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.iii. 

STliDIES IN VORTEX HOTION 

ABSTRACT 

This thesis covers four di~ferent problems in the 

understanding of vortex sheets, and these are presented in 

four chapters. 

In Chapter 1., :free streamline theory is used to deter-

mine the steady solutions of an array of identical, hollow 

or stagnant core vortices in an inviscid, incompressible 

fluid. AssumiD.g the array is symmetric to rotation through 

11 radians about an axis through any vortex centre, there 

are two solutions or no solutions depending on whether p,'l'/L 

is less than or greater than 0.3~ "ihere A is the area of 

the vortex and L is the separation distance. Stability 

analysis shows that the more deformed shape is unstable to 
• 

infinitesimal symmetric disturbances which leave the centres 

of the vortices undisplaced. 

Chapter 2 is concerned with the roll-up of vortex 

sheets in homogeneous :fluid. The flow over conventionaland 

ring wings is used to test the method of Fink and Soh (1974). 

Despite modifications which improve the accuracy of the 

method, unphysical results occur. A possible explanation 

for this is that small scales are important and an alternate 

method based on 11Cloud-in-Cell 11 techniques is introduced. 

The results show small scale grmitb and amalgamation into 

larger structures. 
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The motion o:f a buoyant pair of line vortices of 

opposite circulation is considered in Chapter 3. The density 

difference between the fluid carried by the vortices and the 

fluid outside is considered small, so that the Boussinesq 

approximation may be used. A macroscopic model is developed 

which shows the formation of a detrainment filament and this 

is included as a modification to the model. The results 

agree well with the numerical solution as developed by Hi.ll 

(1975~and show that after an initial slowdown, the vortices 

begin to accelerate downwards. 

Chapter 4 reproduces completely a paper that has 

already been published (Baker, Barker, Bofab and Saffman 

(1974)) on the effect of "vortex wandering" on the measure­

ment of velocity profiles of the trailing vortices behind a 

ldng. 
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Chapter 1. 

The Structure and Stabili.ty 

of a Hollow Array of Vortices 

I. INTRODUCTION 

The work that is presented in this chapter arose 

mainly from an attempt by Moore and Saffman (1975) to under­

stand the organised vortex structures in a turbulent mixing 

layer. It has been expli.ci tly pointed out by Winant and 

Brownand (1974) and Brolin and Roshko (1974) that these 

structures are a result of a continual process of vortex 

amalgamation. Moore and Saffman (1975) noted that the 

straining fields induced by a regular array of vortices of 

finite cross-section become large as the spacing between 

the vortices decreases, and could provide the mechanisms by 

which vortices disintegrate and amalgamate. In their uork, 

Moore and Saffman (1975) rely heavily on an exact solution 

for a single vortex, with constant vorticity in its core, 

in a uniform straining field (Moore and Saffman (1971)), 

and extrapolate to the case of a regular array of uniform 

vortices. 

This chapter analyses the case of a regular array of 

hollm'l or stagnant core vortices in perfect fluid where the 

vorticity is concentrated on the surface of the vortices. 

Tbe steady flow field can be found exactly by means of free 

streamline theory. Al.l the vortices are identical and lie 
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eve.nly spaced along a straight line. lfi th the array charac-

.£J'/,./L n terised by the number P lvbere r1 is the area of a vortex 

and L the distance behieen vortices, there are two steady 

solutions for a given A
11
-.../L L o. '3~ • In the limit A'h/L-t;.o, 

one solution describes an array of circular vortices with 

t heir separation distance much greater than their radius, 

lthile the other approaches the limit of a vortex sheet. 

This non-uniqueness makes the stability of the solutions 

important. It is shown that the more deformed shape is 

unstable to two-dimensional, periodic, symmetric disturbances 

which leave the centres undisplaced. 

Thus this analysis provides direct verification of 

the idea that there is a minimum separation distance for an 

array to exist. Further, the case of a single, hollow or 

stagnant core vortex in a straining field has been calcu-

lated (Hill (1975~), and so the validity of an extrapolation 

from the results for a single vortex to predictions for 

arrays can be explored analytically. 

The details of this work are presented in four 

sections and an appendi.x. Assuming only reflectional sym­

metry, it is shown in Section II that there must in fact be 

fore and aft symmetry and that the vortices must be convex. 

The two steady solutions are obtained in Section III lvhile 

their stability to two-dimensional, periodic, symmetrical 

disturbances is examined in Section IV. Further work j_s 

needed to study the more general stability associated with 
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displaced centres. This would in fact be determining 

whether the Lamb instability for an array of point vortices 

disappears i~ the cores have finite cross-section. Hill's 

( 1975o..) 1vork is summarised :for completeness in Section V. 

Also in this section is the discussion pertaining to the 

relationship between the array and the single vortex in a 

straining :field. The proof that the symmetry assumed by 

Hill (1975~ is in fact required in order for a steady solu­

tion to exist is presented in the appendix at the end of 

this chapter. 

The problem lias studied jointly with J. s. Sheffield 

and the essence of the chapter has been published by Baker, 

Sheffield and Saffman (1976). The author's particular 

contribution appears in Section II and a large part of 

Section IV, especially the determination of the difference 

equation governing the Fourier coefficients of the infinites­

imal disturbances i n the stability analysis, and the appendix . 



II. PROOF' OF' FORE AND AF''l' SYr•.IMETllY 

}vhen approaching the problem of determining a 

solution for the array of hollow vortices, a natural question 

arises about the symmetry of the flow field. It will be 

shown in this section that the steady solutions which are 

symmetric to rotations through tr radians about a vortex 

centre are also symmetric about the y and x axes (see Figure 

1.1a for the definition of coordinate system). The vortices 

are considered to have the centres equally spaced along the 

x-axis. The flow is steady and so for hollow or stagnant 

cores, the boundary condition of constant pressure on the 

vortex surface means that the velocity has a constant magni­

tude, 9o , on the vortex surface. The circulation, r , of 

each vortex is related to 9o by 

-r == -p 9o ( 1.1) 

where P is the perimeter. At large distances the array looks 

like a vortex sheet of strength 2.U.o, where 

( 1.2) 

The array is characterised by a dimensionless ratio 

IV - -
2L 

( 1. 3) 
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Introducing the complex variable -l::: :X:.+~'j , the complex 

potential w = </J+i..f , the complex velocity 

LL-1..'V = dw 
c\=t. 

and the hodograph variable 

(1.4) 

(1.5) 

a solution is found in terms o:f a relationship between .f't.. 

and w • 

The potential plane is as shown in Figure 1.1b. The 

boundary of the vortex must be a streamline and is chosen to 

be • There will be constant potential curves of 

unkno1ill shape passing through the stagnation points B, E. 

Knowing the direction of the velocity along the potential 

curves establishes the variation of • However, the period-

icty of the array requires the velocity to be the same on 

corresponding points on EF, BA. Along BC, ED the magnitude 

of the velocity must be the same at corresponding points. 

~~f must satisfy Laplace's equation and this i s 

also true :for their derivatives. Since the potential anti 

stream function provide a conformal transform of the physical 

plane, the velocity must satisfy Laplace's equation in the 

potential plane. In particular 



7 

\/7.'t == 0 (1.6) 

inside ABCDEF, and c satisfies the following boundary 

conditions 

t'=O (1.7} 

(1.8) 

(1. 9) 

At the stagnation points, 
Yz. 

B,E , dw ,.... (w-wo) where 
a 

we is the potential there, i.e. W 0 = :t ~ +~lfo • Subtracting 

this singular behaviour from L , ensures that the remainder 

is an analytic function in ABCDEF and can be determined by 

the technique of separation of variables. Thus consider 

(1.10) 

l~here H satisfies Laplace's equation, the conditions (1.7), 

(1.8) and is bounded on the strip. The above form meets the 

requirements of the solution since, in the first place, it 

is symmetric in ¢ 1~i th period l1 , and secondly its 
~ 
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behaviour at the stagnation poi nt, B, is (let £,. w -1' -~lj.-0 ) 

Lf-

Finally as '-P -t> _ oo , 

O(e 4Tff/"P) ,..._, - lo<j R + 

and so ( 1.9) is satisfied. 

'l'he solution :for H is noli straight:fo:nvard; 

00 

4Tntplr( . ) e. R Sin 411~ + B.,c.o-:, 411~J 
" )1 1' 

n.-:::0 

The remaining condition, (1.7), gives 

00 

(1.11) 

(1.12) 

(1.13) 

( 

"l . 1. 
- \ oc:\ ;;tR - l..lo J co~ 'J.ifs/> + ';;IV)~ ~Titf) 

a T' ., 
+ I ( A.., S;Vl [ill..,p 

o.:o T' 

+- BY) c.os 411Vlp) = o , 
It is immed iately ob v ious that 

( 1.1':l) 

A..,= o , -Y- n. , and the 

Bn are all unique ly d etermine d . I n particular, 6 -= 0 
0 

This gives 
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Wq. 

J...f loQ (<.e~2 ~ + S1_;.,~2. ~lTl/-0 ) dc/J -:: 0 
1' J I' T' 

(1.15) 

-1'/4 

Substituting and de:fining 

becomes 

ll 

lo"j~R- ~ lo~ a + ~l\ .f \o'3 ( b+ CD~ 9) d8 ::: 0 (1.16) 

-1T 

or 

(1.17) 

Finally, 

(1.18) 

Since b~l , this implies R ~ \ • 

streamlines must be even in ~ , i.e. symmetry about the 

y-axis. Symmetry about the x-axis :follows :from reflectional 

symmetry. Although the solution is now known it is in a :form 

(:fourier series) which is di:f:ficul t to analyse. 'l'he r:ext 

section provides a solution in a more understandable :form. 
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III. DE'l'ERHINATION OF SOLU'fiONS 

Using the established symmetry, one is nolv able to 

draw the physical plane as in Figure 1.2a. Using the defi­

nitions l...l = </:H· l..'/1 and ( 1.L1-5) as bef ore, the potential and 

hodograph planes c an be drawn as shown in Figures 1.2b and 

c. e is cle:f i ned by e = arctan :y:: 
l..l 

and -lT ~ e ~ lr • It 

is not immediately obvious that the curvature of the boundary 

at D should be convex but recall that R 6. I means U.~ ~ q
0 

and that LL cannot have a maximum along DE except at D or 

E (as a result of the well-known maximum modulus theorems 

for analytic functions). 'fhus 't > o • 
The Schl'larz-Christoffel transformation 

(1.19 ) 

maps the interior ABCDE of the potential plane onto the 

upper half plane of the ~ =- 5 + ;_'? plane. The definition, 

, is the branch used through-

out this section and the principal branch is used. for the 

log function. It is easy to show (1.19) is the mapping 

required by considering t; = ~ > \ , then ( ~ + I )Y1., (~ - I) YL.. 

are both real and w is purely imaginary. At 'S -= I , ~= 0 

and, since 

(1. 20 ) 
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' A I 
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Figure 1.2 

a} The physical p lane, 

::z: :: :X..-+ '-'j 

b) The potential plane, 

w = cP + '--tf 

c) The hodograph plane , 

-rL -= 't'"'" t. e 
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then • This means CA is mapped onto t; = s 
' 

w·ith C at A at ~ == oo • The point B w-ill 

lie along this line, at 5= b say. 

For -I ~ 'S f. I , (1.19) gives w =- - 1' e ' lvhere 
;t1T 

tan @ == - ( I - S ll./ ( I + ~ l._ and -:!_L.!9L0 • Thus the line 
~ 

CD is mapped onto -I f: ~ ~ I with D at ~ = -I • 

For sf-1 , (1.19}becomes W-:P+~1'1ojl(1-s)'h. 
4 ~TI L 

-(-S - 'f]-~illcag2. At ~=-1, W=T... as required and since~ )O 

4~ + ~s 

as 5 -D - oo > If' -I';> - oo • Thus DE is mapped onto s b -I • 

The :fact that the interior goes into the upper hal:f plane 

is an obvious result o:f having evaluated the multivalued 

:function with a small positive imaginary part :for 4 i.vhen 

necessary. 

Nolv J2. can be mapped onto the same region o:f the 

plane by the :follouing transformation, 

(1.21) 

(1.22) 

This mapping is checked by considering ~ -=- S '> b , then the 

square roots are real but ( b-1 )'h.( S+ I)Y' '- ( b-r t}y'-($- If~ and the 

argument o:f the log functi on must be evaluated correctly 

i.e. by giving a small positive imaginary component to ~ ' 
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then has a 

small negative imaginary part, '"here and 

l 
·~..e+ 

~-\-= 14-l e. • 

(1.23) 

As 5-f? oo, (1.23) becomes 

(1.24) 

This 1 imi t corresponds to the point A in the ~ plane and 

so :for 4 to have the correct value at A , one requires 

(1.25) 

or after some trivial algebra, 

(1.26) 

This equation is essentially relating the position o:f the 

stagnant point to R • From ( 1.22) one obtains :for t;-= ~ >b, 

'()l:' L 0 

0~ 
so that as ~ decreases from o(] at A , L" increases 

and reaches 1>0 at 13 • 

For the case where ~: 3 
' 

I L. ~ L b , one finds 



and thus 

(1.27) 

The point C , as determined by 5 -t> 1 t , is mapped to ~ = ~ Tr 
2. 

as required. Now 

increases to oO • 

and so as ~ -D b- , 'L 

The case -I L s L I gives {/,. = ·~..lT- ·Le 
( )

Yz, I y._ ( Y1. 2 
\-~ i (b-1) It~) and e gOeS from 0 to 

where -+o.va e :: - (b + t)~ 

-11 as ~ goes from 
l. 

-1 to 1. Thus C]) is mapped as required. 

For ! '- - I , the expression ~(b-111·{- s-l)'h_ ~(k>+\f(, -!,fis 

a negative imaginary number and so 

(1.28) 

Clearly as ~ ;;. -1 , .Q -f/ ·Jf and as s--f:> - 110 

' 
by (1.25), and so the mapping achieves the 

required resul t. 

There is thus a relationship between w and [), through 

the common 4 plane. From (1.4) and (1.5), 

(t.29) 



15 

The physical plane follows from integrating 

dt clw = 
dw elf? (1.30) 

Substituting (1.20) and (1.21) into (1.30) leads directly to 

(1.31) 

However, it is the shape of the vortex that is most inter-

esting and so consider ~-= ~ , -I == ~ b r , then 

(1.32) 

or equivalently with r (S) = x(~) + i.. Y(S) , 

ctX - ': 

c\~ 

The transformation, ~ 

With X -= a at /\. = o 

, allows direct integration. 

, Y = 0 at /\ -= 1I' , corresponding to 
2. 

the centre of the vortex bei.ng chosen at the origin, 

\there o ~ .A ~ ~lf describes the complete perimeter. As 



16 

R --*> o ' 

(1.35) 

which is a parametric representation for a circle. As 

R-t:> I' 

) 
y -t> 0 (1.36) 

and the shape has the appearance of a slit. From (1.18), 

one knows 0 ~ R ~ I and so the two cases are limiting forms. 

The perimeter P is ~R.L and is a measure of the 

deformation of the shape. The area has to be found numer­

ically. The results are shown as a curve, P/~~ versus 

a'h.j L rr in Figure 1.3. From this curve it is seen that 
'hi for a given P. /L there are two or no solutions depending on 

'h./ 'lfhether f\ L is less than or greater than 0. 3g respectively. 

An interesting problem presents itself in determining what 

happens to the array when The stability of 

these solutions is important and is considered in detail in 

the next section. 
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IV. STABILITY OF THE SOLUTIONS 

The prime purpose of this section is to examine the 

stability of the hollow vortex to infinitesimal disturbances 

of its boundary which have reflectional symmetry. Displace-

ments o:f the vortex centres which could result in an instability 

o:f the array of the type considered by Lamb (1932, § 156) 

:for point values are not considered and is left as a subject 

for :further study. To this end, one needs to consider only 

the region as shown in Figure 1.1a. 

Only the hollow core vortex is being considered :for 

the sake of simplicity, since the requirement of constant 

pressure at the vortex surfaces enables a simple treatment 

of the dynamic boundary condition. The stagnant core vortex 

would have to be considered separately, because of core 

motion, and is not studied here. 

The easiest plane in which to do the analysis is the 

undisturbed potential plane ( </>, tp). If one defines the total 

potential as ¢ -t p , then 

= 0 (1.37) 

and 

(1.38) 
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The perturbed surface is defined by ""'-= b(<P.)t) • 

Before treating the kinematic and dynamic boundary 

conditions, one needs to know the scale factors for the 

curvilinear coordinate system ( cP ,<jJ ) • Since 

(1.39) 

(1.40) 

and 9 is a function of 9:>, '-P as determined by the unper­

turbed solution. 

The kinematic condition, with ~ having components 

( U.J'\J") in the potential plane, is 

(1.41) 

This becomes (see Horse and Feshback (1953, Section 1.3) 

for a treatment of curvilinear coordinates) 

(1.42) 

(1.42) can be linearised for infinitesimal disturbances by 

writing 
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1~here the overbar refers to undisturbed velocity components 

in the potential plane. To first order in perturbed quantities, 

(1.42) becomes 

+ 92. ';)'b = 
0 ?J<j; 

The equation of continuity, 

(1.45) 

evaluated at '-V = o to lo1~est order, 

(1.46) 

determ1. nes ov • Of course, .-: 9 a constant "'"nd ""-'= 0 , ' ........ 

~ 
v~ o and so (1.46) is 

Thus (1.44) becomes 

The dynamic c.ondi tion is handled similarly. Choosing 

the pressure to be ~ = 0 inside the core gives 
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(1.49) 

Expanding to include only ~irst terms in perturbed quantities, 

(1.50) 

Considering \/x..V..:: o at I.J1 = o , determines oli.. • To low·est 
'?If 

order, 

_Q_(u_) ":: ~ ( v) ::.. 0 (1.51) 
()¥-" 9 -o¢ 9 

or 

, oU. :=. ~~ (1.52) --
9()<>lJ; 9o ?:>~ 

From the exact solution as ~ound in the previous section 

((1.20), (1.22)) 

(1.53) 

= 

(1.54) 

There~ ore at the boundary, iJ-= s , -\ f= ~ !:. I , and 
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From (1.19), cP-= ~o'l"<.-tQ..V?~I-~)'hj(l+~)'tj, or 

tp-:::: o • Thus (1.50) becomes 

(1.55) 

~ -= coo:. 4\Trp along 
I' 

(1.56) 

The equation (1.37) and the conditions (1.38), (1.48) and 

(1.56) form the system to be solved, but before doing this 

some other conditions can be checked. Mass conservation 

requires to first order 

(1.57) 

() 

The circulation -r remains constant. Since 

"fh. 

r ~ ~s cu+V~9) ~) (1.58) 

0 

expanding to first order gives 

a.-t ~ = o. (1.59) 

This is satisfied after recalling (1.51). 

To proceed "tvi th the analysis, <p and S are expressed 

in Fourier series 
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00 
1<\nl'f 

<£ r_ Pn S;Yl ( '11kcp + t.lt) = e.. (1.60) 
'\:-00 

and 

00 

~ =- L u., Co'S ( V\kf + wt) 
b- C.o '5 \<.c? 

h- - oO 

(1.61) 

where k:::: 4lf • The representation of £ , ( 1.61) , satisfies 
--r 

(1.57). Nmv (1.37), (1.38) are satisfied and so (1.60) nnd 

(1.61) are substituted into (1.48) and (1.56) and after 

some algebra, one obtains 

Qf1·H + (1.62) 

:for • The parameter ~ is related to the 

frequency cwby rs = w"fl , where b::: co!>\-tf3, (3-=- -lo~ R-z. • This 
4-"9; 

difference equation proves too difficult to solve exactly 

and a numerical approach is adopted to solve it. Since 

G"' -P o as Y1 -P! oo , there will be only certain values for 

() for which a solution is possible. If any of these values 

for cs are complex , the motion is unstable. 

There are limiting cases where the solution can be 

determined exactly. As R --t> o , or f3 > b ~ oo , the undisturbed 

array becomes a single hollow vortex which will be circular. 

This limiting case has a known stability, i.e. 



(1.63} 

It is possible to find a perturbation solution for large b. 

Equation (1.62} becomes 

( a."l+l + a "l- 1 ) _!__ ( ' +- .L + . . . ') + )" ~ ., 
b ~b'- lc~ +V\) ... 

(1.64} 

The follouing asymptotic forms will be assumed, 

AN I Ct .. at-t :: + ~14 + + .. _N (1.65} 
b b"l.. 

I 1.. fov- n-:/:N Qn -= a.n +- a.Vl + ..... 
(1.66} 

b b?.. 

(J - \)0 + IJ, + crl.. + 
(1.67) 

'o b .... 

The perturbation is around the n = N mode for the circular 

hollow· vortex, thus 
YJ.. 

t3
0 

= - N :t ( IN I h..) as in ( 1. 6 3) • The 

first order terms in (1.64} give 

( 
IN- I \ - ~) a.

1 

2. ~-1 l \)0 + N- I) 

(1.68) 
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J. CS 1 IN \ R N -= 0 -fov- Y"l = N 
(\5"c::.+N '? ( 1.69) 

+ (1.70) 

This analysis requires N .:/: o , i.e. IJ= o will be considered 

separately. From (1.69) one must have CY1 = o and as usual 

the next order determines ~2 
The next order becomes 

+ Ql I 
~+I +- 0.~-1 -:: O 

• 
I 

For all other n , a. = o • 
1'1 

( 1. 71) 

Substituting (1.68), (1.'i0) into (1.71) gives 

(1.72) 

So provided the asymptotic expansion is valid, a 

solution has been found for large b, i.e. small R, lvhich 

shows stable solutions. 

The other important limit, ()= o , establishes the 

possibility of unstable solutions :for certain f3 or n.. 

The equation (1.62) becomes for n> o 



26 

(1.73) 

For large n, this has the general solution (as will be 

shO'\m later, ( 1.80)) 

C 'h.. -/3'1 c (30 
Q'"\ "" o Y"\ e_ -r I e. 

Y'Z.. Y\. 

00 

The generating :function, S (-e) = L a.n =t.n satis:fies 
n.::-o 

= (1.75) 

This has solution 

where C is a constant to be determined. For large n, ~(~) 

has terms like C0 rt ~e -f3rt"i::tJ + C, ef3°i.". So requiring <j(=t.) to 
'h. 

be analytic at -1..= e.-F' ensures th~t C, = o , i.e. there is 

no divergent component to the series. Thus,(:: -ao s i,hf3 . 

lc<j (ef3- e-f3), and by expanding (1.76), 
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(1.77) 

Since :for {)-::: o , the difference equation ( 1.62) is even in 

n, one has 

(1.78) 

and from the equation (1.62) for n=o, 

(1.79) 

This has a solution f3= o.Lj.."34 and the numerical method to be 

described shows this to be the transition point between 

stable and unstable solutions. 

In order to solve (1.62) numerically it is convenient 

to follow the method of Laplace {Jeffreys and Jeffreys, 

1950, p. 486). The idea is to obtain for a fixed f3 a 

solution for 9.J and ~ for which a.,-t:>o as ..., -i> oo and 
Oo ao 

(\_'~"~ -1> o as n -t> - oo respectively. These two quanti ties 

are functions of ~ and matching them through the difference 

equation for n-:: o allows ~ to be determined. The key 

to this method is knowing the asymptotic solution. The 

form of the equation suggests trying, for n "'7 o 



and 

I+ s_ + 
V\ 

28 

(1.80) 

Substituting into (1.62) and equating coefficients of ~ , 
n 

determines v, c, :> c. 2 etc. 

V== \ 

~ 

c, = tJ -:,e._/3 - Se-(3 

~(ef3- e-P.) 

Writing (1.62) in terms of cPn gives 

-j3 c? + L n s~"''n~ - ;;( C.OSh f31 ( ~: 12 )'h. rf h e. "1+\ (._Vl+~)"l.. 

+ [3 y~ ¢ 
€. (-;t~~ Vl-1 

The change in variable 

leads to 

,/, - -1 -
lt\- 1 -

The form of the asymptotics shous 

== 0 

(1.81) 

(1.82) 

(1.83) 

(1.84) 

(1.85) 
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(1.86) 

The numerical procedure is as follows. For fixed p , 
N is truren large enough so that (1.86) is a good approxima­

tion, then (1.85) is used successively until ~o is 

, where the plus 

superscript refers to t'1 .,.. o • 

For V1 J. o , if one lets ~n. ~ Q.n >- 1'\ .....f/ n then one 

obtains the identical difference equation (1.62) with ~ ...... - tr • 

Thus one can consider (1.86) 't·Iith tr-=-IJ (now +., -= tf..~-=(~)Y2.a_ .... -te.f3_,\ 
n+-'2. - I 

R ~~ 
and ~: (p..>rr) = ~ ~ _ 1 • There is the obvious symmetry 

relation, 

(1.87) 

~ is finally determined by the relation obtained 

from the difference equation (1.62) for n -=- o • 

i.e. a., + Q_, = «. c.o s"-t /3 
Oo ~ 

or 

lfot + ~ - = U Q. f3 CoS~ (3 - ~ (1.88) () 
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Using (1.87), it is clear that the roots occur in pairs,±~ • 

Starting with large (3 "lvhere the asymptotic roots are known, 

the roots can be followed as ~ decreases. The smallest 

positive root ~. , turns out to be the one of interest. tr, 

is real from [h. oo , where c:r,-= 1- r/fi , to tr, -= o at f3 = o . 4 '34 

(corresponding to the analytic solution obtained for ~-=o , 

see (1.79))~ For ~ ~0.434, roots can be found numerically 

which are complex establishing a transition to instability. 

The other roots remain real. The value for f3 which gives 

the onset of instability corresponds to R = 0.805 and occurs 

r.. 'h.fL at the maximum n as sholm in Figure 1. 3. Unfortunately, 

it proves too difficult to establish this fact analytically. 

Thus it has been shown that for R-,. O.'~oS , corresponding 

to the upper curve in Figure 1.3, the more deformed solution 

is unstable. There is an interesting parallel with the case 

of a uniform elliptic vortex core (Moore and Saffman (1971)). 

The next section discusses the relevance of this lvorlr. 
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V. A SINGLE HOLL01v VORTEX IN A STRAINING l"IELD 

For the sake of completeness, a brief summary of 

Hill's ( 1975o..) work for the single hollow· vortex in a strain-

ing :field is included. Figures 1.4 a,b,c and d give diagrams 

o~ the physical plane and the mapped planes. Once again it 

can be shol~ (see the Appendix) that the steady solutions 

have symmetry about the x and y axes. The usual notation is 

used, -l ==:X: t ~j ' w:: ci> +~f '~-¥:::. u.- ~v- and n - 't+ ·(e C" loc~l~ko~ 

The shape of the vortex may be convex or concave at the point 

B and tlis manifests itself in the ..fl plane "lvhere B' lies on 

the ?:: -axis for a convex shape and on the e- axis :for a 

concave shape. 

The :following Schwarz-Christof:fel transformations 

take w,{1 to the~ plane. T is the circulation concentrated 

on the boundary. 

or 

== - ~(~+-j3)[~~ +I+ ;(~Y-z.(~+ 1 )~] 
[,B~(~+ t)V7- + tj!l4 (f3-t}V1] 

(1.89) 

(1.90) 

(1.91) 
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E 

c 
T/4 

]) 

The potential plane, 

w = ¢ + ~~ 

-f3 -I t: I 

E "]> c B' 

a) The physical plane, 

r: = ')(. + L.~ 

Ae 
E 

- - --

B' 

e>' B 111:' 

c. 

c) The hodograph plane, 

.fl., = 1: + ·Le 

A 5 

d) The ~ plane, ~ = ! + ~1 

Figure 1.4 
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~ is determined by the requirement that far from the 

vortex the flow- is a straining field and hence 

(1.92) 

where c is the rate of strain. This leads to 

(1.93) 

w·here P is the perimeter. The shape is found by :integrating 

and leads to a parametric solution, o ~ t =- 1 , 

(1.95) 

(1.96) 

The area, A, can be calculated directly and the solutions 

are represented as a curve of 'P /A 'h. against E R /-p in 

li'igure 1.5. It shows that for o L EAtr L O.o35 there is one 

solution, for 0.035 L C. A/"P L o. 10 , tw·o solutions and :for 

<(. R /r -.., 0.10 no solutions. It should be mentioned that 



10 

9 

8 

7 

6 

5 

4 
{3=C1J 

0.02 

34 

2 = 
~ 

0.04 
EA 
r 

0.06 0.08 0.10 

Tbe perimeter length, a measure of the deformation, as a 
function of the rate of strain. 

Figure 1.5 
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f3 ~ 0() corresponds to £ -i7 o and the solution is 

circular, but as , the shape is pinched in the 

middle. Some interesting questions arise about whether the 

shape separates and if there is a continuation of the solu-

tion for increasing strain rate. Unfortunately analysis is 

algebraically complex for determining the stability of the 

solution found for the single hollow vortex and has not 

been pursued. 

The question of what happens to the vortex or the 

array in the region where no steady solutions exist is 

unresolved. There could be stable periodic solutions or 

alternatively and perhaps more likely,there is a disintegra­

tion process. Moore and Saffman (1975) related the single 

vortex with uniform core of constant vorticity in a strain-

ing field to a member of a regular array by approximating 

the rate of strain with CC = 111' / b Ll.. • Taking the maximum 

value €. f\ IT' = <::>. 10 and using £-: 1f V /6l2. one obtains an 

estimate for the critical value of A 'h./ L ::: C. '+:) for the 

array where steady solutions cease to exist. The exact 

value as calculated in Section III is A'h./L = 0."3i and suggests 

the approximation is not unreasonable. Moreover PfAY~ has 

the values 4.2 and 4.5 respectively for the two cases. 
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Here, the calculation is presented which demonstrates 

that the symmetry assumed in Hill's (1975Q)solution is in 

~act required. The physical plane and mapped planes are 

shown in Figures 1.6a,b,c and d. Once again ~~~+~'j and 

\.0": <P+ ~f 

The Schwarz-Christof~el trans~ormations which take 

~irst the w plane to '7 plane (~-= ~ + ~~) and then to the t 

plane · ( t-= \-+ l.S ) are 

(A.1) 

(A.2) 

If one considers ~ =- loc.(dw 1-\ = -'t + ~tr then ..J?, must be an 
J ~9o} 

analytic ~unction in the ~ plane except at the stagnation 

points. The correct behaviour at the stagnation points 

must be taken into account and the asymptotic behaviour 

must be like a straining ~ield. The behaviour near a stag­

nation point is ~ .-v(w-wo)'h. and so ~or ~ near -[3Jf3 
cl:C. 

one ~inds 

(A.3) 

There~ore 
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a) The physical plane, 

=t =X.+~ 

-IX -I f (X. 

fl 
' I I '>s F E ]) c. s 

c) The 4 plane, ~ .,. s ~ ~-? 

Figure 1.6 

F 

c. 

13 E 

b) The potential plane, 

W= ¢ +~lf 

'F s 
A 

E 

J> c. 

-~ il/, ~~-

d) The t plane, -l=- ~"+ i.s 



38 

(A.4) 

Since a stagnation point looks locally like a straining flow 

it is easy to see that far from the vortex, i.e. '4 -f.>- oa in 

upper half plane, 

(A.S) 

From the reflectional symmetry requirement, one sees that~ 

and its normal derivative must be equal at corresponding 

points along AC,DF. By considering 

(A.6) 

where C ""' T ...L­-rr c~D(.l._,) , H satisfies Laplace's equation and 

the symmetry condffiions. As s ~ 00 , 

(A.7) 

as required, provided H ( rJ s) ~ o • And so the solution for 

H(r,s) is 

(A.8) 
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For $-=- 0 , 't= o implies 

.,I;) 

+ L (On 51"1 ~nr + b~ Co~ ~t'lr ') _ 0 
1'):::-0 

(A.9) 

Clearly On ~ o , and this establishes the symmetry as 

assumed by Hill (1975~\ i.e. symmetry about ¢ ~ o • 

Finally, b0 = 0 reduces to the condition (1.93) with 

• 
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Chapter 2 

Numerical Studies of the Roll-up of Two Dimensional 

Vortex Sheets in Homogeneous Fluid 

I. INTRODUCTION 

In this chapter, the unsteady motion of a two­

dimensional vortex sheet in a homogeneous fluid will be 

considered. Inviscid theory predicts that sharply defined 

sheets of vorticity will move with fluid and maintain their 

sharpness. The equations describing the motion are non­

linear and there are no known analytic results which describe 

the complete solution for the unsteady case. This chapter 

is concerned with numerical techniques which can be used to 

study the time evolution of vortex sheets. In particular, 

two-dimensional approximations to the vortex sheets generated 

by the flow past conventional wings and past ring wings will 

be used as examples, as the way in which these roll up into 

circular vortices of finite core size is of considerable 

interest and importance. 

The first numerical studies of vortex sheet roll-up 

were by Rosenhead (1931) and Westwater (1935). The vortex 

sheet is replaced by a finite number of discrete vortices 

and their motion followed in time. The subsequent positions 

of the point vortices are considered markers for the vortex 

sheet. "\'lith the advent of high speed computers, this basic. 

discretisation has been used by a large number of authors. 



41 

However, unsatisfactory features of this method have been 

uncovered, namely that chaotic motion ensued. The first 

reports of this are by Birkhoff and Fisher (1959), Takami 

(1964) and Moore (1971). They find that although the 

vortices appear to give a qualitative description of the 

roll-up, irregularities always occur, particularly in the 

roll-up region. 

Takami (1964) increases the number of point vortices 

from eight to twenty per half-wing, but he finds no improve­

ment in the details of the vortex sheet in the roll-up 

region. Moore (1971) uses even larger numbers of vortices 

and integrates the equations of motion :for the point vortices 

very accurately in an attempt to establish whether the growth 

o:f truncation errors in the numerical integration is causing 

the chaotic state of the vortices. His results leave no 

doubt that the cause o:f the difficulties is elsewhere. 

Ad hoc methods have been introduced to overcome these 

difficulties. Chorin and Bernard (1972) introduce a finite 

core to the point vortex inside of which the singular behav­

iour of the velocity is removed. Instead of the exact 

equations of motion for a collection of point vortices, whose 

positions are l(;:c ·~,, ~~)1 and lthose circulations are LK\.], 

d ;)(~ :: - _L I_ K. (y~- '1.J .) 
d't d\f •,J: ' r.?-J \. 

"l 

(2. 1) 

~~ I T_ K~ (x~- x.~) ::: 
;tlT c:lt .i-:f:i. Y-~ 

"J 

(2.2) 
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where 
z. '2.. V:I"= (:x:~-xj) + (~'--'j~) , they use 

lihenever 

\'""• . 
\..l 

Y"ij '- ()"" and ( 2.1} , ( 2. 2) for (". . ) D"" 
'j 

(2.3) 

• As a result, 

smooth spirals are achieved for much longer times. Chorin 
. . 

and Bernard (1972) report that the results do not depend on 

~ if it lies within a wide range around the smallest 

initial spacing between the point vortices. They also claim 

that this cut-off in the velocity near a point vortex is 

analogous to incorporating an artificial viscosity. 

Kuwahara and Takami (1973) also introduce an arti­

ficial viscosity. Instead of (2.1) and (2.2), they use 

(2.5) 

(2.6) 

Although each term of the sums represent the velocity of a 

viscous vortex which at t = o is a point vortex, the non­

linearity of the Navier-Stokes equations does not permit the 
I 

superposition of the velocity fieldso Kuwahara and Takami 

(1973) find that, although the details of the spiral are 

restored, the way in which this occurs depends on the choice 
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for v • 

Moore (1974), on the other hand, incorporates vortices 

into a main vortex at the centre of the spiral whenever a 

measure of the curvature becomes larger than some chosen 

value. As Moore (1974) points out, there are unsatisfactory 

factors in the methods adopting cut-off radii in the calcu­

lation of the velocity. In particular, in Chorin and 

Bernard's (1974) work, the poi.nt vortices accumulate towards 

the centre of the spiral in contradiction to the analysis by 

Kaden (1931) who shows that the sheet is increasingly 

stretched towards the spiral centre. Since a finite number 

of vortices cannot represent the infinite number of turns of 

a spiral, Moore (1974) suggests that the flow field is poorly 

approximated by a few point vortices in the region of the 

spiral centre and so he amalgamates them in an attempt to 

regularise the approximation to the flow. His results show 

smooth spirals beyond the time at which previous authors 

stopped. Moreover, the vortex points move apart, indicating 

that the sheet is stretching in agreement with Kaden's (1931) 

analysis. 

Fink and Soh (1974) are the first authors who attempt 

to obtain error estimates for the approximation of a vortex 

sheet by a finite collection of point vortices. In partic­

ular, they show that unless the vortices are evenly spaced 

in arclength, ~he error in calculating the velocity by means 

of (2.1) and (2.2) is O(lo~ h./hl) where h,}1L are adjacent 
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spacings between points. Thissuggests that as the vortex 

points move and lose their uniform spacing, the error in 

calculating the velocity will grow and eventually destroy 

the description of the sheet. They therefore propose a 

method whereby the vortices are continually redistributed 

to ensure even spacing. Their results looked promising 

and one of the purposes of this chapter is to examine their 

approach in detail. 

The first section discusses the errors in numerically 

calculating, by different methods, the velocity of a vortex 

sheet at certain points, i.e. mesh points. There is confir­

mation of Fink and Soh's (1974) estimate of the error when 

calculating the velocity by means of certain principal value 

integrals of the vortex sheet strength using the usual point 

vortex discretisation. It_ is_ ~ecess~ry _ therefo~~- to ensure 

that the vortices are evenly spaced at all times. For a 
--~·- .--·-- -

closed sheet {e.g. the sheet generated by a ring wing), an 

accurate method ( 0 (n1
)) is developed using the trapezoidal 

rule and the analysis is checked by some test examples. It 

is also concluded that the velocity of a vortex sheet gener­

ated by a conventional wing (i.e. finite in length) cannot 

be accurately calculated near the wing tip, unless some 

consideration of the asymptotic behaviour in the inner 

regions of the spiral (Kaden (1931)) is included. 

Section III incorporates these results in detailing 

Fink and Soh's (1974) method. Ways to i mprove the accuracy 
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o~ their method are suggested and the results are presented 

in Section IV. However, it is ~ound that instabilities 

unphysical in nature keep occurring despite variations o~ 

the details o~ the method. Increasing the number o~ vortex 

points used in the method ~ails to suppress the instabilities 

and there appear to be only two possibilities to account 

for the failure of the numerical method. The instabilities 

may be entirely numerical in origin or small scale structures 

may be important in influencing the flow. 

The latter possibility means that many vortex points 

are required and the usual methods, including the one 

developed by Fink and Soh (1974), prove uneconomical. An 

alternative method based on "Cloud in Cell" techniques is 

presented in Section v. Christiansen (1973) makes use of 

the particle simulation techniques developed in plasma 

physics and adopts them to vortex flow in an incompressible, 

tlfo-dimensional laminar fluid. For more details about par­

ticle simulation techniques, see Alder, Fernbach and 

Rotenberg (1970). 

To explore the role of small scales and their growth, 

a test case is considered. The results are interesting, in 

particular the indications of the cascade process of small 

scales to larger ones. This method is applied to the ring 

wing case and the results are presented in Section v. There 

is clear evidence of the development of large structures and 

this occurs in two ways. In some cases, two different but 
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neighbouring vortex structures amalgamate, and in other 

cases, a vortex stra.cture is pulled apart and absorbed by 

its neighbours. These results must still be regarded as 

tentative until the numerical errors associated l~ith the 

technique are fully understood. 
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II. THE CALCULATION OF THE VELOCITY OF A VORTEX SHEET 

Before an outline of Fink and Soh's (1974) method 

is given, it is useful to examine the ways in which the 

velocity of a vortex sheet can be calculated. It is this 

calculation l'ihich essentially determines the accuracy of 

the method in terms of the number of vortex points used. 

Numerical consistency will be an important requirement, i.e. 

as the number of vortex points is increased, the velocity 

calculated numerically must approach the exact velocity of 

the vortex sheet. In terms of an error analysis, the error 

associated with the discretisation must vanish as the spacing 

between the vortex points tends to zero. 

Perhaps it should be emphasized here that questions 

ot stability for any numerical method applied to vortex 
) 

sheets remain unresolved. In tact, the straight uniform 

vortex sheet is known to be unstable (Batchelor (1970),C~ 7.1) 

and the modes with shortest wavelengths have the greatest 

growths. This suggests a basic ill-posedness, i.e. as the 

length scales of the numerical method are decreased, the 

more different is the behaviour of the solutions. On the 

other band, Moore (unpublished) bas examined the stability 

of a vortex sheet in some cases and shows that stretching 

of the sheet may stabilise its motion. The lack of knowledge 

about the stability of vortex sheets is a disadvantage in 

testing any numerical method. 

In two dimensions, the velocity components of the 
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~luid are related to the vortex strength by 

(2.7) 

(2.8) 

where (x'(~), 'j'(..,)) describes the location o~ the sheet para­

metrically determined by s , the arclength. The integration 

is along the sheet and 

2. '(' = (2.9) 

In particular, the velocity of a point ( -:t..'(s0 ) > '-jt (~o) ) on the 

sheet is given by the principal value integrals 

u(so) = -~~ 'tf(s) (~'(~)- ~'(s.,)) ds. 
YL. 

(2.10) 

'U(So) =. ~~f 'l((SJ {x. 1 
( S.) - -::c 1 (~a)) clc;. 

y-<-
(2.11) 

There are two distinct cases to consider depending 

on whether the vortex sheet ~orms a closed curve or an open 

one. An example o~ each case is presented and it will be 

seen that there are crucial di~ferences in the accuracy of 

the numerical approximations when applied to each case. For 

the case of vortex sheet forming an open curve, a two­

dimensional approximation to the sheet shed from a conventional 
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wing is used as an example. It is very difficult to analyse 

the accuracy in determining the velocity of the sheet for 

this case due to the singular nature of the flow at the 

wing tip. In contrast, the .flow over a ring wing (see Figure 

2.8) forms a closed vortex sheet with no difficulty in exam-

ining the error in the calculated velocity and so accurate 

numerical ne thods can be devised. 

For an elliptically loaded wing, 6 does not vanish 

at the wing tips; the integrals (2.10) and (2.11) diverge 

and appear to predict infinite velocities. 

happens was elucidated by Kaden (1931). At 

What actually 

-t == o , the 
-'h. 

sheet lies along the span of the wing. Since ~~ s at the 

wing tip, the velocity is infinite there, but for t '? o , 

the sheet possesses a completely new descripti.on. It 

becomes infinitely long, ending in a spiral which grows in 

size with time. This nonuniform change in behaviour and the 

singularity at the tip present great difficulty in solving 

numerically the evolution of the sheet in time. 

Since the infinite sheet is approximated by a finite 

number of vortex points, the question of how well the spiral 

is represented is important. The vortex point closest to 

the spiral centre has to approximate the effect of the infi­

nite number of turns in the inner part of the spiral and the 

validity of this approximation is still an open question. 

Moore (1975) has shown that the asymptotic form o.f the roll-

up depends on information from the complete sheet and is not 
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determined by local considerations only. The converse may 

equally be true. The motion o:f any part o:f the sheet may 

depend on the structure of the spiral. 

Furthermore, the initial discretisation o:f the vortex 

sheet may introduce large errors near the wing tip. If the 

sheet lies along the x-axis o ~ x. ~ .;ll , the velocities 

. are determined from (2.10) and (2.11) as 

(2.12) 

Dividing the sheet into N equal intervals and using a 

centred Euler difference approximation to calculate (2.12), 

one finds the largest error occurs at the point closest to 

the wing tip singularity. 

N-1 

v( h.) - n ~ 
oz. Ollf L 

f\-:::.1 

'ls' ( (1'1+ 'h .. )h) 
Y\h 

(2.13) 

where N~= L • The right hand side of (2.13) gives the 

error in using evenly spaced point vortices to represent 

the vortex sheet. Substituting the behaviour of the vortex 

sheet strength of an elliptically loaded 1ving near the wing 

tip, 6 "" s -Y-z. , the error is 0 ( h.-Yl.) for the vortex point 
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closest to the tip. The initial vertical velocity, tr(:x.), is 

constant along the sheet, except at the wing tips (Batchelor 

(1970), C~ 7.8). The point vortices, however, give a velocity 

which immediately distorts the sheet from a straight line. 

The error estimate of O(h~) may be slightly inappropriate 

since the more important question is whether the velocity 

determined by the point vortices approximates well the ini­

tial sheet with infinitesimal spirals at its tips. The 

analytic complexity involved in the integrals (2.10) and 

(2.11) prevens an easy anslver to this question. It does 

seem unlilrely though, that a finite number of point vortices 

is a good approximation to even this case. 

The best numerical methods therefore are those l·lhich 

attempt to take into special consideration the initial 

motion of the sheet and also the centre region of the spiral. 

Moore (1974) amalgamates vortices into the vortex point 

closest to the spiral centre lvhenever the curvature at the 

next nearest vortex point becomes too large. Finlr and Soh 

(1974) have an independent way of accumulating circulation 

at the spiral centre, and their results agree well with 

Moore (1974). These results are presented in more detail in 

the following sections. However, there can be little hope 

of knowing how accurate these approximations are until 

methods are developed which incorporate the asymptotic form 

of the roll-up found by Kaden (1931) and extended by Hoore 

(1975), and there is a better treatment of the initial motion 
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of the sheet. 

There is a further error in calculating the velocity 

of a vortex sheet if the vortex points representing it a~e 

not evenly spaced. If a centred Euler difference is adopted 

to integrate (2.10) and (2.11) and the initial vortex sheet 

is discretised by evenly spaced vortex points, then, for 

later times, the centredness of the difference formulae is 

destroyed as the vortices move apart more rapidly at some 

places than others. Fink and Soh (1974) pomt out that in 

this situation the error in calculating the velocity of the 

vortex sheet has order, 0 (lo<jn'~where h. 1 and ~l. are adjacent 
nl. 

spacings between the vortex points. It is therefore impor-

tant to maintain a discretisation of the sheet 1ihich has 

uniform spacing between vortex points. 

The second case to consider is where the vortex sheet 

forms a closed curve in the (x,y) plane. A simple example 

of this is the flOl·\'" around a ring wing, and it will be seen 

that there are none of the difficulties associa t ed with the 

singularity at the lving tip in the previous cas e . If the 

sheet is continuous and of finite length, then all the 

quantities associated with the sheet are periodic functions 

of the arclength, and this fact enables one to develop 

improved numerical methods to determine the velocity. 

The integrals (2.10) and (2.11) are, in this case, 
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L 

= _!_ ~ ~(s ') ( ~' (s)- ~'(so)) d'5 
aTf -L ( x_'(s)-ox.'(sa)J2 + ['j'(~)- 'j'(S.::.SJ' 

(2.15) 

lvhere all quanti ties have the same value at S= -L as they 

do at S-= L • There is no loss in gcneral i ty in taking 

SC)-= 0 • Subtracting :from ( 2.14), the integral 

L 

- J.... ~ ¥(o) 5'(o') ch. -== 0 
«lT J s ~s 

-L 

and :from (2~15), the integral 

\.. 

_I h '2S(o) o71...1(o) ds = o 
~'IT J '5 os 

-L 

leads to the :following integrands 

- '0 (s ') ( 'j'(s)- ~j'(t))) -+ )S'(o) ~ (o) 

[x.'(s)-:x'(o.iY-+ [~'(~)-l.j'{o)] 2 
s ~s 

'lr(~) ( :x:.' (-:,) - x' (o~) ' - ~ ox..' (o) 

[';)(..'(<;.)-x'(o)]2+[y'(~)-~'(o)] s ~s 

Using a Taylor's expansion :for small s and noting 

f I 2 ( J 7.. 
\~) + ~) = \ Vs > 

+ IJ.../~1 )~ + 1.(~~)2. -t- L ~~~/ + J...~~'J ~4 l '+l'?>s.. 4 ~s~ 3 -.,s os3 '3oc;;,G~s3 
S:o 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2. 20 ) 
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The integrands, (2.18) and (2.19) have no singular-

ities provided the sheet is smooth, i.e. has a continuous 

tangent, and "Cf has no singularities. 

In order to obtain error estimates when using the 

trapezoidal rule on the integrands (2.18) and (2.19), a 
~M+-1 

small digression is made. If -J(~) £ C tLJL], the Euler-

J·lcLaurin summation formula used on a mesh s-:: [ nhj , -N f.n ~N 

N'r) = L , gives, 

L 

s ~(~) ds. =-
-'-

where CK are constants independent of 'n and f(o:.), and 

• It is easy to recognise the first two terms 

as the trapezoidal rule and that the error is given by 

W\ 

E = L c" 'h ;tk.t~ [ .yC"l.~~'\L)- fc"l.K+I)(-L)] 
K::o 

(2.22) 

The first terms of the integrands (2.18) and (2.19) are 

periodic and so their contributions to the sum in (2.22) 
(2k+\) 

vanish. Since ( ~) "'" ~1<."""2. is even, the second term in 

the integrand also produces no contribution to the sum, and 

E - - C' ),.., +-1.. • . the conclusion is that -- n However, there is 
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another contribution-to the error resulting from evaluating 

the integrands at S-= o (or n:o). They have indeterminate 

form there but have the following limits 

- c~(c) ~(o) 
1>5 ~~ 

(2.23) 

3~(c) o-;x_'(o) + y~ "?J
2
x.1(o) 

7>'S :2>5 ~ ~5"2. 
(2.24) 

Difference formulae have to be used to evaluate (2.23) and 

(2.24) and provided the integrands have the property that 1'7'1. 

is large enough, the error introduced by using the difference 

formulae 11ill dominate for h small enough. In particular , 

using the central difference formulae , 

(2.25) 

(2. 26 ) 

the error in determining (2.23) and (2.2LJ:) is O(h') and the 

error in using the trapezoidal rule is therefore 0(~) • 

This a."'lalysis is checked here :for tuo cases where the 

velocities and hence vortex sheet strength are both knom1 

instantaneously. At this stage the motion of the sheet is 

not important; the check is t o see ho'lv well the velocity is 

calculated by the method outlined. Taking the sheet to be 

circular, the fluid velocities are easily kno1m from the 
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velocity potential. When the sheet is elliptic, elliptic 

coordinates can be used to determine the velocity potential. 

In particular, the flow which has a stagnant core inside 

the ellipse and a non-zero circulation around it, is also 

used as a check on the method. The results presented in 

tabular form in Figure 2.1, clearly show the O(n3
) behaviour, 

i.e. doubling the number of vortex points decreases the 

error by a factor of eight. The relativeerror for L/40 is 

typically to4- and is the limit obtainable using si. ngle 

precision, on IBM 370/158. 

Finally, the considerations above have assumed the 

sheet does not fold back on itself so that different parts 

of the sheet come close together. When this occurs, large 

errors will appear unless additional vortex points are added 

to resolve the large peaks that arise in the integrands 

(2.14) and (2.15) as the denominator becomes small (see 

Maskew (to be published}). 

In summary, the roll-up of the vortex sheet behind 

a conventional wing cannot be accurately calculated until 

some account is taken of the asymptotic nature of the inn.er 

turns of the spiral. Since there is no singular behaviour 

in the vortex sheet behind a ring wing, this case presents 

a far less complicated test of any numerical method designed 

to calculated the evolution of vortex sheets. 

Having demonstrated the importance of calculating the 

velocity by using evenly spaced points in arclength, the 
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0. ;2.1 ~9 I '&D - o. 00'2>5'68 -o.J"238no 0,0011 ;;z~ 

0 . .2.1f>04Sb -o.ooo46o - o. l.l4~ 53b 0.000146 

o.a.l644-7l - o.aooos9 -O.I;2.ll.q~;t~ 0.00001~ 

o . .2.1b4967 -0.000010 - 0.1 .2.4-C\ 9 'g9 O.OQOOOI 

o. ~l65o.15 -o. ocoooll.. -C.I;l5oo~4 0. 00000~. 

Circular sheet, radius = I ; '6"" s"" .. e ; velocities 
determined at e = lf/3 
Exact velocities, U.= o . ;;l.\6Sob3> V= -0.1~S 

Ca \c..u.ICA.ted u. Errov- \~ 1..4. Ca.\c.u.IQ.tec! v Error ~·.,., '1.) 

- 0. b46SOCf~ 0.00 I :2.51+ - O-S3Dt6<i?:l.~ -0. 002.(:.77 

-C>.b476290 0.000 I 3 4- - o.53o3~o4- - 0.000'31$ 

-0 .bl.f'774.4<g 0 . 0000\q -O.S3oo54S _ o.oooo:29 

'2. l Elliptic sheet, ~ + 'j -= ; stagn~nt core and 
rotating flow ouiside 

'IS-: - OL/{[C-;(.-1}+- ~'1'/t.t[(:x.+,)" + \j2Jy4} 
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Figure 2.1 



next section establishes how to calculate the time evolution 

with this condition. 
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III. REDISTRIBUTION OF VORTEX POINTS AS A lvAY TO FOLLOl.v 

THE HOTION OF A VORTEX SHEET 

This section provides the details of the method 

originally used by Fink and Soh ( 1971.1:) and discusses different 

ways of improving the accuracy. The basic outline is as 

follows. A function -r(~') is introduced which measures the 

total circulation along the sheet from some reference point, 

• The vortex sheet strength is ~~)= dP • 
ds 

Knowing ll(s) 

at mesh points L(x~ J'j • .)) which are evenly spaced in arclength 

gives a set of values 1,1'~) which convect with the points 

f(x.~>'j~J as they move lvi th the fluid. '( is calculated from 

'6 = ~ and the velocity [(u~ 1'lTJ( can be determined by integrating 

along the sheet as described in Section II. Fink and Soh 

(1974) use simple Euler integration to move fonvard in time 

lvi th time step 6-t , 

(2.28) 

Th~ points \('i:~J ~.j ... )] no longer satisfy the requirement o~ being 

evenly spaced in arclength. An interpolation polynomial is 

used to determine the new· points {(x! ,'j~)5 which are evenly 

spaced. Knmving the circulation yr ~1 at t(:~:.~ /~ .. )}means an 

interpolation can be made and yr~* r tound at w~: > ~Z)j • 'l'hese 

values )..(:x..I.)~" ..... Jj and 111t? provide the starting values, 
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, ~or the next time step. 

The details o~ the various steps are as ~ollows. In 

the ~irst place, to calculate i~ , Fink and Soh (1974) use 

an interpolation polynomial through the points l 11~ l known 

at 1 S0 r ~h3 where h is the uniform spacing in arclength. 

The values o~ the circulation \rL+~l are then .found at the 

midpoints l S0 + ( ~ t ~)hJ and a central di~ference formula 

gives 

(2.29) 

The accur~cy in determining 't ~ is 0 (\,2 ) provided a suitably 

accurate interpolation polynomial is used. Fink and Soh 

(1974) tried both a local three-point and rour-point 

Lagrange interpolation polynomial and the error will be 

h.3 d311(~) l~4 d'il'(S) respectively, where s lies some-It" d$'3 , \1~ ~ 
where in the interval of s used in the interpolation 

(see Isaacson and Keller (1966), p. 264). Alternatively, 

if a spline interpolation is used, the error in determining 

as the derivative of the spline function will be 

O(h~) • This pro~des one way to improve on Fink and Soh's 

(1974) accuracy in determining Y~ • 
The determination of the circulation of the vortex 

point closest to the spiral centre is handled in a slightly 

different way than by using (2.29). The circulation accred­

ited this vortex point is that which ensures that the total 



61 

circulation remains constant in time. This means in essence 

that the circulation that would be distributed along the 

inner turns o:f the spiral, which are beyond the resolution 

o:f the :finite number o:f vortex points, is assigned to this 

vortex point. The accuracy of this procedure is unknown. 

Using the derivative o:f a spline interpolation as an alter-

native method in determining the vortex sheet strength, 

means that there is no attempt to approximate the inner 

region of the spiral and the invariance of the total circu-

lation can be used as a check on the error in neglecting 

this region. 

The calculation o:f the velocity proceeds as detailed 

in the previous section and so "ivhat remains to be done here 

is to describe the redistribution o:f the mesh points. Fink 

and Soh (1974) use the chordlength between mesh points as 

an approximation to the arclength. There is a simple way to 

improve on this procedure; the chordlength between points 

can be calculated and the total chordlength, l A.\.} , from 

some reference point defines a parametric representation for 

the sheet. 

An interpolating spline can be used through the 

points ll1~s 

atives i~~~s , l~s 
as funct ions of ~A.~) , and the ueriv-

, are determined at equal intervals 

along )\ , i 'Ae~ S • '11he arclen gth measured from the 

reference point is defined by 
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1\ 

S= l[(~)'+(~Jz.]Y2d/\ (2.30) 

This integral can be evaluated nwnerically. To ensure t hat 

the arclength is calculated accurately enough, it i s found 

necessary to evaluate l ~~~, f ~ J at four times a s many 

pla ces as there are mesh points 1_ i:~ ~, 1 'j '-1 . Although the 

trapezoidal rule is used to calculate (2.30), the accuracy 

should be limited mainly by the accuracy o:f the spline which 

has an error of O(h'+) • 

At this point, S is kno1vn a t ~.s~~ corresponding to 

equal spacing s of .i\. , 1. 7te~] • The relationship can b e 

inverted by using an interpolating spline, i.e. consider 

and determine i_ )(_"~~ ( correspond-

ing to even spacings of S , where the spacing is c h osen to 

give the required number o:f new mesh points. Finally, the 

new mesh points l x~ J, \ 'j:] are obtained at l /\tj by 

using an interpolating spline passing through ~ -i.~.S , )_ 'j .: ] 

lrno1vn at 1/\. ~ J • 
To complete the process of determining new· mesh points, 

one needs to kno1·1 the circulation v a lues \T~. i'J at t h ese 

points. S i n ce ""P(s) is constant along the path lines , c\x. -== u. , 
crt 

is knmvn at the points \()(.~)~.:.)?, ""!vhich ha ve 

resulted f r om an integration through one time step. Thus z~Ls is 

- S """~ £ · t 1 ti 1 i i ) Y ;~ 2 at apown at LAL~ and an 1n erpo a ng sp ne g ves l . S 

l i\'fi.1 corresponding to t ( x~ ) ':}n3 • 



The case of a vortex sheet with i~inite arclength 

needs special consideration. Only a finite number of points 

are used and so there is no way to redistribute them so 

that they are evenly spaced along the whole sheet. The 

point closest to the spiral centre is considered given and 

the remaining points are redistributed along the finite part 

of the sheet. This procedure is consistent with the way in 

which the circulation per vortex point is calculated. As 

discussed previously in this section, the vortex point 

closest to the spiral centre is regarded as representing 

the inner turns of the spiral. 

Finally, one can use a more accurate integration 

procedure to nove forward in time than the simple Euler used 

by Finlc and Soh (1974). The modified Euler approach is the 

essence of this improvement. Using (2.27) and (2.28),a 

first estimate of the new position is obtained, l(~~>yj}. 

Redistribution gives the points tC~~)~~~ where the velocity 

can be calculated. Interpolation now provides the velocity 

c;(x..· u '? and an improved estimate "'l I..) J'-'J 

for the new values is obtained by 

(2.31) 

~I. = (2.32) 

The procedure then continues as before. 
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In conclusion, a note should be made about the 

interpolation formulae used. A three-point Lagrangian inter­

polation polynomial is used locally to reproduce the results 

claimed by Fink and Soh (1974). However, for the improvements 

listed in this section, a spline can be used with a high 

degree of accuracy, o (h4
) • This is achieved by either using 

i~ormation about the derivatives at the end points, for 

instance symmetry sometimes requires some derivatives to 

vanish or take on specific values, or else by using an end 

point condition suggested by Professor H. B. Keller, i.e. 

_h_,_ 
~~+~o 

(2.,33) 

where L f-><-) is the spline :function and h,-= .:x.'2.-:x., > ~0 -= -:x..1- -xe. • 

A similar condition may be applied at the other end. The 

author is indebted to Professor H. B. Keller for this 

suggestion. 

Results and criticisms of this method are presented 

in the next section. 



65 

IV. NUHERICAL IlliSULTS FOR METHODS BASED ON H.EDISTRIBUTION 

OF VORTEX POINTS 

Be:fore giving the results :for the conventional wing 

and the ring '~ing, the results :for a test case are presented 

indicating that the method works as described in Section III. 

Although not more than :four steps are calculated in the time 

integration, the exact errors are knmm and their behaviour 

with changes in the arclength spacing and in the time step 

shmv the correct behaviour. 

The details are as :follm·1s. An i rrotational :flow 

circulating around a stagnant circular core is kno'm to be 

unstable (see t-loore and Griffith-Jones (1974)). Hmvever, 

there are modes which do not grm'l and one o:f these can be 

:followed at least :for small times. I:f a. is the radius of 

the circle and V the undisturbed velocity o:f the outside 

:fluid at the inte rface, then the undisturbed potential is 

c/>...: o..V9 :for r'?O... • Considering perturbations of the :form, 

1 ::: o. + c co'5>(ne + c..lt) 

¢ = o..ve +- (2. 35) 

(2.36) 

and linearising, the dispersion relation is 

(2. 37) 
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The two modes tested, f\:::1, w-=-o and n::.-;;). ,<.:;=-)!.are stable. 
Q 

For these cases, A-=- 0 , ~ respectively inside the 
~0.."1.. 

boundary and f?>= tVo., £\/a?· respectively outside the boundary. 
2 

The method applied includes the :follmving j_mprovements to 

the basic method described by Finlc and Soh ( 19711:); arclength 

is calculated accurately :for redistribution purposes and 

spline derivatives are used to :find the new vortex sheet 

strengths (instead o:f (2.79)). In Figure 2.2 there is a 

table o:f errors using simple Euler or modi:fiecl Euler inte-

gration for different time steps. As expected, halving the 

time step At reduces the error :for simple Euler by hal:f, 

confirming 0(11t) behaviour. Since modified Euler integration 

1·10rks exactly :for circular motion, the errors obtained using 

this .method are small. Comparison with Figure 2.1 shmvs 

that the errors in calculating the velocity are much smaller 

than those :for the time integration. This is con:firmed by 

:finding no change in the errors in Figure 2.2 when the number 

o:f points is varied :from 20, 40 to 80. Although this confirms 

the accuracy of the method, it says nothing about its stabil -

ity. Ques tions concerning numerical stability 1vill remain 

unanswered. 

The method is now applied to the :flow associated with 

the vortex sheet shed by an elliptically loaded 1ving. Making 

use of the symmetry o:f the :flo1v, one need consi<lcr only one 

side o:f the :flow :field; see Figure 2.3 for details. Non­

dimensionalising the problem by introducing a characteristic 
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The roll-up o:f the vortex sheet 

Figure 2.3 
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distance, Q , which is hal~ the total span o~ the wing, a 

characteristic velocity, V , uhich is the instantaneous 

speed dolmwards o~ the initial vortex sheet and a charac­

teristic time, CA/V , the initial vortex sheet strength is 

;;2s -
( 1- ~')'1-z. 

(2.38) 

and the initial circulation is 

(2.39) 

N points are introduced at y;_ ... o, X~::. (i.-t)h , 1 ~ l.. .s N 
' 

and Nl,., I. Before reproducing the results obtained by Finlc 

and Soh (1974), the ~ormula used in assigning circulation 

to the point closest to the spiral centre is g iven explicitly. 

Knmving the circulation at Jl(S...,-h) where h is the latest even 
;z_ 

spacing between redistributed points, the circulation 

assigned to the vortex point (xMJ~N) is 

This ensures the conservation of circulation and Firur and S oh 

(1974) use the vertical impulse, another invariant o~ the 

~low, 

\.. 

lv "" l J -.x_ ~ ( s) d s 01 

0 
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as a check on tlle accuracy of their computation. 

Figure 2.4 shows the results for the roll-up at 
;. 

-t == W = o. 25 with time step 0.0025 and the number of points 
<L 

is twenty. The curves are obtained by use of Fink and Soh's 

method lrlth the end-condition (2.40). The profile of the 

roll-up looks qualitatively like the results they published, 

(1974). Unfortunately, quantitative agreement with their 

results is not possible since the non-dimensionalisation 

they use is not clear and the scales on their Figure 11 are 

not indicated. However, there is good agreement with the 

variation of the vertical impulse. They report the centroid 

remained at o .791S j: o. ooo~a.. compared to the author's result 

of O.l't 17 ! o. oo13 • The slight difference may be a result 

of the comparison being made for different numbers of mesh 

points. 

Fink and Soh (1974) did not comment on the profile of 

the vortex sheet strength. It is found to develop oscil­

lations in the region of the roll-up. Examples of this are 

seen in Figures 2.4 and 2.5. The strength of the oscillations 

and their particular form depend on the actual method used. 

In some cases the vortex sheet strength actually becomes 

negative, which is unphysical in behaviour. 

It is interesting to compare the results as shown in 

Figure 2.4 with the result obtained by Moore (1974) and 

presented in his Figure 5. The agreement is reasonable and 

suggests there may be some validity in specifically 
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accumulating vorticity at the spiral centre. 

Figure 2.5 shows the alternative profiles when some 

improvements are implemented. The arclength of the sheet is 

calculated using intermediate points obtained by spline 

interpolation and then using Simpson's formula for the 

integration (2.30). Spline derivatives are used to evaluate 

Cf -= dl' at the mesh points but the integration .forward in 
d5 

time is still only using a simple Euler time step. The 

improved accuracy results in a tighter spiral with more 

turns. The oscillations in the vortex sheet strength are 

larger. The variations in the circulation for half the wing 

lie between 1.74 Vo. and I. ~4 Vo... while the variations in the 

x-coordinate of the centroid lie between 0. 75g o.. and o. 77S o.... 

The circulation for half the wing should in .fact be a constant, 

~ .o Vo... • Thus, at worst, about :fifteen percent o:f the 

circulation is not accounted :for and probably is the circu­

lation that would correspond to the innermost part of the 

spiral. This also suggest a rough estimate of the importance 

of accumulating vorticity at the spiral centre. 

It is in the process o.f improving the accuracy of the 

time integration that an interesting restriction on the method 

comes to light. Figure 2.6 shows the motion of the point 

vortices in the vicinity of the tip during roll-up using the 

Euler integration .formula 

only twenty mesh points. 

w·i th time step 0. ooas a.. but still 
v 

The spiral appears to unroll! A 

simple explanation. reveals a restriction on the time step 
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compared to the spacing between mesh points and the 

curvature of the sheet. Figure 2.7 illustrates the idea. 

I:f the motion of a mesh point is much smaller than its 

11motion" due to redistribution, then the resultant evolution 

does not represent the solution required. It is clear and 

has been con:firmed that increasing the resolution of the 

sheet by increasing the number o:f mesh points will in:fluence 

this effect. For :forty points and the same time step, the 

spiral has more terms and now the unwinding occurs only in 

the central turn where again the number of points is too 

small to resolve the curvature very accurately. Thus, 

depending on the curvature and the actual motion, the time 

step cannot be smaller than some critical value related to 

the spacing. This behaviour is con:firmed by :finding that a 

time step of 0. ()O ~59::. produces the umvinding of the 
v 

spiral when using modi:fied Euler integration. This also 

appears to be the likely explanation :for the behaviour 

reported by Fink and Soh (1974) when applying their meth od 

to the Kelvin-Helmholtz instability (see their Figure 10). 

A :far better test of the method is presented by f ol-

lowing the motion o:f the vortex sheet generated by a ring 

,~ing. Experimental data has r ecently been obtained by Do:fah 

(1975). The vortex sheet lies on a closed curve and as 

discussed in Section II, the velocity calculation can be 

done accurately, L.e. 0 (h3 ). The ring w·ing generates a 

vortex sheet which is initially circular 1vi th radius tha t o f 
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the wing, R say, and whose strength is given by 

(2.42) 

The defini ti.on of 9 and the flow parameters are shown i n 

Figure 2_.8. l' 0 is the root circulation and is given by 

I' -= If llo~ (_ 
0 

I+ lTC/4~ 

It is convenient to non-dimensionalise the problem as 

follows. The vorticity strength is scaled by ~o/R , 

distances by R , time by R'tr 0 and velocities by 11., I R • 

The basic numerical approach fails to produce good 

results. Although all the improvements mentioned in Section 

III were tried, namely the calculation of arclength instead 

of chordlength, interpolation using spline functions and. 

time intergration by modified Euler, there were always unphys­

ical oscillations appearing in the results, i.e. ~ becomes 

negative. Figures 2.9-11 show the vortex sheet at t-= \_55 R'/T'o 

with N the number of mesh points, increasing from 40, 60 

through to 90. The corresponding profiles of the circulation 

measured along the sheet from e-= 0 as functions o:f the 

arclength show, in Figure 2.12, the oscillatory behaviour. 

Bearing in mind there is an increase in arclength with 

increasing N , one finds that the instability occurs in the 

same place, the upper branch of the spiral. The crossing 
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of the sheet in Figure 2.11 is probably due to the inac-

curacy in calculating the velocity 1vhen t-.;vo separate parts 

of the sheet approach each other closely. 'l'o avoid this it 

is necessary to refine the description o:f the sheets locally 

by temporarily introducing more mesh points, e . g . see Mas~ew 

(to be published). \vi th increasing N , the accuracy o:r the 

invariants,circulation for half the ring wing and the 

vertical impulse,improve and their values remain in very 

narrow· bounds. 

In an attempt to determine 1vhat causes this numerical 

breakdo-.;m, different ways of implementing the mcthou are 

tried. For interpolation, both spline :functions anu 

Lagrangian interpolation g ive basically the same results. 

Using chordleng th or the more accurate arclength makeG no 

difference . The accuracy of the velocity calculation is 

improved to O(n5
) but this does not indicate that curv£;.ture 

effects are destroying the accuracy in determining the 

velocity. l~ven an alternative method in reassigning the 

vortex sheet strength to the new mesh points during the 

redistribution process is tried . As the points move their 

* vortex sheet strength chang e s as 1vhere s is their 

new arclength value. It is then easy to interpolate to find 

the values of vortex sheet strength at evenly spa ced mea i1 

points . Since the osci llatory behaviour occurs in the rec; ion 

of maximum (S' it 1ms thought that the interpolation :formulae 

when being applied to reassigning the circulation , may 
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develop large errors due to t he large value o:f the slope o:f 

the circula tion, i.e. o • Thi s alternative method, however, 

should always have close to 1 and so this aspect lvoul d 

be circumvented. I:Im~ever, there is no improvement in ·tl1e 

result. 

Finally, as a check on the means o:f redistribution to 

see w-hether it is associated 1'li th numerical instability, a 

simple one-dimensional problem is tried. 

d-r = 0 
clt 

along the characteristics, 

ds -::: dT' 
dt qS 

with the initial condition, 

-r(~') = 1- c_os. S 

This problem is equivalent to solving 

and has the solution in parametric :form 

) 

( 2 . 46) 



83 

The solution becomes multi valued at S= lf when t::. .L but 
2. 

until then, applying the method of redistribution results 

in an accurate numerical solution with no instability. Of 

course this iS only a one-dimensional analogue and so curva-

ture effects are ignored but it does give some reason to 

believe that the redistribution is basically sound. 

Often, numerical instabilities can be suppressed by 

appropriate smoo·thing. Provided the smoothing affects only 

the oscillations which are spurious, the accuracy 1vill not 

be impaired. Unfortunately in this case it is difficult to 

find a means of suppressing the oscillations associated uith 

the instability and leave the basic solution unchanged. 'l'he 

profile of the circulation is smoothed by applying a differ-

ence formula corresponding to the standard diffusion 

equation. This should suppress only high frequency components 

in the profile provided the diffusion time step is much 

smaller than the actual time step. The difference ~rmula 

is 

where the superscript * indicates the smoothed values and 

the subscripts refer to the discretised arclength position. 

Although it is easy to estimate the comparison 

between the t1"lO different time steps, it is simpler to 

compare the results obtained lvhen £ has the minimum value 
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which suppresses the oscillatory behaviour and when £ has 

a value which only just permits oscillations. This compar­

ison is shmm in Figures (2.13) and (2.14) where £.,. o. I and 0.01 

respectively. Smoothing clearly destroys the details of 

the spiral and so is useless as a means of continuing the 

calculation of the roll-up. 

In conclusion, calculating the evolution of a vortex 

sheet by redistributing mesh points :fails to provide a reli-

able method despite the fact that this method no longer 

regards the sheet as collection of discrete vortices but 

tru~es into account its curvature, and so is a more appropriate 

physical description. Even though the discretisation errors 

in the approximations decrease as the number of mesh points 

increases, the position of the vortex sheet :for a time level 
"2. 

greater than 1.5 R /10 does not appear to approach a limit. 

This suggests the original problem may be ill posed, perhaps 

due to the basic instability o:f the vortex sheet to small 

wavelength disturbances. To :fully explore this idea, it 

would be necessary to introduce many more mesh points and 

the method becomes uneconomical. The operation count :for 

calculating the velocity is 0(N'2.). 

Finally , it is important to remember that the limit 

of small viscosity may not correspond to inviscid flmv and 

so it may be more appropriate to look for methods which talce 

into account s ome small viscou s effects. Since viscosity 

damps the growth of small scales , it is obviously important 
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Figure 2.13 
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in the question of the stability o:f the sheet. 
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V. A METHOD BASED ON THE CIC TECHNIQUE 

From the conclusion of the previous section, a 

method is needed lvhich can calc~late the velocity of a large 

number of point vortices. The most sensible method is one 

based on the CIC Technique. It seems appropriate to give 

the details before discussing the many facets of the method. 

For an incompressible, tw·o-dimensional fluid 1vi th 

velocity, li -= ( U.-x.) u~> o) , and vorticity, w: ( o, o) w) 

\]. -u..-= 0 
) 

II - - a• 1· 
""''j - '+' (2.50) 

lvhere r is the streamfunction. 

(2.51) 

The momentum equation can be 1vritten for an inviscid fluid 

as 

?>w + U.. V w = o . 
1)-t 

From (2.50) and (2.51), 

\I'Z.~ -:: - w . 

(2.52) 

(2.53) 

Since the vorticity moves with the fluid, vortex points, 

resulting from a discretisation of the vorticity, 
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Nv 

w ~ L WY\ b(":(.-X.,) b(~-~jVl) (2.54) 
Y\.:: I 

:follow the paths 

(2.55) 

To solve (2.53), a rectangular grid is introduced 

1~ich covers the region of interest. If h~ , h~ are the 

dimensions of one cell of the grid, then a :finite difference 

approximation to (2.53) is 

'f(i.J~+I)- ~tP(~.)j) + ~(l.Jj-•) 
~?... 
'j 

= - w(~)}) 

+ c?(lt-l)j)- ";l.ct(~Jj) + <f.-(_~..~.,j) 

h~ 

(2.56) 

, j = 1, 2,. _- M +I , N\,>t"' l-x, M\,';)-=- l 'j ( "L:(., l'j are 

the dimensions of the rectangular grid). Doing one step of 

cyclic reduction on the system (2.56), one :finds the coef­

ficients of ~( l.J j) , L=- lJ 1., .. N+l, are symmetrical and a :fast 

sine transform enables the Fourier coefficients of the 

solution to be :found {see Hockney (1970) :for details). 

After returning to physical space, one reverse iteration of 

the cyclic reduction gives the full solution. In order for 

this scheme to 1vork, Dirichlet conditions must be g iven at 

the boundary. 
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Since the error of the method will be related to the 

grid spacing and the larger the grid the more expensive the 

computation, it is important to optimise the size of the 

rectangular grid around the flmv of interest. '1.1o find the 

value of ~ on the boundary, local vorticity centroids a re 

found as follows. 

~..ok 

x.~ = '[_ (.xiw.i)/w~ 
J-= (i.-t)k.+ I 

·~..k. 

'-:1~"' L_ (yjwi)/w~ 
J"' (l.-1)\<.-t I 

·~ 

w~-== I (wj) 
j=. ( ~-•)k+l 

I (2.57) 

(2.58) 

(2.59) 

where L.:. 1 , 2> ... L , Lk = Nv. Using the :flo1-v field of the se 

L point vortices, the velocity can be approximated at the 

boundary of the rectangular grid. To be sure this approx -

imation is accurate enough, the boundary is chosen to be at 

least a distance H mvay from any centroid vortex, where 

H-= ~":)( I r\.- rj \ (see Haskmv (to be published)). To obtain 
'-JJ 

the Dirichlet condition, the appropriate velocity component 

can be integrated to g ive the streamfunction along the 

boundary. Since the streamfunction is sing le-valued, it 

must approach the same value after one complete integration 

around the boundary and this provides a useful checlc on 

accuracy. In pra ctice, it may prove too expensive to deter-

mine the veloci ty a t each gri d point on the bounda ry in this 
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manner. One way to avoid this di:fficulty is to determine 

the velocity at fewer boundary points and use an interpola-

tion :formula f or the rest of the points. 

Once the streamfunction is known, the velocity 

components at the grid points can be easily obtained. 

~(~Jj+l)- ~(l.J)-1)_ 
~~'j 

~ ( Lt I • j) - '-J. ( L~ I, i) 
c;thx. 

(2. 60 ) 

(2.61) 

Since the velocity components are known at the boundary, the · 

velocity is lmm,m everywhere on the grid. 

Hmvever, the vorticity is not knmm at the grid points 

and the v e locity is needed at the points (x~J~~) , (see 

(2.55)). Following the usual CIC method ( see Christiansen 

( 1973)), the vorticity at each point (x"".)~"') is shared hy 

the :four corner grid points of the cell in lvhich it is 

located by the :follmving weighted scheme (knolffi sometimes 

as an area-weighting technique), illustrated in Figure 2.t5. 

where A~ is an area as shown. Thi s particular 'veighting 

ensures the conservation o f circulation and linear momentum. 
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The areas in a typical cell. 

Figure 2.15 
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To find the velocity at the vortex points, a bilinear inter­

polation is used. 

Finally, the time integration of (2.55) is achieved by using 

a simple Euler difference approximation. A check on this 

approxiaation by using a leap-frog scheme show·ed no qual­

itative change in the results. The criterion used to choose 

the time step is that no vortex point moves more than a 

grid spacing in one step. 

The method for calculating the velocity (i.e. (2.56), 

(2.60), (2.61) and (2.63)) bas its largest error associated 

with the bilinear interpolation used in (2.63). This is 

seen in the test case of a single vortex. The flow calcu­

lated deviates from the exact flow in the neighbourhood of 

the vortex (about a grid spacing) but this is not the region 

of interest. The object of the method is not to calculate 

the flow field of a collection of point vortices but of a 

vortex sheet (or perhaps better, of a narrow region of 

concentrated vorticity). The vortex points used are assigned 

the role of markers to follow the evolution of the vorticity. 

Christiansen (1973) also reports the bilinear interpolation 

to be the most important factor in producing numerical errors. 



94 
Improved interpolation schemes can be found but it is hoped 

that since the grid is changed at every time step that this 

error 1dll be randomis ed and lead to cancellation at succes­

sive time steps 1vhich lvill improve the accuracy. 

Vith these thoughts in mind, the results of the 

method, 1vhen applied to the ring 1dng , prove interesting . 

Making use of the results obtained by Fink a nd Soh's me thod, 

a profile of the vortex sheet at a time t""' 1.tl:,~7 T0 , just 

before the onset of the numerical instability as seen in 

the previous section, is used as an initial condition. The 

ere method then produces the most detailed roll-up the author 

has seen to elate. This is shown in Figure 2.16 for a grid 

size 65 X 65 and with four-hundred vortex points. Figure 2.17 

shows the calculation repeated with a time step half that 

used in Figure 2.16 and both figures show the result at 

t = I. q I~~ Ta • Outside of the spiral, there appea r smaller 

structures. At first, this 1vas considered another exampl e 

of numerical instability and smoothing 1vas :introduced to see 

if the "instability" could be c ontained 1vi thout destroying 

the details of the roll-up. The smoothing used was a 

( 1 1* 6 1* 1) 1veighting in averagin g the positions of the point 

vortices and the result is sho1m in Figure 2.18. Although 

the time is not the same, it is close enough to show· that 

the smoothing 1vorl{s as required. 

A survey of the literature fails to f ind any report 

of small s cale structure o f the :form shm.·m in Fi gures 2 . 16 
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and 2.17 for the case of a ring wing. Pierce (1961) has 

taken photographs of the flow generated by the acceleration 

of a flat place through still air. There is evidence of 

smaller structures outside the main vortex core resulting 

from the roll-up of shed vorticity. These structures are 

convected into the vortex core. This behaviour is repro-

duced in Figure 2 . 19 when the number of vortex points . is 

increased to t\vo-thousand . Clearly the grid is too large 

to resolve the details of the smaller st1~ctures and so the 

vortex sheet loses definition in those regions. This is a 

definite indication that smaller structures may play a role 

in the development of vortex cores which result from roll-up 

processes. 

It is instructive to examine the method lvhen applied 

to a flow in Hhich there is some knm·m information about the 

grouth of small scales . :t>loore ( 1974) considers the stability 

of an expanding circular sheet. If the position of the sheet 

is given by 

r= 

linear stability analysis gives 

\Elt)l-= ( 2 . 65) 

\vhere C1> 
) 

a re constants, Ro is the initial radius and 
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'£he :functions l 0 and K0 are o f modi:fied Bessel type. 'fhe 

vortex sheet has constant initial strength and I' is the 

total circulation . Por small times, i.e. bt LL l , the KC) 

term g ives the growth o:f \E(t;)\ 

;t'ls' let 
lt.lt) \-= \fc.\ e. 

• 

(2.67) 

As a measure of I~ (t)ll. , the variance o:f the vortex points 

around a mean radius is determined and Figure 2.20 shows the 

logarithm o:f this variance as a function of time :for b-==- 0.1 

Curve (b) is the result w·hen the g rid 

spacing is double the spacing of curve (Q) and curve Cc) 

is for the same spacing as (~) but using a time step twic e 

as large . The curves al l sho1·r the same basic trend . After 

the first :few time steps there appears an almost linear 

regime before the grow·th begins to slow down. This s lo1vdmm 

in growth corresponds to the emergence of larg er structures 

:from the small scale perturbations. The behaviour of t he 

slope o:f the logarithm o:f the variance is consistent 1vi th 

(2.67) lvhen the limiting w-ave number, S , is based. on the 

grid spacin~. If t he bilinear interpolation in (2. 63 ) is the 

major source o f error , then this explains why the d ominant 

S is the one based on grid spaci ng . The curves in Fi~ure 
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2.20 are obtained with two-thousand vortex points and a 

grid, 129 X 12q. There is no di:f:ference Hhen one-thousand 

vortex points are used, so the spacing bet-.;veen vortex points 

is less important than the grid spacing. In passing, it 

should be noted that the viscous spreading of the sheet v as 

calculated but the resulting variance does not have the 

behaviour :found. 

Figure 2.21 gives the vortex sheet at t:: O.b~S Jit"R:tr. 

It shows that some small structures are interacting and 

bigger structures are :forming . The details o:f the small 

structures are not ahvays clear due to lack o:f resolution 

by the method. The largest spirals appear to :form 1vhere 

the length of tlB sheet per cell is typically smallest over 

a number of cells. There is a common symmetry to both the 

circular s hee t and rectangular grid, viz angular modes 1vith 

frequency 4-m., m. an integer, and this is clearly visible 

in the results for m.:: I at least. This was reported by 

Christiansen (1973) a s an anomalous instability. 

The most important aspect of the result, however, is 

that the emerging larger structures seem to be independent 

of the method . Although grid size, number of vortex points, 

and time step 1vere all varied, the size of the structures 

remains the same and take the same form. Decreasing the 

grid s ize and :increasing the number of vortex poin·ts only 

increases the de tails of the structure. This is a great 

positive aspect of the method and suggests that provided 
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sl!lall scales are appropriately allowed :for in the method, 

consistent results appear to emerge. 

To illustrate :further the potential o:f this approach, 

Figures 2.22a-n show the time evolution o:f the ring wing. 

Two-thousand vortices are used on a grid, 128 X 128. Once 

again small structures appear early but no1v their transition 

to larger structures is clear. Moreover, amalgamation o:f 

vortex structures is seen as well as a structure disintegrat­

ing and being absorbed into neighbouring structures. This 

is very promising in the light o:f some recent experimen·tal 

work, viz Freymuth (1966), Winant and Brownand (1974) and 

Brown and Roshlco ( 1971.1:) all report seeing amalgamation and 

disintegration processes. 

One disadvantage is the loss o:f de:finition o:f the 

sheet and it is not clear at this point lvhether this can 

be related to an e:f:fective viscosity introduced by the 

scheme. Since there is great interest in understanding 

vortex pairing theoretically, (e.g. Christiansen and Zabusky 

(1973), Patnaik, Sherman and Corcos (1976)), this method 

holds interesting possibilities especially when it is remem­

bered that increasing the number o:f vortex points adds 

relative little cost. 
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Chapter 3 

A Study of the Motion 

of a Buoyant Pair of Line Vortices 

I. INTRODUCTION 

In the previous chapter, the motion of a vortex sheet 

in a homogeneous two-dimensional fluid is studied. In 

particular, numerical means are examined to find accurate 

solutions to the governing equations. In this chapter the 

condition that the fluid is homogeneous is rel~~ed by allow­

ing density variations in the fluid. The flow will be 

considered laminar and inviscid in an attempt to separately 

study the influence of buoyancy. The general problem is 

hard and so a particular situation will be considered. 

For some time now there has been great interest in 

determining the motion of a vortex pair through a stably 

stratified medium. The most notable example of this situ-

ation is the behaviour of the wake behind an aircraft. As 

discussed in the previous chapter, the vortex sheet shed 

from the trailing edge of the wing rolls up into two contra-

rotating vortex cores. The problem of interest then is to 

determine how the vortex pair moves through the atmosphere 

once the roll-up is completed. Taking the idealisation that 

the vortex pair consists o:f two line vortices whose circula­

tion is :! 1' situated ;;tR.o apart, then there is a known 

solution for uniformly constant density (Lamb (1932), § 155) 
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in 1vhich both vortices move dm·mwards at constant speed 

(3.1) 

Figure 3.1 shows the streamlines ~or this solution in 

coordinates ~ixeu with the vortex pair. There is a stream-

line given by 

+ (3.2) 

(3.3) 

which :forms an oval, C , around the vortices. Fluid bounded 

by this oval moves with the vortices. 

-~ifhen the atmosphere is stably strati~ied (as ~ 

decreases, i.e . in the direction o~ the gravity :force , the 

density increases), the vortex pair convects do1vnwards 

carrying lighter :fluid into regions o:f more dense fluid . 

Since the fluid inside the initial oval rotates around the 

line vortices, mixing 1-lill remove any density variations. 

Without the effects of viscosity or turbulence, there will 

be a sharp interface separating the uniform density asso-

ciated with the fluid carried by the line vortices and the 

stratified fluid outside. As the vortices move downwards, 

buoyancy uill alter the speed of the vortices and change 

the shape o~ the inter~ace. 
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The streamlines for a pair of line vortices 
in coordinates fixed with the pair. 

Figure 3.1 



122 

Although a number of' authors (Turner (1960), Scorer 

and Davenport (1970) and Tombach (1971)) have used the 

equation describing the rate of' change of' the classical 

hydrodynamic impulse to model the motion of' the vortex llake, 

Saf'fman ( 1972) has shmm the concept of the impulse loses 

its classical meaning when the density is not uniform. 1vi th 

the impulse given by 

f = ) f 1" x W dA 

Saff'man (1972) obtains the result that, in general, 

d I - ( f § dR :f 0 
cit ) 

(3.4) 

(3.5) 

However, he does establish that, 1vi th the Boussinesq approx­

imation (i.e. density differences are small), and letting 

be the undisturbed density, 

(3.6) 

where the impulse is no1v given by 

(3.7) 

and f is some average density. For this to be correct, 

(3.7) must include all the vorticity in the f'lmv. In 
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particular, vorticity is generated at the interface as lvell 

as in the flow surrounding the convection cell, as estab­

lished by the equation 

(3.8) 

~ is the usual convectional derivative. 

Since Scorer and Davenport (1970) and Tombach (1971) 

take the impulse to be 

(3.9 ) 

1ihere R is the changing separation distance o£ the line 

vortices, they have neglected the contribution from the 

vorticity at the interface and in the outside fluid, and 

their results are suspect. 

Saffman (1972) mrures use of (3.6) and (3.7) to model 

the motion of the cell in the following way. lie considers 

the shape and size o£ the cell boundary to remain unchanged, 

i.e. no detrainment of the inside fluid nor entrainment of 

outside fluid. Since the boundary is regarded as steady, 

the kinematics of the flow can easily be accounted for by 

appropriate choice of velocity potentials, allowing vort i city 

to be generated at the interface. Since the Boussinesq 

approximation is being used, the vorticity generated as a 

result of displacement in the fluid outside the cell can be 
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neglected to a good approximation. The dynamic condition 

at the boundary is satisfied in an approximate way by using 

(3.6) and (3.7) appropriately. This leads to the result for 

the dowmvard velocity, 

uhere 

V = Vo - 6fs t 
f:r ~ C fo 

(3.10) 

being constant uniform 

densities for the outside, inside fluid respectively, and C 

is a shape factor estimated at 1.2. Although Saffman (1972) 

also obtains the result for the case fa:::. f'I:(I- J3j) , i.e. 

stratification of the outside fluid is taken into account, 

the result (3.10) is of more interest since it relates to 

the approximations made in this work. These approximations 

will be clarified later. 

Saffman (1972) also explores the relative importance 

of viscous dif'fusion at the boundary as a means of entraining 

f'luid into the region moving with the vortices, and the wave 

drag due to the vertical motion. His estimates suggest 

that neither of these effects will be important. Far more 

uncertain is the effect of turbulent mixing across the 

boundary. The Kelvin-Helmholtz instability of the interface 

may lead to turbulent mixing and the resulting entrainment 

may eventually bring the fluid to rest. Saffman (1972) 

attempts to take this into account by allo1ving the d i mens ion 

of the shape (the shape is considered similar at all times) 
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to change and by using dimensional considerations to obtain 

an appropriate equation. Narain and Uberoi (19711) follmv 

the modelling adapted by Saffman (1972) but include an 

energy equation which takes into account dissipation due to 

turbulent drag on the oval by the lvalre .fluid and dissipation 

due to the form drag on the oval by the ambient fluid. 

These effects 1vill not be considered in this lvork. The 

flow will be considered laminar as a first step in under­

standing the processes involved in the motion. 

Crolv (1974) attempts to elaborate on the effect of a 

possible drainage filament first proposed by Scorer and 

Davenport (1970). He neglects the time derivatives in the 

problem and obtains the steady vorticity distribution along 

the boundary of the cell. This generated vorticity then 

convects the line vortices closer together, which has the 

effect of speeding up their dolvmvard velocity. Even with 

some account taken of the vorticity generated by the displace­

ment in the ambient fluid, the uplvash is not strong enough 

to prevent a net dmmward acceleration. 

The work in this chapter follolvS the lines adopted 

by Crow (1974) and Saffman (1972), i.e. regarding the flow 

as inviscid and laminar and neglecting the lvave drag due to 

the gravity waves generated by the vortex wake. Although 

entrainment will be n eglected, detrainment can be sholvn to 

occur supporting the reasoning of Scorer and Davenport (1970) 

and Crolv (19711), and contradicting Saf:fman's (1972) picture 
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vf the :flmv. Houever, numerical results obtained by Hill 

(1975b) suggest that Saf:fman' s (1972) modelling is neverthe­

less accurate for small times and Crow's (1974) neglect of 

the time dependency in the generation of vorticity is 

unreasonable. All the authors mentioned make use of an 

assumption of similarity of shape and thus neglect any 

possibility o:f wake collapse due to the stratification o:f 

the ambient :fluid. This work too will neglect this aspect 

by considering the density outside the wake to be uniform 

and constant, fo , and slightly larger than the density, 

fr , in the convection cell. The Boussinesq approximation 

can then be applied. In this way the emphasis is on the 

effect o:f buoyancy on the l'iake trajectory. 

In Section II, a Taylor's expansion in time is calcu­

lated confirming the accuracy o:f Saffman's (1972) model :for 

small times. 

This provides too a good check on the macroscopic 

model introduced in Section III to describe the walce trajec­

tory for :finite times. This model allows a tail to develop 

and includes its effect on the motion. For large times, 

the wake fluid detrains away and the line vortices begin to 

accelerate do"imwards again after their initial slmvdmm. 

Finally, this model is checked against numerical calculations 

involving the method developed by Fink and Soh {197L.1) \vhich 

is discussed in detail in Chapter 3. There is good agree­

ment suggesting the model is accurate enough to describe the 



127 

gross :features o:f the walw motion. 
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II. 'rHE TAYLOR SElUES IN TIME 

This section describes the calculation of the first 

few terms of a Taylor series expansion in time of the flmv 

variables describing the motion of the line vortices and 

the change of shape of the interface. At i:= 0- , the 

density is considered uniform and constant, f-r. , throughout 

the flmv and the flow field is knmm (see (::> .1-3), or Lamb 

( 1932), § 155). At t-=< o , the density outside the convection 

cell is increased slightly to fo • This corresponds to 

adding an impulse to the flow· and the deformation of the 

interface must be calculated to O(t"l.) in order to see the 

effect of buoyancy. 

The coordinate system is shown in Figure 3.2. Let 

the density difference be denoted by 6f 

Llf-= fo- fr (3.11) 

When ~f=o , the velocity potential for a pair of line 

vortices is given by 

(3.12) 

in coordinates fixed with the vortices whose strengths are 

'!.1' • If Y(t) measures the dmvmmrd position of the line 

vortices, then the follo1ving geometrical identities arc 

obvious. 
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-------+----~A---~~~~----+--------~ 
:X. 

The coordinate systems and parameters used. 

Figure 3.2 
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'<" c..os e = \5" cos¢ ( 3 •13) 

t 

(0 SIVI ~ - ~ Sl"l e = Y(t) = s v(t}dt (3.14) 
D 

In coordinates fixed with the fluid at rest at oo , the 

potential due to the vortex pair is 

(3.15) 

Expanding in a power series in time, 

V(t) = vo + V,t + O(t') , Yo = _]2_ 
41\Ho 

(3.16) 

lA(t} = u,t + O(t-z.) (3.17) 

R(t) Ro + 
'2 o(t"!) = u.,"!:: + (3.18) 

;L 

'/(t) = V0t + \J t 1. ,_ + O(-t"3) (3.19) 
z 

and the potential inside will be 

~T ~ ~o + ~.t + if"I.t. + Olt
2

) (3.20) 

while outside 
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(3.21) 

where ~0 , ~~ , are obtained by expanding (3.15). 

(3.22) 

(3.23) 

1: ;r,o 
The contributions !' t and !' t are due to buoyancy. Since 

the :flow outside is irrotational and v1.g;():::; V
2 P. = 0' 

(3.24) 

2 ~ . 
In the inside region, 'iJ Po and \1 <:P, will vanish except at 

the line vortices. However, since the motion o:f the line 

vortices is included in the expansion when calculating ~o 

and ~~ , \fi will be :free o:f singularity and 

(3.25) 

The interface is given by 

(3.26) 

The kinematic condition is 
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(3.27) 

;+: ,t:D f :f.,I where ~ has the value ~ ~ Xor outside, inside ~low 

respectively. The implicit behaviour in time in the 

derivatives of the potential is removed by expanding them 

in a Taylor series about 'f=-1. 
fo • Thus 

+ l9?o "}',t + o~,t + o~£t][d'7o + dl.Jt] + o(e)= 0 (3.28) 
or o8 oe ?16' ern de 

~ refers to either inside or outside, i.e. il'r or !fo 
respectively, and so (3.28) represents two equations. The 

lowest order terms give 

(3.29) 

(3.30) 

The interesting part of the deformation of the interface is 

that due to the buoyancy effects. In order to obtain this 

component in the expansion of 1 , the change in the shape 

due to the dolmward motion of the line vortices 
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is calculated and subtracted from '7 • Figure 3.3 illus-

trates the situation and defines the coordinates used. Thus 

e -::: iCl + ~::,e I V (3.31) 

The following geometrical identities prove useful. 

(3.32) 

which becomes 

Also 

(3.34) 

After some algebraic manipulation and using (3.32), (3.34) 

becomes 

(3.35) 



134 

The coordinate system used to calculate the 
change in 1 due to the downward motion of 
the initial shape. 

Figure 3.3 
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Expanding ~e in a Taylor series in time, 

(3.36) 

and substituting into (3.35), leads to 

(3.37) 

Now Ar can be calculated directly from (3.33). 

(3.38) 

The following identity proves useful. 

- V0 swtt9 + Vo d_jp c.o~e a.tf"::J
0

( 3. 39) 
'?o o\G 

'l'hus the O(t) terms of ( 3. 29) and ( 3. 38) are equivalent and 

so there is no effect of buoyancy on the interface to this 

order and the next term at least is needed. Differentiating 

(3.39) gives 
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Another identity is 

(3.41) 

Expressions (3.40) and (3.41) reduce (3.30) to 

a.t ('.,. "7-o 

Using ( 3 .39), this leads to 

Now, mal{ing use of (3.38) to separate out the component of 

1~ which refers to the change of shape, ~~ say, 

To solve (3.24), (3.25) and (3.43) is in general quite 

difficult and so an approximation is made. The interface 

is closely elliptically in shape. Choosing the ellipse . 

= (3.44) 
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the y intercepts of the ellipse and the inter£ace agree, 

1vhile the x intercepts are 2 and 2.09 respectively. It 

turns out that 0.1 is an upper bound on the di~~erence in 

radius bet1veen the ellipse and the interface. The foci o~ 

the ellipse correspond to the position of the line vortices. 

It is important to have the shape very accurately approx-

imated near the stagnation points since any deviations near 

them lead to changes in the direction of the velocity. 

Introducing a conformal mapping 1vhich corresponds to 

introducing elliptic coordinates, leads to 

or 

> ~ -.:: i'"'~ u.. s·lV\\1 
~'<a 

(3.45) 

Taking u.-=. 01.. , 1vhere COb~ 'oc "' 4- ( o~ s ;"'l,"2D(:: 3) leads to the 

elliptic equation (3.44). Figure 3.4 shows the details of 

the mapping. Since the mapping is conformal, ( 3.211) and 

( 3. 25) must be satis~ied in the rectangles in the W plane 

de~ined by o<. ~ u.t:: oo , -I\ !::. "lr ~If and o ~ LL ~at , -lT f. v ~ 1f 

respectively. The kinematic condition (3.43) transforms as 

~ollows. 
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Nmv, since 

then 

a.t \A.=- D£ 

and the kinematic condition can be written 

= 

Using the symmetry, 

(3.50) 

the solution to Laplace's equation is easily ~ound. 

( 3.51) 

'rhis satis~ie s the requirement that the v e locity vanishes as 

v_ -t> 00 • 'rhe inside region needs an additional requirement 
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at u = o to determine the solution to Laplace's equation. 

This is supplied by 

(3.52) 

and the solution is 

00 

L ( 0( ~ c.os.~ n u. c.os. 1'\""\J" + [3~ s ~,.,\..- n Lt '5 ~VH1\r) 
fl=-o sv.,'-" V10<. C.obl.-., noc 

(3.53) 

Since ~~~~ d~I a+ 
'!. _ r " u. = ex , by ( 3. 49), 

i:>U... ~u... 

) 

T o 
f3h = - f3 n (3.54) 

Finally, to solve for 0 0 
0(. 1'\ ) f3 .... the dynamic condition or 

pressure balance must be considered at the boundary. 

Yo t ofo + _L(~~of ~ 1-( ~) 1-+ <j~ = 0 
fc bt ~ o")c.. ;t 'b~ 

(3.55) 

?-:r: + 0~1: +- J_lo~1:r + 1-( ~If+ Cj'j == c 
fr. ot ~ "Q.,C. ~ 0'1 f:r 

(3.56) 

(3.55) is for the flow outside evaluated at the boundary, 

while (3.56) is for the flow inside evaluated at the 

boundary. To consider the lowest order terms in (3.55) and 

(3.56), lo~o)
2 

+ { '?>~o)4 must be expressed in the elliptic 
(}")C.. 1.._ [)~ 

coordinates. From (3.22) 
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where use is made of 

Similarly, from (3.23) 

= 

-x..fR.r:. - -x.JRo e. ~+e 

x.'-/R~ 

e. x/R.o _ e.- x.feo l1 
;;( xjR 0 

(3.57) 

{3.58) 

{3.59) 

( "' 60) .J. 

(3.61) 

Evaluating (3.60) and (3.61) in eiliptic coordinates (see 

(3.45)) at u.:o<. and noting 

gives (collecting tog ether {j .57), ( 3 .59) and (3.60), (3.61)) 
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s~ 

= 

(3.62) 

The lowest order terms of (3.55) and (3.56) give 

c 
.f:t: 

(3.64) 

The pressure balance at the interface gives fo = 'fi or 

(3.65) 

-;r:; " .. if", I The expressions for r , r ((3.51), (3.53)) can be 

substituted into (3.65) and the coefficients of s ' V'l rnr , 

set to zero. Thus 
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0 

f3. = (3.66) 

0 

and all other f.3n = o. 

(3.67) 

0 

and all odd ~~ vanish. The constant term is determined by 

mass conservation and is not important in calculating the 

velocity or the shape of the inter~ace. 

The conformal mapping is singular at the position of 

the line vortices. The velocity obtained from the solution 

must be ~inite at these positions. The derivatives of ~I 

evaluated at U.= t. LL... ()(. , V:: -lf, (from (3.53)) are. 

00 

~~I I 
"I 

::; ",.,....'-'"' 2...,~ -=- an 0(. ~Vl 
~ s ,~\-, ~II\ ot V\-: I 

(3.68) 

)"f1: I 
S\~~ ~ "=::' - {3, (3.69) 

o-v- c.o~~ ex 

The velocity components in physical space are dete:rmined by 

(see Figure 3.2) 

(3.70) 
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From (3.45}, and so using (3.68} and (3.69} 

in the 1 imi t € -9 o 

-u.l :. (3.71) 

(3.72) 

I 
(3, is kno1m from ( 3. 54) and ( 3. 66) • 

It is now possible to calculate the change in the 

shape of the interface, i.e. A,. From (3.49), 

o..-t u. -:: 0(. (3.73) 

Using (3.51) and (3.47}, this becomes 

(3.74) 

The mapping gives '5u"'1J": "J.'i>'"'ej(3co~"le+4s•"' 2eJ1- and (3.72) and 

(3.66) leads to 

(3.75) 
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The change in shape, 6 "2. , is shown as a function of 

8 in Figure 3.5. From this it is easy to see that the 

oval flattens out. For the Boussinesq approximation this 

effect will be negligible (since b.J... does not depend on c::3 ) 

and the shape will remain essentially unchanged for small 

enough times. The downward velocity is changed by 

(3.76) 

and the agreement with (3.10) is good. Saffman's model is 

therefore accurate tor small times (the corresponding c 

is in this case 1.155). 

In the next section, a macroscopic model is developed 

which continues the behaviour established here tor small 

times and it is soon obvious that a detrainment filament 

forms at the rear stagnation point. The model is extended 

to include the effects of the tail. 
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III. A MI\CilOSCOPIC MODEL 

The basic approach in this section is to determine 

the vorticity generated by the constant density difference 

at the interface making a simple assumption about the inter-

face shape. The equation governing this vorticity creati on 

in the Boussinesq approximation is 

(3.77) 

The problem is considered two dimensional and so "Lt= (u.'X.,u':l,c\ 

W:: (oJo;w) where 'j is a coordinate in the vertical direction 

and ¢> is the angle between the normal to the interface and 

the y-a;,is. Follow·ing Crow (1974), (3.77) is integrated in 

a direction normal to the interface. 

(3.78 ) 

where ~ is the strength of the vortex sheet at t h e inter­

face and e is a coordinate along the sheet. The 

tangential velocity to the sheet is given by 9 • Crow· ( 1974) 

considers this equation but neglects the time derivative . 

By considering the full e quation, the initial time behaviour 

can be found 'lvhich a g rees with the results obtained in the 

previous section. 

'.rhe simplest model is to consider the interface a s 

circular 1.-1i t h radius, ~ R0 , where ~Ro is the initia l 
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separation distance between the line vortices. Choosing a 

coordinate system :fixed with the circle and with the origin 

at the center o:f the circle, the downward velocity is 

determined by the requirement that the :front stagnation point 

has no vertical motion. Thus the vertical velocity component 

at the :front stagnation point is added as a translational 

velocity to keep the coordinate system :fixed with the 

circular interface. The trailing line vortices may move 

relative to the circle. 

In more detail, the :flow :field is considered as 

comprising o:f two parts, that due to "f?he trailing vortices, 
~ 

, and that due to the vortex sheet, lA~ • Figure 3.6 

show·s the coordinates and variables used. I:f the vortex 

sheet is discretised into equal angular segments, then the 
_. 

velocity ~t can be calculated by the trapezoidal rule 

(see Chapter 2, section III for details). Thus 

and 

where 

.:r:::c 
t-\-1 

L ::. 0, I ; .. . 

..L ~ ~ 1 \, ( :x:L - :x:. j ) _ 

.nr L ' '"2. .)t. i. ('X l. - -;L j) -\- ( 'i ~ - ~.) ) 
.I -= 0 

and a. is the radius o f 

(3.79) 

( 3 . 80) 

the circle ( a.= J3 Ro ) • 
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Coordinate system for macroscopic model without tail. 

Figure 3.6 
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The do'lmward velocity component at the front stagnation 

point is 

(3.81) 

The circulation of the line vortices is !.Tl • V is the 

translationary velocity needed to be added to the vertical 

velocity to make the interface stationary. After noting 

that U11'15 vanishes at the interface, the asimuthal velocity 

o :t: the sheet is 

9 (8) = V $ .\Vl e + l' ~S~VI *· $1V19, (o?·- til.) 

1T t:.cr"Z..+ a.£.- ).a.cr- cc~t~-em~·'+a. £.._ ~uo.co>(t-~- eTI 
(3.82) 

The t ~ are obtained by using the leap-frog scheme on 

(3.78), i.e. 

~~( (k·H)Ll.t) : 

Due to symmetry ~0 = '61\\ = o • In fact, symmetry implies only 

half of '( need to be calculated, i.e. lf(x,'j) ~ -¥(-:x..~~). The 

velocity components of the line vortices are 
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U ~Y" ( (S J if) + ( V - T ) Co5 tp 
Ltli<JsiVItf' 

(3. 8 5) 

The motion of the line vortices relative to the circle can 

be easily followed. 

'l,he procedure then · is as follows. Knowing the values 

of all the quantities at a certain time, an update is obtained 

by first using ( 3.83) to g et the new t~ , then V is 

determined by (3.81) and ( 3 .8'.,~:), (3.85) means the nmv 

position of the trailing vortices can be calculated. Finally, 

(3.82) gives g{e) and the cycle is repeated. 

There is an important dimensionless quantity, 

(3.86) 

which measures the rate of growth of the vorticity at the 

interface compared to the circulation of the trailing vortices. 

For j3 "' D.S , the d01mward velocity is sh01m in Figure 3 . 7. 

As a check on the similarity of the shape, the velocity at 

the baclr stagnation point is shown. It is clear from the 

results that fluid will detrain from the circular shape at 

the back stagnation point, and so the need for a tail is 

obvious. The straight line represents the result (3.76), 

sh01ving the model is g ood for small times at least. 

The model is simply modified to allow· drainage at the 

back stagnation by superimposing a triangular tail region 
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onto the circular interface. Figure 3.8 gives the details. 

Since the flow is incompressible, mass conservation requires 

the circular part of the cell to contract as the tail 

develops. The vorticity equation (3.78) and its approxima­

tion (3.83) will still be used for the circular region and 

as the radius decreases, o~ will be kept constant for 

constant angle, Lb6 • The procedure of keeping the value 

fixed 1¥1 th the mesh point lihen adjustments to the shape are 

made, is adopted also for the tail. The width of the tail, 

which is alliays calculated to th.e nearest mesh point, deter­

mines the number of mesh points on the sides of the tail, 

since the total number of mesh points is kept :fixed. The 

same approximation (3.83) is used for the sides of the tail 

except s.~ (~~e) is replaced by s,..., ex • 

However, there is a complication concerning the 

vorticity near the vertex of the tail. The vorticity must 

vanish at the vertex but the tangential velocity q does 

not. Thus vorticity is convected onto the vertex which 

contradicts the fact that it is a stagnation point. The 

leap-frog scheme is not used at the mesh point adjacent to 

the vertex but rather a simple first order difference in 

both space and time. Thus vorticity accumulates at this 

mesh point and not at the vertex. Since an equal but 

opposite amount of vorticity accumulates on the other side 

of the tail by symmetry, this accumulation will not have an 

appreciable effect on the motion of the line vortices. 
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Solving the vorticity equation is equivalent to 

satisfying the dynamics of the flow :field • . The kinematics 

is satisfied as follows. 'l'he front stagnation point is no 

longer stationary relative to the coordinate system fixed 

at the center of the circle. The condition there is now 

(3.87) 

The change in radius is determined by 

(3.88) 

Hodifications to the shape are determined by the 

balance of mass fluxes. The fllL~ into the tail is estimated 

by 

(3.89) 

1·rhcre 

C:J. 90 ) 

The mass iost from the circu l ar region per unit time is 

- ;:;( a.do.. S i"1 -I h ( ·- 9:l ) .J . ~ -

clt 0. 
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Hass conser.r.:1.tion implies the approximate equality o:r 

(3.89) and (3.91). 

(3.92) 

'l1his equation is solved by Newton's scheme :for ..h. and thus 
<A 

the width o:f the tail is l~nmm. The height is obtained 

directly :from mass conservation. 

('5. 93) 

Assuming all values are lcnm·m at some time level, the 

values at the next time level are determined as :follol'lS. 

The vorticity is calculated by (3.83) for the circular 

region o:f the interface and the appropriate modi:fication is 

used for the tail region. The change in radius follmv-s from 

(3.88) and the downward velocity from (3.87). (3.90) and 

(3.92) determine the l'lidth and {3.93) the height of the tail. 

The trailing vortices are moved forward in tirue by {J. SL.~:) 

and (3.85), and so the procedure continues. 

The only time this proc edure is not clear is bc:forc 

tl1e tail has developed. l~'or small times both U. and do. .:1.re 
cl.t 

small , ma~in~ the determination of the tail width difficult • 

. 1\.n initial e:.::p.:1.nsion in time using the procedu re outlined, 

hut ~.,.i thout tl-:. c ·tail , ;~ i vcs the f oJ lo1:linr-~ . 
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• "' !>';:, 

=- S\"'e* +~I c.,. s'"'"'0.t ~ o(t_l) (3.94) 
n::.r 

"' 11here t-= Vo t and 
Ro 

The other variables have the expansions, 

~ = Ro 
J3'+ o( t'l) 

(3.95) 

~ 

_L do.. ::: 
\/0~ 

rrp 
4 

I -~1 c.., cc£ ~~ t -4- O(t 3
) (3.96) 

n=-1 

00 00 ...0 

~ ~ s;f (3 [f.<:,.-b c. ~:-rr + k C..<~s~~t\ o(t') (3.98) 

fY == + O(t3 ) 

Ro (3.99) 

(3.100) 

It is clear that a second order dif:feren.ce scheme 

must be used to calculate ~~ in order that the correct 

coefficients in (3.96) and (3.98) will be calculated and 

hence that (3.92) will have meaning when solved the first 

time. The O(t) term in ( 3. 97) has a numerical coefficient 
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of 0.5 compared to 0.46 from (3.76) and so the model appears 

reasonable. 

The results are obtained for two values o:f f3 , p-= o. 5 

~~I • The downward velocity as a function of time is 

shown in Figure 3.9, while the position coordinates of the 

trailing line vortices are sho1m in Figure 3.10. The 

behaviour seems to be that, initially, vorticity is generated 

at the interface which slows down the trailing vortices 

descent, but then, as fluid and vorticity are detrained 

upwards, the trailing vortices are forced together and begin 

to accelerate do1mwards. 

There is one unpleasant feature of the model. The 

tail width oscillates rapidly initially but decays to a 

steady behaviour at about t~ = 1.0 for f.>= o.s • This oscil-
~o 

lation does not appear to affect the downward motion of the 

cell or the trailing vortices. There is a weak oscillation 

in the tail height and this confirms the picture that the 

side of the triangular tail does not deviate very far from 

the circular arc. The mesh points are thus not being moved 

very far and so the i~luence is weak especially since the 

vorticity has not yet gr01m significantly in value. 

As a final check on the model, a numerical calculation 

is done based on the method employed by Fink and Soh (1974) 

and detailed in Chapter 2, Section III. Since there is a 

creation term in the vorticity equation, circulation is no 

longer cons.tant along :fluid f low· and the procedure to 
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incorporate this change in circulation, adopted by Hill 

( 1975~), is follm·red hero. Prom Dj erknes' theorem, the 

creation of circulation at the interface is described by 

(3.101) 

<'lhcre e(e) is the angle betw·een the normal to the interface 

and the y-a~is. This integral can be approximated by 

- 1.1t q ~ I{ I si"' 8 . + s '"l G ·] 
~ f yl j+l J 

(3.102) 

1vhere h is the arclength spacing and e· 
J 

is the angle 

evaluated at the midpoint in arclength of the j-1 ~ and j it:. 

mesh point. The method follow·ed is the same as Chapter 2, 

Section III except that after the redistribution of oesh 

points, the created vorticity (3.102) is added to the 

convected circulation at the i ~ mesh point. As Hill ( 1975 b) 

found, the results indicated an instability appearing in 

the tail region. Using the smoothing technique as discussed 

in Chapter 2, Section III, the numerical method can be 

employed for longer times but 1vith probable loss in accuracy. 

However, the resul-ts confirm the macroscopic model as being 

fairly accurate. This is illustrated in the first place by 

compnring the clown"l·rard velocity as shown in F'igure 3.9 :for 
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{?>-: o . 5 , and then by the series o:f profiles o:f the inter-

face as it evolves in time, as shown in Figures 3.11 and 

3.12. In the results for the numerical scheme shown in 

Figure 3.12, there appears to be an attempt for the vorticity 

in the tail to roll up into another vortex pair. The 

smoothing introduced unfortunately prevents the description 

of any details. The dimensions of the interface agree well 

wi th the macroscopic model. Thus the macroscopic model is 

reasonable in describing the large scale motions of the wake. 

The limiting factor on this model appear to be that, when 

the vorticity reaches the same order of magnitude of the 

circulation of the trailing vortices, the discretisation 

begins to :fail. For [3::. o .S , this occurs at about b = 4 Ro • v.; 
This is due to the tail width reaching the size of the radius 

of the circle and is an obvious failure of the assumed shape. 
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Figure 3.11 
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Chapter 4 

Laset anemometer measurements of trailing 
vortices in water 

By G. R. BAKER, S. J. BARKER, K. K. BOFAH 
AND P. G. SAFFMAN 

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena. 

A series of measurements of trailing vortices behind lifting hydrofoils is 
described. These measurements were made in the Caltech Free-Surface vVater 
Tunnel, using a laser-Doppler velocimeter to measure two components of 
velocity in t he vortex wake. Two different model planforms were tested, and 
measurements were made at several freJ.;stream velocities and angles of attack 
for each. Velocity profiles were measured at distances downstream of the model 
of from five to sixty chord lengths. These measurements are the first results 
of a continuing experimental programme. 

In § 3 of this paper, the theory of trailing vortices is discussed. The effects of 
'vortex wandering' upon the measurements are computed, and the corrected 
results are seen to be in reasonable agreement with the theory. 

1. Introduction 
There have been numerous recent attempts to measure velocities in trailing 

vortices, stimulated by interest in the problem of aircraft wake turbulence. 
Several types of measurements have been made to date. -There have been free­
flight measurements (Caiger & Gould 1971; Chevalier 1973), in which one air­
craft follows another to measure velocities in its wake. These have not yielded 
accurate results because of the difficulty in locating the vortex cores. There have 
been wind-tunnel measurements of stagnation pressure (Mason & Marchman 
1972), but these are subject to doubt because of probe interference effects. It is 
questionable whether any material probe can be placed in the core of a small 
trailing vortex without significantly disturbing the flow. There have also been 
measurements in tow basins of velocities in the unsteady decaying vortices 
(Miller & Brown 1971 ; Lezius 1973). In this case the flow is time dependent, 
which makes the mean ·velocity profiles in the vortices difficult to determine. 

The only existing measurement technique which can guarantee no disturb­
ance of the flow with high spatial resolution is laser-Doppler anemometry. 
Recent laser-Doppler velocimeter (LDV) measurements of trailing vortices in 
a wind tunnel have been reported by Orloff & Grant (1973). In the present 
experimental programme a t Caltech, an LDV is being used to measure axial 
and tangential velocity profiles in trailing vortices in a water tunnel. The water 
tunnel has the advantages of high Reynolds numbers at relatively low speeds, 
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and the presence of sufficient light-scattering particles in the water to produce 
a nearly continuous Doppler signal without 'seeding' the flow with foreign 
particles. The ease of flow visualization in water makes it possible to measure 
photographically the position of the vortex and its degree of 'wandering', 
which will be discussed in § 3. 

2. Experimental programme 
2.1. Test facility 

The Caltech Free-Surface vVater Tunnel has a test section ·which is 51 X 51 em 
in cross-section and 244cm long. The maximum flow velocity is 730cmfs. 
Velocities between 200 and 300 cmfs correspond to Fronde numbers near one and 
therefore are not usable. The free-stream turbulence level of the tunnel is about 
0·5 %-For a complete description of this facility, see Knapp & Levy (1948). 

The two hydrofoil models used in this study have a span of 15·2 em and a 
chord of 2·46 em. Both have a symmetric semicircular arc profile, with a, maxi­
mum thickness of 0·35 em and a leading-edge radius of 0·08 em. One of the 
models has a rectangular planform and the other has a planform with semi­
circular tips. Both models are mounted horizontally in the tunnel section by 
means of a thin vertical support stn1t attached to the centre of the span of the 
model. Above the water surface, the vertical strut is attached to a mechanism 
which controls the angle of attack and depth of the model. The model is located 
nea.r the upstream end of the test section so that measurements can be made at 
distances of up to sixty chord lengths downstream . (See figure 1.) 
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2.2. Laser-Doppler instn~mentation 

Use of a laser-Doppler velocimeter (LDV) has several important advantages 
over conventional techniques in this experiment. Perhaps the most significant 
is the fact that there is no material probe in the fluid flow, and hence no flow 
interference. Flow visualization studies suggest that trailing vortices are 
extremely sensitive to disturbances created by even very small probes. Other 
advantages of the LDV are its linear respon::Je to velocity, its small measuring 
volume and the ability to measure vne velocity component independently of 
the others. 

The LDV used in this experiment is mounted on a. traverse which moves the 
entire optical system with respect to the water tunnel. This LDV operates in 
the 'local oscillator' mode, whose principle will be described here very briefly. 
The beam from a 5 m W helium-neon laser is split into two parallel beams by 
a glass-prism beam splitter which uses partial internal reflexion of the incident 
beam. One of the beams emerging from the prism is weaker than the other, and 
this beam is further attenuated by a factor of 100 with a neutral density filter. 
Both beams then pass through a biconvex lens of focal length 30 em. The two 
beams cross at a point within the fluid flow as they pass through the test section. 
On the other side of the tunnel, the weaker beam passes through an aperture 
1 mm in diameter and enters a photomultiplier tube. Here the light from the 
weak 'reference' beam is mixed with light from the brighter beam which has 
been scattered from the volume in which the two beams intersect. This scattered 
light is Doppler shifted by the motion of the scattering particles, which are 
assumed to move with the local fluid velocity. Thus the scattered light has a 
slightly different frequency from the reference light and the combination of the 
two produces a beat frequency in the photomultiplier tube. This beat frequency 
is directly proportional to one component of the fluid velocity. For a more 
thorough explanation of t he LDV principle, see Goldstein ( 1967), Adrian ( 1972) 
or Wang (1972). 

The beat frequency from the photomultiplier is amplified and ba nd-pass 
filtered to remove noise outside the frequency range of interest. The signal is 
then further amplified and clipped to eliminate most of the random amplitude 
modulation of the raw Doppler signal. The clipped signal is fed into a phase­
locked loop, which produces a continuous square wave of the same frequency as 
the Doppler signal. The phase-locked loop reduces the effect of momentary 
signal dropouts which are caused by fluctuations in the number of scattering 
particles in the focal volume. The phase-locked loop can be used in the LDV 
system as long as the turbulence level does not exceed 12%- At higher turbu­
lence levels, it cannot accurately track the fluctuations of the Doppler 
frequency . 

The square-wave output of the phase-locked loop is feel into a digital counter 
which averages the Doppler frequency over a lO s period. The counter frequency 
is then converted into a velocity averaged over the same period. The square­
wave s ignal also goes to the input of a frequency-to-voltage converter (Anadex 
model PI-408R). This device produces a n analog v-oltage proportional to the 
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Doppler frequency and thus to the velocity. The converter averages the fre­
quency over about fifty periods, so that the resulting instantaneou~:~ velocity 
signal has a bandwidth of from 0 to clo of the Doppler frequency. The velocity 
signal is fed into an r.m.s. voltmeter to measure the turbulence intensity. 

The accuracy of any LDV system is limited by what is known as 'ambiguity 
noise' (George 1972). This is a broadening of the Doppler signal spectrum, or 
noise on the demodulated velocity signal, which has three causes: (i) mean 
velocity gradients across the LDV focal volume, (ii) turbulent fluctuations 
within the focal volume and (iii) the finite time of transit of scattering particles 
passing through the focal volume. Ambiguity noise limits the accuracy of 
measurements of velocity fluctuations, but has no effect upon mean velocity 
measurements. For the focal volume used in the present experiment, which is 
approximately 1 x 0·05 x 0·05 mm, the noise produced by (ii) is negligible. Noise 
from (i) may be significant in the high shear region in the core of the vortex, but 
a more important cause of measured velocity fluctuations in this region is the 
'vortex wandering', which is discussed below. Noise from (iii) will be the same 
in laminar as in turbulent flow for a given focal volume, and has been measured 
in the laboratory. This component of the ambiguity noise is equivalent to a 
turbulence level of 0·25 %, which is thus the resolution limit of the system for 
velocity fluctuations. 

2.3. Experimental results 

The present series of measurements included axial and tangential velocity 
profiles 1n the vortex wakes behind two different model hydrofoils at distances 
of from five to sixty chord lengths downstream. The axial velocity component 
was measured directly by aligning the LDV with the free-stream flow. To obtain 
the tangential component, the velocity component at a 45° angle to the free 
stream was measured with the LDV, and this was used together with the axial 
velocity to compute the tangential velocity.t Velocity traverses at each down­
stream station were made in the horizontal plane, starting well out in the free 
stream and proceeding inwards to a point past the .centre of the span of the 
modeL Each mean velocity measurement represents a 30s average, which was 
fotmd to give extremely repeatable results. -

Figure 2 shows typical velocity data for the model with square tips. Shown 
on this figure are axial and tangential velocity profiles for two values of xfc 
(distance downstream divided by chord length), and profiles of the axial fluctua­
tions. Flow visualization studies suggest that these measured velocity fluctua­
tions may be caused primarily by the random motion or wandering of the 
trailing vortex about the measurement point. The velocity gradients near the 
core of the vortex are high, so that the relatively small motions of the vortex 
can produce large velocity fluctuations. The degree of vortex wandering and its 
effect upon the measured velocities will be discussed in § 3. 

t The tangential component could not be measured directly by aligning the LDV at 
!)0° to the free-stream flow, because the mean tangential velocity passes through zero at 
the centre of the vortex. The LDV measures the magni~ude but not the sign of the velocity, 
so that velocities with near zero mean are very difficult to measure unles.<:~ frequency 
biasing is used. 



(a) 

-0·4 

(b) 

-0·2 

yfb 

1 7 8 

20 

:::)1 0 

I~ 

FIGURE 2 . Velocity profiles in trailing vortex. R. = 22000, U0 = 90 cmfs, a = 10°, aspect 
ratio = 6· 18, wing span b = 15·24 em. A , xfc = 10; e . xfc = 20. (a) Tangential velocity. 
(b) Axia l velocity clefect (lower points) and fluctuations (upper p oints) . 

The repeatability and small scatter of the data. in this experiment show that 
the use of the LDV in a water tunnel is a practical means of measuring velocities 
in trailing vortices. The next step in this experimental programme will be to 
find to what extent the vortex wandering phenomenon is caused by free-stream 
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turbulence. This will be done by reducing the turbulence level of the water 
tunnel below its present value of 0·5% with the use of additional flow 
stre.ighteners. 

3. Theory and analysis 
3.1. Trailin[J vortex theory 

We now compare the experimental data with the available theory. Moore & 
Saff:rp.an (1973, hereafter referred to as i) have recently given a theory for the 
structure of laminar trailing vortices. For the case where the wing loading 
varies like the square root of the distance from the wing tip, the tangential 
velocity near the centre of the vortex is given by 

I v(r,x) = pr(!)r(4vxfU0 )-i M(f; 2; - U0 r2f4vx). (1) 

Here r i~ the radial distance from the axis of the vortex, xis the distance down­
stream bf the wing, vis the kinematic ~cosity, U0 is the free-stream velocity or 
speed bf the wing and M is the confluent hypergeometric function (Abramovitz 
& Stegun 1965, p. 503). The quantity fJ is related to the wing loading and 
mechanism of roll-up. We shall use the estimate, which incorporates a correction 
for finite aspect ratio exact for elliptic loading, 

(2) 

with a measmed in radians, where cis the chord length and b the span. This value 
corresponds to an elliptically loaded thin wing, the root section having a lift 
coefficient of 2mx, with the 'contraction factor' .:\.set equal to 1·5. (See I for 
further details, but note that a larger value of fJ was used there for comparison 
with Olsen's (1971) towing-tank data, corresponding to the solution of the lifting 
line theory equation for a semi-infinite rectangular wing. The present experi­
ments indicate that (2) is a better estimate, as should be the case for an aspect 
ratio of 6.) 

The radius r1 of the vortex core is defined as the value of r for which vis a 
maximum: 

(3) 

The maximum tangential velocity v1 is given by 

(4) 

The axial vorticity f, on the a,xis is 2ovfor evaluated r = 0, ::md is given by 

( .'i) 

'l'he axial velocity u(r,x), measured relative to the free stream, is the sum of 
two terms. The first term 'ltv is due to the pressure field induced by the roll-up a.nd 
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decay of each trailing vortex. 'l'he second term u6 is a. velocity defect clue to 
ret;:~.rda.tion in the boundary layer (of thickness o) on the wing. 'l'hus, 

~t(r,x) = ~t.v+u8 

= ~: (~) - ! Ht - 0·21U0 o (~) -! 11! ( t; 1; -4~:1·
2

). (6) 

W! is a function of U0 1·2f4vx. It can be expressed as an integral of confluent hyper­
geometric functions; a plot is given in I, figure 3(a). Note that ut(O) = -0·1:3, 
ll'! is positive for r > 1·4(vxfU0 )i and lf't ~ (vxflfo 1·2)"!J: for large va.lues of the 
argument. The flux deficit per unit span in the boundary layer is U0 o. 'l'he above 
expression is for a rectangular wing, for which o is assumed independent of the 
span wise station. In I it was assumed that o is given by the momentum thickness 
82 of a Blasius boundary layer, i.e. o2 = 1·33(vcflfo)"!J:. Howe ver, arguments were 
given [see I, paragraph following equation (3. 29)] that the displacement thickness 
might be more appropriate for the axial velocity on the axis of the vortex, i.e. 
81 = 3·44(vcfU0)i. The velocity on the axis is written as t!J..U, where 

p2 (U.)i (c)·k t!J..U = t!J.."Uv+ t!J..U6 = -0·13 Uo v~ - Uox x . (7) 

Here X= 0·28 or 0·72 depending on whether the momentum or disphteement 
thickness is used in estimating the boundary-layer retardation. 

3.2. Vortex wandering 

These predictions cannot be compared directly ' "ith experiment because the 
vortex is observed to wander in a random manner. The measured profiles are 
time averages at positions fixed relative to the wing, and are therefore weighted 
averages of the instantaneous profiles (1) and (6). It is believed that the vortex 
wandering is due mainly to free-stream turbulence, t so that the predictions can 
be corrected for the purpose of comparison with the experimental data. 

vVe expect the turbulence to be equivalent to an eddy diffusivity K . Then the 
axis of the vortex will fluctuate randomly about its mean position in a transverse 
plane at given x with a probability density 

where 

p(7J , /;;) = ( 1/27T0"2) exp [ _ (7!2 + 1;;2)/20"2] , 

0"2 = 2KxfU0• 

(8) 

(9) 

We have determined Kin an approximate manner by enlarging photographs of 
a vortex mark~ with dye and measuring the mean-square displacement of the 
axis. 'l'here is considerable scatter, but this procedure gave values for the r atio 
vjK of about 0·4 for U0 = 30 cmfs tmd about 0·2 for U0 = 90 cmfs. 

vVe assume that the theoretical profiles (1) and (6) are valid instantaneously 
relative to t he instantaneous position of the axis. Then observed quantities are 

t The same degree of wandering wns observed for a stream of dye released from the 
model in a zero-lift configuration. Preliminary measurements with reduced free-stream 
turbulence showed significantly less vortex wande ring. Fnr downstream, some wandering ' 
may b e due to the mutual instability of the two trailing vortices, but estimates of this 
e ffect suggest that it is n eglig ible for the present values of xfc. 
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FIGURE 3. Effect of vortex wandering on core radius, ma.ximtLm tangential 
velocity, and axial velocity on the mean axis. 

averages, denoted by overbars, over the wandering of the vortex axis . Thus for 
the axial velocity 

(10) 

and for the tangen,tial velocity 

where r in these expressions is measured from the mean position of the axis. The 
extra. term in (11) arises from the need to incorpora"!;e a geometrical factor. 

Substituting for p(7J, {;)from {8) and for u and v from (6) and (1), the integrals 
can be reduced to single integrals involving modified Bessel functions and con­
fluent hypergeometric functions, which can be put into dimensionless form as 
functions of xfc, U0r2fvx and vfK. These integrals can be evahmted by standard 
techniques; details of the calculation are available from the first listed author. 

The effect of vortex wandering is to broaden the profiles and reduce the magni­
tude of the variations. In figure 3 we show values of the ratios 1\fr1 a.nd v1fv 1 as 
functions of vjK. vVe define 1'1 as the value of r for which v a.ttains its maximum i;1 _ 

\Ve also show the contributions 6-U,jt:y,.[}v and 6.U8j~[~ to the a.xial velocity on the 
mean centre-line. 
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3.3. Comparison with experiment 
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\Ve expect K to be a function of the tunnel Reynolds number, but since the esti­
mate is rough, the refinement of employing different values for different tunnel 
speeds is uncalled for at the present stage. We have therefore used one typical 
value of the ratio vjK, namely 0·25, in the comparisons between theory and experi­
ment shown in figures 4-7. There does not seem to be any significant difference 
between the two model hydrofoils. 

Figure 4 shows predicted and measured values ofr1 R[fc, where Rc = U0 cfv, as 
a function of (xjc)!. Both the predicted values averaged over the vortex wander­
ing (forvfK = 0·25) and theinstantaneouspredictionsareshown. The experimental 
values ofr1 are given by half the distance between the tangential velocity peaks. 
The agreement is reasonable in view of the experimental uncertainty in measur­
ing 7'1 from data such as those shown in figure 2. In addition, the experiments 
show a lack of .circular symmetry in the vortex structure, which is expected on 
theoretical grounds from detailed studies of the roll-up process (Saffman 1974), 
but cannot at present be incorporated in the analysis of the vortex structure 
given in I. vVe emphasize that vfK was chosen on the basis of an independent 
measurement of the free-stream turbulence. The effect of vortex wandering upon 
the data is seen to be very significant. 

Figure 5 shows v1 R;lfU0 a as a function of(xjc)-!. The estimate of equation (2) 
for fJ was employed. Both values averaged over the vortex wandering and 
instantaneous values are shown. The agreement is again reasonable except that 
there is a tendency for the theory to overestimate the velocity a nd axial vorticity, 
particularly for small values of xfc. In this connexion, it should be kept in mind 
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that the theory is an approximation formally valid in the limit of light loading 
andfor large downsl;rea.m distances. Radial velocities in the cores are neglected, 
and these will be most important close to the wing. Also, our choice of jJ is not free 
from uncertainty. 

Figure 6 shows the axial velocity defect. We have plotted (f).UjU0 ) (xfc)! v.'l. 
a 2Rj(cfb) (1 + 0·51Tcfb}- 2 • There is some arbitrariness in the choice of o. It appears 
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that 81 is marginally better than 82 . The instantaneous value of 11 U is shown with 
81 . The agreement is encouraging, and demonstrates again the importance of 
allowing for vortex wandering in the interpretation of experimental data. In 
particular, the slope of the theoretical line is reversed, and excess average 
velocities are predicted at the centre of the vortex when a 2 Rl ;;;:: 8· 9 x 104, using 81 

for the boundary-layer retardation with bfc = 6·18. In this flow there would be 
a largeiiL~tantaneous axial velocity deficit as measured, say, by flow visualization 
techniques. The data from figure 4 of Orloff & Grant (1973) fall on the extrapola­
tion of the curve representing averages over the vortex wandering shown in 
our figure 6, using 81 , for abscissa values of about 100. The value of vfK of 0·25 
determined in the present experiment leads also to predictions of tangential 
velocity consistent with the data of Orloff & Grant's figure 3. 

Finally, we have computed the apparent turbulence intensity of the axial 
velocity due to vortex wandering. We calculated 

{12) 

using the profile of ( 6) in the integrand. Then the apparent turbulence intensity is 

{13) 

The predicted turbulence levels on the mean axis are shown in table 1 for the 
experimental case of figure 2. The second set of values in table 1 has been cor­
rected for a free-stream tmbulence level of 1 %, assuming statistical inde­
pendence. 

Since the measured values of the turbulence level shown in figure 2 do not seem 
to depend uponxfcand the theoretical predic tions behave as (xfc)~. there cannot 
be complete a£,rreement. However, since the theory is likely to be more valid for 
xfc = 60, we see that the predicted value there of 0·0275 using o1 is close to the 
experimentally measured value. 

The authors are indebted to the U .S . Air Force Office of Scientific Resea.rch 
for their support of this work. 
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