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ABSTRACT 

Si x topics in incompressibl e , invi scid fluid flow involving 

vortex motion are presented. The stability of the unsteady flow field 

due to the vortex fil ament expanding under the influence of an axial 

compression is examined in the first chapter as a possible model of 

the vortex bursting observed in aircraft contrails. The filament with 

a stagnant core is found to be unstable to axisymmetric disturbances. 

For initial disturbances with the form of axisymmetric Kelvin waves, 

the filament with a uniformly rotating core is neutrally stable, but 

the compression causes the disturbance to undergo a rapid increase in 

amplitude. The time at which the increase occurs is, however, later 

than the observed bursting times, indicating the bursting phenomenon 

is not caused by this type of instability. 

In the second and third chapters the stability of a steady vortex 

filament deformed by two-dimensional strain and shear flows, respec­

tively, is examined. The steady deformations are in the plane of the 

vortex cros s-section. Disturbances which deform the filament center­

line into a wave which does not propaqate alonq the filament are shown 

to be unstable and a method is described to calculate the wave number 

and corresponding growth rate of the amplified waves for a general dis­

tribution of vorticity in the vortex core . 

In Chapter Four exact solutions are constructed for two-dimen­

sional potential fl ow over a wing with a f ree ideal vortex standing 

over the wing. The loci of pos itions of the free vortex are found and 

the lift is calculated. It i s found that the lift on the wing can be 
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significantly increased by the free vortex. 

Th e two-dimensional trajectories of an i deal vortex pair near an 

orifice are cal culated in Chapter Five. Three geome tries are examined, 

and the criteri a for the vortices to travel a\vay from the orifice are 

determined. 

Finally , Chapter Si x reproduces completely t he paper, "Structu re 

of a linear array of hollow vortices of finite cross-section," co-authored 

with G. R. Baker and P. G. Saffman. Free streamline theory is employed 

to construct an exact steady solution for a l inear array of hollm<i, or 

stagnant cored vortices . If each vortex has area A and the separation 

is L, then there are two possible shapes if A112;L is l ess than 0.38 

and none if it is larger . The stability of the shapes to t'r'to-dimen­

s ional, periodic and sywmetri c disturbances i s considered fo r hollow 

vortices. The more deformed of the two possible shapes is f ound to be 

un s table , while t he less deformed shape is stable. 
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INTRODUCTION 

This work is presented in six chapters corresponding to the 

separate topics considered. With the exception of the third, the chap­

ters are each self contained. The unifying theme is that each chapter 

examines some model of a physical phenomenon in which a major contribu­

tion to the flow is from a vortex, either a three-dimensional filament 

or a point vortex or hollmv vortex in t\'m dimensions. An incompres ­

sible, inviscid fluid vdth constant density is assumed in all cases. 

The first chapter examines the stability of the unsteady flow 

field due to a vortex filament expanding under the influence of an 

axial compression. The structure of the filament core is either a uni­

form distribution of vorticity or a stagnant core with the vorticity 

concentrated on a cylindrical vortex sheet. 

In the second and third chapters the stability of steady vortex 

filaments is examined, v1hen they are deformed by small tvJo-dimensional 

strain and shear flov1s in the plane of the filament cross-section. The 

motivation for examining the bJo deformations arises from separate 

physical phenomena and for that reason they are presented in separate 

chapters. 

The exact solutions for two-dimensional potential flow over a 

wing with a free vortex standing over the wing are constructed in the 

fourth chapter . The possible positions of the free vortex and the ef­

fect of the vortex on the lift are examined. 

Chapter Five makes use of complex variables to examine the tra­

jectories of a pai ~~ of point vm~ti ces in the geometry mode 7 i ng the 
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appai"atus to generate vortex rings or pairs from a piston pushing 

fluid out a tube or channel. 

Finally, the sixth chapter r eproduces in tota l the paper, 

"Structure of a linear array of hollov1 vortices of finite cross-

section," co-authored with G. R. Baker and P. G. Saffman.* The con-

tributions to the paper from this author are the mappings in Section 

6.3, the calculation of the curve in Figure 6.3~ and the analysi s of 

the recursion relation f or finiteS given in Section 6.5. 

* This paper has been published in the Journal of Fluid Mechanics 

(1976), volume 74, part 3, pages 469-476. 
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CHAPTER 

BURSTING OF A VORTEX UNDER COMPRESSION 

The study of the aircraft 111ake vortex system has been stimulated 

in the last decade by t he increase in airport traffic and the introduc­

tion of the jumbo jets and the hazardous wake conditions they can 

produce. The vorticity shed from the trailing edge of the \·lings rolls 

up into a pair of counter-rotating trailing vorti ces . Under calm con­

ditions this sytem remains strong for several miles behind the aircraft 

and presents a hazard to lighter aircraft. Chigi e r (1974) gives a 

popular presentation on this phenomenon and its effect on airport traf­

fic. An understandin g of the processes leading to the deteriot'ation 

of the vortex system is needed in order to help develop mea ns to 

accelerate the decay . 

Crow (1970) examines the interaction of a pair of parallel line 

vortices in a perfect fluid, and finds that initi ally the most unstabl e 

disturbance is th at with the center lines of the line vortices deformed 

into symmetric sinusoidal cu rves in planes tilted about 45 degrees from 

vert i cal, as shm'm in Figure 1.1. This disturbance i s followed numeri­

cally by ~1oore (1972) to th e touch ing of vortex cores. The curved 

vortex filaments for the finite amplitude waves remain close to the 

linear behavior of Crmv's case . 

Flight t es t studies by Chevalier (1973) , Tombach (1973) and 

others use some tracers s uch as colore d smoke released near the wingt ips 



Figure 1. 1 
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Section of the trailing vortices deformed by Crow insta­
bility, taken from CrovJ (1972). 

to mark the position of the vortex core. For re l atively calm condi-

tions, both Ch evali er and Tomba ch notice two predominant forms for the 

disruption of the vortex systelll . For one form the sinusoidal distur-

bances (CrovJ instability) grow in amplitude until the vortices l ink and 

form rings. The second f orm is characterized by an isol ated burst i ng 

of the s moke marked vortex core. This second instability cannot arise 

in the analysi s of Crow or Moore as they do not allow the core radi us 

to vary along the fil ament . 

Th e analysis of the stabil ity of a sing l e line vor tex is done by 

Ke lvi n (1 880 ). The dispers ion rel ation f or waves on the core boundary 

i s found for a cylindrica l vo rtex core in solid bo dy ro tat i on . sur -

rounde d by potential flow. These Kel vin waves are f ound to be stable 

fo r axisymmetric di sturbances. Crite ri-a for the stabi lity of gene ra7 
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rotating flows to axisymmetr·ic disturbances are estab li shed by 

Ray l eigh (1916). The flow is unstable if at any distance from the axis 

of rotation the ci rcul ati on decreases ouh'lard. 

Uberoi, Chow and Narain (1972) extend the stability analysis to 

include vortices vtith axial flm~ and density discontinuities. Cases in 

\•thich the axial f lovt is discontinuous across the vortex core boundary 

are expected to exlribit the Kelvin-Helmholtz instability for vortex 

sheets, so that waves in the axia l direction are unstable. The effect 

of surface tension, rotation and density differences on these unstable 

waves are examined by Uberoi, et al. 

The experimental \'/o rk of Sarpkaya (1971) demonstrates the phenom­

enon known as vortex breakdm·tn. A vortex in a diverging cyl i ndri ca 1 

duct develops instabilities of several forms. Under some conditions 

the dye-marked center line undergoes spiral displacements \•thich grm'l 

and eventually lead to turbulent mixing. Other conditions produce a 

near axisymmetric bubble expanding at a stagnation poi nt in the flow. 

Downstream from the bubble the vortex appears to have lost its t ight 

structure and decays rapidly. Th ese forms of vortex breakdovtn are 

also seen in Lamb ourne and Bryer· (1961) for vortices formed over a 

delta wing at a high ang l e of attack. The axisymmetric form of vortex 

breakdown offers a possible explanation for the bursting seen in trail­

ing vorti ces . Both are characterized by the rapid growth of the core 

in a sma ll section of the vortex. 

Hall (1 972) gives a discussion of several of the exp l anat i ons 

of the vortex breakdO\•m phenomenon, and proposes a theory combining 
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fea t ures of some of them. He views the formation of the bubble as a 

strongly nonlinear phenomenon in 1~hich the flow tends to some critical 

state near an axial stagnation point. For sufficiently high swirl 

velocities the flm'l field jumps from a supe rcritical to a subcritical 

state. The distinction between states is that only the subcritical 

flow can support stanqing waves \'lhich do not propagate relative to the 

jump. The rapid local growth of the core results from the transition. 

~~hi ·1 e no theory for vortex breakdown is \vi dely accepted, numerical 

work by Grabowski and Berger (1976) supports Hall's explanation. The 

numerical solutions are restricted to axisymmetric flows, modelling 

only the bubble form of breakdo~tm. 

Vortex breakdown is only a possible explanation for the bursting 

phenomenon seen in the aircraft wake vortices. Other mechanisms may be 

responsible for the observed bursting . From the range of phenomena 

observed, it seems feasible that bursting could be the result of more 

than a single mechanism. Widnall, Bliss and Zalay (1 971) state that 

in tm-Jing tank experiments the bursts occur at the cl~ests on the sinu­

soidally deformed filaments, the points of greatest separation. Scorer 

and Davenport (1970) give the location of the bursts as the troughs of 

the wave, the points of minimum separation. The flight experiments of 

Tombach show burs ting at pos itions along the vortex seemingly indepen­

dent of the sinusoidal deformation. The re 1 ati onsh i p behveen the core 

bursting and the Cro1•1 instability is mentioned by Chevalier (1973). He 

induce~ core bursting by producing sma ll oscillations in the angle of 

attack. The bursts appea r at even intervals along the trailing 
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vortices, corresponding to the 11/avelength of the Crov1 instability. 

The effect of the growth of the Crow instability on the vortex 

filament may offer some insight into the bursting phenomenon. The 

numerical work of 11ioore (1972) follows the Crm-1 instability to finite 

amplitudes. The two vortex filaments are found to be stretched in the 

troughs and compressed at the crests. The amount of compression or 

extension due to the sinusoidal deformation of the vortices can be es­

timated from Hoare's calculation. These estimates neglect axial flo~tl 

in the filament, variations in the core radius along the filament, and 

variations from the uniform vorticity in the vortex filament, but give 

a qualitative description of the deformed filament. 

Saffman (1974) suggests the axial compression of the vortices as 

a possible mechanism responsible for the observed bursting. In order 

to examine this possibility, Section 1.2 defines a flow field modelling 

the compressed section of the vortex and discuss es the stability cri­

teri on for that model. In Sections 1. 3 through 1. 6 the s tabi 1 i ty of 

the model is examined for the case with the vorticity concentrated on 

a vortex sheet at t he core boundary. In Sections 1.7 through 1.9 the 

filament core contains constant vorticity. 

1.2 Model Problem 

As a simplified model of the flow in the deformed vortex filament, 

the straight filament with axial compression in an unbounded perfect 

f luid can be examined. The equat ions of motion governing thi s system 
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are th e Euler equations and the equation of continuity. For brevity 

the density i s put equal to unity. Define a cylindrical co ordinate 

system (r, e ,z) with the z axis as th e center line for the vortex fil a -

ment. Th e r adial, azimuthal and axial velociti es are deno ted by U, 

V and W for the undisturbed f low. The governing equations for the 

ve locities and pressu re, P, in this system are 

;3tr + u -au __ ..L z ..!- otJ W aU __ e>P 
ot 171"" r V + r V oe +- "~ - 'C:H· ., (1.2. la) 

oV tJ oil I D I v -oV w(;}V .L <1P 
dt + -or- + ~ V + -.::- ae- -+ oz == - v- ~ ., ( l . 2 . 1 b) 

aW oW , c-w --aw -aE 
ot +U~ + r-V ~ +W --oz =- ~?! , (l.2.lc) 

For the vortex core of radius a , the azimuthal or swirl ve locity 

is assumed to be of the form 

r<J 

Kv- Po...-2:rra..z r..::: Cl 

v - !<.. 
2·rr..- for- i-';>Cl. (1.2. 2) 

Th e two cases to be considered have K = 0 and K = K. The first case, 

the stagnant core Vortex, has the vorticity concentrated on the vortex 

sheet at r a . The second has cons tant vo1~t i city in the core and 

continuous velocities everywhe re. This 'ttill be called the uniform 

core vortex . The Kelvi n circulation th eo rem requires that K be con-

stant. 
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To model the compression, the flow fie ld \"lith vel ocities 

(-1.2.3) 

is superimposed on the vortex. The factor a = a (t) is a function of 

time, t. In order that the full flow field satisfy the Euler equa-

tions, the core radius, a, must also be a fun ction of time. Substi-

tuting the velocities into the aximuthal momentum equation gives 

da.. 
dt - c(Q = 0 

or, integrating from some initial time, 

., (1.2.4) 

v1here a
0 

is th e core radius at the initia l time. t
0

. In the ~vork pre ­

sented here, a (t) is taken either as a constant or proportional to t-1. 

For the case a a constant, it is convenient to take t = 0. The core 
0 

radius a(t) is then of the form 

o<.t 
a(t) = Clto e (1.2.5) 

The increase in the core radius can be limited to algebraic growth by 

choosing a compression 

j)/ . 
e~..(-1:::) = It; ' 

where v is a constant. For t
0 

re l ation 

(1.2.6) 

= l, the core radius is defined by the 
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(1.2.7) 

If the above is to mode l the deformation of the vortex respon-

sible for core bursting, then disturbances on the core boundary should 

gl~O'.'/ much faster than the expansion given in equations (1.2.5) and 

( l. 2. 7). Waves on the core are expected to gro1•1 for sufficiently 

large compression , as they cannot escape outward along the filament. 

In opposition to these trapped v1aves, the rotation of the vot~tex core 

(for the uniform core vortex) tends to have a stabilizing effect. 

The growth of disturbance along the vortex filament can be ana-

lyzed by adding an infinitesimal disturbance to the exact solution for 

the velocities and pressure and substituting into the equations of 

motion. Retaining only terms linea r in the disturbance quantities 

gives the equations for the linearized stability of the compressed 

vortex. In some regions the undisturbed flow field is described by 

potential flov1. The di s turbance can be expressed as a velocity paten-

tial in these regions. The length scale of the system is increasing, 

so that some care must be taken in defining stability. For steady 

flows, stability to infi ni tesima l disturbances is determined by the 

growth or decay of the initial di stu rbance. ~~oore and Griffith-Jones 

(1974 ) examine the two-d·imensional stability of an expanding cylindrical 

vortex sheet. They initially choose to define stability by requiring 

that disturbances to the sheet remain bounded, but modify the interpre-

tation by noting that for algebraic growth , initial ly small distur-

bances remain small over the time scale of an experiment. The expan-

s ian at which the growth rate of di sturbances changes from exponential 
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to algebraic i s the stabi lity boundary for their problem. 

A similar approach to th e definit ion is use d here. The deflection 

of the vortex core radius seems an appropriate quantity on which to base 

the stability analysis. The disturbed core radius, R(e,z,t), can be 

1·1ri tten as 

R(e)a: 1t) = o.tt)( I+ ~(e1 zJ)). (1.2.8) 

The deflection function 8 gives a measure for the stability. If 6 

decreases in time, the system ~ill be considered stable, even when the 

product a(t)6 increases. 

The existence of unstable solutions is not sufficient to demon ­

strate that the compressed vortex models the bursting phenomenon . The 

disturbance must grow rapidly on a time scale comparable with the link­

ing of the pair of trailing vortices. The calculation of finite ampli­

tude waves on the pair of vortex filaments by ~1oore (1972) gives 

estimates for the parameters in the mode l. These values are used to 

examine the behavior of the deflection, 8 • The disturbances considered 

are often restricted to be axisymmetric, as this simplification appears 

physically justified from the observed bursting. 

1.3 Staqnant Core Vortex 

The disturbance velocities and pressure for the compressed stag­

nant core vortex can be I'Jritten in t erms of a velocity potential in the 

core region and outside the core. This simplification to the stabil ity 

analys i s ar·ises from the constrain t that the vorticity i s non -zero only 
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on the cy l indrical vortex sheet at the core boundary . If R(e,z,t) is 

the core radius, then the equations describing the behavior of the dis-

turbance velocity potential ¢ are 

rv 

\:;l~ , = 0 

"2 ~2. :::::. 0 
(1.3.1) 

where the subscript l is used to denote quantities defined in the core 

region and the subscript 2 outs i de the core. The disturbance poten­

tia l s must satisfy the condi tions that ¢2 tends to zero far from the 

vortex and ¢1 i s bounded at the core center . 

. The vortex sheet must move as a material sUl~face. This con -

straint gives the kinematic condition for the position of the sheet, 

~ ( r- R) = o ., ( 1 . 3.2) 

where D/Dt is the materi al deri vati ve . Substituting the velocities 

given in equations (1.2.2) and (1 .2 . 3) and the form of the core radius 

given in equation (1. 2.8) into the kinematic sheet condition gives tv/0 

equations for th e mot ion of the sheet. Linearized stability theory 

dictates that only terms linear in the disturbance quantities be re -

tained and all quantiti es be evaluated at the undisturbed position of 

the sheet. The resulting pair of equations for the kinematic sheet 

condition in terms of the deflection, 8 , and disturbance potentials, 

- -
¢1 and ¢2 , are 
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(1.3.3) 

A second const r aint on the vortex sheet pos ition is the dynamic 

condition that the pressure be continuous across the s heet. The discon-

tinuity of the swirl velocity that accounts for the vortex s hee t 

creates press ure deviations ~'ihen the sheet is deformed, which must be 

balanced by the disturbance pressures due to the velocity po t ential s . 

The change in the pressure across t he sheet due to t he deflection is 

(1.3.4) 

The disturbance pressure, p, due to the disturbed ·ve locity potential 

can be wri tten from Be rnoulli's integral, linearized in the disturbance 

quantiti es , 

(1.3.5) 

where U, V and W are the undis t urbed ve locities and the subscripts 1 

an d 2 both apply. The continuity of pressure across the sheet requires 

the di sturbance pressure to sat i sfy 

K 4,..... 
Pz - p, = - (2 ,. o..1 ~ 011.. -the .sheeT. (1. 3. 6 ) 

Subs tituting the form of p f rom equation (1.3.5) into t he abov~; c:r.c' 

us >'"~ ~he kinematic sheet conditi on to simplify the resulting expression 

yields the dynamic she~t condition 
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== (-L)z.~ 
2.1ra. on (1. 3.7) 

The axia l and azimuthal dependence can each be separated from the 

equation by examining the growth of normal modes of the initial condi ­

tions. The form of the potentia l s and defl ection can be written as 

,v 

,P, C r 1 t) e>< p ( ~ ~ t + l.n s) , cP· == 

~2 -- tP'L(r1i:) ~xp(ik:i!+ i..he)., 
(1. 3.8) 

~ b L-t.) ~ (i kX: + Lhe) , s -

where n i s an integer and k = k(t) i s a function of time. The form for 

the time dependent wave number in order that the axial dependence separ-

ates is 

where k
0 

is the initial crucial wave numbe r. Allovling k to be time 

dependent is equivalent to replacing z by a ne\1/ variable, 

k. 2! lk 
J 0 ' 

and separating the dependence on r 
c~ 

(1. 3.10) 

Since the distu rbance velocity potent i al s satisfied Laplace's 

equation, both ¢ 1 and ¢2 satisfy 
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(1.3.11) 

and the radial dependence is dete rmined by invoking the conditions at 

infinity and the ori gin. The solutions to equation (1 .3. 11) are the 

modified Bessel functions, In and Kn' giving potentials of the form 

q:,, == A, tt) I 11 < kr) , 

o/2 ::: A2 (t) K"' Ou·), 

where A1 and A2 need be determined from the sheet conditions. 

(1.3.12) 

Substituting for ~ l' ~2 and ~ in the kinematic and dynamic condi­

tions on the sheet (equations (l .3.7) and (1.3.3)) gives a set of 

three ordinary differenti al equations for the functions A1, A2 and o . 

Th ese can be written as 

(1.3.13) 

where the primes indicate differentiation with respect to the argu-

ments and~ is the maximum rotational velocity defined by 

(l .3.1 4) 

Eliminating A1 and A2 in tile above gives a s ingl e ordinary dif­

ferentia l equation for o(t). This equation can be Hritten as 
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0 ' (1.3.15) 

where 

(1.3. 16) 

and the argument of the modified Bessel functions is always ka. 

The equation for axisymmetric disturbances (n=O) reduces to 

(1.3.17) 

Even for this simple case, an exact solution i s not found. The equation 

needs to be examined further. 

For the limiting case of zero compression, equation (1.3. 17) has 

constant coefficients and can be solved. These solutions are discussed 

in the next section. 

The asymptotic behavior of the solutions to equation (1.3. 17) for 

large time can be determined using the WKBJ method. If strongly un­

stable solutions exist, they should demonstrate appropriate asymptotic 

growth. This analysis is contained in Section 1. 5 . 

The estimates of the size of a / Q
0 

(where n
0 

is the initial value 

of the maximum rotation rate, Q) for constant compression suggest 

examining the solution for a / Q
0 

<< 1. The stability problem is 
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formulated in terms of a variational pt·inciple in Section 1.6, and 

approximations to the solution found for small a/~0 . 

In Section 1.7 the results of integrating equation (1.3.17) 

numerically are given for the case of constant compression. The 

growth of the solutions for the small compression can be compared 

with the values from Section 1.6. The dependence of the asymptotic 

solutions found in Section 1.5 on the initi al parameters is also ex-

amined by the numerical integration. 

1.4 Undeformed Stagnant Core 

_Before trying to examine the stability of the compressed stag-

nant core vortex deformed by a small compression, th e solution in the 

limit of zero compression should be detenTiined. The governing equa-

tion for a = 0 i s deduced from equation (1.3. 15) to be 

(1.4.1) 

where k, a and ~ are constants and the argument of the modified Bessel 

function is ka. Substituti ng the express i on 

~ (-t) 
i.w-t 

~o e {1.4.2) 

into the differential equation gives the dispersion relation for waves 

on the vortex sheet in terms of the di me ns ionless axial wave number, 

ka, t he azimuthal v-1ave number, n, and the dimensionless f requency, 

w/~ . The dispersion relation i s a quadrati c equation in the frequency 

of the form 
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0 (1.4.3) 

and the sign of the imaginary part of the solution for w/~ determines 

s tability. Th e coeffi ci en ts of equation (1 .4.3) are real, so the 

pair of roots must be complex conjugates if the imaginary part is to 

be non-zero. The resulting criterion for stability is that the roots 

of the dispersion relation be real . Substituting the coefficients 

into the quadratic formula gives the relation 

w 
..0. (1.4.4) 

Since I' and - K' are positive for real positive ka, the solutions are n n 

unstab le for axial an d azimuthal wave numbers satisfy-ing 

(1.4.5) 

Thes e solutions grow exponentially with the amplification rate given 

by the imaginary part in equat ion (1.4.4). 

In order to determine the nature of th e stability boundary 

given in terms of the modified Besse l functions, examine the long and 

short axial wave limits, 

In(!e<~...)KhCI<ta) ,...._. '/2tnl 

Ik (~ a.) K}J~a.)~ ~ka. 

a.s Rt.t.---:> 0 , (1.4.6) 

(1. 4.7) 

For tv1o -di mensional di s turbances the stab ility is given by the ka = 0 
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li mi t. Comb ining equat ions (1.4.5) and (1.4 .6 ) determines that the 

bolo-dimensiona l \</aves are un s tabl e for the azimuthal vtave numbr=r s, 

n ~ 3. For suffi ciently l arge axial wave number, the solutions are 

stable for a given va l ue of n. Similarly, for a fixed value of ka, 

solutions are unstab l e for sufficiently large n. In general, for a 

fixed n ~ 3 th ere is a critical axial wave number , ka*, at which 

there is a change of stabi l ity . As a function of n, the critical 

axial wave number increases as n increases . The first fevt values of 

ka* , calculated numerically from equation (1.4.5) are given in Table 

1 . 1 be 1 ow: 

Tab 1 e 1.1 

n 3 4 5 6 7 8 9 10 

ka* 3.33 6.93 11. 5 17.0 23.5 31.0 39.5 49.0 

Using an _asymptotic expans i on fo r l arge n in the modifi ed Besse l func-

tions , the critical axial wave numbe r can be approxi mated by 

(1.4. 8 ) 

Disturbances are un stab l e for ka < ka*(n) and n > 3 , and stable other-

wise. 

Th e a~ isymmetric disturbance waves along the stagnant core are 

stab l e for all wave numbers. The effect of the compress i on on these 

stab l e waves is investigated in the next three sections. 
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1.5 Asymptotic Behavior for Stagnant Core 

Even th ough the asymptotic behavior of the deflection does not 

give exact informat ion about the initi al growth, it can he l p to point 

out the stabl e and unstable distu rbances. The procedure i s to con-

sider disturb ances , wh ich gr01" asymptoti cally faster t han the undis-

turbed core radius, as unstable. The ana lysis presented here is re-

stricted to axisymmetric disturbances. The algebra involved for the 

higher modes is l engthy to present, and since the procedure i s iden-

tical, only resul ts will be gi ven. 

For constant compression a , the asymptotic behavior of the 

s cal ed amplitude o i s determined by the ~vKBJ met hod . Equation 

(1.3.17) describing the behavior of 6 , i s transposed into the standard 

form by defining the scaled function 

I 

f(t)=.r2.(I,K,)
2 

bC·O, ( l . 5. l) 

where the argument of the modified Bessel fun ctions is the time depen-

dent, nondimensiona1 wave number, ka. The equation fo r the growth of 

f i s 

- ~ lt) f 0 , (1.5.2) 

where 

2 ;~_ a 2. { Io _ K., 
c:J,. - n ~a. I, K - 'z. I, K, 

D 2.1_2. 2.(1 I IaK., 3 (:r; .} ~:)) 
- -~e>< R. 0... + z --- - I 2 fZl 

~I K, 4- I I • 

(1. 5 .3) 
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3at -2a t For a positive, ka grows like e and rl is proportional toe 

By substituting the asymptotic behavior of the Bessel functions into 

equation (1.5.3) and retaining only the leading two orders, the coef­

fici ent ~(t) is shown to be bounded, and 

a.s t-~=. (1.5.4) 

The WKBJ approximation applied to equation (1.5.2) gives the 

asymptotic form for f(t) as 

(1.5.5) 

The behavior of~' f and the modified Bessel functions for large time, 

t, substituted into equation (1.5.1), give the asymptotic behavior of 

the deflection, o. The dominant term in the expansion, 

blt) -- 0.~ t _,. 00 ' (1.5.6) 

is unbounded, implying that the stagnant core vortex for constant com-

press ion is unstable to axisymmetric disturbances. 

For a non-zero azimuthal mode n, the procedure above can be 

duplicated with the same result. The amplitude of waves on the vorte x 

increases like the square of the magnitude of the exponentially increas­

ing core r adius, a(t). This amplification is examined on the time 

scale of the bursting phenomenon in Section 1.7. 
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For that compression leading to the algebraically expanding 

core, the analysis of the asymptotic behavior of the deflection is 

f acilitated by de fining a ne\·1 function of time, y(t), as 

2. )_, d~ y ( -~:) = n ( 1, K, dt: . (1.5.7) 

The argument of the modified l?essel functions, ka, increases as t 3v. 

Combining equations (1.5.7) and (1.3.17) gives the relation between 

dy/dt and o as 

(1.5.8) 

The small compres sion values are of interest from physical con-

siderations. By limiting the initial compression, a (l) < l/2, or . 

equivalently, v < l/2, the time can be replaced by the dimensionless 

time, s, using 

s 
n -t 
1-2 v (1.5.9) 

The time dependence of ~ (t) = ~0t-2v does not affect the direction of 

increasing time for the restricted range of v. In terms of the new 

time, the pair of equations for y(s) and o (s) a re 

d$ -3 K 
ds - n I, I y = 0 , 
_it 3LZ.2.(" 

t +..QRo...() =0. 
a.S 

(1.5.10) 

The coefficient ~3k2a2 is independent of time and allows equations 
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(1.5.10) to be easily combined into a single equation for y(s), writ-

ten 

d2y 
dsz. + 

::1. 2. 
k a. r~ K, y = o . (1.5.11) 

The WKBJ method applied to this equation gives the asymptotic 

result 

(1.5.12) 

for large values of s. The behavior of o(t) follo•tJ directly from equa­

tion (1.5.9) as 

(1.5.13) 

This expression agrees with the bounded wave behavior for the limiting 

case of v = 0 given in the previous section. The introduction of the 

compression causes the waves to become unstab 1 e. 

1.6 Small Compress ion for the Stagnant Core 

The initial grmvth of disturbances to the stagnant core vortex 

under constant compression can be determined when the compression is 

sufficiently small. In this context small compression means that a is 

small compared 1-lith the initial maximum rotation, [2 = K/2na2 . Define 

the par-ameter E: as the ratio 

(1.6.1) 
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then for this section the range of E is 0 < E << 1. 

The stable, axisymmetric waves on the stagnant core discussed in 

Section 1.4 are the solutions for the limit of E ~ 0. The effect of 

E > 0 on these waves can be investigated by noting that the form of 

the wave changes only slightly over a period of the oscillation. 

Whitham {1974) demonstrates a method for finding the slowly varying 

wave behavior by formulating the problem in terms of a variational 

principle. Conservation laws governing the behavior of the slowly 

varying amplitude and phase of the wave are generated from the varia-

tional equations of the averaged Lagrangian. 

Define the Lagrangian density, L, by the integrals 

(1.6.2) 

where 

(1.6.3) 

A factor of -p, usually included in formulations in which the pressure 

acts as the Lagrangian, is deleted for this calculation. The form of 

the disturbed radius is changed slightly from Section 1.3. In terms 

of the displacement o , the wave amplitude ~ satisfies 

rJ 

-}i = o.(t) s. (1.6.4) 

The confusion with the varia tion symbol, o , is also eliminated by usin g 
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n for core deflections. 

For the linearized stabi lity equations, only terms in equation 

(1.6.2) quadratic in the disturbance quantities need be retained. After 

dropping higher order terms, exact derivatives, and constants from the 

expanded form, the Lagrangian density is equivalent to 

Define the functional J[~ 1 . ~2 .~J by the integrat ion of Lover the 

independent vari ab les, that is 

J = JJf L dedr:dt. (1.6 . 6) 

If L is an appropriate Lag~angian dens ity, then setting the variations 

of J with respect to ¢1, ¢2 and ~ equal to zero should generate the 

equations governing the disturbance behavior, in particular, equations 

( l. 3. 1) , ( 1. 3. 3) and ( 1. 3. 7). 

The variation in J with respect to ¢1 is denoted 

(1.6. 7) 

where only terms linear in o¢1 are retained. Integrat ion by parts is 

used to e liminate derivatives of o¢1, and the resulting integrand is 

set equal t o zer6. The variati ons with respect to ~2 and~ are denoted 

in th e same fashion. 
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In taking the variation vlith respect to cp1 and ¢2' the following 

identity is used: 

(1.6.8) 

\vhere terms 0(6¢ )2 have been dropped. Taking the variation of J vdth 

respect to ¢1 , cp2 and n gives 

(1.6.9) 

1. ( ;t -1-d.Q:r -2c(1-!t)(~2- f.)= 4:1.~t~ -l1 oh r=a.. (1.6. 11) 

These are equivalent to the expressions from Section 1.3. 

The so lution to the above system for the limiting case of no 

compression i s given in Section 1.4. The form of the solution for an 

initial axial wave number, k, an d azimuthal mode, n, is given by 

v;h ere 

+• ==- A, I., (h) c..os ( 'f-'+ ne) , 
cp2 = A 2 K~(kr)ws(tf'+he) , 

)[ = 'l[ s~ C++ ne), 
(1.6.1 2) 

(1.6.13) 
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and w satisfies the di spe rsion relation in equation (1.4.4). For a 

non-zero, the amplitudes A1, A2 , and n are allm·1ed to vary slowly over 

the period of the oscill at ion. The local axial wave numbe r and fre-

quency, defined by the relations 

-at 
and w = - -;Jt:: , (1.6.14) 

are also considered slov-Jly varying. The phase 1/J is determined from 

equation (1.6. 14) and the initial condition. 

To find the averaged Lagrangian, ./._, substitute the fonTl of the 

¢ 1 , ¢2 and n given in equation (1.6. 12) into the Lagrangian density L, 

then average over one period of the oscillation by integrating in 1/J 

over an interval of length 2n. After carrying out the integrations of 

the modified Bessel functions, the form of the averaged Lagrangian 

becomes 

J...[..!..'- ( r' 2 I 2. I 2.'1 ;L 
2. a Ra.. In 11 A, - K~ K._ A, ) -+ 2 _a c:l'Y/. 

+ o..(w-f-2«k~XIhA,- K11 A2)!z + n.QaKnAz ~z.] , (1.6.15) 

where r2 is the rotational velocity given by equation (1.3.14). 

The variational eq uations for variations in A1 and A2 give the 

amplitudes of the potentials in terms of t he core displacement as 

n..O.. _ (w+2..clcz.) 
k. k~ 77_ ') 

w + 2.,( k :i! "n --kr:;- (.. 
(1.6. 16) 

Substituting these in to equation (1.6. 15) gives the averaged Lagrangian 

as 



-28-

(1.6.17) 

~"here 

(1.6. 18) 

The variational equation for variations in n gives the dispersion 

relation for the slcwly varying It/ave 

G(c.v,k) =D (1.6 . 19) 

or solving for the frequency 

I 

W = - 2<>Ck ;z + ka..O.. ( hl~ K11 +- [ (~12J"'k'"- 1) I~~<: ]2
) . ( 1. 6. 20) 

The frequency and axial v1ave number are also. related through the 

phase ~ . From equation (1.6. 14) they must satisfy 

0 ' (1 .6 .21) 

the equation for conservation of wave crests. Substituting for w from 

eq uati on (1.6.20) in the above gives a first order wave equation fork, 

( 1. 6. 22) 



-29-

h C d(t.l • th 1 . t w ere 
9 

= ak 1 s e group ve oc1 y. If the axia l dependence of the 

initial condition consists of a single Fourier mode, then the initial 

wave number k
0 

i s a constant and the solution to equation (1.6.22) is 

(1.6. 23) 

The phase of the slowly varying wave is determined by the axial 

wave number, the frequency and the initial phase. Substituting the 

solutions for k(t) and w(z,t) into equation (1.6. 14) gives 

( l. 6. 24) 

where ~0 i s the initial phase of the wave. 

The variational equation for variations in ~ gives an equation 

for the amplitude n , 

( l. 6 . 25) 

or 

( l. 6. 26) 

from taking t he partial derivative with respect to k in equation (1.6.19). 

This can be written as a firs t order wave equation for the amplitude by 

expanding the derivatives and regrouping to get 
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'(}?]_ "'tz ' [ de~ dr + c~ n -z: d~ 

+ [(~+~~~);~J(!2T']"t . (1.6.27) 

Since the v1ave number is a function of time alone, equations (1.6.19) 

and (1.6. 18) combine to give 

( 1. 6. 28) 

independent of z. For a wave of initial amplitude n
0

, composed of a 

single Fourier mode, the solution to equation (1.6.27) gives 

(1.6.29) 

where 

( l. 6 . 30) 

The analysis holds only for w(z~t) real, restricting the initial 

dimensionless wave number, k
0

a
0

, to 

* k 0.. ? leo... (h) (1.6.31) 
0 0 

where ka*(n) is defined in Section 1.4. Since ka is initially greater 

th an the critical value and is an increasing function of time~ the 

denominator in eq uation (1.6. 30 ) never vanishes. For large n the value 

of N(t) is a ma ximum for ka initially near the stability boundary of 

the zero compression problem. As ka increases, N asymptotes l /2. The 

maximum amplification rate for the waves with large azimuthal mode n 

i s gi ven by the exponent in equation (1. 6.29) to be 7a/4. 
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For the axisymmetric disturbances, the function N(t) reduces to 

(1.6.31) 

In the long wave limit, N is asymptotic to (ka) 114, so that waves are 

initially amplified at the rate 5a/2. For increasing ka the rate de-

creases, resulting in the short wave amplification rate of 7a/4, as in 

the case of large n. 

The growth of the waves needs to be compared with the increasing 

d
. at core ra 1us, a

0
e . By dividing n by a, these results can be compared 

with the asymptotic growth given in the last section. For large wave 

numbers, the initial growth is slm·1er than the eventual asymptotic 

growth. For long axisymmetric waves, the growth is faster. 

The validity of the slowly varying wave ana·lysis extends to when 

a t is order one. The asymptotic expansions given in Section 1.5 are 

valid for at large compared with one. There is no guaranteed region of 

overlap for the two expansions. The behavior of the waves is examined 

numerically in the next section to determine the connection. 

The form of the axial wave numb er in the slowly varying wave is the 

same as that used in separating the z dependence in Section l.J. This 

suggests examining equation (1.3. 17) for the deflection~ as an oscilla­

tor with slowly varying amplitude and frequency. This approach can be 

extended to the uniform core vortex, where the variation principle is 

considerably more compl ex . 

For axisymmetric v1aves the deflection can be written as 
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,... 
r;_(=z.1 -t) = "f'Z,ls) UJS(k~) + '(z(S) s~(k~), (1.6.32) 

where s is the dimensionl ess time, 

(1.6.33) 

The functions n1 and n2 are scaled forms of the deflection given in 

equation (1.3. 17) and satisfy 

where 

flC.S') ·-

2. 
}l. (ES) :::: 

f Io K ) 
'3 ka.. \ I, - ¥. ' 

L ~ z I I} - 4-£S 
Ro.. ,1\, e , 

and£ is the small ratio a / Q
0

• 

( l. 6. 34) 

J (1.6.35) 

Using the previous results to guide the calculation, define a new 

time variable from equation (1.6.24) as 

(1.6.36) 

In terms of this variable, the equation for n1 and n2 becomes 

(1.6.37) 

The solution to this equation can be approximated using the method of 

two-timing. The slow time variable is defined ' by 

f'.J s t.S (1. 6.38) 
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and the form of the solution is assumed to be a regular expansion in 

functions of the two times, 

( 1. 6.39) 

After expanding the derivatives in equation (1.6.37) and grouping 

terms in powers of s, a hierarchy of equations is established. 

0 
£ : 0 ' ( 1 . 6. 40) 

(1.6.4.1) 

, etc. 

The lowest order solution is just the unmodified oscillation, 

( l. 6.42) 

where A
0

(s) and tP
0

(s) are functions of the slow time. Substituting 

this form into equation (1.6.41) gives the equation for F1 as 

( l. 6.43) 

The solution for F1 must be a bounded function of the fast time, s, in 

order that the expansion be valid. The coefficients of the sine and co­

sine terms in equation (1.6.43) must vanish to prevent algebraically 

growing solutions for F1(s,s). This gives equations for the slow time 

behavior of the amplitude and phase 

~} T ± ()A/ f1" - P ) Ao = 0 , 

df;Js- = o, 
( l. 6. 44) 

( 1 . 6. 45) 
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with solutions 

( 1 . 6. 46) 

(1.6.47) 

If the initial form of the deflection and the rate of the deflec-

tion of the core radius are for a travelling wave of amplitude n and 
. 0 

wave number k
0

, then 

'£
1 

(5) - Ao l S) Ci>S ( S + lf/2 - 'fo) , 

i'lz (s) =- Ao (s) ec~ ( s - lVo), 

( l. 6. 48) 

(1.6.49) 

where A
0

(0) = n
0 

and ~0 is the initial phase of the deflection wave. 

Substituting in eq uation (1.6.32) gives 

(1.6.50) 

N(t) and ~(z,t) are defined in equations (1.6.31) and (1.6.24) and the 

form of the approximate solution agrees with that found using t he 

averaged Lagrangian. 

1.7 Numerical Results for Stagnant Core 

Waves on the compressed stagnant core vortex are shown to be un-

stable in Section 1. 5. The asymptot ic behavior for constant compres-

sion gives 

(1.7.1) 
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The dependence of G on the initi al parameters needs to be examined. 

Also, the behavior of o(t) for the physically relevant parameters 

should be computed. 

The equations governing the behavior of o in dimensionless vari-

ables can be written 

d ( ( - £S) I K 3£5 ( (" - C.S) 
ds o e = , 1 e y - £ a e , (1.7.2) 

it 
ds (1.7.3) 

\'/here 

is the dimensionless time. The form oe- c::s is used because it is ex-

pected to asymptote to a constant for large s. This system is in an 

appropriate form to be numerically integrated from some initial con­

ditions. The initial conditions, o(O) and o '(O) ~ qenerate the value 

for y(O). To decrease the number of parameters, the ini t ial form of 

the distur bance is assumed to be a wave train of unit amplitude with 

the frequency of the stab 1 e uncompressed \'lave. These can be expressed 

as 

b { o) - eo.s ( th ) , (1.7.5) 

~'(oJ koa.o [I, Oi'oao) f<,ck..ao)J Yz. sWt-( ~), (1 .7 .6) 

and from equation (1.7.2), y(O) satisfies 
I 

y(o) = ~ .. a.,. (I,(k,a,)K,ll<.ao))- 2s~(*:). (1.7.7) 

In these expressions ~0 i s the initial phase of t he wave. 
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An Adam-Moulton predictor-corrector scheme using the Runge-

Kutta-Gi 11 method as a start and restart scheme \·Jas used to carry out 

the numerical i ntegration . The i ntegr ation step l ength was varied to 
-Ll 

maintai n t he l ocal re l ative error at l ess than . 5 x 10 · . Care was 

taken to avoid roundoff error from t he difference in equation (1.7 . 2). 

The so l ut i on curves for E = . 01 , the initial phase 1);0 = Tr/2 

and t he wave numbers k a = 
0 0 

. 00001, . 0001 , .001, .002, .005, . 01 ' . 05 

are given i n Figure 1.2. For the sca l ed time s greater than 1000, the 

solution cur ves for oe-Es asymptote G( k
0

a
0

, E, o(O) , o• (0)). The ini-­

tial phase 1jJ = n/2 results i n the l argest value for the asymptote of 
0 

curves with small wave number . For l arger wave numbers, t here are 

many osci ll at i ons before the curve levels off and the initial condition 

required to maximize the asymptote va r ies with the wave number. 

The peri ods for the stable waves on the undeformed vortex are 

w~itten in parentheses after the corresponding wave numbers in the 

figure. For small ka, the period of the oscil l ation i s approximatel y 

given by 

( 1.7 . 8) 

Solutions for va l ues of k
0
a

0 
resu l ting in periods small compared with 

the times = 1000 are initial ly oscillatory with varying amplitude and 

phase . If the period i s l arge compared with the t i me in which curves 

approach a constant, the solution increases monotonically to that con ­

stant. The largest val ues of the asymptotes are for the smal lest wa ve 

number. However, for wave numbers suffi ciently small that the solution 
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increases monotonically, decreasing the wave number further increases 

the value of G only slightly. 

For smaller values of£ the solutions are similar to those de­

scribed above. The time in which the solutions asymptote a constant 

is about s = 10/E. The wave numbers corresponding to the behavior of 

the curves in Figure 1.2 need be decreased with£ to maintain the 

same relation betv1een the period of the zero compression oscillations 

and the asymptotic time. For the smallest wave numbers, the value of 

the asymptote G increases as 1/£~ 

Considering the time scale of the phenomenon, the values of s 

greater than about 500 are expected to be beyond the range of any ex­

periment. ~1oore (1972) finds that the vortex pair touch for the value 

of s at about 250. For values of£ in the range of :001, the rapid 

increase to the asymptote occurs beyond the experimental time. 

The role of the initial conditions in this analysis needs to be 

examined more closely . The value for o'(O) is chosen to give unit 

amplitude for the case of zero compression. As a result, the value 

decreases proportion al to the wave number when the waves are long. Th e 

largest values of G are attained for the smallest values of ka, even 

though these correspond to the smallest values for o'(O). Since the 

problem is linear, 

(1.7.9) 

If the initial condition o'(O) = 1 is chosen, t he stable waves for 

the vortex without compression appear to grow rapidly as ka tends to 
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zero. The effect of the choice of o'(O) given in equation (1.7.6) 

is to scale the amplitude of the waves with the maximum amplitude of 

the zero compression wave. The stability analysis is to determine 

the effect of the compression on the stable v1aves. 

Even though the waves on the compressed vortex are unstable, no 

rapid growth occurs on the scale of the physical problem. If the 

value of o increased to 10 in the time of the vortices touching, this 

would be considered rapid growth. It does not seem to model the 

bursting. However, this is not too disappointing because the stagnant 

vortex has no core rotation to resist the wave growth. 

The more interesting flow to examine has uniform vorticity in 

the core. The methods used to examine the stagnant core are extended 

to the more complicated case in the rest of this chapter. 

1.8 Uniform Core Vortex 

In the stagnant core vortex filament the vorticity is non-zero 

only on a vortex sheet bordering the filament core. This requirement 

allows considering only irrotational disturbances to the flow field. 

For the vortex filament with core in solid body rotation, the vortic­

ity is constant and non-zero in the core. The disturbance velocity 

field in the core region cannot be restricted to potential flow. 

The governing equations for the infinitesimal disturbances in 

the core region are the linearized Euler equations. Denote U, V and 

Was the undisturbed radial, azimuthal and axial velocities, and D, 

v, w and p as the disturbance velocities and pressure. The form of 
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the undisturbed velocity field in the core is given in Section 1.2 as 

v 
u dv-

Kr 
21ra? ? (1.2.2) 

(1.2.3) 

where K is the constant filament strength and a(t) i s the amplitude of 

the compression. The undisturbed core radius is a function of time 

given as 
-t 

a ( t) = ao exp [ I d L TJ d "[ J . 
tQ 

(1.2.4) 

Substituting into the Euler equations and retaining only terms 

linear in the disturbance quantities gives the equations 

(l.8.la) 

(l.8.lb) 

(l.8.lc) 

0. (l.8.ld) 

These equations govern the flow in the disturbed filament core, where 

r < R(e,z,t). The displacement of the core boundary 6 is defined by 

the relation 

(1.8.2) 

In the region outside the vortex core, the ur.disturbed flow field 

is identical to the flow outside the stagnant core vortex. It follows 
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that a disturbance velocity potential ~ exists and must satisfy 

(1.8.3) 

along with the boundary conditions on r = R which arise to insure con-

tinuous velocities and pressure. 

The core boundary is a vorticity jump, due to the discontinuity 

in the derivative of the undeformed azimuthal velocity. This moves 

as a material surface, just as for the vortex sheet, and forms a 

boundary between the regions of rotational and irrotational flow. The 

continuity of the velocities across the material surface gives three 

conditions to replace the dynamic and kinematic conditions. The re-

sulting conditions are equivalent, but velocity continuity is simpler 

to implement in this problem. 

The axial and azimuthal dependence can each be separated by 

examining a single Fourier mode. As in the stagnant vortex problem, 

the axial wave number is time dependent for the separation and is of 

the form 
t 

IH-t) =: k_o e>Zp[zS.Cool.l-c)dr], (1.8.4) 

where k is the initial wave number. The azimuthal wave number n is 
0 

a constant integer. 

Define the dimensionless independent variables x and s by the 

relations 

X (1.8.5) 
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where n is the ini t ial rotation rate of the undisturbed core. The 
0 

scaling for x is chosen to al l ow the linear ized boundary conditions 

on r =a to be evaluated at a fi xed val ue, x = 1, for al l time. 

The disturbance veloci ties and pres sure in the vortex core can 

be expressed in t erms of the dimensionless unknown func ti on s of only 

x and s by the relations 

rv K. U(K)S) etn&+ ik.-r Ll zrra.. ( 1.8.6a) 

/\.. 1<. i ne .r ~k;2: 
v ~ V(X 1 'S) e 

) 
( 1. 8. 6b) 

. ~ne+Zkx ,._. -t- 1<( w - z~ W(Y. 1S) e ( 1.8. 6c ) 

,..... ( ~ )~ ~ns+i~~ 
p 2..'[ra. r(>(IS) e ( 1. 8 . 6d) 

Substituting the above into equation (1. 8 .1 ) gives the core equa-

tions, 

~u 
t-A ( inu.- Zv + ~ ) 2S 0 ' ( l. 8 .7a) 

~v +A (L..Y'IV OS 
01 ) .,_ 2LA.. + x-P ::::- 0 , ( l. 8. 7b) 

~ - 3cw + A ( t h w - RCL p} = 0 (1. 8 .7c) ():S 

~ ~ -}u.. + jx17
• V r ko ... w 0 (1.8 . 7d) -ox - ' 

where 

t(.s) « {5/.n.J / n o , (1.8 .8 ) 

A 1 s) ~ a.: 1 o. 
2 

::: e.)C p [- 2 ~ 
5

c. 1 ~) d ~] . 
0 

(1. 8 . 9 ) 
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The velocity potential for the region outside the core is of 

the form 

(1.8. 10) 

where Kn is a modified Bessel function and ¢(s) is determined from the 

condition s on the core boundary. 

The three continuity conditions across the core boundary ca.n be 

linearized in the disturbances and evaluated at x = 1. The dimension-

less core displacement 8(e ,z,t} appears in the azimuthal equation due 

to the discontinuity in the derivative of the undisturbed azimuthal 

vel ocity. For cons i stency , define o(s} by the relation 

(1. 8. 11} 

The conditions for continuous velocities on the interface between 

the rotational and potential flows reduce to the following: 

K f 

;ztr;;. U(.t ,:5) = k.c\>ls) K..,(ka.) , 1 
K K \ lh .l f m v L ·,~) ::: - TTii. ~ cs) + ---c;:- 'P (5J K.., o~a.) , 

~;.Q.. wu,s) = - ~4>c :s) 1<~--,t ~~o..) . j 
(1.8 . 12) 

The primes denote differentiation with respect to the argument. 

The unknown function ~ (s) can be eliminated in the above to give 

the two independent equations: 

(1. 8 .13} 

(1.8.14) 
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The first equation acts as a boundary condition on x = 1 for the system 

of equations (1.8.7). The requirement that the velocities be bounded 

at the origin gives boundary conditions on x = 0. Given initial values 

for u, v and w, the solution of the system with boundary conditions is 

determined on the strip 0 < x < 1, s > s
0

. The second equation above 

(1.8. 14) then determines the behavior of the disturbance to the core 

l'adi us. 

The system of equations (1.8.7) with its boundary conditions can 

be solved numerically for given n, k
0

a
0

, E(s), and the initial conditions, 

u(x,s
0
), v(x,s

0
), w{x,s

0
). The analysis of the system can be extended by 

assuming the disturbances to be ax·isymmetric (n=O). From the considera­

tion of experimental observations (see Section 1. 1), this assumption is 

not expected to be too restrictive . 

The equations for the axisymmetric disturbances can be written as 

a single partial differential equation for u(x,s) on 0 < x < 1, s > s
0

, 

of the form 

(1.8.15) 

where the boundary conditions on x = 0 and x = 1 are 

U..(o,.S):::: o, (1.8.16) 

'd U.. ( b Ko(!Qo..) ) U.. 
~ + I+ .. a. K, (k~) 0 (1.8.17) 

The solution to the. above is uniquely determined, qiven the initial func-
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tion u(x,s
0

). 

The dependence of u on the indepe~dent varinble x can be separated 

in discrete modes by defining 

(1.8.18} 

where J 1 is a Bessel function of the first kind. The boundary condi­

tion at x = l, along with the choice of ordering that the An be an 

increasing sequence at a fixed time~ determine the relations 

o, (1.8.19) 

(1.8.20) 

The numbers jo,n and jl,n are the nth largest positive roots of J
0 

and 

Notice that as ka varies from zero to infinity , A varies from . n 

j o , n · to j l , n · 

The An(s) and J 1(An(s)x) are the eigenvalues and eigenfunctions 

of the Sturm-Liouville system 

} (1.8.21) 

The J 1( \ (s )x) form a complete set of orthogonal functions spanning 
n o 

the set of continuously differentiable functions on 0 < x < l. The 

initial function u(x,s
0

) can be expressed as a series in these eigen­

functions by 
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(1.8.22) 

In this way an initial value, fn(s
0
), can be determined for each of 

the un(x,s
0

). 

Substituting the form of the solution, un' into equation (1.8.15) 

gives the equation, 

(1.8.23) 

The x dependence of the equation has been suppressed in that it acts as 

a parameter in the solution. 

The quantity of interest is the core radius deflection, on( s ), 

corresponding to un Equations (1.8.7) and (1.8.14) can be combined 

to give 

(1 .8 .24) 

In this formulation, once the values of the initial condition have been 

transformed to the coefficient in the Besse l function series, the expres -

sian need only be evaluated at x = l. A convenient form of the equations 

arises by defining 

(1.8.25) 

w"" cs) == (1.8.26) 

and combining equations (1. 8 .23) and (1. 8. 24) to give the system 
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CJn =-- 0 -~A- d r 

+ 2A s"" = o. } (1.8.27) 

This system can be combined to form a single first order equation 

( l. 8. 28) 

where the primes indicate differentiation with respect to s. 

The system of equations (l .8.27) and equation (1.8.28) determine 

the growth of disturbance waves on the filament core boundary. The 

limiting case of no compression should qive Kelvin's solution for the 

stable waves on a vortex filament. The function s , ka, A, An and wn 

become constants and e (s) = 0. Under these con ditions, equation 

(1. 8 .25) reduces to 

(" 1/ 2. c 
oh + wh D 11 = o ., (1.8.29) 

where wn given by equations (1.8.26) and (1.8.29) is the frequency of 

the bounded periodic disturb ance. In dimension al form, the core radi us 

R(z,t) can be expressed as 

(1.8.30) 

where the bn are constants determined by the structure of the initial 

disturbance to the core velocities. 
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The effect of the compression on these stable waves will be 

examined in the next three sections. 

1.9 A~ymptotic Behavior for Uniform Core 

As a first attempt to determine the stability of the compressed 

uniform core vortex, the asymptotic behavior can be examined. Dis-

turbances which grow faster than t he undi sturbed core expansion are 

considered unstable, even though the time scale of the growth may be 

long compared with the physical mechanism being modelled. 

For constant compression, equation (1.8.28) can be transformed 

into the standard form for applying the WKBJ method by defining a 

scaled displacement, 

(1.9.1) 

The equation for f(s) is written 

- ~ <.s) ~ts) = D , (1. 9.2) 

\'/here 
II 

.... 
~ (s) -6.)~ + £2 (J.)"'/w., 

+- 2. wyw.., (E.+ w~/wh). (1. 9.3) 

The function wn(s) is defined in equations (1.8. 26 ) and (1.8.19), £ is 

the constant ratio of the compression to the initial rotation ra t e 

a/~0 , and s i s the dimensionless time, ~0 t. 

For large s. q(s) can be expanded to give 
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1\ 

i(S) = 
2 _4e.s 1 -w~s) 

E - 4-e + 0\e . (1.9.4) 

This expression is bounded away from zero for s sufficiently large. 

Applying the WKBJ method to equation (1.9.2) qives 

QSS-'rOO, (1.9.5) 

Equations (1.9. 1) and (1.9.4) combine with the above to give the asymp-

totic expression for the deflection, 

as s-oc. (1.9.6) 

The dimensional or physical deflection grows at the same rate as the 

core radius, the neutrally stable growth rate. 

For the time dependent compression, the asymptotic behavior of 

on is determined using a form of equation (1.8.27). Define a time-like 

variable by 

(1.9.7) 

111here v is the initial value of the compression. The restriction that 

v be less than l/2 is necessary in equation (1.9.7) in order that ~ 

tends to infinity for large s. Since the compression in the physica1 

problem is small, this is an appropriate limitation on v. Substituting 

into equation (1.8.27) gives 

~:- (1+ \~ ... )~)-·~= o, 

~i + ~ == 0) 
} (1.9. 8) 
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where the subscripts n referring to the mode of the internal structure 

have been dropped. The function An(~), defined in equation (1.8. 19), 

is bounded above and below by the nth root of the Besse l functions J 
0 

and J 1, according to the relation (1.8.20). Combining the equations 

to get a single second order equation in g gives 

o, (1.9.9) 

where the coefficient of g is bounded as ~ tends to infinity. Applying 

the WKBJ method to this equation gives the leading t erm for g, 

.L t [+ · f ( ( ~ )'2 )- Yz 1 '"] GoVI.S(c:tr. · ex_f - L I+ kcl d) a.s s~co , (1.9.10) 

as bounded oscillations in ~ . The form of the deflec tion o fo llows 

directly from equation (1.9.7) as 

O..S S---)'00 • (1.9.11) 

In the limit as \! tends to zero, this is the exact solution for the 

Kelvin waves. The introduction of the compression causes the waves to 

grow at a rate asymptotic to the core expansion rate. 

The asymptotic behavior of the core displacement resolves neither 

the stability nor the model's validity. Part of the difficulty is that 

the unknown constant coefficient in the asymptotic expression can be 

large. The behavior of this constant with the initial parameters is 

examined in Section 1.11. The initial growth of the disturbances hel ps 

determine the feasibility of the model. This is examined for sma ll 

constant compression in the next section. 
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1.10 Small Compression for Uniform Core 

In Section 1.6 a two-timing technique was applied to the equa-

tion for the displacement of the stagnant core radius by introducing 

an averaged frequency. The same method can be used for the uniform 

core. Restricting the disturbances to be axisymmetric and the compres­

sion to be constant, the displacement of the core radius on satisfies 

equation (1.8.28). For w (s) written as a function w(es) and the sub­
n 

script dropped from on, the equation becomes 

(1.10.1) 

When e = 0, this reduces to the equation for a simple oscillation. The 

effect of the small, positive eon this motion is to introduce a slow 

variation of the frequency and amplitude . 

Define the fast time by the integral 

(1.10.2) 

In terms of this va r iable, equation (1. 10.1) can be rewritten as 

d2.b (..1) 1 db 
- - ..§:_ (2. -1- - ) I- -f- ~ - 0 ds w w a.S (1.10.3) 

If the function w is considered a function of the slow time 

N 

.5 es (1.10.4) 

the displacement can be expressed as a regular series expansion in f unc-

tions of the t~tlo times, · 
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(1.10.5) 

Substituting this form for 8 into equation (1.10 . 3) and expanding the 

derivatives in the two variables, terms can be grouped according to 

powers of e to give a hierarchy of equntions, 

0 e: + F:'" = D 0 , (1.10.6) 

(1.10 . 7) 

(1.10.8) 

The lowest order e~uation has the solution 

(1.10.9) 

where A
0

(0) and ¢
0

(0) are determined from the initial condition on 8 . 

The functions of the slow time are determined by the requirement that 

F1 is a bounded function of the fast time. When F0 (~.~) is substituted 

into equation (1. 10.7), the equation for F1 (~,~)becomes 

~(A:- A .. - 2~Ao) s~(s+ p.,) 
+ :, Ao ~j Ces { S + ~o) • (1.10.10) 

In order that the solution for F1 be bounded, the coefficients of the 

sine and cosine must vanish. These give that 

- I ,._, 

(
w(.s))2: s 

Ao (o) (....}Co) e 1 (1.10.11) 
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(1.10.12) 

Substituting the form of w given in equation (1.8.26) into the expression 

where An is given by equations (1.8.19) and (l .8.20). 

The slowly varying amplitude needs to be examined over the range 

of k
0

a
0 

and n. Since the time behavior of An(s) is dependent solely on 

the function ka, the expression An/ka, can be considered a function of 

ka. As ka increases from zero to infinity, A increases from j to 
n o,n 

j l,n' the nth roots of J
0 

and J 1. The ratio An/ ka behaves like (ka)- 1. 

For large values of An /ka, corresponding to small ka or large n, the co­

efficient can be written 

(1.10.14) 

This exponential behavior remains valid for values of ES sufficiently 

small that A /ka remains lar~e . 
n 

For sma ll values of An/ka correspondinq to short waves and small 

n, the amplitude asymptotes a constant. Thi s is the behavior predicted 

by the expansion for l arge ES in Section 1.9. Notice that for any ini­

tial condition, An / ka an d wn tend exponentially to ze ro for s ufficien t ly 

l arge ES , forc ing on( s ) to asymptote a constant. 

If t he bursting phenomenon i s to be modell ed by the compressed 

vortex, the growth given here must be responsible for some form of insta-
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bil i ty. The initially exponential amplification for large A /ka seems 
n 

a candidate. The time scale of the growth needs to be checked for 

Moore's estimated values of the physical parameters. This is done in 

the next section by numerically integratin9 the ~uation for on . Care 

must be taken to in sure that higher terms in the expansi on are not mis -

leading in the numerical calculation. 

The next order correction to the small compression expansion is 

found by substituting F
0

(s ,s) and 

(1.10.15) 

into equation (1. 10.8). The suppression of secular terms in F2 requires 

the coeffic ients of the sine and cosine terms in the inhomogeneous term 

to vanish. The amplitude A1 is of the same form as A
0

. The phase <P1 
satisfies the equation 

Ao/1 A I 
I ( GJI) o --- + (;; l+w -2wA~ A 1 

., (1.10. 16) 

..., 
where primes denot e differentiation with respect to s. The time depend-

ence of <P1 does not affect the actua 1 growth of the disturbance. How­

ever, the analysis of the numerical calculations can be influenced by 

the modulations to the growth, especially when investigating the small 

compression behavior. 

1.11 Nume~ical Results for Uniform Core 

The effect of the initial parameters on the growth of the deflec­

tion can be examined by numerically integrating equation (1. 8 .27). The 

scheme described in Section 1.7 i s used with the value of /..n(s) 
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calculated using Newton•s method on the implicit equation (1.8.19) at 

each time step. 

The asymptotic behavior of the axisymmetric deflection is shown 

in Section 1.9 to be 

(1.11.1) 

for the initial conditions consisti ng of a single axia l wave mode. The 

initial conditions are those for the Kelvin waves on the uncompressed 

filament. The phase ~0 of the initial wave determines the initial con­

dition as 

(1.11. 2) 

I 
~. lo) 

i"\. 
(1.11.3) 

where wn is defined in equation (1.8.26). The initial amplitude is 

scaled out of the linearized problem. 

The initial phase of rr/2 results in the largest or close to the 

largest amplitude for sma ll wave numbers . Limiting t he study to curves 

with zero in it ial deflection allows the asymptote to be written 

(1.11.4) 

The number of par ameters can be reduced further by noticing that ka and 

A.n appear only in the ra t io A.n/ka in eq uation (1. 8,'27). The A.n (s ) vary 

s 1 i ght ly vthil e ka increases exponent i ally wi t h s . Hence the paramete r 

n affects on ly the value of the initi al ratio A.n( O)/ka. The behavior 
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of the deflection for n > l should be close to that for n = 1 with k a 
0 0 

reduced by the ratio A(O)/A (0). The numerical integration can be 
n 

carried out for n = l and a range of k a . 
0 0 

The solution curves for s = .01, n=l, ~0 = n/2 and the wave num-

bers k
0

a
0 

= .00001, .0001, .001, .002, .005 are given in Figure 1.3. 

As in the stagnant core results, decreasing k
0
a

0 
for long waves causes 

an increase in c1. Shorter waves show an oscillatory behavior initi­

ally, and asymptote to a constant for sufficiently larqe s. The period 

of the Kelvin waves, written in parentheses in the figure, can be com-

pared with the time for the asymptotic behavior to determine the 

nature of the solution. For decreasing values of s the curves in 

Figure 1.3 keep the same shape with the horizontal and vertical scales 

increased and the values of k a corresponding to the curves decreased 
0 0 

by 1 / E. 

The largest values of c1 are for the smallest wave numbers. 

Taking small initial wave numbers is equivalent to large values of n 

and moderate wave numbers as discussed earlier. Hence, the limit of 

the wavelength imposed by the physical parameters does not prevent 

large values of c1. They result as the mode of the internal structure 

of the disturbance increases. Viscosity may provide a practical limit 

for larqe n, but the effective parameter k a is smaller than for the 
- 0 0 

stagnant core results. However, these values occur at later times 

than for solutions which asymptot~ smaller values. The r ap id growth 

in the deflection may occur at t imes greater than the scale of the 

bursting phenomenon. 
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Figure 1. 3 The uniform core vortex deflection graphed versus s for 
€ = 0. 01 and several values of k0 a0 . The curve for 
k

0
a

0 
= l 0 -5 asymptotes 6800 . The periods of the corres­

ponding Kelvin waves are given in parentheses. 

s 
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In order to find the compression which could lead to bursting, 

the deflection is calculated for various values of E. The solution 

curves for k a 
0 0 

.01, n = l and s = .01, .02, .03, .04, .05, .l and .2 

are shown in Figure 1.4. The value of the compression leading to the 

maximum growth is about .03. The initial wave number is smaller than 

that for the physical problem. However, allowing higher modes in the 

internal structure of the disturbance yields similar curves with 

k
0

a
0 

= .06 and n = 3, for example. This corresponds to about one-half 

of the Crow wavelength. 

The time at which the rapid growth of the deflection occurs in 

the model can be compared with that of the physical problem. The time 

scale for the vortex pair is the time required to descend the separa-

tion distance. For vortices of strength K separated by distance b, the 

descent time of the vortex system is 2rrb2/K. Moore and Saffman (1972) 

show the compression at the crest of the small amplitude waves to be 

(1.11.5) 

where o* is the semi-amplitude of that component of the deflections 

above the plane of the vortex pair, k is the wave number and K1 is a 

modified Bessel function of the second kind. The most unstable waves 

from Crow 1 s analysis have 

kb =.74- (1.11.6) 

and 8* of .71 times the wave amplitude. Combining these results with 

Moore 1 s computed time for linking 
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z 
2rrb 

K , (1.11.7) 

gives a bound for the dimensionless time atl. If the approximation 

for a is assumed to hold for finite amplitudes and the vortex deflec-

tion to separation ratio is less than one, then the bound on atl be­

comes 

(1.11.8) 

To compare the time in the model v1ith this bound, denote by s*(E,k
0

a
0

) 

the time for the deflection to reach one-half of its maximum amplitude. 

This is centered in the rapid rise of the curves in Figures 1.3 and 

1.4. The scaled time ES* is plotted against E in 0gure 1. 5. The 

curves of constant k
0

a
0 

in this figure extend only to values of the 

parameters which lead to ampli f i cation of the deflection to at least 

ten times the Kelvin wave amplitude. When the value of E is suffici-

ently small the dominant oscillatory nature of the solution gives an 

initially growing oscillation , similar to that shown fork a in 
0 0 

Figure 1.2. As E is decreased for constant k a , a curve in Figure 
0 0 

1. 5 drops off until the first maximum in the deflection curve is below 

10. At this point the bursting time curve jumps to the time value 

corresponding to the next extremum of the deflection curve. A sawtooth 

curve is generated as E is decreased further, but this is not included 

in Figure 1.5 as it does not r epresent a rapid growth in the deflection 

and occurs above the linking time anyway. 
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k.a.::.OOOOI 

TIME OF LINKING 

.001 ,01 .I I. f. 
(LOG SCALE) 

Figure 1.5 The scaled time of the rapi d increase in the deflection 
versus t he scal ed compress ion. The maximum de flection must 
be greater than 10 and the curves a re not continued to the 
l eft of e = lo-4 . 
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The value of a
0
/b used in Moore's calculation gives £= .003, 

but since the cut-off method depends logarithmically on the core 

radius, the bound on the linking time given in equation (1.11.8) is 

expected to be adequate for the larger values of £ . 

All the plotted values of Es* lie above the linking time. As 

k
0

a
0 

is increased the value Es* decreases, but the amplitude of the 

deflection decreases as well. No combination of the parameters k a . 
0 0 

and E give large amplitudes in sufficiently short time. The bursting 

phenomenon does not therefore appear to be adequately modeled by the 

effect of compression on the Kelvin waves. 
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CHAPTER 2 

VORTEX IN A STRAIN FIELD 

2.1 Introduction 

The appearance and grm•Jth of \>/aves around the circumference of a 

vortex ring is demonstrated experimentally by Krutzch (1939) and con­

firmed more recently by Widnall and Sullivan (1973) and others. An ex­

planation for the appearance of this in s t abi lity is offered by Widnall, 

Bliss and Tsai (1974). They argue that \'laves 1t1hich displace the thin 

vortex core in the plane of the ring but do not propagate around the 

ring \vill be amplified by th e local straining which results from the 

curvature of the ring. ~oore and Safftnan (1975) confirm this mechanism 

for the corresponding problem of a straight vortex filament in a small 

strain field. They give the form for the amplified \tl/aves when the vor­

t icity is continuous. The wave numbers and growth rates associated with 

the unstable waves are calculated for the related special case of a uni­

form cored potential vortex by Tsai and t~ictnall (1976). The most unstable 

mode is shown to be for the vortex deformed by a superposition of the heli­

cal waves which do not propagate along the vortex. These calcul at ions use 

an expansion in the small strain rate and find the correction to the heli ­

cal Kelvin It/aves on the filament due to t he strain. The wave numb ers for 

the fastest growing waves on the strained vortex are those corresponding 

to the steady Kelvin v1aves . 

~~idn a ll and Tsai (1977) so lve for the grm-1th of waves on a unifo rm 

cored ring in an expansion in the ratio of th e core radius to the ring 

radius. Th e leading or·der co ntribution to the growth in this expansion 
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gives behavior li ke the uniform cored straight vortex in a strain. 

Saffman (1977) discus ses the effect of considering realistic core 

profiles on the cri tical \'/ave numbers and corresponding grov1th rates 

for the straight vortex in a s train field. The product of the wave 

number times the ring radius can be compared with the number of wave 

crests which appea r on the observed rings. The relative growth rates 

for the first few critical wave numbers can be examined to predict the 

number of waves on the ring. It is the purpose of this chapter to 

demonstrate a method for calculating the growth ratE~s for a general axi­

symmetric distribution of vorticity in a straight vortex core of finite 

radius surrounded by potential flow. 

2.2 The Steady Vortex Filament in a Straining Field 

The fluid is assumed to be uniform, inviscid and incompress ible 

with the constant density taken as unity. In a cylindrical coordinate 

system (r,e,z) the undeformed vortex filament is aligned along the z 

axis \·lith S'fiirl velocity V
0
(r) in a core of radius a. The flow outside 

the core is that of a potential vortex. The strength of the filament 

is given by 

(2.2.1) 

The system is scaled by dividing the velocit-ies by V
0

(a) and the 

radi al coordinate by a. Define the new radial coordinate 

X (2.2. 2) 



-65-

and the core rotation rate by 

I 
J)cx) = x OL.X·< l . (2.2 . 3) 

The rotation rate must be finite at the origin . The velocity field 

due to the vortex filament alone is denoted by (O,v
0

,0), where 

{ xncx) -fo>-- X~ I 1 

vo 
'lx 

(2.2. 4) 
.fo~"' X::> I . 

The vorti ci ty is non-zero only in the core v1here 

(2.2.5) 

The symbol t:, is used to denote the vorticity to elimi nate confus ion 

with the symbol for the frequency introduced later. 

The corrections due to the external straining give the total 

velocity field, (u,v
0
+v1,o). Far from the vortex filament, the velo­

cities have the form 

LA I ,._...,. 

V, ,....._ 

EX 5Vn (.2e) 

E. x c..os (2e) 
(2.2.6) 

The parameter E is the ratio of the rate of strain, e, to the dimen-

sional rotation rate at the core edge, 

e 2 
2rra.e 

r (2. 2. 7) 
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The strain is assumed to be small, constraining lEI << 1. 

In order to evaluate the corrections to the flow field for a given 

axisymmetric distribution of vorticity in the core, it is convenient to 

introduce the stream functions, \jJ
0 

and l)J1, defined by 

I ()tV 
(2.2.8) u --x ae ., 

v 
-olP 
oX ' (2.2~9) 

where the subscripts 0 and l both apply. The stream function l)J
0

(x) due 

to the vortex alone is determined vJithin an arbitrary constant by the 

swirl ve locity v
0

(x). Equations (2.2.6) give the asymptotic behavior of 

the correct ion due to the st raining as 

2_ 
~ < '!< , e) ,....._, ~ E. X c.os ( 2 e) (2. 2. 10) 

In the region outside the vortex core the flow i s irrotational, so 

that l/J l must satisfy Laplace's equation. The stream function can be 

written in the form 

~ £ +ex.) Cos (2e) . (2. 2 .11) 

For the region of potent·ial flmv described by 

I + EA c.os (.2e) ') (2. 2.1 2) 

the function f(x) defining the stream function has the form 

r z a; z. 
j( X) = X + I X 1 

(2.2.13) 
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vihere a1 and A are constants to be determined. 

In the filament core the vorticity is constant along the stream-

1 i nes , gi vi n g 

(2.2.14) 

If the same functional relation holds after imposing the external strain-

ing, the stream functions satisfy 

(2.2.15) 

Si nee lJ!l is proportional to the sma 11 parameter s, the approximate equation 

for the correction to the stream function can be written as 

I 

F(t)f, (2.2.16) 

Taking the derivative with respect toxin equation (2.2.14) and solving 

for F'( lJ! ) gives 
0 

(2.2.17) 

The form of lJ!1 given in equation ( 2 . 2.11) can be substituted into equa­

tion (2.2.16) along with the expression fo r F' above, to give the core 

equation, 

(2 .2.18) 

In terms of the unique bounded solution to the above satisfying 
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(2.2.19) 

any bounded solution can be written, 

(2.2.20) 

The constants a
0

, a1 and A are determined by the conditions on the inter­

face bet~tteen the regions of non-zero vorticity and potential flm>~. The 

arbitrary constant in the stream function allows the value on this 

streamline to be set equal to zero. This gives the two relations 

t CX.) + ~ E..ll.0 ~(l) c..os (2e) = 0 , 

j~ (X) + ~c.(\+ q,) Cos(le) = o , 

(2.2.21) 

(2.2. 22) 

where only terms to O( E) have been retained. Expanding these expressions 

and simplifying gives the conditions 

2 A + a.., ~(I) = 0 ' 

2A + a. = -1 I 

(2.2.2 3) 

(2.2.24) 

Th e continuity of the swirl velocity across the interface gives 

the relation 

I -1 XD (X)+ ~ t..a.o~ <1) CDs(le)::: X+- E.(l-a,)wstz.e)., (2. 2 .25) 
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where the prime denotes differentiation with respect to x. Substitut-

ing the form for X from equation (2 . 2. 12) into the above and expanding 

gives the re l ati on 

(2. 2 .26) 

The values of the constants a
0

, a1 and A are determined by the t hree 

l inear equations (2.2.23), (2 . 2.24) and (2.2.26) to be 

I I - l 
ao 4- ( '3 ( 1) - _Q ( 1) 3 C.t)) ) (2. 2.27) 

a., a.o 3 ( 1) - / ., (2. 2.28) 

A 
I 

- - 2.. (log ( I ) ? (2. 2.29) 

and the correction to the vortex f l ow field due to the small external 

strain is uniquely determi ned to t he leading order . 

The case of uniform vorticity in the core gives 

D.cx; = I 
2. 

~(>0 = X 

an d the stream function takes the form 

x ( 1 + t:.C.Os (2e) fo" X.:::. 1- £. Cos(z.>~) 1 

{

2. 

~o -f- 't, == I '2.. I 1otg X +- 2 £, (x + x1 ) c.os.(2e) fer .,: -,. /-r. t.as(2e). 

(2. 2. 30) 

(2 . 2. 31) 

The steady ve locity field (u1,v
0
+v1 ,o) follov1s di~·ectly from eq uations 

( 2. 2. 31 ) , ( 2. 2 . 8) and ( 2. 2. 9) . 
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2.3 The Equations for Stability 

In order to investigate the stability of the steady flow field de-

fined in the last section, the disturbance velocities (ij,~,0) and 

pressure p are added to the steady solutions. Substituting these into 

the Euler equations and retaining only terms linear in the disturbance 

quantities gives the governing equations 

(2.3.la) 

(2.3.lb) 

-aw + u aw -1- _L (-v +-;; ) ~ == - ~~--at ' a)(. x D "' ad CJ , 
(2.3.lc) 

(2.3.ld) 

Th e position of the core interface changes due to the disturbance. Define 

the deflection 8 such that the position of the core boundary is 

,..., 
X- Xle) + ~te1r1 -t) (2.3.2) 

where x is defined ·in equation (2.2.12). The velocities (u1+u,v
0
+V1+v,w) 

must be continuous across the disturbed core boundary. 

In order to simplify the notation, introduce the vector U, defined 

by 

u (~). (2.3.3) 
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The sys t em of eq uations (2. 3. 1) can then be wri tten as 

where 

'd ( ) .M U 1 ( 2.~e -2~e-) 
<>t L U + = z- c. e N + e N U , 

u 
0 0 

L I 0 - 0 I 

0 0 

_D.. 'Of~a 

.M 2. .0. I+- ')( D.' 
0 

3t. I +-<IX' X 

N-
0 

0 

n 0 ' 

-2.Cl 
D 43h-e 

0 

~ '%e 

0 

0 

..Q "he 
<3(-;; t_ 

0 

0 

~; .. j -k- 31af' 
2 /az 

) 

0 

0 

0 

0 

(2.3 . 4) 

(2. 3.5) 

(2.3 . 6) 

0 

0 
(2.3.7) 

0 

and N i s the complex conjugate matri x of N. The definiti on of the core 

rotati on ~ ( x ) is ex t ended ou tside the core by 

X-;. I • (2.3 . 8) 

The nota ti on used above is the same as t hat used by Moore and Saffman 

( 1975 ), 

The so lution to the system (2. 3.4) must sati sfy condi t ions at 

the origin and i nfi nity , a.s \ve ll as the condition of continuity of the 

velocities at the core boundary . The di sturbance vel ocities and 
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pressure must tend to zero at infinity and be regular at the origin. 

The disturbance solutions can be written as an expansion in the 

small parameter t: by defining 

U- ( 
~ "-' ) . ~~e~ + i...tot 
D-r-sU+-··· e o I 1 (2.3.9) 

We.+ cw + ··· ~ I ' 
(2.3.10) 

k.tl .... t: k., + · - · • (2.3.11) 

Substituting this form into equation (2.3.4) and equating coefficients 

in powers of t: gives the hierarchy 

where 

p 
0 

0 

0 

0 

(2.3.12) 

(2.3.13) 

(2.3.14) 

and replacing the 8/8 z in the matrix M by ik
0 

gives the matrix M
0

. 

The conditions on the velocities at the core boundary are from 

a hierarchy of continuity conditions across the deformed boundary 

(2 .3.15) 

These cons traints are calcu l ated when needed in the next section. 
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2.4 Helical Standing ~laves on the Cylindrical Vortex 

The case modelling the vortex ring instability is for helical 

disturbances v1hich do not propagate along the filament. To the lowest 

order in the small strain, these are the steady deflections correspond­

ing to w
0 

= 0 with angular dependence which can be separated by intro­

ducing two new vectors 

(2.4.1) 

If the differentiation a;ae in the matrix M
0 

is replaced by the factor, 

in , to define a matrix M
0
(n), then the terms in equation (2.4.1) must 

satisfy 

(2.4.2) 

For clarity in the notation, whenever the argument represents the 

angular dependence, the sign is included. In this manner the value of 

a function f(x) at ~ = l, f(l), is not confused with then= 1 mode of 

a function, say g(+l). 

The structure of the matrix operator M
0
(±l) gives the relative 

form of the solutions as 

• 
' ( 

-~(L) u (-1) = v 
o -VI 

f . (2.4.3) 

Substituting the above into equation (2.4.2), the system can be reduced 

to two first order ordinary differential equations 
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dv.. 
J~ --

( ..,A) ,.6~ 
I -'-:IT.. u. - x S2 P 1 

v1here 

A 

F 
and 11 is the dimension 1 ess vorticity, 

I 
b -= 2 ..a. + x.Q . 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

The r emaini ng components of U are de te rmined from the above by the rela­o 

tions 

b._ I A 
V == - .n..- U - X l ., ( 2. 4. 8) 

W = - ko p (2.4.9) 

The components above must be regular at the origin. This condition deter­

mines the solut ions of eq uations (2.4.4) and (2. 4 . 5) ~,fi thin an arbitrary 

cons tant amplitude. \~ithout loss of generality, the solutions can be 

made unique by the conditions at the origin 

LA. = 1 a..t X = 0 , (2.4.10) 

" p /"'-' -X o...s x-o. (2 .4. 11) 

These determine the solutions in the core . 
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In the region outside the core the disturbance velocity field 

can be written in terms of a velocity potential. Using the form for 

the separation of the axial, az imuthal and time dependence given in 

equations (2.3.9) and (2.4. 1), the velocity potential of mode n = 1 

has the form 

(2.4.12) 

The four vector U
0

(+1) follows from differentiation of the potential to 

give 

- i ( k., K, (&cox)+~ K, (kox)) 

- ~ Ko {kox) 
- k .. K, (k.,x) (2.4.13) 

~z K, (k.,x) 

where K
0 

and K1 are the mod ifi ed Bessel functions of the second kind and 

C
0 

is a constant to be determined from the conditions on the core bound­

ary. The form of U
0
(-l) is given by equation (2.4.3) for the U

0
(+1) 

given above. 

The ve locity field for the undisturbed vortex is continuous 

across the core boundary. The velocities with the addition of the dis-

turbances must also be continuous across the disturbed boundary. 

Introdu ce the notation, 

(2.4.14) 

that is , the brackets indi cate the jump in the quantity across some 

curve . Then the continuity of the velocities and pressure gives 
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(2.4.15) 

(2.4.16) 

[ w]x=X = o' (2.4.17) 

[ fo +- ft + fl-..::-X = 0 , (2.4.18) 

v:here X is the disturbed boundary defined in equation (2.3.15). Th e 

parameter £ is set to zero to the l OY.test order in the strain, giving 

the conditions 

\'/here u, v-1 and p are defined in equation (2.4 . 3). The continuity of 

the azimuthal velocity gives 

[v]"'-=1 -[d"!:>] ~ 
dx '~"'' o , (2.4.20) 

where 6
0 

is defined in equation (2.3.15) as the disturbance to the core 

radius. 

The axial wave number k
0 

can only take on certain values in order 

th at the equations (2.4. 19) hold. The continuity of pressure and axial 

velocity give a single constraint, that 

on X= I . (2.4.21) 

Substituting the value of C
0 

from the above into the continuity of radial 
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velocity gives the condition 

on X~ I . (2.4.22) 

The value of u and pat x = l depends on k from the differential equa-o 

tion (2.4.4). The above gives a dispersion r e lation for the v1ave 

number. This is the result of taking w
0 

= 0 at the start of the cal­

culation. 

2.5 Effect of Strain on the Disturbances 

The angular dependence on the correction to the disturbance flow 

field is determined from equation (2.3 . 13). Substituting 0
0 

given by 

equation (2.4.1) into the inhomogeneous term in the equation for u1 
dictates the form in the forced modes as 

(2.5.1) 

The angular dependence separates equation (2.3.13) into the four inde-

pendent equations, 

Mo (+3) lJ. (+3) = f N (+r) a.+l \J0 l-1-t)' (2.5.2) 

(2.5.5) 

The +lor -1 as the argument of the matrices Nand N indicate that8/89 
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has been rep l aced by +i or - i. 

The homogeneous prob l ems for the matrix operators M (+3) and 
0 

M
0
(-3) have only the trivial solution. Unique solutions for u

1
(-3) and 

u1 ( +3) can be determined from the equations and boundary conditions. 

The homogeneous problems associated with M
0

(+l) and M
0

(- l) have the non­

zero solutions discussed in the previous section. So l utions to the 

i nhomogeneous prob l em do not exist unless the forc i ng terms in equations 

(2.5 . 3) and (2~5 . 4) and the boundary conditions satisfy some constraints . 

Using this restriction the dispersion re l ati on for the frequency correc­

tion ~ can be determined v1ithout having to determine the solutions 

u1(+l ) and u1( - l). This is done in the next section. First the in ­

homogeneous terms in the boundary conditions must be determined. 

The total velocities and pressure must be continuous across the 

disturbed boundary 

('V 

X- X (2.5 .6) 

The angular dependence of the deflection 8
0 

can be separated by writing 

So L - n 

For helical waves only 

the components of u1(n) 

~o(h) e 
Lh9 

. 

the modes n=+l 

by 

u,Ln) 
VI ( I-t ) 

w,t>-1) 

p,(n) 

(2 . 5.7) 

and n=-1 are considered. Denote 

(2.5.8) 
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The condition that the radial velocity be continuous across the core 

boundary becomes 

[ ...t. A !L ( - ) _ i. d+ c- 1 _ 
U.(+t)+ 2 d,t -LO.._,U. Z.dx Ool-•)J~=~- 01 (2.5.9) 

where the brackets indicate the jump across the surface x=l as defined 

in equation (2.4. 14). If the values for [du/dx] and [df/dx] are substi-

tuted from Sections 2.2 and 2. 4, then 

(2.5.10) 

A 

The constants A and k
0 

and the values of the functions u and p at x=l de -

pend on the form of n (x) in the vortex core. 

The condition that the pressure be continuous across the core 

boundary gives 

(2.5.11) 

Substituting for [ds-6 /dx], [df/dx] and [dp/dx] in the above gives 

where~· (l) is the value from the core. The symmetry in the prob l em 

gives 

(2.5.13) 

(2 .5 .14) 
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The conditions for the azimuthal and axial velocities are not necessa ry 

for cal cul ati ng w1 or u1. The matrix t1
0 

reduces to a second order di f­

ferential operator, giving algebraic relations for v1 and w1 as in 

equations (2.4.8) and (2.4.9). 

The homogeneous problem corresponding to equations (2.5.3) and 

(2.5.4) and the boundary conditions (2.5. 13) an d (2 . 5. 14) for u1 is the 

same as the lowest order problem solved in Section 2.4. The sol uti on 

to the adjoint of the lowest order problem needs to be determined in 

order to apply the Fredholm alternative. 

2. 6 The Adjoint Solution 

In order to define the adjoint problem introduce an inner product 

00 

(A, B) == i (a.,b, + a.'Z.bl. + a3 b3 + a.4b 4 )dx, (2.6.1) 

where the a. and b. are the components of the vectors A and B and the 
1 1 

overbar indicates the complex conjugates. The adjoint solution U~(n), 

corresponding to the solution U
0

(n) must sati sfy 

* Mo (1-1) * uo (h) o, (2.6.2) 

where 

-inn I 
2.0. -r><.il 0 

M~~Yl' -2n -~hi1 0 

0 0 - i.\'ln · - il~o (2.6.3) 

-cYcfx -tlvx - Lk 0 
0 

The boundary conditions for U*(n) are the same as those given i n Secti on 
0 
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2.4 for U {+1). To calculate the form of the adjoint solution for the 
0 

helical mode, denote 

( . *) 
-l u. 

"tc 
=:- -p-t . (2.6.4) 

The form of the matrix operators t ·1~(+l) and M~(-l) yield the relation­

ship given above bet>r/een U*(+l) and U*{-l) when they are appropriately 
0 0 

normalized. Substituting the components into equation (2 .6.2), the sys-

tern can be written in terms of two ordinary differential equations, 

LLL*_ 2 .:f; f 2. I ) ".;,. 
d X - X U +- l ko + '/X 2 f "I 

d 
1\.1-

QE." -
dx ( /:j) * I ( 11)1\'>%" 1- 2 .n u. + x 3- 2:n:- p , 

t 
Fin 

(2.6.5) 

(2.6. 6) 

(2.6. 7) 

The dimensionless vorticity 6. is defined in equation (2.4.7). There-

mai ning components of U~ are determined from the algebraic relations 

* \J 

w*'-

:4< I "* -2 u. - x f, 

k "-:!~-
- 0 p . 

(2.6.8) 

(2.6.9) 

The components of U* must be regular at the origin. This constraint de­
o 

termines the solutions of equations (2.6.5) and (2.6.6) within an arbi-

trary normalization. The solutions are defined uniquely by the initial 

behavior 



-82-

os x-o, (2.6.10) 

a.s x- o , (2. 6.11) 

for the range of x inside the core. 

In the region outside the core, the vorticity is zero and the 

solution to equations (2.6.5) and (2.6.6) can be found in closed form. 

Applying the condition that the velocities and pressure must vanish at 

infinity gives 

- LX 2 (leox Ko(~x) t- !<,(.kl.x)) 
x2 (2k,)( KoCh.x) + K,l~ .. y.)) 

- k.,x3 1<', t k .. i> 
'I< i<,(koX) 

(2.6. 12) 

The constant C~ is de termined from the continuity of the velociti es and 

pressure. If ~* (1) is the value of the function ~*(x) at x=l, then 

(2.6.13) 

The adjoint operator \'/as defined to satisfy 

(2.6.14) 

for any vectors A and B which satisfy the same boundary conditions and 

continuity conditions as U
0

• If the vector A is replaced by the sol u­

ti on to the adjoint problem u*, then the left side in equations (2.6. 14 ) 
0 

vani s hes. ForB the s oluti on of the inhomogeneous problem 
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(2.6.15) 

with the same homogeneous boundary conditions as U 0 ~ equation (2.6.14) 

gives the orthogonality r elation 

(2.6. 16) 

as a requirement for the existence of a solution to (2.6. 15). 

To apply the above to the solutions u1(+l) and u1(-l), correc­

tions must be made in equation (2.6. 16) to take account of the inhomo­

geneous continuity conditions (2.5.10) and (2.5.12). If the components 

of the vector B in equation (2.6.14) are not continuous, then the equa-

ti on becomes 

(2.6 .17) 

\'/here the brackets indicate the jump in the quantity across the discon-

ti nui ty at x=l. 

The solutions to the inhomogeneous equations (2.5.3) and (2.5.4) 

with jump conditions given by equations (2.5.10) and (2.5.12) exist 

only if 

(2.6.18) 

(2.6 . 19) 
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Introduce the notation 

< Uo'\ ... n) L U.,l+n~ 
< Uo~(tl), PUot+O), 

iN = <u:u r), N<-1) Uol-•)) 
-II ' 

(2.6.20) 

(2.6.21) 

(2.6.22) 

(2.6.23) 

Substituting the form for [p1(+1)] and [u1(+1)] given in equations 

(2.5.10) and (2.5.12) allows B_ 11 to be written 

B_11 == iAl (l+~t.,~l~~~))(p .. (r>-u. .. (l)) r'•> 
+ (3+.Q1Ct))(p-1<tn+u....,u))u..c.•)+D~•>l.A*l•JU{t)}. (2.6.24) 

Equation (2.6.18) can be written in terms of the quantities defined 

above as 

-~(w,LI(+k,'F;,)o..""' +- ~ (tN_
11

+8_,)cL, =0. (2.6.25) 

The symmetries in the matrices are used to write equation (2.6 . 19) in 

t erms of the quantities defined for equation (2.6 . 18). This gives 

Eliminating a+l and a_1 in the above gives 

'<'I here 

2 
w, 

(2.6.26) 

(2.6.27) 
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G..= P.,/L 
II (2 . 6.28) 

(2.6 . 29) 

For continuous di s tributions of vorticity B_ 11 is zero and the coeffi­

cients above are those given by ivloore and Saffman (1975). 

The maximum growth rate is given by EjRj for helical waves with 

axial wave number k . 
0 

2.7 Uniform Core Result 

For the vortex core \'lith constant vorticity the velocity field 

(u1 ,v
0
+v1 ,o) is described at the end of Section 2.2. Using this form 

for the undi s turbed vortex, the disturbance velocities and adjoint 

solution can be evaluated in terms of Bessel functions, giving an i m-

plicit equation for the critical v1ave number k
0 

and giving the frequency 

w1 in terms of integrals of these functions. 

To determine the forms of U
0 

( + l) for x < 1, the form of the rotation 

and vorticity, rt (x) = and 6(x) = 2, are substituted into equations 

(2.4. 4) and (2.4.5) and the equations combined to give 

where ~ is the scaled pressure from equation (2 . 4.6). The constraint 

on the behavior of p at the origin given by equation (2.4. ll) determines 

the solution to (2.7. l) to be 

(2.7.2) 
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where J 1 is a Bessel function. The components of U
0

(+l) follow from 

p to give 

J ("3 koJo +; J;) 
-}'3 (2.J3hoJ;.- ~ J;) 

koJ; 
-J. 

(2.7.3) 

The argument of the Bessel functions is /3 k
0
x in the above . The form 

of U
0

(+1) for x>l is given by equations (2.4.13) and (2.4.21). The 

conditions of continuity for the radial velocity and pressu re at the 

core boundary give the relation for the '>'lave number k
0 

as 

(2 .7 .4) 

The positive real roots of this equation k~m) lie in the in tervals in 

which J/J1 decrease from infinity to zero 

(2.7.5) 

where jo,m and jl,m are the mth largest positive roots of J
0 

and J 1. 

The larger roots correspond to more internal structure in the distur­

bances. The smallest fi ve positive values fork are given in Tab l e 2. 1. 
0 

The solution to the adjoint problem i s needed in orde r to find 

R and Q. The differential equations (2.6.5) and (2.6.6) can be combined 

to form the single equation 

(2. 7.6) 

The solution for p* asymptotic to -x2 as x tends to zero is 
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(2.7.7) 

The components of u;(+l) are determined from the relations given in 

Section 2.6. For the region x < 1, the adjoint solut ion can be vJ ritten 

* Uo ( + I) ::::::; X Uo ( + I) , ( 2 . 7. 8) 

where U
0

(+1) is given in equation (2 .7 .3) . Outside the core the solution 

U~(+l) is given by equations (2.6.12) and (2.6.13) and the relation given 

above does not hold. 

To calculate the growth rates the integrals L11 , P11 and N_11 given 

by equations (2.6.20), (2.6.21) and (2.6.22) need to be eva luated. In 

terms of the components of U
0

(+l) and U~(+l), L11 and r 11 can be written 

L,1 =­
P,, 

(2.7.9) 

(2.7.1 0) 

The integran ds can be written as comb inations of Besse l functions by sub-

stituting the explicit forms of the components given by equations (2.4.13), 

(2.6.12), (2.7.3) and (2.7.8). Then the integrals become 

L11 = 2:k~ f 
(2.7.11) 

(2.7. 12) 
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.where the argument of J
0 

and J 1 is /3 k
0
x, and of K

0 
and K1 is k

0
x. 

The form of the integral N_11 in terms of the vector components is 

I fo (-u.*(4-u.-+ 2x.u1
) + v*(4t.t+2xv 1)- w'\l.vJ+2.xw1

)) Jx 
+ J.Cbf-u."( 2(l-?./lt4)tt.+(1-'/x4)Xt..(1- 4vfx4-) 

+V* l2(1t~)(+)u.+2.V/~.J.{I+tx4-)X'J 1 ) (2.7.13) 
+W*( (l-'/t4)'-"1+ (1+'/-t""))(~') } Jy. 

Instead of substituting the forms of U
0

(+l) and u;(+l) into the above 

and attempting to simplify the resulting expression for the numerical 

integration, the components and derivatives are computed and the algebra 

is done numerically in the integration scheme. 

The integration on 0 <x < l is carried out using Simpson's rule, 

subdividing the interval until the error estimate is less than 5 x 10-5. 

Since the modified Bessel functions decrease exponentially to zero for 

large arguments, the value of the integral for x f rom one to infinity 

depends strongly on the contribution of the integr~nd near x=l. The 

integration is done on intervals of length 5 until the correction is 

not s i gni fi cant. 

The r es ulting values of Rand Q for the first five wave numbers 

are given in Table 2.1: 

Table 2. l 

2. 505 
4.35 
6. 17 
7.99 
9. 81 

R 

1.142 
1.139 
1. 136 
1 . 13.1 
l. 133 

Q 

.266 

. 162 

.11 6 

.091 

.074 

Values of Rand Q for the firs t five critical wave numbers 
for the uni form core vortex 
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For very large v;ave numbers the integrals defining R and Q can be 

approximated to check the numerical results. For large m the asymptotic 

form of equations (2 . 7.5) and (2. 7.4) defining k(m) give 
0 

(2.7.14) 

Substituting the asymptotic behavior for J
0 

and J1 into the above gives 

(2 . 7. 15) 

For these values of k
0 

the asymptotic form for the integrals in equations 

(2.7. ll), (2.7. 12) and (2 . 7. 13) can be evaluated to give 

L~~ ,_ 
32. 

tf{31i Ito (l..'i ko ~CO., (2 . 7.16) 

P,, 
6 

· ko--'> CO' (2.7.17) ,....., 
-3/S'Tf k! as 

N_,~ 
Ito 

ko- oo. 313'1rko QS (2.7.18) 

The asymptotic form of s_11 is determined from equation (2.6.24) and the 

components of U
0

(+1) and U~(+l) to be 

(2. 7.19) 

The values of Q and R for l arge wave numbers, found by substituting the 

above into equations (2.6.28) and (2.6 . 29) are 

(2.7.20) 

1.12.5 a.s ko-'>oo. (2.7 . 21) 
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These values can be compared \!lith those given in Table 2.1 with good 

agreement. A 1 so, they indicate that even though the grm•Jth rate is 

largest for the smallest positive \vave numbe r, it decreases by only two 

percent over the range of cri ti ca·l wave nu rTLf)ers . 

2.8 General Distribution of Vorticity in the Core 

The analysis in Sections 2.2 through 2.6 is for an axisymmetric 

distribution of vorticity in the core, given by 

I d ( Z ) ~ (x) == x c:lx 'X Slc }() , (2.2.5) 

l'ihich is bounded at the origin and decreasing outwards. A. n ume ri ca 1 a 1 -

gori thm for evaluating the wave number k
0 

and the corresponding factors 

Rand Q in the express·ion for the frequency follm•IS from this analysis 

once n(x) is given. The numerical eigenvalue problem for k
0 

reduces to 

finding the roots of equation (2.4.22), where the values of u and~ at 

x=l are determined by integrating the differential equations (2.4.4) and 

(2.4.5). 

The values for Rand Q depend on integrals over both the core and 

outer regions. Th e contribution to these integrals in the core can be 

evaluated by solving the initial value problem defined by the system 

(2.8.1) 

(2.8.2) 

(2.8.3) 

(2.8.4) 
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( ,_ 2. 1/ z.) ""'" 
~'<o + I X r ~ (2.8.5) 

(2. 8.6) 

(2.8.7) 

(2.8.8) 

where v and v* are given by equations (2.4.8) and (2.6.8). The initial 

values come from the behavior of the functions near x=O. A small value 

of xis used as the initial value and the integration carri ed to x=l. 

The exact form of the initial values is discussed in greater detai l in 

the next section. 

The value of the constant a
0 

is determined from g(l) and g'( l ) 

according to equation (2.2 . 27). The contribution of the core region to 

the integrals L11 , P11 and N_ 11 are given by L(l), P(l) and a
0
N(l) . 

The contribution to the integrals from x > l can be written expli -

citly in terms of the matrices and vectors from Section 2.6, givi ng 

definite integrals of Bessel functions. If these are denoted as 0 
Lll' 

0 
pll and 0 

N- ll ' then they have the form 

A Jl."¥ 
0 _f' ll) p (I) r-( Ito) ' L •. - k; K,1 clt. ) (2. 8. 10) 

1"\ .1\;jr 

0 pl•>p ll) Cj 
(2. 8. 11) P.. = - 2 k.. K;n~ .• ) ( ko) , 

1\ "'* 
0 pel) p C!) ( I 

0.1 ~: H'l.( ko~' N_n = K/b~.) ~:- H, 0~0) + (2.8. 12) 
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where a1 , p(l) and p*(l) are determined from the core solution. The con­

stant a1 is given in equat ion (2.2.28). The functions of the wave number 

have the form 

(2 .8.13) 

(2.8.14) 

0:> 

H1 (k.).::: J~ .. (3x K:+- 2.(r-x1
) KoK1 - x k}) x\Jx, (2.8. 15) 

Hz.(ko)-== .£~( 3 1<2-K:+z"(S+x'LJK.,t<,+ (8-r3xl.)K,t.) d;;_ • (2.8.16) 

Th ese integra ls can be evaluat ed using the same methods as in the uniform 

core prob lem. 

The factors Rand Q are dete rmined by the comb ination of the inte-

grals, 

/\ 0 

L 11 = Lu) + L,,, (2.8.17) 

.A. 0 

F; J = 'P ( I) + 'PI I , ( 2. 8 • 18) 

and the boundary terms B_11 defined by equation (2. 6 . 24). The numerical 

problem is strai gh tforward and a relevant example i s discussed in the next 

section. 

2.9 Viscous Core t'lodel 

Saffman (1977) demonstrates that the rotation profi l e for the core 

of vortex rings can be approximated under certain conditions by 
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(2.9.1) 

where M is the confluent hypergeometric function. Since the parameter 

Ei is proportional to the inverse of the Reynolds number, this profile 

may give some ins ight to th e effect of Reynolds number on the vortex ring 

instability. 

The properties of the confluent hypergeometric function are taken 

from Abramowitz and Stegun (1965). For large El the core profile ap­

proaches the uniform profile discussed in Section 2.7. For small El the 

SWirl Velocity, v
0
= X~(X), increases from zero to a maximum Of v

0
= .69Ell/2 

at x= l.45Eo' then decreases to vo= 1 at x=l. This behavior for small El 

must be considered in the nume rical scheme to maintain accuracy as El i s 

decreased. The step size and starting point in the integration of equa-

tions (2.8. 1) through (2.8.9) must be adjusted as El is varied. The 

initial values are defined earlier by using the behavior of the solutions 

for small x as an approximate at some small starting point x
0

. I f x is 
0 

taken too small, roundoff errors will be large. More terms in the expan-

sions of the solutions near the origin can be calculated to allow for 

larger values of x
0

. 

The behavior of ~(x) and 6 (x) near the origin follows from the 

series expansion of the confluent hypergeometric function 

(2.9.2) 

Substituting into equations (2.9. 1) and (2.2.5), the expansion for ~ and 
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the ratio 6/n can be written 

( 
3')('1. 0 ( ~ .,.) 

l1< ;>'.) = _n_ ( o ) [- f3 e
1
1 + (e) ' (2 . 9 . 3) 

.6.tx) ::::. 2.- 43 ; 2.1 + Q (( : , )4) • 
J(l(~) ~, (2 . 9.4 ) 

The se cond tem in the i ni ti a l behavi or of each of the unknowns in t he 

system of eq uat ions (2 . 8. 1 ) through (2.8.9 ) fo l lows direct l y once gi ven 

t he fom above for the rotation. The res ul ting two - term expansions near 

the ori gi n are 

z 
gcx) ,..._ XL ( f - ')( "14e,2 ) , (2. 9.5 ) 

'2. 

hcx1 = ~1c X) -- X (2- X let) ., (2.9.6) 

t '2. Jsc.;0 )( z ., U.l,X:) ,...._, I ( !i"flo (2.9.7) - 8 + 

" X (- l+ 
l. 3/se,'- ) .,c_ ' ) .. p {)() ,...__ (3~ -t (2 . 9 . 8 ) 

,.ff X (I - s k;)(2.) ., (2 . 9.9 ) U. (X)- 8 . 

p\x) ,.._,. 
3 1/· x~C-1 + --rxz), (2.9. 10) 

"' L£)() ~ X 2 ( \ - ( le?( Z -I- 3/JtoE,l-) x~) , (2 .9. 11 ) 

A _ ki2 .Ql o ) ~4- ( \ - ( k!/z. -t- ~£,~) )(2.), PV<> _._ (2 . 9. 12) 

~ 

X ( - 2 + \ Rl i + %f,L) >(?.) • Ncx) '"'J 
(2.9.13) 

At the starti ng point x
0 

the relati ve e r ror i n t he i ni t i a l va l ues above is 

O((x
0

/E:
1

)4 ) . Thi s estimate can help i n the choice of the starting point. 

The chor d method i s used to determine the first fevo~ cri ti ca 1 wave 

numbers, the roots of equation (2 . 4.22). For each i terate the va l ues of 

p(l) and u(l) are determined by i ntegrating equations (2.8.3) and (2 . 8 .4) 
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from the initial values given by equations (2.9.7) and (2.9. 8) at the 

point x
0

. The value of x
0 

i s set at l/128 for l arger El and decreased 

by pm11ers of l/2 to maintain the ratio x
0
/c1 at l ess than .04 . The 

predictor-corrector scheme described in Section 1.7 is used with the 

step size set at the value for x . For small El the step size is in­o 

creased outside the region in which x~ ( x) varies rapidly. The resulting 

values of the first three criti ca l wave numbers are given in Table 2.2. 

The procedure for calculating the contribution to the correspond­

ing values of Rand Q from the core is the same as described above for 

finding ~(l) and u(l) except that the system has 9 equations instead of 

2. The values ((1), ~(1), N(l), p(l) and p*(l), along ~,lith the constants 

a
0

, a1 and A determined by g( l) and g'(l), are used in the expressions 

for L11 , P11 and N_11 . The remaining contributions toR and Q are given 

by the functions F, G, H1 and H2 defined by equations (2.8 . 13) through 

(2.8. 16). These depend only on the value of the critical wave number. 

The resulting computed values of R and Q are given in Table 2.2. 

Notice that the values for R and Q for large El are identical to 

those in the uniform core calculation, as expected. 
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CHAPTER 3 

UNIFORM VORTEX IN A UNIFORM SIMPLE SHEAR FLOW 

3.1 Introduction 

The mathematical method described in Chapter 2 for the strained 

vortex allows easy examination of a range of problems involving small, 

two-dimensional deformations of a vortex filament. Only the matrices 

on the right side of equation (2.3.4) and the interface conditions 

need be changed. The form of these matrices and conditions depend on 

the deformation to that flow field due to the straight vortex filament 

alone. 

The external deformation examined in this chapter is that due to 

a simple shear. This flow may give insight into the behavior of short 

v1aves on the trailing vortices behind aircraft near· the ground, ~"here 

the crosswinds approximate a pure shear flmv. Also, s ince the shear 

flow is rotational, the form of the corrected frequency is expected to 

show some differences from that for the straining field. 

fvloore and Saffman (1971) calculate the shape of the uniform vo rtex 

filament in a simple shear and find that a solution exists for the vor­

tex cross-section of an ellipse when the shear cr is sufficiently small. 

They also investigate the stability to two-dimensional disturbances. 

The three-dimensional stability can be exami ned by expanding the exact 

solution in the ratio of the shear cr to the constant vorticity in the 

filament to give the corrections to the vortex flow due to the sh ear. 

In this case it i s easier to calculate the corrections to the velocity 

field of the vortex due to the shear flow from the governing equations. 
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3.2 Steady Deformation of the Vortex Filament 

For the vortex filament along the z axis in the cylindrical coordi­

nate system (r,e,z), the steady flo\•/ field does not vary in the axia l 

direction. The magnitude of the uniform vorticity is taken to be 2 and 

the core radius to bel, and the stream function of the vortex filament 

without the imposed shear then has the form 

(3.2.1) 

\'/here the stream function is defined in the usua l sense by 

I -alll -u "' ae (3.2 . 2) 

o'f 
v - ~ 

' 
(3.2 . 3) 

and u and v are the radial and azimuthal velocities. 

The correction to the stream function due to the shear is denoted 

E~l, where the magnitude of E i s the ratio of the shear to the vorticity 

in the uniform core and the sign is chosen to have positive E correspond 

to the shear rotation in a positive sense. Far from the vortex the 

total stream funct i on has the form 

as r...:;oro. (3.2.4) 

The angular dependence shows that the appropriate form for the steady 

deformation to the interface behveen the vortex core and surrounding 

fluid is 
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r = R{e) = \ + £A c.o~(2e), 

where A is determined by the conditions at the interface, and only O( E) 

corrections are retained. 

In the core the tota·l stream f unct ion must sat i sfy 

~:t l ~o+- c'k) ::::: -2 

'to+£~ = 0 on r= Rte) 

(3.2 . 5) 

(3.2. 6) 

and l)J
0
+ E\jJ l must be regular at the origin. The soluti on v.Jith the ap­

propriate angular dependence can be written 

Outside the core the stream function must satisfy 

(3.2. 8) 

and the boundary conditions given by equations (3.2.4) and (3.2.6). The 

tangential velociti es must be continuous across the s urface r = R( e) 

giving an additional constraint that 

:r ( \}'o t- t. ~) = - I + E- A Cos t'2.9) oh r=- R(e\. (3. 2. 9) 

The right hand side of this equation follows from the form of the stream 

function in the core given by equat ion (3.2.7). The solut ion to equation 

(3.2.8) satisfying the asymptotic condition (3. 2. 4) and t he continuity 
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condition (3.2. 9) can be written 

The constraint (3.2.6) that t~J0+ Et/J l be zero on r =R f orces the constant 

A to bel, so that 

R < e> = f + f Cos (2.8) . (3.2.11) 

The steady velocity fie ld determined by the stream function from equa­

tion ( 3.2.2) and (3.2.3) is of the form (EUl ' vo+ EVl,O), ~<./here 

(3. 2 .1 2) 

{

- 2.lrs~ (2.9) -For- r<. Rte> 1 

-i: ( r \ ~ .. :l) s~D.8) -toy r 7 f?la) , 
(3. 2. 13) 

r- 2 r Cos (2.a) to"Y r...:. Rt9), 

l ~(,..:,_cr2.. }'t-:z.)c.o.t(2.e) -Ft> .... .-> Rt~). 
( 3. 2 . 14 ) 

The stabi lity of this steady flow field is examined i n the next section . 

3.3 Stabi lity Equations 

The same notation as in Section 2 .3 i s employed. The disturbance 

velocities (u,v,w) and pressure p are added t o t he steady soluti ons and 

the res ulting di sturbed vel ocity and pressure field is r equ i red to 

satisfy the Euler equations, li nearized in tile di sturban ce quantiti es . 

these equations are then written concisely by defining the vector 
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u (~) 
to give the equation, 

where L, M, T, N and N are matrices defined by 

L 

M 

0 

0 

0 0 0 

0 

0 

0 

0 

0 0 0 0 

,_ 'a -£-y i=Vo W .... 0 

J.'i.,. .L- I- '() 

b -r .. vo FVoae 

0 0 

~+ ...L ct- ... f -a/aa 

' 

0 

0 
I- _a 

1= Vo ae 
a;~ c-

-ohr 
; ?J/f)8 

6fdr:: 

0 

(O) +or r ~ Rl6) 1 

T - ( 1- 1/r 2) -fa 2. ( 1- '/t-2.) D 

-2. -(1-'/t-2)~/'39 0 

., 

D 0 - ( 1- Yr 2 ) 'o/aa 
0 0 0 

.fb.,.. 

(3. 3.1) 

(3.3.2) 

(3. 3. 3) 

(3.3.4) 

(3.3.5) 

0 

0 

0 

0 

r? R te), 
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0 

0 

0 

0 

0 

0 

-2i.r~ + 2 %a 
0 

0 

D 

0 

0 

-i(t-~J- ... (1+:4)\'"~4-(1-;4)~ 0 0 0 

2.(1+ .. ~) i(1-!.r-Crt~)r~+(l-t4)fa 0 0 

0 0 (- t(f+i\)rfr 0 
+(f-~+)%e} 

0 0 0 0 

(3.3.6) 

and N is the comp-lex conjugate of N. Notice that the matrices M and L 

are identical to those in Chapter 2. The components of U must be regu­

lar at the origin and tend to zero at infinity. The total velocities, 

(u1+u, v
0
+v1+v ,w) , must be continuous across the disturbed core bound­

ary at 

,_. 
r - R <e) + ~. (3.3.7) 

The axial and time dependence can be separated in equation (3.3.2) 

and the solution written in terms of an expansion in the small parameter 

s by taking the form of the solution as 

(3.3.8) 
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where 

(3.3.9) 

(3.3. 10) 

\.~hen these expressions are substituted into equation (2.3.2). there-

sult can be split into a hierarchy of equations in powers of the 

parameter s. The fir·st two equations in the hierarchy are 

where 

p --
0 
0 
0 

CJ 

0 
0 

0 

I 

and t~0 is the matrix M with 'd/'dz replaced by ik
0

• 

(3.3.11) 

(3.3.13) 

The disturbed core boundary can be expressed in a form consistent 

with the velocities by writing the interface position as 

,.. - R ( e} + ( r r , ik c-+ ~ t.N t 
~D +- C ~ 1 t- • •• ) e • (3.3.14) 

The deflections o
0 

and o1 are functions only of e • 

The condition that the total velocities and pressure be continu-

ous across the core boundary gives constraints on the jumps in the 

values of the disturbance quantities across that surface. To lowes t 
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order in E, the radial and axial disturbance velocities and the distur-

bance pressure are continuous across the interface. This condition on 

the components of U
0

, along with equation (3.3.11), gives the same 

lowest order problem as in Chapter 2. The solutions in the normal azi -

muthal modes are the stable Kelvin waves on a uniform cylindrical vortex, 

given by Kelvin (1880). The frequency w
0 

is determined by the axial 

wave number n. (The expression for w
0 

\'las derived for n =0 i n Section 

1.8 using a different notation.) The Kelvin wave frequencies are the 

roots of the equation 

D, (3.3.15) 

where 

(3.3.16) 

and primes indicate differentiation with respect to the argument. Denote 

the solution to the above for a given k
0 

and n as w(k
0

,n) and the cor­

responding solution for the velocities and pressure by U
0

(n)ein e , then 

the expression for U (n) within an arbitrary multiplicative constant is 
0 
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- i. K~ O<or) 

~~ Kh (k.,r) 

Kn Ckur) 

- *(Wb+ ~2) K, (k.'") 

(3.3.17) 

For the lm-1est order solution consisting of a single azimuthal 

mode, the correction due to the shear has the form 

(3 .4. 1) 

and satisfies the equations 

(3.4. 2) 

(3 . 4.3) 

(3. 4 .4) 
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where f\(n) and N(n) are the matrices ~10 and N \'lith the a;ae replaced 

by in. Equations (3.4.2) and (3.4.4) vlith the appropriate boundary 

conditions have unique solutions ~'/hen w
0 

does not also satisfy the dis ­

persion relation for the n+2 or n-2 azimuthal mode. Equation (3.4.3) 

has a solution only when the r ight hand side of the equation satisfies 

the constraint discussed in Section 2.6; that is, the Fredholm alter-

native is applied. This gives w
1 

directly as 

w == I ' 
(3.4.5) 

where k1 has been taken to be zero and no boundary terms appear. From 

the form of U , u* and T, it can be shown that equation (3.4.5) is 
0 0 

real. Thus shear does not destabilize in this case. 

The argument fails when w
0 

takes values which yield homogeneous 

solutions for both nand n+2. In the last chapter steady helical 

waves were shown to exist as superpositions of the n=+l and n=-1 

modes. These correspond to the critical wave numbers k~m) for which 

w
0
= 0. In this case it is necessary to take U

0 
of the form 

U LB 
0..+1 ol+t) e + 

and examine the solutions for the correction u1 of the f orm 

(3.4.6) 

(3.4. 7) 

Substituting these into equation (3.3.12) and separating in the angul ar 

dependence, the two equations for which nontrivial solutions of th e 
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homogeneous equations exist are 

The forms for U
0

(+1), U
0

(-1) and the adjoint sol utions u;(+l) and u;(-1) 

are given in Section 2 .7. The orthogonality requirements given by 

equations (2.6. 18) and (2 .6. 19) need a te rm due to the matrix T added 

in order to apply to the system above. Define r 11 by 

(3.4.10) 

and L11 , P11 , N_ 11 and B_11 as in Section 2.6, then the orthogonality 

conditions become 

(w,L 11 +-k, P,l- T.,)ct+,- (iN_"+ B.")o._, =o, 

(w,L~~-Ie,81 +T,,)a._, + (i('t,+ B_11)a+,=o, 

where the form of 8_11 has to be determined. Sec tion 2.6 gives 

) 

(3.4.11) 

(3.4.12) 

(3.4.13) 

where the brackets indi cate the jump in the enclosed quantity across the 

interface . The continuity conditions give 

. . \ i. r ~Ju..J 
2 L O.,(-t) + 2 dr ' (3.4.14) 
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(3.4.15) 

where -iu and pare components of U (-1), given in equations (3.3.17). 
0 

Eliminating a+l and a_1 in the real equations (3.4.11) and 

( 3. 4. l 2) gi ves 

(3.4. 16) 

Notice that the wave number corresponding to the fastest growing If/ave 

is not exactly the one for steady v-/aves, but slightly different. If 

k(m) is the critical wave number for the strained vortex, then the 
0 

fastest gr owing waves have 

(m) ~~ 
k. == ko + E --,::) 

fu (3.4.17) 

Hence the effect of the rotational deformation differs f rom the poten-

tial deformation of the strain in the shift in the wave number. The 

values of N_ 11 and B_11 are changed as well, but the shortwave insta­

bility exi sts in a s imilar fa shion to the strained vortex. 
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CHAPTER 4 

FLOW OVER A WING WITH AN ATTACHED FREE VORTEX 

4.1 Introduction 

It was claimed several years ago by W. Kasper that the lift on 

a large aspect ratio wing could be significantly increased, so that 

controlled flight at extremely low fon1ard speed would be poss ible, by 

designing the wing so that there would be an extensive r egion of vortex 

flm•/ over the upper surface. Films demonstrating the possibility were 

shown in 1973 by 0. Sviden and W. Kasper (see Riley 1973) and a popular 

description of the wing has been given by Cox (1973). Sink ra t es were 

reported of 200 fpm at 30 mph and 100 fpm at 20 mph, corres ponding to 

lift/drag ratios of L/D = 13.2 and L/D = 17.6, respec t ively. Ther e is 

noth ·ing unusual about such values at high speeds, but at 20-30 mph they 

appear remarkable, and are presumably concomitant wi th significant 

increases in the lift coefficient without corresponding change in th e 

drag coefficient. 

The fact that the vortices produced by separat ion at sharp leading 

edges can increase the lift on an airfoil is V'lell known for delta wings 

and similar low aspect ratio airfoils, and the re is a fairly extensive 

literature on vortex lift for slender wings (see, for example, Polhamus 

1971). The concept of using the vortices for control has also been dis­

cussed (Landahl and Widnall 1971). 

However, to the bes t of present knowledge t here have been no cal­

culat ions of a s imi l ar nature carried out for hi gh as pect ratio wings , 
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to determine if a free vortex could stand over the wing and increase 

the lift. There have been studies of two-dimensional flovJ past 

cylinders and flat plates \'lith a pair of counter rotating line vor­

tices lying dm-1nstream symmetrically and at res t relative to the body. 

(For references and corrections of earlier errors, see Smith and 

Clark 1975). These calculations are relevant to the slender body 

theory of flow over delta \·lings. But although it is obvious that, par­

ticularly at high angles of attack, leading edge separation will pro­

duce vortices and increase lift on a wing of large aspect ratio, it 

has not been possible to find r eferences to flow past such shapes with 

~ttached free vortices. Perhaps this obvious idea has not been ex­

plored theoretically (or work has been forgotten) because of the as­

sumption that such flows would in practice always be associated with 

large values of the drag, as the flow around the vortex would not 

reattach to the body but form an extensive wake. It should be noted 

in this connection that a prototype "Kasper airfoil" \tJas tested in a 

wind tunnel as a student project (Walton 1974) with discouraging 

results; the lift increased at high angles of attack but so did the 

drag. Nevertheless, the claims of Kasper suggest that it may be pos­

sible to gain the advantages of increased lift by creating a vortex 

over the wing, without necessarily paying the price of increased drag, 

and the purpose of the present chapter is to pres ent a simple ideal­

ized solution des cribing such a flow . 

Cons idered here is the t wo-dimensional flow of an incom pres ­

s ibl e invi scid fluid over a t vw-di me nsional airfoil at angle of attack. 
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For simplicity , t he cal cul ation is first done for a flat plate. A 

method to extend the investigation to the general Joukowski airfoil 

is demonstrated in Section 5.6 . The flow i s assumed to be steady, 

and it is supposed th at th ere i s a line vortex in the flov1 at rest 

relative to the airfoil . The existence of such a solut ion and the 

resulting effects on the lift are investigated in this chapter. 

4.2 Equilibrium of the Free Vortex 

The flow picture is sketched in Figure 4. l . Dimensionless vari-

ab l es will be used exclus ive ly. The airfoil of l ength 2 lies along 

the x-axis from -1 to 1. Th e flow of unit velocity is at angle of 

attack a. There is a line vortex .of strength Kat rest at the point 

(x
0

,y
0

). In addition, there i s a circulation r about the airfoil. We 

use complex vari ab l es, z = x+ iy, and w = <P+ i lf' is the complex paten-

t ia l. Th en w is an anal ytic function of z, with If'= constant on the 

a irfoil and 

-LeX. 
e ~ (4. 2 .1) 

Note that for convenience the circulati on is taken positi ve when in 

the clockwise sense. At this stage , K, r, z
0

= x
0
+ iy

0
, are un knowns. 

There is no loss of generality in suppos i ng 0 ~a~ rr/2. 

The circulation about the ai rfoi l i s referred to as being due to 

a bound vortex. A force must be app li ed to the wing to maintain the 

flow; this is the Kutta li ft and it is perpendicular to the direction 

of flow at i nfinity. Th e vortex at z
0 

is free, i. e., it i s not 
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subjected to any force, and is not produced by inserting a small wing 

at z
0

. The Helmholtz laws require for steady motion that the free vor­

tex be at a stagnation point, i.e., 

0 . (4.2.2) 

However, the presence of the free vortex will affect the force on the 

body, and it follows readily from considerations of the momentum flux 

at infinity or directly from the Blasius formulas that the Kutta lift 

on the vii ng is 

L = K+r. (4.2.3) 

(In dimensional units, multiply by pU, where p density, U = velocity 

of free stream. ) 

If K = 0, the indeterminacy of the picture is removed by imposing 

the Kutta condition at the trailing edge that the velocity be finite 

there. The result is 

r = z 'TT .slln 0( (4.2.4) 

If K 1 0, three further equations can be obtained, giving four in all for 

the four real unknowns, by also imposing a Kutta condition on the leading 

edge and using equation (4.2.2). However, it will be shown in Section 

4.3 that these equations have no so lut ion and that i t is not possible to 

impos e a Kutta condition at both the leading and trailing edges, even 

though in principle there are sufficient degrees of freedom (cf. Smith 

and Clark 1975) . 



-114-

The velocity potential is obtained by mapping the airfoil into the 

unit circle by the transformation 

(4.2 .5 ) 

where (i- l) l/2 
= I i- 11 1/ 2 \vhen z > 1, and the z-plane is cut from -1 

to +l. Then, 

\AI 
I 

+ 2~ ( K + r) .k:J c (4.2.6) 

is an analytic function with the appropriate singularities and satisfying 

the boundary conditions, where s
0 

is the image of z
0

. 

The condition (2 .2 ) that the free vortex be at rest gives, after 

some algebra 

== 0. 

Put s = pei¢ , and break into real and imaginary parts to obtain 
0 

. 3 

cos(~- o<) = 
K e. sc.M.. P<P> 
1T ( (?'2.-1 )(('4-- 2f2

C.Os (24l) -1- 1) ., 

sVtt_(cp- o() = ~ 
f!.4-( It- CllS(2~))-f(r + 3 c.o.sl2{>)) -r2 rp 

<e4-•)Ce4- 2\=~t=-t).,. •) 'f'r (~T.- I) • 

4.3 The Kutta Condition 

(4.2.7) 

(4.2.8) 

(4.2.9) 

In order that the inviscid flow be compatible with thin boundary 

layers on the airfoil surface, the velocity is assumed to be finite at 
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the trailing edge z = 1. This Kutta condition requires that dw 1 dt; = 0 

at s = 1, because of the singularity of the transformation. One real 

equation then results: 
".!. e _, 

Stltt.ci.. = (4.3.1) 

The velocity at the trailing edge is 

V = Cos c< -
t<. ~ t('~-r) .sW..q:, 
1T (~'"+1-2f=~~)"l.. • (4.3.2) 

The physical considerations which led to the Kutta condition will only 

be applicable if V > 0, v1hich is a necessary condition for (3.1) to apply. 

A Kutta condition at the leading edges= -1 gives the real equa-

tion: 

(4.3 . 3) 

It ·is now not hard to verify that equations (4.2.8), (4.2.9), (4.3.1) 

and (4.3.3) have no solution in common. Equations (4.3.1) and (4.3.3) 

are solved for K and r and substituted into (4.2.8) and (4.2.9) to ob-

tai n 

S~ol s~p 
CO'S{<f>-«) 

- . z. 
$tno,.CI{ svx. cP 

c.os t s-Vvt..lq _ ot) • 
(4.3.4) 

This equation obviously has no nontrivial solutions. Hence, there is no 

nontrivial flow field of the type being considered in which a Kutta con-

dition is satisfied at both leading and trailing edges. 
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4.4 The Free Vortex Locus 

The Kutta condition at the trailing edge and the t~·J o equations 

for equilibrium of the free vortex provide three equations for the four 

unknowns K, r, p, ¢. A locus of positions is therefore expected. From 

equations (4.2.8), (4.2.9) and (4.3.1) we obtain 

K = ('"' s: 2<fl Cos t ~- "') lt-..X~ 4-_ 2\2 c.oo; 2+ +I J ' (4 .4 . 1) 

'Tl"{(·H) [ z 2 + . . 1 
J<+f'.:::: f''!.s.;.,.._ '2-1 (~ - 1) Cas+ COS ot +- (.~ + I) SIM. + SIM. Cl( ~ (4.4.2) 

+ 2 .5~ C{ s ~ ~ c.os ~ =- 0 • (4.4 .3) 

This last equation determines for given angle of attack a the locus of 

possible positions of the free vortex. Only real roots of the 

quadratic for p + l/p which are greater than 2 are relevant, as p must 

be real and p > 1. In addition, the condition V > 0 is equivalent t o 

(4. 4.4) 

By inspection, one sees that (4.4 .3) has one positive root for 

p + 1 /p greater than 2 if 0 < ¢ < n/2 or n/2+a < ¢ < Tr. Us ing 

1 and y
0 

1 l/p) sin the closed form X = 2( p+ 1 /p) cos ¢ = - (p ¢, expres-
0 2 

sion for z
0

, K ,f can be v1ritten in terms of¢. The resulting formulas 

are sufficiently complicated to prohibit their use other than for numer-

ical calculations. 
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For small ¢or n - ¢, when the vortex is close to the trailing or 

leading edge, the leading terms in the expansions give 

If I J,3L J.:Z I {,hS"~ )r~ 1 ~+ tf ::;' 2+ 4'f -wn_c.X,, ><o == 1- t'f , Yo::= 2 r T~o( "1' 

5 Y: (4.4 .5) 
K = 2·rr (<p s~o< CDS<>l) 2. , f<:.t-r== 2-rr .s~c{ (1+<?2) 

and (¢ = n - ¢) 

\~hen the free vortex is near the trai 1 i ng edge (¢ « 1) there are 

in addition to the stagnation point on the lower surface near x = 

-cos 2a two more stagnation points on the upper surface near the trail-

ing edge. Thus the solution describes flo~t/ ~vith a small separation 

bubble near the trailing edge. When the free vortex is close to the 

leading edge (¢ << 1), there are also two additional stagnation points, 

but one is on the upper surface and the other is nm·1 on the 1 ower surface. 

The fl0\'1 is going back~vards over the l eading edge, and serves as a mode l 

of the small leading edge separation bubble which can occur, except that 

the oncoming flow is separating before the l eading edge. One can ask if 

extra line vortices could be added to satisfy a Kutta condition at the 

leading edge as well as the trai ling edge, but the algebra quickly be-

comes unmanageable. 

Th e stagnation points are at x = cos e where 
I 

sCrt.(e -«)+ .stM.c<. = 2;(1?.-'lr)[ e+-'lf-2.tos<.e-cp> 

~+ '/1(
1

- Zu:>scp J 
(4.4.7) 
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and the root 8 = 0 is spurious (it is the Kutta condition). For ¢ close 

ton, the additional stagnation points are at 8 = n ± ( ~ tan a) 112. When 

¢ i s close to zero, t hey are at 8 = ¢ ± ~3¢3tan a) 112. 

4.5 Results for the Flat Plate 

In Figure 4.2 the free vortex locations (x
0

,y
0

) are shm·m for a= .1 

and a= n/6 . Th e lift, K + r , is shO\>Jn in Figure 4.3 as a function of y 
0 

for the same angles of attack. The maximum lift occurs when the trailing 

edge is a stagnation point and the condition (4.4.4) is violated. Figure 

4.4 shows the maximum lift plotted against the angle of attack. A finite 

lift is obtained at zero angle of attack. Also sho~m on this figure is 

the lift without the free vortex (2n sin a), and it is clear that large 

increases in the lift can be obtained. 

Th e streamline patterns depend on whether the vortex i s on the 

locus emanating from the trailing edge or on the locus coming from the 

leading edge. In the former case, as the free vortex gets stronger and 

moves away from the v1ing, the angle of attack being constant, the rear­

ward stagnation point on the upper surface moves backward, the forward 

stagnation point on the upper surface moves fontar<;l, giving an increasing 

region of reverse flow, and the stagnation point on the lower s urface 

moves rean'iard. In Figure 4.5 the streamlines for this case are shm•m 

near the limiting flow. This flo~/ pattern is qualitatively similar to 

that reported by Kasper and Walton, who noti ce by means of tufts that 

there is fon,tard flmoJ over the rear part of the \'ling. 

In the case when the free vortex i s on the locus coming from the 

l eading edge, th e stagnation point on th e upper s urface moves rearward 
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and those on the lower surface approach one another, as the free vortex 

gets stronger and moves away from the wing with a kept constant. Even-

· tually, the stagnation points belolf/ the 11ling merge and move off the 

wing, there being subsequently a stagnation point in the flow. Examples 

of these two cases are shmvn in Figure 4.6. This happens before the 

upper stagnation point reaches the trailing edge. 

Figure 4.7 gives a typical plot of q2(= -2p) on the airfoil. The 

case shown is for a ~ n/6 and maximum lift on the trailing edge locus. 

The increased lift is due to additional suction under the vortex and 

near the leading edge. 

Finally, a partial investigation of the stability of the flow is 

presented. Even if the disturbances are restricted to be t wo-dimen-

sional, the stability of the configuration is a nontrivial problem as 

the Kutta condition requires that in unsteady flow a vortex sheet of 

variable strength exists downstream of the wing. However, if the 

Kutta condition is ignored for unsteady flow, and it is supposed that 

the free vortex and bound vortex have the strength K and r , respec-

tively, of the steady state, then the calculation is completely 

straightforward. Th e analysis is novJ described briefly. From the 

complex potential given by (4.2.6), it follows after some algebra that 

the camp lex ve 1 oci ty of the free vortex, u- i v, is given by 

(}..- (.. v. [ 
- (.ol Ja 2. t.cl u< ~l L {I<.~ I")~ i K -~-]/ 1 - e ~ - e - n: ~-·~~ + -n- - 1r s-1

-• <;-t) 
(4.5.1) 

where z:; is the position of the vortex. In the equilib rium positi on , 

z:; = z:;
0 

an d Q( z:;
0
,f

0
) = 0 gives equat ion (4.2.7). 
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If now the vortex is displaced to the point 1:; + ~::;• in the transform 
0 

plane, it can be shown that 

where 

d¢" 
dt 

I -
- a.c; -\- b ~· 

' 
(4.5.2) 

(4.5.3) 

the subscript 0 denotes evaluation at 1:; = ~::; 0 • Equation ( 4.5.2) has solu­

tions proportional to e0 t, where 

2 
CT ( h -r b) cr + bb- 0..~ = 0 . 

It is found that b + b = 0. Hence, there is instability if 

(4.5.4) 

(1_0. > b b . ( 4 . 5. 5) 

If (4.5.5) is not satisfied, linear theory predicts stability, but non-

linear effects may destabilize. 

It i s found that there is a range of values of a and ~ or y
0 

for 

which (4.5.5) is viol ated. The angle of attack a must be less than 

0.137 ( ~ 8°), the vortex must be on the trailing edge locus, and the 

values of~ lie in a range depending on a which includes, however, the 

value for maximum lift. The possible positions for a= 0.1 are shown on 

Figure 4.2. There are no stab l e positions on the leading edge locus. It 

is emphasized that this conclusion of stabi li ty is tentative, and the 

problem nee ds to be and lyzed using the methods developed for unsteady 

\'ling flow. 
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4.6 Vortex above a Joukowski Airfoil 

The locus of possible positions and strengths for a vortex station-

ary in the flow field above an airfoil can also be calculated when th e 

airfoil is the image of the unit circle under some conformal map. For 

the airfoil profile in the z=x+iy plane and the unit circl e in the 

<; = .; + i n plane a class of conformal maps VJhi ch generate the Joukowski 

airfoils are defined by the map z= f( <; ) \vhere 

The parameters T and c give the airfoil thickness and camber. When T and 

care both zero the map generates the flat plate as shown in Figure 4.1. 

When they are nonzero, the flat plate is replaced by an airfoil profile 

with its cusp at z=l. 

The form off( <; ) given by equation (4.6. 1) is not essential in the 

following analysis, but it is a convenient one in the numerical work as 

it generates a range of shapes by varying the two parameters. · I_n general 

f( <; ) is assumed to satisfy several conditions so that the shape has some 

resemblance to an airfoil. The airfoil is directed to the left with the 

cusp placed at z=l. The condition that z=l correspond to <; = 1 on the 

unit circle requires f(l)=l and f'(l)=O. The asymptotic behavior off 

is required in order to determine the complex potential. For the class 

given by (4.6.1), 

(' I A - tX 
t-Ct;) ~ :z: e C ~~ 1!:1- ex>, (4.6. 2) 

where A and x are real. 
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The complex potential for the flml/ outside the airfoil with a 

stream of unit velocity at angle a at i nfi ni ty and a point vortex of 

strength K at z
0

= f( s
0

) has the form 

· I Zt./ L 

WU;) = f-A e-1..c( (t;+ e/t;) + :zn-(K+r).kg ~ 

+ ~~ (.1a1 cc-rJ-_kj c r- /"$0)) , 
(4.6.3) 

where 

o~..' ==- ot..+X (4.6.4) 

and r is the circulation around the wing. The circulation is taken as 

positive in the clockwise direction. 

The free vortex must be located at a stagnation point in the flow 

field. In terms of the complex potential and map given by equations 

(4.6.1) and (4.6.3) the condition that z = f( s ) is a stagnation point 
0 0 . 

can be written 

( 
.dw d~ l.~ 1 ) _ 
d~ d:e.- .2.tT -Ftr;)-tt5'.) - 0 • 

(4.6.5) 

Since the function f( s ) i s analytic at s
0

, the equation above can be re­

duced by substituting the form for w( s ) to give 

(4.6.6) 

The primes on f indicate differentiation with respect to its argument. 

At the trailing edge of the body the flow must go smoothly past the 

cus p. In order to have bounded velocities, the velocity potential must 
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satisfy \11
1 (1) == 0. Thi s gives the expression for the Kutta condition 

as 

A . I 
svnv<. - (4.6.7) 

The veloci~y at the trailing edge must be positive, giving the con-

straint 

(4.6.8) 

The complex equation {4.6.6) and the real equation (4.6.7) give 

three real equations for the four unknowns K, r, ~ 0 and n
0

, where 

~0== s
0
+ in

0
. A locus of solutions satisfying (4.6.8) may exist, de­

pending on the choice qf f(~). In order to devise a general scheme to 

determine . the locus, equation (4.6.7) can be solved for rand there­

sult substituted into equation (4.6.6). The resulting equation can be 

\'Jritten in terms of a canplex valued function G(~0 ,?;0 ;K) as 

o .. 

where 

G + i.A s~Q( 1 

_ ..!. ~ .f 
1

~to)) 
z. 0 f 1tSo) • 

(4.6.9) 

. (4.6.10) 

The value of ~ sati sfying G==O for a given K will gi ve a solution if 
0 

(4.6.8) i s satisfied. 
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The classical wing solution is realized forK= 0 as this re­

quires c:; = 1 and r = 2n Asin( a '). For values of K greater than zero, 
0 

Newton's method can be applied to the complex equation (4.6 .9) to find 

the complex roots \vhich must then satisfy (4.6.8).· Applying Newton's 

method to the complex equation is equivalent to solving the real second 

order system 

-o - ") 

==o 
' 

v1here G=g1+ig2 and the root is c:;
0

= ~0+in0 • The elements of the 

Jacobian matrix can be evaluated by using the identities: 

(4.6.lla) 

(4.6.llb) 

(4.6. 12) 

(4.6.13) 

The initial guess for c:;
0 

is important as there are possibly several solu­

tions in the c:; plane. For the flat plate there are the two loci of 

solutions for sufficie~tly small K, as well as possible roots of G in-

side the unit circle. Only those roots I c:; I > l are of interest. 
0 

A systematic approach to generate the roots begins with K small 

and the initial guess for c:;
0 

near 1 . The solution curve can be evalu­

ated by increasing K in small increments. From the results for the flat 

plate, the leading edge of the airfoil also needs to be examined for a 

second locus of solutions. 

Notice that this method provides a means for investigating the pos­

s ibl e positions for the free vortex, but it does not prove that other 
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possible positions do not exist. 

4.7 Airfoil Results 

Two example profiles are presented here in order to demonstrate 

some of the similarities and differences between the possible positions 

of a free vortex above a flat plate and an airfoil profile with nonzero 

thickness and camber. 

For the first example the map parameters are taken as T = .05 and 

c = .07. The resulting profile and loci of possible vortex positions 

are shown in Figure 4~8 for the airfoil at angles of attack of . 1 and 

rr/6. In each case the lift increases for positions along the curves 

moving away from the airfoil. Th e maximumvalues of the lift, K+f, 

and the lift for the airfoil with no free vortex are given in Table 4.1 

along with those values for the flat plate . 

No·Free Vortex Trailing ·Locus Leading Locus 

(T,c) a=O. 1 a=rr/6 a=O. l a~rr/6 a=O .l a=rr/6 

Plate (0,0) 0.6 3. l 5.5 5. 2 12.5 23.3 
(.05,.07) l.l 3.7 4.2 4.6 13.5 24.4 

(.13,.14) 1.6 4.3 3.4 15 . 1 26.1 

Table 4.1 Maximum value of. the lift, K+f, for the flat pl ate and the 
two example airfoil profiles 

Notice that the valu es of the maximum lift on the trailing loci have 

decreased from the values for the flat plate, even though the values of 

th e li ft wi thout the free vortex are l arge r. On t he l eading loci the 

maximum lifts are s li ghtly larger for the airfoil. 
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The two trailing loci do not extend to the trailing edge~ As 

the free vortex strength K is decreased to zero from the value for the 

vortex farthest from the airfoil, the trailing edge velocity first 

increases, then decreases to negative values as the vortex i s moved 

close to the point z= l. The velocity V does not approach the value of 

the trailing velocity for the airfoil in the absence of the free vortex 

asK tends to zero. This behavior differs from the flat plate, where 

the trailing edge velocity is well behaved and increases to the limiting 

value for the plate without the vortex as K tends to zero. The lower 

limit on the trailing edge locus for a=.l is not apparent in Figure 4.8 

because it lies very close to the trailing edge. For a= . 1 the closest 

point to the trailing edge has x = .9996 andy= .0004 and for a =rr/6 

the closest point has x = .987 andy = .013. 

The second example uses the map parameters T=. l3 and c=.l4. The 

airfoil profile and loci of positions for th e free vortex are shown in 

Figure 4.9 for angles of attack of . 1 and rr/6. As in the first example 

the trailing edge velocity is negative when the free vortex is near the 

trailing edge. For a=. 1 the trailing locus gives a curve segment dis­

joint from the ai rfoi 1 and for a= rr/5 there are no points on the curve 

extending from the trailing edge \'lhich give a positive velocity V. 

Hence for a=rr /6 there is only the leading locus of solutions. The maxi­

mum . values of the li ft corresponding to these solut ions are given in 

Table 4.1, along with the lift in the absence of the free vortex. When 

a trailing locus ex ists , the lift is increased as a result of the free 

vortex , but t he maxi mum li ft i s l ess than that corresponding to the f l at 
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plate. On the leading loci the maximum lift increases as the Kutta lift 

for the airfoil without the free vortex increases. 
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CHAPTER 5 

TRAJECTORIES OF AN IDEAL VORTEX PAIR NEAR AN ORIFICE 

5.1 Introduction 

Experimental work with vortex pairs, such as that by Barker and 

Crow (1977) and others, raises questions about the effect of the geo­

metric shape of the apparatus on the trajectories of the 1 i ne vortices, 

since the initial motion of the vortex pair depends on the proximity 

of the walls. To provide some information on this matter, the ideal­

ized case. of two-dimensional potential flow produced by a pair of point 

vortices in the presence of boundaries is calculated. A qualitative 

estimate of the effects of geometry on the trajectories of the vortices 

is obtained in this way. 

In addition, the calculation of the vortex pair gives a rough ap­

proximation of the behavior of a vortex ring formed near solid bound­

aries, the solution of this problem for even an idealized axisymmetric 

ring being a much more difficult calculation. 

The trajectory of a single vortex has been calculated by Paul 

(1934), Routh (1881), and others in various geometries, using the 

"Routh Streamfunction". Although the symmetry of the vortex pair re­

duces our problem to one with a single vortex, the resulting geometries 

are more complicated than those handled by the above. 

The method introduced by Routh, and later generalized by Lin 

(1943), calculates the equatiQn for the trajectory of a vortex in a 

simple geometry, and using a conformal map and the "velocity of trans­

formation" evaluates the trajectory in the mapped geometry. 
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The present work covers two wall geometries in detail and com­

ments on the more general geometry that includes the first two as limit­

ing cases (see Figure 5.1). The first case is a semi -infinite horizontal 

channel of width 2L cut into an infinite vertical wall. In the second 

case the channel walls are of negliglble thickness and are represented 

by t\--10 semi-infinite parallel plates, separated by distance 2L. These 

two geometries are the extremes of the more general case of the parallel 

channel cut into a wall ~·1hich angles away from the opening. The similar 

geometry consisting of a gap of width 2L in an infinite vertical wall 

is considered by Karv1eit (1975), and his results are quoted in Section 

5.4. In all cases the line vortices are parallel to the channel open­

ing and placed symmetrically about the centerline through the opening. 

The vortices are directed as if they were formed by the roll up of vor­

tex sheets formed ~vhen fluid passes impulsively through the opening; 

hence the lower vortex has positive (counterclockwise) vorticity and 

the upper one negative (clockwise) vorticity. Reversal of the strengths 

just reverses the direction of motion. In the absence of any boundaries 

the vortex pair would travel to the left at a constant velocity. 

5.2 Calculation of the Velocity and Trajectory 

From symmetry, the line passing between the vortices and bisect­

ing the channel is a streamline and can be replaced by a wall, reducing 

the problem to one with a singl e vortex. Fix a coordinate axis by 

placing the origin at the lower edge of th e opening in a Cartesian (x,y) 

coordinate system and taking the centerline (st reamline ) wall to be the 

line y = L. The channel wal l i s the x > 0 axis. 
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In each case, the Schwarz-Christoffel mapping theorem gives a 

map taking the walls in the complex z plane (z = x + iy) to the ~ axis 

in the complex~ plane(~= ~ + i n ), with the interior region in the z 

plane mapped into the region n > 0. Denote such a map by z = f(~); 

then f is analytic for Im(s) > 0. 

The vortex trajectory is the curve on which the "Routh Streamfunc-

tion" or trajectory function is a constant . For the motiol") of the vortex 

of strength K in the ~ plane, the trajectory function is given by 

(5.2.1) 

Routh's result is that the trajectory function for motion of the vortex 

in the z plane is 

(5 . 2.2) 

The trajectory curves in the z plane are then the images of the curves 

(5 . 2.3) 

under the map z = f( ~ ). 

In order to evaluate the time development of a trajectory it is 

necessary to determine the velocity along the path. The velocity com­

ponents (u,v) of the vortex can be calculated from the trajectory 

fun ction by the relationships 

(5.2.4) , 
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Combining the velocity components to form the conjugate of the complex 

velocity simplifies the calculation. The velocity components for a 

vortex at the position z
0 

= f(s
0

) are given by 

U..- LV - (5.2.5) 

The images of the trajectories in the s plane are given by the 

solution curves s
0
(t) of the equation 

(5.2.6) 

This differential equation can be integrated numerically (and for 

some simple cases analytically) as an initial value problem, along with 

z = f(s), to give the vortex trajectories. Note that the parameter L 

acts as a length scale and K/L scales the velocities, hence L and K 

do not affect the shapes of the trajectories. 

5.3 Results 

CASE I: In the z plane the lower channel wall lies on y = 0, x > 0, 

the vertical wall on y < 0, x = 0, and the centerline wall on y = L. 

The Schwarz-Christoffel transformation yields the map from the s plane 

(5 . 3.1) 

and the image of the vortex trajectories in the mapped s plane is de-

scribed by 

?·/(s2+ ;z'2.J Yz. 
(~-1)2+ 172. (5.-3.2) 
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or the so lutions of 

d~ _ ~7TK(~+I ~-1) ~ 
dt - L 4~ -t- e;-; 1~1 (5.3.3) 

Some of the possible vortex paths are shown in Figure 5.2. The differential 

equation is used to generate the trajectori es in order to give the time 

increments. An Adam-Moulton predictor-corrector scheme using the Runge-

Kutta-Gill method as a start and restart scheme is used to carry out 

the numerical integration. We set K = L = 1, and the integration step 

length was varied to maintain the local relative error at less than 

0.5 X 10- 4. 

If the vortex pair starts too close to the vertical wall, then it 

will not travel away from the t·Jall, but into the channel . In some tra-

jectories the vortices pass through the opening, but then turn back out 

of the channel. The di vi ding trajectory, corresponding to the curve 

with C = l in the s plane, originally asymptotes x = .-L/rr and finally 

asymptotes y = L/2 in the channe l. It crosses the x axis at x = -0.28L. 

CASE II: In the z plane the lower channel wall is a plate on y = 0 for 

x > 0. The centerline wall is on y = L. The mqp from the s plane is 

defined by 

(5.3.4) 

In th e s plane the images of the trajectories are the curves 

c ') (5. 3.5) 
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for constant C, or the solutions of 

(5. 3.6) 

Some of the trajectori es are shown in Figure 5.3. 

The trajectories are similar to those in Case I. For some ini-

ti al positions the vortices will travel into the channel and then turn 

back out. The dividing trajectory for vortices traveling down the 

channel originally asymptotes y = -L/n and finally asymptotes y = L/2 

in the channel. The distances from the wa ll s to the asymptotes are the 

same as in Case I. The dividing trajectory crosses the x axis at 

X = -:0.20L. 

CASE III: In the z plane, the lower channel wall li es on y = 0, x > 0 

and the centerline wall on y = L. The angling wall lies on 

z = r exp(in(l+B)) for r > 0 and fixed (3 . The range of (3 considered 

here i s}~ B ~ 1. Case I is forB=} and Case II forB= 1. Th e 

Schwarz-Christoffel transformation yields the map from the s plane 

(5.3. 7) 

The tmage of the vortex trajectori es in th e mapped ~ plane are the 

curves 

(5.3: 8) 

for some constant C. 



-
--

--
-

~-
-·-

···-
·-

--
--

-
--
-
-

y 
=

 L
 

/ 

I 

/ 
/ 

__
__

__
_ _

,... .
. -
-

· 
,.,

. 
-
-

L
/2

 

L/
17

" 
~
 -
--

-·-
--

.-
--

-

Fi
gu

re
 5

.3
 

Th
e 

li
m

it
in

g 
tr

aj
ec

to
ry

 a
nd

 t
yp

ic
al

 
tr

aj
ec

to
ri

es
 f

or
 c

as
e 

II
. 

Th
e 

do
ts

 
al

on
g 

th
e 

tr
aj

ec
to

ry
 a

re
 p

la
ce

d 
at

 t
im

e 
in

cr
em

en
ts

 
of

 L
2/

K
. 

Th
e 

cu
rv

es
 a

re
 t

he
 

tr
aj

ec
to

ri
es

 
of

 o
ne

 o
f 

th
e 

vo
rt

ic
es

 o
f 

th
e 

pa
ir

. 

I __
. 

+=
:> 

U
1

 
I 



-146-

The nature of the trajectories are the same as in the first tvvo 

cases, and although the map cannot be explicitly integrated in elemen­

tary terms, the asympto t es of the di vi ding streamline can be determined. 

Since a single vortex in an infinite channel will travel in the direction 

opposite when placed in the top half rather than in the bottom half of 

the channel, the limiting trajectory will asymptote to L/2. In the s 

plane this corresponds to a curve on which s + l with the restriction 

l__:__t ++0 Substituting this into the equation for the trajectory 
n 

above and taking the limit gives the image of the limiting trajectory 

as the curve with C = l. Taking the limit as n + - oo and mapping the 

resulting asymptotic value of s to the z plane, it is found that the 

curve originally asymptotes to the line traced by z = (r -il/n)exp in(l+S) 

for r ->- +oo . This line is parallel to the angling wall and separated by 

a distan ce L/n , which is therefore independent of the wall angle. 

5.4 Comments on Applications 

For vortex rings generated by p~shing fluid out of a tube with 

a piston, the initial position of the vortex ring can be varied by 

changing the piston s troke length . In the experiments of Didden (1977), 

using a thin walled tube enclosing the pi s ton, the vortex ring formed 

by a s hort stroke length shrinks down to a diameter of less than the 

tube opening . For longer stroke the ring propagates away VJith close to 

a constant diameter and if the stroke is suffici ently long, more than a 

single ring is formed. 

When attempting to gen erate s ingle rings with a small r atio of 

the core r adius to the ring r adius, the initi al pos ition of th e ring 
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must be far enough from the apparatus that the ring travels without the 

shrinking. An estimate of the effect of the apparatus shape on the 

ring diameter can be obtained from the results of the previous section 

and Karweit (1975). For the first two geometries in Figure 5.1 and 

the gap in the vertical wall considered by KaY'\veit, the critical tra­

jectories divide the possible initial positions of the vortex ring into 

two regions. On the apparatus side of these curves the vortex ring is 

not expected to propagate away. The possib1e initial positions for the 

vortex ring form a curve extending outward from the edge of the appara­

tus and curving away from the center line. The smaller the distance at 

which the initial curve crosses the dividing trajectory, the better 

the geometry for producing rings which trave 1 av1ay from the apparatus 

~·lith little change in the diameter. In the case of Karweit and the 

second case in Section 5.3 , that distance is greater than .28L. For the 

first case in Section 5.3, the thin walled tube, the distance is less 

than .20L, making it the preferab1e geometry. 
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CHAPTER 6 

Structure of a linear array of hollow vortices 
of finite cross-section 

By G. R. BAKER, P. G . SAFFMAN AND J. S. SHEFFIELD 
Applied Mathematics, California Institute of Technology, Pasadena 

Free-streamline theory is employed to construct an exact steady solution for a 
linear array of hollow, or stagnant cored, vortices in an inviscid incompressible 
fluid. If each vortex has area A and the separation is L, there are two possible 
shapes if A~/L is less than a critical value 0·38 and none if it is larger. The stability 
of the shapes to two-dimensional, periodic and symmetric disturbances is con­
sidered for hollow vortices. The more deformed of the two possible shapes is 
found to be unstable while the less deformed shape is stable. 

1. Introduction 
The recent observations by Brown & Roshko (1974) of organized vortex 

structures in the turbulent mixing layer have rekindled interest in the hydro­
dynamics of arrays of parallel line vortices. Moore & Saffman (1975) argued that 
the spacing of the vortex structures was controlled by the fact that there is an 
upper limit on the line density of a linear array of vortices of finite cross-section 
in non-viscous incompressible flow. When the vortices come too close, the induced 
straining fields are too intense for the individual vortices to exist in a steady state. 
However, they restricted their analysis to uniform vortices with constant vor­
ticity in the cores, and the critical density or spacing was determined by an 
approximate argument (which was however supported by numerical work) 
because exact analysis was too hard. 

It turns out that if the vortex cores are hollow or stagnant, so that the vorticity 
is concentrated into vortex sheets on the surfaces of the vortices, then the prob­
lem can be solved exactly by the free-streamline theory of inviscid, incom­
pressible, two-dimensional flow, and the purpose of this paper is to present the 
calculation as a contribution to the theory of vortices. vVe see no direct physical 
application of the results, but similar calculations for two-dimensional arrays 
may be of interest in the t heory of uniformly rotating superfluid helium, and the 
exact results provide a means of checking the approximate argument of Moore & 
Saffman. A similar calculation was carried out (before the present work was 
done) by Hill (1975) for a single hollow vortex in a uniform straining field. 
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FIGURE 1. The physical plane for a regular array of vortices with 
fore-and-aft symmetry. 

2. The physical plane 

X 

vVe consider an infinite linear array of identical vortices lying on the x axis 
with centres at nL, n = 0, ± 1, ± 2, . . .. Each vortex is hollow or has a stagnant 
core. In steady flow, constant pressure inside the cores requires that the fluid 
speed has a constant value, q0 say, on the boundary of each vortex. The circula­
tion r about each vortex is related to q0 by 

(2.1) 

where Pis the perimeter of each vortex. 
A t large distances, the array looks like a vortex sheet of strength 2U", where 

Uro = l;rJL. (2.2) 

The array is characterized by the dimensionless ratio 

R= Uoofq0 = tPJL. (2.3) 

We shall calculate a unique steady solution for 0 < R < 1 in which each vortex 
has fore-and-aft symmetry, i .e. is symmetrical about the x axis and the line 
parallel to they axis through its centre. It can be shown (see appendix) that no 
solutions with this symmetry exist for R > 1 and that refle.xional symmetry 
about the centre implies fore-and-aft symmetry. 

The limit R = 0 corresponds to an array of point vortices or a single vortex in 
unbounded fluid, according as the limit is reached by P -+ 0 or L -+ oo. R = 1 
gives a vortex sheet in which each vortex is pulled out longitudinally and squeezed 
sideways to lie along a length L of the x axis. Notice that in the limit R = 1 
and the limit P = 0 the area A of each vortex is zero. 

The deformation of the cores is conveniently measured by PfA!::, which has the 
minimum value of 27Tlfor a circle and becomes large with the eccentricity. vVe are 
interested in how the deformation depends upon the spacing for vortices of given 
size and strength. The area A is a more basic measure of t he size than the peri-
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FIGURE 2. The mappings of the contour ABODE in the physical plane 
into the potential (</J, ifr) plane and hodograph (r,O) plane. 

meter and .A!JL is a dimensionless quantity that specifies the relative spacing of 
the array. The procedure is to calcuhte Pf.Al and .A!JL as functions of R, and 
by eliminating R obtain the deformation in terms of the spacing. 

The physical plane is shown in figure 1. Because of the symmetry it suffices 
to calculate the flow inside the contour .ABODE. Either the direction or magni­
tude of the velocity is known on the contour, and the methods of free-streamline 
theory can therefore be applied by mapping the potential plane into the hodo­
graph plane. 

3. The mappings 
We int roduce the complex variable z = x +iy, the complex potential 

w = ¢> + ilfr, the complex: velocity 

u -iv = dwfdz = qe--io, 

and the hodograph variable 

Q = 1og(q0fq)+ifJ = r+ifJ, say. 

(3.1) 

(3.2) 

The potential and hodograph planes are shown in figure 2. B is a stagnation 
point because of the symmetry. The Schwarz-Christoffel transformations 

ir ir 
w = 

2
7Tiog [(s+ t )!-(s-t)lJ-

4
7Tlog2, (3.3) 

n =-log [{(b -1) (s + 1)}!-{(b + 1)(s -1)}lJ +t log (s -b)+ t log2 (3.4) 

transform the interiors of the contours into the upper half of the s = g + i7J plane, 
withE-+~= -oo, D-+ ~ = -1, G-+ ~ = 1, B-+ g = b, and .A-+~= oo, where 

b = (1 +R4)f2R2• 

The physical plane follows from integrating 

(3.5) 

clz = _!_~~ n = - iRL (s-b)z [{(b-1) (Y 1)}!-{(b 1) (Y -1)}:!]-1 (3.6) 
ds q

0
dse 2h(s2 -1)1 ~+ + ~ · 

The quadrant of the vortex: surface from D to 0 is mapped into the part of 
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R=0·99 

2n~~,--------------------------------------
R=O 

0 0·38 

AijL 

FIGURE 3. Perimeter length as a function of inverse distance between the cores. Variables 
are normalized with Ai. The seven dots on the bottom half of the curve are the values for 
R = 0·1 (0·1) 0·7. 

the real s axis from g = - 1 to g = 1. Making the substitution g = - cos 2i\., we 
find for the parametric equation z = Z(i\.) = X(i\.)+iY(i\.) of the vortex with 
centre at the origin 

X = ~(1 R2) . -1(2Rsini\.) 
21T + Sill 1 + R2 ' 

y = ~(1-R2)sinh-1(2Rcosi\.) (3.7) 
21r 1-R2 ' 

where 0 ~ i\. < 21T gives the complete perimeter. 
The vortex is obviously circular as R-+ 0, and :flattens to the slit 

- tL < x < !L as R -+ 1. 

The perimeter Pis 2RL. The area A is found by numerical integration, which 
gives AfL2 as a function of R. Figure 3 shows a plot of PJA! against A 'it fL. Note 
themaximumvalueofA!JLforavalueR = Rc =l= 0·805. 
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4. Discussion 

For a given value of A~JL, there are either two or no possible steady states. If 
hollow or stagnant-cored vortices of given size are placed in an array such that 
their separation is too small, there is no possible steady state and the vortices 
presumably disintegrate. For the vortex of largest area for given L, the length of 
the major axis is 0·71£ and that of the minor axis is 0·25£. 

A similar, although not identical, behaviour holds for a single hollow vortex 
of area A and circulation r in a uniform irrotational deformation with strain 
r ate e. Hill (1975) has shown that there are either one, two or no steady states 
according as eAjr < 0·03, 0·03 < eAjr < 0·1 or 0·1 < eAjr. Following Moore & 
Saffman (1975), we can estimate the critical value of A~JL for an array from the 
result for a single vortex by putting e == 7T r f6L2 in the critical value for the 
single vortex. This gives an estimate of 0·43 for the critical value of AiJL. The 
exact value is 0· 38, so that the approximate argument of Moore· & Sa:ffman ( 197 5) 
appears to be reasonable. The exact value of PJA~ for the critical vortex is 4·2 for 
the array and 4·5 for the single vortex. 

The existence of two possible configurations of the array suggests that at least 
one of them is unstable, and this should be the most deformed. vVe shall now 
verify this idea, by investigating the linear stability to infinitesimal perturba­
tions of an array of hollow vortices, and demonstrate the existence of a class of 
disturbances to which the array is unstable for R > Rc and stable for R < Rc. 

5. Stability of an array of hollow vortices 
We shall restrict attention here to infinitesimal periodic disturbances with 

reflexional symmetry about the centre of each vortex, which leave the centres 
undisplaced, because our interest lies in the stability to v ariations of shape. 
Stability of the array to disturbances which alter the positions of the vortices, 
i.e. of the type considered by Lamb (1932, § 156) for point vortices, is a matter 
for further study. (The effect of finite core size might have a bearing on the fact 
that Brown & Roshko (1974) did not appear to find the Lamb-type instability.) 

It is sufficient to consider the strip - !L < x < !L, y > 0 and to use as in­
dependent co-ordinates the undisturbed velocity potential and stream function. 
The strip is 0 < ¢ < !r, -oo < 1/f < 0. A deformation of the boundary is de­
scribed by the curve 1/f = 8(¢, t), 

The disturbance to the velocity potential is denoted by <D(¢, 1/f, t). Then 

fJ2<Dfo¢2+o2<f>Jo1fr2 = o, 

<D~o as 1fr~-oo. 

(5.1) 

(5.2) 

(5.3) 

For a hollow vortex, the pressure must be constant on its boundary; this gives a 
dynamic boundary condition 

(5.4) 
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on 0 < ¢ < -}r, ljJ = 0. In addition there is a kinematic condition 

8<!> 1 88 88 
8lfr = q"f8t + 8¢ 

satisfied on the undisturbed vortex. 

(5.5) 

The symmetry requires that the disturbance has period tr in¢. We look for 
normal modes of the form 

co • (47rn¢ ) (47T ) <I>=~ <!>nsm --r- +wt exp r lni1Jr ' (5.6) 

8 co (47rncp ) -~ an cos --y;- + wt , (5.7) 
b- cos {47r¢fr) 

where w is to be found. Inserting (5.6) and (5. 7) into the boundary conditions and 
carrying out some straightforward algebraic manipulations, we obtain the 
recursion relation 

(lnl sinh,B ) 
an+l+ (u+n)2 -2cosh,B an+an-1 = 0, (5.8) 

for -co< n <co, where b = cosh,B, ,8 = -log2R2 and G' = wrf47rq~. The eigen­
values G' are determined by the requirement that an-+ 0 as n-+ ±co. If O" is 
complex, the motion is unstable. 

In the limit ,8 =co, R = 0, the eigenvalues are obviously 

G'=n±l·~n j t, n=±1,±2, . ... (5.9) 

It is easy to verify directly that these are the natural frequencies of a single 
hollow vortex. For ,8 large but not infinite, the eigenvalues can be expanded as 
power series in e-P, and it is found that G' remains real provided that the regular 
perturbation scheme remains valid. 

For smaller ,8, numerical means need to be employed, and the method of 
Laplace (Jeffreys & Jeffreys 1950, p . 486) is convenient. For given ,8, we assume 
a value of O" and calculate a1fa0 and a_1 fa0 as functions of O" such that an-+ 0 
as jnl-+ +co. Substitution into the recursion relation (5.8) for n = 0 gives an 
equation determining O". The details are as follows. For n positive, define 

. * 
a+ = (n+ 1)~ an+leP-1. (5.10) 

" n+2 an 

It can be shown that a:i:; = O(n-2) for large n when an decays as n-+ co. From 
the recursion relation, 

a;t_1 = -1- eP [e-P ( 1 + ~t (1 +ai;)- ( 1 + ~t ( 2 coshfl- (u:n)2 sinhp) r1

• 

(5.11) 

The asymptotic behaviour of a;t gives a starting value from which at(u,p) can 
be calculated numerically. We proceed similarly for the a-n (n > 0), defining 

- (n+ 1):!a_n-l p 1 a = - - ---e-
n n+2 a-n 

(5.12) 
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and calculating a 0 ( 0", (3). Because of the symmetry of the recursion relation 

a0 (0",(3) = a'J"( -0",(3). (5.13) 

The recursion relation for n = 0 gives 

(5.14) 

Since the left-hand side can be found numerically as a function of 0", the roots of 
(5.14) are obtained in a straightforward manner as functions of (3. 

Note that the roots occur in pairs, ± 0". The roots are known for large jl, so 
the procedure is to follow the roots numerically as jJ decreases. The smallest 
positive root 0"1(/l), say, turns out to be the one of interest. As jJ decreases, 0"1 

decreases from 1-1j2t at jJ =co to zero at jJ = 0·434. This value can be found 
analytically as the recursion relation can be solved in closed form (using genera~ 
ting functions) when 0" = 0. For jJlessthan 0·434, equation (5.14) is found to have 
roots with 0"2 < 0, demonstrating that there is an exchange of stabilities. It can 
be shown that the other roots remain real. 

The critical value of fJ at which the array becomes unstable to disturbances of 
the type considered here gives the same value of R, 0·805, as that at which A!JL 
is a maximum, thereby demonstrating that, when there are two possible con­
figurations, the more deformed is unstable to disturbances for which the less 
deformed is stable (cf. Moore & Saffman 1971). 

This work was supported by the U.S. Army Research Office, Durham, under 
contract DAHC 04-75-0-0009. 

Appencllx 
Consider a member of the linear array of hollow or stagnant vortices with the 

geometry as shown in figure 4. We assume periodicity of the array and refiexional 
symmetry only. 

Using the hodograph variable defined by (3.2) we then require that r satisfies 
Laplace's equation in the strip ABODEF and the following boundary conditions: 

r = 0 along OD, 

r has period !T in ¢, 
r "' -log R as !fr --7 -co. 

(A1) 

(A2) 

(A3) 

JVIoreover, we want T to have the correct behaviour at the stagnation points 
Band E. Notingthatdwfdz"' (w-w0 )i at a stagnation point, we can separate out 
the singular behaviour of r at such points by using functions which behave 
locally as required. Including terms ensuring correct asymptotic behaviour and 
without violating (A2), we have 

T = Re { -log 2R - i log (cos 
2
; w + i sinh 

2
; !fr 0) 

- tlog (cos 
2
; w-isinh 

2
; lfro) - ~ iw} +H(¢, lfr), 
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FIGURE 4. Physical and potential planes for an array with refiexional symmetry but not 
necessarily fore-and.a.ft symmetry. !fro is the value of the stream function at the stagnation 
points Band E . 

where H satisfies Laplace's equation and (A2), and is bounded on the strip . 
Clearly 

"" ( . 41Tn¢ 41Tn¢) H = n~o exp(47Tnlfrfr) Ansm-y- +Bncosl." . 

N ow forT to satisfy (A 1) we require An= 0, and hence there is fore-and-aft 
symmetry. Further, 

( 
27T¢ 211ljf ) "" 41Tn¢ 

0 = -log2R-!log cos2 y +sinh2T + ~0 Bncos-y-, 

so that the Bn are all uniquely determined. N ote that for the correct asymptotic 
b ehaviour we require B 0 = 0, and so 

log 2R + .!.Jtr log (cos2 
271¢ + sinh2 

271lfr 0) d¢ = 0. 
r -~ r r 

Writing b = 1 +2sinh2 (2mfr0/r), we find t hat (A4) implies 

b+(b2 -1)! = 1/R2• 

Since b > 1, then R < 1. 
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