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Abstract 

The branching theory of solutions of certain nonlinear 

e lliptic partial differential equations is developed, when the non

linear t e rm is perturbe d from unforced to forced. We find 

families of branching points and the associated nonisolat e d solutions 

which e manate from a bifurcation point of the unforced proble m. 

· Nontrivial solution branches are constructed which contain the non-

isolate d solutions, and the branching is exhibited. An ite ration 

proc e dure is used to e stablish the existence of these solutions, and 

a formal perturbation the ory is shown to give asymptotically valid 

r e sults. The stability of the solutions is examined and ce rtain 

solution branches are shown to consist of minimal positive solutions, 

Other solution branches which do not contain branching points are 

also found in a neighborhood of the bifurcation point. 

The qualitative features of branching points and their 

associated nonisolated solutions are used to obtain useful information 

about buckling of columns and arches. Global stability character-

istics for the buckled equilibrium states of imperfect columns and 

a rche s are discussed. Asymptotic expansions for the impe rfection 

s e nsitive buckling load of a column on a nonlinearly elastic foun

dation are found and rigorously justified. 
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Chapter I 

Introduction 

Branching is a change in the number of solutions u of an 

equation 

(1. l) g(~. u) = 0 

produced by a small change in the real parameter ~- Thos e values 

~ at which branching occurs are called branching points , and the 

corresponding solutions are called nonisolated solutions of (1.1). If 

solutions u of (1. l) are also arbitrarily small in a neighborhood of 

the branching point and u = 0 is a solution for all ~. then the 

phenomenon is called bifurcation, and the branching point is called 

a bifurcation point. The problem (1.1) is called "unforced" if 

g(~. 0) = 0 for all real values of ~. and it is called "forc ed" i f 

g(~. 0) * 0 for some values of ~- In this thesis, we are conc e rned 

with the behavior of branching points and solutions in their neigh

borhood, as the problem (1. l) is perturbed from an unfqrced to a 

forced problem. Letting T represent a "forcing" parameter, we 

are int e rested in finding solutions of 

(1. 2) G(~. T , u) = 0 

for nonzero values of T, where G(~, 0, 0) = 0 for all real ~ and 
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G(A.,T,O)::;tOwhen T::;t 0. 

As a simple illustration consider the single algebraic 

equation given by 

(1. 3) X + f(A_, T, X) : 0 

where f(A., 0, 0) = 0 and f(A., T, 0) ::;t 0 if T ::;t 0. When T = 0, x = 0 is 

a solution of (1. 3) for any value of A.. From the implicit function 

theorem, we know that the identically zero solution is the only 

arbitrarily small solution of (1. 3) in a neighborhood of A. = A.0 , 

provided the Jacobian of (1. 3) evaluated at (A., T, x) = (A.0 , 0, 0) does 

not vanish, or symbolically, if 

(1. 4) J(A.0 , 0, 0) - 1 + f ( A.0 , 0 , 0 ) * 0 . 
X 

If (1. 4) does not hold then the point (A., x) = (A.0 , 0) is a possible 

bifurcation point with T = 0. Similarly if (A., T, x) = (A.I, TI, xi) is a 

nontrivial solution of (1. 3) then by the implicit function theorem we 

know that there is a unique function x = x(A.) with x(A.I) = xi when 

T = TI is fixed, provided 

(1. 5) 

If the Jacobian condition (1. 5) is not satisfied at a point (A., x) = (A.I,x 1), 

then x =xi is a multiple or nonisolated solution of (1. 3), and A.= A. 1 

is a possible branch point. 
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Suppose that for X. = X.0 , equation (l. 4) fails to hold , and 

that X.= X.0 is a bifurcation point of (l. 3) with T = 0. The n we can 

find the possible branc h points of {1. 3) which lie in a nei ghborhood 

of (X. , T) = (X.0 , 0) by applying the implicit function theorem to the 

system 

X+ f{X.,T ,x} = 0 

(l. 6) 

1 + f {X., T, x) = 0 . 
X 

Since fx_ (X. , 0, 0) = 0 by assumption, we know that there are functions 

X. = X.(x) and T = T(x} which satisfy the system (l. 6) for x sufficiently 

small, w henever 

(1. 7) 

A condition very similar to {1 . 7) will be assumed in the more 

general discussion in Chapter II. The functions X. = X.(x ) and T = T(x) 

r e present a family o f possible branching points of (1. 3) emanating 

from X. = X.0 and T = 0. One could now study neighboring solutions 

to determine if branching occurs. 

A simple algebraic example posses sing characteristics which 

we w ill find in othe r more general problems is given by 

(1. 8) x - x (x + X.) - T = 0 
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The solutions of (1. 8) are 

(1. 9) 
1-X. 1 I 

X±= l ± z V (A_-l) 2 -4T 

When T = 0, the solutions reduce to x = 0 and x = 1-~, so that the 

point ~ = 1 is a bifurcation point. When T < 0 the two solutions 

give n by (1. 9) ar e well defined with x+ > 0 and x < 0 for all value s 

of ~. Howe ver, when T > 0, real valued solutions do not exist for 

l - 2T~ < ~ < l + 2TYz, and the points ~ = 1 ± 2T~ are branching 
± 

points of e quation (1. 8). The accompanying plot shows the solution 

curve s (1. 9 ) for various values of T. 

X 

T>O 

\ 

T<O 
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Equation (1. 2) can represent very general operator equations. 

In this the sis we are concerned primarily with nonlinear boundary 

value problems involving either second or fourth order partial 

differential operators. It is a simple matter to consider more 

general operators, such as compact nonlinear operators on a 

Hilbert space, since most of the changes necessary are notational 

only. Our primary application is to the buckling of imperfect 

engineering structures [3] ':', L4], [15}, where T represents the 

amplitude of some imperfection, and the branching point represents 

the load at which buckling may occur. 

Our general results for second order equations make use of 

a perturbation procedure coupled with an iteration technique used by 

H. B. Keller [17} for bifurcation problems. The perturbation pro-

cedure is used to suggest the proper form of the solution. Then 

the iteration technique is used to prove the existence of such 

solutions. In Sections II. 2 through II. 4 we show the existence of a 

unique family of nonisolated solutions for certain values of T 

sufficiently small. The perturbation procedure is also shown to be 

asymptotic. In Section II. 5, a solution branch is constructed 

through a nonzero nonisolated solution of (1. 2). In Section II. 6, 

the 11 stability" of the constructed branch is examined, and is simply 

summarized in Figure 1. Under certain circumstances, given in 

Section II. 7, part of the solution branch constructed in Section II. 5 

is shown to be a branch of minimal positive solutions, in the sens e 

':'Numbers in square brackets refer to the list of referenc e s at the 
end of the thesis. 
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of Keller and Cohen [19]. Furthermore, conditions ar e give n und e r 

w hich a branching point is the least uppe r bound of values >-. for 

which positive solutions of (1. 2) e x ist with T fixed. The b i furcation 

diagram is completed in Section II. 8, where it is show n that fo r all 

values of T sufficiently small, (1. 2) has two distinct solution 

branches, although some of these branches may not contain 

branching points . A graphical summary of the main r e sults in 

Chapter II is given in Figures 2, 3 and 4. 

In Chapters III and IV, these ideas are applied to t1Le dynamic 

buckling of arches and imperfect columns and to the buckling of an 

imperfect column on a nonlinearly elastic foundation, respe ctively . 

In Chapter III, global stability characteristics for the buckled e quilib

rium states of an imperfect column are studied using the qualitative 

features of nonisolated solutions discussed in Chapter II. In Chapte r IV, 

an advantage in using the present iteration technique in proble ms of 

imperfection sensitivity in buckling is demonstrated. It is a simple 

consequence of our approach that an approximate solution of the buck

ling load is asymptotic to the exact solution. Approximation techniques 

us e d e lsewhere do not have this feature [3]. 

Equation numbe r (1. 1) refers to the first equation of Sec t i on 1 

of the given chapter. Similarly, Theorem 3-1 refers to the fir s t 

the ore m of Section 3 of the given chapter. When referenc.e is made 

to an equation or the orem in a different c hapter, the othe r chapte r 

is named e xpli c itly . The meaning of symbols remains unc h a n ged 

w ithin eac h chapter, but may diffe r in diffe r e nt chapte rs. 
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Chapter II 

General Imperfection Theory 

II.l. Notation and Definitions. 

We want to study branching phenome na for e lliptic boundary 

value proble ms of the form 

(1. 1) Lu + f(>-., T , u) = 0 xED 

Bu = 0 x E aD . 

H e r e x = (x1 , , x ) and L is the uniformly elliptic s econd orde r 
n 

operator de fined on D by 

(1. 2) 

n 
\' 82 u 

Lu = L; a .. (x) n n lJ ox. ux. 
i,j=l 1 J 

n 
\' au + L; a.(x) 

J ox. 
J 

- a 0 (x )u . 

j=l 

The boundary operator B is defined on oD by 

(1. 3) Bu = b 0 (x)u + 
n 

b 1 (x ) ~ f3 j (x) 

j=l 

au 
ox. 

J 

w h e r e for notational purpos e s we w ill denote 

n 

~~ = ~ 
j=l 

f3.(x) au 
J ax. 

J 
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k+a We denote by C (0) the space of real valued func tions 

which are k times continuously differentiable on a point set n' and 

have Holder continuous kth derivatives on 0 with Holder exponent a. 

W e assume that D is a bounded domain in .HR.n w ith boundary aD of 

class C 2+a. The c oefficients a .. (x ), a.(x), a 0 (x) > 0 ar e assume d 
1J J 

to be in Cz+a(D) , C 1+a(D) and Ca(D) respe ctively , while b 0 (x) , 

b 1 (x) , f3 . (x) are in CI+a(aD) for some aE(O,l). 
1 

The uniform 

e llipticity of L implies that for all unit vectors y = (y 1 , • • • , y n) 

n 

(1. 4)-i) I: a .. (x) y.y. ~a> 0 
1J 1 J 

XED . 

i,j=l 

Taking n . (x ) to be the components of the unit outward normal at 
1 

X E an, we assume that the coefficients of the boundary operator B 

satisfy 

n n 

(1. 4) -ii) ~ 13. (x) n.(x) > 0 I: f3Z.(x) = l 
J J J 

j=l j=l 

and that an can be decomposed into an = an 1 U aD2 wher e 

(1.4)-iii) 

(1.4)-iv) b 0 (x ) ~ 0 b 1 (x) > 0 X E 8D2 • 

The assumed smoothness assumptions on L and B are 

Q'-

s ufficient to assure us that, for F(x )E C (D), the linear problem 
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(1. 5) Lu(x) = F(x) xED 

Bu(x) = 0 xe:aD 

2+a-
has a unique solution, u(x) E C (D) ( [26], pp 134-136). These 

assumptions further imply that L and B satisfy the strong maximum 

principle [ 31] which leads to 

Proposition (1): If cj> (x) E C' (D) n C 2 (D), then 

i - Lq> ~ on D , B q> ;::,: 0 on an ~ q>(x);::,: 0 on D 

ii - Lq> < on D , Bq,;::,: 0 on an ;:::. q>(x) > 0 on D 

Furthermore, if cp(x) = 0 for some X€ aD, then 

aq, 
aa < 0 xe:aD 

w here a: is the directional derivative taken in any outward direction. 

We w ill assume that the nonlinearity f(A., T, u) satisfies 

f(A., 0, 0) = 0 for all r eal A., and f(A., T, 0) =F 0 if T =F 0. W e will 

a 2+a assume that f(A., T, u) E C (D) whenever u E C (D), and the partial 

derivative at A., T,u satisfies f (A., T, u) E Ca(D) w hen u E CHa (D). All 
u 

other d erivatives up to and inc luding third order are assumed to b e 

continuous on D if u E C 2
+a (D). Although f(A., T, u) is allowe d to 

depend on x , this d e p e ndence will not be explic itly shown. 
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The standard bifurcation problem with T = 0 has been treated 

in numerous places ( (7], ll7], [21], [25], [34], [38] ). One r e sult 

of these studies [25] is that branching c;:an occur at a point (X., u) = 

(X.0 , 0) only if there are nontrivial solutions of the problem 

(1. 6) xED 

Bcjl = 0 x E an. 

For the forced case with To * 0, a point (X.0 , u 0 ) can be a branching 

point of (1. l) only if there are nontrivial solutions to the problem 

resulting from linearization of (1. l) about the known solution at X. = X. 0 • 

That is, there must be nontrivial solutions to 

(1. 7) 

Ll)J + f ( X.0 , T 0 , u 0 ) ljJ = 0 
u 

Bl)J = 0 

x ED 

XEOD 

where (X.0 , To, u 0 ) satisfy (1.1). Solutions (u, l)J, X., T) satisfying both 

(1.1) and (1. 7) will be referr e d to as non-isolated solutions of (l.l) 

corresponding to the point X.. 

To provide a starting point for our investigation, we will 

assume that there is a number X.0 and a nontrivial function 

z+a-
<Po (x ) E C (D) w hich satisfy (1. 6). The quadruple (u, l)J, X., T) = 

(0, <Po, X. 0 , 0) will b e referred to as a trivial nonisolated solution of 

(l.l). We will also assume that all solutions of (1. 6 ) are multiples 

of cp 0 (x ). 
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By defining the inner product 

(u, v) = J u(x ) v(x) dx 
D 

.. ,.. ,., 
we can define adjoint operators L~ and B' to be those operators 

satisfying 

(1. 11) (v, Lu) * - (u, L v) = 0 

z+a- ,:, 
whenever u, v, E C (D) and Bu = 0, B v = 0 . The ope rators w hich 

result from this definition are given by ( [ 6] , [13]) 

n 82 (a .. (x)v) n 
)!::: 

(1. 12) ~ 
1 Lv = ax. ox. - ~ 

8(a. (x)v) 

ax . 
- a 0 (x )v , x E D . 

i , j=l 
1 J j=l J 

B,:,v = 0 is defined by requiring 

(1. 13) 

n n 

P[u, v] = ~ [:u a . . v- ~ 0 
(a . . v)u]+ L a. uv = 0 

ux. 1J ux . lJ l 
i,j=l 1 

J i=O 

x E oD. 

when Bu = 0. 
a-

For p(x)EC (D), whenever 

(1. 14) L<j:> + p(x ) <j:> = 0 X € D 

B <j:> = 0 xEo D 

has a nontrivial solution, we know from the study of spectral theory 

for compact operations [11], that the assoc iated adjoint problem 
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>:~ >!< ··-
(1. 15) L <j> + p (x ) <!>,,. = 0 

'~ ~~ 

B <j> = 0 

also has a nontrivial solution, and the null space of equation (1.14) 

is of the same dimension as the null space of (1.15). The Fredholm 

Alternative Theore m [6] holds for solutions of 

(1. 16) L v + p(x )v = g (x ) . 

Z+a-
Specifically, this a sserts that (1.16) h as a solution v(x)E C (D) 

a
provided g (x ) E C (D) a n d 

(1. 17) 
>:~ 

( g(x ) , <Po) = 0 

where <j>'~ is a solution of (1. 15). Let A(x ) E C(D) b e a 11 wei ght 

function 11 '~ s uch that (<Po (x ) , <j>0 (x ) A(x ) ) of. 0. W e make the stronger 

assumption that if the solution v (x ) in (1. 16) is made unique by 

requiring the orthogonality con d ition 

(1. 18) 
,., 

( v (x ) , <j>~ (x) A(x ) ) = 0 

then the re e xists a constant G > 0 s u c h that 

(1. 19) 
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The notation has been chosen with an eye toward gen e ral -

izations. If we wanted L to be an operator in a real Hilbe rt space 

H, then the inner product (1.10) could b e chosen appropriate ly. The 

ine quality (1. 19) could be assumed to hold in the induced norm of 

H, and many of the results that follow would be true with only a 

slight change of wording. 

II. 2. Perturbation Theory for Non-isolated Solutions. 

Formal perturbation theory is often used to obtain useful 

approximations to solutions of nonlinear boundary value problems. 

The ideas used in the method originated in the work of Lindstedt 

and Poincare [30] on periodic motion in celestial mechanics. 

Recently it has b een applied by J. B. Keller and others [22], [23] , 

[29] to a number of nonlinear boundary value problems arising in 

such diverse areas as nonlinear optics, heat conduction, and super

conductivity. 

In this section, we will develop a formal perturbation scheme 

which indicates the form of nontrivial non-isolated solutions of (1.1). 

We will show that this scheme is well defined and can b e carried 

out to arbitrary order provided the nonline arity f(:>-., T, u) is sufficiently 

differentiable in each of the arguments :>-., T and u. It will b e the 

task of later sections to show the validity of this perturbation 

scherne. 

Suppose that the quadruple (u, <P, :>-., T) = (0, <l>o, :>-. 0 , 0) is a known 
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nonis olated solution of (l. l). Our hope is that this solution is an 

element of a branch of nonisolated solutions, and that this branch 

can be represented parametrically with some paramete r E . If 

this parametric representation is also sufficiently differentiable at 

the known s elution (u, ljJ, A., T) = (0, <Po, A.0 , 0), then we can expand the 

parametric representation in a Taylor series about known solution. 

We choose the parameter E so that (u(x,E), ljJ(x,E), 'A(E), T(E)) = 

(O,<j>0 ,A.0 ,0) when E=O. 

The first n+l terms of this Taylor expansion will be referred 

. to as the nth perturbation expansion for nonisolated solutions of (l.l), 

and will be in the form 

( 2 . l) 

...__n 
u (x, E) = n 

€ (u0 + E u 1 + · · · + E u ) 
n 

""n 
ljJ (x, E) = 

n 
'A0 + E 'A 1 + · · · + E 'A 

n 

n 
E (To + E T1 + · • · + € T ) . 

n 

There are t w o equivalent ways to determine the coefficients 

in (2.1). Since (2. l) is intended to be the Taylor se ri e s of solutions 

of (l. 1), (l. 7) about € = 0, one could differentiate (l. l) and (l. 7) k 

time s, and then set € = 0, thus finding the e quations which deter

rnine th e coefficients of the kth t e rms as functions of the previously 

d e te rn1ined cOl' ffic- i0nts. Alt e rnate ly, one could substitute e xpr e ssion 

(2. l) direc tly into (1. l) a nd (l. 7). expand the nonlinear t e rrns in 
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powers of E , and then equate coefficients of like powers of E . The 

equations which result will again determine the kth set of coefficients 

as functions of previously determined coefficients. Since these two 

methods are equivalent, both require that the nonlinearity f(}.., T, u) 

have smooth derivatives of at least order n. 

(2. 2) 

(2. 3) 

(2. 4) 

(2. 5) 

Carrying out the above expansion procedure , we get 

Lu0 + fu(}.. 0 ,0,0)u0 = -fT(}.. 0 ,0,0)T0 

Bu0 = 0 

Lu 1 + f (}..0 , 0, O)u 1 u 

x EaD 

L¢0 + fu (}..0 , 0, 0) <Po = 0 

B¢0 = 0 

xE a D. 

XED 

xE aD 

xED 

xED 

*· Sinc e the ope rator L + f (}..0 , 0, 0) h as a null s pace s panned 
u 
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~!;: 

by <P o , we know by the Fredholm alternative theore m that 

equations (2 . 2) - (2. 5) can b e solved if and only if the right hand 

>:C 
side of e ach equation is orthogonal to q,0 as in (1.17) . This con-

dition determines the constants >... 1 , To and T1 in (2. 2) - (2. 5). 

Furthermore these solutions will not b e unique, since we may add 

any multiple of q,0 to the solution. To make the solutions unique, 

we require 

>:c 
( ljl(x ),q,0 (x ) fX.u(X. 0 ,0,0)) = 1 

(2. 6) 

* ( u(x ), q,0 (x) fX.u(X. 0 , 0, 0) ) = € 

This places a restriction on the terms of the p e rturbation expan-

sion (2. 1), requiring that 

* ( q,o, q,o fXu (X.o, 0, 0)) = 1 

(2. 7) 

* ( uo, q,o fX.u(X.o' 0, 0)) = l 

and 

* ( ljl. ,q,0 £>... (>... 0 , 0, 0) ) = 0 
1 u 

(2. 8) i = 1, 2, 

* ( u., q,0 fX. (>...0 , 0, 0) ) = 0 
1 u 

hold. 
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In order to solve (2 . 2), the Fredholm a lte rnative theorem 

requires that 

(2. 9) * To ( f (>,.0 , 0, 0) , <Po ) = 0 . 
T 

* Assuming that (f (X. 0 , 0, 0) , <Po)* 0, we must have To= 0. With 
T 

To = 0, equations (2. 2) and (2. 4) are identic al so that, applying (2.7), 

(2 .10) u 0 (x) = <Po (x) . 

Using this information, equation (2. 3) b ecomes 

(2.11) xE D 

x E aD. 

Applying the Fredholm alternative theorem to (2.11), we have 

(2 . 12) 

Similarly, from equation (2. 5) we get 

(2. 13) 
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Equations (2.12) and (2.13) are two linear sin1ultaneous 

equations for >--. 1 and T 1 . The determinant of this systen1 is 

(2. 14) 

so that these equations can be solved provided D * 0. If D * 0 , the 

solution of (2.12) - (2.13) is 

2 'l< 
(fuu(>--o,O,O), <J> o,<J>o) 

.... 
(f>--.u (>--o' 0, 0) <Po' <j>; ) 

(2.15) 

2 >:.C 

1 (fuu (>--o' 0, 0) <Po , <Po ) 
Tl = ~ * 

( f ( >--.0 , 0, 0), <Po ) 
T 

Of inte r es t in many applications is the r e lationship between 

>--., the "buckling load," and T, the "impe rfection amplitude. 11 

According to (2. 1) 

so if T 1 * 0, we can find >--. :: >--.( T) approximately. In particular, 

(2.16) 

and 

2 * ...._ = C (fuu(>--o,O,O)<J>o,<J>o) 
T 2 ,., -t- 0(E3 ) , 

<J (>--.0 , 0, 0), <l>o, ) 
T 
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can be combined to give 
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2 * 
(fuu P.-o' 0, 0) <Po' <Po ) 

* (fx_u(X.o,O,O)<j>o,<l>o) 

(2. 18) 'K = X. 0 ± TYz 
)'C: 2 , .... 

[2(fT(X.0 ,0,0),<j>~) · (fuu(X.0 ,0,0) <j>0 ,¢0~)] 
:~ 

(fx_u(X.o,O,O)¢o.<l>o) 

where T must be restricted so that X. is real. 

Yz 

+ O(T), 

In many applications, f (X.0 , 0, 0) = 0, so that (2.18) is not 
uu 

valid. Suppose there is an integer p such that 

(2.19) 

k a f ( X.o ' 0' 0) 

< 

auk 
= 0 

aP+ 1 f(X. 0 ,0,0) 

aup+I 

2 ~ k~p 

p+I ,,, 
<Po , ¢o' ) * 0 . 

Then the p e rturbation equations can be shown to reduce to 

(2. 20) 

(2.21 

Luk + fu(X.0 , 0, O)uk = 0 

Buk = 0 

Lup + fu("0 ,0,0)up = - ["Pf"u("0 ,0,0)u0 + 

+ f (X.0 ,0,0)T J 
Bu = 0 

p 

T p 

x € aD 

x ED k=O,l,2, ... ,p - 1 

x€ aD 

aP+ 1 
f ( X.o, 0, 0) 

aup+I 

X€ D 

(p+1)! 
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and 

(2. 22) X€ D k = 0, 1, 2, . . .• p-1 

B4\: = 0 X€ 8D 

[ 

aP+
1
f('X. 0 ,0,0) 

{

Llj;k+fu('X.0 ,0,0)lj;p=- 'X.pf'X.u('X.0 ,0,0)<j>0 + ()up+ 1 

(2.23) 

B·'· =0 xE8D 
'~"p ' 

and the conditions (2. 7) and (2. 8) are required to hold. 

According to equations (2. 20) and (2. 21), 

(2. 24) { u 0 (x) = <l>o (x) 

k = 1, 2, ... p-1 ' 

p+1 
<l>o 
- 1 ], x ED p. 

and the calculations used in deriving (2. 20) - (2. 23) show that 

(2.25 ) k = 1, 2, ...• p-1 . 

Using (2. 24) and (2. 25) in (2. 1), the form of the solution reduces to 

~p 

(2. 26) 

:;:-P 

= E (<Po + Epu ) + O(Ep+Z) 
p 

=<j>
0

+Eplj; +0(Ep+ 1
) 

p 

= 'X.
0 

+ Ep'X. + O(Ep-1-
1

) 
p 

P+ 1 p+ z = E T + O(E ) p . 
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Invoking the Fredholm alternative theorem in (2. 21) arid (2. 23), we 

can find }...p and T p" Specifically, 

(2.27) = 

* }... (f}...u(}...o,O,O)<j>o.<\>o) = p 

so that 

(2. 28) T = -,-P~-
p (p+l)! 

1 
ap+t f(}...

0
, 0, 0) p+I 

(p+ 1)! < aup+l 

1 
ap+t £(}...

0
,0,0) 

< p! aup+l 

* (f (}...0 ,0,0), <\>o ) 
T 

<!>o 

p+l 

<!>o 

* 
'<!>o > 

* 
<!>o > 

At the outset, we assumed conditions (2 . 19) that assured us that 

T -=t- 0. Now we can solve for }... = }...(T) approximately. Doing so, 
p 

we get 

(2 .29) 

p 

p+l 
}... :}... __ T_ ((p+l)! 

0 p! p 

Thus, the buckling load }... is altered by imperfections in the order 

of Tp/p+ 
1 

for T sufficiently small. 

We would like to show that the perturbation scheme given by 

(2. 1) is w e ll defined, and that the kth terms of the expansion are 

d e t c rn1int'd as soluti ons of linear equations involving only the 
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previously determined k terms. If we assume that f(>-., T, u) is at 

least n+2 times continuously differentiable in all variables, then 

expanding f(>-., T, u) in a multivariable Taylor series with remainder 

near >-. = >-. 0 , T = 0, u = 0, and substituting (2.1) into the Taylor 

series, it is easy to see that 

(2. 30) 
~ 1cr 

+~~( Lfu(>-.0 ,0,0)uk + f>-.u(>-. 0 ,0,0)u0 >-.k + £T(>-.0 ,0,0)Tk 

+ Pk{ u 0 , • · :uk_
1

; >- 1 , .. ·,~_1 ; To, .. ·.Tk_J J + O(t-1-2) 

(2. 31) 

On substituting (2. 30) and (2. 31) into (1. 1), (1. 7) we get 

(2.32) 

"'"'n Bu = 0 , X€ 8 D 

and { ""n ""n f, k [~ ( { }) l n+I Llj! +fu(>-.0 ,0,0)lj! =-~1 € .~l fu>-.(>-.0 ,0,0)>-.j+Qj ... lJ.k-iJ+O(E ) 

(2 . 33) J- xED 

B~n = 0 , X€ 8 D 
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Equating like powers of E, we have 

{

Luk + fu(X. 0 0 ,O)uk = -[fx.u(X.0 ,0,0)u0 ~ + fT(A.0 , 0, O)Tk + Pk{ · · }] 

(2. 34) 

Buk = 0 XE an k = 1, 2, n . 

XED 

XED 

As before, equations (2. 34) and (2. 35) can b e solved only if 

the Fredholm alternative is satisfied. Using that u 0 = lJ.Io = cj>0 , the 

resultin g equations are 

(2.36) 

and 

Notice now that using equations (2. 34) - (2. 37) dete rmines the kth 

t erms of the expansion (2.1), uk, lj.Jk , X.k and Tk as functions of 

the previously determined k t e rms. The equations (2. 34) - (2. 37) 

are linear, and involve the same differential operator and matrix 

operator for each term of the expansion. This assures us that the 

proc e dure can be carried out indefinitely, provide d the determinant 
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D of (2.14) does not vanish, and provided f(A, T, u) is sufficiently 

differentiable. The condition (2. 8) makes the procedure unique. 

The solutions of (2. 36) and (2. 37) are 

and 

k-I 

(f (A O ~) <jJ *) [1:: ((f ,(A0,0,0)A..+Q.{u0,""",u._ ;AI;·· ,A.._ ;T0;··,T._}) 
0• , , 0 U/\. J J J I J I J l 

T . 
J:::l 

When the coefficients ~ , tVk , Ak and Tk are substituted into (2.1), 

the resulting expansion is an asymptotic solution of (l.l) for E suf-

fici e ntly small . This fact will be shown in Section 4. 

II. 3. Existence of Non-isolated Solutions. 

In Section II. 2, we were able to develop a perturbation 

scheme which gave rise to expressions w hich we hope are approxi-

n1atc solutions of (l.l), (l. 7). At this stage , howe v e r, we do not 

e v e n know that (l.l), (l. 7) have "nontrivial" solutions. In orde r to 

show that such solutions exist, we look for solutions of {l. l), (l. 7) 
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in a form suggested by the perturbation m e thod, name ly 

(3. l) 

u(x,E) = E<j>0 +Ezv(x,E), 

ljJ(x,E) = cj> 0 + EX(x,E), 

>-.(E) = >-.0 + E j.L(E) 

T(E) = EZl'/(E) , 

w h e re cJ>o (x) satisfies (1. 6). In addition, we require that 

* ( v(x,E) , cj>0 (x) f>-.u(>-. 0 ,0,0)) = 0 

(3. 2) 

(x(x,E) 

W e must show that for som e nontrivial range of the parameter E, 

0 ~ jEI ~ E 0 , the functions v (x ,E), x(x,E), !J.(E), l'/(E) exist and are 

bounde d uniformly in E . If this can be shown, then as E approache s 

zero, the solutions (3.1) approach the trivial solution (u, ljJ, >-., T) = 

(0, cj>0 , >-. 0 , 0) continuously. Furthermore, the solutions (3. l) cons-

titute a family of nonisolated solutions of (1. l) depending continuously 

on the parameter E . 

To carry out the analysis for this problem, we will make 

use of the identity 

(3. 3 ) 
1 dg 

g(a) - g(b) = (a-b) J dx (sa+ (l-s)b) ds 
0 

dg 
provided the derivative dx exists and is continuous for x E [a, b]. 
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To use this identity for (1.1), (1. 7) we will assume that f(X., T, u) 

has at l e ast thre e continuous derivatives in X., T and u . Substituting 

(3.1) into (1.1) and (1. 7) gives 

(3 .4) 

and 

(3.5) 

u € u r Lv+ f ( X.0 ,0,0)v = - -\ [f(X., T, u) - f (X.0 ,0 ,O)u] 

= -~-11 (€) J 1 
fT(X., s T ,u)ds + ra-(<j>0+~t v)JJ\'-u(X.0+sE f.J.,O,tu)ds dt 

- 0 0 0 

2 j 'lll J + (<j>0 +Ev) f (X.0 ,0,stu) sdtds 
0 0 uu 

xE D 

= P(v, f.J., 11, E ;x) 

Bv = 0 , x € 8 D 

LX+ f (X.0 ,0,0)x= _1_~-f (X.,T,u)- f (>-.0 ,0,0)] 4J 
u € u u 

"'_ff.J.J\ (X.0+SEf.J.,0,u)ds+E11Jf (X. , ST,u)ds L 0 AU 0 TU 

+ (<j>o+Ev)j.
1

f (X.0 ,0,su)ds] (<j>0 +EX) 
0 uu 

=Q(v,x,f.L,11,E; x ) xED 

Bx = o XE 8D 

Equations (3. 4) and (3. 5) are of the form (1. 16) and can b e solved for 

v and X only if the orthogonality conditions 

>:.:: 
(P(v, f.J.,11,E; x), <Po ) = 0 

(3. 6) 
,,. 

(Q( v, X· f.J.,11,E; x), <\J~-) = 0 
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hold. These solutions, if the y exist, ar c only d e t ermine d to within 

an additive multiple of <Po, unless the conditions (3 . 2.) are satisfied . 

The orthogonality condition (3. 6) provides the m e thod by 

which we intend to solve (3. 4) and (3. 5). We will solve them 

iteratively, first by choosing values of n and 1-.1. so that (3. 6) holds, 

and then solving (3. 4) and (3. 5) for the functions v and X· With 

the new functions v and X• we must choose new values of 11 and 1-.1. 

so that (3. 6) again holds, and the process continues inde finitely. 

If we can show that this process converges, then roughly speaking , 

w e will have found a solution of (3. 4) and (3. 5). This iteration 

scheme is a modification of the standard technique of Lyapunov and 

Schmidt ( 38] suggested by the treatment in [17) of the bifurcation 

problem (1. 1) with T = 0. 

To formulate the contraction mapping we introduce the s e ts 

of functions 

I 
2+a ·'-

(3.7) BK={y(x) y(x)EC (DJ,!IYII~K ,(y(x),<j>~-(x)f:\u(:\0,0,0))=0}, 

and the real interval 

(3. 8) 

In addition, we introduce the set 
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Notice that s I (p' r) depends on p and pr but not on r alone. For 

each v(x)' x(x) E BK and n' fJ. E !)K ' a transformation T E is defined 

for each E in 0 ~ IE I ~ E I by 

where 

j.l * 
((<j>o+EX) 

0 
fX.u(X. 0 + sE fJ., 0, u)ds, <Po) 

(3. 10) =- ((<j>0 +Ev)(<j>0 +Ex)j.
1

f (X.0 ,0, su)ds,<j>~) 
0 uu 

l
i >'< 

-Er]((<j>0 +EX) f (A,ST,U)ds,<j>~), 
0 TU 

- - r- (1 
L v + £ u (.~0 • o . o, v = - c, J 

0 
r T < x.. sT. u > d s 

- rir I 
+ fJ.(cpo+Ev)J

0
J

0 
~(X.0+SEfJ.,O,tu)dsdt 

(3.12) 

+ (¢0 +Evt JJif (X.0 ,0,stu)sdt ds] xED 
0 0 uu 

Bv = 0 XE aD 
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Bx = 0 ' X€ aD 
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1 
+En(<j>0 +Ex)J f (J\.,sT,u)ds 

0 TU 

This definition of T induces an iteration procedure in a 
E 

natural way. Suppose we let an initial iterate be ( v 0 (E, x), x0(E, x), 

f-lo (E), n° (E)). Then we define the sequence of iterate s 

v (E,x), X (E,x), 1-l (€), n (E) by {( v v v v ) } 

( 3 .14) [
Vv+l, Xv+l, 11 V+l v+l] [ V V V VJ 

r- n = TE v , x . 1-l • n . 

We are now able to state and prove the following 

Theorem 3-1: Let S 1 = S 1 (p , r) for some fixed p ~ 1, pr ~ 1. 

Suppose that 

(3 . 15) and 

f (J\. T u) f f f f f f f f . f T 1 1 1 J\. 1 }\u' UU 1 TU' uuu' J\.uu' TUU' TTU J\.J\.u 

f, • f E C(Sl) . 1\.TU TT 
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* and that (f (>. .. 0 , 0, 0), <l>o) 
T 

* ( <l>o f}..u 0'-o, 0, 0), <l>o ) =I= 0 . Then there are 

real positive constants E 0 and K , E 0 ~ p , E 0 K ~ p r such that the 

into UK , and TE is a contraction on UK for all E 0 ~ IE I~ E 0. 

Furthermore, the problem (1.1), (1. 7) has a nontrivial solution of the 

form (3.1) where v(x,E), X(x,E), j-L(E), 7'}(€) satisfy (3. 4) - (3. 6) and 

are the limits of the iteration scheme generated by TE for any 

initial iterates in UK 

( 3. 16) 

Proof: For notational purposes, define 

= sup I g(w) I 
w ES 1 

Sinc e S 1 depends on the numbers p and pr but not on r alone, we 

can use the norm (3.16) without knowing r. We need only require 

that Eo~ p, EoK ~ pr. By requiring Eo~ max{l, 1/K} we can use 

the norm II g II with p = 1, pK = 1. s 

By virtue of the smoothness assumptions we made about 

inverting the operator L + f (}..0 , 0, 0) (cf. (1.16) ), to show that T 
U E 

maps UK into 'l1<: , we need only find appropriate constants K and 

E1 that define ~ and SJK . 

* We assumed that I (<j>0 fu}..(}..0 ,0,0),<j>0 ) i=a=t:O and 

I (f (}..0 ,0,0), <l>o*>l = f3 * 0. Notice that in (2. 7) we assumed a= 1 without 
T 

loss of generality. We restrict E 1 to be small enough so that 
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(3.17) 

for {X.,T,U)ES1 . Then if (v,x,f.L,l"J)EUK for some E 1 ,K with E 1 ~1, 

E 1 K ~ 1 , we have 

{3. 18) 
{ 

I~ I ~ .f if? { II <I> II + E 1 K) [( II <I> II + E 1K) II f II + E 1 K II f II J 
Q' 00 00 UU S UT S 

~ At + E 1 B1 {E 1 , K) , 

(3.19) 
{ 

- 2 [ - z II fuu lis] 
lnl ~13 if? I~J.I{II<!>II 00+E1K)IIfux.lls+{ll<t>lloo+E 1K) ~2-

~ A 2 + E 1 Bz (E 1 , K) , 

{3. 20) 

and 

(3. 21) 
{ 

II X II ~ G( II <j> II + E 1K) [1 ~I II f ' II + ( II <I> II + E 1K) II f II 
00 00 UA. S 00 UU S 

+ E 1 K II f II J ~ A4 + E 1 B4 {E 1> K) , 
U'T S 

* where <1? = (1, I <j> 0 I) . The positive numbers Ai do not d e pend on E 1 

or K, and the positive numbers Bi{E 1 ,K) are bounded on compact 

sets of (E 1 , K). Our goal is to find K > 0 such that 
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(3.22) A. + E 1 B. (E 1 , K) ~ K 
1 1 

i=l,2,3,4. 

This is e asily a c complished, since B . (E 1 ,K) depe nd continuously on 
1 

E 1 and K, we can pick K > max {A.} , and the n find an E 1 > 0 
i=l,2,3 ,4 l 1 

so that ( 3 . 22) holds . Letting Ez = min{l , K, E 1} we have that 

TE: UK- UK for 0 ~IE I ~ Ez. The second pa r t of the proof involve s 

finding Eo ~ e 2 so that TE is a contraction on UK for 0 ~ /el~ e 0 • 

Suppos e we let w 1 = (v,x,!J-,1]) eUK and w 2 = (y,z;, , v,K)eUK. Then w e 

can show that the re exists a pos itive c onstant M suc h that 

(3. 23 ) 

where 

In par tic ular , with some straig ht forward c alculations, it 1s easily 

shown that 

(3. 24) 

(3 . 2 5 ) 



(3. 26) 

and 

(3.27) 

where 
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II ~-y IL ~ G IE I [ A~nll v-y IL+ An 11-L-v I + A33 ITJ-K 1] 

+ G A:34 I~ -K I + G A:3s I~-~ I • 

lix-~ II~ G IE I [A4tll v-y II+ A4z llx-l;, II+ A4311-L-v I+ A44 ITJ-K 1] 
00 00 00 

Au=~~=(II<J>I!+l)[ll£ 11+11£ .. II+E2
2

(II<J>II+l)ll£ II+Ezllf II, 
00 UU it UU/\. S 00 UUU S UU 'T S 

A1z = A4z = K II f , II +II f II + (II <l> II +1) II f II • 
U/\. S U 'T S 00 UU S 

A13=~3= (ll<l>IIJl)[Ez ll£uX.'TIIs+~ll£uX.X.IIs]• 

A14=~4= (ll<l>llcJ1)[11fu'TIIs+ €~ ll£u'T'TIIs]' 
(3.28) 

Az 1 = (II <l> II + 1l11 f II + Ebz ( Jl <l> II + 1) II f II + i II£ , II l_._ K II f , II + II f II , oo Ll uu s oo uuu s uu 1\. sj u/\. s 'TU s 

Azz = A:3z = K ~(II <l> IIJl) II fuX.X. 11 8 + II f..,.x_ lis] • 

Clearly, (3. 24) - (3. 28) imply the existence of a constant M such 

that (3. 23) holds. By choosing 0 < € 3 M < 1, the mapping TE is a 

contraction on UK for 0 ~ I El ~Eo where E0 =min(Ez ,E 3 ). 
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We have now shown that for jEI .:::; Eo, TE maps UK into it self 

and is a contraction. But this is not sufficient to show that the 

i teration s cheme g enerated by T conve rges to a solution of (3 . 4) -
€ 

(3. 6 ). W e know by virtue of the contrac tion that the s e q u e n c es 

and { fJ.v(€)} c onverge. By a simple induc tion we a l s o k now that 

v v z+a -
v (€, x) , X (€, x) € C (D). This allows us to a pply the Compac t -

n e ss The ore m 12. 2 of Agmon, Doug lis and Nir e nberg [1] , whic h 

justifies taking the limit v- oo in (3.14). Q.E.D. 

It i s easy to see that a solution of the form (3 . l) i s 

unique. If it w e re not unique, the n there would b e t w o solutions, 

say w 1 -:/< w 2 whic h both satisfy (3 . 4) - (3. 6 ). Thus , both w 1 a n d 

w 2 are fixed points of the mapping T g i ven by (3 .10 ) - (3 .13), so 
E 

that w 1 = w 1 and Wz = w 2 • Applying (3. 23} we s ee tha t 

(3 . 29) 

wheneve r I € I .:::; E 0 which is a contradiction. Thus, w 1 = w 2 , and 

the solution is unique. 

The proof of The or e m 3 . 1 a s sur e d us that nonis o lated 

solutions o f (1. 1) are of the form (3. 1), w h e re v(E, x ), X(E, x ) , fJ.(E), 

and TJ(E) are uniformly bounded by K for lei .:::; € 0 • To know more 

a b out the quantitativ e b e havior of the solution, w e would like to 

know more about fJ.(E) and T](E). We know that fJ.(E) and TJ(E) are 

fi xed points of (3 . 10} and (3. 11) r e spective ly. Suppos e tha t the r e 



is an integer p such that 

(3.30) 

< 
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aP+I f(X.0,0,0) 

()up+ I 

= 0 2 ~ k ~ p 

.hp+I 
'1'0 ' * <Po ) * 0 

holds, and assume that all third derivatives of f(X., T, u) exist and 

are continuous. Then applying the identity (3.3) to (3.10) and (3.11) 

we find 

and 

(3 .32) 

= 

Althoug h (3. 31) and (3. 32) include implicit dependence on !J.(E) a nd 

n(e:) in the O(E) and O(Ep) terms, we know that I!J.(E)i ~ K, 

I 'll(E) I ~ K for IE I ~ € 0 , and this permits the determination of the 

asymptotic form of jJ.(E) and n(e:) as le: I - 0. 

The system (3. 31) - (3 . 32) can b e solved for E sufficiently 

sn1all, to give 



{3.33) !J.(E) 

{3 .34) n (E) 
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p-1 
= - _E __ 

p! 

p+I ) a f(> ... 0 ,0,0 +t * 
( p+ I <P~ ' <Po ) au 

p+l a f(A-0,0,0) p+I 
( p+ I <Po , 

au p P -I = E {p+I)! 

* <Po ) 

Coupling (3. 33) and (3. 34) with the form of the solution (3. 1), w e 

s ee that the perturbation solution (2. 26) - {2. 28) is asymptotic to 

the solution {3.1) as E - 0. In section 4, we will show that this 

is true for the perturbation scheme with any number of tern1s. 

II. 4. Comparison of Iteration Scheme and Perturbation Procedure. 

In Section 3 we found a mapping T whose fixe d point g ave 
E 

rise to solutions of (1.1), (1. 7) for each E, 0 ~ \E\ ~ Eo. The 

iterations generated by T w e re found to converge to the fixe d 
E 

point for all initial iterates in UK . 

In this section, w e will examine the ite rations gen e rated by 

the initial iterate 

(4. 1) 
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To estimate the errors of the kth iterate k 
w, we apply (3 . 23) to get 

(4. 2) 

where € 0 1s chosen so that € 0 M < 1. Applying ( 4. 2) rec ursive ly w e 

find that 

(4. 3) { 
A simple application of the triangle inequality implie s 

(4. 4) 

= K(le IMt 1- <le IM)m 
1- leI M 

and passing to the limit as m- oo , w e g e t 

(4. 5) 

where w = (v(e,x), x(e,x), f.J.(€), T](e)) is a s olution of (3. 4) -· (3.6). 

Writing this anothe r way, as € - 0 , w e have 

(4. 6) II w-wk II = o< If I k) . 
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We can interpret this information in terms of the solutions 

of (1.1), (1. 7) in the form (3 . 1). The sequence {wk} corresponds 

for € fixed to finding a sequence (uk (E, x), lj;k (E ,x), f.Lk (E), TJk (E)) 

where 

k k 
u (E, x) = E <j>0 + E 2 v (E , x ) 

k k 
ljJ (€, x) = <j>0 + € X (E, x) 

(4. 7) 
k 

X.0 + E fJ. (€) 

k 2 k 
T (E) = € n (€ ) , 

with initial iterate 

(4. 8) 

Furthermore, (4.6) tells us that 

( 4 . 9) 

We would now like to show that the perturbation method 

described in S e ction 2 gives an expansion which is a symptotic as 
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E- 0. Specifically, we will show that (4. 9) holds for the iterates 

(4. 7) and also for the perturbation terms (2.1). To do so we 

prove the following 

Theorem 4-1: Let the hypotheses of Theorem 3-1 hold, and let 

(2. 30) and (2. 31) be satisfied for all E , I Ei ~ Eo. 
-n-n-<n-n 

Let (u ,ljJ ,A. ,T ) 

be of the form (2.1) with ui(x), ljJi(x) bounded on D for i::: 1,2,··· n. 

. n n n n 
Then the 1terates (u , ljJ , X. , T ) of ( 4. 7) and the perturbation 

-n -n -n -n 
expansions (u , X. , X. , T ) of (2.1) and (2. 34) - (2. 37) satisfy 

11 
n -n 

u (E , x) - u (€ , x) II 

(4.10) 

Note that applying the triangle inequality with (4. 9), (4. 10) assure 

us that the perturbation method is asymptotic to the known solution 

as E-o. 

Proof: The proof of a similar fact for the bifurcation 

problem (when T ::: 0) has been given by Keller and Langford [20). 

The proof uses a standard inductive argument. By (2. 9), (2.10) 

and (4. 8), we see that (4.10) holds trivially for n = 0. For n > 0, 

the iterates are generated according to (3.10) - (3.13). Without 

using the identity (3. 3), these can be written as 
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v +I 
X. - X.o. v v v v v * v v v v v v v * (4.11) ( ·1(f (X. ,0, u )\jJ -f (X.0 ,0,u )\jJ ,cp0 ) = - (f (X. ,T ,u )\jJ - f (X. ,O,u )tji ,<(>0 ) 
X.v _ X.o u u u u 

v+I "' , v+I , "' 
T V V V . V V -.< ( f\. -f\.Q V V V -r-
- (f(X. ,T ,u )-f(X: ,O,u ),cp0 ) + )(f(X. ,O,u )-f(X.0 ,0,u ),cp

0
) 

Tv ~- X.o 
(4.12) 

v v ~~ 
=- (f(X.0 , O,u ) - f (X.0 ,0,0)u, ¢>o ) , 

u 

[ 

v+I 
v+ I v+ 1 T v v v v v 

Lu + fu(X.0 ,0,0)u =- -v- 0(X:, T, u ) - f(X., 0, u )) 
T 

(4.13) 

Buv+l = 0 , 

v v v v v + f (X., T, u ) - f ( X. ,O,u ) u u 

(4.14) 

v J v + f (X.0 , O,u ) - f (X. 0 ,0,0) \jJ , u u 
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provided Tv io: 0 and X =f. X.0 • If Tv= 0, 
f(X.v Tv uv) -f(X.v 0 uv) 

the expres sian ' ' ' ' 
v 

T 

is replaced by f (X.v,O,uv) in (4.12) and (4.13). 
T 

Similarly, if X.v = X.0 , the 

expression fu(X.v,O,uv)-fu(X. 0 ,0,uv)/ >...v->..0 is r e placed by f>...u(X.0 ,0,uv) 

in (4.11) and (4.14), and f(X.v, O,uv)-f(X.0 , 0, uv)/>...v ->...0 is replac ed by 

fA(X. 0 ,0,uv) in (4. 12) and (4 . 13) . 

Suppose that (4.10) holds for some n > 0 . This implies 

n -n 
u = u + E 

n+z e (E) , 
n II en I) = 0(1) , 

l)Jn=~n+En+len(E)' II enll = 0(1) , 

(4 .15) 
n -n 

X. =X. +E 
n+l 1-Ln (E) , 11~-Lnll = 0(1) ' 

n -n n+z 
linn II = 0(1) T = T + E 11 (E) , n 

Applying (4.15) with (2. 30) and (2. 31) we se e that 

(4.16) 

and 

(4.17} 

n n n n n n 
f(X , T , u ) = f (X.0 ,0,0)u + f (X.0 ,0,0)T +E f, (X.0 ,0,0)u0 (X ->...0 ) 

u T ~u 

n+l 

+ E L: Ek Pk{ U 0 , .. ,~-l ; X. 1 , "'•\c-l; T 0 , "· ,Tk -l }+0(En1S), 

k=l 

n n n n 
f (X , T , u ) = f (X.0 ,0,0) + f , (X.0 ,O,O){X ->...0 ) 
u u u~ 

If we assume that 
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(4. 18) 

n+I 
~+I = 'X.o +I Ekj3k + O(En+z) ' 

k=O 

then (4.17), (4.18) combined with (4.11) g i ve 

k=2 

n+I k n+I 

(4.19) =-I Ek I (Qj{u0 ,'~uj_1;'X. 1 ,"','X.j_ 1 ; T0 ,' " ,Tj_ 1}l\ik-j'<j>~)+I Ekqk+O(E:fl+Z) 

k=l j=l k=2 

where 

where 'X.k, Tk' uk and lJic are the coefficients of the perturbation 

scheme given by (2. 34), (2. 35). (2. 38) and (2. 39). Suppose that 

'X.k = 0 fork= 1, "'p-1 and 'X.p if:. 0. Then qk = 0 for k~p. If p::;:, 

n+I k 
n+l, then the polynomial :L E qk vanishes identically, and the 

k=z 
corresponding t e rms involving this polynomial are 

n +I k In ~ n+I 
(4.19). If p~n, the n .1: E qk :l:E k+E f-Ln is 

k:Z k=I 

not pres e nt in 

a polynomial of 

order E • In e ither of these cas e s, equating the coefficients of E 

in (4. 19) gives 

(4. 20) 
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Comparing this with (2. 38) we see that !3I = "-I. In fact it is easily 

seen that !3k = A.k for k = 1, 2, · · · , min(p, n+l). 

If p ~ n we must still determine !3k for k ? p+l. Suppos e 

that for some k ;t p+l, !3 = A for v < k . Then we obs e rve 
v v 

(4. 20) 

n+I k 
:£: € !3k 
k=I = 

n+I k p+I . 
Since 2,; € qk is a polynomial of order E , equahng the coef-

k=z 
ficients of ek in (4.19) 

k 
(4.21) !3k(f '(A.o, 0, 0 )lfio,<P6) = - \' (Q .{uo; ·,u . ; A I. ·,x.. ; To; ·,T. } d;lr -J· ' A,*o ) 

u 1\. j~ I J ri ri ri 'i "' ·r 

k-1 

j=I 

which upon comparison with (2. 38), shows that t3k = Ak. This 

process can be carried out for all p+l ~ k ~ n+ l , which completes 

the induction necessary to show that 

n+I ~ 

(4.22) An+I = Ao + ~ Ek Ak+O(En+2)=An+I+O(En+z) 

k=I 

In a similar manner, combining (4. 12), (4. 16) with (4. 20} and 

(4. 22} gives 
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(4.23) 

w here 
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k=l 

n+1 

- E ~ Ek (Pk{ u 0 ; ~uk_1 ,>-.. 1,"' ,>-..k_1 ,o; · ,o},<J>~) 

+E 

k=1 

n+t k 
~ E 'Yk 

k=o 
n+1 

k=1 

w here we have assumed Tn+I (E) to be of the form 

n+t 

(4.24) Tn+l = E ~ Ek 'Yk + 0(En+3) . 

k=O 

The argument is now exactly the same as the argument given above 

and will not be repe ated. The r es ult of the argument is that 

fork= 0,1, ... n+l, or that 

n+l 

(4. 26) 
n+t '\' 

T = E LJ k O( n+3) -Tn+t + O(En+3 ). 
E Tk + E = 

k=l 
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The final step of the inductive argument involves substituting 

(4.16), (4.17), (4.22) and (4.26) into (4.13) and (4.14). In light of 

(4. 20) and the similar relationship for the quotient Tv+
1
/Tv , it 1s 

easy to see that 

( 4. 2 7) XED' 

x E aD, 

and 

(4.28) X ED' 

XE 8D. 

The right hand sides of (4. 27) and (4. 28) consist of the difference s 

of right hand sides of (4.13) and (2. 32) and of (4.14) and (2. 33) 

respectively. Since each right hand side expression is orthogonal 

* to cp0 , so also must their differences be orthogonal. By (1.19) the 

inverse of the differential operator L + f (A.0 ,0,0) is bounded, so that 
u 

(4. 29) II u n+I_;;n+I Jl = 0 (En+3) ' 
00 

and 

( 4. 3 0) 
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The expressions (4. 22), (4. 26), (4. 29) and (4 . 30) are of the form 

(4.10), so the induction argument, and hence the proof of the 

theorem, is complete. Q . E . D. 

II. 5. Extension of Solution Branch fr o m Nonisolated Solution. 

In the previous sections, we showe d that ther e are non

trivial nonisolated solutions of (1. 1) depending continuously on a 

parameter E for I El ~ Eo. In this section we w ant to show c i r cum

stances under which a nonisolated solution of (1.1) is an ele ment of 

a nontrivial solution branch with T fixed. To do so we will 

construct the solution branch of (1.1) which contains a g iven non-

isolated solution. A similar proble m h a s bee n treated by Dean 

and Chambre [8), [ 9). 

Suppose To* 0 is fixed arbitrarily. If we make the 

identification 

(5. 1) 

e quation (1. 1) becom e s 

(5 . 2 ) 

g(X.,u) = f(X.,T0 ,u) , 

Lu + g (X., u) = 0 

Bu = 0 

XED ' 

x E an 

w h e r e w e a ssu m e that g (X., 0) * 0. S u p p o s e tha t u = w 0 (x ) i s a 
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nonisolated s elution of (5. 2) for X. = fJ.o. 

* 
A ccordin g ly, there exist 

functions l!Jo (x ) and l!Jo (x) which satisfy 

(5. 3 ) 

and 

(5. 4) 

LljJ + gu (fJ.o, w0 (x))yJ = 0 

BljJ = 0 

L* l!J* + gu (fJ.o , w 0 (x ) )ljJ"'" = 0 

* >!< BljJ = 0 

XED ' 

xE8D 

XED ' 

x€8D 

respectively, where g (fJ.o ,w0 (x)) is the partial 
u 

derivative of g( A., u) 

* * at (fJ.o ,w0 (x)), and L , B are adjoint operators define d previously. 

W e will assume that all solutions of (5. 3) and (5 . 4) can b e r ep-
,., 

res e nted as multiples of l!Jo (x) and ljJ~ (x) respectively. With these 

assumptions , the Fredholm alternative theorem (1.16) - (1.19) is 

applicable when solving equations such as (5. 3) with a nonzero 

right hand side. 

We want to find solution sets (fJ.,w(x)) of (5. 2), if they exist, 

such that fJ.-fJ-0 and w(x) - w 0 (x) are small. A natural way to pro-

ceed is to use the perturbation method to suggest the form of such 

solutions, and then to construct a contraction mapping which shows 

that the suggested form leads to solutions. Suppose we assume an 

expansion of (fJ., w) in powers of o which has the form 
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~(x, 0) = Wo (x) + OWl (x) + 02 Wz (x) + 

(5. 5) 

Substituting (5. 5) into (5. 2), expanding g(;;, ~) in powers of o, and 

equating the coefficients of like powers of o, leads to the equations 

(5. 6) 

(5. 7) 

and 

Lw0 + g(fJ.0 ,w0 ) = 0 

Bw0 = 0 

Lwl + gu(fJ.o,wo)wl = -gx_(fJ.o,wo)fJ.I 

Bw1 = 0 

XED • 

XE aD 

XED • 

XE aD , 

Lwz + gu (fJ.o, wo)wz = - [ gX. (fJ.o, wo)fJ.z + iguu (fJ.o, wo)wi2 

(5 .8) + gA.u(fJ.o,wo)fJ.IWI +t gx_x_(fJ.o,wo)fJ.I2 J XED , 

Bw2 = 0 xE an, 

provided the derivatives gX., gX.X.' gX.u and guu exist and are con-

tinuous. In order that w 2 be uniquely determined we require that 

(5. 9) 

hold. 
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Equation (5. 6) is automatically satisfied by our defini tion o f 

JJ.o and w 0 (x). Because 4;0 satisfies (5. 3), the Fredholm alternative 

theorem implies that (5. 7) can be solved only if 

(5. 9) * JJ-1 (g x. ( JJ.o , w o ) , lJJo ) = 0 . 

* If we assume that (gx_(JJ.0 ,w0 ), 4;0 ) * 0, then (5. 9) implies that 

(5.10) JJ.I = 0 , w 1 (x ) = 4;0 (x) . 

Finally, the Fredholm alternative theorem applied to (5. 8) gives us 

that 

(5. 11) 

Thus, the p erturbation method indicates that solutions of (5. 2) are 

of the form 

(5.12) 

~(X, 0) = Wo (x ) + 6lJJo (x ) + 0(62 ) , 

;:;:'(o) = JJ.o + 62 JJ.z + 0(53 ) , 

where f.Lz 
1 = -z 

(guu (flo' wo)lJJo2 '~~ ) 
>.'< 

(gx_(f.Lo, wo), lJJo) 

Motivated by the results of the perturbation m ethod (5.12), 

we propose to look for solutio n s o f (5. 2 ) o f the form 
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w(x, 5) = w 0 (x) + 5lj.J0 (x) + 52 y(x, 5) , 

(5.13) fJ.(5) = fJ.o + 52 v(5) , 

On substituting (5. 13) into (5. 2) we get 

(5 .14) 

Ly + gu(fJ.o,wo)Y = - ~2 [g(fJ.,w)-g(fJ.o ,wo)-gu (fJ.o,wo )(w-wa)] 

=- [v f 1 

gx.(fJ.o+ 5 2 svlw)ds 
0 

By= 0 

+ (lJ.lo+ 5y) f J 1guu&o.wo+ 5st(lJ.lo+5y)) sdt ds] 
0 0 

= P(y , v,O;x), XED, 

XEoD , 

Equation (5. 14) is of the form (1. 16) and can be solved for y only 

if the orthogonality condition 

(5. 15) * <P(y, v, 5;x), ljJ0 ) = 0 

holds. 

As before, we expect that we shall be able to find a solution 

to (5.14) for 5 sufficiently small by employing an iteration procedure . 
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To set up such a procedure we introduce the set of functions 

and the real interval 

(5. 17) 

In addition we introduce the set 

For each y(x) in /3K and v E JlK we define the mapping T 0 for each 

o in o ~ 1 o 1 ~ o 1 by 

where 

and 
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(5.19) 

By= 0 , xE oD , 

(y 

Then, after picking some initial iterate (y0 , v 0 ), a sequ e n ce of 

iterat e s { yk, }'} will b e generated by 

(5. 20) ( k+ 1 k+ 1) = T ( k k) y ,v oy,v. 

We now state and prove the following 

Theorem 5-l: L e t S 2 =S2 (p , r) for some fixed p ;:::;l, p r ~ 1. Suppose 

that 

( 5. 21) 

and that 

Then :J real positive constants 8 0 and M , 8 0 ;:::; p , o0 M ;:::; p r such 

that the mapping T
0 

given by (5 .18), (5.19) maps WM =(BMx_9M) 

into W M , and T 
0 

is a contrac tion o n WM for all o, 0;:::; \ o \ ;:::; 8 0 • 
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Furthermore, the problem (5. 2) has a solution of the form (5.13) 

for all o 0 ~I o I~ o0 , w here y(x, o) and v (o) are the limits of the 

iterate {yk, vk} gen e rated b y (5 . 20) for any initial ite rate in WM. 

Proof: The proof is similar to the proof of Theorem 3-1. W e 

need to show that the mapping T 
0 

given by (5.18), (5.19), is a 

contraction mapping of WM into W M for appropriate constants o0 

and M . Again we w ill u se the norm 

(5 . 22) s up \ g (w) I 
wES 

Because of the smoothness assumptions w e have placed on g(A..,u), 

to s how th<3.t T 
0 

maps W M into WM we n eed only find the con stants 

M and o0 which define BM , __9M. 

Since we assumed that \ (g ;x.._ (fl-o, w 0 ), ljJ~ ) l = y i= 0, w e can 

restrict o0 to b e sufficiently small so that 

(5.23) 

Suppose that (y, v) E WM for some M, o0 • The n 

(5. 24) 

and 

(5 . 25 ) 
00 00 
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where 

~ = * (1, ]ljJ I> 

The positive numbers A 1 and A 2 do not depend on M or o, and 

the numbers B I (M, o) and Bz (M, o) are bounded on compact sets of 

(M, o). We can easily find (M, 6 1 ) so that 

(5. 26) i = 1, 2, 

by picking M > max{A1 ,A2}, and the n finding the largest 6 1 for 

which (5. 26) holds. By picking 6 2 =min {1, ~ , o1}, we have that 

T 8 : wM- WM for 0 ~ 10 I ~ Oz. 

To show that T 
0 

is a contraction for I 6 I ~ 60 , assume that 

w 1 = (y, v) and w 2 = (z, fJ.) ar e in WM . Then for lol ~ 62 we ha ve 

(5. 27) 

and 

( 5 . 28) 

where 

(5. 29) 

z llg II 

{ 

Au=Azt=(llljJII +l)llg II +oz(llljJII+l) uu6u 
8

+llg, II , 
00 UU S 00 1\.U S 

A rz = Azz = ~ II g\ x_ll 5 • 
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Clearly, (5. 27) - (5. 29) implies the existence of a constant C > 0 such 

that 

(5.30) 

where wEWM. 

Now, by choosing 0 < o3 C < 1, the mapping T 
6 

is a contraction on WM 

for O~lol~ 80 , where 80 =min(o2 ,63 ). 

To complete the proof we need only observe that the compact-

ness Theorem of Agmon, Douglis and Nirenberg [1] applies, as it 

did in the proof of Theorem 3-1, and justifies taking the limit as 

k- oo in (5. 20). Q.E.D. 

The solution given by (5.13) is unique in the sense that there 

1s only one solution of that form in S (E 0 ,M). If ther e were two 
2 

solutions wi:/=w2 , each would be fixed points of T
0

, and (5.30) 

implies that 

(5 . 3 1) ll wi -wz II ~ <lo I C) II wi - w z II . 

For I ol~oo, this cannot hold, so that wi=wz is unique . 

We could compare the iteration procedure (5. 20) with the 

perturbation scheme (5 . 12). Once again we would find that the 

p e rturbation scheme is asymptotic to the iteration scheme, and that 

the i teration scheme is asymptotic to the s olution as o- 0. Rather 
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than carrying out the details of such a proof, we will examine the 

asymptotic expansion of the solution (y(o, x), v(o)), which are fixed 

points of (5.18), (5.19). 

Examining (5. 18), it is easy to see that 

(5.32) v(o) = 
z * - (guu (!J.o 'Wo) lJ.Io , lJ.Io ) 

* 2 (g X. ( IJ.o ' w o ) , lJ.Io ) 
+ o(&) . 

Substituting (5. 32) into (5.13) we see that to the order which we have 

taken the solution, the exact solution (5 . 13) and the perturbation 

solution (5.12) agree asymptotically as &-0. 

Knowing the form of the solution (5.13) gives us information 

about those parameter values fJ. for which solutions of (5 . 2) exist. 

Since fJ. = t.J.o+ &2 v(o), if v(O) > O, then solutions of (5. 2) exist in the 

neighborhood of (w0 , t.J.o) for which tJ. > IJ.o. If v(O) < 0, then 

solutions of (5. 2) exist in the neighborhood of (w0 , f-Lo) for which 

fJ. < f-Lo. In either case, the point tJ. = f-Lo is a branching point wher e 

the number of s elutions of (1. 1) changes from zero to two or from 

two to zero as tJ. changes from tJ. <f-Lo to tJ. > f-Lo, in the respective 

cases v(O) > 0 and v(O} < 0. 

* when (gx_ (t.J.o, w 0 ), lJ.Io) > 0. 

Figure l gives plots of t.J.(o) versus & 

W e have now shown circumstances unde r which a nonisolated 

s elution of (1. 1} is an element of a solution branch of (1. 1) for T fixed. 

Since in Section 3 we were able to show that nontrivial nonisolated 

solutions of (l. 1) do exist, it is natural to ask how Theorem 5-l 

applies to the r esults of Secti on 3. 
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If Eo found in Section 3 is sufficiently small, then the 

resulting eigenvalue X. = X.0 + E f.!.(E) in (3. 1) remains isolated, so 

that the null space of (1. 7) remains one -dimension for I El ·~ E 0 • 

The hypotheses of Theorem 3-1 are sufficient to insure that the 

hypotheses of Theorem 5-l hold in S 1 =Sdp, r) for certain nonzero 

p,r, for some fixed E, lei~E0 • Ap}Jlying Theorem 5-1, we sub-

stitute into (5.13) for w 0 (x), l\Jo (x) and f.lo, the nonisolated solutions 

of (1.1) found in Theorem 3-1 and given in the form (3.1). The 

resulting solutions of (1. 1) are 

u = (E+ 6)<j>0 (x) + E2 v(x,E) +eox(x,E) + 6 2 y(x,E, o), 

(5.33) 

T = E 2 rj (E) , 

where E is fixed, IE I ~Eo . 

The solution of (1.1) given by (5. 33) is valid only if lol < 60 • 

However, the number 60 is not independent of the number E . 

Notice in the proof of Theorem 5-l that 60 wa s chosen (cf. (5. 30)) 

so that 

(5.34) 

where 

1 " Oo < C = 
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Since (p.0 , w 0 ) are related to E by 

(5. 35) 
{ 

w 0 (x) = 

f.lo = 

u(x ,E), 

X.(E) , 

where ( u(x, E) , X.(E )) are of the form (3. 1), we can find the 

dependence of y on E Specifically 

(5. 36) 

* * Note that in (5. 36) we have used that tp0 = <Po + O(E). This can be 

shown to be true in the same way that it was shown in Section 3 

* * that ljJ0 =<Po+ O(E), using that (<j>0 ) = <j>0 • 

'"'" Since the constant C in (5. 34) is bounded away from zero 

when IE I ~ Eo , (5. 34) coupled with (5. 36) imply that 

(5. 37) o0 = O(E). 

Clearly, as E approaches zero, the range of validity of (5 . 33) 

decreases. This decrease in the range of validity is not unexpected. 

As seen in Figures 2, 3 and 4, for T = 0, the bifurcation solution 

has a sharp "corner" at X.= >..0 • As E-0, the solution branch (5.33) 

with Tif:. 0 approaches this " c orner." But since (5. 33) is a smooth 

function of 6, it cannot have a "corner" when E = 0, so that 60 (E) 
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must approach zero as E--0. 

We would like to be able to further understand the nature of 

the solution given by (5 . 33). Suppose we examine the expression 

for X.= X.(E' o). Recall that X.= X.o + E f.L(E) + o2 v(E' o) where v(E' o) is 

given by 

(5. 32) v (E ,a) 1 = - 2 

2 * (guu(f.Lo 'wo)lJ.Io • lJ.Io ) 

* 
+ o(o). 

(gx_ (f.Lo • wo) • lJ.Io ) 

Since we know the form of f.Lo. w 0 and lJ.Io as functions of E, we can 

rewrite (5. 32) as 

(5.38) v(E,o) 
p-z 

E 

2( p-1)! 

p+l 

<
a . f(X.~,_p+l ,_*) 

a~p+l ~0 ·~o 
+ O(Ep-t) + O(o) 

where the integer p is defined in (3. 30). We now see that the non-

isolated solution (3.1) corresponds to a branching point for E suf

ficiently small, since according to (3. 30), (ap+lf(X.o.,O,O) <Pa+1, <j>~) :1:0 
aup+t 

and hence v (E, 0) i= 0. 

II. 6. Stability of Extended Solution Branch. 

In the previous four sections, we have studied various 

aspects of steady state solutions of the more general time dependent 

problem for y(x, t) 
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Qy = Ly + f(A., T, y) 
at 

(6. l) By = 0 

y(x, 0) = h(x) 

(x, t)e: D X (0, oo) 

(x,t)e: oDX[O,oo) , 

X€ D . 

We can examine the stability of steady state solutions of (6. l) by 

looking at the behavior of (6. l) in a neighborhood of the steady 

state solution with A and T fixed. The resulting theory is the so-

called linear stability theory. 

Suppose that u(x) is a steady state solution of (6.1) with A 

and T fixed. If we assume that solutions of (6.1) have the form 

(6. 2) y(x, t) 
-yt 

= u(x) +as(x)e , 

where a is assumed to be small, then we can substitute (6. 2) into 

(6 . 1) and linearize the resulting equation by keeping only the terms 

which are lowest order in a. The equation which results is 

(6. 3) X€ D , 

Bl;, = 0 xe: aD . 

At this point it is helpful if we state our definition of stability. 

Definition 6-1: A steady state solution u(x) of ( 6 . l) is said to be 

linearly stable if II y(x, t)-u(x) \\-0 as t-oo for y(x, t) given by (6 . 2). 
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u(x) is said to b e linearly unstable if lly(x,t)-u(x)ll-oo as t-oo, and 

u(x) is said to have neutral stability if u(x) is not linearly stable, 

but II y(x, t) -u(x) II is bounded for all time . 

Because of (6. 3) we can make the equivalent 

Definition 6-2: Let 'II be the principal (smallest) eigenvalue of (6. 3). 

A steady state solution u(x) of (6. 1) is said to be linearly stable, 

neutrally stable or linearly unstable if 'II > 0 , 'II= 0 or 'II< 0 res-

pectively. 

Throughout this section stability or instability will actually 

mean linear stability or linear instability. We will not examine 

the more difficult question of global stability. We will also assume 

that the operators Land B are self adjoint. Then it is possible to 

classify instabilities in the following manner~ 

Definition 6-3: Let 'lk be the kth eigenvalue of (6. 3) counting mul-

tiplicities, 'II ~ '12 ~ If 'lk < 0 and '~k+ 1 ~ 0 then the 

steady state solution is said to be k-mode unstable or is said to 

have a k-mode instability. Furthermore, if '~k+l = 0, then u(x) is 

also said to be neutrally stable in the k+lst mode. A solution 

which is 0-mode unstable is linearly stable. 

Immediately we realize that if u(x) is a nonisolated solution 

of (1.1), then 'I = 0 for son1.e p > 0, and the nonisolated solution 1s 
p 

th neutrally stable in the p mode. In either case, when we have 

some type of neutral stability, we would like to know how this 

s tability characteristic changes as we move along the solution 
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branch which contains the nonisolated solution. 

In the light of previous sections, the most natural approach 

is to use, if possible, a perturbation technique, which can then be 

justified using a contraction mapping. By now it is clear how to 

find the correct contraction mapping, and how to give the corres-

ponding existence proof once the perturbation technique has been 

applied. Thus, in this section we will only examine the results of 

the perturbation technique, and will not give the details of its justi-

fication . 

As we did in Section 5, suppose for T i= 0 fixed arbitrarily 

we make the identification 

(6. 4) g(A., u) = f(A., T, u) . 

In Section 5 we found steady state solutions of 

(5. 2) Lw + g(!J., w) = 0 X € D ' 

Bw = 0 x € an , 

to be of the form 

( 5. 5 ) 
{ 

w(x, 5) = 

f.L(5) = 

Wo (x) + 5l!Jo (x) + 52 y(x, 0) , 

f.Lo + 52 v (5) , 

where (w 0 (x) , f.Lo) is a nonisolated solution of (5 . 2). Furthermore, 
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it was noted that 

(5. 32) v(o) + O(o) , 

* where l!Jo (x), l!Jo (x) satisfy (5. 3) and (5. 4) respectively. Since we 

know that o = 0 implies "( = 0, we try a solution of (6. 3) of the form 

S,(x,o) = l!Jo(x) + ot;l(x) + o2 sz(x) + 0(62)' 

(6. 5) 

To show that this assumed form is valid, one must employ the con-

traction mapping technique outlined before. Upon substituting (6. 5) 

into (6. 3) we find that the perturbation equations are 

(6. 6) 

and 

(6. 7) 

Ll!Jo + gu (f-Lo , wo )l!Jo = 0 

Bljl0 = 0 

XED ' 

x E an , 

XEO D • 

In order that z:. (x) be uniquely determined we add the condition 
1 

(6 . 8) 
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The function ljJ0 (x) was chosen so that (6. 6) is automatically 

satisfied. To solve (6. 7), the Fredholm alternative theorem must 

hold, namely 

( 6. 9) 

* If (ljJ0 , ljJ0 ) * 0, (6. 9) implies that 

(6 . 10) "Yo = 

Substituting (6.10) into (6. 5) we can see the stability characteristics 

of the steady state solution w(x, c5) immediately. Suppose, for 

* * simplicity, that (ljJ0 ,ljJ0 ) > 0, that (gx_(!J.0 ,w0 ),ljJ0 ) > 0, and that 

-y = 0 is the kth eigenvalue of (6.3). If (guu(!J.0 ,w0 )ljJ02 ,ljJ~) > 0, 

solutions of (5. 2) occur for !J. < !J.o since !J.(o) = !J.o + c52 v(c5), and v(c5)< 0 

for c5 sufficiently small. By (6. 5), (6.10), -y(c5) = c5 -y 0 + O(c52 ) and 

-y0 < 0, so that -y(c5) < 0 for c5 > 0 sufficiently small, while -y(c5) > 0 for 

c5 < 0 sufficiently small. Since -y(c5), the kth eigenvalue of (6. 3), is 

negative when c5 > 0, (6. 3) has k negative eigenvalues and the corres-

ponding solutions are, by Definition 6-3, k-mode unstable. With 

6 < 0, the kth eigenvalue -y(6) is positive, so that the corresponding 

solutions of (5. 2) are k-1-·mode unstable. On the other hand, if 

(g (!J.o, w 0 )ljJ0
2 , ljJ~) < 0, solutions of (5. 2) occur for !J. > !J.o since uu 

v (6) > 0 when 6 is sufficiently small . The kth eigenvalue is 

-y(c5) = c5-y0 + O(c52 ) where -y0 > 0. Therefore, for c5 < 0 sufficiently 

small, -y(c5) is negative and the corresponding solution is k-mode 
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unstable. The solution is k-1 mode unstable when 6 > 0, since y(o) 

becomes positive. Of cours e , when y = 0 is the principal eigen

value of (6. 2), a k-1 mode unstable solution is really a stable 

solution, by Definition 6-3. Thes e r esults are summarized for k=l 

in Figure 1. 

Finally, we should r emark that this stability cha racte rization 

is not limited to lol < 60 • In fact, since the solution branch (5 . 5) 

c an b e extended in e ither direction to the next nonis olated solution 

[ 28], the stability characterization of the solution branch is the 

same for all ste ady state solutions lying on any interval of a 

branch with no nonisolate d solutions . This is clear, since the 

s tability characterization can change only at a nonisolated solution 

w h ere yk = 0 for some k. 

II. 7. Minimal Positive Solutions 

Many problems of physical intere st involve finding solutions 

of (1. 1) whic h are positive. See , for example (18], [19], [24], [27] 

and [36]. In this section we would like to show that, under certain 

c ircumstances , the solution branch found in Section 5 is a branch 

of positive solutions, and that certain of these solutions are minim al 

positive solutions. 

Discussion of minimal positive solutions have be e n given by 

Keller and Cohen [19], Amann [2] and Sattinger [35]. For our 

discussion we c onsider the problem 
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(7. 1) Lu + g (A., u) = 0 XED ' 

Bu = 0 x E 8D , 

where g(A., u) is always assumed to have some continuity properties 

as in Section 5. As necessary, we will also assume that 

(7. 2) g(A., 0) > 0 provided A. > 0 ' 

( 7. 3) g(A., u) < g(X.', u) for X. < X.' ' u ~ 0 ' 

and 

(7. 4) g(O,u) = 0 for u ~ 0 . 

No assumptions regarding monotonicity or concavity-convexity in u 

of g(X., u) will be made at this time. The operators L and B of 

(7.1) are those given in Section 1, and have the associated strong 

maximum principle [31], which can be used to give 

- a-
Proposition(!'): If <j>(x )EC'(D)(\ Cl(D), then for any Q ~ 0, OEC (D), 

(7.5) { L<j> -n<j>> 0 on D , B <j> ~ 0 on 3D ~ <j>(x)< 0 on D . 

L<j> - O<j> ~ 0 on D , B<j> ~ 0 on oD -t> <j>(x) ~ 0 on D , 

Furthermore, if <j>(x) = 0 for some XE an ' then 

(7. 6) 
8<j>(x) 

a a < 0 x E an, 
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whe re a is any outward direction at XE aD. A minimal positive 

solution £(x) of (7 . 1) is a solution of (7. l) satisfying £{ x ) ~ u{x) for 

all positive u (x) satisfying ( 7. l). 

We now develop the facts which we will use late r . This 

part of the discussion gives a generalization of the results of 

Keller and Cohen (19] using assumptions (7. 2) - {7. 4). 

Theorem 7-l: Under assumptions {7. 3) and {7. 4) equation {7 .1) can 

have positive solutions only for positive X.. 

Proof. Suppose u(x) > 0, xeD is a solution of (7.1) and X.< 0. B y 

(7. 3) and (7. 4), g(X., u) < 0 for xED. Hence 

Lu = -g(X., u) :;.: 0 

Bu = 0 

X ED ' 

x e aD , 

and Proposition l implies that u ~ 0 for xED which contradicts th~ 

assumption that u(x) > 0 for x ED . If X. = 0 then u = 0, and the proof 

is complete. Q.E.D. 

The existence of minimal positive solutions of (7 . 1) was 

established in [19] by making us e of a monotone sequence generated 

by an iteration scheme. The function g(X., u) was required to be 

monotone increasing in u in order to insure that the sequence was 

monotone . The iteration scheme used here, which does not require 

a rnonotonic nonlinearity g(X. , u), was used 1n [ 6] for nonlinear 

equations involving the Laplacian . It has since been used by Keller 
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(16], Amann (2] and Sattinger (35] for more general ope rators L . 

The iteration scheme which we use defines the sequenc e { un (x)} by 

u 0 (x ) = 0 

(7. 7) Lu - nu = -1-_g(X., un) + Oun] n+I n+l 

Bu = 0 
n+1 

XEaD, n=O , l,2, · ·· 

for any X. > 0 and any n (x) ~ 0, 

sche me we have 

a
Q(x) EC (D). 

Theorem 7-2: Let g(X., u) satisfy (7. 2) . 

Using this iteration 

a) If, for X. > 0 and n (x) ~ 0 fixed, the sequence { u (x)} is 
n 

a monotone sequenc e , and if it is uniformly bounded by some 

constant M > 0, the n the sequence { un(x) } converges to a solution 

of (7.1). 

b) If a positive solution u(X., x) ~ 0 of (7 .1) exists for a give n 

X..> 0, then 3 O(x) ~ 0 such that the sequence (7. 7) converges mono-

tonely and uniformly to its limit, say, 

Q(X., x) = lim u (X., x) 
n n- oo 

wher e £(X., x) is the minimal positive solution of (7 .1). 

Proof: The proof of part a) was given by Keller (16] using 

the compactness r e sult of Agmon, Douglis and Nirenberg (l] to 



-69-

justify passing to the limit n- oo in (7 . 7) . 

To see part b), since g (;>-.., u) E Ca(D), w e can chaos e a 
u 

constant rl > 0 so that 

(7. 8) 
g(:\, z)-g(:\, y) 

z-y ~ -n, xED, for all y,z,O ~y , z~\\u(;\,x)]l 00 

since II u(:\, x) II < oo. With this choice of rl, the s equ e nc e u (x) is 
oo n 

monotone. In fact, 

Lul- nul = - g( :\, 0) < 0, X ED 

x EoD , 

so that u 1 (x) ~ 0 = u 0 (x). Since u 0 (x) = 0 ~ u(:\, x), suppose that 

uk~x) ~ u(:\, x) for k = 0, 1, · .. , n, and that u (x ) ~ u (x). Then 
n n-I 

L(u -u )-O(u +-u )=-1-(g(:\,u )+nu \-(g(:\,u )+rlu )] ~ o n+I n n 1 n n n) n-I n-I 

B(u -u )=0 xEoD, 
n+I n 

XED 

by virtue of (7. 8). Proposition(!') implies that u (x ) ~ u (x). 
n+I n 

Furthermore 

B(un+
1
-u)=O x EoD. 

a gain b e cause of (7 . 8). This implies that u (x) ~ u(:\ ,x) which 
n+I 



-70-

completes the inductive proof that the sequence { un (x) } is mono

tone and uniformly bounded, and part a) applies. ~(~, x) =lim{ un(x)} 
n_..oo 

must be the minimal positive solution, since by the last part of the 

induction u (x) ~ u(~, x), wher e u(~. x) is any solution of (7 .1) . 
n+I 

Passing to the limit gives 

~(~, x) ~ u(~, x) 

which completes the proof. Q.E.D. 

Theorem 7-2 is not the same as Theorem 3. 2 of Keller and 

Cohen [19], since we have not given neces sary conditions for the 

existence of ~(~, x). Such nec e ssary condilions are explored in 

[16] and [2], and are not included in this discussion. 

The basic comparison r es ult which we use is 

Theorem 7-3: Let g(~.u) satisfy (7.2). Suppose G(~, <J>) is a give n 

function which satisfies 

(7. 9) G(~. <j>) ~ g(~, <j>) for ~~O.<j>~O. 

Suppose there is a function Yo (x) ~ 0 and ~0> 0 such that 

Lyo + G ( ~o , Yo ) = 0 xE D 
(7. 10) 

x E a D 

The n (7.1) has a minimal positive solution for ~ = ~0 , and 



-71-

X ED. 

Proof: In order to apply the results of Theorem 7-2, 

choose n ~ 0 so that (7.8) holds for all y,z, 0 ~ y,z ~ \ly0 (x)jl and 
00 

for A = Ao. We need to show that u (x) ~ y 0 (x) for all n . 
n 

= -( g(A, Yo) -G(A, Yo>) 

Clearly, 

+ [ ( g (A, yo )+0 yo) - g (A, 0 ~ ~ 0 x E D, 

so that u 1 (x) ~Yo (x ). If u (x) ~ y 0 (x), then 
n 

x E an, 

= G(A, Yo) - g(A, Yo) 

which implies that u + ~ y 0 , x € D. Sinc e u (x ) ~ y 0 (x ) for all n, the n n 1 n 

(7. 8) holds for each element of the sequence { u (x )} which in turn, 
n 

i mplie s that the sequence {un(x )} is monotone increasing. Theorem 

7 - 2 is applicable, s o that pas sing to the limit as n- oo i mplie s 
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u(X., x) ~ Yo (x), Q.E . D. 

Using this theorem, we establish the very useful 

Corollary 7-4. Let g(X., u) satisfy (7. 2) and (7. 3) and suppose a 

solution u(X.0 , x) exists for X. = X.0 • Then for each X. in 0 < X. ~ X.0 

the minimal positive solution ~(X., x) of (7 . 1) exists and is a 

pointwise increasing function of X.. 

Proof: For any fixed value of X. in 0 < X. ~ X.0 define 

G(X., <j>) = g(X.o' <j>) = g(x.( ~o ) ' <j>) 

By (7. 3) G(X., <j>) = g(X.0 , <j>) ~ g(X., <j>). The hypotheses of Theorem 7-3 

are satisfied with the choice y 0 (x) = ~(X.0 , x) which exists by Theorem 

7-2. We conclude that 

~(X., x) ~ Yo (x) = ~(X.0 , x) 

To see that the inequality is strict in the interior of D, notice that, 

for a~ 0 chosen as in Theorem 7-3, 

Lc~(X.0 , x ) -~(X., x))- Q c~(X.0 , x) -~(X., x)) 

= -(g (x.o. ~(X.o,x>)-g(x.,~(X.,x)))- n c~(X.o, x)-~(X., x)) 

= g ( X.o, ~(X. ,.x~+n ~(X.,x) -( g ( X.o. ~(X.o. x)) + n ~( X.o ' x )) 

+ g(x.~(X.,x)) -g(x.0 ,!!_(X.,x))~ g(x..~(X.,x~ -g(X.0 ,!!_(X.,x)) < 0 xED 
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whenever X. < X.0 , according to (7. 3). By (7. 5), 

!:!_(X., x) < !:!_(X.0 , x) for x E D. Q.E.D . 

With these basic facts established we now examine problem 

(7. 1) when more is known about the nonlinearity g(X., u). 

use, when necessary, the additional restrictions 

(7 . 11) 

(7.12) 

(7.13) 

(7. 14) 

g (O,u) = 0 
u 

for u(x) ~ 0 

g (X., u) > 0 for u(x) > 0 (convex) uu 

guu(X., u) < 0 for u(x) > 0 (concave) 

We will 

Notice that together, (7. 11) and (7. 12) imply that g (X., u) > 0 
u 

whenever ~(x) ~ 0 and X. > 0. Although until now we have purposely 

avoided assuming this condition, it makes certain matters which 

follow more tolerable if we allow (7. 11) and (7. 12) to hold. This is 

not a serious assumption. In fact, the foregoing results show that 

a smooth function g(X., u) can always be made to look like a mono-

tone function on any compact set of (X., u) by adding nu to the function 

and subtracting [Zu from the operator L, for some appropriately 

chosen constant n > 0. In other words, we can assume that g(X., u) 

is monotone in u without loss of generality. 
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For the results that follow we need to assume that the 

operator L is such that, for p (x) > 0, when an eigenfunction <j>0 (x) of 

(7. 15) L<j> + f.L p (x) <j> = 0 

B<j> = 0 

XED, 

x EoD 

* is positive on D , then the cor responding adjoint eigenfunction G>o is 

also positive. This is obviously true when L is self adjoint, since 

* G>o = G>o • When L is not self adjoint, some sufficient conditions 

implying that <j>~ > 0 are given in 

Lemma 7-5: Let the differential operator L and boundary operator 

B be given by (1. 2) - (1. 4). and let the associated adjoint operators 

* * L and B be given by 

(7. 16) 

(7.17) 

Then, if 

(7. 18) 

(7.19) 

n 

= I: 
i,j=l 

a .. 
1J 

n 
OV + L ~ ov ox. ox. j ox. 

1 J j=l J 

A 
- a 0 (x)v 

n * A A \'A OV 
B v = b0 (x)v + b 1 (x) LJ (3. (x) n----

1 ux. 
i=l 

1 

A A A 
a 0 (x) ~ 0 on D, b 0 (x) ~ 0 , b 1 (x) ~ 0 , 

n 

L 13. (x ) n. (x) > 0 , max 
i=l 1 1 

xE an, 
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where n.(x) are the components of the unit outward normal at xEoD, 
l 

and if <j>0 (x) > 0 is a solution of (7 .15) for fi = fio, then the solution 

>:< 
<Po (x) of 

(7. 20 
* >:< >:< 

L <P + fip(x)<j> = 0 

>:< >:< 
B <j> = 0 

for fi = fio 1s positive on D . 

Proof: When (7. 18), * (7 .19) hold, the operator L w ith 

* boundary operator B satisfies the strong maximum principle of 

Proposition (1). Thus the operator L* -I of CCC (D) into C
2+a (D) n 

{ u(x) I B*u = o} is a strongly positive compact operator. By the 

the orem of Krein-Rutman [25], a strongly positive compact operator 

* has a positive eigenfunction <Po (x) corresponding to a simple, minimal 

* positive eigenvalue fi = fio . By the spectral theory of compact 

* operators [11] , the eigenvalues of L and L are identical, and a 

nontrivial solution of (7. 20) exists for fi = fio. 

If <j>0 (x)> 0 is a solution of (7.15) for fi = fio, then fio is a 

simple, minimal eigenvalue of L. But since the eigenvalues of L 

* * and L are identical, and both fio and fio. are the minimal eigen-

* * values, we must have fio = fio. Therefore, since fio is simple, the 
:;.;::: 

eigenfunction <Po (x) corresponding to <Po (x) > 0 is positive. Q.E.D. 

* Define A. to b e the least upper bound of the values A. for 

which positive solutions of (7. 1) exist. For each A. for which !!_(A.,x) 
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exists, define f.L = f.LI (A.) to be that value of f.L, if there is one, which 

admits positive solutions to 

( 7. 21) { 
Bq> = 0 , xE aD. 

XE D, 

The corresponding value of f.L will be refe rred to as the principal 

eigenvalue of (7. 21). Unless (7 .12) holds, f.LI (A.) is not necessarily 

well defined. In the following theorems, we will show that if (7. 13) 

* holds (convex) and if there is a value A.0 = f.LI (A.0 ), then A.0 = A. , and 

* by definition, A. corresponds to a nonisolated solution of (7. 1). 

However, if (7. 14) (concave) holds, then it will be shown that the 

equation A. = f.LI (A.) has no solutions, so that the branch of minimal 

positive solutions has no nonisolated solutions. 

Theorem 7-6: Let g(A.,u) satisfy (7 . 2). (7.3), (7.11)-(7.13) (convex). 

If the pair (u(A.0 ,x),A.:O) is <&ny pos itive solution of (7.1), 

and in addition there exists a q>(x) > 0 on D satisfying 

(7. 22) 

then A.0 * = ~. 

XED, 

Bcp = 0 , xE an, 

Furthermore the solution u(A.
0

, x) is the unique 

positive solution of (7.1) for A.= A.0 • 

Proof: * Suppose A.0 :#: A. . Then the r e exists a positive function 
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v(x) and a number A> Ao which together satisfy (7 .1). Thus 

so that 

(7.23) 

0 = L u + g ( Ao , u) = L v + g (A, v) , x E D , 

L(u-v) + g (X.0 , u)(u-v) = g(A, v)- g(Ao, v) 
u 

2 1 1 ( ) + (v-u) J J guu A0 , stv+ (1-st)u sdtds, 
0 0 

B(u-v) = 0, XE aD 

XED, 

The function cp(x)> 0 satisfies (7. 22) so that the Fredholm alternative 

theorem requires 

(7. 24) 0 = (g(A, v) -g(A0 , v), cj>~) + ((v-u) J J 1guu( Ao ,stv+(l- st)u) sdtds, cj>~) • 
0 0 

..,_ 
In addition, <j>'~ > 0 so that (7. 24) can be satisfied only if 

(7. 25) * ( g (A , v) - g ( Ao , v) , cj>0 ) < 0 . 

But, according to (7. 3), (7. 25) can hold only if A< Ao. If u = v, then 

we must have A= Ao. In either case, A~ Ao, which contradicts our 

original assumption. The uniqueness of the solution u(x) when X. = X.0 

is obvious from (7. 24). Q.E.D. 

Corollary 7-7: Under the hypotheses of Theorem 7-6, A;'< is the 

unique solution of A = fl- 1 {hl. 
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Proof: Clearly {'< = f.! I(~\ Suppose ther e exis ts x.** * A.,:, satisfying 

,_::::.,~ jaC~C ;;}:~:: * * 
A. = f.! I (X. ) . If X. > A. , then X. is not an upper bound of the 

numbers A. for which positive solutions of (7 .1) exist, which contra-

* *>!< * diets the definition of A. • If X. < X. , then by the proof of Theorem 

;;:::>'r 
7-6, all A. for which positive solutions of (7. l) exist satisfy X. ~ X. . 

~:: ::::::::: 
But A. > X. gives a contradiction. Q.E.D. 

Corollary 7-8: Let g(X., u) satisfy (7. 2). (7. 3), (7. 11). (7. 12). and 

(7 . 14) (concave). Then there is no value A. for which X. = tJ.dlJ. 

According to Keller and Cohen [19], X. ~ f.!t (A.). This corol-

lary is simply one way of saying that when · g(A.., u) is cone ave in u, 

the branch of minimal positive solutions has no nonisolated solutions, 

and hence no branching points. 

Proof: Suppose (£(A..0 , x), X.0 ) exist so that A..0 = f.! I (X.0 ) . By Corollary 

7-4, for every X. < X.0 , there is a !!_(X., x) < !!_(A..0 , x ) satisfying (7 .1). 

Then, (7. 24) holds with v = £(X., x ). Since (7 .12) holds, (7. 24) implies 

( 7. 26) * (g (X., v) - g ( >...0 , v), <j>0 ) > 0 

w hich by (7. 3) cannot hold for X. < X.0 , and gives a contradiction. 

Q.E.D. 

We now prove a result which enables us to identify the 

minimal positive solution of (7. 1). We first give the following 

"non-ordering " theorem. 

The orem 7-9. L et g (X.,u) satisfy (7.ll), (7.12) and either (7.13) or 
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(7. 14). For fixed >.. > 0, (1.1) does not possess three distinct 

solutions u 1 (x), u 2 (x) and u 3 (x) which are ordered u 1 ::::;;; u 2 ::::;;; u 3 , VxE D. 

Proof: The proof of this theorem has been given previously by 

Laetsch [27] and Fujita [12]. The proof given here is valid for 

operators L which are self adjoint. 

Suppose 0::::;;; u 1 (x)::::;;; u 2 (x)::::;; u 3 (x) satisfy (7.1). Letting w 1 (x) = 

u 2 -u 1 , w 2 ·(x) = ~ -u2 we have 

and 

where 

Lw1 + G(\, u 1 , u 2 )w1 = 0 , x € D , 

Bwl = 0 , X€ an , 

Lw2 + G(>..,u2 .~ )w2 = 0, xeD, 

Bw2 = 0 , xe an, 

G(\,u,v) = J 1
gu(>.. ,su+ (1-s)v) ds. 

0 

When g(\, u) satisfies (7 .13) (convex), 

G(\, u 1 , u 2 ) ::::;;; G(\, u 2 , ~ ) , 

where the inequality is strict somewhere on D. Since the functions 

w 1 and w 2 are nontrivial positive functions, they must b e priJlcipal 

eigenfunctions for the problems 
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Lw + tJ.G(X., u 1 , uz )w = 0 XE D, 

Bw = 0 

and 

Lw + tJ.G(X., u 2 , ~ )w = 0 

Bw = 0 x E8D, 

respectively, with principal eigenvalue 1-LI = l. Since L is a self 

adjoint operator, the variational characterization of the principal 

eigenvalue is valid [6]. That is 

(ljJ' LljJ ) 
1-LI = min 

ljJE C (ljJ, G(X., u, v)ljJ ) 

where C is the class of admissible functions 

C = { ljJ(x) it~J(x) > 0 
- I 

x ED, ljJEC(D)(l C (D), ljJ(x) = 0 on 8D1 } . 

With this formulation of 1-LI we have 

(ljJ, LljJ) 
1 =min = 

ljJE C (ljl,G(X., u 1,u2 )ljJ) (w1, G(X.,u 1,u2 )w1 ) 

(ljJ, LljJ) 
> ~ min = l 

(w 1 ,G(X.,u2 ,~)w1 ) ljJEC (ljJ,G(X.,u2 ,u3 )t{J) 

Clearly this is a contradiction. When g(X., u) satisfies (7. 14) (concave ), 

the inequalities are simply reversed, and the proof is comple t e . Q.E.D. 
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The following corollary gives a criterion to find minimal 

positive solutions. 

Corollary 7-10: Let g(~. u) be as in Theorem 7-9. If, for fixed ~. 

( 7. 1) has distinct positive solutions u 1(x) ~ u 2 (x), then u 1 (x) = .!,!_(~, x) 

is the minimal positive solution of (7.1) for the give n ~ . 

Proof: Suppose u 1 (x) is not the minimal positive solution of (7.1). 

Then .!,!_(~, x) ~ u 1 (x) ~ u 2 (x) where .!:!_, u 1 and u 2 are distinct solutions 

of (7.1), which contradicts Theorem 7-9, Q.E.D. 

In Section 5 we were able to show the existence of branche s 

of solutions of (1.1) which contain the nonisolated solutions of Section 

3. These solutions were shown in (5 . 33) to be of the form 

(7. 27) 

u(x,E,O) = E~o+ E 2 v(x,E) + cSlJlo(x,E) + 62 y(x,E,c5), 

lJlo (x, €) = ~0 + € x(x, €) ' 

~(E, cS) = ~0 + E p.(E) + 62 v(E, cS), 

T(€) = E 2 rj (€) , 

where ljJ0 (x, E) satisfie s 

(7. 28) LljJ + fu( ~(e:,O),T(E ), u(x, E , 0)) ljJ = 0, 

BljJ = 0 , 

XED ' 

x E aD . 

We want to show that if f(~, T, u) is required to satisfy conditions 

(7. 2) - (7 . 4) and (7 .ll) - (7 .13) (convex) for T > 0 , and if ~0 > 0 is 

the principal eigenfunction of (1. 6), the n the solution branch (7. 27) 
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with E > 0 and o < 0 is part of the branch of minimal positive 

solutions in the s e nse of Keller and Cohen [19]. Our main tool is 

the following 

L emma 7-ll: Let p(x ) and q(x ) be CZ+a(D) functions satis fying 

Bp(x) = 0, Bq(x) = 0 V x E 8D. Suppose that p(x) > 0, xED and that if 

p(x) = 0 for x E 8D, then 8-ra~) < 0 where 8~ is any outwar d dir ectional 

derivative of xE 8D. The n the function R(x) = ~~:; is continuous on D . 

Proof: The proof given here is a correction of a proof g ive n by 

H. B. K e lle r in [18]. The function R(x) is continuous on D, sin ce 

p(x) > 0 on D. Recall from (1. 3), (1. 4) that the form of the boun-

dary operator is 

where 

and 

Bu = bo (x ) + bl (x ) au 
8(3 

n 

~P = L: 

n 
2 L f3 . (x) = 1 
J 

j=l 

j=l 

f3 0 (x) au 
J ax. 

J 

n 

L f3.(x) n . (x) > 0 , 
J J 

j=l 

wher e n. (x ) are components of the outward unit normal at x E 8D. 
J 

Furthe rmore, we decompose the boundary aD into aD1 and aD2 

wher e 

b 0 (x ) > 0 b 1 (x ) - 0 for x E 8D1 

b 0 (x) >-:: 0 b 1 (x ) > 0 for X E 8Dz oD= oDI u 8Dz 0 
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Notice that oDI is a closed subset of oD, since b 0 (x) and b 1 (x) do 

not vanish simultaneously. 

Suppose p(x) = 0 for some X E 8D2. 
op(x) 

Then ~ < 0 and 

bi (x) > 0 contradicts that Bp(x) = 0 for X E 8D2. Thus, p(x) :f; 0 for 

X E 8D2' so that R(x) is continuous on aD2 u D. Define 

(7 .29) R(x) = 

R(x) 

oq(x) 

on I op(x) 

an 

XED u 8D2 

where a: represents the outward normal directional derivative. W e 

intend to show that R(x ) is continuous on D. 

Suppose X€ a DI. For yE D with I x -y I sufficiently small 

1
- op (x) op(x)J 2 

p(y)= ]x-yj _cose -a;-+ sine a:;:- + O(jx-yj ) , 

(7 .30) 

l
- 8q(x ) oq(x ) J 2 

q(y) = I x-y J _cos e ~ + sine --a;- + OCI x -y J ) , 

where the vector x-y is assumed to make an angle e with the 

- a normal vec tor n at x, and wh ere OT denotes the tangential d eri va-

tive at X. Howeve r, since p(x) = q(x) = 0 for all X E ani ' both tan-

getial derivatives vanish, so that 
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ap(x) z 
p(y) = lx-yl cose ~ + O(lx-y l ) , 

aq(x) z 
q(y) = lx-yl cose an + O(lx-yl ) , 

and 

aq(x) z 

- q(y) 1 x-y 1 cos e -a;;:- + O(lx-yl ) 
R(y) = p(y) = ap(x) z 

lx-ylcose ~ + O(lx-yl ) 

~ O(lx-yJ) an = ap(x) + ap(x) cose * 0 . 

an cose 
an 

ap(x) 
Since ~ < 0, if I e I ~ eo < -rr/2, we have that for E > 0, 

I R(y)- R(x) I < E/2 whenever l x-y I< o(x, E) ' I e I ~eo where 

o(x,E) = coseo I a~~x) l/K for some 

K > 0. Since ani is closed, 3 
- - E o I (E) so that I R ( y) - R ( x) ·I < 2 

whenever lx-yl< oi(€) and 

I e(x, y) I< eo for XE anl. 

z+a- ap(x) 
Since p(x), q(x) E (D) and since ~ < 0 on aD 1 , the 

aq(x)/ ap(x) . . 
quotient ~ ~ 1s cont1nuous for X E ani. Therefore' 

Oz (E) > 0 so that for I x-y I< Oz (E) , x,y Ean 1 , IR(x)-R(y)l< f:/2. 

For a given XE ani' there may exist many values of yE aDz 

satisfying I x -y I < Oz (E). -We know that R(x) is continuous on anz U D . 
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Furthermore, since b 0 (x ) > 0 on 8D1 , b 0 (x) must remain positive 

for x E 8D2 with x "near" 8D1 • In such neighborhoods 

q(x) b 0 q (x) 8q(x) I 8p(x) 
R(x) = = = --

p(x) b 0 p(x) 8(3 8(3 

op oq 
For x E oD1 , 

8T = OT = 0 so that 

op op op op 
- = al -+ az = a o(3 on OT on t 

which implies 

oq/ 
on 

-But then R(x) is continuous on oD 1 U oD2 • This implies the 

existence of 63 (E) such that 

I R(x) - R(y) I < E/2 

whenever 

l x - y l<o(E) x, y E oD1 U oD2 = oD. 

-Continuity of R(x) on oD2 U D implies the ~xistence of 54 (E) such 

that 

I R(x) - R(y) I < E/2 
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whenever 

lx-yl < o(E) (x,y)EoDz U D. 

Let 5 = i min {o.(E)} , and suppose lx-yl < o(E) with 
i=l,2,3, 4 

1 

X E aD}. Then j XI E aD so that I 8(xl 'y) I ~ eo' and regardless of 

which concludes the proof of continuity. Q.E.D. 

Using this lemma we can prove 

Theorem 7-12: There exists a positive number d(E) such that for 

E > 0 sufficiently small, I ol ~ d(E), the solution u(x,E, 6) of (1.1) 

given by (7. 27) is positive on D. 

Proof: From the perturbation theory for the spectrum of operators 

[11], we can deduce that the eigenvalues of 

xED 

B4J = 0 x EoD 

vary continuously as X., T, u change continuously. Since <P 0 (x) > 0 , 

we know by the Krein Rutman theore m [25] that f.L = 1 is the eigen-

value of smallest magnitude, and b e ing simple, remains bounded 
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away from all other eigenvalues as A., T, u vary. Hence for IE I~ E 0 , 

ljJ(x, E) is the corr e sponding principal eigenfunction and satisfies 

ljJ(x, E ) > 0 for x ED, ()ljJ(x,E) < 0 whenever "·(x,E) = 0 for x EaD, for aa '+' 

all outward directions a. 

In order to apply Lemma 7-ll to the functions 

2 
6 

p(x) = <j>0 (x) + E ljJ(x, E) q(x) = v(x,E) + (:) y(x, E, 6) 

notice that by Lemma 7-ll, ~=(x)) is continuous 

bounded by, say, M(E). Then p(x) > 0 for 101 ~ 

and is there fore 

1 IE I 
z M(E) As noted 

in the proof of Lemma 7-ll, ljJ(x, E) and <f>0 (x) cannot vanish if xE aD 1 , 

and must vanish when xE aD 1 • For x E aD 1 , p(x) = 0 and 

ap(x) 

a a = 
a<j>0 (x) 

a a 

6 3ljJ(x, E) 
+

E a a 

= 
a <j>0 (x) aljJ(x, E)/ aq>0 (x) ) 

'I an ( 1 + ~ an an for 'I > 0 ' 

since the tangential derivatives 
a<(>0 (x) 

a<(>0 (x) 

aT and 
aljJ(x, E) 

aT vanish for x E aD 1• 

Since an < 0 for XE ani and aD! is closed, the function 

aljJ~: E) I ata~x) is bounded on ani by N(E). Thus a~~) < 0 provided 

101 < i J~l) . Notice that since ljJ(x,O) = <j>0 (x) and ljJ(x, E) depends 

continuously on E , it follows that M(E) and N(E) are continuous and 

satisfy M(O) = N(O) = 1. 

We now conclude from Lemma 7-11 that 
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z 
0 

v(x, E)+ (E) y(x, E' o) 

0 <jl0 (x) + - ljJ(x, E) 
E 

is continuous and therefore uniformly bounded on D for 

lol.:::; iiEimin(M\E) , N~E)) = d(E) . Suppose IR(x,E, o)l.:::; R for 

xED , lol ~ d(E) , 0 ~ IE I ~ E 0 • Then 

u(x,E, 6) = E ( <jl0 (x) + ~ ljJ(x,E)) (1 + ER(x,E, o)) 

is positive on D provided lEI~ min(~ ,E 0), lol~ d(E). Q.E.D. 

In a similar manner, Lemma 7-11 is used in the proof of 

Theorem 7-13: There exists a positive number D(E) such that for 

E > 0 sufficiently small, u(x, E, o 1 ) > u(x, E, 6 2 ) for x E D whenever 

<Po (x) > 0 and OJ > 0, Oz < 0, max (I oil ' I Oz I) ~ D(E). 

Proof: As in Theorem 7-12, <Po (x) > 0 implies ljJ(x, E)> 0. Apply 

Lemma 7-11 to conclude that the function 

R(x, E, 6) = 
y(x, E, 6) 

ljJ(x, E) 

is continuous and bounded on D. Letting I R(x, E, 6) \ ~ R(E) for 

xED, lo\.:::;o0 (E), weseethat 

olz Ozz 
u(x,E,o 1)- u(x,E,o2 ) = (o 1-o2 )ljJ(x,E{l+

01
_

02
R(x,E,6 1)- 01 _ 02R(x,E,62 ~ 

is positive on D provide d I oil <min (zi(E) 'Oo(E)) = D(E), ol > O, Oz < O. Q.E.D. 
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The purpose for the last two theorems was to show that 

under certain circumstances, the solution branch (7. 27) is part of 

the branch of minimal positive s elutions of (l. l) when E > 0 and 

o < 0. We prove this result in 

Theorem 7-14: For each T, 
2 

O<T<Eo K, where Eo and K are 

found in Theorem 3-l, let f(>-.., T,u) satisfy conditions (7. 2)-(7. 4), 

(7 .ll)-(7 .13)(convex). Then the solution branch (7. 27) consists of 

minimal positive solutions of (l.l) for E > 0 and o < 0 when <j>0 > 0. 

Proof: We must first show that the solution (7. 27) is applicable 

to the present situation. Condition (7.2) implies that f (>-..0 ,0,0)>0 
T 

on D, condition (7.12) implies that f>-..u(>-..0 ,0,0) > 0 on D, and 

condition (7.13) implies the aP+
1

f(>-..o,O,O) I auP+I > 0 on D. Applying 

these conditions in Theorem 3-l, we find that there are nonisolated 

solutions of (l. l) of the form (3. l) for 0 ~ ] €] ~ €0 , and that the 

corresponding T(t) is positive for E > 0 sufficiently small (cf. 2. 26, 

2. 28). Since T(t) is positive for the nonisolated solution we get 

with € > 0, the extension (7. 27) is a valid representation of a 

solution branch of (l. l). 

According to (5. 38), v(o) in (7. 27) is negative when o = 0. 

But this implies that by choosing 6 1 > 0 and 62 < 0, both sufficiently 

small, we can find >-..(E, 6 1 ) = >-..(E, 62 ). Applying Theorems 7-12 and 

7-13, the corresponding solutions u(x,E,o 1 ) and u(x,E,o2 ) are both 

positive and satisfy u(x, E, 6 1 ) > u(x, E, 6 2 ) on D. 

Applying Corollary 7-10, we see that u(x, E, 62 ) is the 
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minimal positive solution of (l. l) for X. = X.(E, 62 ) , E > 0, 62 < 0. 

Clearly, this branch with E > 0, 6 < 0 is part of the branch of 

minimal positive solutions. Q.E.D. 

The above theorem establishes that the nonisolated solution 

of (l.l) in question is the minimal positive solution for each E > 0 . 

It is an easy consequence of Theorem 7-6 that the corr e sponding 

* eigenvalue X.(E, 0) = X. (E). Clearly, as E- 0, 

important consequence of this is found in 

One 

Theorem 7-15: Assume the hypotheses of Theorem 7-14 hold. 

+ Then as T- 0 , the branch of minimal positive solutions which 

* exists for X.€ (0, X. ] goes uniformly to the zero solution for X.E(O,X.0 ]. 

Proof: t + Notice that as T- 0 , E- 0 as well, E > 0 . But then 

* * * X. - X.0 and ,!!_(x, X. ) - 0, since ,!!_(x, X. ) is of the form 

"'" 2 £(X, X. ) = E <j>0 + E X(x, E). By Corollary 7-14, ,!!_(x, X.) is an increasing 

function of X.. * Thus for X.E(O,X.] 

* 0 ~,!!_(X, X.) ~ £(X,}.._ ) - 0 as T- 0. Q.E.D. 

The reason that the foregoing discussion centered on minimal 

positive solutions was for physical reasons only. There are no 

mathematical reasons why one could not look for maximal negative 

solution u(x, X.) < 0 on D. To do so simply requires simple 

inequality reversals in conditions (7.2)-(7.4), (7.11)-(7 . 14), and 

then the corresponding change s in the state d results of this section 

go through using the same proofs. 
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II-8. Other Solution Branches. 

In previous sections we have shown the existence of 

branches of solutions of (1. 1) for T small. All of the branches 

contained elements which were nonisolated solutions. D e pending 

on the properties of f(A., T, u), for a fixed T, a given problem may 

have two, one or possibly no branches with nonisolated solutions. 

By examining (2 . 29), we see that if p defined in (2. 19) is even, 

then there is one nonisolated solution for T > 0 and one for T < 0. 

However, if p is odd, T must be restricted so that A. is real, 

which means that there will be two nonisolated solutions for T of 

one sign, and no nonisolated solutions for T of the other sign. 

Work by Simpson and Cohen [36] suggests that this is not the com-

plete story. They find solution branches which have no nonisolated 

solutions, but points on the branch approach the solution pair 

(u, A.) = (0, A.0 ) where A.0 is the principal eigenvalue of (1. 6), as 

T- 0. In this section we will show that for all values of T suf-

ficiently small, (1.1) has at least two distinct solution branches 

with values of A. in a neighborhood of an eigenvalue A.0 given by (1.6). 

In previous sections we have suggested that the perturbation 

theory provides a method which will always lead to the desired 

answer. In this situation, such is not the case. Although we will 

prove our result by use of a contraction mapping, the mapping is 

one that is not motivated by a perturbation procedure. 

We seek solutions of (1.1) of the form 
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u(x, E) = E <Po + E 2 w(x, E) 

( 8. 1) 

A.(E) = A.0 t EV (E) 

for T fixed, 0 ~ IT I ~ T 1 • To make w(x, E) unique we wi ll r e quir e 

( 8. 2) 

Notice that when T * 0, s e tting E =0 in (8.1) does not g i ve a 

solution of (1. 1). This leads us to suspec t that ( 8. 1) is valid for 

0 < E1 ~ leI ~ E 2 where E 1 and E 2 are relate d to Tin some way to 

be determined. 

If we substitute {8.1) into (1. 1) we find 

Lw + f (A.0 ,O,O)w = - ~ {f(A., T, u) - f (A.0 ,O,O)u} 
u E u 

1

- T j'l = - - f (A. ST u)ds 
€2 T ' ' 

- 0 

1 

+ v(<j>0 +e:w)~ fA.u(A. 0 tEsv ,O,tu)ds dt 

(8.3) 
2 j.lj.l J +(<j>0 + Ew) f (A.0 ,0,stu)sdtds =R(v ,T,w;E ), 

0 0 uu 

Bw = 0 

Equation (8. 3) is again of the form (1.12) and can be solved only if 
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the condition 

( 8. 4) * (R(v, T,W;E ), <j>0 ) = 0 

is satisfied. 

To formulate the contraction mapping, we again use the set 

of functions /3K of (3. 7) and the real interval _9K of (3. 8). We 

also introduce the set 

( 8. 5 ) 8:3 ( p , r) = { (A., u; X) I A. = Ao + € v , u = E <Po+ e2 w, X E D 

o~IE]~p. vE .9 wE B } r · r · 

W e d e fine the mapping T in the natural way suggested by (8. 3), 
E 

( 8. 4). That is, for each E in E1 ~ I € I ~ € z, d efine T [w,v]=[~,;;] by 
€ 

~ ,. 1 * T 1 1 * (8.6) v ((<j>0 +Ew) j
0 

fA.u(A. 0 +s€v ,O,tu)ds dt, <j>0 ) =- eZ ( /T(A.,sT,u)ds, <j>0 ) 

and 

(8.7) 

z 11 .1 * 
+ ((<j>0 +Ew) j f (A.0 ,0,stu)sdtds, <Po) , 

0 0 uu 

L~ + fu(A. 0 , 0, 0)..; = -I? ( <l>o+Ew) ~ 1 
fA.u(A. 0 +E sv, 0, tu)ds dt 

T J.l + 2 f (A., ST, u)ds 
E 0 T 

ZJ,lll J + (<j>0 +Ew) f (A.0 ,0,stu)sdtds 
0 0 uu 

, X€ D, 

~ 

Bw = 0, xE an, 
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The mapping T induces a natural iteration procedure, which fo r 
€ 

some initial iterate (w0 , v 0 ) is given by 

( 8. 8) k=O,l,2,· ·· . 

With this machinery available, we state and prove the following 

Theorem 8-1: Let 8:3 = S3 (p, r) for some fixe d p ~ 1, pr ~ 1. Suppose 

that the smoothness assumption (3.15) on f(~. T, u) hold on 8.3, and 

that Then there exist real positiv e con-

stants E 1 , E 2 ,K where E 1 <E 2 ~ p, Ez K ~ pr, suchthat the map ping 

T 
€ 

given by (8. 6), and T 
€ 

is a contraction on WK for all E, 0<E 1 ~IEI~Ez. Fur the rmor e , 

the problem (1.1) has nontrivial solutions of the form (8.1), whe re 

w(x,E}, v(E) satisfy (8. 3), (8 . 4), and are the limits of the s eque nce 

generated by (8 . 8) for any initial iterate in WK . 

Proof: The machinery introduced for this theorem are such that w e 

only need to show that T is a contraction mapping. 
.€ 

The smooth-

ness properties of the iterates, and the proof of conve r g ence of the 

iterates to solutions of (1. 1) are the same as in Theorem 3-1 and 

Theorem 5-1, and will not be repeated. 

The proof that TE is a contraction mapping of WK into WK 

has some impor tant diffe rences from the proofs previously 

e ncount e red. Since 

is chos e n small e nough so that 
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(8.9) 

The n for (w,v)E WK we have 

( 8. 10) zq; [ITI 
2 J 

I v I ~ - -2 II f II + t( II <l>o II + IE I K) II f II a E T S oo UU S 

and 

In o rde r to find a K and E2 s o that TE maps WK into ' WK we must 

bound I~ I and 11.:;; II from above. In other words, we must require 
00 

IT I / E2 ~ A for 0 ~ IT I ~ T 1 and for E 1 ~I E I~ E 2 • Since we have 

yet to determine T1 and E 1 , we require 

(8. 12) 

where A is some fixed positive constant. Then (8.10) and (8. 11) 

are of the form 

(8 . 13) max { I ; I , Jl ~ II } ~ A.(A) + I E I B (A, E , K) . 
00 

Cle arly by choosing K > .A..(A), we can find E3 > 0, E3 ~ p, E3 K ~ p r so 

The choice of A in 

(8.12) is arbitrary. However, we will see later that the value 
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chosen for A has a definite effect on the values of T 1 and E 1 , as 

it has already had an effect on the values of K and € 3 • 

The second step is to show that the mapping T is a con
E 

traction mapping for E 2 chosen appropriately. If we let 

y 1 = (w1 , v 1 ) E W K and y 2 = (w2 , v 2 ) E W K and denote 

(8.14) II Y II = max { II w II , l v l } 
00 

then, whenever l E l .:::; E 3 , 

(8.15) 

and 

(8. 16) 

where 

(8.17) 
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Equations (8.15)-(8.17) imply the existence of a constant M 2 such 

that 

(8.18) 

By choosing € 2 < min{E 3 , J
2

} , we have that TE:WK- WK is a 

contraction mapping on E1 ~I El ~€ 2. 

Now that E 2 has been chosen, pick E 1 < E 2 so that the above 

statement is not vacuous. Doing so forces 

mapping T is a contraction only when 0 ~ 
€ 

2 
T 1 = AE1 so that the 

2 
I T I ~ T 1 == AE 1 The 

remainder of the proof is the same as in Theorem 3-1 and will not 

be given h e re. Q.E.D. 

Our statement at the beginning of this section was that for 

each value of T, (1.1) has two solution branches with >-. near >-.0 • 

In terms of the form of these solutions branches (8.1), we see 

that the two branches result as E takes on positive and negative 

values, 0 < E 1 ~ lEI ~ Ez . 

When a solution branch has a nonisolate d solution, that 

solution can be found using the t echnique of Section 3. By a 

proper choice of A in the above proof, we can show that the non-

isolated solution found in Section 3, is an element of a solution 

branch found in the above Theorem 8-1. 

Suppose w e represent the nonisolated solution (3 . 1) by 
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u (x,E) = E<j>0 + E 2 v (x,E) s s 

A = Ao + E fl. (E) s s 
(8.19) 

Then y = (u , A ) is a nonis alated solution of (1. 1) for T = T . 
s s s s 

Theorem 8-2: Let the hypotheses of Theorem 3-1 and Theor e m 

8-1 hold. Then by a proper choice of A in Theor e m 8 -1, the non-

isolated solution y = (u , A ) of (8.19) lies on the solution branch s s s 

(8.1) of (1.1), forT= Ts whenever lEI~ min{E
5

,E 2 }. 

Proof: According to the proof of Theorem 3-1, there are c onstants 

E , K such that (8.19) is a valid repr e sentation of the nonis olated 
s s 

solution of (1.1) whenever 0 ~ IE I~ E , and that max { ]I v II. I fJ. J, ]n I} ~K. . s s s s s 

Recall that S 1 (p , r) and 8:3 (p, r) depend solely on our c hoice of p and 

pr. By choosing p and pr the same in Theorem 8 - l as for The or em 

3-1, we have that 

( 8 . 20) s 3 (p, r) = s 1 (p, r) n { T = T s} 

Choose A= K. s 
The proof of The ore m 8-1 gen e rates a 

pos i tive number E2 (A) so that (8.1) is a solution branc h of (1.1) only 

N ow s e t E 1 = lEI , w h e r e lE I~ min{e ,E} . 
s 2 

The n 
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2 
(8. 21) = E 1 A = T 1 

Thus, for any value of E, IE I ~ min{E ,E 2 } , Theorem 3 -l and 
s 

The or e m 8-l both hold. 

The nonisolat e d solution (8.19) is a fix ed point o f the mapping 

(3.10)-(3.13). By picking T = T s , y s = (us, X.s) must also b e a fixed 

point of (8. 6), (8. 7). Comparing y with y = (w, v) w e find that s 

(8 . 22) IIY -yll~ IE I max {M ,M2 } IIY -yll. s s s 

But sinc e IE I~ min{Es' E2 } < min{~ , ~J 
s 

Equation (8. 22) implie s 

that y = y, so that the solution (8 . 1) with T = T (E) is a nonis olate d 
s s 

solution of (l.l) whe n e v e r lEI ~ min{E ,E2 }. Q.E.D. 
s 

By a simple r e orientation, the form of the solution branc h 

(8.1) c an b e put i nto the form of (5 . 33) (the solution b r anch 

e xte nded from a nonisolated solution), whe never The ore m 8-2 holds . 

Since solution branche s of the form (5. 3 3) were shown to b e 

unique, the s olution branch found here and the solution branch 

found in Section 5 must be s e gments of the same branch whenever 

Theorem 8-2 holds. That is, whe never T = T • 
s 

If there are 

value s T w hich do not give ris e to nonisolate d solution of (l. l) as 

w ith the case whe n p is odd, the n it se e ms r e asonable to s u s p e ct 

that the solution branch has no nonisolate d solutions. 

Whe n the nonlinearity f(X., T, u) is a positive monotone 
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increasing, concave function for T > 0, the results of Simpson and 

Cohen (36] are applicable. In particular, if <j>0 (x) is the positive 

eigenfunction of (1. 6) and X.0 the corresponding eigenvalue, then by 

Lemma 7-11, the solutions (8.1) are positive if T 1 and Ez are 

sufficiently small and E > 0. However, in this situation positive 

solutions are unique for each X., so that the solution branch (8. 1) 

must be a segment of the branch of positive solutions found by 

Simpson and Cohen [36] on which no solutions are nonisolated 

solutions. 

We summarize the results of the foregoing investigation in 

Figures 2, 3 and 4 by showing some possible solution branches 

which may occur. The plots are possible for any eigenvalue X.0 , 

although the minimal positive and maximal negative solutions shown 

may be included only when <Po> 0. 
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Chapter III 

Dynamic Buckling of Columns and Arches 

III. 1. Introduction. 

To show that the ideas and results of Chapter II are 

relevant to problems which are not second order differential 

equations, we consider the motion of a slender elastic column sub-

jected to a constant compressive axial displacement and to a trans-

verse load Tp(x,t). The nondimensional equations of motion are [39] 

(1. l) 

a 2 w aw a4 w a 2 w 
8t2 +'I at + 8x4 + o-(x, t) ar + T p(x, t) = 0 X E (0, 1) 

a a
ax= 0 

u(O, t) = o u(l, t) = -6 

w(O, t) = w(l, t) = 0 

Here w(x,t) represents transverse displacement, u(x,t) represents 

axial displacements and o is the 11 end shortening. 11 The physical 

parameter r satisfies 

= Lz.A.. 
r I 
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where L, A and I are the length, eros s -sectional a r ea, and 

moment of inertia, respectively, of the beam. The s ystem (1. l) 

was derived assuming that finite d e formations occur with small 

strain, and that Hooke's law is valid. The axial inertia of the 

column has been neglected, and damping is assumed to be pro-

t . 1 aw f . 0 por 10na to y at . or y > . 

au
Equation (1.1) can be simplified by using ax = 0. 

since o-(x , t) doe s not depend on x , 

o-(x, t) 
l 

= J o-(x, t)dx 
0 

Thus e quation (1. 1) reduces to 

l 2 

= 2ro - r J (aw) d x 
2 0 ax 

In fact, 

1 2 

~:~ + y ~7 + ~:: +(2ro- f J~ <~:> dx) ~:~ +Tp(x ,t) = o 

(1. 2) w(O, t) = w(l, t) = 0 

a2 w a2 w 
ax2 (O,t) = ax2 (l,t) = 0 . 

A shallow pinned arch initially str e ss free w ith c e nte rline 

g ive n b y y =no (x ) c a n b e tr e ate d a s a spec ial case of (1. 2) . The 

e quation o f motion for suc h an arc h w ith trans ver s e l o a d ing q(x, t) 

i s 
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(1. 3) w(O, t) = w(l, t) = 0 

w ( 0 't) = w (1' t) = 0 
XX XX 

but this can easily be arranged into the form of (1. 2) by making 

the identification 

and 

a4no 
T p(x, t) = q(x, t) - ax4 

o= 1 ll(~)zdx. 
4 0 ax 

Thus, we will restrict our attention to (1. 2). Furthermore, since 

the initial configuration of an unloaded stress free arch may be 

viewed as an imperfection in the corresponding end-shortened 

beam, we will call the parameter T the imperfection amplitude and 

p(x, t) the form of the imperfection. 

III. 2. Equilibrium States and Their Relationship to Imperfection 

Theory. 

The steady state analysis of (1. 2) with T = 0 gives a simple 

example of bifurcation phenomenon [32] , With no time dependence 

and T = 0, (1. 2) reduces to 
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( 2. 1) w(O) = w(l) = 0 

d2w (0) = d2w (1) = 0 
dx2 dx2 

L etting }\.2 = r(2o- !~
1

1.':/ dx) we see that 

w(x) = wk sin korx }\.. = kor k = 1, 2, .. . 

(2. 2) 

w(x) = 0 }\.. * kor 

When}\..= kor, the amplitude wk is determined by 

2 
k2 1T2 = 2ro _ r J 1 

(dw) 
2 0 dx dx 

2ro r 
= -- k2 1T2 w 2 

4 . k 

or 

(2. 3) 

We see that fo r ok < o ~ ok+l the re are Zk+l solutions of (2.1) given 

by (2. 2), (2 . 3). The numbe r ok is generally referred to as the kth 

buckling load. A plot of Q vs. o i s given in Figure 5, where 
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When T * 0, the steady state equation is 

w(O) = w(l) = 0 

= d2w (1) = 0 
dx2 

As noted above , when T = 0, bifurcation occurs from the points 

k2 -rr2 

zr We expect that these bifurcation points will c hange 

as T changes. We will first use the perturbation method to approxi-

mate this relationship. 

The operator represented by e quation (2. 4) is an integra-

differential operator . To find the appropriate linear integ ro-dif -

ferential e igenvalue problem, suppose that w(x) is a solution of 

(2. 4). Substitute y = w + cp into equation (2. 4) and linearize the 

e quation for small cp . The resulting linear equation is 

(2.5) cp(O) = cp(l) = 0 , 

~:t(o) = ~t(l) = o . 

The ideas set for w ard by the general theory in Chapter II suggest 

that w e look for solutions of the form 
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w(x, E) = E ( u 0 (x) + E u 1 (x) + E 2 u 2 (x) + · · ·) , 

<j>(x, E) = <Po (x) + E <j> 1 (x) + E 2 <j>2 (x) + 
(2.6) 

k2 1T2 
where cSo = zr for some k, and 

(2.7) 

1
1 

1
1 1T 

u 0 (x) sin k1Tx dx = <Po (x) sin k1T x dx = 2 , 
0 0 

1 

J u.(x) sink1Tx dx = 0 , j = 1, 2, 
0 J 

1 J <P . sink 1T x dx = 0 , 
0 J 

j = 1, 2, ... 

Substituting (2. 6) into (2. 4), (2. 5) and equating coefficients 

of like powers of E gives the following equations 

d4 <Po d2 <Po 
(2.8) 

dx4 + zr cS0 dx2 = 0 

d4 <1> 1 d2 <j>I d2 <Po 
(2. 9) d x4 + zr cS0 dx2 = - ZrcSI dx2 

2 
d4 <P2 d2 <P2 d2 <j>I ( r l duo 

d x) 
d2 <Po 

(2.10) dx4 + 2rcS0 dx2 = -2rcSI - - . 2r cS - - J <-> d x 2 dx2 2 2 0 dx 

d2wo 1 duo d<J>o 
+ r dx2 ~ ( dx ) ( dx ) dx 

d4 Uo d2 Uo 
(2.11) dx4 + 2r cS0 dx2 = -T0 p(x) 
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d4ui dzui dzuo 
(2.12) dx4 + 2roo dxz = -Tip(x)-2roi dxz 

The unknown functions u. , 4> - all satisfy the boundary conditions 
1 1 

w(O) = w(l) = 0 , 

d2w (1) = 
dx2 0 . 

In order to have a nontrivial solution for (2. 8) we must 

k2 11"2 
have 60 = 

2 
r for some k, and then 4>0 (x) = sin k-rrx. 

k so that 

I J p(x) sink-rrx dx 
0 

We choose 

where pk is the kth Fourier coefficient for the sine expansion of 

p{x). Since the null space of (2. 8) is spanned by 4>0 {x), the 

Fre dholm alternative theorem can be applied to solve equations (2 . 9) 

-{2.13). The differential operator in (2. 8)-{2.13) is self-adjoint, so 

we require 

I 
{2. 14) J R(x) 4>0 (x)dx = 0 

0 

w here R(x) is the right hand side of the equation to b e solved . 
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Applied to equation (2. 9), conditions (2. 7) and (2.14) give that 

<j> 1 (x) = 0 . 

Equation (2.11) implies that 

To = 0, u 0 (x) = sink-rrx , 

and equation (2. 12) gives, using (2. 7), that 

T1 = 0, u 1 (x) = 0. 

From equation (2.10), the form of (2.14) is 

I 

-k2 -rr2(2 o2 -!-k2 -rr2 Ia 1cos 2krrdx)(J
0

1

sin2k-rrxdx )+k4 -rr4 (~ s\~ k?Txd~cos\::?Txd1 =0 

which reduces to imply, again using {2. 7), that 

<j>2 (x) = 0 • 

Finally, solving equation (2.13) requires that 

which implies that Tz = Substituting for Tz and 62 in (2. 13)' 

we find that 
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00 

u2 (x) .L: 
J=I 
j=l:k 

where 
I 

p . = 2 J p(x) sinj1rx dx . 
J 0 

Collecting this information in the form (2. 6) gives that 

00 

w(x, E) L: 
j=I 
j=l:k 

<j>(x,E) = sink1rx+ 0(€3), 

(2.15) 

5(€) 

( ) 3 k4 -rr4 r + o (e: 4 ) . T € = E 
2pk 

Since we are interested in knowing the relationship between 5 and 

T, we easily find from (2. 15) that 

% 
(2.16) 

kz 1Tz 

5 = 2r + 4 V2rz 
3 c:::) + O(T) • 

At this point, one could verify that (2.15) is asymptotic to 

the exact solution using a contraction mapping, and then could 

extend the solution branch from the known solution (2.15) for a 

· fixed value of T, as in Section II-5. However, it is not necessary 

to carry out this program, since this problem can be solved 
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exactly using Fourier sine series. 

With the given boundary conditions on w(x), the Fourier 

sine series is complete, so that we let 

00 

(2.17) w(x) = L 
J= 1 

w. sin j-rrx 
J 

Operating formally and without justifying term by term differentiation, 

we substitute (2.17) into (2. 4). Using the orthogonality properties 

of sin k-rrx, we get- the infinite set of algebraic equations 

(2. 18) 

00 

Letting Q 2 = ~ , we have 
q=l 

(2. 19) 
-4T Pj 

j = 1, 2, ... 

provided 

In the special case that 4n2 -rr2 -8ro + r-rr2 Q 2 = 0 for some n, we 

have that 

00 

~ 
k=I 
k#n 

(2. 20) 

k =F n, 
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and this can occur only when p = 0, and when o is sufficiently 
n 

large so that w 2 ~ 0 in (2. 20). 
n 

In general, we use (2.19) to write 

(2.21) 
00 

= l~Z ~ 
j= 1 

which gives a nonlinear equation to be solved for Q 2 when T and o 

are fixed. The roots of (2. 21) give the equilibrium states of (2. 4) 

by way of (2. 17) and (2.19). Figure 6 gives a graphical inter-

pretation of (2. 21) by plotting y = F( o, Q 2 ) and y = Q 2 I Tz . Figure 

7 compares the solutions Q as a function of o with the equilibrium 

states for the perfect beam shown in Figure 5. 

kz 1T"z 
Examining Figure 6, we see that for o ~ ~, we have at 

most 2k+l solutions Q 2 of (2. 21). However , as T changes, the 

number of solutions Q 2 of (2. 21) may also change. As T- 00, 

there is only one solution of (2. 21), whereas, the maximum number 

of solutions is obtained as T- 0. The branching points are those 

values of Q 2 and T which are double roots of (2. 21), and are r e cog

nized in Fig ure 6 as points at which y = F( o, QZ) and y = QZ I Tz are 

tangent at a point of intersection. In Figure 7, b ranching points 

are thos e points with v e rtical tangents. The kth branching po i nt 

always occurs for 0 > ok when T * 0. Since a branching point 

corresponds to a double root of (2. 21), it must satisfy 

00 

( 2. 22) 1 = ~ 
j=l 
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We would like to verify that the equilibrium solution corr e s-

ponding to a double root of (2. 21) is a nonisolated solution of (2. 4), 

in that (2. 5) has a nontrivial solution. Assume that w(x) has 

Fourier coefficients w. such that Q 2 
J 

(2. 22). Let 

00 

(2 . 23) <j> (x) = L: 
j= 1 

00 

= L: 
q=I 

q2w 2 satisfies (2. 21) and 
q 

b . sinj~rx 
J 

be a solution of (2. 5). Substituting (2. 23) into (2. 5) gives 

(2. 24) j = 1,2, · ... 

00 

If we let B = '\' w b LJ nn 
n=1 

, then multiplying (2. 24) by w . and summing 
J 

over j gives 

(2. 25) 
00 

B = - 2r~r2 B 1:: 
j=I 

Using (2.19), this becomes 

(2. 26) B = 

Since we w ant <j>(x) to be nontrivial, we choose B if; 0 so that (2. 2 6 ) 

can b e satisfied only if 

(2. 27) 1 = 
00 

L: 
j= 1 

p.z 
J 
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which is exactly the condition (2. 22), and is satisfied only at a 

double root of (2. 21). 

Using (2. 21) and (2. 22), we can compare the exact solution 

with the perturbation result (2.15) when T is small. When T is 

small we expect that the nonisolated solutions will also b e small 

so that Q 2 is small. If we let 

(2. 23) 
k2 Tl"2 

0 = 2r +a 

for some k for which pk:;t 0, we expect a to be small . Then (2. 21) 

gives 

00 

+ l617T4 .L: 
J=l 
j:;tk 

Keeping only the dominant terms we have 

(2. 29) 

In a similar way (2. 22) gives to lowest order 

(2. 30) l = 

Combining (2. 29) and (2. 30) we see that 

J . 
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which r e duces to imply that 

(2. 31) 

By (2. 3 0), this implies that 

(2. 32) 

to lowe st order, which agree s with the perturbation result of (2.16 ). 

Knowing QZ and a to lowest order, one could also use (2 . 19) and 

(2 . 24) to find w (x) and <j> (x ) t o lowest order in T. Notice that (2 . 32) 

also a g r ees qualitative ly with the results of Chapt e r II. Since the 

nonline arity in (2 . 1) i s of the form 

it is c ompos e d of t e rms line a r and cubic in w( x ), so that in t erm s , 

o f Chapte r II, p = 2, and 

60 = 60 + k Tp/ p+ 
1 + · · · 
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III. 3. Dynamic Treatment of Global Stability 

For a fixed end shortening o, we would like to determine 

the stability of motion about a given equilibrium state, and to find 

the initial conditions whose resulting motion approaches a given 

equilibrium state as t-oo. A recent study of perfect columns by 

Reiss and Matkowsky [33] shows, using a two-timing technique, 

that for o slightly greater than 8 1 , solutions can be expected to go 

to one of the two buckled states (Figure 5) as t- ~- In [32] it is 

· shown that for the perfect column, the potential energy of a buckled 

mode is ordered in the opposite direction from the amplitude o f the 

solution. That is, if Q 1 >Q2 > · · · > Q correspond to the possible 
n 

buckled solutions for 0 fixed, then vI < Vz < v n' where vk is the 

potential energy corresponding to the kth buckled state. The 

ordering of the potential energies is not sufficient to conclude that 

the first mode is stable and all others are unstable, and it tells us 

nothing about how to actually buckle into a higher mode. 

From the analysis of Section II-6, a comparison of Figure 1 

and Figure 7 suggests that for T =f:. 0 and o fixed, an equilibrium 

solution with Q large is "more stable" than one with small Q. 

More specifically, if these pre vious stability results are valid in 

the present situation, we expect the two solutions with largest Q to 

be stable, and as Q decreases, each pair of solutions e n counte red 

will have one more mode in which motion is unstable . 

We consider the equation 
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2 

~
2

t~ +-y ~'; + ~
4

0 +r(za-!Ia\~:) dx) ~:~ +Tp(x,t)=O 

(3 .1) w(O, t) = w(l, t) = 0 

(}w 
w(x, 0) = f(x) , (}t (x, 0) = g(x) , "Y ~ o. 

We will assume that f(x), g(x) and p(x, t) have finite Fourier sine 

series expansions of the form 

N 

f(x) = L: fk sink 7TX 
k=I 

N 

(3.2) g(x) = L: gksink7Tx 
k=I 

N 

p(x,t)= L: pk(t)sin k7Tx 
k=I 

We will further assume that for each k, pk(t) = pk + ak(t) where 

(3. 3) 

If we let 

(3. 4) 

N 2 l: ak(t) dt < oo and ak(t)- 0 as t-oo. 
k=I 

N 

w(x, t) = l: wk(t) sinkrrx 
k=I 

and make use of the notation ~~ := u , then equation (3.1) gives N 

coupled equations of the form 
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( 3. 5) 

Since fk , gk and pk(t) are nonzero only for k = 1, 2, · · · N, the 

uniqueness theorem for initial value problems guarantees us that 

wk(t) can be nonzero only for k = 1, 2, · · · N, so that (3. 4) is a valid 

representation of w(x, t). Furthermore, if we know a priori that 

w.(t) = 0 for some j, 1 ~ j ~ N , we can renumber the coefficients 
J 

of sink?Tx, so that w 1 (t) is the first nonzero mode present in (3 .4) 

with x dependence sin k 1 7TX, and so that all the coefficients w. (t) 
J 

in (3. 4) are nonzero and have x dependence sin k . ?Tx, whe re 
J 

j = 1, 2, · · · N. 

For simplicity we will assume that k. = j for 
J 

We can find an energy expression for (3.1) by multiplying 

the kth equation of ( 3. 5) by wk and adding together all such 

equations. The resulting equation is 

which can be integrated once to get 



-118-

(3.6) 
t N 

+ j L: [~~ + T ak(t).;_,k] dt = K(O) , 
0 k=I -

where by K(t) we denote the sum of the kinetic and potential energies 

By completing the square of the integral term and of K(t), we can 

rewrite (3. 6) in the form 

t N ( Tak(t) 2 
2 t N 2 2 N p~ 

y j L: ~k + -2-) dt = K(O) +; j L: ak(t)dt-4ro- ; 4 L. k 4 
O k=t y y O k=I k=I 

(3.8) 

.A proof of the existence of solutions of (3. l) for all t :;:::, 0 has been 

given by Dickey [10] when y = T = 0. The proof uses (3.8) with y 

and T set to zero and with N- oo, in order to show that the 

solution of (3. l) is bounded for all time. In light of (3. 8), an 

extension of Dickey's existence proof to the present case with y > 0 

and T > 0 is straightforward. 

~otice that the left hand side 

reasing function of time. 
00 

Since J 
0 

of (3. 8) is a positive nondec
N 
2: a~(t)dt < oo , we see that 

k=I 
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(3. 9 ) Vt > 0 . 

Thus the integral in (3. 9) is convergent as t-oo . Furthermore, 

( 
TQ'k(t))Z 

wk + 2y is a smooth function as t- 00 so that ..;,k- 0 as 

t- oo , k = 1, 2, · ·· N. 

W e can write (3. 5) as a system of first order differential 

equations by letting 

Then (3. 5) gives 

( 3. 10) 

. 
cp . = 

J cpj+N 

j=l,z, .. ~N. 

Since ~k- 0 smoothly as t- oo , the solution must approach a 

point satisfying lp = 0. Such a point will be referr e d to as a critic al 

point of the system (3.10). If a critical point is not approached as 

t-oo, then ~k -f- 0 for some k which implies that ~k -f- 0 as t -f- 0, 

a contradiction. 

Critical points of the system (3.10} are those points in 
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2N-dimensional phase space for which the right hand side of (3. 10) 

is identically zero. The first N components of these points are 

given by wk = 0, k = 1, 2, ···N, and the second N components satisfy 

(3. ll) 0 k=l,2, ···,N. 

As is expected, equations (3 . ll) are exactly the same as the 

equations (2. 18) which determined the equilibrium states of equation 

(3. 1) . In other words, as t- oo with 'I > 0, the motion approaches 

an equilibrium state. It is an analysis of these critical points in 

2N -dimensional phase space which allows us to make statements 

about the global stability of the equilibrium states. 

The behavior of a critical point is determined by the eigen-

values of the dynamic problem linearized about the given critical 

point [5] . When system (3.10) is linearized about some critical 

point, the resulting equations will be of the form 

(3 . 12) ( ~) = ( 
0 

-D 

w here D is a real symmetric N X N matrix and I is the N X N 

identity matrix. The eigenvalues of the matrix A will determine 

the local stability, and ultimately, the global stability of the point 

in question. To deterrr:·.ine these eigenvalues, we solve 
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or 

Dx + (A y + A2 )lx = 0 . 

If eigenvalues of D satisfy Dx = fJ.X, then the eigenvalues of A 

satisfy 

(3 . 13) 

If an eigenvalue of D is negative, then 

A < 0 , 

whereas, if an eigenvalue of D is positive, A can be either real or 

complex. 

negative. 

If y 2 -4fJ. ~ 0, then both eigenvalues A+ and A are 

On the other hand, if y 2 -4fJ. < 0, 

y 
2 < 0 . 

Examining the fundamental solution of (3.12), one sees that 

for each eigenvalue A with positive real part, there corresponds an 

unstable mode. For each eigenvalue A with negative real part there 

corresponds an exponentially decaying stable mode. Clearly, if D 

has N - k e igenvalues fJ. which are positive and k which are negative, 

there are 2N-k stable modes and k unstable modes in the solution 

of ( 3. 12). These modes can equally well be visualized as mutually 

orthogonal directions on a 2N -dimensional energy surfac e. Moving 
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"downhill" away from the critical point corresponds to an unstable 

direction, while moving "uphill" away from the critical point 

corresponds to a stable direction. · With this motivation, a critical 

point with 2N stable modes will be called a center or well, and a 

critical point with k unstable modes will be called a saddle point 

or hyperbolic point of type k. Since the type of a c ritical point is 

exactly the number of negative eigenvalues of D, we restrict our 

attention to determining the eigenvalues of D. 

To find the eigenvalues of D, we could plunge blindly ahead 

to attempt a direct calculation. However, that course of action 

l eads to miserable algebraic computations, and furthermore, ignores 

the idea s of Chapter II. From the results of Chapter II, we 

realize that nonisolated solutions are neutrally stable in some mode, 

and that as T changes, the locus of nonisolated solutions segments 

the solution branches into regions with the same stability charac-

t eristics. Furthermore, we can find the stability characteristics 

of a given solution with T * 0, by following a trace of solutions as 

T- 0. If throughout the motion T- 0 we have not reached a non-

isolated solution, we know that the stability characteristics for a 

solution with T * 0 are the same as the solution arrived at when T 

reaches 0. 

With this motivation, we consider the problem for T = 0. If 

kZ-rrZ 
Om < 0 < Om+ I, w h ere Ok = zr there are 2m+l equilibrium state s 

and henc e, 2m+l critical points. The coordinates of thes e 2m+l 

critical points are 
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~ 0 = {0,0,···,0)' 

(3.13) _ik±.. = (0, ···, ±..wk' · ··0), k=l,2, .. ·m. 

where ± wk occurs in the kth position of the 2N -tuple for <j> k . 
~ ±.. 

Linearizing (3 . 10) about the critical point ,S:k±.. we find the matrix 

Since the matrix D is diagonal, its eigenvalues are the diagonal 

e l e m ents. 

-rr2 • 
If 0 < 01 = zr , then _io lS the only critical point of (3. 10), 

and the eigenvalues of D 0 are positive. Thus, the c ritical point 

_io is a center and is stable. If m> 0, then D 0 has m negative 

e ige nvalue s so that ;!:o is a hyperbolic point of type m. The 

matrices Dk eac h have k-1 n e gative e i genvalues and the r efore , ,S:k±.. 

is a hyper bolic point of type k -1. The first buckl ed mode ~1 has 

no n egative eigenvalues and is ther e for e a center. In the context 

of linear stability the ory, this implies that at the critical point 

<j>k small perturbations in w . d ecay to z e ro if j ~ k . 
,...., ±.. ' J 

Howe ver, if 

j < k, . then wj is a "lowe r 11 mode than wk' and small p e rtu r bations 

in w j will grow away from _ik±..' Said another way, the lowes t 
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mode included in the motion by the initial data is the only mode 

which is stable for m > 0. All other modes are unstabl e t o 

perturbation in lower modes. 

We can translate this local result into a global result by 

use of the energy expression (3. 8). If N = 1, the equation (3. 5) 

reduces to Duffing' s equation which has b een analyzed thoroughly 

in [37] and [33]. When o < 6 1 there is only one critical point 

to = Q,. Since the motion must approach the critical point as t-oo, 

this critical point is globally stable, and the motion r es ulting from 

all initial data with N = 1 must approach fo = 0 as t- oo . When 

6 > 6 1 , there are three critical points cp0 and cp 1 • 
"' '"'-'±.. 

The points 

"' a re stable and "'o is unstable to local perturbations. 
~)+ :t Globally, 

: here are interlacing regions of attraction (cf figure 4 1n [33]) in 

initial value space for each of the points f 1 + and t 1 _. The se 

regions are separated by a set in initial value space of measure 

zero, the separatrix, for which motion approaches <j>0 as t- oo. ,...., 

Knowledge of the s eparatrix determines the global properties of 

the Duffings equation. 

For gen eral N, as t- oo , the motion will approach one of 

the two critical points rh corresponding to the lowest m o de of 
..:<:-p ±.. 

motion available, for all initial data, excluding the separatrices, 

in the 2N-dimensional phas e space. Initial data on a s e paratrix 

surface will lead to motion w hic h approaches one of the other 

c ritical points as t- oo. A separatrix c orres ponds to a set of 

measure zero. 
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We can be more specific if we know the initial energy in 

the system K(O). According to (3. 6) the total energy K(t) of the 

system is a nonincreasing function of time. The potential energy 

is g iven by 

which evaluated at the kth critical points 1s 

r A z 
v k = - 16 (k21T2 w~) = - r 16 

(3.15) 

V 0 = 0 

Clearly, V 1 < V 2 < ... < Vm<V0 =0. Since the total energy is 

nonincreasing in time, if the initial energy of the system satisfies 

K(O) < Vk , then the critical points <j>. , k ~ j ~ m, cannot be 
"""']±.. 

approached as t- oo. If K(O) < V2 , then there is only one point 

which can be approached as t-oo, since the lowest "pass" between 

the wells of _<£ 1 ±. are the points ;tz±. with potential energy V 2 • Using 

Figure 8 to illustrate the situation with two modes present, we see 

that <PJ is approached if f 1 < 0 (cf. (3. 2)) and <j> 1 is approached as ,.._+ --.,-

t- 00 if fl > 0. 

When T -:;:. 0 we expect a similar situation will hold. Cal-

culations by Hoff and Bruce [14] indeed show this to be true for an 

arch with two modes w 1 (t) and w 2 (t) and with p(x) = p sin 1TX, How-

ever, motivated by the approach of Chapter II, we are able to get 
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results for more general problems. For notational purposes, we 

will let Qk+ and Qk- refer respectively to the larger and smaller 

of the roots of Q 2 = T 2 F(o, Q 2 ) which depend continuously on T (see 

Figure 7), and which, as T- 0 

When Ti:- 0, the kth pair of critical points is 

k±. 
~ = (wi 
.:tk±. 

k±. 
w , o,o,···o) 

m 

k±. 
where w. 

J 
are the expressions (2.19), (2.20) evaluated at Qk±.' 

First calculate the potential energy V at the critical point 

_tk±.' using (2.19)-(2. 21) and 

N 

v = i ~ 
j=I 

to get 

(3.16) 

which is the same as (3.15). Clearly, VI+ < VI_< V 2 + · ·· < 0. That 

the potential energies are still ordered in the same way with Ti:- 0 

as with T = 0 is no surprise, but it does give credence to our 

approach. If we look at a plot of the level curves of potential 

energy with two nonzero modes (Figure 9) we find that the surfaces 
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bear an interesting resemblance to Figure 8 where T = 0. 

We would like to find the type of a given critical point for 

T -:f:. 0 and 6 fixed. To do so we will let T - 0 keeping 6 fixed 

and show that the critical point has not changed its type. Notice 

that this is a well-defined proposal, since if a critical point ;j:k(T) 

exists for a given T it will also exist for all T with smaller 

absolute value. This process is not well defined if we wish to 

increase * keeping 6 fixed, since the branching point 6 = O(T) is 

an increasing function of IT I (see Figure 7). To accomplish our 

goal we must examine the eigenvalues of the linearized matrix Dk±_ 

as in (3.12) when T -:f:. 0. The linearization is easily accomplished 

by differentiating the right hand side of (3.10) with respect to <j>., 
1 

and evaluating the resulting expression at t k±_' 

matrix D = (d . . ) where 
1J 

(3.17) 

The matrix D is a symmetric matrix of the form 

AI+ aiZ a I az alaN 

az a I Az + azz azaN 
D = 

aNal aNaz AN+aJ 

Doing so gives the 

It can be shown inductively that the determinant of a matrix of the 

form of D is given by 
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Since 
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N N N 

+ j~I ( TI Am) IDI = TT A. 
J j=l 

m;tj 

N 

IDI =IT f-l· ' J j=I 

a. 
J 

where f-lj are the eigenvalues of D, if I D(T) I =I= 0 for all T, then, 

since the eigenvalues of D are real, we know that none of the 

eigenvalues undergo a change of sign, and that the type of the 

critical point is preserved for all T. 

Substituting (3. 17) into (3. 18) gives 

. (3.19) 

where 

If pk=l= 0, then Pk±.* 0. Recalling (2. 22), we see that I Dk±.l = 0 only 

if the root Qk±. is a double root of (2. 21), or, in other words, if 

we are at a nonisolated solution. Since by decreasing IT I we 

a void nonis alated s elutions for o fixed, I Dk+ ( T) I =I= 0 and the type 

- z z rJ t 
of ik±_ is preserved. If pk = 0, then Qk±_ satisfies k 1r -2n>+ 4~:l0 
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and (3. 18) b e come s 

(3. 20) 

k±. 
which can vanish only when wk = 0. Once again by (2 . 20) . this 

can only happen at a branching point which we avoid by requiring 

I Tl to decrease . 

This calculation also shows us that IT j can be allowed to 

increase without changing the type of the critical point until two 

critical points merge. At the merger, we know the type of 

singular point which results. Since Qk+ can merge only with 

Qk - , the resulting point must have k-1 negative eigenvalues, 
+l 

2N-k positive eigenvalues and one mode with zero eigenvalue, 

giving "neutral stability" in 2N-dimensional phase space. 

We can summarize the global behavior as follows. The 

two critical points with lowest potential energy are globally stable 

in that, except for initial data lying on the s eparatrix, all motion 

approaches one of these two points as t- oo . All higher modes 

have directions in 2N -dimensional phase space that are unstable. 

Furthermore, if the initial data have initial energy K(O) < V. , then 
1 

all critical points with V ~ V . are excluded as possible equilibrium 
1 

states, provided p(x, t) does not depend on t. If K(O) < V , then 
z+ 

the motion is in the potential well of rh or rh for all time, and :.!:t+ '~'I-

can approach but one critical point. This is not necessarily true, 
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however, if p(x, t) depends on t, since the load p(x, t) may feed 

sufficient energy into the system to allow it to reach another 

critical point. 
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Chapter IV 

Buckling of an Imperfect Column on a Nonlinearly Elastic Foundation 

Imperfection Sensitivity and Postbuckling theory have bee n 

the subject of extensive literature in recent years [ 4], [15]. To 

show that the ideas discus sed in Chapter II are applicable to 

problems of enginee ring interest, consider a thin uniform column 

with certain imperfections, resting on a nonlinear e lastic foundation, 

subjected to axial loads. We want to find asymptotic expansions 

for the buckling load as a function of the imperfection amplitude. 

A similar problem for an infinitely long column has been tr eated 

by Amazigo , Budiansky and Carrier (3], w h ere deterministic and 

random imperfections were studied and the expansions derived 

were conjectured to be asymptotic. The more general r es ults 

g iven h ere for deterministic imperfections reduce to results of [ 3 ] 

when specialized to their problem, even though w e consider a 

column of finite length. The method used h ere includes a proof 

of the asymptotic b ehavior of the bucklin g load as a function of 

the imperfection amplitude. 

W e first cons ider a generalization of the problem for the 

buckling of a column. This is the bounda r y value problem 



(l. 1) a) 

where 

(1. 1) b) 

-132-

d4 w d 2 w 
dx4 + g(A., T, dxz) + f(w) = 0 

w(O) = w(-rr) = 0 

g(A., 0, 0) = 0 for all A. 

ag I 
a(A.,T,y) =G(A.) 

y y=T=O 

f(O) = 0 

Qf_(O) = F = constant ay 

X E (0, 1r) 

The functions g(A., T, y) and f(y) are also allowed to depend 

on x for xE[O, 1r], are at least three times continuously differen-

tiable in A., T, and y, and are continuous in x. The numbers F 

and G(A.) do not depend on x. Clearly (A., T, w) = (A., 0, 0) is a 

solution of (l.la) for all A. as a consequence of (l.lb). 

A solution (A., T, w) of (1. 1) will be nonisolated if there are 

nontrivial solutions to the linearized problem: 
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(1. 2) l\J(O) = l\J(or) = 0 , 

~ ~ d x z ( 0) = d x z (or) = 0 . 

The trivial solution (}..,T,w) = (}..,0,0) of (1.1) will b e a nonisolate d 

s olution w h e ne ve r }... is such that 

dx4 + G(}..) d x z + F<j> = 0 

(1. 3 ) 4> (0) = <1> (or)= 0 

d2<!> 
= dxz (or) = 0 

has nontrivial s elutions. These yield the bifurcation points for 

(1.1) with T = 0 . Nontrivial solution pairs of (1. 3) are (<\> , }... ) 
n n 

w here 

<!> (x) = A sin nx Az = 2 
n or 

(1. 4) 

G(}.. ) nZ + 
F n = 1, 2, · · • , = nz n 

provided s u c h value s of }... e xist. If (1.1) d escribe s a column, the 
n 

paramete r }... corresponds to the a x ial loading, and the 11 buc kling 

l oad" w ill b e the smallest bifurcation value }... for which (1. 4) i s 
n 
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valid. To carry out the required analysis, it is not nec es sary to 

know any details about G(X.) except that X.. -=f. X.. for i -=f. j. · Additional 
. 1 J 

information is used only when we are specifically interest e d in 

finding the buckling load for a given imperfection. 

The procedure is by now clear . We seek solutions of (1. 1) 

-(1. 2) in the form 

(1. 5) 

where 

(l. 6) 

w(x, €) = E¢0 (x) + E2 v(x,E) 

ljJ(x, €) = <l>o (x) + € x(x, €) 

X. (€ ) = X.o + € f.L(E) 

T(€ ) = €2 rj (E) 
' 

1r J v(x, E) <l>o (x)dx = 0 , 
0 

'IT 

Ia x(x, €) <Po (x) dx :::; 0 • 

' 

, 

Here X.0 = X. , <Po (x) = <I> (x) are a solution of (l. 4) for some n. n n 

Substituting (1.5) into (1.1), (1.2) gives equations for v(x,E) and 

X (x, E) of the form 
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~:J + (n2+ ~2 ) ~:; + Fv = - E! [ g(}.., T, ~2x':) - (n2 + ~2 ) ~x': 

(1. 7) 
+ f(w) - Fw] , 

v(O) = v(n) = 0, 

(1.8) 
x(O) = x<n) = o, 

d2 X d2 X 
d~ (0) = ~ (n) = 0 • 

Of course (1. 6) is also required to hold. Once again the Fre dholm 

alternative theorem is used to imply that (1. 7) and (1. 8) have 

solutions only if 

(1. 9) f n ( d2 w F d 2 w ) g (}.. T --) - (n2+ -) -- + f(w) -Fw "' (x) dx = 0 
0 • ' dx2 n 2 dx2 ~n 

(1.10) 

Immediately we notice that the natural iteration scheme will 

involve solving a boundary value problem of the form 
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y(O) = y(1T) = 0 
' 

(1.11) dz y dzy 

dxZ (0) = dx2 (1T) = 0 
' 

1T 
J y(x) sin nxdx = 0 . 

0 

Since (1. 11 ) involves a fourth order differential operator, the mech-

anics of solving (l. ll) are not the same as in Chapter II. However, 

use of a gene raliz ed Green's function q (x,S,) [6] e nables us to 

carry out the analysis n ecessary in this problem. The generalized 

Green's function appropriate for solving (1. 11) satisfies 

(1.12) 

1T 

2 . . ., 
-- s1nnxs1nn'=', 

1T 

1 tj (x, S,) sinnxdx = 0 , 
0 . 

d3q 
= lim (ix3 (n, S,) and 
n-s. 
n>s 

d3q 
= lim dr (n, s,) 

n-s. 
n < s 

Knowing the Green's function, the solution of (l. 11) can be written as 
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1T 
(l. l3) y(x) = l g (x, s) h(s)ds ' 

0 

and y(x)EC4 [0,1T] provided h(x) EC[0,1T]. Furthermore, bounds for 

y(x) and its first two derivatives follow easily from (1.13) as 

(1.14) 

where 

(j. = max J 1T I J- q ( x' S) I 
1 XE [ 0 ' 1T] o dx i d So ' i=O,l,2. 

In the case that n=l, F = 1, the Green's function takes the form, 

(1.15 ) 
1...::..:!!= ~ -( 2 1T )xcos s cosx + ( Z1T )coss sinx, 0 .:::::: x < s , 

1~·( )z zl z3) · r· s . - x -1T + s -- 1T - - Sln'=> SlnX +-cos S SlnX 
41T 3 2 21T 

S x-;r 
- 2 1T(x-1T) coss cosx + ( 21T)sin s cosx, s < x .:::::: ;r . 

The Green's function can be easily calculated for other cases, but 

the specific form is not important in our discussion. 
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The proof that (1. 5) is a valid form of the solution of (1. 1) 

is only slightly different from the proofs given in Chapter II. The 

differences arise from the fact that (1. 1) is a fourth order equation 

with nonlinearity involving second derivatives, and are r e solved by 

the existence of a Green's function. To formulate the contraction 

mapping we introduce the set of functions 

(1. 16) 

where 

and the real interval 

(1. 17) Jk ={nllnl~ K} . . 

Using the identity 

(1. 18) 
1 dy 

y(b) - y(a) = (b-a) ~ dx (sb + (1-s)a) ds , 

we can manipulate (1. 7)- (1. 10) into a form in which a mapping T 
E 

is naturally suggested. The mapping which results is 

TE (v, x. f.l, 11> = (v, x. f.l, 'if> 

where 



(1.19) 

(1. 20) 

(1. 21) 

and 
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( 
1 d2w ) d2t!J 

+ Erj J g (X., ST, d 2 )ds --
2 o TY x dx 

1T 

= J R.1 (v , X• f-L, r} ;x)sinnxdx , 
0 

1T 

+ (sinnx +ev)
2 JIJif . (stw)sdtds]sinnxdx 

0 0 yy 

= J R.2 (v, X• f-L,TJ, ~; x) sinnx dx , 
0 
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77 d2 ljJ 
x(x,E) =fa q(x,z;,)[-~ dxzfa1

gA.y(A.0 +€sfJ.,O,O)ds+f<. 1 (v,x,fJ.,1Jis~dl;,. (1. 2 2) 

Of course this mapping generates a sequence {un} by 

n+t 
X 

~ We now see why it is necessary to include II dr 11
00 

in the 

definition of ~ (1. 16). If T is to map U into U 
E dz K K 
dZ v X 

of dxz and dxz in order to 

for some K > 0, 

we must have estimates estimate certain 

parts of (1. 19)-(1. 22). The estimates (1. 14) are necessary to 

guarantee that v(x, E) and x(x, E) are in BK! f or some K > 0. 

The details of finding K > 0 and Eo > 0 so that T is a con
E 

traction mapping of UK into UK for 0 ~IE I ~ Eo are the same as in 

the previous chapters and will not be include d here. To complete 

the proof that (1. 5) is a nonisolated solution of (1. 1), we need to 

{un} justify taking the limit of the sequence as n- oo. 

By induction it is cle ar that UnE .BK for all n ~ 0. Furthe r

more the real sequences {fJ.n} and {17n} converge, and the sequenc e s 

{un} and{x} conve r ge in C 2 [0,1]. In t e rms of the s e que nce {un} 

we can rewrit e (1. 21) and (1. 22) in the form 

(1.2 3 ) 
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and 

Both the left and right hand sides of (1. 23) and (1. 24) are uniformly 

bounded for all n. Therefore, the Lebesque dominated convergenc e 

theorem justifies taking the limit as n- oo. 

Now that we know that (1. 7)- (1. 10) have solutions which are 

uniformly bounded for lEI~ Eo, we can estimate f.!(E) and T](E) in (1.9) 

and (1.10), and know that the estimates are asymptotically valid for 

E - 0. Assume that there are integers p and q such that 

(1. 2 5) 

and that 

(1. 2 6) 

(X.,T,y)l 
T=y=O 
X.= X.n 

= 0 2 ~ k ~ p-1 ' 

2 ~ k ~ q-1 ' 

rr aPq J --(X. , 0, 0) (sinnx)p+t dx =1= 0 
o 8yp n 

f
1'f 8qf q+I 
-- (O)(sinnx) dx =I= 0 . 

0 8yq 

Then, keeping only the lowest order terms in (1. 19), (1. 20), we 

have 
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P P -2 n aPq 
(-n2) € J . p+I 

= ( -l)l --(A ,O,O)(As1nnx) dx 
p . o ayP n 

(l. 27) 
q-2 7r q 

E J a f q+I p-I q -I 
+ ( -l)l --(O)(Asin nx) dx + 0(€ ) + 0(€ ) 

q . o ayq 

and 

(l. 28) 
P P -2 n aPg 

(-n2
) € J p+I = -

1 
--(A ,O,O)(Asin n x) dx 

p . o ayP n 

q -2 7r aqf 
€ J q+I p-I q -I - -- -- (O)(Asin nx) dx+ 0(€ ) + 0(€ ) 

q! o ayq 

We can eliminate !J.(€) from (1.28) to get 

(l. 2 9) 
2 p p-z l 7r aPg p+I q-1 7raqf q+I . 

(-n) € 
1 

(p- ) J --(A ,O,O)(Asinnx) dx+-
1 

J--(O)(Asinnx) dx 
p. 0 a p n q . 0 !:> q Y uy 

If we substitute (l. 27) and (1. 29) into (1. 5) we now know that the 

resulting approximations of A(€) and T(€) are asymptotic to the 

exact solution as €- 0. We can use these approximations to find 

A = A( T) approximately . 

If we were to continue further without making additional 
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assumptions about p and q, we would be forced to consider the 

three cases p < q, p = q and p > q. Rather than maintaining this 

full generality, we will examine the specific problem treated by 

Amazigo, Budiansky and Carrier [3]: 

(1. 30) 

where w 0 (x) is the shape of the imperfection. For this example, 

g(X., T, y) = 
(1. 31) 

f(w) = w-w 3 • 

Using (1. 31), it is easy to see that q = 3 and p = oo and that (l. 27) 

and (l. 29) reduce to 

(1. 3 2) 

n(E) = 
7f d2 

2.[2;>.. J wo . 
n 0 dx2 s1nnxdx 

According to (1.4), A.n = i(n2 +n~), so that (1.32) combined with (1.5) 

imply that 
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A.(E) = l. (nZ+ _l_) z nz - _9_Ez 
4nz7r + 0(E 3 ) 

(l. 3 3 ) 
3nz 1 

T(E) = -E3 
7r dzwo 

+ 0(E 4 ) 

.[2-i (n4 +1) 
~ d x z sin n x dx 

The integral sinnxdx is proportional to the nth 

Fourie r component If 

00 

w 0 (x) = ~ wk sinkx , 
k=I 

7r dz wo ., 

1 - .!t:.1L then 
0 

dxz sin nx dx = 2 wn Using this information in (1.33) 

we can solve for A. as a function of T, finding that 

(1.34} 

For n = 1, this is exactly the relation found in [3). However now 

we also know that this solution is asymptotic to the exact solution 

as T- 0. 

Since the generalized Gree n's function q(x , ~) exi s ts and can 

be calculated for this problem , one could find additional terms of 

the expans ion (1. 34), by calculating one or more of the iterat es 

generated by T . After some straightforwa rd calculations, one 
E 

fi nds 
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(1. 3 5) <jl(x E) = / ~ sinnx-~ 1 
sin3nx+ 0(E 4 ) , 

' 'I 1T nfu 8n2 (9nLl) 

X. (E) 

provided wn -4:- 0 , where wk is the kth Fourier coefficient of the 

imperfection w 0 (x). This can now be used to find X.= X.(T), and 

gives 

(1. 3 6) 

where 

2 
1 .., 1 9 TJ 

X.(T) = - (n<-+-)-- (-) 
2 n2 4n27T To 

1 
w 

n 

As a final comment, it is clear that one could treat mor e 

gen eral equations of the form 
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(1. 3 5) 
d" w d 3 w dw d2w 

a(x) dxZ + b(x) d:x3 + g(X., T, w, dx, dxz) = 0 . 

where g(X., 0, 0, 0, 0) = 0 and g(X., T, 0, 0, 0) =I= 0 if T=t-0, whenever the 

appropriate generalized Green• s function exists. The proof of the 

existence of a family of nonisolated solutions would be unchanged, 

since the nonlinearity involves at most the second derivative of w, 

which is easily estimated in (1.14). 
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8 

unstable 

/ 

8 

stable 

~ 

fLo 

FIG. I. Plot of fL(8) in (ll.5.13) for ~~fLo,wo),l/1:) > 0, 

with stability indicated when . (l/lo, l/1:> > 0 and when 

y = 0 is the principal eigenvalue of (ll.6.3) . 
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u 
·. 

Case (i) = sgn(r) = sgn(T) 

u 

Case (ii): sgn (r) =- sgn (T) 

FIG. 2. Solution branches of (ll.l.l) for r sufficiently 

small when <fuu(Ao,O,O) 4>,
2
, <~>,*)·<\u(Ao,O,O)ck,,ch,*) > 0. 

T = <fuu(Ao,O,O)cp;,ch,*)·(!,(Ao,O,O),¢,*). 
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· .. ·· .. •. 

J········ ... 
'·. "'· 0 ,~ 

oOO \~ \ 
o o o o o o o • 1\o 

Cose(i) : sgn(T) = -sgn(T) 

· . .. ··. · .. ·. ··· ... 
\ "'"' ·. ~~ 

•• 'il~ ·. -.;:~ 
~ ~' \ '0::::: 

0 0 0 0 0 ,: \ 
ooo •1\o 001 // /_/ 

.... 
.. ·· 

.·· 
.. ···•······ 

Case (ii): sgn (T) =- sgn (T} 

FIG . 3. Solution branches of (H.I.I) wnen fuu(Ao,O,O) = 0 

and <fuuu(Ao,O,O)cp~cp:)·(!AU(Ao,O,O)cPo,cp:) > 0 for T 

sufficiently small. T = (!uuu(Ao,O,O)ck,~c/>:)·(f,(Ao,O,O},cp:). 



u 
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.. 
.. ········· 

... 
.. , 

.: , 
:, 

..... ·( ... -
\ !/ 
Ao· 

Case (i): sgn(T) = sgn(T) 

Ao~\ 
\\ (. .. , 

·· .. '-.... ·. ---·· ... ·. ··· ... ·. ·· .. 
Case (ii): sgn (T) =- sgn (T} 

FIG. 4. Solution branches of (n.U) when fuu(Ao,O,O) = 0 

and <fuuu(Ao,O,O)<h,~ c/t)·~AU(Ao,O,O)cp0 ,<k,*) < 0 for T 

sufficiently small. T = (!uuu(Ao,O,O)<h,~{)·(!T(Ao,O,O),ck,*). 
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KEY for FIGURES 2,3, and 4: 

.............. Bifurcation solution when T = 0 . 

---- Locus of nonisolated solutions - Theorem ll-3-1 

Extension from nonisolated solution for 

T fixed - Theorem ll-5-1 

ooooooo Minimal positive and maximal negative solutions 

(included only when ck,<x> > 0 for x E D) 

- Section II- 7 

===== Solution branches with no nonisoloted 

solutions - Theorem fi-8-1 

U = <u(x), fAu(Ao,O,O} {<x>) 
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8 

FIG. 5. Amplitude Q = k wk(8) for equilibrium states 

of a perfect column ( T = 0). 
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y 

04 03 02 

c 
2 2 

y = Q i'TI 

I 

1branching point 
I 
I 

o, 02 

FIG. 6. y= F(8,0
2

) and y = 0
2
1r2 for 8 fixed and Tj < r 2. 

2 2 2 Points of intersection are solutions of Q = T F(8,0 ) 

given in (m.2.21) . OJ =r~2(2f8- j 21r
2L 
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FIG. 7. y = 0(8, T) for T = 0 (compare Figure 5) 

and T ~ 0 fixed. The loci of branching points 

are also shown. 
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w. 
J 

FIG. 8. Level curves of potential energy for the 

perfect column ( T = 0) with two modes present 

in the motion ; i > j . 
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W· 
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FIG . 9. Level curves of potential energy 

w. 
J 

for an 

imperfect column (r ~ 0) with two modes present 

in the motion; i > j . 
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