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ABSTRACT

In Part I, a method for finding solutions of certain diffusive-
dispersive nonlinear evolution equations is introduced. The method
consists of a straightforward iteration procedure, applied to the equa-
tion as it stands (in most cases), which can be carried out to all
terms, followed by a summation of the resulting infinite series,
sometimes directly and other times in terms of traces of inverses of
operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equa-
tions, and show how it quickly leads to the Cole-Hopft transformation,
which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear

(cubic) Schrodinger, Sine-Gordon, modified KdV and Boussinesq equations.
In all these cases the multisoliton solutions are easily obtained and
new expressions for some of them follow. More generally we show that the
Marcenko integral equations, together with the inverse problem that
originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend
to zero as the independent variable goes to ) are covered by our
methods. However, by the study of the effect of writing the initial
iterate u,; = u1(x,t) as a sum u; = U + 31, when we know the solu-
tion which results if uy = D], we are led to expressions that describe
the interaction of two arbitrary solutions, only one of which is small.

This should not be confused with Backlund transformations and is more in



—jv-
the direction of perfgrming the inverse scattering over an arbitrary
"base" solution. Thus we are able to write expressions for the inter-
action of a cnoidal wave with a multisoliton in the case of the KdV
equation; these expressions are somewhat different from the ones ob-
tained by Wahlquist (1976). Similarly, we find multi-dark-pulse
solutions and solutions describing the interaction of envelope-solitons
with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable By our method are presented. These
include the following equations: Self-induced transparency, reduced
Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher
order and matrix-valued equations with nonscalar dispersion functions
are also presented.

In Part II, the second Painlevé transcendent is treated in con-
junction with the similarity solutions of the Korteweg-de Vries equa-

tion and the modified Korteweg-de Vries equation.
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INTRODUCTION

In the last ten years there have been many developments in non-
linear wave theory, particularly in the aspect concerning exact
solutions. Before the paper by Gardner, Greene, Kruskal and Miura
(1967) verj few instances of nonlinear equations exactly solvable were
known outside the range of hyperbolic theory, and no systematic way of
treating them was available. Gardner et al. were able to relate the

Korteweg and de Vries (KdV) equation
W 4+ O UUL 4 U =0

to an eigenvalue problem
(sz + Il.(P =X(P1

in which the solution of the KdV equation appeared as a potential, such
that its spectrum remained invariant with time and the evolution of the
scattering parameters could be computed explicitly. Thus, by the process
of doing a scattering problem at t = 0 and an inverse scattering problem
for t > 0, they were able to find a linear integral equation for the
initial value problem of the KdV equation and derive a number of impor-
tant results. These include the explicit solution for the interaction
of any number of solitary waves; this problem corresponds to a vanishing
reflection coefficient in the scattering problem.

Lax (1968) reformulated the method, opening the way for more equa-
tions to be solved by the inverse scattering transform, as the technique
introduced by Gardner et al. has come to be known. In 1972, Zakharov

and Shabat found an eigenvalue problem with which they were able to solve
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the nonlinear cubic Schrodinger equation

(P + Pxx £ "P"‘P w

Also in 1972, Wadati applied the same eigenvalue problem to solve the

modified KdV equation

2
U + Ouw Uy +u.:=z=o.

Several other examples of physical interest have been found since then,
including not only partial differential equations, but difference equa-
tions and classical Hamiltonian systems as well.

The main difficulty with this method is in finding the appropri-
ate eigenvalue problem for a given equation. In fact no a priori way
of deciding whether a given equation is going to be solvable by this
method is known, and certainly there is no systematic'way of producing
the eigenvalue problem. Most of the work done in the field so far seems
to have gone in the other direction. That is, given an eigenvalue prob-
lem, find which interesting equations can be solved by it.

It is the purpose of the first part of this thesis to investigate
the problem of finding alternative approaches which bypass some of the
difficulties, and to learn how some of the more standard perturbation
procedures, so successful in other areas, would fare on the particular
equations solvable by the inverse scattering transform method. We are
also interested in obtaining the linear integral equations for the
initial value problem directly from the evolution equations, without

the necessity of invoking a scattering problem.
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We develop techniques by which perturbation expansions, valid
in a limited region, can be summed to give the complete solution. In
the process we obtain various exact solutions and the eigenvalue prob-
lems together with the Tinear integral equations associated with their
inverse scattering problems. A general method of summing these per-
turbation expansions by means of oberators is presented. The expres-
sions thus obtained might have some usefulness in dealing with the
asymptotic behavior of the solution for large time, but we have not
explored this aspect as yet.

The approach presented is useful not only for the cases covered
by the inverse scattering transform, but in others as well. We illus-

trate this in the first chapter, where we treat Burgers' equation
r?t +’7z'7 -'?z.:'.=°7

and Thomas' equation

Pry + <P= + /24y +¥PxPy =0 .

The Cole-Hopf (Hopf 1950, Cole 1951) and Thomas (1944) transformations
that Tinearize these equations are shown to follow naturally from our
expansions.

The second chapter is concerned with the study of the KdV equation.
In the first section we find a non-uniform perturbation expansion for
the solution. In the second section this expansion is summed in the
particular case in which the initial iterate is a sum of exponentials.
Thus we obtain the explicit solution for the interaction of any number

of solitary waves. In the third section a linear integral equation for
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the solution is obtained from the perturbation expansion, from which
it follows naturally. The eigenvalue problem associated with the

KdV equation is also shown to follow from the expansion. In the
fourth section the perturbation expansion is summed in a very general
setting. The sum is expressed in terms of the trace of the inverse

of an operator in a Hilbert space. An example is presented in

section five in which the operator can be written as a composite of
Fourier transforms. In the sixth section the problem of inversion

is treated; that is, given initial values, find the corresponding
parameters of the perturbation expansion. To do this we use the
eigenva]ue.problem and show that the natural parameters of the expan-
sion are precisely the scattering parameters. In the seventh section
we study how the solution transforms when the parameters of the ekpan-
sion are transformed. Formulas that describe the interaction of any
number of solitary waves with a given arbitrary solution are found.
The basic solution might be, for example, a cnoidal wave. The rela-
tionship of our expansions with the Bdacklund transformation for the
KdV equation (Wahlquist and Estabrook 1973) is also presented in this
section. Finally, in section eight, other equations that ére solvable
by the same type of perturbation expansion as the KdV are studied, in-
cluding some nonlinear matrix partial differential equations.

The third chapter is concerned with the study of the cubic
Schrodinger equation and the results follow the same lines of those of
the KdV equation. In particular, we write explicit formulas for the
interaction of envelope-wave solitons with a uniform wave train and the

multisoliton solution of the vector-valued cubic Schrddinger.
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In the remaining chapters of the first part the following equa-

tions are studied:

(Modi fied KdV) wy WU LU =0,
(Sine-Gordon) Uy - Uxx £ 5imU =0,

and
(Boussinesq) Upg Ty T Ugepax U =0

In all cases we find the multisoliton solutions, Tlinear integral equa-
tions and eigenvalue problem. The Miura transformation between the
modi fied KdV equation and the KdV equation (Miura 1968), is shown to
follow naturally from our expansions. -

Finally an appendix is added to provide detailed justification
of somé questions discussed in the main text.

The main difficulty of our approach lies in the algebraic manipu-
lations needed. A lemma, which is presented in the Appendix, proves
helpful in this, The method has some common points with the one pre-
sented by Hirota (1971,1972 ab, 1973ab). However, we do not transform the
equations previous to operating on them, and our expansions do not
terminate (two main features of Hirota's work). From our approach, we
obtain in some cases compact formulas for multisoliton solutions which
are equivalent to Hirota's expansions.

The second part of the thesis is a short note dealing with the
similarity solution of the KdV equation. It is shown that the ordinary
differential equation for this similarity solution can be transformed

into a second Painlevé transcendent equation

3u='?% + 9.33.
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We then study a special class of solutions of the latter. These solu-

tions do not seem to have been treated in the literature before.



Part I

EXACT SOLUTION OF SOME NONLINEAR EVOLUTION EQUATIONS



-
CHAPTER 1
BURGERS' AND THOMAS' EQUATIONS

1.1 Burgers' Equation

We consider Burgers' equation (Burgers 1948),

Pet Hx? - Px=9, 7=7(1), (1.01)

and look for solutions in the form of perturbation expansions for small

amplitude. We introduce an auxiliary "small" parameter & and write

m(xt)= L € P, (x,t) (1.02)

n=|

We consider solutions such that ®,,—,0 as x, _,eo , for allm , -and
assume that (1.02) is valid fof large x . Then we try to rewrite it so
as to have a solution valid for all x .

Substituting (1.02) into (1.01) and collecting equal powers of & ,

we have

mn-1
71\,t - Pnxx= -JM 7;:’( ’?T\-é ) (V> L). (]-03)
For m=1, we have
v&,t - T, xx = o. (1.04)

This is the linear, stable, heat equation and we choose to solve it by

Fourier transforms in the form

7, = S(a‘;k) exp (ikx - ka't ) dA(K).
C

(1.05a)
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To allow flexibility in our notation we Tet d\(k) be an appropriate
measure on the complex plane © . For example, (1.05a) may be a super-
position of real exponentials plus a usual Fourier transform

- ©
m, .-.E‘: Q 1 EXP KT 4 X t) +I(a.l.k)exp(i.kx.-k’%)ﬂ(k)dk.

-

(1.05b)

The factor(aik) has been added in (1.05) for convenience in what follows.

At the second order we have

Tt ~Taxx=-Tax = X(‘ﬁ.kik;)exp[j.(kﬂ.ka)x. SO RIE] AN d MK,

& (1.06)
The right hand side of (1.06) suggests a solution of the form
, 1§ x
=] §,0n. k) expliti ik x-(RsR)e]ddk) Ak (1.07a)
N

c

Since —(Ksky) +Ch skt = 2k Ky we have that (1.07a) solves (1.06) if

abh, Pk k) = dikhy, > Bl k)= aik. (1.07b)

We assume that any homogeneous solution of (1.06) that may be added to
M, has been absorbed on 7, .

For m=3, we have

at=Taux==Tax T = Ta,x 71 =

152 3
% S 4ilRky 4 by (ko) kyd €72 LAWY, (1.08)
¢3
where S, (hy sk iR kDt and CaNGOIZ dA(g)dNk,) dACky).



We take
i
= (kg by) €22 LT
% j.a. Bk (1.09a)
SINCe (s kyyhy) 4 Ck, 4ot hy)'m 2 b by 42 K My 4 2Ky bgz 2K My 4 2K Ky by , we
have
Ea'klk:.'i-a“"l'bka.) kaj §3(knk11 kJ) =
= dik by 4 ALk G ykhy , = 3060, k)= 2k, - (1.09b)

Similarly for m=4 we find §q=aLk1,and at this stage it seems

likely that & (k,,...,kn)=2ik, for allm . To check this we take

& panaal” , (¥ny1),

S
c_‘ﬂ

(1.10)

where the meaning of 1, and [dMk)1" should be clear from (1.08).
Substituting (1.10) into (1.03) we find

m m 2 n=i
C— §l k’. e ( El k) ] én(k‘.,---,kﬂ)':-i' 2‘:.‘ (kﬂ----«#kj) éj(kp-"okj) é‘."‘(kjul"'i kﬂ)'

3 3 (1.11)
Since
n n 2 n
_E. }{.(Ek}) = & ZJ kaz = & Ea(kgi----'fkj.j)k.!:
1gj<lsem
mn-L
=2 Ea (kx"'“"\‘kj)kjﬂ- ) (1 .12)
we have

-1
B, ek, o Ky ) Ltk +k)km_-_.£.<k,, +kj)§(k“ Mg, (kw b s

This last equation is obviously satisfied by



éﬂ(k“...,k,,) =aik, , (¥ny1). 1153
The actual expressions for the §“'s are not unique, since differ-
ent forms can lead to the same %,'s. For example @, =ik, ,/n)(Ky4...
wouf Vg ) or(/a)k +k,) could be used. The simplest one for subse-
quent manipulations is usually clear.

Formulas (1.02), (1.70) and (1.13) give

= _ L0y n o= n-i
m=L e.“Sm.kx) e " LdMk] = Lag? (1.14)

J
c“

where
7= E'S exp(ikx -Kt) dA(K). (1.15)
C

We then have

m=a3 (1-37 =23, tn(s-3). (1.16)

The function % , and therefore @=1-.7 , is a general solution of the
heat equation. Thus (1.15) and (1.16) provide us with the Cole-Hopf
transformation (Hopf 1950, Cole 1951), D= -2 Ine which linearizes
(1.01). In the final form the solution is not Timited to small ampli-
tude and the parameter & provides only a consistent ordering procedure.
We observe the key role played by the linear dispersion relation
associated with (1.01), i.e. G(w,k)=_iw +I:'=o , which defines the

basic (1inear) harmonics c.xp(;.kz_i.w{) from whose interactions the full
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nonlinear solution is built up. In successive approximations

G (g pore 4@y ) Ky poeed i) appears multiplying &, , as in (1.11). The
key steps concern the decomposition of this expression in a way compat-
" ible with the nonlinear terms, as is seen immediately after formulas
(1.07a), (1.09a) and in (1.12).

It is possible to solve (1.01) when ® is square matrix valued. The
only change that has to be introduced is to take dA(k) matrix _va'lued.
Also, because of the noncommutativity of the product involved, (i) the
@Tﬁs are now uniquely determined, and (ii1) the last equality in (1.16)

does not hold.

1.2 Thomas' Equation

Consider now Thomas' equation, which describes certain chemical re-

actions. The equation (Thomas 1944) may be written

Poy + S P +BPy +¥Q, Py =0, P=Pl=y), (1.17)

where « , /3 and ¥ are constants. Again we introduce an auxiliary "small"

parameter & and write

Py = L € @ =) (1.18)

Then, if k and L satisfy the linearized dispersion relation G(k,l)=

=-kl jiak 4ia2 and .= 12;. Ckyx sy, we introduce’

By analogy with (1.10).
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il n
o= & kiibn) €7 LAyl (1.19)
c‘ﬂ

where d;.l(k) is an appropriate measure on € . After some manipulation

we find Qﬁs. , §1=_§ . @3-.—.%" and we propose the general form

n+ -t
§“=(-1) Y ,(mx1).

) (1.20)
m
This is equivalent to (p“=(-x)1'+'.£‘—' P, , a formula that can be easily
checked. Thus we have
P=Tal™ X eq) = 1 tn(aiete). (1.21)

Since @, , and therefore (:..,an&),is a general solution of the Tlinearized
equation, (1.21) leads to the transformation )’LP:J-‘“‘I.’) used by Thomas

to linearize (1.17).
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CHAPTER 2
KORTEWEG AND DE VRIES EQUATION

The equation can be taken in the form

U IO, 4 Wy om0, Wulxt), (2.01)

This equation describes the development and propagation of long waves in
shallow water (Korteweg and de Vries 1895) as well as many other impor-
tant phenomena where a small quadratic nonlinearity is combined with a

cubic dispersion relation.

2.1 Solution by Small Parameter Expansions

Substituting

n
wix,t) = § £ u, (x,b) (2.02)

into (2.01), and collecting equal powers of the "small" parameter & ,

we obtain

n-L

Unt + Un,xxx=-3 % ’;‘ Ujtneg 2 (V73 th (2.03)

The function w, satisfies the linear Korteweg and de Vries (KdV) equa-

tion, so that we can take

. 3
w, = g(.k)cxp[:.(kx-rk t)1d\(K), (2.04)

where, as before, dA(k) is an appropriate measure on the complex plane
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€ and the factor (k) has been introduced for convenience in what fol-

Tows.

For n=a , we have

" ) 2
ot + %2, xxx =_'3"L(k’-"’k&) kyky e [dxan] (2.05)

C

where

rs

0, = kx4 06 LK)t and CdA(R)] = d (k) dMCk,).

A solution in the form
: a

13.3 S §;.(kuka.) ll-na' [d)\(k)] ) (2.06&)
(ﬂ.
requires [k, ky)-Ch 4 k)] §ek, k) a-3i Chy sk Kk, - Since
8
K o -Gk k)= 23k (hwky))  we have §=t. Thus
15, a
‘u.a'gg e Cd\ua]. (206b)
CS.
For m=3 , we have
Wap + Uy o =-39% (U U, U U) =
) 3
= 31 Chos ks by)Oh, k) €2 LoD (2.07)

c3

where

Q= Ghyphy k)= 1 (20 R and  LdNKIT = dick,) dAk,) dACk,).
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A solution in the form

2 3
Uy S $, (hy b, k) €2 L) (2.08a)
c3

s & 3
jrequires tLy kg o k- Chophyoky’T @ Chy by ) 3 Chyshy g hy)Choyhy).
Since hy 4k 4 hy - Chorhyshyl = -3Ch o+ h)Ch, ok )Gk, Lk, ), we have

B, = -CRiah, o k) Chyy kT Ch 4Ry s Thus

a, =_ [ Gurhasks) o0 ]
o ¢,j Chy+ R, )(k_+k;) : iAol

In a similar way we obtain

w, = (kl'l'hz,-i-h:*"hy) ‘.‘"Q‘l d\ (k) ‘1.
s c;, (h._q-h,)(h;.,,ha)(h_ﬁ_hq)c C i (2.09)

At this stage it seems natural to propose

TR el P | i CaxR)I™, (Vns, 1)
=\ ’ > »
m !C‘n aj'(kj-fh",.;) (2.10)

In order to prove this we observe that if

w, = 3 (hy e k) €57 LA T, (1), (2.11)
('1‘
is substituted into (2.03) we obtain

3 3
GRymnhy, By 4oy ) B (R, k) =

n-i

2-30 (R 3 hy) };'. I’, (Ry ey y) §“_3(k‘.,.,..., kn), (¥ny 1), (2.12)
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where G(w,k)=_iw -ik®>-0 is the linear dispersion relation of (2.01).

Introducing EL‘OJn»A), as given by (2.10), into (2.12) and multiplying
through by §: we find we must prove that

n-4

G ks ey, Rypo 3 By) =31 L G B OB DR gy By, (V03 ). (2.13)

This is a generalization for all m of the formulas found in (2.06) and
(2.08) for the cases m=a and m=3 respectively. To prove (2.13) we note
that
. n-4
o ¥4 E. L NS [4 h‘.ﬂ)(hj“.;....h“).-sz.[ L ok 4 Z. Rk ] =
Lsigjclygm igicjslsm

2 »
ooi Lok -3% LRk, 4 00)s

1gicj<lgm 1sj<kgm
e n 3 . n 3 7 m 3 M
S-L(E.h‘-)_'.‘. %k‘ = G(’E‘héa%ké)'

An alternative proof using (A.102) is also possible.
From (2.02) and (2.10) we now have

o -Q“
w=.id, Lee§ g m Lol (2.14)

e TI(h‘.’+hi“)
As opposed to what happened in the case of Burgers' and Thomas' equa-
tions, it is not possible now to do a straightforward summation of the
infinite series in formula (2.14). Different harmonics are now coupled
together by the factors (k3+ki,.3-‘ in the @.n's. No simple dependent

variable transformation will linearize (2.01). However, it is still
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possible to perform the summation of (2.14) in a wide variety of cases.
Its similarity with a geometric progression (which in fact it is, in

the appropriate sense) will be exploited to do this. Moreover, the
eigenvalue problem associated with (2.01) (Gardner et al. 1967), as well
as the MarCenko linear integral equation of the corresponding inverse
problem, is implicit in (2.14). Thus our perturbation method provides a
‘simp1e and straightforward way of obtaining and solving the proper in-
verse scattering equations.

Introduce

. 3
"(x't)’aﬁgd“h) expi(yhx 4R t), (2.15)

and assume that, as xw—we , b(xt) as well as the n*™™ term of (2.14)

tend to zero sufficiently fast. Then we can write (2.14) as

w=ag Leel ) dedz, bz, baaz, ). bz, p=t)- (2.16)
Ge, )

We note that b@ax,t) satisfies the linear KdV equation and that w is real

if and only if b is real. The latter is equivalent to dN(R) = - dN(-R").

2.2 Multisoliton Solutions

Assume now that b(x,t) is a superposition of real exponentials,

which we take in the form
bzsy,t)=2 L a expl- L% ey 4+ K0t = L PR ) plyE), (2.17)

where the a,z's and K5 are positive real constants and p&t) is the

column real vector given by
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Bpt) = 3m SXP L4 (A + Kmt)], (Ym). | (2.18)

The motivation for writing b(z+y,t) as a product is obvious from (2.16)
since then we will be able to perform each of the integrals over z,,

z,, Z;, etc. separately, i.e., we have

-1
w = 3 Z.(-e) P(zt)[LSdzP(tt)P(zt)] P(x,t). (2.]9)
This is a geometrical series, and if B=B(x,t) is the square matrix given
by

.B(x,t) =-3': S dz P(‘L"t) PT(Z,t) =
x

{ i S R exp & -‘-[-(x,,‘ +%m )z+(K +x,,,a_)t]} (2.20)
(K, +¥m,)

we can sum (2.19) to
W=_& 3, f"'.(::+e.B)-.‘P = ae SKTr[(I.,.aB)'.*(-iPP")]:

-4 2
- 2eX Ta[(14eB) 9,B] = 23, Talnz.2B). (2.21)

We observe that the matrix® , as given by (2.20), is real, sym-
metric and positive definite. The positive definiteness of B is a
consequence of the fact that, for any arbitrary column real vector

'1'r‘° s, we have

?TB(z,t)-? =3 St*z E‘IT-P@,t)J” >0, (2.22)
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sincea cannot be orthogonal to p¢z,t) for all x¢z <. Alternatively,
(A.202) can be used to compute the principal minors of B, all of which
are positive. It follows that for &>0 formula (2.21) is nonsingular.
In particular, taking €=1 and making use of the identity expTn =

=det exp , which implies Taln=12n det  we have

w=-93, PT. (1+‘B)..‘P= 3.3;: Ta 0 (1,B) = a,a:,ln det(14B). (2.23)

The last equality in this formula is the expression for the multisoliton

solutions obtained by Gardner et al. (1967) and Hirota (1971).

2.3 Marcéenko Integral Equation and Eigenvalue Problem

In an alternative manipulation of (2.16), we notice that if the
following linear operator, defined on functions of two variables, is

introduced

<'L.£)<x,3)=£ fx,z) bzsy,t)dz , (VE=[=y), (2.24)

then (2.16) can be written as

W=adI, ?(‘C) (b . b)|===j ) (2.25)

A
where b is interpreted as an argument for b in the form b(:x:,z):

=b(x+z,t) , and the variable t participates only as a parameter. -It

is now natural to introduce the function K:K(x,j,t) given by

K = E(-e)“'p-f b =-a(1+¢'E)'1.b : (2.26)

- ¥
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Then the following equations ensue

w(x,t)= 29, Kx,x,¢t), (2.27a)

o= K ci,-:,t) + Eb(x..,.!,t) +(e.?:.1{)(x,3,t)=

-
-Kemyt) s ebziy ) pefRemze by idz. () o0

We can think of these two equations as a way of summing (2.14), under
the assumptions that Ted to (2.16). We recognize (2.27) as the Marcenko
integral equation of the inverse scattering problem associated with
(2.01) (Gardner et al. 1967).

From the definition of K in formula (2.26), and retracing the

steps done to get (2.25) from (2.14), we can write

o n -
Ke=y,t) =;-1: - C-JS“—%%::M—"])-&XP&[% (hjz+h:£)+éhn(x+g)+kit:’ . (2.28)
- < J+ a*
4

This formula provides an alternative definition of K which is indepen-
4dent of the assumption that ii-m b(=,t) = 0.

Since w is now derived ;;;1 the functionK , it is natural to ask
what equations K satisfies. The close relationship between the two
functions is seen by comparing (2.14) and (2.28). There must be two
~ equations for K, one involving the time dependence and the other charac-
terizing the y dependence. The first one must be very closely related

to (2.01) and is almost trivial to find, as we now proceed to show.

From (2.28) we see that the effect of the operator (3¢ +3y) ON K 1is the
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same as that of the operator 9 on W . The operator 3 has the same
effect on both X and @ . Thus, by analogy with (2.01), we are led
to study [3,4(3,49,) JK  and we immediately find that

(5, + GV T Kxy,t) == 3 uxt) (3,4 3) Kx,y,t), (2.29)

where we have used (2.13), (2.14) and (2.28). The similarity of this
formula with (2.01)' is apparent.

In the search for the y-dependence equation we make use of (2.27),
where time enters only as a parameter. The idea is to find an opera-
tor L that almost commutes with T:: and at the same time annihilates
b(x4y,t). Then applying L. to (2.27b) and using (2.26) we should get
an equation for X . To simplify our notation we will not display the
time dependence in what follows. We first study the commutativity prop-

A
erties of b with respect to 9 and dy . For any I=I(:, y) we have
A A
3, (bf) (x,y) = - f =) bexsy) +(baf) =y,
87(‘\\:&) (x,y) =~ s.(x,x) b(x.,.\_.s) - (‘iaayﬁ)(:,g).

Therefore

(3,-3y )b M) LB (e 4 39 f Tea,y) (2.30a)
(3,4 3y (D) =,y = [ (3,-3,) § J¢x,y) - & {(x,) b(x4y). (2.30b)

It follows that &=(3t-3;) since we have (a:-a’,‘,)b(xwho and
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[(Dt - 3; ) Ab$] (xy) = [‘\\D (31'-9:) ¥] (xy) - 2 [I(x,z)]x b(‘x.pj) . (2.31)

Thus, applying (3:-3;) to (2.27b), and using (2.27a), we have

(3233 Kcxy,t) + € b (3e-35) Kxy,b) - eulxt) by, t)=0.

Multiplying by (I...s_%)"' and using (2.26) it follows that

(3% -3y Kz t) 4 wixt) Kz, y,t) = 0. (2.32)

X =

To prove (2.32) directly from (2.28) we simply observe that the
effect of the operator (a’,’,-a:j) =(3,(-'33)(3"33) on KX is multiplication

of the integrands in (2.28) by

-(kx+"‘ +k'n-1) ( kx'i-'"*\'h'n) B = (kz+'-- + h'n-.x):.' (kﬁ'“"*'h'n-a.) ky =

1sjsl<m 15j<lsm

Mn-4

=-L(h"+"'+k¢i)(ks+h ) . (V’l‘l),:i)' (2.33)
A

J«N
from which (2.32) immediately follows.

Since neither (2.29) nor (2.32) have coefficients depending on vy ,
we can separate this variable. We do so by writing

Kc=,3,¢)=g Yix,t, §) explicgy +‘f§3t )1 dy (§), (2.34)

C
for some measure cb.lcg) on € . The factor exp(‘iig’t) is introduced to

simplify the time dependence of y . From (2.32) we find

Y. + (F+ru)y=o. (2.35)
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From (2.29) with the use of (2.35) we have

Y= Yome -0y, Bu Y= G au) Yo 4 U Y. (2.36)

We recognize in equation (2.35) the eigenvalue problem associated with
(2.01) (Gardner et al. 1967), whose corresponding inverse scattering
problem can be used to solve the initial value problem of (2.01) with
(2.36) characterizing the time evolution of the scattering parameters.
These two equations (2.35) and (2.36) will appear again in another con-
text, when we study in Section 2.7 the effect of adding a set of Dirac
§'s to d\(R) in (2.14).

We now proceed to write y anddy in (2.34) directly in terms of
dX\ . This is trivial if we Took at formula (2.28), where y is practi-

cally separated and we only have to recognize gaikﬂ. It follows that

1,)(:,%.,;):{14.2 ('E)“S 1l_.e."'n“ Ldxk)I" }exP[L(gxﬁg’t)], (2.37a)
. a» Tk, ) (R +2§)
< i 4
dy(§)=- £ dN@E). (2.37b)
ai _

It is also easy to check directly from (2.37a) formulas (2.35) and
(2.36).

2.4 Operator Formalism

In this section we wish to sum (2.14) under circumstances more gen-
eral than the ones that led to (2.23) or (2.27). In the process we will

find formulas that generalize those in Section 2.2.
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First we derive again the formulas for multisoliton solutions,

starting now from (2.10). It is quite clear that (2.17) corresponds

to

d\() = L iay, $(h-iky)dh dk_, (2.38)

where 8C-)is Dirac's § -function on € thought as £% h,=TRe R,
hI=Im|q and the a,, 's and %.,'s are as in (2.17). Substitution of
(2.38) in (2.10) gives

n 3
n a 2 L, Mgy 4 Moy t)
U, = (-1) ax 5:. am""am.,‘ e“-:'. i i

d
1gjsm TI (Km‘. ¥ Km‘.“)

n n-
=45, L B, B m, - Bm“_'mnfmﬂgc_x)“ 3 p B ;_: 2 (2.39)

Agjsm
where p and B ;re as in (2.18) and (2.20) respectively. From (2.39) all
the other results in Sectioﬁ 2.2 follow easily. The factor (K, + K,,,a)d'
in By m, comes now naturally from the factor (h3+h‘.+1)'11'n §“ . These
lTast manipulations can be generalized to a very general d\Rk), not nec-
essarily discrete as in (2.38). To do so we only need to replace the
matrix ® by an operator on a possibly infinite dimensional space, as

shown in what follows.

By analogy with (2.38) assume now that we can write

dX\(k)= L a(k)dp(hk), (2.40)

where c\p(k) is a non-negative measure on € and a=a(k) is a function

defined on the domain & of dp(k). Define now the operator B and the
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symmetric bilinear form [-)f] , both acting on functions defined on® "

by means of the formulas

BEeL=§ ipw kY pk) [t dph) , (V2eD), (2.41a)
[ :
[£,97 = { §$R)gek) dp(k) = <§,3), (2.41b)
[ %
whe.re
PR = a(R) exp[ Lhx 1K)], (VReD), (2.41c)

and <-,-) denotes the standard inner product in ll(de) . The variables

x and t enter as parameters in B and P.T We note that B=3B" and that

SxB=-Lpp’, where the transposes are defined with respect to C:,-] T
In terms of ® and P , w,may be expressed as
M-
w, = 1) 9 PTB p- (2.42)

This formula follows from (2.10) in the same way as (2.39). If we assume
that Pe f(dp) and that the singularities in the kernel of B® can be
taken care of in such a way that B is a bounded operator on f(de) "

then we can sum (2.14), for 1eBl<st , to

1'This dependence is displayed only when needed.
™eor any operator A and functions {,q on ® , transposes are defined
by

[§,Aql=TAf,q1 , (q=[fql.
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W=-EJ PT (I*eB)-tP = DE BxTu[(I.,.eB).la‘B]. (2.43)

Whenever (r ,eB) is not invertible, (2.43) is meaningless. However,
at such points it is the actual solution of (2.01) that has a singu-

1arity, not the way we write it.

The functionsb,K and Y introduced earlier can be written in

terms of p and B as follows:
b(z+\5,i) =1 PT(z,t)P(«j,t),
K(x, Yyt)=-£ PT(x,t) B aB(x,t)]-LP(«A,t ),
Y(x,t,§) = { L i PTcx,t)L’I:,eB(x,t)]'}(z,t,g)} exp[ctgx+4g’t)],

where 9 » as an element of S.z'(dp) » is given by q(k) = a.i.(h+a-§)-&P(h),
(Vke D).

As usual, the actual expressions for the &_'s, as introduced by
formula (2.11), are not unique. Thus, for example, using that
CRypor 4R ) = 1/ DCR 4R 4 (Ryp Ry 4eee Ry 4 R,)D we can rewrite
equation (2.14) as

o i
w=_ad Leca) e” ™™

S Canem 1™
SRR RN S BN

(2.44)

Substitution of (2.38) in (2.44) gives directly u:a.D:'Tn.l.n (x14eB),
where ® is as in (2.20). However, for more general dA\R)'s (2.44)
presents difficulties, since traces of infinite operators are hard to

deal with, even when they exist.



99

2.5 Continuous Measures on the Real Line

It is the purpose of this section to give an example of the opera-
tor formalism developed in the preceding section, and at the same time
to justify the boundedness assumptions made on the operator B .

In the notation introduced in Section 2.4, Tet us take as dp (k)
the usual measure on the real line and assume that a.=a.(R), defined
for -e<k <=, is bounded and square integrable. Furthermore, assume
that a(R) =+a*(-k) for all k , so that w is real. We must clarify the
definition (2.41a) of B in this case. Several possibilities are open
to us, depending on whether we integrate going over the singularity
R=-1, under it or across it with a principal value. We choose to inte-

grate going over the singularity. Then we have, for any .§e.i?(dk),

co+£.o" a-p'.o* & s
@Hw = ¢ ) (2 4k pek) LRI dR =§ pa [ § 4] pon f) dk =
- iot —o4iot
TR C X‘. RE oo fom k] d Leoo
ol R Rt <l § ,-=< . (2.45)

It follows that if P 1is the operator multiplication by f,lf is the
operator multiplication by 1 on the positive real line and Q0 on the nega-
tive real line, and T is the unitary Fourier transform

= _ighk a
ER =L | T lmdr , (Ve L£(db)),
Bep= 2 { f

We have

B am'PF‘U F'P , Bl s a.1r(lla.ll°)a.. (2.46)
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The conditions that lead to formula (2.43) are thus satisfied if
\E| (uo.u.,)1< s/air.
We now proceed to show that (I+3)'L exists for allx and ¢ ,

even if (ua.u,,,)"-.-x/a.:rr , provided that

Lim sup lang a(R) - a)l<m/4 and  sup la(R)| <o /VAX ,(V§>0).
R—o >3 *3 k»d

For any fixed x< and + these two conditions on a=ac(Rk) translate
into PR = (k) exp[_&(h:: +h’t)]. Thus there exists « independent of k
(but not necessarily independent of = and ¢ ) such that Ipi-ll, < 1/am.

Since we have
= % £ o> K, 4 p2)E _x x

(I+B) =C14anPF UF*P) = x.anP(1,awm F*UF*P") FYUF'P,
- -1
(14 an F*UFP*) ' [T, aum FPUFY an FRUFS(PAaI)] .

-1
= CI4sanm F*uf’ (Pra1)] (1-axm F*UEFY),

where we have used that (F*Uf*)* o , the existence of (T+BJ) fol-
lows immediately from nawF*UF*(PxI)l<t.

Under suitable conditions w as given by formulas (2.43) and (2.46)
vanishes as ixl—,e . For example, this is true ifa is uniformly
continuous and lally < & /J/amer .

If we choose in (2.41a) to integrate going under the singularities

or across them, we obtain

B=-am PFUEP , Bll<am (lais),
in the first case, and in the second case

B.iTEGP , IBls¢T(iaia)
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where & is the self-adjoint, unitary operator

(ex)(n.).-._L‘P.\/.&_\:_(_LAk , ~em<hcom, (Ve L (dh).
w < 24k

2.6 The Problem of Inversion

From equation (2.37a) it follows that

Y=t g) = E:.+o.(s.)] mPEL(§I+4§3{:)J , 95 Xy, (2.47)

provided that the same hypotheses that led to (2.16) hold. In this
case we also have w=0(1) as x+.—oo , and since ¥ satisfies the equa-
tion
Yoz +§+2)YP=0,
(2.35)
it follows that, for Imgso, Y=t §) = X(xt, g)axp(dig’t) , where
X 1is the right Jost function corresponding to the scattering problem

associated with (2.35). That is, X 1is defined for Imgxo by

LEX
X ~ &"g Qs Xep™© .

Xax + (§pu)X =0
It is our purpose in this section to use this relationship between y
and X to write d\(R) in terms of the scattering parameters of (2.35),
thus inverting (2.14) for d\ in terms of w.

First, we write an integral equation for 3 , in which d\ is in

the kernel,

wW3x-43) : 158)
per e (€ e ndmag] e
ey S . (2.48)

L3
where dm(kue"htd)\ch)- This equation follows easily from (2.37a)
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after the integration over R, in each term of the summation is written
separately from the others and the change RBp,=2% 1is made. Now
dm(k)£0 only for Imk> 0 under the assumptions that led to (2.47).

Thus we can write (2.48) as

3
i 4gt)
L(§=4 f

V(x,t,g):-.‘[;_i S g

X(x,t,3)dm(a3)
z §+2) ]

(2.49)

Assume now that dX 1is a combination of the cases treated in Sec-
tions 2.2 and 2.5. That is, dm is given by

osict
j f£(3)dm@yp =§a.i. [ «@nd3 4 .u'.f. o f i), (V)
<

-a;.i.o’

(2.50)

where a.«(h),a’(.h), -wm<kR<o , is an appropriate function of the real
variable kR and the % and X; are positive real numbers. The o(J.'S and

. : " : .13
« evolve on time satisfying the equations <,= ik’«  and = BK;dJ

In this case, under suitable assumptions on the function «, we have
U = 0(1) ads =} — 0,
. ~ -lg=
and the Teft Jost function X(=,t,g) ~ e aS Xp-d

Imgyo, corresponding to (2.35) can be defined. Then for Img=0 We

have

‘r(g)i@):u. ) (g)u‘) TCEX(E) =X (-§)-TL5) A )X (§)
£+, § E)X(g § T“)ﬁ §) X(§), (2.51)

where T and 3 are the transmission and reflection coefficients respec-

tively.
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We now seek to find a relationship between Y and X . Substitut-

ing (2.50) into (2.49) we have

opio’

L0 o
y’(:r.,t,f)= [ X S +a:: e T Y=t 3) xapds  _
(s +3)

- 4io"

3
X% i(gx 4+ 9¢t)
-&L Z: xc:ltLLKJ)uje 2 J a’- E s .

4 (5 rEK)) (2.52)

For g real, Y is bounded as a function of < and the same is true for
the integral term in (2.52). Thus, we must have that the summation term
in (2.52) is bounded as a function of = for real g€ . The Tatter can only
happen if the xj =X(=,t, i K;) ,(Y;), are eigenfunctions of (2.35) with
the K‘?’ L), their corresponding eigenvalues. Without loss of general-
ity, since we can always add new terms to the summation in (2.52) with
«;=0, We can assume that all the eigenvalues of (2.35) are included in
(2.52). Introduce now the time dependent constants <; =c;(0)=X./X;

d 4 d d ’

(¥j), and substitute X; = céié,(Vj), and (2.51) into (2.52). Then, for

Img+0, we have
Pato={s e[ @ Tn-Tensen i’(;)]%gg_%),;éizdf -
- +

s % Lgx 4 9g7)
-eLch(§+Lx)X.e zle.g ¢ =
i

L ag’)
i S""’ /5(-?)4(3-3)&? N e o(a)} e &t .
= TE3(§+3) i (griK)

) Q3 T4 .o,

where the asymptotic behavior of X at-e has been used. It follows

that, for Img <o ,
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t E)m ﬂ(;)i(lf)d °‘ < s X(zt- ;
Yxt, § [1+ct§....7(-})(§+§ 3- E.LJ (§+¢..K)]e_ §

Taking the 1imit Img..o in this last formula, using the equa-
tion
QLg’t

P(§+i0) = amex(-2§) X(-g)e + P8 =

. . st
= [awe «(-2§)X(¢-§) + xep] e‘“'E , Img=0,

a consequence of (2.52), and comparing with (2.51), we find for Img=9°

o 4 o

Alg)= aMEX(2E) , T(§)=1 i AEa@s) 4 il el .
: : :,S“o TEN(3-%) « % 3 (g_i.xéf (2.53)

The expression for 7(g) in (2.53) is obviously valid not only for

Img=0, but for Img>»0 . Using now the well known result

. -
Res T(g)| =i, ¥ L, o),
-
and (2.53) we find o = 1./5_1{ » i) . In particular, none of the océ's
vanishes, so that all the eigenvalues were originally considered in

(2:52).

3
-kt
We are now rgady to write dX\(Rk)=€ dm(k) in terms of the

scattering parameters of (2.35). From the expressions of the o5 's in

terms of the normalization constants K , from (2.50) and from (2.53),

we have

[ S0 dNCR) = § gony €5 Edm (k)=
< «

3 3
o +ist iRt . ) -x-ex‘.t
-] FAUET dn 4 2 BlaigG e 0. (2.54)
- pio*
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2.7 Transformation Properties

From (2.14) it is rather obvious that any transformation between
measures , d\.—.dX\ , has a corresponding one w.— ,u , between solu-
tions of (2.01) and vice versa. However, a simple transformation on one
side need not correspond to a simple one on the other side, where by
simple we mean that they can be explicitly displayed. We give in this
section two gxamp]es in which the transformations on both sides are
simple. The first one leads to an extension of the formulas in Section
2.4, which effectively corresponds to doing a small parameter expansion
around an arbitrary solution of (2.01), instead of w=o0 as in Section
2.1. The second example is the Bdcklund transformation for the KdV

equation, first found by Wahlquist and Estabrook (1973).

(I) First we seek to find what is the effect onw of addition on

the side of dX\ . Let
1 . g
dN(R) = dX\(R) 4 L i, S(R-ikm) dhgdhy, (2.55)

where 8¢-), k, , k the a,, 's and K,'s are as in (2.38) and (2.17).

T E]

Substituting (2.55) into (2.14) we find, after some manipulation, that

o . P oo L MN=1 o=
T u+§£ &) ( §.<—e)"ﬁ ) ( E.c-g *B,) (§c-e>°g,) - (2.56)

n=4
where the Py 's and B, 's are column vectors and square matrices, respec-

tively, given by

3
(R Im = @m exp[f (-Km =+ Kmt)] , (Ym),
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i v
(R )m= _eL vV Cd\(k)] a,, exp[i(.x,,,x.,.x,’nt)] 5 wuwo,(\-/'m),
). (k“.,.‘.xm)

v (b""hj“

A
»

(2.57a)

( Bt)mﬂ‘ﬂz = (__K—_i-_ ( P.,'l‘ﬂ“ (PO]'"‘IQ, ] (Vm" 1™Ma) )

H Y]
‘B"“)“‘u'm,_: i‘P")m*I e"n" CdX(R)] Y 1§V <o, (V'm“‘m‘).

(po)
N ) R D (R ) e (2.57b)

Thus, if we define the column vector p and the matrix B by

p= .);. «&)p, B- .}; e)’ By,

i (2.58)
we have
1 T ik
W =u-€£3 p(r,eB) p.
(2.59)
From (2.37a), (2.57a) and (2.58) it is easy to see that
CP dm (=t ) = @y Yo (8, i K /2) |, (Ym). (2.60)
Thus from (2.35) and (2.36) we see that p satisfies the equations
atP:-('lL.)..,\.)P , OgP=uUgp-@u-4N)p, (2.61)
where /\- is the diagonal matrix with diagonal elements -Xm/4 . The

following equations are also easy to verify, using (2.57b) and (2.58),

B =-L ffT 5 3+.9=-'”-PPT-3'(A-PPT+PPTA+RRT), (2.62a)

A(BA-AB)zpp.-pp B_-B'. (2.62b)

/
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Now Tet w be any solution of (2.01), not necessarily representable
in terms of a measure dX as in (2.14). Then we can check directly that
any solution of (2.61) and (2.62) gives, through (2.59), another solution
w!' of (2.01). P can be allowed to take values in a Hilbert space with a
conjugation (seeA.3), with B and /A symmetric operators there.

_ Equations (2.61) and (2.62a) are consistent, provided that w satis-
fies (2.01), and they imply 3« and 3 of (2.62b), which is then true up
to a constant. If a solution p of (2.61) is such that p and P vanish
fast enough as x+—e , then B="""’=PPT solves (2.62).

When B is a matrix, using that Br=-w/2)pp’ (2.59) can also be
written as follows

w= u+a3:7?;1n(r+c5)=u+a.ai In det (1;28). ( )
2.63

Examples

(i) Take w==/0t for t>o0 and A. diagonal, with real diagonal ele-

ments %; ; then a solution of (2.61), (2.62) is

/o Y; /3 2=
PJ-="‘°'J*'| A;,[_:/(@t)"-xécet) ].%;) and :B-‘-'iLPf’TJ

where the o.‘i's are arbitrary real constants and Ai(-) is the Airy func-
tion. We note that B is a real, symmetric and positive definite matrix,
so that, for eso and t>o, ' as given by (2.59) or (2.63) is nonsingu-
Tar.

(ii) Take wso and A =0 (scalar). Then p=r=x and ‘.B=-.A.r‘x’-a.r3‘:, where

r is an arbitrary real number, solve (2.61) and (2.62), then after some

manipulation we have, from (2.63),
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We_o6xx>ade) x> 1at') ) where t'=t 4 t/aer?,

We observe that w(x=0)=u'(x=w)=0 and that 2’ is nonsingular for
x,t'>0 . This solution is the same as the one presented by Moses (1976).
(iii) When w is a cnoidal wave the first equation in (2.61) is a

Lamé equation of index n=1. 1Its solution can then be expressed expli-
citly in terms of ¢-functions and 3-functions (Ince 1956). We then can
write explicit formulas for the interaction of a cnoidal wave with a mul-

tisoliton solution. Similar results have been obtained by Wahlquist
(1976) using Béacklund transformation techniques.

(iv) Floquet theory (Ince 1956) and (2.59) through (2.63) can be
used to prove that the result of the interaction of a soliton with a
periodic solution of (2.01) is another periodic solution of the same
period as the original one. We do not know whether these two periodic
solutions are actua]]i the same one, save for a (possibly complex) phase
shift, as in the case of interaction of cnoidal waves with solitons, or

if a more complicated relationship is involved.

(IT) Introduce now the potential function v defined by w=-tv; .
The expression for v in terms of d\ is obvious from (2.14). Let us now

assume that the transformation d\._.d\' is such that, for some reC ,

we have

(R4iT)dACR) 4 Ckh-iT) dA(R) =O.
(2.64)

It is then easy to prove by induction that
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= 1 J' ‘n'j . T ] n
-§. Chy 4+ R, ) LIXRITLANCRY] © = (Ry4iT) CANCRIT 4 CRy-iT) LA X (RITV,

n-\

- E. (R 4+ k) Ld AR LN (R (Ry-i7) LN (Rpyir) [T,

from which it follows that, for a”‘-n=4,2,...

M-

L (R0 N LT} f cancnT™L LaaT™ |- '

= a(Rypeg Ry 4 i7) CINCRITT 4 a(Rey. 4Ry -i7) LIN R

This last formula has an immediate counterpart in terms of v and v
-5 3
W'av) = cal (v V) maltT v'-v),

or

(v".,.i.r-\r)a'.‘_r" - Al ).
(2.65)

This is the time independent part of the Bdcklund transformation for

(2.01).

2.8 Higher Order KdV Equations. Lax's Sequence

We might ask what other equations forw could be solved in the

form

o LO. n
Ww=-i3 L ‘“JS e " [dm(kt)] ,
i n-i

9,dm(R,t) = ~iw(k) dm(k,t),
(2.66b)
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where o, = (R, 4... 1 Ry )= » when the dispersion function w=cwk)
is no 1onger'.lr13 as in (2.14). For example, we might ask what nonlinear
equation corresponds to the linear equation w, +8fu=o s 1.€., to

w(R) = R°.

It is clear that if we define, for any function v=v(R),

© Lo
M= E. el \ @+ vn) e " [dm (_h,t)]ﬂl

’ (T (2.67)

then w satisfies the equation

Now the question is whether s, can be written explicitly in terms of w
and its derivatives. Obviously M -u and J“L‘é-;-a-u.a'_ux; , where
the latter follows from the results in Section 2.1. We now search for
an inductive argument to get J"\.kam-«-z, for all m=0,3,2,.... In doing so,

the following identity is useful

- 3 N mn m a mn-1 a
C n b,) (7.;..0.3) .('L:. b(L Bja)) & E. C(bygeaby) (byeby, )0 4t o) +

o it

8
+(0-5+...+0.3)(b‘-‘+bj” )(bd'" eoeed b.“) +1(b‘+...+ bd) (b‘-+b4-+l)( bj"+...+b,|)(0.jﬂ+--.+ a, ) +

+ 2<b‘+..+bi)(o-,..k...;a-é)(bj.‘. hj,.)(bjau+"'+b'ﬂ)]+ 24 [

;;jd. <msmn

(Byer4) (B4 by, ) (g by - by Q) 4 (b0 -0 by N, “b’")(h'“*'."tbﬂ)%z 69)

where C"J and bé (1¢j¢m=1,23..) are arbitrary numbers. To prove (2.69)
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we first verify it for m=4 and then use (A.102). With s

a;=v (2.69) implies

a’_’

;-3
i My= - M, —au s, -4ud M,
) (2.70)

where the last Z in (2.69) does not contribute because of its commuta-
tor nature. Equation (2.70) gives M2, in terms of 1, , save for an
arbitrary constant of 1'n~tegrat1'on, which is determined by the boundary
condition M, -0 if w=o . We can now write an inductive process that

gives Ko@) =Tlpanss, (Vnyo) starting from K, (ul=u,

Ko, (u) =(- 33 U -4u3y) K,®) , J{nﬂ(o).-.-. o, (2.71)

The X4y's are polynomials in w and its partial derivatives. The figst

&
few are K = 3wt _u__ K, .10, SU, 410Uy Ynxx » €tC.  The se-

x3c )" TR

quence of equations w, +§x3{n<u)=° , which by construction is solved
by (2.66) with w(k)= k™™, is the Lax sequence of generalized KdV
equations (Lax 1968). The particular case m=21 gives back the KdV equa-
tion.

From (2.67) it is obvious that M., is linear in v . Thus we can
write M, for any v of the form v(kl=k{(k*) , with { an entire func-
tion, i.e,, if S.(;)=§£“{" then J“L\,_._z.g_n}{“(u) . Moreover, if we
assume that dm is such that = ,Jf1, and all the necessary partial deriv-
| atives vanish sufficiently rapidly as =x.—.e , then we can write M.
for any v such that w(k)=k f(K) /g(h“) , with £ and g entire func-
tions. To prove this we observe that in this case (2.70) may be written

as
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<o
ax nha-\, =iaxnu Wl‘-*h &,:_3:—_"1‘,_’_3.1‘_:; 3

(2.72)
S0 that 3, My ¢y /qeR) = 3“(1,) f(2) 3 M= g (I (), . Thus
(2.66), with wck)=k{(K)/g(K) , solves
’ q(dluy + f(X)ug =0, (2.73)

with the boundary condition that w vanishes fast enough as <.,

Equation (2.73) is the same equation found by Ablowitz et al.(1974a) as

solvable by the inverse scattering transform associated with equation
(2.35).

We give now another example of a class of v's for which Jlu

can
be written in terms of w.

Assume that dm(Rkt) vanishes for Imk <o

and that w and M.y decay fast enough as x—so0 . Assume also that v is

given by

v(-h)=§ R hE) dg (zmhkyo) and y(R)= (R4 io") (Imk=0),
(R*- 9¢*)

(2.74)

where & is some given function of § . Then we have

o

@ @ B s i| - f‘ L n
My = acg)ag{ Leel (o NP A2D - L0 ] } .

- -4 TN
But % (R 42¢) A (la‘-...ig_fx =Cry_ag) 4 & (Ri+Rin)

4+ (Rpt )" , SO that
* Ok +ag)(ky,~28)

if

¢p(z,t,g).{1+§.(-ei"j e Cdm(k)]" }e_i.gx

@ Ty () ’ (2.75)

we have
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1, =@ | R Lot peg - 11 dg. (2.76)

Therefore (2.68) implies that, for [dm(k5t)]" = _dm(k,¢), h(§)

real and

:.o(_h)-_-_go (11&-(3; df =- «"CR")  (XmR>0), wW(k)=w(k4i0") (Imk=o),

equations (2.66) and (2.75) will provide a real solution of the system

wy =13 (A (1= 1001 s, Pz + (m)P =0, _

with the boundary conditions w(z=w)=0 and 1¢p*@=m)l=1 . In writing
(2.77) from (2.76) we have used that «g)- @%g) (Vw<g<=) for u
real. The equation for ¢ is the same as (2.35), and can be proved in
the same way, since ¢ and ¥ have the same functional form.

Results similar to, or the same as, those found in the previous sec-
tions apply to the class of equations found in this section.

A final remark is that equation (2.01), for w square-matrix valued,
is also so]vab]g by small parameter expansions. In fact all the formulas
of Sections 2.1, 2.3 and the second half of Section 2.7 remain valid for
this case ifdX\ 1is taken as a matrix valued measure. Results similar
to those in Sections 2.2, 2.4, 2.5, 2.6 and the first part of Section 2.7
apply in this case. It is also possible to generalize the results of
this section to the matrix case. For example, the matrix version of

(2.70) is
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S Ty =-3 M et -2 fu, 0] - [w ],

aXN\.\ = [u,nu] 2 n“l =.N; =0 v
wme w=e (2.78)
where {XY1-XY4,YX and IXY1=XY-YX for any matrices X and Y .

Formula (2.78) follows from (2.69) upon using the following identity

=1

(b‘.l.....'.b."l‘lE‘“(‘:;b.'“-beam) = E; (0.‘_+...+°-J‘)(.bj+ b(i'n)(bi‘".‘-."-‘.b“) -
n-L
- EA Chg-s g bj) (bj.g.bj,t)(aj“.!.....g. Q,),
(2.79)
valid for all numbers a'i'ba' (1¢j«m) and all n=1,3,3,... . This identity

can be easily proved using (A.102). Furthermore, since equations (2.69)
and (2.79) remain valid if the o.‘-\'s are matrix valued, it is possible to
treat the case of nonscalar dispersion functions. More precisely, equa-
tions solved by (2.66a) with (2.66b) replaced by

3y dm(Rkt)=-i [w(R dm(kt) - dm(k,t) w(-k)], (2.80)

where w=w(R) is now a matrix valued function of h, can be written.
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CHAPTER 3
NONLINEAR CUBIC SCHRODINGER EQUATION

The methods developed for the KdV equation are now applied to

the nonlinear cubic Schrodinger equation

Py 4 Pre=-209 ¢ pa_aciplp, ¢=pEt),
(3.01)

where ¢ 1is complex valued and ¢=%1. This equation describes the

modulation of a plane stationary light beam in a medium with nonlinear
refractive index (Yariv 1975), as well as many other important phenomena

involving time-dependent dispersive waves in a nonlinear medium
(Whitham 1974).

To avoid having to work with complex conjugates, we replace
(3.01) by the system

CPr + P +2TPYP=0 , iYWy + YPxx + 2TYPPYP=0.

(3.02)
Then (3.01) is recovered if we require = @*
3.1 Solution by Small Parameter Expansions
Substituting
LP=:Z:'_-0 & Pm ?P=1§° € Yo (3.03)
m=ansd

m=a&N+d

into (3.02), and collecting equal powers of the "small" parameter € ,
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we obtain
i =—ac L ;90 (Ym),
Pt + Pz ohasmm (b, odd)’ (3.04a)
iYWt + Pmxx=-20 L Y QY , (Ym), (3.04b)

J+Q+s=~m ¢S odd)

The functions ¢, and Y, satisfy the linearized equations, so that we

can take

@, = { explichz Kl dX(h) , = [explithz 4 Kt)1dy(h),

. 2 (3.05)

where, as usual, dA(R) and dy (k) are appropriate measures on the com-
plex plane € .

The condition ¢@*= Y, will be satisfied if

AN RY) = dy(R). (3.06)

For n=4, m=3 we have

‘."Pa,t +* ‘P:.::z"“a'c (Pa-ws (Pa.="a‘d-S éﬂ, d)‘(h‘)a"”(h")dx‘h’)’ (3.07)
)

where Q.= (Ryy..pRy)x -(h:._h:.y.k:)t , and a similar equation for ¥, .
A solution in the form
Yo}
=( & (k, k&, k) e 2 dAk)dy (R IIN(R,)
Ly §, 3 : * (3.08a)

requires

-2 (Ryy R )k 4 By) §, (hy by k) =] WKL+ B - (R Ry s iy Y] Bk ky) =2
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Therefore we have

iQ
Py T2 daR)dy(k)dAE,),
& (Ry4- R (R, 4 Ry) (3.08b)
and similarly
LA,
=< e day (k) AR, ) dy (Ry)
¥s BTN S 7 e (3.08c)
where Az (Ropk, i h)x (KiK. 1 h3)t .
For n-a,m=5 we find
el
i e 7 Ay dy, dAydy, d A 3.09
% ‘:5’ (Rur B (Rar By (Ryr Ry  (Rys Ryl W SO (3.09a)
ilg
- e Ay, I, dy, dA, dy,
s .:Ss TR R, Xy Ry Ry Bg) T My e Cg (3.09b)

where d = d Mk, dq‘-= dy(k;) , (Y1sjs5), and Q,,/MAs are the obvious

generalizations of £, , A; above. We now propose that in general

g =a" e dhdy .dh
™ e R TR o
mn LJ\'T‘\
" & dy d),...d
o Eﬂ. P pe e e R Aa-e- Oofm (3.10b)

for every m=amn+i ,06m<eo. Substituting (3.10) into (3.04) we find
that we must have .

2 . n
K2Ry Rt R = (RygongRn) c = —aqc L {
{ e a + an + Tod } (k*_',k’.)...(E,m-)-h.m) é+ﬁ+s=1ﬂ
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-Va (2-1)/a (s-1)/2

q T a

RaR,)-.. (R p k) (R, R TR R TR R o Gt R }

-
> = hd (hogh: )R h,,) .
(R, 4R, ) e (R 4 Ry) 1gj<rem dT in T r T e

Joe\d, r even,

(3.11)

That is, we need the following factorization of the linearized disper-

sion relation

2

{hj-hﬁ..._kﬁh ~(Rypret R )}=-a L Bk )(R4R)

J#&

14j<r<m (3.12)
Ao&d ¥ even.

Since
- .Zl (k""ha..x)(hf"-hf-l-t) == Z. hjhl -&L kdhl =
1$A<r<'m 14’3(2‘111 1‘3‘*"‘“’"
j o9d , T even. g odd- j even.

=-a & RR -aL f "

L‘<; <L gm A even.

(3.12) follows immediately.
From (3.03) and (3.10) we now have

=5 & "X__n'_'“_axa,,..ax,,,
¥ :sgnu (h“"h‘u) o (3.13a)
= 3*



® LA,
y) = 'n§o e ) = (eh r— dqidxz... d‘/” )
m=angs € ;L.T; i+ d+ (3.13b)

and it turns out that (3.06) is enough to make not only (,0:=914_ s DUt

tp'=1/) . These last two expressions for ¢ and ¥ imply

an 3 a
Dk x 4 3R t)
e + 4 4

A & an Mg
(P '(P =-"ax “Z_'L e a S - dx;d‘/a."' d"rn-a.d#a.a |
= peL J‘l_;l'L (kj+ hiﬂ-) (3.14a)
an &k
= 1o (hx-(1) kt)
i@ L & e s d i dadA,. dA,. .
ve B . cSm 171}.; ("4'4"‘;4-;) Wy Hony San (3.14b )1.

4

Formulas (3.13) and (3.14) are very similar to (2.14). The same methods
used to sum (2.14) will work with (3.13) and (3.14). Again the inverse
scattering problem associated with (3.01)-(3.02) (Zakharov and Shabat
1972), as well as its corresponding MarCenko integral equations, is im-
plicit in (3.13) and (3.14). Thus perturbation expansions provide again
a simple and straightforward way of arriving at the proper inverse scat-
tering transform.

Introduce

: 2 _ i(h ¥
b(x,t) =£x gdx(h)up:.(gz-ht) ’d""*"ﬁx Scd#(""‘f’“t"‘*“)’(3,15)

1-The reason for making a difference between ¢¥ and Y ¢ 1is that, as
far as this section and Section 3.3 are concerned, all the formulas

remain valid when ¢ and ¥ are matrix valued (see Section 3.6).
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where =X . Assume that, as =—se | b(x,%) a5 well as d(x,t)
and each of the terms of the summations in (3.13) and (3.14), vanish

sufficiently fast. Then we can write (3.13) and (3.14) as

Pp=aix g e J’ dz,...dz,, bex +2,,t) d(zﬁza_,t)...b(zn*.z,t) ’ (3.16a)

n=o C l@)""
m=amn+i
Y= atx & £ j d ;,,_dz’m d(:::.i.z1 ) b(z;+za.;t)"' d(Zin+=,t) 3 (3.16b)

(P'(P:é 9, L e dz,... dzz“ Lb(=+z$'t)d(zx+za_,{)...b(lm_ A )cl(z“”. x,t), (3.16¢)

n=4 = 6)21\-&
ye= ‘33‘“2; i:t: Zaney 242,100 T 8- d(l n-2F Fan- A‘t)b(za:n otk . (3.16d)

Gx,®)

‘We note that b(ax,t) and d@x,t) satisfy the Tinear Schrdodinger equa-

. . " *
tion, and that equation (3.06) is equivalent to b =_(sqe)d.

3.2 Multiple Envelope-Soliton Solutions

Assume now that b and d are a superposition of exponentials in

the form
.
5‘&1 C‘LPL[Z (-‘_*!_ Z t] = 1"1 P (Z,t)P(s,t) ) (3.]73)
Mmoo, a T
s (=49) W t]= Geit) gy, t) (3.17b)
d(xey,t)mdo b oy erpllngonedl v Ela s 3ERI WS

where Im z.d.>olI1-nin, yo and E(z,t) and qc=,v) are the column vectors

given by
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P“-c"'t’=)‘j cxpé(zjx-Z;'t) » (LsjsN ),

4, expi;.(ur?x.,.w;‘t) > (eslsn).

?Q(x,t)

Therefore, just as in Section 2.2,

5 m o T L -~  m T N
(p=“Z=.° e ¢ p(BD)p 3 z,)-_-ﬂE.oa T 3(33)9 5

m=an+$+i m=an+i

n-i

pY=-t 8,‘1:‘;::.::""cr"'1 laT @D B 9 5 YPp =-L8,“.§:.m¢""érl) @D Py

where ® and D are the N xM and rixN matrices given by

= T == a
Bext)= L f oz plz )9 ze) ={ X 452 p ) exp Lf(z; )z (2 n]} )

= T
De=t) = 5.11 =S= dz acz,t)f-r(z,t) = B (x,t).
It follows immediately from (3.19) that

P = er?"(I_c'e"'BD)'LP 5 If):E.gT(I-G'el.'D:B).ii .

Py =13 fu-ce"zm)"]ag , YP=-16239'D <r-u‘;BD)'}.
Since Y=y ¢® from (3.21b), we have

PV = 2 (9Y+9@) = £ [ F' 1-ce*BD By + I DAcEBIE |

<
al

—
w

.18a)

(3.18b)

(3.19a)

(3.19b)

(3.20a)

(3.20b)

—
w

.21a)

(3.21b)

(3.21¢)

3, Tn {(1 _TeBD )-t @ ifT +7 QTD) } =-&*3, Tn.i e m))"'(an)‘} .
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This can also be expressed as

PY = oY Thin (1_ce*BD) = ¢* 3] In det (1.ce*BD).

(3.22)
When N =M, \é“{; and z3=-w3" we have
3 3 B-_.B d *
P=3 , D=-B , B =-B and p=y. (3.23)
Then (3.21a) -and (3.22) give
T - B
¢ zep(L1,ae*BB) P oy lpit= cr*a:‘Dm det (1,.ce*BB). (3.24)

In this case ¢¢B) is hermitian and positive definite, as can be seen
either by computing its principal minors using (A.202), or from the
formula LB -.-u/a.)g’lar*)dz. which follows from the definition of B
and (3.23). Thus from (A.3) the eigenvalues of BB =(iB)@B) are all
real and positive. Moreover, they tend to zero as x+.co , and to o
as =—s-o. It follows that (1+q—e_’-:5§)'* exists for all -e<=,t<
when ¢>0 , and that it has singularities at some x='s for all -e<t<>
when o<o , i.e., in one case formulas (3.24) are nonsingular (and thus
represent physically meaningful solutions) and in the other they are not.
This corresponds to the fact that in the case o>o0 uniform wavetrains in
equation (3.01) are linearly unstable, and presumably break into a
sequence of wave packages (i.e., envelope-solitons such as ‘those given
by (3.24), while in the case g<o they are stable.

That the eigenvalues of BB tend to zero as =~ , and to e

aS xw——-oo , follows from the inequalities Il.‘b-'ﬂrgll(ai)"'u:sspe:+num(8§)$
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<UBBI, < 1Bl , where IIBl, 0 as x, ,oo, and UB ll,, _ o
as x—e - (since from (3.20a) B is a product of two diagonal matrices
with exponentials on the diagonal, and a third matrix independent of == .
The expressions (3.21) for the multiple envelope-soliton solutions
are new in the literature. The second formula of (3.24) was first ob-
tained by Zakharov and Shabat (1972) and Hirota (1973a).+ Hirota also
obtains expressions for e . These can be obtained from (3.21a) as

follows. Let :% and D be the NxN and M xM matrices given by

:% = PPr D=99T. (3.25)
Then (3.21a) can also be written as
A a o WY
p=eTnf(x-ce*BD B}, pP=eThjz-ce*DBY D . (3.26)

But if H is the complex valued function of square matrices defined by
A(A) = Taldn (T4A) = Andet(T4A), we have(d, H)T= Ta{(x4AT ' T] =

,{de_tu_‘_;\)r(axmdgt).'r, where @ denotes the Jacobian. Thus if we

define
A "~
. = det).D
G‘P = e(?l-cra‘BD?e‘t) By ey E'(?I_crc’-ma)e )Ly
2 (3.27)
F - det (I-ce*BD) = det (T_-c&*DB) ,
we have
P=Gyp/F ) P=Gy/F. (3.28)
.1.

Both references have misprint errors. The factor @* has been replaced

by /J4c 1in the former and by o 1in the latter.
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When (3.23) holds, @ = Gzﬁ , F s real and (upon expansion of the de-

terminants involved) (3.27) and (3.28) give Hirota's formulas.

3.3 Marcenko Integral Equations and Eigenvalue Problem

In an alternative manipulation of (3.16), we notice that if the

following linear operators, defined on functions of two variables, are

introduced

(?:g ) (z,z)zfg(;,z) b(z4y,t)1dz ,(3$)(z,g).-:}}(z,z)d(z...g.t)dz )
(VP=fe=w),

then we have

mn

P = acx & & [(BdYb] , z,)=a.i.x°{£. S ldbdl
meamsa - T meamel Y=

=263 T 8GRIl ypeady L EBERNE]

m=3 '3""': n=4 3:-.:.

(3.29)

(3.30a)

(3.30b)

where b and d are interpreted as arguments ford and b , respectively, in

the form bex,2)=b&+z,t) and d(=z)=d&x+2z,t) , and the variable t

participates only as a parameter. Introduce now the functions of the

variables =Y and t

a =i

K1= E E.am-'A.QLJ)ﬂb = E'.(I_E-zhbd) b D)

(3.31a)

(3.31b)

(3.31c)



< a._nA A N-4 2.“ z,\;\ -
Ky=1L & b(db) d-e*bcz_eadbY d. (3.314)

Then we have the following equations

o =X, (x4,t)- &d(x+3,t) -efK"(x,z,t)d(z.,.slt)dz, 5 (3.32b)
© = K,(=,y,t) - &ie;it(,z,z,t) d¢zsy,t)dz (3.32¢)
o= K, (=q9,t) - E.S',Ka-(x,z,t) b(z4+y,t)dz , (3.32d)
pext) = alX K txxt) 5 PlEt)=aiXx K =x,t) , (3.32e)
o) (x,t)= 203, Ky==xd) o (z’)(p)(z,tjga.c"'ax]{q (x,xt) - (3.32f)

We can think of the equations as the result of summing (3.13) and (3.14).
They are the Mardenko integral equations of the inverse scattering prob-
lem corresponding to (3.01)-(3.02) (Zakharov and Shabat 1972). We now
write formulas for the Kj's independent of the assumption that b,d, 0
aS x+—peo . We do this from their definition, retracing in reverse the
steps used to obtain (3.I16) from (3.13) and (3.14).

K mit) = 2o () e"{?‘ R+ TR 4 4 Bmay)- Kt}
z‘ B =
m=0 J

a
alx an
m=anyi T 1;[ (hé +k

d\d4, .- dhm (3.33a)

j+s)

an i 2 a
- UE(Rx-0Rt) L L Ry (x4y) 4 Ryt
K g)=L Qo i e 3 in e bayd s 4 (3.33b)

mzo 2iX
mzangys €
n-i : a "
L (Rxp@PRt) L Lk (g 4R ot
T%(x,%,t).-.z (g“d"';s e"(; 3 F )+ 3 Pam Y+ Rhon }
A &k g an-a " )
< T (R + R,
i 4 4

an
11 (h‘ +k3+3.)

dNG4y I e 9 (3.33c)
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d"'lgd xa.... d‘fzﬂ-.ldxz'n *® ( 3 . 33d)

- f 2 (R0 Kot) 4 1 R (=+y) K, t]
qux,z‘t)-_-z.(_ﬁ_::g’f;j e"{s - 4 & an
n=a &b an-

'\I*(h‘q.h
Just as we did for the KdV equation, we now look for equations

j-u.)

satisfied by the Kj's. Again the time dependent equations are closely
related to the equations satisfied by ¢ for K,, ¥ (forK,), and the
potentials of @y (for K, ) and p ¢ (for K,). In fact, it is just
a matter of replacing, whenever they appear as last factors in each

term of the mentioned equations, ¢ by aitkx, , Y by atK, , etc.,

and 3, by (3449, . These time dependent equations are

t.i-at + (3 +ay)a.] Kl(::,:,t) + aT (P(z,t)w(x,t)K,_(::,'g,t) =0 ) (3.34a)

C-i9¢ 4+ 3y +a,)"] K, (xyt) + 20 P, t) PEEIK, (x,yt)=0 ,

(3.34b)
13, K, (=.y,t) = X Px,t) 3y +3y) - P, 8)] K (=,y,t)=0 , (3.34c)
S8 Ky (xygt) - 0 [ mt) (B +3y) - Pt T K, (=3 8) =0 (3.34d)

Equations (3.34a,b) are a consequence of (3.12), (3.13) and (3.33a,b).
Equations (3.34c,d) follow from (3.13), (3.33) and the following iden-

tity, valid for all m=4,2,3..:

a 9

Re- Ry 4oee = Rom - z ;m(h*+...+ké)(hj+hju)_(kﬁ.h‘.ﬂ\(hjﬂ.‘.....;.hm)- (3.35)
$31<
{ ‘id.

This identity is motivated by the equations itpw), =3 (PP - P Y) and
LR =% (PP -¥o @) | in the same way that (3.12) is motivated by
(3.02).
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In order to find the 3-dependent equations we follow the same

procedure used in Section 2.3 for the KdV equation. First we write

(3.32) as
1 _eb K, eb=xyy) 1 -eb K, o B
& ; = E)
-Eé\ 1 K O -t.g - Kﬂ. r_d(x{g) (3-36)

3

where the time dependence is not displayed to simplify the notation.

Next we apply the operators

(3, .. 9) o (34 4+93y) o
and
o (34 +3y) o (3¢-3y)

to (3.36), and use (2.30) to obtain

- ~

e -eb ] [ap-3,)K, ] [ o ] 5
| _ed 1 ] L)X, * laeK, @ dixsy)

' _eb ] (3, +9,)K.J [za]gcx,z) b(x+3)]
[ed 2 Jleeankd °
A sl
Thus multiplying both of these last two equations by[ oo ] and
-ed 1

using (3.32e) and (3.36), we have
(3,-3) K, X gt Ky =0 (34 3y) Ky -t X P, 1 K, =0, (3.37a)

(ax..ay)Ka _Lx-“ zP(z,t)Ks =0 o (ax+3y)K,-Li‘(P(x.t)K1= O. (3.37b)

An alternative, and perhaps simpler, way to obtain (3.37) is directly

from (3.33). In fact, comparison of (3.33) with (3.13) and (3.14) shows
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that K, is "almost" ¢ , K, is "almost" ¥y , K, is "almost'a poten-
tial for @¥ and, finally, X4 is "almost" a potential for w¢ . Thus
YK, PP must have a close relationship with some derivative of K, ,
etc. The study of the products XK, , ¢ X, , Y K5 and ¢ XK, with use
of (3.13), (3.14) and (3.33) leads immediately to (3.37).
Since neither (3.34) nor (3.37) have coefficients dependent ony,
we can separate this variable and write ( j=1,2,3 x4)
Kj(::l'\a,t)=§- Aé(-.:,t,g) expi(gy +2Y; §=-t) d'pj(g) D) (4.38]
for some measures dw, =dm, and d7a_=d73 , where v,=Vy=-212 and v,=Vy3=1 .,
The factor ex;(aﬁlg‘t)is added because it simplifies the formulas. Then

we have from (3.37)
Bom - 088, 22X @By 5 Buz+l§ly=iX'PB, (3.39a)

Bam —igB, =i X PBy 5 Bup4ifba=iXph,, (3.39b)

and from (3.34), after some manipulations in which we use (3.39) to elim-

inate space derivatives,

Lhy ‘ailAa.-a'?ix‘PA'« +Li*(P=AH +TPY A, =0 (3.40a)
Sy - AF A, +2EX YA, 41X P D, +TYP Ay =0, (3.40b)
-Lbalt -a'g’. Aa- ‘a'givaa +éi*zp=A3 +¢1|)(PA3.=O b ) (3-40C)

E8yy -5 A, ragXp By + X P A, 4TPP B =0 (3.40d)
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We note that &, and 84 satisfy the same system of equations as 4,
and A, , save for the change ¢, —._§¢ . Equations (3.39a) or (3.39b)
constitute the eigenvalue problem whose inverse scattering problem was
used by Zakharov and Shabat (1972) to solve (3.01) and find many in-
teresting properties of its solutions. Then (3.40) provides the time
evolution of the scattering parameters. Equations (3.39) and (3.40) are
also important in the study of the effect of adding to d\ and dy a set
of 3-functions of Dirac (see Section 3.5).

To write the 4;'s and d7; 's directly in terms of dA and dy is

easy. In fact just by looking at (3.33) it.is obvious that

d7*(§)=d7’(g)=aex dx(ag) , d'y,‘cg)=d7,(s)-5’_§& diy(ag) (3.412)

Aﬁ{‘*ﬁ‘f“‘“gflg‘(h‘i”“é hye)) Ny B ] RS t), (3.41b)
ST (h‘.-\-hw)-(hm-k-ai)

8, ={ ‘t.’if“"“jf%}i:k:h :mh(::ug) sd)‘t"'d‘fm-xdx’-"}é “m;ﬂ’ (3.41c)

Af{zocm?'g e:f‘g(h el Bi] dh,dp, -] Sty (3.41d)

i
R
s @ TRy KR +2E)

. a h ..-,)h t) .( x-2 ;t)
{E e S g{ (Rix — (-2 } d“l;‘“‘a.---d‘lm}eb § § ] o
A USRS NCSERS 2

Formulas (3.39) and (3.40) can be proved directly from (3.41).

3.4 Operator Formalism

It is our purpose in this section to sum (3.13) and (3.14) under

circumstances more general than the ones in Section 3.2. The same ideas
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that proved useful in the case of the KdV equation (Section 2.4) should
work here too, since (3.13) and (3.14) have the same nature as (2.14).

Assume that we can write
AR = A (RIdRR)  ,  dy(Rl=al(k)dp(R) , C(3.42)

where dp (k) and dp(®) are positive measures on € , and a,(k) and a,(k)
are functions defined on the domains of dp(R) and dp (k) respectively.
‘Let us now define, by analogy with Section 3.2, the following operators
and symmetric forms (closely related to the inner products in f(dpt)

and &) )

(BEIR) ={ peh,) (k4RI Qe Sk)dR(k) , (YE=F(R)D),  (3.43a)
C

(‘D%)(h,) =§ ich,)(kﬂhj‘g(hg %(h,_)dﬁ(ht) , (V%=3(h1)) . (3.43b)
C
[9.9.], =J aRaauha dpce) , 08, £ =(fma fRIdpRD (3 43¢)

€ « (VsslSa.l‘gu’L_)'
where Rk_and h,.range over the domains of dp, and cha_ , respectively, and

p and q are given by

‘_:(h*l.-.-(l,(h‘)mp'i(h}-h:t) and q(h,_)gaa,(hl)elpﬁ(h}.yh:.t) . (3.44)

We note the following properties of the operators ® and D

(1) B'=D ie [q,Bf], -[Dq,f] ,(Vg=qeh, f=5h)) .
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Py
If we assume that pe f(dpl) » 3€ £¢dp) , and that B:i&(dfa_ AR

N
-.i(dﬂ) and D f'(a&),___, f(dpa_) are bounded operators, then we can
sum (3.13) and (3.14) to

P = E[P,(I-w&zBD)’;]* s ?:&[q,(I-WL&D:B)-LQJa 3 (3.45a)

Y9 =-iE73, [q, Do BDIpl, py=-i€'qLp,(1cSBDI Bl (3.45b)

Also, since ¢P=p¢ , we have

Py =3 Tn{(t-ce":B'.D)A(,Bn),l . (3.46)

We do not have, in general, a formula analogous to (3.22) because of the
difficulties of dealing with traces and determinants of infinite dimen-
sional operators. Formulas (3.45) and (3.46) constitute an'actual summa-
tion of (3.13) and (3.14). It is also bossib]e to sum the expressions
(3.33) and (~3.4]) for the ]{j's and AJ's to formulas similar to (3.45).
Whenever (I _ge*®D) Or (I.ce*DdB) is not invertible, these formulas
are meaningless. However, at this point it is the actual solution of
(3.01)-(3.02) that has a singularity, not the way we write it.
Let us now assume that (3.06) holds, with dp,(k)=dp,(-R*) and

a,(R)=aj¢ck*). Then if S:I.a'(d&),_,i.a'(dp,_) is the isomorphism

given by
(SRI(R) = h(-k*), (V A=h(k) o h=h(R,)),

we have Sp=79 , Sq=p and BS5-_-5D . Thus, since S=1 , from (3.45)
we have

p=y*=elp,(1+ce" BSBS) f]-t : (3.47)
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Now (iB3) 1is self-adjoint, and for any § we have 29.<q,iBSg) =
=2.3,{ i dp (k) dpCh,) & (k) PR Ry RyJ g (k) gC-Ry) = - IR B k) (k) S:Pé R)q(k)a-K: )
=_S‘a‘&cu,s PRI R, fap0m FAGREICN) =-| g‘ dp,(R) P(RY 3‘<h*)|“. Thus if o, and
dp are such that we can write (%,LBSS)L-.-.—:S-B,.(S,E.BSS)&&L 0r¢g,iBSq)=
.-.;axq,LZBS g)df- , (tBS) 1is semidefinite (positive or negative) and
from (A.3) the spectrum of (iBS)(iBS) 1is real and nonnegative. It
follows that, for >0 , (3.47) will not have any singularities. For
a <o uniform bounds, independent of = and ¢ on NBIl are necessary to
guarantee this. As we saw in Section 3.2, this is not always possible.
The particular case dp (R1=dp,(R)=dR,-ccchcoo , i.e.,dp,
and dp, are the usual measure on the real line, can be treated in a way
completely analogous to the equivalent case for the KdV equation in
Section 2.5. Then B and D can be expressed in terms of Fourier trans-
form operators on the real line, both are uniformly bounded for all
—o¢x,t<m | and if (3.06)holds ({BS) is semidefinite (when integrating
over or under the singularity (ht+hsz Moreover, it is also possible to
treat a combination of this last case with the one in Section 3.2, and
then relate the parameters of the measures &\ and d:/'f to the scatter-

ing parameters of (3.39).

3.5 Transformation Properties

The purpose of this section is to investigate the effect on ¢ and

Y of adding to dX and dy &-functions of Dirac. More precisely, let

N
dN'(R) =d\R) 4 & &) 8(k-z)dh dRy 5 (3.48a)
J=

JrThe same type of arguments used in Section 2.6 are useful for this.
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2
dy'(R) = dy (k) 4+ L n;; S(h-w;)dh dhy 4 (3.48b)

le

where R =Reh , R_=ImR , 8(-) is Dirac's &-function on the complex plane
thought of as a two-dimensional Euclidean space, and the EJ'S"?J':" z.é's
and w}’sare constants. Call ¢' and ' the solutions of (3.02) that re-
sult when dN and dy' are substituted in (3.13) for dX\ and d4 . Intro-

duce the (N#M)x(N4rL)  matrix
ol =
c‘[ca.a.' Clljl 7

** and c** are the matrices whose components are given by

where c* c*?, ¢

. a
L[ )= 40w 4w ]

) | B e[ 0™ dhdyy... dhm 1 (Vaev L4,

e
maxniL ‘:S.M#J}‘(hﬁh‘.,) (R 4+ Wg) } 2%

. a2 el
aa = o m PN g, AN, Aafr g[(z°+z,)z-(z.\,+z.)t]
U] ety

s (V1sv,25N),
maanea (Z“+h,11}(hj+h5“\ (R + Zy)

a2 s
(€™),,=(c), =7 5, @

? +

LT 4 29T £ (WG )E] { "
W+ Zp

= amg LEnRE4elRE)]
+ 5 (el Se" LA dhdga_..--clxn_*dqm},(Vuu\«n,ulsN’).
et & (v~f\,+h*)1\'(hi+hj“)(hn+ 9]

Then, after some manipulations, and if ¢ and s are the(nN 4 ) vectors
given by

= i
S=% Aa(x,t,&w;.) 3 rh“_g' Ai(x,t,: Zy) ,

S;= 7 Aal=t A,

; A,‘(z,t,%z,) 3

5n+c =%

(Vasism, ss LeN) , we find
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[} T -1 f - s 3
P =@ rerfiemc]c , PoyiesfIenc]s. (3.49)

Similarly, from (3.14), we have

() M g -L- L 3 -“L
PV -PYP=-LeXy r{ @hc)s=-iexd s I (/aC]r. (3.50)

If A_ is the(W+M™M) diagonal matrix with diagonal elements

=-(1/21Z

A\ =<ua.)w:i 3 Ngg=

a4
satisfy the following equations:

ep 2V 2€jeT1, rlclg iy N) , thenr, s and C

e pithr = fo(ps 3 sz_:‘.l\.sg.i.x'*zpr y (3.51a)
. CH -1 e

I - ANT LaX QNS JLXL P .5 4TPYr =0,

i3y -als _aXPAr 4 iCYr 4 TP Pr=0, (3.51b)

Ce=-(alal)(rsTyst™) , Ciza (A C-=+Cx./\)-"-it(‘9”"1.’v"1)’ (3.51¢)

CA - ANC =(/a)(rsT-scT) , C=C. (3.51d)

It can now be checked directly that for any given symmetric operator A ,
in a Hilbert space with a conjugation (see A.3), any solution of (3.51)
gives through (3.49) and (3.50) a new solution of (3.02). It is not
necessary that ¢ and y be representable by formulas Tike (3.13) and .
(3.14). Equations (3.51a,b,c) are consistent, provided that ¢ and ¥
satisfy (3.02), and they imply 3, and 3, of (3.51d). If r,r., s and

S vanish (as =+ _) fast enough, then Cau/ai.)grs"+sr73dz solves

(3.51¢,d).
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If the vectors r ands, and the operators A. and C are in a
finite dimensional space, then (3.50) has the alternative form

OV'- @Y = T Tatn {1 @/nc] = P tndet {Toe0C] (3.52)

where we have used (3.51c).

If @=* then a condition that will ensure thatph'=y' is

that there exists an operator U such that

= sTUT c'=<53w)UcUT and U .U Ual.

J

(3.53)

Then (@' = p*4 er* [T -ce/x®) c_"]'*.- = z,)+e§u*{uu'- (e/chu‘]'*vs =y

Examples
(i) Assume dX=dy=0 . Then ¢=9=0 and the formulas for ¢' and
y' reduce to the ones in Section 3.4, since (using the notation of

(3.43) and (3.44))

is a solution of (3.51).
(ii) Take now tP=IP‘=P expi[xx_(n’".au'p‘)t+e,l » where p>o0,
X and e, are real constants. Then for A=Xe€ , a solution of

(3.51a,b) is given by

r=o<ctpL[T:_(TK.;.XK-a.TA_u'p"')t]=c( E‘i s (3.54a)
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S= x(n.x)f*exp i[> (TReAK-aTA- K popit-0,] =

= qI(T+k)aP E)‘_e(gi, (3.54b)

where « e @ and T=a/a)x £JGyaniy 406 ), ine. (TAN(T-%-2) = op?

Let X be such that ImT 40 and take the sign on the square root

always so that ImT >0 . Then we have

. "
TN 4 TOH = K and (e5f-p___e  EX. (3.54¢)
x(TOX) + )
Assume now <o . Then we can take N real, satisfying (x,..n\’k-qc-P‘
)
Thus *=(w/a®)p e ° s e =
¢ P s , and since le -4 , we can
=p—%_ «* . Then r*25 and C%(. =-C =(sq@) C
choose ®= Pt =S a =(-if “rs)= (sg

Condition (3.53) is thus satisfied with U=a , and from (3.49) and

(3.52) we have the following solution for (3.01)

et e E
P'= P+ e (EX " (i-x(a.r-x)EL ) ) (3.54d)
N A %
19" P4 T 3, dn (4 - TS EXEX) - (3.54e)
Call g=+[-tnpadiiacp™ =_ i (aT-X) s O=
o€t x(ran e ge of | _ o/t and
xX(aT-x) P iXg o
m=syaX . Theng is a positive real number with g*<-4cp® , & is
an arbitrary real number, = ..‘/_4«? e and we have

r-—-ﬁm{é[nx-(n’;ac‘:")t+9‘,]}exp{-a.‘__§[::+('7_ax)t]} , s=r%,
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- -ax)t]
" §Lx+ (7

(P| = (P { - +(E/31/P)

}

14 dexpi-glx +(7-a.n)t]]

Y N Infay$

~elxp(m-ax)t]
g A (3.54f)
where o= %, TXEE7E exp{-LongX yarctan(g/7)]] 5 and
ep‘:-ilxl%g exp(-iarctan(g/p)] = 3g(g+ip)/aap . In this new

formulation we have replaced the "free" parameters A and e «* of
(3.54d,e) by § and 8 . If we take 8>0 we see that ¢' is a nonsingu-
lar solution, asymptotic to ¢ asx, ,o and to (x+;-£é‘)lp as x, ,-o.

We recognize in (3.54f) the dark pulse solution (envelope-hole
solution) of (3.01). This solution was first found by Hasegawa and
Tappert (1973). See also Hirota (1974) and Zakharov and Shabat (1973).
The solution corresponding to the interaction of several of these dark
pulse solutions can be ea;ﬂy found by taking A. a real diagonal matrix,
with diagonal elements Xj satisfying (n+ax‘-)‘<—qcp" for all j's.

Then we take r z=a; EY. , s,
d N

L -]
5 ;= % E;:é and C=w/ai)y ¢rses™ | where ;=

* d
=Pi*(1'3+lj)'ke:‘e°a: for all j's.

Take now @ as in example (ii) and A=Ay , where A, is the
(2 x2) diagonal matrix with entries \ and X . Then for some
~, @, € € we can take
o[ aE), %]

A
¢l o E; , M&Ex.] g

and
£
< e}y _saca_ (£} €} 4 ER EY)
@r-x) 2(T-T
C=.l_ S:rsf.,. ™) = . .
L -
Xy o (Et‘q +E;s E:\ S E.s E\l

K-aT%)
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where T=T(X) is as in example (ii). Let U be the (2x2) matrix

defined by e FUT,s .., Uy, e U =0 ,Up o et®
e 1ne _y r =5U ’ 1-e., L.I.= 13_ 0( Pm
* L8,
and U, =% o __€ > from (3.54c). Then, since U, U, =
a1=— P <Cra a1 <aa
=- i e = _(3qQ) , we have UU - TUU=
I (TENI(T=-%-X) P |x.|’- f 3 i

=-(sq) U . Using this it fo]]ows that c.‘=cs3q-)UcUT . Moreover,
if we choose e, =«§Pe"'°7’(y._-r'+f)x » we have U, = g0, = 2
so that UU=U'U=1. It follows then from (3.53) that @Y=y , so
that we have a solution of (3.01).

We now introduce again the quantities g:-i(aT-K) g

-Le /2

m=xr4ea X and B = Then € and B are arbitrary complex

numbers with Re §>0, '7 + §a'+ «a‘r": o and we have

L=Aexpl(-®4i8)=3] , f=-(sg®) [_2__/37“?“! ]exP*(-® *i8)= (agm) <L

Cyy =590) €1, =( A X (7418 /2ip§) axp(-®)
Cya= Cay = (IBEA2iRet) (4 - (ssw)ll('ﬂ.ug)l/‘) )exp(-Re @), ( :
3.55a

where

e = .K:r...(ua'_a.cpa')t.;.e, and ®=§Ex+(7-3‘“)t3 ” (3.55b)

It is easy to see now that Cc,, =C,, are purely imaginary and
that, fore<o, 1C 1%1C., ). It follows that for o<o, the eigenvalues
of € are purely imaginary and that for >0, they are complex conjugates
with nonvanishing imaginary parts. Thus we see that the solution just
found is nonsingular for e¢>o. For e<o the solution is singular at

all times, since not only are the eigenvalues of C purely imaginary;
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but they move from+tico to o asx goes from-co to oo ; unless € and
m are real, in which case Ix(r7+i,§)|=.;zp so that |le =1Cu|

Then we get back the solution of example (ii), with 8 = |

=-(e/pg) ITml /51('7+3-§)] . This nonsingularity of the solution mainly for
¢>0, might again be related to the instability of the uniform wave

trains in this case.

Assume now o>0 , and let F and G be the functions

F=detl1T -(e/n)C] = a_ace/x)Re Ca + ea( ‘C'.u‘l'l- |C-“,|1) &

2

:.] e_a.'Re ®

-@ 4 . S 4 P
A —(e/p)Refa’( eye /i &1p) /4 1{!'?“-&% (‘lcrp-ln;“g]l
pIReA g+ € /ig] (S 1mi/4p sl s

G= &{[L_(elx) c,.,.] * 4 atemic, e 4+ [a-emic g ]

Then from (3.49) and (3.52) we have

” &/ F Ao e O InF .

Now the leading term of & for x, - is

cH el 2
WL E T 00 -Gy G % 1n

LO0-3TNe ®
]e .

4 . X ie1®
=( 11" (q4i8) / 2pRe g ) Img)[-—gT $ LZ%‘:%

Thus, from (3.55c) and the definitions of F and G, we see that
Lp'ruq) as x, ,co and (p'~ zp as x, -

where z is a unitary complex number given by
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z=44 -aRelif) Comeipg - (r-t98] 5
im* 1§ 151" L 40p* Re £

since (z-1) is P times the coefficient of the leading term of & as

Xs-»  divided by the coefficient of the leading term of F .

The solution we have just obtained can be thought of as the
solution representing the result of the interaction of an envelope-
soliton with the traveling, spatially homogeneous wave solution P .
We see that the final outcome is a phase shift in P of magnitude
arq Z . Note that the phase shifts of the solutions g, and <g,-7)
are opposite, while if § is real z=4. The solution representing the
interaction of ¢ with several envelope-solitons can be easily found

simply by taking A as a direct sum of A, 's in (3.51).

3.6 Vector Valued Schrodinger Equation

As we pén'nted out before, the formulas in Sections 3.1 and 3.3
are valid also in the case in which ¢ and 3 are matrix valued, with
matrices of the appropriate sizes so that the products oy ¢ and
Y PP make sense. In this context % means hermitian adjoint in (3.01).
Of course d\ and dy are then matrix valued measures of the same sizes
as ¢ and P respectively. It is possible to extend the r'esu1ts- of
Sections 3.2, 3.4 and 3.5 to this case. As an example we give now ex-
pressions for the multisoliton solution, in the vector valued case, of
equation (3.01).

Let dA(R) = dy'(-h*) be given by

N
dN(R) =L X S(k-zp)dkgdR; ; (3.56)
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where the z,'s are complex numbers of positive imaginary parts, the
'f's are arbitrary column complex vectors of dimension S ,
Ry=Rekh ,R. =Imk , and S8¢-)is Dirac's 3 -function on the complex
_plane. For any as¢vgs, define the column vectbriP and the matrices
B,, A\, by
P‘-=wp£.£;=-(zj::_2:t)] y U\,o)‘.’=0§)\, Sin > (asj,lsnr),

. ¥ -1, ¥ & (3.57)
Bos(zla»)gf (Ayp) ={(13-z:) SN ?3?;} :
Then we have from (3.13) and (3.14)

) TN (I 40e* & B,B,) (Lsjss)

Gy m EF 434 ML £ B8 0 Belpl | 5 (AE40 (3.58a)
» 9 - «d -
(‘P(P*)gu .9 _PTAQ(I_,_GE"%B‘-BJ-) Byp = (3.58b)
= ad, 'ru{cnu‘f‘;:si v 8, By} »

- s S 15 - kB —
pit= i, P ER B 1402 L2 BT p =aq (e BB LB ]+ (3.58¢)

Now since 191*= ¢*@ = Ta(@9*) =w){ 1914 Ta (@ @™) ] , (3.58b,c)

give

s s % 23 -
191t = T3, Mdn (T 4 o LB, B,) = §* 3 dndet (149 L BBy . _—

Again, as in the scalar case, there are no problems with the existence

25 = A . . s - 8 x _T .
of (L4oe"L B,B,) when a>0. This since L B,B, =L RN R Ay is
T Sy o Dpbp= &
similar to & RN, ATA,R™ o £ (REAR (R A R™) which is self-
i d A P ? b

adjoint and nonnegative. Here B stands for the self-adjoint and
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positive definite N-square matrix R=u/1)§?r‘. There are no multisoliton
solutions for the case g<o.

We note that if ¢ is a solution of the vector valued Schrodinger
equation and A is a self-adjoint matrix, then

tAt
b= e @)
’ (3.60)

solves the equation
id, + AD + 3. 4 2T 1@ P -0. (3.61)

In particular & can take values in f(du.) ,» and if we take A=:ai "
we see that (3.60) will solve the two-dimensional nonlinear Schrddinger

equation

td, + 3.t 3, +ac{ (FPrdul =0, -F=unt). (3.62)

As a final remark, we point out that if ¢ and ¥ satisfy (3.02),
then the following equations can also be solved by our perturbation ap-
proach

. e . o
LU + Uy = ALX PV, “iVe Vo= 2UX P UL, (3.63)

If g<o, so that ¢cX") is real, and ¢ =" then we can impose the con-

dition a =v¥* and obtain the single equation

< - #*
g + Upx = 3LX PUL . (3.64)

Other equations closely related to (3.01) can also be solved by our ap-
proach.
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CHAPTER 4
MODIFIED KORTEWEG AND DE VRIES EQUATION

The equation can be taken in the form

Vi o+ 3ap V';V".-)- 3P‘ra\rz $Vexx=0, Va \f(z,t), . (4.0])

where p is a constant and v is real valued. This equation is the sim-
plest modification of the KdV equation treated in Chapter 1. The
particular way in which the nonlinear term is written in (4.01) is due
to the fact that when v is taken matrix valued this is the right gen-

eralization solvable by our expansions.

4.1 Solution by Small Parameter Expansions

Substituting

VLo &V (4.02)
m=

into (4.01) and collecting equal powers of & , we obtain for all m=an,a

(m=0,4,3,...)

=-3p L ‘ﬂ€§s+ﬁsﬁﬂ"

\'s ¥+ VS
m,t mxxx j+lasam

&il,s odd. (4.03)
Since the linear dispersion relation of (4.01) is G(wk)=-iw-ik’=z0,

introduce

Q‘n = (h,.‘.....;.k.n)x + (h:+....|. h:,)tl (V= .1.,1,3,...)_,
(4.04)

and write, as usual,
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vm={ &, S8m (dy))" | (¥m=anys,m=0,3,2,..),
m

C (4.05)

where dq(h) is an appropriate measure on the comp]ex»p]ane € and
$.=%_ (k,,..,km) . For m=1 (4.05) satisfies (4.03). For

M=aM4pd ,M=1,2,3... we must have

G(R - v R, Ry yhn) & =-3ip D TR pes k) 4 (i ety 1 8 8,8, 5

j+lys=m (j,Ls odd).
i 4 (4.06)

where §‘_ is arbitrary and the variables R,;.--; Ry in the products
§j §r §s are evaluated sequenti‘aHy. We note that G is the same as
in Chapter 2.

Taking $ =1 in (4.06), and since C-.(-hi_h:_h;,h,+“,.+h3)=
- 3iChy k)R, 3R CRy 4R e find §3=P<k*+hx)"<h&+h,)"
Similarly §s=F"(hx.,.h,)'*(kﬂh,)'*(h,,,k.,)'*(h.,+ks)"' and we postulate

that for all m=am4s, n=0,4,2,..

m-=4 ~3
.= 1 CRyjak, V. (4.07)

i=+

Substituting this expression into (4.06) and multiplying through by

@: we find that the following identity must hold for m=anji,m=0,12,..2

n ¥
Gl-R ook, By poeg R ) == i -,Z;; (R, #y) (g Ry, V(R e 4 B —

T LT LN ORI I
1= = (4.08)

This equality follows easily from (2.13). Alternatively (A.102) can
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be used to prove it.

Thus we have

© -n'rn
v=L &¢ S e (dy (R .
- m-i
m"‘::n.‘..\ < ;:s (hj‘."hj-u) (4.09)
It follows that
v 13,5 P“'*S g-han (&,(h))m.
P n-1
= & W, Rybkg,) (4.10)

The two last formulas are very similar to the ones in Chapters 2 and
3, and the same techniques we used to sum them can be used here. The
eigenvalue problem associated with (4.01) (Wadati 1972), together with
the corresponding Marenko integral equations of its inverse scatter-
ing problem, follows easily from (4.09) and (4.10).

Introduce

bex,t) = a/a) | exp[i(Rz/a 4RE)]) du(kR)
« (4.17)

and assume that as x,—se , b(x,t) as well as each of the terms of
the summations in (4.09) and (4.10) tends to zero sufficiently fast.

Then we have

v=aL e'.“(.P)ﬂg::lz,‘...dz.m_L bx+z,,t) b(z,42,8) ... bz, 4x,%)

L (4.12a)
m=amn+i m-i
Cx,o0)
Tz: %’8‘ E gm('F)“j dz, seed zan-.\bc"f'zmt) b(zx'*za-'e)“'b(zul-x +:lt)' ( 4.12b )
mn=1 N-A
Ge, o)

We note that bcax,t) satisfies the linearized équation and that b

must be .real for v= to be real. The latter is equivalent to dg (k)=



0=
:d‘.f‘(-h‘) =

4.2 Multisoliton Solutions

Assume now that b(x,t) is a sum of exponentials, which we take

in the form

_ 4 H (1+)-? =2‘.T:t)(lt)
bocsytl= § & o) expllsSplieniel = L PEMEAS (4.13)

where {‘15'13}; are arbitrary complex numbers such that Imz;>0 for

all ;\‘5 » and p is the column vector given by

. 3 .
Bioeit) = snp ROBm e E) 5 LV]D (4.14)

Moreover, we assume that for every j there exists a unique ll‘i such that
*
4

viously 5).,.3 =j so that j, & is a permutation.

=-Z,J and q:-.-q,j . This condition guarantees that b is real. Ob-
Substituting (4.13) into (4.12) and introducing the square matrix

- = =3
we have

T a a4 2 aayt -4 B)
Veep(lyepB ) p z-atTnf(xeepB*) B,la-axX 3 Tnarcton(e«xB),
P +. P f { F x‘] X (4‘]63)

v o €3, p (1, fpBT Bp = At Taf (TP 8" BB =
. 6 3 Talm (14 €pB) = p* 3, Andet (14 &p3Y) , (4.16b)

where x*=p . Since B'=DD , where D is the positive definite
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self-adjoint matrix D:u/a.)rgf“ T we have from (A.3) that all the
eigenvalues of B G positive. It follows that for p>o,
formulas (4.16) are nonsingular. For p <O they are singular, since
the eigenvalues of B take all the values from o= to o as x varies
from-co to e . As in the case of the Schré'dinger equation, the
nonexistence of solitons for p<o is related to the stability of uni-
form wave trains. Let p>0 in what follows.

Take &£=-%X" in (4.16a). Then we can write

V= -iK 3 Taln (14i8)(Z-1B) = _iK*9, In det(z+iB) _ a.K‘axarcfan(_FS_,

det(1.i8) (4.17)
where
aiq=det(1,iB)_det(z_iLB) al = det(x;iB) L det(z-L8)
: +° x %5 (4.18)
and we have used: artanz =t bn@+iZ) and tan(4 Mnz)=-ilZ-%) for
at (L-i2) aL (z+4)

any z . The speed of each soliton component in (4.16) is given by

(I-mzz)/(I‘ij) . Since the z;

the case of the KdV equation), we can have several solitons moving at

's need not be purely imaginary (as in

the same speed. In fact this is going to happen (whenever for some d >
Z; is not purely imaginary) with the pair z, _z:.:-.: z,lj . The most
elementary solution of this type can be written, using (4.17) and (4.18)

as

v=ak’ S arc.‘l'a'n{ ﬁ sim[o((x +(=138MY) 4 f,] seﬁb{/é(z +¢B-3a)E) +7.]} >
(4.19)

+
D=3 where I is the permutation matrix that gives p=rp so that

DPD=DF =-Brra=>.
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where «,a, g and 7, are real constants. This solution is called a

"breather".

The formula vi2g*3, Indet(z +B*)  where we have taken e=-x"
in (4.16b) was first obfained by Wadati (1972), using the inverse
scattering transform. The formula v =a.x'*axarc1'a1\(%) » when the
determinants in (4.18) are expanded using (A.203), was first- obtained

by Hirota (1972a).

4.3 Marcenko Integral Equations and Eigenvalue Problem

Introduce the operator’l\: as in (2.24). Then from (4.12) we have

v(x,t) = a K, (=x,t) vixt) = -'I-P"'Gx Kat=,zt) (4.20)
Ko=x,yq,t) -eb(xiy,t) - }:Ka(z, z_,t)b(z+‘3,t) dz =0, (4.21a)
Katzigt) +&p§ K, (=z,0 bzsy,t1 dz =0, (4.21b)
where
«© n AM- 2 A = 1
Ky =L, €6p) b b e(rse€pb) b, (4.22a)
M=2aTM+d

Koz £ &l 87 b =-gpbir,p B, (4.22b)

mn=A ’

and b is interpreted as an argument for b in the usual way: b=x,y)=
= b(=4+y,t) . Expressions for K, and X, directly in terms of dy can
be easily be obtained. We recognize in (4.20) and (4.21) the Marcenko
integral equations of the inverse scattering problem associated with
(4.01) (Wadati 1972). These equations can be thought of as a way of

summing (4.09) and (4.10). An alternative way following the lines set
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in Sections 2.4 and 3.4 can also be pursued. We then obtain formulas
that generalize (4.16) with B an infinite dimensional operator instead
of a finite matrix.

Partial differential equations for K, and XK, can be easily
obtained following the same procedure used in the preceding chapters.

The equations are the following:
Ca; 4+3p Vi, £)(3 ¥9y) 4 3p V(=) Vixt) 403 +37))J’K;(1-"é:t)=° ’ (4.23a)
Cae + @ +3,)°] Kayt) = 3plviit) (3ady)-pv =t ] K=y t) (4.23b)
(-3 K =,y t) = -vixt) K (=38 5 (4.23c)
(ax +37)Ka(z,'3,t) - P V(:."'-)Kt(z,g,t) b (4.23d)

Equation (4.23a) is the "K -version" of (4.01) and (4.23b) is the

"K -version" of the equation satisfied by ¥=v*, i.e., ¥y + ¥ouxe =
=:«;(\/;:'_P\r")== . Equations (4.20c,d) follow from (4.21), although
they can also be proved directly using the formulas for X, and X, in
terms of do . We now separate variables and write

K G=ogt) = 8=t 8 explicey +4 €01 451 ,(j=1,2).

c (4.24)

Then we have from (4.23c,d)

Byx-L§8, ==V, , Bax +1§ Bazp¥ By (4.25)

and from (4.23a,b), upon using (4.25) to eliminate derivatives with

respect to X,



=F3=

By -HLED, 4 L§P VIO, +4F VA, Voo By - 2§ Ve By m2p V3B, =

=p (V- V) Ay g (4.26a)

Bap +4igA, - 2Lgp V20, 7P VO, 4pVaxd, —2igpVa By 42p VID, =

= p(VVE-VLV) &y (4.26b)

The reason for keeping the right hand sides of these last two formulas
is that all the formulas in this section, as well as those in Sections
4.1 and 4.4, remain valid if v 1is matrix valued. We recognize in
(4.25) the eigenvalue problem associated with (4.01). The time evo-
lution of the scattering parameters is then characterized by (4.26).
It is possible to write 4, , 8, and d4 directly in terms of du
and then prove (4.25) and (4.26) using these expressions. If A, is
normalized so that its first term in the £-dependent expansion is
expli(g=+48°0] | then dij(g)=(e/afdy(ag)and &, = OCE)

As a final remark, we point out that it is possible to relate
dy with the scattering parameters of (4.25), when dx is a continuous

measure on the real line plus a sum of Dirac deltas on the complex

plane. This is done following the same procedure used in Section 2.6

for the KdV equation.

4.4 Miura Transformation

Comparing formulas (4.09) and (4.10) with formula (2.14) we imme-
diately see that

U= LKV .‘.P\fz' ’ P=K", (4.27)
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is a solution of the KdV equation (2.01), given by (2.14) with

dX(k) = % dy (k).

We recognize in (4.27) the transformation studied by Miura (1968).
This transformation relates solutions of k2.01) and (4.01), indepen-

dent of whether or not they can be written in terms of a measure.

4.5 Transformation Properties

By studying how formulas (4.09) and (4.10) transform, when a

set of 9-functions of Dirac in the complex plane is added to dx

(4.28)

we arrive at the following result. If v is a solution of (4.01), then

so is

-l -
v!= V_+ETT(I_E.KC.) I':\/—.’.E.ST(I-E..KC)’.S )

(4.29)

where r=r(x,t), s=3(xt) and C=C(=x;t) are two column vectors and a

matrix, respectively, that satisfy the following equations:

e+ NT=1LKvS 3 Sx-Ns=z=lKvr ,

E 8 . . . 3
M- AN T _apViAT = 4iXv S LK Ve S 4 2iKVEAS _2iXpV'S,

Sy +4N05 LapVIAS = SHLRVT CiKVL T o ALKVRAS _aikpVvor,

(4.30a)

(4.30b)

Cy=- 2 (rsy scT)
ai

Cy =-4 (J\"Cz $NCAN L C N - apvrt Cy 4 KV (SF LT ) 5

(4.30c)

+ axv [A(er- 59N L (e-ssTHA ]
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C.CNh = X ¥ scT Cu €
e ek I J (4.30d)
r=U's , UcU'=Cc , U-UT, " (4.30e)

where A and U are arbitrary constant square matrices with A symmetric.
The conditions U =U" and UA =-AU make (4.30e) compatible with the

other equations. Moreover, we have
(va)* v? . =L T - 2 Ay T e 1
=V _ELK T (T-exXC) s = vi_ex 9, n.{(I..e.KC) &Y=

=\r"+,3"3:'\'nﬁm (I-exc) =v*4p 3, Indet (z_exC). .31

If v is real, then a condition that will insure that v' is real is the

existence of a matrix T such that

=TT, Pocegp) TCT and T =T

(4.32)

To make (4.32) compatible with the other equations we require TT =
=g’ and TA=-AT
Equations (4.30a,b,c) are consistent, and they imply 9, and 9

of (4.30d). If r and s decay to zero,as x..o,fast enough, then
C=tasab) §edf,s solves (4.30c,d), and (4.30e) and (4.32) if U. U,
UNA=-AU,TT==(sqp) T and TA=-A T

Except for the last two equalities in (4.31), all the equations in
this section can be generalized for C, A., etc., operators in a Hilbert

space with a conjugation (see A.3) with respect to which transposes are

defined.
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(i) By taking v=« 1in (4.30), we can generate solutions of the equa-

tion

a
Wt.g.hl'xxz.,.la.u? W-W;+6PW w-zgo,

by means of the transformation

Wix,t) 4 & = V(xyopx’t,t).

(ii) The interaction of periodic solutions of (4.01) with solitary

waves can be studied using the formulas in this section.

4.6 A Related Equation

The equation

a
Ve + CpIVITV 4 Vyzx=0,

(4.33)

which for real v reduces to (4.01),can also be readily solved using

our method. In fact introducing w=v*, (4.33) can be written as the

system

Vi + 3P VWV + 3pVaWV 4 Voxy =0 (4.34a)

Wi o+ 3p WV W 4 3p W VW 4 Wixz =0 (4.34b)

whose solution follows the same lines of the solution of (3.02), with
(4.08) replacing (3.12). The formulas for v and w end up looking Tike
(3.13), witho replaced by p and the linear dispersion w=tR" replaced
by w=-R.

As (3.01), (4.33) presents multi-envelope soliton solutions for

p>0, multi-dark pulse solutions for p<© and solutions representing
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the interaction of many envelope-soliton solutions with the traveling,
spatially homogeneous wave solution of (4.33) for p>0. A1l this can
be obtained by an analysis similar to that in Sections 3.5 and 4.5.
Formulas for the multi-envelope soliton solutions for this equation were
first presented by Hirota (1973a).

| As a final remark we point out that the matrix-valued case of

(4.34), and in particular the vector-valued case, can also be treated.
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CHAPTER 5
SINE-GORDON EQUATION

The methods developed in previous chapters are now applied to the

Sine-Gordon equation, which can be taken in the form

Uy = Ypp =Uxg =ToMU (5.01)

where o is a real constant and w=u(X,T)=w(x,t) is real valued, with
x:%(x.ﬂ‘) and t.—.%(X-T) . This equation arises in many branches
of mathematics and physics (Scott 1970, Rubinstein 1970, Barone et al.
1971). In order to avoid the complications of having to deal with a
transcendental nonlinearity (i.e., swmw) when performing our expansions,
we introduce the new variables ¢=u, and m=-44cosu . Then we have
the equations,which we write in the most symmetric form possible,

Pt -9 = S(QV+79) 5, astpiEpiip=0 . (5.02)

We can easily recover (5.01) from (5.02),since we have 7#31, by means
of the transformation o'smv;=¢pt , c@u=m44 | consistent because of
the second equation in (5.02). The first of these equations then readily

gives w_=¢, which implies (5.01).

5.1 Solution by Small Parameter Expansions

An expansion of the form w=L € W corresponds to the following

m=amss
expansions for P and 7
C-] m o 3
p=L, 2y  and agub cn, . (5.03)

mM=aN+A S=2Nn
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Let &(Q,P)=G(w,R)=-P,Q .c=hw-c=0 be the linearized dispersion

relation of (4.01), where R=P_Q and w=-P.Q =cK*. Define

oy =R et B IX Q) 4oee 4 Q) T (Mg ene Ry )X = (e e 439 VE (5.04)

(V 14m< ),
and write form odd and s even,

Pm=| &, & ™ L] 75 = Hs &8 Lancw1®

c‘m

(5.05)

CS

where d\(R) is an appropriate measure on €© |, coj=crh'; for all j's and

the & _'s and Hg's are functions of the Ri's. Then, substituting
(5.03), (5.04) and (5.05) into (5.02), we have

m
=g
& (@ orep O Ratt B Sy = E ;;z;'; ompantay ¥ My é:.m-j)-u ’ (5.06a)
ac*H, 4o Z.L H,‘ am=j)
et (5.06b)
‘;E'o G YR IO TP S SN @1‘“§> -t

where m=ang 1,s=am s M=1,2,3,0 o §:_ is arbitrary and the variables in

the products §m_q Hz-j ,» etc., are evaluated sequentially.
For m=1 we have from (5.06b), ac™H, - w0, § (k) (k) =
Therefore, taking §1=1, we get H"za%ctd‘o" =4 (@i awa) . Then, from

ac (R 4R,)
(5.06a), it follows that

L (Rys kl‘\'k:)(“)a.+“)n.+“>3)-¢] §3 = %[ uz.(ha.-ka) + H:.(huh:.)] =

=3l A W, 1 b,z A (W, 4+D3)= M o
3-[:5:'- ™3 + 1o s :-] ic 2. (@y +@3) 4 Rk,
NOW (034 4 @dn 43R, 4R, 4 Ry) =@ = @ (Ryp RyIR, 4+ Ry )Ry 4 R,)/ Ry R R,

as it is easy to see from the formulas ; -c/h It follows that



i)

§3 = {‘-{ (Ry+RI(R, 4 h; )}--‘.

For m=2 we find similarly that Hy= Ll _(Qs+@a+eysy)
80 (R, + R,)(R, +Ry1 Ry 1 Ry)

and @, ={ 16 (hyrk, )Ry 4 k)R V(R 4R - Thus, it s natural to

propose

-3

§_“.'={q“ ;—fr::(h“ Jﬂ)} ={‘1 'n' (? Q+ i qu)} - (5.07a)

Hq = 2(Wyyeeee 4 D®s) _ 2 (B4--+Pa+ Qur-o--+Qs)

st - . 5.07b
q“u"'l (R 4 Ry sy T:.f(%'qi“*'?i«"qa'*‘) | |

Substitution of (5.07) into (5.06) shows that the following identities

must be satisfied:

G(a)*+...+cd“ ’ h;.\....q.k-m) =
n
= E‘{(hﬁ-x"' hzi)(&),_j +.--+.")1n) 4 (dx-\----i'da.j)(ha.j + hzj-u)} b) (5 .088)

n-y '
T (W 4oee b dg) 4 7;‘- <f->;+---+o),,j)(k,§+ha_j“)(cb,,j“+.~+c-),) =
(5.08b)

n-i

Ea (D 4. +¢.§2.A_" 1j*l+k1j*3-)(d2-j+2.+"'+ W) =0 .

Di rect]y, or using (A.102), it can be proved that &w,4.--4@pm, RisecpBm)=

E(-ﬂ‘ GLw‘,h‘).,.L{(kz‘_ﬁ.k e, 4oe $Om )+ (@m0 MR, 4 Rajes] which,
since Gw;, k=0 (Y j) » reduces to (5.08a). (5.08b) follows easily

upon expansion of the Z's and use of the identities wyRj=T,(V §)
Finally, from (5.05) and (5.07), we have

¢ = Z.a.(e/a.) _1n_€-£___Ed)~Lh)] (5.09a)

...:: g1|+t -“L ( h‘.‘.h )
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2 L s
=23, Leear| € ° rawl.
n= =
S=zan cs ;-Ex (hj+hj+s) (5 .09b )

Real solutions are obtained when d\(k)=dN(-RW*). The following is an

immediate consequence of (5.09a):

= AN
49, e’ €0 pawd”,
mn=3 L
S =amn Cs }:;(kj"'k;u) (5.10)

The similarity of these formulas with the ones in Chapters 2, 3 and
(especially) 4 is obvious, and we can sum (5.09) and (5.10) using the
same techniques used there. Again the inverse scattering problem asso-
ciated with (5.01) and (5.03) (Ablowitz et al. 1973), together with the
corresponding Marcenko linear integral equations, follows from (5.09)
and (5.10).

Introduce now

bx,) = &( exp[d (rx-ackK 8] dX(R), (5.11)
c

and assume that, as x, ,», b , as well as each of the terms in the sum-

mations of (5.09) and (5.10), vanishes. Then we can write

¢=aL e:"(_%)“ 5dz*...dz.m_x bl 42, ,t) bzyaZy t) .. B 4T, 2) (
v::a:n-t-a. L-:'m)'“'*

5.12a)

= n
" -% % -::ls. ¢ (' Tit') X dzy..dzg  blxyz,t) bz 2t) - b( Zo v Tit)
S=2n l:::,em)"L

{5.12b)

and
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a N o '
@ = 8 axE‘-;;(-%) Sdz*...dzs_x b(z.‘.zx,t)b(z;-ﬂmt)"-b(zs-\“’x‘t)’ (5.12¢)

s=2an =000
As usual bcax,t) satisfies the linearized equations. It must be real

for w to be real.

5.2 Multisoliton Solution

Assume now that b 1is given by a sum of exponentials. That is,
take
b t) 1"{. s expf £ [Zi(=4w) aci-*-t.] =4 T(zt)?(gt)
=43,t) =4 T N erp{{fF=ap-a0 )] f p=tiPO)

(5.13)

d
d's, and we assume that for every is jsN there exists a unique s s&;<

where {X;, z‘-f‘xare arbitrary complex numbers such that Imz;>0 for all
" '

¢ N such that z=_zf and )1';-_-)5 . This last condition guarantees

that b is real. The column vector p is defined by

Pj("lt) = exp{_g._(zjz_cz}*t)l , (AsjsN).

(5.14)
Substituting (5.13) into (5.12), introducing the matrix
= T .
B(xt) .—.u/a.)i ply )P («:;l:)dg ={L(zj+2,)fs(=,t)9f(=,t)] ’ (5.15)
and summing, we have
¢ .-.5.91'[14_(5/1)"31]"? =_:.aTn§[:+mIa.)B"]"'B=] =-43 Trarctan(§B) 5 —_

a -
m =(€/ac) 3y f[h,cm.f‘ g8 p=-(€73)3, Tn.{ (T4 8" 153,} =

.- 3
(ale) 3,9 Ta b [T peefat 8= c@ie) 3,3 In det [Ty @y @), (5.16b)
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2 2 2 a3 2 2 2
43 Tadn [T,/ B8] - 43, Indet(T g/ ®] .
Cha R S (5.16¢)

A1l these formu]as_, are nonsingular, since the eigenvalues of B are all
real. This follows from the fact that ®'-DD , where D 1is the posi-
tive definite, self-adjoint matrix D.-..-ig:}f‘ ; therefore, from (A.3), all
the eigenvalues of B are positive. D is related td6 B by the formula
D:BPT, where ' is the permutation matrix that gives p=p

We now use the relationship of w with ¢ and m , to write (Take

Eza)

&L 2 L5
W, =49, Andet(14B) (5.17a)
coou= i - ac'*axat Andet (1+8") (5.17b)
L= 4 Tharctan B = 2Ll Ta In (T4i8) (I-LB)-Ls
i det(T+iB) _ t 8
=~ 2L &n m) = 4 arc a-n(T) 3 (5.17¢)
where
aiq = det (z,iB)_det(I.iB) afl=det(r4+iB)4det(z-iB) .
d=c > b (5.18)

-} -
The speed of each soliton component is given by i’“_‘} = -alz]| *
il
Since the zZ; 's need not be purely imaginary, we can have bound states

composed of several solitons moving at the same speed. The simplest of
these bound states is the one produced by a pair zZ; ’zﬁ:_z; and is
known by the name "breather" or "om-pulse". A formula similar to (4.19)

can be obtained for it. The solutions produced by one purely imaginary
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z; are known by the name "kinks" or "amw-pulses".

Formula (5.17a) was first obtained by Ablowitz et al. (1973),
using the inverse scattering transform. The formula u.=.l-|arcfa'n(_%_),
for purely imaginary zj's, when q and { are expanded using (A.203),
was first obtained by Hirota (1972b). The particular case correspond-

ing to N=a was first reported by Perring and Skyrme in 1962. Other

alternative formulas have been obtained by Caudrey et al. (1973a).

5.3 Marcenko Integral Equations and Eigenvalue Problem

Introduce the operator (Abg.)(x,‘;\)==S:§.(x,z)b(z+3,£)dz . Then from

(5.12) we have

Plx,t) = U lx,t) = 4 K(x,x,¢) , (5.19a)
9 (=) = LocOUEE = 45t s, K tx,x,t) (5.19b)
(Pa(z,t)z ui(z,t) =8 =Y Ka(x,x,t) (5-19C)
Kymu,t) - £b(=sy,t) - § | Kuwmaz ) bzeyit)dz =0, (5.20a)
Kzt + § | Kmzpibayidz =0, (5.20b)

where

-3 ATR-, -1
K*(:,H't) = Z_\ (—13“(5133“ bm ‘b = i[Ii-(éla')le] b 7 (S.Z]a)
1:::1“:
and

= n SN 5-1 an a g~
Koz, g2 L cafea b b - fhlnearel b5 5

5=2M
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In (5.21) b is interpreted as an argument for B in the usual way:
b(=.1\=b(=c+z,t) . Expressions for K, and X, directly in terms of
d X\ can easily be written. As in the preceding cases, we recognize
in (5.19) and (5.20) the Martenko integral equations of the inverse
scattering problem associated with (5.01) (Ablowitz et al. 1973).
Following the same procedure used in the preceding chapters,
partial differential equations for XK, and X, can immediately be ob-

tained. The equations satisfied by K, and K, are the following:

{(ax_‘_ay) 3‘!: . [1 + %: 7(:,*:)]}]{1(:.‘1.'“ =-§ 'f(=.t)at]{a.(zl"3't) 2 (5 i 22a)

Ry + P K myt)= & p=0) Ki=yit) 5 (5.22)
(3 -3) Kyemyth=- @8I =38 - (5 00y

(5.22a) is the "K -version" of the first equation in (5.02) and (5.22b,c)
follow from (5.20), althohgh they can also be proved directly using the
formulas for K, and K, in terms of dA(R). We now separate variables,
writing

Kyt =§ o=y, 0 explitgy-F 01 dy(§), (=22).
N (5.23)

Then we have from (5.22b,c)

O, x +1§ A"='§'.(‘°A’~ and A&z_lgt;t=-%q:b.l. (5.2

From (5.22a) we have, upon using the second equation of (5.24) to
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eliminate derivatives with respect to x of A, ,

AL §Dyx = S’i (O, cosu 4 Ay smu).
(5.25a)
Taking now 3, of this last equation, using (5.24) and (5.25a) to
eliminate all derivatives of A, , dividing by ¢ and using P, =

=-a_t((p")t , which follows from (5.02),we have

(5.24) is the eigenvalue problem associated with (5.01)-(5.03) and
(5.25) gives the time evolution of the scattering parameters.

It is possible to write A yA, and dy directly in terms of d\
and then prove (5.24) and (5.25) using these expressions. If A, is
normalized so that its first term in the € -dependent expansion is
eq:[i-(gx-g':g"t)], then dy(g):&d\(af) and A, =0(&), |

Equations (5.19) and (5.20) can be thought of as a way of summing
(5.09) and (5.10). An alternative way, following the lines set in
Sections 2.4 and 3.4 can also be pursued. We then obtain formulas that
generalize the results of 5.2 with B an infinite dimensional operator,
instead of a matrix.

Transformation relations similar to those in Sections 2.7, 3.5
and 4.5 can also be obtained for (5.01)-(5.02). Finally, it is pos-
sible to relatedN with the scattering parameters of (5.24) by a pro-

cedure similar to the one used in Section 2.6.
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5.4 Miura Transformation

Comparison of formulas (5.09a) and (5.10) with formula (2.66)
shows that

. a -
n =L + 1

=i (5.26)
solves equations (2.68) and (2.73) with w(rl=cR™, {(R)=0 and 3(h‘)= R*.

That is, we have

- T

-]
xzt_‘!uu_t +1 uxiut +0'7.Lx =0.

(5.27)

This equation can be checked directly from (5.02) and (5.26), using the
s - . - 2
fact that m= %’S:u.t +7 0, , as implied by 7. =-(¢ P

5.5 Higher Order Equations

The equations treated in this and the preceding two chapters are
all included in the general class of equations solvable by expressions

of the form

q):ei e."'é“g Tﬂéem_dr(h,’,t)ds(hz,t)...dr(h.m,t) ’
maanes o™ MO 4R (5.28a)

1.|>=§° e’“g"i v Om ds(k, t)dr(R,,t)...ds(Rmy,t) ,

—-_n 5.28b
m=ansr " 1: (ha"'hiﬁ) ( )
dpdr(rt) z-iw(R)dr(Rt) , 3 ds(ht)=-inRids(Rt) , (5.28¢)

where €, = (R 4...4Rm1x,(¥m)and p is a constant. To find equations in

this class we follow the same procedure used in Section 2.8. Instead
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of equation (2.69) we now use the identity

= (“E:. bs) (? QJ) + 12:' ('1)‘ bJo' z' (baj,** b;j,‘,z)(o';i{,a“" sew +o'1n) + (ax"‘""i'a’tj'l")(blj#l"' blj¢3)=

- =4 (b1 +sz+ ) (@40 4rer4 Qg X(Dag + Bagyy) +(0apdbaey) (@apyy 44 G

o8} - (b,; jra +ertby)
ad B Byt +°'uu)(bnu+ b:\h-:x) 4000, + b0 N Aggy +eor+00)) (b, 4 by (5.29)
osb<jsm (b - ‘) . | 3“

valid for all arbitrary numbers a; and bl (1$§$M=2n41, M=0,1,3, . )

To prove the first equality in (5.29) we first verify it for m=2 and

then we use (A.102). The second equality is trivial.

The simplest equation solved by (5.28) is

L, = @ iY==Y (5.30)

which corresponds to w=4 and v=-1 . Then using (5.29) we can con-

struct the equation solved by (5.28) for uw(R)=-w(-R) and w(R) a

quotient of entire functions, sayx_ and q - This equation is

3(&)[ " ] = i(L)[:] ) co(h):!im/gcm y
b t

(5.31a)
where & is the operator given by
(86), =-ifm +ip P5CRp-PR) - Cp SRV -0
(&)= iR -ip ?‘Sx(rﬂp-q)t;) + LPSx(r,_qp-y)q).zp ’
(5.31b)

for any 2-vector valued function r=r¢x). In the context of (5.31a)
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the indefinite integrals Sx present in the definition of & are
evaluated in such a way that the boundary condition g_(i,)r_up,y)]r;o when
p=0and Pp=0, is satisfied.” When q s not a constant it is neces-
sary to assume that ¢, and ¥, vanish sufficiently rapidly as =~ (or
x+s-o), SO that co (Or -oo ) may be taken as the lower limit of inte-
gration. Each application of the operator & produces the transforma-
tion w(r)__kw(k)and v(R),— . -RU(R) in the dispersion functions, just _
the same as the operator § of Section 2.8 produced the transformation
w(R),__ Rw(k). Equation (5.31) is the same equation found by Ablowitz
et al. (1974a) as solvable by the inverse scattering transform associ-

ated with the eigenvalue prob]em—

Px -t§P =-99 y Y= i8R sP¥Es (5.32)

of which (3.39), (4.25) and (5.24) are particular cases. The cubic-

Schrodinger equation, the modified KdV equation, the Sine-Gordon

equation and equation (4.33) are all particular cases of (5.31).
When w(R) = w(Rsio") and v(R)=v(R4+i0Y)  for TmR=0 with

w(R) = Q—&ﬁ’_d V(R) = o‘?\.‘f) d (Imk>0)
.S»(hu.;) § + S(k-z.g) £ ™ ! (5.33)

for some function R =R(g), it is also possible to write the equation
solved by (5.28). Assume that ¢ and p vanish fast enough as x+—sc®

and that dr(kRt)=ds(R,t)=0 for ITmR<o. Then the same kind of

+ 42 % v N T

Under these conditions it is easy to check that & Ce,»1" , (¥m=0,

U — is a polynomial in ¢,y and their first n partial deri-
vatives with respect to x .
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argument used to obtain (2.76) can be applied here to see that

@ = [ R 8,600 s, P, = SM;)A (§) By68)ds

- (5.34)
where
] L 6. Lg:c
a=tay L &7 e = deds,...dg_ds.le
g Pcs“‘ T lrphy,,) (R g 28) Sathn)€T 0 (5.350)
o L B, LEX
a=f1 B & el ds,dr..ds,__ dr et
"{ Fast Pém b ECTLRECED) il ""'} : (5.35b)
i o &m " G
B=-U{ T 9 — : drds....dr,l e
==t K- ém ‘(k R (R 2 g) o m} 3 (5.35¢)
® L LEX
PURET . o) (Y e dsdydsg}e®™ L
maan+s ™ 'LT (h +'h )(hm+3-§) ”
The functions &,,8,,8,and B, satisfy
AL.Z‘L§AJ.=-F‘P Ay 9 Aﬂ,z+L§A‘|= I‘JA:_ ’ (5. 36a)
A&Z-LEAl--P.v A3 b A3’=+l§ A3= (PA&. (5.36b)
Introduce
() =0,60D0;(8) 5 W = 8,(0DD,CE) ,
N =0,¢8)D,(8) _p A,()D,(-8) - (5.37)

Then using (5.34) and (5.36) we see that the equation satisfied by
(5.28), with the choice of w¢R) given by (5.33), is

Pp = Bep prds Yo MO Y@EE (5. 363)
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$r=-2i5d + N, Yi-aigY 4yN, (5.38b)

Nez=-2ap(pd + oY) , (5.38¢)

Withe,p ,® and iy small as x, @ and N~ 21 . If A is real then
V(R)=-w*(-R*) and solutions satisfying ¢ =y’ can be found. Then $-
= Y* and N=N* for g€ real. Iff is even, then v=w and we can ask
that ¢=% . Then &(§)=Y-¢) and N(g)=N(g) for g real. Assume now

that & is real and even. Introduce the real functions

£ (x,¢) = - Plt-x,x) = - Y(t-x, ) ,

(5.39a)

Pexyt,a¢) = Re t-xyx,8)  ,  Qetap=-Imde-=xg), o o

T(=,t,28) = - Ne-x,x,¢) , (5.39¢)

heg) =-[q@p) +9¢-29)7 (5.39d)

where _w<g <o . MWe note that ® and ¥ are even ing and @ is odd.
Thus we have

Be + B =_§:%<§) ®P(=,t,3)d3 (5.40a)

C=-3Q +8, , Qe=3€¢ , (5.40 b)

Ny =-4p & P. (5.40c)
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These are the self-induced transparency equations (SIT) in dimension-
less variables. For %.Q):uS(}—},) i they are the reduced Maxwell-
Bloch equations (RMB). The SIT and RMB equations have been studied
using various techn%ques, including inverse scattering, by Caudrey et
al. (1973ab, 1974); Lamb (1973); and Ablowitz et al. .(1974b).

Equations solvable by expressions of the form (5.28) when ¢
and p are matrix valued' ' can also be found. In fact in (5.31) ¢ and
Y can be taken matrix valued, since when defining & in (5.31b) the
possibility of having noncommutative products was considered. Further-
more, since (5.29) remains valid if the QJ'S are matrices, nonscalar
dispersion functions are also possible in this context. More precisely,

(5.28c) can be replaced by

3, dr(R,t) = _i Lw(R) dr(kt) 4+ drCRt)u(RIT , (5.41a)

3, ds(R,t) = i [v-hIdscCht) 4dsRlw(-R)]T , (5.41b)

where w=(Rl and v=v(R) are now square-matrix valued functions of

of appropriate sizes. The simplest equation furnished by (5.41) is

iPr= o £ PYe,  —lPp= Y 4P, (5.42)

1'There is no harm in taking q (and thus & ) a S-function. It is
easy to see that the requirement in (5.33), that the integration be
with a proper function kernel, is unduly restrictive. In fact the in-
tegration need not even be over g real.

™The dimensions of ¢ and P must be such that the products @y and

Y¢ make sense.
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for w=w, and v=v, independent of R . The others are constructed from
this one using the operator & , just as (5.31) followed from (5.30).

As a final remark we point out that the subclass of equations for
which we can require <p=ip is related to the class of equations treated
in Section 2.8 by means of the transformation

U=-iVf Px PO -
(5.43)

This generalizes the results of Sections 4.4 and 5.4.
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CHAPTER 6
BOUSSINESQ EQUATION

As a final example we consider in this chapter the equation

a a
Ve -4 U o -% Urrxx + (TU )zx =5 5 (6.0])

where 4, v* and ¢ are real constants and w=u(xt) is real valued. This
equation is a nonlinear Boussinesq equation. It occurs in one-dimen-

sional nonlinear lattices (Zabusky 1967), water waves (Ursell 1953),

etc.

6.1 Solution by Small Parameter Expansions

Following the same ﬁrocedure we used in the preceding chapter,

we arrive at the formulas

e & tanhod =

U= iV 3
il i P }?‘."""*‘/5"1-1)
Y

3 M8

2 X2 n - i n
=2V 3 L (&) m e [aX(R,w)] ,
o L P (°‘1\+/35.)TI B (6.02)

Q.,

where d)\(R,w) is an appropriate measure on €* such that

dAhw) g0  only if  Gwm=-dsyR_ YR =0, o

fl.n " (ht“""_‘_h“)x - (O&+...+ Cl)-n)'t ) (VT‘I =1;1;31“') (6,04)
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and

e @ -4
°‘J =o((huc.)‘) =®Jhd +“hj ,ﬁd‘ =ﬁ(h.i’0<i)=-°>ahJ .*.th' ) (6.05)

(Y sjsm, Nn=4,3,3,..) .

The equality of the two expressions for w in (6.02), follows from

noticing that

‘ﬂ-l.
; ( Yzav L k,
}.:-.:A. (; +/Sd+t)] + °‘l‘l+/si a j=1 g 2 (6.06)

as is evident from (6.05). Therefore -mﬁ‘ax is equivalent to elimi=

mnating one of the factors in the denominator of the integrand of the

last expression of (6.02). The condition for w to be real is

* ]"_ .
{udk(-k,-d‘)l = -V d\(Rk,w) (6.07)

To prove that (6.02) is a solution of (6.01) we use the identity

G (O fooreh Oy ; B, sy b)) < Uiy +b)&b G(O. b)-
j=t

n-4
_ ),
_.u/:z.sl}.':’L E.‘.‘ﬁ by 4 +b,$)(z,§+w,; (b - +he W2 4+ T (6.08)

where m=1,2,3.. , the bJ 's and o.. 's are arbitrary complex numbers

such that b;#o (Visjsm), Z;=a; bd +vb;, Wi = -9y bg‘-_*_ubj,(\/a.qsn)
and G, is the set of cyclic permutations of {s,...,m] . Form=4 (6.08)
can be verified directly, then (A.102) proves it for allm . Substitut-
ing (6.02) into (6.01) and using (6.08) we then have
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(3 - ,.,3 -2 3 )u_ﬂ 9, E(—JﬂLS Gl@yt-+On, Ry -+ Rn) e"ﬂ“[d)\(h ) =
Tnst gm (i 480 T (/350

_.__\la'a:.E E y B (_li“ (hm."' *h‘ﬂ')(hﬂus"' +hT-;~__eﬂ“[dX(h,w)3“=

T Fpale ). |
et Last Weby :‘T‘ (°‘n' +/g“3s i= =1 (xd" /5“44-3
a® = Leo(p R Rer- +Rpy)  ner gy
=3, L L g(.ag AL Ay, Y el j (g H bl 5%
n=t L= @ & éu(d‘i +ﬂj+x o 'IT' (= +ﬂaﬂ

(6.09)

This proves that (6.02) is a solution of (6.01).

Formula (6.02) is quite similar to the expressions found for
the solutions of the equations in the preceding chapters, and the
same techniques used before apply here for its summation. Introduce

the function

bxyt)= gy [ Mhe) expl(pxpay-tot] (6.10)

and assume that, as x—so ,(31‘11-16 0 (¥mn) and b.o , the
latter being true also for Ye—s0o . Then we have, from (6.02), upon
using «4B=avh

w=-20"9 T e | dz.dz,, bx,z,t) bz, 2, t).- b@,,, %Y.
) T mn=4 &'w““-; (6.11)
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Equation (6.07) is equivalent to b being real. It is clear that

b(x,x,t) satisfies the linearized version of (6.01).

6.2 Multisoliton Solutions

Take now

" x
B2y o1 (=47 +Aut] = d POqqt), o

where‘P and q are the column vectors whose components are given by

P mt = anewp(-ag x-i¥ EF) 5 Q (=t) =8 EXp( £ P 422 7;t)('6. -

the a,,'s are real numbers and

frm=Am-Afm  , Pmedmspdm (6.14)

R\ 'Km

where the X.'s and A,'s are real numbers, the K. 's positive, such

that

k]

o
O:GUAmJKm)=K;_qK;-%Km.
(6.15)

In writing the second equality in (6.12) we have used that z:-§:,=
LI\

v m *
w

Introduce the square matrix

< T -4
Bext) = & i qze) pz,t1dz .—.{(7,,,;;. B Z_'f:t,t)[:”(’.z,t)] . -

Then from (6.11) we have
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U= g‘ca‘ PT(I+eB)'§ =-%g"f_ax Tn{(I+€B).th}=

=_29" 3 Taln (T4eB) =2y 3 Indet(1,¢B).
T T (6.17)
For v real, i.e., v*>0 , 1:"=[1* and B is positive definite. Thus
for eyo , formula (6.17) is nonsingular. For v purely imaginary,
i.e., v%o , further conditions on the Xwy's are necessary to guarantee
the nonsingularity of (6.17). A sufficient condition is that for all

pairs m, #m,

) AW P T
( §~m" gm’.)(%n;?m,,) = (xma— Kmi) + ° (ﬁ: - Km:.) >’o ’ (6 . 18a)
or
SR A
(im"f' gm,,)(’?mt'*?ﬂl;)"" (K'm;'*'xmz) 9 (%“‘ - %n,_) €O (6 18b)
™y, ™o :

Then (A.203) shows that all the minors of B are nonnegative, so that
no eigenvalue is hegative (since the polynomial det(\I;®) will have
all its coefficients positive). It follows that, again for >0, (6.17)
is nonsingular. For two soliton solutions (6.18) is also a necessary
condition. After some manipulation, (6.18) can be reduced to the fol-
lowing single condition:

a 2
a ) A ) + 4 N, [Bom B, 334 , (Vm gm,).
( A-‘m,/‘Km, +(a m,/'KfnL 4+ A-m* l7/ 3 z.> 4 gyvm 2 (6.19)

Multisoliton solutions for equation (6.01) were first presented by

Hirota (1973b).
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6.3 Marcenko Integral Equation and Eigenvalue Problem

Introduce the operator % defined by

('f:f. )(x,y) = ¥°$(z,z) bez,y,t)dz , (¥ {=f=y).

(6.20)
Then, from (6.11),
w=-avs'd, Kixxt),
(6.21a)
Kxyt) + ebxyt) ¢ 6£=KC::, ,t1b(z,y,t)dz,
(6.21b)
where K_=°7;.<.¢)“ ’E"'Lb=-a(1+.=_'5)'lb . This equation provides, in effect,

a summation of (6.11). We recognize in it the Mardenko integral equation
used by Zakharov and Shabat (1974) to solve (6.01) by a variant of the
inverse scattering method.

We now look for equations satisfied by K . This time we do not ex-
pect the t -dependent equation to follow directly from (6.01). This is so
because the proof of (6.02), in (6.09), uses the highly symmetrical de-
pendence of & on x . Indeed (6.08) involves summation over 6, . On

the other hand, K , whose expression in terms of d\ is

K=z L e g-fms + £ (A=) -1 ¢y (1"
auvi m= & 1?(“5+/34+*) (6.22)

has this symmetry destroyed by the presence of the variable '3 . However,

whatever the equation satisfied by X is, we expect its linear part to be
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determined by the first term in the expansion (6.22), i.e., b Writing

« in (6.10) in terms of « and 3 ,o.>=;'\-’(°‘a'-ﬁl) , we see that b satisfies

bt + Ly (bzx —_b‘S‘S) =0 (6 23)

Thus we are led to study the effect of the operator at+Lu(a,f'_3;') on

K. Now we have

. . a
— L@y g4 @n) - L (Bt b by ) X |

4 2
=-;’; { d:'-/ﬂt 4+t d:-ﬁ; + (Pote- 4o+ et Ty . }
aL %%]=

it AL s bad L Ayt a2l .
T a.\d.qﬁfn/&‘ * 141<3<§1 it ulgg:‘?/&‘ . 1shsj<m

. =4
L L (Bygeed B+ b (G 4 By
av j:i.

" Therefore

§9¢ ¢ iv (a:'-af,')} Kx,y,t)=iah) uzt) K(=,y,t). ( )
6.24

To find another equation we proceed from (6.21). First we write

the dispersion relation in terms of o(:quu.c.)lR'L and /5=uh-¢.>h'*

0= &y A - 3y (ppr). (6.25)

It follows that b satisfies the equation

3 3
o= &b = {4v'(5 +3y) + 23433y} b. (6.26)

This equation and (6.20) imply that
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(ili:: g)(x,‘a) =(Abi.¥)(x,'n) - 1avie (TR 0 . bz(x,'g,t) -

2
-GV {Eg(::,x)]:: + f.zz(::,::)-;n(::,z)} b@x,y,t) , (Vf= S?(z.:;))- (6.27)
Thus, multiplying (6.21b) through by (I+ehb).1;- » using
L §
e(ryreb) b, =-K_(x,Yy,t) - Kx,x,t) Kix,y,t)

and (6.21a), we obtain
0 =(dK)=,y,t) - 6eu(x ) K, (=,4,t) - 6TUx,t) KEx,xt) Kix,y.t) -

30 u(xt) Kz, t) + o0 [ Koo (xxe) - Kyy(x,x,t) K (x,4,¢) -
Sl D 104 d

Introduce
o wt -A.a 4) w io3 K 4] -
Vz_.av g 9, Kixx, i (K (i xt) - Kyy (% ] -
- ani niz,t) Kix=t),
Then
{q“z(a:'}a;) + 3"/(ax+ay) -bGouw ax - 30U, - 3!’._3: V'}K =0. (6. 30)

This formula can also be proved directly from (6.22). Finally, an
eigenvalue problem for (6.01) can be found separating the variable ~
in (6.24) and (6.30).

We note that introducing v into (6.01) we can write it as the

- system

£ L
4 U 4_% uzzx_(q”u.)x 3 Uy =

R

v'-
€ (6.31)
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CHAPTER 7
AN EQUATION PRESENTING MULTISOLITON BEHAVIOR

7.1 Introduction

Recently Caudrey et al. (1976) introduced an equation presenting
multisoliton solutions. The equation is a generalization to fifth order
of the KdV equation, and can be taken in the form

Wy 4 (U 4 3UUL ‘*.'l.‘l.a)x = O.
(7.01)

Following Hirota's approach they introduce

w= 9, Inf . (7.02)

This transformation reduces (7.01) to a homogeneous equation of degree

two in the variable £, which can be written in the following form

{(ax-a,o) G (- (3 -3¢) ’ 3y-3yt ) ;(I,t) ¥(I‘,t‘)}z=z'=° ) (7.03)
t=t'

where o=&(Q,P)=-02 +’25 is the linear dispersion relation of (7.01). Then

they prove that a solution of (7.03) is given by

£=B L oa(j,,—j) e+,

v=0 ()

(7.04).

where indicates summation over all possible combinations of v indices

L
Q)
| out of 4,a,3,...m,

m = B -Qt 4 T G(Q;,B) =0, (Vasjsm) ,
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Q.(o.,'s)=_(P.-3)C=(Q,-n;,?,-?4) _(Re- )(F ‘P,, ?’3 , Y uj,lsm),
(’P'+’P‘) 6(.0_{1..01- )?f+?j) ( +‘P) (1’ +7 13)

and the ?3 bg s £y

; 's and Zje 's are constants. The solution of (7.01)

provided by (7.02) and (7.04) presents all the characteristics of a
multisoliton solution.

No eigenvalue problem that would render (7.01) solvable by an
inverse scattering transform is known. However, the fact that the
equation supports multisoliton solutions is an encouraging sign that
there might be one. Motivated by this, we tried to apply to (7.01)
our small parameter expansion technique, without success. In view of
this we started a search for a lower order equation that would also
support multisoliton solutions, of the same functional form (7.04) but
with a different dispersion functionfL. Presumably it would be
easier to find a perturbation expansion for a lower order equation.
Then we would only have to take a different dispersion function in it
to obtain a perturbation expansion valid for (7.01). Although our
search for a lower order equation was successful, we have not been able
to write a small parameter expansion for it. The equation is

o =-G"§="td“4 of Vi -Viexi= ©VxVi, —_—

where r=V..

7.2 Multisoliton Solution

Introduce
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V= ax l“r = ¥x£-1 (7.06)

into (7.05). Then [ satisfies the equation

{ (3-30) G(~(3:-3y) ;, 3-3y) f=2f(=t)] =0, (7.07)

t=¢

where now o=c,(n,?),?+1".n. is the linear dispersion relation of (7.05).
We assert that, with use of this latter form of &, (7.04) solves (7.07).
Instead of .Qj:.'l?js,(visjsn) we now have Q; =.?;',(V1\<J'\<'n) » but the

a(l,j)'s, which characterize the functional form of the solution, remain
the same. To prove our assertion we substitute (7.04) into (7.07). Then

the coefficient of

B L . |
exp(1'7¢1+.--+3~’7£?+'7h+...+7j,) ’ {“'}&H{Jd $

x =
is
qtn 5 . .y . 2 La
o (1) Al ip, Ly ooy Ly ) QLEy e Bp, Mgy e, B9) HCQ™, P,
=0 (3, :
1T .11 ;
where {"’}fh’}; , HQP)=PcQT), é‘,-,') means summation

over all possible combinations &,,..., 8, of m indices out of the q indices
" " tm
du= de° T = fa+"'+??'m '?fm+x- '"_?P‘T

This coefficient must vanish. Taking out the common factor

]
and similarly for £ .

of(i.t oy bp) T Qliy, 4s) we see that what we want to prove is
.S
g Lot cehi
mi:.“ (2:4) Ol yueny B ) Gl o ls) HEO ™, P ™) 0.
Introduce « (B, B) = (4B ) (B{4ByPus ) . Then this last formula

is equivalent to

9 L.
o= L o Ry O((?_Lr'-?f,) m d(‘PQ‘r"Pes) H(Qa", ? ): C,(?J-*,...,‘P ) -

m=0 (3)) 1sT¢s<m 1:,:1;:1; 9




Now for any 1ss5q, ?;s' .- B

a function of ‘%:',(H ssq) , only. Since the singularities of Cq come

leaves Cq invariant. Thus Cq is
s
from the ﬂés=-’F§: » which only occur Tinearly, they must cancel out.
It follows that Cq is a polynomial of degree at most aqa-a.?.;.a . Fur-
thermore, Cq must be of even degree. Thus degree Co ¢ a.q g+ 2.

An alternative way of writing C4 is

‘R
('PJ*'. & "') ¢rZ:-‘-ts :.::wss?d(&r ‘f,-c;‘:s) H(LE' J"Lgf “) )
1sls9

Thus we see that Cq is symmetric. Let us now denote

2 q
= Z e‘,’F}' ) Qe=L6Q,, A (-.r.)_f.“7 x(x, &) .
~Then
a 3
C7( da 17 Jv)' el sg<5‘q°((£1'?j7/'¢$‘%s){AL(?ja)['a'?e*’TeﬂE =
1sLs9

- 3 3 .
CEE + 0] A (-2 1 R Qe s R, + 0BT ] -
Thus, since ,A\"_(c.):_;,n_e Ag(0) > We have

90, B P; ) = -4Ag0) Cqy (B - sy Bgad

2,1 14, <49

Moreover,

(?Ju ?J'x’?il)"‘ ) a.q'? 3?5‘;‘(% ? )d(? ’?h)} c‘l'*(‘%;""l’m) -

Because of these last two formulas and the symmetry of Cq it follows

that, if - i P is a
s CQ-;_C,_; {53; ds ° “1-<5<9 JS df)}

factor of Cq . The degree of this factor is aq">a.q".a.9+a. forg>1 .

Thus €q=0. Since C,=C,=0 , the proof follows by induction.
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7.3 Conservation Laws

We have found the following two conservation laws for (7.05):

(ar’ 2y 4 (er*frdy 43 =0, (7.08a)
(3cf_erid f 720 &+
+(La.r‘,§7't dy -6 rifndy ternn part.a), =o. (7.08b)

These conservation Taws match the ones found by Caudrey et al. (1976) for
(7.01) and give more reason to expect the existence of a whole class of
equations, similar to those found in Sections 2.8 and 5.5, supporting
multisoliton solutions of the form (7.04). The particular one corres-
ponding to a dispersioh function w(R) =R’ could be of interest, since it

would constitute a variant of the KdV equation.
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APPENDIX
In this appendix we prove several formulas and results quoted in
the main text of this thesis.

A.1 Some Results and Identities for Polynomials

Let v and w denote two finite dimensional vector spaces over a
field .
Lemma. Let ?._.‘P(i“...,:“i:“):\/:"___.\,\/‘ be a polynomial function such

that degreeP <m . Then

o = Z‘r,.(sgﬂ PO R, o, B By Y alet) PORy o o) 4
TE

+ S i % S, gz.r"; Tp) 4o +P(Zy ..., g‘n-a;O)]-F"'-l' P35, ) ’ (A.101)

where the summation is extended over the set Tn of all functions
T {x,...,'n} — {0,021 ,

and PP
5qT = ¢-2) 4

Proof: By linearity it is enough to consider the case w=F and P
i ; : 3 - ~
a monic monomial in some base {c(i}1 of vv. Then if %, - i_. 45 &
(152 sm) , we have
'K.l.“

? X, .. i‘n): Tr xXg:
(Ey,, Ky #0 )

where )‘(:(K_'_z) is an mxm matrix of natural numbers with ‘z'; Kej<m .

Then

Ky
~ Lo ‘
(3q@) E(ﬁ By oy TnBud w B (5q0T) ”(0,11- ) =
2 53 s 1) e s ] T % " :)

= P(E, .., By )(T(sge) TG ) =0.
T T k40
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To see this let a5, <...<Q5¢m be such that Key#0 for some s1¢j<m
if and only if t=1, for some 4¢r¢s , and let T, be the subset of T

of all a's such that O'Qrzi(strss). Then

M-S
L(gn) Mo = L (sgq) =2t
T Xej#0 g =1

since s<m .

(-&)f'(.“‘:s} =0 )

Lemma. Let{’P,,:V'T.l_.hf }:‘and {q,,:\l'f__.\«f]:‘ be two se-

quences of polynomial functions such that, for some agr< o,

(i) degree P, <r and degree Q, «r (V ign<oo),
(i.i) ?1\( i&)"'lgﬂ) = Eﬂo‘ (ixl"‘) ij-;) ij.‘-;)“-, E‘n) bl

~

~e ~ ~ ~ ~
=2 (z-*,..., Xqn) = Qq.y (=4 )-, xé-; ’ xJ‘“ 3% Zq) 9

(V1<m<oo, £54$M), whenever %i=3,

(iii) P = Q¢

Then

Pp=Qn , (Fagn<co). (A.102)

Proof: (ii) and (iii) imply P, =Q, for asmsr. From (ii) and
the preceding lemma we see that R, can be written in terms of ¥ ,..., %,

and . in terms of Q,,.., @4, (Yr<m<w). Thus (A.102) follows by

induction.

A.2 Expansions of Certain Determinants

Lemma. Let A:(a%) be an mxm matrix over a field F, and let
n
{N]. be indeterminates. Then
1

det( 8y 4301 = 1 4 & L(det Ay, ) B0y

m=3 G‘-

(A.201)
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where
(i) L  indicates summation over all possible combinations of m
i:dices 1¢li<... <qppsm out of {s,2,...,m}, and
(i) A!;"!m denotes the wmxm principal submatrix of A formed by

the intersection of the columns and rows &,,..., L, .

Lemma. LetZ,We F" be such that Zp4W;$ 0 (Vagslzjsm) , where

F is as before. Then if we define(V s5l¢jsm),

o, ={Za=ZNwWp-wy) _ and s, = ZetWe s,z 41
R\ [] q T { ] )
(2¢ +Wj)(Z} 4 wp) i W
we have
dets = T Ogi =0 ...
1skejgn 4 T AT (A.202)

Proof: Whenever Zp=Z; Or Wy _w N“"‘J‘“” the determinant
vanishes, since then the rows 2 andJ » or the columns & and J respec-

tively, are linearly dependent. Thus for some « € F

-
T (z,+\d') dets = dc.t{ il (7-7+W'r’} = T (Zf-z)(\'rp-w-)
1$l# jsm :;z aslejsm

since we are dealing with polynomials of the same degree m(m-1) with the
same zeros. Thus detS=«aq,.., . Evaluating at Z4wj=0 (Visjsm),

we see that «=41 , since then S=T and a.gi-_-x (Vaglgjsm ).

. . N .
Corollary. Let s be as in the preceding lemma and {1311 as in
(A.201). Then

det(Sg 4+ syN) =14 0 D ag .o, T, . (A.203)
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A.3 Conjugations and Positivity of Spectrum

Let H be a separable Hilbert space over the complex field € . A
conjugation over H is an antilinear, idempotent operator J such that
{Fu, vy =4Iviu) (JuveH), where (.,.) denotes the inner product on H .
For any bounded Tlinear operator A on H we define its conjugate AY

and transpose A operators by

AT TAT and A= TAT =A%) (AN,

where % denotes the hermitian adjoint operation.

If H is a space of square integrable functions with the usual
inner product, then the pointwise conjugation is a conjugation over H
in the sense just defined, and we denote it with a bar, i.e., W for
Juw and A for A . If H=€" with the standard scalar product, and
we consider the componentwise conjugation on H , then the transpose

takes its usual meaning.

Lemma. Let ® be a self-adjoint, nonnegative, bounded linear op-
erator on H . Then the spectrum of BB =-BB" is contained in the
nonnegative real numbers. Moreover, if B 1is invertible, then BB=

=BB' is similar to a self-adjoint, positive definite operator.
Proof: Let B=K* with K=K'>,o bounded. Then B%(K’)L
wi th LK‘):(K’)‘),O also bounded, and we have
(1-a887 ) o [T <R (K] o I e K1« KD KT 'K (KO,

and

LI «K(K’)‘K]’*g 4o XKN (T «BBY) K.

It follows that the spectrum of BB’ is the same, with the possible
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exception of the origin, as that of KXRH'K = (KKTHKKH* y 0.
-4 = N . TR -1 .
In fact (BBY) exists if and only if[(KKI)NKK')" ] exists, so that
the origin is in either both or none of the spectra.
.For the second statement we observe that if Bt exists, so does
i

K™* and we have BB = K(KKT)(KKI)" K™* with (KKK KH*>o0.
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II. THE SIMILARITY SOLUTION FOR THE KORTEWEG-
DE VRIES EQUATION AND THE RELATED PAINLEVE
TRANSCENDENT



-116-

1. Introduction

The Korteweg-de Vries (KdV) equation describes the
development and probagation of moderately small amplitude
shallow water waves (Korteweg and de Vries 1895), and many
other important phenomena where a small nonlin_earity is com-
bined with a -cubic dispersion relation. In various contexts its
similarity solutions become important. The equation can be

normalized to

u, + 6uux + w = 0, (1:1)

and the similarity solutions can be taken in the form

aGe,t) = (07 SEm),  n = x/GeP. (1.2)
Substitution of (1.2) into (1.1 ) gives the following ordinary dif-
ferential equation for f:
™ + 6ff! - 2f - nf' = 0. (1.3)
The solutions of primary interest decay exponentially as 1n — w.
In this limit, they approach solutions of the linearized equation
f"' - 2f - nff =0, (1.4)
and the derivative of the Airy function, Ai'(n), 1is the relevant
solution of this linearized version. Therefore, we take the
boundary condition
f ~ aAi'(n), N —= o0, (1.5}
where a 1is an amplitude parameter.

Preliminary numerical computations by Berezin and
Karpman (1964) show that when a 1is small enough f becomes
oscillatory as 1 — - «, but otherwise f may develop singular-
ities. We will show that there is a critical value a; of a

which separates the oscillatory from the singular solutions. For
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Ial = a,, f(n) ~ -g as n — - o. For lal < a;, f(n)-
becomes oscillatory as n — - . For a > a,;, f(n) develops
a singularity at a finife n. We have not made the analysis for
a < = ay; since the original interest (discussed next) was in
solutions with f — 0 as n — . Numerically we compute
a, =1 + o073,

Ablowitz and Newell (1973) studied the solution of (1.1)
when the initial data decay sufficiently rapidly .asA lx, — o

and no solitons are generated (Scott, Chu and McLaughlin 1973).

The similarity solution was proposed for the long time structure

1
in the region x/t3 = O(l). In this context the matching con-
EY
dition with the region (x/t3) >> 1 gives a = - By(k), where
Bo = Bo(k) 1is the reflection coefficient of the scattering prob-

lem associated with (l.1) (Gardner, Greene, Kruskal and Miura
1967). But for most reasonable initial conditions ¢ (0) = - 1,
and this corresponds to the critical value a = 1. Therefore
the matching with the oscillatory region (x/t%) << -1 o.f (E.1)
is not possible. A revised discussion of this question has been

presented recently by Ablowitz and Segur (1977);

2. Second Painleve€ Transcendent

In order to study (l.3) it is convenient to make the follow-
ing transformation due to G. B. Whitham:
| f=g -g . (2.1)
This transformation was suggested by the relationship between
the KdV equation and the Modified (MKdV) equation (Miura 1968).

Then g satisfies the equation

(g" - ng - 2g>)" - 2g(g" - ng - 2¢%)' =0 . (2.2)
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This equation can be integrated once to

i o0
(g" - ng - 2g%) = aexp { - 2 [ g(&)dE}
n

where « 1is an arbitrary constant. Since we are interested
only in solutions for which g decays exponentially as 7n — o,
a must be 0. Another integration then \gives
g" - ng - 2g3 = 0. (2.3)
This equation is the ordinary differential equation corresponding
to the similarity solution of the MKdAdV equation

- 2 = . .
A 2v V.t Yoo 0. (2 4)

The MKdAV equation with positive nonlinear term gives (2.3) with
the opposite sign for 2g3.

From (2.3) we see that g = g(n) 1is a Second Painleve
Transcendent (Ince 1956). This form simplifies the discussion
of the solution, and the relation to (1.1) and (2.4) stimulates re-
newed interest in the Painlevé equation. In particular g can
only have first order poles as singularities; the question of the
various singularities is a basic feature of Painlevé's classifi-
cation. Near such a singularity, at n = n, say, g(n) has

one or other of the expansions

1

g(m) = * {m

- %Q(n - M) - %}-(n -'no)z + ...}- (2.5)

It is interesting to observe that when the minus sign is chosen,

(2.1) will lead to a function f regular at n,. The plus sign

will produce a double pole in f at mn,. This last case is the

one that developes for a > a;, as we will see in what follows.
In terms of g, (1.5) can be written

g(n,a) ~ aAi(n), as n — . (2.6)
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We consider now the structure of this class of solutions, a.s
a varies from O to «w. As far as the equation for g
is concerned it is not necessary to consider a < 0, since
glm, - a) = - g(ma).

First the equation (2.3) is written

g" = (n + 2g2)g. (2.7)
We see then that we can divide the (n,g) plane into four
regions; (I) g >0, =0+ 2g2 >0, (II) g>0, n+ 2g%2 <0,
(IN) g <0, n+2g2 <0, and (IV) g <0, n+ 2g%2 > 0.
Any solution g = g(n) of (2.7) will be strictly concave in re-
gions (I) and (III), and strictly convex in the other two regions.
Going back to (2.6) we see that as 1n decreases from o),
g(n,a) > 0 increases, Whilé g'(n,a) < 0 decreases and we
have thg following cases (see Fig. 1).

(i)A If a 1is large enough g = g(n,a) will completely
avoid the parabola n + 2g? = 0, remaining always in region
(I). In fact g = g(n,a) will develop a singularity at a finite
n = s(a): a simple pole with residue equal to one. Solutions
in this range are "nested", i.e. g(n,a') > g(n,a") and
g'(n,a'") < g'(n,a") if a' > a". Moreover as a — w, s(a) — o,
strictly monotonically.

(ii) Call the infimum of the a's for which (i) is true,
a,. Then everything said in (i) is valid for g = g(n,a;); ex-
cept for the existence of a point of tangency with the parabola
n+ 2g2 =0, at n = Ny say. As a — ap, s(a) decrea-.ses
monotonically to the finite limit s(a;).

(iii) Now let a be such that 0 < a < a,. In this case

as 1 moves from o to the left, there is going to be a point
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n = nc(a) at which g = g(n,a) crosses the parabola n + 2g% = 0,
going from region I into region II. Then the solution becomes con-
vex. However, if a 1is close enough to a,, the crossing of the
parabola will be almost tangential and the solution will not separate
much from the parabola as n continues to decrease. Thus the
factor n + 2g? will be small, -and so will the curvature of g = gln,a),
in fact it will be less than the curvature of n + 2g2 = 0. A second cross-
ing at some n = ne(a) then occurs, back to regionI. From then on

g = g(n,a) remains in region I and, as in cases (i) and (ii), develops
a singularity. If a; is the infimum of the a's for which all of
this happens, then for a; < a < a,, we have ne(a) < Ny < nc(a);

Ng» S and n, are monotonic in a; when a — a,, Ng =™ Np»

n, — Tl; and s — s(az)-; when a-*a':, Ng =™ = and s — - o
strictly monotonically.

(iv) For a =a;, g = g(n,a) crosses the parabola at only
one point, n = nc(al), it remains in region II for all n < nc(al),
and asymptotes to n + 2g2 = 0 from below as 1n — - o« Solu-
tions in the ré.hge a =2 a; are nested. This extends the result in (i).

(v) For 0 < a < a;, the convexity is large enough to
make g'(n,2) = 0 at a point n = n;(a) < nc(a). Then g = g(n, a)
will turn down, créss the line g.= 0, enter region III and have a
minimum. Then it turns back, crosses g = 0 again, has a max-
imum and so on. In other words g = g(n,a) becomes oscillatory.
As 7§ — - o the amplitude and wavelength of the oscillations de-
crease, due to the fact that n + 2g2 — - o« Solutions in this

range look very much like Airy functions, shifted to the left, the

shift being larger the closer a 1is to a,. As a — a;, all the
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zeros, maxima and minima of g = g(n,a) move towards - 0.
Also, the size of the oscillations increases and, in particuiar,
the first "hump" sticks very close to the parabola n + 2g2% = 0
for an ever increasing range of n's. As a — 0, g(n,a)
approaches aAi(n).

All these statements can be proved quite rigorously, one
of the icey elements in the proof being the analyticity of g(n,a)
in both its arguments in the range - o < a < o, n > s(a).

{We define s(a) = - o for - a; < a < 2;).

3. Asymptotic Expansions

The comnplete asymptotic expansion as 71 — « is
c0
Zn+l :
gn,a) ~ ), 2"y (), (3.1)
n=0 '
where ¢y(n) = Ai(n) and x//n(n) are the unique solutions of
pro- =2 ), wwwk , (@21,
i+j+k~n 1
v (m = of(Ai(m)) as 1N — . (3.2)
The d/n's can be written explicitly in terms of multiple inte-

grals. They have asymptotic, non-convergent expansions of the

form,
. 0
2 3/22n+1 -+ 2. 3/2,-
po () ~ (== exp ( - £n°/%) IR YN /273, (3.3)
2N J:n -
as 1N — oo(n = 0,1,2 ...).
The ajn's, j=2 n= 0 are constants. A few of them are,
a. = (- DIPEj+ 2/549TG + 2I0G + ) =
jo 1% Z

(- @+ DEj+ 3) ... (6] - /216351,

%
=

(3.4)
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@ = (1/6)%n = 0), | (3.5)
@1 - (1/6)1‘(%65;11 . .712) - 11“25n,o , (n=0). (3.6)

The asymptotic series (3.3) are all alternating. From (3.3)

and (3.5) we see that,

1 =
v,(n) ~ n"*{zi/_ exp ( - §n3/2)} 2ol 4n® /% P > o), (3.7)
T 3

Thus the series (3.1) is not only asymptotic, but convergent,
provided that a is small enough or n large enough. More

precisely,

2

a 4 3/2
———57—eXP(--n ) << L.
167n & =

Moreover, we can write

g(n,a) = aAi(n){l + e(n,a)},

2 4 3/2
2 gl %y,

e(n,a)«-m exp ( - 3 as n — . (3.8)

We compute several values of €, to get an idea of their sizes:

€(4,a) £ 5.8 X 10"%a2, €(5,a) ¥ 6.0 X 1071052,

€(6,a) T 4.2 X 10'12a2, e(10;a) & 3.1 X 10‘22a2. {3.9)
It is seen that g(n,a) = aAi(n) 1is a very good approximation,
even for moderately sized n. Similarly, g'(n,a) = aAi‘(n) is
also a good approximation. |

In the case |a| < a,, the asymptotic expansion for

n — - o is

c0
l- -
g(n,a) ~ (- n) *{ Zocbn(r) exp i(2n + 1)6} + (c.c.), Nn— -, |a| <ap,
n=

(3.10)
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where
o = %( - n)3/2 - Zdzin{%( = n)3/2}, r = %( - n)-3/2
and d

is a constant.

The ¢n's have expansions of the form,
©
d’nNEﬁnrJ’ as r— 0, (n
j=n

=0,12,...) (3.11)
and are the solutions of certain singular equations, with appro-
priate boundary conditions.

The only free parameter in (3.10) -
(3.11) is  Bygs

and d is related to it by
d = |Boo]- (3.12)
We do not know the connection formula

Boo= Boo(2), Ial
In 2 recent paper, Ablowitz and Segur (1977) propose that
a2 = - =

2
47r,2n(1 - a“®).
To first order (3.10) gives,

b 3
g(n,2) ~ 2d( - M* cos {5( - /% - z&mZ( - w3 + 6.},

, (3.13)
where 06, = arg Bgq.

For the critical solution a = a; which asymptotesto the
parabola, it is readily checked that the asymptotic expansion is

o0
1
= -3
g(mar) ~ (- P2 ) r 2m",  as 1 — o, (3.14)
0
where ry =1, r, =1, r, = - zzé, ry = 10257, ete,
40

Numerical Computations

In this section we describe the numerical computations
for the values of

a; and a,. Equation (2.7) was integrated
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with the initial conditions g(10) = aAi(10), g'(10) = aAi'(10),
for various values of a. According to (3.8) and (3.9) these
initial conditions are accurate up to 20 or more significant
digits for a = O(l). We computed Ai and Ai' using

the expansions (Abramowitz and Stegun 1965)

0
M) ~ 2=07% exp (- 2BV - D5 EnAYE, n~ @ (4.1)
1]

2N

3/2 2 3/2 k

Ait(n) ~ - )E(-l)d( n—ow;  (4.2)

: n‘* exp (‘ - E
T
up to and including the fifteenth term. Here we have

o =1, ¢, = T3k + 3)/54"kIT(k + 5) , (k=123,...)

and 6
_ k +1 N
dk S - %T-_—i-ck Py (k —0,_1, 2,...). (4.3)
The error committed is of the order of the first deleted term.
s ~ 6 ~ 6
Since F16 = 3.15 X 10 and (?16 = - 3.21 X107, and
e 5103371 2 2 06 x 10715, - a4, E10%/%)726 ¥ 2.1 x 1075,

(4.4)

we see that we had at least fourteen significant digits in our
initial conditions.

To integrate (2.7) we used a fourth order Runge-Kutta
scheme (Abramdwitz and Stegun 1965) on an IBM 370/155 computer,
with double-precision. The step size was set at h = 0.001, h = 0.002
and h = 0,004. The Ava.lue h = 0.001 1is about the optimum for a

-15

truncation error of O(10 )

A check on the integration procedure was made at n = 6.
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Thefe we comparedthe values g and g' resulting from the
numerical integration with aAi(6) and aAi'(6), which by
(3.8), (3.9) coincide with the true solution in up to eleven
digits. These comparison values of aAi(6) and aAi'(6)
were computed using (4.1) and (4.2) up to and including the

fifteenth term. Since

10

3
2 ,3/2 4

-16
67 T F

2,3/2.-16 10

4.4 X 10° 1656777 Faax107T,  (4.5)

nine significant digits were obtained. The relative discrepancies

Ay = |g(6) - aAi(6)|/[g6)], A, = [g'(6) - aAil(6)]/|g'(6)]
turnedovtto be A; T 2 X 10‘10. Ay 2 3 X 10‘10, which fit
with (4.5) perfectly. Changes in the step size did r;ot affect
this last result.

9

For values of a < 1 - 10~ the solutions became

oscillatory as 7n — - ®», as shown in figures 1, 3 and 4.

For a > 1+ 10-9

the solutions had unbounded growth as

n — - o as in Fig. 1. This was independent of the particular

value chosen for h. The solution for a = ]l was consistently
oscillatory for the Runge-Kutta scheme, but when other integration
schemes, of the predictor corrector type, were used its behaviour
was erratic. This was probably due to the nature of the truncation
error for the Runge-Kutta scheme, which in the particular

equation we were solving was of constant sign and tended to make

the computed solution consistently smaller. For a = 1.02 we
found that the solution completely avoided the parabola n + 2g% = 0,

and for a < 1.0175 it did not. From these results we conclude

that
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%, 1.0175 < a, < 1.02. (4.6)

a; = 1+ O(0°

At the same time as these calculations were being made,
J.M. Greene was also computing the critical curve, and he also
predicts a; = 1.

Another check of the result a; = 1 was made using the
boundary value probleﬁl solver PASVAR (Lentini and Pereyra
1977). We 'solved equation (2.7) in the interval T < n < 10 .
with the boundary conditions |

g(10)Ai*(10) = g'(10)Ai(l0) = O, g(T) given,

where the value of g at 7n = T was computed using (3.14). T

was taken to be - 5.5, - 6.0 and - 6.5. The solution was
computed to a relative error of O(10_1O) for T = - 5.5,
0107 %) for T =- 6.0 and 010 ) for T = - 6.5. To

within these errors then the value of a, was
a; = g(10)/Ai(10) = g'(10)/Ai'(10).

In all cases we obtained a; = 1, to all significant digits.
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% e 4.0
a.%+'7=0
5
Fig. 1. Solutions of (2.6)-(2.7) for a=1.1, a=1.0+10"°%, a=.95 and

a=.5. ’

- 2.0
=
1.0 B

A L L i . _a”o 3

-10.7

a0

Fig. 2. Solution of (2.6)-(2.7) for a = 1.0. Other numerical schemes
or different step sizes gave nonoscillatory solutions.
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F2.0

]

1.0-10

[

-10.0

. -1.0

Q,%z.i.f? =0

Fig. 3. Solution of (2.6)-(2.7) for a = 1.0-107% and comparison
with aAi

N

.5

-10.0 . a.0

a%l.*- 17=O

Fig. 4. Comparison of the solution of (2.6)-(2.7) for a = .5 with
aAi.
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