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ABSTRACT

A method is developed to calculate the settling speed of dilute
arrays of spheres for the three cases of: I, a random array of freely
moving particles; II, a random array of rigidly held particles; and
III, a cubic array of particles. The basic idea of the technique is to
give a formal representation for the solution and then manipulate this
representation in a straightforward manner to obtain the result. For
infinite arrays of spheres, our results agree with the results previ-
ously found by other authors, and the analysis here appcars to be
simpler. This method is able to obtain more terms in the answer
than was possible by Saffman's unified treatment for point particles.
Some results for arbitrary two sphere distributions are presented,
and an analysis of the wall effect for particles settling in a tube is
given. It is expected that the method presented here can be general-

ized to solve other types of problems.
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I. INTRODUCTION

When a collection of particles is allowed to settle under the
action of gravity, it is observed experimentally that the mean settling
speed of the cloud depends on the concentration of the particles, as
well as the size, shape, and excess weight of each particle. If the
dimensions of the cloud are less than the size of the bounding contain-
er (Figure 1), the settling speed increases as more particles are
added to the cloud; while if the cloud is uniform throughout the con-
tainer (Figure 2), the settling speed decreases with increasing particle
concentration.

The mechanism for this can be seen by considering the two
types of interactions between particles. A settling particle causes a
downward velocity in the neighboring fluid, and, as a consequence,
any particle in that region will experience an increase in its settling
speed. For Stokes flow, it is known that this increase is asymptoti-
cally proportional to —é:' where #+ is the distance from the particle.

This is a direct particle interaction.

Figure 1. Non-uniform Figure 2. Uniform dispersion.
dispersion,



_2-

On the other hand, when particles are sedimenting in a closed
container, the net flux of fluid plus solid must be zero through any
fixed horizontal surface by conservation of mass, so that the down-
ward flux of each particle and its neighboring fluid is compensated by
a diffuse return flow that is spread throughout the fluid. This return
flow is due to the additional pressure gradient in the fluid caused by
the presence of the particle, and it is an indirect particle interaction.

It is evident that for points near the particle, the direct inter-
action is dominant. Hence, in order to preserve zero net flow
through the instantaneous horizontal plane of the particle, this indi-
rect interaction must be dominant for distant points in that plane.

Thus, for the cloud of small dimension, we expect the di-
rect interactions are dominant, and the speed of the cloud to increase
as particles are added. However, when the dispersion is uniform
throughout the container, there is a decrease in settling speed be-
cause there are many more particles far away than near any given
particle. (This statement will be made rigorous later. ) This phe-
nomenon is known as ""hindered settling.' It is necessary that the
concentration of the dispersion be uniform for this effect; otherwise,
small regions of high concentration will tend to behave in the same
way relative to regions of low concentration as a small cloud behaves
relative to the surrounding fluid.

Hindered settling has been observed for particles of all
shapes and sizes, and for a range of Reynolds numbers from 10'4 to
103 [ Richardson and Zaki (1954)]. (The high Reynolds number ex-

periments are done by fluidization rather than sedimentation. ) The
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associated theoretical problem is to predict the decrease in settling
speed as a function of the concentration of particles. This decrease
will be measured relative to the terminal velocity, uo , of a single
particle falling in an unbounded fluid. We assume that the fluid is in-
compressible, and that the particles are equi-sized spheres large
enough not to be affected by Brownian motion. We also assume that
the Reynolds number is small enough that inertia forces can be ne-
glected, and that the Stokes equation may be used. The dependence
on the volume concentration, € |, may be complex, so we only look
at the limit with ¢ small. As a final assumption, the effect of the
wall is ignored.

It is this last assumption that causes mathematical difficulty,
for now we are considering a uniform dispersion in an infinite fluid,
with the condition that the average flux through any horizontal sur-
face is zero, or equivalently, that the mean velocity of the disper-
sion (fluid plus solid) is zero at any point. Attempts to sum the di-
rect particle interactions lead to divergent sums, because the fluid
velocity due to a particle of radius O moving at speed uo asymp -
totically decays like WM . Similarly, the diffuse return flow
from a single particle,which was well defined in a bounded container,
becomes infinitesimal in the unbounded fluid.

Three different types of methods were developed to cope with
this problem. The first method is the cell method (Figure 3) where
it is assumed that each sphere is surrounded by a region of fluid and
that the effect of the other particles can be represented by some

boundary condition on the surface of the cell. The sizc of the cell is
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b

usually taken as proportional to the mean interparticle distance, n
where n  is the number of particles per unit volume. A special case
of this method is obtained when it is assumed the particles are in

some regular pattern, for instance, a cubic array.
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Figure 3. The cell model of interactions.

The second method is to assume the surrounding particles act
as a porous medium, and so consider the motion of a single particle
in a porous medium. This was Brinkman's idea (1947), and it has
since been updated by T. S. Lundgren (1972).

The third method is to directly use statistical analytical meth-
ods on the dispersion, and to manipulate the variables in some sys-
tematic manner in order to obtain convergent results. This method
was used by Burgers (1942), Pyun and Fixman (1964), J. B. Keller
(unpublished), and Batchelor (1972).

However, these three methods of solving the same problem
gave qualitatively different results. To leading order, they predicted

4
that the settling speed was hindered by quantities proportional to ¢ 3,

Y.
c’® , and € respectively. There was disagreement in the litera-
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ture as to which theoretical result was correct, and it was not until
the last few years that this problem was resolved. The correct
answer for this sedimentation problem is the order ¢ result ob-
tained by the third method, and it is now understood that the other
two methods inherently make incorrect assumptions about the settling
of freely moving spheres. The assumption made by the cell model is
that the spheres are widely spaced, and hence there can be no close
interactions between spheres. This is not true for the slow sedi-
mentation problem. The more subtle assumption made by the porous
medium model is that the spheres may not move relative to each
other; this model actually describes the flow past a fixed random ar-
ray of spheres.

Thus, the physical sedimentation problem creatled three prob-
lems of mathematical interest, namely, the settling of a random ar-
ray of freely moving spheres, and flow past both a cubic array and a
random fixed array. The known solutions for these threce problems
are

Random Free Array (statistical model), Batchelor (1972)

U= U(1-ESSe +...)

—

Regular (Cubic) Array , Hasimoto (1959)

U= U ()= 176"

Random Fixed Array (porous medium model), Childress (1972)

U = L{_o(p{%cv"-%chﬁa + O(cJ)

+ Cc +)

where each result is expressed in the reference frame where the net

velocity of fluid plus solid is zero. In each case, the mean settling



-b-

velocity, u , is given in terms of the volume concentration, ¢ , of
particles, and the terminal velocity, ’Q.o , of a single sphere in an
unbounded fluid.

These three results were obtained by different methods, and
in order to understand how these problems were related to each
other, it became desirable to have a unified method that would solve
all three problems. Saffman (1973) used a Fourier transform tech-
nique to do this and derived the |76 Cl/a in the cubic array and the
4—_-_.% Q,/a' term in the random fixed array, and showed that the lead
term in the free array was O(C—) . He pointed out that the random
fixed array is basically a different problem than the other two be-
cause, in the former case, the drag force on each particle is differ -
ent, whereas the drag force is the same for all the particles in the
other two cases. Saffman also showed the difference between the
random free array and the cubic array was kinematical in nature.

Previously, Batchelor (1972) had noted that the difference between a

cell model and his statistical model was that the cell model assumes
]

a characteristic length for the problem, namely, N > , that
should not be there. Lundgren (1972), using a model for porous in-
terfaces developed by Saffman (1971), showed why the random [lixed
array was more hindered than the random free array. His method

is interesting in that it treats a single sphere as surrounded by a
medium with some average propertics, while other workers consider
the sum of individual sphere interactions. A brief summary of his

method is given in Appendix A.
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However, the Fourier transform method used by Saffman cannot
be easily extended to find the order ¢ terms in the settling speeds,
and the major thrust of this thesis is to develop a method that gives
these order ¢ (and higher order) terms. 'This method is described
in Chapter II. Although we will only use it to solve these settling speed
problems, it is expected that this method can be extended to solve a
wide variety of problems. For example, Batchelor (1974) has described
how the statistical model he used for sedimenting spheres can be used
to find the transport properties of two phase materials with random
structure. These properties include electrical conductivity, magnetic
permeability, and shear viscosity, just to name a few. We expect the
method given in this paper can be used in all these problems. In addi-
tion, this method can solve problems with sirong particle interactions,
as in the random fixed array, that cannot be done by Batchelor's method.

In Chapter III we find the settling velocity of a random [ree ar-
ray of spheres, and our result agrees with Batchelor's result. 'The
method makes it easy to sct up the problem for solution, and it is
found that Batchelor's concept of the "mean deviatoric siress'’ in the
fluid is not needed. Furthermore, we treat all the particles simultane-
ously, and avoid all the arguments of treating N particles and letting
N — oo

Chapter IV describes the flow past a random fixed array of
spheres, and our result agrees with that obtained by Childress. The
method involves truncating a hierarchy of equations with the approxi-
mation proposed by Saffman, and solving the resulting integral equation

to obtain an implicit solution amcenable to iteration,
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In Chapter V we consider the settling of a cubic lattice of
spheres. The main difficulty in this problem is summing the resulting
triple infinite series. A simple method to do this using the mean
value theorem is given here. We also obtain, for an arbitrary lattice,
a sufficient condition for the coefficient of the order ¢ term to be
equal to one. While our solution agrees with Hasimoto's solution, the
relation between the two is not trivial, and this difference is discussed
at the end of the chapter.

Chapter VI gives some results for arbitrary two sphere dis-
tribution functions, and it is shown that simple relations hold between
the results for different distributions. We also demonstrate that a

4
sufficient condition for ¢ 3 hindrance in e¢ither the free or fixed

)
arrays is that no two particles be closer than a distancec of order n« /3
In particular, this means that any model where the particles are ar-
ranged in a quasi-regular manner, e. g. a cell model, will exhibit a
C'/3 reduction in settling speed. It also implies that strong inter-
particle repulsion will have a large effect on the settling speed.

In Chapter VII we consider the sedimentation of spheres in a
cylinder, and estimate the wall effect on the settling spced in terms
of the motion of a single particle in a tube. The theory predicts that
the wall should slightly decrease the ¢ dependence of the mean
settling velocity, and an experiment is proposed to test this prediction.

Finally, Chapter VIII reviews some of the experiments that
have been done on the concentration dependence of the settling speed,

and it is concluded that none of the experiments has adecquately tested

the theory.
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II. FORMULATION OF THE PROBLEM
For slow viscous motion in the dispersion, the appropriate

equations of motion are:

._/uvl}_c + Vp =0

(2. 1a)
V-u = O (2. 1b)
with
ol ot o
u=V + 0% (@-r*) on |r=r*|=a . (2.2)

Thus, we want to satisfy the no-slip condition on the surface of each
sphere o< with center at L‘“ and radius @ . We are assuming the
""zero Reynolds number'' Stokes equations are valid, which is equiva-
lent to stating that all significant interactions occur at a distance less
than some characteristic length, b4 , where

Re « 1 .

Here, we will use the reference frame where the mean speed
of the dispersion (fluid plus solid) is zero, although other [rames of
reference are also useful, e. g. the frame with the spheres held fixed
(flow past an array). It is simple to translate results between refer-
ence frames, so we consider only the first reference frame here. For
the random free array we specify the excess weight of the particles,
and find the mean speed of the particles. For the random fixed array
the velocity is given, and we must find the average force per particle.
For the regular array, either approach is micaningful.

Following Saffman (1973) we replace the particles by multipole

distributions of forces at the center of cach particle, and suppose that
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equation (2. 1) holds throughout all space. Then (2. 1a) becomes, for

.th
the i component,

_ﬂ,V2uL+ JLP =§{F2“J(L‘-‘t‘~') ~+ F“j“&\js(f"t”) “’} (2.3)

Here, Greek superscripts refer to particles and the subscripts refer
to coordinate axes. The summation convention is used for subscripts,

and the simplified notation

J
%= o
¢
is employed.
The F 's are determined by satisfying the no-slip boundary
conditions (2.2), and are related to the forces and moments on the par-
oL ol
ticle; for instance, the drag on Di and torque Ti acting on particle

o o«
X are —F‘; and -eajk Efk , respectively. The excess weight of

particle o¢ is given by

F>= %Trcf(ps—e)gz (2. 4)

2

where Ps and p are the densities of the sphere and f(luid, a is
the particle radius, and g is the acceleration due to gravity.

§1. Results for a Single Sphere

For a single spherical particle settling in an unbounded fluid,
the terminal velocity uo is found by equating the excess weight and

the drag force,

F¥=-D = ¢Tap W (2.5)

which implies
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U, = %/%T(PS'(")% (2. 6)

It is known that for a single particle settling without rotation the no-
slip boundary condition is satisfied by choosing

a

Fg‘ = 2 ik (2.7)

with the corresponding solution valid everywhere outside the particle:

B (& o ny)+ & o (%4 _3nt -2 5.50)
™ (p) = a}-‘ —ff T + 24T 3 3 bs 3% )] (2. 8)
- ! .E.SL + -gf: Faé\(h) (2.9)
p(oy = 7= 3 e J 4 T ’

where pr is measured relative to the center of the particle. This
solution may also be written in terms of the Stokeslet Stj(t) defined

by

“ BT (2.10)
Then (2. 8) becomes
2
w(r) = F5;e) + % o* F Syte) (2.11)

The Stokeslet is the Green's [unction or fundamental solution of the

equation in the sense that the solution u(r) of
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—uVu + op = F Se-r¥)

-

V-u =0

u—~ O as |[p-r¥—> oo

is just

u,;('_") = Es‘j(t“t ).

When a finite number of particles are settling in an unbounded
fluid, the velocity of each particle can be found by superposing the
single particle solutions, using Faxen's laws, and adjusting the F s
in order to satisfy the boundary conditions. This procedure will be
illustrated by considering the settling of two particles in an unbound-
ed fluid, and it will be done in some detail because it is the basis of
the method for infinite dispersions.

§2. The Settling of Two Distant Spheres; Faxen's Law
g p

It is desired to find the terminal settling speeds of two identi-
cal spheres with centers instantaneously located at !. and !:L
(where l.{l_’!i |2.Q,o.. so the spheres do not intersect). We know
that each particle has the same excess weight F; , and that the

equations of motion are
. h
—u VU, + %P =n5{ﬁ S(e-4.) + F,'9;d(c-4n) f..1
V'u = 0,

ob

(2.12)

1_{"90 at

If the particles are far apart, a good first approximation to
the particle velocities _\_/, , Y'-'L is that each moves as if it were set-

tling alone in an unbounded fluid. Thus, we take



L = uo + V; (2.13)

-

4 1
We assume that y, and \_Z:z are small relative to -u.o , so the

first approximation to the F 's is given by the sinpgle particle solu-

tion
n SPF n’ se o&

(2. 14)
other F 's small (except the lead term FL )

since then we have

U= B0 + il Gy (erd) for lrdlce

To proceed further, we need to know how well the boundary condi-
tions are satisfied -- in particular, we need to approximate the
movement of each sphere.

Suppose that a fluid has velocity U(X) in the presence of
some boundaries, and then a rigid sphere replaces a spherical mass
of fluid with center X, . The presence of this sphere will cause
adjustments in the entire flow field. Faxen's laws state that if the
other boundary conditions are disregarded for the moment, the

translation _\_/ and rotation A of the sphere are given by:

m

= GTT/AQ.(\_!" [1_1_,()_()]5:!’) _/“WQBEVQE(@] . (2.15a)

1’ = 31r/.,,a3(__(_)_ —--:ll—[Vx 15.(5)]52,_!0) (2. 150)
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where E is the force and T is the torque exerted by the sphere on
the fluid [Happel and Brenner (1965)]. This assumes the new flow
field with the sphere present will be the sum of W(X) and the velocity
field created by the sphere in the absence of other boundaries. In re-
ality, this sum will not satisfy the other boundary conditions, but, if
the resulting error on the other boundaries is small, Faxen's laws
give a good approximation to the action motion of the sphere.

In the case we are considering, where gravity is the sole ex-
ternal force, there is no torque exerted by the sphere, and the body
force is simply its excess weight. Hence, I = Q , E = 611’(1/4.1_40 ,

and Faxen's laws become

V u + ['U-(")] + ——[sz()_(_)] (2. 16a)

n =+ [ x -g,(!)] (2. 16DL)

—— 2 Z:!(_o .

However, there is a more natural way to interpret Faxen's
laws when one considers only the multipole forces exerted on a fluid.
Suppose the exact solution for the fluid velocity w(x) in the presence
of a number of spheres is known, where all the boundary conditions
are solved exactly. Then in the neighborhood of one particular sphere
(which is represented by a multipole series), the velocity field
has a singular part from the sphere's multipole representation, and a
regular part, v(x) , from the contributions to w(x) from the
multipole representations of the other spheres. We now interpret

Faxen's law with the regular part of the local velocity field V(X) rec-
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placing (x) in the above equations (2. l6a), (2. 16b). Then, by

definition, in the presence of the sphere, all the boundary conditions
are satisfied exactly. Thus, Faxen's law gives the exact translational
and rotational velocities of a sphere in terms of the regular part of
the velocity field near the sphere.

Now apply Faxen's law to the two sphere problems. Consider
sphere 1 first. The approximate velocity field w(r) that has been
computed so far is the sum of the two single particle solutions:

witer =5 { F;S4(r-2n) + Fogm 39,5 (2~ 4.)]

n= 1,2
The regular part of the velocity field near 2. , the center of sphere

1, is defined as:
1
vi(esd) = w (o —{ F S e-4) + Fy JLSLJ-(E—!.)+...},(2. 17)

which, in this case, is

SP
G(0) = B Sy(e-0) + Bl 32,504
The X. as argument of V, means we have eliminated the singular
part of the flow from the spherec at _g, . Using Faxen's laws (2. 16),
the motion of sphere 1 is given by:
- . Q 2
\/, - uoz + Vg(!a)!n) + "g[v Vg(rjgl)],:_;x

¢ vy

(2.18)
£, = Ji[é"-ikajv"(ti&)]::&'

r
In order to simplify the algebra, we note that for iy large,

F, D) ~ U5
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while

P 3
Eﬂipalémsij(‘:) ~ uc(' (%)

so that if the particle centers are far apart we need only consider, to

leading order in % ,

v(r;d) = F 5 (r-4.)
This is commonly called the point particle approximation for the
sphere at X:_ . The point particle approximation is the leading
term in the asymptotic development for I"Eg:'zz‘ small. Using this

approximation in (2. 18) then gives

Yhae Uo‘-‘* F;Sq(g.’ga) + O(@fﬁa)

Q .'Z[e‘Jk F Skm( )] rf, + O(lg:galg)

Thus, on the surface of sphere 1, '[‘-—x.l= o , we want the fluid
velocity to satisfy the no-slip condition,
vu + egkﬂ\j(rk”elu),

and we choose the higher multipoles of sphere 1 to satisfy this con-
dition. The general method for doing this is well known [Lamb
(1932)], namely, expand the sphere's velocity and the fluid velocity
in spherical harmonics about g. , and choose the F 's to match
the harmonic components of the sphere's velocity. Then the known
f 's on sphere 1 are used to compute the regular part of the velocity
near Xa , and the method proceeds iteratively.

When the spheres are close together, convergence of this

method is slow, and other methods are better. Goldman, Cox, and
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Brenner (1966), and Stimson and Jefferey (1926) used bipolar coordi-
nates to find the motion of two neighboring spheres. In particular,
the first paper gives numerical results for the translation and rota-
tion of two spheres in Stokes flow as a function of the relative sepa-
ration and orientation of the sphere centers. It is found that the
relative position of the spheres remains the same for two spheres in
Stokes flow. When more than two spheres are present, there is un-
steady relative motion among the spheres [ Happel and Brenner
(1965)] , and this makes the theoretical problem much more difficult.
The usual approach is to assume the spheres are far apart (so that
the effect of multi-particle interactions is small) and to approximate
the motion of each particle by its single particle motion plus the sum
of its two particle interactions. This is the approximation Batchelor
(1972) used, and we will use, to find the mean settling velocity of the
random free array.

Thus, it is straightforward in principle to solve for the set-
tling velocity of finite number of spheres. The single particle so-
lutions are superposed, and the higher multipole coefficients for
each sphere are found by satisfying the boundary conditions. Ifthe ve-
locity field created by a single particle decayed as fast as "rj‘f,',‘:; ,
the problem for an infinite number of spheres could be solved in the
same manner. However, the Stokes velocity field only decays as
fast as —i_—- ; thus, directly superposing the Stokes solution in the
infinite array case leads to a divergent sum. The method that will
be used for the infinite array is a direct extension of the solution

for a finite number of spheres. The single particle solutions will be
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superposed, and then a homogeneous solution of the equation (2. 1)
will be added to make the result convergent.

§ 3. The Settling of an Infinite Number of Particles

Consider first the point particle problem:
Q
-—/uv u; + agP = % F: S(t-—r_:u) (2.19a)
V-u=0Q, (2. 19Db)

ﬂ?zo) where A; is average of w(r) over all space,

—F__:O ’ (2.20)

We represent the solution in the following form:

o J

W (r) = 2 F—»S‘-J-(l:-r“) - anF;S‘.J.(r-'s)o(g (2.21a)

F (n-17) Fi (r-s;)
P(r)=z o hj 2 ~d o ds (2.21b)
= 4T {r-r¥ v 4T le-s
where
N = number of particles per unit volume,
V = entire region accessible to the sphere centers.

Neither the sums nor integrals converge, but the difference between
a sum and its corresponding integral does converge.

Note this formal solution is the direct sum of the individual
point particle solutions, and a solution of the homogeneous form of
(2.19). It still must be demonstrated that this solution satisfies the
boundary conditions (2.20). Consider the points {_lj“} fixed. 'T'o

—

compute W,

. » we want to average 'ui(r_‘) over all points I



-19.
This means we are averaging over every possible position relative to
each fixed point I . Since there are N particles per unit vol-

ume, this implies

ol
so that v

’U.L(_C) = O,

The same result is true for the mean pressure P([_‘) . The above
form (2. 21) of the solution for the point particle problem was [irst
ased by J. B. Keller (unpublished).

In our method of solution, we need only an expression for u,/r)
to solve the problem, and so the equation for the pressure (2.21b)
will be ignored for the remainder of the paper.

The solution for the velocity (2.21a) may be interpreted in
another way using Saffman's (1973) paper. He Fourier transforms
the equations (2. 19) and applies the boundary condition U;=O by
saying that ‘G,_(k) , the Fourier transform of w,(r) , has no part
proportional to 8(_‘5) . This assures the mean velocity of the dis-
persion is zero. The equation he obtains for ‘{I‘(B) (equation (2.20)
of his paper) is essentially the Fourier transform of the solution
(2.21a) presented here. Unfortunately, while this transform method
works well for the point particle problem, it cannot easily be extended
to the complete multipole problem.

Consider now the complete problem:
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~pu Vi, + 3p = % { FJ-“S(I:—:"‘) + FZ;DJS(Q-H")—P. : }

AL
<
£

i

@)
OJ

u

where the superscripts & are a reminder that different spheres will

in general have different multipole representations. As before, the

solution for W;(r) is written as:
o —
wm =2 F. S, (c-r%) = hj F.S,.(r-g)ds
— 1Y v 9

+§: F:_j;ha‘sg(f*.’:“) - "’jv-F:.'-ﬁ Q‘Sg(f—§)d§_

N _ (2.23)
+ {; Fm agé.nSzj(':—:“) = ”j\,thm %9 S‘J(':'§) s

+ *

where the overbar indicates an average over all particles. Once again,

averaging over I shows T.l‘;= 0 The regular part of the velocity
field in the neighborhood of a sphere center is now easily found by sub-
tracting the singular terms from w;(r)

g

at that point; e. g. near

r=r we have

V;(Eiﬁ) = w(n) — { F;,PS;.J (:—rﬁ) + F;félsg(g—g@) +... }

or, in the form of (2.23),



/e - (2.24)
+Z R, Syfems) = 0 00,8094
+
/
where % means o= ‘B is excluded from the sum. In order to

proceed further, the detailed specifications of the problem must be
known. In the following chapters, the forms (2.23) and (2. 24) will be
used to find the settling speeds of an infinite random array of freely
moving particles, an infinite random array of rigidly fixed particles,
an infinite cubic array, and a random array of freely moving particles

in a tube.
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1II. SEDIMENTATION OF FREELY MOVING SPHERES
In this chapter we consider the sedimentation of a dilute in-
finite dispersion of identical spheres where the translation and rota-
tion of each sphere is determined by the local fluid velocity. The
mean settling velocity of the spheres is found to be

< V> = uo ( | ~ 6.55¢ + Q(c))’ ¢ = volume concentration

of spheres

which agrees with Batchelor's (1972) result. His method, and methods

used by other authors, will be briefly summarized at the end of this

section.

o
We are given that the drag force “F‘Z on each particle is the

same, and that the positions of the particle centers '™ are random

variables homogeneously distributed throughout an infinite domain.

Thus, the equations of motion (2.22) become

Z RS- + B8+

i\

.._./J_ vzu,i <+ ALP

V-u = O (3. 1)

u.:o

[2

We wish to find the mean settling speed of the spheres. This means
that the speed of each sphere would need to be obtained and then the
average speed of the spheres computed. Instead, we will look at en-
semble averages of the positions of the surrounding spheres relative
to a given sphere. It is assumed these two averages are equal, using
the idea that any single realization of the dispersion contains each
possible configuration relative to some sphere in the dispersion.

Ensemble averages arc denoted by the angle brackets ...

Two types of averages will be used; the unconditional average at a
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point, and the conditional average given these is a particle at a point
rﬂ . The latter ensemble average will have a subscript /3 . For

example, let f(r) be a function defined on every particle. Then

<2 F(r9) D> = fF(;i)Pfi)olg
< v

where F(§) is the probability density of the location of particle
centers. For the unconditional average, we take P(§)-_—n , where h

is the (uniform) number density of particles. Hence,

<2 Frd)> = njf“(;)dg, (3.2)
o v

Similarly, for the conditional average we define

<2 Fr)> Ef-f‘(§)ct(§)d§ (3.3)
[ 9 /3 v
and choose the probability density (1‘(5) to have the form:

q(o = n[l - G(s-r#)] (3. 4)
where G(§-l_’j")—’ 0 as |§-—_r_"’|-—> o0 . For example, if we do not
want the other spheres to intersect the sphere at _r_“/"’ , alogical
choice for G(§"I_‘ﬁ) is:

I, ls-rfl<Qa
O, [s-rf12Qa

<§/F(c"‘) >{3 = n JF(§)d§_ . (3.5)

The above choice of G is the one we will use for the conditional en-

semble averages unless otherwise stated. It is a reasonable choice
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provided there are no repulsive forces between particles. If F(r)
does not decay fast enough as r — o0 , the above integrals are di-
vergent. Nevertheless, they will be used in a meaningful way in the
formal representation of the solution.
The velocity of a sphere (chosen to be at the origin) in a par-

ticular realization of the dispersion is given by Faxen's law (2. l6a) as:

\/Lo = Uo‘.+ [+ %—zva)vé(r,'o)]r:g _

Upon taking the conditional ensemble average, we have

(\/:)0-:: Uo,: + ((+ ggva')<v£(_r~_sg)>° (3.6)

2 2
where the notation (l ~+ %; V?(\Q(ij)% = [{|+%V1)<Vi([‘j0)>]':zg

is employed, and we have used the identity

< [V“v‘-(rsg)]tsgz, = [V“<v‘-(rs<2) > | reg

which is true because V‘-(:)-Q) is a smooth function of ¢ near
r=29.
The value of v, (£;0) >° is now obtained by taking an

ensemble average of (2.24), but first we note that

' g
< § Fp %S (e-r9>, = <2 <23, 5,015,

(3.7)

ut

o
(where <FJ'.l % EXELED D, )
since for any fixed r* the surrounding particles take all possible

configurations relative to F* while they take all possible configura-
g L bA P g
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tions relative to Q . From (2.24) and (3.7) we now obtain:
<V (r50)0, = <§/F—:’.Sﬂ.(r-r‘* - n!FS (r-s)ds

+<Z'< %34Sy (- f Fe9S;(r-Yels (3.8)

o

m Jim

+<Z <§;‘>alamsij@-g«>>° = 1 [ B 4090 S5 s
+.

Using the definition (3. 5) of ensemble averages we have

<T'F Sy, = n [ FSte-nds

312 aa

so that

(E/F}Sq(c—[“)z -~ nIFSJ(r s)ds = —-nj 5 (r-s)ds

|§\<¢1a
The last integral is convergent and has the value (valid for |ri€a )
4‘-"- - %
~n F;Si_j(r-s)ds = -—-—-—‘L ~6e + ont* - Tfanr‘. (3.9)
- - a
|§|<Qa- /" (hO sum on ‘.)

Similarly, for the next two terms of (3. 8) we have

TR, 9,8(e-e3, ~ n [ F,,5,(x-)ds

(3. 10)
= < [KF ~ERaS ey, ~n [<Fo 95 (e-sds
131<Qa
where we have used the fact that < F}l) = -F—j‘ . The last inte-

gral of (3.10) represents the net effect of the average Stokeslet deriva-

tives surrounding the sphere at @ , and hence its value is related to



_26-

the derivative of (3. 9). In particular, we have

falS‘-j(l:@)dz = 4 fSLJ(':-@o‘ﬁ )
[s|<2a si<da

with similar relations true for the integrals of higher derivatives of

the Stokeslets. The above steps simplify (3. 8) to read

<V (r;0)> = -—h(F‘S- + <Fy29, +...)‘ISLJ-(:~§)0(§

|3i< A

Te e 3.
+ 2[Ry, ~<Fd] 8 Sy terd >, - 11)

~+

and to proceed further an estimate is needed for the ensemble aver -

ages of the F's.

Since the dispersion is assumed to be dilute, the first approx-
imation to each of the unconditional averages is evidently the single
particle value. In the first part of (3. 11), this assumption is equiva-

S.P.

lent to < Fj!m> xa EI"‘ , since (3. 9) shows the coefficients of

the other unknown ensemble averages are zero when I = 9
This approximation has a maximum error of o(¢) since Fﬂip'
gives an order ¢ term itself, and the average correction to it
from the non-zero second derivative of the regular part of the ve-
locity field is of smaller order.

The other terms of (3. 11) are approximated by relating the
differences in ensemble averages to two particle and single particle

oC

forces. In particular, for cach p , the approximations
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< F‘_ﬂ('_’_u)>°" <th) = FJ_':R(E.() _ EIS.P_

TP S.P

< thm('-‘“»o‘ <Fim? = Fiam (£ = Fip (3.12)

are used, where the superscript T.P. denotes the two particle value
for two spheres in relative position r* in an unbounded fluid, and
S. P. denotes the value for a single particle in an unbounded fluid.
This approximation ignores the effects of many-particle interactions.
This neglected contribution is estimated below.

Consider a finite sphere, ® , surrounded by point particles.
In any realization, the multipole coefficients of o¢ can be written in

o
the form, e.g. for ﬁlm ,

o s.p / ~Y
= ' F.
F;lm FIIM + ZY Jém )
oY g . . L§
where E‘M is the change in F‘“m from the point particle at .

(The point particle approximation for the particles Y gives the lcad-
ing contribution of the stress changes on e from the other finite

particles at _I:Y .) Taking the ensemble average gives:

’ =Y

* S.F. : 3.13
< ‘:jlm>°° = F}Rm + < % Elm >o(, . ( )
Now suppose there is a (point) particle at p . Then

Fom = Fom + Bl v 5/ F 2

Jlm Jd

Taking the ensemble average with both e and @ fixed gives



KBy = Frgm + <Gy + < EXVS (3. 14)

Jim e(,ﬁ Jiém
Combining (3. 13) and (3. 14) gives:

= ﬁ «xY
<F;m.,‘ -< sz> <Fam, +<Y§g "P—<§ oy (315

But the only difference between the last two ensemble averages in
(3. 15) is that (% FJ 2, excludes the possibility of a particle
in a sphere abou: ﬁgﬁ . This happens with probability 8¢ , and
the effect of a particle in that sphere on FJ;:; is nearly F P

Hence,

“:;., —Fpo = <ok %p (V- 8c) (3. 16)

.. “p - TP S.P,
By definition, < FJ-—I.,,‘ >_"P = F}_,m (:“—:”) - F,;lm , and so the
approximation (3. 12) is correct to order €

With the above approximations for the ensemble averages,

equation (3. 11) becomes:

CVele30)5) = ~n F+Z Eélmalam)JSg(r’§)d§.

1si< Qe
(3.17)
+ nj(r—‘ ) - F )a_lS (r-3Yds
151220
4 n f(ﬁv;:'(g) - )ala Si; (r -y + .,
1s{2 da
. TP, SP |
From the two particle problem, Fjl. sy - F. ~ = as |s|~» o0 ,
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so that the second integral above is convergent. Similarly, it is found
that the other integrals in (3. 17) are convergent, and <V (e ;0)>
can now be evaluated. In particular, the value of ( |+ %—le)(VL-(QjQ))o
is desired in order to compute <V‘-°>° from Faxen's law (3. 6). The
first term on the right hand side of (3.17) is simple to compute using

(3.9), with the result

2
aey* -
~n(F+ £ 5V s nds
Is1<2a (3. 18)
— F _
= _ [, +%Tranr‘-%ﬂanr\f“] (no sum on ¢)
G'n’/"a (3 .
a
Then operating on (3. 18) with (l+ %V’-) and evaluating at r= Q
gives
al 2 F;. __ll 1 _1"_ a _ ko3 o ]
(3.19)
=
= -————‘5—("5&):"56“0~_
EMua ¢
To complete the solution of the problem, only the value at
r=90 of

(r+ %Vz){hf[(ﬁfk(§> SRRt aS sy ... ] s } (3. 20)

Is|22a

is needed. This can be found in terms of the numerical results for the
motion of two finite spheres using a method devised by Batchelor (1972).
His argument is presented below in our notation.

Consider two settling spheres with centers instantaneously at 0

and S . The velocity of the sphere at Q is given by Faxen's law
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V(s)—u + [(v+ v(ro)]

Upon representing Vi(rsg) in terms of the multipole expansion of
the sphere at § , we have
TR a2 TP
Vo= U, + [(H—c-v XF}SLj(r—z) + B (99,5,(0-9) +, Oy
Now suppose there were no sphere at O , but the sphere at § re-

mained. Then the fluid velocity at 9 is calculated from the single

particle solution for a sphere with center at 3 , namely

w(0) = [FS;e-9) + Fpr' 9,9, Syte-0]

P, a
Using the relation f';;" = % F; Y this can be rewritten
o FS
. = - .. (- .22
w, (0) [(H 2 v F, §'F 's‘)}:-.-o- (3.22)

Now take the difference of (3.21) and (3.22). This yields

TR 2 ot <»
Vi(§)-ui~(l+%v‘)ugg)=[(l+ -G—V‘X[F () - F, ]643 (r-s) + ..)]r=°(3.23)
The left hand side of (3.23) is known; \,/‘.T'E'S_) is known numerically
from the two particle analysis of Goldman, Cox, and Brenner (1966),
and uo‘-, and ui(g) are known from theory. Upon integrating (3.23)

over all space, the right hand side of (3.23) becomes (3.20), and the



-31-

left hand side was computed by Batchelor to be

“V (s) - Uo,~ (‘*gvﬁW(QﬂAE = -155cWU; . (324

Isizaa

Finally, substituting the results (3.19) and (3. 24) into Faxen's law (3.6)

we have, as the final answer,
<VY> =<¥%, = U (1-655¢+ o), (3. 25)

in the reference frame where the mean velocity of the dispersion is
zero. In summary, the essential features of the method of solution
were to specify the particle distribution in some way, use the repre-
sentation (2.24) for the regular part of the velocity field, and apply
Faxen's law (3. 6). In this particular problem, the bulk of the analysis
was relating the dispersion problem to the two sphere problem. The
methods used by other authors are briefly summarized below.

Batchelor (1972) overcomes the difficulty of the divergent in-
tegrals by choosing quantities that have the same long range depend-
ence as the variables he wants to calculate, and considers only the
difference between them. He finds <V£(Q)Q)>° essentially by consid-
ering <vé(9_'-)Q)>o— <u;(0)> where he knows <%(Q)> = Q . This
amounts to considering the difference of the ensemble averages of
(2.23) and (2.24). Then he calculates <Vzvc-(9)'9] ?, by considering
the mean deviatoric stress in the dispersion instead of merely com-
puting v« v.(2;0)>, as was done here. His concluding two particle
analysis is the one used above.

Pyun and Fixman (1964) expand the sphere velocity Vg and
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fluid velocity Vg in terms of powers of the small number density n .

They keep only the leading term in n giving:

vs = Vs (1) + n f[vs(g:l) ~vg(1)]dr + |
{£}> 2

and

ve = vp() + n [ [yt - vp(0]dde 4,
irliza

where v;(l) =0 is the average fluid velocity, V,(l) is the ve-
locity of a single sphere, VS(Q,|) is the velocity of sphere 1 in the
presence of a second sphere 2, etc. Neither of the above integrals

is convergent, but only the difference V4-Vy 1is considered. Then,

%—w=vu0+n{—fwmﬂd:+jﬂwg%wurmﬂmﬂdg}

oaglel<a I£i2 e
The second integral above is identically (3. 24) of our solution. 'The
first integral is (3. 18) evaluated at £=0 . They did nol use Faxen's

law for the velocity of the sphere, and consequently did not find the
+§Cuo contribution that is obtained from operating on (3. 18) with
( | + _agv?-) to give (3.19). An unusual feature of their solution is
the analysis of a case where the spheres may intersect and together
move as a rigid body, which they used as a model of a polymer solu-
tion.

Finally, J. B. Keller (unpublished) considered the correspond-
ing point particle problem, and using a similar analysis to the one
presented here, arrived at the leading term of (3.9), i.¢., a hindrance
of —-6Cu° . Of course, since the [inite size of the spheres is an
order € effect, the point particle problem cannot give the correct

answer to order ©
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IV. VISCOUS FLOW PAST A RANDOM FIXED ARRAY

In this example, it is assumed that the locations of particle
centers _f:“ are random variables, and the particles are held rigidly,
i.e., they may not translate or rotate. We wish to find the expected
force acting on a sphere in terms of the mean fluid velocity in the ar-
ray. The problem will be solved in the reference frame where the
mean velocity of the fluid plus solid is zero, and the result will be re-
lated to the solution when the particles are held fixed. It is assumed
that the particles are identical spheres and that the volume concentra-
tion of particles, ¢ , is small. Only the point particle approximation
will be considered, but it is used here in the sense of a leading order
approximation to the complete problem. This means that the ensem-
ble average (3.5) will be used here since, for the finite sphere prob-
lem, we want to exclude intersections of spheres. In the ''strict"
point particle problem, however, the particles are points and no such
exclusion is necessary.

The physical difference between this example and the settling
of free spheres (Chapter III) is that here the spheres are subjected to
random forces dependent on the statistics of the array, while the frece
spheres were all subjected to the same drag force _D_ . The former
effect is often called ''shielding'’ since the drag force on a given
sphere is reduced if another sphere is nearby.

Childress (1972) solved this problem to order e with an
analysis based on partial summation of the formal power series in

for finite distributions. HHis result was
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Fo(l+2c +2cloge)F «c(TR)+..

-

——

where E., = 6‘!1"&/1.1_!.0 and I is expressed in terms of the forces
in a two sphere Stokes flow. This result to order ¢ is for the case
when the conditional ensemble average (3.5) is used. Saffman (1973)
obtained the same C'z term as Childress, but did not proceed any
further. The solution presented here obtains the 0‘03 ¢ term using
the solution (2.24), and directly derives the truncations proposed by
Saffman. The effects of the two sphere distribution function in the
array will be mentioned here and more fully discussed in Chapter VI.
Using the point particle approximation, the velocity (2.23) can

be written
u (r) = § F SLJ(':—Q“) - nJ< F> Si\i(:—g) ds (4. 1)
where

<uAr)> = 0. (4.2)

Similarly, the regular part of the velocity field in the neighborhood of

_fj’g is given by (2.24) as:

v.(r;B) = ‘;, F}“Sg(r-r“) - “,(‘ F;>S4(e-s)dds | (4.3)

As was done in the free array, it is assumecd that the ensemble aver-
age about I"/g equals the array average for any realization of the

array. Then, taking the conditional ensemble average of (4. 3) yiclds
/ o
. - - . A(r- 4. 4
< vi(r),B)>P = ( Z“ (FJ. 2 SLJ(Q_._-"‘)%, hf< FJ>S,:](': s)ds  (4.4)

‘ -
To obtain an expression for < FJ ),, , we use the point particle ver-

sion of Faxen's law (2. 15a) found by setting &= o e,
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o F~
[2 — o
vi(£5«) = Vi - o (4.5)
o
The velocity \{\ is the same for each particle e in this problem.

o
Consequently, the superscript on \/J will be dropped. Taking the

conditional ensemble average of (4. 5) yields

<E™
(r%e)) =\ - 28
<y(ee)> =V, e - (4. 6)
. « o
Equation (4. 6) relates < F; >/3 to <VJ-([ 39¢) >,3 . An expression

for the latter is now obtained by averaging (4. 3) (and renaming the

subscripts and superscripts) with the result:
o - / ¥ « Y . (%
0% 0= CE R0, Sule™="), 4 - n <R Suteadia. 1)

The double subscript O(,F means both e and B are fixed in this

Y
conditional ensemble average. The presence of the term (Fk >a<ﬁ in
2

(4. 7) indicates a developing hierarchy of equations -- in order to find
[
the one particle conditional average < f’; >I’ , the two particle con-

oL
ditional average <Fj >/37 is needed. It is convenient to truncate the
2
hierarchy with an approximation for the ensemble average velocities
rather than the forces.
Consider the difference between <y (!’_‘“so(.))p and
< 'u‘-)(r_*“) >,, , where, in the sccond average, the probability that a
sphere center is within ®& of r is order € . When ¢ is far
from _Ij/g , the presence or absence of the particle at _f_'ﬁ makes

little difference, so asymptotically as {r*-rf|—> oo
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<E>
Ar%; e - (™ V(™ - Ar¥)S =/ — J
<% )y - <D R Cveeieand> — <upe)> =V ETua
with an order € error. When E“ is near L'p , the difference

between the averages (which occurs because the presence of the par-
ticle at _r:“ shields the nearby particles) remains bounded. Thus,

the indicated truncation is:

<F >
A r%: - or™ T - 2 (4. 8)
<v(r ,oc)>,3 <ue)>, \/J CTwo,
Using this truncation, an equation for <14'J‘:)>,3 can be

obtained. First, (4.1) is averaged with B fixed, which gives
I « _ f .
<ur)>g= <Fj>SLj(g-gﬁ) +<§<F—} >r33;j-(:—c )>,S n <f‘3>3‘.d(§ s)ds

Then using (4. 8) and (4. 6), the unknowns < F3“>ﬁ can bhe expresscd

in terms of <uj(r_"‘)>(g as

o o :
= F. — 6TMMua < u; (v™) >, . 4. 9¢
<F % = <F> - 6T § (£ (4. 9a)
When this approximation for < Ff‘)ﬂ is substituted into the above

equation for <ul(g“)>,, , the result is

<UpY>y = <F>Sye-ch) + <§,’<f-}>5g(r-«:") e
(4. 9b)
— 6Twra < §,<u3(§°‘)>ﬁ3£j(_r-t_~")>p ~ n‘r<F;->3q(g-§)J§ X

Finally, using (3.5), the ensemble averages are replaced by integrals.
This pgives the following integral equation for CML(E\ >ﬁ

<ULV = < F> S;j(r-g’) -h f< ﬁ)Sg(r-z)o(_s - Gvanfwjts);s,acr-;)d; ) (4.10a)

i3-rAl<2a I1S-r®> 3a
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which can be rewritten as

<ult)y = F; Séj(:d:f*) - 6Wman f<uj(§)>,35zj(r—§)d§

(4.10b)
- anJ Sij(_ry;) os + G'Tr/mnf<uj(§_)>/33ij(:-§)o(§ ,

ls-rfi< 2a ($5-rfl< Qa
where f‘: < F; >

The integral equation (4. 10b) has a displacement kernel and is

straightforward to solve using Fourier transforms. Define

'F(k) “8"3ff(r)e ther dr | 'F(thf?(k)eék':o{k . (4.11)
Then the transform of (4. 10) is

N . rB® A pA
<a¢(‘53>p = F}SL-(E) e_“"(r ~61T/¢an-8ﬂg<uj(3)>p3g(5)

(4. 12)
f kSS (k)o(s + Gv/uahf<u (s)>pe bgd(g)dg

[s-r (s~rP|< Qe
where

8 (19 - b ( % - lak)

S4(W =gy k> k* (4.13)
It is convenient to define

k; ki
Fylk) = 85— "3 (4. 14)

A
Then using the equation of continuity in the form Bj“.f)“‘_;(l.‘))p =<£"-(l§)>ﬁ)

equation (4. 12) can be written

F -ck r"

] __...LE;L
/u,k

B [1+ 5]

g
. (4.15)
I R -ik-g
gﬁﬁj‘ nF +grr/mn<u'(§)>,,]e ds
[3-

[< 2
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When the radius a = O, this reduces to Saffman's equation [ his
(5.15)]. Remembering that the value of <v‘~(gpj@)>ﬁ is needed

to apply Faxen's law, the substitution

B0y = <Gy, + F S0 s (4.16)

> =
/]
is made on the left hand side of (4. 15). (Equation (4. 16) is merely

the transform of the definition of V,.) Then solving (4.15) for

< /v:(‘_(;ﬁ)>/3 yields:

~ >\z RF —c k- n
<v,-_(.|5;'ls)> ——A*;J—J‘—‘;e ke
A B k2(k*+)\?)
ks (4.17)
i _ ks
+8T3 (k’+>‘) I[ nF'. +/;.)\ <u(s)>]e §
Is-rPl< 2a
where
}\2 = blTan .
The desired answer <v‘-(g,-/3)>ﬂ is now found by transforming (4.17).
In terms of _[’5 r- _r:ﬂ , the result is
= - i 3a(s;a0m - KEBOR))
< V(238 = Cran 2GRN —+ B(Ar (4. 18a)

j[ F+/«,) <u;(5)> ]C (r-syds
l§-—__ﬁ|<20.
where

- | i 42 2 —A 2

E -~ =\ - |+ X )
A(kr) xa.h‘s[ + A’ € ( L r ] (4.18b)

1 4 ~Ar 1Az 1
A T )

and
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~Ar 2. g Ar
L[y (e
C"L\(r) - 4“&&[_—:6‘3 + ar‘-ar:,- r2* )] ) (4. 18¢)

This solution has the required generality to be used as the first ap-
proximation to the fixed array problem with finite particle size.

Note the integral in (4. 18) gives the effect of the finite radius, and the
dependence on r’/ is needed to apply the complete Faxen's law (2.15a).
Actually, the answer for v; 1is given only implicitly because the un-
known < u;($) >4 is on the right hand side. However, <"‘:j(-s-)>p

B

be a good approximation in computing the left hand side of (4. 18).

is known sufficiently well (<uj(§)> = ﬁscj(?.rﬂ)) near s-£®=0 to

We consider only the point particle approximation here; hence,
in (4. 18) we set a=0 and cvaluate the right hand side at r’= 0 with

the result

F. F. 3
(rBB)> = — % Dg = — —— —=—¢

An ensemble average of Faxen's law (4. 5) yields

£
ey =\ -
<yi(efip) = V= == (4.19)

Therefore, the desired relation between the velocity of the array and

the mean drag force per particle is given by:
: '
V. = A |-—3-c/2) (4.20)
J 6Mmo ya :
There are two interesting features in the above solution that
Va

should be mentioned. In finding the answer (4. 20) to order C , We

have neglected the integral term in (4.18). This integral is directly
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related to the conditional ensemble average chosen, and (4. 20) is cor-
rect only for ensemble averages where the corresponding integral is
O(Cva) . In the case where (3.5) is used as the ensemble average,
the integral is only order ¢ , so the answer stated is correct. For
other ensemble averages, the form of that integral changes, and ne-
glecting that integral may not be correct. An example of this is pre-
sented in Chapter VI

The other aspect of the solution is the shielding effect. Saff-

man (1973) found that with o= O the solution of (4. 15) was

Fre 3 (1-e> /

[
Hence, <‘M.,-_(§\>,s decays like "‘:;3 as r’ - o | while in the ab-

4

sence of shielding W;~ -3 as r’'— o . Thus, the presence of

rl
the shielding changes the asymptotic dependence of the velocity field
due to the presence of a particle.

In order to improve the accuracy of the result, it is necessary
to truncate the hierarchy at the next higher level by considering en-
semble averages where the positions of two particles are given. This
leads to an integral equation for (‘u,;(r)>ply which is solved as be-
fore. Using the result, a better approximation to the one particle en-

semble average £ FZ“>/3 is obtained. In turn, this approximation is

used in

ol
WPy = <§'<§ % S4(er )2, ~ an; Sg-('_‘-g)dg (4. 4)
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to find the relation between the array velocity \/‘ and the mean
force per particle F‘_ to the next order. We now proceed with the

details.

First, equation (4.1) is averaged keeping two particles fixed

with the result

<ULy = <§<ﬁ">,v5cj(5"lq>p,7 _ nfﬁsq(r~§)dz | (4.22)

Then <« FJ >F,Y is found in terms of <\lj(t“5°()>ﬂ,r by averaging
(4.5):
<F O,
<vre™ o<)> = V. - <V 2ax (4.23)

GTTua

By the same reasoning that led to the first level truncation (4. 8), the

indicated truncation at the second level is

F',
(% - (% = \. —-— 4.24
<Y d, ¢ = <UD = V) G (4. 24)

It is evident by averaging over @ and Y that this truncation pre-
serves the zero mean velocity of the dispersion so that the boundary
condition (4. 2) remains satisfied. We also note that (4.24) is equiva-
lent to the second level truncation proposed by Saffman (1973) [his
equation (5.9)]. The truncation (4.24) now replaces the truncation
(4. 8) used earlier.

Similar to the previous analysis, an integral equation for
<'u,‘-_(v_-)>ls,Y is now obtained by substituting (4. 24) and (4.23) into (4.22).

The result after using the usual conditional ensemble averagpe is:
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p
<uf)py = <FD, S4te-rf) + <F:'Y>psij(r‘EY) - anJSq(:-g)dg

s-vBle
- oy

_GTT/A-AH‘I.(MJQ))B’ySg(P—)JS + GTpuanfCu(s» S- (r\_s)ds
js-rPi<2a

This equation is the same as (4. 10b) except for the extra Stokeslet
here. It is solved in the same manner as the steps leading to (4. 15)

with the result:

6'"'&" ) _Pﬂ_ ‘ F e _ﬂ_ -(._kt
(4.26)
L(s
+ o ﬁ: nF; +/uA <ui), ds
(! rﬁ|<2a
Next, the substitution
5y = <Blkf)> + <EP S (k) eikef

uy(k a v eX5RI 2 g J e dglele = (4.27)

is made on the left hand side of (4. 26), which, in turn, is solved for

A

BES, ket <% B

<V (k;B) 2y = T + Sl giker

> ev,uk(k+>) S (4.28)
- (3 cks
+81r,u- ‘&yﬁ nE + a7y ()7, ]e

li-r"(<:la.

As before, this equation is transformed back to £ space:

<f®
<V (5B %y = — -——;—I I“[“ AQr)) ~ -‘-\'B()r')] + <F C (r ')

(4.29)
+ f[-nf}-}/h)"(uj(!))p’r] Cq(‘:"§)d§
is-rficaa
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where A, B , and ij are defined in (4. 18). Evaluating (4.29)

at r = _t::p gives

|

A,
<f;
<v¢-_(:/3,-/3)>;3)1r = G_‘w")\a + <F CJ ePor¥) (4 30)

where the integral has been neglected since it is an order € term.

The above equation provides a relation between the unknowns

¥
< Eﬁ)f , <F; >ﬂ , and <V“_(§p)' {5)>ﬁ,Y . Now we will find the
Y
conditional averages < F; >8 . Using the equation
ﬂ
<F,
(= = . - hirits.
el = Vi - oo

the unknown (v,;(;”;ﬁ))B - can be eliminated from (4. 30) with the
)

result
V, = a%f('-ko,) + <F]*>,SC¢J-(r’3-:*). (4. 31a)

Another three equations can be obtained by interchanging the particle

names B and Y in the above equation:

= (V-Xa) + <F7,Cir-rf) (4.31D)
¢ e ua
Now equations (4.31) are a system of six linear equations in the six
I . :
unknowns <F;; >T and < F; ,g . However, since C‘-d(r) is an
even function of r , the equations are symmetric in the unknowns.

[ 4
This means that < F‘_ >,, = <F;;P>r , and the preceding system im-

mediately reduces to

[

¥
V. = Z%rifé(i—)\qf) + <ﬁ'>pC¢J(t;"-:*) (4.32)
/M,Ou
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which is a system of three equations for the three unknowns ¢ F'>

(B
The solution of these equations is:
( v i+ oD "::-"(E
CED> =V snpa r
' s ' i-Aa (1+dF)1+4dD)
nn
1 Y ewua —d5z E
< B >/3=' V,
[~%a (1+dF)(1+aD) (4.33)
< F{> - 6mMma —d":';-%E
2B Vi-da (1+dF)(1+dD)
where the coordinates have been oriented such that X, ” <E> and
(2N a2 le™
D=-"37= T -
2 1-2%a
/ —
E = D-F (4. 34)
1 pY Ar | -Ar r‘slr”~:"l .
s e & l-e”
L F - r + A2 >\1r3

Thus, we have obtained a new approximation for the conditional en-
semble average (F;;r>ﬂ where one particle is held fixed. This
value of < F-é' >,3 will now be used directly in equation (4. 4) to [{ind the
expected regular part of the velocity field near a particle.

For simplicity, we suppose the particle ﬁ in (4. 4) is at O ,
and we will only look at the component of \_/ in the direction of mo-

tion. Then (4. 4) becomes
’
<y (950>, < <§ <FJ-N>o S,j(z:“)>° - njﬁsu(r)dg (4.35)

The mean value of the force FJ is given from (4. 33) as
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F = V|\->‘o,, Fb=0, FR=0. (4.36)
Upon substitution (4. 33) and (4. 36) into (4. 35) we have

<v, (850>, = hf(<\‘:-h7o~ﬁ)sy-(t)dg hfF’S (rdr

Ir1>2a, ir\< a_
Y
=V u {(Hdb-%dﬁ)sn(:hf‘;'%dES,ltr)-—\-'éAES,,m S 4 37)
' 1=3a. (1+aF)1+ eD) )
Nz
where the order ¢ term nf S,J(P)dh has been neglected.
lrl<Aa.

To simplify this expression first note that by the definition of the
Stokeslet

3
- ofE r'
Z ———-:‘L_o(E_S () s1r,u

so that

V, ) ~21}:¢e —(de’dF)(-.':“fr%)
<v(Q;0)), = L £ olr

gMu 1=2a (1+dD)( 140 F) -
Inizda

When the angular integration is carried out, we use the fact that

J"I"d.ﬂ-. = %’S""d-ﬂ. . Then the integral simplifies to

<v,(9;0)>, = ———nd‘Vf(HdF |:dbD)dr (4.38)
r22a
The right hand side of (4. 38) can now be expressed as an expansion in
the small parameter € . The method involves dividing the region
of integration into three parts, and finding an expansion for each re-
gion. Details of this calculation can be found in Appendix B, and here

we mention only the result:

3 '._ |35
cwio;on, = V, (~rz e - ggelge + O@).
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Finally, making use of (4. 20), the relation between V, and F,

is given by

)
Vi= c,:,:m(‘“fi‘d‘-?fc"'ﬁ +0w@), (4.39)
This is the best result obtainable by use of the point particle approxi-
mation, since the finite size of the particles is an order e effect.
As was mentioned earlier, Childress (1972) found the order ¢ terms
in the expansion. To obtain order ¢ accuracy by the above method,
it would be necessary to keep the other multipole terms in (2. 24), and

this lengthy analysis was not attempted.
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V. CUBIC ARRAY OF SPHERES
This section considers the settling of a cubic array of spheres.

The model was first posed by Hasimoto (1959) as an example where
flow past an infinite array could be solved in a rigorous way, namely
with Fourier series. This avoided all the problems of divergent in-
tegrals and sums encountered when solving for flow past a random
array of spheres. Hasimoto considered three arrays: the simple
cubic lattice, the body-centered cubic lattice, and the face-centered
cubic lattice. Only the simple cubic lattice is considered here, and

our result for this case,

y = uo(l- 176+ e +...)

)

agrees with Hasimoto's result. The method described in Chapter II
is straightforward to apply, but the geometry of this problem requires
the evaluation of several three-dimensional sums. These sums are
the main difficulty of this problem. Hasimoto uses a transformation
due to Ewald to sum these series. We will describe a simple method
of summation that uses only the mean value theorem. There arc a
few differences between the definitions used here and the ones used
by Hasimoto. These will be mentioned at the end of this section.
Consider now the simple cubic lattice of side b where the

particle centers are at the points
o«
:“g ng bg‘_ (5.1)

where {n‘:} are integer triads, and {e‘-} are orthonormal vectors.
By symmetry, each sphere has the same multipole representation, so

the superscripts on the £ 's can be omitted. As usual, we choosc
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the reference frame where the mean velocity of the dispersion is zero,
and we consider the problem of finding the velocity of the spheres
given the excess weight ﬁ of each sphere.
Thus, we wish to find the value of <vy(r;a)>, for a typical

particle to obtain the solution. Choose the particle at @ . Then, by

(2.24), we have

V(_(:)O) = élﬁsﬂ(rﬂ:“) - hfFjS,d(r-ﬁ)c@.

/
) 5.2
+ 2 FmdomSyrr) =~ nfF308-nas %)
+...

where the odd multipole terms have been set ecqual to zero by the con-
figuration symmetry about each sphere. The ensemble average of the
left hand side is not needed in this problem since the surrounding con-
figuration of spheres is completely specified. Equation (5.2) can be

rewritten as

v(r;0) = [ﬁ + F

i

819,,, +... ] {g's,;j(:—s«) - nfsg(g_g)dg} (5.3)

which shows that the complete solution can be found using the funda-
mental solution of the point particle problem and its derivatives. It

is possible to make direct progress with the point particle solution

v, (r;0) = Z/ESH(E_E“) - nIFJS,ﬂ.(r-§)O(§ (5.4)

by expanding the right hand side for © small, but it is casicr to find

the periodic function wy () and use the relation

Vi(r30) = () ~ FSy (5.5)
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to solve for v‘-_(l:ic)
Now, U () has mean zero by definition, and has the repre-
sentation
— — x — . ’e -
u ) = & F5,(e- brye,) hfF]SLJ(': s)ds (5. 6)

Formally, the Fourier transform of the sum is

A UL
S ES (k) e Ebne, (5.7)
< Y 9

Using the Poisson summation formula

ol )

-ck-bn% QW
s ok bnj e, - Z —g—n:gl) (5. 8)
o
(5.7) can be rewritten as
ASMEELS gre 2 S(k-3Tnje,) (5.9)

The Fourier tré.nsform of the (infinite) constant nff'; Sg(g-s.)g(_; is
simply S(B) multiplied by a constant. The latter constant is deter-
mined by the fact that ’ab(h\ can have no part proportional to S(k)
because U (r) has zero mean. Hence, the Fourier transform of
hf F': Sid(\:-§) ds must exactly cancel the $(K) term in the

sum (5.9). As a result,

% (o = FS (k)Z 5(‘<~3lrhf e,) (5. 10)

53
is the Fourier transform of wu;(r) . We recall that
A~
I I “c“')
80 = s (34 -4

Then translorming (5. 10) yiclds the Fourier series representation of
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u: ()
F / 5‘ h. h Lr.ﬂh“
u,;(:3="i“Z(’—:'i— nu)e' °° (5.11)

where Q“ denotes a three-dimensional vector of which each com-
ponent is an integer. The sum is over all lattice points in 3-space
excluding the point Qu’ = 9 . The required representation of
v‘.’(_r:jo) is now obtained by subtracting the Stokeslet at the
origin:
F'- / s n“h.‘ Lr-<h . ..
Ve0) = —a— 2 (=% D) e (4 +B%) (s02)
4T b/u. « h ) .
In order to find the behavior of v (r 50) for p small, it

is convenient to divide it into two sums deflined by

F §u -
vi(r;0) = =3k P(r) + 5 9,9, R(r) (5.13)
4T 4 |
where
’ Al e I
P Eﬁ%g Fie": b - = (5. 14a)
and
/ ' ¢ .ﬂn"‘ r
R(r) Ez%g ?e‘s 82 - = . (5. 14b)
Now
T2 .‘:ﬂl 3
VAP =~ ()T 4+ arsm

and using Poisson's summation formula (5. 8), this becomes
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VP = f’;%r - 41r§’é(._--b,_,«), (5. 15)

From (5.15) it is clear that

™
T = Py - 34 0™ (5. 16)
is a harmonic function for h:\( b , and so the Mean Value Theo-

rem

T 4WR1§§T(P4S) dS (5.17)
Ist=R

may be applicd to T [ Courant and Hilbert (1962)]. When this theo-

rem is used, it generates a new represcentation (or T  with the series

part of 1(r) converging more rapidly.

Using this idea, 1 (@) can be evaluated easily. Consider the

b
new form T\(l_’ﬂ of 1 defined for |r|< 2 by the equation

T, (p) = J T(r+3)dS

4-‘!TR"
b l'l"
where R‘s = . For the 1ntegra1 of the sum we have
L( *i)ubi \? de ‘ Z/ e(,_r:g-blrb“ st‘a&rn“
4TrR‘u(.( Risin € ¢ L TTE /e 2 T s ol
(o]
Is{=R,
Q'"' ®
h™ | am
=__b\z et e sin 5 RNT
AMR, ‘= n=3
. [ . 1
where the sum now converges like ‘;\;?,' instead of ’r;'i_ . The re-

sult for T(ﬁ\ , after integrating the other terms of T , 1s then
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. all o w «
[ b\ e" b sm 3G R0 | _ 2a¥ ;a p2
T sz e ) s e

where we have taken iri< R, S._f?_ in evaluating the other integrals.
2

In a similar fashion, using "I', instead of 1 , a new representa-

tion T;(f) can be found which is valid in the smaller region |[r{< RJ.SBQ_'L'

After N iterations the result is

| E
T® = —5 - SR(RIRe AR )
t

b b _\s~’ e o, ERN. . (som TR, 0"
"'fr"C(iFE.)"'(ﬂTR,J%e ("’(:j%jz iR 5 1)

where there is now rapid convergence of the sum.
A short computation was performed to find the non-dimensional

quantity

(sG], = -5 - (sh+iv.. ve))

(5.20)

+ i) () 3
where
B,=+ R, =N,
The result was
S = -2.8373 5.21)

which agrees perfectly with Hasimoto's computed value. Thus, we

have an expansion for P(®) in the neighborhood of zero, namely
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o mtdn 4m
P(r) = »—S(o) + =5 353 S G Y E) (5.22)
n= m=> n
where the Y 's are spherical harmonics>'<, and the cubic symmetry of

the geometry has been used [Hasimoto (1959)]. The values of the
constants Q,, are not needed for the order ¢ term.

The second sum of (5. 13), R(r) , satisfies the relation

V2AR(D) = - P(») (5.23)

and hence has the solution [ Hasimoto (1959)]

oo Mm%

SO a_ T _,a + Bnm
R(:) K 6‘: r 30b3 E "#o(bhm 24n+ 3))y €} (5. )

where the actual values of the bhm 's and K are also not needed
here. Hasimoto used the spherical harmonics to find the order €

in the expansion, but the only property of the expansion that is needed
for the order ¢ term in the simple cubic lattice is that the spherical
harmonics are all of order equal or greater than 4 . When this oc-
curs, the order ¢ term of the expansion is independent of the sum

e nte
P

of spherical harmonics

4}
>/ (x:)xz.)"*s) = ph P:(cos ) cos m@g where X,= rcos @
h
X,= Fsin @ cos @
X3 = rsm O summ ﬁ .

e ste
S8R

In general, this means any lattice with the property that there arc
no spherical harmonics of order 2 in either (5.22) or (5.24) will have
the same order & term in the expansion of the mean velocity of the
array. The other two lattices examined by Hasimoto, namely the
body-centered cubic and the face-centered cubic arrays, both have
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Now that P(r) and R are known, the value v;_(t,'O)

can be found from (5. 14). Looking forward to Faxen's law, we have

(1+ %fv’)véca_qo) =5 /b(i +-—V 3P * o /L ‘J(H——V 2)R(r)

S(O) 3 pr 4 2Ta QTTCL + O(r.q.)
‘”r/"[ 3b ] (5.25)

uy[’era So - S -5 - Yo

where Y(E\ has the properties 7(9.) =0 and Vl)/(_o_):o . )’(r)
comes from the double sum of (5.24). The expression (5.25) c¢valu-
ated at r=Q gives the velocity of a finite sphere surrounded by
point particles. In order to obtain the complete solution to order €
of a finite sphere surrounded by finite particles, we return to (5. 3)
and estimate the higher multipole terms. This is easily done since

the particles are widely separated. From the arguments in Chapter II

we have
v T
Fitm = Fam = € 3
other multipoles O ,
which is correct to order ¢ . Thus, from (5.73), the final solution

T
is obtained by operating on (5.25) with (‘-4 %Vl) and evaluating at

+r=Q . The result is

the property and the same order ¢ term was found for these lattices.
On the other hand, the coefficients of the respective ¢/® terms are
always dependent on the lattice.



(5.26)

4. Q&
where the relation €= 3‘“’1‘3‘ has been used. Then the settling

velocity of the array is given by Faxen's law (2. 16a) and the above

equation as

y = U (I~ 176" + e + o(c)) (5.27)

F-
where u-o‘;= a‘r/t-a:

While this seems to agree with the result derived by Hasimoto
for the simple cubic lattice, some care is needed in the comparison of
the two results. The result derived here is in the reference frame
where the mean velocity of fluid plus solid is zero, whereas Hasimoto

considers flow past a fixed array of spheres. Now the mean velocity

of the fluid, ‘Y'F , in our reference frame is given by

Yli=¢) + eV <0 (5.28)
which expresses the fact that the net flow through any fixed surface is
Q . The result (5.27) can be expressed in the fixed sphercs refer-
cence frame by subtracting y from the velocities.  Then the speced
of the spheres is zero, and the mcan velocity of the [luid Vg is

given to order & Dby:
Ve = ~(1+e)V (5.29)

The resulting relation between the mean velocity of the fluid and the
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force acting on a sphere is then

Yo - & (1-176c® 1+, )
4+c 6Tha

where (5.27) and (5. 29) have been used. To order ¢ , we thus have

the relation
F

r _ /3
!;’-E‘{r““ I~ 176¢ +2°+"') (5.30)

between the mean fluid velocity ¥g and the drag force E exerted
on each sphere.
In contrast to this, Hasimoto considers the quantity u de -

fined by

43 b
u = 'é'iﬁ.v' Az clxa (5.31)
~Lib
where the region of integration is outside every sphere. The physical
significance of 'LL is that if fluid were flowing through an array of
finite size, then the mean velocity of the fluid outside the array is u,
whereas inside the array the mean fluid velocity is ¥p . The rela-

tion between the two is simply
¥¢(|__c)=u (5.32)
because there is less space inside the array, by volume fraction < |

through which the fluid can move. Hasimoto expresses his answer in

terms of 1l and u in the form

F /3 ,
— — N c +'.l ,,
U“G'“'/A.(L(l .76 ¢ + ) (5.33)

and by using (5. 32) it can be scen that the two answers (5. 30) and (5.33)

are equivalent.
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This concludes the discussion of the regular array, and it has
been shown that the settling velocity of the regular array has the
greatest dependence on concentration of the three cases considered.
In the next section, we prove that this Cla dependence is a property

of the two-particle distribution function G(r‘[‘p) rather than ex-

ceptional kinematics of this particular array.
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VI. RESULTS FOR THE GENERAL TWO_SPHERE

DISTRIBUTION FUNCTION
The previous chapters considered only the conditional ensemble

average (3.5),

<2::_/‘F(g°‘)>p = nff(§)dg (3.5)

1s-tf1> Qa

which describes a completely random distribution where only mutual
interpenetration of particles is forbidden. In order to include the ef-
fects of interparticle attraction or repulsion, other conditional aver-
ages are needed. The problem of actually finding the conditional aver-
age for given interparticle forces is a difficult one and is not attempted
here. In this section we shall assume the conditional average is known
and examine how it affects the previous results for both the random
free and random f{ixed arrays. In particular, simple relations arc
shown between the results for the general conditional average and
those found earlier using the ensemble average (3.5). Also, the rela-
tion between the cubic array and the other two arrays is made clear.

Using the notation of equations (3. 3) and (3.4), a general two-

sphere distribution is defined by:

<§’+\(:x)>p = nff‘(z)[l—G(?!:ﬁ)J ols (6. 1)

where G(§——_':’g) - O as l§—r/3t«— ©® . We shall suppose that
(z has the form
| Is-tfl<2a
G(s-cf) = ’ |s-£f2 2a (6.2)

B
3(2 - ))
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where 3 decays rapidly enough such that .y 3(5)0(5‘ is finite.

1s(z=2a
The conditional ensemble average defined by‘((). 1) and (6. 2) will be
denoted <:<£ ‘P(tq)ls >,3 to indicate the dependence of this average
on 3 . In the special case where 9 = O | this ensemble average
is exactly (3.5) and the argument g= O will be omitted.

It is now simple to relate the general ensemble average to

(3.5). Consider a function h(r) defined by
h(r) = 2_ f(rr) - nf?(§,t>°*§

and assume there is a sphere at _[_‘p . Then, using the average
(3.5), we have
/ —_
<h(r)>ﬁ = 'F(rﬂ)\:> + <§ <‘F(r“_t)>/3 >ﬁ - f-‘(?(§_ r °(§_
= (r )+ njd‘(s fF(s r)d

I5-+P12 2a (6.3)

i

P(rBr) - n|f(s,r)ds + nj[d(:z,r» Fis,0) ds |
|5-cPl< 2a Is-cP12Qa

whereas when the general average is used, the corresponding result
is

<hB g% = Fehr) - n[Fis,nds + n[ch(s, 013~ Fs,0)] ol

(3-rBi<2a (3-rR)22a
f<w°(s r15g §(3-rMels 6. 4)
\?.-!: |2 2a

Comparing (6. 3) and (6. 4) we have the simple relation
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<h(\:)l3>ﬁ = <h(r)> — hf<€(§,r)>ﬁ 3(§—r")d§ (6.5)
(3-£P|> 2a

between the conditional averages. This relation is exploited below
to obtain results for the general two sphere distribution.

§1. Random Free Array

We begin with the equation for <V‘-(!_‘50)‘3 7, defined by
(3. 8).
/
<yl g, = <Z F}SLJ-(:-:")|3>° ~ h‘fFjSﬁ(r-e)dg (3. 8)

-+

The analysis is exactly the same as in Chapter III, except the extra

term indicated in (6. 5) is included in this calculation. In particular,
. . T

the approximations < F}t(r“)lj>0=ﬁl (E“)) ... are used

again. The analogous equation to (3. 17) is then

<P (6. 6)
<Vi(£;50)lg>, = <Vle50), - nj[FjS¢J-<r-s) +F, (§>Q¢Sﬁ(;—-s) +, _,]3(5) ds
{812 2a
where (6.5) has been used on each term of the multipole expansion.
Following Chapter III, the mean velocity, \_/ ‘3) , of the spheres
is then found by operating on (6. 6) with ( H-.%zva) and applying

Faxen's law. In particular, after using the relation (3.21),
k5 = (\+-‘-"-zv’~){:FS--(r~—s\ 4 Fp (5)9,3,:(r-5) + (3.21)
\/L(g\-u%“ I3 772 g2 (2)9o4iE-2) 4. .,

on the integrand, the result is simply

<y I 3) = <y > - nj[y"""(§)—uo]3(§>d§ (6.7)

isi2 R
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T.P.
where \_/ (s) is the terminal velocity of two spheres with relative
position § , and < \_/_) = uc( |~655¢) from Chapter III. As
. ) TR .
previously mentioned, \_/ (s) is known numerically from the work
of Goldman, Cox, and Brenner (1966).
Hence, for any given 5(§') , the calculation of the mean ve-

locity of the array can be obtained by the numerical integrationof (6.7).

§2. Random Fixed Array

We will consider the effect of the general average (6.5) only on
the leading term of the expansion in this case. The analysis is the
same as used in Chapter IV, so only a few points will be highlighted
here.

To obtain an integral equation for <u¢(\;)|3>p , the truncation

gL
i Ema

is used, analogous to (4. 8). This leads to an equation analogous to

<(E%50] §% = <] g >, = FESE>  (6.8)

J

(4. 9b), except the ensemble averages are now the general ensemble
averages. Upon representing these enscmble averages by intepgrals,

the resulting integral equation for <u"(£)|3>ﬁ is

Culgdy = FS,(er = nf§S4te-s ~cmuan frolgnSye-ds

1s-rPicaa Is-t#1y2a
(6.9)

+ f [-nf; + 6mman< (g5, ] Syce-) gta-rFlds |
|5-£A)> 2a

which replaces equation (4. 10a). Using the definition (6.2) of G )

equation (6. 9) can be rewritten as
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<ul(:)13>,3 = FS (\"- B) —Glyaanf<u <s>13>ﬁs (r-s)ds

+f[—n§+6‘tr/uah<‘uj(§)l3>ﬁ]3,5(£~§)ﬁ(§-r'3)o{§ , (6.10)

Comparing (6. 10) with (4. 10b), it can be seen that the last two inte-
grals of (4. 10b) are the effect of the two sphere distribution where

g = O . Noting that the form of those two integrals had no effect in
the analysis that led to (4. 18a), the solution for <v‘(:5ﬁ),3>,6 can be

immediately written down [using (4.18a)] as

<V"(r',/3)\3 >g = Gv/“&-——a.[ o A(Ae) -3;':} B(xr’)]
(6.11)

+f[—nf-}+/d"<uj(§)13>ﬁ]6(5 )C (r-s)ds

where A , B , and Cfd are defined in (4. 18 ). Evaluating (6.11)

at r= '_,3 , and using (4. 19) yields the following expression for the

mean velocity < V‘; ‘ 9 >
<V lgy>= GWL oy f[nF +,A<u (s)|3>,]c(;-r )Cyle-9els . (6. 12)
This equation contains the function <14J(§)‘3>p implicitly, and an es-
timate of it is needcd to proceed further.

From (6. 10) we see that when P is in the neighborhood of
_I’:ﬁ , <u‘;(:)|3 >,5 is approximated by the singular part of the

right hand side, namely the Stokeslet term. Thus, when the function

G(§—rp) is concentrated near I_s_~_|:p| = 0 , the approximation

<w(lgr, = FS;(s-rf)
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can be used in (6. 12). Here, the term ''concentrated'' means G has
a characteristic length on the order of the sphere radius @

On the other hand, if & has a characteristic length on the
order of the mean interparticle distance n 73 , then the (unknown)
integral of <'u3(!>‘ 3),3 is of smaller order than the (known) integral
of the nF} term, and it can be ignored. To show this, we consider
the function G* defined by

- !
|, 1s-eflen ™

* [
Glsth) =1 g 11-ehiz 0"
)

and estimate the size of each integral. Using the relation
4 3
- — h
e
we see that the exponent >\|f{{§l of C‘j ([ﬁ-§) is small in the
<! i
region of integration since An 3 c /e . Upon expanding c,;j(l:ﬁ~§)

for a small argument, we find
Cq([p‘§) = S‘ij(tp’ §) <+ higher order terms . (6.13)

Hence, for the hﬁ: integral we have (ignoring constants)

-

nf; [ &
+B)C..(rF ~ nF |S,(s))ds” x ——~4—f--‘¢ols' x Uye (6. 14)
thJ-G?§ r )C%(:ﬁ §)d.§ h JJ (3 $) ~ /u, ,§I’. = o
I8|<n "3 Isl<n""8
On the other hand, <uj(§)|5 »g is bounded above by the Stokeslet
F:SJR(E"Eﬂ) because of the shielding effect, so an estimate for the

other integral is:
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| ,uk"<uj(§)lg>PG*(§~:")C55(5’3-§M§ X me !‘/ZS’) Si(s)) s’
sic

a R[S 8
A -L— k LA
/k ' ll:- d— ~ u° »

Isich-3
This shows the unknown function <1&.‘3>ﬁ may safely be ignored
when @ has the larger characteristic length n /3
Thus, the exact equation (6. 12) for <YI3> may be approxi-
mated for two types of G 's. When G\ is close to the completely

random distribution (3. 5) in the sense of being concentrated necar

‘§'fﬁl = 0 , then
<\ilg> = U, [l— /*] f[ nF 43 F Sy -tM]GE-AICy A 5)ds (6. 15)

is a good approximation to (6. 12). However, when G is not small
-y
over the mean interparticle distance n 3 , the leading order ap-

proximation to (6. 12) is obtained by neglecting the <""3>{3 integral

altogether with the result

<V‘_l3> - Uoi[“f?{c./’"] - hﬁfG(§—rﬁ)C¢J(fﬁ'§)d§ . (6.16)

As we have already shown in (6. 14), the integral term in the above
equation is of order u"i.c‘/a if Gt(!-r’s) has a characteristic
length of order h."/s. In this case, the integral becomes the lecading
term in the expansion for <V\3> . If the length scale of G is some-

_l
what less than n /3

Ya

, then the integral must be compared with the
term to determine which is the leading order correction to

c

the settling speed.
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It can be seen from the above analysis that the leading correc-
tion to <V‘3> is still the \f—% c'/‘ term derived previously unless
the two sphere distribution G is far from being completely random.
This point was made by Childress (1972).

§3. The Cubic Array as a Special Two-Sphere Distribution

It is easy to specify the cubic lattice in terms of the two
sphere distribution by using delta functions at the lattice points and
not allowing particle centers anywhere else. The & which is equiva-

lent to the cubic lattice 1s then

| / _ ﬁ__ «
chbic(s-:“) = | - —n-g §(s-tf-n%) (6.17)

where the notation of Chapter V is used.

A more interesting question is to find the property of G
needed to create a (ZV3 dependence in the mean settling velocity of
the random arrays. Suppose we impose the condition that no two
particles may be closer than a distance of n-'l/a (which is a proper-
ty of the cubic array). Then G is defined by

[ Is-r®l<n 72
G(s-th) = o, s-rB|=n"" ' (6. 18)
We wish to approximate the integral in (6. 7) for the free array and the

integral in (6. 16) for the fixed array. Using (3.21) and (6. 13), a first

estimate to each integral is

—anJ.Sij(s--.tﬁ)GQ-fﬁ)d?_ = _h€f3‘3(§~£p)d§ = 39 uoic_'/:" 6. 19)*

1s-rPi<n-"3

*The hindrance 3.91106'/3 in {6.9) is much larger than the valuc
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/3 . :
Thus, an order ¢ dependence in the settling speed for both the
free and fixed arrays is caused by the absence of neighboring parti-
cles. This is an important result for the free array because it im-

plies that strong interparticle repulsion will result in qualitative

changes in the dependence of the settling speed on concentration.

l.76u.c'/sfound for the cubic array. This is because particles near to

r# tend to increase its settling speed. In the cubic array, six par-
ticles are given at the distance n'/" , while in the random casc
these nearest neighbors are more distant. Thus, the cubic array set-
tles more rapidly than the array defined by (6. 18).
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VII. THE WALL EFFECT ON SEDIMENTATION
We considered in Chapter III the sedimentation of an infinite
dispersion of freely moving spheres and found that the mean settling

velocity was given by
<V>=1U(1-Be), PB=sss

This chapter examines the effect of the tube wall on the mean settling
speed. It is found that to leading order the dependence on ¢  is the
same as for the infinite dispersion, but that the wall tends to reduce
a .
the dependence on ¢ by order —é‘ , wWhere E. is the tube
o
radius. In addition, in the same manner as the settling of a single
particle is hindered in a tube, we find that the settling of the disper-
2

sion is hindered by order R The result is that the mean sct-

tling velocity is given by an equation of the form

<V>=U(1-Kg-c(e55~8KE))

where K is on the order of 5. An expression for K is given in
the text [equation (7.22b)]. TIor the analysis we assume the disper-
sion is settling inside an infinitely long cylinder of radius Ro , and
that the dispersion is uniform throughout the tube. The method of so-
lution is similar to that used for the unbounded dispersion, i.e., the
suspension problem is reduced to a sum of one and two particle inter-
actions. Here, the problem is reduced to the motion of a sinpgle par-
ticle in a tube, and to two particles in the presence of a wall. While
the former problem has some approximate solutions (included below),
the latter problem has not been studied. Consequently, only a simple

bound for the cffect of the two particle interactions can be given.
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These estimates will be made clear in the analysis.

The representation (2.23) for ®;(£) needs to be slightly
modified for this problem in order to satisfy the no-slip boundary
condition on the tube wall. Thus, we write

20 = I F[S,0e-e0 - Ry(e,e] = n [F[5ce-9- Rycosills

+ Z [313 (P-r"‘) R‘jl(":) f QS (f‘§) ‘Rﬂ‘( ] (7. 1)

+

where the functions R are the exact reflection of the Stokeslets
from the wall. Thus, we have divided the fundamental solution for the
motion of a particle in a tube into two parts -- one of them is the
Stokeslet, S.. , and the remainder is the reflection R, . Then,

9
by definition,

3 (r- r"") R.. (,_,,_)
alsij(f'i'“)“‘?ijl (E,C“) =0 for £ on the cylinder wall.

The domain of integration in (7. 1) consists of every point accessible
to the sphere centers, which in this casc means all points inside the
cylinder farther than a distance @ from the wall. This insures
that the mean dispersion velocity is zero:

<u,—_(_|:\ > =0 .
Note also that all the stresses exerted by the cylinder wall on the
fluid are caused by the presence of the moving spheres, and that

these stresses are included in (7. 1) by the presence of the reflection

terms R .
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As usual, the velocity of the spheres is found by considering

the regular part of the velocity field in the neighborhood of a sphere.

Thus, we consider

i

wleip) = Z'ESyte-e - Z FRy(e) - n [F54-Ry)ds
+ g’ 5:915«5('—“5“) -g F;:R%"(E:f) - nfﬁ;[a,_Sq-Qg,]J§ (7.2)

-+ .

L

Note that the particle's own reflection in the wall contributes to the
regular part of the velocity in the neighborhood of itself. This is the
cause of the increased drag experienced by a single particle moving
in the presence of a wall.

Once again, ensemble averages are used to find the mean set-
tling speed. Here, these averages will be dependent on the distance
of the particle from the axis of the cylinder: this dependence will be
indicated by the non-dimensional paramecter /o where

— distance from axis

r = R,

(7.3)

The mean value throughout the tube will then be a weighted average of
the ensemble averages at different distances from the axis:

!-9&.

{
= — QI .
<f> TrJ<x°l/r>> p dp (7.4)

Q

where
('F‘F} = mean value at a distance PRO from the axisg,

<.F > = mean value throughout the tube.
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We will only use the '""completely random'' ensemble average (3.5) in
this section.

Now averaging equation (7.2) at a fixed distance ,oR, gives

<veeiBlpy = <ZTFSier)y - n [FSye-9ds (7.5a)
—_ F; R'd (r)rﬁ) - <y |‘oﬁ> R‘-j,,(r,-:”) (7. 5b)

—<Z'ER5e, *+ n[ R ds 750
/ L3
+<Z <F.lp 33&5.30:-5")3; f<lj,|,o’>4,sﬂ-(c-;)dg(7. 5d)

- <Z/<T§, lf’ﬁ?3 Rg‘(r,:"b/, + nf< sllf")Rgl(r)g)dg (7.5¢)

o<

+ 4

¢ .

This equation is long, but it is not difficult to analyze line by line.

Writing the ensemble average in integral form, we have [from (3.9)],

(75a) = -hJFS--(E -5)ds =€~’:‘—TF—:°'E[~6<‘J+%1Tan(':~:”)z~§“an(q~n")‘i‘
15-ti< 2 ~ (7. 6)
This is the same as the leading contribution to the unbounded disper-
sion problem, even though the sums and integrals are over different
rcegions in the two problems. Note we have ignored the fact that the
region of integration in (7. 6) is somewhat redaced if the sphere center
_p_—ﬁ is within @  of the wall. This corrcction is small relative

to other terms that will be found.

At = _I’_"s , it can be seen that (7. 5b) expresscs the fact
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that the particle at _r:" is affected by its own reflection in the wall.
As a first approximation to < F;-tlf,> we will use (F‘;llp)sp as was
done in Chapter III. This means the terms like (7.5b) can be approxi-
mated in terms of the known solutions for the motion of a single par-
ticle falling in a tube.
The next line, (7. 5c), can be related to the motion of a single

particle in a simple way. We have, using (3. 5), that

(75¢) = an:qu(_c’gFQ)Ag, (7.7)
si<aa

In addition, the reflections R are smooth enough that the integral in
(7.7) is well approximated by the value of the integrand at the center
of the region of integration multiplied by the volume of the region, i.e.,

nIERﬁ(rﬁrﬂg)A_s_ = Be FjRg(tﬁjcﬁ), (7.8)

(g »
Isl< o

Thus, terms similar to (7. 5c) may also be related to the motion of a
single particle in a tube.

Proceeding to the next terms of (7.5), we see that

& 3 S
(754) =+ h f [<Felp Y~ <Felp >]a13;j(:,§)4§ - nf< Galp >35S, ds (7.9)
(s-tfi>2a [s-ri<da
where the superscript 8 of }os denotes that PS relates to the vari-
able of integration $§ rather than ¥ . In a similar fashion, (7.5e)

is given by

(75€) = =n J'[<§,lp’>‘,—<F},IfsﬂRq;(r,s)ds + nJ<§-4|f>s>RgL ds (7. 10)
l2-12 20, j-r1< 20,
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These formulas can be reduced to solutions of one and two particle

problems by making the approximations

(Retsrlp) - (Rl

<Flp® = <Fulp>

(7.11)
Sk
S\ —
< Elp™> = (Felp?)
S\T.P,
where (F}‘(_S_‘l:p)llo ) denotes the F:ij, of the particle at
$ in the presence of a particle at :/3 . This is the same approxi-

mation as used in (3. 12) except the effect of the cylinder wall is in-

cluded in the approximation (7. 11). Further, the approximations

,nf<ﬁ1\PS>QLS,a(c-§)d§ ~ -n<§,|PP>faisﬂ(\;-§)c(§ (7.12)

Js-rRl< 2a |e-Pi< 2a
and
+ nf< Felp™> Rye(e,sdds =~ 8e< Fg,l,o'% qu(;,;ﬁ) (7.13)
Is-rBl<2a

can be made in equations (7. 9) and (7. 10) because of the small region

of integration.

Combining the results of (7.6) - (7. 13), equation (7.5) can be

written as:

S.P,
vilePp % = ~n[ﬁ- + (R \pP) a,+...] fsgf':-g‘)d;

js-rBi<2a

+ hf(ﬁ@t;—:’)lf’ Y = (E P [0Sy Ryt + .. )ds

Is-r*|220

(7.14)

~ (1= Be) FRy(e,e® + (kg Ryete,e®) + .. ]
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Thus, the determination of < v|f > has been reduced to a sum of one
and two particle problems in a tube. The mean settling velocity of the
array can now be found by operating on (7. 14) with ( I+ %}Vz) to ap-
ply Faxen's law, and averaging over all values of ,O using (7. 4).
However, some of the required one and two particle results are not
known, so the solution (7. 14) is not very useful at the present time.

In order to obtain a more concrete result, although a less ac-
curate one, the following assumptions are made. In the first term on
the right hand side of (7. 14) we assume the effcct of the wall on the
F 's can be neglected for most of the particles. This is certainly true

for particles far from the wall. Thus, the approximations arec

S‘P

- (Jl,..‘f’) = Jlm y e

SP
) = F‘;l

r
( FJ:,Q | p
where now the F 's are approximated by their values in an unbounded
medium. The value of the resulting expression was computed in

Chapter III,and was found to be

S.P Fe (7.15)
a* 1)(- F.-nF IS ("“S)O‘SJ = —-—%0¢
[(Hgv Nk it - § - 6mua ’
[ r
Is-rfi<aa
This is the estimate of the first term of (7. 14).
The second term on the right hand side of (7. 14) involves

knowledge of the motion of two particles settling in a tube, and we es-
timate the magnitude of this term using the result for the unbounded

dispersion. From (3.23) and (3.24), we recall for the unbounded dis-

persion that
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nf( |+§V’}[(F;I7§~rﬁ) ~Fp )3 Sy lsER) + ., ] ds = -1.55cU,,
{s-rflz 2a
where the integral is over all space. Since the integrand is negative
everywhere [Batchelor (1972)], the corresponding integral of the
terms for two particles in a tube is less (in magnitude) than .55 cuo
because the range of integration is solely within the cylinder. This
bound is actually approached when the point _r;p is far from the
cylinder wall because the integrand decays like |$§ ..rﬁ|"4 as
ls = rfl—> oo

The integral of the reflection terms R is more difficult

to estimate, but it seems plausible that it will further reduce the

magnitude of the two particle integral of (7. 14) because a particle at

r# sees both the particle at !_‘“' and the image of the particle at

-—

:“’ , and this image acts on ﬁ in the opposite sense of the direct
interaction* (see Figure 4). Furthermore, when the point :ﬁ is
far from the wall, the integral of the reflection terms R is of
smaller order than the integral of the direct terms S‘J . Thus, an

estimate of the second term of the right hand side of (7. 14) is

2
a2 TR By - 5P ~R.. -
[( {4 -é-V ) hf[( F:,'.t (s-r ) F:;l Xaxstd RLJI) +, ] d.§] rerﬂe |.556u°}7_ 16)
|s-rRiz 20 -
and we expect that R3S Cuo is an upper bound on the magnitude of

the integral.

" An exact solution for the reflected veloc ity field duec to a point par-
ticle in the presence of a plane wall was found by Lorents (1907). It
is given in Appendix C.
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We now proceed to the third term of (7. 14), and consider the

quantity
I = - [(1+ v FRy(e,e” (B 1) Rye(e,2®) . ) |

This expression is the change in the settling velocity of a single sphere
in the presence of the cylindrical wall, and can be estimated numeri-
cally. There are different expressions for this quantity in different
regions of the tube. When the sphere is away from the wall, the set-

tling velocity is given by Cox and Mason (1971) as:

V = U_o[ | _%‘.'P(f’) + O(%‘;)] (7.18)

where 'F(P) is given numerically by Greenstein and Happel (1968)

for values of fi between 0 and 0.9 (sce Table 7-1). Ior ,o larger

Figure 4. The Form of a Two Particle 0/3
Interaction in the Presence </ \ ’
of a Wall. / N

/ Q!

DR

« imase“ oC

T—'—P——& << [ , the settling velocity is given by
- ©

Cox and Mason as:

than 0. 9 and

V=U[I-&d@s]wmere flp) ~zids e prt @

Finally, when the sphere is very near the wall, the cylinder wall can

be approximated by a plane surface and the results of Goldman, Cox,
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Table 7-1. Some Values of f(p) Found by Greenstein and Happel.

f(p) 2.10 2,10 2.08 2.06 2.04 2.06 2.17 2.46 3.20 5.30

and Brenner (1967) may be used. They express their results in terms
of a dimensionless drag force F';* on a sphere moving with velocity
v parallel to a plane wall. Equating the excess weight, F , to the
drag then gives

crauV E < F

or

|
V="1U e (7.20)

as the terminal velocity of a phere close to a plane wall. The depend-
ence of V on the distance of the sphere center from the wall is
given in Table 7-2. Note that near the wall there is an order 1 change
. . . Q .

in v , while for P$0,9 there is only an order "-R-: change in
V . Between these two regions there is a qualitative change in be-
havior as described by (7. 19). This behavior is not described suffi-
ciently well by (7.19) since that equation does not match the solutions

(7.18) and (7.20) at the endpoints (see Figure 5). Instead, a linear

Table 7-2. Dependence of V on the Distance from the Wall, where

V= uo(\—a(%)) , h = distance of sphere center from the wall.

h/a 10. 1 3.76 2.35 1. 54 1.13 1. 04

g(h/a) 0. 06 0.15 0.24 0. 36 0.54 0. 62




~77-

(1-p)Fep)

s

A
T

0.9 |- 10
P

Figure 5. Wall hindrance for a single sphere settling in a cylinder.

interpolation for "F(F)("’f’) was used as shown in Figure 5. This
maintained the behavior indicated by (7. 19) and continuously matched
the values of V at the endpoints.

The average settling velocity of a single particle in the tube is

given by equation (7. 4) as
- YRq
<> =j<V|f>2pr (7.21)
o

where <V\/o> is defined for different values of f) by (7. 18),
(7.20), and the correction of (7.19). Using more values than are

shown in the tables, the numerical result is

<V>=U(1-K(&)S) (7.22a)
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where

2\ _ o.ia |
=50 +()0 ——
K (R,) (106 + l—too%o) 00 Ya, (7.22D)

The above representation of K(‘%o) is only correct for —% < Q.01 ,
°

For —3'~°>O.Ol it can be seen that 0.9 > |- lO%’ so that Figure
o
5 is no longer valid.

The contribution of each region of integration to the total hin-

drance is given by

pe [0,09] -2 229
12
pefo9,1-10% ] 2 [oa3+ (1.06 +|—:66"%)’&" 1002 ]

pe[t-0g 1-8] -g a9,

Notice the large effect of the boundary region. If the spheres tend to
stay away from the walls, the overall wall cffect will be greatly re-
duced.

Now we relate the suspension problem to the single particle
result (7.22). The net decrease in settling speed indicated in (7.22)

is equal to the mean of (7. 17) throughout the tube. Hence,

<I>»=-Ug KR) (7.23)

Now making use of the above results (7. 15), (7.16), and (7.23), wec

sece from (7. 14) that

< (|+;2fv*)v,-<;’;p)>,9 = = Uy 655 — U (1-8)F K(7)
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which implies that the mean settling velocity of the spheres in the tube

is given by

V> = WL~ EKE) - (655 - BEKE)]. (.o
Some typical values of the function K(%e) are given in Table 7-3.

Table 7-3. Some Values of the Function K(%)
e -

1074 1073 1072 31072

K(=s—) 10. 1 7.5 5.2 4.1

(The last value was derived by considering the two regions pé€ E0,0.7]
and FG[0.7=C-IO%° , |—%°] )

It is clear that, due to the lack of theoretical knowledge about
the solutions of the relevant one and two particle problems, the above
solution (7.24) is hardly exact. However, it does indicate the order
of magnitude effect of the wall.

The solution (7.24) can be checked experimentally in the fol -
lowing manner. First, for fixed ’%‘; , measure the normalized
settling speed V/u, for various values of €@ , and plot these
points on a graph of V/'U, versus € . (See Figure 6.) Then the
line through these points should intersect the axis €= o at the
point |~ %OK(%O) . This experiment would check the theoreti-
cal value of K(%.) obtained above. The dependence of the settling
speed on e could also be measured, and this provides an independ-

-3
ent way of calculating K( Ro) from the same sect of experiments.
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[} k&)

N h
:;::na'lzeo( slope = = (655 -82% K(’g‘ ))
ocd‘y, / R Re
v
U

O 0.05 ~

Concentration, o
Figure 6. Predicted ¢ dependence from (7-24).

Finally, even if the theorctical value of K(%;) is incorreoect, the
form of the solution (7. 24) could be checked because the dependence
on ’%‘; of the slope of the line should be cight times as great as the
dependence on "%"o of the intercept of the line with €¢=0
Thus, the solution (7. 24) can be checked quite thoroughly.

The next section summarizes some typical experimental re-

sults. Unfortunately, none of them are really suitable for obtaining

the experimental information required above.
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VIII. A SUMMARY OF EXPERIMENTAL RESULTS FOR
SEDIMENTATION AND COMPARISON WITH THEORY
In Chapters III and VII results have been derived for the mean
settling velocity of a dilute dispersion of spheres. The result for

sedimentation in a tube was found to be

L= 1B KE) - e(ess -8E k(2) (7. 24)

where the value of K("E:.) is given by (7.22b). Many experiments
have been done to measure this hindered settling phenomenon, and
some thorough summaries of these experiments are given in Happel
and Brenner (1965) and Maude and Whitmore (1958). A representative
selection of the experiments is given in Table 8-1. It can be seen
from the last column of Table 8-1 that none of the experiments follow
the theoretical prediction (7. 24), but the reason for this is simply that
the range of validity of the prediction (7. 24) is not met by the experi-
ments. The relation between theory and experiment is described be-
low in more detail.
The most serious limitation of the theory is that it is only a

linear theory, and as such, it predicts a settling speed of zcero for

= 16 9,, which is certainly not true. It is not expected that the
theory would be valid for ¢ >5% . This restriction leaves only the
experiments by McNown and Lin, and Cheng and Schachman, and the
results for ¢=35% in Whitmore's experiments, to compare with the
theory. The experimental results for higher concentrations are indi-
cated in Figure 7 . It can be seen that the straight lines predicted

by theory widely diverge from experimental results for ¢> 3 % .
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The experimental results for the mean settling velocity agree well

with the theory

%‘::(l—c)ﬁ B =~S

derived by dimensional analysis by both Maude and Whitmore (1958)

(8.1)

and Richardson and Zaki (1954). Using this experimental correlation

2

. 2
the size of the neglected €~ term in the theory can be estimated by

expanding (8. 1) for small €& with the result

U . | -Se + 10— . . (8. 2)

°
This implies the theory will make a relative error on the order of

10c?
Sc

in calculating the hindrance to the mean settling speed.

= &eC

The experiment by Cheng and Schachman (1955), while per-
formed at sufficiently small values of € , was done in an ultra-
centrifuge, and the effect of rotation on the settling speed is not
known. The results of their experiment are plotted in Figure 8.

The remaining experiment, done by McNown and Lin (1952),
is interesting because of the unique Cy3 dependence they found.

The Reynolds number defined by

Re = 22726

was about . 75 in their experiment, and thus the theory we derived by
assuming Stokes flow cannot predict this experimental result. Fig-

ure 8 shows the experimental points found by McNown and Lin, the
straight line predicted by the the;ory (7.24), and a curve interpolated

through the data points. The interpolation is based on the plot of
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V3 . . .
versus C given in the experimenters' paper. A possible

S

u‘ '/3
explanation for this ¢ dependence can be given on the basis of the
results for general two sphere distributions described in Chapter VI
It is known experimentally [Happel and Brenner (1965)] that two par -
ticles settling at moderate Reynolds number (0.2 to 1.0) tend to sepa-
rate from each other as long as one particle is not directly in the
other particle's wake. If we suppose this complex two-particle inter-
action can be described by a hydrodynamic repulsion between parti-
cles, then it is likely that particles in a suspension will tend to sepa-
rate from each other when settling at these moderate Reynolds num -
bers. In particular, the results of Chapter VI then indicate there

L)
will be a 0/3 dependence in the settling speed when this repulsion

/3

is sufficiently strong. Thus, the ¢ dependence is probably
caused by the magnitude of the Reynolds number, but a theory includ-
ing inertia effects would be needed to verify this claim.

We conclude that at the present time there are no experiments
that confirm or deny the theory (7. 24) for the mean settling speed of

a dilute suspension, and that other theories are needed to explain the

experimental results given here.
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Figure 7. Experimental results for moderate concentrations,
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APPENDIX A

A Comparison of the Random Free and Random Fixed Arrays

This section summarizes the results of Brinkman (1947) and
Lundgren (1971). Brinkman first posed the porous medium model to
find the settling velocity of spheres, while Lundgren directly related
the equations for flow through a porous media to the equations for
flow past a free suspension. The method of approach these authors
use is to average the properties of the medium surrounding each
sphere rather than to compute the individual hydrodynamic interac-
tions as other authors do.

Brinkman's idea was to find an equation for flow through a

suspension by combining the Stokes equation

I<

2.
VF = /u.V
with Darcy's law

vk = -4

for the mean flow through a porous medium. Thus, he postulated the
equations of motion to be:
= - ﬁ:- V + ’Vzv
Ve Y rp VY
Vv =0

(A-1)

where /u.l , the viscosity of the dispersion, was related in some way

to /U. , for instance by the Einstein viscosity relation
/a.’=/u.( | + Q.SC,).
: . : 3 Y2
His result was a change in the settling speed equal to 73:’(‘_ for C

small, which is the correct result for flow past the random fixed array.

Saffman (1973) pointed out that Brinkman's postulated equations (A-1)
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are to leading order equivalent to (4.15) of this paper with a=0Q .
Lundgren was more rigorous in his derivation of the relevant
equations of motion. He extended a statistical formulation used by
Saffman (1971) to average the properties of the medium surrounding
each sphere. He found that the proper resistance term that should
be added to the Stokes equations differed depending on whether the

arrays were free or fixed. For the free array, his result is
k"
VP =/IA.V1_\{ + BV %cv> + C3 (A-2)

where he finds the constants B and C , and <¥> is the velocity
of the composite material. Thus, the resistance term added to
Stokes law was not found to be proportional to <V > as Brinkman had
supposecd. Tor flow past a lixed array, Lundgren's resull is
Vp = My Acy> Bvicy> (A-3)

where now <V 7> 1is the seepage velocity, and he finds the constants
A and B . Comparing (A-2) and (A-3), it is seen that there is
more resistance to the motion of the fluid for the fixed array, and so
the ¢ -dependence is larger in this case.

The resulting equation he derived for the mean scttling speed
of a suspension is interesting in view of Faxen's law. He found that
_\_/ , the mean sphere velocity, and <V , the composite material

velocity, were related by

E aZea
\/ = —— t <y> +——G-V <Vv> (A-4)

~ (.,Tr/‘i,w
where /ZZ == effective viscosity of the suspension,
~F
F

= excess weight of a sphere relative to the suspension.
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Equation (A-4) is just Faxen's law (2. 16a) with the mean properties
of the suspension replacing the properties of the fluid alone. His re-

sult for the mean settling velocity of suspensions is

7

V=U(l-Bc+.), B=7%

which is as near to experimental values /3 =5 as other methods
(e.g. /6=6.55 derived in Chapter III).

The idea of replacing the fluid viscosity S with the suspen-
sion viscosity /fl was tested experimentally by Whitmore (1955). il¢
compared the settling spceds of particles falling through purc fluid to
those falling through a dilute suspension of neutrally buoyant spheres.
The result was the falling spheres were hindered more when scttling
through the suspension of neutrally buoyant spheres if the concentra-
tion of falling spheres was less than 10 per cent. This indicates that
the suspension viscosity/l’z may be the correct parameter in the
equations of motion. However, at greater concentrations there were
streaming effects and the spheres settled more rapidly through the

suspension than through the fluid alone.
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APPENDIX B

rD rF ) dr

Evaluation of f(\+dD +l+dF
rz2a-

In Chapter IV, the following equation for <v,{Q;0)>, is de-

rived:

rD rfF
<v,(_Q)'O)>° = —‘%—rhdzv. f(l-wlb + |+o(F)°"' .

r2 Qda

(4. 38)

This section derives the leading terms in the expansion for small ¢
of the right hand side of (4. 38). The method used involves dividing
the region of integration into three parts, and finding separate expan-
sions for each region.

First, we make the change of variables Ar=x in the inte-

gral. This gives

where
D= a[l- €(+x)] ~ x*(1-%x4+..) as x~0

- (B-2)
F/—z -1 + ex(l+x4 xt) ~ %xz“__%x +...) as x—»0

Y.
The coefficient of the integral in (B-1) is order \/|C % since

d* 3.a V_V % .
V= h(?i \-M)(em:n)'/. ~ VinTat e~ Ve,
Ya.

Thus, we may neglect the terms of order C in the integral itself

since these produce only order ¢ effects in <v. >° . It is con-
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venient to define the small parameter

to simplify the notation.

Now divide the interval of integration into three parts:

o /“Vz ! had
/(')dx=/(‘)dx + /(')o(x + [C)dx, (B-3)
M M /“'/; i
.
Consider first the integral involving D’ . In the region /u.\“ x (/u./a'
the integrand may be written
=D Lo (" £x*+..) (3x4...)
i [+ dx JB-4)
DY T a(dxe) | xed x

’
where D has been expanded for X small using (B-2). Only the
!
first term of (B-4) gives a contribution greater than c/:. since the
other terms are bounded by:

%

lt-;d) /H

“d)\ lolx\ .|./u"t-.-/u ~e

and
Y.

Tx Gy e g wk s e%
x+dX X +ol )\ I S M ~ ’

The first term gives a contribution of
Y% '/a_

M () 2 -
Je= ,/(,-xw Yoo =p o dd [l e o psdd]
M + Ofu)
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which will later be put in terms of @ . This is the leading order
contribution from the interval [/«,)/u J
In the other two regions of integration, the denominator of the
integrand may be expanded directly as

| /

2 O(A / d} It

Y _ dA dA -
Xax ;7 x‘D [' x"D +(x3D> ] (B-6)
(+—X3D

In the region X2 { , the terms with d\ are order /u. , so for

X2 1 we need only keep the term

0
/
;:—,_'D odx . (B-7)
]
2
In the region /«,/"sx €| , the term involving (%Dl) may be

neglected since

()" ~ @I (1-%xe) < My for

Then expanding the first two terms on the right hand side of (B-6)

gives 40\
2 AN Exa
Ly f(— 92 ’) = LD — (1—Fx +) ( FX*...
~)——<—1D (' X3D xa_:D ( 3 X
I YA .
=D -5 Op.
Thus, in the region [/“'/z) | __l , we need only keep the contribu-
tion

/

/1/ (XL“D"' 2(}2") ol (13-8)
/‘ t X

Combining the results (B-5), (B-7), and (B-8) we see that the inte-



-94.

/
gral of the D term is given by

,“'/a. 1 d
| L Va
/ ! dX — X dx - °-{§)‘—olx + ;;_D O‘X + O(C )-(B—Q)
x+d) y, "
A A

1
In a similar manner, the integral involving F' can be expressed as
20
o o{l y
Eil X _dx = L “"“‘Z =2 dy +I LFldx + Qe™).(5_10)
ch x .
! ,«’=

’/:-
-l- %
The integrals in (B-9) and (B-10) are casily cvaluated. We have

o - -x -x
f-,:—z(b’+ Fax = [ (mret-% L)
e e

' a
g N _/L/:. e-',“
- a e - Va
M yZ
= Q""B',u./" +09“) as /u-—-»o)
I
5 “a. _
_é;f Dy = SHIp = S0 n e,
Ya
/“
and
pr y
X 1 - 3 2 Ya
l(wﬂ + X“L)o(x 3 0% o\t (" 0} + o Lo ()
i, dAy 4 d A\
- (W) + L R) + O,

Then using the relations

/a'= 3{5&'/2.

to express the above results in terms of the volume concentration €,

d}: %Ji c-'/l + O(C.)

we have
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o0

._'- / _|_ ’ 1 [
/ ( x2 + "tF )dx = I 4+ ﬁﬁc/a,ew e + O(c/l)‘
|

ol 3 dA 32
Y 4-;51) |+X’F

Therefore, since the coefficient of the integral is given by

4w d¥\y 3 Ya
S Vo= -V, Z=e

the expansion of < v,(Q;O))o is

<vi(0;0)% =V (—%cy‘——%ch c + O(c‘-)).

This is the result cited in Chapter IV.
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APPENDIX C

A Point Particle in the Presence of a Plane Wall

A result for the velocity field due to a point particle in the
presence of a plane wall was given by Lorentz (1907). It is presented
here because the result is not easily found in the literature.

Let the fluid velocity due to the particle in an unbounded fluid
be denoted by ( 'um, V(“) W(o)) , and let the wall be the plane Y= 0.
Denote the image motion by ('IL('),V('))W“)) , where, in the image, the
components of motion parallel to the wall remain the same, while the

?

component perpendicular to the wall is reversed. Then, on y= O
o )
we have u(')= u , vil= - v , w®= w® I was shown by
. . () .
Lorentz that the velocity field (u‘°’+u s vy v“} w(°)+wf1)) vanishes on

y = O , where

o) 1
w® = _u(l)’_a),av + 2 2p?

Ix M Ox
( W v | y*ap®®
v = vy -2 <+
7 ay M c)y (C-1)
(@ _ - W _ v(‘) 2 al )
wo= ot 27 oz + —/YZ oz

1 . . )]
Here, P( k is the pressure corresponding to the velocity (u“))v )wm)

and p‘“’ is similarly defined. The velocity ficld (U™ v® w(®)
satisfies the homogeneous Stokes flow equations in the fluid, and thus
is the ""wall reflection' of the velocity field (um, V(o))w(o)) . Of

course, if the flow (u‘°’)v‘°’)w(°’) were due to a finite particle,
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the boundary conditions on the surface of the particle would not be

satisfied by the reflected field (u'® v

(:J) w“)) , and equations

(C-~1) would then describe only an approximate solution to the problem:.
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APPENDIX D

A Summary of the Multiple Fourier Transforms Used

As few books have tables of multiple integrals, it was felt worth-
while to summarize the transforms used in this thesis. A sample cal-
culation is provided at the end of this section. The range of integra-

tion in each case is unbounded three-dimensional space.

ST g = swd 8n

k* - ¢ r r2
'L'-;e"k'ro(l_ = -T*r
kiki ikr t T riv,
—£ IR = - ‘0 - -
f ek = - 9,9, v = L (& *?:)
[ | gékt e = 3T -
k™42 - *
l der LI (D-0)
/k‘(kur)e e = o )

e AR _&If:' _ pmAr
f—f-*h‘**k er g = -39 Hai-e™)

k*(k>+2Y)
kk; ker 0y Lyaa  OF
NS ekt g = SO Ly (140
i e = L a ]

LA =Y oA
SR a1 o)
: |



-99._

Using the above results, and the notation R = J‘J ~ 225 we also
T

have
I ‘P‘_ cker _ - o __é:‘.]_ N
[ B < s - gy

Py ikr QI [ 2 -
—L Tk = S S+ L - e (14 ‘7—]
k"—(k‘q,)") d_ r3)4 ﬂ ( r —+ )\ o )
GTT h ‘L 1 =N\ 1A 3
~ e r"'[‘ -e r(l+>\r+3kr~)]'

As an example of the method of integration, consider the inte-

etk
L= / k‘(k‘+>«‘) A

Making use of polar coordinates with the axis W‘:O parallel to B,

gral

{x=

we have
ckrm‘f :
1= / f k*sin ¥ dBdY¥ dk (D-1)
l<4(k +>“)
Next, write the product k;_kJ in new Cartesian coordinates where
one axis is parallel to £ . The transformation is defined by
I -
k= (e:-4,) k., (D-2)
where @; are the unit vectors in the unprimed coordinates,

—

1,. arc the unit vectors in the primed coordinates,

and the primed coordinates arc rclated to the polar coordinates by
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k! = kcos ¢
k! = k sin{f ecos@

k= ksinf sn©

This transformation enables us to use the relation

. ’
kg,kj = (gc'!m)(gj‘gn) k,,, ‘(,’,
to divide the integral in (D-1) into several parts. Upon integration
with respect to 6 , itis seen that the integrals involving k,/ ‘(;

!/
kz ‘(; , and k; k. are zero, and that I is given by

I = (QL'!u)(gj'L)I‘ + [(.‘.’t!:)(@j'!z)+(5¢'!:)(§j-!3)] Il (D-3)

where
e g nt avd
I‘: Q]TJO gt cos” ¥ sim f d¥f dk
[}
ob-n' .
k 4
I,'z,z FJJ e sin® Y sin f o ok

[} (o] k"‘f’);
Using the integral (D-0), it can be seen that
— QTrl “Ar
I =75 (1-e™) (D-4)

and so only the evaluation of II is necessary. In order to find I. s

we note that

. kL
L eckhcos‘f’cosn(s-mt(d( = fedu-c,osw ¥ ol
o

(3|
e

{
l&s rlp 5‘"

Q’zm Q"v Q’}QJ
sX’J
r’r

2

~—

(1>-5)

[
<
v
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The last step is obvious from the general relation

ak»-F(kr) = r* £ (kr) =‘E;.§a\-:—’c('<r).

Using (D-5) we have

I - 411‘] Ak“ smlﬂ—)_dk~

kv kt+)\*

and when integrated by parts this gives

3w [ (" sink “ksim |
~ in K¢ dk - 4 Sm Kr dk]
1= [ k(KoY o (k+2%)° : (D-6)

These two integrals can be found in standard tables, e.g. Gradshteyn

and Ryzhiz (1965). The result for ], is then

Il = 3)4 ["" - CAP(' +2Ar + 4 “-)]

and using (D-4) the result for Ia. is

I,= -3—5‘;[4 R+ e (1]

The expression for I in (D-3) may then be simplified somewhat by
noting that (g,;'_g.) is the normalized component of ¥ in the direc-

tion ¢ , so that
(EL'!I)(E’J'&) = :{i (D-7)

Also, by the orthogonality conditions for the transformation [ Courant

and Hilbert (1953)], we have

(. 4a)(g;4) + (ei-a)e L) = Sg- - %&- , (D-8)
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Making use of these last two relations in (D-3), we find

I

I ‘Std Ia. + ::72' (In“ Iz)

L -
=2 S [ - v - € (14an)]

P

+ EL 85 [ Lyv - o (140w 4 530)]

which is exactly the result cited above.
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