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ABSTRACT

In this study we investigate the existence, uniqueness and
asymptotic stability of solutions of a class of nonlinear integral
equations which are representations for some time dependent non-
linear partial differential equations, Sufficient conditions are
established which allo'w one to infer the stability of the nonlinear
equations from the stability of the linearized equations, Improved
estimates of the domain of stability are obtained using a Liapunov
Functional approach., These results are applied to some nonlinear
partial differential equations governing the behavior of nonlinear

continuous dynamical systems.
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INTRODUCTION

In this work we present a unified theory for treating the
existence, uniqueness and asyn'li)totic stability of solutions for a
class of nonlinear partial differential equations governing the
behavior of nonlinear continuous dynamical systems. From this class

we treat the following initial boundary value problems in some detail;

e ~ Zo Ut " Msex T f(u’ux’ut’uxx’ %y ) ()
utt+ 2 au, -u = f(u,ux, ut,x,t) (B)
u,- 20V u - Vu=
tt t s
(C)
f(u, u,s uy, U U o uxy’ uyy’ %, V5 t)
Uig " & Oyt ™ Maexe = fl(u’ Virthot Vg Mo Vi Mo pp V™o 5
(D)
-20V -'G'ZV = (s Vil s Vs Wy Vs 0 v %, t)
Vit C U xxt XX 2t 2 AT N SRV R Pl Pt B I

Some problems of this type have been treated before. Ficken
and Fleishman [13] investigated the existence, uniqueness and

stability of solutions for the initial value problem

_ 3
U " Uy - 204111“‘ - a, u= eu + b.

Greenberg, MacCamy and Mizel [8] have treated the initial boundary

- = o' (u ich i s i A
value problem Uy =W =0 (ux) U (which is a special case of (A)

above) using some results from the theory of parabolic equations,
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Rabinowitz [10) and [11] has proven the existence of periodic

solutions for u,_, + 20u, - u = ¢ f{ where € 1is a small
tt 5 b8

parameter and f is periodic in time. In [10] he treats

L,x,t) and in [11 ] he treats the fully nonlinear case

f = f{u, U, g

» U s U

fzf(u’ux’ut xx’  xt

S X, t). To do this he uses methods from

the theory of elliptic boundary value problems.
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CHAPTER I
GENERAL THEORY
A number of time dependent nonlinear partial differential
* equations with appropriate initial data and boundary conditions can
be written as Volterra integral equations. The solution of a particular
integral equation can be viewed as a fixed point of some mapping M.
In this chapter we use a contraction mapping principle to prove
the existence and uniqueness of a fixed point of such a
mapping. Asymptotic stability of the fixed point follows from an
application of the Gronwall lemma. We end this chapter by discussing
the Liapunov Functional approach to stability; this approach is a gener-

alization of Liapunov's Direct Method for ordinary differential equations.

1.1. Discussion of an Integral Equation

We consider those time dependent nonlinear partial differential

equations which can be written as an integral equation of the form

i

U(x, t) M U(x,t)

where (1.1)

t
Gla(x)] + [, Hlg(U)ldT .

1l

MU

U is a vector function defined for x belonging to some domain D CRN

and t €[0, T] where T may be infinite. G is a linear integral oper-
ator on D which maps some initial data a(x) into a vector function of
x and t. H is also a linear in-tegral operator on D which maps a vector
function g(U) into a vector function of x,t and 1. Notice that if g(0) = 0

then U = 0 is a fixed point of (1.1).
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It is assumed that the components of U belong to LZ(Q) where
0=Dx (0, T). For the purpose of proving existence we define a

with elements U under the norm

Banach space H(U, Q) = HT

=

T 2
2 2 2
lolly = (f [0y 405 4 eeet U Jaxae)
The subscript 2 is used because we also use an auxiliary norm
. 1

HUHl=(fD[Ui2+UZZ+""+UnZ]dx)2 :

A more appropriate norm, ”U”Z’ to use in what follows might be
”UH2 = max HU“l; however we did not use this for the reason discussed

t €10, T]
in Section 2. 1.

l.2. Existence and Uniqueness

We prove two existence theorems, one on a {inite time interwval
and the other on an infinite time interval, by proving that M is a con-

traction mapping of a complete metric space into itself.

Let Bn (6) = B denote the set of elements U such that

T

o o
TO, To finite, and HUH1 <6 a.e. for t€ [O,T0] .

U(x,t) € H

Lemma 1: BT is a complete metric space.
o

Proof: See Appendix I.
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Theorem 1. (Existence and Uniqueness for a Finite Time Interval):

If
a) HG[a]Hl < Kl n where 1 depends only on a(x) and Kl
is independent of a(x),

b) HH[g.(U)]Hl =K, ”g(U)“1 for every U € B where KZ

T 2
o
is independent of g,

) le(ll; s L, [Ull; a.e. for everyU eB, ,
O
d) llg(u)) - gUll; s L, [U; - T,ll;  a.e.

for every U UZ € BT 5

(o]

1’

e) n g.YT{é_ for any vy €(0,1) ,
1

1- 1
fy T < min [.f;———x s ] 3
o .x.\.ZLl KZLZ

then there exists a unique fixed point U € BT of (1.1) on the interwval

o
ro, T0] g

Proof: To prove this it is sufficient to prove that M is a contraction

*
operator on BT which maps B into itself.

T
(o} o]

Lemma 2: ™M maps B into itself, that is if HUHl <6 a.e.

T

O
then ||MUJ|; <6 a.e. .

Proof: Conditions a) and b) imply that

t
IMol, < K, m+ K, [ e, dr,
using c)

HMU]]1 <K nt+K,L, fs llull, ar .

-;Ei d
See Korevaar [12], p. 213, for a discussion of contraction operators.



But U € BT , therefore
o

IMull, = K;n+X, L, 8T

1

Conditions e) and f) give

Kinsy 6 and K, L1 6 To < (1-+) 6 which implies
mull, = s.
Lemma 3: M is a contraction operator on B that is

T
o]

MU, - MU, ||, = ¢[|U, - U where r is a positive

2l

number < 1.

Proof: Condition b) implies

MU, - MUl = X, [ llg(U) - g(u,)]], dr ,
using d)

t
MU, - MUl s K, L, [ flu;, -G dar .

2”1
The Schwartz inequality yields

MU, -MUL[l; < K, L, JT_ o, - u,ll,
Therefore

MU, - MU,|, = K, L, T_[lUu, -U,|, .

Condition f) implies KZ LZ To <1, therefore M is a

contraction mapping.

This concludes the proof of Theorem 1. Notice that the size of & is
restricted only by the size of the region where the Lipschitz conditions
c) and d) hold.

Now let Boo be the set of elements U(x,t) such that U(x,I t) € Hoo

and HU”1 <6e % a.e. for t€[0,00) and o> 0.
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Lemma 4: B 'is a complete metric space.
co

Proof: See Appendix I.

Theorem 2 {Existence and VUnique{leSS for an Infinite Time Interwval):

It

a) HG[a] Hl = K, e %% 1 where o> 0, m depends only on a(x)

and Kl is independent of a(x),

-o(t-T) A
b) HH[g(U)]Hl <K, e Hg(U)Hl for every U € BDO,
where KZ, is independent of g ,

o) llewll; sz, lulif <z, 5 e fJull, a.e.

for every U € B 5
o0

_O't
d) Hg(Ul) = g(UZ)Hl < ,LZ 6 e HUl--U2 ”1 a. e,
for every Ul‘ U2 € BOo 5
. Zc-y (1—’)’)0_]
e} 6 <minj{ -~ , = L | where y €(0,1) |,
Kplo? KoLy -
0o s
1

then there exists a unique fixed point of (1. 1) on the interval [0, ) .

Proof: To prove this it is sufficient to prove that M is a contraction

operator on Boo which maps Boo into itself,
: - - -0t
Lemma 5: M maps Boc into itself, that is if HUHl <=d6e a, e.

then HI\/iUH1 w8 e s 8 .

Proof: Conditions a) and b) imply that

t :
MU, =k e % n 4 K, [ e~ o1E-T) g, ar,

1

using c)



.

t
-0t 2 -ot -0T
IMU[|, s K me™ "+ K, L, 67e [ e dr
2
. K, L, $ _
D . L R
o KZ Ll 6
Conditions e) and f) give Kl'r] <4 & and s < (l=y)b

which implies HI\/lU“l <6 e-—dt.

Lemma 6: M is a contraction operator on BOC, that is

“MUI - I\/IUZH2 = P ”Ul - UZHZ where r is a positive number
< L
Proof: Condition b) implies
t

IMu, - MUl =k, [ Pl lg(u)) - e(@,)ll; ar,
using d)

: o &t g
MU, - MU, ll; <K, L, 67" [ lu, - u,ll; ar.

The Schwartz inequality yields

~Of A
MU, - MU, K, L, 67772 |lu; - U1, .

Squaring both sides, integrating and taking the square root

yields
KZ L2 5
”MUl - MUzHZ = 20 HU]_ - Uz” 2
KZ L2 o)
Condition e) implies ———— L P
o)

therefore M is a contraction mapping.
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This concludes the ﬁroof of Theorem 2. Notice that this theorem
includes the result that the solution U is asymptotically stable, that is

ol =& &%

1.3. A Liapunov-Poincard Type Theorem

Since nonlinear problems cannot in general be solved, an
interesting question is, "When does the solution of the linearized
problem behave like the solution of the nonlinear one?" .

In ordinal;y differential equations there are theorems attri-
buted in various places to Liapunov, Poincaré and Perron, which say,
in essence, that if the linearized equation is asymptotically stable
and the nonlinearity is small then the nonlinear equation is asymptot-
ically stable.

Theorem 2 of the last section includes a result of this type.
Conditions a) and b) assert the asymptotic stability of the linearized
equation and condition c) asserts that the nonlinearity is small. Since
the space BOO contains only fu_nctioﬁs which are asymptotically stable
(see the statement just preceding Lemma 4) the solution must be asymp-
toti'cally stable. We now prove a result which giwves a little sharper
bound on the solution U. Recall that the bound we had from Theorem 2

was-”UHl <8 & OF,

Theorem 3 (A Liapunov-Poincaré Type Theorem.):

Suppose all the conditions of Theorem 2 are satisfied, then
KZ Ll g ~at
o (l-e ) 5t
lull, sK;ne e™ ", (1.2)

where U is the {fixed point of (1.1) .
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Prcof: Conditions a) and b) of Theorem 2 imply that

il <& _-ot ft ~o(t-T) lell, a
ol =By me ™+ K, 4o Blly, &7 =

But g being of second order, condition ¢), implies
ot ; '
eMlully sK n+ K, L, 6 Lully ar .
ot s 5
Let y(t) = e HUH1 which yields

t "
y(t) < Kl n + KZ Ll 6 fO e"Cﬂ y(m) dt .

t

- -0
Let R(t)=K; n+K, L, 6 fo e

¥ y{T) dt which implies

%t B (1)
=Tt * y(t) £ R{t) which upon integration yields
=L K. I B
Z -ot
NG SO
R(t) < R(0) e © .

KZLlﬁ

) e -ot
Therefore vy(t)= g o ”U”l < Kl ne o) (l-e 77)

This theorerm not only says that the zero solution is asymptot-
ically stable but it gives a lower bound on the region of asymptotic

stability, Let us state this theorem another way.

‘ : N g 20 (l-vyo
If the system starts out so that 1 < Kl min KZLZ, KZLl

(recall n is a measure of the initial data) then the system remains

close to the zero solution in the sense of (1.2) and approaches zero

ast—oo .
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1.4. Liapunov's Direct Method for Stability

Stability by Liapunov's Direct Method has been applied exten-
sively to ordinary differential equations and so it is natural to look
for extensions of this method to partial differential equations. Several
recent papers* treat stability for certain partial differential equations
by such an extension. Greenberg, MacCamy and Mizel [8] and
_Rabinowitz [10] treat stability by a method which is essentially the
same as the Direct Method.

In this section we prove a theorem on asymptotic stability
which applies to any system with a state vector U(x, t) for which a
Liapunov Functional can be constructed. It is assumed that ther system
admits a zero (equilibrium) solution. The theorem and its proof are
almost identical to a theorem proved by Kalman and Bertram [4] for
ordinary differential equations.

Let U(x,t, Uo) denote a possible state.vector of this system
where Uo(x) denotes the initial state of the system, 1i.e. U(X.,O,UO):UO(X).
Let the measure of distance in this system be the norm, HUHl, defined
in Section 1.1. Before proceeding to the theorem we state three defi-
nitions.

Definition 1:

The zero solution is said to be stable if for every ¢ > 0 there

exists a 6{(¢) > 0 such that HUO(X)Hl < & implies ||U(x, t, UO) | =e.

A

See for example Parks [17], Dickerson [2] and Infante and Plaut [3].
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Definition 2:

The zero solution is said to be asymptotically stable in the
large if

1) the zero solution is stable, and

2) all solutions which are bounded initially remain bounded

for all time and approach zero as t = co.

Definition 3:

V 1is a spatial integral operator which maps a vector function

U(x, t) into a scalar function of t denoted by V[U(x,t),t] = V(t).

Theorem 4:

Let U(x, t, UO) denote some state vector where U(x,O,Uo): Uo(x)
and U(x, t, 0) = 0. Suppose there exists a scalar functioﬁ YO, t] =Vit)
differentiable in t along every solution curve U such that V[0,t] = 0
and

a) V[U,t] is positive definite, that is there exists a continuous

nondecreasing scalar function f)l such that 61(0) = 0 and for all

t and all U#0, 0<p ([lu]])=V[Ut]

3

b) There exists a continuous scalar function vy such that ¢(0)=0
and the derivative V of V along the motion satisfies, for all

t>0and U#£ 0, V[U,t] = - y(”UHl) <0,

c) There exists a continuous, nondecreasing scalar function

B, such that p,(0) = 0 and, for all't, V[U,t] < ﬁZ(HUHl) ,

d) ﬁl(HUHI) — o0 with HUHl -,
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then the zero solution is asymptotically stable in the large and V[U, t]

is called a Liapunov Functional.

Proof:

Lemma 7: The zero solution is stable.

Proof: Let HUoHl < 6, where & is as yet arbitrary, then by

b) and ¢) V[U,t] < V[U_, 0] = ;32(}1U0H1) < p,(6). Combining
this with a) gives {SI(HUHI) = ViU, t] = ]32(6). But for every
given ¢ > 0 Bl(e) is a fixed number > 0, since BZ is continuous
and 52(0) = 0 there exists a 6§ such that ﬁz(ﬁ) < Bl(e). Therefore,
for this &, B ([[U]l}) = B,(¢),which by the monotonicity of B,

implies that ||U|l, <e.

Lemma 8: All solutions bounded initially remain bounded for

all time.

Proof: Take HUo”l < r where r is arbitrary. We know from
a), b) and c) that B(||U[| )=V U,t1sVIU 03B, ([[U_||) < B,(x).
But by d) there exists a finite C, which depends on r, such that

[32(1') < ﬁl(C)whi.ch implies that ﬁl(HUHl) < ﬁl(C). The monot=

- onicity of [31 then implies that HU”1 < C.

Lemma 9: All solutions bounded initially approach zero as

t ¥ .

" Proof: By b) V(t)= V[U,t] is a monotone nonincreasing

function which is bounded below by zero. Therefore there

exists a number Voo such that limit V(t) — Voo =z 0, Assume-
t = oo
Voo > 0 and obtain a contradiction.
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By assumption then
BZ(HUHl) > V(t) = V_>0. Conditions c) and d) imply the
existence of a number Cl such that VOO = ﬁZ(Cl); combining
this with Lemma 8 we have C; < ”U”l & ). Let K = minp(y)
for y € [Cl, C] \;fhich implies
vit) = v(o) - [ p[ull) s V(o) -K¢t.
This means that V becomes negative for large enough t which

is a contradiction. Thus Voo = 0.
This proves Theorem 4.

Liapunov's Direct Method for stability has the advantage that
it does not require any knowledge of the solution except the knowledge
that it satisfy a certain differ-ential equation ); however, it suffers in
that there is no general way to find a Liapunov Functional.

Notice that Theorem 4 is more general than Theorem 3 in the
sense that there is no restriction on the initial data (it can be arbi-
trarily large but finite in norm), and there is no explicit restriction

on the nonlinearity.
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CHAPTER 2
SPECIFIC EXAMPLES

In this chapter we show how the results of Chapter 1 can be
applied to some specific nonlinear partial differential equations. In
particular we show how these equations can be put in the form (1.1)
such that [|G[a]l|; sKe % [la]|, and [H[g]]l; s K e %" |g]|,. The
existence and uniqueness theorems and the Liapunov—Poincaré theorem
follow if g and 1 satisfy the appropriate conditions in Theorems 1 and
2. We also show how to construct a Liapunov Functional for these
equations; stability then follows from Theorem 4.

The examples we treat are special cases of the following problem:

utt+L

1

u +L,u = flu a,; ses; %t) . (2. 1)
t 2 £

where u is defined on some bounded spatial domain D for t € 10, T] and

satisfies the homogeneous boundary condition
Bu(x,t) = 0 for x€ 9D, ' (2. 2)

and the initial condifions

u(x, 0} a (x)

(2.3)

1

u,(x,0) = a(x) :

The function f may depend on u and some of its derivatives and is
to be considered smooth in these variables. Ll and L2 are self-
adjoint spatial operators such that the linear system (2.1)-(2.2) with

ES
f =0 exhibits classical normal modes.

%
See Section 2. 2 for a discussion of classical normal modes.
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It should be noted that a partial differential equation does not
have to be of the form (2. 1)-(2.3) in order to apply the results of
Chapter 1. The theory in Chapter 1 is quite general and can be applied
to any partial differential equation which can somehow be written in
the form of (1.1) such that G and H have the appropriate properties.
Also, notevery problem which can be written in the form of (2. 1)-(2. 3)
can be treated by the methods of Chapter 1 because G and H may not
have the appropriate properties.

Before going to the specific examples we discuss the meaning
of existence of solutions to (2. 1).-(2. 3), derive an integral equation
for (2.1)-(2.3) and derive an equality which is used for constructing

a Liapunov Functional for (2. 1)-(2. 3).

2.'1, Some Comments on Existence

To prove existence we replace (2.1)-(2.3) E}r an integral equa-
tion and then apply t1;1e theorems of Chapter ke This, however, brings
up the following questions:

1) In what sense is the integral equation equivaleﬁt to (2.1)-(2.3)7?

2) How do we use the theory of Chapter 1 to prove existence of,

for instance, classical solutions to (2. 1)-(2. 3), i.e., solutions

such that u Ll u

L2 u, and f(u, U, t 0, Xlt) are continuous

tt’ t’
functions of x and t?
The first question is answered simply by saying that if the

integral equation has solutions which are sufficiently differentiable,

then the two formulations will be equivalent. The second question can

be answered in the framework of generalized derivatives and Sobolev
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. *
spaces. This is the approach taken here.
If we make the vector U of equation (l.1) contain u and some
of its generalized derivatives then the Banach space HT defined in
Section 1.1 is the space of functions such that each function has these

generalized derivatives belonging to LZ(Q)° For example we can take

the components of U to be u(x,y,t), u

o D8 and uyy then the norm
of U is
' 1
i z
2 2 2 Z
U = ( o +m,. F(a + q dx d dt)
lull, o LT g+ (g 3) + up T dy
and HT is the space of functions u whose generalized derivatives
.5 W and u exist and are L_((Q) integrable.
£ xy vy 2 %

If we make the vector U contain u and all its .Qlth order deriva-
tives then HT is the ,L’,th order Sobolev space WZL(Q) and we may apply
the Sobolev embedding theorems. In essence the embedding theorems
tell us that if the integer £ is large enough then every function in
W;’ is equivalent to a function in Cc¥ where k is some integgr less
than £ which is specified by the embedding theorem. For example,
we can take the components of U to be u(x,t), B, s Yo and W then
HT is the space WZZ(Q) and the embedding theorem t.ells us that u is

equivalent to a function in c° (class of continuous functions).

We use these ideas in the examples to prove exi stence,. unique -
ness and stability in two different spaces. In one space we use a
norm, ”UHz,which assures the existence of the Liapunov Functional

V[U, t] and its derivative. In the other space we use a norm for a

See Appendix II for a definition of these along with a statement of a
Sobolev Embedding Theorem.
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Sobolev space which will assure the existence of classical solutions.

One more point in regard to these ideas. Recall that in
Chapter 1 we mentioned that perhaps a more appropriate norm would
" be ”UH = max HU” . The reason we did not use this norm is

20 1

g2L8, T

because the properties of the functions in the Banach space generated
by this norm are not known to us whereas the properties of generalized

e
derivatives and Sobolev spaces are well known,

2.2. Derivation of an Integral Equation

There are many representations one could use to derive an
integral equation for (2.1)-(2.3); we want to use one that makes good
use of the "damping term" Llut. Caughey and O'Kelly [7] in their

paper on classical normal modes solve the linecar problem

utt+L1 U_t-FL2 u = f{x, t) "
with homogeneous boundary conditions: (2.4)
Bu(x,t) = 0 for x € 8D

where Ll and L2 are self-adjoint operators such that there exists a
complete set of eigenfunctions cpn(x) which are eigenfunctions for both

Ll and L This allows an expansion, for the solution of (2.4), of

2°

the :forrn
w(x, t) = Zu (o (x) . (2.5)

Replacing f(x, t) by f(u, Wy ™ % %y t) in the solution of (2.4) generates an

integral equation in the usual fashion.

e
¥ See Sobolev [5] and Smirnov [6].
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The general conditions on Ll and LZ. such that an expansion of

the form (2.5) exists for (2.4) can be summed up in a definition and

theorem stated by Caughey and O'Kelly [7]. The theorem is proved

in their paper; we state it here without proof.

Definition: The system (2.4) with f = 0 is said to possess classical
normal modes if there exists a complete set of orthonormal eigen-

functions 0, defined on D, such that

Llw(X)= 2h_

n n n

L, ©,(x)

It
=
B
)
B

n (2.6)

B cpn(x) 0 forx€oD .

Theorem: The necessary and sufficient conditions for (2.4) with f =0
to possess classical normal modes are that

{(a) the operators L1 and LZ commute

b Lgly = Dplby

(2.7)
(b) the boundary conditions on the higher-order

operator are derivable from a compatible set

of boundary conditions on the lower order
operator .

If (2.5) is to be a solution of (2. 4) the un(t) must satisfy the
differential equation )

wi(t) +2 2 ul(t) +u u (t)= fD f(g,t) o (E)a t (2.8)

with initial data
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a (0) = [ a () p(5) ds
(24 9)
wl0) = [ a)(8) g, (8) dB
where
u(x, 0) = ao(x)
ut(x,0)= al(X)

The sclution of (2.8) and (2. 9) can be written in the standard form
t
w () = vy (0 [ a @ v, () [ a) @+ [ v, (tm )/ K(E, Thp (B)a8)r

where ’
-t / Z An ’
v, (t) = e ™M [Cosh A= t+ — . sinh ./ t j
In : n n
N .

and

- : : t
Vzn(t) e Apt sinh ,/
S

Substituting this result into (2. 5) we {ind

u(x, t) = Erpn(x) (fD a cpn)vln(t) + Ecpn(x)( '[D alcpn) vzn(t)

“o
t (2.10)
+ Tw_(x) f0 ([p £E, ™) (E)AE) v, (t-T) dT

If we make the identification

Hix, B;t)

il

27 ¢ (x) ® (E) v, (t)

i}

and B(x, €;t) Erpn(x) cpn(g) Vzn(t) then

(2.10) can be written in a more compact form
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u(x, t) = {)A(x, E;t) a_(B)dE + {DB(X, git)a, (E)
T
+ [ [ B(x, &it-7) £(§, 7) dEdT. (2 11)
o D

Notice that w = u.n satisfies equation (2.1) with right hand side
f , and the same boundary conditions. The initial data become
t
wi(x, 0) = an(x) = utn(x, 0) and wt(x, 0 = an+l(x) = utn+l(x, 0). Therefore

we may write

t
un(x,t)= [ Aa + /[ Ban+l+cj)' fDB - (2. 12)

f
D T

The a_are determined from the following relation

n2 .. (2.13)

We will be dealing with u and some of its derivatives. Let

tl . . .
D" denote any n * order spatial derivative, then

: t
D"u,_ =/ D"Aa_+ [D"Ba +[ ) D'Bf (2. 14)
tm D m D m+1 o D T
and
™ =/ DA, a_+/ D"B_ a +ffDan (2.15)
wm+l = t “m t *m+1 i i * :
D D oD

The reason we choose this representation is that even though

t t
—af ] Bf=[ [ B, f(since v, (0)= 0), higher t derivatives bring
ot - Zn

o D o D aZ i t
contributions from the upper limit, for instance iy f f Bf =f f Btt f

ot o D D
+ f. With the added contributions derivatives of u cannot be written

in the same form as equation (2.11) (compare equation (2. 11) with
equations (2. 14) and (2.15) ) which is a convenient form for putting U

in the form of (1.1).
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Define a vector U(x,t) with components taken from u(x, t) and

{ D" u e } ; U then satisfies the integral equation
t
t -
Ulx,t) = Gla_,2,] + [ Hlg(Wldr , (2. 16)
o

where g depends on f and some of its derivatives. Therefore U is

a fixed point of the mapping defined in (1. 1);

2.3. Derivation of an Equality for a Liapunowv Functional

Part of the Liapunov Functional can be constructed by multi-
plying equation (2. 1) by (ut + ;ﬁ; Llu) and integrating over the domain
D. We assume in what follows that L1 and L2 are self-adjoint oper-

ators.

If the inner product of f(x) and g(x) is defined by
(f,g) = f fgdx
D 3
then

Y = A
(ut + 3 Llu, w, + Llut + LZ,U') = a(ut, ut)t

2
+ (ut’Llut) + (ut, Lzu) + (2 Llu, utt)

+(3Lyu, Liu)+(zLju, Lyu)= (u +3Lu, ).

1

The relations
- 1
(ut: Lzu) T 2 (U., Lzu)t
1 = _ (L
(2 Llua utt)_ (2 Llua ut)t (2 Llut; ut)

— g1
(Ll u, L1 ut)_(a Ly u L1 u)



e

imply

|

1
2 upu) + (o, Lyu) & (Lywu) + 3 (Lgu, L)

1

k13
- 3 [(, Lyu) + (Lgu, Low) ]+ (w + 3 Lyuf) (2. 17)

Thus if we defiﬁe

v(t)= 30(u, Lyu) + (ut ngu', u +zLyu L u, Lyu)] (2.18)
then (2. 17) can be written

'\}l(t) = -3 [(ut, Llut)+ (Llu, LZU.)'_] + (ut + % Llu, f) . (2.19)

2.4. Examples

In this section we deal with four specific exan-;pies. For each
example we define the problem, state the integral equation and give
some of the properties of the integral kernels A 'and B (see equation
(2.10}) ).

We prove asymptotic stability in the large in terms of some
norm, p, by constructing a functional V such that 0 < ﬁl(p)sV(t)ggz(p)
and V(t) < - v(p) where [31, [32 and y satisfy the condifions of Theorem
4. Stability follows from Theorem 4.

To prove existence and uniqueness we define an appropriate

construct the mapping M of (1.1) and show, for this
-o(t-T)

space HT’
mapping, that HG[a]“l <K e % n and |H [g(U)]”l <Ke
“ g(U) Hl . Existence and uniqueness follow from Theorem 1 or 2

and asymptotic stability from Theorem 3 under the appropriate re-

strictions on 1 and g. As mentioned in Section 2.1 we use two
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different norms, one€ to prove existence of the Liapunov Functional, V,
and its derivative and the other to prove existence of classical solu-
tions. It should be noted however that the Liapunov Functional approach

proves stability for a wider class of solutions than the class for which

we prove existence,

Example A,

The differential equation is

Wy = Za C L f(u, Un U, U, %, t)

ul0, )= u{l,t)=0 (Al)*

u(x, 0) = a (x})  ulx,0)=a,(x)

The eigenfunctions and eigenvalues associated with Ll and LZ (see

equation (2.6)) are

cpn('x) & éin nmwx
)‘n = 112 'rr2
- 2 2
u.n = n

so the integral equation (2.11) is

A problem very similar to this has been studied by Greenberg,
MacCamy and Mizel [8].
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1 1
u(x, t) = [ Alx, Eit)a_(E)dE + [ B(x, Eit)a,(§)dg

t 1
+ [ [ B(x, E;t-7) £(E, T)dEdT
o O

where
oo
A(x, B;t) = 2, 2 sinnmx sin nwg vln(t)
n=1
2. 21
vln(t) &5 g W 1L:osh\/ﬁazn41r4"--r12 wz t ' (A2)
- nZ 2
§ e SEDT ] t]
and
(o 0]
B(x, 8;t) = 2 2 sin nwx sin nwg v,_(t)
Zn
n=1
_ _-a nz'rrzt sinh ,/ t
vzn(t) = e @

—

A and B have the following properties which are needed for
discussing existence and uniqueness; see Appendix III for the calcula-
tion of these results. It is assumed that 5(x) and its even order deriva=

tives up to but not including order n vanish on the boundary.

”flA s sK““’Zt\"' | “\

(o) Xn Hl © lkxn 1

At = BXX
1 1 | -a 'rr2t|

” f Atxn S“l = Hf BX11+Z.S|I1 =Ke ||S n Hl (A3)
o) O =

B, = A+ 2aB

t XX
1 -a 1r2t

I {)Bt s|l, s K(1+2a) e sl
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These are the best bounds in the sense that they do not exist
if S does not have the indicated differentiability.

In the method we use to prove existence, the structure of the
kernel B puts a restriction on the contents of the nonlinear term { in
(Al). Onme canlarguc that the only derivative higher than first order
that f may contain is lixx because otherwise the mapping V = MU

(M is defined in (1. 1)) cannot be a mapping of the space HT into

itself. To see this consider the following: If f contains Uy o Uy and

u then the vector U (see equations (l.1) and (2. 16} ) must contain

d 2 : ' i. e,
u . uand u If we assume that U s Uy and L €L (Q) i.e

U ¢ H'I" but that higher order derivatives of u do not exist, then we
find from equations (2. 14), (2. 15).and (A3) that vmél_z( ) arﬂvxevtt, ¢LZ(L

where ¥t Vo and Vv 4 @re components of V in the mapping V= MU.

Therefore V ¢HT and M does not map HT into itself. To be more

it is equal to the sum of three terms (see equation (2. 15)
|
withm = 1 and n = 0} one of which is fo jo Bt frr dEdTt. This term

specific v

exists only if ft(u, eco . U, U

b Bpor Bgw Uyps wasw] G LZ(Q) but this is not pos-

sible since u is assumed not to exist. The term v exists because
ttt t 1 XX

it depends on a term fo fo Bxx f d€dT which belongs to LZ(Q) by (A3)

since f(u, «--, U s U Upsooe ) € LZ(Q) by condition ¢) of Theorem 1 or 2.

Another way of looking at this is to examine B in (A2). Notice
that each x derivative brings out an nm whereas each t derivative brings

out an order r12"rr2 term and so the convergence properties of Bxx and
t 1
B,, are different. In fact if Sis an L (Q) function then [ [ B__S€L_(Q)
tt 1 0 0 T xxX 2

but f f B S does not necessarily € L (Q)
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Construction of a Liapunov Functional

We consider two types of f; one is f = ~g(u) and the other is

_ 9

X

From equations (2. 18) and (2. 19)

l 2
Z:Idx

o 2 2
Vl(t) = 2 ./(; [UX‘+ (ut—o. uxx) ta u_
. (A4)

2
+u  fldx+ fo uf dx

X

o 1 2
.Vl(t) = -a fo[uxt +u

Case I. Take f= -g(u) where u g(u) > 0 for u # 0 and g'(u) > 0 for

u # 0. Define V(t)

Vl(t) + Vz(t) where

1

1 u )
Vo) = [ ([ g(§)dg)dx

which upon differentiation yields
. 1

VZ(t): fO u, glu)dx .

This leads to

1 u
Vit)= 3 [ [l +(u-au )4a®u’ +2 [ g(g)aglax

l.s . 8 2 -
(t) = -a fo [uxt+uxx tu glltu)lds .

To prove asymptotic stability in the large we show that V

satisfies the conditions of Theorem 4 with

1
- 2, 2., 2,2
p—fol:u Fu. Fo b

Jdax . (A6)

The following inequalities will be useful in our proof. If u is

such that u(0)=u(l)=0 ad u_ exists, then

1
|u| < fo‘ux|dx=:u2 < fo uxz depZ

r 2
P

(A7)



DB

and

1

: 2 2 | 2 ’
Euxl < fo ]uxxldx =u_’ < fo u_ dx < p " (A8)

The second inequality is based on the fact that u has a zero since

1
[/ u =0, and u_ is continuous.
o X x

Conditions a) and d) of Theorem 4.

Making use of (A5), (A6) and the inequality

Iutl < ‘ut-a uxxl % ‘ a uXX|

we find that

1
2 2 2 2 2 2
p sfo[ZuX.+Z(ut-uu ]

A b + u
XX XX XX

1
<2{(2+ ;—2) Vl(t) = Kl Vl(t) < K1 V(t) .
Therefore V(U,t) > Tl{—- pZ = ﬁl(p) where it is clear that Bl satisfies
. 1
conditions a) and d) of Theorem 4.

Condition ¢) of Theorem 4.
From (A4) we notice

1

2 2
V(1) = 3 fo[ux + 2u

2 & 2

 t3a uXXJSKZp X
1 u u -u

Now consider Vz(t) = fo (/0 g(E)dg)dx and let h(‘u‘) = rnax(fo g ‘fo g)

which implies that h(0) = 0, his a nondecreasing function of |u| and
u
fo g < h(|u|). By (A7) ‘u] < p , therefore

l u 1 1

voty=[ [ &= A h(|ul) < [ hip) = h(p).

o
Combining this with the result for Vl yields V(t) < szz + hip) = Bz(p')

where we observe that {32 satisfies condition c).
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Condition b) of Theorem 4.

Condition b) will be satisfied if we find a 7 such that

1
2 . 2 g, ) . .

v(p) £ « fo [uxt Fu_ + v g (u)]dx. Using (A7) and (A8) we find

z_f1 2, 2, 2, 2 <f13 3, B

P = U Ve TV T Ui T 7 Ve T U
but g'(u) is positive; therefore

2 230 Tul? +ul + ol gi(w]

= o "Uxx T Ukt T Ux &M

2

If we take y(p) = %ﬂ— , condition b) is satisfied.

We have therefore proved the foilowing result: If ﬁl(p):Kl- pz,

1
B,(p) =K, p° +h(p) and ¥(p) = & p° then B (p) = V(t) <B,(p) and

V() € -¥(p) . Asymptotic stability in the large for the norm p

follows.
9 _ , '
S = e = 7 b >
Case II. Take f 5% g(uX) u_ g (uX) where u_ g(uX) 0 for
. =
u_ + 0 and g (uX) [
Define V(t) = Vl(t) + Vz(t) where V, f ( f g(E)dE)dx which

upon differentiation yields

1 0
\’/'(t)"‘f U u)dx— -Iout 'é% dx,
Therefore

1 r W
V)= V(o) + [ (] F el@) df) ax

oo i w8 > B 2, _

V(t) = -~ j‘o lugetu, +u._giu)l dx
The construction of Bl and Y is the same as in Case I, the
construction of BZ goes through the same except we use

‘ﬂxl < p instead of lul < p.
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- Conditions for Existence

For the existence of V and V we need the existence in LZ(Q) of
u and its generalized derivatives u__, u___ and u_ (the existence of
XX xxt tt
cu and U imply the existence of u and ut). We therefore define

et Yo By € Lo (s ul g = 0, ulx 0)=a_(x),u,(x, 0)=ay (x)}
2

xxt

HT = fulx, t)”u, u
1
. 2. 2 Z
with the norm ”UH1 = '[o [u? + ul o tu +ul Tdx .

By equations (2. 14) and (2. 15) we have

1 1 t 1

u =fOAaO+foBa1+fofoBf
1 1 t I

YU = fo Axxao+ fo Bxxal ¥ fo fo Bxx s
1 1 t 1

Yt ™ fo Axxal * fo Bxxaz ¥ fo fo Bxx f'r
1 1 t 1

Yig 7 foAta1+'[oBta2+ 'fo foBtf’l‘ )

By (A3) there exists a constant K such that

lotalll, <X e ™ trlja ll, + fla ll, + Hag, I,

Y A e

Ixx
as long as a = a;= 0 on 8D. Also from (A3) we find
Z
2 - 2 2
lleIfly = k%™ ™z flel ) + 2 [l )l § 3

2
= K e™ 20T g .

This assures the existence of V and V as long as
1) a = a; = 0 on 8D
2) m and g satisfy the conditions of Theorem 1 or 2.
See Appendix IV where we show that condition 2} above is satisfied
for £= h(u_)u and f = h(u).
x' xEx

Now we prove that if a and a, are smooth enough then there

exists a solution u(x,t) of (Al) such that u € C3('Q).
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The Sobolev space WZB(Q) in the two dimensional case, i.e.

X, t, is embedded in Ca(Q) and the norm associated with this space is

> T 1 > . 5
fall® 5 =L [, Tw%+ © (D" )°]axadt.
WZ () n+m=5 t
However the existence of u, and u requires the existence of u s
£ xt® 2t

as we shall see below, therefore the vector U is made to contain u, all

fifth order derivatives of u and u 2 4°
% T

Since the inequalities in (A3)
hold under the assumption that S and its even order derivatives vanish
on 0D we define

Ho

5
(oG, o)l € W50, w5 4 €L, ulpy =u, [y

uX4l8D =0, utn(x, 0) = an(x), noee 4]
)% % at . Notice that H

: 2 2 T 41
th the norm ||U = + [ [ (u
i e norm | HZ Hu”W - x2t4 T

( o ‘o
. 5 2
is a subspace of W‘2 ().

By (2. 13) and (2. 14) we have

1 1 ‘ tr 1
u = fOAaO+fOBal+f0foBf
1 il E A
g '/(‘:)A5ao+foBSal+fofo'B5f'
x x x X
1 il t 1
uy = [ A a [ Bya, b [ B, -
X't ps b X t
g i & = Gla] + [ H[g(U)]
1‘132='l‘o‘l:‘Lf">a'¢7,-l_'/‘C»B3a'3+fofoBfifz
® € X x x T
1 1 t 1
uz3=foAzas+foB2a4+fofoBZf3
x t X *x X T
1 1 t 1
u o, = foAxa4+fo Bxa5+fo jo B £, butif {f j isto exist so
xzt T T
i 1 ¢ 1 rnustuth4
CEAT foAxxa4+foxa5+f0fOBXXf4
x t T
1 1 t 1
“t5 = I, Apayt [ Biagt [ Bt'fTér '

By (A3) there exists a constant K such that
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'21:
lat@lly = xe™ " “dla iy + llaylly + lag gl + Halx3”1

+ Ha1X4”1 + ”azxznl + HazxnglJr i a3X”1+ ”a’3xz”1 = ”341\1

gl # gl + llag ol = @™ En

under the following conditions:

1) a7 qoxx a0x4:= aox6 =81 T @ ex T %1 4721 6

on 8 D,

2) £(x,0) = £__(x,0) = fx4(x, 0) = £ (x, 0) = ftxz(x, 0) = 0 on 8D,

A little calculation based on equation (2. 13) shows that 1 exists if

aoXS and alx8 € LZ.(D) . Also by (A3) we seec that

2 e-—Z a -rrz'(t—'r)

=g vl = K <nmf+wgnf

AR EY  ER Y P

3

2
2 =2 aT (t-T &
= k4T 0T gy | ]
under the following condition:
f(x,t) = fxx(x, t) = 0 on 8D

We have therefore proved the following result:
If

Bl A g v Ay g BIulD)
X X

b) a a =0 on 9D for n=1,2,3

o 2n 21 2n
x x
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e) £z, ty= fXX(x, t)=0 on 8D

d) f 4(X, 0)=0 on 0D
x

e) g and n satisfy the conditions of Theorem 1 or 2

then there exists a three times continuously differentiable solution
of (Al) on either [0, Toj or [0, ) .

| Conditions c), d) and e) could be satisfied by f = h(u) or
f = h(u.x)uXX as long as h is suitably smooth and satisfies some con-

dition at zero. See Appendix 1V for some discussion of this.,

Example B.

The differential equation is

Uy + 2 a B~ W, & f(u, U, U, X, t) 1
; e
w(0,t) = wu(l,t) = 0 (B1)
u(x, 0) = ao(x) ut(x, ) = al(x) s

The eigenfunctions and eigenvalues given by equation (2.6) are

CDn(X) = J2 sin nmx
A = a
n
= nZ 'n"2
My =

A and B have the following properties which are calculated in

" This problem has been treated for the existence of periodic solu-
tions by Rabinowitz [10]. In a more recent paper [11] he uses a
technique developed by M&ser [9] to treat the case where f contains

d i
uxx’ uxt ana U,
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Appendix III. It is assumed that S and its even order derivatives

up to but not including order n vanishatx= 0,1,

Ap = Bux
Bt = A-2ab
1 -at
1,4 n8 =™ s - (52)
1 ,1 ~at
I A na® ly=W G B arasly sxe™ s 4l
. ,
: -at
I fo thn S Hl $Ke | an Hl

These are the best bounds in the sense that they do not exist if

]

. ¢ (D).
x _ '
The structure of B again puts a limit on the contents of f
but this timme f can contain nothing higher than first order derivatives.
The reasoning is the same as in Example A, here suffice it to say

| 1 1 .

that if S € LZ(D) then fo Bxx S, 'fo th S and '/o Btts do not neces-

sarily belong to LZ(D)'

Construction of a Liapunov Functional

We consider the same two types of f as in Example A, but

let

1

1
pZ fo[uz+u2+uf]dx .

X

Case BI.

1}

-g(u)

Using (2.18) and (2. 19) we determine
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> o z 2, 23 =
Vit)= 2/ [ul + (uf +auw)” +a"u” +2 [ g(§)dg]dx

1
a jo I_ug' + u}i’ + ug(u)]dx .

V(t) =

The following result can be established just as in Example A:
If ﬁl(p)': % p'2 5 fﬂz(p) = K pZ + hi{p) where h{p) is the same
as in Example A and «(p) = % pz then 51(p) < V(t) Sﬁ»z(p) and

V(t) £ -y(p) . We observe that Py, B, and vy satisly the conditions

of Theorem 4.

Case BII.

ox

g(ux) (Notice the existence theorem does not apply in

this case)

Using (2. 18) and (2. 19) we determine

u
X

1 l 2 2 2 2
Vit) = 3 fo Cul + (utau)® + a® u” + 2 fo g(€)dgldx

ko3
V(it)= - a fo [u,C tutu g(ux)]dx .

If ;31, BZ and ¢ are the same as in Case BI, the conditions

of the Theorem 4 will be satisfied.

Conditions for Existence

For the existence of V and V we need the existence in LZ(Q)

of u and its generalized derivatives u__ and w, {t he existence of

imply the existence of u_ and u ). Since the inequalities in
X N :

u and u
XX
= fll 2 "
E= {u;;a EWZ(Q),ulaD 0,

tt
(B2) for n =1 hold for S = 0 on 9D we define I—IT

u(x, 0) = a (x), ut(x, 0) = a; (X)} with the norm

2 l- 2 2 2 Z
”U“l s fo [u +uxy+uxt +utt Jdx



-36-

By equatioﬁs (2.14) and (2.15) we have

14 1 t 1
u = [ Aa +fBa,1+ffo
1 1
Yx T 'c/; Axxaokaxxalefo foB:’:xf ¢
1 = +
U = '[o .Axal+f0l BXa2+fi fol Bxf'r ] fo H[g(U)]
1 t
w, = fOAtal + [ B, a, + [ [ Bt £,

By (B2) there exists a constant K such that
ot -
latadl, = ke tClall, +la, Il +lay e, N+l 3 = k et n,

as long as a =a; = 0 on 8D. Also from (B2) we find

Z 2 ~2o{E=T . -
lmledllf =x® e 2T gllel] 2elle )l Frafle | 21 = k% 722 |ig)|

as long as f(x,t) = 0 on 8D. This assures the existence of V and V if
1§ a =a; = 0 on 8D

2) f(x, t) 0 . on oD

3) m and g satisfy the conditions of Theorem 1 or 2.
Now we prove that if a_anda, are smooth, providing m and g

satisfy the appropriate conditions, then there exists a solution
2
u(x, t) of (Bl) such that u(x, t) € C7(Q).
The Sobolev space W;(Q) in the two dimensional case, i.e. x,t,

is embedded in CZ(Q) and the norm associated with this space is

T 1
2 Z n 2
= [ [ [+ Z (@D )77 dxdt
el Wz4(m o o " m+n=4 utm
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Since the inequalities in (B2) hold under the assumption that S and its

even order derivatives vanish on 08D, we define

with the norm HUHZ2 = HU’HZ 4 .
w5 ()

By (2. 14) and (2. 15) we have

1 1- t )
u = an0+fBal+fo/OBf
1 t 1
P foA4aO+fB4al+fofoB4f
X x >0
1 1 t 1
ux3t foA3a1+fo3az+f foBX?)fT
t
= Glal + [ H[gldr
1 1 t 1
W% Lhgat [[Byag+ [ [ B,
> p.d ) b2
1 1
w3 = [, A as+ [ B a,+ [ [B f¢3
1 1 t 1
ut4 = fo Ata3+f Bta4+ _f f Bth3 "

By (B2) there exists a constant K such that

- -at
HG(a)Hl sKe™® [Haonl + HalHl + I!aOX4Hl + 1'a1x3 ”1
+ IfaZ 2”1 +la, |l * Ha4”1 1 & Ket n , under the following
X
conditions:
1) By B Bepe T By R By, B0 8D

2) f(x,0) = fT(X’O) = 0 on 8D .
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A little calculation based on equation (2. 13) shows that n exists if

a_ 4 and a X4 ELZ(D). Also by (B2) we see that

X

1

IHCg(u) 12 = &% 72T g 2 4 e )1 2

* Hf"i")s:xnlZ 5 HfTZXHjLz t 2 Hf’l'3”12 3
=% 72 )2,

under the following condition:
flx,t) = fxx(x., t) =0 on 0D.
We have therefore proved that if

a) aj 40 21 4 € LZ(D)
x X

c) f(x,t) = fxx(x’t) = 0 on oD

d) m and g satisfy the conditions of Theorem 1 or 2

then there exists a two times continuously differentiable solution of

(B1) on either [0, To] or [0, )}

Example C.

The differential equation is

2 2
U, = 2a ¥ B =T m= f(u, u_, uy, U, U, uxy’ uyy, %, v 1)

D={0<x<1l, 0<y<1]}

U(X, Y t)=20 for XY € 9 D (CI)

u(x', vy, 0) = ao(x, v) ut(x, y,0) = al(x, y)
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The eigenfunctions and eigenvalues (see equation (2. 6) ) associated

with Ll and LZ are

chn(X) = A2 sinmmx /2 sin nwy
A = a 'rrz (1'112 o+ 112)
mn
2 2 2
B on = 1w {m +mn)

A and B have the following properties where 0 Dx denotes the boundary

at x= 0,1 and @ DY denotes the boundary at y = 0, 1 . See Appendix
IIT for details. -
2
At = v B
B, = A+ Z2a VZB

t

-2a TI'Zt

2 2 :
”va Ag”lSKe 14 g”l if g‘aD‘_'O

1] aely=ll [ PBgl, sxe 2 g

; -a'zrt
n{DBtgnlsKez el

A \ (C2)
2
-2am t

f ( xnym )gH <Ke g H

H D an+l an-’rl 1 H Xnyrn 1
: -1, . -

x % y J y
-2 a 'n'2 t
H / Bn+2,ng = Ke ” n”l
D x -
k = 0, [E.:_l_ ]

if g l = 0
ka BDX

2
I/ BngulsKe-z” “llg N

g
y )
i 2 o =0 k=021,

2
oD
v Y
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The structure of B puts limits on the contents of f just as in

Example A.

Construction of a Liapunov Functional

We consider the case for f = -g(u) where ug(u) > 0 for u £ 0
and g'(u) = 0.
Using (2. 18) and (2.19) we determine

u
Vit) = & / [u: + u;‘ +(a, - a P & o Pl 4 [, g(8)aglaxdy
D

oy 2 2 2B o 2., 2
V(t) = -a '{)[uxt + uyt + (¥ u)” + ghu) (uX + uy)]dxdy A
2 2 2
If we let p = f [u? + uﬁ + u; + utz + (Vzu) ] dxdy, then the follow-
D

2

2

ing result can be proved just as in Example A, If Bl(p) = 20
2 ' 2 :

ﬁz(p) = Kp~ + h(p) and y(p) = %p , then ﬁ](p) < V(i) < ﬁz(p) and

Wt) < ~y(p). We observe that [31, [32 and vy satisfy the conditions of

Theorem 4 so asymptotic stability in the large follows.

Conditions for Existence

For the existence of V and V we need the existence in LZ(Q)

of u and its generalized derivatives vzu, Vzu and u_ . By (2.14)

t it
and (2.15) we have
t
u = {)Aao-F_]fDBal-l-fo{)Bf
t
vCu = I(VZA)a + f(VZB)al+f f(vZB)f
D ° D °D t
= G[a] + [ Hlglar
vz f(vA)a+f(vB)a+ffv5)f
D °p
t
=an+fBa+ffo .
Uit e 175 2 5 T



0 o .

= 0

Z 2
Take Hp= {u(x,y,t)” g, Vu, YVw, u, GLZ(Q), uIBD _ .

t)
ulx,y,0) =a_, u/flxy,0)= a,}

with norm “Ule = f [uz F (Vzu)z i (Vzut)z < uztt 1 dxdy .
D

By (C2) there exists a constant, K, such that

| )
lelalll, sxe™® ™ “ llla_ll, + lla,ll, + Iv%a_li,

2
2 -2
P2l + llayll, 1 =k a2 et
and such that

2
g1l f s x® e @™ 1) t2)|| 2 + 2| [| 7 ]

2
£ KZ e-4 am (t-T) ”g”12.

This assures the existence of V and V as long.as

1) aozalzo on 8D

2) mand g satisfy the conditions of Theorem 1 or 2.
Now we prove that if a, and a, are smooth, providing nand g
satisfy the appropriate conditions, then there exists a solution u(x, vy, t)

of IC1] sueh that uix, ¥ £ € G2 @)

The Sobolev space in the three dimensional case, i.e. x, v, t,
is embedded in C3(Q),so in a manner analogous to Example A we

define

H.. = {u(x, y,t)n u € W;(Q, D2

T u, €L,(Q),

t
B S R - P T e
oD XK BDX vy BD‘y i SDX y E)D_Y
utn(x,y,O) =a, n= 0,41
with norm

: T
lol 2 = al® ,  + [ ] (2%, )" laxayat.
W, (Q) D t
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By (2.14) and (2.15) we have

t
u :ano+'/Bal+/Ofo
t
P = f(DSA)aO + J‘(D5B)al + [ [(D°B)t
i
D4U‘t = f(D4A)‘al + I(D4B)a2 + fo /'(DﬁtB)f,r
t
D3utt = j(D3A)aZ - f(D3B)a3 + fo ,/'(D3B)f -
%
Dzu 3= j(DZA)a3 + f(DZB)a4 <+ fo f(DZB)f 3
t T
' t
D a4 [ (DA)a, + [(DB) a; + [ [(DB) f'r4

but if f is to exist so must D'2 u
. T b

t
D% ;= [(D®A)a, + [(D*Blag + /| [l

In the same manner as in the previous examples we can state
the following result.
If

8

8
a) D" a_, D" a, € L,(D)

1
b) as @, f(x,y,0) and f(x,y,t) satisfy the appropriate

conditions on 9D
c) g and 7 satisfy the conditions of Theorem 1 or 2

then there exists a three times continuously differentiable solution of

(C1) on either [0, TO] or [0, ).
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Example D.

The differential equations are

u, - 2a u - u 2 iff
S 5

u,v,u ,v ,u,,Vv
tt xt XX l( - g e

v 2a v OZ =f (u,v,u ,v ,u
tt uxt Vax T2ty > il

u(0,t) = v(0,t) = u(l,t) == vw(l,t) =0

(x

u(x, 0) = a_(x), v(x,0) = b (x), u 4

t(x, 0) = al(X), v

,0)=b (%)

¢

The eigenfunctions and eigenvalues (see equation (2. 6) ) are
o (%) = .2 sinnwrx, 2 _(u)=a 1121."2 , Wofu) = nZTrZ'
n n n
xyn(x) = /2 sin nwx, }\n(v) = a nzwz s u,n(v) = GZ nzwz

so the integral equations are

i 1 t 1
u(x, t) = foAaO+fOBal +.fo fOBfl

-1 t 1
v(x,t):fOCbo+foEbl+fo fo Ef,

where A and B are the same as in Example A and

C=2J2 sinnmx .2 sin nrng vln(t)

2 2 & &
= 2 4 4 2 2
Vln(t) =g T E <c05h)/a nmT™ -0 n 'ﬂ'd t+ 22 n- sinh,/ t)
E = 2./2 sinnwx /2 sin nwg vzn(t)
2 2 .
-an " t sinh,/ t
VZn(t) =2 B —_——

T
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From Appendix III we see that the form of the bounds for
C and E do not depend on ¢ so we may use the bounds given in
equation (A3).

The structure of B and E puts a limit on the contents of

fl and f2 as before.

Construction of a Liapunov Functional

We consider the case for

|
_ 8 8 x I 9 ¥
f]. = -B—X B_le and fz = —é—;- ~—8—‘—;; where \1/ ha.S the
following properties:
> - =
a) \lx(ux, VX) 0 unless L 0
b) ¥(0,0) = 0
\
9w 2 2V, 8 8V
xx Ox Ou Vix 8% 0v
p. X
2 2
= Uyx wuu-'_zvxxuxx\"uv +Vxx 'l;rv>—0
X X il X x
d} WK) = ., max Y(u .V ) is a nondecreasing
u;+ V}E = Kz L

function of K .

Using (2.18) and (2. 19) we determine

2 2
2.+0V2.

1 1 Z 5 2
V(t) = = fo [ux - (u.t - auxx) ta’u %

2 7z 2
+(vt—av )+ a VXX-I-Z\!;]dx

XX
1
2 Z 2 2
V(t) = -a fo [uxt + Uy = Vit to Vix
a aV s ol
= uxxha—x ou 4 Vxx ox  ov_ ] ax
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If we let

1
=f[t12+vz+u2'+vz+u?'+vz_+u2+v2]dx
o X x t t X XX

- then the following result can be proven just as in Example A. If

2 : 2 : 2
Bilp) = Ky p™, B, =K, p7 + hip) and y(p) = K, p” for some
constants Kl’ KZ and 1{3 then Bl(p).§V(t)EBZ(p) and V(t) € -v{p). Thus

Bl’ ﬁz and + satisfy the conditions of Theorem 4.

Conditions for Existence

For the existence of V and V we need the existence in LZ(Q)

of u and v and their generalized derivatives Upser Vae® Yaext? Vaesct?
u, . and Vir® By (2.14) and (2. 15) we have
1 t 1
u = foAao+foBal+f§ fOBfl
1 1 t 1
v= [ Cb_+ fOE by+ /[ [ EL,
1 1 t 1
w =/ A a+[ B a + [ [ B _f
J 1 t 1
Vix © fo Cxxbo i /o Exxbl * fo '[o Exx fZ
1 1
Ut © fo Axxal T fo B %2 £ 'f f XX lT
: 1 1 t 1
Vext ~ '/o Cxxbl ¥ fo Exbe ¥ fo fo Exx 2T
1 1 t 1
g = J Ay t i Bya, LBt

Vi = fo C, b, + fo E bz + fo fo E, &



46 -

Take HT & {u(x, t) and ~(x, t)H U, VU, Y Ut Vaest?
4y v € Lo, ulyp = vl =0 ulx 0) =a (x) ,
u, (x, 0) = 2 (x), v(x, 0) =bglx), v,(x 0) = b, (x) }
| 2 _ 1 2 2 2 2 2
with norm liUnl '/o Lu”™ + v 4 u_ vt oul
2 2 Z
o ¥ ok +utt + Vit Jax .

By (A3) there exists a constant K such that
- 'rrzf: =
la@ll, <: e ™ tCa l + bl + lla 0, + I, I,

Fllag oyl Tall + limyl, T

|

L e

+ HE:]'o oxle

XX

and such that
2

x| 2 = 12 o2 v 2l Fealiegll Fralie N el 11D

: 2
e -
it A E il

This assures the existence of V and V as long as
1) a,o‘:al:bozbl:O on 8D
2) m and g satisfy the conditions of Theorem 1 or 2.

The proof of existence of solutions to (D1) belonging to CS(Q)

is a direct extension of the work in the previous examples.
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APPENDIX I

A PROOIF OF LEMMAS 1 AND 4

Lemmas 1 and 4 can be proved in the same manner; here we
prove Lemma 4. The following statement, which we prove, is
equivalent to Lemma 4: Every Cauchy sequence in ]300 converges to

a limit function in Boo.

Proof:

Let Un be an arbitrary Cauchy sequence in Hoo such that

U =6 e ae., ive. U €B
n n [e9]

Since Hoo is a Banach space there exists a'U € H such that
0

a 2
fo f(t)at-0, £ (t) = fD(Un-U) dx . (1 1)

PW

But (I 1) implies the existence of a subsequence such that

B
an =+ {0} a.e.
therefore

[l

nK-—U”l = 0 B\ie .

By the triangle inequality
~gt
lull, = HUnK- ull; + HUnKlll <ctbe a.e.

where ¢ - 0 as Ny = 0. Since U is independent of ¢ we have

c 2

HUHl 25 g 0" B B

therefore U € B i
: [v0]

B3
For a discussion of this see Korevaar [12] .
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APPENDIX IT

SOBOLEV SPACE PROPERTIES

In this appendix we define the generalized derivative and the

‘Sobolev space W 4 (1) and state an embedding theorem for ‘NZE(Q). For

24(

a complete discussion of these concepts see Sobolev [5) and Smirnov (6].

Definition: (Generalized Derivative)

Let Q be an open subset of RN+1 and let f(x,t) and g(x,t)
€ LZ(Q) such that
n & .
[ f(x,t) D o (x,t) dx dt = (-1)" [ glx, t)o(x, t)dx dt
0 t Q
for any £ = m+n times continuously differentiable function ¢ with
compact support in Q.

In this case, g(x,t) is called the generalized derivative of the

type p" im of f(x,t) in 0.

Definition: (Sobolev Space WZJ?'(Q) )

Let 2 be an open subset of RI\H-]'° Given a positive integer £,

define WZJ‘Z'(Q) as the linear space of those f € LZ(Q) having all their
genei‘alized derivatives of order £ belonging to LZ(Q)" The norm

on Wz'e(Q) is given by

2 = . n 2
f = [+ T (D" f_ ) |dxdt.
el w?f(n) QL vkl e ]
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Theorem:

The space WZ'G(Q) is a Banach space.

Theorem: (Embedding Theorem)

If 4> N-;l and the integer m satisfies
O0<m<4 - —I-\I-%-]:

)

then every function f(x,t) € WZJ(Q) is equivalent to a function which is

continuously differentiable in Q up to and including order m.
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APPENDIX III

PROPERTIES OF THE INTEGRAL KERNELS "A" AND "B"

The properties of A and B depend on the fundamental solutions

of the equation (see Section 2.2 for some discussion of A and B)

1 ! =
vn+2Anvn+u,nv = 0

n

vln(O) = 1 VZD(O) = 0
1 s ! oEy

vln(O) o) vzn(O) = 1

The fundamental solutions are
-Ant Z )\n -
vln(t) =g W [cosh:/xn - My t + ———— sinh./ t]
J*

(t) s e‘)\.nt Sinh,\/‘ t
2n ‘\/——-———-r-——

It follows that

v

Vll").(t) = U«n Vzn(t)
vyl (8) = vy (t) - 2 )\nvzn(t) .
Since
= 20 (x) e (8) v, (t)
B B Ecpn(x) p (8) v, (t)
len ¥ & )\n I:p'n
szn =

we find
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A, = -Du e (E) 1, v, (0

B, = 2o () (8) vy (t) -2 ()@ (B) 2% v, (t) .
‘Therefore

At = —LZB

Bt A—LlB 2

To obtain bounds for the norms of the integral operators we
need bounds for vln(t) and vzn(t). In examples A, C and D the eigen-
values of the operators Ll and LZ’, differ only by constants,hence for

these examples vln(t) and Vzn(t) can be written in the form

v

ln(t) & e-awt(cosh azwz - crzw t+ _.ﬂaw sinh,/ t)

o~ wt sinh,/ t

vzn(t) = ’ a>0

—

where (= win) or as in Example C, w= ¢3(m, n). We condider the three

E

cases
GZ 02
wln) 20)1 = - win) = — and
a a
02
Woin SWE &, < =32 '
- a
Case 1. Consider ¢ = W > ;Z i
4. & 2
Lemma: If f(w)=~aw +ﬁ w -0
z
g

= = §
then ef(W)t < e - for w = wy -
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Prooﬂ Since

3 o2 2
)= -a+ 3 -9 = 0

’\/a cu # O w
f is a nondecreasing funcélon of (¢ such that lim f(w)=-— . It

fle)t _ ~Tw t e 2o

follows that e <e

Notice th.at

()= e *Wh [ LeV  PypoW

0 < v
In
§ =S80 faV Lae™ t)]
2o
=peflelt g 2w,y SMewtd Jtiow gy
but (——-——— 1) > 0, therefore
() = ST ol y
Let glw) = N N ¥ g, then
JoB 2 & .
a w -0 w
d > 2 2,
. po
2gg'= gp 8 (W = - %>, < 0. But
(a w-0)

g>0 therefore g' < 0 which implies g has its maximum at @ = Wy :

Therefore
2
- 9._. t a w
lv, ()] <ste e <1+ —_—1 ) .
n JZ 2 2~
e B |
We also have
A t - A t
, eflwlt
£33 — %
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therefore

N
-

‘ Vzn(t) ] <

and

0 < w v, (t) < 3

n ‘\/—-———

therefore
02
0] - =t
|wv2n(t)| s 5 ! e 40
‘ AR P
Collecting these results we see there exists a constant K such that
2
“ gt
|V (t) I < K e
In
2
= _g._ t
lv (t) < K e a for . < @
Zn 2 1
- Zat
lwv, () | s Ke ,
Z
Case 11. Consider ¢y = 22— . In this case
2 = o2
w2 2 # v
v = e & + 2 % g @
In a
2
_‘ia_ t
VZn = t e °

Therefore there exists a constant K such that

lvln‘ 2
-2 g
|V2n| < Ke Ro
2
o
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g ) g
" s < < < T
Case III Consider wm1n w wo

a

In this case we have sin and cos instead of sinh and cosh

~therefore
g W2 2 W2
1vln(t)| < e W14 5 w——-«-—-—z 5
O - a W
. % i L
—awt/ 1 = ummlnt 1 =
= A Z EE i
a 1 a
(o} (o)
—a¢ .t
lvzn(t)l & min 1
of B _ qZ, Z
| (o} (.do wo
-0 . )
vazn(t)‘ < e %11‘1 O .
\ JZ Tz 2
o wo wo

If we consider the damping to be small then the bounds in Case
IIT are the largest and we may write for some constant K that

Ivln(t)[ -

5 wmint
]vzn(t)] < Ke for every ¢ . (II1-1)

]wvzétﬂ

Taking a to be small is a matter of convenience and makes no differ-
ence in the results of this paper because no matter what a is we still

-at

have bounds of the form K e , a> 0. Notice that the exponent in

(I11-1) is independent of ¢ .

With this background let us examine each example.



Example A. w = 1'1'Z 'rrz . Wiy = 'n’2
1
Examine fo AXk g .
Let f (nh A/ 2 sin niwx k even
A2 cos ntx k odd.
Then
1 00 k 1
fo Axk g = }E, 4 {nm) fk(nx)(IOﬁSlnnwg g(€) dg)vln(t)
and

1 1
fo ,\/T sin nwg€ g(E)dg = + '/0 ---}-rR fk(ng)ggk dg,

(n)
under the assumption that g and all its even order derivatives up to
but not including order k vanish at zero and one.

Therefore

1 1 2 ] > 2
blle® y 8a8) du= 21 f (Bl gy dB)T v (1)
x _ n=1 %
2 e—ZG.Tl'zt fl

2
o & i dx s

< K %
X

where we have made use of {III-1) and Bessel's inequality. But this is

equivalent to

1 _asiBy
1, asely = e Ayl
1

Examine 'fo B -
x

In a similar fashion we show

o l

2 1
2 -2aT 2 -
=K" e fo gxk dx 5

(0]
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Therefore,

1 —awzt
1/, Bz el s Ke

- ” gxk Hl

Example B.
Take a small enough so that vln(t) and v7n(t) are sinusoidal;

then

vln(t) = e_o't (cos'\}n T -a ot + = S % i t)

at sin ./ t
J_"‘_,"

VZn(t) A
which implies

‘Vln(t)l

|v, (1] < KeoF

Irm vzn(t)l
for every n and for some constant K.
Examine fA k8-
%

In exactly the same manner as in Example A we find

-at
”fAkng < Ke™® Hgknl .
X x
' 1
Examine fo Bxk-i-l 2
1 1 > 1 S >
[, 0L B yp 8)7 = Z filmxdg )7 (o v, (1))
1
2 -2at 2
< K e fo £ %

xX



Y e

Therefore

”IB Tl gul < Ke—at Hg k!ll-

Example C. w = TTZ (nZ + mz), Bt & 2 'n'z

Let 9 Dx denote the boundary at x = 0, 1 and 9Dy denote the

boundary at y = 0, 1.
Examine I A k 48 (£,m) d& dn
D xvy

where A = A(x,§&; y,n;t).

Assume that

- . k-1 . 2 -1
g ;! =g, 2] =0 i=0,[5=1; j=0,[%=].
x*t ap_ Y 9D . 2
* y
Then
2 sin mmwx sin nmy
I (_f A *g) dxdy:ZZ(ZI sin mwx cos nwy (g 4 4,)2 2
D D xvy”~ Dlcosmmx sin nny[ x vy~ o
COS MTX COS Ny
2
2
<rZTHET L g% axdy
D =y
therefore
2
-2am t ‘
'lIAkngll T e e “1 .
D x ¥ ki
= ¥

Examine r [VZA(X, & vomit) 1 g(€,m) dédn.
D
Assume that g I8D = 0, then

2 2 . . 2 B &
L.rD(v.rDv Ag)y = L E ('.FD 2 sin mwx sin nmy ¥ g) vy mn(t)

R
‘EK26~4ath(v2gﬁ.
D

)
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Therefore

2.
I v agll, s KSEAT Hlofg|,

Examine [ B Tet2 g(&,m) dédn where B = B(x,&;y,1;t).
D x

e - k-1
Assume that gXZi|8Dx— 0 i=o0, [_2_ = then
[ (] B ? = o/ (gl ) @iy, )
D D xk+2 D Zcos sin(® k Zmn
where
|m2-rr2v I<l(m2+n 'ITZV l = ‘ v <= K —zqwzt
2Zmn!' - 2mni T 1@ 2mn ¥ b
Therefore
2
-2amw t
l\fDBk+2g||1 < Ke “ grkHl
X %
Examine [ B .y ,.; 8 (£,m) dfdn.
D =x v
Assume that
_ _ B o k-1 ._ £ =1
gZi 5D -gzj 9D = 0 1-—-03[2 j:.]—os[""z—_
X X y y
then
sin sin >
2 _ sin cos 2
fD( fDB ki1 g+18) =D T2 N log Gin Bk g ) (T 0RYy
X v Xy
cos cos
where
2
2 -2am™ t
T mn V?..mnl ‘ WV n < Ke

mn
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Therefore

2
gul « KewZaTrt

” fD Bxk_l_ 1 Yﬁ'_i_l H gxky'z” 1 .

Examine [ vz Bg.

D
¢yt v% B g)2 = 20 2(2 [ sinmuwx sinnwy g)z[(mz—l-nz)nzvz ]2
mn
D D. D .
2
< KZ e-40.’ﬂ' tf gZ
D
Therefore
2 -2 a 1T2t
I/ v Bgl, = Ke llell, -
D
Example D.

Since ¢ does not enter the exponent in (1II-1) the bounds for C

and E are the same as for A and B of Example A.



il
APPENDIX IV

NONLINEARITY CONDITIONS
The purpose of this appendix is to show the conditions under
which the nonlinearities, f= h{(u) and f = h(ux) u_ o mentioned in
Example A (see pages 30 and 33), satisfy conditions c) and d)

of Theorem 2., We do this for the case where

Hp= (e luu_,uw_., u, €L,(0), u

XX xxt 8D=0}’

which is the case for the existence of V and V in Example A (see
page 30),

The space of functions considered in Theorem 2 is B _, so
in what follows we assume that u€ Boo = HT’ where H’I‘ is defined
above. Since U € Boo we have the following inequalities (see
pages 27 and 28 for some discussion of these inequalities):

2 1 2 1 2 . 2 _ .2 =20t
lal®< Jg ue <] u < HUNY €67 e a.
2 1 2

qul ‘:’jo W a. e,

(IV-~1)

lutlz = I(l) uzzct = fé uzzcxtf ”U”f 562 LA B

2 1 2
IuXtI S ‘ro uXXt s €a =

Lemma 1 (f = h(u)):

If

a) h(u) is twice continuously differentiable for |u] <9,
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Ih(a) | < X, (8) ul®

b) Int@| <k, (&) lul ¢ lul <,
[ht() | < &y (8)

then

| 5
ls@ 1, = @l + 2lg D7 <Lyl e

and
i

lgw) - g |, = @Iy -2 + 2] £ -1 1)

-0t
<L,be HU-VHla.e.
The inequalities in the following proof hold a.e. in %,

Proof: The inequalities (IV-1) and condition b) imply that

l£]= [nt | <, lul® <x [0l
therefore

lell, <% lul?.

In a similar fashion

l£.] = @ u | <k, lul Tl < x, Null?,
which implies

e 0, <, Mol

Therefore

(=]

=
letwll; < lull] @if + 215 = lull?.
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By the mean value theorem
|£v) -£(V) |= [n(w) - nw) | < b ] | u-v]

for some n€[u,v]. This implies that
5w - £V < X, Inl UVl < ky 87 MU=V,

since lnl < éé-Ot. Therefore

150) - £V)] < 1,6 e U= .

By the same reasoning as above we find

1

£ (0) -£,M ] = |n'(w) u, - B'() v, ]

{1

[B(v) (=) + B'() (u-v) w |

-0t
= (1(2 + k3) e ]]U-VH 1?

which implies that

[£,(0) - £(V) 1] < (k, + k;) 59t jlu-v]

10

Therefore

i

lg() - g} < 6™ U=Vl (255 +2 (1 + k)"

_ -0t
=L, 8¢ Nu-vll;.
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Lemma 2 (f = h(ux) uXX):

If
a) h is twice continuously differentiable fox qul <6,
In(u) | < x(8) lu_|
) [h'(e )< K,(8) lo | <8,
lht'(u )] < ky(6)
then
l
lel, = @112 + 2l 1% < HUIIZ e B,
and
__J=_
lg(u) - gl = 2l]£U) - f(V)!] +2 k(0 - £, (v || +
<L,6 e % u-vl, a.e.

The inequalities in the following proof hold a. e. in t.
Proof: The inequalities (IV-1) and condition b) imply that
= | fi
el =Inte)u | <k lu llo 1<k llullte I,

therefore

£ll, <% o s,

In a similar fashion
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|£t| = !h‘(ux) . + h(uX) uxxtl

u
X

<10l Tug e 1ol le

which implies

2
Hft!l1 < (k; + k) ol T

Therefore

=3

lgw I, < @15 + 2 ) + k)% Ul

2
=L, I oll5.

By the mean value theorem

| b(v) (u_-v ) +hi(m)u_(u_ -v)|

| £(Uy - £(V) |

1 A

kl ”U” 1 ]uX_X = VXX’ + kzl] U"an luXX' E]
therefore

I£0) - (VM| | < (et ky) 8 e”0F Ju-vi,.

Notice that

ft(U) - ft(V) = (h'(ux) u_.u - h'(vx) v 3

v 3
b4 xt xx

+ (h(ux) Wi, h(vx) vxxt)'

By a calculation similar to the previous one we find

”h(ux) B ™ h(vx) - Hl = (kl h kz) & e-ct lu-v|| 1
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Using the mean value theorem, we find

Ih‘(uX) u - h'(vX) Vg ¥ |

u
xt xx XX

= [h'(VX) [uxt (U'xx - Vxx) % Viex (uXt B VXt):]

. 16 &
T B%n) (ux VX) uxt uxxr

< k,llull, !uxx-vxxl ¥ &y vaxl lu - vl

which implies

||h'(ux) u

o MaiE
%t uxx h (VX) vxt VXX”:[

-0t
< (2k2+.k3 8 e llu -v]!l.

Therefore

-0t
||£t(U) - £, (V)![1 < (k; + 3k, +k;8) e lu - V]ll,

2

and finally

noj=

He(0) -g(V) | < (201 41,0 + 2k, + 3K,

_ -0t = |
=L,6e " "llU-vl,.

+1,0)%) 8™ MU - vl
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