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ABSTRACT 

Numerical approximations of nonunique solutions of the 

Navier-Stokes equations are obtained for steady viscous 

incompressible axisymmetric flow between two infinite 

rotating coaxial disks. For example, nineteen solutions 

have been found for the case when the disks are rotating 

with the same speed but in opposite direction. Bifurcation 

and perturbed bifurcation phenomena are observed. An 

efficient method is used to compute solution branches. The 

stability of solutions is analyzed. The rate of convergence 

of Newton's method at singular points is discussed. ln 

particular, recovery of quadratic convergence at "normal 

limit points 11 and bifurcation points is indicated. 

Analytical construction of some of the computed ~elutions 

using singular perturbation techniques is discussed. 
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CHAPTER 1 

THE PROBLEM 

1.1 INTRODUCTION 

The steady flow of a viscous fluid in a semi-infinite 

region bounded by a single infinite rotating disk was first 

studied by von Karman in 1921 [30]. He transformed the 

Navier-Stokes equations into nonlinear ordinary differential 

equations by introducing similarity variables. In 1951, 

Batchelor [ 1] furthered the study to the flow between two 
' 

rotating coaxial disks, using the equations derived by von 

Karman. 

For the rot at in g coax i a l d i s k s p r· o b 1 ern w i t h no s u c t ion , 

many computations have been attempted. Among them: (i) 

Mellor·, Che1pple and Stokes in 1968 [22] computed thr·ee 

different solutions when one of the disks is stationary, 

that is 't = 0, where 'I is defined as the ratio of the 
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angular velocity of upper disk to that of the lower disk; 

(li) Pearson in 1965 [23] solved the time dependent pr o blem 

and obtained two different steady-state solutions when 

~ = - 1 ; and ( iii ) most recent 1 y H o 1 o·d n i o k , Kubicek and 

Hlavacek in 1977 [ 8] obtained five different solutions f o r 

¥ = 0.8. For large Reynolds number and '( = -1 there have 

been many theoretical investigations in recent years. 

h a s b e en g e n e t ' a ted b y t he d i f fer· en t con j e c t u r· e s 

This 

o f 

Batchelor [ 1] and Stewartson in 1952 [ 2 ~]. The existence 

theorems of McLeod and Parter in 1974 [21] and the 

perturbation construction of Matkowsky and Siegmann in 

1976 [18] showed convincingly the conjecture of Stewartson , 

which says the fluid is non-rotating in the interior 

inviscid region as the Reynolds number tends to infinity, is 

correct. However, the conjecture of Batchelor, which called 

for a transition layer midway between the two disks, is 

still an open question. In 1969, Tam [29] with similar 

perturbation techniques to that used later by Matkowsky et 

al., exhibited the computed solutions of Pearson. 

In this thesis we systematically compute the many 

different solutions of the time-independent rotating c oaxial 

disks problem with no suction. We report only a porti on o f 

t he com put e d s 0 l u t i o n s f o r· R e y no 1 d s n u 'Tl be r· R ~ 1 0 0 0 . a n d 
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-1~¥~ 1, numbering eleven solutions for ¥ = and nineteen 

for ~ = - 1 . The r· e s u l t s o f Me 11 or e t a 1 . , H o 1 o d n i o k e t a 1 . 

and the time dependent computations of Pearson are 

reproduced. The stabi lity of the computed solutions are 

discussed. Asymptotic expansions of some of the solutions 

at ¥ = -1 are constructed. 

In the next section, the formulation of thP problem and 

an important lemma are given. In Chapter 2 the theory on 

which the computations are based is briefly discussed. This 

includes simple bifurcation in Section 1 , 

pseudo-arclength continuation in Section 2 and the notion of 

local exchange of linearized stability in Section 3 

(Keller [12], Crandall and Rabinowitz [ 4]). A new result 

in ~xchange of stability is derived at the end of Section 3. 

Chapter 3 is divided into five sections. Section 

discusses the numerical method of two-point boundary value 

pr·oblems (Keller· [ 11 J). Section 2 gives a brief descr· iption 

for computing a solution branch (Keller [13]). Section 3 

provides a proof of rate of convergence of Newton's method 

at both regular and sinRular points; an extension to 

solutio n of general nonlinear systems in which the Jacobian 

is singular is indicated. Section 4 is concerned with the 

numerical treatment at singular points; an explicit method 
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for the computation of the coefficients of the al gebraic 

bifurcation equation is given. The numerical implementation 

of local exchange of linearized stability (Keller [1 2 ]) will 

be treated in Section 5. In Chapter 4 the discussion of 

solution branches and their stablity is g iven. In the last 

Chapter of this thesis, we study different soluti o ns for 

'( = - 1 u s i n g s i n g u l at' per· t u r· b a t i o n te c h n i q u e s . 

1.2 FORMULATION 

We consider the axisymmetric time-dependent 

incompressible viscous flow 

disks. The lower disk o ccupies 

between two infinite rotatin g 

the plane z = 0 and the 

upper disk is at z = L. The upper and lowe r d isk s a r e 

allowed to rotate about the z-axis with an g ular· velocities 

n 1 ~ tl ' and n I \ t.) t ' e spec t i v e l y . F u r the r , l e t f 2. ( t ) a n d f I ( t ) 

be the uniform suction through the surface of the up pe r a nd 

lower disks respectively. Us in g polar cylindric al 

coordinates (r, e , z) with the correspo ndin g fluid 

velocities denoted by (u, v, w), we .write the RO Vernin g 

equations of motion: 

Continuity Equation 
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(1.2.1) = 0 

r-Momentum Equation 

(1.2.2) : - r.. + "( \A rr + ~ + IAu.- ~) 
! r t' 

9-Momentum Equation 

(1.2.3) = 

z-Momentum Equation 

(1.2.4) 

where p is pressure, ~ is density and is kinematic 

viscpsity. We now introduce dimensionless variables, 

indicated by * That is, r=r·*L; z=z*L; t=t*l.n.; u=u*Ln.; 

v=v*Ln.; w=w*Ln.; and n i. = fi~* .n. t i = 1 t 2; 

where n. is a chosen reference value of angular velocity. 

Define the Reynolds number R: 

(1.2.5) R = 

The dimensionless equations are identical to (1.2.1 

1 .2.4), with v replaced by 1/R- and we drop the asterisk 
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from the equations. 

Let the axial velocity w 

Karman [ 30]) 

( 1 .2.6) w 

have the form (von 

The continuity equation then gives the radial velocity 

(1.2.7) 

Differentiating the z-Momentum equation with respect to r 

and using (1.2.6) and (1.2.7): 

( 1 . 2,. 8) 

Substitution into the r·- Mom en tum equation implies 

(v~/r~- A/rt) is a function of (z,t) alone, say R(z,t). 

Evaluating at z = 0 gives 

n ~ (t.) - 'B(D,t) 

This implies that A/r must be independent of r. 

angular velocity must have the form 

Hence the 
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(1.2.9) 

Differentiation of the r-Momentum equation with ~espect to z 

once and using equations (1.2.6)- (1.2.9), we have 

(1.2.10a) f~'lt-. 

The 9 -Momentum equation simplifies to 

(1.2.10b) CJt 
_, ( = R ~H, - <ji:f jf~) 

The boundary conditions for (1.2.10a) and (1.2.10b) are 

-{:(o,t.) = f, l t.) f {\,-t:) - f1lt) 

fia l 0 1 t) ~ 0 f~ ll ,t) = 0 

(1.~.11) 
.n. 2lt) CJ Lo 1t) -:: n.., t-t) ~ l t.-\::) -:::. 

For computational purpose, we write the above two 

nonlinear partial differential equations in (z,t) of 

(1 .2.10a,b) as a first order 5ystem of partial differential 

equations. 

(1.2.12) -- F (-u,i<) 
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where u, F, 8 are given by 

(1.2.13) F 

U-z. 

l.t3 

u't 

RliAtU'i + 4 Us~) 

u, 
fqu,U4- UJ..US) 

1>: 

The boundary conditions ( 1 . 2 .11) become 

- D(o(-t) 

(1.2.14) 
o<, tt) 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

I!) 0 0 0 () 

0 0 0 0 

where matrices 8 • and 8, and vector·s oC0 ( t) and o< 1 < t) 

[: 0 0 0 0 

:] (1.2.15a) 'Bo - 'B, : 
I 0 0 0 

0 0 0 

(1.2.15b) 
o<olt) ::: 0 

Jl \tl 
I 

o(' lt) 

0 

0 

0 

0 

0 

() 

0 
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For the time-independent problem with no suction at 

either disk, equations (1.2.12) and boundary conditions 

( 1.2.14) become nonlinear two point boundat' y val•Je problems 

for Ot'dinar' y differential equations. 1\ssuminP,; ..Jl 1 is 

nonzero, we introduce ¥ as the ratio of angular velocity of 

the two disks: 

(1.2.16) 

Taking J\ = .fl.0 , the e quat ions and bound at' y con rl i t ions be corn e 

(1.2.17a) lA'! • Fl-u, !Z) 

13., 

(1.~.17b) 13, 

€'3 

where u ' F' 8 
0 

We note 

parameters: 

"'A\0) = €~ 

14 l \) ::: '!( e ~ 

- ( 0 0 \)T 

and 8 \ are same as above. 

the time-independent pr'o blem has two 

n, the Reynolds number and '( , the ratio o f 

the angular velocity of the two disks. We focus our studies 

on the following semi-inf1nite strip I 
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(1.2.18) I{'{,F.):: l (¥,1<) \~\ ~\, R>o) 

We can do this because solutions inside the strip are 

r·elated to those outside : \¥\_.1 , R ~0. For· any nonzero }( 

and R, let (f,(z), g,(z)) satisfy the system (1.2.17). 'tJe 

seek a new pair (f2 , g 2 ) that are transformations of 

( f, ' g,) such that the parameter ~ in the boundary 

conditions (1.2.17b) is replaced by its reciprocal 1/~. 

This can easily be accomplished as follows: 

(1.2.19a) 

( 1 • 2 • 1 9 b) ~i. t 1 ·, )( I F.) :; 
I 

)( 

whe~e the constants p, q, r and s are to be determined from 

(1.2.17). The tr·ansfor·mations ( 1. 2. 19) cor· respond to 

interchanging the role of the disks. That is, the bottom 

disk (z = 0) for g 1 becomes the top disk (z = 1) for g z and 

the top disk for g 1 becomes the bottom disk for g~: 

(1.2.20) ~h,(\i~.Ft) = 
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!::~ l:..._l Let (f, (z; (
0

, R_), g, (z; ~ •• R)) be a solution to 

(1.2.17) for the parameters R = R., 'lr = l"0 ~ 0. Then 

(-f1 (1-z; 11~. ,1~.1 R)/ll(.l, g 1 (1-z; 1/l(0 , ~~.IR)/ 'l! 0 ) is a 

solution to (1.2.17) for the modified (or redu~ed) 

R = \l(.\ R0 , and 't = 1/'¥'0 • 

Proof of Lemma 1 . 1 : The --·-- no-slip boundary conditions for f, 

and f,'! are automatically satisfied. From (1.2.20) g, 

satisfies our desired boundary condition at z = 1 . To 

determine the constants p, q, r and s we substitute (1.2.19) 

into the differential equations (1.2.17a). The r-Momentum 

equation gives q = -1 and r = 1. The 9 -Momentum equation 

implies p = s = 1 for 'l( > 0 and p = s = 2 for 't < 0. This 

completes the proof. 

For any Reynolds number let u ( ~ ) = 
(f1 (z; 't, R0 ), g 1 (z; ~, R

0
)) be a solution to (1.2.17). 

For r = applying Lemma 1.1 gives 

(1.2.21) u + = ( - f, ( I - ~ J I • R 0 ) I ~ I ( l - ~ I , R. \) 

U+ is a solution to (1 .2.17) for the same Reynolds number 
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R
0 

and ~ is unchanged. 

In general U~ is different from U(1). However we can 

have U+ = U(1) if and only if f
1 

is anti-symmetric and g is 
I 

symmetric about z = 0.5. As a simple test we need only 

ex amine f
1 

( 0. 5; 1 , R and g
1 

(0.5; 1, R ). Since if either 

(1.2.22) 

is satisfied, then Ut* U(1). 

Similarly for '( = -1 Lemma 1.1 gives 

(1.2.23) u 

U i s d i f fer· en t f r om U ( - 1 ) i f e i the r· f 1 ( z ; - 1 , R 0 ) or· 

g 1(z; -1, R0 ) is not antisymmetric about z = 0.5. We state 

this in 

Cor~!_!_arl. l_·-~ (a) For· any Reynolds number and ~ = 1 let 

U(1)-= (f 1 (z; 1, R), g
1
(z; 1, R)) be a solution to (1. 2 . 17). 
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In general U~: (-f1 (1-z; 1, R), g1 (1-z;, 1, R)) is different 

from U(1). However, we c an have U~: U(1) iff f
1 

is 

anti-symmetric and g 1 is symmetric about z = 0.5. 

(b) Correspondingly, f o r any Reynolds number 

and l( = -1 let U(-1): (f1 (z; -1, R), g
1 

Cz ; -1, R)) be a 

solution to (1. 2 .17). In general u = --
(-f1 (1-z; -1, R), -g

1
(1-z; -1, R)) is different from U(-1) . 

However, we can have u_: U(-1) iff f 1 anct g
1 

are anti-

symmetric about z = 0.5 . 

For any Reynolds number R and ¥ = let U(1) be a 

solution to (1.2.17). (Similar ar gument can be used for the 
1 

case '5' = -1.) We observe the boundar·y conditions for U(1) 

at the upper disk are the same as those at the lower disk. 

For,some small positive E << 1 we consider the following 

sets of boundary conditions 

fz.\0) = fu lo) = fl.(\) ::. fz~ l 1) : 0 . 
I 

(1. 2 . 2 4) 
q ':1. l C:.) = <:Jz.\1) = ,_ e 

(1.2. 25) f! lO \ '::' fn \O) : f3 t\) ~ +3~ \1) : 0 I 

l.j~ lO\ : l-~ ; <.h l') = 

He re both U2. : ( f2. , g 2.) an d sati s fy the 

differential equation s (1. 2 .17 a ), and as ~ tend s t o ze r o 
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they both tend to u ( 1 ) . lf g, is symmetric and f, is 

antisymmetric about z = 0 . 5 then solutions ( fJ. 1 g~) <'lnd 

(f) 1 g~) satisfy 

f:a. \ c' - f':J l 1-~) 

CJ-z l~) - ~!) '·-~) 

On the other hand if g 1 is asymmetriQ and/or f 1 is not 

antisymmetric about z = 0.5 then 

(1.2.26) 
f1 ( f. ; 1- e , R.) 

Cj~ l ;"! ; \- G 1 Ro) 
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Cl!APTEI1 2 

THE THEORY 

In this chapter we describe the theory on which the 

numerical computations are based. In Section 1 we review 

simple bifurcation theory. Section 2 studies the 

continuation of solution branches by pseudo arc-length 

parametrization. In Section 3 we analyze the stability of 

solution branches. 

2 .1 SIMPLE BIFllRCATION THEORY ON SMOOTH BRANCHES 

We shall restrict ourselves to time-independent 

problems. Specifically let tn be some Banach Space, we 

consider the nonlinear problem 

(2.1.1) G(-ul.\)::: o 

where UE-18, AE IR, anrl G: \Ax \R-P\11. The time-independent 

rotating coaxial disks problem is an example : 



(;. l "'' A ) _ 
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1.\~ -F\"\A1 fll 

"B, u.l') - ~e~ 

= 0 

where F is given by (1.2.13) and 8
0

, 8
1 

and e :! ar·e giver. by 

(1.2.15a) and (1.2.17b). Here ~ can be either the Reynolds 

number R or the ratio of the angular velocity of the two 

disks ~ . 

Let s be a parameter along a smooth solution branch r 
of (2.1.1). We see that scan be the parameter· A itself or 

it can be thought of as arc-length along r (Keller·[ 13]). 

By a smooth branch we assume both the solution u and the 

para~eter A have all the derivati ve s with respect to s 

along r that will be required ir. this chapter . 

Let (u(s
0

), .l(s
0

)) be a solution to ( 2 .1.1). 

Q_efinition ~Q (u(s.), 1(s
6

)) is said to be a ~eg_~l._~r_ p~int 

if the Frechet derivative 

c;.• 
14 
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is nonsingular . 

Definition~ (u(s
0

),l(s
0

)) is 

if G 0 is singular. 
"' 

said to be a critical 

In this thesis, we deal with two different kinds of 

critical points: simple bifurcation points and normal limit 

points. We review some standard results on simple 

bifurcation points in this section. Normal limit points 

will be treated in the next section. 

Definition 2.2 The critical point (u(s 0 ),1(s
0
)) is a ~~~el~ 

bifurcation poi~~ if two smooth branches of (2.1.1) have 

non-tangential intersections. In particular, the foll owing 

hold 

(2.1.2) N ( (;.: ) : Codi'M R ( <r; ) -:: 1 

( 2. 1.3) 
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At a simple bifur·cation point (uCs 0 ),}.(s 0 )) let the 

null space of G: be spanned by 'f, , its adjoint by '\', . 

From (2.1.3), ther·e exists <f0 'i Vj such that 

(2.1.4) 

We make <fo unique by r· equirin g 

(2.1.5) :: 0 

Repeated differentiations of ( 2. 1.1) with respect to s 

yield 

(2.1.6) 

(2.1.7) 

(2.1.8) Gl.l Usss -= - ~l.l"'"'"'su,"'~ -)lGIAu,\"'s~s-tGu>.x>.,~s-((1.\.\l.ss)"'s 

- 3 ( G"'"' '-'s + c.; ... )l ~s) "'ss - 3 Ci).). >-s >-ss 

- <i.>, ~ sss - G>.>.>- As ~s ),s 

Non-tangential intersectio n o f branches of De finiti on 2 . 2 

implies that the derivative ~s(s0 ) cannot be zero on both 
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b t ' an c he s at the simp 1 e b i fur· cation p o in t . Hence • e v a 1 u a t in g 

(2.1.9) 
* 0 4--, G)\ -= 0 

For (2.1.7) to have a solution at (u(sco),A(s
0

)), 

hand side must lie in the range of ~:, that is 

(2.1.10) 

its ri~ht 

Because the null space is one di~ensional, we can write 

u(s ) as a direct sum of 'f0 and lf,. That is s 0 

(2.1.11) Us (So' = + 

Substituting (2.1.11) into ( 2 .1.9) we obtain a quadratic 

equation for unknowns fl<'0 and o< 1 

(2.1.12) 2bot 0 o( 1 
1 

+ C.oco 

where coefficents a, b, c are g iven by 

0 
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'f~ 
0 

Q. = G-~ll ~, ~, 
(2 . 1.13) 

'f~ [ 0 c;.u.·). l ~, b = c.~-." 'f. t 

'f. { 0 • <r:). \ t = G-•• <f. If. ~ 1. G-1.\..\ ~. ... 
' 

The unknowns Ol0 and 0(1 can be made unique by requirin g 

(2 . 1.1 4 ) = 1 

Equation (2 . 1.12) is the b i fur c at i o 1'! 
--- --r---

For nonlinear two point boundary value problems, an 

efficient computational method for the coefficients ( 2 . 1.11) 

will be given in the next c hapter. 

lf a in ( 2 .1 . 13) is non-zero, we f o rm the quotient 

q = "'/ CI( • . Let q _ be a nontr·ivial solution of (2. 1 . 12), then 

we ha ve ano t her root tt = ~+ of (2.1.12) if 

(2. 1 .15) + b 0 

(2.1.15) is a condition for bifurcation. Thus, assumin g 

roots ar e d is t inct, if q _ is the root corresponding to a 

known br·anch r;_, then q 1' is the root c o r responding to th e 

bifurcated br anch . 
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Let r~- be the smooth solution br· anch contain in~ 

A new br· anch r,+ is to be rietermined which 

emanates from (u(s0 ),~(s0 )). Now the r·oo ts q*- of ( 2 .1.1 2), 

if imaginary, have to occur in conjuRate pairs. /\lonfS r;'-
let u(s) be the real solution for the real parameter A (s) . 

Hence at the simple bifurcation point the 'tangent vector' = 
q_ = (6{0 -,0C1_) is real along r;_. This proves the tan ge nt 

vector at the bifurcation point along the new bifurcated 

branch, r;., is r· eal. That is, the solutio!) along r;. is 

real. 

Let ( «o,, GC1-a:) be the solutions of ( 2 .1.12) satisfyin r, 

( 2 • 1 • 1 4 ) • For sufficiently small ~ s, the approximate 

solutions near (u(s0 ) ,~(s0 )) are given by 

tA ( s. + ~ S ) = \.\ l So) + ~ S lAs -1::. ( So ) 

(2.1.16a) 

where us (s ) is given by 
:l: 0 

( 2 • 1 . 1 6 b) Us% t So ) = 
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2.2 NORMAL LIMIT POINTS AND PSEUDO ARC-LENGTH CONTINUATION 

There are other types of critical points which are not 

bifurcation points. In this section we look into one 

special type at which the solution branch ~ ' t u r· n s b a c k ' 

on itself. We show (Keller [12]), by proper· ly choosing the 

parameter sand solving an extended system, equation (2.1.1) 

has a unique isolated solution at the critical point in the 

s-parameter space. 

\l E 1B 

c 

-

'Bi f IA't"CO.tion "Di~~T"I)IWI :• 

A re~"'\q,r soU-\\'itW\ poh,t ; 13 ~ "Bifu.vtc,.;hoY\ poln'\:. ; 

C W\l)t-IW\.._\. \iM\\. f>Oi"'t . 

We introduce the idea of pseudo-arclenp;th 

parametrization of solution branches. Instead of solving 

equation (2. 1. 1) for a fixed ).. , we let A depend on a new 

parameter s fi IR. We then need an additional equation to 

determine ~ -a nor·malization equation of the for·m 
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(2.2.1) = 0 

We now choose Nh such that s, the new introduced parameter, 

is an approximation to ar·c-length along r.,.. In particular· , 

we use 

(2.2.2) Nh: euslS~)~(u\sl-U(So)) +l\-e)Asts.)(A(S)->.ts.\) 

- ( s-so) = o 

where (u(s
0

),A(s
0

)) is a known solution of (2.1.1) and 

eeco,n. 

Defini~_~o_!!_ ~:J. A cr· itical point (u(s.,),A(s 0 )) of (2.1.1) is 

is singular and satisfies 

(2.2.3) dirt\. N ( G: ) :: cod1m R ( G~ ) = 1. 

(2.2.4) 

(We observe the difference between a normal limit point a nd 

a simple bifurcation point (Definition 2.2) is cond iti 0 ns 
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( 2 . 1 • 3 ) and ( 2 . 2 . 11 ) • ) 

At a no r· m a l l i m i t p o i n t , ( 2 . 1 . 6 ) h a s a so lu t i on i f r~ n d 

only if 

(2.2.5) 0 

In addition (2.2.4) implies 

(2.2.6) + 0 

In the neighbourhood of a normal limit point, ,X(s) has a 

Taylor series in (s-s0 ) 

Indeed, simple calculations using (2.2.5)-(2.2 . 6) in (2.1.7) 

yield: 

(2.2.8) = 
't'~ Gr~u. ~. lf, 

~;G~ 

If a = 0 X5ss( s 0 ) can easily be shown, using (2.1.8), to be 

(2.2.9) 
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Here w is the solution to 

(2.2.10) 
• 

G-~ w = 
:9\ fw- o 

I I 

If a t 0, in a small neighbourhood about s a the 

solution branch 'turns back' on itself. In the following 

lemma and theorem of H.B. Keller [13], we see that, by 

solving the inflated system (2.1.1) together with (2.2. 2 ), 

solution branches containing only normal limit points 

(especially those with ~ 5 $ (s 0 ) non-zero) possess only 

regular points in the pseudo-arclength s-space. That is, 

the extended Frechet derivative 

( 2 • 2 • 1 1 ) = 

is nonsingular. Both the lemma and the theorem can be found 

in Keller [12]. 

Lemma 2.3 Let ~ be a Banach space and consider the linear 

A ol ~ operator cl"\ : 18 x IR +(3 x \R of the form 

[
A SJ { A:e~s ,A : • where 
c. 1> <: .. : ~ .. R" l>: , • ..., R" 
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(i) If A is nonsingular then ~ is nonsingular iff: 

( 2 .2.12) 

(ii) If A is singular and 

( 2 . 2 .13) di~ N (A) = Co~i~ K l A) = \) 

then ~ i s non s in g u l a r i f 1
' : 

c.) c4i~ R ('B) = -J ) c,) I{(B)n R(A) = o 

(iii) If A is singular ar!d dim N (A)> tJ then .A is 

singular. 

Using Lemma 2.3 witt1 A being the Fre c hect derivative 

( 2 . 2 .11), the followin g c an be pr o ved easily. 

Theorem 2.4 L e t ( u ( s 0 ) , ~ ( s o ) ) be e i t h e r a r e g u l a r so lut i o r! 

o r a normal limit point s o lution. Let G(u,A) have two 

continuous derivatives in some spher·e about (u(s0 ), ~(s 0 )). 

Then with ( u ( s. ) ' ~ ( s. ) ) .. ( u 0 ' ;\ 0) ' 
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( u s ( s 0 ) ' ~ 5 ( s. ) ) = ( u. s ' ~. s ) as defined after 

( 2 . 2 . 2 ) there ex i s t s 8 u n i que s rn o o t h a r· c of so 1 u t i ons 

(u(s), ~(s)) of (2.1.1) together with ( 2.2 . 2) on Is - s. \ < f 

f o r some s u f f i c i e n t 1 y s m a 11 f > 0 . 0 n t h i s so 1 u t i on a n· t h e 

Frec het derivative cA(s) of (2.2.11) is nonsingular. 

2.3 STABILITY OF SOLUTlON BRANCHES - LlNEAHl7.ED ANALYSlS 

Having found the equilibrium solutions of (2.1.1) we 

like to know about their stability as solution of the 

corresponding time-dependent problem. 

(2.3.1) - G- \'\AI A ) 

In the rotating coaxial disk problem with no suction ( 2.3 .1) 

becomes 

(2.3.2) 

where B , F , B
4 

, B 1 and e 
3 

a r e g i v en by ( 1 . 2 . 1 i ) , ( 1 . 2 . 1 5 ) 

and (1.2.17b). 
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We perform a linearized stability analysis in a small 

neighbourhood of cr· itical points. To he mor·e precise, let 

(u(s ),A(S )) be the time-independent solution of (2.1.1) 

for o<\ S - S 0 \< r 1 where S 0 is a Ct' itical point and r i'3 

s m a 11 . We then seek a so l u t i o n to ( 2 . 3 . 1 ) i n t h e f o r· m 

(2.3.3) = \l.lS) + e e IT~ 

where G is small compared to the norm of u(s ), and w is an 

unknown vector function. From (2.3.3) and (2.3.1), and 

neglecting o( E terms, we obtain the linear eigenvalue 

problem in rf : 

(2.3.4) = 

Definition 2.5 The solution u of (2.3.3) 

stable if all the eigenvalues <r .=<TR+ i <r..: of (2.3.4) lie in 

the left half complex plane. 

or more eigenvalues of (~.3.4) lie in the right half co~plex 

plane . 

At a simple bifurcation point or a normal limit point, 

the null space of the operator 0 
G"' is o ne-dimensi onal . 
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0 
Hence G~ has 8 zero of multiplicity one. Clearly, for any 

nonzero K <r(s
0

) = 0 and w = K'f1 is a solution to ( 2.3 .4) at 

the critical point. We assume cr(s 0 ) is an isolated zero. 

And for s sufficiently close to s 0 , the eigenpair 

(cr(s) ,w(s)) differs in magnitude from (O,Kt~p by a small 

amount. That is, the eigenvalue and eigenfunction has a 

Taylor series expansion 

2: c· l '5-So\l (T ( s) 
J 

(2.3.5) - -
j~l 

~~ 

2: (s-s.\~ w· 
(2.3.6) w ts) Klf, + .I = ~ 

Hot l. 

We observe there is a local exchange of linear 

stability with respect to the eigenpair (O,K~1 ) if 

ci2Ki\ 
G" l So) ~ 0 

(2.3.7) 0 S l.Kt\ 

d.( 
o- t So) 0 -

o\s.sz. 

From Definition 2 . 5 we note that a solution branch r 
containing a critical point can be unstable even though 

(2.3.7) is true. 
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Repeated differentiations of (2.3.4) with respect to s 

yield 

(2.3.8) 

(2.3.9) <rH "Bw + 2 o-s "Bws + cr'"SY'If.ss 

- G"'"'liAnw+ 2~sWs\ + Gu.u.14u5 u5 w 

+ 2.q14v.">.~s WAs -+ Gu.~(A$sw +zAs ""s) 

~ G"'~>. ~.s~.s W + GlA Wss 

E v a l u a t i n g a t a c r· i t i c a l p o i n t u s i n g the e i g en p a i r ( 0 • K Cf1 ) , 

we obtain 

(2.3.10) 

(2.3.11) 

0 O'Z • 0 \ 0 

+ G IA"Il "s lf, + 2 ~"'~ "s <f>, 1'\ s 

+ C1:AA ~~ Cf1 t ~~ Wss \s.) f \< 

We now consider some special cases . 

Theorem 2 .5 be a solution to 

(2.1.1). Assume is singular· with 

dim N(G:): codim R(G;): 1. Let the null space of G: and its 
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adjoint be spanned by <p, , 4'1 respectively. Further assume 

* * 1 B tf1 ::p 0 . We h a v e the f o 11 ow i n g c a s e s 

(i) At a simple bifurcation point: 

a) if )..$lS•)• 0 fOt' one Of the bt·anches, r 
is a local exchange of linear stability along r 

then there 

b) if } : :: 0 f 0 r· 0 n e 0 f the b t ' an C he S , r then the I ' e iS 

no exchange of linear stability along r The stability 

w i t h r e spec t to s m a ll per t u r· b at i o n s o f t he e i g en p a i r ( 0 , K <f1 ) 

along r depends on the sign of 0Ss(s
0

) in ( 2 .3.13). 

(ii) At a normal limit point, we have a local exchange of 

linear stability about 5 0 if 

~ = 2.K 
(2.3.12) 

holds. 

Part (ii) of Theorem 2 . 5 implies whenever r turn s hack 

on itself, we have a local exchanRe of linear s t ab ility; 

the proof follows immediately from the lemma below. 
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Lemma 2.6 Let ( u 0 , ~.) be a nor·mal 1 im it point. With thP 

notations of Theor· em 2. 5 , we have for· any inteP,er· k ~ ? , if 

(2.3.13) 

then 

otJ 
0"' (So) 

cis.) 

(2.3.14) 
lt-1 

d <r \So) 
ch .. .-1 

Remarks on Lemma 2.6: 

( 0' <p, ) is a solution 

and 80 

U l So) .:: 

(2.3.15) 
W {So) -c::: 

{ : 0 

0 

= 0 

dl< 
= 

ctsK 

K > ~ > \ 

R. = K 

.i = \) "21. --I K-2 

~ls,) { '!'~ t;~ ~ 
't'~ E tf, 

(1) By assumption, the eigenpair 

to (~.3.4). Hence for some nonzer·o A0 

Aoq>l 

'Bo tf1 

(2) For k = 2 Lemma 2.6 can easily be worked ~ut. (2.1.7) 

gives 

= 

If ~s.lSoH~O, then since 'f~ct:*o at a nor·mal limit point, the 

coefficient a of ( 2 .1.13) is nonzero. From (2.3.10) we have 
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4'~ (t:IA lls l~o) 'f, 
(2.3.16) 

'\'~ 'S <f, 

But u}s.,) = A
0

Cf
1 

at a normal limit point. Hence 

(2.3.17) 

From (2.3.7) we see that we have a local exchanP,e of linear 

s tab i 1 i t y . The a 1 g e b r a g e t s mot' e 1 abo t' i o us a n d in v o 1 v e d f o r 

k = 3, and it gets progressively wo rse as k increase s . nut 

Lemma 2.6 allows us to avoid this tedious work. 

Proof of Lemma 2.6: 

From (2.3.15) successive differentiations of (2.1.1) with 

respect to s yield 

(2.3.18) 

= 0 

11.•1. 

- ~.,{lt(S.\,~ts,) , ... , :~-'1 \llSo); H~o)) 
~-1 

+ &: ~ ~\Se) 
c4s k·l 

c:. 0 
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and 

(2.3.19) 

Assume there exists a positive integer M such that 

d .. 
CI(So) 0 j = l, 2, . --~, M -

(2.3.20a) ds~ 

dM+\ 
CJ l~o) -:f.o (2.3.20b) 

c:AsMi\ 

We want to show that ~ > (k- 3) . We prove it by 

contradiction. Differentiating ( 2 .3.4) (M + 1) time s , we 

obtain 

(2.:3.21) 

(2.3.22) 

( Note t h a t the t e r· m s in v o 1 v in g cl e r· i v at i v e s o f the par am e t e r 

- -with respect to s in the functionals f. 
J 

and [)J in 

(2.3.18) and (2.3.21) respectively are identically zero by 

assumption ( 2 . 3 .13).) From (2.3 .1 5) we have at a norma l 
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limit point 

where C
6
= 8

0
/A

0
• Next we show by induction that 

(2.3.23) = 

for j <. (k - 3) . This is tr· ue for· j = 1. Assume it is true 

for j = (i- 1). For the u-derivative equation we have from 

(2.3.18) 

Alsq for thew-derivative equation we have from (2.3.21) 

Higher order derivatives of (G: w) are linear in rlmw/d s~. 

By this we mean the right side D..__, has the for·m 

(2.3.24) 
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But we have for j = 1, ~, .... , ( i - 1) 

(2.3.25) 
W (So) = 

This implies from (2.3.18) and ( 2.3.2 1) 

(2.3.26) = 

proving 

= 

This concludes the induction process. We point out that 

higher derivatives of w and u with respect to s evaluated at 

s are made unique by ~9.l:!i__~~_:i:~g_ they have no component of 

Cf, .. 

Subtracting ( 2 .3.1R) from ( 2 .3. 22 ) with M = (k-3) and 

using (2.3.25)-(~.3.26) give 

= (2.3.27) 

Operating from the left with ~: 
1t 0 

and notinp, 'f1G14 = 0: 

J.K·l. 
w* "E t() { __ (T (So) 1 : 
I I Tl l cl~l(·l. 5 0 
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Because '+~ B cr, :# 0 , we have o ur· contradiction that 

U'" ( s.) = d to4•t 
- tr (So\ 0 

proving M > (k- 3) in (2.3.20). 

. ~ 
Operat1.ng 't', from the left on equations (2.3 .1 9) and 

(2.3.22) with M = (k- 2), and observing the coefficients of 

both (k- 1)-st derivative of wand k-th derivative of u at 

the critical point so are 't.. 0 
I G"', which is identically zero, 

rA Il-l I(· 
~ e 

~ 
'" ( s.) - t :sK ~\So)) \f I (;..). '-t', 8 'f, -:; 

d~K~I 

,.,.r. r • At a norm a 1 1 i m i t po i n t , .., 1 v-..\ is nonzero; the right hand 

side of the equation above is nonzero by assumption 

(2.3.13). We have our desired result of (2.3.16), and the 

proo( of Lemma 2.6 is completed. 

The proof o f Theorem 2.5 is very simple and it pr o ceeds 

as follows. 

Proof of Theorem 2 . 5 
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Operating (2.3.9) from the left with ~~ at the simple 

bifurcation point 

= 

Recall (2.1.10) 

lA ( 5 0 l = o(o ~o + o{, ~. 

this gives 

where a and b are the coefficients of the algebr·aic 

bifurcation equation (2.1.13). 

If ~ 5 (s0 ) * 0, the right hand side is nonzero bec8use 

of the condition for bifurcation (2 . . 1.15). 

If on ( 2 .1.7) implies 

From (2.3.10) we have O'i(s 0 ) = 0. To 

f i n d out the s t a b i 1 i t y o f t he b r· an c h we n e x t <i e t e r m i n e t 11 e 

second derivative Assume ~ ss ( S 0 ) * 0 . It is 

evident from the proof o f Lemmn 2 .n we can choose no to ~e 
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equal to A
0 

for u (s ) s 0 
Thus, we have from 

(2.3.10) 

(2.3.28) 

From (2.1.7) we have 

(2.3.29) 

where <fo satisfies 

= 

* 0 per a t i n g f r om the l eft w i t h o/
1 

o n ( 2 . 1 . 8 ) and u s i n g the 

fact As(s
0

) = 0 yields 

(2.3.30) 

. * F i n a ll y , o per a t i n g f r· om the l e f t w 1 t h o/
1 

o n ( 2 . 3 . 1 1 ) y i e l d s 

(2.3.31) 
* • • ~ ~ \f 1 "B w \So) Ojs l s.) ::: 2.. ~~ G1414 w, (So) l.tslS0) t '1'1 ~~ Ul(5w) "slS.) !.\(~) 

+ 'f~{;.:"' ltsstS•l + G~~ .\3sts.)) IAs(s.,) 

~ 0 2 0 l 
:: :2.. lf1 G-1.\CA- Wsts~) "'\(s.,} -+ 3 G-"'~v. Us\S.) 
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Since 

:::. Ao ~~ 

we have 

(2.3.32) 

(2.3.32) implies the sign of o-$5 (s
0

) is inctependent of the 

sign of A
0

. 
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CHAPTER 3 

THE NUMERICAL METHODS 

In this chapter we discuss the numerical methods in 

solving the rotating coaxial disks problem. These methods 

can be used to solve general nonlinear two point boundary 

value problems for o rd inary differential equations with o~e 

or more parameters. The chapter is divided into five 

Section 1 sections. 

solutions of two 

gives 

point 

(Keller [11]). Section 2 

a brief account for numerical 

boundary 

discusses 

value 

the 

problems 

numerical 

implementation of pseudo-arclength 

com put at ion o f so 1 u t ion b r· an c he s . 

with the rate of convergence proof of 

continuation a nd the 

Section 3 is cor.ce r·n ed 

Newton ' s method f o r 

solving the 'inflated' pseudo-arclength system of equation s 

at both regular and critical poin ts. Sec tion 4 provirles the 

treatment at simple bifurcation points. Lastly, Secti0n S 

shows how the numerical comput a tions of the l ocal exchan~e 

of stability analysis is bein~ hanrlled. 
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3.1 NUMERICAL SOLUTIONS FOR NONLINEAR TWO POI"JT ROLP·II)I\ I? Y 

VALUE PROBLEMS 

The the or· y o f d i f fer· en c e scheme s for· so l v i n P, non 1 in e 8 r· 

two point boundary value problems for ordinary rlifferential 

equations is well known. Indeed, the basic convergence 

theorem can be found in Keller [11]. We only outline the 

scheme and d i s cuss the solution p r· o c e rJ u r e s . 

Let us consider· the ~eneral fir· st o r·der· systr:>•n of 

ordinary differential equations : 

(3.1.1) 

(3.1.2) 
1' ( 14 t") • A ) = o 

~2.. l 14l") , A) :: 0 

Here u, f both have dimension n; g ,, ~ :1. h<=tve dimension p, 

q = n - q r e spec t i vel y , w i t h p > 0 . ). i s a par· am e t e r· . 'rJ e 

saw in Chapter 1 how thP tirne-inrJependent rotatinR coaxial 

d i s k s p r o b l em w a s p u t i n to t he f o r· m ( 3 . 1 . 1 ) - ( 3 . 1 . ? ) , t-1 i t h 

e i the r the R e y no l d s n u m be r· , R , o r· t h e r· a t i o o f the CJ :1 a, u l a r· 

vel oci ty of the two d is I< s , X , plays the role o f A . 
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The second order centered-Euler (or box) scheme is u~ed 
T 

to approximate (3.1.1). For· any set of net points ( x~\jsl• 

with 

x., = "' 
"'j ""' 'X-j-\ + hj-1 

(3.1.3) 

'X-;r := b 

The scheme is 

2 ~ j i J 

The boundary conditions (3.1.~) g ive 

These difference equations can be written in the vector 

form: 
~~ (u,,).) 

N" '-'z. 

Gh(14,~) -::: N" 14 3 0 ::; 
(3 .1.4) -

Nh\AT 

~~l "'r· A) 

To solve (3.1.4), we use Newton's meth orl : let u 1 he an 



initial guess 

(3.1.5) 

(3.1.6a) 

where 

(3.1.6b) 

(3.1.6c) 

(3.1.6d) 

(3.1.6e) 

(3.1.6f) 

fA" -

., 
L. 

J -

R~ 
J -

M
, 
~ -

M"­
b 

M: 
L: 

-I 
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R" ,_ 

L"' 
) R~ .. 

' 

L; R~ 
M" 

b 

hj-1 f lA. ( X j-'lz. , ~ ( UJ + '-'J-\) j ). ) -
::z. 
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The mat r i x /AtJ can be p u t in to a block t r i d i a~ on a l for· m 

lA" : [ 8.4 , AJ. , C l. ] . All block submatrices are (n x n). The 

l as t ( n - p ) rows of B., a r· e z e r· o , and the fir s t p rows o f C:. 

are zero. A fast block elimination algorithm whi ch keeps 

the zeros' structure of E\. and Ci. is used to solve (3.1.6): 

[ B;. . A..:. , c.i. ) = ( ~. r o )L o o<..- C;. ) _ 1 U.. 

Mt :: A, 

~1 "Bj. 
_, 

(3.1.7) = t(i_, 
L ::,2 

c(l. : AJ. - I?> A. cl-1 

Al is assumed to be nonsingular at the start of the 

algorithm. This can always be done by interchanging one or 

morQ rows of the last (n - p) rows of A 1 with the same 

number of rows from the first p ro ws of R~. To justify the 

LU-factorization in (3.1.7), we need to show is 

nonsingular, i ~ 2. ( T h i s , o f c o u r· s e , i s o n l y t r u e i f the 

matrix lA is non-singular. In our computations we have 

encountered no difficulty at bifur·cation points or· normal 

limit points, where lA is singular. That is, c<L 

2 f . <. 
1 ... (J- 1), are all nonsingular and only the last block 

~r has determinant very close to zero.) We assume that A1 

can be written 
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here PI is a p e r· m u t a t i o n matrix due to the boundar· 1 

conditions and the switching of r·ows mentioned 8bOVP.. This 

assumption can, in ~eneral, be enforced by r· esc ali nP, r·ows or 

columns of A I . The r1orm of Q I is 0 ( 1 ) . 

All block submatrices At, i ~ 2, can also be writte~ 

where Pl. is a permutation matrix for all i ~ 2; and the nor·m 

of QL is 0(1). This is true because we switch the k-th row 

of all At with them-throw of all R~1 if the k-th row of A1 

has to be switched with the m-th row of Bl. in order that A1 

is nonsingular. We proceed by induction. Assume .Ci. is 

nonsingular and have a similar expansion as A~ 

D(i. -

where the norm of matrices R~ , and R.: 2 is 0(1) . Then 

using the Banach Lemma (lssacson and Keller [ 9]), its 

inverse can be written as 

For clarity of presentation we drop the permutation matrix 
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P~. At the (i + 1)-st stage of elimination we have 

- -

,.. ~ [k -IC6~~J ~, .... · r--­
... _, 0---

Here the norm of Bi+t and C'- is 0(1). This very special 

s t r u c t u r e o f B i. ..,, and C l i m p l i e s 

where the norm of Si.+t is 0(1). Next we determine o<,+, from 

(3.1.7) 

= J:+~Qt:+l- Bt+• (I-~R~..,-O(ha.)) C'-

= I:~ h(~l+l- Si.+t) ... h'J.(Bi.-tt R",C;.) t O(h3) 

= :r.+ hR~ ...... h,.~i-tl,2 '- o(~3l 
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sufficiently small mesh size h, oti.+t is nonsingular. This 

completes the induction process. 

oCi. , i~ 1, are decomposed into L.U for·m using a new 

pivoting strategy. (Appendix 1) 

where pL, qL are permutation matrices, lL and u~ 

and upper triangular matrices respectively. 

are lower 

The solution of (3.1.6) can easily be computed: 

(3.1.8) 

Newton's method i s said to have converP,ed if for some 

prescribed error tolerance E, 

II b~ 1\ 

\\ u \\ 
<. 

For solutions exhibiting boundary layers or abrupt 

gradient changes, an adaptive mesh refinement is used. This 

is based on approximately equidistributing the first order 



- 49-

local truncation en·or·, T,, of the numerical scheme (Pereyra 

and Sewell [25]). For the centered-Euler method, ~ is 

given by 

(3.1.9) 

A four t h or· d e r· me tho d c an b e c on s t r· u c t e cl b y s u h t r a c t i n r, a 

second order approximation for T1 from the difference 

equations. This can be done and yet still preserves the 

structure of the Jacobian matrix (3.1.6). 

(3.1.9a) T. (x· ) :: 1.. [ f( Xj, u.i; A) - 2f(><s-va.. ~ll4J .u.H);~) + HXJ-" uj.,:. x)} 
"' j-~ 3~ 

- .. ~'1 fu \Xi-V& i ~("'~'+ UJ-Ih~ ( f ()(j, Uj i >.)- f(lCJ·I) ~.f-1 ;~ )] 

. To obtain hi'S her· order numer· ical solution to 

(3.1.1)-(3.1.2) we note the centered-Euler method has an 

asymptotic error expansion containing only even powers of 

hj, provided the solution has sufficient derivatives 

U.· J 

We can eliminate these ~lobal error functions 

successively by either ( 1 ) defe r· r ect co r r· e c t i o n 

(Pereyra [24]), or ( 2 ) Richar·dson extrapolation 
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(Keller [11]). 

We now discuss the well-known notion of Euler-Newton 

continuation. 1\ s s u.m e n u mer i c a l sol u t ion h a s been found f 0 t ' 

t he p a r am e t e r A = A 0 • Then f o t' s u f f i c i en t l y s m a 11 ~ A • , a n 

i :n p r o v e d i n i t i a 1 g u e s s f o r- l4. ( ). 0 + ~ ~ 
0

) c a n b e o b t a i n e d by 

Euler's method 

(3.1.10) u.· ( >.. + ~}..) = 

Here the numerical solution for u A ( ).o) can be computed 

using the Jacobian of the conver-ged solution in ( 3. 1. 6) . say 

II\... : 

(3.1.11) 

The predictor u 1 ( ). 0 + ~.>..) can now be used as an initial 

guess for' Newton's method to sol ve the differ-ence equati0ns 

approximating (3.1.1)-(3.1.2) at .). = l. + f>Ao. 

3.2 COMPUTATION OF SOLUTION BRANCHES CONTAINING 

LIMIT POINTS 

The Euler-Newton co ntinu ation method discus~erl at the 
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end of last sec tion can be used to compute most solution 

branches r. However, for branches r~ that contain normal 

l s (so ) = 0' 

this straightforward Euler -N e wton continuation fails to RO 

past (or around) A (s
0

), and special tr·eatme nt at ~ (s 0 ) is 

needed . We saw in Chapter 2 that the difficulty with normal 

limit points can be circumvented by freeing the parameter 

and introducing an additional equation with a new parameter 

s, the pseudo-arclength parameter. That is , both the 

so l ution u and the parameter A are functions of s. From 

Theorem 2 .2 we saw that e ve ry solution along r"- is isolated 

in the parameter s-space. ln this section we give a 

discussion on the numerical implementation of computing 

solution bran ches using pseudo-arclength F.uler·-tJewton 

conti nu a tion. 

We recall from Section 2 of Chapter 2 that ~ is to be 

determined as part of the solution. The enlarged system 

consists of the set of finite difference equations ().1.4) 

and the discrete normalization equation (?.?. 2 ): 

(3.2.1) 

(3.2 . 2 ) N I ' ) _ 8 U. *.s (S.l [U.lS\ - IAho'l +(l-e)~s\'•'[~(S)-A(S•\1 "'ll,~;s 

- ( s- s.) :. o 
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is a known 

solution at s::S
0

• (To start, say at s = 0, let U
0
(0) be 

the so 1 u t i o n to on 1 y t he s y s t em ( 3 . 2 . 1 ) f o r so m e f i x e d A 0 • ) 

We need to determine u (s ) s 0 
and The 

derivative u~(s0 ) can be solved as in (3.1.11). Using the 

chain rule 

(3.2.3) (4 5 t So) = 

We take the limit as s • s 0 in (3.2.2) 

= 1 

t. 1 
(3.2.4) ~ s (s.) = 

For Be-(0,1), the denominator cannot be zero. We observe 

that the computation of the deriv~tive ls(s0 ) in (1. ~. 4) is 

a function of (u
0

, Ao) at s = s
0 

~r~_l_ y and does not depend or! 

solution ( u ' A ) at any other previously <.:O'llputed 

s-stations; also, at a nor·mal limit point, S I ' we have, as 

s + s , 

II u.\ \1: _,. 00 



- 53-

Substituting (3.2.3) and (3.2.4) into (3.2.2) 

(3.2.5) 

Choosing the positive sign in (3.2.4) implies .\ (s) ~).(s0 ) if 

i>s: s- s 0 ~ 0, and ~(s) ~A(s0 ) if ~s ~0. Corr· espondin~ly, 

choosing the negative sig n in (3.2.4) implies the opposite. 

The pseudo-arclength Euler one-step method can be userl 

to otain the predictor for the solution at (s
0 

+ &s 

(3 .2.6a) U. 
1 

( S• + h S ) : U. l ~. ) + & 5 Us ( So) 

(3.2.6b) 

These are then used as the initial ~uess for the 

pseudo-arclength Newton's method on (1 . 2.1)-(3. 2.2 ) at 

s = s + ~s: 
0 

(3.2.7) 

(3.2.8) 
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The following s-algor· ithm (Keller· [ 13]) is used to solve 

(3 . 2.7) : 

(3.2.9) 

(3.2.10) r;." 
nu. 1 = - G" 

h 

- ( N~ 
~ 

+ Nh~~, :r) 
~A" = -

(3. 2 .11) ( N:~ - N :v. 'j ) 

(3.2.12) ~(t :: ~ - ~>."' j 

The bulk of the computations for Newton's method is in the 
!) 

LU-factorization of the J;:~cobians Ghv.. The solution for the 

in fl ate d system ( 3 . 2 . 7 ) - ( 3 . ~ . 3 ) on l y r· e q 11 i r e s the add i t ion a l 

" evaluation of right hand side Gh~ 

substitution in solvinB yin ().~.9) and two inner pr· oducts 

3 . 3 R A. T E 0 F C 0 NV E R G F: N C E 0 F' N E •.,r T 0 N ' 3 M F. T ll 0 0 

For the inflated system (3.2. 1)-().?.~) Lemma ?.3 and 

Theor·ern 2 .4 implies Newton's method con ver ges (i) 

quadr· atically for· r·egular so lution points and nor•nal limit 

p o i n t s , a n d ( i i ) 1 i n e a r 1 y f o r· s i m r> l e b i fur · c a t i o n p o i n t s . 

However· , it is not clear the s- a l ~or· i t h m 
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(3.2.9)-(3 . 2. 12) without modification can be used at normal 
• 0 

limit points wh e r· e G ~ ~ cf: R ( G "" ) ( that is , ther·e is no 

solution to (3.2.9)). ln this section we show the 

s - algorithm need not be modified and we derive its rate of 

convergence . For completeness we also derive the rate of 

convergence for regular solution points and simple 

bifurcation points for the s-algorithm. An extension to 

Newton's me t hod for general systems of equatio~s in which 

the Jacobians are singular at the solution points is 

indicated. ln particular we give a construciive proof of 

recovery of quadratic convergence for these sin~ular 

problems ·. This result implies that we can actually obtain 

quadratic convergence at bifurcation points. Thoue;h thE> 

analysis below is done on critical points which have 

one- dimensional null space, the results go through for 

higher dimensional null spaces, provided the zeros of the 

Jacobian matrix all have Jordon block of size one, that is, 

they are simple zeros; Rall in 1966 [ 26 ] indicated how to 

recover quadratic convergence at sinRular poi~ts, but his 

numerical implementation was indirect. 

We consider the general nonlinear system 

(3.3.1) F (')(\ 0 
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wh e r· e x " ffi" , F : IR"-+ !R". It is well known (see Issacson and 

Keller [ 9]) that Newton's method 

= - F ( x"') 

= 

will converge quadratically if the Jacobian F; (x v) is 

non-singular, F xx ( )(/) exists and the initial ~uess is 

sufficiently close to the solution. 

For critical points with one-dimensional null space, 

sufficient conditions for convergence of Newton's metho~ ca n 

be found i n Reddlen [27]: 

Theorem 3 . 1 Let X be a solution to (3.3.1). Assume 

null space Fx(x .. ) is one - dimensional . Let 

lit t xeffi " x·n~rJ· pr·o jecto r Px Br (X ) : II X - Define the 
I 

from 

IR" onto xt to have null space Nl and l et P.., = 1 
1 

where JR = N, $ X, Define C
9

(x"') = { X E ~ " II o )(, (x - x ")ll~ 

eQP N, ( X - x•)u Assume Fl('( ( x*) N1 N
1 

() X = l 0 3. I 
Let 

n F)(/ x*) tf X II~ c,ll'f" Qx\1 for· all <f E N 1 , X Eo IR" and with 

Then there exists f > 0 and e ')' 0 so that F.x ( x) has an inver se 

i n W f, 8 ( X" ) - B f ( X 
111 

) (l C e ( X " ) , "" X = X , s a t i s f y i n ~ II F :K ( x ) ., II ~ 
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_, 
c:z.llx- x"ll, the mapping Gx : x- F)((x)F(x) 

on wf,e(x._) mappin g wy.e<x") into itself, and 

.. x . Moreover·, defining the sequence 

i s a con t r· a c t i on 

-· -Fx. ( 0 ) n Bf ( x ) = 
x. = Gx . with 
"' &.-1 

XE.Wf .. (x 11
), we have x . • x•, U Px (x._- x*)ll~ l~ U xi-•- x•n <Hid 

• '"" ~ t 

IIPN
1 

(x'- -x
11

)\I/IIPN, (x~- 1 - x11 )1ltends to 0.5. 

The proof can be found in Reddien [27]. We assume all the 

sufficient conditions of Theorem 3.1 are met . 

.!:_:~mm~ i.:_~ Assuming Newton's method (3.2.9) -( 3.2 .1 2 ) for· 

solving (3.2.1)-(3.2.2) converges, we have 

(1) Rate of convergence is quadratic (a) at regular points 

(that is, G~Ju0 , .\ 0 ) is nonsingular), and (b) at nor·mal limit 

points (that is, G""(u0 .10 ) is singular with or:e-dimer.sior.al . " null space and Gh>t ~ R(G 111l(u 0 , A0 )) ). 

(2) Rate of convergence is linear at simple bifurcatio n 

point (that is, Gh
14
(u

0
, ~0 ) is singular with or!e-rlimer!si.o r:al 

0 

null space and G h~ € 

Jacobian matrix G~14(u 0 , ~ 0 ) is non- singular·. D e f i n e t h P. e r· r o r· 
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at the "-th itera ti o n ~", ~": 

(3.3 . 2a) 

(3 . 3 . 2 b ) )." - Ao 

The differe nce between Ne wton iterates can the n be written 

as 

~I.\ \I = l4 \1~1 - lA" 

= (3.3.3 ) 
u. .., .. , - v.., t- Uo - u. " 

:: € '11+1 - E" 

~)." = 
). .J+I - ~" 

(3.3.4) 
:. 

~.., .. , ~" 

Define " )" : 

( 3 . 3 . 5 ) }J.\) :. ( ll ~"II: +li E" II,. l'b"l ... 13"\1.) 'lz.. 

To show quad r· at i c con v e r· g en c e , we nee ci f o r· an y nonzero l( , 

-'t' K 1.1. •• 
1 y-· = r- ... 

., -1 .. 

Expa nd i ng G" , G ~u. , and Gh" in Tay l or se r· ies about the 

solution ( we d r op the s ubscript h): 
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:: G-0 + ( (;.: E" + G: ~") i i!(G-~IAE"~"tlfr:~E"~" iG-:\'b"~") 

( 3 . 3 . 6 ) 

(3.3.7) = 

( 3 . 3 . 8 ) :: 

for 0 < e~.~L <1, i = 1,2,3. Suhstituting these expansions 
. 
1nto (3.2.9)-(3.2.10) we obtain 

(3 . 3.9) 

(3.3.10) 

A.J ~ - t (;-~ + fC..:IAE"'(',.~~~"1 ~ ~~{l"ht~"-tS~I"e•6.,~"1)..t~~~"}) ~ 

= ~ tl(j.:~~"~G::))")-tii_~t"~t~"~)"~{~.+PJE;vJ ..\,HJ~") 

A"" ~ ·{G-0 + \ &: t' +IT:~') + ~! \ &:. <'<' H G-.:.<' A'+&.:,.~·~') 

+ j\ l C'f~ + ~"hY G-( ~~~+ e, f", ~.-+ s, ~") J 

Assume y and z have expansions: 

( 3 . 3 . 1 1 ) 

(3.3.12) :: l\t"\1~ ~,, + \~"\ l 1,-2. -t U£"1\~ 'l11 \ ..­

-4-1\t~l\._\~"\ ~z11 -\"I~"\& lut-+ Olf' )~ 
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Here we have assumed the remainder terms are bounded. For· 

example, 

1\G- tll~&.l"A.+"Slf,")t"t"l\ ::: OCu."~) 
~14 6 .. ' 1. I ~ 

The solution to (3.3.9) can be obtained by solving 

successive 1 y for y 0 , ( y '·' , y l,"l. ) • 1\ t a t' e g u 1 a r po in t : 

(3.3.13) 

Similarly the solution to (3.3.10) is ~iven by 

(3.3.14) = 

The nor· mal i z a t ion e quat ion ~1 

partial derivatives with respect to u and ~ eRn be written 

as 

NV ~ ~ - e {As lSo) u."' (s) +(1- e) A.s lSo) .Xts) - c, 

tt t"' -t (1-9) AslSo) ~ v = e ~ s (So) 

(3.3.15) 

:: 0 

(3.3.16) N" :: Jlt 
"U. 5 t So) u. 
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(3.3.17) 

where c 1 is given by 

U s i n g ( 3 . 3 . 1 3 ) - ( 3 . 3 . 1 7 ) t h e s o l u t i o n s ( b u,J, ~ ).,J ) i n t h e 

' b a c k w a r d s u b s t i t u t i o n ' ( 1 . 2 . 1 1 ) - (3 . 2 . 1 2 ) c CJ n be w r· i t t e n 

" where K
1 

and 

d s : ( s s., ) ' 

Hence 

(3.3.18) 

{ 
• ol •1 fl f. ..J " J.r:·-·r ,.. ., ' r. tl .. • ... , .. ) • 8~l~0} E •(H~}"'l~)!";+&14s{S.) l~ -~ IC)-~14 .,.••( E -tl.~t,h~1·.l J•ty/l) 

= (1-tt)~ts.Hms lS.)
4 

( -IAA ~ rr: -'[ G-:~. E11 + cr:u €"u.r; ~! "+ c,:A b"IAA. O(f'l'l} 

--
- ~"((1-&)).s(S.) .... e ttslSo)*~(S)} + K;" JA-'112. 

0-8) ~$(.So) 4- 9- U$($e)1t {.(..\ (s) + J<;' p." 

K~ are constants . ;I. Fot· sufficiently srn~ll 

(1 - fJ ).\.(s
0

) + 9.\ (s )u,(s )u(s) is nonzaro. 
" so" 0 ~ 

where K" is a constant. Substituting (3.3.1~) into (3 . .? .1 2 ) 
3 

and using the derived soluti0ns for y anrl z . we obtain 

(3.3.19) 
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where II f"\1 = 0 (}J->~ Y", for· j = 1,2,). This completes the 

proof for regular solutjon points. 

We next consider· nor·ma l limit points . Recall ::tt a 

no r·mal limit point Go 
v.. - G ~.~.(u0 , Ao) is sin gu 1 ar· , FJnd 

G-0 
.\ <! R ( G-0 

u. ) 

Because G_x is not in the r·anp;e, t her· e is no solution to the 

linear system 

• 
G-~.~, ~ :: G-). 

However, we note that in algebraic ei~envalue problems 

inverse iteration is often used to compute the eigenvector 

corresponding to a simple eigenvalue . Specif i cally let ~ be 

a simple eigenvalue of 

(A- cri.) X = 0 

To d e term in e i t s e i g en v e c tor we so 1 v e i t e r· c:J t i v e 1 y 

(A-rri)Xv =: Xv_, 
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with x
0 

an initial guess not in the ran~e of (~ -~I) 

(Issacson and Keller [ 9]). We now proceed to show the 

solution of (3.3.9) at a normal limit point is eq uival ent to 

one step of inverse iterati o n. T h a t i s , y = x 
1 

, f o r· rr = I) , 

t> 
A = G~ and X0 = G~ 

The assumption that Newt o n' s method converges impli es 

that at every iteration the Jacobian ~ a trix G: is 

non-singular (Theorem 3.1). Usin g some for ·m of pivoting 

strategy, the LU-decompositi on of c: c.1n be put iy1to the 

form 

(3.3.20) 

ol >J 

where L 
~\,"Y'I-1 and Ul'I-I,'W'I-• are no nsinc;tllar· l o wer 

t r i an g u l a r· matrices respc cti vPly, and 'S" is sma ll irl 

c:~bsolute value. As Newt o n' s method converRes, s"' ~oes 

arbitrary close to zero: The Taylor series o f G is ~ive n 

"" 
by 

v 

G .... c;.: + 
0 r c:v 

lr"'u. ~ 

:: p-' L0 u" Q- 1 + p." 13 

wh e r· e \1 8 l\ = 0 ( 1 ) . For c l a r· it y o f rw e sent at ion , we on l y 
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.... 
where II Bl\ = 0( 1). The eir;envalues of u" ar·e ~~ iven hy the 

solution of 

= 0 

Since zero is R simple eigenvalue of U0
, we have from 

analytic perturbation theo r· y of simple ei~envalues 

(Lancaster [15]), 

(3.3.21) 

for some positive constant K This prov~s the rleterminant 

of the Jacobian matrix or the smallest eir;envalue ~oes to 

" zero as }L ~ 0. The solution to ( 3. 3. 9) can be computer! RS 

follows 

&) [ ~~J [~··-j (3.3.22) L "·''"'~ 
: 

c;.A" 

oJ [~···-·] [ ~~-·] (3.3.23) u,..,,ft-1 = 
'"'I 
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(3.3.22) has solution 

( 
.. _, 

~ "t-1 - L'ft-1, ...... ) G.A.---• 
., 

(;..)., 1 - L I,"W\- 1 ii! n - 1 

Because G~ i s not in the ranp;e of G.., , dis clLffer·ent fr·om 

zer·o. (3 . 3.23) has solution 

~0 :::: 
+ 

where we write 

(3 . 3.24) 

Cf ," i s the a p p r ox i m a t i o n to t h e r i g h t e i p; e n v e <..: to r 'f' 
1 

a t t h e 

~ -th iteration, and it is the solution o f 

(3 . 3.25a) = ( : .) 

Define the erro r f o r the ri g ht e i p; env ec t o r· e" 

= 

where 'f, satisfies 



(3.3.25b) 

S u b t t ' a c t i n ~~ ( 3 . 3 . ? S a ) r r om ( 3 . l . 2 S b ) , we o b t a i n t h e c> Cl u <1 t i 0 n 

"' for e : 

0 ,J 

U r1-11 n-1 € n-1 0 l P'-'") 

This gives 11:11 = o<,t). 'rJe now cnn wr· ite down the solution 

y of (3.2.9) for a normal limit point 

(3.3.26) 
d 
S" tf1 + 0 ( 1) 

Next we solve z of ('~. 2 .10) for· a nor·mal limit poi:1t. 

We write 

(3. 3. 27) l :: u .. w 

where u, w are solutions of 

(3.3.28a) = 

(3.3.2Rb) 
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Equation (3.3.2Ra) has been analysed above. That is, 

using the analysis for the equation (1.~.9) we have 

(3.3.29) :::; - ~v ~o + SmQI\er -terms 

The solution of (3.3.2Rb) is a l'Lttle rnor·e involved. 

U s i n g the no t a t i o n s i n T h eo r em 3 . 1 , a n y v e c tor x E IR" c i1 n b e 

written uniquely 

(3.3.30) 

wher· e xR. e x1 , x,., 4: N1 , N1 ® X 1 = IR". In C'lrlditi0n, if 

v < = v R e v.. ) e rR"' 

(3.3.31) 

Thus wN, wR satisfy 

[G: t- G-"'"E~ + "f'NJ (;.:A~"+ !lE"'~ + ~"!.J
1

6-"l~•8 .. '~1.+Js.~")) 1 w~ 
::a- i ().""E~t~ · ~ \>N

1 
(1 ~1. ~" t" + r:r;..._~"~" + Jl (tu_ i' ~"':A)) G{a.+~( ,\ 0 t ~.~")) 

(3.3.32) 
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{ G-: + G-IA~~.t"' + rx, ( ~r;~ ~,.. + ~lt" :u ~ ~"~S· G.14 l~-ttrzt"'1 >._ + st ~")) ~ w ~ 

= -G-; l~ - -~/x, t~r~Ar'e" ~~A~"!"+ ~(E"~ +~";Afcr(~.-~t,..\.+s,~")) 

- i ~ ... f:'t~ 

We now use expansions similar to (3.3 .11 ) for wR 

(3 . 3.34) 

wher· e II w . .... \1 : 0( 1. ). The solution fo r· w can be ~a lculater:l 
LJ ... 

(3 . 3.35 ) 

(3 . 3.36) 
~ 

WN :: - ~,.a ..._ Q~ tf, p..." + 0(]"-")l.. 
J.. 

Kn o wing these solutions, we can now dete r·rnine ~A" r1ncl 

~ u" o f ( 3.~ .11 )-(3 . ::?.12) for· CJ nr) t·mal limit. noint 

~)." = -r61.{5lsle' 4-( .. eJlst~.l~")t e ~·<so){ E" -+f' ~ -(~f -t i }r, JlJ +Off) 
1

} 

(t-9)15 ls,)- 9 Us (5t>)* [ ~ ..._ 0(1)} 

= -~"' f' ~ {r.r+i.)l14sts.,)" cr, + O(flv) 1 
t p. .A6~s(S0).-<f1 - 0-8JS"~sl1ol-t0(3")j 

Using ( 3 . 3. 2 1 ) we lHlVe 

- ~ .., + K ~ )J." '2. 
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and 
~u." = {-·£"'+ f7 t tctt+ t.>'fd'-"- o"' ~;~ ) · 

_ S ~"+ ~"p."[<~~r~)f} -:.sh·\·<f,IA"+0()4"l~]} ~ +O(p-")3 
l & '"'s IJo) J. <f'. S 

1-J her e II f 1 ll = 0 ( }IY ) ~ T h i s p r o v e s q u ad r a t i c c on v e r· q; en c e a n d 

part (1) of the lemma. 

At a simple bifurcation point, G;e- R(G:). The solution 

to (3.2;9) becomes 

- ">- -t- f 8 

where llf
8

1l = o<r"). The solution to (3. 2 .10) at a simple 

bifurcation point is similar· to that f o r a n0r·rn al li•nit 

point, except y in (3.3.28) is bein~ replaced by -u~ . 

~).11 , ~u" of ( 3 . 2 .11)-( ) . .? .1 2 ) at a si mple bifur·crJti0n 

point become 

- 9 W~lso)" E"- ( .. 6)Aslso)~ "- 9Uj IJ.f ( -t" -t .\ "14..\ -+ WN i WR_1 
- ·-------

(J-9) ..\ s l~o) - 8 lAs !Sol [- u~ -t fa t- O{JA.") '") 

"' - ~"' t 9 c.t.slsot (- W" -w,_) 
Q-~J~sl~o} t9UJ(Sb)"lA.Ats) + c1 

.: -~-- + ,"' 
,) 

ar· e 0 ( f- ) . 

~u_" -=: - t" + ~~~t.t.\ + WtJ \-Wfl.. - ( ~"'- "7"') U.A 

= - E" + INN + w R_ + 7 v lA A 



- 70-

here (wN + wR- '?"uA ) is O( JL"). 

is now complet ed. 

The proof of Lemma ~.2 

Normal limit points and simple bifurcation points are 

both singular points at which the operator G: is singular. 

Yet using the s-algorithm, we saw Newton's methorl converRes 

quadratically for normal limit points and linearly for 

bifurcation points. However this should be no surprise 

because of the necessary and sufficient conditions of Lemma 

2. 3. By · 'inflating ' the system for normal limit points we 

have constructed a projection operator which projects to 

~ero the part of the error between Newton iterations that 

only vanishes linearly. This recovers the quadratic 

convergence. This result can be extended to solutions of 

general nonlinear systems of equations with the Jacobian 

having nontrivial null spaces. 

Theorem 3.3 Using the same notations as in Theorem ~.1 for 

a finite dimensional system, the following iteration 

procedure will recover ~uadratic convergence 
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F)(t>'"l ~ = - F ( x") 

(3.3.37) 
fx(x") '~ b"' : 

Fx~ ( )(") o/~ = d"" 

~x" ~ -to 't'~,. = <f" e - c."' - -( 3 . 3 . 38 ) 'f"" <f" I I 

x""'' ': XV .... ~ x" 

" \1 where b , d a r·e to be constructed such that they do not lie 

in t h e r· an ge of Fx a nd F: respectively. Fo r· example, let 

us cons i de r b"' . Assume the .Jacobian F x is factor· ized into 

LU - for m 

LU 

wher·e P a n d Q are permut3tion matr· ices, Lis a nonsinq;ular· 

lo we r· t r i a ngula r· matrix anri U is a upper t r· iangular· rnatr·ix 

with its diagonal elemen t s satisfying the followin~ 

I U ~"" \ < <. l 

I ""'"' \ < < 1-u ttn. \ 

then b >~ i s given by 

(We note t h is is in a~reement with (3.1 ./3) of Lemma 1 . /. ) 
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Remarks on Theorem 3.3 

(1) The correction term c J is the projection of z of 

(3.3.37) onto the null space of Fx(x~). This in essence i~ 

equivalent to the corrected Newton pr· oc e s s of liall 

(1966, [26]). However in actual computations, ~1e rlirl not 

compute the projection operator. 

(2) For simple bifur· cation points, let i, and '!:', be the n11ll 

vector and its adjoint of the inflated matrix. The 

procedure defined in Theorem 3 . ) implies quadrati ~ 

convergence for the inflated system. 

(4) For higher dimensional null spaces, Theorem ).3 can be 

extended by computing all the independent null vectors and 

their adjoint, <f, ' , ... ' and '-t', ' 'f 2. ' •••• This is 

equivalent to inflating the oriRinal problem hy arlditional ~ 

equations for M- dimensi.onal par·ameter· vecto r· problems, that 

is, M-multiple normal limit po ints. 

" It ( ~ ) such that they do not lie in the range of FJC. (x ) anrl Fx x 

respectively. The solutions o f equations (3.3.37) can he 

written down (using the equations (3.3.3S)-(3.3.36) anrl 

(3.3.26) in Lemma 3.2) 

(3.3.39) 



(3.3.40) 

(3.3.41) 

where 'f, 

ll x>~- x•u !! 

II fl. \I'- are 

Cfv 
I = 

= 

and t¥, 
ol ~J liE 1\1.;::: , 

0 ( 1 ) . 
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'V, + 

ar·e normalized, that is 
.. 

"f, 'f, = 1 and 

~" = 0 ( ~"'), l 1"''1.:.. 0( ~"i, and ur,u, artd 

Substituting ( 3. 3. 3q)- (3. 3. 41 ) into 

(3.3.38) we obtain ., 
~'X" = \- e~ - ~ t •f') + 

" .., 
(If'~~ "f1) (-E;-~ + 'f~) ( CV, + Avf,) 

( 't' ~ + ~ ".f: l l ~ 1 + ~ v ~I ) 

wher·e t f?»Ul. = 0(1). This completes the proof of Theorem 

3.4 NUMERICAL TREATMENT AT SIMPLE BIFURCATION POlNT 

In this section we give a treatment at simrle 

bifurcation point and the switching of branches. An 

efficient method to compute the coefficients (2.1. 13) of the 

algebraic bifurcation equation is pr·ovided. This is also 

applicable to multiple bifurcation points as well as general 

nonlinear two point boundar·y value problems f o r ordin a r·y 

differential equations with one or more parameters. 
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If s is the pseudo-arclength parameter (see Section ? 

of Chapter 2), let Deth(s) be the determinant of the 

converged discretized Jacobian along a smooth branch. (We 

drop the subscript h.) We assume there exists s,. > s~ such 

that Det(s~)Det(s~) < 0. That is, the determinant has gone 

through a change in sign. The critical point (u(s.), ~(s 0 )) 

at which the converged discretized Jacobian is arbitrary 

close to zero can be located by 'modified' bisection or 

'modified' regular falsi. That is, special treatment has to 

be taken because the normalization equation depends on the 

ar·c-length parameter s. To be more specific, let ~ s .,., be 

the increment we take to go from s~ to s b . The 

derivatives (us , 1
5

) in (3.2.2) are different at the two 

arclength stations s = s~ and s = s b lf we want to 

approximately go back to s~ from s~,, we need to determine 

6s~,,· Taylor series of A(S) about s.._ and s b 

~ ( s., \ ). I So.) + + 

- . 0 {~s b~ )2. 

Solving for ~sb"'-

l.. 
Thus to O(cSsa\,) , bs 4 b is equ<=ll to !J sb~ if and only if 
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The next step is to compute the null vector ~~ an~ its 

a d j o i n t '4'1 of the approximate singular Jacobian 0 

G IA. This 

can easily be accomplished by inverse iteration discussed in 

last section. Keller [14] observed the computations of all 

the independent e i g en v e c to r· s and their adjoint can be 

obtained trivially from the L U - fa c to r· i z a t i on of the 

discretized Jacobian: Let ~ ' '£ be N X m matr· ices 

containing m columns of inclependent null vector·s ancl their 

adjoint respectively. Then 

cannot be zer o f o r· 

both branches (non-tanf,ential in t e r sect ion p r· ope r· t y o f 

De fin it ion 2 . 2 ) , we look for· b i fur· cat ion on l y i f 

(3.4.1) = 0 
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If the test for bifurcation (3 .4.1) is po s i t i v e , we next 

solve the algebr· a ic bifurcation equ~tion anrl switch 

br· anches. 
0 0 

At a simple b i fu t ' cation po in t G A € G lA., let he 

a solution to 

1\ 

But c: is singular· , Cfo can be made unique hy requir· ing it 

has no component in the null 0 
space of G"". Tl-)is can easily 

be done 

A 

<fo : Cfo 

T h e v e c to t ' ({> 0 so c o n s t r u c ted s ::~ t i s f i e s 

::. 0 

(If the critical point is a simple bifurcation point the 

null space of is one rlimensional. UsinP, some form of 

0 
pivoting strate~y, G"" has the LU-factorization that was 

discussed in Theorem 3.~ . 

check the dimension of N(G
0 

"" 
elements of U.) 

Thus, in our computations we c ::~n 

by printin~ out the rlia~onal 
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In a small neighbourhood of the si~ple bifurcation 
) 

point we have the expansions (2.1.16) 

(3.4.2) 

(3.4.3) 
:: ~ot:lfo + o(I±Cf, 

where (tf0~, o<.*) are the distinct roots of the al!I,ehr· aic 

b i fur c a t i o n e q u a t i o n . To s w i t c h b r· an c he s , \.J e •n us t so l v e f o r 

these roots. 

For very general nonlinear eigenvalue problems (may it 

be algebraic equations, inte~ral e~uations, o rdinary 

differential equations or partial differential e~uations) 

Ke~ler [13] has suggested four different app roache s for the 

computation of bifurcated branches. In one of these. tf-)e 

first method, the coefficients of the al~ebt aic bifurcation 

equation must be computed. These are, we recall: 

'f~ 
0 

0.. = G- 1414 !.f, ~, 

't'~ ( c..:u. 1f 0 

0 

(3.4.LI) b + G-14A) 'f, 

.. ( ., 0 
(j.).o}.., ) c = 'f, Gu.\4 lfo tfo + c;..tA)., ~0 + 



- 78-

We focus our attention on his first approach in application 

to nonlinear two-point boundary value pr·oblems for· or·dinary 

differential equations. Though all finite element and 

finite difference schemes give similar results, we derive 

our equations using the Jacobian matrix obtained from the 

centered-Euler scheme. We note the scalars a, b and c in 
0 

(3.4.4) involve computations of vectors of the form (a) G l~, 

(b) 
0 

(c) G
1114 

vw, wher· e v and w are vectors whi ch are 

not functions of u or A. 

We have no problems with (a) and (b). The derivative 

on the left han d side of (3.1.1) does not depend on A, 

giving 

( 3 . 4 . 5 ) 

(}~~. (u: ~~·) 
a At. 

~ (x.~,itJ:~u~); .\o) 

~),r- • • 
~~\. ()(z~ ,"\t IAt•"''); A0

) . 
' 

To determine (c) we proc eed in two steps: 

( i ) H 
0 

:: G-u. v 
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( i i) Hv. w 

From (3.1.6) II can be wr· itten 

H = 

The vector v does not explicitly rlepend on the solution u of 

(3.1.4). The derivative ux is linear in u nnd hence gives 

0 

no contribution to G 14~. 'le n.~~ 

Component-wise, for· any xj E (a,b], th e k-th co11ponent of oC.j 

is 

where the second subscr· ipt of vj-,,.ll. (or wj-,,R.) denotes the 

1-th component of the vector vJ-I (or· wj-l ) at the net point 

xj-• anti the der·ivative 
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denotes the differ· entiation of the k-th component of f with 

respect to the 1-th component of u. At the boundar·y po ints 

:: 

To obtain the coefficients a, band ' c in (3.4.4). we 
it 0 

need to form the inner product l¥1 with G
1114 

vw, sa y. Let p be 

the number of left boundary co nditions of (3.1.1)-( 3. 1. 2). 

We wr· i te 

K = 

where K 8 _ ~ . and K~ are contributions from boundary ooints 

and internal points respectively. They ca n easily be seen 

to be 

K· ,._ 

As the mesh size h ~ 0, K.&.. 

p b z ~ 'f~t 0(~~ ~·~ d. 'Xi 
1(::.1 ~ 

'11 

+ L 'Vr.~ !1Cb,1-p 

P+' 

tends to 

"Y'' b 
+ L ) 'i'tt 0(~-r cl~ 

lt:ptl ~ 
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For the rotating coaxial disks problem the contribution from 

the boundary conditions is zero, and K is given by 

Thus the coefficients in (3.4.4) can be obtained by various 

combinations of v and w, where v and w are now <f
0 

and f, . 

To check our calculations, we observe one of the roots 

corresponds to the tange~t along the known branch. The 
\0 

derivative A~ should be equal to either o<o - or -' , + o f the 

solution of the algebraic bifurcation equation. Let 

( -'o+t oe 1.-) be the root for the new bi fur<.: a ted branch. To 

switch branches, we must chanRe our normalization to 

and use the initial guess alonR the new branch 
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3 . 5 NUMERICAL IMPLEMENTATION OF STABILITY ANALYSIS 

The computational aspects of exchange of linearized 

stability analysis is to be studied in this section . l n A 

small neighbourhood of a critical point for the equilibrium 

problem, assume the time-dependent problem has solution of 

the form 

(3.5.1) u ( t:.) = u.l s l ~ ~ e o--t:. w l s) 

To determine if the eigenvalue ~ (s) has gone from positive 

to negative (o r vice versa) as we tranverse through the 

critical point, there are two approa c hes: 

(1) Compu t ation at the critical point determine the 

lowest nonzero deri v ative. Fo r ex~mple, from Section 2 . 1 

(3 . 5 . 2) cr. (So) = 

Here a and b are the coefficients of the al g ebr·ai c 

bifurcation equation, which can be computed effortle s sly 

(see last section), and ( Gfo , Gt 1 ) 

algebraic bifurcation equation. 

is a solut i on to the 

(For normal lim it points 

~. is identically zero and we set «, to be equal to one.) 

If ~ (s0 ) is zero, the next derivative c an be seen to be 
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1C l (;.:~ w 'f, 2 0 ) 

(3.5.3) O'"ss l So) 
2. 'f, + 3 G-• ....,. (f, 'f, 'f, 

:: 

't~ 13 '{>' 

where VI satisfies 

(;.~ 
0 

(3.5.4) 'N = - G-utA. <f, ~~ 

(The solution for w can be computed without special 

treatment, w is made unique by requiring 't':w to be equal 

to zero.) 

(2) Computation near the critical point Substitutin~S 

(3.5.1) into the time-dependent problem gives a linear 

eigenvalue problem in cr: 

(3.5.5) 

1 

for Is- s 0 j<~, for· some small ~ > 0 . Newton's method is 

used to solve (3.5.2) for ( (f, w), with the initial p;uess 

(0, ~,). A simple change of var·iable yields 

(G-14 \UlS) 1 ~lS\\ 
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CHAPTER 4 

THE COMPUTATIONAL RESULTS 

In this chapter we 

rotating coaxial disks 

discuss the computatiot;S of the 

problem. It is divided into two 

sections. Section 1 describes the solution branches. 

Section 2 gives 

local exchange of 

discussed. 

a detailed treatment at critical points; 

linearized stability calculations are 

4.1 SOLUTION BRANCHES 

In this section we describe the many computed solutions 

using the analysis and methods of the last two chapters. 

All the computed solutions are second order accurate in the 

m~sh size h. Notions of cells (Batchelor [ 1]) and 

sub-cells are introduced. In some of the solution branches, 

the axial and radial velocities for some positive ~ are 

approximately the same as those for negative )( and we 

explain this ~- sign-independent phenomenon using standard 
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singular perturbation techniques. 

Let us consider the general problem (3.1.1)-(3.1.2). 

Assume a so 1 ut ion is known for· some ). . ln Section 3.2 we 

described the numerical procedure of obtaining a solution 

for ). 1 using Euler-Newton pseudo-arclength s-continuation. 

Hence we can 'continue' to trace out a solution branch for 

l. ~~~A I • 

In the rotating coaxial disks problem we have at our 

disposal to continue in one of the two parameters: the 

Reynolds number R or the ratio of the angular velocity of 

the two disks ~ All the solution branches are computed 

using a systematic approach; no clever initial guesses are 

needed. In our calculations Euler-Newton pseudo-arclength 

s-continuation procedure is used. When a solution at a 

particular R and ~ is desired we switch to straight-forward 

Euler-Newton continuation. 

Let S(f, g) be a solution to the rotating coaxial disks 

problem with no suction. 
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l?_efini~io~ !.:J_ S(f, g) is a~~ -~~J?)i1::~<!~ ~o l_~t~~l! if the 

outer (inviscid) solution tends to infinity in magr!itude in 

the limit Reynolds number R tending to infinity. 

Definition 4.2 S(f, g) is a finite ampl~tu~~ ~~lu~ion if the 

outer (inviscid) solution is finite in magnitude in the 

limit Reynolds number R tending to infinity. 

For R = 0 and 1~1~ 1 we have the unique solution of 

(1.2.17) 

f = 0 
(4.1.1) 

I + ( ~-1) ;r: 

It is easily shown that solutions (4.1.1) are stable 

(Definition 2.5). From these solutions we let the Reynolds 

number R be the continuation parameter and use our 

pseudo-arclength continuation for fixed YK = -1 + k( 0.1 ), 

k = 0,1, ..... ,20. For the purpose of this discussion we 

stop at R = 500, and we denote these solutions by 

S ( ~K' R = 500). We have the following: 
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(a) The determinant of the converged diseretized Jacobian 

Ghu.. has a change in sign for ¥ = -1 and R between 11 G and 

120. This will be followed up in next section. 

(b) By inspecting the solution profiles for cases ¥ = 0 and 

~ = -0.1 we suspect these two solutions belong to different 

branches (or families), say r (0) and r (-0.1). Fixing 

R = 500 we continue in ~ from ¥ = 0 to (r = -0.1 of reo) 
and from ~ = -0.1 to ¥ = 0 of r (-0.1). Our suspicion is 

confirmed . We obtain two distinct solutions for (i) ¥ = 0 

and R = 500, and (ii) ~ = -0. 1 and R = 500 . Similar 

phenomena occur for (1) Y = -0.3 and ~ = -0.4, and (2) 

~ = -0.9 and ~ = -1. Case (1) will be treated in detail 

in the next section. Case (2) will be discussed later in 

this section. For the missing gaps in ~ , (that is, 

~ E [0,1], ~ e [-0.1,-0.3] and Ye- [-0.4,-1]), there is no 

abrupt change in the solution profiles. This can be 

confirmed by fixing R = 500 and continuing from ¥ = ¥~ to 

~ = ¥p say, and the solution so obtained for '( = ¥~ is 

found to be identical to S
0

( ~e, R = 500). In this way we 

obtain four different solution branches (or families) when 

we continue in r for R = 500. In Figure 4.1 we show the 

intervals (a~, ~b) in which these branches have solutions 

for R = 500. The '*'-sign indicates the points 

( ¥~ R = 500) where we start to continue in ¥ from the 
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solutions S
0 

( ~*, R = 500). We note that the second and 

fourth branches do not extend the full interval [-1 ,1]. 

That i s , the s e b r an c he s t u r n around at the 1 i rn it po in t s , ~ 1u 

and 'l(* 2 • 
1 
.~ 

.s 

·2 

0 

-.l. ~ 0) ~-l. 

-.S ~~ ® 

-. 8 

-1 

fi<3u..--e 4. ~ 

Because solutions at R = 0 are unique, the new branches 

obtained above cannot have solutions for R ( ~ ) < Rc ( ~). 

These critical points Rc ( ~) are found to be normal lirnit 

points (Definition 2. 3). Let r:b be a solution branch for 

some fixed o = ~ 0 • 

r: .. := { lUt<l,Rl>l;¥0 ) ~lU!S\,Rlsl;t.)~O, Sb~S~S~~ 

The Reynolds number is the parameter along ~b - a similar 

convention is us ed when we fixed the Reynolds number. 
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If r cannot be extencted to R = 0, then 
Gob 

it must have at least one limit point. For branches (with 

~ = constant and which do not form closed loops) containing 

R = 0 have an even number of limit points and those no~ 

containing R = 0 have an odd number of limit points. 

Moreover for sufficiently large R, solution branches 

containing odd number of limit points hAve at least two 

distinct solutions. 

"'€ lB 

r. 

()1----------------_.,.~ 

fi'"'"e ~."2.: r; hqs -4-wo {e>~et\ "h'4ftlbev-) l\~\t pol"'+s 

r;, ho.s '"'ree ( ocl<l 11~ber) liMi\ poiVat~ 

For some R = R~, let the pair (f(z), g(z)) be a 

solution for ~ = 1 of branch r: satisfying: 

~ = -1 can be treated in a similar fashion.) 

f ( 1/z.) * 0 

~~ l 'h) 

Then Corollary 1. 2 implies the solution 

(The case for 
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is different from (f, ~). Fixing the Reynolds number at R~ 

we next continue in using the solution U+. From 

Corollary 1.2 and using (1 .2.26) the new computed branch 

r u ... ,lll.. 
is different from 

We comment on the solutions outside the strip I of 

(1.2.16), that is l~l >1, 

R = R = 1 000, 
0.. 

excludes ¥ = 0. 

we consider 

Assume rca. 

R > 0. For some fixed R, say 

a solution br· anch r a. that 

has a normal limit point at 

By Lemma 1.1 we see the branch for the 'reduced' 

Reynolds at 1/~ . 
tl 

computations of branches 7-10-11 is an example. 

description of branches for the numbering system.) 

-------------+--------------~' ~ 
l 

The 

(See 

We observe that 0.79 * 1/1.2. This is because using Lemma 

1.1 the critical point (R , ~ ) = (1000,0.79) transfor·ms 
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into (790, 1/0.79). 

In figure 4.4 we show the loci of critical points with 

the number of solutions indicated. We point out these 

curves are only second order accurate in th e mesh size h. 

That is, a critical point is one at whi ch the linearized 

operator Gt.t. is singular. The determinant of the 

discretized linearized operator has the asymptotic expansion 

(for the centered-Euler method) 

:: 

We either gain two solutions or lose two solutions as we 

transverse these curves of critical points. We now give a 

few comments. 

There is a unique solution in the region 0~ R6· 55. and 

l K I :!: 1 • Because the solution f at E is not antisymmetric, 

from Corollary 1.2 and using (1.2.26) we deduce there must 

be another fold meeting E ~ F at E. This fold turns out to 

be E 0< F. The normal limit point curve E (3 F is computed in 

the following sequence of calculations: ( i) Let r ( 'lr) be 
+ 

a solution branch for some fixed non-nega tive ~ and contai n 
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solutions for R 'l 0. 

r ( o = 0) at R = 500. .... 

Let S( ¥ = 0) be a solution on 

Now fix R = 500 and continue in 

until 't = -1. The solutions for negative ~ obtained above 

give half of the curve E ~ F when we use our pseudo arclength 

continuation procedure or. the Reynolds number, keeping r 
fixed. ( i i) Let s ( '!( = -0. 1) be a solution on 

r: ( ~ = -0. 1 ) at R = 500, where solution exists for 

R e [0, 1000] on r_ We continue in ~ un t i 1 )( = 1 . 

These new solutions give the other half of E f3 F when we 

continue in R, keeping )!' fixed. The lips CHD "belongs" to 

E cc F : for )( e: ( - 0 . 4 , 0 . 6 5 ) the so l u t ion b r an c h r po s s e sse s 

three r.ormal limit points (one is on E~ F and two on the 

lips CHD) . As we approach from the center of the lips 

towards the tips C, D the two normal limit points coalesce 

into one and then disappear as we pass the tips. The 

phenomenon of coaleser.ce of normal limit points is quite 

common in this problem (A, 8 and the tips of lips P, P', Q, 

Q'; they are also called cusps). The normal limit point 

curve GHI touches the left side of the lips CHD at H. The 

half lips Q "bel ongs" to GHI, and Q "belongs" to GI' which 

is not shown. We have a similar phenom enon for the lips p 

and P' with RU and RU I. There is a little finger MN which 

touches the lips Q near K = -1 . Co r ollary 1.2 can be 

applied to '<( = -1 solution of MN. Except for the branch 

that extends to R = 0, all the solutions discussed in this 
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paragraph are large amplitude solutio~s. 

The critical point A e (R ~ 119 ., ¥ = -1) is a 

bifurcatio~ poi~t (Definition 2.2 ). For '1{ = -1 + E 

1 >> f: > 0 we obtain two solution branches b
1 

a~d b
4

. This is 

the classical example of bifurcation-perturbed-bifurcatio~, 

where 6 is the "impurity:'. The locus of normal limit 

point of b, gives the hyperbola-shaped AL; for fi~ite 

Reynolds ~umber this perturbed-bifurcatio~ sheet does ~ot 

have a solution for ¥ = 0 (that is, the normal limit point 

R~( ¥') tends to infinity as )( tends to zero) . We next 

consider the branch b
4 

of the perturbed-bifurcatio~ sheet . 

For -1/3~ t < -1, b2- extends back to R = 0; there is a 

cusp at B :(Rc = 347.8, Y = -.3834) where b 2 begins to 

develop into a~ s-curve which extends back to R = 0 u~til 

~ = -1/3. For -1/3< b'~ 1, branch bl. 'turns around', 

giving the limit point curve BJ. (For future discussio~, 

let S bif denote the solutio~ for ~ = 1, R = 1000 by usin g 

pseudo-arclength continuatio~ from the solution along b ~ , 

a~d S "-it.~ be the solution for r = 1, R = 1000 which is 

obtained by continuation in R of S bif and it has a nor·mal 

limit point at J.) 



- 95-

bt 

For 'If = ~,... slightly larger· thar: -1/3, let rrld'le ( ~.r) 

be the solutior: branch that extends back to R = 0. Let 

S(R , l) be a solution or: rrr<l~e. For R = R-v- ~ 447.8 we 

continue in 't ar:d the result of the computation is amazir:g : 

this solution brar:ch does not have solution for ~ less than 

1(-n.(R) it 'turns back up' to join ~vi th the solution 

branch that contair:s sbif· This accounts for the normal 

limit point curve (or ridge) ST. (The curve BST will be 

treated in detail ir: the r:ext section.) 

Corollary 1. 2 is applied to ¥ = 1 solution at the 

r:ormal limit point J and this gives the li~tle finger JK ar:d 

the hyperbola-shaped A' L • This r:eeds a little explanation 

to show how we obtair: from four to six solutior:s for R ~ 290 

at ~ = 1: Corollary 1 .2 is applied to solutions StJif ar:d 

last paragraph), yieldir:g solutions S~f ar:d 
, 

S bif,-n.. We fixed R = 1000 and continue in 't . The brar:ch 
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starting 
I 

from the solution Sbif does not have solution for 

' ~~ 0.1; it 'turns back up' to a symmetric solution S b~l at 

¥ = 1. 
I 

Similarly the branch starting from S bif,-, does not 

have solution for~~ 0.79 and it 'turns back up' to a 

symmetric solution at )f = 1. we now fix ~ = 1 and 

continue in R for both symmetric solutions, and they meet at 

the normal limit point A' . Something must have happened in 

between - an exch~nge Q[ ~~l~~io~ bra~~~ has taken place at 

( R~, ~e) = (292, . 993). We now show schematically how this 

comes about. Let r:,'t(R) and T;.,t(R) be two solution branches 

for some ~ = lre - ~ , 1 >>E > 0 . When ~ = a'e r,,~e meets r;,cre at 

R(se) = Re· For ~ = ~e+E we have part of r;,~ joins part of 

G,~' and the remaining part of P,,~ joins the remainin g part 

0 f r;,'t. 

In the remainder of this section we exhibit some of our 

computed solution branches. Figures 4.8-4.24 are the 

velocity profiles (f(z), fi!:(z), g(z)) = 
(w(z), -2u( z)/r , v(z)/r) for the indicated Reynolds number. 
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The third axis which ''goes into and out of the paper" is the 

)(-axi s. Each curve is a velocity profile for a particular 

~. For example, in figure 4.8a the solution curves are the 

profiles for the angular velocity v = rg(z) for ~ = -1 to 

i = 1, with the first curve 'out of the paper or closest to 

the viewer' at ¥ = 1 and the last cur ve at (f = -1. 

Using both the axial and radial velocity profiles we 

can draw streamlines, (Batchelor [ 1]). The notion of cells 

can be introduced. 

Definition ~1 A cell is a region bounded by planes of 

constant z that includes only its own recirculating fluid. 

In other words, it is a region bounded by planes of constant 

z at which the axial velocity f(z) is zero. 

Let z~, zb be two consecutive zeros of f(z). Assuming 

nontrivial solution, f(z) must attain at least one relative 

extremum at ze.e(zll'v, z ~,,). If there is more than one 

relative extremum, we call it a cell-with-structure. 
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' ' ce\l1. ·-·· -- · --·~&---te\.L 2 ---~ .. 

Definition 4.4 Let Cs [z"-, zb] be a cell-\...r ith-structure. A 

subcell is a region bounded by planes of constant z,<z
2

, 

z,. Zz. E [zo., zb], satisfying (i) either the axial velocity 

f(z) or the radial velocity f~(z) is zero at z 1 and z~, and 

(ii) there exists one z
5

E(z
1

, z 2 ) 

f ... -n, ( z s ) f 0 . 

such that f (z ) = 0, 
ill: s 

The cell-with-structure in figure 4.5 has two subcells. 

Let N1'1'\QX and N"";""" be the number of relative maxima and the 

number of relative minima of f(z) in 

respectively. The number of subcells is given by 

(4.1.2) 

We must show N s is an integer. Assume f > 0 in ( z~, z 1) • 

In between two relative maxima there is a relative minimum. 

Furthermore between f(z(ll..) = f(zb) =0 th e re must be one more 

relative maximum than minimum. That is 

= Nrni~ + 1 
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From Definition 2.4 a solution is linearly stable only 

if all its eigenvalues in the linearized stability analysis 

lie in the left half complex plane. The exchange of 

stability calculations only gi ves the information that one 

of its eigenvalues has changed si~n. We can say a solution 

branch is linearly unstable from these calculat i ons . For 

this reason, we can only classify some, but not all, the 

stable branches. The computations of exchange of stability 

analysis will be discussed in the next section. (For most 

solution branches we stopped our calculations at R = 1000. 

Hence when we we say solution branch exists for R ~ 0 we 

mean the solution branch exists for R in the computed range 

l 0, 1000] and we strongly believe it exists for all R. 

Most of the branches shown are at Reynolds number R = 1000 . 

The exceptions are : (i) the cosine branch 9 is at R = 400, 

(ii) branches 12 and 13 are at R = 210 , and (iii) branches 

14 through 17 are at R = 190.) Following are the 

descriptions of some of the computed solution branches: 

Branch 1: 

The entire branch is stable . For~~ 0 solution exists for 

R ~ 0. Some of these solutions are we ll known. For 
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instance the follcwing have computed solutions on this 

branch: 

Mellor et al. [22]; '( = 0, large R 

Lance and Rogers [16]; 1f ~ 0, v arious ranges of R 61000 

Greenspan [ 7]; o = 0, R- 1000 

Holodniok et al. [ 8]; l = 0.8, R 6:1 000 

The solutions for l < 0 on this branch are unknown. As 

decreases from zero to -1 the number of cells increases from 

one to two, and the cells are cells-with-structure. At 

~ = -1 there is a region near the upper disk where both the 

axial and angular v elocity profiles behave like a cosine 

function; the maximum angular veloc ity of fluid i s about 

thirteen times that of the disks in absolute valu e large 

amplitude solution (Definition 4 .1 ). 

The branch is stable. For -1 < t~ -1/3 solution exists for 

R ~0. Some of these solutions have also been computed by: 

Pearson [23]; ¥ = -1, R = 1000 

Holodniok [ 8]; ¥ = 0 . 8, R~1000 

The solution has two cells for all \)S'l~1 . The parameter ~ 

ha s very little effect on the velocity profiles in the 

inviscid region. The solution at ¥ = -1 comes from the 
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symmetric bifurcation from the Stewartson solution branch 

( )( = -1 ) at R \>if = 1 1 9 . 

The branch is stable. For finite Reynolds number there is 

no solution on this branch for ~ = 0. (Branches 3 - 6 have 

the same phenomenon.) Only Pearson has computed the solution 

at t = -1. The solutions have two cells. In contrast to 

Branch 2, the effect of ~ is more appreciable throughout 

the inviscid region. 

Branch 4: 

For large Reynolds number the branch is unstable. At 

~ = -1, the solution exists for all R and there is an 

exchange of stability at the bifurcation point R = 119. 

This is the second of the four branches that does not hav e a 

solution for '( = 0 at a finite R. This is a two-cell 

branch, a continuation of Branch 3 after normal limit points 

R'\0\.( ~). There have been many analytical studies of this 

branch for ~ = -1 and large R. 
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Branch 5: X' ~r~~l}_ch A 0<~!:1 figure 4.1 2 

The branch is stable, and solution exists for· 0 <'(So 1. Only 

Holodniok et al. [ 8] computed the solution for 't = 0. R. 

This is a t\.-IO-cell solution br·anch. The solution for· X' = 1 

is obtained by applying Corollary 1.2 to the t = solution 

of Branch 2. Then the whole solution branch at R = 1000 and 

re (0, 1] is then obtained by pseudo-arclength continuation 

in ~ , keeping R fixed at R = 1000. The axial and radial 

velocities have the same form as those of Branch 3 even 

though the sign of t is opposite. This L-::.~_i_g_t~::.~r:!.~~e.~~d~n- ~ 

phen~l_!!.~r:!.~~ is also observed in Branch 5 (with Branch 6). 

For large Reynolds number the rotating coaxial disks problem 

with no suction can be analysed using singular perturbation 

techniques. (A detailed description appears in Chapter 5.) 

Let Ei:r. =1/R. Near the lower disk, assume the following 

asymptotic expansion in 

== 

= 

€ OC.o f 
0 + K,f 

€ ' + 

De Pend i n g on ( tl( 0 , a ) , t he l e ad i n g o r· d e r e q u a t i o n s c an b e 

written 
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= fo fott..~ + t. 4 '3o c;}o-t. 

(4.1.3) 
::: 

where c, depending on ( « 0 , a), is either zero or one. 

(4.1.3) is to be solved with conditions at t = 0: 

= 0 

(4.1.4) 
<;} o lo) = 

Let the solution be bounded as t ~ oo. Let (F, G) be such a 

solution when ~ in (4.1.4) is equal to one . Then for 

arbitrary nonzero ~ , we find we have the set of similar 

solutions to (4.1.3)-(4.1.4) 

(4.1.5) 

(4.1.6) 

f(t...~) = 

Cjl-t,~) = 

f (t.,~) = 

I '6 l'h F ( \ }! \ 'h t ) 

¥ G ( \ ~ \ 'lz.. t ) 

'a'r- F ( ~r t) 

)( G ( XF'-t) 

c. ::: l 

r* o ~ c = o 

The above similar solutions of (4.1.3)-(4.1.4) imply the 

axial and the radial velocities have the same solution to 

leading order irrespective of the sign of t . As t tends to 

infinity f(t, ~) tends to a constant independent of the si g n 

of (( . That is 

:: II~ f t t I - '6 ) 
t..., 1>0 
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Thus, for· some 'ls'~4 0, f(t, l!:'«>) and f(t,-~0 ) can be matched 

to the same outer (inviscid) solution. 

Branch 6: branch B 0<¥ ~1 figure 4.13 

The branch is unstable. Only Holodniok et al. computed the 

solution for r = 0.8. The solutions have two cells. This 

branch is a continuation of Branch 5 after normal limit 

points R,( ~). Bo t h the '{ - s i g n- in d e pend en t ph e n omen on an d 

the non-existence of solutions at ¥ = 0 for finite Reynolds 

number are present. 

Branch 7: -0.377 6 ~¥~1 figure 4.14 

The branch is unstable. Only Holodniok et al . computed the 

solution for )( = 0. 8. This is a two-cell br· anch, obtained 

by the continuation of Branch 2 after normal limit point 

Rn ( 1!( ) • The solution for 'l = is not symmetric. 

Branch 8: -0.3776~'0~ 1 figure 4.15 
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The branch is stable. For '(€: [-1/3,0) solutions exist for 

R ~ 0. Only Mellor et al. computed the solution for ¥ = 0. 

The number of cells varies between one to three as ~ 

changes. The ~-sign-independent phenomenon is evident here 

for~> 0 (with l}< 0 of Branch 1). The solution at ~= 1 is 

not symmetric about z = 0.5. 

Branch 9: cosine branch -1~~!:1 (R = 400) figure 4.16 

The branch is unstable. Only Mellor et al. computed the 

solution for ¥ = 0. This is a one-cell branch, with ~ 

having tremendous effect on the magnitude of the velocities 

in the inviscid region. This is an another example of the 

~-sign independent phenomenon (with itself). 

Branch 10: finger branch A 0.79~~~1 figure 4.17 

The stability of this branch is not known. By continuing 

the solution outside ~ = 1, this solution branch 'turns 

around' at about ~ = 1.2 (R = 1000). Solutions have two 

cells; the cell near the top disk has structures. 
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Branch 11: f i n g_~ ~!:.an c h B 0 . 7 9 ~ t ~ 1 f i g u r e 4 . 1 8 

Solutions are linearly unstable. This is a two-cell branch; 

the cell near the top disk has structures. Solution for 

~ = 1 is asymmetric about z = 0 . 5 and it is a mirror image 

of the solution of Branch 7. 

Branch 12: -1~ (f~ 1 (R = 210) fi gure 4.19 

This is a one-cell large amplitude solution branch. This 

branch does not have solution for R <5 5 . For "'0 = 1 f(z) is 

not anti-symmetric about z = 0.5 ( e ven though g is symmetric 

about z = 0.5). Applying Corollary 1. 2 eives the ¥ = 1 

solution of cosine branch 9 . 

Branch 1 3 : -1 ~ o ~ 1 ( R = 2 1 0) figure 11 • 2 0 

This is a two-cell large amplitude solution branch. For 

0 ~ -0.3 the cell near the t op disk has structures. 

Furthermore, there is an exchange of solution branches; 

solution branches for fixed ~< 0.05 turn around at R""'( 11") 

lying on E c<.F (cf. fi g ure 4.4), and solution branches for 

fixed ~ :> 0. 05 turn around at R ( 'lr) lying on GHl . 
Y\ 
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Branch 14: -1~t~-0.7, -0.23~~~1.0 (R = 2 10) figure L~.21 

This is a two-cell large amplitude solution branch. For 

K ~ 0 .3 the cell near the top disk has structures. This 

branch is the counterpart of branch 13: solution branches 

for fixed 'I(< 0.05 turn around at Rn( ~) lying on GHI and 

solution branches for fixed )( > 0.05 turn around at R1\( ?J) 

lying on E c<. F. We note that there is no solution for ¥ in 

(-0.25,-0.65) at R = 210 (see figure 4.4). 

Branch 15: -0.125~ 0~0.05 (R = 190) figure 4.22 

This is a two-cell large amplitude solution branch, lying 

inside the lips CHD. There is an exchange of solution 

branches: solution br anc he s for fixed ¥ < 0. 05 turn around 

at R"( ~) lying on lips CHD and solution branches for fixed 

)() 0.05 turn around at R""'( ~) lying on GHI. (Solutions for 

~~ 0.9 and R = 190 are not shown in figure 4 . 22) 

Branch 16: 0.025~ ~~ 0.225 (R = 190) figure 4.23 

This is a two-cell large amplitude solution branch. This is 

the counterpart of branch 15 (as branch 14 is the 
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counterpart of branch 13). (Solutions for "(~ -0.9 and 

a= 190 are not shown in figure 4.23.) 

Branch 17: - 0.125 0.2 (R = 190) fi g ure 4. 2 4 

This is a two-cell large amplitude solution branch. This is 

the second of the two solut i ons which lie inside the lips 

CHD. • I ,. I 
' 

Figures 4.26 and 4. 27 are g (0.5; ~, R = 500) and 

(g(0.5; )(, R = 1000) respectively. The se are the 

'bifurcation diagrams', where the parameter is 0 . ( Here we 

h ave shown only some of the computed solutions.) 

Correspondingly figures 4.28-4.33 show g (0.5; o~ ,R) as a 

function of R for fixed ~~ = 1, 0.8, 0, - 0 . 2, -0.8 and -1 

re s pec tively. (Note that g (0. 5 ; -1, R) = 0 on the 

Stewartson's solution br a nch.) The numbers indicated are the 
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branch numbering s ystem used above. Lastly, the unmarked 

intersections in figure 4.25-4.26 are not bifurcation 

points. That is, these intersections will probably g o away 

if we plot functions other th a n g(0.5). 

4.2 CRITICAL POINTS AND STABILITY CALCULATIONS . 

In this section we give an account of the computations 

at and near critical points: (1) Bifurcation points, (2) 

Normal limit points and (3) Coalesence of normal limit 

points. Local exchange of linearized stability computations 

are given. 

(1) Bifurcation points-

(a) Switching of Branches: For Y = -1 the 

determinant of the converged discretized Jacobian has a sign 

change between R = 110 and R = 1 2 0. Using interval 

bisection, the critical point R e is located, with the 

determinant of the discretized Jaqobian very small. 
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The quadratic convergence of Newton's method is lost at the 

critical point. (From Lemma 3.3 and Theorem 3.4 we know the 

critical point cannot be a normal limit point.) Dimension of 

the null space is found to be one by checking the last block 

of diagonal elements of the LU-factorization of the 

discretized Jacobian. Cf1 and 
~ 

~,, the null vector and its 

adjoint respectively, are computed using inverse iteration. 

Simple bifurcation is confirmed by forming the inner product 

'* \f, G-..>. . 

:::; s. f. rs >" 1 o _, 

The coefficients (ah, b~, ch) of the simple bifurcation 

equation are computed and the tangent vectors C~o. ~~) 

solved. 

The solution of the algebraic bifurcation equation has the 

property that any constant multiplying ( ~0 , ~l) is also a 

solution. This gives symmetric bifurcation: 

( 0{03 I ll( \3 ) h '::. ( \. \ Lt '1. I 0- 4 ) - \) 
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From these solutions, we form the initial guesses for 

k = 1,2,3: 

-qh,K ( bs ) :::: uh { Rc) t o:s l C\u ) a-s h,K 
0 < ~ s << ~ 

(4.2.1) K h," l ~ s ) ::: Rc. ... ~s t<o,K 

( ~) h,K. = ( !l(O\< ~o + e(l K ~~ h 

The normalization equation (3.1.2) is now a function of the 

tangent vector at the simple bifurcation point: 

(LI.2.2) 
Nh,K = e[ ~o1<.~o + DC,t<.f,]: (uh~l~!.) -u"u~.<:1) 

+ (1-e) c<ot<. ( Rh,IC. (~s) -~c) - b.s == 0 

The s-algorithm is applied with the normalization equation 

and initial guess (uh,l<.' Rh,K, Nh,K.) of (IL2.1)-(4.2.2). 

Quadratic convergence of Newton's method is recovered once 

we step away from the bifurcation pojnt. 

For k = 1 the computed solution is a continuation of 

the old branch we started on. For k = 2,3 the bifurcated 

branches are obtained and we continue the solution to 

H = 1 000. They are found to be the solutions at ¥ = -1 on 

Branches 2 and 3. These are also the solutions obtained by 

Pearson [23] using the time-dependent approach. 
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For o = - 1 + ~\'"" p1 0 < "(in~p « 1 , us in g the above three 

solutions in our arc-len~th continuations, the phenomenon of 

perturbed bifurcation is observed. 

Matkowsky and Reiss [19]) 

(b) Local exchange 

computations: 

of 

(Keener and Keller [10], 

linearized stability 

Method (1)- Eigenvalue problem close to bifurcation point-

Newton's method is used to solve the eigenvalue problem 

(3.5.5) for ~K (~S) near a bifurcation point. 

used as the initial guess for k = 1,2,3. 

(0, (fP is 

Quadratic 

convergence is observed. ( This is no surprise because the 

normalization equation 

II w 11: == ~ 

is N::o with 6 = 1.) 
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(4.2.3) 
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and with ~R = 0.03 we obtain eigenvalues 

Oj (Rc.-bR) 

<r 1 (R<.+~R) 

= -. 7 3 2. )( { 0- 4 

.l.f82.'/..lo-3 

This implies solution is stable for· R < Rc, and unstable for 

R > R,. 

For k = 2,3 and bR = .30 we obtain 

<r2 <~c + ~R) :: ~ 2'2.5 'i. l0-2. 

(4.2.4) 

a-3 ( Rc. + b R ) :: -. 123 '/.. \0-2. 

This implies the bifurcated branch is stable, in agreement 

with the steady solution of time-dependent computations of 

Pearson. 

Method (2) - ~-derivative at the bifurcation point: 

Fork= 1, we obtain 

cc,a.. + o<ob 
CJ"s {5o) :: 

(4.2.5) 

::: o.og 



-122-

Along the Stewartson's solution branch there is an exchange 

of linearized stability at the bifurcation point. Because 

solution is stable at R = 0 this branch becomes unstable for 

R > Rc;.. This agrees with the eigenvalue problem results 

(4.2.3). Fork= 2,3 we have ~s(R<) c= <Xo) = 0. Because 

the coefficient a of the algebraic bifurcation equation is 

also zero, we have U"'s(RcJ identically equal to zero along 

the bifurcated branch. To compute the second derivative 

~s~(Rc) we need to solve an additional equation: 

0 

Gu. w 
0 

- G-0.~ <f, <.f, :: 0 

Because G is at most quadratic in the dependent variables, 

th th . ..J F h t d . t. ,.... 0 
e 1ru rec e er1va 1ve uo.uu is identically zero. 

(4.2.6) w
1
* B tn 

I -r l 

::. - 2. 0 . 

Along the bifurcated solution branch, for ~s sufficiently 

small, the eigenvalue ~(s) near the bifurcation point has a 

Taylor series expansion 

tr(s) 
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Thus the bifurcated solution branch is linearly stable 

because is negative. This agrees with the 

eigenvalue problem results (4.2.4). 

(2) Normal limit points: 

(a) Computations around limit points - There are 

many normal limit points in the rotating c oaxial disks 

problem. The powerful pseudo-arclength continuation allows 

us to zip in and out of this type of critical points. 

'Modified' bisection is used to locate the critical 

point. The arc-length step-size has to be decreased near 

normal limit points. We use two different approaches: 

( 1) We let a in the normalization equation be a function of 

the derivative of parameter with respect to s. 

Specificially 

Nh- e L\.s(sot" {ulSl-IA(5ol) T (•-6) ..Xs\S.,)(Al~)· >.tsa)-ts-s,)=o 

Using the 'exact' arclength normalization equation 

::: 1 
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the derivative >. 5 can be computed 

±. 1 
.\ s ( s., ) ::: 

Now consider the pseudo-arclength normalization equation 

That 

is, when we are near a limit point ( l~sl <<. 1) we want to 

choose e to slow down the increment in >. for a given 

arclength increment ~s. This can easily be accomplished by 

requiring 

II 2. 
2 

r-a 

Solving for 0 

1(14~ (Sol II~ 

(2) Newton's method converges if the initial guess is 

sufficiently close to the solution. 

Keller [13] indicates the radius of curvature is 

some measure of how good the initial guess is. For 

computational purpose we consider an easier and more 

practical approach to estimate the curvature. Let g(0. 5 , ~) 

be a function of .A . (Here A can be the Reynolds number, 
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keeping '6 fixed, or vice versa.) Then K. of g(0.5,A) along 

r is 

We see K( lo) can be approximately determined using backward 

differences on g.>.(0.5; A0 ) and g "'(0.5; ~0 - b~.), wher'e g .>. is 

obtained in the predictor one step Euler continuation. A 

very rough criterion for the arclength increment osnew can 

be d e term in e d by the r at i o of K ( ). o) and IC. ( ). o- h A 0 ) : 

bSol<l if '13 <I~ .... k0·0-~A.\ 
~ 3 

~S ne.w -:.: '2. b5old if l Kl~o) ·1 < '1?;, 
KlXo- Ho) 

bSol<l/1. if K("o) 1 > 3 
{ Ao- ~">.o' 

At the normal limit point Newton's method conver ges 

quadratically. Thus, the rate of convergence proof in 

Section 3.3 is verified computationally. 

(b) Local exchange of lin ear'ized stability 

computations: 

Method (1) Eigenvalue probl em near limit points-
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We follow the same procedure described for the case of 

simple bifurcation point. The results agree with the theory 

of Section 2 . 3 . For o = - 0 . 9 of B r· an c he s 3 and l~ we h a v e 

(4.2.7) 

That is, Branch 3 is linearly stable and Branch 4 is 

linearly unstable. 

Method (2) ~ -derivative at a normal limit point -

This poses no difficulty. For the same case as in 

method (1), we have 

tr5 t So) = 
* 0 l\' I G""' '{>, ~. 

~t B~, (4.2.8) 

4.0 

In a small neighborhood of the limit point ~ (s) has the 

Taylor series expansion 

tr ( s) = o-s (So) ( s- '5o) + 0 ( s- s.,)?. 

From (4.2.8) we conclude there is an exchange of linearized 

stability. This is in agreement with the eigenvalue problem 

results (4.2.7). 



-127-

There are a few interesting phenomena near critical 

points where (1) coalesence of normal limit points and 

development of s-curve(or cusp), (2) exchange of solution 

branches. We conclude this section by locally studying one 

of these phenomena. 

(3) Coalesence of normal limit point and development of 

s-curve-

in the process of sweeping the solution sheet for 

Branch 2, it is fou n d that for Y> -1/3 the s olution branch 

~(R) does not extend back to R = 0. A careful and tedious 

pseudo-arclength continuation is performed. For ~~ -.384, 

the branch r:_ goes back to R = 0. Slighly increasing o to 

-.3839 we obtain a normal limit point with 

R (R=347.78) = 0. 
s~ 

(Here we have .A= R.) When we increase 

~ further to -.3834 this normal limit point splits into two 

normal limit points, forming an s-curve which still goes 

back to R = 0. The second normal limit point disappears at 

~ = -1/3. The limit points l 11i., 1 4 ,L and l 3 ,t 

4.35 correspond to the limit points on BJ, 

in figure 

RS and ST 

respectively in figure 4.4. Furthermore, for Y = -1/3 the 

two limit points from BS and TS meet together at R = 447.8. 

That is, BST has a relative maximum at R = 447.8 and 
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{( = -1/3. 

c : 
/.. ... i!: ::._---:~:~--::..:: ·""x-..:.-::-: ----.-::::-::::..::-. :: 

x ... -o.3333 ---· ---- --------··---V----·-·---···-·· --·· .. . Jll,'); t.3,~ 

t~ 

~ = -Q. ~q :::.:i ~ee::J.....=======-,,a. 

Ra,l 
"! = -o. 35 .:.:.:._~-- ------ · -· --- -·-- ·--- --· ---------- --~~ .. , xl..,<:~_:_:::::_·.:: 

~"l{c -0-383({ ~ 
?J'-47. 78 .t),oC:::::: 

fi~~Are 4.15 : Sc.\teW\o.tic:. ~<a.p <l~ve.\op"'eY\~ of critic.a.L poi\1t "B 

Next we perform an exchange of linear stability 

computations and obtain (1) the 'mid-section' of the s-curve 

is unstable, (2) the 'head' and 'tail' of the s-curve are 

stable. (This is an example in which the eigenvalue ~(s) 

of the linearized problem (2.3.6) goes from negative to 

positive and then back to negative while the rest of the 

spectrum stays in the left half complex plane.) 
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CHAPTER 5 

THE PERTURBATION ANALYSIS 

5.1 PRELIMINARIES 

In Chapter 4 we saw the many computed solutions of the 

rotating coaxial disks problem with no suction. These 

calculations open up many theoretical questions. Foremost 

ones are: (1) Is Batechelor's conjecture correct? (2) Is 

there an infinite number of solutions? In this short 

chapter we do not attempt to address to these questions, nor 

do we try to launch an extensive systematic investigation. 

Rather, we give a flavor of the different kinds of solutions 

that can be constructed using singular perturbation 

techniques (Cole [ 3]). Some work has been done in the last 

few years. A lot as yet has to be accomplished before we 

can close the topic. Indeed for the flow of a viscous fluid 

in a semi-infinite region bounded by a single infinite 

rotating disk, Dijkstra and Zandbergen [ 5] recently 

computed nonunique solutions. (Lentini-Gil [17] furthered 

their calculations and conjectured an infinite number of 
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solutions for the case when the fluid is nonrotating at 

infinity.) These solutions, we shall see in this chapter, 

are the boundary layer solutions in our perturbation 

construction. Which of their computed solutions shall we 

use to match with the inviscid solution(s)? 

We restrict ourselves to the case R >> 1 and ¥ = -1. 

In Section 2 we study the perturbation con s truction of 

Stewartson's solution. In Section 3 we review Tam's 

expansion for our bifurcated solutions (see Chapter 4). His 

results are extended to higher order terms. In the last 

section we indicate some new perturbation constructions for 

large amplitude solutions (see Chapter 4). 

For ¥ = -1 and large Reynolds number we let E~ = R-1 and 

rewrite our governing equations: 

ff~u + 4 ':lfJ1: 
(5.1.1) 

The boundary conditions for (5.1.1) are 
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t { 0 l = 0 ; f (I \ - 0 

f (o) = 0 f \1) = 0 
~ i!: 

~ ( o) 1 5 ~ ') ::: -1 

In its most general form, assu'lle the following 

expansion 

~ ::: E o. -\:. 

f = Gt><o fo + Eoe.1 f 
I + €0(2 f 

'l. + ... .. ... O(t<. > C(K-\ 

<j E(3° 'jo + E p.., ')a t- E r..l. ~?.. -\- ..... ~\<. > f.> K-\ 

Substituting into (5.1.1) we obtain 

4~4G\ l oCo r oc,f '\ 
€. £ Tot:..\:.t.t + C lt.H.t+ .•.•. .} 

€2.-:l.G\ { ~Bo~ott + e~'CJ,t:t + ··-· J 
::: E ... ~ [ (:t(o-t~o ( ';Jot:fo-~ofot) + E~o-t~'(9H:fo-~lfo~) 

+ E 1>(' 1' Po ( Cj()ti=a - <jof,t_) -t ····•] 

The leading order equations depend on ( Olo, (j 0 ; a). For 

nonzero a' we have either boundary layer region or 

transition layer region. The following is a list of leading 

order equations: 
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( 1 ) von Karman single disk boundar·y layer equation: 

( 14' ~0 ; a)::(1, 0. 
' 

1 ) 

fott:.t-.-e ::: 
(5.1.3) 

fo fot.'r.'r. -+ Lt 'jc.joe 

<JOt <jot; fo jo·h.~c 

(2) radial momentum uncoupled boundary layer equation: 

( ll(o ' (1o ; a):::.(O, O· 
' 

2) 

fo·t:t.tt - fo fott.t; 
(5.1.4) 

~Ott = ~ot +o - c;]ofot 

( 3 ) angular momentum uncoupled boundar· y layer equation: 

( OCCI ' (3o ; a)::: (2 - a + k,2 - 2a + k/2,a), k' a> 0 

(5.1.5) fot.ttt = 4 ~o~Ot 
a ::::: 1 

JOtt ..: 0 

(5.1.6) fol:.-e-tt: - 0 
a>\ 

9ot-e 0 
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(4) cosine inviscid equation: ( D<o, ~0 a) ::::(k, k, 0) l<< 2 

::: 0 

(5.1.7) 

~ofot: = 0 

(5) cubic polynomial inviscid equation: 

( k f ' k<J '0) ' kf < 2' k~ > k f 

fo foett 0 
(5.1.8) 

(6) non-r·otating inviscid equation: 

(kf' kfj '0) ' \< 2' kCJ < k ~ 

<j 0 :l 0*- :::: 0 

(5.1.9) 

Sot- fo - <jof-ot. 0 

( 13(o , !3 0 ; a)= 

( tX'o , ~o ; a) :: 

Some of the above leading order equations will be used 

to construct some of our computed solutions. We note the 

boundary layer equations (5.1.3)-(5.1.4) are nonlinear and 

as yet no closed form solution has been found. However the 

inviscid equations (5.1.7)-(5.1.9) can be solved explicitly. 

In the following sections we confine our studies on the 

close z-interval [0, 0.5]. We thus restrict ourselves to 
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solutions for large R and ¥ = -1 havin g one of the following 

properties: (1) odd solution about z = 0.5, that i s 

(5.1.10) f ( Yz.) j(Yz) =o 

and (2) even solution about z = 0.5, that is 

(5.1.11) fil l ~) '::: ~-('/z.) '::: 0 

5.2 SOLUTION OF STEWARTSON - REVIEW 

The solution of Stewartson has been analyzed by many 

workers. Among them are Tam [29], McLeod and Parter [21], 

and Matkowsky and Siegmann [18]. In this section we shall 

construct the solution using standard singular perturbation 

techniques. 

We assume solution is odd about z = 0.5 (5.1.10). In 

the interval [0, 0.5] we use a two-layer model. That is, a 

b~undary layer whose leading order equation is the von 

Karman single-disk equation (5.1.3), and a non-rotating 

inviscid outer layer whose leading order equation is given 
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by (5.1.9). To be ·more precise, near the bottom disk z = 0 

we introduce the following expansions: 

t = ~,f:. 

(5.2.1) f :=. E fo + E.1..f + I 

~ = t)o + € \~I + -----

The equations fo r f and u are given by (5.1.3). The 
0 °0 

equations for f 1 and g
1 

are 

::: 

(5.2.2) 
fo f,t.tt t to~'e {-\ + 4 ( '.\o~ It;- ~l.lt <';\\) 

{~It fo - <],fo-e J + l 5ot f\ - ~o{:l-t) 

The boundary conditions are: (1) at the disk 

0 

(5 .2.3) 

1. 

and ( 2) as t ~ o.o 

(5.2.4) 

The nonlin ear equations (5.1.3) with boundary 

conditions (5. 2.3 )-(5. 2.4) do not have closed form 
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solutions. From the analysis of McLeod and Parter [21] we 

can assume solution I of Dij~stra and Zandbergen [ S] is to 

be used to match with the outer inviscid solution. fl.s t 

tends to infinity, we have 

f 0 ( e - p.88% ) 
0 :::: - 0.'2&Lt + 

(5.2.5) 

Next we consider the inviscid region. A.ssume 

f- :::: E F
0 
l~) i- eJ.F,t-e) +-

(5. 2 .6) 

= Go(:t) + E G-, l "i;) t ··--·· 

The leading order equations are given by 

higher order equations are: 

4 ( GoG-,~ + G-o~ G-, 1 ::2 0 

Go.F,- G-0 r ,'l. + G-,'lFo- G-, Fo"l = Goc.c 

fo Fo:.n.'A + 4 ( ~G-Lt + Go~ G-z + G-, Gj~) = 
(5.2.7) 

G-o~ F;t.- G-o F,_ll t G-1~f0 -G-~~e tGj,.,F,-G-1 ~~ = 

2: F~ FR-R,U.f. +4-L: G-~ Ga<-R·H, ~ 
~~ ~.-\ R~ Kt\ 

L! (G-~:e FK-~-1 - G-~ FK-J{·H.-u) 
~~M\ 

From the boundary conditions (5.1.10) we 

solutions in the inviscid region: 

expansions: 

(5.1.9). The 

0 

G-, 1i i(: 

obtain the 
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(5.2.8) 
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;: 0 

I<~ 0 

The constant C0 is found by matching with the leading order 

solution Ef0 of (5.2.5) 

= 1-76 g 

The linear term C z is to be matched with 
0 

&"l.f 
1 • Thus for 

large Reynolds number Stewartson's solution is non-rotating 

in the interior. It is a two-cell (Definition 4. 3) 

solution. The streamlines of the flow are given in figure 

5. 1 . 

5.3 SOLUTION OF PEARSON (BIFURCATED) 

For ~ = -1 Pearson [ 23 ] u sing the time- dependent 

approach computed two steady sta te solutions at R = 1000. 

These are found to be our bifurcated solutions ( see Chapter 
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4 ) ; these solution branches exist for R > ·119. Further, our 

local exchange of lineari zed sta?ility analysis confirmed 

Pearson's computed stable solutions. Tam [29], using 

singular pertu~bation techniques, constructed PeCJr' son's 

solutions. In this section we review and extend Tam's work. 

As in the construction of Stewartson's solution, we use 

a two-layer model and confine our studies to the closed 

interval [0, 0.5]. Even solution ~bout z = 0.5 is assumed 

(5.1.11). The inviscid region has solution which is 0(1) as 

The leading order equations in the boundary layer 

region is the same as in Section 5.2. 

For the inviscid region \ve use the following expansions 

f = f'ol:Z:) + e F, (~) + e:z. Fz. l e) + ... - . 
(5.3.1) 

CJ -::::: liol:Z:) + e-G-,C~) t €1. G z. (e) -t -··.-

These expansions are substituted into (5.1.1). The first 

t h r e e sets of equations for· ( F 0 , G 0 ) , ( F, , G 1 ) and ( F :l. , G ~_) 

can be obtained by equating powers of € 

::: 0 

(5.3.2) 
0 



0 

(5.3.3) - 0 

(5.3.4) 

Even (or symmetric) boundary conditions (5.1.11) are imposed 

for both f and g in the inviscid region: 

(5.3.5) :::o 

Next we proceed to solve (5.3.2)-(5.3.5). In (5.3.2) 

the inviscid angular momentum equation can be satisfied by 

( 5 . 3 . 6 ) 

where A0 is a constant to be determined. Substituting 

(5.3.6) into the inviscid radial momentum equation of 

(5.3.2) we obtain 

(5.3.7) - 0 
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for nontrivial solution we obtain 

-
+ t Co S\V\. Ao ( ~-'lz.) 

The boundary condition (5.3.5) implies C0 = 0. The solution 

for the pair (F
0

, G
0

) is given by 

(5.3.8) 
F. - A { 13 + Co:> )..o (l.-'1&)) 0 - 0 0 

= ).. A. ( 'Bo + 
~ 

Cos >.o tZ-1-i) ) 

Both equations in (5.3.3) and (5.3.4) have the form 

( 5 . 3 . 9 ) 

k = lJ 'L 

v1here T \ = s' = 0, and T2 and Sz. are given by 

T 
1.. 

= Fo~ .. u. ( F. F.-nit - 4G,G-, 1 ) 

52 = Go~l - (i.l"t F, - G, F,~ 

(Matkowsky et al. [18] in 1976 performed a laborious 

calculation to show as E -+0 rotating odd solution cannot 

exist. We observe this is the consequence of the fact that 

the coefficients· multiplying the highest derivatives in 

(5.3.9) vanish at z = 0.5 if we admit rotating odd solution 

and the linear operator 1 become singular.) 
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Next, the requirement that FK(0.5) be nonzero implies 

(5.3.10) t 0 

Bearing in mind that this inviscid solution is to be matched 

with the numerical solution of the von Karman boundary-layer 

equations (5.1.3) 

(5.3.11) 

Because F
0 

( z) is 0< 1), we must have 

(5.3.12) 
CoS ,\o 

2. 
0 

From (5.3.10) and (5.3.12) we have 

(5.3.13) Cos Ao 
2.. 

1 

This proves the following lemma: 

Lemma 5. 1 Consider the problem (5.1.1)-(5.1.2). - - -- - --

e. assume the outer (in viscid) solution: 

f :::: Ao { :Bo+ c.os ~ .. ("t-'l.z..)) i" 0 (E-) 

Cj - ~0 Ao ( :B +-
'2. 0 

to5 .Ao c~-'lz)) , + 0 lE) 

For small 
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Further, let the boundary layer region hav~ the limiting 

solution ( z = E: t) 

I•~ (f lt1) = 
t: ~ lt) 

Then 

Substituting (5.3.8) into (5.3.9) 

(5.3.6)-(5.3.7) we obtain 

(5.3.13a) 

(5.3.13b) 

Equation (5.3.13b) can be brought into the form 

Integrating, we get 

(5.3.14) = ~0 !=: 
'2. \ K. + 

(l 
fo ) 

Yz 

and using 

:: T" 

We next use (5.3.13b) and (5.3.14) in (5.3~13a) to obtain 
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the following equation involving only the unknown F~ 

-~~Fa~ F~ t Fo FKH"f. ... 2}0 { 2.Foz. [ l; Fh. t 

- ,\.; l Fo~ FR. - ~ F.H) 1 = Tk 

This can be simplified: 

(5.3.15) 

Solutions for (Fk, GK)' k ~1, are then given by the 

solutions of (5.3.15) and the equation (5.3.14). 

For k = 1 ' we have 

F1 = A, ( 13, -t co:; Ao le- 1/z) ) 

(5.3.16) 

{f, :: ~~ A, ( B, + Cos .Xo { 'l.-'lz I ) 
z 

Fork= 2, the non-homogeneous equation (5.3.15) can be 

written as a first order system 

~0 t:e) v- t f. 

This has solution 
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Hhere £(z) is the fundamental matr·ix (see Coddington and 

Levinson [ 2]), and for our equation (5.3.15), the 

fundamental matrix of its equivalent first order system can 

easily be seen to be 

0 

0 

Thus (F G ) 1·s g1·ven by 
:z.' 2. 

(5.3.17a) = 

(5.3.17b) 

±t ( \- Co:.)..lt.- 1/z.\) 

t Sill\ A .. t~-'h) 

In direct contrast to the analysis of Matkowsky et al.[18] 

we observe F
0 

(s) tends to a nonzero 

to 0.5. That is, the integrand of 

( t- c.os A.,n:--t.)) IZzl-c) cl""C 

J=o l "1:.) 

constant A B 
0 0 

as z tends 

is regular if R~(s) is regular. From (5.3.10) and (5.3.12) 

F
0 

has the form 



-145-

(5.3.19) 

For our bifurcated solutions Tam [29] observed, by forming 

the quotient G
0

(0.5)/F
0

(0.5), 

= ±1T 

Using the trigonometric half-angle identities the integral 

can be easily obtained 

(5.3.20) 

Thus the inviscid solution for f is given by 

(5.3.21) 

Evaluating at z = 0, tan{7.11'(z - 0.5)/2} becomes tan{ 1T/2}. 
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The major difference between an even solution and an odd 

solution is that the singularity for the even solution is at 

z = 0, and the singularity for the odd solution is at 

z = 0.5 (see Matkowsky et al. [18]). 

We next consider the boundary layer equations and 

indicate how to match its solutions with those from the 

inviscid region ( 0' 0. 5). The boundary layer region has 

expansions 
t = :c 

E 

f = ~ fo + ~:a.+, + 

~ = <jo t- G <3t + - .. - <#. 

The equations for ( f 
0 ' 

g ) and < f, ' g ') are 
• 

(5.3.22) 
fot.tt.-1: = fo fll-l::H-. + 4 ~o c.lot 

<j Ott = ~b-e -fo ~0 fo-~: 

fltthl::. - fo fltt t:. 1- fo-bet: f, + 4 ( j\l~H~ +jot Jl) (5.3.23) 

qH:-1:: - Jlt fo - ~lfo-t + ~Ot f, - J..~fr-t · 

The boundary layer equations for (f
0

, g
0

) are the full 

nonlinear equations (5.1.1) with R = 1. There is no closed 

form solution . As in Section 5.2 we assume solution I of 
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Dijkstra and Zandbergen [ 5] is used to match with the 

solution (5.3.21) in the inviscid region ( 0 ' 0. 5) . For our 

matching purpose, we need to know the . behavior of <f. ' g o ) 

as t-e>o. We have (see Golstein [ 6]) 

~ ~ 
Yl-fo.., ·t 

ft> = fooo + e 
(5.3.26) tt>o "~ 

~0 -:::: 2: bowt 'n fo-o-\:. 
e 

~>" n~ 

f is found to be equal to -0 .884 numerically. 
000 

The first 

order term ( f, g
1

) has similar expansions for large t 

( 5. 3. 27) 

""' a,., 'ttoDQt 
+ L .. - e • n• t'l>o . 

+ 

The matching of the zeroth and first order terms gives 

A, ( "B, - \ ) = ... o. 88 4 
( 5.3.28 ) 

_ A o A!';-z. - +,oo, z. 

~o A, ('B,-•) /z. - JIIIO,O 

For the matching of th e function f, Tam [29] observed that 

the zeroth order term of the inviscid expansion is matched 

with the first order term of the boundary layer expansion, 

and that the first order term of the inviscid expansion is 

matched with the zeroth order term of the boundary layer 
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expansion. The singlular term s tan{lt'(z- 0.5)} etc. as z 

tends to zero can be matched with the inner solution if the 

expansion in exp(f()61)t) can be wr·itten a s an expansion in 1/t. 

This can be done b ec ause of the Burmann-Teixeira Theorem in 

complex variable theory (see Whitt a ker and Watson [31]). 

Indeed, exercises in complex variables give 

2 

cosech ~ :2. .L .-'2x L H)~ = ex - e-~ 
: 

J(. (l+'l'K)"lt,_,. 4 ~"L 

-'-
L: j_ { . I l L Q, .... -2."K 

(:.\) K·H 
!'{~ ha2

"' xl.. = e. X 
~~0 ~~\ 

Lastly we observe the solution g(z) of our bifurcated 

solution branches are not symmetric about z = 0.5. Consider 

the bifurcated solution branch with g(0.5) > 0. Then there 

exists zo<.E (0.5, 1) such that g(zo~.) = 0 . Furthermore, 

solution II ( ~ = 0) of Dijkstra et al.[ 5] has the property 

that there also exists z~€-{0, oo) . such that g(z~) = 0. 

Thus it seems solution II should be matched with the 

inviscid solution in (0. 5, 1). 

5.4 SOME LARGE AMPLITUD E S OLUTION EXPANSIONS 

In this section we look for other possible inner-out e r 

(or boundary laye r - invi sc id) expansion s for lar g e Reyn o l ds 
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number and 't= -1. 

Let the inviscid region have expansions 

f = f"C\o fo + fa' ~ -\- ...... 

(5.4.1) 
E \.o €'=:>' &, 3 = Ef., + + - ~-·-· 

-Substituting into (5.1.1) we obtain 

(5.4.2a) 

+ --- .. 

(5.4.2b) 
€,_ ( Eb

0 lf-o-a;e + E: bl G-1u 1---. --) = E tlo+ 
00 

{ Goi. Fo -Go \i*) 

Oo+l:>1 ( G _ r_ F. ) G\1+1..0 ( 
+E 1-;!ro-l:f"toc +E Goc-F.-GoF.c.) 

and a < 2 we obtain the cosine inviscid 
0 

equations 

(5.1.7). From the analysis of Section 5.3 and the results 

of Matkowsky et al. [18] we impose that the solution be even 

about z = 0.5 

G(~) :f o 

(5.4.3) 

This gives the leading order solution: 
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We 
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f = Ecto Ao { "Bo +Cos ~o~~-'lz.)) + o { € "") 

next 

E O..o ho A 0 l 1)0 + CoS Ao ( ~- 'lz)) + o ( E-~0 ) 
:2. 

seek boundary layer expansions that c a n match 

with (5.4.4) 

t 
-'6o 

= t E-

(5.4.5) f = oCo f 
~ " + Eo<' f, 't- • -- -

j ::: <Jo + € J?,, <] \ t- ~;t + E. J ~ . - . ~-

where the thickness of boundary layer ~o and the leading 

order c oeffic ien t o<0 are to be determined. Sub s tituting 

into (5.1.1), 

2.-4~o ( toe~ f «If ) 
E E ot.t-i:.~ -t € 1-\bt"" ~- -- • :::a 

(5.4.6a) 

~2.-iJ.{ ~.Q ) 
"" <jatt + E- Jlt-b +.-- · -

(5.4.6b) -¥o"tfto (a f Cc f) -1\'ot~,( f f) . 
~ JOt. o - ;O ~ + € 'Dt 1 - JO 1-i:. T 

-'l{. + "o-\. (l, ( q L q f ) 
€ JI-b ~o- J' ot: · + ---·· 

For nontrivial equation f or g 0 , (that is, g0 'R t 0,) we have 

(5 . 4.7) tl..o + Oc 2 
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The radial momentum equation then gives 

(5.4.8b) 

Equations (5.4.8) have solution for large t: 

(5.4.9a) 

(5.4.9b) 

From (5 .. 4.9b) we observe 8 0 in (5.4.4) must satisfy 

(5.4.10) 1. 

The matching of the zeroth and first order terms of f 

implies 

(5.4.11) 

(5.4.12) ~, - o<o 

Higher order coefficients ak, ~k, ~K can in thi s wa y b0 

determined. 
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For example (a
0

, 1( 0 ; Ko) = (0, 1 . 
' 

1) gives the singular 

perturbation construction for our bifurcated solutions. The 

~ = -1 solution of Branch 9 is another exampie. Indeed it 

seems many large amplitude solution branches can be 

constructed. That is, 

(-2, 0; 2), etc .. 

To end this chapter, we like to comment on what we have 

learnt and what we can expect in future endeavor. Our 

computational experiments and the solution constructions in 

this chapter seem to indicate the problem has an infinite 

number of solutions, with the number of cells . tending to 

infinity. Secondly, the analysis of McLeod on the flow in 

an semi-infinite region bbunded by a rotating disk [20] and 

our results of Chapters 4 and 5 lead us to strongly suspect 

Batchelor's conjecture is not possible, though we believe 

transition-layer type solutions may exist. Thirdly, the 

many different boundary-layer - inviscid expansions, some of 

which are listed in Section 5.1, and the removal of the 

~roperties of odd solutions and even solutions about z = 0.5 

(5.1.10)-(5.1.11) lead us to believe other forms of 

solutions may exist. Fourthly, the y -sign-independent 

behaviour in Chapter 4 may give us further insight in the 

construction analysis . Lastly, we ask are there more 
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bifurcation points on the Stewartson's solution branch? 
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APPENDIX: A NOTE ON MIXED PIVOTING STRATEGY FOR GAUSSI~N 

ELIMINATION 

Let us consider the linear system of equations 

(A.1.1) A X '::: b 

where A is a (n x n) matrix, x is the solution and b is the 

given right hand side. In this appendix we give a new 

pivoting strategy for the solution of (A.1.1) by Gaussian 

elimination. 

The matrix A is decomposed into lower and upper 

triangular matrices L and U. The decomposition consists of 

computing sequences of matrices At~, k · = 1 ,2, ..... ,n, where 

(\) (~} 
A = A. For k ~ 2, the matrix A . has zeros below the 

A 
(4(+\) 

diagonal in the first (k- 1) columns; is obtained 

from A(~ by subtracting a multiple of the k-th row from each 
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of the rows below it, (The 'multipliers' general 

are different for each of the (n- k- 1) rows.) and the 

rest of At~<) is left unchanged. 

nonzero, we have 

(A.1.2) L -

lkl 

'IYI. L h. = cti.k 
~ 
Cl.~,lt. 

(A.1.3) 

(A.1.4) { ~~. (K) tic.) 
<L·. :: Q.· • - ~~k ~IL~ ... } "'I-

(i'.) 

ct..:,i 

Thus assuming 

,., 
~.1 

tf(.) 

a KK 

\~l 
«.z.1. • - .•. ·~· 

0 .. 

L ~ llHl) 

\ ~ lk.+l) , ~ :=. k. 

i. ~{b.+•) .~ ~(tti-1) 

oHnwlse 

is 

In the course of Gaussian e 1 im in at ion round-off er·ror 

will, in general, be present. This error is inherent in 

computations because machines can only retain a finite 

number of digits. Let E be the round-off error matrix, that 

is 

(A.1.5) LU A + E 

To determine E let us consider any real number x. When x is 

stored in the machine, it has been rounded-off to x~, and 

can be represented 
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(A.1.6) Xg_ = X(1+-b) l ~ \ << 1 

Using (A.1.6) the computation of the multiplers mik in the 

machine gives 

= (i+~il~) 

Simplifying, 

tit) lt\) 

'I'll~" G\b_" - G\j..~ 

This gives 

(A.1.7) 

tK-\l\ 
which is the round-off error made by setting a~~ equal to 

zero. Similarly for computations in (A.1.5) we obtain 

Hence 

(A.1.8) 

lit~\) 

CA. .• 
"'J 

(k) {Kit\ -

: - 'I'YL.i:,t-. a.4 ~i~ - Cl;.,} ~.:.~ 

(K+I) 
is the round-off error in the computation of alj . 
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E 
(it.) -= (K.) lk..) ~I<.\ 

Define matrices (E,·j) and L :: ($l..i.j): 

\it.\ {:·~ 
i.>R. . j =k 

(A. 1.9a) ..Q;.j = 
o-\-~en~ti!>e 

(I<.) 

L~\t+\,~=P. 
U<·\ 

0.,.: 'R ~;. k 

(A.1.9b) 6j,l :: llq tv.••) "' 
- rt\..t"- O.tt.l ~i,j - a -:.j s~ £.I i ~ k-t-l 

0 o~eY"Wise 

Then the k-th stage of elimination can be written as 

(A.1.10) A
lK:+l) -- A\K) lK) lie.) t\<.) 

- L A -4- E 

But L{lt.)A<.\:.) depends only on the k-th row of A<.~) which is the 

same as the k-th row of A<.,..,. Adding (A.1 .10) for 

k = 1,2, ..... (n- 1) yi elds 

( L(\) + (l.) ) A'"") 
L " . -·· 

LU A+ E 

where 

(A.1.11) E 
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From equations (A.1.9) and (A.1.11) Wilkinson [12] 

observed that it is advisable to keep the multiplers less 

than or equal to one in absolute value. That is, the pivot 
l\(.) 

should satisfy a ... ~ 
(~) \II.) 

l "k I< I ~ <l.i·~ J ~k 

Taking the pivot to be the element of largest absolute value 

in a column ( r·ow) is called par:_!ial:_ r·ow (_~ol~~!!l e!_v~~~f!~; 

and taking the pivot to be the element of largest absolute 

value in the whole matrix A at the k-th step of Gaussian 

elimination is called co~el~~~ ~iv~!if!~· It is evidently 

clear from (A.1.9) that complete pivoting gives the smallest 

possible round-off error. However, it takes machine ti~e to 

search for pivots. At the k-th stage of Gaussian 

elimination, partial column or partial row pivoti~g takes 

(n- k + 1) searches while full pivoting takes (n- k + 1) 

searches. For a complete LU-factorization of a (n x n) 

matrix partial pivoting takes (n(n + 1) - 2)/2 searches, and 

full pivoting takes (n(n + 1)(2n + 1)- 6)/6 searches. For 

very large matrix it may not be practical to use full 

pivoting. 
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We introduce a new pivoting strategy called mixed 

(I' l 
At the k-th stage of Gaussian elimination, a~~ 

is chosen to be the largest element in absolute valu e along 

the k-th row and the k-th column of A 

(A.1.12) J > ~ 

That is, we do row (column) pivoting if the largest element 

lies on a column (row). In terms of round-off error, we 

observe that 

l \<. \ 

a.,.:~ \ fC\\r·H~:t .Q. 

(A.1.13) 

Evidently from (A.1.9) and (A.1.11) we have 

(A.1.14) \\ E. \\ f" \.\. <: -

Of course, complete pivoting will in general gives the 

least round-off . However the price is high in that the 

operation count for the searches of pivots is O(n3
), 

compared to O(n2
) for mixed pivoting which, in turn, is 

approximately twice that of partial pivoting. 
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The following exa~ple (Wilkinson) shows the potential 

of this new mixed pivoting strategy. 

I o o ---~' 
-1 0 

-1 -\ 0 I 

II ~I 
-I 

Using partial column pivoting strategy, we obtain 

0 ~ - 0 1 

l ., 
u f""tiC\\:: 

2 ... -I -\ 

= Lrllv'h.~\. 

~ t.~ I l ~ . 1 

1.""' _, 
~, -- -· 

Using mixed pivoting strategy, we get (neglecting the 

permutation matrices) 

0 0 . 

~l. 
_, t.. 

0 

= LwlixeG\ ~~ ·l 
-.1 2 -'2,. 

UPI\)Cttl = ~ 

( \~ ~y~ 
-I 2. -2- ~2 

We observe in this example mixed pivoting strategy has the 

same desired result as when complete pivoting strategy is 

used. 
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For singular matrices, partial column (row) pivoting at 
(.I<.\ ( K} 

the k- t h stage of Gaussian e l i m in at ion fa i l s i f a .t., I< ( a Jc, IZ. ) , 

l ~ k, are all zero. We observe the new mixed pivoting 

allows the elimination process to continue unless all 

elements along both the k-th row and k-th column of A<~> are 

zero. 

Although there are examples in which the largest 

element in absolute value always lies outside the searched 

column-row for mixed pivoting strategy, we see that it can 

cope with a larger class of matrix equations than partial 

pivoting can and yet the number of searches . for pivots is 

kept within very reasonable limits. Indeed the probability 

of finding the largest element in absolute value in a 

searched area increases as we increase the number of row and 

column searches. But unfortunately the amount of work 

(searches) increases also approximately at the same rate . 

Hence to alleviate the problem that the largest element 

always lies inside (n - 1) of the submatrix (n + 1 - 1) at 

the k-th stage of elimination we can search one more 

row-column cyclically. That is, in addition to the leading 

row-column we search (n- (k- 1)mod(n/j)) row-column, for 

some j. Because we are interested in 'catching' the largest 

element in the submatrix, we see that this cyclic search is 
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better in general than searching two adjacent row-columns. 

To clarify our cyclic pivoting strategy let us consider a 

(10 x 10) matrix and let j be equal to 2 . Then the 

row-column searches for the first five stages of Gaussian 

eliminatio n are: (1, 20), (2,19), (3,18), (4,17) and (5,16). 
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