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ABSTRACT

Numerical approximations of nonunique solutions of the
Navier-Stokes equations are obtained for steady viscous
incompressible axisymmetric flow between two infinite
rotating coaxial disks. For example, nineteen solutions
have been found for the case when the disks are rotating
with the same speed but in opposite direction. Bifurcation
and perturbed bifurcation pheromerna are observed. An
efficient method is used to compute solution brarnches. The
stability of solutions is analyzed. The rate of convergence
of Newton's method at singular points is discussed. 1In
particular, recovery of quadratic convergence at "normal
1im§t points" and bifurcation points 1is indicated.
Analytical construction of some of the computed solutions

using singular perturbation techniques is discussed.
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CHAPTER 1

THE PROBLEM

1.1 INTRODUCTION

The steady flow of a viscous fluid in a semi-infinite
region bounded by a single infinite rotating disk was first
studied by von Karman in 1921 [30]. He transformed the
Navier-Stokes equations into nonlinear ordinary differential
equations by introducing similarity variables. In 1951,
Batchelor [ 1] furthered the study to the flow between two
rotating coaxial disks, using the equations derived by von

Karman.

For the rotating coaxial disks problem with no suction,
many computations have been attempted. Among them: (i)
Mellor, Chapple and Stokes in 1968 [22] computed three
different solutions when one of the disks is stationary,

that is ¥ = 0, where ¥ is defined as the ratio of the
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angular velocity of  upper disk.to that of the lower disk;
(ii) Pearson in 1965 [23] solved the time dependent problem
and obtained two different steady-state solutions when
¥= -1; 'and (iii) most recently Holodniok, Kubicek and
Hlavacek in 1977 [ 8] obtained five different solutions for
Y= 0.8. For large Reynolds number and ¥ = -1 there have
been many theoretical investigations in recent years. This
has been generated by the different conjectures of
Batchelor [ 1] and Stewartson in 1952 [28]. The existence
theorem$ of MclLeod and Parter in 1974 [21] and the
perturbation construction of Matkowsky and Siegmann in
1976 [18] showed convincingly the conjecture of Stewartson,
which says the fluid 1is non-rotating in the interior
inviscid region as the Reynolds number tends to infinity, is
correct. However, the conjecture of Batchelor, which called
for a transition layer midway between the two disks, is
still an open question. In 1969, Tam [29] with similar
perturbation techniques to that used later by Matkowsky et

al., exhibited the computed solutions of Pearson.

In this thesis we systematically compute the many
different solutions of the time-independent rotating coaxial
disks problem with no suction. We report only a portion of

the computed sclutions for Reynolds number R £ 1000. and
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-1¢¥< 1, numbering eleven solutions for ¥ = 1 and nineteen
for ¥ = -1. The results of Mellor et al., Holodniok et al.
and the time dependent computations of Pearson are
reproduced. The stability of the computed solutions are
discussed. Asymptotic expansions of some of the solutions
at ¥ = -1 are constructed.

In the next section, the formulation of the problem and

an important 1lemma are given. In Chapter 2 the theory on
which the computations are based is briefly discussed. This
includes . simple bifurcation in Section o

pseudo-arclength continuation in Section 2 and the notion of
local exchange of 1linearized stability in Section 3
(Keller [12], Crandall and Rabinowitz [ 4]). A new result
in exchange of stability is derived at the end of Section 3.
Chapter 3 is divided into five sections. Section 1
discusses the numerical method of two-point boundary value
problems (Xeller [11]). Section 2 gives a brief description
for computing a solution branch (Keller [13]). Section 3
provides a proof of rate of convergence of Newton's method
at both regular and singular points; an extension to
solution of general nonlinear systems in which the Jacobian
is singular 1is indicated. Section 4 is concerned with the

numerical treatment at singular points; an explicit method
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for the computation of the coefficients of the algebraic
bifurcation equation is given. The numerical implementation
of local exchange of linearized stability (Keller [12]) will
be treated in Section 5. 1In Chapter 4 +the discussion of
solution branches and their stablity is given. In the last
Chapter of this thesis, we study different solutions for

¥ = -1 using singular perturbation techniques.

1.2 FORMULATION

We consider the axisymmetric time-dependent
incompressible viscous flow between two infinite rotating
disks. The lower disk occupies the plane z = 0 and the
upper disk 1is abk =z = L: The upper and lower disks are
allowed to rotate about the z-axis with angular velocities
2,1, and 1, respectively. Further, let f,(t) and f, (t)

be the uniform suction through the surface of the upper and

lower disks respectively. Using polar cylindrical
coordinates (r, 9 . %) with the corresponding fluid
velocities denoted by (u, v, w), we write the governing

equations of motion:

Continuity Equation



= B

(1.2.1) [ )y & WY = O

r-Momentum Equation

vt = _Pv ( Ur ..
(1.2:2) Mg + Urlh = = + Uz W ® =3 MUt W0 g

f§-Momentum Equation

v
wy W Vv AN =3
L¥ 2.3 Ve + VM "’-—Y_ +Vz V(Vrr = V. r’»)

z-Momentum Equation

= P2 pufwer + Wr ¢ w
(1.2.14) Wy + Well + Wg W = FEper T e “)
where p is pressure, Q is density and v is kinematic
viscosity. We now introduce dimensionless variables,

indicated by *. That is, r=r®L: z=z®L; ¢tst%/AN,; usu*lil;
vavRLI),: w=Ww*L5) ; p/e =(p/g)*L; and N; =NFn,, i= 1,2;
where f1, is a chosen reference value of angular velocity.
Define the Reynolds number R:

gt r 18

v

(1.2.5) R =

The dimensionless equations are identical to (1.2.1 -

1.2.4), with v replaced by 1/R - and we drop the asterisk



from the equations.

Let the axlal velocity w have the form (von

Karman [3G])
(1.2.6) w = flg, )

The continuity equation then gives the radial velocity

(1. 2.7 w o o= =% f )

Differentiating the z-Momentum equation with respect to r

and using (1.2.6) and (1.2.7):
(1.2.8) Pr = A (ri¥)

Substitution into the r-Momer.tum equation implies
(v*/r* - A/rg) 1is a function of (z,t) alore, say R(z,t).

Evaluating at z = 0 gives

o i - AlmY o Bloa
vg

This implies that A/r must be independent of r. Hence the

angular velocity must have the form
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(1.2:9) v o= 7vq@) = v(Ofm -Blog) +BlEY

Differentiation of the r-Momentum equation with respect to z

once and using equations (1.2.6) - (1.2.9), we have

-\
(1.2.10a) 'Filt. Sl 'Fau.% ‘(F{'Hﬂ * 433!)
The 8 -Momentum equation simplifies to
-\
(1.2.10b) 9« = R 92z ‘(325' - 3‘:4-)

The boundary conditions for (1.2.10a) and (1.2.10b) are

floe) = fiw ,  Flhe) = &
‘F;(Uut) = 0 ' Fz“t":) - o
(1.2.711)
glot) = Q8 , Gin¥ = ALl
For computational purpose, we write +the above two
nonlinear partial differential equations in (z,t) of

(1.2.10a,b) as a first order system of partial differential

equations.

(1«2 72) RBu, = Wz - F(WR)
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B are given by
w2 {6 H Bt 9 %)
f~ Uz "1
Us
F = Uy

Rluyug + 4 uslg)
Ue

L R(uue - taus) |

o
o
]
o

The boundary conditions (1.2.11) become

(214

Bou(olt) =

B, W LL %)

X o (E)

oy (t)
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O 0 O oo 0O

O 9 o090
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+]

where matrices B, and B, and vectors o,(t) and &, (t)

(1.2.15a)

(1.2:15b)

B

Ko (t)
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= B, o
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For the time-independent problem with no suction at
either disk, equations (1.2.12) and boundary conditions
(1.2.14) become nonlinear two point boundary value problems
for ordinary differential equations. Assuming .fl, is
nonzero, we introduce ¥ as the ratio of angular velocity of

the two disks:

Qo
Ay

(1.2.16) ¥ =

Taking Jlizilo, the equations and boundary conditions become

(1.2.17a) wg = Flw,R)

B, wie) = €a

1
o<

n
w

(1.2.170) 5wy

I
o
o)
o
-4

€3

where u, F, B° and B‘ are same as above.

We note the time-independent problem has two
parameters: R, the Reynolds number and Y , the ratio of
the angular velocity of the two disks. We focus our studies

on the following semi-infinite strip I
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£Y2.7185 I(‘{.R)s{(v.z)= i 4 0 3 K>o'§

We can do this because solutions 1inside the strip are
related to those outside : \¥l»1, R20. For any nonzero ¥
and R, let (f‘(z), g‘(z)) satisfy the system (1.2.17). We
seek a new pair (f21 g,) that are transformations of
(fy, g,) such that the parameter ¥ in the boundary
conditions (1.2.17b) 1is replaced by 1its reciprocal 1/%.

This can easily be accomplished as follows:

(1.2.19a) +,12:¥%.R) = (-')P ¥t AL - o R)

! : rons
(1.2.190) JatT:¥ Ry = — I (25 % ¥ EVR)

where the constants p, q, r and s are to be determined from
% P P i The transformations (1.2.19) correspond to
interchanging the role of the disks. That 1is, the bottom
disk (z = 0) for g, becomes the top disk (z = 1) for g, and
the top disk for g, becomes the bottom disk for g

R

(1.2.20)  Gz(u¥,R) = 5 Jlo. % ¥Ee*R) =

<l
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Lemma 1.1 Let (f, (z; ¥, R), g,(z; ¥,, R)) be a solution to

12 AAT) for the parameters R =z R,, ¥ = %, % O. Then

(-f, (1=2;1/%, \¥%I\R)/1¥,\, g, (1=-2;1/%, ,\¥,IR)/ X, ) is a
solution to (.2, 17) for the modified (or reduced)

R =Y¥el" R, and ¥ = 17%¢,.

Proof of Lemma 1.1: The no-slip boundary conditions for f,
and f,, are automatically satisfied. From (1.2.20) g,
satisfies our desired boundary condition at =z = 1. To

determine the constants p, q, r and s we substitute (1.2.19)
into the differential equations (1.2.17a). The r-Momentum
equation gives q = -1 and r = 1. The @ -Momentum equation
implies p = s = 1 for X >0 and p = s =2 for ¥ < 0. This

completes the proof.

For any Reynolds number i let uCyY) =

(fy (z; ¥ , R,), 8,(z; ¥, R,)) be a solution to (1.2.17).

For X = 1 applying Lemma 1.1 gives

(1.2.21) U, = (=f0-2;:1.R.), 9.0-2 1, Ra)

U+ is a solution to (1.2.17) for the same Reynolds number
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R, and ¥ is unchanged.

In general U, is different from U(1). However we can
have U, = U(1) if and only if f, is anti-symmetric and 8, is
symmetric about z = 0.5. As a simple test we need only
examine f|(0.5; 1, R ) and g, (0.5; 1, R ). Since if either

F,(0.3) £ 0o | e

(1.2:22)
9z (0.5 ¥ ©

is satisfied, then U,#% U(1).

Similarly for ¥ = -1 Lemma 1.1 gives

(1.2.23) Y. = [ =F0-2;1,R), =9 (25 -\, Rad)
U is different from U(-1) if either f,(2z2; =1, R,) or
gi(z; -1, Rp) 1is not antisymmetric about z = 0.5. We state

this in

Corollary 1.2 (a) For any Reynolds number and ¥ = 1 let

U€1) = £ (25 vy R), &fz5- 1, B)) be a solution to (1.2.17).
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In general U _=(-f, (1-2z; 1, R), g, (1-2;, 1, R)) is different

from U(1). However, we .can have U = U(1) iff f, is

anti-symmetric and g, is symmetric about z = 0.5.

(b) Correspondingly, for any Reynolds number
and ¥ = -1 1let  U(-1)=(f (z; -1, R), g,(z; -1, R)) be a

solution to (18172 In general U

(~-f, (1=2z; -1, R), -g,(1-2z; -1, R)) 1is different from u(=1).
However, we can have U & U(-1) iff f, and g, are anti-

symmetric about z = 0.5.

For any Reynolds number R and ¥ =1 1let U(1) be a
solution to (1.2.17). (Similar argument can be used for the
case ¥ = l1.) We observe the boundary conditions for U(1)
at the upper disk are the same as those at the lower disk.
For ,some small positive € << 1 we consider the following
sets of boundary conditions

£, (0) = ‘F,;“’) = ‘Fl(‘\ = fz!“) A
(1.2.24)

gate) = | 3 210 = €
(1.2.257 Ry = f,00 = HW = F,w = 0

gato) = l-e¢ ; Jal) = 1

Here both U, E(f;, g8,) and Uaa(fS’ ga) satisfy the

differential equations (1.2.17a), and as € ternds to zero



- Tl

they both tend to U(1). If g, 1is symmetric and f is
antisymmetric about 2z = 0.5 then scolutions (fa' gz) and

(fy, g85) satisfy

9, ) = 93 L1-%)

On the other hand if g, is asymmetric and/or f. is not

antisymmetric about z = 0.5 then

I |R. * 'F - 3 = IRG
sy CRORT TR & Dl BT B

gz (2 316 , Ry % Fp (-2 -6 Ro)



CHAPTER 2
' ; THE THEORY

In this chapter we describe the theory on which the
numerical computations are based. In Section 1 we review
simple bifurcation theory. Section 2 studies the

continuation of solution branches by pseudo arc-length

parametrization. 1In Section 3 we analyze the stability of

solution branches.

2.1 SIMPLE BIFURCATION THEORY ON 3SMOOTH BRANCHES

We shall restrict ourselves to time-independent
problems. Specifically 1let IB be some Banach Space, we

consider the nonlinear problem

(2.1.1) G(uw, A) = o

where ue B, )¢ R, and G: B x R+ B. The time-independent

rotating coaxial disks problem is an example: :
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Glwi) = i T

1]
o

Ny - Flw, R)
B| ul - rea

and e, are given by

where F is given by (1.2.13) and B, B, -

(1.2.15a) and (1.2.17b). Here A can be either the Reynolds

number R or the ratio of the angular velocity of the ¢two

disks ¥ .

Let s be a parameter along a smooth solutiorn branch =
of (2.1.1). We see that s can be the parameter A itself or
it can be thought of as arc-length along [ (Keller(131]).
By a smooth branch we assume both the solution u and the
parameter A have all the derivatives with reépect to s

along M that will be required in this chapter.

Let (u(s,), A(s_,)) be a solution to (2.1.1).

Definition 2.0 (u(s,), Ms,)) is said to be a regular point

if the Frechet derivative

G, = G, lusa, Atsa)
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is nonsingular.

Definition 2.1 (u(s,),A(s,)) is said to be a critical point

if G: is singular.

In this thesis, we deal with two different kinds of
critical points: simple bifurcation points and normal limit
points. We review some standard results on simple
bifurcation points in this section. Normal limit points

will be treated in the next section.

Definition 2.2 The critical point (u(s,),)(s_.)) is a simple

bifurcation point if two smooth branches of (2.1.1) have

non-tangential intersections. 1n particular, the following
hold
(2.1,8) dim N(GJ) = codim RI(G]) = L

(. 1385 6 = G lwen e e R(GJ)



- 18=

At a simple bifurcation point (u(sg),A(s,)) 1let the
null space of G; be spanned by %, , its adjoint by "\’.

From (2.1.3), there exists ¢9,€ B such that

(2.1.4) il S R

We make ¢, unique by requiring

[
Q

(2.1.5) W' @,

Repeated differentiations of (2.1.1) with respect to s

yield

(2:1.6) Ga By = =G,

(2.‘1.7) Qu Uss = =Gy UsUs -2GUshs = Gudsgs = Guadshs
(2.1.8) Gu Usss = = GuuawsUsts = D{Guup Ushs + Guan e ds~Gundsy) us

3 3(G‘uul.""'s “‘Gu)«)‘s)“;s - 3G).)‘ As )\55

= Gyhges - Gaan ’\s)‘s Ag

Non-tangential intersection of branches of Definition 2.2

implies that the derivative )\s(so) cannot be zero on bhoth
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branches at the simple bifurcation point. Hence, evaluating

(2.1.6) at (u(s,), s,)) yields

(2.1.9) WTG;

1]
o

For (2.1.7) to have a solution at (u(s,),}(so)), its right

hand side must lie in the range of G, that is

° o ° o o o °
(2.1.10) W | Guuusmi ¥ 2GHUIAL ¢ Gk = o

Because the null space is one dimensional, -we can write

q}so) as a direct sum of Y, and Y,. That is
£2.1.7T1) ustsu\ = Xo o *: oy @y
where ®o is A (s,).

Substituting (2.1.11) into (2.1.9) we obtain a quadratic

equation for unknowns &, and o,

2
(2.1.12) @ &y # Zbdgw; + CRe = O

where coefficents a, b, ¢ are given by
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a = W Gy @

b= Wi [GLw r Galw

¢ = ¥ [ G + 260 % ¢ Gh

The unknowns &, and &, can be made unique by requiring

(2.1.14) CHEEEE & 1

Equation (2.1.12) is the algebraic bifurcatior equation.
For nonlinear two point boundary value problems, an
efficient computational method for the coefficients (2.1.13)

will be given in the rnext chapter.

1f a in (2.1.13) is non-zero, we form the quotient
i= Mgl . Let g. be a nontrivial solution of (2.1.12), then

we have another root § =9, of (2.1.12) if

(2.1.15) @agq. + b * o

(2.1.15) is a condition for bifurcation. Thus, assuming
roots are distinct, if q_ is the root corresponding to a
known branch [;_, then q4 is the root corresponding to the

bifurcated branch.
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Let r;“ be the smooth solution branch containing
(ol&,),x08,)). A new branch r;+ is to be determined which
emanates from (u(s,),A(s,)). Now the roots qa of (2.1.12),
if 1imaginary, have to occur in conjugate pairs. Along E;
let u(s) be the real solution for the real parameter X(s).
Hence at the simple bifurcation point the 'tangent vector =
Ao = { olysy =) 18 real along ‘;_. This proves the tangent
vector at the bifurcation point along the new bifurcated
branch,f;+, is real. That is, the solution along (a iz

9+

real.

Let ( dp4, %&) be the solutions of (2.1.12) satisfying
(2.1.14). For sufficiently small &s, the approximate

solutions near (u(s,),X(s,)) are given by

‘ U(Se +88)= U(Ss) + 95 Ugy (Se)

£2:1.16a)
A(Se+83) = Al(Se)l + BS Kgy

where US*(SO) is given by

(2.1.16b) Ug,(Se) = Mo Yo + o1 P



=

2.2 NORMAL LIMIT POINTS AND PSEUDO ARC-LENGTH CONTINUATION

There are other types of critical points which are not
bifurcation points. In this section we 1look into one
special type at which the solution branch r;, 'turns back'
on itself. We show (Keller [12]), by properly choosing the
parameter s and solving an extended system, equation (2.1.1)
has a unique isolated solution at the critical point in the

s-parameter space.

ue B
A

> A
figure 2.1 : Bifuwcation Piagrom -
A : reqular solutien point ;B: Bifuvcahon poink ;

C : normal limit point
We introduce the idea of pseudo-arclength
parametrization of solution branches. Instead of solving

equation (2.1.1) for a fixed A, we let A depend on a new
parameter s € IR. We then need an additional equation to

determine A - a normalization equation of the form
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(2. 2519 Nh(“')‘ 595 = O

We now choose Nh such that s, the new introduced parameter,

is an approximation to arc-length along r;. In: particular,;

we use
(2.2.2) N, 2 euslso)‘(uksm-u(s.x) +(-8) kstS-\(Ms)-MS.\)

- (S‘So\ = 0

where (u(s,),A(s,)) is a known solution of (2.1.1) and

6e(0,1).

Definition 2.3 A eritical point (u(s,),A(s,)) of (2.1.1) is

called a normal limit point if the operator

G, lutsa, \e)) = G

is singular and satisfies

(2.2.3) dim N(Ga) = coam R(G3) = 1

2.2.m) G, & R(GJ)

(We observe the difference between a normal limit point and

a simple bifurcation point (Definition 2,2) is conditions
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(203 and (232 .4Y.)

At a normal limit point, (2.1.6) has a solution if and

ofily 1€
(2.2.5) A5,y = o

In addition (2.2.4) implies

(2.2.6) WGy # O

In the neighbourhood of a normal limit point, A(s) has a

Taylor series in (s-s,)
a, i
(2+2-7) As) = X(se) + 2, v (5-Se)
W
Indeed, simple calculations using (2.2.5)-(2.2.6) in (2.1.7)
yield:

_ YilGu R a
(2.2.8)  hulsed = 4z = Tom G

If a = 0 Agls,) can easily be shown, using (2.1.8), to be

WY {Gau WP, + Guuu R0 @ ]
¥y Gy

(2.2.9) AsssLSe) = @3 =
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Here w is the solution to

o b3
{202 ,06) Fa W = Cuw 010, W s 8

If a $ 0, in a small neighbourhood about s the

solution branch ‘'turns back' on itself. 1Ir the following
lemma and theorem of H.B. Keller [13], we see that, by
solving the inflated system (2.1.1) together with (2.2.2),
solution branches containing only normal 1limit points
(especially those with Mg (s,) non-zero) possess only
regular points in the pseudo-arclength s-space. That- ~1isj;

the extended Frechet derivative

AMWENT Gu [

(2.2.11) Fur =
'Dl'_u Y] Nq N‘\

is nonsingular. Both the lemma and the theorem can be found

in Keller [12].

Lemma 2.3 Let B be a Banach space and consider the lirnear

cperator.A : B x R{’B x R of the form

A B AAB>8B , B:R'>B
. where 4
A C:gs» R D:R'»R

m



- D

(i) If A is nonsingular then A is nonsingular iff:
» - ’ .
(2,2.12) (D = B) is  Mmomsinqulav

(i1) If A is singular and
(2.2.13) dim N(A) = Codim RIA) = w

then A is nonsingular if<:
c,) dim R(B) = v , &) R(B)nR(A) = o

¢;) dim RIS = v | &) N(A) N N(CY) = o
(iii) If A 1is singular ard dim N (A) >v then WA is

singular.

Using Lemma 2.3 with A being the Frechect derivative

(2.2.11), the following can be proved easily.

Theorem 2.4 Let (u(s,),A(s,)) be either a regular solution
or a normal 1limit point solution. Let G(u,A) have two
continuous derivatives in some sphere about (u(s,), Xsg)).

Then with Culs, ¥ 8 {a ) Blu,: A¥s
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{u . 58. 0 )‘(q,))z L T S T u:(so) as defined after

s °

(2.2.2) there exists a unique smooth arc of solutions
(u(s), A(s)) of (2.1.1) together with (2.2.2) on |s - s,ic¢
for some sufficiently small g> £~ On this solution arc¢ the

Frechet derivative A (s) of (2.2.11) is nonsingular.

2.3 STABILITY OF SOLUT1ON BRANCHES - LINEARIZED ANALYS1S

Having found the equilibrium solutions of (2.1.1) we
like to know about their stability as solution of the

corresponding time-dependent problem.

£2.%.1) Bug = Glw )

In the rotating coaxial disk problem with no suction (2.3.1)

becomes
Bu, = R Ma-Flup)

(2.3.2) Ba w0y = - @y

B, wy = ¥€,

where B, F, B, , B, and e, are given by (1.2.13), €1.2.15)
and (1.2.17b).
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We perform a linearized stability analysis in a small
neighbourhood of c¢ritical points. To be more precise, let
(u(s ),X(s )) be the time-independent solution of (2.1.1)
for okl s - s,]¢ p» where s, is a critical point and p is

small. We then seek a solution to (2.3.1) in the form
£
£2.3.%) uis,t) = uls) + €e’ " wis)

where € 1is small compared to the norm of u(s ), and w is an
unknown vector function. From (2.3.3) and (2.3.1), and
neglecting o(€ ) terms, we obtain the 1linear eigenvalue

problem in 0 :

(2.3.4) cBw = Gyluls), al)) w

Definition 2.5 The solution u of (2.3.3) 1is linearly

stable if all the eigenvalues &'=0g+ io; of (2.3.4) lie in
the left half complex plane. It is linearly unstable if one
or more eigenvalues of (2.3.4) lie in the right half complex

plane.

At a simple bifurcation point or a normal limit point,

the null space of the operator G: is one-dimensional.
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Hence G: has a zero of multiplicity one. Clearly, fer any
nonzero K O (s,) = 0 and w = K¥, is a solution to (2.3.4) at
the critical point. We assume O (s,) is an isolated zero.
And for s sufficiently c¢lose to s,, the eigenpair
(r(s),w(s)) differs in magnitude from (0,K¢) by a small
amount. That 1is, the eigenvalue and eigenfunction has a

Taylor series expansion

- .
(2.3.5) r(s) = 2. -Sf;(S-so\’
iz :

S-S\ W;
(2.3.6) wist = Keg, & 3 =% e
n .

We observe there 1is a 1local exchange of linear

stability with respect to the eigenpair (0,K&) if

deil

(2.3.7) dgim T 150 % 2
'
3———2‘— U'(so] = (8]
s

From Definition 2.5 we note that a solution branch [
containing a c¢ritical point <can be unstable even though

{2.3.T) ds true.
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Repeated differentiations of (2.3.4) with respect to s

yield
(2.3.8) s Bw + 0 Bwg = GuuUsW + Gudsw + GuWg
(2.3.9) a5, Bw + 2 03 Bws + 0 Bwsg

= Guy{Ussw+ Z“SWSB + G Usus W
+ ZGuu)\“s WA$ - Gu)()(ssw +2Asws)

* Guandsdsw + Guwgg

Evaluating at a critical point using the eigenpair (0, Kq»l),

we obtain
(2.3.10) s B @, = Gu U@ * Guls®, + Gy Wise)/g

(2.3.11)  Ox B, + 207 B Mt . G { U5, + 295 W 15ely ]

L] z -
+ Gumu“; o ZG““).“; P A;

+ G s ®, + Qy Weslsa /¢

We now consider some special cases.

Theorem 2.5 Let (u(s,),X(s,))E(u.,),) be a solution to

(2.1.1). Assume G, (u, , Xo) 3 Gy is singular with

dim N(G,)= codim R(Gg)= 1. Let the null space of G, and its
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adjoint be spanned by ¢, , W' respectively. Further assume

qutﬁ $ 0. We have the following cases

(i) At a simple bifurcation point:

a) if Ma% 0 for one of the branches, T , then there
is a local exchange of linear stability along r

b) if): = 0 for one of the branches, ' , then there is
no exchange of linear stability along U o) Tl stability
with respect to small perturbations of the eigenpair (0,K®)

along ™ depends on the sign of Tels ) in (2.3.13).

(ii) At a normal limit point, we have a 1local exchange of

linear stability about s, if

: =0 (I T PR 3 el
-‘-*-— )ttse\
ds? * o j = 2K

(2.3.12)

holds.

Part (ii) of Theorem 2.5 implies whenever " turns back
on itself, we have a local exchange of linear stability;

the proof follows immediately from the lemma below.
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Lemma 2.6 Let (u,, \,) be a normal limit point. With the

notations of Theorem 2.5, we have for any integer k > 2, if

at = o K>R >
e ik L)
E2 27980 ds® ¥ © =K
then
X sy = o [=42.~, K2
ds?
(2:3.14) . %
a ¥, &
d___ T (50) = - 2‘—— A(So){ s
dsk-' ds q’:‘B(?|
Remarks on Lemma 2.6: (1) By assumption, the eigenpair
(0, ¢, ) is a solution to (2.3.4). Hence for some nonzero A,
and B,
- ulse) = A
(2.3.,18)
W(se) = B, ¥
(2) For k = 2 Lemma 2.6 can easily be worked out. (2%
gives

YT Gaw P :
As‘ tsb\ =A': :u ° ‘ ' = A°‘.a-o
q;‘ GA Lh G,\

If Mgyl5)#0, then since ¥y @#0 at a normal limit point, the

coefficient a of (2.1.13) is nonzero. From (2.3.10) we have
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‘V: G:“ ulso) Py

YT B P

(2.3.16) Uy (Se)="

But q}s,) = A.?‘ at a normal l1limit point. Hence

Ass (e) WY Gy
Ao U(‘* BLP!

(2.3.17) - Tpls) = -

From (2.3.7) we see that we have a local exchange of 1linear
stability. The algebra gets more laborious and involved for
k = 3, and it gets progressively worse as Kk increases. But

Lemma 2.6 allows us to avoid this tedious work.

Proof of Lemma 2.6:

From (2.3.15) successive differentiations of (2.1.1) with

respect to s yield

~ o
d T - ] Se); A (Se)) + U (Se) = O
E_S_{G,uus}s.’. = FZ( (Se) ,us ! ),)\( \) G'“ sg L7 7

& [G“US} 2 -Fa(“(SQ),u;\S.),uss"-);xtse\) t G: Wsss \Snl = O
S=5,

ds?
(2.3.78)
K2 i
d 2 2 WIS
Fz[%“’}su.: Rttt g Vi hsal)

+ G *_*‘_‘:u\:.\ = 0
ds*!
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and
F K4 e , 4K
K- e . e . d_.\ISo
:s“:'{ahuS)’g’. - FK(u(s‘)‘ “‘u ),----ldskiu‘&, IA(SO]) + G’“(d;“ ‘ ‘)
(2.3.19) o o
= S Ase) G,

Assume there exists a positive integer M such that

dL
Lo Tiss) = 0o § U, ey M
M+
(2.3.200b) s sl * o
ds
We want to show that M > (k - 3). We prove 1.k by
contradiction. Differentiating (2.3.4) (M + 1) times, we
obtain
d"' --~- W(sa), Usls) ds Ulso) ; WiSe) , WsiS) ‘ij-‘;usnx
E8 3 8% 3 i + G° 4
» mwts,\) =0 Yoty M
M ™
P =D [utsa,u \s.),...,‘L- Wis) 5 W(se),Ws(S), .. 'L Wise) ; A,
ey u‘"\ i Dnﬂ[ 4 s " astt )
(2.3.22) ° M LM
+ Gy (d wi(s = 4
“ (W‘ t.\) E - T(s) BWise)

(Note that the terms involving derivatives of the parameter

A with respect to s in the functionals and 5] in

Ry 2 |

(2.3.18) and (2.3.21) respectively are identically zero by

assumption (2.3.1%3).) From (2.3.15) we have at a normal
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limit point

W(So) = CQ us LSQ)

where C, = B°/A°. Next we show by induction that

.l

e = C . use)
(2:8.23) . g (%o ash

for j€<(k - 3). This is true for j = 1. Assume it is true

for j = (i = 1). For the u-derivative equation we have from

(2.3.18)

i - L‘ \

3 .
= 1Se 150),..., —— UfS a_us
= u.(s.m).. .m(u ), Usls0) o €53 k) Y, (ds (.\):

o

Alsqg for the w-derivative equation we have from (2.3.21)

i~} L=t l 2

d d
G (;s_:_‘ ms.]) kuuo} Uise), .. .Es_ W(Sa) ; W(se), WslS0),..., — W(s) n

i

W“(é——"“”v =
! ds i~
Higher order derivatives of (G: w) are linear in d"w/ds™

By this we mean the right side ﬁb‘has the form

-2

-~

» A d* wise)
.. = HK( WisSe), Uel(Se), .. ulsa\ o
(2.3-24) ' Eo d;l‘ )d“



But ‘we' havie-Tor "= 4,2 ca e 0 = 1)
O\:H di
(33,858 TN Co n A

Thiz Iimplies from (2.3:18) and [2.3:21)

~

(2.3.:26) Dy = G F;.
proving
L=\ o
d_ wisy = G 47 uiso
ds*™ as™
This concludes the induction process. We point out that

higher derivatives of w and u with respect to s evaluated at

s are made unique by requiring they have no component of

.

Subtracting (2.3.18) from (2.3.22) with M = (k-=3) and
using (2.3.25)-(2.3.26) give

K

=2
° [ d
Uts.)) B WL5e) = G’u { Z;‘T‘-l \:N(Sc) - “s‘so‘]H

dk'z
(2032T) (a;&'-l

Operating from the left with Y and noting Y52 = 0:
dK'L

*
¥ B @ lI“_'imm}= °
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Because 4?!3?.# 0, we have our contradiction that

M+

K-2
ds ds

proving M -5 (k ~ 3) in (2.3.20);

®
Operating ¥, from the left on equations (2.3.19) and
(2.3.22) with M = (k - 2), and observing the coefficients of
both (k - 1)-st derivative of w and k-th derivative of u at

w
the critical point s, are *.G:, which is identically zero,

du-‘ d" * .©
q’: B \rl ‘d-_' "(5-) = = [:“ MS-\) W, G'A

s L)

t * ’ i
At a normal limit point, ¥ Gy is nonzero; the right hand
side of the equation above is nonzero by assumption

(2.3.13). We have our desired result of (2.3.16), and the

proof of Lemma 2.6 is completed.

The proof of Theorem 2.5 is very simple and it proceeds

as follows.

Proof of Theorem 2.5
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Operating (2.3.9) from the 1left with Wf at the simple

bifurcation point

‘PT ( G;q '\l‘lSQ] s G:A As(so)) ‘PI

T (Se) =

3 ¥ B <,
Recall (2.1.10)

ui(sy) = Xo ‘Po * o, P,

this gives

X, A& + Xob

¥, B ¥,

il

where a and b are the coefficients of the algebraic

bifureabtion eguatign (2.1.13).

If )g(s,) # 0, the right hand side is nonzero because

of the condition for bifurcation (2.1.15).

if Xy (8) = 0, ¥, on 2 1 E) implies
e l{’: G:u‘f.‘P.z 8. From (2.3.10) we have 03(s,) = 0. To
find out the stability of the branch we next determine the
second derivative Tgg(s,). Assume Ag (8.) $ 0. It is

evident from the proof of Lemma 2.6 we can choose B, to bhe
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equal to A, for wu_(s ) and w(s,). Thus, we have from
(2.3.10)

0 -\ L ”*
(2.3.28) Wstse) = Gy {Guu u,ts,nu(s.)} o W wsiss) =0

From (2.1.7) we have

1}

(2.3.29)  Uss (Se) g { - Gy UstSel Ugtse) = G A“\Sﬂ\
- WUsY = Ay 6

where Lfo satisfies

[
I
©

G, A

3
Operating from the left with q/l on (2.1.8) and wusing the

fact As(so) = 0 yields

(2 3 3 : 30) w: Gu\l“, '45\50\ “s\sa} us \50\ = —3 qj‘{("u““ss ‘5.\“ Gm\ )“U-\}u‘(sﬁ

=
Finally, operating from the left with ¢, on (2.3.11) yields

(2.3.31) WP BWIs) G l0) = 2%, G Welsod Uslse) + W) D Us 5D ws(5) (S)
* w‘:((r:u Ugg (5a) + G(AA X;,(S.)) Ug (s0)

° ] 3
= LYY G Ws(sa) Wis) + § G Usts)
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Since

WelSe) = W(Se) = Agte,

we have

[2 G B CL R0 + Y VoL R] g,
B @,

z
€2.3:32) U5 (Se) = A.[

(2.3.32) implies the sign of Oss (S,) is independent of the

sign of Ao.
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CHAPTER 3

THE NUMERICAL METHODS

In this chapter we discuss the numerical methods inr
solving the rotating ccaxial disks problem. These methods
can be used to solve general nonlinear two point boundary

value problems for ordinary differential equations with one

or more parameters. The chapter is divided into five
sections. Section 1 gives a brief account for numerical
solutions of two point boundary value problems
(Kelier S E 8 Section 2 discusses the numerical

implementation of pseudo-arclength c¢ontinuation and the
computation of solution branches. Section 3 is corcerned
with the rate of convergence proof of Newton's method for
solving the 'inflated' pseudo-arclength system of equatiorns
at both regular and critical points. Section 4 provides the
treatment at simple bifurcation points. Lastly, Section 5
shows how the numerical computations of the local exchange

of stability analysis is being handled.



L

3.1 NUMERICAL SOLUTIONS FOR NONLTINEAR TWO POINT BOUNDARY

VALUE PROBLEMS

The theory of difference schemes for solving nonlinear
two point boundary value problems for ordinary différential
equations is well known. Indeed, the basiec convergence
theorem can be found in Keller [11]. We only outline the -

scheme and discuss the solution procedures.

Let us consider the general first order system of

ordinary differential equations:

(3.1:.1) Uy = F(%,un;A) xela,b)
u(ay, A = 0
vy, SRR
gz {u, X) = 0O
Here u, f both have dimension n; g,, 2, have dimension p,
q =n-q respectively, with p>0. A is a parameter. We

saw in Chapter 1 how the time-independent rotating coaxial
disks proeblem ‘was put into the form (3.1.1)=0{3:1.2), Wibth
either the Reynolds number, R, or the ratio of the angular

veloecity of the two disks, ¥, plays the role of A .
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The second order centered-Euler (or box) scheme is used

T
to approximate (3.1.1). For any set of net points [xih’v

with

TR R Sl e o

The scheme is

Nhuj

[

L ey -y, {'("j-x.‘i\"j*r“j-‘);)«) =0 2¢5¢7

The boundary conditions (3.1.2) give

Gilu,. A )

u
o

Sz(“ral)

1l
(=]

These difference equations can be written in the vector

form: _

9, (u, M)

Nh Uy

5% Ny u> s &

(3.1.4) G, (W) = : =

Nh“T

%a(ur )

L J

To solve (3.1.4), we use Newton's method: let u' bhe an
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initial guess
(3.1.5) u - CaR

(3.1.6a) A Su o G (w4 )

where
- -
M.
b
(3.1.6p) A" B ®
Ly Ry
Ly Ri
L Mb-J
W B o 4
(3-1s60 kg 3 ¥ < ‘-'iz}'{-u_(!j-v,_,i(upuj-\];)\)
v . ” v
(3.1.60) R = T - My (e S0Ge0 5 2)
® W, )
(3.1.6e) M = ELL
v 23z (ur,))

(3.1.6f) Mb z it
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The matrix A° can be put into a block tridiagonal form
8’ 2 [B; ,A;,Cy ). All block submatrices are (n x n). The
last (n - p) rows of B; are zero, and the first p rows of C;
are zero. A fast block elimination algorithm which keeps

the zeros' structure of B; and C; is used to solve (3.1.6):

[B.L VAL, G = [Bi. T o][le w: G;] = LU

, = A,
-\
(3.1.7) Pi ®5 By K L322
o, = Ay - Bi Cioy

AI is assumed to be nonsingular at the start of the
algorithm. This can always be done by interchanging one or
more rows of the last (n - p) rows of A, with the same
number of rows from the first p rows of B,. To justify the
LU-factorization in (3.1.7), we need to show o, s
nonsingular, iz 2. (This, of course, is only true if the
matrix /A is non-singular. In our computations we have
encountered no difficulty at bifurcation points or normal
limit points, where /A 1is singular. That TR TN (R
2¢€i<(J - 1), are all nonsingular and only the last block
¥y has determinant very close to zero.) We assume that A,

can be written

A, BV (T + hQ@))
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here P| is a permutation matrix due to 'the boundary
conditions and the switching of rows mentioned above. This
assumption can, in general, be enforced by rescaling rows or

columns of A,. The norm of Q, is 0(1).

All block submatrices A;, i 2 2, can also be writtern

A, = PR(I*"IQ';)

where %.is a permutation matrix for all i g 2, and the norm
of Q¢ is 0(1). This is true because we switch the k-th row
of all A; with the m-th row of all By, if the k-th row of A,
has to be switched with the m-th row of B, in order that A,
is nonsingular. We proceed by induction. Assume ¥i; 1is

nonsingular and have a similar expansion as A

LY

K, = P, (T + hRy + hRez + 0(h)

where the norm of matrices Ry, and R;y 18 ALy, Then
using the Banach Lemma (Issacson and Keller [ 91), its

inverse can be written as

k' = (T - hReg = N[ Rea- R ) + oth*1) P3°

For clarity of presentation we drop the permutatior matrix



.

Pp- At the (i + 1)-st stage of elimination we have

At+| - o Ql'.fl

- i X——— ]
TN ke e )
B = ' thB.,, ; where B T—_i
»P| o
“1’_ . -
b
7 o)
il L s
¢, = , +hC, ; wheve C;= % 5
oo i P
P ™p
Here the norm of ﬁiﬂ and EL is 001). This very special
structure of Bg,, and CL implies
‘ Birnt Co = hSum
where the norm of Si.ﬂ is 0(1). Next we determine ;,, from

(3:9.7)

-1
Xipg = Ay - Bin %o Ci

1]

T+hQiri - By [ T-hRe,y-0(h%)) C;
T+ h{Qit1-Sin) + W (Biw RirCi) ¢ 0(k%)

T+ hRivia + WM Rinz + 0(h?)

Note that R“_M depends only orn Rivr o B e and G For
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sufficiently small mesh

size h, %i4, is nonsingular. This
completes the induction process.
®, , i21, are decomposed into LU form wusing a new
pivoting strategy. (Appendix 1)
£y =

Pu fiuL qu

where p;, q, are permutation matrices, 1; and ug
and upper

are lower
triangular matrices respectively.

The solution of (3.1.6) can easily be computed:

(3.1.8) Ly

-G;’,

k80" = Y

Newton's method is said to have converged if

for some
prescribed error tolerance g,
mHull
€
ou

For solutions exhibiting boundary layers or abrupt
gradient changes, an adaptive mesh

refinement is used.

is based on approximately equidistributing

This

the first order
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local truncation error, T, » of the numerical scheme (Pereyra

and Sewell [25]). For the centered-Euler method, T, is
given by

ST “HY WOt R (X Yo 3 A) Wgow)
(3.1.9)  Tolxpe) = M) {250 - =

A fourth order method can be constructed by subtracting a
second order approximation for T, from the difference
equations. This can be done and yet still preserves the

structure of the Jacobian matrix (3.1.6).

T\h(x.l',l) = —;i[f( K,i 2 U5 A) - 2‘{'(xs"lx_- Jituj*'uj'l];)\) * {.(&'llu‘i‘\"k)]

(3.1.9a)
- B £l ) [Hxs.“x 3X) - F - '“J-\N]
, Fo obtain higher order numerical solution to

(3.1.1)-(3.1.2) we note the centered-Euler method has an
asymptotic error expansion containing only even powers of

hj, provided the solution has sufficient derivatives

L am
b = wi) + L () emtxp

mp»o
We can eliminate these global error functions em(xj)
successively by either (1) deferred correction

(Pereyra [24]), or (2) Richardson extrapolation
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(Keller [11]).

We now discuss the well-known notion of Euler-Newton
continuation. Assume numerical solution has been found for
the parameter A = A,. Then for sufficiently small &k,, an
improved initial guess for w( A, + 8%,) can be obtained by

Euler's method

(3.1.10) W (X% 8X.) =  w(X) + 38X, Uy(Xe)

Here the numerical solution for ux(k,) can be computed
using the Jacobian of the converged solution in (3.1.6), say

A"

(3.1.11) A uy A0 = = G, (ulde), )
The predictor u'( A, + 8),) can now be wused as an initial

guess for Newton's method to solve the difference equations

approximating (3.1.1)-(3.1.2) at A = lg + 8, .

3.2 COMPUTATION OF SOLUTION BRANCHES CONTAINING

LIMIT POINTS

The Euler-Newton continuation method discussed at the
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end of 1last section can be used to compute most solution
branches I'. However, for branches r;_that contain normal
limit points A (s,) at which A, (s,) # 0 and A (s,) = O,
this straightforward Fuler-Newton continuation fails to go
past ~(or. around) X (s,), and special treatment at A (s,) is
needed. We saw in Chapter 2 that the difficulty with normal
limit points c¢an be circumvented by freeing the parameter
and introducing an additionrnal equation with a new parameter
s, the pseudo-arclength parameter. That - s, beoth the
solution u and the parameter A are functions of s. From
Theorem 2.2 we saw that every solution along r; is isolated
in the parameter s-space. In this section we give a
discussion on the numerical implementation of computing

solution branches using pseudo=-arclength Fuler-Newton

continuation.

We recall from Section 2 of Chapter 2 that A is to be
determined as part of the solution. The enlarged system

consists of the set of finite difference equations (3.1.4)

and the discrete normalization equation (2.2.2):

(3213 G lw,A)

]
(e}

6 u':(s.m [u(s.\-u(so\] +[l-o)v\,(s.\[A(s)-)(s.\]
-~ (s-S.) =0

€328 Ny (w,);8)
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where 8 &€0,1) agd (uls,);X(s;))®lu, , A, )X 13 a known
solution at s=s_. (To start, say at s = 0, let u,(0) be

the solution to only the system (3.2.1) for some fixed A, )

We need to determine us(so) and )S(Su). The
derivative uA(so) can be solved as in (3.1.11). Using the
chain rule
(3.2.%) R V8e) Asls,] u*kS.)

We take the limit as s » s, in (3.2.2)
52 (5.}{9“ uy (st o+ (I—O)} = 1
and solving for A (s,)
£ 1
(3.2.4) 3. &) =
2 [ o luytsar Il +1-8 1%
For 6 € (0,1), the denominator cannot be zero. We observe

that the computation of the derivative A (s,) in (3.2.4) is

a function of (u,, A\,) at s = s, only and does not depend on
solution (u, ) at any other previously computed
s-stations; also, at a normal limit point, s,, we have, as
s+ s,

huy U, > oo
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Substitioting (3.2.3) .and (3.2.4) inteo (I.2.2)

2 1 .
(3:2.5) (auu TR o)&{uals.\'[u(s)-uls.ﬂe +[.\(s)-)ns.\]h-o)}= $-Se
AL RNy i

Choosing the positive sign in (3.2.4) implies A(s) 2XA(s,) if

&s

S - 85,20, and A(s) £A(s,) if 8§s <£0. Correspondingly,

choosing the negative sign in (3.2.4) implies the opposite.

The pseudo-arclength Euler one-step method can be used

to otain the predictor for the solution at (s, + §s )

(3.2.6a) wW'(s,+ 8s) = wisa) + 8s u, (s,)

1)

(3.2.6b) A (So+ §s)

Alss) + 8s A  (se)

These are then used as the initial guess for the

pseudo-arclength Newton's method on (3.2.1)-(3.2.2) at

S = s, + 8s:
[ o v o
Gy Gpa bu Gy,
(3. 2.7) . L
 Nhu Npa P Ny
Ml Y 2 Su’
{3.2.8) i
3 )\u“ Av slv
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The following s-=algorithm (Keller [13]) is wused to solve

632 T

(3.2.9) Ghu.'l 2 G-h)‘

v v
(3.2.10) G—h“L 2 = - (;h
-(Ny + Nﬂbi)
2.1 X = - v
(3 ) (Npa - Npu y)
(3.2.12)  ou’ = Z - 3y

The bulk of the computations for Newton's method is in the

LU-factorization of the Jacobians G:;. The solution for the

inflated system (3.2.7)-(3.2.3) only requires the additional
v

evaluation of right hand side th in (3.2.7), backward

substitution in solving y in (3.2.9) and two inner products

v ¥ .
N‘“m z and Ny ¥ 1In e T O (1) e

3.3 RATE OF CONVERGENCE OF NEWTON'S METHOD

For the inflated system (3.2.1)-(3.2.2) Lemma 2.3 and
Theorem 2.4 implies Newton's me thod converpges (i)
guadratically for regular solution points and normal 1limit
points, and (ii) 1linearly for simple bifurcation points.

However, 1L is not clear that the s-algorithm
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(3.2.9)-(3.2.12) without modification can be used at normal
limit points where G;AéR(G:“) (that 1is, there 1is no
solution to 032933« In this section we show the
s-algorithm need not be modified and we derive its rate of
convergence. For completeness we also derive the rate of
convergence for regular solution points and simple
bifurcation points for the s-algorithm. An extension to
Newton's method for general systems of equatiors in which
the Jacobians are singular at the solution points 1is
indicated. 1n particular we give a constructive proof of
recovery of quadratic convergence for these singular
problems. This result implies that we can actually obfain
quadratic convergence at bifurcatiorn points. Though the
analysis below 1is done on c¢ritical points which have
one-dimensional null space, the results go through for
higher dimensionrial nuli spaces, provided the =zeros of the
Jacobian matrix all have Jordon block of size one, that is,
they are simple zeros; Rall in 1966 [26j indicated how to
recover quadratic convergence at sinpular poirts, but his

numerical implementation was indirect.

We consider the general nonlinear system

. 3. 03 F{(xy = ©
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where xe R®* , F: R"»R~ It is well known (see Issacson and

Keller [ 9]) that Newton's method

F, (x") ¢x¥ = = F(x%)

xv!—! xv % ém\'

will converge quadratically 1if the . Jacobian F:(x“) is
non-singular, Frx (') exists and the initial @suess 1is

sufficiently close to the solution.

For critical points with one-dimensional null space,
sufficient conditions for convergence of Newton's method can

be found in Reddien [2T7]:

Theorem 3.1 Let x be a solution to (3.3.1). Assume N, =
null space F!(x') is one-dimensional. Let
» n . - s . : ]
B?(x ) = {xe B o2 k%= X nsr]. Define the projector Px| from
R®* onto X; to have null space N, and let PN‘ = T = Py s
where R = N, @ X,. Define C_(x™) = [ xeR" : II7, (x - x")ll¢
»
QPN.(X - x| . Assume P (XN N QX = {o}. Let
IF, (x™) @ xN 2cupn @xn  for all ¢eN,, xeR™ and with c,50.

Then there exists p> 0 and > 0 so that F, (x) has an inverse

in who(x') = B, (x")N Ce(x'), x = x%, satisfying HIF, (x)"N¢

e
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-\ =
czux - x™0 , the mapping Gx 3 Xx =- Fx(x)F(x) is a contraction

on W 9(x") mapping

» ’ ; b L.
. w&e(x Y into itself, and Fx(O)r‘Br(x Y i

A Moreover, defining the sequence X, = (}x..'__I with

x.cw

(x*), we have xiq-x', ﬂPx (xyg = KON < ““Xiq - ¥®*R and
]

X

I”h (x¢ -x')ll/llP'll (Xgey - X)) tends to 0.5.

The proof can be found in Reddien [27]. We assume all the

sufficient conditions of Theorem 3.1 are met.

Lemma 3.2 Assuming Newton's method (3.2.9)-(3.2.12) for
solving (3.2.1)-(3.2.2) converges, we have

(1) Rate of convergence is quadratic (a) at regular points
(that is, Ghéu,,l.) is nonsingular), and (b) at normal 1limit
points (that is, Ghéuo,lﬁ is singular with ore-dimersional

o o

null space and Gy, & R(G, (U, MDY

(2) Rate of convergence 1is linear at simple bifurcation
point (that 1is, Ghéuo, A,) is singular with one-dimensioral

null space and Gh € R(G;su., A))).

A

Proof of Lemma 3.2

At regular solution points (u,, A0, Gthe

Jacobian matrix Gh}u,,),) is non-singular. Definre the error
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at the v-th iteration ¢Y, §":

(3.3.2a) g’ W - u,

(3.3.2b) $* = X = A

The difference between Newton iterates can then be written

as
su” = uw'" - ¥

ihn 7] 2 W W A W S
e = gvh _ g
Skv " x\I'fl _ x\’
(3.3.4) i 3‘"" ) 3"

Define H':

Y.
(3.3.5) K= [ WEHy et ) e ist)

To show quadratic convergence, we need for any nonzero K,

)1'"' - K }LV 2

£ ding G6', . d g’
ixpanding G, G , and G,

solution (we drop the subscript h):

in Taylor series about the
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6" = G+ (GuE G, 3") v 4 [ G 8 1265, €8 46875

(3.3.6)

f%_\(ao_;_.svx\ Glu,r 0”4, ¢ 8157)
£3:3-T) G = G—: + (G— a"rG» ) L 3*%:]tq“(u_+o,e'j)\,+5‘3")
(3.3.8) G: = G; 5 (G-:QE"*G-:A%') ¥ 5 t"‘ *5'3 )G-(uwe A +5,87)

for 0 < ©,% <1, i = 1,2,3. Substituting these expansions

into (3.2.9)-(3.2.10) we obtain

{3.3.9) A‘J y = [G'; * [0—:,5‘1%,8"\4 %(t"-}f&“i_)c.[u,o-Og AdtS, 5\!)} y

= t,; G Gt E (CL45%5) G (U e At 552T)

(3.3.10) A =60+ (GRete 6i8) o 4 (G e s 2650737 G475)

+5leh +b"3- Ut b€, M+ 587) j

Assume y and z have expansions:

(3.3.11) Y Yo + NE'IY,, + 181 42 + O(p'*)

NEYVH, 2 *+ 18%) 2,0 ¥ UEVN 25, ¥+

i

(3.3.12) Z

v \3
+l|£"lt;\‘o'\ 1;” * \sutt 2111 + O()u‘ )
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Here we have assumed the remainder terms are bounded. For
example,

NG, a2 8,0 Ass, 8V ev e\, = O(p"*)

U Gype (0t 8% Aot S5) 8VEN, = O (%)

The solution to (3.3.9) can be obtained by solving

successively for y,, (y, , v,2). At a regular point:
Q- [ ] ]
(3.3.13) 4 = sy v G R € GudT ¢ G T+ Gy 8V

Similarly the solution to (3.3.10) is given by

o~ ° vV ® oV
(3.3.1m) = -(EV-uydY) ¢ RGN G0 546, 878"}
+ O(p?)
The normalization equation N of (3:2.2) ‘and - its

partial derivatives with respect to u and A can be written

as
N' = 8 u (0™ 0 () +(-8) Agt50) Nis) - €,
(3.3.15) . o
= O Ug(Se) Ev *(l'a)A$($°.)B
= Q
(3.3.16) N, = Ug(a)™
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(3.3, 77F N5 = X, 0%)

where ¢, is given by

)

€, = 0ustsa” U(se) + (1-8) X% A(s.) +(5-5.)

Using (3.3.13)-(3.3.17) the solutions (§u, 8)) in the
'backward substitution' (3.2.11)-(3.2.12) can be written
- {o e s (o srousial s -t G g sy

("0)&_(50)"9“, [5.)‘ [-u..\ + G;-‘[G';,\ £+ G:uE"uai: %8 ¥ Q:l é'u,\ + DW)‘I}

§) =

- (F8) Mgtsa + € st us ()} + K p”®
s

0-8) Ag ts) + 8 usts)* () + Ko p”

It

v

., are constants. For sufficiently small

where K: and K
§s 5(s - s5,), (1 -8)N(s,) + 83,(s, du, (s, duls) is nonzero.

Hence

v 2

(3.3.18) 2" = - 8 + KJp

where K; is a constant. Substituting (3.3.18) into (3.2.12)

and using the derived solutions for y and z, we obtain

sWo= (e 8wy w b )< -8V Kat) (uy + Fa)

i

(3.3.19)
= -€gY+ {3
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wherie” Nl =O(uY, for § 21,3,3. This completes the

proof for regular solution points.

We next consider normal limit points. Recall at. a3

normal limit point G°
o

Ge(u_,).) is singular, and

G, ¢ R(G)

Because GX is not in the range, there is no solution to the

linear system

However, we note that in algebraic eizenvalue problems
inverse iteration 1is often used to compute the eigenvector
corresponding to a simple eigenvalue. Specifically let o be

a simple eigehvalue of

OQ - Vf[) x z O

To determine its eigenvector we solve iteratively

(A-U’I)xv = %y_‘
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with x, an initial guess not in the range of (A - oI)
(Issacson and Keller [ 91]). We now proceed to show the
solution of (3.3.9) at a normal limit point is equivalent to
one step of inverse iteration. That iz, ¥ = x_, for & = 0N,

-]
A= G, and X, = GA
The assumption that Newton's method converges implies

that at every iteration the Jacobian matrix G:

is
non-singular (Theorem 3.1). Using some form of pivoting

strategy, the LU-decomposition of G: can be put inte the

form
v b
L'ﬂ-lﬂl-l o Uﬂ-hh-t Uh—\;\

¥ U v v S v V]

(3.3.20) PG Q@ =2 L U =|lims 1 o s
o o . y

where menq and Uy, m-y Aare nonsinaular lower and upper
triangular matrices respectively, and 3%’ is small in
absolute value, As Newton's method converges, ¢’ coes
arbitrary close to zero: The Taylor series of Gl is given
by

W

Gu

i

Go + Guy € + Gy o' + 0(p”)?

"

-P-l Lo Uo Q—l % P“u B

where JIBW = 0(1). For clarity of presentation, we only
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consider UY and U°:

L bt ° o

Uﬂ-\;ﬂ-l U"-l,l = Uu-|".| U““ll + ,’:) §
o] Sv o] o
where “E“ = €1 . The eigenvalues of u” are given by the
solution of
det ( I\In-\ = Uﬂ-\.'\-l) (/\— 5") = O
Since zero is a simple eigenvalue of U°.— we have from
analytic perturbation theory of simple eigenvalues
(Lancaster [151]),
v o v
(33213 $° = Kp
for some positive constant K . This proves the <determinant

of the Jacobian matrix or the smallest eipenvalue goes to

zero as pf—,_O. The solution to (3.3.9) can be computed as
follows
gl = =
L v Ly Gy net
(3. 3.22) "e1,M4 4 G}A
- Pﬂ n-l r—! 7
an- n-i
(3.3.23) Ui =
Jour .
L L .




(3.3.22) ‘has solution

Zow = (Lﬂ‘:h""r‘ G'A-‘n-l

A = &y - L;ﬂﬂ Zna
Because GA is not in the range of G ,

Zero. (3.3.23) has solution

?o b s"
o
where we write
" (Uﬂ:ﬂhl)—‘ Umayg
¢y =
(3.3.24) \

Y is the approximation to the right eigenvector v, at

v-th iteration, and it is the solution of

% @
Unayma Vg LM

(3.3.25a) -
) . (o) s i

Define the error for the right eipenvector

- \P| - e n-

o]

where ?' satisfies

d

is different

» -1
d Y:' & (Vaama)  Zme

SV

v

e

f'rom

the
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o o
Un'hﬂ" Un“ﬂ ?hl\‘l 9

(3.3.25b) (o] ) 1

H

Subtracting (3.3.25a) from (3.3.25b), we obtain the equation

v
for e 3

\thn-t e;; = ()(Py)

This gives ";H = O(ﬂy). We now can write down the solution

y of (3.2.9) for a normal limit point

d
(3.3.26) Y = % + Ol1)

Next we solve z of (3.2.10) for a normal 1limit point.

We write

(3.3.27) z N

i
=

where u, w are solutions of

» T
(3.3.28a) G, u s =B §
(3.3.280) Gu W = G- Lol e 20 €757 ¥ 6 8787

o)
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Equation (3.3.28a) has been analysed above. That. 18,

using the analysis for the equation (3.3.9) we have

(3.3.29) W s - Svﬁ. + smaller terms

The solution of (3.3.28b) is a 1llittle more involved.
Using the notations in Theorem 3.1, any vector xe R" can be

written uniquely
(3.3.30) xr = %g ® %y

where x,eX,, x,eN,, N,® X, = R". In addition, if
vi= vp @ v, )€ R"

o

Gu Xr € Xl

G’ XV X
(3.3.31) w XY €M

L]

, W, satisfy

Thus w" R

oo + Guutn + By (Gund” + 25 M50 Gl aierss) |
(3-3.32) o 9 & * v s 3 v
2 - 3 Gyafntn - %Pn‘(‘ GuE €+ Gy 88 f(fi'; ¢ ‘“31 Glusar aet W)
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{62+ Gut” + T (557 47500 VI G oA e 53N Wy
£3-3:33) . ) 3
- "' vv v 3 v) p J
= -C & - iPx'{zGuAk £ +GAAS 8"+ é-(gg.“+3si) G.(u.vqg,,\.u's))
AT

We now use expansions similar to (3.3.11) for wR

(3.3.34) We = —E; + hEvn, w“"ﬂlﬁ"ll,_la'wfh,,_* 1S w 40\},1’]3

where llW.;jv.llz O(1). The solution for w can be calculated
v L v * v v vV

{3.3.35]) Wg = -Ep - Jitm'[(;“c"ak+ szlllﬁ—qas. + 0,378 l]

- Gy EYER + O(P,"P

v

- €4 oay @
2

v

i

(3.3 36) Wiy + Oo(p)*

Knowing these solutions, we can now determine $)’  and
$u’ of (3.2.11)=(3.2.12) for a normal limit noint
* w2
s = (BT HH9), 608 0k safe"+8” 4 @i L ) ps o)
(1-6) ks (50) - Bus (52" [ 4% + 0[]

U+ L0 ug (5™ + O( P
= -3" + S"Pj o )*s[‘o) ?\ (A7)
A6 Uslsa) g, — (-0) $¥A5 ) + 0(5)

Using (3.3.21) we have

55

il

- 5”& K:}va



and y g
su = {-'Ev‘b £, ¢ (a’+ )P p -8 _g‘!;}
v v v (q."f—gﬂ_usu..\'nfl uﬂo(p')'] 4P, +0()3
- {A t 3 [eu,lm"d'& } v (F')
a -g¥+ §, + O(W)3
1 &
where Nf 0 = OCFY)f This proves quadratic convergence and

part (1) of the lemma.

At a simple bifurcation point, G;e R("}:). The solution

to (3.2.9) becomes

tj = —u) 1 'F‘B
where Hf}n = O(Pf). The solution to (3.2.10) at a simple
bifurcation point is similar to that for a normal limit
point, except y in (3.3.28) is being replaced by -uy
8): , $u¥ of (3.2.11)-(3.2.12) at a simple bifurcation

point become

Y

- 6 Us(50)" €7~ (F8) Ag(3018 "~ Buslse] [£7+ 87Uy + Wy + WR]

(I‘O))tsbo) *9“5(%;‘[—“'\ + fg O(p.")")

« N+ B Uslso) [' Wy -We ]
(-6) Aglso) + BUslse)" Uyls) + Cy

-év+ ‘7"

where Cy, 7" are O(/A.J).
s’ = -8 4 8wy v wurwe - (87-%) Uy

~gV 4wy + WK 'I"*’VMA
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v : v .
here (w, + We = 9 U, g O(F ). The proof of Lemma 3.2

is now completed.

Normal limit points and simple bifurcation points are
both singular points at which the operator G; is singular.
Yet using the s-algorithm, we saw Newton's method convereges
quadratically for normal 1limit points and lirearly for
bifurcation points. However this should be' no surprise
because of the necessary and sufficient conditions of Lemma
2.3. By tinflating' the system for normal limit points we
have constructed a projection operator which projects to
zero the part of the error between Newton iterations that
only vanishes linearly. This recovers the quadratic
convergence. This result can be extended to solutions of
general nonlinear systems of equations with the Jacobian

having nontrivial null spaces.

Theorem 3.3 Using the same notations as in Theorem 3.1 for
a finite dimensional system, the following iteration

procedure will recover quadratic convergence



3 - P
Fulx¥) 2 = = P
(3.3.37)

Fola¥)y ¥ = 4"
Fr (x*) %Y = a7
it 2 »
dxY w R ¥ ey i g¥. % -t
(3.3.38) L
Moo= xY o+ sxY

where b”, d” are to be constructed such that they do not lie
in the range of Fx and F: respectively. For example, let
us consider b . Assume the Jacobian Fx is factorized into

LU=-form

PF, G = LU

where P and Q are permutation matrices, L is a nonsingular
lower triangular matrix and U is a upper triangular matrix

with its diagonal elements satisfying the following
| Unm | << 1

| Wmm | << Ugg) Mm> k

then bY is given by

(We note this is in agreement with (3.3.23) of Lemma 3.2.)
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Remarks on Theorem 3.3

(1) The correction term c¢” 1is the projection of 2z of
(3.3.37) onto the null space of Fx(x'). This in essence is
equivalent to the corrected Newton process of Rall
(1966, ‘1260) . However in actual computations, he did not
compute the projection operator.

(2) For simple bifurcation points, let &, and ¥, be the null
vector and its adjoint of the inflated matrix. The
procedure defined in Theorem 3.3 implies quadratic
convergence for the inflated system.

(4) For higher dimensional null spaces, Theorem 3.3 can be
extended by computing all the independent null vectors and
their adjoint, ¢, , % ,...; pnd W, Yo iissa This is
equivalent to inflating the original problem by additional M

equations for M-dimensional parameter vector problems, that

is, M-multiple normal limit points.

Proof of Theorem 3.3 Vectors b”, d” are to be constructed
such that they do not lie in the range of Fx(x‘) and F:(x')
respectively. The solutions of equations (3.3.37) can bhe
written down (using the equations (3.3.35)-(3.3.36) and

(3.3.26) in Lemma 3.2)

(3.3.39) 2 = -€g - 4
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(3.3.40) @’ Y, + SV,

(a1 LWy = W o B

where ¥, and Y, are normalized, that |is Wr‘ﬂ: 1 and
I ox’- x*y s ne'n,=8" $° = 0(3”), N9*W,= 0(8™, and N f 0, and
W £,y are 0(1). Substituting (3.3.39)~-(3.3.41) into
(3.3.38) we obtain

o 2 (¥hs f) (-ex -5 ') (@+3")
v - € v 2
8x” = ‘ - € %:- +7 ) +

(47 4578 1 Le, + 874

- "6"+‘F33‘”'

where | fﬂh.z 0(1). This completes the proof of Theorem

.

3.4 NUMERICAL TREATMENT AT SIMPLE BIFURCATLION POINT

In this section we give a treatment at simple
bifurcation point and the switching of branches. An
efficient method to compute the coefficients (2.1.13) of the
algebraic bifurcation equation is provided. This 1is also
applicable to multiple bifurcation points as well as general
nonlinear two point boundary value problems for ordinary

differential equations with one or more parameters.
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If s is the pseudo-arclength parameter (see Section 2
of Chapter 2), let Deth(s) be the determinant of the
converged discretized Jacobian along a smooth branch. (We
drop the subscript h.) We assume there exists s‘>-s~ such
that Det(s,)Det(s, )< 0. That is, the determinant has gone
through a change in sign. The critical point (u(s,), A(s,))
at which the converged discretized Jacobian 1is arbitrary
close to =zero can be 1located by '"modified' bisection or

'modified' regular falsi. That is, special treatment has to

be taken because the normalization equation depends on the

arc=length parameter s. To be more specific, 1let Ss‘Lh be
the increment we take to go from s to sy . The
derivatives (ug , As) in (3.2.2) are different at the two
arclength stations s = s and s = s, . 1f we want to

approximately go back to s, from Sy » We need to determire

Ssux. Taylor series of A(s) about s, and s, :
Asp) = Alsa) + &8s, Agls,y + O(ss 0

A (5) MUY+ Bsp, Aglsy) + 0 0 (850"

Solving for §s ,a

85 ba - 85,4 (-—"-'\’(s‘))

Asisy

LS
Thus to 0(8s, ) , &s,, is equal to ds,, if and orly if
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Al ) = R bepy.

The next step is to compute the null vector ¢  and its
adjoint ¥, of the approximate singular Jacobian G; «  This
can easily be accomplished by inverse iteration discussed in
last section. Keller [14] observed the computations of all
the independent eigenvectors and their adjoint can be
obtained trivially from the LU-factorization of the
discretized Jacobian: Let @, P be N x m matrices
containing m columns of independent null vectors and their

adjoint respectively. Then

=%
_ ‘(Un-m,rl-m) UN-n,M
i =

L Tmxm

- . *
T = = Lm,N-m (LN*MJN‘"\) T xm
L_ -

At the bifurcation point, Xs(so) cannot be zero for
both branches (non-tangential intersection property of

Definition 2.2), we look for bifurcation only if

i
o]

£ 3. %.1) ‘VT G,
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If the test for bifurcation (3.4.1) 1is positive, we next

solve the algebraic bifurcation equation and switch
A

branches. At a simple bifurcation point G:e G:, let q., be

a solution to

& A e
G'u, q’o = '-G.A

A
But G: is singular, ¥, can be made unique by requiring it
has no component in the null space of G:. This can easily

be done

A

(fo s (?o = \y: e?o (f|

The vector @, so constructed satisfies

YT Y = o0

(If the critical point is a simple bifurcation point the
null space of G: is one dimensional. Using some form of
pivoting strategy, G: has the LU-factorization that was
discussed in Theorem 3.3. Thus, in our computations we can
check the dimension of N(G: ) by printing out the diagonal

elements of U.)
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In a small neighbourhood of the 3simple bifurcation

point we have the expansions (2.1.16)

Uy (So + 5S) = U(Se) + 85 u,, (s0) +0(8s)”
(3a4.2)

Mg (Se+ B5) = Ulse) + §s &k, + O0(85)°

(3.4.3) Ug, (50) Xor Po + X 12'P,

where (w,,, X,) are the distinct roots of the algebraic
bifurcation equation. To switch branches, we must solve for

these roots.

For very general nonlinear eigenvalue problems (may it
be algebraic equations, integral equations, ordinary
differential equations or partial differential equations)
Keller [13] has suggested four different approaches for the
computation of bifurcated branches. 1In one of these, the
first method, the coefficients of the algebraic bifurcation

equation must be computed. These are, we recall:

o
"

WY Guw € @
(3.4.4) b = Y (Gau o + Gual

= Yr(GuwPo® + Gurto * O0)
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We focus our attention on his first approach in application
to nonlinear two-point boundary value problems for ordinary
differential equations. Though all finite element and
finite difference schemes give similar results, we derive
our equations using the Jacobian matrix obtained from the
centered-Euler scheme. We note the scalars a, b and c in
(3.4.4) involve computations of vectors of the form (a) G:X’
(b) G:;v, and (c) G:va, where v and w are vectors which are

not functions of u or A.

We have no problems with (a) and (b). The derivative

u, on the 1left hand side of (3.1.1) does not depend on A,

giving
r%—-‘;’;lut,x'w
BE (g 30 )
e s ™ 5 Oy e 3°) ;o = % .

‘,. . e -
%ghp&éwhvﬁhk)

V9 (u, X
D)

To determine (c) we proceed in two steps:

(i) H = 6, v
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{ £33 ¥ = HuW
From (3.1.6) H can be written
o
H = A v

The vector v does not explicitly depend on the solution u of

3 balh) . The derivative u, is linear in u and hence gives
no contribution to G:;. Tenoe
™ 2 a °
,g—“?;,_(“uh) VW, 1

2 (3, LGN (Y)Y
!
T O S N ) (i)

% (u,N) vy W
Jup A) Yo

o = (K3)=

-

-

Component-wise, for any xj e (a,bl], the %X-th component of %Ky

is

3 o e N : ! -
e RS LR (X 058 WG X ) lv,-.,l w.‘,,.uw, <otk “‘fm&
JrK p AUy = .

M

where the second subscript of vj., o (or wj,e) denotes the

l-th component of the vector Vi (or Wiy ) at the net point

Xj-1 and the derivative

i
U g
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denotes the differentiation of the k-th component of f with

respect to the 1l-th component of u. At the boundary points

Blﬁl.h v W
e E T e Wy Wi,
a,K ? Bumkbu( "n
T
“ b‘ K = .____3 31.“ l\,— -U— w:-m
; Eulu“)u )m
To obtain the coefficients a, b and ¢ in (3.4.4), we

need to form the inner product Qf with G:va, say. Let p be
the number of left boundary conditions of (3.1.1)=-(3.1.2).

We write

where Ka&. and KL are contributions from boundary npoints
and internal points respectively. They can easily be seen

to be

I

P m
—
-4
K }__' \P. Q_Kaia ¥ E LPI":C b.l‘P
B.c . ! P+l

T " P
|

Kj_ = Z‘I { Z h2~l q}!"lk x&nk‘b ¥ kI' h.l-\ W.qu.\ﬂﬂ-?}
=\

1=2 k=pt

As the mesh size h-» 0, K; tends to

P b €4 b
): S Yo Xnopsm 3%+ Z s e Yu-p o
k2t “a Reptt *
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For the rotating coaxial disks problem the contribution from

the boundary conditions is zero, and K is given by

P
K= 2 by el eonss * Yeroren )+ Vs W Ve Mo s

=2
4 YoM Yeon, W) - (Ve + Ve s Wan )

Thus the coefficients irn (3.4.U4) can be obtained by various

combinations of v and w, where v and w are now 4, and %,

To check our calculations, we observe one of the roots
corresponds to the tangert along the known branch. The
derivative ). should be equal to either ®o— or ¥es of the
solution of the algebraic bifurcation equation. Let
(¥ps, ®14) be the root for the new bifurcated branch. To

switch branches, we must change our normalization to

N = 6(or Yo w,,*?.)‘[ulS\— u\s.\l +(-8) oy [.\(SI-).ls,)] - [5-30) = ©

and use the initial guess along the new brarch

' (st 55)

wlsel + d&s (du-‘?o * '(u.‘pl)

) (5.4 85) = A(Se) + 85 olor
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3.5 NUMERICAL IMPLEMENTATION OF STABILITY ANALYSIS

The computational aspects of exchange of linearized
stability analysis 1is to be studied in this section. In a
small neighbourhood of a c¢ritical point for the equilibrium

problem, assume the time-dependent problem has solution of

the form

ot

(3.5.1) Ut) = wis) + ee’ " wlis)

To determine if the eigenvalue ¢(s) has gone from positive

to negative (or vice versa) as we tranverse through the

critical point, there are two approaches:

(1) Computation at the <critical point - determine the

lowest nonzero derivative. For example, from Section 2.3

«,a + oob

(3.5.2) 0, (Sl = 2

v'B e,
Here a and b are the coefficients of the algebraic
bifurcation equation, which can be computed effortlessly

(see last section), and (g, , ;) is a solution to the
algebraic bifurcation equation. (For normal limit points
oy 1is identically zero and we set «, to be equal to one.)

Ifu;(so) is zero, the next derivative can be seen to be



o
2 "P;* (c'u.u wy, + 2 G'::m PR )

(3.5.3) Uss 1Se) = 3
Y B @,
where W satisfies
= °
(3.5:4) G’u W =T Guu. ?. @

(The solution for w can be computed without special
treatment, w is made unique by requiring erv to be equal

to zero.)

(2) Computation near the critical point - Substituting
(3.5.1) 1into the time-dependent problem gives a linear
eigenvalue problem in O :

e B w = Gulus),as) w
(3.5.5)

i
-

w* w

for |s - s, |<& , for some small § > 0. Newton's method is
used to solve (3.5.2) for (O, w), with the initial guess

(G,4,). A simple change of variable yields

WV“‘l - qu V\)_',‘

(Gutus, Atsyy - o¥B) O = Bw’
|

SoV =

2w vy
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CHAPTER 4

THE COMPUTATIONAL RESULTS

In this chapter we discuss the computations of the
rotating coaxial disks problem. It 1is divided into two
sections. Section 1 describes the solution branches.
Section 2 gives a detailed treatment at critical points;
local exchange of 1linearized stability calculations are

discussed.

4.1 SOLUTION BRANCHES

In this section we describe the many computed solutions
using the analysis and methods of the last two chapters.
All the computed solutions are second order accurate in the
mesh size ;8 Notions of cells (Batchelor [ 1]) and
sub-cells are introduced. 1In some of the solution branches,
the axial and radial velocities for some positive ¥ are
approximately the same as those for negative ¥ , and we

explain this ¥ - sign-indepenrndent phenomeron using standard
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singular perturbation techniques.

Let us consider the general problem (3.1.1)-(3.1.2).
Assume a solution is known for some A . 1In Section 3.2 we
described the numerical procedure of obtaining a solution
for X. using Euler-Newtonr pseudo-arclength s-continuation.

Hence we can 'continue' to trace out a solution branch for

degd g,

In the rotating coaxial disks problem we have at our
disposal to continue in one of the two parameters: the
Reynolds number R or the ratio of the angular velocity of
the two disks ¥ . All the solution branches are computed
using a systematic approach; no clever initial guesses are
needed. In our calculations Euler-Newton pseudo-arclength
s-continuation procedure is used. When a solution at a
particular R and ¥ is desired we switch to straight-forward

Euler-Newton continuation.

Let S(f, g) be a solution to the rotating coaxial disks

problem with no suction.
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Definition 4.1 S(f, g) is a large amplitude solutiorn if the

outer (inviscid) solution tends to infinity in magnitude in

the limit Reynolds number R tending to infirity.

Definition 4.2 S(f, g) is a finite amplitude solution if the

outer (inviscid) solutiorn is finite in magnitude in the

limit Reynolds number R tending to infinity.

For R = 0 and |¥1<1 we have the wunique solution of

125 1T)

(4.1.1)
1 + (¥-1) =

ap
"

It is easily shown that solutions (4.1.1) are stable
(Definition 2.5). From these solutions we let the Reynolds
number R be the continuation parameter and use our
pseudo-arclength continuation for fixed ¥g = -1 + k( 0.1 ),
k= 051,608 22 ,20. For the purpose of this discussion we
stop at R = 6060, and we denote these solutions by

S ( ¥, R = 500). We have the following:
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(a) The determinant of the converged discretized Jacobian

Gh& has a change in sign for ¥ = -1 and R between 110 and

120. This will be followed up in next section.

(b) By inspecting the solution profiles for cases ¥ = 0 and
¥ = -0.1 we suspect these two solutions belong to different
branches (or families), say [" (0) and [ (-0.1). Fixing

R = 500 we continue in ¥ from ¥ = 0 to ¥ = -0.1 of ['(0)

and from ¥ = -0.1 to ¥ = 0 of [(-0.1). Our suspicion is
confirmed. . We obtain two distinct solutions for (i) ¥ = O
and R = 500, and (ii) ¥ = -0.1 and R = 500. Similar
phenomena occur for (1) ¥ = -0.3 and ¥ = -0.4, and (2)
¥ = -0.9 and ¥ = -1. Case (1) will be treated in detail
in the next section. Case (2) will be discussed later in
this section. For the missing gaps in ¥ , (that is,

¥e€ [0,1], ¥€ [-0.1,-0.3] and Y¥e€[-0.4,-11), there is no
abrupt change 1in the solution profiles. This can be
confirmed by fixing R = 500 and continuing from Y = ak to
¥ =:Xa say, and the solution so obtained for X ='KB i8
found to be identical to S_( XB’ R = 500). In this way we
obtain four different solution branches (or families) when
we continue in ¥ for R = 500. 1In Figure 4.1 we show the
intervals ( ¥a, ¥b) in which these branches have solutions
for R = 500 The '¥1'.s5ign indicates the points

(¥sy , R = 500) where we start to continue in ¥ from the
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solutions S _(¥,, R = 500). We note that the second and
fourth branches do not extend the full interval [-1,1].
That is, these branches turn around at the limit points, X;,

and K*z‘

:?‘-a@

Fiqure 4.1

Because solutions at R = 0 are unique, the new branches
obtained above cannot have solutions for R()Y )< R_(¥).
These critical points Rc( § ) are found to be normal limit

points (Definition 2.3): Let r;b be a solution branch for

some fixed ¥ = Y¥,.

r = { (ues), RESH; ¥,) = GLuts), R(s1; %) =0, S & S € Sa
ab

The Reynolds number is the parameter along cb - a similar

convention is used when we fixed the Reynolds number.



- 89~

We assume S, 2> sﬁ. LT f:h cannot be extended to R = 0, then
it must have at least one limit point. For branches (with
¥ = constant and which do not form closed loops) containing
R = 0 have an evern number of limit points and those not
containing R = 0 have an odd number of 1limit points.
Moreover for sufficiently large R, solution branches
containing odd number of limit points have at 1least two

distinct solutions.
Au.eEB

S

4

o

TR
Figure 4.2.: T[] has +wo (even number) Limit poiuts

I} has three (odd mwwber ) limit points

For some R = R,, 1let the pair (f(z), g(z)) be a

sclution for ¥ = 1 of branch f; satisfying: (The case for
Y = -1 can be treated in a similar fashion.)

‘F(‘b—) ¥ O T

G l™) ¥ o

Then Corollary 1.2 implies the solution

v, = (- fl-a), q0-2))
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is different from (f, g). Fixing the Reynolds number at Ry
we next continue 1in X using the solution U+. From
Corollary 1.2 and using (1.2.26) the new computaed branch

FU““ is different from r; .

We comment on the solutions outside the strip I of

{1.2.76), %Ethat 3is IX¥| >1, R >0. For some fixed R, say
R = R_ = 1000, we consider a solution branch r;. that
excludes Y = 0. Assume F; has a normal limit point at
¥ =¥, - By Lemma 1.1 we see the branch for the ‘'reduced’
Reynolds  number R= R/, 'turns around' at 1/y,. The
computations of branches 7-10-11 1is an example. (See

description of branches for the numbering system.)

Bromih ||

0.79
nch 10

Broweh 7 Lia

L

el

figure 4.3 :  Schemaric Drawing 0f Bramch 7-10-11 gt R=1000

We observe that 0.79 & 1/1.2. This is because wusing Lemma

1.1 the ecritical point (R ,¥ ) = (1000,0.79) transforms
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into (790, 1/6.79).

In figure 4.4 we show the loci of critical points with
the number of solutions 1indicated. We point out these
curves are only second order accurate in the mesh size h.
That is, a c¢ritical point is one at which the linearized
operator G, is . singular. The determinant of the
discretized linearized operator has the asymptotic expansion

(for the centered-=Euler method)

det (Gyy) = deb (G + Wiy + K e ¥

We either gain two solutions or lose two solutions as we
transverse these curves of c¢ritical points. We now give a

few comments.

There is a unique solution in the region 0« R4 55. and
¥ls 1, Because the solution f at E is not antisymmetric,
from Corollary 1.2 and using (1.2.26) we deduce there must
be another fold meeting ERF at E. This fold turns out to
be ExF. The normal limit point curve EZpF‘is computed in
the following sequence of calculations: (i) Let T (¥) be

a solution branch for some fixed non-negative ¥ and contain
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solutions far B9 0. Let S(¥=0) be a solution on
(¥ =0)at R =>500. Now fix R = 5060 and continue in ¥
until ¥ = -1. The solutioné for negative ¥ obtained above

give half of the curve Ep.F when we use our pseudo arclength

continuation procedure on the Reynolds number, keeping ¥

fixed. B Let S{ ¥ = «0.1) be a solution on
m (¥ = -0.1) at R = 500, where solution exists for
R e [0, 1000] on [ . We continue in ¥ until ¥ = 1.

These new solutions give the other half of E‘3F when we
continue in R, keeping ¥ fixed. The lips CHD "belongs" to
ExF: for ¥e (-0.4, 0.65) the solution branch T possesses
three rormal limit points (one is on Ex F and two on the
lips CHDP).. As we approach from the center of the lips
towards the tips C, D the two normal limit points coalesce
into one and then disappear as we pass the tips. The
phenomenon of coalesence of normal 1limit points 1is quite
common in this problem (A, B and the tips of lips P, P', Q,
Q'; they are also called cusps). The normal 1limit point
curve GHI touches the left side of the 1lips CHD at H. The
half lips Q "belongs" to GHI, and Q "belongs" to GI' which

is not shown. We have a similar phenomenon for the lips P

and P' with RU and RU'. There is a little finger MN which
touches the 1lips Q near ¥ = -1. Corollary 1.2 can be
applied to ¥ = -1 solution of MN. Except for the branch

that extends to R = 0, all the solutions discussed in this
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paragraph are large amplitude solutions.

The ecritical point A ® (R = 119,, ¥ = =1) is a
bifurcation point (Definition 2.2). For ¥ = -1 + €,
1> € > 0 we obtain two solution branches b, and bz. This is
the classical example of bifurcation-perturbed-bifurcation,
where € is the "impurity”. The 1locus of normal 1limit
point of b‘ gives the hyperbola-shaped AL; for finite
Reynolds number this perturbed-bifurcation sheet does not
have a solution for Y = 0 (that is, the normal limit point
R,( ¥) tends to infinity as ¥ tends to zero). We next
consider the branch b1 of the perturbed-bifurcation sheet.

For -1/3¢¥< -1, b,y extends back to R = 0O; there 1is a

cusp at E(Rc = 347.8, Y = -.3834) where b, begins to

develop into an s-curve which extends back to R = 0 wuntil
¥ e -1/3. For -1/3<¥4£ 1, branch b, 'turns around’',
giving the limit point curve BJ. (For future discussion,

let sbﬂ: denote the solution for ¥ = 1, R = 10600 by using
pseudo-arclength continuation from the solutionr alorng b 2
and  Sie . be the solution for ¥ =1, R = 1000 which is
obtained by continuation in R of Spig and it has a normal

limit point at J.)
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For ¥ =¥, slightly larger than -1/3, let [rage (¥
be the solution branch that extends back to R = 0. Let
S(R , ¥ ) be a solution on f'.-mae. For R = R > U47.8 we
continue in ¥ and the result of the computation is amazing:

this solution branch does not have solution for ¥ 1less than

B tR) - it ‘'turns back up' to join with the solution
branch that corntains Sbw- This accounts for the normal
limit point <curve (or ridge) ST. (The curve BST will be

treated in detail in the next section.)

Corollary 1.2 is applied to ¥ = 1 solution at the
nrormal limit point J and this gives the little finger JK and
the hyperbola-shaped A'L'. This needs a little explanation
to show how we obtain from four to six solutions for R 2290
at ¥ = 1: Corollary 1.2 is applied to solutions SbLF and
Sbitem Cef. last paragraph), yielding solutions S/ . and

.F
Sb%;“. We fixed R = 1000 and continue in ¥ . The branch



w G-

starting from the solution Sl:i{- does not have solution for

’
¥€ 0.1; it 'turns back up' to a symmetric solution Spgg at

4
= Vs Similarly the branch starting from Sbifm does not
have solution for ¥< 0.79 and it ‘'turns back wup' to a
symmetric solution at ¥ = 1. we now fix ¥ = 1. and

continue in R for both symmetric solutions, and they meet at

the normal limit point A' . Somethinrg must have happened in
between - an exchange of solution branch has taken place at
(Rg, ¥e) = (292, .993). We now show schematically how this

comes about. Let r,"Y(R) and [7 4(R) be two solution branches
for some ¥ =¥ -€, 12>>€>0. When ¥=¥ r,',a.e meets r;,ge at
R(sg) = Re. For ¥ = de+€& we have part of [,y joirns part of
rz.r, and the remaining part of ﬂ‘x joins the remaining part

of f;'x.

¥eote

figure 4.¢ : Exchange of Solubion Branches

In the remainder of this section we exhibit some of our
computed solution branches. Figures 4.8-4.24 are the
velocity profiles L), f‘a(z), g(z)) =

(w(z), -2u(z)/r, v(z)/r) for the indicated Reynolds number.
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The third axis which "goes into and out of the paper" is the

¥ -axis. Each curve is a velocity profile for a particular
X - For example, in figure U4.8a the solution curves are the
profiles for the angular velocity v = rg(z) for ¥ = -1 to

¥ = 1, with the first curve 'out of the paper or closest to

the viewer' at ¥y = 1 and the last curve at ¥ = -1.

Using both the axial and radial velocity profiles we
can draw streamlines, (Batchelor [ 1]). The notion of cells

can be introduced.

Definition 4.3 A cell is a region bounded by plares of

constant 2z that includes only its own recirculating fluid.
In other words, it is a region bounded by planes of constant

z at which the axial velocity f(z) is zero.

Let z,, 2z, be two cornsecutive zeros of f(z). Assuming
nontrivial soclution, f(z) must attain at least one relative
extremum at 1z, e(z,, z,). If there 1is more than one

relative extremum, we call it a cell-with-structure.
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z -
d &
'
‘L“ ----- -cell L -~ HeemceWl 2 -
fiqure 4.5  Cell -with - structwre
Definition 4.4 Let Cs[qk, Zb] be a cell-with-structure. A

subcell 1is a region bounded by planes of constant z,L£z,,

z,, z,€lz,, z,], satisfying (i) either the axial velocity

f(z) or the radial velocity fz(z) is zero at z, and Z s and

(ii) there exists one e(z,, z,) such that f;#zs) = 0,

Zs
Puil®o ) # O

The cell-with-structure in figure 4.5 has two subcells.
Let Ngpayx @and Noys be the number of relative maxima and the
number of relative minima of f(z) in Cgq L s Zb]

respectively. The number of subcells is given by

Nmax + Nwmin + 1
(4.1.2) Ns = 2

We must show Ns is an integer. Assume f>0 in (zﬁ, ZL)'

In between two relative maxima there is a relative minimum.

Furthermore between f(z,) = f(zb) =0 there must be orne more
relative maximum than minimum. That 1is
. Nmiw + L
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From Definition 2.4 a solution is linearly stable only

if all its eigenvalues in the linearized stability analysis

lie in the 1left half complex plane. The exchange of
stability calculations only gives the information that one
of its eigenvalues has changed sign. We can say a solution
branch 1s 1linearly unstable from these calculations. For
this reason, we can only classify some, but not all, the
stable branches. The computations of exchange of stability
analysis will be discussed in the next section. (For most
solution branches we stopped our calculations at R = 1000.
Hence when we we say solution branch exists for R 2 O we
mean the solution branch exists for R in the computed range
L 0, 1060] and we strongly believe it exists for all R.
Most of the brarnches shown are at Reynolds number R = 1000.
The exceptions are: (i) the cosine branch 9 is at R = 400,
(ii) branches 12 and 13 are at R = 210, and (iii) branches
14 through 17 are at R = 190.) Following are the

descriptions of some of the computed solutiorn branches:

Branch 1: solid body branch -12Y< 1 figure 4.8

The entire branch is stable. For ¥2 0 solution exists for

R 2 0. Some of these solutions are well known. For
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instance the following have computed solutions on this
branch:

Mellor et al. [22]); ¥ = 0, large R

Lance and Rogers [16]; ¥ 2 0, various ranges of R <1000

Greenspan [ 7]; ¥ = 0, R 1000

Holodniok et al. [ 8]; ¥ 0.8, R=1000

The solutions for ¥ € 0 on this branch are unknown. As ¥
decreases from zero to -1 the number of cells increases from
one to two, and the «cells are cells-with-structure. At
¥ = =1 there is a region near the upper disk where both the
axial and angular velocity profiles behave 1like a cosine
function; the maximum angular velocity of fluid is about

thirteen times that of the disks in absolute value - large

amplitude solution (Definition 4.1).

Branch 2: bifurcation negative branch -1£ ¥<1 figure 4.9

The branch is stable. For -1<¥< -1/3 solution exists for
R 20. Some of these solutions have also been computed by:
Pearson [23]; ¥ = -1, R = 1000
Holodniok [ 8]; ¥ = 0.8, R=1000
The solution has two cells for all |¥1«1. The parameter ¥

has very 1little effect on the velocity profiles in the

inviscid region. The solution at ¥ = -1 comes from the
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symmetric bifurcation from the Stewartson solution branch

Branch 3: bifurcation positive branch A -1=£Y<0 figure %.10
The branch is stable. For finite Reynolds number there 1is
no solution on this branch for ¥ = 0. (Branches 3 - 6 have
the same phenomenon.) Only Pearson has computed the solution
at s Y2 =0, The solutions have two cells. In contrast to
Branch 2, the effect of ¥ is more appreciable throughout

the inviscid region.

Branch 4: bifurcation positive branch B -1« y<0 figure 4.11
For large Reynoclds number the branch 1is unstable. At
¥ = -1, the solution exists for all R and there is an
exchange of stability at the bifurcation point R = 119.
This is the second of the four branches that does not have a
solution for ¥ = 0 at a finite R. This 1is a two-cell
branch, a continuation of Branch 3 after rnormal limit points
R,(¥). There have been many analytical studies of this

branch for ¥ = -1 and large R.
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Branch 3: symmetric positive y branch A 0<¥«1 figure 4.12
The branch is stable, and solution exists for 0€¥ &1. Only
Holodniok et al. [ 8] computed the solution for ¥= 0.8.
This is a two-cell solution branch. The solution for ¥ = 1
is obtained by applying Corollary 1.2 to the ¥ = 1 solution
of Branch 2. Then the whole solution branch at R = 1000 and
Ye (0, 1] is then obtained by pseudo-arclength continuation
in ¥ , keeping R fixed at R = 1000. The axial and radial
velocities have the same form as those of Branch 3 even

though the sign of ¥ 1is opposite. This ¥ -sign-independent

For large Reynolds number the rotating coaxial disks problem
with no suction can be analysed using singular perturbation
techniques. (A detailed description appears in Chapter 5.)
Let €* =1/R. Near the 1lower disk, assume the following

asymptotic expansion in

g = g%
f = €% ¥, * e LR R Uk > XK
4 = 90 + e® i ep"g; R WO Br > Pk~

Depending on (o, , a), the leading order equations can be

written
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Forcet = foFiren, T ¢4 9%

1 B
Jott = (Joh{‘o i %o'Foh

where ¢, depending on ( x4, a), 1is either =zero or one.

(4.1.3) is to be solved with conditions at t = O:

F, (o) foe o) = o

(4.1.4)

9o Lo) ¥

Let the solution be bounded as t >®, Let (F, G) be such a
solution when ¥ in (4.1.4) 1is equal to one. Then for
arbitrary nonzero ¥ , we find we have the set of similar
solutions to (4.1.3)-(4.1.4)

F(e, %) = Y1 FOax\2e)

(4.1.5)

9 (+, ¥) Y G (Ix1%2¢)

fFle, 5y = ¥YP F (xPe) P*o, C= O
(4.1.6)

¥ G (¥P &)

9 (£,¥)

The above similar solutions of (4.1.3)-(4.1.4) imply the
axial and the radial velocities have the same solution to
leading order irrespective of the sign of ¥ . As t tends to
infinity f(t, ¥ ) tends to a constant independent of the sign

of ¥ . That is

lim  £(t,¥) = lim £(t,-¥)

Eaoe tae
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Thus, for some ¥_ % 0, f(t, ¥, ) and f(t,-¥, ) can be matched

to the same outer (inviscid) solution.

Branch 6: symmetric positive Y branch B 0<¥£1 figure 4.13

The branch is unstable. Only Holodniok et al. computed the
solution for ¥ = 0.8. The solutions have two cells. This
branch is a continuation of Branch 5 after normal 1limit
points R _(¥). Both the ¥ -sign-independent phenomenon and
the non-existence of solutions at ¥ = 0 for finite Reynolds

number are present.

Branch 7: =0.37764Y¥ <1 figure H4.14

The branch is unstable. Only Holodniok et al. computed the
solution for ¥ = 0.8. This is a two-cell branch, obtained
by the continuation of Branch 2 after normal 1limit point

Ra( ¥ ). The solution for ¥ = 1 is not symmetric.

Branch 8: -0.3776¢Y¥ ¢ 1 figure U4.15
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The branch is stable. For Ye€[-1/3,0) solutions exist for
R2O0. Only Mellor et al. computed the solution for ¥ = 0.
The number of cells varies between one to three as ¥
changes. The ¥ -sign-independent phenomenon is evident here
for ¥> 0 (with ¥< 0 of Branch 1). The solution at ¥= 4 is

not symmetric about z = 0.5.

Branch 9: «cosine branch -1<€ ¥ <1 (R = 400) figure U4.16

o)

The branch is unstable. Only Mellor et al. cgmputed the
solution for ¥ = 0. This 1is a one-cell branch, with ¥
having tremendous effect on the magnitude of the velocities
in the 1inviscid regior. This is an another example of the

¥ -sign independent phenomenon (with itself).

Branch 10: finger branch A 0.79<€ ¥<1 figure 4.17

The stability of this branch is not known. By continuing

the solution outside ¥ 1, this solution branch 'turns
around' at about ¥ = 1.2 (R = 100G). Solutions have two

cells; the cell near the top disk has structures.
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Branch 11:

finger branch B 0.79¢y<1 figure 4.18

Solutions are linearly unstable. This is a two-cell branch;
the <c¢ell near the top disk has structures. Solution for
¥ = 1 is asymmetric about z = 0.5 and it is a mirror image

of the solution of Branch 7.

Branch 12: -1<£¥<1 (R = 210) figure 4.19

This is a one-=cell large amplitude solution branch. This
branch does not have solution for R<55. For ¥ = 1 f(z) is
not anti-symmetric about z = 0.5 (even though g is symmetric
about 2 = 0,5). Applying Corollary 1.2 gives the Y = 1

solution of cosine branch 9.

Branch 13: -1€%¥<€ 1 (R = 210) figure 4.20

This is a two-cell large amplitude solutior branch. For
¥= -0.3 the cell near the top disk has structures.
Furthermore, there is an exchange of solution branches;
solution branches for fixed ¥< 0.05 turn around at R,( ¥)
lying on E®F (c¢f. figure 4.4), and solution branches for

fixed ¥> 0.05 turn around at R _( ¥) lying on GHI.
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Branch 14: -1g2Y¥¢-0.7, -0.23 £¥<1.0 (R = 210) figure 4.21

This is a two-cell large amplitude solution branch. For
¥2 0.3 the cell near the top disk has structures. This
branch is the counterpart of branch 13: solution branches
for fixed ¥ < (.05 turrn around at R,(Y¥) lying on GHI and
solution branches for fixed ¥ > 0.05 turn around at R,(7¥)
lying on E«F. We note that there is no solution for ¥ in

(-0.25,-0.65) at R = 210 (see figure 4.4).

Branch 15: -0.125%¥<¢0.05 (R = 190) figure 4.22

This is a two-cell large amplitude solution branch, 1lying
inside the 1lips CHD. There 1is an exchange of solution
branches: solution branches for fixed Y¥< 0.05 turn around
at R, (¥) lying on lips CHD and solutiorn branches for fixed
¥ > 0.05 turn around at R, (¥) lying on GHI. (Solutions for

¥2 0.9 and R = 190 are not shown in figure 4.22)

Branch 16: 0.025<¥<¢0.225 (R = 190) figure 4.23

This is a two-cell large amplitude solution branch. This is

the counterpart of branch 15 (as branch 14 1is the
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counterpart of branch 13). (Solutions for ¥= -0.9 and

R = 190 are not shown in figure 4.23.)

Branch 17: -0.125 0.2 (R = 190) figure 4.24

This is a two-cell large amplitude solution branch. This is

the second of the two solutions which lie inside the lips

CHD.
' L
‘ 13,
[} [ ]
! -"*"CHD /‘7‘-
Figure 4.25
Figures 4.26 and 4.27 are g(0.5; ¥, R = 500) and
(g(D.5; ¥, R = 1000) respectively. These are the

'bifurcation diagrams', where the parameter is Y. (Here we
have shown only some of the computed solutions.)
Correspondingly figures 4.28-4.33 show g(0.5; ¥k ,R) as a
function of R for fixed ¥, =1, 0.8, 0, -0.2, -0.8 and -1
respectively. (Note that £(0.5; <1, R)Y = © on the

Stewartson's solution branch.) The numbers indicated are the
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branch numbering system used above. Lastly, the wunmarked
intersections in figure 4.25-4.26 are not bifurcation
pcints. That is, these intersections will probably go away

if we plot functions other than g(0.5).

4.2 CRITICAL POINTS AND STABILITY CALCULATIONS .

In this section we give an account of the computations
at and near critical points: (1) Bifurcation points, (2)
Normal 1limit points and (3) Coalesence of normal 1limit
points. Local exchange of linearized stability computations

are given.

(1) Bifurcation points -

(a) Switching of Branches: For ¥ = -1 the
determinant of the converged discretized Jacobian has a sign
change between R = 110 and R = N120. Using interval
bisection, the critical point R, is 1located, with the

determinant of the discretized Jacobian very small.

° =
det (Ghu) = -578 = ID
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The quadratic convergence of Newton's method 1is lost at the
critical pointg. (From Lemma 3.3 and Theorem 3.4 we know the
critical point cannot be a normal limit point.) Dimension of
the null space is found to be one by checking the last block
of diagonal elements of the LU-factorization af the
discretized Jacobian. ¥, and Wr, the null vector and its
adjoint respectively, are computed using inverse 1iteration.

Simple bifurcation is confirmed by forming the inner product
»
Y G,

¥ -] -7
Y oy = 568 =10

The coefficients (ah, bh’ Ch) of the simple bifurcation
equation are computed and the tangent vectors (e, o)

solved.

-1.82 x 10“6

o)
=
i

bh = ~g.0 x 1073
Ch = 9.57 X (o0°
(%o, %)y, = (1 6.0 x 1073 )
(Xon, %1z)y = [ Lid x 107% 1)
The solution of the algebraic bifurcation equation has the

property that any constant multiplying («,, «;) is also a

solution. This gives symmetric bifurcation:

(%03 , %30, = (V.04 %40, =)
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From these solutions, we form the initial guesses for
B o= 1523
= AU 0< 8§s << 1
Uy (Bs) = Uy (Re) + Bs (S,
(4.2.1) Kh,K tEs ] = RC + SS KQ,K
du =
(E‘h.K = h‘oK Y. * “lk(?u)n,

The normalization equation (3.1.2) is now a function of the

tangent vector at the simple bifurcation point:

*
Ny o = 0f %owe * %ucfi], {Unx8s) =ty (Re)
(4.2.2) h.X [ ]h )

i
o

+ (1-©) on [ Ry (8s) ~Kc) - &s

The s-algorithm is applied with the normalization equation
initi ! -

and initial guess (u,hk, Rk 2 th_) of (4.2.1)-(4.2.2).

Quadratic convergence of Newton's method is recovered once

we step away from the bifurcation point.

For k = 1 the computed solution is a continuation of
the o0ld branch we started on. For k = 2,3 the bifurcated
branches are obtained and we continue the solution to
R = 1000. They are found to be the solutions at ¥ = -1 on
Branches 2 and 3. These are also the solutions'obtained by

Pearson [23] using the time-dependent approach.
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For ¥ = =1 +¥imp O <nmP<<1, using the above three
solutions in our arc-length continuations, the phencmenon of
perturbed bifurcatiorn is observed. (Keener and Keller [10],

Matkowsky and Reiss [19])

¥=-1

fiqure 2.24 :  bifwrcation - perturbed - bifuveatiom

(b) Local exchange of linearized stability

computations:

Method (1) - Eigenvalue problem close to bifurcation point-

Newton's method is used to solve the eigenvalue problem

(3.5.5) for o (§s) near a bifurcation point. (0, @) is
used as the initial guess for e = 1,8,3, Quadratic
convergence 1is observed. (This is no surprise because the

normalization equation

twui; = 1

is N=zo with 6 = 1.)
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For k = 1 and with §R = 0.03 we obtain eigenvalues

o (Re~5R) = =732 x (07"
(4.2.3) i

)

o, (R¢+ 5R) e % lg”

This implies solution is stable for R < Re» and unstable for

R 3 8.

For k = 2,3 and §R =.30 we obtain

o, (Re + 8R) = =225 % 10°%
(4.2.4)

0 (R + SR) = =223 x 177

This implies the bifurcated branch is stable, in agreement

with the steady solution of time-dependent computations of
Pear son.
Method (2) - O ~derivative at the bifurcation point:
For k = 1, we obtain
o, a + ®Kob
U-S(s,o‘ = 1{}“ —B
(4.2.5) s i

1

0.0
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Along the Stewartson's solution branch there is an exchange
of 1linearized stability at the bifurcation point. Because
solution is stable at R = 0 this branch becomes unstable for
R, > Rc' This agrees with the eigenvalue problem results
(4.2.3). For k = 2,3 we have AS(RC) (2 ) = O Because
the coefficient a of the algebraic bifurcation equation is
also zero, we have Ug(R.) identically equal to =zero along
the Dbifurcated branch. To compute the second derivative

O;JRC) we need to solve an additional equation:

o

L] i
Gag W = -6y t® , Wi w = o

Because G is at most quadratic in the dependent variables,

the third Frechet derivative G:uu is identically zero.

2 W G P W

0~S$(R¢}
(4.2.6) v B @,

-2 D

1t

Along the bifurcated solution branch, for §s sufficiently
small, the eigenvalue 0 (s) near the bifurcation point has a

Taylor series expansion

s

1

a3 ] :
e(s) = g -Liss) S-5e
g 9
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Thus the bifurcated solution branch is 1linearly stable
because Tge (8,0 185 negative. This agrees with the

eigenvalue problem results (4.2.4).

(2) Normal limit points:

(a) Computations around limit points - There are
many normal 1limit points in the rotating coaxial disks
problem. The powerful pseudo-arclength continuation allows

us to zip in and out of this type of eritical points.

'Modified' bisection is used to 1locate the critical
point. The arc-length step-size has to be decreased near

normal limit points. We use two different approaches:

(1) We let © in the normalization equation be a function of
the derivative of parameter with respect to Ss
Specifieially

N, 2 6 s (56) (W51 -ua) + (1-8) A1 (Als)- A lsa)-(s-5,)=0

Using the 'exact' arclength normalization equation

fuglsal[i; + 1Agtsa))® = 1L
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the derivative A; can be computed

£ 1

As(5¢\ -
[ Wuyts s + 1 1%

Now consider the pseudo-arclength normalization equation

N, = 0. If Mg (s,) is small we want Bu,(s_)¥(u(s) - uls,))
tc be 'dominant' over (1 - € ) A(s,)(A(s) - A(s,)). That
is, when we are near a limit point (lls1<< 1) we want to

choose @ to slow down the increment in A for a given
arclength increment §s. This can easily be accomplished by
requiring
(] Il Wg (Sa) “z
I-o )2 (50 |

= ““A(So\ “t_

Solving for © :

Il wy tse) K3

|+ nuy a1,

(2) Newton's method converges if the initial guess 1is
sufficiently c¢lose to the solution. et w'=.la, X 3V
Keller [13] indicates the radius of curvature Ixg  (s)| is
some measure of how good the initial guess is. For
computational purpose we consider an easier and more
practical approach to estimate the curvature. Let g(0.5,X)

be a function of X . (Here )\ can be the Reynolds number,
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keeping ¥ fixed, or vice versa.) Then K of g(0.5,) ) along
I is

Fax ey &)

(1 + 9% (win)™

We see k(),) can be approximately determined using backward
differences on gA(O.S;X,) and gA(O.S;Xf-SkJ, where g, is
obtained in the predictor one step Euler continuation. A
very rough criterion for the arclength increment bs“ew can

be determined by the ratio of ®K (X, and k(X - §X ):

( K (Ao}
bs T 2 __,J;_{ < 3
old 3 K Chom 531 N
BSyme ® € 280 if _"L‘if)_*_] A
Ko~ BAo)
SSoafa  if | tsthey ' >3
K (Ao~ SNo)
At the normal 1limit point ©Newton's method converges
quadratically. " Thus, the rate of convergence proof in

Section 3.3 is verified computationally.

(b) Local exchange of linearized stability

computations:

Method (1) Eigenvalue problem near limit points -
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We follow the same procedure described for the case of

simple bifurcation point. The results agree with the theory

of Section 2.3. For ¥ = -0.9 of Branches 3 and 4 we have

v (Bramch 3, R= 138.'34) = ~0.652 X lo-“"
(U4 2.T)

o (Braweh 4, R= 138.3%) = 0.804 X102

That is, Branch 3 is 1linearly stable and Branch H4 1is

linearly unstable.

Method (2) O -derivative at a normal limit point -
This poses no difficulty. For the same case as 1in

method (1), we have

W_i* G':u ('Pl‘?l
(4.2.8) YF OB,

4.0

I

In a small neighborhood of the limit point O (s) has the

Taylor series expansion

or(s) 0'5(30)(5-'30) i O(S—So)z

From (4.2.8) we conclude there is an exchange of linearized
stability. This is in agreement with the eigenvalue problem

results (4.2.7):
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There are a few interesting phenomena near critical
points where (1) coalesence of normal 1limit points arnd
development of s-curve(or cusp), (2) exchange of solution
branches. We conclude this section by locally studying one

of these phenomena.

(3) Coalesence of rormal 1limit point and development of

S=curve-

in the process of sweeping the solution sheet for
Branch 2, it is found that for Y > -1/3 the solution branch
L(R) does not extend back to R = 0. A careful and tedious
pseudo-arclength continuation is performed. For X< -.384,
the branch [ goes back to R = 0. Slighly increasing ¥ to
-.3839 we obtain a normal limit pgint with

R55(R=347.78) 0. (Here we have X = R.) When we increase

¥ further to -.3834 this normal limit point splits into two
normal limit points, forming an s-curve which still goes
back €6 R = 0. The second normal limit point disappears at
¥ = -1/3. The limit points 1,; , 1l;,; and 133 in figure
4,35 correspond to the 1limit points onr BJ, BS and ST
respectively in figure 4.4, Furthermore, for ¥ = -1/3 the
two limit points from BS and TS meet together at R = LUT7.8.

That is, BST has a relative maximum at R = 447.8 and
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¥ = =1/3.
¥T=-032 ‘ kil
k"'.?.. g e By -.- -:.:::.-:-- - -
e B P ECR R
| S
EEE S T e ——
k3
e L T TSR e R S N
o £ S . WY T e 3 s Ee
_K=-0.3839 -
347.78 -

‘Fi?,ure 435 :  Schewmatic ousp development of critical poivt B

Next we perform an exchange of 1linear stability
computations and obtain (1) the 'mid-section' of the s-curve
is unstable, (2) the 'head' and 'tail' of the s-curve are
stable. (This 1is an example in which the eigenvalue @(s)
of the linearized problem (2.3.6) goes from negative to
positive and then back to negative while the rest of the

spectrum stays in'the left half complex plane.)
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CHAPTER 5

THE PERTURBATION ANALYSIS

5.1 PRELIMINARIES

In Chapter 4 we saw the many computed solutions of the
rotating coaxial disks problem with no suction. These
calculations open up many theoretical questions. Foremost
ones are: (1) Is Batechelor's conjecture correct? (2) Is
there an infinite number of solutions? In this short
chapter we do not attempt to address to these questions, nor
do we try to launch an extensive systematic investigation.
Rather, we give a flavor of the different kinds of solutions
that can be constructed using singular perturbation
techniques (Cole [ 3]). Some work has been done in the last
few years. A lot as yet has to be accomplished before we
can close the topic. 1Indeed for the flow of a viscous fluid
in a semi-infinite region bounded by a single infinite
rotating disk, Dijkstra and Zandbergen [ 5] recently
computed nonunique solutions. (Lentini-Gil [17] furthered

their calculations and conjectured an infinite number of
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solutions for the case when the fluid 1is  nonrotating at

infinity.) These solutions, ‘we shall see in this chapter,
are the boundary layer solutions 1n owmr perturbation
construction. Which of their computed solutions shall we

use to match with the inviscid solution(s)?

We restrict ourselves to the case R >> 1 and ¥ = -1.

In Section 2 we study the perturbation construction of

Stewartson's solution. In Section 3 we review Tam's
expansion for our bifurcated solutions (see Chapter 4). His
results are extended to higher order terms. In the last

section we indicate some new perturbation constructions for

large amplitude solutions (see Chapter 4).

For ¥ = -1 and large Reynolds number we let e*=R"' and

rewrite our governing equations:

Ff

€* Fiilt = 2Zz % % 992

(5.1.1)

it

Ja ¥ ~ 9te

€ Gagz

The boundary conditions for (5.1.1) are
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flo).= - & 3 fhy = o
= . = Q
§, o0 5 )
g (o) = L gt = -1
In 1its most general form, assume the following

expansion
F = Eq'b
24
" F, + €9F + €FF, 4 L %k >

.(:
g = ePrgu t £Pq v €Pg, v Bu > Bra

i

Substituting into (5.1.1) we obtain
~4
g o { St
i oo +%
— e 3‘-‘! { G:lb(o {.U;OE‘:": + e v l('Fg‘F‘{'.tt 4+ ‘Fl'Futtt) ... _}

BotPa l‘jﬂa‘*’ +9.9 ot) 4. __S

£
yirix T Fieeee +'“".§

t4ce*™ 90900 + €

GZ-ZQ { EBO SDtt + eglglt‘b + ___..s
= €78 [ (gopFo-ufor) + € P GuctoGiFor)

TPy Jor.F) -30-&&)—\-___,,]

The leading order equations depend on (%, (,; a). For
nonzero a, we have either Dboundary 1layer region or
transition layer region. The following is a list of leading

order equations:
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(1) von Karman single disk boundary layer

( By Bo} @)= (1, 03 1)

foreer = Foforre + 4 JeJor
{51430

gou Jor fo  —  Jotor
(2) radial momentum uncoupled boundary layer

(‘407 130; a):"(or O; 2)

forwre = Tototes
(5.1.4)

ot = 9o Fo = Gofox

(3) angular momentum uncoupled boundary layer

(g, Bo; @) =(2 - a + k,2 - 2a + k/2,a), k, a>0

(5.1.5) Foree = 4 90%0e
6= 1
Joee = o
= O
(5.1.6) 'Fm'-ttt a>1

"
e}

Yot

equation:

equation:

equation:
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(4) cosine inviseid equation: (e, B, ; a) =(k, k, 0) k<2

1

Fo F ¥, 4 ot = O
£5.. 0T R s

qub Fo o 30“:0{; = 0O

(5) cubic polynomial inviscid equation: (% , Boj; Q)=
(4 0 ¥ .00 Kk By 8. % K
T 9 t y £
Fo Forre = O
(5:1:8)

Jorfo~ Jotor = o

06 ) non-rotating inviscid equation: (o0 , Boj; a@d=
ki k. 0 k€8, k. €k
Ches kg i02s K< 2, ky<ky
Jo Jor = 9
(5.1.9)
9ot Fo — Gotor = ©

Some of the above leading order equations will be used
to construct some of our computed solutions. We note the
boundary layer equations (5.1.3)-(5.1.4) are nonlinear and
as yet no closed form solution has been found. However the
inviscid equations (5.1.7)-(5.1.9) can be solved explicitly.
In the following sections we confine our studies on the

close z-interval [0, 0.5]. We thus restrict ourselves to
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solutions for large R and ¥y = -1 having one of the following

properties: <1) odd solution about Zz = 0.5, that 1ls
(5.1.10) 1Y e St AR = | k) e
and (2) even solution about z = 0.5, that is

st L By E 0 R lk) . 2 Jalk) =8

5.2 SOLUTION OF STEWARTSON - REVIEW

The solution of Stewartson has been analyzed by many
workers., Among them are Tam [29], McLeod and Parter [21],
and Matkowsky and Siegmann [18]. In this section we shall

construct the solution using standard singular perturbation

techniques.

We assume solution is odd about z = 0.5 (5.1.10). In
the interval [0, 0.5)] we use a two-layer model. That is, a
boundary layer whose leading order equation 1is the von
Karman single-disk equation (5.1.3), and a non-rotating

inviscid outer layer whose leading order equation is given
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by (5.1.9). To be more precise, near the bottom disk z = 0

we introduce the following expansions:

£ mr Bfg
65 .20 1) {_ o E'Fo + 57-.{:' 7 I
g B %t VTR s
The equations for f, and g, are given by (5.1.3). The

equations for £, and g, are

v 2 Fofuee F hanb ¥ % (9o + Yot )

(5.2.2)

I = (9efo — Yfor) + ( Foe T - Johie)
The boundary conditions are: (1) at the disk

{:o‘o) = ‘Fo; [D\ = o
(5..2.3)

30 (o) = 1

and (2) as t =

‘Fo?_- ‘ 6a 1 'Foi‘.a (09} = o
(5.2.4)
aolm) = o
The nonlinear equations {5.1:3) with boundary

conditions (5.2.3)=(5.2.8) do not have closed form
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solutions. From the analysis of McLeod and Parter [21] we
can assume solution I of Dijkstra and Zandbergen [ 5] is to
be used to match with the outer inviscid solution. As t
tends to infinity, we have
- 0.884+

f, = =-0324 + Ofe )

(B.2.5)
. o ~0.88

30 - O[ e § %t)
Next we consider the inviscid region. Assume expansions:

£ = eF Iz + e*F(a) +....
(5 .2.6) _

q = G,(Z) + E Gz t....
The leading order equations are given by (5.1.9). The
higher order equations are:

4(6,Gz + Goz G4 ) = o}

aFi~ GFz ¥ 63F, - GFaz = Gz
. FoFozza + 4 (6646026 + GG} = o

Gz o GoFaa + G- 68, + G R -GR, = Cige

Z Fe Fr-2,22¢ +‘rz G Gy-g41,2 = Fiz.zzaz

f5k-) ‘ < Kty k22

1 (Ga Faeomr ~ G Frny) = biez

< Kty
From the boundary conditions (5.1.10) we obtain the

solutions in the inviscid region:
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(5.2.8)
P dd) o= G L=

The constant Cy is found by matching with the leading order

solution €f, of (5.2.5)

i = 1768

The linear term C,z is to be matched with éﬁ\. Thus for

large Reynolds number Stewartson's solution is non-rotating

in the interior. It is a two-cell (Definition 4.:3)
solution. The streamlines of the flow are given in figure
S

Disk

W BT W I F il P AL AR AP P L
>

(e
(=

Disk
figure S.1 : Stewartson's soludion

5.3 SOLUTION OF PEARSON (BIFURCATED)

For ¥ = -1 Pearson [23] wusing the time-dependent
approach computed two steady state solutions at R = 1000.

These are found to be our bifurcated solutions (see Chapter
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4); these solution branches exist for R 2119. FEurther , our

local exchange of linearized stability analysis confirmed

Pearson's computed stable solutions. Tam [29],  wusing
singular perturbation techniques, constructed Pearson's
solutions. 1In this section we review and extend Tam's work.

As in the construction of Stewartson's solution, we use
a two-layer model and confine our studies to the closed
interval [0, 0.5]. Even solution about z = 0.5 is assumed
(5.1.11). The inviscid region has solution which is 0(1) as
R-+»o . The leading order equations in the boundary -layer

region is the same as in Section 5.2.

For the inviscid region we use the following expansions

Falz) + EFR(® + e2Rlz) +.....

£
(5.3.1)

9 = Gl&a + e&@(®) t e Galz) +....
These expansions are substituted into (5.1.1). The first

three sets of equations for (F,, G,), (F,, G,) and (F,, Gy

can be obtained by equating powers of € :

Fo Fozgza + & GoGoa = o
(5.3.2)

i
o

G'o'i Fo -— G‘o Fo%



=1 s
FoFzaz + Foraa b 4( GGz + Goz &) = o

i
(o]

(5.3.3) G.F - GFR: * GuFR - GF.

(<]

Fofeaze * oo i 46.Ga + 26 ) = P
(53 %)
CaFe-GRa ¥ 6f-GR: * Gy ~6ich -G

Even (or symmetric) boundary éonditions (5.1.11) are imposed

for both f and g in the inviscid region:

(5.3.5)  F la) = Fl%) = Gel%) =o K>o

Next we proceed to solve (5.3.2)-(5.3.5). . (553.2)

the inviscid angular momentum equation can be satisfied by

(5.3.6) G, (2) = 1‘5 Fo (2)

where A, is a constant to be determined. Substituting

(5.3.6) into the inviscid radial momentum equation of

{(5.3.2) we -obtain

(5.3.7) Fo ( Foraz * o Bz) = o
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For nontrivial solution we obtain

F = K° + éo COS XQ(z“Vz) + Eo S““A’\oci_\lz)

‘o

o~

The boundary condition (5.3.5) implies C, = 0. The solution

for the pair (F, , G ) is given by

F, = Ao(Bo+ €03 Alz-%))
(5.3.8)
G. = AA (B, + s Alzw))
s = o

Both equations in (5.3.3) and (5.3.4) have the form

F, Ficaxe + PoazsFic + 4[ Gz t G'o‘lel T
(5.3.9) I{:"] = . =
. GozFK'GnFKI + E:('kz i F;'&cu Sk
k-‘-l,l
where T, = S, = 0, and T, and S, are given by A
T-,_ = Raws - (F-', F\H: “ 4 Gtc'l‘é)
Sz = G“Z‘E - GR F. i Gl F;Z

(Matkowsky et al. [18] in 1976 performed a laborious
calculation to show as € -0 rotating odd solution cannot
exist. We observe this is the consequence of the fact ' that
the coefficients: multiplying the highest derivatives in
(5.3.9) vanish at ‘z = 0.5 if we admit rotating odd solution

and the linear operator  become singular.)



=141~

Next, the requirement that FK(O.S) be nonzero implies
{5 .3.10) B,+ 1 % o

Bearing in mind that this inviscid solution is to be matched
with the numerical solution of the von Karman boundary-layer

equations (5.1.3)

.F.

i

| -0.5%54 ¢ + 0Ole?)
(53133

(l

g 0 (e2)

Because F, (z) is O(1), we must have

(5.3.12) Bv*’o"s% =
From (5.3.10) and (5.3.12) we have

(5.3.13) cOsZ\% & 1

This proves the following lemma:

Lemma 5.1 Consider the problem (5.1.1)-(5.1.2). For small

€ assume the outer (inviscid) solution:

£ = A (:Bo*‘ Cos )\e(z"fz_\) + 0(&)

q = )_;g}\b (B+ Cos Ao (V)] 4+ 0 ()
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Further, let the boundary layer region have the 1limiting

solutien £z = & t)
lime (£ = [-0.884 €| + Olez)
£
9 (k) o
Then
_X:; F 22nw , m an integer
Substituting (53 .87 into £5+3.9) and using

(5.3.6)=(5.3.7) we obtain

£5.3.13a) ’}': FaFr ¢ % Fizae + 2)\0(5,;('}54-&&&%) = Tg
Ao FFal + Rfie - e G = Sg
(5.3.13b) = (o;Fk ° K%‘ K2 vz T

Equation (5.3.13b) can be brought into the form

= (8)-2R)

I
U
b

Integrating, we get

S [
e T
F2(2)

X {
(5.8:18) Gy Btk ¥ F

Yz

We next use (5.3.13b) and (5.3.14) in (5.3.13a) to obtain
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the following equation involving onrly the unknown F

3
2
W Rt F‘F"““ W [zﬁ""[éi!& AL sz%d'i] + Si
- L(RR - RRa)| = T,

This can be simplified:

B
(5.3.15) E(Fuzzz A FK2)={Tk‘SK*2EzELT:K£dE} = Ry
2 L]

Solutions for (F GK), k 21, are then given by the

k b
solutions of (5.3.15) and the equation (5.3.14).

For k = 1, we have
F = . (B, + cos A,lz-'/z))
(5%3.16)
G—l — }io A| (B\ + Cos A,(i“‘lzl)

For k = 2, the non-homogereous equation (5.3.15) can be

written as a first order system

i

v, A= v+ §

This has solution

L
r = BERIU(%) t L g (z-3) fts) as
r4
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where 2(z) is the fundamental matrix (see Coddington and
Levinson [ 21]), and for our equation (5.3.155, the
fundamental matrix of its equivalent first order system can

easily be seen to be

T vl W CEAY Xz (1= Goshetz-11)
§ (2] = o Cos Ap LE-%%) —,’\: stn )\, L2-%2)
0 =)Ao Sin Aol s Ao (2-2)
Thus (F‘1 . Gz) is given by
2

(1- tos ), [2-1) R, \1) dtT
v, Fol®)

(5.5 178y R = Az“z*@**‘“”“*i:ﬂ

i

2 . :
(5.3.170) G2} 52.‘.’ { A, (B, * osdotzh) —-k—z S (- os Asl2-0)) Rl d‘&

s Fo(‘:‘)
% —
S, lZ) 432
v E (P a3
2 Fp(i\

In direct contrast to the analysis of Matkowsky et al.[18]
we observe Fo(s) tends to a nonzerc constant A B, as z tends

to 0.5. That is, the integrand of

Sz (1= cos AelZ-11) Rl7) dx

Y, F.lx)

is regular if R, (s) is regular. From (5.3.10) and (5.3.12)

F. has the form
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(5.3.19) F, = A, ( 1+ os A, (z-v))

For our bifurcated solutions Tam [29] observed, by forming

the quotient GO(O.S)/FQ(O.S),

G, 1) )
Fa L] B

The solution for Fz can be written down

(Yo iz ) tos ) (x-%)
g v e \2- +)°f 1-cosotz-ni) {22 -
F = Adpereshe] o [ EE

T -
AoSi’Hl\,li-t)S %?:'(‘&}_TJ_»‘, } iz
v, Litcosd (B a))

Using the trigonometric half-angle identities the integral

can be easily obtained

" e Ae (2-Y
(5 o P e T e ol 5 e Rl

+ well-behaved tees qs 2 o0 & /2

Thus the inviscid solution for f is given by

(5.3.21) £ = A, {1+ @sdhlz¥n) + €A, (B+ tosde(2-12))

wieg*E ¢+ Die®)

Evaluating at z = 0, tan{aw(z - 0.5)/2} becomes tan{ Ww/2}.
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The major difference between an even solution and an odd
solution is that the singularity for the even solution is at
z = 0, and the singularity for the odd solution is at

Z

0.5 (see Matkowsky et al. [181).

We next consider the boundary layer equations and

indicate how to match its solutions with those from the

inviscid region (0, 0.5). The boundary layer region has
expansions
£ = E
[
£ = efo + €*% + ... '

q = % ¥ 8 gy T omsee

The equations for (f_, g_) and (f', gl) are

v

Fo'Fot{k * 4 ﬂoaot

«F
(5.3.22) pREER

Jorx

jo-b £. - 30 {-°,"’

(5.3.23)  Tieese = Rfuee t fomef ¢ 4 (090 ¥ 9 F)

i

%H: ch:'Fn - ‘jrr'o-b t th'FI = je'{:l{:'

" The boundary layer equations for (f,, g,) #&re the full

nonlinear equations (5.1.1) with R = 1. There is no closed

form solution. As in Section 5.2 we assume solution I of
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Dijkstra and Zandbergen [ 5] is wused to match with the

solution (5:3.21) inthe invisecid region (0, 0.5)." Eor our
matching purpose, we need to know the behavior of (f,, go)
as t -+, We have (see Golstein [ 61)
nfout
Qony 0o
‘Fu = 'Fnoo ¥ ni =
(5.3.26) "ee )
b Mmoot
30 &= z — e i
n>a h!

f‘”ois found to be equal to -0.884 numerically. The first

order term (fl : gl) has similar expansions for large t

wfo ot
- £ Aot
(5-3-27) ‘Fl = -Flhdgo L .F|ml|-h *-.F'“‘Z a3 h>‘° n!
b, AR
Mg . Gino T Gt + “E’: it @
[«}

The matching of the zeroth and first order terms gives

2 = - 0 BB
(5.3.28) Ac LB —v)
- Ao A:/‘Z. = 'PIN.Z.
A A (B -/ = w0

For the matching of the function f, Taﬁ [29] observed that
the zeroth order term of the inviscid expansion is matched
with the first order term of the boundary layer expansion,
and that the first order term of the inviscid expansion is

matched with the zeroth order term of the boundary 1layer
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expansion. The singlular terms tan{ ®(z = 0.5} efec. as z
tends to zero can be matched with the inner solution if the
expansion in exp(f;“t) can be written as an expansion in 1/¢t.
This can be done because of the Burmann-Teixeira Theorem 1in

complex variable theory (see Whittaker andIWatson E s

Indeed, exercises in complex variables give

= (1+ 2K)-0"
1
sgelp il = e s g i 2
e*tre s (1vzxy ™+ 4 x
o , Byl F T
cosech® = —/———— = J- 2%
i eX ¥ Z (Q+2R) s 4y
o (0
G T i ot T a*®  -2X Kt
Z k1 H_qler.} 3 )__, e X (T")
Rzo R

Lastly we observe the solution g(z) of our bifurcated
solution branches are not symmetric about z = 0.5« Consider
the bifurcated solution branch with g(0.5) > 0. Then‘ there
exists ‘zo(e (0.5, 1) such that g(z,) = 0. Furthermore,
solution II ( ¥ = 0) of Dijkstra et al.[ 5] has the property
that there also exis'ts zﬂe(o, 60 ) . such that g(zp) = 0.
Thus it seems solution II should be matched with the

invisecid solution in (0.5, 1).

5.4 SOME LARGE AMPLITUDE SOLUTION EXPANSIONS

In this section we look for other possible inner-outer

(or boundary layer - inviscid) expansions for large Reynolds
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number and Y = -1.

Let the inviscid region have expansions

£ ERR T VR S

(5.4.1)
§ = E™ G, + €'G *.o..

-Substituting into (5.1.1) we obtain

2 Qg a, = Qo+0,y
G(E Fanna Y€ Rasae .. )= € " FoRant ® Fo Bzea
(5 .%4.2a) i sk b,tb,
+ € FﬂiZEﬁ . T € ¢ QGDGDI*e Q(GOGI'£+GOEG|\
I
ot b
(6™ Gpgg €7 Ggg¥.-) = €™ (GaF ~GoFiq)
{5.4.2b)

b - Arrley
T (G ~hRe) te

4

(GDEFl = Gc F-;?.)

ILf a,= b, and a, & 2 we obtain the cosine inviscid equations

5 T T From the analysis of Section 5.3 and the results

of Matkowsky et al. [18] we impose that the solution be even

abent 7z = 0.5

F(o) £o0 ., G(%R) Fo

(5.4.3) \
F%WQ = Feal%)l = Gi(%) = o

This gives the leading order solution:
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f = €% Al Bo ¥ shotz-wa)) + ofe?)

(5.4.4)
g = € doAo( Byt @sho(2Va)) + o (")
2

We next seek boundary layer expansions that can match

with (5.4.4)

2%,
t = Ze¢
(5.4.5) £ e L. & BR. % dvnn
q =g + ePg v €Ty w

where the thickness of boundary layer ¥, and the 1leading

order coefficient o are to be determined. Substituting

into £5.1.1);
equxo( € Forrar + ed"ﬁtbtt“'---- -

(5.4.6a) G.BYO ( szoﬂ{ohh + e“.*d‘ C‘Fo'ﬁt'bb t ot 'Fl] +"")

Fe™ (0 909 + 4™ (a0 + Gor G0 +-.-)

e‘_'“'[ Jote *+ Eﬁlﬂlkb bose) B
(5.4.6Db) G-“' v ( Gorfo -30‘?0-&.) + G‘x“d‘(ﬁog{‘. -‘)o“‘H-.)‘ +

eI Bl g £ - Jifor) ¢+ ...

For nontrivial equation for g,, (that is, geza$ 0,) we have

(5.4.7) de ¥+ o = 2
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The radial momentum eguation then gives

(5.4.82) Hawe = Fotome ¥R FeTer s
(5.8.80) Fuw = Hhass Yo >\
Equations (5.4.8) have solution for large t:

BB (few + Ole®™®)) + ole™) fuaco
(5.4.9b) 9 ~ 0(efe=®) fowc o

From (5.4.9b) we observe B, in (5.4.4) must satisfy

ts.4.10)  Be & .4

The matching of the zeroth and first order terms of

implies

(5.4.11) Qg ¥ 2% = &

(5.4.12) A, = o

Higher order coefficients ar ¥, Bk can in this way be

determined.
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For example (a,, %, ; ¥o) =(0, 1; 1) gives the singular

perturbation construction for our bifurcated solutions. The

¥ = -1 solution of Branch 9 is another example. Indeed it
seems many large amplitude solution branches can be
constructed. Thet 18, Ca,, « 5 ¥,) vcan- be (=105 20,

(-2, 0; 2), etc..

To end this chapter, we like to‘comment on what we have
learnt and what we <c¢an expect in future endeavor. Our
computational experiments and fhe solution constructions in
this chapter seem +to indicate the problem has an infiniﬁe
number of solutioné, with the number of <cells. tending ¢to
infinity . Secondly, the analysis of MclLeod on the flow in
an semi-infinite region bounded by a rotating disk [20] and
our results of Chapters U4 and 5 lead us to strongly suspect
Batchelor's conjecture is not possible, though we believe
transition-layer type solutions may exist. Thirdly, the
manyrdifferent boundary-layer - inviscid expansions, some of
which are 1listed in Section 5.1, and the removal of the
rroperties of odd solutions and even solutions about z = 0.5
(5.7.10)=45.7., 1) lead us to believe other forms of
solutions may exist. Fourthly, the % -sign-independent
behaviour in Chapter 4 may give us further insight in the

construction analysis. Lastly, we ask are there more
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bifurcation points on the Stewartson's solution branch?
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APPENDIX: A NOTE ON MIXED PIVOTING STRATEGY FOR GAUSSIAN

ELIMINATION

Let us consider the linear system of equations
(A.1.1) Ax = b

where A is a (n x n) matrix, x is the solution and b is the
given right hand side. In this appendix we give a new
pivoting strategy for the solution of (A.1.1) by Gaussian

elimination.

The matrix A 1is decomposed into 1lower and  upper
triangular matrices L and U. The decomposition consists of

computing sequences of matrices A““, ko= 1 et o R, Where

(40

. A =-A. For k » 2, the matrix A" has zeros below the

diagonal in the first (k - 1) columns; Aw“’ is obtained

from A% by subtracting a multiple of the k-th row from each
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; : (K .
of the rows below it, (The 'multipliers’ a£:/a32 in general

are different for each of the (n - k¥ - 1) rows.) and the
tK)
rest of A' is left unchanged. Thus assuming a,, is

nonzero, we have
Wy 0) ")

L “‘.' d"lz g Qllh
! mzy 1 (o) st e
(A.1.2) L 2 ma. 'm;‘l - Ua A!n‘= Qz. ‘n----.,- qz:n
:: l: “\“-‘ o - o ";“
: 3 o
Mar Mg Mraal [N
q!hi
(A:1:3) ", = —== L > (kn)
Ap,k
° C2lket) L j=k
(A.1.4) “‘ (K W

- S e W AR k1) i 2(kn)

)

@ otherwise

In the course of Gaussian elimination round-off error
will, in general, be present. This error is inherent in
computations because machines can only retain a finite
number of digits. Let E be the round-off error matrix, that
is

(A.1.5) LY A+ E

To determine E Yet us consider any real number x. When x is
stored in the machine, it has been rounded-off to xk, and

can be represented
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(A.1.6) Xg = X(1+8) 18t % %

Using (A.1.6) the computation of the multiplers m;, in the

machine gives

(R)
Aiw
Mipg = 5 (1 + Sir)
Xhk
Simplifying,
(r) th) th)
Min Ak - Qik = O Vi
This gives
k) (K) :
(A.1.7) € = Givbdin Lz kn

(1<}
which is the round-off error made by setting acn equal to

zero., Similarly for computations in (A.1.5) we obtain

LK4Ly 1K) tk) e
Oij = ( q,‘;.} - Mie 4-&5, ( 1L+ bl:h.)) ( i+ 6"_})
Hence
L4 (k) le\\ ~ g,
(A.1.8) Biy o BTN Ay i — Ay dii i.j 2z Rty

(k+1)
is the round-off error in the computation of a‘j
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Define matrices E( = (qu) and L' ‘E (lij):
(k) Min ik L J%K
(A.1.9a) 2,_’ =
o otherwise
G,tc': ik izen 3=k

K)

{
(A.1.9b) Ghi =

(L.9] RNy =~ i
“Mgu Qpj Siy = Goy Sy b Z Ry

0 otherwise

Then the k-th stage of elimination can be written as

(K+) (x) K) (k) LK)
(a.1.100 A = A =4 A £ Rl e s B

K 1.3
But L' 4% depends only on the k-th row of A™ which is the
same as the k-th row of A"™. Adding (A.1.10) for
TN R R (n - 1) yields

tn=1)

z \
(Lm " L“ o 1 ) Ahn * AU) 5 Eu) 5 E“" e %

A+ E

LU

where

-1

2 EU‘)

i

(he1:113 E
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From: ‘equations (A-1.9) cand (A:-71.31) Wilkiansoh [32]
observed that it is advisable to keep the multiplers less

than or equal to one in absolute value. That is, the pivot

) .
- should satisfy
<y (®) ;
lakc | 2 1 dx | 1=k

Taking the pivot to be the element of largest absolute value
in a column (row) is called partial row (column) pivoting;
and taking the pivot to be the element of largest absolute
value 1in the whole matrix A at the k-th step.of Gaussian
elimination is called complete pivoting. It 1is evidently
clear from (A.1.9) that complete pivoting gives the smallest
possible round-off error. HoweQer, it takes machine time to
search for pivots. At the k-th stage of Gaussian
elimination, partial column or partial row pivoting takes

(n - k + 1) searches while full pivoting takes (n - k + 1)

searches. For a complete LU-factorization of a (n x n)
matrix partial pivoting takes (n(n + 1) - 2)/2 searches, and
full pivoting takes (n(n + 1)(2n + 1) - 6)/6 searches. For

very 1large matrix it may not be practical to use full

pivoting.
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We introduce a new pivoting strategy called mixed
pivoting: At the k-th stage of Gaussian elimination, a:1
is chosen to be the largest element in absolute value along
the k-th row and the k-th column of A :

\k) (<) (%) :
(A.1.12) 1%k | = (95 |, | %Ki | j >k

That is, we do row (column) pivoting if the largest element
lies on a column (row). In terms of round-off error, we

observe that

1174Y (k)

CA.Y.13)

I (0 tK)
Min Oy Lamixes € | Mik Ak | parkiat

Evidently from (A.1.9) and (A.1.11) we have

(A.1.14) l\El\‘._mu & NN aiea = I\Elkw,}_m%

Of course, complete pivoting will in general gives the
least round-off. However the price 1is high in that the
operation count for the searches of pivots 1is O(nB),
compared to 0(n%*) for mixed pivqting whieh. 4in turn, s

approximately twice that of partial pivoting.
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of this new mixed pivoting strategy.

—

Using partial column pivoting strategy, we obtain

[y © © oY% ]
' 2
kY
ulmrﬂq\§ zi
\\\\\f_im;
1‘\'1
- -
Using mixed pivoting strategy,
permutation matrices)
W o )
o Y2
o \
Umixed = \ |
\ Yz
.

We observe in this example mixed pivoting strategy has

same desired

used.

1 o

)}

H&l

———d l

]
o
)

result

-

|
[}

|

=

e

1
-

s |

we

t
-1
-‘

\\

..1 ———

the potential
-‘
i
-1}
l , \\ iy
A —— =
get (neglecting the
4
2 Lmixed

the

as when complete pivoting strategy is
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For singular matrices, partial column (row) pivoting at

' ) (k) 3]

the k-th stage of Gaussian elimination fails if a (a Y5
2,k K2

12k, are all zero. We observe the new mixed pivoting

allows the elimination process to continue wunless all
elements along both the k-th row and k-th column of A“q are

zero,

Although there are examples in which the largest
element in absolute value always lies outside the searched
column-row for mixed pivoting strategy, we see that it can
cope with a 1larger class of matrix equations than partial
pivoting can and yet the number of searches for pivots is
&ept within very reasonable limits. 1Indeed the prcobability
of finding the 1largest element in absolute value 1in a
searched area increases as we increase the number of row and
column searches. But unfortunately the amount of work
(searches) increases also approximately at the same rate.
Hence to alleviate the problem that the 1largest element
always lies inside (n - 1) of the submatrix (n + 1 - 1) at
the k-th stage of elimination we <can search one more

row-column c¢yclically. That is, in addition to the leading

row-column we search (n - (k = 1)mod(n/j)) row-column, for
some j. Because we are interested in 'catching' the largest

element in the submatrix, we see that this cyclic search is
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better in general than searching two adjacent row-columns.
To clarify our ecyclic pivoting strategy let us consider a
(10.x 10) matrix and let J be equal to 2. Then the
row-column searches for the first five stages of Gaussian

eliminagtion are; . (¥,20), (2,19), €3,18), 4,1y and {5,18).
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