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ABSTRACT 

In Part I, a method for finding solutions of certain diffusive

dispersive nonlinear evolution equations is introduced. - The method 

consists of a· straightforward iteration procedure, applied to the equa

tion as it stands (in most cases), which can be carried out to all 

terms, followed by a summation of the resulting infinite series, 

sometimes directly and other times in terms of traces of inverses of 

operators in an appropriate space. 

We first illustrate our method with Burgers' and Thomas' equa

tions, and show how it quickly leads to the Cole-Hopft transformation, 

which is known to linearize these equations. 

We also apply this method to the Korteweg and de Vries, . nonlinear 

(cubic) Schrodinger, Sine-Gordon, modified KdV and Boussinesq equations. 

In all these cases the multisoliton solutions are easily obtained and 

new expressions for some of them follow. More generally we show that the 

r~arcenko integra 1 equations, together with the inverse problem that 

originates them, follow naturally from our expressions. 

Only so 1 uti ons that are sma 11 in some sense (i.e., they tend 

to zero as the independent variable goes to oo) are covered by our 

methods. However, by the study of the effect of writing the initial 

iterate u1 = u1(x,t) as a sum u1 = u1 + TI1, when we know the solu

tion which results if u1 = u1, we are led to expressions that describe 

the interaction of two arbitrary solutions, only one of which is small. 

This should not be confused with Backlund transformations and is more in 
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the direction of performing the inverse scattering over an arbitrary 

11 base 11 solution. Thus we are able to write expressions for the inter

action of a cnoidal wave with a multisoliton in the case of the KdV 

equation; these expressions are somewhat different from the ones ob

tained by Wahlquist (1976). Similarly, we find multi-dark-pulse 

solutions and solutions describing the interaction of envelope-solitons 

with a uniform wave train in the case of the Schrodinger equation. 

Other equations tractable by our method are presented. These 

include the following equations: Self-induced transparency, reduced 

Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher 

order and matrix-valued equations with nonscalar dispersion functions 

are also presented. 

In Part II, the second Painleve transcendent is treated in con

junction with the similarity solutions of the Korteweg-de Vries equa

~ion and the modified Korteweg-de Vries equation. 
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INTRODUCTION 

In the last ten years there have been many developments in non

linear wave theory, particularly in the aspect concerning exact 

solutions. Before the paper qy Gardner, Greene, Kruskal and Miura 

(1967) very few instances of nonlinear equations exactly solvable were 

known outside the range of hyperbolic theory, and no systematic way of 

treating them was available. Gardner et al. were able to relate the 

Korteweg and de Vries (KdV) equation 

U.t, + " U. l.l:. + U.:xxx. = 0 

to an eigenvalue problem 

cp"$:111! + lL tp = ).. cp , 

in which the solution of the KdV equation appeared as a potential, such 

that its spectrum remained invariant with. time and the evolution of the 

scattering parameters could be computed explicitly. Thus, by the process 

of doing a scattering problem at t = 0 and an inverse scattering problem 

fort> 0, they were able to find a linear integral equation for the 

initial value problem of the KdV equation and derive a number of impor

tant results. These include the explicit solution for the interaction 

of any number of solitary waves; this problem corresponds to a vanishing 

reflection coefficient in the scattering problem. 

Lax (1968) ~ reformulated the method, opening the way for more equa

tions to be solved by the inverse scattering transform, as the technique 

introduced by Gardner et al. has come to be known. In 1972, Zakharov 

and Shabat found an .eigenvalue problem with which they were able to solve 
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the nonlinear cubic Schrodinger equation 

Also in 1972, Wadati applied the same eigenvalue problem to solve the 

modified KdV equation 

.a. 
U. t + GJ lL Ux + U. ='X x = 0 • 

Several other examples of physical interest have been found since then, 

including not only partial differential equations, but difference equa

tions and classical Hamiltonian systems as well. 

The main difficulty with this method is in finding the appropri

ate eigenvalue problem for a given equation. In fact no~ priori way 

of deciding whether a given equation is going to be solvable by this 

method is known, and certainly there is no systematic way of producing 

the eigenvalue problem. Most of the work done in the field so far seems 

to have gone in the other direction. That is, given an _eigenvalue prob

lem, find which interesting equations can be solved by it. 

It is the purpose of the first part of this thesis to investigate 

the problem of finding alternative approaches which bypass some of the 

difficulties, and to learn how some of the more standard perturbation 

procedures, so successful in other areas, would fare on the particular 

equations solvable by the inverse scattering transform method. We are 

also interested in obtaining the linear integral equations for the 

initial value problem directly from the evolution equations, without 

the necessity of invoking a scatte~ing problem. 
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We develop techniques by which perturbation expansions, valid 

in a limited region, can be summed to give the complete solution. In 

the process we obtain various exact solutions and the eigenvalue prob

lems together with the linear integral equations associated with their 

inverse scattering problems. A general method of summing these per

turbation expansions by means of operators is presented. The expres

sions thus obtained might have some usefulness in dealing with the 

asymptotic behavior of the solutiqn for large time, but we have not 

explored this aspect as yet. 

The approach presented is useful not only for the cases covered 

by the inverse scattering transform, but in others as well. We illus

trate this in the first chapter, where we treat Burgers' equation 

'?t + "'-s. "l - "l "So~ = 0, 

and Thomas' equation 

<pZ.) + « "P-x. + fo 413 + ~ lf'~ cp:J = 0 • 

The Cole-~opf (Hopf 1950, Cole 1951) and Thomas (1944) transformations 

that linearize these equations are shown to follow naturally from our 

expansions. 

The second chapter is concerned with the study of the KdV equation. 

In the first section we find a non-uniform perturbation expansiqn for 

the solution. In the second section this expansion is summed in the 

particular case in which the initial iterata is a sum of exponentials. 

Thus we obtain the explicit solution for the interaction of any number 

of solitary waves. In the third section a linear integral equation for 
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the solution is obtained from the perturbation expansion, from which 

it follows naturally. The eigenvalue problem associated with the 

KdV equation is also shown to follqw from the expansion. In the 

fourth section the perturbation expansion is summed in a very general 

setting. The sum is expressed in terms of the trace of the inverse 

of an operator in a Hilbert space. An example is presented in 

section five in which the operator can be written as a composite of 

Fourier transforms. In the sixth section the problem of inversion 

is treated; that is, given initial values, find the corresponding 

parameters of the perturbation expansion. To do this we use the 

eigenvalue problem and show that the natural parameters of the expan

sion are precisely the scattering parameters. In the seventh section 

we study how the solution transforms when the parameters of the expan

sion are transformed. Formulas that describe the interaction of any 

number of solitary waves with a given arbitrary solution are found. 

The basic solution might be, for example, a cnoidal wave. The rela

tionship of our expansions with the Backlund transformation for the 

KdV equation (Wahlquist and Estabrook 1973) is also presented in this 

section. Finally, in section eight, other equations that are solvable 

by the same type of perturbation expansion as the KdV are studied, in

cluding some nonlinear matrix partial differential equations. 

The third chapter is concerned with the study of the cubic 

Schredinger equation and the results follow the same lines of those of 

the KdV equation. In particular, we write explicit formulas for the 

interaction of envelope-wave solitons with a uniform wave train and the 

multisoliton solution of the vector-valued cubic Schrodinger. 
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In the remaining chapters of the first part the following equa

tions are studied: 

(Modified KdV) 

(Sine-Gordon) Utt _ 'Zlx.:x. t ~iln U = 0) 

and 
(Boussinesq) 

In all cases we find the multisoliton solutions, linear integral equa~ 

tions and eigenvalue problem. The Miura transformation between the 

modified KdV equation and the KdV equation (Miura 1968), is shown to 

follow naturally from our expansions. 

Finally an appendix is added to provide detailed justification 

of some questions discussed in the main text. 

The main difficulty of our approach lies in the algebraic manipu

lations needed. A lemma, which is presented in the Appendix, proves 

helpful in th.is, The method has some common points with the one pre

sented by Hirota (1971, 1972 ab, 1973ab). However, we do- not transform the 

equations previous to operating on them, and our expansions do not 

terminate (two main features of Hirota's work). From our approach, we 

obtain in some cases compact formul~s for multisoliton solutions which 

are equivalent to Hirota's expansions. 

The second part of the thesis is a short note dealing with the 

similarity solutioQ of the KdV equation. It is shown that the ordinary 

differential equatiQn for this similarity solution can be transformed 

into a second Painleve transcendent equation 
II . 3 

~ = '?~ + ~~. 
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We then study a special class of solutions of the latter. These solu

tions do not seem to have been treated in the literature before. 



-1-

.Part I 

EXACT SOLUTION OF SOME NONLINEAR EVOLUTION EQUATIONS 
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CHAPTER 1 

BURGERS I AND TH0~1AS I EQUATIONS 

1.1 Burgers' Equation 

We consider Burgers' equation (Burgers 1948), 

(1.01) 

and look for solutions in the form of perturbation expansions for small 

amplitude. We introduce an auxiliary "small" parameter E and write 

c:o 
7 (x, t) = [. E.-n '?, (x, t) ..... , ( 1.02) 

We consider solutions such that '?TI-o as x._co , for all T\ , -and 

assume that (1.02) is valid for large x. Then we try to rewrite it so 

as to have a solution valid for all ~ . 

Substituting (1.02) into (1.01) and collecting equal powers of~ , 

we have 

"r\-1 

'?"!\, t - '?,,u = - J'f• "? d' x 1 -n-J ' ( 'f/ -n ~ 1). (1 .03) 

For 1\=1 , we have 

'll,t - '?t,ltlt = 0 · 
( 1.04) 

This is the linear, stable, heat equation and we choose to solve it by 

Fourier transforms in the form 

'7
1 

= )<ai..k} e.xp(ik:c-k\)dA(K). 
4: 

(1.05a) 
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To allow flexibility in our notation we let d)...(k) be an appropriate 

measure on the _complex plane q: . For example, (l.05a) may be a super-

position of real exponentials plus a usual Fourier transform 

CIO 

11 = .£ a.m exp(-K,.,~+~~t) + J<a..tkl ex.p(.i.kx.-k\)j3(1.)dk. 
(1.05b) 

-CD 

The factor(~k)has been added in (1.05) for convenience in what follows. 

At the second order we have 

'?a.,t - "la1~x:- 7)
1
,x "1, = ~('fL k~ k~>ex.p[.i.(k1+k~>x. _( k~ +k~>t] d).(k1l d ~lka.). 

«:a. 

The right hand side of (1.06) ~uggests a solution of the form 

'?~: l ~a.{k.Pk..,l e'(p[.i..O~~.+ka.)x:.-<l\+~>t]d).(k1)d~(ka.l. 
ca. 

( l. 06) 

(1.07a) 

we have that (l.07a) solves (1.06) if 

( l.07b) 

We assume that any homogeneous solution of (1.06) that may be added to 

"Ia. has been absorbed on ''h . 

For 1'1: ~ , we have 

( l. 08) 
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We take 

S . ,. ~ :a. a. k 
1nce -<k, + k,_+k,) +<k,+ka.+ k3 ) = .1-k,ka.+ 4 k, k3 + 4 ka.k3 : .tk,ka.+ 4(k,+ka.> 3 , we 

have 

( 1.09b) 

Similarly for -n=l.f we find CE£j:..1.tk11 and at this stage it seems 

for all 11 • To check this we take 

(1.10) 

where the meaning of n., and (d>.(k\l'TI should be clear from (1.08). 

Substituting (1. 10) into (1.03) we find 

Since 

(1.12) 

we have 

"ft-.l 'ft-1 

f"'C~, ... ,k11 ) li'{M1+···+kJ)kj+l =--~ ~ lk1+···+kJ) ~}k1 , ••• ,kJ) ~ll-j(k,i+u···1 .k,l • 

This last equation is obviously satisfied by 
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(1.13) ' 

The actual expressions for the ~~~s are not un~que, since differ

ent forms can 1 ead to the s arne '7-n 1 s. For ex amp 1 e c}"" = .i.kTI 1 (.Un )( k1. +··· 

···+"'--nl orc.t/aJ<k.~.+ka.l could be used. The simplest one for subse-

quent m~nipulations is usually clear. 

Formulas (1.02), (1.10) and (1.13) give 

where 

We then have 

1 :: e.) e~p(.i..kx -~i) d ~(k). 
4: 

(1.14) 

(1.15) 

(1.16) 

The function ~ , and therefore 141=1-1 , is a general solution of the 

heat equation. Thus (1. 15) and (1.16) provide us with the Cole-Hopf 

transformation (Hopf 1950, Cole 1951), '7=-a.axln<p which linearizes 

(1.01). In the final form the solution is not limited to small .ampli

tude and the parametere provides only a consistent ordering procedure. 

We observe the key role played by the linear dispersion relation 

associated with (1.01), i.e. <":,(w,k):_.t(J.)+Ka.=o , which defines the 

basic (linear) harmonics c.xp<.i.k:x::.-..i..(J.)t) from whose interactions the· full 
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nonlinear solution is built up. In successive approximations 

G(wJ.+···+w, 1 k1 +···+k.,> appears multiplying ~"n, as in (1.11). The 

key steps concern the decomposition of this expression in a way compat

ible with the nonlinear terms, as is seen immediately after formulas 

(1.07a), (1.09a) and in (1.12). 

It is possible to solve (1.01) when~ is square matrix valued. The 

only change that has to be introduced is to take dA(k} matrix valued. 

Also, because of the noncommutativity of the product involved, (i) the 

~,·s are now uniq~ely determined, and (ii) the last equality in (1.16) 

does not hold. 

1.2 Thomas• Equation 

Consider now Thomas• equation, which describes certain chemical re-

actions. The equation (Thomas 1944) may be written 

(1.17) 

where <X ,f.' and'( are constants. Again we introduce an auxiliary 11 Sma1l 11 

parameter e. and write 

CIO 

<p(x.,~) = l( e.'" <p.,(x,d) • (1.18) 

Then, if k and .D. satisfy the linearized dispersion relation G,(k,l): 

we introducet 

tBy analogy with (1. 10). 
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\ ,1; .i.!l.,.. ] , tp,: j '!TI(kl. 1 ••• 1 k,) e_ (d..l((k) J 

ct"' 

(1.19) 

where d..l-((k) is an appropriate measure on <J: • After some manipulation 

we find ~ = 1. , ~ = -1. 
l. . a. ol. 

.t , ! = t and we propose the genera 1 fonn 
3 3 

"1'1+1 TI-l 'TI 
This is equivalent to q>..,..:.(-1) L tp1 , 
checked. Thus we have 

(1.20) 

, a fonnula that can be easily 

(1 .21) 

Since g>~ , and therefore (i.+~'tCf1) 1 is a general solution of the linearized 

equation, (1.21) leads to the transformation l'<p=.l111f) used by Thomas 

to 1 i neari ze ( 1. 17). 
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CHAPTER 2 

KORTEWEG AND DE VRIES EQUATION 

The equation can be taken in the form 

(2.01) 

This equation describes the development and propagation of long waves in 

shallow water (Korteweg and de Vries 1895) as well as many other impor-

tant phenomena where a small quadratic nonlinearity is combined with a 

cubic dispersion relation. 

2.1 Solution by Small Parameter Expansions 

Substituting 
co 

u<.x, t) = L f.
11 u.,.. C.x, t) 

~ (2.02) 

into (2.01), and collecting equal powers of the "smal J" parameter f. , 

we obtain 

'TI-J. 

'U.,,t. T ll,,x.x.x=-~ dx ~ Ud 'U.11-J I (Y'71~1.). (2.03) 

The function u..1 satisfies the linear Korteweg and de Vries (KdV) equa

tion, so that we can take 

u..~ = ~ (-k) ex.p(.t(kx+ k3
t)] d~(k) J 

c (2.04) 

where, as before, d~<k) is an appropriate measure on the complex plane 
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<l: and the factor (-K) has been introduced for convenience in what fol-

lows. 

For nc.l., we have 

where 

A solution in the form 

req u i res i. ( ( k; + k!, > _ ( k, + ka )~ J ~ ( k1 , k~) = _ 3 t < "1 + Ka.) k1 k~ . a. 

~~+k~-<~1+K.?.l~=-3H1Ha.Clii.+ka.l we have ta.= 1.. Thus 

tn .1. 
u

4 
= ~ e a. [d '>.<kl]. 

ca. 

For -n _:3 , we have 

where 

(2.05) 

(2.06a) 

Since 

(2.06b) 

(2 .07) 



-10-

A solution in the form 

1L3 = ~ ~3 (ks,, ka,, k3) etn3 [d )..(k)]3 
c:l 

Thus 

In a similar way we obtain 

At this ?tage it seems natural to propose 

In order to prove this we observe that if 

is substituted into (2.03) we obtain 

(2.08a) 

we have 

(2.08b) 

(2.09) 

(2.10) 

(2.11) 

(2. 12) 
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i s the linear dispersion relation of (2.01). 

Introducing ~.,.<'1'1'1">,.1), as given by (2.10), into (2.12) and multi_plying 

through by ~;1 we find we must prove that 

This is a generalization for all~ of the formulas found in (2.06) and 

(2.08) for the cases ,=a. and -n=.3 respectively. To prove (2.13) we note 

that 
1'1-.J. 

_.3.i. [. Oli.+···+R;l<R. + k. ><"· ••.• h.,.l.-3.i.( C k.k . ltt .. + L R;.it,'-.a]::. 
£. G J J+J. ~+i. I. J 4 o 

i.Si. $j (!~TI ~<.i.<j o$1 ~TI 

An alternative proof using (A. 102) is al$0 possible. 

From (2.02) and (2. 10). we now have 

(2.14) 

As opposed to what happened in the case of Burgers• and Thomas• equa

tions, it is not possible now to do a straightforward summation of the 

infinite series in formula (2. 14). Different harmonics are now coupled 

together by the factors No simple dependent 

variable transformation will linearize (2.01). However, it is still 



-12-

possible to perform the summation of (2.14) in a wide variety of cases. 

Its similarity with a geometric progression (which in fact it is, in 

the appropriate sense) will be exploited to do this. Moreover, the 

eigenvalue ·problem associated with (2.01) (Gardner et al. 1967), as well 

as the Marcenko linear integral equation of the corresponding inverse 

problem, is implicit in (2.14). Thus our perturbation method provides a 

simple and straightforward way of obtaining and solving the proper in-

verse scattering equations. 

Introduce 

(2.15) 

and assume that, as x -co , b(:x:,i) as well as the n+l'l tenn of (2.14) 

tend to · zero sufficiently fast. Then we can write (2. 14) as 

(2.16) 

We note that bca.x,-t) satisfies the linear KdV equation and thatu. is real 

if and only if b is real. The latter is equivalent to d).(R):_d}.*(-k*). 

2.2 Multisoliton Solutions 

Assume now that bcx,i) is a superposition of real exponentials, 

which we take in the form 

(2.17) 

where the a..,•s and x.,.:s are positive real constants and p<:x:,t) is the 

column real vector given by 
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(2.18) 

The motivation for writing b(z.+'j,tl as . a product is obvious from (2.16) 

since then we will be able to perform each of the integrals over z
1 1 

Z.a. I z.._ J etc. separ~_tely, i.e.' we have 

(2. 19) 

This is a geometrical series, and if "f>=BC:x:,t) is the square matrix given 

by 

f- T 
.:B(:x:,t) =..!. J dz. p(z.1t.} p (z,tl : 

01.." 

(2.20) 

we can sum (2.19) to 

(2 . 21)_ 

We observe that the matrixB, as given by (2.20), is real, sym

metric and positive definite. The positive definiteness of:B is a 

consequence of the fact that, for any arbitrary column real vector 

'1. f= o , we have 

T rz" T ]~ 
cz .B(:x:,t).~ = !_ j dz C~.p<z.,t) > o J 

X 

(2.22) 
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since Cj cannot be orthogonal to pcz.,t) for all x~z. <co. Alternative1y, 

(A.202) can be used to compute the principa1 minors of:B, all of which 

are positive. It follows that for E..>O formula (2.21) is nonsingular. 

In particular, taking c:i. and making use of the identity expT~t = 

::.de-!: ex.p , which implies Tn.R:n:ln. de.t, we have 

(2.23) 

The last equa1ity in this formula is the expression for the multiso1iton 

solutions obtained by Gardner et al. (1967) and Hirota (1971). 

2.3 Marcenko Integral Equation and Eigenvalue Problem 

In an alternative manipulation of (2. 16), we notice that if the 

following linear operator, defined on functions of two variables, is 

introduced 

(2.24) 

then (2. 16) can be written as 

CXI :TI "' Tl-.1. 
U:: .l.dx L<.-t) ( b ."b)l 1 

1 X:~ (2.25) 

" where b is interpreted as an argument forb in the form b<.x,z.) = 
:b(:c+z1t), and the variable t participates only as a parameter. · It 

is now natural to introduce the function K:K<x.,j 1 t) given by 

J{ ~ Tl ~b'n-1 J2' -1 
: L • .(-~) • b :-E..(I+e.c) .b. 

1 
(2.26) 
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Then the following equations ensue 

U(:x:., t) = ~ 'dx K (x., ::c, t), 

CD 

= K (x,'j,t) +E. b(x+~ 1t) +e.fX<x,z,t) b(z.+~ 1 t)clz. 
'X:, 

(2.27a) 

(2 .27b) 

We can think of these two equations as a . .way of summing (2.14), under 

the assumptions that led to (2. 16). We recognize (2.27) as the Marcenko 

integral equation of the inverse scattering problem. associated with 

(2.01) (Gardner et al. 1967). 

From the definition ofKin formula (2.26), and retracing the 

steps done to get (2.25) from (2.14), we can write 

(2.28) 

This formula provides an alternative definition of K which is indepen

dent of the assumption that lhn b(:x:,i::) :o. =--Since u. is now derived from the functionK, it is natural to ask 

what equations K satisfies. The close relationship between the two 

functions is seen by comparing (2. 14) and (2.28). There must be two 

equati OI)S forK , one i nvo 1 vi ng the time dependence and the other char~c

terizing the~ dependence. The first one must be very closely related 

to (2.01) and is almost trivial to find, as we now proceed to show. 

From (2.28) we see that the effect of the operatorc~+~y) onK is the 
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same as that of the operator ~"' on u. The operator Olt has the same 

effect on both X andu.. Thus, by analogy with (2.01), we are led 
1 

to study C~t+<-ax+'dyl JK and we immediately find that 

(2.29) 

where we have used (2.13), (2.14) and (2.28). The similarity of this 

formula with (2.01) is apparent. 

In the search for the ~-dependence equation we make use of (2.27), 

where time enters ~nly as a parameter. The idea is to find an opera-

"' tor 1 that almost commutes with band at the same time annihilates 

b<x+'J,t). Then applying L to (2.27b) and using (2.26) we should get 

an equation for}( . To simplify our notation we will not display the 

time dependence in what follows. We first study the commutativity prop-
1\ 

erti es of b with respect to a" and ~Y • For any f = t ('x:, ".l) we have 

Therefore 

(2. 30a) 

(2.30b) 

and 
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( 2 . 31) 

Thus, applying (~:.-a~) to (2.27b), _and using (2.27a), we have 

a.~ "b :a.a.K · b - J (~.-~~)K(;c1"1,t) +e. (~1(-~) (:x:,~,i)- E.l.L(x,t) (Xflj,i :0. 

Multiplying by (I -"e.bf1 and using (2.26) it follows that 

(2.32) 

To prove (2.32) directly from (2.28) we simply observe that the 

a. a K effect of the operator <~~t-'d-;) :(dl(-d':l)(~x+'d:l) on is multiplication 

of the integrands in (2.28) by 

(2.33) 

from which (2.32) immediately follows. 

Since neither (2.29) nor (2.32) have cqefficients depending on~ , 

we can separate this variable. We do so by writing 

Kcx,~ 1 t) = ~ "f (x,i, ~) exp [i: <i "j + '1 ~3t >] d.if (f) J 

q: 

(2.34) 

for some measure d..<(<tl on <C • The factor exp('li.{t) is introduced to 

simplify the time dependence of¥ From (2.32) we find 

(2.35) 
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From (2.29) with the use of (2.35) we have 

(2.36) 

We recognize in equation (2.35) the eigenvalue problem associated with 

(2.01) (Gardner et al. 1967), whose corresponding inverse scattering 

problem can be used to solve the initial value problem of (2.01) with 

(2.36) characterizing the time evolution of the scattering parameters. 

These two equations (2.35) and (2.36) will appear again in another con

text, when we study in Section 2.7 the effect of adding a set of Dirac 

d • s to d \0~) in ( 2 • 14) . 

We no"' proceed to write 1f) and d.J.( in (2.34) directly in terms of 

d).. This is trivial if we look at formula (2.28), where 1j is practi-

c~lly separated and we only have to recognize !"'ik,.· 

d.-.,(~)--~ d)..(.t~). 
a.i.. 

It fo 11 ows that 

(2.37a) 

(2.37b) 

It is also easy to check directly from (2.37a) formulas (2.35) and 

(2.36). 

2.4 Operator Formalism 

In this section we wish to sum (2.14) under circumstances more gen-

eral than the ones that led to (2.23) or (2.27). In the process we will 

find formulas that generalize those in Section 2.2. 
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First we derive again the formulas for multisoliton solutions, 

starting now from (2.10). It is quite clear that (2.17) corresponds 

to 

(2.38) 

where M·)is Dirac's ~-function on q: thought as£~ R~t='"Re. l:t, 

Rr=Im ~ and the Cl-m •s and ~m·s are as in (2.17). Substitution of 

(2.38) in (2.10) gives 

= 

"1\ ~ ., T "1'1-.1 
= <- j. > Q)>( L.J p. B.., , . . . em m p = <- j. > ~x .P .B p " """J m.1 ~ a. .,..., , l11,... (2.39) 

.16j ~, 

where p and B are as in (2. 18) and (2.20) respectively. From ( 2 • 39 ) all 
-l. 

the other results in Section 2.2 follow easily. The factor <.X., ...,..Km J 
.a. :a. 

in 'Bm~ma. comes now naturally from the factor ( !Q~ +i:l~+J.)J. in ~, . These 

last manipulations can be generalized to a very general d>.<l:tl, not nec

essarily discrete as in (2.38). To do so we only need to replace the 

matrix :B by an operator on a possibly infinite dimensional space, as 

shown in what follows. 

By analogy with (2.38) assume now that we can write 

(2.40) 

where dp<.lrt) is a non-negative measure on U:: and o. =a.<~> is a function 

defined on the domain i:> of dp<k}. Define now the operator :B and the 
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symmetric bilinear form [· J ·] , both acting on functions defined on~ , 

by means of the formulas 

<:Bp<.tL ... S i.p(.t) <.A.+Rfl.p<R> tO-l dp(R) l (111~ $)), (2.4la) 
cc 

q:,caJ = ~ +<~>~<k> dpOt> = <l.~>, (2.4lb) 
4: 

where 

(2.4lc) 

Ol. 
and <·J ·) denotes the standard inner product in .[ (dr) • The variables 

x and -t enter as parameters in B and P· t We note that :B =:BT and that 

Cll(B=-±PPT, where the transposes are defined with respect to(·,·] .tt 

In terms of :0 and r , 1..1.
111

may be ._expressed as 

T "1'\-.l.. 

u.,., - C-l. )'T\ ax p B p • ( 2 . 42 ) 

This formula follows from (2.10) in the same way as (2.39). If we assume 

that -p £ £Cdp) and that the s i ngul ari ties in the kerne 1 of :B can be 
.... 

taken care of in such a way that B is a bounded operator on .t (dr) , 

then we can sur:n (2.14), for Ue"'Bll<i, to 

tThis dependence is displayed only when needed. 

t+For any operator A and functions t, ~ on f) , transposes are defined 

by 

'· 
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Whenever (:t+e"B) is not invertible, (2.43) is meaningless. However, 

at such points it is the actual solution of (2.01) that has a singu

larity, not the way we write it. 

The functionsb,K and 1f introduced earlier can be written in 

terms of p and B ~s follows: 

. -~ 
where ~ , as an element of 1 (dp) , is given by 't (R}::. al.(A+a.~l pcJ:~l, 

(V~ e: S)). 

As usu_al, the actual expressions for the ~-n's, as introduced by 

formula (2. 11), are not unique. Thus, for example, using that 

c ki.+···+R-n > = (i./a.l[<k~+ka.>+<~a.+k3 )+··· +Ckn+R.i.l] 

equation (2. 14) as 

Substitution of (2.38) in (2.44) gives directly 

we can rewrite 

(2.44) 

il. 
U.: .il.~x Tn.ln ('I+ e.:B) J 

where B is as in (2.20). How.ever, for more general d'l...<R)'s (2.44) 

presents difficulties, since traces of infinite operators are hard to 

deal with, even when they exist. 
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/ 

2.5 Continuous Measures on the Real Line 

It is the purpose of this section to give an example of the opera

tor formalism developed in the preceding section, and at the same time 

to justify the boundedness assumptions made on the operator B . 

In the notation introduced in Section 2.4, let us take asdpOO 

the usual measure on the real line and assume that a.:a.O~), defined 

for --< R <CD, is bounded and square i !ltegrabl e. Furthermore, assume 

that O-(Rl :±~(-R) for all l=\ , so that u. is real. We must clarify the 

definition (2.4la) of .B in this case. Several possibilities are open 

to us, depending on whether we integrate going over the singularity 

R:-1. under it or across it with a principal value. We choose to inte-

grate going over the singularity. Then we h~ve, for ___ any t € J...
4
(dl:t), 

(2.45) 

It follows that if'? is the operator multiplication by 1'•1] is the 

operator multiplication by 1 on the positive real line and 0 on the nega-

tive real line, and F is the unitary Fourier transform 

--
We have 

""0 • -tl 4 
:B '= - ~:It ~ F u F p J 11811 ~ Gl.lT" ( II a. Jl.,..) • 

(2.46) 
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The conditions that lead to formula (2.43) are thus satisfied if 
~ 

IE.I (110.11.,..) < J../~JT. 

-.1. 
We now proceed to show that (I+~) exists for all :x; and i. 

even if <ua.n .. / ... 1./~JT , provided that 

li.m ~up I~ o..(R) _ a.n.~ a.(o) I< Tr/~ and 
R-o 

su.p ta.<l:tll <.1.1.fi3i 
1
(tVfno). 

k:.~ 

For any fixed x and t these two conditions on a. :.a..O:t> trans 1 ate 

into -p<.Rl = a.o~> e:x:.p[i (.Ax+ R3t.)j. Thus there exists 0( independent of~ 

(but not . necessarily independent of :r: and -t ) such that up~-«"-< 1./~Jr. 

Since we have 

where we have used that (F .. U.f")~= o , the existence of CI+Bf
4 

fol-

1 ows immediately from 11 •m .r• u F" (F:a._« I l ll < 1.. 

Under suitab l e conditions u. as given by formulas (2.43) and (2.46) 

vanishes as txl_c:o For example, this is true if a.. is t,miformly 

continuous and ua.u_ < 1. I J~rr1e.1 • 

If we choose in (2.4la) to integrate going under the singularities 

or across them, we obtain 

:B =- Gtlf "F f'U .f"'P ~ 
~ 

II B II ~ .;z.JT ( II a. II co) 
.,J 

in the first case, and in the second case 

:B.l..7T'FG:P, 
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where G is the self-adjoint, unitary operator 

2.6 The Problem of Inversion 

From equation (2.37a) it follows that 

(2.47) 

provided that the same hypotheses that led to (2.16) hold. In this 

case we also have a=o<~> as x.-c:o , and since 'lf satisfies the equa

tion 

(2.35) 

it follows that, for :tm! ">..O, 1f<-x.,t,1>=X<x.,t,fl~(4fi.{c> , where 

X is the right Jost function corresponding to the · scattering problem 

associated with (2.35). That is, "X is defined for "Im!">.,o by 

x...._oo. 

It is our purpose in this section to use this relationship between~ 

and X to write d\(R) in terms of the scattering parameters of (2.35), 

thus inverting (2. 14) ford\ in terr~s of u.. 

First, we write an integral equation for_7f, in which d'A. is in 

the kernel , 

(2.48) 

where This equation follows easily from (2.37a) 
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after the integrat ion over ~ ..... in each tenn of the summation is written 

separately from the others and the change R-n =az.~ is made. Now 

dm(~)*o only for ITnR">~o under the assumptions that led to (2.47). 

Thus we can write (2.48) as 

(2. 49) 

Assume now that dA. is a combination of the cases treated in Sec-

tions 2.2 and 2.5. That is, dTO is given by 

. + 
-+1.0 

J ~0) dm (~:~) = ~.oti. +(1) o£(.ot~)d1 + GZ.i. ~ O(j ~(.LJ(J), <~t)_. 
c --+i..o"' J 

(2.50) 

where ac:aoe(k): 0(*<-~q), -c:c<R<CX> , is an appropriate function of the real 

variable R and the O(J and ~ are positive real numbers. The «;'s and 

o£ evolve on time satisfying the equations OC't.=i.~3o( and ~,t= 8J<;o£J 

In this case, under suitable assumptions on the function~, we have 

U.= 0(1.) a.!l lxJ-ooJ 

and the left Jost function as x--c:o 

I-m!~o. corresponding to (2.35) can be defined. Then for I-m~=o we 

have 

(2.51) 

where T andf3 are the transmission and reflection coefficients respec

tively. 
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We now seek to find a relationship between yJ and ~ . Substitut

_ing (2.50) into (2.49) we have 

(2.52) 

For~ r~al, 1p is bounded as a function of :x: and the same is true for 

the integral term in (2.52). Thus, we must have that the summation term 

in (2.52) is bounded as a function of x for real ! . The latter can only 

h,appen if the :t.i :XC:x.,t1 i...l<j) ,<tiJ), are eigenfunctions of (2.35) with 

the .1<j
4

, <.'d'j ), their corresponding eigenvalues. Without loss of general-

ity, since we can al.ways add new terms to the summation in (2.52) with 

~=o, we can assume that all the eigenvalues of (2.35) are included in 

(2. 52). Introduce now the time dependent constants 

(Vj),and substitute "(.i = c:J"X.J,C'V'j>, and (2.51) into (2.52). Then, for 

l:m. 3 :;._o , we have 

where the asymptotic behavior of i at -co has been used. It fallows 

that, for I-m. ~ <O , 
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Taking the limit Im1-o- in t_his last formula, using the equa-

tion 

q;.!'t 
"lf(~+i.o-}: a.Jtt:.CI(.(-~f)X(-J)e. + 7p(J) :::r. 

a consequence of (2.52), and compar:ing with (2.51), we find for Im.~::.o 

-.+i.O-
'T(f)- 1.+ 1 ~i. ,;a(-'f>CI(<.a.}> dz + ~i. ~ O(.i ~" • --•c.0 - 7'(-f}('~-tl A <\-c.l<d) (2.53) 

The expressiqn for ~(i) in (2.53) is obviously valid not only for 

:Im.~=o, but for ITT\~>., o Using now the well kn~Jn result 

and (2.53) we find atJ= 1./e.'/J , <.'vj) • In particular, none of the atJ 's 

vanishes, so that all the eigenvalues were originally considered in 

(2. 52). 
~ 

) - i.. R t.d We are now r~_ady to write d\(R = e m<k) in terms of the 

scatteri~g parameters of (2.35). From the expressions of the ~J 's in 

terms of the normalization constants ~J , from (2.50) and from (2.53), 

we have 
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2.7 Transformation Properties 

From (2. 14) it is rather obvious that any transformation between 

measures, d}.....__dX , has a corresponding one 1.1...__u! , between sol u-

tions of (2.01) and vice versa. However, a simple transformation on one 

side need not correspond to a simple one on the other side, where by 

simple we mean that they can be explicitly displayed. We give in this 

section two examples in which the transformations on both sides are 

simple. The first one leads to an extension of the formulas in Section 

2.4, which effectively corresponds to doing a small parameter expansion 

around an arbitrary sol uti on of (2 .01), instead of u.:o as in Section 

2. 1. The second example is the Backlund transformation for the KdV 

equation, first found by Wahlquist and Estabrook (1973). 

(I) First we seek to find what is the effect on u of addition on 

the side of d)... . Let 

(2.55) 

where ~<· ), R,., ~x , the a"" 1
S and KTn

1
S are as in (2.38) and (2.17). 

Substituting (2.55) into (2. 14) we find, after some manipulation, that 

oo . ao -> T - \)-~ ~-1. - -> ) 
lJ.! = U.+~ r. (-ef' ( Z:, (-E) D ) ( Z:,(-E.\ ,5\1) ( r_ (.-E.) f\1 I 

" • 1\1 -1. 0 

(2.56) 
'1\•i. 

where the Pu 1 s and ~" 1 s are column vectors and square matrices, respec

tively, given by 
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Thus, if we define the column vector p and the matrix 8 by 

- y p = ~c.-e.) p., co " 
I :B = L (-~) 131>+.1.' 

0 

we have 

From (2.37a), (2.57a) and (2.58) it is easy to see that 

Thus from (2.35) and (2.36) we see that p satisfies the equations 

(2.57a) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

where A is the diagonal matrix with diagonal elements -.l<.~.J"' . The 

following equations are also easy to verify, using (2.57b) and (2.58), 

8 T ( T T . T) ai: =-1.1..pp-ci1.App+.f.PA+fx~ J (2.62a) 

(2.62b) 
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Now letu. be any solution of (2.01), not necessarily representable 

in terms of a measured>.. as in (2.14). Then we can check directly that 

any solution of (2.61) and (2.62) gives, through (2.59), another solution 

~of (2.01). p can be allowed to take values in a Hilbert space with a 

conjugation (see A. 3), with :B and ~symmetric operators - there. 

Equations (2.61) and (2.62a) are consistent, provided that u satis

fies (2.01), and they imply~~ and at. of (2.62b),_ which is then true up 

to a constant. If a sol uti on p of (2. 61) is such that p and _P., ••• vanish 

fast enough as x-oo , then B=<.•Ja.>fpl solves (2.62). 

When .B is a matrix, us i ng that "Bx.=-<•/01.>ppT (2.59) can also be 

written as fo 11 ows 

(2.63) 

Examples 

(i) Take u=xl'=>t for t>o andA diago~al, with real diagonal ele

ments~; then a solution of (2.61), (2.62) is 

1/'- 1{3 :1./3 ('"" T 
pJ:i.o.Jt. At.[-:r.l<'-t.) _A,J(~t) ],<1/j) and ::B=--i~ff J 

where the o.J • s are arbitrary real constants and Ai.( • ) is the Airy func

tion. We note that~ is a real, symmetric and positive definite matrix, 

so that, for £'>0 and t)o, 11.' as given by (2.59) or (2.63) is nonsingu-

l ar. 

(ii) Take l.L::ao and .1\.:o (scalar). 
.:a. 3 a. Then p=rx and ~=-..l.r x _.il.rt, where " . 

r is an arbitrary real number, solve (2.61) and (2.62), then after some 

manipulation we have, from (2.63), 
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I 3 1 ?. t' )_;z. I 
U: ... - ~ x. (x.- ci1."it )(x. + lci1. 1 wn.ere -1::.1::. -1::. + i./OLE rOl. 

We observe that v! (x.:.o). u.'(x.:CDl ... o and that u! is nonsingular for 

x.,t.' ">o. This solution is the same as the one presented by Moses (1976). 

(iii) When u. is a cnoidal wave the first equation in (2.61) is a 

Lame equation of index n= 1. Its solution can then be expressedexpli

citly in terms of u-functions and ~-functions (Ince 1956). We then can 

write explicit formulas for the interaction of a cnoidal wave with a mul-

tisoliton solution. Similar results have been obtained by Wahlquist 

(1976) using Backlund transformation techniques. 

(iv) Floquet theory (Ince 1956) and (2.59) through (2.63) can be 

used to prove that the result of the interaction of a soliton with a 

periodic solution of (2.01) is another periodic solution of the same 

period as the original one. We do not know whether these two periodic 

solutions are actually the same one, saxe for a (possjbly complex) phase 

shift, as in the case of interaction of cnoidal waves with solitons, or 

if a more complicated relationship is involved. 

(II) Introduce now the potential function v defined by U.:.-i.~ • 

The expression for v in terms of d>.. is obvious from (2.14). Let us now 

assume that the transformation d\-dX is such that, for some 1"'£ c 

we have 

(2.64) 

It is then easy to prove by induction that 
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1\-1 . • 

-~ (R.i + Rj-+•) [d ~(kl]J (,H,'(k)]n-J= (1:1.1_i.T) [d).1(kl]
11 

+ (~+i.T)[d}.(I:I)]11J 

from which it follows that, for all -n=.1.~, .•. 

This last formula has an immediate counterpart in terms of ..r and v-' 

or 

(2.65) 

This is the time independent part of the Backlund transformation for 

(2.01). 

2.8 Higher Order KdV Equations. Lax's Sequence 

We might ask what other equations foru. could be solved in the 

form 

(2.66a) 

(2.66b) 
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where e"" ==- (R~+··· ~ ~ .... )x , when the dispersion function cu=c.,;)<~> 

is no longer-k
3 

as in (2.14). For example, we might ask what nonlinear 

equation corresponds to the linear equation -ut.+ax.5 a ... o , i.e., to 
s 

w(~)= R . 

It is clear that if we define, for any function l,)~u<~l, 

then u satisfies the equation 

Ut + ax .r\..w::. 0 . 

(2.67) 

(2.68) 

Now the question is whether .M.v can be written explicitly in terms of u.. 

and its derivatives. Obviously .M.~ .. u and .M.~:-?lu.a._u.x:>c: , where 

the latter follows from the results in Section 2.1. We now search for 

an inductive argument to get .M.k2.-nu, for all n=.o,1,4.,.... In doing so, 

the following identity is useful 

+ ot<b~+··+ b_.><a..s.+··+a..iJCbj+ bj ... ,HbJ•·+···+b.,l) + L [ 
:t.~j<l <Tn-$"1'1 

where a.d and bJ (i.'j~1l:i.,ot,3, ..• ) are arbitrary numbers. To prove (2.69) 
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we first verify it for -n=Lf and then use (A.l02). With bj=~j and 

a.~:u.i· , (2.69) implies 

(2.70) 

where the last L. in (2.69) does not contribute because of its commuta

tor nature. Equation (2. 70) gives .rt.~ ... u in terms_ of rtu , save for an 

arbitrary constant of integration, which . is determined by the boundary 

condition 11.." .. 0 if u :o . We can now write an inductive process that 

gives 1<-n<-u):.ftka"'+.s., (Vn~o) , starting from .K0 (1.Ll=ll., 

(2.71) 

The }{~·s are polynomials in~ and its partial derivatives. The first 

f K a. ~.r I a. t ew are 1 :-3u;_u""'x'.n..~=1ou.+S1Lx+101LU""'x+-u.~~xx, e c. The se-

quence of equations u.-e +ax.X,<1L):o , which by construction is solved 

by (2.66) with U)(R)= R.,~. is the Lax sequence of generalized KdV 

equations (Lax 1968). The particular case -n:. .1. gives back the KdV equa-

tion. 

From (2.67) it is obvious that ..M.u is linear in v . Thus .we can 

write r\..0 for any \J of the form \J(R): jq~(R•) , with~ an entire func-
ao .,. 

tion, i.e., if ~(I>=f+,i" then 1'\...u=~~.,K,<u>. Moreover, ifwe 

assume that dm is such that u,.1'1.~ and all the necessary partial deri\f

atives vanish sufficiently rapidly as x_co , then we can write 1'1.1) 

for any 1.1 such that •J(R) .. R ~<Jt) /~0~ ... ) , with + and <a entire func

tions. To prove this we observe that in this case (2.70) may be written 

as 
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wi.th 

so that ~x .M."'~(I~:a.)/~(k~) : f'Ci.) ~ (;L) ;;)x.J"\.k = ct<.Ll.~(i. hl: • 

(2.66), with wcl:t>=l:t~(k')/~(Ra.) , solves 

(2.72) 

Thus 

(2.73) 

with the boundary condition that u. vanishes fast enough as x.-CD . 

Equation (2.73) is the same equation found by Ablowitz et al.(l974a) as 

solvable by the inverse scattering transform associated with equation 

(2.35). 

We give now another example of a class of v's for which lt~ can 

be written in terms ofu. Assume that dm(\:t,i:) vanish~s for 'I-mR <O 

and that u. and ..N.u decay fast enough as x-CD . Assume also that 11 is 

given by 

where R is some given function of~ . Then we have 

if 

we have 

cpcx,t,! ) .. S i. + L c-~>") 
t ~ 11 «. 

, so that 

( 2. 75) 
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.... 
11.u "'(1./.a.) ~ 9t.(~) (cp(t)l(>(-_f)- .iJ d!. --

Therefore (2.68) implies that, for (dmc-k",t.)]•-=-dm(~,-c), 9t.<~) 

real and 

-

(2.76) 

w(.R) = ~ k'-.CI) dJ =- w•(-k") (I:-m~:no), WO~) .. w(R+i.O+) (I-mlt:o)J 
-.o (.,_a._~!''' 

equations (2.66) and (2.75) will provide a real solution of the system 

with the boundary conditions u.{:x:=cg)=o and l<p.a.<:x:=oo)l=i. • In writing 

(2. 77) from (2. 76) we have used that 'f.(-~)- <p•q) ('t/_CD <~<CD) for u. 

real. The equation for cp is the same as (2.35), and can be proved in 

the same way, since cp and~ have the same functional form. 

Results similar to, or the same as, those found in the previous sec-

tions apply to the class of equations found in this section. 

A final remark is that equation (2 .01}, for u. square-matrix valued, 

is also solvable by small parameter expansions. In fact all the formulas 

of Sections 2.1, 2.3 and the second half of Section 2.7 remain valid for 

this case if d).. is taken as a matrix valued measure. Results similar 

to those in Sections 2.2, 2.4, 2.5, 2.6 and the first part of Section 2.7 
' 

apply in this case. It is also possible to generalize the results of 

this section to the matrix case. For example, the matrix version of 

(2.70) is 
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(2.78) 

-
where LX,Yl ... XY+YX and LX:,Y"]:::.XY-YX for any matrices X andY • 

Formula (2.78) follows from (2.69) upon using the following identity 

"11-.1 

Cb,.t-· · ·+b..,.) E <a.,~_b,a.-m) = ~ <a..t.+···+a.j)(bj+b.j+L)(bj+•+···tb-n)-
1.~.l<m ~., 

11-.1. 

- f (b~+···+ b.i) (bj+bJ·U.)(a.j+r+··· + O..n) J 

(2. 79) 

valid for all numbers a.~,bJ (i.~j.<n) and all n::~.,.1.,3, ...• This identity 

can be easily proved using (A. 102). Furthermore, since equations (2.69) 

and (2.79) remain valid if the a..~·s are matrix valued, it is possible to 

treat the case of nonscalar dispersion functions. More precisely, equa

tions solved by (2 . 66a) with (2.66b) replaced by 

(2.80) 

where U)=w(l.:~) is now a matrix valued function ofR,can be written. 
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CHAPTER 3 

NONLINEAR CUBIC SCHR5DINGER EQUATION 

The methods developed for the KdV equation are now applied to 

the nonlinear cubic Schrodinger equation 

. • • t l..tf'-t: + fxx =-~cr<p <p cp --el<T 1Cpl cp 1 cp::::. cp<x, ) J 

( 3. 01 ) 

where cp is complex valued and cr::.±.1.. This equation describes the 

modulation of a plane stationary light beam in a medium with nonlinear 

refractive index (Yariv 1975), as well as many other important phenomena 

involving time-dependent dispersive waves in a nonlinear medium 

(Whitham 1974). 

To avoid having to work with complex conjugates, we replace 

(3.01) by the system 

(3.02) 

Then (3.01) is recovered if we require 7f= cp• 

3.1 Solution by Small Parameter Expansions 

Substituting 

-1f = L. E.-m lf-m , ,.o (3.03) 
m:s~'J\+~ 

into (3.02), and collecting equal powers of the 11 small 11 parameter c: , 



-39-

we obtain 

(3.04a) 

- i.lfJm,t + 'f>-m,-xx = - ~ (J" L 1f'j <i't lVs J ( v'm) J 

j+1+!~=m (J,O.,s odd) 
(3.04b) 

The functions q:>~ and lf't. satisfy the linearized equations, so that we 

can take 

<f'1. = ~ c.xp [ L (M:z:_ ~4t >] d A.(k l , lf)1 = ~ e.x.p( i.(kx + k4 t>J dJ(Od , 

' ' 
(3.05) 

where, as usual, d}.(~) and d-'(0~) are appropriate measures on the com-

p 1 ex p 1 ane 4:: • 

The condition <p~·= lJ)~ will be satisfied if 

(3.06) 

For -n:i., m:3 we have 

i. lf'3,t + cp3,-z:x = _a_IJ' q>:t.'lf)l. IJ>j,=- ~(J"~~ e.i...Os d}.(l.l~>d~(~)dAC ~), ( 3 .07) 

' 
.a. a. ~ 

where .Q
3 

= _ o~3.,+···+A3 )x _(l:rl._R.+k11 lt J and a simi 1 ar equation for 1f}3 • 

A solution in the form 

(3.08a) 

requires 

/. 
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Therefore we have 

(3.08b) 

and similarly 

(3.08c) 

For -n .. a., m,. 5 we find 

(3.09a) 

(3.09b) 

and ..Cl. 5 , A 5 are the obvious 

generalizations of n 3 , A.3 above. We now propose that in general 

(3. lOa) 

(3. lOb) 

for every -m:a.n+i.,o.:-n<c:o. Substituting (3.10) into (3.04) we find 

that we must have 

a-11 
(ks.+i:{.a.) ... (ka,,+k.m} = 

_a_CT L f 
d+~+ S:a'lr1 l 
j,l, 5 odd. 
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L. (RJ.f.R;..,.1)(1r~,r+kr+J.) • 
1~J<~"<-n1 

j oclc1 
1 

r even. 

(3.11) 

That is, we need the follo~ing factorization of the linearized disper-

s i on re 1 at i on 

Si nee 

_;;t. L 
1~j<I"<."Tn 

j o.ld 1 r e..,.e:n. 

< ~.r"" RJ+l l< kr + Rr•1> = - az. [. R.i R.q 
.14j <!4-m 

j odcl. 

_ .2. L. Rei A.t = 
~<~~t~-rn 
A c...,.e;n. 

= - .2. L. ~. ~.. - .1. r. 
~~ .\ <l ~., 4 ~ evC'TI. ' 

(3.12) follows immediately. 

From ~3.03) and (3.10) we now have 

( 3. 13a) 
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and it turns out that (3.06) is enough to make not only c.p: = 'r'1. , but 

c.p*= "tP . These last two expressions for <p and "If) imply 

(3. 14b)t 

Formulas (3.13) and (3. 14) are very similar to (2.14). The same methods 

used to sum (2. 14) will work with (3.13) and (3. 14). Again the inverse 

scattering problem associated with (3.01)-(3~02) (Zakharov and Shabat 

1972), as well as its corresponding Marcenko integral equations, isim

plicit in (3.13) and (3. 14). Thus perturbation expansions provide again 

a simple and straightforward way of arriving at the proper inverse scat-

teri ng trans form. 

Introduce 

The reason for making a difference between <plf) and qJ (/) is that, as 

far as this section and Section 3.3 are concerned, all the formulas 

remain valid when £[> and 1f) are matrix valued (see Section 3.6). 
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-.1. 
where <r:X Assume that, as ~oo , b(x, t) as we 11 as chx,t) 

and each of the terms of the summations in (3.13) and (3.14), vanish 

sufficiently fast. Then we can write (3.13) and (3.14) as 

(3.16a) 

(3. 16b) 

I 

<p"!fl=~ C?.c [. ea""J ch1 ••• dz..a.n-l. b(-s+~,t:)dcz:.~,+~.t) ... b(z.411_2.+'.a.,-t;t)d(z.~:n·l.+:r.,t), (3.16c) 
-n:~ ~, ... )01.11•1. 

We note that b<a:c,t> and dc-.x,t) satisfy the linear Schrodinger equa

* tion, and that equation (3.06) is equivalent to b =--<~u-)d. 

3.2 Multiple Envelope-Soliton Solutions 

Assume now that b and d are a suP,erposition of exponentials in 

the form 

(3. 17a) 

( 3. 17b) 

where Imz.d>o~J:-mwr>O and pc:c.,t) and q(x,tJ are the column vectors 

given by 
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( 3. 18a) 

( 3. 18b) 

Therefore, just as in Section 2.2, 

c '1TITIT "11 

) lf = -n~o E. (1' ~ (:D~) '1 ) (3.19a) 
m .... a.n+i. 

(3. 19b) 

where ~ and :D are the .N x.f"l and tt.-...N" matri c~s given by 

r• T T 
'J)(:1t):-!.,. .) d'Z. 0(%

1
t.)"P('Z.1t.): :5 {x,t). 

a.&. z. .L .L 
(3.20b) 

It follows immediately from (3. 19) that 

T a. -!. T a. -1 cp = e.f (I _<re .BD) p , y> = e.2 (I _<re: :DB) 'J J (3.2la) 

(3.2lb) 

Since q>1{)=1pCf from (3.2lb), we have 

cplf) = .Z: (qny~ 1fcp) = £ ~t PT (I_c:re.1:BD)~'l + ~T :D (I_<re.a:BJ>fi J = 
(3.2lc) 
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This can also be expressed as 

(3.22) 

- - . p='j J J:>:-:B I :e :-:8 a11d ( 3. 23) 

Then (3.2la) and (3.22) give 

(3.24) 

In this case <t:8) is hermitian and positive definite, as can be seen 

either by computing its principal minors using (A.202), or from the 

formula r:B:O./"'li7pp*>dz. which follows from the _definition of :B 

and (3.23). Thus from (A.3) the eigenvalues of ~B::Ci..B)(LB) are all 

real and positive. Moreover, they tend to zero as :x:.-oo , and to oo 

as :x.....---co. It follows that (l.+<rc.:L.:B~fj, exists for all -co<x.1 t<co 

when <T>o, and that it has singularities at some :c•s for all -co< t.<cc 

when a-<o, i.e., in one case formulas (3.24) are nonsingular (and thus 

represent physically meaningful solutions) and in the other they are not. 

This corresponds to the fact that in the case <no uniform wavetrains in 

equation (3.01) are line~rly unstable, and presumably break into a 

sequence of wave paGkages (i.e., envelope-solitons such as those given 

by (3.24), while in the case ~<o they are stable. 

That the eigenvalues of :BB tend to zero as x.-co , and to <D 

as x.--=, follows from the inequalities u.l5'u~~IICB»f1.J/:~spec+Aumcss), 
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-.1 
, where liBIIOL- o as :x:."""-oo , and JIB 11&..__ o 

as ;x.,__ -co (since from (3.20a) ::B is a product of two diagonal matrices 

with exponentials on the diagonal, and a third matrix independent of :c • 

The expressions (3.21) for the multiple envelope-soliton solutions 

are new in the literature. The second formula of (3.24) was first ob

tained by Zakharov and Shabat (1972) and Hirota (1973a).t Hirota a1so 

obtains expressions for cp • These can be obtained from (3.2la) as 

fo 11 ows. A " Let :B and D be the .N x.N' and 1'1.x.M matrices given by 

,... · r 
:B = pp (3.25) 

Then (3.2la) can also be written as 

.2. ,... a. )-1. "'1 <p = e_ Tn { o: _<r e."'~Df .:S} 
1 

'If= e. Tn. { (I_cn; :D:B D • (3.26) 

But if .H is the complex valued function of square matrices defined by 

J4(A) =- TnJ., (I+A) = ..Q., det(I+A) ') we have(dAJ.\).T = Tn.[ (:I+Af.s.T~: 

denotes the Jacobian. Thus if we 

define 

(3.27) 

we have 

J lf = G. 'If}/ F • (3.28) 

tBoth references have misprint errors. The factor r;r-.1. has been replaced 

byJLia in the former and by cr- in the latter. 
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• When (3.23) holds, '=>If=- c::;'tP, F is real and (upon expansion of the de-

terminants in~olved) (3.27) and (3.28) give Hirota's formulas. 

3.3 Marcenko Integral Equations and Eigenvalue Problem 

In an alternative manipulation of (3. 16), we notice that if the 

following linear operators, _defined on functions of two variables, are 

introduced 

tb~) (.x.,~>= ftcx,z.) b<z.t~.tl d'L J <.d ~ )(x,~)= l~cx,z)d(z+~·t) dz. J 

< v+ = +c~'dl ), (3.29) 

then we have 

ao ., [ ,.,.. -n ] -zr = ai. ~ 1:a e.. Cd b) d 1 

~:c:..,+l ~=:X. 
(3.30a) 

(3.30b) 

A A 

where b and d are interpreted as .arguments ford and b , respectively, in 

t~e form bcx.,z) = b(x.+z.,t) and dcx.,~) =.d(:c+z,t) , and the variable t. 

participates only as a parameter. Introduce now the functions of the 

vari ab 1 es :c, ~ and t 

K 
1 
= £. e..a.71 +j. d, d' )"" b 

.,:0 

" ... -i. 
::. E. (I - e.a. b d ) b ' (3.3la) 

(3.3lb) 

K
3 

= E e..a-71 JCbd) b =- c.4 d(r_ea.'bJtb, 
.,_j. 

(3.3lc) 
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K't =- L e..a.n b cJ'br-~d = e.a.b<I-e.a.J6f1.d. 
"Tl::.1. ( 3. 31 d) 

Then we have the following equations 

( 3. 32a) 

(3.32b) 

( 3. 32c) 

( 3. 32d) 

cp<x., t. > :. .:t. i. X K 1 c:,x., t. 1 ' 
(3.32e) 

( 3. 32f) 

We can think of the equations as the result of su.rmning (3.13) and (3.14). 

They are the ~1arcenko il')tegral equations of the fnverse scattering prob-

lem corresponding to (3.01)-(3.02) (Zakharov and Shabat 1972). We now 

write fonnul as for the Kj • s independent of the assumption that b,d_o 

as x..._oo . We do this from their definition, retracing in reverse the 

steps used to obtain (3. 16) from (3.13) and (3.14). 

(3.33a) 

(3.33b) 

, (3.33c) 
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2.11-1 j .l. R.'" 1 

K ~ 411 ""j i.{E<~jx-(-J) 1:\/. )+±Ra.-n<x+~)- a.nt Jd d~ d d}. (3 33d) 
lj cx,d,t) = u ("--.,!1.) e j. J.fj. .l. ••• -'tan-1 .1."1\. • 

-n- ~ 01.1. :a.~-~ 

- - en 1! o"~+~~ ... J.) 
Just as we did for the KdV equation, we now look for equations 

satisfied by the 1</s. Again the time dependent equations are closely 

related to the equations satisfied by <.p for K.t., 1J> (for K4 ), and the 

potentials of <p?f (for .K3 ) and q) cp (for Klf ). In fact, it is just 

a matter of replacing, whenever they appear as last factors in each 

term of the mentioned equations, cp by ai. K 1 , lf) by .;Li. Ka , et_c., 

and ~x by <ax+ ay) . These time dependent equations are 

(3.34a) 

(3.34b) 

( 3. 34c) 

(3.34d) 

Equations (3.34a,b) are a consequence of (3.12), (3.13) and (3.33a,b). 

Equations (3.34c,d) follow from (3. 13), (3.33) and the following iden-

tity, valid for all '11:1,-4,-a,. .• : 

a. a. a. R) 
11\2.- k4 + •.• - Ra-n .,. L. ( k2.+···+Rci)( A.i +R.itl.)- O~J+ ~+• l<Rj+,. +···+ a.-n • 

J..$ j <~1" 
l ...&d. 

(3.35) 

This identity is motivated by the equations i..Ctp"ll))t =ax<c.p1P'%.-<P-:c'!¥) and 

_l.(lf)'P)t =-axtlfl'Poc.-v>x.'P) , in the same way that (3.12) is motivated by 
/ 

(3.02). 
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In order to find the ~-dependent equations we follow the same 

procedure used in Section 2.3 for the KdV equation. First we write 

( 3. 32) as 

(3.36) 

where the time dependence is not displayed to simplify the notation. 

Next we apply the operators 

to (3.36), and use (2.30) to obtain 

' 

by [-~cl- -~1)-1. and Thus multiplying both of these last two equations ~- • 

using (3.32e) and (3.36), we have 

An alternative, and perhaps simpler, way to obtain (3.37) is directly 

from (3.33). In fact, comparison of (3.33) with (3.13) and (3.14) shows 
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that K 1 is "almost" cp , Ka. is "almost" 1f II 
is "almost a paten-

tial for qny and, finally, K4t is "almost" a potential for 1fcp • Thus 

1fK.J. ~¥'P must have a close relationship with some derivative of){~ , 

etc. The study of the products q> K~ , c.p Ka., qJ J-{3 and <p K<t with use 

of (3. 13), (3. 14) and (3.33) leads immedia~ely to (3.37). 

Since neither (3.34) nor (3.37) have coefficients dependent on~, 

we can separate this variable and write ( ~=.1,eL,3 ~"i) 

Kj(:x:.,"a,t.): ~ l::t.J<.x,t,!> ex.pt<s~ +~v.i~a.t> d"'?}~>, 
lt. (3.38) 

an d va. = v3 = j_ • 

The factor e:Y-p(.:z.\l.ii.!,a.t) is added because it simplifies the formulas. Then 

we have from (3.37) 

( 3. 39a) 

(3.39b) 

and from (3.34), after some manipulations in which we use (3.39) to elim-

inate space derivatives, 

(3.40a) 

(3.40b) 

( 3. 40c) 

(3.40d) 
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We note that t..,.. and t:.., satisfy the same system of equations as A~ 

and ll~, save for the change ~ ....--j . Equations (3.39a) or (3.39b) 

constitute the eigenvalue problem whose inverse scattering problem was 

used by Zakharov and Shabat (1972) to solve (3.01) and find many in

teresting properties of its solutions. Then (3.40) provides the time 

evolution of the scattering parameters. Equations (3.39) and (3.40) are 

also important in the study of the effect of adding to d~ and d~ a set 

of ~-functions of Dirac (see Section .3.5). 

To write the A.l •s and d"7.; •s direstly in terms of d>. and dJ.f is 

easy. In fact just by looking at (3.33) it ·is obvious that 

(3.4la) 

(3.4lb) 

(3.4lc) 

' (3.4ld) 

(3.4le) 

Formulas (3.39) and (3.40) can be proved directly from (3.41). 

3.4 Operator Formalism 

It is our purpose in this section to sum (3.13) and (3. 14) under 

circumstances more general than the ones in Section 3.2. The same ideas 
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that proved useful in the case of the KdV equation (Section 2.4) should 

work here too, since (3. 13) and (3. 14) have the same nature as (2.14). 

Assume that we can write 

(3.42) 

where dps.<k1 and dpa.<~> are positive measures on d: , and a."'(l:t) and a.4 (R) 

are functions defined on the domains of dp:\.<kl and dpa.<R) respectively. 

Let us now define, by analogy with Section 3.2, the following operators 

and symmetric forms (closely related to the inner products in r(dp~) 

and 
a. r (dp) ) 

( 'B + Hk:s.) "'~ p<k,.) <As.+ Ra.fs.<t< Ra.).~(ka.>dp4 <Ra.> , ( V t • f ( Ra.)) , 

c 

(3.43a) 

(3.43b) 

( ~s.' ~a.Js. = ~ ~(R")~a.O~~l dps.(k") ' ( +s.' ~,a)~;~ t~.<R::t.l t:~.<R:a,l dfa.<.Ra.) 1 ( 3. 43c) 

c c (V~s.•~a..+.s..ta.)' 
where Rs..and Ra.range over the domains of dp:\. and dpa, respectively, and 

p and ~ are given by 

(3.44) 

We note- the following properties of the operators 'B and "D 

<i..i.i.) :D~ =-~ a PT =-~ '! [p,. ]s... 
~f. .1 ~L 



-54-

a. .p:l. :l. 

If we assume that p E. i:<.dp~), <J. E.~ <dr.> , and that B:!<dra?-

- t<c:ip~) and D: i.:~.(dp1 l 1.(Jp:~.) are bounded operators, then we can 

sum (3. 13) and (3.14) to 

(3.45a) 

(3.45b) . 

Also, since <fV=lf<P , we have 

(3.46) 

We do not have, in general, a formula analogous to (3.22) because of the 

difficulties of dealing with traces and determinant~ of infinite dimen

sional operators. Formulas (3.45) and (3.46) constitute an actual summa

tion of (3.13) and (3.14). It is also possible to sum the expressions 

(3.33) and (3.41) for the ]{j•s and Aj 1 S to formulas similar to (3.45). 

is not invertible, these formulas 

are meaningless. However, at this point it is the actual solution of 

(3.01)-(3.02) that has a ~ingularity, not the way we write it. 

Let us now assume that (3.06) holds, with dpl.<l:\):dp:~.C-R") and 

a..s.(\:~):0.~(-k*). Then if S:.ta.Cdp~)+•--' i.a..<.dp:~.> 

give!') by 

is the isomorphism 

(5k) (k) = h(-k*) J ( VA:Pl(~) en ft:ft<~:~.) >, 

we have Sp- q , 5<j, = p and ~5a-5D . Thus, since S":I , from (3.45) 

we have 

lll • --1.] 
Cf = ¥ :. e.. (f I (I+ trE. :B5 BS ) f J. • (3.47) 
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Now <l.B5) is self-adjoint, and for any~ we have .tax<~,i.BS~>~= 

=~ax~~ dps. '"'~> dp2.< 1:\::1.> ~·olf.s.> p<l:li.l<l:l~+ ~:t,J~<I:ta.> ~<-(l =-1;r~(~l.l p<l:!~>cfo"l.) ~~ra.<Ra.>'l<ka.>~<- ~)= 
c 

=-S drl.<~~\p<R~>s*<A,.,l ~ dp~c~> p•o~Ll ~<~~) =-1 S dp~<Rl.lp<k~>~·<R,.>Ia.· Thus if 0.1. and 
c; c c 

dfl are such that we can write <~,tB5~)l.=-[a,.<~,tBSs>1.dz. or{~,l.l~S~)l.= 

=fax<<a, i.:S5~)dz., (i.BS} is semidefinite (positive or negative) and 
ag 

from (A.3) the spectrum of (i.BS)(i.B~) is real and nonnegative. It 

follows that, for 11")0 , (3.47) will not have any singularities. For 

cr < o uniform bounds, independent of :r. and .t;. on liB 11 are necessary to 

guarantee this. As we saw in Section 3.2, this is not always possible. 

, i . e. , d Ps. 

and dfa. are the usual measure on the real line, can be treated in a way 

completely an~logous to the equivalent case for the KdV equation in 

Section 2.5. Then ::B and J) can be expressed in terms of Fourier trans

form operators on the real line, both are uniformly bounded for all 

..co< :,t<oo , and if (3.06) holds Ci.B5) is semidefinite (when integrating 

over or under the singularity <P."+Ra.f~ Moreover, it is also possible to 

treat a combination of this last case with the one in Section 3.2, and 

then relate the param~ters of the measures d>,. and dJ.f t to the scatter-

; ng parameters of ( 3. 39). 

3.5 Transformation Properties 

The purpose of this section is to investigate the effect on ~ and 

1f of adding to d>,. and dJ.f a-functions of Dirac. More precis,ely, let 

(3.48a) 

tThe same type of arguments used in Section 2.6 are useful for this. 
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(3.48b ) 

where RR:~k '\:t'I:l-m~ 'a<·) is Dirac's -~-function on the ~omplex plane 

thought of as a two-dimensional Euclidean space, and the ~j'~,'P/!I,z.d'5 

and Wj'5are constants. Call <p' and 1J>' the solutions of (3.02) that re

sult when d~ and d'f' are substituted in (3._13) ford>.. and dJ.J . Intro

duce the (..N+n.>x<Jif+rll matrix 

( 
c.J.l c:a.l 

c. = c.a.'l.. ' c.a.a. ' 

Then, after some manipulations, and if r and s are thecl'f +.rt.) vectors 

given by 
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(3.49) 

Similarly, from (3.14), we have 

(3.50) 

If A is the(.N+M.) diagonal matrix with diagonal elements 

A,ij :C:i/OL.) ~ , Au:-C1./.:t. > z..e-n. , ('t/ .1~j ~ n , n<-2. ~ .n+ .N') , then r, s and c 

satisfy the following equations: 

-:I. , sx _ i. .1\. ::. = i. X ?f) r , (3 . 5la) 

(3.5lb) 

(3.5lc) 

, (3.5ld) 

It can now be checked directly that for .any given symmetric operator~ 

in a Hilbert space with a conjugation (see A.3), any solution of (3.51) 

gives through (3.49) and (3.50) a new solution of (3.02). It is not 

necessary that c.p and1f be representable by formulas like (3.13) and 

(3.14). Equations (3.5la,b,c) are consistent, provided that <.p and 1p 

satisfy (3.02), and they imply ax. and at. of (3.5ld). If r, rx, s and 

-sx. vanish (as x._oo ) fast enough, then C.:~/.:l.i.>f7r$T+:.rT)dz. solves 
s. 

(3.5lc,d). 
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If the vectors r and s, and the operators A and c are in a 

finite dimensional space, then (3.50) has the alternative form 

(3.52) 

where we have used (3.5lc). 

If q>='tJ>• then a condit~on that will ensure that<!{>'>«= ql' is 

that there exists an operator 1J such that 

• TUT • T d r : ~ 1 C = (5~ a-> 1J C 1J an 
(3.53) 

Examples 

(i) Assume d~= d-'1' :o . Then cp=lfl=O and the formulas for q>1 and 

¥' reduce to the ones in Section 3.4, since (using the notation of 

(3.43) and (3.44)) 

., s =[ !] and 

is a solution of (3.51). 

(ii) Take now lf>=1f·=fe"X.pi.(.Xx-<.X4--'~~"f'a.)t+aoJ , where p > o, 

.K and 9
0 

are real constants. Then for A:'>.£ a: , a solution of 

(3.5la,b) is given by 

r = o< e:xp i. [Tx _ ( T x + A..K _a. T>.. _rsl)t] = oe E~ , (3.54a) 
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} 
-~ ~ :1. : cc. "X.(T +).. !f E>..: o< E>.. 1 

(3.54b) 

Let "k be such that ImT:fo and take the sign on the square root 

a 1 w ?YS so that I m T > o . Then we have 

a. 
E. >,.fl • (3.54c) 

Assume now cr<o • Then we can take>.. real, satisfying <.K+a.A.)a.<-'l<rpa. 

ThUs • ( I •) e.i.eo d . I i.9o I r = "' a( r 5 ' an s 1 n ce r e. ... ~ 
?C.(T+">...l "X.(I+A) 

, we can 

choose o<.:P ei.eo « 11 Then r•:s and c•=(-L~·r5)•,.._c.:.<.5~<r>C. 
•xtt+U ~ 

Condition (3.53) is thus satisfied with U:1., and from (3.49) and 

(3.52) we have the following solution for (3.01) 

(3.54d) 

I .1, a. -i ~2. .t ( €. 0(:1. £~ E. 'I.) 
lcp I = p + cr ""'l( 11 1.- x<.a.T-.K) A >- (3.54e) 

' ~= 

: _ E ce 4 
X (T+>..l ei.eo: _.E.. aC~ oc• = _ e.~fi. "t_ ~ and 

'X.(aT-~) (> t.X! ce 

'7= ..1"\+a..A.. • Then~ is a positive real number with ~a.<-'~<rp.:a. ~ is 

an arbitrary real number, '? = ~ J -"icrpa.- ~· and we have 

~ s = r , 
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l
•n'la.-_ ~ -i. a. ft { <: -iCx+("7-0L.K)t.)] 
T p + CT all. -'11 l 1. + d e . · (3.54f) 

and 

In this new 

formulation we have replaced the "free" parameters A. and e.«~ of 

(3.54d,e) by~ and a. If we take a>o we see that cp' is a nonsingu-
a. 

1 a r so 1 uti_ on, asymptotic to <p as x.,__co a-nd -to (.1. +~ )~ as ::x;....-cx:> • r& 
We recognize in (3.54f) the dark pulse solution (envelope-hole 

solution) of (3.01). This solution was first found by Hasegawa and 

Tappert (1973). See also Hirota (1974) and Zakharov and Shabat (1973). 

The solution corresponding to the interaction of several of these dark 

pulse solutions can be easily found by taking~ a real diagonal matrix, 

with diagonal elements A.~ satisfying <~+a.~t<-4f<rp4 for all j 1 s. 

Then we take r.i :«.t E~.i , ~.i.,. «J E~.i where ~= 

-~ -~ <.e • f 11 • 1 = p ~ ( Tl + 1.} e o a..i or a J s . 

Take now cp as in example (ii) and A=A)... , where A>.. is the 

(2 x 2) diagonal matrix with entries 'A and ~ . Then for some 

ct~, «a. € CI: we can take 

T [ i. ~] 
t" -.::: ctJ. E>. , oc:a. E>..• 

' 
and 
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where T::.T(>-..) is as in example (ii) . Let 15 be the (2x2) matrix 
at* ei.eo 

defined by r•=~tuT, i.e.,U.u.=U4a.=o ,V~a.=-«~Px.(x-T•-rx--> 
It \.eo 

and V ~1 ... <X~ f _..,.;e=--,_...,..-
c:.t1 'X..(T+">...l 

from ( 3.54c). Ill 
Then, since Uu 11£-:z.. = 

__ 1. p•-- 1 P2.. ... -<-::octcrl , we have UU ... UU.: 
IX.Ia.(T+)..)(T-X-A.) \ - l~la.CTf'a. I <l 

= -<.!!>~c::rl u . Using this it follows that c.•=<.~(;)'UC.15T • Moreover, 

· f h • L.e-1. 11 h U , r 1 We C OOSe «.a. ::.«~re f(~-T'*-r"X:)"X. , We ave .u. s-<.~(1) v 41 : i.. 

so that UUT=t{U:I. It follows then froni (3.53) that <q>'i'= tp' , so 

that we have a solution of (3.01). 

We now introduce again the quantities !=--i.C~T-.K) , 

-Le.J.:z. 
and fo = Oll. e . Then ~ and fo are arbitrary complex 

. h .:z. ~ .a. numbers w1t 'F\e. ~ >O, 7 + l + 'IO"f' = o and we have 

(3.55a) 

where 

(3.55b) 

It is ~asy to see now that Cs.a.--=Ca.,. are purely imaginary and 

that, for~r<o, IC1a.l~\C1..1.l· It follows that for <r<o, the eigenvalues 

of c are purely imaginary and that for cr>o, they are complex conjugates 

with nonvanishing imaginary parts. Thus we see that the solution just 

found is nonsingular for cno. For cr<o the solution is singular at 

all times, since not only are the eigenvalues of C purely imaginary; 
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but they move from :tl.= too as :x:. goes from -co to = ; unless ~ and 

7 are real, in which case 1-x.<"?+qlj :elf so that 1c~~1 =I Cu.j 

Then we get back the solution of example (ii), with ~ ~ 

=-<e.lp~l Im[ fo\'?+i.j)] . This nonsingularity of the solution mainly for 

<no, might again be related to the instability of the uniform wave 

trains in this case. 

Assume now cr>o, and let F and G be the functions 

Then from (3.49) and (3.52) we have 

, :t. .:1. -~ :l. 
I <p' I :. p +- <r dx ln F • 

(3.55c) 

Now the 1 eadi ng term of G for :x:..__-= is 

Thus, from (3.55c) and the definitions of F and G, we see that 

w' -· (() ac 1 ·- T .. :x:.,...__.oo 

where z is a unitary complex number given by 
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since(z.-1) is f times the coefficient of the leading term of G as 

x.--CD, divided by the coefficient of the leading term ofF. 

The solution we have just obtained can be thought of as the 

solution representing the result of the interaction of an envelope

soliton with the traveling, spatially homogeneous wave solution~ 

We see that th.e final outcome is a phase shift in f. of magnitude 

ar'a z. . Note that the phase shifts of the solutions <~,'fl and c~,-'7) 

are opposite, while if I is real .Z.:::d •• The solution representing the 

interaction of~ with several envel~pe-solitons can be easily found 

simpl~ by taking A as a direct sum of A>. 's in (3.51). 

3.6 Vector Valued Schrodinger Equation 

As we pointed out before, the formulas in Sections 3.1 and 3.3 

are valid also in the case in which <p and yJ are matrix valued, with 

matrices of the appropriate sizes so that the products ~~~ and 

¥ ~V make sense. In this context* means hermitian adjoint in (3.01). 

Of coursed'>.. and dlf are then matrix valued measures of the same sizes 

as <p and 1p respectively. It is possible to extend the results of 

Sections 3.2, 3.4 and 3.5 to this case. As an example we give now ex-

pressions for the multisoliton solution, in the vector valued case, of 

equation (3.01). 

Let dA.(k) = d-'1•(-~*) be given by 

ff .Q 
d >-. c P. ) = r, 'A a c ~ _ ~" > d ~ R d k :r. , 

i. ( 3. 56) 
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where the z., • s are complex numbers of positive imaginary parts, the 

~ •s are arbitrary column complex vectors of dimension s • 

RA :Re.R I 1:\1:: I-m 1:4 • and a<·>is Dirac's ~-function on the complex 

_ plane. For any .1.~\)'s, define the column vectorp and the matrices 

:B11 ,A» by 

( 3. 57) 

Then we have from (3. 13) and (3. 14) 

(3.58a) 

(3.58b) 

(3.58c) 

Now since 1<91~= cp*cp =Tn.(ipcp*> :{.1/ez.>t 1cp1+ Tn.(q><P"J J 
give 

, (3.58b,c) 

(3.59) 

Again, as in the scalar case, there are no problems with the existence 

a. S - -l. 5 - !> * T 
of <I+<Te .L~,B,.) when <r>O. This since E..F>.,B1 :.L'1\J\.r"PLAp is 

~ ~ l ~ 

similar to [. "P!1 A*. PtA :P!a. = f.. (l\Ya. TA .p:~)•( -Pla.TA 1\.va.) which is s e 1 f-
~ -.,. p ~ ' ' ' 

adjoint and nonnegative. Here :R stands for the self-adjoint and 
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r= • positive definite N-square matrix 'R.::.W-.l~ff. There are no multisoliton 

solutions for the case <r <O. 

We note that if cp is a solution of the vector valued Schrodinger 

equation and A is a self-adjoint matrix, then 

L.At $> <~,t.) :. e cp (:r., i > , 
(3.60) 

solves the equation 

(3.61) 

In particular~ can take values in C\d1.1.), and if we take A::.~a~ 

we see that (3.60) will solve the two-dimensional nonlinear Schrodinger 

equation 

(3.62) 

As a final remark, we point out that if cp and 1P satisfy (3.02), 

then the following equations can also be solved by our perturbation ap-

proach 

(3.63) 

If <r<o, so that <.i.X"l is real, and p = 7p* then we can .impose the con

dition u. =.V''* and obtain the single equation 

(3.64) 

Other equations closely related to (3.01) can also be solved by our ap

proach. 
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CHAPTER 4 

MODIFIED KORTEWEG AND DE VRIES EQUATION 

The equation can be taken in the form 

( 4. 01) 

where p is a constant and~ is real valued. This equation is the sim

plest modification of the KdV equation treated in Chapter 1. The 

particular way in which the nonlinear term is written in (4.01) is due 

to the fact that when v is taken matrix valued this is the right gen-

eralization solvable by our expansions. 

4.1 Solution by Small Parameter Expansions 

Substituting 

.... 
V' = L E.m.,.-, (4.02) 

'1\ .. o 
'ftla<l.'ft+.\. 

into (4.01) and collecting equal powers of~ • we obtain for all Tn=•n~~ 

'~'"m 1t + '~'"m ~:r::~ a- 3 P ~ ( .,.-, "f "; :r. + "is.~ v;. ) • 
I j+l+~"'Tfl e I Ol 

~~l.~ odd. 
(4.03) 

Since the linear dispersion relation of (4.01) is GCw11:r):-i.w-iJt3:o, 

introduce 

(4.04) 

and write, as usual, 
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vm=~ ~ et.Um (d-vC~<tlf"' , (Ym:~'T1+1 , Tl:0,1,0L, ... ), 

«:,.. (4.05) 

where d....,O~) is an appropriate measure on the complex plane«: and 

For m:1. (4.05) satisfies (4.03). For 

we must have 

G(-q~-···-R~ 1 R~+ · ··+Rm) ~m=-~.i.pL CO~s.+···+ir:tj>tC~u+···+~)]<f>.i ~r~:t; 
.l+l+$:11l,(j,1,5 ~c:l). 

( 4.06) 

where ~,. is arbitrary and the variables k,_, ••• ,k1'1'1 in the products 

x.. :t.. :t.. are evaluated sequentially. We note that c; is the same as 'j!.i ~, '1":. 

in Chapter 2. 

Taking i>s.=.1. in (4.06), and since G(-"':-"!-R~,I=t1 +Ra.+h3 ) ... 

_ 3L( k,.+ k"'l<..'-'a.+ R3 ) (R 3 +R,.) , we find ~ :. p (R~tka.f.~,(R,_+~ 3 f'" 
- 3 

Simi 1 arly ~s = t<k~+Ra.'flo.<k,.+l=t3f\'R3 + "'" fs.CR'f + R5 fl. 

that for all -m:4"T1+.1.,-n:o,l.,.t., . .. 

and we postulate 

( 4. 07) 

Substituting th i s expression into (4.06) and multiplying through by 

~.::! we find that the following identity must hold for m:~n+i.,'TI=0,1,:~-r-.: 

This equality follows easily from (2.13). Alternatively (A.l02) can 
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be used to prove it. 

Thus we have 

(4.09) 

I t fo 11 ows that 

(4. 10) 

The two last formulas are very similar to the ones in Chapters 2 and 

3, and the same techniques we used to sum them can be used here. The 

eigenvalue problem associated with (4.01) (Wadati 1972), together with 

the cor responding t~arcenko integra 1 equations of its inverse scatter-

ing problem, follows easily from (4.09) and (4. 10). 

Introduce 

b<x.(tl .(l./a.l~ exp[i.(Rx/.2. +J:lt:>] d..,.()~) 
C[. (4.11) 

and assume that as x.-co , b<x,-cJ as well as each of the terms of 

the summations in (4.09) and (4.10) tends to zero sufficiently fast. 

Then we have 

(4.12a) 

(4. 12b) 

that b 

must be .real for v to be real. The latter is equivalent to dJf(R): 
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4.2 Multisoliton Solutions 

Assume now that b(:c.,t) is a sum of exponentials, which we take 

in the form 

(4.13) 

where {.Cofj,z.J1l are arbitrary complex numbers such that 'I'TT\Z.i)O for 

all ~ 1 !3, and p is the column vector given by 

(4.14) 

Moreover, we assume that for every j there exists a unique i.i such that 

-z1=-'"'.l and "1;=-"'.t~ This condition guarantees that b is real. Ob-

viously .0.-t.i =-j so that J-...D.ci is a permutation. 

Substituting (4. 13) into (4.12) and introducing the square matrix 

(4. 15) 

we have 

( 4 0 l6b) 

where .x~:.p Since ~~='DD , where D is the positive definite 
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self-adjoint matrix D::U/.a.>~'f.f* t we have from (A.3) that all the 

eigenvalues of "2J
4 are positive. · It follows that for· p>O, 

formulas (4.16) are nonsingular. For p<.o they are singular, since 

:I. 
the eigenvalues of 15 take all the values from oo too as :c varies 

from-co to co . As in the case of the Schro.dinger equation, the 

nonexistence of solitons for p<o is related to the stability of uni

form wave trains. Let p">o in what follows. 

Take e.::-.1<_,. in (4.16a). Then we can write 

(4.17) 

where 

, 
(4.18) 

and we have used: artan z. ... ~ l-n <1-+i.z> and tan(.!, ll'Tlz)= -t~ for 
,:u. (~-I.Z.) 4L ('Z.+.1) · 

any z.. The speed of each soliton component in (4.16) is given by 

Since the zj 's need not be purely imaginary (as in 

the case of the KdV equation), we can have several solitons moving at 

the same speed. In fact this is going to happen (whenever for some d , 
z.i is not purely imaginary) with the pair z..l, _z.;:z1_.. The most 

elementary solution of this type can be written, using (4.17) and (4.18) 

as 

(4.19) 

t 

D::Br' where r is the permutation matrix that gives p:.rp so that 

:DD:: :DDT: :B rTr ~ :: J!>-a.. 
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where ot.,fo, ~o and '?o are real constants. This solution is called a 

11 breather11
• 

where we have taken ~=-.x-:~.. 

in ~4wl6b) was first obtained by Wadati (1972), using the inverse 

scattering transfonn. The fonnula ..r :OL.Ki.axa'"c.ta"'~) , when the 
~ 

detenninants in (4. 18) are expanded using (A.203), was first· obtained 

by Hirota (1972a). 

4.3 Marcenko Integral Equations and Eigenvalue Problem 

A 
Introduce the operator b as in (2.24). Then from (4. 12) we have 

, (4.20) 

(4.2la) 

(4.2lb) 
where 

.,.. .,.. -n "m-J.. 1 ":~. -~ 
){. ~ : -n~o f. (-p) b b : f. (I.+ E f b ) b 1 (4.22a) 

"nt=~."T1+.1. 

(4.22b) 

A 

and b is interpreted as an argument forb in the usual way: b<x,~)= 

: b<x+'d,t l . Expressions for X2. and X~ directly in tenns of d.lf can 

be easily be obtained. We recognize in (4.20) and (4.21) the Marcenko 
• 

integral equations of the inverse scattering problem associated with 

(4.01) (Wadati 1972). These equations can be thought of as a way of 

summing (4.09) and (4.10). An alternative way following the lines set 
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in Sections 2.4 and 3.4 can also be pursued. We then obtain formulas 

that generalize (4.16) with B an infinite dimensional operator instead 

of a finite matrix. 

Partial differential equations for ~ and Xa. can be easily 

obtained following the same procedure used in the preceding chapters. 

The equations are the following: 

(4.23a) 

(4.23b) 

(4.23c) 

(4.23d) 

Equation (4.23a) is the 11 K-version 11 of (4.01) and (4.23b) is the 

11l(-version 11 of the equation satisfied by t:'l'a., i.e., 'l{t + -(.,;.x-z.:. 

a. .. ) :3(v:.-P'~~'::.:. Equations (4.20c,d) follow from (4.21), although 

they can also be proved directly using the formulas for X~ and}(~ in 

terms of d..y . We now separate variables and write 

Kd <~. "d•t) "" ~ .0. .i (:x., t, t) e1.p(L.< t ~ +"' J1
t >] d.y'(!) J CJ = j., .t.). 

<t 

Then we have from (4.23c,d) 

(4.24) 

(4.25) 

and from (4.23a,b), upon using (4.25) to eliminate derivatives with 

respect to x, 
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(4.26a) 

(4.26b) 

The reason for keeping the right hand sides of these last two formulas 

is that all the formulas in this section, as well as those in Sections 

4.1 and 4.4, remain valid if~ is matrix valued. We recognize in 

(4.25) the eigenvalue problem associated with (4.01). The time evo

lution of the scattering parameters is then characterized by (4.26). 

It is possible to write ~~ , ~a. and dtj directly in terms of d"f 

and then prove (4.25) and (4.26) using these expressions. If AJ.. is 

normalized so that its first term in the e.-dependent expansion is 

e'lC.fl [i.Crx. + "11
tl] , then d ,.YC!):. <~t&.i d.ltC~J) and Aa. = O(e.) . 

As a final rem~rk, we point out that it is possible to relate 

~ with the scattering parameters of (4.25), when d~ is a continuous 

measure on the real line plus a sum of Dirac deltas on the complex 

plane. This is done following the same procedure used in Section 2.6 

for the KdV equation. 

4.4 Miura Transformation 

Comparing formulas (4.09) and (4.10) with formula (2. 14) we imme-

diately see that 

a. ~ u. ::. - i. J( '{"~ + f' -.r J (' :. J( .I (4.27) 
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is a solution of the KdV equation (2.01), given by (2. 14) with 

(4 .28) 

We recognize in (4.27) the transformation studied by Miura (1968). 

This transformation relates solutions of (2.01) and (4.01), indepen-

dent of whether or not they can be written in terms of a measure. 

4.5 Transformation Properties 

By studying how formulas (4.09) and (4.10) transform, when a 

set of ~-functions of Di rae in the complex plane is added to d""f , 

we arrive at the following result. If~ is a solution of (4.01), then 

so is 

(4.29) 

where r:r(x,t), s=5(:z:,tl and c~ccx,t) are two column vectorsand a 

matrix, respectively, that satisfy the following equations: 

r~+.l\..'=i..Kv~ ., (4.30a) 

(4.30c) 
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(4.30d) 

( 4. 30e) 

where A and 1J are arbitrary constant square matrices with A symmetric. 

The conditions U":UT and UJ\.:-AU make (4.30e) compatible with the 

other equations. Moreover, we have 

( 4. 31) 

If~ is real, then a condition that will insure that~· is real is the 

existence of a matrix T such that 

a T -~ T 
C -= < ~~ {' > T c. T .,d T ::. T • 

(4.32) 

To make (4.32) compatible with the other equations we _require TT .... 

:.-<.~p)!. and IA:.-A T . 

Equations (4.30~,b,c) are consistent, and they imply ax. and at 

of (4.30d). If rands decay to zero,as :x.-Q),fast enough, then 

C:.C.~/~i.>hrsT+-5rT>solves (4.30c~d), and (4.30e) and (4.32) if U:UT, 
""' 

VA:-AU1 TT::.-(~r)I and TA:-A T . 

Except for the last two equalities in (4.31), all the equations in 

this section can be generalized for c,A, etc., operators in a Hilbert 

space with a conjugation (see A.3) with respect to which transposes are 

defined. 
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(i) By taking 'l"=.el.. in (4.30), we can generate solutions of the equa-

ti on 

by means of the transformation 

(ii) The interaction of periodic solutions of (4.01) with solitary 

waves can be studied using the formulas in this section. 

4.6 A Related Equation 

The equation 

a. 
'It t- <Dp lVI Y:x: + \l":x.xx = 0 , 

(4.33) 

which for real~ reduces to (4.9l),can also be readily solved using 

our method. In fact introducing w = v• , ( 4. 33) can be written as the 

system 

(4.34a) 

(4.34b) 

whose solution follows the same lines of the solution of (3.02), with 

(4.08) replacing (3. 12). The formulas for~ and wend up looking like 

(3.13), with (J"' replaced by p and the linear dispersion w:1:R=-. replaced 
3 by W=-~. 

As (3.01), (4.33) presents multi-envelope soliton solutions for 

~>o, multi-dark pulse solutions for p<O and solutions representing 
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the interaction of many envelope-soliton solutions with the traveling, 

spatially homogeneous wave solution of (4.33) for p>o. All this can 

be obtained by an analysis similar to that in Sections 3.5 and 4.5. 

Formulas for the multi-env~lope soliton solutions for this equation were 

first presented by Hirota (1973a). 

As a final remark we point out that the matrix-valued case of 

(4.34), and in particular the vector-valued case, can also be treated. 
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CHAPTER 5 

SINE-GORDON EQUATION 

The methods developed in previous chapters are now _applied to the 

Sine-Gordon equation, which can be taken in the form 

where cr is a real constant and u.cu.(X,T):u(x,t) is real valued, with 

x.:..!..(X+T) and t:l:..(X-T) 
:I. a. 

This equation arises in many branches 

of mathematics and physics (Scott 1970, Rubinstein 1970, Barone et al. 

1971). In order to avoid the complications of having to deal with a 

transcendental nonlinearity (i.e., !':.L'Tl.U.) when performing our expansions, 

we introduce the new variables <p::.'U.x and '7=-i..+c.o&u... Then we have 

the equations,which we write in the most symmetric form possible, 

(5.02) 

We can easily recover (5.01) from (5.02),since we have '7~-:i..• by means 

of the transformation <r Sl1'1tl = <l>t , c.cnu = "? + i. , consistent because of 

the second equation in (5.02). The first of these equations then readily 

gives Ux.=!f, which implies (5.01). 
I 

5.1 Solution by Small Parameter Expansions 

An expansion of the form 

expansions for <p and '7 

CID 

tp = .. ,r;; 0 e-m <?m 
,.., = a:n + 1. 

.... 
U. = L. E.mllm 

"f\:0 
m:a:n+s. 

and 

co rres ponds to the fo 11 owing 

(5.03) 
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Let G:.(Q 1 'P . ):G.<.<.> 1 1q):-"P\Q:~.._Cl"=Rc.U-q-:o be the linearized dispersion 

relation of (4.01), where ~="P-Q · and w=-"P-Q :crRj,. Define 

.0.-n =(~+···+ "'P, )X -< Q1-+···+ Q-n>T = 0~d···+ it, )x -Cw,.~ •.. +c.ln )t , (5.04) 
( \{ ~~'Tl ((X)>, 

and write form odd and ~ even, 

<f-m =) ~'1D etn_ [d>..O~l]-m 
c""' 

(5:05) 

d \ L-1. where ..._(R) is an appropriate measure on ct. , w~ = cr f'\.i for all J 's and 

the ~,'s and \-\5 's are functions of the P.j 's. Then, substituting 

(5.03), (5.04) and (5.05) into (5.02), we have 

(5.06a) 

(5.06b) 

is arbitrary and the variables in 

the products ~ . 1-\ . , etc., are eva 1 uated sequentially. 
m-:a.A a.J 

For -n ... 1. we have from (5.06b), cil.a-a.l-\:~..-c.)"w:~.. ~l.<.~,.)~,tRa.)-=- o 

Therefore, taking ~:!~• we get 14a.=...!.. w,.w2. -..!.. <.~~+cJ2.) 
l. .a.cr~ a..<r ()~" + R:a.) 

Then, from 

(5.06a), it follows that 

::.g:(i w1 wa+.1.. ~"wa.): ...!..w4 (w"+w3 )= CJ"CR~+R3l 
a. ~c;r~ .1.v... "tCJ" 41 _ t:\~ R,. k, 

Now <wl.+W:~.+w3)(R,.+Ra.+ ~3 ) _cr = cr (k"+ ~.)Ck ... + k3 )(R!.+k,>/ Rs. ~.a.R'3 

as it is easy to see from the formulas wj ::.<r/Rj. It follows that 
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For 'Tl-::..1. we find similarly that .H,.:.L (w._+wa.+c.lvw.,> 
ecr O'l"+"'~llka.+~l<h;+li.,l 

and <is=t~r..~k"+ka..l(Ra.+":s><k3+k.,Hk .. +ks>f1. Thus, it is natural to 

propose 

(5.07a) 

=- (5.07b) 

Substitution of (5.07) into (5.06) shows that the following identities 

must be satisfied: 

( 5. 08a) 

(5.08b) 

Oi rectly, or using (A. 102), it can be proved that G(w"+···+~ I ks.+···+R-m ):: 

-m i+i. Tl 1 
~ (-11 G(.c..>~ 1 ~d) + ~{dt4i-1 + Raj)(cu" +··· +w-m) + <ws.+··· +c..>a.j )(R4A + Ra.j+J. > J which, 

since G<w~,k4>:.o (V .i) , reduces to (5.08a). (5.08b) follows easily 

upon expansion of the 1: 1 s and use of the i denti ties w.! \:t~ = cr, t'V .P 
Finally, from (5.05) and (5.07), we have 

(5.09a) 
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(5.09b) 

Real solutions are obtained when d'>.O~)::.d~(_f\•). The following is an 

immediate consequence of (5.09a): 

(5.10) 

The similarity of these formulas with the ones in Chapters 2, 3 and 

(especially) 4 is obvious, and we can sum (5.09) and (5.10) using the 

same techniques used there. Again the inverse scattering problem asso-

ciated with (5.01) and (5.03) (Ablowitz et al. 1973), together with the 

corresponding Marcenko linear i~tegral equations, follows from (5.09) 

and (5. 10). 

Introduce now 

b(x,t) = ~~ e"tf(i (Rx-a.crA'~t)] d)..(k), 
(: 

(5.11) 

and assume that, as x~·· b , as well as each of the terms in the sum-

mations of (5.09) and (5. 10), vanishes. Then we can write 

and 
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(5.12c) 

As usual b<~x,~l satisfies the linearized equations. It must be real 

for u to be rea 1 . 

5.2 Multisoliton Solution 

Assume now that b is given by a sum of exponentials. That is, 

take 

(5. 13) 

.zf 
where t).~, Z.;\j:d are arbitrary compl _ex numbers such that :t.mz..i >O for all 

j 's, and we assume that for every 1~j~.N there exists a unique i.~J..i~ 

'- .N such that z.j=-zj" and ~~= ~. This last condition guarantees 

that b is real. The column vector pis defined by 

(5.14) 

Substituting (5.13) into (5. 12), introducing the matrix 

(5. 15) 

and summing, we have 

<f :£.}{(I.+<e.l~.3":e,"']-ip =-OLE Tn{ (:t+(,!./"->~fs..Bz.1 =-"i~ Tna.rc.+a-nli_ B) , 
(5. 16a) 

( 5. l6b) 
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(5.16c) 

All these formulas are nonsingular, since the eigenvalues of B are all 

rea 1 . This fo 11 ows from the fact that -;B
1 = "DD , where "D is the pas i

tive defini.te, self-adjoint matrix ·:rhilfe•; therefore, from (A.3), all 

the eigenvalues of~~ are positive. :D is related tO :B by the formula 
T 

.:D='Br , where r is the permutation matrix that gives p=rf . 

We now use the relationship of~ with ~ and ~ , to write (Take 

(5. 17a) 

( 5. 17b) 

__ ~i. e.-n de.HI+i.B) = ~ arc.taTI( ~ ) 7 - Je.t (I-LB) (5.17c) 

where 

(5. 18) 

I: 4 1-1 The speed of each soliton component is giver~ by :mcrz.J :.-crlz.i 
I-m z..i 

Since the ~ •s need not be purely imaginary, we can have bound states 

composed of several solitons moving at the same speed. The simplest of 

these bound states is the one produced by a pair z..i J z.~J =- z.j and is 

knOf./n by the name 11 breather11 or 11o1T-pulse 11
• A formula similar to (4.19) 

can be obtained for it. The solutions produced by one purely imaginary 
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z. . are known by the name "kinks 11 or 11d.1f-pulses 11 
• 

.l 

Formula (5.17a) was first obtained by Ablowitz et al. (1973), 

using the inverse scattering transform. The formula U.::..~tarc:bn\1), 
~ 

for purely imaginary ZJ 1 S, when~ and~ are expanded using (A.203), 

was first obtained by Hirota (1972b). The particular case correspond

ing to .N::t was first reported by Perring and Skyrme in 1962. Other 

alternative fonnulas have been obtained by Caudrey et al. (1973a). 

5.3 Marcenko Integral Equations and Eigenvalue Problem 

Introduce the operator <'b})<x,'"J) = l1tx,z.>b<z.+1J•t) dz. 

(5.12) we have 

-s. v 
-'?(x,i) = 1.._C:OlU.(x1tl = ~hr ~t. ... ~(x.,::c,t) , 

where 

and 

Then from 

(5.19a) 

(5.19b) 

(5.19c) 

(5.20a) 

(5.20b) 

(5.21a) 

(5.21b) 
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"' In (5.21) b is interpreted as an argument forb in the usual way: 

b(x,7.):b(:c.+z.,t). Expressions forK~ and }(.a. directly in terms of 

d A. can easily be written. As in the preceding cases, we recognize 

in (5.19) and (5.20) the Marcenko integral equations of the inverse 

scattering problem associated with (5.01) (Ablowitz et al. 1973). 

Following the same procedure used in the preceding chapters, 

partial differential equations for K~ and K~ can immediately be ob-

tained. The equations satisfied by K~ a.nd K~ are the following: 

(5.22a) 

(5.22b) 

(5.22c) 

(5.22a) is the "K-version" of the first equation in (5.02) and (5.22b,c) 

follow from (5.20), although they can also be proved directly using the 

formul~s for Xl. and K.a. in terms of d>.(R). We now separate variables, 

writing 

}{j(x 1~ 1 t) = ~ A~(x,1 1 ~) eAp(C:(f'j-~f\)] d"'f(~) J <j:d.,~) • 
c (5.23) 

Then we have from (5.22b,c) 

a-nd 
(5.24) 

From (5.22a) we have, upon using the second equation of (5.24) to 
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eliminate derivat ives with respect to .x of 1:::.~ , 

(5.25a) 

Taking now dx of this last equ-ation, using (5.24) and (5.25a) to 

eliminate all derivatives. of A~ , dividing by cp and using "'x = 

=-J:. < cpa.)t , which follows from (5.02), we have 
~cr 

(5.25b) 

(5.24) is the eigenvalue problem associated with (5.Ql)-(5.03) and 

(5.25) gives the time evolution of the scattering parameters. 

It is possible to write A~,A.l.and d-'f directly in term$ of d'>. 

and then prove (5.24) and (5.25) using these expressions. If 6.1. is 

normalized so that its first term in the e.-dependent expansion is 

exp[i.(~x-~f'-t>J, then d.y<!>=tciAC~f) and A 4 :0(E). 

Equations (5. 19) and (5.20) can be thought of as a way of summing 

(5.09) and (5. 10). An alternative way,following the lines set in 

Sections 2.4 and 3.4 can also be pursued. We then obtain formulas that 

generalize the results of 5.2 with B an infinite dimensional operator, 

instead of a matrix. 

Transformation relations similar to those in Sections 2.7, 3.5 

and 4.5 can also be obtained for (5.01)-(5.02). Finally, it is pos

sible to relate d)\ with the scattering parameters of (5.24) by a pro-

cedure similar to the one used in Section 2.6. 
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5.4 Miura Transformation 

Comparison of formulas (5.09a) and (5.10) with formula (2.66) 

shows that 

u. i.. tO i 4 
: - ~ TX + 4i' <p 

(5.26) 

solves equations (2.68) and (2.73) with W(R):q-li"', ~(t\1):0"' and <a(R1
): Ra.. 

That is, we have 

<» 

- llxxt _ Lf 'U. Ut + ~ U:x. lUt + (I"U.x = 0. 
X (5.27) 

This equation can be checked directly from (5.02) and (5.26), using the 

, as implied by ''lx. =-a~< cpa.}t • 

5.5 Higher Order Equations 

The equations treated in this and the preceding two chapters are 

all included in the general class of equations solvable by expressions 

of the form 

(5.28a) 

(5.28b) 

(5.28c) 

where e"TR:(R~+·· · +R-mlx,('vm}andf is a constant. To find equations in 

this class we follow the same procedure used in Section 2.8. Instead 
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of equation (2.69) we now use the identity 

(5.29) 

valid for all arbitrary numbers a.j and bJ (1~i~m:.4llH,Tl=0,1,l., ... ) . 

To prove the first equality in (5.29) we first verify it for -n: ~ and 

then we use (A. 102). The second equality is trivial. 

The simplest equation solved by (5.28) is 

(5.30) 

which corresponds to w;;;.1. and \l;;;:-1.. Then using (5.29) we can con

struct the equation solved by (5.28) for \I(R) =-Ca){-R) and (&)(R) a 

quotient of entire functions, say~ 

( 1. )[ ~ 'Pt ] = ~ ( 1.) [ <{>1 
~ -l.~t 1f> 

where 1. is the operator given by 

and ~ . This equation is 

' c.>(~)= ~(~)/~<k) ' 

' 

(5.3la) 

(5.3lb) 

for any 2-vector valued function r: r(~l. In the context of (5.3la) 
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the indefinite integrals Ix present in the definition of i... are 

evaluated in such a way that the boundary condition ~(1.)(tp,lf){!!o when 

q>=.o and ~=o , is satisfied. t When ~ is not a constant it is neces

sary to assume that <pt and ~t vanish sufficiently rapidly as x-co (or 

x.--co), so that co (or-oo) may be taken as the lower limit of inte

gration. Each application of the operator L produces the transforma-

tion w(R)-Rw(R) and \J(P.). ___ Rv(R) in the dispersion functions, _just 

the same as the operator~ of Section 2.8 produced the transformation 

O)(R) .___.Rbxkl. Equation ( 5. 31) is the same equation found by Ab 1 owi tz 

et al. (1974a) as solvable by the inverse scattering transform associ

ated with the eigenvalue problem 

(5.32) 

of which (3.39), (4.25) and (5;24) are particular cases. The cubic-

Schrodinger equation, the modified KdV equation, the Sine-Gordon 

equation and equation (4.33) are all particular cases of (5.31). 

When C.U(R): w(k+i.o+) and vO"l = v(R+i.o+) for I-m'R-.o with 

(5.33) 

for some function fL =~(f), it is a 1 so possible to write the equation 

solved by (5.28). Assume that q> and 1p vanish fast enough as x.,.._.oo 

and that cir<P.,t):d~(R,t):o for ImP.<o. Then the same kind of 

tUnder these conditions it is easy to check that i'ccp,q>JT , (\1-n:.o, 

i.,.:L, •••• ) is a polynomial in cp,lJ) and their first-n partial deri-

vatives with respect to x . 
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argument used to obtain (2.76) can be applied here to see that 

- -~t: ~ ~(~l A.~(-fl A3 <tld! , lf>-e: ~ ~(f) 6,_(.,) A't(-~)d~ , 
-~ -~ (5.34) 

where 

(5.35a) 

(5.35b) 

(5.35c) 

(5.35d) 

' (5.36a) 

' b.~,x + i.! ~3 = <p ~a. • ( 5. 36b) 

Introduce 

( 5. 37) 

Then using (5.34) and (5.36) we see that the equation satisfied by 

(5.28), with the choice of cud:U given by (5.33), is 

-<f't =) t\.(~) p<1ld! -- ' 
-'tf>t = ~ .f\.( \) ¥ ( \ ) d ~ ' -- (5.38a) 
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' (5.38b) 

(5.38c) 

with <p,¥, ~ and¥ small as x..,...= and .N"" 1. • I f ft. is rea 1 then 

\1(\:1):-Ca)•(-1:1*) and solutions satisfying cp =-1fJI can be found. Then ~= 

= v· and .N" = .z..r* for ~ rea 1. If~ is even' then \) :W and we can ask 

that cp-:¥. Then~(~)-::\](-~) and .N"(~):.N(-\) for~ real. Assume now 

that R. is rea 1 and even. Introduce the rea 1 functions 

(5.39a) 

'JT (.x,t, el.~) :- N(i:.-X., X,~) , 
( 5. 39c) 

(5. 39d) 

where -CD<~ <co ~ve note that I? and 'l1 are even in ~ and Q is odd. 

Thus we have 

-~t + ~x "' ~ <a<?> cf>(x,t., ?Jdt ' -- (5.40a) 

~t =- ~ Q + ~ 'lT ' ( 5. 40 b) 

(5.40c) 
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These are the self-induced transparency equations (SIT) in dimension

less variables. For ~(~):CI(~(l-~o) t they are the reduced Maxwell

Bloch equations (RMB). The SIT and RMB equations have been studied 

using ·various techniques, including inverse scattering~ by Caudrey et 

al. (1973ab, 1974); Lamb (1973); and Ablowitz et al. (1974b). 

Equations solvable by expressions of the form (5.28) when tp 

and lf> are matrix valuedtt can also be found. In fact in (5.31) cp and 

1f) can be taken matrix valued, since whendefining .t in (5.3lb) the 

possibility of having noncommutative products was considered. Further-

more, since (5.29) remains valid if the ~l·s are matrices, nonscalar 

dispersion functions are also possible in this context. More precisely, 

(5.28c) can be replaced by 

~t dnl:l,t:) = -i. [ <.)(Rl d r(R,t.) + d rOt,t.) v(R) :l , (5.4la) 

(5.4lb) 

where cu:(a)(Rl and v:.v(R) are now square-matrix valued functions of 

of appropriate sizes. The simplest equation furnished by (5.41) is 

(5.42) 

tThere is no harm in taking - ~ (and thus 9t. ) a .a-function. It is 
easy to see that the requirement in (5.33), that the integration be 
with a proper function kernel, is unduly restrictive. In fact the in
tegration need not even be over~ - real. 

ttThe dimensions of cp and q> must be such that the products <plf) and 

1f!f make sense. 
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for c.):W0 and v= ~>o independent of 1:\ The others are constructed from 

this one using the operator .L, just as (5.31) followed from (5.30). 

As a final remark we point out that the subclass of equations for 

which we can require cp=lf> is related to the class of equations treated 

in Section 2.8 by means of the transformation 

(5.43) 

This generalizes the results of Sections 4.4 and 5.4. 
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CHAPTER 6 

BOUSSINESQ EQUATIO~ 

As a final example we consider in this chapter th~ equation 

where 'i, \Ia. and a- are real constants and 1.L:1L(:x.,t) is real valued. This 

equation is a nonlinear Boussinesq equation. It occurs in one-dimen-

sional nonlinear lattices (Zabusky 1967), water waves (Ursell 1953), 

etc. 

6.1 Solution oy Small Parameter Expansions 

Following the same procedure we used in the preceding chapter, 

we arrive at the formulas 

(6.02) 

where d\.(R,~) is an appropriate measure on a:2. such that 

dA.(I:\,c.)) i= 0 O"Tl ly i ~ 
(6.03) 

( 6. 04) 



-95-

and 

(6.05) 

The equality of the two expressions for v.. in (6.02), follows from 

noticing that 

(6.06) 

as is evident from (6.05). Therefore-~\lt-nl.~x is equivalent to elimi

~ating one of the factors in the denominator of the integrand of the 

last expression of (6.02). The condition foru to be real is 

(6.07) 

To pr.ove that (6.02) is a solution of (6.01) we use the identity 

where "ll= ~.4,~, ... , the bd 's and a.J 's are arbitrary complex numbers 

-J. b-1. b ( . ) such that bj:f:o <'lli~j~,), z.~:a.JbJ+\)bJ 7 Wj=-o..! J +\1 J,v1.~J~, 

and ~.,is the set of cyclic pennutations of \.s., •.. ,"T11 . For Tl= ~ (6.08) 

can be verified directly, then (A.l02) proves it for all, . Substitut

ing (6.02) into (6.01) and using (6.08) we then have 



a. a. 
= - (f' (}X. u. • 
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This proves that (6.02) is a solution of (6.01). 

(6.09) 

Formula (6.02) is quite similar to the expressions found for 

the solutions of the equations in the preceding chapters, and the 

same techniques used before apply here for its summation. Introduce 

the function 

(6.10) 

and assume that, as :x:.- co , (a:_ u.~ _..o ( V -n) and b..__o , the 
45::0 

latter being true also for "j..._co. Then we have, from (6.02), upon 

using ot +(3 = ~uk 
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Equation (6.07) is equivalent to b being real. It is clear that 

b(:x:1 .X.1t) satisfi es the linearized version of (6.01). 

6.2 Multisoliton Solutions 

Take now 

where p and ~ are the column vectors whose components are given by 

the a""' •s are real numbers and 

' ' (6. 14) 

where the ~-m·s and .A'Tf!•s are real numbers, the ~m·s positive, such 

that 

(6.15) 

~ :1. 

In writing the second equality in (6. 12) we have used that ?m-~m= 

=~Am. 
i.l) 

Introduce the square matrix 

(6. 16) 

Then from (6. 11) we have 
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For ureal, i.e., ~>"'>o, fT=~* and B is positive definite. Thus 

for f>O, formula (6.17) is nonsingular. For u purely i.maginary, 

i.e.,. \.la.<o, further conditions on the .1"\m's are necessary to guarantee 

the nonsingularity of (6. 17). A sufficient condition is that for all 

pairs m~:t:ma.. 

(6.18a) 

or 

(6.18b) 

Then (A. 203) shows that all the minors of .::B are nonnegative, so that 

no .eigenvalue is he9ative (since the polynomial det(AI+B) will have 

all its coefficients positive)· It follows that, again for ~>o, (6.17) 

is nonsingular. For two soliton solutions (6.18) is also a necessary 

condition. After some manipulation, (6.18) can be reduced to the fol-

lowing single condition: 

Multisoliton solutions for equation (6.01) were first presented by 

Hirota (1973b). 
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6.3 Marcenko Integral Equation and Eigenvalue Problem 

' A Introduce the operator b defined by 

(6.20) 

~en, from (6. 11), 

:1. ~1 ~ TI 
t.L = _ .a.u cr 01x .n.(x,x,t) , 

(6.2la) 

(6.2lb) 

h - Tl "b1l~1 ,., ~1. were K=L.c-el b:-E.(I+e..b) b. This equation provides, in effect, 
1. 

a summation of (6. 11). We recognize in it the Marcenko integral equation 

used by Zakharov and Shabat (1974) to solve (6.01) by a variant of the 

inverse scattering method. 

We now look for equations satisfied by K . This time we do not ex

pect thet-dependent equation to follow directly from (6.01). This is so 

because the proof of (6.02), in (6.09), uses the highly symmetrical de

pendence of u. on ::c • Indeed (6.08) involves summation over ~, . On 

the other hand, K, whose expression in terms of dA. is 

has this symmetry destroyed by the presence of the variable J . However, 

whatever the equation satisfied by 1< is, we expect its linear part to be 

I 
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determined by the first term in the expansion (6.22), i.e., b. Writing 

. a. :1.) w in (6.10) 1n terms of« andf ,w::.ii•u(« -j3 , we see that b satisfies 

Thus we are led to study the . effect of the operator Q)t:+LLl(C>:-~;) 

K. Now we have 

· Therefore 

(6.23) 

on 

(6.24) 

To find another equation we proceed from (6.21) ~ First we write 

~.:1. the dispersion relation in terms of ot':\JR+c.)M 

It follows that b satisfies the equation 

This equation and (6.20) imply that 

(6.25) 

(6.26) 
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(6.27) 

Thus, multiplying (6.2lb) through by <x+e.'bY\l , using 

(6.28) 

and (6.2la), we obtain 

o : <.tK) ex,~~ t > _ G,<I u.(:x:,-c> X:x. <x,~,tl _ IDcru.<:x:,t) Kc:x:,:r:,t) Kc:x:,'l,t)-

Introduce 

(6.29) 

Then 

This formula can also be proved directly from (6.22). Fin~lly, an 

eigenvalue problem for (6.01) can be found separating the variable d 

in (6.24) and (6.30). 

We note that introducing 'f into (6.01) we can write it as the 

system 

' ( 6. 31) 
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CHAPTER 7 

AN EQUATION PRESENTiNG MULTISOLITON BEHAVIOR 

7.1 Introduction 

Recently Caudrey et al. (1976) introduced an equation presenting 

multisoliton solutions. The equation is a generalization to fifth order 

of the KdV equation, and can be taken in the form 

( 7. 01) 

Following Hirota's approach they introduce 

(7.02) 

This transformation reduces (7.01) to a homogeneous equation of degree 

two in the variablet, which can be written in the following form 

{ <~x.- ~:~~..) <0(-<.a-t-at.•>, ~x.-~·) t<~,-t)~(:c1,t'J1:x:::x'=o, 
-t::t' 

(7.03) 

where o:(":,(-'l,"P):-fi+"ll5 is the linear dispersion relation of (7.01). Then 

they prove that a solution of (7.03) is given by 

( 7. 04) 

where ~) indicates summation over all possible combination~ of v indices 

1., ... , ~" ou1; of 1., .:1, 3, •.. -n , 
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and the "PJ •s, !l.i •s and ?Jo •s are constants. The solution of (7.01) 

provided by (7.02) and (7.04) presents all the characteristics of a 

multisoliton solution. 

No eigenvalue problem that would render (7.01) solvable by an 

inverse scatteri ng transform is known. However, the fact that the 

equation supports multisoliton solutions is an encouraging sign that 

there might be one. Motivated by this, we tried to apply to (7.01) 

our small parameter expansion technique, without success. In view of 

this we started a search for a lower order equation that would also 

support multisoliton solutions, of the same functional form (7.04) but 

with a different dispersion function.rt. Presumably it would be 

easier to find a perturbation expansion for a lower order equation. 

Then we would only have to take a different dispersion function in it 

to obtain a perturbation expansion valid for (7.01). Although our 

search for a lower order equation was successful, we have not been able 

to write a small parameter expansion for it. The equation is 

(7.05) 

where r :Vz. 

7.2 Mult i soliton Solution 

Introduce 
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into (7.05). Then ~ satisfies the equation 

f <~x-~x') G(-(dt-~i:,), all.-ax') +<x,-t>f<x',t'Jt_=
1

' = o, 
i.,. i.' 

(7.06) 

(7.07) 

where na.v o .. G(n,1?>:'P+:t"n. is the linear dispersion relation of (7.05). 

We assert that, with use of this latter fonn ofG, (7.04) solves (7.07). 

5 -.\. 
Instead of.nj:lj,<VJ.$j.$TI) we now have DJ:-'Pj ,<v"~j~-n) , but the 

a.(Q.,j)'s, which characterize the functional form of the solution, remain 

the same. To prove our assertion we substitute (7.04) into (7.07). Then 

the coefficient of 

e-x.p ( .1. ''/;. +··· + ~''h + '7· +···+'V· ) ' 
l. I' J.s. J7 

is 
'f 

~ L a.(Ls.a···~Lp 1 ti., ... ,t"TII)a..~i1., •.• 1 i.p 1 lm•u· .. ,l,> Hc.n.t-m,'l?t,.), 
m:o (~) 

where [lsf=-t~s1', rt<.Cl,"P):'FG.(n,1?), ~ means sunmation 
.\. i. (~} 

over all possible combinations!,., ... ,!"" of'TT1 indices out of the CJ indices 

-.::>e..., -o -o and simi 1 arly for ni.'.""' .!s.1····lT ' .L -= .&:pj. +· .. +1'r-m- .&:f...,u- •• ·-"1',., 
This coefficient must vanish. Taking out the common factor 

Q( i.s. , ... , i.P) 1i a.(.L,.,ls) we see that what we want to prove is 
1",5 

I d 
a.a. a. 

ntro uce ai(1?~,"Ps) = Cl'r+:Ps) {l't+'F,1?.,+?s> . Then this last formula 

is equivalent to 

- --------.- .... - ----~ 
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Now forany i~s~q ""'?. __ -p. leaves Co invariant. Thus Co is 
1 ch 41o I I 

.a function of 1j: 
1 

(l.$ s~q) , only. Since the singularities of c1 come 

from the nJs=-1J-: , which only occur' linearly, they must cancel out. 

It follows that '4 is a polynomial of degree at most ~c:/,..-a..'/+'3. Fur

thermore, c~ must b~ of even degree: Thus degree c 1 ~ a.92.- aq +a. 

An alternative way of writing c~ is 

Thus we see that c., is symmetric. Let us now denote 
, ~ 

-p e. = ~ e:, 1j, J .O.e -= L t:, n, I Ae. (X.)= L. 0( ('X I Es "Pjs) • 
- 2. 1.<!>41 

Then 

r~oreover, 

Because of these last two formulas and the symmetry of c, it follows 
, ::t. 2.. a. 

that, if c<t-~=c,_. :o { 1f""Pi • 1f ('P; _-p. )} 
J ss£. .,. i~'T'<!I ~'l <t'!o d'l" 

is a 

factor of c'J. The degree of this factor is :;tqa.>aq2._aq+.;t. for 9 > i. 

Thus c,'£o. Since C .. =C~:o, the proof follows by induction. 
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7.3 Conservation Laws 

We have found the following two conservation laws for (7.05): 

(7.08a) 

(7.08b) 

These conservation laws match the on~s found by Caudrey et al. (1976) for 

(7.01) and give more reason to expect the existence of a whole class of 

equations, similar to those found in Sections 2.8 and 5.5, supporting 

multisoliton solutions of the form (7.04). The particular one corres

ponding to a dispersio~ function cu(R) =~3 could be of interest, since it 

would constitute a variant of the KdV equation. 
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APPENDIX 

In this appendix we prove several formulas and results quoted in 

the main text of this thesis. 

A. 1 Some Results and Identities for Polynomials 

Let v and w denote two finite dimensional vector spaces over a 

field 

Lemma. Let "P:?ci:.1 ,. •• ,i:n>:v.::__w be a polynomial function such 

that degree"P <, . Then 

(A. 101) 

where the surrmation is extended over the set T-n of all functions 

and 

Proof: By linearity it is enough to consider the case w~r:- and P 
..., "11\ 

a monic monomial in some base te.1 of v. 
d J~ 

(i~ l ~,) , we have 

where .)'(:U< ... J) is an -nxm matrix of natural numbers with 

Then 

.Kt . 
L. (~<rl"F<.cr~i.1J""·~rrn-i..,.) = L. <.~~<r) 1T<<r.t.x..a/l = 

TTl T-n .I(Aj :f:O 

= -pcX-1 , ••. , x.,. ).( l:.<.~~<rl rr Gi ) = o. 
Tn .K.e.j -;.o 

r. .J(.lj <,., • 
t,j 
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To see this let i.~~1.<···<Qs~n be such that ~.~J1o for some J..~j~m 

if and only if !:1'" for some i$r~5, and letT~ be the subset ofT, 

of all cr's such that <It= .1 C.'V1~r~s). Then 
I" 

r. (~CJ") 1r ~ 
T, J<e~ * o 

si nee s < -n • 

quences of polynomial functions such that, for some i ~ r < ao 1 

(i) degree-"?"" ~r and degree ~1'1 ~ r (V' 1.$1'1 <OO), 

-.::> ... ... ) "'P - - - - ) ( i i) .1::1'1 ( :z:J.J ••• , Xn : .._.,._J. (X'-,-., :X..j-i.J :X.JH) ••• , ::J:.n 1 

Then 

"?'1'1 = Q, , ('V :\.~11 <co). (A.l02) 

Proof: (ii) and (iii) imply"?, =.Q, for 1.$1'1 ~r. From (ii) and 

the preceding lemma we see that 1', can be written in terms of-?1., ... 1?-n-1. 

and '"?,in terms of ~1., ... 1ql-n-.1. ('tir<Tl <coL Thus (A.l02) follows by 

induction. 

A.2 Expansions of Certain Determinants 

Lemma. Let A:.(aa.\) be an ·th,, matrix over a field F, and let 
1\ t\it be tn.determinates. Then 

(A. 201) 
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where 

(i) L indicates summation over all possible combinations ofm 
~) 

indices 1.~l~<··· <t1n~'T1 out of\1,.a., .. . ,-n ~,and 

(ii) At~···!,n denotes the 1n~m principal submatrix of A formed by 

the intersection of the co 1 umns and rows ~ ••.. , lm . 

Lerrma. Let l,~ £ F
11 

be such that z.r +~ f o (V .14! :fj ~ 'Tl _) , where 

F is as before. Then if we define CV .&.41*j ~'Tl), 

we have 

(A.202) 

Proof: Whenever z.r:: zJ or w-r=WJ ('lf141<j.sn ), the determinant 

vanishes, since then the rows 1 andj, or the columns Q. and j respec

tively, are linearly dependent. Thus for some ~E. F 

since we are dealing with polynomials of the same degree n('Tl-1) with the 

same zeros. Thus detS: « 0.1 ... -n Evaluating at z.;+WJ :.O (Yuj ~.,), 

we see that o(:i., since then 5:.'I and 0.1.i=1 {~.&.~4.FA.$-n >. 

Corollary. "" Let 5 be as in the preceding lerrrna and f\iJ\. as in 

(A.201). Then 

(A.203) 
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A.3 Conjugations and Positivity of Spectrum 

Let H be a separable Hilbert space over the complex field c . A 

conjugation over H is an antilinear, idempotent operator :r such that 

<.J'u.,v):<J''I,u.) ('Vu.,vt:H), where {·
1

·} denotes the inner product on H 

For .any bounded linear operator A. on H we ,define its conjugate A.~ 

and transpose AT operators by 

and 

where • denotes the hermitian _adjoint operation. 

If H is a spaca of square integrable functions with the usual 

inner product, then the pointwise GOnjugation is a conjugation over~ 

in the sense just defined, and we denote it with a bar, i.e., ii for 

:ru. and A for A~ . If 1-4 = <t.
11 

with the standard seal ar product, and 

we consider the componentwise conjugation on H , then the transpose 

takes its usual meaning. 

Lemma. Let 'B be a self-adjoint, nonnegative, bounded linear op-

erator on H . Then the spectrum of 13:B~ = 'l?I~T is contained in the 

nonnegative real numbers. Moreover, if 'B is invertible, then "B'B;r= 

="BBT is similar to a self-adjoint, positive definite operator. 

Proof: Let :B:l<'2. with X::l{*>., o bounded. Then e:r:<.X.~l~ 

also bounded, and we have 

and 
2. -1. 2. :r -i. 

( I- ce. K ( 'K:r) K] = I + ce. K ( K"l) ( I - o( 'B B ) K. 

It fol.lows that the spectrum of :BE?. is the same, with the possible 
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exception of the origin, as that of .xoe>.a.K = (K K:r HK K1 > 
11 ~ o. 

~ . • -1 
In fact (B"Blf exists if and only if(<KKJ"KKXl')] exists, so that 

the origin is in either both or none of the spectra . 

. For the secona statement we observe that if .Ft~ exists, so does 
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II. THE SIMILARITY SOLUTION FOR THE KORTEWEG-
_. 

DE VRIES EQUATION AND THE RELATED PAINLEVE 

TRANSCENDENT 
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l. Introduction 

The Korteweg-de Vries (KdV) equation describes the 

development and propagation of moderately small amplitude 

shallow water waves (Korteweg and de Vries 1895), and many 

othe_r important phenomena where · a small nonlinearity is com-

bined with a ·cubic dispersion relation. In various contexts its 

similarity solutions become important. The equation can be 

normalized to 

u = 0, 
XXX 

(l. 1) 

and the similarity solutions can be taken in the form 

2 1 

u(x, t) = (3t) -3 f(r)), r) = x/ (3tf3 • (1. 2) 

Substitution of (1.2) into (1.1 ) gives the following ordinary di£-

ferential equation for f: 

f'" + 6££'- 2f- nf' = o. (1.3) 

The solutions of primary interest decay exponentially as r) - oo. 

In this limit, they approach solutions of the linearized equation 

f"' - 2f - 17£' = o, (1. 4) 

and the derivative of the Airy function, Ai' (17), is the relevant 

solution of this linearized version. Therefore, we take the 

boundary condition 

f""' aAi'(17), 17- oo, (1. 5) 

where a is an amplitude paratneter. 

Preliminary numerical computations by Berezin and 

Karpman (1964) show that when a is small enough f becomes 

oscillatory as 17 - - oo, but otherwise f may develop singular-

itie s. We will show that there is a critical value a 1 of a 

which separates the oscillatory from the singular solutions. For 
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- oo. 

becomes oscillatory as rJ - - oo. 

For f( rJ) . 

For a > a 1 , f( ry) develops 

a singularity at a finite ry. We have not mad e the analysis for 

since the original interest (discussed n e xt) was in 

solutions with f - 0 as rJ - oo. Numerically we compute 

-13 
a 1 = 1 + 0(10 ). 

Ablowitz and Newell (1973) studied the solution of (1.1) 

when the initial data decay sufficiently rapidly .as lxl - oo 

and no solitons are generated (Scott, Chu and McLaughlin 1973). 

The similarity solution was proposed for the long time structure 
1 

in the region x/t3 = 0(1). In this context the matching con-
1 

clition with the region (x/t3) >> 1 gives a = - f3 0 (k), where 

f3o = f30 (k) is the reflection coefficient of the scattering prob

lem associated with (1.1) (Gardner, Greene, Kruskal and Miura 

196 7) . But for most reasonable initial conditions f3o {0) = - 1, 

and this corresponds to the critical value a = l. Therefore 
1 

the matching with the oscillatory region (x/t3 ) << - 1 of (1.1) 

is not possible. A revised discussion of this question has been 

presented recently by Ablowitz and Segur (1977). 

2. Second Painleve" Transcendent 

In order to study (1. 3) it is convenient to make the follow-

ing transformation due to G. B. Whitham: 

f = g' - g2 ( 2. 1) 

This transformation was suggested by the relationship between 

the KdV equation and the Modified (MKdV) equation (Miura 1968 ). 

Then g satisfies the equation 

(g"- ryg- 2g 3 ) 11 - 2g(g"- ryg- 2g3 )' = 0 ( 2. 2) 
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This equation can be integrated once to 

co 
(g" - ng - 2g 3

)' = a exp { - 2 J g(s)ds} 

n 

where a is an arbitrary constant. Since we are interested 

only in solutions for which g decays exponentially as n - oo, 

a must be 0. Another integration then gives 

g" - ng - 2g 3 = o. (2. 3) 

This equation is the ordinary differential equation corresponding 

to the similarity solution of the MKdV equation 

v - 2v2 v + v = 0 • 
t X XXX 

(2 .--4) 

The MKdV equation with positive nonlinear term gives (2. 3) with 

the opposite sign for 2g3 • 

From (2. 3) we see that g = g(n) is a Second Painleve 

Transcendent (Ince 1956). This form simplifies the discussion 

of the solution, and the relation to (1.1) and (2. 4) stimulates re-

newed interest in the Painleve equation. In particular g can 

only have first order poles as singularities; the question of the 

various singularities is a basic feature of Painleve' s classifi-

cation. Near sue h a singularity, at n = no say, g(n) has 

one or other of the expansions 

g(n) {r) 
1 

- ~('YJ no) 
1 

- · no )2 ... } . = ± - - 4 en + - 'YJo 
(2. 5) 

It is interesting to observe that when the minus sign is chosen, 

(2 .1) will lead to a function f regular at 'YJo • The plus sign 

will produce a double pole in f at 'YJo. This last case is the 

one that developes for a > a 1 , as we will see in what follows. 

In terms of g, (1. 5) can be written 

g(n, a) '"'"" aAi(n), as n - co. (2. 6) 
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We consider now the structure of this class of solutions, as 

a varies from 0 to oo. As far as the equation for g 

is concerned it is not n e cessary to conside r a < 0, sinc e 

g ( 71!, - a ) = - g ( 71I. a ) . 

First the equation (2. 3) is written 

g" = (rj + 2g2 )g. (2. 7) 

We see then that we can divide the (n, g) plane into four 

regions; (I) g > 0, n + 2g2 > 0, (II) g > 0, n + 2g2 < 0, 

(III) g < 0, n + 2g 2_ < 0, and (IV) g < 0, n + 2g2 > 0. 

Any solution g = g(n) of (2. 7) will be strictly concave in re-

gions (I) and (Ill), and strictly convex in the other two regions. 

Going back to (2.6) we see that as n decreases from oo, 

g(n,a) > 0 increases, while g'(n,a) < 0 decreases and we 

have the following cases (see Fig. 1). 
'-

(i) If a is large enough g = g(n, a) will completely 

avoid the parabola n + 2g2 = 0, remaining always in region 

(I). In fact . g = g (n, a) will develop a singularity at a finite 

r) = s(a): a simple pole with residue equal to one. Solutions 

in this range are "nested", i.e. g(n,a') > g(n,a") and 

g' (n, a') < g' (n, a") if a' > a". Moreover as a - oo, s(a) - oo, 

strictly monotonically. 

(ii) Call the infimum of the a's for which (i) is true, 

a 2 • Then everything said in (i) is valid for g = g(n,a2 ); ex-

cept for the existence of a point of tangency with the parabola 

T] + 2g 2 = 0, at say. As s(a) decreases 

monotonically to the finite limit s (a 2 ). 

(iii) Now let a be such that 0 < a < a 2 • In this case 

as n moves from oo to the left, there is going to be a point 
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r) = n (a) at which g = g(n, a) crosses the parabola r) + 2g2 = O, 
c 

going from region I into region II. Then the solution becomes con-

vex. However, if a is close enough to a 2 , the crossing of the 

parabola will be. almost tangential and the solution will not separate 

much from the parabola as r) continues to decrease. Thus the 

factor n + 2g 2 will be small, - and so will the curvature of g = g(r), a), 

in fact it will be less than the curvature of n + 2g 2 = 0. A second cross-

ing at some n = n (a) then occurs, back to region I. 
e From then on 

g = g(n, a) remains in region I and, as in cases (i) and (ii), develops 

a singularity. If a 1 is the infimum of the a's for which all of 

this happens, then for a 1 <a< a 2 , 

ne' s and nc 

+ 

are monotonic in 

nc - nT and s - s(a2 ) when 

strictly monotonically. 

a; when a - a2' r)e - r)T' 

r) - - oo and s -e - 00 

(iv) For a = a 1 , g = g(r), a) crosses the parabola at only 

one point, it remains in region II for all r) < r) (ad, 
c 

and asymptotes to n + 2g2 = 0 from below as n - - oo. Solu-

tions in the range a ~ a 1 are nested. This extends the result in (i). 

(v) For O<a<a 1 , the convexity is large enough to 

make g'(n, a) = 0 at a point r) = rJI (a) < f] (a). 
c 

Then g = g(n, a) 

will turn down, cross the line g . = 0, enter region III and have a 

minimum. Then it turns back, crosses g = 0 again, has a max-

imum and so on. In other words g = g(n, a) becomes oscillatory. 

As 7J - - oo the amplitude and wavelength of the oscillations· de-

crease, due to the fact that n + 2g2 - - oo. Solutions in this 

range look very much like Airy functions, shifted to the left, the 

shift being larger the closer a is to a 1 • all the 
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zeros, maxima and minima of g = g(n, a) move towards - oo. 

Also, the size of the . oscillations increases and, in particular, 

the first "hump" sticks very close to the parabola r) + 2g 2 = 0 

for an ever increasing range of n's. As a- 0, g(n,a) 

approaches aAi(n). 

All these statements can be proved quite rigorously, one 

of the key elements in the proof being the. analyticity of g (TJ, a) 

in both its arguments in the range - oo < a < oo, TJ > s(a). 

,(We define s (a) = - oo for - a 1 .:os; a .:os; a 1 ) • 

3. Asymptotic Expansions 

The cornplete asymptotic expansion as TJ - oo is 

00 

g(n,a) 

n=O 

where 7/Jo (YJ) - Ai(TJ) and lj;n(YJ) are the unique solutions of 

1/J~ - TJI/J n = 2 ~ . 1/J ilj; /k (n ~ 1) , 

i+j+k=n-1 

as 

The 'if; 's can be written explicitly in terms of multiple in te
n 

(3 .1) 

(3. 2) 

grals. They have asymptotic, non-convergent expansions of the 

form, 

a s TJ - oo, ( n = 0 , 1 , 2 . . . ) . 

The a.'s, j ~ n ~ 0 are constants. A few of them are, 
Jn 

ajo = < - l)jr(3j + ~)/54jro + ~)r(j + l) = 

(- l)j(2j + 1)(2j + 3) ... (6j - l)/216j.j!,(j ~ 0), 

(3. 3) 

(3. 4) 
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a = (l/6)n,(n ~ 0), 
nn (3. 5) 

(n ~ 0 ). (3. 6) 

The asymptotic s_eries (3.3) are all alternating. From (3.3) 

and (3. 5) we see that, 

( ) -i-{ 1 ( 2 3/2)} 2n+l{ 4 3/2} -n( O) T/1 n n "" n -- exp - 3 n n J n ~ • 
2.J7r 

(3. 7) 

Thus the series (3 .1) is not only asymptotic, but convergent, 

provided that a is small enough or n large e·nough. More 

precisely, 

a 2 4 3/2 
167Tn3/2 exp ( - 3 n ) << 1. 

Moreover, we can write 

g ( 77, a) = a A i ( n) { 1 + €( 77, a)} , 

a 2 4 3/2) 
E (n, a) "" 312 exp ( - -3 n , 

161rn 
as n - oo. (3. 8) 

We compute several values of E, to get an idea of their sizes: 

':::! -8 2 E(4,a)- 5.8 X 10 a, 

6 ~ 4 -12 2 E ( , a) - • 2 X 10 a , 
,... -22 2 

E (10, a) = 3 .1 X 10 a • 

It is seen that g(n, a) = aAi(n) is a very good approximation, 

even for moderately sized n. Similarly, g' (n, a) = aAi
1
(n) is 

also a good approximation. 

In the case Ia I < a 1 , the asymptotic expansion for 

n - - 00 is 

00 
1 

(3. 9) 

g(n,a) "" (- n)-·;q L <j>n(r) exp i(2n + 1)9} + (c.c.), n-- oo, 
n=O 

I a I < a1 • 

(3.10) 
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where 

3 -3/2 
r = Z ( - TJ) 

and d is a constant. The <P 1 s have expansions of the form, 
n 

00 

as r - 0 7 (n = 0, 1, 2, •.. ) (3 .11) 

and are the solutions of certain singular equations, with appro-

priate boundary conditions. The only free parameter in (3 .10) -

(3 .11) is f3 0 0 , and d is related to it by 

d = I f3o o I· (3 .12) 

We do not know the connection formula f3 0 o= f3 00 (a), !a! < a 1 • 

In a recent paper, Ablowitz and Segur (1977) propose that 

To first order (3.10) gives, 

(3 .13) 

where 9 0 = arg f30 0 • 

For the critical solution a = a 1 which asymptotc=5 to the 

parabola, it is readily checked that the asymptotic expansion is 

00 
1 

~ 
-3n 

g (TJ, al ) ""'"' ( - n,-z- r (2n) , as TJ - oo, (3 .14) 2 n 
0 

where 1, 1, 
73 10657 

etc. ro = rl = rz = - T r3 = • 2 

4. Numerical Computations 

In this section we describe the numerical computations 

for the values of a 1 and a 2 • Equation (2. 7) was integrated 
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with the initial conditions g(lO} = aAi(lO}, g' (10} = aAi' (10}, 

for various values of a. According to (3.8) and (3.9) these 

initial conditions are accurate up to 20 or more significant 

digits for a = 0(1). We computed Ai and Ai' using 

the expansions (Abramowitz and Stegun 1965) 

n - oo; 

up to and including the fifteenth term. Here we have 

co = 1, 

and 

The error 

ck = r(3k + ~)/54kk! r(k + .!.) 
' 

(k = l, 2, 3, ... ) 
2 

d = 
6k + 

k - 6k 

committed is of 

1 
1 ck 

the 

' 
(k =0,1,2, ... ). 

order of the first deleted term. 

- d (~10 3/2 )- 16 "'2.11 X l0-15 , 
16 3 

we see that we had at least fourteen significant digits in our 

initial conditions. 

To integrate {2. 7) we used a fourth order Runge-Kutta 

(4 .1} 

(4 ~ -2) 

(4. 3) 

(4. 4) 

scheme (Abramowitz and Stegun 1965} on an IBM 370/155 computer, 

with double-precision. The step size was set at h = 0. 001, h = 0. 002 

and h = 0. 004. The value h = 0. 001 is about the optimum for a 

truncation error of O(I0- 15 ). 

A check on the integration procedure was made at n = 6. 
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There we compared the values g and g' resulting from the 

numerical integration with aAi(6) and aAi' (6), which by 

(3. 8), (3. 9) coincide with the true solution in up to eleven 

digits. These comparison values of aAi(6) and aAi'(6) 

were computed using (4.1) and (4.2) up to and including the 

fifteenth term. Since 

- d (2 6 3 / 2 )- 16 ~ 4 4 X 10-lO 16 3 • , (4. 5) 

nine significant digits were obtained. The relative discrepancies 

~1 = lg(6)- aAi(6)l/lg(6)!, ~ 2 = lg'(6)- aAi 1(6)l/lg'(6)! 

] ~ -10 turneo out to be ~ 1 = 2 X 10 , which fit 

with (4. 5) perfectly. Changes in the step size did not affect 

this last result. 

For values of a~ the solutions became 

oscillatory as r] - - oo, as shown in figures 1, 3 and 4. 

For a ;:::. 1 + 10- 9 the solutions had unbounded growth as 

r] - - co as in Fig. 1. This was independent of the particular 

value chosen for h. The solution for a = 1 was consistently 

oscillatory for the Runge-Kutta scheme, but when other integration 

schemes, of the predictor corrector type, were used its behaviour 

was erratic. This wa~ probably due to the nature of the truncation 

error for the Runge-Kutta scheme, which in the particular 

equation we were solving W"a5 of constant sign and tendeCI to make 

the computed solution consistently smaller. For a ;:::. 1. 02 we 

found that the solution completely avoided the parabola r] + 2g 2 = 0, 

and for a ~ 1.0175 it did not. From these results we conclude 

that 
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1.0175 < a 2 < 1.02. (4. 6) 

At the same time as these calculations were being made, 

J.M. Greene was also computing the critical curve, and he also 

predicts al = 1. 

Another check of the result a 1 = 1 was made using the 

boundary value problem solver PASVAR (Lentini and Pereyra 

1977). We solved equation (2. 7) in the interval T ~ n ~ 10 -

with the boundary conditions 

g(lO)Ai 1 (10) =_ g' (lO)Ai(lO) = 0, g(T) given, 

where the value of g at n = T was computed using (3 .14). T 

was taken to be - 5.5, - 6.0 and - 6.5. The solution was 

computed to a relative error of O(lo- 10 ) for T = - 5.5, 

0(10- 12 ) for T = - 6.0 and O(lo-13 ) for T = - 6.5. To 

within these errors then the value of a 1 WdS 

a 1 = g(lO)/Ai(lO) = g'(l0)/Ai 1(10). 

In all cases we obtained a 1 = 1, to all significant digits. 
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2.0 

Fig. 1. -6 Solutions of (2.6)-(2.7) for a= 1.1, a= 1.0+ 10 , a= .95 and 
a=. 5 • 

.1..0 

Fig. 2. Solution of (2.6)-(2.7) for a= 1.0. Other numerical schemes 
or different step sizes gave nonoscillatory solutions. 



Fig. 3. 

-10. 0 
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Solution of (2.6)-(2.7) for a= 1.0-10-6 and comparison 
with aAi 

Fig. 4. Comparison of the solution of (2.6)-(2. 7) for a= .5 vdth 
aAL 
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