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ABSTRACT

Six topics in incompressible, inviscid fluid flow involving
vortex motion are presented. The-stability of the unsteady flow field
due to the vortex filament expanding under the influence of an axial
compression is examined in the first chapter as a possible model of
the vortex bursting observed in aircraft contrails. The filament with
a stagnant core is found to be unstable to axisymmetric disturbances.
For initial disturbances with the form of axisymmetric Kelvin waves,
the filament with a uniformly rotating core is neutrally stable, but
the compression causes the disturbance to undergo a rapid increase in
amplitude. The time at which the increase occurs is, however, later
than the observed bursting times, indicating the bursting phenomenon
is not caused by this type of instability.

In the second and third chapters the stability of a steady vortex
filament deformed by two-dimensional strain and shear flows, respec-
tively, is examined. The steady deformations are in the plane of the
vortex cross-section. Disturbances which deform the filament center-
1ine into a wave which does not propagate along the filament are shown
to be unstable and a method is described to calculate the wave number
and corresponding growth rate of the amplified waves for a general dis-
tribution of vorticity in the vortex core.

In Chapter Four exact solutions are constructed for two-dimen-
sional potential flow over a wing with a free ideal vortex standing
over the wing. The loci of positions of the free vortex are found and

the 1ift is calculated. It is found that the 1ift on the wing can be
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significantly increased by the free vortex.

The two-dimensional trajectories of an ideal vortex pair near an
orifice are calculated in Chapter Five. Three geometries are examined,
and the criteria for the vortices to travel away from the orifice are
determined.

Finally, Chapter Six reproduces completely the paper, ”Strucfure
of a linear array of hollow vortices of finite cross-section," co-authored
with G. R. Baker and P. G. Saffman. Free streamline theory is employed
to construct an exact steady solution for a Tinear array of hollow, or
stagnant cored vortices. If each vortex has area A and the separation
is L, then there are two possible shapes if A]/Z/L is less than 0.38
and none if it is larger. The stability of the shapes to two-dimen-
sional, periodic and symmetric disturbances is considered for hollow
vortices. The more deformed of the two possible shapes is found to be

unstable, while the less deformed shape is stable.
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INTRODUCT ION

This work is presented in six chapters corresponding to the
separate topics considered. With the exception of the third, the chap-
ters are each self contained. The unifying theme is that each chapter
examines some modei of a physical phenomenon in which a major contribu-
tion to the flow is from a vortex, either a three-dimensional filament
or a point vortex or hollow vortex in two dimensions. An incompres-
sible, inviscid fluid with constant density is assumed in all cases.

The first chapter examines the stability of the unsteady flow
field due to a vortex filament expanding under the influence of an
axial compression. The structure of the filament core is either a uni-
form distribution of vorticity or a stagnant core with the vorticity
concentrated on a cylindrical vortex sheet.

In the second and third chapters the stability of steady vartex
filaments is examined, when they are deformed by small two-dimensional
strain and shear flows in the plane of the filament cross-section. The
motivation for examining the two deformations arises from separate
physical phenomena and for that reason they are presented in separate
chapters.

The exact solutions for two-dimensional potential flow over a
wing with a free vortex standing over the wing are constructed in the
fourth chapter. The possible positions of the free vortex and the ef-
fect of the vortex on the 1ift are examined.

Chapter Five makes use of complex variables to examine the tra-

jectories of a pair of point vortices in the geometry modeling the
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apparatus to generate vortex rings or pairs from a piston pushing
fluid out a tube or channel.

Finally, the si*th chapter reproduces in total the paper,
"Structure of a linear array of hollow vortices of finite cross-
section," co-authored with G. R. Baker and P. G. Saffman.® The con-
tributions to the paper from this author are the mappings in Section
6.3, the calculation of the curve in Figure 6.3, and the analysis of

the recursion relation for finite 8 given in Section 6.5.

*
This paper has been published in the Journal of Fluid Mechanics
(1976), volume 74, part 3, pages 469-476.
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CHAPTER 1
BURSTING OF A VORTEX UNDER COMPRESSION

1.1 Introduction

The study of the aircraft wake vortex system has been stimulated
in the last decade by the increase in airport traffic and the introduc-
tion of the jumbo jets and the hazardous wake conditions they can
produce. The vorticity shed from the trailing edge of the wings rolls
up into a pair of counter-rotating trailing vortices. Under calm con-
ditions this sytem remains strong for several miles behind the aircraft
and presents a hazard to lighter aircraft. Chigier (1974) gives a
popular presentation on this phenomenon and its effect on airport traf-
fic. An understanding of the processes leading to the deterioration
of the vortex system is needed in order to help develop means to
accelerate the decay.

Crow (1970) examines the interaction of a pair of parallel Tine
vortices in a perfect fluid, and finds that initially the most unstable
disturbance is that with the center lines of the line vortices deformed
into symmetric sinusoidal curves in planes tilted about 45 degrees from
vertical, as shown in Figure 1.1. This disturbance is followed numeri-
cally by Moore (1972) to the touching of vortex cores. The curved
vortex filaments for the finite amplitude waves remain close to the
linear behavior of Crow's case.

Flight test studies by Chevalier (1973), Tombach (1973) and

others use some tracers such as colored smoke released near the wingtips



Figure 1.1 Section of the trailing vortices deformed by Crow insta-
bility, taken from Crow (1972).
to mark the position of the vortex core. For relatively calm condi-
tions, both Chevalier and Tombach notice two predominant forms for the
disruption of the vortex system. For one form the sinusoidal distur-
bances (Crow instability) grow in amplitude until the vortices link and
form rings. The second form is characterized by an isolated bursting
of the smoke marked vortex core. This second instability cannot arise
in the analysis of Crow or Moore as they do not allow the core radius
to vary along the filament.

The analysis of the stability of a single T1ine vortex is done by
Kelvin (1880). The dispersion relation for waves on the core boundary
is found for a cylindrical vortex core in solid body rotation, sur-
rounded by potential flow. These Kelvin waves are found to be stable

for axisymmetric disturbances. Criteria for the stability of general



s

rotating flows to axisymmetric disturbances are established by
Rayleigh (1916). The flow is unstable if at any distance from the axis
of rotation the circulation decreases outward.

Uberoi, Chow and Narain (1972) extend the stability analysis to
include vortices with axial flow and density discontinuities. Cases in
which the axial flow is discontinuous across the vortex core boundary
are expected to exhibit the Kelvin-Helmholtz instability for vortex
sheets, so that waves in the axial direction are unstable. The effect
of surface tension, rotation and density differences on these unstable
waves are examined by Uberoi, et al.

The experimental work of Sarpkaya (1971) demonstrates the phenom-
enon known as vortex breakdown. A vortex in a diverging cylindrical
duct develops instabilities of several forms. Under some conditions
the dye-marked center line undergoes spiral displacements which agrow
and eventua11y‘1ead to turbulent mixing. Other conditions produce a
near axisymmetric bubble expanding at a stagnation point in the flow.
Downstream from the bubble the vortex appears to have Tost its tignt
structure and decays rapidly. These forms of vortex breakdown are
also seen in Lambourne and Bryer (1961) for vortices formed over a
delta wing at a high angle of attack. The axisymmetric form of vortex
breakdown offers a possible explanation for the bursting seen in trail-
ing vortices. Both are characterized by the rapid growth of the core
in a small section of the vortex.

Hall (1972) gives a discussion of several of the explanations

of the vortex breakdown phenomenon, and proposes a theory combining
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features of some of them. He views the formation of the bubble as a
strongly nonlinear phenomenon in which the flow tends to some critical
state near an axial stagnation point. For sufficiently high swirl
velocities the flow field jumps from a supercritical to a subcritical
state. The distinction between states is that only the subcritical
flow can support standing waves which do not propagate relative to the
jump. The rapid Tocal growth of the core results from the transition.
While no theory for vortex breakdown is widely accepted, numerical
work by Grabowski and Berger (1976) supports Hall's explanation. The
numerical solutions are restricted to axisymmetric flows, modelling
only the bubble form of breakdown.

Vortex breakdown is only a possible explanation for the bursting
phenomenon seen in the aircraft wake vortices. Other mechanisms may be
responsibie for the observed bursting. From the range of phenomena
observed, it seems feasible that bursting could be the result of more
than a single mechanism. Widnall, Bliss and Zalay (1971) state that
in towing tank experiments the bursts occur at the crests on the sinu-
soidally deformed filaments, the points of greatest separation. Scorer
and Davenport (1970) give the location of the bursts as the troughs of
the wave, the points of minfmum separation. The flight experiments of
Tombacn show bursting at positions along the vortex seemingly indepen-
dent of the sinusoidal deformation. The relationship between the core
bursting and the Crow instability is mentioned by Chevalier (1973). He
induces core bursting by producing small oscillations in the angle of

attack. The bursts appear at even intervals along the trailing



vortices, corresponding to the wavelength of the Crow instability.

The effect of the growth of the Crow instability on the vortex
filament may offer some insight into the bursting phenomenon. The
numerical work of Moore (1972) follows the Crow instability to finite
émp]itudes. The two vortex filaments are found to be stretched in the
troughs and compressed at the crests. The amount of compression ovr
extension due to the sinusoidal deformation of the vortices can be es-
timated from Moore's calculation. These estimates neglect axial flow
in the filament, variations in the core radius along the filament, and
variations from the uniform vorticity in the vortex filament, but give
a qualitative description of the deformed filament.

Saffman (1974) suggests the axial coﬁpression of the vortices as
a possible mechanism responsible for the observed bursting. In order
to examine this possibility, Section 1.2 defines a flow field modelling
the compressed section of the vortex and discusses the stability cri-
terion for that model. In Sections 1.3 through 1.6 the stability of
the model is examined for the case with the vorticity concentrated on
a vortex sheet at the core boundary. In Sections 1.7 through 1.9 the

filament core contains constant vorticity.

1.2 Model Problem

As a simplified model of the flow in the deformed vortex filament,
the straight filament with axial compression in an unbounded perfect

fluid can be examined. The eguations of motion governing this system
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are the Euler equations and the equation of continuity. For brevity
the density is put equal to unity. Defire a cylindrical coordinate
system (r,0,z) with the z axis as the center Tine for the vortex fila-
ment. The radial, azimuthal and axial velocities are denoted by U,

V and W for the undisturbed flow. The governing equations for the

velocities and pressure, P, in this system are

Uy Wi - - 2E

3t+Uar"“V'* V 22 ~ T or (1.2.1a)
WV W g 2V 2V 2F
SEtUGR+vUV eV 5+ Wa=-2355 , (1.2.1b)
W Ly PW 2P

AU RV AW = -3 (1.2.1¢)

(1.2.1d)

For the vortex core of radius a, the azimuthal or swirl velocity

is assumed to be of the form

~e

KX,
o nt ‘Pov- r£a
V = .
ST for rwma | {1.2.2)

The two cases to be considered have k = 0 and ¥ = k. The first case,
the stagnant core vortex, has the vorticity concentrated on the vortex
sheet at r = a. The second has constant vorticity in the core and
continuous velocities everywhere. This will be called the uniform

core vortex. The Kelvin circulation theorem requivres that x be con-

stant.
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To model the compression, the flow field with velocities

U=ar and W=-2d=z (1.2.3)

is superimposed on the vortex. The factor a = a(t) is a function of
time, t. In order that the full flow field satisfy the Euler equa-
tions, the core radius, a, must also be a function of time. Substi-

tuting the velocities into the aximuthal momentum equation gives

da
dg — da =0

or, integrating from some initial time,

alt) = a,exp( vgeétt)J'&‘) " (1.2.4)

where 2, is the core radius at the initial time, t,- In the work pre-
sented here, a(t) is taken either as a constant or proportional to t—].
For the case o a constant, it is convenient to take to = 0. The core
radius a(t) is then of the form
ot

B} = A, & . (1.2.5)
The increase in the core radius can be lTimited to algebraic growth by
choosing a compression

wld) = Yt (1.2.6)

9

where v is a constant. For to = 1, the core radius is defined by the

relation
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v
o(t) = a,t . (1.2.7)

If the above is to model the deformation of the vortex respon-
sible for core bursting, then disturbances on the core boundary should
grow much faster than the expansion given in equations (1.2.5) and
(1.2.7). Waves on the core are expected to grow for sufficiently
large compression, as they cannot escape outward along the filament.
In opposition to these trapped waves, the rotation of the vortex core
(for the uniform core vortex) tends to have a stabilizing effect.

The growth of disturbance along the vortex filament can be ana-

lyzed by adding an infinitesimal disturbance to the exact solution for
the velocities and pressure and substituting into the equations of
motion. Retaining only terms linear in the disturbance gquantities
gives the equations for the linearized stability of the compressed
vortex. In some regions the undisturbed flow field is described by
potential flow. The disturbance can be expressed as a velocity poten-
tial in these regions. The length scale of the system is increasing,
so that some care must be taken in dafining stability. For steady
flows, stability to infinitesimal disturbances is determined by the
growth or decay of the initial disturbance. Moore and Griffith-Jones
(1974) examine the two-dimensional stability of an expanding cylindrical
vortex sheet. They initially choose to define stability by requiring
that disturbances to the sheet remain bounded, but modify the interpre-
tation by noting that for algebraic growth, initiaily small distur-
bances remain small over the time scale of an experiment. The expan-

sion at which the growth rate of disturbances changes from exponential
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to algebraic is the stability boundary for their problem.
A similar approach to the definition is used here. The deflection
of the vortex core radius seems an appropriate quantity on which to base
the stability analysis. The disturbed core radius, R(8,z,t), can be

written as

Ree,=,t) = att)(wg(e,z,t;). (1.2.8)

The deflection function § gives a measure for the stability. If §
decreases in time, the system will be considered stable, even when the
product a(t)§ increases.

The existence of unstable solutions is not sufficient to demon-
strate that the compressed vortex models the bursting phenomenon. The
disturbance must grow rapidly on a time scale comparable with the Tink-
ing of the pair of trailing vortices. The calculation of finite ampli-
tude waves on the pair of vortex filaments by Moore (1972) gives
estimates for the parameters in the model. These values are used to
examine the behavior of the deflection, § . The disturbances considered
are often restricted to be axisymmetric, as this simplification appears

physically justified from the observed bursting.

1.3 Stagnant Core Vortex

The disturbance velocities and pressure for the compressed stag-
nant core vortex can be written in terms of a velocity potential in the
core region and outside the core. This simplification to the stability

analysis arises from the constraint that the vorticity is non-zero only
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on the cylindrical vortex sheet at the core boundary. If R(8,z,t) is
the core radius, then the equations describing the behavior of the dis-

turbance velocity potential & are

= O for r< R,
{1.9.1)
o

‘FOY‘ P>R’

\
y =

vZ
2
\V4

-1 -0

where the subscript 1 is used to denote quantities defined in the core
region and the subscript 2 outside the core. The disturbance poten-
tials must satisfy the conditions that 52 tends to zero far from the
vortex and 51 is bounded at the core center.

- The vortex sheet must move as a material surface. This con-

straint gives the kinematic condition for the position of the sheet,

TDP{(‘,.__R) i on \—=R X | (]32)

where D/Dt is the material derivative. Substituting the velocities
given in equations (1.2.2) and (1.2.3) and the form of the core radius
given in equation (1.2.8) into the kinematic sheet condition gives two
equations for the motion of the sheet. Linearized stability theory
dictates that only terms linear in the disturbance quantities be re-
tained and all quantities be evaluated at the undisturbed position of
the sheet. The resulting pair of equations for the kinematic sheet
condition in terms of the deflection, & , and disturbance potentials,

¢] and 52, are
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2§ 2§ . 2%
2% "2AZ 3z T B v,
25 k2% 28 2% (1.3.3)
7t T iva: 28 " LHEE T v .

A second constraint on the vortex sheet position is the dynamic
condition that the pressure be continuous across the sheet. The discon-
tinuity of the swirl velocity that accounts for the vortex sheet
creates pressure deviations when the sheet is deformed, which must be
balanced by the disturbance pressures due to the velocity potentials.

The change in the pressure across the sheet due to the deflection is

2 ~
RB(R-PRY = — £ (g7a) (( l+$)°- l) ) (1.3.4)

The disturbance pressure, p, due to the disturbed velocity potential
can be written from Bernoulli's integral, linearized in the disturbance

quantities,

~

ﬁ_u’gé_évggﬁw%f , (1.3.5)

P = T3¢
where U, V and W are the undisturbed velocities and the subscripts 1
and 2 both abp]y. The continuity of pressure across the sheet requires

the disturbance pressure to satisfy

Pompr =~ 5" S on the sheet (1.3.6)

Substituting the form of p from equation (1.3.5) into the above end
5 v the kinematic sheet condition to simplify the resulting expression

yields the dynamic sheet condition
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The axial and azimuthal dependence can each be separated from the
equation by examining the growth of normal modes of the initial condi-

tions. The form of the potentials and deflection can be written as

2

= ¢,(rb exp(£h2+in9) .
= (}J,_(i’,t) exp(f:hz +ins),
= Sl ex,o(ika-l- Lhe) ,

(1.3.8)

ol 8 B~

where n is an integer and k = k(t) is a function of time. The form for
the time dependent wave number in order that the axial dependence separ-

ates 1is

3
kit) =k, e;(p(zf;ocu:)ch) , (1.3.9)

where k0 is the initial crucial wave number. Allowing k to bhe time

dependent 1is equivalent to replacing z by a new variable,

g — kg}/ko , (1.3.10)

and separating the dependence on ¢ .

Since the disturbance velocity potentials satisfied Laplace's

.equation, both ¢, and ¢, satisfy
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LB - (R =0 (.3.1)

and the radial dependence is determined by invoking the conditions at
infinity and the origin. The solutions to equation (1.3.11) are the

modi fied Bessel functions, In and Kn, giving potentials of the form

4), = A, 5 I,(kr),
(?2 Az(t) Kh (h\') 7

where A] and A2 need be determined from the sheet conditions.

(1.3.12)

1)

Substituting for %1, 52 and & in the kinematic and dynamic condi-
tions on the sheet (equations (1.3.7) and (1.3.3)) gives a set of
three ordinary differential equations for the functions A1, AZ and § .
These can be written as

/
f}%_ %‘Ih(kﬂ)Al = Oq

B-kKl ) A, - inQS§ =0,
j’;(A,I,,(ha- AZK,“M@L:‘; in QK e A, SRR

= {tha-0)Qa§,

where the primes indicate differentiation with respect to the argu-

ments and © is the maximum rotational velocity defined by

K
_Q — er'ra.z- (]-3.]4‘)

Eliminating AT and A2 in the above gives a single ordinary dif-

ferential equation for &(t). This equation can be written as



v
%-{-*g + p&)j-g + aL(f’:)s =3 (1.3.15)
where

I.,K K o : K:In"

ple) = —ot- Baka’ ( K “I", )
"Zihﬂk“'IIK (1.3.16)

glH = -0 Bl ) M . 3Mnha1,,(&<
FRa KKS/g) — kaky)

and the argument of the modified Bessel functions is always ka.

The equation for axisymmetric disturbances (n=0) reduces to

Jis [2"‘ Betha ( 1,° )]At RIS = o (1.3.17)
Even for this simple case, an exact solution is not found. The equation
needs to be examined further.

For the limiting case of zero compression, equation (1.3.17) has
constant coefficients and can be solved. These solutions are discussed
in the next section.

The asymptotic behavior of the solutions to equation (1.3.17) for
large time can be determinad using the WKBJ method. If strongly un-
stable solutions exist, they should demonstrate appropriate asymptotic
growth. This analysis is contained in Section 1.5.

The estimates of the size of m/QO (where QO is the initial value
of the maximum rotation rate, Q) for constant compression suggest

examining the solution for a/QO << 1. The stability problem is
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formulated in terms of a variational principle in Section 1.6, and
approximations to the solution found for small a/QO.

In Section 1.7 the results of 1ntegratin§ equation (1.3.17)
numerically are given for the case of constant compression. The
growth of the solutions for the small compression can be compared
with the values from Section 1.6. The dependence of the asymptotic
solutions found in Section 1.5 on the initial parameters is also ex-

amined by the numerical integration.

1.4 Undeformed Stagnant Core

_Before trying to examine the stability of the compressed stag-
nant core vortex deformed by a small compression, the solution in the
limit of zerc compression should be determined. The governing equa-

tion for o = 0 is deduced from equaticn (1.3.15) to be

on

2
d - t, d% "JL RO TR . )
gz r2nQkal K, 57 ~ O kd T, (K+Z K =0, (1.4.1)
where k, a and 2 are constants and the argument of the modified Bessel
function is ka. Substituting the expression
rwt

Sty = §, e (1.4.2)
into the differential equation gives the dispersion relation for waves
on the vortex sheet in terms of the dimensionless axial wave number,
ka, the azimuthal wave number, n, and the dimensionless frequency,

- w/f. The dispersion relation is a quadratic equation in the frequency

of the form
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(2]~ 2 nka Tk, (5)
+ Rt T, (K\:*Ff;th) = Q (1.4.3)

and the sign of the imaginary part of the solution for w/Q determines
stability. The coefficients of equation (1.4.3) are real, so the
pair of roots must be complex conjugates if the imaginary part is to
be non-zero. The resulting criterion for stability is that the roots
of the dispersion relation be real. Substituting the coefficients

into the quadratic formula gives the relation

...‘f:‘_.__ k ( WL 2 ’!2"
o = ~ka(nz [LK, (n*LK,~D) ) (1.4.2)

Since Ir'] and —Klil are positive for real positive ka, the solutions are

unstable for axial and azimuthal wave numbers satisfying

I(ea) K, (ka) > '/n?, (1.4.5)

These solutions grow exponentially with the amplification rate given -
by the imaginary part in equation (1.4.4).

In order to determine the nature of the stability boundary
given in terms of the modified Bessel functions, examine the Tong and

short axial wave Timits,

T, (k) K, () ~ ‘Y21 as ka—so (1.4.6)
T, (hay K, (k) ~ VQka. as ka-sco . (1.4.7)

For two-dimensional disturbances the stability is given by the ka = 0



s (W

1imit. Combining equations (1.4.5) and (1.4.6) determines that the
two-dimensional waves are unstable for the azimuthal wave numbers,
n> 3. For sufficiently large axial wave number, the solutions are
stable for a given value of n. Similarly, for a fixed value of ka,
solutions are unstable for sufficiently large n. In general, for a
fixed n > 3 there is a critical axial wave number, ka*, at which
there is a change of stability. As a function of n, the critical
axial wave number increases as n increases. The first few values of
ka*, calculated numerically from equation (1.4.5) are given in Table

1.1 below:

Table 1.1

n 3 4 <t 6 7 8 9 10

ka* 3.33 6.93 11.5 7.0 235 31.0 39.5 49.0

Using an asymptotic expansion for large n in the modified Bessel func-

tions, the critical axial wave number can be approximated by

: 3 :
ki¥tm ~ n (5 =D"  for n lage. (1.4.8)

Disturbances are unstable for ka < ka*(n) and n > 3, and stable other-
wise.

The axisymmetric disturbance waves along the stagnant core are
stable for all wave numbers. The effect of the compression on these

stable waves is investigated in the next three sections.
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1.5 Asymptotic Behavior for Stagnant Core

Even though the asymptotic behavior of the deflection does not
give exact information about the initial growth, it can help to point
out the stable and unstable disturbances. The procedure is to con-
sider disturbances, which grow asymptotically faster than the undis-
turbed core radius, as unstable. The analysis preseﬁted here is re-
stricted to axisymmetric disturbénces. The algebra involved for the
higher modes is lengthy to present, and since the procedure is iden-
tical, only results will be given.

For constant compression o , the asymptotic behavior of the
scaled amplitude & 1is determined by the WKBJ method. Equation
(1.3.17) describing the behavior of §, is transposed into the standard

form by defining the scaled function

F(a:Q(I.KJE Se) | (1.5.1)

where the argument of the modified Bessel functions is the time depen-

dent, nondimensional wave number, ka. The eguation for the growth of

T is
2
44 A
TiE T %Lﬂ{:—‘ o, (1.5.2)
where

T, Ka

%(1’:) = -k TK - 2 (3, - K,

o 2
nKo I K"
,_.qcez aa2(|+5':%—?-—--3_—(fz+?z?)) (1.5.3)
t t U -
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For a positive, ka grows like e3&t and Q is proportional to e

2ot

By substituting the asymptotic behavior of the Bessel functions into
equation (1.5.3) and retaining only the Teading two orders, the coef-
ficient q(t) is shown to be bounded, and

-Gat)

Zi‘m = % — + ke + O[€ s Eovan, (1.5.4)

The WKBJ approximation applied to equation (1.5.2) gives the

asymptotic form for f(t) as

£ty ~ Cam‘ta.n’t-l%—i exi,(f?fc!t) 35 B B3, (1.5.5)

The behavior of a, f and the modified Bessel functions for large time,
t, substituted into equation (1.5.1), give the asymptotic behavior of
the deflection, §. The dominant term in the expansion,

1
Bi#) =~ wnglit e o t=a, (1.5.6)

is unbounded, implying that the stagnant core vortex for constant com-
pression is unstable to axisymmetric disturbances.

For a non-zero azimuthal mode n, the procedure above can be
duplicated with the same result. The amplitude of waves on the vortex
increases like the square of the magnitude of the exponentially increas-
ing core radius, a{t). This amplification is examined on the time

scale of the bursting phenomenon in Section 1.7.
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- For that compression leading to the algebraically expanding
core, the analysis of the asymptotic behavior of the deflection is

facilitated by defining a new function of time, y(t), as

wi dF
y(t) = 0% (1K) .- (1.5.7)

The argument of the modified Bessel functions, ka, increases as t3v.

Combining equations (1.5.7) and (1.3.17) gives the relation between

dy/dt and § as
(1.5.8)

d 4
Z’% +'_Q hza_z = 0,

The small compression values are of interest from physical con-

By limiting the initial compression, o(l) < 1/2, or

siderations.
equivalently, v < 1/2, the time can be replaced by the dimensionless

time, s, using
L5t
S = 12v (1.5.9)

The time dependence of Q(t) = Qot_zv does not affect the direction of
In terms of the new

increasing time for the restricted range of v.

time, the pair of equations for y(s) and &(s) are

gﬂg‘ —_Q-BIIKIY — Dy
:{7_! +ﬂ3kza2 = ) £1.56.1€)

2 is independent of time and allows equations

The coetficient ks
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(1.5.10) to be easily combined into a single squation for y(s), writ-

ten
by 22
a—-}z + ka [ qu = 0. (1.5.11)
The WKBJ method applied to this equation gives the asymptotic
result

L ) &
Y8 ~ constant - (Ra)" exfa(ttfkm(r.!{.) Js) . (1.5.12)

for large values of s. The behavior of §(t) follow directly from equa-

tion (1.5.9) as

2y

<

V2
S(t)'-v Constant- ¢ exp (_"_' ifﬂko. (LK,) c;i) ‘ {1:5.13)

This expression agrees with the bounded wave behavior for the limiting
case of v = 0 given in the previous section. The introduction of the

compression causes the waves to become unstable.

1.6 Small Compression for the Stagnant Core

The initial growth of disturbances to the stagnant core vortex
under constant compression can be determined when the compression is
sufficiently small. In this context small compression means that o is
small compared with the initial maximum rotation, @ = K/Zﬂaz. Define

the parameter e as the ratio

¢ = Vo, (1.6.1)
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then for this section the range of € is 0 < ¢ << 1,

The stable, axisymmetric waves on the stagnant core discussed in
Section 1.4 are the solutions for the 1imit of € = 0. The effect of
€ > 0 on these waves can be investigated by noting that the form of
the wave changes only slightly over a period of the oscillation.
Whitham (1974) demonstrates a method for finding the slowly varying
wave behavior by formulating the problem in terms of a variational
principle. Conservation Taws governing the behavior of the slowly
varying amplitude and phase of the wave are generated from the varia-
tional equations of the averaged Lagrangian.

Define the Lagrangian density, L, by the integrals

L = Ij(j +3(vd) +d'rar- 2oz d)“"g;;;)i'c,k

% 2 , ? K »d, 29, w®
(SR arg B B tee B e, (16.2)
where
d\t ~
Rie,zt) = a,e” + 73,2,1). (1.6.3)

A factor of -p, usually included in formulations in which the pressure
acts as the Lagrangian, is deleted for this calculation. The form of
the disturbed radius is changed slightly from Section 1.3. In terms

of the displacement 3 , the wave amplitude ﬁ satisfies

~

N = af-&)'g. (1.6.4)

The confusion with the variation symbol, § , is also eliminated by using
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n for core deflections.

For the linearized stability equations, only terms in equation
(1.6.2) quadratic in the disturbance quantities need be retained. After
dropping higher order terms, exact derivatives, and constants from the

expanded form, the Lagrangian density is equivalent to

(%
L= % J (Vd))va». + J-Sm(vqu Yrdy
""61.12 [(a-t""’“"a_d‘r ZQEaél)L.a_ g‘n"a_(' Zd.)]
~ an [( ?4” e %ﬁ’ Egé})!?:aé%”‘w "z%)], (1.6.5)

Define the functional J[¢1,¢2,ﬁ] by the integration of L over the

independent variables, that is

J = jff L dedzdt . (1.6.6)

If L is an appropriate Lagrangian density, then setting the variations
of J with respect to Pps ¢2 and n equal to zero should generate the
equations governing the disturbance behavior, in particular, equations
(1.3.1), (1.3.3) and (1.3.7).

The variation in J with respect to P is denoted

535.: §T = JTLd+8,4,,71-T014,4.,71, (1.6.7)

where only terms linear in 6¢] are retained. Integration by parts is
used to eliminate derivatives of 5¢}, and the resulting integrand is
set equal to zero. The variations with respect to ¢2 and n are denoted

in the same fashion.
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In taking the variation with respect to ¢] and ¢2, the following

identity is used:

3 (v(g+ 50 - 2(vd)'= V-(Svd)- SdvY (1.6.8)

where terms O(5¢)2 have been dropped. Taking the variation of J with

respect to ml’ ¢2 and n gives

¢ v for ocrea,
%'- -gi = -—-? ’;zl 2«2-%3 gkt FER g4 (1.6.9)

2¢ =0 for rF>a ,
8, °

# . {1.8.10)
2 2 ~ K 2 )
_Lb_f? = %—9(174.1“&136-2.42523 on v=a ,

Sﬁ: (%*“%%"242%)(152-15) wa’l enr=a, (1.6.11)

These are equivalent to the expressions from Section 1.3.
The solution to the above system for the limiting case of no
compression is given in Section 1.4. The form of the solution for an

initial axial wave number, k, and azimuthal mode, n, is given by

4,' = A, L. (k) cos ($+ns) i
$, = A, Ktﬁ(ier)cos(‘?—l-ha) ,
g = % sn(Yens),

(1.6.12)

where

V= kz — wt (1.6.13)
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and w satisfies the dispersion relation in equation (1.4.4). For «
non-zero, the amplitudes A], AZ’ and n are allowed to vary slowly over
the period of the oscillation. The local axial wave number and fre-

quency, defined by the relations

o
=

2V

and W= "3F , (1.6.14)

\

k=3

e

are also considered slowly varying. The phase ¢ is determined from
equation (1.6.14) and the initial condition.

To find the averaged Lagrangian, .1:, substitute the form of the
¢], ¢2 and n given in equation (1.6.12) into the Lagrangian density L,
then average over one period of the oscillation by integrating in ¢
over an interval of length 2m. After carrying out the integrations of
the modified Bessel functions, the form of the averaged Lagrangian

becomes

L = s[tRa(L, LA - Kk A2 ) +2 Qlan"
s afwi2ekeX T A=K A+ hQakiAm],  (1.6.15)

where Q is the rotational velocity given by equation (1.3.14).
The variational equations for variations in A] and A2 give the

amplitudes of the potentials in terms of the core displacement as

QL ~ [w+2dh2)

Al= kK, o,
1.6.16)
" w+ 22kz (
Ae = = =57

Substituting these into equation (1.6.15) gives the averaged Lagrangian

as
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L = G,y (1.6.17)

where
2 akK
G(w)h): _QZLL2+ (w+2«kz — Q) :'Ki‘
(w4 2akz) Rl - (1.6.18)

The variational equation for variations in n gives the dispersion

relation for the slcwly varying wave

Gtwk) =0 (1.6.19)

or solving for the frequency

w = -2akz+ ka 2 (nL K, + LORL K- NTake T7) . (1.6.20)

The frequency and axial wave number are also related through the

phase ¢ . From equation (1.6.14) they must satisfy

2k 2w
2t + 3z T 9, (1.6.21)

the equation for conservation of wave crests. Substituting for w from

equation (1.6.20) in the above gives a first order wave equation for k,

o

k ? |
2L & ¢y 53 = 2ok (1.6.22)
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where Cg = 28 is the group velocity. If the axial dependence of the

ok
initial condition consists of a single Fourier mode, then the initial

wave number k0 is a constant and the solution to equation (1.6.22) is

2at
kit) = k,e - (1.6.23)

The phase of the slowly varying wave is determined by the axial
wave number, the frequency and the initial phase. Substituting the

solutions for k(t) and w(z,t) into equation (1.6.14) gives

1
Vizty = % +kz — [, Qika (nKaL
&
+-[IHIK|: (hﬂInKh“)‘_]l)‘ltq (1.6.24)

where Uy is the initial phase of the wave.
The variational equation for variations in ¢ gives an equation

for the amplitude n ,

2 /.2%26 2 2G

9’5(1 am) ("? s =6 (1.6.25)
or

224

Pra (72

from taking the partial derivative with respect to k in equation (1.6.19).

) % (o7 Cq L) =o0, (1.6.26)

This can be written as a first order wave equation for the amplitude by

expanding the derivatives and regrouping to get



C) ? 2Ly
5%‘1“1‘6351;3_* -—3.'"[ 2Z
& (26Y"
+[i%+0% e isd) ]”Q : (1.6.27)

Since the wave number is a function of time alone, equations (1.6.19)
and (1.6.18) combine to give

% _ , 51_03( thhKn—l) '/Z’

w ~ ki 2t (1.6.28)

independent of z. For a wave of initial amplitude Ng» composed of a

single Fourier mode, the solution to equation (1.6.27) gives

N aly,
T = %y s & * (1.6.29)
where
PRV,
L Ks
N(t) = (ka ;,“z‘j’:““xh_:) . (1.6.30)

The analysis holds only for w(z,t) real, restricting the initial

dimensionless wave number, koao, to

koo, > ka ) (1.6.31)

where ka*(n) is defined in Section 1.4. Since ka is initially greater
than the critical value and is an increasing function of time, the
denominator in equation (1.6.30) never vanishes. For large n the value
of N(t) is a maximum for ka initially near the stability boundary of
the zero compression problem, As ka increases, N asymptotes 1/2. The
maximum amp1i%1cation rate for the waves with Targe azimuthal mode n

is given by the exponent in equation (1.6.29) to be 70/4.
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For the axisymmetric disturbances, the function N(t) reduces to

Ya
Nty = [ka Ttk Kitkad] (1.6.31)

In the Tong wave Timit, N is asymptotic to (ka)]/q, so that waves are
initially amplified at the rate 5a/2. For increasing ka the rate de-
creases, resulting in the short wave amplification rate of 70/4, as in
the case of large n.

The growth of the waves needs to be compared with the increasing

core radius, aOeat.

By dividing n by a, these results can be compared
with the asymptotic growth given in the last section. For large wave
numbers, the initial growth is slower than the eventual asymptotic
growth. For long axisymmetric waves, the growth is faster.

The validity of the slowly varying wave analysis extends to when
ot is order one. The asymptotic expansions given in Section 1.5 are
valid for ot large compared with one. There is no guaranteed region of
overlap for the two expansions. The behavior of the waves is examined
numerically in the next section to determine the connection.

The form of the axial wave number in the slowly varying wave is the
same as that used in separating the z dependence in Section 1.3. This
suggests examining equation (1.3.17) for the deflection n as an oscilla-
tor with slowly varying amplitude and frequency. This approach can be
extended to the uniform core vortex, where the variation principle is
considerably more compleX.

For axisymmetric waves the deflection can be written as



=3
7(2,t) = 7M,(5) s (k) + 7,(5) svnlkz)

{}.6.,32)
where s is the dimensionless time,

= 3 % (1.6.33)

The functions Ny and n, are scaled forms of the deflection given in
equation (1.3.17) and satisfy

% —_ E.F(.{‘:S') + [/J (ES) - E (f P(_ES))]?Z o, (].6.34)
where
I K,
ples) = Bka (- %),
—4¢s
}.LZ(£S) = B2 ILK e & (1.6.35)

and € is the small ratio o/

Using the previous results to guide the calculation, define a new
time variable from equation (1.6.24) as

et dt

(1.6.36)
In terms of this variable, the equation for n and N, becomes
b4
d € /l* dn £?
52t oa\R T F)az + ("';r: ('-P))7z = (1.6.37)

The solution to this equation can be approximated using the method of
two-timing. The slow time variable is defined by

o
£ = E£8 (1.6.38)
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and the form of the solution is assumed to be a regular expansion in

functions of the two times,

n = FGE8)+eR5,8)+... (1.6.39)

After expanding the derivatives in equation (1.6.37) and grouping

terms in powers of &, a hierarchy of equations is established.

<
2K
Eo: g +- F; = 0, (1.6.40)
2 2
' >F . 1 2R 'R ‘
g St R o=y s Eopk sl
e Wem = o, ete

The lowest order solution is just the unmodified oscillation,

F(g,2) = A (5) Cos s+ %L ) (1.6.42)

where AO(E) and @0(5) are functions of the slow time. Substituting

this form into equation (1.6.41) gives the equation for F] as

+F =

}

] .
}T( —F:: %AOWFA‘,) 5‘m(§+§°)

2 d go -
+ AT s (5+ ), (1.6.43)
The solution for F1 must be a bounded function of the fast time, s, in
order that the expansion be valid. The coefficients of the sine and co-
sine terms in equation (1.6.43) must vanish to prevent algebraically

growing solutions for F](§,§). This gives equations for the slow time

behavior of the amplitude and phase
dA, (P, _
e+ 2(p—PlA= 0, (1.6.44)

C!'a ~ e
Eﬁs Oy [1.5.48)
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with solutions

o~ ka I.(ha) K, tka) ]i %-E
A (D) = A, [koa,l,[k,q,)K,lk,a,) € (1.6.46)

o(S) = ?Potcﬂ. (1.6.47)

If the initial form of the deflection and the rate of the deflec-
tion of the core radius are for a travelling wave of amplitude g and

wavea number ko, then

Ul (s)y = A_(S) cCos (5+ w, =) 3 . (1.6.48)
7?2(5) = A,(3) cos (5-‘1%), (1.8.49 )

where AO(O) = ), and 8 is the initial phase of the deflection wave.

Substituting in equation (1.6.32) gives

2 Ngy T
Nt =% Ho €T s (be,n). (1.6.50)

N(t) and ¢(z,t) are defined in equations (1.6.31) and (1.6.24) and the
form of the approximate solution agrees with that found using the

averaged Lagrangian.

1.7 Numefica] Results for Stagnant Core

Waves on the compressed stagnant core vortex are shown to be un-
stable in Section 1.5. The asymptotic behavior for constant compres-

sion gives

E
gﬂw G (kaﬁ-o) E, S(o'),S;o)) ed as T—=co, (1.7.1)
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The dependence of G on the initial parameters needs to be examined.
Also, the behavior of &(t) for the physically relevant parameters
should be computed.

The equations governing the behavior of § in dimensionless vari-

ables can be written

aés“( Se’Es) = I,K,eagsy - e (5%, (1.7.2)
d - -
o= kil e (se =), (1.7.3)
where
2 = L.E (1.7.4)

is the dimensionless time. The form se °° is used because it is ex-
pected to asymptote to a constant for large s. This system is in an
appropriate form to be numerically integrated from some initial con-
ditions. The initial conditions, §(0) and 6'(0), generate the value
for y(0). To decrease the number of parameters, the initial form of
the disturbance is assumed to be a wave train of unit amplitude with
the frequency of the stable uncompressed wavé. These can be expressed

as

9 (o)

A
Sto) = kea, LLtadKian] “sinl®),  (1.7.6)

li

cos (1), (1.7.5)

and from equation (1.7.2), y(0) satisfies

ylo) = k.a, (I‘(k,a,)K,tk.ac))”fsﬁ(%), (1.7.7)

In these expressions wo is the initial phase of the wave.
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An Adam-Moulton predictor-corrector scheme using the Runge-
Kutta-Gill method as a start and restart scheme was used to carry out
the numerical integration. The intearation step length was varied to
maintain the local relative error at less than .5 x 10_4. Care was

taken to avoid roundoff error from the difference in equation (1.7.2).

1l

The solution curves for e = .01, the initial phase wo T/ 2

and the wave numbers koa0 = .00001, .0001, .001, .002, .005, .01, .05

are given in Figure 1.2. For the scaled time s greater than 1000, the

€S

solution curves for e ~~ asymptote G(koao,s » 6(0),6'(0)). The ini=

tial phase wo = m/2 vresults in the largest value for the asymptote of
curves with small wave numbar. For larger wave numbers, there are
many oscillations before the curve Tlevels off and the initial condition
required tc maximize the asymptote varies with the wave number.

The periods for the stable waves on the undeformed vortex are
written in parentheses after the corresponding wave numbers in the

figure. For small ka, the period of the oscillation is approximately

given by
2z 8.84
T T~ k°a6 e kca—a % (]-7-8)

Solutions for values of koa0 resulting in periods small compared with
the time s = 1000 are initially oscillatory with varying amplitude and
phase. If the period is large compared with the time in which curves
approach a constant, the solution increases monotonically to that con-
stant. The largest values of the asymptotes are for the smallest wave

number. However, for wave numbers sufficiently small that the solution
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Figure 1.2 The stagnant cored vortex deflection scaled by its asymp-
totic behavior grapned versus the dimensionless time s
for € = 0.01 and several values of kpa,. The curve for
kgap = 1075 asymptotes 70.7 and for Kpag = 10-% asymp-
totes ©69.0.
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increases monotonically, decreasing the wave number further increases
the value of G only slightly.

For smaller values of € the solutions are similar to those de-
scribed above. The time in which the solutions asymptote a constant
is about s = 10/e. The wave numbers corresponding to the behavior of
the curves in Figure 1.2 need be decreased with € to maintain the
same relation between the period of the zero compression oscillations
and the asymptotic time. For the smallest wave numbers, the value of
the asymptote G increases as 1/e.

Considering the time scale of the phenomenon, the values of s
greater than about 500 are expected to be beyond the range of any ex-
periment. Moore (1972) finds that the vortex pair touch for the value
of s at about 250. For values of € in the range of .001, the rapid
increase to the asymptote occurs beyond the experimental time.

The role of the initial conditions in this analysis needs to be
examined more closely. The value for &'(0) is chosen to give unit
amplitude for the case of zero compression. As a result, the value
decreases proportional to the wave number when the waves are long. The
largest values of G are attained for the smallest values of ka, even
though these correspond to the smallest values for §'(0). Since the

problem is linear,

G(k.a, €, 0 Se) = S to) G, (R, € . (1.7.9)

If the initial condition §'(0) = 1 1dis chosen, the stable waves for

the vortex without compression appear to grow rapidly as ka tends to
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zevo. The effect of the choice of &'(0) given in equation (1.7.6)
is to scale the amplitude of the waves with the maximum amplitude of
the zero compression wave. The stability analysis is to determine
the effect of the compression on the stable waves.

Even though the waves on the compressed vortex are unstable, no
rapid growth occurs on the scale of the physical problem. If the
value of & increased to 10 in the time of the vortices touching, this
would be considered rapid growth. It does not seem to model the
bursting. However, this is not too disappointing because the stagnant
vortex has no core rotation to resist the wave growth.

The more interesting flow to examine has uniform vorticity in
the core, The methods used to examine the stagnant core are extended

to the more complicated case in the rest of this chapter.

1.8 Uniform Core Vortex

In the stagnant core vortex filament the vorticity is non-zero
only on a vortex sheet bordering the filament core. This requirement
allows considering only irrotational disturbances to the flow f1e1d.
For the vortex filament with core in solid body rotation, the vortic-
ity is constant and non-zero in the core. The disturbance velocity
field in the core region cannot be restricted to potential flow.

The governing equations for the infinitesimal disturbances in
the core region are the linearized Euler equations. Denote U, V and
W as the undisturbed radial, azimuthal and axial velocities, and U,

vV, W and P as the disturbance velocities and pressure, The form of
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the undisturbed velocity field in the core is given in Section 1.2 as

+ Kr
N E g (1.2.2)

2

U=dr and W =-2uz (1.2.3)

where k is the constant filament strength and o(t) is the amplitude of
the compression. The undisturbed core radius is a function of time

given as

& |
alt) = a, eX,D[id‘Dclt]. (1.2.4)

Substituting into the Euler equations and retaining only terms

linear in the disturbance quantities gives the equations

2l olL 13 2P

;{*d*aﬁ"‘mm(aa V) - 225 = 5y (1.8.1a)
%t:* °“’—~+‘(V+2'f‘:a ( ZUQ ng = _"L’%? . (1.8.1b)
%% + o 3:’ +.Mfa 22’ Zezw'%%’?-d; =~aa; t (1.8.1¢)
'§§“+;'a+-&§ig+%%=o. (1.8.1d)

These equations govern the flow in the disturbed filament core, where
r < R(8,z,t). The displacement of the core boundary & 1is defined by

the relation

R(e,a,t) = o.(v’:)( I +§(9,?:,1’:)). (1.8.2)

In the region outside the vortex core, the undisturbed flow field

is identical to tne flow outside the stagnant core vortex. It follows
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that a disturbance velocity potential ¢ exists and must satisfy

5 (1.8.3)

~
VZCf) = O por V‘?R

along with the boundary conditions on r = R which arise to insure con-
tinuous velocities and pressure.

The core boundary is a vorticity jump, due to the discontinuity
in the derivative of the undeformed azimuthal velocity. This moves
as a material surface, just as for the vortex sheet, and forms a
boundary between the regions of rotational and irrotational flow. The
continuity of the velocities across the material surface gives three
conditions to replace the dynamic and kinematic conditions. The re-
sulting conditions are equivalent, but velocity continuity is simpler
to implement in this problem.

The axial and azimuthal dependence can each be separated by
examining a2 single Fourier mode. As in the stagnant vortex problem,
the axial wave number is time dependent for the separation and is of

the form
>
Rit) = k. exp [2&0‘"“)‘1?] : (1.8.4)

where kO is the initial wave number. The azimuthal wave number n is

a constant integer.

Define the dimensionless independent variables x and s by the

relations

X = Fig and g =it (1.8.5)
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where QO is the initial rotation rate of the undisturbed core. The

scaling for x is chosen to allow the linearized boundary conditions

on r =

a to be evaluated at a fixed value, x = 1, for all time.

The disturbance velocities and pressure in the vortex core can

be expressed in terms of the dimensionless unknown functions of only

x and

tions,

where

s by the relations

~ K theo+ iRz
U = zga UK s)e "
~ K ine + ikhz
V = zma V{,35)e §
o b & ine + ckz
W = smg WX,S)e "
Rk K \2 ina,-ika
P = (m) ch,s)e_ .

(1.8.6a)

(1.8.6b)

(1.8.6¢)

(1.8.6d)

Substituting the above into equation (1.8.1) gives the core equa-

‘%g FA(inw -2v + 28) =0 '
%.’,/ + A (inv 20+ _L:%P) =0,
55 — 3ew + Alinw- kap) =0,
%%’+ tu + %?vv + kaw = o0 ,

gs) = «3/0,)/Q,

2

S
A(S) - a_f/az = exF{—2££(5)J§].

(-]

(1.8:7a)

(1.8.7b)

(1.8.7¢)

(1.8.7d)

(1.8.8)

(1.8.9)
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The velocity potential for the region outside the core is of

the form

-

~ p the+ LRz

b= dis) K, (kax) e o (1.8.10)
where Kn is a modified Bessel function and ¢(s) is determined from the
conditions on the core boundary.

The three continuity conditions across the core boundary can be
linearized in the disturbances and evaluated at x = 1. The dimension-
less core displacement &(6,z,t) appears in the azimuthal equation due
to the discontinuity in the derivative of the undisturbed azimuthal
velocity. For consistency, define &(s) by the relation

% the + (k=
(8,2,+) = 3 e . (1.8.11)
The conditions for continuous velocities on the interface between

the rotational and potential flows reduce to the fd]]owing:

K f
e Ukt s) = b_(!;ts) K., (ka) N

: /
57%.‘!6',5) = 'nfﬁg!s)+%ib“)i<h(hq.), (1.8.12)
S wis) = ~ kdesy K, (ha) . J

The primes denote differentiation with respect to the argument.
The unknown function ¢(s) can be eliminated in the above to give

the two independent equations:

w(i,s) K.j(m) + wll,s) Kylka) =0, 1813}

Li
Sty = —4v(1,9) — FRg WILS) (1.8.14)
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The first equation acts as a boundary condition on x = 1 for the system
of equations (1.8.7). The requirement that the velocities be bounded
at the origin gives boundary conditions on x = 0. Given initial values
for u, v and w, the solution of the system with boundary conditions is
determined on the strip 0 < x < 1, s > Sy The second equation above
(1.8.14) then determines the behavior of the disturbance to the core
radius.

The system of equations (1.8.7) with its boundary conditions can
be solved numerically for given n, koao, e(s), and the initial conditions,
u(x,so), v(x,so), w(x,so). The analysis of the system can be extended by
assuming the disturbances to be axisymmetric (n=0). From the considera-
tion of experimental observations (see Section 1.1), this assumption is
not expected to be too restrictive.

The equations for the axisymmetric disturbances can be written as

a single partial differential equation for u(x,s) on 0 < x <1, s > Sy

of the form
32 i) 2
(‘5-53+2€§§+4A)LL
2 2
? 2V2° 12 a1 \%
“(3—52*2635)\3%*)(3;: X)(;m)l~0, (1.8.15)

where the boundary conditions on x = 0 and x = 1 are

whe, & = g, (1.8.16)
21 . K,Cka) _ ‘
5% +(l+ kam)‘-‘-_o on X =1, £1.8.17)

The solution to the above is uniquely determined, given the initial func-
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tion u(x,so).
The dependence of u on the independent variable x can be separated

in discrete modes by defining

uhcx)sj = .Fh(s) J:(’}\h"s) X) b h-:'lzr Ty (1-8.]8)

where J] is a Bessel function of the first kind. The boundary condi-

tion at x = 1, along with the choice of ordering that the An be an

increasing sequence at a fixed time, determine the relations

J‘D()‘h')‘ + Ka[ka)
o Ty Rty — 21 (1.8.19)
J'O,h < 7\»\ < j.,h _ (1.8.20)

The numbers jo ’ and j1 , are the nth largest positive roots of JO and
2 3 L

J]. MNotice that as ka varies from zero to infinity, An varies from

Jo,n'to J1,n°

The ln(s) and J](xn(s)x) are the eigenvalues and eigenfunctions

of the Sturm-Liouville system

é%—(x éz:) + (Ai)(— VX)YH =0 .

d .
Ynlo)=0 , J¥alo + (i+ka %’ﬁ))yhm =0,

(1.8.21)

The J](An(so)x) form a complete set of orthogonal functions spanning

the set of continuously differentiable functions on 0 < x < 1. The

initial function u(x,so) can be expressed as a series in these eigen-

functions by



-46-

Wwix, 83 = Z i J:(')\htsa)x) ) (1.8.22)

In this way an initial value, fn(so), can be determined for each of
the un(x,so).
Substituting the form of the solution, u , into equation £1.8.15)

gives the equation,

(A as[(H “)z)uh_])-F 4Au,=0, (1.8.23)

The x dependence of the equation has been suppressed in that it acts as
a parameter in the solution.

The quantity of interest is the core radius deflection, 6n(s),
corresponding to up - Equations (1.8.7) and (1.8.14) can be combined

to give

-1 d
On(s)= "2V, (1,8) = T‘;([H( 2] wncs, s}) (1.8.24)

In this formulation, once the values of the initial condition have been
transformed to the coefficient in the Bessel function series, the expres-
sion need only be evaluated at x = 1. A convenient form of the equations

arises by defining

2 .
=y w= 2( |+ () )LL (,sy, (1.8.25)

7
wa(s) = 2A (i + (2= ) ’ (1.8.26)

and combining equations (1.8.23) and (1.8.24) to give the system
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dS 032
n _—
_a_s“_t\ i B E ﬁh e o y

dg., _ (1.8.27)
dS +2A Sh —O'

This system can be combined to form a single first order equation

for 6n,

’ ! /
5"~ 2(e+ “V )5, + wlb =0, L

where the primes indicate differentiation with respect to s.

The system of equations (1.8.27) and equation (1.8.28) determine
the growth of disturbance waves on the filament core boundary. The
1imiting case of no compression should give Kelvin's solution for the
stable waves on a vortex filament. The functions, ka, A, An and O
become constants and e(s) = 0. Under these conditions, equation
(1.8.25) reduces to

! 2
Sn + wn Sh =0, (1.8.29)

where mﬁ given by equations (1.8.26) and (1.8.29) is the frequency of
the bounded periodic disturbance. In dimensional form, the core radius

R(z,t) can be expressed as

e
Riz,t) = ate) (’+&the‘hm 3 - (1.8.30)

where the bn are constants determined by the structure of the initial

disturbance to the core velocities.
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The effect of the compression on these stable waves will be

examined in the next three sections.

1.9 Asymptotic Behavior for Uniform Core

As a first attempt to determine the stability of the compressed
uniform core vortex, the asymptotic behavior can be examined. Dis-
turbances which arow faster than the undisturbed core expansion are
considered unstable, even though the time scale of the growth may be
long compared with the physical mechanism being modelled.

For constant compreséion, equation (1.8.28) can be transformed
into the standard form for applying the WKBJ method by defining a

scaled displacement,

-1
fisr = (whe_ Es) D) | (1.9.1)

The equation for f(s) is written

cf’F A ‘(‘_\
dsi T QT =0, (1.9.2)
where
2 1
g@) = —wn + & - Drfew,,
+ 2 “nls., (a+ “f\/oh) ) (1.9.3)

The function wn(s) is defined in equations (1.8.26) and (1.8.19), € is
the constant ratio of the compression to the initial rotation rate
u/QO, and s is the dimensionless time, Qot.

For large s, q(s) can be expanded to give
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A _ -4 —to
cicsy - 52_ 4 e Es+ O(e' ES). (1.9.4)

This expression is bounded away from zero for s sufficiently large.

Applying the WKBJ method to equation (1.9.2) gives

o :
‘P(S)N Constant - % /46)4'}7[,‘.%5‘:]5] as s-»oo, (1.9.5)

Equations (1.9.1) and (1.9.4) combine with the above to give the asymp-

totic expression for the deflection,

Shts)»~» constant 0s S —»oo. (1.9.6)

The dimensional or physical deflection grows at the same rate as the
core radius, the neutrally stable growth rate.

For the time dependent compression, the asymptotic behavior of
&, is determined using a form of equation (1.8.27). Define a time-Tike
variable by

2’SI—ZQ
E5 =8 3 (1.9.7)

where v is the initial value of the compression. The restriction that
v be less than 1/2 is necessary in equation (1.9.7) in order that £
tends to infinity for large s. Since the compression in the physical
problem is small, this is an appropriate limitation on v . Substituting

into equation (1.8.27) gives

£ (&) =0,

2 & 5 (1:9.8)

wS S

?
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where the subscripts n referring to the mode of the internal structure
have been dropped. The function An(g), defined in equation (1.8.19),
is bounded above and below by the nth yoot of the Bessel functions Jg
and J1, according to the relation (1.8.20). Combining the equations

to get a single second order equation in g gives

{0

4 B -
e + (14 (X)) g = o, (1.9.9)

where the coefficient of g is bounded as £ tends to infinity. Applying

the WKBJ method to this equation gives the leading term for g,

ﬂﬂ— Constant - exp [:'—"' f‘( ! *'(E%)z)_yz‘[ﬂ as §=e | (1.9.10)

as bounded oscillations in £ . The form of the deflection & follows

directly from equation (1.9.7) as

SN constant - exp [i LJ‘ whAS—J as S—oo . (1.9.11)

In the Timit as v tends to zero, this is the exact solution for the
Kelvin waves. The introduction of the compression causes the waves to
grow at a rate asymptotic to the core expansion rate.

The asymptotic behavior of the core displacement resolves neither
tne stability nor the model's validity. Part of the difficulty is that
the unknown constant coefficient in the asymptotic expression can be
large. The behavior of this constant with the initial parameters is
examined in Section 1.11. The initial growth of the disturbances helps
determine the feasibility of the model. Thi§ is examined for small

constant compression in the next section.
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1.10 Small Compression for Uniform Core

In Section 1.6 a two-timing technique was applied to the equa-
tion for the displacement of the stagnant core radius by introducing
an averaged frequency. The same method can be used for the uniform
core. Restricting the disturbances to be axisymmetric and the compres-
sion to be constant, the displacement of the core radius an satisfies
equation (1.8.28). For wn(s) written as a function w(es) and the sub-

script dropped from én, the equation becomes

d4°5 w'tes) \ d§ 2
g-;g—ZE I+ Zteey dds T wces)g::o, : (1.10.1)

When e= 0, this reduces to the equation for a simple oscillation. The
effect of the small, positive € on this motion is to introduce a slow
variation of the frequency and amplitude.

Define the fast time by the integral

S = foa)ceﬁ)dg. (1.10.2)

In terms of this variable, equation (1.10.1) can be rewritten as

44 I)JS-f—S

£ w —
d3 ”'ZJCZ"'E =0, (1.10.3)

If the function w is considered a function of the slow time

5 = g5, (1.10.4)

the displacement can be expressed as a regular series expansion in func-

tions of the two times, -
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S = E(§J§)+EE(—§)§)+ &% (]-10-5)

.

Substituting this form for & into equation (1.10.3) and expanding the
derivatives in the two variables, terms can be grouped according to

powers of £ to give a hierarchy of equations,

o 2k
£ 5mtE =o, (1.10.6)
£: §§+ R = gy - & ;;Fa;?: : (1.10.7)
' %ﬂ‘F;“*é;(zi“%”’)(gi'+$%§)“§;;§3*i=(§;%~g§,§:)_ (1.10.8)
The lowest order equation has the solution
E(E,gj = AD(?I) 5'{,;77,(§+ @,3(%‘3}; (1.10.9)

where AO(O) and @O(O) are determined from the initial condition on §
The functions of the slow time are determined by the requirement that
F is a bounded function of the fast time. UWhen FO(§}§) is substituted

into equation (1.10.7), the equation for FT(§}§) becomes

gg:r.""E = Z%'( Ab" %A)Sm(gﬂ-éo)
B o = A, § Ces(s+$) (1.10.10)

In order that the soiution for F? be bounded, the coefficients of the

sine and cosine must vanish. These give that

. : Liﬁf_’)“i s
A5 = Ajtey les / &, (1.10.11)



E_@a(g) = %awh (1.10.12)

Substituting the form of w given in equation (1.8.26) into the expression

for AO, the behavior of 6n for small compression is

( ')h(c-)

S
5:1(5) — S,Jo) ( { 4—(-‘——1”:’) ) Sm(jw“tgkj{"f 9, (1.10.13)

where A is given by equations (1.8.19) and (1.8.20).

The slowly varying amplitude needs to be examined over the range
of koa0 and n. Since the time behavior of An(s) is dependent solely on
the function ka, the expressfon An/ka, can be considered a function of
ka. As ka increases from zero to infinity, kn increases from jo,n to

j] o the nth roots of JO and J The ratio A,/ka behaves Tike (ka)—1.

1
For Tlarge values of An/ka, corresponding to small ka or large n, the co-

efficient can be written

3> 2
A, 3= Aw e, 0(@5 ) (1.10.14)

This exponential behavior remains valid for values of es sufficiently
small that kn/ka remains large. |

For small values of An/ka corresponding to short waves and small
n, the amplitude asymptotes a constant. This is the behavior predicted
by the expansion for large es in Section 1.9. Notice that for any ini-
tial condition, An/ka and Wy, tend exponentially to zero for sufficiently
large s, forcing Gn(s) to asymptote a constant,.

If the bursting phenomenon is to be modelled by the compressed

vortex, the growth given here must be responsible for some form of insta-
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bility. The initially exponential amplification for large An/ka seems
a candidate. The time scale of the growth needs to be checked for
Moore's estimated values of the physical parameters. This is done in
the next section by numerically integrating the gquation for én. Care
must be taken to insure that higher terms in the expansion are not mis-
Teading in the numerical calculation.

The next order correction to the small compression expansion is

found by substituting F0(§]§) and

F(35,2) = AG) si(+ $15)) (1.10.15)

into equation (1.10.8). The suppression of secular terms in F, requires
the coefficients of the sine and cosine terms in the inhomogeneous term
to vanish. The amplitude A] is of the same form as AO. The phase @1
satisfies the equation
/ Ao ] ' ‘AJ

§. = Thnk ¥ wiie) A s (1.10.16)
where primes denote differentiation with respect to S. The time depend-
ence of @1 does not affect the actual growth of the disturbance. How-
ever, the analysis of the numerical calculations can be influenced by
the modulations to the growth, especially when investigating the small

compression behavior.

1.11 Numerical Results for Unitorm Core

The effect of the initial parameters on the growth of the deflec-
tion can be examined by numerically integrating equation (1.8.27). The

scheme described in Section 1.7 is used with the value of An(s)
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calculated using Mewton's method on the implicit equation (1.8.19) at
each time step.
The asymptotic behavior of the axisymmetric deflection is shown

in Section 1.9 to be

!
Sh ~ C(k.,ao, €, h, Shm, ghto)> As ¥ >ep 5. 1113

for the initial conditions consisting of a single axial wave mode. The
initial conditions are those for the Kelvin waves on the uncompressed
filament. The phase ¥, of the initial wave determines the initial con-

dition as

Snto) = cos (Y.), (1.11.2)

! "
Shto) = () Sm(q—’o)’ (1.11.3)

where W, is defined in equation (1.8.26). The initial amplitude is
scaled out of the Tinearized problem.

The initial phase of 7/2 results in the largest or close to the
1arges{ amplitude for small wave numbers. Limiting the study to curves

with zero initial deflection allows the asymptote to be written

9, (5) ~ wyto) C(keas € 0) | (1.11.4)

The number of parameters can be reduced further by noticing that ka and
A, appear only in the ratio An/ka in equation (1.8.27). The ln(s) vary
slightly while ka increases exponentially with s. Hence the parameter

n affects only the value of the initial ratio An(O)/ka. The behavior
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of the deflection for n > 1 should be close to that for n=1 with koa0
reduced by the ratio A(O)/An(D). The numerical integration can be
carried out for n=1 and a range of koao.

The solution curves for € = .01, n=1, w0= w/2 and the wave num-
bers koaO = .00001, .0001, .001, .002, .005 are given in Figure 1.3.
As in the stagnant core results, decreasing koao for long waves causes
an increase in C1. Shorter waves show an oscillatory behavior initi-
ally, and asymptote to a constant for sufficiently large s. The period
of the Kelvin waves, written in parentheses in the figure, can be com-
pared with the time for the asymptotic behavior to determine the
nature of the solution. For decreasing values of € the curves in
Figure 1.3 keep the same shape with the horizontal and vertical scales
increased and the values of koa0 corresponding to the curves decreased
by 1/¢e.

The Tlargest values of C] are for the smallest wave numbers.
Taking small initial wave numbers is equivalent to large values of n
and moderate wave numbers as discussed earlier. Hence, the 1imit of
the wavelength imposed by the physical parameters does not prevent
large values of C1. They result as the mode of the internal structure
of the disturbance increases. Viscosity may provide a practical limit
for large n, but the effective parameter koa0 is smaller than for the
stagnant core results. However, these values occur at Tater times
than for solutions which asymptoté smaller values. The rapid growth
in the deflection may occur at times greater than the scale of the

bursting phenomenon.
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Figure 1.3 The uniform core vortex deflection graphed versus s for
e = (.01 and several values of koao' The curve for

koao = 10-5 asymptotes 5800. The periods of the corres-
ponding Kelvin waves are given in parenthases.



58

In order to find the compression which could lead to bursting,
the deflection is calculated for various values of . The solution
curves for kan = .01, n=1and ¢ = .01, .02, .03, .04, .05, .1 and .2
are shown in Figure 1.4, The value of the compression leading to the
maximum growth is about .03. The initial wave number is smaller than
that for the physical problem. However, allowing higher modes in the
internal structure of the disturbance yields similar curves with
koao = ,06 and n=3, for example. This corresponds to about one-half
of the Crow wavelength.

The time at which the rapid growth of the deflection occurs in
the model can be compared with that of the physical problem. The time
scale for the vortex pair is the time required to descend the separa-
tion distance. For vortices of strength k separated by distance b, the
descent time of the vortex system is anz/n. Moore and Saffman (1972)
show the compression at the crest of the small amplitude waves to be

*
I

z )
o = Fupe (RBY KRB+, (1.11.5)

where §* is the semi-amplitude of that component of the deflections
above the plane of the vortex pair, k is the wave number and K1 is a
modified Bessel function of the second kind, The most unstable waves

from Crow's analysis have

kb = .74 (1.11.6)

and 6* of .71 times the wave amplitude. Combining these results with

Moore's computed time for linking
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t, = 2.5 |/ (1.11.7)

gives a bound for the dimensionless time at, . If the approximation
for o is assumed to hold for finite amplitudes and the vortex deflec-
tion to separation ratio is less than one, then the bound on utL be-

comes

aly, < .7 (1.11.8)

To compare the time in the model with this bound, denote by s*(e,koao)
the time for the deflection to reach one-half of its maximum amplitude.
This is centered in the rapid rise of the curves in Figures 1.3 and
1.4. The scaled time es* is plotted against € in figure 1.5. The
curves of constant koao in this figure extend only to values of the
parameters which lead to amplification of the deflection to at least
ten times the Kelvin wave amplitude. When the value of e is suffici-
ently small the dominant oscillatory nature of the solution gives an
initially growing oscillation, similar to that shown for koao in

Figure 1.2. As ¢ is decreased for constant koao, a curve in Figure

1.5 drops off until the first maximum in the deflection curve is below
10. At this point the bursting time curve jumps to the time value
corresponding to the next extremum of the deflection curve. A sawtooth
curve is generated as e is decreased further, but this is not included
in Figure 1.5 as it does not represent a rapid growth in the deflection

and occurs above the linking time anyway.
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Figure 1.5 The scaled time of the rapid increase in the deflection
versus the scaled compression. The maximum deflecticn must
be greater than 10 and the curves are not continued to the
left of ¢ = 10-4.
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The value of aO/b used in Moore's calculation gives €= ,003,
but since the cut-off method depends logarithmically on the core
radius, the bound on the linking time given in equation (1.11.8) is
expected to be adequate for the larger values of e.

A1l the plotted values of es* 1ie above the Tlinking time., As
koa0 is increased the value es* decreases, but the amplitude of the
deflection decreases as well. No combination of the parameters koa0
and € give large amplitudes in sufficiently short time. The bursting
phenomenon does not therefore appear to be adequately modeled by the

effect of compression on the Kelvin waves.
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CHAPTER 2
VORTEX IN A STRAIN FIELD

2.1 Introduction

The appearance and growth of waves around the circumference of a
vortex ring is demonstrated experimentally by Krutzech (1939) and con-
firmed more recently by Widnall and SulTlivan (1973) and others. An ex-
planation for the appearance of this instability is offered by WidnalTl,
Bliss and Tsai (1974). They argue that waves which displace the thin
vortex core in the plane of the ring but do not propagate around the
ring will be amplified by the local straining which results from the
curvature of the ring. Moore and Saffman (1975) confirm this mechanism
for the corresponding problem of a straight vortex filament in a small
strain field. They give the form for the amplified waves when the vor-
ticity is continuous. The wave numbars and growth rates associated with
the unstable waves are calculated for the related special case of a uni-
form cored potential vortex by Tsai and Widnall (1976). The most unstable
- mode is shown to be for the vortex deformed by a superposition of the heli-
cal waves which do not propagate along the vortex.' These calculations use
an expansion in the small strain rate and find the correction to the heli-
cal Kelvin waves on the filament due to the strain. The wave numbers for
the fastest growing waves on the strained vortex are those corresponding
to the steady Kelvin waves.

Widnall and Tsai (1977) solve for the growth of waves on a uniform
cored ring in an expansion in the ratio of the core radius to the ring

radius. The leading order contribution to the growth in this expansion
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gives behavior like the uniform cored straight vortex in a strain.
Saffman (1977) discusses the effect of considering realistic core
profiles on the critical wave numbers and corresponding growth rates
for the straight vortex in a strain field. The product of the wave
number times the ring radius can be compared with the number of wave
crests which appear on the observed rings. The relative growth rates
for the first few critical wave numbers can be examined to predict the
number of waves on the ring. It is the purpose of this chapter to
demonstrate a method for calculating the growth rates for a general axi-
symmetric distribution of vorticity in a straight vortex core of finite

radius surrounded by potential flow.

2.2 The Steady Vortex Filament in a Straining Field

The fluid is assumed to be uniform, inviscid and incompressible
with the constant density taken as unity. In a cylindrical coordinate
system (r,8,z) the undeformed vortex filament is aligned along the z
axis with swirl velocity Vo(r) in a core of radius a. The flow outside
the core is that of a potential vortex. The strength of the filament

is given by

M= 2maV.n . (2.2.1)

The system is scaled by dividing the velocities by Vo(a) and the

radial coordinate by a. Define the new radial coordinate

X = Y/a (2.2.2)
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and the core rotation rate by

,C).(X) == —:?' -_—\‘r?og_":)_)(__) ‘Ew— LX< | . (22.3)

The rotation rate must be finite at the origin. The velocity field

due to the vortex filament alone is denoted by (O,VA,O), where

= X Q%) for  x<1,
vV, = (2.2.4)
: l/x -rm— X1 .

The vorticity is non-zero only in the core where

A= % 5(x20). (2.2.5)

The symbol A is used to denote the vorticity to eliminate confusion
with the symbol for the frequency introduced later.

The corrections due to the external straining give the total

velocity field, (u,Vé+V},O). Far from the vortex filament, the velo-

cities have the form

U, ~ £EX S (28) -
Y, ~ &ex tos(28)
The parameter e is the ratio of the rate of strain, e, to the dimen-

sional rotation rate at the core edge,

€ 2170351

£ = NAC)Z = =

(2.2.7)
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The strain is assumed to be small, constraining Iel &2 Ts
In order to evaluate the corrections to the flow field for a given

axisymmetric distribution of vorticity in the ccre, it is convenient to

introduce the stream functions, Yy and Uy defined by
I ia‘P
w = "% 38 = (2.2.8)
_ 2¥
¥ = 3 3 (2.2.9)

where the subscripts 0 and 1 both apply. The stream function wo(x) due
to the vortex alone is determined within an arbitrary constant by the
swirl velocity Vb(x). Equations (2.2.6) give the asymptotic behavior of
the correction due to the straining as

2
b ox,8) ~ LexTcos(28)  as x—»o, (2.2.10)

In the region outside the vortex core the flow is irrotational, so
that ¥y must satisfy Laplace's equation. The stream function can be

written in the form

L}’! - ?i"E'nC(K)COS(QS). (2.2.11)

For the region of potential flow described by

X >Ae) = |+ ¢Acos (20), (2.2.12)

the function f(x) defining the stream function has the form

fog = %2+ A/x3, | (2.2.13)
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where a and A are constants to be determined.
In the filament core the vorticity is constant along the stream-
lines, giving

A o= FLR), (2.2.14)

I[f the same functional relation holds after imposing the external strain-

ing, the stream functions satisfy

vz(kibo’i-\ﬁ) == F(l.lJp+\{1) “Cc:‘r xcx(e). (2-2-15)

Since Uy is proportional to the small parameter €, the approximate equation

for the correction to the stream function can be written as

vy = F[(%)LH . (2.2.16)

Taking the derivative with respect to x in equation (2.2.14) and solving

for F'(wo) gives

2%
F'(l!/a) = (3%—%+x%}%)&ﬂ i (7.2 57}

The form of w] given in equation (2.2.11) can be substituted into equa-

tion (2.2.16) along with the expression for F' above, to give the core

equation,
da  .da
dFf, o df [ *ETErdaE, 4
T kgt | et TR bR B J 34 2.2.18
d x*% *dx x <L X - r 02X 2K, (2.2.18)

In terms of the unique bounded soluticn to the above satisfying
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2
ﬁ(>()—~u % as X — 0, [2.2.19)

any bounded solution can be written,

Fooy = 2, 900 - (2.2.20)

The constants_ao, 2, and A are determined by the conditions on the inter-
face between the regions of non-zero vorticity and potential flow. The
arbitrary constant in the stream function allows the value on this

streamline to be set equal to zero. This gives the two relations

YX) + 3 ea.quw cos(2e) =0, (2.2.21)
ﬂg (X) + Le(l+a)cos(z0) =0 , (2.2.22)

where only terms to O(e) have been retained. Expanding these expressions

and simplifying gives the conditions

2A + a,90) = 0, (2.2.23)

2A+ a, = -1 . (2.2;24)

The continuity of the swirl velocity across the interface gives

the relation

X_Q (m +5 anf{’(z) Cos(28) _—_X:f- e(i-a) wslw), (2. 2.25)
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where the prime denotes differentiation with respect to x. Substitut-
ing the form for X from equation (2.2.12) into the above and expanding

gives the relation

(2+a'w) A+ -z'—j,“m,, ooy =, (2.2.25)

The values of the constants s 23y and A are determined by the three

linear equations (2.2.23), (2.2.24) and (2.2.26) to be

a, = 4 (q'w- _Q'Lr)ﬁm)#i (2.2.27)
o, = A9 —1 (2.2.28)
A= —zogqw, (2.2.29)

and the correction to the vortex flow field due to the small external
strain is uniquely determined to the leading order.

The case of uniform vorticity in the core gives

D=1 4 g = xz (2.2 30)

and the stream function takes the form
2
X (| + £os(20) for x< 1-gcosza,

t+ ¥ = o (2.2.31)
‘ ,l’,og X + &K +s'z=z)caSQe) for x71-gtos(26),

The steady velocity Field (E},VE+V},O) follows directly from equations

{2.2:31)s (2:2.8) and (2.2.9].
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2.3 The Equations for Stability

In order to investigate the stability of the steady flow field de-
fined in the last section, the disturbance velocities (u,v,w) and
pressure p are added to the steady solutions. Substituting these into
the Euler equations and retaining only terms linear in the disturbance

quantities gives the governing equations

ol o ol 2 g g2 B p o 2P |

- +u_‘é_-£+u_ax+(\fn+‘(,)ae+u.39 ——)‘((Vui-\'l\ =T 2K, (2.3.]3)
2V —i D e T M N A

52+ W 5x + “ax(Vo*Vr)‘”?((VoW- 35+V5-8)+§(u(V.+v,)+Y“.)=%% 5 2.3 Th)
2w oW 2% 2P

! — s -

AU @Y =5 (2.3.7¢)
?:’-Z_ ol e ] ":' 'a”

ax—f— )(LL § —i—‘%g _}.5—% = 0 ., (2.3.1(.!)

The position of the core interface changes due to the disturbance. Define

the deflection § such that the position of the core boundary is

X = Xle) + &eo,zt), (2.3.2)

where X is defined in equation (2.2.12). The velocities (E}+G,Vg+v]+ﬁ,ﬁ)

must be continuous across the disturbed core boundary.

In order to simplify the notation, introduce the vector U, defined

by

(2.3.3)

o L1 2
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The system of equations (2.3.1) can then be written as

2 _ 26 209 _
s (LU)+MU = Lele™N+ENU, (2.3.4)
where
|l © © o
- =1 e = 2.3.5
Lﬂ e o O I o ( )
o o O (&) 3
2%he -2Q0 o oy
M = 20+¢0) Q% o + e 2,86
- o o QO%e 2hz , ' T
&= 5 %‘%%a ?faz o
el e p ' '
(rr-steia-£3)  3af o d
N = R (PReRE) o e
e o (%42-552) o
o]

and N is the complex conjugate matrix of N. The definition of the core

rotation Q(x) is extendad outside the core by

Quy = "Yx* £, xv1. (2.3.8)

The notation used above is the same as that used by Moore and Saffman

(1975),
The solution to the system (2.3.4) must satisfy conditions at

the origin and infinity, as well as the condition of continuity of the

velocities at the core boundary. The disturbance velocities and
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pressure must tend to zero at infinity and be regular at the origin.
The disturbance solutions can be written as an expansion in the

small parameter e by defining

vhzs ot

U= (U +eU+--Ne , (2.3.9)

¢

) = C*-)o'!’-ELO,-I----, (23,10}

k= koreh + -, (2.3.11)

Substituting this form into equation (2.3.4) and equating coefficients

in powers of e gives the hierarchy

(lw,L+MIU, = O, (2.3.12)
(iw,l, +Mu)ﬁ, = (~L¢.JIL—L!e,Pf-g—\emN@z"“ﬁ))ﬁa’ (2.3.73)

where

P =

(2.3.14)

000 o
000 Q
-000
-0y

and replacing the 3/5z in the matrix M by iko gives the matrix MO.
The conditions on the velocities at the core boundary are from

a hierarchy of continuity conditions across the deformed boundary

ckzs Lt

}2(9,2,1‘,) = Xtoy + 58,,+a?§,+-~)e ) (2318}

These constraints are calculated when needed in the next section.
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2.4 Helical Standing Waves on the Cylindrical Vortex

The case modelling the vortex ring instability is for helical
disturbances which do not propagate along the filament. To the lowest
order in the small strain, these are the steady deflections correspond-
ing to Wy = 0 with angular dependence which can be separated by intro-

ducing two new vectors

r~7 & .
- LB
U, = o, Uene®+ a_Uene ”, (2.4.1)

If the differentiation 9/96 in the matrix'MO is replaced by the factor,
in , to define a matrix MO(n), then the terms in equation (2.4.1) must

satisfy

Mo“ﬂ U,y = 0 For n=21_ (2.4.2)

For clarity in the notation, whenever the argument represents the
angular dependence, the sign is included. In this manner the value of
a function f(x) at » = 1, (1), is not confused with the n = 1 mode of
a function, say g{+1).

The structure of the matrix operator Mo(i1) gives the relative

form of the solutions as

il\}t —w |
D=1 w 3 Un = “.x . (2.4.3)
P 3

Substituting the above into equation (2.4.2), the system can be reduced

to two first order ordinary differential equations
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L LE-Du o+ (e B, (2.4.4)
d?’ - ( ZA 8 4
C}X faoad o ﬂ)u_ x_Q P ” (2.4.5)

where

%}_ , (2.4.6)

and A is the dimensionless vorticity,

A= 20+, A

The remaining components of UO are determined from the above by the rela-

tions

A A
W = — koﬁ _ (2.4.9)

The components above must be regular at the origin. This cohdition deter-
mines the solutions of equations (2.4.4) and (2.4.5) within an arbitrary
constant amplitude. Without Toss of generality, the solutions can be

made unique by the conditions at the origin

T Ty (2.4.10)

A
[ s vkl as X—* 0, £2.8:77)

These determine the solutions in the core.
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In the region outside the core the disturbance velocity field
can be written in terms of a velocity potential. Using the form for
the separation of the axial, azimuthal and time dependence‘given in
equations (2.3.9) and (2.4.1), the velocity potential of mode n = 1
has the form

2 tkz + Lot + ine

¢ = 10K (kx)e ) (2.4.12)

The four vector U (+1) follows from differentiation of the potential to
give
-k, K, Uex)+ 5% K, (kX))

e ) Chon)
Uen = C,
! —k, K, (k.x) (2.4.13)

w7 K, Ckox)
where K0 and K] are the modified Bessel functions of the second kind and
CO is a constant to be determined fromrthe conditions on the core bound-
ary. The form of UO(-l) is given by equation (2.4.3) for the U0(+1)
given above.

The velocity field for the undisturbed vortex is continuous

across the core boundary. The ve1o;1ties with the addition of the dis-
turbances must also be continuous across tne disturbed boundary.

Introduce the notation,

[G(X)]x___H = fm (G‘””\‘)* G(H—'.h)) ) (2.4.14)

that is, the brackets indicate the jump in the quantity across some

curve. Then the continuity of the velocities and pressure gives



L, +ul,.g = 0, (2.4.15)
[Ve+¥+¥1,5 = O, (2.4.16)
Wl _¢ =o0, (2.2.17)
[Fl+ P+ "ﬂ,{__g{ =0, (2.4.18)

where X is the disturbed boundary defined in equation (2.3.15). The
parameter £ is set to zero to the lowest order in the strain, giving

the conditions

[ul,.,, =[wl,., =[Pl =9, (2.4.19)

where u, w and p are defined in equation (2.4.3). The continuity of

the azimuthal velocity gives'

Py & o B Y © (2.4.20)
where 60 is defined in equation (2.3.15) as the disturbance to the core
radius. |

The axial wave number ko can only take on certain valuas in order

that the equations (2.4.19) hold. The continuity of pressure and axial

velocity give a single constraint, that

,S = C, K, (k) on x=1. (2.4.21)

Substituting the value of CO from the above into the continuity of radial
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velocity gives the condition

Ko (ka
w+ (H+ R, : )3)? =0 on Xx=|. (2.4.22)

K‘(k.

The value of u and 5 at x = 1 depends on ko from the differential egua-
tion (2.4.4). The above gives a dispersion relation for the wave
number. This is the result of taking w, = 0 at the start of the cal-

culation.

2.5 Effect of Strain on the Disturbances

The angular dependence on the correction to the disturbance flow
field is determined from equation (2.3.13). Substituting Go given by
equation (2.4.1) into the inhomogeneous term in the equation for U1

dictates the form in the forced modes as

o~

-3¢ i 8 __ ale
U., = U,(—S‘)e 3L9+U,(~l7eLe+ U,L+e)e£+U\(+3)e . (2.5.1)

The angular dependence separates equation (2.3.13) into the four inde-

pendent equations,
M., 6D U 3) = £ Nuna, Gn, (2.5.2)
M, o U= ~ilwl thPle, Usnss Neva U, (2.5.3)
bLoon4>=—i@LL+kP)mlh@+iﬁmMJLWg(gsﬁ)

M,o-3) Uta= £ Nena, U . (2.5.5)

The +1 or -1 as the argument of the matrices N and N indicate that 3/988
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has been replaced by +i or -1,

The homogeneous problems for the matrix operators Mo(+3) and
MD(~3) have only the trivial solution. Unique solutions for U](—B) and
U1(+3) can be determined from the equations and boundary conditions.
The homogeneous problems associated with MO(+1) and MO(—1) have the non-
zera solutions discussed in the previous section. Solutions to the
inhomogeneous problem do not exist unless the forcing terms in equations
(2.5.3) and (2.5.4) and the boundary conditions satisfy some coenstraints.
Using this restriction the dispersion relation for the frequency correc-
tion w can 5e determfned without having to detefmine the solutions
U](+1) and U](—l). This is done in the next section. First the in-
homogeneous terms in the boundary conditions must be determined.

The total velocities and pressure must be centinuous across the
disturbed boundary

~ “)esz,p twt

X = X = |+ &Atos(20) +~($°+ e84 (2.5.6)

The angular dependence of the deflection 60 can be separated by writing

Lh
S, = Z: Sty e (2.5.7)

For helical waves only the modes n=+1 and n=-1 are considered. Denote

the components of U](n) by

o, 1)
V, (n)
‘Ul(n) = "y L) (2. 5.8)

pr(h)
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The condition that the radial velocity be continuous across the core

boundary becomes

[u,(+n+ éAj;(—ca.,,u)*%j—f&,wﬂp,zo, (2:8.9)

where the brackets indicate the jump across the surface x=1 as defined
in equation (2.4.14). If the values for [du/dx] and [df/dx] are substi-
tuted from Sections 2.2 and 2.4, then

[Lll(H)]x_': %A((3+ﬂ’)“+(l+ko %%)'ﬁ)a_‘ at x=1. (2.5.10)

The constants A and ko and the values of the functions u and p at x=1 de-
penid on the form of Q(x) in the vortex core.
The condition that the pressure be continuous across the core

boundary gives

d d
[-3 A% (x0®) 0 +3(F-F)Sc0 + Ag 32 + P-‘*'J]xfo- (2.5.11)
=1
Substituting for [dR/dx], [df/dx] and [dp/dx] in the above gives

i Ro) \a
[F'H,ﬂx:':-z—A((ﬂﬂ'..-B)u— {14k, K’;(&QS})P)Q_' ot x=l, (2.5.12)

where Q'(1) is the value from the core. The symmetry in the problem

gives
[u,(-:)]m =~ [wen]) ay /o, (2.5.13)

[F.(—rﬂ,,, = ff"ut)] a""/a__‘. (2.5.14)
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The conditions for the azimuthal and axial velocities are not necessary
for calculating wy or U]' The matrix MO reduces to a second order dif-
ferential operator, giving algebraic relations for vy and Wy as in
equations (2.4.8) and (2.4.9).

The homogeneous problem corresponding to equations (2.5.3) and

(2.5.4) and the boundary conditions (2.5.13) and {2.5.14) for U, is the

1
same as the lowest order problem solved in Section 2.4. The solution
to the adjoint of the lowest order probiem needs to be determined in

order to apply the Fredholm alternative.

2.6 The Adjoint Solution

In order to define the adjoint problem introduce an inner product

(2.2
<A, B> — J; (a,b, +E,_b,_+E3§aa +a4b4‘)dx " (2.6.1)
where the as and bi are the components of the vectors A and B and the
overbar indicates the complex conjugates. The adjoint solution Ug(n),
corresponding to the solution Uo(n) must satisfy

M:(h) UO*LM = 0 (2.6.2)

3

where

-inQ 20+xQ" o -kt

Misy = | 202 -in o -
? 0 ) -inl -tk . (2.6.3)
-y “L¥ -k, &)

The boundary conditions for Ug(m) are the same as those given in Section
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2.4 for U0(+1). To calculate the form of the adjoint solution for the

helical mode, denote

oot it
" ¥ " v
Un = (w5 Ugen = -;\;* : (2.6.4)
P

The form of the matrix operators H;(+1) and M;(—]) yield the relation-
ship given above between U3(+1) and US(—]) when they are appropriately
normalized. Substituting the components into equation (2.6.2), the sys-

tem can be written in terms of two ordinary differential equations,

dti*__ 2 ¥ (2 "
Sh= 20T b (ke /x2) P ; (2.6.5)
gg' = (1-28)u* + % (3-28)p*, (2.6.5)
where 5
”PS* = P/ . (2.6.7)

The dimensionless vorticity A is defined in equation (2.4.7). The re-

maining components of Ug are determined from the algebraic relations

= -2u*- £ PN (2.6.8)
w”‘: _ ka}’;*_ (2.6.9)

The components of Ug must be regular at the origin. This constraint de-
termines the solutions of equations (2.6.5) and (2.6.6) within an arbi-
trary normalization. The solutions are defined uniquely by the initial

behavior
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¥
Ww ~ X os X-— 0, (2.6.10)

¥ oas o BE Kewd, (2.6.11)

A
P
for the range of x inside the core.

In the region outside the core, the vorticity is zero and the
solution to equations (2.6.5) and (2.6.6) can be found in closed form.
Applying the condition that the velocities and pressure must vanish at
infinity gives

-ix? (k,x Ko loox) + K, Uh)())
¥ ¥ 2 {
Weo = 7| ¥ (2k,x3r<°<«.5>+z<.ck,x>)
- kx” K Lo (2.6.12)
% Kl(kux) ‘

The constant Cé is determined from the continuity of the velocities and

préssure. If p*(1) is the value of the function H*(x) at x=1, then

% A
C, = F*“)/K‘Lk,), (2.6.13)

The adjoint operator was defined to satisfy

<MIABRY = A I1BY (2.6.14)

for any vectors A and B which satisfy the same boundary conditions and
continuity conditions as Uo' If the vector A is replaced by the solu-
tion to the adjoint problem Uz, then the left side in equations (2.6.14)

vanishes. For B the solution of the inhomogeneous problem
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M.B=F (2.6.15)

with the same homogeneous boundary conditions as UO; equation (2.6.14)

gives the orthogonality relation

<U:‘, F> = 0 (2.6. 16)

as a requirement for the existence of a solution to (2.6.15).

To apply the above to the solutions U1(+1) and U,(-1), correc-

1
tions must be made in equation (2.6.16) to take account of the inhomo-
“geneous continuity conditions (2.5.10) and (2.5.72). If the components
of the vector B in equation (2.6.14) are not continuous, then the equa-

tion becomes

<sz’-\,5> =AM B> +a[b+a,0b], (2.6.17)

where the brackets indicate the jump in the quantity across the discon-
tinuity at x=1.

The solutions to the inhomogeneous equations (2.5.3) and (2.5.4)
with jump conditions given by equations (2.5.10) and (2.5.12) exist

only if

KU, ~i ol + 1 Py Uatsd ¢ £ Niya, Uste) D

— i LL*U')[F'“,U]_’_ P*(IJ[U.“”] =0, (2.6.]8)

LUK, - i lwl+ 1 P) 2 Ueo +# Nwoa, Untro )

+ il [pend+ P Lug-) = o, (2.6.19)
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Intraduce the notation

L, = < Ufun, LUL,(+0>1 (2.6.
R, = < Wun, PUwn), (2.6.
eN, = <U:L+n, N Upt-0), (2.6.
L B.“ = (-éu”’m [po]+ P L’u,u.)})/aql . (2.6.

Substituting the form for [pT(+1)] and [u](+1)] given in equations

(2.5.10) and (2.5.12) allows B to be written

-11
5-“ 25 E’-A § (I+ !l, %1)( P*(i)—-u.*(l)) F(l)
+ (’3 +.Q.’<l))( P*r.nsuu*u))&(') +Q’cnu*h)u(|)} . (2.6.

Equation (2.6.18) can be written in terms of the quantities defined

above as

i(wly+kPBa,, + i (N, +B,)a, =0. (2.5
The symmetries in the matrices are used to write equation (2.6.19)
terms of the quantities defined for equation (2.6.18). This gives
—’;(wlL‘u*hlﬁlva—\_i(é"q-“”“B_”)CL_H:D. (2.6.
ETiminating a,, and a_; in the above gives
2 2 .2 2
w, = !ql & —R , (2.6.

where

20)
21)
22)

23)

24)

25)

in

26)

27)
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a= f/mL, (2.6.28)
L
R = (zN,+ B, /L., (2.6.29)
For continuous distributions of vorticity B_yq 7s zero and the coeffi-
cients above are those given by Moore and Saffman (1975).

The maximum growth rate is given by e|R| for helical waves with

axial wave number ko.

2.7 Uniform Core Result

For the vortex core with constant vorticity the velocity field
(E},VB+V},O) is described at the end of Section 2.2. Using this form
for the undisturbed vortex, the disturbance velocities and adjoint
solution can be evaluated in terms of Bessel functions, giving an im-
plicit equation for the critical wave number ko and giving the frequenéy

wy in terms of integrals of these functions.

To determine the forms of UO(+1) for x <1, the form of the rotation
and vorticity, f2(x) = 1 and A(x) = 2, are substituted into equations

(2.4.4) and (2.4.5) and the equations combined to give

[

o 15" 2 !
iR 3KE-) P = o, (2.7.1)

where p is the scaled pressure from equation (2.4.6). The constraint
on the behavior of p at the origin given by equation (2.4.11) determines

the solution to (2.7.1) to be

. D (VB hax) | (2.7.2)

ﬁ(x) =
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where J1 is a Bessel function. The components of U0(+1) follow from
P to give

s (WWkT+%x )
S _-2—- -'/3(2@‘?0']:‘ o ;‘LI)
Uen = g, L , \ (2.7.3)
-3

The argument of the Bessel functions is /3 kox in the above. The form
of U0(+1) for x>1 is given by equations (2.4.13) and (2.4.21). The
condi tions of continuity for the radial velocity and pressure at the

core boundary give the relation for the wave number ko as

L g Kl = BGTR)

k Ky V2 T Bey (2.7.4)

m)

The positive real roots of this equation kg lie in the intervals in

which Jo/Ji decrease from infinity to zero

1I')"”/,/§' < k—;hﬂ< jo,mn/‘/g" ;M= LT, (2.F.5]

where j and j are the mth largest positive roots of J_ and J,.
Tam 0 1

0,m

The larger roots correspond to more internal structure in the distur-

bances. The smallest five positive values for k0 are given in Table 2.1.
The solution to the adjoint problem is needed in order to find

R and Q. The differential equations (2.6.5) and (2.6.6) can be combined

to form the single equation

ks g

A R N ET U R CT SR O E A T

The solution for p* asymptotic to -x2 as x tends to zero is
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2 —
f;*cx) = —75f X Di1Fk%). (2.7.7)
The components of US(H) are determined from the relations given in

Section 2.6. For the region x <1, the adjoint solution can be written

Uo*(-H) = 'XUC,(H), (7.7:8)

where U0(+1) is given in equation (2.7.3). Outside the core the solution
Ug(ﬂ) is given by equations (2.6.12) and (2.6.13) and the relation given
above does not hold.

To calculate the growth rates the integrals L”, P” and N-H given
by equations (2.6.20), (2.6.21) and (2.6.22) need to be evaluated. 1In

terms of the components of Uo(+1) and U;(H), L” and P” can be written

Lig & _fo (Wu + vy e wiw)dx, (2.7.9)

B, = S:D(wxp+ Prw) ox . (2.7.10)

The integrands can be written as combinations of Bessel functions by sub-
stituting the explicit forms of the components given by equations (2.4.13),

(2.6.12), (2.7.3) and (2.7.8). Then the integrals become

4 : 2 2 2 C z
L= g | L (56 E0 20T % (3o t0)T7) de

) ko T GRNZ (37,2 L2 (2.7.11)
+ (PR [kt i)

{ S:," T2 dx

T WSR2 [®, 2 (2.7.12)
(K.(i.,) ) L x K, ‘J"} ,

—
’ct>|“’ 2k

(o]
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where the argument of Jo and J] is V3 kox, and of Ko and K] 1s kOx.

The form of the integral N_]1 in terms of the vector components is

1
N = J.o (‘L&*(4u+ 2xuy + v*(éu.;,zxv'J — w¥aws 22w’y dx

-1t -
+_[ {—-U-*(2(1—‘/1‘)u+(l—‘/x")xu’— 4v/x4) _
FvE (204 emyu + 2V + (e xv') (2.7.13)
rw¥( C=Yyadw + (14 ety xw' ) } dx

Instead of substituting the forms of U0(+]) and Ug(+]) into the above
and attempting to simplify the resulting expression for the numerical
integration, the components and derivatives are computed and the algebra
is done numerically in the integration scheme.

The integration on 0 <x<1 is carried out using Simpson's rule,
subdividing the interval until the error estimate is Tess than 5 x]O_S.
Since the modified Bessel functions decrease exponentially to zero for
large arguments, the value of the integral for x from one to infinity
depends strongly on the contribution of the integrand near x=1. The
integration is done on intervals of length 5 until the correction is
not significant.

The resulting values of R and Q for the first five wave numbers

are given in Table 2.1:

k, R Q
2.505 1.142 .266
4.35 1.139 . 162
6.17 1.136 116
7.0l 1.134 -091]
9,81 1,133 .074

Table 2.1 Values of R and § for the first five critical wave numbers
for the uniform core vortex
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For very large wave numbers the integrals defining R and Q can be
approximated to check the numerical results. For large m the asymptotic

form of equations (2.7.5) and (2.7.4) defining kém) -

J;(ﬁh")/m(ﬁko) - \]—3_‘ . (2_7_'[4)

Substituting the asymptotic behavior for J and J1 into the above gives

(m) ™
ha e ﬁ*(b’n+ 'l%) ‘Fo:— lqv‘ge m, {7.7:15)

For these values of ko the asymptotic form for the integrals in equations

(2.7.11), (2.7.12) and (2.7.13) can be evaluated to give

32
Ly ~ a5k, as k-2,

(2.7.186)

B
B, ~ “35Tkre as k,—» o, (2.7.77)

(R
N ~ Y- TR as ko co, (2.7.18)

-1

The asymptotic form of B_,, is determinad from equation (2.6.24) and the

components of UO(+1) and Ug(+1) to be

- 4
B, ~ 3BTk, as koo, (2.7.19)

The values of Q and R for large wave numbers, found by substituting the

above into equations (2.6.28) and (2.6.29) are

G~ ap, i s (2.7.20)

1 QRN ql'g = [.125 as k.—>oo. (2.7.21)
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These values can be compared with those given in Table 2.1 with good
agreement. Also, they indicate that even though the growth rate is
largest for the smallest positive wave number, it decreases by only two

percent over the range of critical wave numbers.

2.8 General Distribution of Vorticity in the Core

The analysis in Sectijons 2.2 through 2.6 is for an axisymmetric

distribution of vorticity in the core, given by

A = +5 (x20m) (2.2.5)

which is bounded at the origin and decreasing outwards. A numerical al-
gorithm for evaluating the wave number k0 and the corresponding factors
R and Q in the expression for the frequency follows from this analysis
once Q(x) is given. The numerical eigenvalue problem for ko reduces to
finding the roots of equation (2.4.22), where the values of u and p at
x=1 are determined by integrating the differential equations (2.4.4) and
(2.4.5).

The values for R and Q depend on integrals over both the core and
outer regions. The contribution to these integrals in the core can be

evaluated by solving the initial value problem defined by the system

dq

=2 =h . (2.8.1)
dh‘ ) S ! " 4

% = -th+ (FaBawa+ %2)q , (2.8.2)
gi-‘ = x(H-Duw +(kF+ 2P (2.8.3)
45 FAYN

L= {1-28u-x5P, (2.8.4)

o
-3
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du* ) A

ax = %uﬁr e (£Q°2+ !/xz) [": (2.8.5)
EQE*;_ (1-22 ) * ) AND¥

d T U-2gW+ = (3-28P, \2 BB
'Jt-' a ;A 2 Aan

I = Wi + (2u+§ﬁ* SUrxP) + k. F*f’ s (2.8.7)
dP "

3 = 2k.0 F*ﬁ ’ (2.8.8)
dN

B 4—((3!3!_23‘,‘&/”1* _;ggu_u(*j' 13)\!/,‘1)—}\,‘* ((x3'l+3:)“/1‘£
"(Kg"zfj)vfzxz *J‘ﬂv)“‘kn P (3 P +23|> )/zx »

0.
*,

(2.8.9)

where v and v* are given by equations (2.4.8) and (2.6.8). The initial
values come from the behavior of the functions near x=0. A small value
of x is used as the initial value and the integration carried to x=1.
The exact form of the initial values is discussed in greater detail in
the next section.

The value of the constant a, is determined from g(1) and g'(1)
according to equation (2.2.27). The contribution of the core region to
the integrals L]T’ P]1 and N*]] are given by £(1), P(1) and‘aoﬁ(1).

The contribution to the integrals from x> 1 can be written expli-
citly in termé of the matrices and vectors from Section 2.6, giving

definite integrals of Bessel functions. If these are denoted as L?T’

P?1 and N° 2110 then they have the form
[»] Am]‘:\'*m
L, = E—r‘:x,:m Fro - (2.8.10)
PU)P (r)
1 k KR(R) G(-ko) (2.8-]])

( .') cc)

Ni, Ko (k'* Hitry + aah H (Ra)) (Z:8.12)
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where ays p(1) and p*(1) are determined from the core solution. The con-
stant 34 is given in equation (2.2.28). The functions of the wave number

have the form

Fk) = fhoxa( K°2(1)+K'1tx))clx ) (2.8.13)
=R

Gy = LQX Ko dx (2.8.14)
G 2

Hitkd = [ (3xK3+ 20-x0kek, - x k) K2y, (2.5.15)

H, (k) = L (3x* K+ 2x(S4R2) Kol + (B+39KE) 94 (2.8.16)

. These integrals can be evaluated using the same methods as in the uniform

core problem.

The factors R and Q are determined by the combination of the inte-

grals,
A o
Lu = Lo+ Ly, ) (Z8:.17)
) =]
Ri= P + Py, (2.8.18)
N o
N_, = N, + N, , (2.8.19)

and the boundary terms B_]] defined by equation (2.6.24). The numerical

problem is straighthWNafd and a relevant example is discussed in the next

section.

2.9 Viscous Core Model

Saffman (1977) demonstrates that the rotation profile for the core

of vortex rings can be approximated under certain conditions by
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Qo = M,z 7¥7e) /MG 2= "), (2.9.1)
where M is the confluent hypergeometric function. Since the parameter
s? is proportional to the inverse of the Reynolds number, this profile
may give some insight to the effect of Reynolds number on the vortex ring
instability.

The properties of the confluent hypergeometric function are taken
from Abramowitz and Stegun (1965). For large £ the core profile ap-
proaches the uniform profile discussed in Section 2.7. For small €1 the
1/2

swirl velocity, Vb= xQ2(x), increases from zero to a maximum of V6= .695%

at x=1.45e_, then decreases to VB= 1 at x=1. This behavior for small ¢,
must be considered in the numerical scheme to maintain accuracy as €1 is
decreased. The step size and starting point in the integration of equa-
tions (2.8.1) through (2.8.9) must be adjusted as € is varied. The
initial values are defined earlier by using the behavior of the solutions
for small x as an approximate at some small starting point Xy If X is
taken too small, roundoff errors will be large. More terms in the expan-
sions of the solutions near the origin can be calculated to allow for
larger values of Xy

The behavior of Q(x) and A(x) near the origin follows from the

series expansion of the confluent hypergeometric function

3x? X &
M(3/4',2,-*"Z,z) == 'a'”':f * 0(('6)). (2.9.2)

Substituting into equations (2.9.1) and (2.2.5), the expansion for Q and
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the ratio A/Q can be written

1 X 4
Qe = Qo (-5 + 00T, (2.9.3)
o = 27 55+ 0. (2.9.4)

(]

The second term in the initial behavior of each of the unknowns in the
system of equations (2.8.1) through (2.8.9) follows directly once given
the form above for the rotation. The resulting two-term expansions near

the origin are

xZ

qex) ~ xZ(1- /45,"% (2.9.5)

2
hoos= gy ~ % (2- *762) (2.9.6)

3
L2

uo~ 1~ (e gt (2.9.7)

*
,:'5()<)~ x (=14 (3k% + 3/95})7@)\ (2.9.8)
-LL*(X7~ X (l“-%g:-xz)a (2.9.9)
A% 2y 4+ 3key2) (2.9.10
P x) ~ X =t+ 5=Xx%/, .9.10)
Loy ~ x2(— (% + Hee) X*) (2.9.11)
P(;g ~ k}ZQIO)‘A""(l - (h°/z+ th,‘) X"), (2.9.12)
»~ 2 '
N ~ x (-2+ (B/s + %edx?). (2.9.13)

At the starting point X the relative error in the initial values above is

0((Xo/€1)4)' This estimate can help in the choice of the starting point.
The chord method is used to determine the first few critical wave

numbers, the roots of equation (2.4.22). .For each iterate the values of

p(1) and u(1) are determined by integrating equations (2.8.3) and (2.8.4)
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from the initial values given by equations (2.9.7) and (2.9.8) at the
point Xor The value of X5 is set at 1/128 for larger €1 and decreased
by powers of 1/2 to maintain the ratio xo/s] at less than .04 . The
predictor-corrector scheme described in Section 1.7 is used with the
step size set at the value for Xot For small €1 the step size is in-
creased outside the region in which xQ(x) varies rapidly. The resulting
values of the first three critical wave numbers are given in Table 2.2.
The procedure for calculating the contribution to the correspond-
ing values of R and Q from the core is the same as described above for
finding p(1) and u(1) except that the system has 9 equations instead of
2. The values £(1), P(1), f(1), p(1) and p*(1), along with the constants
a > a; and A determined by g(1) and g'(1), are used in the expressions
for L and N

P The remaining contributions to R and Q are given

£ Y ~11°

by the functions F, G, H, and H, defined by equations (2.8.13) through

i

(2.8.16). These depend only on the value of the critical wave number.

The resulting computed values of R and §Q are given in Table 2.2.
Notice that the values for R and Q for large E] are identical to

those in the uniform core calculation, as expected.
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CHAPTER 3

UNIFORM VORTEX IN A UNIFORM SIMPLE SHEAR FLOW

3.1 Introduction

The mathematical method described in Chapter 2 for the strained
vortex allows easy examination of a range of problems involving small,
two-dimensional deformations of a vortex fi]amént. Only the matrices
oh the right side of equation (2.3.4) and the interface conditions
need be changed. The form of these matrices and conditions depend on
the deformation to that flow field due to the straight vortex filament
alone.

The external deformation examined in this chapter is that due to
a simple shear. This flow may give insight into the behavior of short
waves on the trailing vortices behind aircraft near the ground, where
the crosswinds approximate a pure shear flow. Also, since the shear
flow is rotational, the form of the corrected frequency is expected to
show some differences from that for the straining field.

Moore and Saffman (1971) calculate the shape of the uniform vortex
filament in a simple shear and find that a solution exists for the vor-
tex cross-section of an ellipse when the shear ¢ is sufficiently small.
They a]so investigate the stability to two-dimensional disturbances.
The three-dimensional stability can be examined by expanding the exact
solution in the ratio of the shear ¢ to the constant vorticity in the
filament to give the corrections to the vortex flow due to the shear.
In this case it is easier to calculate the corrections to the velocity

field of the vortex due to the shear flow from the governing equations.
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3.2 Steady Deformation of the Vortex Filament

For the vortex filament along the z axis in the cylindrical coordi-

nate system (r,8,z), the steady flow field does not vary in the axial

direction. The magnitude of the uniform vorticity is taken to be 2 and

the core radius to be 1, and the stream function of the vortex filament

without the imposed shear then has the form

2
"’z"‘\" For r<l s

k}/o - —,&33?‘ for r>|

j

where the stream function is defined in the usual sense by

2\

—

'
u= 7% 28,

2¥

.

v =7 2 ,

and u and v are the radial and azimuthal velocities.

(3.2.1)

(3.2.2)

{32.2.3)

The correction to the stream function due to the shear is denoted

edys where the maghitude of £ is the ratio of the shear to the vorticity

in the uniform core and the sign is chosen to have positive e correspond

to the shear rotation in a positive sense. Far from the vortex the

total stream function has the form

Yr e ~ - Fr°(1- ws(ze)) —Logr s voo.

{3.2.4)

The angular dependence shows that the appropriate form for the steady

deformation to the interface between the vortex core and surrounding

fluid is
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F = Ry = |+ ghcos(ze),

where A is determined by the conditions at the interface, and only 0(e)
corrections are retained.

In the core the total stream function must satisfy

Vzvﬂ+&%)='”2 Lor r<Rw5 {3.2.5)
\K+E%==O sh r= Rte) (3.2.5)

and Vot edy must be regular at the origin. The solution with the ap-

propriate angular dependence can be written

Yoret =4 (r2-a®- 26r%Acos20) furcR. (3.2.7)

Qutside the core the stream function must satisfy

V2 (\Po"'aq/‘) o _2& 'For re Ree) ’ (3.2.8)

and the boundary conditions given by equations (3.2.4) and (3.2.6). The
tangential velocities must be continuous across the surface r = R(6)

giving an additional constraint that

;}(Woi- E,‘H) = -| + €A cos 20 on v=Reey., (3.2.9)

The right hand side of this equation follows from the form of the stream
function in the core given by equation (3.2.7). The solution to equation

(3.2.8) satisfying the asymptotic condition (3.2.4) and the continuity
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condition (3.2.9) can be written
Pl = ~(1-€)dogr —delr2io (%) wsta)] fa R, (3.2.10)

The constraint (3.2.6) that bt el be zero on r =R forces the constant
A to be 1, so that
Koy = [+ £cos(26) . (3.2.11)

The steady velocity field determined by the stream function from equa-

tion (3.2.2) and (3.2.3) is of the form (éﬁ],‘Vb+ éV],O), where

v, = ‘ {8.2.12)
£ for r> R,
~2sin (20) for r< R,
u, = | ‘ . (3.2.13)
o (‘..7:r /,.2)5%(28) for r» Eta),
Bpcaslasy Lo raRis),
Vl _ [3.2.:14)

1
- VD) eot(28) Tovr> Risy .

The stability of this steady flow field is examined in the next section.

3.3 Stability Equations

The same notation as in Section 2.3 1is employed. The disturbance
velocities (U,v,w) and pressure p are added to the steady solutions and
the resulting disturbed velocity and pressure field is required to
satisfy the Euler equations, Tinearized in the disturbance quantities.

These equations are then written concisely by defining the vector



< =

(3.3.1)

u =

TN

to give the equation,
5%(LU) + MU = e(T+%+eN+ %émﬁ)U; (3.3.2)

where L, M, T, N and N are matrices defined by

| ®) o o
L = o 1 o0 © (3.3.3)
o o | O ],
o o © ©
= D -2 = 2
F-Voﬁ Yo 0 /ak
Ao, 1= L2 L%
M = [F#e %S 0 (3.5.0
0 o +Ltvz Y= |»
l%}'*TE 1+ s Yoz 0
(‘
(O) Lor r< Ried,
(3.3.5)
T & < ~(1=%2)  201-Y2) 0 0
-2 -CU-"¢2) %0 0 0
o o —(I—9%2)3%a o
o] o O o
"Fbif' \"‘?R(Q)’




= [f2=

~2i (1vr2)+25% o) o o
4 2c(i-v$)+23 o o
o o) ~2irZ +2% o
o o o o
N < 'Fox—- v Rte),
ol 3
- {1- AR R -G 0 o 0
{ 3
2(1+7a) (-3 -(rs)r2+0-5)% 0 o
(- {1ey Y2
O O )" an
FU-£9%s)
(®) 0O

N ° s

for r> R, (3.3.5)

and N is the complex conjugate of N. Notice that the matrices M and L
are identical to those in Chapter 2. The components of U must be regu-
Iarrat the origin and tend to zero at 1nf1nity.‘ The total ve1oc1t{es,
(Eﬁ+ﬁ, V6¥Vd+*V,W), must be continuous across the disturbed core bound-

ary at

o~
= R + 5. (3.3.7)
The axial and time dependence can be separated in equation (3.3.2)
and the solution written in terms of an expansion in the small parameter

e by taking the form of the solution as

Lkz +£wt

U = ('{;’a+ U ) e . (3.3.8)
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where

We + EWy + - {3.3:9]

k = ko + ek, +

s (3-3.10)

When these expressions are substituted into equation (2.3.2), the re-

sult can be split into a hierarchy of equations in powers of the

parameter . The first two equations in the hierarchy are

(ico,,L +Ma)5o = G 3 (3.3.11)

('LLOOL.\-i- MD)U, = (-L'w,l_o—ut PaT+f 52"}] gz‘eN»[);) (3.3.12)

where
o] e o o
- o o © o
P = o © o I (3.3.13)
o 0 1 0
and M

. is the matrix M with 3/3z replaced by iko.

The disturbad core boundary can be expressed in a form consistent

with the velocities by writing the interface position as

r = Ry« (& + ag.wb-")etkz_*m.t (3.3.14)

The deflections 60 and 6] are functions only of @ .

The condition that the total velocities and pressure be continu-
ous across the core boundary gives constraints on the jumps in the

values of the disturbance quantities across that surface. To lowest
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order in e, the radial and axial disturbance velocities and the distur-
bance pressure are continuous across the interface. This condition on
the components of U,> along with equation (3.3.71), gives the same

lowest order problem as in Chapter 2. The solutions in the normal azi-
muthal modes are the stable Kelvin waves on a uniform cylindrical vortex,
given by Kelvin (1880). The frequency W, is determined by the axial

wave number n. (The expression for W, Was derived for n=0 in Section
1.8 using a different notation.) The Kelvin wave frequencies are the

roots of the equation

4 '
Knlk) | £ J.(3k) 2n _
Ki(k,,) T Tnlaky) " kA% (won) ©, (3.3.15)
where
2 4-
A= gy T (3.3.16)

and primes indicate differentiation with respect to the argument. Denote

the solution to the above for a given kO and n as w(ko,n) and the cor-

responding solution for the velocities and pressure by Uo(n)e1n6, then

the expression for Uo(n) within an arbitrary multiplicative constant is



-105-

2 n

Jh (’A !'(J‘)
- ”éo (Do +n) Jp (N ko)

Uym = < ,
-t Ky, k)

To0  wr Katken

Kntks) \ K, (kov)

~flwgs P K, (ko

.

3.4 Effect of the Shear

. 2n -
L (’){_Jh’ (',\kok) -+ 2 k°(m°+h)\' J_y\(ﬂ ko\->

/
T Rlwogr M) T kg ~ Fhow Jaln ko)

Ffor re /
# ‘ >

“Fa'r r>f .

(3.3.17)

For the lowest order solution consisting of a single azimuthal

mode, the correction due to the shear has the form
A e

2.8 _2ia ‘
U, o (E‘Z‘ U;(m—ZH— U,U\H- e U((!’\-Z) €

and satisfies the equations
(iu,)OL, + J_\/Lo(mm)U*tml) == "li Nom Uoih) 5
( i, L+ Mbt_m) Un) = (—Lw‘L—ik,P+T>me :

(éwOL%‘MDLh-zy)TZm—Z) = % New Uty

(3.4.7)

(3.4.2)

{3:4:8)

(3.4.4)
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where Mo(n) and N(n) are the matrices M_and N with the 3/36 replaced

i
8]
by in. Equations (3.4.2) and (3.4.4) with the appropriate houndary
conditions have unique solutions when R does not also satisfy the dis-
persion relation for the n+2 or n-2 azimuthal mode. Equation (3.4.3)
has a solution only when the right hand side of the equation satisfies

the constraint discussed.in Section 2.6; that is, the Fredholm alter-

native is applied. This gives 0 directiy as

) : <i{)j§n),'T1£Zch§>>
W, = ~t <Uf>‘;:h),LUalh)> ?

(3.4.5)

where k] has been taken to be zero and no boundary terms appear. From
the form of UO, Ug and T, it can be shown that equation (3.4.5) is
real. Thus shear does not destabilize in this case.

The argument fails when CR takes values which yield homogeneous
solutions for both n and nt2. 1In the last chapter steady helical
waves were shown to exist as superpositions of the n=+1 and n=-1
modes. These correspond to the critical wave numbers kém) for which
Wy 0. ‘In this case it is necessary to take BO of the form

T

(8 )
.(jO = CLHIJOLH)& + a_'-u,(—t)e (3.4.6)
and examine the soluticns for the correction U] of the form

7

2 ( -L8 -3(e
U, = Uwue P VU0 e U €% Urneé™ (3.4.7)

Substituting these into equation (3.3.12) and separating in the angular

dependence, the two equations for which nontrivial solutions of the
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homogeneous equations exist are

MO{H)U(*Q: Cl“(—iw,l..\ ~t, P+TYUse + T Nens a Ueny , (3.4.8)

Mo U = a, i li- ik, Pem Ugeny + tNwoa, Umn.  (3.4.9)

The forms for UO(H), UO(—1) and the adjoint solutions Ug(ﬂ) and Ug(—])
are given in Section 2.7. The orthogonality requirements given by
equations (2.6.18) and (2.6.19) need a term due to the matrix T added

in order to apply to the system above., Define T]] by

LTy = <U,an, TUste» (3.4.10)

and LH’ PH’ N—ﬂ and B_H as in Section 2.6, then the orthogonality

conditions become

(W|L”+k, Pll" -r“)a-\-l'—' (% N—n+ B-u) a,=0, (3.4.11)
(CU,L.“_— k, F:| '*'-ru) s Wi (é e B_u) Ay =D, (3.4.12)

where the form of B—H has to be determined. Section 2.6 gives

('.B__”-: (—Lu.*m [F,(+n}]+ P’*u)[u,u:)])/a_' R (3:4.13)

where the brackets indicate the jump in the enclosed quantity across the

interface. The continuity conditions give

Lwpsd] = 208, -0 + f{é‘%] " (3.4.74)
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&
[Lpeol=-% il (3.4.15)

where -iu and p are components of UO(—1), given in equations (3.3.17).

Eliminating a,, and a_; in the real equations (3.4.71) and

+1
(3.4.12) gives

wf = ((Tu—k, ﬁ;)z-*('z'zN-“Wb’_,Jz)/L?-” . (3.4.16)

Notice that the wave number corresponding to the fastest growing wave
is not exactly the one for steady waves, but slightly different. If
kém) is the critical wave number for the strained vortex, then the

fastest growing waves have

—

|
kb = k, + &

|

(3.4.17)

5

Hence the effect of the rotational deformation differs from the poten-
tial deformation of the strain in the shift in the wave number. The
values of N_H and B_H are changed as well, but the shortwave insta-

bility exists in a similar fashion to the strained vortex.
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CHAPTER 4
FLOW OVER A WING WITH AN ATTACHED FREE VORTEX

4.1 Introduction

It was claimed several years ago by YW. Kasper that the 1ift on
a jarge aspect ratio wing could be significantly increased, so that
controlled flight at extremely low forward speed would be possihle, by
designing the wing so that there would be an extensive region of vortex
flow over the upper surface. Films demonstratiné the possibility were
shown in 1973 by 0. Sviden and W. Kasper (see Riley 1973) and a popular
description of the wing has been given by Cox (1973). Sink rates were
reported of 200 fpm at 30 mph and 100 fpm at 20 mph, corresponding to
lift/drag ratios of L/D = 13.2 and L/D = 17.6, respectively. There is
nothing unusual about.such values at high speeds, but at 20-30 mph they
appear remarkable, and are presumably concomitant with significant
increases in the 1ift coefficient without corresponding change in the
drag coefficient.

The fact that the vortices produced by separation at sharp leading
edges can increase the 1ift on an airfoil is well known for delta wings
and similar low aspect ratio airfoils, and there is a fairly extensive
1iterature on vortex 1ift for slender wings (see, for example, Polhamus
1971). The concept of using the vortices for control has also been dis-
cussed (Landahl and Widnall 1971).

However, to the best of present knowledge there have been no cal-

culations of a similar nature carried out for high aspect ratio wings,
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to determine if a free vortex could stand over the wing and increase
the Tift. There have been studies of two-dimensional flow past
cylinders and flat plates with a pair of counter rotating line vor-
tices lying downstream symmetrically and at rest relative to the body.
(For references and corrections of earlier errors, see Smith and
Clark 1975). These calculations are relevant to the slender body
theory of flow over delta wings. But although it is obvious that, par-
ticularly at high angles of attack, leading edge separation will pro-
duce vortices and increase 1ift on a wing of large aspect ratio, it
has not been possible to find references to flow past such shapes with
attached free vortices. Perhaps this cbvious idea has not been ex-
plored theoretically (or work has been forgotten) because of the as-
sumption that such flows would in practice always be associated with
large values of the drag, as the flow around the vortex would not
reattach to the body but form an extensive wake. It should be noted
in this connection that a prototype "Kasper airfoil" was tested in a
wind tunnel as a student project (Walton 1974) with discouraging
results; the 1ift increased at high angles of attack but so did the
drag. MNevertheless, the claims of Kasper suggest that it may be pos-~
sible to gain the advantages of increased 1ift by creating a vortex
over the wing, without necessarily paying the price of increased drag,
and the purpose of the present chapter is to present a simple ideal-
ized solution describing such a flow.

Considered here is the two-dimensional flow of an incompres-

sihle inviscid fluid over a two-dimensional airfoil at angle of attack.



"

For simplicity, the calculation is first done for a flat plate. A
method to extend the investigation to the general Joukowski airfoil
is demonstrated in Section 5.6. The flow is assumed to be steady,
and it is supposed that there is a line vortex in the flow at rest
relative to the airfoil. The existence of such a solution and thé

resulting effects on the 1ift are investigated in this chapter.

4.2 Equilibrium of the Free Vortex

The flow picture is sketched in Figure 4.1. Dimensionless vari-
ables will be used exclusively. The airfoil of length 2 lies along
the x-axis from -1 to 1. The flow of unit velocity is at angle of
attack a. There is a line vortex of strength « at rest at the point
(xo,yo). In addition, there is a circulation T about the airfoil. We
use complex variables, z = x+1iy, and w = &+ 1Y is the complex poten-
tial. Then w is an analytic function of z, with ¥ = constant on the
airfoil and

W~ e_Mz + '2‘;?(K+r‘)lo3;s as z-mco , (4.2.1)

Note that for convenience the circulation is taken positive when in

the clockwise sense. At this stage, «, T, z,= X ik 1y0, are unknowns.

0
There is no loss of generality in supposing 0 < o < w/2.

The circulation about the airfoil is referred to as being due to
a bound vortex. A force must be applied to the wing to maintain the

flow; this is the Kutta 1ift and it is perpendicular to the direction

of flow at infinity. The vortex at 2, is free, i.e., it is not
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subjected to any force, and is not produced by inserting a smail wing
at Z,- The Helmholtz laws require for steady motion that the free vor-
tex be at a stagnation point, i.e.,

o : i
pr (B-45) - 0.

Fear 2, 21 Z-Z, (4—-2.2)

However, the presence of the free vortex will affect the force on the
body, and it follows readily from considerations of the momentum flux
at infinity or divectly from the Blasius formulas that the Kutta 1ift

on the wing 1is

1. = K+, | (4.2.3)

(In dimensional units, multiply by pU, where p = density, U = velocity
of free stream.)

If k = 0, the indeterminacy of the picture is removed by imposing
the Kutta condition at the trailing edge that the velocity be finite

there. The result is

[ = 217 sinx . (4.2.4)

If « # 0, three further equations can be obtained, giving four in all for
the four real unknowns, by also imposing a Kutta condition on the leading
edge and using equation (4.2.2). However, it will be shown in Section
4.3 that these equations have no solution and that it is not possible to
impose a Kutta condition at both the Teading and trailing edges, eveﬁ
though in principle there are sufficient degrees of freedom (cf. Smith

and Clark 1975).
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The velocity potential is obtained by mapping the airfoil into the

unit circle by the transformation

4 (esYe) , C=2+(zzm;)7zp (4.2.5)

where (22— 1)1/2 = |22~ 1|]/2 when z>1, and the z-plane is cut from -1
to +1. Then,
ZLO(

) + % (103 (6-€.)—Log (€ - I/Ep))

w = | -Le((
-+ EL—(K#“F) joj (4.2.6)

is an analytic function with the appropriate singularities and satisfying
the boundary conditions, where %o is the image of'zo.
The condition (2.2) that the free vortex be at rest gives, after

some algebra

. ra Z
" 2 r &, — 151 -
Pl (SR PP~ . =0,

T 2o o (gl l)(ig 12 !> (4.2.7)

Put To = pe1¢,'and break into real and imaginary parts to obtain

K B sun (24)
Cos (é""?‘) = T (g-)pt-2ptcoszpy +1) (4.2.8)
’ _ %? ,o""(l +05(23)~ 7143 (asl2d)) +2 >
SU?L(¢-°(’) . (64__0(64__2{!‘0&(2'#)*,) MW(Q"’-P) . (4.2.9)

4.3 The Kutta Condition

In order that the inviscid flow be compatible with thin boundary

layers on the airfoil surface, the velocity is assumed to be finite at
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the trailing edge z = 1. This Kutta condition requires that dw/dz = 0
at ¢z = 1, because of the singularity of the transformation. One real

equation then results:

s K+ K el-'
Sl = 21 T 2T Q"-—Z{&osc}a-&-l ~ (4.3.1)

The velocity at the trailing edge is

K _ele=0 swmd
V = Csu — 77 (€ +1-2pwsd4)> . (4.3.2)

The physical considerations which led to the Kutta condition will only

be applicable if V > 0, which is a necessary condition for (3.1) to apply.

A Kutta condition at the leading edge ¢ = -1 gives the real equa-
tion:
' < S| S
Sm o = a2 v 7w i+ 2gasd e (4.3.3)

It is now not hard to verify that equations (4.2.8), (4.2.9), (4.3.1)
and (4.3.3) have no solution in common. Equations (4.3.1) and (4.3.3)
are solved for « and I' and substituted into (4.2.8) and (4.2.9) to ob-

tain

2 2 . ) . . &
E sl S S Suva B
.(—&2_6’?1 = cos(g-o) - - tosd simlg-ax) L8B4

!

This equation obviously has no nontrivial solutions. Hence, there is no
nontrivial flow field of the type being considered in which a Kutta con-

dition is satisfied at both leading and trailing edges.
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4.4 The Free Vortex locus

The Kutta condition at the trailing edge and the two egquations
for equilibrium of the free vartex provide three equations for the four
unknowns k, T', p, ¢. A locus of positions is therefore expected. From

equations (4.2.8), (4.2.9) and (4.3.1) we obtain

K= Fomm oWl 2 et o), (4.4.1)

r( *21 2 .
K+t = ;55;%?;‘ [(?zﬂ) COS+ cos & + Qg***)s\fué Sw.d]’ (4.4.2)
- 2 .
F.(Q,(_})) = [ e 7e) ~4] cos§ Cos{p-a) — ({’"’VQ) Stmel SUh
+ 2 sm o s tosd =0, (4.4.3)
This last equation determines for given angle of attack o the Tocus of
pessible positions of the free vortex. Only real roots of the
quadratic for p + 1/p which are greater than 2 are relevant, as p must

be real and p > 1. In addition, the condition V > 0 is equivalent to

) G“f??'— 2cond
_2..[(€+|/()7—_ 4](”%"‘““1—5%4’)4 Q+o + 2 tosd ¢ (4.4.4)

By inspection, one sees that (4.4.3) has one positive root for
o + 1/p greater than 2 if 0 < ¢ < 7/2 or n/2+a < ¢ < m. Using
By = %—(p‘*' 1/p) cos ¢ and Yoy = —;—(p - 1/p) sin ¢, the closed form expres-
sion for Zy» k, can be written in terms of ¢. The resulting formulas
are sufficiently complicated to prohibit their use other than for numer-

ical calculations.
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For small ¢ or m - ¢, when the vortex is close to the trailing or
| . leading edge, the leading terms in the expansions give

1y _ ( 13 T 2 L t15 E.
61-/9—24*5'(#%0%&’ X,,:l-—24> ‘IY"”Z(? ‘Evn.o() 5

s _ , (4.4.5)
K = 2 (rf)sswloe cos )’ * , k= 21 sueet (1467)

and (¢ = 7 - ¢)

o+ fo = 2+ & tamet | Ho= - toms, yo = (From )"

K = 411 sim o (QNJ'!:a.nd)yz , kel = 2w sina (I+E>fm«.a{). S

When the free vortex is near the trailing edge (¢ << 1) there are
in addition to the stagnation point on the lower surface near x =
-cos 2o two more stagnation points on the upper surface near the trail-
ing edge. Thus the sclution describes flow with a small separation
.bubble near the trailing edge. When the free vortex is close to the
leading edge (¢ << 1), there are also two additional stagnation points,
but one is on the upper surface and the other is now on the lower surface.
The flow is going backwards over the leading edge, and serves as a mode]l
~ of the small leading edge separation bubble which can occur, except that
the oncoming flow is separating before the leading edge. One can ask if
extra line vortices could be added to satisfy a Kutta condition at the

leading edge as well as the trailing edge, but the algebra quickly be-

comes unmanageable.

The stagnation points are at x = cos 6 where
I
- . K [
s p-o)+ st = zrle-1p) prlp-2tosto-d

i ‘] (4.4.7)
- €+'/? ~ 2tosd .
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and the root 8 = 0 is spurious (it is the Kutta condition). For ¢ close
to m, the additional stagnation points are at 6 = 7 + (¢ tan a)]/z. When

¢ is close to zero, they are at 8 = ¢ * %{3¢3tan a)]/z.

4.5 Results for the Flat Plate

In Figure 4.2 the free vortex locations (xo,yo) are shown for o = .1
and a = m/6. The 1lift, k + I'y is shown in Figure 4.3 as a function of ¥y
for the same angles of attack. The maximum 1ift occurs when the trailing
edge is a stagnation point and the condition (4.4.4) is violated. Figure
4.4 shows the maximum 1ift plotted against the angle of attack. A finite
1ift is obtained at zero angle of attack. Also shown on this figure is
the 1ift without the free vortex (2w sin a), and it is clear that large
increases in the 1ift can be obtained.

The streamline patterns depend on whether the vortex is on the
Tocus emanating from the trailing edge or on the iocus coming from the
leading edge. In the former case, as the free vortex gets stronger and
moves away from the wing, the angle of attack being constant, the rear-
ward stagnation point on the upper surface moves backward, the forward
stagnation point on the upper surface moves forward, giving an increasing
region of reverse flow, and the stégnation point on the lower surface
moves rearward. In Figure 4.5 the streamlines for this case are shown
near the limiting flow. This flow pattern is qualitatively similar to
that reported by Kasper and Walton, who notice by means of tufts that
there is forward flow over the rear part of the wing.

In the case when the free vortex is on the locus coming from the

leading edge, the stagnation point on the upper surface moves rearward
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and those on the lower surface approach one another, as the free vortex
gets stronger and moves away from the wing with o kept constant. Even-
tually, the stagnation points below the wing merge and move off the
wing, there being subsequently a stagnation point in the flow. Examples
of these two cases are shown in Figure 4.6. This happens before the
upper stagnation point reaches the trailing edge.

Figure 4.7 gives a typical plot of q2(= -2p) on the airfoil. The
case shown js for o = 7/6 and maximum 1ift on the trailing edge locus.
The increased 1ift is due to additional suction under the vortex and
near the leading edge.

Finally, a partial investigation of the stability of the flow is
presented. Even if the disturbances are restricted to be two-dimen-
sional, the stability of the configuration is a nontrivial problem as
the Kutta condition requires that in unsteady flow a vortex sheet of
variable strength exists downstream of the wing. However, if the
Kutta condition is ignored for unsteady flow, and it is supposed that
the free vortex and bound vortex have the strength « and I' , respec-
tively, of the steady state, then the calculation is completely
straightforward. The analysis is now described briefly. From the
complex potential given by (4.2.6), it follows after some algebra that

the complex velocity of the free vortex, u-iv, is given by

. . 3 .
-cat 4w tlrem, LK _6
[eF g’.‘zﬁ B Fs-g'/g + 8- F g ]/(;‘—r)

a¢,8), say,

il

ULy
(4.5.1)

)

where ¢ is the position of the vortex. In the equilibrium position,

L = g, and Q(t,»c,) = 0 gives equation (8.2.7):



-124-

‘payorje st 91qqng

uoijededas ‘0°g = ¢ 9/L = ® '3|qqnq o6pa BuLpeal uo X23J0A 4oy U4e3Ied BuL|WEIAIS B9'Y BunbLd

Fe rd F
i A \\ \\ \\ / / / 7
i e s/ / / / ¥ /
-~ - / “ / / / /
" s 7 4 / / /
- , / / / / \
: e #* ’ ’ / / / /
v O...u% % s / / / / / Y /
LS \\ /7 / / / ...\ / /
—a 77 7 \\ / / / / 4
- Ve -~ ’ : / /
m o I.Q_’\\\ 2 / / / / 7 /
\\\ \\ 4 / / \ / \‘
A 20-=m .~ : / 4 / ry
- P / / /
L 5 . / !
i 1'0-=h ~ ] ! I ro
\\\. \\ it [ | I \
- P o _ “ ; :
ll\\.\. \\ OI-I ;— — _ _ \
- \\ \ & _ | \
..|‘I1\\ \ / / ~ —
- ' vy
I /, W 1

i e s i s [ e S e i St (S SIS S
_O A/ ~~ /:/lt\\\\\
- -
= ~ ~ -/
e SR
S e e X i / /
— . — e Lo ” /7
.’l-!lll..\\ s
2'0=4 e o B A e e P
— e — o
o d, [ S -
——— —— —— o —
¢'0=n e im0 ’
-——
l.lllnll‘llcll

s i o



18

9/u =

340 PO1LLL Sey a|qqng uoijeJdedas
© 8[qqng mmum buLpea| uo xa340A gow u4azied aul|wesadls

q9°p a4nbL4



-126-

‘==== X3}JA0A 934} ON “—— SN20| 96pad Lur|ledl  *SNOO|
bui|led} uo uoi3isod 34| wWnWLXew pue g/L = ® 40} |LOJALE By} UO § snsdaa (dz- =) NU [ .9:&&

Az AL : , .0

—— Y — |

J1Y1d 3A08Y 10¥

31vId Mol3e




97~

If now the vortex is displaced to the point co+ z' in the transform

plane, it can be shown that

dé’ / —

__.._dt i a-q 4+ bg', (4.5.2)
where

@y (204

o= (3¢ 35/, 5 b=(5T15 ) ; (4.5.3)
the subscript 0 denotes evaluation at ¢ = ¢ . Equation (4.5.2) has solu-
tions proportional to 7%, where

0_2 — (b+l_7)c- + bb-aa =o0. (4.5.4)

It is found that b + b = 0. Hence, there is instability if

ad > bb. (4.5.5)

If (4.5.5) is not satisfied, linear theory predicts stability, but non-
linear effects may destabilize.

It is found that there is a range of values of o and ¢ or ¥ for
which (4.5.5) is violated. The angle of attack o must be less than
0.137 (=~ 8°), the vortex must be on the trailing edge locus, and the
values of ¢ lie in a range depending on o which includes, however, the
value for maximum 1ift. The possible positions for a = 0.1 are shown on
Figure 4,2. There are no stable positions on the leading edge locus. It
is emphasized that this conclusion of stability is tentative, and the
problem needs to be analyzed using the methods developed for unsteady

wing flow.
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4,6 Vortex above a Joukowski Airfoil

The Tocus of possible poéitions and strengths for a vortex station-
ary in the ffow field above an airfoil can also be calculated when the
airfoil is the image of the unit circle under some conformal map. For
the airfoil profile in the z=x+iy plane and the unit circle in the
z = & + in plane a class of conformal maps which generate the Joukowski

airfoils are defined by the map z= f(g) where

| |
fey = TZL(¢+(¢“'7(T'5°)+ t:+tc.~nu-—cc)- (4.6.1)

The parameters T and c give the airfoil thickness and camber. When T and
c are both zero the map generates the flat plate as shown in Figure 4.1.
When they are nonzero, the flat plate is replaced by an airfoil profile
with its cusp at z=1.

The form of f(z) given by equation (4.6.1) is not essential in the
following analysis, but it is a convenient one in the numerical work as
it generates a range of shapes by varying the two parameters. In general
f(z) is assumed to satisfy several conditions so that the shape has some
resemblance to an airfoil. The airfoil is directed to the left with the
cusp placed at z=1. The condition that z=1 correspond to £=1 on the
unit circle requires f(1)=1 and f'(1)=0. The asymptotic behavior of f
is required in order to determine the complex potential. For the class

given by (4.6.1),

{1y ~ -z‘-Ae'Lxc: as 18] — oo, (4.6.2)

where A and ¥ are real.
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The complex potential for the flow outside the airfoil with a
stream of unit velocity at angle o at infinity and a point vortex of
strength « at z,= f(go) has the form

=

/ il ¥
e+ B ) ¥ anlkel) dog t

W(c)y= 7Ae : |
4.6.3
+ 5 (Log (6-8) —_Log (¢~ J5)) |
where
! e w2 Y (4.6.4)

and T is the circulation around the wing. The circulation is taken as
positive in the clockwise direction.

The free vortex must be located at a stagnation point in the flow
field. In terms of the complex potential and map given by equations
(4.6.1) and (4.6.3) the condition that Z f(go) is a stagnation point

can be written
' dw d& ik ! .
lﬁzﬂ, ( de Jz — 2w fg)-fisy) = © . (4.6.5)

Since the function f(z) is analytic at Tos the equation above can be re-

duced by substituting the form for w(z) to give

! 2L.d, é
LA™ (-5 ™) + (k)
. LK ;eg_o i i 'F,'(co)
2 (S.f,,-—l + 75 -F’IS‘,)) == &, (456

The primes on f indicate differentiation with respect to its argument.

At the trailing edge of the body the flow must go smoothly past the

cusp. In order to have bounded velocities, the velocity potential must
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satisfy w'(1) = 0. This gives the expression for the Kutta condition
as

K" K (__E:§1:LL~_> B

Asma’ — a7 * 55 \(Eo- 0 E-D) (4.6.7)

The velocity at the trailing edge must be positive, giving the con-

straint

! e 1.8~ 1)(8.~5,)
V: 'A_i [AC—OS.(’ + 27 &-D*(E.~1)? ]]) o, (4.6.8)

The complex equation (4.6.6) and the real equation (4.6.7) give
three real equations for the four unknowns s s Zo and Ng? where
EF B ino. A locus of solutions satisfying (4.6.8) may exist, de-
pending on the choice of f(z). In order to devise a general scheme to
determine the locus, equation (4.6.7) can be solved for I' and the re-
sult substituted into equation (4.6.6). The resulting equation can be

written in terms of a complex valued function G(CO,EBQK) as

G(& 2,5x) =0, (4.6.9)
where
G = %Aehéd‘(i'o—'c'f,ﬁzw + iAsoma!
+%((s,:§;.—,0" :&i"( -z 5% %;f—;—%) . (4.6.70)

The value of B satisfying G=0 for a given « will give a solution if

(4.6.8) is satisfied.
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The classical wing solution is realized for k = 0 as this re-
guires & 1 and T = 2rAsin(a'). For values of k greater than zero,
Newton's method can be applied to the complex equation (4.6.9) to find
the complex roots which must then satisfy (4.6.8). Applying Newton's
method to the complex equation is equivalent to solving the real second

order system

3,(‘3,72) =0, | | (4.6.11a)
9. (§,) =0, » . (4.6.11b)

where G =g]+ig2 and the root is . £0+1n0. The elements of the

Jacobian matrix can be evaluated by using the identities:

29, 292 cI G
’ i .'6 2 96 9
! ,_,,.3,3_72 - ('T; . (4.6.13)

The initial gquess for 4 is important as there are possibly several solu-
tions in the z plane. For the flat plate there are the two loci of
solutions for sufficiently small «, as well as possible roots of G in-
side the unit circle. Only those roots [col > 1 are of interest.

A systematic approach to generate the roots begins with « small
and the initial guess for ;O near 1. The solution curve can be evalu-
ated by increasing k in small increments. From the results for the flat
plate, the leading edge of the airfoil also needs to be examined for a

second locus of solutions.

Notice that this method provides a means for investigating the pos-

sible positions for the free vortex, but it does not prove that other
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possible positions do not exist.

4.7 Airfoil Results

Two example profiles are presented here in order to demonstrate
some of the similarities and differences between the possible positions
of a free vortex above a flat plate and an airfoil profile with nonzero
thickness and camber.

For the first example the map parameters are taken as T = .05 and
c = .07. The resulting profile and loci of possible vortex positions
are éhown in Figure 4.8 for the airfoil at angles of attack of .1 and
7/6. In each case the 1ift increases for positions along the curves
moving away from the airfoil. The maximum values of the 1ift, +T,
and the 1ift for the airfoil with no free vortex are given in Table 4.1

along with those values for the flat plate.

No -Free Vortex  Trailing Locus Leading Locus

(T,c) 0=0.1 o=7/6 0=0.1 | o=m/6 o=0.1 a=m/6
Plate (0,0) 0.6 3.1 5.5 Bl 12.5 23.3
(.05,.07) 1.1 o 4.2 4.6 13.5 24.4
(.13,.14) 1.6 4.3 3.4 - 15.1 26.1

Table 4.1 Maximum value of the 1ift, «+I', for the flat plate and the
two example airfoil profiles

Notice that the values of the maximum 1ift on the trailing loci have
decreased from the values for the flat plate, even though the values of
the 1ift without the free vortex are larger. On the leading loci the

maximum 1ifts are slightly larger for the airfoil.



-133-

‘70

O pue G0* = | S4diaweded Bulm yilm g9/L = © pue _.o = 0 A0} X91JAO0A 394} 4O 1207 g*f a4nblL4

= o._,..lc; 0
m‘l i‘]{
I =» \
1'g=
ca +
ot -+
]




-134-

The two trailing loci do not extend to the trailing edge. As
the free vortex strength x« is decreased to zero from the value for the
vortex farthest from the airfoil, the trailing edge velocity first
increases, then decreases to negative values as the vortex is moved
close to the point z=1. The velocity V does not approach the value of
the trailing velocity for the airfoil in the absence of the free vortex
as k tends to zero. This behavior differs from the flat plate, where
the trailing edge velocity is well behaved and increases to the Timiting
value for the plate without the vortex as k tends to zero. The lower
1imit on the trailing edge locus for o=.1 is not apparent in Figure 4.8
because it Ties very close to the trailing edge. For a=.1 the closest
point to the trailing edge has x = .9996 and y = .0004 and for o =7/6
the closest point has x = .987 and y = .013.

The second example uses the map parameters T=.13 and c=.14. The
airfoil profile and loci of positions for the free vortex are shown in
Figure 4.9 for angles of attack of .1 and w/6. As in the first example
the trailing edge velocity is negative when the free vortex is near the
trailing edge. For a=.1 the trailing locus gives a curve segment dis-
joint from the airfoil and for a=m/6 there are no points on the curve
extending from the trailing edge which give a positive velocity V.
Hence for a=m/6 there is only the leading locus of solutions. The maxi-
mum values of the 1ift corresponding to these solutions are given in
Table 4.1, along with the 1ift in the absence of the free vortex. When
a trailing locus exists, the 1ift is increased as a result of the free

vortex, but the maximum 1ift is less than that corresponding to the flat
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plate. On the leading Toci the maximum 1ift increases as the Kutta 1ift

for the airfoil without the free vortex increases.
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CHAPTER 5
TRAJECTORIES OF AN IDEAL VORTEX PAIR NEAR AN ORIFICE

5.1 Introduction

Experimental work with vortex pairs, such as that by Barker and
Crow (1977) and others, raises questions about the effect of the geo-
metric shape of the apparatus on the trajectories of the line vortices,
since the initial motion of the vortex pair depends on the proximity
of the walls. To provide some information on this matter, the ideal-
ized case. of two-dimensional potential flow produced by a pair of point
vortices in the presence of boundaries is calculated. A qualitative
estimate of the effects of geometry on the trajectories of the vortices
is obtained in this way.

In addition, the calculation of the vortex pair gives a rough ap-
proximation of the behavior of a vortex ring formed near solid bound-
aries, the solution of this problem for even an idealized axisymmetric
ring being a much more difficult calculation.

The trajectory of a single vortex has been calculatad by Paul
(1934), Routh (1881), and others in various geometries, using the
“"Routh Streamfunction”. Although the symmetry of the vortex pair re-
duces our problem to one with a single vortex, the resulting geometries
are moré complicated than those handled by the above.

The method introduced by Routh, and later generalized by Lin
(1943), calculates the equation for the trajectory of a vortex in a
simple geometry, and using a confqrma1 map and the "velocity of trans-

formation" evaluates the trajectory in the mapped geometry.
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The present work covers two wall geometries in detail and com-
ments on the more general geometry that includes the first two as limit-
ing cases (see Figure 5.1). The first case is a semi-infinite horizontal
channel of width 2L cut into an infinite vertical wall. In the second
case the channel walls are of negliglble thickness and are represented
by two semi-infinite parallel plates, separated by distance 2L. These
two geometries are the extremes of the more general case of the parallel
channel cut into a wall which angles away from the opening. The similar
geometry consisting of a gap of width 2L in an infinite vertical wall
is considered by Karweit (1975), and his results are quoted in Section
5.4. In all cases the Tine vortices are parallel to the channel open-
ing and placed symmetrically about the centerline through the opening.
The vortices are directed as if they were formed by the roll up of vor-
tex sheets formed when fluid passes impulsively through the opening;
hence the lower vortex has positive (counterclockwise) vorticity and
the upper one negative (clockwise) vorticity. Reversal of the strengths
just reverses the direction of motion. In the absence of any boundaries

the vortex pair would travel to the Teft at a constant velocity.

5.2 Calculation of the Velocity and Trajectory

From symmetry, the line passing between the vortices and bisect-
ing the channel is a streamline and can be replaced by a wall, reducing
the problem to one with arsing1e vortex. Fix a coordinate axis by
placing the origin at the Tower edge of the opening in a Cartesian el
coordinate system and taking the centerline (streamline) wall to be the

line y = L. The channel wall is the x > 0 axis.
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In each case, the Schwarz-Christoffel mapping theorem gives a
map taking the walls in the complex z plane (z = x + iy) to the £ axis
in the complex ¢ plane {(z = & + in), with the interior region in the z
plane mapped into the region n > 0. Denote such a map by z = f(z);
then f is analytic for Im{zg) > 0.
The vortex trajectory is the curve on which the "Routh Streamfunc-
tion" or trajectory function is a constant. For the motion of the vortex

of strength « in the ¢ plane, the trajectory function is given by

K = Z'fr—r’lﬂj’z (5.2.1)

Routh's result is that the trajectory function for motion of the vortex

in the z plane is

7'2 =Y + ;Eﬁ-,&gl-pi(c”)l . (5.2.2)

The trajectory curves in the z plane are then the images of the curves

IO constont -

under the map z = f(z).
In order to evaluate the time development of a trajectory it is
necessary to determine the velocity along the path. The velocity com-

ponents (u,v) of the vortex can be calculated from the trajectory

function by the relationships

2¥- 22X | (5.2.4)
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Combining the velocity components to form the conjugate of the complex
velocity simplifies the calculation. The velocity components for a

vortex at the position B = f(:o) are given by

;,K ( { " wCléé'a) )

U-tv = zmw \ (5~ E)Fls) Z(Fey)?

(5.2.5)

The images of the trajectories in the z plane are given by the

solution curves co(t) of the equation

g—%’ = (LL-!—I‘.V)/_F'(Q)’ (5.2.6)

This differential equation can be integrated numerically (and for
some simple cases analytically) as an initial value problem, along with
z = f(z), to give the vortex trajectories. Note that the parameter L
acts as a length scale and k/L scales the velocities, hence L and g

do not affect the shapes of the trajectories.

5.3 Results

CASE I: In the z plane the lower channel wall lies ony = 0, x > 0,
the vertical wall on y < 0, x = 0, and the centerline wall on y = L.

The Schwarz-Christoffel transformation yields the map from the ¢ plane

2 = for= BUyT-)Lg(F+ D +2m)eil (5,31

and the image of the vortex trajectories in the mapped z plane is de-

scribed by
72
712(52-!-711) 2 _

E-nam - C, Hfor enstant C, (5.3.2)
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or the solutions of

LK [ B+l -ty 5-1
= L (4§ g :—'«;‘) T (5.3.3)

ds
dt
Some of the possible vortex paths are shown in Figure 5.2. The differential
equation is used to generate the trajectories in order to give the time
increments. An Adam-Moulton predictor-corrector scheme using the Runge-
Kutta-Gill method as a start and restart scheme is used to carry out
the numerical integration. We set x = L = 1, and the integration step
length was varied to maintain the Tocal relative error at less than
0.5 x 107%. |
If the vortex pair starts too close to the verticai wall, then it
will not travel away from the wall, but into the channel. In some tra-
jectories the vortices pass through the opening, but then turn back out
of the channel. The dividing trajectory, corresponding to the curve

with C =1 in the ¢ plane, originally asymptotes x = -L/m and finally

asymptotes y = L/2 in the channel. It crosses the x axis at x = -0.28L.

CASE II: In the z plane the Tower channel wall is a plate on y = 0 for
x > 0. The centerline wall is on ¥y = L. The map from the ¢ plane is

defined by

b s
z = $ =“~T;~[C+laj(¢—!)] + b (5.3.4)
In the ¢ plane the images of the trajectories are the curves

7E (g7 ) _ ¢

e 2 . {5,2.5)
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for constant C, or the solutions of

df _ i
at = Lk

-1 (_é__ + 2(?:':!))

c_; (5.3.6)

Some of the trajectories are shown in Figure 5.3.

The trajectories are similar to those in Case I. For some inj-
tial positions the vortices will travel into the channel and then turn
back out. The dividing trajectory for vortices traveling down the
channel originally asymptotes y = -L/m and finally asymptotes y = L/2
in the channel. The distances from the walls to the asymptotes are the

same as in Case I. The dividing trajectory crosses the x axis at

x = =0.20L.

CASE III: 1In the z plane, the lower channel wall lies ony = 0, x > 0
and the centerline wall on y = L. The angling wall lies on

z = r exp(im{(1+R)) for r > 0 and fixed B. The range of 8 considered
here is %—5_8 < 1. Case I is for B = %-and Case II for 8 = 1. The

Schwarz-Christoffel transformation yields the map from the g plane

£ g -
3
= = *:rL"r*f S—1 ds " (5.3.7)

a

The image of the vortex trajectories in the mapped ¢ plane are the

curves

nz(éz-f"?zz)ﬁ - C
(§__,)2. ¥ -’22. - 3 (5.3:8)

for some constant C.
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The nature of the trajectories are the same as in the first two
cases, and although the map cannot be explicitly integrated in elemen-
tary terms, the asymptotes of the dividing streamline can be determined.
Since a single vortex in an infinite channel will travel in the direction
opposite when placed in the top half rather than in the bottom half of
the channel, the 1imiting trajectory will asymptote to L/2. In the ¢
plane this corresponds to a curve on which ¢ - 1 with the restriction
-lﬁfi—>+0 . Substituting this into the equation for the trajectory
above and taking the 1imit gives the image of the limiting trajectony
as the curve with C = 1. Taking the 1{mit as n + =~ and mapping the
resulting asymptotic value of ¢ to the z plane, it is found that the
curve origina11y'asymptotes to the line traced by z = (r -iL/m)exp iw(1+8)
for r » +o, This Tine is parallel to the angiing wall and separated by

a distance L/m, which is therefore independent of the wall angle.

5.4 Comments on Applications

For vortex rings generated by pushing fluid out of a tube with
a piston, the initial position of the vortex ring can be varied by
changing the piston stroke Tength. In the experiments of Didden (1977),
using a thin walled tube enclosing the piston, the vortex ring formed
by a short stroke length shrinks down to a diameter of less than the
tube opening. For longer stroke the ring propagates away with close to
a constant diameter and if the stroke is sufficiently long, more than a
single ring is formed.

When attempting to generate single rings with a small ratio of

the core radius to the ring radius, the initial position of the ring
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must be far enough from the apparatus that the ring travels without the
shrinking. An estimate of the effect of the apparatus shape on the
ring diameter can be obtained from the results of the previous section
and Karweit (1975). For the first two geometries iﬁ Figure 5.1 and

the gap i1n the vertical wall considered by Karweit, the critical tra-
jectories divide the possible initial positions of the vortex ring into
two regions. On the apparatus side of these curves the vortex ring is
not expected to propagate away. The possible initial positions for the
vortex ring form a curve extending outward from the edge of the appara-
tus and curving away from the center line. The smaller the distance at
which the initial curve crosses the dividing trajectory, the better
the geometry for producing rings which travel away from the apparatus
with little change in the diameter. In the case of Karweit and'the
second case in Section 5.3, that distance is greater than .28L. For the
first case in Section 5.3, the thin walled tube, the distance is less

than .20L, making it the preferable geometry.
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CHAPTER 6

Structure of a linear array of hollow vortices
of finite cross-section

By G. R. BAKER, P. G. SAFFMAN AnD J. S. SHEFFIELD
Applied Mathematics, California Institute of Technology, Pasadena

Free-streamline theory is employed to construct an exact steady solution for a
linear array of hollow, or stagnant cored, vortices in an inviscid incompressible
fluid. If each vortex has area 4 and the separation is L, there are two possible
shapesif 43/L isless than a critical value 0-38 and none if it is larger. The stability
of the shapes to two-dimensional, periodic and symmetric disturbances is con-
sidered for hollow vortices. The more deformed of the two possible shapes is
found to be unstable while the less deformed shape is stable.

1. Introduction

The recent observations by Brown & Roshko (1974) of organized vortex
structures in the turbulent mixing layer have rekindled interest in the hydro-
dynamics of arrays of parallel line vortices, Moore & Saffman (1975) argued that
the spacing of the vortex structures was controlled by the fact that there is an
upper limit on the line density of a linear array of vortices of finite cross-section
in non-viscous incompressible flow. When the vortices come too close, the induced
straining fields are too intense for the individual vortices to exist in a steady state.
However, they restricted their analysis to uniform vortices with constant vor-
ticity in the cores, and the critical density or spacing was determined by an
approximate argument (which was however supported by numerical work)
because exact analysis was too hard.

It turns out that if the vortex cores are hollow or stagnant, so that the vorticity
is concentrated into vortex sheets on the surfaces of the vortices, then the prob-
lem can be solved exactly by the free-streamline theory of inviscid, incom-
pressible, two-dimensional flow, and the purpose of this paper is to present the
calculation as a contribution to the theory of vortices. We see no direct physical
application of the results, but similar calculations for two-dimensional arrays
may be of interest in the theory of uniformly rotating superfluid helium, and the
exact results provide a means of checking the approximate argument of Moore &
Saffman. A similar calculation was carried out (before the present work was
done) by Hill (1975) for a single hollow vortex in a uniform straining field.
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Ficure 1. The physical plane for a regular array of vortices with
fore-and-aft symmetry.

2. The physical plane

We consider an infinite linear array of identical vortices lying on the z axis
with centres at nL, n = 0, +1, +2,.... Each vortex is hollow or has a stagnant
core. In steady flow, constant pressure inside the cores requires that the fluid
speed has a constant value, g, say, on the boundary of each vortex. The circula-
tion I" about each vortex is related to ¢, by

P =Py, (2.1)

where P is the perimeter of each vortex.
At large distances, the array looks like a vortex sheet of strength 2T, where

U, = 4T'/L. (2.2)
The array is characterized by the dimensionless ratio
R=U,/q, = }P[L. (2.3)

We shall calculate a unique steady solution for 0 < £ < 1 in which each vortex
has fore-and-aft symmetry, i.e. is symmetrical about the z axis and the line
parallel to the y axis through its centre. It can be shown (see appendix) that no
solutions with this symmetry exist for B > 1 and that reflexional symmetry
about the centre implies fore-and-aft symmetry.

The limit B = 0 corresponds to an array of point vortices or a single vortex in
unbounded fluid, according as the limit is reached by P> 0or L > c0. B =1
gives a vortex sheet in which each vortex is pulled out longitudinally and squeezed
sideways to lie along a length L of the « axis. Notice that in the limit R = 1
and the limit P = 0 the area A of each vortex is zero.

The deformation of the cores is conveniently measured by P/4?%, which has the
minimum value of 27% for a circle and becomes large with the eccentricity. We are
interested in how the deformation depends upon the spacing for vortices of given
size and strength. The area 4 is a more basic measure of the size than the peri-
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F1cUurE 2. The mappings of the contour A BCDE in the physical plane
into the potential (¢, ¥) plane and hodograph (7, 6) plane.

meter and 43/L is a dimensionless quantity that specifies the relative spacing of
the array. The procedure is to calculate P[4} and A3/L as functions of B, and
by eliminating R obtain the deformation in terms of the spacing.

The physical plane is shown in figure 1. Because of the symmetry it suffices
to calculate the flow inside the contour ABCDE. Either the direction or magni-
tude of the velocity is known on the contour, and the methods of free-streamline
theory can therefore be applied by mapping the potential plane into the hodo-
graph plane.

3. The mappings

We introduce the complex variable z = x + iy, the complex potential
w = ¢ 411, the complex velocity

u — i = dwldz = ge, (8.1)
and the hodograph variable
= log(g,/q) +10 = 7+10, say. (3.2)
The potential and hodograph planes are shown in figure 2. B is a stagnation
point because of the symmetry. The Schwarz—Christoffel transformations
w =—;—§Iog [(¢+ 1)%—(§—1)%]—-glog2, (3.3)

Q= —log[{(b—1) (C+ 1} ~{(b+1) ({— 1)}{]+}log({—b) +1log2  (3.4)

transform the interiors of the contours into the upper half of the { = £ +1i7 plane,
withll »f{=—0,D>E=—-1,0>E=1,B— £ =>,and 4 — £ = o0, where

b= (1+RY)/2R" (3.5)
The physical plane follows from integrating

it B (G- 0@ - e+ - DM (@)

The quadrant of the vortex surface from D to C is mapped into the part of
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FicurE 3. Perimeter length as a function of inverse distance between the cores. Variables
are normalized with 4¥. The seven dots on the bottom half of the curve are the values for
R = 0-1 (0-1) 0-7.

the real { axis from £ = —1 to £ = 1. Making the substitution £ = —cos2A, we
find for the parametric equation z = Z(A) = X(A)+1Y(A) of the vortex with
centre at the origin :

_E oy i (2R 8IDA _ L . 1_1[{2RcosA
X—é';(i'i'R )Sm (W), Y—--27r(1——R2)Slnh 1( I—RT)’ (3.7)

where 0 € A < 27 gives the complete perimeter.
The vortex is obviously circular as B — 0, and flattens to the slit

—3L<x<il as R->1.

The perimeter P is 2REL. The area A4 is found by numerical integration, which
gives A[L? as a function of R. Figure 3 shows a plot of P[4} against A}/L. Note
the maximum value of A}/L foravalue R = R_ = 0-805.
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4. Discussion

For a given value of 43/L, there are either two or no possible steady states. If
hollow or stagnant-cored vortices of given size are placed in an array such that
their separation is too small, there is no possible steady state and the vortices
presumably disintegrate. For the vortex of largest area for given I, the length of
the major axis is 0:71L and that of the minor axis is 0-25L,

A similar, although not identical, behaviour holds for a single hollow vortex
of area 4 and circulation I' in a uniform irrotational deformation with strain
rate €. Hill (1975) has shown that there are either one, two or no steady states
according as e4[T" < 0-03, 0:03 < €4/T" < 0-1 or 0-1 < e4/I". Following Moore &
Saffman (1975), we can estimate the critical value of 43/L for an array from the
result for a single vortex by putting € = #I'/6L? in the critical value for the
single vortex. This gives an estimate of 0-43 for the critical value of A%/L. The
exact valueis 0-38, so that the approximate argument of Moore & Saffman (1975)
appears to be reasonable. The exact value of P/A? for the critical vortex is 4-2 for
the array and 4-5 for the single vortex.

The existence of two possible configurations of the array suggests that at least
one of them is unstable, and this should be the most deformed. We shall now
verify this idea, by investigating the linear stability to infinitesimal perturba-
tions of an array of hollow vortices, and demonstrate the existence of a class of
disturbances to which the array is unstable for B > R, and stable for B < E,.

5. Stability of an array of hollow vortices

We shall restrict attention here to infinitesimal periodic disturbances with
reflexional symmetry about the centre of each vortex, which leave the centres
undisplaced, because our interest lies in the stability to variations of shape.
Stability of the array to disturbances which alter the positions of the vortices,
i.e. of the type considered by Lamb (1932, §156) for point vortices, is a matter
for further study. (The effect of finite core size might have a bearing on the fact
that Brown & Roshko (1974) did not appear to find the Lamb-type instability.)

It is sufficient to consider the strip —}L < # < 1L, y > 0 and to use as in-
dependent co-ordinates the undisturbed velocity potential and stream function.
The strip is 0 < ¢ < 3T, —00 < i < 0. A deformation of the boundary is de-

scribed by the curve U= 8(8), 0<<il 5.1)

The disturbance to the velocity potential is denoted by ®(¢, 3/r,¢). Then
B2W[op? + 2D [onf® = 0, - (5.2)
d—>0 as PY—->-—c0. (5.3)

For a hollow vortex, the pressure must be constant on its boundary; this gives a
dynamic boundary condition
120  0® 27  (b*—1)}

@ ot ¥ ép ~ T b—cos (4mgT) % (6:4)
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on 0 < ¢ < 1T, ¢ = 0. In addition there is a kinematic condition
0w _ 120 o
oF " @a o

satisfied on the undisturbed vortex.

The symmetry requires that the disturbance has period 4I" in ¢. We look for
normal modes of the form

(5.5)

=3 O, sin (5’-’%’9 +mt) exp (3[’,1|n|¢), (5.6)
é = dmng -
Z}——(EOST4-7;$/_I—‘) = _Ew @, COS (—-F— +(l)t) ¥ (5.7)

where o is to be found. Inserting (5.6) and (5.7) into the boundary conditions and,
carrying out some straightforward algebraic manipulations, we obtain the
recursion relation
7| sinh
Qi1+ (J—(o'_—+-7;)~§ —2cosh ﬁ) Cp+Gp_y =0, (5.8)
for —o0 < n < 00, where b = cosh f, £ = —log 2R? and ¢ = wI'[4mgd. The eigen-
values o are determined by the requirement that a,—>0 as n—>+co. If o is
complex, the motion is unstable.
In the limit £ =c0, B = 0, the eigenvalues are obviously

O-=n_—|_-l%nlg!, n=i1’ 12,.... (5'9)

It is easy to verify directly that these are the natural frequencies of a single
hollew vortex. For f# large but not infinite, the eigenvalues can be expanded as
power series in e~#, and it is found that o remains real provided that the regular
perturbation scheme remains valid.

For smaller 8, numerical means need to be employed, and the method of
Laplace (Jeffreys & Jeffreys 1950, p. 486) is convenient. For given £, we assume
a value of o and calculate a,/a, and a_,/a, as functions of o such that a, - 0
as |n| = +co. Substitution into the recursion relation (5.8) for n = 0 gives an
equation determining o. The details are as follows. For n positive, define

kg ,
o = (1’!-_) Oni1,8 4. (5.10)
n+2 a,

It can be shown that o} = O(n—2?) for large #» when @, decays as n - co. From
the recursion relation,

oy _y=—1—¢f [e—ﬂ (1 + 7%)%(1 +egh) — (1 + %‘)% (2 cosh g — G{—?—%—)-gsinhﬁ)]_l,
(5.11)

The asymptotic behaviour of &} gives a starting value from which ¢ (o, 8) can
be caleulated numerically. We proceed similarly for the a_, (n > 0), defining

~ (n+l\ia_,_ o
ar = (n+2) a—"}ef—i (5.12)

—N
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and calculating oy (o, f). Because of the symmetry of the recursion relation

oy (0, f) = ag (— 0, ). (5.13)
The recursion relation for » = 0 gives
fle3 B) = ag (o, B) +oy (o, f) = 2tef cosh f—2. (5.14)

Since the left-hand side can be found numerically as a function of o, the roots of
(5.14) are obtained in a straightforward manner as functions of g.

Note that the roots occur in pairs, + o. The roots are known for large £, so
the procedure is to follow the roots numerically as £ decreases. The smallest
positive root o(f), say, turns out to be the one of interest. As f decreases, o
decreases from 1—1/2% at £ = co to zero at f = 0-434. This value can be found
analytically as the recursion relation can be solved in closed form (using genera-
ting functions) when o = 0. For f less than 0-434, equation (5.14) is found to have
roots with ¢? < 0, demonstrating that there is an exchange of stabilities. It can
be shown that the other roots remain real.

The critical value of £ at which the array becomes unstable to disturbances of
the type considered here gives the same value of R, 0-805, as that at which 4}/
is a maximum, thereby demonstrating that, when there are two possible con-
figurations, the more deformed is unstable to disturbances for which the less
deformed is stable (cf. Moore & Saffman 1971).

This work was supported by the U.S. Army Research Office, Durham, under
contract DAHC 04-75-C-0009.

Appendix

Consider a member of the linear array of hollow or stagnant vortices with the
geometry as shown in figure 4. We assume periodicity of the array and reflexional
symmetry only.

Using the hodograph variable defined by (3.2) we then require that 7 satisfies
Laplace’s equation in the strip A BCDEF and the following boundary conditions:

7=10 along CD, (A1)
7 hasperiod iI' in ¢, (A2)
7~ —logR as Y ->—oco. (A3)

Moreover, we want 7 to have the correct behaviour at the stagnation points
Band E. Noting that dw/dz ~ (w—w,)?* at a stagnation point, we can separate out
the singular behaviour of 7 at such points by using functions which behave
locally as required. Including terms ensuring correct asymptotic behaviour and
without violating (A2), we have

2m

= Re{—log2R—— }log (cosTw+iSinh-2Fﬂgﬁu)

2m

o .
_3log (cos . wwisinh%ggbo) " Tﬂzw} +H(S, ),
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Ficure 4. Physical and potential planes for an array with reflexional symmetry but not
necessarily fore-and-aft symmetry. ¥, is the value of the stream function at the stagnation
points B and E.

where H satisfies Laplace’s equation and (A2), and is bounded on the strip.
Clearly

H= §] exp (4mnfr/L) (.Anesl'.rléml?gZS +B, cosiﬂr‘_né).
n=0

Now for 7 to satisfy (A1) we require 4, = 0, and hence there is fore-and-aft
symmetry. Further,

0= —log2R—}log (cosaﬁ +sinh? irr_!,b_‘g) + E; B, cos 47m¢,
r r =0 T

so that the B, are all uniquely determined. Note that for the correct asymptotic
behaviour we require B, = 0, and so

T
Writing b = 1+ 2sinh? (2m)/T"), we find that (A 4) implies
b+ (2—1)F = 1/R2.

ir
log2R + %f g log (cos‘-" ik + sinhzgl%b—g) d¢ = 0. (A4)
—-ir

Since b > 1, then R < 1.
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