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STUDIES 1IN VORTEX MOTION
ABSTRACT e

This thesis covers four differemnt precblems in the
understanding of vortex sheets, and these are presented in
four chapters,

In Chapter 1, free sireamline theory is used to deter-
mine the steady solutions of an array of identical, hollow
or stagnant core vortices in an inviscid, incompressible
fluid. Assuming the array is symmetric to rotation through
T radians about an axis through any vortex centre, there
are two solutions or no solutions depending on whether A"
is less than or greater than 033 where R is the area of
the vortex and L is the separation distance, Stability
agalysis shows that the more deformed shape is unstable to
infinitesimal symmetric disturbances which leave the centres
of the vortices undisplaced,

Chapter 2 is concerned with the roll-up of vortex
sheets in homogeneous fluid., The flow over conventional and
ring wings is used to test the method of Fink and Soh (1974%).
Despite modifications which improve the accuracy of the
method, unphysical results occur. A possible explanation
for this is that small scales are important and an alternate
method based on "Cloud~-in-Cell" techniques is introduced.

The results show small scale growth and amalgamation into

larger structures,
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The motion of a buoyant pair of line vortices of

opposite circulation is considered in Chapter 3, The density
difference between the fluid carried by the vortices and the
fluid outside is considered small, so that the Boussinesq
approximation may be used., A macroscopic model is developed
which shows the formation of a detrainment filament and this
is included as a modification to the model, The results
agree well with the numerical solution as developed by Hill
(1975L) and show that after an initial slowdown, the vortices
begin to accelerate downwards,

Chapter 4 reproduces completely a paper that has
already been published (Baker, Barker, Bofah and Saffman
(1974)) on the effect of "vortex wandering" on the measure-

ment of velocity profiles of the trailing vortices behind a

Wing .
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Chapter 1
The Structure and Stability

of a Hollow Array of Vortices

I. INTRODUCTION

The work that is presented in this chapter arose
mainly from an attempt by Moore and Saffman (1975) to under-
stand the organised vortex structures in a turbulent mixing
layer. It has been explicitly pointed out by Winant and
Brownand (1974) and Brown and Roshko (1974) that these
structures are a result of a continual process of vortex
amalgamation., Moore and Saffman (1975) noted that the
straining fields induced by a regular array of vortices of
finite cross-section become large as the spacing between
the vortices decreases, and could provide the mechanisms by
which vortices disintegrate and amalgamate, In their work,
Moore and Saffman (1975) rely heavily on an exact solution
for a single vortex, with constant vorticity in its core,
in a uniform straining field (Moore and Saffman (1971)),
and extrapolate to the case of a regular array of uniform

vortices.

This chapter analyses the case of a regular array of
hollow or stagnant core vortices in perfect fluid where the
vorticity is concentrated on the surface of the vortices.
The steady flow field can be found exactly by means of free

streamline theory. All the vortices are identical and lie
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evenly spaced along a straight line., With the array charac~
terised by the numbef ﬂW/L where R is the area of a vortex
and L the distance between vortices, there are two steady
solutions for a given Fia/L £ 032 . In the limit H%AJPO’
one solution describes an array of circular vortices with
their separation distance much greater than their radius,
while the other approaches the limit of a vortex sheet,

This non-uniqueness makes the stability of the solutions
important, It is shown that the more deformed shape is
unstable to two-dimensional, periodic, symmetric disturbances
which leave the centres undisplaced,

Thus this analysis provides direct verification of
the idea that there is a minimum separation distance for an
array to exist, Further, the case of a single, hollow or
stagnant core vortex in a straining field has been calcu-
lated (Hill (1975.), and so the validity of an extrapolation
from the results for a single vortex to predictions for
arrays can be explored analytically.

The details of this work are presented in four
gections and an appendix, Assuming only reflectional sym-
metry, it is shown in Sectiomn II that there must in fact be
fore and aft symmetry and that the vortices must be convex,
The two steady solutions are obtained in Section 1II while
their stability to two-dimensional, periodic, symmetrical
disturbances is examined in Section IV, Further work is

needed to study the more general stability associated with
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displaced centres, This would in fact be determining
whether the Lamb instability for an array of point vortices
disappears if the cores have finite cross-section, Hill's
(19750) work is summarised for completeness in Section V,
Also in this section is the discussion pertaining to the
relationship between the array and the single vortex in a
straining field., The proof that the symmetry assumed by
Hill (1975c) is in fact required in order for a steady solu-
tion to exist is presented in the appendix at the end of
this chapter,

The problem was studied jointly with J, S, Sheffield
and the essence of the chapter has been published by Baker,
Sheffield and Saffman (1976). The author's particular
contribution appears in Section II and a large part of
Section IV, especially the determination of the difference
equation governing the Fourier coefficients of the infinites-

imal disturbances in the stability analysis, and the appendix,



I, PROOF OF FORL AND APFT SYMMETRY

When approaching the problem of determining a
solution for the array of hollow vortices, a natural question
arises about the symmetry of the flow field, It will be
shown in this section that the steady solutions which are
symmetric to rotations through T radians about a vortex
centre are also symmetric about the y and x axes (see Figure
i,1a for the definition of coordinate system), The vortices
are considered to have the centres equally spaced along the
x-axis, The flow is steady and so for hollow or stagnant
cores, the boundary condition of constant pressure on the
vortex surface means that the velocity has a constant magni-
tude, 9o s O the vortex surface, The circulation, T , of

each vortex is related to 9o by
T = Pq, (1.1)

where P is the perimeter., Al large distances the array looks

like a vortex sheet of strength 2U_, where

u - I (1.2)

i/

L
Yo <
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Introducing the complex variable z::x+L3 s the complex

potential w= ¢+l , the complex velocity

-8

-0 = dir = c‘e, (1.4)
T
and the hodograph variable
= | o] 410 = T+ 0
=ty Qo] +1B & Ts b (1.5)

a solution is found in terms of a relationship between V1
and w .

The potential plane is as shown in Figure 1.1ib, The
boundary of the vortex must be a streamline and is chosen to
be Y=o . There will be constant potential curves of
unknown shape passing through the stagnation points B, &,
Knowing the direction of the velocity along the potential
curves establishes the variation of %/ . However, the period-
icty of the array requires the wvelocity to be the same on
corresponding points on BF, BA, Along BC, D the magnitude
of the velocity must be the same at corresponding points.

Sﬁ)n/a must satisfy Laplace's equation and this is
also true foxr their derivatives. Since the potential and
stream function provide a conformal transform of the physical
plane, the velocity must satisfy Laplace's equation in the

potential plane. In particular



vkew (1.6)

inside ABCDEF, and T satisfies the following boundary

conditions
T=0 a\onﬂ CD (1.7)
ha evt T 1
i S Pperiod _% ¢> (1.8)
L l°‘3(%\s)= —‘ogR as Y- - o0 (1.9)

*]

Y2
At the stagnation points, B,E , %\:_J N(u-.wo) where
z
W, is the potential there, i.e. w°=rg;+uh). Subtracting
this singular behaviour from T , ensures that the remainder
is an amalytic function in ABCDEF and can be determined by

the technique of separation of variables, Thus consider

T = Re {~ \ocj AR - .;.‘03((.05 2_'__\;11'_&’3 +15inh 2_T_%xk°) -u}i\oc}(cos ljp‘ly

— Lswh Q_T\"_%) + '{lﬁau} + H(qS,q») (1.10)
T T

where H satisfies Laplace's equation, the conditions (1.7),

(1.8) and is hounded on the strip. The above form meets the

requirements of the solution since, in the first place, it
-
2

is symmetric in ¢ with period , and secondly its
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behaviour at the stagnation point, B, is (let €= w-T -y, )
4
N : T A
C ~ Rgi_L\o os AM(T 4 v +E S an
§log(cos AL+ ohr®) 41 swh M)
~ 1|
i & {1.,11)
Finally as Y — - ,

T ~ Re [_\03,2&) - log (cosh My - gg}

L+Tl'l,lv/T'>

~ -logR + Of(e (1.12)

and so (1.9) is satisfied.

The solution for H is now straightforward;

= T (/T :
H(Q"_,‘-P) = Z e_“ ¥ (F}nS\nL_&_“_f‘_lﬂséi-Bncosu@) (1.13)

n=0

The remaining condition, (1,7), gives
oo
oy 3 - yloq (P s ) + 3 (8 s ot
a —r' -rl n=o ——:r‘—
+ Bn oS Ll.Tvaé)) = O (1.1%)
P

1t is immediately obvious that RA,=o ,¥n , and the

B“ are all uniquely determined, In particular, Eg = O .

This gives



Ty
‘cﬂRR b %.l( loa(cosz ;}i_‘l'gb-;- Sh)}l-.z ?.lTl:_L"o)dqs = O (1.15)
=T/

Substituting O= 4T¢  and defining b= |+ aswh 2, , (1.15)
T T
becomes

ar

l092R - L log3 L log ( b+ cose) db = © (1.16)
=T

or

|03QR - ;ll_loﬁl 4 ?Ii\oa[bﬁ- (b—l—')/l] = O (1.17)

Pl
Finally,
2 |
RE[ b+ (@-07] = 1 (1.18)
Since b2 | , this impHes R &1 , Since T—\h=o)Vn , the

streamlines must be even in qS s i.e, symmetry about the
y-axis, Symmetry about the x-axis follows from reflectional
symmetry, Although the solution is now known it is in a form
(fourier series) which is difficult to analyse., The mxt

section provides a solution in a more understandable form,
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ITI, OETERMINATION OF SOLUTIONS

Using the established symmetry, one is now able to
draw the physical plane as in Figure 1.2a., Using the defi-
nitions w= ¢+ and (1.,4-5) as before, the potential and
hodograph planes can be drawn as shown in lFigures 1,2b and
c., O is defined by © = arctan % and -MeO®eTW , 1t
is not immediately obvious that the curvature of the boundary
at D should be convex but recall that R4 means U £ 9,
and that uw cannot have a maximum along DE except at D or

(as a result of the well-known maximum modulus theorems
for analytic functions), Thus T >o .

The Schwarz-Christoffel transformation

W= Tieg[ (g )" - (g-)"] - T log2 (1.19)

maps the interior ABCDE of the potential plane onto the
upper half plane of the §=§+(% plane, The definition,
|%erusz “HL B4 , is the branch used through-
out this section and the principal branch is used for the
log function, It is easy to show (1,19) is the mapping
required by considering £ = € >\, then (§+I)h)(§-(f&

are both real and w is purely imaginary. At E = | ,‘#=<3

and,since

C_i_‘:.g = —J’ (ﬁ+l) (E’-l & (1.20)
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then %%fL o . This means CA is mapped onto § = § ,
£z with C at § =1 , A at €=0 , The point B will
lie along this line, at €= b say.

For -l ¢ % & | s (1.19) gives W = —;%6’ , where
tan 8 = - (1-£)*/(1+ ¢y ana -T+.840 . Thus the line
CD is mapped onto —-!&£ €41 with D at € = -| .

For € ¢ -| s, (1.19) becomes W= :Z‘ +%1T\03 [(‘“3371
—Cg"ﬁq—gncgi. At €:-1, W=T as required and since 2% > ©

AW K 3¢
as §-p-o , Y5 -0 . Thus DE is mapped onto ¥ ¢ -| .,

The fact that the interior goes 1into the upper half plane
is an obvious result of having evaluated the multivalued
function with a small positive imaginary part for ‘g when
necessarj.

Now V. can be mapped onto the same region of the

plane by the following transformation,

= ~log [ Lo+ Ft- {(ordg-03"]

+ i\oﬁ(ff’b) + -&‘GCJR (1021)

. Yo
d _ 1 (oD (- 2
Y3 2 (2 oy (B iy (8-0" e

This mapping is checked by considering g = € > , then the
i \ |/ y

square roots are real but (bq)h(§+i)1£-(bff)1(gdgl and the

argument of the log function must be evaluated correctly

i.e. by giving a small positive imaginary component to f .
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! 2 Q. e, 8,
fhen (b—‘)/L(g+‘)/ " Q./z B (bﬁ-l)/ (Sul)}‘zc ok —_

O
small negative imaginary part, where )f,’+ [ = 1?“] e and
Ru)
Pay = JE-d]e

N io‘j[(b“)ﬁ(g“dfz- (bq)‘/l(gu)‘/z]

Fplg(§-9) + Lloga (1.23)

As §-p 0 , (1.23) becomes
W= T - \otj[(lo“)'/?‘.- (b—l)/"] + li.\ot'jl (1.24)

This limit corresponds to the point B in theﬁ plane and

so for ¥/ to have the correct value at 0 s One requires
- - Y2 e
\oij . \oa[(bﬁ—\) "(lo-l) + ';:lOCJ;\ (1.25)
or after some trivial algebra,
¥ "
b () = R® , b= (1eRY)/2RT (1.26)

This equation is essentially relating the position of the
stagnant point to R , From (1,22) one obtains for % =¢ >b,
9T 2« 0 so that as § decreases from o0 at A , T increases
az?dg reaches =0 at B ,

For the case where 5=% , 14¢€ <b , one finds
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('0-0%(%’“3% > (b+)*(¢-)*  ana thus
0 = —‘03[(b—*)yz(§'+‘)y1~ (o D*(g- 0]
+ Llog(b-8) + Llog a (1.27)

The point (C , as determined by ¢ l+, is mapped to V] = ;Iri
as required, Now %ﬁ > O and so as £ o b , T
increases to ™ , :

The case -14§41 gives VI = JT-LB where Ton® = -(bH)'LL
(v- g) /('o '5/1(%?)/1 and O goes from 0 to -T" as € goes from
-1 to 1, Thus CD is mapped as required.

For €<¢-1 , the expression L(Ip-\ y’“(.g-oyl L(Ioi-l)%ﬁ-giiis

a negative imaginary number and so
. Yo Ve 2 ‘o
& W = \03[(b+\) (\- g) = (b_\) (_*g-\) ]

t Llog(b-5) + Llegd (1.28)

Clearly as “3 - -1 s L > T  and as %—D — 80 ’
L - - logR by (1.25), and so the mapping achieves the
required result,

There is thus a relationship between W and { through

the common f, plane, From (1.4) and (1.5),

J = \03(%/@:) ; dw - gqe (1.29)
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The physical plane follows from integrating

(_:\j:c_ﬁ_w=e%cm
A2 dw a6 T3 (1.30)

Substituting (1.20) and (1,21) into (1.30) leads directly to

C_‘_'?:' = ""‘RL (4 'o{ A +1\
d% ay,_—“- (4 )'/1(g+‘)/ [(b ) (‘; )/Z

Vi 2 %
- ey (50" ] (1.31)
However, it is the shape of the vortex that is most inter-
esting and so consider ?-.- € o -1=€c | , then
dz . _ iR (e-)* (149" r )i g) (1.32)
K PTG (- e D"

or equivalently with Z(§) = x(¢) + LY(8)

ax . & ()" Y _ R (-0 1
A€ 3/:_—[1“ (o - S)h(l*‘g)h _3_ = 23/11['(10—2)‘/"-(._?)'/1 (1.33)

The transformation, § = - cos A2, allows direct integration,
With X= 0 at A =0 , Y=0 at A= T , corresponding to

the centre of the vortex being chosen at the origin,

X =L (13R*) sin” (3_3_%.‘_")2‘) : Y = ‘—(l RY) sinh™ (2Rcod)  (1.34)
Faly 12 d ° b= R 2
where ©O 2 A £ AW  degeribes the complete perimeter, As
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R - o,

X —» LR smA 5 Vo LR ces A (1.35)
T i |

which is a parametric representation for a circle. As

R 1,
X— LA 1 Yo (1.36)
il

and the shape has the appearance of a slit, From (1.18),
one knows O:R <% and so the two cases are limiting forms,
The perimeter P is 2RL and is a measure of the
deformation of the shape, The area has to be found numer-
ically. The results are shown as a curve, P/Hyz versus
HV‘/L' in Figure 1,3, From this curve it is seen that
for a given 1“"PZ/L there are two or no solutions depending on
whetherx ﬁ'h'/L is less than or greater than O,3% respectively.
An interesting problem presents itself in determining what
happens to the array when R7*/L > ©0.3% , The stability of
these solutions is important and is considered in detail in

the next section.
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IV, STABILITY OF THE SOLUTIONS

The prime purpose of this section is to examine the
stability of the hollow vortex to infinitesimal disturbances
of its boundary which have reflectionalrsymmetry. Displace-
ments of the vortex cemntres which could result in an instability
of the array of the type comsidered by Lamb (1932, § 156)
for point values are not considered and is left as a subject
for further study. To this end, one needs to comnsider only
the region as shown in Figure 1,1a,

Only the hollow core vortex is being considered for
the sake of simplicity, since the requirement of constant
pressure at the vortex surfaces enables a simple treatment
of the dymamic boundary condition. The stagnant core vortex
would have to be considered separately, because of core
motion, and is not studied here,

The easiest plane in which to do the analysis is the
undisturbed potential plane (56,51)). If one defines the total

potential as ¢ 4 ¥ , then

¥ ¥d _ o (1.37)
Fer T For

and

¢~ o | sy -w (1.38)
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The perturbed surface is defined by Y= G(bt) .
Before treating the kinematic and dynamic boundary
conditions, one needs to know the scale factors for the

curvilinear coordinate system (¢ ,{ ). Since

di - nwr 2: 11- &
&—:) - \;Lu.é-il__ 3 C\ U L b (1039)
S @ (dy) - éi(d¢ol " %ﬁﬁdq&1 (1.40)

and q is a function of ¢>,¢ as determined by the unper-
turbed solution,
The kinematic condition, with W having components

(u,v) in the potential plane, is

(%+Q-V)(¢_s(¢¢>)=o & b= (1.%41)

This becomes (see Morse and Feshback (1953, Section 1.3)

for a treatment of curvilinear coordinates)

-—?_3;— b__% ‘U’:O t :S 1.,2
=2 qLLB¢ + q o 4’ ( “ )

(1.42) can be linearised for infinitesimal disturbances by

writing

v T+ q28 (1.43)
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where the overbar refers to undisturbed velocity components
in the potential plane, To first order in perturbed quantities,

(1.42) becomes

2% 235 - glod 2T & b=
2 or 9 3 9 = %ﬁs ¢=0o (1.44)

The equation of continuity,

- 2
VT = l(\_*. + 2 y.] =
C'[_a;é 3) aqa(q) = (1.45)
evaluated at Y=o to lowest order,
L L2330 - U3 =0 (1.46)
9o 2¢ s 2 G 2
determines Y . Of course, W=q, , a constant, and
-]
T =0 and so (1.46) is
3 . o (1.47)
v
Thus (1.44) becomes
e 4+ 922% = 9o 2% (1.48)
>t v ° Sy
Choosing

The dynamic condition is handled similarly.

the pressure to be P = 0 inside the core gives
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L(Wls ) + 28 - © &£ Y=§ (1.49)
* >t

Expanding to include only first terms in perturbed quantities,

[VOR-I*N + 282 - 0o & ¢=o (1.50)
P 3?

Considering VYx& =0 at Y=o , determines 3% , To lowest

S
order,
d (T = 2{(T) = O (1.51)
at,b( T:“) ac;b( q)
or
Loa - L 29
e 29 9, o (£:52)

From the exact solution as found in the previous section
(11.20); (1.22))

Al = -3 +ud !oci(&) (1.573)
Aw o 24 Ao
- all df
4% dw
S (1.5%)
T (8-0)

Therefore at the boundary, ¥-§ ,~-1 4§41, and
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(1.55)

&
I
g1
%
N

|
o >

From (1.19), &= %qvc‘\'m[(pg)v‘/(ug)"‘], or %= (0‘5'-%2_95 along
=0 o Thus (1.50) becomes

3
ot

-G

{

%
= AT (P-0" 8 dtpao  (1.56)
T - s UTd/T)

2z
+ Y

o
‘e

The equation (1.37) and the conditioms (1.38), (1.48) and
(1.,56) form the system to be solved, but before doing this
some other conditions can be checked. Mass conservation

requires to first order

T/2
{ sa¢ = o (1.57)
a
The circulation |' remains constant. Since
T/
= S
T = lj (u+vég$q) écj:;’ : (1.58)
expanding to first order gives
T
f 2 (B)dp =0 ok yeo (1.59)
ap\ 9

This is satisfied after recalling (1.51).
To proceed with the analysis, @ and © are expressed

in Fourier series
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oD

kinly
T -7 e sw (nk + wt) (1.60)
and
B = EE; Q. cos(nk4>+ &¢) (1.61)
b- (.o%kql) Vi = B

where K= %g . The representation of © , (1.61), satisfies
(1.57)s Now (1.37), (1.38) are satisfied and so (1.60) and
(1.61) are substituted into (1.48) and (1.56) and after

some algebra, one obtains

o, + {\n\ swhp _ &,mshﬁ}un—\-qq_‘f- o (1.62)

(D"+ n)l

for - £nse0 , The parameter  1is related to the
frequency ¢ by & = 9}__'_1 » where b= coshB, 3= -log R® . This
difference equatiogﬂgkoves too difficult to solve exactly
and a numerical approach is adopted to solve it. Since
dn, 4> O as n-proo , there will be only certain values for
o for which a solution is possible, If any of these values
for & are complex, the motion is unstable,

There are limiting cases where the solution can be
determined exactly. As R-po, or g,b —» o , the undisturbed

array becomes a single hollow vortex which will be circular,

This limiting case has a known stability, i.e.
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F = -nt (hﬂ)%' (1.63)

It is possible to find a perturbation solution for large b.

Equation (1.62) becomes

add f hd e g Inl
(S )b( ¥ da, ) o+ {(v+n)1

- a(|+ iGL+.-- )§t3n<= O (1.64)

dyg = QN + Q_lpl + _Cl:;‘ VI (1065)
o
Gn= @ @, fer ot (1.66)
o Wt
B— =3 G—D + _b_:\ + D"L + - (1067)
R

The perturbation is around the n = N mode for the circular
hollow vortex, thus &, = -N=% UN\/zyi as in (1.63), The

first order terms in (1.64) give

R, + ( N 2.)(;\' = 0 o a=n-1 (1.68)
(&, + N-1)F
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(U'N - 2 ) ig h:l\) QN =0 for n=N (1.69)
+
+ iN-H = 1) C(,l = O o =

This analysis requires N $o0, i,e, D=0 will be considered
separately, From (1.,69) one must have &, =0 and as usual
the next order determines &, . For all other n, a = O,

The mnext order becomes

o
IN| . 3 ql = QS' ‘Nl ﬂ LA
((5'0 b ) ™ (ED+H)3 )
i \
¥ CLNH * Ay, = © ‘S:ov— n= N (1.71)

Substituting (1.68), (1. ) into (1.71) gives

&\N\G'l = = (_tS'Q-\- N-H)l - (B’ + N- Q (1.72)
(50 + W)° |N+II-R(%+H+‘) 1 N-1] - (5, +N- DR

So provided the asymptotic expansion is valid, a
solution has been found for large b, i.c. small R, which
shows stable solutions,

The other important limit, §=-o , establishes the
possibility of unstable solutions for certain /3 or R.

The equation (1.,62) becomes for n>0



Qpe, + [5;n\r1[3 _ D.CQ-',h[?,}Qn ¥ Ay = O (1.75)
9]

For large n, this has the general solution (as will be

shown later, (1.80))

v =3
a, ~ Cn%e ™ & C P (1.7%)

1,
n’/z

The generating function, g(%\==25<lnih satisfies

n=9°0

2(1-2cohpz v 2 )dG 4 (v sihpz- )G

= - Qy + a, 5\v:\h P”Z, (1075)
This has solution
B
g(-%) = __B.E’... + 2a Sm"\ﬁ» Z ENN
(e 'i:) (elg -‘E)BIZ( *’3,. %Yz '53 i.(e- “t)
%,
r (e P2 (1.76)
) j % 3/7.(e B 2,)

where C is a constant to be determined. For large n, g(%)
has terms like C, nﬁemlznz"+c‘ gf;:a". So requiring G(z) to
be analytic at ges " snsires thgt C,=0 , i.e. there is

no divergent component to the series. Thus, C-=-ab3i“h}3-

103 (eﬁ~e_ﬁ), and by expanding (1.76),
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% - e P [1+ swhp mﬂc:ﬁf};‘}] (1.77)

Since for ©&=o0 , the difference equation (1.62) is even in

n, one has
U = Gy (1.78)

and from the equation (1.62) for n=o0,

% - cahp o P [1r sihg. log {WEL] (4 99)
Qs swh
This has a solution 3= Q434 and the numerical method to be
described shows this to be the transition point between
stable and unstable solutions,
In order to solve (1,62) numerically it is convenient
to follow the method of Laplace (Jeffreys and Jeffreys,
1950, p. 486). The idea is to obtain for a fixed B a
solution for g, and Q. for which a,+o as n-pc and
Q.n P o as :ﬁ*v-«> i;espectively. These two quantities
are functions of 0O and matching them through the difference
equation for hn= 0O allows O +to be determined, The key
to this method is knowing the asymptotic solution, The

form of the equation suggests trying, for n>O

—j3n ¥
Qq = € , (n+Y) b,
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and

- + C Lz
P, = 1+ Cx Sz .. (1.80)

Substituting into (1.62) and equating coefficients of I

L
"

determines V,C, ;<5 etc.
V= —;‘l— (1.81)
3 -3
C‘ = b - }..e_'l__:_wgb‘——e-——— (1.82)
€(ef- e_'g>

Writing (1.62) in terms of 9’5h gives

Q—B%H N {ns;mhg _ D.cm.s\nﬁ](nﬂ) .

(n+5d* n+2

(nn)iqs‘“ v= 14570

The change in variable

L+ 4, = ‘é{l_t‘ (1.84)
P

HL:\-I 2 =l - e (n+7-
[ Dohl  Rwshp][OedTR, B(1py, )

(n+a)* Ga+2)

(1.85)

The form of the asympitotics shows
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\1L.n - =G g B =RGyEe” Q(_._) (1.86)
et S n"
n n

The numerical procedure is as follows, For fixed 3,
N is taken large enough so that (1.,86) is a good approxima=-
tion, then (1.85) is used successively until Y, is
determined, In this way, L,L:—_ "/’o+ ([2, o) s Where the plus
superscript refers to n>o ,

F'or wvnws2o , if one lets a -va,,-n-en then one
obtains the identical difference equation (1.62) with & —+-& .

Thus one can consider (1.,86) with &=-5F (now ¢,= ¢, =(rg¢)yzq_n_,e_ﬁ_|)
n+

An
and q); (2,6) = gfq__l ~1 o There is the obvious symmetry
. i’ % ‘
relation,
do (p.5) = ¢d (B, - &) (1.87)

§ 1is finally determined by the relation obtained

from the difference equation (1.62) for n=0 ,

o]
L ]
®
.
3

+

= QL CoS\'? 13

o
£1f

or

4’; + (/J; % Eeﬁcmhp - (1.88)
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Using (1.87), it is clear that the roots occur in pairs, tg .
Starting with large [3 where the asymptotic roots are known,
the roots can be followed as 3 decreases., The smallest
positive root U , turns out to be the one of interest., b,
is real from 2= , where (= I—I/JE s to B, =0 at 3= o434
(corresponding to the analytic solution obtained for &=-0 ,
see (1.79)). For [3 20.434 , roots can be found numerically
which are complex establishing a transition to instability.
The other roots remain real. The value for 3 which gives
the onset of instability corresponds to R = 0,805 and occurs
at the maximum A”™/L as shown in Figure 1.3. Unfortunately,
it proves too difficult to establish this fact analytically.
Thus it has been shown that for Ry 0.%o5 , corresponding

to the upper curve in Figure 1.3, the more deformed solution
is unstable, There is an interesting parallel with the case
of a uniform elliptic vortex core (Moore and Saffman (1971)).

The next section discusses the relevance of this worlk.
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V. A SINGLL HOLLOW VORTEX IN A STRAINING FIELD

For the sake of completeness, a brief summary of
Hill's (1975a)work for the single hollow vortex in a strain-
ing field is included., Iigures 1.4 a,b,c and d give diagrams
of the physical plane and the mapped planes, Once again it
can be shown (see the Appendix) that the steady solutions
have symmetry about the x and y axes, The usual notation is
used, ‘Z.=32'.1-Lj ,w=¢+\.&,b,g_)%= w-wwand Y1 = T+©«< \03( /\.
The shape of the vortex may be convex or concave at the point
B and this manifests itself in the Yl plane where B' lies on
the U-axis for a convex shape and on the © -axis for a
concave shape.

The following Schwarz-Christoffel transformations
take w, ¥l to the % plane., | is the circulation concentrated

on the boundary,.

G o -Ll lOC‘j [27;7+ |+2€ (%H)/lj _r“i__(ﬁ'lﬁ (1.89)
2T 2p- °

@ = Lleg 5 1w 287 (5e) ] - 2leg [ (440"
+ ,;777-(13_‘)1"7-] + \03(7?4. p) & LJ_;:- (1.90)

or

dw o (R840 282 y]

)
W (1.91)
e LR Ged™ + 57V
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/3 is determined by the requirement that far from the

vortex the flow is a straining field and hence

dy _Le(a_téy)yl - (1.92)

where €& is the rate of strain. This leads to

ﬁlf_@_t?_ll E= &P (1.93)
CA™+(-"]" ks

where P is the perimeter. The shape is found by integrating

d2du . P . [P 5" (-] (1.94)

dw df  m(3p-1) (27 (e Y] 2 (2 + )™

9—[0_
%PF

and leads to a parametric solution, o0&t &),

X - B [ (- 2 -0 e a0t (-0

4 (p-10-0)"] (1.95)

_ o) Uy ) 35 Y
Y = z}%(ﬁﬁ_g)[%‘ig’y (,3-1)’1. Q):H—l}t + a;st’] (1.96)

The area, A, can be calculated directly and the solutions
are represented as a curve of P /A" against €R/T in
Figure 1,5, It shows that for o< £A/T L 0,035 there is one
solution, for 0.035 < ER/T ¢ o.10 , two solutions and for

¢A/T » 0.l\0 no solutions, It should be mentioned that
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The perimeter length, a measure of the deformation, as a
function of the rate of strain,

Figure 1,5
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/3-47 ® corresponds to £ -+ O and the solution is
circular, but as [(3— \%—' , the shape is pinched in the
middle, Some interesting questions arise about whether the
shape separates and if there is a continuation of the solu-~
tion for increasing strain rate. Unfortunately analysis is
algebraically complex for determining the stability of the
solution found for the single hollow vortex and has not
been pursued,

The question of what happens to the vortex or the
array in the region where no steady solutions exist is
unresolved, There could be stable periodic solutions or
alternatively and perhaps more likely, there is a disintegra-
tion process. Moore and Saffman (1975) related the single
vortex with uniform core of constant vorticity in a strain-
ing field to a member of a regular array by approximating
the rate of strain with €= T /6", Taking the maximum
value €A/T= 0,10 and using €= WV /6L one obtains an
estimate for the critical value of ﬁ'f‘/t_ = O. 43 for the
array where steady solutions cease to exist, The exact
value as calculated in Section III is HVZ/L = 0.3% and suggests
the approximation is not unreasonable. Moreover P/ﬁﬁ- has

the values 4,2 and 4,5 respectively for the two cases,
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APPENDIX

Here, the calculation is presented which demonstrates
that the symmetry assumed in Hill's (1975&) solution is in
fact required, The physical plane and mapped planes are
shown in Figures 1,6a,b,c and d. Once again 2=x+£3 and
w= i

The Schwarz-Christoffel transformations which take
first the w plane to ¥ plane (%=¥+.9) and then to the ¢
plane (t=r+15) are

= I qg54.qﬁ1§-ufl_ tF & VT 2| -
L e von S AL DACO N S CEY

"l; = swmtl ' (A.2)

If one considers Yl = lo3(%"€é—;)= X+ W  then Y\ must be an
analytic function in the 7; plane except at the stagnation
points, The correct behaviour at the stagnation points
must be taken into account and the asymptotic behaviour
must be like a straining field, The behaviour near a stag-
nation point is g_l_%l m(l,.pw.a)l/z and so for £ near -RB.B

one finds

gdi_\_%) % (1; +F) ,(é—;g) rcsped'n}dj (A.3)

Therefore
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T ~ log|B+R| + loglh-pl (A.4)

Since a stagnation point looks locally like a straining flow
it is easy to see that far from the vortex, i.e., 5 —>-= in

upper half plane,

. ) %
dw A, —;e(%_o_‘_-s)”‘w ~ (eTY?

&T, 5 (4.5)
d& & 'Tl_h (Rati— 0/7-

From the reflectional symmetry requirement, one sees that T
and its normal derivative must be equal at corresponding

points along AC,DF, By considering

Yo
T = lo it - | swmt - loa &4 (€6
5]= Bl + legl +*Bl- 5 + log qs

S
where C= 1 _| , H satisfies Laplace's equation and
T (RaE-)
the symmetry conditions, As S —» 00
A
T —+ s+ logulE9 (A.7)
Y

as required, provided li(r;s)-pcw. And so the solution for

H(r,s) is

oD
-ans
H(ns) = E: (On SMAnr + bncosanr)e " (A.8)

n=0
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For S=0 , T=0O implies

log(p+ sme) + log(p-sme) + logulec)
9e

-{—Z(qns'\n&nr*-k- bnmsllnr) > (A.9)
n=-o
Clearly Qpn =0 , and this establishes the symmetry as
assumed by Hill (19750), i.e. symmetry about P =0 .
Finally, b, = O reduces to the condition (1.93) with

odzpyz .
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Chapter 2
Numerical Studies of the Roll-up of Two Dimensional

Vortex Sheets in Homogeneous Fluid

I. INTRODUCTION

In this chapter, the unsteady motion of a two=-
dimensional vortex sheet in a homogeneous fluid will be
considered, Inviscid theory predicts that sharply defined
sheets of vorticity will move with fluid and maintain their
sharpness, The equations describing the motion are non-
linear and there are no known analytic results which describe
the complete solution for the unsteady case, This chapter
is concerned with numerical techniques which can be used to
study the time evolution of vortex sheets, In particular,
two-dimensional approximations to the vortex sheets generated
by the flow past conventional wings and past ring wings will
be used as examples, as the way in which these roll up into
circunlar vortices of finite core size is of considerable
interest and importance,

The first numerical studies of vortex sheet roll-up
were by Rosenhead (1931) and Westwater (1935). The vortex
sheet is replaced by a finite number of discrete vortices
and their motion followed in time., The subsequent positions
of the point vortices are considered markers for the vortex

sheet, With the advent of high speed computers, this basic

discretisation has been used by a large number of authors.
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However, unsatisfactory features of this method have been
uncovered, namely that chaotic motion ensued, The first
reports of this are by Birkhoff and Fisher (1959), Takami
(1964) and Moore (1971), They find that although the
vortices appear to give a qualitative description of the
roll~up, irregularities always occur, particularly in the
roll-up region,

Takami (1964) increases the number of point vortices
from eight to twenty per half-wing, but he finds no improve=~
ment in the details of the vortex sheet in the roll—uh
region, Moeore (1971) uses even lérger numbers of vortices
and integrates the equations of motion for the point vortices
very accurately in an attempt to establish whether the growth
of truncation errors in the numerical integration is causing
the chaotic state of the vortices. His results leave no
doubt that the cause of the difficulties is elsewhere,

Ad hoc methods have been introduced to overcome these
difficulties. Chorin and Bernard (1972) introduce a finite
core to the point vortex inside of which the singular hehav-
iour of the velocity is removed, Instead of the exact
equations of motion for a collection of point vortices, whose

positions are i(x‘b’ 3;)3 and whose circulations are {'K;‘},

q\_l(\. R E KJ (%E_HA) 7 (2.1)
dv T oF

. _ A t - 2.2
R PR TCE o
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Zz 2
where ﬁf::(x;—XJ) +(3L—33) s, they use

TR L TeR (2.5)
BE 2V F\—i '

s 2 EE: K Gxe - 25) (2%)
JF L r'\.:l

whenever Y £ and (2.1), (2.2) for ‘37(7 . As a result,
smooth_spirals are achieved for much longer times, Chorin
and Bernard (1972) report that the results do not depend on
o if it lies within a wide range around the smallest

initial spacing between the point vortices, They also claim
that this cut-off in the velocity near a point‘vortex is
analogous to incorporating an artificial wviscosity.

Kuwahara and Takami (1973) also introduce an arti=-

ficial wviscosity. Instead of (2.,1) and (2.2), they use

%L = —’Q"Jﬁ' {p_ exP( q,yt }("5'- Y;) (2.5)
ATl SRR e
L

Although each term of the sums represent the ﬁelocity of a
viscous vortex which at t=0 is a point voriex, the non-
linearity of'the Navier-Stokes equations doesnot permit the
superposition of the velocity fields., Kuwahara and Takami
(1973) find that, although the details of the spiral are

restored, the way in which this occurs depends on the choice
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for Vv ,

Moore (1974), on the other hand, incorporates vortices
into a main vortex at the centre of the spiral whenever a
measure of the curvature becomes larger than some chosen
value, As Moore (1974) points out, there are unsatisfactory
factors in the methods adopting cut~off radii in the calcu=-
lation of the wvelocity. In particular, in Chorin and
Bernard's (1974) work, the point vortices accumulate towards
the centre of the spiral in contradiction to the analysis by
Kaden (1931) who shows that the sheet is increasingly
stretched towards the spiral centre, Since a finite number
of vortices cannot represent the infinite number of turns of
a spiral, Moore (1974) suggests that the flow field is poorly
approximated by a few point vortices in the region of the
spiral centre and so he amalgamates them in an attempt to
regularise the approximation to the flow, His results show
smooth spirals beyond the time at which previous authors
stopped, Moreover, the vortex points move apart, indicating
that the sheet is stretching in agreement with Kaden's (1931)
analysis,

Fink and Soh (1974) are the first authors who attempt
to obtain error estimates for the approximation of a vortex
sheet by a finite collection of point vortices. In partic-
ular, they show that unless the vortices are evenly spaced
in arclength, the error in calculating the velocity by means

of (2.,1) and (2.2) is O(\o<3hn/hz) where h, h, are adjacent
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spacings between points, Thissuggests that as the vortex

points move and lose their uniferm spacing, the error in
calculating the velocity will grow and eventually destroy
the description of the sheet. They therefore propose a
method whereby the vortices are continually redistributed
to enéuré even spacing. Their results looked promising

and one of the purposes of this chapter is to examine their

approach in detail,

The first section discusses the errors in numerically
calculating, by different methods, the velocity of a vortex
sheet at certain points, i.e. mesh points. There is confir-
mation of Fink and Soh's (1974) estimate of the error when
calculating the velocity by means of certain principal wvalue
integrals of the vortex sheet strength using the uswal point
vortex discretisation, It is necessary therefore to ensure
that the_vortices are evenly spaced at all times, For a
closed sheet (e,g. the sheet gemerated by a ring wing), an
accurate method ( O(VPY) is developed using the trapezoidal
rule and the analysis is checked by some test examples, It
is also concluded that the velocity of a vortex sheet gener-
ated by a conventional wing (i.e, finite in length) cannot
be accurately calculated near the wing tip, unless some
consideration of the asymptotic behaviour in the inner
regions of the spiral (Kaden (1931)) is included,

Section ITI incorporates these results in detailing

Fink and Soh's (1974) method, Ways to improve the accuracy
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of their method are suggested and the results are presented
in Section IV, However, it is found that instabilities
unphysical in nature keep occurring despite variations of
the details of the method. Increasing the number of vortex
points used in the method fails to suppress the instabilities
and there appear to be only two possibilities to account
for the failure of the numerical method. The instabilities
may be entirely numerical in origin or small scale structures
may be important in influencing the flow,

The latter possibility means that many vortex points
are regquired and the usual methods, including the one
developed by Fink and Soh (1974), prove uneconomical, An
alternative method basedon "Cloud in Cell" techniques is
presented in Section V, Christiansen (1973) makes use of
the particle simulation techniques developed in plasma
physics and adopts them to vortex flow in an incompressible,
two=dimensional laminar fluid. For more details about par-
ticle simulation techniques, see Alder, Fermbach and
Rotenberg (1970).

To explore the role of small scales and their growth,
a test case is considered, The results are interesting, in
particular the indications of the cascade process of small
scales to larger ones, This method is applied to the ring
wing case and the results are presented in Section V, There
is clear evidence of the development of large structures and

this occurs in two ways., In some cases, two different but
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neighbouring vortex structures amalgamate, and in other
cases, a vortex structure is pulled apart and absorbed by
its neighbours. These results must still be regarded as
tentative until the numerical errors associated with the

technique are fully understood,
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II., THE CALCULATION OF THE VELOCITY OF A VORTEX SHEET

Before an outline of Fink and Soh's (1974) method
is given, it is useful to examine the ways in which the
velocity of a vortex sheet can be calculated, It is this
calculation which essentially determines the accuracy of
the method in terms of the number of vortex points used,
Numerical consistency will be an important requirement, i.e.
as the number of vortex points is increased, the velocity
calculated numerically must approach the exact wvelocity of
the vortex sheet, In terms of an error analysis, the error
associated with the discretisation must vanish as the spacing
beﬁween the vortex points tends to zero,

Perhaps it should be emphasized here that questions
of stability for any numerical method applied to vPrtex
sheets remain unresolved, In fact, the straight uniform
vortex sheet is known to be unstable (Batchelor (1970),Ch 7.1)
and the modes with shortest wavelengths have the greatest
growths, This suggests a basic ill-posedness, i.e, as the
length scales of the numerical method are decreased, the
more different is the behaviour of the solutions, On the
other hand, Moore (unpublished) has examined the stability
of a vortex sheet in some cases and shows that stretching
of the sheet may stabilise its motion. The lack of knowledge
about the stability of vortex sheets is a disadvantage in
testing any numerical method,

In two dimensions, the velocity components of the
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fluid are related to the vortex strength by

u(x,&j) = -S\ﬁ_g ¥(s) '(;_1'(5)'35 AS (2.7)
U(xy) = .;2_|ij 3(s) (1'1(5)~1) ds (2.8)

where ﬁf&)sﬁﬁ describes the location of the sheet para-

metrically determined by S , the arclength, The integration

is along the sheet and
2 ( 2 ' kS
Yy = (x (S)—bc) + (3(&)-\5\ (2.9)

In particular, the velocity of a point ( x(s),yl(s))) on the

sheet is given by the principal value integrals

w(se) = ‘Jlﬁ'ﬁ Y¥(s) (y'(s) - 4'(se)) de (2.10)
Y-A’_

‘U'(Sc,\ = _Lf ¥(s) (1'(33- ' (Se) de (2.11)
A18 v

There are two distinct cases to comsider depending
on whether the vortex sheet forms a closed curve or an open
one, An example of each case is presented and it will be
seen that there are crucial differences in the accuracy of
the numerical approximations when applied to each case, [Ior
the case of vortex sheet forming an open curve, a two-

dimensional approximation to the sheet shed from a conventional
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wing is used as an example. It is very difficult to analyse
the accuracy in determining the velocity of the sheet for
this case due to the singular nature of the flow at the

wing tip. In contrast, the flow over a ring wing (see Figure
2.8) forms a closed vortex sheet with no difficulty in exam-
ining the error in the calculated velocity and so accurate
numerical me thods can be devised,

For an elliptically loaded wing, ¥ does not vanish
at the wing tips; the integrals (2,10) and (2,11) diverge
and appear to predict infinite velocities, What actually
happens was elucidated by Kaden (1931), At T=0 , the
sheet lies along the span of the wing., Since ¥~ §ﬁ'at the
wing tip, the velocity is infinite there, but for Tt >o "
the sheet possesses a completely new description. It
becomes infinitely long, ending in a spiral which grows in
gize with time, This nonuniform change in behaviour and the
singularity at the tip present great difficulty in solving
numerically the evolution of the sheet in time,

Since the infinite sheet is approximated by a finite
number of vortex points, the question of how well the spiral
is represented is important, The vortex point closest to
the spiral centre has to approximate the effect of the infi-
nite number of turns in the inner part of the spiral and the
validity of this approximation is still an open question.
Moore (1975) has shown that the asymptotic form of the roll=-

up depends on information from the complete sheet and is mnot
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determined by local considerations only. The converse may
equally be true. The motion of any part of the sheet may

depend on the structure of the spiral,

Furthermore, the initial discretisation of the vortex

sheet may introduce large errors near the wing tip. If the

sheet lies along the x-axis 0 &£ x&dL, the velocities

~are determined from (2,10) and (2.11) as

u(xy) =

'U'(ie) = Q_'i‘_T'f ¥ () dxe

(2.12)
X -Xg

Dividing the sheet into N equal intervals and using a
centred Fuler difference approximation to calculate (2. 12},
one finds the largest error occurs at the point closest to

the wing tip singularity.

h
'U'(h. - h ¥ (ﬂ+'/7.)h) o ¥(x) dx
1) T z‘ 2T x- W/y
(n+OR
z [ ¥6) dx - Y| (vw‘/z h:\ (2.13)
R_‘W \,‘ 2K - "\I'L

where Nh=L , The right hand side of (2.13) gives the
error in using evenly spaced point vortices to represent
the vortex sheet, Substituting the behaviour of the vortex
sheet strength of an elliptically loaded wing near the wing

- - -
tip, &~ S 72 , the error is O(h/") for the vortex point
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closest to the tip. The initial vertical velocity, w(x), is
constant along the sheet, except at the wing tips (Batchelor
(1970),Ch 7.8). The point vortices, however, give a velocity
which immediately distorts the sheet from a straight line,
The error estimate of O(H%) may be slightly inappropriate
since the more important question is whether the velocity
determined by the point vortices approximates well the ini-
tial sheet with infinitesimal spirals at its tips. The
analytic complexity involved in the integrals (2,10) and
(2.11) prevems an easy answer to this question, It does
seem unlikely though,that a finite number of point vortices
is a good approkimation to even this case.

The best numerical methods therefore are those which
attempt to take into special consideration the initial
motion of the sheet and also the centre region of the spiral,
Moore (1974) amalgamates vortices into the vortex point
closest to the spiral centre whenever the curvature at the
next néarest vortex point becomes too large, Fink and Soh
(1974) have an independent way of accumulating circulation
at the spiral centre, and their results agree well with
Moore (1974)., These results are presented in more detail in
the following sections, However, there can be little hope
of knowing how accurate these approximations are until
methods are developed which incorporate the asymptotic form
of the roll-up found by Kaden (1931) and extended by Moore

(1975), and there is a better treatment of the initial motion
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of the sheet.

There is a further error in calculating the velocity
of a vortex sheet if the vortex points representing‘it are
not evenly spaced. If a centred Buler difference is adopted
to integrate (2,10) and (2.11) and the initial vortex shecet
is discretised by evenly spaced vortex points, then, for
later times, the centredness of the difference formulae is
destroyed as the vortices move apart more rapidly at some
places than others. Fink and Soh (1974) point out that in
this situation the error in calculating the velocity of the
vortex sheet has order,C%Eggawhere h, and %, are adjacent
spacings between the vortex points, It is therefore impor-
tant to maintain a discretisation of the sheet which has
uniform spacing between vortex points.

The second case to consider is where the vortex sheet
forms a closed curve in the (x,y) plane. A simple. example
of this is the flow around a ring wing, and it will be seen
that there are none of the difficulties associated with the
singularity at the wing tip in the previous case, If the
sheet is continuous and of finite length, then all the
gquantities associated with the sheet are periodic functions
of the arclength, and this fact enables one to develop
improved numerical methods to determine the velocity.

The integrals (2.,10) and (2.,11) are, in this case,

|

u(se) = —;Ilr_r§ ¥(s) (y'(s)-9'(se)) ds . (2.14)
A D6y - X/ (5317 + [y'(s)- y'(50)] :
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L
T(se) = L ® ¥6) (x'6)-x'se)) ds .
o L L iE)-='C Sl & Ly'6)- 3'(50)3

(2.15)

where all quantities have the same value at S=-L as they

do at Ss= L, There is no loss in generality in taking

Se= O . Subtracting from (2.14), the integral

|
-Lp ¥(@) ¥@E) ds = O
n s S

=1,

and from (2.15), the integral

w
A § @ @__D’_._’(o) ds = o
QW S 2S

leads to the following integrands

O () e

C'®-x(a)]*+ [y(©-9'(0)]*> 5
¥(s) (' (5) - X' (o)) - ¥ 35’ (o)
=@ -x! (o] + Ct-j' () -y ()] S 25

Using a Taylor's expansion for small S and noting
?x’ 2 > ] 7-= _,v,_
(‘5‘5) + (%_‘3) \ 8 5

2

wn

I &) -]+ [y©- 9] =

32 I\2 n 3’2 Iz L‘éx‘?—j’x" 2 ,33, 4
L) 405 s ‘L"‘*"]S

(2.16)

(2.17)

{2.18)

(2.19)

{2,.20)
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The integrands, (2.18) and (2.19) have neo singular-

ities provided the sheet is smooth, i,e, has a continuous
tangent, and ¥  has no singularities,

In order to obtain error estimates when using the
trapezoidal rule on the integrands (2,18) and (2.,19), a
small digression is made, If {(s) € CaMHEL,L], the Euler-
McLaurin summation formula used on a mesh S= jnhf ,-N4n&N

Nh=L , gives,

g §eds = 50+ 50 +hz £osh)

nz —-N+i
= K47 0 (2k+1) 20y H1
DI ¥ il O S 20 T L PP
k=0

where (i are constants independent of h and §(), and
-Letse L , It is easy to recognise the first two terms

as the trapezoidal rule and that the error is given by

E- i U L S (N S AN

K=o

myL _5: (2 +\)

+ Cuh (2) (2.22)

The first terms of the integrands (2,18) and (2.19) are

periodic and se their contributions to the sum in (2.22)

(zk %)
vanish, Since Cé ~ gik*zis even, the second term in
the integrand also produces no contribution to the sum, and

Awn + 2 :
the conclusion is that E ~ Ch "', However, there is
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another contribution o the error resulting from evaluating
the integrands at S=0 (orn=®. They have indeterminate

form there but have the following limits

- 330) 33/ %(0)3'y'(e) (2.23)
23S 25 & et
WO 2@ 4 ¥(0) Dx(o) (2.24)
2% S P

Difference formulae have to be used to evaluate (2.23%) and
(2.,24) and provided the integrands have the property that m
is large enough, the error introduced by using the difference
formulae will dominate for h small enough, In particular,

using the central difference formulae ,

n = nedh) = a-1yh) o)
W) : (5w = §(ea-d0V] /2 (2.25)

3 (o) = E;((moh) - af () & ﬂcn-om] ad (2.26)
S

the error in determining (2.23) and (2.24) is 0(hﬂ and the
error in using the trapezoidal rule is therefore 003) .

This analysis is checked here for two cases where the
velocities and hence vortex sheet strength are both known
instantaneously., At this stage the motion of the sheet is
not important; the check is to see how well the velocity is
calculated by the method outlined. Taking the sheet to be

circular, the fluid velocities are easily known from the
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velocity potential. When the sheet is elliptic, elliptic

coordinates can be used to determine the velocity potential.
In particular, the flow which has a stagnant core inside
the ellipse and a non-zero circulation around it, is also
used as a check on the method., The results presented in
tabular form in Figure 2.1, clearly show the O(h®) behaviour,
i.e. doubling the number of vortex points decreases the
error by a factor of eight. The relative error for L/4o is
.typically 10 and is the limit obtainable using single
precision, on IBM 370/158. '

Finally, the considerations above have assumed the,
sheet does not fold back on itself so that different parts
of the sheet come close together. When this occurs, large
errors will appear unless additional vortex points are added
to resolve the large peaks that arise in the integrands
(2.14) and (2.15) as the denominator becomes small (see
Maskew (to be published)).

In summary, the roll-up of the vortex sheet behind
a conventional wing cannot be accurately calculated until
some account is taken of the asymptotic nature of the inner
turns of the spiral. Since there is no singular behaviour
in the vortex sheet behind a ring wing, this case presents
a far less complicated test of any numerical method designed
to calculated the evolution of vortex sheets,

Having demonstrated the importance of calculating the

velocity by using evenly spaced points in arclength, the
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N |Galeuletfed 4 | Eeror v v [Colewloted v [Evvor i -
5] 02129180 |-0.0035%8% -0.1238720 [©.00112%
10| ©0.2160U56 |-0.000460 |_ 0.1248536 0.000 14b
20 | . u6L47I | - 0.0000549 -0, 1249222 |0, 00001
40 | 0.2164967 |-0.000010 |_®12499%9 |0 0o0000!
go | ©0.2165025 [-0.000004 |-0.1250024 |0.000002 .
a) Circular sheet, radius =1 ; ¥= sm® ; velocities
determined at O = W/3
Exact velocities, w- 02165063, U= -0.125

N |Calculated w | Evvreor v w Caledleded v |Ervor vn U

10 [ -0.64650492 _©.001254 -0.5326%2 |-0.002677
20 | —0.6476290 | 0.000134 - 0.5303%204 | -0.0003!S
40 [ -0.647744F | 0.0000\9 -0.5300345 | -0.000029
b) Elliptic sheet, x , 4 =1 ; stagnant core and

rotating flow outside
W e - a_/{[(x_‘72+ e '/q[(1+\>2+ tjz‘_('/l-t}

Exact velocities, W= -04u77635 v =-0.530005l
Table showing errors for velocity calculation.

Figure 2,1
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next section establishes how to calculate the time evolution

with this condition.
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ITI. REDISTRIBUTION OF VORTEX POINTS AS A WAY TO FOLLOW

THE MOTION OF A VORTEX SHEET

This section provides the details of the method
originally used by Fink and Soh (1974) and discusses different
ways of improving the accuracy. The basic outline is as
follows. A function Tﬂﬁ) is introduced which measures the
total circulation along the sheet from some reference point,

Se « The vortex sheet strength is ¥(5)= %" . Knowing 1(5)
at mesh points ﬂx;ﬁ;gWMich are evenly spaced in arclength
gives a set of values iTﬂ% which convect with the points
ﬂihgb]as they move with the fluid. ¥, is calculated from

K=§£ and the velocity {(u;,v;{can be determined by integrating
along the sheet as described in Section II, Fink and Soh

(1974) use simple Huler integration to move forward in time

with time step At ),

x; + uAt (2.27)

ol

q: y, + VU, At (2.28)

£
"

The points iﬁigq:ﬂ no longer satisfy the requirement of being
evenly spaced in arclength, An interpolation polynomial is
used to determine the new points {[xt,gf)g which are evenly
spaced. Knowing the circulation Sﬂ‘._‘} at {(E;E,_) means an
interpolation can be made and $1*Zfound at iGQszﬁ » These

values i(x:,ﬂf?} and %ng provide the starting values,
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3(x,9)5 ana 3T s for the next time step.

The details of the various steps are as follows, In
the first place, to calculate ¥ , Fink and Soh (1974) use
an interpolation polynomial through the points iTﬂf known
at §s°+ih2 where h is the uniform spacing in arclength,
The values of the circulation %TL+%i are then found at the
midpoints i_g,+ (;*.ﬁ)h} and a central difference formula

gives

= (T, = Viy,)/h (2.29)

The accuracy in determining ¥ is o(W) provided a suitably
accurate interpolation polynomial is used., Fink and Soh
(197%) tried both a local three-point and four-point
Lagrange interpolation polynomial and the error will be

_l‘-% cgg_—';(g) ,\%—?hq ?{L_;_'E_(S) respectively, where % 1lies some-
where in the interval of s used in the interpolation
(see Isaacson and Keller (1966), p, 264). Alternatively,
if a spline interpolation is used, the error in determining

¥, as the derivative of the spline function will be

CDO?) . This provides one way to improve on Fink and Soh's
(1974) accuracy in determining Y .

The determination of the circulation of the vortex

point closest to the spiral centre is handled in a slightly
different way than by using (2.29). The circulation accred-

jted this vortex point is that which ensures that the total
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circulation remains constant in time. This means in essence
that the circulation that would be distributed along the
inner turns of the spiral, which are beyond the resolution
of the finite number of vortex points, is assigned to this
vortex point, The accuracy of this procedure is unknown,
Using the derivative of a spline interpolation as an alter-
native method in determining the vortex sheet strength,
means that there is no attempt to approximate the inner
region of the spiral and the invariance of the total circu=-
lation can be used as a check on the error in neglecting
this region,

The calculation of the velocity proceeds as detailed
in the previous section and so what remains to be done here
is to describe the redistribution of the mesh points., Fink
and Soh (1974) use the chordlength between mesh points as
an approximation to the arclength. There is a simple way to
improve on this procedure; the chordlength between points
can be calculated and the total chordlength, %2¢3, from
some reference point defines a parametric representatibn Tor
thé sheet,

An interpolating spline can be used through the
points 32¢Z 5 iq;g as functions of $§A.3 , and the deriv-
atives %éi;} , 3&%&% , are determined at equal intervals

da A
along A , 3“ei§ . The arclength measured from the

reference point is defined by
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A
S = 50 L (2= 1+(3§)‘]yza7\ (2.30)

This integral can be evaluated numerically, ’i‘o ensure that
the arclength is calculated accurately enough, it is found
necessary to evaluate ié\%&“i - i%ﬂ{} at four times as many
places as there are mesh points ?_i;_'g,%g% . Although the
trapezoidal rule is used to calculate (2,30}, the accuracy
should be limifecl mainiy by the accuracy of the spline which
has an error of O(h"*) -

At this point, S 1is known at i&g corresponding to
equal spacings of A , 51712‘“2 . The relationship can be
inverted by using an interpolating spline, i.e, consider
§7\Q;_—§ as a function of %S;)Z and determine '%2’;? correspond-
ing to even spacings of S , where the spacing is chosen to
give the required number of new mesh points. Finally, the
new mesh points $ x!¢, %‘\jtz are obtained at S‘?\Tg by
using an interpolating spline passing through ‘éig, S,_g}?
known at 52;} .

To complete the process of determining new mesh points,
one needs to know the circulation wvalues 3}1*} at these
points., Gince T(s) is constant along the path lines, C}:Vé = W ,
%%: v ?N_\f,;} is known at the points Qt(i;,q;)? , which have
resulted from an integration through one time step. Thus {ﬁ%g is
known at {AL} and an interpolating spline gives i'l’:z at

{X‘L% corresponding to {(1’1)3:‘)3 .
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The case of a vortex sheet with infinite arclength
needs special consideration, Only a finite number of points
are used and so there is no way to redistribute them so
that they are evenly spaced along the whole sheet., The
point closest to the spiral centre is considered given and
the remaining points are redistributed along the finite part
of the sheet, This procedure is consistent with the way in
which the circulation per vortex point is calculated, As
discussed previously in this section, the vortex point
closest to the spiral centre is regarded as representing
the inmer turns of the spiral.,

Finally, one can use a more accurate integration
procedure to move forward in time than the simple Emler used
by Fink and Soh (1974), The modified Euwler approach is the
essence of this improvement. Using (2.27) and (2.28),a
first estimate of the mnew position is obtained,%(i;;gﬁﬁ.
Redistribution gives the points {(xf,gfﬁ where the velocity
can be calculated, Interpolation now provides the velocity

i(_CLL;-TJ-L)S at the points $(%_,y)] and an improved estimate

for the new values is obtained by

ull

= X, %(u;+ W) At (2.31)

5= oyl L(wew)at (2.32)

The procedure then continues as before.
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In conclusion, a note should be made about the
interpolation formulae used., A three=point Lagrangian inter-
polation polynomial is used locally to reproduce the results
claimed by Fink and Soh (1974), However, for the improvements
listed in this section, a spline can be used with a high
degree of accuracy, O(hﬁ). This is achieved by either using
information about the derivatives at the end points, for
instance symmetry sometimes requires some derivatives to
vanish or take on specific values, or else by musing an end

point condition suggested by Professor H, B, Keller, i.,e,

h | dT(x) - 4T (m] + e |4t
g odx dx / i h.m[ 61(10
- c\’L" = d-Z,\"" ' 25
a(x\)]/h‘ 3T (=) (2.33)

where (00 is the spline functiom amd h,= X3-X jh,=x-%_,
A similar condition may be applied at the other emnd, The
author is indebted to Professor H, B. Keller for this
suggestion,

Results and criticisms of this method are presented

in the next section.
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Iv, NUMERICAL RESULTS FFOR METHODS BASED ON REDISTRIBUTION

OF VORTEX POINTS

Before giving the results for the conventional wing
and the ring wing, the results for a test case are presented.
indicating that the method works as described in Section III,
Although not more than four steps are calculated in the time
integration, the exact errors are known and ther behaviour
with changes in the arclength spacing and in the time step
show the correct behaviour.

The details are as follows, An irrotational flow
circulating around a stagnant circular core is known to be
unstable (see Moore and Griffith-Jones (1974))., However,
there are modes which do not grow and one of these can be
followed at least for small times, If Q. is the radius of
the circle and V +the undisturbed velocity of the outside
fluid at the interface, then the undisturbed potential is

(ﬁ=*QV9 for rva , Considering perturbations of the form,

/} =a+ & ws(nd + m‘t) (2.34)
¢ = oVO + B s\.“(ne + wb) r>5 (2.35)
e ’
¢ = HY‘“ S ("‘8 + (‘Jt) b Y‘L’? (2036)
and linearising, the dispersion relation is
2 2
W+ nwVY + Vv h(n-t} =0 (2.37)
o 2a*
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The two modes tested, N=l, (U= 0O and n=2 ,(o=-%£ are stable.
For these cases, A= O, %ﬁ&_ respectively inside the
boundary and B=EU0,EV%? respectively outside the boundary,
The method applied includes the following improvements to
the basic method described by Fink and Soh (1974); arclength
is calculated accurately for redistribution purposes and
spline derivatives are used to find the new vortex sheet
strengths (instead of (2.79)). In Figure 2.2 there is a
table of errors using simple Buler or modified Euler inte-
gration for different time steps. As expected, halving the
time step At reduces the error for simple Zuler by half,
confirming OOHQ behaviour. Since modified Fuler integration
works exactly for circular motion, the errors obtained using
this method are small, Comparison with Figure 2.1 shows
that the errors in calculating the velocity are much smaller
than those for the time integration. This is confirmed by
finding no change in the errors in Figure 2,2 when the number
of points is varied from 20, 40 to 80, Although this confirms
the accuracy of the method, it says nothing about its stabil-
ity. Questions concerning numerical stability will remain
unanswered,

The method is now applied to the flow associated with
the vortex sheet shed by an elliptically loaded wing. Making
use of the symmetry of the flow, one need considcr only one
side of the flow field; see Figure 2,3 for details. Non=-

dimensionalising the problem by introducing a characteristic
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Tme.sTe.P Su'mp\e Euler Hod}fl.ecl Euler

O.1 0.00125 ~ Q.0000|
0.05 0.00062S ~ O 0000
0.025 0.0003| ~Q.0000|

Errors obtained at trclL%:Ior both modes considered,

Figure 2,2

The roll-up of the vortex sheet

Figure 2,3
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distance, G , which is half the total span of the wing, a
characteristic velocity, V , which is the instantaneous

speed downwards of the initial vortex sheet and a charac-

teristic time,tlﬁl, the initial vortex sheet strength is

X(S) = _g_é____‘ (2.38)
(l— %1.)/7.

and the initial circulation is

T(s) = —a('—sl)yz (2.39)

N points are introduced at y;=0, X.= (L-bh y 1eie N,

and Nh=|, Before reproducing the results obtained by Fink
and Soh (197%), the formula used in assigning circulation

to the point closest to the spiral centre is given explicitly.
Knowing the circulation atwré;g)where h is the latest even
spacing between redistributed points, the circulation

assigned to the vortex point (Xy,Yn) is

hYy = —T@%-é) (2.40)

This ensures the conservation of circulation and Fink and Soh

(1974) use the vertical impulse, another invariant of the

flow,

8
T, - 51 x¥(ds = T (2.51)
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as a check on the accuracy of their computation,
Figure 2,4 shows the results for the roll-up at
¥
y A ti./: 0.25 with time step 0.0025 and the number of points

is twenty, The curves are obtained by use of Fink and Soh's
method with the end-condition (2.40), The profile of the

roll-up looks qualitatively like the results they published,
(1974). Unfortunately, quantitative agreement with their
results is not possible since the non=dimensionalisation
they use is not clear and the scales on their Figure 11 are
not indicated, However, there is good agreement with the
variation of the vertical impulse., They report the centroid
remained at 07915 £ 0.000%a compared to the author's result
of 0.79V/7 ¥ 0.00ti3 , The slight difference may be a result
of the comparison being made for different numbers of mesh
points,

Fink and Soh (1974) did not comment on the profile of
the vortex sheet strength, It is found to develop oscil-
lations in the region of the roll-up, Examples of this are
seen in Figures 2,4 and 2,5, The strength of the oscillations
and their particular form depend on the actual method used,
In some cases the vortex sheet strength actually becomes
negative, which is unphysical in bebhaviour,

It is interesting to compare the results as shown in
Figure 2.4 with the result obtained by Moore (1974) and
presented in his Figure 5, The agreement is reasonable and

suggests there may be some validity in specifically
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-0.1
-0.2F
The roll-up of the vortex sheet at t = 0.35a/y
0.2F
Y(S)/V O. I+
0 1

s/a

The vortex sheet strength as a function of arclength

Figure 2,4
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accummlating vorticity at the spiral centre,

Figure 2,5 shows the altermative profiles when some
improvements are implemented, The arclength of the sheet is
calculated using intermediate points obtained by spline
interpolation and then using Simpson's formula for the
integration {(2.30), Spline derivatives are used to evaluate

8= SI at the mesh points but the integration forward in
tinme i: 8till only using a simple Euler time step, The
improved accuracy results in a tighter spiral with more
turns., The oscillations in the vortex sheet strength are
larger, The variations in the circulation for half the wing
lie between ' 74 Vo and |44 Voo while the variations in the
x=-coordinate of the centroid lie befween 0.75% a. and 0.775a.,
The circulation for half the wing should in fact be a constant,
2.0 Vo , Thus, at worst, about fifteen percent of the
circulation is not accounted for and probably is the circu-
lation that would correspond to the innermost part of the
spiral, This also suggest a rough estimate of the importance
of accumulating vorticity at the spiral centre,

It is in the process of improving the accuracy of the
time integration that an interesting restriction on the method
comes to light, Figure 2,6 shows the motion of the point
vortices in the vicinity of the tip during roll-up using the
Euler integration formula with time step ClOCNDS%} but still
only twenty mesh points. The spiral appears to unrell! A

simple explanation reveals a restriction on the time step
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compared to the spacing between mesh points and the
curvature of the sheet, Figure 2.7 illustrates the idea,
If the motion of a mesh point is much smaller than its
"motion" due to redistribution, then the resultant evolution
does not represent the solution reguired. It is clear and
has been confirmed that increasing the resolution of the
sheet by increasing the number of mesh points will influence
this effect, For forty points and the same time step, the
spiral has more terms and now the unwinding occurs only in
the central turn where again the number of points is too
small to resolve the curvature very accurately. Thus,
depending on the curvature and the actual motion, the time
step cannot be smaller than some critical value related to
the spacing. This behaviour is confirmed by finding that a
time step of O. 0025%_, produces the unwinding of the
spiral when using modified Euler integration. This also
appears to be the likely explanation for the behaviour
- reported by Fink and Soh (1974) when applying their method
to the Kelvin-Ilelmholtz instability (see their Figure 10),

A far better test of the method is presented by fol-
lowing the motion of the vortex sheet generated by a ring
wing, EBExperimental data has recently been obtained by Bofah
(1975)., The vortex sheet lies on a closed curve and as
discussed in Section II, the velocity calculation can be
done accurately, i.e. O(*F). The ring wing generates a

vortex sheet which is initially circular with radius that of
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Figure 2,7

The coordinate system and parameters for the ring wing

Figure 2,8
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the wing, R say, and whose strength is given by

¥(€) = T sm8 (2.42)
R
The definition of © and the flow parameters are shown in
Figure 2 _8, -Q is the root circulation and is given by
T o= -H MUt (2.43)
(+ TWC /4R

It is convenient to non-dimensionalise the problem as

follows. The vorticity strength is scaled by To/R ’

distances by R , time by R'/T. and velocities by 1./R .
The basic numerical approach fails to produce good

results, Although all the improvements mentioned in Section

ITI were tried, namely the calculation of arclength instead

of chordlength, interpolation using spline functions and

time intergration by modified Euler, there were always unphys-

ical oscillations appearing in the results, i.e, ¥ becomes

negative. Figures 2.9-11 show the vortex sheet at t= 155R*/T,

with N the number of mesh points, increasing from 40, 60

through to 90. The corresponding profiles of the circulation

measured along the sheet from O=0 as functions of the

arclength show, in Figure 2,12, the oscillatory behaviour,

Bearing in mind there is an increase in arclength with

increasing N , one finds that the instability occurs in the

same place, the upper branch of the spiral, The crossing
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Q.24

The vortex sheet behind a ring wing at
The number of vortex points is 40.

Figure 2.9
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The vortex sheet behind a ring wing at
The number of vortex points is 60,

Figure 2,10
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The vortex sheet behind a ring wing at
The number of vortex points is 90,

Figure 2,11
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S/R

" O 40 points
X 60 points
— 90 points

The circulation 1'(s) along the sheet as a function of
arclength S measured from the top stagnation point, for
different numbers of vortex points.

Figure 2,12
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of the sheet in Migure 2,11 is probably due to the inac-

curacy in calculating the velocity when two separate parts
of the sheet approach each other closely., To avoid this it
is necessary to refine the description of the sheets locally
by temporarily introducing morc mesh points, e.g. see Maskew
(to be published). With increasing N , the accuracy of the
invariants, circulation for half the ring wing and the
vertical impulse, improve and their values remain in very
narrovw hounds,

In an attempt to determine what causes this numerical
breakdown,different ways of implementing the method are
tried. TFor interpolation, both spline functions and
Lagrangian interpolation give basically the same results.
Using chordlength or the more accurate arclength makes no
difference, The accuracy of the velocity calculation is
improved to (DGF) but this does not indicate that curvature
cffects are destroying the accuracy in determining the
velocity. Iven an alternative method in reassigning the
vortex sheet strength to the new mesh points during the
redistribution process is tried, As the points move their
vortex sheet strength changes as Xx-m' XS\‘\%* where S' is their
new arclength value, It is then easy to interpolate to find
the values of vortex sheet strength at evenly spaced mesi
points, Since the oscillatoxry behaviour occurs in the région
of maximum ¥ it was thought that the interpolation formulae

when being applied to reassigning the circulation, may
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develop large errors due to the large value of the slope of

the circulation, i.e. & . This alternative method, however,
should always have géi close to 1 and so this aspect would
be circumvented. Hodlver, there is no improvement in the
result,

I"inally, as a check on the means of redistribution to
see whether it is associated with numerical instability, a

simple one-dimensional problem is tried,

Ei;g = O (2.1115)
d

along the characteristics,
CAS = dT' (9...".{5)
with the initial condition,

T(S) = \_ cos S (2.}1:6}

This problem is equivalent to solving

E - (B~ (207

and has the solution in parametric form

¥= 3 - swn§ 5= AsmE t +§ (2.48)

= M 3

S

o/
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The solution becomes multivalued at S=“‘when.‘t:%- but

until then, applying the method of redistribution results

in an accurate numerical solution with no instability, Of
course this is only a one-~dimensional analogue and so curva-
ture effects are ignored but it does give some reason to
believe that the redistribution is hasically sound.

Often, numerical instabilities can be suppressed by
appropriate smoothing. Provided the smoothing affects only
the oscillations which are spurious, the accuracy will not
be.impaired. Unfortunately in this case it is difficult to
find a means of suppressing the oscillations associated with
the instability and leave the basic solution unchanged., The
profile of the circulation is smoothed by applying a differ-
ence formula corresponding to the standard diffusion
equation., This should suppress only high frequency conponents
in the profile provided the diffusion time step is much
smaller than the actual time step. The difference formula

is
* . .

where the superscript ¥ indicates the smoothed values and

the subscripts refer to the discretised arclength position.
Although it is easy to estimate the comparison
between the two different time steps, it is simpler to

conpare the results obtained when € has the minimum value
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which suppresses the oscillatory behaviour and when £ has

a value which only just permits oscillations. This compar=
ison is shown in Figures (2.13) and (2,14) where t= 0.1 and 0.0)
respectively. ©Smoothing clearly destroys the details of

the spiral and so is useless as a means of continuing the
calculation of the roll-up.

In conclusion, calculating the evolution of a vortex
sheet by redistributing mesh points fails to provide a reli-
able method despite the fact that this method no longer
regards the sheet as collection of discrete vortices but
takes into account its curvature, and so is a more appropriate
physical description. Iven though the discretisation errors
in the approximations decrease as the number of mesh points
increases, the position of the vortex sheet for a time level
greater than .5 sz% does not appear to approach a limit,
This suggests the original problem may be ill posed, perhaps
due to the basic instability of the vortex sheet to small
wavelength disturbances. To fully explore this idea, it
would be necessary to introduce many more mesh points and
the method becomes uneconomical., The operation count for
calculating the velocity is Cﬂﬂz).

Finally, it is important to remember that the limit
of small viscosity may not correspond to inviscid flow and
so it may be more appropriate to look for methods which take
into account some small viscous effects, Since viscosity

damps the growth of small scales, it is obviously important
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in the question of the stability of the sheet.
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V. A METHOD BASED ON THE CIC TECHNIQUL

From the conclusion of the previous section, a
method is needed which can calculate the velocity of a large
number of point vortices, The most sensible method is one
based on the CIC Technique. It seems appropriate to give
the details before discussing the many facets of the method.

For an incompressible, two-dimensional fluid with
velocity, W = (ux)u.po) , and vorticity, Q= (0,0, w) ,
Ux = ¥ | uy = -2¥ (2.50)

V‘LL=O 3

where % is the streamfunction.

W = 'b_li.ﬂ - Ba (2.51)
2% 2y

The momentum equation can be written for an inviscid fluid

as

MW 4+ WV = O, (2.52)

g = S, (2.53)

Since the vorticity moves with the fluid, vortex points,

resulting from a discretisation of the vorticity,
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N

W= Z W, S(x-xn) 8y- yn) (2.54)

Nnzi

follow the paths

cl;'—ﬂsb_\é
s

at > CéP."‘ = - E—\L’[h (2-55)

" t %

To solve (2.53), a rectangular grid is introduced
which covers the region of interest, If hx s h3 are the
dimensions of one cell of the grid, then a finite difference

approximation to (2.53) is

PN = 3PN + ClGi-0) | gl ) - 24 (0) + $(u5)
\f\?- ‘_?‘L
b %

= = () (2.56)

where (=1,2, . ,N+| §5 ks 2y, . ML ,th=Lx,Mh3=L5 (LLJLU are
the dimensions of the rectangular grid). Doing one step of
cyclic reduction on the system (2.56), one finds the coef-
ficients of ‘#(Q}) s L=1,2,.. N+|, are symmetrical and a fast
sine transform enables the Fourier coefficients of the
solution to be found (see Hockney (1970) for details).

After returning to physical space, one reverse iteration of
the cyclic reduction gives the full solution, In order for
this scheme to work, Dirichlet conditions must be given at

the boundary.
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Since the error of the method will be related to the

grid spacing and the larger the grid the more expensive the
computation, it is important to optimise the size of the
rectangular grid around the flow of interest, To find the
value of ¢’ on the boundary, local vorticity centroids are

found as follows,

"k :"

x; = Z (=iw) /G, f (2.57)
1=(i-Dk+1

Go= 2 Dy i | 2438
1= (LK |
K
j= (- k+

where L= 1,2)“. L » Lk = Nv. Using the flow field of these
k. point vortices, the velocity can be approximated at the
boundary of the rectangular grid. To be sure this approx-
imation is accurate enough, the boundary is chosen to be at
least a distance H away from any centroid vortex, where
H= rqggl?&iﬁ\ (see Maskew (to be published)). To obtain
the Dizichlet condition, the appropriate velocity component
can be integrated to give the streamfunction along the
boundary. Since the streamfunction is single-valued, it
must approach the same value after one complete integration
around the boundary and this provides a useful check on
accuracy. In practice, it may prove too expensive to deter-

mine the velocity at each grid point on the boundary in this
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manner. One way to avoid this difficulty is to deternmine
the velocity at fewer boundary points and use an interpola-
tion formula for the rest of the points,
Once the streamfunction is known, the velocity

components at the grid points can be easily obtained,

Uy (61 = o, 3e) = $(i,5-1) (2.60)
2
Y
Uy(,() = - LD -v(eng) (2.61)
FT

Since the velocity components are known at the boundary, the
velocity is known everywhere on the grid.

However, the vorticity is not known at the grid points
and the velocity is needed at the points (xm)gn) , (see
(2.55)). Following the usual CIC method (see Christiansen
(1973)), the vorticity at each point (x,,4.) is sharead by
the four corner grid points of the cell in which it is
located by the following weighted scheme (known sometimes

as an area~welighting technique), illustrated in Figure 2,15.
LU(L)53='- ﬂll’dn/hx\'\uj N(L"'\,j) = ﬂlw“/\”x\"tj
(e, 1) = “4“'“/‘"1“3 L Cetyy ) = ﬂswn/hxhg (2.62)

where H; is an area as shown. This particular weighting

ensures the conservation of circulation and linear momentum,
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To find the velocity at the vortex points, a bilinear inter-

polation is used.,
W(xy,yq) = l:ﬂ.,_'ti(:,,'-)) + R, W(e+,)) + AL (c,j+1)
v AT, 0] Sy (2.63)

Finally, the time integration of (2.,55) is achieved by using
a simple Euler difference approximation., A check on this
approximation by using a leap-frog scheme showed no gual-
itative change in the results, The criterion used te choose
the time step is that no vortex point moves more than a

grid spacing in one step.

The method for calculating the velocity (i.e. (2.56),
(2.60), (2.61) and (2.63)) has its largest error associated
with the bilimear interpolation used in (2,63), This is
seen in the test case of a single vortex, The flow calcu-
lated deviates from the exact flow in the neighbourhood of
the vortex (about a grid spacing) but this is not the region
of interest, The object of the method is not to calculate
the flow field of a collection of point vortices but of a
vortex sheet (or perhaps better, of a narrow region of
concentrated vorticity). The vortex points used are assigned
the role of markers to follow the evolution of the veorticity.
Christiansen (1973) also reports the bilinear interpolation

10 be the most important factor in producing numerical errors,
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Improved interpolation schemes can be found but it is hoped

that since the grid is changed at every time step that this
error will be randomised and lead to cancellation at succes-
sive time steps which will improve the accuracy,

Uith these thoughts in mind, the results of the
method, when applied to the ring wing, prove interesting,
Making use of the results obtained by Fink and Soh's method,
a profile of the vortex sheet at a time t= 11627 T,, just
before the onset of the numerical instability as seen in
the previous section, is used as an initial condition. The
CIC method then produces the most detailed roll-up the author
has seen to date, This is shown in Figure 2,16 for a grid
size 65 X 65 and with four-hundred vortex points. Figurec 2.17
shows the calculation repeated with a time step half that
used in Figure 2,16 and both figures show the result at

t=1.21237 T, . Outside of the spiral, there appear smaller
structures, At first, this was considered another example
of numerical instability and smoothing was imtroduced to sece
if the "instability" could be contained without destroying
the details of the roll-up. The smoothing used was a
(1 4 6 4 1) weighting in averaging the positions of the point
vortices and the result is shown in Figure 2,18, Although
the time is not the same, it is close enough to show that
the smoothing works as required,

A survey of the literature fails to find any report

of small scale structure o f the form shown in Figures 2.16
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and 2,17 for the case of a ring wing. Pierce (1961) has
taken photographs of the flow generated by the acceleration
of a flat place through still air, There is evidence of
smaller structures outside the main vortex core resulting
from the roll-up of shed vorticity.' These structures are
convected into the vortex core, This behaviour is repro-
duced in Figure 2,19 when the number of vortex points is
increased to two-thousand., Clearly the grid is too large
to resolve the details of the smaller structures and so the
vortex sheet loses definition in those regions. This is a
definite indication that smallerxr structures may play a role
in the development of vortex cores which result from roll-up
processes.,

It is instructive to examine the method when applied
to a flow in which there is some known information about the
growth of small scales, Moore (1974) considers the stability

of an expanding circular sheet, If the position of the sheet

is given by

st L58
r= Roe + E®e | (2.64)

linear stability analysis gives

-2kt
el = C TQ(XG—NC) « DK (¥ )

Rgebt

(2.65)

where C;D are constants, R, is the initial radius and
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Y = T (s*- 25)/" (2.66)

TR

The functiong T;and Ko are of modified Bessel type. The
vortex sheet has constant initial strength and T is the
total circulation. For small times, i.e. bt 441 | the K|

term gives the growth of lE€(&)|

2% ot
le)) = l&le (2.67)

r
As a measure of |&(®)l the variance of the vortex points

?
around a mean radius is determined and Figure 2,20 shows the
logarithm of this variance as a function of time for b= 0.1
'r/’QTrR:‘ . Curve (® is the result when the grid
spacing is double the spacing of curve (a) and curve (c)
is for the same spacing as (b) but using a time step twice
as large., The curves all show the same bhasic trend, After
the first few time steps there appears an almost linear
regime before the growth begins to slow down, This slowdowm
in growth corresponds to the emergence of larger structures
from the small scale perturbations. The behaviour of the
slope of the logarithm of the variance is consistent with
(2.67) when the limiting wave number, S , is based on the
grid spacing. If the bilinear interpolation in (2.63) is the
major source of error, then this explains why the dominant

S is the one based on grid spacing. The curves in Figure
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2,20 are obtained with two-thousand vortex points and a
grid, 129 X 129, There is no difference when one-thousand
vortex points are used, so the spacing between vortex points
is less important than the grid spacing. In passing, it
should be noted that the viscous spreading of the sheet was
calculated but the resulting variance does not have the
behaviour found.

Figure 2,21 gives the vortex sheet at t= O.GQSJVR:fF.
It shows that some small structures are interacting and
bigger structures are forming, The details of the small
structures are not always clear due to lack of resolution
by the method, The largest spirals appear to forn where
the length of tle® sheet per cell is typically smallest over
a number of cells, There is a common symmetry to both the
circular sheet and rectangular grid, viz angular modes with
frequency 4m , m an integer, and this is clearly visible
in the results for m={ at least. This was reported by
Christiansen (1975) as an anomalous instability.

The most important aspect of the result, however, is
that the emerging larger structures seem to be independent
of the method, Although grid size, number of vortex points,
and time step were all varied, the size of the structures
remains the same and take the same form. Decreasing the
grid size and mcreasing the number of vortex points only
increases the details of the structure. This is a great

positive aspect of the method and suggests that provided
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small scales are appropriétely allowed for in the method,
consistent results appear to emerge.

To illustrate further the potential of this approach,
Figures 2,22a~n show the time evolution of the ring wing.,
Two=-thousand vortices are used on a grid, 128 X 128, Once
again small structures appear early but now their transition
to larger structures is clear, Moreover, amalgamation of
vortex structures is seen as well as a structure disintegrat-
ing and being absorbed into neighbouring structures. This
is very promising in the light of some recent experimental
work, viz Freymuth (1966), Winant and Brownand (1974) and
Brown and Roshko (197%) all report seeing amalgamation and
disintegration processes,

One disadvantage is the loss of definition of the
sheet and it is not clear at this point whether this can
be related to an effective viscosity introduced by the
scheme, Since there is great interest in understanding
vortex pairing theoretically, (e.g. Christiansen and Zabusky
(1973), Patnaik, Sherman and Corcos (1976)), this method
holds interesting possibilities especially when it is remem-
bered that increasing the number of vortex points adds

relative 1little cost.
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Chapter 3
A Study of the Motion

of a Buoyant Pair of Line Vortices

I, INTRODUCTION

In the previous chapter, the motion of a vortex sheet
in a homogeneous two=dimensional fluid is studied, In
particular, numerical means are examined to find accurate
solutions to the governing equations. In this chapter the
condition that the fluid is homogeneous is relaxed by allow=-
ing density variations in the fluid, The flow will be
considered laminar and inviscid in an attempt to separately
study the influence of buwoyancy. The general prohlem is
hard and so a particular situation will be considered.,

For some time now there has been great interest in
determining the motion of a vortex pair through a stably
stratified medium. The most notable example of this situ=
ation is the behaviour of the wake behind an aircraft. As
discussed in the previous chapter, the vortex sheet shed
from the trailing edge of the wing rolls up into two contra=-
rotating vortex cores, The problem of interest then is to
determine how the vortex pair moves through the atmosphere
once the roll-up is completed, Taking the idealisation that
the vortex pair consists of two line vortices whose circula=-
tion is * 1 situatea 2R, apart, then there is a known

solution for uniformly constant density (Lamb (1932), % 155)
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in which both vortices move downwards at constant speed

Vo & A {3.1)

Figure 3.1 shows the streamlines for this solution in
coordinates fixed with the vortex pair. There is a stream-

line given by

X 4 legf = O 342
AR, J 18 (3.2)
w2 s (x—Ra) + 4 , T3o= [+ R°)1+\j7' (3.3)

which forms an oval, C , around the vortices, Fluid bounded
by this oval moves with the vortices,

When the atmosphere is stably stratified (as Y
decreases, i.c, in the direction of the gravity force, the
density increases), the vortex pair convects downwards
carrying lighter fluid into regions of more dense fluid,
Since the fluid inside the initial oval rotates around the
line vortices, mixing will remove any density variations,
Without the effects of viscosity or turbulence, there will
be a sharp interface separating the uniform density asso-
ciated with the fluid carried by the line vortices and the
stratified fluid outside, As the vortices move downwards,
buoyancy will alter the speed of the vortices and change

the shape of the interface,
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The streamlines for a pair of line vortices
in coordinates fixed with the pair.,

Figure 3.1
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Although a number of authors (Turner (1960), Scorer
and Davenport (1970) and Tombach (1971)) have used the
equation describing the rate of change of the classical
hydrodynamic impulse to model the motion of the vortex wake,
Saffman (1972) has shown the concept of the impulse loses
its classical meaning when the density is not uniform., With

the impulse given by
I:gf?xb.ldﬂ (3.4)

Saffman (1972) obtains the result that, in general,

a (-
=1 hurl}

- fgamso (3.5)

However, he does establish that, with the Boussinesq approx-
imation (i.e. density differences are small), and letting

ﬁ)(g) be the undisturbed density,

9t - ((-5)3en (5.6)

where the impulse is now given by

—

T = fg?'*ﬁd‘q (3.7)

and f is some average density. For this to be correct,

(3.7) must include all the vorticity in the flow. 1In
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particular, vorticity is generated at the interface as well
as in the flow surrounding the convection cell, as estab-

lished by the equation

D& _ 1 Vp x§ (5.8)
It )
;L is the usual convectional derivative,

Dt
Since Scorer and Davenport (1970) and Tombach (1971)

take the impulse to be

T = -2fpTR (

(&
.
\0
—

where R is the changing separation distance of the line
vortices, they have neglected the contribution from the
vorticity at the interface and in the outside fluid, and
their results are suspect.

Saffman (1972) makes use of (3.6) and (3.7) to model
the motion of the cell in the following way. He considers
the shape and size of the cell boundary to remain unchanged,
i.e, no detrainment of the inside fluid nor entrainment of
outside fluid, Since the boundary is regarded as steady,
the kinematics of the flow can easily be accounted for by
appropriate choice of velocity potentials, allowing vorticity
to be generated at the interface. Since the Boussinesg
approximation is being used, the vorticity generated as a

result of displacement in the fluid outside the cell can be
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neglected to a good approximation. The dynamic condition
at the boundary is satisfied in an approximate way by using
(3.6) and (3.7) appropriately. This leads to the result for

the downward velocity,

V=V, - 6fq t (3.10)
ferch

where Af- ﬁ)_fI s s s 5 being constant uniform
densities for the outside, inside fluid respectively, and C
is a shape factor estimated at 1,2, Although Saffman (1972)
also obtains the result for the case ﬁ:;ji@-lgﬂ) s Lot
stratification of the outside fluid is taken into account,
the result (3.10) is of more interest since it relates to
the approximations made in this work., These approximations
will be clarified later,

Saffman (1972) also explores the relative importance
of viscous diffusion at the boundary as a means of entraining
fluid into the region moving with the vortices, and the wave
drag due to the vertical motion, His estimates suggest
that neither of these effects will be important, Far more
uncertain is the effect of turbulent mixing across the
boundary. The Kelvin~Helmholtz instability of the interface
may'lead to turbulent mixing and the resulting entrainment
may eventually bring the fluid to rest. Saffman (1972)
attempts to take this into account by allowing the dimension

of the shape (the shape is considered similar at all times)
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to change and by using dimensional considerations to obtain
an appropriate equation., Narain and Uberoi (1974) follow
the modelling adapted by Saffman (1972) but include an
energy equation which takes into account dissipation due to
turbulent drag on the oval by the walke fluid and dissipation
due to the form drag on the oval by the ambient fluid,

These effects will not be considered in this work, The

flow will be considered laminar as a first step in under-
standing the processes involved in the motion,

Crow (1974) attempts to elaborate on the effect of a
possible drainage filament first proposed by Scorer and
Davenport (1970). Ie neglects the time derivatives in the
problem and obtains the steady vorticity distribution along
the boundary of the cell, This generated vorticity then
convects the line vortices closer together, which has the
effect of speeding up their downward velocity. Even with
some account taken of the vorticity generated by the displace-
ment in the ambient fluid, the upwash is not strong enough
to prevent a net downward acceleration.

The work in this chapter follows the lines adopted
by Crow (1974) and Saffman (1972), i.e. regarding the flow
as inviscid and laminar and neglecting the wave drag due to
the gravity waves generated by the vortex wake, Although
entrainment will be neglected, detrainment can be shown to
occur supporting the reasoning of Scorer and Davenport (1970)

and Crow (1974), and contradicting Saffman's (1972) picture
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¢f the flow. However, numerical results obtained by HHill
(1975b) suggest that Saffman's (1972) modelling is neverthe-
less accurate for small times and Crow's (1974) neglect of
the time dependency in the generation of vorticity is
unreasonable., All the authors mentioned make use of an
assumption of similarity of shape and thus neglect any
possibility of wake collapse due to the stratification of
the ambient fluid, This work too will neglect this aspect
by considering the density outside the wake to be uniform
and constant, jz , and slightly larger than the density,

fr , in the convection cell. The Boussinesqg approxiﬁation
can then be applied, In this way the emphasis is on the
effect of buoyancy on the wake trajectory.

In Section II, a Taylor's expansion in time is calcu-
lated confirming the accuracy of Saffman's (1972) model for
small times,

This provides too a good check on the macroscopic
model introduced in Section IITI to describe the wake trajec-
tory for finite times, This model allows a tail to develop
and includes its effect on the motion, For large times,
the wake fluid detrains away and the line vortices begin to
accelerate downwards again after their initial slowdown.
Finally, this model is checked against numerical calculations
involving the method developed by Fink and Soh (1974) which
is discussed in detail in Chapter 3. There is good agree-

ment suggesting the model is accurate enough to describe the
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gross features of the wake motiomn.
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II. THE TAYLOR SERIBS IN TIMDE

This section describes the calculation of the first
few terms of a Taylor series expansion in time of the flow
variables describing the motion of the line vortices and
the change of shape of the interface., At t=0o , the
density is considered uniform and constant, fx , throughout
the flow and the flow field is known (see (3.1—3), or Lamb
(1932), 8155), At t=0 , the density outside the convection
cell is increased slightly to fL « This corresponds to
adding an impulse to the flow and the deformation of the
interface must be calculated to O{) in order to see the
effect of buoyancy,.

The coordinate system is shown in Figure 3.2, Let

the density difference be denoted by OFf

AP= f, - fs (3.11)

WWhen ‘ﬂf=CJ, the velocity potential for a pair of line

vortices is given by

= 1"\ arclon (M) - arclon (55_9_‘:'32—— \} (3:12)

. T s ~R & cosp+ R

in coordinates fixed with the vortices whose strengths are
+T ., 1If Y(t) measures the downward position of the line
vortices, then the following geometrical identities are

obvious,
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Y cos© = § C-OS¢ (3.13)

+
Esnd = ¢SmO = my{ v(£)dt (3.14)

In coordinates fixed with the fluid at rest at oo , the

potential due to the vortex pair is

@ = 1 {grd’qn(fSinB +Y(t)) - o(cTc;n(r_’"-“f_e_t\_/.(_Q)\} (3.15)

T Y050 - R(£) vcosB + Rt

Expanding in a power series in time,

Vie) = Vo + Vit + 0(t?) , v,= T (3.16)
. ATR,
w®) = ut + o@?) (3.17)
R = R, + wt® + o) (3.18)
2
Y = Vit + wtt & Ol®) | (3.19)
2

and the potential imnside will be
o - s
é = éo + %lt +* % + + Otti) (3.20)

while outside
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C-lt)o = @o + ot + ¢ 4+ o(t?) (3.21)

where §o , P, , are obtained by expanding (3.15).

b, = %{wa&n( r 50 )_ wian(gg«_e_, )} (3.22)

reosO-Re Ceos® +Ro
@‘. = lvoi vwsO - Ky - rwsO + Ko } {3.23)
T i RE-2rRe038 (T RT3 R ocos®

N . e ©
The contributions § tand ¥t are due to buoyancy., Since

2 2
the flow outside is irrotational and V &, = V ?15. =0,
v Pl o (3.24)
2 z
In the inside region, V {70 and V @, will vanish except at
the line vortices, However, since the motion of the line
vortices is included in the expansion when calculating CIJC,
and @l » \EI will be free of singularity and
At
VI % = QO (3-25)
The interface is given by

r= 3(8,£) = 4.(6) + B (e)t + nzz(e)g_ + O®)  (3.26)

The kinematic condition is
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3 _ 20 . 1 2dwy Lo t r= m(0,%)
5% > Y™ 36 36 * 't (3.27)
I
where @ has the value @o ’ {D for outside, inside flow
respectively., The implicit behaviour in time in the
derivatives of the potential is removed by expanding them

in a Taylor series about Y-7%, , Thus

B, + At -Bg _3%,mt -8t -2t o+ L ;_:zQ,t [b%o

rz > 20 '?o

+ 38,2 nt o+ 38t B‘Pt][d . +d_fgjt] +O[E) =0 (3.28)

v 26 206

= T
¢ refers to either inside or outside, i.e. & or ¢°
respectively, and so (3.28) represents two equations., The

lowest order terms give

/?l—-B‘_iP-P -L-?E-Odﬂ?O:o ot T'-.-:/%o

> 226 d8 (3.29)
2
— 3B, n - 8, _ T 0 2»& + 1 2P 13k \d
42 %71/?‘ >r Wﬂ—(% \w)g 4,;56'+7}5€3>Jg"

- Qﬂ{lb§o (éjb I 35 C.'( O.t Y= (3.50)

%0 30 d@ 7 20 e_‘.%L o
The interesting part of the deformation of the interface is
that due to the buoyancy effects, In order to obtain this
component in the expansion of ? , the change in the shape

due to the downward motion of the line vortices
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is calculated and subtracted from % , Figure 3,3 illus-

trates the situation and defines the coordinates used, Thus

Ar = T~ /70(9)

91 = G r AB (3.31)
The following geometrical identities prove useful,
L casB = 4?0(9') cQs 9\ (3-32)

which becomes

r,osO = #4.(6) sl - (’f,, (8) 5O - C}IZ"(S) cabS) AB

- (%(9) cos O + a%"(@) swO -c_\;g:(e)COsS)é;ﬁ2+ O(A@)(;,j;)
Also

Vot + Vtt_z t O(t-s) v (sw0 = /70(91) swm B, (5.3%)
7

After some algebraic manipulation and using (3.32), (5.34)

becomes

[Vot + it® + O(t%)[cos® = 4,(8)40 + A4, 086" + OF)  (3.35)
2 d0
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The coordinate system used to calculate the
change in % due to the downward motion of
the initial shape.

Figure 3.3
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Expanding AB in a Taylor series in time,

2
AB= xt + pt (5.36)
and substituting into (3.35), leads to
o = V38 JP= VieesB ) dgvPees?e (3.37)

e %, a6

Now Ar can be calculated directly from (3.33).

Ar= = (VosmO- LdBoVo cosO)t - (@Oswe_% wse)v.;;

7o dB
~L T4 & 2 (daN. @ T wslot (5.38)
‘70[ ° ’7‘,( de) Z:g?- o= 7

The following identity proves useful.

Thus the O) terms of (3.29) and (3,38) are equivalent and
so there is mo effect of buoyancy on the interface to this

order and the next term at least is needed, Differentiating

(3.39) gives

AL N,

38, _ 1 ¥, (db\L L ¥, d1, _ 108, 45
db v ob > a8 B\ g8/ 20 O(:zy*éfwﬁg'ioﬁ s

20 15 >vo®ldb 2048 73 28 dp?

" ,\locosB-vogu—\‘Qd_%-\l wsO [ d4.\? 4\ cos@ 42 -
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Another identity is

- 2%,
= ( swmB + bi cors‘e) (3.41)
Expressions (3.40) and (3.41) reduce (3.30) to
o _ 1 d9,20 8,
oL —- o0x = wsb -\, d% b$cs9+v %9
¢ BREE E‘b 7 d9> -
2
+ Vo d_’}chsE)+V ds cosOsm8 - U d?
*73(0{9) - El%cs Swa o E’fé%ms ot =4

Using (3.39), this leads to

2 E - % d"nbE /7 e RV CQSI V

o ?o 4B 38 1,: 5 ’;o 05"
Vo Cod 6 C\ o Q.'t ) = !
R 3 @ to ieeta)

=]

Now, making use of (3.38) to separate out the component of

‘7, which refers to the change of shape, A, say,

28 ) d__/lob_‘g = By = (s\n@-— wsGdn, \v
3¢ 836 7‘;‘;&%’)‘ Frely L300

To solve (3.24), (3%.25) and (3.43) is in general quite
difficult and so an approximation is made. The interface

is closely elliptically in shape. Choosing the ellipse

r T LA (3.44%)
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the y intercepts of the ellipse and the interface agree,
while the x dintercepts are 2 and 2.09 respectively., It
turns out that 0.1 is an upper bound on the difference in
radius between the ellipse and the interface, The foci of
the ellipse correspond to the position of the line vortices,
It is important to have the shape very accurately approx-
imated near the stagnation points since any deviations near
them lead to changes in the direction of the velocity.
Introducing a conformal mapping which corresponds to

introducing elliptic coordinates, leads to

- X .“j - R, coshw = R cosh (u+w)

or
x = coshu sy ;Y - swmhu sy (3.45)
Ro 2.

Taking WY=%* , where m%h2x=4-(ox— 3(@3#33 leads to the
elliptic equation (3.44). Figure 3.4 shows the details of
the mapping. Since the mapping is conformal, (3.24) and
(3.25) must be satisfied in the rectangles in the W plane
defined by o« tut® , -W £ UL and ocustx , -Tey T
respectively. The kinematic condition (3.43) transforms as

follows.

3T _ Roaldl | sin0ces® 3wt =g (3.46)
26

>u % 2¢ 203
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where

/f:‘(g_g_sf_@ e s(vﬁ*e) = B (3.47)
4 3 :
Now, since
L d%s . —_/_?;S'mecosg (5.48)
’70 d6 RE 2.
then
o i;_éiozfg = % 29 ol w=u
v % dO > alZR: 2X

and the kinematic condition can be written

?Lg._ Y Q: [A1+ (_'_-d_’ﬁ: wSS—SMG)VJ atus (3.%9)
YU g 7o 40

Using the symmetry,
§(wm) = &(y,-m) (5.50)

the solution to Laplace's equation is easily found.

BO

@U= E: ehw}m)[m:cmnv'+ﬁ:SW“Wj (352)

=0

This satisfies the requirement that the velocity wvanishes as

W —» oo . The inside region needs an additional requirement
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at W=0 +to determine the solution to Laplace's equation,

This is supplied by

T 1
P (-w,-v) = Fla) (3.52)
and the solution is

—@t: Z (D(E(Mcusnv -\—IBE Ms{nmr) (3.53)
n=o

S nax Coshna

Since %Eﬁ: égl at W= , by (3.49),
oW U

o« = - A - R (3.54)

2

Finally, to solve for g, P: the dynamic condition or

pressure balance must be comnsidered at the boundary,

% ' ?% N -}E(b;%) . ‘E(é’%) +qy= 0 (3.55)
P S & 237\ L (3.56)
_Sf_t»rgga-\(ﬁ +li(ﬂ)+3‘j =

(3.55) is for the flow outside evaluated at the boundary,
while (3,56) is for the flow inside evaluated at the
boundary. To consider the lowest order terms in (3.55) and
(3.56),(%%%5{b C%%ﬁl must be expressed in the elliptic

coordinates, From (3.22)
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350 = T_ B 2 I -Ro = Ro
T M . N A i <ot 7

Lk RoY 4y 2y (X-RY5ry™ (XrRY+y
s 20 - X EQ
BY 4 (2 PP P (3.57)
o 9/  wIrRZ 2/g? )
o /R,
where use is made of

-xX/Rg
y'= - R+ xR (1re” 7) (5.58)

(1 . e“‘/ﬁo)

Similarly, from (3.23)

_ _\_|1 [eileo " e")c/ec_ QI/RD_ Q-I/en l] (3.59)

e X -

b4 R X[Re
Now,

/& S 2p

"C/Ru -2/ Ko 1 €K
- = 2 .9 &= -
e +e % 2__:, P! (%) (5.60)
I/Rn "x—/Ro i
e e Q‘Z o (v_gr*’ (5.61)
* P:o(aPH)E Re

ivaluating (3.60) and (3.61) in elliptic coordinates (sce

(7e45)) at wu=& and noting

cos Py = | ‘Z (2p)! Qos;)(p—k)lr[\— EKF’]
o

P
o L (3p-'k!

(o]

gives (collecting together (3.57), (3.59) and (3.60), (3.61))
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2 p E
T 4. coS Am U Z L 9
[ Z P Z (P-m)‘. (P-\—vv\)'. * P (R’p‘-\)

B LT RE
P:] mz=1 P:l
o0
E COs AmU”
oo (P'\'\M—\)'.(P-M-‘)\. (3.62)
The lowest order terms of (3.55) and (3.56) give
ED_ + 5‘ + Q_3°+ _L( E’Eu)1+ L(>§Q>l
) 2\ 2% 2\ 2y
+ E%Ro SmJ = O (3‘63)
- Z
e b+ T . ‘—(Bﬁ;uz’r ‘—(BE?)
(3 \3x 2\ 2y
y BgRismw = C (3.64)
fr
The pressure balance at the interface gives Fc, = P:: or
(3.65)

‘)Doq?o" fl?t + C + EA?%RQ.SW\‘U‘ + A§S= o

The expressions for 150 5 ?I ((3.51), (3.53)) can be
s nv

substituted into (3.65) and the coefficients of

Cos nv set to zero, Thus

?
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O

B, = —i:' rff gRs (3.66)
+ P

[a]
and all other )Bh =0

ec_fn(fo + i cos‘nano().__ __Ag‘p [Z
Swh dno (p-n" (P*'"")’

lew® Rh
(%)
* Z P(QP—\)(P-P'\—\)'.CP‘—W—L)] ( 7)
p=n+

and all odd Ni vanish, The constant term is determined by
mass conservation and is not important in calculating the
velocity or the shape of the interface,

The conformal mapping is singular at the position of
the line vortices. The velocity obtained from the solution
must be finite at these positions., The derivatives of §§I

evaluated at U=¢¢ta , U= -T, (from (3.53)) are

0
T T .
W LD anag, sk AaE (3.68)
bu‘ = S\V\H 9~V\K

o/
)
P—
i
|
™

£ .
. Swih € (3.69)

The velocity components in physical space are determined by
(see Figure 3.2)

A" . g iy - dw(alr L.@:T) (3.70)
1 -

Ll v

I
[VIR{a™
g

7~
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From (3.45), dw- |

= 4 and so using (3.68) and (3.69)
"1-_ RQ SLV\\'\E.
in the limit £ o
_u, = _k— Unt "(1" smh2aos (3.71)
bl"l:l
St
Vo= =L B = -3 AP (3.72)
| R° /2. a f+r—|f'_:‘3

Fﬁ is known from (3.54) and (3.66),

It is now possible to calculate the change in the
shape of the interface, i.,e. &, , From (3.49),

AZ = __/?_9_—-5 -aEO—F V, (Sme + ’%Z- SunGC0$.29>

—_—

i3 Ry 24 E?— 3z
at u= (3.73)

Using (3.51) and (3.47), this becomes

= - l ' z D.no(.o cosAny- + Fos\nu]
! — i
. 3 Ccaslg-l—ll-bmzﬁ)b' Ro g a Ro ‘ ,
2
+ V‘S\V\B[l + (05(9 ] (3-7‘1’)
3os?0 + Usm* B

%
The mapping gives Sw¥= 25\«:9/(3ms’6+us-4’9)7‘and (3.72) and
(3.66) leads to

Dy = - 2 o s =
h (3cos e+usme)”?—R z“ By S (3.75)
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The change in shape, A, , is shown as a function of
® in Figure 3.5. From this it is easy to see that the
oval flattens out., For the Boussinesq approximation this
effect will be negligible (since A, does not depend on g )
and the shape will remain essentially unchanged for small

enough times, The downward velocity is changed by

V= V-3 4 gt (3.76)
AR ER
f S
and the agreement with (3,10) is good. Saffman's medel is
therefore accurate for small times {(the corresponding C
is in this case 1.155).

In the next section, a macroscopic model is developed
which continues the behaviour established here for small
times and it is soon obvious that a detrainment filament
forms at the rear stagnation point, The model is extended

to include the effects of the tail,
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I1T. A MACROSCOPIC MODL

The basic approach in this section is to determine
the vorticity generated by the constant density difference
at the interface making a simple assumption about the inter-
face shape. The equation governing this vorticity creation

in the Boussinesq approximation is

>t g
(]
The problem is considered two dimensional and so II=(ux,uj,dL
C3=(q0)u) where Y4 1is a coordinate in the vertical direction
and ¢ is the angle between the normal to the interface and
the y=-axis. Tollowing Crow (1974), (3.77) is integrated in

a direction normal te the interface,

Y & = :
%E % age_(qx) - E,gcj sva l(€) (3.78)

where ¥ is the strength of the vortex sheet at the inter-
face and { is a coordinate along the sheet. The
tangential velocity to the sheet is given by q . Crow (1974)
considers this equation but negleg¢ts the time derivative.
By considering the full equation, the initial time behaviour
can be found which agrees with the results obtained in the
previous section,

The simplest model is to consider the interface as

circular with radius, V3 R, , where 2R, is the initial
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separation distance between the line vortices. Choosing a

coordinate system fixed with the circle and with the origin
at the center of the circle, the downward velocity is
determined by the requirement that the front stagnation point
has no vertical motion, Thus the vertical velocity component
at the front stagnation point is added as a translational
velocity to keep the coordinate system fixed with the
circular interface., The trailing line vértices may move
relative to the circle,
In more detail, the flow field is considered as

comprising of two parts, that due to the trailing vortices,

™

+ » and that due to the vortex sheet, ay . Figure 3.6

shows the cooxrdinates and variables used, If the vortex
sheet is discretised into equal angular segments, then the
velocity -ag can be calculated by the trapezoidal rule

(see Chapter 2, section III for details). Thus

¥ = Y({,AG) L= O,1, ... N-t | NAB = 3T
and
-
byg = =g 2 Hih gy (5.79)
- . . .1
‘?::,; (DL.L‘-i.S)?-*(‘:,L- 93)
-
u\s & zs_h (i.t‘__ 1) ()080)
3 T ——Jﬁf—"’i—‘—i"#v_
oo (xe-1) w (4i-493)

y=o

where 'h=oA® and a is the radius of the circle ( a=J3'Ro ).
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Figure 3.6
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The downward velocity component at the front stagnation

point is

Ve cup @+ T ssmd et
X‘ﬂ ) T 52 4al- D.S'QLOSHL () )

The circulation of the line vortices is T . V is the
transliationary velocity needed to be added to the vertical
velocity to make the interface stationary. After noting
that Uygs vanishes at the interface, the asimuthal velocity

o the sheet is

9 (9) = Vs + T B swa . S B, (o2 %) i
b &51"' o™t COSM—OH [Bz-r(f‘-‘ 280 cos(HLJrBﬂ ( )

The X; are obtained by using the leap-frog scheme on

N e
€ ((kenyot) = Bi((k-ar) + %[q((m)aew&. (Kkax)
- q(-n2e)¥,., U““ﬂ‘ Aé%&\% (§A9) (3.83)
Due to symmetry ¥ = ¥y=© . In fact, symmetry implies only

half of ¥, need to be calculated, i.e. ¥(xy)« -¥(-x,y). The

velocity components of the line vortices are

.ue: UXS(D"\P) * (V—L"—T;' 4‘) S\v\\// (3.8!1)
Y s
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ur = Uy (6,9) + (V— —T—«——«) cos ¢ (3.85)
4T sm

The motion of the line vortices relative to the circle can

be ecasily followed,

The procedure then is as follows. Knowing the values
of all the quantities at a certain time, an update is obtained
by first using (3.83) to get the new ¥. , then V is
determined by (3.81) and (%.8%), (3.85) means the new
position of the trailing vortices can be calculated, Finally,
(3.82) gives q(8) and the cycle is repeated.

There is an important dimensionless quantity,

p- S () of, (5.56)

which measures the rate of growth of the vorticity at the
interface compared to the circulation of the trailing vortices,
For /3= 0.5 , the downward velocity is shown in Figure 5.7.
As a check on the similarity of the shape, the velocity at
the back stagnation point is shown, It is clear from the
results that fluid will detrain from the circular shape at
the back stagnation point, and so the need for a tail is
obvious, The straight line represents the result (3.76),
showing the model is good for small times at least,

The model is simply modified to allow drainage at the

back stagnation by superimposing a triangular tail region
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onto the circular interface., Figure 3,8 gives the details,

Since the flow is incompressible, mass conservation requires
the circular part of the cell to contract as the tail
develops, The vorticity equation (3.78) and its approxima-
tion (3.83) will still be used for the circular region and
as the radius decreases, U, will be kept constant for
constant angle, LA « The procedure of keeping the value
fixed with the mesh point when adjustments to the shape are
made, is adopted also for the tail, The width of the tail,
which is always calculated to the nearest mesh point, deter-
mines the number of mesh points on the sides of the tail,
since the total number of mesh points is kept fixed, The
same approximation (3.83) is used for the sides of the tail
except sw((AB)  is replaced by smx

However, there is a complication concerning the
vorticity near the vertex of the tail., The vorticity must
vanish at the vertex but the tangential velocity q does
not, Thus vorticity is convected onto the vertex which
contradicts the fact that it is a stagnation point, The
leap~frog scheme is not used at the mesh point adjacent to
the vertex but rather a simple first order difference in
both space and time, Thus vorticity accumulates at this
mesh point and not at the vertex, Since an equal but
opposite amount of vorticity accumulates on the other side
of the tail by symmetry, this accumulation will not have an

appreciable effect on the motion of the line vortices,



R e = e

154

\

)

X
5, - ,
| j;,i//fj/// |

Coordinate System used for macroscopic
model including tail region,

Figure 3.8



155

S5olving the vorticity ceguation is equivalent to
satisfying the dynamics of the flow field., The kinematics
is satisfied as follows, The front stagnation point is no
longer stationary relative to the coordinate system fixed

at the center of the circle., The condition there is now
Ve de - - U (o,-a) - Uyg(o,-a) (3.87)
The change in radius is determined by
da - Up,(a,0) + uy, (a,0) (3.88)

Modifications to the shape are determined by the
balance of mass fluxes. The flux into the tail is estimated

by

2R U (3.89)
where

W = u—p,j (03‘1) + Ug,j (0,0) + VvV {%.90)
The mass lost from the circular region per unit time is

- 2ada s h (5.91)
at a
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liass comnservation implics the approximate cquality of

(3.89) and (3.91).

g - o[- ae (%] (Guoe)

This equation is solved by Newton's scheme for Yy and thus
[N
the width of the tail is known, The height is obtained

directly from mass conservation,
QZ eh + o Hsw Qh = 3 (3.93)

Assuming all values are known at some time level, the
values at the next time level are determined as follows,
The vorticity is calculated by (3.83) for the circular
region of the interface and the appropriate modification is
used for the tail region. The change in radius follows from
(%3.88) and the downward velocity from (3.87). (3.90) and
(3.92) determine the width and (3.93) the height of the tail,
The trailing vortices are moved forward in time by (3.8%4)
and (3.85), and so the procedure continues.

The only time this procedure is not clear 1is before
he tail has developed, TFor small times both W and g% axre
small, malking the determination of the tail width difficult.
An initial expansion in time wusing the procedure outlined,

but without the tail, gives the following,.
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(O 8P oy - - sa@ % 4 I3 < T g
}{3—\_/; .S“ + EZC“ S\V\V\G_t i O(t) (3-94)

n=1I
where <t = Vot and
Ro

o0

Z Ch St n® = __S'.ﬁ_;lﬁg-—-_’_[g— 8S\n19+ ’SSw‘ugj
n=i CL" - 351.\/\‘28}

The other variables have the expansions,

o | (3.95)
I_' )
d _ _— ~

{/:a% 2 _le.,[s Z Coccnall £ o o(€*) (3.96)

n=1
ey 0

v o | ~ 3 Bl ...

. /%.’C % J_;—.[S’[- CN-ZC,. cos:;E}b + O[ch) (3.97)

£ TR[3 o) ) o 0 (u99)
0=t n=| n=|

& = 1+ OF

. ) (3.99)

B~ E + o) (3.100)

It is clear that a second order difference scheme

must be used to calculate ¥, in order that the correct
coefficients in (3.96) and (3,98) will be calculated and
hence that (35.92) will have meaning when solved the first

The (DGQ term in (3.97) has a mmamerical coefficient
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of 0.5 compared to 0,46 from (3,76) and so the model appears

reasonable,

The results are obtained for two values of 3 , [3=0.5
[3=1 . The downward velocity as a function of time is
shown in Figure 3.9, while the position coordinates of the
trailing line vortices are shown in Figure 3,10, The
behaviour seems to be that, initially, vorticity is generated
at the interface which slows down the trailing vortices
descent, but then, as fluid and vorticity are detrained
upwards, the trailing vortices are forced together and begin
to accelerate downwards,

There is one unpleasant feature of the model, The
tail width oscillates rapidly initially but decays to a
steady behaviour at about 'Q%::Lo for 3-0.5, This oscil-
lation does not appear to affect the downward motion of the
cell or the trailing vortices, There is a weak oscillation
in the tail height and this confirms the picture that the
side of the triangular tail does not deviate very far from
the circular arc, The mesh points are thus not being moved
very far and so the influence is weak especially since the
vorticity has not yet grown significantly in value,

As a final check on the model, a numerical calculation
is done based on the method employed by Fink and Soh (1974)
and detailéd in Chapter 2, Section III, Since there is a
creation term in the vorticity equation, circulation is no

longer constant along fluid flow and the procedure to
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incorporate this change in circulation, adopted by Hill
(19755, is followed here. From Bjerknes' theorem, the

creation of circulation at the interface is described by

SRREIEE L

"rjﬁfil’ %vg\we(e) dn df | | (3.101)

1]

1]

where G@) is the angle between the normal to the interface

and the y-axis. This integral can be approximated by
AT = - Atq af h [s;n 0. + sw‘@] (3.102)
3 5, —i j+ J

where N 1is the arclength spacing and 93 is the angle
evaluated at the midpoint in arclength of the - th and jt
mesh point. The method followed is the same as Chapter 2,
Section IIT except that after the redistribution of mesh
points, the created vorticity (3.102) is added to the
convected circulation at the jh mesh point. As Hill (1975b)
found, the results indicated an instability appearing in

the tail region, Using the smoothing technigue as discussed
in Chapter 2, Section III, the numerical method can be
employed for longer times but with probable loss in accuracy.
However, the results confirm the macroscopic model as being
fairly accurate, This is illustrated in the first place by

comparing the downward velocity as shown in Figure 3,9 for
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3= 0.5 , and then by the series of profiles of the inter-

face as it evolves in time, as shown in Figures 3,11 and
3.12. In the results for the numerical scheme shown in
Figure 3,12, there appears to be an attempt for the vorticity
in the tail to roll up into another vortex pair., The
smoothing introduced unfortunately prevents the description
of any details, The dimensions of the interface agree well
with the macroscopic model, Thus the macroscopic model is
reasonable in describing the large scale motions of the wake,
The limiting factor on this model appear to be that, when

the vorticity reaches the same order of magnitude of the
circulation of the trailing vortices, the discretisation
begins to fail, For [3:=0.5 , this occurs at about b=¢4§§ .

This is due to the tail width reaching the size of the radius

of the circle and is an obvious failure of the assumed shape.
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The numerical results for the motion of the circulation cell based on the method of
Fink and Soh (1974), There are 41 vortex points along the interface, Time step =
a1 R AL

Fizure 3.12
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Chapter 4

Laser anemometer measurements of trailing
vortices in water '

By G. R. BAKER, S.J. BARKER, X. K. BOFAH
AND P. G. SAFFMAN
Craduate Aeronautical Laboratories, California Institute of Technology, Pasadena

A series of measurements of trailing vortices behind lifting hydrofoils is
described. These measurements were made in the Caltech Free-Surface Water
Tunnel, using a laser-Doppler velocimeter to measure two components of
velocity in the vortex wake. Two different model planforms were tested, and
measurements were made at several free-stream velocities and angles of attack
for each. Velocity profiles were measured at distances downstream of the model
of from five to sixty chord lengths. These measurements are the first results
of a continuing experimental programme.

In §3 of this paper, the theory of trailing vortices is discussed. The effects of
‘vortex wandering’ upon the measurements are computed, and the corrected
results are seen to be in reasonable agreement with the theory.

1. Introduction

There have been numerous recent attempts to measure velocities in trailing
vortices, stimulated by interest in the problem of aircraft wake turbulence.
Several types of measurements have been made to date. There have been free-
flight measurements (Caiger & Gould 1971; Chevalier 1973), in which one air-
craft follows another to measure velocities in its wake. These have not yielded
accurate results because of the difficulty in locating the vortex cores. There have
been wind-tunnel measurements of stagnation pressure (Mason & Marchman
1972), but these are subject to doubt because of probe interference effects. It is
questionable whether any material probe can be placed in the core of a small
trailing vortex without significantly disturbing the flow. There have also been
measurements in tow basins of velocities in the unsteady decaying vortices
(Miller & Brown 1971; Lezius 1973). In this case the flow is time dependent,
which makes the mean velocity profiles in the vortices difficult to determine.

The only existing measurement technique which can guarantee no disturb-
ance of the flow with high spatial resolution is laser-Doppler anemometry.
Recent laser-Doppler velocimeter (LDV) measurements of trailing vortices in
a wind tunnel have been reported by Orloff & Grant (1973). In the present
experimental programme at Caltech, an LDV is being used to measure axial
and tangential velocity profiles in trailing vortices in a water tunnel. The water
tunnel has the advantages of high Reynolds numbers at relatively low speeds,
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and the presence of sufficient light-scattering particles in the water to produce
& nearly continuous Doppler signal without ‘seeding’ the flow with foreign
particles. The ease of flow visualization in water makes it possible to measure

photographically the position of the vortex and its degree of ‘wandering’,
which will be discussed in §3.

2. Experimental programme
2.1. Test facility

The Caltech Free-Surface Water Tunnel has a test section which is 51 x 51cecm
in cross-section and 244cm long. The maximum flow velocity is 730cm/s.
Velocities between 200 and 300 cm/s correspond to Froude numbers near one and
therefore are not usable. The free-stream turbulence level of the tunnel is about
0:5%,. For a complete description of this facility, see Knapp & Levy (1948).

The two hydrofoil models used in this study have a span of 15:-2c¢m and a
chord of 2-46 em. Both have a symmetric semicircular are profile, with a maxi-
mum thickness of 0-35em and a leading-edge radius of 0-08cm. One of the
models has a rectangular planform and the other has a planform with semi-
circular tips. Both models are mounted horizontally in the tunnel section by
means of a thin vertical support strut attached to the centre of the span of the
model. Above the water surface, the vertical strut is attached to a mechanism
which controls the angle of attack and depth of the model. The model is located
near the upstream end of the test section so that measurements can be made at
distances of up to sixty chord lengths downstream. (See figure 1.)
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2.2. Laser-Doppler instrumentalion

Use of a laser-Doppler velocimeter (LDV) has several important advantages
over conventional techniques in this experiment. Perhaps the most significant
is the fact that there is no material probe in the fluid flow, and hence no flow
interference. Flow visualization studies suggest that trailing vortices are
extremely sensitive to disturbances created by even very small probes. Other
advantages of the LDV are its linear response to velocity, its small measuring
volume and the ability to measure cne velocity component independently of
the others. _

The LDV used in this experiment is mounted on a traverse which moves the
entire optical system with respect to the water tunnel. This LDV operates in
the ‘local oscillator’ mode, whose principle will be described here very briefly.
The beam from a 5mW helium-neon laser is split into two parallel beams by
a glass-prism beam splitter which uses partial internal reflexion of the incident
beam. One of the beams emerging from the prism is weaker than the other, and
this beam is further attenuated by a factor of 100 with a neutral density filter.
Both beams then pass through a biconvex lens of focal length 30cm. The two
beams cross at a point within the fluid flow as they pass through the test section.
On the other side of the tunnel, the weaker beam passes through an aperture
1mm in diameter and enters a photomultiplier tube. Here the light from the
weak ‘reference’ beam is mixed with light from the brighter beam which has
been scattered from the volume in which the two beams intersect. This scattered
light is Doppler shifted by the motion of the scattering particles, which are
assumed to move with the local fluid veloeity. Thus the scattered light has a
slightly different frequency from the reference light and the combination of the
two produces a beat frequency in the photomultiplier tube. This beat frequency
is directly proportional to one component of the fluid velocity. For a more
thorough explanation of the LDV principle, see Goldstein (1967), Adrian (1972)
or Wang (1972).

The beat frequency from the photomultiplier is amplified and band-pass
filtered to remove noise outside the frequency range of interest. The signal is
then further amplified and clipped to eliminate most of the random amplitude
modulation of the raw Doppler signal. The clipped signal is fed into a phase-
locked loop, which produces a continuous square wave of the same frequency as
the Doppler signal. The phase-locked loop reduces the effect of momentary
signal dropouts which are caused by fluctuations in the number of scattering
particles in the focal volume. The phase-locked loop can be used in the LDV
system as long as the turbulence level does not exceed 12 9,. At higher turbu-
lence levels, it cannot accurately track the fluctuations of the Doppler
frequency.

The square-wave output of the phase-locked loop is fed into a digital counter
which averages the Doppler frequency over a 10s period. The counter frequency
is then converted into a velocity averaged over the same period. The square-
wave signal also goes to the input of a frequency-to-voltage converter (Anadex
model PI-408R). This device produces an analog voltage proportional to the
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Doppler frequency and thus to the velocity. The converter averages the fre-
quency over about fifty periods, so that the resulting instantaneous velocity
signal has a bandwidth of from 0 to 4 of the Doppler frequency. The velocity
signal is fed into an r.m.s. voltmeter to measure the turbulence intensity.

The accuracy of any LDV system is limited by what is known as ‘ambiguity
noise’ (George 1972). This is a broadening of the Doppler signal spectrum, or
noise on the demodulated velocity signal, which has three causes: (i) mean
velocity gradients across the LDV focal volume, (ii) turbulent fluctuations
within the focal volume and (iii) the finite time of transit of seattering particles
passing through the focal volume. Ambiguity noise limits the accuracy of
measurements of velocity fluctunations, but has no effect upon mean velocity
measurements. For the focal volume used in the present experiment, which is
approximately 1 x 0-05 x 0-05 mm, the noise produced by (ii) is negligible. Noise
from (i) may be significant in the high shear region in the core of the vortex, but
a more important cause of measured velocity fluctuations in this region is the
‘vortex wandering’, which is discussed below. Noise from (iii) will be the same
in laminar as in turbulent flow for a given focal volume, and has been measured
in the laboratory. This component of the ambiguity noise is equivalent to a
turbulence level of 0-25 9, which is thus the resolution limit of the system for
velocity fluctuations.

2.3. Experimental results

The present series of measurements included axial and tangential velocity
profiles in the vortex wakes behind two different model hydrofoils at distances
of from five to sixty chord lengths downstream. The axial velocity component
was measured directly by aligning the LDV with the free-stream flow. To obtain
the tangential component, the velocity component at a 45° angle to the free
stream was measured with the LDV, and this was used together with the axial
velocity to compute the tangential velocity.t Velocity traverses at each down-
stream station were made in the horizontal plane, starting well out in the free
stream and proceeding inwards to a point past the centre of the span of the
model. Each mean velocity measurement represents a 30s average, which was
found to give extremely repeatable results. '

Figure 2 shows typical velocity data for the model with square tips. Shown
on this figure are axial and tangential velocity profiles for two values of z/c
(distance downstream divided by chord length), and profiles of the axial fluctua-
tions. Flow visualization studies suggest that these measured velocity fluctua-
tions may be caused primarily by the random motion or wandering of the
trailing vortex about the measurement point. The velocity gradients near the
core of the vortex are high, so that the relatively small motions of the vortex
can produce large velocity fluctuations. The degree of vortex wandering and its
effect upon the measured velocities will be discussed in §3.

4+ The tangential component could not.be measured directly by aligning the LDV at
90° to the free-stream flow, because the mean tangential velocity passes through zero at
the centre of the vortex. The LDV measures the magnitude but not the sign of the velocity,
so that velocities with near zero mean are very difficult to measure unless frequency
biasing is used.
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(b) Axial velocity defect (lower points) and fluctuations (upper points).

The repeatability and small scatter of the data in this experiment show that
the use of the LDV in a water tunnel is a practical means of measuring velocities
in trailing vortices. The next step in this experimental programme will be to
find to what extent the vortex wandering phenomenon is caused by free-stream
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turbulence. This will be done by reducing the turbulence level of the water
tunnel below its present value of 0-59, with the use of additional flow
straighteners.

3. Theory and analysis
3.1. Trailing vortex theory

We now compare the experimental data with the available theory. Moore &
Saffman (1973, hereafter referred to as I) have recently given a theory for the
structure of laminar trailing vortices. For the case where the wing loading
varies like the square root of the distance from the wing tip, the tangential
velocity: near the centre of the vortex is given by

i o(r,x) = AUE) r(dve[Uy)—E M (}; 2; — Upr2fdv). (1)
Herer 15 the radial distance from the axis of the vortex,  is the distance down-
stream of the wing, v is the kinematic v;scomty, U, is the free-stream velocity or
speed of the wing and M is the confluent hypergeometric function (Abramovitz
& Stegun 1965, p. 503). The quantity £ is related to the wing loading and
mechanism of roll-up. We shall use the estimate, which incorporates a correction
for finite aspect ratio exact for elliptic loading,

p=Geg(1+5) @

with o measwred in radians, where cis the chord length and b the span. This value
corresponds to an elliptically loaded thin wing, the root section having a lift
coefficient of 27c, with the ‘contraction factor’ A set equal to 1-5. (See I for
further details, but note that a larger value of £ was used there for comparison
with Olsen’s (1971) towing-tank data, corresponding to the solution of the lifting
line theory equation for a semi-infinite rectangular wing. The present experi-
ments indicate that (2) is a better estimate, as should be the case for an aspect
ratio of 6.)

The radius »; of the vortex core is defined as the value of  for which » is a

maximum: .
= 2:0%(va/T)L. (3)

The maximum tangential velocity v, is given by
v, = 0-498(vx/Uy) . (4)

The axial vorticity £ on the axisis 20v/ér evaluated r =0, and is given by
Q) , (vo\E
= —_ H
2% B (UD) ’ (5)

The axial velocity u(r, ), measured relative to the free stream, is the sum of
two termas. The first term u,,is due to the pressure field induced by the roll-up and
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decay of each trailing vortex. The second term u; is a velocity defect due to
retardation in the boundary layer (of thickness §) on the wing. Thus,

u(r, x) = u,+u;

_ p% v\t 55 Va:)—'% 1. .= Upr®

- (5) w0t (z) M (._,,1, el ) (6)
W, is a function of Uyr?/4vz. It can be expressed as an integral of confluent hyper-
geometric functions; a plot is given in I, figure 3(a). Note that W (0) = —0-13,

W, is positive for r > 1-4(vax/Up)t and W, ~ (vz[U;r*)} for large values of the
argument. The flux deficit per unit span in the boundary layer is U, 8. The above
expression is for a rectangular wing, for which ¢ is assumed independent of the
spanwise station. In Iit was assumed that & is given by the momentum thickness
d, of a Blasius boundary layer, i.e. 8, = 1-33(vc/U,)}. However, arguments were
given [see I, paragraph following equation (3.29)] that the displacement thickness
might be more appropriate for the axial velocity on the axis of the vortex, i.e.
8, = 3-44(vc/U,)E. The velocity on the axis is written as AU, where
2 3 3

AU:AQ,+AU3=—0-13%’(%) —on(%) : (7)
Here y = 0-28 or 0-72 depending on whether the momentum or displacement
thickness is used in estimating the boundary-layer retardation.

3.2. Vortex wandering

These predictions cannot be compared directly with experiment because the
vortex is observed to wander in a random manner. The measured profiles are
time averages at positions fixed relative to the wing, and are therefore weighted
averages of the instantaneous profiles (1) and (6). It is believed that the vortex
wandering is due mainly to free-stream turbulence, so that the predictions can
be corrected for the purpose of comparison with the experimental data.

We expect the turbulence to be equivalent to an eddy diffusivity x. Then the
axis of the vortex will luctuate randomly about its mean position in a transverse
plane at given x with a probability density

2(n,&) = (1/2no?) exp [ — (9* + {*)[20%), (8)
where o = U, (9)

We have determined « in an approximate manner by enlarging photographs of
a vortex marked with dye and measuring the mean-square displacement of the
axis. There is considerable scatter, but this procedure gave values for the ratio
v/k of about 0-4 for T; = 30 em/s and about 0-2 for U, = 90 cm/s.

We assume that the theoretical profiles (1) and (6) are valid instantaneously
relative to the instantaneous position of the axis. Then observed quantities are

1 The same degree of wandering was observed for a stream of dye released from the
model in a zero-lift configuration. Preliminary measurements with reduced free-stream
turbulence showed significantly less vortex wandering. Far downstream, somne wandering '
may be due to the mutual instability of the two trailing vortices, but estimates of this
effect suggest that it is negligible for the present values of xfe.
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Ficure 3. Effect of vortex wandering on core radius, maximum tangential
velocity, and axial velocity on the mean axis.

averages, denoted by overbars, over the wandering of the vortex axis. Thus for
the axial velocity

(. z) = f f wl{(r—7) + Gk, 2} p(, €) dn L (10)

and for the tangential velocity

w9 = || o =+ Chalpn O dn g, (1)

where r in these expressions is measured from the mean position of the axis. The
extra term in (11) arises from the need to incorporate a geometrical factor.

Substituting for (7, {) from (8) and for » and » from (6) and (1), the integrals
can be reduced to single integrals involving modified Bessel functions and con-
fluent hypergeometric functions, which can be put into dimensionless form as
functions of a/c, U,r?/vx and v/k. These integrals can be evaluated by standard
techniques; details of the calculation are available from the first listed author.

The effect of vortex wandering is to broaden the profiles and reduce the magni-
tude of the variations. In figure 3 we show values of the ratios 7,/r; and @/, as
functions of »/x. We define 7; as the value of r for which % attains its maximum #,.
We also show the contributions AU AU, and AU/AU; to the axial veloclty on the
mean centre-line.
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3.3. Comparison with experiment

We expect k to be a function of the tunnel Reynolds number, but since the esti-
mate is rough, the refinement of employing different values for different tunnel
speeds is uncalled for at the present stage. We have therefore used one typical
ralue of theratio v/«, namely 0-25, in the comparisons between theory and experi-
ment shown in figures 4-7. There does not seem to be any significant difference
between the two model hydrofoils.

Figure 4 shows predicted and measured values of 7, R}/c, where R, = U, cfv, as
a function of (z/c)t. Both the predicted values averaged over the vortex wander-
ing (forv/k = 0-25) and theinstantaneous predictionsareshown. The experimental
values of 7, are given by half the distance between the tangential velocity peaks.
The agreement is reasonable in view of the experimental uncertainty in measur-
ing 7, from data such as those shown in figure 2. In addition, the experiments
show a lack of circular symmetry in the vortex structure, which is expected on
theoretical grounds from detailed studies of the roll-up process (Saffman 1974),
but cannot at present be incorporated in the analysis of the vortex structure
given in I. We emphasize that v/x was chosen on the basis of an independent
measurement of the free-stream turbulence. The effect of vortex wandering upon
the data is seen to be very significant.

Figure 5 shows 7, B; /U« as a function of (z/c)~1. The estimate of equation (2)
for £ was employed. Both values averaged over the vortex wandering and
instantaneous values are shown. The agreement is again reasonable except that
thereis a tendency for the theory to overestimate the velocity and axial vorticity,
particularly for small values of f¢. In this connexion, it should be kept in mind
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that the theory is an approximation formally valid in the limit of light loading
and/or large downstream distances. Radial velocities in the cores are neglected,
and these will be most important close to the wing. Also, our choice of £is not free
from uncertainty.

Tigure 6 shows the axial velocity defect. We have plotted (AU/U,) (x/c) vs.
o2R? (¢fb) (1 + 0-5mc/d)—2. There is some arbitrariness in the choice of §. It appears
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Corrected for free-streain

Uncorrected turbulence level of 19,
r e A l ! iR + A
zfc 8 =46 8, 8, 8,
10 0-0625 0-031 0-063 0-0325
60 0-0255 0-0125 0-0275 0-016
Tasre 1

that §, is marginally better than §,. The instantaneous value of AU is shown with
6,. The agreement is encouraging, and demonstrates again the importance of
allowing for vortex wandering in the interpretation of experimental data. In
particular, the slope of the theoretical line is reversed, and excess average
velocities are predicted at the centre of the vortex when o2R} > 8-9 x 10, using 8,
for the boundary-layer retardation with bf¢c = 6-18. In this flow there would be
a largeinstantaneous axial velocity deficit as measured, say, by flow visualization
techniques. The data from figure 4 of Orloff & Grant (1973) fall on the extrapola-
tion of the curve representing averages over the vortex wandering shown in
our figure 6, using 8,, for abscissa values of about 100. The value of v/« of 0-25
determined in the present experiment leads also to predictions of tangential
velocity consistent with the data of Orloff & Grant’s figure 3.

Finally, we have computed the apparent turbulence intensity of the axial
velocity due to vortex wandering. We calculated

o) = [[o—ar+erapsm o ande, (12)
using the profile of (6) in the integrand. Then the apparent turbulence intensity is
@)Uy = {u¥(r, @) = [alr, &) PR/ Uy, - (13)

The predicted turbulence levels on the mean axis are shown in table 1 for the
experimental case of figure 2. The second set of values in table 1 has been cor-
rected for a free-stream turbulence level of 19, assuming statistical inde-
pendence.

Since the measured values of the turbulence level shown in figure 2 do not seem
to depend upon z/c and the theoretical predictions behave as (z/¢)~#, there cannot
be complete agreement. However, since the theory is likely to be more valid for
z[c = 60, we see that the predicted value there of 0-0275 using J, is close to the
experimentally measured value.

The authors are indebted to the U.S. Air Force Office of Scientific Research
for their support of this work.
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