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ABSTRACT

Various families of exact solutions to the Einstein
and Einstein-Maxwell field equations of General Relativity
are treated for situations of sufficient symmetry that only
two independent variables arise. The mathematical problem
then reduces to consideration of sets of two coupled non-
linear differential equations.

The physical situations in which such equations arise
include: a) the external gravitational field of an axi-
symmetric, uncharged steadily rotating body, b) cylindrical
gravitational waves with two degrees of freedom, c) collid-
ing plane gravitational waves, d) the external gravitational
and electromagnetic fields of a static, charged axisymmetric
body, and e) colliding plane electromagnetic and gravita-
tional waves. Through the introduction of suitable poten-
tials and coordinate transformations, a formalism is
presented which treats all these problems simultaneously.
These transformations and potentials may be used to generate
new solutions to the Einstein-Maxwell equations from solu-
tions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool
for generation of similarity solutions and generalized simi-
larity solutions. It is further used to find the invariance
group of the equations; this in turn leads to various finite
transformations that give new, physically distinct solutions
from old. Some of the above results are then generalized to

the case of three independent variables.
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INTRODUCTION

This thesis is devoted to a study of the Einstein and
Einstein-Maxwell equations in two and three independent
variables. Relationships between the vacuum Einstein equa-
tions and the coupled Einstein-Maxwell equations are found,
and these relationships may be exploited to obtain new exact
solutions to physically distinct problems from known solu-
tions. In addition, the calculus of differential forms is
shown to be a powerful tool for generation of exact solu-
tions to these problems.

The first chapter presents a very brief discussion of
the Einstein and Einstein-Maxwell equations. The concept
of a Killing vector field is introduced, and the importance
of exact solutions is discussed.

The second chapter is concerned with space-times contain-
ing two commuting Killing vectors. There are five distinct
physical problems (a) the external gravitational field of
an axisymmetric, uncharged, steadily rotating body (b) cylin-
drical gravitational waves, (c) colliding plane gravitational
waves, (d) cylindrically symmetric static Einstein-Maxwell
fields, and (e) colliding plane gravitational and plane
electromagnetic waves. The field equations for all the
above problems are discussed, and it is then shown how all
of thege field equations may be brought into an identical
form. This result shows that there is a duality between

the particular component of the gravitational field due to
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stationary rotational motion and the electromagnetic field.
Vacuum solutions with two Killing vectors are also seen to
be Einstein-Maxwell solutions.

The third chapter begins by demonstrating that the well
known Curzon solution is a generalized similarity solution.
The Kerr and Tomimatsu-Sato vacuum solutions are discussed
as solutions to the Einstein-Maxwell equatlons. The calculus
of differential forms is then used to find the isogroup of
the equations. This group is then used to generate some
similarity solutions. The finite transformation generated
by the isogroup is found, and the well known Ehlers trans-
formation is seen to be a special case of this transforma-
tion. Finally, some new generalized similarity solutions
are presented, and soliton-like solutions of Harrison are
discussed.

In Chdpter 4, we extend some of the above results to
the more general case of problems with one Killing vector.
The Einstein-Maxwell equations with one Killing vector are
presented. The results of Chapter 2 are then extended to
this case by studying various special cases of the equations.
We then show that the finite invariance transformation of
Chapter 3 is also an invariance transformation for these
problems as well. These results are even more striking than
those of Chapter 2, since we are dealing with a more general
space-time. Again there is a dualism between rotational
motion and electromagnetism. This is very important for

the three variable case, since three variable solutions
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are rare and we now have three solutions corresponding to
any one known solution.

Finally, an appendix is added to discuss the differen-
tial form techniques used in Chapter 3 to find similarity

and generalized similarity solutions.
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CHAPTER 1

GENERAL RELATIVITY AND- EXACT SOLUTIONS

In this chapter we present a brief discussion of the
Einstein field equations of General Relativity. Although
a detailed account of Riemannian geometry and the Theory
of General Relativity is beyond the scope of the present
treatise, we present here a brief description which is
intended to familiarize the reader with some basic solution
techniques of the field equations.

1.1 The Einstein Field Equations

In the General Theory of Relativity, we seek a metric

ds® = D v SM dxr v o=y (1.1.1)

with signature (+,-,-,-) or (-,+,+,+) which describes the
local geometry at each point of a Riemannian manifold with
coordinates X . The Fuv are the components of a
symmetric covariant tensor, so there are in fact only ten
independent BF*V » Wwhich take the place of the classical
Newtonian gravitational potential. The %3MV’ are to be
found as solutions to the Einstein field equations

ey = BT Thgp {1.1.2)

where (gﬁiv is the Einstein tensor,

GHV:RHV“‘L{%M\"?\‘ (1.1.3)

‘?fJV' is the Riecci (contracted)curvature tensor, and R
is the scalar curvature. _T}Av' is the stress-energy

tensor due to any matter or electromagnetic fields present
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in the region of space-time where we wish to solve (1.1.2).
In the absence of such sources, ﬂv;“f is identically =zero,

and (1.1.2) reduces to

Rov-L R=0. 1.1.4
v Lg(\_x\f ( )
Contraction of (1.1.4) yields R =0, so that equivalent to
(1.1.4) is
R =0. (1.1.5)

(1.1.5) is a set of ten coupled nonlinear second order
partial differential equations. The ten equations are not
independent, however, due to the Bianchi identities. There
are in fact six independent equations contained in (1.1.5).
The procedure for finding an exact solution of (1.1.5)
usually consists of partially determining the form of the
metric (1.1.1) by geometric and physical considerations,
and then substituting this form of the ﬁahlV' into (115}
The first known exact solution was found in this
fashion by Schwarzschild, and is a good example of this
procedure. We seek the external gravitational field of a
static, spherically symmetric mass distribution. We would
expect the external field of such a distribution to also be

static and spherically symmetric, =nd hence we may write

Z Z
A—S :-—\r\x(\“)é:\" +U(\")A\"Z +\/(r)(rac\%7‘+ (as‘\“a:e.AQq) (1.1.6)
with time coordinate *' and spherical spatial coordinates

.o, and N . U ,\J and W are functions of U only.

Letting
2= c2\(r)



(1.1.6) becomes

35 = W (g)dt 0 (C)ds? +e2de? + ¢ siedat

o P
where LA\ and\kl\ are arbitrary functions of ¥, . We may
view this as merely a rescaling of the coordinate ¥ , and
thus drop the suffix, writing (1.1.7) in the form

- v % 2 ; =
clSQ——ﬁ AT ‘\”e)\A'(— "r(aS\“ae'Cl(& + ‘-aAe?‘ (1-1.8)

Upon substituting (1.1.8) into (1.1.5), we arrive at the

following set of ordinary differential equations:

_
R\\"—\%_l L‘/\V +H "“_K =0 (1.1.9a)

R21_==Gfﬂx(\+1%}(\anAW)"\ =0

(1.1.9Db)
_ < a -—)\ 1 =
R33 = siv e(e (\*_Yi(\“ )\‘))‘ \) =0 (1.1.9¢)
R i \("'/\ Y & \ \___\ Vo \1=
Yy = ( \r *—L{ A ﬂL{_v - 3‘:_) O (1.1,94)

where a prime denotes differentiation with respect to (.
The remaining components of RHV’ are identically zero.
Since (1.1.9c) is a repetition of (1.1.9b), we must in fact
solve only (l1.1.9a,b) and (d). From (a) and (d) we have
A=—y'

As ¢ tends to infinity we will have A and \/ tend

to zero, so that the metric reduces to a Minkowski one there.



We consequently obtain
A== V.

(1.1.9b) then becomes
eV (\*ev) =\,
Setting

eV=Y¥
this becomes

\
Yrey=1.
Integration yields
Y= =M

-

where QM 1s a constant of integration. Hence the metric

(1.1.8) 1is

ds? = - (\- QTM)A*Z'\-(\_Q—;M)—\A@*' c?(de? S\h;'eé(&:l) (1‘,1.10)
This is the celebrated Schwarzschild solution. From 188
Einstelin was able to make his calculations of the perihelion
shift of Mercury and the bending of light rays by the sun.
It is also used in work on black holes. The constant M is
interpreted as the total mass of the distribution.

For completeness, we present a brief discussion of the
Einstein~-Maxwell equations. These field equations hold when
the energy-momentum content of space-time is due solely to
electromagnetic fields, and this is sometimes referred to as
the electrovac case of the Einstein equations. Maxwell's
equations are then coupled to the Einstein equations as

follows. In (1.1.2), the stress-energy tensor is given by



8=
T = (Fue v - FrgF g 00) (1.2.11)

where F%Jv‘ is the electromagnetic field tensor. Maxwell's
equations in curved space-time are identical to those in
flat space-time, but partial derivatives are replaced by
covariant derivatives with respect to the metric tensor gbAV:
F»((s' rFayroa +Fy, :q =0 (1.1.12a)
i¥ P I EVIE
P,
= ‘3}‘5:%“3"" (1.1.12b)
=4

where a semicolon denotes covariant differentiation and J
is the current density. (1.1.2) and (1.1.12) are then to
be solved together, consistently, in the same fashion as

ol
(1.1.5). In the absence of sources,tr =0

.

1.2 Killing Vector Symmetries

A geometrical concept of symmetry often used in formu-
lating solutions to the Einstein field equations is that of
the Killing vector field. We introduce this concept in the

following manner: let the metric components eébAV' relative

to some particular coordinates XM be independent of one of

the coordinates, X‘ , 8o that

Jr =0,
J X'
Geometrically, this says that any curve

= (N

(where )\ parametrizes the curve) can be translated in the
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X' direction by the coordinate shift AX =& to form a

congruent curve given by

X~ = c*(A) foy g sk
and
= (N +e,

Let the original curve run from ,\\ to }pl and have length

L_ given by
A |
l=( L (x(,\\)é'g“ a1 dN
}\S{ am N SN
The displaced curve then has length given by

A2,
. \r; 12
9= S Ll (0N« el gt 317 .

Since the coefficient of £ in the integrand is zero, the
lengths of the two congruent curves are the same. In general
relativity, the basic physics is determined by the measure-
ment of length (more properly, interval) along curves. An
invariance of the B’JV' such as described here thus reflects
a symmetry of the physics. 1In fact, in the particular co-
ordinates X we have described a vector field7€=:j§T "

If such a "Killing" field exists, it provides an infﬁ%itesi-
mal generator of a one parameter group of length preserving
translations. We now show that such a vector field satis-
fies, in a general coordinate system, a set of partial

differential equations cailed Killing's equations:

%#A}V’*'3Vrfﬁ4 = £3 5 (1.2.1)
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Since this condition is expressed in covariant form, we need
only establish it in the preferred coordinate system used
above in order that it hold in all coordinate systems. In
the preferred coordinate system, the ve~tor fieldji has
components

EESATEY

=

Thus

?5. IN =G P56 T Gus v+ Gov = Q) = O

where ¥ denotes the Lie derivative with respect to the
vector field-f . (1.2.1) is merely a covariant way of
writing the Lie derivative of SFJJ .

Conversely, if a metric has coefficients which are
independent of a coordinate XK , then the geometry described
by that metric possesses a Killing vector field.:;iT< .

For example, the Schwarzschild solution, (1.1.10)} is inde-

pendent of ﬁ' and (Q and possesses by inspection two Killing

vector fields:

J

—_—

St
J

-
[~

The metric (1.1.10) in fact contains two additional
Killing vector fields. To see this, we first transform
(1.1.10) to isotropiec coordinates defined by
r:(\+___m_&F.

AT
(1,1.10) then becomes



ks

ds?=- (\*M) ( +©de™ Taedq )“’ (1~ M:); QH'?_ . (1.2.2)
(\\P,M_)

If we now make the change to isotropic rectangular coordinates
given by
K= Cs\mecosqQ
\[= €506 sinQ
Z2 =T Coser

then (1.2.2) becomes

cls -—(\+ AM) (Ax +A11+A ) (\—g\—‘—_) "VL (1.2.3)
2P
aT
with
T (Y\Q*\{ + 22)
In these coordinates, one may verify that in addition to the

there are three space-

|\1

timelike Killing vector field j;jf ]

like ones given by

{x—\/c\

EEY c\y
_zc) — X9
?y g

7;=><§_~\/sé,.

&Y Ix
—
The ?2: Killing vector field is equivalent to the_ﬁﬁ one,
4Q

so there are in fact four independent Killing vector fields

for the Schwarzschild geometry.
Most of the recent work on exact solutions falls into

the category of solutions with Killing vectors, as we shall



-12-

_ see in the next chapter. The geometrical property of the
Killing vector is used to assert the existence of a special
coordinate system adapted to the particular physical situa-
tion, and so to reduce the number of independent variables
that actually appear in the field equations. Most known
solutions possess at least two Killing vectors, since then
one has only two independent variables in the field equations.

1.3 The Importance of Exact Solutions

When one begins the task of solving a set of nonlinear
partial differential equations such as Einstein's equations,
there are basically three approaches available: exact solu-
tions, approximation schemes, and numerical computation.

Let us consider their advantages and disadvantages with
regard to General Relativity.

Approximate schemes have of course been much used in
Relativity{ there are the weak-field and slow-motion approxi-
mations, perturbation expansions about known exact solutions,
and so on. A serious criticism is that many of these schemes
have not been rigorously shown to be valid. Many questions
as to the uniform validity of perturbation expansions, error
estimates, etc., are still unanswered. (Ehlers, et al, 1976).

Many realistic problems in gravitation so far lie out-
side the domain of approximation schemes. An excellent
example of this is the production of large amplitude gravi-
tational waves which accompanies the formation of a neutron
star. The disturbances in problems of this type are too

large to be covered by any perturbation scheme, and we must
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thus choose between exact solutions and numerical analysis.
The application of numerical methods to Einstein's equations,
however, is only Jjust recently beginning to yield quantita-
tive results (Smarr, 1977). Exact solutions offer an alterna-
tive and complementary approach.

The discovery of exact solutions in the past has been
rather erratic, depending more on guesswork and intuition
than on any systematic methods.

In the following chapters, we present a more systematic
treatment of some problems in Relativity. Much of this work
may be viewed as an extension of the work of Kinnersley,
(Kinnersley, 1975) who published a comprehensive survey of
axially symmetric exact solutions in Relativity, of Ernst
(Ernst, 1968), of Harrison (Harrison, 1968), and of Harrison

and Estabrook (Harrison and Estabrook, 1971).
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CHAPTER 2

THE NONLINEAR EQUATIONS FOR VARIOUS SOURCE-FREE EINSTEIN
AND EINSTEIN-MAXWELI, FROBLEMS WITH TWO INDEPENDENT VARIABLES

In this chapter, we present a discussion of the source-
free Einstein and Einstein-Maxwell equations in two inde-
rendent variables. These problems all possess two com-
muting Killing vectors. There are five physically rele-
vant problems of this type, treated in sections 2.1 to 2.5.
In section 2.6 we present a formalism to treat these
problems simultaneously.

2.1 External Gravitational Field of an Axisymmetric,

Uncharged, Steadily Rotating Body

The metric in this case may be put into a canonical
form first introduced by Lewis (Lewis, 1932) and now known
as the Weyl metric. We assume the existence of two Killing
vector fiélds, which we write aséL- and1§§' ; The metriec

must therefore be independent of ¥ ,& . For axial sym-
metry, the metric must also be invariant under the trans-
formation

T—-%

0-3-Q

(See Synge, 1960). Thus the metric cannot contain the terms
d7\\‘<§Q x A‘RQAQ , A‘L\cﬁ' 4 dxlé‘f , while the term
A(Q &f’ may appear. We thus have

ASQ: % “(A K' )a'(' 33_9\(& Ka)a';'vrz% \Q_A ’K‘ fo\akg_;3éﬁa-taao3d@$\-*3 m‘:“l (2 1.1 )

: a
where the aiK_ are independent of T , Q@ and « , X are
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asymptotically space-like coordinates. The two-dimensional
metric

Asj =9y (dr\')z*-&a \D‘AK'AKL x 822_(3)(;)&

must be conformally flat, since the Weyl conform tensor
vanishes identically in two dimensions. There thus exists
a transformation to new coordinates

SRS X¥= @ (¥ x?)

in terms o{ vhich the two-dimensional metric takes the form
Asi = MUK L) + W)

The metric (2.1.1) then becomes

7= P Td) (e )|+ 9 33907 2gq336dT Yoo &> (2+1.8)
By appropriate choice of the coordinates xﬁl, %3’ and the
form of the functionslq, %33 8 %o3 , and 3,,0 5 [Bal<2)
finally may be put in the form (See Reina and Treves, 1976)

ds? = £(Lrwde)t £ Y,e_ax(z\sa%cé%a) + 2 det ) (2.1.3)
where ? s W, and X are functions ofja and Z only. If we
regard J@,gl&_ as cylindrical coordinates in a flat space,
a gradient operationﬂi? is defined which is convenient to
use in what follows.

We now distinguish two cases of (2.13): wW=0 or wW%o -

In the 53,@, o coordinate system, the Killing vector
—

field NV = QQﬁ' has contravariant coordinate components

given by

Using the metric (2.1.3), we see that the covariant components
—_—

of | are given by

qM: (0) ‘?UJ/ O)“Q).
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For a static space-time we require the existence of
instantaneous space-like 3-surfaces that are orthogonal to
the time-like Killing congruence, and thus orthogonal to
the vector field
VM: (0, w0))).

This requires that \JH be proportional to the gradient of

a scalar:

V= ity

where V\ is an arbitrary function of the coordinates.
Differentiating, we find

Viaw =g = W Vot =4\

However, if we write out the components of the above equation,
recalling that W is a function of‘giand 2 only, we find no
nontrivial solution, unless \W=Q0. Therefore W=0 is the
necessary ahd sufficient condition for a static metric. If

\*)iio, the metric is called stationary. The metric and the

resulting physics are then invariant along the lines of the
time-1like Killing congruence, but invariant orthogonal 3-
surfaces do not exist.
W

Similarly, the vector field \J zr‘ has contravariant
coordinate components given by
and covariant coordinate components given by

— Q = < e
\IM-(O)‘\:L\)-—‘F\@)UJQKQ
In a manner identical to that above, we find that (3yz¢o is

the necessary and sufficient condition for the existence



e
of 3-surfaces that are orthogonal to the space-like Killing

congruence.
Furthermore, we see that these two Killing vector fields

—

commute., The commutator of two vector fields'vl and \J is

defined as

LGV = Cuyh, —v*ue BER

In theja SO,z *-coordinate system, we see that the

commutator of the space-like and time-like Killing vector
fields defined above vanishes for any value of 4LJ). These
Killing vector fields thus define a family of invariant 2-
surfaces and are called 2-forming.

The Einstein vacuum field equations R\NM’=C)f°r the

metric (2.1.3) reduce to

V-LE IR p2 e wou] =0
V. [S‘TZ{:QV\”] =0

(2.1.4a)

(2.1.4b)

and
&3{‘\ ( \P ’2)'_—\._1'53—t'?1(m)P (-L),_?;) (2415

X)%:%Sa g-= F.Sa‘r\,i_—_\f 7 g Wip Wy )
When (2.1.4) are satisfied, (2.1.5) are integrable and deter-
mine X up to a constant. If + vecomes negative, we must
use this constant to maintain the correct signature of the

metric, by replacing

=¥+ ix
Z
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In this case, dl becomes a time-like coordinate. Other-
wise, X may be ignored in the process of finding solutions.
We thus concentrate on solving (2.1.4). (2.1.4b) is
the integrability condition for the existence of a related
function L, defined by
Vﬂ‘—ff‘?z €4 XTW (2.1.6)
where Ei@_ is a unit vector in the direction...n_ is
usually referred to in the literature as the "twist" poten-
tial, since its essentlial effect is to interchange the com-

ponents of JuJ . Written explicitly, (2.1.6) becomes

- _\aa
‘n’f J Frwy (2.1.7)

ana
ﬂ)% :—53 'P LO)P
where the so-called "twisting" is displayed explicitly. We
may eliminate w for_ Sl to obtain an alternative pair of field

equations equivalent to (2.1.4)
V-Le2(£fUC+ o) =0
V-Lf2vnl=0.

(2.1.8)

Ietting-?==€ , we may write the above equations explicitly

as

-au 2
u’ﬁjaf U_\;;E+ U,%%:ag (.Q.,Ja fﬂ)‘ta) (2.1.9a)
_ﬂ’fp-ﬁ—ﬂjsﬁ -\-ﬂ,}i_: Q\(ﬂlﬁulda*ﬁ’%u'%) (201-9b)
These are the coupled nonlinear equations upon which we will

focus our attention. A most comprehensive survey of this

problem i1s given in the review article by Reina and Treves
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(Reina and Treves, 1976). Cohen (Cohen, 1976) considers the
problems that arise in classifying stationary axisymmetric
gravitational fields. The familiar Weyl solutions are in-
cluded as the caseyfl=:C), in which case U satisfies the
ordinary cylindrical Laplace's equation.

A complex formulation of (2.1.8) was first introduced

by Ernst (Ernst, 1968). We introduce a complex potential,
£ , defined by

€= £+ JL (2.1.10)
in terms of which (2.1.8) become
Re €)V3E = ve.ve, (2.1.11)

It is also sometimes convenient to introduce a

different complex potential E defined by

g = (E"—l)/(Eﬂ) . (2.1.12)
(2.1,11) then becomes
Ee*-\)VIE = Qe*VE.VE, (2.1.13)

(2.1.13) is called the Ernst equation,

The metric functions @’,Ld, and X and the potential

\ﬂ_ are given in terms ofE by

= Re €1 S=Ywm E-\ (3.1.14)
E+| €4\
QN:QE@_ lmEE*H\ZQ@ KUE)] (2.1.15)
(e~

XJP :ﬁanyEJyg/}a = E/%E.,;)

(2.1.16)

X 3 = :)\_S.Q RQLE & *)
: (5 o
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The most important solutions to (2.1. 8) to be recently

discovered using (2.1.13)/ are the Tomimatsu-Sato solutions
(Tomimatsu and Sato, 1973). These are asymptotically flat
golutions, most of which have naked singularities outside

the event horizon. The Kerr solution is the simplest twisting
solution of the Tomimatsu-Sato form, and if W->0 in it one
obtains the Schwarzschild solution already discussed.

2.2 Cylindrical Gravitational Waves

If we let

\

1

g2

]

\

_\_
z
W

I

the metric (2.1.3) becomes

~1
ds? = F"‘eax(c\\’—cljal)-Q(é%«»Gc\Q\l—‘Q_‘ Jalci Q= (2.2.1)
The Killing vector fields are now
A%
and

S,
LK) o
The surfaces *‘= constant, 5313 constant are intrinsically

flat, but we identify points with ® differing by QT .
If we let

Q== ‘r\og P

then the field equations (2.1.4) for® , () become
G)jaSaT 9_‘5@_“ QJ’“‘ = Q—Q&(&)Z\__ C:J)Jla) (2:2.88])
W, PP * @ﬁ-m,ﬂza(m@&?—&ﬁ@,@, (2.2.2b)
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The metric (2.2.1) describes Jordan-Ehlers waves (Jordan et

al, 1960) which are cylindrical gravitational waves pro-
pagating in vacuum with two degrees of freedom, corresponding
to two available wave polarizations. The familiar Einstein-
Rosen waves are included in the case CBZZC), in which case

Q is a solution of the ordinary cylindrical wave equation.

2.3 Colliding Plane Gravitational Waves

If we let
=i
k4
Q

>

I

A

I

,G>

the metric (2.1.1) becomes

s = P“é"(&‘%#)%@@méa\:‘— ¢ /\\}A(&Z . (2.3.1)

The Killing vector fields are now

The surfaces% = constant anda- = constant are flat, taken
to be Euclidean planes. The solutions are now independent
Ofiﬁ ,(3 and the waves propagate along the Z- axis. The
field equations (2.1.9) for \l,~SLbecome

U)Sr’f* %_U1z%z—€'au(ﬂ);—ﬂ§{_> (2.3.2a)
_\.

ﬂ)ﬁ‘\“ S &(U)’J; n,%—u,%ﬁ,i) (2.3.2b)
x

This problem has recently received attention by Szekeres
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(Szekeres, 1972) who interprets (2.3.1) as the metric des-
cribing the interaction region of two colliding plane waves.
The preceding three problems are those discussed by

Kinnersley (Kinnersley, 1975). To these problems we now
add two more problems concerning the source-free Einstein-
Maxwell equations.

2.4 Cylindrically Symmetric Static Einstein-Maxwell Fields

We consider first a metric of the form

dsP=fdti e[ 2 (éda +d2) + cl&a:\ (2.4.1)
which, 1if ¥ and ¥ are functions ofMP, 2-only, is cylindri-
cally symmetric and static. (2.4.1) is identical to (2.1.3)
with the cross term (y =0 . A vacuum solution would describe
the external gravitational field of an axisymmetric static
body (Weyl solution). If we now allow the body to have
charge, its exterior fields must satisfy the Einstein-Maxwell

equations (1.1.2), (1.1.11) and (1.1.12), which reduce to:

u,jajﬁ Q?M J, = - -au(ﬂ,Pl+ n,2) (220}
lefja+ -S%;ra_-\- Ny = Q‘Q-D-;PUJP-\-ﬂ,%U)%) (2.4.2b)

plus equations for X,Jazﬂui'x)% which are integrable when
(2.4.2) are satisfled and determine ¥ up to a constant. We
assume that the electromagnetic field also depends only on

JB, > and hence, due to the form of the metric (2.4.1), we

may express it in terms of a single potentialfl. The

electromagnetic field tensor in this case is given in terms
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of,ﬂ_by
Vij=Shk exp (€148 -F- €) (K= 1423 v eylic oded
Fia =-J0; (3=4,33)

where

@3:\1.
All other components of F}»{ vanish.

2.5 Colliding Plane Gravitational and Plane Electromagnetic

Haves
If we let
=ik
ta=13
=¥+ 11y

the metric (2.4.1) becomes

¥ e o
ds7 = £ (ééaiéﬂ—@ rda § 4zt (2.5.1)
with Killing vector fields

9

a2
and

o,
S s

Surfaces Ja::constant,”f = constant are flat, identified as



ey
Euclidean planes. The Einstein-Maxwell equations (2.4.2)

become

2

— S\
u’ﬁﬁ*%ﬁg—u)'ﬁ“— € (“QJT — ﬂ,:},) (2.5.2a)
R)f&g-\-%ﬁ_ﬂ)’{f? = a(ﬂ,l@uua—-ﬁ,:‘: U”FB (2:5:20)

where5fL is again a potential for the electromagnetic field.
(2.4.2) and (2.5.2) were derived by Harrison (Harrison, 1965)
as the field equations for cylindrical Einstein-Maxwell fields.

Recently, the problem of colliding plane electromagnetic
waves and plane gravitational waves has been treated by Bell
and Szekeres (Bell and Szekeres, 1974). To treat this
colliding wave problem, they used the Newman-Penrose spinor
version of the Einstein-Maxwell equations. We will not dis-
cuss the Newman-Penrose formulation, since such a discussion
is beyond the scope of the present treatise (see Newman and
Penrose, 1962). The problem is set up in much the same way
as the colliding plane gravitational wave problem treated by
Szekeres,

Space-time 1s divided up into four regions, one of which
is flat, two of which correspond, respectively, to incoming
gravitational (with wW=0) and electromagnetic plane waves,
while the fourth region is the interaction region, the region
of interest. The O'Brien-Synge Jjump conditions (O'Brien and
Synge, 1952) are then used together with the Einstein-Maxwell
equations in the interaction region. If a potentialjl.is

introduced for the electromagnetic field tensor, the field
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equations of Bell and Szekeres may be shown to reduce to
(2.5.2) after a suitable transformation of the independent
coordinates, while the metric reduces to (2.5.1). We omit
the details here, since they are essentially an exercise in
the Newman-Penrose formalism and provide no great insight
into the problems we will treat in this discourse.

2.6 Simultaneous Treatment

We now note the following remarkable fact: equations
(2.1.9) for (U ,5)) are identical to equations (2.4.2).
Furthermore, equations (2.2.2), involving (Q ,35), are
identical in form to equations (2.3.2) and (2.5.2), which
involve (U ,S5.). Also, by letting ZF = 11¥
(2.1.9) are transformed into (2.5.2). We may thus draw

the following diagram:

Axisymmetric Complex Colliding plane
stationary vacuum - gravitational waved
(2.1.9) S coordinafe in vacuum
transformation (2.3.2)
I"twist" potential I”twist” potential
Cylindrically symmetric| Complex Cylindrically sym-
static < > metric Jordan-
_Einstein—Maxwell coordinate Ehlers Waves in
(2.4.2) transformatior] vacuum (2.2.2)
Colliding plane

gravitational and
electromagnetic
waves (2.5.2)

Thus, through the use of the potential (2.1.6) and the

simple complex coordinate transformations given above, we
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may consider problems 2.1-2.5 simultaneously, at least when
searching for exact solutions. The analogy becomes even
more evident when we consider the boundary conditions assoclia-
ted with problems 2.1 and 2.5. In problem 2.1, the metric
must be flat at infinity, or
\U-=0
1— O
as @ . In problem 3.4, the metric must be flat and the
electromagnetic field must vanish at spatial infinity, which
translates into the same boundary conditions onkl,lﬂ_as those
above.

We note that the electromagnetic potentia&.f\seems to
take the place of the "twist" potential (2.1.6). We will
refer to this fact again when we discuss three variable solu-
tions with one Killing vector in Chapter 4.

Some of the above ideas have recently been independently
realized and published by Catenacci and Alonso (Catenacci and
Alonso, 1976). They noted that the invariance groups of

problems 3.1 to 3.5 were identical.
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CHAPTER 3
VARIOUS FAMILIES OF EXACT SOLUTIONS

In this chapter we present a discussion of various
exact solutions and transformation theorems for the problems
discussed in Chapter 2. The calculus of differential forms
is used extensively. A discussion of the techniques involving
differential forms used 1in this chapter 1s presented in the
appendix, and the reader is referred there for further details.

3.1 The Curzon Solution as a Generalized Similarity Solution

In this section a generalized isovector of (2.1.9) is
presented for the case W = . The corresponding generalized
similarity solution is found and shown to be the well known
Curzon solution. The corresponding wave solution is also
discussed.

When (W =0 , the field equations (2.1.9) reduce to the

cylindrical Laplacian

A suitable ideal of differential forms corresponding to

(3.1.1) is

“:AU“AA%—BA\F

AM:—ARAJ%—A%AAE (3.1.2)
y-‘— A%Aéaﬁ-éf\/\o\p +-JB;¢\PI\A£.

The ideal (3.1.2) is closed under exterior differentiation.
There are five variables, one one-form, and two two-forms,

so the Cartan criteria are satisfied.

We now present a generalized isovector of the ideal
-_—

(3.1.2). Consider the vector V with components
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\/Z:-Sa
V= g
V%= 0o
VA =-B
ve=p,

The necessary augmented forms are
\/_)o<=saf\—3=:
Vidu= %Az-jaéﬁ-ﬂélalr%AB (3.1.1)

V] ¥ = nda +PAB-%A\?— %3R+_%_(%d%+fép) :

The Lie derivatives with respect to V of the forms in the

augmented ideal (3.1.2) and (3.1.4) are found to be:

Fo= Fdu= 2@ = @I =0
vV N

(3.1.3)

&

V

We see that the Lie derivative of the augmented ideal is
contained in the augmented ideal and hence the vector (3.1.3)

is a generalized isovector. Annuling the first, scalar,

form of (3.1.4) implies the functional form

U=U( 2+,

We could of course also choose kk to be any function of a

function of 531«»21 To simplify the following calcula-

tions, we choose

U:U(W) =U(n).

Substitution of the above form for \| into (3.1.1) yields



-29-

the ordinary differential equation

Pl du=-0. (3.1.5)
d n- N dwn

The general solution of (3.1.5) is

U=*%+C (3.1.6)

where W\ and C are constants of integration. We set C=0Q
so that LA—@ O as Sa—4><x> , making the solution asymptotic-

ally flat. This yields

- aM
J‘::GQUZQ [

From (2.1.5) we have
Y o=0(U, 2 z2 :_vwl e zy3
dc ;a- P ,%) HSQ p-lAp e

X = :_\_N\a & a\—3
127y UipUn =5 Wea (2?7
This ylelds
N w -
| 2 .
jV\ (JQ+%)
The metric is then given by

ds? = exp (- am( Sfﬁ?)"‘ﬂ dt= eXpLAN (P 2L J\%a Jal( jél+13)-§] .

@7+ 49 - exp Lam(phiay 7] % (5

This metric was first studied by Curzon (Curzon, 1924),

This solution has long been considered a mathematical curiosi-
ty with a strange physical interpretation (see Synge, 1960).
Recently, however, Voorhees (Voorhees, 1970) has suggested
that the Curzon metric corresponds to the external field of

a disk of radiusf4. Since {?Zfia e X s Wwhere ¢ 1s the
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spherical Schwarzschild coordinate, we may obtain the physical
meaning of the constantM by expanding %°°=:@7 for C—> 0.
This gives 300._3\-9%_ G5 Ty ol
and we see that M\ is the mass of the source.

Similarly, if we set (0= 0 in (2.2.2), those equations

reduce to the cylindrical wave equation

Q,Sg\Pi‘ Q;Sa—-Q,.\_\_ s .

Recalling

GR:=—'kJ*'\Q§J@)

we find that V) also satisfies the cylindrical wave equation:

U).Sa?-’r L_,\‘S_é@-—\«\).ﬁ.: 0.

If we want a source term at the origin Sa = 0O at time '\' =20 4

the appropriate problem to solve is

U +U; —U, :—8( \E'\'
R S

with initial conditions Q (LP, g )= Q)_\_(?, &) = b,

Working as before, we find that

Ve -
'Rﬁﬂkidal

with U=0 for SD>J\- ”

This solution corresponds to a gravitational wave
pulse emitted atLP =0 *E;o . It vanishes outside the
light coneS;: f\' .

3.2 The Kerr and Tomimatsu-Sato Solutions and Transformations

According to section 2.6, the functions (£ ,f]) describ-
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ing stationary solutions to (2.1.9) are also solutions to
(2.4.2) describing static cylindrically symmetric Einstein-
Maxwell fields. The Ernst potentiaIMYL of the stationary
fields becomes the electromagnetic potential for the Einstein-
Maxwell fields. In this section we discuss some physically
relevant, known solutions of (2.1.9). By displaying'@ and
fl_explicitly, we also arrive at new solutions to the static
Einstein-Maxwell equations (2.4.2).

The solutions are most easily discussed in the complex
Ernst formalism of section 2.1. It is convenient to work
in prolate spheroidal coordinates defined by
o= k(&) ']1({-\{:4) (2 |
B ny.

X and are given explicitly in terms of‘ja, 2~ by

Y\-QKEJ k)+ 2 & j(i‘- K)Q+Sa’~ J
- [ T

where K is an arbitrary constant.
We now assume that the Ernst potential E' is of the form
- ol
= = o 2.1
E (3.2.1)
where o and \'5 are complex polynomials of X and \/ ”

Substitution of (3.2.1) into (2.1.13) yields, in the %\ ,V

coordinates:

(XQ— (- pp")HxxP-—-zpm)Jr {ax (¥~ g&\s*) - 2(xEY) ¢

.(Dzi(/x* B*BJK)S("“(JXB“’z@)K) - E_he same expression replacing
X eyN\=0. (3.2.2)
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The first solution to (3.2.2) was found by Ernst (Ernst,
1968) and is given by
o= pr=igy (3.2.3)
=\
where g) and %) are real parameters related by
ff%%“:\. (3.2.14)

The case Pf:\,i):() yields the Schwarzschild solution.

In fact, (3.2.3) is isometric to the Kerr solution (Reina

and Treves, 1976). From (2.1.14) and (2.1.16) we obtain

£ .0, wanda ¥ as

'F: ’.17\‘)._‘_ a 24
(@X*\)L+%:Yl (3.2.5)
fl: - 9.3\[
(?**Qa+%371
W= —2aq (-y)(px+)
PR AP -]

P> Oy
The metric is given by
_pd a ' 2 R el
ds2= Kk f(px»r\; w2y flf\ N é_g\; )+ %:‘;L;ﬁg, o
'(Xa‘\>(\‘\/3)3®&~ (PR gPy2\) (4 + Qg -y oy aey |
LExv )™+ cba\/:&) (P % y3-9)

where K is the arbitrary constant which appears in the

definition of prolate spheroidal coordinates. The mapping
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prHl= c|mM
cb\[ = alM
with

e KM

%za\M

K =J Moz

maps the above metric into the Boyer-Lindquist form of the

Kerr metric:
ds¥= [r¥ue® t:osae)&c\*?x?‘ﬂ- dig® ) + (¢ %) sintedd
h oM

~dT - ame (& v asinteda)™ .

Tt e

I %:0 then a=0 and the resulting metric reduces to
the Schwarzschild metric.

The Kerr solution was the first stationary (but non-
static) exact vacuum solution found. It is thought to de-
scribe the gravitational field external to a spinning object
(Kerr, 1963). It is asymptotically flat, so that (3.2.4) also
describes the external gravitational and electromagnetic
fields of a static distribution of charge and mass.

Much more general solutions to (3.2.2) were presented
by Tomimatsu and Sato (Tomimatsu and Sato, 1973). They found
solutions assuming <« and F, are polynomials of degree 322
and E;Q_\ s respectively, where S is an integer. Explicit
solutions were given for §= | ,Q,3.,H . For S=\

solution is (3.2.3). For $=7 , they obtained

s the



-3~

F= 00 42 ¥ 1= Qg xy (13 y3) (3588)
2 px ()~ Atgy -y

where P and q are related by (3.2.4).

(3.2.6) yields the following for ¥ andlﬂN:
£=Aalp (3.2.79
SL=¢|®

where

A= P‘*(}@—\Y{ +7)‘* (\-\r"’)LL QPQT)Q(&Q-\)(\-\/Q) ) s vV

+ 3N (\-y3) ) )

=L p? (K- (b yO* 2ex () + LlfyaE?x(x"‘-\h(@v\ﬂ)(\-\["ﬂl
C = (97T g2y 1-D 0y = 262 3R (=)

(3.2.7)is again an asymptotically flat solution correspond-
ing either to an uncharged stationary distribution or a
charged static one. For %}: 3 ,L{ the expressions are even
more compiicated and we refrain from discussing them here.

Ernst (Ernst, 1968) noted that a phase transformation

of the solutions of (2.1.13)

€ = e'™f,

yields new solutions which are not asymptotically flat. The
previous solutions may thus be considered as a special member
(with =0 ) of a more general family. TFor example, bthe NUT
solution (Newman, Unti, and Tamburino, 1963) given by

E = e‘“'(x

is seen to be a generalized Schwarzschild solution. Similar-
1y, Demianski and Newman (Demianski and Newman, 1966) obtained

a generalized Kerr solution
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E = e“"(?x +iqy).
We refrain from discussing such solutions further since their
physical interpretation is questionable.

3.3 The Isogroup of the Two-Variable Egquations and Some

Similarity Solutions

In this section, we discuss the isogroups of the field
equations of sections 2.1 to 2.5 and use them to derive
some similarity solutions.

We begin by repeating the two sets of field equations
under consideration. For the physical cases of sections

2.2, 2.3, and 2.5 the field equations are

U’LPf+ k‘{(?_——-U)_“: e_‘_au(.ﬂ)ka'_ﬂﬁ%) (3.3.1a)

ﬂI‘SQSQ‘PJ%@"ﬂ)ﬁ:a(‘njxau(‘@"ﬂ)*u,_‘_). (3.3.1b)

If we let 2 =% , then (3.3.1) correspond to the cases of

sections 2.1 and 2.L:
U, +\J + U, :—e‘a“"(ﬂ Q+ﬂa) (3.3.2a)
T / )
PP __d%g? P >

(3.3.2b)
"Q},PJB _‘_%9\""&[2_%: g(ﬂr&auh@ +ﬂ,}u,%) .

Harrison and Estabrook (Harrison and Estabrook, 1971) have
presented a discussion of (3.3.1) and have calculated the

isogroup. An appropriate ideal of differential forms for
(3:3:1) is
L= AQ'P\&J“%A&G Cld:‘AQAAJ\'—ABAéP

P= 45 Bdt-6d dp = dFadi-d6 ndg {3 )
= dBndtrdindp- Leu(rt 62)- &4 oadl
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P g z\cﬁ'&&\:r\&&a -La(ees-ng)- %—] AJ;;AQ“' :

This set of forms is closed under exterior differentiation.
There are eight variables, two ome-forms, and four two-forms.
Thus the ideal (3.3.3) meets the Cartan criteria and is a
well-set ideal. The isogroup of (3.3.3) is given in Table
I (page 37), where a description of each type of transforma-
tion is provided when feasible, If we let Z= 1*‘ s wWe
obtain the isogroup of (3.3.2). Although one might have
guessed isovectors 1 and 3 from inspection of (3.3.1), the
other isovectors are more complicated and cannot be found
by inspection.
We now seek similarity solutions using the isogroup.
Isovector 2 leads to the functional dependence
U= U (et =Ulx)
S=L e =Ny . (3.3.4)
Substitution of (3.3.4) into (3.3.1) results in the
ordinary differential equations
UG v W (Qa-3) = e 3 1= ) (3.3.5a)
00+ AU (-3 = QU (w20 (3.3.5b)
where a prime denotes differentiation with respect to -
We proceed to find solutions of (3.3.5) as follows.
(3.3.5b) may be rewritten as
,_J“liw- QAa-w = aU',
) —:fi::—

Integration of the above yields

Sl (3.3.6)
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where Q\ is a constant of integration. Substitution of
(3.3.6) into (3.3.5a) yields

U\\ A + \ -4 - au 2
(‘Q V) U(au\_ﬁ) € \r\g\

which may be rewritten as

U“(qa— ) +U( -ay) = e 5 (3.3.7)
The equation obtained by multiplying (3.3.7) by \A‘ may be
written as
d (U2 ) =4 Redd

Y EWL

which integrates to

\J‘a {vq (:a a\u

where we choose the constant of integration to be zero so
that we obtain a solution explicitly up to a quadrature.
Integration of the above yields

QA%:CQQMJq+CZ (3.3.8a)
where Cz_ is another constant of integration. (3.3.6) then

gives_SL as a quadrature:

Su= e {8 AV (& (3.3.80)
3 6oL
where CDB is a third integration constant. (3.3.8) comprise

an exact solution of (3.3.1).

We could of course similarly use isovector 2 in (3.3.2)

to obtain

U=U (1) = U (a) (3.3.9)
SL=51 (p\3=01(x),
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Substitution of (3.3.9) into (3.3.2) yields the ordinary

differential equations
U q“+\)+u‘(aq+iﬁ) :_e-au‘ﬂ'a(na*\)
O + 31|(Q\’k+—}ﬂ: AU (241

(3.3.10) may be solved in a manner analogous to (3.3.5).

{3: B.10)

The solution is

o2 — %%{w\ea\ﬁ(m M@EN{D}

au
A= fret
R CICY (3.3.11)

Unfortunately, we cannot interpret (3.3.11) as the
external gravitational field of an isolated axisymmetric
body since fiaki deoes not have the proper asymptotic
behavior.

We may use other isovectors to reduce the number of
independent variables. For example, using a combination of

isovector 2 + isovector 3, we find

U= ulpl)= Ula)
= AT+ W) = At W(a)

where \ ) and W’satisfy the ordinary differential equations
Ul + Wlan-4) = —e 3 (e w3eo 2w - 9'3)
PR )+ Y Q=) = A aw' (nu?) - 2u'n
Use of isovector 2 + isovector 4 yields

U= Rt v et = Nt )

JU= TR0 =1 Y(a)

where ¢ and Y satisfy



o
}" (n"“_\)-\- gb'(aq_-.)—t)-\ = g=RP Ly pPL (q%k)\\)‘a)
-0 - Wlo- ) - W= o' (aW- 29 @ 1) .
Using <« (isovector 2) + ‘3(isovector 3) where ¢ and pare

constants yields

U= B(pH) = ¢ln)
N= 6 T+ W) =5 [at +Wn)
where ¢ and‘y satisfy
( _2 Q2 ( =
Sl)“(\“‘qg‘)*@(aq—-:a):e ¢(6;+W\QW‘—&GQ3\)—P1 )
j 0 \ N\ v I_
Y (vﬁ\}~6+‘\”(aq~ﬁ)—&¢)'(uﬁ‘v V=6 )
and ( = l%,o(

We remark that although we have not hbeen able to find
exact solutions of the above equations, these coupled
ordinary differential equations would be easier to solve
numerically than the original partial differential equations
(3:3.1)s

3.4 The Ehlers Transformation and Invariance Transformations

In this section we discuss how the isogroup may be used
to generate finite transformations which give new, distinct
solutions from old ones. We see that the isogroup of Table
I (properly, the generators of infinitesimal invariances)
separates into two subgroups, which respectively transform
only the original independent (Xa,k ) or dependent (\J) ,SL)
variables. The second group, vectors 3-5, is integrable in
closed form, giving a three parameter set of finite invar-

iance transformations,
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Integration of

-y
i\%‘v (3.4.1)
\
d N :\]‘n'
AT

yields finite transformations which may be put in the

form (Harrison and Estabrook, 1971)

= T I Ne-a)
@10_6)3‘_*-.0;. (3.4.2)
£=

o o
(No-6)*% ?:’
where € =e% | £ -¢eY , andV,§, and & are constants.

To establish (3.4.2), we integrate (3.4.1) first for iso-

vector 5:

-0

AT (3.}4-.33.)
2

%:ﬂ*eau. (3.4.3b)

Differentiation of (3.4.3a) and substitution into (3.4.3b)

results in a single equation for\) :

O ! \_(Ag*)%ea“.

2 dra H\r
If we make the substitution
T s (3.4.4)

we obtain an equation forw) ,

a1e

which integrates to
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dugf = W= L
(@ =% e

where \;l is a constant of integration. The above is
separable:
AT wdw .
NJEETREN
The substitution
K = Sty (3.4.5)

brings the expression for {7 into the form

4T = dx
A

which integrates to

X=2\F Ty
where v is a constant of integration. Using (3.4.4) and

(3.4.5) we find

B = 1+ (2 1) = Ge-Y

or

e = \;1 . (3.4.64a)
|+ (& )

(3.4.3a) then gives ) as

N=-Y & Taw) (3.4.6D)
W+ (@ Tow)?

Setting ‘T=@p in (3.4.6) we find

QU\T:O - eb\n - (3.4.7)

15 %

. B 2
1% \T:o _ﬂo - "-\\i\;r& .
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Letting

P=WT
and solving for YV and > from (3.4.7), (3.4.6) may be written

as

e = gYs( |y N2~ 2Ye)

(8- Mo eIy i
fe (LA AEE MY (- hx M)

(A= Nge M) ¥4y

Setting

€=M

(3.4.8) becomes

€= 8 (82 +D2)
(o-282)+§2

N = Q-4 (824 ) |
No- A8 4 €2

If we let
/Q ‘:b—'— (o7
and make a scale change on (X ,f) ) to get rid of a factor
2
ﬁ*('ga +J1?>
(3.4.9) takes the form
2 X
Clo- )44,
kjlz“‘G'(Jlo—(S)
2 2

We next integrate (3.4.2) for isovector U4:

é&i:\
a1 (3.4.11a)

(3.4.9)

(3.4.10)
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A =N . (3.4.11b)
4T

Integration of (3.4.11) yields

A= a+T (3.4.12)

= ceT

where o, and C are constants. Setting T=0 , we get
s &

dﬂo =

and (3.4.12) may be written (using C=e" ) as

F= S

N=Nee'.

Letting

i

this becomes

= R (3.4.13)
3= B L, ,

We may now combine transformation (3.4.13) with (3.4.10),
using (§ ,J)) in (3.4.10) as the ( Ko , Slo ) in (3.4.13).
Letting

‘ﬁﬁ:i

the combined two-parameter transformation is

= % (3.4.14)
7
@0—5> +-€b;
=200
leo—cy%tgsl
Finally, (3.4.2) for isovector 3 yields

du
EQF-—C) (3.4.15a)
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éj}_:\. (3.4.15b)
dT
Integration of (3.4.15) yields the transformation
(=Ll (3.4.16)
S= e+ T,
We may now combine transformation (3.4.16) with (3.4.14)
as before to establish (3.4.2). (3.4.2) generates new
physically distinet solutions (f,JL ) from known solu-

tions ( o, Lo )-

If we let
g =g
S :T’:—K"

in (3.4.2) and replace Slo by (—Jls ) (this is permissible,
since replacingJL by (-JSL) leaves (3.3.1) unaltered),

we obtain ‘
A= ‘nb_ K(QD;‘\'—D-OQ>

Q‘ KSLe)*x K*§2 (3.4.17)
£ = Lo

3
Q—' Kﬂo) o KQ_?DQ
(3.4.17) is the well known Ehlers transformation (Ehlers,

1957). We see that the Ehlers transformation is a special
case of the finite transformation generated by the isogroup.
For a discussion of how (3.4.17) is used to generate solu-
tions, we refer the reader to Kinnersley (1975) where it
is discussed how the Ehlers transformation leads from the

Weyl solutions to the vacuum Papapetrou solutions, as well
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as from the Schwarzschild solution to the NUT solution.

3.5

Some Generalized Similarity Solutions

In this section, we present a generalized lsovector

of (3.3.1) and (3.3.2) and use it to find generalized

similarity solutions.

Consider the vector\/ with components

¥ ~
vhf (3:5.1)

We first verify that this vector is a generalized

isovector of the ideal (3.3.3). The Lie derivatives of

the ideal and augmented ideal with respect to (3.5.1)

are found to be as follows:

3

=

Fep=HNe=3da=3c=-3dc=27- =
TT) = P z TG ‘% VT %::c\’\” 0



AT =

where

o= :j.xci

T=Vlp

o=V

v=N A8,

Since the Lie derivative of the augmented ideal is contained
in the augmented ideal, (3.5.1) is a generalized isovector.
It is in fact the extension of the generalized isovector
(3.1.3) to the ideal (3.3.3). We now proceed as before

to find the functional forms of U andJ]:

U=U(p23) = Uly) (3.5.2)
= N = Q)

Substitution of (3.5.2) into (3.3.1) yields the following
ordinary differential equations for U and:n_:
&qu“'\'g\l\:—&\\\e_au,ﬂ_'& (3.5.3a)
U F 3 =" U . (3.5.30)
Solutions of (3.5.3) may be found as follows. (3.5.3b) may

be rewritten as

2NN 43 =4

JL i
which integrates to
ﬂ‘: C\Qa\l\q_g\;\ (3.5.4)

where C\  is a constant of integration. Substitution of
(3.5.4) into (3.5.3a) yilelds

\ \ al, AN
&ﬂz“\.\ + 3l =-2 % nia
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If we multiply the above by'\k,, we may rewrite the
resulting equation as
d g3 = - A Cg i
dq
which integrates to

WU = CF%dN 1 Cy
where (:a_ is another constant of integration. This may
be rewritten as
AKJ = VI_S\& AU\.
&Cl_ck&e‘.my\l
We see that (:D. must be chosen so that
CQ>Q\QQQ‘U.
Integration of the above then yields

M= 2 { W eet?T3G Gt Y (350

where C; 'is another constant of integration. (3.5.4) then
gives.SL.as a quadrature ;

- 0 us) -
N=1C, S( e s 32 {5 (3.5.5b)

Y
where (:ﬂ is a fourth integration constant. (3.5.5)
represents a new generalized similarity solution to (3.3.1).
If we let Z= \t' » the vector (3.5.&) is transformed
into a generalized isovector of (3.3.2). The functional

form is now

U= U( g+%‘;‘) W)
ﬂ-ﬂ(y +23)=9(a)

with U and Sl satisfying (3.5.3). The solution is again
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(3.5.5). This solution has the same symmetry as the
Curzon solution (3.1.6). The solution in this case is

asymptotically flat, since, as n->c0 we see from (3.5.52a)
that

ey 3, [\—‘\Qo‘t\\a TQ;C—; _

<
The integral for SL s (3.5.5b), also converges as n->=° >
since for large G the integrand behaves like G-%ﬁl_ The
constants C, , Cq > C3 may be chosen so that e iy |
as —>» > . We may set CL‘ in (3.5.5b) to e to give
T S°° e W) c-3lad s (3.5.6)

n

so that _ﬂ_—A) O as | >0 -

This asymptotically flat solution represents either the
external gravit tional field of a stationary rotating body
or the external gravitational and electromagnetic fields
of a static body as in sections 2.1 and 2.4, respectively.

3.6 Soliton-Like Colliding Wave Solutions

In this section we present some previously known
solutions due to Harrison (Harrison, 1965) and show that
these solutions behave 1like solitons. Solitons are a
special class of solitary wave, which is essentially a
localized traveling wave. Solitons are solitary waves
that emerge from collision with each other having the
same shapes and velocities with which they entered. For
a more detailed account of solitons, see (Whitham 1974), or

Scott, Chu, and McLaughlin (1973).
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Harrison considered solutions of (3.3.1) in the

context of colliding plane gravitational and electromagnetic

waves (Section Q,5). He considered, in particular, function-

ally dependent solutions

M= S\(H) (3.6.1)
Vo= V(H)

where V :.Q\* and W\ 1is a new function of {° and *-.
Substitution of (3.6.1) into (3.3.1) yields

V' (Wpp e ep -t = (1,2 (0 SN (.62
ﬂl(\'\tl?&;—\-\;\_zﬁ; H.ﬂ\ = (\*\,PQ,H,-“)(Q.S\'\)‘/\FJI“) (3.6.25)
AT

where the prime denotes differentiation with respect to

t{ . If we choose }\so that

Wept Hip - Wy =
PRY Bg-m Py =0 (3.6.3)
H'PQ’H)-?:FO
(3.6.2) becomes
W <\ 12 42
VRSN G
A=y,
The solution of these equations, slightly simplified, is
\[= )\SCJV\¥\
‘S\:)\jﬁxu\\n\'\ (3.6.4)

where %\ is a constant. Here we have a linear wave
equation (3.6.3) for ' , so that solutions are readily
obtained and superimposed. The resulting nonlinear super-
position rules for the metric functions \ andjl-(given by

3.6.4) are, however, remarkably similar to rules for super-
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position of solitons arising in other equations.

Set

H= B (pds Ay (pt) (3.6.5)

where {{ # Hy and &M and H, are each solutions of
(3.6.3). Substitution into (3.6.4) yields

N = Asedw (Rt = )\(Qos\n\\\cos\q\\;ﬁs‘\\n\/\ I TAN H;\*‘ (3.6.6a)
»—ﬂ.: >\ J\N(l\n\/\ (H\*H;\ :}\(J\_Q\A\/\H\'\" JFQV\\I\H;\

—_—

RO F AL Y (3.6.6b)

Now, in regions where \“\"::O and \-\;-T-‘-O , we have, from
(3:6:8),

N~ Aseda H;

S\~ )\JTCl\r\\f\ H\g

This is the solution for W=W\, . Similarly, if W;3%0 ,

H, fo , we find

]~ )\SQL\'\ \'\\

51”“>\khux\¥\\

which is the solution for ¥&=—¥\l. In this sense, the
above solutions represent a two-soliton solution of
(3.3.1), where the solutions corresponding to Hl and k&a
are the original solitons, localized solutions of the
cylindrical wave equation. This property of superimposed
solutions (3.6.4) may be shown to hold for any number of

solutions to (3.6.3):

= £ Lo ia(p)

and these solutions correspond to YN\ -soliton solutions.



=52
CHAPTER 4
EXTENSIONS TO THREE-VARIABLE SOLUTIONS

4.1 FEinstein-Maxwell Equations with One Killing Vector

In this chapter we extend some of the previous results
to solutions of the Einstein-Maxwell equations in three
independent variables (one Killing vector). This section
is devoted to a discussion of the appropriate Einstein-
Maxwell equations and extension of the results of Chapter 2
to these eqguations.

A detailed account of the derivation of the Einstein-
Maxwell equations in the presence of one Killing vector is
given in Harrison (1968). We outline the important parts
of the derivation as follows.

The metric is assumed to have the form

_C\S.;z:&ﬁ_;zu (C})(K +a.-\:dc\x,,)a+ Qge_au Xa(‘»,éx"‘c\xv’ (4.1.1)
where a is an arbritrary constant,f = *| = sign ( 9 KK)'
K is some particular value of 0,1,2,3. Greek letters

take all values of 0,1,2,3 except K , and all metric co-
efficients are independent of XF . Therefore, a Killing
vector field is generated by translation along XF :
Latin letters (except K ) take on all values of 0,1,2,3.
If £=—-\ , the Killing vector is timelike, if £=+\ ,
the Killing vector is space-like. The metric 1s not

specialized in any other way; (4.1.1) is a general four-

dimensional metric with one Killing vector.
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For notational convenience, we define the differential

parameters

D(F) =3P F .Fe

D (F&)=34PF, &0 (4.1.2)
DL (F) = ¥7P F«p

where Y'Wa is the inverse of the three-dimensional metric
X,{P . K“P is a sort of "background" 3-metric in the
3-space that is the quotient of the 4-space by the Killing
vector. A semicolon denotes covariant differentiation
with respect to ‘é,gp :

We assume that all metric coefficients and the electro-
magnetic field tensor are independent of XX . We now wish
to solve (1.1.2), (1.1.11) and (1.1.12) with this assumption.

We define an antisymmetric tensor in the quotient 3-
space:

\“"‘F’: j‘}"('\S—QPI"L (4.1.3a)

and note that the integrability condition on V\dla is

g8+ iy + g1 =0- {4, 1.38)
The Vh*? has a dual axial vector:
\'\o(ﬁ_—' 64‘33‘5682&("!)": s (4.1.,)4)

In terms of Z_ (4.1.3b) becomes
A _ (4.1.5)
Y 'E<4;¢-C).
The Maxwell equations (1.1.12) can be split into
- equations involving the index K and equations not involving
K . Recalling that all quantities are assumed independent

of XK’ the Maxwell equations become
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L—L“g)‘h FK{I,,(: o
K..ca)'/a \:‘F‘"‘]M:O
F.,u(,(s +fgpix = O
E"‘”ﬁ(‘a,g =0
where E%®% 45 the alternating 3-index symbol. The
second and third of these equations may be satified by
choosing potentials R and R :
ngzkfgydaﬁdpa&x
Fre =8yt s
Using these potentials, the remaining Maxwell equations

become, 1in terms of 2Z_,

Ay (AY-28@, N +e3¥*Pg, 2,5=0 (4.1.6a)

Aj (B)- 24, (U B)-eWY*P 23=0 (4.1.6b)

The Einstein field equations (1.1.2), (1.1.11) become

Ag(u)*iequ qu,) 2z =-EC‘au[A\(M+ A (4.1.72)

B
CHP (%«,@+W%¢<U,P +‘4CQ‘W6,,,(P\,B):0 (4.1.7Dp)

Poq’b - Quld\l,ﬁ -%i e“N 2‘,,.?;]3 =QE€3\*(P\“R@,+BHB,B (HelsTe)
where Pﬂls is the Ricci tensor for the background metric

Y : 4,1.7b) may be satisfied identically by choosing
AR

Zo as

2_=e T4 ¢, (v 28(BR,-AB,L)) (1.1.8)

where ¢ is a new scalar "twist" potential. ¢ is very
similar to the "twist" potential introduced in section 2.1.

In fact, if A=B= 0 corresponding to pure vacuum solutions,
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we see that

\l\.,(“f, = E,( B Xxg("X)lpe.-qu QS}S

and ¢ is seen to be the extension to three variables of
the "twist" potential SL of section 2.1. We recall that
it was_yL that allowed us to transform the vacuum Einstein
equations and the Einstein-Maxwell equations of Chapter 2
into identical form. We might now look for similar

phenomena to occur in this case of three independent varia-

bles.

(4.1.6) and (4.1.7) for BB, \X and @ become:
Do ()~ 48, (U, @)+ 2e BLAL(AY-HA (U, A)] -
—2eALAL(B)-4A(U,®)] = O

N (&)= 24(Y,0) + e“"m[&\(cb,%)maaa\ (A, B) -
~2e AN (B) | =0

Ay (®) = as,(u,8) - e > LA A) + 2e 8 A () -
-2 A B, (K,B)]0

A+ e Da v ae) + 3 e A, (9

e v (pp-dehn ($8) 4B a, (8) -
- 3 ABA(RR) + UATA(B)]=0
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We now consider some special cases:

Case (1) A= =0

This is the wvacuum Einstein case. The field equations

reduce to

A (P)=—e~ ;‘”a‘(cp) (4
Ay(@)= 28,(Y, 9 (1
P"‘E = \plof.;\fl]é +—}i- Q—Q\p qstoc@fﬁ (4

where \U= 21

Case (11) P=R=0

This is a case of the Einstein-Maxwell equations with
particular type of electromagnetic field. The field

equations reduce to

Az(u) == Ee—auA\(ﬂ) (4
Ay (A)= 24, (W,A) (<
Pep = AN Mg t 2ee” AL Aie (4

case (iii) p=p=0

.1.9a)
.1.9D)
+1.9e)

.1.10a)

.1.10b)

.1.10c)

This is a case of the Einstein-Maxwell equations with a

different electromagnetic field than case (ii). The field

equations reduce to

A;(u):—ﬁe’ el A, (B) (4.1.11a)
A5 (BY= 24, (W, B) (4.1.11b)

Pl,(‘a) = QU,DLUJE+D\EQ—1u B{,,g B,P

(4.1.11c)

The (c) equations for the 9°<? are equations for

the background metric 'Xo<? . The integrability conditions
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on the Ricei tensor ‘)* @ are the Bianchi identities
Ep -8« = 0.
When the (a) and (b) equations are satisfied, these integra-
bility conditions are also satisfied. We may therefore ig-
nore the (c¢) equations for the moment, and we see that the
(a) and (b) equations are all identical if & = +\ (space-
like Killing vector). This is the extension to three varia-
bles of the results of Chapter 2, since (i) is the vacuum
Einstein case and (ii) and (iii) are Einstein-Maxwell
cases. We see that again the electromagnetic potential

A or B takes the place of the "twist" potential¢ . Fur-
thermore, in cases (ii) and (iii) ¢>= O which means that
f:*::() and there are no cross terms in the metric of the
form ck)(l(c\,)("( . This is also analogous to Chapter 2,
where we naoted that the stationary vacuum metrics (with a
cross term) have the same field equations as the static
(no cross term) Einstein-Maxwell problems.

The problems treated in Chapter 2 all had at least one
space-like Killing vector. Assuming a second Killing vector
results in specializing the functions U,QS,, ﬂ/ B and
the background metric ddlg still further. All the re-
sults of Chapter 2 may be obtained from the £ = +\ case
here by further specialization. This means that the exten-

sion to € =4 in three variables is the natural extension
of the results of Chapter 2. We may make these results

complete by noting that if & =-\ (time-1like Killing vector)
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we may still make the (a) and (b) equations of cases (ii)
and (1ii) identical to those of case (1) by the complex
coordinate transformation
iK =\Xo
Q'O:HKK
This has the effect of changing the sign of € from =\ to
+\ . Alternatively, we could set
p=ip
if €=-\ to make all the (a) equations identical.

4,2 Invariance Transformations

If we concentrate on the (a) and (b) equations of
the preceding section, they may all be written in the form
Ay (W) =Vt CA W) - 4, () (4.2.1a)
A,y (Q =2V A(v,0) (4.2.1b)
wnere N = e¥ or e ana SLis any one of qS,f\,B.
We now consider extending the invariance transfor-
mation (3.4.2) to (4.2.1). Consider barred quantities \J

—_—

and C which are functions of the unbarred quantities:

N =V (v,0)

C=T(V,0)

The differential parameters of the barred quantities are
linear functions of the differential parameters of the un-
barred ones. Using (4.1.2) and the chain rule, one finds:
Al((h =<‘)\ID'A\(\’)*' QQNU/ Q,A\N/C) L U/Qa A\(C)

NG, D)= QNCN &(\J\*Q,QE,QA W(€) + (QNE:Q*QR_EN) By(v,e)

A, (%) =V B () + N, 8, @+ U0y 8, (0) 4V, e 4 () 52T,y 4,09 )



-59-
where a comma denotes partial differentiation. We may
now look for finite invariance transformations as follows.

We write ( 4.2.1 ) using N and C and use the assumed

functional dependence to express these equations in terms

of the differential parameters of the unbarred functions.

This gives

=97 W)+ av, T 4, e 80T 8,0 - 2T T 5,0, 0)
T TEA(E)]

Cradly W)+ C, cA2(Q+C gy, (W) +C ce 8,(C) + 2C e Ai(Y,)
= Q\J-‘ [‘\-\-/)\) c)\] A\(\J)-\-QjctJCA\(C) "f( G)V EIC ‘\"_\“,,C_C)\J) A\(U,C\B

We now substitute for the 65'5 of the unbarred functions
|
from (4.2.1) and equate the coefficients of each of the AT

to zero. This means that we are looking for new solutions

(Q ,Ef) which are functionally dependent on known solutions

(V »C ). This last step results in six second order par-

tial differential equations

——\
Vigy + L \bu =N - 5,3
a\T{J\lc:*3*—\-1_‘(-\])\!:1/(.'_C—)\j E.‘C) (4'2'2)

jce - Sy = AN Ne T

CJ\)C * aﬁjc\’ = R\J~\ &\)NC.Q»r\l.QC,\;) =
We now must solve the above equations for'V 5 C as

functions of N ,C . By substitution one may verify that

the transformation (3.4.2), written here as

= 2\ C= v+ 2(C o)
(Go)hy C-s) e

(4.2.3)
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where J , T , and o~ are constants, satisfies (4.2.2). oOn

one hand this should not be too surprising, since the equa-

tions of Chapter 2 may be written, using the differential

parameters, as

A, () == e~2YA,(0) (4.2.4)
A, (V)= 24, (u,n)

if we consider the differential parameters as being taken
with respect to a metric given by&g:z:d&;:l *fa der 4 d3>
for sections 2.1 and 2.4 and by d<2 = cl&aa-\-jaac\e:tc“a
for sections 2.2, 2.3, and 2.5. If we now let

V=Y

(4.2.4) are seen to be identical to (4.2.1).

On the other hand, this result is very surprising,
since it implies that the particular part of the isogroup
that transforms only dependent variables is the same for
(4.2.1) and (3.3.1) or (3.3.2). (Recall that (4.2.1) are
written with respect to the curved background metric X.4p Yo
Although these two sets of equations are formally identical,
when written out explicitly they are very different.

(4.2.3) may be used to give new, physically distinct
solutions to (4.2.1) from old ones., Since (4.2.1) correspond
to three different physical situations, we see that any solu-
tion of the vacuum case (i) gives two more electromagnetic
solutions. (4.2.3) may then be used to generate new solu-
tions for all three cases. ‘Since three variable solutions
are rare, this result 1s important as we now get more in-

formation out of any one such solution.
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APPENDIX

DIFFERENTIAL FORMS AND PARTIAL DIFFERENTTAL EQUATTIONS

In this appendix we discuss how the calculus of dif-
ferential forms may be used to find special solution sets
of partial differential equations. The calculus of differ-
ential forms is essentially the calculus of surfaces or
submanifolds of various dimensions; it systematizes the
use of Stokes' Theorems and continuous transformation
groups. If we recall that a partial differential equation
may be interpreted as an equation defining a family of
surfaces, then it is not surprising that differential
forms are found very useful when dealing with differential
equations and their invariances. This idea is not at all
new, having its beginnings in the work of the French mathe-
matician Elie Cartan (Cartan, 1946). Our present purpose
is only to show how the differential form calculus can be
used as a tool, and the reader is referred to the works of
Flanders (Flanders, 1963) and Slebodzinski (Slebodzinski,
1970) for detailed accounts of the differential form calcu-
lus itself. A somewhat briefer account that is more in the

spirit of the present discussion may be found in Estabrook

(Estabrook, 1976a).

A.1 Basic Identities

In this section we summarize without proof the nota-
tion and basic identities of the calculus of differential
forms. We work in an n-dimensional differentiable mani-

fold spanned by a set of scalar fields (coordinates) X! ,
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r=\1, ..., n, each with a continuous range of values.

The basic geometric entities to be manipulated are vectors
and 1-forms. These exist at each coordinate point in
auxilliary (tangent) and dual-linear vector spaces.

The coordinate differentials A‘K‘ furnish a basis

for the 1-forms. A general 1-form is then given by
where the R are scalar functions of the coordinates.

The total differential AX} describes, at each point X{ 3
the family of (n-1)-surfaces % = constant, with similar
intz2rpretations for d Ka R AK} , ete. The general 1-
form, being an arbitrary linear superposition of basis
1-forms, may be thought of as a local, oriented, spaced

set of surfaces at each point.

To describe families of (n-2)-surfaces, we introduce

the operation of exterior multiplication, denoted by A .
The extericr product of two basis 1-forms, c§x1 andc§ﬂ3 :
is written (AK:/\C§K3 . This product describes the
family of (n-2)-surfaces X' - constant, x> - constant.
The /\ operation is completely antisymmetric:

A AdRS =-dxind( . (A.1.1)

The exterior product is also associative:

AK;/\(AKJ—+AKK)= ::\K‘—/\éx:‘ X éY\;AAKK .
The basis 2-forms are all the 2-forms (\K\' AN AKK where
Axﬁ and &xﬁ: are basis l1-forms. A general 2-form

is then an arbitrary linear superposition on basis 2-forms:
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L Brr (09 dxtadud

Lk | J:‘

where the C;& are again scalar functions of the coordi-
nates.

In an obvious extension of the above, we may intro-
duce basis p-forms (p=3,..., n) by utilizing the exterior
product. The basis p-forms can be defined as the exterior
products of the basis (p-1)-forms with the basis 1-forms.
The general p-forms are then similarly defined as arbi-
trary linear superpositions of basis p-forms.

We next define the operation of exterior differentia-
tion, denoted by d, which takes p-forms into (p+l)-forms.
For scalar functions (O-forms) ( , we have

! P
dQ= Z B, dx. (A.1.2)
This definition may now be used to define the exterior
derivative of a l1-form GLJ:
do=T 2 Ay; &Gndd.

3= =) 3
This is clearly a generalization of the curl operation
in three dimensions, and shows its non-metric character.
Again, in an obvious way, exterior differentiation may
be defined for p-forms.

A common 1l-form is the gradient A(& of a scalar
function (\ given by (A.1.2). Taking the exterior deriva-

tive of (A.1.2) and using (A.l1l.l1l) we find
2 n n B "
é tb: *Z 2 QS)?:\ &K‘AAKJ = O , identically.
3=
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This illustrates an important theorem that is true for
any formw :
4 =0 (A.1.3)

If w and § are forms of order p and q, respective-
ly, we have from the above
WAT = )P 5 AW (A.1.1h)
c\(wms\ = AUJAS +(—l§?w r\éc)',
If ¢ is a constant we clearly have
de= 0. (A.1.5)
A differential form & 1is said to be exact if QG=0.
From (A.1.3) we see that any exact form O may locally be
written as O = éud (we are not concerned with the global
topological considerations that may vitiate this in the
large).

We next introduce the (contravariant) vector fields
:j as linear superpositions of basis vectors at each
point. The basis vectors are dual to the basis 1-forms.
A basis vector-K‘ can be represented as a (in some
sense, infinitesimal) displacement along the lines of
intersection of the n-1 coordinate (n-1)-surfaces, along
which all but one coordinate ( X: ) is held constant. The
general vector is then ‘7 = éi \ﬁ ;a_ . We think of it

=

ags a finite entity in the '"tangent" vector space at each

point.
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The duality of the basis vectors and the basis 1-

forms is expressed by
—_ -j A . j
- 3= -
A D A= S
where j denotes the operation of inner product, or
.
contraction. The contraction of a general vector V with

the basis 1-forms displays the (scalar) components of

the vector:
s . -
VA de =N,
—_
The contraction of \/ onto a basis 2-form is given by
VA ddade = \l‘cs)o‘—\l“éwaT
with obvious extensions to p-forms.

This process of contraction is linear, and from the above

we have

@j*\_;)J)G :W.\G‘F mlcr (A.1.6a)
V) s = $EIe) (A.1.6D)
Q‘A(\UAS):(\H\»)AU -\*(—-\)?w/\(‘\a)_\ 5-\ (A, .68)

where \| and W are vectors, \W and 6 are forms of rank
P and ?> respectively and Q7 is any scalar function.
Contraction clearly takes p-forms into (p-1)-forms.

We next introduce the Lie derivative with respect
to a vector field—q , denoted by’é; . We may think
of the Lie derivative as a directi;;al derivative taken
in the direction:j : For any scalar Q& we have

3o =Vlida
V

while for any basis 1-form we have

% 4=V,
N
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By requiring that the Lie derivative be a derivation,
and satisfy the Leibniz rule, for higher rank forms con-
structed by the exterior product rule one finds the Lie
derivative of any formy) to be expressed as
%w: Vdw +dQ) W) (A.1.7)
and we see that Lie differentiation takes p-forms into

p-forms. For any exact form ékx), we have, from (A.1.3)

and (A.1.7),
&aw-_— AN E c\(;%W) (A.1.8)

and we see that the operations of A and\i commute.

o

For any two forms W and © we have

o) = (2 W .
Z\rl';(b) Tj_\w)!\fo"f f\(%s) B (A.1.9)
For any two vector fields ti and W we have
(@I = N w « \_ﬁ_\(%w) (A.1.10)
N

where (_\J, st] is the commutator, or Lie bracket,
of the two vector fields:
N,@]‘ = V1dwi- @AV, (A.1.11)

We finally introduce the process of restricting
differential forms to submanifolds of the original manifold:
We recall that in dealing with differential forms we make
no distinction between dependent and independent variables.

In dealing with differential equations, however,
this distinction 1s important. If we impose this difference
between independent and dependent variables on forms,
then we are restricting the forms to certain submanifolds

of the original manifold, which are coordinatized by the
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independent variables. If we denote independent variables
by Kﬂ and dependent variables by 2: , then in these
restricted submanifolds the exterior derivatives of these

restricted quantities XA ana 32 (denoted by XA and
%‘ ) are given by

dX® = dxh
Fi=7 92 d«h,
A JAxA

A.2 Cartan Theory

We now consider the problem of representing a given
partial differential equation by an appropriate set of
differential forms. This set of differential forms should
have the following property: the exterior derivative of
any form in the set can be expressed in terms of the
original forms in the set. The set is then said to be
closed. This is an important property, since it implies
that no further integrability conditions can be derived
from the set of forms. This set of forms is then the
basis of a differential ideal of the Grassman algebra of
forms on the manifold.

A submanifold of the differentiable manifold that
annuls - gives zero values to - all forms in the set
(and hence in the ideal) when they are restricted to the
submanifold is called, by Cartan, an integral manifold.

We wish to obtain conditions that tell us when the integral

manifolds of a set of forms correspond to solutions of
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the corresponding set of differential equations.

These ideas are expounded in Estabrook (1976a). We
illustrate them here with an example. We usge Burger's
equation, one of the more important nonlinear wave equa-
tions (Whitham, 1974). Burger's equation is

Q)Jr % (31@,,(“@)“:0. (B:2.1)
In practice, the given equation is first rewritten as a
first order system. A corresponding set of forms is then

easily found. We first write (A.2.1) as a first order

system:

Qyy-u=0 (A.2.28a)
Q,t-w=0 (A.2.2b)
Wt Pu- Q=0 . (A.2.2¢)

We see that there are two independent variables ( %t )

and three dependent variables ( ¢, U,w). Clearly, if

we want solutions of (A.2.2) to correspond to the integral
manifolds of a set of forms, we should at least require
that when we restrict the forms to independent and de-
pendent variables the integral manifolds reduce to (A.2.2).
This may in fact be used to write a set of forms for

(A.2.2). We see that (A.2.2a,b) may be satisfied when we

restrict and annul the l1-form
o= A0~ d%- WAL

since restricting o< yields
%= (yy-u) a6+ (@ -w) AT,

Setting the coefficients of independent basis 1-forms to
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zero then gives (A.2.2.a, b). Similarly the form
B=wdxadt+ Gudxadt -dundf
will yield (A.2.2c) upon restricting and annulling.

The next procedure is to check that the set of forms
is closed, i.e. that d , d@ are contained in the ideal

generated by X and §® . We find

det == du adx—dw adt
Aﬁ=cLMAAKA&V*¢AuAéKMH*\AA¢AAXA&t
= dxadet - B dadt+ uaeadxady,

We see that dci is not in the ideal, but also if it were,
d‘} would be. Thus, Jjust the 2-form doL must be added
to our original set of forms <« and (5 . Since c‘acé =0 ,
the resulting set of forms is closed. I1f we restrict and
then annul éo(, we find
\)r&:: Wy
which is the integrability condition on (A.2.2a,b).
For convenience, we write the generators of the
closed ideal << ’V”‘3CL for Burger's equation (A.2.1)
together here:
«= d ¢— udy- &b
dot=~du Ady—dwadt (A.2.3)
B = wdxadt+ gudxast -duadt,
The integral manifolds of an ideal, like the solu-
tions of a partial differential equation, may be classified

as either regular or singular. The general manifolds
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are those which may be obtained by a sequence of Cauchy-
Kowaleski integrations, starting with one-dimensional
integral manifolds and giving a chain of integral manifolds
of every dimensionality up to a maximum)a . Cartan
considers the criteria for an ideal of forms to be '"well
set" in the sense that the maximum dimensional regular
integral manifolds of the forms represent solutions of

the corresponding set of first order partial differential
equations. These are the so called Cartan Criteria. Essen-

tially we want to be sure that the surface elements

locally defined by stepwise integrations along vectors
that annul the ideal of forms mesh together correctly to
define solution surfaces of the partial differential
equation.

Although this may be done for ideals involving forms
of any order we restrict ourselves here to differential
equations with two independent variables and ideals
generated only by l-forms and 2-forms. Then the Cartan
criteria reduce to the following: the number of depen-
dent variables in the set of first order partial differen-
tial equations must equal the number of independent
generating forms. In our example of Burger's equation,
there are three dependent variables in (A.2.2) and three
independent forms in (A.2.3). The ideal (A.2.3) therefore
constitutes a well set ideal for Burger's equation. If

an ideal meets the Cartan criteria, it is said to be in



s
involution with respect to the independent variables.

A.3 The Isogroup

We now consider how special geometric properties of
the ideal may lead to the construction of special solutions
of partial differential equations. One such special proper-
ty is the existence of vector fields ﬁ that take the
families of surfaces corresponding to the ideal into them-
selves under the "active" coordinate transformation
generated by:ﬁ . If we denote the collection of forms

in the ideal by {ILS , then we are looking for vector
—_

rields N such that

{1y € {1}, (A.3.1)

\ =%

Any such N 1is called an isovector of ={TLE and the

—
collection of all such\ is called the isogroup, or

invariance group, of {;LS . By (A.3.1) we see that all
transformations:j will preserve the form of the original
system of partial differential equations.

The collection of‘jg satisfying (A.3.1) can easily
be shown to form a Lie algebra, since their commutators
also satisfy (A.3.1). If there are N distinct isovectors
§7 labeled by a subscript , A=\ ...N, then the struc-
ture constagts of the group are given by
TVAT D=2 Ve

We now calculate the isogroup of Burger's equation.

The ideal is given by (A.2.3). The first equation of

(A.3.1) to consider is
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F<=Ax

-

Y

where )\ is an arbitrary scalar function. No other term
is possible on the right hand side since =¢ is the only
l-form. This may be treated by a technique applicable
whenever there is a single 1l-form. Write
F=gde,

Since

% o= Adat + AV )

we have

Y/’ _\Aotzf\o(-éF.

Expanding on the basis 1-forms AQ 5 dx , 4% . du " dw

we have

- \/uéx +Vx3u—\iwc\’(*c\ltc§w = (da- uc\x-wﬁ)
"Gt B Gudu- fudu-Fro da L (8:3:1)

We equaté coefficients of each basis 1-form to zero in
(Ba3.4) 2
Y

NP = -Xa- 6y

~\" = _)\UJ_FJ_V

(A:3:3)

\”:“FN
\/T:_F;w
A= Ve -

-—

We next solve for the V{ , obtaining
L1
w_

Y\ —
= — » (A.3.5)
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THEN W

VQ: F-uF)u~\;JFJw.

If we take the exterior derivative of (A.3.2) we get

3 dot= @N)A%+ Ndot

J

and .iAoL is seen to be already in the ideal. We need only
\)

consider é‘P to complete the calculation. We put
N

dp=gp QA= d (A.3.6)
\J
where § sJd s and N are arbitrary O ,0, and 1-forms,

respectively. Expansion of (A.3.6) yields
U dxadt O dxadt + 3UY dradt 4w dURIT- w duTadx

+ Pu VXA - BudVU Tadx - dUUAdE+ VT Adu=
§wdxadl #80 dy kAT = dand B+ T lupdss du Al
+ (AdF+ 8dx+ Cdu+ DALQ/\(AQS—-U\AX- wc\*).
§ s I,A,8, C, and ) are arbitrary and are to be eliminated.
The expression A\ﬁ . R:Lh X ,T ,W, ® is just an abbre-
viation for \',;dxJ . The equations obtained by
equating coefficients of all basis 2-forms to zero are:
VARV INE +m\]K,x+ m\i*,;r*— Pu¥,y +Q§u\11}(\)‘jx
= (lwrgu)+ fhu- By
W+ Pu Vx)w —\Ju/w"‘ I-Dw
- w\)*)x ~ fuVYw == Dy

P ONK g W= -
~w\ g Byt =-

D‘“‘”)u +¢Uk\)"/u-\1“;u“\ﬁw= -~ Cw
=16

(A.3.7)
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\J-\‘[Q ==

\J‘\-J\L:_b\lo
Solution of (A.3.5) and (A.3.7) now yields

NP = K kg Kyt vk xt

UT= K, +aksh+ kst™

V¥= - Ka® + Kyt ks (%=t ¢) (A.3.8)
W= -2k, -2 ks ub

Vu):*3Kym—Kqu—K5(¢+Ux*5wt),
The K; , i=1

s s++35 are constants. If we in turn set
all but one of these to zero, the resulting five isovectors
can be used to generate all possible isovectors by linear
superpositions with arbitrary constant coefficients.
These five independent isovectors are given in Table II
(page 75). Rows 1-5 are characterized by k\'S . A
description of each type of transformation is provided
where feasible. Each of these vectors describes an inde-
rendent generator of the invariance group. Vectors 1

and 2 are obvious from inspection of (A.2.1), but the
others might not have been anticipated.

Of course, the above could all be done in indicial
notation without ever introducing forms and vectors; in
fact, invariance groups have been traditionally calculated
in this way (See Bluman and Cole, 19T74). However, it
seems that the use of forms facilitates calculation. In

addition, the geometric insight gained is invaluable in
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discovering special classes of solutions.

A.4 Similarity Solutions

Harrison and Estabrook (Harrison and Estabrook, 1971)
showed how similarity solutions can be found from ideals
augmented with additional forms found by contraction
with isovectors. Again representing the ideal by {1& 3
consider the collection of forms
{c%= VMIY fis i)
whereij is now a particular isovector. Taking the Lie

derivative of (A.4.1) we find, using (A.1.10),

)= T4 #1) = T 4T} = (o}

N N
where we have used (A,3.l). We see that the ideal of
forms generated by the generators of {Iﬁand the forms
{5} is invariant under the particular isovectorv :
We call»{l% and {6} collectively the augmented ideal.
Since this augmented ideal is invariant only under a
particular‘j , we may annul it to find a class of special
solutions of the original equations. The augmented ideal
-{]L’5 3 is closed. Since {:&} was originally closed,
we must only check the forms{sk . Using (A.1.7) we find
ey =d (UMD = (1} - V231 <{ T/o]

since'q is an isovectSQ.

We again illustrate with an example. We use the

particular isovector obtained by adding a(isovector 2) +

b(isovector 4) from Table II, where a and b are arbitrary
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constants. In components we then have

T =a (A.L4.2)

\)m:_&)u, .

The additional forms (A.4.1) are found by contracting
(A.4.2) into (A.2.3):

Vd=b-bul-aw , T3da=brdarbadl vadw (4.4.3)

VA R= o (Bt -ads) + gu(bYdf-add) + adu .
We now search for integral manifolds by simultaneously
restricting and annulling (A.4.3) and (A.2.3). We already
know that by restricting to independent variables (A.2.3)
vields (A.2.2) and the integrability condition on A and
W. We may thus substitute (A.2.2) into (A.4.3). We
first consider annulling (Tjgi,. This yilelds

‘fJ—'\3T®JK"'Q (D)J‘:O.

This equation may be solved to yield

P=c\+ €(x-sT%) (A.4.4)
where ¥ is an arbitrary function of its argument and

is to be determined,and ©§ = b[a.. We find W and W) to be
= ¢y&= g

W = {DL\-: 6((-’\"?9
where a prime denotes differentiation with respect to

n= \(—G'\';[;J. . We may write
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J M= \D*AU‘ +\ouA4(+ac§w = d(\stu) % it
Then, since

w= o (\~-u¥)
from annulling (A.4.3) we see that <§.&c&d is annulled.
The remaining forms to be annulled are > and GS(& ,

If we now substitute for ¢ s M5 Gy and

du= §" (dx- o Tar)
into i]_\ _\ \'5 we obtain

'\ij = o A L' GETal) = 5 (- o))

+ ot AJY[CS (€9 + QST+€)¥'-£‘“] \

Setting the coefficients of dK and ét to zero, we
obtain a second order ordinary differential equation for
£

e'- gele =o0. (A.1.5)
Annulling YS also yields (A.4.5). Thus any ¥ satisfying
(A.4.5) will yield a solution to Burger's equation.
(A.M.S) may be integrated once to yield

g'= E_l_c-rl_:c (A.L.6)
where g:is a constant of integration. Solutions to
(A.4.6) may be found, the solution depending on the
constant C . 1In this way we have found a special class
of solutions (or integral manifolds) of Burger's equation.
It should be evident that upon obtaining the functional
form of Q, (A.4.4), we could have substituted directly

into the original partial differential equation (A.2.1)
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to obtain (A.4.5). Upon solving (A.4.5) we would have
annulled the augmented ideal. This procedure is much
quicker than the above, and in sections 3.1, 3.3, and 3.5
we omit this lengthy procedure and merely substitute the
functional form back into the partial differential equa-
tion.

As a generalization of the above, Estabrook and
Harrison considered "generalized" isovectors that pre-
serve only the augmented ideal. Denoting the augmented
ideal by {]l}, we would then have
‘%-{1’3 ey, (A.4.7)
This idea is motivated by noticing that since we are
searching for an augmented ideal invariant only under a
specific vector the augmented forms (A.H.l) could have
been included as part of the original ideal {1}, even
though their exact expression was not known since.ﬁ had
not yet been found. This is the essential content of
(A.4.7). As opposed to (A.3.1) which yields linear
equations for‘j s (A.4.7) yields nonlinear equations.
Once such a generalized isovector is found, it may be
utilized in the same way as isovectors to obtain special
solution sets. Although we do not present any generalized
similarity solutions for Burger's equation, we do present
some in sections 3.1 and 3.5 for the Einstein field

equations.
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Most problems of physical interest consist of a set
of equations and boundary conditions. The isovectors and
generalized isovectors may still be used to generate
special solution sets. One would look for those com-
binations of isovectors and generalized isovectors that
leave the boundary conditions invariant and proceed as
before. Examples may be found in Bluman and Cole. (1974).

A.5 Conservation Laws

Differential forms are also useful for finding con-
servation laws for partial differential equations. If
we can find an exact 1-form, A\P , in the ideal, then we
have found a (differential) conservation law for the set

of partial differential equations. From Stokes' Theorem

we obtain

§ay= ¢ ¥
N IV

where \/ is any volume in the manifold bounded by the
closed boundary manifold d\/ . If \ lies in an integral
manifold, then the restriction of A¢ to this integral

~s
manifold, denoted by 64) , 1s zero, and the above becomes

~r

§¥Y=0
N
which is a non-trivial integral conservation law if‘v
itself is not in the ideal (since then $:30 i7"
We again illustrate with Burger's equation. We

seek all 1-forms ﬂ’ of the form
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W= F(pu, wides 6(,u, w)dt (A.5.1)
that satisfy
dY 1. (A.5.2)

Using (A.2.3), (A.5.2) becomes
éxmﬁbnGNf¢uG“p\uE@%uG@)f&mmﬁ(Qw—Eu)
rdw adx (EL)=0 -
Setting the coefficients of basis 2-forms to zero gives
three equations for ¥ and & :
Fiw =0
Fa= 60 (A.5.3)
wEut Pub, -wlpg+uGpg=0.
The general solution of (A.5.3) is
F=uClp) +oL§+p
G= () + L (u-¢3) xS (A.5.1)
where °q§f8 are arbitrary constants. The first terms
correspond to a 1l-form Q(®)c{ which is already in the
ideal and so a trivial generalization of the conservation
law we seek. Hence Q(qﬂcan be set equal to zero.

From (A.5.1) and (A.5.2) we see that we can sub-
tract any closed form QG from ¥ , since *s=0 . &

is a new variable or coordinate. Its introduction allows

the 1-form

¥=-dc + Tdx + ¢af

with & and (G given by (A.6.4) to be added to the ideal;

since the augmented ideal is still closed, the Cartan
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criteria remain satisfied. Annulling W then gives
Cp=F
for ¥ and G‘belonging to any integral manifold. In terms
of independent and dependent variables, this becomes
S = <P+
|

A
If we choose (3:8:0 , we obtain
O = (G- 07a) (A.5.5)

which is the Cole-Hopf transformation (Whitham, 1974).

In fact, if we compute the isogroup of the augmented ideal,
we find that there are now seven isovectors. One of the
new isovectors has components that depend on the partial

derivatives of a function x (%jt) which satisfies the

heat equation

XJM= yﬁ. (A.5.6)
There are thus an infinite number of such new isovectors
corresponding to the infinitude of solutions to (A.5.6).
This is an indication that the transformation (A.5.5)
has linearized the equation (A.2.1) (Estabrook, 1976b).
In fact, if we set d_:-ﬁ% in (A.5.5) and eliminate { for
6 in (A.2.1), we obtain

Sy ~ O — Sk = O
which integrates to

S)*\— =G> — )Rk = D (A.5.7)



_83-

where we have chosen the constant of integration to be

Zero. If we now let

0 = \08 \
(A.5.7) becomes
\oxx = Uit

and the linearity is displayed explicitly.
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