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ABSTRACT 

Various families of exact solutions to the Einstein 

and Einstein-Maxwell field equations of General Relativity 

are treated for situations of sufficient symmetry that only 

two independent variables arise. The mathematical problem 

then reduces to consideration of sets of two coupled non­

linear differential equations. 

The physical situations in which such equations arise 

include: a) the external gravitational field of an axi­

symmetric, uncharged steadily rotating body, b) cylindrical 

gravitational waves with two degrees of freedom , c) collid­

ing p l ane gravitational waves, d) the external gravitational 

and electromagnetic fields of a static, charged axisymmetric 

body, and e) colliding plane electromagnetic and gravita­

tional waves . Through the introduction of suitable poten­

tials and coordinate transformations, a formalism is 

presented which treats all these problems simultaneously . 

These transformations and potentials may be used to generate 

new solutions to the Einstein-Maxwell equations from solu­

tions to the vacuum Einstein equations, and vice - versa . 

The calculus of differential forms is used as a tool 

for generation of similarity solutions and generalized simi-

larity solutions. It is further used to find the invariance 

group of the equations; this in turn leads to various finite 

transformations that give new, physically distinct solutions 

from old . Some of the above results are then generalized to 

the case of three independent variables. 
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INTRODUC'l'ION 

This thesis is devoted to a study of the Einstein and 

Einstein-Maxwell equations in two and three independent 

variables . Relationships between the vacuum Einstein equa­

tions and the coupled Einstein-Maxwell equations are found~ 

and these relationships may be exploited to obtain new exact 

solutions to physically distinct problems front known solu­

tions. Jn addition, the calculus of differential forms is 

shown to be a powerful tool for generation of exact solu­

tions to these problems . 

The rirst chapter presents a very brief discussion of 

the Einstein and Einstein-Maxwell equations . The concept 

of a Killing vector field is introduced, and the importance 

of exact solutions is discussed . 

The second chapter is concerned with space - times contain­

ing tt-w commuting Killing vectors . There are five distinct 

physical problems (a) the external gravitational field of 

an axisymmetric, uncharged, steadily rotating body ( b) cylin­

drical gravitational waves, (c) colliding plane gravitational 

waves, (d) cylindrically symmetric static Einstein- Maxwell 

f lelds, and (e) colliding plane gravj_ tational and plane 

electromagnetic waves . The field equations for all the 

above problems are discussed, and it is then shown how all 

of these rleld equations may be brought into an identical 

form . This result shows that there i s a duality between 

the part icular component of the gravitational field due to 
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stationary rotational motion and the electromagnetic .field . 

Vacuum solutions with two Killing vectors are also seen to 

be Einstein-Maxwell solutions . 

The third chapter begins by demonstrating that the well 

known Curzon solution is a generalized similarity solution . 

The Kerr and Tomimatsu-Sato vacuum solutions are discussed 

as solutions to the Einstein-Maxwell equations . The calculus 

of differential forms is then used to find the isogroup of 

the equations . This group is then used to generate some 

similarity solutions . The finite transformation generated 

by the isogroup is found, and the well known Ehlers trans ­

formation is seen to be a special case of this transforma­

tion . Finally, some new generalized similarity solutions 

are presented, and soliton-like solutions of Harrison are 

discussed . 

In Chapter L~, we extend some of the above results to 

the more general case of problems with one Killing vector . 

The Einstein-Maxwell equations with one Killing vector are 

presented . The results of Chapter 2 are then extended to 

this case by studying various special cases of the equations . 

We then show that the finite invariance transformation of 

Cllapter 3 is also an invariance transformation for these 

problems as well. These results are even more striking than 

those of Chapter 2, since we are dealing with a more general 

space-time . Again there is a dualism between rotational 

motion and electromagnetism. This is very important for 

the three variable case, since three variable solutions 
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are rare and we now have three solutions corresponding to 

any one known solution . 

Finally, an appendix is added to discuss the differen­

tial form techniques used in Chapter 3 to find simllarity 

and generalized similarity solutions. 
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CHAPTER l 

GENEHAL RELATIVITY AND EXACT SOLUTIONS 

In this chapter we p r esent a brief discussion of the 

Einstein fi.eld equations of General Relativity . Although 

a detailed account of Riemannian geometry and the Theory 

of General Relativity is beyond the scope of the present 

treatise, we present here a brief description which is 

intended to fami l iarize the reader with some basic solution 

techniques of the field e quations . 

1 . 1 The Einstein Field Equations 

In the General Theory of Relativity, we seek a metric 

(1 .1. 1) 

with signature (+,-, - ,-) or (- ,+,+, +) which descri bes the 

local geometry at each point of a Riemannian manifol d wi th 

coordinates xJJ. . The are the components of a 

symmetric covariant tensor , so there are in fact only ten 

independent d tJ.V , which take the place of the classical 

Newtonian gravitational potential . The d~V are to be 

found as solutions to the Einstein field equations 

(1.1.2) 

where G- f-A V" is the Einstein tensor, 

G-f--\ V = ~ ~v- ~ ~ tu-V' \\ • 

R~v 

(1.1 . 3) 

R is the Ricci (contracted)curvature tensor, and 

is the scalar curvature . 'I ~V is the stress - energy 

tens or due Lo any matter or electromagnetic fields present 
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in the region of space-time where we wish to solve (1 . 1.2). 

In the absence of such sources~ ~~V is identically zero~ 

and (1 . 1. 2) reduces to 

(1.1.4) 

Contraction of (1.1 . 4) yields R=o, so that equivalent to 

(1.1.4) is 

R ~\( -== o . ( 1 . 1. 5) 

(1 . 1 . 5) is a set of ten coupled nonlinear second order 

partial differential equations . The ten equations are not 

independent~ however~ due to the Bianchi identities . There 

are in fact six independent equations contained in (1 .1.5) . 

The procedure for finding an exact sol ution of (1 .1 .5) 

usuall y consists of partially determining the form of the 

metric (1 .1. 1) by geometric and physical considerations, 

and then S'l,lbstituting this form of the '1JMV into (1.1 . 5) . 

The first known exact solution was found in this 

fashion by Schwarzschild, and is a good example of this 

procedure . We seek the external gravitational field of a 

static~ spherically symmetric mass distribution . We would 

expect the external field of such a distribution to also be 

static and spherically symmetric, Rnd hence we may write 

(1.1.6) 

with time coordinate t and spherical spatial coordinates 

r 'e-' and ~ . u ' v and w are functions of r only . 

Le tting 
,,~ =- \ ~ \J ( '(") 
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(1. 1.6) becomes 

(1.1. 7) 

where U\ and \J 1 are arbitrary functions of f', . We may 

view this as merely a rescaling of' the coordinate r ~ and 

thus drop the suf'f'ix~ writing (1 . 1 . 7) in the form 

d s~ =- e. v Jt 1. +e. Ad '( _2. + \;;l s\-n.;l e-d~.;t + \d. d~2. 
(1 . 1 . 8) 

Upon substituting (1 . 1 . 8) into (1 . 1 . 5) ~ we arrive at the 

following set of' ordinary differential equations : 

Q - 1\ \ '>.I \ I ;;l., \\ 
n , \ - Y.. - -L '' \[ ;-_ \ v - _D,._ = 0 

2- 1..\ ~ '\ 
(1 . 1 . 9a) 

( 1.1 . 9b) 

(1. 1. 9c) 

(1.1. 9 d) 

where a prime denotes differentiation with respect to r . 
The remaining componenLs of' ~~V are identic .,lly zero . 

Since (1 .1. 9c) is a repetition of' (1 . 1 . 9b)~ we must in f'act 

solve only (1 . 1 . 9a~b) and (d) . From (a) and (d) we have 

A:::::.-v' 
As \ tends to inf'ini ty we will have A and V tend 

to ze ro~ so that the metric reduces to a Minkowski one there . 



We consequently obtain 

J\=:-v. 
(l . l . 9b) then becomes 

ev(\+,v') ==\. 
Setting 

ev- = '?5 

this becomes 

Integr~tion yields 
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where ~ M is a constant of integration . Ilence the metric 

(1.1.8) is 

ds~ ::: - ( \- :{ Mj cit -z..-\- (l-~)-1 d,;;l + \ ~ (d-e-~+ s i n~eA~~) ( · ) 
\ ' 1.1.10 

This is the celebrated Schwarzschild solution . From it~ 

Einstein was able to make his calculations of the perihelion 

shift of Mercury and the bending of light rays by the sun. 

It is also used in worlc on black holes . The constant M is 

interpreted as the total mass of the distribution . 

For completene ss~ we present a brief discussion of the 

Einstein-Maxwell equatlons . These field equations hold when 

the energy-momentum content of space-time is due solely to 

electromagnetic fields~ and this is sometimes referred to as 

the electrovac case of the Einstein equations . Maxwell ' s 

equations are then coupled to the Einstein equations as 

follows . In (1 . 1 . 2)~ the stress-energy tensor is given by 
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T {'0-V = ( ~ ,U() t''v --q- \-'\() f '\6' d t'-W) (l.l.ll) 

where F~v is the electromagnetic field tensor . Maxwell's 

equations in curved space-time are identical to those in 

flat space-time, but partial derivatives are replaced by 

covariant derivatives with respect to the metric tensor d fJ.\( : 

(l .l.l2a) 

(l .l. l2b) 
ol.. 

where a semicolon denotes covariant differentjation and ~ 

is the current density . (1 .1. 2) and (1 . 1 .12) are then to 

be solved together, consistently, in the same fashion as 
~ 

(1 . 1 . 5) . In the absence of sources, Jl ~ () 
1 . 2 Killing Vector Symmetries 

A geometrical concept of symmetry often used in formu­

lating solutions to the Einstein field equations is that of 

the Killing vector field. We introduce this concept in the 

following manner : let the metric components ~ 1--\V relative 

to some particular coordinates X f-A be independent of one of 

the coorclinates, x1 
, so that 

Geometrically, this says that any curve 

(where )\ parametrizes the curve) can be translated in the 
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vl ""'-_c A dir ect i on by the coordinate shift D~ ~ 

congruent curve given by 

fo r o< :f:- \ 
and 

'1..\ = C'(f\.)+E:. 

to form a 

Let the original curve run from A, to A 2 and have length 

L given by 

) q _ 1\~ \ 
L::: s ( d ~'f ( 'r\(A)) ,\ )(~ d 'r\ v-J d 1\ . 

A1 ~ d~ 
The displaced cur ve then has length given by 

>-.2.. 
L(t ) = ) Ct. ';jf.'V ()((f.))+[. ~3~ _,h:]•\> .h-. · 

A, d'j,' cit._ d~ 

Since the coefficient of L in the integrand is zero, the 

lengths of the two congruent curves are the same . In general 

relativity~ the basic physics is determined by the measure ­

ment of length (more properly, interval) a l ong curves . An 

invariance of the such as described here thus reflects 

a symmetry of the physics . In fact, in the particular co­

ordinates xM we have described a vector field <t = ~ 
\ dX 1 

If such a "Killing " field exists , it provides an infinitesi-

mal generator of a one parameter group of length preserving 

translations . We now show that such a vector field satis -

fies, in a general coordinate system, a set of partial 

differential equations called Killing ' s equations : 

~ pjV+) vitJ.. =O . (1 . 2.1) 
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Slnce this condition is expressed in covariant form, we need 

only establish it in the preferred coordinate system used 

above in order that it hold in all coordinate systems. In 
___::,.. 

the preferred coordinate system, the ve n tor field ~ has 

components 

1fJ. ::::: 0/ f--1 -t \ 
~ I =- \ . 

Thus 

where £ denotes the Lie derivative with respect to the 
\ ~ 

vector fie l d\ • (1 . 2 . 1) is merely a covariant way of 

writing the Lie derivative of d ~v 
Conversely, if a metric has coeffi cients which are 

independent of a coordinate xk , then the geometry described 

by that metric possesses a Killing vector field _Q_ 
d ll-K 

For exampl e , the Schwarzschild solution, (1 . 1 . 10), is inde-

pendent of t and ~ and possesses by inspection two Killing 

vector fields : 

The metric (1 . 1 . 10) in fact contains two additional 

Killing vector fields . To see this, we first transform 

(1.1 . 10) to isotropic coordinates defined by 

(lol . lO) then becomes 



given by 

'f.-==- ~s\ne-cos~ 

'I :::. ~ s -.. "'B- s \ 'f\ ~ 

~.:::. f cos-e-

then (1 . 2 . 2) becomes 

with 

\:::::: (""';;)_+'f.).~ t:-~)11"2.... 
In these coordinates, one may 

timelike Killing vector field 

like ones given by 

~ 

l=r ::= ~~- 'Y ~ . 
c\'{ dX 

~ 

(1.2 . 3) 

verify that in addition to the 

J__ , there are three space-
c\t 

The ~ Z:- Killing vee tor field is equivalent to the d one, 
d~ 

so there are in fact four independent Killing vector fields 

for the Schwarzschlld geometry. 

Most of the recent work on exact solutions falls into 

the category of solutions with Killing vectors, as we shall 
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see in the next chapter . The geometrical property of the 

Killing vector is used to assert the existence of a special 

coordinate system adapted to the particular physical situa­

tion , and so to reduce the number of independent variables 

that actually appear in the field equations . Most known 

solutions possess at least two Killing vectors, since then 

one has only two independent variables in the field equations . 

1 . 3 The Importance of Exact Solutions 

When one begins the task of solving a set of nonlinear 

partial dif'ferential equations such as Einstein ' s equations, 

there are basically three approaches available : exact solu­

tions, approximation schemes, and numerical computation. 

Let us consider their advantages and disadvantages with 

regard to General Relativity . 

Approximate schemes have of course been much used in 

Relativity : there are the weak- field and slow- motion approxi­

mations, perturbation expansions about known exact solutions, 

and so on . A serious criticism is that many of these schemes 

have not been rigorously shown to be yalid . ~1any questions 

as to the uniform validity o£' perturbation expansions, error 

estimates, etc . , are still unanswered . (Ehlers, et al, 1976) . 

Many realistic problems in gravitation so far lie out ­

slde the domain of approximation schemes . An excellent 

example of this is the production of large amplitude gravi ­

tational waves which accompanies the formation of a neutron 

star . The rlisturbances in problems of this type are too 

large to be covered by any perturbation scheme, and we must 
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thus choose between exact solutions and numerical analysis . 

The application of numerical methods to Einstein's equations , 

however, is only jus t recenLly beginning to yield quantita­

tive results (Smarr~ 1977). Exact solutions offer an alterna­

tive and complementary approach . 

The discovery of exact solutions in the past has been 

rather erratic, depending more on guesswork and intuition 

than on any systematic methods . 

In the following chapters, we present a more systematic 

treatment of some problems in Relativity. Much of this work 

may be viewed as an extension of the work of Kinnersley, 

(Kinnersley, 1975) who published a comprehensive survey of 

axially symmetric exact solutions in Relativit~ of Ernst 

(Ernst, 1968), of Harrison (Harrison, 1968), and of Harrison 

and Estabrook (Harrison and Estabrook, 1971). 
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CHAPI'ER 2 

THE NONLINEAR EQUATIONS FOR VARIOUS SOURCE-FREE EINSTEIN 

AND EINSTEIN-~~ELL PROBLEMS WITH TWO INDEPENDENT VARIABLES 

In this chapter, we present a discussion of the source-

free Eiustein and Einstein-Maxwell equations in two inde-

pendent variables . These prob lems all possess two com-

muting Killing vectors . There are five physj_cally rele-

vant problems of this type, treated in sections 2.1 to 2 . 5 . 

In section 2 . 6 we present a formalism to treat these 

problems s imultaneously . 

2 .1 External Gravitational Field of an Axisymmetric, 

Uncharged, Steadily Rotating Body 

The metric in this case may be put into a canonical 

form first introduced by Lewis (Lewis, 1932) and now known 

as the Weyl metric . We assume the existence of two Killing 

vee tor fields, which we write as ~t and _sL The metric 
d c)~ 

must therefore be independent of -r , & • For axial sym-

metry, the metric must also be invariant under the trans -

formation 

(See Synge , 1960) . Thus the metric cannot contain the terms 

d"', d (Q 'd~.J.dQ , , while the term 

d (j( d t may appear . We thus have 

ds~ =- <J ,ld i..')J. -t- d.l~(Jx.Ol)~~~ \:t d ~~ d~?.~d33 d~~.:l(jo~qx\\-t~codt~ (2 . 1 . 1) 

where the d \ K are independent of t , (Q. and ~ , 'I... .:l. are 
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asymptotically space - like coordinates . The two - dimensional 

metric 

d 5~ = ~ 11 Cd~')2. +~d "~d~'clKz. "" (j-z.'-(clx~)~ 
must be conformally flat, since the Weyl conform tensor 

vanishes identically in two dimensions . There thus exists 

a transformation to new coordinates 

xr·' =- ')(.1- ( ~~ ~ :!) X~'= x~ I ('~';'i ~) 

in terms of which the two- dimensional metric takes the form 

ds~ =- e~(~';"A-7) [(c\K'')=>- -t \A x:~ '):>.j . 

The metric (2 . 1 . 1) then becomes 

ds.;l:::. e."""\ld~·'l +(J'I..;~'Y}-r~ 33 ci~~-t ~~ 03cit9.ci\-t-d00 d-'\~ (2 . 1.2) 

By appropriate choice of the coordinates ~ ... ."' , 'f..d-
1 

and the 

form of the functions ('J. , ~ 33 , ~03 , and ~ 00 , (2 . 1 . 2) 

finally may be put in the form (See Reina and Treves, 1976) 

c\ s;;{-==- ~c ~\-rwd~)~ f -l L-e.d-'l<(~_yP-tci ~~) +so~ ti~;t~ (2 . 1 . 3) 

where f , w 1 and '6 are functions of j~ and r only . If we 

regard J 1 7:.
1 

<i as cylindrical coordinates in a flat space, 

a gradient operation V is deflned which is convenient to 

use in what follows . 

We now distinguish two cases of ( 2 . 13) : w :. 0 or w ;f. 0 . 

In the jd 1 ~ I 1:1 -\" coordinate system, the Killing vector 
-lo. 

fi e ld V = ciJdt has contravariant coordinate components 

given by 

vt-t == l o1 0,o,\). 
Using the metric (2 . 1.3), we see that the covariant components 
~ 

of \j are given by 

V M =- ( 0 1 ~ W; o
1 
~). 
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For a static space - time we requi r e the existence of 

instantaneous space - like 3 - surfaces that are orthogonal to 

the time - lik e Killing congruence , and thus o r l;hogonal to 

the vector field 

\] ~ -=- ( D J w 1 OJ I J . 
This requires that Vp be proportional to the gradient of 

a scalar: 

Vp="''P>~ 
where h is an arbitrary function of the coordinates . 

Differentiating , we find 

V t-J1V- Vv,f-A = "'JV \1 !'-'- - 'n , f'J \Jv • 
However , if we write out the components of the above equation, 

recalling that W is a function o:f §:J and r only, we find no 

nontrivial solution, unless w ::: 0 . Therefore w := 0 is the 

necessary and sufficient condition for a static metric . If 

vvtO , the metric is called stationary . The metric and the 

resulting physics are then invariant along the l ines of the 

time - like Killing congruence , but invariant orthogonal 3 -

surfaces do not exis t . 

. '1 t __,.\j - d Slml arly, he vector field - d& has contr avariant 

coordinate components given by 

V N:::: (o , \1 D 
1
0) 

and covariant coordinate components given by 

\}f--A = ( 0 ) ~ w ~- t -\~ ~) 0 ) ~ w) . 
In a manner identical to that above , we find that W:: () is 

the necessary and su:fficlent condition fo r the existence 
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of 3-surfaces that are orthogonal to the space- like Killing 

congruence . 

Furthermore, we see that these two Killing vector fields 
~ --!>. 

commute. The commutator of two vector fields U and \) is 

defined as 

[UJ\J] -=- ( \JoJ. V f> - \) ol. U B \ J 
) ~ J ~ ) Jx I'. 

ln the J , ~ , r , t coordinate sys tern, we see that the 

commutator of the space-like and time-like Killing vector 

fields defined above vanlshes for any value of UJ • These 

Killing vector fields thus define a family of invariant 2 -

surfaces and are called 2-forming . 

The Einstein vacuum field equations ~ p\( ==0 for the 

metric (2 . 1 . 3) reduce to 

v-[f-''Vf+JO-z. f~\.0~w] = o 
(2 . 1 . 4a) 

\J ·[~-c. f'~· \Jw] = 0 
(2 . 1 . 4b) 

and 

~JJ3 =--q-J>f'-~(~~- ~~)---tr~-1~'-(\UJ§lt_-WJi) (2 . 1 . 5) 

v - \ (' - 2.. f' (' 1.. 0 J1--- G" ''<a'tr- --' 0 - 1 ~ w w z. J J 2 ,r 'JV J 7:: 

When (2 . 1 . 4) are satisfied, (2 . 1 . 5) are integrable and deter-

mine t up to a constant . If f becomes negative, we must 

use this constant to maintain the correct signature of the 

metric, by replacing 

~ ---7' 't + ..iJI • 
z. 
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In this case~ ~ becomes a time-like coordinate . Other-

wise~ ~ may be ignored in the process of' finding solutions . 

We thus concentrate 011 solving ( 2 . 1. 4) . ( 2 . l.l.J-b) is 

the integrability condition f'or the existence of' a related 

f'unction .Jl ~ defined by 

\JJ{_-=. Jd-1 ~?. ~ & 'f.. vw (2 . 1. 6) 

where 't(\l is a unit vector in the ~ direction . .JL is 

usually ref'erred to in the literature as the "twist" paten-

tial~ since its essential ef'f'ect is to interchange the com-

ponents of' ~ LJ . Written explicitly~ (2 .1. 6) becomes 

(I -' "~ 
--.J L)? ~ ~ I WJ ~ (2 . 1 . 7) 

Jl > r :::- .JV-' f' ~ W1~ 
where the so-called "twisting" is displayed explicitly . We 

may eliminate w f'orJL to obtain an alternative pair of' f'ield 

equations equivalent to (2 . 1.4): 

'V·[f'-d-(~'0-'+ Jl'VJ1.~ :=.0 

v .[ f'-:l "V Jl] ::: 0 . 
(2.1 . 8) 

Letting f'-==eU ~we may write the above equations explicitly 

as 

U, j'J' r ~ + l.J, H = _ I( ::>.IJ ( Jl, J" 2.,_ 5!, {) 

Jl,fJd -r J2.>td -r JlJt:t-:::. d.(J1,fu'JO "'"_n,tu,1:) 
JO" 

(2 . 1.9a) 

(2.1 . 9b) 

These are the coupled nonlinear equations upon which we will 

f'ocus our attention . A most comprehensive survey of' this 

problem is given in the review article by Reina and Treve s 
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(Reina and Treves, 1976) . Cohen (Cohen, 1976) considers the 

problems that arise in classifying stationary axisymmetric 

gravitational field8 . The familiar Weyl solutions are in­

cluded as the case __f1_ ==- 0 , in which case U satisfies the 

ordinary cylindrical Laplace ' s equation . 

A complex formulation of (2 . 1 . 8 ) was first introduced 

by Ernst (Ernst, 1968) . We introduce a complex potential, 

E, , defined by 

t =- -\'+I JL (2 . 1 . 1o) 

in terms of which (2 . 1 . 8) become 

eRe E.)'V~( == \J [.'J[_. (2 . 1 . 11) 

It is also sometimes convenient to introduce a 

different complex potential E defined by 

e. = ( E- I) I (E t I) • (2 .1.12) 

(2 . 1 .11) then becomes 

(f E~- I) "J :l t = ~ e 'A'< \7 E · V E • (2 . 1 . 13) 

(2 .1.13) is called the Ernst equation. 

The metric functions~ ,W, and'($ and the potential 

Jl. are given in terms of E by 

Jl == I. \JV\ E-\ 
tt\ 

'\J W:::: 4 \ 'M \j(:~+\)2((i ~\JE)j 
(Ee~~)'-

){JJO"'~JS>* )'- (E;.f>E,.f, - E1 rE1~) Ee - \ 

'iJ =t-_== :>_J? t\e.l E1-fJE,t) 
(E E*- \)2-

• 

(2.1 . 14) 

( 2 . l. 15) 

(2 .1 .16) 
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The most important solutions to (2 . 1 . 8) to be recently 

discovered using (2 . 1 .13) ' are the Tomimatsu- Sato solutions 

(Tomimatsu and Sato, 1973) . These are asymptotically flat 

solutions , most of which have naked singularities outside 

thP event horizon . The Kerr solution is the simplest twisting 

solution of the Tomimatsu- Sato form, and if ~0 in it one 

obtains the Schwarzschild solution alrea dy disc ussed . 

2 . 2 Cylin drical Gravitational Waves 

I£' we let 

the metric (2 . 1 . 3) becomes 

Js;t = -r - 'e~~ (cit~ c! JL)- fc ~ ~+w d~ '{ -- -\-' Jd i_d 0 -z.. 

The Killing vector fields are now 
_cl_ 
d ~ 

and 

(2 . 2. 1 ) 

cl 1l\. 
The surfaces + ~ constant, sa = consta nt are intrinsically 

flat, but l'le identify points with ~ differing by ~1\ • 

If we let 

Q=- U -\-\a8 SfJ 
then the field equations (2 . 1 . 4) for {¥ ,w become 

(2 . 2 . 2a) 

(2 . 2 . 2b) 
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The metric (2 . 2 . 1) describes Jordan- Ehlers waves ( Jordan et 

al, 1960) which are cylindric a l gravitation al waves pro-

pagating in vacuum with two deg rees of freedom , corresponding 

to two ava ilable wave polarizations . The f amiliar Einstein-
rv 

Rosen waves are included in the case W = 0 , in which case 

Q is a solution of the ordinary cylindrical wave equation . 

2 . 3 Colliding Plane Gravitational Waves 

the metric (2 . 1 . 1) becomes 

The Kil ling vector fields are now 

_&_ 
<:lfo 
and 

~ 

• (2 . 3 . 1) 

c::\& • /\ A 

The s urfaces f = c onstant and :C =- constant are flat, taken 

to be Euclidean planes . The solutions a r e now i n dependent 
/\. 1'\ 

of JO , ~ and t he waves propagate along the r- axis . The 

f ield equations (2 . 1 .9 ) for U , Jlbecome 

U tr.- t:-t + U " - U - e- ~ u ( n 2.. n ;;t ) ) -~t l :z::r-- ) l> -z:-._J '-)1- ( 2 . 3 . 2a) 

Jl)+~ -r- Jl/ \- - JLJ ~~ = d c u >t Jl. )~ - u) ~ _j( 'l::) 
~ \ 

( 2 . 3 . 2b ) 

This problem has r e cently received attention by Szekere s 
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(Szekeres, 1972) who interprets (2 . 3 . 1) as the metric des-

cribing the interaction region of two colliding plane waves . 

The preceding three problems are those discussed by 

Kinnersley (Kinnersley, 1975). To these problems we now 

add two more problems concerning the source-free Einstein-

Maxwell equations . 

2 . L~ Cylindrically Symmetric Static Einstein-Maxwell Fields 

We consider first a metric of the form 

d 5 ~ =- ~ c\ t:. " -\ [ e_;). 'if ( d Jd '1. +J =l-) + J> 1_ d ~ ::t] ( 2 . 4 • 1 ) 

which, if ~ and ~ are functions of j' r only, is cylindri­

cally symmetric and static . (2 . 4 .1 ) is identical to (2 . 1 . 3) 

with the cross term~ =0 . A vacuum solution would describe 

the external gravitational field of an axisymmetric static 

body (Weyl solution). If we now allow the body to have 

charge, its exterior fields must satisfy the Einstein- Maxwell 

equations (1.1 . 2 ), . (1.1.11) and (1.1.12), which reduce to: 

U,JJ+ ~+ \J.,'<t=- e-dU.(Jl,J- 2 + Jl,~) (2 . 4 . 2a) 

JL,~y+ x.Jc? +- SLJt::t;-= ~ \JL~sauJJG>-\- n,~u)~) (2 . 4 . 2b) 
y> 

plus equations for ~ >_f and '£ l Z: which are integrable when 

(2 . 4 . 2) are satisfied and determine t up to a constant . We 

assume that the electromagnetic field also depends only on 

JO' ~and hence, due to the form of the metric ( 2 . 4 .1 ), we 

may express it in terms of a single potential Sl. The 

electromagnetic field tensor in this case i s given in terms 
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of Jl by 

tij =--.S11K eX?(\';_~\~ -\'K- ~~) ( \J~)K = \ 1 ~ 1 3 iv._ <-~c.\ic.. o,J~<J 

fi ~ :: -Jl) '1 (I.:: \1 ~ 13 J 
where 

and 

f- ~-I I ,- '-'1 

f)_=-~ sv -u. 
'\ = u. 
All other components of t tJ.\{ vanish . 

2 . 5 Colliding Plane Gravitational and Plane Electromagnetic 

~'laves 

I:f we let 

""' 1:- :::. \ ~ 

t:::: 'l1 
~~'6-t-\l\ 

the metric (2.4.1) becomes 

~'):}:::. f'-'e_~~(d~~di1J- ~-'jd~cl~~- ~ 6?;1.. 
with Killing vector fields 

_sL 
d:Z: 

and 

__sL . 
c)~ /'J 

(2.5.1) 

Surfaces J = constant, t :::.constant are flat, identified as 
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Euclidean planes . The Einstein-Maxwell equations (2.4. 2) 

become 

(2.5.2a) 

(2 . 5 . 2b) 

(2 . 4.2) and (2.5.2) were derived by Harrison (Harrison, 1965) 

as the field equations for cylindrical Einstein-Maxwell fields . 

Recently, the problem of colliding plane electromagnetic 

waves and plane gravitational waves has been treated by Bell 

and Szekeres ( Bell and Szekeres, 1974). To treat this 

colliding wave problem, they used the Newman- Penrose spinor 

version of the Einstein-Maxwell equations . We will not dis-

cuss the Newman-Penrose formulation , since such a discussion 

is beyond the scope of the present treatise (see Newman and 

Penrose, 1962). The problem is set up in much the same way 

as the colliding plane gravitational wave problem treated by 

Szekeres . 

Space-time is divided up into four regions, one of which 

is flat, two of which correspond, respectively, to incoming 

gravitational (with W-= 0) and electromagnetic plane wave s , 

while the fourth region is the interaction region, the region 

of interest . The O' Prien-Synge jump conditions (O'Brien and 

Synge, 1952) are then used together with the Einstein-Maxwell 

equations in the interaction region . If a potential fL is 

introduced for the electromagnetic field tensor , the field 
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equations of Bell and Szekeres may be shown Lo reduce to 

(2.5 . 2) after a suitable transformation of the independent 

coordinates, while the metric reduces to (2 . 5 . 1) . We omit 

the details here, since they are essentially an exercise in 

the Newman- Penros e formalism and provide no g reat insight 

into the problems we will treat in this discourse. 

2 . 6 Simultaneous Treatment 

We now note the following remarkable fact: equations 

( 2 .1. 9) for (U ,Sl) are identical to equations (2 . 4 . 2) . 

Furthe rmore, equations (2.2 . 2), involving (Q,w) , are 

identical in form to equations ( 2 .3.2) and ( 2 . 5 . 2), which 

involve ( U ,SL). Also, by letting c = ~ ~ 
(2 . 1 . 9) are transformed into (2 . 5 . 2). We may thus draw 

the following diag ram : 

Axisymmetric 
stationary vacuum 

(2 .1. 9) 

Complex 

<coordinate 
transformation 

1 "twist" potential 

Cylindrically symmetric 
static 
Einstein- Maxwell 

(2.4 . 2) 

Complex 
< ) 
coordinate 
transformatior 

Colliding plane 
gravitational waves 
in vacuum 

(2 . 3 . 2) 

1 "twist" potential 

Cylindrically sym­
metric Jordan­
Ehlers Waves in 
vacuum (2.2 . 2) 
Colliding plane 
gravitational and 
electromagnetic 
waves (2.5.2) 

Thus, through the use of the potential (2.1 . 6) and the 

simple complex coordinate transformations g iven above, we 
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may consider problems 2 . 1~2 . 5 simultaneously~ at least when 

searching for exact s olutions . The analogy bec omes even 

more evident when we consider the boundary conditions assocla-

ted with problems 2 . 1 and 2 . 5 . In problem 2 . 1, the metric 

mus t be flat at infinity~ or 

as J>~ oO . In problem 3.1-l, the metric must be flat and the 

electromagnetic field must vanish at spatial infinity, which 

translates into the same boundary conditions onll ~ Slas thos e 

above . 

We note that the electromagnetic potential S\_ seems to 

take the place of the "twist" potential (2 .1. 6). We will 

refer to this fact a gain when we discuss three variable solu­

tions with one Killing vector in Chapter 4 . 

Some of the above ideas have recent l y been independently 

realized and published by Catenacci and Alonso (Catena cci and 

Alonso~ 1976) . They noted that the invariance groups of 

problems 3 . 1 to 3 . 5 were identical . 
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CHAPI'ER 3 

VARIOUS FAMILIES OF EXACT SOLUTIONS 

In this chapter we present a discussion of various 

exact solutions and transformation theorems for the problems 

discussed in Chapter 2 . The calculus of differential forms 

is used extensively . A discussion of the techniques involving 

differential forms used in this chapter is presented in the 

appendix~ and the reader is referred there for further details. 

3.1 The Curzon Solution as a Generalized Similarity Solution 

In this section a generalized isovector of (2 .1. 9) is 

presented for the case 1.>0 :::0 . The corresponding generalized 

similarity solution is found and shown to be the well known 

Curzon solution. The corresponding wave solution is also 

discussed . 

When W=-0 ~the field equations (2 . 1 . 9) reduce to the 

cylindrical Laplacian 

u)YJ -t- u)9 + uJ~=- o. 
J> 

(3 .1 . 1) 

A suitable ideal of differential forms corresponding to 

( 3 .1. 1) is 

o<= dU- Ad1= - ~cif 
clo( =- d R,\d~- <i ~ "J J ( 3 . 1. 2) 

'i :::. d ~Adr -r d~Ad jO 1-} J_f"di: • 
The ideal (3 . 1 . 2) is closed under exterior differentiation . 

There are five variables, one one-form, and two two-forms~ 

so the ~artan criteria are satisfied . 

We now present a generalized isovector of the ideal 
~ 

(3 .1. 2) . Consider the vector V with components 



v~=-sa 
v~~ -t 
v~= o 
Vf\ :::-B 
v 'C> =::. A. • 
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The necessary augmented forms are 

(3 .1.3) 

\iJo<=_sc>F\-~~ 
~Jc\~::::. \Sd:r- ~ciA- A~_p -t:t:-c\6 (3.1.4) 

\/J ~ = ~~~ + ?~~-~~J- ~J~+~(rd.c+-.rci~). 
f~ 

The Lie derivatives with respect to Y of the forms in the 

augmented ideal (3.1.2) and (3.1 .4) are found to be: 

£ o( = l d~ = :f ( \i J.,( J = k ( \} j d o{) = D 
...._::) -- ~ _.. v v v \) 

! '6 = ~ J~) dg>t\d; v y>~ 

! (~J~)=- (\JJ~) -rJt. 
\j Jl1... 

We see that the Lie derivative of the augmented ideal is 

contained in the augmented ideal and hence the vector (3 .1.3) 

is a generalized isovector . Annuling the first, scalar, 

form of (3 .1 . 4) implies the functional form 

U::. U ( .?4 + ~zJ. 

We could of course also choose ll to be any function of a 

function of Jd'L t r_'­

tions, we choose 

To simplify the following calcula-

u-=: U ( s-~'L -t =t:7..J ::: u ( V'LJ. 
Substitution of the above form for \J, into (3 .1.1) yields 
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the ordina ry differential equation 

d~ll + _, ~ =- 0 . ( 3 . 1 . 5) 

d. Ill 7_ rt d \1"\_ 

The general solution of (3 .1. 5) is 

U-=--_M_+C ( 6) ~ 3 . 1 . 

where \V\ and C are constants of i ntegration . We set C.= 0 

so that u~ 0 as !f>~ o() ' making the sol ution asymptotic­

all y fl a t . This yields 

f ~u - ~MI'fl = e = e. • 

From (2 .1. 5) we have 

t,_p "~ ( u,.l" <_ u,~) =- M>? C f :_ cc'-H,p '+ :c>t3 

'i) r - i u I Y' u/:r = ~ M~~ :c ( ~ '2.-\- -t:;l.r3 
-

This yie l ds 

'6 =-i \J\~ ( J?.-\-.:CJ.)- ~. 
The metric is then g iven b y 

ds:l == exft~M(~?.+fr'1 ~ci-\z._ ~x?Ld.~(_f'\-:c;lY'1 'J'f-~1.(j\.:c:>f~· 
·&3 ~:> -t ~~2)- ~ )(~ Ld~(G2+=t~r'':IJ ~1. ci <S\.'2. .. 

~- ~ ( 3 .1. 7) 

This metric was first studied by Curz on (Curzon , 1 924) . 

This solution has long been c onside r ed a mathematical curiosi-

ty with a strange physical interpretation (see Synge , 1960) . 

Recently, however, Voorhees (Voorhees , 1 970) has s u ggested 

that the Curzon metric corr esponds to the exte r nal field of 

a disk of r adius M. Since S ylt-'l:... ,...., '\' , whe r e \ is the 
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spherical Schwarzschild coordinate~ we may obtain the physical 

meaning of the constant t'\ by expanding ~00 = ~ for \ ---'!5> oC> • 

'l'his gives d 00 ~ \- ~ ~ Q.S ~~ o0 

and we see that ~ is the mass of the source . 

Similarly~ if we set~=-() in (2 . 2.2)~ those equations 

reduce to the cylindrical wave equation 

Q, j> ~ + ~- Q 1-\t ::: () . 

Recalling 

ex :::: - u -t \ od JO ) 
we find that lJ also satisfies the cylindrical wave equation: 

u)J>~+ ~-\J>-tt = o . 
sa 

If we want a source term at the origin J> =- 0 at time t =- 0 ~ 

the appropriate problem to solve is 

U>ysu + U,J? - U, tt-=-- 'S(~)~(t) 
j'O ;;). 1\ .sa 

with initial conditions Q (._P 1 0- J = (~\-\ (.? 
1 

D-) ::: D . 

Working as before~ we find that 

u = ~\ ==;::::~ 
)_1\Jt~ .J;}L 

w1th U-=-o for _?> \ 

This solution corresponds to a gravitational wave 

pulse emitted at J ~ o ~ t:::.o . It vanishes outside the 

light cone f:: t\ . 
3.2 The Kerr and Tomimatsu-Sato Solutions and Transformations 

According to section 2 . 6 ~ the functions ( f ~JL) describ-
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ing stationary solutions to (2.1 . 9) are also solutions to 

(2.4 . 2) describing static cylindrically symmetric Einstein­

Maxwell fields . The Ernst potential~ of the stationary 

fields becomes the electromagnetic potential for the Einstein-

Maxwell fields . In this section we discuss some physically 

relevant~ known solutions of (2.1.9) . By displaying f and 

JL explicitly~ we also arrive at new solutions to the static 

Einstein-Maxwell equations (2.4.2). 

The solutions are most easily discussed in the complex 

Ernst formalism of section 2. 1. It is convenient to work 

in prolate spheroidal coordinates defined by 

_IV == k ( y,_':l._ I) ,,,_(\-,f~) 1/2. 

~=- kxy. 
'f.. and '/are given explicitly in terms of sa ~ 9:- by 

'K=~ [J(z-+k):\t-J1 -r j(=t:-K):\ + )d1. J 
'1 = -LrS(r:~K?-+ y,_- S ("t -k)l.-t c.?£" J 

.d.K L 

where K is an arbitrary constant . 

We now assume that the Ernst potential E is of the .fo r m 

(3 . 2.1) 

where o( and f-> are complex polynomials of '/-. and "/ . 

Substitution of (3 .2 .1) into (2.1.13) yields, in the ~ ~~ 

coordinates: 

(y._:_ ,)(o(~- !3r->'*)(;1xxp-..<pi)(J(J-t{Jx c~..z*- \-'~*)- J c~~l) • 

·(~~><- Bl'-f3Jx13Co<"Jx~-o< ~JXJ -@ 1e same expression replacing 

'A by ~ J ::: 0. ( 3 . 2 . 2 ) 
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The first solution to (3.2.2) was found by Ernst (Ernst_, 

l968) and is given by 

(3.2.3) 

where t> and b are real parameters related by 

t?- + t~ == \. ( 3 . 2 • 4) 

The case r'-=- \ J %-= 0 yields the Schwarzschild solution. 

In fact_, (3.2.3) is isometric to the Kerr solution (Reina 

and Treves_, l976). From (2.l.l4) and (2.l.l6) we obtain 

f _,51__, w and ~ as 

f:: ?';;).1--2+~;1~~\ 
(~xt- 1)?... + ~;l-{~-

SL= - ~ %\1 
(f"'-ti):J.+ bJ.'f2. 

W = - ~ ( \.-'f~)( pX-t-1) 

r~ 'K:l -t- cr '{;).- \ 
e_ ~ ~ = \? ~ ~.;l -;-- q_ d."/ ;;l_ \ • 

?;;t ( ~?-~ ;;l) 
The metric is given by 

(3 . 2 . 5) 

- ;:;t 

dsa ~ K?[(f-x-rl)~+<t~"f~ ( d "~ + d'f~)-\- (?Y---t\) + 'bd."fl. • 
?d... 1) ~~-\ \-,1~ ?:.ll<.J.-;-~J ~:l- \ 

• (x::,)(\-~~)ci~~- \~~~;).+(::-('~-- \) (d1 + d.1, (\- 'fd.)( \21-+\) d~);;>.] 
[(~'l<+\)~-\- ~;).'[:; (?;;_)t-.~-\- b;l'{~-\) 

where K is the arbitrary constant which appears in the 

definition of prolate spheroidal coordinates . The mapping 



~~-\-\-==- \l\'1\ 

()'( =- CA\M 
with 

·?:: K\M 
b:::Q\M 
K ::: Jr--M-~---a-'-
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maps the above metric into the Beyer- Lindquist form of the 

Kerr metric : 

ds~ :: (r-~+O.d. CDS~-6-)~cl~2 + ch·2 
) 

\"\c:f"-)l'v\\ 

-c1t2 
-t- J. ~"\' • 

If then and the resulting metric reduces to 

the Schwarzschild metric . 

The Kerr solution was the first stationary (but non­

static) exact vacuum solution found . It is thought to de ­

scribe the gravitational field external to a spinning object 

(Kerr, 1963) . It is asymptotically flat, so that (3 . 2 .4) also 

describes the external gravitational and electromagnetic 

fields of a static distribution of charge and mass . 

Much more general solutions to (3 . 2.2) were presented 

by Tomimatsu and Sato (Tomimatsu and Sato, 1973). They found 

solutions assuming <=>\ and \-> are polynomials of deg ree ~ :;;( 
and~~- \ _,respectively, where S is an integer . Explicit 

s olutions were g iven for ~:::: , J, 3 ,l-\ . For ~::::: \ , the 

solutionis (3. 2 . 3) . For S::::::.Z., theyobtained 
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E=?~~'i +~;).'f'i_ \ -~ '?'b xy C'6?- '{~ 
~ p X ( 'J( ~I)- ;).. \ ~ '/ ( \ - "{ ~J 

where f and 'b are related by (3 . 2.4) . 

( 3 . 2 . 6) yields the following for ~ and .5)_ : 

~ ~ RIB> 

st~c\B 
where 

(3 . 2. 6) 

(3 . 2 . 7) 

(3.2.7) is again an asymptotically flat solution correspond-

ing either to an uncharged stationary distribution or a 

charged static one. For ~--:::: 3 , h\ the expressions are even 

more complicated and we refrain from discussing them here . 

Ernst (Ernst, 1968) noted that a phase transformation 

of the solutions of (2 .1. 13) 

E = e 1<X[
0 

yields new solutions which are not asymptotically flat. The 

previous solutions may thus be considered as a spec ial member 

(with o<=O ) of a more general family . For example, the NUT 

solution (Newman, Unti, and Tamburino, 1963) given by 

E = e"lCl(x 

is seen to be a generalized Schwarzschild solution . Similar-

ly, Demianski and Newman (Demianski and Newman, 1966) obtained 

a generalized Kerr solution 
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E:::: ~ \o( (fx -t-"l by). 
We refrain from discussing such solutions further since their 

physical interpretation is questionable. 

3.3 The Isogroup of the Two-Variable Equations and Some 

Similarity Solutions 

In this section~ we discuss the isogroups of the field 

equations of sections 2.1 to 2.5 and use them to derive 

some similarity solutions . 

We begin by repeating the two sets of field equations 

under consideration. For the physical cases of sections 

2 . 2~ 2.3~ and 2.5 the field equations are 

IJ,J'.f'-t ~-Uf\1-" e_-;;lUl Jl,-T;;,_Jl,~) 

_fl I J' y> -t- ~:? - Jl ) t\- ~ 'J_ ( Jl, J" \__\ 1 fl - Jll-T u )-\-) • 
If we let ::2: =-it ~ then (3 . 3.1) correspond to the 

sections 2 . 1 and 2.4: 

(3 . 3.la) 

(3 . 3 .lb) 

cases of 

(3.3 . 2a) 

presented a discussion of (3 . 3 . 1) and have calculated the 

isogroup . An appropriate ideal of differential forms for 

(3 . 3 . 1) is 

o(::: 6'-1-~6~-~d~ doL=-df\t-d"\-d6Ad~ 
~=- dSl- ~ dt-Cs~~ d~ = -Jr~'-d-t-ciG-1\<i~ 
t = d ts"d1 +d'f\1\cl f- [e:- ~U(~;l- G ~) r }-]d ~"d\ 

(3.3 - 3) 
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~ =- ~ Gs (\~"t;-Afi\J~ - (~(6<; - Pt() - ~lciJd"dt. 
This set of forms is closed under exterior dil'fe r entiation . 

There are eight variables , t"t-'io one-forms, and four two-forms . 

Thus the ideal (3 . 3 . 3) meets the Cartan criteria and is a 

well-set ideal. The isogroup of (3 . 3 . 3) is given in Table 

I (page37)J where a description of each type of transforma­

tion is provided when feasible . If we let r::: -,-\- , we 

obtain the isogroup of (3 . 3 . 2) . Although one might have 

guessed isovectors 1 and 3 from inspection of (3 . 3 . 1), the 

other isovectors are more complicated and cannot be found 

by inspection . 

We mow seek similarity solutions using the isogroup . 

Isovector 2 leads to the functional dependence 

\_\:: L\ (jUft) ~ u ( ~\) 
Jl ~ j1_ (_)d!t) ::: Jl ( V\) • (3 . 3 . 4) 

Substitution of (3 . 3 . 4) into (3.3 . 1) results in the 

ordinary differential equations 

\J I I ( '<l;)- \) -\"" u I ( d_ (\- ~) ::: E:- ~ \l Sl ' ~ {'- 'f1 ~) 

5lll ( rt;;}- 1) + rr' ( .:< rt- ~) -z ~ u' JL' ( ¥1:.1_ ,) 
(3 . 3 . 5a) 

(3 . 3 . 5b) 

where a prime denotes differentiation with respect to 'f1 . 
We proceed to find solutions of (3 . 3 . 5) as follows . 

(3.3 . 5b) may be rewritten as 

Jl'l \ - -t ~ 'il -V1_ 
\) I 

_}l_ 'L:l.- \ 

Integration of the above yields 

(3 . 3 . 6) 
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where (\ is a constant or integration . Substitution of 

(3.3.6) into (3.3.5a) yields 

U''(Vld._,)+U'(J_ lfl.--' )=-- e.~Lt c,~ 
n_ n-a. 

which may be rewritten as 

\J '1 
( 'f1~- fl_1·f) + \1'( ~- d Vl~):::: e ~ '-..\ ( \~ • (3 . 3.7) 

\ 
The equation obtained by multiplying (3 . 3 . 7) by \A may be 

written as 

_d_ ( u I ~ ( 'fL ;\_ '1_ ~)) := d c ~~ e_ ~ u 
ct'fl_ ~ 

which integrates to 

\j I d. ( 'fl_~- 'i\11) = (,~e. d,~ 
l'lhere we choose the constant of integration to be zero so 

that we obtain a solution explicitly up to a quadrature . 

Integration of the above yields 

p-l..\-(' \ - \ c '- - \... \ s e. c.. '-'\ '{(._ -t ?._ (3.3.8a) 

where c?_ is another constant of integration . (3 . 3 . 6) then 

gives SL as a quadrature: 

Jloo C 1 s:;- I(_;;(U\cr)_ d(J (3 . 3 . 8b) 

3 ()J CS;l-\ 

where c3 is a third integration constant . (3 . 3 . 8) comprise 

an exact solution of (3.3 .1 ) . 

We could of course similarly use isovector 2 in (3 . 3 . 2) 

to obtain 

U:: U.(~\t)= U(lfl) 

5l=-Sl(jd\~ ::jl(l£l) . 

(3 . 3 . 9) 
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Substitu t i on of (3 . 3-9) into (3 . 3 . 2 ) y ie l ds the o r dinary 

different i a l equations 

u \\( VL;l + 'J + u' (~'fl. +-k) ::: - e-~~I d. ( V{;;l-+ 'J 
Sl'' ('it~+,)+ Sl'(~'!l+*) =: d.U'JY ( Vl~+,) . 

(3 . 3.10) 

(3 . 3.10 ) may be solved in a manner analogous to (3 . 3 -5) . 

The solution is 

e_ d.'-l -= ~ ~-(_ \ + '-\ C.o-\-\,;>. ( JC;: )m \Jn ~+~·I:_ I + C 3J J] 

JL = j ll e_ ~ll • 

c ~ ft. 0 'l. .l+ \ (3 . 3. 11) 

Unfortunately, we cannot interpret (3 . 3. 11 ) as the 

external gra vitational field of an isolated axisymmetr i c 

body since e ~u does not h ave the proper asympt otic 

behavior . 

We may u se othe r isovectors to reduce t h e number of 

independent variables . For example, using a comb i nation of 

isovector 2 + isovector 3, we find 

u-=- u(~~~~ ::: UCut) 
Jl~ ~v,\1- ~(5dlt) -=~1+ ~(VI.) 
where U and If satisfy the ordinary differential equations 

u" \ 1fl~- 1) + u' ~ d.~-\) ~ - ~ ~u c '* "'' \?.- J ~\"- 'Y' ~) 
'f" (lfl:l_ ,) + ~' ( ~ {\_- ~) = \-\- ~~'(fL:1-u')- J.\l'\f\ • 
Use of isovector 2 + i s ovector 4 yields 

U ::: ~"' -t 1- <P (fIt) :: 1n t + 'PC V~.) 
JL =- t ~C~h! =-t ~ (U\.) 
whe re ~ and ~ satis fy 
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cpll('f\~\)-t- 9)'(~'1\_-~)-\ ~ e_-~¢[~~d.~~~\(qd.-l)~l;tj 
~ II ( lft;;l- \) _ ~ I ( \fl_ _ ~) _ ~ ::: cp I ( \fl. 'V _ ~ 'P I - 'ft d. 'V 1 ) ~ 

Using o<(isovector 2) + f->(isovector 3) where e.{and ~are 

constants yields 

U=- \P(jdl-\-) == C/JCV'l) 

Sl::: (S ~ t-\- '-V(f1\l-) ==- () ~ t + ~( lflJ 
where ¢ and ~ satisfy 

cp \l ( \ _ lfl d-) _ cp I ( ~ V"\_ _ ~) =:. e- ~ ¢ ( (5 ~ + 'i\_d. ~ I: J_ IT ifl ~ t_ 'PI~) 

")\\ ( 'il~') - cs- + 'fl c~ yt- ~)~d..¢' c Vl~ ~,- '¥~cs- Vl) 
and cr ~ ~/oZ. 

We remark that although we have not been able to find 

exact solutions of the above equations~ these coupled 

ordinary differential equations would be easier to solve 

nwnerically than the original partial differential equations 

(3.3.1). 

3.4 The Ehlers Transformation and Invariance Transformations 

In this section we discus s how the isogroup may be used 

to generate finite transformations which give new~ distinct 

solutions from old ones . We see that the isogroup of Table 

I (properly~ the generators of infinitesimal invariances) 

separates into two subgroups~ which respectively transform 

only the original independent ( J ~ 1 ) or dependent (U ~Sl) 

variables . The second group~ vectors 3-5~ is integrable in 

closed form~ giving a three parameter set of finite invar-

iance transformations. 
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k :::. \} l.\ 
<i\ 
d Jl ::: v .5L 
6T 
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(3 . 4 .1 ) 

yields finite transformations which may be put in the 

form (Harrison and Estabrook , 1971) 

Jl= \"\- d.(Sl.o-OJ 
~t 0 - C5" ?'r 't o;J.. 

(3 . 4.2) 

where { =- euo , and\,~, and tr are constants . 
0 

To establish (3 . 4 . 2), we integrate (3 . 4 .1 ) first for iso -

vector 5: 

d~ =- ~J)_ 
d\ 
.slR._ =- srl- e ;;xu • 
~~ . 

(3.4.3a) 

(3 . 4.3b) 

Differentiation of (3 . 4 . 3a) and substitution into (3 . 4 . 3b) 

results in a single equation for U : 

j_ d;,)_'l = _\ (d\..\ )~- e.;;tu . 
,;;t d.\ 0t Ll d\ 

If we make the substitution 

w =- e..- u( ;;t 

we obtain an equation for W , 

d.~w = LU- 3 
d'l~ 

which integ rates to 

( 3 . 4 . 4) 
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(
d \..0 \~ = 'o;;). - _\ 
ct\J w~ 

~ 
where \:) is a constant of integration . The above is 

separable : 

:t~\::: w~w 
J \:,;~ LU~ -\ -

The substitution 

brings the expression for d \ into the form 

T~t:: cl'( 
v 

which integrates to 

~ ~± \] T-t- v 
where v is a constant of integration . Using (3 . 4 . 4) and 

(3 . 4 . 5) we find 

6;l w~ = \ + ( \1 i+v-) :1 =- ~;;> €_-~ 

or 

e l.\ -=- 'b ';)._ ...___::o..__ __ _ • 
\ -t(~T+\f);;t 

(3 . 4.3a) then gives Jl_ as 

SL:::- \o~ ( \:>::2 T+ \() 
\ + l\n:t 1+\( )~ 

Setting \~ (.') in (3 . 4 . 6) we find 

(3 . 4 . 6a) 

(3 . 4 . 6b) 

(3 . 4 . 7) 
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Letting 

~~ Yfl 
and solving for V and \> from (3 . 4.7), (3 . 4 . 6) may be written 

as 

eu. = eu()( \+ Jlc~e..-~Uo) 
(J.- .Jlo ~-Uot+ \ 

Jl:::. ~Uo(\-\Jtfe..-~Ua)(-J~Jl0 e.-~o). 
~- Jll) ~-u ·) ~ +- \ 

Setting 

t- ;:_ e_ \J 

(3 . 4 . 8) becomes 

~ = f' o ( -\ ~ ';;) + Jlt>a ) 
(!lb- ~ ~~) +-\6~ 

JL ~ (!L 0- J \0) ( -\{)~ + _n;) . 
(J\ t')- J. -~\ ).;t + ~~-;)_ 

(3 . 4 . 8) 

(3 . 4 . 9) 

and make a scale change on (~ ,JL) to get rid of a factor 

l ( ~()). +JL;) 
(3 . 4.9) takes the form 

t-==. - cr-\'
0 -----\:-Slo- <r)~+f0;;t 

Jl=- - ~ (Jlo- ~) 
~o-cr-J:.l+~o;l 

• 

We next integrate (3 . 4.2) for isovector 4 : 

~=\ d"r 

(3 . 4.10) 

(3 . 4.lla) 



ciJl =._51_ • 
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Integration of (3 . 4 . 11) yields 

(3 . 4 .llb) 

(3 . 4 . 12) 

where a, and C are constants . Setting 'T= 0 , we get 

u\) ~ (\ 
Jlc -::.. C.. 

and (3.4 .12) may be written (using~=- e.U. ) as 

f :::._ ~()e.' 
_[/ T Jl-J\.ce. . 

Letting 

~ :::e1"' 

this becomes 

(3 . 4 . 13) 

We may now combine transformation (3 . 4.13) with ( 3 . 4 . 10) , 

using (f ,Jl) in (3 . 4 .10) as the ( -\D, 51.o) in ( 3 . 4 . 13) . 

Letting 

the combined two-parameter transformation is 

(3 . 4.14) 

JL =- l( SLC\- cs-) 
• 

(Jlc-~ )\-\ o::l 
Finally, (3.4.2) for isovector 3 yields 

du ~o 
d \ ( 3 . lj . . 15a ) 
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(3 . 4 . 15b) 

Integration of (3 . 4.15) yields the transformation 

U= Uo (3.4.16) 

~:: 5\.o -\- \ . 
We may now combine transformation (3 . 4 . 16) with (3 . 4.14) 

as before to establish (3 . 4 . 2) . (3 . 4 . 2) generates new 

physically distinct solutions ( ~JL ) from known solu­

tions ( 'fc,-Jlo ) . 

If we let 

:t :: k-~ 
0'" ::: 1"'":::. - K- I 

in (3.4 . 2) and replace .3lo by (- .J1 0 ) (this is permissible, 

since replacing.Jl by (-Jl..) leaves (3 . 3 . 1) unaltered), 

we obtain 

SL:::. .J1 t>- \( ( 'Dd 1- Jlo~) 
(\- KSl o).;t + K~ it'

0
'J. 

f::: ~() 
• 

Q- KJlo)~-r K~sro;;. 

(3 . 4 .17) 

(3.4 . 17) is the well known Ehlers transformation (Ehlers, 

1957). We see that the Ehlers transformation is a special 

case of the finite transformation generated by the isogroup . 

For a discussion of how (3 . 4 .17) is used to generate solu­

tions, we refer the reader to Kinnersley (1975) where it 

is discussed how the Ehlers transformation leads from the 

Weyl solutions to the vacuum Papapetrou solutions, as well 
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as from the Schwarzschild solution to the NUT solution . 

3 . 5 Some Generalized Similarity Solutions 

In this section, we present a generalized isovector 

of (3.3.l) and (3.3.2) and use it to find generalized 

similarity solutions . 
~ 

Consider the vector V with components 

\jt:: J (3.5 . l) 

\J ·JCJ =-t 
\} '-\ :::: \) Jl =- 0 

\Jf\ =--B 
\JB=--A 

'Jt=-G 
\JG- ::.-\- . 

We first verify that this vector is a generalized 

isovector of the ideal (3 . 3 -3). The Lie derivatives of 

the ideal and augmented ideal with respect to (3.5.l) 

are found to be as follows: 

~ o( =-1 \-'::: 1-~ ~ ~ 1 ~ ol ~ ~() = "1 cl~ = 1\ =- '1 ~ \ =- 0 
\) \j '\) \] \} \) v \) 

l ~ -=- ~ d 8 ~s~t 
\J ~~ 

! ~ -=: \1\d~A~~ 
\j ?~ 

~~ =- - \ (3Jt 
v :f?... 

1\( = 1/\(-tc\~- ~) 
\l --? L- [c> 



where 

o= \JJot 
\~\Jj[3 

t-\ :::. \J j ~ 
\f~\J J~ . 
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Since the Lie derivative of the augmented ideal is contained 

in the augmented ideal~ (3 . 5 . 1) is a generalized isovector. 

It is in fact the extension of the generalized isovector 

(3 . 1 . 3) to the ideal (3 . 3.3). We now proceed as before 

to find the func tlonal forms of U andSl : 

U::: uc9~~1~) = u (IlL) 

JL ::-.. SL ( rc?:. -T ~ ') ::: Jl ( \£1 ') 

(3 . 5 . 2) 

Substitution of (3.5 . 2) into (3.3 . 1) yields the following 

ordinary differential equations for U and 5L : 
~ 1ft_ U 11 + 3U' =- d \fl._ e..- ~LI Jlt d.­

~ '<\_ Jl \\ T ~JL' = L.\ \[\_ .5\_\ u I • 

(3 . 5 .3a) 

(3 . 5 . 3b) 

Solutions of (3 . 5 . 3) may be found as follows . (3 . 5 . 3b) may 

be rewritten as 

which integrates to 

Jl' =- c,~?u{r?>\~ (3 . 5 . 4) 

where~\ is a constant of integration . Substitution of 

(3 . 5 . 4) into (3 . 5 . 3a) yields 

~ <1_3 \.)_ \\ + 3 '<l_ ~ \J. I = - ~ ( ~ ~- -;;z ~ • 
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1 

If we multiply the above by \..,\ , we may rewril~e the 

resulting equation as 

J_ ft~\J l .;l =- -_L c,~ e~u 
d'fl d\f\_ 

which integrates to 

Y\_3 \j I ;). .:= - c \~ ~ \..\ -\- c ~ 
where C ~ is another constant of integration . This may 

be rewritten as 

du 
~:t- C~e:l~)' \~ 

We see that (~ must be chosen so that 

C >C.~ e ~u. ~ \ . 
Integration of the above then yields 

(3 . 5.5a) 

where c3 is another constant of integration. (3 . 5 . 4) then 

gives SL as a quadrature : 

Sl==-C, ~fl ~;;zu(cr) C5_3 \~ d() (3.5 -5b) 

ci 
where ci is a fourth integration constant . (3 . 5 . 5) 

represents a new generalized similarity solution to (3 . 3.1). 

' 
the vector (3 . 5.1) is transformed 

into a generalized isovector of (3 . 3 . 2) . The functional 

form is now 

U== U(~~-t:z:~)=UC\f\) 
Jl=: Jl(Sd~-Tt_~) :::Sl ('flJ 
with lJ andJl sat i sfying (3.5 . 3) . The solution i s again 
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(3 . 5 . 5) . This solution has the same symmetry as the 

Curzon solution (3.1 . 6) . The solution in this case is 

asymptotically flat, since , as fl. -?'Db we see from (3 . 5 . 5a) 

that 

e?~ ~ c.;1 c \-'-\ C:o-\~,:) ~(~ c J . 
c,~ 

'rhe integral forSL, (3 . 5 . 5b), also converges as 'ft4 oe , 
since for large IT the integrand behaves like cs--?1~ • The 

constants c\ , c~ , c 3 may be chosen so that e -;;).~ \ 
as 'fl.~ o0 We may set (\-\ in (3 . 5 . 5b) to o6 to give 

.J'L =- - c I so<:> e ;;>.U(cr) CS"-)I~J <S" ( 3 . 5 . 6) 
'(\_ 

so that .5\.. ~ D a s tl_ -;>oO • 

This asymptotically flat solution represents either the 

external gravi l tional field of a stationary rotating body 

or the external gravitational and e l ectromagnetic fields 

of a static body as in sections 2 . 1 and 2 . 4, respectively . 

3 . 6 Soliton- Like Colliding Wave Solutions 

In this section we present some previously known 

solutions due to Harrison (Harrison, 1965) and show that 

these solutions behave like solitons . Solitons are a 

special class of solitary wave, which is essentially a 

localized traveling wave . Solitons are solitary waves 

that emerge from collision with each other having the 

same shapes and velocities with which they entered . For 

a more detailed account of solitons, see C~itham 1974), or 

Scott, Chu, and McLaughlin (1973) . 



-50-

Harrison considered solutions of (3 . 3. 1) in the 

context of colliding plane gravitational and electromagnetic 

waves (Section ~. 5) . He considered, in particular, function­

ally dependent solutions 

5l :::_ S\_ ( \-1) 

V ::: v (H) 

(3 .6 .1 ) 

where \f ::: e.\...\. and \-\ is a new f'unction of ~ and t . 
Substitution of (3 . 6 .1 ) into (3 . 3. 1) yields 

\} 
1 

( I-\1Jcl Jl t- ~- t\f1t) =-lt\,_f- \\,f)( (\J ,:._ Sl'") \\1 -\J ") (3 . 6 . 2a) 

Il' ( \-\, ~ ~-\- ~- t-\11\) = Q-\9 ~- \\ \:l)( ,;)_ Jl'\J'/\J- Jl''J (3 . 6 . 2b) 

fJ 
where the prime denotes differentiation with respect to 

t-\ . If we choose k-\ so that 

\--\, f jd-T llit- 'Mttt = () 

\-\ I YJ J. - f\ Jt . "f 0 

(3 .6 . 2) becomes 

\f' = \J-' ( \J l.:l_ J1'?.) 
Jll~:::: ~ 'J-\ \l'J1' . 

(3 . 6 . 3) 

The solution of these equations, slightly simplified, is 

\f :::. 'A .s e. c.-~ \-\ 

J\ -=- ~ \--u_\1\"' ~ (3 . 6 . 4) 

where A is a constant . Here we have a linear wave 

equation (3 . 6 . 3) for ~ , so that solutions are readily 

obtained and superimposed . The resulting nonlinear super­

position rules for the metric functions \] andSl (given by 

3. 6. 4) are, however, remarkably similar to rules for super-
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position of sol itons arising in other equations . 

Set 

(3 . 6 . 5) 

where \-{
1 

:f::. t\ ~ and \-\1 and r\ ~ a r e each solut i ons of 

(3 . 6 . 3) . Substitution into (3 . 6 . 4) yields 

\J -:::_ A se_c_~ ( \-\~-\- \-\~) :: ~ ( t()S~ \\I (~S~ \\,:) -\- )'\ V\~ \-\I 5\ "'\ r\JY
1 

( 3 . 6 . 6a) 

JL :: ~ t (\ \r\ ~ ( t\tt\~) =A ( t(\"'~ \-\~ t +c."'~ t-\.;1 \ 
\~ T<lv.~ t\-\-Q""~ \-\.:t (3 . 6 . 6b) 

Now , i n regi ons where \-\ ~ 0 and t\l f 0 , we h a ve, from 

(3 . 6.6) , 

\J /V A s~c..""- t\J 
-5\. A- ~ t Cl "'~ r\.J. 
This is the sol ution f or \\ =- \\ -;t • Similar l y , i f \-\;}-:::: 0 , 

\-l, tc , we find 

\J ~ AS~c..~ \-\, 
SL rv 1\ t Q v-""- \-\ , 

which is the solution for \-\ -=- \-\ l • In this sen se , t he 

above solutions represent a two - sol i t on sol ut i on of 

(3 . 3 . 1), -v-rhere the solutions correspon din g to t-\ l an d t\~ 

a r e the o rig inal solitons, l ocal ized solut ions o f t h e 

cylindrical wave equation . This p r ope r ty of s u p e rimposed 

sol ut i ons (3 . 6 . 4) may be shown to h old for a ny number of 

solutions t o (3 . 6 . 3): 

r\ ~ ?_ o( f\ \-\\(\ ( ~ ,1) 
I\"'- I 

and these solutions correspond to n -soliton solutions . 
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CHAPI'ER 4 

EXTENSIONS TO THREE-VARIABLE SOLUTIONS 

4 . 1 Einstein- Maxwell Equations with One Killing Vector 

In this chapter we extend some of the previous results 

to solutions of the Einstein- Maxwell equations in three 

independent variables (one Killing vector) . This section 

is devoted to a discussion of the appropriate Einstein-

Maxwell equations and extension of the results of Chapter 2 

to these equations . 

A detailed account of the derivation of the Einstein-

Maxwell equations in the presence of one Killing vector is 

given in Harrison (1968) . We outline the important parts 

of the derivation as follows . 

The metric is assumed to have the form 

where a. is an arbritrary constant, [=:!\ 

(4 . 1 . 1) 

sign ( 'd Kl< ) • 

K is some particular value of 0, 1,2,3. Greek letters 

take all values of 0 ,1, 2 , 3 except K , and all metric co-

efficients are independent of '1-..K. Therefore, a Killing 

vector field is generated by translation along ~K 

Latin letters (except K ) take on all values of 0,1,2,3 . 

If r :::. _ \ , the Killing vector is timelike, if f. = ;-\ 

the Killing vector is space - like . The metric is not 

specialized in any other way; (4 . 1 . 1) is a general four -

dimensional metric with one Killing vector . 

' 
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For notational convenience~ we de~ine the differential 

parameters 

~, \ ~) =- Xo(\3 ~a(~~ 

~ \ ( F; (;-J = i .,< ~ r:;o( t_; I~ 

~~(t=)= oolV>fj<><p 

(4 . 1 . 2) 

where Y~~ is the inverse of the three-dimensional metric 

X ..( ~ • to(\-> is a sort of "background 11 3-metric in the 

3-space that is the quoti~nt of the 4-space by the Killing 

vector . A semicolon denotes covariant differentiation 

with respect to 'b o<f-> • 

We assume that all metric coefficients and the electro-

magnetic field tensor are independent of XK We now wish 

to solve (1 . 1 . 2), (1.1.11) and (1 . 1.12) with this assumption . 

We define an antisymmetric tensor in the quotient 3 -

space : 

~ oZ ~ = -t' o/ 1 l3 --\ f3 1oZ ( 4 . 1. 3a) 

and note that the integrability condition on ~ol..{3 is 

L " " \ \ ( 4 . 1 . 3b ) 
q o< ()} 0 + Y"\ '&.() i -t "'~81 o{ = 0 . 

The 'no~.\' has a dual axial vector: 

'no(\->~ fe>{\3lf ~~~ ::Ct; (-~)~~~ 
0 

(4 . lo4) 

In terms of ~~ (4 . 1.3b) becomes 

(4 . 1.5) 

The Maxwell equations (1 .1.12) can be split into 

equations involving the index K and equations not involving 

K . Recalling that all quantities are a s sumed independent 

of '/-_ K. ~ the Maxwell equations become 
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f .. qc,(3 t fKr,o< = o 

e..z ~ ~ fo( \3, 'i = o 
where f.<>< \3lt is the alternating 3- index symbol . The 

second and third of these equations may be satified by 

choosing potentials f\ and ~ : 

r- <>< ~ =- t- ~ r '1 ~ c ~ ~ ~ ,;) ~ 
~ l(o( =- 6} ol.. • 

Using these potentials, the remaining Maxwell equations 

become, in terms of Z:~ , 

~;z(F\)- ~L:II (u, A) + e:t~ ~<:>(/3B;of ~~ = 0 ( 4 . 1. 6 a ) 

~;)_ (8)- ;;,tJ\ (u,~)-e:2Ut~f3 Pl,~ Z: 0 = o (4 . 1 . 6b) 

The Einstein field equations (1.1 . 2) , (1 . 1 . 11) become 

(4 . 1 . 7b) 

? o< ~ - d \J1o< U 1 j.> - ~ e. 1-{I.J,Z:oi. ~ f3 = ~ e e:- :l.V. ( f\/.(f\ 1 p-tl\tS1~ ( 4 .1. 7c) 

where ? .,.(, ~ is the Ricci tensor for the background metric 

d' ct, f3 . (4 . 1 . 7b) may be satisfied identically by choosing 

=t: <><. as 

~~ = e- '-i ~ [ lP) a<. -r ~ c: ( ~ f\; <><- f\ ~ ,« )] ( 4 . 1 . s) 

where ¢ is a new scalar "twist" potential . ¢ is very 

similar to the "twist" potentlal introduced in section 2 . 1. 

In fact, if f\ :::.. '0 =- 0 corresponding to pure vacuum solutions, 
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we see that 

' c v~b'( )d~ - 4U V'l~ \=> ::. I._ o( !3~ 0 -~ e. rj)} ~ 

and ¢ is seen to be the extension to three variabl es of 

the "twist " potential _5L of section 2 .1. We recall that 

it was JL that allowed llS to transform the vacuum Einstein 

equations and the Einstein-Maxwell equations of Chapter 2 

into identical form . We might now l ook fo r similar 

phenomena to occur in this case of three independent vari a -

bles . 

(4 . 1 . 6) and (4 . 1 . 7) for f\ 1 \3 1 U and ¢ bec ome : 

!J;;_ ( rp) - L.\ IJ 1 ( \..1 1 ~) t :2. c: \:> [6~ (A) - L\ LJ, ( l)1 A}] -

- ~ c F\ [ L\~ ( t)) - L{ ~I ( LL B Jl = 0 

[j'l.(~)- .).L\ 1 ( ~\A) -t e.-~U(6,(~J~)+:l£~L, CA;6) ­

- . .:< ~ Fi 6\ ( \3 )] =- 0 

~ 2 (B) - ~6 1 (Ut B) - e.- ~Ul_6,(~JA) + ~G \~ L~q(f\) ­
-~ c.. A b. , ( fi 1 co)]=- 0 

lJ ~ (u) -t ~ ~-d. '-l [ 6, (f\)-\- /.},(t)lJ -r ~ e_ l{u(~, (CJ>)+ 

-+ ~.-~ l. \) 6q( 'PrA) - 1-\ c. f16, (¢,5) + y ~;J. 6, ( f\) -

- 8 F\B~1 (f\ 1 ~) -\- ~f\~ L.\,(6)] -= 0 
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We now consider some special cases: 

Case (i) fi::: ~=-o 
This is the vacuum Einstein case . The field equations 

reduce to 

~~( '-\])-=--~-;).I{) 6\ ( ~) 

l3.) ( CjJ) = ~ ~ d \{), ¢) 

~ o< f-> :=. '-V, ot. 'f, {3 + _\ e_- ~ 'I) Cb I ol. C/J 1 f? 
.;l._ .).. 

where '\1 = ;:;:).U 

Case (ii) ¢= ~ .z 0 

(4 .1. 9a) 

(4.1. 9b) 

(4 .1. 9c) 

This is a case of the Einstein-Maxwell equations with a 

particular type of electromagnetic field. ~he field 

equations reduce to 

[} :1_ ( u) :: - t: e- ~\..t b 1 ( f\) 

61. (A)=- ;).6, (u,A) 
o , _.;n..l 
{ o{ \) ::: ~ \..). loi_ \j I\-> + o<. (.. e_ 

Case ( iii) cp::: A= 0 

(4.l.l0a) 

(4.l.l01J) 

(4 . l.l0c) 

This is a case of the Einstein-Maxwell equations with a 

different electromagnetic field than case (ii) . The field 

equations reduce to 

6~(U)=-c.e_-~u 6\(~) 

6J(B)= l6l(~,B) 

P<><~ = .:<u,o(ul\3+ ::tE::e.-).,u IQ'"" \3tf? 

The (c) equations for the ~<><? 

(4.l.lla) 

(4 . l.llb) 

(4 .l.llc) 

are equation~ for 

the background metric "to<.~ . The integrability conditions 
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on the Ricci tensor ~ o{ V' are the Bianchi identities 

(? a<. ~ - ~ ~ ..{ f-> \) J j <>< = D • 

When the (a ) and (b) equations are satisfied ~ these integra­

bility condit i ons are also satisfied . We may therefore ig­

nore the (c) equations for the moment~ and we see that the 

(a) and (b) equations are all identical if ( = + \ (space -

like Killing vector) . This is the extension to three varia­

bles of the results of Chapter 2~ since (i) is the vacuum 

Einstein case and (ii) and (iii) are Einstein- Maxwell 

cases . We see that again the electromagnetic potential 

A or t) takes the place of the "twist " potential ¢ o Fur ­

thermore ~ in cases ( ii) and (iii) cp == 0 vlhich means that 

f' ol.. = 0 and there are no cross terms in the metric of the 

form d '/../( d X«.. This is also analogous to Chapter 2~ 

where we noted that the stationary vacuum metrics (with a 

cross term) have the same field equations as the static 

(no cross term) Einstein- Maxwell problems . 

The problems treated in Chapter 2 all had at least one 

space- like Killing vector . Assuming a second Killing vector 

results in specializing the functions U 1 ~I A1 B and 

the background metric 0 ~ j3 still further . All the re -

sul ts of Chapter 2 may be obtained from the E. == + \ case 

here by further specialization . This means that the exten-

s ion to E:. = t \ in three variables is the natural extension 

or the results of Chapter 2 . We may make these results 

complete by noting that if f. ==- \ (time-like Killing vector) 
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we may still make the (a) and (b) equations of cases (ii) 

and (iii) identical to those of case (i) by the complex 

coordinate transformation 
r-

~ K -:::: \ Xo 

Y-o :::. ·, ~K 
This has the effect of changing the sign of [ from -\ to 

+ \ . Alternatively, we could set 

¢:::.i\f 
if ~=-\ to make all the (a) equations identical. 

4.2 Invariance Transformations 

If we concentrate on the (a) and (b) equations of 

the preceding section, they may all be written in the form 

!J;).. (\J)-::::. v -\ ( /~, (v)- ;J1 (JL)) 

6~ (() = ~\1-' 6,(\J;Jl) 
where'\) ::o. e. '-P or e.'--\ and Jlis any one of cp 1 f\ 1 5. 

(4.2.la) 

(4 . 2 .lb) 

We now consider extending the invariance transfer-

mation (3 . 4 . 2 ) to (4 . 2.1). Consider barred quantities V 
and C which are functions of the unbarred quantities : 

\J = \J ( 0, c) 
(_:::.c.(\J,c.) 

The differential parameters of the barred quantities are 

l inear functions of the differential parameters of the un­

barred ones . Using (4 . 1 . 2) and the chain rule, one finds : 

tq(\JJ=\{J\1~/),(V)-\- ~\JN\)IC~1 (\J1 c.) t V,c_J..~,(c) 

t,('J,c)= \jJ\/(l\J6,(\J)-t\1,c_f,c_6 ,(C) i- (\JNC.tc_ -r\J,t C..N) [)\l\JrC:) 

[JJ. (\j) := \j I\/ ~~ (\J) + \J I C. 6:J.. (<::.) + \]NV 6, (\f) -'f\J, <:<:~I (C:) "\" ~\.1/\Je. 6, ( \1 ,c:) 
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where a comma denotes partial differentiation . We may 

now look for finite invariance transformations as follows . 

We write ( 4.2 .1 ) using \J and C and use the assumed 

~unctional dependence to express these equations in terms 

of the di~ferential parameters of the unbarred functions. 

This gives 

v) v 6;).(\J) -t- \J, c 6-;J. (c)-r V;vv 61 (\J) + \J;cc 6\(C)-t-.:2\j/\JC C~q (\.J,c) 

= \1-'L_\i)~ 6\(\J)+ ~\j)\1\J,c. 6\(\J,c) +\j,~L\(c)- CJ~ a,(\J) -:)(JVC../C b\(v,..c) 

- c,c .6, (c)] 

CJ\J 6;;. (\/) + C> c..~~(C)-T-CJvv.6 1 (\J)+C1 cc 6 1 (c) -t- ~c1\Jc.t11 (\J,c) 

=. ~\j -I [\/)\) C)V LJ\ (\I)+ \j JC. (_/C. 61 (C) + ( \j)\j ( 1C + \J /C (> \J) 6, (V,C\J • 
We now substitute for the 6~'s of the w1barred functions 

I 
from (4 . 2.1) and equate the coefficients of each of the~~ s 

to zero . This means that we are looking for new solutions 

( \] , C ) which are functionally dependent on known solutions 

( \} , C. ) • This last step results in six second order par-

tial differential equations: 

\j)\JV' -\-l\lJ\{ = \i-\ (\j)~- c_)~) 
\J 

\j )CC. -_l_ \jl\J:: \i-' ( \l,c.~- C.~t) 
'\/ 

~\J-1 'J,c + ~\j;"C =-:;). \) - \ ( \j )\J \i,c.- eN C,c_ ) 

CJ\JV + t)\1 -:: ~ \)-\ \i,'\/C:.)\1 
- \J 
(.ICC- k = ~\]-' \i,c..lJC 

v 
CJ\Jc: + d.c,c\1-' =- ~\J-\\\)>vC,c+\J,c.C)v) • 

We now must solve the above equations 

(4.2 . 2) 

-
for\} , C as 

functions of \J ,C . By substitution one may verify that 

the transformation (3 . 4. 2), written here as 

\J ::: ;J.V 
(C-cr)\\J.;t. 

C= '\-t ;t((-<Y) 
(C- tS) ;) +\.I ;;\._ 

(4 . 2 . 3) 
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where ~ ~ \, and o- are constants~ satisfies (4.2 . 2) . On 

one hand this should not be too surprising ~ since the equa-

tions of Chapter 2 may be written, using the differential 

parameters, as 

6.-;;_ (\._\~ ~- e.-~U6l(Jl) 

t~ (J\) ::: :<6 , (~/Jl) 

(4 . 2 . 4) 

if we consider the differential parameters as being taken 

with respect to a metric given by ~<;?:::dp:l-ts>~d~ -+d-=t;;;t. 

for sections 2. 1 and 2. 4 and by dS:t -=- cl~~-t jd;;ld.e,.:l-ctt~ 

for sections 2. 2, 2.3, and 2.5. If we now let 

\J::e.u 

(4 . 2. 4) are seen to be identical to (4 . 2 .1) . 

On the other hand~ this result is very surprising ~ 

since it implies that the particular part of the isogroup 

that transforms only dependent variables is the same for 

(4 . 2.1) and (3 . 3.1) or (3 . 3.2) . (Recall that (4 . 2.1) are 

written with respect to the curved background metric ~..(. ~ ) . 

Although these two sets of equations are formally identlcal, 

when written out explicitly they are very different . 

(4 . 2. 3) may be used to give new, physically distinct 

solutions to (4 . 2.1) from old oneso Since (4-. 2.1) correspond 

to three different physical situations~ we see that any solu­

tion of the vacuum case (i) gives two more electromagnetic 

solutions . (4 . 2. 3) may then be u sed to generate new solu-

tions for all three cases . Since three variabl e solutions 

are rare, this result is important as we now get more in-

formation out of any one such solution. 
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APPENDIX 

DIFFERENTIAL FORMS AND PARTIAL DIFFERENTIAL EQUATIONS 

In this appendix we discuss how the calculus of dif ­

ferential forms may be used to find special solution sets 

of partial differential equations . The calculus of differ­

ential forms is essentially the calculus of surfaces or 

submanifolds of various dimensions; it systematizes the 

use of Stokes' Theorems and continuous transformation 

groups . If we recall that a partial differential equation 

may ue interpreted as an equation defining a family of 

surfaces , then it is not surpris ing that differential 

forms are found very useful when dealing with differential 

equations and their invariances . This idea is not at all 

new, having its beginnings in the work of the French mathe ­

matician Elie Cartan (Cartan, 19~6) . Our present purpose 

is only to show how the differential form calculus can be 

used as a tool, and the reader is referred to the works of 

Flanders (Flanders, 1963) and S1ebodzinski (S1ebodzinski, 

1970) for detailed accounts of the differential form calcu­

lus itself . A somewhat briefer account that is more in the 

spirit of the present discussion may be found in Estabrook 

(Estabrook, 1976a). 

A. l Basic Tdentities 

In this section we summarize without proof the nota­

tion and basic identities of the calculus of differential 

forms . We work in an n-dimensional differentiable mani -

fold spanned by a set of scalar fields (coordinates) )(l, 



-62-
= \ , ... , n, each with a continuous range of values . 

The basic geometric entities to be manipulated are vectors 

and 1 - forms . These exist at each coordinate point in 

auxil l iary (tangent) anJ dual - linear vector spaces . 

The coordin ate differentials d y,_"\ fu l'nish a ba s i s 

for the 1 - forms . A general 1 - form is then given by 
"() \ -

w = I=- A - a~' 
' :. I I 

where the F\ \ are scalar functions of the coordinates . 

The total differential desc.ribes, at each point X.\ , 

the fami l y of (n- 1) - surfaces X\ = c onstant, with similar 

in ·. rpretations for d X.a , ch_3 , etc. The general 1-

form, being an arbitrary linear superposition of basis 

1 - forms , may be thought of as a local, oriented, spaced 

set of surfaces at each point . 

To describe families of (n- 2) - surfaces , we introduce 

the ope r ation of exterior multiplication, denoted by A. 

The exterior p r oduct of two bas i s 1-fo r ms , d '1... \ and cl y,..,J , 

is written d'l-.~1\dKj This product describes the 

family of (n - 2) - surfaces 'f...\ 
yd.. 

constant, A = constant . 

The I\ operation is completely antisymmetric : 

J~~ Acl}\j ::: - d~JAdt..\ • (A . l.l) 

The exterior product is also associative : 

d '1...; f\ ( cl xJ + d '( KJ = d ~I " d ~ j -\ d 0 t-. d ~K • 

The basis 2 - fo r ms are all the 2 - forms d. 'K \ !\ d 'i-.1( where 

and d Y-...K are basis 1 - forms . A general 2 - form 

is then an arbitrary linear superposition on basis 2 - forms : 
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o- ::= i ?3--- ~~-(J(.K) d~i f\d l<.j 
I ::. I ,j.::. 1 j , 

where the ~ i~ are again scalar functions of the coordi-

nates . 

In an obvious extension of the above, we may intro-

duce basis p - forms (p=3, ... , n) by utilizing the exterior 

product . The basis p - forms can be defined as the exterior 

products of the basis (p - 1) - forms with the basis 1 - forms . 

The general p - forms are then similarly defined as arbi-

trary linear superpositions of basis p - forms . 

We next define the operation of exterior differentia­

tion, denoted by d, which takes p - forms into (p+l)-forms. 

For scalar functions ( 0 - forms) ~ , we have 

(A . l . 2) 

This definition may now be used to define the exterior 

derivative of a 1-form VJ : 
() "' 

dw = ~s ~, ~ iJ ~ ~'IJ (\ ~J(,j • 

This is clearly a general ization of the curl operation 

in three dimensions, and shows its non- metric character . 

Again, in an obvious way, exterior differentiation may 

be defined for p - forms . 

A common 1 - form is the gradient cl ~ of a scalar 

function ~ given by (A . l . 2) . Taking the exterior deriva-

tive of (A . l.2) 

"' " _L L 
_y:: .. \ \.::. \ 

and using (A . l . l) 

rf- -- ~ i., t-_cl)(J =­
'f) ' J 

we find 

0 , identically . 
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This ill ustrates an important theorem that is true for 

any form w 

d~W = 0. (A.l. 3) 

If w and () are forms of order p and q , respective -

ly, we have from the above 

Wi\ IJ = l- ~)?~ C5 t\ W (A.l. 4) 

<i( w t\cr)-= clw t'-O +G t)f w 1\dCJ. 
If c is a constant we clearly have 

de. -: 0 . (A . l . 5) 

A differential form CJ'" is said to be exact if d cr == 0. 

From (A . l . 3) we see that any exact form cr may locally be 

written as cr = cl w (we are not concerned with the global 

topological considerations that may vitiate this in the 

large) . 

We next introduce the (contravariant) vector fields 
--..::.. 
~ as linear superpositions of basis vectors at each 

point . The basis vectors are dual to the basis 1 - forms . 
~ 

A basis vector \ · 
\ 

can be represented as a (in some 

sense, infinitesimal) displacement along the lines of 

intersection of the n-1 coordinate (n- 1)-surfaces, along 
. 

which all but one coordinate ( ~\ ) is held constant . The 
~ 1"\ 

general vee tor is then V = L 
; :::. \ 

· ~ 

V' A· 
\. 

We think of it 

as a finite entity in the "tangent" vector space at each 

point . 



- 65-

The duality of the basis vectors and the basis 1-

forms is expresse d by 

\: J J~~::: b~ 1\ I l 

where j denotes the operation of inner produc t , or 
__..:. 

contraction . The contraction of a general vector~ with 

the basis 1-forms displays the (scalar) components of 

the vector : 

~ J d'f.-\ =\(\. 
__,. 

The contraction of ~ onto a basis 2 - form is given by 

\J J ci "'\ t\ ci~ = \) \L:}- \/~ J 't-, 
with obvious extensions to p-forms . 

This process of contraction is linear , and from the above 

we have 

(\Jj;:\i)J)CS" =~~cr+ WJo­
~\J)j () = ~ (\ijo-) 

~ _\ ( w t\IS) =- 0J ~ wJ 1\tJ "'"t- \)~\JJ 1\ (\} j ~) 
......,. ~ 

(A.l. 6a) 

(A .l. 6b) 

(A.l. 6c) 

where \j and W are vee tors, W and C> are forms of rank 

? and ~ respectively and ~ is any scalar function . 

Contraction clearly takes p-forms into (p-1)-forms . 

We next introduce the Lie derivative with respect 
.....!> 

to a vector field~ , denoted by~ 
\J 

We may think 

of the Lie derivative as a directional derivative taken 
~ 

in the direction ~ For any scalar & we have 

':£ & =V JJ~ __.. 
\} 

while for any basis 1 - form we have 

':£: ~~ = 'Ji. 
\j 
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By requiring that the Lie derivative be a derivation, 

and satisfy the Leibniz rule, for higher rank forms con-

structed by the exterior product r u le one finds the Lie 

derivative of any form w to be expressed as 

!w:::: \J Jdw + 6~.1w) 
\) 

(A . l . 7) 

and we see that Lie differentiation takes p-forms into 

p-forms . For any exact form dUJ, we have, from (A . l . 3) 

and (A . l . 7) , 

~Ju_y = dlV j dw~ :::: ~ ( 1 \.0) 
\) \i 

and we see that the operations of d 
(A . l . 8) 

and 'i 
\j commute . 

For any two forms ~ and ~ we have 

~(w t\cr) = (-j w)/\ e> + w t--( j-5") • ( ) 
~ \J ~ A. l . 9 

---=> ~ 

For any two vector fields ~ and UJ we have 

1-(W J v.: ) =:: l \J,\t].J w + GJ_j(~ wJ (A . l . l O) 
\l I ~ ~ J 

where L \1 , W is the commutator, or Lie bracket, 

of the two vector fields : 

[SJJwJi = \Jj6~i - w~J\J\. (A.l. ll) 

We final ly introduce the process of restricting 

differential forms to submanifol ds of the original manifoJd . 

We recall that in deallng with differential forms we make 

no distinction between dependent and independent variable s . 

In dealing with differential equations, however, 

this distinction is important . If we impose this difference 

between independent and dependent variables on forms, 

then we are restricting the forms to certain submanifolds 

of the orig inal manifold, which are coordinatized by t h e 
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independent variables. If we denote independent variables 

by '1-.Pt and dependent variables by Z:~ , then in these 

restricted submanifolds the exterior derivatives of these 

'X A 
. }(A restricted quantities and 7:' (denoted by and 

'V• 

r' ) are given by 

d~f\ ::: d ~I\ 
d'i-i -=- L d :ri d KI\ • 

f\ d~f\ 

A. 2 Cartan Theory 

We now consider the problem of representing a g iven 

partial differential equation by an appropriate set of 

differential forms . This set of differential forms should 

have the following property : the exterior derivative of 

any form in the set can be expressed in terms of the 

original forms in the set . The set is then said to be 

closed . This is an important property, since it implies 

that no further integrability conditions can be derived 

from the set of forms . This set of forms is then the 

basis of a differential ideal of the Grassman algebra of 

forms on the manifold . 

A submanifold of the differentiable manifold that 

annuls - gives zero values to - all forms in the set 

(and hence in the ideal) when they are restricted to the 

submanifold i s called, by Cartan, an integral manifold . 

We wish to obtain conditions that tell us when the integral 

manifolds of a set of forms correspond to solutions of 
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the corresponding set of differential equations . 

These ideas are expounded in Estabrook (1976a). We 

illustrate them here with an example . We use Burger ' s 

equation, one of the more important nonlinear wave equa­

tions (Whitham, 1974) . Burger ' s equation is 

(A . 2 . 1) 

In practice, the g iven equation is first rewritten as a 

first order system. A corresponding set of forms is then 

easily found . We first write (A . 2 . 1) as a first order 

system: 

~) ~ - v.=-o 
~rt-W=O 

w t ¢ v..- \..\ ) l( == 0 • 

(A . 2 . 2a) 

(A . 2 . 2b) 

(A . 2 . 2c) 

We see that there are two independent variables ( ~,t ) 
and three dependent variables ( ¢, IJ. , W) • Clearly, if 

we want solutions of (A . 2 . 2) to correspond to the integral 

manifolds of a set of forms, we should at least require 

that when we restrict the forms to independent and de­

pendent variables the integral manifolds reduce to (A . 2 . 2) . 

This may in fact be used to write a set of forms for 

(A . 2 . 2) . We see that (A . 2.2a,b) may be satisfied when we 

restrict and annul the 1 - form 

o<= 6~- u ~~- we\\ 
since restricting o< yields 

~ -==- ( C1> >'f.- u) ch. -\- ( (/)1"\ - w) ~ \ • 

Setting the coefficients of independent basis 1-forms to 
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(5-= w clX./\dt-\- ¢v. d)<. r-.d\- cl'---ll\~1 
will yield (A . 2 . 2c) upon restricting and annulling . 

The next procedure is to check that the set of forms 

is closed, i.e. that do<. , c\ \3' are contained in the ideal 

generated by ~ and ? . We find 

do( .::. - cl \J t\d)(- d\JJ t\6t 
d \-> = cl \JJ 1\~ ~ /\~1 + <P ch .. u, cl:< l\cl1 -t u d tP f\ d Yd\ d:\-

=- ~ K " dcx. - ¢ d ~ cit -t ~ o<. "d K {\cit • 

We see that doL is not in the ideal, but also if it were, 

d (?> would be . Thus, just the 2-form dol.. must be added 

to our original set of' forms o( and ~ . Since d .;l.~ =- 0 , 

the resulting set of forms is closed . lf we restrict and 

then annul ~o<. , we find 

UJt:::. ~\>< 
which is the integrability condition on (A. 2 . 2a,b) . 

For convenience, we write the generators of the 

closed ideal o< , 0, do<_ for Burger r s equation (A . 2 . 1) 

together here: 

o( =- d cp- u ~1(- \.u ~ 1 
clo(= -Ju "~)(- dw "~\ (A . 2 . 3) 

f3 = w 6 'K 1\~t + ct>u. d 'I_ I\~~ - cl'-.l_{\ ~1 . 
The integral manifolds of an ideal, like the solu­

tions of a partlal differential equation, may be classifie d 

a s either regular or singular . The general manifolds 
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are those which may be obtained by a sequence of Cauchy-

Kowaleski integrations, starting with one - dimensional 

integral manifolds and giving a chain of integral manifolds 

of every dimensionality up to a maximum
1
d . Cartan 

considers the criteria for an ideal of forms to be "well 

set" in the sense that the maximum dimensional regular 

integral manifolds of the forms represent solutions of 

the corresponding set of first order partial differential 

equations . These are the so called Cartan Criteria. Essen­

tially we want to be sure that the surface elements 

locally defined by stepwise integrations along vectors 

that annul the ideal of forms mesh together correctly to 

define solution surfaces of the partial differential 

equation. 

Although this may be done for ideals involving forms 

of any order we restrict ourselves here to differential 

equations with two independent variables and ideals 

generated only by 1-forms and 2 -forms. Then the Cartan 

criteria reduce to the following: the number of depen-

dent variables in the set of first order partial differen­

tial equations must equal the number of independent 

generating forms . In our example of Burger 's equation, 

there are three dependent variables in (A.2 . 2) and three 

independent forms in (A . 2 . 3) . The ideal (A.2 . 3) therefore 

constitutes a well set ideal for Burger ' s equation . If 

an ideal meets the Cartan criteria, it is said to be in 
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involution with respect to the independent variables . 

A.3 The Isogroup 

We now consider how special geometric properties of 

the ideal may lead to the construction of special solutions 

of partial differential equations . One such special proper-
~ 

ty is the existence of vector fields ~ that take the 

families of surfaces corresponding to the ideal into them-

selves under the nactive" coordinate transformation 
.....:> 

generated by~ • If we denote the collection of forms 

in the ideal by {~~ , then we are looking for vector 
___:, 

fields ~ such that 

~{1..~ e{lj. (A . 3 . 1) 
\l -.:>. 

Any such\) is called an isovec tor of { \ ~ and the 
~ 

collection of all such~ is called the isogroup, or 

invariance group, of { l \ By (A.3.1) we see that all 
--.0> 

transformations ~ will preserve the form of the orig inal 

system of partial differential equations . 
__, I 

The collec t ion of \j 5 satisfying (A . 3 . 1) can easily 

be shown to form a Lie algebra, since their commutators 

als o satisfy (A . 3 . 1) . If there are N distinct isovectors 
.....::.. 

V labeled by a subscript , ~ 1 Y> ::: \ ••• N, then the struc-

ture constants of the group are g iven by 

[\!~~~ vJ :: f, (_~\'> \jc • 
We now calculat e the i s og roup of Burgerrs equation . 

The ideal is given by (A . 2 . 3) . The first equation of 

(A.3.1) to consi.der i s 
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where A is an arbitrary scalar function. No other term 

is possible on the right hand side since ~ is the only 

1-f'orm. This may be treated by a technique applicable 

whenever there is a single 1-f'orm. Write 

f :::~ Jo(. (A.3 . 3) 

Since 

~ <>(_= \J J~o( + ci(\)1~) 
\) 

we have 

'J J ~o(_::: Ao<- ci f .. 

Expanding on the basis 1-f'orms c\~ , ~'l\. , d-\- , d'--'., d 1...0 

we have 

- \/udx +Vxclu.-\Jw6\-t\ltdw= \(ci&.-u.d'(-w dt) 

-~t~t -~~~Y--~uc\~- ~wdw-~,~~~ . (A . 3 . 4 ) 

We equate coefficients of' each basis 1-f'orm to zero in 

(A.3.4): 

-\j i.A::: -.\\.._\- \=J'/. 

-\lw=-'Aw-~JT 

\J~= -Gv_ . 

\/t =:. - f. 
JW 

\-=G(Q_. 
_,. . 

We next solve f'or the Vl , obtaining 

\)\..1::: U f; ¢ -t- f
1

y._ 

\Jw= w f; ¢ + Fjt 
'{.. \} ::: - ~>-.). (A.3. 5 ) 
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If we take the exterior derivative of (A . 3 . 2) we get 

~ doZ ~ (~t..)~oZ-t ~doL 
\f 

and Jd~ is seen to be already in the ideal . We need only 
\) 

consider~~ to complete the calculation . We put 
\1 

~~ = )\3'-t VLt\""--J~<>L (A . 3 . 6) 
\) 

where ) ,J , and If\. are arbitrary 0 , 0 , and 1-forms, 

respectively. Expansion of (A . 3 . 6) yields 

\J w d ~ l\ ~ t -;- \..\ \) ~ d X. t\ ~\ +- ~ \J \! ciJ<. l\ cl t-\- \.!.J ~ 'J~~ \ - w d \J T t\ d X 

-t cp ~ ~ \) x. t\ cit- cpu.~ \J +I\ d)(- d \j u/\ ci\ -t d\Jt Ad u = 

) ( w ~ ~ 1\ d-\ + & U ch:, 1\ c\\ - d \J. t\ d~) -t J ( <l \..\. l\ d X ~ J \.J.J t\ c\ ~) 
+ ( f\ <i '\ + B ci K -t C ~ u + \) ~ w) " ( d ~ - u ct x - ~ d-\) • 

~ , j, F\ , B , C, and D are arbitrary and are to be eliminated . 

The expression d\Jl , -\ =L..I) 'f,._ ; \ ,W, ~is just an abbre-

The equations obtained by 

equating coefficients of all basis 2-forms to zero are: 

\Jw + \.-\ \J ¢ "\- ~\}u +w\l~n<.+ w\J\t + ~u \Jx;x -t- ([>u.\J~t-\JJx 
~ ~(w-\- \flu)+ 1\u- \3G_j 

u__)\)~Jw + ~ll \J¥-JW -\Ju;w= :1- bw 

- w \j \ )\ - ':fJ u.. 'l')\JJ == - \) u. 

cp u \) "'1 ~ - \J v., ~ = - PI 

- w\J\ &. - cb u. \1\I.Sl. =- B 
W \) 'f.. ) U + C/> U. \J ~I u.. - \) '-' tU - \J t 1"-\- = - ~ - C uJ 

O=o 

(A. 3. 7) 
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- w \1 ~ \..1 -\- ct> \.}. \j ~ u. - \) t/ ~· -=:;_ :1 - ( u 
\Jt,~:: -C. 

'-1\u.::-\)\..l. 
Solution of (A. 3.5) and (A. 3 . 7) now yields 

\j~.:: k\-t tz3i-+ Kyt t- Ks-i\ 
\jt::. K.;l. -T d- \C3t +- K s \d.. 

\l'l>=- - k3\P + K~ + Ks (~-t¢) 
\lu.-=- -d._K"~~-:l.K5 uT 
\Jw-= -~K3w-l<y\...l.- Ks-( cf>+U~-\3wt). 

(A . 3 .8) 

The K i , i=l , ... , 5 are constants . If we in turn set 

all but one of these to zero, the resulting five isovectors 

can be used to generate all possible isovectors by linear 

superpositions with arbitrary constant coefficients. 

These five independent isovectors are given in Table II 

(page 75) . Rows 1- 5 are characterized by k\-) . A 

description of each type of transformation is provided 

where feasible . Each of these vectors describes an inde-

pendent generator of the invariance group. Vectors 1 

and 2 are obvious from inspection of (A.2 .1 ), but the 

others might not have been anticipated . 

Of course, the above could all be done in indicial 

notation without ever introducing forms and vectors; in 

fact, invariance groups have been traditionally calculated 

in this way (See Bluman and Cole, 1974). However , it 

seems that the use of forms facilitates calculation. In 

addition, the geometric insight gained is invaluable in 
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discovering special classes of solutions . 

A. 4 Similarity Solutions 

Harrison and Estabrook (Harrison and Estabrook~ 1971) 

showed how similarity solutions can be found from ideals 

augmented with additional forms found by contraction 

with isovectors. Again representing the ideal by t~~ 

consider the collection of forms 

(A . 4 . 1) 

where \J is now a particular isovec tor. •raking the Lie 

derivative of (A.4 . 1) we find~ using (A.l . lO) ~ 

~cs\= \J { ~rJ::: ~ J{IJ ={cr ~ 
\j \) 

where we have used (A. 3 . 1) . We see that the ideal of 

forms generated by the generators of {~)and the forms 
_,. 

{ cr} is invariant under the particular isovec tor v . 
We call {l.~ and ( cs-j collectively the augmented ideal. 

Since this augmented ideal is invariant only under a 
~ 

~ 

particular ~~ we may annul it to find a class of special 

solutions of the original equations. The augmented ideal 

{I> C5 ~ is closed . Since {I.~ was originally closed~ 

we must only check the forms{~~ . Using (A . l . 7) we find 

d[cs~ -=- d ( \Jj{-:L"\) =- l-\l_\ - \) J\dl] C {I, a J 
since\] is an isovect~r . 

We again illustrate with an example . We use the 

particular isovector obtained by adding a(isovector 2) + 

b(isovector 4) from Table II~ where a and b are arbitrary 
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constants . In components we then have 

\J'K ~ ~t 
\J-\" ~(A 

\J~=-'o 
\l \.\. =- () 

\j w =-'ou. • 

(A.4 . 2) 

The additional forms (A. 4 . 1) are found by contracting 

(A .4.2) into (A . 2 . 3): 

\JJo<.~~-\ou\-o..w > \}..\~oL=\:)\~0.-t'-o~~\~C\clw (A.4 . 3) 

\J j ~ = w c o-\dt- a.dJ<.) + ~ u. ( 'o1 cit- a.<iK\ -\- a..~ u . 
We now search for integral manifolds by simultaneously 

restricting and annulling (A . 4 .3 ) and (A . 2 . 3) . We already 

know that by restricting to independent variables (A . 2 . 3) 

yields (A . 2 . 2) and the integrability condition on U and 

w. We may thus substitute (A . 2 . 2) into (A. 4 . 3) . We 

first consider annulling \J j o( • This yields 

'o-\at q)J'r\- 0. cpl\ = 0 . 

This equation may be solved to yield 

¢=- cs\ -t ~(t- rs~/:J.) (A . 4 . 4) 

where ~ is an arbitrary function of its argument and 

is to be determined, and C) :::. \o( ~ • We find U and W to be 

\.).,_ =. cpJ'i. = ~I 

w ~ (])A;~ cr ( l--tt') 
where a prime denotes differentiation with respect to 

We may write 
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Then, since 

w=-cr(\-u\ ) 

from annulling (A . 4 . 3) we see that \f ~ d o{ is annulled . 

The remaining forms to be annulled a r e \3> and \J ~ \-> • 

If we now substitute fo r ~ , U, W, and 

cl"--t -= \'\'(ci'K- t3 1dt) 
into \J _\ \-> we obta in 

\J ~ 1->::: o. ci1-. L-\''- \' (cr\+-\ ) - {)( \- t'tU 
+ 'b\~\[cs ( \-tt1)-r l()\+')~'- f'~. 

Setting the c oefficients of d~ and dt to ze r o , we 

obtain a second order ordinar y diffe r entia l equati on for 

~: 

~ \\ - ~ ~ \_ CJ =- 0 . (A. 4 . 5) 

Annulling \) also yie l ds (A . 4 . 5) . Thu s any -\' satisfying 

(A . 4 . 5) will yield a sol ution to Bur ger 1 s equation . 

(A . 4 . 5) may be integrated once to yiel d 

~ I - .£? - t) 'fL =- c ( A. 4 . 6 ) 
,;)._ 

where c.__ is a constant of integr ation . Solutions to 

(A . 4 . 6) may be found, the sol ution depending on the 

constant ~ . In this way we have found a special c l ass 

of solutions (or integral manifol ds) of Bur ger 1 s e quation . 

It should be evident that upon obtaining the functional 

form of (Q , (A . 4 . 4) , we coul d have substituted directly 

into the original partial differential equation (A . 2 . 1) 
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to obtain (A . 4 . 5) . Upon solving (A.4 . 5) we would have 

annulled the augmented ideal . This procedure is much 

quicker than the above, and in sections 3 .1 , 3 . 3, and 3 . 5 

we omit this lengthy procedure and merely substitute the 

functional form back into the partial differential equa-

tion . 

As a generalization of the above, Estabrook and 

Harrison considered "generalized" isovectors that pre-

serve only the augmented ideal . Denoting the augmented 

ideal by {~) , we would then have 

~{_l'jt:-[IJ . (A . 4 . 7) 
\.1 

This idea is motivated by n oticing that since we are 

searching for an augmented ideal invariant only under a 

specific vector the augmented forms (A.4 . 1) could have 

been included as part of the original ideal {I_ 1 , even 
_,. 

though their exact expression was not known since ~ had 

not yet been found . This is the essential content of 

(A . 4 . 7) . As opposed to (A.3 . 1) which yields linear 

equations for\t , (A.4 . 7) yields nonlinear equations . 

Once such a generalized isovector is found, it may be 

utilized in the same way as isovectors to obtain special 

solution sets . Although we do not present any generalized 

similarity solutions for Burger r s equation , we do present 

some in sections 3 . 1 and 3 . 5 for the Einstein field 

equations . 
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Most problems of physical interest consist of a set 

of equations and boundary conditions. The isovectors and 

generalized isovectors may still be used to generate 

special solution sets . One would look for those com-

binations of isovectors and generalized isovectors that 

leave the boundary conditions invariant and proceed as 

before . Examples may be found in Bluman and Cole (1974) . 

A. 5 Conservation Laws 

Differential forms are also useful for finding con-

servation laws for partial differential equations . If 

we can find an exact 1-form, d 'V , in the ideal, then we 

have found a (differential) conservation law for the set 

of partial differential equations . From Stokes' Theorem 

we obtain 

jd~= s 't> 
\j d\) 

where \} is any volume in the manifold bounded by the 

closed boundary manifold cl\J . If \j lies in an integr~l 

manifold, then the restriction of d~ to this integral 
rV 

manifold, denoted by d'V , is zero, and the above becomes 

which is a non-trivial integral conservation law if~ 
"" itself is not in the ideal (since then 'P =o ) . 

We again illustrate with Burger 1 s equation . We 

seek all 1-forms ~ of the form 
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(A.5 . l) 

that satisfy 

d ~ ci. (A . 5 . 2) 

Using (A . 2 . 3), (A . 5 . 2) becomes 

d K 1\~~( W (;.1u -t cp\l &1 u..- VJ t-1 $~IV.. G ,cp) "\- dWI\dt ( Gc uJ- t-t u) 
-t-6wl\~;((~w)=-D • 

Setting the coefficients of basis 2-forms to zero gives 

three equations for r and G- : 

F)W:::. D 

f I \.X. -=- G I u...J (A . 5 . 3) 

w b-cu.+ Cf>~G,)u.-w ~¢ +\...\.(; 1 ¢ = o. 
The general solution of (A.5.3) is 

~ :::. u c ( ¢) -t- o( ~ +- (3 

G-~ w C(tp) + ..z (u- </J:J(;).) -t~ (A . 5 . 4) 

where ~~~~~are arbitrary constants . The first terms 

correspond to a 1-form C(~) o( which is already in the 

ideal and so a trivial generalization of the conservation 

law we seek . Hence C~)can be set equal to zero. 

From (A . 5 .l ) and (A . 5 . 2) we see that we can sub­

tract any closed form des- from ~ , since d :t C) = () . <Y 

is a new variable or coordinate . Its introduction allows 

the 1 - form 

~ ~ - ~a t- ~ ~ 1- -r G- dt 
with t=" and {;-given by (A.6 . 4) to be added to the ideal; 

since the augmented ideal is still closed, the Cartan 
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criteria remain satisfied . Annulling ~ then gives 

())~ =: ~ 

GJ\" -:::.. f,. 

for ~ and & belonging to any integral manifold . In terms 

of independent and dependent variables, this becomes 

iS; 'f.. ::: of-. cp + \> 
cs-,t-; r;( (cp,i-- _tf) i'b . 

If we choose \-> = ~ =.. 0 , we obtain 

rst'f.- =- o~.. ¢ 
tJ

1
t- = o( ( (/;Jy,- (b~/;J.) (A . 5 . 5) 

which is the Cole-IIopf transformation (Whitham, 1974). 

In fact, if we compute the isogroup of the augmented ideal, 

we find that there are now seven isovectors . One of the 

new isovectors has components that depend on the partial 

derivatives of a function ~ l~Jt) which satisfies the 

heat equation 

(A . 5 . 6) 

There are thus an infinite number of such new isovectors 

corresponding to the infinitude of solutions to (A.5 . 6) . 

This is an indication that the transformation (A.5 . 5) 

has linearized the equation (A . 2 .1 ) (Estabrook, 1976b). 

In fact , if we set o( = -1_ in (A . 5 . 5) and eliminate ¢for 

~in (A . 2 .1 ), we obtain 

!SJY-t - d.nrf,~ 't\1-- cs)i,i_'l,. = 0 

which integrates to 

DJt - r:s na- cr; '1\'i-.-== 0 (A.5 . 7) 
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where we have chosen the constant of integration to be 

zero . If we now let 

!) :::.. \od v 

(A.5 . 7) becomes 

\I; X~.::. \flt 

and the linearity is displayed explicitly . 
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