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Abstract

The branching theory of solutions of certain nonlinear
elliptic partial differential equations is developed, when the non-
linear term is perturbed from unforced to forced. We find
families of branching points and the associated nonisolated solutions
which emanate from a bifurcation point of the unforced problem.
Nontrivial solution branches are constructed which contain the non-
isolated solutions, and the branching is exhibited. An iteration
procedure is used to establish the existence of these solutions, and
a formal perturbation theory is shown to give asymptotiéally valid
results, The stability of the solutions is examined and certain
solution branches are shown to consist of minimal positive solutions,
Other solution branches which do not contain branching points are

also found in a neighborhood of the bifurcation point.

The qualitative features of branching points and their
associated nonisolated scolutions are used to obtain useful information
about buckling of columns and arches. Global stability character-
istics for the buckled equilibrium states of imperfect columns and
arches are discussed. Asymptotic expansions for the imperfection
sensitive buckling load of a column on a nonlinearly elastic foun-

dation are found and rigorously justified.
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Chapter 1

Introduction

Branching is a change in the number of solutions u of an

equation
(1.1) g(h,u) = 0
produced by a small change in the real parameter X. Those values

A at which branching occurs are called branching points, and the
corresponding solutions are called nonisolated solutions of (1.1). If
solutions u of (1.1) are also arbitrarily small in a neighborhood of
the branching point and u = 0 is a solution for all \, then the
phenomenon is called bifurcation, and the branching point is called
a bifurcation point. The problem (1.1) is called "unforced" if
g(\,0) = 0 for all real values of N\, and it is called "forced" if
g(\,0)# 0 for some values of A\, In this thesis, we are concerned
with the behavior of branching points and solutions in their neigh-
borhood, as the problem (l1.1) is perturbed from an unforced to a
forced problem. Letting T represent a "forcing" parameter, we

are interested in finding solutions of

(1. 2) G(\, T,u) = 0

for nonzero values of T, where G(\,0,0) = 0 for all real A and



G(\, 7,0)# 0 when T+ 0.

As a simple illustration consider the single algebraic

equation given by
(1.3) x + f(A,T,x) = 0

where f(A,0,0) = 0 and f(\,7,0)# 0 if v# 0, When 7=0, x =0 is
a solution of (1.3) for any value of A\. From the implicit function
theorem, we know that the identically zero solution is the only
arbitrarily small solution of (1.3) in a neighborhood of X\ = X\,
provided the Jacobian of (l.3) evaluated at (A, T,x) = (N\y,0,0) does

not vanish, or symbolically, if
(1. 4) J(Ap,0,0) =1 + fx()\o,0,0)# 0.,

If (1.4) does mnot hold then the point (A, x) = (Ay,0) is a possible
bifurcation point with v = 0. Similarly if (\,T,x) = (\;,T;,x;) is a
nontrivial solution of (l.3) then by the implicit function theorem we
know that there is a unique function x = x(\) with x(\;) = x;, when

T =7, is fixed, provided
1.5 IOy, Ti,x) = 1+ £ (0, m,%) # 0

If the Jacobian condition (l.5) is not satisfied at a point (X, x) = (A\},x;),
then x = x; is a multiple or nonisolated solution of (1.3), and \ = X\,

is a possible branch point.
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Suppose that for X\ = )y, equation (l.4) fails to hold, and

that X = \g ié a bifurcation point of (1.3) with 1= 0. Then we can

find the possible branch points of (l.3) which lie in a neighborhood

of (A, T) = (Ag,0) by applying the implicit function theorem to the

system
x + f(\,7,x) =0
(1. 6)
1+ fx(h, T,x) = 0
Since fx()\,0,0) = 0 by assumption, we know that there are functions

X = Ax) and T = 7(x) which satisfy the system (l.6) for x sufficiently

small, whenever
(1.7) fT(KO,O,O)-f)\X(RO,O,O) # 0

A condition very similar to (1.7) will be assumed in the more
general discussion in Chapter II. The functions X = A(x) and 7 = T(x)
represent a family of possible branching points of (1.3) emanating
from X = \g and T =0. One could now study neighboring solutions

to determine if branching occurs,

A simple algebraic example possessing characteristics which

we will find in other more general problems is given by

(1. 8) x - x(x+ X)y-7=0



The solutions of (1.8) are

(1.9) xi=1'—2’*i%m.

When 7 = 0, the solutions reduce to x =0 and x =1-\, so that the
point X\ =1 is a bifurcation point. When 7< 0 the two solutions
given by (1.9) are well defined with x, > 0 and x < 0 for all values
of \. However, when 7> 0, real valued solutions do not exist for
1= Z-rl/z< A< 14 2.7%‘ , and the points )\:I: =14+ 271/2 are branching
points of equation (1.8). The accompanying plot shows the solution

curves (1.9) for wvarious values of T.

T>0
N

—
——
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Equation (1,2) can represent very general operator equations.
In this thesis we are concerned primarily with nonlinear boundary
value problems involving either second or fourth order partial
differential operators. It is a simple matter to consider more
general operators, such as compact nonlinear operators on a
Hilbert space, since most of the changes necessary are notational
only. Owur primary application is to the buckling of imperfect
engineering structures [3] *, [4], [15], where T represents the
amplitude of some imperfection, and the branching point represents

the load at which buckling may occur.

Our general results for second order equations make use of
a perturbation procedure coupled with an iteration technique used by
H. B. Keller [17] for bifurcation problems. The perturbation pro-
cedure is used to suggest the proper form of the solution. Then
the iteration techmnique is used to prove the existence of such
solutions. In Sections II,2 through II.4 we show the existence of a
unique family of nonisolated solutions for certain values of T
sufficiently small. The perturbation procedure is also shown to be
asymptotic. In Section II,5, a solution branch is constructed
through a nonzero nonisolated solution of (1.2). In Section II.6,
the "stability" of the constructed branch is examined, and is simply
summarized in Figure 1. Under certain circumstances, given in
Section II,7, part of the solution branch constructed in Section II.5

is shown to be a branch of minimal positive solutions, in the sense

“Numbers in square brackets refer to the list of references at the
end of the thesis.
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of Keller and Cohen [19]. Furthermore, conditions are given under
which a branching point is the least upper bound of values \ for
which positive solutions of (l.2) exist with 7 fixed. The bifurcation
diagram is completed in Section II.8, where it is shown that for all
values of T sufficiently small, (1.2) has two distinct solution
branches, although some of these branches may not contain
branching points, A graphical summary of the main results in

Chapter 1I is given in Figures 2, 3 and 4.

In Chapters III and IV, these ideas are applied to the dynamic
buckling of arches and imperfect columns and to the buckling of an
imperfect column on a nonlinearly elastic foundation, respectively.

In Chapter III, global stability characteristics for the buckled equilib-
rium states of an imperfect column are studied using the qualitative
features of nonisolated solutions discussed in Chapter II. In ChapterIV,
an advantage in using the present iteration technique in problems of
imperfection sensitivity in buckling is demonstrated. It is a simple
consequence of our approach that an approximate solution of the buck-
ling load is asymptotic to the exact solution. Approximation techniques

used elsewhere do not have this feature [3].

Equation number (l1.1) refers to the first equation of Section 1
of the given chapter. Similarly, Theorem 3-1 refers to the first
theorem of Section 3 of the given chapter. When reference is made
to an equation or theorem in a different chapter, the other chapter
is named explicitly. The meaning of symbols remains unchanged

within each chapter, but may differ in different chapters.



Chapter II

General Imperfection Theory

II. 1. Notation and Definitions.,

We want to study branching phenomena for elliptic boundary

value problems of the form

(1.1) Lu + f(\,T,u) = 0 x €D
Bu = 0 xed D .,
Here % = (X5, son s xn) and L is the uniformly elliptic second order

operator defined on D by

n n
_ 9% u du
(1.2) Lu= ) 85515 B B, T ) 845} 5y, ~ Bolx)u .
i,j=1 | J

The boundary operator B is defined on 9D by

n
(1.3) Bu = bo(x)u + b, (x) ), B, () u
j=1

where for notational purposes we will denote

n
ou _ du
o = L By 5
j=1 4
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We denote by Ck+a(ﬂ) the space of real valued functions

which are k times continuously differentiable on a point set @, and
have Holder continuous k™ derivatives on Q with Holder exponent .
We assume that D is a bounded domain in R" with boundary dD of

Cz+af

class The coefficients aij(x) . aj(x) , 3g(x) > 0 are assumed

2to

to be in C*T¥(D) , c'*(D) and C*(D) respectively, while by(x) ,

1+

b, (x) , {Si(x) are in C (D) for some a€(0,1). The uniform

ellipticity of L implies that for all unit vectors y = (y;, ..., yn)

n
(1.4)-1) > a3;(x) y;y; > a> 0 xeD .
i,j=1

Taking ni(x) to be the components of the unit outward normal at
x € 0D, we assume that the coefficients of the boundary operator B

satisfy

n n

(1. 4)-ii) >, B;(x) my(x) > 0 . ) p2(x) = 1
j:]_ 1=1

and that 9D can be decomposed into 9D = 9D, U 9D, where

(1. 4)-iii) by (x) > 0 b, (x)= 0 x € 8D,

(1. 4)-iv) b (x) = 0 by (x) > 0 x € 8D,

The assumed smoothness assumptions on L and B are

sufficient to assure us that, for F(x)e Ca(ﬁ), the linear problem



x€ D

[
hj
£

1. 5) Lu(x)

x€ 9D

1l
o

Bu(x)
has a unique solution, u(x) € c2+a (—]5) ([26], pp 134-136). These
assumptions further imply that L. and B satisfy the strong maximum
principle [31] which leads to

Proposition (1): If &(x)e C'(D) () C?(D), then

i - Lé< on D, B¢ =0 on 8D = ¢(x)=20 on D

ii - Lé < on D, B¢=0 on 8D => ¢(x) >0 on D

Furthermore, if &(x) = 0 for some xe 8D, then

¢
== & x€edD
oo

where % is the directional derivative taken in any outward direction.

We will assume that the nonlinearity f(\, T,u) satisfies

f(A\,0,0) = 0 for all real \, and f(\,T,0)# 0 if Tv# 0. We will

2to

assume that f(\, T,u) € CQ(D) whenever ue€ C (D), and the partial
P

2H0eny. Al

derivative at X\, T,u satisfies fu()\, T,U) € Ca(D) when ue C
other derivatives up to and including third order are assumed to be

continuous on D if ue€ CZ+Q(D). Although f(\, T,u) is allowed to

depend on x, this dependence will not be explicitly shown.
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The standard bifurcation problem with + = 0 has been treated

in numerous places ([7], [17], [21], [25], [34], [38]). One result
of these studies [25] is that branching can occur at a point (\,u) =

(Ao, 0) only if there are nontrivial solutions of the problem

(1.6)  Lé + £,(%g,0,0)

1
=
Ed

m

o

1
o

B¢ x € 9D.

For the forced case with 15 # 0, a point (Ag,uy) can be a branching
point of (l.1) only if there are nontrivial solutions to the problem
resulting from linearization of (1.1) about the known solution at X = \q4.

That is, there must be nontrivial solutions to

Llp-l—fu(Ko,'ro,uo)lp:O xeD

By=0 x€dD

where (A, Tg,Up) satisfy (1.1). Solutions (u,, A\, v} satisfying both
(1.1) and (1.7) will be referred to as non-isolated solutions of (l1.1)

corresponding to the point \.

To provide a starting point for our investigation, we will
assume that there is a number A\, and a nontrivial function
dbo (x) € CZ+Q(B) which satisfy (1.6). The quadruple (u,y,\,T) =
(0, dg s Mg, 0) will be referred to as a trivial nonisolated solution of

(1.1). We will also assume that all solutions of (l.6) are multiples

of ¢g(%).
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By defining the inner product
(1.10) (w,v) = [ ulx) v(x)dx
D

we can define adjoint operators L" and B  to be those operators

satisfying

(1. 11) (v,Lu) - (u,L'v) = 0

whenever u, v, € C2+a(ﬁ) and Bu = 0, B*v = 0. The operators which

result from this definition are given by (|6], [13])

p n 2 (ai.(x)v) 0 3(a.(x)v)
T N | | S
(1.12) Lv = ), = -y s—— - ay(x)v , xeD .
i,j=  * J i=1 :
B*v = 0 is defined by requiring
n F 5 n
u %
(1.13)  Plu,vl= ), Laxi BV~ P (aijv)u:|+  a,uv =0  xe 8D,
5 J AL,
i, j=1 i=0
when Bu = 0. For p(x)e CQ(B), whenever
(1.14) Lé + p(x)d =0 xe D
B = 0 x€d D

has a nontrivial solution, we know from the study of spectral theory

for compact operations [11], that the associated adjoint problem
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(1.15) L' +p(x) e

]
o

* ok

Bé

11
o

also has a nontrivial solution, and the null space of equation (1.14)
is of the same dimension as the null space of (1,15), The Fredholm

Alternative Theorem [6] holds for solutions of
(1.16) Lv + p(x)v = g(x)

Specifically, this asserts that (1.16) has a solution v(x)e C3+a(5)

provided g(x)e Ca(_ﬁ) and

E13
(1.17) (8(x) , do) =0
where qf; is a solution of (1.15). Let A(x) e C(E) be a "weight
function” such that (o (x) , q;;(x) Ax)) # 0. We make the stronger

assumption that if the solution v(x) in (1.16) is made unique by

requiring the orthogonality condition
(1.18) (v(x) , do(x) Alx) ) = 0
then there exists a constant G>0 such that

(1.19) vl < Glell,
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The notation has been chosen with an eye toward general-
izations. If we wanted L to be an operator in a real Hilbert space
H, then the inner product (1.10) could be chosen appropriately. The
inequality (1.19) could be assumed to hold in the induced norm of
H, and many of the results that follow would be true with only a

slight change of wording.

11. 2, Perturbation Theory for Non-isolated Solutions.

Formal perturbation theory is often used to obtain useful
approximations to solutions of nonlinear boundary value problems.
The ideas used in the method originated in the work of Lindstedt
and Poincaré [30] on periodic motion in celestial mechanics.
Recently it has been applied by J. B. Keller and others [22], [23],
[29] to a number of nonlinear boundary value problems arising in
such diverse areas as nonlinear optics, heat conduction, and super-

conductivity.

In this section, we will develop a formal perturbation scheme
which indicates the form of nontrivial non-isolated solutions of (1.1).
We will show that this scheme is well defined and can be carried
out to arbitrary order provided the nonlinearity f(\, T,u) is sufficiently
differentiable in each of the arguments A\, T and u. It will be the
task of later sections to show the validity of this perturbation

scheme,

Suppose that the quadruple (u,$, N, ) = (0, dp,Ng,0) is a known
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nonisolated solution of (1.1). Our hope is that this solution is an
element of a branch of nonisolated solutions, and that this branch
can be represented parametrically with some parameter €. If
this parametric representation is also sufficiently differentiable at
the known solution (u, Y, \, 1) = (0,dp, X p,0), then we can expand the
parametric representation in a Taylor series about known solution,
We choose the parameter € so that (u(x,e), Y(x,e), N(€), 'r(€)> =

(0, dp, Mo, 0) when € =0.

The first n+l terms of this Taylor expansion will be referred
t : , 1 ;
to as the n k perturbation expansion for nonisolated solutions of (1.1),

and will be in the form

~n n
u (x,€) €(ug+eu; +-- + € un)

bo +€ Uy +€2y, +o €

U (x, €)

n

(2.1) {

X%e) = No + eXy 4t e

~n
L TolE) = € (tp +e Ty Fk e )

There are two equivalent ways to determine the coefficients
in (2.1). Since (2.1) is intended to be the Taylor series of solutions
of (1.1), (1.7) about € =0, one could differentiate (1.1) and (1.7) k
times, and then set € =0, thus finding the equations which deter-
mine the coefficients of the kth terms as functions of the previously
determined cocfficients, Alternately, one could substitute expression

(2.1) directly into (1.1) and (1.7), expand the nonlinear terms in
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powers of €, and then equate coefficients of like powers of €, The
equations which result will again determine the kth set of coefficients
as functions of previously determined coefficients. Since these two
methods are equivalent, both require that the nonlinearity f(\, T, u)

have smooth derivatives of at least order n.

Carrying out the above expansion procedure, we get

(2.2) Lugy, + fu()\o,O,O)uO = —fT()\O,O,O)TO

Buo =0

(}\.0 ’ 0, O)Kl TO

Lu; +£ (Ao, 0, 0)u, —{f)\u()\o, 0,00\ ug +f

AT
2
(2 3) + £ (N, 0,0)ug oz (N, 0, 0)ug

2
+%, fTT(KO ,OJO)TO-I_fT()\O:O)D)TI} x€D

Bu, =0 x€ 9D
(2.4) L¢0 +fu()\0,0,0)¢0 =0 xe D

(" Ly +£,(%,0,0); = -{fm\(xo,o,om¢o+fuu(xo,o,0)¢ou0

(2.5) ¢ % fuT()\.O,O,O)TOq)O} x€ D

1]
=

x€ 9D,

3 By,

Since the operator g fu(RO,O,O) has a null space spanned
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by ¢0* , we know by the Fredholm alternative theorem that
equations (2.2) - (2.5) can be solved if and only if the right hand
side of each equation is orthogonal to ¢0* as in (1.17). This con-
dition determines the constants \;, 7 and 7; in (2.2) - (2.5).
Furthermore these solutions will not be unique, since we may add
any multiple of ¢o to the solution. To make the solutions unique,

we require

1]
o

(W), o (x) £, (Xo,0,0) )

(2.6)

(u(x), oo (x) £, (Ao, 0,0) )

1l
m

This places a restriction on the terms of the perturbation expan-

sion (2.1), requiring that

%
( b0+ o £y, (R0, 0,0)) =1
(2. T)
sk
<u0’¢0 fKu(KO:O,O)> = ]-
and
*
(B ird0fy ;(X,0,0)) =0

(2.8) $ =12

1l
o

(u, . d0ty  (Ro,0,0))

hold.
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In order to solve (2.2), the Fredholm alternative theorem

requires that
s
(2- 9) To ( fT()\(l: 01 0) s ¢’0 > =0

Y
Assuming that (fT(ho, 0,0) , ¢g)#* 0, we must have 75 =0, With

To = 0, equations (2.2) and (2.4) are identical so that, applying (2.7),

(2.10) ug (x) = bo (x)

Using this information, equation (2.3) becomes

-

LulJrfu(k(,,O,O)u1 = ‘{f)\u(Xo,O,O)M%‘*"%fuu(Ko,O,O)%z
(2.11)< % fT()\.G,O,O)Tl} . xeD

.

Applying the Fredholm alternative theorem to (2.11), we have

2. 12 B (qu()\o, 0, O)%,%*) + T (fT(KO,O, 0), ¢:)

1 ) s
= =5 (fuu()\o, 0, 0)¢0’ Q)O )

Similarly, from equation (2.5) we get

4 2
(2.13) M (f 0. 0,000, 000 = = (£, (Mo, 0, 000, d0 )
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Equations (2.12) and (2.13) are two linear simultaneous

equations for \; and T;. The determinant of this system is
s .
(2.14) D = (f_(Ao,0,00¢0) = (f, (No,0,0)do, 0 )

so that these equations can be solved provided D# 0. If D+ 0, the

solution of (2.12) - (2.13) is

~ 2 %k
)\ 3 <fuu(X010: 0))¢0:¢'0 >
1. = 7 sk
(I‘E)\'u()\()’O)O) ¢0’¢0 )
(2.15) ¢
2 Dld
(00,0005 . o )
Ty = § ] 5
\. <tT(KO)0, 0)’(b0 >

Of interest in many applications is the relationship between
N\, the "buckling load," and 7, the "imperfection amplitude,”

According to (2.1)

40

= €?7; + O(e?) ,

so if 7y # 0, we can find X = \(T) approximately. In particular,

2z %
(a0 0, 0) 0. b0 )
(2.16) T &ooue 220 4 oty

S

(i‘T()\o »0,0), 40 )

and
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M- 0, 0) g, b5 )
(2.17) N =N - € — + O(e?) ,

<f)\u()\0 »0,0) ¢, '130* )

can be combined to give
%

] 2 sk
% [2<f.r(h0’0!0), 430) ) (fuu()\():oyo) ¢Oa¢0)]

(f)\u(KO: 0 ’ 0) ¢0’ 4)0;:()

(2.18) X = nox T + O(T)

L]

where T must be restricted so that \ is real,

In many applications, fuu()\o, 0,0)= 0, so that (2.18) is not

valid. Suppose there is an integer p such that

8%, 0, 0)
———— =0 2<k<p
du
(2.19)
aP+1f()\0,0,0) p+1 %
( P+l 0 ’ ¢0 > # 0 4

ou

Then the perturbation equations can be shown to reduce to

(2.20) Lu, + £ (X,0,0)u_ =0 xeD k=0,1,2,...,p-1
Buk =0 x€ 8D
aP 1 £(%,,0,0) u P!
Lup+ fu(?\o,0,0)up = = )\pf)\u()\o,0,0)qur aup+] (pr1)!
(2,21

+ fT()\o,O,O)Tp:l , xe D

Bu_ =0 x€e 0D
P
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and
(2.22) Ly + £,{X, 0,0} =0 x€ D e B By e sk
Bq,k =0 xe 0D
+1
3P (00,0,0) iy
L¢k+ fu()\o’o’o)q’p: -[)Lpf)\u(kc’o’0)¢0+ aup+1 ; ]’XG D
{(2.23)

B =0, xe 8D
4y x

and the conditions (2.7) and (2. 8) are required to hold.

According to equations (2.20) and (2. 21),

Up (x) = do (x)
(2.24)

u (%) = gy (%) = 0 k=12, ... p-1,

and the calculations used in deriving (2.20) - (2.23) show that

(2.25) A =T =0 k=12

Using (2.24) and (2.25) in (2.1), the form of the solution reduces to

TP = € (g +ePup)+0(eP+")

~ 4

TP = g +ep¢p+ oEeP™)
(2.26) N

TP w5, ep)\p+ ol

TP -

P €p+11—p + O(GPH ).
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Invoking the Fredholm alternative theorem in (2.21) and (2.23), we

can find )\p and Tp' Specifically,

e %
>\P (f)\u(KOsOso)q)O: (130) + Tp <f1-(>\0’0’0)’ d)O )

aP™ £(x4,0,0) pH1

1 ES
(2.27) = ( bo sda )
(p+1)! aup+l
. P £(0,0,0) ph
xp (fku(KO’O,O)q—"Os CbD } ~HE E < aup_H ¢0 El dPO )
so that
aP™£(0,,0,0) pH
Er— TR .
ptl
(2. 28) D ou

T = *
P (p+1)! (fT()\_O,O,O), o

At the outset, we assumed conditions {2.19) that assured us that

*rp# 0. Now we can solve for \ = \(T) approximately. Doing so,
we get
1
+1
P L & 00,00 PP PR
ptH n “p'H' ( pFl bo ’¢0>)
E

(2.29) A= ho- o (ip——)—;  (£(00,0,0),60)) u — +O().

(f)\u(kmo ’0)‘130' ¢0 >

Thus, the buckling load \ is altered by imperfections in the order

of Tp/p+1 for 7 sufficiently small,

We would like to show that the perturbation scheme given by
(2.1) is well defined, and that the kth terms of the expansion are

determined as solutions of linear equations involving only the
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previously determined k terms. If we assume that f(\, 7,u) is at
least n+2 times continuously differentiable in all variables, then
expanding f(\, T,u) in a multivariable Taylor series with remainder
near A =\y, T=0, u=0, and substituting (2.1) into the Taylor

series, it is easy to see that

- AT, FR AN = e(f (Xo,0,0)up + f (xo,o,om)
u T
2304 eiekrfkoo £, (Ag,0,0)ug, + f (Ag,0,0
( . ) +k=l I_u( 0>V )uk+ )\u( [ ERdE} )uo k+ T( 02V )Tk
+ 'P{u e T T, }+O(enﬂ)
5 e TR WIRR 2,5 TS W L P
2 X
~n ~1’1 ~n
£ (X ) = £_(0,0,0) +k2 [fuk(xo,o,onk
12 3L * Qk { o, WUy, A1 gy ;TO’-“’Tk-l}]
+ O(en+1)

On substituting (2.30) and (2. 31) into (1.1), (1.7) we get

~T1 ~1n ~a ~n
Lu+ fu()\o,0,0)u = - [6 fhu()\o,O,O)uO ()\ —XO) + fT()\.o,O,O)T

n
(2.32) +€kz—‘1e Pk{uo, ,uk_l;x,, ,Kk_l;'ro, ,11(_1}]
+ O™ 2D
Bi®=0 , xedD
and n k
L™+ £ (%,0,00F ek[Z( ax(ro 0,0 + Q.- DI J]aro( iy
k'—"l i
(2.33) =1 xeD

B?ﬂn=0 , x€d8D
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Equating like powers of ¢, we have

Lu, +£ (o0,0)u, = —l:qu(Ko,0,0)uo Mt E (A, 0,0)T, + Pk{---}] xeD
(2.34)

Buk=0 xedD k=l1l,2, vy omn .

k
Ly + £ (%o,0,0)44_ -j; [fu)\()\o,o,()))\j+Qj{---}]kpk_j xeD

(2. 35)

]

Bq:k 0, xedD el (R,
As before, equations (2.34) and (2. 35) can be solved only if
the Fredholm alternative is satisfied. Using that ug =g =¢¢, the

resulting equations are

(2.36) Me (400,000, b0 ) + Ty (£ (00,0,0), b0 ) = = (P d+Fd )

and

k-1
K . k
(2.37) A (£, , (10,0,0)0, ¢0"‘>=3=21 (EnPo 00N +Q L iy s o) -

(Qk{"'}d})o , ¢0*>
th

Notice now that using equations (2.34) - (2.37) determines the k

and T, as functions of

terms of the expansion (2.1), u, ka , A K

k
the previously determined k terms. The equations (2.34) - (2.37)
are linear, and involve the same differential operator and matrix

operator for cach term of the expansion., This assures us that the

procedure can be carried out indefinitely, provided the determinant
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D of (2.14) does not vanish, and provided f(\, T,u) is sufficiently
differentiable. The condition (2.8) makes the procedure unique.

The solutions of (2.36) and (2.37) are

k-1
Me= (£, 0.0, 0 )or b LZ A (Ros 0.0 HQ dug, " u shy" N 5o '»Tj—l})
]= 3k
(2.38) Viesj? @0 2
* <Qk{u°’“"uk—1; )\1’.“’?"1?1;-"0"“"5{—1}%’ 430* >]
and
k-1
Tk (E ] xo,o%)) b0 [L <(f Ao, 00 +Q {ug, j_l'n)\is'“,?\j__1§'7'0v.“ﬂj_1})
_]—.J

ka—j » do¥)

e " e " s e . e *
s <Qk{u0: ;uk_l;xls ’Kk‘l;‘ro’ 111{_1} ¢0—Pk{u01 ’uk_l.’)\l) ’Kkmll’-ro’ ,‘i(_l};q)()}}.

When the coefficients u s ka , hk and T, are substituted into (2.1),
the resulting expansion is an asymptotic solution of (1.1) for € suf-

ficiently small, This fact will be shown in Section 4,

II. 3. Existence of Non-isolated Solutions.

In Section II.2, we were able to develop a perturbation
scheme which gave rise to expressions which we hope are approxi-
mate solutions of (1.1), (1.7). At this stage, however, we do not
even know that (1.1), (1.7) have "nontrivial" solutions. In order to

show that such solutions exist, we look for solutions of (1.1), (1L.7)
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in a form suggested by the perturbation method, namely

u(x,e) = €¢p +e€?vix,€) ,

< Yi(x,e) = ¢p + € xl(x,€) ,

(3.1)
NMe) = N + €ple) ,
\ Tl€) = €*n(e) ,
where ¢q(x) satisfies (1.6). In addition, we require that
(v(x,€) , do (x) £, (%,00)) = 0
(3.2)
(X(x.€) , o (x) £, (10,00)) = 0

We must show that for some nontrivial range of the parameter €,

0 < |e|] <€, , the functions v(x,€), x(x,€), p(€) , n(€) exist and are
bounded uniformly in €. If this can be shown, then as € approaches
zero, the solutions (3.1) approach the trivial solution (u, y,\, T) =

(0, ¢o» Mo, 0) continuously. Furthermore, the solutions (3.1) cons-
titute a family of nonisolated solutions of (1.1) depending continuously

on the parameter € .

To carry out the analysis for this problem, we will make

use of the identity

1 dg
(3.3) gla) - g(b) = (a~b)fo I (sa + (1-s)b) ds

dg
provided the derivative e exists and is continuous for x €[a,b].
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To use this identity for (1.1), (1.7) we will assume that f(\, T, u)
has at least three continuous derivatives in \, T and u. Substituting

(3.1) into (1.1) and (1.7) gives

1

(Lv+f (%,00)v=- 5

l_f(?\, o) = fu(?\o ,0,0)u:l

~ 1 151
_]n(e)j £ (\,s7u)ds +pigren [ [ £ (\o+sep,0tuds dt
= (0] 00

2 &l 1
(3.4)< +(¢>0+€V)j ffuu(hD,O,stu)sdtds] x €D
0 0
= P(v, p,n, €;x)
L Bv =0, x€dD
and
Ly + £ (2,0,0) . (N, T,u) - £ (Ag,0,0)
u L 10 ) X € i u y ¥a u 0>V, lp

= - fl 3 o,u)d y
_}J. . f)\u( otsen,0,u) s+€nfof1_u(7\, sT,u)ds
5
(3.5){ + (¢O+ev)j0 fuu(xo,o,su)ds] (dot+€X)

=Q(v, X, u,n,€;%x) xe€D

\_ Bx =0 x€e 0D

Equations (3.4) and (3.5) are of the form (1.16) and can be solved for

v and ¥ only if the orthogonality conditions
=
(P(V;H,W:EJX),(iM) ) :0
(3.6)
(QUV, X, mM,€5%) , ¢g ) =0
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hold. These solutions, if they exist, are only determined to within

an additive multiple of ¢, unless the conditions (3.2) are satisfied.

The orthogonality condition (3.6) provides the method by
which we intend to solve (3.4) and (3.5). We will solve them
iteratively, first by choosing values of n and p so that (3.6) holds,
and then solving (3.4) and (3.5) for the functions v and ¥. With
the new functions v and x, we must choose new values of n and p
so that (3.6) again holds, and the process continues indefinitely.

If we can show that this process converges, then roughly speaking,
we will have found a solution of (3.4) and (3.5). This iteration
scheme is a modification of the standard technique of Lyapunov and
Schmidt [38] suggested by the treatment in [17] of the bifurcation

problem (1.1) with T = 0.

To formulate the contraction mapping we introduce the sets

of functions

(3.7 B ={yx)|yx) e D),y SK, (y(2), 60 () I, (A0,0,0p=0]} ,
and the real interval

(3.8) QK:{n In| <k} .

In addition, we introduce the set
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(3.9) Si{p,T) ={(\,7,u; x)|X = Aot €p, T=€2n,u=egot+e’v, xe D,
ve B r ;p,neﬂr; o<le|=<p}
Notice that S;(p,I') depends on p and pI" but not on I" alone. For

each v(x), x(x) € BK and n,p € _QK , a transformation T€ is defined

for each € in 0< |€| < €, by
T v wn) = (%555
where

(= -1 s
B {(bot+e€X) jo f)\u()s.0+ s€ u, 0,u)ds, ¢g )

" | .
(3.10) = - ((¢o+ev)(¢0+ex)jo £ .o, 0, su)ds, o)

1 *
-en((@otex) [ £ 0\ sT,u)ds,b0)
Vs

~

1 sk s ~1a1
n(fo £_(\,s7,u)ds, ¢o) = - p((¢0+EV)jof £,  (ho+s€,0,tu)dsdt o)

(3.11) o
_((¢,0+ev)fofo fuu()\o,O,stu)sdtds,q)’:;) 5
(Lﬂ:r+ f (Ag,0 0);=—[ﬁflf (A,sT,u)ds
u-O’ s o T ] )
~ 101
+ plootrev) [ [ £ (Aotsep,0tu)dsdt
00
(3.12) < o
+ (do+ev) [ [ £ (N,0,5tu)sdt ds] xe D
0 0

~ ~ *
L Bv =0, xe 8D (v, ¢ fm(ko.O,OD =0 ,
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S

- 1
(LX+£_(%,0,0)X = —[“(¢°+EX)fo £, (No+sep, 0, u)ds
1
+ en (¢>0+ex)f0 f_ru(k,s-r,u)ds
1
(3.13)< + (¢0+€v)(¢0+€x)fo fuu(ho,O,su)ds] x€e D

B =0, xedD

t ()z’ ¢>(;f)\.u()\'0s030)> =0 .

This definition of ']I‘€ induces an iteration procedure in a
natural way. Suppose we let an initial iterate be (vo (e,x), x%%e,x),
pl(e), n° (E)). Then we define the sequence of iterates

{(v"(.a, X(e.0, w(e), n"(e)) } by
(3.14) [VV+1, Xv+1’ “v+1, nv+1]:T [VV'XV'HV"”V] )

We are now able to state and prove the following

Theorem 3-1: Let S;=S5;(p,I') for some fixed p €1, pI" € 1.

Suppose that

[, mwe Sy L 0, T, we G Sy,

< and

£\, 7,0), 1), f

(3.15)

au’ fuu' fTu’ 1‘uuu.’ f)mu ’fTuu'f'r'ru‘ f)\)\u

L fRTu, fTT € C(S] ) .
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o *
and that (fT(RO,O,O),%) 3 (¢°f)\u(>\°’0’0)’¢°> # 0 . Then there are

real positive constants €, and K , €5 <p, €,K<pI' such that the

mapping T€ given by (3.10) - (3.13) maps UK = (BKX BKX ﬂKX _EZK)

into Uy, , and T_ is a contraction on Uy, for all € 0 <|e|<e€,.
K € K

Furthermore, the problem (1.1), (1.7) has a nontrivial solution of the

form (3.1) where wv(x,€), x(x,€), n(€), n(€) satisfy (3.4) - (3.6) and

are the limits of the iteration scheme generated by 'I‘e for any

initial iterates in UK .

Proof: For notational purposes, define

(3.16) lelly = sup |e@)] .

weES,
Since S; depends on the numbers p and pI’" but not on I" alone, we
can use the norm (3.16) without knowing I'. We need only require
that €5 < p, €K < pI'. By requiring ¢ < max{l, l/K} we can use

the norm |lg||, with p =1, pK =1.

By virtue of the smoothness assumptions we made about
inverting the operator L + fu()\o,0,0) (cf.(1.16) ), to show that T€
maps Uy, into U, , we need only find appropriate constants K and

€, that define B and J, .

We assumed that | { o fuh(}\.o,0,0), ¢Q*) |=a #0 and
| ¢£_(%0,0,0), 40 ) =B # 0. Notice that in (2.7) we assumed a =1 without

loss of generality. We restrict €; to be small enough so that
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1 i
( | ((do+ €X) fo fon(Rote sp.,o,u)ds,q,o’> | = % ,
(3.17)

1 5
|(fo f_(\,s7,u)ds, ¢ ) | = _g

for (A, T,u)e S;. Then if (V,X,H,H)EUK for some €;,K with €;<1 ,

€e;K <1, we have

51 < Zadliol resr (el Fem iz, h e akliny, I, ]

(3.18)
< A; +€;B;(,,K),
o 2 ~ z”‘uu”s
A1 <2 8| 1BIIe) g ek iy, N+ ol e ——]
(3.19)
< A, +€;B;(€,,K),
170, Gl R IE IRl emlieg, |,
(3.20) A
t ol g e gy ll, | < Asreinsterm
and
IXll,, < Gl €t [ 1R] gy 1+ ol e gy, I,
(3.21)
+elK||fuT]|S} S Ag+€;By(€,,K) ,

E
where @ = (1, |¢,|) . The positive numbers A; do not depend on €,
or K, and the positive numbers B;(€,,K) are bounded on compact

sets of (€;,K). Our goal is to find K> 0 such that
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(3.22) A.i+€1Bi(el,K) s K i=1,2,3,4 .
This is easily accomplished, since Bi(el,K) depend continuously on
€; and K, we can pick K> max  {A,f , and then find an €;> 0
so that ( 3.22) holds, Lett;:glfz’i’fnin{l, %, 61} we have that

TE :Ug =~ Uy for 0 ~<.]€| < €;. The second part of the proof involves
finding €, < €, so that Te is a contraction on UK for 0 S]EI-S €0 .

Suppose we let w; = (v,x, 1, 1) eUK and w, = (y,g,v,K)eUK. Then we

can show that there exists a positive constant M such that
(3. 23) %, -w, | < (|e]M) ||w -w,|| whenever |e| <e,

where

w1l = max { vl o Ixllg s Iul . Inl}, weU, .

In particular, with some straight forward calculations, it is easily

shown that
(3. 24) 5V < Z2 e [An vy I+ A Ix-g 1+ A fu-v |+ Asln-i J
G.25) 13RS 2| [Anllvoy 1 Anlu-v |+ Ag [nex ]

v 22 Ags II’I“‘Jl ’

g
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(3.26)  1551= Glel [Asllv-y |+ Ase [uev | + A [n-k]
0 Q0

+ G Agy nk| + G Ags Ju-v] ,

and
(3. 27) IF-ElClel [Anllv-y I+ Aglx-tl+ Ag lu-v [+ Aw [n-x ]
00 o0 00
+ GA45 I;—:l ]
where
(R=mer= e 0 gl gt <2 o L0l gl 2 M
App=An=K ”qu | gt ”fuq-”S+ (e ”og—l) ”fuu ”S ,
_ _ K
A =as = (ol ez gy, I+ Sl 1),
. €2
A== olgn [ I+ Zle,,,0,].
(3.28)

Aar= Qo0 0 It 5 U0 L0 g b #3 Bl g D),
A= g = KB ID t I+ B 1] -

Ap=Agy=Z|f |, A= Ags = Ags= ([l ol +D[IE,, Il

=% 1l

n u
1= gt KD LD el 2 W+ ol =22=]

Clearly, (3.24) - (3. 28) imply the existence of a constant M such
that (3.23) holds, By choosing 0 <e3;M <1, the mapping Te is a

contraction on Uy for 0 < |e[ < €9 where €,=min(e,,€3 ).
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We have now shown that for le!S €0, 'I‘€ maps U,, into itself

K
and is a contraction. But this is not sufficient to show that the
iteration scheme generated by T€ converges to a solution of (3.4) -
(3.6). We know by virtue of the contraction that the sequences
{vv(e,X)} and {Xv(e,x)} converge uniformly on D and that {nv(e):}
and {pv(e)} converge. By a simple induction we also know that

v (e, %) , Xv(e,x) ECHQ(B). This allows us to apply the Compact-
ness Theorem 12.2 of Agmon, Douglis and Nirenberg [1], which

justifies taking the limit v — o« in (3.14). Q.E.D.

It is easy to see that a solution of the form (3.1) is
unique. If it were not unique, then there would be two solutions,
say w;# w, which both satisfy (3.4) - (3.6). Thus, both w,; and
w, are fixed points of the mapping Te given by (3.10) - (3.13), so

that %1 = w; and :7;!2 = w,. Applying (3.23) we see that
(3.29) wi-wa || < |lwy=w, |

whenever |e| < €, which is a contradiction. Thus, w; = w,, and

the solution is unique,

The proof of Theorem 3.1 assured us that nonisolated
solutions of (1.1) are of the form (3.1), where v(e, x), x(€, x) , ple),
and 7(e) are uniformly bounded by K for |e| < €g. To know more
about the quantitative behavior of the solution, we would like to
know more about p(e) and n(e). We know that u(e) and 7n(e) are

fixed points of (3.10) and (3.1l1) respectively. Suppose that there
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is an integer p such that

r
a%t(n,, 0, 0)
e = ) 25k & P
Buk
(3.30) <
p+1
P emo,0,0) L
( p+1 0 ’ ¢0 ) * 0
\. au

holds, and assume that all third derivatives of f(A,T,u) exist and
are continuous, Then applying the identity (3.3) to (3.10) and (3.11)
we find

-1 P (0,,0,0)
é) 0> Vs P+l p
p! ( a P+I ¢0 J¢O>+O(€ )1
u

(3.31) 1({dofy (ho0,0), dp) +O(e)) + 1 Ofe) = -

and

(£, (%0,0,0), 457 + O(e)) + (o Na» 0,0} 69 1+O(€))

(3.32)
Pt pH aPM £(%,,0,0)

= (Po T . 40> +O(P) ,

Although (3. 31) and (3. 32) include implicit dependence on p(€e) and
n(e) in the Of(e) and O((—:P) terms, we know that [p(e)]s K,
]n.(e)] < K for |€| < €9 , and this permits the determination of the

asymptotic form of p(e) and n(e) as |e]| — 0.

The system (3.31) - (3.32) can be solved for € sufficiently

small, to give
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0P "1 £(%0,0,0)

i o . B )
_ _ € ou P
(3.33) uwle) = -5 ms + Ofe™)
<C1)0 f)\u()\o,o,O), ¢O }
<8p+1f()\0,0,0) WPk
3 34 § = p-1 P aup-H (0] s Po o 5
(3.34) nl) = € (P! €")

(£_(%,0,0), ¢g )

Coupling (3.33) and (3.34) with the form of the solution (3.1), we
see that the perturbation solution (2.26) - (2.28) is asymptotic to
the solution (3.1) as € — 0, In section 4, we will show that this

is true for the perturbation scheme with any number of terms,.

I1. 4. Comparison of Iteration Scheme and Perturbation Procedure,.

In Section 3 we found a mapping ']I‘€ whose fixed point gave
rise to solutions of (1.1), (1.7) for each €, 0 < |e| < €y. The
iterations generated by TE were found to converge to the fixed

point for all initial iterates in UK .

In this section, we will examine the iterations generated by

the initial iterate

(4.1) w® = (v°(e,x), X0(e, %), uo(e),n"(e)) = (0,0,0,0) .
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To estimate the errors of the kth iterate wk, we apply (3.23) to get
(4.2) |7 - W< (el W

where €, is chosen so that egM< 1. Applying (4.2) recursively we

find that

< (Je|MF w- w0
(4. 3)
< (le | M K ,

A simple application of the triangle inequality implies

w5t < K (|e |M)S \_(|e I M™% (e | M)y™ 24 +(\(—;|M)+1]
(4. 4)

m
& K(|51M)k 1-(le|Mm)

1-le|l™Mm

and passing to the limit as m—w , we get

k
(4. 5) =™ = g MEIM)
1-|e | M

3

where w = (v(e x), x(e,x), ple), mnle )) is a solution of (3.4) - (3.6).

Writing this another way, as € — 0, we have

(4. 6) [w-w|| = o(le]™ .
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We can interpret this information in terms of the solutions

of (1.1), (1.7) in the form (3.1). The sequence {wk} corresponds

for € fixed to finding a sequence (u.k (e, x), n.].uk (e ,x), p,k (e), nk (e))
where
f uk(e,x)=e¢>0+ezvk(e,x) ,
k
LIJ (E,X) = l:1)O+€X (E,X) ’
(4.7) ﬂ
k
Ne) = g +tepn (),
L T (e) = eznk(e) ¢

with initial iterate

(4-8) (uo,‘;‘o,)\o,'ro)=(€¢0'¢0-7\0,0)-

Furthermore, (4.6) tells us that

[ u - dF) = o(el*D),
lw - o&|| = o(le]®*Y) ,
(4.9) <
Ix - 2K = o(e|*tY) ,
L -l =odel ).

We would now like to show that the perturbation method

described in Section 2 gives an expansion which is asymptotic as
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€ — 0. Specifically, we will show that (4.9) holds for the iterates
(4.7) and also for the perturbation terms (2.1). To do so we

prove the following

Theorem 4-1: Let the hypotheses of Theorem 3-1 hold, and let

(2.30) and (2.31) be satisfied for all €, |e| <e€,. Let (W g A5T)

be of the form (2.1) with u.(x), @,(x) bounded on D for i=1,2,n.

Then the iterates (U.n,qJn,Kn,'rn) of (4.7) and the perturbation

expansions (Gn’i'n”in’:_'n) of (2.1) and (2.34) - (2.37) satisfy

(’
la™e,x) - 3%, x| = o(le|™)
lo™e. =) - The, 0| = ofe|™)
(4.10) <
%) - M) = o(le|™™
|7%€) - TMe)| = o(le| ™)

N

Note that applying the triangle inequality with (4.9), (4.10) assure
us that the perturbation method is asymptotic to the known solution

as € ~0,

Proof: The proof of a similar fact for the bifurcation
problem (when 7 = 0) has been given by Keller and Langford [20].
The proof uses a standard inductive argument. By (2.9), (2.10)
and (4. 8), we see that (4.10) holds trivially for n =0, For n> 0,
the iterates are generated according to (3.10) - (3.13). Without

using the identity (3.3), these can be written as
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WLy ” v v v v %
(4.11) ( "1(f 0, a” )= £ (N, 0,u” ) g0 y=- (F, (O, 7, )y E (V0,90 o )
“ Ao
. V.,V v E
= (0, 00 )= £ (X, 0,007, ¢ )
v+l v+l %
(4.12) T (E070)-E00,0,0%, 60 )+ (A—20)(£(0”,0,u” )~ £(ng,0,0"), 4y )
T Xv_)\.o
=~ (f(\g, O,0") - fu(xD,O,O)u”, daf)
v+1
( Lu"+‘+f (%,0,0) "1 = [ G(x SLEE )—f(x",o,u"))
TR,
§ e (f()\. 0,u”) - £(xo,0,u” ))
Xy
(4.13)
< , ,
F f(KOJOSU )—fu()\o,0,0)u:, »
Buv+1 = 0
L @60t (06,00)) =€
. 5 W
( L¢v++fu(?\ .0,0)” =-[ (f (\,0,u )-fu(?\o,O,u”))
INGES
+ fu(x", +,) - fu(x",o,u")
(4.14) <
+ £ (N, 0,u") —fu()\o,0,0):! e
B¢v+1=0

L@ e g, 06,000 =1,
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£, ) -£(V,0,0")

v

-
is replaced by fT(?\V,O,uv) in (4.12) and (4.13). Similarly, if B =N\g, the

provided 7#0 and N2 No. If v =0, the expression

expression fu(x", O,le)—fu()\o Dy uv)/ KV—KO is replaced by f)\.u(ho ,O,uv)
in (4.11) and (4.14), and £\, 0,u”)-f(Ny,0,u”)/N -\, is replaced by

f.(Ng,0,u”) in (4.12) and (4.13).

A
Suppose that (4.10) holds for some n>0. This implies
r ~ +
ot = 0™ e (o), el =0,
= +
g ="+ e e (e) le Il =0,
(4.15) <
=R ™ ), le Il =00,
=T ™ o), In |l =0

Applying (4.15) with (2.30) and (2.31) we see that

£, 0 = £ (0, 0,000+ £ (0g,0,0)7T +€ £, (Xg,0,0)us(N -2p )
u T Au
(4.16)
n+1 K i
¥ e . . . — n
+e ), € B taty ki um o O,
k=1
and
g n n n n
£,00, 77,0) = £ (00,0,0) + £, (0,0,0)(N* o)
4,17
( ) < n+1
k ; T n+2
+ Z € Qk {uOI puk _1:)\-1, 1)\1( _l:To, ,Tk _1}'+O(E ),
L kzl

If we assume that



=4 7=
i
v+l _ e k n+z
(4.18) W =g + ) €By + O™?)
k=0

then (4.17), (4.18) combined with (4.1l) give

(24 flEk P =
), (xo,OO)Zﬁ g 90+ . L€ g
; n+1
k=1 j=1 E € }\.k+€ Py k=2
k=1
i 2 w, By +2
e oy - n n
(419){ =-) e ) (Qj{uo, MR Tos ,Tj_l} 4’k-3'¢°>+z €°q, +O("?)
k=1 j=1 k=2
where
_12 e — . i
qk“ ((Qj{uO! .uj_li)\lx ’ J 1; 9 3 } {uﬂ,- 1:030! 0, 'O})LH(-_]" 4’0 ) ?

. j=2

where )\k’ Tyr

scheme given by (2.34), (2.35), (2.38) and (2.39). Suppose that

k and "I‘k are the coefficients of the perturbation

)\kZOfor k=1, """ p-1 and Kp#O. Then qk=0 for k<p. If p=

. nt1 k
n+l, then the polynomial X €

k=2
corresponding terms involving this polynomial are not present in

A vanishes identically, and the

n+1
(4.19). If p<n, then X ek q /2613\. +€n+1 K. is a polynomial of
K=z k fo n
order €, In either of these cases, equating the coefficients of €

in (4.19) gives

(4. 20) B1{fap (h0:0.0) o, b0 ) = = Q1 {uos To} b0, G0 )



-43-
Comparing this with (2.38) we see that $; = \;. In fact it is easily

seen that ﬁuk = )\k for k=1,2, -, min(p, ntl).

If p < n we must still determine ﬁk for k =2 p+l. Suppose

that for some k > p+l, Bv = XV for v<k . Then we observe
n+t1
P Ekpk
k=1 k-p
(4.20) n = 1+ Ofe )
z S re™
k=1 i
n+1 pt1
Since X ¢ Ay is a polynomial of order ¢ , equating the coef-
k=2

Ficiemks of &° i (4. 00

k
% P AT G s men *
(4.21) 6k<fu,\<xo,o,0)%,¢o>——jé1<Qj{uo. A NN T T b o)

k-1
- Z BJ <fu)\()"0:0’0)¢k_jx q)'g )
j=1

which upon comparison with (2.38), shows that Bk = Xk. This

process can be carried out for all p+tl< k € n+1, which completes
the induction necessary to show that
n+i1

(4.22) N =g+ )] € a r 0™ =A™ o)
k=1

In a similar manner, combining (4.12), (4.16) with (4. 20) and

(4. 22) gives
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i

n+1 n+1
k * k %*
€, € ¥ (E(,0,0),80)= =€ ), € A (£, (,0,0)0, bo)
k=0 k=1
n+1
- <2 - *
- € E E ( Ug, ’uk—l’)\l’ ’?\k_lkoi 50}:¢0>
k=1
(4.23)
n+1
Z € Yy n+1
= 3
g == ), €p, +0(™?)
P ek Tk+en+1n =1
k=0
where
- - e *
Pk ( {uOy 3 k] )\}’ ’Kk_I’TOy ) k"l} uo; 3uk_1;)\19 :)‘I(_I;O’O}’q)())s

>

n+1

where we have assumed T (€) to be of the form

n+1
n+1 vk n+3
(4.24) T =) €y + O™
k=0
The argument is now exactly the same as the argument given above

and will not be repeated., The result of the argument is that

(4 25) Yk<f )\'0’0 0) d)())— )"k<f (h0!00)¢0’¢‘0> <P{u0: » kl’kl’ k_11T01--s ]}4)0
for k=0,1,""" n+l, or that

n+1
(4.26) P e ¥ & 1 0™ = T 4 o™,

k=1
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The final step of the inductive argument involves substituting

(4.16), (4.17), (4.22) and (4.26) into (4.13) and (4.14). In light of

(4.20) and the similar relationship for the quotient TV+1/TU , it is

easy to see that

(4.27) L™ g™ 4 £ (0,0,00@™ -0 = 0(™)  xeD,
Bu™-3") < o %€ D ,
and
+1_~n+ 1
(4.28) L™ -0 + £ 060,000 ") = 0™ xe D,
B(y™-y"h = 0 xe 8D,

The right hand sides of (4,27) and (4.28) consist of the differences
of right hand sides of (4.13) and (2.32) and of (4.14) and (2.33)

respectively. Since each right hand side expression is orthogonal
to q;'(;, so also must their differences be orthogonal. By (1.19) the

inverse of the differential operator L + fu(ko,0,0) is bounded, so that

(4.29) ” n+l ~n+H ” - O(€n+3) 4
and
(4. 30) l| ™ - I = o™ )
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The expressions (4.22), (4.26), (4.29) and (4.30) are of the form
(4.10), so the induction argument, and hence the proof of the

theorem, is complete. Q.E.D.

IL. 5. Extension of Solution Branch from Nonisolated Solution.

In the previous sections, we showed that there are non-
trivial nonisolated solutions of (1.1) depending continuously on a
parameter € for ‘e!% €9. In this section we want to show circum-
stances under which a nonisolated solution of (1.1) is an element of
a nontrivial solution branch with 7 fixed. To do so we will
construct the solution branch of (1.1) which contains a given non-
isolated solution. A similar problem has been treated by Dean

and Chambré [8], [9].

Suppose To# 0 is fixed arbitrarily. If we make the

identification

(5-1) g()\,‘ll) e f()\r TOsu) ]

equation (1.1) becomes

1l
o

(5.2) Iu + g(k,u) xe D

2

Bu = 0 x€ 3D |

where we assume that g(\,0)# 0, Suppose that u = wy(x) is a
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nonisolated solution of (5.2) for N = py. Accordingly, there exist

%
functions g, (x) and Yy {(x) which satisfy

{5.3) Ly + gu(l-'-o,WQ(X)NJ = 0 x€D ,
By = 0 x€9D ,
and
sk % e
(5. 4) LY + g (towo()) =0 xeD
%k Sk

By=0 xedD ,

respectively, where gu(p.o,wo (x)) is the partial derivative of g(\,u)
at (pg,Wy(x)), and L*, B* are adjoint operators defined previously.
We will assume that all solutions of (5.3) and (5.4) can be rep-
resented as multiples of i (x) and q;’ﬁ (x) respectively, With these
assumptions, the Fredholm alternative theorem (1.16) - (1.19) is
applicable when solving equations such as (5.3) with a nonzero

right hand side.

We want to find solution sets (p,w(x)) of (5.2), if they exist,
such that p-p, and w(x) - wg(x) are small. A natural way to pro-
ceed is to use the perturbation method to suggest the form of such
solutions, and then to construct a contraction mapping which shows
that the suggested form leads to solutions. Suppose we assume an

expansion of (u,w) in powers of § which has the form
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Q(X,B) = wo(x) + dwi(x) + 8%wy (x) + -,
(5. 5)
W(B) = po + By + B2py + *o-.
Substituting (5.5) into (5. 2), expanding g(:, ;;‘r) in powers of §, and

equating the coefficients of like powers of §, leads to the equations

(5. 6) Liwg + glpg,wo) = 0O xeD ,
Bwyg = 0 xe 0D ,
(5. 7) Lw,; + gu(HO:WO)Wl = _gx(P'OrWO)P'l xeD ,
BWI = 0 X € 3D 3

and

r‘sz"f gu(P-o:Wo)Wz = - {_g)\(uo’wo)P—z & %guu(!*o , Wo)w
(5.8) < +gku(Ho’Wo)H1W1+%g)\y\(ﬂo:wo)ﬂlz:l x€e D,

. Bw, =0 x€ 8D ,

provided the derivatives gxs Byn’ Snu and B exist and are con-

tinuous. In order that w; be uniquely determined we require that

(5'9) <w23 ‘I:: g)\u(’rlo,wo) > =0

hold.
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Equation (5. 6) is automatically satisfied by our definition of
o and wp(x). Because | satisfies (5.3), the Fredholm altermative

theorem implies that (5.7) can be solved only if

*
(5- 9) Hi <g)\(|*0’w0)"'l"0> =0 .
If we assume that (gx(l-“-O:Wo): L[j:; ) # 0, then (5.9) implies that

Finally, the Fredholm alternative theorem applied to (5.8) gives us

that

{5.11} MKz <g}\(}io » Wo), LPT: ;) = - 7;‘ (gw(uo ’ Wo)‘l-‘oz s Lljz ?

Thus, the perturbation method indicates that solutions of (5, 2) are

of the form

-
wix, 8) = wo(x) + 6l (x) + O(62) ,
(5.12) < B(8) = wo + 6%y + O(83) ,
. (guu(Ho,Wo)‘Poa,lljg>
where p, = -3 =
L (g)\(“’O’ WO)’ LPO )

Motivated by the results of the perturbation method (5.12),

we propose to look for solutions of (5.2) of the form
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wix, §) = wp(x) + 6Yp(x) + &%y(x,8) ,
(5.13) w(8) = po + 8%2v(8) ,

where (y(x, §), \l;;(x)gku(i*owo” = 0

On substituting (5.13) into (5.2) we get

(" Ly + gu(FLo,Wo)Y ol "é'z'\_g(bhw)‘g(Ho,Wo)'gu(HO,Wo )(W“Wo)}

i 1
= va g)\(po+ 8% sv,w)ds
0

2
+ (bo+ &y) f T[ Iguu(MO’W0+ cSSt(llJOJrE)y)) sdt ds}
(5.14)< 09

]

P(Y,V,(S;X), xe D,

By =0 xeo D ,

. (Y! l‘l;:; gxu(HO:W0)> =0 .

Equation (5.14) is of the form (1.16) and can be solved for y only

if the orthogonality condition
sk
(5.15) (Ply, v, 8x), Yo =0

holds.

As before, we expect that we shall be able to find a solution

to (5.14) for &6 sufficiently small by employing an iteration procedure.
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To set up such a procedure we introduce the set of functions

(5.16) B, ={y(x)|y()e C(D), | y]|_<K, (v (), b (x) &, , (Horwo)) =0}

and the real interval

(5.17) 9K={n11nl~<~K} :

In addition we introduce the set

S;(p,T) ={(M,W;x)lp. = ot 8%2v, w=wpo+ 8yp+ 6%y, xe D,

0=< |6|~€p, Ve 511,, WGBI,} :

For each y(x) in BK and ve ﬂK we define the mapping T(S for each

6 in 0< |8| S &1 by
Tsrov) = (¥.7) .
where

el 2 F.4
(5.18) v(fogx(p0+6zsv,w)ds,4:):-((LpoJr«Sy)J;foguu po,w0+65t(¢0+6y))sdtds,4:§),

and
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"~ ~ ~ 1
Ly+ gu(Ho yWoly = -[VIog,\(uo%Z sv, w)ds
R
+(L|10+6y)j0foguu po,wo+6st(¢0+5y))sdtds:‘, xeb,

(5.19) <

By =0, xe oD,

R $o By (B0 Wo)) = 0 .

Then, after picking some initial iterate (y?, v®), a sequence of

iterates {yk, vk} will be generated by
(5. 20) (YkH, vk+1) - Ta Yk, vk) .

We now state and prove the following

Theorem 5-1: Let S, =5, (p,I') for some fixed p<1, p I < 1. Suppose

that

o
(5-2'1) g()\-:u‘)a gu()\,u‘)€ C (SZ)r g)\ > guus g)\u’ g)\)\: guqu C(SZ)

%k
and that (g)\(po,wo), Yo # 0.

Then o real positive constants &, and M , §,<p , §o6M < pT such

that the mapping T6 given by (5.18), (5.19) maps WM :(BMX‘QM)

: . : a 2
into W, , and T& is a contraction on WM for all &, O |6| 6¢ -
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Furthermore, the problem (5.2) has a solution of the form (5.13)

for all & OSIBISBO , where y(x, 8§) and v(8) are the limits of the

iterate {yk, vk} generated by (5. 20) for any initial iterate in WM'

Proof: The proof is similar to the proof of Theorem 3-1, We
need to show that the mapping 'I‘6 given by (5.18), (5.19), is a
contraction mapping of WM into WM for appropriate constants §g

and M., Again we will use the norm

(5. 22) lelly, = sup lew)| .
we S

Because of the smoothness assumptions we have placed on g(\,u),
to show that T, maps WM into WM we need only find the constants

6
M and §; which define BM y 'QM

Since we assumed that (gx(po,wo),qjg )l =vy# 0, we can

restrict §;, to be sufficiently small so that

By/Z.

(5.23) ‘ (folgx(l-tcﬁ Gev,w)ds,kl:;)

Suppose that (y,v)e WM for some M, 63. Then

~ 2
(5. 24) lvlS%(HMHSM) | e < A, +8B,(M, 5) ,
o0

uuu s

and

(5. 25) Iylls c{lvllg, Nl + dlwl+ 5M) "g—“;lu—s P<a,+ 8B,(M,5),

oo
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where

@ = ALluDh

The positive numbers A; and A, do not depend on M or §, and
the numbers B; (M, §) and B, (M, §) are bounded on compact sets of

(M, 5). We can easily find (M, §;) so that
(5. 26) Ai + 51Bl(M’51) = M i= 15 2,

by picking M > max{AI,Az} , and then finding the largest §; for
which (5. 26) holds. By picking §,= min {1, -I\lz ,61}, we have that

Ty Wy~ Wy, for 0 < 18] = 8;.

To show that T, is a contraction for |§| < §,, assume that

6
w; = (y,v) and w, = (z,pn) are in WM' Then for I&l < 6, we have
(5.27) 1;‘;| g";/—’ﬁl‘l_Au HY'ZHOO1L AzzIV‘Hl:l )
and
5.28)  [5-Z05016| [An ly-sllg As lv-nl] + Gllg 1501
where

-
An = Ag= (LoD gy, I o+ satlwll 1) =252 +lg, 0,
(5.29)

M
Az = Az =75

Bags L
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Clearly, (5.27) - (5.29) implies the existence of a constant C >0 such

that
(5.30) ”;1‘;2 ” = (\5|C)|IW1 “Wa ” ’
where | w| = max { HyHm, v | } , WE Wy

Now, by choosing 0< §3 C <1, the mapping T6 is a contraction on WM

for 0<|8|< &, , where &5 = min(§,, 5; ).

To complete the proof we need only observe that the compact-
ness Theorem of Agmon, Douglis and Nirenberg [1] applies, as it
did in the proof of Theorem 3-1, and justifies taking the limit as

k — oo in (5.20). Q.E.D,

The solution given by (5.13) is unique in the sense that there
is only one solution of that form in Sa(EO,M). If there were two

solutions wj; # w,, each would be fixed points of T and (5.30)

6’
implies that

(5. 31) | wi-wa | < (8]1C) [|wy-w, |

For | 6|6y, this cannot hold, so that w,=w, is unique.

We could compare the iteration procedure (5, 20) with the
perturbation scheme (5.12). Once again we would find that the
perturbation scheme is asymptotic to the iteration scheme, and that

the iteration scheme is asymptotic to the solution as & — 0. Rather
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than carrying out the details of such a proof, we will examine the
asymptotic expansion of the solution (y(5,x), v(§)), which are fixed

points of (5.18), (5.19).

Examining (5.18), it is easy to see that

- (guu(l-'-o » Wo ) Yo, 4’::; )

2<g}\ (HO:WO)’lI:;)

(5.32) v(8) = + O(8) .
Substituting (5.32) into (5.13) we see that to the order which we have
taken the solution, the exact solution (5.13) and the perturbation

solution (5.12) agree asymptotically as §—0.

Knowing the form of the solution (5.13) gives us information
about those parameter values p for which solutions of (5.2) exist.
Since p = po+ 6%v(8), if v(0)>0, then solutions of (5.2) exist in the
neighborhood of (wgy, ) for which p> py. If v(0) < 0, then
solutions of (5.2) exist in the neighborhood of (wgy, ) for which
k< pg. In either case, the point p = py is a branching point where
the number of solutions of (1.1) changes from zero to two or from
two to zero as p changes from p < pg to w> py, in the respective
cases v(0)> 0 and v(0) < 0. Figure 1 gives plots of u(8) versus §

%k
when (gK(P‘O s Wo )’ l'l"()>>' 0.

We have now shown circumstances under which a nonisolated
solution of (1.1) is an element of a solution branch of (1.1) for T fixed.
Since in Section 3 we were able to show that nontrivial nonisolated
solutions of (1.1) do exist, it is natural to ask how Theorem 5-1

applies to the results of Section 3.
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If €, found in Section 3 is sufficiently small, then the
resulting eigenvalue X = Ao+ € ple) in (3.1) remains isolated, so
that the null space of (1.7) remains one-dimension for |€I K €4 .
The hypotheses of Theorem 3~-1 are sufficient to insure that the
hypotheses of Theorem 5-1hold in S; =S;(p, I') for certain nonzero
p,I", for some fixed €, |e}se0. Applying Theorem 5-1, we sub-
stitute into (5.13) for wy(x), ty(x) and p,, the nonisolated solutions
of (1.1) found in Theorem 3-1 and given in the form (3.1). The

resulting solutions of (1.1) are

u = (E+ 8)dg(x) + €2v(x,€) +edx(x€) + 8%y(x,€, 8),
(5.33) (A =Xy teple)+ 8%vic,5),
. T=¢€%n(e,

where € is fixed, le| < €.

The solution of (1.1) given by (5.33) is valid only if |8] < §,.
However, the number §, is not independent of the number €.

Notice in the proof of Theorem 5-1 that §; was chosen (cf. (5. 30))

so that

(5. 34) by X B =
C

where

sk
¥ = (gK(HO!WO)s llJO >
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Since (pg,wp) are related to € by

i

WO(X) u(xie) »
(5.35)

AE) ,

Mo

where (u(x,e) 3 ?\(e)) are of the form (3.1), we can find the

dependence of vy on € . Specifically

(& (bo»>Wo)s o) = (5 (N, T,), 40 )

(5.36)

H

€ (£,,000,00)p5, 45 ) + O(€?).

* *
Note that in (5.36) we have used that yy = ¢y + O(e). This can be
shown to be true in the same way that it was shown in Section 3

that iy = ¢g + O(€), using that (%*)* = .

Since the constant G in (5.34) is bounded away from zero

when |e| < €, , (5.34) coupled with (5.36) imply that
(5.37) 65 = Ofe).

Clearly, as € approaches zero, the range of validity of (5. 33)
decreases. This decrease in the range of validity is not unexpected.
As seen in Figures 2, 3 and 4, for v =0, the bifurcation solution
has a sharp "corner" at A = \3. As €—0, the solution branch (5.33)
with T# 0 approaches this "corner.," But since (5.33) is a smooth

function of §, it cannot have a "corner" when € =0, so that §g(€)
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must approach zero as €—+0.

We would like to be able to further understand the nature of
the solution given by (5.33). Suppose we examine the expression
for N = \(€,8). Recall that \ = \y + € p(e) + 62v(e, &) where v(e,8) is
given by
(B g (o » Wolbe? » Ui )

(5.32) vie,8) = -3 " + O(8).
(&) (o » Wo), Ui )

Since we know the form of pg, wy and Y, as functions of €, we can

rewrite (5.32) as

+1
8 P T £ (00.0,0) pt+l *
( S

- i 0 ’
Ep 2 aup+1

2(p-1)! (£ o(}0:0.0) g , %)

(5.38)  wv(e,5) = - + 0P + 0(s)
where the integer p is defined in (3.30). We now see that the non-

isolated solution (3.1) corresponds to a branching point for € suf-

+1
9P £(%0,0,0) p+l *
: B, boy #0

ficiently small, since according to (3.30), ¢( Dt1 o s
du

and hence v(e,0)# 0.

I1.6. Stability of Extended Solution Branch.

In the previous four sections, we have studied various
aspects of steady state solutions of the more general time dependent

problem for y(x,t)
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Lo Ly + £, 7,y) (x,8)e DX [0,0)
(6.1) By = 0 (x,t)e 8DX[0,) ,
y(x,0) = hi(x) x€D .,

We can examine the stability of steady state solutions of (6.1) by
looking at the behavior of (6.1) in a neighborhood of the steady
state solution with X and T fixed. The resulting theory is the so-

called linear stability theory,
Suppose that u(x) is a steady state solution of (6.1) with \
and T fixed. If we assume that solutions of (6.1) have the form

(6.2) vix,t) = u(x) +at(x)e Y,

where o is assumed to be small, then we can substitute (6.2) into
(6.1) and linearize the resulting equation by keeping only the terms

which are lowest order in @. The equation which results ig

(6.3) LE + vy + fu().,-r,u):]§=0 xeD ,

B =0 x€0D .,

At this point it is helpful if we state our definition of stability.

Definition 6-1; A steady state solution u(x) of (6.1) is said to be

linearly stable if Hy(x,t)—u(x)1|--0 as t— « for y(x,t) given by (6, 2).
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u(x) is said to be linearly unstable if | y(x,t)-u(x)||—=w as t—c, and

u(x) is said to have neutral stability if u(x) is not linearly stable,

but Hy(x,t)—u(x) ” is bounded for all time.
Because of (6.,3) we can make the equivalent

Definition 6-2: Let vy; be the principal (smallest) eigenvalue of (6. 3).

A steady state solution u(x) of (6.1) is said to be linearly stable,

neutrally stable or linearly unstable if y;> 0, v;=0 or vy;<0 res-

pectively.

Throughout this section stability or instability will actually
mean linear stability or linear instability. We will not examine
the more difficult question of global stability. We will also assume
that the operators I.and B are self adjoint. Then it is possible to
classify instabilities in the following manner.

Definition 6-3: Let Yic be the kth eigenvalue of (6.3) counting mul-

tiplicities, y; S vz S *° S y. If Yy < 0 and Vi1 2 0 then the

steady state solution is said to be k-mode unstable or is said to

have a k-mode instability, Furthermore, if Vier1 = 0, then u(x) is

also said to be neutrally stable in the k+1St mode. A solution

which is 0-mode unstable is linearly stable,

Immediately we realize that if u(x) is a nonisolated solution
of (1.1), then YP = 0 for some p> 0, and the nonisolated solution is
neutrally stable in the pth mode. In either case, when we have
some type of neutral stability, we would like to know how this

stability characteristic changes as we move along the solution
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branch which contains the nonisolated solution.

In the light of previous sections, the most natural approach
is to use, if possible, a perturbation technique, which can then be
justified using a contraction mapping. By now it is clear how to
find the correct contraction mapping, and how to give the corres-
ponding existence proof once the perturbation technique has been
applied, Thus, in this section we will only examine the results of
the perturbation technique, and will not give the details of its justi-

fication,

As we did in Section 5, suppose for T # 0 fixed arbitrarily

we make the identification

(6. 4) gh,u) = £(,7,u)

In Section 5 we found steady state solutions of

]
(=)

(5. 2) Lw + g(u,w) x€D ,

Bw =0 x € D ,

to be of the form

wi(x, 8) = wo(x) + &g (x) + 8%y(x,8) ,
(5. 5)
p(8) = po + 862v(5) ,

where (wy(x), po) is a nonisolated solution of (5.2). Furthermore,
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it was noted that

2 %
<g (lJ' s W, N) 1'4’ )
(5.32) v(s) = -1 —=24 il e L S T ,

(&, (1o » Wo), Uo )

where g (x), q}:; (x) satisfy (5.3) and (5.4) respectively. Since we

know that 6§ = 0 implies y = 0, we try a solution of (6.3) of the form

L(x,8) = Yo(x) + 8L (x) + 82z (x) + O(82%) ,
(6. 5)

Y(8) = 8yo + 8%°yy + O(8%)

To show that this assumed form is valid, one must employ the con-
traction mapping technique outlined before. Upon substituting (6. 5)

into (6.3) we find that the perturbation equations are

(6.6) Ly + g,(mosWolPo = 0, x€D ,
By, = 0 , x € 9D ,

and

(6.7) Lty + g (ko> wo)ly = '['Yo + guu(Ho,Wo)lPo] Yo (x), x€D,
By, = 0 , x€dD .

In order that ;i(x) be uniquely determined we add the condition

(6. 8) (€ 0) gy (Mo»wo)bolx) ) = 0 .
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The function g (x) was chosen so that (6.6) is automatically
satisfied. To solve (6.7), the Fredholm alternative theorem must

hold, namely

(6.9) Yo (Yo (%), do(x)) + (g, (korwo) W, o) = O .

1f (Lpo:kpz)?e 0, (6.9) implies that

2 *
<guu(|"‘0 » W )LIJO 3 lIJO >

(6.10) Yo = F *
(q"O’ ‘pﬂ )

Substituting (6.10) into (6.5) we can see the stability characteristics
of the steady state solution wi(x, §) immediately. Suppose, for
simplicity, that (Ug,lt ) > 0, that (g, (o Wo)s o) > 0, and that

vy = 0 is the kth eigenvalue of (6.3), If (guu(po,wo)%z,xp’z) > 0,
solutions of (5.2) occur for w< py since p(8) =y + 6%2v(6), and v(§)<O0
for § sufficiently small. By (6.5), (6.10), y(8) = 6 yo + O(6%) and

Yo <0, so that y(8) < 0 for § > 0 sufficiently small, while y(8§)> 0 for
5 < 0 sufficiently small, Since vy(5), the kth eigenvalue of (6.3), is
negative when 6> 0, (6.3) has k negative eigenvalues and the corres-
ponding solutions are, by Definition 6-3, k-mode unstable, With

6§ < 0, the kth eigenvalue vy(6) is positive, so that the corresponding
solutions of (5.2) are k-l-mode unstable, On the other hand, if
<guu(p‘°’w° )1[102,4;:) < 0, solutions of (5.2) occur for u > py since
v(6) > 0 when § is sufficiently small, The kth eigenvalue is

v(8) = 86yy + O(6%) where yo > 0. Therefore, for § < 0 sufficiently

small, vy(8) is negative and the corresponding solution is k-mode
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unstable, The solution is k-1 mode unstable when 5§ > 0, since vy(§)
becomes positive., Of course, when y = 0 is the principal eigen-
value of (6,2), a k-1 mode unstable solution is really a stable
solution, by Definition 6-3, These results are summarized for k=1

in Figure 1.

Finally, we should remark that this stability characterization
is not limited to |6‘ < 8&g. In fact, since the solution branch (5.5)
can be extended in either direction to the next nonisolated solution
[28], the stability characterization of the solution branch is the
same for all steady state solutions lying on any interval of a
branch with no nonisolated solutions. This is clear, since the
stability characterization can change only at a nonisolated solution

where B = 0 for some k.,

11.7. Minimal Positive Solutions

Many problems of physical interest involve finding solutions
of (1.1) which are positive. See, for example [18], [19], [24], [27]
and [36]. 1In this section we would like to show that, under certain
circumstances, the solution branch found in Section 5 is a branch
of positive solutions, and that certain of these solutions are minimal

positive solutions.

Discussion of minimal positive solutions have been given by
Keller and Cohen [19], Amann [2] and Sattinger [35]. For our

discussion we consider the problem
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(7.1) ILu + g(h,u) = 0 xeD ,

Bu = 0 x € 9D ,

where g(\,u) is always assumed to have some continuity properties

as in Section 5. As necessary, we will also assume that
(7. 2) g(\,0) > 0 provided A>0 ,

(7.3) g(h,u) < g(\',u) for A< , uz= 0,
and

(7.4) g(0,u) = 0 for u =0

No assumptions regarding monotonicity or concavity-convexity in u
of g(h,u) will be made at this time. The operators L and B of
(7.1) are those given in Section 1, and have the associated strong
maximum principle [31}, which can be used to give

Proposition (1'): If ¢(x)e C(D)( C3(D), then for any @ 20, QeC¥*(D) ,

Lé-R¢=>0o0onD, Bd<0on dD = ¢(x)<0 on D,
(7.5) '
L$-Qp>0onD, Bb6<0on dD => ¢(x)<0on D .

Furthermore, if ¢(x) = 0 for some x€ 8D , then

dd(x)
161

(7.6) <0 x€ 8D,



e
where a is any outward direction at x€8D. A minimal positive
solution u(x) of (7.1) is a solution of (7.1) satisfying u(x) < u(x) for

all positive u(x) satisfying (7.1).

We now develop the facts which we will use later. This
part of the discussion gives a generalization of the results of

Keller and Cohen [19] using assumptions (7.2) - (7.4).

Theorem T7-1: Under assumptions (7.3) and (7.4) equation (7.1) can

have positive solutions only for positive A.

Proof, Suppose u(x)> 0, xeD is a solution of (7.1) and X <0, By

(7.3) and (7.4), g(\,u)< 0 for xeD. Hence

ILu = -g(A,u) 2 0, xeD

?

Bu = 0 xedD ,
and Proposition 1 implies that u < 0 for x €D which contradicts the
assumption that u(x) > 0 for xeD. If X\ =0 then u= 0, and the proof

is complete,. Q.E,D,

The existence of minimal positive solutions of (7.1) was
established in [19] by making use of a monotone sequence generated
by an iteration scheme. The function g(A,u) was required to be
monotone increasing in u in order to insure that the sequence was
monotone. The iteration scheme used here, which does not require
a monotonic nonlinearity g(\,u), was used in [6] for nonlinear

equations involving the Laplacian. It has since been used by Keller
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[16], Amann [2] and Sattinger [35] for more general operators L.

The iteration scheme which we use defines the sequence {un(x)} by

up(x) = 0

(7.7) { Lu = - s+ Qun} x €D

1
2
&

I

o
=
I

0 x€edD, n=0,1,2,---

for any A > 0 and any Q(x) # 0, Q(x) eCa (E). Using this iteration

scheme we have

Theorem 7-2: Let g(h,u) satisfy (7.2).

a) If, for A> 0 and Q(x) > 0 fixed, the sequence {u_(x)} is

a monotone sequence, and if it is uniformly bounded by some

constant M > 0, then the sequence{ un(X) } converges to a solution

of (7.1).

b) If a positive solution u(A,x) =2 0 of (7.1) exists for a given

A> 0, then a 2(x) 2 0 such that the sequence (7.7) converges mono-

tonely and uniformly to its limit, savy,

u{\,x) = lim un()\,x)
n-— oo

where u(\,x) is the minimal positive solution of (7.1).

Proof: The proof of part a) was given by Keller [16] using

the compactness result of Agmon, Douglis and Nirenberg [1] to
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justify passing to the limit n—+ o in (7.7).

To see part b), since gu(7\,u) ECa(D), we can choose a
constant 2> 0 so that
gn,z)-g(\,y)

(7.8) = > -0, x€D, for all y,2,0sy, z<[ulhx)|_

since ”u()x,x)”oo < . With this choice of 2, the sequence un(x) is

monotone. In fact,

1]

-g(\,0) <0, =xeD,

Bu, =0 , x €0D ,

so that u;(x) 2 0 = up(x). Since uy(x) = 0 < u(\,x), suppose that

uk(x) < u(\,x) for k= 0,1,... ,n, and that un(x) Zu_ (x). Then

n-i

L{u_, -u_)-Qa_, -u_)=- l_(g()\, un)+ﬂun) -(g(?«.,un_l)+ﬂ un_l)] <0

xeD

B(u -un) =0 xedD,

n+i

by virtue of (7.8). Proposition(l') implies that un+1(x) = un(x).

Furthermore

'L(unh"“”" x)) Q (unﬂ—u(?\,x)) - l:(g(k,un)-l-ﬂun) -(g()\,u)-!—ﬂu):l >0 xeD,

B(u -u) =0 xedD.

n+1

again because of (7.8). This implies that i (x) € u(\,x) which
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completes the inductive proof that the sequence{ un(x) } is mono-
tone and uniformly bounded, and part a) applies. Q_(K,x)':lim{un(x)}
must be the minimal positive solution, since by the last I;):xo‘?: of the

induction un_h(x) < u(\, x), where u(\,x) is any solution of (7.1).

Passing to the limit gives

u(A,x) < u(\,x) , xe€D

which completes the proof. ' Q.E.D.

Theorem 7-2 is not the same as Theorem 3.2 of Keller and
Cohen [19], since we have not given necessary conditions for the
existence of u(\,x). Such necessary conditions are explored in

[16] and [2], and are not included in this discussion.
The basic comparison result which we use is

Theorem 7-3: Let g(A,u) satisfy (7.2). Suppose G(\,d) is a given

function which satisfies

(7.9) G(\, 9) = g(h,9) for A

\%
o

Suppose there is a function yg(x) 2 0 and XAy> 0 such that

|
o

LYO + G(ko,Yo)— XeD

(7.10)
BYO = 0 x€8 D .

Then (7.1) has a minimal positive solution for A = )y, and
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u(hg,x) S yo(x) x€D.
Proof: In order to apply the results of Theorem 7-2,

choose € 2 0 so that (7.8) holds for all y,z, 0 < vy,z < l] Volx) “00 and

for X = X3. We need to show that un(x) < yo(x) for all n. Clearly,

I

L(10x)-y0 ()) -2 (3(2)-vo(x)) = -2(X,00+ GO, yo) + 2o

1t

- (g(X, ¥o) "G\, yo ))
+ l:(g()\, y0)+ﬂy0) —g(R,O)] =20 x€D,

B(u;~ye) =0 x€8D,

so that u,; (x) <yg(x). If un(x) < yo(x), then

L, ~Yo) ~R (e, -vo) = = (80 v, ) +Qu )+ GO\, vo) + 2,

G(K: YO) = 8(7\, YO)

+ (g()\,yo)+ﬂyo) -(g(K,un)+ﬂ_un) =0 xeD,

B(u_.,"Vo) =0, =xe€8D,

which implies that u Lyg, X ¢D. Since un(x) < yo(x) for all n, then
(7.8) holds for each element of the sequence {un(x)} which in turn,
implies that the sequence {un(x)} is monotone increasing. Theorem

7-2 is applicable, so that passing to the limit as n—w implies
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u(X,X) s YO(X)n Q-EuD-
Using this theorem, we establish the very useful

Corollary 7-4. Let g(\,u) satisfy (7.2) and (7.3) and suppose a

solution u(Xy, x) exists for N\ = N\q. Then for each N\ in 0 < A\ < No

the minimal positive solution u(\,x) of (7.1) exists and is a

pointwise increasing function of \.

Proof: For any fixed value of X\ in 0 < X\ < )y define
GO o) = g0, d) = g(M5) L 0)

By (7.3) G(\, ¢) = g(hg, ) = g(\,d). The hypotheses of Theorem 7-3
are satisfied with the choice y,(x) = u(\g, x) which exists by Theorem

7-2. We conclude that
g’.()‘" X) < YO (X) = E()\'ny)
To see that the inequality is strict in the interior of D, notice that,
for 2 = 0 chosen as in Theorem 7-3,
L@, %)-a(r, 1)) - 2 (200, x)-uk, x))
= -(2 (o, uh0.x))-g (u00,%)) ) -2 (8000, 2)-ulr, )
= (o utnx)+aunx) (2(howlho, %)) +2u0r, )

H g(k,i(k,X)) -g(ho,g(k.X)) < g(h ,g(k,x)) -g (?\.O,_Q_(K,x)) 0 xzeD
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whenever X < Ao, according to (7.3). By (7.5),

u(\,x) < u(hg,x) for xeD. Q.E.D.

With these basic facts established we now examine problem
(7.1) when more is known about the nonlinearity g(\,u). We will

use, when necessary, the additional restrictions

(7.11) gu(O,u) =0 for u(x) = 0

(7.12) g ) > g (' ,u) for X >\, ulx) = 0
(7.13) guu()\,u) > 0 for u(x) > 0 (convex)
(7.14) guu()\,u) < 0 for u(x) > 0 (concave)

Notice that together, (7.11) and (7.12) imply that gu()\,u)> 0
whenever u(x) 2 0 and X > 0, Although until now we have purposely
avoided assuming this condition, it makes certain matters which
follow more tolerable if we allow (7.11) and (7.12) to hold. This is
not a serious assumption. In fact, the foregoing results show that
a smooth function g(\,u) can always be made to look like a mono-
tone function on any compact set of (A,u) by adding Qu to the function
and subtracting Qu from the operator L, for some appropriately
chosen constant > 0. In other words, we can assume that g(\,u)

is monotone in u without loss of generality,
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For the results that follow we need to assume that the

operator L is such that, for p(x)> 0, when an eigenfunction ¢y(x) of

n
o

(7.15) L + pp(x)d

B¢

x €D,

]
(]

x €0D ,

; ‘ fid : : *
is positive on D, then the corresponding adjoint eigenfunction ¢, is
also positive. This is obviously true when L is self adjoint, since
Pyp = ¢g . When L is not self adjoint, some sufficient conditions

sk
implying that ¢, > 0 are given in

Lemma 7-5: Let the differential operator L and boundary operator

B be given by (1.2) - (1.4), and let the associated adjoint operators

*
Lal< and B be given by

n n
G ov A OV ~
(7.16) L'v = ) Y T Y 2% B ~ 20 (0
. L j
1,)= J—l
and
% AN N = N\ ov
(7.17) B'v =B (x)v + by (x) ), Bi(x) 5o .
i=1 '
Then, if
A ~ N
(7.18) ag(x) = 0on D, by(x)= 0, by(x) >0,

and

e A N e
(7.19) B,(x) n,(x)>0 , max {bo,b;} >0 xe8D,
=1

1
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where ni(x) are the components of the unit outward normal at xe8D,

and if ¢o(x) > 0 is a solution of (7.15) for w = yy, then the solution

o (x) of
(7. 20 L 4 peldl = b
B3:=¢* = 0

for p =y is positive on D,

Proof: When (7.18), (7.19) hold, the operator L with
%
boundary operator B satisfies the strong maximum principle of

"t st C¥(D) e ¢TI

Proposition (1). Thus the operator L*
{u(x)lB*u=0} is a strongly positive compact operator. By the
theorem of Krein-Rutman [25], a strongly positive compact operator
has a positive eigenfunction ¢0*(x) corresponding to a simple, minimal
positive eigenvalue p = p.o*. By the spectral theory of compact

E3
operators [11], the eigenvalues of L. and L. are identical, and a

nontrivial solution of (7.20) exists for p = py.

If ¢p(x)> 0 is a solution of (7.15) for p = pg, then py is a
simple, minimal eigenvalue of L. But since the eigenvalues of L
and L" are identical, and both p, and Po* are the minimal eigen-
values, we must have p, = p.o*. Therefore, since l-‘-o* is simple, the

eigenfunction cpo*(x) corresponding to ¢g5(x) > 0 is positive., Q.E,D.

sk
Define N\ to be the least upper bound of the values \ for

which positive solutions of (7.1) exist. For each A for which u(\,x)
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exists, define p = p;(\) to be that value of u, if there is omne, which

admits positive solutions to

Lo + gy(wutr,x)é =0, x e,
(7.21)
B =0, x € 9D,

The corresponding value of p will be referred to as the principal
eigenvalue of (7.21). Unless (7.12) holds, u;(\) is not necessarily
well defined. In the following theorems, we will show that if (7.13)
holds (convex) and if there is a value Ay = p;(Ny), then Ay = )\*, and
by definition, 7\* corresponds to a nonisolated solution of (7.1).
However, if (7.14) (concave) holds, then it will be shown that the
equation A = p;(X) has no solutions, so that the branch of minimal

positive solutions has no nonisolated solutions.

Theorem 7-6: Let g(\,u) satisfy (7.2), (7.3), (7.11)-(7.13) (convex).

If the pair (u(hg,x), Ag) is any positive solution of (7.1),

and in addition there exists a ¢(x) > 0 on D satisfying

Lo + gu()\.s,u(?\o,xbtb = 0, x € D,
(7.22)
B¢ = 0, x € 9D,
then A\, = 7\*. Furthermore the solution u(\,,x) is the unique
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