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ABSTRACT 

This thesis demonstrates how the parameters of a slightly 

non-homogeneous medium can be derived approximately from the 

reflection coefficient. 

Two types of media are investigated. The first is described 

by the one-dimensional wave equation, the second by the more 

complex Timoshenko beam equation. In both cases, the media are 

assumed to be infinite in extent, with the media parameters 

becoming homogeneous as the space variable approaches positive or 

negative infinity. 

Much effort is placed in deriving properties of the reflection 

coefficient for both cases. The wave equation is considered 

primarily to introduce the techniques used to investigate the more 

complex Timoshenko equation. In both cases, an approximation is 

derived for one of the medium parameters involving the reflection 

co efficient. 
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CHAPTER I 

INTRODUCTION 

In this thesis we investigate some questions concerning wave 

propagation in various media. In Chapter II we shall be concerned with 

the familiar wave equation, while in Chapter III we will look at a 

medium which is described by the less familiar Timoshenko equation. 

The Timoshenko equation is a fourth order partial differential equation 

describing transverse vibrations of a beam. In both cases we shall 

consider only one space ~imension, and the medium will extend from 

negative to positive infinity. The media to be considered will be non­

homogeneous; that is, the parameters characterizing the media will 

depend on the space variable . 

For media which are asymptotically homogeneous at infinity, 

there exist solutions which are sinusoidal waves as the space variable 

approaches i nfinity. We will be interested in solutions which can be 

interpreted as an incident sinusoidal wave which is partially transmitted 

and partially reflected. For this case, we can define reflection and 

transmission coefficients, corresponding to the reflected and trans­

mitted parts of the wave. 

Eventually, we will consider media which are only slightly non­

homogeneous; i.e . those in which the parameters vary only slightly 

from their values at infinity. In this case we investigat e the primary 

problem of this thesis, the inverse problem. In the inverse problem 

we will indicate how the reflection coefficient can be used to infer 

approximately .the parameters of the medium. 
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CHAPTER II 

THE WAVE EQUATION · 

1. Introduction. 

In this chapter we consider the wave equation for a non-homo-

geneous meaium: 

(1. 1) a [ E::L.J a ax p(x) ax = p (x) ck~ 

The nonhomogeneity of the medium manifests itself in the dependence of 

the parameters p and p on x. 

In the first section, we will look briefly at some physical 

examples which lead to Eq.(l.l). In the second section, we transform 

Eq.(l.l) to a canonical form, separate out the time dependence and obtain 

an ordinary differential equation in x. In the last half of the section, we 

will illustrate what happens when the medium is homogeneous. In the 

third section we limit ourselves to media which become homogeneous as 

lxl approaches infinity and are only slightly nonhomogeneous otherwise. 

In the fourth section we transform the ordinary differential equation 

derived in Section 2 into an integral equation. We prove the existence 

of a solution of the integral equation and, in the process, will derive 

bounds on the solution. In the fifth section we use the integral equation 

to define reflection and transmission coefficients for sinusoidal waves 

propagating in from infinity. 

In Section 6 we derive an approximation for the reflection 

coefficient for a medium which is only slightly nonhomogeneous, and in 
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Section 7 we show how this approximation can be improved for high 

frequencies, Finally, in the last section, we will indicate how the 

reflection coefficient can be used in turn to obtain an approximation of 

the parameter describing the medium. 

Many physical examples exist where the partial differential 

equation (1. 1) appears. Several examples will be discus sed below. 

References for the derivation of the wave equation for the various cases 

mentioned are readil1r available in the literature. 

Eq. (1.1) arises in describing the transverse vibrations of a stretched 

string. The transverse displacement of the string from its equilibrium 

position at time t and position xis denoted by y(x,t). The parameter p(x) 

represents the tension at point x and p (x) the mass per unit length at point x. 

Eq. (1.1) also occurs in the theory of the loss-less transmission 

line, where y(x, t) represents the electrical current in the line at the 

point x and time t. The quantity p~x) is the capacitance per unit length 

of transmission line, while p(x) is the inductance per unit length. An 

equivalent physical interpretation is one in which y(x, t) is the voltage df 

the transmission line at point x and time t. In this case p~x) is the 

inductance per unit length, p(x) the capacitance per unit length. 

In the case of longitudinal vibrations of a bar y(x, t) represents the 

longitudinal particle displacement (that is, a displacement along the axis of 

the bar) from the equilibrium pos i tion, which is located at the point x along 

the bar, The parameter p(x) is the density of the bar per unit length at the 

point X and p(x) is Young's modulus. We assume that the parameters 
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p(x) and p(x) do not vary in a direction perpendicular to the longitudinal 

axis of the bar. 

2. An Ordinary Differential Equation. 

The partial differential equation (1. 1) can be transformed into a 

standard or canonical form. In physical applications of interest the 

parameters p(x) and p(x) describing the medium are positive functions 

which are bounded away from both zero and infinity for all x. In 

addition p(x) and p(x) are assumed continuous and integrable in any 

finite x-interval. 

We introduce a transformation of the independent variable. Let 

(2. 1) 

Then 

(2. 2) 

dT 1 
dx = j3(x) j3(x) = ~~~~~ 

X 

T(x) = J 
0 

£L 
j3 (£) 

Note that j3(x) is positive, real, and bounded away from both zero and 

infinity. Thus we can state that x - T(x) is a real, continuous, one -to-

one transformation. The new independent variable T has an inte resting 

interpretation which is independent of the type of physical medium under 

consideration. In the theory of hyperbolic partial differential equations, 

j3(x) = ~~~~~ represents the slope of a characteristic curve in the x, t 

plane and has dimensions of velocity. This characteristic velocity 
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represents the velocity at which a signal travels through the medium at 

the point x. The quantity T has dimensions of time. The difference 

T(x1)- T(x2 ) is the time required for a signal to propagate from point x 1 

to point x 2 • In terms of T and t, (1. l) becomes 

where 

(2. 4) 

~ 
a(T)= [p(x)p(x)J • 

We will be interested in solutions of the form 

(2. 5) 
- . -ikt 

y(T,t):y(T,k)e 1 

The ordinary differential equation satisfied by y( T, k) is 

(2. 6) 

Let us assume that the medium is homogeneous, so that p(x) and 

p(x) are constant. Thus in turn bot~ a 2 (T) and j3(x) are also constant. 

k The variable ,T becomes T(k) = j3· The partial differential equation (2. 3) 

reduces to 

(2. 7) 
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and the corresponding ordinary diffe'rential equation (2. 6) reduces to 

(2. 8) 

Eq. (2. 8) has the following two independent solutions 

ik X 
ikT r-l. 

e = e ~'"" 

-ik ~ 
-ikT r-l. 

e = e ~-" 

so that we obtain the following two solutions to the partial differential · 

equation (2. 3): 

The above solutions can be interpreted as traveling waves. 

3. The Slightly Nonhomogeneous Medium. 

In this section we will be primarily concerned with a slightly 

nonhomogeneous medium. Briefly we will consider media which have 

the following properties. 

1. The medium becomes homogeneous for large values of I x 1. 
2. The parameters describing the medium vary only slightly 
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from their values at infinity. 

In terms of the parameters p(x) and p(x) describing the medium, 

our first assumption implies that as x approaches positive infinity, p(x) 

and p (x) approach constants p and p . Likewise as x approaches 
00 00 

negative infinity, p(x) and p(x) approach constants p and p which in 
-oo -oo 

general may be different from p and p • We will restrict ourselves 
00 00 

even further by requiring that the differences p(x) -p and p (x) - p be 
±oo ±oo 

absolutely integrable in neighborhoods of x = ± oo. As x approaches oo, 

l3(x) of (2.1) approaches the limit 13 = I p / p . Consider the difference 
00 00 00 

(3. l) 
l 

13(x) 

= l ) PYz 
p 1/z (x) p 1/z (x) ~ oo 

~(x)-pt? (. 

p Z(x)+p z f 
00 

The absolute integrability of the differences p(x)- p and p(x)-p in the 
00 00 

neighborhood of x= oo implies that the differenc'e l3-
1
(x)-13-1 is also 

00 

absolutely integrable in the neighborhood of x= oo. We may now write 

T(x) as follows: . 

00 

(3. 2) T(x) = ~ + T - J 
13 00 

00 X 

where 

(3. 3) T 
00 

00 [1 1-J = J 13 <s > - i3 ds . 
0 00 

Thus we have the following asymptotic behavior for T(x): 
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(3. 4) T(x) - ~ + T as x - oo . 
13 00 

00 

In a similar manner we can show that 

(3. 5) 

(3. 6) 

where 

(3. 7) 

X 

T(x) = ~- T + J 
A -oo 
~-'-oo · -oo 

[ _1_ - .1... J d£ 
13(£) 13_00 

T(x) - ~ - T as x- -oo ; 
A -oo 
~-'-oo 

-oo 

The parameter a(T) of (2. 4) has the following asymptotic 

properties: 

aZ (T) - az = .J poo poo as T- 00, 00 

(3. 8) 

(Xz ( T) - az - .../ P P - oo oo -oo as T - -oo . 

In reference to the second property listed at the beginning of 

this section., we will assume that the parameters describing the medium 

vary only slightly from their values at infinity. In terms of a( T) we 

assume that the difference a(T)-a remains small for all T, so that 
. 00 
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max ja(T)-a I 
-oo<T <oo 00 

a <<1 
00 

We will go into a more thorough discussion of this point in the next 

section, 

4, An Integral Equation. 

-+ In this section we will be interested in the sc;>lution y of 

(4. 1) 

which has the. property 

(4. 2) -+( k) ikT y T, - e as T- oo • 

In order to express the problem in Eqs, (4.1) and (4. 2) as an 

integral equation, we first write aZ (T) = aZ + r(T), where r(T)-0 as 
00 

T- 00, Eq. (4, 1) can be written as 

(4. 3) 

where 

(4. 4) 
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Eq. (4. 3) can be looked upon as a nonhomogeneous differential equation 

with the corresponding homogeneous differential equation 

(4. 5) 

ikT Using variation of parameters and the two independent solutions e 

-ikT and e of (4. 5), we can derive the following particular solution of 

(4. 3) ' 

y('T,k)= 
p 

00 

J sink(C,-T) f(s) ds 
. k 
T 

If we add eikT to the above particula r solution of (4 , 3), the sum is also 

a solution of (4, 3). We can write this sum as 

00 . 

(4,6) y+(T,k): eikT_ (}z J sink~C,-T) [d~ (r(s) 1S+)+ kZr(£)y+(£,k~d£, 
00 T ~ 

where we have r eplaced f(T) by its equivalent form (4 . 4). 

Eq. (4, 6) can be simplif i ed. Assuming r(T), ~~approach zero 

as T- oo, we c an show 

00 

(4.7) JOOsink~-T) d~ [r(s) dyS+ ]ds = J e osk(s-T) d~~S) y+(s,k)ds 
T T 

00 

J -+ -+ - ksink(£-T)r(£)y (£,k)ds + r(T)y (T,k) • 
T 

Combining (4. 6) and (4. 7) and s implifying, we obtain the following 

integral equation for y:+ (T, k): 
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(4. 8) 
-+ ikT Joo da 2 (i;) -+ 

a 2 (T)y (T,k) = a!ike - ksink(£-T) d£ y (£,k)d£ 
T 

We will now show that if the integral equation possesses a 

bounded continuous solution and da~~s) is integrable, then that solution 

satifies the original differential equation (4. 1) and the asymptotic 

condition (4. 2). 

-+ 
We assume that y (T,k) is a bounded solution of the integral 

equation (4. 8). We differentiate both sides of (4. 8) twice. Differentiating 

once (the existence of the derivative of the right hand side insures the 

existence of the derivative of the left hand side) we obtain 

(4. 9} 

Differentiating (4.9} (again the existence ofthe derivative ofthe right hand 

side insures the existence of the derivative of the left hand side) we obtain 

Substituting (4. 8} into (4.10}, we retrieve the originaldi£ferentialeqn.(4.1). 

We will now show that the bounded solution y+(T,k) satisfies (4.2). 

Eq. (4. 8) may be expressed as follows: 

00 
- + ik T 1 { ~ z z J ik T f daZ ( S ) - + } 

(4.11) y (T,k)-e = aZ(T) La
00

-a (T~e - cos k(T-£) d£ y (£,k) d£ . 
T 

Taking the absolute value in (4.ll) gives 

(4. 12} 

Since da~~s) is integrable, the integral on the. right hand side of (4.12) 

approaches zero as T approaches infinity. The first term on the right 

hand side of (4.12} approaches zero. Thus we have 
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Urn Jy+(T,k}- eikTJ = 0 
T-oo 

which is equivalent to (4. 2). . 
In pas sing we should note the following dual problem: 

(4.13) 

(4 . 14) 
-ikT 

- e as 

Proceeding as we did for y + ( T, k), we can reduce the above problem to 

showing that the following integral equation has a bounded solution: 

(4. 15) 

Up to this point we have reduced the solution of the problem 

stated in (4,1) and (4. 2) to showing that the integral equation (4. 8) 

possesses a bounded solution. We need to show that the integral 

equation does indeed possess a bounded solution, 

In the following lemma we prove that the integral equations (4. 8) 

and (4.15) possess bound~d solutions. In the process of proving this 

lemma , we will be able to construct bounds on the solutions y+(T,k) and 

Lemma: Let the derivative of a(T) b e inte grable on, -oo < T < oo, a {T) b e 

bounded away from z e ro and infinity. Then the integral equations (4 . 8) 

-+ --
and (4.15) poss e ss bounded solutions y (T,k) andy (T,k) with the 

following properties: 
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(4.16) az A_(T) 
IY-( T ,k) I~ az(~) e 

- -ikT A_(T) 
laZ(T)y-(T,k) -a:

00 
e 1~ a:

00 
A_(T)e 

where 

00 

A+(T) f 2 I~ I d£ = a(s) T 
(4.17) T 

A_(T) f . 2 
1 da 1 d£ = a(s) 

-oo 
d£ . 

-+ Proof: We shall prove the lemma for y (T, k). The proof for y-(T, k) 

-+ follows in the same manner as that for y (T,k). 

We shall use the method of succ·essive approximations to con­

struct the solution y +(T, k) of the integral equation (4. 8). 

we set · 

(4. 18) 

As a first approximation to the solution of the integral equation, 

-+ 
Yo (T,k) 

ikT 
e 

To obtain a second approximation we can substitute the first approxi­

mation for y+( T, k) into the right hand side of the integral equation. The 

second approximation will then be 



-14-

aZ oo 
-+ 00 ikT 1 f da 2 (£) -+ 
Yl (T,k) = aZ(T) e .- aZ(T) cos k(s-T) d£ Yo (s,k) d£. 

T 

Proceeding in this way we obtain the following for the (n+l)st approxi­

-+ mation y (T,k): 
n 

-+ aZ ikT 1 Joo da2 (~) -+ 
(4 . 19) y (Tk)- 00 e -- cosk(l:-T) d~ yn_

1
(l: ,k)dc. n ' - a 2(T) - a 2(T) '=' '=' '=' 

T 

-+ 
We show that the sequence y (T,k) converges to a limit function and that 

n 

this limit function satisfies the integral equation. 

(4.20) 

(4 . 21) 

The iterates Y.. (T, k) can be e x pressed in another form. Let 
n 

ikT 
e 

-+ - + 
6,. ( T 1 k) : y ( T 1 k) - y ( T, k) 

n . n n-1 n=l,2, •. . 

The iterates Y.. ( T, k) in turn can be expressed in terms of the differenc e s 
n 

6. (T,k) . Summing the differences 6. (T,k) from m=O to m=n and using 
n m 

(4. 20) and (4. 21) we find 

n 

(4.22) 

We can derive an expression for the 6. {T,k) similar to the expression 
n 

in (4.19) for the y+(T,k). Subtracting the expression for y+ (T,k) from . n n-1 

the expression for y+(T,k) w e obtain the following: 
. n . . 
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or, in terms of the differences .6-n(T,k) , 

(4, 23) 

Thus if the series 

(4. 24) 

00 

m=O 

.6. (T,k) m 

-+ converges, then so do the iterates y ( T, k), First we obtain upper 
n 

bounds on the absolute values of the differences .6. ( T, k), 
~ 

Taking absolute values of both sides of (4, 20), we have the 

following bound on .6.0 ( T, k) : 

(4.25) 

Using this bound for .6.0 (T,k) in the iteration equation (4,23), we .can 

establish the following bound for .6.1 (T,k): 

(4,26} 

where 

00 

(4, 27) A+ ( T) = JT a f;) l ~ I d; • 
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Using the conditions on a(~) that~~ qe absolute ly integrable on -oo <T < oo 

and that a(~) be bounded away from zero, we' have that the integ ral A+(T) 

exists and is bounded (in fact bounded by A (-oo) ). Again using the 
' + 

bound in (4. 26) on 6.1(T,k) in (4. 23), we can show that 

(4. 28) 

However, note that the integral in (4. 28) can be integrated directly since 

Thus the bound on .6.z ( T, k) becomes the following 

(4. 29) 

(4. 30) 

a Z 00 

1.6.z(T,k)\ .::::; 00 J A+(~) dA+(~) - az ( T) 
T 

z 

1.6.z(T, k) I .::::; 
az [A+( T)] 

00 

aZ ( T) 2! 

Proceeding in this way, obtain the following bound on .6. (T,k): 
n 

Note that the above bound is uniform ink. In addition ~e can derive the 

following bound on 6. (T, k) which is also uniform in T: n 
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az 
(4. 31) ~ 00 

min a 2 (T) 
-oo<T<oo 

The series (4. 24) can be bounded in absolute value by the sum of 

the absolute values of .6. (T,k). Using the bounds (4. 31) gives 
n 

00 

I.~ 6 n ( T' k) I 
n=O 

or 

00 

(4. 32) I ~ 6 n ( T' k} I ~ 
n=O 

Thus the series (4. 24) converges absolutely and uniformly with respect 

to T and has the bound as is given in (4. 32). 

To show that the series (4. 24) satisfies the integral equation (4.8) 

we return to the definition of .6. (T, k) in (4. 23)'. Summing both sides of 
n 

(4. 23) we get 

00 00 00 

(4.33) ~ .6.n(T,k) = -~ a}(T) J COSk(s-T) ~ZJ£) .6.n_l(s,k)ds. 
T 

n=I n=I 

We can interchange the summation and integration on the right hand side 

of the equation because of the uniform convergence of the series. Eq. 

(4. 33) becomes 
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which is our original integral equation, '-+ \' Thus y (T,k) = LJ ~ (T, k) 
n=o n 

is a 

solution of the integral equation and from (4. 32), 

Let us return to the integral equation (4. 8) 

Taking absolute values of both sides of the above equation and using the 

bound in (4, 23), we can show 

00 

I z ( ) - + ( K ) z ik T I :<: z f 2 a T y T, -a
00

e ...._ a
00 

a(~) 

T 

da 

d~ 

However, A+(~) is less than or equal to A+(T), if Tis less than or equal 

to s. Thus we can write the above as 

Note that if we rewrite the above as 

then we can see that as T approaches infinity 
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1

-+ ikTI y (T, k) - e - 0 

The proof of the Lemma for y-(T,k) proceeds in exactly the 

-+ same way as the proof for y (T,k). The details of the proof for 

y- ( T, k) will be omitted. 

5. Reflection and Transmission Coefficients. 

In this section we define and interpret the reflection and trans-

mission coefficients for a nonhomogeneous medium. We shall use the 

properties of y+ ( T, k) which we derived in the previous section, 

Let us return to investigating solutions of the partial differential 

equation (2. 3). Using Eq. (2. 5), we can combine the time factor e -ikt 

with the function y+(T,k) studied earlier to construct the following 

solution to the partial differential equation: 

T, 

+ -ikt -+ 
y (T,t) = e y (T,k), 

Let us now consider the asymptotic behavior of y + (T, t) for large 

First using (4,2), we find that y+(T,t) has the following asymptotic 

behavior as T approaches infinity: 

+ y (T,t) 
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Comparing the above with the results for the homogeneous medium, we 

see that the right hand side is just a simple harmonic wave propagating 

to the right with velocity f3 • 
00 

Next we will derive the asymptotic expansion of y + ( T, t) as T 

approaches negative infinity. Using the integral equation (4. 8) for 

-+ + y {T,k), we can write the function y (T,t) as follows: 

a 2 -ikt 00 

+ oo -ik(t- T) e J da2 (~) - + 
y (T,t) = aZ(T) e - az(T) cos(T-£) dg y (£,k) d£ 

T 

-ik(t+T) 
e 

00 

J eik£ a(£) d~(€) , y+(£,k) d£ 
T 

If we letT approach minus infinity i n the above representation for y+(T,t) 

we obtain the following asymptotic behavior for y + ( T, t): 

(5. 1) 

where 

(5 . 2) 

( 5. 3) 

z -ik(t- ~) 
a _oo + [ J f3_oo ;;z- y (T,t),.., ltP1 (k) e + 

00 

00 

-ik(t+ ~) 
[3_00 

P 2 (k)e 

P 1 (k) = -~ J e-i k£ a(£) d~~g) y-+ (£, k) d£ 
oo-oo 

00 

Pz(k) =- alz J e ik£ a(£) d':J€) y+(£,k) d£ 
oo -oo 

Note that the absolute integrability o f ~ over the e ntire T-ax i s and the 

boundedness of y+(T,k) insures the e xistenc e o f the above integrals. 
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Thus as T approaches -oo, the right hand side of (5. 4) contains 

both a simple harmonic wave propagating to the right and one propagating 

to the left, both propagating with speed 13 . If we divide (5.1) by 1+ P1(k), -oo 
+ we can write the following for the asymptotic behavior of v (T, t): 

( 5. 4) 

(5. 5) 

-ik(t- -2£_) 
+ 13_00 

v ( T, t) - e 
Pz (k) 

+ 1+ P 1(k) 

-ik(t+ -1L.) 
13_00 

e 

-ik(t- ..2L_) 
. 13_00 

e + 
V (T,t)-

1 + pl (k) 
as T-oo 

(x- oo) • 

where v+ ( T, t) is defined as follows: 

aZ 
-oo + -z y (T,t) 

a 00 
1 + pl (k} 

+ 
V (T,t)= 

as T--oo 
(x- -oo} 

We can interprete the right hand side of the above as follows. A 

sinusoidal wave originates at x = -oo and propagates to the right with 

velocity 13_
00

• It is partially reflected and returns to x = -oo as a sinu­

soidal wave propagating to the left with velocity 13 . In addition the 
-oo 

original wave is partially transmitted and appears at x = oo as a sinu-

soidal wave propagating to the right with velocity 13 . Thus as x- -oo 
00 

the solution v+(T,t) behaves like the sum of two simple harmonic waves, 

one wave with amplitude unity traveling to right and the other wave, a 

reflected wave, traveling to the left. While as x- oo the solution v+(T,t) 

behaves like a transmitted simple harmonic wave . 

We define the reflection coefficient R+ (k) and the transmission 

coefficient T+ (k) as the amplitude of the reflected and transmitted 

components of the solution v+(T,t). 



(5. 6) 

(5. 7) 
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Jooeikt;a(£) ~~s) y+(i;,k)d£ 
-oo 

2 
Ct -oo 

• 

Using this definition for R+(k), and T+(k), we can write (5.4) and (5. 5) 

as follows: 

(5. 8) 

-ik(t- 2L) -ik(t+ ..1L) 

v + ( T, t) - e l3 -oo + R + (k) e l3 -oo 

as T- -oo (x- -oo) 

{5. 9) 

as T- oo (x- oo) • 

In a similar way we can manipulate the integral equation for 

y (T,k) to obtain the follo-.;ying transmission and reflection coefficients: 

(5.10) 

Joo e -ik£ a(£} ~ y- (s, k}d£ 
-oo 

( 5. 11) 
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If we define v-(T,k) as follows: 

v-(T,k} - -= T (k) y ( T. t) 

where 

-ikt--= e y ( T, k) 

then we can show that v-(T,t) has the following asymptotic behavior: 

-ik(t+ 2£..) -ik(t- 2£..) 
- - ~ - ~ = T (k)y ( T ,t),.,. e + R (k)e 

-ik(t+ ~) 

v-(T,t) = T-(k)y-(T,t)-T-(k}e 
13

-oo as T--oo (x- -co) .. 

The above is just the opposite of the situation pertaining to y +( T ,t). 

The above asymptotic behavior tells us that v- ( T ,t) starts out at x =co 

as a simple harmonic wave propagating to the left and is partially 

reflected back to x =co and partially transmitted to x = -co. 

6. · An Approximation to the Reflection Coefficient. 

In this section we .will assume that the ·medium is only slightly 

non-homogeneous. That is, we will assume that the parameters des-

cribing the medium are only a small perturbation from their values at 

infinity. With the assumption we will obtain an approximation for the 

reflection coefficient. 
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First we write a(T) as follows 

where we will assume that € is small compared to 1. 

We will further restrict r(T) by assuming that its derivative is 

absoiutely integrable on -oo < T < oo and by assuming 

(6. 1) 
00 

€ f 
-oo 

~~~I d~ 1 
(l' 

00 

00 

f 
-oo 

I~~ I d~ < < 1 • 

Note that the above implies the following : 

(6. 2) 

00 

E I r( T) I ~ E J I~: I d~ < < 1 
T 

a( T) = 1 + E r(T) = 1 + 0(€) uniformly in T • 
(l' 

00 

The parameter € is our perturbation parameter. We obtain a 

perturbation expansion for the reflection coefficient in terms of E. 

Let us consider the reflection coefficient 

where P 1 (k) and Pz (k) are given in (5. 2) and (5. 3). Using (4. 23) we have 
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where C is independent of € and k. Using this bound on y+ ( T ,k) we 

obtain the following bounds on P 1 (k) and Pz (k): 

00 

IPdk>l ~ Cdl+Czc) ~ ~oo I~~ Ids~ C3c 

00 

IPz(k)l ~ Cdl+Czc) ;oo ~oo I~ Ids~ C 3 c 

where the C. (i = 1, 2, 3) are independent of k and €. Thus both P 1 (k) and 
1 . 

Pz (k) are O(c) uniformly ~n k. 

Let us take a closer look at Pz (k). We can write Pz (k) as follows: 

Pz (k) = Pz 1(k) + Pzz (k) 

where 

00 

( 6. 3) Pzdk) = - j e2iks a~s) ~~ ds 
-oo 

00 

( 6. 4) 1 J iks _1_ da [ -+ iks] Pzz(k)=Q'z . e a(s)ds aZ(s)y (s,k)-a!e ds. 
oo -oo 

Using the integral equation (4. 8). we can write the following: 

00 

laZ(T)y+(T,k) -~00 eikTI ~ 2 J a(£) I~~ /IY+(£,k) I d£ 
T 

uniformly in T and k for all T and k. 
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Using the above bound in (6,4), we can show that P 22 (k) satisfies 

P 22 (k) = O(e2 ) 

uniformly in k for all k. 

Thus, combining the above results, .we have the following for 

00 

( 6. 5) R+(k) = - J e2iks als) ~~ ds + O(eZ) 
- oo 

uniformly ink for all k. Noting that 

= dloga 
ds 

we can write (6. 5) in the following equivalent form: 

( 6. 6) 

Thus we have that the first approximation of the reflection co-

efficient involves the Fourier transform of d ~~g a We would like to be 

bl · t th F · · t f d d log a · t 1 a e to 1.nver e our1.er rans orm an express dg approx1.ma e y 

in terms of the reflection coefficient R + (k). This will be the task of the 

next section. 
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7. The Approximation for High Frequency 

We showed in the last section that in the expression for the 

reflection coefficient 

00 

=-f · eziks_L ~~ ds+E(k,E): 
-oo as ':> 

E(k,€) was O(EZ) uniformly ink for all k. As lkl approaches infinity, 

we can establish a better bound on E(k,€). Obtaining this improved 

estimate will be the objective of this section. 

We will first derive a different integral equation for the solution 

-+ y (T,k). This new integral equation will be used to generate new bounds 

on y+(T,k), bounds which will be useful as ikl becomes large . In 

addition, the integral equation will be used to obtain a new expression 

for the reflection coefficient R + (k). Finally, applying the new bounds 

-+ . + 
for y (T,k) in the new expression for R (k), we obtain the desired 

bound on the error term E(k, €). 

-+ First w e will obtain bounds on y (T,k) for large lkl. We will do 

this in the following lemma. 

Lemma, 
dza do: 

Let dTZ along with dT b e absolutely integrable for Tin the 

interval -oo < T < oo. Then y.+ ( T, k) satisfies the• foll~wing inequalities for 

lk I > k 0 > 0: 

I -+ a(T)y (T,k) ikTI -a e .:::; 
00 
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Proof: 

Let us define a new dependent variable as follows: 

(7. 1) 

The differential equation (4.1) for y+(T,k) is trans~ormed into the 

following differential equ~tion for w+(T,k): 

(7. 2) 

As T approaches positive infinity, a ( T) approaches a and y + ( T, k) 
00 

ikT approaches e • Thus 

(7. 3) +( k) ikT w T, ,.., e as T_. oo. 

Rewriting (7. 2) as follows 

(7. 4) 

. 1 d 2 a + 
f(T,k) = aZ (T) d£Z W (T,k) 

we get a problem of the same form as that in (4. 3), (4 . 4). 

Proceeding as before we can generate an integral equation for 

+ + w ('T,k). We can express w (T,k) as follows: 



(7. 5) 
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00 

. w+(T,k) = eikT + J sink~C,-T) f(£,k)ds 

ikT = e + 

T 

00 

J sink(C,-T) 1 d2 a + 
k a(s) d£2 w (s ,k)ds 

T 

-+ In terms of y (T, k) we obtain 

00 

(7. 6) a(T)y+(T,k) = aOOeikT + J sink~C,-T) ~~~ y+(s,k)ds • 
T 

We are now in a position to obtain the bound given in the lemma. 

First express (7. 6) as follows: 

Next we tal<oe absolute values of both sides of the above equation and use 

(4.16) 

00 2 

1 aoo d2 "' A+ ( S ) 
~ JT I k I a2 ( S} d£ 2 e d£ 

(7.7} 

This establishes the lemma. 

The integral equation (7. 6} can be written as follows: 

00 00 

-+ ~ ikT [ 1 J -iks d2 
Q.' -+(l: } l:l 1 J iks d 2a -+(l: k)dl: 

Y (T,k}= a(T}e l- 2ika e . d£2 Y ~,k d~J+ 2ika(1) e dE 2 Y ~· ~ • 
00 T T 
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Using (7. 7) we can establish the foll9wing asymptotic behavior: 

(7. 8) 
a 
_:..2Q. -+ ( k) ik T a y T, ,.., e as T- 00 

00 

(7. 9) a_oo -+ · [ J ikT -ikT --;-- y (T,k)"' l+Q 1(k) e +Q2 (k)e as 
00 . 

where Q 1 (k) and Q 2 (k) are defined as follows: 

(7. 10) 

(7. 11) 

1 
2ika 

00 

1 
Q z. (k) = ----==--

2ika 
00 

00 

f -ik£ d 2 a -+ (e k)d e 
e d£z y '='' '=' 

-oo 

If we define the function w + ( T, t) by 

+ 
W (T,t) = 

a 
-oo -+ -- y (T,k) 
a 

00 

1 + Q 1 (k) 

-ikt 
e 

then we can show that w+(T,t) has the following asymptotic behavior: 

(7. 12) 

(7. 13) 

-ik(t+ _2f_ ) 
!3_00 

e as -r--oo (x- -oo) 

as T- oo (x- oo) • 

Comparing (7 .12) and (7 .13) with (5. 7) and (5. 9), we obtain an alternate 

representation for the reflection coefficient R+(k) and transmission 

coefficient T+ (k). 



(7. 14) 

(7. 15) 

(7 .16) 
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+ Q 2 (k) 
R (k) = 1 + Q I (k) 

+ 1 
T (k) = 1 + Q I (k) • 

We can write (7 .14) as follows: 

Q 2 (k) QI (k) 
R + (k) = 0 2 (k) - -~-:-~­

l+Q1(k) 

If we replace a(T)y+(T,k) by a eikT in the term Q 2 (k), we have 
00 

d 2 a 
If we assume d~z is absolutely integrable, then using lemma 2 we can 

obtain a bound on the second term and can write QI (k) as follows: 

(7. 17) 

the order relation holding uniformly ink for lk I ~ 1. 

The integral in (7. 17) can be simplified. First, 

. ' z 
1 dz a . d [ 1 da l [ 1· da J 

a(~) d~z = d~ a(~) d~ _ + a(~) d~ • 

Thus we can write 0 2 (k) as 

(7. 18) 
Ez 

Q 2 (k) = II (k) + lz (k) + 0( kz) 



where 

(7. 19) 

(7. 20) 
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00 1 J 2iks _si [-1- da J dl: 
II (k} = 2ik e ds a(s) ds ';, 

-oo 

00 

1 J e2iks 
lz (k) = 2ik 

-oo 
[ 

1 da]
2 

a(s) ds ds 

the order relation in (7. 18) holding uniformly for jk I ~ 1. 

Consider next 12 (k) . We can integrate by parts once in lz (k); 

using the fact that ~~ vanishes as Is I approaches infinity, it follows that 

00 

1 J 2iks 2 da [ 1 d
2

a ( 1 da)z] 
lz(k) =- (2ik)Z -ooe a(s) ds a(s)dsz- ; ds ds • 

The absolute integrability of ~ and ~~~ yields 

Ez 
lz (k) = 0( kz ) 

uniformly ink for jk I ~ 1. In the integrall1 (k}, we can integrate by 

parts again and show that 

00 . J 2iks 1 da 
11 (k) = - e Q' ( s ) ds ds 9 

-oo 

Thus 

00 

(7. 21) 
2iks 1 da E z 

Q 2 (k) =- j e a(s) ds ds + O(kz) 
-oo 

uniformly ink for jk I ~ 1. 
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We showed earlier that 

-+ 
y ( T, k) = 0 (1) 

uniformly in T and k. Using the above and the relationships, (7 .lO),and 

(7 .ll), we can establish t~e following for Q 1 (k) and Oz (k) 

Qdk) = 0(~) 

uni formly in k for I k I ;:;-. 1. Thus 

(7. 22) 
Ql (k) Oz (k) Ez 

= O(kz) 1 + Ql (k) 

uniformly ink for I k I ~ 1. 

Substituting (7. 21) and (7. 22) into (7. 16), we derive the following 

result for the reflection coefficient R + (k) : 

(7. 23) 
+ 2ik~ 1 da Ez 

R (k) = - J e '=' d ~ + 0 ( ) a(g) dg '=' kz 
-oo 

the order relation holding uniformly ink for all k. 
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8. The Inverse Proble m 

Up to this point we have assumed that a(T) was known, and we 

worked toward approximating the reflection coefficient R + (k) associated 

with the medium described by the a(T), We will refer to this as a 

"forward problem. 11 An equally interesting problem is one in which the 

reflection coefficent is known and an approximation to a( T) is desired. 

This second problem is referred to as an "inverse problem. 11 

In the previous sections we have shown tha~ the refle ction 

coefficient to first approximation is equal to the Fourier transform of 

the derivative of loga(T). That is, we have shown that 

(8. 1) 

00 

R+(k) =- J e2ik£ dloga d£ + E(k,E) 
d£ 

-oo 

d log a 1 da 
d£ =a(£) d£ 

In addition, we have established the 'following bounds on the error term 

E(k, E). In particular, in (6. 6) and (7. 23) we have shown that 

0(€ z) . uniformly in k, j k I < oo 

E(k, e:) = 

o(~:) uniformly in k, I k I > 1 . 

These two bounds can be consolidated into the following single bound: 

(8. 2) 
- z 

E(k,e:) = o( l:kz ) 

uniformly ink. 
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We are interested in inverting the Fourier transform to obtain a 

relation for d l~l a involving the reflection coefficient R + (k). Inverting· 

the Fourier transform involves multiplying (8.1) by 
2
1
-rr e -Zik£ and 

integrating with respect to 2k over the interval -oo < 2k < oo. We must 

justify the existence of the integrals. The first term on the right of 

(8.1), as mentioned earlier, is the Fourier transform of a function. 

Conditions will be given on the function which will validate the inversion 

of the Fourier transform. As for the error term, we will show that it 

is absolutely integrable with respect to 2k on the interval -oo < 2k < oo , 

and thus we will be able to bound the inversion integral involving this 

term. 

Consider first the error term E(k,E) . We can show that 

00 00 

~ f e -2ik£ E(k,E} dkl ~ f dk 
l+k2 

-oo -oo 

uniformly in £. 

As for the first term on the right hand side of Eq. (8. 1), we will 

need the following version of the 

Fourier Inte gral Theorem: Let f( T) be continuously differentiable and 

absolutely integrable on -oo < T < oo. Then the inversion integral of the 

Fourier transform exists and 

00 00 

f(T) = .; J e -2ikT J e2ik£ f(£) d£ dk 
-oo -oo 
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F h . d . f( ) d log a or t e case we are cons1. er1.ng, T = dT The absolute integ-

rability of f(T) follows immediately from previous assumptions on a(T). 

If ~:~ is assumed to be continuous, then ~~(T) is also continuous. 

Thus we have 

00 

(8. 3) 
-oo 

e -ZikT R+ (k) dk = dloga(T) + 0(€ 2 ) 
dT 

uniformly in x for all x. Since the right hand side exists, we have the 

integral on the left hand side also exists. 

Writing a(T) = a
00 

[1 + E .r(T)J, we can express the right hand side 

of (8. 3) as follows: 

(8. 4} 

uniformly in T for all T, where 

00 

F(T,E) =-.; J e-ZikT R+(k)dk • 
-oo 

Thus, we have shown that 

(8. 5) F(T,E) = E F 0 (T) + 0(€2) 

uniformly in T for all T and 
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Thus, if we are provided with a reflection coefficient, R+ (k), 

corresponding to a medium described by a(T), then we have a means of 

recovering a(T) to order E. We summarize this result more precisely 

in terms of the following theorem. 

Theorem: 

Then 

Suppose 

1. a( T) is twice continuously differentiable and 

both the first and second derivatives are 

absolutely integrable on the interval -oo < i < oo. 

2. a(T) can be written as 

F(T,E) = 1 
1T 

00 

J e -Zil<.T R + (k) dk 
-oo 

exists and can be ·expanded as follows: 

uniformly in T for all T, and 

dr 
dT 

At this point it is interesting to note that if we wanted to approx-

imate the original parameters p(x) and p(x) from the approximation to 

a(T), we could not do so uniquely. 
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CHAPTER III 

THE TIMOSHENKO EQUATION 

9. Introduction. 

In this chapter, we will consider the Timoshenko equation des­

cribing the transverse vibrations of a non-homogeneous beam. 

In the first section a brief discussion of the various theories 

relating to the transverse vibrations of a beam will be presented. Using 

the Timoshenko theory, we will derive the Timoshenko Beam equation 

for a non-homogeneous beam. 

In the second section we will investigate the properties of 

solutions of the Timoshenko Beam equation for a homogeneous medium. 

In the third section we shall return to t:he non-homogeneous beam. 

We shall assume that the material composition does not vary, although 

the beam may be tapered. Finally, as with the wave equation, we shall 

assume that the taper becomes uniform at infinity and that the taper is 

only slightly nonuniform otherwise. 

In the fourth section, we separate the time dependence and 

derive a fourth order ordinary differential equation, which is expressed 

as an integral equation. Finally we prove the existence of solutions to 

the integral equation and, in the process derive bounds on the solution. 

In the fifth section using the integral equation we define reflection 

and transmission coefficients for a sinusoidal wave incident from infinity. 

In the sixth section we approximate the reflection coefficient for 

the case of a beam with a slightly non-uniform taper. 
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In the seventh section we improve the approximation to the 

reflection coefficient for high frequency incident waves. 

In the final section we show how the medium parameters can be 

approximated from the reflection coefficient • 

10. A Derivation of the Equation 

In this section we shall consider transverse vibrations of a beam. 

This is but one of many ways that a beam can vibrate. Other types of 

vibrations of a beam are compressional vibrations, and torsional or 

twisting vibrations. One of the simplest examples of a flexure vibration 

is the motion of a struck tuning fork. 

Problems involving transverse motions of a beam can be · set up 

mathematically using the three-dimensional linear theory of elasticity. 

Although the partial differential equations and boundary conditions are 

strictly linear , the solution of these problems is extremely difficult. In 

fact, the only problems investigated up to the present time have been 

associated with beams which are composed of a homogeneous material 

and have a uniform circular cross -section ( see Abrams om, [1) ). 

Because of the difficulty of solving the exact equations arising 

from the theory of elasticity, the exact theory must be abandoned in 

favor of an approximate one. In the exact theory we analyze the micro­

scopic motions of the beam. In an approximate theory we cease trying 

to find out what happens in the small, but rather make some assumptions 

about the gross behavior of the beam. The partial differential equations 

and boundary conditions we obtained by making these assumptions are 
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easier to handle than those arising fr:om the exact theory. 

There are three approximate theories for the flexure vibrations 

of a beam. In the elementary theory, a transverse slice of the beam is. 

viewed as moving only transversely to the axis of the beam. In the 

Rayleigh theory, the slice is assumed to rotate as well. The Timoshenko 

theory includes both the assumptions of transverse and rotary motion of 

the slice of beam, and in addition takes account of distortion under the 

action of the shear force. These three theories can be ordered with the 

Timoshenko theory being the most complex and the elementary theory 

being the simplest. 

Using the Timoshenko theory we proceed to the derivation of the 

Timoshenko beam equation. To do this we consider an increment of 

beam bounded by two plane cross-sectional faces, separated by a 

distance dx. When the beam is at rest, we align the centroidal axis so 

that it is horizontal and we choose the plane eros s -sectional faces so 

that they are vertical. We now assume the beam is set in motion. We 

assume that the initial pla1;1.e cross -sectional faces remain planes. This 

assumption is common to all three theories. We denote by y the distance 

that the centroidal axis is displaced from its equilibrium position and by 

<p the rotation angle of the plane cross-sectional face. We denot~ by z 

the direction perpendicular to x andy. 

We next assume that y and <p do not vary much with position. 

That is, oy/8x and 8<p/ox are small. Thus the angle that the centroidal 

axis makes with the horizontal is approximate ly oy/ox. W e allow the 

various material. and other parameters describing the beam to depend on 

x but to be independent of y and z. The cross -sectional faces are 
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initially perpendicular to the centroidal axis. However, with the 

ensuing motion of the beam, we assume that the faces no longer 

remain perpendicular to the centroidal axis, but are bent from the 

perpendicular by an angle ~ due to the action of shear forces. 

we set 

( 10. 1) 2Y= ax cp + ~ . 

Thus 

Now the moment acting on the increment of the beam is just 

(10.2) 
Z 3m 

M = E r A:ax 

where E is Young's modulus and r is the radius of gyration of the eros s-

sectional area about the centroidal axis and A the cross -sectional area. 

The shear stress at a point on one of the cross-sectional faces is 

equal to 

!J.'Y(y,z) 

where -y(y, z) is the local angle of shear, and f.L is the modulus of rigidity. 

The total shear force Q acting on a face is given by 

or 

Q = jJ. J J _ -y(y, z) dy dz 
A(x) 



where 

r(x) = 
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Q = ~J.Ar 

J J _ y(y, z) dy dz 
A(x) 

J J _ dy dz 
A(x) 

is the average shear angle over the face and 

A = J J _ dy dz 
A(x) 

is the area of the face. At this point the Timoshenko theory 

assumes r(x) is proportional to ljJ = ~ -cp. That is, 

It is further assumed that the constant of proportionality A. depends on 

the shape of the cross -section and not on its size. Putting this together, 

we obtain the following expression for the shear force . 

(10. 3) 

Now we examine the momentum equations for the increment of the 

beam. The translational equation of motion is, 



(10. 4) 
3Q 
ax 

z 
= pA E_y 

atz 

-43-

while the rotational equation of motion is 

(10. 5) aa~ + Q 

At this point we shall deviate from the standard derivation of 

the Timoshenko beam equation, in that we shall assume that the para-

meters appearing in the above equations are functio.ns of position. The 

parameters may be classed into two groups. The parameters f-L, E, and 

p depend on the material of which the beam is composed. If these 

parameters vary with the position, the beam is said to be nonhomogen-

eous. The remaining parameters A., A, and rZ are dependent only on 

the shape of the cross-sectional area. If these parameters vary, we 

shall speak of the beam being non-homogeneous in shape. Proceeding w ith 

this assumption, we combine (10.1), (10. 2) and (10. 4) to get 

(10. 6) 
az 'T 

= pA 8tf" 

Combining (10. 2), (10. 3) and (10. 5) we get 

(10. 7) 

Now let 



(10. 8) 

a (x) = ErZA 

p . 
a(x) = E 
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f3 (x) = ~f..LA 

b(x) = .:..e._ 
~f..L 

We rewrite (10. 6) and (10. 7) using (10. 8): 

(10.9) _Q_ ( a 2.!1!.) + f3 _Qy - f3 cp = aa ~ 
ax ax ax · atz 

(10.10) a ( a'r) am a~ azv 
ax f3 ~ - ~ ~ - cp ~ = bf3 att . 

Thus for a nonhomogeneous beam of nonuniform shape we get a system 

of second order partial differential equations in the unknowns cp andy. 

The Timoshenko equation for a uniform beam can be easily retrieved 

from (10. 9) and (10. 10) by letting a (x) = a 0 , f3 {x) = {30 , a (x) = a 0 , and 

b{x) = b 0 , where a 0 , {30 , a 0 and b 0 are constants. Eqs. (10. 9) and 

(10.10) then be·come 

(10. 11) 

(10. 12) 

Eliminating cp from these equations yields the following fourth order 

partial differential equation which is the Timoshenko beam equaFon for 

a homogeneous beam of uniform shape: 

(10. 13) 
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If we eliminate y from (10.11} and (10.12), we obtain a partial differential 

equation for cp which has exactly the same form as the partial differen-

tial equation for y; that is 

11. The Timoshenko Equation for a Homogeneous Medium 

In this section we investigate the partial differential equation 

describing lateral vibrations of a homogeneous uniform beam. We will 

study the properties of a particular set of solution,s corresponding to 

traveling sinusoidal waves. Finally, we will derive an expression for 

the solution of the fourth order inhomogeneous ordinary d i fferential 

associated with the partial differential equation (10,14). 

We consider the following equation describing the transverse 

vibrations of a homogeneous beam: 

(11. 1) u a4 cp + .tLB. & a 
4 - (a+b) -:~ z-:~ z -:~ z + ab -:~t4 = 0 0 X oX vt . 0. vt V 

The subs c ripts on the a, j3 , a, and b have bee n deleted in wri ting (11. 1) 

since we shall only be considering the uniform beam in this section. 

The parameters a, f3, a, and b are positive constants. 

We look for solutions of (11.1) of the following form: 

(11. 2) cp(x, t) 
iwt-= e cp(x,w) 
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Substituting into (11.1), we find that cp satisfies 

(11. 3) ~:r + (a+b)wZ ~~r -bw z (~ .- awZ) cp = 0 . 

We now look for a solution ;(x,w) of (11. 3) of' the following form: 

(11. 4) 
ivx 

cp(x,w) = e 

Substituting into (11. 3) we find that v must satisfy the following charac-

teristic equation: 

(11. 5) v~ - (a+b)wZ vZ - bwz (~ - awZ) = 0 

Eq. (11 . 5) provides an implicit relationship between v and w, ax:d 

in fact is a fourth degre e polynomial in v. We can obtain the four roots 

(11. 6) V - w ).!. [b+a - /(b-a)Z + 4 § _Q_ J z - z a wz 

The roots v 1 and v 3 are real and are respectively positive and negative 

for all real positive values of w. The roots Vz and v~ are real and are 

r espectively positive and negative for positive w greater than w , whe r e 
c 

(11. 7) w = {3/aa > 0 • c 
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For positive w less than w , Vz and v4 are pure imaginary. For 
c 

negative w we can deduce similar properties of v. by using 
J 

(11. 8) 

(11. 9) 

{ vz{-w) = -v 1 (w) = v3 (w) 

Vz(-w) = -vz(w) = v4 (w) . 

If v is one of the roots v . , then 
J 

i(wt + v .x) 
rp(x,t)=e J j=l,2,3,4 

is a solution of (11.1). ,For real values of wand vj, the solution given by 

(11. 9) c an be interpreted as a simple harmonic wave. The frequency of 

vibration is ~1T, the wave-length is Z1r and the velocity of propagation v. 

(or phase velocity) is c . = ~. 
J v. 

J 
If lw l<w , then vz and v 4 , and thus the . c 

J 
velocities Cz and c 4 , are imaginary, and (11. 9) can no longer be inter-

preted as simple harmonic waves. For positive w, c 1 is positive, while 

for positive w greate r than w , Cz is positive; and in each case (11. 9) 
c 

represents a wave propagating in the negative x - direction. The same 

holds true with negative w. However , for positive w , c 3 is ne gative , 

· while for positiv~ w greater than w , c 4 is n e gative; and in both c ases 
c 

(11. 9) with j = 3 , 4 represents a w ave p r opagating in the pos itive x-direc-

tion. Again with negative w (11. 9) with j=3, 4 r e pre sent s a wave propa-

gating in the positive x-direction. We will speak of the solution g iven 

by (11. 9) for either v 1 or v3 as the first mode of vibration and for e ithe r 

vz or v.., as the second mode. Note that the magnitude of the v e locity of 
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the first and second modes varies with the frequency of vibration. This 

result is different than that for the wave equation of a homogeneous 

medium where simple harmonic waves propagate with a speed indepen-

dent of the frequency. 

The roots v 1 and v 2 have the following asymptotic behavior for 

certain limiting values of w. As w approaches zero, we can deduce that 

(11. 10) 

Defining 

(11. 11) 

Aw as w-w , we .can show that as Aw appr~aches zero, 
c 

Vz-
·(2wcAw )1/z 

a+b • 

F inally for large w 

ja+b+tbl 
w = max(v'"a, v'"b)w 

(11.12) 

/a+b-~a-bl 
w = m i n(v'"a, {"b) w • 

Using the definition of the propagation speeds c . , j = 1, 2 and (11. 6) we 
J 

can show that as lw I approaches infinity, 
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j a+b+lb-a 1 

1 
cl - = 

max( ..fa, ..fb) 

(11. 13} 

Cz ..... j a+b-~b-a 1 

1 = 
min( ..fa, ..fb) 

Thus at high frequency the speed of propagation of the waves of the two 

modes becomes constant. 

Consider the solutions 

.. 
cp . (x,w) = e.(x} , 

J J 

(11. 14) j = 1, 2, 3','4 

e.(x) = e 
J 

iv.x 
J 

where v. are as given by (11. 6). Computing the Wronskian W of the 
J 

solutions (ll.l4) we get 

(11. 15} 

For w * 0, w , the quantities v 1 , Vz, · and 
c 

are non-zero. Therefore, the Wronskian does not vanish. Thus the 

solutions given by (11 . 14) are linearly independent. 

The independent solutions cp. of the homogeneous differential 
J . 
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equation (11. 3) can be used to solve the inhomogeneous differential 

equation 

(ll. 16) 

A particular solution of (11.16) is given by 

(11.17) rp(x,w) = 

k=I 

where wk{'Pl""' ~4} (x) is derived from the determinant w{~l .•. q;4} (£) 
• 

by replacing the kth column by 

The constant a is arbitrary. 
ivkx 

We have shown that ek(x) = e , k=l, 2, 3, 

4. constitute a set of linearly ind~pendent solutions. Therefore, we can 

choose rpk(x,w) = ek(x) in (11.17). If in additionwe let a= -oo, then for 

each j 

(11. 18) 
A 
rp.(x,w) = e . (x) + 

J J 

is a solution of (11.16). 
. A 

The solution rp.(x,w) behaves like e.(x) = e 
J J . 

as x approaches -oo. Evaluating W k(e 1 ... e 4 )(£) we get 

iv.x 
J 



-51-

where fork= 1, 2 we let v 0 = v-4., v _ 1 = v3 • (11.18) becomes 

-4, X 

(11. 19) cp.(x,w) = e.(x) + l: J ek(x-s) 
J J -oo 

k=I 

Eq. (ll.l9) will be needed in the next section to transform certain 

differential equations into integral equations. 
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12. The Timoshenko Equation for a Non-homogeneous Medium 

In the present chapter we shall restrict attention to certain types , 

of non-uniform beams. With this restriction we will be able to simplify 

the system of partial differential equations (10. 6) and (10. 7) to a single 

fourth order partial differential equation. We will reduce the fourth 

order partial differential equation further to a fourth order ordinary 

differential equation. Finally, we will transform the differential 

equation to an integral equation for solutions with particular asymptotic 

properties for large lxl. We solve these integral equations by succes-

sive approximations . 

First we assume that the beam is compos e d of 

homogeneous material throughout. This assumption implies 

that the material parameters such as the density p, Young's modulus E, 

and the modulus of rigidity fJ. do not vary with position. 

Secondly we shall assume that the shapes of the cross -sections 

remain geometrically similar along the beam, although we allow their 

sizes to vary. As an exa:mple for a rectangular-cross -section, we 

would limit ourselves to the case where the ratio of the lengths and the 

ratio of the widths of the sides of two eros s -sections are the same. The 

variations of sizes of the cross-sectional areas will result in a taper of 

the beam. We shall refer to such beams as nonuniform. 

The second assumption implies that X. is constant, as we men-

tioned in Chapter 1. The parameter X. depends on the shape and not the 

size of the cross -section. 
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The second assumption also has certain implications 

for the cross- sectional area A(x) and the radius of gyration r (x). 

(12.1) 

We have the following expressions for A(x) and r(x) 

A(x) = J J_ dz dy 
A(x) 

rZ (x) A(x) = J J_ yZ dy dz 
A (x) 

where A(x) is the region in they, z plane at the point x whose cross-

sectional area is A(x). The value of A(x') and rZ {x') at another position 

x' will be given by similar integrals. 

A(x') = J J_ dy' dz' 
A{x') 

(12. 2) 
z 

rZ (x') A{x') = J J_ (y') dy' dz' 
A{x') 

However, by our second assumption, the dimensions of A{x') are just 

some constant multiple m of the dimensions of A{x). We make the fol-

lowing change of variables 

y' =my 

z ' = mz 

in the integrals of (12. 2) . The are a in terms of y and z is just A(x ) 

since the shape is the s ame, and the ratio of the corresponding dimen-

sions of the two areas is m. Eqs. (12. 2) become 
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(12 . 3) 
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A(x') = J J_ dy dz = m 2 A(x) 
A(x) 

4 2 
r 2 (x1

) A(x') = J J_ y 2 dy dz = m r (x) A(x) 
A(x) 

r 2 (x) = 
A(x) 

r 2 (x') 
A(x') 

which implies a/ {3 is constant. Thus we can show 

(12. 4) a' 
a 

With these assumptions on a, b, a, and !3 we shall now reduce the 

system of second order partial differential equati<;>ns to one fourth order 

differential equation. First (10. 9), (10.10) can be written as 

(12. 5) a = a(x) 

(12. 6) i3 = {3(x) • 

Divide (12. 6) by !3 and differentiate once with respect to x to obtain 

(12.. 7) 

After some manipulating, (12. 7) c~n be written in the following form: 
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(12. 8) 

Now we substitute the right hand side of (12. 5) into (12. 8) , obtaining 

0 • 

Expanding (12. 9) and using (12. 4), we derive the following partial 

differential equation for cp(x, t) : 

where we have written a' for da/dx. 

13. An Integral Equation 

In this section we will begin by separating out the time from 

(12. 10), thus reducing the partial differential equation to an ordinary 

differential equation. We then transform the ordinary differential 

equation into an integral equation. In the remainder of this section, we 

will show the existence of solutions of the integral equation and, in the 

process, derive bounds on the solution. 
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We ask if (12.10) has any solutions of the following form: 

(13. 1) 
iwt-

<p(x, t) = e <p(x,w) .. 

Substituting this into (12.10) , we arrive at the following ordinary dif-

ferential equation for <p(x,w) : 

(13. 2) 

where L<p is given by 

(13. 3) 
- z -

{ a ' ~ [ a'' a' J ~ L<p(x,w) = - 2a dx3 + 3 a -2(a) dxz 

z 

[
a''' _a'' a' J d~ a' zdm a' -} + = + (a+b) -w =+a(-) wZm a az dx a dx a ..,. 

The operator on the left hand side of (13. 2) has constant coefficients and 

is identical to that of (11. 3) for a uniform beam. 

We shall consider the case where the beam becomes uniform as 

x approaches ± oo. That is, we shall assume that a(x) becomes constant 

and all derivatives of a vanish, as j x j approaches oo. In addition, 

furthe r assumptions about the derivatives of a(x) at± oo will be made 

later in connection with the requirement that c ertain integrals c onve rge. 

The above assumptions have implications on the solution:o <p(x,w) 

of the differential equation (13. 2). Suppose we look for a set of solutions 

of this differential equation which are bounded and have bounded deriva-

tives of various orders as x approaches -oo. Then applying the 
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assumptions in the previous paragraph, the differential form L cp(x, w) 

will vanish as x approaches -oo, and, we would thus expect that bounded 

solutions of (13. 2) would approach the solutions (ll.l4) of the differential 

equation (ll. 3) as x approaches -oo. That is, we would expect that there 

are solutions q;.(x,w), j=l,2,3,4 of the differential equation (13. 2) which 
J 

behave like 

iv .x 
e. (x) = e J 

J 

as x approaches -oo. 

In the following work, we shall derive integral equations for the 

solutions cp/x, w) which have the above asym,ptotic behavior as x approaches 

-oo. In addition, we shall derive conditions on a(x) for the existence of 

such solutions and obtain bounds on those solutions. 

If we compare (13. 2) with (ll.l6) we see that the two equations are 

the same with f(x) = Lq;(x,w). We may therefore write 

(13. 4) cp(x,w) 
Lcpj (s,w) 

= e.(x) + l: J ek(x-£) 2 . ( 2 _ z ) ds 
J -oo l.Vk vk vk-I 

k=l 

4 X 

The differential form Lcp.(x,w) contains derivatives of cp.(x,w). Performing 
J J 

suitable integrations by parts in (13. 4) yields 

X 

cp.(x,w) = e.(x)- J k(x,£;w)cp.(£,w)ds 
J . J -oo J 

where 
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4 

k(x, ~;w) = L ek(x-~) ~(~) 
k=l 

and Mk is given by 

[a'' ' a''a' a' 3 J + --;;- - 5 ~ + 4(-;-) 

[ 
a'' a' z] ~ (a+b)--;- - (Za+b)(-;-) ~ 

The boundary terms appearing after the integration by parts leading to 

(13. 4) vanish. This follows at the lower limit since the various deriva-

tives of a(x) vanish at the lower limit, ~ = -oo. The vanishing of such 

terms at the upper limit ~ = x is due to the following identity: 

4 

(13. 7) L, 
k=l 

vZ -v z 
k k - 1 

= 0 n = -1, 0, 1 

Eq. (13. 4) is an integral equation for q> . (x, w). The solution of the integral 
J 

equation sati sfies the differe ntial equation (13. 2) and behaves like e . (x ) 
J 

as x approaches -oo. 

We can expand (13. 5) and obtain an explicit relation for k(x, ~;w). 

The nature of the kernel will depend on whether lw l>w or lw I < w • c c 
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(13. 8) Za '/a [ z . z J k(x, £;w) = - z _ z v 1 cos v 1(x-£)-vz cos Vz (x-£) 
v 1 Vz . 

a' a'' a''a' a' 3 
[ 

+ 
[(a+b)wz Ia+ /a-5 /aZ+4( /a)] ( f:.) ( f:.)] z _ . z cos v 1 x-., -cosvz x-., 

vI vz 

II I Z 
wZ((a+b)a /a-(2a+b)(a/a)] [sinv,(x-€,) _ sinvz(x-£)] 

- V z- V z VI v .. I z . .. 

For 0 < lwl< w . c 

a' a"' a"a' a' 3 
[(a+b)wZ /a+ /a-5 /aZ+4( /a)] [ hi I< f:.) h i 

1
(,-L:.)J 

- lv
1

1z -l.vz 1z . cos vi x-., -cos vz ""''=>~ 

In later work we will be considering a(x) of the following form 

a(x) = [ 1 + E r(x)] a 
00 

where r(x) approaches zero as x approaches oo and E is small. To 

facilitate future work, we will use this form for a(x) in the remainder of 

this section. In the next section we will consider the case of small E. 



-60-

In this section the only restriction we need place on € is that a(x) be 

bounded away from zero for all x. 

In the following we will show that the integral equation has a 

solution and we will obtain bounds on the solution. For the work done in 

the following sections we need only bounds on the solution <p . (x,w) for 
J 

jw I> w • Therefore, we will restrict ourselves to lw I > w • 
c c 

(13.10) 

where 

(13. 11) 

First consider x less than zero. Let 

<p.(x,w) 
J 

Aj 0 (x,w) = e . (x) 
J 

X 

A. (x,w) = - f Jn -co 

00 

=I, 
n=O 

A . (x, w) 
Jn 

k(x, ~;w) A. 1(~,w) d~ JU-
.. 

We will show that (13.10), along with (13.11), provides a solution to the . 

integral equation (13.4) for x less than zero . 

For lw I> w c 

From (13. 8) we obtain the following bound on k(x, £;w} for lw I >w 
c 

(13 .12) lk(x, £;w) I ~ E C E(£) 
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(13 .13) 
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z 
E(s)=max{\r'\, \r"\, \r'\, \r"'\, \r'r"\, 

lsr"\, \£(r')z\} 

The constant C is independent of wand c . In the derivations which 

follow we will use the symbol C, occasionally with a subscript, to 

denote any constant independent of w and c . 

Using (13.ll), (13.12) we get the following bound on ~jl(x,w) for 

X< 0: 

X 

~~jl(x,w)\ .~t;C J E(£)d£ 
-oo 

Substituting the above into (13. 11), we get the following bound on ~j 
2 

(x, w ): 

X ~ 

~~j2(x,w) I ~ € cz J E(~) J E(~l) d~l 
-oo -oo 

Continuing in thiz way, we can show that 

x n 

(13.14) 1~- (x,w) I~~ [c cf E(~) ds] Jn n. _
00 

Thus, using (13. 10), we see that 
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oo x n 

j"q;j(x,w)j ~ rO~! [cEf
00 

E(s)ds] 

(13. 15) 
X 

j;j(x,w)j ~ exp[ CE joo E(s)ds] 

In addition we can show, 

X X 

(13.16) j;.(x,w)~e.(x)j ~ CEjE(s)ds exp[CEJE(£)ds] 
J J · -oo -oo 

Thus we have some bounds on rp . (x,w) for x less than zero. 
J 

To show that for x less than zero rp.(x,w) as given by (13.10) does 
J 

satisfy the integral equation, sum both sides of (13.11). Thus 

00 00 X 

(13.17) L'. t::.. (x,w). = e.(x)- 2:: J k(x,s,w) t::..n(s,w)ds 
Jn J -oo J 

n=O n=O 

Using (13.15), we see that the series given in (13.10) converges absolutely 

and uniformly for lw I> we• Thus we can interchange the summq.tion an.d 

integration in (13.17) and we retrieve the integral equation. 

For x > 0 we proceed as follows. Let 

00 

(13. 18) rp.(x,w) = L' L:::.~ (x,w) 
J Jn 

n=O 

where now 

0 

(13.19) 
t::.~ 0 (x,w). = e.(x)- jk(x,£);w);.(£,w)ds 

J . J -oo J 
X 

+ L:::.. (x,w) 
Jn 

=- J k(x,s;w)L:::.. 1<s.w)ds 
o Jn-
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For x > 0 we have the following bound on k(x, £;w): 

(13. 20) 

where E(~) is given in (13.13), C and C 1 are constants independent of w 

and e: , and 

(13. 21) Ed~ ) = max [ I r I I ' I r II I ' I r II I I ' I r I I z ' I r I r II I J . 

Using the bound in (13 . 16) for ;. (x,w) or x < 0, we get 
J 

X X 

~~~o(x,w) I ~ 1 + X€ elf Ed~)d~ + E c J E(~)d~ 
-oo -oo 

~~~0 (x,w) I ~ Cz (1 + e: x) . 

Using the above in (13 . 19), we get the following bound on ~jl(x,w): 

X 

Substituting this into (13.19) w e obtai n 

X £ 
~~~2(x,w) I ~ Cz(l+e: x)e:Z J [ cl £Ed~)+ CE(~~ J [ Cln El(n)+CE(n~dn d£ 

0 0 . 

X Z 
{e: I [cl £Ed£>+ CE(£)] d£} 

~~~ 2(x,w) I ~ Cz (l+e:x) ---U----2-1-------

Continuing in this way, we can show that 
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x n 
+ {€ f [ C1 sEd£ )+CE(£ )) } 

1.6.. (x,w~:::; Cz (l+€x) --u.----n-,.-----­
Jn . 

Thus, using (13.19) and the above, we can show 

x n 

(13. 22) 

00 
{ € f

0
[C 1sE 1 (s)+CE(£)) d£} 

r;. (x, w) I :::; Cz (1+ € x) L -~---n-,-------
J n=O 

X 

r;j(x,w)l:::; Cz(l+€x)exp{€ j [c 1sE 1(s)+CE(s)]ds} . 
0 

We can verify that the series in ( 13. 18) satisfies the integral 

equation (13.4) for x greater than zero in exactly the same way as we 

did with the series in (13.10). 

If we restrict ourselves to lw I ;::. w0 > w , the analysis becomes 
c 

much simpler, as we do not have to contend with the singular behavior 

of 1/vk. Again we express the solution in terms of a series 

00 

q1.(x,w) = 2:: .6.. (x,w) 
J Jn 

n=O 

wher~ .6. . (x,w) satisfies some iteration formula. If we were to succes­
Jn 

sively derive bounds for .6.. (x,w), we would find that .6.. (x) is bounded 
Jn Jn 

as follows for all x: 

where 
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Thus, we would obtain the following bounds on -;p. (x, w) valid for 
J 

~ w 0 > w : c 

X 

lfP.(x,w)l~exp[cE· f E3 (s)ds] 
J -oo 

X X 

lff.(x,w)-e.(x)l~ CEJ E3(s) exp[cef E3(s)ds] I 

J J -oo -oo 

With this, we have completed the investigation of the solutions q;j (x, w). 

14. Reflection and Transmission Coefficents 

We now move on to defining and deriving expressions for 

reflection and transmission coefficients for the beam. We will find that 

the integral equation (13. 4) is quite useful to this end. It can be written 

as follows: 

(14. 1) 

where ~(s) is as given in (13. 6). 

asymptotic behavior: 

The solution fP . (x, w) has the following 
J 

(14. 2) 

where 

fP. (x, w) - e. (x) 
J J 

as x-- oo 

4 

ff/x,w) - ej(x) + 2.:. Pjk(w) ek(x) as x -oo 

k=l 



(14. 3) 
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00 

(/) . ( s , w) ds . 
J 

= J 
-oo 

lw I> w • For these values of w, the roots 
c 

We will first consider 
ivkx 

vk are real and ek(x) = e , k = 1, 2, 3, 4, is a bounded function whose 

real and imaginary parts are cosines and sines. 

For the wave equation in a non-homogeneous medium, we saw 

that we could interpret certain solutions as an incoming wave which was 

partially reflected and partially transmitted. In such a case we could 

define quantities called reflection and transmission coefficients which 

characterized the reflected and transmitted waves and depended only on 

the wavelength of the incoming wave. 

In this section we will also define reflection and transmis sian 

coefficients for reflected and transmitted waves in a Timoshenko beam 

of nonuniform cross-section. We will find that there are two reflection 

and two transmission coefficients, instead of one each in the case of the 

wave equation. Finally, we will derive explicit expressions for the 

transmission and reflection coefficients. 

We will look for solutions which look like incoming waves which 

have been partially transmitted and reflected. That is, as x approaches 

- oo, we seek a solution which behaves like a sinusoidal wave, part of 

which is travelling to the right and part to the left. However, as x 

approaches oo, we want that same solution to appear only as a sinusoidal 

wave propagating to the right. 

The solutions ;. (x, w) are independent. Therefore, the general 
J 
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solution of the differential equation (13. 2) can be written as a linear 

combination of the solutions cp . (x,w). Consider the following linear 
J 

combination: 

(14. 4) 

4 

vj(x,w) = cpj(x,w) + l: Ajk cpk(x,w) 

k=3 

The function v.(x,w)eiwt is a solution of the partial differential equation 
J 

(ll. 28). As x approaches -oo 

4 

where cj and ck are the phase velocities defined earlier. Thus, as x 

approaches -oo for j = 1, 2, v.(x,w)eiwt looks like a sinusoidal wave propa­
J 

gating in the positive x-direction with speed c .> 0 and two reflected 
J 

sinusoidal waves propagating to the left with speed c 1 and Cz (note c 1 = -c3 , 

Cz = -c4 ). Sinusoidal waves propagating with speed c 1 associated with the 

first mode of vibration will be referred to as "type I" waves. Sinusoidal 

waves propagating with speed cz associated with the second mode of 

vibration will be referred to as "type II" waves. 

As x approaches oo for j = 1, 2, we want v .(x,w) to be composed 
J 

only of transmitted sinusoidal waves, i .e. waves propagating to the right 

only. Therefore, we will choose Aj 3 , Aj4 so that any waves travelling 

to the left will not be present. Using (14. 4), the asymptotic approximation 

(14. 2) of cp.(x,w) as x approaches oo, and the requirement that no waves be 
J 

propagating to the left as x approaches oo, we find that Aj3 and Aj 4 must 

satisfy the following: 
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4 

Ajk + 2:: Ajm p mk = -Pjk 

m=3 

j = 1, 2 

k= 3, 4. 

For each fixed j we have two simultaneous linear inhomogeneous 

equations in the unknowns Aj 3 and Aj4 . Solving the system of equations 

in (14. 5), we get 

(14. 6) 

pj4 (l+P33)- pj 3p34 

(l+P33) (l+P44)- p34 p43 

as long as the denominator does not vanish (we will investigate the 

possibility of the denominator vanishi ng later) . 

With the above choice for A.k we find that v . (x) has the following 
J J 

asymptotic behavior 

(14. 7) 

where 

(14. 8) 

(14. 9) 

2 

v.(x,w),.... e.(x) + 2:: RJ.k(w)ek+
2

(x) as x- -oo 
J J k=1 

2 

v/x,w),.... 2:: Tjk(w) e k+ 2(x) as x- oo 

k=1 

Rjk(w) = Ajk+2 , 

4 

T.k(w) = o .k + P.k + 2:: A . P k 
J J J Jm m 

m=3 
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where again j = l, 2 and k = l, 2. We shall refer to Rjk as reflection 

coefficients and to T jk as transmission coefficients. 

Note that we have a total of two reflection and two transmission 

coefficients. Compare this with the wave equation of a nonhomogeneous 

medium for which we have only one reflection and one transmission 

coefficient. For the Timoshenko beam equation we see the possibility 

that a sinusoidal wave propagating from x = -oo can generate two reflected 

waves and two transmitted waves of different wavelengths. 

15. An Approximation to the Reflection Coefficient 

In this section we examine one particular reflection coefficient, 

namely Rzz (w). This reflection coefficient is associated with the 

reflected type II wave generated by an incident or incoming type II wave 

from x = -oo. We restrict attention to the case in which the non-uniformity 

in the beam is small, so that with 

a(x) = [ 1 + e: r(x)J a
00 

• 

We shall require E < < 1. The quantity E is our perturbation parame ter. 

In this section we will derive a pertur bation expansion for Rzz (w) in 

terms of e: . 

From (14. 6) and (14;. 8) we c an derive the following expression 

for Rzz(w). 

(15. 1) Rzz (w) 
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where from (14. 3) 

00 

(15. 2) 

and 

a' 11 a' 'a' a' 3 v/' [ a" a' } +- -5 -, -+ 4(-) -.- (a+b)- -(2a+b)(-) , 
a · a a lVk , a a 

Writing a(x) = [1 + € r (x)J a
00

, we have the following equivalentforms 

a'(x) 
a(x) = 

E r 1 (x) 
l+Er(x) = E r'(x) [ 1 + O(E)] 

a' 1 (x) 
= 

€ r' 1 {x} 
€ r" (x) [1 + O(E)) a(x) l+E r(x) = 

a I I I {x) 
= 

E r"'{x} 
= € r 111 (x) [1 + 0(€)) 

a(x) 1 + € r(x) 

as €- 0, uniformly in x for all x. In addition, in the last section we 

showed that ~.(x,w) = 0(1) as E- 0 uniformly in x and w . 
J 

We are interested in approximating the reflection coefficient 

Rzz (w) for lw I ~ w • Note that for w = w the roots vz and v 4 vanish. 
c c 

The function Mk(s) contains terms which have factors 1/vk. Fork= 2, 4 

these terms become infinitely large as lw I approaches w • As a first c 

step, we will work toward approximating Rzz (w) for lwl bounded away 

from w ; that is 
c 
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~ w 0 > w 
c 

In this case we can show that vk and vk_ -v~-l are bounded away from 

zero. 

Substituting the above into the expression {15. 2), we can show 

the following for ljk(w): 

(15. 4) 

as e:-0, uniformly inw for lwl ~ w 0 > w • Thus, using (15.1), we can 
c 

show that 

or 

(15. 5) 

Rzz (w) = 
z -P

24 
(w) + 0(€ ) 

1 + 0(€) 

as e:- 0 uniformly in w. Thus • we are left with the problem of approxi-

mating P 24 {w). 

Instead of approximating P
24

{w), we will work toward approxi­

mating the general term ljk{w). We will find that Mk(£) can be expressed 

in a form which will simplify later work. First we note that 

. ' 
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I 

a' a' z = (-) + (-) 
a a 

a 11 a 1 

+ 3 --;z 
I 3 

2( !L) 
a 

Using the above expressions, we write ~(s) as follows: 

(15. 6) 

II 
I ZJ I II I I 3 

(:) + (:) -2a a~ + 2(:) 

I ! wz a' a' 2 
- -. - [(a+b) (-)- a(-) J 

1vk a a • 

Using (15. 6) and replacing ; . (x,w) by e.(x), we can divide up the 
J J 

expression (15. 5)· for ljk(w) as follows: 

(15. 7) 



where 

(15.8) 

(15. 9) 

(15. 10) 

(15.12) 

(15. 13) 
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00 

= -J .ek(-£) ~1(£)[;.(£,w)-e.(£)]d£ -oo J J 

I II z I ~ a' a' w a' -3iv (-) + (-) - ~ (a+b) (-) 
k a a 1 vk a 

1 
First we will consider Ijk(w). ' The order of the derivatives of g:_ 

a 

can be reduced by integrating by parts. As I£ I approaches infinity, the 

' I I 

terms g:_ and {g:_) vanish so that the integrated terms vanish. Thus, the 
a a 

expression {15. 8) can be simplified to the following after the integration 

by parts. 

(15.14) 

. z 
1 v.(vk+ v.) - w (a+b) v./vk 

I ( ) 1 1 1 

J.k w = 2 ( v z - v z ) 
k k-l: 

00 

J a' 
e . (s) ek( -£) -d£ J . a 

-oo 
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We showed in the last section that 

q7.(x,w) - e . (x) = O(e:) 
J J 

as E- .0 , 

uniformly in x and w • 

(15. 15) 

Thus we can show that 

z 
Rzz (w) = w (a+b) 

Z(vl-vzz) 

z 00 

= w (a+b) J e2ivz s ~· d(: + O(e:Z) Rzz (w) Z(vlz -vl) .... '=> 
-oo 

as E- 0 uniformly in w for jw I~ w 0 > w • 
c 

As jw I approaches w , we must be more careful in our approxi­
c 

mation of Rzz (w) ~ We see that for lw I = w the roots vz and v4 vanish. c 

Thus any term in Rzz (w) which contains a factor 1/ vz or 1/ v 4 will bee orne 

infinite. However, the' terms v 1 , v3 , and v z -v z for all k remain 
k k-1 

bounded away from zero. 

Using (15.14), (15.10) and (15. 9), we can show that 



(15.16) 

2v 1
2 -w2 (a+b) 

Z(vl-vz2 ) 
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as E- 0 uniformly in w for lw I ~ w • Combining the above, we have 
c 

(15.17) 

(15.18) 

Again the order relations hold as E- 0 uniformly in w for lw I> w • 
c 

Let us look more closely at P
24

(w). First, let us consider r 2~(w). 
We can write this term as follows, 

00 

-oo 
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as E- 0, uniformly in w for lw I ~ w • Now isolating those terms which 
· C 

become infinite in I2~(w) we have 

(15.19) 

as e- 0, uniformly in w for lw I~ w • 
c 

00 

2 Next we look at the term I
24

(w). Isolating the term which becomes 

unbounded, we can write. 1 2~ (w) as follows, 

2 
(15. 20) r

24
(w) 

uniformly in w for lw I~ w • To continue further, we will have to take a c 

closer look at the expression cpz (x,w)-ez (x). 

where 

Using the integral 'equation (13. 4), we can write the following: 

X 4 

cpz (x,w)-ez (x) = - J L Mk(£) ek(x-£) ;z(£,w)d£ 

-oo k=l 

cpz (x,w)-ez (x) = J 1 (x,w) + J 2 (x,w) 

X 00 

Ji (x,w) = -J 
-oo 

L Mki (£) ek(x-£) ;z (£ ,w) d£ 

k=1 

i = 1, 2 

and ~i (£) is given in (15.11) and (15.12) . 

Let us consider first the term J 2 (x,w) . Using (15.12) we can 
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write J 2 (x,w) as follows: 

X 4 

(15.21) Jz(x,w) =- J 2:: 
-oo k=l 

k '.:> • a' Z a 11 a 1 a' -e (x-t=) ~ [ 3] 
2(v z_v z ) l.vk(-;-) -2 -;z -(-;-) rpz(£,w)d£ 

k k-1 

I Z 
X iawZ (g:_) +J a (vZ-vZ) _
00 

1 z 

sinv 1 (x-£) 
vl 

sin v 2 (x-£) 

Vz 

rpz (£,w) d£ 

rpz ( £ , w) d£ • 

Since v 1 is bounded away from zero for lw I ;::::: w , we can show that the 
c 

first two terms on the right hand side of (15. 21) are O(e: 2 ) uniformly in 

' 
x and w for lw I ;::::: w • c 

As for the third term, using the bound 

we have 

sin vz (x-£) I ~ (x-£) 
Vz 

for E < < 1 uniformly in x and w for lw I;::::: w • 
c 

Continuing to Jdx,w), we can write this as follows: 

X 4 

J 1 (x,w) = -J 2:: ~1(£) ek(x-£) ez (s) d£ 
-oo k=l 

X 4 

-J 2:: Mkl(£)ek(x-s)[rpz(£,w)-ez(s)] d£ 
-oo k=l 
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The second term on the right hand side can be approximated in much the 

same way that the term J 2 (x,w) was approximated. In fact, we can show 

that the second term is (I xI +1) 0( E 2 ). The first term on the right is 

integrated by parts once, giving us the following for J 1 (x, w ): 

w2 a' 
4 [ -3ivk -i(v 2 -vk)- iv (a+b)] (i 

J1 (x,w) =- L,. e 2 (x) ~ -------~k~---
k=l 2 (viZ - v~-1) 

X 4 

-J L, 
-oo k=l 

. Vz 
Vz (vk+v2 )-w2 (a+b)­

vk 

+ (lxl+l)0(E 2 ) as E- 0 , 

I 

( ~·) 

- 2(v '-v ' J k k-l 

uniformly in x and w for lw I ~ w • If we sum the first term, we find 
c 

that it vanishes. In the s.econd term we isolate the parts of the term 

which do not vanish. Tht.+s we find that J 1 (x,w), and thus q;z (x,w)-ez (x), 

can be expressed as follows: 

(15. 22) J 1 (x,w) 

+ vz O(E) + ( lxl +1) 0(E 2 ) 

(15. 23) 

as E - 0, uniformly in. x and w for lw I ~ w • c 
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Substituting (15. 22) and (15. 23) into (15. 20), we find that 

00 I S 
-J (~) J ~ e 2 (271)d71 d£] + 0(€ 2 ) + _L 0(€) a a v2 
-oo -oo 

uniformly in w for lw I> w • We can simplify (15. 24) further by integ­c 

ration by parts. In fact, we can show 

00 I £ 
J(':'> J~' e 2 (?7J)d71ds 
-oo -oo 

Combining the above equations with (15. 24), we can establish the 

following: 

(15. 25) -2 z l 3 
I24(w) = 0(€ ) + Vz 0(€ ) 

uniformly in w for lw I~ w · • c 

Finally, using (15.14), we obtain the following for r2~(w): 

(15. 26) 

Combining Eqs. (15. 26), (15. 25), and (15. 20), we have the following for 
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00 

(15. 27) p (w) = - (a+ b) w 2 

J Zivz s a' 
ds Z(viZ -vzz) 

e Cl' 24 
-oo 

00 

aw2 

J 
I Z €3 

+ 2ivz (v 1
2 -v2

2 ) 
(~ > ds + o < € z > + o ( - > 

-oo Vz 

The analysis of .P
44

(w) proceeds in the same way as the preceding 

analysis of P
24

(w), . and the details will be omitted. We obtain the 

following for P
44 

(w) : 

Using the various approximations which we have obtained for the 

terms Fjk(w), we. derive the following expression for Rzz (w): 

(15. 29) 
A(w) + B 1(w) 

Rzz (w) = 1 + 0(€) + Bz(w) 

00 

A(w) = (a+b)w2 

Z(vlz -vzZ) 
J eZivz S : d£ + O(EZ) 
-oo 

€3 
Bz (w) = B 1 (w) + 0(-) 

Vz 

the order relations holding uniformly in w for lw I ;::::: w • Note that c 
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00 

f
. a' z 

(-;-) d£ = 0(E 2 ) • 

-oo 

With a little modification, we can write (15. 29) as follows: 

00 

(15. 30) R ( ) (a+b)w
2 J e2ivz s c;,_' de + E(w,E) 

zz w =· - 2(vlz -vl) -oo .... '=> 

(15. 31) 

Ez 
i Vz B 3 (w)[l+O(E)] 

E(w, E) = ---=---E-:2:--------

l+O(E)+i- B 3 (w)(l+O(E)) 
vz 

= 

where 

(15. 32) 

Note that the denomina to r o f E(w,E) in (15 . 31) is a complex quan-

t ity. T he r eal part of the denominator for lwl ~ w is Vz, while the 
. c 

i maginary part i s Ez B 3 (w). The magnitude of the denominator can be 

bounded below by either the magnitude of its real part or the magnitude 

of its imaginar y pa r t. Since B 3 (w) is bound ed away from zero for finite 

lwl ~ w , we have that the denominator of E(w, E) can never vanis h for f inite 
c 

\w\~ w . c 

(15. 33) 

(15. 34) 

In addition, we have the following two bounds on E(w, E): 

E(w,E) = 1 + O(E) 

Ez 
E(w,E) = 0(-) 

Vz 

uniformly in w for lwl ~we· 
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16. The Approximation for High Frequency 

We shall need bounds on the solution c:p. (x, w) for large values 
J 

To obtain the bounds we return to the original fourth order 

differential equation (13. 2) and make a change from the dependent 

variable c:p.(x, w) to a new dependent variable ljt.(x, w). The differ-
] J 

entia! equation in terms of the new unknown will be transformed into 

an integral equation. This integral equation will be used to obtain a 

bound on c:p. (x, W) • 
J 

Let ljt . = Ja c:p . • Substituting this into Eq. (13.2), the original 
J J 

differential equation becom~s 

where 

= _ {l(a')a ~ +[ ~ + 2 a"a' _ (~)3] ~ 
2 a d a L: a a a dx x a 

(16. 2) 

E 1 a"'' 3 a"' a 1 3 (a")2 a11(a 1
)
2 

+ ----+----- -- -3-......._-'--2 a 2 a 4 a 3 a a 

Compare the differential equation (16. 1) with the differential 

equation (13. 2). The left hand sides of the two equations have exactly 

the same form. We c an transform the differential equation · (16. 1) 

i nto an integral equation in exactly the same way that we did the differ-

ential equation in (13. 2). We get 

4 
(16. 3) ljt.(x, W) = ~ e.(x) + '2: 

J -oo J k=l 
ds 

2 i \)k(\):-\)ka-2) 
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Note that as x approaches -'oo 

'}. (x, w) = Ja (x) cp:- (x, w) ~ ~ e .. (x) 
J . J -oo J . 

where a is the limit of a(x) as x approaches -oo • 
-oo 

Next we remove the derivatives of the 'f. (x, w) in L
1 

'}
3
. (x, w) 

• J 

appearing in the integral in the integral equation (16. 3). We accom-

plish this by integrating by parts in the · appropriate way. Carrying 

out the integration by parts and re-expressing in terms of cp. (x, w), 
J 

we get 

X 

(16.4) Ja(x) cp.(x, w) = .;c;-_ e . (x)- I Kl (x, s;w)cp.(s, W)ds 
J -oo J -oo J 

where 

(16. 5) 
-1 . { l a 1111 5 .a Ill a I 9 (a') a II (a 1 )2 - --- ------ + 10---'---.:.... 

2 . ( 2 a ) 2 a 2 :a 4 a 3 
1 vk vk -vk-1 a a 

75 (a' )
4 

· [am ana• (a')
2

] 2 (a')
2 

- ..,., - + 2v - -- + 4 -- - 3 - + v -lo a k a 2 a k a 
a 

For I w I sufficiently large and bounded away from zero and w we 
c 

have, using earlier asymptotic estimates, 

cl 

\2i vk (:ka - v~-1 )I ~ I w 13 
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Using these estimates, we can obtain the following bound for K 1 (x, s;w): 

(16.6) 

where 

I Kl (x, s;w) I ~ .£ E:a (s) 
lwl 

E:a (S) = max (I a"'' I. I am I. I a 11 I. I a 1 I ) · 

The constants C and C 1 are independent of x, s, and w. 

We have shown that the function cp. (x, w) is bounded for all 
J 

values of w. Thus we can show, using (16. 4) and (16 . 6) that 

(16. 7) 
C:a X 

IJa(x) cp. (x, w) -.;a- e . (x)j ~ e: - J E:a (s)ds 
3 -oo J . I I W -oo 

Ja (x) cp . (x, w) - .;a-e. (x ) = 
J -oo J 

uniformly in :X and w for all x and large \ wl 
Eq. (16. 4) can be rewritten as follows: 

As x approaches minus infinity, (16. 8) has .the following asymptotic 

behavior: 

(16. 9) f-o (x) -
-- cp .(x, w)"" e . (x) • 
a J J -oo 

As x approaches plus i nfinity, (16. 8) behaves as follows: 

(16. 10) J:(x) cp
3
.(x,w) = e . (x) + t ek(x)Q .k(w) 

-oo J k=l J 

(16 . 11) 
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We compare the asymptotic forms (16. 9) and (16. 10) with the · 

asymptotic forms (14. 2 ). As we did earlier, we can multiply 

iwt I 1 Ja(x)/a cp. (x,W) bye and, for large x, we can interpret 
-co J 

incident, reflected, and transmitted sinusoidal waves. We consider 

the linear combination 

{16. 12) 
4 --

w.{x) = Ja(x) cp.(x, W) + ~ B.k(W) Ja(x) cp. (x, W) • 
J a_oo J k=3 J a_oo J 

A h . . f. . t iwt ( ) t .. s x approac es m1nus 1n 1n1 y, e w. x appears as an ou go1ng 
J 

type I sinusoidal wave propagating to the right and a type I and type II 

sinusoidal wave returning to the left. 

. t 
As x approaches +x, we choose B .k(w) so that e

1
W w . (x, t) 

J J 

i s c omposed of sinusoidal waves propagating to the right only. This 

condition on Bjk{w) gives us two simultaneous equations which Bj 3 

and Bj
4 

must satisfy. Solving thes~ equations, we obtain the following: 

{16 . 13) 

{16.14) 

[l+Q33(w)][l +Q44{w)] - Q43(w) Q34(w) 

__ Qj 4 (w) [ 1 + Q 3 3J - Qj3(w) Q34(w) 

[ 1 + Q33 (w)] [ 1 + Q44 {w)] -Q43 (w) Q34 (t.v) 

j = 1, 2 

Again, as we did in {1 4 . 8) and (14. 9), we can define reflection and 

transmission coefficients as follows: 

{16 . 15) 

{16. 16) 
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j = I, 2 

k = I, 2 

Thus, we have another . representation for the reflection and trans-

mission coefficients. This representation will be useful for large 

lwl · 
Returning to the reflection coefficient R

22
, we have the 

following : 

(16. 17) 
0 24 (w) [ 1 +033 (w)] -023 (w) 0 34 (w) 

R22<w> = B24 = -
[ 1 +033 (w)] [ 1 +044 (w)]- 034 (w) 0 43(w) 

If we separate out the term 0 24 in the expression (16. 17) we have 

(16. 18) R22(w) =- 0 24 -
0 24 °44 (l +033 )+034 (023 +024 °43) 

(l+033) (l+044) - 0 34 °43 

Let us take a closer look at 0. 1 (w). First we can establish 
J <: 

the following bound on part of the integrand of Ojk(w): 

(16.19) 
c - Ea (sJ 
lwl 

Thus, since cp.(x, w) is uniformly bounded for large lwl, we have 
J 

(16. 20) E: 
O.k(·W) = 0(-) 

J . w 

the order relation holding uniformly in w for lwl >>we. Thus we 

can establish that 

(16.21) 
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uniformly in w for I w I >> We 

Let us consider 0 24 (w). First we can write o 24(w) as follows: 

00 

(16.22) Q24{w) =I e4{-s)Nk(s)e2{s) 
-oo 

Thus, u sing (16. 7) and (16. 19) we can bound the second term on the 

right hand side of (16. 22) 'and obtain the following: 

(16.23) 

uniformly in w for \w I >>we. 

We now look at the terms which are O(E:) in Nk(S). We find 

that eac h of the terms a 1111 /a, a"'/a, a" /a, a' /a are O(E: ). We will 

be interested in integrating the integrals. Rewriting Nk(S). we 

obtain the following : 

Ill 

-1 {!.(~) _ _!_a"' a' _ ~ (a").a 
2 . ( 2 :a ) 2 a 2 2 4 a 

1 vk ~k -"k-1 a 

123 (a' )4 t (a')" a" a' ---,--,-- + 2v - - +---
lo a k a a:a 

Substituting the above into (16. 23) and retaining the order E: terms 

and terms which are O(e 2 /w), we can simplify the expression for 

o
24 

(w) to the following : · 
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oo · 
(16.24) I 

-oo 

the order relation holding uniformly in w for I w I >> w . 
c 

Consider the following term in (16. 24): 

00 

I(w) = I 
-oo 

If we integrate by parts in I(w), we <,:an show 

I(w) = 

and thus 

I(w)= o(~2) · 

uniformly in w for I w I >> w . Thus we have the following for 
c 

I 

- ~ w2 
(a+b) (:') }ds + o(G) . 

Integrating by parts in the above, we can finally simplify the expres-

sion for o
24

(w) to the following: 

Q ( ) - .!... wa (a+b) 100 2iva ~ ~ d~ + o(e:a ) 
24 w - 2 e '=' w"' • a a a o 

vl - Va -oo 
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Substituting the above results for Q 
24 

(w) into (16. 21), we derive the 

following for R
22

(w): 

00 

(16.25) (a+b)w
2 J e2iv 2 s ~ dc+O(E

2

2
) 

2(vl2 -vz2 ) a ';> w 
-oo 

17 . The Inverse Problem 

Up to this point we have solved the "forward problem" of 

approximating the reflection coefficient R
22

(w) in terms of the par am­

eter a(x). In this section, we will concentrate on solving the "inverse 

problem": given the reflection coefficient R
22

(w), approximate the 

parameter a(x). 

In previous sectio'ns, we have shown that the reflection coeffi-

cient to a first approximation is proportional to the Fourier transform 

of the derivative of log a(x) . That is, we have shown that 

(17. 1) 

-oo 

In addition, we have established the following uniform bounds on E(v 2 , £) 

i n (15. 33). (15. 34) , and (16 . 25): 

E(vz,E) = 1+ O(E) for j v 2 j bounded away from zero 

(17. 2) E(v 2 ,E ) = o(~:) for all v 2 

E(vz,E) = o(:zzz) for all v 2 

The last two bounds can be consolidated into the following single bound: 



-90-

(17.3) = 

uniformly in v 2 

As in the case of the wave equation discussed in Part I, we 

want to invert the Fourier transform in (1 7. 1) and obtain a relation 

for the derivative of log a(x) involving the reflection coefficient 

R 22 (w). To do this we multiply (17.1) by the factor 

and then integrate over the interval -oo < 2 v2 < oo . A few words 

should be s.aid about the parameters v 1 and v 2 as functions of w . 

From (11. 6), we can show that v1 and v 2 are monotonic functions 

of w. Thus, the functions vdw) and v2 (w) are one-to-one mappings. 

Therefore, v 1 a.nd w can be expressed as functions of v 2 • 

As for the integral arising from the first term on the right 

hand side of (1 7. 1 ), we can apply the Fourier integral theorem 

given in the last section of Part I. The conditions which we 

assumed earlier on the parameter a(x) are enough to insure the 

existence of inversion of the Fourier transform of the derivative of 

log a(x). 

As for the integral containing the error term, we will be able 

to bound it in terms of the integral of the absolute value of E(v2 , €). 

First we will bound E (V:a, €) as follows : 
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1 + O(e:) 

I V:a I > €2 

Splitting the range of integration into two parts, we can obtain the 

following: 

TT uJ (a+b) 

e:a 
~ C f d V:a 

0 

Thus, we can show that the integral involving the error term is 

0 (e: 2 loge:), uniformly in x for all x. 

(17.4) 

Thus we have 

d loga (x) 
dx 

1 
TT(a+b) 

-oo 

-2i V;a X 
e RzzCw)d V;a 

+ 0 (e: 2 loge:) 

uniformly in x for all x. Since we showed that the integral of the 

right hand side of (1 7. 1) exists, the integral on the right hand side 

of (17.4) must also exist. 

I£ we express a(x) as 

a(x) = a [1 + e:r (x)] 
-oo 
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then we can write (1 7. 4) as follows: 

(17.5) F{x, e:) 
dr · 

= € dx + 0 (€2log €) 

uniformly in x for all x, where 

F(x, €) 
1 

'IT (a+b) 

Eq. (1 7. 5) says that the function F(x, €) can be approximated as 

follows : 

F(x, €) = € F 0 (x) + O(e 2 loge) 

where F 0 (x) equals the d e rivative of r(x). Thus, if we hav e the 

reflection coefficient R 22 (w), we can construct the function F(x, €) 

and, in turn, approximate the derivative of r(x). All of the above 

results can be stated more precisely in the following theorem. 

Theorem: Let a(x) satisfy the following : 

I. a(x) possesses a fourth order partial derivative for all x. 

2. The following integrals exist: 

00 n 
I 1:x~ I dx, 

n = 1, 2, 3, 4 , 
-oo 

00 dm 
I lx dx~ I dx 

m = 1, 2, 
-oo 

3. a(x) can be written as 

a(x) = a [1 + € r(x)] 
-oo 
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Then the function 

F(x, e:) 
1 00 

J ;r (a+b) 
-oo 

exists and can be expanded as follows: 

F(x, e:) = e: F 0 (x) + O(e: 2 loge:) 

uniformly in x for all x, and 

F 0 (x) = 
dr 
dx 

The proof of the theorem follows from the previous work. 
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CHAPTER IV 

CONCLUSION 

The Inverse problem has wide physical interest, Two situations 

where the inverse problem is physically applicable are discus sed 

below. 

In the first situation, suppose we were required to determine 

the parameters characterizing a non-homogeneous medium. However, 

suppose we were limited by the fact that the medium were inaccessible, 

so we were unable to measure the parameters directly. Yet, if we 

could stand off at infinity and measure the reflection coefficient 

associated with sinusoidal waves of various frequencies, our work here 

provides us with a means of approximating the parameters. Thus, we 

have a means of determining properties of a certain medium from a 

remote location. 

A second situation is essentially a synthesis problem. In this 

situation, we would be required to synthesize or construct a medium 

which would have a d e sired reflection coefficient or whose reflection 

coefficie nt would have certain desired properties. A gain, our work 

would provide a means of approximating the medium par ameters , and 

thus provide us with a means of approximately designing and synthesizing 

certain systems or media. 

The prima ry goal in our investig ation of both the wave e quation 

and the Timoshenko equation was to provide an approximate method of 

solving the inverse proble m for a s lightly non-homogen e ous m e dium. 

In both cases, we found that the approximation to the derivative of the 
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parameter a was simply a Fourier integral involving the reflection 

coefficient, 

In the case of the wave equation, there are alternative approaches 

for obtaining an approximation which differ from the one taken here, We 

will discuss briefly these approaches in the paragraphs which follow. 

Eq. (7, 2) of Chapter II is recognized as the one dimensional 

analog of the Schroedinger equation from quantum mechanics, with the 

potential V(T) being given by 

V(T) 

If we had transformed our differential equation into the Schroedinger 

form, and then tried working with this for all values of k, we would 

have run into difficulties for small k, If we had worked with the integral 

equation corresponding to the Schroedinger equation for a slightly non-

homogeneous medium, we would have obtained the familiar Born 

approximation for the reflection coefficie nt, The Born approx imation is 

unsatisfactory in our case, becaus e ask approaches zero, the best we 

can do is show that the reflection coefficient is 0(1). However, we 

showed that the reflection coe fficient is O(E) uniformly ink for all k. 

Thus, by avoiding the transforma tion to the Schroedinger form of the 

differential equation, we w e re able to obtain a b e tte r bound on the 

r eflection coefficient for small k . We were content in using the 

Schroedinger type equation to approximate the reflection coefficient for 

large k. 

• 
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In addition, if we had used the Born approximation to retrieve 

the parameter a(T), the best we could have done would have been to 

approximate~~ with an error which was O(e: 2 logE) uniformly in x for 

all x . As it was, we were able to approximate ~ with an error which 

was O(e: 2 ) uniformly in x for all x. 

A second approach involves solving the inverse problem exactly. 

Kay [6] demonstrated how the inverse problem for the wave equation 

could be solved exactly in terms of the reflection coefficient. Their 

method relies on work 'done by Gelfand and Levitan [5]. The exact 

solution does not give a closed form for the solution, but merely reduces 
/ 

the problem to solving an integral equation. The solution of the integral 

equation is related to the parameter 

In the case of a slightly non-homogeneous medium, by using 

successive approximations, an approximate solution to the integral 

equationcan be obtained (Fadde yev, (4] pp. 81 and 90), and thus the 

par ameter ~ can be approximated. There is · no proble m in obtaining 

a uniform approximation on the s e mi-infinite inte rval (as done in 

Faddeyev [ 4]) ; However , the uniformity of the approximation cannot be 

extended over the entire infinite interval. 

The Gelfand-Levitan m e thod has bee n exte nde d (s e e Agranovich 

and Marchenko [2]) to cove r the invers e proble m a ss ociated with certain 

systems of second order diffe r e ntial equations. In turn, this extension 

can be used to solve the inverse problem for certai n fourth order 

. ' 
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differential equations. 

One objection to the exact approach is that it can be applied to 

only certain fourth order differential equations., and unfortunately, the 

Timoshenko equation cannot be transformed into a form which can be 

covered by this method. Thus, we are left with our direct approach in 

solving the inverse problem approximately. 
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