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ABSTRACT 

A method for determining by inspection the stability or insta-

bility of any solution u(t,x) = ~(x-ct) of any smooth equation of the 

form 

a 
ut = f(u ,u ,u) where~ f(a,b,c) > 0 for all arguments a, b, c, 

XX X aa 

is developed. The connection between the mean wavespeed of solutions 

u(t,x) and their initial conditions u(O,x) is also explored. The 

mean wavespeed results and some of the stability results are then extended 

to include equations which contain integrals and also to include some 

special systems of equations. The results are applied to several physical 

examples. 
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Chapter I 

INTRODUCTION 

We will investigate the class of equations 

f ( u , u , u) 
XX X 

(1.1) 

and also some extensions of this class of equations. Specifically, we 

shall determine the stability of all traveling wave (and steady state) 

solutions of (1.1). We shall also study the dependence of the mean wave-

speed of solutions of (1.1) on the initial conditions. Nearly all of 

these stability and wavespeed results will also be extended to certain 

generalizations of (1.1). 

The reason we study (1.1) is its frequent occurrence in many 

different fields, such as biology, chemical reactions, and genetics. 

The importance of the traveling wave (and steady state) solutions comes 

from the fact that almost all solutions must evolve into traveling wave 

(and steady state) solutions as t + oo, We study the stability of these 

solutions since only stable solutions can occur naturally. 

In order to demonstrate our stability results, we adopt the 

following typical procedure for finding traveling wave (and steady 

state) solutions of (1.1). This procedure involves introducing a moving 

coordinate system (to reduce traveling wave solutions to steady states) 

and introducing a phase-plane. Specifically, we switch to the moving 

coordinate system 

t I t x' x - ct (1. 2) 
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where the speed c is arbitrary but fixed. In terms of these new 

variables, equation (1.1) is 

f(u , 
XX 

u) + cu 
X 

(1.3) 

where the prime superscripts on the t's and x's have been dropped for 

convenience. All traveling wave (and steady state) solutions of (1.1) 

can now be treated as steady state solutions of equation (1.3) with the 

appropriate values of the parameter c. These steady state solutions 

u(t, x) = ¢(x) of (1.3) are then found by solving the first order 

system of equations 

f(v , v, ¢) + cv 0 
X 

(1.4) 

The usual method of finding solutions of (1.4) is by studying the phase 

plane of system (1.4), where the vector (¢x' vx) is considered as a 

func tion of (¢, v). 

Besides aiding in the search for solutions of (1.4), the phase 

plane provides a convenient way to classify the steady state solutions of 

equation (1.3). For example, non-constant monotonic steady state solu-

tions can be classified as N + N, N + S, S + N, or S + S depending on 

whether (¢(-oo), v(-oo)) and (¢(+oo), v(+oo)) are both nodes, a node and a 

saddle point, a saddle point and a node, or both saddle points, respec-

tively . By using a maximum principle , we will f ind that the stability 

of any steady state solution of equation (1.3) depends only on its phase 
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plane classification. Specifically, we will find that very nearly all 

non-monotonic steady states are unstable. We will find that a constant 

steady state ~(x) : ~ 0 , v - 0 is stable if (~ 0 , 0) is a saddle point 

and unstable if it is a node, a spiral point, or a center. We will find 

that all non-constant monotonic steady states are stable to classes of 

perturbations which are determined by whether ~(x) is a N + N, a 

N + S, a S + N, or a S + S type steady state. In particular, the N + N 

type steady states have the most limited stability classes (i.e. class 

of perturbations under which the steady state is stable), and the S + S 

type steady states have the largest stability classes. We will also 

find that our stability results are sharp. 

These results are useful since now, for parabolic equations, 

one no longer has to solve an often difficult eigenvalue problem for 

each solution of each equation to determine stability. Note that in a 

degenerate sense the stability of all traveling wave (and steady state) 

solutions of elliptic equations i.s also known in advance, since all these 

solutions are unstable. 

The presentation of these results begins in Chapter II, where 

an overview of the main results and their proofs is given. Only results 

pertaining to equation (1.1) are covered there. In this presentation of 

these results and proofs, complicating details are avoided. This hope

fully clarifies the reasoning behind the results and thus shows why the 

results are true. Note however, that there are results not covered in 

Chapter II. 

In Chapter III we do the necessary preliminary mathematical 

work. This work falls into three categories: modifying the original 
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equation to prevent infinit i es from occurring, developing the needed 

ma thematical tools (such as the maximum principle), and assembling the 

hypotheses under which we will work. In Chapter III, all this prelimi-

nary work is done for very general parabolic type systems of equations 

which include multiple independent spatial variables, multiple dependent 

variables, and even i.ntegrals. This is so every generalization of ( 1. 1) 

that we will consider is included as a special case of the equations 

treated in Chapter III. 

Before continuing, we briefly mention the idea behind the 

technical device of modifying the given equation, although this is dis-

cussed at length in Chapter III. Solutions u of the nonlinear equation 

ut = f(u , u , u) may be able to develope infinities in u, ux, or 
XX X 

u as time progresses. These infinities pose very serious mathemati-xx 

cal problems. In order to avoid these, we selec t an arbitrarily large, 

but fixed, positive constant M and work with a modified equation, 

ut = fM(u , u , u). This new equation is identical to the original 
XX X 

equation when lui ..::_ M , luxl ..::_ M, and 

finite N(M) > M such that if any of 

l u I < M. However, there is a 
XX -

lu I > N, lu I > N, or lui > N 
XX X 

occurs, then the modified equation reduces to a heat equation. More-

over, the transition between the original equation and the heat equation 

is very smooth and the maximum principle holds for the modified equation 

as well as the original. Solutions to the modified equation, however, do 

not develope infinities as time progresses, which is the feature of the 

equations that we need. All subsequent results are for the modified 

equation and hold for all M sufficiently large. The physical reasons 

for - and consequences of - modifying the original nonlinear equation 
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are discussed in detail in Chapter III. Briefly however, for any M 

as large as we please all our theorems will tell us how solutions u(t,x) 

of the modified equations behave as a function of the initial conditions 

u(O,x). Thus, for any solution u(t,x) of the original equation which 

has lui < M, lu I < M, and lu I < M for all t ~ 0, our theorems 
X XX 

give the correct results. Also, for any solution u(t,x) of the original 

equation, the results in our theorems are correct for all t until 

lui = M, lu I = M, or lu I = M 
X XX 

occurs. 

In Chapter IV we obtain the stability results for monotonic 

traveling wave (and steady state) solutions of the basic equation 

f (u , ux, u) 
XX 

(1.1) 

We then derive the instability results for non-monotonic traveling waves 

(and steady states). Direct extensions of these results, such as to 

traveling plane waves in higher spatial dimensions and to boundary 

value problems on a finite spatial interval, are also considered. 

In Chapter V we consider the connection between the mean wave-

speed of a solution u(t,x) of equation (1.1) and the initial condition 

u(O,x). We first find when the existence of a monotone wave at speed 

c = c 0 implies the existence of nearby monotone waves with wavespeeds 

near c 0 , and also when its existence implies the existence of other 

traveling waves at the same speed c 0 • With these results, the tech-

niques used in Chapter IV are used to find the dependenc e of the mean 

wavespeed of solutions u(t,x) of (1.1) on the initial condition u(O,x). 

Simple extensions of these results are a lso considered . 
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In Chapter VI we extend the results of Chapter IV and V to the 

more general class of equations 

f(u , ux' XX 
u, lT ( G(s,y,u(t-s, x-y))dyds) , f 

1 
> 0, f4· G3.::_0, 

0 J I Yl <Y 

(1. 5) 

where T and Y are any positive constants. We consider this generali-

zation b ecause equation (1.5) occurs quite often in some fields, such as 

population dynamics. The stability for monotone waves and the mean wave-

speed/initial condition results all hold for equation (1.5) as well as 

equation (1.1). In general, though, the proof of the instability of 

non-monotonic waves fails in two separate places. 

In Chapter VII we extend the results of Chapters IV and V to 

the special class of parabolic systems 

f (i) ( (i) (i) -) 
uxx ,ux ,u ' 

f(i) > 0 
1 ' 

df(i) (a,b,c) 
- > 0 

dC (j) 

all j ::/= i, i 1,2, ... ,n (1. 6) 

These special parabolic systems occur in chemical reaction theory. 

Similar to Chapter VI, the stability and mean wavespeed results are 

established for system (1.6). Again, the proof of instability breaks 

down in the same two places as occurred in Chapter VI. 

In Chapter VIII we use the results of the previous chapters on 

specific physical examples of equations (1.1), (1.5) and (1.6). We 

draw on the fields of genetics, biology, and chemical reactions for 

examples of (1.1). Population dynamics provides an example of equation 

(1. 5) . A reaction diffusion system is used as an example of system 
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(1.6) which occurs in chemical reaction theory. 

In Chapter IX we briefly discuss our results in general terms. 

Specifically, we point out some short-comings of the results, make 

some reasonable conjectures, and discuss possible areas for further 

research. 
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Cha pter II 

OVERVIEW 

In this chapter we present an overview o f the main results 

(and their proofs) pertaining to the class of equations 

f (u , ux, u) 
XX 

(2. 1) 

We will avoid most of the complicating details found in the more com-

plete presentation contained in Chapters IV and V. This avoidance hope-

fully helps clarify the reasoning behind the results, showing why the 

results are true. Specifically, in section (2.1) we discuss the maxi-

mum principle. In section (2.2) the stability results for monotone 

waves are obtained. Section (2.3) deals with the instability of non-

monotonic waves. The last section, (2.4), is used to preserit some of the 

mean wavespeed/initial condition results. 

2.1 The maximum principle. The maximum principle for the equation 

f(u , u , u) + cu 
XX X X 

(2 . 2) 

will be used in obtaining almost all our results. In essence this 

principle is the observation that i f the inequality 

(2.3) 

holds fo r all t > 0 and if u(O, x ) ~ v(O,x) f or a ll x , the n 
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u(t,x) ~ v(t,x) for all t > 0 as well. This principle motivates the 

definition of ~(t,x) as an upper function of equation (2.2) and of 

~(t,x) as a lower function of (2.2) whenever 

ut - f(~xx' ux' ~) - cux > 0 for all t > 0, all x (2.4) 

~t - f(~x' ~· u) - cu < 0 
~ 

for all t > 0, all X (2.5) 

hold. This maximum principle and appropriate upper and lower functions 

can be employed to obtain stability proofs. For example, suppose 

u(t,x) - ~(x) is a steady state solution of (2.2) and suppose that 

u(t,x) is an upper function of (2.2) such that u(O,x) ~ ~(x) for all 

x and u(t,x) remains near to ~(x) for all x and all t > 0. 

Clearly when this occurs, the maximum principle implies a type of 

stability for ~(x). For in this case, the maximum principle shows that 

all solutions u(t,x) of equation (2.2) whose initial conditions satisfy 

~(0, x) ~ u(O, x) ~ ~(x) for all x (2.6) 

also must satisfy 

u(t, x) ~ u(t, x) > ~(x) for all t >O, all x .(2.7) 

Thus, employment of the maximum principle in this and similar manners 

reduces the question of stability to that of finding appropriate upper 

and lower functions. 

We will now be specific. The maximum principle for equation 

(2.2) is the following: 
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Maximum principle: Suppose f(a,S,y) is continuously differentiable in 

a, S , andy and that f 1(a,S,y) > 0 for all arguments a ,S, andy . If 

u(t,x) and v(t,x) are any functions with u 
XX 

and v, vx , vxx 

all bounded for all x a nd all 0 < t ~ T, if 

u - f(u , u , u) - cu > v - f(v , v , v) - cv (2 . 8) 
t XX X X t XX X X 

holds for all (x,t) in ~ x (o,TJ , and if u(O,x) ~ v(O,x) for all 

x, then 

u( t ,x) ~ v(t,x) for all x, all t in ( o,TJ . (2 . 9) 

This maximum prin ciple is a special case of the maximum principle pre-

sented in Chapter III . The following proof of this maximum principle is 

based on the material in Chapter III of reference [ 1] . 

Proof : We prove this prind.ple by defining h = u-v and showing that 

h is positive . We start by def ining a function of 

by 

H([ v ].[h] ,e ) _ f(v + eh , v + eh , v + eh) - c(v + eh ) . 
XX XX X X X X 

The deriva tive of H i s 

aH 
ae 

f 1 h + (f2 + c)h + f3 h 
XX X 

where the arguments of f 1' f 2 , and f 3 are v + eh xx' XX 

our assumptions imply that 
aH 

is bounded f or No te that ae 

v + 8h ' v + 
X X 

all e E(o, ~ 

8h. 

and all (x ,t) E a x ( o,T] . Thus , a t any f ixed x and t i n It X (0, T]' 
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h u vt > f(u , u , u) + cu - f(v vx ' v) - cv 
t t - XX X X xx' X 

H([ v ], [ h ], 1) - H([ v 1 [ h ], 0) 

~~ ( [ v]. [ h J. 8) for some e in (o, ~ 

This last step follows from the mean value theorem. Hence, at each 

(x,t) in R x (o,T) there is a e ( t, x) E [o, ~ such that 

ht > f1 h + (fL + c)h + f 3 h , 
XX X 

(2.10) 

where again the arguments of f 1 , f 2 , and f 3 are v + 8(t,x)h , 
XX XX 

v + e(t,x)h , v + 8(t,x)h. By our assumptions, f1, fL + c, and f3 
X X 

are bounded for all (x,t) in ~ x [o,T], and moreover f 1 > 0. 

We will prove the maximum principle by showing that h must 

be positive for (x,t) in IR x (o,T] whenever the inequality 

> a h + B h + yh 
XX X 

(2. 11) 

holds for all (x,t) in ~ x (O,TJ. Here, a, S, andy are arbitrary 

functions of (t,x) which are bounded over (x,t) ~ R x [o,T] and of 

which a is always positive. The maximum principle is then immediately 

established as (2.10) is a special case of (2.11). 

We continue by def:i.ning 

w _ he-nt sech x (2.12) 

where n > 0 will be selected later. From (2.12) we find 
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h we11 t cosh x 

h w ent cosh + nt 
X nwe cosh x 

t t 

h w ent cosh X + went sinh X 

(2.13) 

X X 

h 
nt cosh + 2 went sinh x + went cosh x w e X 

XX XX X 

Substituting these expressions into the differential inequality (2.11) 

yields 

w > a w + (S + 2a tanh x )w + (y + a + Stanh x - n)w. (2. 14) 
t XX X 

We now select n so large that y +a+ Stanh x- n < - 1 for all (x,t) E: 

IR X [0, T] Thus (2.14) becomes 

wt > a w + S w + y w , a > 0 , y 
XX X 

< - 1 , for all 0 < t < T . (2. 15) 

We now come to the heart of the proof. Let e > 0 be any posi-

tive constant. Suppose that w(t,x) < - £ for some value of (x,t) e~ X 

[o, 1j From the boundedness of h and expression (2.12), we see that 

there is an X > 0 such that lwl < e/2 for all lx! > - X and all 

0 < t < T. Thus there must be some point x, t in !xl < X, 0 < t < T - -

where w(t ,i) is at a minimum and w(t ,x) < - £ . This minimum does not 

-occur at t - 0 since h (and thus w) is non-negative there. If it 

occurs at t = T then w (t,x) < o, 
t -

and if it occurs at 0 < t < T 

then wt(t,i) = 0 . 

(2.15) implies that 

In e ither case w (t,x) 
X 

0 and w (t,x) > 0. Thus, 
XX 

This contradicts 

w (t,~) ~ y w(t, x ) > E > 0 
t 

w (f,x) < o. 
t -

He nce w(t,x) > - e 

(2. 16) 

for all (x, t) in 

m. x [o, ~ Since e > 0 is arbitrary, w(t,x) > 0, and therefore 
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h(t,x) > 0 for all (x,t) E IR x (o,T] Q.E.D. 

In the next section we will use this maximum principle to estab-

lish sharp stability classes for the perturbations of constant and monotone 

traveling waves (and steady states). 

2.2 Stability of monotone waves. In this section we find the stability of 

constant and non-constant monotonic traveling wave and steady state solu-

tions of the equation 

ut = f(u , u , u) 
XX X 

(2 .1) 

As before, we reduce any traveling wave to a steady state by switching to 

the moving coordinate system 

t' t , x' x - ct 

In terms of these new coordinates, equation (2.1) is 

(2.2) 

where the primes on the t's and x's have been conveniently dropped. 

Thus, all traveling wave solutions of equation (2.1) are now steady state 

solutions of equation (2.2) at the appropriate values of the parameter c . 

We will actually study the stability of the steady state solutions of equa-

tions (2.2). 

As the first step we will define some types of stability which 

will enable us to state sharp s t ability results. Next, we will examine the 

stability of constant steady states. Then, the basic stability results for 

monotonic steady state solutions u(t,x) = ~(x) of (2.2) will be given. 
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Finally, finding better upper and lower functions will enable us to improve 

this basic result whenever ~(-oo) or ~(,·00) (or both) are saddle points. 

The sharpness of these results will be established in section (2.4) as a 

by-product of the mean wavespeed/initial condition discussion. 

We begin by making the needed stability definitions. Namely, we 

define Cw-stability and ~w-stability for any continuous function w(x) 

with w(x) ~ 1 for all x. Given such a w, we define any steady state 

solution u(t,x) - ~(x) of equation (2.2) to be Cw-stable if an only if 

for any given E > 0, there is a 8(E) > 0 such that every solution 

u(t,x) of equation (2.2) satisfies 

I [u(t ,x) - ~(x)]w(x) I .::_ E for all x and all t > 0 , (2.17) 

whenever the initial conditions u(O,x) are smooth and satisfy 

I ~(0 , x) - ~ (x)] • w(x) I .::_ 8 (E) fo r all x. (2.18) 

Similarly, <j>(x) is defined to be ~w-stable if and only if for every 

E > 0, there is a 8(E) > 0 such that every solution u(t,x) of equation 

(2.2) satisfies 

lu(t ,x) - ~(x) I < E for all x and all t > 0 , (2.19) 

whenever the initial conditions u(O,x) are smooth and satisfy (2.18). 

In interpreting these definitions, we note that whenever w(x) 

is bounded, then cw-stability (~w-stability) is equivalent to 
w C -stability 

(~w-stability) with w(x) _ 1. We therefore turn our attention to the 

cases where w(x) + + oo as x + - oo and/or x + + oo We see that, roughly 

speaking , ~(x) is Cw-stable (~w-stable) if it is stable to perturbations 
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applied at t = 0 which decay like 
1 

~(x) as x + - oo and x + + oo. 

stability implies that the perturbations remain small and bounded as time 

increases. The stronger Cw-stability implies that the perturbations re-

main small and decay like 
1 

w(x) 
as x + - oo and x + + oo at all times 

t > 0. The definition of 
w 

C -stability is very similar to the stability 

definitions used in reference ( 2] . 

The above stability definitions are adequate for our needs. 

We will therefore now examine the stability of an arbitrary constant steady 

state solution, u(t,x) = ~ 0 , of equation (2.2). The stability of this 

state will depend crucially on whether the point ~ = ~ 0 , v = 0 is a node, 

a spiral point, or a saddle point of the first order system 

cf>x v 

f(v , v, ~) + cv 0 
X 

(2.20) 

Note that ~ ~ 0 , v = 0 is a node, a spiral point, or a center when 

f3(0, 0, cf>o) > O; and is a saddle point when f 3 (0,0,~ 0 ) < 0. (The case 

f3(0,0,~o) = 0 represents two or more singular points merged together in 

the phase pla ne). We observe that these signs of f 3 (0,0,~ 0 ) imply that 

u(t, x ) ~ ~0 is stable to spatially independent perturbations if cf>o,O is a 

saddle point, and is unstable to spatially ·independent perturbations when 

cf>o ,O is a node, a spiral point or a center. We expand this observation 

into the following: 

Theorem 2.1: Suppose u(t,x) - ~o · is a constant steady . state solution of 

equation (2.2). Then 

(l) <P(x) is Cw-stable with w(x) - 1 if cf> = cf>o, v 0 is a 

saddle point of system (2.20), and 

~W ( ) l + -KX + KX f (2) ~(x) is ~ -unstable with w x - e + e or 
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K > 0 sufficiently small if ~ = ~ 0 , v 0 is a node, a spiral point, or 

a center of system (2.20). 

Proof: Part 1. Since f3(0 ,0,~ 0 ) < 0, we let f 3 (0,0,~0 ) = - 2~. There 

exists an ho > 0 such that f 3 (0,0,~o+h) < - ~ < 0 for all \hi < h 0 • 

Consider -jlt 
u(h,t) = ~0 + e h. For all o < h < ho, we have 

ut(h,t) - f(u (h,t), u (h,t), u(h,t))- cu (h,t) 
XX X X 

-~t -jlt 
~e h - f(0,0,~ 0 +he ) 

> 0 

Thus, u(h,t) is an upper function of (2.2) for 0 < h < h 0 • Similarly, 

u(h,t) is a lower function of (2.2) when - ho < h < 0. Let £ > 0 be 

given, and without loss we suppose that £ < h 0 . Suppose u(t,x) is any 

solution of (2.2) whose initial condition u(O,x) satisfies iu(O,x) -

~(x) I < £ for all x. Then 

u(E,t) ~ u(t,x) ~ u(-£,t) for all x 

is true at t = 0, and so the maximum principle implies that it is true 

for all t > 0 as well. I.e., 

-jlt -~t 
~o + £e ~ u(t,x) > ~ 0 - £e for all x, all t > 0 (2.21) 

Stability is thus established. 

Part 2 . Consider u(h,t,x) = ~0 + heJJt sech KX, where 

Jl _ ~f 3 (o,o,~ 0 ) > 0 and where K > 0 will be defined later. We calculate 
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ut (h, t, x ) - f(u (h,t,x), u (h,t,x), u(h,t,x)) - cu (h,t,x) 
XX X X 

~ f 3 he~t sech KX 

2 ~t 2 t 
- f(-K ·he sech Kx(1-2 sech Kx),- Khe~ sech KX tanh KX, 

~0 + he~t sech KX) 

+ cKhept sech KX tanh KX 

he~t. (sech K~r-~·f3+(fz+c)KtanhKX + f1K z (1-2 sech
2 KX~ 

~t 2 
+ O((he sech Kx) ) , (2.22) 

where f1, f2, and f3 are evaluated at the arguments 0, 0, ~O · Let K 

be a fixed positive constant so small that the quantity in brackets in 

(2.22) is always less than -~£ 3 . Since the first term of (2.22) is then 

negative for h > 0, there exists an ho > 0 for which 

ut(h,t,x) - f(u (h,t,x), u (h,t,x), u(h,t,x) ) - cu (h,t,x) < 0 
XX X X -

for all t such that 0 < hept 2 h 0 . Define u(h,t,x) as the solution 

of (2.2) with the initial value u(h,O,x) = ~0 + h sech KX . Since 

u(h,t,x) is a lower function of (2.2), the maximum principle implies 

- ~t ~t u(h,t,x) > ~ 0 +he sech Kx for all t such that 0 < he 2 h 0 . 

This holds for all 0 < h < h 0 , and so part (2) is established. 

Note that relation (2.21) shows that small perturbations about a 

saddle point die exponentially in time, and note that perturbations 

about a node, a spiral point, or a center can grow exponentially in time. 

The stability of constant steady state solutions of (2.2) has 

been found, and so we turn our attention t o the stability of non-constant 

monotonic steady state solutions. To see why monotonic waves are stable, 

let u(t,x) :: <j>(x) be a monotonic steady state solution of the autonomous 
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equation (2.2). In particular, let ~(x) be increasing. Since ~(x+h) 

also solves (2.2) for any h, it is both an upper and lower function of 

(2.2). Thus, for any h > 0 the maximum principle implies that all 

solutions u(t,x) of (2.2) whose initial conditions u(O,x) satisfy 

¢(x-h) < u(O,x) < Hx+h) for all x 

must satisfy 

~(x-h) < u(t,x) < ¢(x+h) for all x and all t > 0 

as well. That is, any solution of equation (2.2) which is initially in a 

region like the one shaded below will always remain in the region. Since 

h > 0 can be taken arbitrarily small, clearly monotonic states possess a 

type of stability. We make this precise in the following theorem. 

Theorem 2.2: Let u(t,x) = ¢(x) be a bounded non-constant monotonic 

steady state solution of equation (2.2). Then it is Cw-stable with 

1 
w (x) = 1 + I ¢' (x) I . 

Proof: This proof precisely follows the above argument. Since ¢(x) 

solves (2.2) and (2.2) is autonomous, ~(x+h) solves (2.2) for any h. 

Using the maximum principle twice shows that any solution u(t,x) of (2.2) 

whose initial condition satisfies 

¢(x-h) < u(O,x) < ~(x+h) for all x 
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for some h, will also satisfy 

~(x-h) 2 u(t,x) 2 ~(x+h) for all x and all t > 0 • (2.23) 

We now show that statement (2.23) implies Cw-stability with 

w(x) 1 
- 1 + I ~' (x) I . From (2.23), 

(1 + I~ 1 ~x) I) [Hx-h) - Hx~ 1 
< (1 + .-~-~ ::--, (-:-x--:-) ,.-1) [u ( t, x) - ~ (x)] 

1 
< (1 + .--1 <P-:,-=:-(x---,.)-..-1 ) [¢ (x+h) - ~ (x)] 

As is discussed in Chapter IV, ~(x) being a bounded non-constant mono-

tonic solution of 

f(~ , ~ , ~) + c~ 0 
XX X X 

implies that ~'(x) can never be zero. Moreover, the functions ~"(x), 

~'(x), and l~"(x)/~'(x) I are all bounded for all x and l~"(x) I is de-

creasing for all x with lxl sufficiently large. Thus, there is a con-

stant B > 0 such that 

(1 + l~'~x) 1) l~(x+h)- ~(x) I 2 Blhl for all x and h 

Hence, given any £ > 0 we can conclude that 

(1 + I~' ~x) 1) lu(t,x) - ~(x) I < £ for all x and all t > 0 

by taking I hI < £ /B. Moreover, there is also a o (I hI) > 0 such that 

lu(O,x) - ~(x) I (1 + I~' ~x) I) 2 o(lhi) for all X 

implies that 

~(x-h) 2 u(O,x) 2 ~(x+h) for all x 
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(where the sign of h is chosen so that ~(x+h) > ~(x-h)). Hence our 

theorem is established by taking o = o(£/B). 

Theorem (2.2) states that monotonic steady state solutions 

u(t,x) - ~(x) of 

f(u , 
XX 

1 

u) + cu 
X 

(2.2) 

are Cw-stable with w(x) 1 
+ I~' <x> I Roughly speaking, this means that 

a monotonic solution u(t,x) = ~(x) is stable to small perturbations 

which decay asymptotically like l~'(x)l as x goes to - oo and to +oo. 

Since these monotonic steady states ~(x) almost always decay exponen-

tially as x + + oo, we can roughly state that a monotonic steady state 

solution of (2.2) is stable to small perturbations which decay at the 

same exponential rates as ~· (x) does, for x +- oo and x + + oo • In 

Chapter IV we will examine the asymptotic decay (as x + + oo) of monotonic 

steady states ~(x) more carefully. 

By using ~(x-h) and ~(x+h) as lower and upper functions we have 

established the stability of all monotonic steady state solutions to 

perturbations which decay asymptotically at least as fast as the solution 

does as x + + oo • However, u(t,x) = ~(x+h) and u(t,x) = ~(x-h) are 

actually solutions of equation (2.2). By using these as our upper and 

lower functions we have not taken advantage of the generality allowed by 

the inequalities in the definitions of upper and lower functions. (See 

definitions in (2.4) and (2.5)). In the next two lemmas we will utilize 

this generality to find better upper and lower functions. 

Lemma 2.3: Suppose that u(t,x) _ ~(x) is a bounded non-constant monotonic 
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steady state solution of (2.2) at some c. Let ~(-ro) _ ~ and ~(+=) _ ~+· 

Then 

(1) If ~ = ~ , v = 0 is a node and ~ 

saddle point of system (2.20), then 

;(t, x) - ~(x+h(t)) + q ( t ) [ ~ ( x+h ( t ) ) ~-1 
E_(t,x) - Hx-h(t)) q(t) [Hx-h(t)) ~-1 

where h (t) and q(t) are given by 

h(t) = CLK (1 _ e-st) + ho q(t) ae 

~+' v 0 is a 

and 
(2.24) 

-st 
(2.25) 

are an upper and lower function of (2.2), respectively, In (2.25) K 

and s are some positive constants, ho is arbitrary, and a is any con

stant with sufficiently small magnitude and with sign the same as ~'(x). 

(2) If ~ = ~-' v = 0 is a saddle point and ~ = ~+' v = 0 

is a node of system (2.20), then 

u(t,x) 

E_(t,x) 

- Hx+h(t)) + q (t){<l>+ 

- ~(x-h(t)) q (t) [<P+ 

~ (x+h(t))] 

~(x-h(t))] 

and 
(2.26) 

where h(t) and q(t) are given by (2.25), are an upper and lower function 

of (2.2), respective ly. 

We are mainly intere.sted in t:hese upper and lower functions at 

t = 0 and t + 00 • We have sketched in figures (1) and (2) the upper and 

lower fun c tions at t = 0 and t = + ro from both (2.24) and (2.26), 

assuming for illustrative purposes that ~(x) is monotonically increas

ing. Note tha t in all sketches the value of ho used for the upper func

tions is ~h l a rger than that used for the lower functions . 
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s 

¢ N 

Figure (la): The functions ~(O,x) and u(O,x) when cp is a node (N) and 
cf>+ is a saddle point (S), from (2.24). 

L 
X 

¢ N 

Figure (lb): 

s 

The functions u(+oo,x) and u(+oo,x) when cf> is a node (N) and 
cp+ is a saddle point (.S), from (2.24). 
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N 
cp+ 

L 
X 

cp s 

Figure (2a): The functions u(O,x) and u(O,x) when cp_ is a saddle point (S) 
and cp+ is a node (N),from-(2.26). 

N 

~(-tro,x) 

L 
X 

s 

Figure (2b): The functions ~(+ oo,x) and u(+oo,x) when cp is a saddle point 
(S) and cp+ is a node (N~ from (2.26). 

Proof of lemma 2.3: We prove only that u(t,x) in (2.24) is an upper 

function of (2.2) when cp(x) is increasing . The proof when cp(x) is de-

creasing and the proofs of the other parts of the lemma follow from very 

similar calculations. 

We will prove that u(t,x) in (2.22) is an upper function by 

showing that u ' X 
u) - cu > 0 x- for all sufficiently small. 
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We have 

u = <I> + q(<f>-<1> ) 

u cp I h ( l+q) + qt(<t>-<t>_) t t 

u cp I (l+q) 
X 

u <I>" ( l+q) 
XX 

For x + h(t) < - x 0 (x0 > 0 very large), we expand about cp, <1>', and 

<f>". We find 

u , u) 
X 

- cu 
X 

> <l> 'ht + qt(<t>-<P_) - flcp"q - (f2+c)<l>'q - f3(<1>-<t>_)q 

+ h • 0 • ( <P II q > cp I q > ( cp-cp-) q) 

(2.27) 

where the arguments of f 1 , f 2 , f3 are <1>", cp 1
, <f>, and the argument of 

<f>", cp 1
, and <f> is x + h(t). Here h.o.(a,b,c) stands for terms which 

are of at least quadratic order in a,b, and c. For x + h(t) < - xo, 

<t>"/<1> 1 and (<f>-<P_)/<f> 1 are both bounded (as will be shown in Chapter IV). 

Thus (2.27) shows that there exists positive constants M-, N-, and q-

such that 

ut - f(u , u , u) - cu > 0 for all x + h(t) < - xo 
XX X X-

whenever 

and 0 < q < q 

For x + h(t) > x 0 (x0 > 0 very large), we again expand 

<f>. As before, we find 

u - f(~ u , ~) - cu 
t xx' x x 

> <jl 1 h + qt(<t>-<t>_) - f 1ep " q - (f2+c)<l> 1 q - f 3(ep-cp_)q 
- t 
+ h.o .(<P"q, !J>

1 q,(<f>-4>_)q) 

about <j> ", ¢ 1
, 

(2.27) 
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where the arguments of f 1 , f2 , f3 and <!> ", <P ' , <P are the same as be-

fore. Sin ce f 3 (0,0 , cp+) < 0, by taking x 0 s uff i ciently large we 

ensure t hat 

- f 3 {cp", cp ' , cp) > 2s for all x + h(t) > x 0 

for some positive con stant s . Sinc e cp (x+h (t)) is increasin g in x, 

we have 

0 < cp(x0 ) - <P < cp{x+h (t)) - <P < cp - cp for all x+h( t ) > x 0 + -

i.e . , <P-<P is bounded away from zero and is also b ounded. Noting t hat 

cp"/cp' is bounded for x+h(t) ..:::._ xo, we see that (2.27) impl ies that there 

exist s an N+ > 0 and a q+ > 0 such t hat 

ut - f(~xx' ux, u) - cux > 0 for all x+h(t) ..:::._ x 0 

whenever 

+ + 0 ..::_ - qt _::. sq , ht > N q , and 0 < q < q 

We now consider the middle region. Linearizing ab out cp " , cp ' , and <P as 

before agai n yields (2.27). Since cp'(x) * 0 for all x (this is shown 

in Chapter IV), for any x 0 > 0 there is a o > 0 such that <P'(x) > o 

for all x in [-x0 , x 0] • S i nce <P" and <j>-cp are bounded, (2 . 2 7 ) 

shows tha t there are constants MO > 0, N° > 0, and qO > 0 for which 

u - f(u , u x ' u) - cu > 0 all x+h(t)E [-xu , X~ 
t XX X -

is satisfied \vhenever 

h 
t 

+ Mo q > No 
t -

q 0 < q < qO 

To s ummarize t his cal c ulat ion, we can con c lude 
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u) -

when 

cu > 0 x- for all 

0 < - q < sq 
t-

and 

hold. Hence, we take 

-st 
q = a.e , h 

-st 
a.K (1-e ) + h 0 

X (2.28) 

(2.29) 

(2.25) 

where K = max{M-, M0 }s + max{N-, N°, N+}, and note that (2.29) is satis-

{ 0 +} fied for 0 ~ a. ~ min q , q , q · . Thus (2.28) is true, and hence u 

is an upper function. 

Lemma (2.3) provides good upper and lower functions when the 

monotone wave goes from a node to a saddle. These functions still decay 

asymptotically like ~'(x) as x goes to the node (at either - oo or 

+ oo). However, as x goes to the saddle point at, say, + oo, the upper 

and lower functions asymptote to ~+ + ~ and ~+ - ~ for some ~ > 0. 

When used for stability proofs, this translates into a larger stability 

class than that :i.n theorem (2. 2) . Namely, these upper and lower functions 

will prove the monotonic wave stable to perturbations which decay like 

~ '(x) as x goes to the node (at x = - ·00 or x = + oo), but which only 

need be bounded as x goes to the saddle point (at x =-co or x = + oo) . 

In lemma (2.3) we were able to improve our upper and lower func-

tions when a single saddle point is present, and so one expects that still 

better functions can be obtained when both x ~ - oo and x = + oo are 

saddle points. The following lemma shows this to be so. 

Lemma 2.4: Suppose u(t,x) - ~(x) is a bounded, monotonic, steady state 
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solution of (2.2) at some c. Let ~(-oo) = ~- and ~(+oo) = ~+' If 

~ = ~-' v = 0 and~=~+' v = 0 are both saddle points of system (2.20), 

then 

with 

u ( t, x) - Hx+h ( t)) + Jq ( t )j and 

E_(t,x) - ~(x-h(t)) -lq(t)l 

-st -st 
h(t) - aK (l-e ) + h 0 , q(t) - ae 

(2.30) 

(2. 31) 

are upper and lower functions, respectively. Here K and s are fixed 

positive constants, h 0 is arbitrary, and a is any constant with suf-

ficiently small magnitude and with sign like that of ~'(x). 

Proof: Lemma 2.4 follows from calculations very similar to those in the 

proof of lemma (2.3). 

It should be noted that the upper and lower functions in lemma 

(2.4) were devised in reference [3] for the class of equations u = u + 
t XX 

h(u). These upper and lower functions are sketched in figures (3a) and 

(3b) at t 0 and t = + oo, respectively. For illustrative purposes we 

have taken ~(x) to be increasing. Also in sketching these functions, we 

have used a value of ho for the upper functions which is ~h larger 

than the value used for the lower functions. 

We now use the upper and lower functions provided by lemmas 

(2.3) and (2.4) in conjunction with the maximum principle. This will 

yield our main stability result. In order to state this result succinctly, 

we introduce the notation 
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+ e· (x) 
r (cp ' (x)) -

cp ' (O) 

r(O) 
r - (cp ' (x)) -

<P' (x) 

<P s 

X~ 0 J a n d 
X < 0 

x ~ OJ 
X < 0 

s - <P + 

L 
X 

Figure (3a): The functions ~(O,x) and u(O,x) when <P and <P+ are both 
saddle points (S), from (2.30). 

s 

L 
X 

s 

Figure (3b): The functions ~(+=,x) and u(+oo ,x) when cp and cp+ are both 
saddle points ( S), from (2-:-30). 

Theorem 2 . 5: Suppose u (t,x) _ cp(x) is a bounded, monotonic steady state 
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solution of equation (2.2) for some value of c. Then u(t,x) _ cp(x) 

is cw-stable where 

(1) if cp = cp , v = 0 and cp cp+' v 

points of system (2.20), then w(x) = 1; 

(2) if cp = cp , v = 0 is a node and cp 

0 are both saddle 

"' v = 0 '~'+' 

1 
is a saddle point of system (2.20), then w(x) = 1 + ,1 -r--~(~cp~'~(-x~)~)'i 

(3) if cp = cp , v = 0 is a saddle point and cp = cp+' v 0 

is a node of system (2.20), then w(x) 
1 

- 1 + lr+(cp'(x)) I and 

(4) if cp = cp , v = 0 and cp = cp+' v = 0 are both nodes of 

system (2.20), then w(x) = 1 + !cp'~x) I . 

Proof: To prove part (1), we use the upper and lower functions contained 

in lemma (2.4). To prove parts (2) and (3) we use the upper and lower 

functions in lemma (2.3). The maximum principle shows that any solution 

u(t,x) of equations (2.2) which is initially between an upper and a 

lower function will ahvays stay between those functions. This immediately 

implies that cp(x) is stable, because the size of a (see equations 

(2.24), (2.26), and (2.30)) can be taken as small as one wishes. Inspec-

tion of the formulas for the upper and lower function shows that the 

classes of perturbations bounded by the upper and lower functions are the 

same as those allowed in the definition of Cw-stability, with the func-

tions w(x) as given by the theorem. Part (4) is a special case of 

theorem (2.2). 

As a rough summary, we have shown that monotone steady state 

solutions of equation (2.2) are stable with respect to perturbations 

which are small and 
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(1) bounded as x++oo &s x+-.:j when ¢(+oo) [<P<-ooB 
is a saddle point, and 

(2) decay asymptotically like <P'(x) as x + + oo (as 

x + - oo] when ¢(+=) [<P (-ooB is a node. This is equivalent to showing 

that the traveling wave solutions u(t,x) <jJ(x-ct) of equation (2.1) 

(u = f(u , u , u)) 
t XX X 

w* 
are C -stable with w*(t,x) = w(x-ct). That 

is, our results measure the deviations of the perturbed traveling wave 

relative to a function 1 
which moves with the wave. This seems ·Phys-

w 

ically appropriate. 

The stability results in theorem (2.5) are shown to be sharp 

in section (2.4). There it is seen that in the N + S, S + N, and N + N 

cases, some perturbations which slightly violate the asymptotic decay con-

ditions of parts (2), (3), and (4) of theorem (2.5) lead to solutions 

which travel at velocities slightly different than c. Since these per-

turbed waves will gradually drift away from the unperturbed wave, the 

traveling wave is unstable to these perturbations. 

In the next section we show that very nearly all non-monotonic 

waves are unstable. This will complete the stability picture for steady 

state solutions of equation (2.2). 

2.3 Instability of non-monotonic waves. In this section we show that 

very nearly all non-monotonic steady states are unstable. Specifically, 

we will show that if u(t,x) = <jl(x) is a non-monotonic solution of 

(2.2), then 

(1) if <jl(x) has a relative extrema at at least two distinct 

points x, then there is an x 0 and an x 1 such that u(t,x) <jl(x) is 

unstable to all smooth initial perturbations p(x) which are non-negative 
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for x ¢.. (xo, xi] and which are positive for all x in 

(2) if ~(x) has only a single relative extremum then 

(a) if ~(-co) or ~{-+co) is a saddle point then 

u(t,x) = ~(x) is unstable to perturbations which decay like j~'(x) j 

as x goes to -co and goes to +co • , 

(b) if both ~(-co) and ~(+co) are nodes then u(t,x) = 

~(x) may be stable or unstable to perturbations which decay asymptoti-

cally like I<P'(x)l as x goes to -co and goes to +oo; 

The result in (1) for non-monotonic waves with at least two 

relative extrema is as strong a result as one can hope for, since it 

shows that most non-monotonic waves are unstable even to arbitrarily 

small perturbations of finite extent. The weaker result in (2a) leaves 

open the question of whether the non-monotonic waves it treats can be 

stable to perturbations which decay at an asymptotically faster rate 

than ¢ '(x) as x goes to - oo and to + oo, We will not treat case 

(2b) in this chapter . In Chapter IV we will be able to characterize when 

a wave u(t,x) = <j>(x) in case (2b) is stable or unstable to perturba-

tions which decay asymptotically like ¢'(x) as x +- oo and as 

x-+ + co , However, we will be unable to determine whether a ll non-mono-

tonic waves in case (2b) are unstable or ~vhether some are stable and some 

are unstable. 

We now state these results precisely in the theorem below. 

Theorem 2.6: Suppose that u(t,x) - ¢(x) is a non-monotonic bounded 

steady state solution of 

Then: 

u 
t 

f(u , 
XX 

u , 
X 

u) + cu 
X 

(2. 2) 
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(l) If there are at least two finite values of x at which 

~(x) has relat ive ext rema, then there is a finite interval [x 0 , x~ 

and a 11 > 0 such that for any £ > 0 there is a p(x) satisfyi ng 

0 < p(x) < £ for all X E (xo • x l ) 

p(x) - 0 for all X ¢ (xo, xl) 

for which the solution u(t , x ) of equat ion (2 . 2) with initial condi-

tion 

u(O,x) Hx) + p (x) 

satisfies 

ju(t,x)- ~(x) j > 11 

for some x a nd some t > 0. 

(2) If there is onl y a sjngle finite value of x, x = xe, 

where ~(x) has a relative extremum and if either ~(-oo) or ~(+oo) is a 

saddle point, then ~ (x) is ~w-unstable with 

l l 
- 1 I ~ I (x) I + 

I~ I (x +1) I X < X 
e e 

w(x ) l l 
- l - ~ ~~(x -1) 1 + l ~ 1 (x +l) I X < X < X 

e e 
e e 

l + l + l (2.32) ~~ ~ (x -l)j I <P 
1 (x) I X > X 

e e 

When we prove theorem (2 . 6), we will actually prove for part 

(l) much more than is claimed by the t heorem. We will actually show that 

the non-monotonic steady states u (t,x) = ~(x) wi th at least two rela-

tive extrema are unstab le to all smooth initial perturbations p(x) which 

are 

(a) non-negative outside the interval [xo, x~ 

(b) positive inside the interval lx0 , x il 
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Note also that the w(x) of part (2) of this theorem is essentially 

1 
1 

+ I <t>' <x) I modified so that it remains finite at x = x where <t>'(x) 
e 

is zero. The constants 
1 

lc!>'(x -1)1 
e 

and 
1 

T c!> '(x + 1)1 were included in 
e 

w(x) because formally we have only defined ~w -instabil:i.ty for con-

tinuous w, and these constants can be ignored without loss. 

The proof of theorem (2.6) will be base d on a so-called "hair-

trigger" effect. Before proving this theorem, we will illustra te this 

effect with the example where it was apparently first discovered in 

reference (4] 
For this example we consider Fischer's equation 

u = u + u (1-u) 
t XX 

(2.33) 

and note that u(t,x) = 0 and u(t,x) = 1 are its only bounded non-

negative steady states. We define the steady state solution u(t,x) = 
cj> (x, E) of (2.33) by 

cj>xx + <I> (1-cj>) 0 ci>(O, E) = E cj>'(O,E) = 0 

where E > 0 is small. This steady state is illustrated below, and we 

see that cj>(x,E) = 0 a t x x ( E) < 0 and at x = x+(E) > 0. 

l'cj> (x, E) 

We thus define u(t,x, E) as the solution of ( 2.33) with the initial 

condition 
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u(O,x,e::) 
- [<P(xo, e:: ) x_ (e::) .::_ x .::_ x+(e::) 

X¢_ [x_(e::), X+ ( e:: ~ l 
By using the maximum principle repeatedly, one can show that u(t,x, e:: ) + 

cp (x,e::) 
00 

as t-+ +oo, where cp (x,e::) 
00 is the least steady state solution 

of (2.33) larger than u(O,x, e:: ) for all x. Thus, cp (x,e::) must be 
00 

the constant steady state cp (x,e::) - 1. 
00 

Therefore u(t,x,e::) -+ 1 as 

t -+ oo no matter how small e:: > 0 is. This is the hair-trigger effect, 

in which a slight positive bulge in the initial condition caused 

~(t,x,e::) to increase to the next steady state. This effect shows that 

u(t,x) = 0 is an unstable steady state of Fischer's equation. More-

over, since u(t,x,e::) and u(t,x) = 1 are both solutions of Fischer's 

equation, the maximum principle implies that all solutions u(t,x) of 

Fischer's equation whose initial conditions u(O,x) satisfy 

u(O,x, e:: ) < u(O,x) < 1 for all X 

must also satisfy 

u(t,x,e::) ~ u(t,x) ~ 1 for all x, all t > 0 

In particular this implies that u(t,x) -+ 1 as t -+ + oo for all x. 

This is illustrated in the following figure. 

u -
X ( t: ) 

If u(t, x) is any solution of Fischer's equation \>Those initial con
dition u(O,x) lies in the shaded region, then u(t,x) -+1 as t-++oo for all x . 
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We will use the hair-trigger effect to prove theorem (2.6). In 

analogy with the preceding example, the instability of a non-monotonic steady 

s tate $ (x) will be establishe d in three steps . For the first step , 

appropriate initial conditions u(O , x,£) for £ > 0 are defined with 

the properties 

u(O,x,£) - $(x) for X Et (x ( £) , x+(£)) -
u(O,x,E) > $(x) for X E (x (E), x+(E)) - , and 

u(O,x , E) <j>(x) 0(£) for X E (x (E), x+(E)) 

In addition, for c ase (1) of theorem (2.6) we are able to t ake x ( £ ) a nd 

x+( £) to b e bounded as £ ~ 0, but for case (2) they are unbounded. For 

the second step, we use the maximum principle to show that {i(t,x,£) in-

c reases in t to the least steady state $ (x,E) > u (O,x, E) 
00 -

fo r all x ; 

i.e. u(t,x,E) is increasing in t for all X and u(+oo,x,E) = $ (X,£). 
00 

For the third step, we s h ow tha t the least steady state $ (x,E) > u(O,x,£) 
00 -

fo r all x is always the least constant steady state solution u(t,x) ~$ 0 

sat isfying 

$(x) < ~0 for all x, 

whenever E > 0 i s suffic iently small . This third step establishes the 

instability, since $ (x, £) ~ $o and $ (x) 
00 

remain a finite distance apart 

as E goes to zero . 

It should be noted that hair-trigger effects were previously used 

to show instability of non-monotoni c steady state solutions of the equation 

in refere nce [s] 
u = u + f(u) 

t XX 

There Cw-stabill.ty with w(x) ~ 1 was considered , 

and it was shown all non-monotonic steady s t ate solutions are Cw-unstable 

(with w(x) ~ 1), a lthough the arguments used in [s] imply stronger 
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instabilities. Theorem (2.6) extends these results to include traveling 

wave as well as steady state solutions of the general class of equations 

u = f(u 
t xx' 

(2.1) 

Proof of theorem 2.6: We prove the instability of the non-monotonic 

steady state solution ~(x) of (2.2). As indicated above, the proof is 

in three parts. The first part of the proof is in finding appropriate 

~(x,£) with which to construct the bulges in the initial conditions. The 

second step of the proof is establishing the hair-trigger effect. This 

step constitutes the heart of the proof. The third and last step is show-

ing that the final steady states of the perturbed solutions re-

main a finite distance from ~(x) as £ goes to zero. 

We will actually only carry out the second step of the proof 

here. The calculations and estimates involved in the first and third 

steps are somewhat lengthy and tedious, and so for these steps we will 

use the results obtained in Chapter IV (namely, lemmas (4.7) and (4.8)). 

Moreover, the proof of the second step shows the main principle behind the 

instability of ~(x). 

For the first step, we use the functions ~(x,£) constructed in 

detail in Chapter IV. The results of this construction are contained in 

the following lemma from Chapter IV . 

Lemma 4.7: Suppose that u(t,x) - ~(x) is a bounded non-monotonic steady 

state solution of 

ut = f(u , u , u) + cu 
XX X X 

(2.34) 

(1) If ~(x) has relative extrema at at least two distinct f inite 

points x, then there are functions ~(x,£), x (£), x+(£) (with ~(x,£) 
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in c 3) such that for all E in (O,E 0) (for some Eo > O) the following 
X 

conditions are satisfied: 

(a) x (E) < xe < x+(E) 

(b) f (cp , cpx, cp) + ccp 
XX X 0 for cp = cp(x,E) when xis in [ x_ (E),x+(E) ] 

(c) cp(x,E) > cp(x) for all x in (x_(E), x+(E)) 

(d) cp(x_ (E),E) cp(x_(E)), ¢(x+(E),£) = cp(x+(E)) 

(e) max i<P(x, E)- ¢(x)l + 0 as £ + 0 
x _ (E)2_x2_x+ (E) 

Here, in condition (a) the point X= X 
e 

is any point where ¢(x) has a 

relative extremum. 

(2) If cp(x) has a relative extremum only at a single finite 

value x = x and if ¢ = cp(- oo), v = 0 or¢= cp(+oo), v = 0 is a saddle e 

point of 

f(v , v, cp) + cv 0 
X 

then there are functions cp(x,E), X (E), X+ (E) -
such that for all E in (O,Eo) (for some EQ 

(c), (d), and (e) are satisfied. Now however, 

as E + 0 and 

(f') max 

lxl >xe+l 
X_ ( E) <x<x+ (E) 

(with cp(x,£) in c3) 
X 

> 0) conditions (a), (b), 

X ( E) + - 00 or x+(E) ++ oo 

Here x = x is the sin6 le point where cp(x) has a relative extremum. 
e 

The establishment of this result in Chapter IV is the first step 

in our proof. Typical representatives of cp (x, E), x ( E), x+(£), and cp (x) 

are illus tra t ed on the next page . 
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X (E) X 
e 

We now show that if the function $(x,E) satisfies conditions 

(a), (b), (c), and (d), then the solution u(t,x,E) of 

ut = f(u , 
XX 

with initial condition 

= [ </> (x, E) 
u(O,x,t:) 

$(x) 

u) + cu 
X 

xE lx_ (E), x+ (e:)] 

x¢[x_(E), x+(t:)] 

is increasing in t. In fact we shall show that 

u(t,X,E) + $ (X,E) as t + oo 
00 

l 
(2.34) 

(2.35) 

where $ (x,E) is the smallest steady state solution of (2.34) which is 
00 

X 

larger than u(O,x,t:) for all x. This second step constitutes the heart 

of the proof, and ,.,e now establish it. 

Let cp(x,E) satisfy conditions (a), (b), (c), and (d), and de-

fine u(t,X,E) as the SOlution of (2.34) With itS initial condition given 

by (2.35). We first show that u(t,x,t:) ~ ~(O,x, E ) for all x and all 

t > 0. Since u(O,x,t:) ~ $(x) for all x, and since ~(t,x,E) and 

$(x) are both solutions of (2.34), the maximum principle implies that 

u(t,x,t:) > $(x) for all X and all t > 0. In particular, 

u(t,x_(E),£) > $(X_ ( £)) = cp(x_ (E), E) and 

for a ll t > 0. Also, from (2.35) we see that 
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u(O,x,£) ~ ~(x, £ ) 

This allows us to apply the maximum principle for finite domains to u, 

since u(t,x,£) and ~(x, £ ) both satisfy equation (2.34) on the inter-

(Note that the maximum principle presented in 

section (2.1) applies only to infinite domains. However, the maximum 

principle for equation (2.34) over finite domains is a special case of the 

general maximum principle in Chapter III). Hence, 

u(t,x,£) > ¢(x,E:) for all xE (x_(E:), x+Cd] , all t ~ o 

Since we have already established that u(t,x, E: ) ~ ¢(x) for all X and 

all t > 0, 

u(t,x,£) ~ u(O,x,£) for all x, all t > 0 (2.36) 

We now use (2.36) to show that u(t,x,£) is increasing in t. 

From (2.36), u(h,x,E:) ~ ~(O,x,E:) for any h > 0 and for all x . Since 

u(t+h ,x,E:) and u(t,x,E:) both solve equation (2.34)' the maximum principle 

shows that 

u(t+h,x, E: ) ~ u(t,x,E:) for all x, all t ~ 0, and a ll h > 0 

Further, let ~(x,E:) be any steady state solution of (2.34) with 

u(O,x,£) ~ ~(x,£) for all X 

(It is shown in Chapter IV that we can assume such a ~ exists without 

loss) . From the maximum principle we conclude that 

u(t,x,E:) ~ ~(x , E: ) for all x, all t > 0 

Thus at any given x and £ , u(t,x, E: ) is increasing and bounded in t. 

Hence, lim u(t,x,E:) = ¢ (x, E: ) 
00 

exists. Since u(t,x, £) evolves into 
t -+«> 

this time- independent function, ¢ (x,t.) must be a steady state solution 
00 

of (2.34). Moreover from the maximum principle it is easily seen that 

¢
00

(x,E:) must be the smallest steady state larger than u(O,x,£) for all 

-
x. Tha t is, if ¢(x,E:) is any other steady state solution of (2.34) with 
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u(O, x,£) < ~(x,£) for all x, (2.37) 

then 

~ (x,£) < ~(x,E) for all x 
00 -

(2.38) 

This establishes the hair-trigger effect for equation (2.34). 

For the third and final step of the proof, we need to establish 

that the steady states ~ (x,E) remain a finite distance from ~(x) as 
00 

E + 0. We establish this by using the following result from Chapter IV: 

Lemma 4.8: Assume that ~(x) is any bounded non-monotonic steady state 

solution of 

ut = f(u , u , u) + cu 
XX X X 

(2.34) 

In addition, if ~(x) has only a single relative extremum then assume 

that at least one of ~ = ~(-oo), v = 0 and ~ = ~(+oo) , v = 0 is a s a d-

dle point of the system 

~X V 

f(v , v,~) + cv 0 
X 

Then if ~(x) is any other steady state solution of (2.34) and if ~(x) 

satisfies 

~(x) 2 ~ (x) for all x 

then ~ (x) ~ ~ 0 for all x. Here ~ 0 is the least constant steady state 

solution of (2.34) with 

Thus 

~(x) < ~ 0 for all x 

~(x) < ~ 0 ~ ~ (x) for all x 

where ~ 0 is the least solution of f(O,O,~o) 

~(x) < ~0 for al l x. 

0 satisfying 

Note that we can always assume such a constant steady state ~0 exists. 
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Clearly the stability of a steady state solution u(t,x) = ~(x) of (2.34) 

cannot depend on the behavior of the equation at values of ~ larger 

than 

~ + 1 = sup{~(x)} + 1 ~max ~ 
X 

Thus if no constant steady state ~O exists, we can change the function 

f(cpxx'cpx,cp) for values of cp > cpmax + 1 so that f(O,O,cp) has a zero 

at, say, ~ + 2. 
~max 

The proof is now easily completed. Let cp 0 be as in the above 

lemma, and define ~ > 0 by 

cp 0 - cp(O) = 2~ 
Now, for any E > 0 no matter how small, 

u(t,x,E) + cj> (x,E) as t + + oo 
00 

and so at x 0, 

u(t,O,E) + cj>
00

(0,E) ~ cf>o = cj>(O) + 2~ 

Thus at some X (for example, X= 0)' u(t,x,E) - cj>(x) > ~ for all t 

sufficiently large. We now only need to note that since u(O,x,E) is 

given by (2.35) and since cj>(x,E) satisfies conditions (e) and (f) (in 

case (1)) or conditions (e) and (f') (in case (2)), the perturbations 

p(x,E) = u(O,x,E) - cj>(x) 

satisfy all requirements posed by theorem (2.6). Thus, theorem (2.6) is 

established. 

The above proof shows much more than instability of cp(x). 

Specifically note that because of conditions (e) and (f) or (e) and (f'), 

u(O,x,E) < ¢o for all X 

must hold for all E > 0 sufficiently small. Note also that u(t,x,E) 

and ¢0 are both solutions of (2.34). Thus if u(t,x) is any solution 
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of (2.34) whose initial condition u(O,x) satisfies 

~(O,x,E) ~ u(O,x) ~ ¢ 0 for all x 

then the maximum principle shows that u(t,x) must satisfy 

u(t,x , E) ~ u(t,x) ~ ¢o for all X, all t > 0 

In particular, since u(t,x,E) ~ ¢ 0 as t ~ + oo for all x, then 

u(t,x) ~ ¢o as t ~ + oo for all x as well . Pictorially, any solution 

u(t,x) of equation (2.34) which initially is in a region like the shaded 

region in the figure below, must have 

X (E) X 
e 

u(+oo ,x) :: ¢o . 

All solutions u(t,x) whose initial values u(O,x) are in the 
shaded region must have u(+oo,x) = ¢ 0 . 

X 

Theorem (2.6) very nearly completes the stability picture for 

steady state solutions of 

f ( u , u , u) + cu 
XX X X 

(2.34) 

Roughly speaking , steady states ¢(x) with at least two relative extrema 

are unstable, even to arbitrarily small perturbations of finite extent . 

Steady states ¢(x) with exactly one relat ive extrema and with either 

4>(-oo) or ¢(+oo) being a saddle point are unstable to arbitrarily smal l per-
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turbations which decay asymptotically like ~ · (x) as x +- oo and x + + oo 

Steady states ~(x) with exactly one relative extrema and with both 

~(-oo) and ~(+oo) being nodes apparently may be stable or unstable (although 

perhaps all of these steady states are unstable) to arbitrarily small per-

turbations which decay asymptotically like ~' (x) as x + - oo and as 

X + + oo. (A stability criterion fo r these steady state solutions is 

developed in Chapter IV). However, steady states ~(x) with no relative 

extrema (i.e. non-constant monotonic steady states) are stable, at least 

to small perturbations which decay asymptotically at least as fast as 

~'(x) does as x +- oo and as x + + oo. The precise stability of these 

monotonic steady states depends on their phase plane classification as a 

N + N, a N + S, a S + N, or a S + S type steady state, and is given in 

theorem (2.5). In summary we see that the stability of any steady state 

solution p(x) of 

ut = f(u ,u ,u) + cu 
XX X X 

(2.34) 

is generic: the stability of ~(x) depends only on a few easily deter-

mined characteristics of ~ and f, and is independent of the detailed 

natures of both ~ and f. 

In this section and the previous section we dealt with the 

stability of steady state solutions of (2.34) over an unbounded spatial 

domain. One of the extensions we will make in Chapter IV is the exten-

sian of the stability/instability results to boundary-initial value pro-

blems over finite spatial domains. 

We now focus our attention on another topic. In the next section 

we consider the connection between the mean wavespeed o f a solution 

u(t,x) of 
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f(u ,u ,u) 
XX X 

(2.39) 

and its initial condition u(O,x). As a by-product of this analysis, we 

will find that the stability results contained in theorem (2.5) for 

bounded monotonic steady state solutions of (2.34) are sharp in most 

cases. 

2.4 Mean wavespeeds and the initial conditions. In this section, we 

present some results from Chapter V. As in section (2.2), we consider 

equations 

ut = f(u ,u ,u) 
XX X 

which admit non-constant monotonic solutions 

u(t,x) = ~(x-ct,c) 

(2.39) 

(2.40) 

for some values of c (which may be zero), since these are the non-tri-

vial stable traveling wave solutions of (2.39). We first determine when 

the existence of a monotonic solution ¢(x-ct,c) of (2.39) at a parti-

cular wavespeed c implies the existence of other nearby monotonic 

traveling wave solutions, both at the same and slightly different wave-

speeds. We then use these results and the maximum principle to establish 

the connection between the mean wavespeed of solutions u(t,x) of (2.39) 

and their i nitial conditions u(O,x). 

To see how such results can be obtained, let u(t,x) = ~(x-ct) 

be an i ncreasing traveling wave solution of (2.39). Then for all h 1 , 

h 2 > 0 (no matter how large) ~(x+h2-ct) and ~(x-h1-ct) also solve 

(2.39). The maximum principle therefore implies that all solutions u(t,x) 

of (2.39) with initial conditions u(O,x) satisfying 

(2.41) 

must satisfy 
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~(x-ct-hl) ~ u(t,x) ~ ~(x-ct+h2 ) for all x and all t > 0 
(2.42) 

This is illustrated in the following figure, where the implication of the 

maximum principle is that all solutions of (2.39) which are initially in 

the shaded region will remain in the shaded region for all t > 0. 

X 

It is apparent that these solutions u(t,x) travel with mean wavespeed 

c in an appropriate s e nse. Moreover, h 1 and h 2 can be arbitrarily 

large. Thus the main restrictions on which initial conditions u(O,x) 

can be bounded as in (2.41) are asymptotic in nature. It is also clear 

that stronger results can be obtained by using the upper and lower func-

tions found in section (2.2). 

In this s ec tion we will consider the four main t ypes of mono-

t onic waves, S + S, N + S, S + N, and N + N, separately. For each 

case , assuming a single mono tonic traveling wave solution exists, we will 

determine the existence or non-existence of nearby monotonic waves travel--

ing with both the same and nearly the same velocities. We will then use 

the maximum principle and the upper and lower funct ions constructed in 

section (2.2) to obtain the mean wavespeed/initial conditions results. 

We begin with the simplest case , namely t h e case where u(t, x ) = ~(x-cat, co ) 

is a mon o t onic S + S t ype trave l ing wave solution of (2.39). 
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Case I: S ~ S. Suppose u(t,x) = ~(x,co) is a monotonic bounded steady 

state solution of 

f(u ,u ,u) + cu , f 1 > 0 
XX X X 

(2.43) 

at the wavespeed c = c 0 , and suppose also that ~ = ~ (-oo ,c 0 ) - ~ , v=O 

and ~ = ~ (+m ,c 0 ) = ~+' v=O are both saddle points of 

<Px = v 

f(v ,v,~) + cv 0 
X 

(2.44) 

at c = c 0 • In addition we assume that <j>(x,c 0 ) is increasing, since 

the analysis for <j>(x,c 0 ) decreasing is essentially the same. 

With these assumptions, the phase plane of (2.44) at c=co 

looks like 

- ---
v=O 

~+ 

Since ~ = ~-' v=O and ~ = ~+' v=O are saddle points at c = c 0 , they 

are saddle points for all value s of c. Thus, for each c there exists 

a function ~_(x,c) and ~+(x,c) such that every steady state solution 

u(t,x) = <j>(x,c) of equation (2.43) with <j> (-oo,c ) = <j> 

<j> ( x ,c) > 0 for all x sufficiently small must be 
X 

and with 

<j>(x,c) = ~ (x+h,c) for all x and some constant h 

Similarly, if u(t,x) = <j>(x,c) solves equation (2.43), if <j>(+=,c) ~+' 

and if <j> (x,c ) > 0 for all x sufficiently large, then 
X 
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~(x,c) = ~+(x+h,c) for all x and some constant h. 

Thus, for any c there is at most one steady state solution u(t,x) 

<j>(x,c) of (2.43) (modulo translations in x) which is both monotonic 

to ~(+oo,c) = ¢+. One sees that finding 
----------------------------------~ 
and goes from ~(-oo ,c) = ¢ 

a value c 0 for c at which such a solution exists is equivalent to 

finding a c 0 at which 

~_(x+h,co) = ~+(x,c 0 ) for all x for some h 

This bears a resemblance to an eigenvalue problem. 

We now establish the wavespeed/initial condition result for 

this case. Consider equation (2.43) at c = 0, namely 

f(u ,u ,u) 
XX X 

(2.45) 

This is the given equation (2.1) in terms of the original stationary co-

ordinate system. Let ¢(x,c0) be the monotonic steady state solution 

of (2.43) at c = c 0 with ¢(-oo,c0 ) = ¢_, ¢ (+oo, co) = ¢+' and with 

<I> = cp ' v 0 and ¢ = ¢+' v = 0 being saddle points of system (2.44) 

at c = c 0 . Then u(t,x) = ¢(x-c0t,co) solves equation (2.45). We now 

utilize the upper and lower functions of lemma (2.4) and the maximum prin-

ciple. This immediately shows that if u(t,x) and ~(t,x) are any of the 

upper and lower functions given in lemma (2.4), then 

~(O,x) < u(O,x) < u{O, x ) for all x 

implies that 

~(t,x-c 0 t) ~ u(t,x) ~ u(t,x-c 0t) for all x, all t > 0 

for any solution u(t,x) of equation (2.45). Substituting for u and u 

from (2.30), we find that for any q(O) > 0 sufficiently small (and for 

any h 1 and h 2 ), all s olutions u(t,x) of (2.45) satisfying 

¢(x-h1 ,c0 ) - q(O) ~ u(O,x) ~ ¢(x+h2 ,c0 ) + q(O) for all x (2.46) 
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must also satisfy 

for all x, all t > 0 (2. 4 7) 

Here, q(t) is given by (2.31) and thus q(t) ~ 0 monotonically as 

t + oo . We illustrate in figure (4) the bounds on u(t,x) given in (2.47). 

From this illustration it is clear that whenever u(O,x) satisfies (2.46) 

for a small enough q(O) > 0 and any h 1 and h 2 , the resulting bounds 

(2.47) on the solution u(t,x) imply that u(t,x) travels with mean 

wavespeed co in the appropriate sense. 

L 
X 

2q(ti~~~~~~~~~~~~~~~~~~--
~ $(x-cot-hl-Kq(O),co) -q(t) 

Figure (4): Since both of the functions bounding the shaded region move 
with speed c 0, since q(t) +O as t+t-oo, and since u(t,x) must 
be in the shaded region for all t~O, u(t,x) must propagate 
with mean wavespeed c 0 • 

Thus when u(O,x) can be bounded as in (2.46), we found that 

the resulting solution must travel with speed c 0 . To obtain the mean 

wavespeed/initial condition result, we need only identify the class of 

initial conditions which can be bounded by (2.46). Therefore, we note 

that (2.46) is satisfied for a given q(O) > 0 and some h 1 and h2 

sufficiently large wheneve r the conditions 
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cp - a' < u(O,x) < cp+ + a ' for all X 

cp - a' < u(O,x) < cp + a ' for all X < - xo (2.48) - -
cp - a' < 

+ 
u(O,x) < cp+ + a ' for all X > + xo 

are satisfied fo r any xo > 0 and any a' in (O,q(O)). Hence , when-

ever conditions ( 2 . 48) are fulfilled for any a ' > 0 small enough and 

for any xo > 0 , then the 

u 
t 

solution u(t , x) 

f(u ,u ,u) 
XX X 

of 

(2 . 45) 

travels with mean wavespeed c 0 . As an immed iate corollary, we see that 

there is at most one speed c 0 for which a monotone solution cp(x- c 0t~ 

(with cp (-oo ,c 0 ) = cp_ and cp (+oo,c 0 ) = cp+) exists. 

I n summary , we have discovered: 

Theorem 2 . 7 (S ~ S): Suppose that u(t,x) = cp(x-c 0t,co) is a bounded 

monotonic traveling wave (or steady state) sol ution of 

u 
t 

f(u ,u ,u) 
XX X 

(2.45) 

and also suppose t hat cp = cp ( - oo ,c 0 ), v = 0 and cp = cp (+oo,co) , v = 0 

are both saddle points of system (2 . 44) at c = c 0 . Then if u(t,x) -

~ (x-ct,c) is any other monotonic travel i ng wave solution of 

(2 . 45) with ~(-oo,c) = cp( - oo ,c 0 ) and ~(-1-oo,c) = cp(+oo ,c 0 ) , then 

~(x-ct,c) = cp(x-c 0t+h,c 0) for all x, all t > o 

for some h. In particular c = co . 

Theorem 2 . 8 (S ~ S) : Suppose that u(t,x) = cp(x- c 0 t,co) is a monotonic 

bounded traveling wave (or steady state) sol ution of (2 . 45), and also 

suppose that cp cp(- oo ,c0 ) = cp , v = 0 and cp = cp(+oo,co) = cp+, v = 0 

are both saddle points of syste m (2 . 44) at c = c 0 . Then if u(t,x) is 

any solution o f (2.45) with initial conditions u(O,x) sati.sfy ing 
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~ - a ' < u(O,x) < ~ +a' for all x < - xo 

<P - a' < u (O,x) < <P+ + a' for all X > + xu + 

min{~- '~+} -a' < u(O,x) < max{~-'~+} + a ' for all X 

for any a' > 0 suffic i ently small and any xo > 0, then u(t, x) 

trave l s with mean wavespeed co. 

Note that we have established the above theorems only in the 

case where ~(x,c~) is increasing in x . However, a similar analysis 

easily establishes the t heorems for the case of ~(x,c 0 ) decreas i ng. 

~- and ~+ 

are both saddle points, then given that ~(-oo ,c 0 ) = ~- and ~(+oo,co) = <P+ 

Roughly speaki ng, theor em 2.7 (S+S) shows that if 

there is at most one traveling wave u(t,x) = ~(x-c 0 t,c 0 ) modulo trans-

lations in x, and it travels with a unique wavespeed c 0 . Moreover, 

from theorem 2 . 8 (S+S), we see that any solutions u(t,x) whose initial 

conditions u(O,x) remotely resemble this unique traveling wave must 

travel with mean wavespeed c 0 • This is illustrated in the following 

figure. 

x =-x0 

L 
X 

iu=min{ ~_, ~+}-a ' 
x=+x 0 

If u(O,x) is contained in any regi on like the one shaded above (where x o 
can be arbitrarily large), then the solution u(t,x) must travel with mean 
wave speed co . 
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This completes the S ~ S case. We continue now by analyzing 

the N ~ S case. 

Case II: N + S. Suppose that u(t,x) - ~(x ,c 0 ) is a bounded monotonic 

steady state solution of 

f(u ,u ,u) + cu 
XX X X 

(2.49) 

at c = c 0 • We also assume that ~ ~(-oo,c 0 ) = ~ , v = 0 is a node 

and that ~ = ~(+oo,c 0 ) = ~+' v = 0 is a saddle point of the system 

~X v 

f(v ,v,~) + cv = 0 
X 

(2.50) 

at c = c 0 • Finally, we will assume that ~(x,c 0 ) is increasing, since 

the analysis for ~(x,c 0 ) decreasing proceeds similarly. 

We will first use a continuity argument to show that if 

~(x,c 0 ) exists and has the properties assumed above, then usually for 

each wavespeed c' in at least a small range (c 1 ,c2 ) about co there 

is a monotonic steady state solution ~(x,c') of (2.49) at c = c'. 

Furthermore, we will find that ~(-oo,c') = ~(-oo,c 0 ) = ~- and that 

~(+oo,c') = ~(+oo,c 0 ) = ~+· As a by-product of this analysis we will find 

that at any given wavespeed c there is at most one such solution of 

(2.49) (modulo translations in x). We will then summarize these results 

in a theorem. F i nally, we will quote and prove the mean wavespeed/ 

initial value results for this case. We now proceed. 

Let ~(x,c 0 ) be the monotonic steady state solution of (2.49) 

at c = c 0 with all of the properties assumed above. Then the phase 

plane of system (2.50) at c = c 0 must look like the phase plane sketched 

in figure (5) below. Since ~ = ~+' v = 0 is a saddle point at c = co, 

it is a saddle point at each value of c. Similarly, since ~ = ~-' v=O 
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is an unstable node at c = c 0 , it is an unstable node at each value of 

(accidental rate 

---+---4-::::: _...,. ___ 
v=O 

4>_ 

Figure (5) 

c < cmax' where c is 
max 

We now show that the existence of the monotonic steady state solu-

tion cj>{x,co) of (2.49) at c = co usually implies the existence of 

similar monotonic steady state solutions of (2.49) for all c < c suffi-
max 

ciently near c 0 . Since cj> = cj>+' v = 0 is a saddle point of system (2.50) 

for each c, at each c there is a solution a 
cj> = ~(x,c), v =ax ~(x,c) 

of system (2.50) such that ~(x , c) + cj>+ as x + + oo and such that ~(x,c) 

is increasing in x for all x sufficiently large. Moreover there can 

be only one such solution (modulo translations in x) since <P = <P+' v = 0 

is a saddle point. Thus, for each c < c there is at most one steady max 

state solution <j> (x, c) of (2.49) (modulo translations in x) which is 

monotone and which goes from cp(-oo,c) to cp (+oo, c) = cj>+. (Of course 

for c > c the point cj> = cj> , v = 0 is no longer an unstable node, max 

and so no such solutions can exist for c > c ) . 
max 
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By using the translational freedom in x for each c in the 

definition of 'l'(x,c), we can make 'l'(x,c) and - a v(x,c) = ax 'l'(x,c) both 

be continuously differentiable in c. (This is an implication of Chapter 

13 of reference [6] , for example) . Moreover, by further translation of 

'l'(x,c) we can in addition set 'l'(x,co) = ~(x,c 0 ). 

Let ~+ < ~+ be defined such that f 3 ( 0,0,~) < 0 for a ll ~ 

in [~+' ~+] • and let x+(c) be defined by 

'!'(x,c) > ¥+ for all x > x+(c) 

From the phase plane of system (2.50), one realizes that 

a 
V(x,c) = ax 'i'(x,c) > 0 for all X > X+(c) 

- -Let c 1 , c 2 with c 1 < c 0 < c2 be selected, and let x+ be defined by 

x+ = _ max_ {x+(c)} 
c1..::.c2c 2 

We have observed from the phase plane that 'l'(x,c) is monotone for x >x -+ 

when c is in Suppose a constant X with x <x - + is sel ected 

No matter how small x is , the uniform continuity of v(x,c) in c 

when x is restricted t o the interval [x_,x+J shows that for some c 1 
-

in [c1 ,c0 ) and some cL in (c 0 ,c2 ] the function v(x,c) > 0 for 

all x in [ x_,x-J when c is in (~ 1 ,c2 ). Hence, we now know that for 

any x (no matter how small) there is a and a c2 > co 

such that 'i' (x,c) is monotonic for all x > x when c is in 

Now x can be taken arbitrarily small, and so 'l'(x_ ,co) and 

v(x - ,co) can be made to be very near '¥(-oo,co) - H-oo, co) = ~ and 

v(-oo,co) = 0. Moreover, by restricting the interval <cl,c2) about co 

sufficiently, we can make 'l'(x ,c) and v(x ,c) very near 'l'(x_,c 0) and -
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v(x_,co) for all c in Cc1,c 2 ). Therefore, we need to examine the be-

havior of solutions of system (2.50) near the node at ¢ = ¢ , v 0. In 

particular, let ~(x,c) be any solution of (2.50) with and 

- < ) a -for which v x,c = ax ¢(x,c) is positive for all X sufficiently small. 

As in reference [6 ], solving the asymptotic equation 

0 (2.51) 

shows that for c < c either 
max 

t(x ,c) - ¢ + ae k1 (c)x 
as x-+-oo (usual asymptotic decay rate) or 

<Pcx,c) kl(c)x (2. 52) - ¢ + ae as x-+-oo (accidental asymptotic decay rate) 

for some positive constant a. Here, 

-(fz(O,O,¢ )+c)+ l(f2 (0,0,¢ )+c) 2- 4f 1 (0,0,¢_)f3 (0,0,¢_) 

2f 1 (0,0,¢_) 
(2.53) 

where 0 < k1(c) < kz(c). Similarly in the limiting case of c = c max 

either 

~(x,c) - ¢ 

<Pcx,c) - ¢ 

k 1 (c)x - axe as x-+-oo 

+ k 1 (c)x 
ae as x-+-oo 

(usual asymptotic decay rate) or 
(2.54) 

(accidental asymptotic decay rate) 

for some positive constant a. Let us note that at any c < c all 
max 

solutions ¢(x,c) of system (2.50) which are increasing in x for all x 

sufficiently small and which also decay to ¢ at the accidental rate as 

x + - oo are represented by a single phase plane trajectory. Thus all 

these solutions are translates of each o t her. 

Suppose now that ¢(x , c 0 ) (which is also '!'(x,c 0 )) decays to 

¢ at the usual rate as x + - oo. Define ~ > ¢_ such that f 3 (0,0,¢) >0 

fo r all ¢ in ( ¢_ ,¢_} By selecting X sufficiently small and selec-

::; -- uniform continuity ting cl < co and cz > cu suf f iciently n ear c o, the 

of '!'(x,c) in c for X in [x_,x+] lt'(x, c ) 
__, 

exactly shows that - ¢ at 
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one point x = x (c) We will now show that for all c<c , 
- max 

c sufficiently near co, the steady state solution ~(x,c) decays to 

monotonically for x < x (c) and decays to ~ at the usual rate as 

X ~ - oo 

Consider the phase plane of system (2.50) near ~ = ~-• v = 0 

at any value of c < cmax' as illustrated in figure (6) below. Let us 

v=O 

v ( c) 
a 

v 

r ~'(x,c) 

Figure (6): Phase plane of system (2.50) near~=~ , v=O at any c<c . If 
- - -max the phase plane trajectory of ~(x,c) intersects the ~=~ line at any posi-

tive point v below the crossing point v (c) of the trajectory of the acci
dentally decaying solution, then ~(x,c)a must decay monotonically to ~ at 
the usual rate as x~-oo. This is because the phase plane directors point 
downward on the v=O line between ~ and ~ and because the horizontal com
ponents of the phase plane directors on the ~=~ line are positive for 
v >O. 

examine thephase plane trajectories of all solutions of system (2.50) which 

decrease from ~ = f_ to ~ = ~ at the usual rate as x ~ - oo . We see 

that all these trajectories must cross the ~ = ~- line at a positive 

point v which is smaller than the point v = v (c) 
a 

at which the acci-

dental solution (i. e . the solution which decays to ~ = ~ at the acci-

dental rate as x + - oo ) crosses the ~ ~ line. Conversely, a s 
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illustrated in figure (6), any solution of system (2.50) which crosses the 

cp = ~ line at a positive point v < v (c) must decrease monotonically 
a 

from cp ~ to cp = cp a t the usual r a t e as X decreases to - 00 - -
Now we have already shown that whenever c is in (~l> C.2) then 

~(x,c) is monotonic for x > x _ (c) and ~(+oo, c) cp+ , where x_(c) 

has been defined as the point x at which 

~(x_(c),c) = ~ 

Thus to conclude that u(t,x) = ~(x,c 1 ) is a monotonic steady state 

solution of (2.49) at c = c 1 with ~(-oo,c 1 ) = cp_, with ~(+oo,c 1 ) = cp+ , 

and with ~(x , c 1 ) decaying to cp at the usual rate as x -+ - oo for any 

c 1 in (c 1 ,~ 2 ) (\ (-oo , cma), we now need only to show that 

a 
v (x- ( c I) , c I ) = ax 'JI (x, c I) I x=x ( c I ) < v a ( c I ) 

However, since ~(x,c 0 ) decays to cp at the usual rate, 

v(x_ ( c 0 ), c 0 ) < v (c 0 ) for c = c 0 a 

Moreover, v (x (c), c) and v (c) are continuous in c for c < c a max 

Thus for some c 1 in [ c1 ,c 0) and some c 2 i n (c 0 ,~2 ] , both suffi-

ciently near co, we can conclude that v(x (c 1 ),c 1
) < v (c') a 

for a l l 

c l in Cc 1 ,c2) n ( - 00 c ] 
' max 

as is needed . 

Thus, fo r some c l < co and some c2 > co we have now shown 

by a continuity argument that for each c i n (cl ,c2) (\ ( -oo C J 
' max ' 

there 

is a traveling wave solution u(t,x) = ~(x-ct,c) of the equation 

u 
t 

f(u ,u ,u) 
XX X 

which is monotone , which decays to cp 

(2 . 55) 

at the usual rate as x -+ - oo , 

a nd which has ~(+oo,c) = cp+. fUrthermore, we have shown t h at at each wave-

speed c there is at most one such solution (modulo translations in x). 

In Chapter v we will analyze this continuity a r gument further, and this 
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analysis will enable us to characterize the extremal wavespeeds c 1 and 

min{c2 ,c } in that chapter. We now summarize the results of this premax 

sent analysis in the following theorem. 

Theorem 2.7 (N ~ S): Suppose that u(t,x) = ~(x-c 0 t,c 0 ) is a bounded 

monotonic traveling wave (or steady state if c 0 = O) solution of 

u = f(u ,u ,u) 
t XX X 

(2.55) 

Suppose further that ~ = ~ (-oo,c 0 ) = ~ , v 0 is a node and ~ = ~(+oo,co) 

- ~ +' v 0 is a saddle point of the system 

cpx v 
(2.50) 

f(v ,v,~) + cv 0 
X 

at c = co. Finally suppose that ~(x,c0 ) decays to ~ at the usual 

rate as x ~ - oo Then there is a c 1 and a c 2 with 

- 00 

such that for each c 1 in (c c 2) f'l (-oo c ] there exists a 1 • I I • max Hx,c I) 

satisfying the following conditions: 

(1) ~(x,c 1 ), ~ (x,c 1
) 

X 
are continuously differentable in C I> 

(2) ~(x,c 1 ) is monotonic in x, 

(3) u(t,x) - cfl(x-c 1 t,c 1
) solves equation (2.55). 

(4) cfJ ( -oo • C I ) = cp and cp (+oo ,cl) ~+' and 

(5) ~(x,c 1 ) decays to cp at the usual asymptotic rate as X ~ - 00 . 
Also, if cp 1 (x,c 1

) and ~ 2 (x ,c
1 ) are any functions satisfying (2), (3), 

and (4) at some cl • then for all x and for 

some h at that c 1
• 

The above theorem states that if u(t,x) = ~(x-cot,c 0 ) is a mono-

tonic N ~ S type traveling wave solution of (2.55) which decays to 
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~(-oo,co) at the usual rate, then for at leas t a limited range of speeds 

c there is a similar monotonic N + S type traveling wave u(t,x) = 

~(x-ct,c) at each wavespeed c. It also shows that for any wave speed c 

these solutions are unique to within translations in x. 

In Chapter V we will find a characterization of the extremal 

wavespeeds c 1 and cz, and this characterization will lead to stronger 

results than those contained in the above theorem in some cases. For 

example, in Chapter V we will be able to show that if there are no con-

stant steady state solutions u(t,x) = ~ 0 of (2.55) between ~- and ~+ 

(i.e. if f(0,0,~ 0 ) if:. 0 for all ~ 0 with min{<P_,~+} < ~ 0 < max{~-'~+}), 

then c 1 That is, monotonic N + S type traveling wave solutions 

exist at all wavespeeds c < min{c 2 ,c }. 
- max 

In section (2. 2 ) we obtained stability results for monotonic 

waves in theorem (2.5). The above theorem, theorem 2.7 (N + S), shows 

that the stability results contained in theorem (2. 5) for tl1e N + S case 

are sharp whenever the monotonic wave u(t,x) = ~(x-cot,co) decays to 

~ at the usual rate as x + - oo . In particular, theorem (2.5) says tha t 

a bounded monotonic N + S type solution u(t,x) = ~(x,c 0 ) of (2.49) at 

c = c 0 is stable to small perturbations which are bounded as x + + oo 

and which decay asymptotically l ike ~ (x,c 0 ) 
X 

as X + - co, Suppose that 

~(x,c0 ) decays at the usual rate as x +- oo . Then theorem 2.7 (N + S) 

shows that for each c near c 0 there exists a monotonic solution u(t,x,c) 

= ¢ (x-(c-c 0)t,c) of 

ut = f(u ,u ,u) + c 0u 
XX X X 

Si nce for c -:F co the solutions Hx,c 0 ) and ~ (x-(c-co)t,c) drift apart 

as time increases, the solution u(t,x) = ~(x,cu) of 
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u = f(u ,u ,u) + coux 
t XX X 

is unstable to the initialperturbations p(x,c) given by 

u(O,x) = ~(x,c 0 ) + p(x,c) = ~(x,c 0 ) + [~(x,c) - ~(x,c 0 D 

for all c * c 0 • Since ~(x,c) is continuous in c, since 

"' ( ) ( ) k1 (c)x ~x x,c - a c e as x + - oo 

and since k1(c) is continuous in c for c < cmax' we see that the 

solution ~(x,c 0 ) of (2.49) at c = c 0 is not stable to all arbitrarily 

small perturbations whic h decay exponentially (as x + - oo ) at any 

slightly slower rate than ~ (x,c0 ) . 
X 

Thus the asymptotic decay restriction 

on the perturbations allowed by theorem (2.5) cannot be significantly re-

laxed. Hence theorem (2.5) is sharp fo r the N + S case whenever the 

asymptotic decay as x + - oo is at t .he usual rate. 

We now establish the mean wavespeed/initial condition result for 

this case . Consider equation (2.49) at c = 0. This is 

f(u ,u ,u) 
XX X 

(2.55) 

and is the given equation in terms of the original stationary coordinate 

system. Suppose for some co that u(t,x) = ~(x-c0 t,c 0 ) is a bounded 

monotonic solution of (2.55), that ~ = ~(-oo,c 0 ) = ~-' v = 0 is a nod e , 

that ~ = ~(+oo,c 0 ) = ~+' v = 0 is a saddle point, and that ~ (x,co) de -

cays to ~ at the usual rate as x + - oo We can now apply theorem 2.7 

(N + S), and we conclude that fo r each c in (c l,~2) there is a bounded 

monotonic solution u( t, x) = !j>(x- c t,c) · which h as !j>( +oo ' c) = !j>+ and which 

decays to ~ at the usua l rate as X +- 00 Here c 2 has been defined as 

cz - min{c 2 ,c } 
max 

Let us assume that ~(x,c 0 ) is increasing in x, s i n c e the 

analysis for !j> (x, c 0) decreasing is very similar. Now for each solution 



-61-

u(t,x) = ~(x-ct,c) lemma (2.3) yields corresponding upper and lower 

functions u(t,x-ct,c) and ~(t,x-ct,c). From equation (2.24) and (2.25) of 

lemma (2.3), these functions are 

u(t,x,c) - <P(x+h1+h(t,c),c) + q(t,c)·[<PCx+h 1+h(t,c),c) 

~(t,x,c) - ~(x-h2-h(t,c),c) q(t,c)·[~Cx-h2-h(t,c),c) 

where 

!j>J 
(2.60) 

~-] 

h(t,c) = q(O)·K(c)(1- e-s(c)t),q(t,c) = q(O)e-s(c)t . (2.61) 

Here q(O) > 0 is any sufficiently small constant, h 1 and h 2 are 

arbitrary, and K(c) and s(c) are set positive constants which may de-

pend on c. These upper and lower functions in conjunction with the 

maximum principle easily establish various mean wavespeed results. Fbr 

example, if for any c and c in (c1 ,c2) we have 

u(O,x,c) 2 u(O,x) ~ u(O,x,~) for all x 

where u and u are any of the upper and lower functions in (2.60), then 

the maximum principle implies that 

~(t,x-ct,c) 2 u(t,x) 2 u(t, x-~t.~) for all x all t > 0 

is also true, where u(t,x) is the solution of equation (2.55) with ini-

tial condition u(O,x). That is, if u(t,x) is any solution of (2.55) 

whose initial condition u(O,x) satisfies 

(2.62) 

< ~(x+h 1 ,~) + q(O)·~(x+h 1 ,c) - ~-J for all x 

for any c, ~ in (c 1 , c2), for any h 1 and h2, and for some sufficiently 

small q(O) > 0, then 

~ (x-ct-h2 ,c)- q(t, c)· ~(x-ct-h2 , c) - ~-J~ u(t,x) (2.63) 

< H x-:t+h 1 , ': ) + q(t,c) ·[~ (x-<:t+hp <: ) - ~-J 

for all x, all t > 0 
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Relation (2.63) implies that u(t,x) cannot travel with a mean wave -

speed larger than c nor with a mean wavespeed smaller than ~ · This 

is c lear from the illustra tion in figure (8) below. 

L 
X 

u= <j> 

u= <j> 
+ 

Figure (8): Since the functions bounding the shaded region move with 
speed £ a nd c, since q(t,c)~o and q(t,£)~0 as t++oo, and since u(t,x) re
mains in the shaded region for all t>O, u(t,x) cannot travel with a mean 
wavespeed c outside the interva l (~,c). 

We expand this observation into the following theorem. 

The orem 2 .8 (N ~ S): Suppose that u(t,x) = <j> (x-c0 t,co) is a bounded 

monotoni c solution of 

u 
t 

that <j> = ¢(-oo , c 0) - ¢ , v 

f(u ,u ,u) 
XX X 

0 is a node, that $ 

is a saddle point, and that <j> (x,c0 ) decays to ¢ 

(2.55) 

¢(+oo,c 0 ) = ¢+' v = 0 

at the usual rate as 

Define the positive e xponential dec ay constant A(c) by 

A(c) _ 
- (f 2 (0,0,<j>_)+c)- 1(£2 (0,0,¢_) 2 - 4f 1 (0,0,<j>_)f 3 (0,0, ¢ _) 

2f 1 (0,0,$_) 

for all c < c , and define c 1 and c 2 as in the previous theorem. 
max 



-63-

Furthermore, set 

Then if u(t,x) is any solution of (2.55) whose initial con-

clition u(O,x) is smooth and satisfies 

cp - q < + 0- u (O,x) ..::_ cp ,.+ qo for all X > Xo for any x 0 

cp < u(O,x) ..::_ <P++qo for all X - if ¢(x,c0 ) is increasing in x, (2 . 64) 

¢+-q 0 ..::_ u(O,x) < <P for all X if cp(x,c 0 ) is decreasing in x, -
then we can conclude the following: 

(1) if for any c in (c 1 ,~ 2 ) there is an a > 0 such that 

e-A.(c)x Ju(O,x)-cp I > a for all x < 0 

and if q 0 > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed larger than c; 

(2) if for any c in (c 1 ,~2 ) there is a S > 0 such that 

e - A.(c)x Ju(O,x)-<P_I < S for all x < 0 

and if q 0 > 0 is sufficient ly small, then u(t,x) cannot travel with 

mean wav e speed smaller than c . , 

(3) if for any c in (c 1 ,~2 ) there is an a > 0 and a 8 > 0 

such that 

a < e - A.(c)x ju(O , x)-<P_ I < S for all x < 0 

and if q 0 > 0 is sufficiently small, then u(t,x) travels with mean 

wavespeed c and has finite dispersion; and 

(4) if for any c in (c1,c2 ) 

lim e - (A.(c) - J.l)X 
ju(O,x)-cp I 0 and 

x-+-oo 
(2 . 65) 

l im e 
-( A. (c)+J.l)x 

Ju(O , x)-cp I + 00 
:x-+- 00 

hol d for all J.1 > 0, and if q 0 > 0 is sufficien t ly small, then u(t,x) 

travels with mean wavespeed c but may not have finite dispersion . 
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Roughly speaking, theorem 2.8 (N + S) supposes that u(O,x) 

is any smooth function which is in a region like the one shaded below. 

It then concludes that if u (O,x) decays to 

u=¢ 

x=xo 

the node cp exponentially as x + - oo, then the mean wa vespeed of the 

solution u(t,x) of (2.55) is determined only by the exponential decay 

constant. 

Proof: We prove the above theorem only for the case of ¢(x,c
0

) in-

creasing in x. The proof when ¢(x,c 0 ) is decreasing is similar. By 

our hypotheses we can apply theorem 2.7 (N + S). We thus know that for 

each c in (c 1•~2) there exists a bounded monotonic N + S type solu-

tion u(t,x) cp(x-ct,c) of (2.55). Moreover, cp(+oo,c) = ¢+ and 

cp(x,c) decays to cp at the usual rate as x + - oo Finally, for each 

of these monotonic traveling waves there are corresponding upper and lower 

functions u(t,x-ct,c) and ~(t,x-ct,c) given by 

u(t,x,c) - ¢(x+h 1+h(t,c),c) + q(t,c)·@(x+h 1+h(t,c),c)-¢_J 

~(t,x,c) - ¢(x-h2-h(t,c),c) - q(t,c)·~(x-h2-h(t,c),c)-¢_] 

where 

-s(c)t. -s(c)t h(t,c) = q(O)·K( c )(l - e ),q(t,c) = q(O)e 

(2.60) 

(2.61) 

To prove part (1), we note that when (2.64) and the assumptions 

of par t (1) are satisfied, then we can bound u(O,x) by 
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cj>(x-h 2 ,c) - q(O)-[cj>(x-h2 ,c)-ct>_J .::_ u(O,x) .::_ cj>++q(O){ct>+-ct>J for all x 

(2.66) 
for any q(O) > q 0 (ct>+-ct>_J-

1 
by taking h 2 sufficiently large. We note 

that since cj>+ is a saddle point, f(O,O,cj>+) = 0 and f 3 (0,0,cj>+) < 0. 

Thus, if we define n = ~ f 3 (0,0,cj>+) < 0 and 

u(t,x) = cp+ + q(O){ct>+-ct>_Jent 

then for q(O) > 0 sufficiently small 

u - f(u ,;:; ,;:;) 
t XX X 

[ 
nt 

f(O,O,q(O)· cp+-<J>_]e ) 

> 0 for all t > 0 

Hence, u is an upper function for q(O) > 0 sufficiently small. Thus, 

(2.66) bounds the initial condition u(O,x) by the lower function 

~(O,x,c) (see equation (2.60)) and the newly defined upper function 

u(O,x). Using the maximum principle, we conclude 

cj>(x-ct-h2-q(O)K(c),c) - q(t,c)·~+- ct>_J .::_ u(t,x) (2. 6 7) 

< cp++ q(O)·[ct>+-<t>_Jent for all x and all t _::: 0, 

where q(t,c) is given in (2.61), when q(O) > 0 is sufficiently small. 

Since q(O) can be any constant larger than it can be 

taken arbitrarily small by taking q 0 > 0 arbitrarily small. Thus, for 

q 0 sufficiently small relation (2.67) holds. This is illustrated in 

figure (9) below, where we see that u(t,x) cannot travel with mean 

wavespeed faster than c. 

Part (2) is proved in a manner very similar to part (1). In 

fact we find that 

cp_ .::_ u(t,x) .::_ <j>(x-ct+h1+q(O)K(c),c) + q(t,c){cp+-<1>_] for all x and all t_:::O, 

which is illustrated in figure (10). We conclude for this case that 

u(t,x) cannot travel with mean wavespeed slower than c. 



u=<jl 

Figure (9): 

L 
X 

u=¢ 
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Since q(O)·[<P - <P_ ]ent+O and q(t,c)+O as t ++oo, the fact that 
u(t,x) remaits in the shaded area for all t~O implies it 
cannot travel with mean wavespeed faster than c. 

c 

Figure (10): Since q(t,c)+O as t++oo and since u(t,x) remains in the 
shaded region for all t~O, u(t,x) cannot travel with wave
speed slower than c. 

To prove part (3), we note that when u(O,x) satisfies (2.64) 

and the assumptions of part (3), then we can bound u(O,x) by 

for all x (2.68) 

for any by taking h1 and h 2 sufficiently large. 

~or q(O) > 0 sufficiently small, relation (2.68) bounds the initial 
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condition u(O,x) by the lower and upper functions ~(O,x,c) and u(O,x,c) 

(see equation (2.60)). Using the maximum principle and the expressions for 

~(t,x,c) and u(t,x,c), we find that 

~(x-ct-h2-q(O)K(c),c) - q(t,c)·~+-~-J ~ u(t,x) 

< ~(x-ct+h 1+q(O)K(c) ,c) + q(t,c){~+-~-] 

for all x and all t > 0 (2.69) 

This is illustrated in figure (11). ~e conclude that u(t,x) travels 

with mean wavespeed c and has finite dispersion. The phrase "has finite 

dispersion" is used here and in the statement of the theorem to mean 

precisely that the distance between the lower and upper functions which 

bound u(t,x) in (2.69) is limited to no more than 2q(O)K(c) + h 1+h2 , 

which is finite. This is in contrast to part (4), where we are only able 

to show that the distance between these functions grows no faster than 

o(t). 

( ~ (x-ct+h 1-t-q (0) K (c), c)+q (t, c )(~+-~ _J 

X 

u=~ 

\_ ~ (x-ct-hrq (O) K (c), c) -q (t, c){~+-~_) 

Figure (11): Since q(t,c)~O as t+oo, and since u(t,x) must remain in the 
shaded region for all t~O, u(t,x) must travel with mean 
wavesp ,: ed c. Furthermore, the distance between these two 
bounding curves is constant. 



-68-

We will delay the proof of part (4) until Chapter V. There 

it is shown that when u(O, x ) satisfies (2.64) and the assumptions of 

part (4), then u(t,x) can be bounded by curves which move with asymptotic 

speed c. Specifically, the midpoints of the leading and trailing bounding 

c urves are given by x = ct+O(t) and x ct-O(t), as illustrated in 

figure (12). Thus, the c urves move with asymptotic s~eed c but the 

distance between them grows in time as o(t). We therefore cannot con-

elude "finite dispersion" as in part (3). 

L 
X 

I 
I 
I 
I 
I u=<j> 
I 
I 

x=ct-o(t) x =ct+o(t) 

Figure (12): Since the leading and trailing curves move with asymptotic 
speed c , u(t, x) must also move with mean speed c since it 
r emains i n the shaded area for a ll t >O. However, the 
separation between the curves increases like o(t) as t in
creases, and so finite dispersion has not been shown. 

The establishment of theorem 2.8 (N ~ S) completes this pre-

sentation of the N ~ S case. We now continue to the other cases . 

Case III: S ~ N. Suppose that u(t,x) - <j>(x,c 0) is a bounded monotonic 

steady state solution of 

u f(u ,u ,u) + c 0u 
t XX X X 



-69-

and suppose that ~ ~(-oo,c 0 ), v = 0 is a saddle point and ~ 

v 0 is a node of 

<j> x v 

f(v ,v,~) + cv 0 
X 

This case is materially the same as the N + S case already treated. 

In fact by substituting - x for x we can reduce the S + N case to 

the N + S case . Therefore, we will continue on to the N + N case . 

Case IV: N + N. We now treat the final case. Suppose u(t,x) - ~(x,c0 ) 

is a bounded monotonic steady state solution of 

f(u ,u ,u) + cu 
XX X X 

at c = c 0 , and suppose ~ = <j>(-oo,c 0) = ~ , v 

<j>+, v 0 are both nodes of 

~ v 
X 

f(v ,v,<j>) + cv 0 
X 

(2. 71) 

0 and <j> <I> (+oo, co) = 

(2. 72) 

at c = c 0 . We also assume (without loss) that ~(x,c 0 ) is increasing. 

Then the phase-plane looks like the illustration in figure (13) below. 

Figure (13) 
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Consider the solutions ~ = ~(x,c0 ,vo), v v(x,co,vo) of 

system (2.72) defined by the initial condit i ons 

for any fixed finite x 0 . Since solutions of differential equations are 

continuous relative to initial conditions (see e . g . reference [6]), for 

any xl we can make 

as small as we wish by taking v 0 sufficiently near Since 

we can take x 1 as large or as small as we like, the attractive nature 

of the node at ~ = ~-' v = 0 (as x + - oo) and of the node at ~ = ~+' 

V = 0 (as X + + 00) guarantees that 

~(x ,c 0 ,v0 ) + 4: as X + - 00 

~ (x, c 0 , v 0) + ~+ as X ++ 00 

for vo in [v _,v+J for some v < ~ (xo,co) 
X 

< v+. Further, there is a 

v , "+ (v < - ~ (xo,co) 2. v+) such that ~(x,c 0 ,v 0 ) 
X 

is monotone (as well 

as having ~ ( - 00' c 0 , v 0) ~ and ~(+oo,co,vo) = ~ ) 
+ 

for all vo in 

(v - , "+]· 
This result is clear from the phase plane considerations illus-

trated in figure (14) below. In particular for any ~ > ~ near enough 

to ~-' the phase plane direc t o rs point down for all ~ in (~_.~_]· 

Also the horizontal components of the directors point in the positive 

direction whenever v > 0 . This means that any solution ~(x,co,vo) 

which crosses the ~ = ~ line at a positive point v which is no larger 

than the crossing point v of the accidental solution (i.e . the solution 

of (2.72 ) which decays to ~ at the a ccidental rate as x + - oo) , then 



-71-

iji(x,c 0 ,v0) must decrease monotonically to cp as x decreases to - 00 

Similarly, there is a (ji+ < ¢+ such that if iji (x,c0 ,v0) crosses the 

¢ = (ji line at a positive point v under the accidental solution (i .e. 

the solution of (2.72) which decays to ¢+ at the accidental rate as 

x ~ + oo), then (ji(x0 ,c 0 ,v0 ) must increase monotonically to ¢+ as x 

increases to + 00 • Since v(x, c 0 ,v0 ) can be made arbitrarily near to 

over any finite interval by taking v 0 near to 

(ji (x,c 0 ,v0 ) must be monotonic for at least a limited range of v 0 about 

¢ (x0 ,co). This is illustrated in figure (14) . 
X 

...c--- accidental 
~----- solutions 

L 
v=O 

Figure (14) 

From the phase plane we can find t he extremal monotonic solu-

tions of (2.72) at c = c 0 . From figure (14) we see that the largest vo 

for which (ji(x,c 0 ,v0) is a monotonic solution is the least value v 0=v2 

for which (ji(x,c 0 ,v2) decays at the accidental rate as either x ~ - oo 

or x ~ + oo. If v 0 is slightly l a r ger , then (ji (x,c 0 , v 0) is non-
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monotonic. Similarly, as vo decreases ~(x,co,vo) remains a monotonic 

solution until the value of vo (which we define to be v 1 ) for which the 

phase plane trajectory of ~(x,c 0 ,vl) intersects the v 0 curve be-

tween ~ = ~ and ~ = ~+' Since v(x,co,vl) ~ 0 for all X and since 

v(x,cJ,vl) = 0 when ~(x,c 0 ,v 1 ) = ~O for some ~o E (~-'~+)' ~ = ~ 0 , 

v = 0 must be a singular point. From the illustration in figure (15), 

we see that ~ ~ 0 , v = 0 is a saddle point (or may be a coalescence of 

multiple singular points as an accidental case). Thus, when v 0 has 

decreased to v 1 , ~(x,c 0 ,v0 ) has bifurcated from a monotonic solution 

with ~(-oo ,c 0 ,vo) = ~- and ~(+oo,c 0 ,v0 ) = ~+ into at least two distinct 

monotonic solutions. Usually as v 0 decreases to v 1 , ~(x,c 0 ,v0 ) be-

comes two monotonic solutions ~ 1 (x,c 0 ) and ~ 2 (x,c 0 ) with ~ 1 (-oo,co) = ~ , 

v = 0 being a saddle point. Thus the monotonic N ~ N type solution 

almost always has a N ~ S and a S ~ N type solution as the limiting 

case, as is illustrated in figure (15). 

v=O 

~ = ~0 ~+ 

Figure (15) 
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The other possibilities are ~ 0 being the coalescence of multiple sin-

gular points or the possibility of the limiting case being more than two 

separate solutions. This latter accidental case is illustrated in figure 

(16). As illustrated, the intermediate singular points are saddle points 

or coal esced singular points. 

v=O 

~+ 

Figure (16) 

Thus in brief, if ~(x ,c 0 ) is a monotonic N ~ N type solu-

tion of (2.72) at c = c 0 , then there is a continuously differentiable 

family of solutions. One limiting member of this family is a solution 

which decays at the accidental rate as x ~ - oo or x ~ + oo The other 

limiting member is at least two separate monotone solutions which are 

usually a N ~ S and S ~ N pair of waves. 

We now consider solutions at wave velocities c = cl near co· 

Similar to the N ~ S case, continuity a rguments can be used to show 

that a monotone solution ~(x,c 1 ) exists with ~(-oo,c 1 ) = ~ a nd 

~(+oo,c 1 ) = ~+· Since one monotone solution at c = c 1 exists, the pre

v ious arguments show that a family of solutions exists at c = c 1 . One 

limiting member of this family for c = c 1 decays at the accid ental rate 
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as x + - oo or x + + oo, and the other limiting member is at l eas t two 

distinct solutions. 

This characterization of the solution family at fixed values 

of c de termine s the l a rgest and smallest values of c f or which mono-

t one solutions ~(x,c) (with ~ (-oo ,c) = ~ and ~ (+oo,c) = ~ ) + 
exist. 

As c increases or dec reases from c 0 , n1onotone solutions continue t o 

exist until e ither (1) an accidentally decayin g solution from ~ = ~ , 

v 0 or ~ = ~+' v = 0 intersects the v = 0 axis at a singular point 

0 for some ~ 0 in ( ~-' ~+), or (2) ~ = ~ v = 0 or 

~+' v 0 changes from a node to a spiral point. 

We summarize this discussion in the next theorem. 

Theorem 2.7 (N + N): Suppose u(t,x) - ~ (x,c 0 ) is a bounded monotonic 

steady state solution of 

f(u ,u ,u) + cu 
XX X X 

at c = c 0 , and also s uppose that ~ 

~ = ~(+oo,c 0 ) = ~+' v = 0 are both nodes of 

~X v 

f(v ,v,~) + cv 0 
X 

(2.71) 

0 and 

(2.72) 

at c = c 0 . Then there is an interval (c 1 ,c2) such that for each c 

in ( c 1 ,c2) there exists a continuously differentiable (in c and a ) 

family of monotonic solutions u(t,x) = ~(x,c,a) ,0 <a < 1 of (2.71). 

For 0 < a~ 1, ~(-oo,c,a) = ~ and ~(+oo,c,a) = ~+ for c in (cl,cz ). 

Moreover, for ~ (x,c 0 ) increasing (decreasing) the phase plane trajec-

tories of ~ (x,c,a) are increasing (decreasing) in a. At a = 1, 

~(x,c,1) decays at the accidental rate as either x + - oo or x + + oo 

At a = 0, the phase plane trajectory corresponds to at least two 
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distinct solutions. Finally, the limiting values c 1 and c 2 of c are 

either 

c 
min - 2/£1(0,0,~+)f 3 (0,0,~+) - fL(O,O,$+) 

c -max - 21f1(0,0,$_ ) f3(0,0, $_)- f2(0,0,$_) 

o r (when they exist) the points c 1 e ( c . , c 0 ) and c 2 E. ( c 0 , c ) 
m1n max 

nearest 

to co for which t h e trajectory of an accidentally decaying solution from 

$ = $ , v 0 or $ ~+' v = 0 intersects the v = 0 line at a singu-

lar point ~ = ~ 0 , v 

This theorem shows the sharpness of the stability results ob-

tained in theorem (2.5) of sect ion (2.2) for the N + N case. For example, 

suppose that $(x,c0 ) is a monotonic N + N type steady state solution 

of (2 . 71) at c = c 0 which decays at, say, the accidental rate as x + - oo 

and at the usual rate as x + + 00 • From the above theorem, we know that 

there are sol utions $(x,c) (continuous in c) which decay to $(-oo,c0 ) 

at the accidental rate as x +- oo and decay to $(+oo,co) at the usual 

rate as x + + oo for an interval of speeds c including c 0 • Now 

theorem (2.5) says that u(t,x) - $(x,c0) is stable to perturbations which 

decay like $ (x,c 0 ) 
X 

as x + - 00 and x + + oo, As in the N + S case, 

if the class of perturbations is enlarged to include those which decay at 

slightly slower exponential rates as X+ 

condition 

+ oo - , then the perturbed initial 

would be allowed for c 1 near enough c 0 • Sinc e the resulting solution of 

( 2 . 71) at c = c 0 is u(t,x) = $(x-(c 1-c 0 )t,c 1 ), $(x,c0 ) is unstable to 

this perturbation. Thus the a symptotic decay conditions on the allowed 
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perturbations cannot be significantly weakened in theorem (2.5) for this 

case. Similarly, theorem (2.5) is sharp for the case of ~(x,c 0 ) decaying 

at the usual rate as x + - oo and at the accidental rate as x + + oo and 

for the case of ~(x,co) decaying at the usual rates as x + - oo and as 

x++ 

We now introduce the mean wavespeed/initial condition results 

for this case. Since this result contains no essentially new ideas, we 

simply quote it. 

Theorem 2.8 (N + N): Suppose that u(t,x) ~(x-cat,c 0 ) is a bounded 

monotonic solution of 

u 
t 

f(u ,u ,u) 
XX X 

and that ~ = ~(-oo,c 0 ) - ~ v = 0 and ~ 

nodes of the system 

at c = c 0 • 

~X 

f(v ,v,~) + cv 
X 

v 

0 

Define the exponential rate constants + >--(c) and A (c) 

(2.73) 

0 are both 

by 

- (f 2 (0,0,~ )+c) - l(f 2 (0,0,~_)+c) 2 - 4f 1 (0,0,~_) f3(0,0,~ ) 

2f1(0,0,~) 

- (f2 (0,0,~+)+c) + l(f2(0,0,~+)+c) 2 - 4£1(0,0,~+) fj(O,O,~+) 

2fl (0,0,~+) 

for all c in [c . ,c ] , and define c 1 and c2 as in the previous 
m~n max 

theorem. 

Suppose that u(t,x) is any solution of (2.73) whose initial 

condition u(O,x) is smooth and s a tisfies 

min{~-'~t} < u(O,x) <max{~-'~+} for all x 
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Then: 

(1) if for any c in (cl,c2) there is an a> 0 and a a > 0 

s uch that 
-

(c)x - A 
lu(O , x)-<1> I for all 0 and a < e X < 

+ 
a > -A (c)x 

lu(O,x)-<t>+l for all X > 0 e 

then u(t,x) cannot travel with mean wavespeed larger than c; 

(2) if for any C in (c l, c L) there is an a> 0 and a S > 0 

such that 

then 

a > e - A-(c)x lu(O,x)-<1>_1 for all x < 0 and 
+ 

a < e- A (c)x lu(O,x)-<t>+l for all X > 0 

u(t, x) cannot travel with mean wavespeed smaller than c· , 

(3) if for any c in (c 1 ,c2) there are posit ive constants 

a ,S,y,o such that 
-

(c)x - A 
lu(O,x)-<t>_J (3 for all 0 a < e < X < 

+ 
y < 

-A (c)x 
Ju(O,x) - <J>+ I < 0 for all X > 0 e 

then u ( t, x) travels with mean wavespeed c and has finite dispersion; 

and 

(4) if for any c in (cl,c2) we have 
-

-(A -(A 
-

(c)+\l)X lim e (c) - )l)x 
lu(O,x) - <j> I = 0 lim e ju (O,x)-<t>_J +co 

x-+-co x-+-co 
+ + 

lim -(A (c)-)l)x 
Ju(O,x)-<J>+ I + co lim -(A (c)+)l)X 

lu (O,x)-<J>) = 0 e e 
x++oo x-++oo 

fo r all \1 > 0, then u(t,x) travels with meanwavespeed c (but may not 

have finite dispersion). 

to <1> 

Roughly speaking, the above theorem shows that if u(O,x) decays 
+ 

like aeA (c)x and to <j>+ like SeA (c)x for some c in (cl,c 2), 
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then u(t,x) must propagate with mean wavespeed c. One naturally won-

ders how solutions of (2.73) behave when 

1..-(c )x 
ae - as x ~ - oo and to A- like 'I'+ 

u(O,x) decays to <j> like 
+ 

SeA (c+)x as x ~ + oo but 

c ~ c+. This question is easily answered when c 1 < c < c+ < c 2 • We 

will show that in the general case u(t,x) will evolve into a N ~ S 

type traveling wave of speed c (which goes from <j> at x oo to <Po 

at x = + oo) and into a S ~ N type traveling wave of speed c+ (which 

goes from <f>o at X=- oo to <j>+ at X=+ 00). 

We consider only the con~on case where the phase plane trajec-

tories corresponding to ~(x,c ,a) and ~(x,c+,a) at a = 0 both inter-

sect the v 0 line at the single saddle point <j> = ¢0 , v = 0 with 

<!>_ < <Po < <j>+. This is illustrated in figure (15). Consider the solutions 

<j>(x,c ) - ~(x,c ,a ) 

for any fixed a and a+ in (0,1). Let be the monotonic 

N ~ S type solution at c = c with 

Also let <j>~N(x,c_) be the monotonic S ~ N type solution at c = c with 

Note that the phase plane trajectories of <!>~ 8 (x,c_) and <!>~8 (x,c_) corres-

pond to the limiting trajectory of ~(x,c ,a) at a = 0. Similarly let 

+ and <j>SN(x,c+) be the monotonic N ~ S and S ~ N type solu-

tions at c = c+ with 

+ 
<j>NS(-oo,c+) <P 

+ 
<j>NS(+oo,c+) <Po 

+ <P~N(+oo,c+) = <P <PsN(-oo,c+) <Po + 

Now suppose that u(t,x) is any solution of (2.73) whose initial condition 
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u(O,x) is smooth and satisfies 

<P < u(O,x) < <P + 
for all X 

-
)x ->.. (c 

ju(O,x) - <P I for all 0 al < e - < a2 X < 
+ 

81 
- >.. (c+)x 

lu(O,x)-<P+I < 82 for all X > 0 < e 

for some constan ts 0 < a 1 < a 2 and 0 < 8 1 < 82 · By selecting h 1 , h2, 

h3, and h4 sufficiently large, we can guarantee that 

<P~8 (x-hl,c_) .2_ u(O,x) .2_ cp;N(x+h4 , c+) and 

<P(x- h 2 ,c+) .2_ u(O,x) .2_ <j>(x+h3,c_) 

hold for all x. Thus the maximum principle implies that for all t > 0 

the solution u(t,x) must satisfy 

<P~8 (x-c_t-h 1 ,c_) .2_ u(t,x) .2_ <P;N(x- c+ t+h4 ,c+ ) and 

cj>(x- c+t- h 2 ,c+) ~ u(t,x) .2_ <j>(x- c _ t+h3,c_ ) 
(2 . 74) 

for all x. The bounds of (2.74) on u( t ,x) are ill ustrated in figure 

(17) below for t quite large. The impli cation of the maximum principle 

is that u(t,x) must remain in the shaded area for all t > 0 . Clearly 

the solution u( t ,x) h as evolved into t wo stacked waves as claimed. 

L 
X 

Figure (1 7) 



-80-

This completes this presentation of the mean wavespeed/initial 

condition results. As a brief summary, we found in the S ~ S case that 

there is a single traveling wave u(t,x) = ~(x-c 0 t) at a single fixed wave

speed c 0 , in the N ~ S and S ~ N cases that at each speed c in a 

range of wavespeeds there is a single traveling wave u(t,x) = ~(x-ct,c), 

and in the N ~ N case at each speed c in a range of wavespeeds there is 

a family of solutions u(t,x) ¢(x-ct,c,a). For each of these cases, the 

mean wavespeed of a solution u(t,x) is determined mainly by the asympto

tic decay rate of u(O,x) as x ~ - oo (if ~(-oo) is a node) and as 

x ~ + oo (if ~(+oo) is a node). 

This finishes this presentation of our basic results. In the 

next chapter we will develop the mathematical tools and assumptions need

ed to rigorously establish these and other results in subsequent chapters. 
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Chapter III 

~~THEMATICAL PRELIMINARIES 

In this chapter we develop the mathematical tools needed to 

rigorously prove the results in subsequent chapters. In this chapter, we 

will work with a class of equations general enough to contain (as special 

cases) al l sets of equations we will consider later. This c lass will in-

elude parabolic systems of equations which contain multiple dependent 

variables, multiple independent variables, and even some integral terms. 

Specifically, in section (3.1) we introduce some notation we will 

use to simplify our exposition. In section (3.2) we will modify the equa-

tions to prevent infinities from a rising and discuss the physical conse-

quences of this modification. Section (3.3) is devoted to developing the 

necessary preliminary mathematical results. Specifically, these are the 

maximum principle, the uniformity lemma, and the asymptot ic state theorem. 

In the last section, (3.4), we collect the set of hypotheses we will use 

in deriving our results. These hypotheses are of three types: smoothness 

conditions on the equations, parabolicity requirements for the equations, 

and existence assumptions for solutions of the initial value problem. In 

section (3 .4) we will also briefly discuss how the hypotheses of the sec-

tion fit together with the mathematical theorems of section (3.3). 

3 .1 Notation. In this short section we introduce some notation which will 

simplify our exposition . In this chapter we will work with equations which 

we can write as 

u(k) Jk) (u~~) ,u~k) ,u, 1T J G (q) (s, ;,u(t-s,~-;))d;ds) 
t 

1
] 

1 0 IIYII <y 

k 1, 2, ... , \) ' (3.1) 
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and in subsequent chapters we will work with special cases of this system 

of equations . Here , denotes a vector of dependent variabl es such as 

U-::: (u(l),u( 2 ),u(3 ), • • • u(v)), - + denotes a vector of independent variables 

+ 
such as x = (x1 ,x2 , . . . ,x ) , Y and T are finite positive constants , and 

n 

the dimensions v and n are fixed positive integers. We use the nota-

t ion that 

lj>~k) 
1 

ap(k) = a2p 
- ax . ' ~ij - ~a-x~.-ax-.-. 

1 1 J 
etc. 

Also, whenever dummy indices are u sed in a function argument ( l ike ij, i, 

and q b u t not k in equation (3 . 1)), we mean that the function depends 

on the subscript ed variable with all possibl e indices . For example, equa-

tion (3 . 1) can be written in full as 

(k) (k) (k) (k) (k) (k) (k) (k) (k) 
ut F ( u ll ,u12 , ... , u 1 ,u21 , . . . ,u , u 1 , ... ,u , etc. ) . 

n nn n 

Besides t he above n otation, for the deri vat ives of 

(k) (k) (k) - 1T 1 (q) + + + + F (u .. ,u. ,u, G (s,y,u(t- s,x-y))dyds) 
1

J 
1 

. 0 II y- II <Y 

and of 

(q) + + + + 
G (s,y,u(t- s , x-y))dyds) 

we will use the fol l owing expressions: 

F(k) a F(k) F(k) aF(k) F(k) aF(k) 
-

au(k) ' - (k) ' - au(m) lmn 2m au 
· 3m 

mn m 

F(k) a F(k) 
-

a[]oT ~ IY"I I <Y 

(m) + + + + 3 4m G (s,y,u(t- s,x-y))dyds 

G 
(q) a c(q) 

3m -
au(m) 

For brevity, we will of t en use no t ation like 

F(k)(r u] )::: F(k)(u~~) ,u~k) ,u, ( T j ->- G(q)(s,y,u(t-s,~-y))dyds) 
L.: 1J 1 J o II Y II <Y 
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for functions like F(k) when their arguments are obvious. This is most 

of the notation we will use. The rest of the notation will be introduced 

as needed, and we now continue on to the modification of the given equa-

tions, equations (3.1). 

3.2 Modification of the original eguations. Basically, in this section 

we modify the given equations (3.1) so that infinities in 
(k) (k) 

u , u. , and 
1. 

(k) 
u.. c a n neve r develop as time progresses. We will first discuss the 

l.J 

reasons for modifying the equations and the mathematical effects of the 

modification. We then present the actual modification of the equations. 

It may be possible that, for solutions 
+ 

u(t,x) of equations 

(3.1), inf inities in 
(k) (k) (k) 

u , u. , or u .. 
1. l.J 

may arise even for very nice 

initial conditions. For our purposes, infinities in the u 
(k) 

are of no 

concern. For example, the stability of a steady state 
+ 

q>(x) to the per-

turba tion u(O,~) - q>(~) is decided long before one of the u(k) becomes 

(k) 
i nfinite. However, the possibility that the u remain finite and some 

(k) (k) 
of the u. or u.. may become infinite for some equations, presents us 

1. l.J 

with mathematical problems. The first of these problems is how to continue 

+ 
the solution u(t,x) to times after the infinity occurs. The second is 

that all our deriva tions will require the maximum principle , and to prove 

the maximum principle we must require that for any To > 0, Fi~j<[u]), 

F~~) <[u}, F~~){u]), F~~)<[uJ), and G~i)(s,y,u(t-s,~-y)) are bounded f or 

a ll x, a ll t E ~, T J , all y with II; II < Y, and all s E ~, ~ · 

The last problem is that in deriving our instability results , we will need 

+ 
t he result that if a solution u(t,x) of (3.1) increases (decreases ) to a 

+ + 
bounded f unc tion q> (x) as t + oo , then q> (x) is a steady state solu t ion 

of (3.1). 
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These three problems are strictly mathematical in origin. 

Physically, dependent variables and their derivatives attain absolute in-

finity only in rare circumstances, and so physical continuation is assured. 

Also, physically the derivatives of F (k) and G(q) should be bounded, 

since almost all physical systems will eventually reach saturation levels 

as Iii I , I u
1
. I, and I u .. I are increased. The last problem is also mathe-

1J 

matical in origin, since one expects that the only time-independent states 

which physical systems can evolve into are steady states. Thus, if for 

some reasonable initial conditions some equations of the form (3.1) have 

solutions u, u., and iii. which develop infinities, then the mathemati-
1 J 

cal formulation is inadequate. In this regard, note that long before an 

infinity is reached, other terms (representing e xcluded physical effects) 

should be included in any equation modeling a physical system. 

The most satisfactory way to resolve these problems would be by 

proving for all equations of interest (of the form (3.1)), that u, ii. , 
1 

and u.. are bounded uniformly for all time when ii has reasonable ini-
1J 

tial conditions. This would immediately eliminate the first and (with 

smooth func tions F(k)) second problems. The steady state result needed 

to r e solve the last problem is also an easy consequence of the uniform 

boundedness of u. and u . . . An al ternative way of resolving these mathe-
1 1J 

matical problems is to assume the needed boundedness results for the equa-

tions of interest. I.e., we could assume that when ii is bounded uniform-

ly in time, then ii. and ii . . are also - at least when reasonable initial 
1 1J 

conditions are used. This assumption is sufficient for our needs. It is 

not an unreasonable assumption since when 

ments of F(k), a ll k, 
-+ -+ 

and all £; t- 0 

~ (k) C" C" 
£. F1 · . " i ..,. 
ij 1J J 

(which we will 

> 0 for all argu-

assume later), the n 
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the equations have positive diffusion which tends to smooth out the solu-

tions . 

We will not use either of the above alternatives. Instead we will 

use the technical device of modifying the or igi nal equations. The modi-

fi e d equations depend on an arbitrary fixed positive constant M and 

can b e written as 

(k) 
u 

t ' k= 1' .. . ' v ' 

( 3 . 2) 

where F(k) and G(q) are modified functions similar to F(k) and G(q). 
~1 M 

These equat i ons are modified so that 

(1) the modified equations are i dentical to the original when

ever iu(k)l < M,lu~k) I < M and lu1(~) I < M for all i,j , k for any pre-
~ J 

chosen arbitrarily l arge constant M > 0 , 

(2) for some M(M) > M, whenever lu (k)l > f{, l u~k) I > M or ' l. 

lu~~) I > M for any i 'j , then equation k becomes a heat equation with 
~J 

constant coefic ients: 

(k) - ~ (k) 
ut - a i uii 0 < a < oo 

(3) the transi t ions from the original equations to the heat 

equations are smooth a n d all useful properties of t he original equations 

are retained . These properties are: 

(3a) All the modified functions and retain all the smooth-

ness properties of the original functions and for all k,q 

and any M > 0; 

(3b) If originally L F(~~ E;. E; . > 0 for all a rguments and all ! t 0, 
ij l~J ~ J 

then the modif i ed equat ions have the same property for any H > 0; 

(3c ) 
(k) 

If originally F 
3 

II- > 0 (.:5._ 0) for a ll arguments, t hen the modified 
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equations have the same property for any M > 0; 

(3d) If originally F(~) > 0 ( < 0) 
41 - -

for all arguments, then the same 

is true for the modified equations for any M > 0; and 

(3e) If G~~) ..::_ 0 ( 2_ 0) for all arguments, then the same is true for the 

modified equations for any M > 0. 

The modification of the equations to the heat equation is cer-

tainly somewhat artificial and arbitrary. However, all subsequent results 

will hold for all M sufficiently large. As M approaches infinity, the 

modified system becomes a very good approximation to the original system 

of equations. Note that for all solutions 
-+ 

u(t,x) of the original system 

of equations which have u, u., and u .. bounded for all t > 0 and all 
1 1.] 

+ 
x, the modification is irrelevant. Thus all our results about the modi-

fied equations will be directly applicable to these solutions. Moreover, 

our results about the modified equations are directly applicable to all 

+ 
solutions u(t,x) of the orig inal system of equations for all t until 

becomes unbounded. Thus, modification of the equations is 

a superior alternative to proving bounds on u, u., and u .. 
1 1J 

in the limit-

ed sense that whenever bounds can be proven for solutions of the original 

equations, the modified equations reduce to these equations for M suffi-

ciently l arge . 

We now place mild smoothn ess conditions on the original equations 

(k) 
u 

t 
F(k)(u~~) ,u(k) ,u,J:T { G(q)(s,;,u(t-s ,~-y))dyds) k=1, ... , v 

1 J 1 0 ) I I ; I I <Y (3. 1) 

Spec i fi.cally, we now assume that 

II ; II .2_Y, 
H1: For all q, all j = 1 , ... , v , all s E ~, ~ , and all 

G(q) exists and is continuous in all arguments; and 
3j 
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H2: For all i,j,k, and~. F~~; , F~~), F;~), and F~~) exist 

and are continuous in all arguments. 

Without losing t he important properties (3a)-(3e) (when they occur in the 

original equation) , the modified equations also have the properties: 

(4) for any continuous function ~ and any continuous and 

bounded func t ion ~. 

!aT ~ () -+ -+-+-+ 
-+ G: (s,y,~(t-s,x-y))dyds 

0 IIYII <Y 
and 

fT ~ (q) -+ -+ -+ -+ -+ -+ 
-+ G .(s,y,~(t-s,x-y)) • ~(t-s,x-y)dyds 

0 I I y I I <Y M>31 

are both bounded i n depen dently of -+ 
t > 0, x , and ~; 

(5) the derivatives F (k) 
M, 1 ij ' 

F (k) 
H, 2i' 

F(k) and F(k) 
M,3i' M,4q 

are all 

bounded uniformly in all arguments; 

(6) if 
(k) 

u , 
(k) 

u .. a r e all bounded at each time t > 0, 
l.J 

then u 
(k) 

being bounded for t < 0 impl ies that 
(k) (k) 

u , ui , and u ~~) 
l.J 

-+ n r, ) are all bounded uniformly for (x, t) E. IR x LO , oo ; and finally 

(7) if ~ F 1(~~ ~. ~ J. > 0 for all arguments and all 
. . l.J 1. 
l.J 

then for any M > 0 there is a oM > 0 s u ch that 

! F(k) 
t;,i t;,j ~ 0 > 0 

ij M,lij M 

F(k) -+ 
~ s. for all argument s of and all t;, with s. = 1. 

M • 1. 1. 
1. 

-+ -+ 
t;, + 0 , 

Of these preceding properties, properties ( 1), (2), (3), (4), (5), 

and (7) will fol l ow from inspection of the modified equations. Property 

(6) is the conclusion of the uniformity lemma, which is stated and proved 

in section (3 . 3) . 

We now present the actual modified equations . Note that any 

modification of t he equations (3 . 1) which satisfies conditions (1) t hrough 
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(7) is as good (for our purposes) as the particular modification we use. 

The virtue of the particular modification we use is that it works for all 

equations of the form (3.1). 

We first define some needed auxillary functions . Let M and M 

be any constants with 0 < M < M < + oo . 

M 
~f(x) -

0 

k jx { M-M _ }d 
- 11-M M+ exp - (y-.H) (M-y) y 

1 

x) 

Define 
M 1\r (x) by 

lxl ?_~l 
< M M < X 

lxl 2_ M 

X < -

where k = [ll exp{- _Y(i-y) } d~ - 1
. For brevity, let ~(x) represent 

H
2
M(x). Note that HM(x) · · f · · C00 

• h M ·~ 1s an even, non-negat1ve unct1on 1n w1t 

~(x) = 1 for 

sgn (x) E_ H M(x) 
dx M 

H=l 

x=-M 

lx I 
> -

< M, with i)~(x) -

4 
This function fl-M . 

x=-M x=O 

Figure (l) 

lxl 
-0 for ~ M, and with 0 > 

is illustrated in figure (1) below. 

M 

T~(x~ 

By an overhead bar ( M) we denote a quantity which "satu-

rates" in the interval (M,2M). Specifically, 

-M 
X l X H2M 

- ( </>) d <I> 
0 M 

--;-:;-;-M 
- Cx < 1) , . . . , 

and 

- -,-_,..M 
X (v ) ) 
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The quantity ----M 
X as a function of X is illus t ra ted in figu re (2) below. 

- 2M 
M 

X 

F igure (2) 

We also need a way to "switch-on" quantities over interva ls of 

interes t . Thus, define ~(x) as an even, non-negative, element of C 
00 

such tha t 

M ~ c lxl :'_ J 11M (x) 
lxl > M 

l N ~(x)dx M, and 0 < ~1 (x) 4M 
where H > M. Thus a quantity < --

- 1 
M-M N 

s witches smoo thly from being identically zero when l x l < M to being X 

when lx I > 2M. 

- ~'~(x) Finally, for 0 < M < M < N < N, we define the function , 
00 

as a n even element in c with 

~:~(x) ={ ~~x) for lxl :'_ J 
for lxl ~ N 

IaN -
M,N( )d and with 1 ~ ~:~(x) 4N 

for with ~1 , N X X 
= 0 > -

N-N-
N .::_ lxl ~ N. 

We will not take the time to actually construct such 
M 

.HM(x) M,N( ) and .l)1 N x , 
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since we are certain they exist (since we can draw them). 

We now give the modified equations. Recall that we assume that 

the smoothness conditions Hl and H2 are satisfied. Let M > 0 be given. 

Then let 

let 

sup 

O<lu~~) I<24M 
- 1.] -

0_<2_ 1 u~k) I2_2M 

0_<2_1 u ( £ ) )2_2M 

all i,j ,k,£ 

{F(k) ( (k) (k) _ lT ( 
uij ,ui ,u, 0 Jll;ii <Y 

G(q)(s,;,u(t-s,~-;))d;ds)} 

C = _1_ Fmax 
2M M ' 

let N - 48H{(4n+8)(8n+l) + 1}, and let P = 2n(n+1)x 

(n+2)(8n+l)N+N, where n is the number of independent spatial variables: 

-+ 
x = (x , ... ,x ). We define 

n 
(q) -+ -+ -+ (q) -+ ~ -+ -+ 

G (s,y,u(t-s,x-y)) _ G (s,y,u (t-s,x- y)) 
}1 

and the modified equations are 

F ~k) ( ~ ]) k = 1 , 2, ... , v 

(k) (k) (k) _ iT ~ (q) -+ - -+ -+ -+ - FM (u .. ,u . ,u, GM (.s,y,u(t-s,x-y))dyds) 
1.] 1. 0 I I; I I <Y 

(3. 2) 

k = 1 , ... ,\) 

(k) ~ (k) Q [ (k) ] [ (k) (k) (k) (k) J _ HM(u ) l"(H (u. ) ll' H12M(u .. ) 7T. H12M(2u .. +2u .. +u .. +u .. ) 
. ~~ l. 1. 1.1. p J l.l. J J 1.] J 1. 

x F(k) (u~l~) ,u~k) ,(!1, JT J G~q) (s,y,tl(t-s,~-y))dyds) 
l.J 

1 0 I I ; I I <Y 

~ 
(k) 2 (k) +2 (k) + (k) + (k)J 

+ C· ~ juii 2M,N (<j>)d<j> + i: J uii ujj uij uji 

i o "M,48M i > j o H~~~4~M(O)dO 
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These are the modified equations we will use. They are exceedingly com-

plicated, and for any specific system of equations (of the form (3.1)) much 

simpler modifications can be cons tructed which will also satisfy conditions 

(1) through (7). We will only use the facts that the modified equations 

can be written as 

(k) (k) (k) _ rT r (q) -+ _ -+ -+ -+ 
FM (u . . ,ui ,u,Jo Ji -+ GM (s,y,u(t-s,x-y))dyds) k=1, ... ,v 

lJ 
0 IIYII <Y (3.2) 

and satisfy properties (1), (2), (3), (4), (5), and (7) for a ll M > 0. 

In the next section, we will show that solutions of the modified equations 

satisfy the maximum principle, that the solutions satisfy property (6) (the 

uniformity lemma), and that the only time independent states which a solu-

tion can evolve into are steady state solutions of (3.2). 

3.3 The maximum principle, uniformity lemma, and asymptotic state theorem. 

In this section we will develop some general mathematical results about 

systems of the form 

k = 1, ... ,v (3.2) 

These results will be basic to all subsequent derivations. 

We will first state and prove the maximum princi ple, since this 

will be the primary tool needed in subsequent chapters. We will then prove 

the uniformity lemma, which essentially s tates that for a solution u of 

are bounded for all x at each t > 0, then 

- - d - are bounded uniformly for all x and all t > 0. Thus, u, u., an u . . 
1 1] 

this lemma can be used to extend existen ce results stating that ii, ii. , and 
1 

T f T to uniform bounds. The .last u.. are bounded for 0 < t ~ - o or any O• 
1J 

11 l·n th1"s sect1"on is the asymptotic state the orem. result we wi prove 
This 

theorem shows that when any solution ii of (3.2) with ii 
t 

continuous and 
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+ + 
u,ul, and ull uniformly bounded, has u(t,x) + f(x) monotonically as 

+ 
t + oo, then f(x) is a steady state solution of (3.2) whenever there is 

only a single spatial dimension . 

We now state and prove the maximum principle . In order to do so 

concisely, we introduce the function spaces 
i j 

ex and ct . The first class 

is defined as all functions whose i-th order spatial derivatives are all 

continuous. The second class is similarly defined as all functions whose 

j-th order time derivatives are continuous. 

The maximum principle we will state is very similar to the maxi-

mum principle in section (2.1). However, there are two major d i fferences. 

The first is that the new maximum principle is for the more general equa-

tions (3 . 2) . The other is that the new maximum principle will hold for 

arbitrary spatial domains n in ~n. 

Theorem 3.1 (The maximum principle): Le t n be any domain (open connect

ed set) in mn, let n be its c losure, and let To > 0 be any fixed con-

stant. Suppose t hat: 

A1 The equations (3.1) satisfy the smoothness conditions H1 and H2; 

A2 The equations (3 . 1) form a parabolic system- that is, for all argu-

ments 

i: 
ij 

are satisfied; 

A3 The f unc tions 

F(k) + 
t,; i t,; j > 0 for all k, all t,; 

lij 

F(k) 
3t 

> 0 for all t * k, a ll 

F (k) G(q) > 0 for all k, q, and i 
4q 3i -

+ + 
u(t,x) a nd v(t,x) are in c 2 () cl 

X t 

* 0 

k, and 

for a ll 
+ 

(t, x) in 



-93-

(O,To] X n, are in cO for all 

(t,~) in [-T,To] X n . 

-+ 
(t,x), and are bounded uniformly for all 

Then if 
(k) 

u 
t 

-+ 
for all k, all x in 

t in (0, To] for any fixed M > 0, and if 

n, and all 

(3 .3) 

(k) -+ (k) -+ -+ 
u (t,x) ~ v (t,x) fo r all k, all (t,x) . l1 n in ( - 00 , OJ x IR and for all 

-+ 
(t,x) in 

(k) -+ 
u (t,x) 

as well. 

[ 0, T~ x (Rn - n), then 

> v(k)(t,~) for all k and for all 
-+ 

(t,x) in [o,T~ 

(3. 4) 

x n 

(3. 5) 

Thus, in rough terms this theorem states that when u and v 

satisfy the different ial inequalities in (3.3) in some domain n for 

t > 0, when for 

-+ 

-+ 
X 

n 
in lR and 

and x outside of 

t .2_ 0, and when 

n, then 
(k) -+ 

u ( t, x) 

as well. Note that in a mathematical 

sense we have assumed too much by requiring u(k)(t,~) ~ v(k)(t,~) for all 

t > 0 and ~ f n and for all t < 0 and ~ E !Rn Clearly the values 

of u(t,~) and v(t,~) are irrelevant when t < - T and when I 1~-~ol j >Y 

-+ 
for all x 0 in n, since the integral terms of inequality (3.3) are 

(T f G(q)(s,y,u(t-s,~-y))dyds and 
J 0 IIYII <Y 

j T 1 -+ G(q) (s,y,v(t-s,~-y))dyds 
u IIYII <Y 

However, these extra assumptions make the exposition easier and do not af-

feet the results in s ubsequent c ha pters i n any way. 

We now prove the maximum principles by using extensions of the 
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material in Cha pter III of reference [ 1] . 

Proof: The proof of this theorem is very similar to the proof of the pre-

vious ma ximum principle in section (2.1). As before, we will prove the 

theorem by defining h = u - v, using the mean v a lue theorem t o convert 

the nonl i near system of inequalities (3.3) i n to a " linear" system of in-

equalities in h, and f i nally showing that t he linear inequalities imply 

that h(k) > 0 for each k. 

Define h = u - v, and the function of 0 

k 1' ... ' v 

Note that (3 . 3) can be written as 

h~k) ~ H(k) <[ v }[ h} l) - H(k) ~[ v ].[ 1~]. 0) k 1, ... , v • (3 . 6) 

The derivative of H(k) is 

~0 H (k) <[ v ].[ ti], 0 ) ! F(k) h(k) 
M, lij ij + ~ F(k) h(k) 

M, 2i i + ~ F(k) h ( £ ) 
M, 3£ 

i j i £ 

~ F(k) I J( (q) ~ - ~ ~ + ~ GM 3£ (s,y,v(t-s,x- y) 
q, .Q. M, 4q 0 IIYI I<Y ' 
- ~ ~ + 0h(t- s,x- y)) 

.Q, ~ ~ ~ 
• h (t-s,x-y)dyds 

F(k) F(k) and F(k) 
M, 2i ' M, 3.Q. ' M,4q 

are 

(3 . 7) 

From the mean valu e theorem and (3 . 6), we conclu de that for each k, t, 

and~ there is 0 (k,t,~) in [o, ~ such that 

h~k) _:_ ~ 0 H(k) <[ v ].[ t~J. 0) I 0=0 (k, t ,Jt). That is, 
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h ( k) > l: F(k) h( k ) + ! F(k) h(k) + .r F(k) h( Q. ) 
t 

ij 
M, 1 ij i j 

i 
M, 2 i i 

Q. 
M, 3 Q. 

F(k) 1T1 + ! (q) ~ - ~ ~ ~ 
GM Q.(s,y,v( t-s,x- y) + G(k , t , x) M, 4q 0 IIYI I <Y , 3 

- ~ ~ 
h( t -s , x-y)) 

q, Q. 

where the argumen ts of 

given by (3.7) with 0 

( Q. ) ~ ~ ~ 
x h (t-s,x-y)dyds k = 1, . .. \) (J . 8) 

(k) (k) 
FM . . , of FM . , 

, 1 1] , 21 
of F(k) and of F(k) are 

M,3i' M,4q 
~ 

G(k, t, x). 
(k) (k) 

From our assumpt i ons, FM 
1 

. . , FM . , 
, 1 ] , 2 1 

(k) F(k) (q) 
Ft-1, 3i, M, LJq , and GH, 3 Q. are uniformly bounded. Moreover l: (k) 

FM 1 .. t;.t;. >O 
, 1] 1 J ij 

F(k) G(q) > 0 
M,4q M,3Q. -for all ~ ~ F(k) 0 for a ll Q. * k, and 

E;, * O, M,3Q. > 

fo r a l l q a nd Q., 

We will prove t he maximum princ i ple by showing that each 

h(k) > 0 whenever the inequalities 

h(k) > 
t 

+ 

i j 
a~~) h~~) + ~ a~k) h~k) + l: rik ) h( t) 

1 Q. 

::,£ ~IYII <Y (q) ~ ~ ( Q.) ~ + + 
gQ. (k, t ,x,s,y) .h (t- s,x-y)dyds 

(3. 9) 

k 1 ' ... ,v 

~ 

are satisfied. Here 
(k) 

a.. , 13 ~k) , (k) 
YQ. are any f unct i on s of (t,x) wh ich 

1] 1 

+ 
[ o, To] 

g(q ) are uniformly b ounded for (t,x) in X ~ . is a ny func t ion 
Q. 

~ 

which i s uniforml y bounded for ( t , x) € [o,T~ X ~ ' 0 < s ..::. To , and f or 

1\YI\ ..::.Y . The s e functions a lso r e quired to sa t isfy }: (k) 
E;, i E,; j > are a . . 

ij 1] 
~ ~ /k) > 0 a nd giq) _:: 0. for all E,; * 0, fo:r: a ll Q. t k, Showing a ll 

Q. -

h(k) > 0 will immediately establish the max imum principle because (3 . 8) 

i s a special case of (3.9) . 

Let r = 1 1 ~ 11 = /l x 1x i, and define 

- -nt w = h e sech pr (3 . 10) 

0 

whe re p is any fixed positive constant a nd n > 0 will be sel ect ed later . 

From (3 . 10) we find 



h (k) 

h (k) 
t 

h~k) 
1 

h (k) 
ij 

w 
(k) 
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nt 
e cosh pr 

+ (k)) nt nw e cosh pr 

(k) xi nt 
+ pw -- tanh pr)e cosh pr 

r 

+ .E.[ wi(k) x. +w ~k) x .J tanh 
r J J 1 ~ xix .J (k) 

pr +.E. o .. - ~r w tanh pr 
r 1J 

p 2 (k) nt 
+ ~ x.x. w )e cosh pr 

r 1 J 

We substitute these expressions into (3 . 9), and our differential inequali-

ties bec ome 

w(k) L a ~~) 
t ij 1] 

(k) + 
W •• 

1] ~ [ f3~k) + ~ 
1 J 

+ 
~ (k) (£) 
~ y£ w 

£1-k 

[(a~~) +a~~~ .E. x. tanh pr]~w ~k) 
1J J 1 r J ~ 1 

+ w (k) [ -n+yk(k) +~ L x . f3 ~k) + P 
r . 1 1 

1 

r .l a (k) - p l: 
. r ii . . 

1 (k) J 3 a . . x . x . tanh pr 
r 1J 1 J 

+ 

Let s 

for all 

so 

n > 

for all 

hence 

1 1J 

p 2 
+-::-z-r 

L a~~) x . x .J 
ij 1J 1 J 

~ f ~ IYII<Y 1
-+ -+ 

(q) -+ -+ cosh p lx-yJl w( £) (t-s,~-y)dyds 
g £ (k,t, x ,s,y) cosh pr 

q,£ 

k = 1 , .. . , \) (3.11) 

> 0 be large enough so that 

s 1 T f (q) -+ -+ > L -+ g£ (k,t,x,s,y) 
1-+-+ cosh p lx-yll -+ 

dyds 

q, t 0 I I Y I I <Y 
cosh 

-+ [o,T~ (t,x) in X n and all k. Let n 

h (k) I + 5- I a~~) 
k r ij 1J 

+ tanh pr E (z loa~~)-. r 11 
1 

for all k 

-+ (t,x) in (o. To] x n 

-+ 11~11 < IR}. Let -' B :: {'Vx: 
R 

(k) -+ 
w ( t, x) > 0 for t < 0 and 

We note that 

-+ 
for (t,x) E. 

pr 

be chosen large enough 

(3.1 2) 

h(k)(t,~) _.::_ 0 and 

[o,To] X (JRn-n ) for a ll 
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k due to our assumptions . We now show that this and (3.11) implies that 

w(k)(t,~) > 0 for all (t ,~) in [o,T~ x n . Suppose that w(k)(t,~) < 

- e: < 0 for some k and some (t,~)E[O,T~ x n. Since w(k)(t,~) -+ 0 

as 11~11-+ oo , there is a R( e:) such that lw(k)(t,~)l < e:/2 f or all 

-+ 
(t,x) in [o, To] X n with ~~~~~ ~ R( e: ) • Define 

-+ (k) -+ 
w . (t,x) :: min w (t,x). 

m1n k 
-+ 

Since w . (t,x) 
mln 

> - t./2 for 
-+ 

t=O,xE.n a nd for t E [p,TQ] 

~ f:- a [n ~ BRJ , -+ 
and since w . (t,x) < - e: 

m1n 
for some 

-+ 
(t ,x) in [o, To] 

X [n ('\ BR} wmin 
-+ 

has a minimum in (t,x) € At this 

-+ (k) -+ -+ 
point (t ,x ), there is a k such tha t w (t,x) = w. (t,x) and 

m m m1n 

w(k)(t,~) i s at a relative minimum at (t .~ ). Thus, at this point we 
m m 

have 

(k) 
w 

t 
< 0, }: 

ij 

(k) 
a .. 
lJ 

(k) 
w .. 
lJ 

(k) 
> 0 , w. 

1 
0, w(k) < -e:, and w(t) >w(k) for all t. 

(3 . 13) 

However, from the definition of n in (3.12) we see that substitution of 

(3.13) into the differential inequality in (3 . 11) implies that 

w 
(k) 
t 

< 0 and w 
(k) > E 
t 

This is a contradiction, and so w 
(k) > 

-+ (o,T~ - E for all (t,x) in 

x n . Since E > 0 is arbitrary, w 
(k) 

> 0 for all k and all 
-+ 

(t ,x) 

and hence h(k) is also . Thus the maximum principle is established . 

We will almost always us e the maximum principle with n = ~n. 

For this case the theorem requirement (3 . 4) simplifies since JR.n - n = ¢· 
Note that the differential inequalities are only required to be 

satisfied for 
-+ 

(t,x) in (O,T o] X n. Outside of (O,To] X n the func-

-+ 
tions u(t,x) and 

-+ 
""(t, x) are only required to be continuous. This corres-

ponds to the fact tha t to find solutions of 

-+ 
(t,x) E (O,To) X n (3 . 2) 
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when the FM contain integral terms, one must supply u(t,x) for 
+ 

(t,x) 

outside of (O,To] x Q as initial conditions. 

When no integral terms are present in the F, the requirement of 

(3.4) can be simplified. For the theorem to hold in this case, it is 

sufficient to require 

+ 
for all k, all x E Q, and 

for all k, all t E. [o, T~ , all x E ()Q 

This corresponds to the fact that to find solutions of 

u(k)(O,~) 

(k) + 
u (t ,x) 

> v(k)(O,~) 

> v(k)(t,~) 

+ 
(t,x) E (O,T 0) x Q 

+ 

(3 ,4 I) 

(3. 2) 

when F contains no integrals, 
M 

u(t,x) only needs to be prescribed on 

the initia l and lateral boundaries. 

Before we continue on to the uniformity lemma, we note three im-

mediate extensions of the maximum principle. The first extension is that 

the maximum principle will remain valid if the FM is allowed to depend on 

integrals over only time J(T G(q)(s,u(t-s,~))ds and on integrals over only 

space J + G(q)(y,u(t,~-y))dy. We wHl not pursue this further except 

IIYII <Y -
to note that all subsequent results which are valid when F depends on in-

-tegrals over time and space remain valid when F also depends on integrals 

only over time and integrals only over space. 

The second extension is that the maximum principle remains true if 

time is discrete; that is if t,T, and To are replaced by integers, u~k) (t,~) 

is replaced by u(k)(t+l,~)- u(k)(t, ~), and the integrals over 

time are replaced by the appropriate sums. The proof of the maximum prin-

c iple for this case is essentially identical to the p roof presented above. 

Note that there are potential physical applications for discrete time sys-

t erns since, for example, some ecologists measure thi ngs yearly and some 



-99-

geneticists do things in terms of generations. However, it would perhaps 

be (physically) surprising if these discrete time models included local 

operators like 
Clx. · 

1 

We shall not pursue discrete time systems further 

in subsequent chapters, except to note that for all subsequent results 

about continuous time systems there are analogous results for discrete 

time systems. 

The last extension we consider is that the maximum principle re-

mains valid if (O,T0 ) x Q D 
. 10n+1 

is replaced by an arbitrary doma in 1n ~ . 

In proving the uniformity lemma, we shall use this extension in a case where 

no integrals are present. For this case, the requirement of (3.4) is 

u(k) (t,~) > v(k) (t,~) for (t,~) E ClD t'l{ CtJ~): 0 2_ t < To} and 

for Ct,x) ~ n n { Ct,~): t = o} , k 1 ' ... '\) 

The conclusion of the theorem is 

and the proof is virtually identical to the one given . 

This completes our discussion of the maximum principle. We now 

continue by stating and proving the uniformity lemma. 

+ 
Theorem 3 . 2 (The uniformity lemma): Let D(To) be the domain {(t,x): 

0 < t < T 0 } . Suppose for each To > 0 

AI that the equations 

u~k) = F(k)([ u]) k= 1, ... , \) (3 .1) 

satisfy the smoothness conditions H1 and H2; 

A2 that u(t,~) E c1 n c2 and solves 
t X 

+ 
k = 1, ... , ~ for (t,x ) ED(To) for some M > 0; and 

(3. 2) 

A3 that the 
(k) (k) 

u ,ui a nd u~~) 
1J 

a re all bounded a nd are locally Hoelder 
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-+ 
continuous with exponent £ in t and x (for some £ > 0) for all 

-+ 
(t,x) E. D(T0 ) • 

Then 

(k) -+ ~ max{suplu(k)(O,~) I, 2M} u(k) lu (t,x) I -

(k) -+ I (k) -+ 2M} u(k) l u . (t,x) I 2 max{sup ui (O,x) I, - a nd 
l i ' (3 . 14) I Ck) -+ < max{suplu~~)(O , ~) I , 2M(M)} u ~~) u i j ( t , x) I -- lJ l J 

for all 
-+ 

(t , x) E D(+ oo) 

Thus , we see t hat when u, u., and u .. 
l lJ 

are bounded for each 

D(T 0), they are also unifo r mly bounded over D(+ "") as well . Thi s will 

be needed i n t he proof of the asymp t otic stat e theor em. 

Proof: Suppose (t 0 ,~0 ) is any point wi th iu(k)(to,~o) I > U(k). Let 

T0 > t 0 be chosen . 

I u (k) c t , ~) 1 > u (k) l. 

Def i ne D(k) (T 0 ) = D(T 0 ) r'\ {all (t,x) for which 

Further, let D(k) ' (To) be t he largest connec t ed com-

ponent of D(k)(To) containing 
·+ 

(to , xo). Since on 

all boundaries of D (k) ' (To) ' since the kth equation of (3 . 2) is the 

(k) L: u~~)) -+ in D(k) ' (T
0
), heat equat i on u = a( for (t,x) and s i nce 

t 
j JJ 

this heat equation has 
(k) u(k) a nd 

(k) - u(k) as solutions, t he u - u -

maximum pr i nciple i mplies t hat u(k) 2 u (k)(t , ~) 2 u (k) 
-+ 

fo r all ( t ,x) 

in D(k) ' (T 0). This con tradic t s l u (k)(t 0 ,~0 )1 > U(k). Thus lu(k)(t,~) I 
< u(k) -+ 

for a l l t > 0 and all x. 

Simi larl y, let 
-+ 

(t 0 ,x0 ) be any point with 

As before, let T0 > t 0 be chosen, define D ~k) (To) 
l 

l u~k)(t,x) I > 
l 

and let 

(k) -+ I (k) 
lui ( t o,xo) > ui . 

= D (T 0) fl { V (t,~) : 

of D~k)(T 0 ) whi ch con tains Since 

be the l arges t connected compon e n t 

u (k)' u(k), and u ~~) are 
i ll l 

0) for ( t, ~) E D~k)(T 0 ), l 
£ > and locally Hoelder cont inu ous (with exponent 
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(k) 
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satisfies a heat equation 
(k) 

ll.j ), 
J . 

the function 
(k) 

u 
t 

must also be Hoelder continuous in this region. Thus, 

u(k) E coon C
00 

for (t,~) in D~k) I (To). 
t X 1 

(This follows from theorem 13, 

Chapter III, reference [7]). Therefore 

u (k) a ( L u ~~)) for 
t . JJ 
(k) (k) J 

implies that v _ u. satisfies 

v(k) = a( 
t 

Since lv(k) I = lu~k) I 
1 

1 

the maximum principle implies 

l u~k) I < U~k) for all 
1 - 1 

-+ (k)' 
(t,x) ED. (T 0 ) 

1 

This contradicts (k) > (k) u. (t 0 ,x0 ) u. 
1 ·1 

and so lu~k)(t 0 ,xo)l 1 
-+ 

all t > 0 and all x. 

The bounds on the second spatial derivatives of u 

as before 

for 

(k) 
are shown 

by virtually the same argument as the one given for its first derivatives. 

We defer discussing the uniformity lemma until section (3.4) 

where we will discuss how the maximum principle, the uniformity lemma, and 

the asymptotic state theorem will be used in conjunction with the hypotheses 

we shall assume. Therefore we now state (and prove) the asymptotic state 

theorem. 

Theorem 3.3 (Asymptotic state theorem): Suppose there is only one spatial 

dimension; i.e. n = 1. Suppose for some To > 0 

A1 that the equations 

u~k) = F(k)<[u]) 

satisfy the smoothness conditions Hl and 

A2 that the functions F(k)(u(k)' 
XX 

(k) 
u , 

X 

k = 1, ... , v (3. 1) 

H2; 

u, (T ( G(q)(s,y,u(t-s,x-y))dyds) 
Jo J IYI <Y 
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satisfy F(k) > 0 at i = 1 
lii 

for all k and all arguments of F(k). 
' 

and 

A3 that the functions 

for some 

is either 

and all X 

M >O ;u, u ' X 

> 0 or <: 0 

Then if lim 
t-+<x> 

in an open 

u(t ,x) E. c 2 (\ c 1 satisfy 
X t 

= F~k) c[ u ] ) k = 1, .. . , v 

u 
XX 

are all uniformly bounded; and each 

for all X and all t _:::_ To . 

u(k)(t,x) ,(k)(x) exists pointwise fo r 

interval I, then 't(x) is in c 2 and 
X 

(3 . 2) 

(k) 
ut 

all 

solves 

steady state equations F~k)([t]) = 0 (k = 1, ... , v) for all x in I. 

k 

Thus, when there is only a single spatial dimension and when 

there is a solution u with u, u , u bounded uniformly, then if u 
X XX 

the 

evolves monotonically into a vector function 't(x) as t-+<x> we can conclude 

that 't (x) is a steady state solution . 

Proof: For clarity we will use t and x subscripts to denote partial de-

rivatives in this proof. Let x 0 be any point in I and let R > 0 be 

small enough for [ x 0-R, x 0+R] ~ I. Define ~ 

ju(k) I and ju(k) I are bounded, u(k)(t,x) and 
X XX 

= [ xo-R,xo+R]. Sinc e 

u(k)(t,x) are equicontinu
x 

ous (parametrized by t) on KR . Thus we can select a sequence t1, 

t 2 • ·· · such that 

(1) T 0 < t 1 < t 2 < ••• 

(2) 

(3) 

t + co as 
n 

u (k) (t ,x) 
n 

n + co, and 

(k) 
and u (t ,x) 

x n 

all x E KR as n + co • 

converge uniformly for all k and for 

This is a consequence of the Ascoli-Arzelas theorem (see e.g. Chapter VII, 

reference [ 8 )> . However, since each 
(k) 

u ( t, x) is monotonic in 

+ 0 pointwise (and hence uniformly) as t + co for all x in KR. 
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Thus, we have u(t,x) converging uniforml y as t -+ oo , ii ( t , x) 
x n 

converg-

ing uniformly as n -+ oo , and iit(t,x) converging uniformly as t -+ oo 

for a ll x in ~· 

We now utilize assumption A3 . By the mean value theorem we know 

that 

(k) [ (k) (k) ~ FM 
1 

u ( t , x) - u ( t , x) 
, XX n XX m 

(k)[ (k) (k) ~ + FM 
2 

u (t , x) - u (t , x) 
, x n x m 

~ (k) [ ( R, ) ( R- ) ~ + L FM 
3

£, u (t ,x) - u (t ,x) 
Q, , n m 

~ (k) ( T 1 (q) [ (£) 
~ FM 4 Jn GM 3t(s,y) u (t -s, x-y) 
q,R, , q 0 Jy i <Y , n 

(3.15) 

+ 

- u ( R, ) (tm- s,x- y >) dyds 

for some arguments of F(k) F(k) F(k) F(k) d G(q) Since the func-
M, l' M,2' M,3t' M, 4q' an M,3R, " 

F (k) (k) (k) (q) tions F F and G are bounded independently of their 
M,2' M, 3R,' M,4q' M,3 R, 

arguments, a nd since there is a for whic h F (k) > o > 0 
M,1- M 

for all 

arguments and all k, equation (3.15) and the uniform convergence of 

(k) 
u (t ,x), of 

t n 
(k) 

u (t ,x), and of ii(t,x) as n + oo and t + oo imply 
x n 

that u(k)(t ,x) 
XX n 

is a uniform Cauchy sequence as n + oo for x in KR. Thus 

(k) 
u converges uni forml y as n -+ oo 

XX 
Hence t (x) is in c 2 and has bound

x 

ed first and second derivatives. Thus t (x) solves the s teady state equa-

tion for all x in ~· and hence all x in I . 

The asymptotic state theorem only holds when there is a single 

spatial d imension. When more than one spatial dimension is present, (3.14) 

changes to includ e the term Although 
ij 

all other terms in (3.14) still go to zero as m,n + oo , we cannot conclude 

tha t 
(k) + (k) + 

all separately to in-u .. (t ,x) - u . . (t , x) go to zero as m,n go 
1J n 1J m 

finity. that if all the 
(k) -+ 

wereequicontinuous in t (which Note u . (t,x) 
i] 
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is true when, for example, all third order spatial derivatives are uni-

formly bounded), then the Ascoli-Arzelas theorem would ensure that t E c2 
X 

and that t solves the steady state equations. 

We defer discussing this result further until the next section, 

where we will discuss how all three results in this section will be used 

in conjunction with the hypotheses of the nex t section. 

3.4 General assumptions . This section provides a convenient place to col-

lect the set of hypotheses we will as sume to hold in all the derivations 

in subsequent chapters . We will first state these assumptions and then 

briefly discuss how they fit together with the results of section (3.3). 

(k) 
u 

t 

The first three hypotheses are about the form of the equations 

(k) (k) (k) - loT f (q) + - + + + -F (u .. ,u. ,u, G (s,y,u(t-s,x-y))dyds), k-l, ... ,v 
l.J 1. 0 I I+ I I y <Y (3 .1) 

Namely, the first two are smoothness assumptions about the G(q) and the 

F(k), and the third assumption is that equations (3.1) form a parabolic 

system. The other two assumptions will gu arantee existence of solutions to 

the initial value problem. 

The first two hypotheses are: 

Hl: For all q, all j , all s E [ 0, T] , 
+ 

all y with the 

derivatives exist and are continuous in all arguments . Moreover, 

for some Ct > 0, 
(q) + c
3

j (s,y,ii) is locally Hoelder continuous with exponent 

et in the arguments u. 

H2: For all i,j ,k,t,q and for all arguments, the derivatives F (k) F2(kl.. )' 
lij' 

F;~), and F~~) exist and (for some et > 0) are locally Hoelder continuous 

with ex ponent et in a ll arguments . 
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These hypotheses are slightly stronger than the smoothness hypotheses we 

used previously . We require this slightly stronger smoothness because 

we will often need to write a solution u of (3.1) as 
-+ -+ 

u(t,x) = v(t,x) 

- -+ 
+ £ <l>(t,x), 

v(k) + E<l>(k) 
t t 

+ h.o . t . s k = 1, .. . ,v 

and then finally conclude that the "h.o . t . s" are terms which are of 

higher than linear order in E . The Hoelder continuity ensures that the 

"higher order terms" are of higher than linear order in £. 

The third hypothesis ensures that equations (3.1) form a para-

bolic system. I t is: 

H3: The functions 

F(k)(u~~) ,u~k) ,a, ( T 1 -+ G(q)(s,;,u(t- s,;- y))dyds) 
1 

J 1 J 0 I I y I I <Y 
satisfy 

2: 
ij 

F(k) c- c- > 0 
1ij " i " j 

for all ! ~ 0 

F(k) 
3~ 

> 0 for all ~ * k, and 

F(k) 
4q 

G (q) 
3 ~ 

> 0 for all q and ~ 

for all k and all arguments of F(k) and G(q). 

Note that this is precisely one of the requirements of the maximum principle. 

The last two hypotheses we will need are concerned with the exis-

tenc e of solutions of the initial value problem. At the present state of 

the theory of p a rtial differential equations, we cannot generally prove the 
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existence of solutions of 

k = 1, ...• \) (3. 2) 

for reasonably general initial conditions . We therefore must assume this 

existence. 

H4: For all M > 0 sufficiently large, we assume that for every initial 

-+ 
condition u(t,x) (defined for all x and all t ~ 0) which satisfies 

(1) 
-+ 

u(t,x) is bounded and uniformly Hoelder continuous with ex-

-+ 
ponent a in x and t for some a > 0 

and 

a in 

(2) 

(3) 

-+ 

(k) -+ (k) -+ (k) -+ 
u (O,x), u. (O,x), and u .. (O,x) 

1 l ] 

-+ 
a re bounded for all x, 

(k) -+ 
u . . (O,x) 

1] 
is uniformly Hoelder continuous with exponent 

x, then the sys tem of equations 

(k) (k) (k) - lT J (q) -+ - -+ -+ -+ FM (u .. ,u. ,u, GM (s,y,u(t-s,x-y))dyds) 
1

] 
1 0 II y II <Y 

k= 1 • •••• \) 

-+ 
(3. 2) 

has a solution u(t,x) for all t > 0 which satisfies the conditions 

(4) - -+ u ( t, x) 

(5) for any 

agrees with the initial conditions for t ~ 0, 

(k) -+ (k) + (k) 
To > 0, u (t,x), ui (t,x), and u .. (t,x) 

1] 

exist and are bounded for 0 ~ t ~ To , a nd 

(6) 
(k) -+ 

u .. (t, x) 
1] 

is locally Hoelder continuous with exponent 

dTo) (for some E(T 0) > 0) in ~and t for all; and all t in [o,T0], 

for any T0 > 0. 

H5: If there is a single spatial dimension (i.e. n = 1), then for all 

M > 0 sufficiently large, we assume that for any c, any xo, x l with 

x 0 ~ x 1 , and for every initial condition u(t,x) that satisfies conditions 

(1), (2) and (3) of H4 at all points but x = x 0 and x = x1 and that is 

cont inuous at x = x 0 and x = x 1 for t < 0 (but in general is not 
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differentiable there), there is a solution u(t,x) of the system of 

equations 

(k) (k) (k) (k) - lT J (q) _ + (k) u = FM (u ,u ,u, GM (s,y,u(t-s,x-y))dyds) cu 
t XX X 0 jyJ<Y X 

k=1, ... , v 

(3.16) 

for all t > 0 which satisfies the conditions 

(4) u(t,x) agrees with the initial conditions when t ~ 0, 

(5) for any 

exis t and are bounded for o < t ~ To 

(k) 
(6) for any T 0 > o > 0, u (t,x) is locally Hoelder continu

xx 

ous with exponent s(o, T0 ) (for some s(o, To) > 0) in t and x for all 

x and all t in [ o, T ~ . 

Hypothesis H4 assumes the existence of satisfactory solutions of (3.2) 

when the initial conditions are smooth. Hypothesis HS also assumes the 

existence of satisfactory solutions of (3.2) in terms of a coordinate sys-

tern which travels with speed c. It also permits the initial conditions to 

have discontinuous derivatives at x = x 0 and x = x 1 • We need this last 

exis tence assumption because in the proof of the instability of non-mono-

tonic waves (in one spatial dimension), the perturbed initial condition in 

general has two jumps in its derivative due to the bulge added to the non-

perturbed wave. 

We now briefly discuss how the hypotheses , the modification of 

the equations, and the mathematical results of section (3.3) fit together. 

First, if hypotheses H1, H2 and H3 about the functions F(k) and G(q) are 

assumed to hold, then the modified functions F(k) and G(q) 
M M 

have the 

properties 
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Pl: For any particular M > 0, for all q and j, and for all argu-

ments, the derivatives 
(q) -+ 

GM, 3 j ( s, y, 11) exist, are uniformly bounded, and 

are uniformly Hoelder continuous with exponent a in the argument 11 

(where a is the same as in Hl). 

P2: For al l i,j,k,£, for all arguments, and for any particular M > 0, 

the deriva tives (k) (k) (k) F (k) 
FM,1ij' FM,2i' FM,3£' and M,4£ exis~ are uniformly 

bounded, and are uniformly Hoelder continuous with exponent a in all 

arguments (where a is the same as in H2). 

P3: For any particular M > 0, there is a ~ > 0 such that the func-

tions 

1T1 () -+ -+--+-+-
-+- GMq (s,y,11(t-s,x-y))dyds) 

u IIYII <Y 
satisfy 

L F(k) -+-
~ l;i l; j > 0 > 0 for all I; with l;i l;i 1 

ij 
M, 1ij M i 

F(k) > 
M, 3 £ 

0 for all Q, ~ k 

F(k) G (q) > 
M,4q M, 3£ - 0 for a ll q and £ , 

for all k and all arguments of F(k) 
M 

and G~k) . 

Thus the modifications change local Hoelder continuity into uniform Hoelder 

continuity in H1 and H2, and also places a lower bound oM on the "local 

diffusion constant" in H3. 

We now look for the net effects of the existence assumption H4. 

To simplify exposition, define 

-+ s = {all vector functions u(t,x) defined for t < 0 which satisfy the 

smoothness conditions (1), (2), and (3) of hypothesis H4}. 

Assume Hl, H2, H3, and H4 are satisfied. From H4, for any initial condition 
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-+ 
u(t,x) E S there is a solution of 

u~k) = F~k)<[u]) for t > 0, k=1, ... , v (3. 2) 

with properties (4), (5), and (6). Howe ver, the uniformity l emma then im-

-+ -+ -+ 
plies that u(t,x), u.(t,x), a nd u .. (t,x) 

~ ~J 
are uniformly bounded fo r all 

t > 0 and all 
-+ 
x. Thus, the n e t effec t is that whenever the initial 

conditions 
-+ 

u(t,x) for t < 0 are smooth enough to be in s' then as-

suming H1, H2, H3, and H4 implies that a solution 
-+ 

u(t,x) of (3.2) for 

t > 0 exists which both matches the initial conditions for t < 0 and 

has -+ -+ - -+ u(t,x), il . (t,x), and u . . (t,x) uniformly bounded for all t > 0 and 
~ ~J 

all x. 

Now suppose we have constructed continuous bounded functions 

..:::... -+ -+ c2 () c 1 u(t,x) and Q_(t,x) which are in for t > 0 and also satisfy 
X t 

- (k) 
u 

t 
~ F~k) f~]) for all t > 0 k 1 ' ... ' \) 

(k) 2 F~k) {.Q.} for all t > 0 k 1, ... , v u - t 

Consider a~y initial condition 
-+ 

u(t,x) for t < 0 smooth enough to be 

in S and which also satisfies 

- (k) -+ (k) -+ 
u (t,x) ~ u (t,x) 

-+ 
for all x, all t 2 0, k=1, ... , v 

-+ 
Then H4 implies that there exists a solution u(t,x) of (3.2) for t > 0 

which matches the initial conditions for t < 0 and is bounded for all x 

and all t in [o,T~ for any To > 0. The hypotheses of the maximum 

principle a r e thus satisfied, and 

-(k) -+ 
u ( t, x) (k)(t -+) 

~ u ,x for all t > 0 

-+ 
Thus, the net effect is that whenever u(t,x) is smooth enough to belong 

in S, then assuming that H1, H2, H3, and H4 are satisfied implies that 

-+ 
(3.2) for 0 which matches the initial there is a solution u(t,x) of t > 

conditions for t < 0. Moreover, whenever ~(k)(t,~) > u(k)(t,~) for all 
-

-+ 
x and a ll k holds for all t < 0, then it holds for all t > 0 as well. 



-110-

Similarly, if u(k)(t,~) ~ ~(k)(t,~) for all ~ and all k holds for 

t < 0, then it holds for t > 0 as well. 

We now briefly look at the net effects of the existence assump-

tion HS when there is only one spatial dimension. Define S ' as the set 

of a ll functions u(t,x) defined for t < 0 which satisfy the initial 

condition requirements of HS. Assume that H1, H2, H3, and HS are satis-

fied . Let u(t,x) be in S' for t < 0. Then HS guarantees a solution 

of (3.2) exists for t > 0 which satisfies properties (4), (5), and (6) 

of HS . The uniformity lemma then shows that u(t,x), u (t,x), and 
X 

u (t,x) are uniformly bounded for all t > 6 for any 6 > 0. Property 
XX 

(6) of HS and the results of the uniformity lemma can then be used in the 

asymptotic state theorem. This shows that if u(k)(t,x) + T(k)(x) mono-

tonically as t + oo for each k, then t(x) is a steady state solution 

of (3. 2): 

k=1, ... , v 

Thus, the net effect is that when there is a single spatial dimension and 

when the initial conditions u(t,x) E S' for t ~ 0, then assuming Hl, 

H2, H3, and HS implies that there is a solution u(t,x) of (3 .2 ) for 

t > 0 which matches the initial conditions for t < 0, and for which 

u(t,x), u (t,x), and u (t,x) are uniformly bounded for all t > 6 (for 
X XX 

any 6 > 0). Moreover, if 

u(k)(t,x) + T(k)(x) monotonically as t + oo for each k, 

then t(x) is a steady state solution of (3.2). 

Now suppose u(t,x) and ~(t,x) a re the same upper and lower 

functions defined previously. The net effect of assuming Hl, H2, H3, and 

HS is that whenever u(t,x) is in S' for t < 0, then there is a solu-

tion u(t,x) of (3.2) for t > 0 which matches the initial conditions 
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for t < 0. Moreover, as before, if 

;(k)(t , x) ~ u(k)(t,x) for all x and all k 

holds for all t < 0, then it is true for all t > 0 also. Simila rly , 

if 

u(k)(t,x) ~ ~(k)(t,x) for all X and all k 

holds for all t < 0, then it is true for all t > 0 as well. -

As a final remark for this chapter, let us note that we will 

not prove the individual results in subsequent chapters under the most 

general possible hypotheses. Instead we will tend to use the same overall 

hypotheses for all the results in each chapter. We also will not use the 

most general possible overall hypo t heses . We will sacrif i ce mathematical 

(but not physical) generality to gain mathematical and expositional sim-

plicity. We shall also occassionally limit the generality of the systems 

of equations we treat in order to prevent undue proliferation in the 

possible results. Note that an undue proliferation of possible outcomes 

often suggests that t he optimal approach is to treat each specific problem 

separately . 

This completes this chapter on mathematical preliminaries. In 

subsequent chapters we will apply these results to study the stability/ 

i nstability of traveling waves and the connection between the initial 

conditions and the mean wavespeeds. This will be done for the classes of 

equations 

ut = F(u ,u ,u) 
XX X 

(and generalizations t o multiple spatial dimensions) in Chapters IV and V, 

for 

u 
t 

F(u ,u ,u, 
XX X 

JT ( G(q)(s,y,u(t-s,x-y))dyds) 
0 J IYI <Y 
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(and generalizations to multiple spatial dimensions) in Chapter VI, and 

also for 

(k) = F(u(k) (k) ) 
Ut XX ' UX ' U k = 1, ... , v 

(and generalizations to multiple spatial dimensions) in Chapter VII. 

The results of Chapter II will be included in Chapters IV and V, and 

Chapter VIII will examine physical examples of each of the above types 

of systems. 
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Chapter IV 

STABILITY FOR THE SIMPLEST CASE 

In this chapter we deal mainly with parabolic equations which 

contain only one dependent variable, contain only one spatial variable, 

and contain no integrals. Throughout this chapter we will assume that 

the hypotheses H2 (smoothness of the equation), H3 (parabolicity of the 

equation), and H4 and HS (existence of solutions to the initial value 

problem.) are satisfied. We will also assume that a very large M > 0 

has been chosen and we will work with the resulting specific equation 

f(u ,u ,u) , f 1 > 0, where f(u ,u ,u) :: FM( ii ) 
XX X XX X 

(4 .1) 

In this chapter we will a lmost exclusively be concerned with 

equation (4.1) over the domain {V(t,x) with X in a and t > 0}. Speci-

fically, in this chapter we wil l determine the stability/instability of 

very nearly every bounded traveling wave (and steady state) solution 

u(t, x) = ~(x-ct) . Thus some of the material in this present chapter is 

duplicated in chapter II. In this chapter we will treat only the travel-

ing waves and steady states u(t,x) :: ~(x-ct) for which ~~(x-ctl < M 

for all x . This is sufficient since each bounded traveling wave or 

steady state ~(x-ct) satisfies ~~(x-ct)l < M for all x for all M 

sufficiently large. In addition, in this chapter we will determine the 

stability of all steady state solutions u(t,x) = ~(x) to the finite 

domain-boundary value problem 

u f(u ,u ,u) for 0 < x < 1 , t > 0 
t XX X 

u(t,x) _ A a t x = 0 , u(t,x) - B at x = 1 

where A a nd B are any given fixed constants. 

This chapter has been organized into several short sections. 
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Basically the stability of monotonic traveling wave (and steady state) 

solutions of (4.1) over the infinite spatial domain is treated in sections 

(4.1) through (4.11). The instability of non~monotonic traveling wave 

(and steady state) solutions is treated in sections (4.12) through (4.17). 

Section (4.18) is used to discuss the stability/instability of the steady 

state solutions of the finite spatial domain-boundary value problem. 

Finally, the l a st section, (4.19), is used to summarize this chapter in 

broad terms. 

To be more specific, in section (4.1) we discuss the phase 

plane for traveling wave solutions u(t,x) = ~(x-ct) of equation (4.1); 

that is, the phase plane of the system 

~X 

f(v ,v, ~) + cv 
X 

v 

0 

In this discussion we pay particular attention to merged singular points 

as well as ordinary ones. In section (4.2) the stability for constant 

steady s tates is derived. 

In sections (4.3) through (4.6) we actually derive the stability 

of n on- constant monotonic traveling waves (and steady states). In sec-

tion (4.3) we discuss the nature of these monotonic wave s, especially the 

asymptotic (as x ~ + oo) nature. Next, the basic stability results are 

obtained in section (4.4). Then, better upper and lower functions are 

developed in section (4.5), and in section (4.6) these bounding functions 

are used to obtain our final sharp stability results for monotonic travel-

ing wave (and s t eady s t ate) solut i ons of (4.1) . 

The short sections (4.7) through (4.11) a re used to discuss top-

ics related to the stability of monotone waves. In section (4.7) we 
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extend the stability results to the cases where either ~(- oo) or~(+ oo) 

(or both) are not nodes, saddle points, nor merged combinations of nodes 

and saddle points. Section (4.8) is used to describe explicitly how the 

stability of a monotonic wave depends on the function f. Next, in sec

tion (4 .9) we compare our stability results with those obtainable by con

ventional eigenanalysis/variational methods. In a similar vein, in sec

tion (4.10) we show how the stability class for a monotonic wave ~(x-ct) 

splits the generalized null space of equation (4.1) linearized about ~. 

Finally, in section (4.11) we consider the extension of our stability 

results to multiple spatial dimensions. There we find that all our sta

bility results are easily extended to monotonic plane waves (in higher 

spatial dimensions), and also that our methods are applicable to other 

types of monotonic traveling waves in multiple spatial dimensions. 

We begin our d erivation of the instability of non-monotonic 

waves in section (4.12). We state and prove the instability theorem in 

this section using lemmas which are proved in section (4.13). In section 

(4.12) we find that every traveling wave and steady state solution of 

equation (4.1) which has at least two relative extrema is extremely un

stable. We also find that most traveling wave and steady state solutions 

which have exactly one relative extremum are also unstable. However, there 

iB a type of traveling wave and steady state solution with exactly one 

extremum for which we cannot determine the stability or instability. We 

discuss this indeterminate case in section (4.14), where we are able to 

charac terize which of those solutions a re stable and which are unstable. 

In sections (4.15) through (4.17) we discuss topics related to 

the instability of non-monotonic waves. We point out how the instability 
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proof can be adapted to strengthen the instability results for some types 

of constant steady states in section (4.15). We use section (4.16) to 

comment on some other uses of the h a ir-trigger effect, and in section 

(4.17) we extend the instability results (in a limited sense) to the 

multiple spatial dimensions case. 

In section (4.18) we treat the stability/instability of steady 

state solutions to the finite domain boundary value problem 

u 
t 

f(u ,u ,u) 
XX X 

u(t,x) - A at x = 0 

0 ~ X ~ 1 , t > 0 

u(t,x) = B at x = 1 

where A and B are fixed constants. We again find that steady state 

solutions with at least two relative extrema are unstable, solutions with 

exactly one relative extremum can be stable or unstable, and solutions with 

no relative extrema are stable. 

Finally, we will conclude this chapter in section (4.19) with 

some general overall remarks. 

4.1 Singular points in the phase plane. As in Chapters I and II, we 

begin by converting traveling wave solutions u(t,x) = $(x-ct) of 

ut 

into steady state solutions 

f(u ,u ,u) 
XX X 

u(t,x) = $ (x) 

ut = f(u ,u ,u) + cu 
XX X X 

(4.1) 

of 

(4.2) 

We do this by switching to a new coordinate system t',x' which travels 

with speed c rela tive to the original stationary coordinates: 

t' = t x' = x - ct (4.3) 

For convenience we drop the prime superscripts on the t' and x' and thus 

obtain (4.2). There is no possibility of confusion if we remember that 

the parameter c in (4. 2) can be used to obtain the original stationary 
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X = X + Ct 
stat 

Thus, instead of studying the traveling wave solutions of (4.1), we have 

chosen to study the steady states of (4.2) for each value of c. 

A typical method of examining the steady state solutions of 

(4.2) (at any fixed value of c) is to go to the phase plane. We write 

(4.2) as the equivalent first order system 

~X v 

f(v ,v,~) + cv 0 
X 

(4.4) 

and note that the phase plane is the graphical representa tion of the solu-

tions ~ (~,v) , v (~,v) of (4.4). 
X X 

The crucial points ~ = ~ 0 , v = v 0 in the phase plane are the 

singular points of (4.4); i.e. the points (~ 0 ,v 0 ) for which (4.4) im-

plies that = v 
X 

= 0 when v = vo. From (4.4) we see that 

~ = ~0• v = vo is a singular point if and only if 

vo = 0 0 

Thus ~ = ~ 0 , v = 0 is a singular point for all values of c if it is 

a singular point at any speed c = c 0 • 

These singular points are crucial because if u(t,x) - ~ (x) is 

a monotonic steady state solution of (4.2), then ~ ~(-~), v ~ (-~) 
X 

and ~ = ~(~), v = ~ (~) must be singular points. Moreover, as we 
X 

discovered in Chapter II the stabi lity of a monotonic steady state solu-

tion u(t,x) = ~(x) dep ends heavily on which types of singular points 

~ (-oo) and ~(~) are. 

The usual classification of singular points is as nodes, spiral 

points, and saddle points. We note that the usua l definitions of these 
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types of singular points are that 

~ = ~o. v = 0 is a node of (4.4) when f(0,0,~ 0 ) 

and for values of c such that lf 2 (0 ,0, ~o) + c l > 

~ ~0• v = 0 is a spiral point of (4.4) when f(0,0,~ 0 ) = 0, 

f3(0,0,~ 0 ) > 0 and for values of c such that lf2(0,0,~ 0 ) + cl < 

~ ~0• v = 0 is a saddle point of (4.4) when f 3 (0,0,~ 0 ) < 0 for all 

values of c. 

Note that these definitions include centers as a special case of spiral 

points. We will now extend the definitions of nodes and saddle points to 

cover the case where f3(0,0,~ 0 ) = 0 and which can be thought of as two or 

more singular points merged together at ~ = ~ 0 , v = 0. 

We firs t define a singular point ~ = ~0• v 0 of system (4.4) 

to be regular when f(O,O,~) has a zero of order m at ¢ = ¢ 0 for some 

positive integer m. Specifically, for m a positive integer we define the 

point ~ = ~ 0 , v = 0 to be a regular singular point of order m if and 

only if there exists a ~ ~ 0 and a q > 0 such that 

as ~ + ¢0 

m-1 lm+q-1 
~m(~-~o) + O(j¢-¢o ) 

(4.5) 
as ¢ + ¢0 

We now extend the definition of 'node' and 'saddle point' to cover 

all possible regular singular points. We first realize that a higher order 

singular point (~ 0 ,0) can behave differently for ¢ ~ ~0 than for ¢ $ ¢o· 

For example, it can be node-like for ~ ~ ¢o and saddle-like for ¢ $ ¢o · 

Hence we shall use both a + designation (for the behavior when ¢ ~ ~o) 

and a designation (for the behavior when ~ $ ~ 0 ) for a singular point 
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Note that ordinary first order nodes (and spiral points) have 

f(O,O,~) > 0 for ~~~0 and have f (O,O, ~) < 0 for ~$~ 0 • Note also 

that the range of values of c for which ~ = ~ 0 , v = 0 can be a spiral 

point (or center) collapses to nothing as f 3 (0,0,~ 0 ) 7 0. Moreover, 

first order saddle points have f(O,O,~) < 0 for ~~~O and have 

f(O,O,~) > 0 for ~$~0· We therefore define a regular singular point 

of order m (m ~ 2) to be a + node (+ saddle) if (if 

m 
~(~-~ 0 ) < 0) for ~ > ~ 0 . Similarly, we define a regular singular point 

of order m (m ~ 2) to be a - node (- saddle) if (if 

m 
~(~-~ 0 ) > 0) for ~ < ~ 0 . For completeness, if C~o,O) is an ordinary 

first order node (first order saddle) we will designate it as a - node 

and as a +node (as a -saddle and as a +saddle). For brevity, we 

will designate a regular singular point as a + N, a - N, a+ S, or a 

- S to denote that it is a + node, a - node, a + saddle, or a - sad-

dle, respectively. When we need to refer to the behavior of f(O,O, ~) 

for both ~ ~ ~0 and ~ $~ 0 , we will designate a regular singular point 

(~ 0 ,0) as a N, S, NS, or SN if it is both a - N and a+ N, both a 

- S and a+ S, both a - N and a+ S, or both a - S and a+ N, res-

pectively. 

This completes our discussion of singular points in the phase 

plane. Although we have not shown that these extensions of the defini-

tions of node and saddle point are reasonable, if one solves the asymp-

totic formula 

and plots the resulting solutions in the phase plane near ~ ~ 0 , 

~ = v = 0, one sees that loca lly ~0 
X 

behaves exactly like an ordinary 

node (like a saddle) f or ~ ~ ~ 0 when it is a + N (when it is a + S). 
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Similarly it behaves exactly like an ordinary node (like a saddle) for 

when it is a - N (when it is a - S). 

Although it is not mathematically necessary, subsequently we 

will usually work only with regula r singular points. This simplifies 

both the mathematical details and the exposition. Thus we w~ll often 

use the following hypothesis 

H6: All singular points ~ ~ 0• v = 0 with l~ol < M of the system 

are regular. 

~X v 

f(v ,v,~) + cv 0 
X 

(4.4) 

Since there are physically interesting examples where the singular points 

of (4.4) are not regular (notably equations like Burger's equation where 

f(O,O,~) = 0 for all ~), often we will point out generalizations of 

our theorems in remarks following the theorems. 

We now use these definitions in deriving the stability of con-

stant steady states. Later they will prove important in determining the 

stability of monotone waves. 

4.2 Stability definitions. Stability of constant steady states. The 

stability of constant steady states is very simple. We will therefore 

simply state and prove the result. However, in order to state the re

sult precisely, we need to reintroduce the definitions of Cw-stability 

and ~w-stability. These definitions will be exactly like those used in 

Chapter II, except that the perturbations of the initial conditions will 

now be required to satisfy the smoothness conditions needed by the exis-

tence assumption H4. Specifically: 
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is defined to be in the class H 2 if and only 
X 

if IJI(x) is defined for all X in (- 00 , 00) , IJI (x) is twice differen-

tiable everywhere, IJI (x), '¥' (x), and IJ:'" (x) are bounded, and IJI" (x) is 

uniformly Hoelder continuous wfth some exponent a. > 0. 

Let w(x) be any continuous function with w(x) > 1 for all 

x. Then any steady sta te solution u(t,x) = ~ (x) of equa tion 

f(u ,u ,u) + cu 
XX X X 

(4. 2) 

i s defined to be Cw-stable if and only if given any e > 0 there is a 

8(E) > 0 such that every solution u(t,x) of (4.2) satisfies 

l£u(t,x)- ~(x)}w(x) I~ e for all x and all t > 0 

'vhenever the :initial conditions u (0 ,x) are in H2 and satisfy 
X 

l£u(O,x) - ~(x)}w(x) I ~ 6(c) for all x 

(4. 6) 

(4. 7) 

Similarly, ~(x) is defined to be ~w-stable if and only if for every 

E > 0 there is a 8(e) > 0 such that every solution u(t,x) of (4.2) 

satisfies 

luCt,x) - ~ (x ) I 2. e for all x and a ll t > 0 (4.8) 

whenever the initial conditions u(O,x) 

tion (4. 7). 

are in H2 and s a tisfy rela
x 

These stability definit ions are precisely the s tability defi-

nitions of Chapter II, except tha t the phrases "the initial conditions 

u(O,x) are s mooth" have been replaced with "the initial conditions 

u(O,x) are in H2 ". 
X 

Thus the physical interpretations of these stability 

definitions remains the same as in Chapter II. Note also that H2 has 
X 

been defined so that u(O, x) ~H2 is exactly the smoothness condition 
X 

needed by the existence hypotheses H4. 

With these new definitions, we easily state and prove the 
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stability results for constant steady states. 

Theorem 4.1: Suppose that hypotheses H2, H3, H4, and H6 are satisfied. 

Suppose further that u(t,x) ~ +o is a constant steady state solution of 

u 
t 

f(u ,u , u) + cu 
XX X X 

(4 . 2) 

and that l+ol < M. Then + = +0 , v 0 is a regular singular point of 

order m (for some positive integer m), and 

(1) if + = +o• v = 0 is a + S t hen u(t,x) ~ +o is Cw-stable 

with w(x) ~ 1 if the perturbations are restricted to be non-negative; 

(2) if + = +0 , v = 0 is a s then u(t,x) - +o is cw-stable 

with w(x) - 1 if the perturbations are restric t ed to be non-positive; 

(3) if • = +o, v = 0 is a s then u(t,x) - +o is cw-stable 

with w(x) ~ 1; 

(4) if • - • 0' v = 0 is a + N t ype singular point of order m 

or is a spiral point or center, then 4(x) is ~w-unstable with w(x) 

~ 1. Further, if i t is a + N of order 1 , a spiral point, or a cen-

ter then it is ~w-unstable with 
-KX +KX 

w(x) ~ 1 + e + e for K > 0 

sufficiently small, and if :i.t is a + N of order 2 then it is t!_} 

unstable . Moreover, u has these instabilities even if we restrict the 

perturbations to be non-negative ; and 

(5) if + = +0 , v = 0 is a - N type singular point of order m 

or a spiral po int or center, then u(t,x) ~ $o has the same instability 

as in case (4) except that the perturbations can now only be restricted 

to being non-positive. 

Thus, in rough terms constant steady s t ates are very stable if 

they are saddle points and are unstabl e if they are nodes, spiral points, 
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or centers. Furthermore, the weaker (i.e., htgher order) the node the 

weaker the instability. 

Proof: To prove the stability parts of the theorem, we will define ap-

propriate smoo t h upper and lower functions u(t,x) and ~(t ,x). The 

maximum principle will then yield stability . 

For part (1), define u(h,t,x) and ~(t,x) by 

u(h,O,x) = <t> 0+h,; (h,t,x) = f(O,O,~(h,t,x)) (h>O), .!:.!_(t,x) - <l>o 
t 

(4. 9) 

Note that u and u are both solutions of equation (4 . 2). Moreover, 

since <1> <l>o. v 0 is a + S then f(O,O,u) and hence u are both 
t 

negative for all h > 0 sufficiently small. Thus for all h > 0 small 

enough u < 0 
t 

for all t > 0. Now suppose that u(O,x) is any initial 

condition in H2. Then the soluti.on u (t ,x) of 
X 

u 
t 

= f(u ,u , u) 
XX X 

+ cu 
X 

(4 . 2) 

exists for all t > 0 and has u, u x' and u bounded. If u(O,x) 
XX 

also satisfies 

<l>o ~ u(O,x) ~ <l>o + h f or all x 

for any h > 0 small enough, we: conclude f rom the maximum principle that 

<l>o = ~(t,x) ~ u(t,x) ~ u(h,t,x) < u(h,O,x) - <l>o + h for all x 

is satisfied for all t > 0 . Thus u(t,x) = <l>o is Cw-stable with 

w(x) = 1 if the perturbations u(O,x) - <l>o are restricted to be non-

negative. 

Part (2) is proved similarly . 

To prove part (3), we define u(t,h,x) and ~(t,h,x) for 

h > 0 by 
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u(h,O,x) - <Po + h u f(O,O,u) 
t 

(4 . 10) 
~(h,O,x) - <Po h u 

-t 
f (0' 0 .~) 

Since <P = <Po. v = 0 is an s ) \ve conclude that whenever h > 0 is 

small enough then ut. (h,O,x) < 0 for all t > 0 and u (h,O,x) > 0 -c 

for all t > 0. Thus, the existence assumption H4 together with the 

maximum pri nciple imply that whenever u(O,x) is in H2 and 
X 

<lsu - h ~ u(O,x) ~ cl>o + h for all x 

is satisfied for any h > 0 small enough, then the solution u(t,x) of 

(4.2) with initial condition u(O, x ) exists and satisfies 

<Po - h ~ ~(h,O,x) < ~(h,t ,x) < u( t,x) < u(h,t,x) < ~(h,O,x) - <Po + h 

for all x 

and for all t > 0. Thus u(t,x) ~ <Po i s Cw-st able with w(x) ~ 1. 

We now prove part (4), first dealing with the case that 

<P = <Po, v = 0 is a node of order 1, a spiral point, or a center. In 

these cases , f 3 (0,0,<Po) = Jl > 0. Thus define 

~(h,t,x) = <Po + he]lt/
4 

sech KX 

where h > 0 and ' K > 0 are at our disposal. Define 

A :: sup lf1(a , B,y) I 
a,l3,y 

, B = sup jf2 (a,B,y) + cl 
a, B, y 

and let K > 0 be any constant small enough so that 

AK2 < ]l/4 , BK < ]l/4 

Then , 

u - f(u ,u ,u)-cu ~ ]l/4(~-<Po) - f1~x- (f2+c)~ - Jl(~-<Po) + h.o.t.s. 
-t --xx --x - ---x """ """ 

where £ 1 :: f 1 (0,0,<jl 0), £ 2 = £ 2 (0,0,<1> 0), and ''h .o .t.s" are "higher 

order terms" . Substituting for ~· 1i7e fi.nd that 

~ - f (u , u , u) - cu ._ --xx --x - --x 
]lh ]lt/4 

< - - -- e sech KX + h . o. t. s 
l~ 

. (4.11) 

Since f 1 , £ 2 , and f 3 are uniformly Hoelder continuous with some non-
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zero exponent, there exists an ho such that 

u - f(u , u ,u) - cu < 0 for all X 
-t -'XX -x- - x (4.12) 

whenever h > 0 and t > 0 are such that 0 < hellt/4 < ho. 

In order to see that (4.12) implies instability, define u(h,t,x) 

as the solutions of (4.2) with u(h,O,x) = ~(h,O,x) for 0 < h < h 0 . 

Since the u(h,O,x) are in the existence assumption H4 and the 

maximum principle together imply that u(h,t,x) exists and 

~(h,t,x) _2 u(h,t,x) for all X 

whenever 0 < h < ho and for all t > 0 such that 0 < hellt/4 < ho . 
Since ~(h,t,x) <Po 

+ he\lt/4 sech KX and u(h,O,x) <Po + h sech Kx, 

n(t,x) = <Po is ~w-unstable with w(x) :: ] + eKx + e-xx even if the 

perturbations are restricted to be non-negative. 

Suppose now that <P = cp 0 , v = 0 is a + N of order m > 2. 

Consider 

(4.13) 

where n is a fixed constant in 
. 1 

(0, -. -1). m-
Let t 0 > 0 be any fixed 

positive number. By ·an analysis similar to the preceding case, there is 

an ho > 0 such that 

.!!..- - f (u , u , u) - cu < 0 
._ -xx -x- -x 

whenever to > t > 0 and xo > 0 are sueh tha t 

1 1 n -
(to-t) m-1 I xo I m-1 < ho . 

Since x 0 can be arbitrarily large (and thus I ~Cto,xa,t,x) - ¢ol is 

arbitrarily sma ll), defining u(t 0 , x 0 ,t,x) as the solution of (4.2) with 

initial condition u(to,xo,O,x) shows that u(t,x) = ¢0 is 
w t; -unstable 

with w(x) :: 1 as in the preceding case. Note that when m = 2, 

u(t 0 ,x0 ,0,x)- ~ 0 is~ integrable when n is chosen to be in (0,~). 
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This completes part (4). 

Part (5) is proved simil~ __ r __ l~y_. __________________________________ __ 

This completes the stability p.icture for constant steady states 

u(t,x) = <Po when <Po is a regular singular point. Note that equations 

(4. 9) and U•. 10) show that when <Po is + S, a - S, or a S then small 

non-negative pert11rbations, small non-positive perturbations, and all 

perturbations (respectively) decay exponentially in time (if m 
1 

1), or 

like 
t 

m-1 (if m>1). Similarly, perturbations about 
1 

<Jio grow ex-

ponentially in time (if m = 1) or like (t 0-t) 
m-1 (if m > 1) when 

the perturbations are restricted to a node-like region. 

Lastly, we note that the stability of a constant steady state 

solution u(t,x) = <Po when ct>o is not a regular singular point can be 

found by the same technique. This results in u(t,x) = 4>o being 

1) Cw-stable for positive perturbations if f(O,O,!jl) < 0 for all 

<P in (ct>o.ct>o+h) for some h > 0, 

2) ~w-unstable for positive perturbations if f( O,O, cj>) > 0 for all 

4> in (cl>o,<Po+h) for some h > 0, 

3) Cw-stable for negative perturbations if f(O,O,<j>) > 0 for all 

<P in ( ct>o-h,ct>o) for some h > 0, 

4) ~w-unstable for negative perturbations if f(O,O,cj>) < 0 for all 

cj> in (cj> 0-h,cj> 0 ) for some h > 0, and 

5) cw-stable if f(O,O ,cj>) < 0 for all ¢ in ( <Po,<Po~b) and if 

f(O,O,cj>) > 0 fo r all cj> in (<j> 0-h,cj> 0) for some h > 0. 

In the above, w(x) = 1. 

This conc ludes our analysis of constant steady states . In the 

next section, we begin our analysis of monotone steady states . 
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4.3 Nature of monotone traveling waves. For this section we assume that 

u(t,x) = ~(x) is a bounded non-constant monotonic steady state solution 

of 

u = f(u ,u ,u) + cu 
t XX X X 

(4.2) 

From this assumption we will deduce some facts about ~(x). These facts 

will be needed in the actual derivation of the stability results for non-

constant bounded monotonic steady state solutions of (4.2). 

We first note that since u(t,x) = ~(x) is monotonic and non-

constant , ~ (x) * 0 for all x. This is because ¢(x) being monotonic 
X 

implies that either ~ (x) > 0 for all X or cp (x) < 0 for all x. 
X - X -

Hence if ~ (x) = 0 at some X = XQ then we would have ~x (xo ) = cpxx(xo) X 

= 0. Thus, equation (4 . 2) would imply that 

f(O,O,¢Cx 0)) 0 

and hence that u(t,x) = cp(x 0 ) is a constant steady state solution of 

equation (4.2) . By the uniqueness of solutions of ordinary differential 

equations, this implies that cp(x) = cp(x0 ) for all x. Hence cp(x) be-

ing a non- constant monotonic steady state solution of equation (4.2) im-

plies that ~ (x) ~ 0 for al l x. 
X 

We now note that cpx' cp , and cp /cp are all bounded. Speci-
xx XX X 

fically, because equation (4 . 2) reduces to a heat equation whenever 

\cp I >2M, either \cp (x) \ <2M for all x or 
X X 

l~(x)\ grows linearly 

for all x sufficiently large or small. Since this latter case violates 

the boundedness of cp(x), we see that ,~ is bounded for all x. 
"'x 

The 

function cpxx is also clearly bounded. This is because cp and ~x are 

bounded, because f 1 (a,B,y) ~ 6M > 0 for some 6M > 0 and for all argu-

ments a,B,y , and finally because 
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f(<P ,cp ,cp) + d = 0 
XX X X 

(4.14) 

We already know that cf> 1~ is bounded for all x in any 
XX "'x 

finite interval and that cf>xx/ q,x is continuous . Since cp -+ cp (+oo) and 

~ -+ 0 
"'x 

as equation (4.14) implies that 

as well. Thus, asymptotically the formula 

<Pxx -+ 0 as 

must be satisfied, where the arguments of f 1 ' f2, and f3 are (O,O , <P(+oo)). 

We note that solving this equation shows that cpxx1<Px remains bounded as 

x -+ +oo b ecause fl > 0 and f2 and f3 are finite. Similarly <P 
XX 

/cP 
X 

r emains bounded as X -+ - 00 

' 
and is t herefore bounded for all x .• 

We also note that solving the asymptotic equa tion shows 

that I<Pxxl is decreasing for all x and all - x sufficient ly large . 

The rest of this section treats the asymptotic nature (as 

x -+ - oo and x -+ + oo) of monotonic solutions of the steady state equa-

tion, (4.14) . This is done only for the cases whe re cp(-oo) and cp(+oo) 

are both regu lar singular points . These results are contained in table 

4.1, and are derived by solving t he asymptotJcally valid formula 

m 
f 1 cp + (f2+c )cf> + ~(cp-cp 0 ) = 0 

XX X 
(4 .15) 

He re, <Po is the appropriate one of <P(-oo) and cp(+oo), f1 = fi (O,O,cpo), 

f 2 = f 2 (0,0,¢ 0), m is the order of the singular point cp • cf>o, v = 0, 

and ~ is the correct coefficient. For brevity table 4.1 contains only 

the asymptotic decay rates of tfl(x) as x-+ - oo and x-+ + oo for the 

case of cp(x) being monotonically increasing. This is sufficient since 

r eplacing x by - x changes a decreasing function into an increasing 

function . Also for brevity, the table only contains the asymptotic nature 

of cp . The a symptotic decay r ates o f ~ can correctly be obtained by 
"'x 
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formally differentiating the asymptotic formulas for cp . 

Table 4.1 

Part 1: Asymptotic nature of cp(x) as x + + oo , ¢'(x) > 0 everywhere 

>..1,2 -

Case 1: 

Asymptotic equation: 

- (f 2 +c)±l(f2+c) 2+4llf 1 

2fl 
if m 1 

,where >.. 1 ..::_ /, 2 
-{f?+c) ± l f2+c J 

2fl 
if m = 2,3, .. . 

cp = <j>(+oo), v 0 is a S Requirements: l1 > 0 

if m = 1 <P cp (+oo) + AlX O(e(>.. l-o)x) - a 0e + 

if m>1, f 2+c>O cp - <j> (f-oo) + a 0e AlX + O(e (Al-o )x) 

1 1 

if m>1, fz+c<O m-1 - m-1 -
cp - cp(+oo) + a ox + O(x 

2 2 

if m> 1, f 2+c=O m- 1 - m- 1 -
¢ - ¢ (+oo) + a ox + O(x 

for some constants a 0 < 0 and o > 0 . 

0 
) 

0 
) 

Case 2: ¢ = ¢(+oo) , v = 0 is a N . Requirements: 11 < 0, (f2+c) > 0, 

and when m = 1 (f2+c)2 ~ -4pfl 

ifm 1 • (f2+c)2 > -4pfl cp - >.. 2x (>.. 2-o)x 
¢(+vo)+ane +O(e ) (usual) 

or ¢ - cp(~=)+aoe>..lx+O(e(>..l- o)x) (accidental) 

ifm l, (f2+c)2 -4pfl ¢ A2X A2X cp(+oo)-t-a 0xe +O(e ) (usual) 

or cp - <j>(+oo)+aoeA.2x+O(e(>..2- o)x) (accidental) 
1 1 

(f2+c) >O - m=r - m=r -o ) (usual) if m > 1' cp - aox m- + O(x m-

or cp - a 0 e 
A. 1x + O(e(A.l-o)x) (accidental) 

for some constants a 0 < 0 and o > 0 

Other cases: No solution decays to cp = cp(+oo) as x + + oo if p < 0, 
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(f2+c) 2 0, and m > 1. No monotone solution decays to ~ = ~(+ro) as 

x + + oo when p < 0, m = 1, and (f2+c) 2 < - 41-lfl or (f2+c) 5:._ 0. The 

case \-1 = 0 for all m is an excluded irregula r singular point case . 

Part 2: Asymptotic nature of ~ (x) as x ->-- ""• cp '(x) > 0 everywhere 

Asymptotic equation: f 1 ~ + (f2+c)<P + pjcp-cp(-oo) lm = 0 
XX X 

if m 1 
A. l 2 -, 

if m = 2,3, ... 

Case 1: cp = cp(-oo), v = 0 i s a S+. Requirements: p < 0. 

if m = 1 .p - <P(-oo)+aoe>..2x+O(e(>..2+6)x) 

if m>1, (f 2+c) <O <P 
- <P(-oo)+aoe>..2x+O(e(A.2+6)x) 

1 1 
if m>1, (f2+c) >O <P - cp(-oo)+aolx!- m-1 + oclx!- m-1- 6) 

2 2 
if m>1, (f2+c)=O <P - cp(-ro)+aolxl- m-1 + ocl x l- m-1 - 6) 

for some constants a 0 > 0 and 6 > 0 

Case 2: <P = cp(-oo), v = 0 is a N+. Requirements: p > 0, (f 2+c) < 0 

and when m = 1 (f2+c) 2 .::. 4pfl . 

if ro 1., (f2+c) 2>4Jlfl <P 
~ (-oo)+aoe>..lx+O(e(A.l+6)x) (usual) 

or <P -
<P (-ro)+aoeA.2x+O(e( A.2+6)x) (accidental) 

if m 1 , (f2+c) 2=4pf 1 
,p I AlX A}X <P ( -oo)+a o x!e +O(e ) (usual) 

or 

if m > 1, (f2+c) <O 

or (a ccidental) 

for some constants a 0 > 0 and 6 > 0 

Other cases: No solution decays to <P = ¢(- oo) as x +- "" if \-1 > 0, 

(f 2 +c) .::_ 0, and m > 1. No monotone solution decays to <P = ljl (- oo) 
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when ll > 0, m = 1, and (f2 + c) 2 < 4p.fl or (f 2 +c) ~ 0. The case 11=0 

for all m is an excluded irregular singular point case . 

In the t able above, there are two possible asymptotic natures 

listed when ~(x) decays to a node ~ = ~ 0 , v = 0 as x + - =or as 

x + + oo. The slowest of these decays is labeled the "usual" decay and 

the more rapid is labeled the "accidenta l" dec:ay. Whenever the conditions 

of case 2 of part 1 hold, there exist s a solution '(x) of 

f (1!1 
' ') + c 1V for which 1!1 (+00 ) = ~> o , for which 1[1' (x) > 0 for all xx' x' x 

x sufficiently large, and for which 111 (x) decays to cp 0 at the acci-

dental rate as x + + oo Any monotonically increasing solution cp(x) 

of f(cpxx'cpx,cp) + c!j>x which goes to cp 0 as x + + oo must either be 

ll'(x+h) for some constant h, or it must decay at the usual rate. Simi-

larly, there can be only one solution ll'(x) (modulo translations in x)of 

f(l[l ,1[1 ,1[1) + ell' which decreases to a node at the accidental decay rate 
XX X X 

as x + - oo . Note that in this light, solutions cp(x) of .f(cp , cp .~)+ccp 
XX X X 

whi.ch decay monotonically to a saddle point cp = ct>o, v = 0 as x + - oo 

or as x + + oo must be considered "accidentally decaying" solutions. 

This is because there can only be one monotonically increasing solution 

ll'(x) (modulo translations in x) which decays to a saddle point as 

x + - oo or as x + + oo. 

The asymptotic nature of monotonic solutions which decay to an 

irregular singular point as x + - oo or x + + oo can also be found by 

solving the appropriate asymptotic equation. He will not do this; instead 

we note that for any specific example it is a straight forward procedure. 

Note that we have proven only a few of the general results con-

cerning the behavior of solutions ~(x) of equations (4.14) contained in 
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this section. However, we shall presume that these results are correct , 

noting for any specific solution ~(x) to any specific equation that 

verification of these results is trivial. 

In the next three sections we will use these results to derive 

the stability results for monotonic waves. These sections will closely 

follow the developments in section (2.2). 

4.4 Basic stability results for monotone waves. We now derive the basic 

stability result for monotone waves. The result is equivalent to theorem 

(2.2) in Chapter II. 

We can easily demonstrate that a monotonic steady state solution 

u(t,x) - ~ (x) of 

u = f(u ,u ,u) + cu (4.2) 
t XX X X 

must possess at least a limited amount of stability. Suppose for example 

that ~(x) is monotonically increasing in x. Then for any h > 0 (no 

matter how small) Hx-h) and <P(x+h) also solve (4. 2) . So, when u(O,x) 

is any smooth initial condition with 

~(x-h) 2_ u(O,x) < Hx+h) (4.16) 

then the maximum principle s hows that 

Hx- h) 2_ u(t,x) 2_ cp(x+h) (4.17) 

for all t > 0 as well. That is, u(t,x) must remain in the shaded 

region for all t > 0 in the illustration below . To obtain a definite 

stability result, we need only identify the class of functions which can 

be bounded as in (4.16) and (4.17). 
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Theorem 4.2: Suppose that hypotheses H2, H3, and H4 are satisfied. If 

u(t,x) = ~(x) is any bounded non-constant monotonic steady state solu-

tion of 

ut = f(u ,u ,u) + cu , 
XX X X 

(4.2) 

then it is a cw-stable solution with ( ) 1 + 1 
w x = I~ I (x) I 

Note that H6 (all singular points are regular) has not been as-

sumed. Thus the theorem holds even when <P(-oo ) or <fl(+oo) is an irregular 

singular point. 

Proof : The functi.on u(t,x) = <jJ(x) solves (4.2), and thus for any h, 

u(t,x) = <jJ(h,x) = ~(x+h) does also. The existence assumption H4 and the 

maximum principle together show that whenever the initial conditions 

u(O,x) are in H2 and also satisfy 
X 

<l>(x-h) .:_ u(O,x) .:_ <P(x··!·h) for all x (4 .16) 

then the solution u(t,x) of (4.2) exists for all t > 0 and satisfies 

<P(x-h) .:_ u (t ,x) .:_ <P(x+h) for all x (4.17) 

for a ll t > 0. This implies w C -stabili t y with w = 1 
1 + I iJ> ' (x) I · 

Specifically, from (4.17), 

1 
< (1 + I<P 1 (x)l){u(t,x)-<P(x)] 

1 
2_ (1 + l<P 1 (x) I) [<P(x+h) -<P(x)] 
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Since cp"(x), cp '(x) and <j>"(x)/cp'(x) are bounded, and sinc e I <P " (x) I is 

decreasing for all x and - x sufficiently large, there is a B > 0 

such that 

( 1 + 1 <j>, ~x) I) I.P (x+h) -cfl (x) I _:._ B I hI for all h and all x. 

Thus for any E > 0, lu(t,x)-<fl(x) I (1 + I<J>'~x) I) < E when we take 

lhl < E/B . (We of course select the sign of h as sgn{cfl '(x)} so that 

<j>(x+h) > <l>(x) > <P(x-h)). Since there is also a o (I hI) > 0 such that 

lu(O,x) - cp(x) I (1 + lcfl' ~x) I )_:._ o(lhl) 

implies cfl(x-h) _:._ u(O,x) < cfl(x+h), Cw-stability of the solution cfl(x) 

of (4.2) is established . 

The theorem states that a monotonic steady state cfl(x) is 

Cw -stable with w(x) :: 1 + 14·, ~x) I This means that the solution 

u(t,x) = cfl(x) is stable to small perturbations u(O,x) - cfl(x) which 

decay asymptotically like l cp '(x) I as x + - oo and as x + + oo Note 

that when <P(- x) (when <P(+ x)) is a regular singular point, t able 

4.1 lists these asymptotic decay rates as x +- oo (as x + + oo). 

We proved the above stability theorem by using the solutions 

1/•(x-h) and cj>(x+h) as our upper and lower functions . In the next section 

(4. 5), we will find better upper and lower functions when ei.ther cfJ ( - oo) 

or cp(+oo) is a saddle point. Thi s will be done by exploiting the differ-

ential inequalities allowed by the maximum principle. These upper and 

lower functions wil.l then lead to our final (sharp) stability result for 

monotone steady state solutions of (4.2). 

4. 5 Improved upper a nd lower func tions . In this section we exploit the 

differential inequalities allowed by the maximum principle to find better 
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upper and lower functions for equation (4.2). Recall that u(t,x) and 

~(t,x) are defined to be upper and lower functions (respectively) of the 

equation 

u = f(u ,u ,u) + cu 
t XX X X 

(4. 2) 

if and only if they satisfy the f ollowing differential inequalities: 

ut - f(~ ,u ,u) + cu > 0 
XX X X 

(4.18a) 

~ - f(u ,u ,u) + cu < 0 .. --xx - x - --x - (4.18b) 

Suppose that u(t,x) = ~ (x) is a bounded monotonic steady state 

solution of (4.2) and that one of $(-oo) and ~ (+oo) is a first order saddle 

point and the other is a regular singular point of order m > 1. In this 

case the following lemma yields upper and lower functions which are much 

better for our purposes than ~(x+h) and ~ (x-h). Note that when both 

cjl (-oo) and ~(+oo) are ordinary first order singular points the following 

lemma essentially reduces to lemma (2.3) of Chapter II. Note also that the 

lemma only direc!J.L considers the case of cjl(x) being an inc reasing func-

tion of x . This is sufficient since the transforma tion x + - x will 

change any decreasi.ng function to an increasing one. 

Lemma 4.3: As s ume that hypotheses H2, H3, a nd H4 are satisfied. Suppose 

that u(t,x) = cp(x) is a bound ed non-constant monotonic stea dy state s olu-

tion of e quation (4.2) . In pa rticular, suppose that cp(x) is increasing 

in x . Define cjl(-oo) - <j> and <P (+:.o) = <j>+. Then 

(1) if cjl = cjl ' v 0 is a regular s ingular point (of order m > 1) 

a nd <P = <P+' v = 0 is an ordinary f irst order s a ddle point, then 

u(t, x ) - <P(x+h(t)) + q(t)·Ep(x+h(t))-cp_J n and (4.19a) 

.!:!_(t ,x) - <j> (x··h(t)) q ( t){~ (x-h ( t)) - <P _] 
n 

(4.19b) 

are upper and lower functions (respectively) o f equation (4.2). Here 
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n > 1 is defined by c~ (x)-~_]n/~'(x) + a as X + - 00 where a 

positive c onstant, and 

-st 
h(t) = a K(1-e ) + h 0 q (t) = -st 

a e 

is a 

(4.20) 

where s and K a r e particular positive c ons tant s , h o is arbitrary, and 

a > 0 is any sufficiently small constant· 

(2) if ~ = ~-' v = 0 is an ordinary first order saddle point and 

<P = ~ +' v = 0 is a regular 

~(t,x) - ¢(x+h(t)) 

~(t ,x) - ~(x-h(t)) 

are upper and lower functions 

n > 1 is defined by 

singular point (of order m > 1) • 

+ q ( t){<P+ -<jl (x+h ( t) )] n and 

q ( t )-[,p_1_-~ (x-h ( t) )] n 

(respect i.vely) of equation (4. 2). 

+ a as x + + ou 
+ 

where 

then 

(4.21a) 

(4.21b) 

Here 

is 

some positive constant, and h(t) and q(t) are defined as above. 

When one of ~ = ~ , v = 0 and <P = <P+' v = 0 is an ordinary 

first order saddle point and the other is a regular singular point (of some 

order m ~ 1), the above lemma provides new upper and lower functions . 

As x approaches the saddle point at either x = - oo or x = + oo, 

u(O,x) - ~(x) and <P(x) - ~(O,x) asymptote to positive constants . How-

ever, as x approaches the other singular poin t at either x = + oo or 

x = - oo , u(O,x) - <f>(x ) and ljl (x) - !!_(O,x) decay asymptot i cally like <P' (x) 

does, which is the same asympt•) tic decay rate that ~ (x+h) -¢(x) and 

<jl(x) - ~(x-h) decay at. Since ~(O,x)-cp(x) and <P(x)-~(O,x) decay asymp-

tot i cally no fast e r than ~(x+h)-lp(x) and <f>(x)-~ (x-h) at the non- saddle 

point en d and since ~(O,x)-¢(x) and cp(x)-':!.(O,x) asymptote to positive 

constants at the saddle point end, these new upper and lower func tions are 

much b e tter for stability proofs than the ~ (x+h) and ¢(x- h) used pre-

viously . 
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In figures (1) and (2) below, we have sketched the new upper and 

lower functions at t = 0 and t = + oo, Note that in these sketches we 

have used a value of ho for the upper functions which is ~h > 0 lar-

ger than the value used for the lower functions. 

L 
X 

Figure (la): The functions u(O,x) and E_(O,x) from (4.19) when <jl=<jl+,v=O 
is a first order saddle point. 

s 

L 
X 

Figure (lb): The functions ~(-1-co,x) and .!:!_(+oo,x) from (4.19) when cf>=<j>+,v=O 
is a first order saddle point. 
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L 
X 

<P_- s 

Figure (2a): The functions u(O,x) and ~(O,x) from (4 . 21) when ~=~_,v=O 
is a first order saddle point. 

~+ 

L 
X 

s 

Figure (2b): The functions u(+oo,x) and ~(+oo,x) from (4.21) when ~=~_,v=O 
is a first order saddle point . 

Proof of lemma (4.3): We prove only that u(t,x) in (4.19) is an upper 

function. The proofs of the other cases follow from similar calculations. 

We will prove u to be an upper function of (4.2) by showing 

that ut - f(u ,u ,u) - cu > o. Let us abbreviate f 1 = f 1 (~ .~ .~), 
XX X X XX X 
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cjJ 'h [l+nq (cjJ-cjJ ) n-1 J + q (¢-4> ) n 
t - t -

cp + q(<j>-cp )n 

cp' [l+nq(cp-cp_)n-1] and 

u 
XX 

= 4> 11 [l+nq(cjJ-cjJ_)n-l J + 

(4.22a) 

(4.22b) 

(4.22c) 

(4. 22d) 

where the argument of ¢, <1>', and¢" is x + h(t). We now substitute 

these in ut - f(u ,u , u) - cu and expand in q. 
XX X X 

We first consider the region x + h(t) ~ x 0 where x 0 > 0 is 

very large. We find 

u - f(u .~ .~) - cu > 4J'h + q (cp-cp )n (4.23) 
t XX X X - t t -

n·-1 n-2 
- f 1q{<j>"n(cp-<j>_) +cfl'cfl'n(n-l)(cp-cp_) } 

n-1 · n 
- (f2+c)qcf>'·n(cp-cp_) - f 3q(cp-cp_) 

h { " 1 , ( ) n-2 , ( ) n} + .o. cp q, <I> cp cp-cp_ q,cp q, q cp-cp 

where h.o. stands for terms uniformly of h igher algebraic order; that 

is, h.o. {s a(x), sb(x), sc(x), sd(x)} - O(s
1+8 

max{a(x),b(x),c(x),d(x)}) 

uniformly in x (for x > x 0 ) for some 8 > 0 as s -+ 0. This uniform-

ity of the higher order terms comes from the uniform Hoelder continuity 

some xo > 0 sufficiently large and for some + q > 0 sufficiently small, 

there exists an + N > 0 and an s > 0 such that whenever 

+ + 
0 ..::_ q ..::_ q , 0 < - q t ..::_ sq, and ht > N q 

then ut - f(u .~ .~) - cu > 0 for all x + h(t) ~ xa· 
XX X X -

We now make a s imilar estimate for x + h(t) < - xa. We again 

find 
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ut - f(u ,u ,u) - cu > ~ 1 h + q (~-~ )n (4.24) 
XX X X- t t -

- flq{~"n(~-~_)n- 1 + ~~~ 1 n(n-1)(~-~_)n-2 } 
n-1 n 

(f 2+c)q~ 1 n(~-~-) - f 3q(~-~-) 

h { II 1 1 ( )n-2 I ( )n} + .o. ~ q.~ ~ ~-$_ q, ~ .q, q ~-~ 

where h.o. again stands for uniformly higher order terms. Since 

,~,"/ ,~ 1 and ( ,k_,~, )n/ ,~, 1 b th b d d ~ th t th ~ ~ ~ ~ ~ are o oun e as x ~ - oo, we see a ere 

exists a q > 0 , an M > 0, and an N > 0 such that 

-cu > 0 for x + h(t) < - xo whenever x-

0 ..::. q < q and q > N 
t-

q 

ut - f(u ,u ,u) 
XX X 

The interi.or !x + h(t) I ..::_ x 0 J.s easily handled. We find that 

f(~ .~ .~) - cu > cp 1 ht+qt(cp-<jl_)n (4.25) 
XX X X -

- flq{ljl"n(<j>--~-)n-l+~'q> 1 n(n-1) (~-~_)n-·2 } 
n-1 n 

- (f 2+e:)q~ 'n(~-~-) -f 3q(~-~-) 

+ h.o.{q} 

Since there is a o > 0 such that ~'(x) > o for all x in [-x0 ,x0), 

and since ~" and cf> are bounded, there exists a qO > 0, an M0 > 0, 

and an N° > 0 such that u - f(u u u) - cu > 0 t xx' x' x - for all lx+h(t)l 

..::_ xo whenever 

0 _::_ q _::_ q 0 and ht + M0qt ~ N°q 

Sununarizing the results for the three regions, we have 

u - f (~ , u , ~) - cu > 0 for all 
t XX X X -

x whenever 

- 0 + 0 2 q 2 min{q ,q ,q } , 0 < - q < sq , and 
- t-

- + h > max{M- ,Mo }( -q ) + max{N ,No ,N } 
t - t 

hold. Hence, we take 

-st 
h(t) = cxK{l-e • ) + ho 

where - - 0 + 
K _ max{M ,MO}s + max{N ,N ,N }, 

q (t) = -st 
cxe 

and note that 

(4.20) 

u is an upper 
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function for all - 0 + 0 < a 2 min{q ,q ,q }. This establishes the lemma. 

Lemma (4.3) provides good upper and lower funct ions when either 

<P = ¢_ , v = 0 or <P = ¢+' v = 0 is an ordinary first order saddle point. 

Since we were able to improve our upper and lower functions \vhen at least 

one of <P = <P , v = 0 and <P = q,+' v = 0 is a saddle point, one expects 

that still better upper and lower functions c a n be found when both <P = <P_, 

v = 0 and <P = •+' v = 0 are ordinary first prder saddle points. The fol

lowing lemma shows this to be so. Note that again we deal directly only with 

the case of ¢(x) being an increasing function of X• 

Lemma 4.4: Assume hypotheses H2, H3, and H4 are satisfied. Suppose that 

u(t,x) = ¢(x) is a bounded non-constant monotonic steady state solution 

of equation (4.2). In particular, suppose that ¢(x) is increasing in 

x. Define .C-eo) = <P and <P(+co) _ cp+. Then if q, = ¢ , v = 0 and 

<P = <P+' v = 0 

are upper and 

are both ordinary first order saddle points, then 

~(t ,x) - <P(x+h(t)) + jq (t)j and 

~(t,x) - <P(x-h(t)) -lq (t)j 

lower functions (respectively) of equation (4. 2). 

-st 
h(t) = aK(l -e ) + ho 

-st 
q(t) = ae 

(4.26a) 

(4.26b) 

Here, 

(4.20) 

where s and K are particular positive constants, ho is arbitrary, and 

a > 0 is any sufficiently small constant. ------------------------------------

Proof: We wi ll not formally prove lemma (4.4). Its proof follmvs from 

calculations very similar to the one which proved lemma (4.3). 

Thus when both 4 = <P , v = 0 and <P = ¢+' v = 0 are ordinary 

first order saddle points, the above lemma provides new upper and lower 
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functions. Since ~(O,x) - Q>(x) and ¢(x) - ~(O,x) both asymptote to posi-

tive constants as x -.. - oo and as x -+ + oo, these new upper and lower func-

tions are much better than the upper and lower func tions contained in lem-

rna (4.3) and are also much be tter tha n <P(x-l·h) and <P(x-h). 

In Figure (3) we have sketched these new upper and lower functions 

at t = 0 and t = + oo Note that the values of ho used for u is Ah > 0 

larger tha n the value of ho used for ~ in thes e sketches. 

-cp+ ----------------s 

L 
X 

cp-- s 

Figure (3a): The functions ~(O,x) and u(O,x) from (4.26) when cp=cp , v=O 
and cp=cp+' v=O are both fi;;st order saddle points . -

L 
X 

s 

Figure (3b): The functions ~(+oo ,x) and u(+oo, x ) from (4.26) when <j>=cp_, v=O 
and cjl=<j>+, v=O are both firit order saddle points. 
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The new upper and lower functions developed in lenunas (4.3) and 

(4 .4) in conjunction with the maximum principle will immediately yield our 

main stability result for bounded non-constant monotonic steady state solu-

tions u(t,x) = ~(x) of 

u 
t 

f(u ,u ,u) + cu 
XX X X 

(4.2) 

In the next section we will obtain our main stability result in exactly 

this way. 

4.6 The stability of monotone waves. We now state and prove our final 

stability result for monotonic steady state solutions of 

u = f(u ,u ,u) + cu 
t XX X X 

(4.2) 

The maximum principle and the bounding functions developed in the previous 

section make this an easy task. In order to simplify the statement of the 

theorem, let us first define 

= [~' (x) 

q,'(O) 

X > 

X < 

0 J [ ~ ' (O) 
, r_{~'(x)} = 

0 ~'(x) 

X~ 0 J • 
X < 0 

Note that the following theorem directly treats decreasing as well as in-

creasing steady states u(t,x) = ~(x). 

Theorem 4.5 (The stabi.lity of monotone waves): Assume that hypotheses H2, 

H3, and H4 are satisfied, and suppose that u(t,x) = ~(x) is a bounded 

non-constant monotonic steady state solution of 

u = f(u ,u u) + cu 
t XX x' X 

(4. 2) 

at some particular value of c. Let ljl(-oo) - <P_ and ~(+:<>) - ~+· Then 

u(t,x) = <jl(x) is Cw-stable where 

(1) if ~ = <jl , v = 0 and ¢ tP+' v 0 are both ordinary first 

order saddle points then w(x) = 1; 
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(2) if rj> = rj>_, v = 0 is a regular s ingular point (of order m > 1) 

<P = .+. v = 0 i s an ordinary first order saddle point then 

w(x) 1 + 1 
- I r _ { <t>' (x) } I 

(3) if <P = rj> • v = 0 - is an ordinary first order saddle point and 

<P+' v = 0 is a r e gular singula r point (of order m > 1) +- then 

w(x) = 1 + jr {rj>~0Z:)}f and 
+ 

(4) if neither case (1), (2), nor (3) occur then 

1 
w (x) = 1 + T47<xTf 

----------------------------------
Proof: We prove this theorem only for the case of rj> (x) being an increas-

ing functi.on of x. The proof when rj>(x ) is decreasing fol l ows from trans-

forming x to - x. 

To prove part (1) we use the upper and lower functions contained 

in lemma ( 4.4) . To prove parts (2) and (3) we use the upper and lower func-

tions contained in lemma (4 . 3). The existence hypothesis H4 and the maxi-

mum princi ple together show that any initial condition u(O,x) smooth 

enough to be in H2 which is also bounded abov e by an upper function and 
X 

bounded below by a lower function, has a solution u(t , x) for all t > 0 

that remains between the upper and lower functions. This immediately im-

plies that rj>(x) is stable because the parameters a> 0 and lhol > 0 in 

the definitions of the upper and lower functions can be taken as small as 

we please . (See equations (4 . 19), (4 . 20), (4.21), and (4.26)). Inspection 

of the formulas for the upper and lower functions shows that the classes 

of perturbations bounded by these functions are the same as those allowed 

in the definition of Cw -stab].lity, with w(x) as given in the appropriate 

part (1), (2), or (3) of the theorem. Thus, parts (1), (2), and (3) of the 

theorem are established. Part (4) has alrearly _been proved in theorem_J!!:..:22_. 
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As a rough summary of the stability theorem (4.5), we see that 

bounded non-constant monotonic steady state solutions u(t,x) = ~(x) of 

equation (4.2) are stable with respect to small smooth initial perturba-

tions which are 

(1) bounded as x -+ - oo (as x-+ + oo) when cj>(x) goes to a first 

order saddle point at x =- oo (at x = + oo), and 

(2) decay asymptotically no slower than l~'(x) I as x-+- oo (as 

x-+ + 00 ) when cj>(x) goes to a regular singular point which is not a first 

order saddle point at x =- oo (at x = + oo). 

Note that except for the question of whether ~(x) decays to a 

node at the usual or accidental rate, the slowest allowed asymptotic decay 

rate for perturbations (in the above theorem) depends only on the expansion 

of f(cp ,cp ,cf>) + ccf> about (cp ,cp ,<j>) = (O,O,cjJ ) and about (cj> ,cf> ,cp) 
XX X X XX X - XX X 

= (O,O,cp ). This is because these expansions not only determine whether 
+ 

cf> and cf>+ are first order saddle points, but also determine the asympto

tic decay rates of cp'(x) as x-+- oo and as x-+ + 00 • In particular, the 

asymptotic decay rates allowed for perturbations can be calculated immediate-

ly from table 4.1 for all cases. 

Theorem (4.5) is our major stability result for monotone waves. 

Note that this result reduces to the stabi.Uty result of theorem (2.5) in 

Chapter II when both cf> = cp , v = 0 and cj> = <1>+' v = 0 are first order 

singular points. Recall that in section (2.4) we showed that these results 

are almost always sharp by constructing nearby traveling wave solutions 

which travel at slightly different speeds. Thus in the extremely common 

case of first order singular points theorem (4.5) is nearly always sharp. 

We will discuss the sharpness of theorem (4. 5) in Chapter V, \vhere this 
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topic arises naturally as a by-product of the mean wavespeed/initial condi

tion developement. 

The next five short sections are used to discuss topics related 

to the stability results in this section. In the next section, section 

(4.7), we point out the extension of the stability results to the cases where 

~ = ~-' v = 0 or ~ = ~+' v = 0 is an irregular singular point. In section 

(4.8) we show explicitly how the stability of a monotonic wave depends on 

f. Section (4.9) compares the stability results of theorem (4.5) with those 

obtainable by more conventional eigenanalysis/variational methods. As a 

related topic, in section (4.10) we show how the stability classes of 

theorem (4.5) split the generalized null space of equation (4.2) linearized 

about ~(x). Finally in section (4.11) we extend our results to higher 

spatial dimensions. 

4.7 Irregular singular points. In the last section we found new stability 

results for monotonic steady states u(t,x) = ~(x) of equation (4.2) when 

at least one of ~(-oo) and ~(+co) is a first order saddle point and the 

other is a regular singular point. This was accomplished by using the bound

ing functions constructed in lemmas (4.3) and (4.4) along with the maximum 

principle. For the sake of mathematical completeness, in this section we 

briefly consider the case where one of ~(-oo) and ~(+co) is a first order 

saddle point and the other is an irregular singular point. To improve on 

the stability results of theorem (4.2) for this case, we need to construct 

new upper and lower functions u and u l.ike the ones in lemma (4.3) and 

then apply the maximum principle. We will not do this here. Instead we note 

that new upper and lower functions u and u very similar to the ones in 

lemma (4.3) can be constructed in this case of one of the singular points 
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~(-oo) and ~(~oo) being irregular and the other one being a first order 

saddle point. Upon applying the maximum principle we find the generaliza-

tion that theorem 4.5 remains true even if the regularity condition for the 

singular points in parts (2) and (3) is omitted. 

4 . 8 The dependence of the stability on f. Theorem (4.5) shows that a 

bounded non-constant monotonic steady state solution u(t,x) ~ ~(x) of 

u 
t 

f(u ,u , u) + cu 
XX X X 

(4.2) 

is stable to small smooth perturbations which decay asymptotically no slower 

than certain limiting asymptotic decay rates . For example, the limiting 

asymptotic decay rate as x -+ + oo is determined completely by whether or 

not ~(+oo) is a first order saddle point and by the asymptotic decay rate 

of ~(x) as x -+ + oo. However, expansion of the steady state equation 

about (~ ,ljl .~) (0,0,~(+"')) yields the asymptotic equation 
XX X 

m 
f 1 ~ +(f 2+c)~ + ~(~-~(+oo)) = 0 for x large (4.27) 

XX X 

where f 1 ~ f 1 (0 ,0,H+oo)) and f 2 ~ f 2 (0,0,cj>(+"")). This asymptotic equation 

can be used to determine both the asymptotic decay rate of cj>(x) as x-++oo 

and whether ~(+oo) is a first order saddle po i nt. Thus the quantities 

f 1 , (f2+ c ), p, and m completely determine the limiting asymptotic decay 

rate (as x-+ + oo) allowed for perturba tions by theorem (4.5), at least 

when it is known whether ~'(x) de cays at the usua l or accidental decay 

rate when cj>(+oo) is a node . 

In table (4.2) we list these limiting asymptotic decay rates (as 

x -+ + oo) for the case of cj>(x ) being an i ncreasing function of x . Note 

that in table 4.2 we use a slightly different p than is used in equation 

(4.27). Namely, for table (4.2) we use a p d e fined by 

f1 cj> + (f 2+cH - ~~tjJ-<V(+oo) lm = 0 for x large 
X X X 
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We use this definition because ~(x) < ~(+oo) for all x and we do not 

wish to change the sign of ~ each time we change m. Al so note that two 

possible limit ing asymptotic decay rates are given whene ver ~(+oo) is a 

node . This comes from the two possible asymptotic decay rates (the usual 

and the accidental) of ~ ' (x) whenever $(+oo) is a node. Finally, the 

limiting asymptotic decay ra t es when ~(+oo) is a saddle point are correct-

ly listed as if ~ ' (x) decays to ~(+=) at the accidental rate. 

bations. 

m ~ 

1 + 

>1 + 

>1 

1 

Table 4.2 

Slowest allowed asymptotic decay rate (as x + + oo) for pertur-

0 for x l arge 

~(x) increasing, (f2+c) > 0 

Type of Decay rate when <j(x) Decay rate when~ (x) 
singular point decays at the accident al rate decays at the usual rate 

N O(exp )..2x) 

* - N O(exp >..2x) 

* - s O(exp l.zx) 

s 0(1) 

- (f2+c)+l(f 2+e) 2-4f.L!::_ 
2fl 

O(exp ).. 1x) 
m 

O(x- m-1) 

-(f 2+c)-l(f2+c) 2-4~fl 
2fl 
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~(x) increasing, (f2+c) < 0 

Type of 
m ~ singular point 

Decay rate when ~(x) decays 
at the accidental rate 

1 + N 

>1 + -N 

>1 -s 

1 s 

no steady state ~(x) 

no steady state ~(x) 
m 

O(x- m-1) 

0(1) 

Decay rate when ~(x) 
decays at the usual rate 

no steady state ~(x) 

no steady state ~(x) 

Note: When (f2+c) < 0 and ~ > 0, then ~(+oo) is an unstable node. 

4.9 Comparison with eigenanalysis results. We now consider a conventional 

eigenanalysis method for finding the stability of bounded non-constant 

monotonic steady state solutions u(t,x) :: <j,(x) of 

u = f(u ,u ,u) + cu 
t XX X X 

(4. 2) 

The approach we will demonstrate is commonly used on special cases of (4.2), 

notably by Sattinger [2] on the class of equations 

u + f(u,u ) 
XX X 

Our objective is to produce a table exactly like Table (4.2) which will list 

the slowest asymptotic decay rate (as x ~ + oo) of the perturbations al-

lowed by the eigenanalysis calculations. This will allow easy comparison 

of the eigenanalysis results with the maximum principle results. 

We begin by linearizing equation (4.2) about the steady state 

~(x) : 

u(t,x) - Hx) + nlf(t,x) 0 < n << 1 (4.28a) 

l¥ 
t 

i... ~ + O(n) (4.28b) 

L~ f 1 ~ + (f 2+c)~ 
- (4.28c) - + f3l¥ where 

XX X 

fi(x) - f.(~ (x),~ (x),~(x)) for j = 1,2,3 (4.28d) 
:1. XX X 
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We now must determine the spectra of i when various Banach spaces are 

used as its domains. To do this, we define '(A,t,x) and '(A ,x) by 

' = L o/ , iii(A,O,x) = IJ'(A,x), and A'l' 
t 

For computati.onal convenience we introduce T(A,x) , defined by 

'(A,x) = ~ (x)•T(A,x) 
X 

(4.29) 

(4.30) 

where ¢(x) is the monotonic steady state. Note that in defining T(A ,x) 

we have implicitly used the fact that ~(x) is monotonic; i .e. that 

~ (x) * 0. Now in terms of T the equation for ' in (4.29) becomes 
X 

This immediately yields the variational characterization 

A - -inf 

Te.A_J"" 1 
-oo fl (x) 

T 2~2 exp{ ~~~ ds}dx l x f ( )+ 

x o f 1 (s) 

(4.31) 

(4.32) 

for the largest eigenvalue A of L when T (). ,x) is restricted to the 

l:l.near admissibility space A From (4.32) it is clear that the largest 

eigenvalue of L is non-positi.ve, even when the admissib1 lity space A 

is all functions T . for whic h both integrals converge. (This is clearly 

the largest space for which (4.32) remains valid.) 

We n ow rephrase this result in terms of the eigenfunctions '· 
+ 

Let f . - f . (+c:o) for i = 1,2. Also define the Banach space cS to be all 
1. 1. -

twice differentiable functions ' for which the integrals 

and 

1
)" 
' f,) (s)+c 

' 2 (x) exp( - - - - - ds ]dx 
XX 0 f 1(s) 
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converge . Note that the convergence of the first two of these integrals 

is precisely equivalent to the convergence of the two integrals in (4.32). 

Also, note that these convergence conditions are essentially that q'(x) , 

II' (x), II' (x) must decay to zero at least slightly faster than 
X XX 

exp - as X + - oo and at least slightly faster than 

exp - as X + + ""• Thus, in terms of the eigenfunctions II' 
' 

our 

variational argument shows that A. = 0 is the larges t possible eigenvalue 

of i with eigenfunction q•(A.,x) in a 
Note that this non-positivity of the spectrum of /., over lb 

canno t imply stability of u(t,x) = ~(x) when dl contains a generalized 

null function of£,. For example, if 1,.}11' = 0 and J.., ll' * 0, then (4.28b) 

implies that 

' = l ~ * 0 t ' tt 
Consequently, the perturbation u(t,x) - ~(x) will grow linearly in time 

i f u(O,x) - ~(x) = nll'(x). These particular perturbations actually cor-

respond to initially perturbing u(t,x) = ~(x) = ~(x,c) onto a nearby trav-

eli.ng wave ¢(x-(6c)t, c+(oc)) which travels with speed c + oc (or in 

our current moving coordinate system, speed oc) . This is an unstable per-

turbation since ~(x-(oc)t, c+(oc)) travels with a speed oc different 

than ~(x) = ~(x ,c) does, and hence it will drift away from ~(x) as t 

increases. 

When the null space of J:, over the domai.n £ is simple, then the 

non-positivity of the spectrum of J:., over d3 should imply that the steady 

state solution u(t,x) = ~(x) of (4.2) is stable to all small perturbations 

in ~ . To gauge the potential of the eigenanalysis method, let us assume 

that whenever the null space of ~ over ~ is s imple, then the method can 
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be used to show that u(t,x) = cp(x) is stable for perturbations in a . 
Table 4.3 shows the resulting limiting asymptotic decay rate (as x + + oo) 

for perturbations about u(O,x) = ~(x). The cases with a * in table 4.3 

denote an improvement over the asymptotic decay rates found . by using the 

maximum principle contained in table 4.2. These cases are the cases when 

</> (x) d e cays at the accidental rate to a node at x = + oo, and the case where 

</>(x) dec ays to a higher order s addle point (and (f 2 + c) < 0) at x = + oo 

These are all unusual cases, but it is clear that 

Table _h3. 

Slowest allowed asymptotic decay rate (as x + + oo) of perturbations 

Asymptotic equation : 

Type m 

N 1 + 

-N >1 + 

-s >1 

s 1 

Type m f.l 

N 1 + 

-N >1 + 

-s >1 

s 1 

Note: These 

at lea st as 

</>(x) increasing, (f 2+c) > 0 

Decays rate when </> (x) 
decays at the accidental rate 

Decay rate when </> (x) 
decays at the usual rate 

O(exp - O(exp -

O(exp - O(exp -

O(exp -

O(exp -

</>(x) increasing, (f2+c ) < 0 

Decay rate when </>(x) Decay rate when </>(x) 
decays at the accidental rate decays at the usual rate 

no steady state cj>(x) no steady state </>(x) 

no steady sta te <jl(x) no steady state q, (x) 

0(1)* 

0(1) 

results are invalid whenever there is a 'l!(x) which decays --- ·-·-
£+c 

+ 
fast as exp{- fi} (as X·+ - oo) and exp{- !rt} (as 

X + + oo) and 111hich satisfies ~\Jf1= 0, J..,2 'l! = o. 
*Cases with a * denote improvement over results in Table 4.2. 
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genuine improvement in these cases may be possible when the null space o f 

~ over £ is simple. 

Before c ontinuing, we point out that in Chapters II and V the 

maximum principle results are shown to be sharp in most cases. This is ac-

complished by constructing nearby traveling waves <j>(x-(oc)t, c+(oc)) which 

slightly violate the limiting asymptotic decay rates and which travel at 

speeds slightly different than c. We note tha t even i n principle the 

eigenanalysis results can never contradict these sharpness results. For if 

J3 is large enough to contradict the sharpness results, then it must con-

tain ac~c)<j>(x, c+(oc)) loc=O' and thus the null s pace of Lover 43 is 

not simple. 

4 . 10. Splitting the null space. In this section we wish to briefly show 

that the stability classes o f theorem (4.5) can often split the null space 

of J,., ; that is, can include one null function and exclude another 

(generalized) null function. For brevity we will demonstrate this only for 

a single case. 

Suppose that ~(x,c) is a monotonic steady state solution of 

f(u ,u ,u) + cu 
XX X X 

(4. 2) 

at c = c 0 , suppose that <j> (-oo , c 0) is an ordinary first-ord e r saddle point, 

that <P(+oo,c 0 ) is an ordinary first-order node, and that <P(x,co) decays 

to ¢(+oo,c 0 ) at the usual r a te. From section (2.4) we know that this 

means that for an interval o f values of c including co, there are 

monotone solutions <j>(x,c) of (4.2) for which ¢(-oo,c) = ¢(-oo,co) and which 

all decay to ¢(+oo,c0 ) at the usual rate as x + + "' • Since then <j>(x,c) 

~ 0 ( exp /'1 ( c ) x) as x + + "'• 
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with fi = fi(O,O,~(+oo,c 0 )), we find that 

a 
~c(x,co) = ~ ~(x,c) lc=co - O(x exp A1 (c 0 )x) as x + + ro • 

We now consider the li.near opera tor J., defined in the previous 

section. The functions ~(x,c) all solve 

(4.33) 

Therefore, differentiating (4.33) with respect to x and c shows that 

J.cpx = 0 .(~c cpx 

and hence J.,2~ c 0 but J:..<t>c • 0. That is, ~x is a null function of 

Jv and ~ is a generalized null function. 
"'c 

Now, the perturbations allowed by theo rem (4.5) for this case are 

all small perturbations which decay asymptotically at least as fast as cp ; 
X 

that is, decay asymptotically as fast as exp(A 1 (c)x) as x + + 00 • This 

neatly includes the perturbation ~ but excludes 
"'x 

even though they 

both belong to the generalized null space of i,. and only differ slightly 

in their asymptotics as x + + oo Of course the exclusion of <t>c is neces-

sary, since it is the linearization of the unsta ble initial perturbation 

u(O,x) - ~(x,c 0 ) = cp(x,c 0+oc) - ~(x,c 0 ). 

4 . 11 Extension of stability results to higher spatial dimensions. We now 

generalize our stability results to monotone traveling wave solutions in 

multiple spatial dimensions. We will work only with two spatial variables 

+ 
(x = (x,y)) in this section. However, it will be clear that our discussion 

will apply equally well when there a re more tha n two spatial dimensions. 

+ + + solution of Suppose that u ( t, x) - ~(x-ct) is a traveling wave 

u f(u ,u ,u ,u ,u ,u) (4.34) 
t XX XY yy X y 

and that equation ( 4. 34) is parabolic (i.e ., satisfies hypothesis H3). By 

+ 
changing to the coordjnate system which travels with velocity c = (c , c ) , 

X y 
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we can work with the steady state solution 
+ + 

u ( t, x) - <t>(x) of 

u = f(u ,u ,u ,u ,u ,u) + c ·u + c ·U 
t XX xy yy X y X X y y 

(4 . 35) 

instead . 

In order to d i scuss stability, let u~ extend the definition of 

Cw-stability and ~w-stability to two spatial dimensions. Suppose w(x,y) 

is any continuous function with w(x,y) > 1 for all x, y. Then, we define 

Cw-stability of steady state solut i ons 
+ + 

u(t,x) = <jl(x) of (4 . 35) exactly as 

in the original one spatial dimension definition, except that it concerns 

solutions of (4.35) instead of (4.2) and that whenever the variable x ap-

p ears in the original d e finition it should be replaced by 
+ 
x = (x,y). 

Our stability results are very easily generalized to trave ling 

plane wave solutions of (4.34), which we can take to be steady state plane 

s o lutions of (4.35). Clearly, without loss of generality we can assume tha t 

onr steady state plane wave solution of (4.35) is 

u(t,x,y) :: <j>(x) 

and is independent of y. Thu s u(t,x,y) = u(t,x) = ¢(x) also solves 

u = f(u ,O,O,u ,0,0) + c •U - f(u ,u ,u) + c ·U 
t XX X X X XX X X X 

(4 . 36) 

After a moment's reflection, it is clear that whenever -;:;-(t,x) and ~(t, x ) 

are upper and lower functions o f the equation 

u = f(u ,u ,u) + c ·u 
t XX X X X 

then u(t,x,y) _ ~(t,x) and ~(t,x,y) :: ~(t,x) are upper and lower f unc tions 

o f equatl.on (4.35). Thus the results l.n theorem's (4.2) and (4.5) remain 

t r ue for plane waves if 
w(x ) C -stability is replaced by cw(x,y)_stabi lity 

with w(x,y) - w(x). 

To summa r i ze this r e sult, 1f u(t,x,y) i s a traveli ng plane wave 

solution of (4 . 34), we cha n ge to a coordinate s y stem which moves with the 
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plane wave and which is oriented so that the plane wave depends only on x, 

not on y. Then, denoting the plane wave in this coordinate system by 

u(t,x,y) cp(x) we find that if ct>(x) is monotone in x, then it is stable 

to small perturbations which are bounded as y + ± oo and decay asymptoti-

cally no slower than the rates allowed by theorems (4.2) and (4.5) as 

X + + co, 

The maximum principle can also be applied to other types of 

"monotone" traveling waves. For example, suppose u(t,x) = cp(x,y) is a 

steady state solution of (4.35), and that for some unit vector (e , e ) 
X y 

the solution cp(x,y) satisfies 

cp(x+he ,y+he ) > <jl(x,y) for all h > 0 
X y 

Then clearly we can use cp(x+he ,y+he ) and cp(x-he ,y-he ) 
X y X y 

as upper and 

lower functions, thus proving that cp(x,y) has at least a limited amount 

of stability. Moreover, for some cases we could probably "improve" these 

upper and lower functions and better the stability results. We will not do 

this because of the difficulty in finding such monotonic waves (which are 

not plane waves) in physically interesting equations. Instead we simply 

note that if such a wave is discovered, then this approach to its stability 

can be used. 

This completes our discussion of the stability of monotonic 

traveling waves and steady state solutions of 

ut = f(u ,u ,u) 
XX X 

In the rest of this chapter we examine the other side of the picture: the 

instabiU.ty of non-monotonic waves. 

4 . 12 Instability of non-monotonic waves.. Tn this section we show that 

v e ry nearly all non-monotonic traveli.ng waves and steady states are unstable. 
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Specifically, we shall show that a ll non-monotonic steady state solutions 

u(t,x) = ¢(x) of 

f (u , u , u) + cu 
XX X X 

(4.2) 

are 

(1) unstable to all non--negative per turbations which a re strictly 

positive in a fixed finite interval whenever ¢(x) has at least two r e la-

tive extrema, 

(2) unstable to perturbations which decay like l~'(x)l as x +- oo 

and as x + + oo whenever ¢ (x) has only a single relative extremum and 

either ¢ ( - oo) or ¢{-f..:>o) is a saddle point. 

The result in (l) is very strong since ft shows that most non-

monotonic waves are unstable, even to arbitrarily small perturbations of 

finite extent. The weaker result in (2) does not preclude the possibility 

that non-monotonic waves \v:Lth a single relative extremum are stable to 

small perturbations which decay faster than I q)' (x) I as x + + oo • 

The strongest motivation for these results is their correctness 

for steady state solutions of s pecial equations. For example, they are 

correct for Fischer's equation [4] and other equations of the form 

ll = u + h (u) rs]. Recall that Fischer Is equation was used as a mot i-
t XX L 

vating example in section (2.3). 

We will now state a nd prove thes e i nstability results precisely. 

In this following theorem (and af terwa rd), note that \vhenever we speak of 

a non-monotonic function h aving n relative extrema, we are excluding the 

extrema at x = + 00, I.e., there are n distinc t finite values of x at 

which cp(x) h as an extremum. 
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Theorem 4.6 (Instability of non-monotonic waves): Assume that hypotheses 

H2, H3, H4, and H5 are satisfied. Suppose also that u(t,x) = <f>(x) is a 

bounded ~-monotonic steady state solution of 

Then 

u 
t 

f(u ,u ,u) + cu 
XX X X 

(4.2) 

(1) If there are at least two distinct finite values of x at which 

<jl(x) has relative extrema, then there is a finite interval [x0 ,x1] and 

a 6 > 0 such that for any t: > 0 there is a p(x) in H2 satisfying 
X 

0 ~ p(x) < t: when x 0 < x < x 1 

p(x) = 0 when x ¢ (xo,xl) 

for which the solution u(o:,t,x) of equation (4.2) with the initial condi-

tion 

u(£,0,x) <jl(x) + p(x) 

satisfies 

u(t:,t,x) - <jl(x) > 6 

for some x and some t > 0. Moreover, if u(t,x) is any solution of 

(4.2) whose initial condition u(O,x) is in H2 and satisfies 
X 

u(t:,O,x) = <jJ(x) + p(x) < u(O,x) for all x 

then 

u(t:,t,x) ~ u(t,x) for all x and all t > 0 

Thus for some x and some t > 0 

u(t,x) - <jl(x) > 6 

(2) If there is only a single finite value of x, x = xe' where <jJ(x) 

has a relative extremum and if <jl(x) goes to a saddle point as x +- oo 

or as x + + ""• then u(t,x) = <jl(x) is 
w 
~ -unstable where 
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1 + 1 + 1 
X < X - 1 

I<P'(x)l lct>' (x +1) I e 
e 

w(x) 1 + 1 + 
l 1 + 1 - I<P '(x -1)1 I <P' (x +1Tf 

X < X < X 
e e 

e e 

1 + 1 + 
1 + 1 

I <P '(x -1 )1 I<P'(x)l 
X < X 

e 
e 

Recall that by the phrase "goes to a saddle point as x + - 00 11 

we mean that either 

(a) cj>(-oo) is a saddle point, 

(b) cj>(-oo) is a NS type singular point and cp'(x) > 0 for all x 

sufficiently small, or 

(c) cj>(-oo) is a SN type singular point and <P'(x) < 0 for a ll x 

sufficiently small , 

occurs. Similarly the phrase "goes to a saddle point as x + + 0011 means 

that either 

(a) cj>(+oo) is a saddle point, 

(b) cj>(+oo) is a SN type singular point and <l>'(x) > 0 for all x 

sufficiently large, or 

(c) cp(+oo) is a NS type singular point and <fl ' (x) < 0 for all x 

sufficiently large, 

occurs . Thus we see that the requi rement in part (2) of the theorem is that 

<jl(x) goes to a saddle point or to the saddle point side of a singular 

point of mixed character as either x + - oo or x + + 00 • 

Note tha t the w(x) in part ( 2) of this theorem is essentially 

1 
1 + I <1> ' Cx) I modified so that it remains finite at x = x e 

The constant s 

1 1 
.,..., ....., cp '=--(=-x..::..+-=1,...,..)-.-j and I cp' (x -1) C were included in w(x) only because we have 

e e 
de f ined /s,w-stability for continuous w(x ). 
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As in section (2.3), the proof of this theorem is in three parts. 

The first part is selecting the appropriate initial conditions. The 

second part (the hair-trigger effe ct) is showing that the perturbed solu-

tion of (4.2) wi.ll only increase in time as it evolves into another steady 

state solution of (4.2). The last part is showing that the possible final 

steady states are bounded (independently of the i.nitial conditions) away 

from the i.nitial unperturbed steady state solution. In fact, for the per-

turbations we use we will be able to show tha t the final steady state is the 

smallest constant steady state which is larger than the initial conditions 

at all x. 

In proving the above theorem we will rely very heavily on the 

two major properties of equation (4.2). Namely, in proving the hair-trigger 

e ffect of step two, we will use the rnaxi.mum principle many times. In 

selecting the appropriate initi.al conditions (and in identifying the final 

steady state) we will strongly use the phase plane representation of the 

steady states of (4.2). 

In this section we will prove only step two. For the first and 

third steps we will use the following two lemmas (which will be proved in 

the next section): 

Lemma (4.7): Assume that hypothe ses H2 and H3 are satisfied, and suppose 

tha t u(t, x ) = cj>{x) is a bounded non-monotonic steady state solution of 

f(u ,u ,u) + cu 
XX X X 

(4. 2) 

(1) If cj>(x) has relative ex trema at leas t two distinc t finite po ints 

x, then the re are functions cj>(x, £), x_( £), and x+( £ ) (with <j> (x, £ ) in 

c 3 ) such that for all £ in (0, £ 0 ) (for some £ 0 > 0) the followi ng 
X 

conditions are s a tisfied: 
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(b) f(~ .~ .~) + c~ = 0 
XX X X 

for ~=~(x, £ ) and all x in [x ( £ ) ,x ( £)] , 
- + 

(c) ~(x,£) > ~(x) for all x in (x_( £), x+(£)) 

(d) ~(x (£),£) ~(x_(£)), $(x+(£),£) = ~ (x+(€)) 

(e) max j~(x,£)-~(x)j-rO as £-+ 0, and 
x_ ( £)2_x2_x+ (£) 

for some - oo < x 0 < x 1 < + oo (f) xo 2_ x_(£) < x+(£) 2_ xl 

Here, in condition (a) the point X = X 
e 

is any point where <P(x) has a 

relative extremum. For simpl:l.ci.ty, when ~ (x) has at least three extre-

rna we will always take X = X 
e 

to be between two other extrema. 

(2) If ~(x) has an extremum only at a single finite value of x 

and if ~(x) goes to a saddle point as either x-+ - oo or as x -+ + oo, 

then there are functions ~(x,£), x_(£) and x+(£) (with <P(x, £) 

such that for all 0 < £ < £o (for some Eo > 0) conditions (a), (b), 

(c), (d) and (e) are satisfied. Nm.;r however, either x (£) -+ ·- oo or 

x+(£) -+ + oo as £-+ 0, and we have 

(f') max ' 
1-x I> I x j+l e 

Here the point X = X 
e 

is the single point where ~(x) has a relative 

extremum. 

Lemma (4. 8): Assume that hypotheses H2, H3, H4, and HS are satisfied. 

Hx) be any bounded non-monotonic steady state solution of 

u = f(u ,u 
t XX X 

,u) + cu 
X 

(4. 2) 

If ~(x) has only a single relative extremum, assume also that <j>(x) 

Let 

goes 

to a saddle point as either x -+ - oo or x-+ + oo . Then, if ~(x) is~ 

other stea dy state solution of (4.2) satisfying 
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~(x) 2 ~(x) for all x 

then ~(x) > ~0 for all X as well. Here ~0 is the least constant 

steady state solution of (4. 2) with Hx) < ~0 for all x. Thus, 

Hx) < ~o 2.. Hx) for all X 

where ~0 is the least solution of f(O,O,<jJ 0) 0 satisfying 

~(x) < ~0 for all x 

The basic situation is illustrated in Figure (4) below. We use 

lemma (4 . 7) to find the functions <jJ(x,~), x (~),and x+(~) . 

u 

X 
e 

Figure (4) 

X 

These functions are utilized to form our perturbed initial conditions 

<jJ(x) for x < x ( ~ ) 

u(~,O,x) - <jJ(x,~) for x_ (~) < x < x+(~) • (4.37) 

<jJ(x) for x+(£) < x 

We then prove that the solution u( ~ ,t,x) of (4 . 2) (with initial condition 

u(E,O,x)) is increasing in t, and that in fact u(E,t,x) + ~(x,~) as 

t + + oo, Here, ~(x,£) is the smallest steady st~te solution of (4 . 2) 

which satisfies u( ~ ,O,x) < ~(x,£) for all x. Since now ~(x, £ ) ~ <jJ (x) 

for a ll x and ~(x, £ ) > <P(x) at lemma (4.8) shows that 

<jJ(x) < <Po < ~ (x, £ ) for all x, 
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where ~ 0 is the smallest constant steady state solution of (4.2) satis-

fying ~ (x) < ~ 0 for all x. Further, the perturbed initia l conditions 

u( £ ,0,x) which we use satisfy 

u(£,0,x) < ¢ 0 for all x 

when £ > 0 is sufficiently small. Since $(x, £) is the smallest possi

ble steady state, we will then have $(x,£) - ~0 for all £ > 0 small 

enough . To summarize thJs, as is depicted in Figure (4) we have that the 

solution u( e:,t ,x) of equation (4.2) with the initial condition u(e:,O,x) 

must satisfy 

n(£,+<x>,x) = cf>o for all x 

whenever e: > 0 is small enough. Moreover, if u(t,x) is any solution of 

(4. 2) with an initial condition satisfying 

u(£,0,x) ~ u(O,x) ~ ~O for all x 

then the maximum principle implies that 

u(e:,t,x) 2 u(t,x) 2 ~0 for all x and all t > 0 

In particular, u(e:,+co,x) :: ~O and so u(+co,x) :: ~ 0 also. That ·is, every 

solution u(t,x) of equation (4.2) whose inltial condition u(O,x) is in 

the shaded region of Figure (4) must evolve to the constant steady state 

u(+oo,x) :: cf>o· 

Proof of theorem (4.6): Consider the initial conditions 

Hx) for X < X (e:) -

u( e:,O ,x) - <P(x,£) for X ( e: ) < X < x+( e: ) (4. 37) -
cf>(x) for x+(£) < X 

We note first that for all e: in (O,e: 0) the existence assumption H5 gua-

rantees that there is a solution u(e:,t,x) of 

ut = f(u ,u ,u) + cu 
XX X X 

(4.2) 
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for all t > 0 which has the initial value u(e:,O,x) at t = 0. We will 

first use the maximum principle to show that u(e:,h,x) ~ u(e:,O,x) for all 

x and for all h > 0. We will then use it to show that 

u(e:,t+h,x) ~ u(e:,t,x) for all x, all h ~ 0, and all t > 0 • 

This last inequality shows u(e:,t ,x) to be non-decreasing in t and will 

be the key to the proof. We now prove these. 

We note that u(e:,O,x) ~ ~(x) for all x. Since u(e:,t,x) and 

~(x) are both solutions of (4.2), the maximum principle implies that 

u(e:,t,x) ~ ~(x) for all x and all t > 0 

In particular, (4.38) implies that 

u(e:,t,x_(e:)) > ¢(x_( e: )) - ¢(x_(e:),e:) for all t > 0, and 

u(e:,t,x+(e:)) > ~(x+(e:)) - ¢(x+(e:),e:) for all t > 0 

Since u(e:,O,x) = ~(x,e:) for all x in [x (e:),x (e:)), since - + 

(4.38) 

u(e:,t,x_( e: )) ~ ~(x_( e:),e:), since u( e:,t,x+(e:)) ~ ¢(x+(e:),e:), and finally 

since u(e:,t,x) and ¢(x, e: ) are both solu tions of (4.2) for all t > 0 and 

all x in [x_(e:),x+(e:)], the maximum principle implies that 

u(e:,t,x) > ~(x,e:) for all x in ( x _(e:),x+( e:)] and all t > 0 

(4.39) 

From (4.38) and (4.39) we see that 

u(e:,t,x) ~ u(e: , O,x) for all x and all t > 0 (4.40) 

Relation (4.40) will now imply that u(e:,t,x) is non-decreasing 

in t. To see this, let h > 0 be any cons t ant. Clearly u(e:,t,x) being 

a solution of (4.2) implies that u(e:,t+h,x) is also a solution. But 

(4.40) shows that 

u(e:,t+h, x) ~ u(e:,t,x) for all x (4.41) 

is satisfied at t = 0, and the maximum principle shows that it therefore 

must be true for all t > 0 as well. Hence, we hav e that u(e:,t,x) is 
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non-decreasing in t. From this result, the proof of the theorem will now 

follow. 

From the modification of the equations in Chapter III, we know 

-that there is a ~ > 0 such that f(0,0,.1) = 0 for all constants •1 ~ M. 

(Note that this particular aspect of the 1nodifications does not affect the 

stability of the bounded steady state •(x). No modifications to 

f(u ,u ,u) for extremely large values of u can affect the stability of 
XX X 

a bounded steady state, sinc e •(x) will be known to be unstable long be-

fore the perturbations u(t,x) - • (x) are so large that the modification 

of f for large valu~s of u has any effect.) Let us take the constant 

•1 to be so large that • 1 > M and 

u(E,O,x) ~ •1 for all x and all E in (O,Eo) 

Then since f(O,O,.l) = 0, the function u(t,x) = •l must be a constant 

steady state solution of (4.2). The maximum principle now implies that 

u(E,t,~) < • 1 for all x, all t ~ 0, and all E in (0,£ 0 ) 

Thus, for each E and x the function u(E,t,x) is non-decreasing and 

-
bounded in t. The limit u(E,t,x) ~ •(x,E) as t ~ + oo must therefore 

exist pointwise at each E and x. From the uniformity lemma and the 

asymptotic state theorem of Chapter III, we conclude that ~(x,E) is a 

steady state solution of (4.2). 

So far we know that u( E,t,x) is non-decreasing in t (at each 

x and E) and that u(E,+oo,x) = ~(x,E), where •(x, E) is a bounded steady 

state solution of (4.2). We now use the maximum principle once more to 

identify this final steady state ~(x, E ) as the least steady state solution 

of (4.2) satisfying 

u(E,O,x) < ~(x, E ) for all x (4.42) 
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That is, if ~ .Cx,E) is any steady state solution o f ( 4 .2) s a tisf ying 

u(E,O,x) < ~ (x, E ) for all x (4.43) 

then 

~(x, E ) < ~ (x, E ) for all x (4.44) 

Indeed suppose that cf>(x, E) is a steady state solution which s a tisfies 

(4.43) and suppose also that ~ (x, E ) < ~(x, E ) at any point x = x. Since 

(4.43) holds, the maximum principle implies that 

u(E,t,x) < i<x,E) for all x and all t > 0 

But now at x = x, 

u( E,t,x) < i (x, E) < ~(x) for all t > 0 

and this contradicts the definition of ~(x, E ) - u(E,+oo,x) at x = x. 

Thus, all steady solutions iCx,E) satisfyfng (4 . 43) must also satisfy 

(4.44). 

We are now very nearly done. From lemma (4.8) we easily conclude 

that 

u(E,+oo,x) = ~(x,E) ~ cf>o for all x and all E in (O,Eo) 

where cf>o is the smallest constant steady state wit h 

¢(x) < cf>o for all x 

In particular, for some x (namely x = 0), 

u(E,+oo,x) - ¢(x) ~ ¢ o - ~(0) 

We define the E - independent quantity A by 

A= ~{cp 0 - cf>(O)} 

and note for t sufficiently large that 

u(E,t,x) - ¢ (x) ~ A at x = 0 

To complete the proof, we nee d only to v e rify tha t the initial perturba tions 

u( E,O, x ) - cf>(x ) satisfy the conditions set forth i n theor em (4.6). However, 
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inspection of the initial conditions u(E,O,x) defined in (4.37) and in-

spection of properties (e) and (f) or (e) and (f') of lemma (4.7) show 

that the functions u(E,O,x) - ~(x) have all the properties claimed (for the 

the unstable perturbations of u(t,x) = ~(x)) by theorem (4.6) except one. 

This lack is that u(E,O,x) - ~(x) is not differentiable twice at 

x = x (E) or at x = x+(£), 

this. 

and is therefore not in Hz. We now remedy 
X 

Suppose that u(O,x) is any function in satisfying 

u(E,O,x) ~ u(O,x) ~ ~(x,E) for all x (4.45) 

From the maximum principle, we find that the solution u(t,x) of (4.2) 

(with initial condition u(O,x)) satisfies 

u(E,t,x) ~ u(t,x) ~ ~(x,£) for all x and all t > 0. (4.46) 

Hence, since u(E,t,x) + ~(x,£) as t + oo, we must also have 

u(+oo,x) = ~(x,£) for all x (4.47) 

whenever (4.45) holds. We now do not need to use u(t,O,x) as our initial 

condition. Instead, for each £ > 0 we simply select a u(O,x) in H2 
X 

satisfying (4.45). We choose this u(O,x) to both approximate u(E,O,x) 

as closely as we please for all x in (x (E) - 1, x+(£) + 1) and to be 

identically ~(x) for all x outside of (x_(£)-l,x+(£)+1) . 

This establishes theorem (4.6). Note that the results contained 

in equations (4.45) and (4.47) are illustrated in Figure (5). 

Theorem (4.6) very nearly completes the stability picutre for 

steady state solutions of 

f(u ,u ,u) + cu 
XX X X 

(4.2) 

In summary, steady state solutions ~(x) of (4.2) which have at least two 

r elative extrema are unstable, even to arbitrarily small perturbations of 

finite extent. Steady states ~(x) which have only a single relative 
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extremum and which go to a saddle point as x + - oo or as x + + oo are 

unstable, at least to arbitrarily small perturbations which decay asympto

tically like ~ '(x) as x + - oo and as x + + 00 • The stability of steady 

states which have only a single relative extremum and which go to nodes 

both as x +- oo and as x + + oo has not been discussed yet . We treat this 

indeterminate case in section (4.14). Finally, steady states ~(x) which 

have no relative extrema (monotonic steady states) are stable, at least 

to small perturbations which decay asymptotically no slower than ~'(x) as 

X + + oo . (The precise stability of these monotonic steady states is given 

by theorem (4.5)). Thus the stability of steady state solutions is generic: 

it depends only on a few easily determined properties of the particular 

steady state and the particular equation. 

In the next section, section (4.13), we will prove lemmas (4.7) 

and (4.8). Before continuing on to this section some further remarks are 

in order. 

First, let us note that our stability picture is incomplete. In . 

theorem (4.6) we have not determined the stability or instability of steady 

states ~(x) which have only a single relative extremum and which go to a 

node as x + - oo and to another node as x + + oo. We discuss this indeter

minate case in section (4.14). There we will be able to characterize which 

steady states of this case are stable and which are unstable. For any par

ticular example of this indeterminate case, this characterization should 

provide a practical method for deciding the stability or ins tability of any 

particular steady state solution of any particular equation. 

Second, the proofs of lemma. (4.7), lemma (4.8), and theorem (4.6) 

can be extended to include some constant steady states u(t,x) ~ ~0 as 
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part of the "steady states with at least two relative extrema" case. Speci-

fically, the constant steady state u(t,x) = ~ 0 can be included whenever 

the singular point ~ = ~ 0 , v = 0 is a spiral point or a center. Thus, 

these constant steady states are unstable even to arbitrarily small per-

turbations of finite extent. We will discuss this in section (4.15). 

Third, note that we have actually proved much more than the fact 

that u(t,x) = ~(x) is unstable. For the steady states ~(x) treated 

by theorem (4.6), we have actually shown that whenever u(t, x) is a solu-

tion of (4.2) whose initial condition satisfies 

-
u(s,O,x) 2 u(O,x) 2 ~(x,£) for all x (4.45) 

then u(+oo,x) - ~(x,£). Since for all sufficiently small £ > 0 we have 

u(s,O,x) 2 ~ 0 for all x 

where ~ 0 is the smallest constant steady state satisfying 

~(x) < ~o for all x 

we can conclude that ~(x,£) = ~ 0 for all x and all £ > 0 sufficiently 

small. Thus whenever any solution u(t,x) of (4.2) satisfies 

u(£,0,x) < u(O,x) 2 ~O for all x 

at t = 0, then u{+oo,x) - ~ 0 • This is illustrated in Figure (5). From 

this we see that the proof of theorem (4.6) provides a potentially power-

ful technique for finding the final state u(+oo,x) as a function of the 

initial condition u(O,x). This will be briefly discussed in section (4.16). 

Fourth, let us note that we can extend these instability results 

to plane waves in higher spatial dimensions, although the results are 

weaker than the result ti in theorem (4.6). In section (4.17) we will dis-

cuss these extensions to multiple spatial dimensions. 

Finally , the methods we have used to prove theorems (4.5) and 
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u=O 

X 
e 

X 

Figure (5): From (4.45) and (4.47) we see that any solution u(t,x) whose 
initial values u(O,x) are in the shaded r~gion must evolve 
into the constant steady state <Po as t.#oo. That is, 
u(+oo,x) : <l>o· 

(4.6) can also be used on finite spatial domain-boundary value problems. 

Consider the following finite domain-boundary value problem: 

f(u ,u ,u) 
XX X 

u(t,x) : A at x = 0 

0 < X < 1 , t > 0 

u(t,x) : B at x = 1 

where A and B are fixed constants. In section (4.18) we will determine 

the stability of all steady state solutions u(t,x) :: <f>(x) of this boun-

dary value problem. 

We now continue on to section (4.13) where we prove lemmas (4.7) 

and (4.8). 

4.13 Proof of lemmas (4.7) and (4.8). In this section we will prove lem-

mas (4.7) and (4.8). We will prove these Je~nas by using a key observa-

tion about the phase plane of the steady state solutions of (4.2). To 

prove these lemma s we will first suppose that <l>(x) is any bounded non-
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monotonic solution of the steady state equation for (4.2), namely of the 

equation 

f(~ ,$ ,$) + c$ = 0 (4.48) 
XX X X 

We will also suppose that $(x) has a relative extrema at x = x , 
e 

and 

then will consider the solutions $ (x, E) of (4.48) which have the initial 

conditions 

$(x , E) = ~(x ) + E , $ (x ,E) = ~ (x ) = 0 
e e x e x e 

The key to proving both lemmas is noting that the phase plane of 

~X v 

f(v ,v,~) + cv 0 
X 

(4.49) 

implies that for all E with l E I sufficiently small, ~(x,E) and ~(x) 

must intersect at least once when x > x and a t least once when x < x • 
e e 

Note that this intersection property constitutes an oscillation (or com-

parison) result about the ordinary differential eqt1ation (4.48). 

We start by noting that the phase plane of system (4.49) pos-

sesses the following properties: 

(i) all singular points are on the v = 0 line, 

(ii) the horizontal components of the phase plane trajectories are 

positive when v > 0 and negative when v < 0, and 

(iii) the phase plane trajectories never c ross (except at singular 

points). 

Let $(x) and $(x , E) be the solutions of (4.49) we defined above. Be-

caus~ the phase plane of (4.49) has properties (i), (ii), and (iii), the 

possible behaviors of $(x) and ~(x,E) are severely limited. For 

example, suppose that 

(1) ~(x) is a bounded solution of (4.49) wi th, say , a relative 
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maximum at X = X e' 

(2) ~(x,e:) is the solution of (4.49) with initial condition 

~(x ,£) = ~(x ) + £ 
e e 

~ (x ,e:) = ~ (x ) = 0 
x e x e 

and 

(3) ~£--~i~s, say, positive and small enough so that ~ = ~ 0 , v = 0 

is not a singular point for any ~O in [ ~(xe)' ~ (xe) + e:]. When ~(x) 

and ~(x,e:) satisfy these three conditions, the phase plane of system 

(4.49) implies that exactly one of the following a lternatives must be the 

case for x > x : 
e 

( 1 I) ~(x) and ~(x,e:) both have at least one extrema for x > x . 
e 

For this case , let X: be the least X larger tha n X 
e 

at which Hx) 

has a relative minimum and let :X ( e: ) > X 
e 

be the least point X > X 
e 

which ~(x,e:) has a rela tive minimum. Then ~(:X) > ~(x(e:),e:). 

(21) ~(x) has at least one rela tive extrema for x > x but 
e 

at 

Hx,e:) has none for x > x . 
e 

For this case, let :X again be the least 

x > x at which ~(x) has a relative minimum. Then one of the following 
e 

must happen 

(a) ~(x,e:) +- oo as x + + oo, as 

(b) ~(x,e:) + ~ 0 (e:) as x + + oo where ~ 0 (e:) is a singular point 

and ~(x) > ~ 0 (e:) = ~(+oo,e:). 
(3 I) 

has none . 

Hx, e: ) has at least one relative extrema for x > x but ~(x) 
e 

For this case we let x ( e: ) be the least x > x at which 
e 

~(x,e:) has a relative minimum. In this case, ~(x) + ~ 0 as x + + oo 

where ~ 0 is a singular point and ~(-too) = ~o > ~ (x( e: ),e:). 

(4 1
) Neither ~(x) nor ~(x,e:) has a relative extrema for x > x . 

e 

In this case ~ (x) - 1- ~ 0 as x + + oo where ~ 0 is a singular point, and 
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one of the following must occur 

(a) cj>(x) -+ cf>o as X -+ + 00 and cJ>(x, e:) -+ - 00 as X -+ + 00 , 

(b) cp(x) -+ cf>o as X -+ + 00 and 4> (x,e:) -+ cf>o ( e: ) as X -+ + 00 where 

cf>o(e:) is a singular point and cj>(+oo) = <Po > cf>o(e:) := cj>(+oo, e:), or 

(c) cj>(x) -+ <Po as x-+ + oo and cf> (x ,e:) -+ cf>o(e:) as x-++oo where 

The phase planes of these alternatives are illustrated in Figures (6) -

(12) . 

v 

Figure (6): 

next singular 
point 

Since t he maxi.mum of cj>(x,e:) at x=x is larger than the maxi
mum of </>(x) at x=x , if both cj>(x,e:Y and cj>(x) have a relative 
minimum for x >x dien the next minimum of </> (x, e:) is smaller 
than the next minimum of cj>(x). (Case 1'). 
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next singular 
point 

Figure {7): If <fl{x) has a relative minimum at some x >x and <j>{x,£) does 
not, then <j>(x,£) may go to -oo as x~+oo . (Ca~e 2'a). 

v 

v=O 

Figure {8): 

singular 
point 

next singular 
point 

<1> (x, E) 

I f <j>(x) has a relative m1.n1mum at some first x>x and <f> (x, £) 
has none for x >x , then <j>(x,£) may go to a singular point 
<l>o( £) with <f>(x) >$ 0( e:) = <!>(-too,£). (Case 2'b). 
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next singular 
point 

Figure (9): If <P(x,e:) has a relative mini.mum at some first x(e:)>x and 
<P(x) has none for x>x , then cp(x) goes to a singular point 

v=O 

Figure (10): 

. e 

<Po as x-1-too, and <P (+oo) e= cp 0><P(x(e:), e:). (Case 3'). 

v 

ne~t singular 
point 

If neither <P(x) nor <fl(x,e:) has a relative minimum for x>x , 
e then <P(x)+cp 0 as x-++oo (where <Po is a singular point), and 

<P(x,e:) may go to -oo as x++=. (Case 4'a). 
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If neither ~(x) nor ~(x,£) has a relative 
~(+«>) = ~0 and ~(+«>,£) = ~ 0 (£) may occur; 
~o(e) are singular points and $o > ~ 0 (£). 

next singular 
point 

minimum for x>x , 
e 

where ~0 and 
(Case 4'b). 

next singular 
point 

If neither ~(x) nor ~(x,£) has a relative minimum for x>x , 
e then <fl(x) and ~(x , £) may go to the~ singular point as 

x+r<». (Case 4 ' c) . 

There is a very simple way to summarize all of these alternatives. 

Let us allow the singular points <jl(+«>), ~(-oo), ~ (+«>,£),and ~(-00 ,£) to be 

called extrema for the curves ~(x) and ~(x,£), and suppose we automatically 
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let cp = - oo and cp = + oo be a minimum and maximum (respectively) o f cp. 

With these definitions, we see that since the maximum of cj>(x, E) at X = X 
e 

is large.£_ than the maximum of cj>(x) at the phase plane of (4 . 49) 

implies that either 

(1") the first mi nimum of cj>(x,£) with x > x must be sma ller than 
e 

the first minimum of cj>(x) with X > X , 
e 

or 

(2") the first minimum of cj>(x,£) and of cj>(x) with X ::> X 
e 

o c cur at 

x = + oo and cj>(+oo, E) = cp(+oo). 

Similar alternatives occur for x < x . In particular, since the 
e 

maximum cj>(x ,E) is larger thanfue maximum cj>(x), then either the last 
L! 

minimum of cp (x, E:) with x < x is smaller than the last minimum of 
e 

cj>(x) 

with x < x , or both last mini ma o c cur at x = - oo and cj>(-oo ,E) 
e 

cp( - 00) • 

We can also interchange the roles of minima and maxima in the 

a bove alternatives and the results will remain valid. That is, if cj>{x,E) 

and cj> (x) both have a relative minimum at x = x and cj> (x ,E) > cj>(x ), 
e e e 

then either the next maximum of cj>(x,E:) is smaller than the next max imum 

of cj>(x), or the next' maximum of both cj>(x,£) and cj>(x) occurs at x 7 + oo 

and cj>(+oo, E) = cj>{+oo). 

Note finally that similar alternatives occ ur if we take E < 0 

but E large enough so tha t there are no singular points in ( cj> (xe)-E , cj> (xe )] · 

In f act , t a king E < 0 is essentia lly equivalent t o interchang-

ing the roles of cj>(x) and cj>(x,E) in the above lists of alternatives. 

We now use the above lists of alternatives (and similar phase 

plane observations) to prove lemmas (4.7) and (4 . 8). 

Proof of lemma (4.7): In proving lemma (4.7) we will need to consider 
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three separate cases. Namely, the cases of where the non-monotonic steady 

state ~(x) in the statement of the lemma has at least three relative ex-

trema, has exactly two relative extrema, and has only one relative extre-

mum. We begin with the simplest case, where cp(x) has at leas t three re-: 

lative extrema. 

Suppose that ~(x) is a bounded solution of the steady state 

equation (4.48), and suppose that cp(x) has at leas t three extrema. In 

particular, assume that cjl(x) has a relative extrema at X = X e' has at 

least one relative extrema when 

We finally suppose that cjl(x) 

x > x and has at least one when x < x 
e e 

has a relative maximum at x = x since 
e 

the case of a relative minimum can be handled similarly. For notation, let 

b e the largest value of X < X 
e 

at which cjl(x) has a relative mini-

mum, and let x+ be the smallest value of X > X 
e 

at which 

relative minimum. Thus, cjl(x) has consecutive extrema at 

cp(x) has a 

X = X , X = X e' 

and x = x+ with cjl(x_), cjl(xe), and cjl(x+) being a relative minimum, maxi-

mum, and minimum respectively. 

Similar to before, we define cp(x,E) for all 0 < E < E2 as the 

solutions of (4.48) with the initial conditions 

~(x , E) = ~(x ) + E e e 
cjl (x ,E) = cjl (x ) = 0 x e x e 

(4.50) 

and we assume that Ez > 0 is small enough so that cjJ = cJlo. v = 0 is not 

a singular point for any cflo in [<P (xe)' <j>(x ) + E2]· Let us now note 
e 

that cjl(x , E) and ~ - (x,E) are both continuously differentiable in E (see 
X 

e.g. [6]). Thus, for all E with 0 < E < El (for some €: 1 in (O,E 2)), 

cjl(x ,e:) has a relative minimum at X x (E) near X x and also has a 

relative minimum at x = x+(e:) near x = x+. From the list of possible 

alternatives, we immediately see that 
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must be the case. Since ¢(xe,E) = ¢(xe) + E > ¢(xe)' careful considera

tion of the list of possible alternatives shows that the curves ¢(x) and 

<l>(x,E) intersect at least once when x is in (x (E),x) and also at 
- e 

least once when x is in (xe,x+(E)). Hence, we let x = x (E) be the 

¢(x_(E),E) = ~(x_(E)) and let x = x+(E) be largest X < X 
e at which 

the smallest x > xe at which <l>(xe (E), E) = Hx+ (E)). Figure (13) illus-

trates the present situation. 

ties 

(b) 

Figure (13) 

X 
e 

It is clear that ~(x,E), x_(E), and x+(E) possess the proper-

f(~ .~ .~) + c~ = 0 for ~ = ¢(x,E) XX X X 

(c) ~(x,E) > ~(x) for all x in (x_(E),x+(E)), and 

(d) ¢(x_(E),E) = ~(x_(£)), ~(x+(E),E) = ~(X+(E)) 

for all E in (O,E 1). Moreover, let xo < x and x1 > x+ be given. 

The uniform continuity of ~ (x,E) 
X 

in E when x is restricted to 
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[xo, x1J shows that 

x 0 ~ x_(E) ~ x_(E) < xe < x+(E) ~ x+(E) ~ x 1 

for all E in (O,Eo) for any sufficiently small Eo in (O,E 1). Thus, 

for 0 < E < Eo we have 

(f) xo < x (E) < x+(E) ~ x 1 

Property (e) is also easily established. From property (f), 

I~Cx,E) - ~(x) I > max I~Cx,E) - ~(x) I 
x (e:)<x<x (E) - ·-- + 

Thus, property (e) immediately follows from the uniform continuity of 

<P (x, E) in E when x is restricted to (x 0 , x 1] , since this uniform 

continuity implies that 

max I Hx, E) - Hx) I -r 0 as E + 0 
x0~x~xl 

This establishes lemma (4.7) in the case where ~(x) has at least three 

extrema. 

We now will establish the lemma in the case where ~(x) has ex-

actly two relative extrema. This proof will be a slight variant of the pre-

ceding case. 

Suppose that ~(x) is a bounded non- monotonic solution of (4.48) 

and suppose further that ~(x) has exactly two relative extrema, one at 

x xe and one at x = x+ with x+ > xe. Finally, suppose that ~(x) has 

a relative maximum at x = x since the other case is handled in a similar 
e 

manner. 

For this present case we define ~(x,E) for all 0 < E < E3 

as the solutions of 

(4.48) 

with the initial conditions 
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~(x ,£) = ~(x ) + £ , ¢ (x ,£) = ~ (x ) = 0 
e e x e x e 

(4 .50) 

Here £ 3 > 0 is any constant small enough so that ~ = ~ 0 , v; 0 is not 

a singular poi.nt for any ~ 0 in [~ (x ) , ct' (x ) + £ 3] . For this case we 
e e 

cannot use ~(x,£) directly as the ~(x,£) in the lemma. Instead, select 

X. as any point X smaller than X e' and define 

{~(x,<) if rp(x) = rp(x, £) f or some xe[x ,x ) 

constan] . - e 
cp (x, £) = Hx+h ( £) , £) otherwise , where h(£) <0 is the largest 

-
~(;:{_) such that ~(x_+h(E),e:) 

Note that the uniform continuity of ~ (x , e:) in £ (when x is restrictx 

ed to compact sets) shows that h( £) exists for all £ > 0 small enough. 

This uniform continuity also shows that there is a K > 0 such that 

- K£ < h(£) < 0 for all £ in (0, £ 2), where £2 in (0,£3) is any 

sufficiently small constant . 

As in the previous case, for all £ > 0 sufficiently small 

cjJ(x,e:) has a relative minimum at x = x+(e:) near X.+ . Also as before, we 

can therefore conclude that ~(x) and ~ (x,£) must intersect at l east once 

for x in (x ,X. ( £)). Moreover since cp (x) has no relative extrema for 
e + 

x larger than X.+, we can also conclude tha t the curves ~ (x, £) = ~(x+h ( E) , e:) 

and Hx) intersect at least once when x is in (xe,x+(E) + h(ED. 

We define x as the largest point X < X 
e 

and the 

smallest point X > X 
e 

at which the curves cp(x,£) a nd cp(x) iutersect. 

This present situation is depicted in Figure (14) below. Properties (a) 

through (f) can now be verified in a manner sJmilar to the previous case, 

and this establishes lemma (4 .7 ) in the two extrema case. 

We now treat the final case, where the non-monotonic steady state 

solution ~(x) of (4.48) has only a single relative extremum and ~(x) goes 

to a saddle point as x ~ - oo or as x ~ + oo . We treat this case in a 
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X X +h(t:) 
e e 

Figure (14) 

X 

manner very similar to the previous case. For this case we assume that the 

relative extremum of $(x) occurs at x = x and again assume without loss 
e 

that it is a relative maximum. Moreover , we assume that ~(x) goes to a 

saddle point as x + + oo, since the other case can be handled similarly. 

For 0 < £ < £1 we again define ~(x,t:) as the solutions of 

. f(~xx';px'~) + c~x = 0 

with the initial conditions 

(4.48) 

¢ (x , £) = $ (x ) + t: , ~ (x , t:) = $ (x ) = 0 e e x e x e 

where t:1 > 0 is small enough so that there are no singular points in 

Select as any point X smaller than and 

define 

[
~ (x, t:) 

~(x,£) = ~(x+h(t:),E) 

if ~(x) = ~(x,£) 

otherwise, where 

constant such that 

for some xE. [x_,xe) j 
h(E) < 0 is the largest 

$Cx +h(t:),t:) =~ex_) 

Note that as in the previous case such an h( E) exists and satisfies 

- Kt: < h(E) < 0 for some K > 0 for all £ in (O,t:o) when t:o > 0 is 

small enough. We now examine the list of possible alternatives for X > X • 
e 
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In particular we note that case (4'c) cannot occur because ~(x) goes to 

a saddle as x -+ + ""· \~e see from the remaining alternatives that ~ (x, £) 

intersects ~(x) at least once for x > x for all £ in (0,£0 ). We 
e 

define x = x (E) as the largest point 

intersect. Similarly, we define 

x < x at which ~(x,£) 
e 

as the least point 

and ~(x) 

X > X 
e 

at which ~(x,£) and ~(x) intersect. One now verifies that conditions (a), 

(b), (c), (d), (e), and (f') are satisfied, and this establishes the lemma. 

Proof of lemma 4.8: Suppose that ~(x) is any bounded non-monotonic solu-

tion of 

f(~ .~ ,~) + c~ = 0 
XX X X 

(4.59) 

and let ~(x) be any other solution of (4.59) with 

~(x) ~ ~(x) for all x (4.60) 

Also let ~ ~0 be the smallest constant solution of (4.59) with 

~(x) < ~o for all x 

To prove lemma (4.8) we will first show that ~(x) > ~O for some x, and 

then show that $(x) ~ ~O for all x. 

We now show that ~(x) ~ ~ 0 for some x. To show this, we will 

consider the two separate cases of ~(x) having at least two relative ex-

trema and of ~(x) having exactly one relative extremum. 

Suppose that ~(x) ~ ~(x) for all x, suppose also that 

~(x) < ~ 0 for all x, and finally suppose that ~(x) has at least two 

relative extrema. Select x = xe and x = x+ > xe so that ~(x) has a 

relative extremum at each of these points and so that $(x) has no relative 

extrema between x = xe and x = x+. Let us also assume that these relative 

extrema are a maximum (at X = X ) 
e 

and a minimum (at since 

the other case can be handled similarly. Since $(x) > ~(x) for all x 
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and since ~(x) - ~(x), we see that $(x) > ~(x) for all x and so 

~(x) < ~(x) < $o for all x 

In particular, ~(x) < ~(x ). 
e e 

Thus let x = x be the point nearest to 
e 

x x where ~(x) has a relative maximum. Clearly e 

~(x ) < ~(x ) < ~ 0 e e 

From the list of possible alternatives we see that ~(x) and ~(x) must 

intersect for some x > min(x ,x ). Thus, 
e e 

~(x) ~ ~(x) < ~0 for all x 

ts not possible in this case. 

-
Suppose now that $(x) < ~(x) for all x that ~(x) < ~O for 

all x, and also that ~(x) has only a single extremum at X = X • 
e 

Let 

us also assume that this extremum is a maximum since the other case can be 

handled in a similar manner. As before we have 

~(x) < ~(x) < $o for all x 

Also as in the previous case, an examination of the list of possible alter-

natives shows that ~(x) and ~(x) must intersect unless ~ (x) has only a 

single extremum, $(~) and ~(x) both decay to the same singular point at 

x - oo, and ~(x) and ~(x) both decay to the same singular point at 

X + oo. However, ~(x) goes to a saddle point as or as 

x + + oo and so either ~(x) has more than a single extremum or one of 

cp(+oo) :1= ~(+oo) a nd 4>(-oo) :#= ~(-oo) occurs. Thus ~(x) and 4>(x) must intersect 

at least once, and so 

~(x) < 4Cx) < ~0 for all x 

is not possible either. 

So far we have shown that whenever $(x) any non-monotonic solu-

tion of 
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f(~ .~ .~) + c~ = 0 
XX X X 

(4.59) 

which satisfies the hypotheses of lemma (4.8), then if $ (x) is any other 

solution of (4.59) such that 

~(x) > ~(x) for all x (4.61) 

then 

~(x) ~ ~0 at some x (4.62) 

where ~ 0 is the least constant steady state solution satisfying 

~(x) < ~o for all x (4 . 63) 

We will now complete the proof of the lemma by showing that (4.61) and (4.62) 

together imply that either 

~(x) - ~0 (4. 64) 

or 

~(x) > ~o ~or all x (4.65) 

occurs. This final step in the proof will follow from the minimality of 

the final steady states u(E:,+oo,x) :: ~(x ,E:) in the hair-trigger effect. 

Suppose first that ~{x) ~ ~0 · Then (4.62) implies that 

~(x) > ~o at some x ( 4. 66) 

We now assume that 

~(x) < ~0 at some x (4.67) 

also, since otherwise lemma (4.8) would be satisfied. From relations (4.61)t 

(4.66), and (4.67) we now obtain a contradiction. From the proof of the 

hair-trigger effect in theorem (4.6), we know that there exists a solution 

~ (x , E:) of (4.59) with 

u(E:,O,x) < ~(x , E: ) for all X (4.68) 

and with 

~ (x, E:) < ~(x,E:) for all X (4.69) -
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-
satisfied whenever ~(x,£) is any other solution of (4.59) such that 

u(E,O,x) ~ ~(x,£) for all x (4 . 70) 

is satisfied . Since ( 4 . 61) shows that ~(x)<~(x) for all x, an examina-

tion of the initial conditions u(e,O,x) (giv en in equation (4 . 37 )) shows 

that 

u(£,0,x) < ~(x) for all x 

whenever £ > 0 is small enough . Moreover, for £ > 0 small enough we 

also have 

u(E,O,x) < ~O for all x 

Thus equations (4.68), (4 . 69), and (4.70) i.mply that there is a solution 

¢ (x, £) of (4 . 59) satisfying 

Hx) < u(E,O,x) < Hx, E) for all X 

~ (x, E) < cf>o for all x, and 

~ (x, £) < ~ (x) for all X 

for any £ > 0 small enough . Since ~(x) < cf>o at some 

But since ;j;(x,£) is a solution of (4 . 59) and since 

¢(x) < - ~ (x, E) for all X 

we have shown in the first part of the proof that either 

~(x , £) - cf>o or 

Hx, £) > ~0 for some x 

(4.71a) 

(4.71b) 

(4. 7 1c) 

x, ~(x,£) =F cf>o · 

This contradicts (4.71b) . Hence either ~(x) - ~ 0 or ~(x) > ~0 for all 

x, and we have now established lemma (4.8). 

Thus we have established lemmas (4.7) and (4.8) . Note that in 

proving lemma (4 . 8) we have also essentially proved an oscillation theorem 

for the ordinary differential equation 
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0 (4.59) 

To state this result explicitly, let ~(x) be any bounded non-monotonic 

solution of (4.59). If ~(x) has only a single extremum assume that ~(x) 

goes to a saddle as either x -+ - oo or as x -+ + oo. Let + cp 0 and cp 0 

(respectively) be the largest and smallest constant solutions of (4.59) 

which satisfy 

- + cpo < cj>(x) < cpo for all x 

Lemma (4.8) directly implies that there is no solution ~(x) of (4.59) 

which satisfies 

cj>(x) < ~(x) for all x and + ~(x) < cp 0 for some x 

By transforming ~-+- cp one sees that lemma (4.8) also implies that there 

is no solution ~(x) of (4.59) which satisfies 

~(x) 2 cp(x) for all · x and ~0 < ~(x) for some x . 

Thus we have shown that if ~(x) is any solution of (4.59) such that 

cflo < $(x) < ~6 for some x 

is satisfied, then ~(x) and ~(x) must intersect at at least one point x. 

This clearly demonstrates that lemma (4.8) is an oscillation result about 

solutions of (4.59). 

The establishment of lemmas (4.7) and (4.8) in this section nearly 

completes our treatment of the instability of non-monotonic waves. In the 

next section, section (4.14), we complete our treatment by discussing the 

indeterminate case . 

4 .14 Stability/instability in the indeterminate case. For this section we 

assume that cj>(x) is a bounded non-monotonic steady state solution of 

ut = f(u ,u ,u) + cu 
XX X X 

(4. 2) 

that ¢(x) has a single relative extremum which occurs at x and 
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that ~(x) goes to a node as x +- oo and to a node as x + + oo. More-

over, we will assume that ~(x) has a maximum at x = x since the case 
e 

of ~(x) having a minin.ttm is handled in a similar manner. In this section 

we will determine when u(t,x) = ~(x) is unstable. To do this we again 

define ~(x,E) as the ~olution of the steady state equation 

(4.59) 

with the initial condition 

~(x ,E) = ~(x ) + E 
e e 

~ (x ,E) = ~ (x ) = 0 x e x e 

The stability or instability of u(t,x) = ~(x) will essentially depend on 

the intersection properties of ~(x) and ~(x,E). 

As our first case, suppose that ~(x) decays at the accidental 

rate as, say, x + + 00 • Then for any E > 0 (no matter how small) the 

phase plane alternative (4'c) cannot occur. An examination of the proofs 

of lemma (4.7), lemma (4.8), and theorem (4.6) shows that the only use made 

of the hypotheses that ¢(x) goes to a saddle point as e i ther x + + 00 or 

as x + - oo was to eliminate phase plane alternative (4'c) for either 

X > X or X < X 
e e 

Thus the proofs given for lemma (4.7) , lemma (4.8), and 

theorem (4.6) wor k equally well if ~(x) decays to a node a t the acc iden-

tal rate as either x + - oo or as x + + oo . To summarize this, if u(t,x) -

<jl(x) is a bounded lion-mono tonic ste ady state solution of (4. 2) such that 

(i) ¢(x) has a single extremum at x = xe' 

(ii) ~(x) · goes to a node as x + - oo and goes to a node as x + + oo , 

(iii) ¢(x) decays at the accidental rate as x + - oo or :X: + + oo • 

then u(t,x) = ~(x) is 
w 

~ -unstable where w(x) is given by 
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+ 1 1 
- 1 I.P'(x)l + lt1>'(x +1)1 

X < X 
e 

w(x) + 
1 e 1 

1 + 1 .(4.72) - I cJ>' ex -1 > I + I cj> ' (x +lfl X < X < X 
e e e e 

+ 1 1 
+ 1 

14>' (x -1) I + 
14>' (x) I 

X < X 
e e 

We now consider the remaining case. Namely the case that 

(i) lj>(x) has a single extremum at X = X 
e 

(ii) rp(x) goes to a node as X + - oo and goes to a node as 

x-+ + oo, and 

(iii) lj>(x) decays at the usual rate as X -+ - oo and as X -+ + 00 

Define the function 

4> <x>- a ¢<x,E:) I E: 3E: E:=O 

and note that 

a - I lj> E: (x) + hlj>x (x) - a€ cp (x+hE:, E:) E:=O 

We will show that if there is an h such that 

¢ (x) + hlj> (x) > 0 for all x E: X 

then u(t, x) = cf>(x) is Cw-stable where w(x) is given in (4.72). More-

over, if such an h does not exist we will show that u(t,x) = rp(x) is 

usually ~w-unstable. 

Suppose first that cp (x) > 0 for all x. 
£ 

Then for all 

(O,E:o) (for some E:o > 0 sufficiently small) we have that 

~(x,-E) < cp(x) < ~(x,E:) for all x 

in 

Since u(E:,t,x) = ~(x,s) and u(-s,t,x) = ~(x,-s) are both solutions of 

(4.2), the maximum principle implies that every solution u(t,x) of (4.2) 

whose initial condition u(O,x) is in H2 and satisfies 
X 

~(x,-s) < u(O,x) < ~(x,E:) for all x , 

must satisfy 

$(x, - E) < u(t,x) < ¢Cx,E) for all x and all t > 0 (4.73) 
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Since E > 0 can be as small as we please, relation (4.73) implies that 

the steady state ~(x) is 
w 

C -stable with w(x) given by (4.72). 

Suppose now that either ~ (x) > 0 for all X > X and ~ (x)<O 
E: e E 

for some X < X , or ~ (x) > 0 for all X < x and ~ (x) < 0 for some e . E e E 

X > X . Recalling the assumption that e ~(x) has a relative maximum at 

X = X e' when ~ (x) > 0 for all X > X and ~ (x) < 0 for some x<x 
E e E e 

we increase h from zero until either 

(1) ~ (x) + h~ (x) > 0 for all x, or 
E X 

(2) cp (x) + hcj> (x) < 0 for some X < X and for some X > X • E X e e 

Similarly if cp (x) > 0 for all x < x and cp (x) < 0 for some X > xe' E e e: 

then we decrease h from zero until either case (1) or case (2) occurs. 

Suppose that case (1) occurs. Then there is an Eo > 0 such that for all 

E in (0, Eo), 

~(x-hE,E) < cp(x) < ~(x+he:,E) for all x 

Similar to the preceding case, using $(x-he: , e: ) and $(x+he:,e:) with the 

maximum principle implies that u(t,x) = cj>(x) is Cw-stable where w(x) 

is defined in (4.72i. 

Suppose now that either case (2) occurs or that cp (x) < 0 
E: 

for 

some x < x and for some x > x . When either of these occurs there is an 
e e 

h such that cp (x) + hcj> (x) < 0 for some x < x and some x > x . There-
e: x e e 

fore, for all e: in (O, e: 0 ) (for some e: 0 > 0) the curve ~(x+h e: , e: ) in-

tersects $(x) at least once when 

Hence we define ~(x,e:) = $(x+he: , e: ), 

X > X 
e 

and at least once when 

define x (£) as the largest 

X < X 
e 

X < X 
e 

at which ~(x_ (e:) ,e:) = cp(x (e:)), and defi ne x+( e:) as the smallest x > x 
e 

cp(x+(e:)). It is easily seen that ~(x,e:), x (E:), 

a nd x+( e: ) satisfy all the conditions of part (2) in lemma (4.7). We can 
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now apply the hair-trigger argument used in the proof of theorem (4.6). 

This shows that the solutions u(E,t,x) of (4.2) with the initial condi-

tions given in (4.37) are non-decreasing in time and that 

u(E,+oo ,x) = $ (E,x) 
00 

where $
00

(E,x) is a steady state solution of (4.2) satisfying 

$(x) < $ ( E,x) for all x 
00 

We now show that $
00

(E,x) - $(x) ~ Eo for some x and for all E in 

(O,E 0). To see this, note that for all E in (O,Eo) there is an h 

such that ~ (x+hE, £ ) intersects $(x) when X < X and also when X > X 
e e 

Since $(x) i.s increasing for X < X and is decreasing for X > X 
e' 

for 
e 

any h and for any E in (O,Eo) the curves $(x) and ~(x+hE , £ ) inter-

sect somewhere. Thus $ ( E,x) cannot be ~(x+hs,E) for any h and for 
00 

any E in (O, s 0 ). Therefore 

$
00

(E,x) - $(x) ~ Eo for all E in (O,E 0 ) 

and ~w-instability is established. 

This completes our stability/instability analysis f or the inde-

terminate case. To summarize the results, we ha v e assumed tha t 

(i) $(x) has a single extremum a t x and 

( i i) $(x) goes to a nod e as x ~ - oo and goes to a node as 

Then, if Q>(x ) decays at the a c cidental rate as x ~ - 00 or as x ~ + oo 

we have shown that u(t, x ) = Q>(x ) i s ~w-unstable (where w(x) is given 

by (4.72)). If $(x) decays at the usual rate as x ~- oo and as 

X ~+ 00 a more complicated stability picture occurs. In this case if 

Q> (x) > 0 
E 

for all X then u(t, x ) = Q>(x ) is cw-stable. If Q>£ (x) < 0 

for some X < X and for some X > X then u(t,x) = Q> (x) is ~w-unstable . 
e e 
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Finally, if neither of the above occurs we increase or decrease the parame-

ter h in ~ (x) + h~ (x) until either 
E: X 

(1) ~ (x) + h~ (x) > 0 for all x, or 
E: X 

(2) ~ (x) + h~ (x) < 0 for some x < x and for some x > x 
E X e e 

occurs. In case (1) u(t,x) = ~(x) is 
w 

C -stable, and in case (2) it is 

~w- unstable. 

For any specific steady state ¢(x) of any specific equation 

f(u ,u ,u) + cu 
XX X X 

(4. 2) 

it appears that the above stability criterion is impractical unless one 

can solve for ~(x) and ~(x,e:) analytically. However, even if ~(x), 

~ (x), and~ (x) can only be found by numerically solving the equations 
X E: 

~X v 

f(v ,v,~) + cv 0 
X 

(4.74) 

the above stability criterion should be a practical method for determining 

the stability of u(t,x) = ~(x) in this indeterminate case. This is be-

cause one knows (from equations (4.74)) the asymptotic behavior as 

x ~ + oo of ~(x), ~ (x), and~ (x) to within some unknown coefficients. 
X E: 

Thus one needs to numerically solve for ~(x), ~ (x), and~ (x) 
X E: 

only over 

a region large enough so tha t the asymptotics are valid outside of the re-

gion. From this calculation one can find the unknown coefficients in the 

asymptotic formulas for ~(x), ~ (x), and~ (x). 
X E: 

The calculation will ex-

plicitly show when ~ (x) + h~ (x) 
£ X 

is positive or negative in a large re-

gion, and the asymptotics will show the same outside of the large region . 

Thus in principle the stability criterion developed in this section is a 

practical way to determine the stability of the steady states ~(x) which 

belong to the indeterminate case. On the other hand, these numerical cal-
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culations may be so delicate that the implementation of the stability cri-

terion is very difficult. 

This completes the analysis in this section. However it is pos-

sible that the stability case never occurs. That is, we can conjecture that 

if the bounded steady state solution u(t,x) ~ ¢(x) satisfies the condi-

tions 

and 

(i) cp(x) has a single relative extremum at some X = X , 
e 

(ii) cp(x) goes to a node as x +- oo and to a node as x + + oo , 

(iii) cp(x) decays at the usual rate as x + - oo and as x + + oo, 

then there exists an h such that 

<P (x) + h¢ (x) < 0 for some x < x and for some x > x 
E: x e e 

The direct implication of this conjecture is that u(t,x) ~ ¢(x) is ~w-

unstable. Thus, if this conjecture is true then every bounded steady state 

solution of (4.2) which has a single relat:lve extremum would be Cw-unstable. 

This section completes our analysis of the instability of non-

monotonic waves. In the next three sections we briefly discuss related 

topics. Specifically in the next section, section (4.15), we will extend 

our instability results to some constant steady states. In section (4.16) 

we will comment on the potential applications of our techniques to the 

final state problem. In section (4.17) we will extend our results to non-

monotonic traveling plane waves in multiple spatial dimensions. 

4.15 Instability of some constant steady states. In this section we sup-

pose that u(t,x) _ <Po is a center or a spiral point of the phase plane of 

f(ifJ ,<jl ,¢) + crp 
XX X X 

0 (4.59) 
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We now note that if we select any point x to be x = x and if we de
e 

fine <j>(x,E) as the solution of (4.59) with initial condition 

<j>(x ,E) = <Po + E 
e 

then there is a ~ > 0 such tha t 

<l>(x,E) = cp 0 

for at least one x in 

<1> (x ,E) = 0 
x e 

and one x in (x ,x + ~) 
e e 

for all 

E sufficiently small. This is precisely the same behavior that <j>(x,£) 

possessed when <j>(x) was a solution of (4.59) with at least three extre-

rna (instead of <j>(x) being <Po, a constant steady state). Indeed, if we 

examine the proofs of lemma (4.7), lemma (4.8), and theorem (4.6), we see 

that they can be easily extended t o include ¢(x) ~ cp 0 as part of the 

" steady state with at least two extrema" case. Thus if the singular point 

<Po is a spiral or a center of (4.59), then the steady state solution 

u(t,x) - <Po of 

ut = f(u ,u ,u) + cu (4.2) 
XX X X 

has the same instability as in case (1) of theorem (4.6). Namely, it is 

\ 

unstable to arbitrarlly small perturbations of a finite extent. This is a 

distinct improvement over the instability results in theorem (4.1) for 

these cases. 

At first glance these instability results may seem surprising since 

a singular point <1> = cp 0 , v = 0 is a spiral point or a center of (4.59) 

precisely when 

f3(0,0,<I>o) > 0 and 

- 2/fl( 0, 0' <I> 0 )f 3[0 J 0, <I> 0) - f 2 ( 0' 0' cj> 0) < c 

< 21f 1 (0,0,¢ 0)f3(o,o,cp 0 ) - f 2 (0,0,¢o) 

Thus, apparently stability of a constant steady state depends on the wave-
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speed c. However, even though a constant steady state is unchanged by 

shifting to a different moving coordinate system, its stability can change. 

This is because we measure its stability relative to the moving coordinate 

system and because perturbations which grow in one coordina te system may 

not grow in another. It is easy to see how this can come about. Con-

sider a monotonic traveling wave solution u(t,x) = <j>(x-c 0t) of 

u = f(u ,u ,u) 
t XX X 

(4 . 1) 

which is our equation in the original sta tionary coordinate system. For 

any c < co \11e see that u(t,x) + ¢(-oo) as t + + oo with x - ct fixed, 

and for any c > c 0 we see that n(t,x) -~ ¢(+oo) as t + + 00 with x-ct 

fixed. Thus in a moving coordinate system the behavior of a solution as 

t + oo at a fixed point in the coordinate system in general depends on the 

speed of the coordinate system. 

4.16 AppU.cation to the final state problem. In this section we will com-

ment on some applications of the hair-trigger effect to determining the 

final state. Specifically, if u(t,x) is any solution of 

u = f(u ,u ,u) + cu 
t XX X X 

(4.2) 

then we would like to determine u(+oo,x) in terms of u(O,x). 

Suppose that u(t,x) = ¢(x) is any bounded non-monotonic steady 

state solution of (!•.2) with at least two relative extrema. Let x = x 
e 

be any point where an extrema of ¢(x) occurs . In proving the hair-trig-

ger effect we constructe d the initial condition 

r
¢(x) 

u( e: ,O,x) = ¢(x, s ) 

<j>(x) 

x .:_ x_(E:) 

X ( £ ) < X~ X+( £ ) 

x+( ~:: ) < x 

for all e: > 0 sufficiently small. Here ¢(x,e:) is either the steady 



-196-

state solution of (4.2) with 

~(x ,£) = ~(x ) + £ 
e e ~ (x ,£) = ~ (x ) = 0 x e x e 

or is an 0(£) translate of this steady state. We then showed that if 

u(t,x) is any solution of (4. 2) whose inHial condition u(O,x) is smooth 

and satisfies 

+ 
u( £ ,0,x) < u(O,x) < ~0 for all x and any £ > 0 sufficiently small, 

then 
(4.80) 

+ u(t,x) ~ ~O as t ~ + oo at each x 

Here ~b is the least constant steady state solution of (4.2) satisfying 

+ ~(x) < ~0 for all x. 

This is illustrated in Figure (15) below. We see th6 L any solution u(t,x) 

of (4.2) whose initial condition is at least as large as u( £ ,0,x) (which 

is ~(x) with a small additional positive bulge) and is no larger than 

h d ~+0 as must go to t e constant stea y state ~ t ~ + 00 

Figure (15) : 

X (£) X 
e 

X 

Any solution u(t,x) whose initial condition u(O,x) is in the 
shaded region must evolve into ~6; that is, u(+oo,x) =~{i. 

Now in proving theorem (4.6) we always considered £ slightly 

positive and we proved a posit ive hair-trigger effect as depicted in Figure 
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(15). However, we could have equally chosen E to be slightly negative 

and proved a negative hair-trigger effect. Specifically, we could have used 

the initial condition u(E,O,x) defined as before but with E slightly 

negative. This would lead to u(E,O,x) being essentially +(x) with a 

small negative bulge +(x,£) - +(x) of finite extent. We would then find 

that if u(t,x) is any solution of (4.2) whose initial condition u(O,x) 

satisfies 

·~ ~ u(O,x) < u(E,O,x) for all x and for any - E > 0 sufficiently small, 

(4.81) 

then 

u(t,x) + +u as t + + oo at each x . 

Here +o is the largest constant steady state solution of (4.2) which satis-

fies 

•o < +(x) for all x 

This negative hair-trigger effect is illustrated in Figure (16) below. 

Figure (16): 

X (E) X 
e 

X 

Any soluU.on u(t,x) whose initial condition u(O,x) is in the 
shaded region will evolve into +0; that is, u(+oo,x) = +o 
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Between (4.80) and (4.81) we have found the final steady state 

u(+=,x) for a large class of initial conditions. Further, we can start 

with any non-monotonic steady state which has at least two extrema and 

even some constant steady states (as discussed in the preceding section). 

Moreover, we can use any relative extremum of a non-monotonic steady state 

for x = x . By using all of the extrema of all these steady states, we e 

can find the final steady states u(+=,x) for a very large class of ini-

tial conditions. Thus we have a potentially very powerful method for find-

ing the final steady states as a function of the initial conditions. We 

will not follow this further except to introduce the following cautionary 

remark. The hair-trigger effect can be used to fi.nd u(+x>,x), but it does 

not show how u(t,x) approaches u(+oo,x). Thus u(+oo,x) - lim u(t ,x) 
t-++oo 

(x fixed) may not be the same as u(+co ,x) - lim u(t,x-ct) (x-ct fixed). 
t-++oo 

That is, u(+co ,x) may not be the same in different moving coordinate systems. 

4 . 17 Instability in higher spatial dimensions. In this section we assume 

that there are two or more spatial variables. We will discuss the direct 

extension of the instability results to traveling plane waves. Actually we 

+ 
will only deal with two spatial variables (x = (x, y)), but the generali-

zation to three or more spatial variables will be readily apparent. 

+ + + 
Suppose that u(t,x) = ~(x-ct) is a traveling plane wave solu-

tion of 

ut = f ( u , u , u , u , u , u) 
XX XY yy X y 

(4.82) 

and suppose that equation (4.82) is parabolic (i.e., satisfies hypothesis 

(H3). Let us change to a coordinate system which is ori.ented so that cp 

depends only on X (where 
+ 
x:=(x,y)) . Let us also transform to a coor-

dinate system which travels with velocity 
+ 
c = (c , 0). 

X 
In terms of this 
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coordinate system, our equation is now 

ut = f(u ,u ,u ,u ,u ,u) + c u 
XX xy yy X y X X 

(4.83) 

and our traveling plane wave solution is now the steady plane wave 

+ 
u(t,x) = u(t,x,y) = ~(x) (4.84) 

+ 
Thus, u(t,x) = u(t,x,y) = ~(x) solves 

u = f(u ,O,O,u ,O,u) + c u - f(u ,u ,u) + c u 
t XX X X X XX X X X 

(4.85) 

+ 
Clearly if we restrict the initial perturbations u(O,x) - ~(x) to depend 

only on x, then u(t,x,y) = u(t,x) is identical to the solution of 

u = f(u ,u ,u) + c u 
t XX X X X 

(4 . 86) 

In particular, if the plane wave solution ~(x) is non-monotonic then the 

solution u(t,x,y) = ~(x) of (4.83) has exactly the instability described 

in theorem (4.6) where the unstable initial perturbations do not depend on 

y. Moreover, let u(E,O,x,y) = u(E,O,x) be the initial conditions used 

in the proof of theorem (4.6). It was shown that 

u(E,t,x,y) = u(E,t,x) + ~ 0 as t + + oo for all x , 

where ~0 is the smallest singular point of equation (4.86) with 

~(x) < ~0 for all x 

Let us now use the maximum principle for the full equation (4.83). We 

+ 
immediately find that if u(t,x) = u(t,x,y) is any solution of (4.83) 

whose initial condition u(O,x,y) satisfies 

u(E,O,x) ~ u(O,x,y) ~ ~ 0 for all x and all y , (4.87) 

then 

u(t,x,y) + ~ 0 as t + + oo at each x and y 

Thus the plane wave solution ~(x) is unstable to all initial perturbations 

u(O,~) - ~(~) which satisfy (4.87) for any E > 0 sufficiently small. 

Note that this instability result for plane waves is weaker than 
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the corresponding result for a single spatial dimension. This is because 

a finite x-interval in one dimension is a finite spatial region, while a 

finite x-interval in two or more dimensions is an infinite spatial region . 

Thus, in more than a single spatial dimension we have not shown that non-

monotonic traveling plane waves are unstable to arbitrarily small perturbs~ 

tions which are non-zero only in a finite spatial region. 

4.18 Stability/instability of steady solutions in finite domains. In this 

section we consider the following finite spatial domain-boundary value pro-

blem 

ut = f(u ,u ,u) 
XX X 

u(t,x) = A at x 0 

0 < X < 1 (4.88a) 

u(t,x) B at x = 1 (4.88b) 

Specifically, we will determine the stability or instability of steady state 

solutions u(t,x) ~ <P(x) of problem (4.88) for all major cases. Since no 

essentially new ideas are involved in this section, we will be extremely 

brief. 

First we d~fine stability and instability appropriately for this 

problem. Suppose that u(t,x) ~ <P(x) is a solution of problem (4.88). 

Then if for every £ > 0 there is a o > 0 such that all solutions u(t,x) 

of problem (4.88) satisfy 

!u(t,x)- <P(x)l < £ for all x in (0,1), all t > 0 (4.89) 

whenever their initial conditions u(O,x) are in H2 and satisfy 
X 

lu(O , x) - <P(x) I < o for all x in (0,1) 
(4.90) 

u(O,O) = A u(0,1) = B 

we define cj>(x) to be a stable solution of (4.88). If a solution u(t,x) 

~ ¢(x) is not stable we define it to be unstable . Note that these defini-

tions o f stability a nd instabi lity are exactly equivalent to the definitions 
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of 
w w 

C -stability and C -instability over the finite interval [0, 1] ' at 

least when w(x) ~ 1 and w(x) is bounded over [0,1] . 

For our first case let us assume that <jl(x) is strictly mono-

tonic; that is, assume that <jl'(x) * 0 for all 0 < x < 1. To be definite, 

let us assume that <jl (x) :i.s increasing since the analysis when !jJ (x) is 

decreasing is very similar.. Now for any h > 0 sufficiently small 

4J(x-h) < <P (x) < <P(x+h) for all x in [0, 1] 

Let u(t,x) be any solution of problem (4.88) whose initial condition 

u(O,x) 

Since 

is in H2 and satisfies 
X 

4J(x-h) 2._ u(O,x) 2._ !jl(x+h) for all x in [0,1] 

u(O,O) = A u(0,1) = B 

!jl(-h) < u(t,O) 

$(1-h) < u(t,1) 

A < <jl(+h) 

B < $ (l+h) 

for all t > 0 

for all t > 0 

(4.91) 

and since (4.91) is satisfied, the maximum principle implies that 

4J(x-h) 2_u(t,x) 2._ !jl(x+h) for all x in [0,1], for all t > 0 

' Because h > 0 is as small as we please we see that u(t,x) - <P(x) is a 

stable solution of problem (4.88). Similarly, if !jl(x) is strictly de-

creasing then u(t,x) ~ !jl(x) is stable. 

For our second case let us assume that !jl(x) has at least two re-

lative extrema in (0,1). A close examination of the proof of leruna (4.7) 

shows that since at least two extrema are in (0,1), we can find a <j>(x,e:), 

a x _ (£), and a x+ (£) which satisfy conditions (a), (b), (c), (d), and 

(e) of lemma (4.7) and such that 

0 < x (e:) < x+(e:) < 1 

for all e: in (O,e:o) for some e: 0 > 0 sufficiently small. Even though 
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t0,1] is a finite domain, we can use the boundary conditions (4.88b) and 

the maximum principle to prove a hatr-trigger effect. Specifically, if 

u( E,t,x) is defined as the solution of problem (4.88) with the initial 

condition 

u(E,O,x) 
[

cp (x) 

cp(x,E) 

cp (x) 

0 < X < X (E) J 
x_(E) ~X~ X+(E) 

X (E) < X < 1 + - -
then a proof extremely similar to the one used in proving theorem (4 . 6) 

shows that u(E,t,x) is non-decreasing in t and that 

u(E,+oo,x) = cp (E,x) 
00 

0 < X < 1 

Here, cp (E,x) 
00 

is the least steady state solution of problem (4.88) with 

u(E,O,x) ~ cp
00

(E,x) for all x in (0,1] 

To finish the proof of instability, define ~(x,E) as the solution of 

f(~xx'~x'~) = 0 

with the initial condition 

~(x , E) = cp(x ) + E 
e e 

$ (x ,E) = cp (x ) = 0 
x e x e 

where x = x is any point in (0,1) at "t>7hich <j>(x) has an extremum. We 
e 

note that because of the uniform continuity of ~(x,E) and $ (x,E) 
X 

in E 

(for x in [0, 1]), the phase plane alternatives imply that ~(x+h,E) 

intersects cp(x) at least once in (0,1) for all E in (O,Eb) and all 

h in (-h 0 ,h 0) for some r. 0 > 0 and ho > 0 sufficiently small. Hence 

cp
00

(E,x) is not ~(x+h,E) for any E in (O, Eo) and h in (-ho,ho). 

Thus, 

lim max 
£-+0 O<x<1 

(cp (E,x) - cp(x)) + 0 
00 

Therefore u(t,x) = cp(x) is unstable whenever it has at least two relative 

extrema in (0,1). 
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For our last major case let us assume that ~(x) has exactly one 

relative extremum in (0,1). As before, define ¢(x,£) as the sol ution of 

f ( ~ ,¢ .~) = 0 
XX X 

with initial condi t ion 

¢(x ,£) = ~(x ) + £ e e ¢ (x ,£) = ~ (x ) = 0 x e x e 

Here x = x is the s ingle point in (0,1) where ~(x) has a maximum . e 

Define 

and note that 

~(x,£) I 
£=0 

~ (x) + h~ (x) = __ aa ~(x+h£,£) I 
£ X £ £=0 

Suppose that t her e is an h such that 

~ (x) + h~ (x) > 0 for all x in [0, j] 
£ X 

Then, for all £ in (0,£ 0 ) (for some Eo > 0 sufficiently small) 

~(x-h£, -£) ..::_ cp{x) < $(x+h£ , £) for all x in (o,l) 

Similar to the case where ~(x) was strict ly monotonic, we can now use 

¢(x-h£,-£), ~(x+h£ , £), and the maximum principle to conclude that 

u(t,x) = ~(x) is stable for this case. 

Suppose now that ther e is an h s uch that 

~ (x) + h~ (x) < 0 for some x in (O,x ) and for some x in (x ,1) 
£ x e e 

Then for all £ in (0, £o) (for some £o suffic iently small) the curves 

~(x+h£, £) and cp{x) intersect at least once in (O,x ) and at least once 
e 

in (x , 1) . We can now define ~(x,£) = ~(x+h£, £ ), define X ( £) as the e 

largest X in (O,x ) such that cp(x ( £), £) = cp{x ( £)) ' and define x+(£) e - -
as the smallest X in (x , 1) such that ~(x+( £ ) , £ ) = cp{x + ( £)) • Similar 

e 

to the case where cp(x) has two relative extrema in (0' 1)' we can use 

these ~(x £ ) x ( - ) and x ( £) to prove a hair- trigger effect. From this 
'I' • ' t. • + 
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hair-trigger effect we can then deduce that u(t,x) - ~(x) is unstable for 

this case. 

We now summarize the stability results of this section. Suppose 

that we are given the following boundary value problem: 

u = f(u ,u ,u) 
t XX X 

0 < X < 1 (4.88a) 

u(t,x) = A at x = 0 u(t,x) = B at x = 1 (4.88b) 

where A and B are given constants. Suppose that u(t,x) = ~(x) is a 

steady solution of this problem. Then: 

(1) if ~ 1 (X) 'f 0 for all X in (0, 'G then u(t,x) - ~(x) is 

stable; 

(2) i.f ~(x) has at least two relative extrema in the interval 

0 < x < 1 then u(t,x) = ~(x) is unstable; 

(3) if ~(x) has exactly one extrema in the interval 0 < x < 1 and 

if for some h, ~ (x) + h<P (x) > 0 for all x in (0,1] , then u(t,x) 
£ X 

- ~(x) is stable; and finally 

(4) if <jJ(x) has exactly one extrema in the interval 0 < x < 1 

(which occurs at x ' = x) 
e 

and if for some h, <jJ (x) + h<jJ (x) < 0 for 
£ X 

some x in (O,x) and for some x in (x ,1), then u(t,x) - <jJ(x) is 
e e 

unstable. 

This completes our stability analysis of steady solutions of pro-

blem (4.88). Note that we have treated the major cases of problem (4.88), 

but that we have not treated some minor cases here. Note also that similar 

techniques can be used to establish the stability of steady solutions of 

problems like 

u = f (u , u , u) 
t XX X 

u(t,x) = A at x 

0 < X < + 00 (4.92a) 

0 (4.92b) 
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We will not pursue this line of inquiry however. 

In the next section we conclude this chapter with some general 

remarks. 

4.19 Some general comments. In this final section of Chapter IV we make 

some general comments about the material in this chapter. 

First, the main purpose of this chapter is to provide the means 

to determine the precise stability of any traveling wave solution 

u(t,x) = ~(x-ct) of 

ut = f(u ,u ,u) 
XX X 

(4 .1) 

by inspection. Together, theorems (4.5) and (4 . 6) come very close to do-

ing precisely this. In fact, in Chapter V we will show that the stability 

results for monotone waves contained in theorem (4.5) are sharp in almost 

all cases, including all non-accidental cases where ~(-oo) and ~(+oo) are 

both order one singular points. Also, for non-monotonic waves ~(x-ct) 

we can hardly expect better results than theorem (4.6) gives for the "at 

least two relative extrema" case. However, for some monotone waves 

~ (x-ct) which either decay to a node at ~ ( -oo) or to a node at ~ (+oo) at 

the accidental rate and for some monotone waves ~(x-ct) where either 

~ (-oo) or ~ (+oo) is not a first order s:f.ngular point, some improvements in 

the stability results might be possible. Also, one may be able to improve 

on the results in theorem (4.6) for the single relative extremum ~ype of 

traveling wave solutions u(t,x) = ~(x-et). Although we will not pursue 

this topic, let us note that in proving theorem (4.6) we always u sed 

solutions of 

f(u ,u ,u) - cu 
XX X X 

0 (4.2) 
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for our upper and lower functions. Since we never took advantage of the 

differential inequalities allowed by the maximum principle, perhaps we 

could improve the results in theorem (4 . 6) by utilizing these allowed 

inequalities. 

A major advantage of theorems (4.5) and (4.6) is that these 

theorems are generic. That is, the stability results contained in these 

theorems depend only on a few easily determined characteristics of the 

traveling wave solutions. The ease of the application of these results and 

the sharpness of these results make theorems (4.5) and (4.6) v ery useful. 

A disadvantage of the stability theory developed in this chapter 

is the difficulty of the application of the stability criteria developed 

in section (4.14) for the indeterminate case. However, if s o meone shows 

that the stability case never occurs (which is not an unreasonable conjec

ture) then this disadvantage would immediately disappear. 

The stabili.ty results for monotonic traveling waves in a single 

spatial dimension have direct e xtensions to monotonic traveling plane waves 

in multiple spatial dimensions, as was discussed in section (4.11). How

ever, th~ direct extension of the instability results of theorem (4.6) to 

non-monotonic traveli.ng plane waves in higher spatial dimens i.ons signi.fi-: 

cantly weakens the instabili.ty results, as i .s discussed in sectio n (4.17). 

Specifically, in multiple spa t i al dimensions we no longer have instabi lity 

for arbitrar i ly small perturba tions of f inite extent. One c ould plausibly 

conjecture that these plane waves are indeed unstable to a rbitrarily small 

perturbations of finite e x tent. However the lack of a phase plane for 

solutions of 

0 
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means that the proof of any such conjecture would differ significantly 

from the proof used for the one spatial dimension case. We will meet this 

same problem again in Chapter VI and in Chapter VII where we extend the 

stability results to some equations containing integrals and to some sys-

terns of equations. There the lack of a phase plane prevents us from ex-

tending the instability results to these new classes of equations. 

In section (4.18) we used our techniques to find the stability/ 

instability of steady solutions of the boundary value problem 

ut = f(u ,u ,u) 0 < X < 1 
XX X 

u(t,x) = A at X = 0 u(t,x) = B at X = 1 

We also noted in section (4.18) that we could extend these stability/insta-

bility results to the steady state solutions of the one-sided boundary 

value problem 

ut = f(u , u ,u) 
XX X 

0 < X < + 00 

u(t,x) = A at x 0 

However there is no readily apparent extension of these results to the 

stability of steady state solutions of mixed boundary condition problems 

such as 

u = f(u ,u ,u) 
t XX X 

gl(u,u) = 0 at x = 0 
X 

0 < X < 1 

0 at x = 1 

Apparently finding such an extension involves using at least one new idea. 

This completes this chap t e r on the stability and instability of 

traveling wave solutions o f 

f(u ,u ,u) 
XX X 

(4 . 1) 

In the next chapter we will explore a related topic. Namely we will explore 

the connection between the mean wavespeed of a solution u(t,x) of (4.1) 

and its initial condi tion u(O,x) 
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Chapter V 

MEAN WAVESPEED AND THE INITIAL CONDITIONS 

In this chapter we again deal almost exclusively with parabolic 

equations which contain only one dependent variable, contain only one inde-

pendent variable, and contain no integrals. Throughout this chapter we 

will assume that the hypotheses H2 (smoothness of the equation), H3 

(parabolicity of the equation), and H4 (existence of solutions to the ini-

tial value problems) are satisfied. We also assume a very large M > 0 

has been chosen, and as in the previ ous chapter we therefore work with the 

resulting specific equation 

u = f(u ,u ,u) 
t XX X 

(5. 1) 

where f(uxx'ux,u) = F~l)<(u]> 
In this chapter we will establish connections between the mean 

wavespeed of solutions u(t,x) of (5.1) and their initial conditions 

u(O,x). This topic was discussed in section (2.4), and thus much of the 

material in this present chapter is duplicated there. Specifically, in this 

chapter we consider equations of the form (5.1) which admit non-constant 

bounded monotonic solutions 

u(t,x) = ~(x-ct,c) (5.2) 

for some values of c (which may be zero), since these are t he non-trivial 

stable traveling wave solutions of ( 5 . 1) . We will first determine when the 

existence of a monotonic solution <j>(x-ct,c) of ( 5. 1) at a particular 

wavespeed c implies the existence or non-existence of other nearby travel-

ing wave solutions, both at the same and at s lightly different wavespeeds . 

c. We then use these existence results and the maximum principle to estab-

lieh the connection between t h e mea n wavespeed of solutions u(t, x ) o f (5.1) 
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and their initial conditions u(O,x). 

In order to see how such mean wavespeed/initial condition results 

can be obtained, we consider a motivating example. Let u(t,x) = ~(x-ct,c) 

be an increasing traveling wave solution of (5.1). Then for any h 1 , 

hz > 0 (no matter how large) t (x-ct + h 2 , c) and $(x-ct- h1, c) are also 

solutions. The maximum principle therefore implies that all solutions 

u(t,x) of (5.1) with initial conditions u(O,x) satisfying 

$(x-hl,c) ~ u(O,x) ~ $(x+h2 ,c) for all x (5. 2) 

must also satisfy 

$(x-h 1-ct,c) < u(t,x) < $(x+h2-ct,c) for all x, all t > 0 

(5.3) 

This is illustrated in Figure (1) below, where the .implication of the maxi-

mum principle is that all solutions of (5 .1) which are initially in the 

shaded region will remain in the shaded region for all t > 0. It is ap-

parent from Figure (1) that relation (5.3) implies that u(t,x) travels 

X 

'\_$(x-ct-hl, c) 

Figure (1) 

with mean wavespeed c in an appropriate sense. Moreover, h1 and h z can 

be arbitrarily large. Thus the main restrictions on which initial conditions 

can be bounded as in (5 . 2) are asymptotic in nature. Fur-thermore, it is 

clear that stronger results can be obtained by using the upper and lower 
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functions constructed in section (4.5). Finally, when the existence of 

tjl(x-ct,c) implies the existence of <j>(x-c't,c') for some c' near c, 

it is clear that si.milar results can be obtained showing which u(t,x) 

travel with mean wavespeed c'. 

In this chapter we will consider only the four main types of 

monotonic traveling waves. Specifically, we will consider only the S ~ S, 

N ~ S, S ~ N, and N ~ N types of monotonic traveling waves <j> (x-ct, c) 

where <j>(-oo ,c) and <j>(+oo, c) are first order singular points. Although 

similar results can be easily obtained for any specific example when 

<j>(-oo) and/or <j> (+oo) are higher order singular points, to retain simplicity 

we will develop the general theory only for first order singular points. 

We will consider the S ~ S, N ~ S, and N ~ N cases in sections (5.1), 

(5.2), and (5.3), respectively. For each case, assuming a single monotone 

traveling wave solution exists we will first determine the existence or non

existence of nearby monotonic waves traveling with the same and nearly the 

same wavespeeds. We will the n use the maximum principle and the upper and 

lower functions constructed in section (4.5) to obtain the mean wavespeed/ 

initial condition results . In the other three sections in this chapter, 

sections (5.0 through (5.6), we will briefly discuss related topics. 

Specifically, in section (5.4) we will use the wavespeed results to show the 

sharpness of the stability results contained in theorem (4.5). In section 

(5.5) we will discuss the extension of the wavespeed/initial condition 

results to traveling plane waves in multiple spatial dimensions. Finally, 

we end this chapter in section (5.6) with some concluding remarks. 

We now begin this program with the simplest case, namely the case 

where u(t,x) = <j>(x-c 0t,c 0 ) is a monotonic S ~ S type traveling wave 
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solution of (5.1) . 

5.1 Saddle-saddle case . In this section, we assume that u(t,x) - ~(x,c 0 ) 

exists and is a bounded monotonic steady state solution of 

f(u ,u ,u) + cu 
XX X X 

(5.4) 

at wavespeed c = c 0 . We also assume that <P = ~(-oo,c 0 ) : cp _ , v = 0 and 

<P = ~(+"",Co) : ~ , v = 0 are both first order saddle points of the system + 

~X v 

f(v ,v,$) + cv 0 
X 

(5.5) 

at c = co. In addition we will assume that cp(x,c 0) is increasing, since 

the analysis for </J(x,c 0) decreasing is very similar . In this section we 

will first show that for any val ue of c ( including c 0), there can be 

only one such solu tion </J(x,c) modulo translations in x. We then will 

establish the mean wavespeed/initial condition result for this case. As 

a by- product of this last result, we will find that there can be only one 

speed co at which a solution </l(x,co) (with the above properties) can 

exist for this case . To complete this secti.on, we will then summarize these 

results in two theorems . We now do this. 

Let $(x,c 0) be the monotonic steady state solution of equation 

(5 . 4) at c = c 0 with all the properties assumed above. With these as-

sumptions, the phase plane of (5.5) at c = co must look like the illus-

tration below. Since ~ = ~ ' 
v = 0 and cp = ~+' v 

at c = co, · they are saddle points for all values of 

c there exists functions I!' (x , c) and 'P+(x,c) such ·-
state solution cp(x,c) of equation (5 . 4) with ~(-oo,c) 

cp (x,c) > 0 for all x sufficiently small, must be 
X 

Hx,c) - 'l'_(x+h,c) for all x 

0 are saddle points 

c. Hence for each 

that every steady 

and with 



-212-

... - L - - ~ - --
q, 

v=O ... 

<P+ 

for some constant h. Similarly, if u(t , x) = cp(x,c) solves equation 

(5 . 4) , if <j>(+oo , c) = <P+ ' and if <P (x,c) > 0 for all x sufficient ly 
X 

large, then 

<j>(x,c) :: 11' (x+h,c) for all x 
+ 

for some constant h. Therefore, for any c there is at most one steady 

state solution p(x,c) of (5.4) (modulo translations i n x) which is 

both monotonic and goes from ~(-oo,c) = <P to <j>(+oo,c) = <P+ · One sees 

' that finding a value of c 0 for c at which such a monotonic steady state 

solution exists, is equivalent to finding a co for which 

'f_ (x+h,co) :: lfl+(x,co) for all x and for some h 

Even though this can only occur accidentally at any given wavespeed co, 

the existence of a S + S wave for some wavespeed c cannot be regarded 

as an accidental occurrence . 

We now establish the mean wavespeed/initial condition result for 

this case. Consider equation (5 . 4) at c = 0, specifically 

u = f (u , u , u) 
t XX X 

(5. 6) 

This is t he given equation in t erms of the original stationary coordinate 
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system. Let ~(x,co) be the steady state solution of (5.4) at c = c 0 

as described above: ~(-oo,c 0 ) ~ ~-; ~(+oo ,c 0 ) = ~+; ~ = ¢ , v 0 and 

¢ = ~+' v = 0 both saddle points; and ¢(x,c0) monotonically increasing 

in x. Then u(t,x) = ~(x-c 0 t,c 0 ) solves equation (5.6). We now utilize 

the upper and lower functions of lemma (4.4) and the maximum principle. 

This immediately shows that if u(t,x) and ~(t,x) are any of the upper 

and lower functions given in lemma (4.4), then 

~(O,x) ~ u(O,x) ~ u(O,x) for all x (5. 7) 

implies that 

~(t,x-cot) ~ u(t,x) ~ u(t,x-c 0t) for all x and all t > 0 (5.8) 

for any solution u(t,x) of (5.6). Substituting for u and ~ from 

lemma (4.4), we find that for any q(O) > 0 small enough and for any h 1 

and h2, all solutions u(t, x) of (5.6) whose initial conditions u(O,x) 

are in H2 and satisfy 
X 

¢(x-hl,co) - q(O) < u(O,x) < ~(x+h2,co) + q(O) for all x (5.9) 

must satisfy 

for all x, all t > 0 (5.1.0) 

Here q(t) is defined by equation (4.20) and thus q(t) + 0 monotonically 

as t + + oo . We illustrate the bounds of relation (5.10) on u(t,x) in 

Figure (2) below. From this illustration it is clear that whenever u(O,x) 

satisfies (5.9) for any q(O) > 0 small e nough and some h 1 and h 2 , then 

the resulting bounds of (5.10) on the solution u(t,x) imply that u(t,x) 

travels with mean wavespeed c 0 in an appropriate sense. 

Thus when u(O, x) can be bounded as in (5.9) we have found that 

the resulting solution u(t,x) must travel with mean wavespeed co · To 
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~¢(x-cot+hz+Kq(O),co)+q(t) 

L 

Figure (2) : Since both of the functions bounding the shaded region move 
with speed co, since q(t)-+0 as t-t+oo, and sinc.e u(t,x) must 
be in the shaded region for all t~O, u(t,x) must travel with 
mean wavespeed co. 

obtain the mean wavespeed/initial condition result, we need only identify 

the class of initial conditions which can be bounded by (5.9) . We note 

that (5. 9) is satisfied for a particul ar q (0) > 0 and some h 1 and h
2 

sufficiently large whenever the conditions 

<P - a' < u (O,x) < <P+ + a ' for all X 

<I> - a' < u(O,x) < <P + a' for all X < - xo (5.11) 

<P - a' < u(O,x) < <P+ + a' for all X > xo + 

are satisfied for any xo > 0 and any a' in (O,q(O)). Therefore, 

whenever u(O,x) is in H2 and satisfies conditions (5.11) for any suf-
X 

ficiently small a' > 0 and for any xo > 0, then the resulting solution 

u(t,x) of 

f(u , u ,u) 
XX X 

(5 .6) 

travels with mean wavespeed c 0 • This immediately implies that there is at 

most one speed c 0 for which a monotone s olution <j>(x-cat,ca) (with 
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and <j>(+oo,c 0) = <1> ) exists. 
+ 

In summary we have shown the following: 

Theorem 5.1 (S + S): Assume that hypotheses H2, H3, and H4 are satisfied. 

Suppose that u(t,x) = <f>(x-c 0t,co) is a bounded monotonic traveling wave 

(or steady state) solution of 

f(u ,u ,u) 
XX X 

and also that <P <l>(-oo,c 0), v = 0 and <f> 

(5.6) 

<f>(+=,co),v=O areboth 

order one saddle points of system (5.5) at c = c 0 . Then if u(t,x) = 

~(x-ct,c) is any other monotonic traveling wave (or steady state) solu-

tion of (5.6) with $(-oo,c) = <f>(-oo,c 0 ) and ~(+oo,c) = <f>(+oo,c 0), then 

~(~-ct,c) = <f>(x- c 0t+h,c 0) for all x, all t > 0 

for some h. In particular c = c 0 . 

Theorem 5 . 2 (S + S): Assume that hypotheses H2, H3, and H4 are s a tisfied. 

Suppose that u(t,x) = <f>(x-c 0t,c 0) is a monotonic bounded traveling wave 

(or steady state) solution of (5.6), and also suppose that <1> = <f>(-oo,c 0) 

= <I> , v = 0 and <1> ~ <l>(+oo,co) = <P+' v = 0 are both order one saddle 

points of system (5.5) at c = c 0 . Then if u(t,x) is any solution of 

(5.6) whose initial condition u(O,x) is in H2 
X 

and satisf i es 

<I> - a.' < u(O,x) < i/J + a.' for all X < - XO 

<I> - a.' < u(O,x) < <I>+ + a.' f or all 
+ 

X > + XO 

min{<f>_,<f>+} - a.' < u(O,x) < max{<f>_,<f>+} +a' for all x 

for any a.' > 0 small enough and any x 0 > 0, then u(t,x) travels with 

mean wavespeed co. 

Note that we hav e establishe d thes e theorems only in the cas~ where 

<f>(x ,c0) is increasing in x. However, a similar analysis to the one pre-



-216-

sented will establish these two theorems for the case of <j>(x,c 0 ) de-

creasing. 

Roughly speaking, theorem 5.1 (S + S) shows that if <j> and <j>+ 

are both order one saddle points, then there is at most one wavespeed 

c = c 0 at which a monotonic traveling wave u(t,x) = <j>(x-c 0t,c0) with 

and <j>(+oo,c 0 ) = <j>+ can exist. Furthermore, if such a 

traveling wave exists, all other similar traveling waves u(t,x) = 

~(x-c 0 t,co) are translates of <j>(x-c 0t,c 0). Finally, from theorem 5.2 

(S + S) we see that if such a traveling wave exists, then any solution 

u(t,x) of equation (5.6) must travel with mean wavespeed c 0 whenever 

its initial conditions remotely resemble the traveling wave, as is illus-

trated in Figure (3) below. 

Figure (3): If u(O,x) is contained in any region like the one shaded above, 
then u(t,x) must move with mean wavespeed co• (See theorem 
5.2 (S+S)). 

This completes the S + S case. We continue in the next section 

by analyzing the N + S case. 
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5.2 Node-saddle case. In this section we assume that u(t, x ) _ cp(x,c 0) 

exists and is a bounded monotonic steady state solution of 

ut = f(u ,u ,u) + cu 
XX X X 

(5.4) 

at c = c 0 • He also assume that cp cp(-oo,co) = cp , v = 0 is a first 

order node and that <P = <P(+oo,c 0) - <P+' v = 0 is a first order saddle 

point of the system 

<Px v 

f(v ,v,cp) + cv 0 
X 

(5.5) 

at c = co• Finally in this section we will assume that <P(x,c 0 ) is in-

creasing, since the analysis for cp(x,c 0) decreasing proceeds similarly. 

In this section we will first use a continuity argument to show 

that if cp(x,c 0 ) decays to the node cp at the usual asymptotic rate as 

x +- oo, then for each wavespeed c' in at least a small range (c 1 ,c2 ) 

about co there is a monotonic steady state solution cp(x ,c') of (5.4) 

at c = c'. Furthermore, we will find that cp(- oo ,c') cp(-oo ,c0 ) = cp_, that 

!jl(+oo,c') cp(+oo,co) = <P+' and that cp(x,c') -decays to <j> at the usual 

rate as x + - oo. As a by-product of this analysis, we will find that at 

any given wavespeed c there is at most one such solution of (5.4) (modu-

lo translations in x). Then, by examining how the continuity argument can 

fail for c sufficiently far from c 0 , we will be able to identify c1 

and c 2 • We will then summarize these results in a theorem. Finally, we 

will quote and prove the mea n wavespeed/initial value results for this case. 

We now carry out this program. 

Let <j>(x,c 0) be the monotonic steady state solution of (5.4) at 

c = c 0 with all of the properties assumed above. Then, the phase plane 

of system (5.5) at c = c 0 must look like 
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--~---4-::: -.-..--.... 
v=O 

~ = ~ + 

Since ~ = ~+' v 0 is a saddle point at c = c 0 , it is a saddle point 

at each value of c. Similar]y, since ~ = ~- v = 0 is an unstable node 

at c = c 0' it is an unstable node at each value of c < cmax' where 

c is 
max 

c 
max 

We now show that the existence of the monotonic steady state 

~(x,co) of (5.4) at c = c 0 implies that similar monotonic steady state 

solutions of (5.4) exist for all c < c with c near enough to c 0 • 
max 

Since ~ = ~+ is a first order saddle point of system (5.5) for each c, 

at each c there is a solution '(x,c) of (5.5) such that !(x,c) + ~+ 

as x + + oo and such that 'l'(x,c) is increasing for all x sufficiently 

large. Moreover, there can only be one such solution (modulo translations 

in x). Thus, for each c < c 
max 

there is at most one steady state solu-

tion ~ (x, c) of (5. 4) (modulo translations in x) '"hich is monotone and 

which goes from ~(-oo,c) = ~ to (Of course, for c > c 
max 

the point ~ = ~-' v 0 is no longer an unstable node, and so no such solu-

tions can exist for c > c ). 
max 

By using the translational freedom in x for each c in the 

definition of 'l'(x,c), we can make 'l'(x,c) and - a v(x,c) = a; !(x,c) both 
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be continuously differentiable in c. (This is an implication of Chapter 

13 reference [6], for example). Moreover, by further translation of 

~(x,c), we can in addition set o/(x ,co) - $(x,co). 

Let '+ < ~+ be selected such that 

in ('+'~+], and let x+(c) be defined by 

f3(0,0,<jl) < 0 for all <P 

't'(x,c) ~ '+ for all x > x+(c) 

From the phase plane of system (5.5), one realizes that 

a 
v(x,c) = ax ~(x,c) > 0 for all x ~ x+(c) 

Let cl,c2 with cl <Co < c2 be selected, and let X+ be defined by 

xl-: max {x (c)} . - ~ + c1..::_c2_c 2 

We have observed from the phase plane that ~(x,c) is monotone for all 

X > X - + when c is in (i.~l,cz). Suppose a constant X with X < X 
+ 

is selected. No matter how small X is, the uniform continuity of 

v(x,c) in c when X is restricted to the interval [x_,x+] shows that 

for some c. I in (cl,co) and some cz in (c0 ,cz], the function 

v(x,c) > 0 for all X in [x _,x+] when c is in (~1 .~z). Hence we 

now know that for any x (no matter how small) there is a c 1 < co 

and a cz > co such that ~(x,c) is monotonic for all x > x tv-hen c 

Now let us define '- > ~ such that f3(0,0,<jl) > 0 for all ~ 

in [ <P .~ J. By selecting x sufficiently small and selecting c1 < co 

and c 2 > c 0 sufficiently near c 0 , the uniform continuity of lf' (x,c) in 

c for x in [x_,x_.J shows that 'l' (x,c) = ~ at exactly one point 

x = x_ ( c ) with x = x (c) in [x_,x+] . 1.Je will now· show for all c::_cmax' 

c sufficiently near c 0 , that 'P (x,c) decays to <I> monotonically for 

x < x_(c) and decays to <P_ ~t the usual rate as x ~ - 00 
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Consider the phase plane of system (5.5) near ~ = ~ at any 

value of c < c , as is illustrated in Figure (4) below. Let us examine 
- max 

the phase plane trajectories of all solutions of system (5.5) which de-

crease from ~ = ~ to cf> = <jJ at the usual rate as x + - oo. We see 

that all these trajectories must cross the ~ = ~ line at a positive 

point v which is smaller than the point v = v (c) 
a 

at which the acci-

dental solution (i.e. the solution which decays to ~ = ~ at the acci-

dental rate as x + - oo) crosses the ~ = ~ line. Conversely, as illus-

trated in Figure (4), any solution of (5.5) which crosses the ~ = ip 

line at a positive point v < v (c) 
a 

must decrease monotonically from 

~ = ~- to <P = <P at the usual rate as x decreases to -oo. 

Now we have already shown that whenever c is in (~1.~2) then 

'¥(x,c) 1·s monotonic for x > x_(c) ancl ur(-roo c) = "' where ~ , "'+' 

Figure (4): Phase plane of system (5.5) near cf>=<P and at any c~c • If 
the phase plane trajectory of '¥(x,c)-intersects the Wgf_ line 
at any positive point v below the crossing point va(c) of the 
trajectory of the solution which decays to ~- at the acciden
tal rate, then '¥(x,c) must decay monotonically to <P- at the 
usual rate as x~oo. This is because the phase plane directors 
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on the v=O li.ne point downward for cp in (cp _, iji -· ], and because 
the horizontal components of the phase plane directors on the 
cj>=iji line are positive for v>O. 

x (c) has been defined as the point x at which 

'P(x_(c),c) <P 

Thus, to conclude that 'P(x,c') is a monotonic steady state solution of 

(5.4) at c = c' (with '¥(-oo,c') = cp , with 'P(+oo,c') = cp+' and with 

~(x,c ') decaying to cp at the usual rate as x + - oo) for any c' in 

(~1.~2)n(-oo,c ], we now need only to show that max 

v(x_(c'),c') = ~x 'P(x,c')lx=x (c') < va(c') 

However, at c = co we have that v(x_(c0),co) < v (c0). 
a 

Moreover, 

v(x_(c),c) and v (c) 
a are continuous in c for c < c 

max 
Thus for 

some c1 in [~I,co) and some c2 in (c 0 ,~2], both sufficiently near 

c , we can conclude that v(x_(c'),c') < v (c') for all c' in 
a 

(cl ,c2) (\ (-oo,c ], as is needed. 
max 

Thus, for some c 1 < co and some c 2 > c 0 we have shown by a 

continuity argument that for each c in (cl ,c2) n ( -oo, cmax]' there is a 

traveling wave solution u(t,x) = 'P(x-ct,c) of 

u = f(u ,u ,u) 
t XX X 

(5.6) 

which is monotone, which decays to '¥(- oo ,c) = cp at the usual rate, and 

which has 'P(+oo,c) = cp+. Furthermore, ,.,e have shown that at each wave

speed c there is a t most one such traveli n g wave solution (modulo trans

lations in x) and also have shown tha t the functions '¥ (x, c) and ~x 'i' (x, c) 

are continuously differentiable in c . We now identify the extre-

mal wavespeeds c 1 and c 2 . 

Let u s examine the continuity arguments used to show the exis-

tence of the traveling wave solutions u(t,x ) = 'P(x-ct,c) of (5.6). 
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Suppose that c1 > - ~. so that monotonic traveling wave solutions 

~(x-ct,c) (with the properties described above) exist for c > c 1 , but 

not for c < c1. From the continuity arguments we see that either 

(1) there is a monotone solution u(t,x) = ~(x-c 1 t,c 1 ) which decays 

at the accidental rate as x + - m and which has 

~(+=,cl) = <P+' or 

(2) the phase plane trajectory of system (5.5) at c = c 1 which 

corresponds to the monotone wave ~(x,c) intersects (but does not cross) 

the v = 0 axis at at least one point <Po in 

Figure (5) below. 

(<P ,cp ), as illustrated in 
- + 

L 

Figure (5): 

<Po 

Phase plane trajectories of ~=~(x,c), v+ 'l'(x,c) at c=c1 and 
at two values of c slightly larger than cf. As c decreases 
to c 1 , the phase plane trajectory which emanates from the 
saddle point <P=<P , v=O approaches the line v =O at a point 
4>=~ 0 , and when ct"cl the trajectory intersects (but does not 
cross) the line v=O at <1>=4> 0 • Thus <P=<Po. v=O must be a singu
lar point. Note that the phase plane trajectories of 
~(x,cl+26c), ~(x,c1+6c), and ~(x,cl) belong to the distinct 
phase planes of system (5.5) at c=c 1+26, c=c1+8c, and c=c1, 
respectively. 

The first possibility (of '(x,c) decaying at the accidental 

rate as x + - ~) is straightforward, and so we consider the second 

<P 
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possibility. Therefore, suppose that the second possibiliti occurs, and 

suppose further that the phase plane trajectory at c = c 1 intersects (but 

does not cross) the v = 0 line at only a single point <j> 

Since the phase plane trajectory intersects the line v = 0 at <j> <f>o 

and does not cross this line, <1> = <f>o, v = 0 is a singular point. More-

over, as illustrated in Figure (5), a trajectory both enters and leaves 

this singular point. Thus <j> = <j> 0 , v = 0 is either an ordinary first or-

der saddle point or is a higher order singular point. Clearly in this 

case as c goes to c 1 , ~(x,c) evolves into two separate monotonic travel-

ing waves: a traveling wave u(t,x) = ~ 1 (x-c 1 t,cl) which has ~ 1 (-~,c 1 ) = 

<I>_ and has ~1 (+oo,q) <Po. and a traveling wave u(t,x) = ~2 (x-c 1 t,c 1 ) 

which has ~2 (-~,cl) = <l>o and has ~2(+oo,q) = <j>+. Also, typically the 

intermediate singular point <1> <1> 0 , v = 0 is an ordinary saddle point, 

although it can also be a higher order s i ngular point. Thus in this case, 

as the wavespeed c decreases to c1 the single monotonic traveling wave 

¢(x-ct,c) bifurcates into two distinct monotonic traveling waves. 

It could happen that as c approaches c 1 , the trajectory of 

~(x,c) intersects the 

singular points A. (1) 
'1'0 , 

v = 0 

,~,(2) 
'1'0 , 

axis simultaneously at several different 

(m) 
••• , 4 o in (<f>_, </J+) when c = c 1 . This 

is illustrated in FJgure (6) below. Again, each of the singular points 

(i) 
<f>o is either an ordinary first order saddle point or is a higher order 

singular point. Clearly as c goes to c 1 the traveling wave u(t,x) 

~(x-ct,c) evolves into the m ·+ 1 monotonic traveling wa v e s u(t,x) = 

~ . (x-c 1 t,c 1 ), i = 
1 

~i(+~,cl) = <l>~i) 

1, ... m. Moreover, 

where 

(i-1) 
~i(-oo,c 1 ) = <f>o and 

<l>~m+l) have been defined as and 

<I>+· Thus in this case, at c = c 1 the sin.gle monotonic traveling wave 
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u(t,x) = ~(x-ct,c) bifurcates into the (m + 1) monotonic traveling 

I 

• (1) 
cp = <Po 

L 

Figure (6): At c=c 1 , the phase plane trajectory emanating from the saddle 
point a cp=cp may intersec t (but not cross) the v=O line at 
several different singular points before reaching cp=cp_. 

In summary, so far we have found that if c 1 > - "'• then either 

'P(x,cl) decays to cp_ at the accidental rate as x + - oo or that at 

c = c1 there are two or more monotonic waves corresponding to the single 

monotonic wave 'II (x,'c ) for c > c1. Similarly, if 

l!'(x,c2) is a monotonic traveling wave \>lith ~(+oo,c2) 

cays to at the accidental rate as x+ - 00 , or 

c2 < c then either 
max 

~ and which de
'~'+ 

'II (x, c) utilizes in-

termediate singular po:i.nts to b:lfurcate into two or more monotonic travel-

ing waves as c goes to c 2 . Thus at both c = c 1 and c = c2 there 

can be two possible types of behavior of l!'(x,c). We now will use the max-

imum principle and find which behavior occurs a t c = c 1 and which occurs 

We first consider c = c 2 . We will now show that 1Y(x,c) cannot 

evolve into two or more monotonic traveling waves as c goes to c2. 
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Indeed, suppose that it does . Let these monotonic traveling wave solutions 

be u(t,x) 'l' . (x-c2t,c2), where 
l. 

cp - cp~O) '~'1 (-co • c2) < 'I' 1 ( -t.CX), c 2) = iJl ~ 1) = '~'2 (-co , c 2) < lf'2 ( +oo, c 2) 

- ct>a2) - \IJ ( ) < - ,/, (m) - \II ( ) < Ul c-~~ ) T 3 -co' c 2 • . . = ~· 0 = ' m+ 1 -co' c 2 T m+ 1 ,_.... > c 2 

- cp~m+l) = cp 
+ 

Consider the last monotonic traveling wave (with speed c 2 ) u(t,x) = 

'l'm+l(x-c2t,c2), and let u(t,x) = 'l'(x-ct,c) be any of the monotonic 

traveling waves with c in (c 1 ,c2). We recall that '1' (-co ,c) = cp and 

that 'I' (-co c2) = cf>o(m) > cp 
m+l ' Moreover, the asymptotic decay of 'l' (x, c ) 

to the saddle point cp+ is given by 

'JI(x,c) ~ cp+ - a(c)ek(c)x as x 7 +co , 

and that of 'Jim+l (x,c2) is given by 

nt ( ) ,~, ( ) k ( C 2 ) X Tm+l x,c2 - ~+ - a c 2 e as 

where a(c) and a(c2 } are some positive constants, and where k(c} and 

k(c) 

are given by 

-(fz(O,O,cp+)+c)-l(fz (O,O,cp+)+c) 2-4£ 1 (0,0,cp+)f3(0,0, cp+) 

2f 1 (O,O,cp+) 

at c = c and c = c 2 • Note that c 2 > c implies that \k(c2)1 > 

jk(c)j. This means that for some h sufficiently large 

'Jim+l (x+h,c z ) > lf'(x,c) for all x 

But the maximum princ iple now implies that 

'l'm+l (x-c2t+h,c2) ~ '¥(x-ct,c) for all x, all t > 0 

This is illustrated in the sketch below, and is clearly nonsense since 

c 2 > c. Thus as c goes to cz, the monotonic wave 'JI (x ,c) cannot 

evolve into two or more monotonic traveling waves . Therefore, if 

c 2 < c then u(t,x) = 'JI(x-c 2 t,c2) exists and is a monotonic traveling 
max 
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wave with ~(+oo,cz) ~+ and which decays to ~ at the accidental rate 

as x + - ""· 

u=cj> 

Figure (7): 

,-----------------~~----------------u=¢+ 

The max1mum principle requires~ +l(x-c2t+h,c2)~~(x-ct,c) for 
all X and all t :::_O. However 'Ym+ rex-czt+h,cz) travels with 
wavespeed c 2 , which is larger tAan the wavespeed c of 
~(x-ct,c). Thus this is impossible. 

Now let us briefly consider c = c1. For this case we first as-

sume that u(t,x) = ~(x-clt,c 1 ) exists with ~' (+oo,cl) ,~, and with '!'+ 

~(x,cl) decaying at the accidental r a te to ~ as x + - "" Similar t o 

the preceding case, . we can use the maximum principle to establish a con-

tradiction. Thus as c goes to c 1 , 'P(x,c) must evolve i nto two or more 

monotonic traveling waves. Moreover, let u(t,x) = '~~1(x-c1t,c1) be the 

monotonic wave at c = c1 with '1' 1 (+"",cl) = ¢~1) and with '¥1(-·"",cl) = $_. 

at the accidental rate as x + - "" • 

we could use the maximum principle to e stablish a contradiction similar 

to the contradiction in the c = c 2 case. Thus, ~l(x,cl) must decay 

to ~ at the usual rate as x + - oo 

In particular , nor.e that if there are no singular points ~ = ~0• 

v 0 with ~ < cf>o < <I> ' - + then ~ (x, c) cannot bifurcate into two or more 
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traveling waves because each of these traveling waves requires an inter-

mediate singular point. Thus - 00 in this case. That is, when 

f(O,O,<!>) = 0 has no solutions for < 4> < <I> , + 
then - <X> and 

hence monotonic traveling. waves u(t,x) = 'i'(x-ct,c) with 'i'(+oo,c) = 4> + 
and with 'i'(x,c) decaying to 4>_ at the usual rate as x + - oo exist 

for all c .::_ c2. 

We now summarize these results in the following theorem. 

Theorem 5.1 (N + S): Assume that hypotheses H2, H3, and H4 are satisfied. 

Suppose that u(t,x) ~ <j>(x-c 0t,c 0) is a bounded monotonic traveling wave 

(or steady state when c 0 = 0) solution of 

u = f (u , u , u) 
t XX X 

(5.6) 

Suppose further that 4> = <j>(-oo,c 0) ~ <j>_, v = 0 is an ordinary first order 

node and that 4> = <j>(+oo,c 0) ~ <j>+, v = 0 is an ordinary first order saddle 

point of the system 

(5.5) 

at c = co. Finally suppose that <j>(x,c 0 ) decays to <I> at the usual 

rate as x + - oo Then there is a c 1 and a c2 with 

such that for each c 1 in Cc1,c2)(\ (-oo c J there exists a cp(x,c 1
) 

' max 

satisfying the following conditions: 

(1) <f>(x,c 1
), <j> (x, c 1 

) are continuously differentiable in C I> 

X 

(2) cp (x, c 1
) is monotonic in x, 

(3) u(t,x) - 4>(x-c 1 t,c 1
) solves equation (5.6)' 

(4) cp(-oo,cl) 4> and - <j>(+oo,c') = <I>+' and 
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(5) ~(x,c 1 ) decays to ~- at the usual rate as x 7 - oo . 

Also, if h(x,c 1
) and <h(x,c 1

) are any functions satisfying (2), (3) and 

(4) at some cl • then h (x+h, c 1
) = <fl2 (x, c 1

) for all x for some h at 

that value of c 1
• 

Moreover, if c2 < c 
max then there is a traveling wave solution 

u(t,x) = <P(x-c2t,c2) of (5.6) which sat1.sfies conditions (2), (3), and 

(4), but which decays to ~ at the accidental rate as x 7 - oo. 

Similarly, if - co then ·there are one or more values . of 

~ ~(1) ~{2) ~(m) 
't'o 't'O • '1'0 • • • 't'Q such that 

(1) min{~-.~+}- ~~0) < ~~1) < ~~2) < ••• < ~~m) < ~am+1) -

max{<P_.~+}; 

(2) f e h · 1 ~ = ~ 0(i), v = o or ac 1 = , ... ,m 'I' 'I' is a singular point, 

and if it is first order then it is a saddle point of system (5.5) at 

c = cl; 

(3) if 

wave solutions 

(a) 

(b) 

(c) 

(4) if 

wave solutions 

(a) 

(b) 

(c) 

<jl(x,c 0 ) is increasing then there are (m + 1) traveling 

u
1

(t,x) 

~.(x,c 1 ) is increasing in x, 
1 

at the usual rate as x + - oo; 

~(x,c0 ) is decreasing then there are (m + 1) traveling 

q,
1

(x,c 1) is decreasing in x, 

and 
(m+l-·i) 

q,.(+oo,cl) = <Po 
1 

q, 1 (x,c 1 ) decays to q,_ at the usual rate as x 7- oo. 

In particular, if f(O,O,<j>) # 0 for all ~ in (¢_,~+)' then c 1 00 • 

Thus, roughly speaking the above theorem shows that if 
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u (t,x) = $(x-cot) is a N ~ S type monotonic wave which decays to the 

node at the usual rate as x ~ - oo, then similar monotonic N ~ S type 

traveling wave solutions u(t,x) = ~(x-ct,c) exist for all wavespeeds 

c > co until c reaches c 
max 

(where the unstable node changes to an 

unstable spiral point) or until c reaches a point where u(t,x) = 

$(x-ct ,c) decays to the node at the accidental rate as x ~ - oo Simi-

larly, monotonic N ~ S type traveU.ng wave solutions u(t,x) = $ (x-ct,c) 

exist for all wavespeeds c < c 0 until c reaches - oo or until c 

reaches a point where u(t,x) = $ (x-ct,c) bifurcates into at least two 

distinct traveling waves. In the following sketch, a typical evolution of 

$(x,c) into two distinct waves as c goes to c 1 is depi c ted. 

$=$ 

~,c1+. 3) 
+ 

<t>=cf> 

cf>=$ 

/ + 

cf>=cf> 

~~$(x,c 1+.2) 
-

$=<!> 

/ 
+ 

/ 'Ccp(x,c 1+.1) 
$=<!> 

<P=cf> 
<t> 2 (x,c~ + 

cf>=<Po OA<'x,c 1 ) 
cf>=<Po 

<t>=<t> 
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When c 1 > - oo, the general situation can be complicated. 

However the typical situation is very simple when c 1 > - oo Typically 

one does not expect the phase plane tra jecto ry at c = c 1 to intersect 

the v = 0 line at more than one singular point cp 

Moreover, one also expects that the singular point cp = cp 0 , v = 0 will 

be first order, and thus it must be a saddle point. Therefore the typical 

situati.on is the following. The fastest monotonic traveling wave solution 

u(t,x) = cp(x-c 2t,c2) with cp( - oo ' c2) = cp and with cp(+=, c2) cp+ -
either occurs at c2 < c and has ct>(x ,c2) decaying to cp at the ac-max 

cidenta l rate as x+ - oo, or occurs at c2 c where the accidental max 

and usual decay rates are nearly equal. For c 1 < c < c 2 , the N + S 

type monotonic traveling wave solut :ions u(t, x ) = <jJ(x-ct,c) all have 

cp(+=,c) = cp+ and all decay to ct>_ at the usual decay rate as x + - oo 

This either occurs for all c < c2 - oo), or at some 

c1 > - 00 the monotonic N -+ S type soluti.on u(t,x) cp(x- ct,c) bifur-

cates (typically) into another N + S type monotonic t r aveling wave 
\ 

u(t,x) = cp 1 (x- clt,c 1 ) and into a S -+ S type monotonic traveling wave 

at the usual 

rate as x -+ - oo and ct>o and 

l/> 2 (-t=,cl) = ¢+. Here ct>o is some saddle point in (tj>_,tj>+). 

Clearly we can apply the theorem to the secondary N -+ S type 

monotonic traveling wave u(t, x ) = q, 1 (x-c1t,c 1). This shows that N + S 

type monotonic travelingwav e s similar to ¢1 (x,c 1) exist for all c 

near enough c 1 . In partic ula r, these monotonic waves exist for all 

c < c 1 until a bifurcation of this N -+ S type monotonic traveling wave 

into a N -+ S, S -+ S pair of monotonic traveling waves occurs. Note that 

these bifurcations cannot continue indefinttely. There must be a last 
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bifurcation because there is only a finite number of saddle points in the 

interval (<j>_,cj>+). 

We now utilize the results in theorem 5.1 (N + S), the upper 

and lower functions constructed in lemma (4.3), and the maximum princi.ple. 

Together these yield the following mean wavespeed/initial condition re-

sult: 

Theorem 5.2 (N + S): Assume that hypotheses H2, H3, and H4 are satisfied. 

Suppose that u(t,x) = cjl(x-c 0t,c 0) is a bounded monotonic solution of 

ut = f(u ,u ,u) 
XX X 

that <P = <j>(-oo,co) - cp_, v = 0 is a first order node and that 

(5.6) 

<I> = <j>(-t«>,co) = <P+' v = 0 is a first order saddle point of system (5.5) 

at c = c 0 . Finally suppose that <j>(x,c 0 ) decays to <P at the usual 

rate as x + - oo 

Define the positive exponential decay constants A(c) by 

A(c) :: (5.12) 

for all c < cmax' and define c1 as in the previous theorem. 

Furthermore, define 

Then if u(t,x) is any solution of (5.6) whose initial condi-

tion u(O ,x) is in H2 and satisfies 
X 

cp+- q 0 ~ u(O,x) ~ <P+ + q 0 for all x > x 0 for any Xo , (5 . 13) 

cp < u(O,x) ~ cp+ + q 0 for all x if ~(x,c 0 ) is increasing in x, and (5.14) 

cp+- q 0 ~ u(O,x) < cp for all x if <j>(x,c 0 ) is decre asing x, (5.15) 

then we can conclude the following : 

(1) if f or any c in (c 1 ,c2 ) there is an a.> 0 such that 

e - A(c)x (u(O, x) - 4 I > a. for all x < 0 (5.16) 
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and if qo > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed larger than c· 
' 

(2) if for any c in (c 1 ,~2) there is a S > 0 such that 

e-A(c)xlu(O,x) - ~ I < S for all x < 0 (5.17) 

and if Qo > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed smaller than c; 

(3) if for any c in (c 1 ,~ 2 ) there is an a > 0 and a S > 0 

such that 

a < e-A(c)xluCO,x) - ~-~ < S for all x < 0 (5. 18) 

and if qo > 0 is sufficiently small, then u(t,x) travels with mean 

wavespeed c and has finite dispersion; and 

(4) if for any c in ( c l • C'::;2 ) 

lim (-A (c) +].l ) X I ( 0 ) e u ,x - ¢_I 0 for all ].l > 0 
x-+-oo 

(5. 19) 

lim (-A(c)-J.l)xl (O ) e u ,x - ~ I +co for all ].l > 0 and 
x-+- oo 

if qo > 0 is sufficiently small, then u(t,x) travels with mean wave-

speed c but may not have finite dispersion. 
---------------------

The meanin g of the phrase "has finite dispersion" will be estab-

lished in the proof. 

The basic situati on is the following. We have assumed the ex-

isten.ce of a single monotonic wave u(t,x) = ¢(x-c 0t,c 0 ) with ¢(-oo,c 0 ) 

= cp being a node and ¢(+oo,c 0 ) :: .j;+ being a saddl e point . Theorem 

5.1 (N + S) then shows that for a range (c 1 ,c 2 ) of wavespeeds c there 

are similar monotonic N + S type traveling waves u(t,x) = ¢(x-ct,c), 

which all have ~(-oo ,c) = ~ and ~(+oo,c) = ¢+· For each of these N + S 

type waves, lemma (4.3) yields upper and lower functions u(t, x-ct,c) 
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and ~(t,x-ct,c) of equation (5.6), like the ones shown in the following 

sketch. The use of the maximum prinicple and these upper and lower func-

tions will yield theorem (5.2) (N + S). 

u=<j> L 
'\_~(t,x-ct-h,c) X 

Roughly speaking, theorem 5.2 (N + S) supposes that u(O,x) 

is any smooth function which is in a region like the one shaded below. 

L 
X 

x=xo 

It then concludes that if u(O,x) decays to the node <P exponentially as x+-oo, 

then the mean wavespeed of the solution u(t,x) of (5.6) is determined 

only by the exponential decay constant. 
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Proof of theorem (5.2) (N ~ S): We prove the theorem only for the case 

where <jl(x,c 0) is increas ing in x, and note that the proof when <jl(x,c 0) 

is decreasing is very simi.lar. Since u (t ,x) = 4> (x-c 0 t, c 0 ) is a bounded 

monotonic N ~ S type solution of (5.6), we can apply theorem 5 . 1 (N ~ S) 

and conclude the existence of similar monotonic traveling waves u(t,x) = 

<f>(x-ct,c) for cl < c < c2. 

We now recall the upper and lower functions constructed in lem-

rna (4.3). Namely, for each c in (q,c2) there is a family of upper 

functions ~(t,x-ct,c,q(O),h 0 ) and a family of lower functions 

~(t,x-ct,c,q(O),h 0 ) of the equation 

u = f(u ,u ,u) 
t XX X 

(5. 6) 

For the case at hand these upper and lower functions are 

~(t,x-ct,c,q(O),h 0 ) - <f>(x-ct+h(t,c),c) + q(t,c)•[<f>(x-ct+h(t,c),c) 4>_](5.20) 

_!:!(t,x-ct,c,q(O),h0)- <l>(x-ct ·-h(t,c),c) 

where h(t,c) and q(t,c) are 

h(t,c) = q(O)·K(~)(l-e-s(c)t) + ho 

q (t, c).[<P (x-ct-h (t ,c) ,c) 4> _] 

(5.21) 

( ) _ q(O)e-s(c)t q t,c = (5.22) 

for some positive constants K(c) and s(e) (which in general depend on c), 

where ho is arbitrary, and where q(O) > 0 is any s ufficiently small 

constant. Moreover, since the dependence o f ut - f(u ,u ,u) - cu on . XX X X 

c is continuous and since q1(x,c), 4> (x,c), and hence <P (x,c) are al-x XX 

so continuous in c, from the p roof of lemma (4.3) we see that both K(c) 

and s(c) can be t aken to be continuous in c for c1 < c < c 2 . Also 

the proof shows that for c1 < c < c2 there is a continuous q (c) > 0 
max 

such that u(t,x-ct,c,q(O),h0 ) and ~(t,x-ct,c,q(O),h0 ) are upper and 

lower functions of equation (5 .6) for all 0 < q(O) < q ( c) 
1nax 

at each c 
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To prove part (1), we note that when relations (5 . 13), (5.14), 

(5. 15), and (5.16) are satisfied, then we can bound u(O,x) by 

~(O,x,c,q(O),ho) = ~(x-h 0 ,c) - q(O)·[~(x-ho,c)- ¢_] 

.::_ u(O,x) .::_ cp+ + q(O) ·[cf!+-cp- J 

for any by taking h 0 sufficiently l a rge. 

because theorem 5.1 (N + S) shows that cp(x,c) decays to cp 

usual rate as x +- oo; i.e., that 

cp(x,c) _ cp + ae>.(c)x + O(e(>.(c)+o)x) as x + - oo 

(5.23) 

This is 

at the 

for some positive a and 6, where >.(c) is given by (5.12). We note 

that since cp+ is a saddle point, if we define n - ~ f3(0,0,¢+) then 

n < 0. Moreover, 

(5.24) 

is an x-independent upper function of equation (5.6) for all t > 0 when-

ever q(O) > 0 is sufficiently small. Since q(O) can be taken as any 

constant larger than by t aking sufficiently small we 

can take q(O) to be small enough so that ~(t,x-ct,c,q(O),ho) and 

u(t,x) are a lower and upper function (respectively) of equation (5.6). 

The maximum principle implies that 

~(t,x-ct,c,q(O),h 0 ) .::_ u(t,x) < u(t,x) for all x and all t > 0 . 

This yields 

cp(x-ct-h0-q(O)K(c),c)- q(t,c) [<P+-cp_] (5.25) 

nt 
.::_ u(t,x) .::_ ~++q(O)e [cp+-<1>_1 for all x, all t > 0 , 

where q(t,c) is given in (5.22). This relation is illustrated i n Figure 

(8) below, and we see that u(t,x) cannot travel with mean wavespeed lar-

ger than c . 
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L 
X 

u=cj> 

~cj>(x-ct-h 0-q(O)K(c),c)-q(t,c)(cp+-cp-) 

Figure (8): nt 
Since q(O)e 70 and q(t,c)70 as t~, the fact that u(t,x) 
remains in the shaded area for all t>O implies that it cannot 
travel with mean wavespeed larger than c. 

Part (2) is proved in a manner very similar to part (l). In 

fact we find that 

<P_ .2_ u(t,x) .2_ <P(x-ct+ho+q(O)K(c) ,c)+q(t,c) [(P+-cp_] for all x, all t > 0 

This relationship is illustrated in Figure (9) below, and we see that 

u(t,x) cannot travel with mean wavespeed smaller than c. 

To prove part (3), we note that when u(O,x) satisfies (5.13), 

(5.14), (5.15), and (5.18), then we can bound u(O,x) by 

cfl(x-h2,c)-q(O)[<P(x-h2,c)-4>_] .2_ u(O,x) .2_ cp(x+h 1 ,c)+q(O) [cp(x+hl>c)-cp_] (5.26) 

-1 
for all x, for any q(O) > q 0 [cp+-cp_J by taking h1 and h2 large 

enough. For 0 < q(O) < q (c), 
max 

relation (5.26) bounds u(O,x) by the 

upper and lower functions u(O,x,c,q(O),h 1) and ~(O,x,c,q(O),h2). Thus 

when q 0 < [cp+-<P_Jqmax(c), (5.25) bounds u(O,x) by upper and lower func

tions at t = 0 and so the maximum principle implies that 

~(t,x-ct,c,q(O),h2 ) .2_ u(t,x) .2_ ~(t,x-ct,c,q(O),hl) 
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L c 

X 

u=¢ 

Figure (9): Since q(t,c)-+0 as t-++oo, the fact that u(t,x) remains in the 
shaded area for all t~O implies that it cannot have mean 
wavespeed smaller than c. 

We thus conclude that 

¢(x-ct-h2-q(O)K(c),c)-q(t,c)[¢+-¢-] ~ u(t,x) (5.27) 

~ Hx-ct+hl+q(O)K(c) ,c)+q(t,c) [¢+-¢_] for all x, all 

t > 0 

This relationship is illustrated in Figure (10). We conclude that u(t,x) 

travels with mean wavespeed c and has finite dispersion. The phase "has 

finite dispersion" is used here and in the statement of the theorem to 

mean precisely that the distance between the lower and upper functions 

which bound u(t,x) in (5.27) is limited to no more than h 1 + h 2 + 

2q(O)·K(c), which is finite. This is in contrast to part (4), where we 

will only be able to show that the distance between these functions grows 

no faster than o(t). 

To prove part (4) we will need to adopt a slightly different 

strategy. Instead of bounding the initial condition u(O,x) by a single 
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<j>(x-ct+h1+q(O)K(c),c)+q(t,c)(<j>+-<j>-) 

L c 
X 

u=¢ 

Figure (10): Since q(t,c)-+0 as t-H-<», and since u{t,x)" remains in the 
shaded region for all t>O, u(t,x) must travel with mean 
wavespeed c. Furthermore, the distance between the two 
bounding curves remains constant. 

upper function behind it and a single ]ower function in front of it, we 

will need to bound u(O,x) by a series of upper and lm..rer functions each 

moving with different velocities. In fact, we will bound u(O,x) in 

front by one lower function ~(t,x-ct,c,q(O),h0 ) for each c in an in-

terval (c,c+oc) for some oc. We will find that the nearer ~ is to 

c, the farther to the right we will need to place the lower function 

~(t,x-ct,c,q(O),h0 ) initially in order to bound u(O,x) below. This is 

shown in the sketch on the next page. Since any one of these lower func-

tions travels slower than the lower functions to its left and faster than 

the lower functions to its right, as time progresses the lower function 

is overtaken by all the faster lower functions to its left and it over-

takes the slower lower functions to its right. Similar behavior occurs for 

the upper functions bounding u(O,x) on its left. To prove part (4), at 
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L 
X 

u=<jl 

each time t > 0 we will select the lower funct i on in front of u(t,x) 

which is farthes t to the left, and the upper func tion behind u(t,x) which 

is farthest to the right. We will show that the dis tance between these 

optimal bounding functions grows no f a ster tha n o ( t) and tha t they are 

centered at ct + o(t). 

Assume that u(O, x ) sat i sfies (5 . 13), (5.14), (5 . 15), and (5.19) 

where we will select the qo > 0 later. Let l-iu > 0 be so small that 

Le t c 1 and c 2 be the wavespeeds in (c 1 ,c2) defined by 

Now select an xo > 0 so large that 

~(O,x+x0 ,c,q(O),O) > e x pO. (c)x} fo r all X < 0 and 
(5.28) 

~(O,x-x0 ,c,q(O),O) < expO. (c)x} for all X < 0 

qmax is given by 

-
~ax - min {q (~)} _ max 

c l~~.:~_:c2 

Select q as the constant ~ q • max 
and choose the constant in expres-

sions (5.13), (5.14), and (5 . 15) to be ~ q . Fi nally select an x1 so max 
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large that both 

~(O,x-x0-xltc,q,O) ..::_ u(O,x) ..::_ u(O, x+x0-fx 1 ,c,q , O) for all x ..::_ 0, and 

(5.29) 

u(O,x) ..::_ u(O,x 0+x1,c,q,O) 

hold for all c in [~I .~2J · 

We define c(~) and £(~) by 

for all x 

A(c(~)) = A(c) - ~ A(£(~)) = A(c) + ~ for 0 ..::_ ~ ..::_ ~o 

(5.30) 

For each ~ in 0 < p ~ ~ 0 we will find an h(p) > 0 and an h{~) > 0 

such that 

u(O,x-·x0-xl,£(~),q,h(~)) ..::_ u(O,x) ..::_ u(O,x+xo+xl,~(~),q,h(~)) for all x<O 

(5.31) 

Since (5.29) and (5.30) also hold we wi ll then know that (5.31) holds for 

all x, and we will be able to then apply the maximum principle. We now 

find these ~(~) and h(~). 

Define s(x), s,x), and ~(x) for x < 0 by 

s(x) - (u(O,x)-¢ )e-A(c)x 

~(x) - min {s(x)} 
x <x <O 

s(x) = max {s(x)} 
x<x<O 

and 

Note tha t ~(x) ..::_ s(x ) < s(x), that ~(x) is non-decreasing in x and 

tha t s(x) is non-increasing i n x . De f ine 

and de fine 

Similarly, define 

and 

max 
- oo<x<O 

- ]..lX {s(x)e } f or o < ~ ~ Po 

max{O, 1 log M(~) } 
A-~ o 

min 
-oo<x~O 

f or 0 < ~ ~ ~ 0 

- 1 max{O, log ~(~)} 
A-Po 
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We note that with these definitions, 

~(O,x-xo-xl,£(~),q,~(~)) ~ u(O,x) 

~ ~(O,x+x0+x 1 ,c(~) ,q,h(p)) for all x, all 0 < ~ .::_ ~ 0 
We thus can apply the maximum principle for each p. This 

yields 

(5.33) 

~ u(t,x-c(t)+x 0+x 1 ,~(~),q,h(~)) for all x, all t > 0 , 

all 0 < ~ .::_ ~u . 

Let the maximum of the quantity K(c) (which appears in the definitions 

of the upper and lower func tions) be 

K = K ( c ) 

and define the constant a bv 
J 

From the bounds (5.33) on u(t,x), we conclude that 

(5.34) 

~ IP(x-c(1J)t+h(p)+a ,c(~))+q(t,c(J..l))[~+-~-] for all x, all 

t > 0 

holds for all 0 < 11 .::_ Jlo· (See (5.20), (5.21), and (5.22)). 

The lower functions are roughly positioned at 

a(t,J..l) £.(~)t + ~(Jl) + a 

and the upper functions are roughly positi.oned at 

b(t,p) h(~) - a 

At any given time t, we now roughly minimize a(t,~) and maximize 

b(t,~) over p. Clearly at each t > 0 these functions have a unique 

minimum and maximum (respectively) in 0 < J..l .::_ ~ 0 since ..£_(p) decrea ses 

with \1, since c(fl) increases with p, and since h(JJ) and E_(J..l) are 
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both non-increasing in ~. We now assume that worst case: h(f.l) and .!!_(~) 

both go to + 00 as ~ -+ 0. We first handle a(t,f.l). We have 

a(t,JJ) = ct + (£(JJ)-c)t- A=JJo log ~(x(JJ))exp{-f.IX(JJ)} + a 

where x(f.l) is the least value of X < 0 at which s(x)e -f.lx is at its 

minimum. To minimize a(t,f.l), we select JJ = JJ(t) such that x(~) is 

the largest value in {x(]J): 0 < ~ < f.lol satisfying 

.b_n_ x(f.l) < - (_c(~)-c)t 
- f.l (5.35) 

Furthermore, define T(t) as the valu e of t for which equality holds 

in (5.35). Utilizing (5.35), we have 

1 A-flo. a(t,IJ(t)) < ct --,-log s(- ---- · (_c(IJ)-c)T(t)) +a , 
- A-f.lo - 11 

and by our hypotheses this implies 

a(t,IJ(t)) < ct + o (T(t)) as t -+ + oo 

Thus, choose a sequence t 1 , t2•··· such that 

t = T(t ) , t -+ + oo 
n n n 

as n -+ + oo • 

We have a(t,IJ(t)) non-decreasing in t and also have 

a(t,lJ(t))<ct +o(t) 
n n - n n 

Similarly, we can show that there is a roughly optimal 11 = O(t) for the 

lower functions, that h(t,O(t)) is non-increasing in t, and that for a 

-sequence t = t with t -+ oo 
n n 

as 

b{~ ,11(~ )) > c~ - o(i ) 
n n n n 

Thus we conclude that u(t,x) must travel with mean wavespeed c. Note 

however that the separation between the upper and lower functions in 

general grows as - o(t), and so we cannot conclude that u(t,x) has 

finite dispersion. This establishes part (4) of the theorem. 

Thus, we see that if the initial condition u(O,x) decays to 

~ exponentially with exponential rate constant A(c), and if 
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then u(t,x) has mean wavespeed c. One naturally wonders how u(t,x) 

behaves when u(O,x) decays to ~ at an asymptotically slower rate 

than 
t..(c 1 )x 

e . We will briefly consid er this question for the two c a ses 

of - co and - co 

Suppose that c1 - oo, and so monotone traveling wave solu-

tions u(t,x) = •<x-ct,c) with •(-m,c) = • and •(+oo,c) = •+ exist 

for all c < ~ 2 • Note that /..(c) ~ 0 as c ~ - co Therefore, consider 

any initial condition u(O,x) which satisfies c onditions (5.13), (5 .14), 

and (5 .15) of theorem 5. 2 (N -~ S), and \vhich also decays to • alge-

braically (rather than exponentially). Then for any c (no matter how 

small) we can conclude from theorem 5.2 (N ~ S) that u(t,x) cannot 

travel with a mean wavespeed larger than c. We do not conclude that 

u(t,x) "travels to the left with infinite wavespeed" however. We simply 

say that in any coordinate system 

t' = t x' x-ct 

u(t,x) satisfies 

u(t,x) ~ •+ as t' ~ + oo at any fixed x' 

Thus u(t,x) does not behave very much like a "wave" in this case. 

Suppose now that c 1 > - oo We know from theorem 5.1 (N ~ S) 

that at c = c 1 the monotonic traveling wave u(t,x) = •<x-ct,c) bi.fur-

cates into at least two travel i ng waves . \ve consider only the typical case: 

at wavespeed c = c 1 the traveli.ng wave u(t,x) = • <x -ct,c) splits 

exactly into the monotonic waves 

u(t,x) • 1 (x-ct,c) (5.36) 

u(t,x) (5.37) 
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<jl 1(-oo,c) = <Jl_ 

<Jl:~.(-oo,cl) = <Po 

<PI (+oo, c) = <Po 

h(+oo ,cl) = <jl+ 

and where <jl = <Po• v = 0 is an order one saddle point. Note that in 

(5.36), if the smallest wavespeed ci is not - oo then it is a second

ary bifurcation point. 

Assume now that u(O,x) satisfies the conditions (5.13), (5.14), 

and (5.15) of theorem 5.2 (N ~ S) for some sufficiently small q 0 > 0 1 

that a< lu(O,x)- t_le-A(c)x < B for all x < 0 

for some positive a and S, and that A{cl) < A(c) < A(c 1). We will show 

that u(t,x) evolves into two pieces: a piece bounded by <jl and $o 

whi.ch travels with a mean wavespeed no faster than c < c 1 , and a piece 

bounded by $o and <jl+ which travels with mean wavespeed c 1 . Indeed, 

from lemmas (4.3) and (4.4) we use 

(1) the upper functions ~2(t,x-clt•cl,qO,ho) corresponding to the 

S ~ S wave u(t,x) = $2(x-c1t,c1) , 

(2) the lower functions ~1 (t,x-ct,c,q 0 ,ho) corresponding to the 

secondary N + S wave u(t,x) = $ 1 (x-ct,c), and 

(3) the lower functions ~(t,x-~t.~,qo,h2(~)) corresponding to the 

primary N + S wave u(t,x) = (p(x-ct,~) with c > c1. By selecting 

h 0 , h 1 , and h 2 (c) sufficiently large, we can bound the initial condition 

u(O,x) by 

~(O,x,c,q 0 ,h 1 ) ~ u(O, x ) < ~2 (0,x,c 1 ,qo,hu) for all x, and 

~(O,x,c,q 0 ,h2 (~)) ~ u(O,x) for all x, all c in (cl,~2) 

Thus, the maximum principle yields 

~1 (t,x-ct,c,q 0 ,h 1 ) ~ u(t,x) ~ u 2 (t,x-c 1t,c 1 ,qo,ho) for all x, all t > 0, 

and 
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This is illustrated in Figure (11) below for large t. We conclude that 

u(t,x) evolves into two stacked waves. 

u=!j> (t,x-ct,c) L 
X 

Figure (11): Since c>c 1 can be taken as close to c 1 as we like, since 
c1>c, and since u(t,x) must remain in the shaded region for 
all t~O, we conclude that it evolves into two stacked waves. 

This completes our presentation of the N -+ S case. We will 

not present the S -+ N case since it is very similar to the N -+ S case 

that we have discussed. (In fact, substitution of - x for x will 

convert the S -+ N case into a N -+ S case). \-le therefore will conttnue 

in the next section by considering the N -+ N case. 

5.3 Node-node case . In this section we treat the final case. Specifi-

cally, we assume that u(t,x) = ¢(x,c0) is a bounded monotonic steady 

state solution of 

ut = f(u ,u ,u) + cu 
XX X X 

(5.38) 

at c = c 0 . We also assume that ¢ = ¢(-oo,co) ~ ¢ , v = 0 and 

¢ = ¢(+oo,c 0) ~ ¢+' v = 0 are both first order nodes of the system 
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(5.39) 

at c = c 0 . Finally, we also will assume ¢(x,c0) to be increasing in 

x since the analysis for the case of ~(x,c 0 ) decreasing proceeds simi-

larly. 

In this section we will first show that the existence of $(x,c0) 

implies the existence of a continuous family of similar solutions 

$(x,c0 ,v) at the same wavespeed c 0 . By using the phase plane of system 

(5.39) we will be able to characterize this family of solution by finding 

its limiting members . Next, we will find that since some members of the 

family $(x,c 0 ,v) decay to ~ and ¢+ at the usual rate as x + - oo 

and as x + + oo, then there must exist families of solutions tj>(x,c,v) 

similar to ¢(x,c 0 ,v) at c = c for all c near co. We will then 

identify the slowest and the fastest wavespee.ds c at which N + N type 

monotonic traveling waves exist. We will summarize these existence results 

in theorem 5.1 (N + N). Finally, we will quote the mean wavespeed/initial 

\ 

condition results for this case. 

The phase plane of system (5.39) looks something like the illus-

tration below. Consider the solutions ¢ = •cx,c 0 ,v0), v = O(x,c0 ,v0} of 

system (5.39) at c = c 0 which are defined by the initial conditions 

for any fixed finite x 0 . Since solutions of differential e quations are 

continuous relative to initial conditions (see e.g. reference [ 6] ) , for 

any x we can make 
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accidentnl 
solutions 

.,.,- ~---.. 

---~-
_ _..,. __ 

- - -

as small as we wish by taking vo s ufficiently near 

cp = cp 
+ 

Since we 

can take x 1 as large or sma ll as we like, the attrac tive nature of the 

node at cp cp 
' v = 0 (as X -+ - co) and of the node at cp = cp+' v = 0 

(as x -+ + = ) guarantees that 

iji(x,c 0 ,v0 ) -+ cp as x-+ - oo 

ij)(x, Co, Vo) -+ cp+ as 

for v 0 in [ v_, v+] for some Further, there is a 

These results are clear from t h e phase plane considerations illus-

trated in Figure ( 12) below . In particular for any iji_ > cp_ near enough 

to <P_, the phas e plane directors po:lnt downward for all cp in (cp_,iji_] . 

Also horizontal components of the directors always point in the pos itive 

direction whenever v > 0. This means that any solu tion iji(x,c 0 ,v0 ) which 

crosses the cp = iji line at a positive point v which is no larger than 

the crossing point v of the accidental solution (i . e. the solu tion of 

(5.39) which decays to cp at the accidental rate as x -+ - oo), then 
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iji(x,c 0 ,vo) must decrease monotonically to <1> as x decreases to - oo, 

Similarly there is a ~ < ~ such that if 
"'+ "'+ crosses the 

cp = iji+ line at a positive potnt v under the accidental solution (i.e. 

the solution of (5.39) which decays to ~ at the accidental rate as 
~·+ 

x + + oo), then iji(x0 ,c0 ,vo) must increase monotonically to <1>+ as x 

increases to + oo Since v(x,c0 ,vo) can be made arbitrarily near 

v(x, co, vo) over any finite interval by taking v 0 near to <i> (xo,co), 
X 

iji(x,co,vo) must be monotonic for at least a limited range of vo about 

cp (xo,co). This is illustrated in Figure (12). 
X 

{ acci.dent.al solutions) 

~----- -----~--~ 

L 
v=O 

Figure (12) 

From the phase plane we can easily find the extremal monotonic 

solution of (5.39) at c = c 0 • From Figure (12) we see that the largest 

v 0 for which iji(x,c 0 ,v0) is a monoton1.c solution is the least value of 

v 0 = v 2 for which iji(x,c 0 ,v0 ) decays at the accidental rate as ejther 

<I> 
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X + - oo or x + + 00 • For v 0 sightly larger, ~(x,c 0 ,v0 ) is non-~ono-

tonic. Similarly, as v 0 decreases, ~(x,c 0 ,vo) remains a monotonic 

solution until the value of v 0 (which wt:: define to be v 1 ) for which the 

phase plane trajectory of ~(x,c 0 ,v0 ) intersects the v 0 curve between 

<P = <P and <P <jl+. Since ~(x,co,vo) > 0 for all x and since 

~(x, c 0 , v 0 ) 0 when ~(x,co,vo) = ~o for some ¢0 in (<jl ,<P,). - ..,.. then 

<jJ = cp 0 , v = 0 must be a singular point. From the illustration in Figure 

( 13), we see that ¢ = </>o, v = 0 must be either a first order saddle point 

or a higher order singular point. Thus, '-1hen v 0 has decreased to v 1 , 

~(x,c 0 ,v 0 ) has bifurcated from a monotonic N + N solution into at least 

two monotonic solutions. Usually as v 0 decreases to v 1 , $(x,c 0 ,v0 ) 

goes into two monotonic solutions: a N + S type solution t 1 (x ,c0 ) with 

<Jlt(-oo,c 0 ) = <P and 4>l(+oo,co) = ¢o, and a S + N type solution 

with 4>z(-oo,co) = 4>o and 4>z(+oo,co) = cp+' where 4> = cp 0 , v = 0 is a first 

order saddle point. Thus the N + N type solutions almost always have a 

N + S and a S ~· N type solution as the limiting case, as is illustrated 

in Figure (13) below. The other possibilities are the possibility that 

<jJ = t 0 , v = 0 is a higher order singular point or the possibility that at 

v 0 = v 1 ,$(x,co,vo) bifurcates into more than two separate monotonic solu-

tions. This latter case is illustrated in Figure (14). As illustrated, 

the intermediate singular points are saddle points or higher order singular 

points. 

In brief, if <jl(x,c 0 ) is a mohotonic N + N type solution of 

(5.39) at c = c 0 , then there is a continuous family of similar monotonic 

N + N type solutions . One limiting member of this family is a solution 

which decays at the accidental rate as x + - oo or as x + + "" · The other 
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<Po <P+ 

Figure (13) 

v=O 

Figure (14) 

limiting "member" is at least two monotonic solutions which are usually a 

N + S and a S + N pair of waves. 

We now consider solutions at wave velocities c = c near c 0 • 

Similar to the N + S case, continuity arguments can be used to show that 

a monotonic solution q,(x,c) exists with q,(-oo ,c) = <P_ and q,(+oo ,c) = <P+· 

Since one monotonic solution at c = c exists, the previous arguments show 
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that a family of solutions exists at c = c. One limiting member decays 

at the accidental rate as x + - oo or x + + oo, and the other "member" 

is at least two separate solutions. 

This characterization of the solution family at fixed values 

of c determines the smallest and largest values of c for which mono-

tonic solutions <j>(x,c) (with <j>(-oo,c) = <j> and with <j>(+oo,c) = <j>+) 

exist. As c increases (or decreases) from c 0 , monotonic solutions con-

tinue to exist until either 

(1) an accidentally decaying solution from <j> = q, , v = 0 or 

<I>+' v 0 intersects the v = 0 axis at a singular point <j> = $0 , 

v 0 with <j> < <Po < <I>+' or 

(2) • v = 0 or .p .+' v 0 changes from a node to a spiral 

point. 

We summarize this discussi.on in the theorem below. 

Theorem 5.1 (N + N): Assume that hypotheses H2, H3, and H4 are satisfied. 

Suppose that u(t,x) <j>(x,c 0 ) is a bounded monotonic steady state solu-

tion of 

u = f(u u u) + cu 
t xx' x' x 

(5.38) 

at c = co, and also suppose that • = cj>( -oo , C 0 ) - • • v = 0 and 

<I> = cj>(+oo,co) - .+' v = 0 are both first order nodes of 

q,x v 
(5.39) 

f(v ,v,<j>) + cv 0 
X 

at c = co · Then there is an interval (c 1 ,cz ) such that for any c in 

(cl ,cz) there exists a continuously differentiable (in c and a) family 

of monotonic solutions u(t,x) $(x,c, a ) 0 < a < 1 of (5.38) at c = c. 

For 0 < a < 1 , <j> ( - oo , c , a ) = <j> and in 
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(cl,c2). Moreover, if cp(x,c 0) is increasing (decreasing) in x then the 

phase plane trajectories are increasing (decreasing) in a. At a= 1, 

~(x,c,a) decays at the accidental rate as x + - oo or as x + + oo, For 

0 < a < 1, ~(x,c,a) decays at the usual r a te as x +- co and as x + + oo, 

At a = 0, the phase plane trajectory corresponds to at least t wo distinct 

monotonic steady state solutions of (5.38) at c = c. Finally the limit-

ing wavespeeds c 1 and c 2 are either 

or (when they exist) the points c 1 in (c i ,co) m. n 
and c 2 in ( c 0 ,c ) 

max 

nearest to c 0 for which the trajec tory of an acc identally decaying solu-

tion from $ = $_, v = 0 or from cp = $+' v = 0 intersects the v = 0 

line at a singular point cjl = cp 0 , v = 0 wHh $ < !Jlo < $ . 

The above theorem summarizes the discussion preceding it. Rough-

ly speaking, it shows that if a single monotonic N + N type traveling wave 

u (t ,x) ¢(x-c 0t,c0) exists for some wavespeed c 0 , then for each wave-

speed c near enough to c 0 there is a famil y of similar monotonic N + N 

type traveling waves u(t,x) = cp(x-ct,c,a). Note that in the theorem we 

have used a different par ametrizat i on of the family of solutions than 

was used in the preceding discussion. 

We now present the mean wavespeed/init:ial condition results f or 

this case. Since the proof of this next theorem is very similar to that 

of theorem (5.2) (N + S) and contains no new ideas, we will not present 

the proof. 

Theorem 5.2 (N + N): Assume that hypothese s H2, H3, a nd H4 a re satisfie d . 
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Suppose that u(t,x) ~(x-cot,c 0 ) is a bounded monotonic solution of 

u = f(u ,u ,u) 
t XX X 

(5.40) 

and that ~ = ¢<-"",co) = ~ , v = 0 and ~ = ~(+oo,c 0 ) - ~+ ' v 

both first order nodes of system (5.39) at c = c 0 . 

0 are 

Define the exponential rate constants A-(c) and A+(c) by 

_ (f2(0,0,~_)+c)-l(f2(0,0,~_)+c) 2-4fl(O,O,~_)f3(0,0,~_) 

2f 1 (0,0,.p_) 

- (f2 (0, 0, ~ +)+c)+l (f2 (0, 0, ~+)+c) 2-4f 1 (0, 0, ~+) f 3 (0, 0, !)> +) 

2f 1 co,a·.~+) 

for all c in [c c ] and define c 1 and c2 as in the previous 
min' max ' 

theorem. 

Suppose that u(t,x) is any solution of (5.40) whose initial 

condition u(O,x) 

Then 

is in H2 and satisfies 
X 

(1) if for any c in (c 1 ,c2) there is an a > 0 and a f3 > 0 

such that 

then u(t,x) 

for all x < 0 and 

for all x > 0 

cannot travel wi.th mean wavespeed larger than c· 
' 

(2) if for any c in (c1,c2 ) there is an a> 0 and a f3 > 0 such 

that 

Ct > for all X < 0 and 

f3 < for all X > 0 

then u(t,x) cannot travel with mean wavespeed smaller than c; 

(3) if for any c in (c 1 ,c2) there are positive constants a,f3,y, 

o such that 
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a < 
-A 

e (c)xlu(O,x)-<P_I < s for all X < 0 and 
+ 

e-A (c)xlu(O,x)-<P+I < 0 for all X > 0 y < 

then u(t,x) travels with mean wavespeed c and has finite dispersion, 

and 

(4) if for any c in (ci,c2) we have 

lim e-(A-(c)-Jt)xlu(O,x) -<j> I = 0 , lim e-(A-(c)+ll)XIu(O,x)-<P_I 
x-+-oo 

lim 
x+t<x> 

x-+-oo 

+ oo, lim 
x-++oo 

+ oo , 

0 

for all 11 > 0, then u(t,x) travels with mean wavespeed c (but may 

not have finite dispers ion). 

Roughly speaking, the above theorem shows that if u(O,x) decays 

A - (c)x + 
to <P like ae and to <P+ like SeA (c)x for any c in (cl,c2), 

then u ( t, x) must travel with mean wave speed c. One naturally wonders 

how solutions 

A-(c_) x 

u(t,x) of (5.40) behave ·when u(O,x) decays to <j> 
+ 

x -+ - oo and to <j>+ like SeA (c+)x as x -+ + oo 

like 

ae as if 

c f. c + . This question is easily answered \vhen c 1 < c < c + < ez . We 

will now show that typically u(t,x) will evolve into a N -+ S type 

traveling wave of speed c (which goes from <j> at x = - oo to <Po 

at x = + oo) and into a S -+ N type travel ing wave of speed c+ (which 

goes from <Po a t x 00 tO <j>+ at X=+ oo), where <j> = cpO , V = 0 

is a saddle point of system (5.39). 

We consider only the typical case , where the phase plane trajec-

tories of ~(x,c ,0) and of $(x ,c+,O) both intersect the v = 0 at the 

same single first order saddle point <P = <P 0 , v = 0 with <P < <Po < <P+ ' 

as illustra ted in Figure (13). Consider the solutions <j> (x, c_) - ~(x,c , a ) 

and for any a and in (0,1). Further, 
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let ~~S(x,c_) be the monotonic N + S solution at c = c and let 

be the monotonic S + N solution at Note that 

~0 

~0 ~+ 

~ ( -oo, C ) q,(+oo,c ) ~+ 

and that ~NS and 
+ 
~SN correspond to portions of the limiting tra-

jectories of ~(x,c ,a) and ~(x,c+,a) at a = 0. Suppose now that u(t,x) 

is any solution of (5.40) whose initial condition u(O,x) is in H2 and 
X 

satisfies 

~ < u(O,x) < ¢ 
+ 

for all X 

-
(c_)xluCO,x)-~_1 -It 

for all 0, and al < e < a2 X < 
+ 

sl < e-/t .(c+)xluCO,x)-¢+1 < f32 for all X > 0 

for some positive constants a 1 , a 2 , S1 , and S2 . Suppose also that 

c1 < c_ < c+ < c2. By selecting h 1 , h 2 , h3, and h4 sufficiently large, 

we can guarantee th.~~t 

for all x. 

Thus the maximum princ iple implies that 

+ ~;S(x-c_t-h 1 ,c_) < u(t, x ) < ~SN(x-c+t+h2 ,c+) for all x, all t > 0 

(5.41) 

~(x-c+t-h 3 ,c+) ..s_ u(t,x) ..s_ <j>(x-c_ t-h4,c_) for all x, a ll t > 0 

The bounds on u(t,x) g iven by r elations (5.41) are illustrated in Figure 

(15) below for large t. The implica tion of the max imum princ iple is that 

u(t,x) must remain in the sha ded area for a ll t > 0. Clear ly fo r large 
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t, u{t,x) has evolved into two stacked waves, one moving with speed c 

and one moving with speed c+. 

L 
X 

c 

u=cf> 
cp- (x-c t-h 1, c ) 

NS - -

Figure (15) 

This completes our presentation of the mean wavespeed/initial 

conditions for this case, and thus for all cases. As a rough summary we 

found that in the S· + S case there is a single traveling wave cf>(x-cot,c
0
), 

in the N + S and S + N cases there is a single traveling wave 

cf>(x-ct,c) at each wavespeed c in a range of wavespeeds, and in the 

N + N case there is a family of solutions cf>(x-ct,c,a) at each speed c 

in a range of lvavespeeds. For each of these cases, the mean wavespeed of 

any solution u(t,x) is determined mainly by the asymp totic decay rate of 

u(O,x) as x + - oo (if cf>(-00
) is a node) and the asymptotic decay rate 

of u{O,x) as x + + oo (if cf>{~) is a node). 

In the remaining sections of this chapter, we briefly discuss to-

pies related to the mean wavespeed/initial condition results. In the next 
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section, section (5.4), we use the wavespeed results to show the sharpness 

of the stability results contained in theorem (4.5). In section (5.5) we 

discuss how the mean wavespeed/initial condition results can be extended 

to include traveling monotonic plane waves in higher spatial dimensions. 

Finally, we conclude this chapter with some closing remarks in section (.5.6). 

5.4 Sharpness of the stability results for monotonic waves. In theorem 

(4.5) we obtained our major stability results for bounded monotonic travel-

ing wave (or steady state) solutions of 

f(u ,u ,u) 
XX X 

(5. 40) 

Roughly speaking, that theorem shows that any bounded monotonic (in x) 

solution u(t,x) = ~(x-c 0 t,c 0 ) is stable to smooth initial perturbations 

p(x) = up(O,x) - ~(x,co) which are small and 

(1) bounded as x + - oo (as x + + ~) if ~ = ~(-oo,c 0 ), v 0 

(if ~ = <P(+00 ,co) , v = 0) is a first order saddle point, and 

(2) decay asymptotically no slm-1er than the same exponential rate 

that ~ (x,c0 ) decays at as x + - oo 
X 

(as X+ -1- oo) if ~ = ~c-"" ,Co), 

v = 0 (if ~ = ~(-t-<»,c 0 ), v = 0) is a first order node. 

wewill use the existence resul ts of theorems 5.1 (N + S) and theorem 

5.1 (N + N) to show that these stability results are sharp in most cases. 

Suppose that we start with a bounded monotonic traveling wave 

solution u(t,x) = ~(x-c 0t,c 0 ) of (5.40), and suppose that we can use 

either theorem 5.1 (N + S), the equivalent result for the (S + N) case, 

or theorem 5.1 (N + N), to show that for any ~ near enough co there is 

a traveling wave solution u(t,x) = <P(x-~t.~) with wavespeed ~. We note 

that these the orems show that cp(x,c) is differentiable in c, and so 
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the perturbation 

p(x,c) = ¢(x,c) - ¢(x,c0) 

can be made as small as we wish by taking c near enough to co. More-

over, each cp(x,c) decays to ¢(-oo,co) and to ¢(+=,c 0 ) exponentially, 

and with exponential rate constants \vhich depend continuously on c. Thus 

f o r c near c 0 , p(x,c) decays at an asymptotic rate which is slightly 

slower than that allowed by theorem (4.5). Finally, if the initial condi-

tions of u(t,x) = ¢(x-c 0t,c 0 ) are perturbed by p(x,c) then the result-

ing perturbed solution is u (t,x) = ¢(x-ct,c) . 
p 

ties of ¢(x-ct,c) and ~(x-c 0t,co) imply that 

The difference in veloci-

u (t,x) 
p 

drifts away from 

u(t,x) linearly in time, and so u(t,x) = ¢(x-c 0 t,c0 ) is unstable rela-

tive to the initial perturbations p(x,c). 

In summary, whenever u(t,x) = cp(x-c0 t,c0 ) is such that we can 

use our theorems to show the existence of similar traveling waves u(t,x) 

cp (x-ct,c) for all c near c 0 , then the initial perturbation p(x ,c) = 

Hx,c) - Hx, co ) 

(1) can be mad~ as small as we wish by taking c near co, 

(2) can be made to violate the asymptotic decay restrictions of 

theorem (4 . 5) on perturbations by a s slight a margin as we wish, 

(3) is an unstable perturbation. 

Thus, for these cases theorem (4.5) is sharp. 

For the followi ng table, table 5.1, we have assumed that 

u(t,x) = ¢(x-cot) is a bounded monotonic traveling wave or steady state 

solution of 

and tha t cp 

ut = f(u ,u ,u) 
XX X 

cp(-oo), v = 0 and cp = ¢(+oo), v 

(5.40) 

0 are first order singular 



-259-

Table (5.1) 

Sharpness of the stability results of theorem (4.5) for any bounded mono-

tonic solution u(t,x) = ¢(x-c 0t ) . 

Behavior of ¢ (x) for x << - 1 and x >> - 1 

type singular 
point at - oo 

s 

N 

N 

s 

s 

asymptotic 
decay rate 
as x -+ - oo 

usual 

accidental 

N usual 

N usual 

N accidental 

N accidental 

type singular 
point at + oo 

s 

s 

s 

N 

N 

N 

N 

N 

N 

asymptotic 
decay rate 
as x -+ + oo 

usual 

accidental 

usual 

accidental 

usual 

accidental 

Sharpness of 
theorem (4.5) 

sharpness 

sharp 

s harp 

? 

sharp 

? 

sharp 

sharp 

sharp 

? 

points. We have listed all possible cases , and denoted the ones fo r which 

the above a r guments show that the stability results contained in theorem 

(4.5) are sharp. 

Table 5.1 is themain result of this section. In particular we 

note that it shows tha t in all non-accidental cases where ¢ = ¢(-oo), 

v = 0 and ¢ = ¢(+oo), v = 0 are first order singular points theorem (4.5) 

is sharp. However, in some accidental cases where ¢"" cp(-co), v = 0 and 

cp = ¢(+oo), v = 0 are first order s i ngular points and in all cases where at 

least one of ¢ 4>( - oo), v = 0 and cp = q,(+oo), v = 0 is not a first order 

singular point, the sharpness of theorem (4.5) remains open to question. 

5.5 The mean wavespeed of plane waves . · In this section we briefly di.scuss 
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the direct extension of the results in this chapter to bounded monotonic 

traveling plane wave solutions when more than a single spatial dimension 

is present. Actually we will work only with two spatial variables 

(-; - (x,y)) but it \llill be clear that our discussion applies equally well 

when more than two spatial variables are present. 

Suppose that 

u = f(u ,u ,u ,u ,u ,u) 
t XX xy yy X y 

(5. 42) 

is a parabolic equation (i.e., satisfies hypothesis H3) and that 
-+ 

u(t:,x) 

-+-+ 
~(x-ct) is a bounded monotonic traveling plane wave solution of (5.42). 

Since we can rotate the x-Y axes without destroying the parabolicity of 

equation (5.42), let us take 011ithout loss of generality) our monotonic 

plane waves to be 

u(t,i) = u(t,x,y) ~(x-ct) 

This plane wave is a solution of 

f(u ,O,O,u ,O,u) = f(u ,u ,u) 
XX X XX X 

Clearly whenever u(t,x) is a solution of 

-+ 

u 
t 

f(u ,u ,u) 
XX X 

(5.43) 

then u(t,x)- u(t,x,y) - u(t,x) is a solution of (5.42). Moreover, if 

u(t,x) and ~(t,x) are any upper and lower functions of (5.43) then 

~(t,x,y) = ~(t,x) and ~(t,x,y) - ~(t,x) are also upper and lower functions 

of equation (5.42). 

Thus whenever u(t,x,y) = ~(x-ct) is a bounded monotonic (in x) 

plane wave solution of (5.42), all the existence and mean wavespeed results 

in this chapter about the equation 

u = f(u ,u ,u) 
t XX X 

(5.43) 

apply equally well to the equation 
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f(u ,u ,u ,u ,u ,u) 
XX XY yy X y 

(5.42) 

Note however that the mean wavespeed results can be regarded as being 

stronger for plane waves than for waves in one spatial dimension. This is 

because whenever we concluded "u(t,x) travels with mean wavespeed c" 

in one spatial dimension, we can conclude that "u(t,x,y) travels with 

-+ 
mean wavespeed c = (c,O)" in two spatial dimensions. In conclusion, 

the mean wavespeed/initial condition results immediately generalize to 

multiple spatial dimensions. 

5.6 Conclusions. In this chapter we established some results about the 

qualitative behavior of solutions of 

u = f(u ,u ,n) 
t XX X 

(5.44) 

by utilizing the maximum principle, the upper and lower functions con-

structed in Chapter IV, · and the phase plane for traveling .wave solutions of 

(5.44). These results are not exhaustive (in the mathematical sense). 

Hany similar results can be found by using the same techniques. For ex-

ample, one can look for results about monotonic waves which have higher 

order singular points at either x = - oo or x = + ""· However, without 

analyzing specific physical examples we cannot be sure of th e utility of 

these extensions. Therefore, we will not puruse any of the extensions to 

the results presented here. 

In Chapter IV we used the maximum prinicple to establish theorems 

which would allow us to determine the stabili.ty or instability of any 

traveling wave (or steady state) solution of 

f(u ,u ,u) 
XX X 

by inspection. In this chapter we used the maximum principle to establish 

connections between the initial conditJon u(O,x) and the mean wavespeed 
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of the resulting solution u(t,x) of equation (5.44). These two chapters 

complete our development of the general theory of equa tions like (5.44). 

In the next two chapters we will direc tly extend many of our results to 

the other types of equations f o r which the max imum princ iple holds. 
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Chapter VI 

EXTENSION TO NON-LOCAL OPERATORS 

In this chapter we extend some of the results of Chapters IV and 

V to parabolic equations which contain integrals. We will consider only 

direct extensions, and we will be as brief as possible. Ba sically we will 

find that the stability results for monotonic waves and the mean wavespeed/ 

initial condition results are st ill valid. However, we will not be able 

to prove the instability of non-monotonic waves. 

To be more specific, in this chapter we will treat equations of 

the form 

u = F(u ,u ,u, {T ( G(s ,y,u( t-s,x-y))dyds) 
t XX X Jo Jl yi <Y 

(6. 1') 

where T > 0 and Y > 0 are fixed constants. Throughout this chapter 

we will assume that hypotheses H1 and H2 (smoothness of equation (6 .1') ), 

H3 (parabolicity of equation (6.1'), and H4 (existence of solutions of 

the initial value problem) are satisfied. He also assume that a very 

large M > 0 has b~en chosen, and we work with the resulting equation 
T 

ut = f(u ,u ,u, ( r g(s,y,u(t-s,x-y))dyds) , (6.1) 
XX X J 0 J I y I <Y 

where f - F and g = G . 
M M 

Briefly, in the first section of this chapter we will derive the 

stability results for monotonic wav.es . In section ' (6 ~ .2) we will discuss 

the instability results for non-monotonic waves. We will derive the mean 

wavespeed/initial condition results in section (6.3). Finally, we will 

use the last section, section (6.4), to express some general remarks. We 

now start with the stability of monotonic waves. 

6.1 Stability of monotonic traveling waves . In this section we extend 
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the stability results to monotonic traveling wave (and steady state) solu-

tions of equation (6.1). To do this we need to first redefine our stabili-

ty concepts and the concepts of "nodes" and "saddle points" appropriately. 

We begin with our stability concepts. 

Let w(x) be any continuous function with w(x) ~ l for all 

x. Then any s teady state solution u(t,x) = ~ (x) of the equation 

ut = f(u ,u ,u, (T f g (s,y,u(t-s,x-y+cs))dyds) + cu (6.2) 
XX X J 0 J I y I <Y X 

is defined to be Cw-stable if and only if give n any e: > 0 there is a 

o( e: ) > 0 suc h that every solution u(t,x) of (6.2) satisfies 

j{u(t,x)- ~(x)}w(x)l < e: for all x and all t > 0 (6.3) 

whenever the initial conditions u(t, x ) (t ..:_ 0) s a tisfy 

(i) u(t,x) is bounded and uniformly Hoelder continuous (with some 

exponent a > 0) in t and x for t < 0 

(ii) u(O,x) is in and 

(iii) l{u(t,x)- ~(x)}w(x)l ..:_ o(e:) for all x, all t < 0. 

Similarly, ~(x) is defined to be 
w 
~-stable if and only if given any 

e: > 0 there is a o(e:) > 0 such that every solution u(t,x) of (6.2) 

satisfies 

lu(t,x)- ~(x)l ..:_ £ f or all x and all t > 0 (6.4) 

whenever the initial conditi.ons u (t ,x) (t ..-:_ 0) satisfy (i), (ii ), and 

(iii). A solution u (t ,x) = ~ (x) which is not Cw -stable will be c a lled 

w 
C -unstable, and if it i s not (:w-stable it will be called 

w 
(\( -unsta ble. 

These stability definitions a re v e ry similar to those used pre-

viously. The only major change 1s tha t the requirements on the perturbed 

initial condition u(t,x) - $(x) must now be satisfied for t < 0 as well 
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as for t = 0. 

We now define che concepts of "singular point", "node", and 

"saddle point" appropriately. Note that the steady state equation of (6.2), 

f(~ ,~ ,~, (T ( g(s,y,~(x-y+cs))dyds) + c~ = 0 ,(6.5) 
XX X J 0 J I y I <Y X 

has no phase plane representation. Therefore, our definitions of ''singu-

lar point", "node", and "saddle point" will not refer to any phase plane 

representation. Instead we will define these terms so that the results 

in this chapter are analogous to those in the previous chapters. Thus, 

we define ~ 0 to be a singular point if and only if 

f(0,0,~ 0 , jT J g(s ,y,~ 0 )dyds) o (6.6) 
0 jyj<Y 

and to be a regular singular point of order one if and only if 

f(0,0,~ 0+n, JTJ g(s,y,cp 0+n)dyds) = pn + O(nl+t.) as n+O (6. 7) 
o jyj <Y 

where Jl =#= 0 and t. is some positive constant . If Jl > 0 then we de-

fine ~ 0 to be a first order node, and if Jl < 0 we define $o to be a 

first order saddle point. For simplicity we will treat only first order 

singular points in most of this chapter. 

With the above definitions, the extension of the stability re-

sults contained in sec tions (4.1) through (4.1l) is now very easy . We 

start with the stability of constant steady state solutions u(t,x) ~ ~0 

of (6.2). This result is: 

Theorem 6 . 1: Assume that hypotheses H1, H2, H3, and H4 are satisfied. 

Suppose further that u(t,x) ~ ~ 0 is a constant steady state solution of 

1T ( g(s,y ,u(t-s,x-y+cs))dyds) + cu . (6.2) 

Then 

f(u ,u ,u, 
XX X 0 Jj y j<Y X 

(1) if cp 0 is a first order saddle point then u(t,x) - ~o is 

Cw- stable "th ( ) - 1 W1. W X = , and 
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(2) if <Po is a first order node then u(t,x) ~ <Po is w 
~ -unstable 

With W(x) = 1 + e+Kx ·'- e-Kx for any K > 0 ff · 1 J l r su ic1ent y sma .. . 

Proof: Very similar to the proofs of parts (3) and (4) of theorem (4.1). 

Thus, again saddle points are stable constant solutions and nodes are un-

stable constant solutions. 

If we were to closely follow the treatment in Chapter IV, we 

would now find the asymptotic behavior of the steady state solutions of 

equat:i.on (6. 2). \-J'e will not do this. Instead all asymptotic behavior 

results that we need will be assumed. However, verification of these 

asymptotic assumptions will be very easy for any specific solution of any 

specific equation. We now continue to the stability results for mono-

tonic waves. We begin with the basic stability result. 

Theorem 6.2: Assume that hypotheses Hl, H2, H3, and H4 are satisfied. 

Suppose that u(t,x) ~ <fl(x) is a bound e d strictly monotonic steady state 

solution of equation (6.2), that <P"(x)/<P'(x) is bounded, and that 

I <P" (x) I is decreasi.ng for all x sufficiently large and for all x 

sufficiently small. Then u(t,x) ~ <P(x) is Cw-stable with 

\-l(X) 
1 

- 1 + T~-Tx)T 

Proof: The proof is very simila r to that of theorem (4.2). Since 

<f> (x-h) and <f>(x+h) are both solutions of equation (6.2) for any h, 

the maximum principle implies that Hhenever 

<P(x-h) ~ u(t,x) ~ <fl(x+h) for all x (6.8) 

is s atisf ied for t _::. 0, then it remains s at isfied for all t > 0. Thus 

u(t, x ) ~ <fl(x) possesses a c lass of perturbations for which it is stable. 
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With the assumptions of the theorem, we can identify the stability class 

as including the class allowed by the definition of Cw-stability with 

w(x) = 1 + I<P'~x)l . Thus the theorem is established. 

We see that strictly monotonic steady state solutions of equa-

tion (6.2) have at least a limited stability, exactly as occurred in 

Chapter IV. Note that regardless of whether ¢"(x)/¢'(x) is bounded, 

whether <P'(x) * 0 for all x, or whether I<P"(x) I is decreasing for 

all x sufficiently large and sufficiently small, the maximum pri.nciple 

implies that if 

¢(x-h) ~ u(t,x) ~ <P(x+h) for all x (6.8) 

is satisfied for t < 0 then it remains satisfied for all t > 0 as well. 

Thus every monotonic steady state solution of equation (6.2) possesses a 

limited stability. However, whenever one of the hypotheses of theorem 

is violated we cannot identHy the stability as Cw-stability with 

w(x) = 1 + I<P'~x)l Instead u(t,x) ::: ¢(x) would be Cw-stable with 

some other w(x). Note that for any particular steady state solution 

u(t,x) = ¢(x) of (6.2) it is very easy to identify the precise stability 

implied by relation (6.8). 

As ln Chapter IV, we now improve our baslc stability results by 

constructing better upper and lower functions. Indeed, the estimates 

used in constructing the upper and lower functions contained in lemmas 

(4.3) and (4.4) are valid in the present situation. Therefore the fol

lowing two lemmas can be establlshed by proofs very similar to the ones 

used to prove lemmas (4 .3) and (4.4). 

Lemma 6.3: Assume that hypotheses 111, H2, H3, and H4 are satisfied. 
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Suppose that u(t,x) - cj>(x) is a bounded strictly monotonic steady state 

solution of 

ut ~ f(u ,u ,u, 
XX X 

lT J g(s,y,u(t-s,x-y+cs))dyds) + cu .(6.2) 
0 ly I <y X 

Suppose further that cj>"(x)/,p' (x) is bounded for all x, that l<t>"(x) I 

is decreasing for all x suf£1ciently large and for all :x sufficiently 

small, that [<P(x) -</> (+co)) I cj>' (x) is bounded for all x > 0, and that 

(cj>(x)-cj>(-oo)]/cj>'(x) is bounded for all x < 0. Define cj>(+=) = cj>+ and 

cj>(-oo) =cp_. Then 

(1) if ~+ is a first order saddle point then 

u(t,x) - ¢(x+h(t)) + q(t) ·(Hx+h(t))- cj> ] and (6.9a) 

~(t,x) - cj>(x-h(t)) q(t) ·(cj>(x-h(t))- <1>] - - (6.9b) 

are upper and lower functions (respectively) of equation (6.2). Here, 

-st 
h(t) = aK(1-e ) + h 0 

-st 
q(t) = ae (6.10) 

where s and K are particular posi.tive constants, ho is arbitrary, and 

a is any constant with the same sign as <1>' (x) and with sufficiently 

small magnitude. 

(2) if cp_ is a first order saddle point then 

u(t,x) - cj>(x+h(t)) + q(t)[<P+-cj>(x+h(t))] and (6 .lla) 

~(t,x) _ cp(x-h(t)) q(t) (cj>+-<P(x-h(t))] (6 .llb) 

are upper and lower functions (respectively) of equation (6.2). Here 

h(t) and q(t) are defined as in the preceding case. ---=---------------------------

Lemma 6.4: Assume that hypotheses Hl, H2, H3, and H4 are satisfied. Sup-

pose that u(t,x) = ¢(x) is a bounded strictly monotonic steady state 

solution of 

u 
t 

f(u ,u ,u, (T J g(s,y,u(t-s,x-y+cs))dyds) + cu . (6.2) 
xx x Jr I x 0 IY <Y 
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Suppose further that cp''(x)/cp'(x) is bounded for all x, that lct>"(x)l 

is decreasing for all x sufficiently large and for all x sufficiently 

small, that [¢(x)-cp(+oo)J /¢' (x) is bounded for all x > 0, and that 

[¢(x)-¢(-oo)]/¢'(x) is bounded for all x < 0. If cp(-oo) and cp(+oo) 

are both first order saddle points then 

~(t,x) - cp(x+h(t)) + lq(t)l and 

..!:!_(t,x) - <jJ(x-h(t)) - lq(t)l 

(6.12a) 

(6.12b) 

are upper and lower functions (respectively) of equation (6.2) . Here, 

h(t) = aK(l - e-st) + ho q(t) = ae-st (6.10) 

where s and K are particular positive constants, ho is arbitrary, and 

a is any constant with the same sign as cp'(x) and with sufficiently 

small magnitude. 

Basi.cally lemmas (6 . 3) and (6.4) show that equation (6.2) posses

ses upper and lower functions which are very similar to the ones used 

extensively in Chapters IV and V. These upper and lower functions of equa

tion (6. 2) look very much li.ke the upper and lower functions of equati on 

(4 . 2), which are sketched in Figures (1), (2), and (3) of Chapter IV. 

In lemmas (6.3) and (6.4) we a ssumed that the str ictly monotoni c 

stea dy state u(t,x) = <jl(x) satisfies the conditions 

(a ) cp"(x)/cp'(x) is uniformly bounded, 

(b) I¢" (x) I is decreasing for all x suffici ently l ar ge a nd all 

x sufficiently small, 

( c ) [¢(x)-<jl(+oo)]/¢'(x) is bounded for all x ~ 0, and 

(d) (¢ (x ) - q, ( - oo)] / ¢ ' (x) is bounded for all x < 0. 

Note that when ever u( t , x ) - <jJ (x ) is a bounded stri ctly monot onic s teady 

state s olution of equat ion (6.2) whj ch ha s 
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(i) <l>(x)-4>(+«>), cj> 1 (x), and cp"(x) all decaying asymptotically at the 

same exponential rate as x -+ + oo, and 

(ii) q>(x)-¢(-oo), $ 1 (x) , and ¢"(x) all decaying a symptotically at 

the same exponential rate as x -r - co , 

then conditions (a), (b), (c), and (d) are satisfied. Fortunately, expo-

nential decay as x -+ + oo and as x -+ - co is almost always the case, 

and so conditions (a), (b), (c), and (d) are not very restrictive. More-

over, whenever some of the conditions (a), (b), (c), and (d) are violated 

by a specific steady state, it should be possible to construct \~per and 

lower functions sjmilar to the ones given by lemma (6.3) or lemma (6.4). 

We now use the upper and lower functions cons tructed in lemmas 

(6.3) and (6.4) in conjunction w1th the maximum principle. This immediate-

ly yields our final stability result for monotonic steady s tate solutions 

of equation (6.2). In order to state these results concisely, recall the 

definitions 

[

$ 1 ~x) 
cj> I (O) 

X2_0] 
X < 0 

r { cj> 1 (x)} 
-f cj> I (O) 

Lei>' (x) 

With these definitions, our s tability results are: 

X > 

X < 

Theorem 6.5 (The stability of monotone waves): Assume that hypotheses Hl, 

H2, H3, and H4 are satisfied. Suppose that u(t,x) ~ cj>(x) is a bounded 

strictly monotonic steady state solu·tion of 

ut = f(u ,u ,u, ( T J g(s,y,u(t-s,x-y+cs))dyds) + 
xx x Jo IY I <Y 

cu 
X 

(6. 2) . 

Suppose further that cp"(x)/cp' (x) is uniformly bounded, that jQ>"(x) I is 

decreasing for all x sufficiently large and for all x sufficiently 

small, that (cj>(x)-<jl(+oo))/Q>'(x) is bounded for all x > 0, and finally 
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that [<P(x)-<1>(-oo)J I<P' (x) is bounded for all x < 0. Then u(t,x) - cp(x) 

is cw-stable where 

(1) if both <P = cp(-oo) and <P cp(+oo) are first order saddle points, 

then w(x) :: 1; 

(2) if cp cp(-oo) is a first order saddle point but cp = cp(+oo) is 

not a first order saddle point, then 1 
w(x) = 1 + Jr {cp'(x)}j , 

+ 
(3) if cp = cp(+oo) is a first order saddle point but cp = cp(-oo) is 

not a first order saddle point, then w(x) = 1 + Jr_{cp~(x)}j , and 

(4) if neither cp = cp(-oo) nor cp = cp(+oo) is a first order saddle 

point, then w(x) = 1 + I 1 

--------------------~¢~'._(x~.)~J~------------------------------------

The conclusions of theorem (6.5) are exactly the same as the con-

elusions of theorem (4.5) in Chapter IV. The 1.nclusion of integrals in 

equations (6.1) and (6. 2) has not altered the stability results for mono-

tonic waves, except that it forces us to place mild restrictions on the 

asymptotic behavior of cp(x) as x + + oo . 

In this section we have analyzed the stability of constant and 

strictly monotonic traveling wave solutions u(t,x) = cp(x-ct) of 

u = f(u ,u ,u, lT J g(s,y,u(t-s,x-y))dyds) . (6.1) 
t XX X Q jyJ <Y 

1.Je changed to the coordinate systt:!m which moves with the same speed as the 

wave. This leads to the steady state solution u(t,x) = <P(x) of 

ut = f(u ,u ,u, (T ( g(s,y,u(t-s,x-y+cs))dyds) + cu .(6.2) 
XX X J 0 J I y I <Y X 

We found in theorem (6.1) that if cp (x) is a constant steady state solu-

tion (cp(x) = <Po), then u(t,x) :: <Po has the same stability as \.ras found 

in theorem (4.1) for constant steady state solutions of equations which do 

not contain integrals. We have also exami.ned strictly monotonic steady 
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state solutions u(t,x) = ~(x) of equation (6.2). We found (in theorem 

(6.2), lemma (6.3), lemma (6.4), and theorem (6.5)) that if relatively 

mild restrictions were placed on the asymptotic (as x ~ ± oo ) behavior of 

~(x), then the results in theorem (4.2), lemma (4.3), lerruua (4.4), and 

theorem (4.5) about equation (4 .2) remain valid for equation (6.2). 

This completes this section on the stability of monotonic travel-

ing waves. Note however that the stability results of theorem (6.5) can 

be extended to include monotonic traveU.ng plane waves \V"hen more than a 

single spatial dimension is present, similar to the extension of theorem 

(4.5) discussed in section (4.11). 

6.2 The instability of non-monotonic waves. Despite the title of this 

section, we have not been able to est.ablish the instability of non-mono-

tonic steady state solutions u(t,x) = rp(x) of 
T 

ut = f(u ,u ,u, r J g(s,y,u(t-s,x-y+cs))dyds) 
xx x Jo IYI <Y 

+ cu . 
X 

(6.2) 

Recall that the proof in Chapter IV of the instability of non-monotonic 

steady state solutions of 

ut = f(u ,u ,u) + cu 
XX X X 

(4.2) 

is in three steps. The first step consists of constructing appropriate 

initial conditions u(e:,O,x), which essentially are ~(x) with small ad-

ditional bulges. Lemma (4.7) was used to construct these initial conditions. 

The second step is proving the hair-trigger effect, which shows that 

u(e:,t,x) is increasing in t and that u(e:,+oo,x) = rpoo(e:,x). Here rp (e:,x) 
00 

is the minimal steady state solution whi ch satisfies 

u(e:,O,x) ~ ~00 (e:,x) for all x 

The third and final step of the proof is showing that 
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lim {max ~00 (E,x) - ¢(x) } * 0 
E-+0 X 

This step was accomplished by using lemma (4.8), which shows that for all 

£ > 0 sufficiently small ¢ (£ ,x) 
00 

is constant in x and E. 

The second step of the proof used in Chapter IV rema ins valid in 

the present situation. That is, there is a hair-trigger effect for equa-

tion (6.2). However lemmas (4.7) and (4.8) formed the first and third 

steps of the proof, and these lemmas were established by using the phase 

plane representation of the steady state solutions of equation (4.2). 

Since the steady states u(t,x) = cp(x) of equation (6.2) are the solu-

tions of 

f(¢ ,cp ,tf>, (T { g(s ,y,¢(x-y+cs))dyds) + 
XX X J 0 J I y I <Y 

C<fl 
X 

0 (6.13) 

clearly there is no phase plane representation of the steady state solu-

tions of (6.2). Therefore, our means of proving lemmas (4.7) and (4.8) 

cannot be used to extend the lemmas to the present sit.uation. 

Thus, the proofs used in Chapter IV cannot be used here . How-

ever, since the stability results for monotonic steady state solutions of 

equation (6.2) closely parallel the stability results for monotonic steady 

state solutions of equatiDn (4.2), an attractive conjecture is that the 

instability of non-monotonic steady state solutions u(t~ = p(x) of 

equation (6.2) is exactly the same as the instability of steady state solu-

tions u(t,x) = ¢(x) of equation (4.2). Since the hair-trigger effect is 

valid for equation (6.2), one needs only to develop intersection results 

for the ordinary differential-integral equation 

f(<P ,cp ,cp, (T f g(s,y,cp(x-y+cs))dyds) 
xx x Jo IYI <Y 

+ ccp 
X 

0 (6.13) 
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similar to the intersection results of lemma (4.7) and lemma (4.8) . If 

such results were established, the instability of non-monotonic solutions 

would immediately follow. 

We now continue to the next section, where we extend the mean 

wavespeed/initial condition 

f(u ,u ,u, 
XX X 

results of Chapter V to the equation 

LT r g(s,y,u(t-s,x-y))dyds) 
Jlyi <Y 

(6. l) 

6.3 Meanwaves peed and the initial conditions. In this section we will 

extend the mean wavespeed/jnitia.l condition results of Chapter V to the 

equation 

u 
t 

f(u ,u ,u, 
XX X 

(T . 
Jc J g(s,y,u(t-s,x-y))dyds) 

0 IY I <Y 

Recall that in Chapter V we considered equations 

u = f(u ,u ,u) (5.1) 
t XX X 

( 6. 1) 

which have a non-constant bounded monotonic solution u(t,x) = ~(x-ct,c). 

For each major case of ~(x-ct,c) being a S + S, a N + S, a S + N, and 

a N + N type monotonic wave, we determined 

( l) when the existence of cp (x-c t, c) impli.es the exi.stence or non-

existence of similar monotonic waves at nearby wavespeeds, 

(2) when the existence of ~(x-ct,c) implies the existence or non-

existence of similar monotonic waves at the same wavespeed c, and 

(3) the mean wavespeed of u(t,x) in terms of u(O,x). 

We will not extend the existence and non-existence results for equation 

(5.1) to equation (6.1). Presumably for any speci.fic equation of the form 

(6.1), one could establish existence/non-existence results by using know-

ledge of the asymptotic behavJor of solutions of 
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r g(s,y,~(x-y+cs))dyds) + c~ = 0 
J IYI <Y X 

(6.13) 

in conjunction with conti.nui.ty arguments. However, in this chapter we wi.ll 

only extend the mean wavespeed/ini.tial condition results of Chapter V to 

equation (6.1). Since the proofs of these mean wavespeed results are 

very similar to the proofs of theorems (5.2) in Chapter V, we simply quote 

the mean wavespeed results here. These results are : 

Theorem 6.6 (S + S): Assume that H1, H2, H3, and H4 are satisfied. Sup-

pose that 

u 
t 

u(t,x) ~ ~(x~t) i s a bounded strictly monotonic solution of 

f(u ,u ,u, JT J g(s,y,u(t-s,x-y+cs))dyds) .(6.1) 
XX X . 0 I y I <Y . 

Define ~(-oo) 

k+ < 0 

and cj> ( -t<x>) ~+ ' Suppose that there is a k- > 0 and 

a such that 

k 
-

o(e (k -+O)x) ~ (x) ~ + X + (6 . 14a) ae as X + 00 

1{ -x + o(e(k-+O)x) cp I (x) k ae as X + 00 (6.14b) 

cp"(x) (k-)2 k-x + ( (k-+8)x) ae o e · as X+ 00 (6.14c) 
+ + 

Hx) cp + bek x 1 ( (k - 8)x as + + 00 (6.14d) · o e X 
+ + + 

~I (x) k+bek x + o(e(k -5) x ) as X + + 00 and (6.14e) 
+ + 

~"(x) 
+ ') bek x o(e(k - 8)x) (6.14f) (k ) ~ + as X + + 00 

where a and b are some non-zero constants and 8 is some positive con-

stant . Finally suppose that . ~-and~+ are both first order saddle points. 

If <jl(x) satisfies these assumptions, then whenever u(t,x) is 

any solution of equation (6.1) whose initial condition u(t,x) (t ~ 0) is 

uniformly Hoelder continuous (with some exponent a> 0), has u(O,x) in 

n2 , and for al l t < 0 satisfies 
X 
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<i> - a' < u(t,x) < <i> + a' for all x-ct < - xo , (6.15a) 

<i> - a' < u ( t, x) < <j>+ + a' 
+ 

for all x-ct > + xo , (6.15b) 

min{<j>_ ,q,+} - a' < u ( t, x) < max{<j> _,<j>+} +a' for all x (6 . 15c) 

for any a' > 0 sufficiently small and any x 0 > 0, then u(t,x) must 

propagate with mean wavespeed c. 

Theorem 6.6 (N + S): Assume that hypotheses Hl, H2, H3, and H4 are satis-

fied. Suppose there is a c1 and a c 2 ~ c 1 such that for each c in 

~l,c2], there exists a bounded strictly monotonic solution u(t,x) 

<j>(x-ct,c) of 

u = f(u ,u ,u, lT ( g(s,y,u(t - s,x-y))dyds) . (6.1) 
t XX X 0 J I y I <Y 

Suppose also that for each c in [c 1 ,c2] that <j>(-oo,c) = <j> , 

that <j>(+oo,c) = <i>+' and that q>(x,c) and a 
~ <i>(x ,c) are continuously 

differentiable in c. Further, suppose that there is a continuous 

k-( c ) > 0 and k+(c) < 0 such that for each c 

<j> (x,c) 

<j> (x,c) 
X 

<j> (x ,c) 
XX 

<j>(x,c) 

<j> (x, c) 
X 

<j> (x,c) 
XX 

k-(c)x 
<j> + a(c)e 

a(c)k- (c)ek- (c)x 

+ o(e(k-(c)+o)x) 

+ o(e(k- (c)+O)x) 

in 

as 

as 

as 

as 

as 

as 

X+ oo, 

X+ co, 

X + co, 

X + + co, 

X + + co , 

X + + co, 

(6.16a) 

(6.16b) 

(6 . 16c) 

(6 . 16d) 

(6 . 16e) 

(6.16f) 

where a(c) and b( c ) are non-zero constants and o is some positive con-

stant . Finally, suppose that <j>+ is a first order saddle point and that 

<j>_ is not a first order saddle point . 

If <j>(x,c) satisfies the above assumptions, then whenever u(t,x) 

is any solution of equation (6.1) whose initial condition u(t,x) (t < 0) 
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is uniformly Hoelder continuous (with some exponent a> 0), has u(O,x) 

in u2 , and satisfies for all t < 0 
X 

<P - qo < u(t,x) < <P+ + qo for all X > xo and any xo ' (6.17a) + -

<P < u(t,x) < cp+ + qo for - all X. :i.£ <l>(x,c) is increasing in x, and 

(6.17b) 

cp - qo < u(t,x) < cp for all X if <P(x, c) is decreasing in x, + 

(6.17c) 

then we can conclude the following: 

(1) if for any c in LC!, c2'J there is a S > 0 such that 

e-k-(c)ylu(t,x)-<P I > B for ally ~ x-ct < 0 and t < 0 

and if qo > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed larger than c· , 

(2) if for any c in [c 1 ,c2] there is a S > 0 such that 

e-k-(c)ylu(t,x)-¢ I < B for all y _ x-c t < 0 and t < 0 

and if qo > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed smaller than c. , 

(3) if for any c in [c 1 ,c 2J there is a 13 1 , 13 2 > 0 such that 

s1 < e-k-(c)ylu<t,x)-¢ 1 < s2 for all y - x-ct < o and t < o 

and if q 0 > 0 is suffici.ently small, then u(t,x) must travel with 

mean wavespeed c and must have finite dispersion; and 

(4) if for any c in (c 1 ,c2 ) 

lim e(-k-(c)+ll)Yiu(t,x)-¢_1 = 0 for all t < 0 and all ll > 0 
x+-oo 

lim e(-k-(c)-1J) Y ju(t,x)-cp_l ~= for all t < 0 and all ll > 0 
x-+-oo 

where y ~ x-ct, and if q 0 > 0 is sufficiently small, then u(t,x) 

travels with mean wavespeed c but may not have finite dispersion . 



-278-

Theorem 6.6 (N + N) : Assume that hypotheses Hl, H2, H3, and H4 are satis-

fied . Suppose there is a c 1 and a c2 ~ c1 such that for each c in 

[c 1 ,c 2] there exists a bounded strictly monotonic solution u(t,x) = 

<j>(x-ct,c) of 

f(u ,u ,u,JT f g(s,y,u(t-s,x- y))dyds) 
XX X 0 jyi <Y 

( 6. 1) 

Suppose also tha t for each c <j> ( - oo,c) = <!> _, that 

tj>(+oo,c ) = cf>+' and that cf>(x , e) 

in tc1,c21 tha t 

a 
and ~ <P(x,c) are continuously differ-

entiable in c. Further, suppose that there is a continuous k-(c) > 0 

and + k (c) < 0 such t hat for each c in 

cf>(x,c) <P + a(c) e 
k- (c)x 

+ 0 
(e (k- (c)+c)x) as x+ 00 • (6 . 16a) 

k - (c)x o(e(k- (c)+5)x) <j> (x, c) a(c)k-(c) e + as X+ oo, (6 . 16b) 
X 

<P (x , c) a(c ) (k- (c)) 2 ek- (c)x + 
0 

(e (k- (c)+c)x) as X+ oo, (6. 16c) XX + + 
cf>(x , c) <I>++ b(c)ek (c) x + o(e(k (c)-c)x) as X ++ 00 

' 
(6.16d) 

+ + 
<I> (x,c) = b(c)k+(c) ek (c)x + o(e(k (c)-c)x) as X + + 00 

' 
(6.16e) 

X + + 
cj> (x, c) b(c) (l/(c))2 ek (c)x + o(e(k (c)-c)x) as x++ 00 , (6 . 16f) 

XX 

where a(c) and b (c) are non-zero constants and c is some positive con-

stant. Finally, suppose that neither <I> _ nor <P+ is a first order saddle 

point. 

If <j>(x,c) satisfies the above assumptions, then whenever 

u(t,x) is any solution of equation (6.1) whose 1nitial condition u (t,x) 

(t ..::_ 0) is uniformly Hoelder continuous (wit h some exponent a > 0), has 

u(O,x) in H2 , and satisfies 
X 

min{cf> ,cj> } < u(t,x) < max{ cf> .~ } for all x and all t < 0 ,(6 . 18) 
- + - + 

then we can conclude t he following: 

(1) if for any c in [c 1,c2] there is a f3 1 , S2 > 0 such that 
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-

131 < 
-k e (c)y lu(t,x)- 4> for all y :: x-ct < 0 and t < 0 

' 
and 

+ 
132 > e-k (c)yiu(t,x)-4>+1 for all y - x-ct > 0 and t < 0 

. ' 

then u ( t, x ) cannot travel with mean wavespeed l a rger than c; 

(2) if for any c in (c 1 ,c21 there Js a 131 ' 132 > 0 such that 
-

131 
-k (c)yiu(t,x)-4> > e _I for all y - x-ct < 0 and t < 0 

+ 
132 < e-k (c)ylu(t, x )-4>+1 for all y - x-ct > 0 and t < 0 

then u ( t, x) cannot travel wi th mean waves peed smaller than c; 

(3) if for any c in [c 1 'c2] there is a 131 ' 132 , 133, l3tl > 0 

such that 
--k (c)ylu(t,x) -4> 13 1 < e _I < 132 for all y - x-ct < 0 and t < 0 

+ 
13 3 < e-k (c)ylu(t,x)-4>+1 < 134 for all y - x-ct > 0 and t < 0 

then u(t,x) travels with mean wavespeed c and has finite dispersion, 

and 

(4) if for any c in (cl,c2) 

-(k - ( c )-1-l) yiu(t,x)-4> _. 1 
-

lim = 0 lim -(k ( c )i~)yiu(t,x)-4> e 
' e + co , 

x-+-co x-+-oo 
+ + 

lim e -(k (c)-1-l) yl u(t,x)-4>+ 1 + co , l i m e-(k (c)+l-l)Y iu(t,x)-4>+ 1 0 
x-++oo x-H-oo 

for all 1-l > 0 and all t < 0 (where y:: x-ct), then u(t,x) travels with 

mean wavespeed c (but may not have fin i te djspersion) . 
----------------------------------

Basically theorems 6.6 (S + S), (N -+ S), and (N-+ N) show tha t 

f or large classes o f initial conditions u(t, x ) (t ~ 0), the mean wave-

speed of the resulting solution of equa tion ( 6. 1) depends entire ly on 

(l) the asymptotic decay rate of u(t,x) to 4> as x-+-oo fo r 

t < 0 if 4>_ is - not a first order saddle point, and 

(2) the asymptotic decay rate of u(t,x) to 4>+ as X -+ + co for 

t < 0 if <!>+ - is not a first order saddle point . 
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Theorems 6. 6 (S + S), (N ·+ S), and (N + N) are very similar 

to theorems 5.2 (S + S), (N + S), and (N + N) of Chapter V. The only 

major differences are that 

(1) in theorems (6.6) conclusions are drawn about the mean wavespeeds 

of solutions of equation (6.1), whereas in theorems (5.2) conclusions are 

drawn for equation (5.1); 

(2) in theorems (6.6) we needed to make assumptions about the asymp

totic behavior (as x + + oo) of the monotonic traveling waves (see 

equations (6.14) and (6.16)), whereas in theorems (5.2) we knew that the 

monotonic traveling waves always satisfy these asymptotic assumptions; 

(3) for theorems 6.6 (N + S) and (N + N) we needed to assume the 

existence of all the monotonic traveing waves we used, whereas :i.n theorems 

5.2 (N + S) and (N + N) we needed only to assume the existence of a 

single monotonic traveling wave; and 

(4) the restrict:i.ons on the initial conditions in theorems (6.6) are 

for all t < 0, whereas the restrictions for theorems (5.2) are only for 

t = 0. 

Let us note that for almost all equations of the form (6.1), in 

practice almost every traveling wave and steady state solution u(t,x) 

<f>(x-ct,c) satisfies the asymptotic restrictions of equations (6.14) and 

(6.16). Thus these asymptotic behavior requirements in theorems 6.6 

(S + S), (N + S), and (N + N) are relatively innocuous. 

This completes our presentation of the mean wavespeed/initial 

condition results for equation (6.1). We complete this chapter :i.n the 

next section with some f:i.nal remarks. 
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6.4 Some general remarks. We have found in this chapter that the sta-

bility results for monotonic traveling waves can be extended to equations 

of the form 

f(u ,u ,u, 
XX X 

iT ~ g(s ,y, u(t-s ,x-y) )dyds) 
0 jy I <Y 

(6.1) 

We also found that the mean wavespeed/ini.tial condit ion results are readi-

ly extended to equation (6.1). However, we are unable to extend the in-

stability results for non-monotonic waves to equation (6.1). 

In this chapter we developed only the most readily obtainable 

results about equation (6.1). Hany potential areas of research have been 

ignored. For example, one could examine the asymptoti.c behavior (as 

x + + oo) of the monotonic traveling wave solutions of equation (6.1). 

This would determine when the hypotheses about the asymptotic behavior of 

monotone traveling waves in theorems (6.6) are satisfied. These asympto tic 

results could also potentially be used in conjunction with continuity argu-

ments to prove existence/non-existence theorems about monotonic traveling 

wave soluti.ons of equation (6.1), similar to theorems (5.1) about solutions 

of equation (5.1). 

Establishing intersection results similar to lemmas (4.7) and 

(4.8) is another potentially interesting research area. Since equation 

(6.2) has a hair-trigger effect, whenever one can establish intersection 

results similar to those in lemmas (4.7) and (4.8) for any class of non-

monotonic steady state solutions of (6.2), then instability of those 

steady states follows immediately. 

This completes our treatment of equation (6.1). In the next 

chapter we treat a similar topic. Spec ifically we will extend the results 

of Chapters IV and V to some systems of equations. 
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Chapter VII 

EXTENSION TO NULTIPLE DEPENDENT VARIABLES 

In this chapter we extend some of the results of Chapters IV and 

V to a special class of systems of equations which contain no integrals. 

As in Chapter VI we will consider only direct extensions, and we will be 

as brief as possible. Basically we will find that the stability results 

for monotonic waves and the mean wavespeed/initial condition results are 

still valid. However, we will not be able to prove the instability of 

non-monotonic waves. 

To be more specific, in this chapter we will treat systems of 

equations of the following form 

(i) 
u = 

t 
F(i) ( (i) (i) -) 
' uxx ,ux ,u i = l, ... ,m (7.1') 

where F{i) > 0 and F3(~) > 0 for all 
J -

j * i and all i, and where 

- (1) (m) 
u ~ (u , ... ,u ). Throughout this chapter we will assume that hypo-

theses H2 (smoothness of system (7.1')), H3 (parabolicity of system (7.1')), 

and H4 (existence of solutions to the initial value problem) are satisfied. 

We also assume that a very large M > 0 has been chosen, and we work with 

the resulting system of equations 

(i) 
ut i 1, ... , m (7. 1) 

-where f F - M" 

Briefly, in the first sectio n of this chapter we will derive the 

stability results for monotonic waves . In section (7. 2) we 'vill discuss the 

instability results for non-monotonic wavas . We will derive the mean wave-

speed/initial condition results in section (7.3). Finally, we will use the 

l as t section, section (7 .4) , to express some general remarks. We start with 

the stability of monotonic waves . 
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7.1 Stability of monotonic traveling waves. In this section we extend 

the stability results to monotonic traveling wave (and steady state) solu-

tions of system (7.1). To do this we need to first appropriately redefine 

our stability concepts, the concept of a "node" and a "saddle point", and 

the concept of a monotonic traveling wave. We will also need to introduce 

some results from Perron-Frobenius matrix theory [9]. We begin by re

defining our stability concepts appropriately. 

Let w(x) be any continuous function with w(x) ~ 1 for all 

x. Then any steady state solution u(t,x) = ~(x) of the system 

u(i) _ f(i)( (i) (i) _) + c (1) 
t - 0 xx ,ux ,u ux i = 1, ... ,m (7.2) 

is defined to be Cw-stable if and only if given any E > 0 there is a 

o(£) > 0 such that every solution u(t,x) 

l£u(i)(t,x)-~(i)(x)}w(x) I ~ E for all x, 

of (7.2) satisfies 

all t > 0, and i = 1, ... ,m 

whenever the initial conditions u(O,x) are in H2 and satisfy 
X 

(7. 3) 

(i) (i) 
j{u (O,x)-~ (x)}w(x)j ~ o(E) for all X and i- 1, ... ,m 

(7.4) 

Similarly, ip(x) is defined to be 
w 

~ -stable if and only if given any 

E > 0 there is a O(E) > 0 SUCh that every solution u(t,x) of (7.2) 

satisfies 

lu(i)(t,x)-~(i)(x) I < E for all x, all t > 0, and i 1, ... , m 

whenever the initial conditions u(O,x) 

(7. 5) 

are in H2 and satisfy (7.4). 
X 

A solution u(t,x) = ~(x) which is not Cw-stable will be called Cw

unstable, and if it is not ~w-stable it will be called ~w-unstable. 

We now define the concepts of "singular poj_nt", "node", and 

"saddle point". As in Chapter VI, there is no phase plane representation 

of the steady states u(t,x) = ~(x) of system (7.2). Since the definitions 
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of "singular point", "node", and "saddle point" cannot refer to features 

of a phase plane, we will instead choose the definitions of these terms 

so that the results in this chapter are analogous to those in previous 

chapters. Thus, we define +o to be a singular point if and only if 

(7. 6) 

and to be a regular si.ngula r .E_c;:lint of order one if and only if 

(7. 7) 

where the matrix A is irreduci ble (see reference [9]) and nonsingular. 

If all the eigenvalues of A have negative real parts then we define <Po 

to be a first order saddle potnt, and if A has an eigenvalue with posi-

tive real part then we define <Po to be a first order node. 

We now define monotonicity appropriately. If ~(x) has either 

all •(i)(x) increasing for all x or has all +(i)(x) decreasing for 

all x, then we define •(x) to be monotone. If in addition <P(i)(x) * 0 

for all i and x, then ~(x) will be called strictll monotonic. If ~(x) 

has some •(i)(x) increasing for all X and some decreasing for all x, 

then we define ~(x)' to be quasi-monotonic. If <j>(i)(x) + 0 for all i 

and x and if ~(x) is quasi-monotonic, we will call ~(x) strictll 

quasi-monotonic. 

We now introduce two needed results from Perron-Frobenius (PF) 

-theory. Let <Po be any regular singular point of order one, and define 

the matrix A by 

as in equation (7.7). 

(i) -
Aij = f 3j (O,O,<Po) 

By hypothesis H3, > 0 for all i"' j. 

by our definition of regular singular point, A is irreducible. 

Frobeni.us (PF) theory therefore implies that 

Also, 

Perron-
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(1) the eigenvalue of A \·lith largest real part is real and simple, 

and 

(2) the eigenvector corresponding to the(real) eigenvalue with lar-

gest real part can be taken to have all positive components. These results 

are discussed in reference [9] for example . 

With the above definitions a nd the two r esults of PF-theory, the 

stability results for monotonic waves can now be readily extended to solu-

tions of system (7 . 1). We b egin with the stability results for constant 

steady state solutions fi(t,x) ~ ~0· 

Theorem 7.1: Assume that hypotheses H2 , H3, and H4 are. satisfied. Suppose 

further that fi(t,x) ~ ~ 0 is a constant steady sta te solution of 

(i) f(i)(u(i) u(i) fi) + cu(i) i 1 (7 .2) 
Ut XX 'X ' X = '' .. ,m 

Then 

-
(1) if ~0 is a first order saddle point then fi{t,x) - h is 

Cw-stable ith ( ) - 1 W W X = , and 

(2) if is a first order node then fi(t,x) ~ ~0 is 
w 
~ -unstable 

\vith w(x) ~ 1 + e -Kx + e +Kx for any K > 0 sufficiently small. 

Thus, once again saddle points are very stable constant solutions 

and nodes are unstable constant solutions. 

We \vi ll prove theorem (7 .1) in some detail, since the proof clearly 

illustrates how PF-theory is used V.'ith the maximum principle to obtain sta-

bility results. Recall that a function ~(t,x) is define d to be an upper 

function of system (7.2) when 

(i) f{i)( (i) (i) - ) (i) > 0 
ut - uxx ,ux ,u - cux _ for all x and a ll i 1, ... ,m 

Similarly, ~(t ,x) is a l ower function of system (7. 2) w'hen 
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(i) 
cu < 0 for all x and all i 

X 

Proof of theorem (7.1): Define the matrix A by 

Aj . 
. J 

1, ... , m 

Let A be the eigenvalue with largest real part of the matrix A, and let 

a be lts corresponding eigenvector. From PF-theory, A is real and we can 

assume that a= (a(l) , ... , a (m)) has a(i) > 0 for all i. 

To prove part (I), assume that ~ 0 is a saddle point. Then 

A < 0. Define 

- _ At/2 + 
B(£,t,x) - £ae ~0 

We calculate 

- f(i)(B(i) B(i) i) - cB(i) 
xx'x' x 

~£AeAt/2 a(i)- f(i)(O,O,$u + At/2 _) £e a 

I ' At/2 (i) + ( At/2) 
~£Ae a o €e 

Thus, there is an £ 0 > 0 such that B(£ ,t,x) is an upper function and 

B(-£,t,x) is a lower function of system (7.2) for every £ in (0,£ 0 ). 

The maximum principle now shows that any solution u(t,x) of (7.2) whose 

initial condition fi(O,x) is in H2 and satisfies 
X 

B(i)(-£,0,x) ~ u(i)(O,x) < B(i)(£, 0,x) for all~ all i, and any E in (O, Eo ), 

must also satisfy 

(i) (i) (i) 
B (-E,t,x) ~ u (t,x) ~ B (c,t,x) for all x, all t ~ 0, and all i . 

Thus, small bounded initial perturbations decay exponentially in time. 

-
The refore, when ~O is a saddle point of order one we have established that 

u(t,x) = ~o is Cw-stable with w(x) - 1 . 

Part (2) is proved similarly. \\Te note that since ~o is a node, 

A > 0. We now define 
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B(E,t,x) = ~ 0 + EaeAt/ 4 sech Kx 

A short calculation shows that for any K > 0 sufficiently small, there 

is an Eo > 0 such that B(£,t,x) is a lower function whenever 

H/4 0 < £e .:::. Eo· Define u(E,t,x) as the solution of system (7.2) with 

the initial condition 

u(t:,O,x) B(E,O,x) 

The maximum principle now implies that for any £ in (0,£0), 

~ 0(i) < ~ 0(i) + £a.(i) At/4 h (i)( ) 
~ ~ e sec Kx < u E,t,x 

At/4 
for all x, all i, and all t such that 0 < £e < Eo • 

-
Therefore, when cp 0 is a node of order one we have established that 

u(t,x) = ~0 is tw-unstable wi.th w(x) = 1 + e-Kx + eKx for any K > 0 

sufficiently small. 

This completes the proof of theorem (7.1). 

The stability results in theorem (7,1) for constant solutions of 

system (7.2) are analogous to the results in theorem (4.2) about constant 

solutions of equation (4.2). Following the treatment in Chapter IV, we will 

now briefly derive the asymptotic behavior of the monotonic steady state 

solutions of system (7 . 2). We wlll not prove the correctness of the asymp-

totic results we obtain. Instead, we note that their correctness is a con

sequence of the material in Chapter 13 reference [6] · 
Suppose that ii(t,x) = ~(x) is a monotonic steady state solution 

of system (7.2). Define $(-oo) = ~ and ~(+oo) = ~+' and assume that both 

cp_ and ~+ are regular 

+ 
ana l · matrices D~ and 

1 

singular 

+ 
D

2 
by 

points of order one. Also define the diag-



Dl ii 
' 

+ 
Dl ,ii 

define the matrices 

A .. = 
l.J 
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di) (0,0,~ ) D2,ii di)(O,O, ~ ) 

f(i)(O 0 ~) + f(i)(O 0 ~) 
l ' ' + D2 ii 2 ' ' + 

' 
A- and A+ by 

( i) -
f

3
j (O,O,<f> ) and 

and finally let I be the m x m ident ity mat rix . Not e that t he regul ari-

-ty assump t ions about <P and <1>+ i mply t hat A- and A+ are both irre-

duscible and non- singular . As x ~ - oo and as x ~ + oo , ~ (x) must 

satisfy the asymptotic equations 

Dl,ii <t>~!)(x) + (D;,ii+c)cp~i)(x) + ~ 
j 

as x-r - oo 
' 

i 1, ... , m 

as x ~ + oo, i = l, • •. ,m 

We conclude that the asymptotic behavior of <P(x) 

<P(x) ae 
k - x 

+ o(e(k-+ o)x) as X ~ 

+ + 
~(x) - ·k X o(e(k -o)x) be + as X ~ 

-

(7 . 8a) 

is given by 

00 and ( 7 .9a) 

+ 00 

' 
(7. 9b) 

where 0 > 0 is a positive consta n t , where k and k+ are nonzero constants 

such that t he matrices 

- (k-) A 

A+(k+) 

are singular, and where 

respectively. 

(k -) Ln~ - (D2+ci) A - + k + 

- (k +) zni + 
+ + 

k (D2+ci) + A+ 

- and b non ze r o null vectors of a are 

Moreover, the asymptotic behavior of ~ (x) and 
X 

~ (x) (as x ~ ± oo) can be obt ained by formally differentiati ng the ex
xx 

pressions in equat ions (7 . 9). 

Since ~(x) is mono ton ic , we see that 
- + k a n d k are real . I n 

fac t k- > 0 and k+ < 0. Also since ~(x) being monotonic implies that 
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either all <l> ( i ) (x) a r e i ncreasing or all cp(i)(x) are decreasing, either 

a 
(i) 

> 0 and b (i) < 0 for all i , or (7 . 10a) 

a 
( i) 

< 0 and b (i) > 0 for all i (7 . 10b) 

However , we know from PF-theory t hat - - + + A (k ) and A (k ) each have a simple 

real eigenvalue A and A+ whose cor respond ing eigenvectors have all posi

tive components . Thus, A- = A+ = 0 since the non-zero null vectors of 

A-(k- ) and A+(k+) satisfy either (7 . 10a) or (7.10b). This implies that all 

the components of the null vectors of 

That is, we now know t hat either 

a(i) > 0 and 

a ( i) < 0 and 

- - + + 
A (k ) and A (k ) mus t be nonzero . 

for a l l i , or (7 .lla) 

for all i (7 . llb) 

To summar ize our brief asymptotic analysis, we have shown that 

whenever u( t ,x) = ~(x) is a monotonic steady state s olu tion of system 

( 7.2) and whenever ~ (-oo) :: cfi_ and ~(+oo) = f+ are both r egular singular 

points of order one , t h e n the asympto t ic behavior of ~(x) is given by 

where 

~ (x) 

~ (x) 
X 

~ (x) 
XX 

~ (x) 

<I> (x) 
X 

~ (x) 
XX 

~ + lek-x + o(e(k- +o)x) 

k-~ek-x + o(e(k-+5 ) x) 

(k-)2 aek- x + o(e(l<-+o)x) 

+ + 
<I> + bek x + o(e(k - o)x) 
+ + + 

k+bek x + o(e(k - o)x) 

+ + 
(k+)2 bek x + o(e(k -o)x) 

is some positive constant, where 

as x + - oo, 

a s x + - 00 , 

as x + - oo, 

as x + + oo, 

as x + + ""• 

as x + + oo, 

(7 . 12a) 

(7 . 12b) 

(7.1.2c) 

(7.12d) 

(7 .12e) 

(7 .12£) 

- + 
k and k are some real con-

stants with k > 0 a n d k+ < 0, and where a and b are some real vectors 

with all nonzero components. In other words, <l>(l)(x) , cp!l)(x), <~>!!)(x), 

cp( 2)(x) , . . . , cp(m)(x) all decay asymptotically at the same exponential rate 
XX 

as x + - oo and all decay at the same exponential rate as x + + "" · 
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We now develop the stability theory for mono t onic steady state 

solution s of system (7 . 2). This d evelopment will parallel the treatment 

in sections (4.4) through (4 . 6) of Chapter IV and the treat ment in section 

(6 . 1) of Chapter VI. We wi.l.l not present the proofs o f the remaining re-

sults in this sect ion. The proofs are very similar to the proofs in sec-

tions (4 . 4) t hrou gh (4.6) of Chapter IV. The only major change is t he 

insertion of the asymptotic resul t s of equations (7.12) at the appropriate 

points . 

Theorem 7.2: Assume that hypotheses H2, H3 , and H4 are satisfied. Suppose 

that u(t, x) = ~ (x) is a bounded strictly mono tonic steady state solution 

of 

u(i) = f(i)(u(i) u(i) u) + 
t XX ' X ' 

(1) 
c u 

X 
i l, . .. , m ( 7 .2) 

Suppose that ~(-oo) and ~(+oo) are both regular singular points of order 

one . Define k- as the (positive) exponent ial decay c onstant of ~ (x) 

as x +- oo , and define k+ as the (negative) exponential decay constant 

of ~(x) as x+ + oo , Then u(t,x) = ~(x) is cw- stable with 

w(x) 1 
1 

- + ---- - - -
I <P < 0 ex) I 

X 

or equivalently, with 

w(x) 

We s e e that stric tly monotoni c s t e a dy sta te s o lutions o f s y stem 

(7 . 2 ) have a t least a limited stability . In the next two lemma s we will 

c onstruct upper and lower f unct ions o f equa tion (7 . 2). Thes e new uppe r and 

l ower func t i ons will a llow us to improve our ba sic s tabi l i t y r esults. 

Le mma 7 . 3: As sume t h a t h ypo theses H2, H3 , and H4 a re s a tis fi ed . Suppose 
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that u(t,x) = ~(x) is a bounded strictly monotonic steady state solution 

of system (7.2). Define ~(-oo) = ~ 
- -

and ~(+oo) = ~ ' + 
and assume that 

both ~- and ~+ are regular singular points of order one. Also, define 

the matrices 

and let a 

+ A and A by 

(i) -
Aij ::: f 3 j (0,0,~ ) A+ ::: f(i)(O 0 ;;: ) 

ij 3j , , 'I'+ 

and a+ - + 
be the eigenvectors of A and A (respectively) cor-

responding to the eigenvalues with l argest real part. Finally, let a 

and a+ have all positive components. 

(1) 

~(i) (t ,x) 

Then 

if ~+ is a saddle point of order one then 

= cp(i)(x+h(t)) + q(t)a(i~(cp(i)(x+h(t))-~(i)]/ 
+ -

l~(i)_ <P(i) i 
+ -

(7 .13a) 
i = 1, ... ,m and 

~(i)(t,x) - cp(i)(x-h(t))- q(t)a!i~[<P(i)(x-h(t))-<P~i)J/ I<P!i)_ <P~i)l 
(7. 13b) 

i 1, ... ,m 

are upper and lower functions (respectively) of system (7.2). Here, 

-st -st 
h(t) = EK (1 -e ) + h 0 , q(t) = Ee (7.14) 

where s and K are particular positive constants, h o is arbitrary and 

E is any constant with sufficiently small magnitude and with the same sign 

as <P (i) (x ). 
X 

(2) if ~ is a saddle point of order one then 

~(i) (t ,x) = ~ (i) (x+h(t)) + q (t) a ~i~ [<P !i) -<P (i) (x+h(t) )] I I <P !i) -~ ~i) I 
(7.15a) 

i = 1, ... , m and 

~(i)(t,x) _ <P(i)(x-h(t))- q(t)a~1-~(cp!i)_<P(i)(x-h(t))]/ I <P!i)_cp~i)l 
(7.15b) 

i 1, ... ,m 

are upper and lower fun c tions ( respectively) of system (7.2). He re, h(t:) 
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and q(t) are defined as in the prece ding case. 

Lemma 7 .4: Assume that hypotheses H2, H3, and H4 are satisfied . Suppose 

that u(t,x) = <j>(x) is a bounded strictly monotonic steady state solution 

of sys t em ( 7 .2). Define ~(-oo ) = ~ and ~ (+oo) ::: ~+' and assume that 

- -
both <I>_ and <I>+ are first order saddle points. Also, define the matrices 

A- and A+ by 

A+ ::: f(i)(O 0 ; ) 
ij Jj ' ''t' + 

and assume that there is a vec tor a with all p o sitive components suc h that 

and f o r all i = 1, .. . ,m 

Then 

~( i ) (t,x) - <f>(i)(x+h(t)) + lq (t) et (i)l i = 1, ... ,m and (7.16a) 

(i) <f>(i)(x-h(t)) -jq(t) et (i)l i 1, ... ,m (7 . 16b) .!:!. (t,x) -

are upper and lower functions (respective,ly) of system (7 . 2). Here, 

h(t) 
- st 

q(t) 
-st 

(7.14) - EK(l-e ) + ho - Ee 

wher e s a nd K are particular positive c onstants, ho is a r bitrary, a nd 

E is any constant with sufficiently small magnitude and with the same sign 

as 

Theorem 7.5 (The s t a bility of monotone waves ): Assume that hypothe s e s H2 , 

H3, and H4 are satisfied . Suppose that u(t, x ) = ~ (x) is a bounded stric t-

l y monotonic stea dy stat~ s o lution of 

(i) f( i ) ( (i) (i) - ) + (i) u = . u u u cu 
t XX ' X ' X 

i = 1, . . . ,m 

Define ~ (-oo) = ~ and ~ (+oo) :: ~+ a nd a ssume tha t both 

(7 . 2 ) 

and ;;: 
'~'+ 

a re 

r egul ar s ingula r points o f order one . Also d efine the ma t rices A- a nd A+ 

by 

(i) -
f 3j (0,0,</l ) and + A . . 

1 ] 
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Finally, let k- > 0 and k+ < 0 be defined by 

as X -+ - oo 

where a and b are non-zero vectors. 

and 
+ 

~(x) - bek x 

Then il(t,x) ~ ¢(x) is Cw-stable where 

as x-+-1-oo 

(1) if ¢ and ~+ are both saddle points and if there is a vector 

a with all positive components such that 

£ A .. a(j) < 0 and l: + a (j) A .. 
j 

l.J 
j 

l.J 

then w(x) - 1; 

(2) if ¢ is a saddle point then 

+ 
· 1 1 w(x) ~ 1 + e-k x equ1.va. ent y, _ 

(3) if is a saddle point then 

equivalently, w(x) ::: 1 + 
-

--k-x 
e and 

< 0 for all i 

w(x) 

w(x ) 

(4) if neither ¢ nor is a saddle point then 

1 w(x) ~ 1 + ----
l¢(l)(x)l' 

X 

or equivalently, 

1, ... ,m 

or 

or 

Lemma (7.3), lemma (7.4), and theorem (7.5) are very similar to 

lemma (4.3), lemma (4.4), and theorem (4.5) in Chapte r IV. The upper and 

lower functions contained in lemmas (7.3) and (7.4) are natural extensions 

of those developedinlemrnas (4.3) and ( 4 .4) of Chapter IV, and the stability 

results in theorem (7.5) are very simila r to the results in theorem (4.5). 

In fact, basica lly theorem (7.5) shows that bounded strictly monotonic steady 

state solutions u(t,x) = ~(x) of system (7.2) are stable with respect to 

small ini tial perturbations wh ich are 

(1) bounded as x-+ - oo ( as x -+ + oo) when ~(x) goes to a first 

order saddle point at x =- oo (at x = + oo), and 
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(2) decay asymptotically no slower than <P (1) (x) 
X 

as X -+ - oo (as 

x-+ + oo) when ~(x) goes to a first order node at x 00 (at X=+ 00). 

There are two unexpected limitations of the stability theory 

developed by theorem (7.2), lemma (7.3), lemma (7.4), and theorem (7.5). 

The first is that we needed to assume a consistency relation between the 

matrices - + A and A . Namely, we needed to assume that there is a vector 

a with all positive components such that 

£ A .. a(j) < 0 
1] 

j 
and 

This condition could very well be unnecessary. 

for all i 1, ... ,m 

The second unexpected limitation of the theory is that it does 

not treat quasi-monotonic steady states u(t,x) = ~(x). (Recall that quasi

monotonic steady states are solutions ~(x) which have some <P(i)(x) in

creasing for all x and some <P(i)(x) decreasing for all x). Although 

this limitation is unexpected, some such general limitation is necessary. 

To see this, consider the following conunon situation. Let m = 2, and 

suppose that ~ (x) = ·(<I> (1) (x), !j> (
2 ) (x)) is a strictly quasi-monotonic steady 

state solution of 

f(i) (<P~!) ,cp~i) ,~(x)) + ccf>~i) = 0, i = 

S 1 h ~(1), ~x(1)•"' x(x1·)' ~(2), ~x(2), nppose a so t at 'I' 'I' 'I' ~· 'I' 

1 and 2 

and <1>( 2 ) 
XX 

all decay asymp-

totically at the same exponential rate as x -~ + oo and tha t they all de-

cay at the same rate as x-+ - 00 • Finally, let us suppose that there is a 

o > 0 such that 

f(~)(cf>(i) cp(i) ~) > o > 0 fo r j * i, all i, and all x . 
3] XX ' X ' 

Then a short calculation shows that 

i 1 and 2 
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is an lower function of (7.2) for all s sufficiently small and all E 

and t such that 
st -

0 < Ee <E o (for some Eo> 0). Thus u(t,x) = ~(x) 

is 
w 
~ -unstable with w(x) - 1 + ___ 1 __ _ 

I cp 0 ) <x) I 
and so we conclude that quasi-

X 

monotonic steady states are commonly less stable than monotonic steady 

states. 

This completes our development of the stability theory for con-

stant and monotonic steady state solutions of (7.2). In brief, the sta-

bility theory we have developed is very similar to that of section (4.2) 

and sections (4.4) through (4.6) of Chapter IV. However this stability 

theory is incomplete. We have not 

(1) found whether the consistency relations between A- and A+ (in 

l emma (7.4) and theorem (7 . 5)) are necessary, 

(2) discovered whether all quasi-monotonic steady states are un-

stable, 

(3) treated the cases where cp (x) i s monotonic but not strictly 

monotonic, 

(4) treated the cases where either - + A or A is reducible or sin-

gular, or 

(5) extended the results to trave ling plane wave solutions of (7.1). 

Finally, note that for any .Particular steady state solution of any particu-

lar system of equations the methods \ve used jn this section may very use-

ful even when the general theory we developed is not appl icable. 

7.2 Instability of non-monotonic waves . We h a ve not been able to establish 

the instability of non-monotonic steady state solutions u(t, x ) = $ (x ) of 

(i) 
u 

t 
f(i)( (i) (i) - ) 

uxx ,ux ,u 
(i) + cu 

X 
(7. 2) 



-296-

The problems involved in extending the instability results of theorem (4.6) 

to systems of equations are precisely the same problems that arose in sec-

tion (6.2) when we discussed the possible extension of theorem (4.6) to 

equations contaJning integrals. Since these problems are discussed in 

section (6.2), we will not discuss them here. 

The situation is very similar to that in section (6.2). An in-

teresting conjecture is that the instability of non-monotonic steady state 

solutions u(t,x) = ~(x) of system (7.2) is exactly the same as the in-

stability of steady state solutions of equation (4.2). One can prove that 

system (7.2) has a hair-trigger effect, and so to prove this conjec ture one 

needs only to develope intersection results for the ordinary differential 

system of equations 

i 1, ... , m 

that are s i milar to lemmas (4.7) and (4.8). If such intersection results 

were established, the instability of non-monotonic steady state solutions 

would immediately follow. 

We now continue to the next sec tion, where we extend the mean 

wavespeed initial cond i tion results of Chapter V to the system of equations 

f 
(i) ( (i) (i) - ) u ,u ,u 

XX X 
(7 .1) 

7.3 Mean wavespeed and the initial conditions. In this section we will 

extend the mean wavespeed/initial condition results of Chapter V to the 

system of equations 

(i) 
u = 

t 
i = l, .. . ,m 

Recall that in Chapter V we considered equations 

u 
t 

f(u ,u ,u) 
XX X 

(7.1) 

( 5 .1) 
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which have a non-constant bounded monotonic solution u(t,x) cj>(x-ct,c) . 

For each major case of ~(x-ct,c) being a S + S, a N + S, a S + N, and 

a N + N type monotonic wave, we determined 

(1) when the existence of ~(x-ct,c) implies the existence or non-

existence of similar monotonic waves at nearby wavespeeds, 

(2) when the existence of ~(x-ct,c) implies the existence or non-

existence of similar monotonic waves at the same wavespeed c, and 

(3) the mean wavespeed of u(t,x) in terms of u(O,x). 

We will not try to extend the existence/non-existence results for solutions 

of (5.1) to solutions of system (7.1). Presumably for any specific sys-

tern of the form (7 .1), one could establish existence/no.n-existence results 

by employing knowledge of the asymptotic behavior (as x + ± oo) of solu-

tions of 

(7.17) 

in conjunction with continuity arguments. However, in this chapter we will 

only extend the mean wavespeed/initial condition results of Chapter V to 

system (7.1). Since ' the proofs of these mean wavespeed results are very 

similar to the proofs of theorems (5.2) in Chapter V, we will simply quote 

(and not prove) the mean wavespeed/initial condition results here. These 

results are: 

Theorem 7.6 (S + S): Assume that hypotheses H2, H3, and H4 are satisfied. 

Suppose that u(t,x) _ ~(x-ct) is a bounded strictly monotonic solution of 

u 
(i) 

t 

Define ~(-oo) _ ~ 

f
(i) ( (i) (i.) -) u ,u ,u 

XX X 
i = l, ... ,m 

and ~(+oo) :: ~+' and assume that both ~ 

(7 .1) 

and ;;: 
'~'+ 

- + 
are first order saddle points. Also, define the matrices A and A by 
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- (i) -
Aij = f 3j (0,0,¢ ) 

and assume that there is a vector a with all positive components such that 

and for all i=l, ... ,m. 

-
If <j>(x) satisfies these assumptions, then whenever u(t,x) is 

any solution of system (7.1) whose initial condition u(O,x) 

and satisfies 

<l>~i) a ' < u(i)(O,x) < q;~i) + a' for all i, all X < -

<l>(i) 
+ a' < u(i)(O,x) < <I>(J) 

+ + a' for all i, all X > + 

is in H2 
X 

xo (7.18a) 

XQ and 

(7.18b) 

(7. 18c) 

for any a' > 0 sufficiently small and any x 0 , then u(t,x) must travel 

with mean wavespeed c. 

Theorem 7 . 6 (N + S): Assume that hypotheses H2, H3, and H4 are satisfied . 

Suppose that there is a c 1 and a c 2 ~ c 1 such that for each c in 

t_c1,c2], there exists a bounded strictly monotonic solution i:i(t,x) = 

~(x-ct) of 

(i) f(i)( (i) (i) - ) 
ut = uxx ,ux ,u i = l, ... ,m (7 .1) 

Suppose also that for each c 

~(+oo,c) = ¢+' and that ~(x,c) 

in [c 1 ,c 2J that 

a -
and ax <j>(x,c) 

¢(- oo,c) that 

are continuously differ-

entiable in c . Further, assume that <jJ is a regular singular point of 

order ona and that q,+ is a first order saddle point. Finally, define 

k-(c) > 0 by 

¢(x,c) 

where a(c) + 0 and 6 is positive, and assume that k-(c) is continu-

ous in c. 
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If ~(x,c) satisfies the above assumptions, then whenever 

u(t,x) is any solution of system (7.1) whose initial condition u(O,x) 

is in H2 and satisfies 
X 

for all x > x 0 for any xo 

i 1, ... , m 

i 1, ... ,m 

for all x if ~(x,c) is increasing in x, and 

~(i) < (i)(O ) < ~(i) 
'~'+ -qu u ,x _'r i = 1, ... ,m 

for all x if ~(x,c) is decreasing in x, 

then we can conclude the following: 

(7 .19a) 

(7 .19b) 

(7.19c) 

(1) if for any c in ~ 1 ,c2J there is a S > 0 such that 

e-k-(c)xlu(i)(O,x) - ~~i) I > S (i = 1, ... ,m) for all x < 0 

and if qo > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed larger than c; 

(2) if for any c in [c 1 , c2J there is a S > 0 such that 

e-k-(c)xlu(i)(O,x) - ¢~i) l < B (i = l, ... ,m) for all x < 0 

and if q 0 > 0 is sufficiently small, then u(t,x) cannot travel with 

mean wavespeed smaller than c· , 

(3) if for any c in [cl ,c2J there is a S1, B2 > 0 such that 

sl < e-k-(c)xlu(i)(O,x)-~~i) I < B2 (i = 1, .. . , m) for all X < 0 

and if q 0 > 0 is suffld.ently small, then il(t,x) must travel with mean 

wavespeed c and have finite dispersion; and 

(4) if for any c in (cl,c2) 

lim e(-k-(c)+~)xlu(i)(O,x)-<j>~i)l 
X -r- oo 

0 (i 

lim e-(k-(c)t-)J)xlu(i)(O,x)-<j>~i)l = + oo (i 
x+-oo 

l, ... ,m) for all ~ > 0 

l, .. . ,m) for all 1J > 0 
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and if qo > 0 is sufficiently small, then u(t,x) travels with mean 

wavespeed c but may not have finite dispersion. 

Theorem 7.6 (N ~ N): Asstme that hypotheses H2, H3, and H4 are satisfied . 

Suppose there is a c 1 and a c 2 ..::_ c 1 such that for each c in [c 1 ,c2] 

there exists a bounded strictly monotonic solution u(t,x) - ~(x-ct) of 

(i) - f(i) ( (i.) (i) - ) i 
ut - uxx ,ux ,u 1, . . . ,m (7 .1) 

Suppose also that for each c in (c l,czJ that ;j) (-oo,c) = cp that 

~ (+oo,c) and that ;J)(x,c) and 
a -

= cp+' ~ cp(x,c) are continuously differ-

entiable in c. Further, assume that ;p and ¢ + are both regular singu·-

lar points of order define k 
-

(c) 0 and k+ (c) < 0 one. Finally, > by 
- -(c) x (c)+O)x) ;j)(x , c) cp a(c)e 

k (k 
+ + o(e as X -+ - 00 

+ + 
;J)(x,c) cp+ + b(c)ek ( c )x + o(e(k (c)-o)x) as X -+ + 00 

(where a (c) * 0, b (c) 'I' 0 , and 0 is p o sitive) and assume that -k (c) 

and k+(c) i · are cant nuous 1.n c . 

If ;j) (x,c) satisfies the above assumptions, then whenever u(t,x) 

i s any solut ion of system (7.1) whose initial condition i1(0,x) is in H2 
X 

and satisfies 

min {cp (i), cp (i) } < u(i)(O,x) < max{cp (i),cp(j) } i 
- + - + 

1, ... ,rn for all x 

then we can conclude the followin g : 

(1) if for any c in [c 1 , c zl there is a (3 1 ' Sz > 0 suc h that 
-

131 < e 
- k (c ) x l u(i)(O,x)-cp~i)l (i. 1' ... ,IT\) for a ll X < 0 and 

13z > e-k+(c)x l u(i)(O,x)-cp~i) I (i 1, .. . , m) for all X > 0 

then u(t , x ) cannot travel with mea n wave speed l arger t han c ; 

(2) if fo r any c in (q ,c2) there is a 131, 13 z > 0 such that 
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-

(:31 > e-k (c)xlu (i)(O, x)-$(1) I (i 1 , ... , m) for all X < 0 and 
+ -

(:32 < e - k (c)xlu ( i)(O,x)-~~i)l (i 1, ... , rn) for all X > 0 

then u( t ,x) cannot travel with mean wavespeed smaller than c · , 

that 
-

(:31 < 
- k e (c) x l u(i)(O,x)-4~i)l < (:32 i 1, . . . , m for all X < 0 and 

(:33 < e-k+(c)x l u ( i) ( O , x) -~~i)l < (:3 1+ i 1 , . .. , m f o r all X > 0 

then u( t ,x) travels with mean wavespeed c and has fini t e dispersion; 

and 

(4) if for any c in (c 1 'c2) 

lim e- (k-(c) -~) xlu(i)(O,x)-~~i) I 0 
x-r-oo 

lim e-(k-(c)+~)xlu(i)(O,x)-~~i) I + 00 , 

x-r-oo 
+ 

lim e-(k (c) -~)xlu(i)(O,x)-~~i) I -1- oo , 

x-r+oo 

lim e-(k+ (c)+~)x l u(i)(O,x)-~~i)l 0 
x-r+oo 

for all i 1 , .. . ,rn and for a l l ~ > 0, then u(t,x) travels with mean 

wavespeed c (but may not have f_j~.n~i~t~e~d~1~s~,p~e~r~s~1~· o_n~)~· -------------------------

Basica l l y , theorems 7 . 6 (S -r S), (N -r S), and (N -r N) show 

that for large c l a sses of initial conditions ii(O,x), the mean wavespeed 

of the solution u(t,x) of system (7.1) d e pends ent i rely on 

-
(1) the asymptotic decay rate of u(O,x) to ~ as x -r - oo if 

~ is not a first order saddle point, and 

(2) the asymptotic decay rate of u(O ,x ) to as if 

~+ is not a first order saddle point. 
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Theorems 7.6 (S + S), (N + S), and (N + N) are very similar to 

theorems 5.2 (S + S), (N + S), and (N + N) of Chapter V. The major dif-

ferences are that 

(1) in theorems (7. 6) conclusfons are drawn about the mean wavespeeds 

of vector solutions u(t,x) of system (7.1), \vhereas in theorems (5.2) the 

conclusions are drawn for solutions of equation (5.1); 

(2) for theorems 7.6 (N + S) and (N + N) we needed to assume the 

existence of all the monotonic traveling waves we used, whereas in theorems 

5.2 (N + S) and (N + N) we needed only to assume the existence of a single 

monotonic traveling wave; and 

(3) the restrictions on the ird.ti.al conditions "il(O,x) in theorems 

(7.6) are very similar to those on u(O,x) in theorems (5.2) except that 

for theorem (7. 6) the restrictions are for u (i) (O,x) for all i. 

This completes our presentation of the mean wavespeed/initial 

condition results for system (7.1). We complete this chapter in the next 

section with some general remarks. 

7.4 Some general remarks. We have found in this chapter that the stabili-

ty results for monotonic traveling waves can be extended to some systems 

of equations of the form 

(i)- f(i)( (i) (i) - ) 
ut - uxx ,ux ,u i 1, ... ,m (7 . 1) 

We also found that the mean wavespeed/initial condition results are readi-

ly extended to system (7.1). However, we have been unable to extend the 

instability results for non-monotonic waves to system (7 .1). 

In this chapter ,.,e have developed only the most readily ob-

tainable results about system (7 .1) . Our treatment of system (7 .1) is cor-

respondingly incomplete. Many extensions of the general theory should be 
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possible. Of these, extending the instability results for non-monotonic 

traveling waves and steady states to solutions of system (7 . 1) is perhaps 

the most interesting. 

The class of systems of equations of the form (7.1) (which satisfy 

hypotheses H3) is quite limited. This suggests that a better approach may 

be to treat each speci f ic physical example separa tely . Instead o f trying 

to use our methods to extend the general theory f o r systems like (7.1), 

perhaps we should try to utilize these methods to obtain spec i f ic results 

f or each specific example that arises. 

This completes our treatme nt of s yst em (7.1). In the n ext cha p

ter, Chapter VIII, we sha ll utilize the results in Chapte rs IV, V, VI, and 

VI I on s evera l example s. 
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Chapter VIII 

EXAMPLES 

In this chapter we apply the results of the preceding chapters 

on some illustrative examples . We begin by treating Burger's equation. 

In section (8.2) we examine Fischer's equation. An artificial (but illus-

trative) example is considered in section (8 . 3). We treat an equation 

containing integrals in section (8.4). Finally, our last example will be 

a reaction diffusion system, which wi.ll be e x amined in section (8. 5). We 

now begin with Burger's equation. 

8.1 Burger's equation. We have chosen to examine Burger's equation, 

u = u - uu 
t XX X 

(8. 1) 

because it is the simplest non-trivial example of equations 

u = f (u , u , u) 
t XX X 

(8. 2) 

which have f(O,O,u) = 0 for all u. This type of equation does not have 

a discrete set of stable (saddle point) and unstable (node, spiral point, 

and center) consta nt steady states. Instead, this type of equation has a 

continuum of neutrally stable c onstant steady states. Since the stability 

theorems (in Chapter IV) f o r monotonic waves u(t,x) = ~(x-ct) do not 

distinguish between ~(± oo) being unstable and neutrally stable constant 

steady states, we do not expect the stability theorems to be sharp in this 

case. Thus, Burger's equa tion points out an impor t a nt limita tion of the 

stabi lity theorems for monotonic waves. 

In this section we first determine the monotonic trave ling wave 

soluti.ons of Burger's equation. Next, we apply the stability theorems 

d i rectly to t h e se solutions. We then exhibit some new upper and lower 
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functions. By utilizing these upper and lower functions we find sharp 

stability results. 

Burger's equation is also interesting because it possesses im-

portant unsteady soluti.ons, such as the "single hump" soluti.ons. As the 

last topic in this section, we use the maximum principle to show that 

these "single hump" solutions have at least a lind ted stability. 

We begin by finding the bounded solutions of the form u(t,x) 

<j>(x-ct). These solutions must satisfy 

<PI V 

v' v(<j>-c) 

The phase plane representation of these solutions is illustrated in 

Figure (1) below, and the bounded solutions are given by 

u(t,x,c,a) = <j>(x-ct,c,a) where <j>(x,c,a) :: c - a tanh ~ax . 

Neither <j>(-oo,c,a) nor <j>(+oo,c,a) is a first order saddle point, and so 

theorem (4.5) implies only that 

u(t,x,c,a) :: <j>(x-ct,c,a) 

is Cw-stable with w 1 + ea(x-ct) + e-a(x-ct). In other words, in the 

coordinate system which moves with speed c, theorem (4.5) shows that the 

traveling wave <j>(x-ct,c,a) is stable to small initial perturbations which 

+lalx decay asymptotically no slower than e as x + - oo and no slower 

than e-la!x as x + + oo 

Since theorem (4.5) does not distinguish between <P(±."",c,a) be-

ing unstable and neutrally stable constant steady states, we should be able 

to do better. Indeed, suppose that u(t,x,c,a) = <j>(x-c:t,c,a) is any of 

the above monotonic traveling wave solutions . Then for any e: > 0 suffi-

ciently small and any o in (0,1.), 
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v=O 

<P = c 

Figure (1): Phase plane representation of the solutions 11(t,x) 
of Burger's equation. 

u(t,x,c,a,E,o) - <j>(x-ct+h(t)) + n(t) sech E(x-ct+h(t)) and 

¢(x-ct) 

(8.3a) 

~(t,x,c,a,E,o) - ¢(x-ct-h(t)) n(t) sech E(x-ct-h(t)), where (8.3b) 

-E 3 t -E 3 t 
n(t) = oE4 e h(t) =- 26£(1-e ) (8.3c) 

are upper and lower functions (respectively) of Burger's equation. The 

maximum principle implies that if u(t,x) is any solution of Burger's 

equation whose initial condition u(O,x) satisfies 

~(O,x+h 0 ,c,a,c,o) ~ u(O,x) ~ u(O,x+h1 ,c,a,c,o) for all x , 

then u(t,x) must also satisfy 

~(t,x+ho,c,a,E,o) < u(t,x) ~ u(t,x+hl,c,a,E,O) for all x, all t > 0 . 

(8.4) 
From the expressions for u and u in equations (8.3), we see that rela-

tion (8.4) implies that 

u(t,x,c,a) = <j>(x-ct,c,a) 

is 
w +c(x-ct) -E(x-ct) 

C -stable with w = 1 + e + e for all E > 0 suff i-

ciently small. That is, in the coordinate system which moves with speed 
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c, the traveling wave ~(x-ct,c, a) is stable to small initial perturba

+Ex e as x + - oo tions which decay asymptotically no slower than and 

for any E > 0. This stability result is much strong-

er than the one obtained from theorem (4.5) since E > 0 can be as small 

as we wish. 

Since Burger's equation is of the form 

ut = f(u ,u ,u) with f(O,O,u) = 0 for all u , 
XX X 

the stability theorems of Chapter IV yield rather poor results. However, 

by using the techniques of Chapter IV we found good (in fact sharp) sta-

bility results. One expects that any other specific equation of the form 

f(u ,u ,u) with f(O,O,u) = 0 for all u 
XX X 

can be treated in the same manner. Namely, for any specific monotonic 

wave solution of any specific equation, one should be able to obtaln sharp 

stability results by constructing appropriate upper and lower fun ctions . 

Besides the monotonic steadily progressing and steady solutions 

~(x-ct,c,a), Burger's equation also possesses important unsteady solutions. 

One class of these solutions are the triangular "single hump" waves. 

These waves are given by 

u(t,x,c,a,t 0 ) 

where 

c + --~1-- R(- x-·_-c_t_ 

lt+t 0 21t+t 0 

2 
ae- z;; 

R ( z;; , a) - ---=-=-----.,-
/;+aJ;,oo e -s ds 

a) 

and where t 0 > 0. (See e .g. reference ITo] ) . It is easy to use the 

maximum principle to show that these single hump waves have at least a 

limited stability. We note that R (z;;,a) > 0 for all a and z;; . 
a 

u(t,x,c,a- E, to) < u(t,x, c ,a,t0 ) < u(t,x,c,a+E,t o) for all E > 0 

Hence 
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Thus whenever u(t,x) is any solution of Burger's equation whose initial 

conditions u(O,x) satisfy 

u(O ,x ,c,a-c, to) ~ u(O,x) < u(O,x,c,a+c,to) for all x 

then u(t,x) must also satisfy 

u(t,x,c,a-c, t 0 ) ~ u(t , x) ~ u(t,x,c,a+c,t 0 ) for all x and all t > 0 . 

(8.5) 
This is illustrated in Figure (2) below, where the implication of relation 

(8.5) is that u(t,x) must remain in the shaded region for all t > 0. 

Clearly this implies that single hump waves have at least a limited sta-

bility 

u(t,x) 

u=c 

u=O ----~------------------------------------------------------------~ 
X 

Figure (2): Rela tion (8.5) implies that u(t,x) must remain in the shaded 
region for all t > 0. 

This c onc ludes our brief look at Burger's equation. Briefly, we 

found that the stability theorems of Chapter IV yield rather poor stability 

results for the monotonic wave solutions. However, by utilizing some 
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upper and lower functions we were able to show that all bounded steadily 

progressing and steady solutions are stable to all small smooth initial 

perturbations which decay asymptotica]ly no slower than 
E:X 

e as 

X + - oo and 
- E:X 

e as for some E: > 0. We also found that 

the "single hump" solutions have at least a limited stability. 

8.2 Fischer's equation. In this section we briefly treat Fischer's equa-

tion, 

u + u(l-u) 
XX 

(8. 6) 

For each wavespeed c we will find the bounded solutions u(t,x) = <P(x-ct) 

of equation (8.6) by examining the phase p l a n e of 

(8. 7) 

We will then apply the stability and instability results of Chapter IV . 

We will not appl y the mean wavespeed results of Chapter V since the appli-

cation is simple and the results are uninteresting. We now carry out this 

program. 

First suppose c < - 2 . Then <j> = 0, v = 0 is an unstab l e n ode 

and <P = 1, v = 0 is a saddle point. The phase plane of (8. 7 ) is roughly 

sketched in Figure (3) for c having any fixed value < - 2. As shown 

in the sketch, the only bounded traveling wave solutions u(t,x) = <P(x-ct,c) 

are 

(l) the constant traveling wave solution u(t,x) - <Po(x-ct,c) - 0, 

(2) the cons tant traveling wave solution u(t,x) - <j> 1 (x-ct,c) - 1' 

(3) the mono t onic traveling wave solut ion u(t,x) - <PN8 (x-ct,c) 

labeled by a (*) in Figure (3). 
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The constant traveling wave $o(x-ct,c) = 0 is a node, and hence it is 

¢w-unstable with w(x) = 1 + eKX + e-Kx for all K > 0 sufficiently 

small. (Recall that we always define stability of a traveing wave in 

terms of a coordinate system which travels at the same velocity as the 

\-lave). On the other hand, the constant traveling wave $ 1 (x-ct,c) = 1 

is a saddle point, and hence it is Cw-stable with w(x) = 1. Finally, 

the monotonic traveling wave u(t,x) = $N
8

(x-ct,c) decays at the usual 

rate to the node $ 0, v 0 as x -+ - co and goes to the saddle point 

$ = 1, v = 0 as x-+ + 00 • In particular, 

k-(c)x 
$N

8
(x,c) - a(c)e as x-+- co 

where a(c) is some positive constant and 

Thus, theorem (4.5) implies that u(t,x) - $N
8

(x-ct,c) is 
w . 

C -stable with 

-k-(c)x 
w(x) = 1 + e Moreover, since $ 0, v = 0 and $ = 1, v = 0 

are both first order singular points and since $(x,c) decays at the 

usual rate as x-+ - co, theorem 5.1 (N-+ S) shows that this stability 

result is sharp. Note that the stabi.lity of +Ns(x-ct,c) decreases as 

c increases, and in pa rticular that the monotonic traveling wave of speed 

c = - 2 is the least stable. 

We now consider - 2 < c < 0. At these wavespeeds c, the point 

$ = 0, v = 0 is an unstable spiral point and the point $ = 1, v = 0 is 

a saddle point. The phase plane of system (8.7) is sketched for these 

values of c in Figure (4). As shown in the sketch, the only bounded 

traveling wave solutions u(t, x ) = $(x-ct,c) are now 

(1) the constant traveling wave u(t,x) - $o(x-ct,c) - 0 

(2) the constant traveling wave u(t,x) - $ 1 (x-ct,c) - 1 a nd 
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v=O 

0 1 

Figure (3): Rough sketch of the phase plane of system (8. 7) for c.2_-2. 
Trajectory (*) represents the monotonic solution ~NS(x). 

(3) the non-monotonic traveling wave solution u(t,x) _ ~SpS(x-ct,c) 

labeled by a (*) in Figure (4). 

The constant traveling wave ~ 0 (x-ct,c) _ 0 is a spiral point, and so it 

is very unstable at these wavespeeds (see section (4.15)). The constant 

traveling wave ~l(}l:-ct,c) :: 1 is a saddle point, and so it is Cw-stable 

with w(x) :: 1. Finally, the traveling wave solution ~SpS(x-ct,c) goes 

to the spiral point ~ = 0, v = 0 as x + - oo and goes to the saddle 

point ~ = 1, v = 0 as x + + oo, Since ~SpS(x-ct,c) has an infinite 

number of relative extrema, theorem (4.6) shows that it is very unstable. 

Finally, we consider c = 0. At this wavespeed, the point 

~ = 0, v = 0 is a center and the point ~ = 1, v = 0 is a saddle point. 

The phase plane of system (8.7) is roughly sketched in F i gure (5) below 

for c = 0. As shown in the sketch, the only bounded steady state solutions 

u(t,x) - ~(x,O) are 
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L 
v=O 

0 l 

Figure (4): Rough sketch of the phase plane of system (8.7) for -2<c<O. 
Trajectory(*) represents the non-monotonic solution ~SpS(x). 

(l) the constant steady state u(t,x) - <Po(x,O) - 0 

(2) the constant steady state u(t,x) - h(x,O) - 1 

(3) the family of periodic steady state solutions u(t,x) 

<1> (x,O,a), and 
co 

(4) the non-monotonic steady state solution u(t,x) = ~ 88 (x,O). 

The constant steady states <l>o(x,O) and h(x,l) have exactly the same 

stability as when 

periodic solutions 

- 2 < c < 0. 

~ (x,O, a ), co 

Therefore, we turn our attention to the 

which are represented in the phase plane 

in Figure (5) by the set of closed orbits. All these solutions have an 

infinite number of relative extrema, and so they are all very unstable. 

Now consider the non-monotonic steady state solution u(t,x) = ~88 (x,O). 

This solut i on has exactly one relative extrema and has <!>
88

(-oo,O) 

¢
88

(+oo,O) = 1. Since ¢ = 1, v = 0 is a saddle point, and s inc e 
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cJ>ss(x,O) 1 X - - ae as X -+ - 00 

cJ>ss<x,O) 1 - be 
-x - as X -++ 00 

where a and b are some positive constants, part (2) of theorem (4.6) 

shows that is ~w-unstable with -x +x 
w(x) = 1 + e +e 

L 
cj> 

v=O 

0 1 

Figure (5): Rough ~ketch of the phase plane of system (8.7) at c=O. Tra
jector~ (*) represent the non-monotonic saddle point - saddle 
point solution cJ>

88
(x,O) . Trajectory (**) is a typical member 

of the family of periodic solutions cj> (x,O,a) represented by 
co the closed orbits in the phase plane. 

We will not consider the cases where c > 0. These cases can be 

reduced to the cases where c < 0 by utilizing the transformation 

X -+ - X. 

This completes our examination of Fischer's equation. In the 

nex t section we will examine an artificial (but illustrative ) example. 

8.3 An illustrative example . Inthis section we will examine the equation 
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ut = u + 4uu + ~·u(u-l)(u+1)(u-2)(u+2) 
XX X 

(8.8) 

This equation is interesting because it possesses nearly every possible 

type of traveling wave and steady state solution. We will find the bound-

ed solutions u(t,x) = ~(x-ct) of equation (8.8) by examining the phase 

plane of 

v 
X 

v 
(8.9) 

- 4¢v- ~ ¢(¢-1)(¢+1)(¢-2)(¢+2) - cv 

We will then apply the results of Chapter IV to determine the stability 

of these solutions. For brevity we will not do this for all ranges of 

wavespeeds c. Instead , we will look at the steady states (c = 0) and 

the traveling waves with wavespeed c in (0,8 - /48). We will also 

i gnore the relatively uninteresting constant solutions . We now do this. 

First suppose c = 0. Then ¢ 2 and ¢ = + 2 are an un-

stable and a stable node, ¢ 1 and ¢ + 1 are saddle points, and 

¢ = 0 i s a center. The phase plane of system (8.9) at c = 0 is sketched 

in Figure (6). As labeled in the sketch, there are eight different types 

of bounded non-constant steady state solutions. We now consider these 

cases separately . 

+ Case (1): The solution u(t,x) = ¢
55

(x,O) is a monotonic (increas-

+ + 
ing) steady state with ¢

55
(-oo,O) - 1 and ¢

55
(+oo,O) = + 1 . Since both 

¢ = - 1, v = 0 and ¢ + 1, v = 0 are saddle points, u(t,x) 

is cw-stable with w(x) - 1. 

Case (2): The solution u(t,x) = ¢~8 (x,O) is a monotonic (decreas

ing) steady state wi.th ¢~8 (-oo ,O) = + 1 and ¢;5 (+oo,O) =- 1. As above, 

u(t,x) = ¢;
5

cx,O) is cw-stable with w(x) = 1. 

Case (3): The solution u(t,x) ¢N
5

(x,O) is a monotonic steady 



v=
O

 

~
=
-
2
 

~
=
-
1
 

~
=
0
 

~
=
1
 

~
=
2
 

F
ig

u
re

 6
: 

P
ha

se
 p

la
n

e 
o

f 
sy

st
em

 
(8

.9
) 

a
t 

c=
O

. 
T

he
 n

o
n

-c
o

n
st

an
t 

bo
un

de
d 

so
lu

ti
o

n
s 

ar
e 

+
 

-
(1

) 
~S

S(
x,

O)
, 

(2
)a

~S
S(

x,
O)

, 
(3

) 
$N

S
(x

,O
),

 
(4

) 
~S
N(

x,
O)

, 
(5

) 
th

e 
fa

m
il

y
 

~N
N(
x,
O,

a)
, 

(6
) 

~N
N(

x,
O)

, 
(7

) 
th

e 
fa

m
il

y
 
~N

N(
x,

O,
a)

, 
an

d 
(8

) 
th

e 
fa

m
il

y 

~c
0(

x,
o,
a)

. 

L 
~ 

I l..o
.l .....
 

V
1 I 



-316-

state which decays to the node ¢ = - 2, v = 0 at the usual rate as 

X + 00 and which goes to the saddle point ¢ 1 , v = 0 as 

+ Since ¢NS~,O) 2 + a(O)e 
2x 

(where a(O) X + 00 - - as X +- 00 

u(t,x) ¢NS(x,O) is c\"-stable with w(x) = 1 + e 
- 2x = . 

Case(4) : The solution u(t,x) = ¢SN(x,O) is a monotonic steady 

state which goes to the saddle point ¢ = 1, v = 0 as x + - oo and 

which decays at the usual rate to the node ¢ = 2, v 0 as x + + oo . 

> 

Since -2x 
¢SN(x,O) - 2 - a(O)e as x + + oo (where a(O) > 0), u ( t, x) 

Case (5): The family u(t,x, a ) ¢NN(x,O, a ) a re all monotonic 

steady states which decay to the node ¢ = - 2, v 0 at the usual rate 

a s x + - oo and which decay to the node ¢ = 2, v 0 at the usual 

rate as x+ + 00 Thus, 

¢NN(x,O,ct) 2 
+2x 

and + a(O,ct)e as X + - 00 

¢NN(x,O,ct) 2 - b(O,cx)e 
-2x - as X + + 00 

where a(O,cx) and b(O,ct) are some pos itive constants . Therefore, 

0), 

u(t,x, ct) = ¢NN(x,O,ct) is Cw -stable with ( ) _ 1 + -2x + +2x w x = e e for all 

ct. 

Case (6): The solution 
ac 

u(t,x) = ¢NN(x,O) is a monotonic steady 

state \vhi ch decays to the node ¢ = - 2, v 0 at the a ccidental r ate as 

and which decays to the node ¢ + 2, v = 0 at the accidental 

rate as x + + oo . Thus, 

¢~~(x,O) - - 2 + a(O)e
6

x a s x + - oo and 

ac -6x 
¢NN(x,O) - + 2 - b(O)e as x + + oo 

where a(O) a nd b(O) are some positive constants. Therefore, u(t,x) 

is cw-stable with 
-6x +6x 

w(x) = 1 + e + e • 
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Case (7): The family u(t,x,a) ~NN(x,O,a) are all non-monotonic 

steady states ~vhich have two relative extrema and which go to the node 

2, v = 0 as x + - oo and go to the node ~ = 2, v = 0 as 

Thus, u(t,x,a) ~NN(x,O,a) are very unstable for all a . 

Case (8): The family u(t,x,a) = ~ (x,O,a) 
co 

are all periodic steady 

state solutions which are represented by the closed orbits around ~ = 0, 

v = 0. u(t,x,a) = ~ (x,O,a) 
co 

Since each steady state has an infinite 

number of relative extrema, it is very unstable . 

Note that the phase plane a t c = 0 is unusual in many res-

pects. The wavespeed c = 0 is 

(a) the unique wave speed a t which s + s waves exist, 

(b) the unique wave s peed at which the soluti on which decays to the 

node ~ = - 2, v = 0 at the accidental rate as x + - oo also decays t o 

the node ~ + 2, v = 0 at the accidental rate as x + + oo, and 

(c) the unique wavespeed at which the limiting " member" of the 

monotonic N + N type solutions are the N + S, S + S, and S + N mono-

tonic waves i.nstead · of being a N + S and a S + N wave. 

We now consider wavespeeds c in (0,8-/48) . As these speeds, 

~ = - 2, and ~ = + 2 are still an unstable and a stable node, ~ = - 1 

and ~ + 1 are still saddle points, but ~ = 0 is now a stable spiral 

point . The phase plane of system (8 . 9) at any of these wavespeeds looks 

like the phase plane sketched in Figure (7) below. As labeled i .n the 

sketch, we will consider ten different types of bounded non-constant travel-

ing wave solutions at each c. We now treat these cases separately. 

Case (1): The solution u(t,x,c) ~NS(x-ct,c) is a monotonic wave 

which decays to the node ~ = - 2, v = 0 at the usual rate as x -+ - oo 



-318-

and which goes to the saddle point <P 1, v = 0 as x ~ + oo 

correspondingly Cw-stable with w(x) _ 1 + e-k}(c)x 

k} (c) = + ~ [8-c-/ (c-8) 2-48] 

where 

It is 

(8.10) 

Case (2): The solution u(t,x,c) <P
8
N(x-ct,c) is a monotonic wave 

which decays tofue node <P = 2, v = 0 at the usual rate as x ~ + oo and 

which goes to the saddle point <P = 1, v = 0 as X -+ 00 Corresponding-
+ 

ly, it is Cw-stable with w(x) 1 + -kl(c)x where - e 

+ (8+c-v' (c+8) 2-48 J k1 (c) ~ . (8.11) 

Case (3): The solution u(t,x,c) = ~NS(x-ct,c) is a monotonic wave 

which decays to the node cp = - 2, v 0 at the usual rate as x ~ - oo 

and which goes to the saddle point <P 1, v = 0 as x ~ + oo Corres-

pondingly, it is Cw-stable with w(x) = 1 +e-k}(c)x where k~(c) is 

given in equation (8.10). 

Case (4): The family u(t,x,c,a) = <PNN(x-ct,c,a) are all monotonic 

waves which decay to the node cp = - 2, v = 0 at the usual rate as 

X ~ - 00 and which decay to the node cf> = 2, v = 0 at the usual rate as 

X ~ + oo. Correspondingly, they are cw-stable with w(x) 1 + e 
-k}(c)x 

-
+ 

-k1 (c)x 
k~(c) + are d e fined (8. 10) + e where and k 1 (c) in equations 

and (8. 11). 

Case (5): The solution u(t,x,c) 
ac 

<PNN(x-ct,c) is a monotonic wave 

which decays to the node cp = - 2, v = 0 at the acc idental rate as 

X ~ - oo and which decays to the node cp = 2, v = 0 at the usual rate 

as x ~ + oo . Correspondingly, it is 
+ 

+ e-kl(c) x where 

~ [ (8-c)+/(c-8) 2-48 ] (8.12) 

Case (6): The family u(t,x,c,a) ~NN(x-ct,c,a) are all non-mono-

tonic waves which have a single relative extrema, which go to the node 
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<P = - 2, v = 0 as x -+ - oo, and which go to the node <P = 2, v = 0 as 

x-+ + oo. This is the indeterminate case discussed in section (4.14). 

To determine whether these waves are Cw-stable or ~w-unstable (with 

-k-1 (c)x -k+l ( c )x 
w(x) :: 1 + e + e ) one must determine their intersection 

properties. 

Case (7): The family u(t,x,c,et) = ~NN(x-ct,c,et) are all non-mono

tonic waves which have two relative extrema, which go to the node 

<P 2, v = 0 as x-+ - oo, and which go to the node <P = 2, v = 0 as 

x -+ + oo. These are very unstable . 

Case (8): The solution u(t,x,c) <Pssp(x-ct,c) goes to the saddle 

and goes to the spiral point <P = 0, point <P = - 1, v = 0 as x-+ - oo 

v = 0 as x -+ + oo. This wave has an infinite number of relative extre-

rna and therefore is very unstable. 

Case (9): The solution u(t,x,c) = ~SSp(x-ct,c) goes to the saddle 

point <P = 1, v = 0 as x-+ - oo and goes to the spiral point <P = 0, 

v = 0 as x -+ + oo. It has an infinite number of relative extrema and 

is therefore very unstable. 

are all non-mono-Case (10): The family u(t,x,c,et) = ¢NSp(x-ct,c,et) 

tonic waves which go to the node ¢ = - 2, v = 0 as x-+ - oo and which 

go to the spiral point ¢ 0, v = 0 as x -+ + oo. They all have an in-

finite number of relative extrema and are therefore all very unstable . 

In summary, appltcations of the stabi;Lity/instability r esults 

of Chapter IV immediately determine the stability or instability of each 

traveltng wave and steady state solution, except the family of solutions 

u(t,x,c,et) = ~NN (x-ct, c , et ). These waves are part of the indeterminate 

case discussed in section (4.14). To determine the stability or instability 
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of these waves, one needs to numerically discover whether the stability 

criterion of section (4 . 14) is satisfied. 

The dependence of the N 7 S type monotonic wave u(t,x,c) 

~NS(x-ct,c) on c is interesting. By comparing the phase planes in 

Figure (6) (c 0) and Figure (7) (0 < c < 8 /48), one sees that as 

c 7 0 this N 7 S wave bifurcates into a S 7 S t ype wave and a N 7 S 

type wave. This bifurcation process is exactly as described in section 

(5.2) of Chapter V. 

This completes our treatment of equation (8.8). In the next 

section we will utilize the results of Chapter VI to ~xamine a specific 

equation which contains an integral. 

8.4 A delayed Fischer's equation. In this section we briefly examine 

the equation 

where 

ut = uxx + 

~ > 0, T/~ >> 1, and 

(8.13) 

Essentially 

this equation is a logistics equation with the growth term delayed and 

diffusion added. As such, it can provide a model of simple population 

processes. Note that this equation is not formally included in the class 

of equations treated in Chapter VI. 

integral J[T ds, and in Chapter VI 

0 lTJ 
Equation (8.13) has only the single 

we treated equations whi ch contained 

only double integrals dyds. This is not a difficulty since (as 
0 

noted in Chapter VI) all the results pertaining to equations containing 

double integrals remain valid for equations containing a single integral. 

He now examine the traveling wave and steady state solutions 

u(t,x) <j>(x- ct) of (8.13). These must solve 

LT 
-s/~ 

+ c<j> + ~ s e <j>(x+cs)ds 
X 0 

- <1>2 0 (8.14) 
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Clearly the singular points of equation (8.14) are ~ = 0 and ~ = 1. 

According to the definitions in Chapter VI, the point ~ = 0 is a node 

and the point ~ = 1 is a saddle point. Thus the only constant traveling 

waves are 

(1) u(t,x) = ~o(x-ct) = 0, which is 
w 
~ -unstable with 

w(x) = 1 + e-Kx + e+Kx for any K > 0 sufficiently small, and 

(2) u(t,x) = ~ 1 (x-ct) = 1, which is Cw-stable with w(x) = 1. 

Finding monotonic non-constant solutions u(t,x) = ~(x-ct) of 

equation (8.13) is difficult. However, as 6 + 0 equation (8.13) goes to 

Fischer's equation. One therefore expects tha t at any specific c with 

c < - 2 there is a monotonic N + S type solution u(t,x,c,6) _ 

~N8 (-oo,c,6) = 0, with ~N8 (+oo,c, 6) = 1, and con-

tinuous in 6, for all 6 > 0 suffici.ently small. Presumably one could 

use a contraction argument to prove the existence of these solutions. We 

will not do this. Instead we will assume that these solutions exist, that 

they decay to ~ 0 at the usual rate as x + - oo, and that they decay 

exponentially to ~ 1 as x + + oo These assumptions will allow us to 

apply our stability results. 

Assume that u(t,x,c, 6) = ~N8 (x-ct,c, 6) is a N + S type mono

tonic solution of (8.13) with the properties described above. From equa-

tion (8 . 14) we see that 

where 

k 1 (c 6) 
~NS(x,c,6) - a(c ,6)e ' as x 

is the smallest positive root of 

+ - 00 

(T -s/6 kcs 
k2 + ck + ~ • Jn e e ds 

0 
= 0 (8.15) 

and where a(c , 6 ) is a positive constant. From theorem (6.5) we can con-

e lude that u(t,x,c,6) = ~NS (x-ct,c, 6) is Cw-stable with 
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Moreover, if u(t,x,c, t. ) :: ¢N
8

(x-ct,c, t. ) is a 

solution of (8.1 4 ) then so is u(t,x,c,t.) :: ~SN(x-(-c)t,-c,t.), where the 

S + N type monotonic wave ¢
8

N is defined by 

From theorem (6.5) we conclude that u(t,x,c,t.) :: ¢
8
N(x-ct,c,t.) is Cw

stable with w(x) :: 1 + ekl(-c,t.)x. 

We now summarize this example. We found that the only singular 

points are ¢ = 0 and ¢ = 1. Correspondingly, the only constant s o lut i ons 

a re 

(1) u ( t, x) - ¢ 0 (x-ct) - 0 whi ch is ~w-unstable with w(x) -

1 + 
KX -Kx 

for 0 sufficiently and e + e any K > small, 

(2) u ( t, x) - rj> 1 (x-ct) - 1 which is Cw-stable with w(x) - 1. We 

assumed that for each c < - 2 there exists a bounded monotoni c N + S 

type solution u(t,x,c,t.) = ¢N8 (x-ct,c,~) for all t. > 0 sufficiently 

small. We also assumed that these solutions decay to ¢ = 0 like 

Then we f ound th a t 

(3) the N + S wave u(t,x,c,t.) :: ¢N8 (x-ct,c,~) is 
w 

C -stable with 

w(x) :: 1 + e-kl(c,~)x for c < - 2 , a nd that 

( 4 ) the S + N wave u(t,x,c,~) :: ¢N
8

(-x+c t,-c ,t.) is Cw-s t able 

with w(x ) = 1 + ek 1 (-c,~)x for c > 2 . 

This comple tes our brie f l ook a t equa t ion (8.13). In the n ext 

section we illus t rate the results o f Chapter VI I by examining a s y stem of 

equa tions which a rise s in c h emic al reac tion theo ry. 

8.5 A reac tion-d i f f usion sys tem. I n t his s ec tion we b r iefly analyze the 

system o f e qua t ions 
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R R - R<P2 + R - R3 
t XX X (8 .16) 

R<Pt R<j> + 2R <I> 
XX X X 

These equations can also be written as 

u u + (l-u2-v2)u u R cos(<j>-6) 
t XX 

(8.17) 

vt v + (l-u2-v2 )v v R sin(<j>-6) 
XX 

where 6 is any constant. System (8.16) arises as the modulation equations 

of some reaction diffusion systems which are near bifurcation points [11]. 

System (8.17) provides an interesting example because it does not satisfy 

the prerequisites of the "general" theory of Chapter VII. Even though the 

results of Chapter VII do not apply, we will be able to find the stability 

or instability of all traveling wave solutions by utilizing the techniques 

developed in Chapters IV and VII. 

To begin, let us note that system (8.17) is parabolic (satisfies 

hypothesis H3) only when UV < 0. Thus, whenever UV > 0 we will be un-

able to use the maximum princ iple. For each wavespeed c we will find the 

bounded solutions U = U(x-ct), V = V(x-ct) of system (8.17). We will 

then find their stability or instability. 

First suppose that c < - 2. To find the solutions U(x-ct), 

V(x-ct) of system (8.17), we will solve for the solutions R(x-ct), 

<j> (x-ct) of system (8.16). Therefore, consider 

R" - Rep I 2 + cR ' + R- R3 0 (8.18a) 

R<j> II + 2R I <I> 1
. + cR<j> 1 0 (8.18b) 

From equation (8.18b) we find that if R is bounded then <j> 1 must either 

be identically zero or must grow exponentially as x ~ + oo . Clearly the 

a ccep table solutions are only those with cp 1 
:: 0. Equation (8.18a) now 

reduces to 
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R' S 
(8.19) 

s ' - cS 

The phase plane of (8. 19) is sketched in Figure ( 8) below for c < - 2. 

The bounded solut ions are 

(1) the cons t ant traveling wave solution R(t, x ) - R0 ( x-ct,c) - 0, 

(2) the cons t ant t raveling wave solution R(t , x ) - R1 (x- ct,c) - 1 . 

and 

(3) the monotonic travelin g wave solution R(t , x) ~8 (x-ct, c ) 

l a bel ed by a * i n Figure (8). 

R 

Figur e (8): Phase plane representation of system (8 . 19) for c~-2 . Tra
jectory (*) r e p r esents the monotonic N+ S solution RNS' 

With <I> - constant , system (8 .16) reduc es to the single equa-

tion 

R = R + R - R3 (8 . 20) 
t XX 

Clearly , sin c e the c ons t a nt traveling wav e R(t, x ) Ro(x-c t, c ) = 0 is a 
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~w-unstable solution of (8.20) with KX -KX 
w(x) = 1 + e + e (for any 

K > 0 sufficiently small), R(t,x) - R0 (x-ct,c) = 0, ~=constant is a 

~w-unstable solution of system (8.16) and U(t,x) = R0 (x-ct,c) cos ~ - 0, 

V(t,x) = Ro(x-ct,c) sin ¢ = 0 is a 
w 

~ -unstable solution of system 

(8.17) with the same w. 

We now consider the monotonic N + S type traveling wave solu-

tion R(t,x) = ~8 (x-ct,c). Recall that at each c lemma (4.3) constructs 

upper functions R(t,x) R(t,x-ct,c,a) and lower functions R(t,x) = 

~(t,x-ct,c,a) for all 0 < a ~ a 0 (c) for some a 0 (c) > 0. These func-

tions therefore satisfy 

R 
t 

- R 
XX (8.21) 

R 
-t 

- R 
-xx 

- R + R3 < 0 

We now examine the solutions ~S and the implications of the upper and 

lower functions in terms of U and V. 

In terms of U and V, the N + S type monotonic solution is 

U(t,x) uN
8

(x-ct,c) _ ~8 (x-ct,c) cos(<jl-6) 

V(t,x) - vN
8

(x-ct,c) _ ~8 (x-ct,c) sin(¢-6) 

where ¢ and 6 are arbitrary constants. Let us first choose <5 ¢ + 

n/4. Then the N + S type solutions are 

U(t,x) uN8 (x-ct,c) 

V(t,x) = vN5 (x-ct,c) 

l___ ~ (x-ct,c) 
12 s 

l___ ~ (x-ct, c) 
12 s 

From the formulas in lemma (4.3) and a short calculation we learn that 

- 1 -
U(t,x,c,a) = -- R(t,x-ct,c,a) 

12 
1 

.Y_(t,x,c,a) _ 
12 

B:Ct ,x-ct, c ,a) 

1 
, V(t,x,c,a) = --- R(t,x-ct,c,a) 

/2-
and 

1 -
-- R(t,x-ct,c,a) 
12 

.Y_(t,x,c,a) _ 
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are upper and lower functions (respectively) of system (8.16) for all 

0 < a~ ao(c) for some ao(c) > 0. Moreover, 

U(t,x,c,a) > ~(t,x,c,a) > 0 and 0 > V(t,x,c,a) > V(t,x,c,a) 

and so we can apply the maximum principle. The maximum principle immedi-

ately implies that if U(t,x), V(t,x) is any solution of system (8.16) 

whose initial condition U(O,x), V(O,x) is smooth and satisfies 

1 1 
-- R(O,x,c, a ) < U(O,x) < -- R(O,x,c,a) 
12- -12 

1 1 
- -- R(O,x,c, a ) ~ V(O,x) < - -- R(O,x,c, a ) 

12 12-

for all x and some a in (O,a(c)), then U(t,x), V(t,x) must satisfy 

1 1 - . 
-- R(t,x-ct,c,a) < U(t,x) <-- R(t,x-ct,c,a) 
12- -12 

(8.21) 
1 1 

--- R(t,x-ct,c,a) ~ V(t,x) <-- R(t,x-ct,c,a) 
12 -/2 

for all x and all t > 0. From the explicit expressions for R and R 

in lemma (4.3) and from the fact that 

( ) k1 (c)x 
~S - a c e as x + - oo 

(where a(c) 
I 

is some positive constant and 

\ve see that (8.21) implies that the solution 

1 
U(t ,x) = -- R_ (x-c t,c) /"2 ·Ns 

1 
- -- ~8 (x-ct,c) 12 

V(t,x) 

(8.22) 

(8. 23) 

is Cw bl · h w(x ) = 1 + e-kl(c)x. -sta e w1.t - Moreover , system (8.16) is in-

variant to the a ddition of a constant to ¢ and equivalently, system (8.17) 

is invariant under transformation 
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(

coso ' 

sino ' 

- sino ') 

coso' 

Therefore, each t ravelin g wave solu t ion 

U ( t, x) uN8 (t , x,c , o) - RN8 (x - ct,c) cos 

V( t ,x) vN8 (t,x,c,o) - ~8 (x-ct) sin o 

is also cw- stabl e with w(x) :: 1 + - k l ( c)x 
e . 

0 

There remains only one further class of so l utions t o examine. 

These are t he constant traveling wave solutions 

U( t, x) u (t,x , c , o) - cos o 

V (t ,x) V (t,x , c,o) - sin o . 

By arguments similar t o those used a bove, one can show that these solution s 

are Cw-stable with w(x) = 1 . 

We now suppose that - 2 < c < 0 . As i n t he preced ing case, all 

acceptable solut ions R = R (x-ct~ ~ ~(x-ct) must have ~ · :: 0, and 

so R = R(x- c t ) mus t s atisfy 

as in the 

sketched 

(1) 

(2) 

and 

R 
X 

s 

S - cS - R + R3 
X 

prece d i ng case . The phase plane of 

in Figure (9) below . We see tha t the 

the con s t ant traveling wave solution 

t he constant traveling wave solut ion 

(8.19) 

(8 .1 9) for - 2 < c < 0 is 

bounded solutions are 

R(t,x) - R0 (x-ct,c) - 0, 

R(t,x) - R1 (x- ct , c) - 1' 

(3) the non-monotonic t raveling wave solution R(t,x) - RSpS(x-ct,c) 

labeled by a * in Figure (9). 

With ~ :: c onstant, system (8 . 16) reduces to the single equation 

R + R - R 3 
XX 

(8 . 20) 
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L 

R=O R=1 

Figure (9): The phase plane of system (8.19) for -2<c<O. Trajectory(*) 
represents the non-monotonic solution RSpS 

R 

Consider the solution R(t,x) = RSpS(x-ct,c), ~(t,x) = ~ 0 =a constant of 

system (8.16). Let us examine the effect of initially perturbing R only. 

We see that if we initially perturb R only then ~ - ~ 0 for all x and 

all t ~ 0, and so R will be governed by equation (8.20). However, 

theorem (4.6) shows ' that RSpS(x-ct,c) is a very unstable solution of 

(8.20). Thus, the solution 

R(t,x) = RSpS(x-ct,c) ~(t,x) = ~ 0 

of system (8.16) is very unstable. Correspondingly, the solution 

U(t,x) = RSpS(x-ct,c) cos ~ 0 V(t,x) = RSpS(x-ct,c) sin ~0 

of system (8.17) is also very unstable. 

By a similar argument, one can show that the solution 

R(t,x) = R0 (x-ct,c) = 0 Ht,x) = ~ 0 

is a very unsta ble solution of system (8.16), and that the solution 

U(t,x) = Uo(x-ct,c) = 0 V(t,x) = v0 (x-ct,c) = 0 
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is a very unstable solution of system (8.17). 

Finally, as in the c < - 2 case, the solution 

R(t,x) = Rl(x-ct,c) - 1 <j>(t,x) = <Po 

of system (8.16) and the solution 

U(t,x) = U1 (x-ct,c) =cos <l>u V(t,x) = V1 (x-ct,c) =sin <Po 

of system (8 .17) are bo th Cw -stable with w(x) = 1. This completes the 

stability picture for the - 2 < c < 0 case. 

The next wavespeed to examine is c = 0. However, all non-

trivial steady state solutions U(t,x) _ U(x), V(t,x) = V(x) either 

have UV > 0 for some x or have UV - 0 for all x. The system 

(8.17) is not parabolic when UV > 0 for any x, and so we cannot utilize 

the maximum principle at c = 0. Therefore the stability of the steady 

state solutions of system (8.16) and (8.17) remains unresolved. 

Finally, note that we do not need to consider solutions 

U(x-ct,c), V(x-ct,c) with c > 0. These solutions can be converted into 

solutions traveling with wavespeed -c by utili z ing the transformation 

X -+ - X. 

We now summarize this example. We considered the system of 

equations 

(8.17) 

We examined the stability of the traveling wave solutions U(x-ct,c), 

V(x-ct,c) for c < 0. When c < - 2 we found that 

(1) the solution U(t,x) U0 (x-ct,c) = 0, V(t,x) V0 (x-ct,c) = 0 

is 
W KX - KX 
~ -unstable with w(x) = 1 + e + e for all K > 0 sufficiently 

small, 
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(2) the solution U(t,x) = Ul(x-ct,c,~o) - cos ~0• V(t,x) = 

Vl(x-ct,c,¢o) - sin ~o (where ¢ 0 is any constant) is Cw-stable with 

w(x) = 1, and 

(3) the solution U(t,x) = ~8 (x-ct,c)cos ¢0 , V(t,x) = ~8 (x-ct,c) 

sin ¢0 (where cf>o is any constant and ~8 (x-ct, c ) is the solution of 

(8 . 19) which goes to the node R = 0 as x +- oo and goes to the saddle 

po i nt R = 1 as x + + oo) is Cw-stable with w(x) ::: 1 + e-kl(c)x 

where k 1 (c) = ~ (-c+rcz-:4 J . 

Hhen - 2 < c < 0 we found that 

(1) the solution U(t,x) = U0 (x-ct,c) - 0, V(t,x) Vo(x-ct,c) - 0 

is very unstable, 

(2) the solution U(t,x) 

v1 (x-ct,c,¢ 0) = sin ¢0 

U 1 (x-ct,c,~o) - cos ~ 0 , V(t,x) 

(where <Po is any constant) is Cw-stable with w(x) = 1, and 

(3) the solution U(t,x) = RSpS(x-ct,c) cos cp 0 , V(t,x) = RSpS(x-ct,c) 

sin ~ 0 (where <Po is any constant and RSpS(x-ct,c) is the solution of 

(8.19) which goes to the spiral point R = 0 as x +- oo and goes to 

the saddle point R = 1 as x + + oo ) is very unstable. 

For c = 0 we were not able to resolve the stability or instability of 

the solutions U(t,x) :: U(x), V(t, x ) _ V(x). Finally, solutions U(t,x) -

U(x-ct), V(t,x) :: V(x-ct) with c > 0 c a n be reduced to solutions with 

c < 0 by employing the transforma tion x + - x. 

We conclude that even though s y stem (8.17) does not satisfy the 

prerequi sites of the genera l theory developed in Chapter VII, the tech~ 

n i que s o f the p r eceding chapt ers are s tiJ.l useful for de t e rmi ning the s t ab i l -

ity · and instabil i t y of trave l i ng wave s . 
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This completes our analysis of this example. We conclude this 

chapter with some general remarks in the next section. 

8.6 Some general remarks. In this chapter we applied the techniques and 

results of preceding chapters to several examples. We first looked at 

Burger's equation 

u - uu 
XX X 

This equation is representative of the class of equations ut 

(8.1) 

f(u ,u ,u) 
XX X 

where f(O,O,u) = 0, and the weakness of the stability results of theorem 

(4.5) points out a shortcoming of our stability theorems for this class 

of equations. However, since we were able to obtain sharp stability re-

sults by using the techniques of Chapter IV, the weakness is only in the 

theorems and not in the approach we use. We also used our techniques to 

show that the "single hump" solutions of Burger's equation also have at 

least a limited stability. Thus Burger's equation illustrates how our 

techniques can be used to find the stability of some unsteady solutions. 

We next examined Fischer's equation, 

u + u (1-u) 
XX 

(8.6) 

For this equation the theorems in Chapter IV immediately yielded sharp 

stability and instability results for every bounded traveling wave and 

steady state. 

In section (8.3) we examined the equation 

u + 4uu + !.2·u(u-l) (u+l) (u-2) (u+2) 
XX X 

(8. 8) 

Again, the results of Chapter IV immediately yielded sharp stability and 

instability results for almost every bounded traveling wave and steady 

state we examined. However, we found some non-monotonic N 7 N type solu-

tions which each have a single relative extrema for this equation. These 
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solut ions a re par t of the indeterminate case treated in section (4 . 14) . 

To find their stability, o n e must numerically determine whether the sta-

b i lity criterion of section ( 4 . 14) is satisfied . 

I n sect ion (8 . 4) we examined a delayed Fischer ' s equation, 

u 
XX 

+ ll ·i T se- s/ ~ u(t- s ,x)ds - u 2 (8 . 13) 
0 

Once monotoni c (an d con s t ant) travelin g wave and steady stat e solutions 

were found, i t was easy t o deter mine their stability by applying the re-

sults of Chapter VI. However, finding traveling wave and s t eady sta t e 

s o l u tions of equations contain ing integrals is generally difficult. 

Our last example was the r eac t ion diffus i on system 

R R - R<j> 2 + R R3 
t XX X 

(8 .16) 

R<j>t R<j>xx + 2R <j> 
X X 

which can also be writ t en a s 

u u + o -u2 - v 2 )u u R cos 4> t XX 
(8 . 17) 

vt v + o -u2 -v2 )v v R s i n <P XX 

Ev en thou gh this system does not satisfy t he prerequisites of the general 

theory developed in Chapter VII, we wer e able to utilize the techniques 

of p r e c eding chapters t o determine the stability or insta bility of travel-

i ng wave solutions with c * 0 . Thu s, this example illustrates that the 

tec hniques we use are more power ful than the theorems we have developed. 

This conclu des this cha pter of examples. We complete our p r e -

s entation ].n the next chapter, where we discuss t he material in the pre-

ceding chapters in gener al terms . 
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Chapter IX 

CONCLUSIONS, CONJECTURES , AND CRITICAL REMARKS 

In this final short chapter we will discuss the material contain-

ed in the previous chapters in b road terms . In section (9.1) we discuss 

the strengths of the results, and in section ( 9.2) we discuss some of the 

weaknesses. Finally, in the last sect ion, section (9.3), we suggest 

some interesting areas for future research. 

9.1 Strengths. The main strengths of the results in preceding chapters 

are the largeness of the class of physical problems that can be treated, 

the ease of applying almost all the results, and the simplicity of the 

results. We now will briefly discuss each of these features separately . 

The material in Chapter IV treats equations of the form 

f(u ,u ,u). Thus , the material in Chapter IV can be directly used 
XX X 

to treat physical models which contain linear or nonlinear diffusion, 

transport, and source terms as shown below: 

u (a(u)u ) + c(u)u + h(u) (9. 1) 
t X X X 

growth/ linear or transport source 
decay nonlinear term term 

diffusion 

With the material in Chapter VI, we can treat physical models governed by 

equations like (9 . 1) with integral terms j[T ~ G(s,y,u(t- s,x-y))dyds 
0 IYI <Y . 

included . However, these integral terms must be required to contribute 

positively to when u is increased . Finally, with the material in 

Chapter VII we can treat physical models governed by a special type of 

systems of equations. By using the r e sults of Chapters IV, V, VI, and 

VII, one can treat ma ny physically interesting equations . 
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As demonstrated in Chapter VIII, almost all the results obtained 

in the preceding chapters are easy to apply. If one assumes the appro

priate hypotheses, then the stability, instability, and mean wavespeed re

sults depend only on easily determined quantities. The exception is sta

bility in the indeterminate case treated in section (4.14), which can 

generally only be determined numerically. 

Finally, most of the results contained in the preceding chapters 

are very simple. The stability or instability of any wave depends only on 

a few fundamental properties of the wave, such as the number of relative 

extrema and the nature of the wave at x = + oo, Thus, the results demon

strate the generic nature of the stability of wave solutions to parabolic 

equations. 

This completes our look at the strengths of the results. In the 

next section we briefly examine the weaknesses of the results. 

9.2 Weaknesses. In this section we briefly examine the weaknesses of the 

results contained in preceding chapters. Basically these weaknesses are the 

unverifiable existence assumptions, the modification of the equations, 

and the incompleteness of some of the results. We will now briefly dis

cuss each of these drawbacks. 

The unverifiable nature of the existence assumptions H4 and H5 

is a mathe matical weakness of the results in earlier chapters. One can 

prove that solutions to the initial value problem for nonlinear parabolic 

equations exist in simple cases. However, for most equations one can only 

assume that solutions to t .he tni tial value problem exist. 

The second weakness of the results contained in previous chapters 
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is that they pertain to the modified equation; not to the original. How-

ever, this is not a serious weakness. One can view the results of previous 

chapters as determining the behavior of u(t,x) for all t > 0 for dif-

ferent classes of initial conditions u(O,x), and then interpreting 

this behavior in terms of stability and mean wavespeeds. Any solution 

u(t,x) of the modified equation which has luj, lux !, and luxxl all 

smaller than M (where M is the arbitrarily large modification constant) 

is also the solution of the original equation. Thus we see that any solu-

tion of the original equation which has lui, lu I, and lu I bounded will 
X XX 

behave exactly as determined by our results about the modified equations. 

Moreover, for all t > 0 until lui, lu I, or lu I becomes unbounded, 
X XX 

any solution of the original equation must behave as predicted by the re-

sults in preceding chapters. 

The other weaknesses of the results come from their incompleteness 

in some cases. We now di.scuss some of the more important of these weak-

nesses . First, the stability results for monotonic waves ~(x-ct) of 

Chapter IV do not distinguish between ~(-oo) or ~(+oo) being a higher 

order saddle point (which is a weakly stable cons t ant steady state), be-

ing a singular point ~0 with f(0,0,~ 0+n) = 0 for all n near 0 

(which is a neutrally stable constant steady state), and being a node 

(which is an unstable constant steady state). This suggests that a general 

improvement of our stability results for monotonic waves can be made when 

~(-oo) or ~(+oo) is a higher order saddle point or a singular point with 

f(O,O,~+n) = 0 for all n near 0. From our treatment of Burger's equa-

tion in section (8.1), we see that such an improvement would have signifi-

cant applications. 
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There is also room for improvement in the indeterminate case 

treated in section (4.14). This case is the only case in Chapter IV 

where the stability or instability of a solution ~(x-ct) cannot be de-

termined by inspection. 

The lack of stability or instability results for non-monotonic 

solutions ~(x-ct) in Chapter VI and non-monotonic solutions ~(x-ct) 

in Chapter VII is a major drawback of the results for equations contain-

ing integrals and for systems of equations. Because of this lack, we 

cannot determine the stability of the majority of solutions ~(x-ct) and 

¢<x-ct). 

Finally, the stability results developed in . Chapter VII have 

been established only for a restricted class of parabolic systems. The 

narrowness of this class diminishes the utility of the results. 

This completes thi.s section, where we have touched on the major 

weaknesses of the results contained in the preceding chapters. In the 

final section we point out some interesting topics for future research. 

9.3 Some potential research topics. In the preceding chapters many in-

teresting topics for research arose which we did not pursue. In this final 

section we would like to suggest some of the more interesting of these 

topics. 

First, general improvements in the stability results for mono-

tonic waves ~(x-ct) in cases where either ~(-oo) or ~(+oo) is not a 

first order singular point should be possible. Of these cases, the physi-

cally most interesting case is when the equation 

fies f(O,O,~) = 0 for all ~· 

u 
t 

f(u ,u ,u) 
XX X 

sat is-
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Second, it would be very nice to resolve the inde terminate case 

treated in section (4.14). For example, if one c ould show that all solu-

tions in the indeterminate case are unstable, then the stability of every 

solution ~(x-ct) of any equation ut 

able by inspec tion. 

f(u ,u ,u) would be determin
xx X 

Third, existence and non-existence results for traveling wave 

solutions of equations containing integrals and of systems of equations 

(analogous to theorems (5.1)) would be interesting. One use of these 

results would be to establish the sharpness of the stability results in 

theorem (6 . .5) and theorem (7.5). 

Finally, significant extensions to the class of systems that 

can be treated would be useful. The main limitation on the utility of 

the results in Chapter VII is the restrictiv eness of the class of systems 

treated there. 

This completes this chapter, where we have remarked on some of 

the strengths and weaknesses of our results and have touched on potential 

areas of research. ' In conclusion , we observe that many potential results 

remain which seem interesting and obtainable. 
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