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ABSTRACT

A method for determining by inspection the stability or insta-
bility of any solution u(t,x) = ¢(x-ct) of any smooth equation of the
form

u, = f(uxx,ux,u) where %E f(a,b,c) > 0 for all arguments a, b, c,
is developed. The connection between the mean wavespeed of solutions
u(t,x) and their initial conditions u(0,x) is also explored. The
mean wavespeed results and some of the stability results are then extended
to include equations which contain integrals and also to include some

special systems of equations. The results are applied to several physical

examples.
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Chapter I

INTRODUCTION
We will investigate the class of equations

u, = f(uxx’ us v} o £ %4 (1.1)
and also some extensions of this class of equations. Specifically, we
shall determine the stability of all traveling wave (and steady state)
solutions of (l.1). We shall also study the dependence of the mean wave-
speed of solutions of (1.1) on the initial conditions. Nearly all of
these stability and wavespeed results will also be extended to certain
generalizations of (1.1).

The reason we study (l1.1) is its frequent occurrence in many

different fields, such as biology, chemical reactions, and genetics.
The importance of the traveling wave (and steady state) solutions comes
from the fact that almost all solutions must evolvé into traveling wave
(and steady state) solutions as t - «. We study the stability of these
solutions since only stable solutions can occur naturally.

In order to demonstrate our stability results, we adopt the
following typical Procedure for finding traveling wave (and steady
state) solutions of (1.1). This procedure involves introducing a moving
coordinate system (to reduce traveling wave solutions to steady states)
and introducing a phase-plane. Specifically, we switch to the moving

coordinate system

t'=¢t , X'=x-=¢t (1.2)
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where the speed ¢ 1s arbitrary but fixed. In terms of these new

variables, equation (1.1) is

u, = f(uxx’ u s u) + cu. (1.3)
where the prime superscripts on the t's and x's have been dropped for
convenience. All traveling wave (and steady state) solutions of (1.1)
can now be treated as steady state solutions of equation (1.3) with the
appropriate values of the parameter c¢. These steady state solutions
u(t, x) = ¢(x) of (1.3) are then found by solving the first order

system of equations

P = ¥

(1.4)
f(vx, v, ¢) +cv=0 .

The usual method of finding solutions of (1.4) is by studying the phase
plane of system (l1.4), where the vector (¢x’ vx) is considered as a
function of (¢, V).

Besides aiding in the search for solutions of (l1.4), the phase
plane provides a convenient way to classify the steady state solutions of
equation (1.3). For example, non-constant monotonic steady state solu-
tions can be classified as N > N, N+ S, S+ N, or S =+ S depending on
whether (¢(-=), v(-=)) and (¢(4+=), v(4+»)) are both nodes, a node and a
saddle point, a saddle point and a node, or both saddle points, respec—
tively. By using a maximum principle, we will find that the stability

of any steady state solution of equation (1.3) depends only on its phase
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plane classification. Specifically, we will find that very nearly all
non-monotonic steady states are unstable. We will find that a constant

steady state ¢(x) = ¢g, Vv 0 is stable if (¢,, 0) dis a saddle point

i

and unstable if it is a node, a spiral point, or a center. We will find
that all non-constant monotonic steady states are stable to classes of
perturbations which are determined by whether ¢(x) dis a N -+ N, a
N->S8, aS~>N, or aS+S type steady state. In particular, the N > N
type steady states have the most limited stability classes (i.e. class
of perturbations under which the steady state is stable), and the S = S
type steady states have the largest stability classes. We will also

find that our stability results are sharp.

These results are useful since now, for parabolic equations,
one no longer has to solve an often difficult eigenvalue problem for
each solution of each equation to determine stability. Note that in a
degenerate sense the stability of all traveling wave (and steady state)
solutions of elliptic equations is also known in advance, since all these
solutions are unstable.

The presentation of these results begins in Chapter II, where
an overview of the main results and their proofs is given. Only results
pertaining to equation (l1.1) are covered there. In this presentation of
these results and proofs, complicating details are avoided. This hope-
fully clarifies the reasoning behind the results and thus shows why the
results are true. Note however, that there are results not covered in
Chapter II.

In Chapter III we do the necessary preliminary mathematical

work. This work falls into three categories: modifying the original
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equation to prevent infinities from occurring, developing the needed
mathematical tools (such as the maximum principle), and assembling the
hypotheses under which we will work. In Chapter III, all this prelimi-
nary work is done for very general parabolic type systems of equations
which include multiple independent spatial variables, multiple dependent
variables, and even integrals. This is so every generalization of (1.1)
that we will consider is included as a special case of the equations
treated in Chapter III.

Before continuing, we briefly mention the idea behind the
technical device of modifying the given equation, although this is dis-
cussed at length in Chapter III. Solutions u of the nonlinear equation
. - f(uxx, u_, u) may be able to develope infinities in u, u s or
u . as time progresses., These infinities pose very serious mathemati-
cal problems. In order to avoid these, we select an arbitrarily large,

but fixed, positive constant M and work with a modified equation,

u = f_(u

. : - " < i oinal
" M Paexc? uX, u) This new equation is identical to the origina

equation when Iul =M, qul < M, and luxxl < M. However, there is a
finite N(M) > M such that if any of ‘uxx[ > N, lux| >N, or |u] >N
occurs, then the modified equation reduces to a heat equation. More-
over, the transition between the original equation and the heat equation
is very smooth and the maximum principle holds for the modified equation
as well as the original. Solutions to the modified equation, however, do
not develope infinities as time progresses, which is the feature of the

equations that we need. All subsequent results are for the modified

equation and hold for all M sufficiently large. The physical reasons

for — and consequences of - modifying the original nonlinear equation
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are discussed in detail in Chapter III. Briefly however, for any M

as large as we please all our theorems will tell us how solutions u(t,x)
of the modified equations behave as a function of the initial conditions
u(0,x). Thus, for any solution u(t,x) of the original equation which
has |u| <M, |u | <M, and luxxl <M for all t > 0, our theorems

give the correct results. Also, for any solution u(t,x) of the original
equation, the results in our theorems are correct for all t wuntil

|u] = M, qul =M, or |u = M occurs.

-
In Chapter IV we obtain the stability results for monotonic

traveling wave (and steady state) solutions of the basic equation

u, = f(uxx’ U, u) , f1 >0 . (1.1)
We then derive the instability results for non-monotonic traveling waves
(and steady states). Direct extensions of these results, such as to
traveling plane waves in higher spatial dimensions and to boundary
value problems on a finite spatial interval, are also considered.

In Chapter V we consider the connection between the mean wave-
speed of a solution u(t,x) of equation (1.1) and the initial condition
u(0,x). We first find when the existence of a monotone wave at speed
c = ¢g dimplies the existence of nearby monotone waves with wavespeeds
near cp, and also when its existence implies the existence of other
traveling waves at the same speed cg. With these results, the tech-—
niques used in Chapter IV are used to find the dependence of the mean
wavespeed of solutions u(t,x) of (1.1) on the initial condition u(0,x).

Simple extensions of these results are also considered.
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In Chapter VI we extend the results of Chapter IV and V to the

more general class of equations

T
ut = f(uxx9 uX’ u, -[O f G(S:Y:u(t—sy X'Y))dyds) 3 fI > 0, f'+' G3_>_05
|v|<¥
(1.5)

where T and Y are any positive constants. We consider this generali-
zation because equation (1.5) occurs quite often in some fields, such as
population dynamics. The stability for monotone waves and the mean wave-
speed/initial condition results all hold for equation (l1.5) as well as
equation (l1.1). In general, though, the proof of the instability of
non-monotonic waves fails in two separate places.

In Chapter VII we extend the results of Chapters IV and V to

the special class of parabolic systems

)= : >0
j ac,(.])

w

. . . (i) ~
“él) _ f(i)(ui;)’uii)’ﬁ), f{l) 5 B f(i) _ of (a,b,¢)

all j# dy 1 = 132505050 = (1.6)

These special parabolic systems occur in chemical reaction theory.
Similar to Chapter VI, the stability and mean wavespeed results are
established for system (1.6). Again, the proof of instability breaks
down in the same two places asroccurred in Chapter VI.

In Chapter VIII we use the results of the previous chapters on
specific physical examples of equations (1.1), (1.5) and (1.6). We
draw on the fields of genetics, biology, and chemical reactions for
examples of (l1.1). Population dynamics provides an example of equation

(1.5). A reaction diffusion system is used as an example of system



.-
(1.6) which occurs in chemical reaction theory.
"In Chapter IX we briefly discuss our results in general terms.
Specifically, we point out some short-comings of the results, make
some reasonable conjectures, and discuss possible areas for further

research.



=g

Chapter IT
OVERVIEW

In this chapter we present an overview of the main results

(and their proofs) pertaining to the class of equations

o~ f(uxx’ u_s u) , £, >0 . (2.1)
We will avoid most of the complicating details found in the more com-
plete presentation contained in Chapters IV and V. This avoidance hope-
fully helps clarify the reasoning behind the results, showing why the
results are true. Specifically, in section (2.1) we discuss the maxi-
mum principle. In section (2.2) the stability results for monotone

waves are obtained. Section (2.3) deals with the instability of non-
monotonic waves. The last section, (2.4), is used to present some of the

mean wavespeed/initial condition results.

2.1 The maximum principle. The maximum principle for the equation

u, = f(uxx’ us u) + eu_ (2.2)

will be used in obtaining almost all our results. In essence this

principle is the observation that if the inequality

- f u u) - > v
ut (uXX » 5 ) cu, =

X t f(vx

< Yy v) - ev, (2.3)

holds for all t > 0 and if u(0,x) > v(0,x) for all x, then



~10-
u(t,x) > v(t,x) for all t > 0 as well. This principle motivates the

definition of wu(t,x) as an upper function of equation (2.2) and of

u(t,x) as a lower function of (2.2) whenever

o, = f(uxx’ u_s u) - cu >0 for all t >0, all x (2.4)

u, - f(EXX, u s u) - cu <0 for all t >0, all x (2.5)
hold. This maximum principle and appropriate upper and lower functions
can be employed to obtain stability proofs. For example, suppose

u(t,x) = ¢(x) is a steady state solution of (2.2) and suppose that
u(t,x) is an upper function of (2.2) such that u(0,x) > ¢(x) for all
X and E(t,x) remains near to ¢(x) for all x and all t > 0.
Clearly when this occurs, the maximum principle implies a type of
stability for ¢(x). For in this case, the maximum principle shows that

all solutions u(t,x) of equation (2.2) whose initial conditions satisfy

u(0, x) > u(0, x) > ¢(x) for all x (2.6)
also must satisfy

U(t, x) > ult, x) > ¢(x) for all >0, all x .(2.7)

Thus, employment of the maximum principle in this and similar manners
reduces the question of stability to that of finding appropriate upper
and lower functionms.

We will now be specific. The maximum principle for equation

(2.2) is the following:
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Maximum principle: Suppose £f(a,B,y) 1is continuously differentiable in

a,B, and y and that f;(a,B,y) > 0 for all arguments a,B, and y. If
u(t,x) and v(t,x) are any functions with u, u_, u and v, v., Vv
x’ xx >l <

all bounded for all x and all 0 < t < T, if

u, - f(uxx’ u_ > u) - cu_ z_vt - f(vxx’ V. v) - v, (2.8)
holds for all (x,t) in R x (O,i], and if u(0,x) > v(0,x) for all
x, then

u(t,x) > v(t,x) for all x, all t in [b,i] . (2.9)
I

This maximum principle is a special case of the maximum principle pre-
sented in Chapter III. The following proof of this maximum principle is

based on the material in Chapter IITI of reference[l] ;

Proof: We prove this principle by defining h = u-v and showing that
h is positive. We start by defining‘a function of 0, H([v],[h],e),

by

H({v],[h],e) f(vxx + ehxx, Ve + ehx, v + 6h) - c(vX + ehx).
The derivative of H is

- +

where the arguments of £,, f,, and £5 are Vxx + thx, Ve + th, v + 6h.

oH
Note that our assumptions imply that Y} is bounded for all thp,ﬂ

and all (x,t) € R x [O,T] . Thus, at any fixed x and t in R Xx (O,T],
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o
]
ot
|
<
|v

f(u u u) + cu - f(v v v) - cv
( xx’ x, ) x ( XX’ x’ ) x ’

SIOREAIORN

% ([VJ, [h], 8) for some 8 in [0,g .

L]

This last step follows from the mean value theorem. Hence, at each

(x,t) in R x (O,T] there is a 0(t,x) € [0,11 such that

h, > f1 b+ (£, + c)h_+ f3h , {2,100

where again the arguments of £;, f,, and f3 are - + e(t’x)hxx’
Vo + e(t,x)hx, v + 6(t,x)h. By our assumptions, f;, f, + c, and fq4
are bounded for all (x,t) in R x EJ;q, and moreover f; > 0.

We will prove the maximum principle by showing that h must

be positive for (x,t) in R x [b, ] whenever the inequality

+ W
ht > hxx + B hx Yh (2.11)

holds for all (x,t) din R x (D,T]. Here, a, B, and vy are arbitrary
functions of (t,x) which are bounded over (x,t) & R x [O,] and of
which o 1is always positive. The maximum principle is then immediately
established as (2.10) is a special case of (2.11).

We continue by defining
w = he O° gaeh = T (2.12)

where n > 0 will be selected later. From (2.12) we find
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t
h = we''" cosh x "

t t
ht = Wten cosh x + nwen cosh x ,
- nt (2.13)
hx =we cosh x + we sinh x ,
t t " t
h = w e cosh x + 2 W‘en sinh x + we"! cosh x
XX XX X

Substituting these expressions into the differential inequality (2.11)

yields

+ (B + s .
W, > o R (B 2a tanh x)wx + (y + o + Btanh x nmw. (2.14)

We now select n so large that vy + o + Btanh x-n < - 1 for all (x,t) &

R x [0,T) . Thus (2.14) becomes

v >« Yo + B v +yYyw,a>0, y<-1, for all 0 < £t <T . (2.15)

We now come to the heart of the proof. Let € > 0 be any posi-

tive constant. Suppose that w(t,x) < - e for some valu-e of (x,t) €ER x

[Ofﬂ . TFrom the boundedness of h and expression (2.12), we see that
there is an X > 0 such that |w| < g/2 for all |x| > X and all
0 < t < T. Thus there must be some point X,t in |x| <X, 0<¢t=<T
where w(t,x) is at a minimum and w(t,X) < = €. This minimum does not
occur at t = 0 since h (and thus w) is non-negative there. If it
occurs at t =T then WE(E,i) < 0, and if it occurs at O < T @

then Wt(E’;) = 0. In either case WX(E,%) = (0 and WXX(E,E) > 0. Thus,

(2.15) implies that
Wt(E,%) > ¢ wlt;x) 2 8 5 0 . (2.16)

This contradicts wt(f,i) < 0. Hence w(t,x) > - ¢ for all (x,t) din

R x [b;ﬂ . Since e > 0 is arbitrary, w(t,x) > 0, and therefore
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h(t,x) > 0 for all (x,t) € R x [0,7] . Q.E.D.

In the next section we will use this maximum principle to estab-
lish sharp stability classes for the perturbations of constant and monotone

traveling waves (and steady states).

2.2 Stability of monotone waves. In this section we find the stability of

constant and non-constant monotonic traveling wave and steady state solu-

tions of the equation

u, = f(uxx’ u_s u) £Fp 20 = (2.1)

As before, we reduce any traveling wave to a steady state by switching to

the moving coordinate system
t'" =t , x'"=x-ct .
In terms of these new coordinates, equation (2.1) is

u = f(uxx’ s u) + cu_ £, >0 , (2.2)

where the primes on the t's and x's have been conveniently dropped.
Thus, all traveling wave solutions of equation (2.1) are now steady state
solutions of equation (2.2) at the appropriate values of the parameter c.
We will actually study the stability of the steady state solutions of equa-
tions (2.2).

As the first step we will define some types of stability which
will enable us to state sharp stability results. Next, we will examine the
stability of constant steady states. Then, the basic stability results for

monotonic steady state solutions u(t,x) = ¢(x) of (2.2) will be given.
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Finally, finding better upper and lower functions will enable us to improve
this basic result whenever ¢(-») or ¢(+~) (or both) are saddle points.
The sharpness of these results will be established in section (2.4) as a
by-product of the mean wavespeed/initial condition discussion.

We begin by making the needed stability definitions. Namely, we
define Cw-stability and Qw—stability for any continuous function w(x)
with w(x) > 1 for all x. Given such a w, we define any steady state
solution u(t,x) = ¢(x) of equation (2.2) to be c¥-stable if an only if
for any given € > 0, there is a 6(e) > 0 such that every solution

u(t,x) of equation (2.2) satisfies
|fu(t,x) - qJ(x)]w(x)[ < e for all x and all t >0, (2.,17)
whenever the initial conditions u(0,x) are smooth and satisfy
[ [oc0, - $G) - w| < 8(e) for all x. (2.18)

Similarly, ¢(x) 1is defined to be @W—stable if and only if for every
€ > 0, there is a &(e) > 0 such that every solution u(t,x) of equation

(2.2) satisfies
|u(t,x) - ¢(x)| < e for all x and all t > 0 , (2.19)

whenever the initial conditions u(0,x) are smooth and satisfy (2.18).

In interpreting these definitions, we note that whenever w(x)

is bounded, then Cw—stability (Qw—stability) is equivalent to Cw—stability
(Qw—stability) with w(x) = 1. We therefore turn our attention to the

cases where w(x) - + «© as x » - « and/or x + + «». We see that, roughly

speaking, ¢(x) is c¥-stable (&w—stable) if it is stable to perturbations
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applied at t = 0 which decay like a%;y as x - — @ and x > + «, GW—

stability implies that the perturbations remain small and bounded as time
increases. The stronger Cw—stability implies that the perturbations re-
main small and decay like ;%;7- as x > - % and x ++ « at all times

t > 0., The definition of Cw—stability is very similar to the stability

definitions used in reference [2] >

The above stability definitions are adequate for our needs.

We will therefore now examine the stability of an arbitrary constant steady

state solution, wu(t,x) = ¢y, of equation (2.2). The stability of this

state will depend crucially on whether the point ¢ = ¢, v = 0 is a node,

a spiral point, or a saddle point of the first order system

¢ =v
£ (2.20)

Il
o

£v, v, ¢) + cv

Note that ¢ $g, v =0 1is a node, a spiral point, or a center when

£3(0, 0, ¢g9) > 0, and is a saddle point when £3(0,0,¢g9) < 0. (The case
f5(0,0,95) = 0 represents two or mare singular points merged together in
the phase plane). We observe that these signs of £3(0,0,¢3) imply that
u(t,x) = ¢g 1is stable to spatially independent perturbations if ¢g,0 is
saddle point, and is unstable to spatially independent perturbations when

$9,0 1is a node, a spiral point or a center. We expand this observation

into the following:
Theorem 2.1: Suppose u(t,x) = ¢y is a constant steady state solution of
equation (2.2). Then

(1) ¢x) is cY-stable with w(x) = 1 if ¢ = $p, v=0 is a
saddle point of system (2.20), and

—-KX +Kx

(2) ¢(x) 1is ¢w—unstable with w(x) =1 + e + e for

a
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k > 0 sufficiently small if ¢ = ¢y, v=0 1is a node, a spiral point, or

a center of system (2.20).

Proof: Part 1. Since £3(0,0,¢y5) < 0, we let £3(0,0,¢y5) = — 2u. There
exists an hy > 0 such that £3(0,0,¢g+h) < - u < 0 for all |h| < hg.

ut

Consider wu(h,t) = ¢g + e h. For all 0 < h < hy, we have

ut(hat) ol f(uxx(h;t)s ux(h,t): U(h,t)) et Cux(h,t)
= - pe™""h - £(0,0,4( + he )

>0 .

Thus, wu(h,t) 1is an upper function of (2.2) for 0 < h < hy. Similarly,
u(h,t) 1is a lower function of (2.2) when - hy < h < 0. Let € > 0 be
given, and without loss we suppose that € < hy. Suppose u(t,x) is any
solution of (2.2) whose initial condition u(0,x) satisfies |u(0,x) -

¢(x)| < ¢ for all =x. Then
u(e,t) > u(t,x) > u(-g,t) for all x

is true at t = 0, and so the maximum principle implies that it is true

for all t > 0 as well. I.e.,
¢g + ee—ut > u(t,x) > ¢g - ce "t for all x, all £ 2 0 . (2.21)

Stability is thus established.
£
Part 2. Consider wuf(h,t,x) = ¢g + he"" sech kx, where

u = %£3(0,0,¢9) > 0 and where «k > 0 will be defined later. We calculate
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Ut(h,t,X) f(uxx(hst’x) 5 ux(h’tax) ) u(hatrx)) - cux(h,t,x)

t
=14 fq he"" sech kx

2 e 2 ut
- f(-k ‘he sech kx(l-2 sech «kx), - khe sech kx tanh «kx,
bg + he"" sech KX)
Wt
+ ckhe sech kx tanh kx
56 g 2
= he" - (sech Kﬁ[}%-f3+(f2+c)mtanth + fqk (1-2 sech kx)
ut @
+ 0((he sech kx) ) , (2.22)

where f;, f,, and f3 are evaluated at the arguments O, 0, ¢g. Let
be a fixed positive constant so small that the quantity in brackets in
(2.22) is always less than -%f3. Since the first term of (2.22) is then

negative for h > 0, there exists an hy > 0 for which
ut(h;txx) = f(uxx(hstax)’ ux(hatsx): u(h,t,x)) - Cux(h,t,X) i_o

for all t such that 0 < heut < hy. Define d(h,t,x) as the solution
of (2.2) with the initial value u(h,0,x) = ¢35 + h sech kx. Since

u(h,t,x) is a lower function of (2.2), the maximum principle implies

ﬁ(h,t,x) > ¢g + heut sech kx for all t such that Q < heut < hy

This holds for all O < h < ho, and so part (2) is established.

Note that relation (2.21) shows that small perturbations about a
saddle point die exponentially in time, and note that perturbations
about a node, a spiral point, or a center can grow exponentially in time.
The stability of constant steady state solutions of (2.2) has
been found, and so we turn our attention to the stability of non-constant
monotonic steady state solutions. To see why monotonic waves are stable,

let u(t,x) = ¢(x) be a monotonic steady state solution of the autonomous
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equation (2.2). In particular, let ¢(x) be increasing. Since ¢ (x+h)
also solves (2.2) for any h, it is both an upper and lower function of
(2.2). Thus, for any h > 0 the maximum principle implies that all

solutions u(t,x) of (2.2) whose initial conditions u(0,x) satisfy

¢(x-h) < u(0,x) < ¢(xth) for all x

must satisfy

¢(x~h) < u(t,x) < ¢(x+th) for all x and all t > O

as well. That is, any solution of equation (2.2) which is initially in a
region like the one shaded below will always remain in the region. Since
h > 0 can be taken arbitrarily small, clearly monotonic states possess a

type of stability. We make this precise in the following theorem.

¢ (x+h) u
(x-h)
x

Theorem 2.2: Let u(t,x) = ¢(x) be a bounded non-constant monotonic

steady state solution of equation (2.2). Then it is c¥-stable with
1

w(x) El+-ﬁ>'—(x_)l'

Proof: This proof precisely follows the above argument. Since ¢(x)
solves (2.2) and (2.2) is autonomous, d¢(xt+h) solves (2.2) for any h.
Using the maximum principle twice shows that any solution u(t,x) of (2.2)

whose initial condition satisfies

¢ (x~h) < u(0,x) < ¢(x+h) for all x
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for some h, will also satisfy
¢ (x-h) < u(t,x) < ¢(xth) for all x and all t > 0 . (2.23)

We now show that statement (2.23) implies Cwmstability with

w(x) =1+ "’ﬁm . From (2.23),

(1 + Tm)[cpcx-h) - o) <+ Wi—x)—p fu(t,x) - ¢(x))

<@+ ﬁ,—z{—)—p (o G+h) - ¢ (x)]

As is discussed in Chapter IV, ¢(x) being a bounded non-constant mono-

tonic solution of

f(d)XX’ ¢X, ¢) + C¢X =0

implies that ¢'(x) can never be zero. Moreover, the functions ¢"(x),
¢'(x), and |¢"(x)/¢'(x)| are all bounded for all x and |¢”(x)| is de-
creasing for all x with le sufficiently large. Thus, there is a con-

stant B > 0 such that

(1 +‘T$T%§YT) |¢ (x+h) - ¢(x)| < B|h| for all x and h .
Hence, given any € > 0 we can conclude that

1
- > f 11 d all t >0
(1 + TET?;TT) |u(t,x) $(x)| < € for a x and a
by taking Ihl < g/B. Moreover, there is also a 5(|h|) > 0 such that
1
|lu(0,x) - ¢(X)l (1 +T¢—,(x—)|—) < 6(|hl) for all x

implies that

¢(x-h) < u(0,x) < ¢(xt+h) for all x
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(where the sign of h is chosen so that ¢(x+h) > ¢(x~h)). Hence our

theorem is established by taking & = &§(e/B).

Theorem (2.2) states that monotonic steady state solutions

u(t,x) = ¢(x) of

u, = f(uxx, u_ s u) + cu (2.2)
" 1 y 7
are C -stable with w(x) = 1 + TETT;TT . Roughly speaking, this means that
a monotonic solution wu(t,x) = ¢(x) 1is stable to small perturbations

which decay asymptotically like [¢'(x)| as x goes to - and to +=.
Since these monotonic steady states ¢(x) almost always decay exponen-
tially as x + + «, we can roughly state that a monotonic steady state
solution of (2.2) is stable to small perturbations which decay at the

same exponential rates as ¢'(x) does, for x> - o and x *+ o . 1In
Chapter IV we will examine the asymptotic decay (as x =+ + «) of monotonic
steady states ¢(x) more carefully.

By using ¢(x~h) and ¢(x+h) as lower and upper functions we have
established the stability of all monotonic steady state solutions to
perturbations which decay asymptotically at least as fast as the solution
does as x - + =« . However, u(t,x) = ¢(x+h) and u(t,x) = ¢(x-h) are
actually solutions of equation (2.2). By using these as our upper and
lower functions we have not taken advantage of the generality allowed by
the inequalities in the definitions of upper and lower functions. (See
definitions in (2.4) and (2.5)). 1In the next two lemmas we will utilize

this generality to find better upper and lower functions.

Lemma 2.3: Suppose that u(t,x) = ¢(x) is a bounded non-constant monotenic
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steady state solution of (2.2) at some c. Let ¢(-=) = ¢_ and ¢p(+=) = ¢+.

Then

(1) If ¢=¢_ , v=0 1is a node and ¢ = ¢+, v=20 is a

saddle point of system (2.20), then

u(t,x) = ¢(x+h(t)) + q(t) [¢(x+h(t)) - ¢_} and
u(t,®) = 6Ge-h(e)) - q(e) [pG-h() - ¢ ] N
where h(t) and q(t) are given by
h(t) = ok(l - ¢ °%) +hy , q(t) = ae 3F (2.25)

are an upper and lower function of (2.2), respectively, 1In (2.25) «
and s are some positive constants, hy 1is arbitrary, and o is any con-

stant with sufficiently small magnitude and with sign the same as ¢'(x).

(2) If ¢ =¢_, v=0 dis a saddle point and ¢ = ¢+, v=20
is a node of system (2.20), then
u(t,x) = ¢(x+h(t)) + a(e)fo, - ¢Ceth(t))]  and
(2.26)
u(t,x) = ¢(x-h(t)) - q(e)[o_ - ¢(x-h(eD] ,

where h(t) and q(t) are given by (2.25), are an upper and lower function

of (2.2), respectively.

We are mainly interested in these upper and lower functions at
t =0 and t + «. We have sketched in figures (1) and (2) the upper and
lower functions at t =0 and t =+ « from both (2.24) and (2.26),
assuming for illustrative purposes that ¢(x) is monotonically increas-
ing. Note that in all sketches the value of hy wused for the upper func-

tions is Ah larger than that used for the lower functions.
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Figure (la): The functions ;IO,X) and u(0,x) when ¢_ is a node (N) and
¢+ is a saddle point (S), from (2.24).

Figure (lb): The functions 'E(+m,x) and u(+»,x) when ¢_ is a node (N) and

¢, is a saddle point G), from (2.24).



=D

Figure (2a): The functions EYO,X) and u(0,x) when ¢ 1is a saddle point (8)
and ¢+ is a node (N), from (2.26). -

u

Figure (2b): The functions E(+m,x) and u(+*,x) when ¢ 1is a saddle point

(s) and ¢+ is a node (N) from (2.26). -

Proof of lemma 2.3: We prove only that u(t,x)

in (2.24) is an upper
function of (2.2) when ¢(x) is increasing. The proof when ¢(x) is de-
creasing and the proofs of the other parts of the lemma follow from very

similar calculations.

We will prove that ;It,x) in (2.22) is an upper function by

showing that 1~ f 5 5 G) - cu_ >0 for all o sufficiently small.
t xx’ X 3
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We have

u=¢+qlé-¢) ,

u, = ¢' h (I+q) +q (6-¢)
E; = ¢'(1+q) ,

;;x = ¢" (l4+q)

For x + h(t) < - xg (xp > 0 very large), we expand about ¢, ¢', and
¢". We find
ut - f(uxx’ ux: u) - CUX
> ¢'h +q (6-¢_) - £14"q = (fo+c)d'q - £3(9-9_)q (2.27)

+ h.o.(¢"q,0'q, (¢~4_)q) ,

where the arguments of £,, £,, £3 are ¢", ¢', ¢, and the argument of
$", ¢', and ¢ is x + h(t). Here h.o.(a,b,c) stands for terms which
are of at least quadratic order in a,b, and c. For x + h(t) < - xgp,
¢"/¢' and (¢~¢_)/¢' are both bounded (as will be shown in Chapter IV).
Thus (2.27) shows that there exists positive constants M~, N_, and q—

such that

.Et - f(G#x, u_s u) - cu > 0 for all x + h(t) < - X

whenever

ht + M_qt 3_Nuq and 0 < q f_q- .

For x + h(t) > xg (%, > 0 very large), we again expand about ¢", o',

$. As before, we find

Et - fu ., u, u) - cu
¢'ht + qt(¢‘¢_) - £1¢"q = (fp+e)d'q - £3(¢-¢_)q (2.27)
+ h.o.(¢"q, ¢'q,(¢=¢_)q)

| v
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where the arguments of £f;, f,, f3 and ¢", ¢', ¢ are the same as be-
fore. Since f3(0,0,¢+) < 0, by taking x, sufficiently large we

ensure that
- £3(¢", ¢', ¢) > 28 for all x + h(t) > x5 ,

for some positive constant s. Since ¢(x+h(t)) is increasing in x,

we have
0 < ¢(xg) - $_ < ¢(x+h(L)) - b §_¢+ - ¢_ for all xt+h(t) > xg 3

i.e., ¢ - ¢_ is bounded away from zero and is also bounded. Noting that
$"/¢' 1is bounded for =x+h(t) > xy , we see that (2.27) implies that there

exists an N+ >0 and a q+ > 0 such that

., = f(uxx’ u s u) - cu > 0 for all =x+h(t) > xg
whenever

e -y 5 o ,htzN+q,a11d01Qiq+

We now consider the middle region. Linearizing about ¢", ¢', and ¢ as
before again yields (2.27). Since ¢'(x) # 0 for all x (this is shown
in Chapter 1IV), for any x5 > 0 there is a & > 0 such that p'(x) > 8§
for all x in [-%g, xd] . Since ¢" and ¢-¢_ are bounded, (2.27)

shows that there are constants M0 > (08 N0 > 0, and q0 > 0 for which

-Et - f(uxx’ ux, u) - cu >0 all x+h(t)€5[}x0, xa
is satisfied whenever

ht+M°qt_>_N°q dzqxq®

To summarize this calculation, we can conclude
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u - f(u _,u,u) -cu >0 for all x , (2.28)
t xx’ x 3 =
when
ht > max{M , MO} - (—qt) + max{N , NO, N+}q 5
0 < - q, <sq , and (2.29)
- +
0<gq<min{q, q% q 1 ,
hold. Hence, we take
q = ue_St , h = aK(l—e—St) + hy (2.25)

where « = max{M , MY}s + max{N , NO, N+}, and note that (2.29) is satis—
- + -
fied for 0 < a < min{q , q% q}. Thus (2.28) is true, and hence u

is an upper function.

Lemma (2.3) provides good upper and lower functions when the
monotone wave goes from a node to a saddle. These functions still decay
asymptotically like ¢'(x) as x goes to the node (at either - = or
+ «). However, as x goes to the saddle point at, say, + =, the upper
and lower functions asymptote to ¢+ 4+ A and ¢+ - A for some A > 0.

When used for stability proofs, this translates into a larger stability
class than that in theorem (2.2). Namely, these upper and lower functions
will prove the monotonic wave stable to perturbations which decay like
¢'(x) as x goes to the node (at x = - w or x = + ®), but which only
need be bounded as x goes to the saddle point (at %x = - = or x = + «),

In lemma (2.3) we were able to improve our upper and lower func-
tions when a single saddle point is present, and so one expects that still
better functions can be obtained when both x = - ® and x = + » are

saddle points. The following lemma shows this to be so.

Lemma 2.4: Suppose u(t,x) = ¢(x) is a bounded, monotonic, steady state
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solution of (2.2) at some c. Let ¢(-=) = ¢_ and ¢(+=) = ¢+

g= g g V= 0 and ¢ = ¢,, v =0 are both saddle points of system (2.20),

+
then
u(t,x) = ¢(x+h(t)) +Jq(t) and
(2.30)
E_(tsx) = ¢(X—h(t)) —|Q(t)| s
with
h(t) = ac(l-e °%) + hy , q(t) = ae ®F (2.31)

are upper and lower functions, respectively. Here « and s are fixed
positive constants, hy 1is arbitrary, and o 1is any constant with suf-

ficiently small magnitude and with sign like that of ¢'(x).

Proof: Lemma 2.4 follows from calculations very similar to those in the

proof of lemma (2.3).

It should be noted that the upper and lower functions in lemma
(2.4) were devised in reference [3] for the class of equations o S +
h(u). These upper and lower functions are sketched in figures (3a) and
(3b) at t =0 and t = + «, resgpectively. For illustrative purposes we
have taken ¢(x) to be increasing. Also in sketching these functions, we
have used a value of hy for the upper functions which is Ah larger
than the value used for the lower functions.

We now use the upper and lower functions provided by lemmas
(2.3) and (2.4) in conjunction with the maximum principle. This will

yield our main stability result. In order to state this result succinctly,

we introduce the notation
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' (x) x>0
, and

[t

r (4" (%))
¢'(0) x <0

$'(0) x>0

= .

¢ (x) X < 6

r (¢'(x))

Figure (3a): The functions u(O x) and u(0,x) when ¢ and ¢ are both
saddle points (S), from (2 30).

Figure (3b): The functions u(4w,x) and u(+»,x) when ¢_ and ¢ _ are both
saddle points (9, from (2.30).

Theorem 2.5: Suppose u(t,x) = ¢(x) 1is a bounded, monotonic steady state
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solution of equation (2.2) for some value of c¢. Then u(t,x) = ¢(x)
is C"-stable where

(1) if ¢ =¢_, v=0 and ¢ = ¢, v =

]
o

are both saddle

points of system (2.20), then w(x) = 1;

(2) if ¢ =¢_ , v=0 is a node and ¢ = ¢+, v =20
is a saddle point of system (2.20), then w(x) = 1 + T;:firzgny 2
(3) 1if ¢ = ¢_» v=20 is a saddle point and ¢ = ¢+, v=20

1il

is a node of system (2.20), then w(x)

1 + 1 ;  and
Ir'(d:'(X))I g

(4) if o =¢ , v=0 and ¢ = ¢+, v = 0 are both nodes of

system (2.20), then w(x) = 1 + TET%;YT i

Proof: To prove part (1), we use the upper and lower functions contained
in lemma (2.4). To prove parts (2) and (3) we use the upper and lower
functions in lemma (2.3). The maximum principle shows that any solution
u(t,x) of equations (2.2) which is initially between an upper and a
lower function will always stay between those functions. This immediately
implies that ¢(x) 1is stable, because the size of o (see equations
(2.24), (2.26), and (2.30)) can be taken as small as one wishes. Inspec-
tion of the formulas for the upper and lower function shows that the
classes of perturbations bounded by the upper and lower functions are the
same as those allowed in the definition of Cw—stability, with the func-
tions w(x) as given by the theorem. Part (4) is a special case of

theorem (2.2).

As a rough summary, we have shown that monotone steady state
solutions of equation (2.2) are stable with respect to perturbations

which are small and
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(1) bounded as x =+ + o« Ets X >+ - cg when ¢ (+x) [d:(—oc)]
is a saddle point, and

(2) decay asymptotically like ¢'(x) as x > + « [?s
X > - %ﬂ when ¢ (4+=) [@(—mﬂ is a node. This is equivalent to showing
that the traveling wave solutions u(t,x) = ¢(x-ct) of equation (2.1)
(ut = f(uxx, u_s u)) are Cw*—stable with w*(t,x) = w(x-ct). That
is, our results measure the deviations of the perturbed traveling wave
relative to a function % which moves with the wave. This seems phys-
ically appropriate.

The stability results in theorem (2.5) are shown to be sharp
in section (2.4). There it is seen that in the N + S, § - N, and N + N
cases, some perturbations which slightly violate the asymptotic decay con-
ditions of parts (2), (3), and (4) of theorem (2.5) lead to solutions
which travel at velocities slightly different than c¢. Since these per-
turbed waves will gradually drift away from the unperturbed wave, the
traveling wave is unstable to these perturbations.

In the next section we show that very nearly all non-monotonic
waves are unstable. This will complete the stability picture for steady

state solutions of equation (2.2).

2.3 Instability of non-monotonic waves. In this section we show that

very nearly all non-monotonic steady states are unstable. Specifically,
we will show that if u(t,x) = ¢(x) is a non-monotonic solution of
(2.2), then

(1) if ¢(x) has a relative extrema at at least two distinct
points x, then there is an X and an x; such that u(t,x) = ¢(x) is

unstable to all smooth initial perturbations p(x) which are non-negative
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for x ¢.[§0, xﬂ and which are positive for all x in [xg, %3} ;

(2) if ¢(x) has only a single relative extremum then

(a) 1if ¢(~=) or ¢(+e) is a saddle point then
u(t,x) = ¢(x) 1is unstable to perturbations which decay like i¢'(x)|
as X goes to - and goes to -+«

(b) if both ¢(-») and ¢$(+=) are nodes then u(t,x) =
¢(x) may be stable or unstable to perturbations which decay asymptoti-
cally like |¢'(x)| as X goes to -« and goes to 4w,

The result in (1) for non-monotonic waves with at least two
relative extrema is as strong a result as one can hope for, since it
shows that most non-monotonic waves are unstable even to arbitrarily
small perturbations of finite extent. The weaker result in (2a) leaves
open the question of whether the non-monotonic waves it treats can be
stable to perturbations which decay at an asymptotically faster rate
than ¢'(x) as x goes to - = and to + =, We will not treat case
(2b) in this chapter. In Chapter IV we will be able to characterize when
a wave u(t,x) = ¢(x) 1in case (2b) is stable or unstable to perturba-
tions which decay asymptotically like ¢'(x) as x + - « and as
x - + . However, we will be unable to determine whether all non-mono-
tonic waves in case (2b) are unstable or whether some are stable and some
are unstable.

We now state these results precisely in the theorem below.

Theorem 2.6: Suppose that u(t,x) = ¢(x) 1is a non-monotonic bounded
steady state solution of
u = f(uxx’ us u) + cu_ . (2.2)

Then:
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(1) If there are at least two finite values of x at which
¢(x) has relative extrema, then there is a finite interval [?O’ kﬂ
and a A > 0 such that for any € > 0 there is a p(x) satisfying
0 < p(x) < e for all x & (xg, %7)
p(x) = 0 for all x ¢ (%, %)
for which the solution u(t,x) of equation (2.2) with initial condi-
tion
u(0,x) = ¢(x) + p(x)
satisfies
lu(t,x) - ¢(x)| > A
for some x and some t > 0,
(2) If there is only a single finite value of x, x = X,
where ¢(x) has a relative extremum and if either ¢(-®) or ¢(+=) is a

saddle point, then ¢(x) is Qw—unstable with

1 1
1+ |¢)'(X)l + |¢'(Xe+1)| X < Xe -1
= 1 1 =
w(x) = 1 = |¢I(Xe-1)| + l¢'(xe+1)| x, 1 <x =X, + 1 i
1 1
1 + l(b'(xe—l)] + |¢'(X)I % _>_ Xe + 1 (2.32)

When we prove theorem (2.6), we will actually prove for part
(1) much more than is claimed by the theorem. We will actually show that
the non-monotonic steady states u(t,x) = ¢(x) with at least two rela-
tive extrema are unstable to all smooth initial perturbatioms p(x) which
are

(a) non-negative outside the interval [;0, xﬂ

(b) positive inside the interval [?U’ xﬂ .
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Note also that the w(x) of part (2) of this theorem is essentially
1+ TET%;5T> modified so that it remains finite at x = X, where ¢'(
is zero. The constants ‘Tngi—:TTT and TET?i—ITYT were included in
w(x) because formally we haveeonly defined wainstability for con-
tinuous w, and these constants can be ignored without loss.

The proof of theorem (2.6) will be based on a so-called "hai
trigger" effect. Before proving this theorem, we will illustrate this
effect with the example where it was apparently first discovered in
reference [4] .

For this example we consider Fischer's equation
Wl T + u(l-u) (2..33)

t

and note that wu(t,x) = 0 and u(t,x) =1 are its only bounded non-

1

negative steady states. We define the steady state solution u(t,x)
o(x, ) of (2.33) by

bt o(1-¢) =0  9(0,e) =&  ¢4'(0,e) =0 ,

X)

r-

where € > 0 1is small. This steady state is illustrated below, and we

see that ¢(x,e) =0 at x=1x (e) <0 and at x = x+(€) > 0.
™o

{¢(X,€)

s i " >
I\\—-—_‘

_____‘___/-/X-(s) X+(E)

We thus define u(t,x,e) as the solution of (2.33) with the initial

condition
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¢ (x,e) x (e) < x < x (e)
" _ -7 =%
i(0,x,¢€)
0 xg [x_(e), X+(€5J
By using the maximum principle repeatedly, one can show that u(t,x,e) -
¢ _(x,e) as t> +o, where ¢m(x,€) is the least steady state solution

of (2.33) larger than u(0,x,e) for all x. Thus, ¢m(x,e) must be

1. Therefore u(t,x,e) + 1 as

1

the constant steady state ¢ (x,€)
t > ® no matter how small e > 0 is. This is the hair-trigger effect,
in which a slight positive bulge in the initial condition caused
ti(t,x,e) to increase to the next steady state. This effect shows that
u(t,x) = 0 is an unstable steady state of Fischer's equation. More—
over, since G(t,x,e) and u(t,x) = 1 are both solutions of Fischer's
equation, the maximum principle implies that all solutions u(t,x) of
Fischer's equation whose initial conditions u(0,x) satisfy
4(0,x,e) < u(0,x) <1 for all x

must also satisfy

G(t,x,e) < u(t,x) <1 for all x, all t >0
In particular this implies that u(t,x) 1 as t + + o for all x.

This is illustrated in the following figure.

B

) X(E-) A

X_ (E)

If u(t,x) is any solution of Fischer's equation whose initial con-
dition u(0,x) lies in the shaded region, then u(t,x)+1 as t-++» for all x.
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We will use the hair-trigger effect to prove theorem (2.6). 1In
analogy with the preceding example, the instability of a non-monotonic steady
state ¢(x) will be established in three steps. For the first step,
appropriate initial conditions u(0,x,e) for € > 0 are defined with
the properties

u(0,x,€e) = ¢(x) for x ¢ (x_(e), x,(e)) ,

il

\%

u(0,x,€) ¢ (x) for x e (x_(e), x+(€)) , and

G(0,%,e) - ¢(x) = 0(e) for x € (x_(e), X+(€))
In addition, for case (1) of theorem (2.6) we are able to take x_(E) and
x+(e) to be bounded as € + 0, but for case (2) they are unbounded. For
the second step, we use the maximum principle to show that wlt,x,g) in-
creases in t to the least steady state ¢m(x,€)<z u(0,x,e) for all x;
i.e. u(t,x,e) 1is increasing in t for all x and u(+w,x,g) = ¢m(x,e).
For the third step, we show that the least steady state ¢_(x,€) > G0,%,8)
for all =x is always the least constant steady state solution u(t,x)Z¢,
satisfying

¢(x) < ¢g for all x,

whenever ¢ > 0 is sufficiently small. This third step establishes the
instability, since ¢w(x,c) = ¢y and ¢(x) remain a finite distance apart
as € goes to zero.

It should be noted that hair-trigger effects were previously used

to show instability of non-monotonic steady state solutions of the equation

e = M + f(u)
in reference [5] . There Cw—stability with w(x) = 1 was considered,

W
and it was shown all non-monotonic steady state solutions are C -unstable

(with w(x) = 1), although the arguments used in [5] imply stronger
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instabilities. Theorem (2.6) extends these results to include traveling
wave as well as steady state solutions of the general class of equations

u = f(uxx, u_s u) f, >0 . (2.1)

Proof of theorem 2.6: We prove the instability of the non-monotonic

steady state solution ¢(x) of (2.2). As indicated above, the proof is
in three parts. The first part of the proof is in finding appropriate
¢(x,¢) with which to construct the bulges in the initial conditions. The
second step of the proof is establishing the hair-trigger effect. This
step constitutes the heart of the proof. The third and last step is show-
ing that the final steady states ¢m(x,e) of the perturbed solutions re-
main a finite distance from ¢(x) as € goes to zero.

We will actually only carry out the second step of the proof
here. The calculations and estimates involved in the first and third
steps are somewhat lengthy and tedious, and so for these steps we will
use the results obtained in Chapter IV (namely, lemmas (4.7) and (4.8)).
Moreover, the proof of the second step shows the main principle behind the
instability of ¢(x).

For the first step, we use the functions ¢(x,e) constructed in
detail in Chapter IV. The results of this construction are contained in

the following lemma from Chapter IV.

Lemma 4.7: Suppose that u(t,x) = ¢(x) is a bounded non-monotonic steady
state solution of
= n 2.34
u f(uxx, u_, u) + cu_ ( )

(1) If ¢(x) has relative extrema at at least two distinct finite

points x, then there are functions ¢(x,e), x_(¢), x+(e) (with ¢(x,¢€)
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in ci) such that for all e in (0,eq) (for some ¢; > 0) the following
conditions are satisfied:

(@ x_(e) < x_ < x ()

(b) £(o > 0., #) + co =0 for ¢ = ¢(x,e) when x is in [g_(e),x+(a)] ,

() ¢(x,e) > ¢(x) for all x in (x_(e), x ()

(d) ox_(e),e) = ¢(x_(e)), #(x (e),e) = ¢(x, (D)

(e) max |$(x,e) - ¢(x)[ -0 as €+ 0
x_(e)§x§x+(e)

(£) xg < x_(e) < x+(e) < x1 for some - = < x5 < x] < + ® ,
Here, in condition (a) the point x = X, is any point where ¢(x) has a
relative extremum.

(2) If ¢(x) has a relative extremum only at a single finite
value x = X, and if ¢ = ¢(-=), v =0 o0or ¢ = ¢(+*), v = 0 is a saddle
point of

¢ = v

X

]

f(vx, v, ¢) + cv o ,

then there are functions ¢(x,s), x_(e), x+(s) (with ¢(x,e) in Ci)

such that for all € in (0,50) (for some €45 > 0) conditions (a), (b),
(c), (d), and (e) are satisfied. Now however, x (e) » - = or x+(e) > +

as € =+ 0 and

(£") max {1¢(X,€) - ¢(x)|-(1 + TEF%QSTO} -0 as € »~ 0
|x|>xe+l
x_(€)<x<x+(e)

Here x = X, is the single point where ¢(x) has a relative extremum.

The establishment of this result in Chapter IV is the first step
in our proof. Typical representatives of ¢(x,€), x_(e), x+(e), and ¢ (x)

are illustrated on the next page.
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X

We now show that if the function ¢(x,e) satisfies conditions
(a), (b), (c¢), and (d), then the solution u(t,x,e) of
o, - f(uxx, u_, u) + cu_ (2.34)

with initial condition

) ¢ (x,€) xe [x_(e), x+(a)]
u(0,x,e) = 3 (2.35)
¢ (%) x ¢ [x_(e), x+(€)]
is increasing in t. In fact we shall show that
u(t,x,e) - ¢ (x,e) as t > w ,

where ¢m(x,a) is the smallest steady state solution of (2.34) which is
larger than u(0,x,e) for all x. This second step constitutes the heart
of the proof, and we now establish it.

Let ¢(x,e) satisfy conditions (a), (b), (¢), and (d), and de-
fine wu(t,x,e) as the solution of (2.34) with its initial condition given
by (2.35). We first show that u(t,x,e) z_ﬁ(O,x,s) for all x and all
t > 0. Since u(0,x,e) > ¢(x) for all x, and since u(t,x,e) and
¢(x) are both solutions of (2.34), the maximum principle implies that

u(t,x,e) > ¢(x) for all x and all t > 0. In particular,

il

|v

u(t,x_(e),e) > ¢(x_(e)) = ¢(x_(e),e) and
ﬁ(t,x+(a),s) > o(x, (e)) = ¢(x, (e),e)

for all t > 0. Also, from (2.35) we see that
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u(0,x,€) > d(x,e) for all x in [g_(e), x+(e)] .
This allows us to apply the maximum principle for finite domains to ﬁ,
since u(t,x,e) and ¢(x,e) both satisfy equation (2.34) on the inter-
val x_(e) £ x §_x+(e). (Note that the maximum principle presented in
section (2.1) applies only to infinite domains. However, the maximum
principle for equation (2.34) over finite domains is a special case of the
general maximum principle in Chapter IIT). Hence,

u(t,x,e) > ¢(x,e) for all x€& [x_(e), x+(e)] ,all t >0
Since we have already established that u(t,x,e) > ¢(x) for all x and
all t > 0,
G{t,x,e) & #4(0,x,e) for all =, all £3>8 ., (2.36)

We now use (2.36) to show that u(t,x,e) is increasing in t.
From (2.36), u(h,x,e) z_ﬁ(O,x,s) for any h > 0 and for all x. Since
u(t+h,x,e) and u(t,x,e) both solve equation (2.34), the maximum principle
shows that

u(t+h,x,e) > u(t,x,e) for all x, all t > 0, and all h > O
Further, let ¢(x,e) be any steady state solution of (2.34) with
u(0,x,e) < ¢(x,e) for all x
(It is shown in Chapter IV that we can assume such a ¢ exists without
loss). From the maximum principle we conclude that
u(t,x,e) < ¢(x,e) for all x, all t >0

Thus at any given x and €, u(t,x,e) is increasing and bounded in t.
Hence, 1lim u(t,x,e) = ¢_(x,e) exists. Since u(t,x,c) evolves into
this timgj:ndependent function, ¢m(X’E) must be a steady state solution
of (2.34). Moreover from the maximum principle it is easily seen that
¢m(x,e) must be the smallest steady state larger than u(0,x,e) for all

x. That is, if ¢(x,e) is any other steady state solution of (2.34) with
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d(0,x,¢e) jig(x,e) for all x, (2.37)
then
¢m(x,e) f_é(x,a) for all x . (2.38)
This establishes the hair-trigger effect for equation (2.34).
For the third and final step of the proof, we need to establish
that the steady states ¢m(x,s) remain a finite distance from ¢(x) as

e > 0. We establish this by using the following result from Chapter IV:

Lemma 4.8: Assume that ¢(x) is any bounded non-monotonic steady state
solution of

u = f(uxx’ us u) + cu_ . ‘ (2.34)
In addition, if ¢(x) has only a single relative extremum then assume
that at least one of ¢ = ¢(~»), v=0 and ¢ = ¢(+»), v = 0 is a sad-
dle point of the system

¢ =v

X
0

(1l

E(v _,v,¢) + cv
Then if ¢(x) is any other steady state solution of (2.34) and if b (x)
satisfies
¢(x) < ¢(x) for all x ,

then ¢(x) > ¢9 for all x. Here ¢y 1is the least constant steady state

solution of (2.34) with
¢(x) < ¢y for all =x .
Thus d(x) < ¢p §_$(x) for all x
where ¢; 1is the least solution of £(0,0,¢,) = 0 satisfying

p(x) < ¢g for all x.

Note that we can always assume such a constant steady state ¢ exists.
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Clearly the stability of a steady state solution wu(t,x) = ¢(x) of (2.34)
cannot depend on the behavior of the equation at values of ¢ larger
than
¢t 1= szp{¢(X)} ¥ 1

Thus if no constant steady state ¢; exists, we can change the function

f(¢ ¢) for values of ¢ > ¢max + 1 so that £(0,0,¢) has a zero

xx® Py’
at, say, ¢max # 2,

The proof is now easily completed. Let ¢; be as in the above
lemma, and define A > 0 by

¢ ~ ¢(0) = 24
Now, for any € > 0 no matter how small,
a(t,x,e) > ¢m(x,s) as t -+ o«
and so at x = 0,
u(t,0,e) » ¢_(0,e) > ¢y = ¢(0) + 24
Thus at some x (for example, x = 0), u(t,x,e) - $(x) > A for all t
sufficiently large. We now only need to note that since u(0,x,e) is
given by (2.35) and since ¢(x,e) satisfies conditions (e) and (f) (in
case (1)) or conditious (e) and (f') (in case (2)), the perturbations
p(x,e) = 4(0,x,e) - ¢(x)

satisfy all requirements posed by theorem (2.6). Thus, theorem (2.6) is

established.

The above proof shows much more than instability of ¢(x).
Specifically note that because of conditions (e) and (f) or (e) and (f'),
u(0,x,e) < ¢g for all x
must hold for all e > 0 sufficiently small. Note also that u(t,x,e)

and ¢5 are both solutions of (2.34). Thus if u(t,x) is any solution
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of (2.34) whose initial condition u(0,x) satisfies
u(0,x,e) < u(0,x) < ¢ for all x ,
then the maximum principle shows that wu(t,x) must satisfy
u(t,x,e) < u(t,x) < ¢ for all x, all t >0 .

In particular, since u(t,x,e) + ¢y as t >+ « for all x, then
u(t,x) - g as t »+ « for all x as well. Pictorially, any solution
u(t,x) of equation (2.34) which initially is in a region like the shaded

region in the figure below, must have u(re,x) = ¢y

AN

B

All solutions u(t,x) whose initial values u{(0,x) are in the
shaded region must have u(+»,x) = ¢4.

Theorem (2.6) very nearly completes the stability picture for

steady state solutions of
= f u) + cu . 2,34
ut (uxxauxs ) - ( )
Roughly speaking, steady states ¢(x) with at least two relative extrema
are unstable, even to arbitrarily small perturbations of finite extent.

Steady states ¢(x) with exactly one relative extrema and with either

p(-») or ¢(+=) being a saddle point are unstable to arbitrarily small Pper-
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turbations which decay asymptotically like ¢'(x) as x -+ - « and x + + .
Steady states ¢(x) with exactly one relative extrema and with both

¢ (~=) and ¢ (+=) being nodes apparently may be stable or unstable (although
perhaps all of these steady states are unstable) to arbitrarily small per-
turbations which decay asymptotically like ¢'(x) as x > - ©» and as

x + 4+ =, (A stability criterion for these steady state solutions is
developed in Chapter IV). However, steady states ¢(x) with no relative
extrema (i.e. non-constant monotonic steady states) are stable, at least
to small perturbations which decay asymptotically at least as fast as
$'(x) does as x + - » and as x -+ + ®». The precise stability of these
monotonic steady states depends on their phase plane classification as a
N—-+N, aN~»>S, aS~>N, or aS—+S type steady state, and is given in

theorem (2.5). In summary we see that the stability of any steady state

solution ¢(x) of

u = f(uxx,ux,u) + cu_ (2.34)
is generic: the stability of ¢(x) depends only on a few easily deter-
mined characteristics of ¢ and f, and is independent of the detailed
natures of both ¢ and £.

In this section and the previous section we dealt with the
stability of steady state solutions of (2.34) over an unbounded spatial
domain. One of the extensions we will make in Chapter IV is the exten-
sion of the stability/instability results to boundary-initial value pro-
blems over finite spatial domains.

We now focus our attention on another topic. In the next section

we consider the connection between the mean wavespeed of a solution

u(t,x) of
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u, = f(uxx,ux,u) (2.39)
and its initial condition u(0,x). As a by-product of this analysis, we
will find that the stability results contained in theorem (2.5) for
bounded monotonic steady state solutions of (2.34) are sharp in most

cases.

2.4 Mean wavespeeds and the initial conditions. In this section, we

present some results from Chapter V. As in section (2.2), we consider
equations
u, = f(uxx,ux,u) (2.39)
which admit non-constant monotonic solutions
u(t,x) = ¢(x-ct,c) (2.40)
for some values of ¢ (which may be zero), since these are the non-tri-
vial stable traveling wave solutions of (2.39). We first determine when
the existence of a monotonic solution ¢(x-ct,c) of (2.39) at a parti-
cular wavespeed ¢ 1implies the existence of other nearby monotonic
traveling wave solutions, both at the same and slightly different wave-
speeds. We then use these results and the maximum principle to establish
the connection between the mean wavespeed of solutions u(t,x) of (2.39)
and their initial conditions u(0,x).
To see how such results can be obtained, let u(t,x) = ¢(x~ct)
be an increasing traveling wave solution of (2.39). Then for all h,,
h, > 0 (no matter how large) ¢(x+ho~ct) and ¢(x-h;-ct) also solve
(2.39). The maximum principle therefore implies that all solutions u(t,x)
of (2.39) with initial conditions u(0,x) satisfying
¢ (x-hy) < u(0,x) < ¢(xt+h,) for all x , (2.41)

must satisfy
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¢ (x—ct-h;) < u(t,x) < ¢(x-ct+hy) for all x and all t >0 .
(2.42)
This is illustrated in the following figure, where the implication of the

maximum principle is that all solutions of (2.39) which are initially in

the shaded region will remain in the shaded region for all t > 0.

¢ (X—Ct+h2) 3

Lm

T (x-ct-h,)

It is apparent that these solutions u(t,x) travel with mean wavespeed
¢ in an appropriate sense. Moreover, h; and h, can be arbitrarily
large. Thus the main restrictions on which initial conditions u(0,x)
can be bounded as in (2.41) are asymptotic in nature. It is also clear
that stronger results can be obtained by using the upper and lower func-
tions found in section (2.2).

In this section we will consider the four main types of mono-
tonic waves, S + S, N+ S, S - N, and N - N, separately. For each
case, assuming a single monotonic traveling wave solution exists, we will
determine the existence or non-existence of nearby monotonic waves travel-
ing with both the same and nearly the same velocities. We will then use
the maximum principle and the upper and lower functions constructed in
section (2.2) to obtain the mean wavespeed/initial conditions results.
We begin with the simplest case, namely the case where u(t,x) = ¢(x-cqgt, cq)

is a monotonic S -+ S type traveling wave solution of (2.39).
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Case I: S - 8. Suppose u(t,x) = ¢(x,cg) 1is a monotonic bounded steady

state solution of

u

! f(uxx,ux,u) + cu_ , f; >0 (2.43)

at the wavespeed ¢ cp, and suppose also that ¢ = ¢(-=,cp) = ¢_, v=0

and ¢ = ¢(+~ ,cq) = ¢, v=0 are both saddle points of

g =V
x (2.44)
f(vx,v,¢) + ¢cv = 0
at ¢ = cy. In addition we assume that ¢(x,cy) is increasing, since

the analysis for ¢(x,cy) decreasing is essentially the same.
With these assumptions, the phase plane of (2.44) at c=c,

looks 1like

Since ¢ = ¢, v=0 and ¢ = ¢+, v=0 are saddle points at c¢ = cg, they
are saddle points for all values of <c¢. Thus, for each ¢ there exists
a function ¥ (x,c) and W+(x,c) such that every steady state solution
u(t,x) = ¢(x,c) of equation (2.43) with ¢(-=,c) = $_ and with
¢x(x,c) > 0 for all x sufficiently small must be

b(x,c) = T_(x+h,c) for all x and some constant h
Similarly, if wu(t,x) = ¢(x,c) solves equation (2.43), if ¢(+=,c) = ¢+,

and if ¢X(x,c) > 0 for all x sufficiently large, then
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¢(x,c) W+(x+h,c) for all x and some constant h.

Thus, for any c¢ there is at most one steady state solution u(t,x) =

p(x,c) of (2.43) (modulo translations in x) which is both monotonic

and goes from ¢(-=,c) = ¢_ to ¢(+w,c) = ¢+. One sees that finding

a value c¢y for c¢ at which such a solution exists is equivalent to
finding a ¢y at which
¥ (xth,cq) = W+(x,c0) for all x for some h

This bears a resemblance to an eigenvalue problem.

We now establish the wavespeed/initial condition result for
this case. Consider equation (2.43) at ¢ = 0, namely

u, = £lu_,u ,u) . ' (2.45)

This is the given equation (2.1) in terms of the original stationary co-
ordinate system. Let ¢(x,cy) be the monotonic steady state solution

of (2.43) at c = ¢y with ¢(-=,cy) = b 5 p(H=,cp) = ¢ and with

+’

¢ =¢ , v=0 and ¢ = ¢

3 s ¥ = 0 being saddle points of system (2.44)

at ¢ = cpg. Then u(t,x) = ¢(x-cyt,cy) solves equation (2.45). We now
utilize the upper and lower functions of lemma (2.4) and the maximum prin-
ciple. This immediately shows that if u(t,x) and u(t,x) are any of the
upper and lower functions given in lemma (2.4), then

u(0,x) < u(0,x) :_E(G,x} for all x
implies that

u(t, x—cgt) < u(t,x) < u(t,x~cgt) for all x, all t >0

for any solution wu(t,x) of equation (2.45). Substituting for E_and.E
from (2.30), we find that for any q(0) > 0 sufficiently small (and for
any h; and hy), all solutions u(t,x) of (2.45) satisfying

b (x-hy,cqg) - q(0) < u(0,x) < ¢(xt+hy,cg) + q(0) for all x (2.46)
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must also satisfy
¢ (x—cot-h1-kq(0),cp) - q(t) < u(t,x) < ¢(x-cot+hyr+kq(0),cy) + q(t)

for all =x, all t >0 . (2.47)
Here, q(t) is given by (2.31) and thus q(t) - 0 monotonically as
t » o, We illustrate in figure (4) the bounds on wu(t,x) given in (2.47).
From this illustration it is clear that whenever u(0,x) satisfies (2.46)
for a small enough q(0) > 0 and any h; and hy, the resulting bounds
(2.47) on the solution wu(t,x) imply that u(t,x) travels with mean

wavespeed cp in the appropriate sense.

f,¢(x—cot+h2+Kq(0),C0)+Q(t)

L / ///////// Izq(t)
X / / ho+h) +2kq (0) / ///

o YT / 7

¢ (x=cot=h;-kq(0) ,cq)-q(t)

Figure (4): Since both of the functions bounding the shaded region move
with speed c,, since q(t)>0 as to+=, and since u(t,x) must
be in the shaded region for all t>0, u(t,x) must propagate
with mean wavespeed cg.

Thus when u(0,x) can be bounded as in (2.46), we found that
the resulting solution must travel with speed c¢3. To obtain the mean
wavespeed/initial condition result, we need only identify the class of
initial conditions which can be bounded by (2.46). Therefore, we note

that (2.46) is satisfied for a given q(0) > 0 and some h; and hj

sufficiently large whenever the conditiomns
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¢ - a' < u(0,x) < ¢+ + o' for all x
$_ —a' <u(0,x) < ¢_ +a' for all x < - xg (2.48)
¢, - a' < u(0,x) < o, + a' for all x > + xg

are satisfied for any x5 > 0 and any o' 4in (0,q(0)). Hence, when-

ever conditions (2.48) are fulfilled for any o' > 0 small enough and

for any xg > 0, then the solution u(t,x) of
g = f(uxx,ux,u) (2.45)

travels with mean wavespeed cp- As an immediate corollary, we see that

there is at most one speed c¢py for which a monotone solution ¢ (x—cpyt.Cq)

(with ¢(-=,cq) = ¢_ and ¢$(+>,cp) = ¢+) exists.

In summary, we have discovered:

Theorem 2.7 (S > S): Suppose that wu(t,x) = ¢(x-cot,cg) is a bounded

monotonic traveling wave (or steady state) solution of
| u, = £lu_,uu) (2.45)
and also suppose that ¢ = ¢(-~,cy), v=0 and ¢ = p(+=,cq), v =0
are both saddle points of system (2.44) at ¢ = cg. Then if wu(t,x) =
$(x—5t,6) is any other monotonic traveling wave solution of
(2.45) with §(-=,c) = ¢p(-=,cq) and ¢(+=,c) = ¢(+»,cy), then
¢ (x-ct,c) = ¢(x-cot+h,cy) for all x, all t > 0

for some h. 1In particular c¢ = cQ.

Theorem 2.8 (S + S): Suppose that wu(t,x) = ¢(x-cygt,cg) 1is a monotonic

bounded traveling wave (or steady state) solution of (2.45), and also
suppose that ¢ = ¢(-»,cp) = ¢ _, v =0 and ¢ = ¢(+o,cg) = ¢+, v =20
are both saddle points of system (2.44) at ¢ = cg. Then if wu(t,x) is

any solution of (2.45) with initial conditions u(0,x) satisfying
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$_ —a' <u(0,x) < ¢ +af for all x < - xq ,
¢, - a' < u(0,x) < o, + a for all = >+ %g »
min{¢_,¢+} - a' < u(0,x) < max{¢_,¢+} + a' for all x ,

for any a' > 0 sufficiently small and any %y > 0, then u(t,x)

travels with mean wavespeed cg.

Note that we have established the above theorems only in the
case where ¢(x,cy) 1is increasing in x. However, a similar analysis
easily establishes the theorems for the case of ¢(x,cy) decreasing.

Roughly speaking, theorem 2.7 (S+S) shows that if ¢ and ¢+
are both saddle points, then given that ¢(-»,cq) = ¢_ and ¢ (+=,cq) = ¢+
there is at most one traveling wave wu(t,x) = ¢(x-cgt,cy) modulo trans-
lations in x, and it travels with a unique wavespeed cy. Moreover,
from theorem 2.$ (5+5), we see that any solutions u(t,x) whose initial
conditions u(0,x) remotely resemble this unique traveling wave must

travel with mean wavespeed c¢y. This is illustrated in the following

figure.

ru=max{¢_,¢+}+d

(u=min{¢)_,¢+}+0t' /
007077, |

lu=minf¢_,¢+}“a'

Xx=txq

If u(0,x) is contained in any region like the one shaded above (where x;
can be arbitrarily large), then the solution u(t,x) must travel with mean
wavespeed cg.
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This completes the S = §
the N - S case.
Case IT: N -+ S. Suppose that

steady state solution of

u(t,x) = ¢(X,C0)

case. We continue now by analyzing

is a bounded monotonic

u, = f(uxx,ux,u) + cu_ (2.49)
at ¢ = cy. We also assume that ¢ = ¢(-»,cq) = $_, v=0 1is a node
and that ¢ = ¢(+=,cy) = ¢+, v = 0 dis a saddle point of the system

¢ =V
& (2.50)
f(vx,v,¢) + cv=20
at ¢ = cg. Finally, we will assume that ¢(x,cy) 1s increasing, since

the analysis for decreasing

¢ (x,cq)

proceeds similarly.

We will first use a continuity argument to show that if

exists and has the properties

$ (x5¢0)

each wavespeed c in at least a sma

is a monotonic steady state solution

Furthermore, we will find that

¢ (+=,c') = ¢p(+=,cp) = ¢

that at any given wavespeed ¢ there

(2.49) (modulo tramnslations in x).

in a theorem.
initial value results for this case.

Let ¢(x,cq)

at. e with all of the propertie

Co

plane of system (2.50) at ¢ = ¢y mu

¢

in figure (5) below. Since

»

it is a saddle point at each value of

assumed above, then usually for

11 range (cj,cp) about cg there
d(x,c') of (2.49) at c = ¢’
¢p(=2,c") = ¢(~~,cy) = ¢_ and that

As a by-product of this analysis we will find

is at most one such solution of

We will then summarize these results

Finally, we will quote and prove the mean wavespeed/

We now proceed.

be the monotonic steady state solution of (2.49)

s assumed above. Then the phase

st look like the phase plane sketched

0 is a saddle point at c = cg,

c. Similarly, since ¢ = ¢_, v=0
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is an unstable node at ¢ = cy, it is an unstable node at each value of

accidental rate

C
/7 s o 2 !
—_——— —
\\ )
=O / o / \\
o= ¢_ o = ¢,
Figure (5)
c < ¢ , where ¢ is
— “max max
Cmax E o~ 2 /f](010,¢_) f3(050:¢_) = f2(0305¢_)

We now show that the existence of the monotonic steady state solu-—
tion ¢(x,cg) of (2.49) at c = ¢y usually implies the existence of
similar monotonic steady state solutions of (2.49) for all ¢ 2 Cpax Suffi-
ciently near cp. Since ¢ = ¢+, v =0 idis a saddle point of system (2.50)
for each ¢, at each ¢ there is a solution ¢ = ¥(x,c), v = %;-W(x,c)
of system (2.50) such that V¥(x,c) —+ ¢+ as x »+ + o and such that ¥(x,c)
is increasing in x for all x sufficiently large. Moreover there can
be only one such solution (modulo translations in x) since ¢ = ¢+, v =20

is a saddle point. Thus, for each ¢ < ¢ there is at most one steady

it

o

X

state solution ¢(x,c) of (2.49) (modulo translations in x) which is

monotone and which goes from ¢(-»,c) = ¢ to ¢(+=,c) = ¢,. (Of course

+

for ¢ » - the point ¢ = ¢ , v = 0 1is no longer an unstable node,

and so no such solutions can exist for c¢ > Cmax)'
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By using the translational freedom in x for each ¢ in the

definition of Y¥(x,c), we can make V¥(x,c) and v(x,c) = %;—W(x,c) both
be continuously differentiable in c¢. (This is an implication of Chapter

13 of reference [6] , for example). Moreover, by further translation of
¥(x,c) we can in addition set V¥Y(x,cqg) = ¢(x,cq).

Let ¢, <

» ¢+ be defined such that £5(0,0,¢) < 0 for all ¢

in [$+, ¢;], and let x+(c) be defined by
¥(x,c) 3_$+ for all x 3_x+(c)
From the phase plane of system (2.50), one realizes that
_ 9
v(x,c) = gg-W(x,c) > 0 for all x 3_x+(c) 5

Let €, ¢ with ¢; < ¢y < ¢y be selected, and let X, be defined by

x, = max_ {X+(c)}
EpSErCa
We have observed from the phase plane that ¥(x,c) is monotone for xix+

when ¢ dis in (51,52). Suppose a constant x with x <x+ is selected

No matter how small x_ is, the uniform continuity of v(x,c) in ¢

when x 1is restricted to the interval [x_,x+] shows that for some ¢,
in [éj,cq) and some ¢, in (cp,¢p], the function v(x,c) > 0 for
all x in [x_,xi] when ¢ dis in (51,52). Hence, we now know that for

any x_ (no matter how small) there is a ¢; < cp and a cy > ¢y

such that Y(x,c) dis monotonic for all x > x when c¢ 1is in

(81,82).

Now x_ can be taken arbitrarily small, and so T(x_,co) and
v(x_,co) can be made to be very near ¥(-»,cy) = p(~=,cq) = ¢_ and
v(-=,cg) = 0. Moreover, by restricting the interval (21,52) about ¢

sufficiently, we can make V¥(x_,c) and v(x_,c) very near ?(x_,co) and
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v(x_,co) for all c¢ in (51,52). Therefore, we need to examine the be-

havior of solutions of system (2.50) near the node at o =¢ , v 0. 1In

it

particular, let ¢(x,c) be any solution of (2.50) with 5(—m,c) = ¢ and

; ~ 3 »
for which v(x,c) = 5;—¢(x,c) is positive for all x sufficiently small.
As in reference [6], solving the asymptotic equation

£100,0,9 0%, + (£2(0,0,¢_)+e)¢_+ £3(0,0,0_)(4-¢_) = 0  (2.51)
shows that for ¢ < ¢ either
max

$(x,c) ~ ¢+ aekl(c)X as x+» (usual asymptotic decay rate) or
(2.52)

- k.
¢(x,e) ~ ¢+ ae el as x+« (accidental asymptotic decay rate)

for some positive constant a. Here,

=(£2(0,0,9_)+c) + V/(£,(0,0,¢ )+c)2- 4£;(0,0,9 )£3(0,0,6)

ki (c),ko(ec) =
2£7(0,0,¢ )
(2.53)

where 0 < kj(c) < k2(c). Similarly in the limiting case of ¢ = € nax

either

k
ile)x as x>» (usual asymptotic decay rate) or

(2.54)
as x+« (accidental asymptotic decay rate)

$(x,c) ~ ¢_ - axe
$(x,c) - ¢+ aekl(c)X
for some positive constant a. Let us note that at any c f-cmax all
solutions %(x,c) of system (2.50) which are increasing in x for all x
sufficiently small and which also decay to ¢ at the accidental rate as
X * - » are represented by a single phase plane trajectory. Thus all

these solutions are translates of each other.

Suppose now that ¢(x,cy) (which is also V¥{(x,cy)) decays to

¢_ at the usual rate as x > - ». Define § > ¢_ such that £5(0,0,¢)>0

for all ¢ in [¢_,$;]. By selecting x_ sufficiently small and selec-

ting El < cg and ¢y > ¢y sufficiently near cg, the uniform continuity

of ¥(x,c¢) in ¢ for =x in [3_,x+] shows that V¥(x,c) = $_ ‘at exactly
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one point x = x (¢) in [x_,x+]. We will now show that for all c=<c
¢ sufficiently near c(, the steady state solution ¥(x,c) decays to

¢ monotonically for x < x_(c) and decays to ¢_at the usual rate as

X =~ o,
Consider the phase plane of system (2.50) near ¢ = ¢ , v =0
at any value of ¢ < Clax’ 23S illustrated in figure (6) below. Let us
AV ' e accidental
Mn
va(c) ----------
Ly
::/‘—“'r‘w—,i)—__‘
-
e Ly
A
/ Ly
= \
= v v ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 7
¢
¢ ¢

Figure (6): Phase plane of system (2.50) near ¢=¢ , v=0 at any c<c s LE
the phase plane trajectory of ¥(x,c) intersects the ¢=¢ line at an?a%osi—
tive point v below the crossing point v_(c) of the trajectory of the acci-
dentally decaying solution, then ?(x,c)a must decay monotonically to ¢ at
the usual rate as x»-». This is because_the phase plane directors point
downward on the v=0 line between ¢ and ¢ and_because the horizontal com-
ponents of the phase plane directors on the ¢=¢_line are positive for

v>0.

examine the phase plane trajectories of all solutions of system (2.50) which
decrease from ¢ = $; to ¢ = ¢ at the usual rate as X » =~ =. We see

that all these trajectories must cross the ¢ = §_  line at a positive
point v which is smaller than the point v = va(c) at which the acci-

dental solution (i.e. the solution which decays to ¢ = ¢_ at the acci-

dental rate as X -+ - =) crosses the ¢ = $_ line. Conversely, as
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illustrated in figure (6), any solution of system (2.50) which crosses the

b = $_ line at a positive point v < va(c) must decrease monotonically

from ¢ = ¢ to ¢ = ¢_ at the usual rate as x decreases to - .

Now we have already shown that whenever ¢ 1is in (51, éz) then
Y(x,c) 1is monotonic for x 3_x&(c) and Y(4w, c) = ¢+, where x_(c)
has been defined as the point x at which
Y(x_(c),e) = ¢_ .
Thus to conclude that u(t,x) = ¥(x,c') 1is a monotonic steady state
solution of (2.49) at c = ¢' with V¥(-=,c') = ¢_, with Y (+o,c') = ¢+,
and with ¥(x,c') decaying to ¢_ at the usual rate as x » - @ for any

¢’ 4n (51,62)f\ (—m,cmag], we now need only to show that

v(x_(c'),c') S;—T(x,c')lx=x Lty < va(c') .

However, since Y¥(x,cy) decays to ¢_ at the usual rate,

v(x_(co), cp) < Va(CO) for ¢ = ¢y A
M oreover, v(x_(c),c) and Va(c) are continuous in ¢ for <c¢ i-cmax'
Thus for some c¢; in [él,co) and some <cp in (00,32] , both suffi-
ciently near cg, we can conclude that v(x_(c'),c‘) < va(c') for all

' —eo i .
c in (cl,cz)fw ( ’Cmax] as is needed

Thus, for some c; < ¢g and some ¢, > ¢y we have now shown

by a continuity argument that for each ¢ in (cl,cz)f\ (—m,cmax], there
is a traveling wave solution u(t,x) = ¥(x-ct,c) of the equation
", - f(uxx,ux,u) (2.55)

which is monotone, which decays to ¢ _ at the usual rate as xX -+ — @,
and which has VY(4+w,c) = ¢+. purthermore, we have shown that at each wave-
speed ¢ there is at most one such solution (modulo translations in X).

In Chapter V we will analyze this continuity argument further, and this
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analysis will enable us to characterize the extremal wavespeeds c¢; and
min{cz,cmax} in that chapter. We now summarize the results of this pre-

sent analysis in the following theorem.

Theorem 2.7 (N -+ S): Suppose that u(t,x) = ¢ (x-cgt,cg) is a bounded

monotonic traveling wave (or steady state if ¢y = 0) solution of

u, = f(uxx,ux,u) 2 (2.55)

Suppose further that ¢ = ¢(-~,cp) = ¢ , v =0 is a node and ¢ = ¢ (+=,cq)

= ¢+) v = 0 1dis a saddle point of the system

. =v

X

f(vx,v,¢) + cv

(2.50)

Il

0
at ¢ = cg. Finally suppose that ¢(x,c;y) decays to ¢_  at the usual
rate as x + - . Then there is a c¢; and a c¢, with

- ® e <cp e
such that for each c¢' 1in (cl,cz)f\ (—m,cmax:] there exists a ¢(x,c')
satisfying the following conditions:
(1) o¢(x,c"), ¢X(x,c') are continuously differentable in c',
(2) ¢(x,c'") 4is monotonic in x,
(3) u(t,x) = ¢(x~c't,c') solves equation (2.55),
(4) ¢(-=,c'") = ¢_ and ¢(H=,c') = ¢, and
(5) ¢(x,c') decays to ¢_  at the usual asymptotic rate as x » — = .,
Also, if ¢3(x,c") and ¢,(x,c') are any functions satisfying (2), (3),
and (4) at some <c', then ¢;(xth,c') = ¢o(x,c') for all x and for

some h at that c'.

The above theorem states that if wu(t,x) = ¢(x-cyt,cy) 1is a mono-

tonic N > 8 type traveling wave solution of (2.55) which decays to
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¢(~=,cp) at the usual rate, then for at least a limited range of speeds
¢ there is a similar monotonic N =+ S type traveling wave u(t,x) =
¢ (x~ct,c) at each wavespeed c. It also shows that for any wavespeed c
these solutions are unique to within translations in x.

In Chapter V we will find a characterization of the extremal
wavespeeds c¢; and ¢y, and this characterization will lead to stronger
results than those contained in the above theorem in some cases. For
example, in Chapter V we will be able to show that if there are no con-
stant steady state solutions wu(t,x) = ¢y of (2.55) between ¢_ and ¢+
(i.e. if £(0,0,¢p9) # O for all ¢, with min{¢_,¢+} < ¢g < max{¢_,¢+}),
then ¢ = - «, That is, monotonic N = S type travéling wave solutions
exist at 311 wavespeeds ¢ ilmin{cz,cmax}.

In section (2.2) we obtained stability results for monotonic
waves in theorem (2.5). The above theorem, theorem 2.7 (N -+ S), shows
that the stability results contained in theorem (2.5) for the N - § case
are sharp whenever the monotonic wave wu(t,x) = ¢(x-cpt,cp) decays to
¢_ at the usual rate as x > - =. In particular, theorem (2.5) says that
a bounded monotonic N + S type solution u(t,x) = ¢(x,cg) of (2.49) at
¢ = ¢y 1is stable to small perturbations which are bounded as x > + =
and which decay asymptotically like ¢x(x,c0) as x > — =, Suppose that
¢(x,cg) decays at the usual rate as x > - «. Then theorem 2.7 (N -+ 858)
shows that for each & mnear ¢y there exists a monotonic solution u(t,x,&)
z ¢ (x=(&~cp)t,8) of

B * f(uxx,ux,u) + cou, -
Since for ¢ * ¢y the solutions ¢(x,cp) and ¢ (x-(c-co)t,c) drift apart

as time increases, the solution u(t,x) = ¢(x,cy) of
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u = f u ,u) +
t (uxx’ b ) coty

is unstable to the initial perturbations p(x,¢) given by
u(0,x) = ¢(x,cq) + p(x,8) = ¢(x,c0) + [6(x,8) - ¢(x,cq)]
for all & # cp. Since ¢(x,c) 1is continuous in ¢, since

kl (C)X

¢X(x,c) ~ a(c)e as x -+ — «

and since kj;(c) 1is continuous in c¢ for ¢ E-Cmax’ we see that the
solution ¢(x,cy) of (2.49) at c = cp is not stable to all arbitrarily
small perturbations which decay exponentially (as x =+ - «) at any
slightly slower rate than ¢x(x,c0). Thus the asymptotic decay restriction
on the perturbations allowed by theorem (2.5) cannot be significantly re-
laxed. Hence theorem (2.5) is sharp for the N + S case whene§er the
asymptotic decay as x * - « is at the usual rate.

We now establish the mean wavespeed/initial condition result for
this case. Consider equation (2.49) at ¢ = 0. This is

u, = f(uxx,ux,u) 5 (2.55)
and is the given equation in terms of the original stationary coordinate
system. Suppose for some cy that u(t,x) = ¢(x-cpt,cp) 1is a bounded
monotonic solution of (2.55), that ¢ = ¢(-=,cq) = ¢_, v =0 is a node,
that ¢ = ¢(+o,cqg) = ¢+, v =0 1is a saddle point, and that ¢(x,cqg) de-
cays to ¢_  at the usual rate as x * - @. We can now apply theorem 2.7
(N + 8), and we conclude that for each ¢ in (c;,¢») there is a bounded
monotonic solution u(p,x) = ¢(x-ct,c) ~which has ¢(+=,c) = ¢+ and which
decays to ¢  at the usual rate as x - - @. Here ¢&p; has been defined as
8y min{cz,cmax}
Let us assume that ¢(x,cy) 1is increasing in x, since the

analysis for ¢(x,cq) decreasing is very similar. Now for each solution
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u(t,x) = ¢(x-ct,c) lemma (2.3) yields corresponding upper and lower
functions ;(t,x—ct,c) and u(t,x-ct,c). From equation (2.24) and (2.25) of
lemma (2.3), these functions are

u(t,x,c) = ¢ (xthy+h(t,c),c) + q(t,c)-[¢(x+h1+h(t,c),c) - ¢ ]

(2.60)
g(tsxac) = ¢(X—h2-h(t,C),C) e q(t,C)'[¢(X—h2“h(t,C),C) - ¢_]

where

e, e) = qe0)-wle) (L — o2y Lir oy = qto)e™®% 9t | (g.6D)
Here q(0) > 0 is any sufficiently small constant, h; and h, are
arbitrary, and «k(c) and s(c) are set positive constants which may de-
pend on c¢. These upper and lower functions in conjunction with the
maximum principle easily establish various mean wavespeed results. For
example, if for any ¢ and ¢ in (c;,cy) we have

u(0,x,&) < u(0,x) j_G(O,x,g) for all x
where E_and-G are any of the upper and lower functions in (2.60), then
the maximum principle implies that
wltz-tt,8) < ule,x) j E(t,x—Qt,g) for all x all t > 0
is also true, where u(t,x) is the solution of equation (2.55) with ini-
tial condition u(0,x). That is, if wu(t,x) is any solution of (2.55)
whose initial condition wu(0,x) satisfies
¢ (x-hp,8) - q(0):[p(x-h2,8) - ¢_7] < u(0,x) (2.62)
< ¢(xt+hy,g) + q(0)1§(x+hl,g) - ¢;] for all x
for any &, ¢ in (cj,¢2), for any h; and hy, and for some sufficiently
small q(0) > 0, then
¢ (x-¢&t-hy,¢&) - q(t,E)-@(x—Et—hz,E) - ¢_].i u(t,x) (2.63)
< ¢(x-ctthy,c) + q(t,c)[p (x-ct+h;,c) - ¢;]

for all x, all t >0
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Relation (2.63) implies that u(t,x) cannot travel with a mean wave-—

nor with a mean wavespeed smaller than c¢. This

speed larger than ¢

is clear from the illustration in figure (8) below.

= ct+hi+q(0)k () ,e)+a(t,e)- Lo -4 ]

" "i..~.~.-::::SEESSE§::F§>\ .
TR
(c—c)t + constant

\\-\

NN

L (x-2t-hp-q (0)k () ,8)-q(t,&)[¢,~0_]

0

=4 X
o B

Figure (8): Since the functions bounding the shaded region move with
speed ¢ and &, since q(t,&)~0 and q(t,c)>0 as t+te, and since u(t,x) re-
mains in the shaded region for all t>0, u(t,x) cannot travel with a mean

wavespeed ¢ outside the interval (c, &),

We expand this observation into the following theorem

Theorem 2.8 (N -+ S): Suppose that u(t,x) = ¢(x-cgt,cg) 1is a bounded

monotonic solution of
", ™ f(uxx,ux,u) £, >0 , (2.55)
that ¢ = ¢(4=,cg) = Y5 ¥

at the usual rate as

v = 0 is a node, =0

that ¢ = ¢(-=,cg) = ¢_,

is a saddle point, and that ¢(x,cy) decays to ¢_

X 5= o6 e
Define the positive exponential decay constant A(c) by

~ (£,(0,0,¢4 )+c) — V(E;(0,0,¢ )2 = 4E,(0,0,5_V£5(0,0,4.)
o 2£,(0,0,6_)

ale) =
as in the previous theorem.

for all ¢ < ¢ , and define ¢y and cp
— max
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et ¢&p = min{cz,cmax}.

Then if wu(t,x) is any solution of (2.55) whose initial con-

dition u(0,x)

is smooth and satisfies

¢,=q5 < u(0,x) < ¢ +qq for all x > x; for any

x0

¢ < u(0,x) §‘¢++q0 for all x if ¢(x,cy) is increasing in x, (2.64)

¢,~qp < u(0,x) < ¢_

then we can conclude the following:

(1)

e

and if q5 > O

mean wavespeed
(2)

e

and if qp > 0

mean wavespeed
(3)

such that

—)\(C)X |

for all x if ¢(x,cy) is decreasing in x,

if for any ¢ in (cy,&y) there is an o > 0 such that

is sufficiently small, then u(t

larger than c;

if for any ¢ din (e¢y,85) there is a

-2(e)x

is sufficiently small, then u(t

smaller than «c¢3

u(O,x)—¢_[ > o for all x < 0

;X)

|u(0,x)—¢_| < B for all x < 0

:X)

cannot travel with

B > 0 such that

cannot travel with

if for any ¢ in (c;,&;) there is an a > 0O and a B > 0

a < e—A(c)x |u(0,x)u¢_{ < B for all x <0

and if q5 > 0
wavespeed c

(4)

hold for all

is sufficiently small, then u(t
and has finite dispersion; and

if for any ¢ in (cj,cp)

1t @ O ()= |[u(o,x)-¢ | =0
X->—00 -
lim e_()\(c)ﬂj)X lu(0,x)~¢ | = +

XFr—x

»X)

and

travels with mean

(2.65)

u >0, and if q; > 0 is sufficiently small, then u(t,x)

travels with mean wavespeed ¢ but may not have finite dispersion.
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Roughly speaking, theorem 2.8 (N ~ S) supposes that u(0,x)
is any smooth function which is in a region like the one shaded below.

It then concludes that if u(0,x) decays to

\\ NN RN

X=X

the node ¢_  exponentially as x » - ®, then the mean wavespeed of the
solution u(t,x) of (2.55) is determined only by the exponential decay

constant.

Proof: We prove the above theorem only for the case of $p(x,cp) in-
creasing in x. The proof when ¢ (x,cp) is decreasing is similar. By
our hypotheses we can apply theorem 2.7 (N > S). We thus know that for
each ¢ 1in (c1,8,) there exists a bounded monotonic N =+ S type solu;
tion wu(t,x) = ¢(x-ct,c) of (2.55). Moreover, ¢ (o, c) = ¢+ and
é(x,c) decays to ¢ at the usual rate as x > — o, Finally, for each
of these monotonic traveling waves there are corresponding upper and lower
functions th,x—ct,c) and u(t,x-ct,c) given by

u(t,x,c) = ¢ (x+h;+h(t,c),c) + q(t,e)-[¢ Gethy+h(e,e),e)~¢_] (2,50

ut,x,¢) = §Ge-hp-h(t,e),e) = q(t,e)-[b (mhp=h(t, ) ,e)=d_] '
where

(e e) = q(0)k(e) (L - e ) (ir o) = q0)e 5@ | (261

To prove part (1), we note that when (2.64) and the assumptions

of part (l) are satisfied, then we can bound u(0,x) by
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¢ (x-hy,c) - q(O}[¢(x-h2,c)—¢_J‘g u(0,x) f_¢++q(0)1}+—¢;] for all x

- (2.66)
for any q(0) > qo[}+—¢;] L by taking h, sufficiently large. We note

that since ¢+ is a saddle point, f(0,0,¢+) =0 and f3(0,0,¢+) < 0.
Thus, if we define n =% f3(0,0,¢+) < 0 and

— r

ule,x) = ¢, + q(0)[p,-¢Je™

then for q(0) > 0 sufficiently small

u - f(uxx,ux,u)

. 1(0) - [o,=¢ Jne" - £00,0,a(0)- [4,-¢_Je")

>0 for all t >0
Hence, u is an upper function for q(0) > 0 sufficiently small. Thus,
(2.66) bounds the initial condition u(0,x) by the lower function
u(0,x,c) (see equation (2.60)) and the newly defined upper function
u(0,x). Using the maximum principle, we conclude
¢ (x~ct=hy-q(0)k(c),e) - q(t,c)-[¢ ¢ _] < ult,x) (2.67)
% ¢++ q(O),BHf¢_]ent for all x and all t > O,

where q(t,c) 1is given in (2.61), when q(0) > 0 is sufficiently small.
Since q(0) can be any constant larger than q0[¢+—¢;]—1, it can be
taken arbitrarily small by taking qy > 0 arbitrarily small. Thus, for
qy sufficiently small relation (2.67) holds. This is illustrated in
figure (9) below, where we see that u(t,x) cannot travel with mean
wavespeed faster than c.

Part (2) is proved in a manner very similar to part (1). 1In
fact we find that
¢ < u(t,x) < ¢p(x-ct+hy+q(0)k(c),c) + q(t,c}[¢+—¢_] for all x and all t>0,
which is illustrated in figure (10). We conclude for this case that

u(t,x) cannot travel with mean wavespeed slower than c.
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nt
04018, -¢ Te

u

" 6 (x-ct-hp-q(0)k(e),c)-q(t,c) L ~¢_1

Figure (9): Since q(0)1}+—¢_]ent+0 and q(t,c)»0 as t>+=, the fact that
u(t,x) remains in the shaded area for all t>0 implies it
cannot travel with mean wavespeed faster than c.

(¢(x-ct+h +q(0)k(C),C)+Q(t,C]@+—¢w]

< u=¢

+
u
c
X
o = SRITRRN.
Figure (10): Since q(t,c)»0 as t>+» and since u(t,x) remains in the

shaded region for all t>0, u(t,x) cannot travel with wave-
speed slower than c.

To prove part (3), we note that when u(0,x) satisfies (2.64)
and the assumptions of part (3), then we can bound u(0,x) by
¢ (x-hy,c)=q (0)-[p (x-hyp,c) - ¢ ] < u(0,x) < ¢(x+hy,c) + q(0)-[¢ Gerhy,e)=¢_]
for all x , (2.68)
for any q(0) > qo[}+—¢;]-1 by taking h; and h,; sufficiently large.

For q(0) > 0 sufficiently small, relation (2.68) bounds the initial
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condition u(0,x) by the lower and upper functions u(0,x,c) and-;(O,x,c)
(see equation (2.60)). Using the maximum principle and the expressions for
u(t,x,c) and E(t,x,c), we find that
¢ (x-ct-hp-q(0)x(c),c) - q(t,e)[¢,-¢_7 < ult,x)

§_¢(x—ct+h1+q(0)K(c),c) + q(t,c){}+—¢_]

for all x and all t > 0 . (2.69)
This is illustrated in figure (l11). We conclude that u(t,x) travels
with mean wavespeed ¢ and has finite dispersion. The phrase "has finite
dispersion' is used here and in the statement of the theorem to mean
precisely that the distance between the lower and upper functions which
bound u(t,x) in (2.69) is limited to no more than Zq(O)K(c) + hjy+hs,
which is finite. This is in contrast to part (4), where we are only able

to show that the distance between these functions grows no faster than

o(t).

\~¢(x~ct—h2—q(0)K(c),c)—q(t,C)[¢+*¢_]

Figure (11): Since q(t,c)»0 as t»», and since u(t,x) must remain in the
shaded region for all t>0, u(t,x) must travel with mean
wavespi-ed c. Furthermore, the distance between these two
bounding curves is constant.
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We will delay the proof of part (4) until Chapter V. There
it is shown that when u(0,x) satisfies (2.64) and the assumptions of
part (4), then u(t,x) can be bounded by curves which move with asymptotic
speed c¢. Specifically, the midpoints of the leading and trailing bounding
curves are given by x = ct+0(t) and x = ct-0(t), as illustrated in
figure (12). Thus, the curves move with asymptotic speed c but the
distance between them grows in time as o(t). We therefore cannot con-

clude "finite dispersion" as in part (3).

’ \\separation - o(e)Q

x=ct-o(t) x=ct+o (t)

Figure (12): Since the leading and trailing curves move with asymptotic
speed ¢, u(t,x) must also move with mean speed c¢ since it
remains in the shaded area for all t>0. However, the
separation between the curves increases like o(t) as t in-
creases, and so finite dispersion has not been shown.

The establishment of theorem 2.8 (N - S) completes this pre-

sentation of the N - S case. We now continue to the other cases.

Case III: S - N. Suppose that u(t,x) = ¢(x,cy) 1is a bounded monotonic

steady state solution of

u, = f(uxx,ux,u) 4- cou
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and suppose that ¢ = ¢(-=,cp), v = 0 is a saddle point and ¢ = ¢(+=,Cq),
v = 0 is a node of

¢X=v

]
o

f(vx,v,¢) + cv
This case is materially the same as the N - S case already treated.
In fact by substituting - x for x we can reduce the S - N case to

the N -+ S case. Therefore, we will continue on to the N - N case.

Case IVv: N » N. We now treat the final case. Suppose u(t,x) = ¢(x,cqg)

is a bounded monotonic steady state solution of

u = f(uxx,ux,u) + cu_ ‘ (2.71)
at c¢ = cp, and suppose ¢ = ¢(-=,cg) = ¢ , v=0 and ¢ = ¢p(+o,cp) =
¢+, v = 0 are both nodes of

b =v
= (2.72)
f(vx,v,¢) + cv =0
at ¢ = cg. We also assume (without loss) that ¢(x,cy) is increasing.

Then the phase-plane looks like the illustration in figure (13) below.

;#// — accidental solutions—
- e v
- T I 3
— —
¢
=0 - o - \

Figure (13)

W
) 11
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Consider the solutions ¢ = §(x,cq,vg), Vv = V(x,cqg,vg) of
system (2.72) defined by the initial conditions

d(xg,cq,vg) = o(xg,cqp)

V(xg,co,Vvp) = Vo
for any fixed finite x3. Since solutions of differential equations are
continuous relative to initial conditions (see e.g. reference [6]), for
any x; we can make
|8 (xg+x1,c0,vg) — d(xgtxy,cq)| + |v(xgtx),cq,vg) - ¢X(x0+x1,c0)|
as small as we wish by taking vy sufficiently near ¢x(x0,c0). Since
we can take x; as large or as small as we like, the attractive nature
of the node at ¢ = ¢?, v=0 (as x + - =) and of the node at ¢ = ¢+,
v=0 (as x > + «) guarantees that

$(x,cq,vg) > ¢_ as x + - o

(x,cq,vg) ¢, as x>+

for vy in [&_,VAJ for some v_ < ¢X(x0,c0) %A Further, there is a

¥, ﬁ+ _ < ¢x(x0,c0) i_ﬁ+) such that §(x,cqy,vg) 1s monotone (as well

as having ¢(-=,cq,vg) = ¢_ and §(+e,cq,vq) = ¢

w_, v,

This result is clear from the phase plane considerations illus-

+) for all vy in

trated in figure (14) below. In particular for any &§_ > ¢_ near enough
to ¢_, the phase plane directors point down for all ¢ in (¢_,¢_].
Also the horizontal components of the directors point in the positive
direction whenever v > 0. This means that any solution &§(x,cg,Vvp)

which crosses the ¢ = ¢§_ 1line at a positive point v which is no larger
than the crossing point v of the accidental solution (i.e. the solution

of (2.72) which decays to ¢_  at the accidental rate as x - — «), then
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$(x,cg,vg) must decrease monotonically to ¢_ as x decreases to —x,

Similarly, there is a § such that if §(x,cy,vy) crosses the

<
T
¢ = § line at a positive point v wunder the accidental solution (i.e.
the solution of (2.72) which decays to ¢+ at the accidental rate as

x >+ =), then &(xp,cp,vy) must increase monotonically to as x

¢+
increases to + «. Since ¥(x,c(,vy) can be made arbitrarily near to
¢x(x,c0) over any finite interval by taking v; near to ¢X(x0,c0),

$(x,cp,vg) must be monotonic for at least a limited range of v about

¢X(xu,c0). This is illustrated in figure (14).

i «— accidental ——,
il solutions v
£
’4/'/;-;(3;’(:0>
e N
z3- . TR
™
-5
v=0
+ v+ ¥ + ¥+ ¥ ¥ @ T v ¥ vy ¥ ¥
b= ¢_ ¢ =9 g = ¢ =9,

Figure (14)
From the phase plane we can find the extremal monotonic solu-
tions of (2.72) at ¢ = cp. From figure (14) we see that the largest v,
for which @(x,cy,vg) is a monotonic solution is the least value s
for which #(x,cq,v,) decays at the accidental rate as either x +» - ®

or x ++ . If v, is slightly larger, then $(x,cq,vg) 1is non-
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monotonic. Similarly, as vy decreases $(x,c0,vo) remains a monotonic

solution until the value of vy (which we define to be wv;) for which the

phase plane trajectory of &(x,cg,vy) intersects the v = 0 curve be-
tween ¢ = ¢_and ¢ = ¢+. Since ¥(x,cqp,vy) > 0 for all x and since
ﬁ(x:CUsvl) = 0 when ¢(stO:V1) = ¢0 for some ¢0 € (¢’_:¢+)s ¢ = ¢0:

v = 0 must be a singular point. From the illustration in figure (15),

we see that ¢ = ¢g, v = 0 1is a saddle point (or may be a coalescence of

multiple singular points as an accidental case). Thus, when v has
decreased to vy, §(x,cy,vg) has bifurcated from a monotonic soluticn
with §(-2,cq,vg) = ¢_ and §(+»,cq,vy) = ¢+ into at least two distinct
monotonic solutions. Usually as v, decreases to v, $(x,cqg,vy) be-
comes two monotonic solutions ¢;(x,cy) and ¢,(x,cq) with ¢, (-=,cg) = ¢

¢y (+=,cq) = g, 9o(-=,cqg) = ¢g, and ¢, (+=,cp) = ¢ and with ¢ = ¢g,

+’
v = 0 being a saddle point. Thus the monotonic N - N type solution

almost always has a N+ S and a S - N type solution as the limiting

case, as is illustrated in figure (15).

ZZa\

A

¢0 ¢“¢+

©-
1l
©
-
]

Figure (15)

-2
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The other possibilities are ¢, being the coalescence of multiple sin-
gular points or the possibility of the limiting case being more than two
separate solutions. This latter accidental case is illustrated in figure
(16). As illustrated, the intermediate singular points are saddle points

or coalesced singular points.

o RN Y

Figure (16)

Thus in brief, if ¢(x,cy) is a monotonic N -+ N type solu-
tion of (2.72) at ¢ = ¢p, then there is a continuously differentiable
family of solutions. One limiting member of this family is a solution
which decays at the accidental rate as x -+ - « or x -+ + «, The other
limiting member is at least two separate monotone solutions which are
usually a N+ S and S -+ N pair of waves.

We now consider solutions at wave velocities ¢ = c; mnear cg.
Similar to the N + S case, continuity arguments can be used to show
that a monotone solution ¢(x,c;) exists with ¢ (-2,cy) = ¢_ and
¢(+w,c1) = ¢+. Since one monotone solution at ¢ = cy exists, the pre-
vious arguments show that a family of solutions exists at ¢ = c;. One

limiting member of this family for ¢ = ¢, decays at the accidental rate
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as x =+ - © or X * + o, and the other limiting member is at least two
distinct solutioms.

This characterization of the solution family at fixed values
of ¢ determines the largest and smallest values of ¢ for which mono-
tone solutions ¢(x,c) (with ¢(-»,c) = ¢ and ¢(+=,c) = ¢+) exist.

As ¢ increases or decreases from c¢;, monotone solutions continue to

exist until either (1) an accidentally decaying solution from ¢ = ¢ ,

v 0 or ¢ = ¢+, v = 0 dntersects the v = 0 axis at a singular point
¢ = ¢g, v =0 for some ¢y in (¢_’¢+): or (2) ¢=¢_,v=0 or

¢ = ¢+, v = 0 changes from a node to a spiral point.

We summarize this discussion in the next theorem.

¢(x,cy) is a bounded monotcnic

1

Theorem 2.7 (N - N): Suppose ul(t,x)

steady state solution of

By f(uxx,ux,u) + cu (2.71)

at c¢ = cp, and also suppose that ¢ ¢(->,cq) = ¢ , v=0 and

v = 0 are both nodes of

¢ = ¢’(+m)CO) = ¢+’

¢ =v

X

f(vX,v,¢) + cv

(2.72)

0

at ¢ = cg. Then there is an interval (cyscp) such that for each ¢

in (ej,cy) there exists a continuously differentiable (in ¢ and o)
family of monotonic solutions u(t,x) = §(x,c,a),0 < a <1 of (2.71).

For 0 <o <1, §(-»,c,a) = ¢_ and F(+e,c,a) = ¢+ for ¢ in (cy,cp).
Moreover, for ¢(x,cy) dincreasing (decreasing) the phase plane trajec-
tories of &(x,c,a) are increasing (decreasing) in a. At o = 1,

$(x,c,1) decays at the accidental rate as either x = - @ or x -+ + .

At o = 0, the phase plane trajectory corresponds to at least two
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distinct solutions. Finally, the limiting values «c¢; and c, of ¢ are

either

Il
1

Cl c

-_— 2‘/f1(0,0,¢+}f3(0,0,‘i’+) e f2(0303¢+)

1l

Cz = Cmax = 2/f1(070)¢_) f3(010’¢_) — f2(0903¢_)

or (when they exist) the points ¢, e(cmin,co) and czea(co,cmax) nearest
to c¢y for which the trajectory of an accidentally decaying solution from

$ =¢ , v=0 or ¢ = ¢+, v = 0 idintersects the v = 0 1line at a singu-

lar point ¢ = ¢4, Vv 0 with <m)e.@_,¢+)-

This theorem shows the sharpness of the stability results ob-
tained in theorem (2.5) of section (2.2) for the N - N case. For example,
suppose that ¢(x,cg) 1is a monotonic N + N type steady state solution
of (2.71) at c¢ = ¢g which decays at, say, the accidental rate as x -+ — «
and at the usual rate as x + + ©. From the above theorem, we know that
there are solutions ¢(x,c) (continuous in ¢) which decay to ¢(-=,cq)
at the accidental rate as x - - « and decay to ¢(+»,cg) at the usual

rate as x > + » for an interval of speeds c¢ including cp. Now

in

theorem (2.5) says that u(t,x) ¢(x,cp) 1is stable to perturbations which
decay like ¢X(x,c0) as x * - and x * + ®, As in the N - S case,
if the class of perturbations is enlarged to include those which decay at
slightly slower exponential rates as x + +, then the perturbed initial
condition

u(0,x) = ¢(x,cq)
would be allowed for cj; near enough c¢j. Since the resulting solution of
(2.71) at ¢ = ¢cg is u(t,x) = ¢{x-(c;-cglt,cy), ¢(x,cq) is unstable to

this perturbation. Thus the asymptotic decay conditions on the allowed
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perturbations cannot be significantly weakened in theorem (2.5) for this
case. Similarly, theorem (2.5) is sharp for the case of ¢(x,cy) decaying
at the usual rate as x -+ - © and at the accidental rate as x - + « and
for the case of ¢(x,cy) decaying at the usual rates as x > - © and as
X > + o,

We now introduce the mean wavespeed/initial condition results
for this case. Since this result contains no essentially new ideas, we

simply quote it.

Theorem 2.8 (N - N): Suppose that u(t,x) = ¢ (x-cpt,cg) 1is a bounded

monotonic solution of

T, = f(uXX,ux,u) (2..73)

and that ¢ = ¢(-=,cq) = ¢ 5 v=0 and ¢ = ¢(+=,cqy) = ¢ v = 0 are both

+,
nodes of the system

g =¥

]
]

f(vx,v,¢) + cv
at ¢ = cgq.

- +
Define the exponential rate constants X (c¢) and X (c) by

- (£2(0,0,¢_)+c) - V(£,(0,0,6_)+c)? - 4£,(0,0,¢_) £3(0,0,¢ )

& ek = 2%, (0,0,9.)
ey = (£2(0,0,¢,)+c) + Y(£2(0,0,9 )+c)® - 4£,(0,0,¢,) £5(0,0,¢,)
C ==
2f1(0309¢’+)
for all ¢ in fec ., ,c 1, and define ¢, and ¢, as in the previous
min’ max

theorem.

Suppose that u(t,x) is any solution of (2.73) whose initial
condition u(0,x) is smooth and satisfies

min{¢_,¢+} < u(0,x) < max{¢_,¢+} for all x .
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Then:
(1) if for any ¢ in (cy,c3) there is an o >0 and a g > 0
such that
a & et (e)x |u(0,x)—¢_l for all x < 0 and
+
B > e_A (e)x |u(0,x)—¢+l for all x > 0

then u(t,x) cannot travel with mean wavespeed larger than c;
(2) if for any ¢ in (¢1,¢y) there is an o >0 and a B > 0

such that

. o |

o u(0,x)-¢_| for all x < 0 and

—A+(c)x ]

B < e u(D,x)—¢+[ for all x > 0

then u(t,x) cannot travel with mean wavespeed smaller than c;
(3) 1if for any c¢ in (c;,cp) there are positive constants

a,B,Y,8 such that

e—A"(c)x l

a < u(0,x)-¢_| < B for all x < 0

- (o)
Y < e et [u(O,x)—¢+] <68 for all x >0

then wu(t,x) travels with mean wavespeed c¢ and has finite dispersion;

and
(4) if for any c¢ in (cj,cy) we have
lim e_(A (e)-u)x |u(0,x)—¢_l =0 1lim e_(x (e)+u)x lu(O,x)—¢_] = + o
Xr—o K-r—00
X -0 ()+x
1lim e_( e Iu(O,x)—¢+| =4+ o lim e H [u(O,x)—¢+| =0
K+ b G )

for all u > 0, then u(t,x) travels with mean wavespeed ¢ (but may not

have finite dispersion).

Roughly speaking, the above theorem shows that if u(0,x) decays

A (e)x A+(C)X

to ¢ like ae and to ¢+ like Be for some ¢ in (cy,cy),
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then u(t,x) must propagate with mean wavespeed c¢. One naturally won-
ders how solutions of (2.73) behave when u(0,x) decays to ¢ like

OleA—(c_)x A+(c+)x

as X - — o« and to ¢+ like Be as x >+ « , but

c & Cpe This question is easily answered when c¢; < ¢ < c

% < cy. We
will show that in the general case u(t,x) will evolve into a N - §

type traveling wave of speed c_ (which goes from ¢ at x = - @ to ¢
at x = + ®) and into a S -+ N type traveling wave of speed c, (which
goes from ¢, at x = - « to ¢+ at x = + «).

We consider only the common case where the phase plane trajec-—
tories corresponding to #(x,c_,a) and 6(x,c+,a) at a = 0 both inter-
sect the v = 0 1line at the single saddle point ¢ = ¢4, v = 0 with
b < ¢p < ¢+. This is illustrated in figure (15). Consider the solutions

$p(x,c_) = $(x,c_,a_)
$(x,e) = §(x,c,0,)

for any fixed «a and o in (0,1). Let

5 o ¢Ns(x,c_) be the monotonic

N - S type solution at ¢ = c¢_ with
¢NS(_wsc_) = ¢_ ¢NS(+m’C_) = ¢0

Also let (x,c_) be the monotonic S -+ N type solution at c¢ = c_ with

¢SN
¢SN(_W’C—) = ¢0 ¢SN(+m)C_) = ¢+
Note that the phase plane trajectories of ¢;S(x,c_) and ¢;S(x,c_) corres-—
pond to the limiting trajectory of ¢(x,c_,a) at a = 0. Similarly let
+ +
i N =8 d S >N type solu-
¢Ns(x,c+) and ¢SN(x,c+) be the monotonic an yp

tions at c¢ = c+ with

+ + _
bgg (=20,) = d_ dyg (i) = dg

+ =+ _
¢SN("°°:C ) ¢U ¢SN(+0°’C+) = ¢+

Now suppose that u(t,x) 1is any solution of (2.73) whose initial condition



-79-
u(0,x) dis smooth and satisfies
¢_ < u(0,x) < ¢+ for all x

e—-)\q(c_)x

oy < |u(0,x)—¢_| < ap, for all x <0

-\ e,)
By < e & "% lu0,x)-¢,| < B, for all x > 0
for some constants 0 < a; < a, and O < B; < By,. By selecting hy, hy,
h3, and hy sufficiently large, we can guarantee that
- +
¢Ns(x—h1,c_) < u(0,x) i—¢SN(X+h”’C+) and
¢ (x-hp,c ) < u(0,x) < ¢(xthsz,c )
hold for all x. Thus the maximum principle implies that for all ¢t >0
the solution u(t,x) must satisfy
- +
¢Ns(x—cut—h1,c_) < ult,x) §_¢SN(x~c+t+h4,c+) and
(2.74)
¢(x—c+t—h2,c+) X u(t,x) < ¢(x—c_t+h3,c_)
for all x. The bounds of (2.74) on wu(t,x) are illustrated in figure
(17) below for t quite large. The implication of the maximum principle

is that wu(t,x) must remain in the shaded area for all t > 0. Clearly

the solution u(t,x) has evolved into two stacked waves as claimed.

(-fb (x,c_)

1]
©

u

Lcta(x,c+)

Figure (17)
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This completes this presentation of the mean wavespeed/initial
condition results. As a brief summary, we found in the S - S case that
there is a single traveling wave u(t,x) = $(x-cqgt) at a single fixed wave-
speed cg, in the N > S and S > N cases that at each speed c¢ 1in a
range of wavespeeds there is a single traveling wave u(t,x) = ¢(x—-ct,c),
and in the N - N case at each speed ¢ in a range of wavespeeds there is
a family of solutions u(t,x) = $(x-ct,c,a). For each of these cases, the
mean wavespeed of a solution u(t,x) is determined mainly by the asympto-
tic decay rate of u(0,x) as x + — « (if ¢(-=») 1is a node) and as
X >+ o (if ¢(H=) 1is a node).
This finishes this presentation of our basic results. In the
next chapter we will develop the mathematical tools and assumptions need-

ed to rigorously establish these and other results in subsequent chapters.
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Chapter TITII

MATHEMATICAL PRELIMINARIES

In this chapter we develop the mathematical tools needed to
rigorously prove the results in subsequent chapters. 1In this chapter, we
will work with a class of equations general enough to contain (as special
cases) all sets of equations we will consider later. This class will in-
clude parabolic systems of equations which contain multiple dependent
variables, multiple independent variables, and even some integral terms.

Specifically, in section (3.1) we introduce some notation we will
use to simplify our exposition. In section (3.2) we will modify the equa-~
tions to prevent infinities from arising and discuss the physical conse-
quences of this modification. Section (3.3) is devoted to developing the
necessary preliminary mathematical results. Specifically, these are the
maximum principle, the uniformity lemma, and the asymptotic state theorem.
In the last section, (3.4), we collect the set of hypotheses we will use
in deriving our results. These hypotheses are of three types: smoothness
conditions on the equations, parabolicity requirements for the equations,
and existence assumptions for solutions of the initial value pProblem. Inp
section (3.4) we will also briefly discuss how the hypotheses of the sec-
tion fit together with the mathematical theorems of section (3.3).

3.1 Notation. In this short section we introduce some notation which will

simplify our exposition. In this chapter we will work with equations which

we can write as
T -
u(k) = I‘(k)(u.(l.(),u.(k),ﬁ,f f_} G(q)(s,;,ﬁ(t—s,-}z—;))dyds)
- =S O ¥yl
e 1,200 ¥ (B.1)
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and in subsequent chapters we will work with special cases of this system
of equations. Here, ~ denotes a vector of dependent variables such as

LS @ G W)

= A 5 _— ), - denotes a vector of independent variables
=
such as x = (xl,xz,...,xn), Y and T are finite positive constants, and

the dimensions Vv and n are fixed positive integers. We use the nota-

tion that
(k) 2
(k) _ 93¢ _ 9°%
b = s P E s etc.
i Bxi ij Bxiaxj

Also, whenever dummy indices are used in a function argument (like 1ij, i,
and ¢ but not k in equation (3.1)), we mean that the function depends

on the subscripted variable with all possible indices. For example, equa-
tion (3.1) can be written in full as

o) o 0,00 0800 0 (k)

- 5 W56 ¥ 5 5 ceesu T, etc.).

g e s e

Besides the above notation, for the derivatives of

T >
g (u?‘.‘),ugk),ﬁ,f f L 66,7, (s, %-y) ) dyds)
= O “lly]l<y

and of
G(q) (s ,;,ﬁ(t—s,g—;))d%S)

we will use the following expressions:

RO o™ o _ ar® O 5 F(K)
1mn Bu(k) * Tum au(k) > "3m au(m) 2
mn m
. ()
4m a[fo_) G(m)cs,sz’,a(t—s,ic’—?))d}’da
O Jlyll<x
G §Q) = a(;:q) .
m Su m)

For brevity, we will often use notation like

T
CSI o RGO DA (O B (O I f f @D e ¥ app 230y d0d8)
F ({P]) = F (uij U su, . ||;||<Y (s,y,tu(t-s,x~y yds



-83—

k
for functions like F( ) when their arguments are obvious. This is most
of the notation we will use. The rest of the notation will be introduced

as needed, and we now continue on to the modification of the given equa-

tions, equations (3.1).

3.2 Modification of the original equations. Basically, in this section

we modify the given equations (3.1) so that infinities in u(k),uik), and
ui?) can never develop as time progresses. We will first discuss the

reasons for modifying the equations and the mathematical effects of the
modification. We then present the actual modification of the equations.

_.}.
It may be possible that, for solutions {@(t,x) of equations

P T ; k k k : :
(3.1), infinities in u( ),ui ), or ui.) may arise even for very nice
initial conditions. For our purposes, infinities in the u(k) are of no

e
concern. For example, the stability of a steady state §(x) to the per-

(k)

turbation ﬁ(O,z) - @(;) is decided long before one of the u becomes

L©

infinite. However, the possibility that the remain finite and some

of the uik) or uig) may become infinite for some equations, presents us
with mathematical problems. The first of these problems is how to continue
the solution ﬁ(t,z) to times after the infinity occurs. The second is
that all our derivations will require the maximum principle, and to prove
the maximum principle we must require that for any T, >l0, Fé?;([ﬁ]),
ng)([ﬁ]), ng)([ﬁ]), Fsi)([ﬁl), and Ggg)(s,§,&(t—s,§—;)) are bounded for
all x, all téE),TOJ, all y with ||y|| < ¥, and all s& [oﬂ X
The last problem is that in deriving our instability results, we will need
the result that if a solution ﬁ(t,;) of (3.1) increases (decreases) to a

+ -
bounded function ¢(§) as t - <, then #(x) is a steady state solution

of (3.1).
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These three problems are strictly mathematical in origin.
Physically, dependent variables and their derivatives attain absolute in-
finity only in rare circumstances, and so physical continuation is assured.

(q)

Also, physically the derivatives of F(k) and G should be bounded,

since almost all physical systems will eventually reach saturation levels
as |, lﬁil, and ‘ﬁij| are increased. The last problem is also mathe-
matical in origin, since one expects that the only time-independent states
which physical systems can evolve into are steady states. Thus, if for
some reasonable initial conditions some equations of the form (3.1) have
solutions 4, ﬁi, and Gij which develop infinities, then the mathemati-
cal formulation is inadequate. In this regard, note that long before an
infinity is reached, other terms (representing excluded physical effects)
should be included in any equation modeling a physical system.

The most satisfactory way to resolve these problems would be by
proving for all equations of interest (of the form (3.1)), that 1, ﬁi,
and ﬁij are bounded uniformly for all time when U has reasonable ini-
tial conditions. This would immediately eliminate the first and (with

smooth functions F(k)

) second problems. The steady state result needed
to resolve the last problem is also an easy consequence of the uniform

boundedness of ﬁi and aij' An alternative way of resolving these mathe-
matical problems is to assume the needed boundedness results for the equa-

tions of interest. 1I.e., we could assume that when U 1is bounded uniform-

ly in time, then ﬁi and ﬁij are also - at least when reasonable initial

conditions are used. This assumption is sufficient for our needs. It is
o cince o 8 B wis, A
not an unreasonable assumption since when E:Flij Ei Ej > or all argu

(k) T S .
ments of F , all k, and all & # 0 (which we will assume later), then
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the equations have positive diffusion which tends to smooth out the solu-
tions.

We will not use either of the above alternatives. Instead we will
use the technical device of modifying the original equations. The modi-
fied equations depend on an arbitrary fixed positive constant M, and

can be written as

T
N T RN G (R IOF AT 2 S R
] b @] lzil=x (3.2)
(k) (0) are modified functions similar to il and G(q)-

where g and G
M
These equations are modified so that

(1) the modified equations are identical to the original when-

k
|u( )l (k)l

ever < M,'Ui

< M and |u§§)| < M for all i,j,k for any pre-
chosen arbitrarily large constant M > O ,

(2) for some M(M) > M, whenever lu(k)| > M, |u§k)[ > ﬁ, or
[uiﬁ)[ > p for any i,j, then equation k becomes a heat equation with

constant coeficients:

uik)=a2u(k) 0 < a < «

i ii #

(3) the transitions from the original equations to the heat
equations are smooth and all useful properties of the original equations

are retained. These properties are:

(3a) All the modified functions Eif) and (%?) retain all the smooth-

(0

ness properties of the original functions and (SQ) for all k,q

and any M> 0;

144 Tk
then the modified equations have the same property for any M > 0;

(3c¢) 1If originally ng) >0

->
(3b) If originally EFO:) £ £ >0 for all arguments and all £ # 0,
Py J
ij

(< 0) for all arguments, then the modified
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equations have the same property for any M > 0;
(3d) 1If originally FEE) >0 (< 0) for all arguments, then the same
is true for the modified equations for any M > 0; and
(3e) 1If Ggg) > 0 (< 0) for all arguments, then the same is true for the
modified equations for any M > O.

The modification of the equations to the heat equation is cer-
tainly somewhat artificial and arbitrary. However, all subsequent results
will hold for all M sufficiently large. As M approaches infinity, the
modified system becomes a very good approximation to the original system
of equations. Note that for all solutions ﬁ(t,?) of the original system
of equations which have a, ﬁi, and ﬁij bounded for all t > 0 and all
§, the modification is irrelevant. Thus all our results about the modi-
fied equations will be directly applicable to these solutions . Moreover,
our results about the modified equations are directly applicable to all
solutions ﬁ(t,;) of the original system of equations for all t wuntil
4, 4, or ﬁij becomes unbounded. Thus, modification of the equations is
a superior alternative to proving bounds on 1, ﬁi, and ﬁij in the limit-
ed sense that whenever bounds can be proven for solutions of the original
equations, the modified equations reduce to these equations for M suffi-

ciently large.

We now place mild smoothness conditions on the original equations

T > > >
uék) - ¢ (uil-()mik),ﬁ:f f & ¢{¥ (5,5, (t-5,5-3))dyds) k=1,...,v
3 0 |3l g

Specifically, we now assume that
Hl: ¥or all g, all j = 1,...,v, all seEJ,'I], and all

||§||§¥, Ggg) exists and is continuous in all arguments; and
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® L) L) ()

H2: For all 4i,j,k, and £, Flij’ 2i 2 Faq 0 4L

exist
and are continuous in all arguments.

Without losing the important properties (3a)-(3e) (when they occur in the
original equation), the modified equations also have the properties:

(4) for any continuous function 3§ and any continuous and

bounded function VY,

T
f f+ 6\ (5,7, (t-5,%-3))dyds  and
0
[y ]]<y

T
f f_, 6D (5,7,8(t-8,%9)) « ¥(t-s,5-3)d7ds
U 4| y] < ™4

are both bounded independently of t > O, Z, and §;

(k) (k) (k) (k)
FM,lij’ Fm,Zi’ FM,Si’ =zl Fm,uq
bounded uniformly in all arguments;

) if o®, G )
i ij

(5) the derivatives are all
are all bounded at each time t > O,
then u(k) being bounded for t < 0 implies that u(k), uik), and ui§)

are all bounded uniformly for x,t) e K" x [0,»); and finally

(7) if Ea Ff?ﬁ Ei Ej > 0 for all arguments and all E # 6,

ij

then for any M > 0 there is a SM > 0 such that
T resg s
P M,11j "1 7] — M
1]

for all arguments of F(k) and all E- with 2:5, £, = 1.
M T 1 i

Of these preceding properties, properties (1), (2), (3), (4), (5),
and (7) will follow from inspection of the modified equations. Property
(6) is the conclusion of the uniformity lemma, which is stated and proved
in section (3.3).

We now present the actual modified equations. Note that any

modification of the equations (3.1) which satisfies conditions (1) through
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(7) is as good (for our purposes) as the particular modification we use,
The virtue of the particular modification we use is that it works for all
equations of the form (3.1),
We first define some needed auxillary functions. Let M and M

. M
be any constants with 0 < M < M < + ». Define HM(X) by

=

0 x| >
k ® M-M =
N 1 - ﬁ:ﬁ>Jr+ exp{- ?§:ﬁifﬁ:§7}dy M<x <M
M _ M
H.M(X) =
1 ’xl <M
Hﬁ(“ x) X <~=M

1 -
where k I['/; EXP{—MR%—_y}—} d}E] l. For brevity, let HM(X) represent

HéM(x). Note that Hﬁ(x) is an even, non-negative function in ¢ with

Hﬁ(x) =1 for x i»ﬁ, with HE(X) = 0 for [xl 3_ﬁ, and with 0 >
sgn(x) a. HM(X) >~ —é—-. This function is illustrated in figure (1) below.
dx M —= M-M
H:l ——————— ~
1 1
: | i ()
1 1
! 1
] 1
] 1
i
) ' ,
s i el } } =
ke X=:N =:M x;0 X;M x=M
Figure (1)

R

By an overhead bar ( ) we denote a quantity which "satu-

rates" in the interval (M,2M). Specifically,
X

X szM(@de and
0 M

e ) i

3 - - .9

i

14

~M
X
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The quantity ;M as a function of yx 1is illustrated in figure (2) below.

N ;M
T
D’I . ——— - :
( 1
1 1
l 1
M om - 5
: i M 2M 7
1 0 X
' 1 i
1 t =
1 “*ﬁ
1
Figure (2)

We also need a way to "switch-on" quantities over intervals of

g ) M
interest. Thus, define Hﬂ(x) as an even, non-negative, element of ¢

such that
~ 0 lxl < M
M s
,H’M(X) = - >
§ 1 x| > M
o ¥ 4¥
‘]- )Rﬁx)dx =M, and 0 < K (x) < — , where M > M, Thus a quantity
M M T

(X oM
X —fo HM(¢)d¢

—M

switches smoothly from being identically zero when |x| < M to being x

when |x| > 2M.

(x)

Z 2

Finally, for 0 < M < M <N < ﬁ, we define the function Hﬁ’
as an even element in Ccn with
Hﬁ(x) for |x] <N

M,N
B oy = >
Tl ‘ 0 for |x| > N

I

N ~ o~ : e
- M,N : M,N 4N
3 = b S < & "
with JZ HM,N(X)dX 0 and with 1 > HM,N(X) > = for N 'x[ N

M M,N
We will not take the time to actually construct such Hﬁ(x) and Hﬁ’N(X)
b
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since we are certain they exist (since we can draw them).
We now give the modified equations. Recall that we assume that

the smoothness conditions Hl and H2 are satisfied. Let M > 0 be given.

Then let
—_— ®, @ w [T
F = sup {F Cu. " sy = ity
- () " o | [7] [«x
Oif“ij | <24M
(q) F o . EE -
Qi‘uik)[jzm G (s,y,0(t-s,x~y))dyds)} =
Qi]u(g)LiZM
all 1,4,k,%
_ 1 max -
let C = oH FM , let N = 48M{(4n+8)(8n+l) + 1}, and let P = 2n(n+l)x

(n+2) (8n+1)N+N, where n is the number of independent spatial variables:

x = (x ,...,xn). We define

. > > > _ -+ =M > >
Gilq) (e,y,li(t-8,%-y)) = G(q) (S:ysu (t=8,%~7)) s
and the modified equations are

uék) (k)( a] I = 3B o 9 (3.2)

= %

(k)( (k), (k) (V] jﬁ j‘ (q)(s v,u(t-s Jx-y))dyds) k= 1,...,v
9] <t ™

11

1]

H o (k))[yltHM( (k))][.uH12M( (k))] [17>T_] 12M(2 (k) _‘f_] +u§j) :fl;))]

RGN (k) a0 g f '[I (q>(s 3. 0(t-5,%-5))d¥ds)

7] <t M
2u( +2u(k)+u(k)+u(k)

( )
U < ¥ 5
3 2M,N 11 70y T4 T
el i .[ e qem9)de + EJ. ALY
,4em' P €
. 6M :

e[ x et n )] [0 P o]

C (k) (k)
+ 8n+1/{ ) &HM(H ][71[ 24MY4
2095 (0 () (0 (k) _
[nﬂzm( 4t 14 13 fugy )] (Z k=1,0..,V
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These are the modified equations we will use. They are exceedingly com-
plicated, and for any specific system of equations (of the form (3.1)) much
simpler modifications can be constructed which will also satisfy conditions
(1) through (7). We will only use the facts that the modified equations

can be written as

w00 2 gl ( n{, f f 6P (5,7, 0(t-5,%-y))dyds) k=l,...,v
[yl l< (3.2)

and satisfy properties (1), (2), (3), (4), (5), and (7) for all M > 0.

In the next section, we will show that solutions of the modified equations

satisfy the maximum principle, that the solutions satisfy property (6) (the
uniformity lemma), and that the only time independent states which a solu-

tion can evolve into are steady state solutions of (3.2).

3.3 The maximum principle, uniformity lemma, and asymptotic state theorem.

In this section we will develop some general mathematical results about

systems of the form

uék) = Fék)([ﬁ]) k= lyevasw o (3.2)

These results will be basic to all subsequent derivations.

We will first state and prove the maximum principle, since this
will be the primary tool needed in subsequent chapters. We will then prove
the uniformity lemma, which essentially states that for a solution u of
(3:2)s £ 1, ﬁi, and 1,. are bounded for all x at each t > 0, then

ij
, i,, and ii,, are bounded uniformly for all x and all t > 0. Thus,
i ij

=]

this lemma can be used to extend existence results stating that 1, ui, and

a are bounded for 0 < t <'Ty for any Ty, to uniform bounds. The last
1] = =

result we will prove in this section is the asymptotic state theorem. This

¥ i a i s and
theorem shows that when any solution u of (3.2) with a, continuou
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~ - ~ _)- ~ + .
,ii;, and @ij; uniformly bounded, has ti(t,x) - T(x) monotonically as

+ -

t > o, then 7T(x) 1is a steady state solution of (3.2) whenever there is
only a single spatial dimension.

We now state and prove the maximum principle. 1In order to do so

1. j :

concisely, we introduce the function spaces CX and CS. The first class
is defined as all functions whose i-th order spatial derivatives are all

continuous. The second class is similarly defined as all functions whose

j-th order time derivatives are continuous.

The maximum principle we will state is very similar to the maxi-
mum principle in section (2.1). However, there are two major differences.
The first is that the new maximum principle is for the more general equa-
tions (3.2). The other is that the new maximum principle will hold for

. : . . n
arbitrary spatial domains Q in R .

Theorem 3.1 (The maximum principle): Let & be any domain (open connect-

ed set) in an, let € be its closure, and let Ty > O be any fixed con-
stant. Suppose that:

Al The equations (3.1) satisfy the smoothness conditions H1 and HZ2;

A2 The equations (3.1) form a parabolic system - that is, for all argu-

ments

}E F(k) Ei Ej >0 for all k, all E ¥ 0 ,

l- .
ij
ng) >0 for all & # k, all k, and
(k) (@) .
k, q, d
F4q G31 > 0 fotr all q, and i

are satisfied;

> z .
A3 The functions ﬁ(t,;) and ¥(t,x) are in Ci N Ci for all (t,x) in
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(O,TO} x Q, are in c® for all (t,;), and are bounded uniformly for all
(t,x) in [—T,Tol x Q.
Then if
u( - F}ik)([ﬁ]) 5w — g ([v}) for 91l ks «all = In % end a1l
(3.3)

t in (O,Td for any fixed M > 0, and if

u(k)(t,;) 2_v(k)

5 > : n

(t,x) for all k, all (t,x) in (—ﬂn(ﬂ x R and for all
(3.4)

A [o,ro_] x ®"-9), then

L0 ()

(t,%) > v (t,%) for all k and for all (t,x) in [O,T(J x Q

(3.5)
as well.

Thus, in rough terms this theorem states that when 4 and v
satisfy the differential inequalities in (3.3) in some domain Q for
t > 0, when u(k)(t,;) 3_v(k)(t,§) for ; in G{l and t < 0, and when
u(k)(t,g)_z v(k)(t,;) for t >0 and x outside of 2, then u(k)(t,;)
irv(k)(t,;) in & for all t > 0 as well. Note that in a mathematical

Uedee 3 for atl

sense we have assumed too much by requiring u(k)(t,;) > v
- 7 n
t >0 and x ?ZQ and for all t < 0 and x €R Clearly the values

- — . = . i i
of u(t,x) and V(t,x) are irrelevant when t < - T and when I]x—x0|[>Y

for all ;0 in £, since the integral terms of inequality (3.3) are

T e
4[ .[ N G(q)(s,;,ﬁ(t—s,§—§))dyds and
O Jlyl]<y

T »
f f L 69,3, v(t-s,%-y))ayds .
=] =T

However, these extra assumptions make the exposition easier and do not af-

fect the results in subsequent chapters in any way.

We now prove the maximum principles by using extensions of the
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material in Chapter III of reference [l].

Proof: The proof of this theorem is very similar to the proof of the pre-

vious maximum principle in section (2.1). As before, we will prove the

theorem by defining h = 4 - Vv, wusing the mean value theorem to convert
the nonlinear system of inequalities (3.3) into a "linear" system of in-

equalities in ﬁ, and finally showing that the linear inequalities imply

(k)

that h > 0 for each k.

Define h = 44 - ¥, and the function of ©

H(k)([ﬁ],[ﬁ],e) Fék)([ﬁ+@ﬁ]) - Fék)([ﬁ]) K

Note that (3.3) can be written as

n{' 1lﬁk){a]{ﬁ]JJ -1ﬁk){v]{ﬁ],0) Kk

]
[
-
.
-
<
.

1]

Lyeees v . (3.6)

The derivative of H(k) is
3 (k) “ (k) (k) (k) (k) (2)
30 B ([ ]’[t‘]’e) - E% M, 113“13 * 2: oY o :E oY
L (0 f f R e
+ (Ssy,V(t-S,X‘Y)
Movade e

- iy
§ SRE<B )y * B lE s vIagiE

(1) K (k) (k)
where the arguments of the FM,lij’ FM 51 FM,32’ and FM i are
(k)+ @h(k) vik) % @h(k) ¥ + on,
_j'f 6<Ts,3,7(t-s, 530400 (t-5, %-7))dyds . (3.7)
[yl l<x '

From the mean value theorem and (3.6), we conclude that for each Kk, t,

and § there is 0(k,t ;) in E),g such that

hik) > 2@ (k)([ ] [h] e)le il t ) That is,
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N N AL (k) }: (k) NSO }E pO (0

t A i M ,11j i M, 32
+ (k) f f éq)ﬁ(s,y,ﬁ(t—s,;—;) + @(k,t,;) ﬁ(t"ss;_;))
Hud [yll<x ™2
( ) > > >
(t-s,x-y)dyds k= Y,maaV (3.8)
(k) p (K (k) (k)

where the arguments of FM,llj’ of M a4 of FM,ai’ and of FM,uq are

. ; = > ; (k) (k)
given by (3.7) with © @(k,t,x). From our assumptions, FM,lij’ FM,zi’

p(K) (k) (q) y (k)

M L M big? and GM,32 are uniformly bounded. Moreover :i FM L1435 £, g >0

% (k) . (k) (q)

for all E 2 B, Fy. 3z > 0 for all & # k, and Fy.4q M, 32 k@

for all q and &.
We will prove the maximum principle by showing that each
h(k) > 0 whenever the inequalities
b (9 5 2 ol 00 z 50 00 Z V(O 5
(3.9)
b e JfT J[ (q)(k s x s,y) h( )(t -s, X y)dyds k= liesu®
3] <y

are satisfied. Here ai?), Bik), Yik) are any functions of (t,;) which

are uniformly bounded for (t,z) in {Oﬁﬁﬂ x Q, géq) is any function

which is uniformly bounded for (t,%) € [O,Tﬂ x Q, 0 < s < Ty, and for

l\;![gﬁ. These functions are also required to satisfy }i aig) E Ej >0
ij

for all §'+ 3, yék) > 0 for all 2 # k, and géq) > 0. Showing all

h(k) > 0 will immediately establish the maximum principle because (3.8)

is a special case of (3.9).

Let r = ||§W’ = VI X X0 and define
i
# = hie "t gech pr (3.10)

where p 1is any fixed positive constant and n > 0 will be selected later.

From (3.10) we find
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NS (k) nt

= w e cosh pr
ht(:k) = (Wék) + nw(k))ent cosh pr
X,
hik) = w.(k) + pw (k) —r—}- tanh pr)ent cosh pr
(k) 0 p[ (k) (k) p Xix'] (k)
= s - + = -
hij (w 13 + rz i j j xi] tanh pr r[ﬁij _r?i w' “tanh pr
P (k), nt
+-;7 xixj W Ye cosh pr .

We substitute these expressions into (3.9), and our differential inequali-

ties become

w(k)= z u.(g.() w].(.z.() + z Bik) + z [(ai?)ﬂili))% Xj tanh pr] wik)
1 ]

E T G 1
1]
L W O CD

ok
(k)[ (k) (k) 1 (k) _ 1 (k)
w 1f1+yk rzi':xll P%rli pz ?3-(]3 ljtanhpr
+E-2‘ 2 Ot(k) X.X.]
; ij i7j
ij
( ) » > cosh p|lx-y||
+ 2 f f Vk,t,x,s s¥) oot = (t S x- y)dyds
|y [fex ©
o Fpawii® 3 (3.11)
Let S > 0 be large enocugh so that
> >
S > Z f f (q) (k,t x, ;) Coigsgll}:’}’ll d;ds
0,20 ||y |<¥

for all (t,;«:)-) in [O,T(;] x 0 and all k. Let n be chosen large enough

SO
e 2 O+ Tl ax
ek 13
+ tanh pr%( _Eqiliﬁ)__ Z Lo (;c) ) Z X, B }+ S+1
i 1]
for all k S

for all (t,x) in [O,TO] x Q .

Let - B, = {¥x: H;H < R}. We note that h(k) (t,—;) > 0 and

- n
hence w(k)(t,;) >0 for t < 0 and for (t,x) € [O,TO x (R -2) for all
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k due to our assumptions. We now show that this and (3.11) implies that

w(k)(t,;) > 0 for all (t,;) in [p,Ta x Q. Suppose that w(k)(t,;) <

L0

- i
- & < 0 for some k and some (t,x) G[O,TU:] x § . Since (t,z) - 0

as Il:ll + o, there is a R(e) such that |w(k)(t,;)| < g/2 for all

(t,;) in [p,Tél x § with |l;|| > R(e). Define wmin(t,;) mip w(k)(t,;).

. - _ > —
Since wmin(t,x) > -¢/2 for t =0, xe £ and for t € [pffa p

> - >
X € 9 QnBRJ, and since wmin(t,x) < - ¢ for some (t,x) in [O,TO]

x [an BR]’ Woin has a minimum in (t,x) € [O_,T(ﬂ X (QnBR). At this

5 - k - -
point (tm,xm), there is a k such that w( )(t,x) = wmin(t,x) and
el . & . - > ;
w (t,x) is at a relative minimum at (tm,xm). Thus, at this point we
have
k 3
wé )4§ 0, :E aij) wig) > 0, wik) = 0, w(k) < -g, and w(l)zy(k) for all *.

] (3.13)

However, from the definition of n din (3.12) we see that substitution of

(3.13) into the differential inequality in (3.11) implies that

(k) (k)
W < 0 and LA
b o - (k) 3
This is a contradiction, and so w > - ¢ for all (t,x) in |0,T

x Q. Since € > 0 is arbitrary, w(k) > 0 for all k and all (t,;)
NG)

and hence is also. Thus the maximum principle is established.

We will almost always use the maximum principle with Q = mn

For thisvcase the theorem requirement (3.4) simplifies since RP - 0 ={).

Note that the differential inequalities are only required to be
satisfied for (t,;) in (O,Té] X Q. Outside of (O,T0] x @ the func-
tions ﬁ(t,;) and v(t,;) are only required to be continuous. This corres-
ponds to the fact that to find solutions of

i, =ir-M ([u]) (t,x) € (0,Ty) x (3.2)
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PO 5 >
when the F, contain integral terms, one must supply u(t,x) for (t,x)
outside of (0,T0] x @ as initial conditions.

When no integral terms are present in the F, the requirement of

(3.4) can be simplified. For the theorem to hold in this case, it is

sufficient to require

u(k)(O,;) 2_V(k)(0,;) for all k, all X € §, and '
u(k)(t,;) 2 v(k) (t,g) for all k, all t & [O,T(ﬂ , all x € 9@ f3'4 )

This corresponds to the fact that to find solutions of
i, = B{ah @D et xa (3.2)

when FM contains no integrals, ﬁ(t,z) only needs to be prescribed on
the initial and lateral boundaries.

Before we continue on to the uniformity lemma, we note three im-
mediate extensions of the maximum principle. The first extension is that
the maximum principle will remain valid if the ﬁM is allowed to depend on
integrals over only time JrT G(q)(s,ﬁ(t—s,;))ds and on integrals over only

f (q) .. .. —ro—r = .
space = G (y,ti(t,x-y))dy. We will not pursue this further except
<
to note lAZl‘ail subsequent results which are valid when F depends on in-
tegrals over time and space remain valid when F also depends on integrals

only over time and integrals only over space.

The second extension is that the maximum principle remains true if

(k)

time is discrete; that is if t,T, and Ty are replaced by integers, u (t,

T
is replaced by u(k)(t+1,;) - u(k)(t,;), and the integrals over

time are replaced by the appropriate sums. The proof of the maximum prin-
ciple for this case is essentially identical to the proof presented above.
Note that there are potential physical applications for discrete time sys-

tems since, for example, some ecologists measure things yearly and some

-

X)
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geneticists do things in terms of generations. However, it would perhaps
be (physically) surprising if these discrete time models included local
operators like SET-. We shall not pursue discrete time systems further
in subsequent chapiers, except to note that for all subsequent results
about continuous time systems there are analogous results for discrete
time systems.

The last extension we consider is that the maximum principle re-
mains valid if (0,Tgy) x @ is replaced by an arbitrary domain D in BP+1.

In proving the uniformity lemma, we shall use this extension in a case where

no integrals are present. For this case, the requirement of (3.4) is
k
L0

t,%) > v (t,%) for (t,%) €30 M(t,%): 0< t < Ty} and
for (t,x) € D N{(t,x): t = 0}, k=1,...,v .
The conclusion of the theorem is
u(k)(t,g) S v(k)(t,;) for (t,ZE) €D m(t,;): 0 <t < Tyl 5
and the proof is virtually identical to the one given.
This completes our discussion of the maximum principle. We now

continue by stating and proving the uniformity lemma.

Theorem 3.2 (The uniformity lemma): TLet D(Ty) be the domain {(t,g):

0 <t < Tpl. Suppose for each Ty > 0
Al that the equations
uik) = F(k)([&]) k=1,.00, V (3.1)
satisfy the smoothness conditions Hl and H2;
A2 that ﬁ(t,;)Ae Cif\ Ci and solves

- —
uék) = F(lﬁ)([ﬁ]) k=1,...,v, for (t,x) € D(Tp) for some M > 0; and
(3.2)
A3 that the u(k),ugk), and ui?) are all bounded and are locally Hoelder
i



-100-
+
continuous with exponent € din t and x (for some € > 0) for all

(t,x) € D(T)

Then
Iu(k)(t,;)l i_max{sup‘u(k)(o,;)}, = U(k)
Iuik)(t,;)| i_max{suplugk)(ﬂ,;)|, 2M} = Uik), and
_ (3.14)
Iugk)(t,;)l < max{suplu( )(0 x)‘ 2M(M) } = UFE)
ij 1]
for all (t,x) &€ D(+ =) .
Thus, we see that when ii, ﬁi, and ﬁij are bounded for each

D(Ty), they are also uniformly bounded over D(+ «) as well. This will

be needed in the proof of the asymptotic state theorem.

()

Proof: Suppose (to,go) is any point with |u(k)(t0,§0)| > U Let

To > ty be chosen. Define D(k)(TO) = D(Ty) M {all (t,x) for which

]
]u(k)(t,;)| > U(k)}. Further, let D(k) (Ty) be the largest connected com-
ponent of D(k)(TO) containing (to,go). Since Iu(k)(t,x)| i_U(k) on

1
(k) (Tg), since the kth equation of (3.2) is the
0

(k)

all boundaries of D

heat equation uék) = a( E: u§§)) for (t,;) in D (Ty), and since

(k) _ (k)

this heat equation has u = U

(k) (k) _

and u = -U as solutions, the

maximum principle implies that - U(k)_i u(k)(t,;) j_U(k) for all (t,g)
(k)' (k) (k)

in D (Tp) . This contradicts |u

(k)

(tg,xp)| > U Thus  |u{® (e, 0]

-5
< U for all t > 0 and all x.

(k) (k)

=
Similarly, let (tU,XO) be any point with Iu (tO,xo)I > U

As before, let T, > t; be chosen, define Dik)(To) = D(To)f\ {V(t,x):

1
Iuik)(t,x)| > Uik)}, and let Dik) (Ty) be the largest connected component
k k k)
of Dik)(TO) which contains (to,zo). Since u( ), ui ), and u( are

(k)
locally Hoelder continuous (with exponent ¢ > 0) for (t, x) éED (Tg), and
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since in this region u(k) satisfies a heat equation uék) = o 2: u§§)),
i
! k . . . ;
the function ué ) must also be Hoelder continuous in this region. Thus,

(k)

o0 [e=) '
u U4 Ctn Cx for (t,;) in D(k)

i (Tg). (This follows from theorem 13,

Chapter III, reference [7 ). Therefore

I
QR
~~
M

u(k) = u_(lf')) for (t,_)’(-) € D(k)' (Tp)
t 3 3] i
implies that v(k) = ufk) satisfies

1

v ma 2 for @D e @y .
"

]
|v(k)| |u§k)| E_Uik) on all boundaries of D; (Ty), as before

Since

the maximum principle implies

w8 < vl for ann (0 €0 @y .

This contradicts uik)(to,xo) > ufk), and so lugk)(to,x0)| < Uik) for
i it
all t > 0 and all .
The bounds on the second spatial derivatives of u(k) are shown

by virtually the same argument as the one given for its first derivatives.

We defer discussing the uniformity lemma until section (3.4)
where we will discuss how the maximum principle, the uniformity lemma, and
the asymptotic state theorem will be used in conjunction with the hypotheses
we shall assume. Therefore we now state (and prove) the asymptotic state

theorem.

Theorem 3.3 (Asymptotic state theorem): Suppose there is only one spatial

dimension; i.e. n = 1. Suppose for some Ty > 0
Al that the equations

ul - F () ([a]) ko= 1,...,9 (3.1)
satisfy the smoothness conditions H1 and HZ;

T
A2 that the functions F(k)(u(k), u(k),ii,‘[ .[ G(q)(S,y,ﬁ(t'SsK—Y))dde)
XX x 0 ly|<y
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(k) (k)

satisfy F1ii >0 at 1 =1 for all k and all arguments of F ; and

A3 that the functions {i(t,x) e Ci(\ Ci satisfy

k k -
u§)=F§I)([u]) k= Lysuey ¥ (3.2)
for some M > 0 ;1, ﬁx’ ﬁxx are all uniformly bounded; and each u(k)

is either > 0 or < 0 for all x and all t > Ty.

Then if 1im u(k) = T(k)

B2

(t,x) (x) exists pointwise for all k

and all x idin an open interval I, then %(x) is in Ci and solves the

steady state equations F;k)([T]) =0 e & I,00.,%) fof all x In 1I.

Thus, when there is only a single spatial dimension and when

there is a solution u with 4, a s ﬁxx bounded uniformly, then if 4

evolves monotonically into a vector function #%(x) as t>» we can conclude

that T(x) is a steady state solution.

Proof: For clarity we will use t and x subscripts to denote partial de-
rivatives in this proof. Let x5 be any point in I and let R > 0O be

small enough for [XO—R, x0+R] CI. Define KR = [xO—R,x0+R] . Since
lu(k) I (k)
X

and Iuéi)l are bounded, u (t,x) and uik)(t,x) are equicontinu-
ous (parametrized by t) on KR. Thus we can select a sequence tj,
to,... such that

(1) Ty <ty < tp <

(2) tn +®© as n -~ =, and

(3) u(k)(tn,x) and uik)(tn,x) converge uniformly for all k and for

all xGKR as n » o ,

This is a consequence of the Ascoli-Arzelas theorem (see e.g. Chapter VII,

(k)

. . (k)
reference [81). However, since each u (t,x) dis monotonic in ¢t, ug (t,x)

+ 0 pointwise (and hence uniformly) as t - « for all x in KR'
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Thus, we have i{i(t,x) converging uniformly as t - «, i (t ,x) converg-
x
ing uniformly as n = «, and ﬁt(t,x) converging uniformly as t - o«

for all x in KR'

We now utilize assumption A3. By the mean value theorem we know

that
(k) (k) = R (k) (k)
Yt (tn’x)_ut (tm’x> B M 1[ (t n’x) T Ygx (tm’xa
v Ifik;_[ (k>(t ) = ul e 0]
+ ékgl[ ( )(t »X) u(l)(tm,xﬂ (3.15)
(k) (q) (%)

u( ) (tm—s,x—y)] dyds

() (k) (k) (k)
for some arguments of FM,l’ M,2° FM,BR’ FM,Aq
O L) L)

Fi,20 T, 300 Py, iq

(q) {
, and GM,3£' Since the func

, and Géqgﬁ are bounded independently of their
(k)

arguments, and since there is a SM > 0 for which FM 1 3_6M > 0 for all
’

tions

arguments and all k, equation (3.15) and the uniform convergence of

uék)(tn,x), of u(k)(tn,x), and of #(t,x) as n - « and t > « dimply

X
that uik)(tn,x) is a uniform Cauchy sequence as n + « for x in KR' Thus
uii) converges uniformly as n =+ ., Hence T(x) 1is in Ci and has bound-

ed first and second derivatives. Thus #%(x) solves the steady state equa-

tion for all x in KR’ and hence all x in 1I.

The asymptotic state theorem only holds when there is a single
spatial dimension. When more than one spatial dimension is present, (3.14)
changes to include the term E: F(k) ( (k)(t ,;) - uiﬁ)(tm,g)). Although
all other terms in (3.14) still go to zero as m,n + ®, we cannot conclude
that u§§)(tn,§) - ui?)(tm,;) all go to zero separately as m,n go to in-

.o . (k) , = » " . i ch
finity. Note that if all the uij (t,x) wereequicontinuous in t (whic
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is true when, for example, all third order spatial derivatives are uni-
formly bounded), then the Ascoli-Arzelas theorem would ensure that T € Ci
and that T solves the steady state equations.
We defer discussing this result further until the next section,
where we will discuss how all three results in this section will be used

in conjunction with the hypotheses of the next section.

3.4 General assumptions. This section provides a convenient place to col-

lect the set of hypotheses we will assume to hold in all the derivations
in subsequent chapters. We will first state these assumptions and then
briefly discuss how they fit together with the results of section (3.3).

The first three hypotheses are about the form of the equations

T
LR F(k)(ug1_<>’ugk>’ﬁ,‘/’ [+ e (o,7, 8 (t-,5-9))dyd8), k=l,...,v .
- BT © Jlyll<x

(3.1)
Namely, the first two are smoothness assumptions about the G(q) and the
F(k), and the third assumption is that equations (3.1) form a parabolic

system. The other two assumptions will guarantee existence of solutions to
the initial value problem.

The first two hypotheses are:

- -
Hl: For all q, all j, all se[O,TJ, all y with ||y|| <Y, the

(q)
G3j

for some o > 0, Ggg)(s,;,ﬁ) is locally Hoelder continuous with exponent

derivatives exist and are continuous in all arguments. Moreover,

o din the arguments .

. k k
H2: For all i,j,k,%,q and for all arguments, the derivatives F;i;’ Féi)’
Féi), and Fik) exist and (for some o > 0) are locally Hoelder continuous

with exponent o in all arguments.
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These hypotheses are slightly stronger than the smoothness hypotheses we
used previously. We require this slightly stronger smoothness because
we will often need to write a solution U of (3.1) as ﬁ(t,;) = G(t,;)

= =
+ e ¢(t,x), need to then expand (3.1) as

vék) + eq:ék) = F(k)([\"r}) + e ‘12 ﬁ‘; ¢ij + Z F(k) ¢§k) + § F:gl;)cp(z)
+ (k)f f (q)(s,y,ﬁ(t——s,;—;))
3] [<x >
¢( )(t—s,;-§)d§d%}
+ h.o.t.s k= Livowsy 5

and then finally conclude that the "h.o.t.s" are terms which are of
higher than linear order in €. The Hoelder continuity ensures that the
"higher order terms" are of higher than linear order in «e.

The third hypothesis ensures that equations (3.1) form a para-

bolic system. It is:

H3: The functions
PO @ W, f j 6D (s,5,0(ts, %)) dyds)
1y] <y

satisfy
g (&) *
;: 11 gi Ej >0 for all g # 3 5
1]
gi)-i 0 for all 2 #* k, and
(k) ,(q)
th 39 >0 for all q and 2 4
(k) (q)

for all k and all arguments of F and G

Note that this is precisely one of the requirements of the maximum principle.
The last two hypotheses we will need are concerned with the exis-
tence of solutions of the initial value problem. At the present state of

the theory of partial differential equations, we cannot generally prove the
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existence of solutions of

uék) = fok)([ﬁ]) k=1,..., v (3.2)

for reasonably general initial conditions. We therefore must assume this

existence.

H4: For all M > 0 sufficiently large, we assume that for every initial
condition ﬁ(t,;) (defined for all =x and all t < 0) which satisfies

>
(t,x) is bounded and uniformly Hoelder continuous with ex-—

(1) 1
ponent a in ; and t for some o > 0
(2) u(k)(O,z), uik)(o,ij, and uiﬁ)(o,i) are bounded for all §,

and
(3) uig)(o,;) is uniformly Hoelder continuous with exponent

->
o in x, then the system of equations

(k) (k)((k) (k) j‘fll - (Q)(s,y,u(tsx—y))dyds) T
y||<Y

(3.2)
has a solution u(t,x) for all t > 0 which satisfies the conditions

(4) ﬁ(t,;) agrees with the initial conditions for t < O,

(3) for any To > 0, 0 (£, 5%, ui ) ( ) (£,

(t; x), and u
e#ist and are bounded for 0 < t < Ty , and

(6) uig)(t,z) is locally Hoelder continuous with exponent
e(Ty) (for some e(Ty) > 0) in X and t for all :Z and all t in [O’TQ]’

for any T, > O.

H5: If there is a single spatial dimension (i.e. =n = 1), then for all
M > 0 sufficiently large, we assume that for any c¢, any xp, x; with
Xy ¥ ¥, and for every initial condition ii(t,x) that satisfies conditions
(1), (2) and (3) of H4 at all pointé but x = x5 and x = x; and that is

continuous at x =xp and x = x; for t < O (but in general is not
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differentiable there), there is a solution du(t,x) of the system of

equations

CON (k)( ( (k) ‘[ J[ | G(q)(s y,i(t-s,x-y))dyds) + cu(k)
ly|<¥

t
= loisse ¥
(3.16)
for all t > 0 which satisfies the conditions
(4) 1(t,x) agrees with the initial conditions when t < 0,
(5) for any Ty > 8 > O, u(k)(t,x), uik)(t,x), and u(i)(t,x)
X

exist and are bounded for ¢ < t

| A

Ty

(6) for any Ty > 8 > 0, (k)

(t,x) is locally Hoelder continu-
ous with exponent €(8, Ty) (for some €(8, Tg) > 0) in t and x for all

x and all t in [S,To].

Hypothesis H4 assumes the existence of satisfactory solutions of (3.2)
when the initial conditions are smooth. Hypothesis H5 also assumes the
existence of satisfactory solutions of (3.2) in terms of a coordinate sys-
tem which travels with speed c¢. It also permits the initial conditions to
have discontinuous derivatives at x = x5 and x = X;. We need this last
existence assumption because in the proof of the instability of non-mono-
tonic waves (in one spatial dimension), the perturbed initial condition in
general has two jumps in its derivative due to the bulge added to the non-
perturbed wave.

We now briefly discuss how the hypotheses, the modification of
the equations, and the mathematical results of section (3.3) fit together.

ey (@)

First, if hypotheses H1l, H2 and H3 about the functions and G are

(k) (q)
FM and GM

assumed to hold, then the modified functions have the

properties
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Pl: For any particular M > 0, for all q and j, and for all argu-

ments, the derivatives ,¥,4) exist, are uniformly bounded, and

() *
GM,3j(S

are uniformly Hoelder continuous with exponent o in the argument d

(where o 1is the same as in Hl).

P2: For all i,j,k,2, for all arguments, and for any particular M > 0,

(k) F(k) (k) nd F( ) exist, are uniformly

the derivatives FM,lij’ M,2i° M 397 M, 42

bounded, and are uniformly Hoelder continuous with exponent o in all

arguments (where o is the same as in H2).

P3: For any particular M > 0, there is a %4 > 0 such that the func-

tions
T
k k k) . -+ > > -
Flfl )(ui,),ui ),u, f f & G}(iq)(s,y,u(t—s,x-y))dyds)
. O I y]|<y
satisfy
(x) > _
Z FMllJ igj15M>0 for all & with ‘:: Eiii 1
(k)
M Y >0 for all 2. #* k
(k) (Q)
M e M 32 >0 for all q and %,

for all k and all arguments of F&k) and Gék).

Thus the modifications change local Hoelder continuity into uniform Hoelder
continuity in Hl and H2, and also places a lower bound GM on the "local
diffusion constant" in H3.

We now look for the net effects of the existence assumption H4.
To simplify exposition, define
S = {all vector functions ﬁ(t,}) defined for t < 0 which satisfy the

smoothness conditions (1), (2), and (3) of hypothesis H4}l.

Assume H1, H2, H3, and H4 are satisfied. From H4, for any initial condition
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oy
ii(t,x) € S there is a solution of

W00 _ 500

. [ﬁ}) for t > 0, k= lgeasy ¥ (3.2)

with properties (4), (5), and (6). However, the uniformity lemma then im-
- > -
plies that d(t,x), ﬁi(t,x), and ﬁij(t,x) are uniformly bounded for all
t >0 and all §. Thus, the net effect is that whenever the initial
conditions ﬁ(t,%) for t < 0 are smooth enough to be in S, then as-
suming H1, H2, H3, and H4 implies that a solution ﬁ(t,;) of (3.2) for
t > 0 exists which both matches the initial conditions for t < 0 and
2 7 > i = 4

has 1d(t,x), ﬁi(t,x), and uij(t,x) uniformly bounded for all t > 0 and
all .

Now suppose we have constructed continuous bounded functions

u(t,x) and g(t,g) which are in Cif\ Cé for t > 0 and also satisfy

;Ek) iﬂyék)([ﬁ]) for all t > 0 k= 1,...,V
Eék) i F}ik)({g]) for all t > O k=1,...,V

Consider any initial condition ﬁ(t,;) for t < 0 smooth enough to be
in S and which also satisfies

% w2y s P b for all ¥, all t <0, k=1,...,V
Then H4 implies that there exists a solution ﬁ(t,z) of (3.2) for t > 0
which matches the initial conditions for t < 0 and is bounded for all x
and all t in [9;rﬂ for any Ty > 0. The hypotheses of the maximum
principle are thus satisfied, and

G(k)(t,;)_i u(k)(t,;) for all t > 0

Thus, the net effect is that whenever ﬁ(t,%) is smooth enough to belong
in S, then assuming that H1, H2, H3, and H4 are satisfied implies that
there is a solution ii(t,x) of (3.2) for t > 0 which matches the initial

— k -
conditions for t < 0. Moreover, whenever u(k)(t,;) z_u( )(t,x) for all

¥ and all k holds for all t < 0, then it holds for all t > 0 as well.



-110-
Similarly, if u(k)(t,;) 3_Efk)(t,;) for all ; and all k holds for
t < 0, then it holds for t > 0 as well.

We now briefly look at the net effects of the existence assump-
tion HS when there is only one spatial dimension. Define S' as the set
of all functions w(t,x) defined for t < 0 which satisfy the initial
condition requirements of H5. Assume that Hl1, H2, H3, and H5 are satis-
fied. Let 1(t,x) be in S' for t < 0. Then H5 guarantees a solution
of (3.2) exists for t > 0 which satisfies properties (4), (5), and (6)
of H5. The uniformity lemma then shows that du(t,x), ﬁx(t,x), and
ﬁxx(t,x) are uniformly bounded for all t > § for any & > 0. Property
(6) of H5 and the results of the uniformity lemma can then be used in the
asymptotic state theorem. This shows that if u(k)(t,x) ¥ T(k)(x) mono—
tonically as t =+ «» for each k, then %(x) is a steady state solution
of (3.2):

Fbik)({’r])=0 K= 1,..., 9
Thus, the net effect is that when there is a single spatial dimension and
when the initial conditions 1u(t,x) & S' for t < 0, then assuming HIl,
H2, H3, and H5 implies that there is a solution d(t,x) of (3.2) for
t > 0 which matches the initial conditions for t < 0, and for which
a(t,x), ﬁx(t,x), and ﬁxx(t,x) are uniformly bounded for all t > § (for
any & > 0). Moreover, if

(k) (k)
u

(t,x) > T (x) monotonically as t > « for each Kk,

then %(x) 1is a steady state solution of (3.2).
Now suppose u(t,x) and u(t,x) are the same upper and lower
functions defined previously. The net effect of assuming Hl, H2, H3, and

H5 is that whenever (t,x) is in S' for t < 0, then there is a solu-

tion d(t,x) of (3.2) for t > 0 which matches the initial conditiomns
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for t < 0. Moreover, as before, if

7 () i % 5 (B

(t,x) for all =x and all k

holds for all t < 0, then it is true for all t > 0 also. Similarly,

if
u(k)(t,x)<i_g(k)(t,x) for all x and all k

holds for all t < 0, then it is true for all t > 0 as well.

As a final remark for this chapter, let us note that we will
not prove the individual results in subsequent chapters under the most
general possible hypotheses. Instead we will tend to use the same overall
hypotheses for all the results in each chapter. We also will not use the
most general possible overall hypotheses. We will sacrifice mathematical
(but not physical) generality to gain mathematical and expositional sim-
plicity. We shall also occassionally limit the generality of the systems
of equations we treat in order to prevent undue proliferation in the
possible results. Note that an undue proliferation of possible outcomes
often suggests that the optimal approach is to treat each specific problem
separately.

This completes this chapter on mathematical preliminaries. 1Im
subsequent chapters we will apply these results to study the stability/
instability of traveling waves and the connection between the initial
conditions and the mean wavespeeds. This will be done for the classes of
equations

o, = F(uxx,ux,u)

(and generalizations to multiple spatial dimensions) in Chapters IV and V,

for

= F(u LI f f (s,y u(t-s,x-y))dyds)
|Y|<Y
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(and generalizations to multiple spatial dimensions) in Chapter VI, and

also for
u(k) = F(u(k), u(k) 1) k=1,..., v
E XX X
(and generalizations to multiple spatial dimensions) in Chapter VII.

The results of Chapter ITI will be included in Chapters IV and V, and

Chapter VIII will examine physical examples of each of the above types

of systems.
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Chapter IV

STABILITY FOR THE SIMPLEST CASE

In this chapter we deal mainly with parabolic equations which
contain only one dependent variable, contain only one spatial variable,
and contain no integrals. Throughout this chapter we will assume that
the hypotheses H2 (smoothness of the equation), H3 (parabolicity of the
equation), and H4 and H5 (existence of solutions to the initial value
problem) are satisfied. We will also assume that a very large M > O
has been chosen and we will work with the resulting specific equation

B, = f(uxx,ux,u) , £ > 0, where f(uxx,ux,u) = FM( i) . (4.1)

In this chapter we will almost exclusively be concerned with

equation (4.1) over the domain {V(t,x) with x in R and t > 0}. Speci-
fically, in this chapter we will determine the stability/instability of
very nearly every bounded traveling wave (and steady state) solution
u(t,x) = ¢(x-ct). Thus some of the material in this present chapter is
duplicated in chapter II. In this chapter we will treat only the travel-
ing waves and steady states u(t,x) Z ¢(x-ct) for which |¢(x—ct1 <M
for all x. This is sufficient since each bounded traveling wave or
steady state ¢(x-ct) satisfies [¢(x—ct)| <M for all x for all M
sufficiently large. In addition, in this chapter we will determine the
stability of all steady state solutions u(t,x) = ¢(x) to the finite

domain-boundary value problem

If

u f(u ,u ,u) for 0 <x<1,t>0

t XX = == ==

X
A at x =0, u(t,x)

Il
{ws]
m
rt
»

I
i

1l

u(t,x)
where A and B are any given fixed constants.

This chapter has been organized into several short sections.
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Basically the stability of monotonic traveling wave (and steady state)
solutions of (4.1) over the infinite spatial domain is treated in sections
(4.1) through (4.11). The instability of non-monotonic traveling wave
(and steady state) solutions is treated in sections (4.12) through (4.17).
Section (4.18) is used to discuss the stability/instability of the steady
state solutions of the finite spatial domain-boundary value problem.
Finally, the last section, (4.19), is used to summarize this chapter in
broad terms.

To be more specific, in section (4.1) we discuss the phase
plane for traveling wave solutions u(t,x) = ¢(x-ct) of equation (4.1);
that is, the phase plane of the system

¢ =v

X

0

f(vx,v,¢) + cv
In this discussion we pay particular attention to merged singular points
as well as ordinary ones. In section (4.2) the stability for constant
steady states is derived.

In sections (4.3) through (4.6) we actually derive the stability
of non-constant monotonic traveling waves (and steady states). In sec-
tion (4.3) we discuss the nature of these monotonic waves, especially the
asymptotic (as x » + ) nature. Next, the basic stability results are
obtained in section (4.4). Then, better upper and lower functions are
developed in section (4.5), and in section (4.6) these bounding functions
are used to obtain our final sharp stability results for monotonic travel-
ing wave (and steady state) solutions of (4.1).

The short sections (4.7) through (4.11) are used to discuss top-

ics related to the stability of monotone waves. In section (4.7) we
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extend the stability results to the cases where either ¢(- =) or ¢ (+ «)
(or both) are not nodes, saddle points, nor merged combinations of nodes
and saddle points. Section (4.8) is used to describe explicitly how the
stability of a monotonic wave depends on the function f. Next, in sec-
tion (4.9) we compare our stability results with those obtainable by con-
ventional eigenanalysis/variational methods. In a similar vein, in sec-
tion (4.10) we show how the stability class for a monotonic wave ¢ (x—ct)
splits the generalized null space of equation (4.1) linearized about ¢.
Finally, in section (4.11) we consider the extension of our stability
results to multiple spatial dimensions. There we find that all our sta-
bility results are easily extended to monotonic plane waves (in higher
spatial dimensions), and also that our methods are applicable to other
types of monotonic traveling waﬁes in multiple spatial dimensions.

We begin our derivation of the instability of non-monotonic
waves in section (4.12). We state and prove the instability theorem in
this section using lemmas which are proved in section (4.13). In section
(4.12) we find that every traveling wave and steady state solution of
equation (4.1) which has at least two relative extrema is extremely un-
stable. We also find that most traveling wave and steady state solutions
which have exactly one relative extremum are also unstable. However, there
is a type of traveling wave and steady state solution with exactly one
extremum for which we cannot determine the stability or instability. We
discuss this indeterminate case in section (4.14), where we are able to
characterize which of those solutions are stable and which are unstable.

In sections (4.15) through (4.17) we discuss topics related to

the instability of non-monotonic waves. We point out how the instability
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proof can be adapted to strengthen the instability results for some types
of constant steady states in section (4.15). We use section (4.16) to
comment on some other uses of the hair-trigger effect, and in section
(4.17) we extend the instability results (in a limited sense) to the
multiple spatial dimensions case.
In section (4.18) we treat the stability/instability of steady

state solutions to the finite domain boundary value problem

u fFlu . ) Gzl 20

t XX X

u(t,x) A at x =0 u(t,x) =B at x=1 |,

11

where A and B are fixed constants. We again find that steady state
solutions with at least two relative extrema are unstable, solutions with
exactly one relative extremum can be stable or unstable, and solutiomns with
no relative extrema are stable.

Finally, we will conclude this chapter in section (4.19) with

some general overall remarks.

4.1 Singular points in the phase plane. As in Chapters I and II, we

begin by converting traveling wave solutions u(t,x) = ¢(x-ct) of
= 4.1
u, = flu _,u ,u) (4.1)
into steady state solutions u(t,x) = ¢(x) of
- . 4.2
u, f(uxx’ux’u) + cu_ ( )

' which travels

We do this by switching to a new coordinate system £ %
with speed ¢ relative to the original stationary coordinates:

£ = ¢ x' =x - ct . (4.3)
For convenience we drop the prime superscripts on the t' and x' and thus

obtain (4.2). There is no possibility of confusion if we remember that

the parameter c¢ in (4.2) can be used to obtain the original stationary
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coordinates by

t =t = x4+ ct
stat XStat

Thus, iInstead of studying the traveling wave solutions of (4.1), we have
chosen to study the steady states of (4.2) for each value of c.

A typical method of examining the steady state solutions of
(4.2) (at any fixed value of ¢) 1is to go to the phase plane. We write
(4.2) as the equivalent first order system

o =v
® (4.4)

£(v -v,9) +cv =0 ,
and note that the phase plane is the graphical representation of the solu-
tions ¢X(¢,v) . vX(¢,v) of (4.4).

The crucial points ¢ = ¢g5, v = vy in the phase plane are the
singular points of (4.4); i.e. the points (¢g,vg) for which (4.4) im-
plies that ¢x =g E 0 when ¢ = ¢p, v = vg. From (4.4) we see that
¢ = ¢g, v = vy 1is a singular point if and only if

vg = 0 £€0,0,69) = 0 .

Thus ¢ = ¢y, v = 0 1is a singular point for all values of ¢ if it is

a singular point at any speed c¢ = cj.

1l

op(x) is

These singular points are crucial because if u(t,x)

a monotonic steady state solution of (4.2), then ¢ = ¢(-»), v ¢x(—m)
and ¢ = ¢(+°), v = ¢x(+w) must be singular points. Moreover, as we
discovered in Chapter II the stability of a monotonic steady state solu-
tion u(t,x) = ¢(x) depends heavily on which types of singular points

¢ (=) and ¢ (+=*) are.

The usual classification of singular points is as nodes, spiral

points, and saddle points. We note that the usual definitions of these
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types of singular points are that
¢ = ¢9g, v =0 is a node of (4.4) when £(0,0,¢p5) = 0, £3(0,0,¢9) > O

and for values of ¢ such that [£,(0,0,¢q) + c| >

2‘/f1(0:0;¢0)f3(0:09¢0) >
¢ = ¢g, v =0 1is a spiral point of (4.4) when £(0,0,¢5) = O,

£5(0,0,45) > 0 and for values of c such that |£5(0,0,¢4) + c| <

2V£,(0,0,44)£3(0,0,4p)
¢ = ¢p, v =0 1is a saddle point of (4.4) when £3(0,0,¢5) < O for all

values of c.
Note that these definitions include centers as a special case of spiral
points. We will now extend the definitions of nodes and saddle points to
cover the case where £3(0,0,¢p) = 0 and which can be thought of as two or
more singular points merged together at ¢ = ¢4, v = 0.

We first define a singular point ¢ = ¢g, v = 0 of system (4.4)

to be regular when £(0,0,¢) has a zero of order m at ¢ = ¢g for some
positive integer m. Specifically, for m a positive integer we define the

point ¢ = ¢5, v = 0 to be a regular singular point of order m if and

only if there exists a u # 0 and a q > O such that

m+q)

£(0,0,4) = u(e=¢9)" + 0(|do-dp|) as ¢ > ¢g

-1y (4.5)

£3(0,0,8) = im(¢-0¢)™ " + 0(|¢-to] as ¢ > dg -
We now extend the definition of 'nmode' and 'saddle point' to cover
all possible regular singular points. We first realize that a higher order
singular point (¢(,0) can behave differently for ¢ z ¢g than for ¢ < ¢g.
For example, it can be node-like for ¢ x ¢5 and saddle-like for ¢ < ¢g.

Hence we shall use both a + designation (for the behavior when ¢ 2 ¢g)

and a - designation (for the behavior when ¢ < ¢3) for a singular point

(bg,0).



=119=

Note that ordinary first order nodes (and spiral points) have
£(0,0,4) > 0 for ¢2¢9 and have £(0,0,¢) < O for ¢sdg. Note also
that the range of values of ¢ for which ¢ = ¢3, v = 0 can be a spiral
point (or center) collapses to nothing as £5(0,0,43) > 0. Moreover,
first order saddle points have £(0,0,4) < 0 for ¢2¢y and have
£(0,0,¢) > 0 for ¢s¢g. We therefore define a regular singular point
of order n (m > 2) to be a + node (+ saddle) if u(¢—¢0)m > 0 (if
u(¢—¢0)m < 0) for ¢ > ¢g. Similarly, we define a regular singular point
of order m (m > 2) to be a - node (- saddle) if wu(¢-¢g)" < 0 (if
u(¢—¢u)m > 0) for ¢ < ¢g. For completeness, if (¢(,0) is an ordinmary
first order node (first order saddle) we will designate it as a - node
and as a + node (as a =~ saddle and as a + saddle). For brevity, we
will designate a regular singular point as a + N, a - N, a+ S, or a
- S to denote that it is a + node, a - node, a + saddle, or a =~ sad-
dle, respectively. When we need to refer to the behavior of £(0,0,¢)
for both ¢2¢p and ¢3¢y, we will designate a regular singular point
(¢y,0) as a N, S, NS, or SN if it is both a - N and a + N, both a
- Sand a+ S, botha - Nand a + S, or botha - S and a + N, res-
pectively.

This completes our discussion of singular points in the phase
plane. Although we have not shown that these extensions of the defini-
tions of node and saddle point are reasonable, if one solves the asymp-
totic formula

£1(0,0,00) (9=60)  + (£2(0,0,80) + ) (¢=bg), + u(d=¢9)" = 0
and plots the resulting solutions in the phase plane near ¢ = ¢g,
¢ = v =0, one sees that locally ¢y behaves exactly like an ordinary

X
node (like a saddle) for ¢2¢; when it is a + N (when it is a + S).
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Similarly it behaves exactly like an ordinary node (like a saddle) for
dsdy when it is a - N (when it is a - 8).
Although it is not mathematically necessary, subsequently we
will usually work only with regular singular points. This simplifies
both the mathematical details and the exposition. Thus we will often

use the following hypothesis

H6: All singular points ¢ = ¢g, v = 0 with [¢g| < M of the system

9. =¥

(4.4)

I

f(vx,v,¢) + cv =0

are regular.

Since there are physically interesting examples where the singular points
of (4.4) are not regular (notably equations like Burger's equation where
£(0,0,4) = 0 for all ¢), often we will point out generalizations of
our theorems in remarks following the theorems.

We now use these definitions in deriving the stability of con-
stant steady states. Later they will prove important in determining the

stability of monotone waves.

4.2 Stability definitions. Stability of constant steady states. The

stability of constant steady states is very simple. We will therefore
simply state and prove the result. However, in order to state the re-
sult precisely, we need to reintroduce the definitions of Cw—stability
and ¢w~stability. These definitions will be exactly like those used in
Chapter II, except that the perturbations of the initial conditions will
now be required to satisfy the smoothness conditions needed by the exis-

tence assumption H4. Specifically:



-121-

A function Y¥(x) is defined to be in the class Hi’ if and only
if Y¥(x) dis defined for all x in (- ®, ®), ¥Y¥(x) is twice differen-
tiable everywhere, Y(x), ¥'(x), and ¥" (x) are bounded, and ¥"(x) is
uniformly Hoelder continuous with some exponent o > 0.

Let w(x) be any continuous function with w(x) > 1 for all
x. Then any steady state solution u(t,x) = ¢(x) of equation

o ™ f(uxx,ux,u) + cux (4.2)
is defined to be Cwustable if and only if given any € > 0 there is a
§(e) > 0 such that every solution u(t,x) of (4.2) satisfies
| {u(t,x) - p(x)Iw(x)| < e for all x and all t > 0 (4.6)
whenever the initial conditions u(0,x) are in Hi -and satisfy
[{u(0,x) - ¢(x)Iw(x)| < 6(e) for all x . .7
Similarly, ¢(x) is defined to be §Y—Stable if and only if for every
€ > 0 there is a §&(eg) > 0 such that every solution u(t,x) of (4.2)
satisfies

|u(t,x) - ¢(x)! < € for all x and all t > 0 (4.8)
whenever the initiél conditions u(0,x) are in Hi and satisfy rela-
tion (4.7).

These stability definitions are precisely the stability defi-
nitions of Chapter II, except that the phrases '"the initial conditions
u(0,x) are smooth'" have been replaced with "the initial conditions
u(0,x) are in Hi". Thus the physical interpretations of these stability
definitions remains the same as in Chapter II. Note also that Hi has
been defined so that u(0,x) EZHi is exactly the smoothness condition
needed by the existence hypotheses Hi.

With these new definitions, we easily state and prove the
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stability results for constant steady states.

Theorem 4.1: Suppose that hypotheses H2, H3, H4, and H6 are satisfied.

Suppose further that wu(t,x) = ¢; 1s a constant steady state solution of
u_ = f(uxx,ux,u) + cu (4.2)

and that |¢0| <M. Then ¢ = ¢g, v =0 1is a regular singular point of

order m (for some positive integer m), and

(1) if ¢ = ¢p, v=0 dis a + S then u(t,x) o 1is c¥-stable

with w(x) =1 if the perturbations are restricted to be non-negative;

(2) if ¢ = ¢p, v=0 dis a - S then u(t,x) ¢g 1is c"-stable
with w(x) = 1 1if the perturbations are restricted to be non-positive;
(3) if ¢ = ¢p, v=0 is a S then u(t,x) = ¢y 1is c"-stable

with w(x) = 1;

1t
il

(4)y 4if ¢ dgs V 0 dids a + N type singular point of order m
or is a spiral point or center, then ¢(x) is &W—unstable with w(x)
= 1. Further, if it is a + N of order 1, a spiral point, or a cen-
ter then it is ijunstable with w(x) =1 + & T e+Kx for « > 0
sufficiently small, and if it is a + N of order 2 then it is JC?
unstable. Moreover, u has these instabilities even 1if we restrict the
perturbations to be non-negative; and

(5) 1if ¢ = ¢g, v=0 dis a - N type singular point of order m
or a spiral point or center, then u(t,x) = ¢5 has the same instability

as in case (4) except that the perturbations can now only be restricted

to being non-positive.

Thus, in rough terms constant steady states are very stable if

they are saddle points and are unstable if they are nodes, spiral points,
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or centers. Furthermore, the weaker (i.e., higher order) the node the

weaker the instability.

Proof: To prove the stability parts of the theorem, we will define ap-
propriate smooth upper and lower functions E{t,x) and u(t,x). The
maximum principle will then yield stability.

For part (1), define G{h,t,x) and u(t,x) by

£(0,0,u(h,t,x)) (h>0), wult,x) = ¢g
(4.9)

u(h,0,x) = ¢ot+h, u (h,t,%)

Note that u and u are both solutions of equation (4.2). Moreover,
since ¢ = ¢, v=0 dis a + S then f(D,O,;} and hence E; are both
negative for all h > 0 sufficiently small., Thus for all h > 0 small
enough ;L < 0 for all t >» 0. Now suppose that u(0,x) is any initial
condition in Hi. Then the solution u(t,x) of

B, f(uxx,ux,u) + cu (4.2)
exists for all ¢t > 0 and has wu, u s and uo. bounded. If u(0,x)
also satisfies

$g < u(0,x) < ¢g + h for all x
for any h > 0 small enough, we conclude from the maximum principle that
¢ = ult,x) < u(t,x) < u(h,t,x) < u(h,0,x) = ¢5 + h for all x

¢g 1is c"-stable with

1

is satisfied for all t > 0. Thus u(t,x)
w(x) =1 if the perturbations u(0,x) - ¢5 are restricted to be non-
negative.

Part (2) is proved similarly.

To prove part (3), we define E(t,h,x) and wu(t,h,x) for

h >0 by
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¢g + h u

it

u(h,0,x) £(0,0,u0)

[

. (4.10)

I

u(h,0,x) = ¢5~ h u £(0,0,0) .
Since ¢ = ¢p, v=0 1is an S, we conclude that whenever h > 0 is
small enough then GL(h,O,x) < 0 for all t > 0 and Et(h,O,x) >0
for all t > 0. Thus, the existence assumption H4 together with the
maximum principle imply that whenever u(0,x) dis in Hi and

¢y — h <u(0,x) < ¢g + h for all x

is satisfied for any h > 0 small enough, then the solution u(t,x) of

(4.2) with initial condition u(0,x) exists and satisfies

¢p - h = u(h,0,x) < u(h,t,x) < u(t,x) < u(h,t,x) < u(h,0,x) = ¢35 + h

for all x

1
—
.

and for all t > 0. Thus u(t,x) = ¢y 1is c"-stable with w(x)

We now prove part (4), first dealing with the case that
¢ = ¢pg, v=0 1is a node of order 1, a spiral point, or a center. 1In
these cases, f3(0,0,¢3) = u > 0. Thus define

u(h,t,x) = ¢p + heut/4

sech kx
where h >0 and' k > 0 are at our disposal. Define

A= sup [£f(a,B,Y)] , B = sup |fy(a,B,y) +c| ,
a,B,Y a,B,Y

and let k > 0 be any constant small enough so that
Ak? < p/& , Be < u/dh .
Then,
u - f(gxx,gx,g)—ch < u/4(u-dp) - flgxx - (f2+C)Hx - u(u-¢g) + h.o.t.s.
where f; = £,(0,0,¢q9), fo = £,(0,0,¢p), and "h.o.t.s" are "higher

order terms". Substituting for u, we find that
w, =~ Elg e ) =~ em < - Hh~eut/4 sech kx + h.o.t.s . (4.11)
e i & A W 2 N 4

Since f£,, f,, and f3 are uniformly Hoelder continuocus with some non-
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zero exponent, there exists an hpy such that

B = f(Exx’Ex’E) ~ ch_i 0 for all x (4.12)
whenever h > 0 and t > 0 are such that 0 < he“t/h < hgp.

In order to see that (4.12) implies instability, define wu(h,t,x)
as the solutions of (4.2) with wu(h,0,x) = u(h,0,x) for O < h < hyg.
Since the u(h,0,x) are in Hi, the existence assumption H4 and the
maximum principle together imply that wu(h,t,x) exists and

u(h,t,x) < ulh,t,x) for all x

whenever 0 < h < hy and for all t > 0 such that 0 < heut/4 < hyp

nt/4

Since u(h,t,x) = ¢g + he sech kx and u(h,0,x) = ¢y + h sech kx,

u(t,x) = ¢g is Cw—unstable with w(x) = 1 + EKX + e—Kx

, even if the
perturbations are restricted to be non-negative.

Suppose now that ¢ = ¢g, v=0 is a + N of order m > 2.
Consider 1
pg + {(tgp-t) /§7$§3}—'5:T %x2+x " (4.13)

where n 1is a fixed constant in (O,AE%T). Let ty > 0 be any fixed

_‘-_1(t0 ,Xg,t,X)

positive number. By an analysis similar to the preceding case, there is
an hp > 0 such that
- - <
B = S B0l -~ 8 20

whenever tg > t > 0 and xg > 0 are such that

i 1

A st )
(tg=t) ™ |xol ™7 < ny

Since xy can be arbitrarily large (and thus Igﬁto,xo,t,x) - ¢u| is
arbitrarily small), defining wu(tg,xg,t,x) as the solution of (4.2) with
initial condition u(ty,%p,0,x) shows that wu(t,x) = ¢y is Qw-unstable
with w(x) =1 as in the preceding case. Note that when m = 25

u(ty,xp,0,x) - ¢p 1is J[f integrable when n 1is chosen to be in (0,%).
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This completes part (4).

Part (5) is proved similarly.

This completes the stability picture for constant steady states
u(t,x) £ ¢g when ¢y 1is a regular singular point. Note that equations
(4.9) and (4.10) show that when ¢45 d4s + S, a - S, or a S then small
non-negative perturbations, small non-positive perturbations, and all

perturbations (respectively) decay exponentially in time (if m = 1), or
1

like t— m-1 (if m > 1). Similarly, perturbationi about ¢5 grow ex-
ponentially in time (if m = 1) or like (to—t)— m=-1 (if m > 1) when
the perturbations are restricted to a node-like region.

Lastly, we note that the stability of a constant steady state
solution wu(t,x) = ¢3 when ¢y dis not a regular singular point can be
found by the same technique. This results in u(t,x) = ¢g being

1) c"-stable for positive perturbations if £(0,0,4) < 0 for all
¢ din (¢g,dgth) for some h > O,

2) Qw—unstable for positive perturbations if £(0,0,4) > 0 for all
¢ din  (¢g,¢oth) fof some h > 0,

3) c¥-stable for negative perturbations if £(0,0,¢) > 0 for all
¢ in ($y-h,dy) for some h > 0,

4) Qw—unstable for negative perturbations if £(0,0,¢) < 0 for all
¢ din (¢g-h,dy) for some h > 0, and

5) C"-stable if £(0,0,¢) < 0 for all ¢ in (dg,bg+h) and if
£(0,0,4) > 0 for all ¢ in (¢g-h,¢y) for some h > 0.
In the above, w(x) = 1.

This concludes our analysis of constant steady states. In the

next section, we begin our analysis of monotone steady states.
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4.3 Nature of monotone traveling waves. For this section we assume that

u(t,x) = ¢(x) 1is a bounded non-constant monotonic steady state solution
of

u = f(uxx,ux,u) + cu . (4.2)
From this assumption we will deduce some facts about ¢(x). These facts

will be needed in the actual derivation of the stability results for non-
constant bounded monotonic steady state solutions of (4.2).

We first note that since u(t,x) = ¢(x) is monotonic and non-
constant, ¢X(x) # 0 for all x. This is because ¢(x) being monotonic
implies that either ¢X(x) >0 for all x or ¢X(x) < 0 for all x.
Hence if ¢x(x) =0 at some x = xg then we would haﬁe ¢X(x0) = ¢xx(x0)
= 0. Thus, equation (4.2) would imply that

£(0,0,4(xg)) = 0
and hence that wu(t,x) = $(x3) dis a constant steady state solution of
equation (4.2). By the uniqueness of solutions of ordinary differential
equations, this implies that ¢(x) = ¢(x;3) for all x. Hence ¢(x) be-

ing a non-constant monotonic steady state solution of equation (4.2) im-

plies that ¢x(x) ¥ 0 for all =x.

We now note that ¢X, ¢xx’ and ¢xx/zpx are all bounded. Speci-
fically, because equation (4.2) reduces to a heat equation whenever
|¢x| > 2M, either |¢X(x)| < 2M for all x or |4(x)| grows linearly
for all x sufficiently large or small. Since this latter case violates
the boundedness of ¢(x), we see that ¢x is bounded for all x. The
function ¢xx is also clearly bounded. This is because ¢ and ¢X are
bounded, because f;(a,B,Y) 3_6M > 0 for some &, > 0 and for all argu-

M

ments a,B,Y, and finally because
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f(¢xx,¢x,¢) * C¢X =0 , (4.14)
We already know that ¢XX/¢x is bounded for all x in any
finite interval and that ¢xx/¢x is continuous. Since ¢ > ¢(+=) and
¢x +0 as x>+ ® , equation (4.14) implies that ¢xx -0 as x + + o«
as well. Thus, asymptotically the formula
£q ¢xx + (f2+c)¢x +Eg(d~p(+=)) = 0 as x > + o
must be satisfied, where the arguments of f;, f,, and f3 are (0,0,¢(+=)).
We note that solving this equation shows that ¢xx/¢x remains bounded as
X > + © because f; > 0 and f, and f3 are finite. Similarly ¢xx/¢x
remains bounded as x + -~ «, and is therefore bounded for all x.
We also note that solving the asymptotic equation shows
that |¢xx' is decreasing for all x and all - x sufficiently large.
The rest of this section treats the asymptotic nature (as
X + = and x > + «) of monotonic solutions of the steady state equa-
tion, (4.14). This is done only for the cases where ¢(~») and ¢ (+=)
are both regular singular points. These results are contained in table
4.1, and are derived by solving the asymptotically valid formula
£1 ¢+ (Epredo + u(e=¢p)" =0 . (4.15)
Here, ¢ 1is the appropriate one of ¢(-~) and ¢(+*), £; = £1(0,0,¢¢),
f, = £5,(0,0,¢3), m is the order of the singular point ¢ = ¢4, v = 0,
and p dis the correct coefficient. TFor brevity table 4.1 contains only
the asymptotic decay rates of ¢(x) as x + - = and x » + « for the
case of ¢(x) being monotonically increasing. This is sufficient since
replacing x by - x changes a decreasing function into an increasing
function. Also for brevity, the table only contains the asymptotic nature

of ¢. The asymptotic decay rates of ¢x can correctly be obtained by
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formally differentiating the asymptotic formulas for ¢.

Part 1:

A1,2 =

Case 1:

Case

if m

if m

if m

Other cases:

It

v

Table 4.

Asymptotic nature of ¢(x)

- (fpte )XtV (£o+c) ZH+auf,

for some constants

No solution decays to

1

as o'(x) > 0

X ¥+ ooy

everywhere

Asymptotic equation: £, ¢xx+(f2+c)¢x + u]¢—¢(+M)[m =0

,2where A; < X,

2F, if m=1
il £ §‘|f2+°1 1f m= 2,3,...
1
¢ = ¢(+=), v=0 dis a S . Requirements: u > 0
if m=1 b~ o(+) + age1F 4 ageP1—9%,
if m>1, f,+c>0 ¢~ ¢(+x) + aoe)‘lx + O(e(xl_éjx)
-1 _ 1
if m>»1, f,+c<0 ¢ ~ dp(+=) + apgx el g ot o
5 o
if m>1, f,+c=0 e =1 il
» fortc ¢ . d(+=) + agx + 0(x
for some constants ap < 0 and 6 > 0 .
6 = ¢(+=), v=0 disa N . Requirements: u < 0,
and when m = 1 (fptc)? > =4uf,y

1, (£q4c)2 > ~4uf, § ~ ptredimpe Do pe et Rty
or ¢ -~ ¢(4m)+a0exlx+0(e(xl_6)x)

1, (fp+c)? = -4nuf, ¢ ~ ¢(+m)+a0xelzx+0(ehzx)
or ¢ -~ ¢(+w)+aoexzx+0(e(l2—6)x)

1 1

1, (fp+c)>0 ¢ ~ agx m-1 4+ o(x ™1 -6 )

or ¢ ~ aoeklx + O(e(ll_s)x)

ag < 0and § > 0

as

¢ = ¢(+=)

(fy+e) > 0,

(usual)
(accidental)
(usual)
(accidental)
(usual)

(accidental)

x >+ o if u < 0,
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(f+c) < 0, and m > 1. No monotone solution decays to ¢ = ¢$(+=) as
x ++ ® when p < 0, m= 1, and (f2+c)2 < = 4uf; or (fpte) < 0. The
case p =0 for all m is an excluded irregular singular point case.
Part 2: Asymptotic nature of ¢(x) as x -+ - », ¢'(x) > 0 everywhere

Asymptotic equation: f1¢xx + (f2+c)¢>X + u|¢—¢(—m)|m =0

~(£p4c) +V(Fo+c)2-4uf
2f,

if m=1
M2 = ,» Where A; < Ay
~(fo+c) + |Eotc|

) if m= 2,3,

+
Case 1: ¢ = ¢(~»)}, v=0 ds a S . Requirements: u < 0.

1€ mo= 1 b ~ ¢(~=)+age 2X+0(e )
if m>1, (£y+c)<0 . ¢(~M)+a0eAZX+O(e(A2+6)X)
if m>l, (f,4c)>0 o ~ ¢(~=)+ag|x|” ﬁ%T'+ o(|x|” E%T = By
if wel, (f,4¢)=0 ¢ ~ ¢(~=)+ag|x|” ﬁ%T + o(|x|” E%T = By

for some comstants ag > 0 and § > 0 .
+
Case 2: ¢ = ¢p(-=), v =0 dis a N . Requirements: u > 0, (fo+c) < 0

and when m =1 (f2+c)2 > 4uf, .

if m=1, (fate)2>4uf; b . d(==)tage 1 ¥+0(e P1TF)  (usual)

or ¢ . ¢(—m)+agekzx+0(e(lz+6)x) (accidental)
1f m =1, (fote)2=huf, b . b(-=)tag|xle 1 ¥40¢eMF)  (usual)

or ¢ . cin(—m)+af,e)“1"+0(e()‘lw)X (accidental)
if m> 1, (£5,4+c)<0 ¢ . ¢(—®)+a0{x|_ ﬁéT}O(IxI_ ﬁét —6) (usual)

A Ao+6

or ¢ . ¢(-=)+age 2X+0(e( 2 )x) (accidental)
for some constants ag > 0 and § > 0 .

Other cases: No solution decays to ¢ = ¢(- =) as x » - o if p > 0,

(f, +c) >0, and m > 1. No monotone solution decays to ¢ = ¢ (= =)
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when u > 0, m =1, and (f, + e)? < 4ufy or (f5 + ¢) » 0. The case p=0

for all m is an excluded irregular singular point case.

In the table above, there are two possible asymptotic natures
listed when ¢(x) decays to a node ¢ = ¢y, v=0 as x > - = or as
x + + . The slowest of these decays is labeled the '"usual" decay and
the more rapid is labeled the "accidental" decay. Whenever the conditions
of case 2 of part 1 hold, there exists a solution ¥(x) of
f(Txx,?x,W) + cWX for which VY(+=) = ¢4, for which ¥'(x) > 0 for all
x sufficiently large, and for which ¥(x) decays to ¢y at the acci-
dental rate as x + + «, Any monotonically increasing solution ¢(x)
of f(¢xx,¢x,¢) + c¢x which goes to ¢ as x > + @ must either be
¥Y(x+h) for some constant h, or it must decay at the usual rate. Simi-
larly, there can be only one solution Y¥{x) (modulo translations in x)of
f(wxx,wx,w) + cWX which decreases to a node at the accidental decay rate
as x » - «, Note that in this light, solutions ¢(x) of f(¢xx,¢x,¢)+c¢x
which decay monotonically to a saddle point ¢ = ¢9, v=0 as x + - «

"accidentally decaying' solutions.

or as x * + © must be considered
This is because there can only be one monotonically increasing solution
¥(x) (modulo translations in x) which decays to a saddle point as

X > = @ or as ¥ > + «,

The asymptotic nature of monotonic solutions which decay to an
irregular singular point as x > - © or x > + © can also be found by
solving the appropriate asymptotic equation. We will not do this; instead
we note that for any specific example it is a straightforward procedure.

Note that we have proven only a few of the general results con-

cerning the behavior of solutions ¢(x) of equations (4.14) contained in



~132~
this section. However, we shall presume that these results are correct,
noting for any specific solution ¢(x) to any specific equation that
verification of these results is trivial.
In the next three sections we will use these results to derive
the stability results for monotonic waves. These sections will closely

follow the developments in section (2.2).

4.4 Basic stability results for monotone waves. We now derive the basic

stability result for monotone waves. The result is equivalent to theorem
(2.2) in Chapter II.
We can easily demonstrate that a monotonic steady state solution

u(t,x) = ¢(x) of

g = f(uxx,ux,u) + cu (4.2)
must possess at least a limited amount of stability. Suppose for example
that ¢(x) 1is monotonically increasing in x. Then for any h > 0 (no
matter how small) ¢(x~h) and ¢(x+h) also solve (4.2). So, when u(0,x)
is any smooth initial condition with

¢ (x-h) < u(0,x) < ¢(x+h) , (4.16)
then the maximum principle shows that

¢(x-h) < u(t,x) < ¢(x+h) (4.17)
for all t > 0 as well. That is, u(t,x) must remain in the shaded
region for all t > 0 din the illustration below. To obtain a definite
stability result, we need only identify the class of functions which can

be bounded as in (4.16) and (4.17).
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u
¢ (xth) = ® (x=h)
X

Theorem 4.2: Suppose that hypotheses H2, H3, and H4 are satisfied. 1If

u(t,x) = ¢(x) dis any bounded non-constant monotonic steady state solu-
tion of
ut = \E(uxxsuxau) * CUX ’ (4.2)

1

TSI

then it is a C"-stable solution with w(x) =1

Note that H6 (all singular points are regular) has not been as-
sumed. Thus the theorem holds even when ¢{(-=) or ¢(+«) 1is an irregular

singular point.

Proof: The function u(t,x) = ¢(x) solves (4.2), and thus for any h,
u(t,x) = ¢(h,x) = ¢(xt+h) does also. The existence assumption H4 and the
maximum principle ﬁogether show that whenever the initial conditions
u(0,x) are in Hi and also satisfy

¢ (x-h) < u(0,x) < ¢(x+h) for all x , (4.16)
then the solution wu(t,x) of (4.2) exists for all t > 0 and satisfies

¢(x-h) < u(t,x) < ¢(x+h) for all x (4.17)
for all t > 0. This implies C"-stabilicy with w = 1 + W%{—)T .

Specifically, from (4.17),

1 1 -
(a+ W—)T)'[¢(x~h)—¢(><)] 2 41 + b4 ()]

< (1 + Tjﬁ%m) [ (x+h)-¢ (x)]
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Since ¢"(x), ¢'(x) and ¢"(x)/4'(x) are bounded, and since [¢" (x)| is
decreasing for all x and - x sufficiently large, there is a B > 0
such that

(1 + TET%;YT)]¢(X+h)_¢(X)| §_B|h| for all h and all x.
Thus for any € > 0, ]u(t,x)—¢(x)|(1 + T$T%;TT) < & when we take
|h| < €/B. (We of course select the sign of h as sgn{¢'(x)} so that
d(xth) > ¢(x) > ¢(x-h)). Since there is also a G(Ihl) > 0 such that

[u(0,x) ~ ¢Cx)| (L + ﬁm) < 8(n])

implies ¢(x-h) < u(0,x) < ¢(x+h), Cw-stability of the solution ¢(x)

of (4.2) is established.

The theorem states that a monotonic steady state ¢(x) is
Cw~stable with w(x) = 1 + TET%EST. . This means that the solution
u(t,x) = ¢(x) 1is stable to small perturbations u(0,x) - ¢(x) which
decay asymptotically like |¢'(x)| as x + - « and as x > + ® . Note
that when ¢(- x) (when ¢(+ x)) 1dis a regular singular point, table
4.1 lists these asymptotic decay rates as x > - = (as x -+ + ®),

We proved the above stability theorem by using the solutions
¢ (x~h) and ¢(x+h) as our upper and lower functions. In the next section
(4.5), we will find better upper and lower functions when either ¢ (-=)
or ¢(+») is a saddle point. This will be done by exploiting the differ-
ential inequalities allowed by the maximum principle. These upper and
lower functions will then lead to our final (sharp) stability result for

monotone steady state solutions of (4.2).

4.5 Improved upper and lower functions. 1In this section we exploit the

differential inequalities allowed by the maximum principle to find better
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upper and lower functions for equation (4.2). Recall that E(t,x) and
u(t,x) are defined to be upper and lower functions (respectively) of the
equation
u, = f(uxx,ux,u) + cu_ (4.2)

if and only if they satisfy the following differential inequalities:

u, - f(uxx,ux,u) #+ cu >0 (4.18a)
B 5 f(Exx’Hx’H) + ch_i o . (4.18Db)

Suppose that u(t,x) = ¢(x) 4is a bounded monotonic steady state
solution of (4.2) and that one of ¢(-=) and ¢(+~) is a first order saddle
point and the other is a regular singular point of order m > 1. 1In this
case the following lemma yields upper and lower functions which are much
better for our purposes than ¢(x+h) and ¢(x-h). Note that when both
$(-<) and ¢ (+=) are ordinary first order singular points the following
lemma essentially reduces to lemma (2.3) of Chapter II. Note also that the
lemma only directly considers the case of ¢(x) being an increasing func-
tion of x. This is sufficient since the transformation x -+ - x will

change any decreasing function to an increasing one.

Lemma 4.3: Assume that hypotheses H2, H3, and H4 are satisfied. Suppose
that u(t,x) = ¢(x) 1is a bounded non-constant monotonic steady state solu-
tion of equation (4.2) . 1In particular, suppose that ¢(x) 1s increasing
in x. Define ¢(-=) = ¢  and ¢ (+=) = ¢+. Then

(1) if ¢ =¢ , v=0 1is a regular singular point (of order m > 1)

and ¢ = ¢ v = 0 is an ordinary first order saddle point, then

+’
u(e,x) = ¢(x+h(t)) + q(t)dEp(x-vl-h(t))—q‘;_:]n and (4.19a)
alt,x) = ¢Gx=h(t)) - a(e)[pCe-h(e)=9]" (4.19D)

are uppetr and lower functions (respectively) of equation (4.2). Here



~136~

n > 1 is defined by [}(x)—¢;]n/¢'(x) + a_as x > - « where a is a

positive constant, and

o (4.20)

i

h(t) = ak(l-e °%) + hy  q(t)
where s and k are particular positive constants, hy is arbitrary, and
o > 0 1is any sufficiently small constant -

(2) if ¢ = ¢ , v =0 1is an ordinary first order saddle point and

¢ = ¢ g0 T 0 1is a regular singular point (of order m > 1), then

u(t,x) = ¢(xth(e)) + a(e)[p, - x+h(e))]"  and (4.21a)
u(t,x) = ¢(x-h(t)) - q(e)f, ~¢(x-h(e))] " (4.21Db)

are upper and lower functions (respectively) of equation (4.2). Here

n>1 is defined by [b,~¢G)]"/¢'(x) + a, as x ++ = where a, is

some positive constant, and h(t) and q(t) are defined as above.

When one of ¢ = ¢ , v=0 and ¢ = ¢

N x W ™ 0 is an ordinary

first order saddle point and the other is a regular singular point (of some
order m > 1), the above lemma provides new upper and lower functions.

As x approaches the saddle point at either x = - ® or x = + =,

;(O,X) - ¢(x) and ¢$(x) - u(0,x) asymptote to positive constants. How-
ever, as x approaches the other singular point at either x = + « or

x = - o, u(0,x) - ¢(x) and ¢(x) - u(0,x) decay asymptotically like ¢'(x)
does, which is the same asymptotic decay rate that ¢ (x+h)-¢(x) and
¢(x)-¢(x~h) decay at. Since E(O,x)—¢(x) and ¢ (x)-u(0,x) decay asymp-
totically no faster than ¢(x+h)-¢(x) and ¢(x)-¢(x~h) at the non-saddle
point end and since u(0,x)-¢(x) and ¢ (x)-u(0,x) asymptote to positive
constants at the saddle point end, these new upper and lower functions are
much better for stability proofs than the ¢(x+h) and ¢$(x-h) used pre-

viously.
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In figures (1) and (2) below, we have sketched the new upper and
lower functions at t = 0 and t = + ®, Note that in these sketches we
have used a value of hy for the upper functions which is Ah > 0 lar-

ger than the value used for the lower functions.

Figure (la): The functions 1(0,x) and u(0,x) from (4.19) when ¢=¢+,v=0
is a first order saddle point.

Figure (1b): The functions u(4<e,x) and u(te,x) from (4.19) when ¢=¢+,v=0
is a first order saddle point.
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Figure (2a): The functions-K(O,x) and u(0,x) from (4.21) when $p=¢_,v=0
is a first order saddle point.

Figure (2b): The functions U(+m,x) and u(+e,x) from (4.21) when ¢p=¢_,v=0
is a first order saddle point.

Proof of lemma (4.3): We prove only that th,x) in (4.19) is an upper

function. The proofs of the other cases follow from similar calculations.
We will prove u to be an upper function of (4.2) by showing

that u, - f(uxx,ux,u) - cu > 0. Let us abbreviate f; = f1(¢xx,¢x,¢),

f, = f2(¢xx,¢x,¢), and f3 = f3(¢xx,¢x,¢). We have
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u, = ' Qg )" T+ a G- (4.22a)
w=¢+ qp-¢ )" , (4.22b)
u = ¢ [14na(e-¢ )" '] , and (4.22¢)
W= " 0ma e )" T+ ¢ ntamDa (-9 F L (4.220)

where the argument of ¢, ¢', and ¢" 1s x + h(t). We now substitute
these in ut -~ f(uxx’ux’ u) - cuX and expand in q.

We first consider the region =x + h(t) > x5 where x5 > 0 is
very large. We find

u - £f(u__,u ,u) - cu
t ( xx’ x’ ) X

| v

¢'h, + qt(¢-¢_)n (4.23)

£1ale"n(o-9 )" ¢4 n(n-1) (9-¢ "2}

(f2+C)Q¢"ﬂ(¢‘¢_)n_l - f3Q(¢—¢_)n

i

+ heo. {8, ¢'6" (-0 )" 2q,9'a, alp-0 )"}
where h.o. stands for terms uniformly of higher algebraic order; that
is, h.o.{s a(x), sb(x), sc(x), sd(x)} ~ ()(s1+5 max{a(x),b(x),c(x),dx)])
uniformly in x (for x > x3) for some &§ > 0 as s >~ 0. This uniform-
ity of the higher order terms comes from the uniform Hoelder continuity
of £,, fp, and f3.‘ Since fg(+w) = f3(0,0,¢+) < 0, we see that for
some xp > 0 sufficiently large and for some q+ > 0 sufficiently small,

+
there exists an N > 0 and an s > 0 such that whenever

0 <q=< q+, 0% = qt_i sq, and ht_i N+ q
then u - f(a- ,E',E} —cu >0 for all x + h(t) > x;.
t XX X S = —

We now make a similar estimate for x + h(t) < - x3. We again

find
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|v

- = = = ’ . \n
u, f(uxx,ux,u) cu () ht + qt(¢ ¢ ) (4.24)

flq{¢"n(¢-¢_)n“1 & ¢'¢'n(n—l)(¢-¢_)n“2}

|

(Fp+¢)qo " n(¢-¢ )™ = £3q(4-¢ O™
+ 1o, (9"a, 0" (4-0)"2a, ¢ q, a(e-s_)"}
where h.o. again stands for uniformly higher order terms. Since
¢"/¢"' and (¢—¢_)n/¢' are both bounded as x + - «, we see that there
exists a q- >0 ,an M >0, and an N > 0 such that G£ - f(G;x,G;,G)

—cG# >0 for x + h(t)

| A

- xg whenever
0<gq i_q_ and ht + M qt z_N_ q

The interior ]x + h(t)| < x5 1s easily handled. We find that

u, = £(u . ,u) ~ cu > ¢'h +q (99 )" | (4.25)
- frale™n(e-¢ )" e ¢ n(n-1) (4-9_) ")
= (Epte)ad'n(d-0 )" T-£3q (-9 )"
+ h.o.{q} .

Since there is a & > 0 such that ¢'(x) > & for all x in [-xp,%g¢] »
and since ¢" and ¢ are bounded, there exists a q0 > 0, an M0 > 0,
and an N0 > 0 such that u - f(uxx,ux,u) - cu > 0 for all |x+h(t)|

< xg whenever

0<gq f_qo and ht + Moqt > NOq .
Summarizing the results for the three regions, we have
u - f(u__,u_,u) - cu_> 0 for all x whenever
XX X x

t

= 4
0 <q < min{q ,q%,q } , 0 < - q_< sq , and

= t
- - +
h, > max{M ,M0}(-q ) + max{N ,NO, N}

hold. Hence, we take

h(t) = ax(l-e °%) + hy q(t) = ae °F (4.20)

- .0 - +
where k = max{M ,M%}s + max{N ,N°,N }, and note that u is an upper



-141-

- +
function for all 0 < a < min{q ,qo,q }. This establishes the lemma.

Lemma (4.3) provides good upper and lower functions when either
v = 0 is an ordinary first order saddle point.
Since we were able to improve our upper and lower functions when at least

one of ¢ = ¢ , v=0 and ¢ = ¢ v = 0 1is a saddle point, one expects

+’
that still better upper and lower functions can be found when both ¢ = ¢ ,

v=20and ¢ = ¢ v = 0 are ordinary first order saddle points. The fol-

+?
lowing lemma shows this to be so. Note that again we deal directly only with

the case of ¢(x) being an increasing function of x.

Lemma 4.4: Assume hypotheses H2, H3, and H4 are satisfied. Suppose that
u(t,x) = ¢(x) 1is a bounded non-constant monotonic steady state solution
of equation (4.2). In particular, suppose that ¢(x) d1s increasing in

x. Define ¢(-») = $_ and ¢ (+=) = Then if ¢ = ¢ _, v =0 and

¢,

o = ¢+, v = 0 are both ordinary first order saddle points, then

u(t,x) = ¢(x+h(t)) +|q(t) and (4.26a)
u(t,x) = ¢(x-h(t)) - |q(c)] (4.26b)

are upper and lower functions (respectively) of equation (4.2). Here,
h(t) = ax(l-e °%) + hy q(t) = ae °F (4.20)

where s and k are particular positive constants, hg is arbitrary, and

o > 0 1is any sufficiently small constant.

Proof: We will not formally prove lemma (4.4). Its proof follows from

calculations very similar to the one which proved lemma (4.3).

Thus when both ¢ = ¢ , v=0 and ¢ = ¢+, v = 0 are ordinary

first order saddle points, the above lemma provides new upper and lower
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functions. Since u(0,x) - ¢(x) and ¢(x) - u(0,x) both asymptote to posi-
tive constants as x + - ® and as x -+ + ®, these new upper and lower func-
tions are much better than the upper and lower functions contained in lem-
ma (4.3) and are also much better than ¢(x+th) and ¢(x-h).
In Figure (3) we have sketched these new upper and lower functions

at t =0 and t = + «». Note that the values of hy used for u is Ah > 0

larger than the value of hg wused for u in these sketches.

S '-¢+

u(0,x) 4

E(O,X)

¢ — S

Figure (3a): The functions u(0,x) and u(0,x) from (4.26) when ¢=¢_, v=0
and ¢=¢+, v=0 are both first order saddle points.

Figure (3b): The functions u(+=,x) and u(+e,x) from (4.26) when ¢=¢_, v=0
and ¢=¢+, v=0 are both first order saddle points.
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The new upper and lower functions developed in lemmas (4.3) and
(4 .4) in conjunction with the maximum principle will immediately yield our
main stability result for bounded non-—constant monotonic steady state solu-
tions u(t,x) = ¢(x) of
u = f(uxx,ux,u) + cu - (4.2)

In the next section we will obtain our main stability result in exactly

this way.

4.6 The stability of monotone waves. We now state and prove our final

stability result for monotonic steady state solutions of
v, = f(uxx,ux,u) +eu . ‘ (4.2)
The maximum principle and the bounding functions developed in the previous

section make this an easy task. 1In order to simplify the statement of the

theorem, let us first define

$'(x) x>0 $'(0) x>0
r,{¢"Glt = » _{¢"(x)}
¢'(0) x<0 p'(x) x<0

"

Note that the following theorem directly treats decreasing as well as in—

creasing steady states u(t,x) = ¢(x).

Theorem 4.5 (The stability of monotone waves): Assume that hypotheses H2,

H3, and H4 are satisfied, and suppose that wu(t,x) = ¢(x) 1is a bounded
non-constant monotonic steady state solution of
= f 4,2
u, i(uxx,ux,u) + cu ( )
. Then

1]
1

at some particular value of c¢. Let ¢(==) ¢ and ¢ (4=)

by
u(t,x) = ¢(x) 1is cV-stable where

0 are both ordinary first

(1) if ¢ =¢ , v=0 and ¢ = ¢+, v

order saddle points then w(x) = 1;
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(2) if ¢ =¢ , v=0 1s a regular singular point (of order m_ > 1)

and ¢ = ¢ v = 0 1s an ordinary first order saddle point then

w(x) =1+ 1 :
‘r_{¢'(x)}| d

(3) if ¢ = ¢ , v =0 dis an ordinary first order saddle point and

+’

b = ¢ v =0 18 a regular singular point (of order m, > 1) then
- 1 .
w(x) =1+ |1’+{¢'_(_X—)TT 3 and
(4) 1if neither case (1), (2), nor (3) occur then

wx) =1+ T - .

o' (x)]

+)

Proof: We prove this theorem only for the case of ¢(x) being an increas-
ing function of x. The proof when ¢(x) dis decreasing follows from trans-
forming x to - x.

To prove part (1) we use the upper and lower functions contained
in lemma (4.4). To prove parts (2) and (3) we use the upper and lower func-
tions contained in lemma (4.3). The existence hypothesis H4 and the maxi-
mum principle together show that any initial condition u(0,x) smooth
enough to be in Hi which is also bounded above by an upper function and
bounded below by a lower function, has a solution u(t,x) for all t > 0
that remains between the upper and lower functions. This immediately im-
plies that ¢(x) 1is stable because the parameters a > 0 and lhol >0 in
the definitions of the upper and lower functions can be taken as small as
we please. (See equations (4.19), (4.20), (4.21), and (4.26)). Inspection
of the formulas for the upper and lower functions shows that the classes
of perturbations bounded by these functions are the same as those allowed
in the definition of Cw—stability, with w(x) as given in the appropriate
part (1), (2), or (3) of the theorem. Thus, parts (1), (2), and (3) of the

theorem are established. Part (4) has already been proved in theorem (4.2).
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As a rough summary of the stability theorem (4.5), we see that
bounded non-constant monotonic steady state solutions u(t,x) = ¢(x) of
equation (4.2) are stable with respect to small smooth initial perturba-
tions which are

(1) bounded as x + - » (as x » + ) when ¢(x) goes to a first
order saddle point at x = - « (at x = + ®©), and

(2) decay asymptotically no slower than |¢'(x)[ as x > - = (as
X >+ ) when ¢(x) goes to a regular singular point which is not a first
order saddle point at x = - @ (at x = + «),

Note that except for the question of whether ¢(x) decays to a
node at the usual or accidental rate, the slowest allowed asymptotic decay
rate for perturbations (in the above theorem) depends only on the expansion
of £(¢ 50 5¢) + co  about (¢ _,¢ ,¢) = (0,0,¢_) and about (¢ _ ¢ ,¢)
= (0,0,¢+). This is because these expansions not only determine whether
¢ and ¢+ are first order saddle points, but also determine the asympto-
tic decay rates of ¢'(x) as x + — ® and as x - + «, In particular, the
asymptotic decay rates allowed for perturbations can be calculated immediate—
ly from table 4.1 for all cases.

Theorem (4.5) is our major stability result for monotone waves.
Note that this result reduces to the stability result of theorem (2.5) in

Chapter II when both ¢ = ¢ , v=0 and ¢ = ¢ v = 0 are first order

= +’
singular points. Recall that in section (2.4) we showed that these results
are almost always sharp by constructing nearby traveling wave solutions
which travel at slightly different speeds. Thus in the extremely common

case of first order singular points theorem (4.5) is nearly always sharp.

We will discuss the sharpness of theorem (4.5) in Chapter V, where this
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topic arises naturally as a by-product of the mean wavespeed/initial condi-
tion developement.
The next five short sections are used to discuss topics related
to the stability results in this section. In the next section, section
(4.7), we point out the extension of the stability results to the cases where

$=¢_,v=00r¢=¢

on W 0 1is an irregular singular point. In section
(4.8) we show explicitly how the stability of a monotonic wave depends on

f. Section (4.9) compares the stability results of theorem (4.5) with those
obtainable by more conventional eigenanalysis/variational methods. As a
related topic, in section (4.10) we show how the stability classes of
theorem (4.5) split the generalized null space of equation (4.2) linearized

about ¢(x). Finally din section (4.11) we extend our results to higher

spatial dimensions.

4.7 Irregular singular points. In the last section we found new stability

results for monotonic steady states u(t,x) = ¢(x) of equation (4.2) when

at least one of ¢(-») and ¢(+~) 1is a first order saddle point and the

other is a regular singular point. This was accomplished by using the bound-
ing functions constructed in lemmas (4.3) and (4.4) along with the maximum
principle. For the sake of mathematical completeness, in this section we
briefly consider the case where one of ¢(-«) and d(+~) 1is a first order
saddle point and the other is an irregular singular point. To improve on

the stability results of theorem (4.2) for this case, we need to construct
new upper and lower functions u and u like the ones in lemma (4.3) and

then apply the maximum principle. We will not do this here. 1Instead we note
that new upper and lower functions u and u very similar to the ones in

lemma (4.3) can be constructed in this case of one of the singular points
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¢ (=) and ¢ (+=) being irregular and the other one being a first order
saddle point. Upon applying the maximum principle we find the generaliza-

tion that theorem 4.5 remains true even if the regularity condition for the

singular points in parts (2) and (3) is omitted.

4.8 The dependence of the stability on f£. Theorem (4.5) shows that a

bounded non-constant monotonic steady state solution u(t,x) = ¢(x) of

o, = f(uxx,ux,u) + cu (4.2)
is stable to small smooth perturbations which decay asymptotically no slower
than certain limiting asymptotic decay rates. For example, the limiting
asymptotic decay rate as x -+ + « ig determined completely by whether or
not ¢(+=) is a first order saddle point and by the asymptotic decay rate
of ¢(x) as x + + =, However, expansion of the steady state equation

about (¢Xx,¢x,¢) = (0,0,¢(+=)) vyields the asymptotic equation

£1 0 +(fa+e)d + u(p=¢(+=))" = 0 for x large , (4.27)

1t

where £, £,(0,0,6(+*)) and £, = £,(0,0,¢(+=)). This asymptotic equation
can be used to determine both the asymptotic decay rate of ¢(x) as x>+t
and whether ¢(+») dis a first order saddle point. Thus the quantities
f1, (fo+c), 1, and m completely determine the limiting asymptotic decay
rate (as x + + ») allowed for perturbations by theorem (4.5), at least
when it is known whether ¢'(x) decays at the usual or accidental decay
rate when ¢(+») is a node.

In table (4.2) we list these limiting asymptotic decay rates (as
x + + ®) for the case of ¢(x) being an increasing function of x. Note
that in table 4.2 we use a slightly different p than is used in equation

(4.27). Namely, for table (4.2) we use a u defined by

£l oo+ (Ep4edo = ulo=¢(+=)|" = 0 for x large
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We use this definition because ¢(x) < ¢$(+=) for all =x and we do not
wish to change the sign of p each time we change m. Also note that two
possible limiting asymptotic decay rates are given whenever ¢(4=) is a
node. This comes from the two possible asymptotic decay rates (the usual
and the accidental) of ¢'(x) whenever ¢(+») is a node. Finally, the
limiting asymptotic decay rates when ¢(+«) 1is a saddle point are correct-

ly listed as if ¢'(x) decays to ¢(+~) at the accidental rate.

Table 4.2
Slowest allowed asymptotic decay rate (as x - + «») for pertur-

bations.

Asymptotic equation: f, ¢xx + (f2+c)¢x - pl¢—¢(+w)|m = 0 for x large

¢(x) increasing, (fo+c) > O

Type of Decay rate when ¢(x) Decay rate when ¢ (x)

m u singular point decays at the accidental rate decays at the usual rate
1+ N O(exp Agx) O(exp A;x)
>1 + - N 0(exp AZx) 0(x— ﬁl“ll-‘-r)

>1 - -5 0(exp A:x)

1 - 5 0(1)

Ay = -(iz-l-c)+;§f2+c)2—l;flu Ny = —(f2+c)—-g§f2+c)"‘—4uf‘l
1 1
- fate
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¢ (x) increasing, (fot+c) < O

Type of Decay rate when ¢(x) decays Decay rate when ¢(x)
m P singular point at the accidental rate decays at the usual rate
1 + N no steady state ¢(x) no steady state ¢(x)
>1 + -N no steady state ¢(x) no steady state ¢(x)
¥ -S 0(x #f)
1 - 5 0(1)

Note: When (fo+c) < 0 and p > 0, then ¢ (-+©) 1is an unstable node.

4.9 Comparison with eigenanalysis results. We now consider a conventional

eigenanalysis method for finding the stability of bounded non-constant
monotonic steady state solutions u(t,x) = ¢(x) of

u, = f(uxx,ux,u) + cu . (4.2)
The approach we will demonstrate is commonly used on special cases of (4.2),
notably by Sattinger [2] on the class of equations

W, =g + f(u,ux) 3

Our objective is to produce a table exactly like Table (4.2) which will list
the slowest asymptotic decay rate (as x =+ + ®) of the perturbations al-
lowed by the eigenanalysis calculations. This will allow easy comparison

of the eigenanalysis results with the maximum principle results.

We begin by linearizing equation (4.2) about the steady state

¢(x):
u(t,x) = ¢(x) + n@(t,x) Gsngs£l 5 (4.28a)
¥ = Li+om (4.28b)
dt'@ & fl@xx + (f2+c)‘§X + fg@ , where (4.28c)

£,(x) = fi(¢XX(X),¢X(X),¢(x)) for 1 =1,2,3 . (4.28d)
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We now must determine the spectra of jc, when various Banach spaces are
used as its domains. To do this, we define @(k,t,x) and Y(A,x) by
Ly, #0,0,00 = ¥O,0), and A = £1¥_ + (E4e)¥ +E3¥.  (4.29)
For computational convenience we introduce 7t1(A,x), defined by
FOLx) = ¢ (x¥)-1(hx) (4.30)
where ¢(x) 1is the monotonic steady state. Note that in defining T(A,x)
we have implicitly used the fact that ¢(x) 1is monotonic; i.e. that
¢x(x) # 0. Now in terms of T the equation for V¥ in (4.29) becomes
At = £ T+ [(£o4c) + 2f1¢xx/¢x}rx g (4.31)
This immediately yields the variational characterization

o x
B 49 o fa(s)te
.[; T, exp{jg £ (s} ds}dx
A = —inf (4.32)

re,{fm 1 2.2 f _ﬁs)+c
G by expt s EG) O b

for the largest eigenvalue X of Jﬁ when T(A,x) 1is restricted to the

linear admissibility space A . From (4.32) it is clear that the largest
eigenvalue of 5t, is non-positive, even when the admisgibility space A
is all functions 1 for which both integrals converge. (This is clearly
the largest space for which (4.32) remains valid.)
We now rephrase this result in terms of the eigenfunctions VY.
o

Let f;'E fi(i@) for i = 1,2. Also define the Banach space B to be a11

twice differentiable functions Y for which the integrals

©

¥2 (x) exp[ .[ _2£§)fc ds]dx Y

-—00

* f (s)+c
2 2 55 A R g d
[ ¥ (x) exp[j(.] iy d ]dx , an

o X £ a)a
./” Wix(x)exp[j; ~E($);E-ds]dx

-—00
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converge. Note that the convergence of the first two of these integrals
is precisely equivalent to the convergence of the two integrals in (4.32).
Also, note that these convergence conditions are essentially that VY(x),

Wx(x), Wxx(x) must decay to zero at least slightly faster than

exp = £%§E-x as x + - «» and at least slightly faster than
1

exp - £%$£ X as x »+ + «», Thus, in terms of the eigenfunctions V¥, our
variatioial argument shows that X = 0 is the largest possible eigenvalue
of L with eigenfunction ¥(Xx,x) in §§ .

Note that this non-positivity of the spectrum of gf, over tB
cannot imply stability of wu(t,x) = ¢(x) when  contains a generalized
null function of d:. For example, if @2¥ = 0 and AY # 0, then (4.28b)
implies that

vy, =Lv+o v = pW=0 .
Consequently, the perturbation u(t,x) - ¢(x) will grow linearly in time
if u(0,x) - ¢(x) = n¥(x). These particular perturbations actually cor-
respond to initially perturbing u(t,x) = ¢(x) = ¢(x,c) onto a nearby trav-
eling wave ¢(x-(8c)t, c+(8c)) which travels with speed c¢ + 8c (or in
our current moving coordinate system, speed &c). This is an unstable per-
turbation since ¢(x-(8c)t, c+(8c)) travels with a speed 6c different
than ¢(x) = ¢(x,c) does, and hence it will drift away from ¢(x) as ¢t
increases.

When the null space of £ over the domain (@ 1is simple, then the
non-positivity of the spectrum of £ over (B should imply that the steady
state solution u(t,x) = ¢(x) of (4.2) is stable to all small perturbations
in B . To gauge the potential of the eigenanalysis method, let us assume

that whenever the null space of JC. over §8 1is simple, then the method can
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be used to show that wu(t,x) = ¢(x) 1is stable for perturbations inB .
Table 4.3 shows the resulting limiting asymptotic decay rate (as x - + =)
for perturbations about u(0,x) = ¢(x). The cases with a % in table 4.3
denote an improvement over the asymptotic decay rates found by using the
maximum principle contained in table 4.2. These cases are the cases when
$(x) decays at the accidental rate to a node at x = + ®, and the case where
¢(x) decays to a higher order saddle point (and (f, + c) < 0) at x = + =,

These are all unusual cases, but it is clear that

le 4.3

Slowest allowed asymptotic decay rate (as x + + ») of perturbations
Asymptotic equation: f, ¢xx + (f2+c)q>X - u|¢—¢(+w)[m for x large

¢(x) increasing, (f,+c) > 0

Decays rate when ¢ (x) Decay rate when ¢ (x)
Type m U decays at the accidental rate decays at the usual rate
N1+ O(exp - (CF9) O(exp - (%)
-N >l + O(exp - (——‘i—c—))k O(exp - (ifltg))
=8 EL ~ O(exp - (- ))
- (—2+—°—)>

S 1 - O (exp

¢ (%) increasing, (fot+c) <0

Decay rate when ¢ (x) Decay rate when ¢(x)
Type m u decays at the accidental rate decays at the usual rate

N 1 + no steady state ¢(x) no steady state ¢(x)
-N >l + no steady state ¢(x) no steady state ¢(x)
-8 >l - o(1)*

S 1 - 0(1)

Note: These results are invalid whenever there is a Y¥(x) which decays

+
£ o4
at least as fast as expl- “‘ig} (as x + - =) and expi{- ~f <} (as

x + + ®) and which satisfies ji? +0, £2v=0.

*#Cases with a #* denote improvement over results in Table 4.2.
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genuine improvement in these cases may be possible when the null space of
,'(,over ® is simple.

Before continuing, we point out that in Chapters IT and V the
maximum principle results are shown to be sharp in most cases. This is ac-
complished by constructing nearby traveling waves ¢(x~(8c)t, c+(S8c)) which
slightly violate the limiting asymptotic decay rates and which travel at
speeds slightly different than c¢. We note that even in principle the
eigenanalysis results can never contradict these sharpness results. For if
Ja is large enough to contradict the sharpness results, then it must con-

9

tain g?szb¢(x, ct+(S8c)) 5 and thus the null space of il over ‘3 is

c=0"’

not simple.

4.10. Splitting the null space. 1In this section we wish to briefly show

that the stability classes of theorem (4.5) can often split the null space
of i; ; that is, can include one null function and exclude another
(generalized) null function. TFor brevity we will demonstrate this only for
a single case.

Suppose thét $(x,c) is a monotonic steady state solution of

ut = f(uxx,ux,u) + cux (4.2)

at ¢ = cy, suppose that ¢(-2,cg) is an ordinary first-order saddle point,
that ¢(+=,cy) 1is an ordinary first-order node, and that ¢ (x,cp) decays
to ¢(+o,cy) at the usual rate. From section (2.4) we know that this
means that for an interval of values of ¢ including cg, there are

monotone solutions ¢ (x,c) of (4.2) for which ¢(-=,c) = ¢(-»,cq) and which

all decay to ¢(+=,cq) at the usual rate as x »> + «. Since then d(x,c)

~ O(exp A1 (e)x) as x + + », where Xj(c) = E%T{—(f2+c)+ﬁ(f2+c)2—4f1f3' }
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with fi = fi(0,0,¢(+m,c0)), we find that
¢C(x,c0) = %E-¢(x,c)|C=CO ~ 0(x exp Aj(cg)x) as x > + o
We now consider the linear operator 4 defined in the previous
section. The functions ¢(x,c) all solve
f(¢xx,¢x,¢) i c¢x = O . (4.33)

Therefore, differentiating (4.33) with respect to x and ¢ shows that

Lo =0 Lo =-14¢_,
and hence Al?¢c = 0 but Ji¢c # 0. That is, ¢X is a null function of
JL and ¢c is a generalized null function.

Now, the perturbations allowed by theorem (4.5) for this case are
all small perturbations which decay asymptotically at least as fast as ¢X;
that is, decay asymptotically as fast as exp();(c)x) as x > + =, This
neatly includes the perturbation ¢x but excludes ¢c, even though they
both belong to the generalized null space of dﬂ and only differ slightly
in their asymptotics as x = + «, Of course the exclusion of ¢C is neces-

sary, since it is the linearization of the unstable initial perturbation

u(0,x) - ¢(x,cq) = ¢(x,co+sc) ~ ¢(x,cq).

4.11 Extension of stability results to higher spatial dimensions. We now

generalize our stability results to monotone traveling wave solutions in
multiple spatial dimensions. We will work only with two spatial variables
(; = (%x,y)) din this section. However, it will be clear that our discussion
will apply equally well when there are more than two spatial dimensions.
-> =3 " . &
Suppose that u(t,x) = ¢(x~ct) is a traveling wave solution of
ut = f(uxx’uxy’uyy’ux’uy’u) 5 (4.34)

and that equation (4.34) is parabolic (i.e., satisfies hypothesis H3). By

+
changing to the coordinate system which travels with velocity ¢ = (cx,cy),
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we can work with the steady state solution u(t,;) = ¢(;) of

u = f(u

" xx’uxy’uyy’ux’uy’u) + c + ¢ -u (4.35)

instead.

In order to discuss stability, let us extend the definition of
Cw—stability and Qw—stability to two spatial dimensions. Suppose w(x,y)
is any continuous function with w(x,y) > 1 for all x, y. Then, we define
Cw—stability of steady state solutions u(t,;) = ¢(§) of (4.35) exactly as
in the original one spatial dimension definition, except that it concerns
solutions of (4.35) instead of (4.2) and that whenever the variable x ap-
pears in the original definition it should be replaced by X = (x,y).

Our stability results are very easily generalized to traveling
plane wave solutions of (4.34), which we can take to be steady state plane
solutions of (4.35). Clearly, without loss of generality we can assume that
our steady state plane wave solution of (4.35) is

u(t,x,y) = ¢(x)
and is independent of y. Thus u(t,x,y) = u(t,x) = ¢(x) also solves
a, - f(uXX,O,O,uX,O,O) + c U = %(uxx,ux,u) + e U - (4.36)
After a moment's reflection, it is clear that whenever Glt,x) and u(t,x)
are upper and lower functions of the equation
u, = E(uxx,ux,u) + 0. »
then u(t,x,y) = u(t,x) and u(t,x,y) = u(t,x) are upper and lower functions

of equation (4.35). Thus the results in theorem's (4.2) and (4.5) remain

w(x)

wix,y)

true for plane waves if C -stability is replaced by C -stability

w(x).

with ;(x,y)
To summarize this result, if u(t,x,y) 1s a traveling plane wave

solution of (4.34), we change to a coordinate system which moves with the
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plane wave and which is oriented so that the plane wave depends only on x,
not on y. Then, denoting the plane wave in this coordinate system by
u(t,x,y) = ¢(x) we find that if ¢(x) is monotone in x, then it is stable
to small perturbations which are bounded as y + + @ and decay asymptoti-

cally no slower than the rates allowed by theorems (4.2) and (4.5) as

The maximum principle can also be applied to other types of
"monotone" traveling waves. For example, suppose u(t,x) = ¢(x,y) is a
steady state solution of (4.35), and that for some unit vector (ex,ey)
the solution ¢(x,y) satisfies

¢(x+hex,y+hey) > ¢(x,y) for all h >0
Then clearly we can use ¢(x+hex,y+hey) and ¢(x-hex,y—hey) as upper and
lower functions, thus proving that ¢(x,y) has at least a limited amount
of stability. Moreover, for some cases we could probably "improve" these
upper and lower functions and better the stability results. We will not do
this because of the difficulty in finding such monotonic waves (which are
not plane waves) in physically interesting equations. Instead we simply
note that if such a wave is discovered, then this approach to its stability
can be used.

This completes our discussion of the stability of monotonic
traveling waves and steady state solutions of

u, = f(uxx,ux,u) 5
In the rest of this chapter we examine the other side of the picture: the

instability of non-monotonic waves.

4,12 TInstability of non-monotonic waves. In this section we show that

very nearly all non-monotonic traveling waves and steady states are unstable.
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Specifically, we shall show that all non-monotonic steady state solutions
u(t,x) = ¢(x) of
u = f(uxx,ux,u) + cux (4.2)
are

(1) wunstable to all non-negative perturbations which are strictly
positive in a fixed finite interval whenever ¢(x) has at least two rela-
tive extrema,

(2) wunstable to perturbations which decay like |¢'(x)| as x + - ©
and as x + + «» vyhenever ¢(x) has only a single relative extremum and
either ¢(-») or ¢(+») is a saddle point.

The result in (1) is very strong since it shows that most non-
monotonic waves are unstable, even to arbitrarily small perturbations of
finite extent. The weaker result in (2) does not pPreclude the possibility
that non-monotonic waves with a single relative extremum are stable to
small perturbations which decay faster than |¢'(x)| as x =+ + o ,

The strongest motivation for these results is their correctness

for steady state solutions of special equations. For example, they are

correct for Fischer's equation [4] and other equations of the form
SR W + h(u) ES]. Recall that Fischer's equation was used as a moti-
vating example in section (2.3).

We will now state and prove these instability results precisely.
In this following theorem (and afterward), note that whenever we speak of
a non-monotonic function having n relative extrema, we are excluding the
extrema at x = + ® I.e., there are n distinct finite values of x at

which ¢(x) has an extremum.
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Theorem 4.6 (Instability of non-monotonic waves): Assume that hypotheses

H2, H3, H4, and H5 are satisfied. Suppose also that u(t,x) = ¢(x) is a
bounded non-monotonic steady state solution of
o f(uxx,ux,u) + cu . (4.2)
Then
(1) 1If there are at least two distinct finite values of x at which
¢(x) has relative extrema, then there is a finite interval [x(,x;] and
a A >0 such that for any € > 0 there is a p(x) in Hi satisfying
0 <p(x) <« when x5 < x < x;
p(x) =0 when x¢ (xg,%1)
for which the solution u(e,t,x) of equation (4.2) with the initial condi-
tion
u(e,0,x) = ¢(x) + p(x)
satisfies
u(e,t,x) = ¢(x) > A
for some x and some t > 0. Moreover, if u(t,x) is any solution of
(4.2) whose initial condition u(0,x) 4is in Hi and satisfies
u(e,0,x) = ¢(x) + p(x) < u(0,x) for all x ,
then
u(e,t,x) < u(t,x) for all x and all t >0 .
Thus for some x and some t > O
u(t,x) - ¢(x) > A
(2) If there is only a single finite value of x, x = X, where ¢(x)
has a relative extremum and if ¢(x) goes to a saddle point as x » -~ =

or as x - + «, then u(t,x) = ¢(x) 1is Qwﬂunstable where
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1 1
1 + l¢|(x)| + |¢|(xe+1)l xixe 1
= 1 1
w(x) = 1+ |¢,(Xe_l)[' + |¢'(xe+1)l o, ™ 1 <x < X + 1
1 1
1
1 + |¢'(xe—1)[ + I(P'(X)l Xe + i X

Recall that by the phrase ''goes to a saddle point as x > - «"

we mean that either

(a) ¢(-») 41is a saddle point,

v

(b) ¢(-=) d1is a NS type singular point and ¢'(x) 0 for all x
sufficiently small, or

0 for all x

A

(¢) ¢(~=) 1is a SN type singular point and ¢"'(x)
sufficiently small, |
occurs. Similarly the phrase '"'goes to a saddle point as x -+ + =" means
that either

(a) ¢(+=) is a saddle point,

Vv

(b) ¢(+=) dis a SN type singular point and ¢'(x) 0 for all x

sufficiently large, or

A

(c) ¢(+=) dis a NS type singular point and ¢'(x) 0 for all x
sufficiently large,

occurs. Thus we see that the requirement in part (2) of the theorem is that
$(x) goes to a saddle point or to the saddle point side of a singular

point of mixed character as either x -+ - ® or x = + =,

Note that the w(x) in part (2) of this theorem is essentially

1 + TET%ETT modified so that it remains finite at x = xe. The constants

1 il .
¢'(Xe+1) and ¢,(Xe_1)f were included in w(x) only because we have

defined Qw—stability for continuous w(x).
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As in section (2.3), the proof of this theorem is in three parts.
The first part is selecting the appropriate initial conditions. The
second part (the hair-trigger effect) is showing that the perturbed solu-
tion of (4.2) will only increase in time as it evolves into another steady
state solution of (4.2). The last part 1s showing that the possible final
steady states are bounded (independently of the initial conditions) away
from the initial unperturbed steady state solution. In fact, for the per-
turbations we use we will be able to show that the final steady state is the
smallest constant steady state which is larger than the initial conditions
at all x.

In proving the above theorem we will rely very heavily on the
two major properties of equation (4.2). Namely, in proving the hair-trigger
effect of step two, we will use the maximum principle many times. In
selecting the appropriate initial conditions (and in identifying the final
steady state) we will strongly use the phase plane representation of the
steady states of (4.2).

In this seétion we will prove only step two. For the first and
third steps we will use the following two lemmas (which will be proved in

the next section):

Lemma (4.7): Assume that hypotheses H2 and H3 are satisfied, and suppose

that u(t,x) = ¢(x) is a bounded non-monotonic steady state solution of
= - . w2
u, f(uxx,ux,u) + cu_ (4.2)
(1) If ¢(x) has relative extrema at least two distinct finite points
x, then there are functions ¢(x,€), x_(g), and x+(e) (with ¢(x,e) in

Ci) such that for all e in (0,g;) (for some g€ > 0) the following

conditions are satisfied:
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(@) x_(e) < x_ <x.(e),

() £(¢__+9_,9) +cop =0 for ¢=¢(x,e) and all x in [x_(e),x, (e)] -
(e) ¢(x,e) > ¢(x) for all x in (x_(e), x,(e)) ,

(@) ¢(x_(e),e) = ¢(x_(&)), d(x (e),e) = ¢(x ()

(e) max [¢(x,c)—¢(x)[-+ 0 as € > 0, and
x_(e)jpg9g+(e)

(£) =xp < x () < x+(s) < x for some - ® < x5 < X} < + @

Here, in condition (a) the point x = X is any point where ¢(x) has a
relative extremum. For simplicity, when ¢(x) has at least three extre-
ma we will always take x = X, to be between two other extrema.

(2) If ¢(x) has an extremum only at a single finite value of x
and if ¢(x) goes to a saddle point as either x - - ® or as x + + «,
then there are functions ¢(x,¢), x_(e) and x+(e) (with ¢(x,e) in Ci)
such that for all 0 < e < gp (for some eg > 0) conditions (a), (b),
(e¢), (d) and (e) are satisfied. Now however, either x_(e) > — ®© Oor
x+(s) >+ ® as ¢ =+ 0, and we have

1
(£') fXI>Ti:l¥1 {lox,e)-¢(x) |- (1 + TETTETT)} +0ase~>0 .
x"(e)jx§;+(e)
Here the point x = X, is the single point where ¢(x) has a relative

extremum.

Lemma (4.8): Assume that hypotheses H2, H3, H4, and H5 are satisfied. Let

$(x) be any bounded non-monotonic steady state solution of
u = f(u ,u ,u) + cu v (4.2)
t XX X b4
If ¢(x) has only a single relative extremum, assume also that ¢(x) goes
to a saddle point as either x - - © or x + + «». Then, if &(x) is any

other steady state solution of (4.2) satisfying
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¢ (x) j_@(x) for all x

then ¢(x) > ¢g for all x as well. Here ¢y 1is the least constant

steady state solution of (4.2) with ¢(x) < ¢3 for all x. Thus,
¢(x) < ¢g < ¢(x) for all x
where ¢35 dis the least solution of f£(0,0,¢5) = 0 satisfying

$(x) < ¢y for all x

The basic situation is illustrated in Figure (4) below. We use
lemma (4.7) to find the functions ¢(x,e), x_(e), and x+(a).

At /'&;(X:E) = [bO

7

'id________

Figure (4)

These functions are utilized to form our perturbed initial conditions

¢ (x) for x < x_(a)
u{e,0,x) = $(x,e) for x _(e) < x j_x+(e) . (4.37)
¢ (x) for x+(e) < x

We then prove that the solution u(e,t,x) of (4.2) (with initial condition
u(e,0,x)) is increasing in t, and that in fact u(e,t,x) +&;(x,e) as

t + + =, Here, ¢(x,e) 1is the smallest steady state solution of (4.2)
which satisfies u(e,0,x) < $(x,e) for all x. Since now b(x,e) > ¢(x)
for all x and &(x,e) > ¢(x) at x = X,s lemma (4.8) shows that

d(x) < ¢g j_@(x,e) for all x,
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where ¢y is the smallest constant steady state solution of (4.2) satis-
fying ¢(x) < ¢g for all =x. Further, the perturbed initial conditions
u(e,0,x) which we use satisfy
u(e,0,x) < ¢g for all x
when € > 0 is sufficiently small. Since @(x,e) is the smallest possi-

¢g for all € > 0 small

ble steady state, we will then have &(x,e)
enough. To summarize this, as is depicted in Figure (4) we have that the
solution u(e,t,x) of equation (4.2) with the initial condition u(e,0,x)
must satisfy
w(e,+=,x) = ¢y for all x
whenever € > 0 is small enough. Moreover, if u(t,x) is any solution of
(4.2) with an initial condition satisfying
u(e,0,x) < u(0,x) < ¢, for all x ,
then the maximum principle implies that
u(e,t,x) < u(t,x) < ¢g for all x and all t > 0
In particular, u(e,+~,x) = ¢ and so u(+»,x) = ¢5 also. That is, every

solution wu(t,x) of equation (4.2) whose initial condition u(0,x) is in

the shaded region of Figure (4) must evolve to the constant steady state

u(+=,x) = ¢q.

Proof of theorem (4.6): Consider the initial conditions

¢ (x) for x < x_(e)

u(e,0,x) ¢p(x,e) for x (e) < x < x (€) . (4.37)
¢ (x) for x+(e) <x
We note first that for all e in (0,e;) the existence assumption H5 gua-

rantees that there is a solution u(e,t,x) of

- 4.2
u, f(uxx,ux,u) + cu ( )
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for all t > 0 which has the initial value u(e,0,x) at t = 0. We will
first use the maximum principle to show that wu(e,h,x) > u(e,0,x) for all
x and for all h > 0. We will then use it to show that
ue,t+h,x) > u(e,t,x) for all x, all h=>0, and all t > 0 .
This last inequality shows wu(e,t,x) to be non-decreasing in t and will
be the key to the proof. We now prove theée.
We note that wu(e,0,x) > ¢(x) for all =x. Since wu(e,t,x) and
¢(x) are both solutions of (4.2), the maximum principle implies that
u(e,t,x) > ¢(x) for all x and all t >0 . (4.38)
In particular, (4.38) implies that

¢(x_(€),e) for all t > 0, and

ule,t,x_(e)) > ¢(x_(e))

u(e,t,x+(e)) 3_¢(x+(e)) ¢(x+(a),e) for all £ >0 .

Since wu(e,0,x) = ¢(x,e) for all x in [X_(s),x+(e)], since
u(e,t,x_(e)) > ¢(x_(e),e), since u(e,t,x (e)) > ¢(x,(e),e), and finally
since ufe,t,x) and ¢(x,e) are both solutions of (4.2) for all t > 0 and

all x in [x_(e),x+(e)], the maximum principle implies that

u(e,t,x) > ¢(x,e) for all x in [x_(e),x+(ei] and all t > 0 .
(4.39)
From (4.38) and (4.39) we see that

u(e,t,x) > u(e,0,x) for all x and all t >0 . (4.40)
Relation (4.40) will now imply that wu(e,t,x) 1s non-decreasing
in t. To see this, let h > 0 be any constant. Clearly u(e,t,x) being
a solution of (4.2) implies that u(e,tt+h,x) 1is also a solution. But
(4.40) shows that
u(e,t+h,x) > u(e,t,x) for all x (4.41)
is satisfied at t = 0, and the maximum principle shows that it therefore

must be true for all t > 0 as well. Hence, we have that u(e,t,x) is
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non-decreasing in t. From this result, the proof of the theorem will now
follow.

From the modification of the equations in Chapter III, we know
that there is a M > 0 such that f£(0,0,4;) = 0 for all constants ¢, 3_&.
(Note that this particular aspect of the modifications does not affect the
stability of the bounded steady state ¢(x). No modifications to
f(uxx,ux,u) for extremely large values of u can affect the stability of
a bounded steady state, since ¢(x) will be known to be unstable long be-
fore the perturbations u(t,x) - ¢(x) are so large that the modification
of £ for large values of u has any effect.) Let us take the constant
¢; to be so large that ¢; > ﬁ and

u(e,0,x) < ¢; for all x and all e in (0,eq) .
Then since £(0,0,¢;) = 0, the function wu(t,x) = ¢; must be a constant
steady state solution of (4.2). The maximum principle now implies that
u(e,t,x) < ¢; for all x, all t > 0, and all e in (0,eg) -

Thus, for each € and x the function u{e,t,x) is non-decreasing and
bounded in t. The limit u(e,t,x) - @(x,e) as t - + « must therefore
exist pointwise at each € and x. From the uniformity lemma and the
asymptotic state theorem of Chapter IIT, we conclude that $(x,e) is a
steady state solution of (4.2).

So far we know that u(e,t,x) is non-decreasing in t (at each
x and €) and that u(e,+v,x) = b(x,e), where $(x,€) is a bounded steady
state solution of (4.2). We now use the maximum principle once more to
identify this final steady state &(x,e) as the least steady state solution
of (4.2) satisfying

u(e,0,x) i»&(x,e) for all x . (4.42)
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That is, if $(x,e) is any steady state solution of (4.2) satisfying

u(e,0,x) < $(x,e) for all x , (4.43)
then

§(x,€) < ¢(x,e) for all x . (4.44)
Indeed suppose that ;(x,e) is a steady state solution which satisfies
(4.43) and suppose also that ¢ (x,€) < $(x,e) at any point x = %. Since
(4.43) holds, the maximum principle implies that

u(e,t,x) §q$(x,€) for all x and all t > 0
But now at x = %k,
u(e,t,®) < §(&,e) < $(&%) for all t >0 ,
and this contradicts the definition of §(x,e) = u(e,+=,x) at x = X.
Thus, all steady solutions §(x,c) satisfying (4.43) must also satisfy
(4.44).
We are now very nearly done. From lemma (4.8) we easily conclude
that
u(e,+=,x) = ¢(x,e) > ¢y for all x and all e in (0,eq) ,
where ¢35 1is the smallest constant steady state with
$(x) < ¢y for all x .

In particular, for some x (namely x = 0),

u(e,+e,x) - ¢(x) > ¢ - ¢(0) .
We define the € - independent quantity A by

b= YH{¢g - ¢(0)}

and note for t sufficiently large that

u(e,t,x) - ¢(x) > A at x =0 .
To complete the proof, we need only to verify that the initial perturbations

u(e,0,x) - ¢(x) satisfy the conditions set forth in theorem (4.6). However,
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inspection of the initial conditions wu(e,0,x) defined in (4.37) and in-
spection of properties (e) and (f) or (e) and (f') of lemma (4.7) show
that the functions u(e,0,x) - ¢(x) have all the properties claimed (for the
the unstable perturbations of u(t,x) = ¢(x)) by theorem (4.6) except one.
This lack is that u(e,0,x) - ¢(x) dis not differentiable twice at
x =% (e) or at x = x+(€), and is therefore not in Hi. We now remedy
this.
Suppose that u(0,x) 1is any function in Hi satisfying
u(e,0,x) < u(0,x) < ¢(x,e) for all x . (4.45)
From the maximum principle, we find that the solution u(t,x) of (4.2)
(with initial condition u(0,x)) satisfies
u(e,t,x) < u(t,x) j_@(x,e) for all x and all t > 0. (4.46)
Hence, since u(e,t,x) - ¢(x,e) as t + », we must also have
u(+e,x) = ¢(x,e) for all x (4.47)
whenever (4.45) holds. We now do not need to use u(e,0,x) as our initial
condition. Instead, for each € > 0 we simply select a u(0,x) in Hi
satisfying (4.45). We choose this u(0,x) to both approximate wu(e,0,x)
as closely as we please for all x in (& ) = 1, x+(s) + 1) and to be
identically ¢(x) for all x outside of (x_(e)—l,x+(e)+1)‘
This establishes theorem (4.6). Note that the results contained

in equations (4.45) and (4.47) are illustrated in Figure (5).

Theorem (4.6) very nearly completes the stability picutre for
steady state solutions of

u = f(u ,u ,u) + cu ‘ (4.2)
t xx’ x X

In summary, steady state solutions ¢(x) of (4.2) which have at least two
relative extrema are unstable, even to arbitrarily small perturbations of

finite extent. Steady states ¢(x) which have only a single relative
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extremum and which go to a saddle point as x * - ® or as x * + «® are
unstable, at least to arbitrarily small perturbations which decay asympto-
tically like ¢'(x) as x > - and as x - + ., The stability of steady
states which have only a single relative extremum and which go to nodes
both as ﬁ + -~ ® and as x * + ® has not been discussed yet. We treat this
indeterminate case in section (4.14). Finally, steady states ¢(x) which
have no relative extrema (monotonic steady states) are stable, at least
to small perturbations which decay asymptotically no slower than ¢'(x) as
x > + «, (The precise stability of these monotonic steady states is given
by theorem (4.5)). Thus the stability of steady state solutions is generic:
it depends only on a few easily determined properties of the particular
steady state and the particular equation.

In the next section, section (4.13), we will prove lemmas (4.7)
and (4.8). Before continuing on to this section some further remarks are
in order.

First, let us note that our stability picture is incomplete. In
theorem (4.6) we have not determined the stability or instability of steady
states ¢(x) which have only a single relative extremum and which go to a
node as X - — » and to another node as x > + . We discuss this indeter-
minate case in section (4.14). There we will be able to characterize which
steady states of this case are stable and which are unstable. For any par-
ticular example of this indeterminate case, this characterization should
provide a practical method for deciding the stability or instability of any
particular steady state solution of any particular equation.

Second, the proofs of lemma (4.7), lemma (4.8), and theorem (4.6)

can be extended to include some constant steady states u(t,x) = ¢y as
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part of the "steady states with at least two relative extrema'" case. Speci-
fically, the constant steady state u(t,x) = ¢y can be included whenever
the singular point ¢ = ¢35, v = 0 1is a spiral point or a center. Thus,
these constant steady states are unstable even to arbitrarily small per-
turbations of finite extent. We will discuss this in section (4.15).
Third, note that we have actually proved much more than the fact
that u(t,x) = ¢(x) is unstable. TFor the steady states ¢(x) treated
by theorem (4.6), we have actually shown that whenever u(t,x) is a solu-
tion of (4.2) whose initial condition satisfies
u(e,0,x) < u(0,x) j_&(x,e) for all x (4.45)
then u(4w,x) = @(x,e). Since for all sufficiently small € > 0 we have
u(e,0,x) < ¢ for all x
where ¢, 1s the smallest constant steady state satisfying
$(x) < ¢y for all x ,
we can conclude that ¢(x,e) = ¢g for all x and all € > 0 sufficiently
small. Thus whenever any solution u(t,x) of (4.2) satisfies
u(e,0,x) < u(0,x) < ¢ for all x
at t = 0, then u(+w,x) £ ¢3. This is illustrated in Figure (5). From
this we see that the proof of theorem (4.6) provides a potentially power-
ful technique for finding the final state u(4+®,x) as a function of the
initial condition u(0,x). This will be briefly discussed in section (4.16).
Fourth, let us note that we can extend these instability results
to plane waves in higher spatial dimensions, although the results are
weaker than the results in theorem (4.6). 1In section (4.17) we will dis-
cuss these extensions to multiple spatial dimensions.

Finally, the methods we have used to prove theorems (4.5) and
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U=¢O

- - - -

N
I
X

x{€) X X+(E'—)

Figure (5): From (4.45) and (4.47) we see that any solution u(t,x) whose
initial values u(0,x) are in the shaded region must evolve
into the constant steady state ¢ as t>te, That is,
u(+m,x) = ¢O°

(4.6) can also be used on finite spatial domain-boundary value problems.

Consider the following finite domain-boundary value problem:

u, = f(uxx,ux,u) D2l s 20
u(t,x) = A at x=0 u(t,x) =B at x =1

where A and B are fixed constants. In section (4.18) we will determine

the stability of all steady state solutions u(t,x) = ¢(x) of this boun-

dary value problem.

We now continue on to section (4.13) where we prove lemmas (4.7)

and (4.8).

4.13 Proof of lemmas (4.7) and (4.8). 1In this section we will prove lem-

mas (4.7) and (4.8). We will prove these lemmas by using a key observa-
tion about the phase plane of the steady state solutions of (4.2). To

prove these lemmas we will first suppose that ¢(x) is any bounded non-
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monotonic solution of the steady state equation for (4.2), namely of the
equation
=0 . 4.48

(b 20 ) + o (4.48)
We will also suppose that ¢(x) has a relative extrema at x = xe, and
then will consider the solutions ¢(x,e) of (4.48) which have the initial
conditions

¢(xe,€) = ¢(xe) e i ¢>x(xe,€) = ¢X(xe) =0

The key to proving both lemmas is noting that the phase plane of

¢ =v

X

f(vx,v,¢) + cv

(4.49)

Il

0
implies that for all e with |E‘ sufficiently small; dp(x,e) and ¢(x)
must intersect at least once when x > X, and at least once when x < X,
Note that this intersection property constitutes an oscillation (or com-
parison) result about the ordinary differential equation (4.48).
We start by noting that the phase plane of system (4.49) pos-

sesses the following properties:

(i) all singular points are on the v = 0 1line,

(ii) the horizontal components of the phase plane trajectories are
positive when v > 0 and negative when v < 0, and

(iii) the phase plane trajectories never cross (except at singular
points).
lLet ¢(x) and ¢(x,e) be the solutions of (4.49) we defined above. Be-
cause the phase plane of (4.49) has properties (i), (ii), and (iii), the
possible behaviors of ¢(x) and ¢(x,e) are severely limited. For
example, suppose that

(1) ¢(x) is a bounded solution of (4.49) with, say, a relative
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maximum at x = Xe’

(2) ¢(x,e) is the solution of (4.49) with initial condition

P(x_se) = ¢(x) + e o (x5e) =0 (x) =0 ,

and

(3) ¢ is, say, positive and small enough so that ¢ = ¢g, v = 0
is not a singular point for any ¢5 in [¢(xe), ¢(xe) + c]. When ¢(x)
and ¢(x,e) satisfy these three conditions, the phase plane of system
(4.49) implies that exactly one of the following alternatives must be the
case for x > x :

e

(1') ¢(x) and ¢(x,e) both have at least one extrema for x > X
For this case, let % be the least x Jlarger than xé at which ¢(x)
has a relative minimum and let %(eg) > X, be the least point x > X, at
which ¢(x,e) has a relative minimum. Then ¢(X) > ¢(%(e),€).

(2') ¢(x) has at least one relative extrema for x > x, but
¢(x,e) has none for x > X, For this case, let X again be the least
% X, at which ¢(x) has a relative minimum. Then one of the following
must happen

(a) ¢(x,e) » - » as x + + ®, as

(b) ¢(x,e) > ¢pg(e) as x >+ » where ¢g(e) 1s a singular point
and ¢(X) > ¢g(e) = ¢(+=,€).

(3'") ¢(x,e) has at least one relative extrema for x > X, but ¢ (%)
has none. For this case we let %(e) be the least x > X, at which
¢(x,e) has a relative minimum. In this case, ¢(x) > ¢g as x > + =
where ¢ 1is a singular point and ¢(+=) = ¢ > p(x(e),e).

(4') Neither ¢(x) nor ¢(x,e) has a relative extrema for x > X,

In this case ¢(x) ~ ¢9 as x > + » where ¢y 1s a singular point, and
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one of the following must occur

(@) ¢(x) > ¢p as x >+ o and ¢(x,€) > - ® as x - + «,

(b) ¢(x) > ¢y as x ++ o and ¢(x,e) -+ po(e) as x » + = where

$g(e) 1s a singular point and ¢ (4=) = dp > dg(e) = ¢p(+e,e), or

(c) o(x) » ¢g as x + + o and ¢(x,e) » ¢p(e) as x + + © where

bo(e) = ¢g.
The phase planes of these alternatives

(12).

are illustrated in Figures (6) -

next singular
point

Figure (6): Since the maximum of ¢(x,e) at x=x

©

is larger than the maxi-

mum of ¢(x) at x=x , if both ¢(x,€? and ¢(x) have a relative
minimum for x>x tfen the next minimum of ¢(x,e) is smaller

than the next minimum of ¢(x).

(Case 1').
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’_,.-3
/'f \‘ next singular
int
e =y —-

¢(X)" q’(xsﬁ)

e 4

(.;._

Figure (7): If ¢(x) has a relative minimum at some x>x and ¢(x,e) does
not, then ¢(x,e) may go to -= agg x-+w, (Cage 2'a).

singular next singular
point point

v=0 "2 > >
\§E::=””V o (x)~LAd (x,€) *

Figure (8): If ¢(x) has a relative minimum at some first ®>x and ¢(x,¢€)
has none for x>x _, then ¢(x,e) may go to a singular point
¢ (e) with ¢(%)>Fg(e) = ¢(+=,e). (Case 2'b).
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next singular
point

—

singular
point
v=0

Figure (9): 1If ¢(x,e) has a relative minimum at some first %(e)>x and

$¢(x) has none for x>xe, then ¢(x) goes to a singular Soint
$¢p as x+tw, and ¢(+e) "= dg>d(X{e),e). (Case 3').

- >

. singular next singular
=0 point point

¢(X) ¢(X9€)

Figure (10): TIf neither ¢(x) nor ¢(x,e) has a relative minimum for X>X

then ¢(x)+¢y as x+= (where $y is a singular point), and &
¢(x,e) may go to -=» as x++o. (Case 4'a).

b
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AV

next singular
singular point

« pointa ~ - B

_>
v=0 ¢
o (x)~/ fo(x,€)

Figure (11): 1If neither ¢(x) nor ¢(x,e) has a relative minimum for x>x ,
¢ (+=) = ¢y and ¢(+=,e) = ¢y(e) may occur, where ¢g and
¢o(e) are singular points and ¢y > ¢y(e). (Case 4'b).

/}v

next singular
singuiar point
poin

) ' “§§:==4’/’ : E

¢(X)- ¢(Xs€)

Figure (12): 1If neither ¢(x) nor ¢(x,e) has a relative minimum for x>x ,
then ¢(x) and $(x,e) may go to the same singular point as
x++=, (Case 4'c).
There is a very simple way to summarize all of these alternatives.

Let us allow the singular points ¢(H=), ¢(-=), ¢$(+=,e), and ¢(-~,e) to be

called extrema for the curves ¢(x) and ¢(x,e), and suppose we automatically
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let ¢ = - o and ¢ =+ « be a minimum and maximum (respectively) of ¢.
With these definitions, we see that since the maximum of ¢(x,e) at x = X
is larger than the maximum of ¢(x) at x = X the phase plane of (4.49)

implies that either

(1") the first minimum of ¢(x,e) with x > X, must be smaller than
the first minimum of ¢(x) with x > X, oOr

(2") the first minimum of ¢(x,e) and of ¢(x) with x => x, occur at

x =+ and ¢(+=,e) = ¢(+).

Similar alternatives occur for x < xe. In particular, since the
maximum ¢(xu,€) is larger than the maximum ¢(x), then either the last
minimum of ¢(x,e) with =x < X, is smaller than the last minimum of ¢ (x)
with x < X s OT both last minima occur at x = - @ and ¢(->,e) = ¢(-=).

We can also interchange the roles of minima and maxima in the
above alternatives and the results will remain valid. That is, if ¢ (x,€)
and ¢(x) both have a relative minimum at x = X, and ¢(Xe,€) > ¢(Xe),
then either the next maximum of ¢(x,e) is smaller than tﬁe next maximum
of ¢(x), or the next maximum of both ¢(x,e) and ¢(x) occurs at x = +
and ¢ (+=,e) = ¢ (+=).

Note finally that similar alternatives occur if we take € < O
but € large enough so that there are no singular points in [¢(xe)—e,¢(xe)]-
In fact, taking € < 0 is essentially equivalent to interchang-
ing the roles of ¢(x) and ¢(x,e) in the above lists of alternatives.

We now use the above lists of alternatives (and similar phase

plane observations) to prove lemmas (4.7) and (4.8).

Proof of lemma (4.7): 1In proving lemma (4.7) we will need to consider
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three separate cases. Namely, the cases of where the non-monotonic steady
state ¢(x) 1n the statement of the lemma has at least three relative ex-
trema, has exactly two relative extrema, and has only one relative extre-
mum. We begin with the simplest case, where ¢(x) has at least three re-
lative extrema.

Suppose that ¢(x) is a bounded solution of the steady state
equation (4.48), and suppose that ¢(x) has at least three extrema. In
particular, assume that ¢(x) has a relative extrema at x = X, has at
least one relative extrema when X > X, and has at least one when x < Xe
We finally suppose that ¢(x) has a relative maximum at x = X, since
the case of a relative minimum can be handled similarly. For notation, let
¥ be the largest value of x < x, at which ¢(x) has a relative mini-
mum, and let i+ be the smallest value of x > X, at which ¢(x) has a

relative minimum. Thus, ¢(x) has consecutive extrema at x =X , x = x_,

and x = & with ¢(x), ¢(xe), and ¢(i+) being a relative minimum, maxi-

4
mum, and minimum respectively.

Similar to before, we define ¢(x,e) for all O < & < g5 as the
solutions of (4.48) with the initial conditions

9(x_58) = ¢(x ) + e o, (x08) = ¢ (x,) =0 , (4.50)

and we assume that e, > 0 is small enough so that ¢ = ¢g, Vv = 0 dis not
a singular point for any ¢y in [¢(xe), ¢(xe) + €5]. Let us now note
that ¢(x,e) and ¢k(x,€) are both continuously differentiable in € (see
e.g. [6] ). Thus, for all ¢ with 0 < e < g7 (for some €; in (0,e3)),
¢(x,e) has a relative minimum at x = X% (¢) near x = %_ and also has a
relative minimum at x = i+(e) near x = i+. From the list of possible

alternatives, we immediately see that
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o(x) > ¢(x, (e),e) and ¢(%) > ¢(x_(e),¢€)
must be the case. Since ¢(xe,s) = ¢(xe) + & » ¢(xe), careful considera-
tion of the list of possible alternatives shows that the curves ¢(x) and
¢(x,e) intersect at least once when x is in (i_(e),xe) and also at
least once when x 1is 1in (xe,i+(e)). Hence, we let x = x_(e) be the
largest x < X, at which P(x_(e),e) = $(x_(e)) and let x = x+(s) be

the smallest x > x, at which ¢(xe(€),€) = ¢(x+(€)). Figure (13) illus-

trates the present situation.

A\¢

- - ——— e - - - = e -

+ Areecccc——-——----

! ' H
] 1 1 N
: : i % ZE) : X/

% (e)r % x, % (¢) hy il

x” (&) +

Figure (13)
It is clear that ¢(x,e), x_(e), and X+(E) possess the proper-
ties

(@) x_(e) < x, < x,(e)

(b) ECh od s9) + cp =0 for ¢ = ¢(x,8) ,
(c) ¢(x,e) > ¢(x) for all =x in (x_(e),x+(e)), and
(d) ¢(x_(e),e) = ¢(x_(e)), ¢(x,(e)ye) = ¢(x ()

for all e in (0,e;). Moreover, let x; < X and x; > i+

The uniform continuity of ¢K(x,e) in € when x 1is restricted to

be given.
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[xp, x1] shows that
xp < % (e) < x (e) < X < x+(e) j_i+(e) < x
for all e in (0,eqg) for any sufficiently small €3 in (0,e;). Thus,
for 0 < e < gy we have
(£) xg <x () <x (e) <% .
Property (e) is also easily established. From property (f),

max  |¢(x,e) - ¢p(x)| > max lo(x,e) - ¢(x) |

XSX<X) xm(s)5x§x+(e)
Thus, property (e) immediately follows from the uniform continuity of
¢(x,e) in e when x 1is restricted to [xp, x1] , since this uniform
continuity implies that

max ¢ (x,e) - ¢(x)| + 0 as € + 0
XQSX<x)

This establishes lemma (4.7) in the case where ¢(x) has at least three
extrema.

We now will establish the lemma in the case where ¢(x) has ex-
actly two relative extrema. This proof will be a slight variant of the pre-
ceding case.

Suppose that ¢(x) dis a bounded non-monotonic solution of (4.48)
and suppose further that ¢(x) has exactly two relative extrema, one at
X =%, and one at x = i+ with i+ > X, - Finally, suppose that ¢(x) has
a relative maximum at x = X, since the other case is handled in a similar
manner.

For this present case we define @(x,e) for all 0 < g < g3
as the solutions of

£($ -0 ,9) +cd =0 (4.48)

with the initial conditions
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d(x_se) = ¢(x ) + ¢, $x(xe,e) = ¢ (x) =0 . (4.50)
Here €3 > 0 1is any constant small enough so that ¢ = ¢35, v = 0 is not
a singular point for any ¢, in [¢(xe), ¢(xe) + 83]. For this case we
cannot use $(x,e) directly as the ¢(x,e) in the lemma. Instead, select
X_ as any point x smaller than X,» and define

$(x,¢e) if ¢(x) = &;(x,e) for some xe[}"{_,xe)
¢(x,e) = &(x+h(e),€) otherwise, where h(e)<0 is the largest constant

such that ¢(x_+h(e),e) = ¢(x )

Note that the uniform continuity of @x(x,e) in € (when x is restrict-
ed to compact sets) shows that h(e) exists for all € > 0 small enough.
This uniform continuity also shows that there is a K > 0 such that
- Ke < h(e) < 0 for all e in (0,e,), where e, in (0,e3) is any
sufficiently small constant.

As in the previous case, for all € > 0 sufficiently small
&(x,e) has a relative minimum at x = i+(s) near i+. Also as before, we
can therefore conclude that ¢(x) and $(x,e) must intersect at least once
for x 1in (xe,i+(e)). Moreover since ¢(x) has no relative extrema for
x larger than i+, we can also conclude that the curves ¢(x,e) = ;(x+h(e),€)
and ¢ (x) intersect at least once when x 1is in (xe,i+(8) + h(ei}.
We define x = x _(g) and x = x+(e) as the largest point x < Xy and the
smallest point =x > X, at which the curves ¢(x,e) and ¢(x) intersect.
This present situation is depicted in Figure (14) below. Properties (a)
through (f) can now be verified in a manner similar to the previous case,
and this establishes lemma (4.7) in the two extrema case.

We now treat the final case, where the non-monotonic steady state
solution ¢(x) of (4.48) has only a single relative extremum and $(x) goes

to a saddle point as x - — ® or as x > + ®. We treat this case in a
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manner very similar to the previous case. For this case we assume that the
relative extremum of ¢(x) occurs at x = X, and again assume without loss
that it is a relative maximum. Moreover, we assume that ¢(x) goes to a
saddle point as x + + =, since the other case can be handled similarly.

For 0 < & < g7 we again define $(x,e) as the solutions of

(06 59) + e =0 (4.48)
with the initial conditions
P(x,e) = ¢(x) + ¢, b (x58) = ¢ (x) =0 ,

where €3 > 0 1is small enough so that there are no singular points in
E¢(xe),¢(xe) + 51]. Select X_ as any point x smaller than X, and
define

d(x,¢e) if ¢(x) = ¢(x,e) for some xE.[k_,xe)

¢(x,e) = $(x+h(e),e) otherwise, where- h(e) < 0 is the largest
constant such that ¢§(Xx +h(e),e) = ¢(x)

Note that as in the previous case such an h(e) exists and satisfies
- Ke < h(e) < 0 for some K > 0 for all e in (0,ep) when ep > 0 1is

small enough. We now examine the list of possible alternatives for x > X,
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In particular we note that case (4'c) cannot occur because ¢(x) goes to
a saddle as x > + @, We see from the remaining alternatives that ¢(x,¢€)
intersects ¢(x) at least once for x > X, for all e din (0,ep). We
define x = x_(s) as the largest point x < X, at which ¢(x,e) and ¢(x)
intersect. Similarly, we define x = x+(e) as the least point x > X,
at which ¢(x,e) and ¢(x) dintersect. One now verifies that conditions (a),

(b), (¢), (d), (e), and (f') are satisfied, and this establishes the lemma.

Proof of lemma 4.8: Suppose that ¢(x) 1is any bounded non-monotonic solu-

tion of

£(9, +0,50) + co_ =0 , | (4.59)
and let &(x) be any other solution of (4.59) with
$p(x) < ¢$(x) for all x . (4.60)
Also let ¢ = ¢5 be the smallest constant solution of (4.59) with
¢(x) < ¢g for all x .
To prove lemma (4.8) we will first show that &(x) > ¢g for some x, and
then show that $(x)‘i ¢g for all x.

We now show that b(x) > ¢g for some x. To show this, we will
consider the two separate cases of ¢(x) having at least two relative ex-
trema and of ¢(x) having exactly one relative extremum.

Suppose that ¢(x) < $(x) for all x, suppose also that
$(x) < ¢y for all x, and finally suppose that ¢(x) has at least two
relative extrema. Select X = xe and x = X, > xe so that ¢(x) has a
relative extremum at each of these points and so that ¢(x) has no relative
extrema between x = X, and x = X, . Let us also assume that these relative

extrema are a maximum (at x = xe) and a minimum (at x = %y, * xe) since

the other case can be handled similarly. Since b (x) > ¢(x) for all x
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and since $(x) # ¢(x), we see that ¢(x) > ¢(x) for all x and so

$(x) < $(x) < ¢y for all x .
In particular, ¢(xe) < $(xe). Thus let x = ie be the point nearest to
X =X where %(x) has a relative maximum. Clearly

$(x) < d(x) < oo -

From the list of possible alternatives we see that ¢(x) and ¢(x) must
intersect for some x > min(xe,ie). Thus,

d(x) < $(x) < ¢o for all x
is not possible in this case.

Suppose now that ¢(x) < $(x) for all x that $(x) < ¢¢ for
all x, and also that ¢(x) has only a single extremum at x = X Let
us also assume that this extremum is a maximum since the other case can be
handled in a similar manner. As before we have

$(x) < §(x) < ¢g for all x
Also as in the previous case, an examination of the list of possible alter-
natives shows that $(x) and ¢(x) must intersect unless &(x) has only a
single extremum, $(k) and ¢(x) both decay to the same singular point at

x = - w, and ¢(x) and ¢$(x) both decay to the same singular point at

X + =, However, ¢(x) goes to a saddle point as X > - @ or as
x » + » and so either &(x) has more than a single extremum or one of
d(+=) # §(4+=) and $(-=) # ¢ (~) occurs.l Thus ¢(x) and ¢(x) must intersect
at least once, and so
$(x) < ¢§(x) < ¢g for all x
is not possible either.

So far we have shown that whenever ¢(x) any non-monotonic solu-

tion of
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£(9 2?0 09) tco =0 (4.59)
which satisfies the hypotheses of lemma (4.8), then if &(x) is any other
solution of (4.59) such that
$(x) > ¢(x) for all x (4.61)
then
i(x) > ¢g at some x , (4.62)
where ¢;3 1s the least constant steady state solution satisfying
$(x) < ¢g for all x . (4.63)
We will now complete the proof of the lemma by showing that (4.61) and (4.62)
together imply that either
$(x) = bg ‘ (4.64)
or
b(x) > ¢g for all x (4.65)
occurs., This final step in the proof will follow from the minimality of
the final steady states uf(e,+©,x) = $(x,e) in the hair-trigger effect.
Suppose first that ¢(x) % ¢g. Then (4.62) implies that
d(x) > ¢y at some x . (4.66)
We now assume that
$(x) < ¢g at some X (4.67)
also, since otherwise lemma (4.8) would be satisfied. From relations (4.61),
(4.66), and (4.67) we now obtain a contradiction. From the proof of the
hair-trigger effect in theorem (4.6), we know that there exists a solution
%(x,e) of (4.59) with
u(e,0,x) f_%(x,s) for all x , (4.68)
and with

o (x,€) j_g(x,e) for all x (4.69)
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satisfied whenever i(x,e) 1s any other solution of (4.59) such that

u(e,0,x) < §(x,¢) for all x (4.70)
is satisfied. Since (4.61) shows that ¢(x)<¢(x) for all X, an examina-
tion of the initial conditions u(e,0,x) (given in equation (4.37)) shows
that

u(e,0,x) < ¢(x) for all x
whenever € > 0 1s small enough. Moreover, for e > 0 small enough we
also have

u(e,0,x) < ¢y for all x

Thus equations (4.68), (4.69), and (4.70) imply that there is a solution

$(x,e) of (4.59) satisfying

¢ (x) < u(e,0,x) < @(x,e) for all x (4.71a)
$(x,€) < bg for all x, and (4.71b)
$(x,e) < $(x) for all x (4.71c)

for any € > 0 small enough. Since %(x) < ¢p at some x, $(x,€) §E¢0.
But since $(x,e) is a solution of (4.59) and since
$(x) < ¢(x,e) for all x ,

we have shown in the first part of the proof that either

$(x,e) = ¢y , or
b(x,€) > bo for some x .

This contradicts (4.71b). Hence either ¢(x) = $g or $(x) > ¢p for all

x, and we have now established lemma (4.8).

Thus we have established lemmas (4.7) and (4.8). Note that in
proving lemma (4.8) we have also essentially proved an oscillation theorem

for the ordinary differential equation
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f(¢xx,¢x,¢) # c¢x =0 5, 20 . (4.59)
To state this result explicitly, let ¢(x) be any bounded non-monctonic
solution of (4.59). If ¢(x) has only a single extremum assume that ¢ (x)
goes to a saddle as either x + - » or as x -+ + «. Let ¢B and ¢€
(respectively) be the largest and smallest constant solutions of (4.59)
which satisfy

¢B < ¢(x) < ¢§ for all x .
Lemma (4.8) directly implies that there is no solution E(x) of (4.59)
which satisfies
p(x) < @(x) for all x and ¢(x) < ¢€ for some x .
By transforming ¢ - - ¢ one sees that lemma (4.8) also implies that there
is no solution ¢(x) of (4.59) which satisfies
i(x) < ¢(x) for all x and ¢6 < ¢$(x) for some x .
Thus we have shown that if §(x) is any solution of (4.59) such that
¢ < $(x) < ¢g for some x
is satisfied, then ¢(x) and ¢(x) must intersect at at least one point x.
This clearly demonstrates that lemma (4.8) is an oscillation result about
solutions of (4.59).
The establishment of lemmas (4.7) and (4.8) in this section nearly

completes our treatment of the instability of non-monotonic waves. 1In the
next section, section (4.14), we complete our treatment by discussing the

indeterminate case.

4.14 Stability/instability in the indeterminate case. For this section we

assume that ¢(x) is a bounded non-monotonic steady state solution of

B = f(uxx,ux,u) +cu o, (4.2)

that ¢(x) has a single relative extremum which occurs at x = Xe’ and
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that ¢(x) goes to a node as x + -~ ® and to a node as X =+ + «©, More-
over, we will assume that ¢(x) has a maximum at x = X, since the case
of ¢(x) having a minimum is handled in a similar manner. 1In this section
we will determine when u(t,x) = ¢(x) is unstable. To do this we again
define ¢(x,e) as the solution of the steady state equation
£(h 20 .8) +cp =0 (4.59)
with the initial condition
o(x,,e) = ¢(x,) + ¢ o (x 58} = ¢ (x) =0 .
The stability or instability of wu(t,x) = ¢(x) will essentially depend on
the intersection properties of ¢(x) and ¢(x,e).

As our first case, suppose that ¢ (x) decayé at the accidental
rate as, say, x »+ o, Then for any e¢ > 0 (no matter how small) the
phase plane alternative (4'c) cannot occur. An examination of the préofs
of lemma (4.7), lemma (4.8), and theorem (4.6) shows that the only use made
of the hypotheses that ¢(x) goes to a saddle point as either x > + » or
as x > - ®» was to eliminate phase plane alternative (4'c) for either
X > X or x < X,- ‘Thus the proofs given for lemma (4.7), lemma (4.8), and

e
theorem (4.6) work equally well if ¢(x) decays to a node at the acciden-

tal rate as either x + - ® or as x - + «. To summarize this, if u(t,x)
¢(x) is a bounded non-monotonic steady state solution of (4.2) such that
(i) ¢(x) has a single extremum at x = X
(ii) ¢(x) goes to a node as x = - ® and goes to a node as x > + =,

(iii) ¢(x) decays at the accidental rate as x > - ® or ¥ >+ @,

then u(t,x) = ¢(x) is Qw—unstable where w(x) is given by
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1 1
1 + l¢'(x)l + I¢'(Xe+1)] XiXe -1
_ 1 1
W(X) -3 1 + I¢'(Xe”1)l + m|(xe+1)| Xe -1 T X s Xe + 1 -(4.72)
1 1
1 + i¢‘(Xe‘1)| + I¢'(X)r xe+1_<_x

We now consider the remaining case. Namely the case that
(1) ¢(x) has a single extremum at x = X,
(ii) o¢(x) goes to a node as x + - o and goes to a node as
X >+ =, and

(i1i) ¢(x) decays at the usual rate as x - - o and as x = + .

Define the function

1

-
s bGe) [ o s

¢E(x)
and note that

O
$. 00 + ho_ () = = dxthe,e) | __, -
We will show that if there is an h such that
¢ (x) + h¢ (x) > 0 for all x
then u(t,x) = ¢(x) is cV-stable where w(x) dis given in (4.72). More-~

¢(x) dis

over, if such an h does not exist we will show that u{(t,x)
usually &W~unstable.
Suppose first that ¢€(x) > 0 for all x. Then for all € in

(0,eg) (for some ey > 0 sufficiently small) we have that

d(x,~¢) < ¢(x) < $(x,e) for all x .
Since u(e,t,x) = ¢(x,e) and u(-e,t,x) = ¢(x,~-e) are both solutions of
(4.2), the maximum principle implies that every solution u(t,x) of (4.2)
whose initial condition u(0,x) ds in Hi and satisfies

$(x,-€) < u(0,x) < ¢6(x,e) for all x ,
must satisfy

$(x,-€) < ult,x) < $(x,e) for all x and all t >0 . (4.73)
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Since € > 0 can be as small as we please, relation (4.73) implies that
the steady state ¢(x) 1is CwFstable with w(x) given by (4.72).

Suppose now that either ¢€(x) > 0 for all x > X, and ¢€(x)<0
for some x < X, ,0r ¢E(x) >0 for all x < X, and ¢€(x) < 0 for some
x > X, - Recalling the assumption that ¢(x) has a relative maximum at
X =X, when ¢€(x) >0 for all x > X, and ¢€(x) < 0 for some x<xe
we increase h from zero until either

(1) ¢€(x) + h¢x(x) > 0 for all x, or

(2) ¢€(x) + h¢x(x) < 0 for some x < X, and for some x > X, -
Similarly if ¢E(x) >0 for all x < X, and ¢€(x) < 0 for some x > X,
then we decrease h from zero until either case (1) or case (2) occurs.
Suppose that case (1) occurs. Then there is an g3 > 0 such that for all
e in (0,gq),

b(x-he,e) < ¢(x) < $(xthe,e) for all x .

Similar to the preceding case, using ¢(x-he,e) and ¢(x+he,e) with the
maximum principle implies that wu(t,x) = ¢(x) is cV-stable where w(x)
is defined in (4.72).

Suppose now that either case (2) occurs or that ¢E(x) < 0 for
some X < X_ and for some x > X, . When either of these occurs there is an
h such that ¢E(x) + h¢x(x) < 0 for some x < X, and some x > X, There-
fore, for all e in (0,eq) (for some ey > 0) the curve ¢ (x+he,e) in-
tersects ¢(x) at least once when x > X, and at least once when x < X,

Hence we define ¢(x,e) = ¢ (x+he,e), define x_(e) as the largest x < X,

I

at which ¢(x_(e),¢) ¢$(x_(e)), and define x+(e) as the smallest X > X
at which ¢(x+(e),e) = ¢(x+(e)). It is easily seen that ¢(x,e), x_(¢),

and x+(s) satisfy all the conditions of part (2) in lemma (4.7). We can
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now apply the hair-trigger argument used in the proof of theorem (4.6).
This shows that the solutions u(e,t,x) of (4.2) with the initial condi-
tions given in (4.37) are non-decreasing in time and that
u(e,+2,x) = ¢_(e,x) ,
where ¢m(€,x) is a steady state solution of (4.2) satisfying
d(x) < ¢m(e,x) for all x .
We now show that ¢m(e,x) - ¢(x) > ey for some x and for all e in
(0,e5). To see this, note that for all e in (0,e9) there is an h
such that &(x+hs,e) intersects ¢(x) when x < X, and also when x > xe.
Since ¢(x) 1s increasing for x < X, and is decreasing for x > x> for
any h and for any € in (0,ep) the curves ¢(x) énd ¢ (x+he,e) inter-
sect somewhere. Thus ¢m(e,x) cannot be ¢(xt+he,e) for any h and for
any € 1in (0O,epg). Therefore
¢m(e,x) - ¢(x) > eg for all e in (0,eq) ,
and §"-instability is established.
This completes our stability/instability analysis for the inde-
terminate case. To Qummarize the results, we have assumed that
(1) ¢(x) has a single extremum at x = X, and
(ii) ¢(x) goes to a node as x + - » and goes to a node as
X > +
Then, if ¢(x) decays at the accidental rate as x > ~ or as X - +
we have shown that u(t,x) = ¢(x) 1is Qw—unstable (where w(x) is given
by (4.72)). If ¢(x) decays at the usual rate as x > - ® and as

X + + @ a more complicated stability picture occurs. In this case if

¢€(x) > 0 for all x then u(t,x) o(x) is c’-stable. 1If ¢€(x) <0

. w
for some x < X, and for some x > X, then u(t,x) = ¢(x) is § -unstable.
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Finally, if neither of the above occurs we increase or decrease the parame-
ter h in ¢E(x) + h¢x(x) until either
(1) ¢€(x) + h¢x(x) >0 for all x, or
(2) ¢E(x) + h¢x(x) < 0 for some x < X, and for some x > X
occurs. In case (1) wu(t,x) = ¢(x) 1is Cw—stable, and in case (2) it is
Qw—unstable.
For any specific steady state ¢(x) of any specific equation
u, = f(uxx,ux,u) + cu_ (4.2)
it appears that the above stability criterion is impractical unless one
can solve for ¢(x) and ¢(x,e) analytically. However, even if ¢(x),
¢X(x), and ¢€(x) can only be found by numerically solving the equations
4, =V

f(vx,v,¢) + cv

(4.74)

o ,

the above stability criterion should be a practical method for determining
the stability of wu(t,x) = ¢(x) in this indeterminate case. This is be-
cause one knows (froﬁ equations (4.74)) the asymptotic behavior as

x ++ e« of ¢(x), ¢x(x), and ¢E(x) to within some unknown coefficients,
Thus one needs to numerically solve for ¢(x), ¢x(x), and ¢€(x) only over
a region large enough so that the asymptotics are valid outside of the re-
gion. From this calculation one can find the unknown coefficients in the
asymptotic formulas for ¢(x), ¢X(x), and ¢€(x). The calculation will ex-
plicitly show when ¢E(x) + h¢x(x) is positive or negative in a large re-
gion, and the asymptotics will show the same outside of the large region.

Thus in principle the stability criterion developed in this section is a

practical way to determine the stability of the steady states $(x) which

belong to the indeterminate case. On the other hand, these numerical cal-
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culations may be so delicate that the implementation of the stability cri-
terion is very difficult.
This completes the analysis in this section. However it is pos~

sible that the stabllity case never occurs. That is, we can conjecture that

¢(x) satisfies the condi-

in

if the bounded steady state solution u(t,x)
tions

(1) ¢(x) has a single relative extremum at some x = X,

(i1) ¢(x) goes to a node as x + - = and to a node as x +» + ©
and

(iii) ¢(x) decays at the usual rate as x » - and as x > + o™,
then there exists an h such that

¢€(x) + h¢x(x) < 0 for some x < xe and for some x > X, -
The direct implication‘of this conjecture is that u(t,x) = ¢(x) is QW—
unstable. Thus, if this conjecture is true then every bounded steady state
solution of (4.2) which has a single relative extremum would be Cw—qnstable.
This section completes our analysis of the instability of non-

monotonic waves. Inﬂthe next three sections we briefly discuss related
topics. Specifically in the next section, section (4.15), we will extend
our instability results to some constant steady states. In section (4.16)
we will comment on the potential applications of our techniques to the

final state problem. In section (4.17) we will extend our results to non-

monotonic traveling plane waves in multiple spatial dimensions.

4.15 Instability of some constant steady states. In this section we sup-

pose that u(t,x) = ¢o 1is a center or a spiral point of the phase plane of

E(h20,09) +ch =0 . (4.59)
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We now note that if we select any point X to be x = X, and if we de-
fine ¢(x,e) as the solution of (4.59) with initial condition
¢(xe,€) = ¢g + & ¢x(xe,e) =0 |,
then there is a A > 0 such that
p(x,e) = ¢g
for at least one x in (xe - A,xe) and one x in (xe,xe + A) for all
€ sufficiently small. This is precisely the same behavior that ¢(x,€)
possessed when ¢(x) was a solution of (4.59) with at least three extre-
ma (instead of ¢(x) being ¢p, a constant steady state). Indeed, 1f we
examine the proofs of lemma (4.7), lemma (4.8), and theorem (4.6), we see
that they can be easily extended to include ¢(x) = ¢ >as part of the
"steady state with at least two extrema' case. Thus 1f the singular point

¢p9 1s a spiral or a center of (4.59), then the steady state solution

u(t,x) g of

w, - f(uxx,ux,u) + cu_ (4.2)
has the same instability as in case (1) of theorem (4.6). Namely, it is
unstable to arbitrarily small perturbations of a finite extent. This is a
distinct improvement over the instability results in theorem (4.1) for
these cases.

At first glance these instability results may seem surprising since
a singular point ¢ = ¢y, v = 0 is a spiral point or a center of (4.59)

precisely when

£5(0,0,49) > 0 and

~ 2/F71(0,0,40)£3(0,0,60) - £5,(0,0,¢5) < ¢

< 2/£,(0,0,¢9)£3(0,0,69) - £2(0,0,4g) -

Thus, apparently stability of a constant steady state depends on the wave-
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speed c¢. However, even though a constant steady state is unchanged by
shifting to a different moving coordinate system, its stability can change.
This is because we measure its stability relative to the moving coordinate
system and because perturbations which grow in one coordinate system may
not grow in another, It is easy to see how this can come about. Con-
sider a monotonic traveling wave solution u(t,x) = ¢(x-cgt) of

u, = f(uxx,ux,u) . (4.1)
which is our equation in the original stationary coordinate system. For
any c¢ < cp we see that u(t,x) > ¢(-=) as t > + o with x - ct fixed,
and for any c¢ > cy we see that u(t,x) - ¢(+») as t ++ = with x-ct
fixed. Thus in a moving coordinate system the behavior of a solution as

t > ® at a fixed point in the coordinate system in general depends on the

speed of the coordinate system.

4.16 Application to the final state problem, In this section we will com-

ment on some applications of the hair-trigger effect to determining the
final state. Specifically, if u(t,x) is any solution of
B, = f(uxx,ux,u) + cu {(4.2)
then we would like to determine u(+4=,x) din terms of u{(0,x).
Suppose that u(t,x) = ¢(x) dis any bounded non-monotonic steady
state solution of (4.2) with at least two relative extrema. Let x = Xe

be any point where an extrema of ¢(x) occurs. In proving the hair-trig-

ger effect we constructed the initial condition

¢ (x) x < x_(e)
u_(E,O,x) = ¢(X.E) X__(E’) i X < X+(E)
¢ (x) x, () < x

for all e > 0 sufficiently small. Here ¢(x,e) 1s either the steady
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state solution of (4.2) with
¢(x_,e) = ¢(xe) + € ¢x(xe,€) = ¢X(xe) =0
or is an 0(eg) translate of this steady state. We then showed that if
u(t,x) is any solution of (4.2) whose initial condition wu(0,x) is smooth

and satisfies

u(e,0,x) < u(0,x) 5»¢€ for all x and any € > 0 sufficiently small,

(4.80)
then

u(t,x) - ¢§ as t > + o at each x
Here ¢€ is the least constant steady state solution of (4.2) satisfying
¢p(x) < ¢§ for all x.
This is illustrated in Figure (15) below. We see thal ény solution u(t,x)
of (4.2) whose initial condition is at least as large as u(e,0,x) (which
is ¢(x) with a small additional positive bulge) and is no larger than

+ +
$p, must go to the constant steady state g as t > + =,

f‘UE¢-g

A A

D774

x_(e) x X+(€)

- - .-
- - - - - -

N
7
X

Figure (15): Any solution u(t,x) whose initiai condi;ion u(0,x) is in the
shaded region must evolve into ¢33 that is, u(+m,x)5¢$.

Now in proving theorem (4.6) we always considered e slightly

positive and we proved a positive hair-trigger effect as depicted in Figure
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(15). However, we could have equally chosen & to be slightly negative
and proved a negative halr-trigger effect. Specifically, we could have used
the initial condition wu(e,0,x) defined as before but with e slightly
negative. This would lead to wu(e,0,x) being essentially ¢(x) with a
small negative bulge ¢(x,e) - ¢(x) of finite extent. We would then find

that if wu(t,x) 1is any solution of (4.2) whose initial condition u(0,x)

satisfies

¢6_§ u(0,x) < u(e,0,x) for all x and for any - € > 0 sufficiently small,
(4.81)

then

u(t,x) - ¢6 as t » 4+ « at each x .
Here ¢a is the largest constant steady state solution of (4.2) which satis-
fies
$p < $(x) for all x

This negative hair-trigger effect is illustrated in Figure (16) below.

27

NN

x_(e) x x (g) X

Figure (16): Any solution u(t,x) whose initial condition u(0,x) is iE the
shaded region will evolve into ¢p; that is, u(+e,x) = ¢p
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Between (4.80) and (4.81) we have found the final steady state
u(+~,x) for a large class of initial conditions. Further, we can start
with any non-monotonic steady state which has at least two extrema and
even some constant steady states (as discussed in the preceding section).
Moreover, we can use any relative extremum of a non-monotonic steady state
for x = X - By using all of the extrema of all these steady states, we
can find the final steady states u(4»,x) for a very large class of ini-
tial conditions. Thus we have a potentially very powerful method for find-
ing the final steady states as a function of the initial conditions. We
will not follow this further except to introduce the following cautionary

remark. The hair-trigger effect can be used to find u{+m,x), but it does

not show how u(t,x) approaches u(+e,x). Thus u(+e,x) = lim u(t,x)
Tt
(x fixed) may not be the same as u(4+e,x) = lim u(t,x-ct) (x-ct fixed).
toto

That is, u(+~,x) may not be the same in different moving coordinate systems.

4.17 Instability in higher spatial dimensions. In this section we assume

that there are two or more spatial variables. We will discuss the direct
extension of the instability results to traveling plane waves. Actually we
will only deal with two spatial variables (; £ (x,¥)), but the generali-
zation to three or more spatial variables will be readily apparent.

Suppose that u(t,g) = ¢(§¥zt) is a traveling plane wave solu-
tion of

u = f(u ,

4.82
£ - uxy’uyy’ux’uy’u) s ( )

and suppose that equation (4.82) is parabolic (i.e., satisfies hypothesis
(03). Let us change to a coordinate system which is oriented so that ¢
depends only on x ({where ; = (x,y)). Let us also transform to a coor-

-
dinate system which travels with velocity c¢ = (CX,O). Interns of this
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coordinate system, our equation is now
u, = f(uxx’uxy’uyy’ux’uy’u) + e U, (4.83)
and our traveling plane wave solution is now the steady plane wave
>
u(t,x) = u(t,x,y) = ¢(x) . (4.84)

Thus, u(t,z) = u(t,x,y) = ¢(x) solves

u = f(u ,0,0,u ,0,u) + cu = %(u
XX X X X

,U ,u) + cu . (4.85)
t X X X

XX
Clearly if we restrict the initial perturbations u(O,;) - ¢(x) to depend
only on x, then u(t,x,y) = u(t,x) is identical to the solution of
- E(uxx,ux,u) + e u. - (4.86)
In particular, if the plane wave solution ¢(x) is non-monotonic then the
solution u(t,x,y) = ¢$(x) of (4.83) has exactly the instability described
in theorem (4.6) where the unstable initial perturbations do not depend on
y. Moreover, let u(e,0,x,y) = u(e,0,x) be the initial conditions used
in the proof of theorem (4.6). It was shown that
u(e,t,x,y) = u(e,t,x) ~ ¢g as t >+ «» for all x ,
where ¢y dis the smallest singular point of equation (4.86) with
$(x) < ¢p for all x
Let us now use the maximum principle for the full equation (4.83). We
immediately find that if u(t,;) z u(t,x,y) 1is any solution of (4.83)
whose initial condition u(0,x,y) satisfies
u(e,0,x) < u(0,x,y) < ¢g for all x and all vy, (4.87)
then
u(t,x,y) > ¢p as t > + « at each x and y .
Thus the plane wave solution ¢(x) 1s unstable to all initial perturbations

u(0,§) - ¢(;) which satisfy (4.87) for any € > 0 sufficiently small.

Note that this instability result for plane waves is weaker than
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the corresponding result for a single spatial dimension. This is because
a finite x-interval in one dimension is a finite spatial region, while a
finite x-interval in two or more dimensions is an infinite spatial region.
Thus, in more than a single spatial dimension we have not shown that non-
monotonic traveling plane waves are unstable to arbitrarily small perturba-

tions which are non-zero only in a finite spatial region.

4.18 Stability/instability of steady solutions in finite domains. In this

section we consider the following finite spatial domain-boundary value pro-
blem
U = f(uxx,ux,u) B<x <1 ‘ (4.88a)
u(t,x) = A at x=20 u(t,x) =B at x =1 . (4.88b)
Specifically, we will determine the stability or instability of steady state
solutions wu(t,x) = ¢(x) of problem (4.88) for all major cases. Since no
essentially new ideas are involved in this section, we will be extremely
brief.
First we define stability and instability appropriately for this
problem. Suppose that u(t,x) = ¢(x) 1s a solution of problem (4.88).
Then if for every € > 0 there is a § > 0 such that all solutions u(t,x)
of problem (4.88) satisfy
|lu(t,x) - ¢(x)| < e for all x in (0,1), all t > 0 (4.89)
whenever their initial conditions u(0,x) are in Hi and satisfy
iu(O,x) - ¢(x)| < & for all x in (0,1)
(4.90)
u(0,0) = A u(0,1) =B ,
we define ¢(x) to be a stable solution of (4.88). 1If a solution u(t,x)
= ¢(x) 1is not stable we define it to be unstable. Note that these defini-

tions of stability and instability are exactly equivalent to the definitions
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of Cw—stability and Cw—instability over the finite interval [0,1}, at
least when w(x) > 1 and w(x) is bounded over {[0,1] .

For our first case let us assume that ¢(x) is strictly mono-
tonic; that is, assume that ¢'(x) # 0 for all 0 < x < 1. To be definite,
let us assume that ¢(x) is increasing since the analysis when ¢(x) is
decreasing is very similar. Now for any h > 0 sufficiently small

¢ (x~h) < ¢(x) < ¢(x+h) for all x in [0,1]
Let u(t,x) be any solution of problem (4.88) whose initial condition
u(0,x) dis in Hi and satisfies
¢ (x-h) < u(0,x) < ¢(x+h) for all x in [0,1]
(4.91)
u(0,0) = A u(0,1) = B

Since

I
b=

d(-h) < u(t,0) = A < ¢§(+h) for all t > 0

$(1-h) < u(t,l) =

|
=<}

< ¢ (1+h) for all t > 0 ,
and since (4.91) is satisfied, the maximum principle implies that
¢(x-h) < u(t,x) < ¢(xth) for all x in [0,1], for all‘t'i o .

Because h > 0 1is as small as we please we see that u{(t,x) = ¢{x) i1is a
stable solution of problem (4.88). Similarly, if ¢(x) is strictly de-
creasing then u(t,x) = ¢(x) is stable.

For our second case let us assume that ¢(x) has at least two re-
lative extrema in (0,1). A close examination of the proof of lemma (4.7)
shows that since at least two extrema are in (0,1), we can find a ¢(x,g),
a x (g), and a x+(e) which satisfy conditions (a), (b), (c), (d), and
(e) of lemma (4.7) and such that

0 < x (e) < x+(e) <1

for all e in (0,ey) for some ¢€g > 0 sufficiently small. Even though
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10,1] is a finite domain, we can use the boundary conditions (4.88b) and
the maximum principle to prove a hair-trigger effect. Specifically, if

u(e,t,x) 1is defined as the solution of problem (4.88) with the initial

condition
¢ (x) 0 < x < x (e)
u(e,0,x) = ¢ ¢(x,¢e) x (e) < x j_x+(e) 5
¢ (x) x+(e) <x <1

then a proof extremely similar to the one used in proving theorem (4.6)
shows that u(e,t,x) is non-decreasing in t and that
u(e,+=,x) = ¢m(€,x) 0 <x <1

Here, ¢m(€,x) is the least steady state solution of problem (4.88) with

ule,U,x) < ¢m(e,x) for all x in [O,l]
To finish the proof of instability, define ¢(x,e) as the solution of

£ 28,08) = 0
with the initial condition
&(xe,s) = ¢(xe) + € $x(xe,e) = ¢x(xe) =0 ,

where x = X, is any point in (0,1) at which ¢(x) has an extremum. We
note that because of the uniform continuity of $(x,e) and @x(x,e) in €
(for x in EL]J), the phase plane alternatives imply that ¢ (x+h,€)
intersects ¢(x) at least once in (0,1) for all e in (0,e)) and all
h in (~hg,hp) for some ej > 0 and hy > 0 sufficiently small. Hence

¢m(e,x) is not &(x+h,e) for any € in (0,eg) and h din (-hg,hg).

Thus,
1im max (¢m(e,x) - ¢(x)) # 0 .
e>0 0<x<1
Therefore u(t,x) = ¢(x) 1is unstable whenever it has at least two relative

extrema in (0,1).
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For our last major case let us assume that ¢(x) has exactly one

relative extremum in (0,1). As before, define ¢(x,e) as the solution of
f(¢xx’¢x’¢) = 0

with initial condition

¢(xe,e) = ¢(xe) + € ¢x(xe,e) = ¢X(xe) =0 .
Here x = X, is the single point in (0,1) where ¢(x) has a maximum.
Define

o (x) = 2= Gx,e) |
> T Qe Pix.e e=0 °?

and note that

¢ (x) + he (x) = %E— ¢ (x+he, €) le=o -
Suppose that there is an h such that

¢E(x) + h¢x(x) >0 for all x in [0,1) .
Then, for all e in (0,ey) (for some €gp > 0 sufficiently small)

@(x—he,—e)_ﬁ $(x) < é(x+he,e) for all x in o, .
Similar to the case where ¢(x) was strictly monotonic, we can now use
¢ (x~he,-€), @(x+he,e), and the maximum principle to conclude that
u(t,x) = ¢(x) is stable for this case.
Suppose now that there is an h such that
¢€(x) + h¢x(x) < 0 for some x in (O,xe) and for some x in (xe,l)

Then for all e din (0,egp) (for some g sufficiently small) the curves
$(x+h€,e) and ¢(x) intersect at least once in (O,Xe) and at least once
in (xe,l). We can now define ¢(x,e) = $(x+h€,€), define x (e) as the
largest x in (O,xe) such that ¢(x_(s),a) = ¢(x (e)), and define x+(€)
as the smallest x in (xe,l) such that ¢(x+(e),e) = ¢(x+(e)). Similar
to the case where ¢(x) has two relative extrema in (0,1), we can use

these ¢(x,e), x (&), and x+(s) to prove a hair-trigger effect. From this
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hair-trigger effect we can then deduce that u(t,x) = ¢(x) is unstable for
this case.
We now summarize the stability results of this section. Suppose
that we are given the following boundary value problem:
u, = f(uxx,ux,u) 0<x =<l (4.88a)
u{t,x) = A at x =0 u(t,x) =B at x=1 |, (4.88b)
where A and B are given constants. Suppose that u(t,x) = ¢(x) is a
steady solution of this problem. Then:
(1) 4f ¢'(x) # 0 for all x in [0, then u(t,x) = ¢(x) is
stable;
(2) 41if ¢(x) has at least two relative extrema in the interval
0 <x <1 then u(t,x) = ¢(x) dis unstable;
(3) 1if ¢(x) has exactly one extrema in the interval 0 < x < 1 and
if for some h, ¢€(x) + h¢x(x) >0 for all x in {0,1J, then u(t,x)
= ¢(x) 1is stable; and finally .
(4) 41if ¢(x) has exactly one extrema in the interval 0 < x < 1

(which occurs at x = xe) and if for some h, ¢€(x) + h¢x(x) < 0 for

d(x) is

i}

some x in (O,Xe) and for some x in (xe,l), then u(t,x)
unstable.

This completes our stability analysis of steady solutions of pro-
blem (4.88). Note that we have treated the major cases of problem (4.88),
but that we have not treated some minor cases here. Note also that similar
techniques can be used to establish the stability of steady solutions of
problems like
u = f(uxx,ux,u) 0<x <+ (4.92a)

u(t,x) = A at x=0 . (4.92b)
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We will not pursue this line of inquiry however.
In the next section we conclude this chapter with some general

remarks.

4.19 Some general comments. In this final section of Chapter IV we make

some general comments about the material in this chapter.

First, the main purpose of this chapter is to provide the means
to determine the precise stability of any traveling wave solution
u(t,x) = ¢(x-ct) of

u, = f(uxx,ux,u) (4.1)

by inspection. Together, theorems (4.5) and (4.6) come very close to do-
ing precisely this. In fact, in Chapter V we will show that the stability
results for monotone waves contained in theorem (4.5) are sharp in almost
all cases, including all non-accidental cases where ¢(~») and ¢(+») are
both order one singular points. Also, for non-monotonic waves ¢ (x—~ct)

"at

we can hardly expect better results than theorem (4.6) gives for the
least two relative extrema" case. However, for some monotone waves
¢ (x-ct) which either decay to a node at ¢(-«) or to a node at ¢(+=) at
the accidental rate and for some monotone waves ¢(x-ct) where either
¢(~-=) or ¢(+») dis not a first order singular point, some improvements in
the stability results might be possible. Also, one may be able to improve
on the results in theorem (4.6) for the single relative extremum type of
traveling wave solutions u(t,x) = ¢(x-ct). Although we will not pursue
this topic, let us note that in proving theorem (4.6) we always used
solutions of

u - f(u ,u ,u) -~ cu =0 (4.2)
xx’ x
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for our upper and lower functions. Since we never took advantage of the

differential inequalities allowed by the maximum principle, perhaps we

could improve the results in theorem (4.6) by utilizing these allowed
inequalities.

A major advantage of theorems (4.5) and (4.6) is that these
theorems are generic. That is, the stability results contained in these
theorems depend only on a few easily determined characteristics of the
traveling wave solutions. The ease of the application of these results and
the sharpness of these results make theorems (4.5) and (4.6) very useful.

A disadvantage of the stability theory developed in this chapter
is the difficulty of the application of the stability cfiteria developed
in section (4.14) for the indeterminate case. However, if someone shows
that the stability case never occurs (which is not an unreasonable conjec-—
ture) then this disadvantage would immediately disappear.

The stability results for monotonic traveling waves in a single
spatial dimension have direct extensions to monotonic traveling plane waves
in multiple spatial dimensions, as was discussed in section (4.11). How-
ever, the direct extension of the instability results of theorem (4.6) to
non-monotonic traveling plane waves in higher spatial dimensions signifi-
cantly weakens the instability results, as is discussed in section (4.17).
Specifically, in multiple spatial dimensions we no 1ongér have instability
for arbitrarily small perturbations of finite extent. One could plausibly
conjecture that these plane waves are indeed unstable to arbitrarily small
perturbations of finite extent. Illowever the lack of a phase plane for
solutions of
¢

£(p byygrbyrbs®) + e b F e p =0

xx’'xy’yy y'y
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means that the proof of any such conjecture would differ significantly
from the proof used for the one spatial dimension case. We will meet this
same problem again in Chapter VI and in Chapter VII where we extend the
stability results to some equations containing integrals and to some sys-—
tems of equations. There the lack of a phase plane prevents us from ex-
tending the instability results to these new classes of equations.

In section (4.18) we used our techniques to find the stability/
instability of steady solutions of the boundary value problem

u, = f(uxx,ux,u) 0<x<1
u(t,x) = A at x =0 u(t,x) = B at x=1 .
We also noted in section (4.18) that we could extend these stability/insta-
bility results to the steady state solutions of the one-sided boundary
value problem
u, = f(uxx,ux,u) 0 <x <+ =
u(t,x) = A at x=0 .

However there is no readily apparent extension of these results to the
stability of steady state solutions of mixed boundary condition problems
such as

u, = f(uxx,ux,u) 0<x<1

gl(u,ux) =0 at x=0 gz(u,ux) =0 at x=1 .
Apparently finding such an extension involves using at least one new idea.

This completes this chapter on the stability and instability of
traveling wave solutions of

u, = f(uxx,ux,u) ¢ (4.1)

In the next chapter we will explore a related topic. Namely we will explore

the connection between the mean wavespeed of a solution u(t,x) of (4.1)

and its initial condition u(0,x)



-208-

Chapter V
MEAN WAVESPEED AND THE INITIAL CONDITIONS

In this chapter we again deal almost exclusively with parabolic
equations which contain only one dependent variable, contain only one inde-
pendent variable, and contain no integrals. Throughout this chapter we
will assume that the hypotheses 12 (smoothness of the equation), H3
(parabolicity of the equation), and H4 (existence of solutions to the ini-
tial value problems) are satisfied. We also assume a very large M > 0
has been chosen, and as in the previous chapter we therefore work with the
resulting specific equation

u = f(uX >U 1) £, >0 (5.1)

X X
) -

In this chapter we will establish connections between the mean

t
where f(uxx,ux,u) = Fél)([ﬁ

wavespeed of solutions wu(t,x) of (5.1) and their initial conditions
u(0,x). This topic was discussed in section (2.4), and thus much of the
material in this present chapter is duplicated there. Specifically, in this
chapter we consider equations of the form (5.1) which admit non-constant
bounded monotonic solutions

u(t,x) = $(x-ct,c) (5.2)
for some values of ¢ (which may be zero), since these are the non-trivial
stable traveling wave solutions of (5.1). We will first determine when the
existence of a monotonic solution ¢(x-ct,c) of (5.1) at a particular
wavespeed c¢ 1implies the existence or non-existence of other nearby travel-
ing wave solutions, both at the same and at slightly different wavespeeds
c. We then use these existence results and the maximum principle to estab-

1ish the connection between the mean wavespeed of solutions u(t,x) of (5.1)
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and their initial conditions u(0,x).

In order to see how such mean wavespeed/initial condition results
can be obtained, we consider a motivating example. Let u(t,x) = ¢{(x-ct,c)
be an increasing traveling wave solution of (5.1). Then for any hy,
hp, > 0 (no matter how large) ¢(x-ct + hy, c¢) and ¢(x-ct - hy, ¢) are also
solutions. The maximum principle therefore implies that all solutioms
u(t,x) of (5.1) with initial conditions u(0,x) satisfying

¢ (x=h;,c) < u(0,x) < ¢(x+hy,c) for all x , (5.2)
must also satisfy

¢ (x=hy-ct,c) < u(t,x) < ¢$(x+hy-ct,c) for all x, all t >0 .
(5.3)

This is illustrated in Figure (1) below, where the implication of the maxi-
mum principle is that all solutions of (5.1) which are initially in the
shaded region will remain in the shaded region for all t > 0. It is ap-

parent from Figure (1) that relation (5.3) implies that wu(t,x) travels

¢(i—ct+h2,c)‘;

\\\\\"

: NN

Figure (1)

—¢(x-ct-hy,c)

with mean wavespeed ¢ in an appropriate sense. Moreover, h; and hy can
be arbitrarily large. Thus the main restrictions on which initial conditions
can be bounded as in (5.2) are asymptotic in nature. Furthermore, it is

clear that stronger results can be obtained by using the upper and lower
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functions constructed in section (4.5). Finally, when the existence of
dp(x-ct,c) dmplies the existence of ¢(x-c't,c') for some c' mnear c,
it is clear that similar results can be obtained showing which u(t,x)
travel with mean wavespeed c'.

In this chapter we will consider only the four main types of
monotonic traveling waves. Specifically, we will consider only the S+ S,
N+ S, S»> N, and N+ N types of monotonic traveling waves ¢ (x—ct,c)
where ¢(-»,c) and ¢ (+>,c) are first order singular points. Although
similar results can be easily obtained for any specific example when
$(-=) and/or ¢(+») are higher order singular points, to retain simplicity
we will develop the general theory only for first ordér singular points.
We will consider the S - S, N> S, and N> N cases in sections (5.1),
(5.2), and (5.3), respectively. TFor each case, assuming a single monotone
traveling wave solution exists we will first determine the existence or non-
existence of nearby monotonic waves traveling with the same and nearly the
same wavespeeds. We will then use the maximum principle and the upper and
lower functions conétructed in section (4.5) to obtain the mean wavespeed/
initial condition results. In the other three sections in this chapter,
sections (5.4) through (5.6), we will briefly discuss related topics.
Specifically, in section (5.4) we will use the wavespeed results to show the
sharpness of the stability results contained in theorem (4.5). In section
(5.5) we will discuss the extension of the wavespeed/initial condition
results to traveling plane waves in multiple spatial dimensions. Finally,
we end this chapter in section (5.6) with some concluding remarks.

We now begin this program with the simplest case, namely the case

where u(t,x) = é(x-cgt,cq) 1is a monotonic S + S type traveling wave
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solution of (5.1).

5.1 Saddle-saddle case. In this section, we assume that u(t,x) = ¢(x,cy)

exists and i1s a bounded monotonic steady state solution of

u, = f(uxx,ux,u) + cu (5.4)

at wavespeed c¢ = cg. We also assume that ¢ = ¢(-»,cq)

1]
-
<
I}
o
®
=
o,

¢ = ¢(+=,cq) = ¢,, v = 0 are both first order saddle points of the system

+’

¢, = v
. (5.5)

0

f(Vx,v,¢) + cv

at ¢ = cp. In addition we will assume that ¢(x,c0) is increasing, since
the analysis for ¢(x,cyg) decreasing is very similar. In this section we
will first show that for any value of ¢ (including cg), there can be
only one such solution ¢(x,c) modulo translations in x. We then will
establish the mean wavespeed/initial condition result for this case. As
a by-product of this last result, we will find that there can be only one
speed c¢y at which a solution ¢(x,cg) (with the above properties) can
exist for this case. To complete this section, we will then summarize these
results in two theorems. We now do this.

Let ¢(x,cy) be the monotonic stready state solution of equation
(5.4) at ¢ = ¢y with all the properties assumed above. With these as-
sumptions, the phase plane of (5.5) at ¢ = c¢g must look like the illus-
tration below. Since ¢ =¢_, v=0 and ¢ = ¢+, v = 0 are saddle points
at ¢ = ¢, they are saddle points for all values of c¢. Hence for each
c there exists functions Y (x,c) and “;(x,c) such that every steady
state solution ¢(x,c) of equation (5.4) with ¢(-=,c) = ¢_ and with
¢X(x,c) > 0 for all x sufficiently small, must be

¢(x,c) = ¥_(x+h,c) for all x
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i

=
/)’ /,/ .

for some comnstant h. Similarly, if u(t,x) = ¢(x,c) solves equation
(5.4), if ¢(4+=,c) = ¢y and if ¢x(x,c) > 0 for all x sufficiently
large, then

¢(x,c) = W+(x+h,c) for all x

for some constant h. Therefore, for any c¢ there is at most one steady

state solution ¢(x,c) of (5.4) (modulo translations in x) which is

both monotonic and goes from ¢(-=,c) = $_ to ¢ (+o,c) = ¢+. One sees
that finding a value of cg for c¢ at which such a monotonic steady state
solution exists, is equivalent to finding a cg £for which

w_(x+h,c0) = ¥+(x,c0) for all x and for some h .
Even though this can only occur accidentally at any given wavespeed cg,
the existence of a S -+ § wave for some wavespeed ¢ cannot be regarded
as an accidental occurrence.

We now establish the mean wavespeed/initial condition result for
this case. Consider equation (5.4) at ¢ = 0, specifically

u, = f(uxx,ux,u) . (5.6)

This is the given equation in terms of the original stationary coordinate
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system. Let ¢(x,cq) be the steady state solution of (5.4) at c = ¢y
as described above: ¢(-»,cq) = ¢ _; $p(te,cp) = ¢+; ¢ =¢ , v=0 and
¢ = ¢+, v = 0 both saddle points; and ¢(x,cy) monotonically increasing
in x. Then u(t,x) = ¢(x-cyt,cy) solves equation (5.6). We now utilize
the upper and lower functions of lemma (4.4) and the maximum principle.
This immediately shows that if u(t,x) and u(t,x) are any of the upper
and lower functions given in lemma (4.4), then
u(0,x) < u(0,x%) i_GIO,X) for all x (5.7)
implies that
u(t,x-cot) < u(t,x) § E(t,x—c0t) for all x and all t > 0 (5.8)
for any solution u(t,x) of (5.6). Substituting for 'E and u from
lemma (4.4), we find that for any q(0) > O small enough and for any h;
and hp, all solutions u(t,x) of (5.6) whose initial conditions u(0,x)
are in Hi and satisfy
¢ (x~hy,cq) - q(0) < u(0,x) < ¢(x+hp,cq) + q(0) for all x (5.9)
must satisfy
¢ (x—cgt=h1=-kq(0),cq) - q(t) < u(t,x) < ¢$(x-cgtthy+kq(0),cy) + q(t)
for all x, all t >0 . (5.10)
Here q(t) 1is defined by equation (4.20) and thus q(t) - 0 monotonically
as t » + ». We illustrate the bounds of relation (5.10) on wu(t,x) in
Figure (2) below. From this illustration it is clear that whenever u(0,x)
satisfies (5.9) for any q(0) > 0 small enough and some h; and h,, then
the resulting bounds of (5.10) on the solution u(t,x) dimply that u(t,x)

travels with mean wavespeed c¢; 1in an appropriate sense.

Thus when u(0,x) can be bounded as in (5.9) we have found that

the resulting solution u(t,x) must travel with mean wavespeed cg. To
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J~¢(X—c0t+h2+Kq(0),co)+q(t)
, | \\\\\\\\\\ Tesco

<o

4> § \\h2+ hy+ ZK(O)\
2a(0)] \\\\\\\\\\\\\

T g (x-gt-h;-xq (0) ,cq)-q(t)

Figure (2): Since both of the functions bounding the shaded region move
with speed cj, since g(t)+0 as t+te, and since u(t,x) must
be in the shaded region for all £>0, u(t,x) must travel with
mean wavespeed Cg.

obtain the mean wavespeed/initial condition result, we need only identify

the class of initial conditions which can be bounded by (5.9). We note

that (5.9) is satisfied for a particular q(0) > 0 and some h; and h,

sufficiently large whenever the conditions

4 =o' s ul0x) < ¢+ + o for all x
¢_ - a' <u(0,x) < b_ + a' for all x < - xg (5.11)
iy = a' < u(0,x) < 9, + a' for all x > xg

are satisfied for any x3 > 0 and any o' in (0,q(0)). Therefore,
whenever u(0,x) dis in Hi and satisfies conditions (5.11) for any suf-
ficiently small o' > 0 and for any x5 > 0, then the resulting solution
u(t,x) of
= f su 5.6
u (uXX u_ u) (5.6)

travels with mean wavespeed c¢j. This immediately implies that there is at

most one speed cp for which a monotone solution ¢(x-cpt,cpy) (with
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¢(-=,cg) = ¢ and ¢(+=,cq) = %_) exists.

In summary we have shown the following:

Theorem 5.1 (S8 - §): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that wu(t,x) = ¢(x-cpt,cp) is a bounded monotonic traveling wave
(or steady state) solution of
u, = f(uxx,ux,u) 5 (5.6)

and also that ¢ = ¢(-»,cg), v =0 and ¢ = ¢(+»,cg), v = 0 are both
order one saddle points of system (5.5) at ¢ = cg. Then if u(t,x) =

¢ (x~&t,&) 1is any other monotonic traveling wave (or steady state) solu-
tion of (5.6) with ¢(-=,&) = ¢(-=,c,) and §(+»,&) = ¢(+»,cq), then

¢ (%-8t,8) = ¢(x-cot+h,cq) for all x, all t >0

for some h. 1In particular & = cg.

Theorem 5.2 (S -+ S): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that u(t,x) = ¢(x-cygt,cy) 1is a monotonic bounded traveling wave

(or steady state) solution of (5.6), and also suppose that ¢ = ¢(==,cq)

1

24¢_, v=0 and ¢ = ¢p(+=,cq) B ¥ 0 are both order one saddle
points of system (5.5) at ¢ = cg. Then if wu(t,x) is any solution of
(5.6) whose initial condition u(0,x) dis in Hi and satisfies

p_ = a' <u(0,x) < ¢$_+ ol for all x < - Xg

¢+ - o' < u(0,x) < ¢+ + a' for all = > + xj
min{¢ ,¢+} - a' < u(0,x) < max{¢_,¢+} + a' for all x

for any a' > 0 small enough and any xgp > 0, then u(t,x) travels with

mean wavespeed cg.

Note that we have established these theorems only in the case where

¢(x,cq) is increasing in x. However, a similar analysis to the one pre-
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sented will establish these two theorems for the case of ¢(x,cy) de-
creasing.

Roughly speaking, theorem 5.1 (S + 8) shows that if ¢ _and ¢+
are both order one saddle points, then there is at most one wavespeed
¢ = ¢y at which a monotonic traveling wave u(t,x) = ¢(x-cgt,cq) with
p(-=,cp) = ¢_ and ¢(+e,cg) = ¢+ can exist. Furthermore, if such a
traveling wave exists, all other similar traveling waves u(t,x) =
&(x—cut,co) are translates of ¢(x-cot,cp). Finally, from theorem 5.2
(S + S) we see that if such a traveling wave exists, then any solution
u(t,x) of equation (5.6) must travel with mean wavespeed c; whenever
its initial conditions remotely resemble the traveling wave, as is illus-

trated in Figure (3) below.

X=-X u=max{¢_,¢+}+a‘
u |
u=max{¢_,¢+}—a'
[u=min{¢_ »9, Ha'

Figure (3): 1If u(0,x) is contained in any region like the one shaded above,
then u(t,x) must move with mean wavespeed cg. (See theorem
5.2 (8+58)).

This completes the S + S case. We continue in the next section

by analyzing the N > S case.
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5.2 Node-saddle case. In this section we assume that u(t,x) = ¢(x,cq)

exists and is a bounded monotonic steady state solution of

u, - f(uxx,ux,u) + cu_ (5.4)

at ¢ = cg. We also assume that ¢ = ¢(~=,cp) $ , v=0 is a first
order node and that ¢ = ¢(+=,cy) = ¢+, v =0 is a first order saddle
point of the system

p =v
& (5.5)

f(vx,v,¢) + cv 0

at ¢ = cg. Finally in this section we will assume that ¢(x,cy) 1is in-

creasing, since the analysis for ¢(x,cy) decreasing proceeds similarly.
In this section we will first use a continuity argument to show

that if ¢(x,cy) decays to the node ¢  at the usual asymptotic rate as

X » - o, then for each wavespeed c¢' 1in at least a small range (c;,cp)

about c¢p there is a monotonic steady state solution ¢(x,c') of (5.4)

at ¢ = c¢'. Furthermore, we will find that ¢(-=,c') = ¢p(-»,cy) = $_, that

¢ (+e,ct) ¢ (+o,cqg) = ¢+, and that ¢(x,c') -decays to ¢ _ at the usual
rate as x + - «, As a by-product of this analysis, we will find that at
any given wavespeed c¢ there is at most one such solution of (5.4) (modu-
lo translations in x). Then, by examining how the continuity argument can
fail for ¢ sufficiently far from ¢y, we will be able to identify c;
and cp. We will then summarize these results in a theorem. Finally, we
will quote and prove the mean wavespeed/initial value results for this case.
We now carry out this program.

Let ¢(x,cy) be the monotonic steady state solution of (5.4) at

¢ = ¢y with all of the properties assumed above. Then, the phase plane

of system (5.5) at ¢ = ¢y must look like
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¢ = ¢_ ¢ =0,
Since ¢ = ¢+, v = 0 dis a saddle point at ¢ = cg, it is a saddle point
at each value of c¢. Similarly, since ¢ = ¢, v=0 1is an unstable node
at c¢c = € o it is an unstable node at each value of ¢ i-cmax’ where

c is
max

C oo = = 2/£1(0,0,9 )£3(0,0,6 ) - £5(0,0,¢_ ) .

We now show that the existence of the monotonic steady state
¢(x,cg) of (5.4) at ¢ = cg 1implies that similar monotonic steady state
solutions of (5.4) exist for all ¢ 1 W with ¢ near enough to cg.
Since ¢ = ¢+ is a first order saddle point of system (5.5) for each ¢,
at each ¢ there isza solution Y(x,c) of (5.5) such that Y¥(x,c) =+ ¢+
as x -+ + o« and such that Y(x,c) is increasing for all x sufficiently

large. Moreover, there can only be one such solution (modulo translations

in x). Thus, for each ¢ Iy - there is at most one steady state solu-

tion ¢(x,c) of (5.4) (modulo translations in x) which is monotone and

which goes from ¢(-=,c) = ¢_ to ¢(+=2,c) = ¢,. (Of course, for c > c

+ max

the point ¢ = ¢ , v = 0 1is no longer an unstable node, and so no such solu-

tions can exist for e¢ > c¢_ ).
max

By using the translational freedom in x for each ¢ in the

9
definition of Y¥(x,c), we can make ¥(x,c) and v(x,c) = EE'W(X,C) both
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be continuously differentiable in e¢. (This is an implication of Chapter
13 reference [6], for example). Moreover, by further translation of
¥(x,c), we can in addition set Y(x,cy) = ¢(x,cq).

Let ¢+ < ¢+ be selected such that £3(0,0,¢) < 0 for all ¢
in [$+,¢+], and let x+(c) be defined by

Y(x,c) 3_$+ for all x zvx+(c) c
From the phase plane of system (5.5), one realizes that
v(x,c) = %; Y(x,ec) > 0 for all x 3_x+(c) s

Let ¢€;,8 with ¢€; < cg < &, be selected, and let X, be defined by

x, = max~{x+(c)} .
C1=c<Cp

We have observed from the phase plane that Y(x,c) is monotone for all
X 3‘x+ when ¢ is in (&;,82). Suppose a constant x_ with x_ < X,
is selected. No matter how small x_ is, the uniform continuity of
v(x,c) in ¢ when x is restricted to the interval [x~,x+jl shows that
for some 51 in [61,c0) and some 52 in (cg,&], the function
v(x,c) > 0 for all x in [x_,x+] when ¢ is in (31,32). Hence we
now know that for any X_ (no matter how small) there is a El < ¢y
and a 32 > c¢g such that Y¥(x,c) dis monotonic for all x > x_ when c
is in (&;,&5).

Now let us define §_ > ¢_ such that £3(0,0,4¢) > 0 for all ¢
in [¢_,¢_]. By selecting x_ sufficiently small and selecting 51 < ¢g
and 52 > ¢p sufficiently near c¢, the uniform continuity of ¥Y(x,c¢) in

¢ for x in [x_,x4] shows that VY(x,c) = ¢ at exactly one point

X = x_(c) with x = x (c) in [x_,x+]. We will now show for all Qicmax’

c sufficiently near ¢4, that ¥ (x,c) decays to ¢_  monotonically for

(=]

X <« X_(e¢) and decays to ¢_ at the usual rate as x =+ - .
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Consider the phase plane of system (5.5) near ¢ = ¢ at any

value of ¢ < ¢ » as is illustrated in Figure (4) below. Let us examine

max
the phase plane trajectories of all solutions of system (5.5) which de-
crease from ¢ = @_ to ¢ =¢_ at the usual rate as x - - . We see
that all these trajectories must cross the ¢ = $_ line at a positive

point v which is smaller than the point v = va(c) at which the acci-
dental solution (i.e. the solution which decays to ¢ = ¢_ at the acci-

dental rate as x » - =) crosses the ¢ = § line. Conversely, as illus-

trated in Figure (4), any solution of (5.5) which crosses the ¢ = §

line at a positive point v < va(c) must decrease monotonically from

b = @_ to ¢ = ¢_ at the usual rate as x decreases to -,

Now we have already shown that whenever ¢ 1is in (31,52) then

¥(x,c) 1is monotonic for x > x (e¢) and VY(+=,c) = L where

N Ly accidental
2] solution
v=v (Clpmmmmmmmae
a
£
-
< b
A
S/ Ly
N
v=0 FTI 3T 3 ¥ ¥ ¥ ¥ ¥ ¥ E
o= ¢_ ¢ = _
Figure (4): Phase plane of system (5.5) near ¢=¢_ and at any c<c IE

the phase plane trajectory of ¥(x,c) intersects the $§%_ line
at any positive point v below the crossing point v (c) of the
trajectory of the solution which decays to ¢_ at the acciden-
tal rate, then ¥(x,c) must decay monotonically to ¢_. at the
usual rate as x+—«. This 1s because the phase plane directors
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on the v=0 line point downward for ¢ in (¢ _,$_7, and because
the horizontal components of the phase plane directors on the
¢=¢_ line are positive for v>O0.

x_(c) has been defined as the point x at which

¥(x_(c),c) = §_ .

Thus, to conclude that Y(x,c') 1is a monotonic steady state solution of

(5.4) at ¢ =c¢' (with Y(-=,c") = ¢ , with Y¥(+e,c') = ¢ , and with

+

Y(x,c') decaying to ¢_ at the usual rate as x + - =) for any c¢' in

(él ’52) n (—ou’c

], we now need only to show that
max

Wz (e"),e") = %;—V(x,c')lx=x gy ™ v (e .

However, at ¢ = c¢cg we have that v(x_(cg),cp) < va(co). Moreover,

v(x_(c),c) and va(c} are continuous in ¢ for ¢ f-cmax' Thus for

some c¢; in [&;,cg) and some ¢, in (cg,&p], both sufficiently near
¢ , we can conclude that v(x_(c'),c") < va(c‘) for all c¢' in

(c1,¢2) N\ (==,c

], as is needed.
max

Thus, for some ¢y < cg and some cp > c¢g we have shown by a

continuity argument that for each ¢ in (cj,cp) r\ (-m,cmax], there is a

traveling wave solution u(t,x) = ¥(x-ct,c) of
- f(uxx,ux,u) (5.6)
which is monotone, which decays to Y¥(-=,c) = ¢_ at the usual rate, and

which has V¥ (+w,c) = ¢,. Furthermore, we have shown that at each wave-

+
speed ¢ there is at most one such traveling wave solution (modulo trans-
lations in x) and also have shown that the functions ¥(x,c) and-%; ¥{x;c)
are continuously differentiable in c. We now identify the extre-
mal wavespeeds c¢; and cj.

Let us examine the continuity arguments used to show the exis-

tence of the traveling wave solutions u(t,x) = ¥(x-ct,c) of (5.6).
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Suppose that ¢ > - «», so that monotonic traveling wave solutions
¢(x-ct,c) (with the properties described above) exist for ¢ > cj, but
not for ¢ < ¢y. From the countinuity arguments we see that either
(1) there is a monotone solution u(t,x) = ¥(x-c;t,c;) which decays
to Y¥(-~,c;) = ¢_ at the accidental rate as x - - = and which has

Y(+»,c1) = ¢ or

+’
(2) the phase plane trajectory of system (5.5) at ¢ = c¢; which
corresponds to the monotone wave ¥Y(x,c) intersects (but does not cross)

the v = 0 axis at at least one point ¢g in (¢_,9 ), as illustrated in

Figure (5) below.

Y(x,c+28c)
¢/’w x,c1t+8c)

Vx,c1)

bp ¢*¢+

Figure (5): ©Phase plane trajectories of ¢=¥(x,c), v=§m ¥(x,c) at c=cj and
at two values of ¢ slightly larger than c). As ¢ decreases
to ¢1, the phase plane trajectory which emanates from the
saddle point ¢=¢ 6, v=0 approaches the line v=0 at a point
¢=¢g, and when c=¢; the trajectory intersects (but does not
cross) the line v=0 at ¢=¢y5. Thus ¢=¢g, v=0 must be a singu-
lar point. Note that the phase plane trajectories of
¥(x,c1+26c), ¥(x,c1+6c¢), and ¥(x,c;) belong to the distinct
phase planes of system (5.5) at c=c;+28, e=cy+dc, and c=c,,
respectively.

The first possibility (of Y(x,c) decaying at the accidental

rate as x » - «) 1is straightforward, and so we consider the second
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possibility. Therefore, suppose that the second possibility occcurs, and
suppose further that the phase plane trajectory at ¢ = ¢ intersects (but

does not cross) the v = 0 line at only a single point ¢ = ¢y, v = 0.

Since the phase plane trajectory intersects the line v =0 at ¢ o

and does not cross this line, ¢ = ¢y, v = 0 1is a singular point. More-
over, as illustrated in Figure (5), a trajectory both enters and leaves
this singular point. Thus ¢ = ¢5, v = 0 is either an ordinary first or-
der saddle point or is a higher order singular point. Clearly in this

case as ¢ goes to cj, ¥(x,c) evolves into two separate monotonic travel-
ing waves: a traveling wave u(t,x) = ¥;(x-c;t,c;) which has V¥;(-=,c;) =
¢_ and has ¥i(+2,c3) = ¢y, and a traveling wave u(t,x) = ¥o(x-cjt,cy)
which has V¥3(-»,cy) = ¢; and has VYo(+o,c;) = ¢+. Also, typically the
intermediate singular point ¢ = ¢g, v = 0 1is an ordinary saddle point,
although it can also be a higher order singular point. Thus in this case,
as the wavespeed ¢ decreases to c¢; the single monotonic traveling wave
¢ (x-ct,c) bifurcates into two distinct monotonic traveling waves.

It could happen that as ¢ approaches c¢;, the trajectory of
¥(x,c) dntersects the v = 0 axis simultaneously at several different
singular points ¢§1), ¢32), ai% % ¢gm) in (¢_,¢+) when ¢ = c;. This
is illustrated in Figure (6) below. Again, each of the singular points
¢Si) is either an ordinary first order saddle point or is a higher order
singular point. Clearly as ¢ goes to c; the traveling wave u(t,x) =
y(x-ct,c) evolves into the m + 1 monotonic traveling waves u(t,x) =

i-1
¥ (x-c t,ey), i =1,...m. Moreover, V¥, (-w,c;) = ¢§ . J—

(mt+1)

wi(+w,c1) = ¢§i) where ¢§0) and ¢ have been defined as ¢_ and

¢+. Thus in this case, at ¢ = c¢; the single monotonic traveling wave
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u(t,x) = ¥(x~-ct,c) bifurcates into the (m + 1) monotonic traveling

waves u(t,x) = ?l(x-clt,cl).

-
i L R e e

(2) (3)

= $ 4 = 60 =9,

5
1
-
=
I
-
o
b=

Figure (6): At c=c;, the phase plane trajectory emanating from the saddle
point a ¢=¢ may intersect (but not cross) the v=0 line at
several different singular points before reaching ¢=¢ .
In summary, so far we have found that if c¢; > - @, then either
¥(x,c3) decays to ¢_ at the accidental rate as x > - «® or that at
¢ = ¢) there are two or more monotonic waves corresponding to the single
monotonic wave ¥(x,c) for c¢ > c¢y. Similarly, if ¢, < Coax then either
¥(x,c,) 1s a monotonic traveling wave with VY¥(+w,cp) = ¢+ and which de-~
cays to ¢_ at the accidental rate as x + - @, or ¥(x,c) utilizes in-
termediate singular points to bifurcate into two or more monotonic travel-
ing waves as ¢ goes to cp. Thus at both ¢ =¢; and c¢ = cp there
can be two possible types of behavior of ¥(x,c). We now will use the max-
imum principle and find which behavior occurs at c¢ = c¢; and which occurs
at ¢ = cjp.
We first consider ¢ = c,. We will now show that ¥(x,c) cannot

evolve into two or more monotonic traveling waves as ¢ goes to cCjo.
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Indeed, suppose that it does. Let these monotonic traveling wave solutions

be u(t,x) = Wi(x—czt,cz), where

32 6589 = wy(-m,e0) < ¥y (.00 = 4§D = ¥y (mm,cp) < ¥alde,cp)
2
= ¢S ) = Wa(—w,CQ) < e = ¢Sm) = Wm+1(wm,C2) < Wm+l(+M,c2)
= o™ =g,

Consider the last monotonic traveling wave (with speed c¢j) u(t,x) =

Wm+1(xﬁc2t,c2), and let d(t,x) = Y(x-&ét,&) be any of the monotonic

traveling waves with & in (cj,cp). We recall that Y¥(-«,&) = ¢  and

S

that Wm+l(—w,c2) = > ¢_. Moreover, the asymptotic decay of ¥(x,&)

to the saddle point is given by

ek(?:)x

by

Y{x,&) ~ a(g)

v by as x >+ ® ,
and that of Wm+1(x,c2) is given by

k(eco)x
Wm+1(x,c2) = ¢+ - a(eo)e (c2) as x > + o |
where a(@&) and a(cy) are some positive constants, and where k(&) and

k(co) are given by

-(£2(0,0,¢ )+e)-V(£2(0,0,¢ )+c)*~4£1(0,0,4,)£5(0,0,¢,)
2f1(010r¢+)

k(e) =

~

at ¢ =¢& and ¢ = cp. Note that c¢cp > & dimplies that 1k(g2)| >
]k(E)J. This means that for some h sufficiently large
Wm+l(x+h,c2) > ¥(x,&) for all x .
But the maximum principle now implies that
?m+1(x—c2t+h,c2) > Y(x-&t,&) for all x, all t >0 .
This is illustrated in the sketch below, and is clearly nonsense since
c, > E. Thus as ¢ goes to c¢p, the monotonic wave Y(x,c) cannot

evolve into two or more monotonic traveling waves. Therefore, if

co < B then u(t,x) = ¥(x-cot,cy) exists and is a monotonic traveling



~-226~

wave with VY (+=,c5)

¢ and which decays to ¢_  at the accidental rate

+

ag X > — w,

€2

u=¢ém)

% o
¢m+1(h Czt,Cz)

u=¢

Figure (7): The maximum principle requires Y (x~cpt+h,cy)>¥(x-&t,8) for
all x and all t>0. However ¥ x~cot+h,cy) travels with
wavespeed cs, which is largermt%an the wavespeed & of
Y(x-&t,&). Thus this is impossible.

Now let us briefly comsider c¢ = c¢j;. For this case we first as-
sume that u(t,x) = ¥(x-cyt,c;) exists with Y(+w,cy) = ¢+ and with
¥(x,cy) decaying at the accidental rate to ¢_ as x -+ - ., Similar to
the preceding case, we can use the maximum principle to establish a con-
tradiction. Thus as ¢ goes to ¢, ¥Y(x,¢) must evolve into two or more
monotonic traveling waves. Moreover, let u(t,x) = ¥;(x-c;t,c;) be the
monotonic wave at ¢ = ¢; with Y¥;(+>®,cy) = ¢81) and with V¥;(-=,c;) = ¢_.
Then if V¥;(x-cit,c;) decayed to ¢_ at the accidental rate as x + - =,
we could use the maximum principle to establish a contradiction similar
to the contradiction in the ¢ = c, case. Thus, V¥;(x,c;) must decay
to ¢_  at the usual rate as x + - =,

In particular, note that if there are no singular points ¢ = ¢g,

v =20 with ¢_< ¢p < ¢+, then ¥(x,c) cannot bifurcate into two or more
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traveling waves because each of these traveling waves requires an inter-

mediate singular point. Thus c¢; = - « in this case. That is, when
£(0,0,¢) = 0 has no solutions for ¢_< ¢ < ¢, , then c; = - = and
hence monotonic traveling waves u(t,x) = ¥Y(x-ct,c) with Y(+o,c) = N

and with Y(x,c) decaying to ¢_ at the usual rate as x + - @ exist

for all c < cj.

We now summarize these results in the following theorem.

Theorem 5.1 (N -+ §): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that wu(t,x) = ¢(x-cyt,cg) 1s a bounded monotonic traveling wave
(or steady state when cg = 0) solution of

ut = f(uxx,ux,u) 5 (5.6)
Suppose further that ¢ = ¢(-»,cg) = ¢, v=20 1is an ordinary first order
node and that ¢ = ¢(+e,cp) = ¢+, v = 0 1is an ordinary first order saddle

point of the system

b =
x (5.5)

f(Vx,v,¢) + cv =0
at ¢ = cg. Finally suppose that ¢(x,cy) decays to ¢_ at the usual
rate as x > — . Then there is a c¢; and a c¢p with

=il 2 ogn S gy < ep

such that for each c¢' in (cl,cz)f\ (-=,c ] there exists a ¢ (x,c')

max
satisfying the following conditions:
(1) ¢x,ec"), ¢x(x,c') are continuously differentiable in c',
(2) ¢(x,c') is monotonic in x,
(3) u(t,x) = ¢(x-c't,c') solves equation (5.6),
and

(4) ¢(-=,c') = ¢_ and ¢(=,c') = b,



~-228-
(5) ¢(x,c') decays to ¢_  at the usual rate as x » - =,

Also, if ¢;(x,c') and ¢,(x,c') are any functions satisfying (2), (3) and
(4) at some c', then ¢;(xth,c"') = ¢,(x,c') for all x for some h at
that value of e'.

Moreover, if ¢, < - then there is a traveling wave solution
u(t,x) = ¢(x~cot,cs) of (5.6) which satisfies conditions (2), (3), and
(4), but which decays to ¢_ at the accidental rate as x + - o,

Similarly, if ¢; > - «» then there are one or more values of

¢ 62, 458, o ¥

(1) min{¢_,¢+} = ¢§0) < ¢Sl) < ¢52) & oy & ¢Sm) " ¢Sm+1) "

such that

max{¢_,¢ 1};

(2) for each i=1,...,m ¢ = ¢Si), v = 0 is a singular point,
and if it is first order then it is a saddle point of system (5.5) at
c=c;;

(3) if ¢(x,cy) is increasing then there are (m + 1) traveling
wave solutions ui(t,x) = ¢i(x—c1t,c1) of (5.6) such that

(a) ¢i(x,;1) is increasing in x,

® ¢y (=re) = 457" and ¢, Chmyep) = 9§D, and

(e) ¢1(x,cy) decays to ¢_  at the usual rate as x > - o«
(4) if ¢(x,cy) 1is decreasing then there are (m + 1) traveling

wave solutions ui(t,x) = <&(x-c1t,c1) of (5.6) such that

(a) ¢i(x,c1) is decreasing in x,

(m+2-1) (mrt1-1)
bg

(b) ¢, (==,cy) = and ¢, (t=,cy) = ¢
(c¢) ¢3(x,cy) decays to ¢_ at the usual rate as x » - o,

In particular, if £(0,0,¢) # 0 for all ¢ din (b_»4,), then c; = - .

Thus, roughly speaking the above theorem shows that if
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u(t,x) = ¢(x-cgt) 1is a N + S type monotonic wave which decays to the
node at the usual rate as x * - =, then similar monotonic N - S type
traveling wave solutions u(t,x) = ¢(x-ct,c) exist for all wavespeeds
¢ > ¢cg until ¢ reaches e (where the unstable node changes to an
unstable spiral point) or until ¢ reaches a point where u(t,x) =
¢ (x-ct,c) decays to the node at the accidental rate as x + - «, Simi-
larly, monotonic N =+ S type traveling wave solutions u(t,x) = ¢(x-ct,c)
exist for all wavespeeds c < cg wuntil ¢ reaches - « or until c¢
reaches a point where u(t,x) = ¢(x-ct,c) bifurcates into at least two

distinct traveling waves. In the following sketch, a typical evolution of

¢(x,c) into two distinct waves as c¢ goes to c; is depicted.

¢=¢+
¢(K,C1+.3)
¢=¢_
"//,_ﬁ =9
“p(x,cq+.2)
o=6_ /
¢=¢+
¢(X,C1+.l)
o=¢_

¢2(xii;3;?/’”* ¢=¢+
¢=do $=dg
lp=¢ 4/(’/1(:;(:1)
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When c¢; > - =, the general situation can be complicated.
However the typical situation is very simple when c¢; > — « . Typically
one does not expect the phase plane trajectory at ¢ = ¢| to intersect
the v = 0 line at more than one singular point ¢ = ¢g in (¢_,¢+).
Moreover, one also expects that the singular point ¢ = ¢g, v = 0 will
be first order, and thus it must be a saddle point. Therefore the typical
situation is the following. The fastest monotonic traveling wave solition
u(t,x) = ¢(x-cot,cy) with ¢(-=,cs) = ¢ and with ¢(+=,cp) = ¢+
either occurs at ¢y < - S and has ¢(x,cy) decaying to ¢_  at the ac-
cidental rate as x -+ - ©, or occurs at c¢p = ¢ where the accidental

max

and usual decay rates are nearly equal. For c¢; < ¢ < cy, the N> §

type monotonic traveling wave solutions u(t,x) = ¢(x-ct,c) all have
¢ (+o,c) = ¢+ and all decay to ¢_ at the usual decay rate as x =+ - =,
This either occurs for all ¢ < ¢» (i.e. e; = - ®), or at some

¢} > - « the monotoniec N =+ S type solution u(t,x) = ¢(x-ct,c) bifur-
cates (typically) into another N - § type monotonic traveling wave
u(t,x) = ¢1(x—c1t,ci) and into a S + S type monotonic traveling wave
u(t,x) = ¢p(x-cjt,c;). Moreover, ¢;(x,c;) decays to ¢_ at the usual
rate as x + - » and ¢y (+*,cy) = ¢g. Also, ¢y(->,cy) = ¢y and

$po(+2,c1) = ¢, . Here ¢, is some saddle point in (¢_,¢+)-

jrd
Clearly we can apply the theorem to the secondary N+ S8 type

monotonic traveling wave u(t,x) = ¢;(x-c;t,c;). This shows that N + S

type monotonic traveling waves similar to ¢;(x,c;) exist for all c

near enough c¢;. 1In particular, these monotonic wayes exist for all

c < ¢; wuntil a bifurcation of this N » 5 type monotonic traveling wave

intoa N->S, S+ S pair of monotonic traveling waves occurs. Note that

these bifurcations cannot continue indefinitely. There must be a last
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bifurcation because there is only a finite number of saddle points in the
interval (¢_,¢+)-
We now utilize the results in theorem 5.1 (N -+ 8), the upper
and lower functions constructed in lemma (4.3), and the maximum principle.

Together these yield the following mean wavespeed/initial condition re-

sult:

Theorem 5.2 (N + 8): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that u(t,x) = ¢(x-cpt,cg) is a bounded monotonic solution of

u, = f(uxx,ux,u) f1 >0 (5.6)

that ¢ = ¢(-»,cq)

i
-

_s v =0 1is a first order node and that
¢ = ¢(to,cq) = ¢+, v =0 41is a first order saddle point of system (5.5)
at ¢ = cp. Finally suppose that ¢(x,cg) decays to ¢_  at the usual

rate as x > — o,

Define the positive exponential decay constants A(c) by

"'(fZ(O,Oqu__)‘I'C)" /(fg (_OaO: ¢_)+C)2——l}f1(0,0,\1)”)]33(0,0,(1)_)
2£1(0,0,4_)

A(e) = (5.12)

for all ¢ 2 Cax’ and define c¢; and c3 as in the previcus theorem.
Furthermore, define &, Z min{cz,cmax}.
Then if wu(t,x) 1is any solution of (5.6) whose initial condi-
tion u(0,x) dis in Hi and satisfies
¢+ - qp < u(0,x) §_¢+ + qq¢ for all x > xy for any x; , (5.13)
¢_ < u(0,x) < ¢+ + qp for all x if ¢(x,cy) is increasing in x, and (5.14%)
¢+ - qg < u{0,x) < ¢_ for all x if ¢(x,cg) is decreasing x, (5.15)
then we can conclude the following:
(1) if for any ¢ in (cy,8p)  there is an o > 0 such that

e M) % 400,%) - ¢ | >a for all x <0 (5.16)
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and if qg > 0 1is sufficiently small, then u(t,x) cannot travel with
mean wavespeed larger than c;
(2) if for any ¢ in (c1,85) there is a B > 0 such that
e*l(c)xlu(o,x) - ¢“| < B for all x < 0 (5.17)
and if qg > 0 is sufficiently small, then u(t,x) cannot travel with
mean wavespeed smaller than ¢
(3) if for any c¢ in (c1,85) there is an o >0 and a B > 0
such that
a < e_k(c)xlu(o,x) - ¢ | <B for all x <0 (5.18)
and if qp > 0 dis sufficiently small, then u(t,x) travels with mean

wavespeed c¢ and has finite dispersion; and

(4) 4if for any c¢ in (¢1,6)
e(—A(6)+u)x

lim [u(0,x) - ¢ | =0 for all u >0 |,
K>—00 -

(5.19)
1lim e(_x(c)—U)xlu(O,x) - ¢_| =+= for all p >0 , and
X+~

if qg » 0 is sufficiently small, then u(t,x) travels with mean wave-

speed ¢ but may not have finite dispersion.

The meaning of the phrase "has finite dispersion' will be estab-
lished in the proof.
The basic situation is the following. We have assumed the ex-

istence of a single monotonic wave u(t,x) = ¢(x-cgt,cg) with ¢(~-=,cp)

¢ being a node and ¢(+x,cy) = ¢+ being a saddle point. Theorem

5.1 (N - S) then shows that for a range (c;,&;) of wavespeeds c there
are similar monotonic N + 8§ type traveling waves u(t,x) = ¢(x-ct,c),
which all have ¢(-=,c) = ¢ and ¢(+»,c) = ¢+. For each of these N - S

type waves, lemma (4.3) yields upper and lower functions u(t,x-ct,c)
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and u(t,x-ct,c) of equation (5.6), like the ones shown in the following
sketch. The use of the maximum prinicple and these upper and lower func-

tions will yield theorem (5.2) (N - S).

JQ;(t,x—ct+h,c)

\\\\\\ ki

u=¢ x

‘\ig(t,x—ct—h,c)

Roughly speaking, theorem 5.2 (N -» S) supposes that u(0,x)

is any smooth function which is in a region like the one shaded below.

X=X

Tt then concludes that if u(0,x) decays to the node ¢_ exponentially as x>—,
then the mean wavespeed of the solution wu(t,x) of (5.6) is determined

only by the exponential decay constant.
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Proof of theorem (5.2) (N » §): We prove the theorem only for the case

where ¢(x,cg) is increasing in x, and note that the proof when ¢(x,cq)
is decreasing is very similar. Since u(t,x) = ¢(x-cgt,cg) is a bounded
monotonic N + § type solution of (5.6), we can apply theorem 5.1 (N - S)
and conclude the existence of similar monotonic traveling waves u(t,x) =

¢ (x-ct,c) for c¢; < c < &,.

We now recall the upper and lower functions constructed in lem-
ma (4.3). Namely, for each ¢ in (cj,cp) there is a family of upper
functions G(t,x—ct,c,q(O),hO) and a family of lower functions
u(t,x-ct,c,q(0),hy) of the equation
u, = f(uxx,ux,u) . ' (5.6)

t

For the case at hand these upper and lower functiomns are

1

u(t,x-ct,e,q(0),hg) = ¢(x-ct+h(t,e),c) + q(t,e)[d(x-ct+h(t,c),e) - ¢_1(5.20)

g(t,X-Ct,C,q(O),ho) ¢(X—Ct“h(t,C),C) = q(t,c){}(x—ct—h(t,c),c) - ¢_] >

(5.21)
where h(t,c) and q(t,c) are

~-s(c)t -g(e)t

h(t,c) = q(0)k(c)(l-e

q(0)e (5.22)

) + h0 Q(t,C)
for some positive constants k(c) and s(c¢) (which in general depend on c),
where hgy 1is arbitrary, and where q(0) > 0 is any sufficiently small
constant. Moreover, since the dependence of u, - f(uxx,ux,u) - cu  on

¢ 1is continuous and since ¢(x,c), ¢x(x,c), and hence ¢xx(x,c) are al-
so continuous in ¢, from the proof of lemma (4.3) we see that both k(e)
and s(c) can be taken to be continuous in ¢ for ¢; < c < cp. Also

the proof shows that for c¢; < ¢ < ¢y there is a continuous qmax(c) >0
such that u(t,x-ct,c,q(0),h;) and u(t,x-ct,c,q(0),hy) are upper and

lower functions of equation (5.6) for all 0 < q(0) < qmax(c} at each ¢

in (cl,cz).
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To prove part (1), we note that when relations (5.13), (5.14),
(5.15), and (5.16) are satisfied, then we can bound u(0,x) by

u(0,x,c,q(0),hg) = ¢(x-hg,c) - q(0)-[9(x-hg,c) - ¢_1]
(5.23)
< u(0,x) < ¢, + q(0)-[9,-¢_7
for any q(0) > q0[¢+-¢_]-1 by taking hy sufficiently large. This is
because theorem 5.1 (N + S§) shows that ¢(x,c) decays to ¢ at the

usual rate as x - - «; 1i.e., that

A(e)x & O(E(A(c)+6)x)

¢p(x,¢) ~ ¢_ + ae as X > -

for some positive a and 8§, where A(c) is given by (5.12). We note

that since is a saddle point, if we define n = % f3(0,0,¢+) then

¢+
n < 0. Moreover,

u(e,x) = ¢, + q(0)-Tp, ~¢_le (5.24)
is an x-independent upper function of equation (5.6) for all t > 0 when-
ever q(0) > 0 is sufficiently small. Since q(0) can be taken as any
constant larger than qO[}+—¢_j—l, by taking qy sufficiently small we
can take q(0) to be small enough so that u(t,x-ct,c,q(0),hg) and
E{t,x) are a lower and upper function (respectively) of equation (5.6).
The maximum principle implies that

u(t,x-ct,c,q(0),hy) < u(t,x) < G(t,x) for all x and all t > 0

This yields

¢ (x-ct-hp-q(0)k(c),c) - q(t,c) [b -¢_7] (5.25)

u(t,x) §_¢++q(0)ent[¢+~¢_j for all x, all t > 0 ,

i A

where q(t,c) is given in (5.22). This relation is illustrated in Figure
(8) below, and we see that u(t,x) cannot travel with mean wavespeed lar-

ger than c.
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. ¢ +q(0)e (9,-¢_)

\\\\\\\\\\\\\\\ s

g ¢ (X—‘Ct-h()—q(o) K (C) ,c)—q(t sC) (¢+—¢_)

u=¢

|

Figure (8): Since q(O)ent+0 and q(t,c)>0 as t++=, the fact that u(t,x)
remains in the shaded area for all t>0 implies that it cannot
travel with mean wavespeed larger than c.
Part (2) is proved in a manner very similar to part (1). In
fact we find that
¢ < u(t,x) j_¢(x—ct+h0+q(0)m(c),c)+q(t,c)[¢+~¢“] for all x, all t > 0 .
This relationship is illustrated in Figure (9) below, and we see that
u(t,x) cannot travel with mean wavespeed smaller than c.
To prove part (3), we note that when u(0,x) satisfies (5.13),
(5.14), (5.15), and (5.18), then we can bound u(0,x) by
¢ (x~hy,c)-q(0) [¢(x~hp,c)-¢_ ] < u(0,x) < ¢(xt+h;,c)+q(0)[$(x+hy,c)-¢ 7] (5.26)
for all x, for any q(0) > qo[}+f¢_]—1 by taking h; and h, large
enough. For 0 < gq(0) < qmax(c), relation (5.26) bounds u(0,x) by the
upper and lower functions ;(O,X,c,q(O),hl) and u(0,x,c,q(0),hp). Thus
when gqg < [¢+—¢;]qmax(c), (5.25) bounds u(0,x) by upper and lower func-

tions at t = 0 and so the maximum principle implies that

u(t,x-ct,c,q(0),hy) < u(t,x) jfE(t,x—ct,c,q(O),hl)
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¢ (x-ct+hgtq(0)k(c),e)+q(t,e) (¢, =¢_)

. . } o

u=¢ _ —_

Figure (9): Since q(t,c)»0 as t++», the fact that u(t,x) remains in the
shaded area for all t>0 implies that it cannot have mean
wavespeed smaller than c.

We thus conclude that
¢(X~ct-h2-q(0)s<(c),c)—q(t,c)[¢+-¢_] < u(t,x) (5.27)
i_¢(x~ct+h1+q(0)K(c),c)+q(t,c)[¢+—¢;] for all x, all
t>0 .

This relationship is illustrated in Figure (10). We conclude that u(t,x)
travels with mean wavespeed ¢ and has finite dispersion. The phase "has
finite dispersion' is used here and in the statement of the theorem to
mean precisely that the distance between the lower and upper functions
which bound wu(t,x) din (5.27) is limited to no more than h; + hy +
2q(0)+k(c), which is finite. This is in contrast to part (4), where we
will only be able to show that the distance between these functions grows
no faster than o(t).

To prove part (4) we will need to adopt a slightly different

strategy. Instead of bounding the initial condition u(0,x) by a single
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¢ (x—ct+h+q(0)k(c) ,e)+q(t,e) (¢, =9 _)

{

sV

tsq)(x—ct—hz—q(O)K(c),c)—q(t,C)(¢+'¢_)

Figure (10): Since q(t,c)>0 as t->+~, and since u(t,x) remains in the
siiaded region for all t>0, u(t,x) must travel with mean
wavespeed c. Furthermore, the distance between the two
bounding curves remains constant.

upper function behind it and a single lower function in front of it, we

will need to bound u(0,x) by a series of upper and lower functions each

moving with different velocities. 1In fact, we will bound u(0,x) in
front by one lower function u(t,x-&t,&,q(0),hg) for each & in an in-
terval (c,ct+8c) for some ©6c. We will find that the nearer ¢§ 1is to

c, the farther to the right we will need to place the lower function

u(t,x-2t,&,q(0),hy) dinitially in order to bound u(0,x) below. This is

shown in the sketch omn the next page. Since any one of these lower func-
tions travels slower than the lower functions to its left and faster than
the lower functions to its right, as time progresses the lower function
is overtaken by all the faster lower functions to its left and it over-

takes the slower lower functions to its right. Similar behavior occurs for

the upper functions bounding u(0,x) on its left. To prove part (4), at
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each time t > 0 we will select the lower function in fromt of u(t,x)
which is farthest to the left, and the upper function behind u(t,x) which
is farthest to the right. We will show that the distance between these
optimal bounding functions grows no faster than ©(t) and that they are
centered at ct + o (t).

Assume that u(0,x) satisfies (5.13), (5.14), (5.153), and (5.19)
where we will select the ¢y » 0 later. Let uy > 0 be so small that

Aeqp) < Aale) = ug < A(e) < A(e) + ug < A(&)
Let E} and cp bé the wavespeeds in (c;,&2) defined by
Aey) = Ale) = ng >, Aleg) = Ale) + ug

Now select an xp > 0 so large that

TJ—(O,X““XU,E,CI(O) »0)

{v

explA(&)x} for all x < 0 and
(5.28)
u(0,x-xg,¢,q(0),0)

| A

exp{A(&)x} for all x < 0

hold for all & in [c¢;,c, | and for all q(0) in (0,9 ___ 1, where

max
amax is given by
Ypax ~ ﬁﬁzégﬁé{qmax(é)} *
Select § as the constant % qmax, and choose the constant ¢y 1in expres-

sions (5.13), (5.14), and (5.15) to be * qmax' Finally select an x; SO
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large that both

u(0,x-x9-%1,¢,4,0) < u(0,x) f_ako,x+x0+xl,5,q,0) for all x > 0, and
(5.29)
u(0,x) j_GIO,xU+x1,E,ﬁ,O) for all x (5.30)

hold for all & in [E&,Eﬁ}
We define Etu) and c(u) by
Ac()) = Ae) = u , Ale(u)) = Ale) +u for 0 < u < uy -
For each u din 0 < u < pyg we will find an h(u) > 0 and an h(u) > O
such that

u(0,x-xg-x1,c(1),4,h(1)) < u(0,x) f_EkO,x+x0+x1,EIu),q,Etu)) for all x<0 .
(5.31)
Since (5.29) and (5.30) also hold we will then know that (5.31) holds for

all x, and we will be able to then apply the maximum principle. We now
find these h(p) and hp).

Define s(x),-ggx), and s(x) for x <0 by

s(x) = (u(0,x)~¢ )eux(c)x , s(x) = max {s(¥%)} , and
- x<%<0
s(x) = min {s(®)} .
x<¥x<0

Note that s(x) < s(x) f_gkx), that s(x) 1is non-decreasing in x and
that gkx) is non-increasing in x. Define

ﬁ(u) = max {gkx)eux} for 0 < u <
—o<x<0

and define

h(p) = max{0, - log M(u)} .

X—UO
Similarly, define

M(u) = min {§ﬁx)enux}
~00<x<()

for 0 < u = Ko

and

h(w) = maxf0, 5= log H(W)
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We note that with these definitions,
u(0,x-xp-x1,c(1),q4,h(u)) < u(0,x)

j_510,x+x0+x1,zku),q,ﬂku)) for all x, all 0 < pu < py

We thus can apply the maximum principle for each u. This

yields
u(t,x-c(W)t-xp-x1,c(M),d,h(1)) < u(t,x) (5.33)

j_Gzt,x-z(t)+x0+x1,zkp),q,ﬁ(u))for all x, all t > 0 ,

all 0 < u < ug .

Let the maximum of the quantity «k(&) (which appears in the definitions
of the upper and lower functions) be

e

K = max k(&)
cipscscy

and define the constant « by

o = xptx+{k .
From the bounds (5.33) on u(t,x), we conclude that
¢(x-g(u)t-h(u)ﬂz,g(u))-q(t,g(u))[¢+—¢__]i u(t,x) : (5.34)

j_¢(x—€ku)t+ﬂ(u)+a,zfu))+q(t,Eku))[¢+—¢_] for all x, all
t>0

holds for all 0 < p < up. (See (5.20), (5.21), and (5.22)).
The lower fumctions are roughly positioned at
a(t,u) = c(u)t + h(n) + a
and the upper functions are roughly positioned at
b(t,p) = c()t - h(y) - a .
At any given time t, we now roughly minimize a(t,u) and maximize
b(t,u) over u. Clearly at each t > 0 these functions have a unique
minimum and maximum (respectively) in O < p < yy since c¢(u) decreases

with 1y, since c(u) increases with y, and since Eku) and h(u) are
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both non-increasing in u. We now assume that worst case: E{u) and h(u)

both go to + ® as u -+ 0. We first handle a(t,u). We have

a(t,u) = ct + (c(u)-c)t - log s(&(u))exp{-ux ()} + «

1
A"‘}JU
where X(u) 1is the least value of x < 0 at which s(x)e“"lx is at its

minimum. To minimize a(t,p), we select p = u(t) such that %(u) is

the largest value in {&(u): 0 < n < pg} satisfying

de(0)
du £

Furthermore, define T(t) as the value of t for which equality holds

#(u) < - -}*im (c(u)-a)t ~ = (A-ug) (5:35)

in (5.35). Utilizing (5.35), we have

a(t,u(t)) < ct - log s(- iﬁm (c(W)=-e)T()) + a ,

A—UO
and by our hypotheses this implies
a(t,u(t)) < ct +o0(T(t)) as t >+ «
Thus, choose a sequence tj, ts,... such that
t =T(t) , t ++ = as n > + «w ,
n n n
We have a(t,u(t)) non-decreasing in t and also have
t < + "
a(e_,u(t )) < et +o(t)
Similarly, we can show that there is a roughly optimal u = {i(t) for the
lower functions, that h(t,{i(t)) is non-increasing in t, and that for a
sequence t = En with En - ® as n -+
9 = o B o =
b(t ,u(t )) > et = ole) .
Thus we conclude that u(t,x) must travel with mean wavespeed c¢. Note
however that the separation between the upper and lower functions in

general grows as -~ o(t), and so we cannot conclude that u(t,x) has

finite dispersion. This establishes part (4) of the theorem.

Thus, we see that if the initial condition u(0,x) decays to

¢_ exponentially with exponential rate constant A(e), and if
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Aley) < Ale) < A(Ep)
then u(t,x) has mean wavespeed c¢. One naturally wonders how u(t,x)
behaves when u(0,x) decays to $_ at an asymptotically slower rate

A
than e (Cl)x.

We will briefly consider this question for the two cases
of ¢} =~ and gz » - ®,

Suppose that c¢; = - «, and so monotone traveling wave solu-
tions u(t,x) = ¢(x-ct,c) with ¢(-»=,c) = ¢_ and ¢ (+o,c) = ¢+ exist
for all c¢ < &,. Note that A(c) + 0 as ¢ + - «». Therefore, consider
any initial condition u(0,x) which satisfies conditions (5.13), (5.14),
and (5.15) of theorem 5.2 (N -+ S), and which also decays to ¢_ alge-
braically (rather than exponentially). Then for any ¢ (no matter how
small) we can conclude from theorem 5.2 (N =+ S) that u(t,x) cannot
travel with a mean wavespeed larger than c. We do not conclude that
u(t,x) "travels to the left with infinite wavespeed" however. We simply
say that in any coordinate system

t' =t x' = x~ct ,
u(t,x) satisfies
u(t,x) - ¢+ as t' ++ e« at any fixed x' .
Thus u(t,x) does not behave very much like a 'wave' in this case.

Suppose now that ¢, > - ® ., We know from theorem 5.1 (N + §)
that at ¢ = ¢; the monotonic traveling wave u(t,x) = ¢(x-ct,c) bifur-
cates into at least two traveling waves. We consider only the typical case:
at wavespeed ¢ = c; the traveling wave u(t,x) = ¢ (x-ct,c) splits
exactly into the monotonic waves
u(t,x) = ¢;(x-ct,c) c] ce ey (5.36)

u(t,x) = ¢2(X'"Cltgcl) s (5.37)
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where $1{(=-=,c) = ¢ by (+,c) = ¢g
¢y (==,c1) = ¢p $pp(to,c;) = il
and where ¢ = ¢5, v = 0 dis an order one saddle point. Note that in
(5.36), if the smallest wavespeed c¢] 1is not = « then it is a segond-
ary bifurcation point.
Assume now that u(0,x) satisfies the conditions (5.13), (5.14),
and (5.15) of theorem 5.2 (N » S) for some sufficiently small qg > O,

that a < [u(0,x) - ¢_|eH(Ix

< f for all x <0
for some positive o and B, and that XA(c]) < A(c) < A(ec;). We will show
that u(t,x) evolves into two pieces: a piece bounded by ¢_ and ¢g
which travels with a mean wavespeed no faster than c.< ¢}, and a piece
bounded by ¢y and ¢+ which travels with mean wavespeed c¢;. Indeed,
from lemmas (4.3) and (4.4) we use

(1) the upper functions ';z(t,xﬂclt,cl,qo,ho) corresponding to the
S »S wave u(t,x) = ¢o(x-cit,cy) ,

(2) the lower functioms u,(t,x-ct,c,qg,hy) corresponding to the
secondary N - S ﬁéve u(t,x) = ¢;(x-ct,c), and

(3) the lower functions u(t,x-ét,&,qqp,hp(¢)) corresponding to the
primary N -+ S wave u(t,x) = ¢(x-¢t,&) with & > ¢;. By selecting
hg, hy, and hy (&) sufficiently large, we can bound the initial condition
u(0,x) by

u; (0,%x,¢,qy,h;) < u(0,x) i_Eé(O,x,cl,qo,hU) for all x, and

u(0,x,8,qg,hp(8)) < u(0,x) for all x, all & in (cy1,C2) .

Thus, the maximum principle yields

uj (t,x-ct,c,qqg,hy) < u(t,x) f_aé(t,x—clt,cl,qo,ho) for all x, all t > O,
and

u(t,x-8t,&,qg,h2(&)) < u(t,x) for all x, all & » 0, all B&(eys83)=
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This is illustrated in Figure (11) below for large t. We conclude that

u(t,x) evolves into two stacked waves.

'raz(t,x-clt,(ll)

u=¢+
u=¢0 } "'(f-‘—l_C)t 'L1=¢:0
u
(t,x-ct,c)
U*¢_§ - u(t,x-&t,&) -

Figure (11): Since ¢>cy can be taken as close to ¢y as we like, since
c1>c, and since u(t,x) must remain in the shaded region for
all t>0, we conclude that it evolves into two stacked waves.

This completes our presentation of the N - § case. We will
not present the S -+ N case since it is very similar to the N + S case
that we have discussed. (In fact, substitution of - x for x will
convert the S -+ N case into a N + S case). We therefore will continue

in the next section by considering the N + N case.

5.3 Node-node case. 1In this section we treat the final case. Specifi-

cally, we assume that u(t,x) = ¢(x,cg) 1is a bounded monotonic steady
state solution of

u, = f(uXX,ux,u) -+ cu_ (5.38)

¢ 4, v=0 and

at ¢ = cg. We also assume that ¢ = ¢(-=,cq)

¢ = ¢(+e,cq) = ¢

pn W 0 are both first order nodes of the system
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b, = v
® (5.39)

f(vx,v,¢) + cv = 0

at c¢ = cg. Finally, we also will assume ¢(x,cy) to be increasing in
X since the analysis for the case of ¢(x,cu) decreasing proceeds simi-
larly.

In this section we will first show that the existence of ¢(x,cy)
implies the existence of a continuous family of similar solutions
¢(x,cy,v) at the same wavespeed c. By using the phase plane of system
(5.39) we will be able to characterize this family of solution by finding
its limiting members. Next, we will find that since some members of the
family ¢(x,cy,v) decay to ¢_ and ¢+ at the usual rate as x + - =
and as x > + «, then there must exist families of solutions ¢(x,&,v)
similar to ¢(x,cy,v) at c¢ =& for all & near cp. We will then
identify the slowest and the fastest wavespeeds & at which N + N type
monotonic traveling waves exist. We will summarize these existence results
in theorem 5.1 (N =+ N). Finally, we will quote the mean wavespeed/initial
condition results for this case.

The phase plane of system (5.39) looks something like the illus-
tration below. Consider the solutions ¢ = J(x,cq,vp), Vv = ¥(x,cp,vy) of
system (5.39) at ¢ = ¢y which are defined by the initial conditions

§(xgseq5vg) = ¢(xgscq)

V(xy,cp,vp) = Vg
for any fixed finite xg. Since solutions of differential equations are
continuous relative to initial conditions (see e.g. reference [6] )y, for
any X we can make

|3 (xg+x1.c0,vg) = ¢(xgtx1,co)| + [¥(xptx1,c0,v0) - ¢X(Xo+x],co)|



-247-

accidental
4 \

solutions

/ > .
—>== I
d""""";“"""'—--.
‘\ >
v=0 /,/, - -
¢ =0 ¢ =90,

-

as small as we wish by taking v sufficiently near ¢x(x0,c0). Since we
can take x; as large or small as we like, the attractive nature of the

v=0 (as x> - «) and of the node at ¢ = ¢+, v =20

node at ¢ = ¢ _,
(as x =+ + «) guarantees that

$(x,cq,vg) ¢ as x> -

P(x,cg,vg) + ¢+ as x > + o
for vg in [vu,v+] for some v_ < ¢x(x9,cu) < v,. Further, there is a
v, ﬁ+ (F_ < ¢X(x0,c0) j_ﬁ+) such that §(x,cp,vg) 1is monotone (as well
as §(-»,cy,vq) = ¢_ and §F(+=,cq,vg) = ¢+) for all vy in (ﬁ_,ﬁ+3.

These results are clear from the phase plane considerations illus-

trated in Figure (12) below. In particular for any $_ > ¢_ near enough
to ¢_, the phase plane directors point downward for all ¢ in (¢_,5_].
Also horizontal components of the directors always point in the positive
direction whenever v > 0. This means that any solution @(x,co,vo) which
crosses the ¢ = ¢ line at a positive point v which is no larger than
of the accidental solution (i.e. the solution of

the crossing point v

(5.39) which decays to ¢_ at the accidental rate as x =+ - «), then
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$(x,cqg,vg) must decrease monotonically to ¢_ as x decreases to - =,

Similarly there is a § such that if &(x,cqy,vy) crosses the

Yy
¢ =3

+ line at a positive point v under the accidental solution (i.e.

the solution of (5.39) which decays to ¢+ at the accidental rate as

x > + «), then &(xg,cq,vg) must increase monotonically to ¢+ as x
increases to + «. Since ¥(x,cq,vy) can be made arbitrarily near
¥(x,cq,vp) over any finite interval by taking vy mnear to @X(xo,co),

$(x,cg,vg) must be monotonic for at least a limited range of vy about

¢x(x0,c0). This is illustrated in Figure (12).

[.accidental solutions Tl
v
———" 3
/—- . i
3 -
| ~_g\
\‘f)(X,CQ) N
NP i B e N iy R
v ¥ * ¥ ¥ ¥
$ = ¢_ ¢ = b_ o = ¢, o = ¢,

Figure (12)

From the phase plane we can easily find the extremal monotonic
solution of (5.39) at ¢ = cg. From Figure (12) we see that the largest
vy for which &(x,cp,vp) 1is a monotonic solution is the least value of

vy = vg for which $(x,cg,vg) decays at the accidental rate as either
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x+-® or X >+ = For vy sightly larger, §(x,cqy,vg) dis non-mono-
tonic. Similarly, as vy decreases, §(x,c(p,vy) remains a monotonic
solution until the value of v (which we define to be v;) for which the
phase plane trajectory of §(x,cy,vg) intersects the v = 0 curve between
¢ = ¢_and ¢ = ¢+. Since V(x,cp,vg) > 0 for all x and since
V(x,cqg,vg) = 0 when §(x,cq,vg) = ¢g for some ¢y in (¢“’¢+)’ then
¢ = ¢p, v =0 must be a singular point. From the illustration in Figure
(13), we see that ¢ = ¢5, v = 0 must be either a first order saddle point
or a higher order singular point. Thus, when vy has decreased to v,
$(x,cq,vg) has bifurcated from a monotonic N > N solution into at least
two monotonic solutions. Usually as vy decreases to V1, $(x,cq,vp)
goes into two monotonic solutions: a N -+ S type solution ¢;(x,cy) with
¢1(-=,cy) = ¢_ and ¢;(+=,cy) = ¢g, and a S > N type solution ¢, (x,cq)
with ¢y (-=,cp) = ¢g and ¢, (+o,cp) = ¢+, where ¢ = ¢y, v =0 is a first
order saddle point. Thus the N -+ N type solutions almost always have a
N—+S and a S -+ N type solution as the limiting case, as is illustrated
in Figure (13) below. The other possibilities are the possibility that
¢ = ¢g, v =0 1is a higher order singular point or the possibility that at
vg = vp,¢(x,cq,vg) bifurcates into more than two separate monotonic solu-
tions. This latter case is illustrated in Figure (14). As illustrated,
the intermediate singular points are saddle points or higher order singular
points.

In brief, if ¢(x,cy) is a monotonic N + N type solution of
(5.39) at ¢ = cp, then there is a continuous family of similar monotonic
N - N type solutions. One limiting member of this family is a solution

which decays at the accidental rate as x » — « or as x - + «, The other
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0 _ cee

Figure (13)

/,
/4 !
o =9 ¢ =9,

Figure (14)

limiting "member" is at least two monotonic solutions which are usually a

N+S8 and a S +~ N pair of waves.

We now consider solutions at wave velocities ¢ = & near cg.
Similar to the N + S case, continuity arguments can be used to show that

a monotonic solution ¢(x,&) exists with ¢(-»,2) = ¢_ and ¢(+=,8) = ¢+.

Since one monotonic solution at ¢ = & exists, the previous arguments show
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that a family of solutions exists at ¢ = €. One limiting member decays
at the accidental rate as x > - « or x + + », and the other "member"
is at least two separate solutions.
This characterization of the solution family at fixed values
of ¢ determines the smallest and largest values of ¢ for which mono-
tonic solutions ¢(x,c) (with ¢(-=,c) = ¢_ and with ¢(+=,c) = ¢+)
exist. As ¢ increases (or decreases) from ¢y, monotonic solutions con-
tinue to exist until either
(1) an accidentally decaying solution from ¢ = ¢ _, v=0 or

b = ¢ v = 0 intersects the v = 0 axis at a singular point ¢ = ¢g,

+!

<
I

0 with ¢_ < ¢4 < ¢+, or
(2) ¢=¢ , v=0 or ¢ = ¢ v = (0 changes from a node to a spiral

point.

We summarize this discussion in the theorem below.

Theorem 5.1 (N = N): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that u(t,x) = ¢(x,ey) 1is a bounded monotonic steady state solu-
tion of

u, = f(uxx,ux,u) + cu (5.38)

I
-©-
<
]
o
b}
3
o

at c = cg, and also suppose that ¢ = ¢(-=,cq)
¢ = ¢(+2,cq) = ¢,, v=10 are both first order nodes of
¢ =V

= (5.39)
f(vx,v,qg) + cv 0

at ¢ = c¢g. Then there is an interval (cl,cz) such that for any & in
(cy,cp) there exists a continuously differentiable (in c¢ and a) family
of monotonic solutions u(t,x) = (x,&,a) 0 < a <1 of (5.38) at c = &.

For 0 <a <1, ¢(-»,&,a) = ¢_  and (2,8 ,0) = ¢+ for all & in
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(ey,cg). Moreover, if ¢(x,cy) 1s increasing (decreasing) in x then the
phase plane trajectories are increasing (decreasing) in o. At o =1,
$(x,8,a) decays at the accidental rate as x > - ® or as X -+ + », For
0 <o <1, 3(x,8,a) decays at the usual rate as x =+ - « and as x - + o,
At o = 0, the phase plane trajectory corresponds to at least two distinct
monotonic steady state solutions of (5.38) at ¢ = €. Finally the limit-

ing wavespeeds c¢; and cp are either

c; =

Cmin 2‘/f1(0:0’¢+)f3(0303¢+) = f2(0:03¢+)

n
Hi

&%

HAK - 2‘/f1(0’03¢_)f3(0,0:¢_) o= f2(030:¢’_~)

c2

or (when they exist) the points ¢j din ( ,cg) and co in  (eg,c__ )

c
min max

nearest to cy for which the trajectory of an accidentally decaying solu-
tion from ¢ = ¢ , v=0 or from ¢ = ¢+, v = ( 1intersects the v = 0

line at a singular point ¢ = ¢4, v = 0 with ¢_ < ¢g < ¢+.

The above theorem summarizes the discussion preceding it. Rough-
ly speaking, it shows that if a single monotonic N >+ N type traveling wave
u(t,x) = ¢(x-cyt,cp) exists for some wavespeed cg, then for each wave-
speed ¢ nmnear enough to cg there is a family of similar monotonic N - N
type traveling waves u(t,x) = ¢(x-&t,&,0). Note that in the theorem we
have used a different parametrization of the family of solutions than
was used in the preceding discussion.

We now present the mean wavespeed/initial condition results for
this case. Since the proof of this next theorem is very similar to that
of theorem (5.2) (N -+ S) and contains no new ideas, we will not present

the proof.

Theorem 5.2 (N » N): Assume that hypotheses H2, H3, and H4 are satisfied.
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Suppose that u(t,x) = ¢(x-cyt,cy) 1is a bounded monotonic solution of

u, = f(uxx,ux,u) £, >0 (5.40)

and that ¢ = ¢(-2,cq) = ¢_, v=0 and ¢ = ¢(+=,cp) = ¢ v =0 are

+!
both first order nodes of system (5.39) at c¢ = cq-

Define the exponential rate constants A—(c) and A+(c) by

- (fz(_0,0,¢_)+C)—|/(f2(0,0,¢_)+C)2-'4f1 (0,0,¢_)f3(0,0,¢_)
2£,(0,0,¢_)

A (e)

~ (£2(0,0,9 )+c)+/(£2(0,0,¢ )+c)7~4£;(0,0,9,)£5(0,0,0,)

o+
oo 2f1(0501¢+)

1]

for all ¢ in i i revi
[cmin’cmaxj’ and define c¢; and c¢y as in the previous

theorem.

Suppose that wu(t,x) 1s any solution of (5.40) whose initial
condition u(0,x) is in Hi and satisfies
min{¢_,¢+} < u(0,x) < max{¢_,¢+} for all =x .
Then
(1) if for any ¢ in (cy;,cp) there isan a >0 and a B > 0
such that ‘
E—A_(c)x]

a < u(O,x)-¢_| for all x < 0 and

+
B e—k (c)xI

u(O,x)—¢+| for all x > 0
then u(t,x) cannot travel with mean wavespeed larger than «c;
(2) if for any ¢ in (cj,cy) there is an o > 0 and a B > 0 such
that
e—A_(c)x

o >

|u(o,%)~¢_| for all x < 0 and

+
B < e—x (c)x

|u(0,x)—¢+| for all x > 0
then u(t,x) cannot travel with mean wavespeed smaller than c;

(3) if for any ¢ in (c;,cp) there are positive constants a,B,Ys

8 such that
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o < enk (C)XIU(O,X)"¢_I < B for all x < 0 and

+
Y < e—l (L)XI

u(O,x)-¢+| < § for all x>0
then u(t,x) travels with mean wavespeed ¢ and has finite dispersion,
and

(4) if for any ¢ in (cj,cp) we have

lim e—(xn(c)—“)x[u(o,x)~¢_|

=0, lim en(K (C)+“)x]u(0,x)—¢ | = + =,
Xr=—-00 -0 =
= ()\+ ) =~ { ) i +
lim e (e}-u xiu(O,x)-—¢+| =+ », lim e (A" (el u)xll.r‘(O,}'r)~=¢_i_| =0
Xt Xt

for all yp > 0, then u(t,x) travels with mean wavespeed ¢ (but may

not have finite dispersion).

Roughly speaking, the above theorem shows that if u(0,x) decays

A (e)x A+(c)x

to ¢_ 1like ae and to ¢+ like Be for any ¢ in (cj,c3),

then wu(t,x) must travel with mean wavespeed c¢. One naturally wonders
how solutions u(t,x) of (5.40) behave when u(0,x) decays to ¢_ 1like

aek_(c_)x 1+(C+)X

as X > = « and to ¢+ like Be as x >+ = if

e+ Cpe This question is easily answered whem c¢; < c_ < c, < - We

will now show that typically u(t,x) will evolve into a N -+ S type

traveling wave of speed c_ (which goes from ¢_ at x = - to ¢y
at x =+ ») and into a S >+ N type traveling wave of speed c, (which
goes from ¢35 at x = - @ to ¢ at x = + =), where ¢ = ¢, v=20

+
is a saddle point of system (5.39).

We consider only the typical case, where the phase plane trajec—
tories of ¢(x,c_,0) and of $(x,c+,0) both intersect the v = 0 at the
same single first order saddle point ¢ = ¢g5, v = 0 with ¢_< ¢g < ¢+,
as illustrated in Figure (13). Consider the solutions ¢(x,c_) = §(x,c_,a)

and ¢(x,c+) = @(x,c+,a+) for any o_ and a, in (0,1). Further,
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let (x,c_) be the monotonic N + S solution at c¢ = c_ and let

4)NS
+
¢SN(X,C+) be the monotonic S =+ N solution at c¢ = c, Note that

¢NS(—m’C_) = ¢_ ¢NS(—'—°°,C_) = ¢0 s
o _ + _
¢SN(_°°’C+) - ¢0 ¢SN(—°°,C+) = ¢+ s
(b("'msc_) = ¢_ ¢(+05c_) = ¢+ s
B(==,0) = §_ b)) = 0,
- +
and that ¢NS and ¢SN correspond to portions of the limiting tra-

jectories of &(x,c_,a) and $(x,c+,a) at o = 0. Suppose now that u(t,x)
is any solution of (5.40) whose initial condition u(0,x) dis in Hi and

satisfies
¢ < u(0,x) < ¢+ for all x ,

8y < ewA (c)x

[u(0,x)-¢ | < ap for all x < 0, and
A+(c )x
By < e "+ [u(O,x)—¢+l < By, forall x>0 ,
for some positive constants «;, ¢y, B, and B,. Suppose also that
¢y <c_<c, <ep. By selecting hjy, hs, hy, and h, sufficiently large,

we can guarantee that

- +
¢Ns(x~h1,c_) u(0,x) < ¢SN(x+h2,c+) for all x, and

| A

¢(X_h3sc+) U(O,X)

i A
| A

¢(x+hq,c_) for all x.
Thus the maximum principle implies that

- +
¢Ns(x~c_t—h1,c_) < u(t,x) £»¢SN(X_C+t+h2’C+) for all x, all t > O
(5.41)
¢ (x=c t-hy,c ) < u(t,x) < ¢(x~c_t-hy,c ) for all x, all t > O

The bounds on u(t,x) given by relations (5.41) are illustrated in Figure
(15) below for large t. The implication of the maximum principle is that

u(t,x) must remain in the shaded area for all t > 0. Clearly for large
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t, u(t,x) has evolved into two stacked waves, one moving with speed ¢

and one moving with speed c,-

¢(x—c_t+hh,cu) u=¢

u ¥ (weo .
¢SN(X C+L+h2,c+)-a

u=¢0

U=¢D

¢;S(x—c_t—h1,c_) ¢ (x-c t—ha,c+)

u=¢_

Figure (15)

This completes our presentation of the mean wavespeed/initial
conditions for this case, and thus for all cases. As a rough summary we
found that in the S + S case there is a single traveling wave ¢ (x-cot,cq),
in the N+ S and S + N cases there is a single traveling wave
¢ (x—ct,c) at each wavespeed ¢ in a range of wavespeeds, and in the
N -~ N case there is a family of solutions ¢ (x—ct,c,a) at each speed ¢
in a range of wavespeeds. For each of these cases, the mean wavespeed of
any solution u(t,x) is determined mainly by the asymptotic decay rate of
u(0,x) as x> - ® (if ¢(-*) is a node) and the asymptotic decay rate
of u(0,x) as x> + « (if $(+*) is a node).

In the remaining sections of this chapter, we briefly discuss to-

pics related to the mean wavespeed/initial condition results. In the next
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section, section (5.4), we use the wavespeed results to show the sharpness
of the stability results contained in theorem (4.5). In section (5.5) we
discuss how the mean wavespeed/initial condition results can be extended
to include traveling monotonic plane waves in higher spatial dimensions.

Finally, we conclude this chapter with some closing remarks in section (5.6).

5.4 Sharpness of the stability results for monotonic waves. In theorem

(4.5) we obtained our major stability results for bounded monotonic travel-
ing wave (or steady state) solutions of
u = f(uxx,ux,u) . (5.40)
Roughly speaking, that theorem shows that any bounded monotonic (in x)
solution u(t,x) = ¢(x-cgt,cp) is stable to smooth initial perturbations
p(x) = up(O,x) - ¢(x,cy) which are small and
(1) bounded as x + - « (as x>+ «) 1f ¢ = ¢(~=,cp), v =0
(1f ¢ = ¢(+~,cp), v = 0) 1is a first order saddle point, and
(2) decay asymptotically no slower than the same exponential rate
that  ¢_(x,cq) decays at as x + -« (as x>+ ®) 1if ¢ = ¢ =,cq),
v=0 ({if ¢ = ¢(+»,cqg), v = 0) dis a first order node.
We will use the existence results of theorems 5.1 (N + S) and theorem
5.1 (N > N) to show that these stability results are sharp in most cases.
Suppose that we start with a bounded monotonic traveling wave
solution u(t,x) = ¢(x-cpt,cg) of (5.40), and suppose that we can use
either theorem 5.1 (N + S8), the equivalent result for the (S - N) case,
or theorem 5.1 (N - N), to show that for any & near enough c¢; there is
a traveling wave solution u(t,x) = ¢(x-&t,¢) with wavespeed &. We note

that these theorems show that ¢(x,c) is differentiable in ¢, and so
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the perturbation

p(x,8) = ¢(x,8) - ¢(x,cq)
can be made as small as we wish by taking & mnear enough to cg. More-
over, each ¢(x,&) decays to ¢(~=,cg) and to ¢(+e,cy) exponentially,
and with exponential rate constants which depend continuously on &. Thus
for & near c¢p, p(x,c) decays at an asymptotic rate which is slightly
slower than that allowed by theorem (4.5). Finally, if the initial condi-
tions of wu(t,x) = ¢(x-cgt,cy) are perturbed by p(x,&) then the result-
ing perturbed solution is up(t,x) = ¢(x~-&t,8). The difference in veloci-
ties of ¢(x-&t,&) and ¢(x-cyt,cy) dimply that up(t,x) drifts away from
u(t,x) linearly in time, and so wu(t,x) = ¢{(x-cpt,cy) 1s unstable rela-
tive to the initial perturbations p(x,¢&).

In summary, whenever u(t,x) = ¢(x-cyt,cy) is such that we can
use our theorems to show the existence of similar traveling waves u(t,x) =
¢ (x-¢t,¢) for all & near c¢g, then the initial perturbation p(x,e) =
$(x,8) = ¢(x,cqp) (8 # cg)

(1) can be madé as small as we wish by taking ¢ mnear cyp,

(2) can be made to violate the asymptotic decay restrictions of
theorem (4.5) on perturbations by as slight a margin as we wish,

(3) is an unstable perturbation.
Thus, for these cases theorem (4.5) is sharp.

For the following table, table 5.1, we have assumed that
u(t,x) = ¢(x-cgt) 1is a bounded monotonic traveling wave or steady state
solution of
u = f(uxx,ux,u) 4 (5.40)

t

and that ¢ = ¢(-«), v =0 and ¢ = ¢(+=), v = 0 are first order singular



Table (5.1)

Sharpness of the stability results of theorem (4.5) for any bounded mono-
tonic solution wu(t,x) = ¢(x-cgt).

Behavior of ¢(x) for x << -1 and x »> -1 Sharpness of
theorem (4.5)

type singular asymptotic type singular asymptotic sharpness

point at - o« decay rate point at + = decay rate
ag x > - ® as x > +
S S sharp
N usual S sharp
N accidental S 2
S N usual sharp
S N accidental ?
N usual N usual sharp
N usual N accidental sharp
N accidental N usual sharp
N accidental N accidental 7

points. We have listed all possible cases, and denoted the ones for which
the above arguments show that the stability results contained in theorem

(4.5) are sharp.

Table 5.1 is the main result of this section. 1In particular we

note that it shows that in all non-accidental cases where ¢ = ¢(-=),
v=0 and ¢ = ¢(+®), v = 0 are first order singular points theorem (4.5)

is sharp. However, in some accidental cases where ¢ = ¢(~«), v =0 and

= (=), v = 0 are first order singular points and in all cases where at

least one of ¢ = ¢(~»), v = 0 and ¢$ = p(+2), v = 0 is not a first order

singular point, the sharpness of theorem (4.5) remains open to questlon.

5.5 The mean wavespeed of plane waves, 'In this section we briefly discuss
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the direct extension of the results in this chapter to bounded monotonic
traveling plane wave solutions when more than a single spatial dimension
is present. Actually we will work only with two spatial variables

>

(x

(x,y)) but it will be clear that our discussion applies equally well
when more than two spatial variables are present.
Suppose that

u = f(u u u u ,u ,u
t xx’ xy’ yy’ X, y’

) (5.42)

is a parabolic equation (i.e., satisfies hypothesis H3) and that u(t,z)

¢(§-Zt) is a bounded monotonic traveling plane wave solution of (5.42).

Since we can rotate the x-y axes without destroying the parabolicity of

equation (5.42), let us take (without loss of generality) our monotonic

plane waves to be

u(t,x) = u(t,x,y) = ¢(x—ct)

This plane wave is a solution of

f(u ,ux,u)

XX

w = f(uxx,0,0,ux,O,u)

Clearly whenever u(t,x) is a solution of

u = fu__,u_,u) (5.43)
t XX X

>
then u(t,x) = u(t,x,y) = u(t,x) is a solutionm of (5.42). Moreover, if
Gft,x) and u(t,x) are any upper and lower functioms of (5.43) then
u(t,x,y) = u(t,x) and u(t,x,y) = u(t,x) are also upper and lower functions
of equation (5.42).

Thus whenever u(t,x,y) = ¢(x-ct) 1is a bounded monotonic (in x)
plane wave solution of (5.42), all the existence and mean wavespeed results
in this chapter about the equation

= f 5. %3
u f(uxx,ux,u) ( )
apply equally well to the equation



-261-

(5.42)

u_ = f(u u u u ,u _,u
t ( xx” xy’ yy’ x7y’
Note however that the mean wavespeed results can be regarded as being

stronger for plane waves than for waves in one spatial dimension. This is

because whenever we concluded "u(t,x) travels with mean wavespeed c"

in one spatial dimension, we can conclude that "u(t,x,y) travels with
+
mean wavespeed ¢ = (¢,0)" in two spatial dimensions. In conclusion,

the mean wavespeed/initial condition results immediately generalize to

multiple spatial dimensions.

5.6 Conclusions. In this chapter we established some results about the

qualitative behavior of solutions of

u, = f(uxx,ux,u) (5.44)
by utilizing the maximum principle, the upper and lower functions con-
structed in Chapter IV, and the phase plane for traveling wave solutions of
(5.44). These results are not exhaustive (in the mathematical sense).
Many similar results can be found by using the same techniques. For ex-
ample, one can look for results about monotonic waves which have higher
order singular points at either x = - o or x = + =, However, without
analyzing specific physical examples we cannot be sure of the utility of
these extensions. Therefore, we will not puruse any of the extensions to
the results presented here.

In Chapter IV we used the maximum prinicple to establish theorems
which would allow us to determine the stability or instability of any
traveling wave (or steady state) solution of

B, = f(uxx,ux,u) £1 >0

by inspection. In this chapter we used the maximum principle to establish

connections between the initial condition u(0,x) and the mean wavespeed
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of the resulting solution u(t,x) of equation (5.44). These two chapters
complete our development of the general theory of equations like (5.44).

In the next two chapters we will directly extend many of our results to

the other types of equations for which the maximum principle holds.
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Chapter VI

EXTENSTON TO NON~LOCAL OPERATORS

In this chapter we extend some of the results of Chapters IV and
V to parabolic equations which contain integrals. We will consider only
direct extensions, and we will be as brief as possible. Basically we will
find that the stability results for monotonic waves and the mean wavespeed/
initial condition results are still valid. However, we will not be able
to prove the instability of non-monotonic waves.

To be more specific, in this chapter we will treat equations of

the form

"
u = F(u ,u ,u,] f G(g,y,u(t-s,x- dyds (6.1")
" e ] - y y))dyds)

where T > 0 and Y > 0 are fixed constants. Throughout this chapter
we will assume that hypotheses H1 and H2 (smoothness of equation (6.1')),
H3 (parabolicity of equation (6.1'), and H4 (existence of solutions of
the initial value problem) are satisfied. We also assume that a very
large M > 0 has been chosen, and we work with the resulting equation
T
u, = f(uXX,uX,u,’[0 j g(s,y,u(t-s,x-y))dyds) , (6.1)
|y|<y

where f = F and g = G .

M M

Briefly, in the first section of this chapter we will derive the

stability results for monotonic waves. In section (6.2) we will discuss
the instability results for non-monotonic waves. We will derive the mean
wavespeed/initial condition results in section (6.3). Finally, we will

use the last section, section (6.4), to express some general remarks. We

now start with the stability of monotonic waves.

6.1 Stability of monotonic traveling waves. In this section we extend




~264~
the stability results to monotonic traveling wave (and steady state) solu-

tions of equation (6.1). To do this we need to first redefine our stabili-

ty concepts and the concepts of "nodes" and "saddle points" appropriately.
We begin with our stability concepts.
Let w(x) be any continuous function with w(x) > 1 for all

x. Then any steady state solution u(t,x) = ¢(x) of the equation

i i
= f P9 I 3 ' - - il
u, (uxx u_,u, jo ./lqutg(&’y’u(t s,x~y+cs) )dyds) + cu_ (6.2)

is defined to be C"-stable if and only if given any € > 0 there is a
§(e) > 0 such that every solution u(t,x) of (6.2) satisfies
[{u(t,x) - ¢(x)}Iw(x)| < e for all x and all t > O (6.3)
whenever the initial conditions u(t,x) (t < 0) satisfy
(i) u(t,x) is bounded and uniformly Hoelder continuous (with some
exponent o > 0) in t and x for t < 0 ,
(ii) u(0,x) dis in Hi, and
(iii) I{u(t,x) - ¢(x)}w(x)| < 8(e) for all x, all t < 0.
Similarly, ¢(x) 1is defined to be gffstable if and only if given any
€ > 0 there is a 6{(e) > 0 such that every solution u(t,x) of (6.2)
satisfies
|u(t,x) - ¢(x)| < e for all x and all t > 0 (6.4)
whenever the initial conditions wu(t,x) (t < 0) satisfy (i), (ii), and
(iii). A solution wu(t,x) = ¢(x) which is not cV-_stable will be called
c”-unstable, and if it is not {"-stable it will be called Qw—unstable.
These stability definitions are very similar to those used pre-
viously. The only major change is that the requirements on the perturbed

initial condition u(t,x) - ¢(x) must now be satisfied for t < 0 as well
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as for t = 0.
We now define cihe concepts of "singular point', "node'", and

"saddle point" appropriately. Note that the steady state equation of (6.2),

E
f 3 S,V, -y+ dyds) + = 6.
(b b, 2 fo flylarg(b’y § (x-y+cs))dyds) + e = 0 ,(6.5)
has no phase plane representation. Therefore, our definitions of "'singu-
lar point", "node'", and "saddle point" will not refer to any phase plane
representation. Instead we will define these terms so that the results

in this chapter are analogous to those in the previous chapters. Thus,

we define ¢35 to be a singular point if and only if

T

f(0:09¢0’ fo f gC‘:’ ,Y,(Po)dyds) =0 3 (6-6)
|y|<x |

and to be a regular singular point of order one if and only if

14+A

£(0,0,¢4+n, fo f‘ g(s,y,¢gtn)dyds) = un + 0(n~ ") as n»0 (6.7)
y <Y

where u # 0 and A is some positive constant. If pu > 0 then we de-~

fine ¢35 to be a first order node, and if p < 0 we define ¢y to be a

first order saddle point. For simplicity we will treat only first order

singular points in most of this chapter.
With the above definitions, the extension of the stability re-
sults contained in sections (4.1) through (4.11) is now very easy. We

bo

i

start with the stability of constant steady state solutions u{t,x)

of (6.2). This result is:

Theorem 6.1: Assume that hypotheses H1, H2, H3, and H4 are satisfied.

Suppose further that u(t,x) = is a constant steady state solution of

u, = f(uxx’ f L g(s,y,u(t-s,x-y+cs))dyds) + cu . (6.2)
Then
(1) 4if ¢ 1is a first order saddle point then u(t,x) = ¢g is

cV-stable with w(x) =1, and
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(2) if ¢g 1is a first order node then u(t,x) = ¢5 1is Qw—unstable

with w(x) =1 + e+Kx + e * for any k > 0 sufficiently small.

Proof: Very similar to the proofs of parts (3) and (4) of theorem (4.1).

Thus, again saddle points are stable constant solutions and nodes are un-
stable constant solutions.

If we were to closely follow the treatment in Chapter IV, we
would now find the asymptotic behavior of the steady state solutions of
equation (6.2). We will not do this. Instead all asymptotic behavior
results that we need will be assumed. However, verification of these
asymptotic assumptions will be very easy for any specific solution of any
specific equation. We now continue to the stability results for mono-

tonic waves. We begin with the basic stability result.

Theorem 6.2: Assume that hypotheses Hl, H2, H3, and H4 are satisfied.

Suppose that u(t,x) = ¢(x) is a bounded strictly monotonic steady state
solution of equation (6.2), that ¢"(x)/¢'(x) is bounded, and that

|$" (x)| is decreasing for all x sufficiently large and for all x

1

sufficiently small. Then u(t,x) ¢(x) is c¥-stable with

1
w(x) =1 +.T$T(;YT

Proof: The proof is very similar to that of theorem (4.2). Since
$(x-h) and ¢(x+h) are both solutions of equation (6.2) for any h,
the maximum principle implies that whenever
¢(x-h) < u(t,x) < ¢(xt+h) for all x (6.8)
is satisfied for t < 0, then it remains satisfied for all t > 0. Thus

u(t,x) = ¢(x) possesses a class of perturbations for which it is stable.
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With the assumptions of the theorem, we can identify the stability class
as including the class allowed by the definition of CW—stability with

w(x) =1 + |¢,tx) . Thus the theorem is established.

We see that strictly monotonic steady state solutions of equa-
tion (6.2) have at least a limited stability, exactly as occurred in
Chapter IV. Note that regardless of whether ¢"(x)/¢'(x) dis bounded,
whether ¢'(x) # 0 for all x, or whether |¢"(x)[ is decreasing for
all x sufficiently large and sufficiently small, the maximum principle
implies that if

¢(x~h) < u(t,x) < ¢(x+h) for all X (6.8)
is satisfied for t < 0 then it remains satisfied for all t > 0 as well.
Thus every monotonic steady state solution of equation (6.2) possesses a
limited stability. However, whenever one of the hypotheses of theorem
is violated we cannot identify the stability as Cw~stability with
w(x) = 1 + TET%£7T>. Instead u(t,x) = ¢(x) would be Cw—stable with
u{t,x) = ¢(x) of (6.2) it is very easy to identify the precise stability
implied by relation (6.8).

As in Chapter IV, we now improve our basic stability results by
constructing better upper and lower functions. 1Indeed, the estimates
used in constructing the upper and lower functions contained in lemmas
(4.3) and (4.4) are valid in the present situation. Therefore the fol-
lowing two lemmas can be established by proofs very similar to the omnes

used to prove lemmas (4 .3) and (4.4).

Lemma 6.3: Assume that hypotheses Hl, H2, H3, and H4 are satisfied.
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Suppose that u(t,x) = ¢(x) is a bounded strictly monotonic steady state

solution of
T
u, = f(uxx,ux,u, -[0 f

Suppose further that ¢"(x)/4'(x) is bounded for all x, that |[¢"(x)]|

| | g(s,y,u(t-s,x~y+cs) )dyds) + cux.(6.2)
yl<Y

is decreasing for all =x sufficiently large and for all x sufficiently
small, that [¢(x)-¢(+=)}/¢"'(x) is bounded for all x > 0, and that

Lo (x)-9(~=)]/¢"(x) 1s bounded for all x < 0. Define ¢(+=®) = ¢, and

4
¢ (=) Z¢_. Then
(1) 4if ¢+ is a first order saddle point then
u(t,x) = ¢(xth(t)) + q(t)-[p(x+h(r))~ ¢_] and (6.9a)
ult,x) = ¢(x-h(t)) - q(t)-[p(x-h(t))- ¢_] (6.9b)

are upper and lower functions (respectively) of equation (6.2). Here,

h(t) = aK(lme_St) + hy q(t) = ae—St

(6.10)
where s and ¥ are particular positive constants, hy dis arbitrary, and
0 is any constant with the same sign as ¢'(x) and with sufficiently
small magnitude.
(2) if ¢ 1is a first order saddle point then
u(t,x) = ¢(x+th(t)) + q(t) [¢,~¢ (x+h(t))] and (6.11a)
u(e,x) = ¢(x-h(t)) - q(e)[¢ ~¢(x-h(c)] (6.11b)
are upper and lower functions (respectively) of equation (6.2). Here

h(t) and q(t) are defined as in the preceding case.

Lemma 6.4: Assume that hypotheses Hl, H2, H3, and H4 are satisfied. Sup-
pose that u(t,x) Z ¢(x) 1is a bounded strictly monotonic steady state

solution of

T
u = f(u ,u ,u,./n 4{ g(s,y,u(t-s,x-y+cs))dyds) + cu_. (6.2)
t XX X 0 |y|<Y
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Suppose further that ¢'"(x)/¢'(x) 1is bounded for all x, that |¢"(x)|
is decreasing for all x sufficiently large and for all x sufficiently
small, that [¢(x)—¢(+w)]/¢'(x) is bounded for all =x > 0, and that
[ (x)-0(-=)]/¢'(x) 1is bounded for all x < 0. If ¢(-=) and ¢(+=)

are both first order saddle points then

m

u(t,x) = ¢(x+h(t)) +|q(t)| and (6.12a)
u(t,x) = ¢(x-h(t)) - |q(t)| (6.12b)
are upper and lower functions (respectively) of equation (6.2). Here,
h(t) = ak(l-e 3%) 4+ hy  q(t) = ae St (6.10)
where s and k are particular positive constants, hg is arbitrary, and

o 1is any constant with the same sign as ¢'(x) and with sufficiently

small magnitude.

Basically lemmas (6.3) and (6.4) show that equation (6.2) posses-
ses upper and lower functions which are very similar to the ones used
extensively in Chapters IV and V. These upper and lower functions of equa-
tion (6.2) look very much like the upper and lower functions of equation
(4.2), which are sketched in Figures (1), (2), and (3) of Chapter IV.

In lemmas (6.3) and (6.4) we assumed that the strictly monotomnic
steady state u(t,x) = ¢(x) satisfies the conditions

(a) ¢"(x)/4'(x) 1is uniformly bounded,
(b) |¢"(x)| dis decreasing for all x sufficiently large and all
x sufficiently small,

(¢) [$x)-¢(+=)]/¢'(x) is bounded for all x > 0, and

[v

(d) [x)-9p(-=)]/¢"'(x) 1is bounded for all =x < O.
Note that whenever u(t,x) = ¢(x) dis a bounded strictly monotonic steady

state solution of equation (6.2) which has
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(1) ¢x)-9p(+=), ¢"(x), and ¢"(x) all decaying asymptotically at the
same exponential rate as x -+ + «, and

(i1) o(x)~¢(-=), ¢'(x), and ¢"(x) all decaying asymptotically at
the same exponential rate as x -+ — o,
then conditions (a), (b), (c), and (d) are satisfied. Fortunately, expo-
nential decay as x » + « and as x > — @ is almost always the case,
and so conditions (a), (b), (e), and (d) are not very restrictive. More-
over, whenever some of the conditions (a), (b), (¢c), and (d) are violated
by a specific steady state, it should be possible to construct upper and
lower functions similar to the omnes given by lemma (6.3) or lemma (6.4).

We now use the upper and lower functions constructed in lemmas
(6.3) and (6.4) in conjunction with the maximum principle. This immediate-
ly yields our final stability result for monotonic steady state solutions
of equation (6.2). 1In order to state these results concisely, recall the
definitions
¢ (x) £ 5D $'(0) e

, , t_{¢'(x)}
¢'(0) X% 0 ¢ (x) x <0

1
r, {¢"(x)}
With these definitions, our stability results are:

Theorem 6.5 (The stability of monotone waves): Assume that hypotheses HI,

H2, H3, and H4 are satisfied. Suppuse that u(t,x) = ¢(x) 1is a bounded

strictly monotonic steady state solution of

T
u = f(u ,u ,u, jﬁ -f g(s,y,u(t-s,x-yt+cs))dyds) + cu . (6.2)"
t XX X 0 lyI<Y X

Suppose further that ¢"(x)/¢'(x) is uniformly bounded, that ]¢"(x)| is
decreasing for all x sufficiently large and for all x sufficiently

small, that [$(x)=p(+=))/¢'(x) is bounded for all x > 0, and finally
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that [¢(x)—¢(—w)]/¢'(x) is bounded for all x < 0., Then u(t,x) = ¢(x)
is C"-stable where

(1) 4if both ¢ = ¢(-=) and ¢ = ¢(4+») are first order saddle points,
then w(x) = 1;

(2) 4if ¢ = ¢(-») dis a first order saddle point but ¢ = ¢(+=) is
not a first order saddle point, them w(x) = 1 + T;;TE%TETTT ’

(3) if ¢ = ¢(+=) 1is a first order saddle point but ¢ = ¢(-») is

not a first order saddle point, then w(x) = 1 + T;—TE%T;STT‘, and

(4) 1if neither ¢ = ¢(-=) nor ¢ = ¢(+») is a first order saddle
1

point, then w(x) = 1 + W -

The conclusions of theorem (6.5) are exactly the same as the con-
clusions of theorem (4.5) in Chapter IV. The inclusion of integrals in
equations (6.1) and (6.2) has not altered the stability resulfs for mono-
tonic waves, except that it forces us to place mild restrictions on the
asymptotic behavior of ¢(x) as =x + + = .

In this seétion we have analyzed the stability of constant and
strictly monotonic traveling wave solutions u(t,x) = ¢(x~ct) of

T
o, = f(uxx,ux,u, j; f{yl<Yg(s,y,u(t-S,X“y))dyds) . (6.1)
We changed to the coordinate system which moves with the same speed as the

wave. This leads to the steady state solution u(t,x) = ¢(x) of

T
= yv,u(t-s,x-y+ecs))dyds) + cu_.(6.2
B, f(uxx,ux,u, JC j:yldYg(S,J’u( s,x-y+cs))dyds) " ( )

We found in theorem (6.1) that if ¢(x) 1is a constant steady state solu-
tion (¢(x) = ¢g), then u(t,x) = ¢y has the same stability as was found
in theorem (4.1) for constant steady state solutions of equations which do

not contain integrals. We have also examined strictly monotonic steady
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state solutions u(t,x) = ¢(x) of equation (6.2). We found (in theorem
(6.2), lemma (6.3), lemma (6.4), and theorem (6.5)) that if relatively
mild restrictions were placed on the asymptotic (as x + + =) behavior of
¢(x), then the results in theorem (4.2), lemma (4.3), lemma (4.4), and
theorem (4.5) about equation (4.2) remain valid for equation (6.2).

This completes this section on the stability of monotonic travel-
ing waves. Note however that the stability results of theorem (6.5) can
be extended to include monotonic traveling plane waves when more than a
single spatial dimension i1s present, similar to the extension of theorem

(4.5) discussed in section (4.11).

6.2 The instability of non-monotonic waves. Despite the title of this

section, we have not been able to establish the instability of non-mono-

tonic steady state solutions u(t,x) = $(x) of

T
g, f(uxx’ux’u’ fo flyl<Yg(s,y,u(t-s,x-—y+cs))dyds) + cu - (6.2)

Recall that the proof in Chapter IV of the instability of non-monotonic
steady state solutions of

B, ™ f(uxx,ux,u) + cu (4.2)
is in three steps. The first step consists of constructing appropriate
initial conditions u(e,0,x), which essentially are ¢(x) with small ad-
ditional bulges. Lemma (4.7) was used to construct these initial conditions.
The second step is proving the hair-trigger effect, which shows that
u(e,t,x) is increasing in t and that wu(e,+»,x) = ¢m(e,x). Here ¢m(e,x)
is the minimal steady state solution which satisfies

u(e,0,x) < ¢m(e,x) for all x

The third and final step of the proof is showing that
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1lim {max b _(e,x) - ¢(x) } + O
e+0 X

This step was accomplished by using lemma (4.8), which shows that for all
e > 0 sufficiently small ¢m(€,x) is constant in x and €.

The second step of the proof used in Chapter IV remains valid in
the present situation. That is, there is a hair-trigger effect for equa-
tion (6.2). However lemmas (4.7) and (4.8) formed the first and third
steps of the proof, and these lemmas were established by using the phase
plane representation of the steady state solutions of equation (4.2).
Since the steady states u(t,x) = ¢(x) of equation (6.2) are the solu-

tions of

T
f(¢xx’¢x’¢’f f g(s,y,$ (x-y+es))dyds) + cp, = 0 (6.13)
0 Jly|<x

clearly there is no phase plane representation of the steady state solu-
tions of (6.2). Therefore, our means of proving lemmas (4.7) and (4.8)
cannot be used to extend the lemmas to the present situation.

Thus, the proofs used in Chapter IV cannot be used here. How-
ever, since the stability results for monotonic steady state solutions of
equation (6.2) closely parallel the stability results for monotonic steady

state solutions of equation (4.2), an attractive conjecture is that the

instability of non-monotonic steady state solutions u(t,x) = ¢(x) of

equation (6.2) is exactly the same as the instability of steady state solu-

tions u(t,x) = ¢(x) of equation (4.2). Since the hair-trigger effect is

valid for equation (6.2), one needs only to develop intersection results

for the ordinary differential-integral equation
T
£ 5P 5, j‘ g(s,y,p(x~y+es))dyds) + c$_ = 0 (6.13)
e | flqu )
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similar to the intersection results of lemma (4.7) and lemma (4.8). 1If
such results were established, the instability of non-monotonic solutions
would immediately follow.
We now continue to the next section, where we extend the mean

wavespeed/initial condition results of Chapter V to the equation

T
n, = f(uxx,ux,u, J; j;yI<Yg(s,y,u(t—s,x—y))dyds) . (6.1)

6.3 Mean wavespeed and the initial conditions. 1In this section we will

extend the mean wavespeed/initial condition results of Chapter V to the

equation

T :
u = f(u ,u ,u, f f (s,v,u(t-s,x- dyds) . (6.1)
t xx’ x 0 |y[<Yg y y))dy

Recall that in Chapter V we considered equations
n,o= f(uxx,ux,u) (5.1)

which have a non-constant bounded monotonic solution u(t,x) = ¢(x-ct,c).
For each major case of ¢(x-ct,c) beinga S+ S8, a N+ 8, a8 + N, and
a N > N type monotonic wave, we determined

(1) when the existence of ¢(x-ct,c) implies the existence OT non-
existence of similar monotonic waves at nearby wavespeeds,

(2) when the existence of ¢(x-ct,c) implies the existence or non-
existence of similar monotonic waves at the same wavespeed ¢, and

(3) the mean wavespeed of u(t,x) in terms of u(0,x).
We will not extend the existence and non-~existence results for equation
(5.1) to equation (6.1). Presumably for any specific equation of the form
(6.1), one could establish existence/non-existence results by using know-

ledge of the asymptotic behavior of solutions of
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T
(o, _-¢_,9, f f g(s,y,¢ (x-ytcs))dyds) + cp =0 (6.13)
XX X 0 |yl<Y

in conjunction with continuity arguments. However, in this chapter we will
only extend the mean wavespeed/initial condition results of Chapter V to
equation (6.1). Since the proofs of these mean wavespeed results are

very similar to the proofs of theorems (5.2) in Chapter V, we simply quote

the mean wavespeed results here. These results are:

Theorem 6.6 (S -~ S): Assume that Hl1l, H2, H3, and H4 are satisfied. Sup-

pose that u(t,x) = ¢(x—<t) is a bounded strictly monotonic solution of

T

ut = f(uXX’uX’u, ‘[0 f 8(5sy,u(t"S,X‘“Y"'CS))dyds) '(6'1)
ly|<¥ .

Define ¢(-=) = ¢_ and ¢(4=) = ¢+. Suppose that there is a k > 0 and

5 B w0 eud ek

o(x) = ¢_ + E-lek " e o(e(k +6)X) as x > - ® (6.14a)

o' (x) = k_aek 5 % o(e(k +'5)}{) as x > - ® (6.14b)

" (x) = (k-)2 aek .y o(e(k +6)x) as x - - @ (6.14¢c)
L+ +

0G0 = ¢, +be * 4 o™ TIE 4s x st (6.14d)

+ k+ (P+~5)

¢'(x) = k be 4 o(e” y as x > + o , and (6.14e)
+ +

" (x) = (k+)2 bek L o(e(k —d)x) as x > + o (6.14F)

where a and b are some non-zero constants and & is some positive con-
stant. Finally suppose that ¢_ and ¢+ are both first order saddle points.
If ¢(x) satisfies tliese assumptions, then whenever u(t,x) is
any solution of equation (6.1) whose initial condition u(t,x) (t < 0) 1is
uniformly Hoelder continuous (with some exponent o > 0), has u(0,x) in

Hz, and for all t < 0 satisfies
o sl
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¢__ - a' < u(t,x) < ¢_ + o' for all x-ct < - Xp , (6.15a)
oy - a' < u(t,x) < o, F a' for all x-ct > + Xy , (6.15b)
min{¢_,¢+} - o' < u(t,x) < max{¢_,¢+} + o' for all x (6.15c)

for any o' > 0 sufficiently small and any =xp > 0, then u(t,x) must

propagate with mean wavespeed c.

Theorem 6.6 (N - S): Assume that hypotheses Hl1, H2, H3, and H4 are satis-

fied. Suppose there is a ¢, and a ¢y > ¢; such that for each ¢ in
[c1,cod, there exists a bounded strictly monotonic solution u(t,x) =

¢ (x-ct,c) of

B
i, = 80 .u ,u,‘[. ,[ ta %, oo e bagds) . (61)
t XX X 0 ]y|<Yg Rl Y) ’

Suppose also that for each ¢ in [ecj,c;] that ¢(-=,c) = ¢_,
that ¢ (+=,c) = ¢+, and that ¢(x,c) and %;-¢(X,c) are continuously
differentiable in c¢. Further, suppose that there is a continuous

k (¢) > 0 and k+(c) < 0 such that for each e in [ey,cyl

k (e)x % O(E(k_(c)+6)x

p(x,c) = ¢_ + a(c)e ) as x -+ - », (6.16a)

k™ (e)x O(E(k_(C)+6)X) a8 &+ =%, (6.165)

K (ox o(e(k'(c)+a)x)

¢_(x,c) = a(e)k (c)e
X

¢ (x,0) = a(e) (k (c))? as x + - =, (6.16¢)

+
k (e)x * B

(e(k+(c)-6)x

k+(c)x & 0(.e(k.-'-(-:)—é)x

¢ (x,c) ¢+ + b(c)e ) as x =+ + o, (6.164)

Bledik® te)e

¢ (x,c) ) as x + + o, (6.1l6e)
) + K" (e) (k" (c)-8)x
¢ (x,0) = ble) (K (e))? e SR g afe~ ¥ ) as x + + », (6.16f)
where a(c) and b(c) are non-zero constants and § is some positive con-
stant. Finally, suppose that ¢+ is a first order saddle point and that
¢_ 1is not a first order saddle point.

If ¢(x,c) satisfies the above assumptions, then whenever u(t,x)

is any solution of equation (6.1) whose initial condition u(t,x) (£ < 0)
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is uniformly Hoelder continuous (with some exponent o > 0), has u(0,x)

in Hi, and satisfies for all t < 0

¢+ - qp < u(t,x) j_¢+ + qy for all X > xg and any xg , (6.17a)
¢ < u(t,x) §>¢+ + qp for all x if ¢(x,c) is increasing in x, and
(6.17b)

¢+ - qp < u(t,x) ¢ for all x if ¢(x,c) is decreasing in x,
(6.17¢c)

then we can conclude the following:
(1) 4if for any ¢ in TYej,cs] there is a B > 0 such that
e“k—(c)y!u(t,x)—¢_| >B for ally = x-ct < 0 and t <0
and if qp > 0 is sufficiently small, then u(t,x) cannot travel with
mean wavespeed larger than c;
(2) if for any ¢ in [c1,¢51 there is a B > 0 such that
e_k_(c)ylu(t,x)—¢_f < B for all y = x-ct < 0 and ¢t <0
and if qp > 0 is sufficiently small, then u(t,x) cannot travel with
mean wavespeed smaller than c;
(3) 4if for any c¢ in ([cj,c;] there is a By, By, > 0 such that
By < e_k—(c)y]u(t,x)—¢_| < By forall y = x-ct < Oand t <0
and if q,; > 0 4is sufficiently small, then u(t,x) must travel with
mean wavespeed c¢ and must have finite dispersion; and

(4) 1if for any ¢ in (cy,c5)

o KT (eh)Y

lim (t,x)-¢ | = 0 for all £t < 0O and all u >0 ,
}{—)-_m

lim e(—k (c)—“)ylu(t,x)—¢_| = 4w for all t < 0 and all y > 0 ,
X—00

where y = x-ct, and if qy > 0 is sufficiently small, then u{t,x)

travels with mean wavespeed ¢ but may not have finite dispersion.
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Theorem 6.6 (N -+ N): Assume that hypotheses Hl1, H2, H3, and H4 are satis-

fied. Suppose there is a ¢y and a c¢» > ¢; such that for each ¢ in
[c1,c2] there exists a bounded strictly monotonic solution u(t,x) =

¢(x-ct,c) of
T
Ut = f(uxx:ux’u:‘{ \fl-y <Yg($ay,u(t"5,x'"}’))dyd5) . (6'1)

Suppose also that for each ¢ in T{ej,c]l that ¢(-«,c) = ¢_, that

0
$(+o,c) = ¢+, and that ¢(x,c¢) and 3;‘¢(x,c) are continuously differ-
entiable in c¢. Further, suppose that there is a continuous k (c) > 0

+
and k (¢) < 0 such that for each ¢ 1in [cj,col

o(x,c) = o+ a(e) ek (e)x + o(e(k (c)+6)x) HE & -~ (6.16a)
¢X(x,c) = a(c)k—(c) ek (e)= + o(e(k (C)+S)X) as x > - o, (6.16b)
b (60) = a(e) &T(e)? & (V¥ 4o (X o o _a (6.160)
Sl o= i K (e)x (F (e)-8)x
Xx,c) = ¢+ + b(ec)e + o(e ) as X > + =, (6.16d)
+ + '
¢x(x,c) = b(c)k*(c) ek (e)x + o(e(k (C)“G)X) as x > + o, (6.16e)
+ +
¢xx(x,c) = b(c)(k+(c))2 ek (e)x + o(e(k (c)wS)x) as x » + =, (6.16f)

where a(c) and b(c) are non~-zero constants and & is some positive con-
stant. Finally, suppose that neither ¢ _mnor ¢+ is a first order saddle
point.
If ¢(x,c) satisfies the above assumptions, then whenever

u(t,x) is any solution of equation (6.1) whose initial condition wu(t,x)
(t < 0) is uniformly Hoelder continuous (with some exponent a > 0), has
u(0,x) in Hi, and satisfies

min{¢_,¢+} < ult,x) < max{¢_,¢+} for all x and all t <0 ,(6.18)
then we can conclude the following:

(1) 1if for any ¢ in [cj,cp) there is a B;, By > 0 such that
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-k‘(cyl

x-ct <0 and t < 0 , and

By < e u(t,x)~¢_[ for all vy

(o)
By > e - y]u(t,x)—¢+| for all y = x-ct > 0 and £ <0 ,

then u(t,x) cannot travel with mean wavespeed larger than c;
(2) 4if for any ¢ in f[ec;,cy] there is a By, By > 0 such that
-k
By > e & (Y uce,x)-¢ | for all y = x-ct <0 and t <0,
) i

By < e Vlu(t,x)-¢,| for all y = x-ct >0 and t=<0,
then wu(t,x) cannot travel with mean wavespeed smaller than il

(3) 4if for any c¢ in (cj,ep] there is a By, By, B3, By > 0
such that

-k (c)y _
B < e |u(t,x)-¢_| < By for all y = xct <0 and t <0,
k' (e)

By < e ylu(t,x)—¢+[ < By for all y = x-ct >0 and t <0,
then u(t,x) travels with mean wavespeed c¢ and has finite dispersion,
and

(4) 4if for any c¢ in (cj,cs)

—(k (c)- . —(k_ 2
lim e (k (e) 11)y]u(t,x)~¢"| =0, lime L (c)*u)y[u(t,x)—¢n| =.4+ o,
X0 XH=co
- (e)-w) (" (e)+n)
lim e y]u(t,x)—¢+| =4+ o, lim e EATH y|u(t,x)—¢+| =0
Xrtoo X0
for all u > 0 and all t < 0 (where y = x—ct), then u(t,x) travels with
mean wavespeed ¢ (but may not have finite dispersion).

Basically theorems 6.6 (S + 8), (N~ S), and (N - N) show that

for large classes of initial conditions u(t,x) (t < 0), the mean wave-

speed of the resulting solution of equation (6.1) depends entirely on

(1) the asymptotic decay rate of wu(t,x) to ¢_ as x> - = for
t <0 4if ¢_ dis not a first order saddle point, and

(2) the asymptotic decay rate of u(t,x) to ¢, as x>+ for
£ <0 if LN is not a first order saddle point.
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Theorems 6.6 (S5 + S), (N + S), and (N » N) are very similar
to theorems 5.2 (8§ - S8), (N » 8), and (N » N) of Chapter V. The only
major differences are that

(1) 1in theorems (6.6) conclusions are drawn about the mean wavespeeds
of solutions of equation (6.1), whereas in theorems (5.2) conclusions are
drawn for equation (5.1);

(2) din theorems (6.6) we needed to make assumptions about the asymp-
totic behavior (as x » + «) of the monotonic traveling waves (see
equations (6.14) and (6.16)), whereas in theorems (5.2) we knew that the
monotonic traveling waves always satisfy these asymptotic assumptions;

(3) for theorems 6.6 (N + S8) and (N - N) we neéded to assume the
existence of all the monotonic traveing waves we used, whereas in theorems
5.2 (N - S) and (N -+ N) we needed only to assume the existence of a
single monotonic traveling wave; and

(4) the restrictions on the initial conditions in theorems (6.6) are
for all t < 0, whereas the restrictions for theorems (5.2) are only for
t = 0.

Let us note that for almost all equations of the form (6.1), in
practice almost every traveling wave and steady state solution u(t,x) =
¢ (x-ct,c) satisfies the asymptotic restrictions of equations (6.14) and
(6.16). Thus these asymptotic behavior requirements in theorems 6.6
(5 +8), (N>» 8), and (N -~ N) are relatively innocuous.

This completes our presentation of the mean wavespeed/initial
condition results for equation (6.1). We complete this chapter in the

next section with some final remarks.
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6.4 Some general remarks. We have found in this chapter that the sta-

bility results for monotonic traveling waves can be extended to equations

of the form

T
= f(u__,u ,u, f E(S,Ysu(t"S,X—Y))dde) . (6-1)
e xx’ X -I; ly| <y

We also found that the mean wavespeed/initial condition results are readi-
ly extended to equation (6.1). However, we are unable to extend the in-
stability results for non-monotonic waves to equation (6.1).

In this chapter we developed only the most readily obtainable
results about equation (6.1). Many potential areas of research have been
ignored. For example, one could examine the asymptotic behavior (as
X > + ») of the monotonic traveling wave solutions of equation (6.1).

This would determine when the hypotheses about the asymptotic behavior of
monotone traveling waves in theorems (6.6) are satisfied. These asymptotic
results could also potentially be used in conjunction with continuity argu-
ments to prove existence/non-existence theorems about monotonic traveling
wave solutions of eguation (6.1), similar to theorems (5.1) about solutions
of equation (5.1).

Establishing intersection results similar to lemmas (4.7) and
(4.8) is another potentially interesting research area. Since equation
(6.2) has a hair-trigger effect, whenever one caun establish intersection
results similar to those in lemmas (4.7) and (4.8) for any class of non-
monotonic steady state solutions of (6.2), then instability of those
steady states follows immediately.

This completes our treatment of equation (6.1). 1In the next
chapter we treat a similar topic. Specifically we will extend the results

of Chapters IV and V to some systems of equations.
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Chapter VII
EXTENSION TO MULTIPLE DEPENDENT VARIABLES

In this chapter we extend some of the results of Chapters IV and
V to a special class of systems of equations which contain no integrals.
As in Chapter VI we will consider only direct extensions, and we will be
as brief as possible. Basically we will find that the stability results
for monotonic waves and the mean wavespeed/initial condition results are
still valid. However, we will not be able to prove the instability of
non-monotonic waves.

To be more specific, in this chapter we will treat systéms of
equations of the following form

uii) = F(i)(uii),uii),ﬁ) $ o Lowsagih (7.1")

where Ffi) > 0 and F(;) > 0 for'all j # i and all i, and where

3
~ _ . (1) (m) : ;
1= (u 3 % w5 o kL }. Throughout this chapter we will assume that hypo-

theses H2 (smoothness of system (7.1')), H3 (parabolicity of system (7.1')),
and H4 (existence of solutions to the initial value problem) are satisfied.
We also assume that a very large M > 0 has been chosen, and we work with
the resulting system of equations
uﬁi) = f(i)(uii),uii),ﬁ) 1= Toawasil 4 (7.1)

where f = %M'

Briefly, in the first section of this chapter we will derive the
stability results for monotonic waves. In section (7.2) we will discuss the
instability results for non-monotonic waves. We will derive the ﬁean wave-
speed/initial condition results in gection (7.3). Finally, we will use the

last section, section (7.4), to express some general remarks. We start with

the stability of monotonic waves.



-283~

7.1 Stability of monotonic traveling waves. 1In this section we extend

the stability results to monotonic traveling wave (and steady state) solu-
tions of system (7.1). To do this we need to first appropriately redefine
our stability concepts, the concept of a "node" and a "saddle point'", and
the concept of a monotonic traveling wave. We will also need to introduce
some results from Perron-Frobenius matrix theory [2] . We begin by re-
defining our stability concepts appropriately.

Let w(x) be any continuous function with w(x) > 1 for all
x. Then any steady state solution (t,x) = ¢§(x) of the system
(1)

i) + cu_

N TG = Leeom  (7.2)

XX
is defined to be Ef-stablg_ if and only if given any € > 0 there is a

8§(e) > 0 such that every solution #(t,x) of (7.2) satisfies

|{u(i)(t,x)—¢(i)(x)}w(x)| < e for all x, all t >0, and i =Vl,...,m
(T3)

whenever the initial conditions @(0,x) are in Hi and satisfy

|{u(i)(0,x)—¢(1)(x)}w(x)| < 8(e) for all x and i='1,...,m .
(7.4)
Similarly, §(x) is defined to be Qw—stable if and only if given any

€ > 0 there is a &(e) > 0 such that every solution 1u(t,x) of (7.2)
satisfies

|u(i)(t,x)—¢(i)(x)| < g for all x, all £t >0, and 1 = 1,...,m
€7:5)

whenever the initial cqnditions a(0,x) are in Hi and satisfy (7.4).
A solutien ii(t,x) = ¢(x) which is not c¢V-stable will be called QY:
unstable, and if it is not Qw-stahle it will be called §w~unstable.

We now define the concepts of "singular point', '"node", and
"saddle point". As in Chapter VI, there is no phase plane representation

of the steady states {i(t,x) = $(x) of system (7.2). Since the definitions
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of "singular point", "node", and "saddle point" cannot refer to features
of a phase plane, we will instead choose the definitions of these terms
so that the results in this chapter are analogous to those in previous

chapters. Thus, we define @0 to be a singular point if and only if

%(0,0,:50) = 6 s (7-6)

and to be a regular singular point of order one if and only if

Hl+A

£(0,0,$0+R) = AR + o(] | Yy as ||al]l 0 , (7.7)
where the matrix A is irreducible (see reference [9] ) and nonsingular.
If all the eigenvalues of A have negative real parts then we define ¢y

to be a first order saddle point, and if A has an eigenvalue with posi-

tive real part then we define &0 to be a first order node.

We now define monotonicity appropriately. If é(x) has either
all ¢(i)(x) increasing for all x or has all ¢(1)(x) decreasing for
all x, then we define &(x) to be monotone. If in addition ¢(1)(x) ¥ 0

for all i and x, then $(x) will be called strictly monotonic. 1If $(x)

has some ¢(i)(x) increasing for all =x and some decreasing for all x,

then we define é(x)' to be quasi-monotonic. TIf ¢(i)(x) # 0 for all i

and x and if &(x) is quasi-monotonic, we will call &(x) strictly

quasi-monotonic.

We now introduce two needed results from Perron-Frobenius (PF)
theory. Let &0 be any regular singular point of order one, and define

the matrix A by

R =
Agy = £33 (0,0,89)
as in equation (7.7). By hypothesis H3, Aij > 0 for all 1 # j. Also,
by our definition of regular singular point, A is irreducible. Perron-

Frobenius (PF) theory therefore implies that
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(1) the eigenvalue of A with largest real part is real and simple,
and

(2) the eigenvector corresponding to the(real) eigenvalue with lar-
gest real part can be taken to have all positive components. These results
are discussed in reference [9] for example.

With the above definitions and the two results of PF-theory, the

stability results for monotonic waves can now be readily extended to solu-
tions of system (7.1). We begin with the stability results for constant

steady state solutions 1i(t,x) = &0.

Theorem 7.1: Assume that hypotheses H2, H3, and H4 are satisfied. Suppose

further that @(t,x) = &0 is a constant steady state sclution of

I e I S RN - L N
t XX X X

Then

~

(1) if $D is a first order saddle point then wu(t,x) = ¢y is
c”-stable with w(x) £ 1, and
(2) if @0 is a first order node then i(t,x) = 50 is Qw—unstable

with w(x) =1 +e & + o for any x > 0 sufficiently small.

Thus, once again saddle points are very stable constant solutions
and nodes are unstable constaﬁt solutions.

We will prove theorem (7.1) in some detail, since the proof clearly
illustrates how PF-theory is used with the maximum principle to obtain sta-
bility results. Recall that a function u(t,x) is defined to be an upper
function of system (7.2) when

usi) - f(i)(u;i),uii),ﬁ) - cuii) >0 for all x and all 1 =1,...,m .

Similarly, u(t,x) 1is a lower function of system (7.2) when
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u(i) - f(i)(u(i),u(i),ﬁ) - cu(l) <0 for all x and all i=1,...,m
t xx ' x x =

Proof of theorem (7.1): Define the matrix A by

(i)
A5 T

(0,0, ¢0) .

Let X be the eigenvalue with largest real part of the matrix A, and let

d be its corresponding eigenvector. From PF-theory, A 1is real and we can

(1) (m) OL(i)

assume that 4& = (a 5 i 0b ) has > 0 for all i,
To prove part (1), assume that $0 is a saddle point. Then

A < 0. Define

B(e,t,x) = e&e)\t/2 + @0
We calculate
(1) ( ) (i) ( ) .= (1)
Bt - (B x ,B) - ch
e %Elextfz e f(i)(0,0:$0 + aeAt/Z&)
- - peret/2 (D) o(ee’t/2y

Thus, there is an ¢, > 0 such that ﬁ(e,t,x) is an upper function and
ﬁ(-e,t,x) is a lower function of system (7.2) for every e din (0,eq).
The maximum principle now shows that any solution u(t,x) of (7.2) whose
initial condition {i(0,x) dis in Hi and satisfies

B(i)(—e,O,x) j_u(i)(O,x) j}B(i)(E,O,X) for all x, all i, and any € in (0,eq),
must also satisfy

(D (i)(t’x)_i 858 e voey Bow mll = @ll t >0, and all i

(-e,t,x) <u
Thus, small bounded initial perturbations decay exponentially in time.
Therefore, when @0 is a saddle point of order one we have established that
u(t,x) = $D is Cw—stable with w(x) =1

Part (2) is proved similarly. We note that since $0 is a node,

A > 0, We now define
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At/4

by + cde sech kx

E(E,t,X)
A short calculation shows that for any «k > Q0 sufficiently small, there

is an € > 0 such that ﬁ(e,t,x) is a lower function whenever

0 < seAt/4_i

€g. Define 1u(e,t,x) as the solution of system (7.2) with
the initial condition
t(e,0,x) = ﬁ(s,O,x)

The maximum principle now implies that for any e in (0,eq),

¢§i) (1) elt/q sech kx j_u(l)(e,t,x)
At/4
for all x, all i, and all t such that 0 < ce < g .

< ¢§i) + €a

Therefore, when &0 is a node of order one we have established that
a(t,x) = $O is Cw—unstable with w(x) =1 + e * 4 & for any k > 0
sufficiently small.

This completes the proof of theorem (7.1).

The stability results in theorem (7.1) for constant solutions of
system (7.2) are analogous to the results in theorem (4.2) about constant
solutions of equation.(A.Z). Following the treatment in Chapter IV, we will
now briefly derive the asymptotic behavior of the monotonic steady state
solutions of system (7.2). We will not prove the correctness of the asymp-
totic results we obtain. Instead, we note that their correctness is a con~
sequence of the material in Chapter 13 reference [6] .

Suppose that idi(t,x) = $(x) is a monotonic steady state solution
of system (7.2). Define ¢(-») = ¢_and ¢(+=) = $+, and assume that both

¢ and ¢, are regular singular points of order one. Also define the diag-

" +
onal matrices D and ﬂ; by
1
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= - il = - - (i)
Dl,ii i fl (0’0:¢_) D2,ii = (0 0 ¢ )
+ o i) 2 b - (i)
define the matrices A and A+ by
- g4) 7 S (. 5. ~

and finally let I be the m X m identity matrix. Note that the regulari-
ty assumptions about @_ and $+ imply that A” and A+ are both irre-
duscible and non-singular. As x > - ® and as x > + o, @(x) must

satisfy the asymptotic equations

D] 43 o0 () + (@, ;44 ) + % a1 6D -y -
(7.8a)
as x =+ =~oo, 1 =1,...sm
=2 i + i.
D} 30 6o+ o L Hesi e + T Al 6D -0 - o0
3 (7.8b)
as x>+ e, i=1,...,m .
We conclude that the asymptotic behavior of @(x) is given by
@(x) = ﬁek s o(e(k +5)X) as x > - «© and (7.9a)
+ +
3 = 56X X+ 0™ "E 4 x4 4w, (7.9b)

; -~ +
where & > 0 1is a positive constant, where k and k are nonzero constants

such that the matrices

A (k) = (K)D] + kK (Datel) + A
Atach = ahat + kefren) + AT

are singular, and where a and B are nonzero null vectors of A (k ) and
A+(k+), respectively. Moreover, the asymptotic behavior of $X(x) and

(x) (as x + + ») can be obtained by formally differentiating the ex-

-2

XX

pressions in equatiomns (7.9).
~ - +
Since ¢(x) is monotonic, we see that k and k are real. 1In

fact k > 0 and k+ < 0. Also since $(x) heing monotonic implies that
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either all ¢(i)(x) are increasing or all ¢(i)(x) are decreasing, either
A} 5 g gna B2

a® <0 and v® >0 for a1 1 . (7.10b)

a

| v

< 0 for all i, or (7.10a)
However, we know from PF-theory that A_(k—) and A%(k+) each have a simple
real eigenvalue A and X+ whose corresponding eigenvectors have all posi-
tive components. Thus, A = A+ = 0 since the non-zero null vectors of

A (k) and A+(k+) satisfy either (7.10a) or (7.10b). This implies that all

the components of the null vectors of A (k ) and A+(k+) must be nonzero.

That is, we now know that either

a(i) > 0

a(i) < 0 and b

and b(l) < 0 for all 4i, or (7.11a)
(1) > 0 for all 4 . (7.11b)
To summarize our brief asymptotic analysis, we have shown that

whenever {i(t,x) = $(x) is a monotonic steady state solution of system

(7.2) and whenever §(-») = § and $(+=) = $

, are both regular singular

points of order one, then the asymptotic behavior of $(x) is given by

d(x) = &_ + éek = 4 o(e(k +5)X) as X > — o, (7.12a)
&x(x) = k—éek .4 o(e(k +5)x) as x > — o, (7.12b)
d (%) = (ku)2 éek = 4 o(e(k +S)X) as X > — ™, (7.12c)
- ~ kT (k-5
d(x) = ¢+ + be * 4+ o(e" T )X) as ¥ > + =, (7.124)
. s Yo AR T
¢ (x) = k be + o(e ) as X > + «, (7.12e)
* i xh tkt-8)x
$xx(x) = (K2 be" T+ 0™ ™" as x>+ w, (7.12£)

where & is some positive constant, where k  and k+ are some real con-—
stants with k > O and k' < 0, and where a and b are some real vectors
with all nonzero components. In other words, ¢(1)(x), ¢i1)(x), ¢;i)(x),
¢(2)

(o, TR, ¢(m}(x) all decay asymptotically at the same exponential rate
XX

as X + - ® and all decay at the same exponential rate as x =+ + .
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We now develop the stability theory for monotonic steady state
solutions of system (7.2). This development will parallel the treatment
in sections (4.4) through (4.6) of Chapter IV and the treatment in section
(6.1) of Chapter VI. We will not present the proofs of the remaining re-
sults in this section. The proofs are very similar to the proofs in sec-
tions (4.4) through (4.6) of Chapter IV. The only major change is the
insertion of the asymptotic results of equations (7.12) at the appropriate

points.

Theorem 7.2: Assume that hypotheses H2, H3, and H4 are satisfied. Suppose

$(x) 1is a bounded strictly monotonic steady state solution

that 1(t,x)

of

e

t = (1) (Uii)!u)ﬁi) ,i) + cu}({l) i=1,...,m . (7.2)

X
Suppose that ¢(-») and ¢(+=) are both regular singular points of order
one. Define k as the (positive) exponential decay constant of g (x)

+
as x - - », and define k as the (negative) exponential decay constant

of $(x) as x -+ + o, Then 1u(t,x) = $(x) is C"-stable with

1
T R T—
1080 o |

w(x)

or equivalently, with

1l
[
+
1]
-+

w(x)

We see that strictly monotonic steady state solutions of system
(7.2) have at least a limited stability. In the next two lemmas we will
construct upper and lower functions of equation (7.2). These new upper and

lower functions will allow us to improve our basic stability results.

Lemma 7.3: Assume that hypotheses H2, H3, and H4 are satisfied. Suppose
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that @(t,x) = ¢(x) 1is a bounded strictly monotonic steady state solution
of system (7.2). Define ¢(~=) = $ and $(+) = $+, and assume that
both @_ and $+ are regular singular points of order one. Also, define

- +
the matrices A and A by

s (1) * L ell) ~
Apy ® £357(0,0,6) AL, = £517(0,0,8)

5 2 = + :
and let & and a, be the eigenvectors of A and A (respectively) cor-

responding to the eigenvalues with largest real part. Finally, let a

and &+ have all positive components.

Then
(1) if $+ is a saddle point of order one then
WP 2 80 ) + a@a o™ e -e P17 o= 619
(7.13a)
i=1,...,m and
1D e, 2 6P ene) - a@aPp® aene)-o Py (o= o)
(7.13b)

i=1,...,m
are upper and lower functions (respectively) of system (7.2). Here,
h(t) = Em(l—e-St) + hy , q(t) = ee“St . (7.14)
where s and k are particular positive constants, hy dis arbitrary and
¢ 1is any constant with sufficiently small magnitude and with the same sign

as ¢ii)(x).

(2) if $ is a saddle point of order one then

T e = 0@ etneen) + a@aP BP0 el (40
(7.15a)
i=1,...,m and

a@ e, = 4D o) - a@aPp P aen)/ o0
(7.15b)

i=1,...,m

are upper and lower functions (respectively) of system (7.2). Here, h(t)
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and q(t) are defined as in the preceding case.

Lemma 7.4: Assume that hypotheses H2, H3, and H4 are satisfied. Suppose
that {i(t,x) = %(x) is a bounded strictly monotonic steady state solution

of system (7.2). Define ¢§(-») = $_ and &(+») = § and assume that

+)
both $_ and $+ are first order saddle points. Also, define the matrices

A” and AT by

Aij

and assume that there is a vector & with all positive components such that

o 4 o ot
B 0040 £ =5

1
I

(0,0,6)

2 A, 0.(']) < 0 and 2 A+ a(j) <0 for all 4i=1,...,m .
1 M 7

Then

e, 2 0@ o) +lamae™] 121, n and @.16a)

WD 0 = 6D onie)) ~lq(t)a(i), £ % Lo s ol (7.16b)

are upper and lower functions (respectively) of system (7.2). Here,

h(t) = ex(l-e °%) +hy , q(t) = ee °F (7.14)

where s and k are particular positive constants, hg 1is arbitrary, and

€ 1s any constant with sufficiently small magnitude and with the same sign

il)(x).

as ¢

Theorem 7.5 (The stability of monotone waves): Assume that hypotheses H2,

H3, and H4 are satisfied. Suppose that w(t,x) = &(x) is a bounded strict-

ly monotonic steady state solution of

IEORRMCO PR COR CS
XX X

2 S
; -

,u) + cu i R | (7.2)

Define ¢(-=) = %_ and ¢ (+®) = $+ and assume that both &_ and $+ are
- +
regular singular points of order one. Also define the matrices A and A

by
- (1) ~ Sl = 3 ~
Aij = f3j (0,0,¢ ) and Aij f3j (o,o,¢+) .
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- +

Finally, let k > 0 and k < 0 be defined by

. K x .

p(x) ~ de as x > - o and ¢(x) ~ be  as x> 4w
where a and b are non-zero vectors.

Then d(t,x) = ¢(x) is c¥-stable where

(1) if 5_ and $+ are both saddle points and if there is a vector

& with all positive components such that

R . 7
¥ e 69 <0 and T &, Y9 <0 forall 4=1,..08 ,
S :

14
g @
then w(x) = 1;
(2) if @ is a saddle point then w(x) = 1 + : s OF
- 1)
|r4{¢ (x) }|
+ - X
equivalently, w(x) = 1 + e_k ® 2
(3) if ¢ is a saddle point then w(x) = 1 + 1. ¢ OT
* ERONSECIN
_ - Tx
equivalently, w(x) = 1 + ewk X; and

(4) 1if neither $_ nor 5 is a saddle point then

s
(1}———— , or equivalently, w(x) = 1 +

(%) |

-k x wk+x
e + e

wix) = 1 +
|

X

Lemma (7.3), lemma (7.4), and theorem (7.5) are very similar to
lemma (4.3), lemma (4.4), and theorem (4.5) in Chapter IV. The upper and
lower functions contained in lemmas (7.3) and (7.4) are natural extensions
of those developed in lemmas (4.3) and (4.4) of Chapter IV, and the stability
results in theorem (7.5) are very similar to the results in theorem (4.5).

In fact, basically theorem (7.5) shows that bounded strictly monotonic steady
state solutions {i(t,x) = i(x) of system (7.2) are stable with respect to
small initial perturbations which are

(1) bounded as x - - ©» (as x - + «) vyhen @(x) goes to a first

order saddle point at x = - «» (at x = + «), and
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(2) decay asymptotically no slower than ¢§1)(x) as x > - ® (as

x -+ + «) when $(x) goes to a first order node at x = - « (at x = + «),.
There are two unexpected limitations of the stability theory

developed by theorem (7.2), lemma (7.3), lemma (7.4), and theorem (7.5).
The first is that we needed to assume a consistency relation between the
matrices A and A+. Namely, we needed to assume that there is a vector
& with all positive components such that

% 2. a8 <0 ama I AT, 6599 2 Sar ALl 4= lyswasfl
3 = N .

This condition could very well be unnecessary.

The second unexpected limitation of the theory is that it does
not treat quasi-monotonic steady states i(t,x) = $(x). (Recall that quasi-
monotonic steady states are solutions ¢(x) which have some ¢(i)(x) in-
creasing for all x and some ¢(i)(x) decreasing for all x). Although
this limitation is unexpected, some such general limitation is necessary.

To see this, consider the following common situation. Let m = 2, and

suppose that ¢(x) = (¢(1)(x),¢(2)(x)) is a strictly quasi-monotonic steady
state solution of

£ D 4 ey + ct¥ =0,i=1ana2 .
Suppose also that gLt ¢§1),¢§i), ¢(2), ¢§2), and ¢§i) all decay asymp-

totically at the same exponential rate as x + + = and that they all de-
cay at the same rate as x - — «, Finally, let us suppose that there is a

§ > 0 such that

e PRV s

4y > 8 >0 for j # i, all i, and all x .

Then a short calculation shows that

*E(i)(t,x) = ¢(i)(x) + l¢ii)(X)IEESt i=1and 2
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is an Jower function of (7.2) for all s sufficiently small and all ¢
st

and t such that 0 < ee < gg (for some €4 > 0). Thus a(t,x) = &(x)
is Ewuunstable with w(x) = 1 + T“TT%—MMI , and so we conclude that quasi-
$ (x)
X

monotonic steady states are commonly less stable than monotonic steady
states.

This completes our development of the stability theory for con-
stant and monotonic steady state solutions of (7.2). In brief, the sta-
bility theory we have developed is very similar to that of section (4.2)
and sections (4.4) through (4.6) of Chapter IV. However this stability
theory is incomplete. We have not

(1) found whether the consistency relations between A” and A+ (in
lemma (7.4) and theorem (7.5)) are necessary,

(2) discovered whether all quasi-monotonic steady states are un-—
stable,

(3) treated the cases where $(x) is monotonic but not strictly
monotonic,

(4) treated the cases where either A or A+ ig reducible ., gyn-
gular, or

(5) extended the results to traveling plane wave solutions of (7.1).
Finally, note that for any particular steady state solution of any particu-
lar system of equations the methods we used in this section may very use-

ful even when the general theory we developed is not applicable.

7.2 Instability of non-monotonic waves. We have not been able to establish

the instability of non-monotonic steady state solutions a(t,x) = $(x) of

aoh) o f(i)(u(i),u(i),ﬁ) 4t (7.2)
t xx 7 x x
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The problems involved in extending the instability results of theorem (4.6)
to systems of equations are precisely the same problems that arose in sec-
tion (6.2) when we discussed the possible extension of theorem (4.6) to
equations containing integrals. Since these problems are discussed in
section (6.2), we will not discuss them here.
The situation is very similar to that in section (6.2). An in-

teresting conjecture is that the instability of non-monotonic steady state

solutions @(t,x) = ¢(x) of system (7.2) is exactly the same as the in-

stability of steady state solutions of equation (4.2). One can prove that

system (7.2) has a hair-trigger effect, and S0 to prove this conjecture one
needs only to develope intersection results for the ordinary differential
system of equations

£ oD 6 5y + oV

p-9 X

=0 = lieasi

that are similar to lemmas (4.7) and (4.8). If such intersection results
were established, the instability of non-monotonic steady state solutions
would immediately follow.

We now confinue to the next section, where we extend the mean

wavespeed initial condition results of Chapter V to the system of equations

uéi) = f(i) (u)(:}j;) ’uii)sl}) . (7.1

7.3 Mean wavespeed and the initial conditions. In this section we will

extend the mean wavespeed/initial condition results of Chapter V to the

system of equations

L I G T S e (7.1)
t XX X

Recall that in Chapter V we considered equations

u_ = f(u ,u ’u) (5.1)
t XX X
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which have a non-constant bounded monotonic solution u(t,x) = ¢(x—ct,c).
For each major case of ¢(x-ct,c}) beinga S >SS, a N~-+S, asS >N, and
a N> N type monotonic wave, we determined

(1) when the existence of ¢(x-ct,c) implies the existence or non-
existence of similar monotonic waves at nearby wavespeeds,

(2) when the existence of ¢(x~ct,c) 1implies the existence or non-
existence of similar monotonic waves at the same wavespeed ¢, and

(3) the mean wavespeed of u(t,x) in terms of u(0,x).
We will not try to extend the existence/non-existence results for solutions
of (5.1) to solutions of system (7.1). Presumably for any specific sys-
tem of the form (7.1), one could establish existence/non-existence results
by employing knowledge of the asymptotic behavior (as x + + =) of solu-
tions of

£ D 4D 5y + 0D = 0 (7.17)

in conjunction with continuity arguments. However, in this chapter we will
only extend the mean wavespeed/initial condition results of Chapter V to
system (7.1). Since the proofs of these mean wavespeed results are very
similar to the proofs of theorems (5.2) in Chapter V, we will simply quote

(and not prove) the mean wavespeed/initial condition results here. These

results are:

Theorem 7.6 (S -~ S): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that #i(t,x) = ¢(x-ct) 1is a bounded strictly monotonic solution of
I Rl T T T (7.1)
€ XX X

$_ and ¢ (+») = ¢+, and assume that both @_ and $+

i

Define &(—w)

- +
are first order saddle points. Also, define the matrices A and A by
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. (1) % (i)
ij f3j 443 f3j

and assume that there is a vector 4d with all positive components such that

"

A

i

(0,0,3_) (0,0,9,)

E: A, . a(J) < 0 and 2 A-i.-. a(j) <0 forall i=1,...,m .
- ij p i]
J d

I $(x) satisfies these assumptions, then whenever #i(t,x) is

any solution of system (7.1) whose initial condition @(0,x) dis in Hi

and satisfies

oD ot <« P 0,x) < o) 4o forall i, all x<-x, , (7.18a)
¢ii) - ' < u(i)(O,x) < ¢ii) + o' for all i, all x > + x5 , and
(7.18b)
min{¢£i),¢ii)} - a' < u(i)(O,x) < max{¢£i),¢ii)} + a' for all i and all x,
‘ (7.18¢)

for any o' > 0 sufficiently small and any Xy, then wu(t,x) must travel

with mean wavespeed c.

Theorem 7.6 (N -+ S8): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose that there is a c¢; and a ¢, > ¢; such that for each ¢ in
[pl,cé], there exists a bounded strictly monotomic solution a(t,x) =
é(x-ct) of |

uéi) - f(i)(uii),uii),ﬁ) T (7.1)
Suppose also that for each ¢ in [e¢g,cp] that $(~»,c) = $_, that
$(+=,c) = $+, and that ¢(x,c) and %;—@(x,c) are continucusly differ-
entiable in c¢. Further, assume that &_ is a regular singular point of
order one and that $+ is a first order saddle point. Finally, define
k (c) > 0 by

Flxae) = 3+ a(eye ()% 4 (o (k (e)+o)x,

as x > = @
where ;(c) + 0 and & is positive, and assume that k (c) is continu-

ous in c.
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If ¢(x,c) satisfies the above assumptions, then whenever

t(t,x) dis any solution of system (7.1) whose initial condition #(0,x)

is in Hi and satisfies

¢i1) - qp f_u(i)(O,X) :_¢ii) + qp i=1,...,m
(7.
for all x > xy for any xg9 ,
¢Ei) j_u(i)(o,x) §_¢ii) + qp 1= 100 vsm
(7.
for all x if ¢(x,c) is increasing in x, and
¢(l) - qy < "(i)(O,X) = ¢(i) i=1,...,m
* B - - 7.

for all x if ¢(x,c) is decreasing in x,
then we can conclude the following:
(1) 4if for any ¢ in ([e;,cp] there is a B > 0 such that
E A0 5 25 = $BY) 5§ (f = Tyuenel For ALl ® % B
and if qg > 0 dis sufficiently small, then #(t,x) cannot travel
mean wavespeed larger than c¢;

(2) 1if for any ¢ in T{ec;,cp] there is a B > 0 such that
e—k-(c)xlu(i)(O,x) - ¢fi)l < B (i=1,...,m for all x < 0
and if qp > 0 is sufficiently small, then (tr,x) cannot travel

mean wavespeed smaller than c;
(3) if for any ¢ in f[ecq,co]l there is a By, By > 0 such
By < e_k—(c)xlu(i)(o,x)—¢£i}| < By (i =1,...,m) for all x <0
and if qy > 0 is sufficiently small, then u(t,x) must travel wi

wavespeed ¢ and have finite dispersion; and

(4) if for any ¢ 1in (cy,co)

lim (K (c)+“)x|u(i)(0,x)—¢fi)] =0 (i=1,...,m) for all p >
K=o
1im e-(k_(cy-u)x|u(i)(0,x)—¢fi)| =+ oo (i =1,...,m) for all u >

Kr—oo

19a)

19b)

19¢)

with

with

that

th mean

0

0
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and if qp > 0 dis sufficiently small, then u(t,x) travels with mean

wavespeed ¢ but may not have finite dispersion.

Theorem 7.6 (N = N): Assume that hypotheses H2, H3, and H4 are satisfied.

Suppose there is a c¢; and a ¢, > ¢; such that for each ¢ in [e;,cq]
there exists a bounded strictly monotonic solution @(t,x) = ¢(x-ct) of

ur? = e M g 4w (7.1)

Suppose also that for each ¢ in f[eq,c,] that $(—w,c) = &_, that

and that ¢(x,c) and %; $(x,c) are continuously differ-

$(+msc) o $+s

entiable in e¢. Further, assume that $_ and $+ are both regular singu-

lar points of order one. Finally, define k (c) >0 and k+(c) < 0 by

Joead = 54 At 9% 4 5p(F (elHih

+
$(x,c) ek (e)x + o

ag xX ¥ = @

+
+ b(e) o6 =i

I
=t

(

> +
- ) as x L

(where &(c) + 0, b(e) # 6, and & is positive) and assume that k (c)
and k+(c) are continuous in c.

If ¢(x,c) satisfies the above assumptions, then whenever {i(t,x)
is any solution of system (7.1) whose initial condition 1{i(0,x) is in Hi
and satisfies

() 43y

u(i)(o,x) < max{¢(i) ¢£j)} i=1,...,m for all x

5
—

min{¢
then we can conclude the following:

(1) if for any ¢ in [cy,co] there is a By, By > 0 such that
e-k_(c)x

]

By < ]u(i}(O,x)~¢£i)| @ l,...,m for all x < 0 and

e—k+(c)x

By > |u(1)(0,x)-¢il)| (i lyvesym) For all x> 0 ,
then 1@(t,x) cannot travel with mean wavespeed larger than c;

(2) 4if for any c¢ in [(cy;,cs) there is a B3, Bz > 0 such that
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B > e—k (c)xlu(i)(o,x)—¢£i)| (&1 1,...,m) for all x < 0 and

+
g2 < e XD 0,04 -

1,...,m) for all x>0 ,
then 4(t,x) cannot travel with mean wavespeed smaller than c;

(3) if for any ¢ in [e;,cp] there is a By, B, B3, By > O such
that

By < e—k (C)Xlu(i)(ﬂ,x)m¢£i)| < By 1

lyo..,m for all x < 0 and

5 .
By < o (C)Xlu(i)(o,x)-¢il)| < B, 1

l,...,m for all x>0 ,
then G(t,x) travels with mean wavespeed c¢ and has finite dispersion;

and

(4) 4if for any ¢ in (cy,cp)
e_(k—(c)-U)XfU(i) (O,X)"“Cpf_i)l = 0

lim s
K=o
1m ek @MF Do by v W) Lt w
Xr-co
+
1im g W (el E M) g b @ e,
+
Xt
+ ) 2 :
lim e-(k (c)+u)xfu(1)(0’x)_¢(1)‘ = 0
e ) e

for all i =1,...,m and for all u > 0, then 1ii(t,x) travels with mean

wavespeed c¢ (but may not have finite dispersion).

Basically, theorems 7.6 (S5 - S), (N - S), and (N > N) show
that for large classes of initial conditions 1(0,x), the mean wavespeed
of the solution 1{i(t,x) of system (7.1) depends entirely on

(1) the asymptotic decay rate of 0(0,x) to hp a8 x> == if
¢ is not a first order saddle point, and

(2) the asymptotic decay rate of w(0,x) to $+ as X > + o if

¢, is not a first order saddle point.
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Theorems 7.6 (8 > S), (N > S), and (N - N) are very similar to
theorems 5.2 (S =+ S), (N ~+ S), and (N - N) of Chapter V. The major dif-
ferences are that

(1) 4din theorems (7.6) conclusions are drawn about the mean wavespeeds
of vector solutions #(t,x) of system (7.1), whereas in theorems (5.2) the
conclusions are drawn for solutions of equation (5.1);

(2) for theorems 7.6 (N -+ 8) and (N -+ N) we needed to assume the
existence of all the monotonic traveling waves we used, whereas in theorems
5.2 (N -+ S) and (N » N) we needed only to assume the existence of a single
monotonic traveling wave; and

(3) the restrictions onthe initial conditions 7(0,x) in theorems
(7.6) are very similar to those on u(0,x) in theorems (5.2) except that
for theorem (7.6) the restrictions are for u(i)(O,x) for all 4.

This completes our presentation of the mean wavespeed/initial
condition results for system (7.1). We complete this chapter in the next

section with some general remarks.

7.4 Some general remarks. We have found in this chapter that the stabili-

ty results for monotonic traveling waves can be extended to some systems
of equations of the form
gt o g W ) oy g am s (7.1)
€ XX X

We also found that the mean wavespeed/initial condition results are readi-
ly extended to system (7.1). However, we have been unable to extend the
instability results for non-monotonic waves to system (7.1).

In this chapter we have developed only the most readily ob-

tainable results about system (7.1). Our treatment of system (7.1) is cor-

respondingly incomplete. Many extensions of the general theory should be
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possible. Of these, extending the instability results for non-monotonic
traveling waves and steady states to solutions of system (7.1) is perhaps
the most interesting.

The class of systems of equations of the form (7.1) (which satisfy
hypotheses H3) is quite limited. This suggests that a better approach may
be to treat each specific physical example separately. Instead of trying
to use our methods to extend the general theory for systems like (7.1),
perhaps we should try to utilize these methods to obtain specific results
for each specific example that arises.

This completes our treatment of system (7.1). 1In the next chap-
ter, Chapter VIII, we shall utilize the results in Chapters IV, V, VI, and

VII on several examples.
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Chapter VIII

EXAMPLES

In this chapter we apply the results of the preceding chapters
on some illustrativerexamples. We begin by treating Burger's equation.
In section (8.2) we examine Fischer's equation. An artificial (but illus-
trative) example is considered in section (8.3). We treat an equation
containing integrals in section (8.4). TFinally, our last example will be

a reaction diffusion system, which will be examined in section (8.5). We

now begin with Burger's equation.

8.1 Burger's equation. We have chosen to examine Burger's equation,

u, = u - uu 5 (8.1)
because it is the simplest non-trivial example of equations
u = f(uxx,ux,u) (8.2)
which have £(0,0,u) = 0 for all u. This type of equation does not have
a discrete set of stable (saddle point) and unstable (node, spiral point,
and center) constantﬂsteady states. Instead, this type of equation has a
continuum of neutrally stable constant steady states. Since the stability
theorems (in Chapter IV) for monotonic waves u(t,x) = ¢(x~ct) do not
distinguish between ¢(+ <) being unstable and neutrally stable constant
steady states, we do not expect the stability theorems to be sharp in this
case. Thus, Burger's equation points out an important limitation of the
stability theorems for monotonic waves.
In this section we first determine the monotonic traveling wave

solutions of Burger's equation. Next, we apply the stability theorems

directly to these solutions. We then exhibit some new upper and lower
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functions. By utilizing these upper and lower functions we find sharp
stability results.

Burger's equation is also interesting because it possesses im-
portant unsteady solutions, such as the "single hump" solutions. As the
last topic in this section, we use the maximum principle to show that
these "single hump" solutions have at least a limited stability.

We begin by finding the bounded solutions of the form u(t,x) =
¢ (x-ct). These solutions must satisfy

o' = v

v v(p-c)
The phase plane representation of these solutions is illustrated in
Figure (1) below, and the bounded solutions are given by
u(t,x,c,a) = ¢(x-ct,c,0) where ¢(x,c,a) = ¢ - a tanh h%ax .
Neither ¢(-=,c,a) mnor ¢(+e,c,a) is a first order saddle point, and so
theorem (4.5) implies only that
u(t,x,c,a) = ¢(x-ct,c,a)

is Cw—stable with w=1 + ea(x—ct) + e—a(x—ct)

. In other words, in the
coordinate system which moves with speed ¢, theorem (4.5) shows that the
traveling wave ¢(x-ct,c,a) 1is stable to small initial perturbations which

e+|a|x

decay asymptotically no slower than as x + - @ and no slower

e—[alx as x = 4 =,

than

Since theorem (4.5) does not distinguish between ¢(+*,c,a) be-
ing unstable and neutrally stable constant steady states, we should be able
to do better. Indeed, suppose that u(t,x,c,a) = ¢(x-ct,c,a) is any of

the above monotonic traveling wave solutions. Then for any € > 0 suffi-

ciently small and any & in (0,1),
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A\v
v=0
¢
¢ =c
Figure (1): Phase plane representation of the solutions wlt,x) = ¢(x-ct)

of Burger's equation.

I

;ft,x,c,u,e,é) ¢ (x~ct+h(t)) + n(t) sech e(x-ct+h(t)) and (8.3a)

u(t,x,c,0,e,8) = ¢(x-ct-h(t)) - n(t) sech e(x~ct-h(t)), where (8.3b)
n(t) = Ge”e—sat h(t) = — 265(1~e“€3t) . (8.3c)
are upper and lower functions (respectively) of Burger's equation. The
maximum principle implies that if wu(t,x) 1is any solution of Burger's
equation whose initial condition u(0,x) satisfies
u(0,x+hgy,c,a,e,8) < u(0,x) < u(0,x+h;,c,a,e,8) for all x ,

then u(t,x) must also satisfy

u(t,xthy,c,a,e,8) < u(t,x) < u(t,x+hy,c,a,¢e,8) for all x, allt >0
_ (8.4)
From the expressions for u and u 1in equations (8.3), we see that rela-

tion (8.4) implies that

u(t,x,c,0) = ¢(x-ct,c,n)

e+€(x—ct) & e—e(x~ct)

is Cwnstable with w =1+ for all ¢ > 0 suffi-

ciently small. That is, in the coordinate system which moves with speed
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c, the traveling wave ¢(x-ct,c,a) 1is stable to small initial perturba-

. F . +e
tions which decay asymptotically no slower than e ¥ as x+» - w and
e ™ as x4+ for any € > 0. This stability result is much strong-

er than the one obtained from theorem (4.5) since e > 0 can be as small
as we wish.
Since Burger's equation is of the form
u, = f(uxx,ux,u) with £(0,0,u) = 0 for all u ,
the stability theorems of Chapter IV yield rather poor results. However,
by using the techniques of Chapter IV we found good (in fact sharp) sta-
bility results. One expects that any other specific equation of the form
u, = f(uxx,ux,u) with £({0,0,u) =0 for‘all u
can be treated in the same manner. Namely, for any specific monotonic
wave solution of any specific equation, one should be able to obtain sharp
stability results by comstructing appropriate upper and lower functions.
Besides the monotonic steadily progressing and steady solutions
¢ (x-ct,c,0), Burger's equation also possesses important unsteady solutions.

One class of these solutions are the triangular "single hump" waves.

These waves are given by

u(t,x,c,a,tg) = ¢ + — 1 R( aret s O)
t/t‘f‘to 2'/t+t0
where
_CZ
oe
R(C,CC) = 2

Z

Vita e ds
g

and where t; > 0. (See e.g. reference EO] Y. It is easy to use the

maximum principle to show that these single hump waves have at least a

limited stability. We note that Rd(E,u) > 0 for all o and z. Hence

u{t:X,cs0-stg) < ult,x,c,0,t5) < u(t,x,c,ot+e,tyg) for all e >0 .
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Thus whenever wu(t,x) 1s any solution of Burger's equation whose initial
conditions u(0,x) satisfy
u(0,x%x,c,0~e,ty) < u(0,x) < u(0,x,c,ate,tg) for all x ,
then u(t,x) must also satisfy

ult,x,eo~e,tp) £ pltax) < wltyxaesote,tg) for all = and all &2 0,

(8.5)
This is illustrated in Figure (2) below, where the implication of relation

(8.5) is that wu(t,x) must remain in the shaded region for all t > O.

Clearly this implies that single hump waves have at least a limited sta-

bility
Au(t,x)
u=c
u=0 >
X

Figure (2): Relation (8.5) implies that u(t,x) must remain in the shaded
region for all t > 0.
This concludes our brief look at Burger's equation. Briefly, we
found that the stability theorems of Chapter IV yield rather poor stability

results for the monotonic wave solutions. However, by utilizing some
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upper and lower functions we were able to show that all bounded steadily
progressing and steady solutions are stable to all small smooth initial

perturbations which decay asymptotically no slower than e™ as

—-EX -
X > - ® and e as X - + o« for some € > 0. We also found that

the "single hump" solutions have at least a limited stability.

8.2 Fischer's equation. In this section we briefly treat Fischer's equa-

tion,

uoo=ou + u(l-u) . (8.6)
For each wavespeed ¢ we will find the bounded solutions u(t,x) = ¢(x-ct)
of equation (8.6) by examining the phase plane of

b =
- (8.7)

- v = ¢(1-9) .

%
b3
We will then apply the stability and instability results of Chapter IV.
We will not apply the mean wavespeed results of Chapter V since the appli-
cation is simple and the results are uninteresting. We now carry out this
program.
First suppose c¢ < - 2. Themn ¢ =0, v =0 1is an unstable node

and ¢ = 1, v =0 is a saddle point. The phase plane of (8.7) is roughly

sketched in Figure (3) for ¢ having any fixed value < - 2. As shown

in the sketch, the only bounded traveling wave solutions u(t,x) = ¢(x—-ct,c)
are

(1) the constant traveling wave solution wu(t,x) = ¢g(x-ct,c) = O,

(2) the constant traveling wave solution u(t,x) z ¢,(x-ct,c) = 1,

(3) the monotonic traveling wave solution u(t,x) = ¢Ns(x—ct,c)

labeled by a (*) din Figure (3).
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The constant traveling wave ¢g(x-ct,c) = 0 1s a node, and hence it is
Ew—unstable with wx) =1+ F 4+ e for all « > 0 sufficiently
small. (Recall that we always define stability of a traveing wave in
terms of a coordinate system which travels at the same velocity as the
wave). On the other hand, the constant traveling wave ¢1(x~ct,c) = 7
is a saddle point, and hence it is c¥-stable with w(x) = 1. Finally,
the monotonic traveling wave u(t,x) = ¢Ns(x—ct,c) decays at the usual
rate to the node ¢ =0, v=0 as x + - = and goes to the saddle point
$ =1, v=0 as x - + o, In particular,

¢Ns(x,c) ~ a(c)ek_(c)x as x + - ®
where a(c) 1is some positive constant and

k (c) = %[—c+¢c2—A ]

Thus, theorem (4.5) implies that u(t,x) = (x-ct,c) 1is c¥-stable with

e—k—(c)x

¢NS
0, v=0 and ¢ =1, v=20

wix) =1 + . Moreover, since ¢

are both first order singular points and since ¢(x,c) decays at the
usual rate as x - - », theorem 5.1 (N - S) shows that this stability .

result is sharp. Note that the stability of (x-ct,c) decreases as

¢NS

¢ increases, and in particular that the monotonic traveling wave of speed

¢ = - 2 1is the least stable.
We now consider - 2 < ¢ < 0. At these wavespeeds c¢, the point
¢ = 0, v=0 dis an unstable spiral point and the point ¢ =1, v =0 1is

a saddle point. The phase plane of system (8.7) is sketched for these

values of ¢ in Figure (4). As shown in the sketch, the only bounded

traveling wave solutions u(t,x) = ¢(x-ct,c) are now
(1) the constant traveling wave u(t,x) = ¢y(x-ct,c) =0,
(2) the constant traveling wave u(t,x) = ¢;(x-ct,c) =1, and
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Figure (3): Rough sketch of the phase plane of system (8.7) for es=12,
Trajectory (*) represents the monotonic solution ¢Ns(x).

(3) the non-monotonic traveling wave solution u(t,x) = ¢Sps(x—ct,c)
labeled by a (%) in Figure (4).
The constant traveling wave ¢y(x-ct,c) = 0 is a spiral point, and so it
is very unstable at these wavespeeds (see section (4.15)). The constant
traveling wave ¢;(x-ct,c) Z 1 is a saddle point, and so it is c”-stable
with w(x) = 1. Finally, the traveling wave solution ¢Sp3(x~ct,c) goes
to the spiral point ¢ = 0, v=0 as x » - and goes to the saddle

point ¢ =1, v=0 as x + + =, Since (x-ct,c) has an infinite

¢SpS

number of relative extrema, theorem (4.6) shows that it is very unstable.
Finally, we consider ¢ = 0, At this wavespeed, the point

p = 0, v =0 1is a center and the point ¢ = 1, v =0 1is a saddle point.

The phase plane of system (8.7) is roughly sketched in Figure (5) below

for ¢ = 0. As shown in the sketch, the only bounded steady state solutions

t

u(t,x) $(x,0) are
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v=_0

Figure (4): Rough sketch of the phase plane of system (8.7) for -2<c<0.
Trajectory (*) represents the non-monotonic solution ¢Sps(x).

(1) the constant steady state u(t,x) $g(x,0)

1"t
o

i

(2) the constant steady state u(t,x) = ¢q(x,0)

1
—
-

(3) the family of periodic steady state solutions u(t,x) =
¢Co(x,0,a), and

(4) the non-monotonic steady state solution u(t,x)
The constant steady states ¢3(x,0) and ¢,(x,1) have exactly the same
stability as when - 2 < ¢ < 0. Therefore, we turn our attention to the
pericedic solutions ¢Co(x,0,u), which are represented in the phase plane
in Figure (5) by the set of closed orbits. All these solutions have an
infinite number of relative extrema, and so they are all very unstable.
Now consider the non-monotonic steady state solution u(t,x) = ¢Ss(x,0).
This solution has exactly one relative extrema and has ¢SS(—m,0) =

¢SS(+w,0) = 1. Since ¢ =1, v =0 is a saddle point, and since
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X
¢SS(X:U) ~1~-ae as x + -
¢SS(X,0) ~1-be Fas x>+
where a and b are some positive constants, part (2) of theorem (4.6)

shows that u(t,x) = ¢Ss(x,0) is meunstable with w(x) = 1 + e—x+e+X 5

Y
*

v=0

U

=g
il
o
<
il
—

Figure (5): Rough sketch of the phase plane of system (8.7) at c=0. Tra-
jectory (*) represent the non-monotonic saddle point ~ saddle
point solution ¢__ (x,0). Trajectory (**) is a typical member
of the family of"periodic solutions ¢ (x%,0,0) represented by
the closed orbits in the phase plane.

We will not consider the cases where ¢ > 0. These cases can be
reduced to the cases where ¢ < 0 by utilizing the transformation

X = o= Ky

This completes our examination of Fischer's equation. 1In the

next section we will examine an artificial (but illustrative) example.

8.3 An illustrative example. Inthis section we will examine the equation
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u, = U + lmux + %eu(u-1) (utl) (u=-2) (ut+2) . (8.8)
This equation is interesting because it possesses nearly every possible
type of traveling wave and steady state solution. We will find the bound-
ed solutions u(t,x) = ¢(x-ct) of equation (8.8) by examining the phase

plane of

¢K =¥

(8,9)

v
X

- 4¢v = 35 ¢ (¢-1) (¢+1) (9-2) (¢+2) - cv .
We will then apply the results of Chapter IV to determine the stability
of these solutions. For brevity we will not do this for all ranges of
wavespeeds c¢. Instead, we will look at the steady states (c = 0) and
the traveling waves with wavespeed c¢ in (0,8 - v48). We will also
ignore the relatively uninteresting constant solutions. We now do this.
First suppose ¢ = 0. Then ¢ = -2 and ¢ = + 2 are an un-
stable and a stable node, ¢ = -1 and ¢ =+ 1 are saddle points, and
¢ = 0 1is a center. The phase plane of system (8.9) at ¢ = 0 is sketched
in Figure (6). As labeled in the sketch, there are eight different types
of bounded non-constant steady state solutions. We now consider these
cases separately.

+ i z
Case (1): The solution u(t,x) = ¢Ss(x,0) is a monotonic (increas-

ing) steady state with ¢§S(~w,0) = —- 1 and ¢;S(+m,0) = + 1. Since both
¢ =-1,v=0 and ¢ =+ 1, v=0 are saddle points, u(t,x) = ¢§S(x,0)
is C"-stable with w(x) = 1.

Case (2): The solution u(t,x) = ¢;s(x,0) is a monotonic (decreas-
ing) steady state with ¢;S(-w,0) =+ 1 and ¢;S(+m,0) = - 1. As above,

u(t,x) (x,0) is ¢¥-stable with wi(x) = 1.

= 9gg

Case (3): The solution u(t,x) = ¢Ns(x,0) is a monotonic steady
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state which decays to the node ¢ = - 2, v = 0 at the usual rate as

X > - @ and which goes to the saddle point ¢ =-1, v=0 as

x > + o, Since ¢NSQC;0) ~ = 2+ a(O)EZX as X > - « (where a(0) > 0),
-2x

u(t,x) = ¢Ns(x,0) is C"-stable with wx)= 1 + e :

Case(4): The solution u(t,x) = ¢SN(x,0) is a monotonic steady
state which goes to the saddle point ¢ = 1, v=0 as x -+ - ® and
which decays at the usual rate to the node ¢ = 2, v =0 as x - + o,
Since ¢SN(X,O) -~ 2 - a(O)e_2X as x >+ ® (where a(0) > 0), wu(t,x) =
¢SN(X,O) is C"-s( ible with w(x) =1 + ezx.

Case (5): The family u(t,x,a) = ¢NN(X,0,G) are all monotonic

0 at the usual rate

[l

steady states which decay to the node ¢ = - 2, v

as x > - « and which decay to the node ¢ = 2, v 0 at the usual
rate as x -+ + «., Thus,

¢NN(X,0,G) o Ptk a(O,cx)e+2x as x -+ - » and

by (%:0,0) ~ 2 - B ae TR e g b

where a(0,a) and b(0,0) are some positive constants. Therefore,

u(t,x,a) = ¢NN(x,O,a) is qw—stable with w(x) = 1 + e—2x + e+2x for all
o.

Case (6): The solution u(t,x) = ¢;§(x,0) is a monotonic steady
state which decays to the node ¢ = - 2, v = 0 at the accidental rate as

X » — o and which decays tothe node ¢ = + 2, v = 0 at the accidental

rate as X + + «». Thus,

¢§§(X,0) ~ =2+ a(O)e6x as X - — o and
¢;§(X,0) ~+ 2 - b(O)e_6x as x » +

where a(0) and b(0) are some positive constants. Therefore, u(t,x) =

¢§§(x,0) is C"-stable with w(x) = 1 +e ~+e .
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Case (7): The family u(t,x,0) = $Nu(x,0,u) are all non-monotonic
steady states which have two relative extrema and which go to the node
$ = -2, v=0 as x + - ® and go to the node ¢ = 2, v =0 as
X > + o, Thus, u(t,x,a) = $NN(X,O,a) are very unstable for all a.

Case (8): The family u(t,x,a) = ¢co(x,0,u) are all periodic steady
state solutions which are represented by the closed orbits around ¢ = O,
v = 0. Since each steady state u(t,x,a) = ¢Co(x,0,u) has an infinite
number of relative extrema, it is very unstable.

Note that the phase plane at ¢ = 0 is unusual in many res-—
pects. The wavespeed c¢ = 0 is

(a) the unique wavespeed at which S =+ S waves exist,

(b) the unique wavespeed at which the solution which decays to the
node ¢ = - 2, v =0 at the accidental rate as x > - « also decays to
the node ¢ =+ 2, v = 0 at the accidental rate as x > + m; and

(¢) the unique wavespeed at which the limiting "member" of the
monotonic N -+ N type solutions are the N+ S, S+ S, and S + N mono-
tonic waves instead of being a N+ S and a S > N wave.

We now consider wavespeeds c¢ in (0,8-/48). As these speeds,
¢ == 2, and ¢ = + 2 are still an unstable and a stable node, ¢ = -1
and ¢ = + 1 are still saddle points, but ¢ = 0 is now a stable spiral
point. The phase plane of system (8.9) at any of these wavespeeds looks
like the phase plane sketched in Figure (7) below. As labeled in the
sketch, we will consider ten different types of bounded non-constant travel-
ing wave solutions at each e¢. We now treat these cases separately.

Case (1): The solution u(t,x,c) = ¢Ns(x-ct,c) is a monotonic wave

which decays to the node ¢ = - 2, v = 0 at the usual rate as X + - «
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1l

and which goes to the saddle point ¢ -1, v=0 as x -+ + «, It is

correspondingly c-stable with w(x) =1+ e_kl(c)X where
ki(e) = + % [8-c~/(c-8)%-48 ] . (8.10)
Case (2): The solution u(t,x,c) = ¢SN(x—ct,c) is a monotonic wave

0 at the usual rate as x »+ + ® and

which decays tothe node ¢ = 2, v

]

which goes to the saddle point ¢ 1, v=0 as x + - «». Corresponding-

ly, it is c¥-stable with w(x) =1+ e—kl(c)x where
13ee) = =% el =08 . (8.11)
Case (3): The solution u(t,x,c) = &Ns(x—ct,c) is a monotonic wave
which decays tothenode ¢ = - 2, v =0 at the usual rate as x =+ - ®

and which goes to the saddle point ¢ =1, v=0 as x - + =, Corres-

1 e K1(0)%

pondingly, it is c"-stable with w(x) where k;(c) is

given in equation (8.10).

Case (4): The family u(t,x,c,a) ¢NN(x—ct,c,u) are all monotonic

waves which decay to the node ¢ = - 2, v = 0 at the usual rate as

X+ - ® and which decay to the node ¢ = 2, v = 0 at the usual rate as

~k+ (c
X - + =, Correspondingly, they are c"-stable with w(x) =1+ e 1(e)x

E—Et(c)x

+ where k;(c) and kT(c) are defined in equations (8.10)
and (8.11).

Case (5): The solution u(t,x,c) = ¢;;(x—ct,c) is a monotonic wave
which decays to the node ¢ = ~ 2, v =0 at the accidental rate as

x + — o and which decays to the node ¢ = 2, v = 0 at the usual rate

i
as X -+ + . Correspondingly, it is c"-stable with w(x) = 1 +te 2 (€)%
-k (e)
+e 1Y% Ghere
ky(c) =% [(8-0)+/(c-8)2-48 ] . (8.12)

Case (6): The family u(t,x,c,a) = b N(x~ct,c,a) are all non-mono-

N

tonic waves which have a single relative extrema, which go to the node
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¢ = -2, v=0 as x > - «, and which go to the node ¢ =2, v=0 as
X + + o, This is the indeterminate case discussed in section (4.14).
To determine whether these waves are C'-stable or Qw-unstable (with

—k;(c)x 5 e—kT(c)x

w(x) =1+ e ) one must determine their intersection

properties.

=

Case (7): The family u(t,x,c,a) = ¢ _ (x-ct,c,a) are all non-mono-

N
tonic waves which have two relative extrema, which go to the node

$ = -2, v=0 as x -+ - «, and which go to the node ¢ = 2, v =0 as
X - + o, These are very unstable.

Case (8): The solution u(t,x,c) = ¢ p(x—ct,c) goes to the saddle

SS
peint ¢ = -1, v=0 as x> - « and goes to the spiral point ¢ = 0,
v=0 as x > + =». This wave has an infinite number of relative extre-
ma and therefore is very unstable.

Case (9): The solution u(t,x,c) (x-ct,c) goes to the saddle

- ¢SSp
peint ¢ =1, v=0 as x» - « and goes to the spiral point ¢ = O,
v=0_0 as x -+ + », It has an infinite number of relative extrema and

is therefore very unstable.

Case (10): The family u(t,x,c,a) = ¢

NSp(x-ct,c,a) are all non-mono-

tonic waves which go to the node ¢ = -2, v=0 as x> - @ and which
go to the spiral point ¢ = 0, v=0 as x > + «. They all have an in-
finite number of relative extrema and are therefore all very unstable.

In summary, applications of the stability/instability results
of Chapter IV immediately determine the stability or instability of each
traveling wave and steady state solution, except the family of solutions
u(t,x,c,a) = $NN(x—ct,c,a). These waves are part of the indeterminate

case discussed in section (4.14). To determine the stability or instability
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of these waves, one needs to numerically discover whether the stability
criterion of section (4.14) is satisfied.

The dependence of the N + § type monotonic wave u(t,x,c) =
$NS(X—Ct’C) on c¢ 1is interesting. By comparing the phase planes in
Figure (6) (c = 0) and Figure (7) (0 < ¢ < 8 - v48), one sees that as
c¢c >0 this N =+ S wave bifurcates into a S + S type wave and a N ~> §S
type wave. This bifurcation process is exactly as described in section
(5.2) of Chapter V.

This completes our treatment of equation (8.8). 1In the next
section we will utilize the results of Chapter VI to examine a specific

equation which contains an integral,

8.4 A delayed Fischer's equation. 1In this section we briefly examine

the equation
uo =u + u-_LT se*S/A u(t-s,x)ds - u? , (8.13)

where A > 0, T/A >> 1, and u = {A? [1-—e'T/A—T/A e'T/A]}_l. Essentially
this equation is a logistics equation with the growth term delayed and
diffusion added. As such, it can provide a model of simple population
processes., Note that this equation is not formally included in the class
of equations treated in Chapter VI. Equation (8.13) has only the single
integral : ds, and in Chapter VI we treated equations which contained
only double integrals fOTf dyds. This is not a difficulty since (as
noted in Chapter VI) all the results pertaining to equations containing
double integrals remain valid for equations containing a single integral.

We now examine the traveling wave and steady state solutions
u(t,x) = ¢(x—ct) of (8.13). These must solve

XX

T s/
¢ *+ c¢x + U JZ se ® ¢ (xtcs)ds - $2 =0 * (8.14)
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Clearly the singular points of equation (8.14) are ¢ = 0 and ¢ = 1.

According to the definitions in Chapter VI, the point ¢ = 0 is a node

It

and the point ¢ 1 1is a saddle point. Thus the only constant traveling

waves are

(1) u(t,x) $pg(x-ct) = 0, which is Cw—unstable with

- +
wix) =1 +e T +e* for any k > 0 sufficiently small, and

(2) u(t,x) = ¢;(x-ct) = 1, which is c¥-stable with w(x) = 1.
Finding monotonic non-constant solutions u(t,x) = ¢(x-ct) of
equation (8.13) is difficult. However, as A - 0 equation (8.13) goes to
Fischer's equation. One therefore expects that at any specific c¢ with
¢ < = 2 there is a monotonic N - S type solution utt,x,c,A) =

¢Ns(x-ct,c,A} with ¢ . (-2,c,A) = 0, with ¢NS(+w,c,A) =1, and con-

NS
tinuous in A, for all A > 0 sufficiently small. Presumably one could
use a contraction argument to prove the existence of these solutions. We
will not do this. 1Instead we will assume that these solutions exist, that
they decay to ¢ = 0 at the usual rate as x =+ - «, and that they decay
exponentially to ¢‘= 1 as x + + o, These assumptions will allow us to
apply our stability results.

Assume that u(t,x,c,Ad) = ¢Ns(x—ct,c,A) isa N -+ S type mono-
tonic solution of (8.13) with the properties described above. From equa-
tion (8.14) we see that

ky (e,n)

¢NS(X’C’A) e a(C,A)e as X - — o

where kl(c,A) is the smallest positive root of
T
k2+ck+pcf SBIh O o e (8.15)
0
and where af(c,p) 1is a positive constant. From theorem (6.5) we can con-—

w
clude that u(t,x,c,p) = ¢Ns(x—ct,c,A) is C ~-stable with
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e-kI(C,A)X.

wx) =1 + Moreover, if u(t,x,c,A) = ¢Ns(x—ct,c,A) is a

solution of (8.14) then so is u(t,x,c,d) = ¢SN(x—(—c)t,—c,A), where the

S > N type monotonic wave ¢SN 1s defined by
(bSN(X“Ct:C:A) = ¢'NS (—X‘”(—C)t,—C,A)
From theorem (6.5) we conclude that u(t,x,c,A) = ¢SN(x—ct,c,A) is ¢"-

stable with w(x) = 1 + ekl(‘CsA)x'

We now summarize this example. We found that the only singular
points are ¢ = 0 and ¢ = 1. Correspondingly, the only constant solutions

are

I

(1) u(t,x) = ¢g(x—ct) = 0 which is Qw—unstable with w(x)

i+ &% % e “F for any k > 0 sufficiently small, and

et
.

(2) u(t,x) = ¢;(x-ct) =1 which is c"-stable with w(x) = We
assumed that for each ¢ < - 2 there exists a bounded monotonié N+ 8§
type solution u(t,x,c,A) = ¢Ns(x—ct,c,A) for all A > 0 sufficiently
small. We also assumed that these solutions decay to ¢ = 0 1like
ekl(c’A)X as x + - », Then we found that

(3) the N+ S wave u(t,x,c,A) = ¢Ns(x—ct,c,A) is C"-stable with

e—k](C,A)X

wix) =1 + for ¢ < - 2, and that

(4) the S -+ N wave u{t,x,c,A) = ¢NS(—x+ct,-c,A) is C"-stable

ekl("C’A)X for ¢ > 2.

with w(x) = 1 +
This completes our brief lcok at equation (8.13). In the next

section we illustrate the results of Chapter VII by examining a system of

equations which arises in chemical reaction theory.

8.5 A reaction-diffusion system. In this section we briefly analyze the

system of equations
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R

R - R¢2 + R - R3

t XX X (8.16)
+ 2

R¢ E R¢XX 2RX¢X

These equations can also be written as

= . _112_vy2 .
U, = U+ (1-U2VHU U =R cos(¢-8)

(8.17)

v V o+ (1-02-v2)y , V

" ”» R sin(¢-8) ,

where & 1is any constant. System (8.16) arises as the modulation equations
of some reaction diffusion systems which are near bifurcation points [L{l.
System (8.17) provides an interesting example because it does not satisfy
the prerequisites of the "general" theory of Chapter VII. Even though the
results of Chapter VII do not apply, we will be able to find the stability
or instability of all traveling wave solutions by utilizing the techniques
developed in Chapters IV and VII.

To begin, let us note that system (8.17) is parabolicl(satisfies
hypothesis H3) only when UV < 0. Thus, whenever UV > 0 we will be un-
able to use the maximum principle. For each wavespeed c¢ we will find the
bounded solutions U = U(x-ct), V = V(x-ct) of system (8.17). We will
then find their stabﬁlity or instability.

First suppose that ¢ < - 2. To find the solutions U(x-ct),
V(x-ct) of system (8.17), we will solve for the solutions R(x-ct),
¢ (x-ct) of system (8.16). Therefore, consider

R" - R¢'2 + cR' +R-RI =0 (8.18a)

Re" + 2R'¢' + cR9' 0 = (8.18b)
From equation (8.18b) we find that if R is bounded then ¢' must either
be identically zero or must grow exponentially as x + + «. Clearly the

acceptable solutions are only those with ¢' = 0. Equation (8.18a) now

reduces to



R' = 8

S' =~ ¢S - R+ RS |
The phase plane of (8.19) is sketched in Figure (8) below for ¢ < - 2,
The bounded solutions are

(1) the constant traveling wave solution R(t,x) = Rp(x-ct,c)

t
o

(2) the constant traveling wave solution R(t,x) = Rj(x-ct,c)

1l
—
-

and

(3) the monotonic traveling wave solution R(t,x) = RNS(x—ct,c)

labeled by a #%* in Figure (8).

L,

v
]
o

7
A

Figure (8): Phase plane representation of system (8.19) for c<-2, Tra-
jectory (*) represents the monotonic N+S solution RNS'

With ¢ = constant, system (8.16) reduces to the single equa-
tion
R =R _+R-R3 (8.20)
t XX

Clearly, since the constant traveling wave R(t,x) = Ro(x-ct,c) =0 is a
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&W—unstable solution of (8.20) with w(x) =1 + e g g PR (for any
k > 0 sufficiently small), R(t,x) = Ryp(x-ct,c) = 0, ¢ = constant is a
EW-unstable solution of system (8.16) and U(t,x) = Ry(x-ct,c) cos ¢ = O,
V(t,x) = Ry(x-ct,c) sin ¢ = 0 is a Qw—unstable solution of system
(8.17) with the same w.

We now consider the monotonic N > S type traveling wave solu-
tion R(t,x) = RNS(x—ct,c). Recall that at each ¢ lemma (4.3) constructs
upper functions R(t,x) = i(t,x—ct,c,a) and lower functions R(t,x) =
R(t,x-ct,c,a) for all O < a < ap(c) for some oay(ec) > 0. These func~

tions therefore satisfy

Et-R -R+R>0

= (8.21)
R - R -R+R3< 0 .
—L —XX = =

We now examine the solutions RNS and the implications of the upper and
lower functions in terms of U and V.
In terms of U and V, the N -+ S type monotonic solution is

U(t,x)

H
il

UNS(x—ct,c) RNS(x—ct,c) cos{($-38)
V(t,x) = VNS(x—ct,c) = RNS(x~ct,c) sin(¢-4)

where ¢ and & are arbitrary constants. Let us first choose § = ¢ +

w/4. Then the N +» § type solutions are

1
U(t,x) = U__(x~ct,c) = — R__(x-ct,c)
NS 5 S
1
V(t,x) = V__(x-ct,ec) = — — (x-ct,c)
NS i—RNS

From the formulas in lemma (4.3) and a short calculation we learn that

— s - 1

U(t,X,C’OL) = ‘L R(t:X_Ct:C’CQ) ] V(t,X,C,O‘,) z __g..(t,X—Ct,C,O,) and
V2 V2
1 1 =

E(t,X;C,u) = B_(taX_Ctacaa) s Y_(E,X,C,u) = - — R(t,x-ct,c,a)

V2 V2
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are upper and lower functions (respectively) of system (8.16) for all
0 < a < dg(c) for some d&g(ec) > 0. Moreover,
ﬁft,x,c,a) > U(t,x,c,0) > 0 and O > V(t,x,c,a) > V(t,x,c,a)
and so we can apply the maximum principle. The maximum principle immedi-
ately implies that if U(t,x), V(t,x) 1is any solution of system (8.16)
whose initial condition U(0,x), V(0,x) is smooth and satisfies

1—E(O,x,c,m) < U(0,x) i—l—E(O,x,c,u)

/2 V2
= 1—5(0,x,c,a) < V(0,x) < - —1—3(0,x,c,a)
/2 V2
for all x and some o in (0,d(c)), then U(t,x), V(t,x) must satisfy
l—-Ejt,x—ct,c,u) < U(t,x) 5_1“ §(t,x—ct,c;a)
V2 V2
(8.21)
- L R(t,x-ct,c,a) < V(t,x) <= R(t,x-ct,c,a)
V2 V2

for all x and all t > 0. From the explicit expressions for R and R
in lemma (4.3) and from the fact that
RNS . a(c)ekl (C)X

(where a(c) is some positive constant and

as x =+ =%

ky(c) = + Y-[-c+/cZ20)) (8.22)

we see that (8.21) implies that the solution

1
== (x-ct,c)
/7 NS

U(t,x)
(8.23)

1
V(t,x) - (x-ct,c)
7 Rys

is Cw—stable with w(x) = 1 + e—kl(c)x. Moreover, system (8.16) is in-
variant to the addition of a constant to ¢ and equivalently, system (8.17)

is invariant under transformation
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U cos§' - sind' u
\'4 siné' coss§! \Y

Therefore, each traveling wave solution

U(t,x) = UNS(t,x,c,ﬁ) = RNS(x—ct,c) cos &
V(t,x) = VNS(t,x,c,G) = RNS(x—ct) sin §
is also C"-stable with wx) =1+ e—kl(c)x.

There remains only one further class of solutions to examine.
These are the constant traveling wave solutions

U(t,x)

U (t,x,c,8) = cos §

sin §.

V(t,x) V (E,3x,0:55)

By arguments similar to those used above, one can show that these solutions

are C"-stable with w(x) = 1.
We now suppose that - 2 < ¢ < 0. As in the preceding case, all
acceptable solutions R = R{x-ct), ¢ = ¢(x~ct) must have ¢' = 0, and

so R = R(x-ct) must satisfy

R =8
X (8.19)
S =-c¢8-R+R3
X
as in the preceding case. The phase plane of (8.19) for - 2 < ¢ < 0 is

sketched in Figure (9) below. We see that the bounded solutions are

(1) the constant traveling wave solution R(t,x) = Ry(x-ct,c) = O,

(2) the constant traveling wave solution R(t,x) = R;(x-ct,c) = 1,
and

(3) the non-monotonic traveling wave solution R(t,x) = Rsps(x-ct,c)

labeled by a * din Figure (9).
With ¢ = constant, system (8.16) reduces to the single equation

R_=R_ +R- RS (8.20)
t XX
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R=0 R=1

Figure (9): The phase plane of system (8.19) for -2<cx0. Trajectory (%)

represents the non-monotonic solution RSpS'

Consider the solution R(t,x) = Rsps(x—ct,c), $(t,x) = $g = a constant of
system (8.16). Let us examine the effect of initially perturbing R only.
We see that if we initially perturb R only then ¢ = ¢35 for all =x and
all t > 0, and so R will be governed by equation (8.20). However,
theorem (4.6) shows that Rsps(x—ct,c) is a very unstable solution of
(8.20). Thus, the solution
R(t,x) = RSpS(x-—ct,c) ¢ (t,x) = ¢y

of system (8.16) is very unstable. Correspondingly, the solution

U(t,x) = R

S(x—ct,c) cos ¢g V(t,x) = R S(x~ct,c) sin ¢

Sp Sp

of system (8.17) 1is also very unstable.
By a similar argument, omne can show that the solution
R(t,x) = Rg(x-ct,c) =0 d(t,x) = ¢y
is a very unstable solution of system (8.16), and that the solution

U(t,x) = Ug(x~ct,c) = 0 V(t,x) = Vy(x-ct,c) =0
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is a very unstable solution of system (8.17).

Finally, as in the ¢ < - 2 case, the solution

1 ¢(t,x) = ¢g

1

R(t,x) = Rj(x-ct,c)
of system (8.16) and the solution
U(t,x) = U;(x-ct,c) = cos ¢ V(t,x) = Vi(x-ct,c) = sin ¢
of system (8.17) are both cV-stable with w(x) = 1. This completes the
stability picture for the - 2 < ¢ < 0 case.
The next wavespeed to examine is ¢ = 0. However, all non-

U(x), V(t,x) = V(x) either

]

trivial steady state solutions U(t,x)
have UV > 0 for some x or have UV = 0 for all x. The system

(8.17) is not parabolic when UV > 0 for any x, and so we cannot utilize
the maximum principle at ¢ = 0. Therefore the stability of the steady
state solutions of system (8.16) and (8.17) remains unresolved.

Finally, note that we do not need to consider solutions
U(x-ct,c), V(x-ct,c) with ¢ > 0. These solutions can be converted into
solutions traveling with wavespeed -c by utilizing the transformation
X > = X.

We now summarize this example. We considered the system of
equations

U =U_ + (1-U02-v2)y

vV =V + (1-U%2-v2)V
t XX

We examined the stability of the traveling wave solutions U(x-ct,c),
V(x-ct,c) for c¢ < 0. When c¢ < - 2 we found that
(1) the solution U(t,x) = Ug(x-ct,c) = 0, V(t,x) = Vy(x-ct,e) = 0

is Qw—unstable with w(x) =z 1 + e + e for all k > 0 sufficiently

small,
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(2) the solution U(t,x) = Uj(x-ct,c,dg) = cos ¢g, V(t,x) =
Vi(x-ct,c,6y) = sin ¢5 (where ¢y 1is any constant) is c"-stable with
w(x) = 1, and

(3) the solution U(t,x) = RNS(x—ct,c)cos ¢g, V(t,x) = RNS(x—ct,c)
sin ¢5 (where ¢35 dis any constant and RNS(Xuct,c) is the solution of
(8.19) which goes to the node R =0 as x » - o« and goes to the saddle
point R =1 as x - + «) is Cw~stab1e with w(x) = 1 + e—kl(c)x
where ki(c) = % [-ct+v/cZ=4 7.

When - 2 < ¢ < 0 we found that

(1) the solution U(t,x)

1l

Ug(x—ct,c) = 0, V(t,x) = Vg(x-ct,c) =0
is very unstable,
(2) the solution U(t,x) = U;(x-ct,c,dp) = cos 9y, V(t,x) =
Vi (x-ct,c,dp) = sin ¢g
(where ¢ 1s any constant) is cV-stable with w(x) 1, and

(3) the solution U(t,x) = Rsps(x—ct,c) cos ¢g, V(t,x) =R (x~ct,c)

SpS

sin ¢35 (where ¢y is any constant and R (x-ct,c) is the solution of

SpsS
(8.19) which goes to the spiral point R = 0 as x =+ ~- = and goes to
the saddle point R =1 as x > + =) 1is very unstable.
For c¢ = 0 we were not able to resolve the stability or instability of
the solutions U(t,x) = U(x), V(t,x) = V(x). Finally, solutions U(t,x) =
U(x-ct), V(t,x) = V(x-ct) with ¢ > 0 can be reduced to solutions with
c < 0 by employing the transformation x -» - x.

We conclude that even though system (8.17) does not satisfy the
prerequisites of the general theory developed in Chapter VII, the tech-

niques of the preceding chapters are still useful for determining the stabil-

ity and instability of traveling waves.
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This completes our analysis of this example. We conclude this

chapter with some general remarks in the next section.

8.6 Some general remarks. In this chapter we applied the techniques and

results of preceding chapters to several examples. We first looked at
Burger's equation

U =u o o-uu (8.1)
This equation is representative of the class of equations u, = f(uxx,ux,u)
where £(0,0,u) = 0, and the weakness of the stability results of theorem
(4.5) points out a shortcoming of our stability theorems for this class
of equations. However, since we were able to obtain sharp stability re-
sults by using the techniques of Chapter IV, the weakness is only in the
theorems and not in the approach we use. We also used our techniques to
show that the "single hump" solutions of Burger's equation also have at
least a limited stability. Thus Burger's equation illustrates how our
techniques can be used to find the stability of some unsteady solutions.

We next examined Fischer's equation,

U= + u(l=u) . (8.6)
For this equation the theorems in Chapter IV immediately yielded sharp
stability and instability results for every bounded traveling wave and
steady state.

In section (8.3) we examined the equation
u, = + lmuX + L% eu(u-1) (utl) (u-2) (ut+2) . (8.8)

Again, the results of Chapter IV immediately yielded sharp stability and
instability results for almost every bounded traveling wave and steady

state we examined. However, we found some non-monotonic N >N type solu-

tions which each have a single relative extrema for this equation. These
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solutions are part of the indeterminate case treated in section (4.14).
To find their stability, one must numerically determine whether the sta-
bility criterion of section (4.14) is satisfied.
In section (8.4) we examined a delayed Fischer's equation,
fT -s/A
= + u - -uZz b
u, u . u : se u{t-s,x)ds u (8.13)

Once monotonic (and constant) traveling wave and steady state solutions
were found, it was easy to determine their stability by applying the re-
sults of Chapter VI. However, finding traveling wave and steady state

solutions of equations containing integrals is generally difficult.

Our last example was the reaction diffusion system

R.=R_ - R¢Z2 + R - R3
x (8.16)
= R + 2R
R¢t ¢xx X ¢x ?
which can also be written as

=T % (1-u2-v2)U , U = R cos ¢ ,

e y (8.17)

= “+ = - = i

Vt VXX (1-U4-v4)V , V R sin ¢

Even though this system does not satisfy the prerequisites of the general

theory developed in‘Chapter VII, we were able to utilize the techniques

of preceding chapters to determine the stability or instability of travel-

ing wave solutions with ¢ # 0. Thus, this example illustratés that the

techniques we ﬁse are more powerful than the theorems we have developed.
This concludes this chapter of examples. We complete our pre-

sentation in the next chapter, where we discuss the material in the pre-

ceding chapters in general terms.
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Chapter IX

CONCLUSIONS, CONJECTURES, AND CRITICAL REMARKS

In this final short chapter we will discuss the material contain-
ed in the previous chapters in broad terms. 1In section (9.1) we discuss
the strengths of the results, and in section (9.2) we discuss some of the
weaknesses. Finally, in the last section, section (9.3), we suggest

some interesting areas for future research.

9.1 Strengths. The main strengths of the results in preceding chapters

are the largeness of the class of physical problems that can be treated,

the ease of applying almost all the results, and the éimplicity of the

results. We now will briefly discuss each of these features separately.
The material in Chapter IV treats equations of the form

ut = f(uxx,ux,u). Thus, the material in Chapter IV can be directly used

to treat physical models which contain linear or nonlinear diffusion,

transport, and source terms as shown below:

u, = (a(u)ux)X + c(u)ux + h(u) (9.1)
growth/ linear or  transport  source
decay nonlinear term term
diffusion

With the material in Chapter VI, we can treat physical models governed by

T
equations like (9.1) with integral terms j; j G(s,y,u(t-s,x~y))dyds
y|<Y

included. However, these integral terms must be required to contribute
positively to u, when u is increased. Finally, with the material in
Chapter VII we can treat physical models governed by a special type of
systems of equations. By using the results of Chapters v, VvV, VI, and

VII, one can treat many physically interesting equations.
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As demonstrated in Chapter VIII, almost all the results obtained
in the preceding chapters are easy to apply. If one assumes the appro-
priate hypotheses, tﬁen the stability, instability, and mean wavespeed re-
sults depend only on easily determined quantities. The exception is sta-
bility in the indeterminate case treated in section (4.14), which can
generally only be determined numerically.

Finally, most of the results contained in the preceding chapters
are very simple. The stability or instability of any wave depends only on
a few fundamental properties of the wave, such as the number of relative
extrema and the nature of the wave at x = + «. Thus, the results demon-
strate the generic nature of the stability of wave solutions to parabolic
equations.

This completes our look at the strengths of the results. In the

next section we briefly examine the weaknesses of the results.

9.2 Weaknesses. In this section we briefly examine the weaknesses of the
results contained in preceding chapters. Basically these weaknesses are the
unverifiable existence assumptions, the modification of the equations,
and the incompleteness of some of the results. We will now briefly dis-
cuss each of these drawbacks.

The unverifiable nature of the existence assumptions H4 and H5
is a mathematical weakness of the results in earlier chapters. One can
prove that solutions to the initial value problem for nonlinear parabolic
equations exist in simple cases. However, for most equations one can only
assume that solutions to the initial value problem exist.

The second weakness of the results contained in previous chapters
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is that they pertain to the modified equation; not to the original. How-
ever, this is not a serious weakness. One can view the results of previous
chapters as determining the behavior of wu(t,x) for all t > 0 for dif-
ferent classes of initial conditions u(0,x), and then interpreting
this behavior in terms of stability and mean wavespeeds. Any solution

u(t,x) of the modified equation which has |u}, |u |, and |u__| all

XX
smaller than M (where M is the arbitrarily large modification constant)
is also the solution of the original equation. Thus we see that any solu-
tion of the original equation which has |ul, luxl, and quxl bounded will
behave exactly as determined by our results about the modified equatiomns.
Moreover, for all t > 0 until |ul, |ux|, or |uxx| becomes unbounded,

any solution of the original equation must behave as predicted by the re-
sults in preceding chapters.

The other weaknesses of the results come from their incompleteness
in some cases. We now discuss some of the more important of these weak-
nesses. First, the stability results for monotonic waves ¢(x-ct) of
Chapter IV do not distinguish between ¢(-=) or ¢(+=) being a higher
order saddle point (which is a weakly stable constant steady state), be-
ing a singular point ¢5 with £(0,0,¢4+n) = 0 for all n near O
(which is a neutrally stable constant steady state), and being a node
(whidh is an unstable constant steady state). This suggests that a general
improvement of our stability results for monotonic waves caﬁ be made when
¢(-=) or ¢(+*) is a higher order saddle point or a singular point with
£(0,0,¢+n) = 0 for all n near 0. From our treatment of Burger's equa-

tion in section (8.1), we see that such an improvement would have signifi-

cant applications.
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There is also room for improvement in the indeterminate case
treated in section (4.14). This case is the only case in Chapter IV
where the stability or instability of a solution ¢(x-ct) cannot be de-
termined by inspection.

The lack of stability or instability results for non-monotonic
solutions ¢(x-ct) in Chapter VI and non-monotonic solutions $(x—ct)
in Chapter VII is a major drawback of the results for equations contain-
ing integrals and for systems of equations. Because of this lack, we
cannot determine the stability of the majority of solutions ¢(x-ct) and
&(x—ct).

Finally, the stability results developed in Chapter VII have
been established only for a restricted class of parabolic systems. The
narrowness of this class diminishes the utility of the results.

This completes this section, where we have touched on the major
weaknesses of the results contained in the preceding chapters. 1In the

final section we point out some interesting topics for future research.

9.3 Some potential research topics. In the preceding chapters many in-

teresting topics for research arose which we did not pursue. In this final
section we would like to suggest some of the more interesting of these
topics.

First, general improvements in the stability results for mono-
tonic waves ¢(x-ct) in cases where either ¢(-®) or ¢(+*) is not a
first order singular point should be possible. Of these cases, the physi-
cally most interesting case is when the equation ut = f(uxx,ux,u) satis-

fies f£(0,0,4) = 0 for all ¢.
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Second, it would be very nice to resolve the indeterminate case
treated in section (4.14). For example, if one could show that all solu-
tions in the indeterminate case are unstable, then the stability of every
solution ¢(x-ct) of any equation u, = f(uxx,ux,u) would be determin-
able by inspection.

Third, exlstence and non-existence results for traveling wave
solutions of equations containing integrals and of systems of equations
(analogous to theorems (5.1)) would be interesting. One use of these
results would be to establish the sharpness of the stability results in
theorem (6.5) and theorem (7.5).

Finally, significant extensions to the class of systems that
can be treated would be useful. The main limitation on the utility of
the results in Chapter VII is the restrictiveness of thé class bf systems
treated there.

This completes this chapter, where we have remarked on some of
the strengths and weaknesses of our results and have touched on potential
areas of research. 'In cénclusion, we observe that many potential results

remain which seem interesting and obtainable.
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