
SOME PROBLEMS OF EDGE WAVES AND 

STANDING WAVES ON BEACHES 

Thesis by 

Antonrnaria Minzoni Alessio 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1976 

(Submitted May 26, 1976) 



-ii-

ACKNOWLEDGMENTS 

I am very grateful to Prof. Gerald B. Whitham, a very under

standing research advisor. Professor Whitham gave freely of his 

time and personal n otes, providing constant guidance during the prep

aration of this thesis. 

It is a pleasure to thank the faculty, fellow graduate students, 

and secretaries of the Applied Mathematics Department; all of them 

made my stay at Cal Tech a most pleasant experience. I wish to 

thank in a very special way Mrs. Virginia Conner and Mrs. Roberta 

Duffy for the typing of a diffi c ult manuscript in a very short period 

of time. 

A scholarship from the C. 0. N. A. C. Y. T. (Consejo Nacional 

de Ciencia y Tecnolog{a, M~xico), which provided full economic sup

port during my graduate studies, is gratefully acknowledged. 

Finally, I wish to thank my father, mother, and sister for 

their constant support and understanding during my studies. To them 

I owe much more than I can express in words. 

This thesis is dedicated to the memory of my beloved mother, 

deceased May 17, 1976. 



-iii-

ABSTRACT 

Some problems of edge waves and standing waves on beac hes 

are examined. 

The nonlinear interaction of a wave normally incident on a 

sloping beach with a s ubharmonic edge wave is studied. A two

timing expansion is used in the full nonlinear theory to obtain the 

modulation equations which describe the evolution of the waves. It is 

shown how large amplitude edge waves are produced; and the results 

of the theory are compared with some recent laboratory experiments. 

Traveling edge waves are considered in two situations. First, 

the full linear theory is examined to find the finite depth effect on the 

edge waves produced by a moving pressure disturbance. In the sec

ond situation, a Stokes 1 expansion is used to discuss the nonlinear ef

fects in shallow water edge waves traveling over a bottom of arbi

trary shape . The results are compared with the ones of the full 

theory for a uniformly sloping bottom. 

The finite amplitude effects for waves incident on a sloping 

beach, with perfect reflection, are considered. A Stokes 1 expansion 

is used in the full nonlinear theory to find the corrections to the dis

persian relation for the cases of normal and oblique incidence. 

Finally, an abstract formulation of the linear water waves 

problem is given in terms of a self adjoint but nonlocal operator. The 

appropriate spectral representations are developed for two particular 

cases. 
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INTRODUCTION 

The purpose of this thesis is to examine some problems related 

to nonlinear waves on a sloping beach. To this end, perturbation ex

pansions for the solutions to the equations of motion are found in vari

ous special cases . Both the full nonlinear theory and the shallow 

water approximation are examined in the various situations and their 

predictions compared. Since perturbation expansions are used, an 

appropriate understanding of the linear problem is needed. To this 

end, in the first chapter the relevant features of the linear problem 

are briefly described. The detailed discussion of some linear results 

that appear to be new is postponed to the last chapter. 

The second chapter is concerned with the study of the nonlinear 

interactions of edge waves and incoming waves. It is shown, using the 

full nonlinear theory, that small edge waves become unstable when 

they interact with an incoming wave of twice their frequency. How

ever, as the edge waves grow, higher order nonlinear effects become 

important stopping their growth and stabilizing the motion. To follow 

this process a two-timing expansion is developed and modulation equa

tions for the edge wave are obtained. An expression for the final am

plitude of the subharmonic edge wave in terms of the parameters of the 

incoming wave is found. The amplitude of the resulting standing edge 

wave was recently estimated by Guza and Inman in the shallow water 

case, and our results reduce to the shallow water ones in the appro

priate limit. The results are compared with the available experimen

tal data and good agreement is found. 
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Since edge waves are not only generated by instability mechan

isms but also by moving pressure disturbances, the linear edge waves 

produced by a pressure disturbance moving parallel to the shore are 

found. The linear initial value problem is solved for the case of a 

· uniformly sloping beach of finite depth. When the results obtained are 

calculated for small angles of the sloping beach, the known shallow 

water results obtained by Greenspan are recovered. This is the prob

lem discus sed in the third chapter. 

The fourth chapter is devoted to the discussion of traveling 

shallow water edge waves. The problem of nonlinear traveling edge 

waves was recently studied by Whitham for the case of a uniformly 

sloping beach. In that case the shallow water theory gives an anom

alous behavior for the nonlinear solution away from the shore. In this 

chapter the anomaly is shown to be as so cia ted with the invalidity of the 

shallow water theory away from the shore. When the shallow water 

theory is used, for depth distributions which remain finite and shallow, 

satisfactory results are obtained. 

The work in the second chapter involved incoming waves with 

perfect reflection at the shoreline. Although not required to the order 

considered there, it is interesting to consider self-interaction finite 

amplitude effects for su~h standing waves. This problem was con

sidered by Carrier and Greenspan, who found exact solutions for the 

nonlinear shallow water equations. However, as discus sed previously, 

the shallow water approximation is not valid for a uniformly sloping 

beach. In the fifth chapter approximate solutions of the full nonlinear 

equations are found in the form of standing waves with finite amplitude. 
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The sixth chapter is concerned with an abstract formulation of 

the linear water waves problem. The linear problem is formulated in 

terms of a self adjoint but nonlocal operator. The spectral represen

tation of the operator is then found in terms of the standing and edge 

wave solutions of the linear problem. 

Finally, an appendix is added to provide detailed justification 

of some questions discussed in the main text. 
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CHAPTER 1 

LINEAR WAVES ON SLOPING BEACHES 

It is the purpos e of this chapter to review some of the known 

features of linear waves on sloping beaches. Two new eigenfunction 

expansions that are used subsequently to solve nonhomogeneous 
I 

problems arising from perturbation expansions are also briefly de-

scribed; their detailed discussion is deferred to the last chapter . In 

the first section the full linear theory is discussed, while in the sec-

ond section the shallow water theory is examined. 

1. 1 Full Linear Theory 

For waves on a sloping beach, the linearized equations of mo

tion for the velocity potential ~ are 

-co<"< o0 
> ( 1. 1) 

Here, X denotes the longshore coordinate, "j the offshore 

coordinate, and ~ the vertical coordinate; the angle of the sloping 

beach is ~ It is assumed throughout this work that 

The surface elevation ;J' is given in terms of _9? by 

: -

Consider now a solution of ( 1. 1) in the form 

( 1. 2) 

Then substitution of ( 1. 2) into ( 1. 1) gives the equations for 'f ; they 

are 
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'fl- ~"l\f-:: 0 
'1> 

'f~~ .. 'f4~- n'l ~"' o ~ ~ ~o 1 - 'J~fH~ ~ o, ( 1. 3) 

We now discuss the solutions of (1. 3) which will be of interest in the 

following chapters. 

First of all, consider the case of no longshore variations: 

A detailed discussion can be found in Stoker ( 1957) and we 

just summarize the results in a form suitable for our l ater purposes. 

For arbitrary angles (l. there is a continuous spectrum of solutions 

of ( 1. 3) which represent incoming waves with perfect reflection. The 

general solution was found by Peters in 1952, but requires compli-

cated integral representations which are difficult to use when com-

bined with other effects. However, for the special angles (3 "1l/1.M , 

where 1'1\.. is integer, the desired solutions simplify to a f:inite sum 

of exponential and trigonometric functions (Stoker, 1957), and these 

are more manageable. 

We note in detail the solutions for since these are 

the simplest of all; the behavior of the standing wave solutions for the 

other submultiples of 1f/z is qualitatively the same. 

The desired solutions for IT IJ.t first found by Hanson (1926) 

are: 

( l. 4) 

where w-z.::. qQ. The surface value ~.2. (A.}, 0) , which will play an 
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essential role later, is given by: 

( l. 5) 

The second term of (1. 4) is the usual deep water wave, and the first 

term is needed in order to satisfy the boundary condition on the sloping 

bottom. 

The solutions for the other submultiples of Tt;~ have a simi-

lar structure. For (3> =li/2.M. they are (Stoker, 1957): 

M 

~el'1,~) = )' 
._... 

( l. 6) 

R=• 

where the complex constants (3'R and C'ft are given by: 

Solutions ( 1. 6) contain a deep water term and a finite number of terms 

exponentially small at infinity but important near the shore, which are 

needed to satisfy the boundary condition on the sloping bottom. 

We will be interested in this work in solutions of nonhomogene-

ous problems in the form: 

'f-z - ~0 ~ = ~ t~) (yV\ ~ =.0, ~7~ o, 

to<'( ~ 7/0' -") ~(> ~ ~ ~ o, ( 1. 7) 
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The function f ('i) will be assumed to be smooth and to tend to zero 

appropriately at infinity. To solve ( l. 7) the functions ~.e.(~.~) will be 

used. It can be shown that suitably normalized multiples tS!C~,X:-) of 

are complete, in the sense that every sufficiently inte-

grable function can be represented as: 

00 ... 

;(~):: ) ~et~,o) dt ~ ?'e \t,o) ~' d:t . ( 1. 8) 
C> 

In the last chapter it is proved that the functions ;;.,_ (":\, o) give the 

spectral representation of an appropriately defined self adjoint opera-

tor which describes the linear problem. Now we just give the formal 

solutions of ( l. 7 ), whose justification is provided in the Appendix. 

First of all, consider the case .e.o < 0 , then the homogeneous 

problem has no bounded solutions (i.e., to is not in the spectrum). 

In this case the square integrable solution for ( 1. 7) is given by 

( l. 9) 

Consider now the case In this case ~0 is in the 

continuous spectrum. A bounded solution, oscillatory as "i -"> ao is 

obtained. The solution is not unique since ~~0 ('i,~) solves the homoge

neous problem. A convenient expression for the solution of ( l. 7) is: 

"" 110 

~\"1,~)= Y'Y. J;i~~,t~) J.~ \~~lt,o)t~ld\. '\' c S~J~.:e ) - (1.10) 
<> 0 

where C is an arbitrary constant. 

A particular forcing function in ( l. 7 ), which will be of interest 
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later, is The solution of ( 1. 7) is obtained us-

ing the following procedure. Let in ( 1. 3 ), differentiate 

( 1. 3) with respect to t ' and let e= ~0 Since the equation and 

the bottom boundary condition are independent of e ' we obtain for 

the derivative ~! l~,l) 

Se (Aj,~) - ~ ~e. ( '\,t:\ = St( '1.~ 1 0'¥\ l: =. 0 ~ .,..,.. 0 
' d I . . 

~£"1'j -t $tn = o {pv 'i 7.- o, - '1~~ ~~~o, (1. 11) 

$t~)LM~ .-. ~·h,e,i->-:: o ~ z=- 'i~ r-- 1 ~ ~ o. 

In (l. 11) let .f= fer , then this gives ~lo(~,l) as the solution of (l. 7) 

when t(~') = '$tol~,o). 

Wenowconsider(l.3)forthecase k1:-o, andtake 'R_-,.o 

It was shown by Hanson ( 192 6 ), for angles (3 = li"/21'11. , that a con-

tinuous spectrum of oblique waves with perfec t reflection exists for 

In 1952 Peters obtained integral representations for 

the standing wave solutions valid for arbitrary angle (3 There is, 

however, a very important qualitative difference between the cases 

and 'r<. * o This is the following: 

For 'R * o , besides the solutions in the continuous spectrum, 

there are solutions with finite energy which represent normal modes 

trapped at the shoreline. The first trapped mode solution was found 

by Stokes ( 1846), and it is known as Stokes 1 edge wave. In the nota-

tion of (1. 3) it is given by 

E ( \ -'R."c\~(3"' ¥l.:c ~""' ~ 
~ 1 = e I ) ( l. 12) 

and is present for all o< f < u t.t • 
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It was shown by Ursell (1952) that as (?> decreases the nUinber 

of trapped modes increases. The highest edge wave modes are linear 

combinations of exponentials, and they will be denoted by E:""l~,il:-) . 

The functions tiYl. are 

IW\ 

E. ( _ -R'1~~ ... \tc.~'-Mr 2. A { -".t~C.,(2.--1)f!>-~e~'- .... t~~-~'~ 
rn ~ ~) - e .. fW\IV\ l e. + 

I 

where the constants A,.,... fVI.. are given by: 

l'tfl. 

Atw\"11. = l-\)- ~~~. ~(/'(\-1{"~ 1)(3/~\M~I't)(-J' 

(1.1 3 ) 

and the dispersion relation is W 2 = ~ltl ~IM (l"111-1)f. There is a restric-

tion on the integer m. since we want the exponentials in ( 1. 13) to be 

decaying. This gives (2M."t\)(-> ~ "h To s Uinmarize, there is a 

continuous spectrum for W 4 7/ ~\t , together with points in the spec -

trum ,edge waves, whose number increases as f3 decreases. 

We now consider the nonhomogeneous problem ( 1. 3) when 

'R') 0 • This problem arises when edge waves produced by moving 

disturbances are considered. It also arises when the nonlinear theory 

for traveling edge waves is developed (Whitham, 1976). The non-

homogeneous problems of interest for our discussion are of the form: 

'P~~ "" lfu- R-z. ~ -: o 

'f':\ ~~ r. + 'f1 en~ ~ o 

t()"f"' 1 7/ o , - ~tOMr ~ -.e ~ o, 

lYY\ 'X-::.-~~(?., ~7,0. 

( 1. 14) 
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Problem {1. 14) was first solved by Whitham {1976), when ·f(~) 

was a linear combination of exponentials, using a transform similar 

to { 1. 8). It will be shown in the last chapter how Whitham 1 s trans-

form provides the spectral representation of an appropriate self 

adjoint operator, analogous to the one encountered in ( 1. 7 ). 

Now we quote Whitham's results relevant to { l. 14), and take 

for simplicity In this case, the oblique incoming waves 

with perfect reflection are given by 

{l. 15) 

and ~ 7/0 In this case, there is only 

one edge wave solution for { l. 14 ), the Stokes 1 solution, which is 

given by: 

Expansion ( 1. 8) is now modified since the edge waves are also 

needed to represent an arbitrary pressure disturbance. The suitably 

normalized surface values ~e.. ( ":S, o) are given by 

' r . ~ 
Sol~ o) = \}'i ( ').1. ~ t1.Y2. l l (t+ i..)) e. I. '! 

\.. I 1T L..t + c .c. + e e A"") I 

and the normalized edge wave solution is: 
.• , '• - k II.( E t ~) = 2 ,_, ~,~ e Vi " • 

In this notation Whitham's result reads as follows : 

~ ~ ~ 

H'1)= ~~\:\'t~\)d..t tl~\+ ~ ~el~,o)d.'t \~p_(-l,o) -!\-t)cl:\: . • 
0 0 

0 

{ l. 16) 
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For smaller angles (3 more edge waves appear and they will b e 

added to the expansion formula (1. 16). 

We now use ( 1. 16} to solve ( 1. 14). First of all, assume that 

Ao is not in the spectrum. In this case the re is a unique solution 

for ( 1. 14) and it is given by: 

l.j'(~.~) = rEtt:.)~\dt (~/Vi- 'AoY' E l "S,l) -T 
c. 

(1. 17} 

When ). o is a point in the spectrum, a bounded solution is ob-

tained provided ~ is orthogonal to E In this case, the solution 

is not unique since an arbitrary multiple of E can be added to the 

particular solution. Finally, when Ao is in the continuous spec-

trum, the general solution which is oscillatory as "1-">..., is con-

veniently expressed as: 

\f(~ 11:): )~lt\tt\:.)cl:\: ('R/\fi-Ao)-\ ~(~,1.) -t 

() 

"" 
-t-f>.v ( '$t(~,~\ di 

llet-+\r{'t)~'t. - 'Ao 

.., 
\ S t lt,o) f{\:\ cl\:. + c ~to ( "1, 1.) ) 

0 

, and c is an arbitrary c onstant. 

(1.18) 

When nonlinear c orrections are developed for oblique incident 

waves with perfec t r e flection, the problem analogous to ( 1. 11) arises. 

Then we need a solution of: 
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biV\. e= o) "4\ -z,o 1 

'f';\'l ~\fl.~- k1.~ : 0 tO"( ~ 7,o1 -~'to.- f.>~ ".l 'o. (1. 19) 

'f'j ~~ f.>-+ ~2. e.r.. (->-=- 0 

() 0o1. -- '\ o2 
- t.. ~ in (1.19) t-o is given by t 11 K As in (1.11) differentia-

tion with respect to A of the solutions of the homogeneous problem 

( 1. 19) gives the desired s elution of the nonhomogeneous problem. 

1. 2 The Linear Shallow Water Approximation 

In the previous section the full linear theory was described 

and appropriate transforms were developed to solve boundary value 

problems. However, when (3 is small, expansions in the eigen 

functions (1. 6) become increasingly complicated. It is therefore 

natural to turn to the shallow water approximation appropriate for 

small (3 

The linearized shallow water equation for the surface elevation 

;:f (which is the same as the one for the velocity potential) is: 

(1.20) 

In equation (1. 20), due to the shallow water approximation, the ~ 

dependence is no longer present. The longshore coordinate is denoted 

by X , and the offshore coordinate is denoted by ".\ . The func-

tion ~ \'1) represents the depth distribution, and it is taken to be a 

positive increasing function. 

Consider now solutions of ( l. 20) in the form 

(1. 21) 
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Substitution of ( 1. 21) into ( 1. 20) gives the equation for !(":.) 

(1.22) 

The appropriate boundary conditions are f <.o) finite and ~ bounded 

at oa As in the full linear theory, we consider first the case ~=O· 

In this case, (l. 22) becomes: 

) :fCo) finite . (1.23) 

The usual example of depth distribution ~ l~) used to describe shal

low water waves on sloping beaches is ~ t~) -=-(3~ , where (3 is the 

angle of the sloping beach. For this case the appropriate wave solu-

tion of (l. 23), with perfect reflection at the shore, is given by: 

( l. 24) 

and the dispersion relation is W'1..:: ~e . The expansion theorem 

(analogous to (l. 8)) associated with the functions ;).i ("j) is just the 

Fourier-Bessel expansion: 

10 110 

1('))= ~(S'~&'Jo{tVJ; )at) r-~~ 'Jolrff) ;a)cl\:. (1.25) 

() 0 

The representation (1. 25) is similar to (l. 8) since there are no trapped 

modes for k:: o. 

Consider now (1. 22) with ~(~) = (5"1/ 'R /0 

for ~ takes the form: 

The equation 

f (o) finite . (1.26) 

Equation (1. 26) is Laguerre's equation; hence, the eigenfunctions of 
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W t. -M -

(1.27) 

There is an 

important difference between the shallow water theory and the full 

theory for R * 0 . In the full theory the number of normal modes 

increases as (3-"'> 0 , but their number is finite and a continuous 

spectrum is always present. However, in (1. 26) the trapped modes 

become infinite in number and the continuous spectrum disappears. 

The difference just described is related to the fact that the 

shallow water theory is not appropriate to describe the waves in the 

offshore region. In fact, for a uniformly sloping beach the assump-

tion of small depth is violated away from the shoreline. It will be 

shown later that when the depth distribution ~(~) is taken to remain 

shallow away from the shore, results similar to the ones of the full 

theory are obtained. There is a continous spectrum of incident waves 

with perfect reflection and a finite number of edge waves. 

In linear problems it is appropriate to use the shallow water 

approximation on uniformly sloping beaches since the difference with 

the full theory arises when the amplitude is negligible. However, 

when nonlinear effects are examined the difference between the shallow 

water and full theory becomes important; and the shallow water theo-

ry will give the correct results at infinity only for beaches which re-

main shallow away from the shore. 
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CHAPTER 2 

STANDING ~DGE WAVES OF FINITE AMPLITUDE 

This chapter concerns the excitation of standing edge waves by 

normally incident wavetrains. We study the evolution of a standing 

edge wave, which is a subharmonic of a wave normally incident on a 

sloping beach. A two-timing expansion is used in the full nonlinear 

theory to obtain the modulation equations for the amplitude and phase 

of the edge wave. The solution of the modulation equations for small 

amplitude of the edge wave recovers the instability results found by 

Guza and Davis (1974) using the shallow water approximation. Further 

study of the modulation equations shows that a periodic edge wave of 

finite amplitude is formed, since the nonlinear terms eventually stop 

the growth of the early stages. The amplitude of the final standing 

wave is calculated in terms of the known parameters of the incident 

wave. Finally, a comparison of the theory with available experimen

tal data is made. 

2. l Introduction 

The purpose is to examine the behavior of a standing edge 

wave in the presence of a wave normally incident on a sloping beach, 

whose frequency is twice the frequency of the edge wave concerned. 

Part of this problem has been studied by Guza and Davis ( 1974), using 

the nonlinear shallow water theory (to second order in the amplitude) 

for a uniformly sloping beach. They show that small edge waves be

come unstable, and c ompute numerically their growth rates. In this 

chapter, the full nonlinear theory (approximated to third order in the 

amplitude) is used to describe the interaction of the waves. 
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In the second and third sections, the problem is formulated 

using a two-timing expansion in order to obtain the nonlinear modula

tion equations which describe the edge wave. The interaction mech

anism is found to be very close to the one which produces subharmonic 

resonance in simpler nonlinear oscillators. In the fourth section the 

modulation equations are examined to study the behavior of the edge 

waves. It is found that for all angles ~ small edge waves become 

unstable and grow; however, higher -order nonlinear effects become 

important and stop the growth of the edge wave. The amplitude of the 

edge wave in the final state is calculated in terms of the parameters 

of the incoming wave and the results are compared with the experi

ments. It is also shown that in the final state the motion consists of 

a large edge wave maintained by what now is the smaller incoming 

wave with its reflections. 

In the last section, a separate point is discussed briefly. It is 

shown that free-standing periodic edge waves of finite amplitude are 

not possible since the energy is radiated to infinity due to the non

linear self-interaction of the edge wave. 

2. 2 Formulation of the Problem 

It is convenient in the equations of motion to eliminate the 

surface elevation in favor of the velocity potential. When the velocity 

potential is expressed as ~/&..> ~ , the equation for ~ becomes: 

-DO<.. X< cO 
/ 
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(2. l b) 

~ FV given incoming wave + outgoing wave as ";!-"'> ao • 

In (2. l) X denotes the longshore coordinate, "t the offshore co-

ordinate, and ;t the vertical coordinate. The expressions for the 

quadratic and c ubic terms are conveniently taken in the form 

C(~):- 2~~(~1\7~\~ ~ ~'3\~~\; + ~~\'\1~\~)-+ ~~(~t\\1~\~)i + 

-t ~~(( Ci~-t ~ ~u.)(\'V~\t_ ~ ~~))~ 

We now describe the mechanism of interaction between the in-

cident wave and the edge wave. To this end, consider an incident 

wave solution (independent of x of the linearized form of (2. l ), 

with frequency W and amplitude O.....a This is a solution in the 

form 

which behaves as an incoming wave with perfec t reflection. Denote 

the lowest-mode subharmonic edge wave solution of the linear part of 

(2. l) by 

-+ (. • c.. 
/ 

and assume that \'X\<.< O.oo The nonlinear terms of (2. l) pro-

du c e an interaction (s 
1 
-:x•) which resonates with 'X ; this give s a 

growth in the amplitude of 'X on a time s c ale proportional l o O..oo 

Sinc e \'X\<.< O..oo in the early stages, the modific ation of $ is ne-
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glected. However, as 'X. grows, the feedback interaction ('X,'X) _., S 

and the cubic self-interaction ( ')(•, 'X, 'X)-"') 'X become important, 

stopping the growth of 'X and stabilizing the motion. This mech-

anism is analogous to the one responsible for the existence of steady 

s ubharmonic responses in simpler nonlinear oscillators. 

To examine in more detail the situation just described, and to 

find the appropriate resonance conditions , we express the solution ip 

in the form: 

-+ c.. c. (2. 2) 

where the time dependence of the functions 'f and X is slow com-

pared with the period of oscillation. We will find the appropriate 

scale for this slow time later in the argument. For this reason, the 

derivatives 'ft 
1 

'ft:t, Att can be neglected to the order considered. 

To obtain the equations that govern the interaction, we sub-

stitute (2. 2) in (2. 1) and obtain 

'X%- ~;'X~'-~ 'Xt:. = ('f, -x_"")-+ (-x, x) 'X*) o"'i\ ~ =-o, "J zo, 

"t. 'X = 0 ~"'f - co < X <.dO I "«\ ~ 0 I - ~ k J!' ~ l " 0 I 

x~~v.. ~· rx:~: ~ r>., o 

'f'$'1 • 'f:u = o {ov 3 :?-o, - "l~~ f 1: ~ o, 

\f") ~v.. 1~, ... 'f2 c.,) r~ = o 0"{\ ~ = - '1 ~ r-. / '\\ 7/ o, 

'f rv given incoming wave + outgoing wave as "ci -'> .:>0 • 

(2. 3a) 

(2. 3b ) 



-19-

Since we are interested in the interaction of the lowest edge wave 

mode X with the incident wave 0..,., S We let 'X be of the form 

where 

and the resonance condition, w'1./.l.{ ~ =. k ~~ (3 , is sa tis fie d. The 

incident w ave is given by 

where the function ~e., is the s elution of 

'f~~ + \f:e 1 :. 0 

~l.j ~v.... ~ + 'f1 (1? ('-> = 0 

~y 3 7.t0~ - ~~f ~ :e~ o, 

O"f\ l = -"(\tUM(>~ ~ 7/ 0 . 

The solution 1~2., behaves as an incoming wave with perfect reflection 

at the shore, and £o = w-z./'3 = ~ k ~ (!> . 

To study the early stages of the interaction, we assume that 

and neglect the modifications of ":V described by (2. 3b). 

From (2. 3a) we see that the resonant term l 'f, 'X•) produces a growth 

for 'X on a scal e proportional to Q....., . More precisely, the equa

rv<.u 
tion for A becomes 

'xt~- k~Vn~~Ul =- l.~ bt_ E-+ U.<Q ~(E,S~.,} O'A l=01 ~1,o1 
'V (.'l) ry ~ L'Z. (Yl"l) 
J\'j~ ~ "12- ~ 1\ = 0 y J 7/ 0 I - \\ tO..IY\(-> ~ 1: ~ 0 1 

~ f~ C1 ... rx~ (?.y,r :: o 0~ "i -= - ~ tOJv-\ (-> , ~ 7, 0 I 

(2. 4) 

oO. 
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Since the homogeneous form of (2. 4) has a nontrivial bounded solution 

(the edge wave), there will be no bounded solution for (2. 4) unless the 

forcing term satisfies an appropriate orthogonality condition. The use 

of the orthogonality condition, which is explained in detail in (2. 9), 

gives the differential equation for the amplitude b in the form 

"0 

:: O..ro) ( ~io, £) ~ d_~ (2. 5) 
0 

Equation (2. 5) has exponentially-growing solutions which indicate in-

stability of the edge wave. 

When becomes of the same order of O..oo, the feed-

back interaction ('X, 'X) becomes important, and a final steady state 
'l:z. 

is suggested, with an edge wave amplitude Ol Q"" ) , and with 'f 

modified by the interaction ( 'X,'"X) , but of course still 0 (O..oo) 

In the final state, the terms ('f,'X*) and l'X,'X,'X*") become of the 

same order. During the process, and in the final state, the terms 

\ft, 'fH:., "X H are always of smaller order. 

The arguments just described suggest a solution in the form 

of a slowly modulated edge wave. Therefore, in order to obtain the 

desired modulation equations, a two-timing expansion of the solution 

will be constructed in the next section. 

2. 3 The Modulation Equations 

To implement the expansion in order to obtain the modulation 

equations, let 

\.f :. ()..., '-fll) ( ~. %)1) "'" .... -t c. c. 

(2. 6) 

c. c. 
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where the slow time T is a..,., t The expansion (2. 6) can be 

easily made in terms of a nondimensional parameter proportional to 

Uoo However, we will use dimensional variables, and we will 

identify the "appropriate nondimensional parameter'' later in the 

argument. 

The expansion (2. 6) is now substituted in (2. 3 a) and (2. 3b). 

Then equation of like powers of O.oo gives the equations for the sue-

ces sive orders as 

'X()~ - k. ~~ ~ 'Xl'' = 0 

'Vl') t:y l') \_ 'Z ry l•'
"lj'1 ~ 1'-z~- 'K 1\ - 0) 

rvl•) p. cv \!) r> 
"~ l\M. 1-> + /\~ wn (-' = o 

'X(I) -') 0 

"X_l'L) -) 0 

(2. 7a) 

1 7/ 0) - '1~ (> ~ ~ ~ o, 

0"11. ~:- ~ ~ (->... "J 7, o, 
(2. 7b) 
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(2 . 7c) 

lol•) · · · . 
"'l rv g1ven 1ncom1ng wave + outgomg wave as '\\ -"> oa. 

The interaction of the waves is then completely described (to the order 

considered) by the solution of (2. 7a) to (2. 7c). 

The edge wave solution of (2. 7a), which is of interest for our 

purposes, is: 

J (2. 8) 

The solution for (2. 7 c ) can be obtained, using the appr opriate 

e igenfunc tion expansion, and will be dis cussed later. 

As usual , the crucial step of the two -timing is the discussion 

of the resonant terms. In this case, (2. 7b) is the important equation. 

The homogeneous form of equation (2. 7b) has E.(~.~) as a nontrivial 

bounded solution; therefore, in o rder to obtain an a cceptable solution 

for J,.t'f4 , the forcing term must be orthogonal to t The appro-

priate orthogonality condition is obtained using Green's theorem with 

The orthogonality condition g ives the nonlinear 

o rdinary differential equation for ~ This is 
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00 

~ t- \. ~ BE + ( 'ftl), 'fq't\) -+ l'X<.'\ 'X<.'', 'X('),.)) E d.J = o 
0 

(2. 9) 

and it describes the behavior of the edge wave amplitude. 

To study the modulation equation (2. 9) it is necessary to ob-

tain an explicit expre s sian for (2. 9 ). We now indicate briefly the 

manipulations involved in the simplification of (2. 9). 

Substitution of (2. 8) into (2. 9) gives: 

1)0 

~ t ~iE~ -tl\f~£.~-t\l~~&)t.-g• + 1\('f~-~~d'V:..~'f<.t~)~ )
1 

E'S.,.-
0 

t, 3 ~ 2. f} 'R~ E~'Y>-z.-:B* 1 cl~ = o . 
~~w (!> (2. l 0) 

To simplify (2. 10) the first-order ~ derivatives on ':fc" and f are 

expressed in terms of the boundary conditions from (2. 7a) and (2. 7c). 

The second-order "Z derivatives on \.fln are replaced by "cr deriva-

tives using Laplace 1 s equation. Finally, the 'd derivatives are 

transferred from \f l•) to E by integration by parts. When the 1n-

dicated calculations are performed, equation (2. 10) becomes 

00 .., 

~ i ) t\i~ T ~* t- ~\t1. ~ \f('l E1.d.~ -\ 
~ 0 0 

(2. 1 l) 

The last term in (2. 11) comes from the integrated part. This term 
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can be expressed in a convenient way using the equation for \fll\ 

Using the boundary condition for (2. 7c) on X"'O , at ~.., o , we have: 

the bottom boundary condition gives at "J = o, ~ -: o, 

Since ~til has continuous derivatives (see the Appendix), we have 

finally 

(2. 12) 

Substitution of (2.12) in (2.11) and simplification gives the final form 

for the modulation equations. They are 

~ 

= ~e.n(-' k'l ll*) 'it•) E1 ~~ 
() 

~ i.. ~'3 'B'-:g .. 
1f 'f..;..,.,(!> 

(2. 13) 

where the function 'f(l\ satisfies: 

(2. 14) 

given incoming wave + outgoing wave as ~ -'> oo. 

To obtain the behavior of the waves it is necessary to solve (2. 14) 

and then (2. 13 ). This will be done in the next section. 

2. 4 The Soluti.on of the Modulation Equations 

The first part. of this section is concerned with the study of the 



-25-

solution of (2. 13) and (2. 14) in the early stages of the motion when 

\'B\ '-'- I Instability is shown, and an expression for the growth 

rate is obtained for general angle (3 The second part deals with 

the derivation of the full nonlinear modulation solution for arbitrary 

angle (3 Finally, in the third part, the solutions are examined in 

the phase plane, and the final steady state of finite amplitude is cal -

culated. 

(a) Instability of small edge waves. Assume \"t>\ U .. \ then 

the nonlinear terms in (2. 13) and (2. 14) can be neglected. For ~tl) 

we take the unmodified solution c
1 

ft ll\.l "' ) ,.J ~0 .), ""' 
In this case (2. 13) 

becomes 

00 

-:: "b' Co-:, f 'R'l \ 'SL (~. o) f.z ( ~) ~ 'l* (2. 15) 
0 

Equation (2. 15) has exponentially growing solutions; this shows in-

stability of small edge waves for general angle of the sloping beach. 

The growth rate is 

(2. 16) 

where the function C ( (->) is given by 

00 

c ( ~) :: c,., j3 Cl. ""' 
~--¥\. ... (!> 

) ~.to(f7;~, o) e-tif?o->(3 d.IY( 
0 

(2. 17) 

In order to compare the growth rates for various angles, we choose 

0.. r» in such a way that the incoming wave has always the same am-

plitude O.o at the shore for all (3 Thevaluesof C.((3) can be 



-26-

calculated analytically for angles (b = 1Tj.z M since for that case 

the functions Sio can b e expressed in terms of exponentials (Stoke r 

1957 ). However, the calculations become more involved as m in-

c reases,· this is bec ause the solution cl, ,..:> <.. 0 contains Nl exponentials. 

For the case (3 very small, the shallow water approximation may 

be used. We now calc ulate some values of the function C(f>). 

First of all, consider the shallow water region. In this case 

where '1o is the usual Bessel function. Then C. ((S) is given by 

Oo 

clp)= <lo \1o(~V?j') e-~7 J.'7. 
(3.. )0 

(2. 18) 

Equation (2. 18) is the result (after integration by parts) found by 

Guza and Davis (1974). The integral in (2. 18) is standard, and its 

value is 1. It e~ (The value obtained numerically by Guza and 

Davis differs from the one just obtained. However, in a subsequent 

paper, Guza and Inman (1975) acknowledge the existence of numeri-

cal errors in their quantities related to c.((!>) . ) 

From equations (2.16) and (2.17) it is apparent that the non-

dimensional parameter proportional to a.t:b is 

and our approximate theory will be valid for Clo \.o"le,.,,h /~ ~~ ..... 'L f << \ • 

It was shown experimentally by Guza and Inman ( 197 5) that the mag-

nitude of the parameter has a direct 

physic al significanc e in the experiments. It was found that for 
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values the incident waves did not pro-

duce edge waves. 

To extend the shallow water results we calculate the values of 

C.("lT;.Lt) , c.(-.r/6) , and C(1f;3) using the full nonlinear theory. For 

the case (3="11'/4 , the appropriate incident wave Q.., "$1., ('7/k, 0 ) is 

given by 

and we find When (3 =-lV6 the corresponding 

incident wave is given by 

and c. (li/&) = . 1/3~ 0.. The value C (n;9 ) involves four integrals 

and is . 410 ()..., 

The values just obtained show that the growth rate increases 

rapidly as {!>-)D. 

It is interesting to estimate the growth rates for finite depth 

using the shallow water result. The estimate is 

cs t ~) = c.,:.r 
~ \."0\ 1.(3' 

The values of the growth rate are given by C~ (1t;4 ) -= .IOO..o 

To compare the shallow water estin1ate 1 Cs (f.>) , for the 

growth rate, with the values obtained using the finite depth theory, it 

is convenient to plot Cs ((3) ~l/Vl1.r I U.o en /-> and 

as functions of the angle p 
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Graph 1 shows the corresponding values. 

Clf) ~\.rt-'1~ xI 02. 

O.o~(!. 

-· 

Graph l. 

T~ 

In Graph 1 the line is the shallow water result, and the points 

on the curve represent the finite depth results given by 

From Graph 1 we conclude that the main 

angular dependence for the growth rate is given by the factor 

(b) The s elution for tglll To describe the further growth 

of the edge wave and its interaction with the given incident wave, we 

need the full solution of (2. 13) and (2. 14). We begin by solving (2.14). 

The general solution for (2. 14), regular at the origin, is given by: 

(2.19) 

where '"P satisfies: 
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'?? - 4 \z ~i..rv'(~> tJ = - \r{'l f::4 

rp~~ -t- 'P~ "i = 0 (2. 20) 

given incoming wave + outgoing wave, as ~-">cO. 

To obtain the solution of (2. 20) we use the appropriate eigenfunction 

expansions. For angles (3 =IT/ .2. /Yl. suitably normalized multiples 

of the solutions of the homogeneous problem can be shown to be com-

plete (see Chapter 6), in the sense that every sufficiently integrable 

function ~(~)can be expanded as 

00 Oi) 

~(~)=) ~tl'1,o)cU )~ll"fl ~QliYf,o)J~. (2.21) 
0 0 

Using (2.21), the appropriate solution of (2.20) is 

(2.22) 

To find the asymptotic behavior of 'Pb,o) as "j -'> oo , for f = Tl;;z.~ , 

we recall (Stoker 1957) that the eigenfunctions behave as "i -'> oo in 

the form 

where the normalization constant N (~) is independent of t but de

pends on the angle (3 . The transform of the function Ez is just a 

rational function which decays at infinity in the complex .£ plane. 
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The path of integration in (2. 22) can then be completed around the 

pole at .f:o ~0 (see the Appendix for details); and in this way it is 

possible to show that the dominant contribution comes from the pole 

It is found that 

(2. 23) 

where the nondimensional constanJ: J ((3) is given by: 

Oc> 

ell~)=~~) s1b l';k, o l e.'-1~{!> J.'1· (2. 24) 
0 

To complete the solution for \ft" we need to determine the so far 

arbitrary function A (1) in (2. 19 ). The function A C.) is deter-

mined using the boundary condition for '-t-') at infinity. The incom-

ing wave component of ~ remains unchanged during the growth of 

the edge wave. This condition implies that the incoming components 

of 

and 

remain the same. 

Therefore, in view of (2. 23), we require 

(2. 25) 

This completes the solution of (2. 14 ). 

As was remarked in the previous sections, the calculations 

for small f-> become very involved; and in order to obtain the de-

sired results for small (3 we will use the shallow water approxima-
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tion in evaluating certain integrals. However, before we outline the 

shallow water approximations, we provide the solution for (3-=- Tif,..\ 

and give the value o\ (1tj ~) . This will allow a check on whether or 

not the results vary considerably with (3 · . The appropriate ~e_l-1,.2-) 

for (->-== 11 / .1.\ is given by 

.s~ b,l)-:;_ V1 t €hen (~.., ¥) -+ eQ'j en ( ~~ - ~~~~)}. 

The solution to (2. 14) for (3 -:"11;4 1s 

(2. 26) 

The asymptotic behavior of (2. 26) on ~= o as ~ -">~ is given by: 

J 
(2. 2 7) 

hence the constant d(lf;~) takes the value V"i} /\SVlf 

We now use the shallow water theory to obtain an approxima-

tion for '? and dl~) when (3 is small. The shallow water ap

proximation of 'Pb,o) , now denoted by t'("i\) , satisfies the in-

homogeneous shallow water equation: 

. 
/ 

(2.28) 

and the ~ dependence is absent in the shallow water approximation. 

The eigenfunctions of the homogeneous problem are the asymptotic 

values of 'S.t b.~ 2) when ~ -"""> 0 They are 
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and the expansion theorem is just the familiar Fourier-Bessel expan-

sion 

00 00 

~ (~) c:: ) ~-\ '1o ( ~v~) cU ~ r~ '3o(2y1f)-} ('1) ~~. (2. 2<)) 

0 0 

Using (2. 29) the solution of (2. 28) is given by 

00 oc 

1>('3)=- \z2.? 'J.) ~oCt~ )JJ ) '1o( ~v~) -e-:tk7 J.' . 
(3 0 ~- 4 k 0 

(2.30a) 

The asymptotic behavior is again found from the contribution of the 

pole at ~ = ~ 'R and we have 

?h) N cA t(3) (11(3 f~~ o~~~ r>-~ ~~ ( 4 ~- %) 

where 

""" 
~ l~) -:o (-> -·~~~ J0 ( ~ Y?J) e-2.'7 d.'1 (2.30b) 

() 

The value of 0..(~) is, of course, the asymptotic value, as (3> -"> 0 

of (2. 24) when the shallow water approximation for the incident wave 

is used. 

(c) The amplitude equation. We now consider equation (2. 13) 

for the complete determination of the amplitude of the edge wave. To 

obtain the desired equation, the solution (2. 19) of (2. 14) is substituted 

in (2. 13). We obtain 

00 

~ i o <rt:.n[3 'li' A 'll" ~ '$,. E' d~ -> L ~;1 'B' 3" 1 (2. 3 1) 
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where the function~ ( j->) is given by 

Oo 

/((->)-::-; .. ~~~1"4\~Q,.,~ )'?l~,o)t"lh)d.~ · 
0 

(2. 32) 

From (2. 22) the nondimensional integral 1n (2. 32) can be expressed 

conveniently as 

(2. 3 3) 

Again in formula (2. 33), for angles f3-="/2.M. , the integrals can be 

evaluated in closed form using partial fractions; however, the pro-

cedure is not practical for small (3 . In the case of small (3 

when the shallow water approximation (2. 30a) is used, we obtain 

(2. 34) 

where E~.,l)() is, in the notation of Abramowitz and Stegun (1965), 

the exponential integral. 

To obtain the final expression for the amplitude equation, we 

substitute in (2. 31) the value of A given by (2. 25). Then 

00 

~ i = <ilc...,f 'R'l )s
4

t.t a~~* ( ,_ Rcl.l~)l"l) + t ~'1-;t·df!.l 'P>'l'B*. (2. 35) 
<a () s\.""~ 

Equation (2. 35) describes the complete evolution of the standing wave 

in the presence of the given incoming wave. 
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(d) Solution of the amplitude equation. In this subsection we 

discuss the behavior of the solutions of (2. 35) for general angle of the 

sloping beach. For this purpose it is convenient in (2. 3 5) to change to 

nondimensional variables and functions in the following way. 

Let 

1:>(T)::. \<""''~ Sw.(>'h 'R('R'l~w-• T) (2. 36) 

then (2. 35) gives the equation for "R in the form 

(2. 37) 

since 

00 

~~~ ) ;;f.o ('7;R,o) e-:u;Bnl-' dO[ 
0 

(2. 3 8) 

To examine equation (2. 37) in the phase plane, let 'R= e'-
8 

then the equations for the amplitude and phase become: 

+ = ~ ~') f.> J. ( (3) (Co-:, 2. e - ct {f\ S'w. P N"" 2 ) r; ' 

" (2. 39) 

The system (2. 39) is periodic as a function of 8 with period li ; it 

is therefore sufficient to examine its behavior in the region - ~ ~ e ~ !!.::z- • 

The critical points of (2. 39) represent the possible final steady states 

for amplitude and phase. The critical points of (2. 39) in the (e, ri) 

plane are: ~= (-}{, 0) 1 ? 2 ::: ( o, o) 
1 

1\ = (l 10) ; the only criti-

c:al point of finite amplitude is 'P~-:: leo, rf"o) where 

(2.40) 
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The critical points ?,, 'P'1. are unstable (in the usual 

sense of ordinary differential equations). To examine the stability of 

, let rr= rro -+ f 

\eo rf"0 ) to obtain 
J 

(
-\t Gn~S'•V\'L~ ,f(l~)lt"u'~

.Z;tlr)rro 

, and linearize (2. 39) around 

(2. 41) 

The eigenvalues of the matrix o£ (2. 41) are 

and therefore 'RR A11 -z. <. 0 Hence, the point (8o/'f0 ) is a stable 

spiral. Since there are no periodic orbits for (2. 39) and no unbow1ded 

solutions, it follows that for all initial conditions the solutions of 

(2.39)will reach the steady state (80 ,1'r0 ) as T-'>oe. 

The physical interpretation of the argument just described is 

clear. It means that small amplitude edge waves become unstable in 

the presence of incident waves of twice their frequency. They start 

growing until higher -order nonlinear effects become important and 

stabilize the motion. The final result is a steady periodic standing 

edge wave of amplitude OlU.~'~-) , determined by (2. 40 ). The general 

behavior is the same for all angles (3 of the sloping beach; the dif

ference will be only in the actual values for v\ ~) and )A(~) . The 

expression for the final edge wave amplitude is given, for arbitrary 

(2> ' by 
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where and I~ are the given offshore ampli-

tude and period of the incident wave. The constant rf'o is given by 

(2. 40 ). 

It is interesting to observe that the modulation equations (2. 39) 

are very similar to the ones obtained for subharmonic responses of 

forced nonlinear one-dimensional oscillators. It is also possible to 

construct simpler examples of transfer of energy from an incoming 

wave to a trapped mode, using a two-dimensional membrane equation 

with an appropriate nonlinear restoring force. This is because the 

nonlinear mechanism is the same in all cases, and the only difference 

will be in the "correlation integrals 11 for the various modes. 

(e) Expression of the run-up amplitude of the edge wave in 

terms of the amplitude of the incident wave at the shore. In order to 

compare the predictions of the present theory with laboratory experi-

ments performed by Guza and Inman ( 1975), an expression for the 

final edge wave amplitude in terms of the parameters of the incoming 

wave at the shore is needed. 

In the experiments, the measured run-up amplitude Atf , of 

the subharmonic edge wave, was taken from the distance between two 

antinodes measured along the beach: this is related to the amplitude 

of the surface elevation O..e. by A-r-: 'J..O..el~.:,......(-> We now cal-

culate the run-up amplitude of the edge wave and the amplitude of the 

incident wave at shore for the case of small (3 . 
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Consider first of all the incident wave when no edge waves 

are present. The velocity potential ~~ of the incident wave is given 

from (2. 19) by 

(2. 42) 

Therefore, the surface elevation ;fi. is given by 

f I -
,.J i. : - ~ 1>l. {. = (2. 43) 

and the maximum amplitude of the incident wave at the shore, denoted 

by Qi_ , is 

(2. 44) 

The velocity potential ~ e associated with the edge wave in 

the final state is given by the value of the first term in (2. 6) when 

This is 

g, e = Q~ ~ 'XI) b, ~> <>o) Cnkx 
w 

l.'9t 
e. .1. 1' c. c. = 

(2.45) 

the surface elevation of the edge wave, ~e. is then given by 

(2. 46) 

Therefore, the distance Al'f" between two antinodes (measured along 

the beach) is given by 

(2.47) 
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Fron1 (2 . 44) and (2 . 47) the run-up amplitude may be expressed in 

terms of the amplitude O..i. and the period I i. of the incident wave as 

(2. 48) 

The value of 1\0 is obtained from (2. 40) where tA{{3) and _/A((J) arc 

given by (2. 30b) and (2 . 32 ). The final expression for A, in terms of 

Q\_ to be compared with the experiments is 

(2. 49) 

It is intere">ting to compare the final edge wave amplitude for 

shallow water with a corresponding value for finite depth, say, for 

The cal culation for the c ase (3 = lV~ is the same as just 

performed for the shallow water case, but using the values cA. l 11/4) 

and ~(li/4) The result is 

Comparison with (l. 49) (which is val id for small (3 ) indicates that 

the equilibrium amplitude is not very sensitive to changes in the slope 

of the bottom. 

2. 5 Comparison with Experiment 

In this section we compare the amplitude predicted by equation 

(2. 49) with the experimental results of Guza and Inman (1975). How-

ever, before the actual comparison is made, il is interesting tore-

c all some of the qualitative features observed in the experiments. It 

was observed that large edge wave run-up is produced for small inci-

dent wave amplitude. The amplitudes of the edge waves were lar ger 

for longer period of the incoming waves. Finally, when the parameter 
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Q;_wt./~ (?>oz. exceeded one, no edge waves were produced. 

In Table 1 the predictions of (2. 49) are compared with the 

experimental results. The period of the incident wave is measured 

in seconds, and the amplitudes are measured in centimeters. When 

no experimental data are given, it is b ecause no edge waves were 

produced since the condition U.~\.1>1./~ ~oz.<.\ was violated in the experi-

ments. 

a A r exp A r exp A exp A 
i r o r 

0 f3 = 6 0 (2. 49) em f3 ·= 4 f3 = 6.8 

T. 
1 

s e c 

2 .7 1.8 40 40 40 71 

2. 7 2 80 70 90 

2.7 2. 5 100 90 100 

2 .7 3 110 140 117 

2.7 4 130 160 130 

3. 8 6.7 220 230 

Table l. 

From Table 1 we conclude that good qualitative agreement is 

f o und in the sense that small incident waves produce large edge wave 

run-up. The present theory als o agrees with the fact that incident 

waves with larger period produc e larger edge waves. Unfortunate ly, 

the only data point for period different from 2. 7 sec is the measure-

m e nt for T(. = 3 . 8 sec, and it was not possible to c ompare other nu-

m e ric al values. Despite the fa c t that the parameter Cl.~t..>t./~('t. was 

c lose to one in the experiments, and was assumed small in our analy -
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sis, the numerical agreement of theory and experiment is quite good. 

The numerical agreement is better the larger the amplitude of the in-

cident wave. A possible explanation is the following: it is observed 

in the experiments that the amplitude of the incident wave has to ex-

ceed a critical value in order to overcome viscous effects and excite 

edge waves. This suggests that viscous dissipation is important for 

small amplitudes of the incident wave, and the present theory does 

not include them. 

2. 6 Further Study of the Edge Wave Solution 

In this section we examine the uniform validity of the expansion 

for 'X to the order considered. It is expected, by analogy with the 

nonlinear traveling edge waves studied by Whitham ( 197 6), that a non-

uniformity as ~ -'> oo leads to a modification of the rate of decay of 

the edge wave out to sea. 

In order to discuss the appropriate modifications we consider 

Xl2l 
again the problem for 

~ "j -) 00. 

, that is, 

~ 'J ~ Q I - 'J ~ ~ ~ ~ ~ 0 1 

O'Y\ z"' -~~(->> "j 7, 0 1 

(2. 50) 

Since the forcing term in (2. 50) satisfies the orthogonality condition 

(2. 9), there is a square integrable solution for "X(~. However, it is 

. ry(.i) 
not unlformly of order /\ as ~ -'> oo The situation in (2. 50) is 

the same as the one examined by Whitham (1976), and we now use his 

results. The relevant one for this discussion is the asymptotic be-
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rvC...2J 
havior of 1\ as "j -"> oo The leading order contribution as ~-? <>0 

comes from the first term of the forcing function in (2. 50) and is 

given by 

(2. 51) 

When (2 . 51) is substituted in (2. 6) the expansion for CX takes the 

form 

We see that (2. 52) does not provide a uniform expansion for the func-

tion X But it is recognized as the Taylor expansion of the function 

(2.53) 

which is the uniformly valid form. To justify this form the analysis 

can be recast starting from (2. 6) using the method of strained co-

ordinates to obtain (2. 53). The modifications are minor but obscure 

the main steps, and will not be repeated here. In the revised form 

(2. 53) the phase of the edge wave depends not only on the slow time 

but also on the offshore coordinate and the deplh. The real part of 

the function 1!, 'B -I gives the offshore dependence of the phase while 

its imaginary part gives a modification in the rate of decay with ~ . 

This is in analogy with the traveling edge waves. In the final steady 

state, these small modifications are no l onger present. When the 

shallow water theory is used to calculate the correc tions to the phase, 

a logarithmic behavior as "j - "J ilO is found. This is analogous to the 

situation found for traveling edge waves by Whitham (1976) and dis-
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cussed in detail by Minzoni ( 1976). For this case, the same argu-

ments apply. For the case of a more realistic beach with depth dis-

tribution ~l~\ = (.3"i for 0 ~ '(\ ~ ~1 R l 'j) ~ ?t, for "j 7,- Q 1 

~I-:: r .Q., , the change in phase is given by 

(2. 54) 

It is linear in qualitative agreement with the behavior found using the 

full nonlinear theory in (2. 53). 

To conclude this section, we summarize the behavior of the 

solution for the edge wave. Incident waves of frequency W and 

amplitude Q 00 produce growth of subharmonic edge waves. Also 

during the development of the e dge wave, the rate of decay offshore 

is modified. When the amplitude of the edge wave becomes 0 (a;;) 

the feedback interaction modifies the incoming wave and the motion 

is stabilized, becoming a steady periodic oscillation. The final state 

involves a large edge wave together with a small incident wave and 

its reflections. 

2. 7 Free Standing Edge Waves 

In this last section we discuss briefly a problem which is re-

lated to the previous discussion. It concerns the existence of free 

periodic edge waves of finite amplitude. 

In order to find the periodic solution, if any, the boundary 

value problem to solve is (2. l) with a change in the boundary condi-

tion at infinity. In this case, since we assume that no ene rgy goes 

into the system (except for that contained already in the edge wave), 

the appropriate boundary condition at infinity is that 'i behaves as 
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an outgoing wave. 

We then assume an expansion for ~ in the form 

When (2. 55) is substituted in (2. 1 ), the equation obtained for 'f(.l) is 

again (2. 7c), but the solution 'fln now satisfies the radiation condi-

tion instead of (2. 25 ). 

( 'i~' 'Xl'', 'X (•l•) -") )\ (i) produce a change in the complex amplitude 

3 on a time scale proportional to Q~ The appropriate orthog-

onality condition necessary to obtain the solution for 'X.(-:z.) is again 

(2. 9 ), and this leads to the modulation equation for ~tT) • It is 

To express (2. 56) in nondimensional form, let 

where 

1: = ~3~ -- I . 
tv 

(2.57) 

Substitution of (2. 57) in (2. 56) gives the equations for the amplitude 

and phase. They are 

(2. 58) 

for all angles (3 , equations (2. 58) show that 

the amplitude of a nonlinear standing edge wave decreases on a slow 

time scale 0 (U.e ~)~ This shows that a finite amplitude standing 
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edge wave cannot exist as a periodic solution since all its energy 1s 

ultimately radiated at infinity due to the nonlinear effects. The am

plitude decays as -z::- '/2.. • This shows that the presence of incoming 

waves is indeed necessary to sustain finite amplitude standing edge 

waves. 

It is interesting to note that the same situation (the radiation 

at infinity of the energy in a trapped mode of finite amplitude due to 

the nonlinear effects) will be present for all systems which allow a 

continuous spectrum in addition to the point spectrum. This situation 

is not usually encountered in simpler nonlinear standing waves prob

lems, because the region considered is of bounded spatial dimensions 

and the continuous spectrum is absent in that case. 



-45-

CHAPTER 3 

EDGE WAVES PRODUCED BY MOVING PRESSURE DISTURBANCES 

In this c hapter we consider the edge waves produced by a 

pr ess ure disturbance moving parallel to the shoreline. This problem 

has been conside red by Greenspan (1956) using the linear shallow 

water approximation. We now discuss the same problem using the 

full linear theory. The same results found by Greenspan are shown 

to be valid for general angle of the sloping beach, and our results 

r educe to the shallow water ones in the appropriate limit. For our 

purposes, the pressure disturbance is taken in the form of an im-

pulse concentrated a distance ~ 0 offshore, and moving parallel to 

the shore with velocity - '\Y . 

3. l The Linear Initial Value Problem 

The initial boundary value problem to solve for the velocity 

potential ~ and the surface elevation is according to the 

linear theory 

~-t. .. ~!~ -£.. c5(>~.~-vt) o('i-~o) 0~~=0,17"0) 
p 

f ;:r.. 0 {JV\.-«>~x<..o <4 z, o :2=o ..J-t - ::1: il. = ) C I 7 ) 

=o 

( 3. l) 

To solve (3. l) it is convenient to eliminate --;5' , and to change 

variables in the form x' = ,.: ..... 'l)t 
J 

t' = t After the appropriate 

manipulations (3 . l) becomes: 
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~("'',"'!,O,D) • P(x.',•·-to,o) = o 

~~1 1" ~X.~ -T ili)('-.c'-::: 0 

{3. 2) 

Equations {3. 2) can be solved using a Laplace transform in 

time and a Fourier transform in 1.' When the transforms are de-

fined by 

¥b) = ):-">~ ~Lf.) c\:~ / 
0 

the equations for the transformed function are: 

{3. 3) 

To solve {3. 3) it is necessary to know the appropriate eigen-

function expansion associated with the homogeneous problem. This 

expansion was discussed briefly in {1. 16) and will be examined in de-

tail in the last chapter . In this case, we are only interested in the 

behavior of the lowest order edge wave mode since it is the one 

more easily excited by .a moving storm. The higher orde r modes 

can be examined in the same way. The contribution from the con-

tinuous spectrum was examined by Hanson {1926), and the usual Kel-

vin's wave pattern is obtained. 
~ 

Since we are only interested in the component of g_, along the 
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lowest edge wave mode, it is only necessary to find the component of 

the forcing pressure along the desired mode and solve (3. 3). When 
~ 

the desired solution is denoted by ~ e we obtain 

In the original variables the solution is given by 

(3. 4) 

where the function 1...\(~,~) is given by 

The explicit form of U l ~' ~) when substituted in (3 . 4) gives 

(3 . 5) 
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We are inte rested in the behavior of (3 . 5) as t = t' _..., 00 

To obtain the dominant term in the expansion we consider each term 

in (3. 5) in detail. First of all, in the second integral the phase of 

the exponent is never stationary; hence, it is O(t.'-1) as -\:."--,.oo • 

To find the asymptotic behavior of the first term it is convenient to 

deform the path of integration by adding an indentation in the lower 

half plane to avoid the point Then we may 

consider each term in the integrand separately. In the second term 

't,_ 
the exponent l ~\t~<.rv-~ ~ - R'\)"' has a positive imaginary part for 

"J4 \z ~ 0 ; therefore, the integral tends to zero as t./ _.., co 

Hence, the long time behavior of (3. 5) is given by 

(3. 6) 

where C is the indented contour. When t' -'>co )(I-'> 00 as well; 

hence, the contributions from the real axis in (3. 6) are 0 (x•-•) by 

virtue of Rieman's lemma. The only contribution which remains to 

consider is the one from the semicir c le in the lower half plane cen-

When x' <o , and x' _...,- .-o , we 

have <P e - '> 0 because Re_ ( Ut x'\ < D For X'> o we deform the 

path in the upper plane; then the contribution from the semicircle is 

negligible, and the dominant term in ~ e is given by the residue at 

Ro This is 

(3. 7) 
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for X 7/ -1\J'"t . From (3. 7) the surface elevation ";! e is given by 

(3. 8) 

Equation (3. 8) represents an edge wave traveling behind the disturb-

with phase velocity - '\Y The result (3. 8) is 

valid for arbitrary angle (3 of the sloping beach. When (!:.--, o in 

(3. 8), and the Gaussian pressure distribution used by Greenspan is 

concentrated into an impulse, our result (3. 8) agrees with Green-

span's. The only effect of the beach angle is the C:r> (3 factor. 
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CHAPTER 4 

NONLINEAR EDGE WAVES AND SHALLOW WATER THEORY 

In this chapter we cons~der the nonlinear effects for shallow 

water traveling edge waves on beaches with arbitrary depth distri

bution. 

4. l Introduction 

In a recent paper (Whitham, 1976 ), both the shallow water ap

proximation and the full water wave theory are used to discuss non

linear effects in edge waves for the case of a uniformly sloping 

beach. In that case the shallow water approximation gives anomalous 

results for the amplitude decay away from the shoreline. This is at

tributed to the breakdown of the approximation as the depth increases. 

In this chapter, the shallow water theory is reconsidered for more 

general depth distributions which may be taken to remain finite and 

shallow at infinity. For finite depth the results are similar to those 

of the full theory for a constant slope. They differ in detail because 

the two cases now refer to different situations: in one, the depth off

shore remains small compared to the wavelength; while in the other, 

it becomes large (in which case the precise depth distribution in the 

deep water is irrelevant since the waves are no longer influenced by 

the bottom). 

Even in linear theory, the shallow water approximation has 

undesirable features for constant slope, since it predicts an infinite 

number of trapped modes at the shoreline (see equation ( l. 2 7)) and 

incoming waves with non-zero amplitude at infinity are not possible 

(see equation ( 1.24)). The full linear theory predicts just a finite 
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number of edge waves and a continuous spectrum of incoming waves 

(see equations (1. 13 ) and (1. 15)). Again, the differences can be re 

solved by taking a depth distribution which becomes c onstant at large 

distances away from the shore. We discuss in some detail the spec

trum of the operator as so cia ted with the linear theory and show that it 

has a finite number of isolated points (edge waves) and a continuous 

part, in agreement with the full linear theory. The nonlinear cor

rections for the lowest order mode are developed using a Stokes 1 

expansion. 

4. 2 Linear Theory 

The shallow water equations for a depth profile 1\("i) are 

'f t -t -1 '!xl. -t ~ 'f; ~ ~ ";) = 0 1 

( 4. 1) 

.1'-t:+ t ( Rl'i) -t :!) 'fx ).<-+ t (~l~'+ :f) 'f~~'l = 0 1 

where ';f is the surface elevation, ~ is a velocity potential for 

the horizontal velocity field, ~ denotes the offshore coordinate, and 

X the longshore coordinate. From the linearized form of (4. 1) we 

obtain the following equation for ";$ 

(4. 2) 

For a traveling wave solution of (4. 2) of the form ::f-= .f(~) ~..M (1-u-wt) , 

t satisfies 

(4. 3) 

where ?. = wt.lq,k In order to describe edge waves we need to dis-

cuss the spectrum of L 

For a constant beach angle p K {~) = (3 ~ and we have 
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Laguerre's equation. The spectrum is positive and discrete; the 

eigenvalues are However, this leads to the var-

ious discrepancies noted above. To model more realistic depth dis-

tributions, we choose ~l~l to be an increasing function such that 

as ~-'>0 and ~ l~) -= !?-., 

The domain of l is restricted to a class of functions which 

are finite as ~ -"> o . The operator L is self adjoint; therefore, the 

spectrum is confined to the real axis. 

First, there are no points in the spectrum in the range A ~o 

for in that case any solution of (4. 3) which is regular at the origin has 

t-(o) and ;\o) of the same sign; it follows, writing ( 4. 3) as 

that \ .t\ increases monotonically and cannot be bounded at infinity. 

To find the spectrum of L ln it is convenient to use 

the Liouville transformation. This is tl'1) = ~-Y ... l.-,) U (.~) 

~ 
~l ~) = ) \i'l~ ~-"'\tJ d.t. 

, where 

0 

The transformed equation for U(~) is 

( l o "' 1 ) u : Ll'' -\- ( 'A - 'l) u = o, (4. 4) 

where 

~ = 

Since the Liouville transformation is in this case unitary, the spec-

trum of L, is the same as the spectrum of L The general quali-

tative behavior of ~ is the following: since 

for 1-") o \tl1) is an increasing function and 
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is bounded by ~ ~ 1 has just 

one zero, which is smaller than -1, Thus, q.(~' is a potential 

well Of infinite depth at the Origin, Width ~I :::. 0 \ e, ~~ ~~1/'\. \ and 

height ~~~ 

For A~ R ~' , the solutions of (4. 4) are oscillatory at in-

finity, and this range gives the continuous spectrum. (The relevant 

theorems are in Titchmarsh 1962, §§ 5. 6, 5. 7, 5. 15. ) For 

0 ~) ~ ~~' , there will be point eigenvalues (edge waves), whose 

number increases with the "size 11 of the well, which is measured by 

A natural choice for the depth distribution which incorporates 

the edge effect and remains shallow at infinity is 

-tl';'= (3"1 W>-~ 0~~~ ~\) \l("i\-=- \\, ~>-{ "3'/ ~\. 
( 4. 5) 

However, the discontinuity in ~ would lead to singular functions in 

sr ' so as an example for (4. 4) we take a smoothed version: 

t l~) = ~~ for 0 ~ '\\ ~ ~ o 

function for L ~ ~ ~ ~ 1 

~ (~' equal to a smooth increasing 

is assumed fixed, we have 

Here, the size of the well is measured by 2{k ~ .. )114 
/ (3 Comparison 

of the p otential ~ in the interval 0 ~ ~ ~ (lt~ ~ .. )'~"-/(!::. w ilh lhe po-
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ten ti al l.. (3-z.1J-z. 
L( 

for Hermite's equation confirms that for o ~) ~ ~~. 

there are points in the spectrum (for sufficiently small (3 ) and that 

their number increases as (3 decreases. 

The overall conclusion is that the nature of the spectrum for 

finite depth at infinity is the same as in the full linear theory for uni-

formly sloping beaches. 

Finally, we return to (4. 5) and work directly with (4. 3) to find 

an explicit approximation to the linear dispersion relation for the low-

est edge wave. We need the solution of 

= 0 
I 

(4. 6) 

(4. 7) 

The interesting approximation for this discussion is for small (3 ; 

this corresponds to large t, if ~. is kept fixed. For large ~~ the 

solution of (4. 6) is assumed to be close to e-~~ and w.,_l~(!> is 

close to R (These are the results for .\?, =- oo • ) So we take 

( 4. 8) 

where E. will be related to ~. in the course of the argument. 

Then to first order in £ 

The solution bounded at ~ == o is 

~ r ( 'j) = - Q 'R~ ) e2k"J -I ~ '1 • 
0 1 

The appropriate solution of (4. 7) is 

(4. 9) 
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( 4. 10) 

Since t and .r are continuous at ~ = e. , the impedance 

must be the same for (4. 8) and (4. 10). From (4. 8) 

and (4. 9 ), 

) 
-ld., ~t,; ,_ ll t ( t, IV e "' E e Li J<. c. 1 I 

(The second terms remain small since E. e:t~P. I 'R ~ 1 is ultimately 

found to be small. ) From (4. 10 ), 

is a sufficient approximation info . 

Therefore, for the two values of ~/ (ed I H£, \ to agree, 

( 4. 11) 

4. 3 Nonlinear Correc tions 

We now find the nonlinear corrections to the lowest e dge wave 

mode. Following Whitham ( 19 76), we consider Stokes' expansions for 

\f and ;:f in the form of a traveling wave, and take 

( 4. 12) 

(4. 13) 

w = w 0 -t Q'!. w + .. . 

l.. ' 
( 4. 14) 

where e = ~')(- WL These are substituted in (4. 1) to obtain the equa-

tions for the successive orders. 
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The first order problem is 

finite. (4. 15) 

Then .fl•l satisfies 

0 
) 

(4. 16) 

Choose w'l~ to be the lowest eigenvalue of (4. 16), and let E ("<\) de

note the corresponding edge wave solution for f(.•) . Notice that 

tt'i\ oL.. e-.JA~~ for ~ "? ~\' where 

' t 

_.,M-= (\-W!/~~"~~,)~. 

The lowest order solution is 

::f''' = E < ~ \ Cn e 

The second order problem takes the form 

-W0'f~) -t ~-:f~) = ci\z'L/w~ ( N'fttl l~\ -t S<.t) l'\\) en .t€>) 
1 

-wo::t~) +(R~~')~ * 'R't~ lf~~ =- 'l 'R~/w,TU)l'i) ~v... :l~. 
( 4. 17) 

( 4. 18) 

where 'R''l' is a quadratic in E and 'K\1.)(.~) = o( e- 2._,uk"1.) as ~ ~ aa 

We assume that the eigenvalues of the operator lRf')'- (rt.'vt\t{.~ are 

not integer multiples of the lowest eigenvalue Wol-f~ • Therefore, 

there is a solution of the second order problem (4. 18) of the fonn 

:f<.1 > (~.e) ~ !U.) ( ~) eo, :t e + ~ k 't w:~ rm\7.) ( "11 \ , 

~(.t) (~.e)= ~ 'R-Iw0 tt\~) S\m. 18 



where and 

The third order problem is 

-+Wo'R.t'R£~('1\~f> +Look~ Sta)("$\~ 1e), ~(31 lo,O) ~i.-~"t.. 

( 4. 19) 

The forcing term in (4. 19) proportional to ~ 38 does not resonate; 

hence, it gives a contribution 0( e-3)'-\t~) as ~-"> 410. The crucial 

part of the discussion of the nonlinear problem concerns the reso-

nant terms in (4. 19) proportional to ~ e 

Then f('l) satisfies 

In order to have a square integrable solution which satisfies the 

( 4. 2 0) 

boundary condition t'Sllo) = finite, the right hand side of (4. 20) 

must be orthogonal to the function E("1\. This orthogonality condition 

determines w2. 

C) .. 

J = ~ ~'ll b, t b, d ~ 1 ~ E.~ ( ~) c1 ~ 
~ 6 

( 4. 21) 

The expression for ~~\ in terms of t. is complicated for general 

-ftl~) and in any case 

and 'Rtll ( '1\-:. 0 l e-s)'-\t~) 
'RU\ is not known explicitly. But Eb\-=O(e/-'"''1) 

as ~ -"> DO , so Y will differ little from 

the value i obtained for the case t. b)-=-(!>~ More precisely, if 

for o ~ "1 ~ ~. , then, as shown in (4. 11 ), the cor-
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t . . 0 { - "1. \c. t, \ rec 10n 1s e. ) • 

However, finding small changes in the dispersion relation is 

not the object of this chapter. The questions concern the interpreta-

tion of the behavior of ~O) l~) as ~ -"> oo and the uniform validity 

of the expansions. 

To study the behavior of fl~lh'\ as ":, _.., oo , we solve (4. 20) 

by variation of parameters. The solution is 

where 

( 4. 2 2) 

In all cases W("A) -"'> DO as "4\ _.., DO , so the third order terms in 

(4. 12) and (4. 13) become large compared with the first order terms, 

which are proportional to E ( ~) , and the expansions are not uni-

fo rml y valid as ~ -"'> oo • We have 

For large ~ , E.l~) o<. e.-.f"\t~ , so this becomes 

The method of strained coordinates suggests that this is the Taylor 

expansion of 

and that this modified form is the correct, uniformly valid one. For 
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the beach of constant slope discussed by Whitham,~(~)= (3~ 

, and 

The logarithmic behavior seen1ed unnatural and is attributed to the in-

adequacy of the shallow water theory for this cas e. This view was 

confirmed, since the full water wave theory gave Wh\ .('} and could 

be interpreted satisfactorily as yielding an amplitude dependence in 

the rate of decay. We are now in a position to discuss the behavior 

for more general distributions ~ (~) which do not violate the shallow 

water approximations. 

The asymptotic behavior of \Xr(4j\ is given by the first term in 

(4. 22), i.e., 

and 

00 

_i_ c rEl("t)d}c.tr. 
KE 1 (~~-[) j 

{ 
( 4. 24) 

This is the same type of behavior as in the full theory, and again we 

have a clear interpretation of the result as a nonlinear modification to 

the rate of the exponential decay. According to (4. 23) the appropriate 

rate of decay is now 

k ( 1- ~~~~\ )/~ ~ 

It is interesting that the term (4. 24) originates from the frequency 

correction W1 , introduced in (4. 14) to eliminate secular terms in 
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the Stokes 1 expansion but then leads to nonuniformities in ~ ! It is 

unusual in nonlinear vibration problems that terms needed to con

struct a uniform expansion in one variable produce nonuniformities 

in other variables. However, in simpler examples the region con

sidered is finite in space, and then all nonuniformities appear in the 

time variable. When Stokes 1 expansions are used to discuss periodic 

solutions which represent trapped modes in infinite regions, we may 

expect the behavior found here. 
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CHAPTER 5 

NONLINEAR CORRECTIONS FOR STANDING WAVES ON A 

UNIFORMLY SLOPING BEACH 

The problem of nonlinear standing waves in an infinitely deep 

fluid was first discussed by Lord Rayleigh (1915) who found solutions 

to the third order of approximation in the amplitude. In 19 52 Penney 

and Price discussed the same problem but to a much higher order of 

approximation. Finally in 1960 I. Tadjbakhsh and J. B. Keller found 

approximate solutions to the equations of motion which represent 

standing waves in a fluid of finite constant depth. It is the purpose 

of this chapter to discuss the corresponding nonlinear corrections 

for standing waves on a sloping beach. Here there is no longshore 

dependence; we are concerned, except for the last section, with a 

normally incident wavetrain and its reflection. The problem has 

been previously discussed by Carrier and Greenspan (1958) on the 

basis of the nonlinear shallow water approximation. Carrier and 

Greenspan found exact solutions (as implicitly defined functions) for 

the nonlinear shallow water equations. However, as remarked in 

Chapter 1, the shallow water approximation for a uniformly sloping 

beach is invalid away from the shore; therefore, differences between 

the full theory and the shallow water approximation can be expected in 

analogy with the situation discussed in Chapter 4. 

This chapter consists of four sections. In the first section the 

problem is formulated and the approximation scheme is described. 

The second section is devoted to a detailed discussion of the case 

(3 = lT/4. Since the calculations for f3 = lT/4 a r e less involved, this 
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provides an understanding of the self interactions of the wave . In the 

third section, the case of arbitrary angle 13 is examined and the re

sults are compared with those for the shallow water . In the last 

section, the nonlinear correct·on to the dispersion relation for an 

oblique wave is found for a beach slope 13 = rr/4. 

5. 1 Formulation of the Problem 

The problem of developing the nonlinear corrections for a 

standing wave on a uniformly sloping beach is different mathemati

cally from the more familiar problems of standing waves in a bounded 

region. In the case of a bounded region the normal modes of the line

ar problem are used as a first approximation and the nonlinear cor

rections for the natural frequencies are found using an appropriate 

orthogonality condition. However, in the present case, the first ap

proximation is not a "proper" eigenfunction; but it is a function in the 

continuous spectrum, and the orthogonality condition is no longer 

n1eaningful. Therefore, a different criterion must be used to deter

mine the corrections to the dispersion relation. This criterion is the 

requirement of uniform validity of the expansions away from the 

shoreline. 

To discuss the problem for arbitrary angle (3 of the sloping 

beach, we consider the full nonlinear equations of motion approxi

mated to third order in the amplitude. In this case, there is no ad

vantage in the elimination of the surface elevation in terms of the ve

loc ity pulcnlial. When nondimensional variables and functions arc in

troduced for lhc velocity potential ~ and for the sur face elevation ;f 

by lhe relations 
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~l~,t,-ll = ~~ 'f(~',~',t.') 
w 

( 5. l) 

where~'-=- e"J '",2 1
:: f.c. 't./-: wt , wl.~';!f' the equations of motion, 

after the primes are dropped, become 

'ft.-+ ;! -+ £. i 'f-H.S..,. \liS'~ .... 'f1.)} + £~K'f.,'f'J 2 .,. 'f~ 'fc.Jr + i 'ft:H :r~}, O'v\ ~-= o, '1 q o, 

:ft- 'fz-. £t'i'~!6 -'fu!)--- c1\ 'f'j2!.1'1- i 'i'~H:!~}= o 0"'1. =<.=o, "'l~o, 

r "J?/0, -"jkr~~"l~o, 

\.fi ~l.l'y\f + 'f2. Ctn/~-:: 0 0"4\ ~-::- ~tG..i'll. f' ~ 7/ 0. 

( 5. 2) 

where the small parameter E = o.. Q. is a measure of the wave slope. 

We are interested in standing wave solutions of (5. 2), that 

is in bounded periodic solutions of (5. 2), whose period will depend 

on the amplitude of the oscillation. To obtain an approximation to 

the solution, we consider Stokes' expansions for 'f and $ in the 

form 
.., 

'f AJ 2', E"" 'fl~' ( ~' t, e), ( 5. 3) 
,.._:o 

"" 
:S 'V 2: £ M .r"""' ( "1, e L (5. 4) 

(JO 

8 = w (E:.) t : 2: E."' WM t. J ( 5. 5) 
lf\~o 

where the functions 'ft:n' and ;r~ are 2lT periodic functions of 9 

When (5. 3) to (5. 5) are substituted in (5. 2) the equations for the 

successive orders are obtained and their solution gives the desired 
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approximation to the finite amplitude standing wave solution of (5. 2). 

This perturbation procedure differs from the one used by Penney a nd 

Price and Tadjbakhsh and Keller. They expand the solutions ~ and -:f 

in terms of the normal modes of the system, and then obtain nonlinear 

ordinary differential equations for the time dependent coefficients in 

their expansions . However, this method relies on the fact that pro-.. 
ducts of trigonometric functions (the normal modes in their case) can 

be easily expanded in terms of the normal modes of the linear problem. 

This is not the case for the normal modes for a uniformly sloping 

beach, and the expansions (5. 3) to (5. 5) are preferred. The scheme 

obtained using (5. 3) to (5. 5) of course recovers the results for the 

case of infinte depth when used in that situa tion. 

5. 2 The Special Case l3 = n/4 

In this section we describe in detail how the approximate solu-

bons of (5. 2) are obtained for the simplest case f3 = n/4. When (5. 3) 

to (5. 5) are substituted in (5. 2) the lowest order equations take the 

form 

01\1\ l -:. 0, ";\ ) 1 0 1 

~(•I lD(fl 
Wo ...> e - "J! 

( 5. 6) 

0~ 

For a standing wave solution of (5. 6), we let ~<ll("i,:t,e)= f'~"l,~)~t:> 

eliminate ;rl•l from (5. 6) and obtain the following equations for f <..•l : 



-65-

f~ - lo!J; ~ll) -= 0 

f.') ~ , .• 
"1~"" i~ = 0 

( 5. 7) 

~(~ -+ -r"~ = 0 O"W\. , ~ : - "i, ~ ~ 0. 

The appropriate standing wave solutions of ( 5. 7) are the "eigenfunctions 

of the continuous spectrum" discus sed in section ( 1. 1 ). The appro

priate solution of (5. 7) is the function ~~ l''t~) defined in equation (1. 4). 

Therefore the required solution of (5. 6) is 

( 5. 8) 

UJo::; i • 
The second order problem is 

0~ ;c = 0 A.{ h 0 
I t) I 

( 5. 9) 

l21 
When the expressions (5. 8) are substituted in (5. 9) and ;f is elimi-

nated, (5. 9) becomes 

\f!-b + 'f~' = 2w, ~.(~;o) ~e + l ( s~ h+'Y4\ + i~\. e~) \ 1 e-"d + 

+1{~(~1"1\;~)+~e-~r-- i an"l(~+"i;4)} ~v.._ l.B I 

~(.'1.) \0(~.) = 0 
1 "i~ -v J ~il 

'f~ ~ ~i ::0 0 

to--. )~o_, -~~~~0. 

0"1\ ~=-~I "\~ 0 • 

Since the appropriate solution for 'f:q must be periodic we take 

(5. 1 0) 
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( 5. 11) 

A <XI 1\ U.l 
Substitution of (5. 11) into (5. 1 0) gives equations for ,.... , and '""'~ in the 

form 

!\~ 
H - At~ 

I -= 2.W, 'f,(~,o) (YY\ l -:: o, ~-,,o, 

~) Au' (5. 12) A1~'1 1" t'l• -:. 0 ~"(' ~7/ 0 J -'1~:2~01 

Au.) 
·~ 

A(z., 
-+ ll 

.,_ 0 O'Y\ "? =.- "';\ ' ~ :>,o • 

11:..2.) 
H 

A'4> 
- L; z = 1+ 'R(~) ( ~\ O'Y\ :r = 0 

I 
""j 7, o, 

A~~~~ -+ A~H = 0 t-o-r 17/o, -'j~"i~O, (5. 13) 

A~' 
t~ + R~ 1"l 

-= 0 01'4\ ~ ... -~I "! 7/ 0. 

where the forcing function 'Ri('i) is given by 

Now consider (5. 12). Equation (5. 12) is the one discussed in the first 

chapter, and its solution is given in ( 1. 11 ). Therefore the solution of 

(5. 12) is given by 

The constant LU 1 is so far arbitrary. To determine it, the require-

ment that (5. 3) provides a uniformly valid expansion offshore is used. 

To examine the uniform validity of (5. 3) we consider the expression 

(5. 14) 
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When (5. 14) is used to find the asymptotic expansion, away from the 

shore, we obtain 

However (5.15) is not uniformly valid as ~-"> OQ , unles w,= 0 

Hence, to obtain the desired uniform expansion we take w 1 = o , which 

is usual in water waves problems. The general solution of (5. 12) is 

obtained by adding to the particular integral A~lh,"i) the general solu-

tion of the homogeneous problem. This amounts to a redefinition of 

the amplitude and phase of the solution for the linear problem; there-

fore there is no loss in taking it to be identically zero. 

To find the solution of (5. 13), we use the expansion discussed 

in the first chapter. Using equation (1. 10) we obtain a particular 

integral for (5. 13) in the form 

(5. 16) 

As before the general solution of (5. 13) is obtained by adding to the 

particular integral (5. 16) the general solution of the homogeneous 

problem. In order to find the appropriate solution of the homogeneous 

problem we again examine the behavior of ~U> as ~__,.,., To this end 

we need the asymptotic expansion of At~ h,l) as ')-">..a . This expan-

sion is discus sed in detail in the Appendix, and for the present discus-

sion it is sufficient to observe that the main contribution as ~ -'> o0 

comes from the pole ~-::: Ji and is given by: 
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(5. 1 7) 

ll.) ( { where~1 "1,2) =0l'\r!t) as From (5. 17) we deduce that \.f~ 

behaves as a standing wave at infinity, hence the particular integral 

(5. 16) is an appropriate solution for (5. 13) since in order to find a 

periodic solution we need energy balance at infinity. However, a 

comment is necessary on the solutions of the homogeneous problem. 

First of all consider the solution C. S" ( "j, 1:) ~ 2e where c is 

an arbitrary constant. When this solution is added to (5. 17) the re-

suiting solution behaves as an incoming or outgoing wave depending 

on the sign of c. This is not desirable since at the next order an in-

crease or decay in amplitude is obtained, and we are interested in 

periodic solutions; hence we take c = 0. The second solution of the 

homogeneous problem 1) ~It (~,1' ~v.v. l e will not upset the periodicity 

of the solution \f , however we take D = 0 since this corresponds 

to a choice of the incoming wave at infinity. The same situation is 

encountered in the work of Todjbakhsh and Keller and the same choice 

is made there. 

The above arguments give the solution for the second order 

problem in the form: 

'fw= _ ~ ~~ te- '{f: \~~(-\:) ~~lt,o) <lt 
0 

-+ U.~h,~) Su.,.. :te. 

(5. 18) 

0 
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where Q~("j, 1) and ~~ ( ~~ l) are 0(~-l..) as ~ -"> ao 

The third order equations take the form: 

0-'1\ r = - 'i , ~ ~ o. 

(5.19) 

Substitution of (5. 8) and (5. 18) in (5. 19) and elimination of 

the surface elevation .:J(:.\) gives the equation for \fl31 in the form 

(5.20) 

Ql';'\ Z -:: - "a I 'j 7, Q • 

To solve (5. 20) let 'f"J.'= A'~' ~e ~ Al~~ eCY)"36. Then the equation for 

A~('i,~) is : 

- 9 Ac:s. 
'3 0'1\ ~ ::: 0 I ~ 7, 0 1 

J\~l A.Ul 
/""\3~~ + ,... 3 ~ ~ ':. 0 (5.21) 

1\(ll Au' 
n'l ~ -t- ~ l = o O\'\ 1. =- '<L 'd 7, o. 

where the function 'R~\'1) is a linear combination of trigonom etric 

functions with wave number different from nine and functions whi ch 

arc 0 (~-a.) as 'i -") oo . An acceptable solution for ( 5. 21) is readily 

obtained and has the same features dis c ussed in (5. 16 ). It will be 
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shown in detail in the Appendix that the trigonometric terms give no 

problem since all have wave numbers different from nine. 

As usual the crucial equation of the analysis is the one that 

contains the resonant terms. 
A(3) 

In this case it is the equation for r\ 1 

(5.22) 

where the function 1~3\ has terms which are O('l-:t) and contains trig-

onometric terms with wave number different from one. 

We now discuss the solution of (5. 22). First of all consider 

the second term in the forcing function of (5. 22). This is the result 

of the cubic self interaction of the deep water component of the linear 

solution, and of the deep water component of the mean elevation with 

the lowest order solution. It is in fact the same term obtained in the 

case of infinite depth. To find the correction to the dispersion relation 

w1 add and subtract from the forcing term in (5. 22) the function 

(~ViT' e-AJ- • This gives 

J\('l) - /\(3) -
1\ li_ /"'\I -

(5. 23) 

The second and third terms in the forcing function of (5. 23) produce 

acceptable solutions for 'f(.l) • However, the fir3t term resonates on 

the continuous spectrum, and as was shown in ( 5. 1 5) it does not give 

an acceptable solution. Therefore, we must take W.t =:- 1. I~ This 
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determines the nonlinear correction to the dispersion relation. The 

final solution, in dimensional variables, is given to lowest order by 

(5. 24) 

where 

The perturbation analysis just described indicates that non-

linear waves with perfect reflection are possible on a uniformly 

sloping beach. 

5. 3 The Solution for Arbitrary !3 

The analysis just described can be applied with more labor to 

the case of an arbitrary angle 13· However, it was noted in (5. 22) 

that the interactions which produce the resonant term in (5. 23) are: 

the self-interaction of the deep water component of the linear solution, 

and the interaction between the mean elevation and the linear solution. 

This interaction is readily calculated, for arbitrary (3, if we recall 

from equation ( 1. 6) that the deep water component of the linear solution 

is independent of the angle 13. Therefore, since the cor-

rection Wt. depends only on the deep water behavior we have W 1 :.- 1/q 

for all (3. The actual form of the waves will be different but to the 

order considered the behavior of the dis per sian relation is th~ same 

as the one obtained for infinite depth. In particular for small values 

of (3 the correction is - 1/8. However, the exact solutions of Carrier 

and Greenspan (1958) are finite amplitude standing waves satisfying 

the linear dispersion relation. This discrepancy is due to the fact 

that the shallow water theory, for a uniformly sloping beach, is not 
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valid at large distance offshore. In fact the linear theory does not 

allow solutions with nonzero amplitude at infinity. When the non

linear shallow water approximation is studied using (5. 3) to (5. 5), the 

expansion of the solution obtained by Carrier and Greenspan is found. 

However, in this case no change in frequency is needed since the 

self-interactions of the wave never produce the oscillatory part of 

the linear solution which gives the change in the dispersion relation. 

When a more realistic depth distribution which remains shallow at 

infinity is considered, the self-interactions of the wave produce a 

change in the dispersion relation, in analogy with the full theory. 

5. 4 Nonlinear Corrections for Oblique Incident Waves on a Sloping 

Beach 

The nonlinear effects in the dispersion relation for a mono

chromatic wave obliquely incident on a sloping beach are found using 

a Stokes 1 expansion. The arguments involved in this section are the 

same ones used to discuss the normally incident waves. The differ

ence is in the basic linear problem, and also in the calculations since 

now the longshore dependence is included. As in the case of normal 

incidence the correction to the dispersion relation depends only on the 

deep water terms; the only edge effect is the introduction of extra 

terms which fall off exponentially away from the shoreline. 

To find the desired approximate solutions consider the full 

nonlinear problem 
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:r~- ~~""" ~";:r~.,. ~~:r; -::; o, 0¥. ~-= :f'c,.,~,"=-),-<e>{X<<>O, ';\1-oJ (5.2s> 

"¥2. "' : 0 1) __ 
::t ~-Db<.}'<..,.,, ":J"?,-0/ - ~ ~~ ~ .;rc><,'l,-t). 

~')-t- ~r-= 0 O"A ~-=-"j/ "':\~0, 
For (5. 25) we want a solution in the form of a travelling wave, and 

we let 

(5. 2 6 ) 

::f'C'\i,x,t) = ;f("j,e) 
(5. 2 7) 

where e = kol( + wt \?.o "'> 0 , LU ) 0 When ( 5. 2 6) and ( 5. 2 7) 

are substituted in (5. 25), and the nonlinear boundary conditions are 

approximated to third order we obtain for ~ and ';S the following 

equations 

W'fe + ~ ;f + kl'fo~ J +~\feu!'+ } (\~~ 'f1 ~ \f;-+ If~) + 

+ ('R~'fe\fe~ +\f,.\j'-.t ~ 'f~lfP).:::r =o
1 ~. "' O"'\2 ::.o1 'J"/o, 

W;fe- '?:c -'fu;:f- ~ 'f~u:f~+ k~\fr>:fe ~ 'f-s:f1 + 

~ ~!'fe1'!:f6 + 'f-,2:r.r
1 

-=O 
1 

o"4\:l:::.o, '"p/o, 
(5. 28) 

Now we find approximate solutions of ( 5 . 28) which represent oblique 

incident waves with perfect reflection at the shoreline. We take 
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.., 

':f 1\J 2.. Ql\'l ~("~\\ ( "l, ~'e) (5. 29) 
'n"'" 

"" ;N ) ll"" .::rl'"') ( ~' 'U) 
(5. 30) '--' 

"""""' 
\..IJIV ~.' Q""'w I'(\ (5.31) 

"f\~0 

where 'fl""\ and f~ are 2n periodic functions of e . 

When expressions (5. 29) to (5. 31) are substituted in (5. 28), 

the equations for the successive orders are obtained. 

The lowest order problem is just the linear one , i.e. 

~li -t ~~ fl'l = 0 o'V\ ~=-o, '\\7/0, 
~ 

\fll\ 
~'1 

-t 'f I! I 
~~ 

~ .. 'f(" -t o oe = o ~-oc.<"<,;~, 'f// 0 J - 'J (. 1:- ~ o, 

\j'll~ \t'' ~ l ~ 0 J DIY\. :t =- ~ J "J )/ 0. (5.32) 

An appropriate solution of (5. 32) which represents a wave incident 

in the direction - o~o, to) , to ') 0 , with perfect reflection at the 

shore1 is given by Hanson's solution. That is 

(5.33) 

(5. 3 4) 

where W~=~(e;.~;)~'L 
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The second order problem is 

(5. 35) 

The term proportional to W 1 does not appear since the correction 

to the frequency only comes in third order. When the expressions 

for \f01 and j"~ are substituted in (5. 35), :::r~ is eliminated from 

the equations and ~l2l is taken in the form 'fl1.lh,l,e)= f~l(~,l) ~~ 1.6 

we obtain the equations for fll: 

0"1\ 2 : 0 I ~ 7, 0 I 

(5. 36) 

(5. 37) 

and the constants o<., (!> 
1 

[ , depend on ~~> and .!' o 

The solutions of (5. 3 7) may be discussed in detail, and their 

behavior i s similar to the one already described for normally incident 

waves. In this case there is a standing wave with lto as wave nurn-

ber in the y direction. There is no contribution from the point 

spectrum, the edge w a ve, a nd this shows that an edge wave with the 

appropriate decay for the wave number 2k0 is not produced. There 
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lS a contribution which is estimated as 0 ( e-l\f.o~); as described in the 

Appendix. The most important term, for our discussion, is the one 

which comes from the constant forcing term; this is a contribution 

which does not vanish nor oscillate as ~ _, .oo 

for ~<.1) takes the form 

' 

The surface elevation is given by 

4~1 ("' e)-= - w 1.9{~, - w \P''' -9''' .-1 J, -oJe - "Jel.J-
~ '} 

Hence the expression 

. 
> 

(5. 38) 

(5.39) 

the nonlinear effect is the introduction of a mean level (independent 

of time) which is: 

;r~,_CI.Iw\ : - ~ } 2.~ + \t}+ 'R:) e,;t. ( t.'l"" ~) + 2. ~ 0 (P; ... ~~ ) 'l"\. 'f ~l t:-... 'R~\ \ 
~ \al! l 

JC Sv.-.lt,~+ c~) + 2 ~! Cn £ e- ~l~+\l!)'~ C,(e.,
1 

... £ ~ + (.Q,; ... .t~! E,.,'l. r:) e1~( ~; ... 'R~)\ J . 

The exponential terms are due to the sloping bottom; they are not 

present when the depth is infinite. 

The third order problem is 

0/'f\ % = 0 
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01'1\ 'l : Q I ~ 7/ 0 1 

(5. 40) 

Substitution of (5. 33 ), (5 . 34), (5. 38 ) and (5. 39) in (5. 40) gives the 

equations which determine lfCil and :f l 3
) • However, the terms in 

the right hand side of (5. 40) which determine the nonlinear correction 

to the dispersion relation are just the ones which resonate with the 

basic frequency, i.e., terms proportional to eoo(~"l +£J ~ e , 

When the appropriate calcula tions are per-

formed in (5. 40), and the r esonant terms f-3)l~Jx) e&:>e for lf('l) 

"d d Pl"l) t" f" are cons1 ere , J" sa 1s 1es 

(5. 41) 

~ is given by 

S = 2. w. L ~ ~:. ~ 'R!-+ .t ~:~'R~ _ 
\ 1l "31 ~ ~~\It~ 

and A - _ w: -~1 \:z!" 
(..)o 2.WHt(A):-~k.) 
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Again, as previously discussed, we want a uniformly valid 

expansion as ~-'"> ..o , therefore it is necessary to avoid terms of 

the form ~ ~i..-n ( t.'i ~ E.) in the solution. These are produced by 

the terms proportional to ~ (Q..'$ +E.) ; hence we must take W1 "" S/::t 

This determines the nonlinear correction to the dispersion relation. 

The final form for the surface elevation is to lowest order 

where Ul "W0 ( \~ \ 0..1.) The Stokes' expansion has two small param-

eters a.kD and o.Q. , since the problem is two-dimensional. The 

dispersion relation W :. W 0 ( \~ \ 0.."1.) 

incidence when k.= 0. 

reduces to the one for normal 

It was shown that no second order edge waves are generated 

by a monochromatic wave. A packet of obliquely incident waves will 

excite edge waves provided its spectrum is appropriate to produce 

a resonance on the edge wave modes. The situation just described 

was studied by Gallagher in 19 71. 
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CHAPTER 6 

THE LINEAR OPERA TOR FORMULATION OF THE 

LINEAR WATER WAVES PROBLEM 

In thjs chapter we consider some general features of the 

linear description of water waves. In the first section it is shown 

how the linear problem can be formulated in terms of a non-local 

but self-adjoint linear operator, as may be expected since the dis

persion relation for water waves is not a polynomial. Using the 

standard argument it is shown how self-adjointness implies con

servation of energy. In the second section two special cases are 

discussed in detail, and the eigenfunction expansions (l. 8) and (l. 16) 

are shown to provide the spectral representation of the linear opera

tor associated with ( l. 7) and ( 1. 14). 

6. 1 Formulation of the Linear Problem 

Before we begin the discussion it is necessary to introduce 

some notation. Assume that the fluid is contained in a bounded or 

unbounded region Jl c ~'l with smooth boundaries and that Green's 

theorem may be applied to it. Denote the longshore and offshore 

coordinates by x and y respectively and let z be the vertical co

ordinate. Let the upper part of the boundary of Jl... , which is denoted 

by 6. lie in the plane z = 0; o(Jl) denotes the remaining part of the 

boundary. 

With the above conventions the linearized equations of motion 

for the velocity potential 'f take the form 
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~ lftt "'t 'f~ :: Q 1 ~ ~= 0 J ()(,~' £. 6 1 

~(~1~,010) :: f(~~) i i\ ()(1 ~. o, o) = ~ ()(,~) 
1 

{oT (~e,~) £ A 1 

\f~~ ""'9u + ~lC" :: o i.M Jl, ( 6. l) 

on(.) (Jt) if the region JL is finite; or "f _..., o and 

'f"" _..., o sufficiently fast at infinity when JL is not bounded. 

To reinterpret (6. l) in an abstract fashion we consider the 

homogeneous problem obtained from (6. l) after separation of vari-

a bies. This is 

'f rn ~ o DIY\ o(_ .Jl.) ; or ~ and 'f ~ -"> 0 at infinity , 
( 6. 2) 

when Jl.. is not finite . 

We now formulate (6. 2) as the eigenvalue problem for an 

appropriate linear operator. To this end some more notation is 

needed. 

Denote by Lt(6) the Hilbert space of square integrable 

functions of two variables defined on A . It is necessary to intro-

duce the sub space C£> c l:z. (A) defined as 

SD={.fEL'4(~) \ t(l<.,~~ = ~{_,c,~ , o) 

(i), (ii) , (iii)} 

in A , where ~ satisfies 



-81-

(i) '¥'- c1f == o in Jl. . 

(ii) ~""::. 0 on u(.n.) or 'f, 'f,.,.._, oat infinity if ..5\. is unbounded. 

(iii) ~ \ }:cl(,~.~~\'a"J.~ <-<><>. 

A 

The set C£) is not empty and in fact is dense in L4 (tl.\ . This is due 

to the fact that functions of two variables with compact support, 

say, generate solutions of Laplace's equations satisfying (i), (ii), (iii). 

Now it is possible to define the operator that describes the 

linear problem. The definition of L is as follows: 

L : <;;i) -/ l~ (A\ 

(6. 3) 

The operator L is well defined since the definition of S) was made 

to accomplish this. Notice that the operator l is not local since the 

value of the transformed function L l at a point depends on all the 

values that .f takes in A . 

We now use definition (6. 3) to express in an abstract form the 

initial boundary value problem (6. l) in the following way. Solving 

(6. l) is equivalent to finding an L:t( fl.) valued function of a real 

variable, u(t), which satisfies 

(6. 4) 

where the derivatives in (6. 4) are taken in the strong sense and L 

is an extension of L to an appropriate domain. For a solution of 
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(6. 4) to exist; the initial data t and ~ have to be restricted to an 

appropriate subspace of l~(~) . 

To obtain the actual solution of (6. 4) the spectral repres enta

tion for l is needed; hence, the problem is to show that l admits 

a spectral representation. We will prove that L has a self- a djoint 

-· 
This implies that a spectral representation for l extension l 

exists. It will be also proved that the spectrum of 1. is positive, 

as one may expect since (6. 4) describes oscillations. To prove that 

L admits a self-adjoint extension some more notation and another 

definition are needed. 

Denote the usual scalar product in l t(A.' of two functions -t 
and'\- by ( ~.<?5' ). It is also necessary to recall the definitions of 

symmetric, positive ope r a tors , and also the extension theorem of 

Friedrichs. 

An operator A with domain <j) (dense in l-z (6) ) is called 

positive if ( A.f, t)~ o , for all ~ £ :0 

An operator A with domain 'it (dens e in ~(A.) ) is called 

symmetric if (A~,q.'-= (.S, A'1) , for all !/~ f ~ . 

The extension theorem of Friedrichs (Friedrichs 1973) is: 

Let A be a densely defined positive symmetric operator. Then A 

admits a self-adjoint extension with positive spectrum. 

Therefore t o prove the existence of L it is only necessary 

to show that L is symmetric and positive. These two properties 

are direct consequences of the construction of L and £> . 
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To prove the symmetry let f(l(1 ~)-=- "f(1<,~,o) and ~(1<,~) = 

-= G- (1<,'1,0) be elements of c;b . The use of Green's theorem on "F 

and G gives 

( L~.'! )- ( ~, L~) = \~-v~ 
!:!> 

= 0) 
( 6. 5) 

since the other terms vanish by the construction of ~ 

The positivity of L also follows from Green's theorem since 

( 6. 6) 

Formulas (6. 5) and (6. 6) show that a self-adjoint extension of L 

with positive spectrum exists; this is denoted by L 

To conclude this section we prove that conservation of energy 

for solutions of (6. 4) is a consequence of the self-adjointness of I . 

Assume a solution u(t) of (6. 4) with two continuous derivatives, and 

define the quadratic functional E(t) by 

( 6. 7) 

We now prove that E(t) is constant. In fact the differentiation of 

(6. 7) gives 

E(-l)-= ~ (u.t,U\:~) .. 'i Lu.t,LV.) ... ~ (u., LU\:). 

Since l is self-adjoint the last two terms can be combined and we 

obtain 

Eru~~lU.t, ~LHt+L"'-J-= o 

since u satisfies (6. 4). Hence the self-adjointness of L implies 

the conservation of E(t). To identify E(t) with the energy of the 
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waves, recall that the surface elevation :f is expressed in terms of 

the velocity potential as 

( 6. 8) 

Therefore using (6. 8) in (6. 7) we obtain 

-:r 
E.li) = P':l ~ ~ rz, <t-rcix~ 

l::l. () 
(6. 9) 

which is the total energy for a solution of (6. 4). 

6. 2 The Spectral Representation of L in Two Particular Cases 

In this section we show that the eigenfunction expansions (1. 8) 

and (1. 16) provide the spectral representation for L for two special 

domains J1.. • In the first part we consider the case when no long-

shore variation is present, and in the second part the edge wave 

contribution to the expansion formula is examined. 

(a) The case of no longshore variation. In this case the 

appropriate problem to consider is ( l. 7), and for simplicity we take 

f3 = 1T/ ~ . To find the desired self-adjoint extension of l -we need to 

prove the completeness of the eigenfunctions ~.e_l"i,O). 

In this case the functions 'Se. ("1, 2) take the form: 

I ~ ~ tv,. -2....-i..h -i..W.., l.>e- \.~"' } S l ~ 1 ) = \I 1: • ..!.. e ~ e • -+ e -e d + c. c. • .e , lrr 2. (6.10) 

and we now prove the completeness of the functions ~e_(~,o) for a 

special class of functions ~ (~) . More precisely let ~ be a C.., 

function which van·ishcs at infinity faster than any power with an inte

grable transform ! (e) defined by: r (£) = )"" $~ (~I u) H ~\ ~. 
0 
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Then the inver s ion formula 

t(~)= ~..,~te.' Sec~,o) cU (6. II) 
0 

holds. 

To prove (6. 11) consider its explicit form. That is 

)CX)~tl"-1,0) ~(t)dt =-
() 

"" 00 -+) d.t.) { e-i(~'.-t'J) ~ e-H~+'i'l + et111L e-t(~'-i.~) + e~'~~ e-e(~+i..'i'l}ft'i'\Gl~'+ 
0 0 

M. 00 

+ ~cU) e-~("1 ... ~'\ft'1'\a~' + 

0 (J 

M ~ l 
+ ~cU. ) e~H'i-'f) ft~'\ d.~· "" c. c. J 

0 () 

(6. 12) 

which holds because ? te.) is integrable. 

We now show that for y > 0 each t e rm in (6. 12) has a limit 

as M -) oo and we calculate their values. For the first term we have 

.... 00 

L ) dl \ e-H "i + 'j' l ! l".1' ' d 'i' = 
0 0 

(6.13) 

since the interchange of the order of integration is legitimate because 

.f vanishes at infinity faster than any power and the domain of inte

g rati on is bounded in the ..£ variable. To prove the existence of the 

limit in the right hand side of ( 6 . 13) notice that the integrand i s 
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dominated by the function 2 I :H.'1') \ l"1•"1')-1 which is integrable 

since y > 0. Hence,by the dominated convergence theorem the limit 

can be interchanged with the integration, and the limit of (6. 13) is 

H '1') d.~' 
0 ~ ... '1' 

This is purely imaginary and therefore does not contribute to (6. 12) 

since the complex conjugate is also included. Exactly the same 

argument is used with the second term and its complex conjugate, 

and it is found that they do not contribute to (6. 12). Now consider 

the third and fourth terms with the complex conjugates . Observe that 

..., 

~ e-~'i'ft~·)d~'::. 0(\~1-') 
() 

for -l in the first quadrant of the complex plane. Therefore the 

path of integration in the third term can be deformed into the imagi-

nary axis since the contribution from the large semicircle tends to 

zero. Combining the third and fourth terms we obtain 

by Fourier• s theorem. Finally when the last term is combined 

with its complex conjugate we obtain 

Since r lS continuous from the right as y -"> 0 and $1 b,o\is bounded 

it follows, using again the dominated convergence theorem, that 

(6. 14) is valid for y = 0. This completes the proof of the desired 
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result. 

To construct the desired spectral representation we need an 

extension of (6. 11) to the whole space l-:t [o 
1 

oo) More precisely, 

consider the operator V whose domain 1> is a subspace of 

differentiable functions in ~ f\ l~ defined by: 

'V: 'B -') l1. LD I 00) 

(V" f )(t'-= ~..,~.{l~.o) H~)·d~. (6. 15) 

0 

\[ L2 
We will show that can be extended to an isomorphism of 

-
First of all we will show that V admits a closed extension V"' . 

(That is, there exists an operator V such that: whenever a sequence 

converges to x, and \[ x..,.. -'"> ~ , then 

and v)C:. ~ A1 so V y. -:. 'If~ for all x E. '1) • ) 

To prove the existence of V observe that the kernel ~~b. o) is 

proportional to eo, l ~~ -t li;lt) ~ 2''~ e- ~"! , then as a consequence of 

Plancherel' s theorem the first term generates a bounded, and there-

fore closed operator. With this observation it is now only necessary 

to prove that the operator with kernel e-~"" admits a closed exten-

sion. To show that the operator V1 ~ defined by 

~ 

(V1 f )~I= ~ e-.t~ ~b) d.~ 
1 
~ ! ~ '.::B 

0 
(6. 16 ) 

admits a closed extension, it is sufficient to prove (Yosida 1968) 

that for every sequence { !,., ~ c ':B such that t,.,_ -""> 0 and 

, we have g = 0. To verify this statement in (6. 16) 

consider the sequence \. r"") c '1> such that .f m. -'"> o in L~ i:o,<>o) 



-88-

and v.l f' ~ __,._ Q 1·n l 2 . I th" h . b I " 1 1.. , 6 n 1s case t ere ex1sts a su sequence t ;...,."'-) 

such that 
1>0 

1 {(~~ ~""~l~) ch~ -) q, lt) 
0 

a lmost everywhere. Also from (6. 16) we have 

00 lb 

I~W\ z ~ ~ \-t'l\'k.l\.)\~cn. ~ e-2
Hcit.. 

0 0 

Equation (6 . 17) implies C\(t)= 0 O..e.. \l. and therefore g = 0 in L. 

(6. l 7) 

This shows that Y;. and therefore that 'f admits a closed extension 

The extension of V to an isomorphism 1.f of L~ is obtained 

using the orthogona lity and the completeness relations given in (6. 11 ). 

To find the desired extension it is convenient to express (6. 11) using 

- * and its a djoint ( V) . 

Since V is densely defined ( vt exists; also 'Be ~oi'M.C)..V... (V)* 

- ~:c 
a nd the operator ( V) is given by 

N 

( ( vtq. )h)= ~ S(t~.o) ~tt\clt 
() 

for '1£J., since 

00 ""' 00 ""' 

( Vt C} l = ) '1ll'dJ ~ :Stl~.o) tl"i)d.~,. ) ~('1\0..~ \ <S.tb,o) ~tt) cU = 
0 () 0 " 

for a ll t and q in~ . Using the operators V a nd (\j )* (6. 11) 

implies 

(6 . 18) 
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When ~ f ~ , then ~ l~):: \fb,Z>), where 'f is a solution of Laplace's 

equation which satisfie s conditions (i) , (ii) and (iii) of the previous 

section. Therefore, l is defined as: 

(6 .22) 

To find a suitable self-adjoint extension of L for this case, 

consider the subspace 

a nd define the operator 

A 

The operator l is self-adjoint, has no p oint spec trum, and its c on
,.. 

tinuous spectrum is the positive real axis. Using the operator l a 

self-adjoint extension of L is constructed as follows: 

Let 

l u it ( ID ) -"'} L -z. ( 0 I 00 ) 

i = u,.tu 
(6. 23) 

The operator L is self-adjoint since U is an isomorphism. We now 

need to prove that l i s a n extension of l . The fac t SO c U •<.~ l 
"" 

follows , since by construction \J\..t>) c. S) and-U is an isomor-

phi s m. To prove that L f = \...f f or ~ f ~ observe that for 
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5 ( ~ the operator L is represented as 

( L f h 'j) = ~; .e ( ~' 0) ~ ctl \; ~ l-t I D) fl t' ~1: (6. 24) 
0 0 

and that the function 

Gb """ 

'f ( '\\ J 1 ) .,_ ) ~ ~ l "1, 1) ~ ) ~ ~ ( t I 0) f l \:) d \_ 
0 0 

is a function that satisfies (i), (ii) and (iii). Therefore calculation of 

L { using (6. 22), and interchange of differentiation and integration 

(which is shown to be permissible in (A. 7) gives 

(lf)(~)= ~e \fC'-1,21\~::o-:. )- ~{h,o) ~ell \-~~lt,o) f\\:.)cl\: "'ll ~) l":,) 1 
0 0 

and this proves that l is the desired self-adjoint extension of L 

To conclude this section,we summarize the results obtained. 

The "incoming waves with perfect reflection ~ ( ":1, o) 11 were shown 

to be complete in the sense that they are the kernel for an isomorphism 

U of l~ Also, the construction (6. 23) shows that the functions 

s~ l "1, 0) provide the spectral representation of an appropriate self

adjoint extension of L 

(b) Case of longshore variation. In this subsection it is shown 

how the result of Whitham mentioned in (1. 16) is used to provide the 

spectral representation for the operator l when it has one point in 

the spectrum. The arguments involved are essentially the same ones 

discus sed in the previous subsection. 

We now consider in detail the case (3 = lfj~ First of all the 

functions f{~("1,o) and the edge wave solution are given by: 
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• 

E (":)) = z-'-'-. \.< 't:z. e ~ "i 
$£t"1,o)-= VT ( ~7.~ '>.-z.)\ t -_i(~1-i. ?.) ed'J 0 - {?":1 1 • c. c. -1- ~ e J 

1 

where and f /'/0. The variable k appears after 

the separation of the x dependence as shown in ( 1. 14). 

The functions '$-R. b,o) and E:t"J) satisfy the following relations 

due to Whitham (19 76 ): 

The orthogonality relations 

()(J 

) ~~(~.o) E b) J..~ = o 1 
0 

(6. 24) 

(6.25) 
0 0 

for all t E. C"" which vanish at the origin, and vanish at infinity faster 

than any power. 

The completeness of the functions ~e (~, o) and E(.~' for 

the Laguerre functions is expressed as: 

~ 00 OC> 

~~"'tt.\Et\:.)cll. E("j)+~ ~tl'1,o)cll)~elt,o).e~nlt)cH = ~"' (~) (6. 26) 
0 0 0 

In order to find the operators V and U appropriate for this 

'\ rl'' case it is convenient to introduce a new Hilbert space f\... defined as 

with scalar product given by: 

00 

<co.,f1,C~,'3))"=' o.l.:,+ )~qcU 
0 
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lrll' ,-z. ( \ 
The space {1.- may be identified with the space :r -~/co 1 , where 

the measure __)A- is the Lebesgue measure on [o,oo) and has its mass 

in l- ao, 0 ) concentrated at one point. This space is nothing but the 

space of the "representers" (Friedrichs 1973) which will provide a 

representation of L as a multiplication. 

With the definition of '}t'' it is possible to define the operator 

V appropriate for this case. First of all,consider the operator W , 

whose domain 'B is a subspace of differentiable functions in ~ "\.l. 

defined by 
00 

lW f)lt\: ~ ~~l~,o\ tl~)d.~ 1 
0 

which is densely defined and whose adjoint w• is given by 

..., 

( \'lf~~ )(~1 = ) '$L (~,o \ ~(t) di 
0 

for all ~E."£> Define now the operator Y by: 

v : 'l> -") '){ (.1\ 

00 

V~=()~e,w~). 
0 

The same arguments used in the previous section show that \{' admits 

a densely defined closed extension V" - :1,' 
whose adjoint ( '\[') is given by 

for (). £ '\R , if.. £ 'B and satisfies 
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The completeness relation can be written in terms of V and ( V)* as 

and since V is closed we have: 

(6. 27) 

Equation (6. 27 is essentially the same as (6. 19). The same arguments 

used in (6.19) (since they do not depend on the fact that V" z 
maps ~ 

into a subspace of Lt. ) show that the operator V'" can be extended to 

2.. cu<ll 
an isometry of L into n.. • To prove that '\I is an isomorphism it 

is sufficient to show, as in the previous section, that the range of 1J 

. '"Ol is dense 1n tt. This fact follows, as before, from the orthogonality 

relations (6. 24), (6. 25). In fact, when (6. 24) and (6. 25) are expressed 

- * in terms of V and ( V) we have: 

00 

u ( v }* c~, f) : VlV,~ \14, f) = v (o. E ... ~o~t (·I 0 )t lf)dl) = to., .n (6. 28) 

for all real numbers Q.. , and ct» functions ~ which vanish at the 

origin and at infinity faster than any power. The vectors (<l.,f) are 

dense in C).{_l'); therefore, it follows from (6. 28) that the range of U' is 

dense in /-ll'' . The argument used in the previous section shows that 

1'\J <.•) 1J is onto ~ and therefore \.J is the desired isomorphism between 

l?-[o, oo) and 1{. <.n • 

Now we construct the appropriate self-adjoint extension of l 

when one edge wave is present. To study the operator L it is con

venient to introduce the subspace ~ c l~ [o / ~) defined as: 
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f>= i ~ £. l1.(o,oo) \~is a finite l inear combination of 

Laguerre functions) · 

If ; E f) , it may be verified that there exi sts a unique 'f such that 

t~)-=- 'fb, o) , where the function~ satisfies: 

( i) 

(ii) 

(iii) \f-:: Q l"<"-'\ I 'f,.,.-:: 0 (Jf-l..) 

(iv) r\ ~i 'Yl'$, ~) \ i=o \~ cl.';\ l.. oO. 

0 

Using the subspace 5J define the operator L by 

L: <£) _.., l'l. L 0 I 00' 

Now the construction of a self-adjoint extension l of L is analogous 

to the one of the preceding section. In more detail consider the 

subspace 

" and define the operator l by: 

t: 

" 
The operator l is self-adjoint, and its s pectrum consists of the 

point k- , and the half line .t 7/ k . 
v~ 

" W e now define, using L the 
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desired self-adjoint extension l of l as follows: 

J 
L = u-' t u (6.29) 

The operator L is self-adjoint since U is an isomorphism. To 

prove that l is an extension of l we need to prove that i:> c ~.r' (~) 

and that l ~ = \_ ~ for all ~£. S) . That ~c. u-'l~) follows from 

and the fact that \.J is an isomorphism. The statement 

-
l; =- l f for ~ £ ~ follows, as in the previous section, by direct 

calculation and the fact that for t £ ~ ( 6. 2 9) gives: 

(lnl'S)=- ~ \~~)E.lt)cH:. E('$) + )lt\~t)''L~/'1,o)cU )~tlt,o)~(\:ldt 
0 0 0 

• 
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APPENDIX 

In this appendix we prove that the formal solutions for the 

linear problems (1. 7) and (l. 14) given by (l. 8) and (l. 18) are indeed 

solutions of the desired problems. This justifies their use in obtaining 

approximate solutions for the nonlinear problems discussed in 

Chapters 2, 4 and 5. 

The asymptotic expansions for the solutions (l. 8) and (l. 18) 

are found for large distances away from the shore. It is also shown 

how the dominant term in the expansions can be found (in a nonrigorous 

way) directly from the equations. 

In the first section the case of no edge waves present is dis-

cussed, and in the second section the contribution from the edge wave 

is examined. 

A. l The Solution of Equations ( l. 7) 

In this section we consider the problem 

(A. l) 

where to"'>O and 1<(~) is a function which satisfies: 

(10 

'R ( t) = ) S ~ ( ~) o) "\<. l ":1) ~ -=- o (I ~ J-3 ) ~ \t \ ...>) co 1 
0 

for all Q.' -1 in the first quadrant of the complex plane. This is indeed 

h 'P l"') -- o( ~-\>1 t e case of interest in the second chapter since 1~ " -v and 

The functions that appear 

as forcing terms in equations (5. 21) and (5. 22) are functions whose 
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transforms are 0 lLtr}) and ol\.t\"t.) ; and trigonometric functions. 

We will show that in all cases (l. 8) provides the desired solution to 

the problem. 

The formal solution for (A. 1) is: 

00 

~l~,l.): 'P.v. ~I ~ ~(tl t ehe,.., lt'l-.¥-) + e-e~ ~{h-!\ 1 ell, 
o ~- eb J (A. 3) 

but for our present purposes (A. 3) is more conveniently written as: 

(A. 4) 

To prove that (A. 4) provides a solution of (A. l) it is necessary to show 

that (A. 4) is well defined, has the desired derivatives, and satisfies 

(A. l ). To prove that (A. 4) is well defined and sufficiently differen-

tiable it is sufficient to show that the functions 

(A. 5) 

and 

(A. 6) 

/ 
exist for y and z in the region of interest, can be differentiated twice 

with respect to y and z, and that differentiation can be interchanged 

with the principal value. 

We now examine in detail (A. 5) and (A. 6). Integration of the 

analytic function 



-99-

on the contour formed by the real axis, a small semicircle C, in the 

upper half plane centered at ~-= ~o , a large semicircle at infinity 

and the line L\ given by t: "f e·· 111'~ , ?- 71 o , shows (when the small 

semicircle is collapsed to .e., and the large at CJO ) that the desired 

principal value exists and may be expressed by 

The contribution from the semicircle at infinity is zero because 

or as \t\ -"'> 00 

The same argument, but now used in the lower half plane, with 

the line L2. parametrized by ~ := r i'"i , 17; 0 , gives for (A. 6) 

Also,formulas (A. 6) and (A. 7) are valid for 0 4 ~ <. ao 

this shows that 'f is defined in the region of interest. 

To prove that (A. 5) is differentiable, consider (A. 7). In the 

first term of (A. 7) differentiation can be interchanged with integration 

for ally and z not zero, and when Rlt.)::. o(\tC3
) two derivatives can 

be calculated in this way when y and z are both zero. When 'R.t~)-= o(H\-t) 

the second derivatives of '9 may not exist at the origin. This is the 

case for 'fUl in (5. 19) since the interaction~; :f''\ produces a term 

whose transform is O(\ ~l-t) ; however, the solution is still acceptable 
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because it has finite velocity at the shore. This shows that ~ has 

the desired number of derivatives. 

We now prove that the derivatives can be interchanged with the 

principal value; for example, we now show that 

(A. 9) 

the argument being the same in the other cases. To verify (A. 9), 

compute the left term using (A. 7); this gives: 

(A. 1 0) 

Now compute the right hand side of (A. 9); this gives 

(A. II) 

The second term in (A. 11) is now calculated using (A. 7) and the right 

hand term of (A.IO) is obtained. This proves (A. -9). The existence 

of second derivatives is proved in the same way. Therefore, in (A. 4), 

first and second derivatives can be interchanged with the principal 

value. 

Finally, to prove that (A.3) satisfies (A. I), observe that the 

function 

satisfies Laplace's equation and the bottom boundary condition; hence, 
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interchanging the derivatives with the P. V. we see that (A. 3) satisfies 

Laplace's equation and the bottom boundary condition. To show that 

the surface condition is also satisfied observe that: 

Oo 

~-:> \f(':5,~)\c=o=- ?.v. ){l, s't("S,O) ~l~) cU, ~o-v- ":17,0 . 
~ 0 t-~ 

hence 

This shows that (A. 3) provides a solution of (A. l ). 

The solution of (A. l) is not unique since the homogeneous 

problem has a solution; however, the appropriate solutions for each 

time dependent problem have been already discussed in the previous 

chapters. 

We now consider the asymptotic behavior of ~(<i,o) as '1-"> co 

To find the desired expansion we express (A. 3) in terms of (A. 7) and 

(A. 8 ); this gives 

'f(~,o):: ~Q. \I~~ r RCJ~'-lf/<~) e'-1YL ~- (~- ~ )!~ J.z -+ 
~ Ti l 0 J~'-'1\'~- ~0 

To find the asymptotic expansion of the first two terms in (A. 13) 

we use Watson's lemma and we find that their sum is O('j-t.)sinc e both 



-102-

integrands have the same value with opposite signs at 1"'" o . There-

fore the dominant contribution in (A. 1 3 ) is given by the third term 

which represents a standing wave. 

We now consider the solution of (A. 1) when "Rl'1) = ~.;.... ~o "11 

with 'W\o ':f ~o , since the case I'Mo-= ~o was discussed in the first 

chapter. We will show that (A. 1) has a bounded solution as ~ -"> ..o 

To prove the desired result consider the problem: 

~~~ .. 'f:c t .,. 0 

'f~ .. \f:c '::: 0 

~'f ~ q 0 ) - ~ ' ",C ~ 0 I 

01'(1. ~ = - "! ,I "1 7/ 0 • 

(A. 14) 

where _/A. is a positive parameter. Let \f l '11) be a solution of (A. 14); 
')A J 

we will show tha t t.;._ \f h ~) exists, and that provides a solution of 
_,y..-">o ')"- I 

(A. 14) when /-1- = o To prove the desired result it is sufficient to 

verify that the derivatives can be interchanged with the limiting pro-

cess. 

We now show that the function 

(A. 15) 

is well defined, and that the derivatives up to the second order exist 

for 'f 
1 

and that differentiation can be interchanged with the limiting 

processes. The arguments involved are the same used in the dis-

c ussion of (A. 7), and now we just outline them. Consider for example 
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the term 

00 

~ ~ 'P. v. \ '1-r..~ ~ )(A-i..rM.l:t. 1 e~c el.(~~lY") ell 
n _,.....-">o l v"Ll(t+r-t.lfl\,.)(t, ... (J--~IM.) ... )(t-P.o)J • 

The function 

(t ... ~Yo>o) -+ JA. 

(.t..-MI.) 1.+)" -z 

ll· N'fl.) "i" e: 
(.t· I'M,.) ... +)'-... 

(A. 16) 

which is the transform of e-)L~ ~V.... f'M.o ~ is an analytic function 

of _.t, withpo1es at t~/Vf\o-±'-,?- in the first quadrant and. 0(1~\"3 ) 

uniformly in )A- as \e\-"> oo . This implies as in (A. 7) that the P. V. 

exists, and that the path of integration can be deformed to the line L\ , 

however now besides the contribution of the pole e: ~0 , there is a 

contribution from the pole at t"" rMo+i.,/ which is 

- \. 
(A. 1 7) 

The term (A. 17) has as limit as )-l -"> IJO a differentiable function of 

y and z . Since the contribution from the path L, is of the form 

~ .f( ~ 't-) e h .e l.( Q.'j ... r.;., \ cU 
(A. 18) 

Lt 

it follows , because ~ ( ~,}-'-): ou~.r .. ) uniformly in ~ , that (A. 18) 

can be differentiated under the integral sign, and that the derivatives 

up to the second order can be interchanged with the limit. As in 
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(A. 12) it follows that (A. 15) satisfies Laplace' s equation and the 

bottom boundary condition. Finally, to verify that (A. 15) satisf i e s 

the boundary condition at the surface, we obs e rve that 

To conclude this section, we find the asymptotic expansion of 

(A. 15) as ~~c>O on the line z = 0. The dominant contribution is 

now given by two standing waves , one obtained from the residue at 

, and the other which i s (A. 1 7) when~~ o Observe 

that the value of (A. 17) , when )A •0 , is the solution of (A. 14) 

with _,.v.. -= 0 obtained by separation of variables when the b o ttom 

boundary condition is neglected in the deep water region. 

A. 2 The Solution of Equations ( 1. 14). 

In this section we examine briefly the solution for the problem 

~~'P \f :u- 'fr ':f = 0 

~'1 ~ Y~i. : 0 

(A. 19) 

where A0 ) ~) o i.e. '). o is a point in the continuous spectrum. 

The case Ao-= 'vl../'fi was discussed by Whitham (1976) in his work 

on nonlinear effects in traveling edge waves. 
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The proposed solution for (A. 19) is: 

(A. 20) 

where A= ( ,tz_. ~"1.) \ and the branch is chosen so that ~ A// o for 

To show that (A. 20) is well defined and provides a solution 

for (A. 19) we proceed as in (A. 7). To deform the contours in the 

appropriate way we note the singularities of the integrands. There 

are simple poles at ~ = ).o , ~-= ~ ~ (3 , ~-: i t k/ 'Vi' and branch 

points at i & ! i.. R The integrands are a t m os t 0(*-\-lj)as \t\ -"> 00 

Consider now the first integral in (A. 20). Deform the path 

of integration to a line L 3 parallel to the rea l axis without eros sing 

singularities. The contribution from the pole A= A., is proportional 

-Ao~ 
to e The contribution from the integral along l3 is 0( e- ~'!) 

-'X.,, -~~ 
since \e ~ e and the factor in front of the exponential is 

The second integral is evaluated deforming the path of inte-

gration to a contour around the branch cut along the imaginary axis. 

The contributi on from the poles at ) = )o gives a standing wave . 

In this case the residues at the poles t: \. "r<;v;_ and f.=. L(3 must 

be added. The residue at ~=~~I'll. cancels the first term in (A. 20). 

The contribution of the pole l = i... (!- only appears for f.> <. k. and 
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is given by 

(A. 21) 

The integral along the branch cut is 0 ( t?:" ~1 ) In the case f.:,'> ~ , 

all the terms , except the standing wave, are 0 ( e-~) . 

Finally, we observe that the term (A. 21) is the solution of 

(A. 19) when the bottom boundary condition is neglected for large y. 
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