be summarized by figure 10.

The casen = 1

In this case 6 = vy + 1 and there are three subcases to consider,
depending on whether 6 <0 {y < -1), €8>0 (-1<vy<0), or 8 =0 (y = ~1),
In the first two cases there exist three distinct critical points (the
same notation as before will be used); in the third case points P, and
P; coalesce into P with coordinates y = z = 0. Only the salient features
of the discussion will be mentioned since most of the details are
similar to arguments used for n = 2,

For all three subcases, P1 (y =0, z = ¥) is an unstable improper
node with characteristic exponents £ = -y =p+2 > 0 and 4; =8 -y = 1,
All trajectories except one pair are tangent to the z axis as they
approach P;. Only the pair of trajectories tangent to the line
v = (r+1)(z - v) satisfy boundary condition (1,16)., Now consider the
“subcase 6 < 0. Note that this is equivalent to 0 < -B8 = -B(y+1) or

P<p+t2

Critical point Py (y= 0, z =0) has characteristic exponents £;= -6 >0
and & = y-06 = -1 and is a saddle point., The separatrices are tangent
to the lines y = (1-p0)(z-8) and y = 0 respectively, Pz (y =v6, z = 0)
is either a stable node or a stable ‘spiral point, depending on the sign
of the function &(p +2) (evaluated withn = 1). Just as for the case
n > 2, there exists a value of p = p* such that for p > p* Py is always

a spiral point, The reader is referred back to figure 7 for the phase



BT
plane portrait, only with the labeis for the points P; and Py exchanged.
Existence and multiplicity are completely analogous to the case n > 2,
Next consider the subcase 8> 0 (B > p+2). Then the charac-
teristic exponents of Py are 4; = -6 <0 and £ ; = -1, so it is a stable

node, The characteristic exponents of P; are

2y = B(v+0) +EY(v+6)? + 48(p+2) >0

8. =3y +0 -3V(v+0)7+40(n+2) <0
since B(n +2) > 0. Hence Pj3 is a saddle point. From an earlier
discussion we know that the separatrix corresponding to £.+ is tangent
to the line (y -y8) + £_z = 0 and the separatrix corresponding to % _ is
tangent to the line (y -y8) +£,z = 0, Taking into account the tangent
field, we are in a position to construct the phase plane portrait in
figure 14a, In figure 14b we have isolated the two trajectories that
satisfy conditions (1.16) and (1.18), Note that for a)\‘s < 0 precisely

one solution exists, and that there exists a number m, >0 such that

1

for 0 < alp <my two solutions exist, for oe)\p m., one solution exists,

1’
and for a)\B > my no solutions exist.

Finally, consider the limiting case 6 =0 (p + 2 = ). ritical
points P; and P, coalesce into 1,5 with y = z = 0. Since this is not an
el ementary critical point, we introduce polar coordinates

y =rcos¢g , z‘=rsin¢
and find that equations (1,15) become

r

1

r(cos @ sing +vy sin®@) - r° (B cos®@ sin g + sin® §)
rR(B) + r°p(P)
(cos®d+vcospg sing) +r(B-1)sin®’B cosg

S(g) + r o (4)

Il

S,
1}

i
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Figure 14 Phase plane forn=1, 6>0
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The z axis is covered by three trajectories, so P cannot be a spiral
point. The possible angles of approach satisiving S(do) = 0 are
Ao = Z1/2 and tangy = -1/y =1

Using arguments similar to those for n = 2, it is possible to show that
trajectories exist which tend to P for all four angles of approach, and
that any trajectory which tends to Pasxo- ® does not satisfy bound-
ary condition (1.1¢), In figure 15a we construct the phase plane
portrait, taking the tangent field into consideration; in figure 15b we
isolate the two trajectories satisfying (1.16) and (1,18), Note that the
multiplicity of sclutions is qualitatively the same as for the subcase
8 >0.

Remark that for n = 1 and fixed B, there always exists a value
p* such that for all p > p* a countable ‘infinity of solutions exists for

some value of a?\_ﬁ depending on .
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(2) The phase plane
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(b) Solution separatrices only

Figure 15 Phase plane forn =1, 8 =0
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CHAPTER 2: INITIALLY CURVED MEMEBRANES

Recall from the introduction that the symmetric deformation of

a circular membrane can be described by

% rS%‘% +2° '(16)3 = 2% Brg® (G. 6)
-1,

In chapter 1 we considered the situation when the membrane is initially

flat, § = 0, and is subjected te a pressure of the form p = pmaxr‘u/z'
Recognizing r_e’a%(rgg—?) as a spherically symmetric Laplacian, we
generalized the problem to

1 4 ,n-idu Sy 1-p _

rn'l 5 ar + AT {1l ~au) =0 (1.1)

forp =20, B>1, a £0,

We next consider the situation in which the pressure distribution
remains the same, but the initial configuration of the membrane is
given by 4 = a rb, b 2 0. The natural generalization of equation (G 6) is

XAer_H

n-1

2(b+1)-n

T S - P St L
r T o}

= \Ar (2.1)

with A = Ba®.

The analysis of chapter 1 was possible because the transfor-

mations
x =log r (1.5)
vix)= (L-au)r’ . (1.6)
with Y = -(e+2)/p (1.7)

yield a second order automeoenous equation., This is still true when the
membrane is initially curved if the exponent b satisfies

2b= n-4-vy



-8
Note that fer the membrane problem n =4, B3 = 3, and so
b=(u+2)/6>0
Consequently g(0) = 0 and the membrane is indeed flat at its apex. The
response of the curved membrane is governed by
d®v

de

- (Y +8) 3—;- 4 v vy Pigha = ¢ (2.2)

To facilitate analysis in the phase plane we introduce

w= Av (2.3)
2=+ 3 (2. 4)

Then equation (2. 2) is equivalent to the system

W = -WZ

i(w, z) (2. 52)

1
11l

2 = awh -aAw-(z-y){(z-0) = g(w, 2) (2. 5b)
where differentiation with respect to x is indicated by a dot., The

boundary and regularity conditions (1,10), (1.11), and (1.12) become

w o=\ at x =0 (2. 7)
w0 asx = -o (2.8)

In this chapter A # 0 so that the membrane is indeed curved, and a# 0
so that the problem is truly nonlinear., Egquation (2.1) can be solved .
exactly for a unique solution satisfying the appropriate boundary |
conditions when A = 0, so we will also assume X\ # 0.

In chapter 1 we found that the casesn=1andn =2 required
special analysis, although the results were not startlingly different
than forv n > 2. In this chapter we will limit ourselves to the case
n > 2 insofar as the introduction of the new parameter A provides a

multitude of possibilities to consider. In particular
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=y -n-2)< y <0
will always hold, Finally, to simplify the discussion, we will restrict
B to integer values.

Consider the critical points of system (2.5). As before there
exist points Py and P, given by w =0, z = yandw =0, z = 8 respec-
tively, Any remaining critical point is of the form w =W, z =0
where W is a root of

plw) = awﬁ- aAw -v8 =0 {(2.9)
Although it is not possible, in general, to give explicit formulae for
such roots, we can derive much qualitative information graphically,
First note that p(0) = -y8 < 0 always. Suppose 0 = p'(W) = cyﬁ-\?vﬁ_l —-a A

or Bl = = A/B (2.10)

If p is even there always exists precisely one point where p' = 0, If
B is odd, there exist two values of W (equal in magnitude but opposite
in 'sign) where p' = 0 when A > 0 and no such W when A <0, Finally,
p'' = 0 only at w = 0, but p'(0) # 0. so there exist no inflection points,
Using these simple facts we readily construct the various

possible graphs of p(w) in figures 16, Note that when B is even we
consider only A > 0, and when P is odd we consider only o > 0. This
is sufficient to give the qualitative behavior of the phase plane in all
possible cases, because systerxﬁ (2. 5) is invarient under

(w, z, ¢, A) » (-w, Z, @, ~A)
when B is even and

(w, z, &, A) = (-w, 2, -, A)
when  is odd. Consequently, the phase portraits not discussed can

be obtained by simple reflection about the z axis,
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Figure 16 p(w) versus w
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Note that for B even, A > 0 and o < 0 there may exist no root,
one, or two roots, depending on whether the maximurn of p is negative,
zero, or positive, respectively., Combining (2.9) and (2.10), the

condition for two rocts is

i (A/ﬁ)ﬁ/(ﬁ-l) _QA(A/ﬁ)l/(.B-l)_ vo > 0
or simplifying
A>A%x = 5[\:9/&(1-6)](&-1)/& (2.11)

Likewise, for A = A% one root exists, and for 0 < A < A% no roots
exist,

Similarly, for 8 odd, A > 0 and a > 0 there may exist one, two,
or three roots, depending on the sign of the local maximum of p. The
1/(3-1)

local maximum occurs at w = -(A/B) and an analogous calcula-

tion shows that for

A> Ax three roots exist
A = A% two roots exist
O<A<A*% one root exists

where A% is again defined by (2.11),
Next consider the behavior locally about P; and P,., Near P,

we may set w = §, z = y+( to obtain the linearized equations
€ = -v¢

&

~aAE -(y-8)C = -aAE -(n-2)C

with solutions

¥ C = M-E)E me 7%

£ =ae 1™,
where ‘al = ~acA/(n-2-v) = aeA/H. Since -y >0 and -(n-2) < 0, this
is a saddle point.

C/t = (b/a)eGX + aA/B
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We designate the trajectory emanating from P; into w > 0 by it and
by T for w < 0. If, near Py, we set w=§&, z = 6 + ( and linearize,

we obtain

£ = -0t
C = -aAE -C{8-v) = ~eAE +(n-2)C

with solutions

O3

-6x

£ —ae ,.(::be(n"z)X

+a.1e-
where ay = aeA/(n-240) = aad /vy
Since -6 > 0 and n-2 > 0, P, is an unstable node,
CfE = (b/a)eex +aA/y

Graphs of the phase plane in a neighborhood of P; and P, are summar-
ized in figure 17,

To study the behavior in the neighborhood of a critical point
w =W, z = 0 (should one exist) we examine the characteristic exponents

£ which satisfy

f -2 . -4 -W
. w z
0 = = [3_1
=0 v, -4 W' T -cA Y+8-4

or B
L2 (y+0)L+apW -0AW =0 .

Using p(W) = 0 we simplify this to
22 -(y+8)4 + (B-1)aAW +BY9 = 0

which yields the characteristic exponents

2, = 2(v+8) % %]/(He)"‘ -4[(B-1)aAW +BY6] {2.12)

To analyze this in more detail, we shall consider the cases of small
amplitude and large amplitude initial configurations, First, however,

there are several more relevant observations.
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Figure 17 Local phase plane behavior near P; and P;
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Just as in the case of the initially flat membrane, the z axis is

completely covered by trajectories satisfying

w =0 z=-(z-y)z-0) .
Consequently, no trajectory can cross the z axis., In particular, if
any limit cycles exist, they rust lie entirely within the right half-plane
or the left., By making the transformation m = log w, an argument
completely analogous to that of chapter 1 shows that any limit cycle
must necessarily intersect the line z = _%(»_y + 8).

Arguments regarding the boundary conditions are also similar
to those of chapter 1 and will not be repeated, Condition (2. 8) requires
that a solution trajectory emanate from Py or P,. Condition (2.6)
further requires that the solution trajectory be a separatrix emanating
from the saddle point P, viz. TV or T . Condition (2. 7) requires
that we choose the separatrix in the right half-plane for A > 0 and in

the left half-plane for )\ < 0.

Small amplitude pertubations, 0 < |A] << 1
Case 1: ﬁreven, A>0, a>0

From figure l6a it is clear that there exist two roots to p(w)
and hence two critical pointson the w axis, If W is one such root,

expand
W= Wo + AW, + AW, + ... (2.13)

and substitute into (2. 9) to get
oz'Wog3 -yB =0, QBWQB-lwl -aWo =0

or

I

Wo = *(y8/a)/P (2. 14a)

Wy

é(a/ye)(ﬁ_z)/ﬁ >0 (2. 14b)

Thus to leading order in A
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2, = B{y+5) £ 3V(y+0)* -4pvo (2. 152)

i.e., the result is the same as for the unperturbed case: either a
stable spiral or a stable node, In the special case that (y +6)°-4Bvyd = o,

we have

Ly =By +8) £ 7 -(p-1)aAW, (2. 15b)

so that the unperturbed critical point, a node, becomes a spiral in the
right half-plane and remains a node in the left half-plane,

Each intersection of a separatrix from P; with the line w = A
corresponds to a distinct solution of the boundary value problem, In
the unperturbed problem there was no difference between X and -iA. In
the perturbed problem, when the critical points are spirals, for
example, there still exist values 7\+mand A, such that there exist a
countable infinity of solutions when A attains either of these values,
but it is no longer true that Kt = -?L;. However, for I)\! small there
still exists a unique solution t§ the boundary value problem, and for
l)\l large no solution exists. In the special case that (v +6)%-4pv8 = 0,
an arbitrarily high multiplicity of solutions is possible only for A > 0;
for A < 0 the multiplicity is bounded for given values of B, n, @, g, and
A, We note in passing that there cannot be a limit cycle about either
of the critical points because, as is clear from the tangent field, the
separatrices from P; bound the critical point s away from the line
z- = 3(y+ 8). This will be true in all cases to be considered, for A>> 1
and for 0 < |A ]<< 1, so no further comment regarding the nonexistence
of 1limit cycles will be made. In figure 18 the phase plane portrait is
given. The locus of points where W = f(w, z) = 0 is merely the w and

z axes. The locus of points where z = g(w, z) = 0 is denoted by T and
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Figure 18
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Phase plane for B even, 1 >> A >0, >0

w

Figure 19 Phase plane for  even, 1 >> A >0, <0
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has been included for clarity. We can also invert g(w, z) = 0 to get

2= B(v+0) £ EY(v+0)°+ 4p(w) @.16)

Reference to figure 16 and the fact that z = v or z = 8 whenw =0
make it easy to sketch I'. Recall that z7 = 0 when p = 0,
Case 2: Beven, A>0, <0

Refer to figure 16b, p(w) has no roots, T is a simple closed
curve enclosing the region of the phase plane where g > 0 and we can
construct the phase plane portrait of figure 19, It is clear that precise-
ly one solution exists for all values of A.
Case 3: Bodd, A<0, >0

From figure 16d we see that p has one root, This root may be

given to leading order by (2. 14a), except that it must be positive.

Wo = (v&/a)/B > 0 (2.17)
As in case 1, the nature of the corresponding critical point is unchanged
from that for the unperturbed system, except when (v + 8)° - 4Bvy6 = 0,
However, even in this instance we find that the point remains a stable
node (Cf. equation (2.15b)). The phase plane is given in figure 20,
For all A =0, a unique solution exists. In fact, there exist numbers
my; >m, >0 such that for A < m, a unique solution exists, and for

2
A > m, no solutions exist. The situation for mZS A< my depends on
whether (w, 0) is a spiral or a node, Depending on this, the appropriate
discussion of chapter 1 applies (e.g. Cf. ‘figure 10).
Case 4: Bodd, A>0, >0

This is essentially the same as case 3, From figure lée we

see that p has one root which, to leading order, is given by equation
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Figure 20

Phase plane for fp odd, A <0, >0

Figure 21

w

Phase plane for B odd, 1 >>A >0, >0
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(2.17). Although the phase planse, shown in figare 21, is slightly

e + - 5
altered, the trajectories T and T , the nature of the critical point

(w, 0), and the possible number of solutions for a given X are qualita-

tively the same as for case 3. The only exception is that when

(y+8)°-4By0 = 0, the unperturbed critical point (W, 0) is a node,

but

for A > 0 it becomes a spiral point (and hence there exist A with

arbitrarily many solutions),

Large amplitude pertubations, ]Al >>1

Case 1l: Bodd, A>0, >0

From figure 16f we see that p(w) has three roots, say W%, W,

and W+ where _ +
W <Wx<0<W .

Because p'(0) = ~aA @+ -®» as A @ +® we expect W#¥ =+ 0. The loczal

extrema of p occur at w = £ (A/{i)l/(ﬁ_l) (Cf. equation (2.10)) which

tend to T as A 2 4+ ®; consequently VV‘{L 44+ and W - -,

To find the roots W we substitute
W = UAl/(ﬁ"l)

into equation (2.9) to get
uP _u = (y8/a)e
h
wnere .- A'ﬁ/(ﬁ'l)

and 0 < g << 1 for A >>1, We now expand
U=Uo +€U1 = P
and substitute to get

UOB-’-UO =0

BUL UL -1 = v8/e

We are only interested in the roots to leading order.

(2.18)

(2.19)

(2.20)

(2.21)

(2. 22a)

(2.22b)

Equation
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(2.22a) yields solutions Ug = +1, -1, and 0. The first two provide us

with wt~ al/B-1) (2.23)
W™~ -al/B-1) (2.24)
If we take Uy = 0 and substitute into (2, 22b) we get
Uy = -v8/e
and hence
—— _(Ye/a)eAl/(ﬁ—l)z ~y8/aA (2. 25)

The characteristic exponents for each critical point are given
by equation (2.12). If we substitute the values from (2, 23), (2.24),

and (2.25), we get, to leading order:

at (W,0) 4, = -é—(erG)iil/(@—l)aAB/(ﬁ_l) (2. 26)
at (W, 0) by = (v +0) :V(B_l)aAﬁ/’(ﬁ-l) (2.27)
at (W*, 0) Ly = B(y+0) = 3(y-8) = yor 8 (2.28)

Consequently, (W+, 0) is a stable spiral, (W, 0) is a saddle point, and
(W%,.0) is a stable improper node. In figures 22 abc the three compat-
ible phase planes are illustrated. They differ in that the separatrix
T may tend into (W, 0), it may tend into (W% 0), or it may be
unbounded. For clarity, only TV is shown in the right half-plane.
Note that the locus T where g(w, z) = 0 consists of two branches: Aa
closed curve to the left and a parabolic-like curve to the right. If we
only consider the vector field, it is conceivable that i tends to
infinity in the fourth quadrant without ever intersecting I'. Were this
not to olccur, T+ could not spiral into (W'+, 0) as shown.

However, by examining the nature of the phase plane at infinity,

we can veriiy that T+ indeed intersects I'. The method to be used was



(2)

(b)

(c)

Figure 22

Phase plane for p odd, A >>1, o >0
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first introduced by Poincare and may be found in the references [6],

[7]. A point (w, z) in the plane can be represented in projective

coordinates by (w, z, 1), or more generally, by (w, =z, '\?) where

~ fr~

4

WiV =w Z/V =z v £ 0,

Points with ¥ = 0 lie on the circle at infinity. If we take v =1,

equations (2.5) can be rewritten as

Rl

%
(%)

<Ume

. + -
Poincare intrcduces

ofe
B

n

g R =

n

= f(*g;. , ﬁ) (2.292)
- g(% . %) (2. 29Db)
* i, 2)
(2.30a)

-wE
B % Z
L g('—'s =)

v e (2. 30b)
c\:ia“v[s—cz:.!fu’ir"ifp-l-’z"aﬁﬁ-z-\(E)"ﬁ-r(\(+e)""43 .

where f is a polynomial of degree 2 and g is a polynomial of degree B.

Equations (2. 5) can be imbedded in the equation

d’\l
w
v""3°2£~.

3k

which, when expanded, is

dz dv

% & (2.31)
g* 0

o anw P12 2 yo Py (yropdP aw - P lwzaz
+ (WP anm 9Pl 220P 2 _yotPriy+0)29P 11469 2522 ) ap
=0 (2.31")

Critical points are characterized by the simultaneous vanishing of the

coefficients of A%, dZz, and d¥, In addition to the finite points
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determined above with ¥ = 1, we find points on the circle at infinity by
setting ¥V = 0. By examining the coefficient of d¥% we conclude there is
only one such point, viz,

W, z %) = (0,1, D)
We introduce coordinates
W= ®/% V=V/Z Z=1
Note that points (w, z, 1) with w > 0, z < 0 corresponds to points {W, V)
with W <0, V <0, and that (W, V) = (0, 0) corresponds to infinity in the
(w, z) plane, |

With Z = 1, equation (2. 31') is equivalent to the system

W = awP laaw?vPlyewvPy (vreywvP -l (2.32a)

v = awPtlaavPw . vB-loyvevPly (yioyvP (2. 32b)
We wish to study behavior in the neighborhood of the origin., Note that
w=o0 Vv=-vPl yovPtli(v1+0)vP ana v = 0, W = awP*! provide
exact solutions which completely cover the V and W axes, respectively.
In particular, this implies that trajectories in the quadrant W <0, V <0
can oﬁly leave this quadrant by tending to the origin (infinity in the w-=z
plane), by tending to infinity (which means crossing the line z = 0 in
the w-z plane), or by tending to one of the other finite critical points
(which all correspond to finite critical points in the w-z plane).

Since B > 1, the origin is not an elementary critical point of
equations {2, 32). To study the behavior of trajectories, we introduce
polar coordinates

W =r cosg, V = r sing

which result in the system
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r= -rﬁmlsinp;ﬁ-Jr (y-r»e)r'ssinp-lg!
+ P @ cosPg - wa cosgsin® g - yesinty) (2.33a)
4 = -rB_ZcosyS sinp-l}tf (2. 33b)

Since trajectories cannot cross the W axis and the V axis, and hence
cannot spiral into the origin, they must approach the origin along
angles ¢, satisfying
cos ﬁosinp-lﬁo =0

This leaves only o =0, T/2, ™, 3T/2, so that a trajectory can only
approach the origin tangent to one of the axes,

Now consider a trajectory through a point in the quadrant W < 0,
V < 0. There m<g < 3m/2 so cosg <0, Since p is odd, Sinp'lyﬂ 2 0.
Conseguently, }5 > 0 and the trajectory must approach the -V axis,
Near the origin

T~ -rp_lsinﬁy‘ >0

since sing < 0 and B is odd:. This implies that as the trajectory
approaches the -V axis, it must move away from the origin, In short,
as regards the quadrant W <0, V <0, the origin is a saddle point!
We conclude that a trajectory in this quadrant must tend to a finite
critical point other than the origin or must tend to infinity. Corre-
spondingly, a trajectory in the quadrant w >0, z < 0 must tend to a
finite critical point or must cross the line z = 0. Since the only possi-
ble limit point as x + + ® is a spiral point on the +w axis, the trajec-
tory necessarily crosses the line z = 0. This in turn implies that the
trajectory crosses the curve T and the argument is completed,

Having confirmed the behavior shown in figure 22, we summa-

rize: For A > 0 the behavior can be described by figure 10, including



the existence of numbers my, m,, and ) such that
for 0 <X <m one solution exists
for \ > my no cclutions exist
for A = m_ & countable infinity of solutions exist,
For A < 0 one of three alternatives occurs, viz,
either there exists a number m < 0 such that
form<A<0 one solution exists
for A =m no solutions exist (Cf. figure 22a)
or there exist numbers m,, m, such that
for my <A<O0 one solution exists
for m, <A< my finitely many solutions exist, but
more than one
for A = m, one solution exists

for A < m, nc soluticns exist (Cf, figure 22b)
or for all A< 0 precisely one solution exists (Cf. figure 22c).
Case 2: Bodd, A<0, >0
From figure 16d we see that p has one root W which tends to
zero as A = = Referring to the discussion of case 1, we coenclude
W= Wi~ -vy8/aA >0 (2.25)
and the characteristic exponents are
£-+'=Yand L =8 . (2.28)
The corresponding point is a stable node., Figure 20 accurately
describes the phase plane, ar-ld figure 10 describes the multiplicities,
with the restriction that there exis-t only finitely many numbers m, .
Case 3: Beven, A>0, a>90

From figure l6a we see that p has two roots, viz,
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/ &
wt~ al/®B-1 5o snaw®~ :ys/aa <o.

The characteristic exponents of the corresponding critical points are,

respectively,

I+

L. = E(y+e) ¢ 11/(;3-1)@&/(9'“ (2.26)
and

2.2 v & .= 8 .
Hence (W+, 0) is a stable spiral point and (W3 0) is a stable impropex
node. The phase plane is described in figure 23, An argument similar
to that used in case 1 confirms that T+ indeed intersécts T'. For I)LI
large no solutions exist, and for |A| sufficiently small a unique solution
exists. For A < 0 the multiplicity of any A is bounded, whereas for
A > 0 the multiplicity is unbounded; in particular, there exists a unique
value A =m_ = 'W-,r for which a countable infinity of solutions exists,
Case 4: Beven, A>0, a<0

From figure l6e we see that p has two positive roots, which

must be

wt o A/ B-1) s g and W~ —y8/ah >0

The characteristic exponents of the corresponding critical points are,

respectively,

B(y+e) % }[(_6-1 yan B/ (B-1)

=
H
|

and

£, =% 5 & =4
so that (W+, 0) is a saddle point and (W%, 0) is a stable node. There
exist three alternate phase planes, differing in the region w > 0 just

as the phase planes for case 1 differ for w < 0. In fact, the possible

multiplicitiecs of X > 0 for case 4 are analogous to those for A <0 in
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Figure 23 Phase plane for p even, A >>1, >0
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case 1, For A <0, case 4 always has a unique solution, The phase

planes are illustrated in figure 24.

Infinite multiplicities

When A > 0 and o > 0 there always exists an attractor in the
region w > 0, When this attractor is a spiral point, there exists a
value A\ with a countable infinity of solutions. When A <<1 this
attractor may be a node, but by making p sufficiently large it can be
made a spiral point. When A >> 1 it is always a spiral point. The

question arises: if the attractor is a spiral point for A = A,, is it a

spiral point for A> Ay,? We answer this in the affirmative,

Denote the coordinates of the attractor by w =W, 2z =0. From

figures 16a, e, f it is clear that

W>w >0 (2.27)

where w is the (positive) root of %E‘, . Recall that & satisfies

N (2. 10)

By differentiating the relation p(W) = 0 we obtain

dw
dA

From (2.27) it is clear that W is an increasing function of A, Now the

characteristic exponents at (W, 0) are

4 = (y+0) & %ﬁwe)z—fét(ﬁ-l)aAW +pve] (2.12)

For 3>1and a>0
(v+8)® -4[(B-1)aAW + pvy8]
is a decreasing function of A; if it is negative for A = A, it remains

negative for A > Ay. Hence the desired result is shown.



(2)

(b)

(c)

Figure 24 Phase plane for g even, A>>1, o <0
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CHAPTER 3

CIRCULAR CYLINDRICAL SHELLS: THE STATIC FROBLEM

The following two chapters are concerned with the problem of
the buckling of a circular cylindrical shell under axial loading, In
this chapter we treat the static problem as an example of bifurcaticn
phenomena, using primarily methods from pertubation theory, In the
next chapter we use multi-time scaling methods to analyze the dynamic
buckling behavior of such a shell,

Donnell-type equations are used to model the cylinder. A
derivation of these equations is in Appendix A, We assume that the
shell is made from a homogeneous isotropic medium, and that locally
the body may be assumed to be in a state of plane stress. The resulting
equations are given below,

The shell is described by axial, circumiferential, and radial
coordinates x, y, and r, respectively; the corresponding displacements
are denoted by u, v, and w. The components O Oy Oyr of the
stress tenor vanish by the assumption of plane stress. In terms of the
remaining components we define the axial, circumferential, and shear

forces per unit width

N_=ho_, N _=ho_, N_ =ho
x x y y xy Xy

where h is the thickness of the shell, For a body in a state of plane

stress, Hooke's law becomes

. = B (e.. +ve )

1 -2 = ¥

o =—-—£——(e +ve ) (3.1)
1 55" ] =




Figure 25
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Y, V

Geometry of the shell

I



9] = €
Xy Xy

where E is Young's modulus, v is Poisson's ratio, and the strains are
approximated (Cf. Appendix A) by

e. = u_+EW

1

X x x
1 12 L
€ VvV +t=w + 5w 3.2

2¢ v. +u +w w

xy x y x'y ]
With the deflectional rigidity defined by

D = hPE/12(1-V°)
the equations of equilibrium are

o] 0
ax N T 5y Nxy

|
o

(3. 3a)

9 o)
By Ny t o ax Nxy

0 (3. 3b)

2 2 2 2 2
2 P o T gy O
X4 8 ox oy

o 2 2 o Xy Yy 2
ox ay ox oy

)+-11:—{NY =0 (3. 3¢)

Equations (3. 32) and (3. 3b) are satisfied if we introduce the Airy stress
function F such that

N, = 0°F/0y? N = 8% F/ %" W™ -8° F/oxay

Then equation (3. 3c) becomes

=2 2
2

%= oy oy

°F °w ,9°F d°w ,9°F 0w, 18°F
D( 2 2 “9xdy 0x0 2 2)+§_—2:0
ax Y X9 ax® oy 9x (3. 4)
Equations (3.1) and (3.2) may be viewed as a system of three equations
in the four unknowns F, u, v, and w, If we eliminate u and v from

these, we get a second equation in w and F, commonly known as the

compatability relation:
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zw)g_(azw)(azw 1
ay BXQ ayz R

2 2
&+ 2 PF = E) (5
ox°  9y®

(
The problem may be made dimensionless by introducing
x=1L¥, y=Lyfor0sxz<IL, 0<y=s2mR
u=1L8 v=1Iv¥, w=R¥
o, = ET_, B = E'c‘r’y, o .= ET
F = L®hEF
B = n®/12(1-v")1.2
w =L/R , Q=21/w

If we now suppress the ~ notation, we get the following non-dimensional

statement of the static problemon 0 =x <1, 0 £y = (;

1

o, = — (e_ +ve

x 1—\)2( x y)

& o —t e+ ve_) 3.6)

y = 1_\)2( ¥ Ve (3. 0)

_ 1
oxy Y exy
E:X = ux * -1— w; h
&.02
€ =V +w+-——1—w2 &(3,7)
Y ¥ 202 y
1
2¢ =v_tu +-—w_w
Xy x W2 XY ol
2 2 2
O:BF,CT:BF,O :_SF (3. 8)
x By> v 52 Xy X0y
Equilibrium:

9°F _ 8°F 9° °r 97 °F 9°
2t 4?2t S EEZW o W 2 F oW (3.9)

ax” 9y° 9x” =0y Yo ax® oy



Compatability:
Ay -8 o (Fep T, Dw (3.10)
o = ox° 9y®
where
£ 92 . 52
%" Byz

is the Laplacian,

Various boundary conditions are possible. We assume that the
cylinder is constrained against radial expansicn or contraction at the
ends and is simply supported there so

w=0 atx=0,1 (3.112)

w.__ =0 atx =0,1 (3.11b)
XX

Also the edges are restrained frem twisting, which implies
v=0 atx=0,1 (3.11c)

A prescribed uniform axial load is applied at the ends, say

g, = -0 = constant atx =0, 1 (3.114d)
Finally, all physical quantities (and their derivatives) must be periodic
in y:
W, v,w, 0,0
x

@ GXY have period Q in v (3.11e)

Decomposition of the Airy stress function

The requirement that O, cry, and OXY be periodic in y places
restrictions on the structure of F. Define
k(x,y) = F(x y+Q) - F(x, v)
Then

k x, =F x, yv+Q) - F X, = o (x, yt() - 0_(x, =0
gt Wl = Fo 0 wi0) = F_t, vl =0 66 pH0) = € 0% v)

and we can write
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k{x, y) = ko(x) + yk; (x)
Now define f(x, y) by
Fix,y) = £ y) + [ kolx)-Bka ()] +yP ks (x)
We compute

ko(x) + vk (x)

k(x, v)

F(x, y+Q) - F(x, y)

I

{f(x, y+Q) + (Y+O)[ 7 ko (%) - Fka (x)] +(Y+Q) 55 K (<)}

{165, v) +y ko () -3k (2) 1+ y2 5k ()

1

£65, y4Q) - 165, v) + (ko (x) - Sk ()] + (y+ D)k ()

1]

f(x, y+Q) - £(x, v) + ko (x) + yki(x) .

This implies
f(x, y+Q) = f(x, y)

so that f is necessarily periodic in y. If we set mg (%) = lko (x)-2k: (x)

¢

and mj; (x) = %—kl (x), then

F(x, y) = £(x Y) + ymo (x) + By°ma (x)
Thus far we have only used the periodicity of FYY =0 . Now -o_
= FXY = fXY + mp'(x) + ymi'(x) must be periodic, so m3'(x) = 0. Further-
more, GY = Fxx = fxx + ymd'(x), so mg'(x) = 0. Hence there exist
constants My, M,, My such that

my (k) = My mg (%) = Mo +xM,

In summary,

F(x,y) = f(x,v) + Moy + EM1y® + Mpxy

Note that F is arbitrary within any function G such that

Gxx = ny = ny = 0; i.e., if Fy is an Airy stress function which solves

a particular problem, then so is



Fp, = F
where

G=ax +by +c
for constants a, b, and ¢, The freedom to choose a, b, and c permits
us to specify that

My =0
and, as we will find convenient below,

pof(x, y)dy =0 forx=0andx =1 .
Now at x = 0 and x = 1, boundary ccndition (3,11d) becomes

~-o=0_=F__=£f +M,;
=5 ¥y Yy

Periodicity of f and hence fy' then imply

Kol Q
-0Q = f +M;)dy = £ +M, 0 =M
"Eo (YY 1 )dy Ylo 1 10
or M = -0 and fYY =0forx =0and x =1. Setting M; = ¢, we have

F(x,y) = f(x y) - 20y° + 4 (3.12)

¥
For x = 0 and x = 1 expand

f(x, v) = 2o (x) +Zn>0an(x) cos nwy + bn(x) sin nwy
Then f__ = 0 implies
vy Q
0= J' fyy cos nwydy = —(m)‘?fof cos nwy dy
where we have integrated by parts and used the periodicity of f, For
n > 0 we conclude
an(x) = 0 forx=0,1
and similarly bn(x) = 0. As noted above, without any loss of generality

we can require that
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0
ag(x) = %I fx,y)dy = 0 forx=0andx =1 ,
(o}

Thus we conclude

¥ . (3.13)

n

f(x,v) =0 forx - 0 andx
It remains to see what (3. 11¢) implies about f at x = 0 and x = 1,
For the moment relax condition (3.11a) to the more general condition
w=constant atx=0,1 (3.11a')
Now v = 0 and w = constant imply vy = wY = 0. The second of the strain
relations (3.7) simplifies to
€E_ =W atx=0,1 .,

¥
Invert the first two equations of Hooke's law {3. 6) to obtain

€ = 0 =vo_=F ~yF =f -vf +H4vo=f_ +vo
v vy x XX vy XX yyj\’ XX
or
f = w-vw at x=0andx=1 {3.14)
o d

Symmetric solutions

We now seek solutions angularly symmetric about the shell axis,
i,e., assume u, v, W, s Oy, and GXY are independent of y, First note

that the strain relations simplify to

ex =, + 1 W, A
20.)2
A — 3,7S
v ¥ } ( )
2€x B o
Y -
We calculate
) o] o ) _
=% " Ty "By Txy - "By %xy - 0

so that e = constant, From boundary condition (3.11d) we conclude



o
Similarly

3 BF 9

- O = ’—"-'R'B—CT = 0
ox Xy

T Bx T xy | Oy xx oy v
so that ny_ = constant, From Hooke's law (3.6) we sece that exy is
constant, and hence (3, 7S) implies that v is linear in x. Boundary
condition (3.11c¢) in turn requires that v vanish identically

v=0

from which we infer that exy = 0 and hence

o) = 0
xy
From (3. 6)and (3. 7S) calculate
wW=€ =0 -0 =0_+V0o
¥ y x y
or
G = w - VO
Yy
Also
- T S 2
OX—VO‘Y_ €, —hx+zw2wx = -0 -Vw +t V0O

Integrating this yields

xX
u(x) =u{0) - (1-v3)o +vw + -—--1—wB dx
o Fw”® T

All that remains is to find w(x). The equilibrium equation (3.9) reduces

to

Lw = hgwxxm+cwxx+ wPw = wivo (3.15)

subject to boundary conditions (3. 11la, b). The linear operator L is
self-adjoint; consequently (3.15) has a unique solution unless there
exists a non-trivial solution to

Lz =0

satisfying (3.11a, b). In that case(3.15) has no solution or a continuum
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of solutions, depending on whether <z, 1> ,5 Cor <z, 1> =0, respectively,
[= =]
Suppose Lz = 0 and expand z :2 k=1 cksin kmx.

Integrating by parts, we find

+ wzz)sinm‘ﬂ'x dx
XX

1
_ 2
0 = jo(h 2T OZ
= [b® (mm* - omm)® + w?] cm/2

Now z # 0 implies Sn # 0 for some c_; hence
o=o0 = b®(mm)® +w?/(mmn)® (3.16)

If we treat m > 0 as a continuous parameter and graph o ] @5 2
m,

function of m, it is clear that for a given value of ¢ there exist at most
two values of m such that (3.16) holds, If a (non-unique) solution to

(3.15) exists when o = T o then necessarily
1

0= <z,1> = ‘r sinmTmTx dx
o

i.,e,, m must be even,
When o £ Teen, 1 for any m, it is a simple exercise to find the

(unique) solution to {3.15), viz.

2

Mz
w(x) = Vo [l + (sinpyx +sinpy (1 -x)
(h1®-po®)sinps
(3.17)
912
+ (sinpgx +sinpg (1 -x):|

(r2® -p1®)sinp,

where p; and py; are defined by

pi® = (o +]/cy2 - 4h®w® )/2h® }
(3.18)
pa® = i@ -]/02 - 4h®w? )/2h?

Numerical evaluation of w suggests that away from the boundaries of

the interval 0 < x < 1, w(x)~ vo. We can obtain this result for small
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values of o by setting 0 = sh in {3.18) and letting h -+ 0+. For s such
that 0 < s < 2w, pu1 and yy are complex and |p1| = |po | = O{h"%).
Then for 0 <x <1

sinpix/sinp, + 0  sinpi(l-x)/sinpy 20 as h=0
and similarly for py, but

e /(a® -pa”) = O(), wa®/ (e’ -w%) = Oo(1) .
From equation (3.17) it is clear that w({x) ~ vo.

Poisson expansion and bifurcation

This motivates seeking a solution of the problem compatible with
w = constant., From the equilibrium equation (3. 9) we conclude o_ =

F__ = 0; then (3. 3b) implies ¢

,.=0ando = a{y) for some function
XX xy’ x Xy

¢, From equation (3, 3a) we obtain T 5 = -a'(y) or o, = B(y)-a'ly)x for
some function B(y). The boundary condition o, = -0atx = 0, 1 irnplies
B(y) = -0 and a'(y) = 0, whence O, = -0 and Oxv = @ = constant, Now

€_= 0 =V0O_ = V0o

y ¥ %

=v_tw+ w2 =v_+w
202 ¥ y

Hence v = (vo - w)y + Y(x) for some function y(x). Periedicity of v in

y forces w = vg, and v =0atx =0,1 then gives v(0) = yv(1l) = 0.

€ =0 _-VO0__ = -0
X x v
- 2 _
=u, > Vx T Y
2w
which implies u = -0x + &8(y) for some function &(y).

2e, = 2(1+V) = 2(1+v)e

&
XY

=]

- 1 =
_vx+uy+ WXWY = y'(x) + &' (v)



<
Theréfore Y'(x) = constant and 8'(y) = constant, Since v(0) = y(1) = 0,
we conclude y = 0. Periodicity of u in y forces § = constant which can
be chosen arbitrarily by a solid body translation along the x axis,
Finally 6 = constant and ¥y = 0 yield ¢ = 0. In summary, the only
solution compatible with w = constant is

w=v0 u=-0(x-3) v=0

The solution is known as Poisson expansion; it satisfies the problem
with boundary condition (3.11a) replaced by

w = VO at x=0,1 " (3,11A)
Note that with (3,11A), condition (3.14) becomes

f =0 atx =0, 1 (3.14")
XX

Equations (3. 9) and (3.10) are two equations in w and F; they
can be converted into equations in w and f if we find an appropriate
expression for 4. From (3.6) and (3. 7) we calculate

2€xy = 2(1+\))crxy = -2(1+v)ny = -2(1 ~1—\.})(1Xy +4)
and

2¢e =v_++u +-i-ww

Xy X vy w2 XY

Periodicity of u and £ imply

Q Q
f d = u_d = 0
‘ro Yy ¥ J'.o v 4
while boundary condition (3, 11lc) yields
1
[ wvoax =0
o X

By integrating by parts and using the periodicity of w, we have
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fQ rQ
w w dy = - ww__dy
o > Y “o xy

Putting all this together, we can conclude

Q1

1 ,
L= o J"O jowwxydxdy (3.19)

For the remainder of this chapter we will be concerned with the
bifurcation of solutions from Poisson expansion, We will have to solve
a hierarchy of constant coefficient linear equations with inhomogeneous
terms which are known explicitly at each step. If, instead of Poisson
expansion, we took the axisymmetric solution (3.17) as the state from
which bifurcation occurs, the relevant system would be

2 AR 2 o £ o =5 w
h[\w+0wxx+m fxx vv"s, xx s, xxVyy

=f w -2f w +f w - 240w
VY XX Xy Xy XX Yy Xy
W (APfew_ )twW. W =W -W_W
XX S, XX YV Xy XX yy

Here (Ws’ fs) denotes the solution of (3,17) and (Ws+w, fs +f) is the
solution of the full problem. The linearized equations for the pertu-
bations w and f have variable coefficients and require numerical
solution insofar as an explicit analytic solution is not possible, Numer -
ical studies by Almroth [9] have shown tﬂat the value of the critical
load o, at which buckling (or bifurcation) occurs is not changed suffi-
ciently by the boundary conditions to explain the well-known discrepancy
between theory and test data. Consequenﬂy we will use Poisson
expansion as the pre-buckling state,

Let w = vo + \:r; then drop the "~ notation so that w represents

the displacement from Poisson expansion. Equations (3.9), (3.10),
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and (3,12), as well as boundary coaditions (3,11A), (3.11h), (3.13),
(3.14'), and (3.11le), are transformed into the following final formu-

lation of the proklem (equation (3.19) is unchanged under this transfor-

mation):

h®A%w +ow__ $0°f =1 w -2f w_ +f w__ -2&~x (3, 20)

XX K Yy XX XYy Xy XX Xy Xy
WP ARf -w,_ ) =w® -w w [3.21)

XX Xy XX VYV

w:wxxzo atx=0,1 (3.22a)
f:fxx =0 atx=0,1 (3. 22b)
w and f have period Q) iny (3. 22¢)

We propose to attack this problem by seeking solutions which
bifurcate from Poisson expansion (which corresponds to w =f =0 in

this notation). We seek solutions of the form:

- oy
W= €wy t e wz +...
= 2
f = €f1 +E‘. f2 +.¢- } (3.23)
0 = 0O + €0y +€203 b e
L = €45 +... .
where the small parameter ¢ is defined by
s . & o5t 2 4 ¢
* = = jo jo w® + 2 dxdy (3. 24)

Substituting (3.23) into equations (3.19), (3.20), and (3. 21) yields the

following hierarchy:

O(e): h2A%w, + ToW1 . +w2f1'xx =0 (3. 25a)

w® (A% wi )= 0 (3. 25b)



O(e®)

O(c?)

D

L2 A2 . 4~ 2 o
h*A Wo COWE‘:{X +w fEXX = flyy'ﬁflxx- Zflxywlxy

(2.26a)
+ £y Wy vy~ 01 W1xx
@ (8% f5 - Wa ) = WE oy -WixxWayy (3. 26b)
; Q 1
Lz ime (TFv) _fo 'Jro W1 W1y dxdy (3.26¢)

h®AP wy + 0 Waxx t6w3f3 4y = £) yyWexxtfayywixx  (3.27a)
- Zfl XYVVEXY— Zfa walxy’_*'flﬂ"vz vy

+ oW vy “C1Waxx -0z Wiy~ 225wy Xy

2 a2 0
w” (A% iz ~waxx) = 2wy xy Waxy ~WixxWaoyy WaxxWiyy

(3.27b)
1 PQ 1
Ly = ——— Wy W, + Wow dxd 3.27
4w (1+v) Jofo 1, 2xy aWixy y ( <)
The normalization condition (3. 24) yields
Q1
¥4 = [ [ wi?+£,® dxdy
oo
Q1
0 = [ [ wiwp + £1£, dxdy (3.28)
o o
Q1

o
"

[ [ wa+ 2wyws + £2° +2f, £ dxdy
o0

All the Wj and fj inherit the linear homogeneous boundary conditions

(3.22).
Recallw = 2M/Q and 0 <y < Q. The set of functions
‘l"mn(x’ y) = sinmTx cos nmy { S 12 3 see
(Lmn(x, y) = sinmmx sinnwoy n =012,...

is complete on [0, 17x[0, O]. If we multiply equations (3.25) by one

such function and integrate by parts, we obtain
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22 z 2o R _
b anamnd % (mT) an’ln- 9" =) Amn =B
} (3.29)
Q® A .+ (mmZa =0
mn mmn mn

and similarly for b , B , Where
mn

mn
2 in
B = D "ro'Jowl sin mmx cos nwy dxdy
4 L 1
Amn = _O?»ro J‘o f; sinmx® cos noy dxdy
4 Q1
bmn = 5Io "ro wy sinmmx sinnwy dxdy
4 Q1
an =39 IO fo ) sinmmx sinnwy dxdy

and we define

Q ., = (mm?+ (nw)® (3.30)

Equations (3.29) have a non-trivial sclution if and only if

o =w?(mm?/Q°  + b Q% /(mm)? - (3.31)

If there exists a unique integer pair M, N such that M > 0, N =0, and
Oo = 0o (M, N) we say 0y is a simple eigenvalue. Note, however, that
for N > 0 there exist two eigenfunctions corresponding te (M, N).
However, if {w(x, y), f(x, y)} is a solution of the problem, then the
translation invariance in y of the equations and boundary conditions
implies that {wi(x, v+vo ), f(x, y+yo)} is also a solution for any constant
vo. These merely correspond to a solid body rotation of the cylinder,
Consequently, even though the solution of (3, 25)is, for some constants
c; and cg,

sin M™x cos Nwy + CQQEMNsin Mmx sin Nwy

ClQ

Wi (Xs Y) EMN

£1(x, y) = -c (Mm)?sin Mmx cos Noy - 5 (M) sin Mrmx sin Noy
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we may take cp = 0 without any loss of generality, The normalization

condition (3. 28) then yields

cyp = * 1/]/Q4MN + (Mm)*

Multiplicity of the eigenvalues

If we write 0o (t) =t + h‘?/t, then the eigenvalues are 0g (tmp)

where

t = (mn/Q___)® .

mn mn
From the convexity of the graph of og(t) for t > 0 it follows that there
exist at most two values t; and t; such that o5(ty ) = 0o (tz). For distinct
t; and t,;, a short algebraic manipulation shows that oo (t1) = gp(ts) is
equivalent to

ty b = B2 fis® :

t

Since the values t depend on w but not on h, givean t
mn. mn

e

and t_ , ,
m'n

distinct it is possible to choose h (in a2 unique fashion) so that

Oo (tmn) = 0o (tm,n,). Thus we see that o, may have "multiplicity' at

most two in regard to the number of corresponding values of t ___, and

indeed "multiplicity' two does occur. We can guarantee that o, (tmn)

has "multiplicity' one by choosing h =t__w, for in that case t occurs

mn mn

at the global minimum of g(t} int > 0 (o = 2wh there), Consequently, the

question of the actual multiplicity of oy (i.e., the number of integer

pairs m > 0, n 2 0 such that gy = 0o (m, n) can be reduced to studying

the multiplicity of L -

Suppose t_ =t ; then m;, U/le n, = ™2 /Q or

2
1 nl me na mz nNp

w?/1 = mymga(my -my)/(ming® -men;®)
so that w® /1" must be rational. Thus the irrationality of w? /1" is

sufficient to assure that all t n 2Te simple, and consequently the
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. . B — 'y A f 3 o
Op (m, n) are simple (except when Uo(tmn) GO("nﬁ'n" OF B o £ tm'n‘)'

To further investigate the possible multiplicity of g,, consider

when q = w/1is rational. Suppose t* = s We wish to find all other
(m, n) such that t* = tmn' Manipulating,

tk = (mn/an)z = (mm¥[mm?® +(nwe)® 12
leads to

(m® +n°q®*)/m = 1/m/t* =2c
Note that c is prescribed by q (or w) and an integer pair (M, N); also
c is rational., Under these circumstances, determing the multiplicity
of go is reduced to finding the number of integer pairs (m, n) with m > 0,
n =20, such that
(m-c)2 + (nq)2 =8 «

We will show that there exist g and ¢ (and hence 6, (M, N)) with
arbitrarily large (but nonetheless finite) multiplicity, This will be done
by construction, using integral values of c and special values of q.
When c is a positive integer it is possible, for any value of q, to find
a pair (M, N) such that ¢ = c{q, M, N); simply let M = 2c and N = 0,
Designate . = m-c so that -c <p < candn =20, When q =1 there exists
a one-to-one correspondence between such pairs (u, n) satisfying

p.a +n® =c®
and the eigenfunctions Uon (disregarding the translational invariance in
y) corresponding to op (t*).

The key to solving this problem is a standard result from the

theory of numbers (Cf, reference [127], sections 16,9 and 16.10),

We define R(C) as the number of representations of C in the form

C = A® + B®, where A and B are integers (not necessarily positive).
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We count representaticns as distinct even when they differ only trivially,

i.e., in the sign or order of A and B. For example,

0 = 02 -+ Gz R(O) =1
I = (£10P+0% = 0%+ (£1)° R(1) =4
5 = (#2)P+(£1)%= (1) +(22)° R{5) = 8

The main result is as follows:
r 5.
write C = Zaﬁpk kﬂqj J where the Py are distinct prime
numbers of the form 4m + 1 and the qj are distinct prime numbers of
the form 4m + 3. Then
41r(rk+l) if all s, are even
R(C) = J

0 otherwise

To api:ly this to the problem Hz +n° = cg, write

- ri{ s! ~ Sat Zr'k . 28!
c=2 Py ﬂ;lj J . ThenC=c® =2 ﬂpk ﬂqj ) so that

a = 2at rk=2r1'< SJ.ZZS-’]. .
Clearly all the s. are even, so

_ R(c®) = 4ﬂ(2r1’<+1)
However, R(c®) gives the number of pairs A, B satisfying

A® +B® =¢® -csA Bsc

Identify p with A and n with B, Obviously A = *¢, 3 = 0 are solutions,
Therefore there are R-2 solutions with B # 0, Of these 5(R-2) are
solutions with B > 0 by symmetry, Now B > 0 implies -c < A < ¢, but
we must also include the casepu = A = ¢, n =B =0 ( and exclude the
case A = -c, B =0). This results in 3(R-2) + 1 cases of pairs p, n
within the given bounds. Simplifying, the multiplicity of t* for q =1

and ¢ an integer is
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ZTT(Zrl'( + 1)
which can be made arbitrarily large by merely taking enough prime
factors of the form 4m + 1.

The above construction is limited to multiplicities which are
twice an odd number. Next consider g = 2 and c an odd integer, Set
v = 2n so that ‘

pe + % = .
When c is odd, precisely one of the numbers p, v must be even; this
must always be v, Since the function R treats A and B symmetrically,
there are 3R cases with B (or V) even. Except for the case v = 0, they
occur in symmetric pairs with v > 0 and v < 0; this leaves %(%R—Z)
cases with v> 0 and v even. Finally, we add the case p = A = c,
v =B =0, resulting in 5(3R-2)+1 pairs p, v. Simplifying, the multi-
plicity of t* for q = 2 and ¢ an odd integer is

TT(2r) +1)
which can be set equal to an arbitrary odd number,

We can construct oo with an arbitrary finite multiplicity. To
achieve an even multiplicity, decompose the even number into a sum of
two odd numbers and find corresponding values t; and t; (with, say,

q = 2); then choose h so as to satisfy t1t; = h®/w?.

There is a physical significance to q being rational. q =w/T
= L/Rm, where L is the length of the cylinder and R is its radius. When
q is rational, L and 21R are commensurable, i.e., there exists a unit
of length which divides both the length and the circumference of the
cylinder an integral number of times., In this situation alone is it

possible to cover the cylinder's surface with squares.
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The buckling mode

The smallest buckling load

)

o . = min O (t
min m=>0, n=0 O(m

n
is of the most physical interest, In table 1 the values of M and N
corresponding to T for various combinations of (dimensional) h, R,
and L are given, assuming that v = 0.3 (in all cases 9 nin is simple).
The values of N show no particular pattern; however for a fixed
thickness and radius, the values of M tend to increase somewhat
linearly with the length, This suggests the existence of a characteristic
length over which buckling cccurs. Indeed, buckling (or bifurcating)
from Poisson expansion is characterized by a rather large number of
waves along the entire axis of the shell for common values of L/R. In
experiments, however, one typically oﬂbserves only a few tiers (~ 2)
located roughly midway along the axis (see reference [18]). We noted
earlier that symmetric solutions with the ends restrained (but simply
supported) tend to undergo Poisson expansion away from the ends of

the shells; however, as the load increases, so does the width of the
boundary layers. Near buckling only a fraction of the length of the
cylinder is undergoing Poisson expansion, and we might conjecture

that it is this effective length which undergoes the deformations
observed in buckling,

Bifurcation for simple eigenvalues

We return to the problem of computing 0 = 0o + €0y + €0, + ...
along the bifurcating solution branch when 0o is a simple eigenvalue.
Although it is possible to continue with the scheme indicated by

equations (3.23) through (3.28), an iterative scheme exists which has
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rigorously been shown to be convergent for simple =zigenvalues (see
reference [13]). When N = 0, equations (3.19)-{3.22) reduce to

2
Ww  +ow _+tww = 0
AXKK KX

which has a continuum of solutions of arbitrary amplitude for ¢ = 0p;
since we can solve for this bifurcating branch exactly, we will assume
N > 0 without any loss of generality,

Introduce the vector u = (u3, vy, uz), whereuv; =w , uy =1,
and uz = £, and define an inner product by
G 1

f ‘JF U1 vy + ug vy dxdy + uzva
o“o

< lf_>:

1,

O

The problem may be formulated as G(u, ¢) = 0 where

WPARw+ow +w°f -f w_ +2f w_ -f w 428w
XX XX Yy XX Xy Xy XX VY Xy
G(u, g) = w2ARf W, tw. W - W
! XX XX yy Xy
Q1
4w (l+v) 4 - ww___ dxd ' 3.32
ait J ‘[‘o ‘ro =y ¥ (l )

The linearized problem about u = 0 is given, for ﬁ = (W, ’f, ':3‘:), by

h*A%® + oow__ +w®f
XX XX

G z = weﬁ\zg-wz%xx

1
o

(3.33)

4w (1+W) T
This coincides with our pertubation analysis, A nontrivial solution

exists if and only if 05 = o5 (t for some (M, N), We assume this is

MN)
the case, and we further assume 0y is simple. If we remove the trans-
lational arbitrariness of the solution, we have

3 = (pQ°sinMmx cos Ny, -p(Mm)°sinMmx cos Nuy, 0) (3.34)

where
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& ]/ 4 4 5
p = 1/YQ° + (Mm) s Q= Oy

The factor p was chosen so that

HEI* =<2, 8> =1

The adjoint operator is

hEAEW'* + O'QW* = w2f>f:
XX XX

o PR
GE T‘d_* =8 w<A~f* + mgw;'& (3.35)
41w (14V) L=
where é* = (w¥, f£% £%); the appropriate member of the null space is
‘6_* = (Q®sin Mmx cos Nwy, (Mm)?sinMrmx cos Nwy, 0) (3. 36)

We seek a functional A(u) satisfying

<g* Gy AMw) - GJu> = 0 :

Substituting and carrying out the required manipulations yields

Au) = 0o + N(u)/ D(u)

where
01
N(u) = "‘Eer 2 -f w__+2f =
(u) jo Io[ (24w, £ w  +2f w - ow )
2 2 .
+(M11) (Wxxwyy-wxy)]mn Mmx cos Nwy dxdy
and . 0O 1 3
D(u) = Q° (MTT)“I ‘r w sin Mt cos Nwy dxdy
o o

The iteration scheme yields the solution (u, o) as the limit of {(E_k, dk)},
where
W = e (B +ev) (3. 38a)
o A @®) (3. 38b)
and Xk+l solves
G Xk+1 . {Gﬁgk . G(Eko Gk+1)}’ < g*, Xk+1> -0 (3. 38¢)
S k+1
with v~ = 0. Furthermore, the error decreases as ¢ .
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With this notation EO = }1, as deifined in (3. 34); substituting this
into {3, 38b) yields ot = Osp. Xor the next iterate set y_"l = (wa, f1, £1).

After a little simplification, equation (3. 38c) can be written as

bP A%y + 0o Wi gy tw® £y = Bl = mxy?’xy~wyy%‘xx (3.39a)
WS - wim) = W W W (3. 39b)
Q1
dra(lev) g = [ JPO%Q‘XY dxdy (3.39¢)
along with the normalization condition
Q1
j‘o J';wlw* + fifkdxdy =0 . (3.394d)

We can evaluate the right sides of equations (3.39a, b, c) using (3, 34);

the results are

h® A2 w, -i-oowlxx-i-wzflxx — pe (Mm)* (Mw)* Q% {cos 2Mmx -~cos 2Nwy)
w® (A% £, “wi ) = Fp° (M1m)? (Nw)?Q* (cos 2Mmx-cos 2N wy)
.0.1 = 0

A particular solution for w; and f; is

Wy = 2o (x) + as(x)cos2Nowy
} (3.40)
fi; = As(x) + Az (x)cos 2Nowy
with
ha0'V+ ogad '+ w?AJ' = p° (MT)* (Nw)?Q? cos 2Mmx
} (3.41)
w2 (Ag  -ad') = %p2(MmM?(Nw)®Q?*cos2Mmx
and
h?(ag’ -2(2Nw)?al'+ (2Nw)*as ] +coad '+w Ay = -p? (MM)* (Nw)?*Q®

(3. 42)

-

w3 AV -2(2Nw)? A '+ (2Nw)* Ay -az''] = -%p° (MM (Nw)®Q*

Note that as, as, Ag, A, satisfy the boundary conditions
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ao = aoxx = O at x = 0, l, etC.

This particular solution is in fact the desired solution, for it satisfies
(3. 39d) with g* given by (3.36), and also with % given by

y* = (Q%sinMnx sinNoy, (Mn)°sinMmxsinNoy , 0)
(3.36")

( g% and y* together span the nullspace of GuOT). The assumption that

0o is a simple eigenvalue assures us that th;re. exist no non-trivial
solutions to the homogeneous forms of equations (3.41) and (3.42)
satisfying the boundary conditions; consequently the equations are
invertible and we are guaranteed that ag, a;, Ay, and A, exist,

To solve (3,.41) we first need the characteristic exponents of
the corresponding homogeneous constant coefficient system, Setting
ag = (:eil"LX s Ay = C eipx’ we find for nontrivial ¢ and C that

ud B2pt - oop® +w®) = 0

which has roots p = 0 and p = i'p.+, p = fp_ where we define p, > 0 and

S = (0o + ) 0o®-4h? )/2h
p?= (0o - ]/002-4w2h2 )/ 2h®

(Remark that S and p_ are real because 0o = Op (tMN) =z 2wh insofar

p_o >0 by

g
+
Il

as 2wh is the global minimum of ¢(t) for t > 0. ) This generates eight

linearly independent solutions of the homogeneous system:

(ao> (1)(0)(}()(0\ (-p.icos p+x> (-p.isin TS (—pz_ cos p._X) (-p.z_ sinp._x)
Ag 0/,\1/,\0/, x), cosp . x /, sinp_l_x ), cospx /, sinp x
A particular solution can be found as a constant vector times cos 2M1x,

Now equatiocns (3.41) and their associated boundary conditions admit
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a solution which is symmetric about x = £; consequently we can find

constants By, ..., Ps such that

2

a0 (x) 1 0 LB N
= B2 + B2 + Bacosp, (x-3) +54C05H_(X'"2')<
Ag (x) 0 1 vl 1
/ Pe
+ \ cos ZMTTx
Pe
Bs and Bs are determined by the inhomogeneous terms; then B,, B,,
Ba, and Bz are determined from the boundary conditions, After carry-
ing out the indicated algebra, we find

P
Bz = (A1w® + ?\QCb)/w‘L(ZMTY)E

-z fw® (2MTr )R

Bs = (MM (Bs + Pep?)/ (13 -p2)p3 cosTp,

Ba = (2MM)*(Bs + Bap?)/ (2 -p3)p? cosEp_

Bs = (A (2Mm)® + \5)/D

Be = (A (2Mm)Ph® - 2,00 - w® A1 )/w®D
where

Moo= PP (M) (Nw)PQ® , = P (MME(Nw)PQ*

D = (2Mm?[h®(2Mm)* - oo (2Mm)° + w?®]
We solve equations (3,42) in a similar fashion, It is easy to see
that a particular solution is Azp = --)\1/h2 (2Nw)*, Agp = —7\2/(.;32(2,Nm)4 ‘

Solutions of the homogeneous system exist of the form a; =c¢ elvx,

A, = Celvx, where vV must satisfy

h2[v® + 2Nw)®1* - oo [V +2Nw)® IBV® + 0V =0 .

Again the solution is symmetric about x = 5, and we write
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as () pedy FBE (210 )*y ~ 4 Q3
( ) = ( ) +7 Y. cos '\).(x—‘%g)‘ ( \ p
J 2 /r

A, (%) -k /0 BNw)*/ “j=1 ‘Y ¥

[i4)

l\.‘_.

where Q. = \*°
J ]

+ (2Nw)® and v1, Ya» Ya, Ys« are constants to be deter-
mined by the boundary conditions. In general, there exist four distinct
complex values fer v?. Although an exact solution exists for the roots
of a quartic equation, the answer is unwieldly and impracticable. For
the purposes of numerical computation, it was fcund to be easier to
find roots V° by Newtonian iteration, When o, = B = 2wh + 6% with
6% << 2wh, good first estimates for two of the roots are roots of

h{vV? + (2Nw)*)® -wv® = 0

viz.,

oW 241/ 0° @ 2
Vo= £ (2Nw) --]/4}2 2 (2Nw)

Once two values of v? have been found by iteration, the quartic may
be reduced to a managable quadratic in the rernaining roots. Alternate-
ly, an analytic expression may be found for V? by expanding as a power
series in 6,

Finally, 11 is known, and thence }_1_1; substituting into (3, 38b)
we have an expression for the second iterate, o2, whaich after consider-
able simplification can be written as

0% =0y +e®(Nw)PH/Q® = 0o +e°0;

where

H = ‘1,1 -8(Mm)?ag (x)cos 2Mmx +4Q% Ay (x) cos 2MTx

’ +4(Mm)az (x) - 20% A, (x) dx .

The integrations indicated can be carried out explicitly:
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1 2Bape’ 2Bq p°
Jﬂ ap (x) cos 2ZMmx dx = ———t-—' + - — %5—
o @Mm®-p3  RMm)® -p?
1 2Bap 2Pap_
_r Ag (x)cos 2Mmx dx = ) + + %Ei
o pj; -(2Mrm)®  pE-2Mmm)?®
1 ) 4
[ aa(x) dx = -n/bB*@Ne)* +) . 2v.Q7 sin(v./2)/v.
o j=1 J 3 J J
1 5 2 Y‘4
As(x)dx = -\s/w" (2Nw)® - 2%.V. sin{v./2
Io 2 (%) 2/ ( ) y Y YJ 3 { J/ )

j=1
Table 2 lists values of 0, computed for the modes (M, N) of
table 1. The data reflect few common features., They may be either
negative or positive, although these occur in proportion four to one,
Also, they vary in magnitude from 11 to 21, 116, 509. However, most
values are rather large--on the order of 10° or more--indicating that
the bifurcating branch is steep and that ¢ changes value rapidly,

Bifurcation for double eigenvalues

We next investigate the ramifications of gy being a double eigen-
value, Assume that there exist distinct pairs (M;, N;) and (M, Ny)
such that oo = 0o (M1, N1 ) = 0o (My, Ny ) and that there exist no othe_r
pairs. We further assume that N;> 0, for if both N; = 0 and N, = 0,
then the leading order solution which bifurcates from Poisson expansion
is symmetric; however, for symmetric sélutions the equations become
linear and we get a two parameter family of .solutions of arbitrary
amplitude, all corresponding to ¢ = 0p.

We refer back to the pertubation expansion used to derive
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equations {3.25) and (3. 26). Since Niy>0, we can remove the trans-

lational indeterminancy in y by suppressing the mode sinM; TxsinM,0y

from the leading order soluftion. Hence, for some constants cy, <y, dg
Wi = C3 Qi sin M mx cos Niwy + c; Q5 sin Mg mx cos Nywy i
+ dp Q3 sin My mx sin Nawy l
3 5 f13.43)
#1 =-cy (MiT)Bin My mx cos Niwy ~ ¢z (Mz1)° sin Mom< cos Npwy \
- , . - . - |
- dp (Mom)®sin Mgt sin Nowy

where Q; = (MiTT)Q +(Nim)2, i=1,2. The normalization condition (3,28)

integrates to yield

1=c2lQf+Mm)* ] +c2 (08 + (Mam)* T +42 [QF + (Mam)* ] (3. 44)
Using (3.43), equations (3,26a) and (3, 26b) become, after some simpli-
fication:
h®A%w, + oWz . T mszaxx = Ry (x, y) (3.45a)
where
Ri (%, y) = sin® Nywy cos Mimx[2cf QF (Nyw)® (Mym)* ]
| -cos®Nywy sin® M, mx[2¢£ QF (Nyw)® (Mym)* ]
+sin® Nawy cos® Mg mx[2c50QF (Naw)® (Mg m)* ]
-cos®Nowy sin® My mx[2¢2 QF (Now)® (Mz )]
+cos® Nywy cos® Mz mx[2dF Q2 (Now)® (Mom* ]
-sin® Npwy sin®Mymx[2dF Q2 (Nyw)® (Mom)* ]

-cos Njwy cos Nowy sin M; ™x sin Mg X ¢ ¢
[(N20)® (M M QF (M2 )? +(Ma11)* Q5" (Naw)?
Q8 (MM (Nzw)® (M2 M2 +QF (N1w)® (Mam)* ]
-cosNjwy sin Nywy sinM; ™ sin M, mx c; dy

[QF (M1m)? (Now )® (Ma m)2 +Q7° (Nyw)® (M m)*
+(Nyw)® (M 205 (M ™2+ (M1 Qp ® (Npw)? ]
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-cos Nawy sinNywy sin® Mp mix[4cs dy QF (Now)® (Mym)* ]

+sin Nywy sin Nywy cos M, % cos Mo 1x 2c¢1 ¢

(Nyw)(Ngw ) (M) (Mam) [QF (M )2 + QF (M2 ]

-sin Njwy cos Nagwy cos M Tx cos M, Tz 2cyd,
(N10)} (Naw ) (Mym)(Me) [Q° (M) + QF (M,71)? ]

-sin Nywy cos Nowy cos® My mix[4cpdy QF (Naw )2 (M,m)* ]
+cos Nywy sin My mx[ oy 1 QF (My )3 ]
+cos Nowy sinMpmx [0y ¢ QF (Mzm? ]
+sin Nowy sin My mx [ 01 ds O3 (Mo 1m)2 ]
and
w? (A%, - szx) = Ra(x, vy) (3.45b)
where

Ro(x, y) = sinlewy cos®M; mx[ e QF (Nyw)? (M) ]
~cos®Niywy sin®M; me[cf Qf (Nyw)® (Mam)® ]
+sin® Nywy cos®Mamx[c? QF (Naw)® (Mom)® ]
-cos® Nowy sin® My mx[cf QF (Now)® (Mg )2 ]
+cos®Nywy cos®My mx[d5 Q2 (Now)® (Mg 1) ]
-sin® Npwy sin® Mpmx[dZ Q2 (Npw)® (Mpm)? ]

-cos Nywy cos Nowy sin M; mx sin M, Tix ¢ ¢ QF Qez
[(N3w)® (Mg )2 +(My ) (Nzw)? ]

-cos Njwy sin Nywy sin M; mx sin Mg mx c;d; QF QF
[(N1w)? (Mg )% +(M; )% (Npw)? ]

-cos Nowy sin Nzwy sinzMz'l’TXEZCQ d, Q; (Nzaw)® (Mg m? ]

+sin Njwy sin Nywy cos M; Tx cos Mj Tix
[2cy e QF QF (N1w ) (Naw)(My m) (M )]

-sin Njwy cos Npwy cos M; ™2 cos Mg ¢
[2c1d; 07 QF (N1w)(Npw) (M1 M(Mz )]



.
-sin Nywy cos Npwy cos® Mp mx[2c5ds QF (Naw)® (Mgy ™ ]
The linear operator
L P B° 8% + G0 Wik +w2fxx)
(f )" ( W (0%F - w_)
is not invertible. The nullspace of its adjoint is spanned by the four

vectors

= (Qf cos Nywy sin My 1%, (M )% cos Nywy sin M, nx)t

2
( ) = (Qfsianwy sin M, mx, (Mz1 'rr)2 sin Nywy sin M, 1’rx)t
( ) = (QF cos Nywy sin My Trx, (Mg m)? cos Nywy sin My T'rx)t

Pa i
( ) = (QF sin Nywy sin My mx, (M m*sin Nzwy sin Mg Trx)t
i

We write equations (3.45) as

Wgo Rl
() - (a)
the Fredholm Alternative [16] implies that (3,45) has a solution if and

only if

5 ' v
<(¢k> ( 1>> =0 , k=12234 (3.46)
LPk 3 Ra

where the inner product is defined by

L) 0= A0 s

Equations (3.46) and (3. 44) provide the additional information needed

to calculate ¢y, cs, and dj. A table of integrals (see Table 3) facilitates
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the computation in (2.46). Equations (3.46) fall into four cases.
Case 1: M; and M, even, or Nj # 2N, and N, # 2N; (but N, > @), or
both
This is the simplest case; one of the equations in (3.46) is
vacuous, and the remaining three give
Oycy = 1€ = 0Oi;da = 0
From the normalization condition (3, 44) it follows that ¢; = c5; =d; =0
is impossible. Consequently o0; = 0 and these three equations are
satisfied for arbitrary values of ¢;, ¢35, and d;. The normalization
relation puts one constraint on these parameters and, in addition,
guarantees that they are bounded, The result is a two-parameter
family of solutions, even after the translational indeterminancy in y
has been removed,
Case 2: Ny = 0 (Recall N; > 0 always)
Take d; = 0 insofar as the corresponding terms in w; and £;
are absent, Two of equations (3,46) are vacuous,
Subcase 2a: Mg even
The remaining equations reduce to
Oycy =01cp =0
Bicf + Bpel =1
where
By = Qf + (Mm)* By = Q7 + (Mpm)*
Again 01 = 0; for this case we find a one-parameter family of solutions.
Subcase 2b: My odd
Now the remaining equations reduce to

2
01€C1y = C CgAl Ci1Cp = C1 Ag



e

Bycf + Bgefd =1

&
i

7l Q% 42 (My m)2 (Mpm)® J(N1w)® (2M, )® /017 (4M,° -M7)

>
()
n

20017 +2(Ma M (M, 1) 1Q0° (N1 w )P Ma® /(Mg )7 (4MF° -MS?)
The solutions of this system are:
(i) & =0 , c2=1//By , 0, =0

(Note: cp = -1//B; corresponds to the same branch with
g <0}

(ii) ¢y = YA, /(A1 B, +A,B,) ca = YAy /(A By +tAo By )

op = AL YA /(A1 By +A;B,)

(iii) ey = - YA /(A1 Bi+ApB;)  c3 =YA; /(A1 By +A; By)

oy = A1 YAy /(A By +A; By)
The solution represented by (ii) has the form
w3 = c1 0% cos NywysinM; Tx + c3 Q: sin Mg ix .
If we translate y 2 y + M/Njw this solution transforms into
wy = -¢; 1% cos Nywy sin My Tx + cpQp° sin My
which is the solution given in (iii). Consequently, we see that for this

case there exist two physically distinct solution branches that bifurcate

from Poisson expansion: one corresponding to 0, = 0 and another

corresponding to oy = A; YA /(AyB,+A-B;) .
Case 3: Ny = 2N,
Subcase 3a: M; even
One of equations (3.46) is vacuous, the remaining equations and
(3.44) yield:
01€C1 = 01¢5 =01dy =0

Byci®+Baca®+Bgd;® =1



which is the same as case 1,
Subcase 2b: M, odd
The relevant equations beacome
0i1Cy = cCi1cCpnlfg 01 Cp = c13A4
o1dy =0 cpdy =0
Byci®+Bycy®+Byd,° =1
where

4mw® (QEMF +2Q2 M7 ) (N2 M7 -Ny N M2 +N2M2)

Ag =
(4My° - M7 )7 M,
= 4mM(Naw)® (Q1° Mz® +20Q:° M ® )/ 0 M,
Ay = 2m01°% (Nyw)*My® (@ ° M7 +20.° M, % )/ Q" M°

The solutions fall into three sets:
(i) a one-parameter family of solutions described by
g =0 5 wm =20 = id® =18

(ii) a branch described by

Cl = \/As/(As Bl +AA4_ Bz ) C2 = .\/A‘;;/(Aa Bl +A.4_. Bz )

fy =0 01 = AsVAg/(AsBy+A, By)

(iii) 2 branch described by

cy = _\/J-xa/(ia\a]al+A,L Be) Cg = \/X4/(Aa B, +A; Bg)
d2 =0 O = Aa.\[A4/(A3B1+A4 BE)

It should be noted that solution (i) has reintroduced the translational
indeterminancy, since setting c; = 0 removes one mode. Thus we
are free to set d; =0, for example, in which case (i) represents the
non-degenerate bifurcation of a branch given by

c1=0, C2=1/‘/B2,d2=0,(§1=0
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As in case 2b, solutions (ii) and (iii) represent the same physical
solution. Consequently, there exist precisely two physically distinct
bifurcation branches,
Case 4: N; = 2Nj
Subcase 4a: M; even
This case is identical with cases 1 and 3a.
Subcase 4b: Mj; odd
Equation (3.44) and simplified forms of equaticns (3.46) are
gy ¢y = Agcycp g1dg = -Agcydy
o1cy = Ag(cz® -dg°) cgdz =0
Byci®+Byc®+Byd.? =1
where
Ag = 4m(Npw)® (Q°M1® +2Q:° M%)/ Q2 M,
As = 2mQ5°% (Naw ) Mp® (Q27 Mi® + 2027 M%)/ Q" M,y ®

There are five solution sets

@y ey =LWBy , e =0, da=20 4 gy =0

(ii) ¢y = VAg /(Ag By +Ag B;) , cz = VAs/(AgBi1+As By)
dg =0 , 01 = As VAg/(AgBi+As By)

(iii) cy = VAe/(AgBy +As By) » C2 = - VAgs/(AgBy+As By)
ds =0 01 = As VAg/(Ag By +As By)

(iv) c1 = - VAs/(AsBy1 +As B3) , ca =0
d, =vVAs /(AeB1+tAs B3) , 01 = As VAg/(AegB; +tA; By)

(v) c1 = -VAs/(AsB;+AsBz) , eg =0

ds = - VAc/(AsB1+AsB;) , 01 = As VAg/(AcB; +As By)
The translation y 2 y + m/Nyw shows that solutions (ii) and (iii) coincide,

and that solutions (iv) and (v) coincide. Using the fact that N; = 2N,
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we find that the translation y + y + 11/Njw takes solution (ii)
wy = c1Q®cosNywysinM; mx + ¢ Q2% cos Nowy sin My mx

into

w1 = -¢; Q2 cos Nywy sin My % - ¢ QF sin Nywy sin Mg 1x
which is solution (v). Consequently, solutions (ii)-(v) all represent
the same physical solution, and so two branches bifurcate from Poisson
expansion., Actually this just serves as a verification of case 3, since
the two are physically symmetric to one another.

Reference [13] also provides a rigorous justification for the
branches found by the pertubation expansion when ¢;, c¢g, dz, and o,
are isolated roots of the algebraic bifurcation equations. This is true
for cases 2b, 3b, and 4b,

Multiple eigenvalues can exhibit a curious effect not possible
for simple eigenvalues. Recall that for a simple eigenvalue, 4 vanishes
to O(e®). Using equations (3.26c) and (3.43) we find that for a double
eigenvalue, £, = 0 unless Ny = N; = N >0 and M; +M; is odd, Under
these special circumstances we calculate »

w(l+v)ls = c1da@®Q°NM; M, /(M7 -M®)
From our pertubation analysis (case 1) there exists a two-parameter
family of values c;, cp, dy; consequently, we can find values with
c1dy; #£ 0. It follows that the cylinder can be subjected to a uniform
torque, even though there is no tangential displacement (v = 0) at the

edges.
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CHAFTER 4
CIRCULAR CYLINDRICAL SHEILILS: THE DYNAMIC FROBLEM

In this chapter we propose to study the dynamic buckling of a
circular cylindrical shell using multi-time scale perturbation methods
[10]. When studying the stability of a sclution to 2 nonlinear problem,
one commonly considers the linearized equations for small pertui-ba.—
tions to the solution. If all such perturbations vanish (exponentially)
for large time, the solution is said tc be stable; but if even one per-
turbation grows (exponentially), it is said to be unstable. In the
latter case the linearized equations become an invalid approximation
as the solution grows in magnitude. Matkowsky [14] has found that
it is sometimes possible to examine the effect that nonlinearities have
on curbing such growth for parameters which are only "a small
distance'' into the unstable regime. Reiss and Matkowsky [15] have
applied this method to study the buckling of rods.

We will first illustrate the method by applying it to study the
buckling of a rectangular plate. Although the governing equations are
closely related to those for a circular cylindrical shell, the computa-
tions are considerably simpler, thus rendering the exposition clearer.
It will turn out that the equation describing the nonlinear growth is
almost identical with that fer rods; however, we will make several
observations not found in [15]. Following that, we proceed to apply
the method to the problem of the cylinder.

The rectangular plates

The static equations governing the buckling of plate of length

L. and width L may be obtained from the local equations (3.1}-(3.5)
x
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for a circular cylindrical shell by letting the radius of curvature R
become infinite. We assume that the plate is subjected to an end
thrust dir ecfed along its length, and that the edges are simply sup-
ported. We make the problem dimensionless by measuring in units of

length L ; this necessitates introducing a parameter

p = Lx/Ly

The dynamic equations are obtained by adding to equilibrium ecuation
(3.3c) a term representing the acceleration and one representing
damping effects. One obtains the non-dimensional equations for

0=sx <=1, 0sy<p

Il

w,, +2Tw, +h°A® +ow
t blo'd

tt
fyy L Zny ny + fxxwyy' - 24 ny (4. 1a)
- PR e
Mf = wh W W (4. 1b)
p .1
2(14v)pt = [ [ w W, dxdy (4. 1c)
subject to
W =W = 0 at x=0,1
e
W= W =0 at y=0,p
L (4. 2)
f=f = 0 at x=0,1
xY
£ =i = 0 at =0,
vy ¥ P

We will be primarily concerned with behavior when damping is small,
i.e. I' = ¢y for some small parameter € > 0.
The equilibrium configuration whose stability we analyze is

w=0, £f=0, £=0. (For small loads, a plate remains unaltered,
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whereas a cylinder undergoes Poisson expansion.) The linearized

form of equations (4. 1) about this state is

w,, +h®A°w + ow =0
tt XX

Bt = 0
where we have assumed w= O(c) and £ = O(e). A complete set of
functions satisfying (4.2) is {Ymn}’ where
Ymn(x, y) = sin mmx sin n®&y

with w= w/p now. Let

€
I

: Wrnn(t) Ymn

Hh
]

TEf ()Y
mmn mn

From (4. 3) we conclude

r-- - o
w n,tt+(nQ n-U(m'rr) rw =0
2 =
Q fn—O

where we have retained the notation Q = (m'n-)g + (mWw )2. It follows

that f = 0 and w = a cosh t + bsinA t, with
mn mn mn
8 _nBwE _ 3
A =h"Q° . - o(mm)

3®  dasa monotonically decreasing function of . If, for some (m, n)
A° <0, thenw _ grows exponentially, Hence the solution w = 0,
mn mn

f = 0 is unstable for © > GO, with

= ] 4,4
C)-O mlnm, I Ornn ( a)
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g = h?Q° mn)° = h¥/t
an/{ ™) "lln

mn (4. 4b)

11k

using the same definition for L. in Chapter 3. We note in

8 §

passing that the same arguments apply regarding the multiplicity

of t and consequently the multiplicity of Oran 28 an eigenvalue,

n

To find the behavior in the region U > Oy We expand

W:WJ_E +‘.V2€2 4 eiam

Fh
1l

fr6 + foe° + o0ee

I

L = 28 foes J

Thus we are perturbing away from the transition boundary between
stability and instability. We introduce multiple time scales tlr defined
by

k

- . = 4
tk te > k 0,1,2,¢.- (*06)

and treat them formally as independent variables, The differential

operator 9/0t transforms according to

— 2 ® &
Bt = Bto-l- € 81:1 + € Bte + (4. 7)

To simplify notation we shall write tg =T, t; =5, ta =N,
Substituting (4. 5) and (4. 7) into equations (4. 1) generates the following
hierarchy:

O(e) 97 w1 +h%0%wy + 0o aiwl =0 (4. 8a)

A fH = 0 (4. 8b)
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Oe®) aiwa +28__ w1 +2y8_ wi + k0w

a ; 2
+ 0p 0x Wz + 03 0 Wy =

o§f1 82 wy - 20,001 axywﬁa;fl a§ Wi (4. 9a)

A £z = (9gyw1)® - 85 w1 0y Wi (4. 9b)
t 1

2(14+Vip 22 = [ [ w, By Wi dxdy {4. 9¢)
O O

O(c®) dFwa+28rgwz + 03 Wy + 28¢ywy + 27 Irwa

+ Z’y'aswl + h.:a Aews + GO aiwa + 01 O'}? W2 +Gg a;‘v’\fl

+ 2:2 Bxy. Wy =
=2 2 2 2 ¢
83 f2 8 w1+ 85 £y 8% Wo 28, fo ey W1 =20y f) Dy W
+ 82 £z a‘; wy + 9% f) a; Wa (4. 10a)
ARg, = 285y W1 Oy W2 -8%w; aiwe -82 wa a?, w1 (4. 10b)
p 1
2(1+W)pls = [ [ wi 8xywatwa dxy W1 dxdy (4.10¢)
O o0

We assume that s is a simple eigenvalue; i.e. there exists
a unique integer pair (M, N) with M 2 1, N 2 1 such that O, = 0o(M, N).
Now

_ . 22 B
g = mlnm,nh Qnm/(m'rr)

2
e 2 2 2 2
= mnmnh [(m'n') +nw)*] /(mmn)
But an is an increasing function of n, so that necessarily N = 1.

For initial conditions we take

w = €@, w, =€y at t=0 (4.11)
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The motivation for taking Wy, = 0O(e?) will be explained in the course

of the calculations. Expressed in terms of the perturbation expansion,

(4. 11) becomes

wy = ¢ Or wy, =0
Wz = 0 87- Ws + BSVVJ_ = \L
wg = 0 Q7 wy + 0g w2+8.,.~|w1 = OJ

?at t =0 (4.12)

Introduce notation for the Fourier coefficients of a function ¢

by
1
k _ 4 pP
Bran ° I J’ g Youn dxdy
o o
Then equations (4. 8) imply
9 w + X w e
T “mn mn mn
2 1 _
an fnnn = B
where
2 - - 2
Mon =B QL - Tolmm
The solutions to (4. 8) are
WE = Z:W:}nn f—
fl = 0
where
wt = a' cos A _'r+bl‘ sin A
mn mn mn mn mn

. . 2
for (m,n) # (M, 1) (in which case )\mn > 0)

Sk

(4. 13a)

(4. 13Db)

(4. 14)

(4.15)

(4. 16a)
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and

e = w

1 I
- +b: T (4.16b)

M1 M1

since }\ill = 0 by construction. We seek a soluticn which is bounded

for all time; consequently, we conclude that b?-T\/I.l = 0. DNote that this
in turn implies that BT WJiM.l = 0, This is the reason for choosing

atw & O(ea); otherwise we would have to require that one particular
mode is absent from the initial velocity. Rather than place such an
awkward constraint on the initial data, we find that we can circumvent
the difficulty using this simple device.

The solution satisfying initial conditions (4. 12) is that of (4.16)

where
1 e B
a-mn—amn(s:na"-)
B. =B 8 ssued
mn
and
at =¢ bt =0 att =0 . (4.17)
mn mn mn

It is worth noting that choosing blMl = 0 is not the only possible reso-
lution to the problem of keeping wi’u bounded--it is merely the
simplest, and consequently, the most natural to try first. If we

or 0
retain le

tially in s, this would also be sufficient.

and later discover, for example, that it decays exponen-

Using (4.15), equation (4.9a) reduces to
8% wz + 2074wy + 2¥07wy + hg 8% wp 400 85wy +01 85wy = 0

which can be Fourier analyzed to give
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GE ann + B Qo W?nn'Ou (ram)” W?rm‘ 82 r +"'mnwf‘nr -
-2 By g Winp - 2¥ 0, Wy o+ 01 (mm)® wl . (4.18)

be bounded in T, one applies a familiar argument to

In order that Wéln
Integrating by parts,

we compute

"'suppress secular terms" [sl.

T
= I (8?_ wf_ﬂn-i- K?xmwm)(a cos A THB sin A, THAT =

[81- w2 il coghe. . T + fein k... T)
T
ranT)

+ Kmnw?nn(a sin AyynT - Pcos)

are bounded. Hence it is

-0 as T - 1fw <‘=l.nd8.-r\:<.rn._Ln

necessary that

4
0 =lim = [ (2855 Wian+2¥87 Wiy, ~01 (mM?wh J(@cosh

T=>c0 o
+ ﬁsinl_mn'r)d’r (4. 19)

Hj=

Consider first the (M, 1) mode. wi/ﬂ = aivﬂ(s, e s )LMl =0, and so

witha =1, B = 0, equation (4.19) becomes

lim O, (m‘rr)z aivn(s, sew ) = 0
T = o
Then for (m, n) % (M, 1) equation (4. 16a) yields

which implies 0; = 0.

T
f (Ors wh o+ Yor w;nn)(acos)\mn’l?ﬁsinkmnw‘)d'r
o

Hl=

0= lim
T —co

1 1
(as bmn ybmn)

-%ernn(as a]frln+7 mn) + za A

or since @ and B are independent,



al =31 grs bt =B &7¥" (4.20)
mn mn nm mn
with
a = amn(n, w6 s.) gnm = grﬁnm’ ves)
a__=d_, n =0 at t=0 (4.21)

Using (4. 16) and (4.20), equation (4. 18) simplifies to

8% w° & 22 w= = i)
T mn mn mn
with solutions
w> _=a® cosh__T+b°__sinh_ T,(m,n) % (M, 1) (4.22a)
mn min mn mn mn ’
=2 - 2 A 2
W1 = a.MI(S,?'], p—_— (4. 22b)

From equation (4. 9b) we derive

pl
2 _4 p . 3 2 R
QF £ = > L (osy o Oy wa -9% w1 ) w1 ) Vippddy  (4.23)
We can characterize (to leading order) the large time behavior

i
Ml1*

ceed to the O(e?) equations, With f; = 0 and 03 = 0, equation (4.10a)

of wy by (4.15) and (4, 16) once we find a To do this we must pro-

is
82 ws +h7A% wa + 0p 8% Wa + 28rgws + 9% wy

+2 8wy +2y3;we + 2y3g wy t0z 8% Wi =

3 92 £z 8; wy - 20 fa OXYW]_ + aifg a;wl - g 8XY W1

¥ =y
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Using the facts that )\I\/H =0 and 8"!‘ W]I-\xﬂ = BT WBM1 = 0, one readily
calculates
8% wigy + 03 Wiyt 2Y 9 Wi - Os (Mm® w1 = K (4, 24a)
where
4 of r-1 2 3 2¢ o2 .
K = E— ur J (ay 5 wal = 28Xy fz Bxywl 'l‘aX;g Bywl - s axywl)'V_Mldxdy

o O
(4, 24b)

Up to this point £ has remained undefined; we have only used € > 0,

We effectively define € by requiring that gz = 1. Note then that

U=00+€2+O(€3)>Go for O<¢ << 1

so that € > 0 puts 0 into the unstable region,

Next we again ''suppress secular terms, ' assuming that

a 50 T -
BTWNH is bounded, Writing Wil = a(s, M, ess), we have
a§ a+t2yd a- (Mm?a = H (4.252)
with
1 T
H = lim & [ Kdr (4. 25b)
T o o)

The actual calculation of H is lengthy and is left to Appendix B, We
cite the result here, derived under the further assumption that all

the }\mn are distinct, Introduce the notation

1

Sy sinkmx c, = coskmx

k
Sy sinktty Cy = coskwy

and define the operators M and J by



AT

T
. 1
Mlg] = lim T 4 slmar (4. 26)
T -0 o
. 1
slal = %jpj G(x, y)dxdy (4.27)
o 0

Then it can be shown that

M{T [ 8 fa 8% wa - 28,y fo Bxywy +05 f2 85 w1 )Yy 1)

=ky a + ks a° (4.28a)
with
g =3 r @t N Q72 m®n® I ((M°n*+m?) Iz -2Mmn J5 )
Ll
-2
- Nji'errnn ( (mgngmanz )W -2mnmn Js) x
((M®*n® +m®)Ts -2Mpn To)

ke = 70 o 20 (M2 +m®)Te -2MmnTe )Q5a, M® J10 (4.28c¢)

The notation in (4. 28b, c) is

Ni‘nn = (a}:nn)z + (b]I-nn)g , (m,n) =M, 1) (4. 28d)
and
J-l = J[(C?n CIBI— S?Tl Si)sESE ] (4.28e)

Jo = JlsmsigSn St Ja = TlememsyyCnCa S ]
Jo = Jlsm smsmSpSnSi] Js =JlememspCn CnSa 1
Jo = Tlem 8050 SnSnS1]1 T2 =T0semepCnCa Snl

Fs J[sm Si/.[ S s? ] Js = J[cmcMsM C,Ca S, ]

I

J10

F(c§ CT - sy S¥)sm Snl

It can also be shown that
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-

M{T[ 8 85y w1 Y11 =ks @ (4.292)
with
Trz wz = 2_2 gl 2 1
Ko = 16(1 + V) “mn#M1 P Npp I MppNenJie Jus
(4.29b)
and
Jn = J[sMcmSJ_ Cn] Jlg = J[SmCMSncl _-_l J13 =J[SMCmsl Cn]
(4.29c¢)
Now from (4. 20) and (4. 28d)
1 A 2 ~ 24 -27%s ; ;
Ny = [E_ ) + (B )7 Te » (m,n) #= (M, 1)
and so we can set
_ -2ys
kg +ks =-ae ke = -
with @ and $ independent of T and s. Equation (4.25) becomes
2a+2yFa- (Mn?atae?’atpat =0 (4. 30)
Recall ahl =8 = éMl at t = 0 (equation (4.17)). To get the second
initial condition, note that (4.12) implies 8_w°> _ +9_ w-_ = V¥
T mn s mn mn
att = 0. Using (4. 22b) we conclude Bsa = WMl initially,

Several comments are in order, First remark that equatién
(4. 30) is essentially the same as the equation governing a rod derived
in [15]. However, in [15] the constants @ and B are clearly positive,
whereas for the plate this no longer seems to be true. Consequently,
the solﬁtions of (4. 30) need not be bounded, and the perturbation
scheme may fail to show how the nonlinearity stops the exponential

growth of small perturbations.
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Ia the case of no damping {v = 0j (4.30) is autonornous and
may be analyied by phase plane methods. However, the Ni‘nn’ and
hence a, depend on the initial corditions. It follows that the location
of the equilibriwm peoints {critical points) varies with the initial data.
This runs counter to general experience, since equilibrium configura-
tions are typically properties of the differential equations. The cor-
responding term in the equation for a rod also depends on the initial
data, but the authors of [15] do not comment on the significance of
this. It appears that damping is necessary for this model to yield
physically meaningful results.

We are interested in bounded solutions of (4. 30) when v~ > 0
(when solutions are unbounded this model is no longer an accurate
model of large time behavior). An érlergy relation shows that scolu-

tions are bounded when a > 0 and 3 > 0:

da 2 Mr)® i -2 \
2 (382 - M a2 4 e a2 jpat)
aa)s (4.31)

=) -
= -Z-y(g-s- - aye Y8 2% < 0

Z-ys

For large s it is tempting to ignore the term a e~ in {4.30) asymp-

totically. A simple geometric argument shows that this approxima-
tion is indeed valid. Introduce b= 2a'and g= a e—z‘ys, where ! denotes

as, Solutions cof 4. 30) are contained among trajectories of the autono-

mous system

a'=b
b* = (Mw)%a - 2yb - ga - Ba® (4.32)
g'= -2vg
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In the region g :;é 0 the g-component of every taugent vector is
directed towards the a-b plane. Consequently, the limit points of
any trajectory lie within the a-b plane. The limit points of a bounded
trajectory are a closed connected set consisting of either a limit
point, a limit cycle, or a separatrix connecting limit points [57.

Now the reduced system

1

a b

(4. 33)

1t

b' = (Mw)® a-2yb - p 2°

always has a saddle point at the origin (the characteristic exponents
there are A = -y &% ,/-yg + (Mw)® ). If B <0 there are no other critical
points and trajectories are unbounded. Hence B > 0 for bounded
solutions. In that case there exist two attractors (stable nodes or
spirals) ata = = Mn/ﬁ%, b = 0 with characteristic exponents

= -y ys -2(Mmw)® ) at either one. There are no limit cycles
and all trajectories tend to one or another of the attractors as s = o,
Substituting this result into our earlier calculations shows that for
gl +e?, y>0, and p > 0, solutions of (4. 1) with small initial
displacement and velocity tend to one of the states

3
w o~ % (M7/B YY1

to leading order as t - w. Note that when damping is present the
equilibrium points do not depend on the initial data.

The circular cylindrical shell

We proceed to study the dynamic buckling of a circular
cylindrical shell for small initial displacements and velocities when

the load is a ''small distance' into the unstable regime. The
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appropriate equations, with small damping T" = ¢y, are

W +2e-ywt+h/_\w+0wxx+w“f =

tt XX
fyy W & ZfXY W Lt L ZEWXY (4. 34a)
S¢ _ - 2 - 3
uf A°f "-’g“’xx Vg ™ W Wi (4. 34b}
Q1
dwy14V) L = fb fow Wy dxdy (4. 34c)

The initial conditions and boundary conditions are

w = ¢ed, w, = ey at t=0 (4. 35)

w o= W = =& =0 at x=0,1 (4. 36)
XX XX

w,f have period Q= 2w/w in y (4. 37)

The small parameter ¢ will be determined in the ccurse of the cal-

culations. We seek solutions of the form .
W= €W, -l-ea Wo t e
f=cf +e°f5 + -
L =gy + oo
O = 0gteaoy +6€° g5+ re
where ¢ is the smallest load for which the state w = f = 0 is unstable

 to infinitesimal perturbations. Introduce time scales tk = e:kt

(k=0,1,2,...), and setty, =7, t; = s, t; = n for convenience. As
for the rectangular plate, these expansions lead to a hierarchy of

equations:
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O(¢) 92wy, +h?A%w, + 0, 82w, +ofa2f;, =0 {«. 38a)
of A7f - of 82w, =0 {. 38D}
8y f8 ¢ . i = o
O(e™) 7 w, + h® AP w, +06 87w +uf 82 £5+20, (W, +2y0 Wy +0y 85 W,
= 851, 05wy ~28,,£,8, W +02 £, 83w (4. 392)
yr1 Yx M1 Xy "1 "¥xy 5 3, S e TS
of 865 -0 0 wa = (9, wy)? - 85wy 85 Wy {4.39h)
a1
dwe1+V) iy = [ [ wy By Wy dxdy (4. 39¢)
o O
O{e?) 8?} wg +h2 A% w, + 0, Biwa +¢,,faif3 + 2 aTs wa+a§ wy +2 5”)“:1
t 250 . wpt2ydgw, + 0y n’:liwz3 + o0g aiwl =
3 2 3 - e & ;
+ 82E, a@ wy, + 821, a; Wa = 2l Byy Wy (4. 40a)
3 A2 ; E
o 8%f; - w® 8% Wy = 20y Wy By wp =05 Wy B3 Wg -9y wa 83wy
(4. 40Db)

Equations (4. 38) are identical with the equations for a linearized
stability analysis of the state w = £ = 0; consequently we determine
a, so that the solution of {4.38) is conditicnally stable.

If we expand

w, = Egnw;nn('r, S, M) oo )Ymn+ \;’_ilnn?mn
, _ (4. 41)
f = Zénf;nn (T,8, My -0 )Y+ n Ypan
1
= = = = >
where gn 5 for n= 0, gn 1 forn>0
and Ymn(x, y) = sinmTx cos nwy

Y = sin mTX cosn
Y % y) nwy
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for m=1,2,... and n=0, 1,2,..., then (4.38) iraplies

r : °Q? N " = B = 422a)
BT “_]mn + (k an Oo(mn'.- )Wlmn (M)~ ¢ fmn 0 (4.42a)
2 1 a8 2 2 .1 - R
of an f1':nn + o (mm)” (mm) Wi 0 {4. 42Dh)
Here
- 2 3
Q _, = (mm)° + (nw) {3. 30)

A pair of equations analogous to (4. 42) holds for W~ _ and £+ .
mn mn

From (4. 42) we conclude

2 1 2 _
% wl o+ xmnwlmn =0 (4. 43a)
1 T 3/A2 a
frnn { tom) /an) “mn (4. 43b)
with
2 _ 3 _
}‘mn = (mmw) (Gmn Go) (4. 44)
and
Opm = B° Q® /(mm)® + of (mm)?/Q2 (4. 45)

Solutions of (4.43) grow exponentially if )‘inn < 0, so conditional
stability occurs for k:nn = 0. The smallest value 9, such that

- : ;
)\mn = 0 for some pa_n' (m, n) is

i = min, 4 2 - (4. 46)

‘We will assume that g, is simple, i.e. that there exists a unique

pair (M, N) such that o, =0

MN"
We continue to denote Fourier components by the notation
k _ 4 pQnl
Emn T T J; vro gk ann ey
-k _ 4 pQnl
gmn - ﬁ J‘O'JO gkann dXdY“
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: : ; k ;
In general, for each equation in a variable B there exists a
symmetric equation in grnn' We will suppress the second equation
in most instances for brevity,

Initial conditions (4. 35), when expanded as in (4. 12), lead to

1 - -
“mn ~ ’émn a'r Wlmn = % A

2 _ 3 =
Yrmn © 4 a'rwmn+ 8s Wlrnn qun > att=0 (4. 47)
w2 =0 3 w2 48 w2 48 wr =0

mn T mn s mn 1 mn )

Thus the solution of (4. 43} is

1

- 1 o -
W™ Py TOE kT B T R T (m, n) # (M, N)
" § g (4. 48)
YMN T M1t P T
where
1 ~ a¥
a ., = amn(s, Nyews) €EC,
and
S : A
a = ,a’mn bl ,=0 at t=0 (4. 49)
" v 1 -
Boundedness of WlMN implies that by, = 0.

To determine the behavior of the al and bt we proceed
mn mn

to the O(e®) equations. We introduce the operators
4 Q 1
gl = 5 [ [ gaxdy
o o
Joorel=dleg¥ 1 T  [el=dlg¥ ]

Equations (4.39 a, b) yield
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3 2 3n3 ‘ 2 Vs " 2,23
g wmn + ik Q‘mn Uolmﬂ) )ann (mm)” e frp

’T ﬁn
{4. 50a)
1 o 1 2_ 1 iy
+29__ w +2v 86 w - Ty (mm)~w =P
TS mn 7T mn mn mn
2 2 - 2 _2 - 2 7
of an fmn + ® (mr) Won Pmn {4. 50b)
with
b = 3 =
Phan = Imnl85f1 8% Wi =208y fy 89wy +831, 83w, ]
s _ 2 _ 88, ]
P L= Jmn[ (BXY wy ) 3° w, ay wy ]
. - 1 2 a2
Setting Pmn =P . + (m'rr/an) Pm , we have
2 w® _ +2® w? =P 29 W -2%8 W _+ o, (mm)¥w?
T mn mn mn mn TS mn TN 5 mu
{4.51)

Using the operator M defined in (4. 26), the ''suppression of secular

terms' follows from

3 .8 5 3 _
ME(a’T W ™ P wmn)zj =4

where =z is any (bounded) solution of the {adjoint) equation

82 z+)2 z=0. (4. 52)
Thus
M[{‘Zaﬂ's winn b ey a'r‘ W2.:1'11'1. -G ‘mﬁ)gwinn)zl= M[Png]
(4. 53)
Consider (m,n) = (M, N); ) = 0and so z= 1. From (4.48) we

MN
_ o :
know that BT WlMN = 0, so (4.53) simplifies to

-0y (Mm)2 wi = M[P

MN ~ MN]

Now if M{PMN] # 0, 0, will depend on the initial conditions.
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Since we seek a solution which is valid for arbitrary initial conditions,
this possibility must be excluded. Consequently, for this perturbation

scheme to be valid, it is necessary that

M[P, .. ] =0 (4. 54)

MN

from which we conclude

o, =0 (4.55)

Note that nothing equivalent to (4.54) was required for the problem

of a rectangular plate. It can be shown (cf. Appendix B) that condition

(4. 54) is
Qz ménz 2__2_ 2\
o =5 (—MN + MDA (o 4p )
mn = MN Qz 2 mn m 'n
mn
+ A n( m+'yn)I (4. 56)

where

A =@ P+m_ P A =@ P +@® )

mn mn mn mn mn mn

and

= . = o = =
“m J[SmSMCN] '3n J1:SMSnGN" 7n J[SMCnCN]'

Here we are again using the notation

1

s

Kk sinknx ¢y = coskmx

Sk sinkwy Ck = cos kwy

In order that (4.54) or (4.56) hold, it is sufficient that @ s ﬁn, and
o vanish for all m and n. This will be the case if either N is odd or
M is even. In the general case, the contradiction inherent in (4.54)

can be circumvented by taking w; =0, f; = 0 and assuming wz # 0,
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f2 5= 0. For the remainder cf this investigation we will assume that
N is odd.

With g; = 0, it remains to calculate (4.53) in detail for
(m, n) 5= (M, N). Details of the computation are indicated in Appendix
B. We note that one further assumption is needed for the calculation.

A sum of the form

A £ A + A
mn my hy mp Np

can vanish if {m, n) = (M, N) and (m;, n; ) = (mz, nia ) since '\MN =
We assume that this is the only way in which such a sum can vanish,

In particular, this implies that

A
my IMs g

if and only if (m;,m ) = (M2, nz2 ).
Using z = cosA T and z = sinX T, we find that for
mn mn

(m, n) ¥ (M, N), equation (4.53) yields

9 at +yal =0 8 bt _+yb =0
S mn mn S mn mmn

when N is odd (or M is even). Hence

1 _ A -Vs 1 = -vs
mn - %mn © bm.n - ane (m, n) == (M, N)
(4.57)
where
dmn ~ a‘mnm’ “ee) an = Bm'nm’ “ee)
and
i =¢_, b = 10 att=0 ,
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.- We proceed to the O(e”) equations.

. e . 1
To determine the behavior of a
MIN

For this we need the solutions wz and fz, or equivalently, we nead
w- _and f° ., With the results (4.55) and (4.57), equation (4,51)
mn mn

simplifies to

ol P
T mn mn  imin mn

2 _ a . _
wmnmo, BTwmn-—\L +7d1 at t =0
when (m, n) #+ (M, N). We also know Wi/LN = 0 initially. The initial
value of BT WI?/IN requires movre subtle consideration., Solutions of
a2 . B _
¥r MmN T Pun
can become unbounded due tec two scurces: P may contain a

MN

= . g x . =2
"resonant term,' even though it is bounded itself, or w

MN

a term linear in T which satisfies the homogeneous equation, The first

may contain

possibility was eliminated by (4, 54). Removing the homogeneous

=

MN*

Fortunately, it turns out that it is not necessary to explicitly

solution preporticnal to T fixes the initial value of BT w

b

. —
MN® It will suffice

find w- _ in order to determine the equation for a
n :

i

to be able to evaluate

mn mn
when (m, n) = (m, n) (and hence, by assumption, A =+ }\mn) .
From (4.43a)
o T .
9% wh w? dt = -2~ ™ gt w” dT.

YO T mn mn ano mn mn
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Using (4.58) and integrating by parts, we also calculate

F
f % wt w°  dar
(o] T mn mn

T
_ 1 B gl 2 T, Frot 2 3 g4
_[aTw w w ’T“rnnj . JOW‘ 8,]_‘7( T
T i o N
o L < =
_['“J|O+Jo mn( mn )\rnnwmn)d'r'
Hence
. T i
W -2 ) [ wow? ar=[..]]| +[ w_P__dr.
mn ‘mn’ Y “mn mn % o mn~ mn

Multiply by 'I‘-1 and take the limit as T — w. The result is

MIw! w2 T = (A2 - xjm)‘l Miw: P ] (4. 59)

To determine an equation for ai\/[l’ we apply ''suppression of

secular terms' to the O(¢®) equations. From (4.40) we deduce

2 .3 2 ~2 2, _3 _ 2 2.3
BT WMN + (h QMN - G'O(MTI') TWMN (M)~ w fMN
2 2 i § L
LA W ¥ 298 "N T % Yvn t 2 20 YN
o | 2. .3 - 3
+ 2y asWI [N-Gg (M) WMN T PMN (4. 60a)
2 2 2 2 3 _ ryd
W™ D f‘;/[N o (Mr)” £ oo = P (4. 60Db)
with
3 - 2 2 2 2 - -
Pl = JMNEBY fo O w, +Of O wy 20 £50, w,-20_ £ 8  w,
2 2 2 2
+ 071, ay w, +8_ f; ay wy -2 4, axyw:L ]
4 _ r _9= 2 _ _ n= a2
PMN = JI\’LNLzaxywl nywz 0L Wy BY Wy 9, W O 5 ]
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{28 is given by (4. 39c).) Setting R = P2 + (NIF‘/QMN)S P* _ we have,

MN MN
since XMN = 0,
g 3 2 2 N 1
- WMN + ZB'TS WMN + Z'yaTWMN ] ZE}Tn WMN
= 1 ‘ . o 2 1 -
+ BS W N + 2y BS Warn "%z (M) WMN = R (‘%. 61)

We effectively define € at this point by requiring that o, = 1, and so

2 s 1 . : 2
Faeld +e~, Write Wi\/IN =aum = A, Operating on equation (4.61)

with M results in

azA +2y9_A - Mm2A = MI[R] (4. 62)

The explicit calculation of M[R] is lengthy, Relevant details are indi-
cated in Appendix B; we only cite the results here. Recall that, corre-

sponding to the mode Y. there also exists a Fourier coefficient

MN’
=1

— _ _ .
WMN = AN B. We find

82 A+ 278 A - (Mm)° At(c, Atc, Ble 27541 A® 4k, AB® =0

) (4. 63)
82 B + 2y8_B - (M)’ B + (c, A+c, B)e 275 1, A% B4k, B®=0

where the Cj and kj are constants with respect to T and s(j = 1, 2).
Furthermore, the Cj depend on the initial conditions, but kj do not.
The expressions for the kj are unwieldy,» and it is not clear whether
or not they are positive or negative or both.

We propose to analyze solutions of (4.63) in phase space.
When v = 0 the system is autononious, but the equilibrium points (or
critical points) depend on the initial conditions through the Cj'
Consequently we will only be concerned with the more physical case

¥ > 0. Furthermore, we will only discuss bounded solutions insofar
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as unbounded sclutions ofthis model do not depict large time be-
havior accurately, Denote BS by a prime ' and introduce a = SSA:
-2ys

b = BSB, and g = e . Then solutions of (4.63) are contained

among trajectories satisfying

A = a

a' = (Mn)°A - 2ya - g(c; A+, B) - k A®-k, AB®

B' = b ) (4. 64)
b' = (Mm)°B - 29b-g(c, A + ¢, B) - ky A°B-k, B®

g = -2yg ’

This system is analogous to (4, 32) which describes buckling
of a rectangular plate. We argue that all tangent vectors are directed
towards the AaBb hyperplane, and consequently the limit points of any
trajectcry lie within this hyperplane. As before, the limit points of a
bounded trajectory constitute a closed connected set consisting of
either a limit point, a limit cycle, or a separatrix connecting limit
points [5j. Thus to describe large time behavior we are led to con-

sider the reduced system

Al = a
a' = (Mm)?A - 2ya - k A® - k; AB® \
( (4.65)
B! = b
3 2 3
b! = (Mm®B - 2yb - K, A°B -k B )

Remark that if B = b = 0 initially, a solution to (4, 65) satisfies
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A' = a
a' = (Mm)°A - 2ya - k, A®
B' = 0
b' = 0

From this we conclude that kl > 0 if solutions are to be bounded, The
qualitative behavior of (4, 65) is unaltered under the transformation
A- Ak, a—afJki, B~ B/Jki, b>b/yk;. Setting ks /ky = o, one

obtains the canonical form of (4. 65)

.
A & 75
al! = (M-rr)zA - 2%a - A® - ¢ AB®
) (4. 66)
B! = b
b' = (Mu)®B - 29b - ¢A®°B - B®
y,

To find equilibrium configurations of the shell, we investigate the
critical points of (4., 66)., Necessarily a = b = 0, so the problem

reduces to studying the characteristic exponents associated with

roots of

A® + aAB® = (Mm)®A, B ¢A®B = (Mn)°B

(i} A=B=0: There are two double exponents )‘1,2: -y +Y Y° +(Mm)?

and )\3, g ==Y / \ﬁ+(M'n')2. This generalizes a saddle point; the origin

is an unstable equilibrium point.

(ii) A=0, B=tMr1m; A=tMm, B=0: At each of these four points, the charac-
teristic exponents are )&l, g = BF % ) yE—Z(M-rr)e and ?\3’ =-y :h/)/z-l-(l—a)(MTl‘)E.

e

Re{?\l 2} <0, Ifa>1, Re{)\a,4} < 0 and these points are stable;

ifa<1, A, > 0 and A, < 0 and these points are unstable.
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(iii) A #0, B # 0: Then we have

A% 1+ aB® = (Mn)? B® +aA® = (Mm)® .
If @ =1 there exists a one~dimensional locus of (non-isolated) critical
points, This merely reflects the translational degeneracy of the
solutions. These solutions contain case (ii),
If @ # 1, we solve to find A® = B® = Mn)°/(1+a). For a < -1 no such
solutions exist, but for a > -1 four solutions exist, In the latter case,

characteristic exponents satisfy

A2 o+ 2yh+2Mm° =0

and
AP+ 294 + 2(Mm)® (1-a)/(14+a) = 0

The first equation gives rise to roots A, = -y = Y47 -2(Mm)? , so

Re{)\l 2} < 0, The second equation has roots

N g = TV E )/? - 2(Mm)? (1-a)/(1+a)
For stability we must have Z(M'zr)z(l—a)/(lﬁz) >0 or
1>a> -1
This is the opposite of case (ii). We classify the four solutions of
(iii) as physically identical under translation,
Summarizing the behavior of (i)-(iii), we concludé that if

solutions are bounded, there exists only one physical equilibrium

configuration,
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APPENDIX A: DERIVATION OFf SHELIL EQUATIONS

In this appendix we derive Donnell-type equations describing

a circular cylindrical shell in equilibrivm, In equilibrium the potential

energy V has a stationary value

sV =0 (A1)
The potential energy can be computed from the strain energy (cr
internal energy) S and the applied work W
V= 8- (A.2)

We assume that the strain energy is the same as in linea

O = 2 oyey dn (A.3)
Here o0, . and e,
1)

s are the physical components of the stress and strain

r theozy, wviz,

tensors, respectively; summation convention is used, and integration

is carried out over the volume of the shell walls. Using tenscr

calculus one can derive [11] the exact relations

er = 3%+ 5L (B - 3]
g = %( 55 tW) * #a[(%"v)za—(%*wf +(BB—“B—)7"1
ex = v 2L GO (B -0
£re :éir%+%%w+ BB -V) 25 B rw) + 2 2] e
Eox = ?[r%*ﬁ*%ﬁ(’aﬁ"ﬂ *% %+W)*%%% J
Here 0 = y/r is the angle about the axis of the cylinder
The stresses can be determined using Hooke's law, which
becomes, for a homogeneous isotropic medium [17
A & » zpg) (A.5)
Here @ =

€11 + £o5 + €33 and the 1, 2, 3 directions refer to some

cartesian coordinates. Also
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A= Ev/o«n-2v pu=E /20+v)
where E is Young's modulus and v is Poisson's ratio, A body is said
to be in a state of plane stress paraliel to the x;, x; plane when

Oy = Ogg = Oag = 0. From (A.5) and 053 = 0 one can deduce

B33 = :{;73;/—; [ 8y # Bigp) (A.6)
From (A.b6), it follows that N
oy = Tm (e rvE)
Gaz = = (2o +vEx) (A.7)
Ge = = e J
We assume that locally the cylinder is in a state of plane stress
parallel to the tangent plane; hence (A.7) holds with
gy = Ix G2z = Op 2 = Cxe T23 =9
EyR s BBy Eycf
Symmetry of the stress tensor yields
Ty = Tie Gy =03 = O Typ = T3 =0
We can now approximate (A. 3) by
S =%\ (ouen v 0ty + 2002, dx (a.8)

If we substitute (A.4) and (A.7) into (A.8), the result is still rather
unwieldly, Assume further that displacements and their gradients are
small compared to 1, If it is also assumed (on intuitive grounds) that

most of the change occurs in the radial direction, one can argue that
oW 2u 2w
oW du_ 2w 2V
\‘Dj(>7 l?)j\ 5 \3%\?> \—5;\

Then (A.4) simplifies to
2 Lo(wy?
€y = %L‘,La*-iz‘.(%%}z Eg = "FCTVé“'W)*'zr‘(Be)

_2v . Lol W A
264y = B *F 38 * ¥ 38 % A7
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Recall R designates the distance from the axis to the midsurface cf the
undeformed shell,

Set r-R = p and expand, for small p,

u(r, e, %) = Us (Eyx) + o ui[e;™)

il

v (¥, B,%) Vo (8,x) + PV {8,%) (A.10)
W e,x) = W, (8,%)
To find u, we use

. W QW W D
O= 28 = ox © or *

S v, . ;
Since v 9% 1S small to second order, we have approximately
- W
U, = %

Similarly, from ¢ .

(A.11a)
g = 0 we conclude
DW,
V= TF 30

(Note: ¢ =

rx

(A.11h)
€.g = 0 follows from 013 = Tpz = 0 and Hooke's law. )
Approximate 1/r = 1/R. Then (A.9, 10, 11) imply

Ey= Exo t PEX

68 = 690 "f’ea.' 59x =€5xo *f€9xl (A- Iza)
with
4o PWe 12 r
B v + 2 G0 E,= ~ om
Wo L e o (OWeyZ L 4
€op = %~ = 36 * zrel35) €, = "R 962 (A.12Db)
Wo L Bl 1 DWo W _1 3w
269x0= % R 76 R 28 Bx Gex, R 2062x
For a shell of thickness h we have

g - ~‘Z_S;_j-zfr[gﬁ-ﬂw)z

o R-hl/z
L r2T
=, L
A

o

(OxEx +TpEp +20yp 85 )rdrdbdx

hlz . (A, 8")
S—h}z (Ox€x +Tp g +2 7, o) Rdp dodx

We substitute (A, 7) and (A, 12) into (A. 8') and carry out the indicated

integration in p; then we calculate 6S and simplify by integrating by



parts, using the boundary conditions

Weo = \:\/c)\‘_ﬁ‘ = C

h
Gyo = — T = constant }
J

G;i- ‘){‘—OJ]_ (f'x.l?))
N, =
The result is
ST
E (LS“ g,— ! s LR Te
. B 3 —a 1.3 Wy _ & (=]
58 = o \h) " abax ) L R “gp RE > (2‘90 —2—-3—) 2R e
. 2 2 ey W }»L Xz TWE
-+ R 8)‘5— =2 28 ('gxo _4&) j2. R?— }-a‘;! - Z%{(EXD G‘:’:/\
i aw 1 z £ 2
- 'v Yoy _ JL o’ 2E v TEg
L 490 ) axz 12 ‘}’ -——5!‘;}'
— = 2 s, W (1= g, 2w
“% (%0 )~ R 5 (e, 35) (A.14)
___‘_{y)hz £ 2 [!V)a_ .
B A ;5,;:1] I TS T T
_ I: S v L
R

St * L Bp e v U axﬁpwj v, }

+ [ T R"S’ ( £xo vYE5,) S 4’9]
X=0
But :

L

(S5 (] txorrssn auo&e]gi - NS ;,Rdfﬂrh 3w

[ o

so that only the surface integral in {A, 14) contributes to 8§6V. The

varidations dug, 8vo, OwWy are independent and give rise to three equations

Using Hooke's law (A.7) we can write these equations as

- _
2 Txo t W 26 Toxe =0

{(A.15a)
L2
" 20 T80 t %40"9_‘0 = 0 (A.15Db)
{ N
7 o __4_23/ aw.,)__ (U- 2 Wa _ 49 W,
8o R?* Jo %o EY) ° Bx 25(%7«0 '9::)
A B B T = g
R ’5§<( Texo ;"u) 12 T | R 25"*( Eo1 ¥ Ex)) (A.15c)
+-/7 97\_‘ (2',1,,+~V 551)7 - 'i‘ . B az £

7:; =3 267% bt =0
We can use (A.12b) and (A.15a, b) to simplify (A.15c). Also let y = RS



and write w = w ' =0 o =o. -
na wri o,cx o 7 - tjo’o-xy-

equations (A.15) become

- 2

5% T + £ g, =0
2% » bj Xj

2. 2 B
ajo'.j + :b—;(-(T.AB_ 8]

K E Z

— F 2 w 3 P
12.(1-v?) ( oxr a-jz) W = (O'x Dk +?‘U-"j %j + Ty —,a—j—;_)

ol
+RO"..J

o

Then

(A.

|
\
\

|

=y

1s)
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APPENDIX B: SOME CALCULATIONS FOR CHAPTER 4

We indicate how to calculate
H =MLK] (4, 25b)
where
K=T LS8 Faw -2 oxgladywr +8ufa Sym = G 2egwd Y d (4. 24b)
The operators M and K are defined in (4.26) and (4.27), respectively,

Recall the notation

Sg = sinkm x cy= coskmx
Sy = sunkuwy Cy= cos kwy
Now
MoT [ %%, &y 5,,ST=
MeJT (- T 0o 5,80 Y- T tmm* Wi p 52 Sp) 5,5, =
2 (ot () MLEn Wiz d I LomsmsymSnS, S, 3 (B. 1)
Recall
B T = T L 10w Dy W, = Bx Wy Bywi) sy Sp (4.23)

Thus we are led to consider
MoJ [ (oxyw: oxyw, s o 3 Wk ) (B.2)
When (m, n) = (M, 1) we have
| Wigg = Gy G, 00
and (B.2) becomes
Q.IM‘ M-J E awii Bxyw, ﬁmgg] =
I
Ay MTLLS Wy tmmined Em, L Wi, 08 (038) €L ) 5,50 1=
Ary 2 (mymge®) (ayngory M LW, when, TCC.,,,CMS.!C",quSE] (B. 3)
Since
wh = Qun 05Ama T+ by, sim AgaT (4. 16a)

it follows from the assumption
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7\“,‘7,1_—’)\“«,;",_ W oand ov\lj i Gmam) = (ma, ey
that

™M [W:.-.k,,l W]mz_n,_j = 0 tmy,m)) F (Mg, ng)

M [ whn whnd = 2L (atm)" * (Ban)] (mymy = (M1 (B. 4)
M [ wi Wy 1= KO.IM,)Z
Uesing (B.4) we simplify (B. 3) to

Ay L twed nw* ML (What?] TL 2 5w Cn S0 (B.3")
From elementary trigonometric formulae one can show
4 CPC?’ Cy = CF+%”_ > C—»p +qer 2 C‘p-:}ﬂ— " CF+}-r
4 - - o .
6? %1 5(‘ b‘P*“b"' ~I~S,ru‘b+v_ o F-H;..r' - Pacbq.v- (B 5)
q8 = (‘ — B |
FS% ¢ C‘P*‘%v)-r‘ % _P-v{,w CP‘*‘]—" CF*%""
YAS C, = < 2] e
P CT’ 3,- = P _P“t*“' *SP"bﬂ‘—r 5F+Gb—r
This implies that
M [ Wlm,n, W:«nln,_ ngsnsj 7é 0
only if a sum vanishes of the form
+ —
_}\!m‘n, t-}\mq_n,_ t’}\manz = 0 o (B. 6)

Clearly (B. 6) holds if
—Amin' = O }”an_: ’)\msn-s .
We further assume that this is the only way (B. 6) can be true. With

this assumption we can evaluate (B.2) when (m, n) ,l (M, 1). We are

led to
2 (o) (ymy ) M [wlﬂ,ﬁg T w‘l"‘:_"z] 9 L i CuSoy Cnlay S.1. (B.7)

Since (m, n) ;4 (M, 1), there are only two possible terms which can be

non-vanishing, viz.

(om0 = lw,n) 0 Dma,m) = (M)
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and (Mzna) = (@, ) 5 (My,n) = (M
Thus when (m, n) ;é (M, 1) we find that (B, 2) reduces tc
Q)M\[(Cll‘ﬂﬂ)l k(\olm:\)‘l] (Mmrﬁz)(n‘wi) j[cmcmsm CEC‘ISD.J . (B. 7’)

In a similar fashion we calculate

MeJ L (3w D'wa, Smg,_,) Wian i .
This gives us
ML 1;2;;."“. Wl,r:\,mj
which, as we see from (B.1), is the quantity necessary to calculate H.
The arguments needed to calculate equations (4,53), (4. 54),
(4. 56), and (4. 62) (describing the buckling of circular cylindrical shells)

are completely analogous to the above arguments (for a rectangular

plate) and can be carried out by the persevering reader,



APPENDIX C: NOTES ON THE MEMBRANE EQUATIONS

The reader is referred to the references{i, 2] for a derivation
of the membrane theory; only the final formulation of the problem is
given here. The midsurface of the undeformed membrane is generated
by rotating a curve C about the axis of symmetry {see figure 1), This
surface extends a distance R from the axis, The curve C can be
described by prescribing the angle §{r*) between the normal to the
surface (at distance r* from the axis, 0 < r* < R) and the axis of
rotation. We will assume that 6(0) = 0 so that the membrane is not
pointed at the apex. The surface is deformed by a pressure p(r¥)
which is normal to the midsurface; p is pesitive if it is directed toward
the center of curvature, , Gr(r*) is the radial stress, h is the thickness,
and E is Young's modulus, Then with the definitions

r=r%/R , 0<rsl h

1h3 RB

@)
h
|

or) = Ur(r=1<)/Ep1/3 (. 1)

g(r) = 8(r*)

Rr
Gir) = & [j’o RE) ¢ dé] ?

pe aplfs J

the problem of interest can be formulated in terms of dimensionless

variables as follows:

d , ado G 2
T (g + 5 = Brf (C.2)

q
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Figure 1

Geometry of the undeformed midsurface
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Symmetry and boundedness of the stresses and displacements at r = 0

imply
lo(0)] < o {C. 3a)
do 5
and oy 5 0 at r =0 (C. 3b)

The prescribed radial stress at the edge yields the further boundary
condition

o(l) = -s = T/EPY/3 (C. 2)
(T <0 when the stress is compressive.) The normal displacement of

the midsurface W(r#*) = Rw(r) can be regained from

d -1 1 3
dw _Lpl/3 Sy2. 4 (C. 5a)
w(l) = 0 (C. 5b)

Instead of studying g directly we prefer to introduce
u=s Sto + 1

and A= S

which results in the formule;tion

4 (2 du
dr ‘¥ dr

j# 55— = 3 Brgdf (C. 6)

(1-u)?
The boundary conditions are then

du

He 0 atr =0 (C.7a)

u(l) =0 (C.7b)
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