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ABSTRACf 

Fluid diffusion in glassy polymers proceeds in ways that are not explained 

by the standard diffusion model. Although the reasons for the anomalous 

effects are not known, much of the observed behavior is attributed to the long 

times that polymers below their glass transition temperature take to adjust to 

changes in their condition. The slow internal relaxations of the polymer chains 

ensure that the material properties are history-dependent, and also allow both 

local inhomogeneities and differential swelling to occur. Two models are 

developed in this thesis with the intent of accounting for these effects in the 

diffusion process. 

In Part I, a model is developed to account for both the history dependence 

of the glassy polymer, and the dual sorption which occurs when gas molecules 

are immobilized by the local heterogeneities. A preliminary study of a special 

case of this model is conducted, showing the existence of travelling wave solu­

tions and using perturbation techniques to investigate the effect of generalized 

diffusion mechanisms on their form. An integral averaging method is used to 

estimate the penetrant front position. 

In Part II, a model is developed for particle diffusion alof.!.g withdisplace­

ments in isotropic viscoelastic materials. The nonlinear dependence of the 

materials on the fiuid concentration is taken into account, while pure displace­

ments are assumed to remain in the range of linear viscoelasticity. A fairly gen­

eral model is obtained for three-dimensional irrotational movements , with the 

development of the model being based on the assumptions of irreversible ther­

modynamics. With the help of some dimensional analysis, this model is 

simplified to a version which is proposed to be studied for Case II behavior. 
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OVERVIEW 

As new uses are continuously being found for polymers, both as replace­

ments for traditional materials and in new technologies which rely on their spe­

cial properties, it becomes important to understand and model their behavior. 

In the case of diffusion
1
it has been known for over thirty years [1 ] that the stan­

dard Fickian diffusion model 

c, = 'V·(D(c )'Vc) 

is incapable of describing the full range of behavior which is observed when a 

fluid diffuses through a polymer in the glassy state. Even so, the actual 

phenomena which are observed are not yet well understood. (Good summaries of 

the experimental evidence and proposed theories are given by Crank [2], Frisch 

[3) , and Hopfenberg and Stannet [ 4].) In many of the applications, diffusion 

plays an important role. For example, moisture will eventually seep through 

polymer containers, causing degradation of any moisture sensitive contents. 

One of the lithographic techniques used in the fabrication of integrated circuits 

etches polymers with electron beams; the exposed material dissolves more 

readily than the unexposed material when the polymer surface is washed with 

solvents, creating an extremely fine pattern. Circuit manufacturers would like 

to make this pattern even finer. 

One of the most interesting and promising uses for polymers is in 

controlled-release drug delivery systems [5],[6] which dispense medication con­

tinuously for long periods of time, allowing for lower doses and less trauma to 

the patient's system. Some of these devices imbed the drug in the polymer, 
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allowing it to diffuse slowly outward. The process by which the polymer is 

manufactured determines how fast the drug is released. Another concept takes 

advantage of Case II diffusion, described below; as the front moves inward, the 

swollen polymer behind the front releases the drug at a uniform rate. Still 

mainly experimental. a few controlled-release products are already on the 

market, including a patch for motion sickness which dispenses scaparlomine 

through the skin, and a small disk, used in glaucoma therapy, which sits under 

the eyelid. 

At least four distinct responses are observed when a large membrane of dry 

glassy polymer is suddenly placed and held in a bath of fluid [2): Fickian, or Case 

I; Case II (including Super Case II); two-stage diffusion; and sigmoid, or S-shaped 

sorption. The first two are considered limiting behaviors, while the latter two 

may possibly be intermediate between Case I and Case II diffusion responses . 

Fickian diffusion, also called Case I. follows closely the solution to the famil­

iar diffusion equation 

with the concentration c held at the equilibrium value on the boundary. Mass 

uptake is initially proportional to the square-root of time, eventually slowing 

down, and no distinct boundary between wet and dry polymer is visible. No large 
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stresses are observed. 

k 
t 2 

In Case Il diffusion, on the other hand, mass uptake is proportional to time 

(faster for Super Case II)and is much faster than Fickian uptake, A distinct 

boundary is visible between an apparently dry inner core and a wet swollen 

region at or near the equilibrium concentration. This front moves at constant 

velocity (faster for Super Case II) and the stresses on the dry inner core can be 

large enough to cause crazing, and even fracturing of the core. Thomas and 

Windle [7] observed that in a wide enough sample (how wide decreases with the 

temperature), Case II fronts eventually slow down and weaken, with the regions 

behind and in front no longer at equilibrium and zero concentrations, respec-

tively. The region behind the front may be soft and rubbery, or it may still be 
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glassy. 

Thick sample 

,_ _____ Th=1=-· n::. sample 

t 
~ 

Case II 

Two-stage sorption is characterized by an initially rapid mass uptake, 

apparently Fickian, followed by a lull and then another upsurge. This 

phenomenon is widely believed to be due to nonconstant boundary conditions. 

Two-stage 

t 

Sigmoid, or S-shaped sorption mass uptake curves start off proportional to 

the square-root of time, increase and then taper off. These curves are also seen 
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for diffusion in glassy metals. 

!~ 
t 

By looking at the properties of glassy polymers, it is easy to see why Fickian 

diffusion does not always occur. One of the fundamental assumptions behind 

Fick's law is that the system reaches local equilibrium much more rapidly than 

diffusion proceeds, so that stresses and local inhomogeneities are instantane-

ously relieved. For glassy polymers in certain temperature and concentration 

ranges, this is simply an unrealistic assumption. The properties of glassy poly-

mers are fairly thoroughly discussed in Haward [8]. Amorphous polymers in 

the glassy state are hard and can be brittle, with the polymer chains nearly 

frozen in place, causing them to be fairly sensitive to their past history, and to 

equilibrate slowly. They flow, albeit extremely slowly, under stress, having a 

very high viscosity. With increasing temperature or penetrant concentration, 

they soften and become more responsive, eventually going through a rapid tran-

sition region, generally considered to be a second order phase change,in the 

neighborhood of the glass transition temperature Tg . Above Tg they are rubbery 

or gelatinous . The slow relaxation may have a number of consequences. Not 

only are the properties of the polymer history-dependent, but the surface may 
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tak e a significant amount of time to arrive at the equilibrium concentration. 

Local inhomogeneities and anisotropies may arise, opening up interstitial spaces 

and microvoids which immobilize ditiusing particles, Th.is process is known as 

dual sorption. Differential stresses between regions at different concentrations 

are not quickly relieved. 

One of the important features of glassy polymers is the strong dependence 

of their current properties on their past history, or in other words, their slow 

relaxation. A number of models have been proposed to partially incorporate 

t his h istory dependence. In Part I of this thesis) we generalize one of the 

earliest of these history-dependent models to include both dual sorption and 

different history dependent behavior. The model which we start with is a highly 

nonlinear one due to Crank [1 ]. Many of the other history-dependent models 

reduce to special cases of our model. We also show that Crank's model. with a 

simple dual sorption term added, allows travelling waves to propagate through 

the medium. 

Ideally, one would like to have a single model incorporating all of the salient 

features of penetrant diffusion in glassy polymers. Although such a model was 

developed in the 1960's for the similar problem of nonlinear heat transfer in 

viscoelastic solids [9] ,[10], no model appears to exist for particle 

diffusion. ln Part II of this thesis, a model is proposed that incorporates non­

linear particle diffusion, viscoelastic swelling and history dependence for an iso­

tropic system. It is based on the assumption that, even though solid displace­

ments may be large, most of the displacements are being made to acconnnodate 

the fiuid, and the movements of the center of mass are small. This model. which 

is fair ly general. is developed using the assumptions and techniques of irreversi­

ble thermodynamics . A collection of the relevant hypotheses of irreversible 

thermodynamics and their consequences is presented along with the derivation 
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of the model, on the assumption that the reader should not need to be familiar 

with this subject, The model is therefore worked out in great detail . It is, of 

course, the final model that is of interest, and in the last section of this part a 

simplified version, which should be reasonable to analyze, is proposed for 

one-dimensional Case II diffusion. 
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GASEOUS DIFFUSION IN GLASSY POLYMERS* 

DONALD S. COHEN AND E. AN STANLEYt 

Dedicated to Joseph Keller 

Abstract. A model for gaseous diffusion in glassy polymers is developed with a view to accounting 
for the observations made in dual sorption and certain o ther phenomena in polymers below their glass 
transition temperature. In this paper a preliminary study of the effects of both the immobilizing mechanism 
and the generalized diffusion mechanism on travelling waves and the diffusive wavefronts is made. 

1. Introduction. In the period 1953-1969 a partially successful chemical and 
mathematical theory was developed for the diffusion behavior of glassy polymers and 
the transition between rubbery and glassy states. Good summaries of this development 
are given in Crank [1] and Crank and Park [2]. While it was recognized at the time 
that many fundamental chemical mechanisms were still unknown, and also that the 
corresponding mathematical theory was inadequate due to its inherent and often 
ignored nonlinearity, nevertheless combinations of gross qualitative chemical theories 
and crude linearizations plus numerical studies gave acceptable answers for the 
problems of the time [2]. However, recent technological discoveries lead to a 
variety of new problems far exceeding the capabilities of the previously developed 
theories. Among these are problems in the disposal of chemical waste, the structural 
failure of plastics and polymers, the replacement of traditional materials by polymers, 
the development of barriers (e .g., plastic beverage bottles) to separate gas mixtures, 
the migration of impurity atoms in solids which should be ultra-pure for their use in 
solid-state electronic devices, and the role of diffusion in catalysis by porous solids. 

Roughly speaking, the major effects depend upon whether the polymer is above 
(rubbery) or below (glassy) its glass transition temperature and whether the penetrant 
is a liquid or a gas, but this is only a crude over-simplification. A polymer in its 
rubbery state responds rapidly (almost instantaneously) to changes in its condition. 
This has many simplifying implications, and it is now universally agreed [1], [3] that 
diffusion in rubbery polymers is described by the standard Fickian diffusion equation 
C, = div (D grad C ), in which the diffusivity D is at worst dependent upon the con­
centration C of the diffusing species; i.e., D = D (C ). Although problems involving 
this equation may be formidable nonlinear boundary value problems, the important 
qualitative features of diffusion in rubbery polymers can be obtained, and indeed, a 
rather complete theory [1] exists. 

On the other hand, there is no unifying theoretical formulation for glassy polymers. 
There is not even a complete classification of the various anomalous effects. Glassy 
polymers respond slowly to changing conditions, and most of the anomalous effects 
are directly related to this. For example, the changing polymer structure influences 
the solubility and diffusional mobility. This leads to diffusion coefficients which can 
depend not only nonlinearly on the state of the system, but also on the previous 
history of the system, and sometimes even on previous rates of change of the system 
[1], [4]. Internal stresses can be induced due to differential swelling of different parts 
of the polymer [5]-[7]. Immobilization (and sometimes reaction) in the interstitial 

* Received by the editors October 25, 1982, and in revised form December 13, 1982. This research 
was supported in part by the U.S. Army Research Office fDurham) under contract DAAG29-81 -K-0107 
and by the National Science Foundation under grant MCS-8205407. 

7 Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125 . 

Reprinted with pennission fran SIAH Journal on Applied Hathematics, 

43 (1983) pp. 949-70. Oopyright by SIAM 1983. All Rights Reserved. 
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spaces and microvoids greatly affects the sorption of diffusing penetrants [8)-[10]. 
These and many other phenomena have given rise to a partial classification (Case II, 
Super-case II, dual-mode, anomalous non-Fickian, . .. ) of glassy polymers according 
to various experimental observations. Indeed, the observations are sometimes so 
diverse that, rather than any kind of universal theory for glassy polymers it is probably 
the case that theories of glassy polymers by still to be defined type will be all that is 
obtainable. In any event, many more studies of special problems are necessary before 
some more or less global theory can be proposed. 

In this paper we shall study the general problem of dual sorption in glassy 
polymers. We shall be more precise in § 2 where we present the equations of motion, 
but roughly speaking dual sorption involves two distinct mechanisms: (i) ordinary 
diffusion controlled sorption, and (ii) sorption resulting from the immobilization (or 
partial immobilization) of diffusing gas molecules by various sites in the polymer [9]. 
These sites are interstitial spaces and microvoids which are consequences of local 
heterogeneities, and which are intimately related to the slow relaxation processes 
associated with the glassy state of the polymer (probably close to the glass transition 
temperature). 

(1.1) 

(1.2) 

We shall study systems of equations of the form 

Cr = (DC,), + R (C ), 

D , = F '(C )C, +a(C )[G (C )-D], 

and certain natural generalizations of this system for which the theories of Vieth and 
Sladek [8], Tshudy and von Frankenberg [9], Paul and Koros [10], and Petropoulos 
[11] are all special cases. Diffusion operators with diffusivity changing according to 
(1.2) were first proposed by Crank [1], [12] to account for totally different observations 
involving swelling when a liquid penetrant diffuses into a glassy polymer. Crank's 
arguments are cogent, and appropriate generalizations are broadly applicable to large 
classes of generalized diffusion problems. In § 2 we shall show how to obtain the 
standard dual mode sorption theories [8]-[11] from a generalization of Crank's model. 
In addition, we show that our model then unifies dual mode sorption with certain 
parts of the so-called Case II, Super-case II, and anomalous non-Fickian phenomena. 

Because of the relative ease with which it can be obtained, both experimentally 
and theoretically, the single quantity most commonly used to define the kinetics of 
the sorption process [7] is 

(1.3) M , =kt", 

where M , is the total amount of penetrant absorbed per unit area of polymer at time 
t, and k and n are system parameters. Standard Fickian diffusion (i.e., a polymer in 
its rubbery state above the glass transition temperature) corresponds to the usual 
n = i. Case II glassy polymers correspond to i ~ n ~ 1, and Super-case II corresponds 
to n > 1. However, this is not a hard and fast rule, and furthermore, in most glassy 
polymers M , as a function of t does not look like t " for one constant value of n. In 
dual mode sorption and in anomalous non-Fickian cases the most commonly observed 
function for M , is what is now universally called "sigmoid" by polymer chemists [1], 
[3]. That is, M , as a function of t"C'ommonly exhibits a single point of inflection (most 
often at about 50% of equilibrium sorption). For example, in the penetration of 
cellulose acetate by acetone vapor [13], M , versus t

112 is linear for both small and 
large time t joined for intermediate time by a curve with a single inflection point. The 
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penetration of polystyrene by methane [14] exhibits an M , versus /z.with two linear 
regions connected by a nonlinear region. 

This sigmoid absorption behavior can be controlled by either the diffusivity D 
or the kinetic-like term R (C ) in (1.1), (1.2). The following simple heuristic arguments 
give a feeling for the mechanisms involved : The function a (C } in (1.2) is a rate 
controlling function (empirically obtained) depending monotonically on C. From (1.2) 
it is clear that large a implies D - G (C ), the equilibrium diffusion coefficient, and 
small a implies D - F ( C ), the instantaneous diffusion coefficient. (Note that in either 
state the concentration in an absorption process is increasing.) For intermediate values 
of a the diffusion coefficient D is history dependent (we shall show this in § 2), and 
it is this transition from small to large values of a which accounts for the so-called 
sigmoid absorption curve. We shall demonstrate this more explicitly in § 5 where we 
employ a Karman-Pohlhausen integral averaging method to obtain the time history 
of the penetration front . 

The term R (C ) in ( 1.1) arises from a consideration of one or a combination of 
the following phenomena: (i) The immobilization of some diffusing molecules simply 
by filling voids, (ii) the immobilization (or partial immobilization) of some diffusing 
molecules by absorption at specific sites, or (iii) the intraconversion of two or more 
differently mobile penetration species. Equilibrium states exist in all these situations, 
and as we shall see, since the most commonly occurring form for R (C ) is a bimolecular 
rate function, then two equilibrium states usually exist . The sigmoid absorption 
behavior is manifested by a diffusion wave connecting these states. We prove the 
existence of these waves in § 3 and construct them via a perturbation scheme in a 
special case in § 4. 

2. Dual sorption theory. Experimental results readily show that the sorption 
isotherms for gases such as C02, CH4, and C2H6 in glassy polymers such as ethylene 
terephthalate and polystyrene are nonlinear [10], [14]- [16] and can best be described 
by a function of the form 

(2.1) {3p 
C=ap +--, 

1 +yp 

where C is the equilibrium concentration of gas in the polymer, p is the pressure, 
and a, {3, and y are various physical constants. It is standard [8]-{10], [14)-[16] to 
write (2.1) in the form 

(2.2) 

where 

(2.3) Co =ap, 
{3p 

CH = 1 + yp' 

and to interpret (2.2) as implying that two separate sorption mechanisms are operating: 
(i) Standard linear sorption in which Co denotes the gas dissolved according to Henry's 
law (i.e., Co = ap ), and (ii) hole filling (or immobilization) in which CH denotes gas 
adsorbed into holes according to a Langmuir-type isotherm (i.e., CH = {3p/( 1 + yp )). 
Note that C is linear in p for both small and large p; i.e., 

(2.4) C- (a + {3 )p for small p, 

(2.5) 
{3 

C - ap +- for large p. 
"Y 
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This behavior, (2.4), (2.5), of two linear regions with a connecting nonlinear region 
is the typical experimental observation [8], [14] noted for gaseous diffusion in a glassy 
polymer. 

In the theories assuming complete immobilization [8], [10] of the gas adsorbed 
in the holes one assumes that only the dissolved gas is free to diffuse so that (neglecting 
convection) the flux J of diffusing gas is given by 

(2.6) 1 = -D aCo 
ax , 

where D is the diffusion coefficient of the dissolved penetrant. (For algebraic simplicity 
we shall stick to one dimension. The multi-dimensional derivation in which J is 
proportional to the gradient of C is easy to carry out.) The basic equation of continuity 
(i.e., conservation of mass) then becomes 

ac a aJ 
-=-(Co +CH ) = --. 
at at ax 

(2.7) 

Local equilibrium between Co and CH implies that at any position the pressure 
is the same for both species. Thus, since p = C0 /a, we have 

(2.8) 

Hence, 

(2.9) 

or equivalently, 

(2.10) 

({3/a )Co 
Co +CH =Co + 1 + (y/ a )Co. 

_?_(co+ ({3/a )Co ) = !...(v aCo) 
at 1 +(y/ a )C0 ax ax ' 

[ 1 + {3/ a 
2
]aCo = !...(v aC0 ) 

(1 + (y/ a )C0 ) at ax ax . 

The derivation of (2.10) can be carried out in a more sophisticated manner 
[10]-[11] by using various thermodynamic arguments and invoking a flux driven by 
gradients of a chemical potential rather than a concentration. This allows one to relax 
the assumption of complete immobilization and use instead the concept of partial 
immobilization of some gas molecules due to several possible mechanisms [1 ]. 
Nevertheless, the form of (2.10) remains the same with only slight modification in the 
specific constants and functional forms of the coefficients in (2.10). 

A totally different formulation of the dual sorption implied by (2.2) is presented 
by Tshudy and von Frankenberg [9]. They assume that there are a fixed number of 
immobilizing sites distributed uniformly throughout the polymer and that each site 
can immobilize only one gas molecule according to some mechanism whose effect can 
be written as 

k, 
(2.11) site + gas molecule site molecule complex. 

k_, 

By writing the specific function R describing the ·' reaction•· (2.11 ) and by invoking 
ordinary diffusion they then write the basic continuity equation as 

(2.12) aCo = !...(v aCo) + R. 
ar ax at 
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Partial immobilization can be accounted for through the use of a reversible reaction 
(2.11 ), and the effective rate constants k 1 and k _1 can be adjusted to yield the same 
equilibrium sorption isotherms as the oth.er theories which start with (2 .10). 

In a different context, involving swelling of the polymer structure due to (mostly 
liquid) penetrants, Crank [1], [12] proposed a phenomenological approach which we 
now generalize to the present problem of dual sorption. This generalization embodies 
all of the above theories. Crank proposed the system 

(2 .13) ac = j_(D ac). 
at ax ax 

(2 .14) 
aD , ac 
-=F (C )- + a (C )[G(C ) - D ]. at at 

He presents simple convincing arguments, which we summarized in § 1, to interpret 
F (C ) as an instantaneous diffusion coefficient reflecting instantaneous changes in the 
polymer, G (C ) as an equilibrium diffusion coefficient reflecting the slow relaxation 
due to its glassy state, and a (C ) as a rate function controlling the approach to 
equilibrium. Crank further points out that (2 .14) implies that the diffusivity D depends 
not only on the concentration, but also on the time taken to reach that concentration, 
and thus, some previous history is also incorporated into (2.14 ). 

Basic to all the theories mentioned above is the explicit assumption of a diffusion 
mechanism taking account of the relatively slow relaxation of a polymer in its glassy 
state. This mechanism is superposed on the usual classical diffusion in such a way that 
the total diffusion process models the experimental observations that at low concentra­
tion (and/ or pressure) the process acts as a classical (i.e., Fickian) diffusion process 
with one (possibly concentration dependent) diffusion coefficient, and at high con­
centration (and/ or pressure) the process acts the same way but with a different diffusion 
coefficient. These regimes are connected by a nonlinear region in which the dominant 
behavior is due to adjusting to the changing polymer structure (for example, the 
process of filling microvoids by the binding or immobilizing of some of the diffusion 
gas). With this observation it is clear that Crank's diffusion mechanism (2.13), (2 .14) 
has the proper ingredients for describing the evolving diffusivity. In addition, lacking 
detailed knowledge of the complex physical and chemical processes taking place in 
the interstitial spaces, we can incorporate all possible processes in a general relation 
(2.11) of the Tshudy-von Frankenberg type. There is no need at this state to make 
specific assumptions on the distribution of sites or the process at each site, and we 
incorporate the observations that these complex processes depend on the rate of 
change and the local flux of the concentration. Thus, we propose 

(2.15) ac a ( ac) -=- D - +R (x, t, C, C, C,), 
at ax ax 

(2.16) aD ac 
-= F'(C )-+a(C )[G (C ) - D ], at at 

where R (x , t, C, C. C.) represents the (at this stage unknown) kinetics implied by the 
process (2.11 ). 
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Note that (2.16) can be integrated to express D as 

D =Do exp (-L a (C (x, ; )) d;) 

(2.17) 

+ L exp (-r a (C (x, ; )) d;)[F'(C (x, s ))C,(x, s) +a (C (x , s ))G (C (x , s) )] ds, 

where D o = D at t = 0. In this form we see explicitly the history dependence of D 
represented as an integral over time with a kernel 

exp ( - r a ( c (x, j )) d-r) . 
s 

(2.18) 

This kernel represents the delay (or heredity) inherent in the relaxation process. 
Progressing along these lines, we can replace (2.16) or (2.17) with the more general 
assumption that 

(2.19) D = L K (t, s, C (x, s ))f (C (x, s ), C,(x , s )) ds 

with an appropriate (hereditary or delay) kernel K (t, s, C ) and an appropriate con­
centration dependent f . The system consisting of (2.15) and (2.19) provides an 
appealing model for describing dual sorption and certain parts of the so-called Case 
II, Super-case II, and anomalous non-Fickian phenomena. Most of the current models 
are special cases of (2.15), (2.19). Thus, (2.15), (2.19) provides a unifying theory 
which so far appears to be justifiable without many of the restrictions of some of the 
special purpose models. Furthermore, with the diffusivity described by an integral law 
such as (2.19) we can explicitly incorporate the most important property of a glassy 
polymer, namely the finite relaxation time implied by the slow (rather than instan­
taneous) response to changing conditions. 

The system (2.15), (2.19) in all its generality is very formidable. However, in the 
present paper we are studying the main features of the transition from a dry polymer 
to a fully saturated one in the dual sorption mode and its relationship to the sigmoid 
sorption process. Even with the assumptions invoked in all the common models 
[1]-[16] detailed knowledge of R (x, t, C, C, C.) from a molecular or statistical­
dynamical theory would be difficult to obtain. However, for our continuum mechanics 
model we need only observe that R (x, t, C, C, Cx ) should provide the kinetics incor­
porating the change from a dry polymer to a fully saturated one. Qualitatively there 
should be little difference from the simple assumption of the most commonly occurring 
bimolecular stationary form 

(2.20) R (x, t, C, C, Cx ) = 11-C(k- C ), 

where 11- represents the '·strength" of the reaction and k represents the equilibrium 
concentration (or carrying capacity) towards which the reaction is driven. 

Further generalization of (2.19) incorporating spatial correlation and a more 
general functional dependence is also possible, but the system (2.15), (2.19) seems 
quite satisfactory at its present level. 

3. Traveling waves. The structure of the transition between different regimes 
(e .g., sigmoid behavior or the change from a Henry isotherm to a Langmuir isotherm 
in gaseous diffusion) and the role of the various terms in the equations of motion is 
very often nicely revealed by a study of traveling wave solutions. Even in more general 
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solutions transition zones in some appropriate scaled variables are often described by 
traveling waves. Thus, we shall first study traveling wave solutions. 

We shall show the existence of traveling wave solutions of equations (2.15), 
(2.16), where we take 

(3.1) R (x, t, C, C, C .. ) = JJ.C (k - C ), JJ., k > 0. 

It will be convenient to treat this system in the nondimensional form 

(3.2) 

(3.3) 

cT = [(g (c ) - w)cxJx +c (1-c), 

wT = h (c )cT -{3 (c )w, 

where 

c . r;T 
c =k. T =JJ.kt, x = v-aw/· 

(3.4) 
G (C ) -D 

w= 
G (O) 

G (C ) F (C ) 
g (c ) = G (O) ' [ (c ) = G (O) ' 

a (C ) 
{3 (c) =--;;;;---, d 

h (c ) = dc[g (c )-f(c )]. 

We seek nonnegative solutions of (3.2), (3.3) under the following hypotheses: 
H-1. {3 (0)> 0. 
H-2. / (0) = g (O) = 1. 
H-3. f (c ), g (c ), and {3 (c) are monotonically nondecreasing and h (c ) ~ 0 for c ~ 0. 
H-4. f' (c }, g '(c}, and {3 (c ) satisfy a Lipschitz condition for c ~0. 

The requirement of nonnegativity on c simply reflects the fact that physically the 
concentration C is always nonnegative. Conditions H-1 to H-3 are a consequence of 
the following observ.ations: The diffusion coefficient should be positive so that the 
flow is from higher to lower concentrations. This coupled with the interpretation of 
F (C ) as an instantaneous diffusion coefficient and G (C ) as an equilibrium diffuc;ion 
coefficient imply G (C)ii~F(C)> O. It is experimentally noted that relaxatior .sets 
faster as concentration increases, so that a (C ) is monotonically nondecreasing. In a 
perfectly dry polymer, D should be constant which occurs if either a (0) = 0 or if 
F (O) = G (O); we use the latter. Finally, condition H-4 is a technical condition we need 
in our proofs; this is satisfied by all the functions used in practice. 

Assume solutions of the form 

(3.5) c (x, -r ) =c (( ), w(x, -r ) = w(( ), 

where 

(3.6) ( = - (x +a-r ), 

and where a is the constant nondimensional velocity. Define u = -dc/ df Then, (3.2), 
(3.3) become 

de 
d( = -u, 

(3.7) 
d 

d([(g (c ) - w)u] =-au +c (l-c ), 

dw {3 (c ) 
- = --w -h (c )u. 
d( a 
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We now study the system (3.7) in (c, u, w)-phase space. 
The system (3. 7) has two critical points given by 

(3.8) (c, u, w) = (0, 0, 0) and (c, u, w ) = (1, 0, 0). 

(If a (0) = 0, then the w -axis is a singular line. Our results remain true in this case 
also, but the proof is more complicated. ) The existence 
of a (nonnegative) traveling wave solution with c-+ 0 as t-+ -co and c-+ 1 as r-+ ~ is 
equivalent to the existence of a trajectory (in c ~ 0) of (3 . 7) which starts at ! 1, 0, 0) 
as ~-+-co and terminates at (0, 0, 0) as ~-+ oo. Condition H-4 guarantees the (local) 
existence of unique solutions of all initial value problems away from the surface 
w = g (c ). Trajectories can intersect only at the critical points (away from this surface), 
and these critical points can be reached only as ~-+±co. Linearization about each 
critical point serves to determine the behavior near the critical points. 

Some feel for the geometry of our phase space can be obtained from the numerical 
examples of Figs. 1-3 in which a connector or lack of one is illustrated. These figures 
show solution curves of (3 . 7) projected onto the (u, c ) and ( w, c) planes. The letters 
A , B, C, · · · identify the different projections of the same curve. Initial values are 
taken on U, the unstable manifold defined in l3 .17). In Figs. 1 and 2 a connector 
exists. In Figure 3 a connector does not exist since u and w do not go to zero as c does. 

(3.9) 

Near (0, 0, 0) the linearized equations are 

c = -u, 

u = c -au, 

. {3 (0) 
w = -h(O)u +--w, 

a 

where the superscript dot denotes d/ d~. This system has eigenvalues v and eigenvectors 

0 
-- - - --- -·-

't(c) 

f(c) 

S(c) 

• e 

• e 

• e 

a • 4 

)c 

2c 

c / 2 

u 

.,...... - ~ ··· "'T"'"- .........- -""'?"-" ~---1--··~ 

0 . 25 

FIG. 
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j (c) • 1 + 20c 

f(c) • 1 + 10c 

S(c) • 1 

a • 4 

u 

0 . 25 

FIG. 2 

j (c) • 1 + 20c 

f(c) • 1 + lOc 

S(c) • 0 

a • 2.5 

0.25 

FIG. 3 

- 2 

c 

- ) 

Y= (c, u, w) given by 

(3.10) 

(3.11) 

/3 (0) 
llo=--, 

a 
y 0 = (0, 0, 1 ), 

-a~ II =-± --1 " 2 4 , 
y " = ( 1, -II,, ll±h (02\. 

II: -11ol 

5. 25 

5.25 
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Near ( 1, 0, 0) the linearized equations are (with c 1 = 1-c) 

(3.12) 
. c 1 au 
u = g (1) - g (1)' 

w = - h(l )u + ,8 (1 ) w, 
a 

whose eigenvalues A and eigenvectors X= (c, u, w) are given by 

(3.13) 

(3.14) 

.B (1) 
Ao=--, 

a 
Xo = (0, 0, 1), 

Returning to the region near the origin, (0, 0, 0), we see that the linearized system 
behaves in different ways according to the size of a. 

(i) a ~2. There are two negative ~igenvalues, v+ and v _, and one positive one, 
v0 . Thus, there is a two-dimensional surface of trajectories approaching (0, 0 , 0) and 
a pair of trajectories going away from (0, 0, 0). This is essentially the three-dimensional 
analogue of a saddle point in the phase-plane. 

(ii) - 2 > a > 2. There are two complex eigenvalues, v±, and one real one, v0 . 

This implies that the trajectories approaching or leaving the origin spiral around it. 
Furthermore, since the eigenvectors Y± are not in the c = 0 plane, these trajectories 
must enter the (unphysical) region c < 0. 

(iii) a~ -2. There are two positive eigenvalues, v,, and one negative one, v0 . 

Thus, there is a two-dimensional surface of trajectories leaving the origin and a pair 
of trajectories approaching it. 

Note that 

(3.15) c = 0, u = 0, w = Wo e 810
l Ei a, 

and 

(3.16) c = 1, u =0, w = Woe 80)Ua 

are solutions of (3.7) for any constant w 0 . Thus, thew-axis and the line c = 1, u = 0 
are trajectories leaving the critical points if a > 0 and approaching the critical points 
if a < 0. Since we are looking for a trajectory in c ~ 0 which starts at (1, 0, 0) and 
terminates at (0, 0, 0), we can rule out cases (ii) and (iii). That is, case (ii) with wave 
speeds -2 < a < 2 violates the requirement that c ~ 0, and case (iii) with a ~ -2 is 
ruled out since the only trajectories approaching the origin do so along the w-axis 
and must come from w = ±ex:> with c and u zero for all ~. Therefore, if there exist 
acceptable traveling wave solutions, they must have a ~ 2. We shall now demonstrate 
their existence. Note that even if a ~ 2 there may not exist such solutions as we see 
from Fig. 3. 

Since Ao and A ... are positive and A_ is negative, then near {1, 0, 0) we have an 
unstable two-dimensional manifold of trajectories which has the form 

(3.17) U= ( 

1 

:c )= mX., + nX+ + o(lml +lniJ. 
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The major part of our proof consists of showing that for an appropriately chosen 
region with the two critical points on its boundary there is a family of trajectories on 
U near (1 , 0, 0) inside this region such that at least one member of this family meets 
the critical point at the origin. We use a continuity argument. 

Let R be the closed region defined by 

(3.18) R = {(c, u, w ): 0 ~ c ;;;d, -y ~ w ~ g (c) - f (c ), 0 ~ u }, 

where "Y is any positive constant. A sketch of the region R is given in Fig. 4. We first 
show that for large enough wave speeds a, solutions of (3.7) which start inside R on 
U near (1, 0, 0) satisfy u < 1-'C ( 1- c ) so long as they remain inside R . Here /-1. is a 
positive constant. 

w 

c 

u 

FIG. 4 

Suppose that at ~ = 0 we have a solution u such that 

(3.19) O<u<l-'c (1 -c), O<c < l, - y<w<g (c )- f (c ). 

Then either (3 .19) is satisfied for all ~ ~ 0 which is what we want, or there exists a 
~ = s > 0 such that the trajectory touches or tries to cross the cylinder u = 1-'C ( 1-c) 
or leaves R through its boundary. If the trajectory stays in R, we must show that it 
cannot touch or cross u = f.J.C (1 -c). If it does, at ~ = s we have 

(3.20) u=l-'c(1-c ), O<c<1, -y~w~g(c ) -f(c ) . 

We will show that 1-' > 0 can be chosen to contradict (3.20). Since dc/d~ = -u, then c 
is monotonically decreasing for ~ E [0, s ). Thus, in order for the trajectory to reach 
the cylinder u = l-'c (1-c) at~= s, the slope du/ dc of this trajectory must be Jess than 
the slope (d/ de )[!-'c(1- c)] of the cylinder at ~ = s. This implies that at ~ = s 

du d 
-~-[1-'c (l-c)] = !-' (2c -1)u. 
d~ d~ 

(3.21 ) 

Upon combining (3.20), (3.21), and (3.7), we obtain 

(3.22) 2 [ w~ (c )] ((g (c ) -w)(2c-1)-f'(c )c(l-c)]l-' +a--a- 1-'-1 ~0. 
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Clearly, for any J.L > 0 we can choose a value of a sufficiently large such that inequality 
(3.22) is violated. We now choose J.L sufficiently large so that some part of the manifold 
U of (3.17) is contained in the new region W defined by 

(3.23) W= {(c, u, w): O~c ~ 1, 0~ u ~J.Lc(l-c ) , -y ~ w ~g(c) - f(c)}. 

A sketch of the region W is given in Fig. 5. A study of the derivatives of c, 11, and 
w given by (3.7) shows that at some points on the boundary of W trajectories are 

w 

=g(c ) -f (c) 

u= ,udl - cl 

c 

u 
w:- y 

FIG. 5 

leaving w. This leads us to define the immediate exit set w- of w. w- consists of 
the set of points in W where solutions of (3.7) immediately leave. More precisely, if 
Yo= (c0 , u0 , w 0 ) is an initial value on the boundary a W of W for (3.7) and if Y(~, Y0 ) 

is the corresponding solution, then 

(3.24) 

The behavior of trajectories near the boundary of W is summarized in Table 1. 

TABLE 1 
Behavior of trajectories near the boundary of W. 

Faces 
u =0 

w = g(c)-f(c ) 

u=S-Ld 1-c) 

w = -y 

Edges 
c=1,u =O 
w =g(c)-f(c), u =0 

w = g(c)-{(c), u = 1-'c(l-c) 

w=-y,u=l-'c (1-c) 
c =0, u =0 
w = -y, u =0 

Corners 
c = 1, u = 0, w = -y 

c = 1, u = 0, w = g( 1)- {( 1) 
c = 0, u = 0, w = 0 
c = 0, u = 0, w = -y 

u >0 
dw d 
-<-[g(c)-{(c)), c <0 
de de 
du d 
->1-'-[c(l-c)], c <0 
de de 
w<O 

c =0, u =0 
w >O,c =O 
dw d 
-< - (g (c ) - {(c)), c <0 
de de 
w<O 
c =0, u =0 
w<O 

w<O 
c = 0, w > 0, u = 0 

w <O 

enter W 

leave W 

enter W 

leave W 

stay on this line 
leave W 

leave W 

leave W 
stay on this line 
leave W 

leave W 
leave W 
critical point 
leave W 
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We can take y small enough so that the two-dimensional manifold U of (3.17) 
intersects the plane w = -y near (1, 0, 0) in a curve f . Since the trajectory c = 1, u = 0 
is on U and is represented by taking n = 0 in (3.17), a circle of sufficiently small radius 
on U about (1, 0, 0) will intersect both the curve rand the line c = 1, u = 0. Define 
L as the part of this circle which lies in W and has one endpoint on f and the other 
endpoint on a trajectory with c < 1 which exits W through the face w = g (c ) - f (c ). 

We shall show that there is a solution of (3.7) starting on L which stays inside 
W until c = 0 and thus terminates in the critical point at (0, 0, 0) as ~ ~ oo. This is 
accomplished by showing that a condition in the following theorem of Wazewski is 
violated : 

W AZEWSKI"S T HEOREM. Consider the differential equation 

(3.25) dy " 
dt =F(y ), y E IR, 

where F (y ): IR" -+ IR" is continuous and satisfies a Lipschitz condition. Let y (t ; y 0 ) be 
the unique solution of (3.25) satisfying y (0 ; y0 ) = Yo· Given W ~ IR", let w- denote the 
immediate exit set of W . For L ~ W define L0 to be those points y0 E L where y (t ; y0 ) 

is not in W for some finite t > 0. For Yo E L0
, define T (yo) =sup {t: y (T; y 0 ) ~ W for all 

T E [0, t ]}. T (yo) is the exit time for a solution of (3.25) starting at y 0 . Suppose that 
(i) If Yo E L andy (t; Y o) ~ the closure of W, then y (t; Yo) ~ W. 

(ii) If y0 E L and y (t ; y0) is in W but not in w-, then there is an open set in W 
about y (t ; Yo) which is disjoint from w-. 

(iii) L = L0
, Lis compact and intersects any trajectory of (3.25) at most once. 

Then , the mapping y(T (yo); y 0 ) from L to its image on w- is one-to-one, continuous, 
and has a continuous inverse. 

This version of Wazewski 's theorem is due to Dunbar [18] who used it in a similar 
way. 

Roughly speaking, the theorem says that, if hypotheses (i) and (ii) are satisfied, 
and if all trajectories through L exit W in finite time, then the image L- of these 
trajectories on the exit set w- is a continuous curve. From the definition of L we 
know that the trajectory through one endpoint exits W through the face ~ = 
g (c) - f (c ) while the trajectory through the other endpoint exits W through the face 
w = -y. Since these two faces are disjoint in the exit set w-, the curve L- cannot be 
continuous. Thus, if we show that hypotheses (i) and (ii) are satisfied, we can conclude 
that there must exist a trajectory through L on which it takes infinite time to reach 
the boundary. Since c is monotonically decreasing, this curve must approach the other 
critical point at (0, 0, 0) as ~-+ oo. 

Since W is closed, condition (i) is satisfied trivially. To show that condition (ii) 
is satisfied we must show that no trajectory crossing L can reach that part of the 
boundary of W which is not in w- in finite time. Referring to Table 1, we see that 
the part of the boundary of W which is not in w- contains 

(i) both critical points, (0, 0, 0) and (1, 0 , 0), 
(ii) the trajectories along c = 1, u = 0 and along c = 0, u = 0, 

(iii) the faces u = 0 and u = J.LC (1-c). 
No trajectory can reach a critical point in finite time, nor do trajectories intersect 
away from critical points. This implies that, since L does not contain any point on the 
lines c = 1, u = 0 and c = 0, u = 0, no trajectory crossing L can reach these lines in 
finite time. Trajectories a re entering W on the faces u = 0 and u = J.LC (1 - c ) so that 
no trajectory can approach them from inside. Thus, a solution of (3.7) with initial 
value o n Lis in the interior of W until it reaches w-, and condition (ii) holds. 
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We have shown that the conclusion of Wazewski 's theorem does not hold, yet 
conditions (i) and (ii) do hold. It must be, therefore, that condition (iii) does not hold. 
Since L is compact, and trajectories intersect it at most once, then L ,= L 0

. Thus, there 
is at least one trajectory crossing L which never leaves W. From the previous paragraph, 
this trajectory remains in the interior of W for all finite time. Sou > 0 and (3.7) imply 
that c is monotonically decreasing, and this trajectory must approach the origin. 

We conclude that for large enough values of the wavespeed a, there is always at 
least one trajectory of (3.7) going from the critical point at (1, 0, 0) to the critical 
point at the origin. This connecting trajectory is a traveling wave front solution of 
(3.2)- (3.3). 

4. A constructive approximation. In the case where k is small we can construct 
and prove the convergence of an interative approximation which exhibits the analytic 
structure of the traveling wave solutions. Furthermore, we need not assume that the 
wave speed is large. We shall follow the method of Kopel! and Howard [19] who also 
constructed a three-dimensional connector for a similar problem. 

Thus, we again consider (2.15), (2.16) with R (x, t, C, C, C ) given by (3.1 ). Define 

p.k r;;(k) 
e=a(k ) ' X=yo(kjx, T=a (k )t, 

(4 .1) 
_p. (C-k ) W_G (C )-D 

V- a (k ) ' - G (k ) ' 

so that (2.15), (2.16), (3.1) become 

(4.2) VT=[(f(V)-W)Vx]x -V(V+e ), 

(4.3) W-r= H ( V )VT-B ( V )W, 

where 

(4.4) f(V) = GG((Ck)), H ( V ) = ~[G(C)-F (C )] B (V ) =a (C ) 
dV G (k ) ' a (k ) · 

We seek nonnegative traveling wave solutions of (4.2), (4.3) assuming only that 
a (0) > 0 and F (O) = G (0). Thus, assume that 

(4.5) V (X, T ) = V (s), W (X, T ) = W (s), 

where 

(4.6) s =X +AT. 

Note that A= (JG (O)e/ G (k ))a, where a is the velocity of § 3. Define U = dV/ ds, 
and then (4.2), (4.3) become 

dV 
ds =U, 

(4.7) 
d 

ds [ (f(V ) - W )U] =AU+ V (V +e), 

~~ =H( V )U B (~) W 
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This system has two critical points at 

( V, U, W) = (O,O,O) and (V, U, W) = (-t:, O, O), 

and as E -+ 0, the two critical points coalesce. 
With the change of variables 

(4.8) 
ES 

t=­
A' 

the system (4.7) becomes 

dZ1 = -21(1 +Zt> -t:[ <h- dl{J] 
dt A dt ' 

dZ2 2 [ dl/1] (4.9) t:dt=A Z2+AZ1(1+Zd +t: <P - dt • 

dZ3 AH(O) dZ2 AH(O)B (V ) 
t:-=AH(V )Z2-B (V )ZJ-t:-2--- Z 

dt A + 1 dt A 2 + 1 
2

' 

where 

(4.10) 

If E = 0, the solution of (4.9) is given by 

Z 1 = i( tanh ~- 1), 

(4.11) 
1 2 t 

Z2= - sech -
4A 2' 

where we have chosen the constant of integration so that Z 1 (0) =!, The vector 
(Z t. Z 2, Z 3 } of (4.11) is the lowest order approximation to the trajectory we are 
seeking; it has the typical hyperbolic tangent structure describing the transition 
between two states. 

Define 11 (t ) by 

(4.12) Zt = i( tanh ~ - 1) + E'Tl (t ). 
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System (4 .9) is then equivalent to 

17 (t ) = ~ if/ (t ) +(sech2 ~){~1 w (O) - f[(cosh2 ~)(e 171s ) + I/J~ ))+ 2~ tb (s ) sinhs] ds} , 

(4.13) 

Z 2(t ) = - if! (t )-'"'" ~ rX> eAl(r-s)/<[; sech2 ~+ p(s ) J ds, 

AH(O) 1 f' ls-n/£[ A 
2
H (O) 2 s J Z 3 (t )=-2-tb(t)+ - e 2 sech -

2
-rO(s ) ds, 

A +1 E -a:> 4(A + 1) 

where 

(4.14) 

(4.15) 

O (t) = [(H ( V ) - H (O))(A 2 + 1)-H (O)(B (V ) - 1)] -¢.-z2 
A +1 

-[8 ( V ) - B (O})Z3 
AH(O}- t. 

-A 2 + 
1
Lifl (t ) ~E¢ t A£. { {tu·-\-~ ~ 

+ S1)] 
Equations (4.13) form the basis for the following iteration scheme: 

77 101
(1) =0, 

(4.16) Z~01 (t ) = ~ ta:> e - A l e sech2 C +;B) dB, 

<Ol A
2
H (O) fo 6 2 (t+EB) 

Z 3 (t ) = 4(A 2 + 1) -a:> e sech - 2- dB, 

17 <n+ ll(t) = ~ if/ 1
"

1(t) -(sech2 ~){~ l{t1
"

1(0) + f[(cosh2 ~)(q, <:(s ) +E{77 1 " 1 (s\) 

(4.17) + 2~ if/1
"

1
(s ) sinh s] ds }. 

z~+l) (t ) = z~O) (t ) -l{t1" 1(t ) +A La:> e - A
26p1

"
1(t + EB ) dB, 

AH(O) ,nl fo m ) 
z~n +ll (t ) =Z~01 (t ) + A2+11/t(t )+ -a:> e 6

0 (s+EB ) dB. 

We will show that as n -+OO, the iterates (17 1
"

1(t ), Z i"1(t ), Z~" 1 ( t )) converge to a 
solution of (4.13) when E is small and lA I » E 

113 and that this solution approaches the 
point (17, Z 2, Z 3) = (0, 0, 0) as t-+ ±oo. 

First, we show that each iterate is bounded for E sufficiently small and lA I » E 
113

. 

Since 0 < sech2 
(t / 2 ) < 1, 

(4.18) 



24 

GASEOUS DIFFUSION IN GLASSY POLYMERS 

where L and M simply denote upper bounds for IZ 2')
1(t )l and IZ ~01(t)l , respectively. 

Now, (4.10) and (4.12) imply that 

(4.19) 

so that if IZ2(t )l < 2L, then 

(4.20) 

Furthermore, since f(V), H (V ) and B ( V ) are analytic near V (O), then (4.8), (4.10) 
and (4.15) imply that 

l/f (t) = E f '(O)Z 1Z 2 + O (e 2
), 

(4 .21 ) O (t) = e{ [H '(O)(A 2 + 1) - H (O)(B '(O) - f '(O))] A.-;~21 -B '(O)Z 3 }z1 + O (e 2), 

p (t) = eAf'(O)ZtZ2- £11 (t ) tanh_:+ O (e \ 
2~ E Z. -2- ta n h t; .:L 

Let E be sufficiently small such that if 111 1 < 4L/ A, IZ 21 < 2L and IZ 31 <2M for all t, then 

~~ l/f (t ) - ( sech
2 ~) 

· {~ 1/1{0) t r [ ( cosh
2 ~)(~ Z2(s )( 17 (s ) + ~ Z 2(s )) +E 71 l(s )) 

0 

(4.22) 
1 . J } I 2L + 

2
A 1/1 (s) stnh s ds <A, 

I
AH(O) Jo 8 I A 2+

1 
w(t ) + _,., e O (s + e8 ) d8 < M. 

Then, 117 <01(t)l = 0 < 4L/ A , IZ ~01 (t )l < 2L, IZ~01 (t)l < 2M, and (4.18), (4.20) and (4.22) 
imply that 

(4 .23) 

so that the iterates are uniformly bounded. 
Using the uniform bounds, we next show that each iterate tends to zero as t ~ ±ex:>. 

We present only the calculation for t ~-ex:> ; the case t ~+ex:> is similar. We need the 
preliminary result that if S'"(t ) is bounded for all t, and if S'"(t ) - btk e ' as t ~-ex:>, where 
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b is a constant and k > 0, then as t ... -oo 

(4.24) 

(4 .25) 

(4.26) 

(4.27) 

(4 .28) 

f. 
ro - A >e b k k 

e ~(t + e8 ) d8-A---r-t e, 
0 - £ 

0 

f =( ) . -b k+l 
, .:r t smhtdt- 2(k+ 1) t , 

f
o b 

fF(t) coshtdt- rk-\ 
t 2(k + 1) 

0 

J fF(t ) dt- bl e', 

J
o e btke ' 

e ~(t+ e8 ) d8---. 
-ro 1 + e 

Note that (4.24) is valid only if A 2 > e ; the integral is unbounded if A2 ~£ . Using 
(4.24)- (4.28) and the fact that sech2 (t/ 2) -4e' as r-.-cp, we find immediately that 
as t ... - oo, 

(4.29) 

Then, using (4.29) in (4 .17), we obtain that as t ... -oo, 

(4.30) 

(I)( ) - f(- e) t 

11 t-A 2 re, 
- £ 

Z o>() A [2 ) ' 
2 t - (A2-e/ A -ef(-e ) e, 

z (t > () A[ AH(O) J , 
3 t- (A 2+1)H (Ot 0 (£) e . 

By induction it can then be shown that as t ... -oo 

2 n n - 1 t 
( n +I) £ ( e 

11 (t ) - (constant) , 
(n + 1)! 

(4.31 ) 
2n•lt" t 

( n +ll £ e z2 (t) - (constant) ' 
n ! 

2n - 2 n - 1 t 
( n +I l £ l e 

Z 3 (t ) - (constant) (n _
1
) ! 

Therefore, (Z~" > {t) , Z~" > (t ), Z~" > (t )) approaches the critical point ( -1, 0, 0) as t ... -oo. 
In a similar manner we obtain that these iterates tend to the other critical point 
(1, 0, 0 ) as t-. +oo. 

Finally, we show that the iterates converge to a solution of (4.13) for£ sufficiently 
small and !A I» £ 113

• Define the norm 

(4.32) llx<t)ll= sup lx(t)l. 
-oo<t<oo 
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Then, 

ll11 '11 .. n _11 <" lll< (~ + ~f)nz~"~ - z i11 - 11 ll 

(4.33) 

(4.34) 

IIZ~....-1) - Z~11 l II< SeL II11 (l1 l- 11 (n-1111 
A 

+ d d2dl11 <, >_ 11 '"- 0 11 + dn\!Zi"1 - z i"- 11 II + 4LI!Z~" 1 -z~"- 11 IIJ, 

Here the dii are constants which are 0 (1) in both A and e. If we iterate once on the 
index, the resulting relations are 

(4.36) + ~ (Cull11 '"-1 l _1l c" -2lii+ Cn!!Z~"-1l_z~" -2lll 

+ Cui!Z ~" -o -Z~"-21 1!), 

I!Zi"+1
> - Z~111 11<{ 8eL( 1 + 6eL +.:_ d12) + .:_C22} IIZ~" - 1 1 -Z~"-21 11 

A 2 A A A 
(4.37) 

2 L 2 
E Lc II (11-1) (11 -2lii + ( E ) c I!Z"(rt-ll z <rs - 2)11 +A 21 11 - 11 A 23 3 - 3 • 

(4.38) 
2 

+ ~ {Cd1l c"- 1 1 -11 '" - 21 II +C321!Z~"- 1 1 - Z~"-21 11 

+ C331!Z~"- 1 1 -Z~"-21 11}, 

where cii are 0 (1) constants. 
Now, let 

(4.39) 

and define 

(4.40) 

If IA I» e 113, we can take L « e - 113, so that eL / A 2 is sma11 if e is small. Then, by 
inspection 

(4.41) IIY(n+ll_y(")llo< [(~f) ( 1 + 
6~L) + 0(~ , (~)) ] 1Lv(rs - l)_ y("-21llo-



27 

DONALD S. COHEN AND E . ANN STANLEY 

Thus, for E sufficiently small, 

( 4.42) 

and 

(4 .43) 

where 0 < a < 1. By the usual contraction mapping arguments, our sequence converges 
to a solution of (4 .13). 

5. The penetrant front. A crude but effective way to determine the behavior of 
the progressing penetrant front due to the type of diffusion given by (1.1), (1.2) is to 
employ an integral averaging method (commonly called the Karman-Pohlhausen 
method). A description of the method for problems in fluid mechanics together with 
a bibliography may be found in Schlichting [20]. An excellent more modern account 
of the method together with extensive references and applications to problems in heat 
transfer is given by Goodman [21]. 

We introduce the quantity 8(t ) called the penetration distance (or propagating 
concentration front). For x > 8 (t ) the polymer is at its equilibrium (i.e., initial) con­
centration, and there is no flux transferred beyond x = 8 (t ). Thus, 

(5.1) 

(5.2) 

C = 0 at x = 8 (t ), 

DC = 0 atx =8(t ). 

It is important to note that for our problem the "signal speed" is infinite. That 
is, solutions have a finite value for all x for all positive t for any initial or boundary 
data. This is a consequence of the fact that the characteristic surfaces for parabolic 
equations are parallel to the spatial axes. For practical purposes and often as a basis 
for sophisticated approximation techniques one defines a diffusion front as the locus 
of points moving with a given concentration. Clearly, on our problem we proceed in 
the standard way to take the concentration field C (x, t ) to be zero for x > 8 (t ) to 
within the accuracy of the approximation or equivalently we define the front to be the 
locus of a given (presumably small) concentration. 

(5.3) 

(5 .4 ) 

(5.5) 

(5.6) 

To assess the effect of our diffusive operator we consider 

C, = (DC_.) .. , x>O, t > O, 

D , = F'(C )C, +a(C)[G(C)-D], X >0, t > 0, 

C (O, t ) = C0 , t?; 0, 

C (x , 0) = 0, x > 0. 

Here Co is a prescribed constant. The kinetic term R and variable boundary data can 
be incorporated, but this complicates the algebra without adding anything essential 
to our study. We will comment on this later. 

Upon integrating (5.3) with respect to x from 0 to 8 (t ), and making use of (5.2), 
we obtain 

(5.7) 
f .S (r) 

Jo C, dx = -[DC_.]ix=O· 

We now assume that C (x, t ) can be approximated by an Nth degree polynomial in x 
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with time-dependent coefficients. This approximation is required to .satisfy the boun­
dary condition l5.5) and the conditions (5.1 ) and (5.2) at the front x = o (t). Thus, 

(5.8) C (x,t ) =C0 £ k,.(1- x( )]" 
"=2 0 ( 

where 

(5.9) 

By differentiation in (5.3) it is possible (21) to derive (N -2) conditions which the 
constants k,. (n =2, · · · ,N) must satisfy in addition to (5.9). We thus obtain (N-1) 
equations in (N -1) unknowns for the k,.. We shall not need that information here. 

We now find o (t ) by requiring (5.2) to be an approximation in the sense that 
(5.7) is satisfied. Upon substituting (5.8) into (5.7), we obtain 

(5.10) 

where 

(5.11) 

A do_ 11D (O, t ) = O 
dt 8 

N k 
A= L -"-, 

,. ~ 2 n + 1 

N 

11 = L nk,.. 
.. ~2 

The boundary condition (5.5) implies that C (O, t) = 0. Thus, upon evaluating (5.4) at 
x = 0, we obtain 

(5.12) D ,(O, t} + a 0 D (O, t ) = G0 , 

where 

(5 .13) a o=a (Co}, G o = G (Co). 

Thus, 

(5.14) D (O, t ) =Go+ (Fo- G o) e -ao•, 

where F0 = D (O, 0) = F (C0 ). Therefore, (5.10) and (5.14) yield the following equation 
for the motion of the penetrant front : 

do 11[Go+ (F 0 -G0 ) e -ao'] 
(5.15) A dt-

0 
0, 

the exact solution of which (satisfying 8 (0) = 0) is 

(5.16) 

Clearly, 

(5.17) 

(5.18) 

2 ( II II - a r II ( G 13 t )=-Got--(Fo-Go)e 0 +-Fo- o) . 
A Aao Aao 

2 II 
8 (f) --F0t for small t, 

A 

2 II II 
8 (t)- -Got +- (F0 - G 0 ) forlarget. 

A Aao 

Thus, (5.15) describes the motion of the penetrant front x =8(t) and yields the 
transition (i.e., the sigmoid sorption curve) from the instantaneous diffusivity F0 to 
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the equilibrium diffusivity G 0 • Retaining the kinetic term R in our problem (5.3)- (5.6) 
requires no changes in our procedure. We obtain instead of (5.15) a more complicated 
first order equation which possesses the asymptotic solution (5.17), (5.18). 
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PART IT 

1. Introduction. In Part I of this thesis we dealt with one aspect of the 

diffusion of liquids and gases in glassy polymers, dual sorption. In this part we 

turn to another question, that of the swelling and stresses which are diffusion 

induced. In the following sections 
1 
we develop a model of the penetration pro­

cess, using the concepts and postulates of continuum irreversible thermo­

dynamics; presumably it could be obtained by other means. The reader unfamil­

iar with the subject of irreversible thermodynamics is referred to Callen [ 1]. 

deGroot and Mazur [2], Pri8ogine and Defay [3] and Prigogine [ 4]. 

As in Part I, we consider that the slow internal relaxations, which cause the 

polymer properties to be history-dependent, are an important characteristic 

of glassy polymers which must be included in any model. The model that we 

obtain will be a rather general set of equations. in three dimensions, containing 

integrals over the past history of the material. with nonlinear kernels 

which will need to be determined from some knowledge of the materials them­

selves. In the final section of this part, we discuss a simplified version of the 

model in the context of one-dimensional Case II diffusion and propose that this 

model be studied further . 

a. Review of existing models. Swelling and stresses are most dramatic in 

the fiuid-polyrner system when conditions are right for Case II diffusion to occur, 

differential stresses becoming so large that crazing and fracturing may occur 

[5] ,[6]. Most of the existing models are therefore aimed directly at either 

explaining or predicting this phenomenon, which is described in the overview of 

this thesis. All are one-dimensional, and most are attempts to patch an effect 
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onto the Fickian diffusion equations. A fairly inclusive discussion of models pro­

posed before 1979 is given by Thomas and Windle [7] , and we shall not discuss in 

detail all of the models that they mention. 

The most simplistic models, and the least satisfactory from an explanatory 

standpoint, are those which impose a discontinuity moving with constant velo­

city, with [5] or without [B] swelling behind the front. They do ensure that Case 

Jl behavior is roughly modelled, which some other models do not, but they 

are not capable of explaining or predicting the subtleties of real Case II fronts. 

Another approach was inspired by the observation that the wet polymer 

behind the front is often rubbery; this was taken to imply that a process is 

occuring at the front, connected with the second order phase transition, which 

provides energy to drive it along [9], [ 10]. A later modification takes the process 

at the front to be due to small crazes. Recently, however, Case II diffusion has 

been observed when the wet polymer is glassy, and no crazing appears to occur 

at all [11 ]. Thus, although it may be that some fronts do follow crazing fronts, 

this does not seem to be a sufficient explanation. 

Frisch, Wang and Kwei [1 2] proposed that the partial stress on the 

penetrant may add an extra term to the diffusion equation, and some further 

work has been done with this model [ 13]. Their postulate appears to be based 

on work done by Bearman [14] in order to obtain separate momentum equa­

tions, for each substance, in a mixture of Newtonian fluids . Besides the obvious 

objection that polymers are not Newtonian fluids, neither the concept of a par­

tial stress, nor the formulation of it by Frisch, et. al., has been well received. 

Thomas and Windle [7] , for example, dismiss this model as having no strong phy­

sical basis. However one views this, there does not seem to be a real need to 

introduce partial stresses into the formulation of the problem. 
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One of the first models which was intended as an explanation 

for Case II diffusion was proposed by Crank in 1953 [15] and later 

reviv ed and revised by Petropoulos and Roussis [16]. When Case II 

diffusion proceeds through a membrane. the area of the membrane stays essen­

tially uniform (and nearly constant) until the front reaches the middle of 

the sheet. This creates a tension on the central, dry region and a compression 

on the outer region, which Crank assumed was the driving force behind Case II 

diffusion. Both models are based on rapidly varying diffusion coefficients which 

depend on both concentration and stress, and an assumption about how big any 

given cross-section would be if free to swell. A force balance is obtained by tak­

ing the integral over the thickness of the membrane to be zero. Crank assumes 

a constant area for the surface of the membrane, while the later model allows 

the area to vary and adds a history-dependent stress-concentration relation 

(the only model proposed to date which incorporates any memory at all) . 

There is a great deal of sense in these two models: unfortunately, numerical 

calculations by their authors indicate that they do not describe 

Case II diffusion, and there is a certain arbitrariness in their 

choice of assumptions. 

More recently, Thomas and Windle have proposed their own model [ 17]. 

They assume that the front is being driven by an osmotic pressure d.i.tference, 

which can be expressed in terms of the activity and volume ratio using the rela­

tion for an ideal fiuid. They also assume that the polymer is a viscous fiuid. 

Their numerical results appear to closely resemble Case II diffusion. Although 

the assumption of an ideal solution is unrealistic, and they do not include the 

internal relaxations of the polymer (also the numerical method that they 

describe is open to question), we shall see that their one-dimensional model is a 

very reasonable one, and very similar to the one that we shall obtain under the 

special conditions of Case II diffusion. 
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A model for the diffusion of particles in e lastic solids was proposed by Cahn 

in the context of pattern formation in metallic alloys [ 18]. His insights are use­

ful , and a more elaborate model of Larche and Cahn [19] has been picked up by 

Neogi and Kim [20]. It may be that these models are valid for certain combina­

tions of polymers and solvents in certain temperature and concentration 

ranges, but (so long as one assumes that the fourth order diffusion terms of 

Cahn's model are unimportant for the problem at hand~the effect of adding the 

elasticity terms is merely to modify the dit!usion coefficient and to obtain 

expressions for the stresses, So this model is not sufficient for our pur­

poses . 

Finally, it is worth mentioning attempts that have been made t o m odify the 

boundary conditions from the constant concentration condition of Fickian 

diffusion to a more realistic criterion. Bagley and Long [21] proposed that 

two-stage sorption is due to a time dependent surface concentration, and there 

is experimental evidence due to Long and Richman [22] that the surface relaxes 

exponentially to its final value. Larche and Cahn [ 19] propose that the proper 

boundary condition is a constant chemical potential. Due to internal relaxa­

tions, both hypotheses may be correct, but this by itself is not a sufficient expla­

nation for Case II diffusion; we shall not attempt to tackle this question in this 

thesis. 

In this thesis, the point of view taken is that a comprehensive model is 

needed to describe particle diffusion coupled to strain in viscoelastic solids . 

Such a model should be capable of describing all of the various observations 

made with respect to dit!usion in glassy polymers, although it may be 

mathematically complex. We do make some simplifying assumptions . 

b. Description of the process; assumptions. The process which we shall 

model is the diffusion of a fluid into an isotropic solid where the mixed fluid-
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solid region occupies more volume than the initial solid. Temperature varia­

tions and gravitational effects are assumed negligible and the solid does not 

react with or immobilize the ftuid particles. Furthermore, deformation gra­

dients are small, allowing us to treat local strains as infinitesimal. The bulk 

swelling which occurs will be locally isotropic; we assume that the geometry is 

sufficiently symmetric so that no local rotations are induced and the strain 

tensor is symmetric. The properties of the solid depend on its history, varying 

with ftuid concentration, internal strains, temperature. etc . We assume that the 

properties of a uniform sample with fixed temperature, concentration and 

strains can be uniquely defined by its initial state and a set of internal parame­

ters. These internal parameters. which play the same roles as Maxwell elements 

in a Wiechart model. describe the twisting, cross-linking. etc. of the polymer 

chains, and are analogous to the "extent of reaction" parameter (see deGroot 

and Mazur [2], Prigogine and Defay [ 4]) . 

The model will be developed in three steps. We begin by writing down the 

conservation equations for small deformations. In section 2, we turn to the ther­

modynamics of irreversible processes to obtain the linear phenomenological 

relations which relate the !luxes and affinities. Next we look at the form of the 

material properties for small deformations and near equilibrium situations, still 

in the context of irreversible thermodynamics and put the equations together 

into a system. In the final section of this chapter1 we discuss the model as it 

applies to the particular case of one-dimensional Case II diffusion, showing that 

the model simplifies when the parameters are in the ranges for which this spe­

cial behavior is observed. 

The derivation as given in Sections 2 and 3 is somewhat simplified in order 

to leave out unnecessary complications; the generalization is contained in the 

Appendix. Also, the model obtained in the main sections is more readily 
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understood. and it is this model which is used in Section 4 to discuss the one-

dimensional case. The ultimate justification of any model is its ability to 

describe the physical processes of interest. and we shall attempt to present the 

model in a transparent manner so that it is obvious what assumptions have 

been made. As the physical processes involved are understood better experi-

mentally, this should allow the model to be easily refined to better accountf or 

such processes. 

c . Basic equations: conservation of mass and momentum.. The starting 

point is t he equation for conservation of mass, 

* + 'il·(pv) = 0 ( 1.1) 

plus conservation of the tl.uid and solid separately 

( 1.2) 

( 1.3) 

and the momentum equation in the absence of external forces 

[ 
fTv •. l ~ ~ 

p at + (3L ·'il)~ + 'il·( -a +II) = o. ( 1.4) 

where 

p . the total density, is the mass per unit volume of the mixture; 

c 1 and cs , the tl.uid and solid concentrations, respectively, are the mass 

f t . [ mass of component i per unit volume J rae tons ci = 
total mass per unit volume 

3l..f and .us are the tl.uid and solid velocities, respectively; 
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v is the center-of-mass velocity, 

..l.t is the fiux of the fiuid relative to the center of mass, 

a is the equilibrium stress tensor; 

and fi is the viscous pressure tensor. 

Both ~ and fi are symmetric: 

and 

( 1.5) 

( 1.6) 

( l.?a) 

(l.?b) 

d. Deformations: Let u be the displacement of the local center of mass, so 

that if (x. T) are coordinates fixed relative to the local center of mass, then 

x =.x.+u , t = T ( 1.8) 

gives the position in the reference frame of a particle travelling with the local 

center of mass, initially at x = .x.. with velocity 

( 1.9) 

Under the assumption of small deformation gradients and no local rotations, 

the components of the local strain tensor are given by 

and the tii remain small. 

Ou.t 8u · .. ·- - ] "'ii ·- -a- - -a-· 
Xi Xi 

(1.1 0) 
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In terms of the tii and vi , the coordinate transformations are given by 

axi at 
-a· = oii + tii . -a - = o. 

Xi Xi 
ax · at 
-

1
- = v . and -a = 1. ar } r 

where 6ii is the Kroneker delta: 

i ~ j 
i = j . 

Inverting ( 1.11) for small~ and keeping the 0( II~ II ) terms 

ar 
-at= 1. 

(1.11) 

( 1.12) 

Under the assumption of small center-of-mass strains, the continuity equa-

tion ( 1.1 ) can be replaced with 

( 1.13) 

where p0 is the initial density, the initial strain is taken to be zero, II ~ II is a 

measure of the size of the tii and 

(1.14) 

is the volume dilation. (An infinitessimal volume which is initially given by 6 Va 

becomes 6V = 6l'a( 1 + t) after deformation.) Substituting (1.13) into the fluid 

conservation equation (1.2) and the momentum equation (1 .4) and dropping all 

terms smaller than ~ : 

( 1.15) 
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and 

( 1.16) 

In center-of-mass coordinates these equations are, to first order in II;; II , 

ac 
Po a:;:+ 'il".J!r = 0 ( 1.1 7) 

and 

av ... ... 
Po BT = 'il·(u -II). ( 1.18) 
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2. Irreversible Thermodynamics, Entropy Production and the linear 

Phenomenological Relations. In this section we obtain expressions for the fluid 

flux.;/_, the viscous pressure tensor fi and for *· the rate of change of an inter-

nal parameter ~ · These expressions , known as the "linear phenomenological 

laws", give L fi and * as linear functions of the gradient of the chemical 

potential, the velocity gradients, and of the "affinities" of the internal parame-

ters. The coefficients of the linear phenomenological relations are functions of 

the state of the system, which must in general be determined experimentally for 

the materials of interest, but ar~ subject to some restrictions; the restric-

lions help to ensure that the process will proceed in a physically realistic 

manner. 

For classical materials without memory (and thus with no internal parame-

ters) , the linear phenomenological laws reduce to very standard expressions: the 

viscous pressure tensor is given by 

(for a fluid this is used in obtaining the Navier Stokes equation from (1.22)) . In 

addition, if there is no swelling, Fick's law results: 

.;/_ = D(c )Vc , 

so that ( 1.17) becomes 

c, = V(D(c )Vc ). 

When the internal parameters are introduced to describe the response or a 

material to its history, the resulting linear phenomenological laws are less stan-

dard, although still well-known (see deGroot and Mazur, [2] Chapter X.5-6, Prigo­

gine [3] III .4-6) . We give a general overview of the relevant theory in order to 

familiarize tpe reader with the concepts involved in obtaining these relations , 
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and in order to highlight the assumptions made along the way. 

a. Thermostatics. Inherent in the assumptions of irreversible thermo­

dynamics are the assumptions of thermostatics (see any text on classical ther­

modynamics, e.g . Callen [ 1]), which we discuss briefly in this part. First, at 

equilibrium the state of a system is entirely defined by u, the internal energy 

per unit mass, and a fixed set of independent macroscopic parameters. In our 

case
1 
we assume that the independent parameters are c, the fluid concentration, 

eii • the independent components of the strain tensor, and the internal parame­

ters. For simplicity of presentation, the model will be developed with a single 

scalar internal parameter ~ . and generalized in the appendix to incorporate 

more complex possibilities . The role of the internal parameters is discussed in 

more detail below; roughly, ~ describes the distribution of the solid between 

possible internal states. 

The second assumption of thermostatics is the existence of the entropy, a 

unique (up to an additive constant) function of the internal energy and the 

other independent parameters, monotonically increasing in u , and maximized 

at equilibrium. If s is the entropy per unit mass, then 

s = s(u .~ .c .o . (2. 1) 

It follows from the monotonicity that the entropy function can be inverted to 

give the internal energy as a function of entropy and the other independent 

parameters: 

u = u(s.~ . c . ~) . (2.2) 

Taking the differential of u, 

(2.3) 
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Here [a~ ] d e1; is the reversible mechanical work done by the strain, or 

[ aae: ] d et; = "force" times "distance'' . It fo llows that 

(2.4a) 

likewise, [~]de is the reversible chemical work and ~ is defined to be the 

chemical potential 

au .... 
f.L :: ac = J.L(S . ~ , C . ~) . (2.4b) 

No real change of internal state is reversible, and thus at equilibrium ':; = 0; 

away from equilibrium, p ':; acts as a force driving the changes in internal 

state, and is known as the aff..nity of the internal parameter, 

au .... 
A = p a~ = A (s . ~ ,c .0. (2.4c) 

In the absence of any other process [ ~~ ]ds is the heat transferred, and it is a 

matter of experience that :- is the temperature 

au 
T = as . 

Using these identities, (2.7) becomes the Gibbs equation 

du = Tds + 2".: (a1;1p)de1; + J.Ldc + (Aip)d~ . 
i.j 

(2.4d) 

(2.5) 

For a process at constant temperature like ours , the entropy can be 

eliminated as an independent variable (one can think of solving 



T(s :~ .c .0 = constant for s (i ,c .0 ) by transforming from u to f . the 

Helmholtz potential per unit mass . 

f = u - Ts = f (i ,c .o. (2.6) 

At constant T. 

df = du - Tds 

or 

(2.7) 

and 

(2.8a) 

1 _EL ,._ 
a·· =~ (1 + O··) =a·· (~ c t) l.J 2,... a \] \] · . ., 

~ij 
(2.8b) 

- PL - ... A -p a~ - A(~ .c.~) . (2.8c) 

b. Intern.al processes; irreversible changes in uniform systems. The next 

set of concepts concern the irreversible changes in uniform time-dependent sys-

terns. and thus the changes in the internal parameters. The system is assumed 

to stay near enough to equilibrium that its state at any time is described by the 

same set of independent parameters as at equilibrium, along with the initial 

conditions of the system. The entropy continues to be the same well-defined 

function of the independent parameters as at equilibrium. The assumption is 

added that entropy production is always positive for any real process. 

The idea of using internal parameters to measure the extent of change of a 
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system arises as a generalization of the "extent of reaction'' parameter [3]. 

Example 2.1 Extent of reaction. A simple example is the reaction 

Initially there are n NH3 °, nN2°, and nH2° moles of each. For every ~ moles of 

N2 created, 3~ moles of H2 are created and 2~ of NH3 are used up, or 

nNH'J = nNH'Jo - 2~ 

nN2 = nN2o + ~ 

nH2 = nH2o + 3~ . 

~(t) , nNH3° ,nN2° and nH/ determine the quantity of each substance in the 

system at time t. ~ measures the extent to which the reaction has pro­

ceeded. 

Any reaction can be characterized by such an internal "extent of reaction" 

parameter, while simultaneous coupled reactions can be described by a set of 

internal parameters , with one for each reaction. Some other examples of simple 

internal processes which can be characterized by an internal parameter are ion-

izations, phase changes, or the increase in internal disorder in a metal alloy 

when the temperature is raised. The actual internal processes undergone by a 

polymer can be very complex, and it may take a complex set of internal parame-

ters to characterize them. The theory is expanded to include more general 

internal processes in the appendix; until then we continue to develop the model 

with a single internal parameter. We do not pretend to know what the actual 

internal processes are but for an idealized example of a simple process, one 
I 
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might imagine that the polymer molecules are straight in a dry polymer and 

bend in the middle as the fluid concentration increases. 

Each of these processes is an internal irreversible process, which proceeds 

at a rate dependent on the state of the system. For our swelling problem, 

where n ° describes the initial state. The entropy production is 

ds - - 4_ E!..l- - A ~ d ·t · Th ·t · ·t f th t d dt - T dt - T r . a::;sume post tve. e post tVl y o e en ropy pro uc-

tion can be thought of as assigning a direction to the internal process. 

Note that the internal parameter cannot bedirectly controlled by the 

observer, unlike the fluid concentration and the strains; it is determined by the 

history of the system and can only be indirectly controlled through the variation 

of the external conditions. 

c. Nonuniform processes; The linear phenomenological laws. The macros-

copic theory of the thermodynamics of irreversible processes is based on the 

assumption that the system is near equilibrium inside each infinitessimal ele-

ment of the system. Within each of these elements a local entropy is defined 

which has the same functional dependence on the local independent parameters 

as does the equilibrium entropy function . Local entropy production is always 

nonnegative, being strictly positive for an irreversible process. Furthermore, it 

is assumed that the local dependent parameters also depend only on the same 

set of independent parameters as at equilibrium. Thus relations (2.1-8) are 

valid and 

as _ au "' ( ac ( ) 9,l Tat - at - ~ at;lp)det;- J.L at- Alp at . 
\) 

(2.9) 

and similarly for 'ils . 
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Conservation of entropy requires that 

~ . -dt + 'il'.Jk.tot - P (2.10) 

where ..sk .tot is the total entropy flux and P is the rate of entropy production per 

unit volume. Substituting the local Gibbs relation (2.5) and the equations for 

conservation of mass, momentum and energy into (2. 10), one obtains a new 

entropy conservation equation which gives P uniquely (deGroot and Mazur [2] , 

chapter III) . For our system, 

(2.11) 

and we see that TP is the sum of products of fluxes .f.t , fi, ~· and generalized 

forces, called affinities -'ilJ.L, -'ilv , and -A . 

Letting Fi denote the affinities and Ji. the fluxes, in general 

T P = ~Ji.Fi ~ 0. (2.12) 
i 

The affinities act as forces driving the fluxes ; for example the gradient of the 

chemical potential causes fluid to diffuse until a uniform concentration is 

reached. We assume that the fluxes and affinities vanish together when equili-

brium is reached. If the affinities could all vanish when fluxes were nonzero, 

then the material would have memory which was unaccounted for by the inter-

nal parameters, and would thus violate our assumption that the internal param-

eters entirely specify the state of our system. (Remark: Rather than specifying 

internal parameters , one could treat the fluxes as depending on the past history 

of the affinities and independent parameters Xi and write 

t 

Ji. = J K(s ;t ,E,X}ds 
_,. 
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where K is some function which could be expanded in theE (see Christensen 

(23] , Chapter III ) .) Assuming that the fluxes depend only on the affinities and 

the independent parameters, expanding the fluxes in the affinities near equili-

brium gives (keeping only the linear terms) the linear phenomenological rela-

tions 

(2.13) 

where the coefficients ~i are functions of the local independent parameters to 

be determined phenomenologically. Onsager 's relations (in the absence of a 

magnetic field) 

(2.14) 

are also assumed to hold. Substituting (2.13) into the expression (2.12) for the 

entropy production gives a quadratic function in the Fi 

T P = 2:: ~;Fi.F; '<?:. 0 . 
ij 

(2.15) 

with P strictly positive whenever any of the affinities is nonzero. Thus the 

matrix L with coefficients ~i must be a positive definite symmetric matrix. 

For an isotropic material. ftuxes and affinities of different tensorial charac­

ter cannot couple since they transform in different ways (the Curie symmetry 

principle) and the linear phenomenological laws become 

(2.16a) 

1 ~ 
-trii = -p J/i'il·v - v,A 3 0 - ~ ' 

(2.16b) 
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(2.16c) 

(2.1 6d) 

where the symmetric second order tensors fi and VlL have been split up into 

their scalar trace tr fi . V·v , and traceless symmetric tensors 

fio = fi- ~trfi)I, 

1 (Vv ) 0 = Vv - -§-<V·v )I. 
(2.17) 

(where I is the unit tensor) . Each of the coefficients Jp,. v , vf , L and ~ in equa­

tions (2 .1 6) is a scalar function of the independent parameters. ~ ,c , and ~ ( ~ 

multiplies the entire tensor) . Then P becomes 

T P =Po VS (V·v ) 2 + 2vf (V·v )A + -1- LA 2 

Po 

+ p 0 Jp,Vf..L·VJ.L + Po~[(Vv)0 ·(Vvd 

The condition that this is positive definite gives the restrictions 

JJJ. > 0, ~ > 0, v > 0, L > 0 

and 

(2.18) 

(2 .1 9) 

on the coefficients of relations (2.16) . These coefficients are functions of the 

independent parameters~, c , and ~ . which must be determined phenornenologi-

cally; any physically reasonable coefficients will satisfy (2.1 9) . 

Putting equation (2.1 6a) into the concentration equation ( 1.1 7) gives 

(2.20) 



and putting (2.16b,d) into the momentum equation gives 

Recall that 

These, plus (2.16c) 

v = au . .,. = ll,_u . - a, , ........ A 

and the restrictions (2.19), form our system. 

(2.21) 

(2.22) 

(2.23) 

Example 2.2 As mentioned in the introduction to this section, if there is no 

swelling (u = 0) and no memory (no~) , then (2 .1 6a) becomes Fick's Law 

.J. = p0 J~(c )llJ..L(c) = Po D(c )lie , 

with Jf.4(c) > 0 and D(c) = Jf.4(c) ~; giving 

Be at= ll(D(c )llc ), 

the diffusion equation. 

Example 2.3: If there is no memory and no diffusion, and if zr and V' are 

constants, (2.1 6) becomes 

1 ~ 
s-tr n = TJv ll ·v 

~ T 2 no= 2TJ(Ilv)0 = TJ (Ilv + (llv) - 3ll·1L I) 
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~ 

For a tl.uid, u = -pI. where p is the hydrostatic pressure. Substituting 

these into the momentum equation yields 

(2.1 9) 

the Navier-Stokes equation for a viscous compressible tl.uid in a Lagrangian 

coordinate system. Conditions (2. 19) imply that 7Jv and 7], the bulk and 

shear viscosities, respectively, are positive for any real fluid. 

Our system (2.20-23) contains, besides the linear phenomenological 
~ 

coefficients , the functions !J., u , and A . These last three functions are not 

independent of each other, since each is found by taking the partial derivative 

of the Helmholtz potential. In the next section, we study the general for m of !J., ~ 

and A for small strains in a near equilibrium situation. 
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3 . .Material Properties. In this section we study the general form of the 

material properties of a homogeneous piece of our isotropic fluid-solid system 

under the assumption that the system remains near equilibrium. The material 

properties of interest are the relations between the stresses. chemical potential 

and affinities of the internal parameters and the strains, fluid concentration 

and internal parameters. Recall that the dependent parameters at; I p, c and 

AI p are all partial derivatives of a single function of the independent variables, 

the Helmholtz potential. This puts restrictions on the functional form of the 

dependent parameters. That the Helmholtz potential must be minimized at 

equilibrium (equivalently, the entropy is maximized) gives a set of inequalities 

which must be satisfied for a physically stable system. We begin by writing out 

the general condition for stability, followed by an examination of the relaxation 

of the system to equilibrium when the concentration and strains are held fixed. 

We then expand the dependent parameters for small strains with the internal 

parameters near their equilibrium values, and apply the above restrictions . This 

gives ~ , and A as linear functions and the chemical potential as a quadratic 

function of ~ and {, with coefficients which are nonlinear functions of the con­

centration, plus a set of stability inequalities which physically acceptable 

coefficients must satisfy. Substituting these expressions for ~ , f..L, and A back 

into (2.20 - 23) we obtain a system of equations in three dimensions for the con­

centration, the deformations and the internal parameter. 

a. Stability. Recall the assumptions of the preceeding section that the local 

entropy and dependent parameters are the same well-defined functions of the 

independent parameters as at equilibrium, and can thus be manipulated in the 

same way. This allows us to take advantage of the isothermal nature of our pro­

cess by transforming to the Helmholtz potential energy, which replaces the 

energy with the temperature as an independent parameter. Suppressing the 
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temperature dependence , the Helmholtz potential energy per unit mass is given 

by 

and 

'With 

and 

f =u -Ts =J{& ,c . O 

1 ~ a .. =~ 1 + o .. ) \) 2,., 8t:-- \) 
\) 

- 2.1_ 
A -p a~ . 

(3 .1 ) 

(3.2) 

(3.3a) 

(3 .3b) 

(3.3c) 

For an isolated system, the total Helmholtz potential is minimized at equili-

brium over all possible internal constraints. First, this implies that at 

equilibrium, a, J.L, and A are uniform throughout ( A = 0 by assumption), 

Secondly d 2f is a nonnegative definite quadratic form at equilibrium (see 
- I 

Callen [1 ], chapter 8) , where 

(3.4) 

In obtaining this we have used the relations between the second derivatives off : 

(3.5a) 
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(3.5b) 

a(A I p) _ Ei3:_ _ ..E:.L_ 
ac -a~ - aca~· 

(3.5c) 

and 

a(aijl p) ( ~ ) = a(a~vl p) ( ~ -- ) 
a 1 + u ~ a 1 + u\) . 
f:~ f:ij 

(3.5d) 

The condition that (3.4) be a nonnegative definite quadratic form is necessary 

for stability of the equilibrium state. We shall assume that it is, in fact , positive 

definite so that the system is stable. If it could vanish we would have to investi-

gate higher order derivatives, requiring us to keep more than linear terms in tii 

and~-

~ 

b. Relaxation. The external independent parameters, £ and c , can take on 

any value at equilibrium, since they can be varied by the observer. This is not 

true of the internal parameter ~. whose value ~eq at equilibrium must satisfy 

A~ , C, ~eq) = 0, (3.6) 

which we assume can be inverted to give ~eq (~ . c) uniquely. Assume for the 

moment that we have a uniform system with~ and c fixed in time. Then the 

properties of our system are determined by their initial values and ~( t), which 

varies according to (2.23) . Supressing the dependence on the fixed parameters, 

(2.23) can be written 

~--dt - L (0A(~) . (3.7) 

This governs the relaxation of the material toward equilibrium. L(O is positive 

from (2.19) , and ~f and A(O vanish together at the equilibrium value ~sq . ~ 
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cannot approach ~eq unless 

in other words , unless ~1 (~8Cl) ~ 0, This restriction on A is equivalent, in this 

case , to the stability restriction that the Helmholtz potential be minimized at 

~eq . The stronger restriction that ~ (~eq) ~ 0 is sufficient to ensure that ~eq is 

a stable equilibrium value and also allows us to linearize (3 .7) for~ sufficiently 

near equilibrium: 

c . Small strains; Near equilibrium. We are working in the domain of small 

deformation gradients, and we can thus expand our dependent functions in the 

strains, keeping only a few terms. We also assume that our system stays very 

near equilibrium, allowing us to expand in ~ about ~sq (i ,c ), where ~ satisfies 

(3 .6) , and where ~sq can also be expanded in small strains 

~eq(i ,c) = ~0 (c) + 2.:~;,;t;,; . 
ij 

keeping only t he linear terms. 

(3 .1 0) 

Once again, applying the Curie symmetry principle for our isotropic system, 

which tells us that tensors of different types cannot couple in the linear terms , 

and expanding in t;,; , and 6~ = ~ - ~eq , we obtain 

(3.1 1) 

and 

(3.12a) 
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J..L = J.Lo (e) + J..Lc(e)g + J..Li (e)D.~ + ~J..Lug2 + J..Lr.f, ( e)gD.~ 

+ ~J..Lu(D-02 + ~o~(gf,-) 2 • 
\) 

AI p = K(e )D.~. 

(3.12b) 

(3.1 2c) 

(3.12d) 

Here A(e ,e.~8q) = 0 has been enforced. We have kept the quadratic terms in the 

expression for J..L because we need not only 'ilJ..L but also the second order spatial 

derivatives 'i12J..L in the concentration equation. Applying relations (3.5) between 

the derivatives, andp =p0 (l -g), (1.1 3). relations (3.12) become 

(3. 13a) 

ds d~o 1 dK 
J..L = J.Lo (e) + - g- K (e) -D.~+ -~602 

de de 2 de 

d ( K) 1 ~ ) 2 1 dso" 0 2 + dc ~c gb,~ + 2dc'5 c + 5 g + 2dc-~-/ii 
\) 

(3.13b) 

(3. 13c) 

and 

(3.13d) 

with s c =; c - s (e). Here ~o is assumed to vanish with ~o as the system is ini-

tially only under isotropic stress . The components of the equilibrium stress ten-

sor are given by 

(3. 14a) 

(3 .14b) 
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Special Case: Linearity in concentration. Suppose that concentration 

changes are sufficiently small so that we can expand (3.13) in D.c = c - c0 • 

This gives the linear relations 

1 
3tra = p0 [s + {3D.c +seE:+)'~]. 

A = Po [ r.>D.c + )'E: + ,oc(]. 
J.L = J.Lo + a..D.c + {3E: + c.>~' (3 .15) 

where all coefficients are constants. Here ~eq has been normalized to vanish 

with D.c and E: : 

(3.16) 

and we keep only linear terms in the equation for \.1 . 

Example 3.1: Suppose that for the special case above, the internal process 

is not an important effect, so that we can drop~· Then 

aij = PoSoE:ij fori ~ j ' 
1 

aii = Po [s + S0 f:i.j + (sc- ~0)e + {3D.c], 

b.J.L = a..D.c + {3e , 

~0S0 and p0 s t correspond to the shear and bulk moduli for elastic materi­

als. b = -{31st is the "bulk swelling coefficient" which determines the 

amount of the isotropic dilation or contraction which occurs for a stress­

free change D.c . Thus if the fluid concentration changes by /lc, and ; stays 

at its initial value, the dilation is e = b D.c, with p = Po ( 1 - b D.c) the new den­

sity. The new solid density is given by 

Ps = pes = p( 1 - c), 

or. in terms of the initial solid density (ps)0 , 
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We expect an initially dry solid to swell when fluid is added, or 1 + b > 0. 

however b itself can have either sign depending on whether or not the fluid 

presence has a significant effect on the free volume of the solid. 

In order to study the stability of equilibrium. we need to evaluate d 2f . Tak­

ing the derivatives of the expansions for ; I p . f.1. and AI p. and substituting into 

expression (3.4) gives 

d 2f = ts0 (c)l:(at:ij)2 + ~(s(c) +s£(c))(dt:)2 + ~dt:dc 

+ l..a(c )(de )2 + lK(c )(d (f1())2 
2 2 

to first order in t: and t::.t. where 

dJ..Lo 
a(c) = ~· 

d 2f will be a positive definite quadratic form only if 

so (c) > o. s (c) + s£(c) > o .a(c) > o. 

K(c) > 0, and (s + s£)a - [ ~ r > 0. 

(3.17) 

(3 .1 8) 

(3.19) 

Note: More generally, d 2f can be positive definite only if at equilibrium (f1~ = 0) 

relations such as 

a a a~ tr a/ p [ a ]2 
E1!:.... > 0 !l1:!:.. > E1!:.... ac ' Be Bt: ae 

hold for any values of c and t . The first of these gives us the extra information 

that · 

au. ( ) d
2
s"' > 0 .::.c..=ac + <.o ac dc 2 

(3.1 9a) 
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must hold in order for the expansion to be valid to this order. 

or 

Linear case: Returning to the purely linear case, 

d 2/ = ~S0 l: (deij)2 + ~ (sc+s) (de)2 +{3dedc 

+ tadc 2 + -yded~ + GJdcd~ + ~(dt)2 , 

d 2f = i-so 2:: (de~-)2 + ~ (sc + s - f) (de)2 + ({3- ~y )dedc 

2 
+ ~ (a - : )dc 2 + !C(d (~- ~~~q)) 2 , 

(3.20) 

which gives the inequalities 

S 0 > 0, /C > 0, 

a/C - GJ
2 > 0, (s c + s )" - -1 > 0, (3 .21) 

and [(s£ + s)- f](a- :2

)- [{3 -7-r > 0. 

It follows that a and (sc + s) are positive constants . 

Example 3.2: In example 3.1
1 
we considered the linear case with no memory. 

Returning to this example, conditions (3.21) tell us that the shear modulus, 

~0s0 
1 

is positive, and that the initial stress plus the bulk modulus, 

Po (s + s c) is also positive. 
) 

Example 3.3: Suppose that we have diffusion with no swelling and no 

memory as in example A2.1, ~ith 
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a d a 
~ = !!:.E._= a (c ). ac de 

The d iffusion coefficient is defined as 

D(c) = JJJ.(c)a(c) 

Since JJJ.(c) >0 from (2.1 9) , and a(c) >0 from the {3.1 9) , we obtain the 

standard result that the diffusion coefficient is positive for any process for 

which the diffusion equation 

Ct = 'V(D(c )'Vc) 

is valid. 
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d. The equations. The final step in obtaining a set of equations which 

describe diffusion with swelling in a history-dependent material is to substitute 

the expansions (3 .13) of a, J..L and A into system (2.20-23), at the same time 

expanding the linear phenomenological coefficients in t and !:!.1;. We now proceed 

to do this for the case of a single internal relaxation process. giving some simple 

examples and making a few comments on initial conditions and boundary 

values . At the end of this section we cite the results of the appendix. which take 

into account more general internal processes . 

If we replace ~with a new variable 77. defined to vanish at equilibrium, 

then system {2.20-23) is 

~~ = V·[D(Vc + d£Vt + d11V77 + ~~iVti})] 

~ = V·a 1 Po + v[(vs - ; V')V ·~ + v·(V'v.u) + V(v(AI Po) 

Q!]_ 2l_eq 
ih = - 8T - vtV·.u -LA/ Po 

where 

au -
v = -=- t: = V u = (V u)T. - 8T ' X- X-

Here we have defined the coefficients 

and 

D = D(t.~0 ,c ,1J) = J~ ~?, 

d£ = d£(t; 0 
,C ,7']) = ~? / 

d 11 = d11 (t.~ 0 ,C ,7']) = ~~I 

Ell:_ 
ac' 
~ 
ac' 

(3.22) 

(3.23) 
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We want to replace each of the unknown functions in this system with its expan-

-sion in small ~ and TJ , but before we do so, let us consider the following remarks: 

Note that although the tii and TJ are assumed to be small, we have made no 

assumptions about the size of their derivatives. In fact , in the case of particular 

interest, Case II diffusion, where swollen and unswollen regions are separated 

only by a thin front, it is likely that their derivatives will be large in the region of 

-the front. This tells us that we need to keep linear terms in ~ and TJ when we 

expand functions such as D( t .~ 0 ,c ,TJ), which will be differentiated. It also means 

that we need to be careful about the coordinate system in which we are working . 

In the above system, the spatial derivatives denoted by the V are taken in (x ,t) 

coordinates , and those denoted by 'Yx are taken in (x. T) coordinates, with the 

transformations between them given by ( 1.11) and ( 1.12). These transforma-

tions tell us that for any function g 

up to linear terms in~ . If we transform the system entirely to (x. T) coordinates; 

-then 
1
to first order in ~. only the concentration and momentum equation are 

affected. These become 

(3.24a) 

and 

av - r 1 avi I aT= 'Yx ·a I Po + 'Yxl(tr - ~o)('V~ - "l:ti; ax;) 

+- vx[lf'{I-~)'V~ + vx[vtA]. 
(3.24b) 

Let us now proceed to use the expansions in small~ and TJ for the various func-

tions in this system. Applying the Curie symmetry principle once more and 
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-expanding the linear phenomenological coefficients in £ and 71 gives, together 

with conditions (2.1 9) . 

with 

J~ = J~(e .~0 ,e ,71) = ,:l(e )[ 1 + Jc(e )e + J11(e )71] > 0, 

VS = VS(e .~0 ,c .71) = VS(e) + v:(e )e + v~(e )71 > 0, 

V' = VO(e .~ 0 ,e,71) = v0 (e) + v~(e)e + v~(c)71 > 0, 

L = L(e,~0 ,e,71) = L(e) + L£(e)e + L11(e)71 > 0, 

1/€ = v€(e .~0 ,e .71) = 1/t(e) + va(e )e + 1/t'l(e )TJ . 

V' L > vf 

for all e and for all~ and 71 sufficiently small. 

From (3.13) and the energy stability condition (3.19). 

~- ) ~ dCJ ae - a(e + de e + ~ > 0. 

Multiplying by J~ and expanding gives the dillusion coefficient: 

for all e and all ei.i• TJ sufficiently small. Here we have defined 

d~ ~ d~ 
a:(e) = ~· {3(e) = de and CJ = -K(e)~ 

for simplicity. Also from (3.13). 

~ = {3(e) + dd1ry + [{3(c) + dsc]e 
ae e de 

811 dK d(c 
~ = CJ( e) + -71 - K( c)- e 877 de de 

and 

(3.25) 

(3.26) 

(3 .27) 
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where 

')'(C) = -K(c )~c(c ) . (3 .28) 

Dividing by ~7 . and expanding in t: and 1'} , we obtain the expressions 

_ 1 lr [ 1 !!:.L d.scl (!!:2 R f c\ ] 
d e - a:(c) p(c) + p(c)- 2a(c) de + ~r + de -~(c) 1"J • 

d = _ 1 _ GJ(c) + [~-~ !lii_lt: + ( dK- 1 dGJ2) (3.29) 11 a:(c) de a (c) de de 2a(c) ~ 1'} ' 

Next we turn to the t erms in the momentum equation. Note that 

'il · [~] = v[-1 
..!_tra] + 'il · [~o] . 

Po Po 3 Po 

Expansions (3.1 3) for ; tra, J:...;o and A give 
Po 

and 

to first order in t:ii and 1'} . 

(3 .30) 

(3.31) 
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Substituting r elations (3 .25) , and (2 .29-31) into system (3.22) we obtain 

where D. d, , d'r/ and d0 are given by (3 .26) and (3.29), 

and 

with 

~ = v[(s - ~o)e] + V·(saeij) + {3(c)Vc + v[(v(K + /)77) 

+V[(vs - ~ V')V·v] + V·(V'Vv) 

a, c..> ac [ L J ae 
::..:..L. = - - + - v( - - KL17 
aT K aT K aT 

v = au 'i = V u = (V u )T. - dT ' X- X-

(3.32a) 

(3.32b) 

(3.32c) 

(3 .32d) 

The restrictions (3.1 9) on our coefficients tell us that, in our new notation, 

and 

s,(c) +s (c )>d,{3(c), 

K (c) > d'r/c..>(c ) , 

s 0 (c) > 0, 

for all c and for e and 17 sufficiently small, where 

c 

s (c) = -p0 ;Po + J {3(c )de . 
Co 

These restrictions along with those in (3.25) can be summarized as 



and 
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D , L , s c • S 0 , ,r , V 0
, and K positive , 

VOL > vf , s c + s > d cf3 

K > dTJ(.) . 

(3 . 33) 

The equation for 17 can be integrated in (x. T) coordinates holding x fixed, 

~ can be replaced by 

T 

17 = 17(x.O)exp(- j LKdT' ] 
0 

(3.32c ') 

to give a set of integra-partial differential equations in (x. T) coordinates for c 

andu . 

System (3.32) , along -with appropriate initial values and boundary condi-

tions, is a three-dimensional set of equations describing the movements of an 

isotropic two-component system. The system is assumed to be initially uncle-

formed and stress-free) except for a possible isotropic pressure p 0
. The equa-

tions are valid, so long as deformations are irrotational and local strains are 

sufficiently small. for any material which undergoes a simple internal relaxation 

process. The strains, although small, can vary rapidly both with position and 

with time. In general. systems will undergo more complex internal processes 

and these are discussed in the Appendix. 

The coefficients in system (3.32) must be determined experimentally for the 

materials of interest, as a function nat oTil.y of the concentration, strain and 

time, but also of the temperature and past history of the material. As long 

as the process remains reasonably stable, the coefficients will satisfy the ine-

qualities in. (3.33) . 
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Example 3.4: No memory; no inertia. If the solid is elastic, so that both 

memory and viscous effects are negligible, then system (3.32) simplifies to 

If the sorption process occurs sufficiently smoothly (or, equivalently, the 

dependence of D and de on t: is sufficiently weak and d 0 is sufficiently small) s o 

that the nonlinear terms in 'ilt:i/'ihii , 'ilt:w'ilc and t:ii'i/c can be neglected, 

then the concentration equation becomes ('i/ = 'ilx) 

If, furthermore , s c and S0 are independent of concentration and the system 

remains locally in mechanical equilibrium, so that the inertial terms 

( av = av + v ·'i/v) in the momentum equation are negligible, then to first aT at - -
order in t: , 

Noting that the irrotationality implies 

we can thus write the momentum equation as 

and replace 'ilxt: in the concentration equation to obtain a single equation 

Therefore , under all of the above assumptions, the concentration satisfies 

the diffusion equation with a modified diffusion coefficient. This is the stan­

dard result, and agrees with the one-dimensional model derived by Cahn [ 18 ] 
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when fourth-order diffusion is unimportant. and when Ddr.f31 (sr. + ~0 ) is a 

constant. Note that the restrictions we have obtained for our coefficients 

do not actually prevent J5 from becoming negative in the case where 

c 

s(c) = -~+ j{3(c)dc 
Po 

is positive; however if D(c) approaches zero or becomes negative, neglected 

terms become important. 

It is useful to keep in mind the expressions for both the equilibrium stress 

tensor and the viscous pressure tensor. The force on the solid surface provides 

us with a natural boundary condition: a measurable stress may be applied, or 

the surface may be advancing freely against the fluid, whose resistance will 

presumably be negligible compared with stresses which cause crazin" (or: j f'nei-
..., I 

ther negligible or measurable,can be calculated) . Also, one is often interested in 

calculating the internal stresses on the system in order to predict mechanical 

failures . From (3 .1 4). the components of u are 

r c 

a;.; = Po [so&;.; + 6;.; - Ppo + J {3 ( c )de 
0 co 

(3.34a) 

and from (2.1 6) 

[ ae._1 [( 1 o) ae ]] Il - = - p tf' - . - +6 .. 11'--v -+v,K-n 
\] 0 8T \] 3 8T ' 'I . 

(3.34b) 

Applying the boundary conditions on the surface is not a trivial matter, 

because the solid surface will be moving. Thus. we will either have a problem 

with a moving boundary, or we must switch to solid-based coordinates . The fol-

lowing example serves to illustrate this problem. 
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Example 3.5: No volume change or memory: one dimension. For the case 

where the displacement u of the local center of mass is zero everywhere, 

the solid swells to accommodate t~1e fluid . The total density remains con­

stant in this case, and the solid density Ps is given in terms of the initial 

density Po and the fluid concentration c by 

Ps = Po ( 1 - C), 

while coordinates (xs .ts) fixed to the solid are displaced from their original 

position by the vector 14s , i.e. 

so that the solid strain and velocity are 

The concentration, in the case of no memory, will satisfy 

ac at= V·(D(c )\lc) 

while the solid swelling is given by conservation of the solid 

Bps (~, ) at+ V· ~JkPs = 0. 

The boundaries of the solid are moving in ~.t) coordinates. whereas they 

remain fixed in ~ .ts) coordinates. For simplicity, let us examine the case 

of one-dimensional dillusion: 

If the solid is initially between x = -d and x = d , then it is between x; ( t) at 

a later time, where 

Switching to solid coordinates in the second equation 



so that 

where 

68 

a a a -= -+v-
ats at sax 

a a 
-;l- = (1 + t:s) -a 
uX~ X 

and, dividing by Ps· 

or 

Ps the initial density of the solid. From above, 
0 

Ps = Po(l -C) 

so that we gain an expression for es in terms of the concentration 

1 + t:s = Po ( 1 - C) = 
1 - C 0 

1 - c ' 

c0 the initial concentration. In order to find an expression for x • in (x ,t) 

coordinates, we need 

Then 

zz z; ~J 
• Jc - C0 

( ) J x:!: (t) = ±d + dx = ± 1 - C 0 d + cdx 
0 1 -Co 0 

and we would have to solve 
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with boundary conditions at x; . In t his case, however, we can simplify the 

problem by switching to (zs.ts) coordinates . 

The velocity v 5 can be obtained from equation ( 1. 5) for v , with 1L = 0: 

1 1 1 ac 
v =- -----cv =- J = (1 _c ) D(c)~. 

s 1 - c I Po ( 1 - c ) I u.x. 

Transforming coordinates, the concentration equation is 

Replacing c with ts , 

and thus the concentration equation becomes 

or 

Thus, the solid strain satisfies a diffusion equation, and the total displacement 

can be found by integrating ts from a fixed point, much as one integrates the 

concentration in order to find mass uptake. In fact, this should come as no 

surprise since we have merely replaced the mass fraction concentration with the 

volume fraction concentration, where ts is the change in volume fraction of the 

solid. 

Remark: This result also holds for the case discussed in example 3 .4, where 

D is replaced by D, As long as the solid is sufficiently thin so that the inertia 

term can be totally neglected. 
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In section 4 we will set up and discuss the general problem for one-

dimension, which is an approximation to the common experimental situation of 

a very large sheet which is dipped in a bath. 

We have derived system (3.32) from the point of view that we would incor-

porate all terms which might be important, in fairly general form. The result is 

a rather formidable set of coupled, highly nonlinear equations containing a 

large number of parameters which are functions of the concentration. When at 

the end of this section we add the contributions from more general internal 

processes, the resulting system is even more complex. It does not make sense 

to begin studying the behavior of this system by attacking it in its most general 

form. This is not only because the funct ional form of most of the parameters is 

unknown and because of the difficulty in dealing with the full equations, but also 

because one would expect that the Case II behavior is driven by only a few of the 

terms, with the rest causing secondary effects. One would like to isolate the 

effects of various members of the equations and determine which ones are 

necessary for Case II behavior to occur. 

One obvious simplification of the system is to ignore any nonlinear depen-

dence of the material properties, while retaining the history dependence and 

momentum effects, which gives us the following special case: 

Linear case: For the special case where the dependence of the material pro-

perties on the independent parameters is sufficiently weak, and the changes in 

these parameters are sufficiently small so that the chemical potential, stress and 

affinity A can be treated as linear functions and the linear phenomenological 

coefficients can be treated as constants, system (3.34) reduces to 

E£. = D(f12c + l!..sp£ + £.v20 err a a 

C7JL = [s, + ~o + -yvf]V£ + ({3 + (..)1./f)Vc aT 3 

+(-y + Kvf)'v~ + (VS + ~ V')f12v 

.£t = -vfV·3J... - L((..)/:lc + f'£ + !Ct) 
aT 

(3.35) 
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where 

t: = V ·u v = 0:!1. Vu = Vu T. x-r- BT' - -

The coefficients 

D , a , st, S0 , IC, v, V' , and L 

are all positive constants, and 

zr L > vf, IC > c.>2/a,(s + s 1;)1C > -/. 
and (~e(s + s t) - )'2)(a1C - c.>2) > ({31C - c.>)')2 1 

(3.36) 

where p0 s is the initial stress. The equilibrium stress tensor and viscous pres-

sure tensors have the components 

(3.37) 

The only nonlinearities in this system are hidden in the coordinates. As before, 
~ 

if V·t: is not small, then the transformation to center-of-mass coordinates 

(which allows us to easily replace £ and v with derivatives of u) gives 

r;;2 = 11/ - ('ilx ·t) ·'ilx to first order in eij · For fixed x. the equation for ~ can be 

integrated to give 

(3.35c') 

where 
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have been employed. 

If we wish to write the system entirely in the fixed coordinates ~. t) , then 

the n onlinearity becomes more complex. Not only does the t ransformation 

a~ = :t + v ·'il contribute a convection term v ·'il to each equation, but also the 

definitions of and .1L in terms of and au 
at are nonlinear: 

~ = 'ilu + ('ilu)2 + O('ilu)3 and v =if+ 'ilu C::: (where 'il11. is manipulated like a 

matrix) . Of course, if .1L is small and spatial derivatives of the strain are small, 

then the system can be linearized, and the choice of coordinates is unimportant. 

Example 3.6: For the linear case with negligible swelling, the equation for 

the concentration is 

r t 
oc I (.)2 1 at= D 'il2c ~. t) - L--;: 

0 

e -LK(t - s)r;;2c (x ,s )ds 

= D[o(t) -L ~2 
e-L.ctl ~'il2c (x , t) , 

(3.38) 

where ( ~) indicates the convolution product with respect to time and o(t) is 

the Dirac delta function. This equation was derived by P. Neogi [ 24 ]}'hus, 

for the linear case , the diffusion coefficient is replaced by a time dependent 

operator analogous to the replacement of the elastic cofficients for linear 

viscoelastic materials. One could therefore propose by analogy the more 

general model, found in the P.ppendix, of 

oc 2 at=D(t) ~'ilc (x , t) 

where D(t) is a kernel which decays with time . 
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Differentiating (3.38) with respect to time, and adding Lx;·(3 .38) to the 

result yields the partial differential equation 

Ctt + Lx;ct = D[V2ct + L (x; - CJ
2

/ a)\72c]. 

Conditions 3.36 tell us that D, a, LIC, and L (~e-CJ2/ a) are all positive. If we 

nondimensionalize by taking t = t I Lx; and x = [ LJ;] t x > then this equation 

is 

c- + c- = V2 c- + [1 - ~ ]'?f-c tt t t ox 

2 a 
with 0 < 1 - £___ ~ 1 and ~ = ~ ~· or, in one dimension, 

a/C 8xi 

cu + cr = ca- + [ 1 - ~:]cii' . 

Example 3.7: Suppose that we have a uniform piece of solid, initially stress­

free , and subject it to isotropic compression. The stress-strain relation is 

given by (3.37) 

where 

Substituting t into the expression for f , 

de 
f = (s t + -yvE)e + VS dt 

+ (y + Vt<l [(,e-L"' -I .-L•t• ~l[£7'£ + v, ~ lds] 

where, since f = 0 initially and stays zero if e=O, ( 0 = 0. Integrating by 

parts, 
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t 

f = (sc --I!JC)t + vs ~; + (-f;" -JCvf)Je -LJC(t--s )~ 
0 

= j_B(t) , dt . 
Po dt 

Here the B ( t) is the bulk relaxation modulus 

where H(t) is the unit step function . The constraints on our coefficients 

tell us that s ~:-!I"· VS , L, VS L - vf and " are all positive. (The analog 

model for this stress-strain response is three elements in parallel: a spring 

with spring constant p0 (s e-ll JC) > 0, a dashpot with viscosity p0 tr > 0, and 

a Maxwell element -with decay rate LJC and strength -f-Jev/ ). ( p 0 (sc --y2; IC) 

tells the final volume change which occurs under a constant compression, 

p0 tr the resistance to rapid compression.) 

Jn general, the relaxation modulus will be more complex, with B(t) some 

function which decays over t ime. 

If we were to apply either a shear or uniaxial tension to our solid, rather 

than isotropic compression as in example 3 .7, we would find that the model does 

not incorporate any history-dependence. This occurs because the internal 

parameter was taken to behave like a scalar. By adding internal parameters 

that behave under coordinate transformations as tensors, a more general model 

can be obtained. These calculations appear in the Appendix for the case when 

the quadratic dependence of the chemical potential and the dependence of the 

linear phenomenological coefficients on the strains and internal changes can be 

neglected. The resulting model is 

T 

~~ = V·[JJJ.(c)VJl..- J K(x. r ,e)VJJ..(x.e)d eJ 
0 

(3 .39a) 

'T 

JJ..(x.r) = 7'Tto(r,c ) + p(c)t- J de(Mc(x.r,e) 
0 

+ Mc(x. r,e)e(x.e) + Mv(x. r ,e)V·v (x.,e)) , (3.39b) 

(3 .39 c) 
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and 

'T 

~ ~ J 1 (u - Il) / Po = [B (x. T,8) + B,.J,x. T,e) - sSc(x:r.e))t(x.e) 
0 

(3 .3 9d) 

'T 

+ j [svC.x .. T,e)'l11.(x.e) + Sc(x. T, e)~ (x..e)]d e. 
0 

Each of the time-dependent kernels J<l', Me . Me . Mv, B. Be. Bv, Sc and Sv depend 

on the values of the concentration for times in [O,T ]. while m 0 depends on c 

for times in [O,T]. The x.-dependence arises solely from this concentration 

dependence. We could write this in explicitly by using the notation 

K( X ,C,TJ) = K (T,e,c(x.. [ e,T])) 

for each of the kernels . 

When chemical potential and stresses depend linearly on the concentration, 

and the linear phenomenological coefficients are constants, this model simplifies 

to (A2 .18): 

~~ = 'l ·[ (o(T) + !C(T)) •'J,u(x.T)), 

,u(x..T) = D(T)•~x,r) + D~:(r)-~T) + Dv(T) * 'l·v(x..r) , 

av = vrls(r)•~x..r> + _1 .>.. ( r)-~(x..T)j 
aT or Po O'T 

r 2 a~ j 1 at -· 
+ 'l·[_p:-G{r) -~r) - t<TJot'ltii 0; 

+ VO'lt· oe ) 
or 

where g •t denotes the convolution product 

'T 

g •t = J g ( r--r')/ ( r ' )d 'T 
0 

(3 . 40a) 

(3 . 40b) 

(3 . 40c) 

and where 6( 'T-T') is the Dirac delta function. The stress components are given 

by (A2. 19) 
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Example: If the initial stress on a uniform isotropic solid is zero and a uni­

form strain history 'i (t) is applied, then the stress components are 

dei · de 
! .. =a·· - Il ·· = 2G (t) •--1 + A.(t) •­'' ., ., dt dt . 

This is the standard stress-strain relation for a linear isotropic viscoelastic 

material, and our derivation of this relation is equivalent to the Wiechert formu­

lation of the stress-strain relations [ 25] . This is easily seen, because the 

separated equations satisfied by the internal parameters are in the same form 

as those satisfied by Maxwell elements. The relaxation modulus 

can be written as 

if we let 

and 

G(t) = G,. + j g (k )e -x'(k)t dk 
0 

G ( t) = Gii + j g ( T) e -t / T d T 
0 

g(k) 
g (T) = df..s (k) 

dk 

T= _ 1_ 
f,.S (k) 

[- ~] 

Similarly, A(t) can be written in s tanda rd form. 
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4. One-dimension and Case II difiusion: a simplified model. In this section, 

we discuss the model as it applies to a common experimental situation: diffusion 

through a membrane of glassy, amorphous polymer, which is initially in equili­

brium at a fluid concentration c0 and negligible pressure (~ = 0), and which at 

time zero is placed in a reservoir of the fluid. If the surface area of the polymer 

sheet is large enough, and if we are interested only in the behavior in the 

regions far from the edges, it can be idealized as infinite. By examining the 

available data on a particular polymer which is knoVrn to exhibit Case II 

diffusion, we are able to obtain a simplified model for Case II diffusion and 

demonstrate that Case II behavior is indeed a possible consequence of the 

model. This model predicts that the sharp fronts between wet and dry regions 

are carried along by the coupled nonlinear convection, viscosity and relaxation
1 

with diffusion occurring only in the front region. Inertial effects 

are found to be negligible. 

a. Model for an infinite sheet. For an infinite sheet subject to uniform sur-

face conditions, movement can occur only in the direction orthogonal to the 

sheet, and the problem reduces to one dimension. letting x denote that direc-

tion, the nonlinear model (A3.32) with a single scalar internal process reduces to 

and 

where 

ac 
a. 

av a r 
1 

ac a I ) av I a, = ax lb (c )t: + (1/fK + /)TJ + {J(c) ax + ax v(c ax ' 

a,., C.) ac rl 'Y I at: :=.:..L = -- + ../._- 1/( -- KLTJ, a, K ~ K ~ 

(4.l a) 

( 4.1 b) 

(4.l c) 
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au 
t= ax . ( 4 . i d) 

and u is the displacement of the center-of-mass in the x -direction. Here D, 

d = de+ ~0t and dTJ may be linear functions of t and TJ and nonlinear func-

lions of c , while b = sr: + ~o · v = t.rS + ; VO, {3, vt, K , L, c.> and-y are all nonlinear 

functions of the concentration. Rather than writing down the more general 

model (3.39) in one dimension, we shall assume, for the purpose of discussion, 

that these equations are valid . 

Initially the sheet is between x = ±l , and c = c0 , t = TJ = 0. If the diffusion 

process were Fickian, then the surface of the solid would come instantly to 

equilibrium at the final concentration c 1. The question of whether or not this 

remains a valid boundary condition for the process of diffusion with swelling will 

be left alone for the present. For example, there is some evidence that, in the 

case when two-stage diffusion is observed, the surface relaxes slowly to its final 

equilibrium value [22]. For Case II sorption, the assumption of an instantane-

ous jump to the final concentration c does seem consistent with the travelling 

front evidence, but this is, of course, something which must be evaluated. 

A second boundary condition comes from assuming that the fluid exerts a 

negligible surface stress on the solid surface. If we let; denote the total stress , 

rather than the equilibrium stress, then ai; = 0 for i ~ j and 

(4.2a) 

r c 

allY = Gzz =Pol£ (3(c )de + sr;(c )t + (vtK + -y)TJ + VS (c) ~~ . (4.2b) 

at 
Thus Gz:z = 0 on the solid surface gives an equation relating t , BT and TJ on the 
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boundary, and this condition will prove useful later. 

b. Solid-fixed coordinates. As mentioned in example (3.5), the main 

difficulty in applying the boundary conditions is to determine the position of the 

fluid-solid interface. The transformation from (x ,t) to (xs .ts) coordinates is 

easily obtained in one dimension. The solid density Ps and solid velocity 

vs = :; are given by the definitions of the total density and center-of-mass 
s 

velocity (1.5), (1.6) 

P = Ps + P f = Ps + pc , 

and 

pv = Ps Vs + p Jv J = p( 1 - c )vs + J1 + pcv , 

since J1 = p 1 ( v 1 - v) is the fluid flux. In one dimension, the densities satisfy 

(exactly) 

P = P0 1 (1 +e) , Ps = Ps /( 1 + es) , • 

where Ps is the initial solid density, and where es is the solid strain: • 
ax 

es = -a- - 1. From this, we obtain the transformation from (x ,t) to (xs ,ts) 
Xs 

coordinates : 

ax = ..!......±._!_( 1 _ Co) ' ax = V _ Jf ( 1 + e) 
axs 1 - c ats Po ( 1 - c ) 

..£!_= 1 ~=0 
ats axs . 

(4.3) 

For the single relaxation process of ( 4.1), 

(4.4) 
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In solid coordinates the boundaries are fixed at x 3 = ±l, while in fixed coor-

dinates they are at x = ±Xct. moving at a velocity 

v = v -
11 [.L±.i..J s Po 1 - C . 

(4.5) 

c. Case II behavior: an example and a proposed model. In system (4.1 ), 

there are a large number of parameters, whose values and functional form 

depend on the choice of material. By looking at a characteristic glassy polymer 

which exhibits classical Case II diffusion, we can get a good idea of the relative 

sizes of the parameters, and the scales which are involved when Case II diffusion 

occurs. Experimental evidence does not yet exist for the newly defined parame-

ters; however, by making use of the available information, the inequalities (3.33) 

and a few assumptions, we can obtain a reasonable picture of what is happening . 

Such a polymer is the linear polymer polymethyl m2thacrylate (PMMA), for 

which a fair amount of information is available in the open literature, and which 

displays clear-cut Case II behavior over a fairly wide range of temperatures . 

Example. Thomas and Windle performed a series of experiments , at 

different temperatures, on polymethyl methacrylate [7,26]. The samples were 

membranes 1-3 mm thick. initially dry, which were suspended freely in a bath of 

methanol at time zero. Their observations indicated that, except near the 

edges, the behavior was one-dimensional. They found that at temperatures well 

below the glass transition temperature ( 105cc for dry PMMA ), the diffusion pro-

cess exhibited classical Case II diffusion, with a sharp front moving inward at 

near constant velocity, separating a wet, swollen yet glassy region from the dry 

region in front of the front. At higher temperatures, the fronts break down as 

they move into the material; the region just behind the front is no longer at its 

final concentration and the fronts slow down as they move inward. By 62° C , no 
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initial Case 11 behavior is observed at all. Front velocities increase with increas-

ing temperature. 

The front appears to speed up slightly at 0°C, and thus ditiusion of PMMA varies 

from Case II , or even so-called Super Case II , at temperatures low enough that 

even the wet polymer is glassy, through Case Il diffusion with a wet region in the 

glass transition region, up to Fickian diffusion with a wet rubbery region. 

Let us concentrate on the measurements where the polymer stays glassy. 

At ooc the front velocity is 3.9x10-9 em/ sec, increasing to 3 .9x10-e em/ sec at 

l 5°C . In both cases the mass uptake is 2 1%. The front thickness appears to be 

on the order of 10-3 em. At 15" C, where the swollen polymer is just below the 

glass transition region, the samples swelled from 1 mm to 1.23 mm, so that 

ts = .23 and c = .1 7. Using these in the formula ( 4.3) 1 + t = 1 - c gives 
1 + ts 

t = - .04, which is only a rough estimate, but indicates that t is indeed fairly 

small. 

In order to model the diffusion process in PMM..A (or any other substance) 

with ( 4 .1), we need a rough estimate of the parameters appearing in the equa-

tions. The effects of temperature increases and of fluid concentration increases 

on the properties of a glassy polymer are very similar because the free volume 

and internal mobility of the polymer increases with both. This allows us t o esti-

mate the concentration dependence of a property, even when only the tempera-

ture dependence is known. 

The density of PMMA is about 1gm/ em 3 . The diffusion coefficient increases 

rapidly with concentration from 10-14 or 10- 13 to 10-10cm 2 / sec within the glassy 

region [ 1 7]. Under a small applied constant strain, the stress in dry PMMA is ini­

tially about 10 10dynes/cm2 throughout the glassy region, decaying to zero as 

time goes to infinity. The rate of decay is very temperature sensitive. The time 

to decay to one-third the initial value decreases from roughly 1 09sec at zoo C to 



82 

107sec at 40°C up to 104sec just below the glass transition temperature [25]. 

Under a small applied stress , the initial rate of strain per unit stress is about 

10- 18cm·sec/ gm at 20°C, increasing with time by a factor of 10 or 100 and also 

increasing with temperature [27]. 

If a uniform strain is applied to a dry solid which is initially stress-free and 

in equilibrium, and which is modelled by (4.1 ) and (4.2) , the stress a= is given by 

(4.2a) and (4.lc) combined as 

The stress due to a step in strain t = t 0 H(t) is 

+ dt 
1.1 dt 

Since the stress decays to zero for all temperatures within the glassy region, we 

can assume that b (c) = 0. The inequalities (3 .33) and definitions (3.29) of de 

and d 0 then imply that {3(c) is also zero, and d is order (It I + h i). Setting b to 

zero, and using Laplace transforms to invert the stress-strain relation gives 

1 T r[ KL) KL] t = - J l1-- e--fl(t--s ) +- a(s)ds , 
Poll o 0 0 

where 

The response to an applied stress step a= = a0 H(t) is thus 
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and 

d [; = _1_[ KL ( 1 - -ot ) + - Ot I 
dt Po 1/ 0 e e ao . 

Then for PMMA in the glassy region at about 15°C 

D increases with c from about 10-13 to 10- 10cm2/sec , 

KL increases with c from roughly 104lsec- 1 to 10-3sec-1, 

1<=<r- (v~Kj2) is fairly constant, about 10 10cm2/sec 2, and 

vis roughly 1018cm2/sec , decreasing with increasing c, although how 

rapidly it decreases is difficult to ascertain. 

If we nondimensionalize system (4.1) by letting 

for characteristic lengths~ and T0 , we obtain 

(4.6a) 

(4.6b) 

(4.6c) 

u: = t, u,. =il, (4.6d) 

with 

x E: ( - l/ A';, ,l/ A';,) 

initially. 
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In a glassy PM:MA, and for any other glassy polymer wtthout cross-links, b 

and {3 both vanish, so that the middle equation becomes 

(4.6b') 

This system contains the nondimensional parameters 

If we assume that y/ K is an order : quantity and that d, d'rl , v £ and c.;/ K are 

order 1 or smaller, then the possible length and time scales are given by 

DT0 [ T0 )

2 
vfo ~12l , T0 KL , Xo2 , "'j ~ and Xo2 · 

In order for the inertia terms in the momentum equation to balance the stress 

gradients on the right-hand side, T0 / x;, must be about 10-5sec I em, or else 

T0 / Xo2 must be less than 10-13sec/cm3. Since the maximum distance of 

interest is the sample thickness of 10-1cm, T
0 

is no more that 10-6sec when this 

balance occurs, and the inertia terms can participate only in the initial tran-

sients . Neglecting them allows us to integrate the momentum equation, and 

obtain 

or 

(4.6b") 

Choosing x;, = 2l, T0 = 1/ KL gives that 
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DT;, D 
Xo2 = -( 2-l==) 2,..--JG-'L 

is somewhere in the range of 10-5 to w-s in the glassy region; and 

1.1 vKL 
fa-y= -:y· 

which is on the order of 1 in the dry polymer at 20° C , and may not vary much 

with c and T ( 1.1 decreases while KL increases and 1 stays nearly constant) . 

Of course, KL , D and 1.1 all vary rapidly with concentration changes, but we 

can choose a representative value for the scaling.{ror example the values in the 

dry polymer c an be used) . Let (}
0 

and 1.10 be these values forKLand D, respectively, 

and let 

Using (4.6b") to eliminate T} from (4.6a,c) , and dropping the bars on the vari-

ables gives 

KL1.10o 

(-y + Kv() Vz , 
(4.7) 

with 6 « 1. Setting 6 = 0 , we obtain the outer equations 

and 
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or, since a~ = (1 + ~)-l a~ ' in center-of-mass coordinates, 

CT = 0 

E:TT + R(c )E:T = 0 

with 

---2- (v 1C)2 
R(c)=KL+ 1 

f 
K00 v 

The transformation to solid-fixed coordinates gives 

th t t fi t d a a d · t t · · 
SO a , 0 rs or er, aT = ats an lll egra mg g1ves 

c = c (xs) , 

E:t + R(c )~ = g (xs) · • 

In (x ,t) coordinates, c = constant and 

d~ 
dt + R(c )~ = constant 

along lines given by : = vs = v, with 

defining the slope of the lines at any given point (or 

From the observer's point of view, this is an hyperbolic system, and if the 

velocities v are not constant, shocks are possible. Whether or not a 
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discontinuity occurs depends on the initial values and boundary conditions. It 

is easy to see that a t r avelling wave is a solution to this system: let 

c = C(x -vt) , E: = E (x -vt). 

Then 

c -r = Ct + VCz = -C'v -r = 0 

if V-r = 0. Similarly, E:-r = 0 if v-r = 0, imp lying that Vz = 0 and • 

E:-r + R (c )t: = R(c )E. 

Since v-r = 0, the velocity of each characteristic is constant and its position is 

given by x = vt + x 0 • If any of these straight characteristics cross, a shock may 

form with a jump in velocity across the shock. If C(x ) , E(x) are not constants , 

c and E: will also jump across the shock. Since vz = 0 , there will be regions of • 
constant velocity (expansion fans will not occur) which intersect and form a 

shock. Clearly, it is possible that such travelling waves could form under the 

experimental conditions; if swelling occurs , a shock must form between a still 

region and a region moving at constant velocity. 

When any discontinuities in the outer solutions or boundary data occur, 

such as initially near x = ± ~ and later a long the shock, we can stretch the coor-

dinates in system (4.7) to obtain an equation which describes the system 

1 

behavior in the discontinuous region. Let x = x/ X 1 , 'T = 1 and take X 1 = o2 . 

Then 
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·th"" au d ..... 1 .rt 
Wl v = a'T an u = u u . Thus the inner equations are the full s ystem. 

Linearization of this system shows that it is locally parabolic everywhere . 

The linearized equations can be written as a single equation for c 

1 

where e = Rt and y = If2 'X . and where 

Due to the parabolic nature of the full equations, the solution will be smooth in 

the stretched variables, and it is obvious that it is the nonlinearities in the sys-

tern. in particular the convection coupled to relaxation,which drive the front. 

Although further analysis of this model needs to be done (in particular the 

effect of appropriate boundary conditions needs to be ascertained) , it appears 

to contain the basic qualitative features of Case II diffusion. The scaling is also 

roughly correct. Xol T0 = KL ·2l increases with temperature, about 

1 o-8 cm/ sec at 40° C in the dry polymer, or about the same as the front velocity 

1 

at 15°C, while 2lo2 is about 10-2·5 or 10-3cm , which corresponds to the barely 

visible front thickness in the microdensometer traces given by Thomas and Win-

dle. 

Special Ca.se : Under certain circumstances. system (4.7) will reduce to the 

equations proposed by Thomas and Windle [ 1 7] . Changing their notation, they 

have two equations, one which balances osmotic pressure and viscous flow 

c T = - f ( c ) ( lnc - 6J..L/ RT) 

and the concentration equation 
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Eliminating l:!.j.J. gives 

(4.8) 

If, in our system, we assume that TJ'T = 0 then the second equation in (4.7) 

becomes 

to first order in e. Using this expression, Vz can be eliminated from the first 

equation in (4.7) . Setting d"' = c , d = 0 ( dis O( lel + 177 1) anyway), in the result 

gives an equation of the same form as (4.8) . 

The properties of PMMA are similar to those of many other glassy polymers. 

Therefore, it seems reasonable to propose system (4.7), along with proper 

boundary conditions, as a model which contains the basic features of the Case II 

diffusion processs , although it may not contain all of the subtleties observed in 

the experiments . 
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Appendix: 
Generalization to complex internal processes. 

In the development of the model in the main sections, it was assumed that 

only a single, scalar internal process could occur. In general. more complex 

internal relaxations and reorderings can, and will , take place inside the solid. 

The internal parameters characterizing the process may transform like tensors 

of any order, and many processes may occur simultaneously. Besides coupled 

processes characterized by discrete sets of internal parameters, it may also be 

necessary to have a continuum of internal parameters (see deGroot and Mazur 

[2], Ch. X). In this Appendix, we generalize the derivation of Sections 2 and 3 in 

order to include all of these possibilities in our model, although we shall dis-

cover that internal processes whose tensor character is greater than two do not 

have any effect on the diffusion-swelling process in an isotropic system. 

We begin with a short discussion on tensorial internal parameters which 

serves to introduce the notation that is employed in the derivation. In Section ~ 

the equations are derived for the case where the material properties can be 

regarded as constants, independent of the fiuctuations in the system properties . 

These constants are replaced in section 3 with concentration- dependent 

material properties . The derivation follows the same procedure as that of the 

previous sections, and therefore the presentation is much less detailed, contain-

ing only the changes in that model. However, we do depart in one significant 

way from that derivation; in the nonlinear model no attempt is made to incor-
' 

porate either the quadratic dependence of the chemical potential on the strains 

and internal parameters, or the dependence of the linear phenomenological 
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coefficients on these quantities. 

a. Preliminaries: Tensorial internal parameters and notation. The concept 

of an internal parameter was discussed ins ection 2, but only a single scalar 

internal process was taken into account in the model. In general, many complex 

internal rearrangements may occur at the same time. The internal parameters 

that describe the internal changes of state may conceivably be tensors of any 

order. It may be possible to describe the system changes with a discrete set of 

variables 1.t:. but in the most general case it will be necessary to represent at 

least some of the changes with a continuum of variables 1 (k) for k in some 

index set I, where I may contain discrete points as well as intervals. For con­

venience, we introduce some simplifying notation: Let ( and ~ be tensors of 

order p , with q covariant and r contravariant indices. 1 and ~ have com-

ponents f1 and rrf where i = i 1,i2, · · · ,iq, ~ E: ~1,2, ... ,qJ and j_ = 11.}2, · · · .jr. 

i.t: E: ! 1,2 , · · · ,r l. The scalar, or dot, product between 1 and ~ is defined as the 

sum over all products ~~t and denoted 

(A1.1) 

Tensors of order two or more can, in general, be broken down into com-

ponents that transform under coordinate changes like lower order tensors, and 

into tensors that are inherently higher order. For example, a second order ten-

sor t , such as the stress tensor, is the sum of its scalar trace times the identity 

/' -I, an antisyrnmetric tensor t 11 and a symmetric traceless second order tensor 

1o, or 

- -A - -. 
( = (tr t)l + ( 11 +c. 

1° has five independent components, 1(1 has three a~~ transforms like a contra­

variant vector) and (tr1)'i has one. Tensors of higher orders can be broken 



92 

down in a similar manner. Since the choice of internal parameters is arbitrary 
/ 

we can choose them so that each is of a distinct tensorial 

character, independent of lower rank tensors. Let {s (k ) , J._v (k ) . t 0 (k) and 

1r(k) denote internal parameters which behave under coordinate transforma-

lions as scalars, covariant vectors, symmetric traceless second-order tensors 

and the remainder, respectively. and let P, I", r and !'" denote their respective 

index sets. 

A symmetric traceless second order tensor has nine components, only five 

of which are independent. If Tji denotes the independent components of the 

traceless symmetric second-order tensor ~ , we can take the Tji to be 

711 = TJ((• 712 = TJw · 7fs = TJzv • 

714 = TJ11-z and 71'5 = TJ-zz . 

Similarly, the {r (k) will have independent components '?'J(k ). 

b. Generalization: linear case. In this section, we will derive the model for 

the case when the linear phenomenological coefficients can be treated as con-

stants and the dependent parameters of the system can be treated as linear 

functions of the independent parameters. The procedure for deriving the equa-

tions with more general internal processes is nearly identical to that which was 

used in Chapter 1, Sections 2 and 3. All the assumptions of those sections 

remain valid, except for the addition of independent internal variables. The fol-

lowing presentation is therefore terse, containing only the relevant changes in 

details, and the reader is referred to Chapter 1 for an explanation of the reason-

ing and assumptions involved in the derivation. 

The independent parameters of our isothermal process are assumed to be 

c . t , ej. r (k ). {j(k ). 1J(k) and 1J(k) for all possible indices j of the independent 

components of the 1 (k) and all k in the index sets r, f', r and Y , where s , v , o , 



93 

and r are used to refer to scalar. vector, traceless symmetric second-order ten-

sors and all remaining tensors , respectively. The Helmholtz potential energy 

function per unit mass is a function of these parameters 

with 

where the dependent parameters are defined by 

11 = EL l._tr~ = p2L lq!l = .2.1_ ,_ a~~~ · 3 at · p ' aeJ · 
As(k) =PEl._ AV(k) = PH_ ar. ] a~r 

A!l(k) =p 81 and Af(k) =p a1 . 
' aH ' au 

(A2 .1) 

Here we have used the notation J to indicate both the sum over all discrete 
I' 

indices and the integral over all continuous indices in the set Ji. 

and 

Defining the tensors A0 (k) and }{ (k) by the equalities 

N' (k ) · d~r(k) = I;Aj(k )dTJ(k )
1 

j 

allows us to write more concisely 

1~ ~ 1 f df = J,LdC + -a ·d,; +- A(k) ·d~(k) , 
p p I 

(A2.2a) 

(A2.2b) 
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where I includes all possible indices for all internal parameters. 

Note that A0 (k) and K (k) are the same type of tensors as 1°(k) andtr(k) , 

respectively, and the traceless stress tensor ~o satisfies 

~0 ·d~ 0 = EaJdeJ. (A2.2c) 
i 

~ 4 "' 
For the second-order symmetric tensors TJ and A, setting E Aid17'i = E A;.jdTJv 

t=! 'ij 

gives 

2"' 1"' 2"-' 1 "-' 1"' "' 
Aff = 3A1 - 3A2, Aw = 3A2- 3A,, Azz = -3(A1 + A2), 

Avz = ~ = ~As . Azz = Azz = ~ A4 and Avz = ~ = ~ A5. 
(A2.3) 

We can use these identities to relate ?fj and Aj(k) to ai} and ~j(k ). 

For an initially uniform system which remains near its initial concentration 

c0 , with small strains and small internal parameters, we can expand the depen-

dent parameters in the independent parameters . If we assume that the linear 

terms are sufficient, then, for an isotropic system, 

J.L- J.Lo = J.Lr;(C - C0 ) +bee+ J J.Lf(k )~(k )dk, 
p 

As(k )I Po = O:(k) + J.L((k )(c - C0 ) + bf(k )e + J a~>(j ,k )t~>(j)dj, 
JS 

~0 lp0 = St~o + Jsf(k)1°(k)dk, 
JO 

A0 (k )I Po = s f(k )~0 + J a 0 (j ,k )t 0 (j)dj 1 
I" 

(A2.4a) 

(A2.4b) 

(A2 .4c) 

(A2.4d) 

(A2.4e) 
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Av(k)IPo = jav (j ,k).tv (j)dj 
!" 

A:(k)IPo = Jar(j ,kfe (j)dj 
I" 

(A2.4f) 

(A2.4g) 

where ai (j ,k) = ai (k ,j) . In obtaining these equations,we have enforced the rela-

tions among the derivatives of the chemical potential. the equilibrium stresses 

and the affinities which must hold due to their definition in terms of derivatives 

of the energy. 

We have also made use of p = p 0 (1 - t) and the symmetry relations for anini-

tially isotropic system. The isotropy also implies that all nonscalar forces van­

ish initially. All coefficients in (A2.4) are scalars . 

with 

Then 

d 2fv = ~ J av (j ,k )d.[_v(j) ·d.[_v (k) 
!" 

(A2.5a) 

(A2.5b) 

d 2f 0 = ~s~:d~ 0 ·d~0 + Js~(k)it 0 (k) ·d~ 0 + ~Ja0 (j ,k)dt0 (j) ·£t0 (k}A2 .5c) 
f' f' 

(A2.5d) 

Each of the d 2fi depends only on the variations of the i -type tensors. In 

order for d 2f to be positive for all nonzero variations of the independent 
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pararneters
1
d 2fi must be positive when any of the variations of tensors of type i 

are nonzero. 

Assuming that Onsager's relations hold, the linear phenomenological laws 

for this case are 

and 

J! = -p0 J~'i11J.- jJ((k)Av (k)dk , 
!" 

trfi = -tr (k)'il·v- J vf (j)As (j)dj , 
r 

fio = -p0 VO ('ilv ) 0 
- J vf (k )N(k )dk , 

I" 

(A2.6a) 

(A2.6b) 

(A2.6c) 

(A2 .6d) 

(A2.6e) 

(A2.6f) 

(A2.6g) 

where Li (j ,k ) = Li(k,j). The linear phenomenological coefficients p0 JJ." J~(k) , 

Po tr , v[ (k ) , Po VO, vf (k) and l_Li(j ,k) are all scalars, and in general are func­
Po 

tions of the independent parameters. In this section we assume, however, that 

they can be regarded as constants. 

It is then obvious from the expressions (A2 .4g) for }f that the variations of 

1-r (k) have no effect at all on the rest of the system. In particular, they have no 
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effect on the externally observable quantities, the concentration and displace-

ments . They are left out of consideration from now on. 

The remaining linear phenomenological relations are decoupled into three 

pairs of equations , with each pair containing affllli.ties and fluxes of a single ten-

sor type. Substituting these int o the expression 

for the entropy production, TP decouples into TP = P + P" + P , with 

and 

ps = p0 tr(V·v)2 + 2j vf(k)As(k)V·vdk 
I' 

+ -1 jLs(j,k)As (j)As (k)djdk , 
Po I' 

P' =poJJJ.'VJ,L·'VJ,L + 2jJ((k).tJ.V(k) ·'VJ,Ldk 
I" 

+ -1 jLv(j ,k)Av (j) ·Av (k)djdk , 
Po I" 

po = p0 ~(Vv)0 ·(Vv)0 + 2j vf(k)A0 (k) ·"f: 0 dk 
f' 

+ -1 jL0 (j,k)A0 (k)·A0 (j)djdk. 
Po f' 

(A2.7a) 

(A2.7b) 

(A2.7c) 

TP is assumed to be positive when any of the affinities is nonzero; in order for 

this to hold, each of these must be positive definite functions of the affinities of 

the given tensor type. 

Substituting expressions (A2.4c,e,f) for As(k), Av (k) and A0 (k) into the 

equations for the variations of the internal parameters (A2.6b,d ,g) gives a set of 

equations which for fixed values of x can be regarded as ordinary differential 
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equations for the internal par ameter s 

a~ 1k ) ' = - vs(k )'il·v BT ( -

-J L' (j ,k ) [a~(j ) + i-'l(j )(c - c, ) + b 1(j )< + J a'(j ,1)("' (1 )d11dj , 

B£' (k) = -J((k )'ilJ.L- jLv(j ,k)av { j,l)Lv {l)dldj , 
BT ? 

a{o£k) = - v( (k) ('ilv)o- JLo (j ,k)[s((j)~o + Jao (j ,l )(o (l)dll . 
a ~ I" 1' 

These equations are each of the form 

dy (k) = -jK(k ,j)y (j)dj + f (t ,k ) . 
dt 

We make one final simplifying assumption, that the ~i(k) can be chosen so that 

the equations decouple, with 

fL' (j ,l)ai (l ,k)dl = )l.i (j)o (j-k) . 

" 
This assumption is equivalent to the assumption that L' (j ,k) and ai (j ,k ) com-

mute, since 

and 

fLi (j ,l)a' (l,k)dl = )I.' (J ,k) = )l.' (k)o(j-k) , 

" fL' (k ,l)ai(l ,j)dl = )l.' (k ,j) = )l.i (k)o(j-k) 
I' 

Li(k,l) = Li (l ,k) , ai (k ,l) = ai(l ,k) 

are both positive definite linear operators . (Li(j ,k) is positive definite because 

the entropy production must be positive, and ai (j ,k) is positive definite because 

the energy is minimized.) This also implies that Li and ai can be simultaneously 

d.iagonalized through the proper choice of ~' (k ), 

Li(j,k) = ~:~~ o(j-k), ~:~~ > o, ai(j ,k) = ai(j)o(j-k) , a'(j) > o (A2.8) 
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and>.." (j) is positive. 

Solving the separated equations gives 

~S(k) = ~S(k )e-X$(.t)-r- ag(k) [1 - e -A$(.t)-r) 
o as (k) 

- as~k) [1-Lf(k)(c - C0 ) + bf(k)e) (A2.9a) 

-J dTJ[vf(k)V·v- 1 [r/-Lf(k)££_ + bf(k)££]je-x~(.t)(-r-rl, 
0 as(k) OT aT 

T 

.£_V (k) = - f d T' Jf(k )V J..Le -x~(.t ){-r--r'), (A2. 9b) 
0 

and 

(A2.9c) 

Here .tv (k) and to (k) vanish initially due to the isotropy and ~g(k) is the initial 

value of ~s (k ) . These expressions can then be used to eliminate the internal 

parameters from the expansions (A2.4) of the dependent parameters. The 

expressions for th e affinities Ai(k) become 

and 

A8 (k)/p0 = a~(k) + J.Lf(k)(c - c0 ) + bf(k)e + a 8 (k)r(k) 
~ ~ ~ 

A0 (k)/p0 =s{(k)£ 0 +a0 (k)~0 (k) 

T 

.Av(k)/p
0 

= -av(k)jdT' Jf(k)VJ.Le->-~(.t)(-r--r') . 
0 

Substituting A8 (k) into the linear phenomenological relation (A2.6a) gives the 

fluid flux as 

where 

" 

r T 

.sf..tiPo = -J~lVJ..L - IdT'J<V(T -T')VJ..L(x.T') 

J<V ( T) = ) J a v (k )Jf (k )e-A"(.t)-rdk . 
~I" 

(A2.1 0) 

(A2.11) 

Substituting A0 and As into the remaining linear phenomenological equations 
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(A2.6) and subtracting the resulting expressions for the viscous pressure tensor 

from expansions {A2.4) of the equilibrium stress gives the total stress: 

and 

1 ~ ~ J 3tr(u -II)Ip0 = b0 + vf(k)a~(k)dk +(be; 
I' 

+ J vf(k)J..L((k)dk)(c - c0 ) +[be+ t vf(k) b((k)d.k]e 

+ j (b((k) + vf(k)as (k))r(k)dk + ~V·v 
I' 

(~0 -ll 0 )/p0 = [sc + J vf(k)s((k)dk~ 0 

r 

+ J (s ((k) + vf(k )a 0 (k) fto (k )dk + tf' (Vv ) 0
. 

p 

Using (A2 .9a,c) to eliminate the internal parameters from these equations 

for the stress, we obtain a relation between the stress and the history of the 

concentration and displacements: 

and 

where 

T 

1 ~ ~ J ac 3tr(a -II)/p0 =B0 (T) + 
0 
dT'[ Bc; (T-T')~T' ) 

+ B~:(T- T') ~ r) + Bv(T- T' )V·v (x.. TJ] + ~V·v 

B0 (T) = bo + j[v[(k)a~(k) + (bt(k) + v[(k)as(k)) 
I' 

as(k) 
x (~~(k)e-.k!(k)T- a: (k) (1 - e->-.•(k)T)]dk , 

Bc;(T) =be+ J [-b({k){1 - e->-.•(k)T) + vt(k)as(k)e->-.•(k)T] ~!~:; dk , 

Be( T) = b 1: + t [ -b ((k )( 1 - e ->-.•(k)T) + v[(k )as (k )e ->-.•(k)T] : !~: ~ dk , 

(A2.12a) 

(A2.13a) 

(A2.1 3b) 

(A2.13c) 
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1 01 

Bv(i) =-j (b((k) + vf (k )as(k ))vf(k )e-)..~ (k )-rdk , 
p 

Sc{;) = s~ 
- J r[S((k)( 1 - 2-)..o(k)T)- 11f(k)a 0 (k)e-)..0 (k)-r] S((k) dk 

F a 0 (k) 

Sv(i) = -j(s((k) -vf(k )a 0 (k)) vf (k)e ->-0 (k)-rdk . 
p 

(A2.1 3d) 

(A2 .1 3e) 

(A2.1 3f) 

Substituting the expression for ~s into the expansion of J.J- in (A2.4a) gives 

where ( ~) denotes the convolution product, 

and 

1 
y-Do (i) = 
~ 

T 

!~ = jJ (; -i')g (; ')d;' 
0 

l'o + J [ t:(k )e -A'(• l• - ~~~ ~ ( 1 - e -A'(• l•)l'!(k)] dk 

-1 D(;) = J..Lc- JJ..L!(k) (1- e->-~(k)-r]dk 
J~ _pa (k) 

and the fluid flux is 

rt 8c 8e I .J.tlp0 = -11 D(;)~ 
81 

+ D~(;)~ 
81 

+ Dv(i)~i1·1L 

+ f ~(1- i')il[D(; ') ~ ~~ + D,(; ') ~ ~~ + Dv(r) ~v·vld;', 

(A2 .14) 

(A2 .1 5a) 

(A2 .15b) 

(A2 .15c) 

(A2.15d) 

(A2.16) 
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Equations (A2.: 2) and (A2.1 6) give t he desired relations t hat allow us to 

replace the fluid flux and stresses in the concentration equation and obtain a 

system in the unknowns c , u , e and v . Before writing out this system, however, 

it is useful to do some manipulations on the stress relations which will 

s implify the results . 

The gradients in (x ,t) and (x.:r) coordinates are related (up to linear terms 

in eii) by (Al.l2) as 'il = 'ilx. - ~ 'ilx. ( where~ operates on the gradient like a matrix 

on a vector) . \-. e have the identity 'iliJL = ~~ so that 

and 

Bvi a 1 ~ ~ 
'il ·v = 'il v- ~t ··- = - (e- - e ·t ) - x.- LJ t] a . a 2 

ij XJ I 

~ ~ ae ~ at 
'ilv =--e - . - a; a; 

Using these relations in the expressions (A2.1 2) for the components of the total 

stress gives the components of the stress tensor as 

( aij - Ilij )/Po 

r ac 1 ae 1 I a '- ~ = O·· [B. (;) + B (;) -- + - r..(;) - - - *-<77 6(;) + 77(1)) -~t ·t ) 
t] 

0 c a; p 0 a; 2 ° a; (A2.17) 

2 at ·· 1 ae~e · + - G(;) - ; - -;;-(Sv(;) + V'o(;)) -L: eik --1 

Po a I 2 le a; 

where 

l_ r..(;) = B£(;) + Bv(; ) + VSo(;)- -
3

2 G(;), 
po Po 

~G{;) = Sc(i) + Sv{i) + V'o(;) , 
Po 

{A2.18) 

1 1 
77(1) = Bv(i)- 3Sv(r) , 77o = tr - 3V'. 

~ a ~ ~ ~ ae 
The second-order terms 77 (1)- a; (e ·e ) and Sv{;) •e ar contribute only terms of 

order I I~ II to the system, assuming that 77(1) and S 11{;) are bounded functions . 

The momentum equation contains the gradient of the stress, and taking spatial 

derivatives of these terms 

T 

l ~aa 17-
8
8 (~ ·~ )) I = 1-

8
8 !17 <' - ;')~aa e ·~)d;') l 

Xi I Xi 0 I 

~max [177 (1')1]1 aa (l: ·~) l 
T'E(O,T) Xi 
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and 

Leaving out these terms, equations {A2. 16) and {A2. 17) for the fiux and stress 
~ 

components imply that c, e, v and u satisfy 

T T 

+ V f dT'.K" (T- T' )V f dT' '[D (-r' - T") ~(x_. T") 
o o aT 

(A2 .1 8a) 

+ De( T' - T") ~~ (X. T") + Dv( T' - T" )V·v (x.. T")] 

and 

T 

av f [ ac 1 ae ] 
a = V .8t (T- T') 3a X, T') + - A(T- T') -a (X,T') d-r' 

T o T po T 

(A2. 18b) 

The stress on the system is given, to first order in the eii by 

The kernels D, Dr. , Dv, K" , Be, A, G and viscosities 77° and V' must be determined 

or approximated from knowledge of the behavior of the materials . 

Note that no mention of the internal variables remains in the final model; 

their behavior has been consolidated into what is observed macroscopically, the 

memory of the material. Therefore , this model could have been proposed from a 

purely phenomenological point of view, without any mention of the 

concept of internal parameters. 
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c. Model with nonlinear concentration dependence. In the previous sec-

tion, we developed a model with only linear dependence on the concentration. 

We want to extend this model to incorporate more general dependence of the 

material properties on the concentration, while still retaining the assumptions 

of small strain and internal variations. For simplicitv we wi11not take into 
- . ' 

consideration the quadratic dependence of the chemical potential on the strains 

and internal parameters, and we shall not discuss questions of stability. 

When the chemical potential depends linearly, and the phenomenological 

coefficients do not depend at all, on the ,!Ut) , then it is obvious that the 

result of the previous section ( that the£ (k) can be ignored) remains valid. The 

linear phenomenological relations (A2.6) are assumed to hold; however, the 

linear phenomenological coefficients are no longer constant , but instead are 

functions of concentration. 

For a system with small strains and internal parameters which remain near 

their equilibrium values, we can expand the dependent parameters in the 

strains and the t (k) . If we assume that the linear terms in the expansion are 

sufficient, then for an isotropic system 

d.b0 d.a o 
J..L = J..Lo(c) + -d E + J -d. (k)r(k)dk) 

c I' c 

A5 (k)/p0 = a 0 (k;c) + bf(k;c)t: + Jas(j,k ;c)r(j)dj~ 
I' 

U0 /p0 =s~:(c)""i 0 + Js t(k;c)i: 0 (k)dk> 
I" 

A0 (k)lp0 = St(k ;c)eo + J a0 (j ,k ;cfC(j)dj, 
I" 

(A3.l a) 

(A3.lb) 

(A3. l c) 

(A3.l d) 

(A3.le) 



1 05 

and 
(A3.1f) 

Substituting these expressions for the a ffinities into (A2.6 b ,d ,g) givespnce again, 

a continuum of ordinary differential equations for each fixed value of X. which 

this time are of the form 

where 

d~(~) = -JA(k ,j ; c (;))~(j)dj + f (k ,; ) 
1 

I I 

A(k,j ;c ) = jL (k ,L;c)a (L,j ;c)dL J 
I 

and wher e we have supp r essed the~ dependence . 

(A3.2) 

(A3.3) 

We assume that there exists a unique fundamental solution kernel .P(j ,k ;T) 

which solves the homogeneous equation with the initial condition that 

.P(i ,k :o) = o(j -k) (A3.4a) 

and that .P has an inverse q,- 1(j ,k ;r) for all time 

J dk .P (j ,k :•).P- 1(k .z :•) = o(j -z ). 
I 

(A3.4b) 

Then 

~i (j ,k ;·d = J A.(j ,l ;c (-r )) .P(l ,k ;c (-r )) 
dl 

(A3.4c) 

and solutions of the inhomogeneous equation can be written as 

t 

Hk ;,) = j.P(k ,j ; ,)~0 (j)dj + JdejQ (k ,j ;; ,e)f (j,e)dj 
I 0 I 

(A3.5) 

where 



and t0 (k) = ~(k ;0). 
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Q(k ,j ;T,e) = f d1 !fl (k ,l ;T)Ifl - l (l ,j ;e) 
I 

(A3.6) 

The values assumed by the kernels lfl (k ,j ;T) and Q(k ,j ;T,e) depend on the 

history of the concentration; lfl(k ,j , .) depends on the concentration for t imes in 

the interval (O,T) , while Q depends on the concentrations between e and T . 

~his latter relation is seen by multiplying the differential equation for lfl by 

!fl-1(l ,j ,e) and integrating over l , 

:t jlfl (k ,l ; •)~-1 (l ,j ;e)dl = J ll.(k ,l ,c ( T))!fl (l , m·~·)lfl- 1 (m ,j ;e)dldm 
I I 

or 

~Q(j ,k ; T , e) = jll.(k ,l;c(t))Q(l ,j ;-r ,e)dl 
vt I 

and 

Q(j ,k ;e. e) =I 

Thus Q depends only on the values of c for times in (e,T) .) It is important to 

keep this dependence in mind; for simplicit)j we will not write it explicitly. Sub­

stituting the expressions for the forcing functions into the formula for t (k) 

gives 

r (k) = jlfls(k,j ;T)tg(j)dj 
r 

'T 

- J de J Qs (k ,j ;T,e) [~.~f(j ;c ( B))V'·v (e) 
o r 

+ J dl Ls(j ,l ;c) [a 0 (l ;c ( e)) + b(( l ;c (e))t:(e)]dl]dj 
r 

'T 

f' (k;x.T) = -Jdef Qv(k ,j ;T,e)J((j ;c (e))dj V'J.L(e) 
o ? 

(A3.7a) 

(A3.7b) 
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.,. 
?' 0 (k;x.T) = -Jdej Q0 (k ,j ;T ,e) [ vf(j ,c) (V'v (e))0 

0 I" 

+ J L 0 (j ,l ;c (e))sf(l ;c (e))dl ;;o (e)] dj 
I" 

(A3.7c) 

where we have assumed that .tv and "to are zero initially, and have left out the x. 

dependence. 

Using these expressions to eliminate the internal parameters from (A3.la) 

for f..L, 

(A3.8) 

for each fixed value of x.. where 

(A3.9a) 

Mt:(T,e) = J ddao (k ;c (T))QS (k ,j ;T,e)Ls(j ,l ,c (e))bf(l ;c (e))dl dj dk (A3.9c) 
p c 

and 

Mv(T,e) = Jddao (k ;c (T))QS (k,j ;T,e)vf( j ;c (e))djdk. 
p c 

{A3.9d) 

Eliminating the internal parameters from the expansion of .L1. ~ and substituting 

the resulting expression into the linear phenomenological equation (A2.6a)> gives 

the fiuid fiux as 
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.ftiPo = -J~(c)'VJ.t + J XV (T, e)'V~-t(e)de (A3.10a) 
0 

for each fixed value of X. where 

f(l'(T,e) = J Jf(k ;c (T))Cl'(k ,j;T,e)Jf(j ;c (e))dj dk . (A3.1 0b) 
I' 

,.. 
Substituting expansions (A3.1c,e) for As and A0 into the remaining two linear 

phenomenological equations for the components of the viscous pressure tensor, 

and subtracting the result from equations (A3.1 b,d) for the components of the 

equilibrium stress, gives the total stress tensor in terms of the independent 

parameters as 

and 

where 

and 

1 "' ~ 3tr (u -II)Ip0 =lo (c) +l,(c)e 

+ J I f(k ;c)f' (k)dk + VS(c)'V·1L 
I' 

(A3. ll a) 

(a0 
- fio); Po = F,(c )'"f:o + J Ff(k ;c Yt 0 (k )dk + rf'(c )('Vv )0 

J (A3.11 b) 
I' 

lo (c) = b0 (c) + J vf(j ;c) a~ (j ; c)dj, 
I' 

I ,(c) = b,(c) + J vf(j ;c )bf(j ;c )dj, 
I' 

I f(k ;c) = b f(k ;c) + J vf(j ;c )as(j ,k ;c )dj, 
I' 

F,(c) = s~:(c) + J vl(j ;c )s E(j ;c )dj, 
jO 

(A3.12a) 

(A3.12b) 

(A3.1 2c) 

(A3.1 2d) 
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F;.(k ;c) = s;.(k ;c) + J vf(j ;c)a 0 (j ,k ;c )dj . 
r 

(A3.12e) 

Usin g (A3 .7a,c) to eliminate r and 1o , we end up with 

and 

where 

and 

T 

1 .... .... J 3tr(a - ll)/ Po = [B (T,8) + B,(T,8)t:(8) 
0 

+ B 11(T,8)V·v (8)]d 8 (A3.13a) 

T 

(~ 0 
- ll 0

)/ Po = j [S,(T,8)-;; 0 (8) + Sv(T,8)(Vv (8f ]d 8> (A3.13b) 
0 

B (T,8) = 6(T - 8) [1 o (c) + J f ;.(k ;c (T)).P5 (k ,j ;c )a(j )djdkl 

(A3.14a) 
- J (? (j ,k ;T,8)ft.(k ;c (T))L5 (j ,l ;c (8))a 0 (l ,c (8)) dk kl 1 

I' 

B,(T,8) = 6(T- 8)/ , (c) 

- J (? (j ,k ;T,8)f;.(k ;c (T))L5 (j ,l ;c (8))bf(l ;c (8))dj dk dlJ 
(A3 .14b) 

I' 

Bv(T,8) = 6(T- 8)V' (c) 

- J Q5 (j ,k ;T,8)f ;,(k ;c (T)) v[(j ;c (8))dj dk J 
(A3.14c) 

I' 

S,(T,8) = 6(T- 8)F,(c) 

- J Q0 (j ,k ;T,8)F;.(k ;c (T))L0 (j ,l ;c (8))st.(l ;c (8)))dj dk dl 
(A3. 14d) 

r 

S 11(T,8) = 6(T- 8)V' (c)- J Q0 (j ,k ;T,8)Ft.(k ;c (T) )vf (j ;c (8))dj dk .(A3 .1 4e) 
r 

Substituting the expression for the fluid flux into the concentration equation, 

the system of equations which describe the moments of the diffusion driven 
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swelling process are 

'T 

:. = V'·(;.u(c )v,u) - V·J J<V (x. T,B)V,u(x,.e)d e 
0 

av 1 - - - -BT =V(3tr(u -ll )/p0 ) +V'·(u 0 -ll 0 )/p0 

with the chemical potential and stress given for each fixed value of .x. by (A3.8) 

and (A3.11) . Each of the kernels appearing in these relations. which have a 

specific time dependence, depends on the past history of the concentra-

tion. 
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