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ABSTRACT 

The first thesis topic is a perturbation method for resonantly 

coupled nonlinear oscillators. By successive near-identity transforma­

tions of the original equations, one obtains new equations with simple 

structure that describe the long time evolution of the motion. This 

technique is related to two-timing in that secular terms are suppressed 

in the transformation equations. The method has some important advan~ 

tages. Appropriate time scalings are generated naturally by the method, 

and don't need to be guessed as in two-timing. Furthermore, by continu­

ing the procedure to higher order, one extends (formally) the time scale 

of valid approximation. Examples illustrate these claims. Using this 

method, we investigate resonance in conservative, non-conservative and 

time dependent problems. Each example is chosen to highlight a certain 

aspect of the method. 

The second thesis topic concerns the coupling of nonlinear 

chemical oscillators. The first problem is the propagation of chemical 

waves of an oscillating reaction in a diffusive medium. Using two-timing, 

we derive a nonlinear equation that determines how spatial variations 

in the phase of the oscillations evolves in time. This result is the key 

to understanding the propagation of chemical waves. In particular, we 

use it to account for certain experimental observations on the Belusov­

Zhabotinskii reaction. 

Next, we analyse the interaction between a pair of coupled chemical 

oscillators. This time, we derive an equation for the phase shift, which 

measures how much the oscillators are out of phase. This result is the 
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key to understanding M. Marek's and I. Stuchl's results on coupled reac-

tor systems. In particular, our model accounts for synchronization and 

its bifurcation into rhythm splitting. 

Finally, we analyse large systems of coupled chemical oscillators. 

Using a continuum approximation, we demonstrate mechanisms that cause 

auto-synchronization in such systems. 



PART 

I 

II 

-v-

TABLE OF CONTENTS 

Acknowledgments 

Abstract 

Table of Contents 

Introduction 

THE METHOD OF NEAR IDENTITY TRANSFORMATIONS 

1. Resonance in a Planetary Orbit 

2. Resonant Interaction of Coupled Van der Pol 

Oscillators 

3. Passage through Resonance 

4. Slowly Varying Limit Cycles 

NONLINEAR CHEMICAL OSCILLATIONS IN DISCRETE AND 

CONTINUOUS SYSTEMS 

5. Chemical Waves 

6. Coupled Chemical Oscillators 

7. Large Populations of Coupled Chemical Oscillators 

FIGURES 

REFERENCES 

PAGE 

ii 

iii 

v 

vi 

2 

2 

12 

20 

25 

33 

33 

45 

58 

78 

95 



-vi-

INTRODUCTION 

In Part I, we develop a perturbation method for resonantly coupled 

nonlinear oscillators. By performing successive near identity transfor­

mations of the original equations, one obtains new equations with simple 

structure that describe the long time evolution of the motion. The tech­

nique is related to two-timing in that secular terms are suppressed in 

the transformation equations. There are some important advantages. 

Appropriate time scalings are generated naturally by the method, and 

don't have to be guessed as in two timing. Furthermore, by continuing 

the procedure to higher order, one extends (formally) the time scale of 

validity. This is in marked contrast to two timing, where continuation 

to higher order only improves the accuracy in the same fixed time 

interval. 

The idea of a perturbation method based on transformations of the 

dependent variables is already known in certain limited contexts. Von 

Zeipels procedure [1] treats Hamiltonian systems via successive canonical 

transformations. Elimination of secular terms in the transformations 

determines the form of the Hamiltonian in the new variables. The details 

of Von Zeipel's procedure depend on the Hamiltonian structure of the 

equations that it treats. But the basic idea of performing near identity 

transformations and suppressing secular terms in the transformation equa­

tions is much more general. The generalizations of Von Zeipel's method 

to non-conservative, time dependent problems is one of the main topics 

of this study. 

In Chapter 1, we treat a special case of the three-body problem. 

Aside from its intrinsic interest, we include this example as an exercise 
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of Von Zeipel's method on a problem whose zero order description is non­

linear. In Chapter 2, we draw on the experience with Von Zeipel's method 

to develop a method of near-identity transformations for non-conservative 

systems. Specifically, we treat the resonant coupling of two Van der Pol 

oscillators. In Chapter 3, we study the application of the near identity 

transformation method to time dependent problems. Specifically, we treat 

the passage through resonance of a forced oscillator with slowly varying 

frequency. In this example, we see how the near identity transformation 

method determines the characteristic time scales in a resonant system. 

Finally, Chapter 4 is a demonstration of how the time scale of valid 

approximation is extended by carrying out the near-identity procedure to 

higher order. We study the mechanism by which the motion of an autono-

mous system approaches a limit cycle on one time scale and then evolves 

away from this initial limit cycle on a longer time scale. This contrasts 

itself with the usual behavior of limit cycle oscillations, where the 

motion evolves to a stable periodic solution whose amplitude and frequency 

are fixed for all time. 

In Part II, we study nonlinear chemical oscillations in certain 

continuous and discrete systems. In Chapter 5, we analyze a model of an 

oscillating chemical reaction taking place in a diffusive medium. Using 

a two timing method, we derive a nonlinear equation that determines how 

the spatial variations in the phase of the oscillations evolves in time. 

This result is the key to understanding the propagation of chemical 

waves, In particular, we use it to account forcertain experi­

mental observations on the Bekysiv- l habotinskii reaction. 

In Chapter 6, we study the interaction between a pair of coupled 
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chemical oscillators. Using a two-timing procedure similar to the one 

employed in Chapter 5, we derive an equation that governs the time 

evolution of the phase shift, which measures how much the oscillators are 

out of phase. This result is used to interpret experimental observations 

on coupled reactor systems. In particular, our model accounts for synchro­

nization, and its bifurcation into rhythm splitting. 

In Chapter 7, we study the mechanisms that underlie synchronization 

processes in large systems of coupled chemical oscillators. Specifically, 

we study the evolution from an initial state where the phases of the 

oscillators are distributed randomly, to a final state where all the 

oscillators are in phase. In the continuum limit, where there are many 

oscillators per unit volume, we derive a nonlinear integra-differential 

equation that describes how the distribution of the oscillator's phases 

evolves in time. In general, this problem is very formidable. But we 

discover some important special cases for which there are exact solutions 

describing synchronization processes. 
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Part I 

THE METHOD OF NEAR IDENTITY TRANSFORMATIONS 
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CHAPTER 1 

RESONANCE IN A PLANETARY ORBIT 

We study the evolution of a resonantly perturbed planetary orbit. 

In polar variables r, ~. the Hamiltonian is 

H 

2 
p 

+ -~-) 
2 

r 

1 - + £r cos{~ - £wt) 
r 

{1) 

where are the momenta conjugate to r and ~. and £ << 1. 

The perturbation term £ r cos(~ - £wt) can be thought of as the in-

fluence of a second, much more distant planet with a long period. Using 

Von Zeipel's transformation procedure, we will show how this perturbation 

leads to an internal resonance between the degrees of freedom. The 

resonance manifests itself by large amplitude, long period oscillations 

in the angular momentum of the orbit. The effect is clearly visible in 

Figure 1.2, which depicts a typical trajectory obtained from a numerical 

simulation. 

We adopt a coordinate system that rotates with the perturbing field. 

Under the transformation 

H 

where 

R = r, ~ = ~ - £Wt, 

2 
p 

+ -~-) 
R2 

1 
R 

the Hamiltonian becomes 

(2) 

(3) 
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and 

H1 - "' R cos .., - wp<fl (4) 

In this coordinate system, the Hamiltonian is time independent. 

It is convenient to introduce the action angle variables 

(aR, a<fl, vR, v<fl) of the unperturbed Hamiltonian H
0 

[ z]. The transfor­

mation from polar variables (pR, p<f!' R, <fl) to action angle variables is 

given implicitly by 

where 

and z: 

+--"-1-

J-2H0 

R = a(1 - e cos ~) 

a -

V<fl - VR + arcos rcos ~ - e 1 
1 - e cos ~ ) 

and 

z:(vR) is determined from 

~ - e sin ~ 

In action angle variables, the unperturbed Hamiltonian H
0 

is 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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1 = - (11) 

and the perturbation term can be written as 

where 

a cos ~(cos ~ - e) - a)l-e
2 

sin ~ sin ~ - wa 
~ 

(12) 

(13) 

The actions aR and a~ are constants of the unperturbed (£ = 0) 

motion. In particular, a~ is the angular momentum. a and e are the 

major axis and eccentricity of an unperturbed orbit. The angles vR and 

for the unperturbed motion, in which case 

~ = v~ - vR is another constant. Physically, ~ is the angle along 

which the major axis of the orbit is aligned. 

When £ f 0, aR, a~ and ~ are no longer constants of the motion, 

but vary slowly in time. Our aim is to find an asymptotic solution which 

describes the slow evolution of aR, a~ and~. Following Von Zeipel's 

method, we construct a near identity canonical transformation (a, v) = 

(aR, a~, vR, v~) + (A, 8) = (~, A~, 8R, 8~) so that the equations of 

motion for (A, 8) are integrable. 

The canonical transformation can be expressed in terms of a gener-

ating function S(A, v, £) via 
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a. = v s ' 0 
\) 

(14) 

Under the action of the transformation (a., v) ~ (A, 0), the Hamiltonian 

assumes a new form E(A, 0, E). That is, 

E(A, 0, E) (15) 

Combining (14) and (15), we find 

E(A, VA S) (16) 

This is the Hamilton-Jacobi equation. It is a relationship between the 

generating function S(A, v, E) and the new form of the Hamiltonian 

E(A, 0, E). 

When E = 0, the equations of motion are integrable in the (a.,v) 

variables, and the transformation (14) should reduce to the identity. 

Hence, we assume that S(A, v, E) and E(A, 0, E) have the asymptotic 

forms 

(17) 

(18) 

as E ~ 0. Substituting (17) and (18) into the Hamiltonian-Jacobi equa-

tion (16), we find 
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(19) 

Using the specific forms of H
0 

and H1 given in (11) and (12), this 

becomes 

E
1

(A, v) - a cos ~(cos '-e) - a J1-e
2 

sin ~ sin ' - wA~. (20) 

where a and e are evaluated at a = A, 

directional . derivative of s1 
along lines 

and 

~ 

LS
1 

= v~ 

as 1 as 1 
is the - --+--

avR av~ 

- v = 
R 

constant. 

We require a solution for s1 
that is bounded in the angles 

VR and v~, so that the transformation (a, v) + (A, e) defined in (14) 

remains uniformly near the identity as become infinite. Hence 

E
1 

must be chosen so that the right hand side of (20) has no non-zero 

component that is constant along the lines ~ = v~ - vR = constant. 

Otherwise, s1 
will have secular terms proportional to vR and v~. The 

simplest choice for E
1 

that does the job is 

a cos 

r7 1 
a ~1-e- sin ~ 2n 

Here, we recall that is a function of 

Using the definition (10) of '(vR), we compute 

(21) 

defined implicitly by (10). 
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( 2,- cos r; dvR dr; 
Jo dr; 

f 
2,-

cos 1;;(1 - e cos r;)dr; 
0 

- ,. e 

Similarly, we find 

0 

Hence, (21) reduces to 

U(A, ljl) 
3 - - 2 ae cos ljl + wA~ 

(22) 

(23) 

(24) 

With this choice of 

solution for s1
. 

(20) can be integrated to find a bounded 

In (A, 0) coordinates, the Hamiltonian is 

E(A, 0, e:) 

where 

Hence, for times t < 
1 

0(---z)' the motion is described to 
e: 

by 

(25) 

(26) 

0(1) accuracy 
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~ 
aE au 
a0 e: ()'¥ 

R 
(27) 

A~ 
aE au --- = - e: a0 ()'¥ 

~ 

(28) 

8 = ~ = aH
0 

+ au 
R a~ a~ 

e: 
a~ 

(29) 

8 
aE aH0 au = -- = --+ e: 

~ dA~ C3A~ a A~ (30) 

This system is completely integrable. From (27) and (28), we see 

that 

A-~+ A~ (31) 

is a constant of the motion. The equations (29) and (30) for 8R and 8~ 

can be subtracted from each other to yield a single equation for '¥ in 

terms of A and '¥. One finds 

0 

8 - 8 
~ R 

au au 
e:<aA~ - a~) (32) 

Here, we have used the fact that and are both equal to 

1 
Hence, these terms cancel each other out in the subtraction, 

and don't appear in (32). From these preceding observations, we see that 

the fourth order system (27) - (30) can be reduced to a second order 

system for the angular momentum A~ and the angle of orientation '¥ of 

the orbits' major axis. We find 
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0 

A~ 
au 

- E a~ (A-A~, A~, ~) (33) 

au au 
~ = E aA~ (A-A~, A~, ~) - E a~ (A-A~, A~, ~) 
0 

(34) 

It is easily verified that this is a second order Hamiltonian system, 

with Hamiltonian U(A-A~, A~, ~). The level lines of U(A-A~, A~, ~) 

give the trajectories of the A~, ~ phase plane. Once these are known, 

the solution of (33) and (34) is reduced to direct quadrature. 

We study in detail the evolution of the angular momentum A~. 

From the definition (24) of U, and the definitions (9) of a and e, 

one tinds 

3 
U(A - A~, A~, ~) = - 2 a e cos ~ + w A~ 

3 122 - 2 AyA--A; cos~+ w A~ (35) 

Hence, the equation (33) for the angular momentum reads 

(36) 

where T is the slow time Et. Squaring (36) gives 

(37) 

With the help of (35), the second term in the right hand side of (37) can 

be written as 
2 

(U - w A~) • Hence, (37) becomes 
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(38) 

Differentiating (38) with respect to 7' once gives 

- 2 u w {39) 

From this equation, we see immediately that the angular momentum oscil-

lates sinusoidally about the mean value 
2Uw 

9A2 2 4 w 
with period 

(40) 

in the slow time T = £t. The amplitude p of the oscillations can be 

determined from the zeros of 

0 (41) 

For orbits that are circular at some point in their evolution there is a 

{1 - AA~2} ~ time when the eccentricity e = is zero. At that time, 

A~ = A. Substituting A~ = A into (35) gives U 

of U, we find from (42) that 

p 

w A. With this value 

(42) 
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Figure 1.1 shows a graph of p vs. w. We see that the resonance is 

strongest when w = 0 and weakens as w + + oo. This result is easy to 

understand physically. As w increases, the perturbing field in (1) 

rotates more rapidly. If the perturbing field undergoes many oscillations 

during the period of the planet's orbit, its cumulative effect on the 

orbit will be small. 

We compare the results of the theory with a numerical simulation. 

Figure 1.2 shows the numerically computed evolution of an initially 

circular orbit of radius ~ for the case £ = .05, w = 1.4. Figure 1.3 

is the corresponding plot of the angular momentum. From this plot, we 

estimate the amplitude and period of the oscillations in the angular 

momentum, and compare them with theoretical values given by (39) and (42). 

The results are shown in the table below. 

Numerical value - 71 - .251 

Theory value 71.55 .258 
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CHAPTER 2 

RESONANT INTERACTION OF COUPLED VAN DER POL OSCILLATORS 

We develop a near identity transformation procedure that treats 

internal resonance in systems of non-conservative oscillators. For a 

concrete model problem, we analyze the interaction between two coupled 

Van der Pol oscillators. The equations of motion are 

• 

(1) 

1) + (1 + 2£w)u
2 

where w is a constant, and 0 < £ << 1. When w = 0, two identical 

oscillators are coupled. When w t 0, two different oscillators are 

coupled. 

It is convenient to write (1) as a system of first order equations. 

Setting vk = uk, k = 1,2, (1) can be recast as 

0 

u1 v1 

• 2 
v1 - u1 - dv

1
(u

1 - 1) - v } 
2 (2) 

0 

u2 v2 

" 2 + 2wu - v } v2 - u2 - dv
2

(u
2 - 1) 

2 1 

The solutions for £ = 0 are 

v 
k 

1, 2, (3) 
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where rk and Sk are constants. This suggests a change of dependent 

variables (uk, vk) + (rk, vk) given by 

1,2 (4) 

The equations for the amplitudes rk and phases are 

0 

r1 = df(r
1

, v1) +Cf(r1 , r2, v1, v2)} ' 
0 

r2 e:{f(r
2

, v
2

) + Cf(r
2

, r
1

, v2, v1) + w r
2 

sin 2v
2

} 
(5) 

"1 1 + dg(r1, \) 1) + y(r1' r2, v1, v2)} 

0 

v2 = 1 + £{g(r
2

, v
2

) + y(r
2

, r
1

, v2 , v
1

) + w(l +cos 2v
2
)} 

where 

2 3 
(6) 

f(r, v) 
2 2 2 v} r r r +.!.._ - r sin v{1 - r cos = -(1 - -) 

2 cos 2v cos 4v 
2 4 8 

2 2 (7) 

g(r, v) v{1 2 2 v} ~(1 
r sin 2v r sin 4v - sin v cos r cos - -) -8 2 

When £ = 0, the equations (5) reduce to 

0 

0 and v
1 v2 1 (10) 
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Hence, r 1 , r 2 and ~ = v
2

- v
1 

are constants of the motion for £ = 0. 

When £ t 0, r
1

, r 2 and~ are no longer constants, but vary slowly in 

time. To find an asymptotic solution of (5) that describes the slow 

evolution of r 1 , r 2 and~. we introduce a near identity transformation 

(r, v) ~ (R, 8). We assume that this transformation has the asymptotic 

form 

and the equations of motion in the new variables are 

0 

8 
k 

(11) 

(12) 

Substituting (11) into the system (5) and comparing the result with (12), 

we see that 

LS
1 

f(R
1

, 8 ) 
1 + If' (R1' R2, 81, 8 ) 

2 
- F (R, 8) 

1 - -
(13) 

LS 2 
f(R

2
, 8 ) 

2 + C'f(R2' R1' 82, 8 ) 
1 

+ wR
2 

sin 28 2 - F2(~, 8)' (14) 

LTl g(R1, 8 ) 
1 + y(R1, R2' 81, 8 ) 

2 - G1(~, 8) (15) 

LT 2 = g(R2, 82) + y(R2' R1, 82, 8
1
)+w(l+ cos 28 ) 2 - G2(~, 8) 

' 
(16) 

where L _a_ + _a_ is the direct :lonal derivative along the lines 
- a0

1 
a0

2 
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~ _ e
2

- e
1 

=constant of the (e
1

, e
2

) plane. 

We require solutions for the Sk and Tk that are bounded as the 

phases e1, e2 become infinite, so that the transformation (r, v) ~ 

(R, e) defined by (11) is uniformly near the identity for all e
1 

and e
2

. 

This boundedness requirement leads to natural choices for the Fk and Gk. 

Consider, as an example, the equation (13) for s
1

• Since LS
1 

is the 

directional derivative of s1 
along lines ~ = e2 - el = constant, we 

must choose F
1 

to suppress any non-zero component of f(R
1

, e
1

) or 

~(R1 , R
2

, e
1

, e
2

) which is constant along the lines ~ = e
2

- e
1 

= 

constant. Otherwise s1 
will have secular terms proportional to e 

1 

and e
2

. From the definitions (6) and (8) of f and~. we see that it is 

sufficient to take 

(17) 

Similarly, we choose 

(18) 

R2 
G1 = ~- sin ~ 

R1 
(19) 

Rl 
sin ~ G2 w - ~-

R2 
(20) 

With these choices for the Fk and Gk, (13) - (16) can be integrated to 

find bounded values for the Sk and Tk. 

In (R, e) variables, the equations of motion are 



0 

R1 

0 

R2 

0 

0 
1 

0 

0 2 
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R1 
R2 

R2 1 E- (1- -) + E 2 cos 2 4 

R2 
R2 

R1 2 = E 
2 

(1- -) + E 2 cos 4 

R2 2 
1 + E ~ - sin '¥ + O(E ) 

R1 

'¥ + O(E
2

) 

'¥ + O(E
2

) 

sin 
2 

l(! + 0(€ ) , 

(21) 

where '¥ = 0
2

- 0
1

. These can be reduced to a third order system by 

subtracting the equations for 0
1 

and 0
2 

to form a single equation for 

'¥. The system for R
1

, R
2 

and'¥ can be written as 

dR1 R1 R~ R2 
- = - (1 - -) +- cos '¥ + O(E) 
dT 2 4 2 

(22) 

w - sin '¥ + O(E) 

where T is the slow time Et. 

When lwl < 1, (22) has a stable steady state solution with 

and where '¥0 is the solution of 

(23) 

with - T < '¥ 0 < ; , and 
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2{1 + (1 - w2 )~}~ (24) 

These correspond to synchronized states, where the phase difference 

'i'(T) is a constant. Notice that Ro is greater than 2, which is the 

amplitude of an unperturbed Van der Pol oscillator. 

When w is increased to a value greater than one, this stable 

steady state is lost. Instead, one finds a solution with R1 and R
2 

both equal to the same periodic function R(T). In the case R
1 

= R
2 

R, 

(22) reduces to 

dR ~(1 + cos '!') 
R3 

dT 2 -8 (25) 

d'l' 
sin 'I' 

dT w - (26) 

The equation for the phase difference 'I' is decoupled from the 

amplitude R, and can be solved seperately. We consider the limiting 

case where w is slightly greater than one, so that 0 < w- 1 << 1. 

Figure 2.1 illustrates the situation with a graph of 
d'l' dT" vs. 'I'. The 

solution for 'I' is nearly constant at the values 'I' = I + 2~ m, 

m = integer, where d'l' . \U - = w - S1n T 
dT 

is 0 (1). Away from 'I' = 2!.. + 2..,. m 2 " , 

d'l' 
dT 

is 0(1). These regions of rapid variations in 'I'(T) correspond to 

boundary layers that join the constant values 'I' = 2!.. + 2~ m, 
2 

as shown in 

Figure 2.2. The interval of T between two successive boundary layers is 

To 
( 2n d'l' 
J
0 

w - sin 'I' 
(27) 
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In the boundary layer regions, ~ has the analytical form 

2 arctan T - ~ + 2mm + O(w-1) 
2 

(28) 

Once ~ is known, R can be computed from (25). Equation (25) 

can be converted into a linear ODE by introducing the change of variable 

1 
S = :z . The equation for S is 

R 

One solution is 

s 

~~ = - (1 + cos ~) s + ~ 

JT-y 
~ J.., e-y e T 

0 

cos ~(Z:)dZ: 

(29) 

dy (30) 

Since ~(Z:) increases by 2Tr when z: increases by 2Tr, it follows that 

cos ~(Z:) is 2Tr periodic in z:. Hence, (30) is the periodic solution of 

(29). There is a useful alternative form of (30). Differentiating (26) 

with respect to T gives 

Hence, 

d2~ d\U 
-- - - COS ~ T 
dT2 - dT 

rT-y 
j_ cos ~(Z:)dZ: {~! (T-y)} 

- log d~ 
dT (T) T 

and (30) becomes 

(31) 

(32) 
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s d'l' i"" e -y ~- ---- dy 
dT Q d'l' (T-y) 

dT 

(33) 

To find the behavior of S in the boundary layer regions, we substitute 

into (33) the approximate form of 'I' given in (28). We find 

The corresponding value of R(T) 1 

R(T) 

is 

2 
~ 2+(T-l) 

1+T2 
(34) 

(35) 

Figure 2.3 is a plot of this inner solution for R. Notice that R(T)~2 

as IT I ~ co At each T where a boundary layer in 'I' occurs, R(T) 

undergoes the oscillation depicted in Figure 2.3. Figure 2.4 depicts the 

solution for R(T). We see that long intervals in which R(T) is nearly 

constant are punctuated by brief intervals where R(T) undergoes an 

oscillation. 
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CHAPTER 3 

PASSAGE THROUGH RESONANCE 

For a time dependent problem, we examine the passage through 

resonance of a forced oscillator with slowly varying frequency. The 

equation of motion is 

u 2 
X + W (Et)x £ a cos t (1) 

where 0 < £ << 1. (1) can be recast as a pair of first order equations 

for the amplitude and phase of the oscillations. The amplitude r and 

phase v are related to x by x ;:: r cos v. The equations for r and 

v are 

0 • 
r = £f(r, v, t) , v = w + £g(r, v, t) (2) 

where 

I I 

f - rw + rw cos 2v + ~ i (t ) a i (t+ ) 2w 2w 2w s n -\1 - 2w s n " (3) 

and 

I 

g - w sin 2v - a cos(t-v) - a cos(t+v) 
2w 2wr 2wr 

(4) 

To find the asymptoti.c solution of (2), we introduce a near ideo-

tity transformation (r,v) -~ (R.O). We assume it has the form 
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r = R + £ S(R, e, t) + 0(£
2

) 
{5) 

v = e + £ T(R, e, t) + 0(£
2

) 

and that the equations for R and e have the form 

0 0 

R £ F (R, e, t) , e w + E G(R, e, t). (6) 

We allow S and T to depend explicitly on the time t, because the 

equations of motion have explicit time dependence. Applying the trans-

formation (5) to the original equations (2) and comparing the result with 

the assumed form (6) of the new equations, we find 

LS f (R, e, t) F(R, e, t) (7) 

LT g(R, e, t) - G(R, e, t) (8) 

where L is the directional derivative L = ~t + w ~e along lines 

we - t constant of the t, e plane. We see that S and T will have 

secular terms proportional to t and e whenever there are non-zero com-

ponents in the right hand sides of (7) and (8) that are constant along 

the lines we - t = constant. 

The suppression of such secular terms leads to natural choices for 

F and G. Consider the equation (7) for S. Inserting the explicit form 

of f(R, e, t) given by (3), it reads 

' I 

LS - Rw + rw cos 2e + ~ sin(t-e) - a sin(t+e) - F 
w 2w 2w 2w 

(9) 
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We allow for the possibility of resonance, in which w = 1 for some 

range of time. During the time of resonance, L is the directional 

derivative along lines 0 - t constant. Hence, to avoid secular terms 
/ 

in s, must choose F the Rw a 
(t-0) we to suppress terms --and -sin 

w 2w 

from the right hand side of (9). That is, 

F 
/ 

Rw + ~ sin(t-0) 
w 2w 

(10) 

Similarly, suppression of secular terms in T leads to 

G 
a 

2wR cos(t-0) (11) 

With these choices of F and G, equations (7) and (8) can be integrated 

to find bounded values for S and T. 

If a 

The equations for R and 0 are 

0 I 

R = d- Rw +~ sin(t-0)} + 0(£2) 
w 2w 

0 a 2 
0 w + d- 2wR cos(t-0)} + 0(£ ) 

0, (no forcing), then to leading order, (12) reads 

0 

R 
R 

I 
£W 

2w 

• 
w 
2w 

This equation integrates to 

constant 

(12) 

(13) 

(14) 

(15) 
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The quantity A is the familiar adiabatic invariant. We introduce a 

change of variables (R,0) ~ (A, ~ = 0- t) in equations (12) and (13). 

The equations for A and ~ are 

0 

-~ ~ 2 eaw A sin ~ + O(e ) (16) A 

(17) 

This system has explicit time dependence due to the presence of w(et). 

Hence, a closed form solution is generally impossible. But an asymptotic 

solution can be constructed which is valid in near resonance conditions. 

We take w(et) to be a smooth function with w(O) = 1, w'(O) =b. 

Resonance occurs when t is near zero. (17) can be integrated to give 

* Let t lEt be 0(1). Then 

Substituting this value of ~ into (16) gives 

Integration gives 

3 

Eaw-~(1£ t*) sin(~ t* 2
) + O(e

2
) 

3 
b *2 2 

Ea sin(2 t ) + O(e ) 

(18) 

(19) 

(20) 
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rt b *2 
£a J~ sin(2 t )dt + 0(£) = 

0 

£~ a b 2 
sin(2 ~ )d~ + 0(£) (21) 

where A
0 

is the value of A at t = 0. Since the total change of A is 

much less than unity, it is sufficient to approximate 

where oA :: A - A
0

. Hence, 

oA 2A~ £~a b *2 * 
sin(2 t )dt + 0(£) 

* 

A~ - A~ 
0 

The total change in oA as t goes from - oo to + oo is 

by 

(22) 

(23) 

We see that the effect of the resonance is to alter the value of the 

~ ~ rrr adiabatic invariant by an amount 2A
0 

£ a ~b. 

time scale 
1 

t =-

IE 
Figure 3 shows a graph of 

This change occurs on a 

* oA vs. t . 
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CHAPTER 4 

SLOWLY VARYING LIMIT CYCLES 

1. Introduction 

In many systems with limit cycles, the motion evolves to a stable 

periodic oscillation whose amplitude and frequency are fixed for all time. 

In this paper, we study the mechanism by which the motion of an autono-

mous system can approach a limit cycle on one time scale and then experi-

ence a further evolution away from this initial limit cycle on a longer 

time scale. . The defining equations of the model are 

(1.1) 

1,2 

where 0 < £ << 1 and the function A(r
1

, r
2

) is assumed to be zero 

along some curve in the (r
1

, r
2

) plane. For a concrete example, we 

take 

(1.2) 

which is zero on the circle of radius 1 centered about (r
1

, r
2

) = (2,2) 

and along the lines r = 0 
1 

and We think of (1.1) as the polar 

form of a system that is originally given in rectangular variables. The 

rectangular variables (xk, yk) are related to the polar variables 

(rk' vk) via 
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1,2 (1. 3) 

Hence, rk and vk represent the amplitudes and phases of oscillations 

in xk and yk. A limit cycle is achieved when the amplitudes r
1 

and 

r
2 

asymptote to constant values as t ~ oo. 

In Section 2, we use the method of near identity transforms to 

derive equations for the long time evolution of the amplitudes r
1 

and 

r
2

, and in Section 3, we analyse these equations and compare the results 

with numerical calculations. 

2. The Near Identity Transformation 

We construct a near identity transformation (rk, vk) ~ (~, 0k) 

so that the equations for the amplitudes R
1 

and R
2 

decouple from the 

phases 0
1 

and 0
2

. One can then study the two by two system of equa­

tions for R
1 

and R
2 

by phase plane methods. We assume that the trans­

formation has the form 

1 
0) 

2 2 
0) 0(£3) rk ~ + £ Sk(!, + £ Sk(R, + 

(2.1) 
1 

0) 
2 2 

0) + 0(£3) vk 0 + £ Tk(!, + £ Tk(!, k 

and that the equations in the new variables are 

0 
1 2 2 + 0(£3) ~ = £ Fk (!, ~) + £ Fk (!, ~) 

(2.2) 
0 1 2 2 0(£3) 0 1 + £ Gk(R, 0) + £ Gk(R, 0) + k 
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Substituting (2.1) into the system (1.1) and comparing the result with 

(2.2), we find 

LS
1 
k A+~ cos 20 -

k 
Fl 

k (2.3) 

LT
1 
k ~ cos 20 -

k 
Gl 

k (2.4) 

LS
2 a A sl + cos 20k sl - 2~ sin 

1 
(2. 5) = -- 20k Tk k ar~~, II, k 

1 1 
ask 1 ask 1 

- F2 --F - a0 c~~, aR~~, ~~, 
II, 

k 

2 1 
sin 20k Tl (2. 6) LTk cos 20 s - 2~ k k k 

1 1 
aTk 1 aTk 1 

- G2 -aRFR. - a0 c~~, k 
II, II, 

where L _ a + a 
- a0 a0 

1 2 
is the directional derivative along the lines 

0
2

- 0
1 

=constant of the (0
1

, 0
2

) plane. In these equations, the 

function A and its derivatives are evaluated at (r
1

, r
2

) = (R
1

, R
2

) 

and the index R. is summed over. 

To suppress secular terms in we balance 

G
1 

against terms in the right hand sides of (2.3) and (2.4) that are 
k 

constant along the lines 0
2 

- 0
1 

= constant. Hence, we choose 

(2. 7) 
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F1 and G1 
k k' (2.3) and (2.4) becomes 

1,2 

These equations have bounded solutions 

1,2 

(2.8) 

(2.9) 

Substituting the known values of 
1 1 

8
1 1 

F G and T 
k' k' k k into (2.5) and (2.6), 

we find 

LS
2 a A A) 28 

Rk 
sin 48k (2.10) ~(R - - sin +-k t ar

1 
k 4 

R2 
k 

(1 - cos 48 ) - F2 --z k k 

LT
2 A( . 28 + sin ~ 

sin 48k (2.11) - - s1n 28) +-
k 2 1 2 4 

~ (1 - cos 48 ) - G2 --z k k 

Following the same procedure as before, we suppress secular terms in 

and T~ by making the proper choices of F~ and G~. In the present 

case, it is sufficient to take 

1,2 (2.12) 

In (R, 8) variables, the equations of motion are 
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2 

0 2 R1 
O(e:3) R1 e: A(R

1
, R2) e: - + 

2 
2 (2 .13) 

0 2 R2 
O(e:3) R2 e: A(R

1
, R

2
) - e: - + 2 

and 

2 
0 

e:2 Rk_ + O(e:3) e 1 - ' k 1,2 (2.14) 
k 2 

Notice that the equations for the amplitudes R
1 

and R
2 

form a two by 

two system (2.13) decoupled from the phases e1 and e2 • If we define the 

slow time T = e:t, then (2.13) can be written as 

dR
1 

R2 
O(e:2) A(R

1
, R

2
) - 1 

-- = e:- + dT 2 

R2 
(2.15) 

dR2 0 ( e: 2) A(R
1

, R
2

) - 2 
d-r e:- + 2 

3. The (R1 , R2) Phase Plane 

From (2.14), we see that the motion of the amplitudes R
1 

and R
2 

is described to 0(1) accuracy by the system 

-- = dT (3. 1) 

for slow time intervals of length 0(1) and by system 

dR
1 -- = dT 

(3. 2) 
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for slow time intervals of length Figure 4.1 shows the phase 

portrait of (3.1). The trajectories all have slope + 1. Inside the 

circle 
2 2 

A(R
1

, R
2

) 2 (R1 - 2) + (R2 - 2) = 1 , - R R
2

{(R
1

- 2) + 1 
2 

(R - 2) - 1} 2 
> o, so R1 and R2 increase at the same rate. Outside 

the circle, A < 0, so R1 and R2 decrease at the same rate. The cir-

cle itself is a locus of singular points. The solid semicircle c+ 

represents the stable singular points and the broken semicircle c 

represents the unstable singular points. The shaded region s shows the 

trajectories that converge to the stable singular points. 

Figure 4.2 shows the phase portrait of (3.2). The O(e:) terms 

which are present in (3.2) but not in (3.1) introduce an essential change. 

The system (3.2) has only 3 singular points. These are located at 

(Rl, R2) = (0, 0) • (~, ~) and <!u· ~)' where ~and~ are the 

two positive roots of A(R, R) - e: 
R2 

A(R, R) = 0 has 2 = 0. Since roots 

0, 2 -
1 and 2 +__! have ~ = 2 - __!+ O(e:) and ~= 2 +__!+ we 

12 12 12 12 

O(e:). The singular point (~, ~) is a stable node. All trajectories 

enter the node with slope - 1, except one, which enters with slope unity. 

The singular point (~, ~) is a saddle. The two outgoing solutions 

depart from the saddle point with slope 1, and the two ingoing solutions 

enter with slope - 1. The shaded region S shows the trajectories that 

converge to the stable node. 

Let us consider the motion along a typical trajectory in S. 

Initially, A(R
1

, R
2

) is 0(1) and the motion is described to 0(1) 

accuracy by (3.1). The phase point travels toward the semicircle C+ 

along a trajectory with slope nearly unity. This phase of the journey 

occurs on a slow time scale T = 0(1). When -'the phase point is within 
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distance 0(£) of C+, the whole right hand side of (3.2) is 0(£). 

The phase point drifts to the stable node on a slow time scale 

We now consider the implications of these results regarding the 

oscillations in the original variables xk, yk' k = 1,2. Once the Rk 

are known, we find the amplitudes of the oscillations in 

via ~(£t) + 0(£). Hence, we see that the oscillations in 

xk, yk, k = 1,2 appear to approach limit cycles in time t = 0(~), yet 

experience a further evolution away from their initial limit cycles in 

time 1 
t = 0(2). 

£ 

We compare the results of the theory with a numerical simulation. 

Figure 4.3 shows the trajectory of the amplitudes r
1 

and r
2 

obtained 

from a numerical solution of (1.1) with £ = .OS. The initial conditions 

are r
1 

= 4, r
2 

= 2.5, v
1 

= v
2 

= 0. The segment AB represents the 

initial formation of the limit cycles and the segment BC represents the 

slow drift away from the initial limit cycles. The elapsed times for 

these motions are 8.2 and 380, in good agreement with 
1 
£ 

20 and 

1 
~ = 400, which are the natural time scales determined from the theory. 
£ 
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Part II 

NONLINEAR CHEMICAL OSCILLATIONS IN 

DISCRETE AND CONTINUOUS SYSTEMS 
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CHAPTER 5 

CHEMICAL WAVES 

1. Introduction 

We study the propagation of chemical waves through a continuous 

diffusive medium. These arise naturally and as models for biochemical 

processes. Motivated by specific experimental results of M, Marek and 

E. Svobodova [3], we initiate our study with the investigation of a 

reaction diffusion process governed by the equations 

where 0 < £ << 1. 

ax -= at 

a a2
v ~t = G(x, y) + £ ~ 

CJ as 2 

When £ = 0, oscillations at any spatial position s are 

governed by 

tl 

X 

II 

F(x, y) 

y = G(x, y) 

(1.1) 

(1. 2) 

We assume that as t ~ ~. all solutions of (1.2) tend to a stable, T 

periodic limit cycle given by 

X = X(t) , y Y(t) (1. 3) 

Our major result is that to leading order in £ the system (1.1) possesses 
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a periodic wave solution given by 

X= X(t + ~(s, T)) , y = Y(t + ~(s, T)) (1. 4) 

where T = Et and the phase ~(s, T) evolves according to the nonlinear 

equation 

Hence, the gradient of the phase a~ 
v - as 

These results are derived in Section 3. 

(1. 5) 

obeys Burger's equation [4] 

(1. 6) 

Prior to the derivation we shall 

need specific preliminary results which are implied by the assumption 

that (1.2) possesses a stable, T periodic limit cycle. These are 

derived in Section 2. 

Our results have many implications regarding the propagation of 

chemical waves in a diffusive medium. These are discussed in Section 4. 

One of the specific tasks is to account for the experimental observations 

of Marek and Svobodova [3] on the Belusov-Zhabotinskii reaction. 

2. The New Variables 

At any given position s, we expect that the O(E) diffusion 

terms in (1.1) will cause the orbit of (x(s, t)), y(s, t)) to suffer 

O(E) displacements from the trajectory of the limit cycle given in (1.2). 
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The consideration suggests a convenient change of variable (x, y) + (A, e) 

given by 

x X(e) + EAY'(e) 
(2.1) 

y Y(e) EAX'(e) 

Here, e parametrizes points on the limit cycle and EA measures per-

pendicular displacements from the limit cycle. Figure 5.1 provides a 

geometric visualization of this transformation. 

Applying the transformation (x, y) + (A, e) to the full reaction 

diffusion system (1.1), we find 

ae 
at 

(2.2) 

Here, ~. y, Q, P are functions of e determined from X(e) and Y(e), 

and U is a function of A, e and their s derivatives. The specific 

functional forms of these quantities is not crucial for the analysis. It 

is sufficient to note that they are all T periodic in e and that 

J T ~(s)ds < o 
0 

which derives from the stability of the limit cycle (1.3). 

(2.3) 

To derive (2.3), we consider space independent solutions of (2.2), 

with ae aA 
~·~ 

equal to zero. They satisfy 
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dA 
dt = ~(0)A + 0(£) 

de 
dt = 1 + 0(£) 

From (2.4), we deduce 

dA 
dt = ~(t)A + 0(£) 

for time intervals with length 0(1). Integration of (2.5) gives 

A(t+T) 
A(t) 

(1 + O(E))e 

f. T 'f(r;)dr; 
0 

Here, we used the periodicity of f to change J
t+T 

'f (r;)dr; 
t 

into 

(2.4) 

(2.5) 

(2. 6) 

sT~(r;)dr;. In (A, 0) coordinates, the limit cycle is given by A- 0, 
0 

0 = t + ~. Stability of the limit cycle means that all solutions of (2.4) 

have A(t) + 0 as t + oo, From (2.6), we see that this requirement forces 

the condition 

3. The Two Timing Procedure 

We show that to leading order, the asymptotic solution of the sys-

tern (2.2) hEls 
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El rv t + 'i'(s, T) (3.1) 

where T is the slow time Et and the phase 'i'(s, T) evolves according 

to 

(3.2) 

Given '¥, we find the asymptotic solutions for the concentrations x and 

y via the transformation (2.1): 

x = X(El) + EAY'(El) A(t + 'V) + 0(£) 
(3.3) 

y Y(El) £AX I (El) Y(t + '¥) + 0(£) 

We seek an asymptotic solution of (2.2) in the form 

(3.4) 

where the terms in the expansion depend on t, s and the slow time 

T = Et. Substituting (3.4) into (2.2), we obtain the hierarchy 

0(1) 

0 
L - 'f(Elo)A o at 

ae0 
-= 1 at 

(3.5a) 

(3.5b) 
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~el o o o o 2 2 o o tt = y(e )A + P(e ) c~: ) + a ~ - ~~ 
as 

From (3.5b), we find 

t + 'l'(s, T) 

Substituting this value of e0 into (3.5a), we find 

aA
0 

0 
-- 'e(t +'!')A at 

To solve (3.7), we consider the equation 

dx 
d z;: 

Cf(z;:)x Q(z;:) 

(3.5c) 

(3.5d) 

(3.6) 

(3. 7) 

(3.8) 

This is a linear ODE with T periodic coefficients and T periodic 

forcing. The homogeneous solution 

h hO e V(z;:) , V(Z:) - l z;: (f(z;:)dz;: 
0 

(3. 9) 

is a decaying transient because of the condition JT ~(z;:)dz;: < 0, which 
0 

derived from the stability of the limit cycle. Under these conditions, 

(3. 8) has a unique periodic solution p (z;:) ( 5]. In terms of this p (Z:), 

the general solution of (3. 7) is 
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Ao ho(T)eV(t) + (~)2 as p(t + 'I') 

(3.10) 
ho(T)eV(t) (~)2 0 = + p (0 ) 

as 

Substituting this result for A0 into (3.5d) gives 

(3.11) 

This function f(0°) - y(0°)p(0°) + P(0°) is T periodic, hence, we can 

write it in the form 

where 

value. 

K = -! (T f(r;;)dr;; and w(0°) 
T Jo 

Hence (3.11) integrates to 

(3.12) 

is T periodic with zero mean 

The second term is bounded because y(0°)eV(t) decays exponentially as 

t + ""· The third term is bounded because 

mean value. Hence, we write 

ll('l')t + B(t, T) 

where 

0 w(e ) is periodic with zero 

(3.14) 

(3.15) 
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and B(t, T) is a bounded function composed of periodic and exponentially 

decaying terms. The equation for AI is obtained by substituting the 

result (3.I4) for 0I into (3.5c). The result can be expressed as 

(3.I6) 

where B(t, T) is another bounded function composed of periodic and ex-

ponentially decaying terms and 

0 0 0 0 
W(0 ) :: Cf'' (0 ) p (0 ) + Q' (0 ) (3.I7) 

For a physically meaningful solution, the amplitude correction AI and 

its 
aAI 

time derivative ~ must remain bounded for all time. If this is 

the case, then (3.I6) forces us to conclude that 

o a~ o a a~ 
{~(~) W(0 ) a;+ 2Q(0 ) a;~(~)} as t (3.I8) 

is bounded. In general, 
0 0 

W(0 ) and Q(0 ) are two different periodic 

functions of t. Hence, the boundedness of (3.18) implies ~ = 0 
as 

or 

~(~) = 0. The first alternative, a~ - o 
as ' 

corresponds to solutions that 

are space independent to leading order. For spatially dependent solutions, 

we must have 

~(~) - 0 (3.20) 

this is the main result. 
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Differentiating (3.20) with respect to s and setting a'¥ 
v = as gives 

which is the well known Burger's equation. Like Burger's equation, (3.20) 

admits an exact linearization. Under the transformation 

'¥ 
2 - log Cf 
K 

(3.23) becomes the ordinary heat equation 

4. Propagation of Chemical Waves 

(3.22) 

(3.23) 

Given a solution 'i'(s, T) of (3.20), we determine asymptotic 

solutions for x and y via 

X ~ X(t + 'i'(s, T)) , y- Y(t + 'i'(s, T)) (4 .1) 

Near any given point s, the solution looks like a travelling wave with 

frequency 
21T ,_ 
T 

and wave number 
21r a'¥ 
Ta;. Hence, (3.21) tells us that 

the wave number evolves slowly in time according to Burger's equation. 

A well known solution of Burger's equation (3.21) is the single shock 

v - v 
2 1 

v = v 1 + -------------=----~---------­K (v 
2 

- v 
1

) 
exp{ 

2 

(4. 2) 

1 + (s - UT)} 
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where U = ~ (v
1 

+ v
2
). This solution has 

as s - UT + + 00 

(4. 3) 

as s - UT + - 00 

The corresponding 

21T 

wave train of chemical concentrations has wave number 

~ v1 as s - UT + + oo and wave number 
21T 
-v 
T 2 as s - UT + - oo. The 

shock, or transition between these two values of wave number occurs at 

s - UT = s - E Ut = 0. Hence, the shock moves with speed EU. Figure 

5.2 provides a visualization of the solution for x at a fixed instant 

of time. 

We now turn to the experiment of Marek and Svobodova. Their 

apparatus consists of a tubular reactor which has one end attached to a 

continuous stirred tank reactor. Figure 5.3 shows the experimental set 

up. In each reactor, Belusov-Zhabotinskii reactions with slightly dif-

ferent parameters are taking place. Initially, the concentrations in the 

tubular reactor are spatially uniform. The continuous stirred tank reac-

tor acts as a forcing at one end of the tubular reactor. When the forcing 

is turned on, chemical concentration waves propagate into the tubular 

reactor, until finally, there are waves traversing its whole length. 

We model the oscillations in the tubular reactor by the reaction 

diffusion system 

(4.4) 
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x and y are initially uniform in space, undergoing oscillations only in 

time. Let us take x(s, 0) = X(O) , y(s, 0) = Y(O) for initial conditions 

in s > 0. We model the effect of the CSTR's forcing at the end s = 0 

by the boundary conditions x(O, t) = X({l + ewh), y(O, t) = Y({l + ewh). 

In words, at the end s = 0, one sees limit cycle oscillations with a 

period slightly different from T. This is due to choice. The parameters 

of the CSTR and the tube reactor are slightly different. 

The boundary value, initial value problem for the phase ~(s, T) 

in the asymptotic solution (4.1) is 

in s > 0 

(4. 5) 

~(s, 0) 0 , ~(0, T) WT 

The corresponding problem for is 

in s > 0 

(4. 6) 

'f(s, 0) 1 ' Cf'(O, T) 

This standard problem is easily solved. We omit the details and present 

the results. A solution that corresponds to a propagating wave occurs 

when W = - KW > 0. For W-r >> /Ws, the solution approaches the elemen-

tary separation of variables solution 

~(WT - /Ws) 
e (4. 7) 



-44-

For WT << IWs, the solution approaches unity, the value given at 

T = 0. Hence, the phase ~ is given by 

l (IWs - WT) , WT >> IWs 
K 

0 , WT << IWs 

and the wave number is proportional to 

v ~'\, 
dS 

l;w WT >> IWs 
K 

0 WT << IWs 

(4.8) 

(4. 9) 

The corresponding solution for the chemical concentration x(s, t) looks 

like a wave train with wave number for WT >> /Ws, and 

like a spatially independent oscillation in time for WT << /Ws. Figure 

5.4 summarizes these results. 
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CHAPTER 6 

COUPLED CHEMICAL OSCILLATORS 

1. Introduction 

We study the time evolution of two coupled chemical oscillators. 

Systems of coupled chemical oscillators arise naturally and as models 

of time periodic processes in living organisms. Motivated by observations 

of Marek and Stuchl [6] on the Belusov-Zhabotinskii reaction, we study 

the system 

• 
x1 = F(x

1
, y1) + dk(x2 x1) + A f(x

1
, y 1)} 

• 
y1 = G(x

1
, yl) + e:{k(y2 - y ) 

1 +A g(xl, y1)} 

(1.1) 
• F(x

2
, y2) x2 + e: k(x

1 
- X ) 

2 

• 
y2 G(x2, y2) + e: k(y1 - y2) 

where 0 < e: << 1. The parameter k is a positive coupling constant. 

When e: = 0, we have two identical uncoupled oscillators described by 

• 

(1. 2) 

We assume that (1.2) has a stable, T-periodic limit cycle given by 

1,2 (1. 3) 

where the 'IIi are arbitrary constants. When A 0, e: t 0, two 
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identical oscillators are coupled. When A f 0, £ f 0, two different 

oscillators are coupled. Notice that the forcing of the oscillators 

upon each other is proportional to the differences x
2

- x
1 

and y
2

- y
1

• 

This derives from the physical assumption that the coupling is due to 

mass transfer. 

Using multiscale asymptotics, we show that to lowest order in £, 

the solution of (1.1) is 

X . 
1 

Y(t + 'i'i(T)), i 1, 2 , 

where T = Et and the phase shift ,i(T) - '¥
2
(T)- '¥

1
(T) satisfies 

* = k P(!) + AS 

(1. 4) 

(1. 5) 

Here, 8 is a constant determined from certain integrals involving the 

functions X, Y, f and g, and P(f) is a T-periodic function deter-

mined from X and Y which has value 0 and slope - 2 when 1 is an 

integer multiple of T. 

The theory has significant implications regarding coupled chemical 

oscillators. The observed coupling phenomena and their bifurcations can 

be explained by the evolution of the phase shift !(T). These topics 

are pursued in Section 3. In particular, we account for experimental 

observations by M. Marek and I. Stuchl [6 J on coupled Belusov-Zhabotinskii 

reactions; in particular, we account for synchronization and its bifur-

cation into rhythm-splitting. 
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2. The Perturbation Theory 

It is convenient to change from the variables xi, yi(i 

the variables Ai, 0i(i = 1,2) by means of the transformation 

X(0i) +£A Y1 (0) 
i i 

i = 1,2 . 

1,2) to 

(2.1) 

Here, 0 
i 

parametrizes points on the limit cycle and Ai measures dis-

placements perpendicular to the limit cycle. A more complete discussion 

of this transformation is given in Chapter _ 5. In coordinates, 

the system (1.1) becomes 

0 

• 
0 

1 

• 

• 
0 2 

2 
~(0 1 )A1 + kU(0

1
, 02) + A~(0 1 ) + £u1 (~, ~) + 0(£ ) 

1 + £{f(0
1

)A
1 

+ Ay(0
1

) + kr(0
1

) + kV(0
1

, 0
2

)} + 0(£2) 

~(02 )A2 + kU(0
2

, 0
1

) + £u2 (~, ~) + 0(£ 2) 

2 
1 + £{f(0

2
)A

2 
+ kr(0

2
) + kV(0

2
, 0

1
)} + 0(£ ) 

(2.2) 

In these, U(0
1

, 0
2

) and V(0
1

, 0
2

) are related to X andY via 

(2.3a) 

(2.3b) 

where R2
(0) = x'2(0) + Y'2(0). The exact forms of tbe remainlng functions 

~. ~. P, y, r, u 1 
and are not crucial for this analysis. It is 

sufficient to note that they are all T-periodic in 0 and 0 1 2 and that 
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J, ~(~)d~ < 0 
0 

(2.4) 

which derives from the stability of the limit cycle. The details of the 

argument leading to (2.4) are given in Chapter 5. 

We show that to leading order in £, the asymptotic solution of 

the system (2.2) has 

e 
i 

where the phases ~i(T) satisfy 

Here, H is a T-periodic function with slope one at I 

(2.5) 

(2.6a) 

(2.6b) 

0. Subtracting 

(2.6b) from (2.6a) gives the equation for the phase shift i = ~2 - ~l , 

~ = kP(!) - A6 (2.7) 
dT 

where P(I) = H(- i) - H(!). Once the ~ 1 (T) are determined, we find 

the solution for xi and yi from the transformation (2.1): 

X(t + ~i(T)) + 0(£) 
(2.8) 

Y(t + ~i(T)) + 0( £) 
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We seek an asymptotic solution of (2.2) in the form 

0 1 El + EEl 
i i 

(2. 9) 

where the terms in the expansion depend on t and T = Et. Substituting 

(2.9) into (2.2), we obtain a hierarchy 

0(1) 
aAO 

HE>o)A o 0 0 + >.Cf(El~) . 1 kU(El -E> ) 
at 1 1 1' 2 

(2.10a) 

ae0 
1 

1 -= 
at 

(2.10b) 

aA0 

HE>o)A 0 0 eo) 2 
at 2 2 kU(E> 2, 1 (2.10c) 

ae0 
2 1 -= at (2.10d) 

0(£) 
at 

~(E>o)A1 = {~'(E>o)Ao + k ~ (E>o1' eo)+ "~'(E>o)}E>1 
1 1 1 1 ae1 2 1 1 (2 .lla) 

aA0 
1 

at (2.llb) 

at 
(2. llc) 

(2. lld) 
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From (2.10b,d), we find 

t + 'l'i(T) , i = 1,2 

Substituting these values of into (2.10a,c) gives 

'dAO 
0 1 

~(t + at- 'l' 1 )A1 

CJAO 
0 2 

Ht+ at 'l'2)A2 

To solve (2.13a,b), we consider the equations 

dx 
dl; 

~(!;)x = 'f(!;) 

U(!;, I; + ~) 

(2.12) 

(2. 13a) 

(2.13b) 

(2.14a} 

(2.14b) 

where i = '1'
2

- '1'
1

• These are first order, linear ODE's with periodic 

coefficients and forcing. In each case, the homogeneous solution 

is a decaying transient because of the condition IT ~(!;)d!; < 0, which 
0 

derives from the stability of the limit cycles. Under these conditions, 

(2.14a,b) have unique T-periodic solutions 

X = p(!;) ' y p(z;,!) (2.15) 
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In terms of p(~) and p(~, 1), the general solutions of (2.13a,b) are 

(2.16a) 

(2.16b) 

Substituting these into (2.llb,d), we find 

-- = 
at 

(2.17a) 

d'i' 
kr(t + '1'

1
) + kV(t + '1'

1
, t + '1'

2
) - ___ l + h (T)ev(t + '1'1) f(t + 'I' ) 

dT 1 1 

(2.17b) 

AT-periodic function f(t) can be written as ~ + w(t), where 

~ = l (T f(~)d~, and w(t) i s T-periodic with zero mean. Applying this 
T Jo 

principle to (2.17a,b), we find 

ae
1 
1 

~1 <!) + w
1 
(t, T) -- = at 

(2.18a) 

ae1 
2 

~z<I) + w
2
(t, T) 

at 
(2.18b) 

Here, 
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J.ll kH<!) + A 13 
d'l'l 

---dt 

H(lJ - i iT {p(z;, j) r(r,;) + V(r,;, r,; +f) + r(z;)}dr,; • 
0 

(2.19a) 

(2.19b) 

(2.20a) 

(2.20b) 

The functions w1(t, T) and w2(t, T) consist of exponentially decaying 

terms, and periodic terms of zero mean. Integration of (2.18) gives 

(2.21a) 

(2.2lb) 

where w1 and w2 are bounded functions. Substituting these values of 

~ and ~ into (2.llc) gives 

at (2.22) 

where 
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sl k ~ (t + ~ t + ~2 ) - ae 1' 
1 

(2.23) 

and B(t, T) is a bounded function composed of T-periodic and exponen-

tially decaying terms. For a physically meaningful solution, the ampli-

1 aA1 
tude correction A

2 
and its time derivative 2 must be bounded for all 

at 
t. Hence, (2.22) implies 

(2.24) 

must be bounded for all t. s
1 

and s
2 

are T-periodic in t. Hence, 

(2.24) will be bounded only if 

(2.25) 

Generally, s
1 

and s
2 

are two different T-periodic functions. Hence, the 

linear combination (2.25) will be zero only if 

~1 

)J2 

or 

dT 

d~2 
-= 0 
dT 

kHCf) + >-e 

(2.26) 

(2.27a) 



-54-

kH(- i'> (2.27b) 

where I= ~ 2 - ~ 1 . Combining these equations, we find a single equation 

for !'. 

where 

di = kP(~) - ).8 
dT 

P(l) - H(- !) - H(l) 

This is the equation that governs the evolution of the phase shift. 

(2.28) 

(2.29) 

We discuss some properties of P(IJ needed for analysing the time 

evolution of the phase shift l from equation (2.28). The key features 

are these: P(W) is T-periodic, with value 0 and slope - 2 when ! 
is an integer multiple of T. Figure 6.1 illustrates the structure of 

p (l.). From its definition in (2.20b), we see that H(~ is T-periodic. 

Hence, P (!) = H (- l) - H {i) is T-periodic. When i is -0, P(1'_) has 

the value H(O)- H(O) = 0. To show P'(O) =- 2, it is sufficient to 

show H'(O) = 1. From the definition of H(~) given in (2.20b), we 

compute 

= T
1 l T {ao H'(O) ~ (~, 0) f(~) + ~ (~, ~)}d~ 

0 a~ ae2 
(2.30) 

Recall that p(~, I> is the T-periodic solution of 
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~- ~(~)p = U(~, ~ + !> 
a~ 

(2.31) 

Differentiating (2.31) with respect to I and setting ~ 0, we find 

a c.£.e.. c~. o)) - ~<~> 2£. c~. o) 
a~ at ay (2.32) 

From the definition of u given in (2.3b) we compute (~' ~) = 0. 

Hence, (2.32) has no forcing term and the only periodic solution is 

t! (~, O) = 0. From the definition of V given in (2.3b), we compute 

av ap ae (~, ~) = 1. Substituting these values of a! (~, 0) and 
2 

into (2.30) gives 

H' (0) 
1 (T {O • r(~) + l}d~ 
T Jo 

3. Coupled Chemical Oscillators 

1 

av 
ae 

2 
(~' ~) 

(2.33) 

Marek and Stuchl [6] observe the interaction between two continuous 

stirred tank reactors, in each of which a Belusov-Zhabotinskii reaction 

with different parameters in taking place. The coupling of the reactors 

occurs via an exchange of materials through a perforated wall that seper-

ates the reactors. 

If the parameters for both reactors are nearly identical, so that 

their autonomous frequencies are nearly the same, then the phase differ-

ence between the oscillations of each reactor tends to a constant value 

as time passes. This phenomenon is called phase locking. If the param-

eters of the reactors are altered so that the difference of their 
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autonomous frequencies is sufficiently large, the phase locking cannot 

be maintained. Long time intervals of slow variation in the phase dif-

ference are punctuated by brief intervals of rapid fluctuations. This 

behavior is called rhythm splitting. 

We account for these observations by studying the time evolution 

of the phase shift !(•) which is governed by 

(3 .1) 

-Phase locking occurs at ~=!! 0 
for which the right hand side of (3.1) 

is zero. The stability of the zeros is easily determined. Values of 

1
0 

at which the derivative of the right hand side is negative are stable, 

and values of I
0 

at which the derivative is positive are unstable. 

Thus, for A = 0 (coupled identical oscillators) we see from Figure 6.1 

that I = 0 is a stable solution. The coupling synchronizes identical 

oscillators. If A + 0, £ + 0, we see that kP(l) - A8 has at least 

two roots in 0 < 'I' < T if - A8 -min P(y) <~<max P(!). The root ~O with 

negative slope is stable, and the system will evolve to stable oscillations 

with constant phase shift .!a· 
For min P(!) 

A8 <-
k 

< max PC!.>' the zeros of k PG) - )..8 depend 

continuously on M At M min P<i,) p (~ ) ' an interesting bifur-
k k 

(max) 
-m 

cation takes place; namely, the change from phase locking to rhythm split-

ting. To show this, we write (3.1) as 
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~ = kP(W) - kP(W ) + kP(~ ) - AS 
dT - -m -nt 

(3. 2) 

where 0?. = kP<!0) - A.B, and I..B 
is slightly less than min P(j) = k 

P(W ), so that 0 < 0 
"""tn 

<< 1. Figure 6.2 illustrates the situation with 

a graph of k{Pd) - P<I0)} + 02 vs. I. (3.2) is a singularly perturbed 

problem in the small parameter o. The analysis is straightforward, 

we omit the details and present the results. The solution is nearly con-

stant at the values I=~+ nT, n = integer, where the right hand side 

is 0(1). Away from l = I + nT, 
m 

the right hand side is 0(1). These 

regions of rapid variation in Y(T) correspond to boundary layers that 

join the constant values I= i + nT, 
m 

as shown in Figure 6.3. This is 

the behavior of the phase shift I(T) that corresponds to rhythm split-

ting. Once ! is known, we find ~ 1 and ~ 2 from equation (2.27). The 

solutions for y., i = 1, 2 are then given by 
1 

Y(t+~.) 
1 

i 

The frequency of the oscillations in x
2 

is 

d 
\) = - (t + ~2) dt 1 + £ kH(- I> 

1,2 (3.3) 

(3.4) 

Figure 6.4 shows a graph of v vs. t and Figure 6.5 shows the behavior 

of the concentration x
2
(t). The peaks in Figure 6.4 correspond to the 

regions of rapid change in i(T). 



-58-

CHAPTER 7 

LARGE POPULATIONS OF COUPLED CHEMICAL OSCILLATORS 

1. Introduction 

We study the phenomenon of synchronization in large systems of 

chemical oscillators. By synchronization, we mean the evolution from an 

initial state where the phases of the oscillators are distributed randomly 

to a final state in which the oscillators are all in phase. The model is 

a direct generalization of the one used to study Marek and Stuchl's two 

oscillator system in Chapter 6. The model equations are 

• I xi F(xi, y i) + E: k(~H)xt 
t 

0 I yi = G(xi, yi) + E: k(~H)yt 
t 

(1.1) 

where 0 < E: << 1, and ~it is the spatial displacement between the ith 

and tth oscillators. When E: = 0, each (xi, yi) satisfies the 

equations 

• • 
X F(x, y) , y = G(x, y) (1. 2) 

We assume that all solutions of (1.2) tend to a T-periodic limit cycle as 

t -+ <X> The limit cycle solution is denoted by 

X = X(t + ljl) , y Y(t + ljl) (1. 3) 

where ljl is an arbitrary phase shift. When E: f 0, the oscillators are 
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coupled. The terms £ K(~i1 )x1 and £ K(~ 11 )y1 in the right hand side 

of (1.1) represent the coupling between the ith and tth oscillator. We 

assume that the coupling function K(~it) goes to zero as the spatial 

displacement ~it between the oscillators becomes infinite. 

A complete solution of the discrete system (1.1), even if it were 

possible, would contain a lot of irrelevant information. We do not seek 

the detailed trajectory of each (xi, yi), but only the overall distri-

bution of the oscillator's phases IJI. 
1. 

as a function of time. In Section 

2, we use a continuum approximation to derive an integra-differential 

equation that describes the time evolution of the phase distribution. 

This integra-differential equation is too complex to be solved 

in full generality. To make further progress, one requires some simplify-

ing assumptions. These assumptions and their consequences are. pursued in 

Section 3. 

The model (1.1) describes a variety of situations, depending on the 

choice of the coupling function K(d). In Section 4, we study synchro-

nization in systems where K(p - q) has the same constant value for all 

p, q in the volume that contains the oscillators. This would represent 

a system of oscillators in a well stirred bath. In Section 5, we deter-

mine the K(d) that corresponds to diffusive coupling of the oscillators. 

In Section 6, we study how autosynchronization proceeds in the case of 

diffusively coupled oscillators. The analysis leads to a certain singular 

boundary value problem. In Section 7, we perform a constructive proof for 

its solvability. 

2. The Distribution of Phases 

The asymptotic method used to study Marek and Stuchl's two 
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oscillator system in Chapter 6 can be applied directly to (1.1). One 

finds that to leading order, 

Y(t + 'l'i(T)) (2 .1) 

where T = Et and the phases 'l'i obey 

(2. 2) 

P is a T-periodic function determined from X and Y which satisfies 

P' (0) 1. In the limit where therP are many oscillators per unit volume, 

we can derive an equation for the distribution of phases 'I' i. 

n('l', 
3 

be the number of oscillators a volume Let q, T)d'l'dq in 

element dq3 about spatial position q and with phases 'I' in the inter-

val ['1', 'I'+ d~. Since oscillators are conserved, this distribution 

n('l', q, T) of points ('l'i, ~i) in ('1', q) space must obey an equation 

of continuity 

where u is the 

compon·ent of u, 

and q = i 
q has 

~ + div(nU) at 0 

velocity of .the flow in ('1', q) space. To 

we note from (2.2) that an oscillator with 

d'l'i 2 K(q - q) P('l' - 'I') 
dT 

i 
_i i 

(2.3) 

find the 'I' 

'I' = 'I' i 

(2.4) 
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In the continuum limit, we can approximate the right hand side of (2.4) 

by 

R('¥, q, T) - f J 1T K(p 
-1T 

3 
q) P(~ - '¥) n(~, p, T)d~dp (2. 5) 

This gives the '¥ component of U. The q component is assumed to be 

zero, corresponding to a system of oscillators whose positions are fixed. 

With U given by 

U = (R('¥, q, T) , 0) (2. 6) 

(2.3) becomes 

an + ~ (nR) at a'¥ 0 (2. 7) 

where R is given by (2.5). From the form of R, we see that (2.7) is 

a nonlinear integra-differential equation for the distribution of phases 

n('¥, q, T). This equation can be cast in an alternative form. Writing 

(2. 7) as 

a& 
n~ 

we see that it admits the characteristic form 

dn 
dT 

aR d'¥ 
n ~ along dT = R 

(2.8) 

(2.9a,b) 
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3. A Special Class of Solutions 

The integra-differential equation for n(~, q, T) is too complex 

to be solved in full generality. To make further progress, we introduce 

some simplifying assumptions. Since we don't expect the process of syn-

chronization to depend strongly on the detailed form of the limit cycle 

given in (1.3), we assume a circular limit cycle, with 

x = cos(t + ~) , y sin(t + ~) (3.1) 

In this case, the periodic function P(G) which appears in (2.5) is 

given by 

P(G) sin e (3. 2) 

With this form of P(G), the function R(~, q, T) given in (2.5) can be 

written as 

R(~, q, T) a(q, T) cos ~ + S(q, T) sin ~ (3.3) 

where 

a(q, T) - JI n K(p q) sin <f' n(<f', p, T)d dp3 

-n 
(3 .4) 

S(q, T) - J J n K(p q) cos <f' n(C(', p, T)d dp3 (3. 5) 
-n 
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Hence, the equation for the characteristics (2.9b) reads 

a(q, T) COS ~ + e(q, T) sin ~ 

A further simplification is possible. If we seek solutions 

n (~, q, T) that are even in ~, then it follows from (3. 4) that 

a(q, T) = O, and (3.6) reduces to 

d~ 

dT 
e(q, T) sin ~ 

(3.7) can be integrated to yield 

~ tan -
2 

B(q, T) 
e -

~ 
0 

tan-
2 

where ~ is the value of ~ at T = 0 and 
0 

B(q, T) 
(' j_ e(q, u)du 

0 

(3. 6) 

(3.7) 

(3.8) 

(3. 9) 

For fixed q, (3.8) gives the characteristics in the ~. T plane. We 

note that the plot of the characteristics in the (~' T) plane is sym-

metric about the line ~ = 0 as shown in Figure 7 .1. Hence, if 

n(~, q, T) is initially even in ~. it remains even in ~. 

The function B(q, T) is the key to understanding the synchroni-

zation process. If B(q, T) -+ - 00 as T -+ 00 

' 
then we find from (3. 8) 

that characteristics ~(T) with - 1T < ~ (0) < 1T all converge to ~ = 0 

as T -+ oo. The phases of the oscillators all synchronize to the value 0. 



-64-

If B(q, T) ~ + oo as T ~ oo then the phases of the oscillators synchro-

nize to ~ = - ~ or ~ = + ~. In this latter case, we note that - n 

and + ~ are physically indistinguishable, both corresponding to the 

same point in the cycle of an oscillation. 

We seek a governing equation for B(q, T). The first step is to 

compute the density n(~. q, T) from initial values n(~. q, 0) 

n (~, q). Referring to Figure 7.2 we see the basic idea of this calcula­
o 

tion. Phases ~i in the interval [~o' 

the characteristics to the interval [~. 

~ + d~ ] are transported via 
0 0 

~ + d~J in time T. Hence, the 

density at (~, q, T) is related to the initial value at 

n(~. q, T)d~ = n (~ , q)d~ 
0 0 - 0 

(~ , q, T) via 
0 

(3 .10) 

Using the expression (3.8) for the characteristics, a simple calculation 

yields 

n(~, q, T) v(~, q, B(q, T)) (3.11) 

where 

\) (~' q' T) -

- B '¥ 
n

0
(2 arctan (e tan 2) , q) 

cosh B + sinh B cos ~ 
(3.12) 

The final step to finding the equation for B(q, T) is to recall 

the definition 

s - - If TI K(p 
-n 

3 
q) cos If n(lf, p, T)dffdp (3.13) 
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~ = ~ and from (3.11) we have n(~, p, T) = 
ClT 

v(~, p, B(p, -r)). Substituting these values of ~ and n into (3.13) 

gives 

aB 3 
K(p - q) cos <f v(((J, p, B(p, T))d<t:'dp (3.14) 

This is an integra-differential equation for B. From (3.9), we see that 

the initial condition is B(q, 0) = 0. In its full generality, this prob-

lem is still very formidable. To make further progress, we restrict 

our nttention to an important special case. 

We study the process of synchronization in a system where a certain 

fraction of the oscillators are initially synchronized, while the remain-

der have a random distribution of phases. The initial distribution of 

phases is 

p (q) 
n0 (~. q) = 2; + u(q) o(~) (3.15) 

p (q) 
The first term 

2'1f 

function u(q) o(~) 

represents the random component, while the delta 

represents the synchronized component. With n 
0 

so 

chosen, we determine the corresponding value of v(~, q, B) from (3.12) 

and substitute it into the integral equation (3.13). With the special 

value of v(~, q, B), one finds that the integration over phases ~ can 

be done explicitly. The result of the calculation is 

S K(~- q) {p(p) tanh~- u(p)}dp
3 

(3.16) 
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Our aim is to study this equation for various choices of the coupling 

function K(d). Once B(q, T) is known, the characteristics are given 

by (3.7) and the density n(~, q, T) by (3.13) and (3.14). 

4. Oscillators in a Well Stirred Bath 

We study the process of synchronization in a system where the 

coupling between any two oscillators is independent of their positions. 

Hence, we take K(p - q) - 1 for all p and q inside the volume that 

contains the oscillators. Since spatial position is now irrelevant in 

the synchronizing process, we take p, u and n = n(~, T) independent of 

position q. In the initial condition (3.16), we take p >> u, so that 

initially, the random component dominates the synchronized component. 

With these simplifications, (3.18) becomes a first order ODE, 

dB 
dT 

B 
N tanh 2 - uV (4.1) 

where N is the total number of oscillators and V is the volume of the 

system. The initial condition is B(O) = 0. 

Suppose u = 0, corresponding to a completely random initial dis-

tribution of phases. Then the solution of (4.1) is B = 0, and it 

follows from (3.7) that the characteristics of the ~.T plane are vertical 

straight lines. The initial random distribution of phases persists for all 

time. We can understand this result by inspecting the coupling terms of 

(1.1). In the present case, 
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t I K(~U.) xt(t) rv £ I cos(t + 'l't) 
t t 

(4. 2) 

£ I K(~it) yt(t) rv £ I sin(t + 'l't) 
t t 

If the phases 'l't vary randomly over (- n, n) then the different sig­

nals £ cos(t + 'l't) and £ sin(t + 'l't) interfere destructively, and the 

coupling terms are nearly zero. There is no forcing to initiate synchro-

nization. 

This steady state solution is unstable. Figure 7.3 shows a graph 

of 
dB 

B for 0 1. The along the - B axis indicate 
dT 

VS < u << arrows 

the motion of B(-r), starting from B = 0. Notice that the effect of the 

O(u) term in (4 .1) is to give B(T) a small initial boost away from 

B = 0. When B becomes larger than O(u), the motion is governed to 

leading order by 

dB B 
d-r = N tanh 2 

The solution with B tending to - oo has 

B + - NT + const. as T + oo 

Hence, the equation for the characteristics (3.8) becomes 

'I' tan 2 
C e-NT 

'I' 
0 

tan 2 as 

(4. 3) 

(4.4) 

(4.5) 

The characteristics are plotted in Figure 7.4. Notice that they all 
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converge to f = 0. We are witnessing the evolution of the system from an 

initial state with a nearly uniform distribution of phases to a final 

state in which all the oscillators are synchronized, with f = 0. Figure 

7.5 shows graphs of the density n corresponding to the initial and final 

states. 

5. A Model of Diffusive Coupling 

We perform a simple analysis to determine the form of coupling 

function K(d) that corresponds to diffusion. Suppose the oscillators 

are distributed uniformly in space, and that an oscillator at spatial 

position q has xi= x(q, t) and y = y(q, t). In this case, we 

replace (1.1) by the continuum approximation 

ax 
at 

~ 
at 

If K(p) \12 o(p), 

F(x, y) + £ J K(~ q) x(p, 

G(x, y) + £ J K(p - q) y(p, 

then (5.1) becomes 

ax 2 
-- = F(x, y) + £ \1 x 
at 

~ G(x, y) + £ 11
2 

y 

t)dp 3 

t)dp 
3 

(5.1) 

(5,2) 

This is the reaction diffusion system studied in Chapter 5. Hence K(d) 

v2 o(d) provides a model of diffusive coupling. 
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6. A Diffusively Coupled System 

We study synchronization in a system of diffusively coupled oscil-

lators. Initially, the phases ~ of the oscillators are distributed uni­

formly throughout [- ~. ~J. except for those oscillators in an infini­

tesimal neighborhood of spatial position q = 0, which are constrained 

to have ~ = 0 for all slow time T > 0. That is, 

n(~, q, T) + o(~) 

as q + 0 for fixed T > 0. While 

n(~, q, 0) n (~, q) 
0 

1 
2~ 

(6.1) 

(6.2) 

for q f: 0. The oscillators at q = 0 can be regarded as pacemakers 

that initiate a synchronization process in the rest of the medium. 

To see how this synchronization process proceeds, we must deter-

mine the solution for B(q, r). Comparing (6.2) with the initial condition 

(3.16), we find that 

p {q) 1 , u{q) 0 

for q + 0. With these values for P and u, and K(q) 

equation (3.15) for B{q, T) reads 

as 
dT 

v2 
(tanh ~) 

(6.3) 

v2 
o(q), the 

(6.4) 
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The initial condition is B(q, 0) = 0 for q # 0. To determine the con-

dition on B at q = 0, we recall that the distribution of phases be-

comes sharply peaked about ~ 0 as B becomes large and negative. 

Since n(~, q, T) o(~) as q ~ 0, we require B(q, T) ~ - m as 

q ~ 0 for fixed T > 0. 

It is convenient to introduce the variable U 
B 

tanh 2· The 

problem for U is 

au 2 2 
dT = ~(1 - U ) V U , T > 0 (6.5) 

u ( q' 0) 0 , U(O, T) - 1 for T > 0 (6.6) 

We consider the one dimensional case, with q replaced by a scalar q 

"2 a2 
and v replaced by ---2 . This one dimensional problem admits a simi-

aq '-' 
larity solution U = X(s), where s = ~ and X(s) satisfies 

IT 

X" 

X(O) 

--=s--=- X' on 0 
1 - x2 

- 1 , X(m) 

< X < m 

f 

0 

(6. 7) 

(6.8) 

In Section 7, we prove that this singular boundary value problem has a 

monotone increasing solution X(s). 

With this solution for X(s) one can determine B(q, T) from 
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1+X hl 
B(q, T) ~ log 

;-; 
(6.9) liL 1-X 

IT 

As T ~ + oo with q fixed, X (~I)~- 1 and B ~- oo Hence, for 

each q, the picture of the characteristics, in the (~, T) plane looks 

like Figure 7.4 with all the characteristics converging to ~ = 0. The 

rate of synchronization is determined by q, decreasing as lql ~ oo 

This is illustrated in Figure 7.6, where n(~, q, T) is plotted vs. 

~ for various q at a fixed instant of time T. 

7. An Existence Theorem 

We prove that the singular boundary value problem 

X" 

X(O) 

___ s __ 7 X' on 0 < s < oo 

1 - x2 

- 1 , X{oo) 0 

(7.1) 

has a monotone increasing solution. The proof employs an iteration scheme 

on an equivalent integral equation. This scheme is an alternating pincer 

movement, analogous to the one employed in D.S. Cohen's treatment of a 

nonlinear two point boundary value problem[?]. 

For our constructive proof, it is convenient to consider Y =- X(s). 

We seek a monotone decreasing solution of 

Y" --.::.8--~ Y' on 0 < 
1 - y2 

(7. 2) 
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It is easily verified that the iterates for n > 1 
= 

are well defined, 

positive, decreasing functions with y (0) = 1, y (~) = 0. 
n n 

Using the 

facts that and in 0 < s < ~ 
' 

and the Lemma 

7.1, we decue the ordering of the 

Lemma 7.2. In 0 < s < ~. we have 

y . 
n 

The result is given in 

0 =YO< Y2 ~ Y4 ~ ... Y2n ~ ••• Y2n+1 ~ .•. Y3 ~ Y1 < 1 . We see that 

the even iterates converge to a lower limit function YL(s) and that the 

odd iterates converge to an upper limit function YR(s). Clearly, 

YL(s) ~ YR(s). To show that the pincer movement closes, so that the 

sequence y 
n 

converges to a solution of the boundary value problem (7.2), 

we prove the reverse inequality. 

Theorem. YR(s) ~ YL(s). 

Proof. YL(s) and YR(s) satisfy the equations 

G [y (s) 

YL (s) = F[YR] (s) 1 -
G lyR 

(~) 
(7. 11) 

G YL (s) 
YR(s) F[YL] (s) 1 -

G YL (~) 
(7.12) 

Differentiating equations (7.11) and (7 .12) with respect to s gives 

rs \) 

2 
Y~(s) Y~(O) e 

0 1 - YR(v) dv (7 .13) 

fs \) 

2 
Y~(s) Y~(O) e 

0 1 - YL(v) dv (7.14) 
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Y(O) 1 , Y(oo) 0 (7. 2) 

The boundary value problem (7.2) is equivalent to the integral equation 

Y(s) F[y J (s) 1 G[Y] (s) 

c[Y] (oo) 
(7. 3) 

where 

{u 1 
vdv 

c[ Y J {s) Is e 
2 - Y (v) 

du 
0 

(7. 4) 

The operator F has a property that is crucial to all our results. 

Lemma 7 .1. If 0 < Y1 (s) < Y
2

(s) < 1 for 0 < s < 00 

' 
then = 

1 > F[ Y 1] ( s) ~ F [YJ (s) > 0 for 0 < s < 00 

Proof. We first note that F [Y ]<s) is well defined for Y(s) with 

0 < Y(s) < 1 in 0 < s < 00 and that 0 < F[Y ]<s) < 1. These follow 

immediately from the definitions (7.3) and (7.4). Since the integrand in 
u2 

(7 .4) is positive and bounded above by - 2 , c[: J (oo) exists, and 

[ ] [ ] [ ] 
e c[y] (s) [ ] 

G Y (s) < G Y (oo). Hence, F Y (s) = 1 - G[YJ (oo) has 0 < F Y (s) < 1 

in 0 < s < oo • 

To prove that F[Y1] (s) ~ F[Y2J (s), it is sufficient to show that 

Using the definition of G, (7.5) can be written as 

M 
J 00 ( s 

o Jo 

- <P2(u)- <f>1(v) 
{e 

- <f>1(u)- <P2(v) 
- e }dudv 

(7. 5) 

(7. 6) 
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where 

1,2 (7. 7) 

The integrand of (7.6) is antisymmetric about the line u = v, hence, the 

contribution to the integral from the square 0 < u < s, 0 < v ~ s is 

zero. This allows us to change the region of integration from 

0 < u < s, 0 < v < ~ to 0 < u < s < v < ~. With this change in the 

region of integration, and some simple algebraic manipulations, (7.6) 

becomes 

M = I ~ J s e- 4> 1 ( u) - 4> 2 ( v) r ( v) - r ( u) 
{e - 1}dudv (7 .8) 

s 0 

where 

r(u) = 4>2(u)- 4>1(u) = - dv f u{ 1 1 } 
0 1 - y; 1 - y~ 

(7. 9) 

Since 0 < Y
1 

~ Y
2 

< 1 in s > 0, the integrand in (7.9) is non-negative. 

Hence, r(u) is a monotone increasing function. The monotone increasing 

nature of f(u) implies that the integrand of (7.8) is non-negative in 

the region of integration, which has 0 < u < s < v < oo 

M > 0. 

Define the sequence Y (s) 
n 

by 

We conclude that 

(7 .10) 



where 

Y' (0) 
L 
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1 
= - -G.....,[...-y..::,~.--(::-co~) , Yi ( 0) 

Using the facts that 0 < YL (s) < YR(s) < 1 in = 
we argue from (7.13) that 

ls vdv 
2 

Y' (s) = Y' (0) e 0 1 - YR(v) Y{(O) e > L L = 

From (7.14), we have 

e 

Hence, (7.16) becomes 

Y{(s) 

From (7.15), we see that 

G 

G 

1 
(7 .15) 

s > 0, and Xj_(O) < 0, 

~s 1 
vdv 

2 
- YL(v) (7.16) 

(7. 17) 

(7 .18) 

(7 .19) 

From the definition (7. 4) of c[ Y J , and the fact 0 < YL (s) < YR (s) < 1 

in s > 0, we find 

(7.20) 
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Hence, (7.19) implies that 
Y{ (0) 

0 < < 1 
Yi(O) 

and (7.18) together with 

YL(s), Yi(s) < 0, implies 

Hence 

= 1 + ~s Y{(v)dv 
s 

> 1 + J Yi(v)dv 
0 

(7. 21) 

(7. 22) 

This is the required result. The pincer movement in (7.10) closes, and 

the sequence {Y } 
n 

converges to a single limit Y(s), which satisfies 

Y(s) (7.23) 

Y(s) provides the solution to the boundary value problem (7.2). Since, 

the iterates Y (s) are all monotone decreasing, the solution Y(s) is 
n 

monotone decreasing. 
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