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ABSTRACT

This thesis is mainly concerned vvitH the application of
groups of transformations to differential equations and in particular
with the connection between the group structure of a given equation
and the existence of exact solutions and conservation laws. In this

respect the Lie-Bdcklund groups of tangent transformations, par-

ticular cases of which are the Lie tangent and the Lie point groups,
are extensively used.

In Chapter I we first review the classical results of lLie,
Backlund and Bianchi as well as the more recent ones due mainly
to Ovsjannikov. We then concentrate on the ILie-Backlund groups
(or more precisely on the corresponding Lie-Bdcklund operators),
as introduced by Ibragimov and Anderson, and prove some lemmas
about them which are useful for the following chapters. Finally
we introduce the concept of a conditionally admissible operator (as
opposed to an admissible one) and show how this can be used to
generate exact solutions.

In Chapter II we establish the group nature of all separable
solutions and conserved quantities in classical mechanics by ana-
lyzing the group structﬁre. of the Hamilton-Jacobi equation. It is
shown that comnsideration of only Lie point groups is insufficient.
For this purpose a special type of Lie-BiZcklund groups, those

equivalent to Lie tangent groups, is used. It is also shown how

these generalized groﬁps induce Lie point groups on Hamilton's
equations. The generalization of the above results to any first

order equation, where the dependent variable does not appear
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explicitly, is obvious. 1In the second part of this chapter we
investigate admissible operators (or equivalently constants of motion)
of the Hamilton-Jacobi equation with polynomial dependence on the
momenta. The form of the most general constant of motion linear,
quadratic and cubic in the momenta is explicitly found. Emphasis
is given to the quadratic case, where the particular case of a fixed
(say zero) energy state is also considered; it is shown that in the
latter case additional symmetries may appear. Finally, some
potentials of physical interest admitting higher symmetries are con-
sidered. These include potentials due to two centers and limiting
cases thereof. The most general two-center potential admitting a
gquadratic constant of motion is obtained, as well as the corresponding
invariant, Also some new cubic invariants are found.

In Chapter III we first establish the group nature of all
separable solutions of any linear, homogeneous equation., We then
concentrate on the Schrodinger equation and look for an algorithm
which generates a quantum invariant from a classical one. The
problem of an isomorphism between functions in classical observables
and quantum observables is studied concretely and constructively.
For functions at most quadratic in the momenta an isomorphism is
possible which agrees with Weyl's transform and which takes invari-
ants into invariants. It is not possible to extend the isomorphism
indefinitely. The requirement that an invariant goes into an invari-
ant may necessitate variants of Weyl's transform. This is illus-
trated for the case of cubic invariants. Finally, the case of a
specific value of energy is considered; in this case Weyl's trans-

form does not yield an isomorphism even for the quadratic case.



However, for this case a correspondence mapping a classical
invariant to a quantum omne is explicitly found,

Chapters IV and V are concerned with the general group
structure of evolution equations. In Chapter IV we establish a
one to one correspondence between admissible Lie-Backlund
operators of evolution equations (derivable from a variational
principle) and conserﬁa.tion laws of these eguations. This
correspondence takes the form of a simple algorithm.

In Chapter V we first establish the group nature of all
Backlund transformations (BT) by proving that any solution gener-
ated by a BT is invariant under the action of some conditionally
admissible operator. We then use an algorithm based on invari-
ance criteria to rederive many known BT and to derive some new
ones., Finally, we propose a generalization of BT which, among
other advantages, clarifies the connection between the wave-train

solution and a BT in the sense that, a BT may be thought of as a

variation of parameters of some special case of the wave-train

solution (usually the solitary wave one). Some open problems are
indicated.

Most of the material of Chapters II and III is contained
in [I], [II], [III] and [IV ] and the first part of Chapter V

in[V] "



-vi-

TABLE OF CONTENTS

INTRODUCTION. MATHEMATICAL PRELIMINARIES

1.1 Introduction

1.2 Historical Introduction

Groups of Lie Point Transformations
Infinitesimal formulation

Invariants

Invariant manifolds

Application to differential equations
Admissible operators

Invariant solutions

S P

Groups of Lie Tangent Transformations
Lie's First Question
Lie's Second Question

1.3 Groups of Lie-Backlund (LB)
Tangent Transformations

Definition
Infinitesimal characterization
Application to differential equations

Qw >

1.4 Bicklund Transformations

1.5 Mathematical Preliminaries

Computation of Commutators

A Commutation Relation as a Condition for
Admissibility
First Correspondence Rule

Second Correspondence Rule

1.6 LB Operators and Variational
Equations

1.7 Admissible and Conditionally
Admissible LB Operators,
Invariant Solutions,

Admissible LB Operators
Conditionally Admissible LB Operators

—

= 0~ bW W

16

18
18
19

21
23
23

Z5
27
27

30

33
33
36



-vii-~

II. LB OPERATORS IN CLASSICAL MECHANICS

2.1.1
2.1.2

2 .2 3
2.2.4

2.1 Introduction
Outline of this Chapter

An Important Equivalence

2.2 A Group Analysis of the Hamilton-
Jacobi KEquation

LB Groups of the Hamilton-Jacobi Equation and
Constants of Motion of Hamilton's Equations

Groups of Hamilton's Equations Induced by Groups
of the Hamilton-Jacobi Equation

Separation of the Hamilton-Jacobi Equation
LB Groups of Some First-Order Equations

2.3 Constants of Motion With Polynomial
Dependence on the Momenta

Constants of Motion Quadratic in the Momenta

A. Hamilton-Jacobi equation for the zero energy
state

B. The Hamilton-Jacobi equation

Constants of Motion Cubic in the Momenta

2.4 Applications to Classical Mechanics

The Hamilton-Jacobi Equation

A. The inverse problem

a. Operators linear in the momenta

B. Operators quadratic in the momenta
B. DPotentials due to one or two fixed centers

a. Central fields
B. Two fixed centers
C. One-body Keplerian Problem

Hamilton-Jacobi Equation for the Zero Energy
State

A. The inverse problem

a. Operators linear in the momenta

B. Operators quadratic in the momenta
B. Central potentials

o. Operators linear in the momenta

B. Operators quadratic in the momenta

2.5 Further Applications

Potentials Generated by Fixed Centers and
Limiting Cases. Associated Invariants.

. Newtonian Centers

Harmonic Centers

The Hamiltonian as a distinguished invariant
Functional versus linear dependence

gQw e

38

38
39
42

45

45

46
48
49

51
51

51
55

57

60

60
60

61
62
63
65
67

71
72
76
80
80



-viii-

2.5.2 Complete Set of Invariants. Degeneracy. 82
2.5.3 Imvariants of Superimposed Potentials 84
2.5.4 Some New Cubic Invariants. 85
III. LB OPERATORS IN QUANTUM MECHANICS 86

3.1 Introduction 86

3.2 Separation of Variables in any Linear
Homogeneous KEquation 90

3.3 Relations Between Admissible Operators
of the Schrodinger kquation and Those

of the Hamilton-Jacobi Equation © 96
3.3.1 Operators Quadratic in the Momenta 96
3.3.2 Operators Cubic in the Momenta 103

3.4 An Isomorphic Correspondence,
Weyls' Transform and Their

Limitations 106
3.4.1 The Problem of an Isomorphic Correspondence 106
A. Arbitrary value of E 1311
a. Operators quadratic in the momenta 111
B. Operators cubic in the momenta 111
B. The case E = 0 113
C. Generalizations _ 113

Iv. ADMISSIBLE LB OPERATORS AND CONSERVATION
LAWS OF EVOLUTION EQUATIONS - 115
4.1 Introduction 115
4.1.1 Some Ways of Obtaining LB Operators 117
4.1.2 Different Ways for Obtaining Conservation Laws 118
A. Approaches based on BT _ 120
B. Additional approaches 121

4.2 Admissible LB Operators and Conservation
Laws of Evolution Equations 125

V. GROUP THEORETICAL NATURE OF BACKLUND TRANS-
FORMATIONS AND THEIR GENERALIZATION 133
5.1 Introduction 133
5.2 Conditionally Admissible Operators 134

5.3 Conditionally Admissible Versus :
Admissible I.B Operators 140




—ix -

5.4 A First Way of Deriving BT , 142

5.4.1 Burgers quiation and Generalizations 142

5.4.2 KdV Equation and Generalizations . 145

5.4.3 Sine-Gordon Equation and Generalizations 148
5.5 A Second Way of Deriving BT.

Generalizations. 152

5.5.1 KdV Equation and Generalizations 154

A. The wave-train solution 156

B. Bicklund transformations : 157

5.5.2 Hierarchies of KdV Equations. A New BT 162

5.5.3 Burgers Equations and Generalizations 168

A. Introducing a parameter in a BT 173

B. Bianchi diagrams A 174

C. The Burgers hierarchy ‘ 175

D. The invariance of Shock-solutions 175

5.6 Gonclusions. 177

APPENDICES 185

Appendix I g 187

Appendix II 191

Appendix III ‘ 193

Appendix IV 196

Appendix V 200

Appendix VI : 202

Appendix VII ; ' 204

REFERENCES ' 208




CHAPTER I

1.1 INTRODUCTION

This thesis is fnainly concerned with the application of
groups of transformations to differential equations and in particu-
lar with the connection between the group properties of a given
equation and the existence of exact solutions and conservation laws.
In this respect it is essential to define what group of transforma-
tions we are concerned with. S. Lie developed and applied in his
study of differential equations what we shall call Lie point and
Lie tangent groups of transformations. These groups although
very useful in practice are quite restricted and are not adequate
for the complete analysis of many physical phenomena. The
classical literature evidenced two directions of efforts to general-
ize these transformations: first, a search for groups of higher-
order (but finite) tangent transformations which was essentially
abortive; second, a development of a special type of surface trans-
formation (first discovered by Lie and then formally generalized
by Bidcklund) which led to what was later called a Bicklund trans-
formation. Recently the search for groups of higher-order tan-
gent transformations has been realized with the notion of Lie-
Backlund (LB) groups which are infinite-order tangent transforma-
tions. These groups are characterized infinitesimally by the Lie-
Biacklund operators which are extensively used in this work.

In this chapter, after presenting a rather detailed account
of the development of the theory of surface transformations and
its application to differential equations, we concentrate on LB
operators. We prove different theorems about them (most of

which are new) which clarify their nature and also show how they



can be used effectively for deriving exact solutions. This

naturally leads to consideration of admissible and conditionally

admissible LLB operators.



1.2 HISTORICAL INTRODUCTION

In this section we present the fundamental ideas, notions
and results of the classical papers of Lie and Biacklund as well
as the more recent development of Lie's theory due mainly to

Ovsjannikov.

1.2.1 Groups of Lie Point Transformations

We shall briefly review those definitions and results from
the theory of continuous groups necessary to the understanding of
ther succeeding sections. This material can be found in [1], [2],
[3] and some additional examples in [4] and [ 5].

We shall consider a one parameter continuous group of

n

transformations of R

_:Ei = fi(x;af), l < i< n, (1.1)
where x = (xl, . ,xn), x = (;],' e ’;n)' a is a real parameter
and R" is an n-dimensional real space. For brevity we shall

denote the above as

x = f(x;a), or x = T *. (1.2)

We assume that each such transformation is invertible and in

addition; i) There exists an @, such that

x = f(x;o for all x.

o)

ii) For any two values «;, and a«a

1 of the parameter «, there

2

exists a unique ag such that

f(x;a3) = f(f(x,al),az) for all x.
iii) For each @y there is a unique a, such that

x = £, o) © (i, a),a,) for all x.



A. Infinitesimal formulation.

S. Lie was the first to systematically develop an infinitesi-
mal characterization of the above group of transformation. He

considered the tangent vector field £ of the above group, defined

by

of.
g,(x) = g=(x,ep), 1< 1is<n,

and associated with £ an infinitesimal generator, or Lie operator

X, defined by

X = Egj-%j. {3
J

Geometrically X 1is the operator of differentiation in the direction
of the curve "o — T _x. Lie proved that X uniquely specifies
the group defined by (1.1) through the solution of equations

c:lfi
o = £, fi(x,ey) = x,. (1.4)

In practice, most of the time we only consider X and not the
group defined by (1.1), which sometimes is called the global group;
(however, this terminology is unfortunate since all considerations

in Lie's theory are local).

B. Invariants.

A function I(x) is an invariant under the action of the
group x = T * if

I(Tax) = I(x) for all x and o.

It is easily proved that I(x) is an invariant iff

o, 91
XI = Z,gjsx— = 0. (1.5)



C. Invariant Manifolds.

Associated with any set of functions q/jv(x), v=1...,p,

is a mmanifold (surface) M consisting of all x satisfying
g, (x) =0, v=1...,p. (1.6)

We say that M is an invariant manifold for the group x = Tax,
if Tax lies in M for every x initially in M (and any «a
sufficiently close to ozo). It is easily proved that M is an
invariant manifold iff

Xy =0 on M, = R (L.7)

The above equation is denoted as

Xy, =0 ,  v=1,...,0. (1.8)
¥,=0

D. Application to differential equations.

Suppose we are given the system of differential equations

Fv(x,u,u,...,u)= 0, v=1...,N, (1.9)
1 s

M N _
where xeR", ueR ', N+M=n and u denotes the set of all kth

: k
order derivatives of u with respect to x., We may think of
(1.9) as defining a manifold in (x,u,u,...,u)-space. In order

1 s

to examine the group properties of this manifold we must extend

1]

the group x Tax, so that it can act on the above space. To

fix- the ideas let us consider the case of one independent and omne

dependent variable. Consider the group of transformation G de-
fined by
x = f(x,u;a), (1.10a)
G:
u = g(x,ue). (1.10b)



We must extend G to include as many derivatives as specified
by the given equation under consideration. The easiest way to
achieve this is by the chain rule. The first extension of G,

denoted by G is given by equations (1.10a), (1.10b) and
1

G_ = ¢(x,u,ux;a), (1.10c)
x
where
 Of Jop
¢ = ) (1.11)

Let us now obtain an infinitesimal characterization of G: Suppose

of
da

0
£{x,a), ' = n(x, u),
|a=0 -5‘% a=0

0
l gl(x,u, U‘x)’ (where we have assumed o, = 0)
a=0 g

Then using (1.11),

u + aD n
ux+ag1+0(a2)= x x

]

.+ af Dxn-uxng ] +

1 + ang
0(a?).
Therefore,
& = Dyn - u DE, (1.12)
where Dx is the total derivate 9/0x + a 8/8u+... . The
above analysis can be easily extended to any order. Let us

summarize: Suppose we are given an equation of sth order,

F(x,u,ux,...,u ) = 0, (1.13)

In order to examine its group properties with respect to a group

G, specified by the Lie operator



we extend this operator to

0 8

}::X+c’1§—u;+""’gs'é-ﬁ—““-“’ (1.14)

where i;l is defined by (1.12), I;Z = ngl-uxxng , etc.

There is also another way of defining the extended group
G (which can be trivially generalized to cover any extended group
ét): We must choose ¢ in such a way that the group of transfor-
r?na.tions defined by (1.10a,b,c) (and obviously exténded to differen-

tials dx, du, dﬁ___), leaves the first order tangency condition
x

du - udx =0
X

invariant. We will return to this point of view later,

E. Admissible operators.

Having obtained the extended Lie operator (1.14) we can
now examine the action of the group G on the manifold defined
s
by equation (1.13). In accordance with our definition of an invari-

ant manifold, the equation F = 0 is invariant under G, or

more precisely, the manifold defined by F = 0 in the

(Z,4, 0 50554 )-space is an invariant manifold for G, iff ‘
X X...X
5
XF|=0 . : (1.15)
] F=0

In this case we say that X (or X) 1is an admissible (Lie point)
, s
operator for equation F = 0. Writing out equation (1.15) we

obtain a set of linear overdetermined equations for £ and 17




the solution of which specifies X. If this system has r solu-
tions, with corresponding Lie operators Xl’ -ey X, Wwe say that
equation F = 0 is invariant under an r-parameter group of

transformations. It can be proved that these operators form a

Lie Algebra with commutator

[X3X,] = XX - X.X,.

F. Invariant solutions.

The solution manifolds of equations (1.9) are submanifolds
of the equation manifold. An admissible operator takes a solution
manifold into a (possibly different) solution manifold. A solution
manifold is called invariant with respect to some operator X if
under its actions it is taken into itself. The corresponding solu-
tions are called invariant, or similarity solutions. The interest-
ing question arising is the following: Given a set of equations

F (x,u,u,...,u) = 0, Y = LisssalN; (1.9)
e 1

S
n- N
where x € R , ue R and an r parameter group of trans-
formations Gr which leave (1.9) invariant, (or equivalently r
Lie point operators Xl’ 5= .,Xr) when can we find invariant solu-
tions and what is their form? A partial answer to this question

was given by Ovsjannikov who found a necessary condition for the

existence of invariant solutions as well as their general form:

Given Xi’ l1 < i< r and solving
XiJ(x,u) = 0, I 1x5 r,
we find n-pu invariants JT(x,u), 1< 7< n-M, where M is

the rank of the matrix of the infinitesimal generators §(x, u)



associated with X,. Let p be the rank of the matrix (aJT/Bu).
Then a necessary condition for the existence of invariant solutions

is p= N, and the invariant solutions are given by

B nnsaly gk = Oy T = LuwsnyIVe

Clearly the invariant manifold just defined has dimension n-N-}d
in contrast with any non-invariant manifold which has dimension
n-N. After having developed the general mechanism for obtaining
invariant solutions one has to decide which of them are essentially
distinct, i.e. which is the basic set of invariant solutions; basic
in the sense that all other invariant solutions can be obtained from
this set with the aid of the group G.. This problem has been
solved also by Ovsjannikov with the use of the adjoint group, see
[1].

We conclude this subsection with pointing out that there are
two types of groups which can be found by inspection; translations
X = xta, u = up and stretchings x = yx,u = 6u. The invariant solu-
tions corresponding to the stretching group can also be obtained
using dimensional analysis. However, this is the only type of
invariant solutions obtained through dimensional analysis. Let us
give a trivial example, where we can find groups by inspection:
Consider the heat equation

0 = L = O (1.16)

Letting x — x+a1, t == t+a2, u — u+a3, u — (1+a4)u, 3 = (1+a5)x,

t — (Ha )Zt, equation (1.16) remains invariant. The operators

5

corresponding to the parameters a;, l< i< b5 are

9 ~ ) _ .9
Xp =9z X279 %3 3w ¥4 Ymw



<1~

B 9 0
XS = XTX + Zt-gz.
Let us find the invariant solutions under the operator X = X5+?\X4.
The invariants are J; = u/t}‘/z, J, = xz/t. The necessary condi-

tion of Ovsjannikov's theorem is satisfied and therefore, the simi-

larity solution is specified by

u XZ
(H:E’T) = 0,
2
or
A
& 2
u = tzF(xT).

Substituting the above in (1.16) we obtain an ordinary equation for

F. The case X = -1 corresponds to the source solution.

1.2.2 Groups of Lie Tangent Transformations

The transformations defined by equations (1.10a,b,c)
although very useful in practice are quite restricted. In the last
one hundred years many generalizations of the above transforma-
tions have been proposed. A crucial step in this process was made
by S. Lie who formulated two very important
questions in his 1874 paper [6]. These questions are presented
in the next two subsections. For their understanding the intro-
duction of what we call Lie tangent transformations is essential;
The historical perspective and the basic material of this subsection
as well as that of §§1-4 may be found in [7] and [8].

A first generalization of the transformations defined by
(1.10a,b,c) was given by Lie himself: Consider the group G of

point transformations
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X = fl(x,u,ux.;a),
G: u = £, (x,u,u_;a), (1.17)
u

_ = f3(x,u,u_;a),

in the space of independent variables (x, u, ux); this group can be
trivially extended to differentials (d;,dﬁ,dﬁ;). Let us call the
extended group G, which now acts in the space of independent
variables (x,u,ux,dx,du,dux). Lie called the group G a group
of contact transformations, if the equation

du - u dx = 0, (1.18)
X

is invariant with respect to the extended group G. Hereafter, we

refer to this particular group as the group of Lie tangent transfor-

mations. A priori it is not obvious that such a group exists
(other than the particular case of a Lie point group): Let us work
infinitesimally; £ and »n will depend now on u_ as well,
therefore gl will in general depend also on CWe For the exis-
tence of a Lie tangent group it is necessary to eliminate the de-
pendence of I;l on u _. Using equation (1.12) to express 1_1,1

in terms of n and §£ and then equating the coefficient of L.

to zero we obtain

- ufg = 0. (1.19)

The general solution of (1.19) is given by

_ oW _ ow
£=- du_’ n=W - u 55 L)
X x
where W is some function of x,u,u . Therefore, equations

(1.17) form a group of Lie tangent transformations if there exists

a function W(x, u, ux) such that equations (1.20) hold. The above
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analysis can be generalized when x is a vector, but it cannot

be generalized when u is a vector,

1.2.3 Lie's First Question

Let us now consider the group G"  of the peoint transfor-

mations
; _ gl(xﬂl, u, 9u;a))
1 n
g T o g,(x,u,u, ,usa), {1.21)
A 1 n
G = gn+2(x, u’ u’ ’u;a)l
1 n
in the space of the variables (x,u,u,...,u). In this case we say
1 n

that G° is a group of contact transformations of nth-order if

du - udx = 0,

1
du - udx = 0
1 2

dua - udx = 0,
n-1 n

are invariant with respect to the group G"  obtained by the
extension of the group G to the differentials dx,du,...,du.
After Lie's success in obtaining groups of tangent (or conta:t of
first order) transformations, which are not just extensions of Lie
point transformations (i.e. £ and/or 1n depend necessarily upon
U’x)’ the next question is to ask if there exist groups of contact
transformations of nth-order, mn > 1, which are not just exten-

sions of Lie point or Lie tangent groups. This is essentially the

first question of S. Lie. He predicted a negative answer to this



question. The results in Backlund's first papers [9]_, [10] can be
interpreted.as proving Lie's conjecture; the proof is geometrical.
An analytical proof is given in [8]. BZcklund's results can be
summarized in the following statement: There are no nontrivial
higher-order generalizations of Lie tangent transformations if one

understands a transformation as an invertible one to one map in a

finite-dimensional space.

1.2.4 Lie's Second Question

Now let us go back to point transformations defined by
equation (1.17). If these transformations are viewed as surface-
‘transformations then necessarily they are single-valued surface-
transformations acting invariantly in a finite-dimensional space.
Lie, in his second important question asked, if there exist any

useful many-valued surface-transformations. Before explaining

what we mean by useful let us define such a transformation. To
fix the ideas we take the case of two independent variables and
one dependent variable; let

p:z’q:z’r:zxx,s?—-'zxy_,t=zyy. (1.22)

The capital letters will denote the corresponding transformed
quantities. A many-valued surface-transformation is one which
takes the surface element (x,y',z(x,y),zx,zy) to one-fold

infinity elements (X,Y,Z,P,Q), which actually are surface ele-

ments; i.e.

oP 90 _

SF-Fe~ % wn ®= z(x,v), (1.23)
where z = z(x,y) defines a surface in the (x,y,z)-space. This

transformation (although not single-valued) can still be useful in
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the transformation theory of differential equations if it satisfies
two requirements: i) if it transforms a given differential equation
to one of the same or lower order; ii) if it becomes a surface
transformation on any surface which belongs in the family of solu-
tion surfaces of the given differential equation.

Lie's analytical treatment of Bianchi's geometrical con-
struction of a transformation of surfaces of constant curvature,
was the first example of a useful many-valued surface-transforma-
tion. He considered the transformation

x-X)% + (y-¥)° + (2-2)% = 2%,

p(x-X) + q(y-Y) - (z-Z) = 0,

(1.24)

P(x-X) + Q(y-Y) - (2-2) = 0,

pP + qQ + 1 = 0.
The above equations are the equivalent analytical form of Bianchi's
geometrical construction. First we observe, that given any sur-
face element (x,y,z,p,q) equations (1.24) give a one-fold infinity
of potential. surface elements (X,Y,Z,P,Q). Lie proved that if
z = z(x,y) 1is a surface of constant curvature —1/9.2, i.e. if it
solves

s° - rt = 1+ p> + q%)/al, (1.25)

then the element (X,Y,Z,P,Q) is a surface element (i.e. equa-
tion (1.23) is satisfied) and further the surface Z = Z(X,Y) is
also a surface of constant curvature -1/a2. E‘quati§ns (1.24)
define what today we call a BHcklund transformation. Therefore,
the first Bdcklund transformation was due to Lie!

A generalization of the above transformation was introduced

by Bdcklund [11] who considered four general relations between
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two sets of surface elements:
Fi(X,Y,z;Psq.X:YsZ,P.Q) = 0, i = 1,2,3,4- (1.26)

A literal repetition of Lie's considerations and techniques for
treating (1.24), applied to (1.26) leads to what is called in the
literature a Biacklund transformation . Further, without loss

of generality we can take equations (1.26) to be

X-x = 0,
Y-y = 0,
(1.27)
F,x,y,2,p,49,2Z,P,Q) = O,
F,xy,2,p,9,2,P,Q = 0.

As Goursat [12] has remarked one can generalize this form in
many ways, including increasing the dimension of the underlying
space, the order of the surface elements and the number of re-

lations in (1.27), etc.
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1.3 GROUPS OF LIE—BXCKLUND (LB) TANGENT TRANSFORMATIONS

As it was pointed out in §1.2.3 Backlund proved that there
are no nontrivial finite higher-order generalizations of Lie-tangent
transformations. Expressing this fact in terms of an infinitesimal
operator we may say that, if the operator X, given by (1.14)
characterizes a group of contact transformat?ons of sth-order
then, either

£ = £(x,u), n = nix,u) (1.28)

and X 1is a Lie-point operator, or
s

g = g(x’usux)) n = n(X,u,ux), (1.29)

where £ and n satisfy equations (1.20), and X is a Lie tan-
gent operé,tor. The above groups of transformatiosns express sym-
metries of a geometrical origin. However, in trying to explain
some physical phenomena (for example, the conservation of the
gquantum mechanical analogue of the Runge-Lenz vector for the
hydrogen atom) the "dynamical symmetries" were introduced.
These were symmetries of a non-geometrical origin. This led to

a consideration of infinitesimal operators of the form (1.14),

where £ and 1n depended on higher derivatives (see for

example [13]). It was clearly shown that there exist infinitesimal
transformations depending on higher derivatives, which leave
equations of physical importance (like the Schrddinger's equation)
invariant. Although the group nature of those transformations
was not very clear, the necessity for a generalization of Lie
theory was evident, However, Bdcklund's result indicates that

such a generalization for finite-order contact transformations
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is impossible. Recently, Ibragimov and Anderson established
rigorously the only possible generalization, of the original Lie

formulation, based on the notion of infinite-order contact trans-

formations. They called these generalized transformation groups

Lie-Backlund (L.B) tangent transformations. Because our work is

heavily based on the existence of these groups we briefly summar-

ize some results of [8], [14], [15]:

A. Definition.

Let x = (xl,...,xn) € RN, u = (ul,...,uM) € RM and for
every k =1,2,3,..., u be the set of partial derivatives
k
u? .y (@ =1,...,Msi,...,i, = 1,...,N), symmetric in their
i '1k 1 k
lower indices. Let us consider a one-parameter group G of

point transformations

G: x'i = fi(x, u,‘u, Uy o w38)5

u'a = ¢a(x|u’uouo-0-;a)9 (1.30)
12
u'ia = ¢?(xl u, 1]':1! Uy oee ;a):
2
in the infinite dimensional space (x,u,u,u,...). In the above

1 2
equations, the number of arguments of each of the functions fi’

¢,..., 1is a priori arbitrary and may be finite or ipfinite.
Together with the group G, we consider its extension G to
the differentials dxi, du?, du‘.:..

A group G is called a group of Lie-Backlund tangent

transformations if the infinite system of equations:
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du?® - u¥dx, = o,
J ]
du? - w¥dx, = 0,
i ij 7j
W, - v, dx. = 0,
11z 11123 )

. - . . .

is invariant with respect to the group G. (The summation con-

vention will be implied for repeated indices.)

B. Infinitesimal characterizations.

In order to give an infinitesimal characterization of the

group G we define the operator

a a O a 0 a 9
Z =£. +n + &, + wwe + L : + inu
100, g T pgS hoooly g
ll . ..Ik
where
of. o
i o 94
& %] . " Tma|_.-
a=0 a=0
1.32
oy ' { )
5 1y ..-lk
ige..d C T 0a v k=23,
* e a=0
The operator (1.2) fully characterizes the group G if we

ensure the existence and uniqueness of the solution of the
Lie equation:

dEF _ —
= O (F), F = z,

where

(1.31)



a a

z = (xi,u,ui...).
F o= (5070050e0e)s
@ = (gii naléial"‘)'

The group F of transformations (1.30)is a group of Lie-
Backlund tangent transformations if and only if coordinates

of the infinitesimal operator (1.31) satisfy the equations:

e

a (o o

o _ a o
Lil i, ~ Diz (gil ) - iy jDiz (gj)’ (1.33)
where
Di = 3-’-8{—- + ugia + uc.l. a + u‘.’. - a + D) . (1‘ 34)
i du b Tt M1z 5% |

13 1 1,

C. Application to differential equations.

Consider a given system of differential equations

Qx,u,4,...5u) = 0, (1.35)
1 n
The equation 2 = 0 together with all its differential consequences:
Q =0, D.Q2 = 0, D. (D, )= 0,:.., (1.36)
- i— i, Ti—
1 2
defines a manifold 2 in the (x,u,u,...,)-space. The system
1

of equations (1.35) is called invariant with respect to a Lie-
Backlund group G if the manifold 2 1is invariant under the
transformations (1.30). In this case G is called admissible

for the cquation (1.35). The criterion for invariance of the
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system (1.35) is

zsz[(l'%) = 0, (1.37)

where the subscript means that (1.36) are assumed.
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1.4 BACKLUND TRANSFORMATIONS

BT were introduced in §1.2.4. We will consider in
Chapter V BT admitted by (mainly) evolution equations. In this
section we introduce general BT, a clear understanding of which
will be essential for understanding Chapter V.

We will consider BT which map an nth order surface

element (XI’XZ’ V,V,...,Vv) into a family of nth—order surface
1 n
elements (xl,xz, u,u,...,u). Without loss of generality, we may
1 n

take such a BT in the form

u, = 1/;i(x,u,v,v, wi i V)
1 n
u,. = Y..(x,u,v,v,...,V),
ij ‘1/1_]( n)
(1.38)
u, .= Y, . (x,u,v,v,...,Vv),
ipo.eip RS 1 5
where i,j,il, . ..,in =1,2 and u,...,u denote the set of ISt, o By
1 n
nth order derivatives, respectively and x = (xl,xz). Observe that
less restrictive BT are obtained if we require only
u, = I,[/(X,U,V,V,...,V), (1.393)
1 1
1 n
u, = Y,(x,u,v,v,...,v). (1.39b)
2 2 1 n

The terminology "less restrictive" is employed here in the sense
that in general the set of u and v satisfying (1.39) is larger
than the one satisfying (1.38). Further, observe that if (1.39) is
admitted by the differential equation

WX, Wy wmwy @) = Oy (1.40)
1 m
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whenever v satisfies the differential equation

Qxx,v,v,...,v) = 0, (1.41)
1 m

then in general the least restrictive of the transformations of type
(1.39) are those for which the system (1.39b), (1.40), (1.41)
implies (1.39a) through the process of d.ifferentiation and elimina-
tion. We shall make this assumption here; furthermore we
assume that (1.39b) is independent of x and that (1.40) and (1.41)
are evolution equations. These restrictions are imposed in order
to make the reasoning more transparent. Thus we shall study the
following situation: The BT determined by

u, - Yy, v, v, ..., v) = 0, (1.42)
1 n

is admitted by the evolution egquation

u, + F{u,u =0, (1.43)

1 u

2...2)
[t
m

21 %00 000

whenever v satisfies the (possibly different) eveolution equation

4] + G(V’VZ’VZZ’ ""VZ...Z) =0 (1.44)
(poteaa S |
m

The assumption that (1.43) and (1.44) are of the same order is

made only for convenience of writing.
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1.5 MATHEMATICAL PRELIMINARIES

A LB operator as defined by (1.31) acts on an infinite-
dimensional space. However, the following points should bhe
stressed:

i) A LB operator is uniquely specified if £ and n #re

given (using equations (1.32)). Therefore the defining part of the

LB operator (1.31) is

J a J
qimx, T S

ou

Hereafter we only give the defining part of a L.LB; however we

should remember that a LB contains implicitly its infinitely many

extensions. The operator (1.31) will be denoted as
_ a3 o 9
Z—gi-g}:*‘n —-E+ =TS (1.45)
i du :

where the (+...) sometimes will b.e dropped for convenience of
writing .

ii) In a given problem only a finite number of extensions
of the defining part is needed. We shall call the minimal exten-

sion necessary the relevant part. What is relevant will vary

from problem to problem.
We now prove some results which are of general mathe-

matical nature.

1.5.1 Computation of Commutators

It is convenient in practice to consider LB operators with
£ = 0. This can be done without loss of generality (see §1.5.2).
Next we shall give a lemma regarding the computations of the

commutator of two such operators. We restrict ourselves to
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one independent and one dependent variable only. This is done
only for convenience of writing; the idea of the proof is equally
valid for several independent variables.

Lemma 1.1. Let Y, = A k = 1,2, Ak = Ak(x,u,ux...).

k k8

If we regard the Yk as infinitely extended operators and compute

their commutator Y,y in the ordinary Lie sense then the defining

part of the resulting LLB operator is,

Y3 = (Y)4,-Y Al}au

Proof. If the extension is written explicitly we have

_ 2] 0 2 o
Y = Mg P OA I + (DA )g—
x xX
where the operator D is
_ 0 0 9
b &g+ Mg ¥ uxxﬁux »
Then
[Yl'Yz] = YIYZ YZYl
= (Y,A,-Y )J=— + (Y.DA YDA)8+(YD2A YDA
1P2- 213 1042 Y2PA) 5y 2" Yo )5 x+.

| 9 9 2 2
+ (ALY -A Y, )5t (DAZYI-DAIYZ)—BTX + (D°A,Y,-D"A Yz)r—+

=2+ Z

It is easily verified that 7 is zerojalso D and Yk commute,

see [14]. Hence

0
{YI,YZ] = (Y)A,-Y,A))57 + D(Y,A,-Y Al)a ces
The first term above is the defining part of an operator and the

other term is part of the extension. The lemma is thus proved.

The formula given above has an especially simple form
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if the Ay have a special form occurring in many applications.

This is shown in the following corollary of the first lemma:

Lemma 1.2. Let Y, have the special form
Y, = A (x.,S )oe, k=1,2
k kYy xj as”’ i A
Then [Y,,Y,] = [AI,AZ]P%, where the coefficient of §a§ is

computed as a Poisson bracket,

sl = Z,BAI 94, ] 94, oAl)
ezip ‘9x. 98 ox. 0S '
I d

Proof. From Lemma 1.1 (generalized to several indepen-
dent variables),

2

¥y ¥pl = (php-Toligdag = LAygm~ * o=, *

BA1 )BAZ A 8A1 (BAZ X
X, X.08 39S =~ "'29§8 T ‘8x
k) Tx X
k J
8 BAz)ﬂ}&z[A Al 2
%, %, 05 _ ' 05 198 1’72 p3S
:::k xj

1.5.2 A Commutation Relation as a Condition for Admissibility

Consider an arbitrary differential equation,

Bix, 0B, 0, sas) = B (1.46)

XX
(For simplicity we assume only one independent variable; the

generalization is obvious). With (1.46) we associate the LB oper-

ator Y = B%. The. following lemma will be important later.

Lemma 1.3. The equation (1.46) admits the LB operator

W & A G e T T (1.47)
X XX
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[X,Y] =0

The subscript B=0 means that (1.46) and its differential con-
sequénces DXB=0, DxxB=0’ etc., are assumed.
Proof. By definition (1.46) admits X iff
XB = F(B)
where F(B) 1is a function of B, DXB, etc.

, which vanishes

when (1.46) holds. From Lemma 1.1

[X,Y] = caiu, C = XB-YA = XB - (B22 4

From (1.46) it follows that the expression in parenthesis equals

: _ o _
zero and hence that [X,Y]B:O = (XB)B=O~8«E. Thus [X,Y]B:0—0
iff X is admissible.

Comment on preceding lemma. From (1.47) we see that a

sufficient condition for admissibility of X is [X,Y] = 0. How-
ever, a necessary condition is only that this relation be valid on
the manifold B=0 in (x, u, u, .- .)-space. Consider now the
Hamilton-Jacobi equation H=E for a general value of E. By
giving the constant E all values consistent with the problem, we
get a continuum of equations. If we require X to be admissible
for all such equations we must require that the commutator of X
and Y be identically zero. In other words a constant of motion
is a dynamical variable which is constant along the path of a
particle, no matter what energy surface the path lies on; the union
of all energy surfaces is the entire phase space. On the other
hand if we only require an operator to be admissible for one

fixed value of E (which we can take to be zero after shifting
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the value of the potential by a constant) then admissibility of X
requires only that X commutes with Y on the special manifold
B=H-FE = 0. This is the reason why additional symmetries

may appear if E = 0, see Chapter II.

1.5.3 First Correspondence Rule

This rule has been used by many authors, but its content
will be stated more explicitly below:

Theorem 1.1. Consider the correspondence rule

~ 9 0 = ) 0
X=(Z§j'ﬁ)+n§;‘*x=(*z,§jvx. t )y (1.48)
J J j J
where gj and 7n may depend on X,v,v_, etc. Then: a) (1.48)

is an isomorphism, b) an equation admits JX iff it admits X.
Proof. Part a) is proved by direct computation of the

commutator of an arbitrary pair of operators of the type X and

the commutator of the pair of corresponding operators. Part b)

is a consequence of the isomorphism and Lemma 1.3.

1.5.4 Second Correspondence Rule

In (1.47) only first-order differential operators occur

although their coefficients may depend on higher-order derivatives.
In quantum mechanics and more generally in the study of linear
differential equations, see for instance [16], one often uses higher-

order operators of the form

“ ,
A= a(x)+ z‘aj(z;_)%-?{—.'l- z a.jk(z)g;%x—ki- cee o (1.49)
j J j,k J

(As usual a(x), regarded as an operator, takes the function (f(x)
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into a(x)f(x)). Consider the special case for which only the
second term of (1. 49) occurs. The operator is then an infinitesi-
mal Lie point operator in x-space. One might let the aj depend
on v also and add a term rp(_)g,v)—.ag‘;; one then obtains generators
of Lie point transformations in (x,v)-space. The space of such
operators has two important properties. 1) It is closed under
commutation and is thus a Lie algebra. 2) The question of its
admissibility is well-defined for any linear or nonlinear equation.
This case may be contrasted with the case of second-order differ-
ential operators of the form (1.49): 1) The space of such opera-
tors is not closed under commutation since the commutato‘r of two
such operators is in general a third-order differential operator.

2) What is more important, the question whether such operators
are admitted by a differential equation makes sense only for linear
equations. To remedy these shortcomings we shall recast oper-
ators of the form (1.49) in Lie-BZcklund form. Such a corres-
pondence rule is a.ctuall&r given by Andérson and Ibragimov in [7].
Our version will be given in Theorem 1.2 below. It differs from
that of [ 7] by a minus sign. This sign is irrelevant for the pur-
poses of [ 7] but needed here since we want the correspondence to
be an isomorphism.

Theorem 1.2. Let A be defined by (1.49) and A be de-

fined by
- 9
A = - (AV)W .

Then, a) the mapping A — A is an isomorphism and b) a

-

linear equation admits A iff it admits A.

Proof. The proof is parallel to that of Theorem 1.1 and
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and need not be given here. We observe that A may be an
admissible operator for a nonlinear equation. In this case the
question whether A 1is admissible does not make sense (unless
admissibility of A is defined as the admissibility of the corres-

ponding A).
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1.6 LB OPERATORS AND VARIATIONAL EQUATIONS

As it was pointed out earlier, in practice, it is very con-
venient to cast every LB operator in the form

%5 B % 4, — (1.51)

ou”
One of the reasons for doing it is that the above operator can be
extended very easily; (using equations (1.33) with ﬁi = 0). Using
the first correspondence rule (1.48) (obviously extended to many
dependent variables) every LB operator, and in particular every
Lie point or Lie tangent operator, can be cast in the form (1.51).
Therefore, hereafter when proving general theorems ab.out LB
operators we shall always use the form (1.51). One example of
how convenient it is to work with this form is provided by the
following lemma:

Lemma 1.4. Let

B=20 (1.46)
be some nonlinear equation for wu. This equation admits the LB
operator (1.47), iff A solves the variational equation associated
with equation (1.46).

Proof. The proof is a direct consequence of the definition
of an admissible operator of the form (1.46). Let us give some |
examples: (prime denotes differentiation with respect to x)

i)

n

u" + uu' = 0. (1.52)

The linearized equation is

n

v'" + uv' + vu' = 0. (1.53)

It is well known that, because (1.52) does not depend on x
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explicitly, v, = u'

theoretical point of view this solution is a consequence of the

is a solution of (1.53). From the group

invariance of the equation (1.52) under translation in x: Letting

x — x + a equation (l.52) remains invariant, therefore the Lie

operator
~ _ 0
X1 % o=
is an admissible operator. Using (1.48), il is equivalent to
o
= Vi
X1 u's=
Therefore,. v = u' is a solution of equation (1.53). How can we

find a second solution of equation (1.53)? One may think of tryiﬁg

variation of parameters but the answer would be in terms of an

integral. However, letting x — ax, u — a-lu, equation (1.52)
remains invariant. Therefore the operator

s 9 o)

X2~ *3x - “Bu-

is an admissible operator, which is equivalent to

0
iz 1
XZ = (xu +u)——-—au.

Therefore, using lemma 1.4 , v = utxu' is another solution of
equation (1.53).

Note. Another way of finding solutions of the wvariational
equation, when u is known and depending on some parameters,
is to differentiate with respect to these parameters. Here
u = « tanh o/2(x+p), and therefore 0du/da, 9u/d3 are solutions
of (1.53). It is easily seen that 9u/9p = u' and 08u/da = 1/B(ut
xu'). This result is not surprising since o and p are the

group parameters corresponding to stretching and translation



< 32

respectively.
ii)

!
u" +-}lzu' + uz = 0. (1.54)

Letting x — ox equation (1.54) remains invariant. Therefore

>~ o) _ , 0
X—x-é-;;, X—Xus'a,

and xu' solves the variational equation. Also u — u + «

indicates that constant is another solution.
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1.7 ADMISSIBLE AND CONDITIONALLY ADMISSIBLE LB

OPERATORS. INVARIANT SOLUTIONS.

One of the main goals of this research is to provide a
systematic group theoretical characterization of many exact solu-
tions of physical interest. The main tool for implementing this
will be a LB operator. Most of the time we will be concerned
with one dependent and several independent variables, Then the
most general LLB operator is of the form

_ 0 0
Z—A(x,u,u,...,u)g‘—i+ (DjA)Bu £ e
. 1 k xj

(1.55)

where x e R" and Dj denotes total differentiation with respect
to Xj’ (summation of j is assumed).
The question we address in this section is central to our

work: Given an equation

w(x,u,u,...) = 0, x € R
1

(1.56)

what requirements must be satisfied by a group of transformations,

(or more precisely by a LB operator of the form (1.55)), in order

for this group to be used for obtaining exact solutions of equation

(1.56)? Two different types of requirements lead to consideration

of 1i) admissible LB operators and ii) conditionally admissible

LB operators (CAO).

1.7.1 Admissible LB Operators

An obvious requirement is to require the operator Z to
leave equation (1.56) invariant. Then the operator Z is called

admissible and can be found by solving
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Zw =0, (1.57)

where equation (1.57) means that the operator Z is applied to
equation (1.56) and then evaluated on the manifold defined by
equation (1.56) and all its differential consequences.

In order to see how an admissible LB operator may be
used for obtaining exact solutions let us first recall the case of

A
a Lie point admissible operator: If A = A(x,u,u) in (1.55) and
1

A
furthermore if A depends on u linearly, then the operator
1
(1.55) is equivalent to a Lie point operator
T = f(x, u) e (e, w)ae + (1.58)
e Vo “Olgg * +ees -
where
A 1
& 3 n - gquj ( 59)

In §1.2.1 it was shown how admissible Lie point operators may be’
used for obtaining invariant (or similarity) solutions. The analysis-
presented there was based on the assumption that the invariants of
the given operators may be found. However, in order to charac-
terize the similarity solutions this assumption is not necessary,
see [5]: Assume that equation (1.56) admits the operator (1.58).
Then the class of solutions of equation (1.56), which remain invari-
ant under the action of this operator is characterized by the simul-

taneous validity of equation (1.56) and of

A
A = 0, (1.60)
Writing the Lie point operator (1.58) in the standard form
A
(1.55) we see that A 1is the coefficient of T)BTJ, This is another

latter
advantage of using the/form. As an illustration let us recall the

example given in §1.2.1: Equation (1.59) now becomes
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xu_+ ZtuX - hu = 0. (1. 61)

Integrating (1.61) we obtain u = tK/ZF(xz/t), where F is deter-
mined by requiring it to solve equation (1.16). This procedure is
typical when dealing with Lie point operators: Equation (1.59) is
always a quasilinear first order equation for u and therefore in
general it is easier to solve than equation (1.56); after solving
equation (1.59) and obtaining the general form of u finally we
use equation (1.56).

The notion of invariant solutions and in particular the above
characterization may be directly carried over when dealing with LB
operators. This is given in the form of a theorem:

Theorem 1.3. Assume that equation (1.59) admits the LB

operator given by (l.55), i.e.,

Zw =0. (1.57)
w=0

Then the class of solutions invariant under the action of Z may
be characterized by the simultaneous validity of equation (1.58) and
of

A =0, {1.62)
where A 1is the coefficient of 8/8u in (1.55).

Equation (1.62) in contrast with equation (1.60)) is not a first
order equation for u and it might be harder to solve than equa-
tion (1.56) itself, However, in general it is easier solving the
system of equations (1.56), (1.62) than just solving equation (1.56);
this will be illustrated in Chapters II and III where the separable
solutions of a given equation will be considered,

The above theorem indicates how different types of exact

solutions may be characterized group theoretically: Regard them
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as solutions of a system of two equations and then prove that one
of the two equations corresponds to equation (1.62). This will be

elaborated in Chapters II, III and V.

1.7.2 Conditionally Admissible LB Operators

An admissible operator (or actually the corresponding group)
takes i) a solution manifold into a (possibly different) solution
manifold, and ii) an M@Pﬁ solution manifold (assuming that
such a manifold exists) into itself. In obtaining invariant solutions
we only use the second (ii) property of an admissible operator. This
motivates us to look for a LB operator which does not in general
take solution manifolds of a given equation into solution manifolds of
the same equation; however, we require a certain class of solution
manifolds, also called invariant manifolds, to be taken into them-
selves under the action of this LB operator. Such a LB operator

is then called CAQO and can be found by solving

Zw = F(x,u,u, ...;D.,Di., ce.)A (1.63)
w=0 1 J J
where F 1is a linear operator in Dj', Dij’ ... with coefficients
depending on x,u,u,... . Equation (1.63) is denoted as
1
Zw =0. : (1. 64)
w=0,A=0

The solutions corresponding to the above invariant manifold are
also called invariant sélutions (or generalized invariant solutions)
and are characterized by the simultaneous validity of equations
(1.58) and (1.62) where A is now the coefficient of 8/8u of the
CAO satisfying equation (1.64). Actually particular solutions of the

above type have been sought in [17] and [18]; however it was
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in [ 18]
thought/that these solutions are not physically interesting. In
Chapter V we present a detailed algorithm for handling such
solutions and further we establish their importance (both mathe-
matically and physically) by proving that the solutions obtained

through Backlund transformations are of the above type.



CHAPTER I

2.1 INTRODUCTION

The use of group theoretical methods for the understanding
and solving of problems arising in classical mechanics has been
well established. In spite of this, it seems that many fundamental
questions still exist. For example, it is known that in Hamilton's
canonical equations the constants of motion linear in the momenta
are related to Lie point groups of the Hamilton-Jacobi equation.
However, in general, there is no way of using Lie point theory on
the Hamilton-Jacobi equation to explain the existence of conserved
quantities which are nonlinear in the momenta. Another open
question is the group theoretical characterization of all separa.ble'
solutions of the Hamilton-Jacobi equation. It seems that by using
Lie point theory we can characterize only some of the separable
solutions.

Similar problems appear in quantum mechanics. E. Noether
has established a connection between conservation laws and invariant
properties of a given system of equations, under the assumption
that the ss-rstern possesses a Langrangian [19]. However, Noether's
theorem cannot guarantee that every conservation law comes from
Lie point groups. Actually, in quantum mechanics, some conserved
quantities were discovered which were not the consequence of Lie
groups (for example, the quantum mechanical analogue of the Runge-
Lenz vector for the hydrogen atom). In order to explain these con-
servation laws the "dynamical symmetries" were introduced, see

for example [20]. These were symmetries of a non-geometrical
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origin. The "dynamical symmetries" in quantum mechanics were,
at an early stage, related to the problem of separation of variables
of the Schrudinger equation. It was noted that potentials admitting
"higher symmetries" also allow separation in more coordinate sys-
tems (for example, the equation for the hydrogen atom also separ-
ates in parabolic coordinates). The connection between group
theory and separation of variables was discussed for many interest-
ing equations of mathematical physics. However, using Lie point
theory it seems that the characterization of separable solutions is
incomplete [16].

In spite of the great applicability of group theoretical methods
in quantum mechanics, and the fact that classical mechanics is the
geometrical limit of quantum mechanics, the group theoretical con-
sideration of the above problems in classical mechanics has not
been extensive [21]. Actually, it was thought that the meaning of
dynamical ingraria.nce groups in classical mechanics is less straight-
forward [20]. We think the investigation of the above questions in
classical mechanics will clarify the role played by higher (Lie-
Backlund) symmetries and will provide a better understanding of the

corresponding problems in quantum mechanics.

2.1.1 OQutline of this Chapter

In §2.2 we present a general analysis of the group structure
of the Hamilton-Jacobi equation. More specifically: In §2.2.1 we
give an iSOmorphiém between invariants of Hamilton's equation and
admissible LB operators of the Hamilton-Jacobi equation., More

generally, this isomorphism relates dynamical variables (that is,
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functions in phase space) and LB operators. This isomorphism is
not surprising since Hamilton's equations and the Hamilton-Jacobi
equation are mathematically equivalent formulations of the same
physical theory. However, this result is interesting in the follow-
ing sense: If we want to explain the existence of conserved quan-
tities in classical mechanics analyzing the group structure of
Hamilton's equations we see that not every symmetry of Hamilton'rs
equations produces a conserved quantity (see theorem 2.2); however,
theorem 2.1 indicates that every symmetry of the Hamilton-Jacobi
equation generates a conserved quantifly. In §2.2.2 we show howr
Lie-Backlund groups of the Hamilton-Jacobi equation induce Lie
point groups of Hamilton's equations. These groups were emphasized
in [22], but a logical explanation for their existence was not given.
In §2.2.3 we establish a group-theoretic characterization of all the
separable solutions of the Hamilton-Jacobi equation. This result
reveals the group basis of total separation as well as partial separ-
ation. We emphasize the latter case which does not seem to have
been sufficiently considered in the literature (the connection between
separation of variables and degeneracy is thoroughly discussed in
[23]).

The above resulté illustrate the importance of Lie-Backlund
groups in classical mechanics. Their existence leads to:

i) conserved quantities of Hamilton's equations.

ii) separable solutions of Hamilton-Jacobi equation.

jii) Lie point groups of Hamilton's equations.

We want to stress at this point that the LB operators associated

with the group structure of the Hamilton-Jacobi equation are a
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special class of LB operators, which are equivalent to Lie tangent

operators (see §2.1.2).

In §2.3 we consider the equation

1 5 _ .
Esxisxi + V(x) = 0, i=12,3 (2.13)

(a special case of which is the time-independent Hamilton-Jacobi
equation, % = V - E) and investigate constants of motion (or
admissible operators) with polynomial dependence on the momenta.
Concrete results are obtained for the cases of constants of motion
linear, quadratic and cubic in the momenta. Emphasis is given to
the linear and quadratic cases, for which the particular case of
zero energy state is also investigated; it is shown that in the latter
case additional symmetries may appear. |

In §2.4 we present some applications which include:

i) Investigation of potentials depending only on the distance
to one or two fixed centers. It is found that the most general case
of a two center-potential having a nontrivial quadratic invariant is
that of two Newtonian centers of arbitrary strength at arbitrary
locations with two superimposed harmonic centers of equal strength
at the same locations (equivalently, we may have one harmonic
center of arbitrary strength located at the midpoint of the two
Newtonian centers), we call this potential a "mixed" one. The
corresponding quadratic invariant is also given.

ii) Investigation of central fields for the case of zero energy
state.

iii) Characterization of all separable solutions of the one-
body Keplerian problem.

In §2.5 we extend and discuss further some of the above
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results: From the "mixed" potential we obtain by limit processes
all known cases of potentials with quadratic invariants. The same
limit processes also give us invariants of the limiting potentials.
We discuss not only the Lie algebra of these invatria.ntsT but also
show how linearly independent elements may be functionally depend-
ent; this leads naturally to a discussion of the concept of degeneracy,
We ha.ve thus shown, for a class of important nontrivial nonlinear
invariants that they are special or limiting cases of one single case.
A different and in a sense complementary point of view is also
interesting: Let the potentials V1 and v, each have quadratic
invariants. Under which conditions is the same true for the com-
bined potential vV, + V2 The answer is found to be that the

strictly quadratic terms of each invariant must be the same. A

simple rule is given for the construction of the new invariant. Finally
the new invariants cubic in the momenta are found.

2.1.2 An Important Equivalence

In this chapter we shall be primarily concerned with LB
operators of the form

) d .
Y = A(xi,S,Sxi)gg, i=1,...,n.

We remind the reader (see §1.2.2) that an operator

_ 0 )

X = Lo, T MBS

where gi and 7 depend on X5 S, Sx is a Lie tangent operator
i

provided that there exists a function W(xi‘, S, Sx) such that

i

T For the case of a constant force field we get a basic set of
linearly independent invariants which is not closed under commutation.
This leads to the unresolved problem of determining the structure of
its symmetry group.
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In our case ‘§i = 0 and 1n = A. Therefore the operator Y is
not a Lie tangent operator. However, in [7] it is shown that,

every operator Y is equivalent to a Lie tangent operator (two LB

operators are equivalent if they differ by an operator of the type
aiDi = 3, 8/8:»:i & aiuia/au + ...). So, although we still call the
operator Y a LB operator we stress that it belongs in a special
class of LB operators, which are equivalent to Lie tangent oper-
ators,

Taking into consideration the above discussion as well as
the correspondence rule (1.48) (see §1.5.3) we may now state:

i) If A (the coefficient of 9/8u) is linear in S, thenr
the LB operator Y is equivalent to a Lie point operator. '

ii) If A 1is nonlinear in Sx. then Y is equivalent to a
Lie tangent operator. '

From theorem .2.1 it will then follow that constants of motion
linear in the momenta correspond to Lie point groups while non-
trivial constants of motion nonlinear in the momenta correspond to

Lie tangent groups.

Nontrivial constants of motion.

What we mean by "nontrivial" is best understood with the
aid of an example: Consider the case of a central potential in two
dimensions; the angular momentum ms is conserved. ms is
linear in the momenta and therefore its conservation is a consequence
'
3

is also a constant of motion, which we call trivial; it is quadratic

of a lLie point group (rotation about the z axis). Of course m

in the momenta but it still reflects a Lie point symmetry in the
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sense that the LB operator corresponding to m3‘2 belongs in the
enveloping algebra of the Lie algebra of Lie point operators. Non-
trivial constants of motion nonlinear in the momenta are those
which cannot be expressed in terms of linear constants of motion
(for example, the Runge-Lenz vector is a montrivial quadratic con-
stant of motion).

We conclude the introduction by reminding the reader that
if a canonical transformation is made in which the new coordinates
depend only on the old coordinates then the new momenta are linear
in the old momenta. If a new coordinate (say angles in spherical
symmetry) does not appear in the new Hamiltonian, then the cor-
responding momentum (say angular momentum) is constant; this
constant reflects a geometrical symmetry. Obviously, a nonlinear
constant represents a more sophisticated symmetry (dynamical or

more general Lie-Backlund).



2.2 A GROUP ANALYSIS OF THE HAMILTON-JACOBI EQUATION

The Hamilton-Jacobi equation is regarded as the basic equa-
tion of classical mechanics. An analysis of its group structure pro-
vides the explanation for the existence of all conserved quantities
and separable solutions in classical mechanics, Furthermore it
clarifies the origin of the Lie point symmetries of Hamilton's
equations. Also, an understanding of the group structure of the
Hamilton-Jacobi equation is essential for the LB group analysis of the

Schrodinger equation, to follow in the next chapter.

B, d Lie-B;cklu_nd Groups of the Hamilton-Jacobi Equation

and Constants of Motion of Hamilton's KEquations

Let

Q = St + H(t,xi,Sxi) = 0, I PP ! (2.1)

be the Hamilton-Jacobi equation describing the motion of a given
dynamical system [23]. The corresponding Hamilton's equations

are:

(2.2)

Theorem 2.1.

The Hamilton-Jacobi equation (2.1) admits the Lie-Bdadcklund

operator Y = A(t,x;,S_ )8/8S, i = 1,...,n, if and only if A(t,x,,D;)
i

is a constant of motion of Hamilton's equations. Furthermore the
correspondence
Bl i) = Bl % 5, Vs (2.3)
R k| S X, 8S”’ )

is an isomorphism for any A which is a function of the variables
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Proof

The proof that (2.3) is an isomorphism is a consequence of

the fact that a commutator of two constants of motion

Poisson bracket and of lemma 1.2, The first part of

then follows using lemma 1.3 (trivially extended to the
independent variables).

An illustration of this Theorem is the following:
is invariant under rotation about the X3 = axis. Then
operator Y = xla/axz - xZB/Bxl,

XZSXI)B/BS. Therefore my; = X the

P2 - *2Ppr

the angular momentum is conserved.

which is equivalent to

is their
the theorem

case of many

Assume (2.1)
it admits the

Y = (:t:}‘Sx -

2

X3 = component of

2.2.2 Groups of Hamilton's Equations Induced by Groups
of the Hamilton-Jacobi Equation.
Let S(t,xi) be a solution of (2.]). Let (2.1) be invariant

under the group Gg-

S— S+ €A,

G..:

s t—-¢t+ €T,

x., — x. + €X.
i i i’

where A,T,Xi are functions of t,xi,Sx y 2= Ly e e et
i
_ 98
Pi - 9 ’
X,
i
F: i=1, , n,
qi = xi)
then Py 9 satisfy the Hamilton's equations (2.2).

formation ¥ maps GS onto some group GH

Define

The trans-

of equations



(2.2) defined by:
Py — Py +€F;
GH: t -t + €T
Ry — 9y ¥ ey

where
X. = Q,
i i
dx.
dA i dT
P1 T odx, T Sx.dxi Stdxi (24}

From the above it is clear that if a group of (2.1) is given, the
induced group on (2.2) can be found using (2.4). Suppose Y is
a Lie-Backlund operator of (2.1). To find the induced operator of
(2.2), extend Y and keep the coefficients of B/Bxi, 9/9t and

8/8s,_ .

i

Theorem 2.2. If Y = At,x,, S_ )8/8s, i = 1,...,n, is an
i
admissible Lie-Backlund operator of the Hamilton-Jacobi equation,
then Z = 3/8t + A B/api - Ap B/BX is an admissible Lie point
i i i

operator of the corresponding Hamilton's equations.

Proof. Extend Y:

= _ a 9 9
Y = Aggt Ay + S Ag g * B, S5 As Jag -
1 x. t i L ) s .
i j i
Adding and subtracting Ag B/Bxi we get:
*i

= o a 0 0
T e Al B A b B e = By, et &

9S8 t BSt X 3Sxi Sxi axi

where
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Apply & to (2.1)

2(2.1) = A_ D,(2.1).
b, o
1
Therefore
Tl = a2 8 9. 9
Ylg=Ags+ 5t A, 55 - As B
1 xi Xi 1

and the induced group on (2.2) is Z. Q.E..D.

2.2.3 Separation of the Hamilton-Jacobi Equation

Lemma 2.1. Let

w(xi,Sx.,q)(x,Sx)) = 0, i=1,...,n-1 (2.5)
i

be a first order partial differential equation in which x and Sx
enter only in some combination ¢(x,Sx) not involving the other
coordinates. Assume that S does not appear explicitly in (2.5).
Then (2.5) admits Y = ¢(x,sx)a/as.

Proof. Extending Y and applying it to (2.5) we get:

. By oy
Ty = S:,:xi‘*’sxasx t oy, * Squ’sx)‘"st% = g eV
i |

therefore

Yy

0. Q.E.D.
¢

The equation (2.5) is also invariant under translation in S,

i.e., it admits the operator Y, = A9/8S, where )\ any constant.

0

Theorem 2.3. Suppose an additive separable solution exists

for equation (2.5) of the form
A s
S = S(xi) + S(x). (2.6)

Then S is an invariant solution of (2.5) under the action of the
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admissible LB operator
N ;
Y=Y - Y, = [(b(x,Sx) - A]8/88s. (2.7)

Proof. The solution of equation (2.5) invariant under the
A
action of the operator Y given by (2.7), is specified by the

simultaneous validity of equation (2.5) and of

$(x,5 ) - A = 0, (2.8)

(see theorem 1.4). However, by definition a separable solution
also satisfies equation (2.8) for some constant A. Q.E.D.

From the above it is clear that every additively separable
solution of (2.5) is invariant under a LB operator. If the separ-
able coordinates are known, this operator is found by inspection.

In the special case for which (2.5) is the Hamilton-Jacobi
equation theorem 2.1 establishes a way of evaluating X\, the con-
stant of separation: A\ = ¢(x,p).

The above results complete our analysis of the group proper-
ties of the Hamilton-Jacobi equation and Hamilton's equations. How-
ever, Hamilton's equations are the characteristic equations of the
Hamilton-Jacobi equation. This provides the motivation for the

following generalization.

2.2.4 Lie-Backlund Groups of Some First-Order Partial

Differential Equations

Let

Q(xi,S,Sxi) = 0, 1 = Ly e wersDis {2.:9)

Recall [24] that the characteristic equations of (2.9) are given by:
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i _ 90
dx Bpi'
dp.
i _ o 9N
™ T 7 PiDs T B, ko
ds _ _ aQ
I pj’é?j'
where
_ 38
P;j = ox, *

Lemma 2.2. The operation Y = A(x,,S,5_ )8/8S is an
i

admissible operator of (2.9) if and only if

dA

[gc + ARgl =0 (2.11)

Q
Proof. Extending Y, applying it to (2.9), and using

Di2lg=0 = ©

we obtain,

¥ - o0 22 1Y
Yoo o= (A- S, Ag )55 - Ag 5y t A, +AGS )ps—| -
1 X. X. 1 1 P ) X,
1 1 1 Q= 0
Now using (2.10) we find,
—-— _ . dA
YQ|g_ o= [0 + ARl Q.E.D.

Q=0
From (2.11) it is clear that if (2.9) does not involve S explicitly,

then @ = 0 admits the operator Y if and only if A is a con-

served quantity of the characteristic equations of Q = 0.



2.3 CONSTANTS OF MOTION WITH POLYNOMIAL DEPENDENCE

ON THE MOMENTA

In order to gain some insight of the problem we start with

the quadratic case.

2.3.1. Constants of Motion Quadratic in the Momenta

A. Hamilton-Jacobi equation for the zero energy state.

In this subsection we restrict curselves to operators of the

from
= 8

et (aiSXi_ + biijiSX- + Zc)aS (2.12)

where
- T _ _ ~ s =

a;, = ai(x.k), bij = bji = bij(xk)’ c = c(xk), i, = 12,38,
Let

H(x.,S )=+s S + Ve )=o0 1T (2.13)

i’ X, 2 X, X, *k ’

In theorem 2.1 we proved that the operator Y = A(xi, SX )8/8s is

i
an admissible operator of (2.13) if and only if

0A 0A :
[H, 35 - Hs axl. =0 155253
1 X. X. 1 H=0
i i .
Substituting for H from (2.13), for A from (2.12), equating to

zero the coefficients of S S S, i,j,k = 0,1,2,3, we obtain the
X, xj Xy
following set of equations:

T It is convenient to use various notations. The position vector
x  will be denoted by (x,y,z) or X, = (Xl’XZ’XS)'

Tt Equation (2.13) can be thought of as the eikonal equation of some
generalised Helmholtz equation, (where the frequency depends on
x), or as the Hamilton-Jacobi equation for the zero energy state.
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a, % = a,‘ZXZ (x.1)

T (@.2)

A A

aV. + 2a3_ V=0, i=12,3 (o)

1 s X3

(byy - bza)xy = 2b13x3 (B.1)

(byy - baz)xs = - Z'b”x! B.2)
- %

b1zx3 # b33x1 # balxz 0 (B.7)

A A )
c:xl = bliVx + Vb, sy ? i= 1;2,:3 (y.1)

(¢.k), (B.k), 3 < k< 6, (y.2) and (y.3) by cyclic permutation
1 -2 — 3,

The compatibility equations of the set (y) are the follow-

ing:
A A A 2 -
= -V %
(byy -baz )Vxl X2+b13szx3 b23Vx3x! +b12(vx;_x;_ X1 X1 )
A A A 5
- +(b -b Vv = 0, (6'1)
2blzszzV-*’?’bmXzVXz 3blzx1 Vx1 ( 3x,” xy ) X3

(6.2) and (6.3) by cyclic permutation.
It should be noted that the equations determining a; and
bij are uncoupled. Therefore, operators linear and quadratic in

the derivatives respectively, can be found independently.

Let
¥y = a8 o (2.14)
1 i %, 9S i
and
0 . ,
poot = 3
Y, (bijsxisxj b2ex)gg. L= L2, (2.15)
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To find an admissible operator of the form (2.14), equations («),
A

which are independent of V, are completely solved. Then, sub-
stituting a; in equation (2/) we determine which groups, if any,
are admitted by a given Q/ Similarly to find an admissible oper-
ator of the form (2.15), equations (B) are completely solved.
Then, substitute bij in equations (6) we determine which groups
are admitted by a given G Finally integration of equations (y)

determines c(x).

Solving equations (@) and () we obtain (see Appendix I):

a; = Aj(x?-y2-2%) + 2(A1xy + Azxz) + Byz - By + Cx + Dy
a; = A;(y2-x2-2%) + 2(Apyz + Asxy) + Bzx - Baz + Cy + D;
a; = Ap(z?-x%-y%) + 2(A3xz + Ayyz) + Byy - Bix + Cz + Dy (2.16)

byz = ay+tapytasxtagz-asz®+Psxztys yztagxytay (x2-y2) -
Brxzt+yryz-agz3 -2Psz3 tag (3y?z-3x%z)+(ag+2y10 )y (y?-3x2) +
(e10+2B ¢)x(x? -3y )+3a gz y+3a10%x2% -6(Brotyg)xyz +
20y 2y (3%2 -2% - y2 )+Byy (24 -yt -x?+6x? y2 )+2yy x2(3y? -x? -z%) +
3a12xyz% + (Y12 - Brz Jxy (y? -%%). (2.17a)

bz3, bs by cyclic permutation where a; By = v and vy4 =

- (a4 + Pa)s Y8 = - (ag *+ Bs)y Y1z = - (212 * P1z).
by = of
T Without loss of generality we can assume b11 = 0, as we can

always eliminate Si from the operator (2.12) using equation (2.13).
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Bin = -2[ao+a2x—yZz-a3y+33z_35zy+YSZx+E’z_ﬁ(xz_y.z) +

z% z?
Bes -VYe 5 -2arxytBqoaytyrzxtbagxyztagx(3z2+3y?-x?) +

2Bq y(y2-3x2 J+ygz(-3x2+3y2-22 )tayoy(-3x2-322 +y2) +

Broz(-3x2+3y2+22 )42y, 0x(3y? -x? )+ 2aqy x2 (x% -22 -3y2) +
4B xy(x?-y?)+2yy ZY(3XZ"Y2+ZZ)+%0’12 z? (x?-y?) +

71;(B:z-vlz)(x4+y4+z4-6x2y2)], (2.18a)

2
bss = -2[ 50+52Y‘Y2Z'0’3Y+‘13X+0-’5XY-[35VZ-%6Y2+(36'ZZ +%6 (x2-2%) -

a7xy-Bryztlyrzx-bygxyzt2agx(32® -x? )t Pey(-3x%+32% +y*) +
ygz(-3xz-3y’2+zz)+a10y(—3x2+3zz—yz)+Zﬁloz(zz-3x?‘) +
viox(3y2+322 -x? )+4ay; xz (x% - 22 )+28y xy (x*-32%-y?) +

> 3
2yy yz (3x% +y?-2? )t Y1z vy (x2-2%) +

'}I(BIZ'QIZ)(X4+Y4+Z4'6XZZZ)] “ (2.18Db)

where a,, B, v; 1l < i< 12 and A;, B, c, D, i=1,2,3 are

constant parameters.

Using equations (2.16), (2.17) and (2.18) we can find all
distinct operators of the form (2.14) and (2.15). However, in
order to reveal their structure, it is better to express them
in an alternative form, although in the new form some of the

i

quadratic operators are equivalent.

1, Two admissible operators of equation (2.13) are equivalent
if one can be obtained from the other with the aid of equation

(2.13).
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Let
= = = : = - r?
i Sxi’ A= %Py M S exiPie Ky 7 2xx P, - 2Py,
where
¥ o= ey 13,8 5 1,2,.3,
T4
Then
9
- 2
Y, = (aijPin + ﬁijPiMj i YijMiMj + 6A° + eiPiA %
LMA + KA + BijPin + gijMin too KK,
2¢(x) 35 2.21
c(x)5s (2.21)
where all lower-case Greek letters denote constant parameters

symmetric in their indices.

The operators Y, represent the Lie algebra of the confor-
mal group, Pi and Mi generate the Fuclidean group of motions,
Ki are the generators of the special conformal transformations
and A generates the dilatations.

It is clear that when c(x) = 0 the operator Y, belongs
in the enveloping algebra of the conformal group. However, when

A
c(x) # 0 Y is Lie-Backlund (independently of V).

2

B. The Hamilton-Jacobi equation (for arbitrary value of E).

Let

o 1A A ] 5 ,
S, +3S. 5 + V=0, i=12, (2.22)

1 1

be the time-dependent Hamilton-Jacobi equation, and

1 z
— - = = 3
2'S iS , + V(x) E 0, i 1,2 (2.23)

(2.19)
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the corresponding time-independent equation obtained by additive
A
separation of variables, S(x,t) = S(x) - Et. It is obvious that

the operator

i=1,2,3 (2.24)

is an admissible operator of the equation (2.22), iff the operator
Z = A(x,,5 )2, i=1,2.3
i’"x,” 98" s

is an admissible operator of equation (2.23).

Therefore, looking for admissible operators of the form
(2.24), it is sufficient to consider equation (2.23). Equation (2.23)
is a special case of (2.13), where (.\I =V - E.T Equations (2.17)
indicate that a necessary condition for an operator of the form
(2.12) to be admitted by equation (2.23) is to be admitted by a

constant potential. Hence

by, = bya

vy zz = Pa =0

XX

6.

AN

i.e., the relevant group parameters are @, By Yso 0 < i
Using the notation introduced in (2.19) we can express the

relevant admissible operators as:

1l

) .
Zis (P, + MM)5s, i =1,2,3 (2.25)

Z,

9
2 sy k= L:2:3 2..26
(@ PPy + ByPyMy + v MM, + c(x))gs, 1] o )

t  For a fixed function V (which is the potential energy of the
dynamical system), the energy E may vary continuously over all
positive numbers (e.g. the harmonic oscillator) or all real num-
bers (e.g. the Keplerian problem).
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Equation (2.23) is the eikonal equation of the time-indepen-

dent normalised Schrodinger equation

1 _ .
Euxixi + (V(x) - E)u =0, i-=12,3

Therefore, being an approximate equation, its group-theoretical

analysis is simpler. However, it is of interest that its group

theoretical consideration was preceded by that of (2.23).
The quantum mechanical analogues of Zl’ Z2 have been found in
[20]. By taking the classical mechanics limit of these operators

we obtain Zl’ ZZ' Since the Hamilton-Jacobi equation is a limit-
ing case of the Schrodinger equation we expect the symmetry group
of the latter to be the same or a proper subgroup of the former.
Here we see that the groups actually are the same (if the nature
of the potential is not considered), at least up to second order

operators.

2.3.2 Constants of Motion Cubic in the Momenta

We now concentrate on the more interesting case of an

arbitrary range of values of E (the case E = 0 is not very

interesting physically). Also we only present the results for the
two dimensional case; the extention to three dimensions is obvious.
For completeness we also include the relevant results of the pre-

vious lemma.

Lemma 2.3 The most general constants of motion of the

time-independent Hamilton-Jacobi equation (2.3), linear, quadratic

and cubic in the momenta are,
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I1 = (linear combinations with constant coefficients of pl,pz,m3)
l ?‘aj@“’j : (2.27a)
I, = (quadratic combinations of pl,pz,m3) + c(x)
= (2.27b)
= E b EIrp, + c(x) ,
jrk
I3 = (cubic combinations of Pl’pZ’ ) + Za (x)p (2.27c)

1]

A @ P] + 5,0, + 4y ()PP, + d221(")1’zp1 Z 25x)p;
where
Hig = SPa=¥Py

The a; in (2.27a) are coupled with the potential V through the

equation

a.lvx + a.ZVy =0 ;

the bjk in (2.27b) through the equation

(bll-bzz)vxy % blz(vyyhvxx) * 3b12yvy N 3b12xvx =0

The c(x) satisfies (2.28a)
°x 7 PuVx * P2V (2.28b)
(from the above by cyclic permutation) , (2.28c)

The dijZ and A in (2.27c) are coupled with the potential V

through the following equations

. 3v._d d = 2,29
alx- Vx m - Vy nz = 90 (2.29a)
(from the above by cyclic permutation), (2.29b)
%, +3 2d,.,V_ - 2d,, V. = 0 (2.29¢)
2 "‘1y e Ve T iV T Yo '

A
| 2.2
a].Vx 4 aZVy 0 .. (2.29d)



Proof. The derivation of the above results, although very

cumbersome, is similar to that of §2.3.1 and is therefore omitted.

Note that equations (Z2.27) define the a., b. , d. to within
—— j jk jkd

constant parameters. For example, a; = a-By, ¢ and B
arbitrary constants, etc. Also (2.28a) is linear in V and the

c(x) is uncoupled from the bij and the V. This may be
contrasted with the case of a constant of motion cubic in the

momenta where the gi are coupled with the d, and the V.

jlkd
Let us now come back to equations (2.29)., First note that they

: A
can be solved for gl and as;

3 2
3Vyl dy ¢ -yt +dpn9-dy55]

A

a, = (2.29¢)

1 o, - &,

A = Vx

az = ¢,a1 5 (1) = _ W . (2,29f)
Then substituting (2.9e,f) in (2.29a,b) we obtain two equations
relating djkﬂ with V. However, these equations are nonlinear in

V and therefore are not very suitable for discovering which potentials
admit a given invariant or which invariants are admitted by a given
potential. (For a discussion of the correspénding problems for the
quadratic case see §2,4). In order to obtain a linear equation
relating djkﬂ with V we disregard for the moment equation

(2.29d) and eliminate 4. and 22 from equations (2.27a,b,c}. This

1

yields the equation below, (which is necessary but not sufficient)

d v + (3d

-2
221V xxx ¥ 912V yyy gag=ad

+ (3 d111"

2 |
112)Vxxy dZZl)Vy-yx |

- - = -t 2.2
2(da21 =2 JVixVyy) “’dmy + G - Zd.221y Iz Way  (5-29R)

i _2 5 0,
t(2dypy  Fdpp =2y WVt Bdyyy tdppy -2dyp V=0
b4 yy Xy vy XX Xy
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2.4 APPLICATIONS TO CLASSICAL MECHANICS

2.4.1 The Hamilton-Jacobi Equation (for arbitrary value of E).

In §2.3 we showed how one can find admissible operators
(and hence invariants) of equations (2.13) and (2.23) when the
functions Q/ and V, respectively, are given.

In the present subsection we shall first consider the inverse
problem: Given an operator, find all V which admit it. Some
classes of solutions to this problem are given in §2.4.1 A, as well
as an example illustrating the incompleteness of these results. In
§2.4.1 B we shall consider potentials of a prescribed general form
which are of physical interest and shall find all potentials of this
form which give mnontrivial invariants as well as the corresponding
invariants. It is believed that some of these invariants are new.
Their extension to quantum mechanics is given in Chapter III and
some important limiting cases in §2.5.1. In §2.4.1 C we shall
reveal the group-theoretical nature of all the separable solutions

of the one-body Keplerian problem.

A. The inverse problem.

a. Operators linear in the momenta.
[A)

Instead of integrating (a) directly we follow [20] and

perform a Euclidean coordinate transformation:

xl =
1

Qikxk+6i’ where aikaij = akj' isisle = 1,2,3 (2.30)
such that the operator 2Z, of (6.14) takes a simple (normalized)

form Z;', where

d
2yt & (ale+bP1l)a_S, a2 = aiai" aibi = ab 4= 1,23,

Therefore, in the normalized coordinates, the general solution

A
of (o) is:




Al . FF Tl

!
N = F(Y1Z+Z'Z,C¥X'~ber); o' = tan_l_szf-'
where for physically meaningful potentials the first derivatives

of F must be periodic in ©0'.

B. Operators quadratic in the momenta (without linear terms)

Solving equations (6) completely is quite complicated.
While one can easily find some solutions of these equations, it
is very difficult to determine when one has found all solutiomns.
The corresponding problem in quantum mechanics has been con-
sidered in [20] and [15]. In looking for potentials admitting
second order operators Winternitz and others considered a éet of
equations equivalent to (&). Initially, they performed a coordinate

transformation of the form (2.30),rather than integrating the

relevant equations directly. Their procedure, when applied
here, corresponds to using (2.30)to simplify the operator Z,
of (2.26), and then integrating equations (§). The results
of [20] and [25] are directly applicable here:

| 1) In two dimensions all the potentials admitting
symmetries of the form (2.25) are those which allow separation
of eguation (2.23) in one of the four coordinate systems:
cartesian, polar, parabolic and elliptic,

2) In three dimensions, all the potentials admitting two
commuting operators of the form (2.25), are those which allow
complete separation of the time-independent Hamilton-Jacobi
equation.

The above relationship between symmetries and complete
separati(;n of variables is very interesting. Actually the corres-
ponding problem in gquantum mechanics was the motivation for the

group characterisation of complete separation of variables. How-



=62~

ever, in our view, the problem of partial separation has been
unduly neglected. Theorem (2.3) expresses the group nature of
the partial separation and provides a way of finding a more general
class of potentials admitting symmetries: Any potential allowing
partial separation of the Hamilton-Jacobi equation must be a solu-
tion of (d).

To obtain simple solutions of (&) directly, we let all the

independent parameters in (2.17) and (2.18)be zero except one,

which is put equal to unity. In this way we derive potentials
covered by 1) and 2) above. However, other solutions may be
obtained using the parameters a4, Psa, ya. If we put py =1

and all other group parameters equal to zero, equations (§)

yield:
2 74 Z
V = K(¢® + ?') + Ag t+ M?Z + f(p)
where p? = x2+y?, ¢ = tan‘l-}zc, K, N\, QL arbitrary constants,
f(p) arbitrary function of p. However, for physically meaningful

potential, the first derivatives of V must be single-valued, there-
fore k = 0.
The admissible operator corresponding to this potential is:
; o
Z = (S‘PSz + 2Kpz + Az + p¢)—§-§.

The potentials and invariants obtained by replacing f4 by a4 or

y4 can be obtained by cyclic permutation.

B. Potentials due to one or two fixed centers.

We now investigate a class of potentials of physical interest,
namely potentials due to one or two fixed centers. Their inter-
relation will be discussed in §2.5.1 with the aid of various limit

processes, which also will yield new potentials not considered




here. It will then become clear that the two fixed centers have
a logical priority to the one fixed center. However, we shall
start with the latter case, i.e. of a central field in three dimen-
sions. It is well knoxl;vn that for a fixed center there exists only
one type of geometrical symmetry, the spherical symmetry, which
leads to the conservation of the angular momentum vector. We
shall check using our methods that -the only central

potentials which give nontrivial invariants (quadratic in the mo-
menta) are of form V ~ r2 or V ~ r!, The first case is
that of an isotropic harmonic oscillator and the second case
occurs in Newtonian gravitational theory. In the above cases we
shall refer to the origin as a harmonic or a Newtonian center,
respectively.

A natural generalization of the fixed center potential is,
especially in view of an old discovery of Euler (see below), the
potential due to two fixed centers., Since the spherical symmetry
is now reduced to cylindrical we consider this problem in the
(x,y) plane. Then the invariants can be extended to three dimen-
sions using the cylindrical symmetry. It turns out that the only
two centers which admit a georﬁetrical symmetry are the two
harmonic centers. Also, the only two centers which admit non-
geometrical symmetries are two Newtonian or two harmonic centers.
both cases the disvtance between and the strength of each center
are arbitrary. It is interesting that 2a curious hybrid also
exists: two harmonic centers at the same location as two
Newtonian centers, provided the former have the same strength.

o. Central Fields

To find admissible operators linear in the momenta, let

In
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A A
0, i=1,2,3 in (2.16), V = V(r) in «, and substitute
A A
a., Then integrating «, the only invariants found are

A, = C =
i

(2.16) in
Mi’ i=1,2,3 as expected.

To find admissible operator quadratic in the momenta, let

V(r) = F(r?), F' = -——z—d‘(if), " o= ____z__dc}}:').

Substituting (2.17) and (2.18) in (§.1) we obtain:
[ (yaz-xas)(x®+y?) + (yya-xBz)z? + 2xyay + z(yyi-xv1) +
(y2-%%)ay + xyz(Ba-vz) + z(y?-x%)(estys)] F" +
[ (yaz-xa3) + %(Y4‘l34)] FY = O (2.3ia)
(7.1.2), (7.1.3) by cyclic permutation.
i) Note that the parameters s By vy 1 5,6 do not appear
in (2.13). Therefore the operators corresponding to those parameters

are admissible for any V(r). Abbreviating Z, of (2.26)to

_ 9
Xij = AijBS’ (2.32)
we find that now Aij = MiMj’ 1;] = 1,253
ii) Let a, = 61 = N, = 0, i=2,3,4
Then F" = 0 and @, By vy 1 0,1 are arbitrary. Hence
V = ar?
Aij = Pin + 2axixj, i;§ = 1,2,3 (2.33)

iti) Let o, = B, =y, =0, i=0,1,4,

Also a3 = Bz, Bz = Yz, Y3 = az

gz = Yss P2 = @3 Y2 = PBs
Therefore F"r? + —Z—’-F' = 0 and a,;, Bz, Yz are arbitrary
Then V¥ = grd
= =1 1 1 ] 1,2,3
Ai EijkPij + ax.r™, i,j.k (;_34)



Comments

1. Clearly the operator (2.32) where Aij = l\'IiMj,

i,j = 1,2,3 although nonlinear in the momenta, is a trivial
consequence of the spherical symmetry (therefore it is of type
(ii) of (1.4)). This symmetry also allows separation of variables
of the Hamilton-Jacobi equation in spherical coordinates.

2. The use of the tensor (2.33)and the Runge-Lenz vector
(2.34)have been well established in the literature. We just stress
that their existence is the consequence of non-geometrical sym-
metries, These strictly Lie-Backlund symmetries also lead to
separation of variables in cartesian and parabolic coordinates
respectively. The separation of the equation for the harmonic
oscillator is trivial., The separation of the equation for the one-
body Keplerian problem will be discussed later. The Lie-BZcklund
algebras of the above groups are isomorphic to algebras of
finite dimensions [2.6].

p. Two fixed centers.

Let

V = Vi(p) + Va(pe)
where

p? = %% + %, po = (x - x)? + y2.

An analysis similar to that of 4) yields (see Appendix III):

i) V = ap? + Bpe’
Then
X :
Ay = (% - a‘&%)Pz - yB (2.35)

Aij = Pin + 2[axixj # B(xi~x°i)(xj—xoj)], 1,5 = 1.2 {2.36a)

(2.36b)



where

2x

74
Xa.z[ ’ M = (X—- Q+B )PZ ~ YPI

0, i=2

ii) V = Qg pZ + aopoz + Q’pml + Bp_l
: 0

Then
Ap =MzMy - apy?x,? - XX | Pxoleoxg) (2.37)
P Po
where
My = (%-%)P2-yP; .
Comments

1. It is interesting that, for every symmetry of the
one harmonic center corresponds one for two harmonic centers.

This is a consequence of the fact that the two harmonic centers

are equivalent to one, located at (z+[3’0) and having strength
(atp).

2. The invariant (2.36b) is a trivial consequence of
the invariants A, and A;, since B = Ay - %%Azz. How-
ever, the form (2.36b) is also useful as it illustrates the

connection of (2.36b) and (2.37).As «a and f — a
B — M3M, - apy°xe”.

3. The invariant for the two Newtonian centers was
found by Euler in 1760 and is discussed in [27], using elliptic
_coordinates which are the appropriate separating coordinates for
this problem. A more transparent form of this invariant, namely
the one obtained from (2.37) putting 0y = 0, was used in [28].

4, The invariant corresponding to the "mixed" case is
given by (2.37). The spherical symmetry is destroyed, but this

time (as in the case of two Newtonian centers) it is replaced by
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a Lie-Bzcklund one.

G- One-Body Keplerian Problem

As an illustration of Theorem 2.3 we investigate the
group-theoretical nature of all separable solutions of the one-

body Keplerian problem:

1 uo_ : o~ s
St + ESXiSXi 3 5 = 0, i= 1;2,;3. (2.38)

The following admissible operators will be used:

YizAiﬁ%- 0 < i< 6, where Ao =1, Ay = S,

A, = My, Ay = My, Ay = M, A5 = A2 + A% + A2,

Ag PPM;; - Po M, +E'I'_Eo

Spherical
Writing (2.38)and the operators

Yy - M Yo, Yz - XM2Yo, Ys - A3Yy,

in spherical coordinates we obtain the separated equations:

SZ
1 2 1 2 2‘ (LI
St & zsr * ZrZ(Se t sin B) T .
S, = M
S(P = )\.2
8§ sreaBl = %
0 ' sin’0 "¢ 3
Using Theorem (2.1): X\ = - E, Az = P‘p, A3 = M?, where qu is

the ¢ component of the angular momentum and M the total angular

momentum.
Parabolic
Writing (2.38)and the operators
Yy - M Yo, Yz - Mz¥g, Yo - M3Yos

in parabolic coordinates we obtain:
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S, + 2882 + + £S5 4+ =P 2nS? =
A gg 7] gt 2.§+ nSn+nSt+Zn 0

_zgsé-/t+Eg-—él-§—si:x3.

Using Theorem 2.3: A3 = Lj, the =z component of the
Runge-Lenz vector.

We see that for the complete characterization of the
separable solutions in parabolic coordinates, the operator Yg
which is strictly a Lie-B¥cklund operator is necessary.

2.4.2 Hamilton-Jacobi equation for the zero energy state..

It was shown in §2.37 = that, when E = 0, the
Hamilton-Jacobi equati_on may possess additional symmnetries,
not present for ¥ # 0. As in §2.4.1A we first give some classes
of solutions of the inverse problem. We then concentrate on
potentials due to one fixed center., Although the zero energy

state is a very special case the results (which are new) may

be of some interest.T
A, The inverse problem.
@. Operators linear in the momenta.

Abbreviating the operator (2.20)to Y, = Agg and solving
A
(¢) we obtain:

1) xi=>\i=pi=0, v # 0; T ;2,8

A | Y By, _
Ve=oFPE,2); A=A ()

t As an analogy we point out that certain dynamical systems
admit periodic solutions only under very special conditions.
These special solutions may, however be of interest.
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2) Ki—hi=v=0, ,uiqt 0; i=12,3
# 1 Y x%_y2_z2 4
R e B s PR S ST

Additional potentials can be obtained by cyclic permutation,

as well as combining different group parameters,

B. Operators quadratic in the momenta (without linear terms).

The possible systems of coordinates allowing additive separation
of (2.13) have been found [27]. Again, using Theorem 2.3, any
function %(5) allowing partial or total separation of (2.13)is a
solution of (6§). We emphasize the case of partial separation,
which in three dimensions ;:a.n be quite useful in deriving
invariants.

VB.. Centrai Potentials.

A A ;
Assume V = V(r) in (2.13).

a. Operators linear in the momenta.

A
Integrating (@) We obtain:

Potential Invariant

A

V(r) M;, 1= 1,4,8 (2.41a)
-2 5> 4

ar A (2.41b)
-4 - 4

ar Ki’ i=1,2,3 (2.41lc)

B. Operators quadratic in the momenta.

Integrating (y) and (§), in addition to the cases con-
sidered in§2.4.1 we find
Potential Invariant

= AM,, i=12,3 (2.42a)

ar"3+[5r_4 AKikaxir'lJraﬁxir—&, i=12,3

(2.42b)
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-6 -4 -4 . _ 3 .
ar +pr Kin+Zaxixjr i, j 1,2, (2.43¢)

The invariant (2.42a) is of course a trivial consequence of (2.41).
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2.5 FURTHER APPLICATIONS

2.5.1 Potentials Generated by Fixed Centers and Limiting

Cases. Associated Invariants.

In the present subsection we consider an important class of
potentials. A fixed point P, is a center if there is a potential
V1 whose value at an arbitrary point Q depends only on the dis-
tance 'QP1|' If VZ is a potential depending only on the distance
to the point P,, one may form a two-center potential by super-
position, Vl + VZ' By varying the strength of the potentials and
the distance between Pl and P, one can obtain various limiting
cases which need not be center-potentials,.

In discussing invariants in this section we shall deal only
with constants of motion of Hamilton's equations, that is with
functions f(xj,pj), j =1,2,3, constant along any orbits. The
commutator of two functions f and g is the Poisson bracket
which we define as

3

_ of 9 of 9

[f,g] = E‘é‘fﬁﬁ‘.‘ﬁ;ﬁi‘." (2.44)
e J J J J

In Chapter III we shall discuss the relations between such invariants
and the corresponding operators admitted by the Schrodinger equa-
tion. For the purposes of Chapter III it is instructive to deal with
potentials having nontrivial invariants nonlinear in the momenta.
The potentials discussed below are interesting in their own right,
and they will also be used to illustrate the use of limit processes
for potentials and their associated invariants.

Below we shall mainly discuss the case X3 = 0; the exten-

sion to three dimensions is easily made. We consider a two-center
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potential; without loss of generality we may place the centers at
(0,0) and (x,,0). It was found in §2.4.1 that the most general
two-center potential with a nontrivial quadratic invariant has the
T

form

2 1

2 -1 -
tps) v Bp Tt Yo (2.45a)

L«
vV=z0 :
where

2 2 2 2 2 2 :
p =x + vy, B = (x - X*) + vy, (2.45b)

a, B, ¥, X, arbitrary constants.

The nonlinear invariant is

where
m, = (X - X,)p, - yP;-

We shall now study special and limiting cases of the poten-
tial (2.45) and the Lie algebra structure of the associated invari-
ants as well as nonlinear relations between linearly independent
invariants. We first discuss Newtonian centers and then harmonic
centers; in each case various limits will be discussed.

A. Newtonian Centers.

Putting o = 0 in (2.45) we obtain the potential due to two
fixed Newtonian centers. The invariant C reduces to the invari-
ant found by Euler in 1760. Table 2.1 below shows various limit-

ing cases:

i The case of two harmonic centers of different strengths is
included in (2.45) in a sense to be discussed later,



Limit

A3

Potential

Constant of Motion

@ — 0 in (2.45) &(2.46)

. . "
Vi =Bp + vp,

-1 -1
Cl :m3m:‘,:-gxz;.xp +YX:::()§“X’::)p,::

P D o
Y =%, - p X0 vl_l b 4 C, =m? - 2exp”
B =o6-ex, Sp " -Exp . 3
Not a limit V, = f(p)-exp > Cy = Oh
& —0 V, =Vy=-£xp° C, =C,
—1 . -
Y= bl 5 ox, 0 Vi—=Vs=pp +ix _xj:}cl-z_:,x,z.-»cf my e +Bxp - 1y°

— e —— — — — — — ——e — —

—— e — — S S — — — — — o —

e — v —— e — — —— — — — — il r— —

—— oy o— — —— — in S — — — — — — ey et e

Cs —+~Cy =m;3pz- 3Ly
(incomplete)

where

n‘_l*_

Table 2.1.

(X = x>::)P2 = Ypl'

Two Newtonian Centers,

Potential and Constants of Motion (Invariants) for
and Limiting Cases. T

T See also [30,IX] and, for some specific computations, [23 §48].
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v, and C2 are obtained from Vl and C1 by a dipole
limit, more precisely by a limit which yields one center and one
dipole directed along the x-axis, at the origin (6§ and € are con-

sidered fixed as the limit is taken). If one uses (§.1) of §2.3.1

to find the general potential at the origin which has the invariant

CZ. one finds V3 which is due to an arbitrary center and a
Newtonian dipole, both at the origin. (See also discussion of invari-
ants of superimposed potentials at the end of this section). Putting

the strength of the center equal to zero yields V4 which still has

the invariant C Vg is obtained from V, by the constant-

X
force limit: The second center recedes to infinity and its strength

increases in such a way that a constant force field remains, (For

. : 2
a Newtonian center the strength has to increase as x, because of

the inverse-square force law.) The resulting potential may be

called the Stark potential. To obtain Cg from C1 some care

must be exercised: one reason is indicated in the table, it is also

a -1
necessary to expand g, to second order in x,°:
U

2 -1 -1 2 =2 2 =2
_gxi(x—x,“)p;:[: Qx)k(l—xx*) (Ixx,, _%y‘ X, X x, # pww) =

3¢

2

Lo 2 -1
Lx, = _Z-K"y + Ofx,,

)

In (35 one may regard p, as the angular momentum about the
-1

m, — p, as X, — o.

center at infinity. More precisely -x, " .

The case of the potential Vs that is of one Newtonian center, is
instructive. The separating coordinates corresponding to C1 are

elliptic-hyperbolic with foci at (0,0) and (x,,0). If one obtains

5

one center by merging (x, — 0) these coordinates become polar

and the corresponding invariant is the trivial one, Cél) = mg
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However, if one lets x, tend to infinity the coordinates become
parabolic. The corresponding invariant is C. for the Stark po-
tential and Cg:) in the limiting case ¢ = 0. The connection
between separation of variables and admissible operators of the
Hamilton-Jacobi equation is explained in §2.2.3 and the connection
between admissible operators and constants of motion in §2.2.1,
Note that Céz) is equal to Al’ the x-component of the Runge-
Lenz vector.T Thus the fact that the Hamilton-Jacobi equation
with a Newtonian potential separates in two distinct coordinate
systems (polar and parabolic) and has two distinct invariants,
angular momentum and Runge-Lenz, is a direct consequence of
Euler's discovery that < is an invariant associated with V1
for arbitrary values of x,, and y. Note further that the third
way of obtaining V6(-y — 0) gives an invariant Cé3) which is a
linear combination of Cél) and ng). The corresponding separ-
ating coordinates are elliptic. This may be formulated as a general
principle. Assume that the Hamilton-Jacobi equation separates in
two distinct coordinate systems. To these correspond two inde-
pendent quadratic invariants. From these invariants one finds an
infinity of invariants by linear combinations. By this detour one
discovers that two separating coordinate systems generate a one-
parameter family of separating systems. This family, however,
does not give any new independent invariants.

For one Newtonian center the problem has spherical sym-

metry and all components of the angular momentum vector are

T Since V could also be obtained as a limit of two centers on

the y-axis it follows that A, is also invariant,



- Bh

geometric invariants. Similarly all components of the Runge-Lenz
vector are dynamic invariants. These may be obtained from the
Runge-Lenz component shown in Table 2.1 by forming the commu-
tator with the components of the angular momentum. As is well-
known, see e.g. [31], when the energy E is negative (elliptic
orbits) the six invariants form the ILie algebra O(4;R). When
E > 0 (hyperbolic orbits) the algebra is O(3,1;R). The case
E = 0 (parabolic orbits) is a limiting case of both E < 0 and
E > 0. Thus we expect the Lie algebra for E = 0 to contain
the algebra of Euclidean motions in three dimensions, since this
algebra is obtained by the limit process called <:on1:ra.ctionTT from
both of the two algebras mentioned; as is easily seen it is actually
the full symmetry algebra. Obviously, as long as quadratic invari-
ants are considered the Hamiltonian function H itself may be
counted. (The special role of the Hamiltonian is discussed below).
However, by definition H commutes with every constant of motion.
Thus by adding H to the invariant one obtains the direct product
of a one-dimensional Lie algebra and whatever algebra one has
without H. For instance, adding H to the algebra of the har-
monic oscillator, which is su(3) (see below), gives u(3).

Finally we remark that the invariant C., obtained in Table
2.1 does not give the complete set of invariants for V.{.. We shall,
however, see below that a complete set of invariants is obtained by
way of the harmonic center.

B. Harmonic Centers.

Considering now harmonic centers one finds that due to the

11 See, for instance 132].
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quadratic nature of the potential there are actually only two cases:
One harmonic center, or a constant force field (which corresponds
to a harmonic center located at infinity)}. Since (x—x*)2 & xz -
2xx, + constant, one harmonic center at a point is the same as
one hérmonic center at a displaced point and a constant-force

potential. Displacing two centers to the same point, chosen such

that the constant forces cancel, one finds that ﬁpz + ypi _gives
2

>

the same force field as (B + y)pz where pz = (x - xe)z + vy
x, = yx, /(B+ v. If P+ y =0, the effective location of the center
is at infinity and using a proper limit one gets a constant force
field. Similarly, ﬁpz + {x, B # 0 gives one harmonic center at
(xe,O), x, = - t/2B. Finally, the dipole limit and the constant-
force limits yield the same results.

We shall define the potential of a harmonic center (at the

origin) by

52
vV = —2—ij : | (2.47a)
J

In one dimension & 1is then the ordinary spring constant if it is
positive. We may, however, allow & to be any real number.
As stated above the number of cases is small. However, the
number of linearly independent invariants is larger than in the
Newtonian case. The spherical symmetry gives the obvious
geometrical invariants mj. In addition there are dynamical
invariants which form a symmetric tensor.

A = pjpk + ox.x (2.47b)

ik ik’
The Hamiltonian equals half the trace of this tensor, If we ex-

clude the Hamiltonian we find that the Ajk gives five linearly
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independent invariants. The mj gives three additional ones andv
the linear space spanned by these eight invariants is closed under
commutation. In fact restricting ourselves to the (xl,xz)—piane a
simple computation yields, for & > 0, that AIZ/Z'\/(_S, (AZZ-AH)/‘}"\/_ES,
m3/2 commute like m;, m,, m,, that is the algebra is

su(2). Since the same is true for the (xz,x3)—p1ane and the
(x3,x1)-p1ane the algebra, including the Hamiltonian, is " u(3) and,
excluding the Hamiltonian, su(3). This is a well-known result,

see for instance [ 31].

We now consider the limiting case of a harmonic center at
infinity, that is a constant force field. A harmonic center at
(x,,0) has potential &/2[ (x—x*)2 s yz]. If one subtracts the con-
stant 6xi/2 and puts & = - l_i,x;l one obtains the potential (x

as x, — o, ( fixed. Putting m, = (x - x,)p, - yp; one finds

- Xy My ™ Py (2.48a)

Furthermore, in the limit described above

A11 & By B pf + 2¢x (2.48b)

AIZ — BZ = PP, + Ly ) (2.48c)
The invariant A‘22 yields pg which is a trivial result since P,
is invariant. Above the Ajk are of course adjusted to the new
location of the center, that is A11 = (x—x*)2 + pf, etc. Compar-
ing with Table 2.1 one sees that the invariants B1 and BZ are

not obtained as limits if one lets a Newtonian center tend to
infinity. On the other hand another quadratic invariant, called
there C.‘., was obtained. The same invariant may also be obtained

in the harmonic case. Define A by



Then

A 2 '
2%, B3 T ™3Py - gy B-20]

Note that A is obviously dependent on m,

and AZZ . Below,

see (2.52b) we shall show a nonlinear relation between P, and

the B..
J
The commutation relations between the invariants are
[PZ,BI] = 0’ [pZ’Bz] S t.!’ [szBs] = Bz,
[Blsz] = Zépz: [BlsB3] = - ZPZBZ’ (2'49)

[B,,B3] = p,(B; - Pg)-
In previous cases discuséed here the linear closure of the basic
invariants was also closed under commutation. This is not true
in the present case (although the right-hand sides of the above
equations belong to the enveloping algebra' of the basic invariants).
Clearly, the commutator of two functions linear and homogeneous
in the momenta is also linear and homogeneous. However, one
expects commutators of quadratic functions to be cubic and by
repeated application of the commutator to obtain functions of
arbitrarily high degree in the momenta. This argument is analogous
to the reasoning showing that the proper generalization of Lie point
operators are LB operators which in principle form an infinite-
dimensional space. The linear and quadratic invariants of a New-
tonian center and those of a harmonic center have a very special
form and their linear closure happens to be closed under commu-
tation; this cannot be expected in general. The symmetry proper-

ties of a harmonic potential are said to be described by su(3).
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How do the relations (2.49) describe the symmetry of a constant-
force field? We remark only that it is surprising that this ques-
tion arises for such an elementary problem. The &iscussion of
the symmetry algebra will not be pursued further in this work.

C. The Hamiltonian as a Distinguished Invariant.

To find the symmetry algebra of the Newtonian center one
replaces the Hamiltonian H(Pj’xj) = 1/2?p§' + V by its constant
value E. This leads to different algebras for the different cases
E <0, E=0, E> 0. However, in (3.5) werdid not give constant
values to the invariants appearing in the right-hand sides of the
equations. The reason the Hamiltonian is distinguished is that in
testing an invariant we restrict ourselves to the manifold defined
by the equation, in the present case H(Sx.’xj) - E = 0. Thus we
may replace H by E. ’

D. Functional versus Linear Dependence.

Consider for example the harmonic oscillator in three di-
mensions. Its symmetry algebra is su(3); it has eight linearly
independent invariants. However, clearly there can be only five
functionally independent invariants since the phase-space is six-
dimensional. Thus a linear Lie-algebra description is insufficient.
For the potentials studied in this section the nonlinear functional
relations are actually simple polynomials in the enveloping algebra.
We shall give these relations below. First, however, let us con-
sider the simplest possible case, namely the motion of a free
particle. There are six linear invariants namely ‘pj and ,mj,

j =1,2,3. Since the angular momentum vector is by its definition

orthogonal to the momentum vector we have, for any potential,
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ZmeJ = Wy (2.50)

J

For the free particle this equation is a functional relation between
invariants. The Hamiltonian is always an invariant. In the present
case H = Ep?. It is functionally dependent on the linear invariants
as are in fact all other invariants. Thus there are exactly five
functionally independent invariants. Next we consider the potentials
in Table 2.1. We shall restrict ourselves to motions in the (x,y)-
plane. Since phase space then is four-dimensional we can have at
most three functionally independent invariants. For 7V, given by
(2.45) and for V1 to V5 (see Table 2.1) we have two linearly

independent invariants, namely C or C1 to C and H., There

5

is no functional relation between the two invariants. However for

one Newtonian center (V()) there are four invariants, namely the

Hamiltonian, m,, and two components of the Runge-Lenz vector Al’AZ

_ -1 ; ; :
(Al = m3p, * Bxp ), The functional relation is

2 Y 2 _ .2
2miH = A] + A; - p7. (2.51)

For the constant-force field (VT) we have five linearly independ-

ent invariants: H, PZ’BI’BZ'B3' The functional relations are
pZ
2 1
= s o .5
H > + ZBl’ (2.52a)
and
2. = B 52b
PZBI = BZ + 2§B3. (2. )

Finally, for the harmonic center the linearly independent invariants

ined 2.47). Th
are m,, All’ AlZ’ AZZ’ the last three defined by ( ) e

Hamiltonian is linearly dependent on these

= 2.53
ZH ALl F A&Z ( a)

11



and we have the additional relation

- 2
Ay, = Ay, + dmyg {2.53b)
2.5.2 Complete Set of Invariants. Degeneracy.

In Hamiltonian mechanics a problem in 2n-dimensional phase
space 1s called completely integrable if we have n constants of motion
in evolution. The time-dependent Hamilton-Jacobi equation can
then be completely separated (see for instance [23, §47 and §48]).
The Hamiltonian itself (assumed not to involve time explicitly)
accounts for separating out the time-dependence. Thus we find a
cémplete integral of the Hamilton-Jacobi equation.

Existence of invariants is also tied to degenéracy. For
classical mechanics this concept is discussed in [23, §52]. In
quantum mechanics degeneracy means degeneracy of an eigenvalue
of the energy, namely the existence of several linearly independent
eigenfunctions belonging to the same eigenvalue. The number of
such functions may depend on the eigenvalue. We therefore propose
to define the degree of degeneracy as the number of functionally in-
dependent invariants minus one. To illustrate the idea consider
motions in the (x,y)-plane. If the potential is due to any center
the problem is completely integrable since we have two independent
invariants, the Hamiltonian and‘the angular momentum. Thus there
is degeneracy of degree one. If the center is Newtonian or har-
monic the degree of degeneracy is maximal (=3) due to the added
invariants. For bounded motion we can use an alternative formula-

tion. We consider the dimension of the topological closureT of the

T This is a more precise notion than that of "space-filling" used
in [ 307.
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orbit in phase-space. Harmonic and Newtonian centers have maxi-
mal degeneracy. The dimension of the orbit (as defined above) is
one, and the motion is periodic. Other centers have only two invari-

ants, the motion is not periodic (we exclude isolated periodic motions)
and the dimension of the orbit is two. Finally, if we have no invari-
ants except the Hamiltonian the dimension is three. Ergodic motion,
f(;r which the orbit comes arbitrarily close to any point on a hyper-
surface in phase space given by H = constant, thus has no degen-
eracy. Degeneracy and "ergodicity" are complementary concepts.

In §2.2.3 we considered the relation between invariants and separ-
ability of the time-indt%gendent Hamilton-Jacobi equation. Any
additive separation of/lHamilton-J’acobi equation is equivalent to a
multiplicative separation of the Schrddinger equation (cf. also §3.2).
To obtain a variety of examples we consider three-dimensional
motions. If the degree of degeneracy is one, that is there is omnly
one invariant (in addition to the Hamiltonian), the (time-independent)
Hamilton-Jacobi equation separates once so that S may be expressed
as the sum of one function of one variable and one function of two
variables. Examples are potentials cylindrical around the x-axis

with my as .the only invariant The potential given by (2.45a), and

V, and VS of Table 2.1 have degeneracy two (since m, is also

A | 1
invariant). The Hamilton-Jacobi equation then separates completely
and the problem is completely integrable. (See, for instance, the

end §48 of [23]). A central potential, excepting the Newtonian and
Hamiltonian centers, has degenerécy three. The most famous ex-
ample is the Newtonian potential with an Finsteinian correction.
The motion of the perihelion causes the orbit to fill a two-dimen-

sional region in configuration space and in phase space. Finally,
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Newtonian and harmonic centers have degeneracy four. Complete
separation of variables is possible in two independent systems of
coordinates, and bounded orbits are always one-dimensional and

periodic.

2.5.3 Invariants of Superimposed Potentials.

In §2.5.1 the approach of limit processes was used to obtain
new potentials admitting higher symmetries from known ones. In

this subsection a different and in a sense cornplementéry approach

is used. This is expressed in the form of the following lemma:
Lemma 2.5. Let the potentials V1 and V2 each have
guadratic invariants. Then if the strictly quadratic terms of each

invariant are the same, the combined potential V1+V2 has also a
quadratic invariant given by the sum of the two invariants minus
the common part.

Proof. This is a consequence of the general form of an
invariant quadratic in the momenta and the linearity of equations
(6) in §2.4.1. Let us give some illustrations of the above lemma.

Example 1.

A2 A2
The potential V = ap + Bp,, where p, is given by (2.45)

has the invariant (see 2.36b)

A Bz 5
( Zx*p ) T ZX?:: ﬁ Y
A = m3l: X - ——— ) P>-YP J o e
A 2+ P
The potential V1 = ap_l + ﬁp:kl has the invariant (see (2.37) with
@g = 0)

=7 -1
cl = m3[ (X'x*)PZ_Ypll - Bxoxp T + yx, (x-x.)p. .

Then according to the lemma 2.5 we can superimpose V and vy
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AN
without breaking the symmetry if x, = 2x,B8/(a+ B), that is
A A
@ = B. Therefore, if we have two Newtonian centers and add

two harmonic centers at the same locations the latter must be
of equal strength if we want to have a dynamic invariant. The

invariant of the superimposed potential is given by equation (2.46),

A
where «/2 = .
Example 2.

Consider the potential V; in Table 2.1. The strictly

quadratic part of the corresponding invariant CZ is mg Now
consider any central potential g(p); this potential has m§ as an
invariant. Therefore to the potential V; we can add any potential

depending only on p without breaking the symmetry.

2.5.4 Some New Cubic Invariants.

In Appendix II we investigate the existence of invariants cubic
in the momenta, admitted by potentials of the general form

2 2
V = V(x + vy ), v = constant. The following potentials and

corresponding invariants are found:

Potential Invariant
2 9 2 2 . 2 3
%;x L p1m+3x ypl—%x P, >
2 1 2 2 1 3 2
ix tig vy Pym t 37y PI3 XY Py o
2
e 2

Z B B 2 2.-2
(x-y) , (P1-Pp)m - 4(x -y ) *(yp; + xp,).
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CHAPTER III

3.1 INTRODUCTION

In Chapter II we considered two ways of describing the
motion of a particle: 1) Hamilton's equations and 2) The Hamilton-
Jacobi equation. The group properties of Hamilton's equations
can be analyzedtv&;ith the aid of Lie point groups, whereas the
group analysis ofj\Hamilton-Jacobi equation necessitates the intro-
duction of a special type of LB groups, which are equivalent to
Lie tangent groups. In this chapter we describe the motion of a

particle using the Schrddinger equation. In this case an invariant

is expressed by an admissible LB operator; the equivalence of

this description to the customary one follows from the corres-
pondence rule discussed in §1.5.4. The main goal of this chapter
is to relate the group structure of the Hamilton-Jacobi equation
to that of the Schrodinger equation, |

In discussing the group structure connected with the exis-‘
tence of invariants we shall use the word "group" somewhat 1ooseiy:
It may refer to a global group, but usually refers to the corres-
ponding infinitesimal operator, that is a ILie algebra. This last
term is taken in the technical sense of a linear space (which may
be infinite-dimensional) for which a bilinear skew product (commu-
tation) obeying Jacobi's identity is defined. Thus there are Lie
algebras of LB operators although such operators are not of a
type envisaged by Lie. In all Lie algebras considered there is
also an associative (often noncommutative) product defined. Thus
we may speak of the (associative) enveloping algebra of a Lie

i

algebra. Invariants linear' in the momenta are usually associated

tThis term is well-defined provided we use as canonical coordinates
either Cartesian coordinates and their conjugate momenta or coordinates -
obtained therefrom by an extended point transformations.



with geometric symmetries and the nontrivial nonlinear ones with
dynamic symmetries. For lack of a better alternative we still
use this unfortunate terminology. Actually a linear invariant de-
pends on a geometrical symmetry which can be expressed in con-
figuration space; the other invariants may often be related to geo-
metrical symmetries in other spaces whose physical meaning may
not be immediately obvious (see for instance [30]).

As is well know1;1, symmetries, or invariants, are related
to ther possibility of separating variables. In §3.2 we show -the
correspondence between a (partial) multiplicative separation of an
arbitrary linear homogeneous equation and an admissible LB oper-
ator, and point out how this result may be used. In §3.3 we give
an 'a.lgorithm for constructing a LB operator, admitted by the
Schr‘o’dingei- equation, from a LB operator, at most cubic in the
momenta, admitted by the Hamilton-Jacobi equation. This is of
practical interest! In [20] the general form of quadratic invari-
ants for the stationary Schrodinger equation with a general value
of the energy E was determined. The corresponding problem
for the Hamilton-Jacobi equation is much simpler to solve, as was
shown in §2.3.1. Also, the more difficult (although presumably
less important) problem for the case E = 0 was solved in §2.3.1.
The correspondence rule of §3.3 immediately transfers these re-
sults to the Schrodinger equa.tion.v In §3.4 we discuss relations
between quantum mechanics, as expressed by the Schrbodinger equation,
and classical mechanics, as expressed by Hamilton's equation or,
equivalently, by the Hamilton-Jacobi equation. First we look for a
mapping between classical observables and quantum-mechanical

observables; the former are expressed as functions in phase
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space and the latter as LB operators. The Weyl transform gives
a mapping between the two sets of objects. It can be used to des-
cribe general canonical transformations in quantum mechanics and
Weyl shows that the equation of motion, that is the Schrodinger
equation or equivalent formuiations, may be expressed in a form
which does not depend on any specific canonical coordinates. Thus
Weyl has shown that an essential fact of classical mechanics is
also true for quantum mechanics. Weyl is not interested in find-
ing an isomorphic transform. In fact 'it can be shown that this is
impossible. However, Weyl's transform justifies the basic assump-
tion of quantum mechanics that commutation relations between any
set of canonical variables are isomorphically mirrored by relations
between the corresponding operators. Our approach is to show
concretely how, starting with a correspondence rule for very
simple functions in phase spéce, the requirement of isomorphism
extends the correspondence to more complicated functions. We
also use a different method of constructing correspondence rules,
namely requiring that classical invariants map into quantﬁm-nﬁech—
anical invariants. The question arises whether these two methods
give the same results and whether they give the Weyl transform.
For invariants at most quadratic in the momenta we find that our
construction agrees with Weyl's transform, and that the corres-
pondence rule is an isomorphism. For cubic invariants this is no
longer true; Weyl's rule does not necessarily take an invariant into
an invariant. However, one can sometimes achieve this by modi-
fying Weyl's rule. The case of quantifies which are invariant for
one value of energy only, which we may normalize to be zero,

may not be physically very important but leads to mathematically
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interesting problems as discussed in §3.4.

We are left with various mathematical questions. Are there
variations of Weyl's rule which still solve the problems Weyl posed?
In particular, in special cases the requirement of admissibility
leads to variations of Weyl's rule. Can this be formulated in a
general way? In view of the impossibility of a complete isomor-
phism, how do we describe the difference in group structure of
classical and quantum mechanics? Our method of constructing cor-
respondence rules by a combination of the requirement of isomorphism
and the requirement of invariants being mapped on invariants seems

fruitful but needs further discussion.
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3.2 SEPARATION OF VARIABLES IN ANY LINEAR

HOMOGENEOUS EQUATION

The problem of determining dynamical symmetries of the
Schrodinger equation was at an early stage related to the problem
of separation of variables. For more recent studies of this prob-
lem see for instance [33] and [25]. This gave rise to a system-
atic study of the connection between group theory and separation of
variables for various important equations. An account of this re-
search is given by one of the main investigators in this field in
[16]. ©Let us recall very briefly the relevant ideas. Suppose we .
are given a linear, homogeneous second-order partial differential
equation

Q = 0. (3.1)
Together with (3.1) we consider the equation

Au = \u {3.2)
where A is a second order linear operator. The separable solu-
tions are exactly those solutions of (3.1) which are simultaneously
eigenfunctions of (3.2). Here X\ is the separation constant.
Obviously we do not know a priori the operator A but with every
separable coordinate system of equation (3.1) we can easily associate
an operator A. There are two cases to be distinguished:

i) The operator A Dbelongs in the enveloping algebra of
some Lie algebra G of Lie point operators of equation (3.1).

ii) The operator A does not belong in the enveloping algebra
of G.

The separation associated with the first case can be com-

pletely explained using Lie point operators. However, for the



group-theoretical characterization of the separation associated with
the second case the Lie point theory is insufficient. In this section
we use LB theory to characterize completely all separable solutions

of any linear homogeneous equation:

Lemma 1.1. Let u depend on x = (xl, ...,xn) and vy,
and let
m . ;
0% Lix,uu,...,u)+ fx)[ey + ) e(y)ala]l =0 (3.31)
1 m j=1 J y

be any linear, homogeneous equation of order m in (n+l) dimen-
sions, separable in the y coordinate. Here L is linear in u

and its derivatives, and

) u= 5’3—‘*- :
By‘]
Eﬁ{uil”_ik}, 12 4y enfy, o 1K S s
Then the LB operator T,
T = (Au) 5%, whare & = gyl 4 ?gj(y)a';, (3. 4)

is an admissible operator of (3.3).

Proof.

TR = L, (Au) + YL‘J (Au) + f(x)[ g(y)Au + Tg.(y)aj (Au)] .
1 k T J y

k
Therefore,

L.

TR = W J T
= gly)Q-L) + Zl,gj(y)ayﬁ + gyl uL  + ). b
k

u
1k
However,

m .
ul ‘fu L =1L, hence TQ = g(y)2 + ) g.(y)d’ & .
w ¥ LDy gly g;ly) oy
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Thus TQ| =0 , and (3.3) admits T.
=0

Equation (3.3) also admits the stretching operator

o = Rué%, A = constant, (3.5)

since it is linear and homogeneous. Therefore equation (3.3)

admits the LB operator

A 9
TE T Ty & (An « Ju)e, (3.6)

where A 1is defined by (3.4).

Theorem 3.1. If a multiplicatively separable solution for

(3.3) of the form u = G(E)Tl(y)' exists, them wu 1is an invariant
solution of (3.3) under the action of the LB operator ’/I\‘ defined
by (3.6).

Proof. The solution of equation (3.3) invariant under the
action of the operator ',I\' given by (3.6), is specified by the simul-
taneous validity of equation (3.3) and of

Au - \u = 0, (3.7)
(see Theorem 1.4). However, by definition of a separable solu- |
tion/ig.lso satisfies equation (3.7) for some constant A. Q.E.D.

From the above it is clear that every separable solution
of (3.3) is invariént under a LB operator. If the separable coor-
dinates are known, this operator is found by inspection. This can
be quite useful in obtaining admissible operators and hence con-
servation laws provided we know the separable coordinates. Con-
versely, knowing an admissible operator the corresponding separable
coordinates can be found.

Let us now give some illustrations of the above theorem:

Example 1. Consider the Helmholtz equation
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xx+ l;LYy - Ku = 0. (3.8)
It obviously admits the operators

A 9 AN 9

X) = 3 X = upg- .9

Therefore, it also admits the LB operator

_ a9 _ , 0
Xl = (uxx = hu)_a—l-l = Alh—u, (3.10)

which belongs in the enveloping algebra of the Lie point operators
(3.9) (i.e. it is of type i) defined above). The solution of equation
(3.8) invariant under the action of Xl {which is obtained by
solving (3.8) together with A1 = 0), is the separable solution in
cartesian coordinates of equation (3.8).

Example 2. Consider the Schrodinger equation for the hydrogen

atom,
luo +3u + & - Bu=o (3.11)
2 xx 2 ’ :
The LB operator

= 1 =
X2 = (xuyy -yu . - 3u + =) = A 5— (3.12)

is an admissible operator of equation (3.11); it does not belong in
the enveloping algebra of any Lie algebra of equation (3.11) (i.e.
it is of type 1ii)). The solution of equation (3.11) invariant under

the action of Xz is the separable solution in parabolic coor-

dinates of equation (3.11). This is easily seen by writing equation
A2 = 0 1in parabolic coordinates: Let
L2 2
X = _Z(g —TJ ))
(3.13)
y = &n.

Then A2 = 0 becomes

8, = B~ DEHES - m = B, (3.14)
EE nn



==

Solving equatioﬁ (-3.14) together with equation (3.11) (written in
parabolic coordinates), we obtain the parabolic solution.

In §2.4 we saw that the Hamilton-Jacobi equation with
potential l/p has two distinguished properties: i) it poésesses
an additional (to angular momentum) conser\}ed quantity (the
Runge-Lenz vecto‘r) and ii) it also separates in parabolic coor-
dinates. Both of these properties are a consequence of the
existence of a dynamical symmetry expressed by some LB oper-
ator. This LB operator is mirrored in quantum- mechanics to
the operator X (see §3.3) which leads to the conservation of the

2

quantum mechanical analogue of the Runge-Lenz vector and to the
the

separation ofﬁSchr'o‘dinger equation in parabolic coordinates.

Example 3. We now consider Tricomi's equation
xu - u = 0. (3..15)
yy o

Looking for second order LB operators we obtain (see Appendix

IV):
8 s
X. = A.w, 1 =5 Ol w0 Ts
i idu
where
A0= 1, A1= u, A2 = u , A3 = 4xux+ 6yuy,
A, =yu+ 4 R A, = 4 ¥
4 = YU xyu 3y 3X )uy_, g5 = xuxy
- 2 4 3
6yuyy, Ay = Bt Ay = 4xyuxy + By + 3x )uyy -
%xux - (3.16) F

Note that the operators Xi’ i=5,6,7, belong in the enveloping algebra

of the Lie point operators Xj’ j=0,1,2,3,4. The solution of Equa—

tion (3.15) invariant under the LB operator
Z 9
e = = iTY 3_
X 3X3.+ X+ Xg Aau’ {(3.17)
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is the separable solution in elliptic coordinates of equation (3.15).
This solution was recently obtained by Cole [40]: Let 7 = 2/3(—:{)3/2

and equation (3.15) becomes
+ u ) ok 0. (3.18)

Now let
T = sinhf§ sinn,
(3.19)
y = coshf cosn,
and write equations (3.18) and A = 0 (where A 1is defined by
(3.17)) in § and n variables. This yields the sought separable

solution.
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3.3 RELATIONS BETWEEN ADMISSIBLE LB OPERATORS OF THE

SCHRODINGER EQUATION AND THOSE OF THE

HAMILTON-JACOBI EQUATION

3.3.1 Operators Quadratic in the Momenta

We shall consider a time-independent Schrddinger equation

for a single particle of unit mass,

3

1 L

U=3 2 EE Vi®u =10 , (3.20)
=1

j J

and its associated eikonal equation (Hamilton-Jacobi equation)

3
H=2) S + V(x =0, (3.21)
=

Theorem 3.2. Equation (3.21) admits the operator

~ ¥ o
Y = Z [a_]('x') Sx. + ka(é) Sx_Sx + C(_}_E)]é—s §
j.k J j 'k

where bjk = bkj » iff (2.1) admits the operator

X = g ' s w,
E [(aJ +aJ) a 4+ b_]kux.xk + (c-c) u:l B
ik J J
Here
0b. 8a.1
R i . R
aj Zaxk,2c—3x1+F,
k+#j
OF 8%bzs
X1 Ox) 9%, 9%,
IF aF
and Px, and E



are obtained by cyclic permutation.

TP

determined only within a constant.

Note that

This constant is irrelevant

since a linear homogeneous equation for u

ud/du.

Proof.

In §2.3.1 the conditions on

F

itself is

admits the operator

a,
J

b

jk

and

C

for

Y to be an admissible operator of (3.21) were completely deter-

mined.

The results needed for the proof of the present theorem

are reviewed below: An operator of the general form A(Xﬂ’sx ) 0/9S

is an admissible operator of (3.21) iff

L

j

Applying this result to the operator Y we find,

A

9H 9dA

oH
ox.

J

9S
x

j

(byy = bu)xl

(by1 - bis )x3

0S Bx.]
x. ]

J

2by X5

~2byy,

(by cyclic permutations)

bjz

X3

+ bay

+ b

H=0

(3.

(3.

(3.

3.

(3.

4

Z22a)

22b)

22c,d, e, f)

223

23a,b)
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(by cyclic permutations) (3.23¢,d,e, 1)

cxkz ZZka.vx_Jr Db, . ko=4,2,3, (3.24a,b, c)
; j x
j k
Y ajvxj + 2a3, V= 0. (3.25)
j

First we find some corollaries of the above equations, The

compatibility conditions for (3,22)are

blle X3 T blzxzxz = 0, etc. by cyclic permutation, (3.26a,b,c)
blzxzxz -b13x2x3 + b23x1 - = 0, etc. by cyclic permutatioh.
(3.27a,b, c)

Using (3.22f), (3.26) and (3.27) we find,

= by, =0, etc. by cyclic permutation.  (3.28)

b =
12 307 %1 %34 X3 Xy X3 X5

The compatibility equations of (3.23)imply

2(VEay, =0 (3.29)

j J

where V2 is the Laplacian operator in three dimensions.

Next we derive some formulas for an admissible operator of

the Schr&dinger equation, An operator of the form

% = (E A, 4 Byu o+ Cu)é% .
juk j ik

is an admissible operator of (3.20) iff



.-

This leads to the following set of equations:

(B, - B33)x; = 2B13x3 ;
(Buy -~ B33)x3 = 'zBlaxl i

(by cyclic permutation) ,

(3.30a)

(3.30b)

(3.30c,d, e, f)

Blzx3 + Bz3x1 + B31 X, =0 , (3‘30g)
s 2 = =
aAlXI ZA3X3 +v (Bl[ B33) - 0 »
— 72 - -
2'Azxz ZAax} + V¢ (Bzz Biy3) = 0,
Ale+ A,xz + VE By, =0 , (3. 215
A3x1 + Alx3 + V2B, =0,
A3X3 + Azx3 + VZ Bz3 = 0 ¥
- = L 2 -
cxk = 22 Bkjvx. ZVBkkx + V%A, =1,2,3 (3.32a,b,¢)
] k
i v 2 2¢ = 3.33
2y (Ajvx_ + 28, ’”ijkajk”ijBjjx )+2\r\7 B,,+VZC = 0, ( )

ik J j
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We may now establish relations between the operators Y
and X. The set (3.30) is identical with the set (3.22) if one re-
places Bjk by bjk’ and the homogeneous part of the set (3.31)
is equivalent to the set (3.23) if one replaces AJ. by aj. There-
fore, we propose Bjk = b. and A. = a, + a,. Usipg (3.25) to

jk j i j
simplify (3.31) we find a particular solution

a. =) b, , i=4,2,3 . 3,34
5= &b i=1,23 (3.34)
k k

Now (3.32) becomes

= = + ] = ,3
C c + & (b23X1XZX3 alxlxl)’ ) 1: 2, 3. (3 Ssa'lb’ C)

Before proceeding further we must prove that the set (3;35) is

compatible, i.e., that ijxk = kaxj. The compatibility of the
terms c¢_, a. is obvious. Furthermore,
*5 Ix.x,
i
b - b = =
By xX3X; 13 % % %5 %3 blzx3 X3 X> Xz 8

where we have used (3.26), (3.27), and (3.28). The set is thus

compatible and

C = =-c + %(alx + F) (3.36)
1
The equations for the first derivatives of F follow from (3.35).
Finally, using (3.34) and (3.36) in (3.33), and noting that from
(3.22f) and (3.29)

Z(VZAJ. )x. . (BIZX3 +Bay, +B31xz)
j j

Xj X2 X3 X,

J

+ Z(Vzaj) =0,

we see that (3.33) reduces to (3.25). This concludes the proof

of the theorem.
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We shall now derive a corollary from Theorem 3.2 which
gives correspondence between the operators Y and X 1in a more
transparent form. In §2.3.1 it was shown that the most general
quadratic operator admitted by (3.21) is the sum of a linear operator
Yl' given by equation (2.20), and a quadratic operator without linear
terms YZ' given by equation (2.21). Using these results and the
notation introduced by equations (2.19) we may now state the

corollary.

Corollary of Theorem 3.2. The correspondence rule of

Theorem 3.2 may now be expressed as the following substitutions
Y=|A+tc@|E - X=|& -c@|u> (3.37a)
=1 89S : du _

where A 1is obtained from A as follows

B -9 e B 22 B
B~ Py ===y M, Mj-z Bites X1 Py
] Kk,
(3.37b)
- 1 — — — —
A—A=%+ P. , K.~ K, =x, + y - r*p
Z Zx} [ K xJ ZJZxekPk r P3
J

If A and B are two of the quantities Pj’ Mj’ etc., then

AB — 1/2{A, B} = 1/2(A B + B A) with the following two

exceptions

A% — AT -

- 1
Kz} - =8 . (3.3 7¢)

1 f—
, P.K —-—E{Pj, i

1

4 1}
We start with Pj-> ?j' However, since the

differential operator ?5 no longer commutes with‘functions of the

xj the correct ordering has to be found. The two basic rules are

to let the functions of . precede the differential operator (in the

linear case) and to use the anticommutator for purely quadratic

terms. The same function c(x) is used in Y and X. The

additional terms 1/2 and xj appearing in A and Kj
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contribute to ?(3_:_), as shown in the examples below. The basic
reason for these terms is that the stretching operator (correspond-
ing to A) and the special conformal operators Kj leave the
Laplacean of u invariant only if the u is suitably modified.
Note that the formula for the gquantum mechanical analogue of the
Runge-Lenz vector (see, for instance, [31]) becomes a special
case of our use of anticommutators.

Rather than give a general proof of the corollary, we shall

give two special examples. First consider the special case
Y = A+ C(_’S) -—a-.
9x

Then a, = x., b,, = 0, = 0

j v ik
Theorem 3.2

Je = a; = 1. Thus according to
X = (Z ooy + cu - c(_:s)u) -a'%

: J

]

_ L : . | 9 —_—
_(;xjaxj+E-CE))uEE=(A-C(§))u§J
J

Secondly, let
Y= (Mx, + o) &
172 9S

Using the explicit form of Y we find from (3.34)

a; = -X1 X3, :z = -4xzx3 , 23 =El(5x§ -3x;‘ -x:'),

and from (3.35) and (3.36)

F, =F, =0, F, =-1, 2c=-x, .

We can now write X from Theorem 3.2. On the other hand, a
straightforward calculation of 1/2{“M"1,T<'2} , which we advise the

reader to carry out, shows that the substitutions described in (3.37)
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give the same result.

General value of E. As shown in §2.3.1, if V(x) is re-

A A
placed by V(x) - E where V is fixed and the energy E may

take any value consistent with the problem the general form of Y

reduces to

Y = (a. P.P, + B, P.M. + y., M. + K.P. + \,M, o (3.38)
.Z’k i T PPy VM + G P JJ+°(’—")BS'
B

The corresponding operator for X 1is then

o g 9 |
KB, M, c(;_:))uau. (3.39)

3.3.2 Operators Cubic in the Momenta

In this subsection we only consider the more interesting
case of arbitrary values of E, we also restrict ourselves to two
dimensions. The most general invariant of the Hamilton-Jacobi
equation, cubic in the momenta, for the above case, was given in
§2.3.2 by equation (2.27c¢). To this invariant corresponds a
quantum mechanical one, given by equation (3.40) below iff equa-
tion (3.42) holds.

Theorem 3.3. To the invariant Iy defined by (2.27c) of

§2.3.2 corresponds the quantum-mechanical invariant

i} 5
Ko g8 e Qoo ¥ Byl b gt jzk(Bjkuxjxk ¥ Aj“x].”c“)"é"ﬁ ’

where (3.40)
By = %duzy + by, By = %dzux + bp, By = "é‘duzx + by, (3.41)
A, = -4, + a, C = 3A, + 3A;_,
J J J X y
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iff
dl]l VXXX + dzzz VYYY + dllz VXXY + dZZI Vyyx + (431'2d112xy) vx
£98 ¥ ; (3.42)
(4a; -2dzz, ) V + i -
A = T

In (3.41), the functions aj(x) and bjk(x) are defined by
(2.27a,b). For example, a; = a-By, « and B arbitrary con-
stants, etc.

Proof. The proof although cumbersome is similar to that

of Theorem 3.2 and is omitted. Let us give an illustration.
Example. We now consider a non-trivial invariant, cubic in the
momenta. Consider the special case of a non-isotropic oscillator

with potential

V = x* + %—yz
Then
T ol xy?
Az = myp; + 27 P - 3 Pz
is a classical invariant. (See Appendix II), Therefore

dZZZ =%, d = - vy, all other de = 0,

A 3 A 2
a =3 3, 7 -

In order to satisfy equation (3.42) take

_ 1 _ _ 1 _
g =l =0, oy =sdyyy =0,
xy xy
by = O
Equations (3.41) indicate that
Byy=20. B,, =0, By =0



-105-

Therefore to the classical invariant A; corresponds the quantum

invariant

3 2
_ 1 X
A3 xuyyy yuxyy + gxyu - %-ux + —-g——uy.
The question of‘general correspondence rules between

classical dynamical variables and quantum-mechanical observables

will be discussed further in §3.4.
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3.4 AN ISOMORPHIC CORRESPONDENCE, WEYL'S TRANSFORM

AND THFEIR LIMITATIONS

3.,4.1 The Problem of an Isomorphic Correspondence

We shall now discuss correspondences between classical
quantities and quantum-mechanical quantities. The former will be
represented by dynamical variables, that is functions of the =x.
and pj (but not of time). The latter are the quantum mechanical
observables which normally are expressed as Hermitian differential
operators. Since infinitesimal unitary operators are skew-He rmitian
and since the commutator of two Hermitian operators is skew the
number i =~ -1 occurs frequently in quantum mechanical formu-
las. However, as will be seen, this can be avoided, see also [ 34,
CH. 16]. Furthermore, we shall express all operators in Lie-
Bicklund form, the correspondence rule 1.49, given in §1.5.4 es-
tablishes the connection with other forms used in the literature.

In the Heisenberg approach to quantum mechanics it is
assumed that to a set of classical canonical variables (qj,pj)
correspond quantum mechanical operators (Qj’Pj) such that the
classical commutation rules

[Pyl = 8. [95.9] = [Py ] = O, (3.43a)
are mirrored by the rules

[QP] = byl [QpQ] = [PpPy] = 0. (3.43b)

Here ¢ 1is a constant and I 1is the identity operator. For a
discussion of this approach, see for instance [35, Ch. IV].
This basic correspondence principle just described was

assumed on physical grounds. It involves a limited isomorphism.



-107-

It assumes that there is a mapping from functions in phase space to

a space of operators which preserves certain commutation relations.
Note that, from a mathematical point of view, the correspondence

rule is incomplete: Assume that we have made the correspondence

for rectangular coordinates qj = xJ. and their conjugate momenta P
and then make a canonical transformation to variables q_f.’, p'k. A con-
structive formula giving the corresponding Q; P"}. as functions of Qj
and Pj is needed. Also it must be shown that assuming (3.43b) for
both systems is consistent. Weyl [ 36,11.10 and IV 15] made a pro-
found investigation of some relevant mathematical problems: 1) Assume
that the operators corresponding to = and P; have been found. Weyl
gave a rule, called the Weyl transform, for constructing an operator
corresponding to any (reasonable!) function of xj and pj. 2) He showed
that applying this rule to any classical canonical transformation one gets
a quantum-mechanical canonical transformation which has the desired
property that the equation of motion (in this case the Schrodinger equa-
tion) can be formulated in a coordinate-free way. The relations (3.43b)
follow for any set of canonically conjugate variables.

Weyl only shows a limited isomorphism, and he never claims
that his transform is a full isomorphismT. In fact, Van Hove [ 37] shows
that a full isomorphism is not possible. Here we shall show this same re-
sult in an elementary way. Our approach will be to assume a correspon-
dence rule for very simple dynamical variables and then try to extend

them to more complicated ones so that isomorphism is retained as long

as possible. The rules so obtained will be identical with Weyl's. The

Weyl transforms of certain simple variables are given explicitly in [ 38].
The discussion by Hermann [ 34, Ch. 16] is a useful reference; we agree

with him that there are many mathematical problems in elementary quantum

t Dirac [35,p.87] considers the assumption of a full isomorphism but
quickly retreats to physically safe ground, namely to (3.43).
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mechanics to which mathematicians have paid insufficient attention.

Step A. (Linear QQuantities). As stated above we shall pro-

ceed from simple cases to successively more complicated ones.
One measure of simplicity is the degree in the momentum variable.
We note that the difficulties arise because x, and P; do not
commute. For this reason a term such as PP, may for practi-
cal purposes be counted as linear. Thus many of the essential
points can be shown by considering only one pair of conjugate vari-
ables (x,p). Using this simplification, we may write the corres-

pondence rules for linear operators as

Fé] 0
f(x) == f(x)uﬁ-l, P - uxFﬁ’ g(x)p -~ (g(x)ux +

%g'(x)u)%. (3.44a,b,c)

The second rule is, of course, only a very special case of the
third. However, it is written out explicitly because the third rule
may be derived if we assume the first two rules and isomorphism.
The correspondence (3.44) has all the desired properties: The
linear quantities (classical and quantum mechanical) are closed
under commutation and are hence Lie algebras. The correspon-
dence (3.44) is a (complete) isomorphism. If one quantity happens
to be an invariant then so is the corresponding quantity. Weyl's’
transformation rule also gives (3.44).

Step B. We now add p2 to the linear quantities. Classi-

cally, we find

Z 2 = 2
[gx)p,p ] = 2g'(x)p = h(x)p . (3.45)
Thus, we no longer have a closed Lie algebra. We require a
limited isomorphism in the sense that one application of the com-

mutator to any linear combinations of the basic set f(x), g(x)p,
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PZ should give an isomorphism (repeated application of the
commutator would give cubic quantities and are not considered at
this step.) The following correspondence rule leads to an iso-

This includes as a special case pz - uxxa/au. Conversely,
assuming the special rule and requiring isomorphism leads to the
general rule (3.46)

Invariants will be considered after the next step.

Step C. The function h(x)p2 was not among our basic set

of quantities f(x), g(x)p, p2 but was obtained from them by com-
mutation. We now add h(x)pZ to our collection, or rather gener-
alize p2 to h(x)pz. Any commutator of a linear combination of
the first three quantities will be a linear combination of the aug-
mented set and the correspondence rules yield an isomorphism.
If we now let h(x)pz be a factor in a commutator with the first
three, in particular if we form [pz,h(x)pz] and reQuire isomor-
phism we are led to the rule (3.47) below. However, if we also
consider [g(x)p,h(x)pz] we see that (3.47) gives an isomorphismr
iff g"(x) = 0. Thus adding the rule

k(x)p” == (ku_ + 3kiu_ + Jk'u_ + Lk (3.47)

to the previous rules we have isomorphisms for commutators of

linear combinations of the set

2
f(x), p,» xp, h(x)p . (3.48)
The rule (3.47) is still a special case of Weyl's transform. Note

that in generalizing p2 to h(x)p& we have to specialize the
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function g(x)p considered in Step B to the two cases p or xp.

Even with the specialization mentioned the rules obtained
are useful for discussing the invariants. The most general quad-
ratic invariant in two dimensions is, for a general value of K,
a linear combination of plz, pZZ, m32, myp;, M3P,, c(x) (see
§2.3.1). Let us consider for instance m32' in detail. It is
xzpzz + yzplz - nyplpz. As remarked earlier only canonically
conjugate variables can cause trouble. Thus the first two terms
are essentially of the form p2 and the second term of the form
xp. The set (3.48) thus gives rise to all possible quadratic invari-
ants, including the Hamiltonian. Thus, at this state our corres-

into invariants

pondence rules still take invariants/as seen by using Lemma 1.3
of §1.5.2. Note that for this to be true the specialization g(x)p
to p or xp turned out to be harmless whereas it is essential
to keep the function f(x) in full generality.

Step D. Adding the function k(x)p3 to the basic set (3.48)
we obtain the set

fx), P, xp, h(x)p°, k(x)p . (3.49)

Taking the commutator of linear combinations of the old set with
k(x)p3 we obtain a correspondence rule for 1(;;;)p4 which agrees
with Weyl's rule (an explicit formula, in different notation from
ours, is given in [38]). However, in order to obtain an isomor-
phism it is necessary to specialize the basic set by the require-
ment f" = 0. This restriction is necessary even if we specialize
h(x)pZ to pz. It is clear from the results of §2.3.2 that the
general cubic invariant is not a linear combination of the set (3.49)

with f(x) restricted to be at most quadratic. Thus we cannot

use Lemma 1.3 of §1.5.2 to derive admissibility. (According to
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[39], if one considers the basic set (x,xz,xp,pz) and their
Weyl transforms, and then forms the commutators with the Weyl
transform of an arbitrary function F(x,p), an isomorphism is

obtained.)

3.4.2 Weyl's Transform Versus the Rules Derived in §3.3

A. Arbitrary value of E.

a. Operators linear and quadratic in the momenta.

The most general classical invariant is given by (3.38) and
the corresponding quantum invariant by (3.39). The latter agrees
with both the construction given above, based on the requirement
of an isomorphism (see equations (3.44), (3.45), (3.46)), as well
as with the results obtained using the Weyl's transform. There-
fore, for invariants at most quadratic, the "quantizations" obtained
through Weyl's transform, the requirement of an isomorphism and

our rule are identical,

B. Operators cubic in the momenta.

It was shown in §3.4.1 that we cannot extend the isomorphism
indefinitely (see step D). Trying to achieve an isomorphism

for as long as possible we obtained some correspondence rules which
were identical with Weyl's rules. However, because these corres-
pondence rules do not form an isomorphism they will not in general
take a classical invariant into a quantum mechanical one. On the
other hand our rules derived in §3.3 will achieve this if equation
(3.42) is satisfied. It turns out that Weyl's transform is a special
case of our rule given by (3.41), where

28

B 1~ Y12xy 2 = 21y

= 0, 2a (3.50)

ik

In this case (3.42) reduces to
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Yot Ve ¥ dZZZVyyy & dllZVxxy ¥ dZZIVyyx -
(3.51)
Let us summarize: For potentials V, where V satisfies equa-
tion (3.51) our rule and Weyl's rule are identical. However for
potentials V which do not satisfy equation (3.51), but satisfy equa-
tion (3.42), the two rules are different and only our rule generates
a quantum invariant.
In example 1 below, which is very simple, equation (3.51)
is satisfied identically. This is no longer the case for example 2.
Example 1. a) Let V = F(y). Then Py and hence pi
are invariants. Put djkl equal to zero except that d = 1.

111
Then (3.51) is trivially satisfied. b) Let V = G(x“+y%), then

3 . . _ 3 _ .3
m, and hence m; are invariants. Let d111 = -y, dzzz = x ,
_ 2 _ 2 3 S i .
d112 = 3xy, d221 = - 3x y and (3.51) is satisfied. Thus, if Py
or p,, Or m,; are invariants then Weyl's transform gives the
. 3 3 3
quantum-mechanical analogues of Py ©r Pp,, oOr mj.

Example 2. Let v = (x2+y2)—1/2. Then the x-component
of the Runge-Lenz vector m, P, + x/p is an invariant. Multiply-

ing this invariant by m; we obtain another (trivial) invariant.

2 2

Letting dlll = 0, d222 = XK d112 =y, d221 = - 2xy, the left

hand side of (3.51) gives 3y(x2+y2)_3/2. Therefore (3.51) is not

satisfied and Weyl's rule does not give a quantum invariant. Now

we return to equation (3.42) and to more general rules (3.41). In

this case it turns out that (3.42) can be satisfied if we take a; =
— - 1 3 ey =

0, bij = 0, a, = -3 (the Weyl rules give bij 0, a 0,

a. = - 1)

Example 3. For the example presented in §3.3.2 equation

(3.51) is satisfied identically and therefore in this case (3.4l) reduces
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to Weyl's rule.

B. The case I = 0.

The general form of a quadratic classical invariant for this
case is given by the operator Y, (2.21). Operators of this type (or
rather the corresponding function in phase space) are no longer, in
general, in the linear closure of the set (3.48). Therefore, if we
find the corresponding operator by Weyl's rules we do not expect
it to be admissible; since Weyl's rules do not form an isomorphism
and lemma 1.3 can not be applied. Actually one can verify directly
that the correspondence rule derived in §3.3.1 (based on admissibility)
is different from Weyl's rule. | |

The following porint is . worth noting: Consider the special
case of (2.21), Z = (Az 4 C(E))'{?"S"f This operator is in the linear
closure of (3.48), but its Weyl transform is still not an admissible
operator. The reason is that in proving that an operator is admissi-
ble for E = 0, (but not for general values of E), we assume
H =0 as well as ijH = 0, ijDXkH = 0 and then the isomor-
phism is destroyed.

C. Generalizations.

The correspondence rules derived from isomorphism can be
very useful for relating invariants of two equations, provided the
equations belong in the closure of the rules. As an example con-

sider the following corollary of step C of §3.4.1: Assume that
2
A = g(x)Sx + f(x) - E = 0,
admits the LB operator

B = [G(x)sz + uxsX + F(x)]—aa—s.
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Then, if A and B are constructed from A and B with the

aid of formulae (3.44), (3.45), (3.46), the equation A = 0 admits
1:3
Jdu’

However, deriving correspondence rules on the assumption

the LB operator B

that these rules form an isomorphism is not always possible. Then
a synthesis of the algebraic approach used above and of the direct
approach used in §3.2 is very fruitful in dealing with the problem

of relating the group structure of two different equations.
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CHAPTER IV

4.1 INTRODUCTION

In this and the next chapter we shall be concerned with
the general group properties of evolution equations. The aim
of this chapter is to establish a one-to-one correspondence between
admissible operators of evolution equations (derivable from a vari-
ational principle) and conservation laws of these equations. This
correspondence takes the form of a simple algorithm given in
§4.2.

The existence of a connection between the conservation laws,
for differential equations obtained from a variational principle, and
the invariance of the corresponding variational integral was estab-
lished in the works of Jacobi, Klein and Noether. Jacobi [41] con-
sidered the equations of classical mechanics, Klein [42], [43] the
equations of general relativity,and Noether [19] an arbitrary system
of differential equations. Noether's result, now known as Noether's

f

theorem ', says that if the values of a variational integral, for
arbitrary admissible functions, are invariant with respect to an
r-parameter continuous group of transformations of the dependent
and independent variables, then the Euler equations, for the
extremals of the functional under consideration, have r linearly
independent conservation laws. All these conservation laws can

be obtained by a certain standard formula. Noether's theorem
has two limitations: 1i) it provides a sufficient condition for the
existence of conservation laws and 1ii) the order of the deriva.tivés
on which the conservation law depends does not exceed the largest

order of the derivatives which appear in the corresponding

Lagrange function (i.e. LB groups of transformations were not

TAo:.tually this is the first of the two important theorems of [19].
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considered). The inverse of Noether's theorem (i.e. given a con-
servation law find the generator of the corresponding group) was
considered by Bessel-Hagen | 44 ] in 1921. Since then many gener-
alizations of Noether's theorem and its inverse have been investi-
gated, see for example [45] s [46] s [47] » [48]. In particular,
Ibragimov [ 49 | observed that in considering the invarijance proper-
ties of the variational integral, it is sufficient to consider only its
extremal values (i.e. the values obtained when the functions occurring
in the integrand satisfy Euler's equations) instead of all its admissible
values; this weak inva.rirance condition turns out to be a necessary and
sufficient condition for the validity of the conservation laws considered
in Noether's work. Also, Ibragimov [15] recently proposed another
generalization of Noether's theorem based on the notion of a weak
Lagrangian and the concept of LB groups of tangent transformations
[15-] .

However, in spite of all the above generalizations, any
approach based on Noether's theorem has the following disadvantages:
i) Noether's theorem (and its generalizations) do.es not relate admis-
sible operators of Euler's equations to conservation laws; it relates
admissible operators of the variational integral to conservation laws
(of Euler's equations). The latter admissible operators, are, of
course, also admitted by FEuler's equations; but not every admissible
operator of Euler's equations is an admissible operator of the vari-
ational integral. Therefore, given an admissible operator of Euler's
equation we must first check if it is also an admissible operator of
the variational integral; only then can we construct a conservation

law (using a standard algorithm).
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ii) The inverse of Noether's theorem provides a way of
finding an admissible operator of Euler's equations given a con-
servation law, which however may be only of formal value (different
quotients are involved which may not be well defined).T

For the above reasons we shall examine the connection
between admissible operators of evolution equations and conser-
vation laws using a rather direct approach which is not based on
Noether's theorem. |

Before presenting this result we first review in §4.1.1 some
methods of obtaining LB operators and then review in §4.1.2 different

methods of obtaining conservation laws.

4.1.1 Methods of Obtaining LB Operators

1) The first natural way is to use the definition of a LB
admissible operator (see §1.7 equation (1.57)). This classical
apéroach, although in principle straightforward, is in practice very
cumbersome. It has been used by Kumei [ 68 ] for obtaining LB
operators of the Korteweg-de Vries equation and of the cubic
Schrodinger equation.

2) Kumei [ 50 ] used‘a series expansion (given by Scott et al,
[51] ) based on a B‘a'cklu.nd transformation (BT), to obtain LB oper-
ators for the Sine-Gordon equation. This approach can also be
used for other equations possessing BT [52].

3) Olver [53 ] uses what he calls a recursion operator

A to obtain new LB operators from known ones. The idea is

TNote added in proof: However, Olver [72] has recently obtained
results similar to the ones presented here, by analyzing further
Noether's theorem. I thank Professor G.B. Whitham for communi-
cating to me this interesting preprint.
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quite simple: Let € = 0 be the eguation under consideration..
Define the operator A(2) by X0 = A(Q)n, where X = nd/8u
is some LB operator. A recursion operator A is one which satis-
fies [A(Q2),A] = 0. Assume that the operator X 1is an admissible

LB operator; then, by definition
X0l = 0 or A(Q)n] =0
Q=0 , Q=0

AAQ)N] = 0 or AN 0.

Q=0

Q;O
Therefore, if the operator X = 19/8u is an admissible LB oper-
ator and A 1is a recursion operator, then Y = Ana/au ié also
an admissible operator. The above approach is used in [ 53] for
obtaining LB operators for the Korteweg-de Vries (KdV) equation,
for the modified KdV equation, for the Burger's equation and for
the Sine-Gordon equation. This approach has the disadvantage that
a recursion operator must be found, whose general form is not

a priori known.

4.1.2 Methods of Obtaining Conservation Laws

For the sake of completeness we first present some
early impbrtant results' in the study of evolution equations in
the
general and of/KdV equation in particular: Let us consider con-

servation laws of the KdV equation,

= 4,
u + uu_ + . . 0, (4.1)

in the form

p+ B_=0 (4.2)
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where p, the conserved density, and -B, the flux of p» are

functionals of u. The following four functionals are among the

polynomial conserved densities of the KdV equation:

. _ 1.2 _ 1.3 2
L T kR - Rl
1 4 2.9 2
g4 = FY -3uux+—§uxx' (4.3)

P originates from writing KdV itself in a conservation form and
> follows after multiplying the KdV equation by u. These are
obvious and correspond to conservation of mass and momentum.
The p3 Wwas found by Whitham [54] in his development of a
variational approach to the study of nonlinear dispersive phe-
nomena. g, and Ps, (which is not given here) were found by
Kruskal and Zabusky [ 55] in their development of a nonlinear ex-
tension of the WKB method. Five more explicit conservation laws
were given in [ 56] and it was conjectured that there were infin-
itely many of them. Similar conserved densities were also found
for the modified KdV equation. This apparent distinguished feature
of both the KdV equation and the modified KdV equation led Miura
to conjecture thét the solutions of these two equations are related.
Miura observed that u occurs in powers of 1,2,3,4 in the con-
served densities given by (4.3), whereas v (the dependent vari-
able for the modified KdV) occurs in powers of 1,2,4,6 in the
corresponding conserved densities, see [57]. This led him [ 58]

to the discovery of the nonlinear transformation
u = VZ:i:(-é)l/va, (4.4)

which transforms solutions of the KdV equation (4.1), to solutions

of the modified KdV equation
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2 "
vt+v vx+vxxx = 0. (4.5)

Transformation (4.4) defines "half" a Biacklund transformation
(see Chapter V), Regarded as an equation for v, it is of the
Ricatti type and therefore it can be linearized to become a
Schrodinger equation. This provides the starting point for the
inverse scattering method. Furthermore a modification of equa-
tion (4.4), yields a powerful way of constructing conservation
laws (see Al below).

After the above historical remarks we now review different
ways for obtaining conservation laws.

A. Methods based on a BT.

1. Consider the following generalization of Miura's trans-

formation, which was proposed by Gardner,

n= Yy e, ¥ ezwz (4.6)
which relates solutions of

w - 61.1.ux tu = 0, (4.7)
to solution of

w, + (-3w2-252m3+w ) =0 (4.8)

t XX'x ) o

Solving (4.6) for w in a form of a formal power series in €,
with coefficients which are functions of u and x-derivatives of

u, we obtain

w = u—eux-ez(ua—uxx) F g o (4.9)

Substituting the above in equation (4.8), the coefficient of each
power of € generates a conservation law. It can be shown [ 56]

that the coefficients of the even powers of € give nontrivial
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conservation laws.

The methods 2 and 3 below are simple variants of the
above.

2. Scott et al_[51] derived a power series, similar to
one given by (4.9), from the BT of the Sine-Gordon equation.

It is clear that substitution of that series in any conservation

law yields infinitely many conservation laws; Scott et al. derived
such a series of conservation laws by using the law of conservaiion
of energy associated with the Sine-Gordon equation.

3. Wadati et al.[59] used an approach similar to the above
to construct conservation laws for the KdV, modified KdV and the
Siné—Gordon equations. However, instead of substituting the power
series obtained through "half" a BT into some conservation law,
they substituted it into the other "half" BT which they wrote in a
form. of a conservation law.

4. Steudel [60] was the first, to our knowledge, to consider
the conservation laws of evolution equations from a group theoreti-
cal point of view. Scott et al,[51] posed the problem of using
Noefhers theorenﬁ to explain the existence of infinitely many con-
"servation laws. Steudel, starting from the BT of the Sine-Gordcn
equation, constructed infinitesimal invariant transformations (gen-
erators of LB groups), which he proved were Noether transfor-
mations (i.e. they left the variational integral invariant). Then,
using Noether's theorem obtained a series of conservation laws.,

He also used the above approach for the KdV equation [ 61].
B. Other Methods.

1. Another way of finding conservation laws is to use the

fact that the KdV equation can be viewed as a completely integrable
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Hamiltonian system [ 62]. For details see [63], [64] and [65].

2, Pseudo potentials, as developed by Wahlquist and Estabrook
provide another way of obtaining conservation laws [66] 5 [67 1« - It
is interesting that these conservation laws proceed in an "opposite
direction" to the ones found in [ 56 ], in the sense that they depend
on integrals of u instead on derivatives of wu.

3. Given a conservation law and a LB operator X it is
possible to derive a new (sometimes nontrivial) conservation law.
If p is a conserved density and X an admissible LB operator,
then X, is also a conserved density see [14]| and [50]. This
approach yields nontrivial conservation laws for the Sine-Gordon
equation [ 50 |, but trivial ones for the KdV equation [68]. Re-
cently Kumei [ 69 | established a connection between LB operators
and conservation laws of nonlinear field equations in Hamilton's
canonical form.

4. As was noted earlier Steudel was the first to consider
the group-theoretical nature of the conservation laws of the Sine-
Gordon equation and of the KdV equation. His approach was based
on Noether's theorem. Kumei considered the same problem but he
used rather direct approaches: For the Sine-Gordon equation he
used the approach presented in B3; for the KdV he considered
the equation

u, + a(u)ux + U = 0 ; (4.10)

(where a(u) is a function of u only) and the constant of motion
I(a) = [ pla)dx , (4.11)

where p(u) = p(x,t,u, u_, e..). If T 1is the gradient of the

functional I(u), then the LB operator
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X = uaryga, D=D (4.12)

is an admissible operator for equation (4.10). The proof of the
last statement (for this particular equation (4.10)) is very simple
and it is not clear how it could be generalized to cover other
equations. However, it is well known that equation (4.10) can be
derived from a variational principle; this motivated us to seck

for a generalization of the above result, which will be presented in
§4.2.

Equation (4.12) was used in [ 68] to explain why the
approach used in [ 55] yields equations describing soliton inter-
actions. Let us summarize: Kruskal and Zabusky observed that
by considering the extremal value of p3 (see equations (4.3))
subject to the constraint p, = constant an equation is obtained

which yields the soliton solution; let P23 = P3 - P then

2
I"23 = . + Zuxx - cu. (4.13)

Now according to equation (4.12) the operator X , = (DI‘23)8/8L1

23
is an admissible operator for the KdV equation (4.1). Actually

_ c 9 2] c 9
X3 = (4 * 30 )5~ t 2 o ik 1Y
(where we used (4.1) to replace U x + uu by —ut), is obviously

an admissible operator, as the KdV is invariant under translations
in x and t. Similarly, let Pr34 = py t opy t Ppyi it was
shown numerically by Kruskal and Zabusky that the equation

U5

s = Dy (4.15)

contains a two soliton solution. ILax [70] proved this analytically.

In [68] it is shown that the operator X,3, = (DI"234)8/81.1 is an
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admissible operator of the KdV equation. It was then claimed
that the two soliton solution of the KdV equation is the invariant
solution of the operator X234. However, the two soliton solution
is just a member of a subclass of the class of invariant solutions
of (4.1) under the action of X234. We shall discuss the above

problems further in §5.6.
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4.2 ADMISSIBLE LB OPERATORS AND CONSERVATION

LAWS OF EVOLUTION EQUATIONS

In this section the following notation for a LB operator
will be used,

)
X, = By (4.16)

The lemma given below will be essential for the proof of the
main theorems given later:

Lemma 4.1. Assume that A = A(x,u, u, ...) can be

expressed in terms of a variational derivative, i.e. there exists

an L = L(x,u,ux, ...) such that
_ 8L

A = ETJ-‘ (4.17)
where

&5 _ 0 B)

5 5o By ® e o (5]

x

Then

JBX Adx = [¢xXpadx, (4.19)
where B = Bixqt.u,ux,uxx, A ¢ = d(x,t,u, ux,uxx,...), the

i'ntegrals defined in (4.19) are extended over an arbitrary region
of the space of the independent variable x, and the function ¢
must vanish on the boundary of this region.

Note. It will be clear from the proof that the result of the lemma
is stronger than what follows from the above proposition.

Proof. There are two possible ways to proceed. The

first way is to assume that A = §L/6u and then prove equation
(4.19); the second way is not to assume equation (4.17) a priori
and to discover the necessary restrictions on A such that equa-

tion (4.19) is satisfied. We shall follow the second way and we
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shall assume for the sake of concreteness that A depends on
no higher derivative than the fourth x-derivative; the extension to
higher derivatives is straightforward. Let

A, 3—‘: . i=0,..., (4.20)
X.:.§

1

il

H,6., A= 8Af8u, A. = BA/BU.X,...). Then

0 1
4 ) 4
1= [Bxadx = [B ) 0aex = o) (D) BAj ax,
j=0 §=0

where the first equality follows by the definition of a LB operator
and the second follows by integrating by parts. Using Leibniz's

rule in the third integral and rearranging we obtain:
4 3

J = f¢[ZO(DjB)Aj—[Z(DB)+BD][-ZO(-D)J.AJ‘H] -
3= §=

[2(D°B)+3(D°B)D+ (DB)DZ][A3-2DA4]] dax

Therefore, equation (4.19) holds for any ¢ and B iff

3
), (-DYa., = o, (4.21a)
j=0
and
A;-2DA, = 0. (4.21b)

Equations (4.2]1) express the necessary restrictions on a function

A = AR U 5500508 ), such that equation (4.19) holds, It can
x XXXX

be easily checked, using the identity

_ 0
[, Pl =%a - )
X X X...X

. e .

i i-1

~
given in Gelfand and Dikii [ 71] that if there exists an L such that
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A = 8L/6u, equations (4.21) follow. Q.E.D.

From the above proof it is clear that equation (4.17) is a
sufficient condition. It is mnatural to ask the following question:
Is equation (4.17) also a necessary condition? That is,does there
exist an A which satisfies equation (4.19) and which cannot be
expressed as a variational derivative? We expect a negative
answer to this question and we verify this for the case that

A = A(x,u, ux,uxx). (4.23)

Then A satisfies equation (4.19) iff (see equations (4.21))

Ay = DA,. (4.242)
The left hand side of the above equation does not depend on Uyse?
whereas the right hand side contains the term u_  A,,. There-
fore A22 = 0 and

A = au(x,u, ux)uxx + b(x,u,ux), (4.25)
where a and b are arbitrary functions of x,u, u and an is

defined by (4.20). Substituting the above in (4.24) we obtain

b, = a +

x11 T 2ok’
therefore,

b = a, + uxa01 - 2, + cu(x,u).

Therefore, the most general function A of the form (4.23)

for which equation (4.19) is valid is given by (using now explicit

notation),
2 2 2
_ 07a Jd a 0 " a da
A = TR T T e T TR

du x x
x

dc

e 4.

55 (%, 1), (4.26)

where a = a(x,u ux) and c¢ = c(x,u) are arbitrary functions of
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the arguments indicated. Furthermore it is easily verified that
A = §L/6u, where

L = - a(x,u, ux) + c(x, u). (4.27)

From the theorems to be proved below it will be clear that
the algorithm relating LB operators to conservation laws does not

depend explicitly on the Lagrangian L; only its existence is required,

not its particular form. Given an A therefore, we just have to see
if equation (4.21) (suitably extended if A depends on higher derivatives
than the fourth x-derivative) are satisfied for the theorems to hold.

This is much easier to check than finding an L associated with the

given A (see Example 2). This justifies in our opinion the note
made after the statement of the lemma 4.1.
It is well known that an evolution equation in the form

u, + N(u) = 0, (4.28)

where N(u) denotes a function of x,u, and x-derivatives of u,
can never be derived from a variational integral (because of the

u, term). However, there exist two tricks for Writing equation
(4.28) as the Euler equation of some variational problem: The
first trick is to differentiate equation (4.28) with respect to x
and the second is to replace in equation (4.28) u by Ve * These
two tricks lead to two different algorithms for relating admissible

I.LB operators to conservation laws:

Theorem 4.1. Assume that the x-derivative of the evolu-

tion ecuation

u + K(u) = 0, (4.29)

(where K(u) = K(x, u, u, ..)) 1is the Euler's equation of some

variational problem, i.e. there exists a Lagrangian L such that
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6L

DK = T (4.30)
Further assume that

I(u) = [p(u)dx, (4.31)
(where p(u) = p(x,t,u, u, .. .)) 1is a constant of motion of equation

(4.29). Then TI' 1is the gradient of a constant of motion 1 iff the
LB operator X ']1—‘ is an admissible operator for equation (4.29).
(D 'T) '

That is

]

r=d .x-oni, (4.32)

du
where the above correspondence means that p is a conserved

density iff X is an admissible LB operator.

‘Proof. Let us consider the infinitesimal transformation
2 < : . : :
u' = u+t+ e€dp + O(e ). This transformation is an invariant one for

equation (4.29) iff

X [w+K]| =0 . (4.33)
ol % ],(4.29)

Considering the effect of this transformation on a constant of

motion I(u) it is easily seen (see [64], [70]) that

D, [r¢dx = 0, (4.34)
where T is defined in (4.32). Using the fact that X¢ and D
commute, equation (4.33) yields
X [u_ + DK]| = 0. (4.35)
ot |(4.z9)

Multiplying the above by (D-]T‘), integrating (and dropping the

subscript (4.29)) we obtain
f(D'lr)[q,tx + X, A]dx = 0, (4.36)

where A = DK. Now integrating the first term in the above by

parts and using lemina 4.1 for the second term, equation (4.36)
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yields,
fl-T¢, + $X . Aldx = 0.
' (0" 'r)
Using equation (4.34) we obtain

Jo[Dr + X ; Aldx = 0.
(D T)

Finally, noting that D,I" = DtD[ D_]‘I‘], the above equation reduces

to

Jex | [u, + DK] = o.
(")

Therefore, the LB operator X(D_lI‘) is an admissible operator
for the x-derivative of equation (4.29); hence, it is also an
admissible operator of equation (4.29) (using again the fact that
X and D commute). Q.E.D.

Theorem 4.2. Assume that if u is replaced by Ve in

the evolution equation

u + M(u) = 0, (4.37)
then equation (4.37) is the FEuler's equation of some variational

A
problem, i.e. there exists a Lagrangian L such that

A
_ &L
M(VX) = —a—v' (4.38)
Then
] éﬂ e = i
r 3T X (Dl")au, (4.39)

where the above correspondence means that p is a conserved
density of (4.37), iff X 1is an admissible operator.

Proof. The proof is analogous to the previous one: To
cquation (4.35) corresponds the following equation,

% [v, + M(v)]| =0

(D™ 4) (4.37)
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Then proceeding as before (where now the above equation is multi-

plied by T and then integrated) we obtain
-1 B
SO X[ v, #M(v_)]ax = 0.

Therefore, the LB operator XI" is an admissible operator of

equation Vi ¥ M(vx) = 0; hence, XDF is an admissible operator

of equation (4.37) (it is clear that if w(u) = 0 admits Xn, then

w(v_) = 0 admits X ). Q.E.D.
x -1
D™
EXAMPLE 1, Consider the evolution equation
u+a(w)u + u = 0, (4.40)
t p.d Xx...%
2r+l
dza
where a'(u) = ey and a(u) some function of u. This equation
du
can be obtained from a variational formulation after replacing u
by Vi Therefore, formula (4.39) can be used. Writing the

above in a conservation form we obtain

pp = U (4.41a)
Equation (4.40) is invariant under x-translation, i.e. Xu is an
X
admissible operator. Therefore I" = u and
T
py = Fu. (4. 41b)
Equation (4.40) is also invariant under t-translation, i.e. Xu
t
is an admissible operator. Therefore n = u,  or
n=u + a'"(u)u and T = u + a'(u). Therefore,
X.ooX x He X
2r+l 2y
1 2
py = -Z(-l)r(ux_ ) ra). (4. 41c)
r

Therefore, every evolution equation of the form (4.40) has at

least three conservation laws, whose conserved densities are



~-132-

given by equations (4.41).

Example 2. In chapter V we shall consider the equation

e _
u, + g + auug + (60-¢ )U.lu2 + 6bgu u, = 0, (4.42)
where
u = u
n Kis i X
L_J
n
For o = 20 the above equation becomes the first member of the
Lax's heirarchy associated with the KdV equation, Let u-= v
and then
2
A = Ve +av1v4 + (60-a)v2v3 + bo ViVa- (4.43)

When A = A(x,t,v,vl,...v()), to equations (4.20) there

correspond the following equations;

5 .
M, = (-DYA. . =0,
1 =0 jt1
- 3 -
M, = Ay - 2DA, + 5D°A, = 0, (4.44)
Mz = A, - 3DA, = 0

Substituting A as defined by (4.43) in equations (4,44) we obtain

Therefore, theorem 4.2. applies to equation (4.42) iff o = 20.
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CHAPTER V

5.1 INTRODUCTION

The last decade has clearly shown that Backlund transfor-
mations (BT) play many useful roles in the analysis of nonlinear
phenomena. They provide a powerful way of analyzing soliton
interaction, they can be used for constructing conservation laws
and they provide a constructive method for finding eigenvalue
problems associated with the inverse scattering method, see
Appendix VII. For this reason, it is certainly worth investigating
them independently and trying to find their essential mathematical
structure. Also, the deeper understanding of their basic nature
will, hopefully, provide a better algorithm for finding them.

Generally speaking, the use of BT is a mathematical
technique for producing physically meaningful exact solutions. The
main question we raise in this chapter is: Is it possible for these
solutions to be characterized group theoretically? An affirmative
answer to the above question would have two implications. Firstly,
a theoretical one as it would unify our view of exact solutions.
Two seemingly different classes of exact solutions, one obtained
by the customary Lie-Ovsjannikov analysis of a given equation
(similarity solutions) and one obtained through BT will turn out to
have similar theoretical origin. Secondly, a practical one as the
techniques used in deriving invariant solutions could be used to

obtain BT.

In §5.2,3,4 the above question is considered. This leads

to a new method for obtaining BT, which is investigated in the

remaining subsections. Some new BT are obtained.
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5.2 CONDITIONALLY ADMISSIBLE OPERATORS

The ideas will be introduced with the aid of an example.

Consider the Korteweg-de Vries potential equation in the form
K ) = + + = 0 L |
Rl U Vapad = 0y + Vgys & 0y = 0, (31

"Half" of the Backlund transformation admitted by (5.1) 1is, see

[73]
T(u, v,u,, v,) = u, + v +Z(u—v)2~0 (5.2)
s 2 2 6 - E 2
where v satisfies
+ . T 5.3
Yy ¥ Vagg Tt ¥V = 0. (5.3)

In analyzing group theoretically the solutions obtained from (5.1),
(5.2), (5.3), we shall use two, in a sense complementary
approaches. The first approach is to regard equation (5.2) as
imposing some group theoretical constraint on the solutions of
(5.1) and (5.3). The second approach is to regard (5.1) and (5. 3)
as equations imposing some constraint on solutions of (5.2). The
notion of a conditionally admissible operator is necessary to

describe the first point of view.

First approach.

For the sake of clarity we start with the special solution of
equation (5.1) which can be obtained by the Bicklund transformation
(5.2) with v = 0. (This happens to be the soliton solution). Then

the above system reduces to (5.1) and to
T, =0 (5. 4)

where
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y .2
T0§u2+ A (5.5)
In order to reveal the group nature of the constraint imposed by

equation (5.4) on the class of solutions of (5.1) we determine the

action of the LB operator

X, ® Ty 5o +jz‘1’, (D7) é%j— + (DgTO)%zzer“
(5. 6)

on equation (5.1):

XOK = DITO + ZyuZDZTO + D;TO : (5.7)
The next step is to restrict the action of XO to the solution of
(5.1) and its differential consequences. This can be accomplished
by substituting for the various .xl-derivatives. The only term
affected by this is D,T {since the other terms do not involve a

170

xl-derivative which can be replaced by xz-derivatives using (5.1)

and its differential consequences). Since
= y
B, Ty = o + 5 any (5.8)
we conclude from (5.1)
D, T = -u -2 yu,u,- £ u(u +'yu2) (5.9)
170 2222 222 3 22 27 7 .
K=0
Examining the right hand side of (5.9) we see that it can be
written in terms of T0 as
3
= = - 5 5.
DITOI LT, — puB, T, (5.10)
K=0
Therefore, equation (5.7) finally yields
XK] = yu,D, T, . (5.11)
0 K=0 27270

What is the meaning of equation (5.11)? Clearly, the operator
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XO is not an admissible operator of equation (5.1) because

XOK K0 # 0. However, the operator XO is an admissible
operato_r on a subclass of solutions of (5.1), namely the ones for
which (5.4) is also valid. It is in this sense that the operator
Xy, is a conditionally admissible operator. The operator X
defines locally a group of transformations which in general maps
solutions of (5.1) into solutions of some other equation, say,

K' = 0. However, there exists a special class of solutions of
(5.1), namely the one characterized by the nontrivial simultaneous
validity of (5.1) and (5. 4), for which this group maps solutions of
(5.1) into themselves (so that K' = K). This class of solutions
is precisely the invariant class of solutions of (5.1) under the
action of operator XO. With this special example in mind we

give a general definition of a conditionally admissible operator.
Definition

The LB operator

e s (5.12)

iff

CW{ = 0, nontrivially when B =0, (5.13)
W=0

Equation (5.13) is written for simplicity as

cw| =0, (5.14)
W=0, B=0
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However, we stress that the order in which W=0 and B=0 are
assumed is of vital importance (otherwise the whole concept
becomes trivial).

The extension of the above to systems of equations is ex-
actly parallel to the extension of the notion of an admissible oper-
ator to systems of equations. As an example we consider the
systems of equations (5.1) and (5.3). Consider the action of the
LB operator

XET-Q—L.. =[u1+v

e - %(u-v)z] é%+... (5.15)

i
on equations (5.1) and (5.3). The action of X on (5.3) is

trivial. Applying X to (5.1) we obtain

XK = D,T + D>

\ S ZyuZ’DZT , (5.16)

where (we use a bar to remind the reader that the total derivatives

now are applied to functions which also involve v)

T o= O 0 2 -

b = axi + u, 35 + Vi 3v +..., i=1, 2. (5.17)
The next step is the crucial one. Before assuming T =0 we
must utilize (5.1) and (5.3) to replace g, Vs Uy, Vo by
xz-derivatives. At this stage it is not a priori obvious that what

we get after doing this will depend on T, f)zT, ... in such a
way that it will vanish when T,BZT, e vanish. However, in

the present case

XK = y(u,-v,)D,T ,
i(5.1), (5. 3) & R

and hence

XK| ' = 0 when T=0 .
(5.1), (5. 3)
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In this particular example, therefore, we see that the
solutions obtained from the system of equations (5.1), (5.2), (5.3)
are the invariant solutions of the system of equations (5.1), (5.3)
under the action of the CAO X.

The above shows that if we want a group theoretical char-
acterization of the Bicklund solutions starfing with a given mani-
fold specified by equations (5.1) and (5.3) we need to extend our
customary class of invariant solutions to include the ones which
are irnvariant only under the action of conditionally admissible
operators. This already sﬁggests an alternative way of deriving
BT. However, before elaborating on this, we give another group

theoretical characterization of the above solutions.

Second approach.

We now regard (5.2) as our basic equation and (5.1), (5. 3)
as equations imposing some constraint of group theoretical nature
lon the manifold defined by (5.2). We therefore examine the

action of the LB operator

Y= (o, + u,,, +yud)d it (v, + v +Yve) L (5.18)
1 222 2" 9u 1 222 2’ ov :
on equation (5.2). Clearly equation (5.2) is invariant under trans-

. . : : 1 8 .
lation in x, ., d.e. it admits the LB operator Y0 =u a0t B

Therefore, we only have to examine the action of the LB operator
2, 0 2y A
¥ = (ppn ¥ ¥l g+ Waep YVl 55
on equation (5.2). A straightforward computation yields

YT =0
(5.2)
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A
i.e. Y and therefore Y 1is an admissible LLB operator of
equation (5. 2).
Tfherefore, the Bicklund solutions may alternatively be
O

thoughtﬂas the invariant solutions of equation (5.2) under the action

of the admissible LB operator (5.18).
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5.3 CONDITIONALLY ADMISSIBLE VERSUS ADMISSIBLE LB |
OPERATORS

Before concentrating on the algorithmic implications of the
above results we elaborate on the equivalence between the two
approaches considered in section 5.2, This equivalence is pre-

sented in the form of the following lemma;

Lemma 5.1 The LB operator

- 2 .14 4 DT
X = T(u, v, Uy, vz) 3a + DlT aul + DZT o, Fswm 5
is a CAO for the evolution equation
uy + F(u’uZ’UZZ""uz_,_Z) = O, (5.19)
(ISR
m
for all v satisfying
v1+G(v,v2,v22,...v2“.2) =0, (5.20)
 T—— |
m
iff the LB operator
-2 2
Y —Fau+Gav (5. 21)
is an admissible operator of equation
T(u, v, U, VZ) 2 0 5 (5.22)

Proof. The proof is constructive. Assume that X 1is a CAO

for (5.19) whenever (5.20) is satisfied. Then

[EIT + FuT+FuT)2T+...F Do 7 =0,

2 B, . .2 (5.19), (5. 20)
m

m
2

when T =0 .
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The only term effected by assuming (5.19), (5.20) is _f)—lT.

This is important for the computations, as all the other terms of
the above equation can be ignored immediately. Assuming (5.19),

(5.20) to evaluate BIT and then assuming T =0 , the above

reduces to

[TF+T G+T D
u v u, 2

N ah TV2D2G1T:0 = 0. (5.23)

However, equation (5.23) is precisely the condition that the equation
T =0 admits the LLB operator defined by (5.22). Q.E.D.
This proof is easily extended to the case

T =T(u,v,u2,v2,...u%“.zl,v%”'%), see [ V] .

n n

From equation (5.23) we see that the problem of finding a
conditionally admissible operator is in a sense complementary to
that of finding an admissible operator. The question of finding T
can be stated as follows: Find a function T(u, v, u,, VZ) such
that the equation T =0 admits the LB operator Y.

In section 5.2 we considered the solutions of the Korteweg-
de Vries equation obtained through the BT (5.2) and proved that
th;ay are group-theoretically characterizable in two ways. In order
to characterize them the first way (which is also the most natural)
we introduced the notion of a CAO. Further, we proved the
equivalence of the two ways for any evolution equation.

The natural question arising is the following: Are the
Bicklund solutions of any evolution equation characterizable in the
above two ways? The answer is affirmative and the proof is given

in [ V].
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5.4 A FIRST WAY OF DERIVING BT.

In this section we utilize the group nature of BT to derive
them. However, although we established their basic structure, we
still denote them in the traditional way. This complicates the
algorithm and hides the connection of the BT to the existence of a
r"nice" (in a sense to be defined in section 5.5.1) soliton solution.

This connection will become clear in the next section.

5.4.1 Burgers Equation and Generalizations.

We consider a generalization of Burger's equation given by

u, tu o+ F(u, ux) =0, 7 (5. 24)

and we are looking for a BT which linearizes it,in particular one

which maps solutions of (5. 24) into solutions of

Ny + ¥ = 0 . (5.25)

At this point it is necessary to assume the form of the BT (this
is a definite weakness of any method concerned with BT; we shall
elaborate more on this point in the next section). So, let "half"

of the BT be

Vo = flu,v) =0 . (5. 26)

The problem of finding f reduces to the following: Find the
function f(u,v) such that equation (5.26) admits the LB operator

- 9 9. _9
Y = Vxx av—i'[uxx'!"F(u,ux)] 3a + L T BVX L .(5.27)

Applying Y to the left hand side of (5.26) we obtain,

g {5. 28)

Y (5.26) = v - fl(uxx + F) - fz -
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where

_ of o BL
f1_8u’ fZ._av'

For Y to be admissible we require

Y(5.26)I =0 . (5.29)
(5.26)

The rest is the usual routine applied when looking for admissible

operators: We first find the relevant differential consequences of

(5. 26),
v. =1
X
VXX = Jflllx + ffZ
= if 2+2f:f + f + f f2 f_f +ff2
Vexx - Mm% 12 %% 1%xx 22 ¥ty 1% 2 °

Then we substitute the above expressions in (5. 29) to obtain, (after

some cancellation)

2 2
fllux + fol‘?‘uX + f f‘22 - fl F =0 , (5. 30)
or e
f . 2ff
_n 2 12 22
F(a,u,) = ) u_ o+ T u, + f . (5. 31)

(f1 # 0, otherwise the BT is trivial)
Equation (5. 31) implies that the following expressions depend on

u only,

2
f ff f’f
T = A(u)- _12- = Aa(u)y fzz
1 1 1

7 = A3(u) 5

The last equations determine f and then equation (5.3l) deter-

mines F:
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F o= A(u)ui + 2aB(u)u_ (5. 32)
Vg = f=(av + B)B(u) , (5. 33)
where
§
[ a(rar
S
B(u) = [ e g + v . (5. 34)
0

Therefore, we conclude that the most general equation of the form

(5.24) which admits a linearization of the form (5.26) is

2
u, + R + A(u)ux + 2¢1B(u)ux = 0 4 (5. 35)

where A(u) is arbitrary and B(u) depends on A(u) as given

by (5.34)7.

Particular cases.

Equation (5.35) takes a simple form when the integration

of A(u) defined by (5.34) is simple. For example, let

A(u) = _CT_(E)_ , then B(u) = C(u) + ¥ , and equations (5. 30),
C (u) !
(5. 31) yield,
L
u, + u + _Q_;_QJ-_)_ uz + 2aC(u)u. = 0 , (5. 36)
xx x x
C (u)
v
C(u) = — = -y (5.37)
av?{-ﬁ )

where C(u) is an arbitrary function of u and a, are

constant parameters

i

t  Note that by putting @ = 0 in (5.35) we see that equation

u, + u + A(u)u2 = 0 linearizes for any A(u). This is well
t XX X

known, sec §5.5.2.
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A well known particular case of (5.36) is the Burger's

equation. If we let C(u) = u in the above equations they reduce to
u, + u + 2aquu_ = 0 ,
t xX b
v
_ X
T oavtp ’

i.e. to Burger's equation and to the Cole-Hopf transformation.

¥ o) = '™ esqutions (5 36), (5.37) pive

2 Au
ut+uxx+kux+pe ux—O,
v
us e ()
AN Tnsuvipg ’ e

A generalization of the BT given by (5.26) is uX-f(u, v, vx) = 0.
This leads to a new class of equations, of the general form (5. 24),
which may be linearized. Assuming other forms of BT new classes
of equations may be obtained. However, the above approach has the
disadvantage that every time a new form of BT is assumed the whole
algorithm must be repeated. An alternative approach without this

disadvantage is considered in §5.5. 2.

5.4,2 KdV  Equation and Generalizations,

We consider a generalization of KdV's potential equation
given by

a _
u, F L - + ya_ = o, - (5. 38)

and we are looking for a BT which maps solutions of (5. 38) to
solutions of

vt+vxxx+'yv = 0 . (5.39)

We are taking "half" of the BT to be of the form

v -Bu_-@(utkv) = 0 . (5. 40)
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(If we start with ux-f(u, v, Vx), a lengthy analysis shows that
(5.40) is a proper form). The determination of § and &

follows from the requirement that equation (5.40) admits the LB

operator
a, o a, d
Y= O ¥ Y% ) 30 F (e * Y% )50 (8. 41)
ds B 4
a-1 _ a-1 _ o a o _
[\.rmmxntcr'yvX - Buxxxx [Saryux By (IJ(uxxer 'yux+>\vxxx+7vyvx) =0

(5. 40)

Using equation (5.40) and its differential consequences to replace

v by u derivatives, the above equation

y W W %
x' xx xxx’ CXoexx
finally yields

u [ -30408) % 8"-301B)28" + afyud™ -apy(u_+0® ] - 5. 42

u’ (1428) 3™ -3xui (LAB)*(20 "+ @'2")-30"u_(14AB)(290'2"+2°0" )

-7\3(@3@"‘ +3<I>2<I>'<I> ")-ay(Bux+<P)a-1[ (1+)\,[5)<I>‘ux+)\¢>¢'] + @'yl u;H\(Buer@)a] = 0

gy 2
Now, we equate the coefficients of u__, u3, u,u to zero.
xx’ X x %
Looking at the coefficient of u ., we deduce that in order for it
to vanish, a must appear in it linearly or quadratically, i.e.

a =2 or = 3.

i) @ = 2 (KdV potential equation)

Now equating to zero the coefficient of u . we obtain;
z " "
[3(+X8)" @ + 2[37(3-1)]ux + 3A14N\B)® + 2By = 0 .

Therefore,

3(1408)%8 + 2By(B-1) = O , (5.43.a)

and
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f
3NAHAB)® + 2By = 0 . (5.43.b)
From (5.43) we deduce that

B-1
1+2p

— lx, or N = -1.
The coefficient of ui vanishes idehtically. The coefficient of
ui vanishes iff

3(1-{3)2(@@“' + 'P") + 'y(l-B)ZCD' =0 .
From the above equation we choose the solution satisfying

38 £y =0, (5. 44)
Comparing (5. 44) to (5.43) we find [ = -l. Further, if equation

(5. 44) holds the coefficients of u _ and of the term independent

of u_ vanish identically. Therefore, a BT for the equation

u, + u + yu_ =0, (5. 45)

is given by

u + e + (J)i(l.l-v)2 + A(u-v) + B = 0 , (5. 46)

where A and B are arbitrary constants.

ii) @ = 3 (Modified KdV potential equation)

Equating to zero the coefficient of u,, we obtain

Byﬁg-nui-+[ﬂ+Mﬂz¢h4—2ﬁ2y]ux + [NQ+B)®" + pyd]d =0

Therefore,
2 n
B =1, N=p8, 2& + yvé¢=0.
o7 3 2 0 :
The coefficients of u’, u, u, u also vanish when the above
X x x x

equations hold. Therefore, a BT for the equation

u + u iz 'yu3 =0 (5.47)

t XXX x ’ ’

is given by
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ux-ﬁvX + A cos ()2/-)1/2 (u+tBv) + B sin(%) %(u+ﬁv) =0, (5.48)

where {52 =1 and A,B arbitrary constants.
The BT given by equations (5.46), (5.48) have been pre-
viously obtained by classical methods, see [ 73] and [74]. The

above results are further discussed and generalized in §5.5.1.

5.4.3 Sine-Gordon Eguation and Generalizations.

The discussion so far has been limited to evolution equations
for which general theorems have been proved. However, the idea
of a CAO can be used for the group theoretical characterization of
Bicklund solutions for any equation. As an example we consider

the equation

uxy—F(u) =0, (5. 49)

and we look for a BT which maps solutions of (5. 49) to solutions

of

vxy-G(v) =0 . (5.50)

Let us assume that "half" of the BT is
ux-vx-@(u+v) =0 . (5.51)

(If we start with ux—f(u, v, vx) = 0, we will discover that
(5.51) is a proper form, see Appendix V). To determine &,

for a given F, we require that the operator

_ T 9 9
x.[ux v @(u+v)]au+...lBau+... (5.52)

is a CAO for equation (5.49). Applying the operator X to

(5.49) we obtain

X(\lxy"F(un = uxxy—vxxy-(ux+Vx)(uy+Vy)‘I’ -(uxy+vxy)@—(ux_vx-q))F (.
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Assuming (5.49), (5.50) the above becomes

X(u__ -F) =F'(u)ux-G'(v)vx-(ux+vx)(uy+vy)<§"-(F(u)+G(v))<I>’-(ux-vx-d?)F'(u).

Xy
5.49), (5. 50
( 9. ( ) (5.53)
However,
DB =u_ ~v__~(u +v_ )@ ,
y Xy Xy y v
or
D B
F(u)-G(v
i, o, & (')15, +:2 J@’, i (5.54)
Also
u =B +v + &, (5.55)

]
<

Susbtituting (5.54), (5.55) in (5.53) and then assuming B = DyB
we finally obtain

X(uxy-F(u))l =
(5. 49), (5. 50), (5. 51)

{Fr()-c'w)-2F [ Fu)-Gw)]}tv,_ + F'(2)2-2 [ F(u) +G(v)] - [ Flu)-G(v)].

Therefore,

F'(u)-G'(v) 2" (u+v)

F 3 (utv) i (5.56)

(u)-G(v)
and
@l @ll

F'(u) -  [F1tG)] - F[Fw-G(v)] =0 . (5.57)
Replacing in (5. 57)

[ F(u)-G(v)] by [ F'()-G'(v)]
we obtain

M = 2 M ‘5_ 58)

F(u)+G(v) B Hu+v) °
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Equations (5.56) and (5.58) determine which equations admit a BT
of the form (5.51). We shall now discuss some special cases.

i) Linearizations

Let us first look for equations (5.49), which can be linearized
under the BT (5.51). Putting G(v) = 0 in equations (5.56), (5.58)

we obtain

F'(u) _ P'(utv) _ O"(ut+v) 5 5
F(u) ~ Hut+v) @' (utv) (5. 59

The above equations yield

a
5 (utv)
F = Beau , @ = yez .

where a, ﬁ;'y are constants.
Therefore, the only equation of the form (5.49) which
linearizes under the BT (5. 51) is
B
Wr = Be ;

and the linearizing BT is given by

% (u+v)

U~V ~Y e =0,

where v satisfies v = O .
Xy

ii) Restricted BT

By restricted BT we mean transformations which map
solutions of some equation among themselves. Putting G(v) = F(v)
in equations (5.56), (5.58), the equation (5.58) yields F =0 sin au.

Then

D'(utv) @ A
Bioii) = 2 tan 3 a(u+v).
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Therefore,

® = vy sin 3@ (utv).
Substituting the above forms of ¥ and & in (5.56) it is seen
that (5.56) is satisfied identically. Therefore, the only equation

of the form (5.49) admitting a restricted BT of the form (5. 51) is

the Sine-Gordon equation

uxy = Bsinqu ,

and the BT is determined by
o il _
A v sin 3 a (ut+v) 0.

in the Appendix V it is shown that the most general BT of
the form ux-f(u, v, vx) is given by ux—avx-tl’(u+av+g(u—av)) :
Starting with this form (instead of (5. 51)) it can be shown that the
only equations (5.49) which admit a restricted BT are those for
which F"(u)+ AF(u) = 0. Similar non-existence proofs are given
in the literature, see for example [75]. However, we think that
their use is very limited since ux—f(u, v, vx) = 0 defines a BT of

a very restricted form. A more general BT is, for example,

ux-f(u, v,V _,V ..) =0, for which a non-existence proof would

x xx'C
be very difficult. In §5.5 a generalization of (5.51) is proposed.
This also suggests an alternative way of obtaining non-existence

proofs.
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5.5 A SECOND WAY OF DERIVING BT GENERALIZATIONS.

In §5.‘2 we established the basic nature of solutions obtained
through BT and indicated two equivalent ways for characterizing
them. -In §5.4 we used an algorithm based on invariance criteria
to rederive some of the well known BT and to derive some new

ones (see §5.4.1). The basic idea was that if an equation

u, + F(u,u,...) =0 , (5. 60)
admits a BT of the form

ux-T(u, V, Vs oo 1 =0 45 (5. 61)
which maps solutions of (5. 60) to solutions of

\' +G(v,vx,...)=0 i (5. 62)

t

then the operator

S\C = [ux—T(u, Vo Voo )] = (5. 63)

is a CAO for the above evolution equations. However, the form

A
of X 1is quite restricted. A more general operator is

X = [ux-g(x, t, u)] ?aa . (5. 64)

Clearly this class of operators includes the class of the form 1/'\{
In this section we investigate CAO of the form given by (5. 64),
This new approach has the following advantages: 1) when we are
looking for BT of the form (5.6l) we have to assume the arguments
of T. As it was pointed out earlier, this is a definite weakness
of any method used for obtaining BT. In our approach this is not
necessary, since the class of operators of the form (5.63) is a

subclass of the class of operators defined by (5. 64). ii) It
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clarifies the connection between the wave-train solution and the

existence of a BT and in that respect provides a very easy test

for expecting BT based on the general structure of the wave-train

solution (see §5.5.1). iii) It obtains exact solutions in some

cases where BT do not exist. We will elaborate more on the

above points in section 5. 6.

A
In §5.3 the equivalence between CAO of the form X and

admissible operators was proved. Here we give a similar result

for the case that the CAO is of the form (5. 64):

Lemma 5.2 The LB operator

" B 9
¥ = [ux glx, t, u)] 3a

is a CAQO for the evolution equation

u, + F(u’ux""ux...x) = @

iff the LLB operator

Proof. X is a CAO for (5.65) iff

X(U‘t + F)I =0 .

(5. 65), (5. 67)
Applying X to (5.65) we obtain

X(ut+F) = uxt—Dtg + Fqu(uX—g)Jr‘. - Fu

(5.

(5.

(5.

(5.

(5.

(5

64)

65)

66)

67)

68)

69)
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Assuming (5. 65), i.e. replacing t-derivatives, (5.69) yields

~ _ _ N- ~r ~ _ ~ m
X(ut+F)j = -D_F-g, + g F+F D (1 -~ght:.. B D" (u_-g) .
(5. 65) D, SRETCREED

m
Finally assuming (5.67), equation (5.68) gives

[-D 'ﬁ“-gt + guf] =0 . (5. 70)
(5. 67)

Y is an admissible operator of (5.67) iff
Y(ux-g)t = 4,
(5.67)
or

[“tx+ D_F -(u+F)g 0 . (5. 71)

(5. 67)

Differentiating equation (5. 67) with respect to x we obtain

u - utgu = 8y (5.72)
Using (5.72), equation (5.71) reduces to (5.70). Q.E.D.
5.5.1 KdV and Generalizations.

In this section we investigate CAO of the form
X = [u_-gxtu] =L , (5. 64)
X du

for evolution equations of the form

ut+uxxx+F(u,ux)=O. (5.73)

Requiring X to be a CAO for equation (5.73), (or equivalently

Y = (ut + u + F) 5% to be an admissible operator for equation

XXX

(5. 67)), equation (5.70) yields (with F = a .t F)

[u + F,u + qu + gz-gS(u

XXX 1 % XX

+ F)1 =0,
XXX

uX:g
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_9F p . 8F , .28 , _2%& , _2&
F1l=%u' F2"3u_" 81 “3x ' 82 "3t ' 83 " %u (5. 75)

"Now we have to replace the x-derivatives of u using the following

equations
B, T 8
Yex T B ® 883
u =g. + 2gg,, + E,8 +gg2+2 (5.76)
xxx  Pll 13 © *1"s 3~ B Bgy - i

~ 2
Uoxxx - 8111 t 388113 t 381813 + 38 g135 t 588383 t 3gg844 +
2 3 2 3
838y * 838 t 883 t* 48 83833 * £78333:
This yields (after some cancellation)
2
8131 t 8 * Fpgy t+ 38gy5 t+ 38185 + 38 8135 + 38E3g5 *

2, F 3
3gg1g33 + 8 ‘g_)3+ (g g33)3 =0 s (5 77)

where now

F = F(u,g), F, =

oF
1 du

- oF
, Fp =55 -

- 3 .-
Noticing that (g g33)3 - B (gg3)33 and rearranging, equation (5.77)

can be written as
3 .2 ) 2012y L Ey
(5.78)

Let us summarize: We are investigating the existence of CAO
given by (5.64) for equation (5.73). It turns out that g satisfies

a nonlinear equation in three independent variables x,t, u. Solving
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equation (5. 78) seems much more difficult than solving equation

(5.73). However, we are only looking for particular solutions of
(5.78). So we have inflated our problem (in the sense that (5. 78)
is more complicated than (5.73)) but have deflated our goal (in the

sense that we are looking for particular solutions only).

A. Wave-train solution.

We will discuss different ways for obtaining particular solu-
tions of equation (5.78). However, we start with an obvious one,
which also turns out to be very important: Assume g = ®(u).

This corresponds to CAO of the form

X, = [u -2()] 'a"aa" . (5.79)

The invariant solutions corresponding to XO are the wave-train

solutions, as seen by the following lemma:

Lemma 5.3 . Assume that equation (5.73) possesses a wave-train

solution. Then this solution is the invariant solution of equation
(5.73) under the action of the CAO XO given by (5. 79\

Proof. The wave-train solution of (5.73) is given by u = u(x-Ut),

and for such a solution u, :-qu. Then (5.73) becomes
Ve * F(u, ux)-qu = @ ; (5.80)
Let u = @®(u) in (5.80) to obtain
1
d(2P') + F-UD =0 , (5.81)

If the LLB operator XO is a CAO for equation (5.73), then equation

(5.78) yields (with g = &(u))

(3@® + 1 -0. (5. 82)

Comparing (5.82) with (5.81) concludes the proof.
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B. Baicklund transformations.

We now come back to equation (5.78) and look for other
particular solutions. We just proved that g = ®(u) corresponds
to the wave-train solution. What choice of g corresponds to
interaction of solitons? The answer to this question is not a
priori obvious. One of the well known tricks for finding particular
solutions of differential equations is to use variation of parameters
on the homogeneous solution. This trick is also used here: We

look for solutions of (5.78) which satisfy

1,2 £ _
[Z(g )33 * g ]3 E 0 e (5'83)
This is equivalent to look for g = ®(u), 1i.e. for the wave-train

solution, and then to let the parameters depend on x and t.

Let us look at some particular cases.

o a
1. F =yu,

If we look for functions g of the form g = ®(u), equa-

tions (5.77) or (5.78) indicate that we must solve

n
1)+ Hel)l g oo, (5. 84)
or equivalently,
1 !
(@o) + (%) =0, (5.85)
: _ a v a-1 +1,'
In this case F =9 &, therefore & (E) = 'y(a+l) (@a ),
and (5.85) gives
i (a-1) ~a-2 _ -3
&+ Yigay @ = c,® , (5. 86)
where o is a constant of integration. The above equation can

be integrated again to give

Lot -2 a-1
2% =@ "+ e, - —-7—’—a+1 gk (5.87)
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T c2 are constants.

i) a = 2 (KdV potential equation)

where ¢

Assuming €y = 0 in equation (5.86) we obtain
v 2
®=-fFu + Aut+ B, (5.88)
where A, B are constants. If we look for a solution of equation

(5. 78) in the form
g = -61u2 + A(x, thu + B(x, t) , (5.89)

the bracket gz[- -+ ] is identically zero. Substituting (5.89) in

(5.78) we see that the left hand side of (5. 78) becomes,
2 2
(3A__ +3AA_+yB_)u” + [At+ Ao T 3A+ ABA _+3AA +'yBX)]u +

B, +B + 3A B + B(3A + 3AA_+yvB_) .
t KXX X X XX X b ¢

Therefore, g defined by (5.89) is a solution of (5. 78) iff

3A_ + 3AA_+yB_ =0, (5.90.a)
2

AL+ A+ 3A0 =0, (5.90.b)

B, +B__ +3AB_=0. (5.90.c)

Equation (5.90.a) implies that

2
3 A
Bz—;(AX+—-2—)+c(t).

Substituting the above in (5.90.c) and assuming A satisfies (5.5%0.b)
we get c(t) = constant. Therefore

gz-exu2+Au-$<Ax+-L)+k, (5.91)

where A satisfies (5.90.b). To express the BT in the customary

form let
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then equation (5.91) gives

g = - Lla-v)’v_ + Mu-v) + 4, (5.92)

where v satisfies

Vt + VXXX yvx = 0 ,
3)\2
and A, u =k - —2—,}7 , are constants. Equation (5.92) defines a

BT identical to the one given by (5.46).

Beforé proceeding further let us extract the essentials of
the above example. After establishing the basic nature of Bicklund
solutions, as invariant solutions under some CAQO, we were
naturally led to consider CAO of the form X = [ux—g(x, t, u) ] 5%- ,
where g(x,t,u) satisfies (5.78). We then observed that a par-
ticular solution of equation (5.78), namely g = @&(u; A, B, C)
where A,B,C conétants, corresponds to the wave-train solution.
Further we noticed that if C = 0 (which corresponds to the
solitary-wave solution) the form of g 1is very simple; we then
looked for a solution of equation (5.78) in the form
g = ®(u;A(x, t), B(x,t)). With this choice of g some terms of
equation (5.78) are identically zero; réquiring the remaining terms

of (5.78) to vanish too, we obtained some equations for A and B.

2
In the example just considered B = - %(Ax 4 AT-) + k, and A

any solution of (5.90.b).

The obvious question arising is the following: Given a
particular case of a wave-train solution in the form g = 2(u;A, B)
and then letting A and B depend on x and ¢, when do we
expect the system of equations for A and B to have a non-

trivial solution? From the analysis carried above it is clear that
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a necessary condition is & to be a "nice" function of u, for
example polynomial of integer powers of u or some trigonometric
function of u. Still, this does not guarantee that non-trivial A
and B exist, as in general A and B satisfy a system of

overdetermined equations (in the above example A and B satisfy

a system of three equations). The following cases are possible:
i) The only solution for A and B is A,B constants. This
corresponds to the case that the only exact solution obtained

through this approach is the wave-train solution. ii) A,B are

any solutions of some differential equations (like in the example

just considered). This corresponds to the case where a BT exists
for the given equation. 1iii) A, B are some given functions of
x,t. This corresponds to the case where a BT does not exist,

however an exact solution can still be found, which mavy be
different than the wave-train solution. In the remaining examples

the above points will be clarified further,

ii) @ = 3 (Modified KdV potential equation)

Assuming ¢, =0 in equation (5.86) we obtain

1
3 = Acos(?zi)/zu 4 Bsin%)l/zu,. (5.93)
If we now substitute
1
g = A(x, t)cos(%)/zu + B(x,t)sin(}zi)%u "

in equation (5.78) we get an overdetermined system of equations
for A and B the solution of which leads to a BT identical to

the one given by (5.49).
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2, F = wu u_
In this case equation (5.84) can be integrated twice to give

1 u
5 @

- . Ly,
= (a+1)(a+2) + 3U0u” + cu + c, . (5.94)

i) a=1

Then the above equation yields

tof~

2 3 2
o :-%:—u ¥ " 4 o ke, (5.95)

Because of the u3 term there is no way to make the right hand
a
side of equation (5. 95),‘perfect square, so we do not expect a BT

for this case.

ii) @ = 2 (Modified KdV equation)

Equation (5.94) yields

2 4 2
@ =--1Y2-u + 3Uu +ocpu t e, . (5.96)

i

Taking ¢, = 0 we can write the right hand side of (5.96) as a

perfect square and

& = f %)%u2+A . (5.97)
Now letting A to depend on x,t and substituting
g = (- %)%uz + Ax,t) in (5.78) we obtain

_¥ale _ ,
A +A__ +6(-F)%an_=0. (5.98)
Therefore,
L 2
u_ = (—%;)/Zu + A(x,t) , (5.99)

is a BT mapping solutions of equation

2
v, + u + yu u = 0, (5.100)

to solutions of equation (5.98). Equation (5.99) defines the well

known Miura transformation [58].
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5.5.2 Hierarchies of KdV equations, A new BT.

It is well known that associated with the KdV equation there
exists a hierarchy of equations, first found by Lax [64], [70],
each member of which has the same interesting properties possessed
by the KdV equation, namely
i) each eéuation can be solved by the inverse-scattering method and
therefore has N-solifon solutions;
ii) each equation possesses the same BT possessed by the KdV
equation (from which the N-soliton ladder can be generated);
(iii) each equation possesses an infinity of independent polynormial
conservation laws.
One way of looking at these equations is to regard them as LB
symmetries of the KdV equation. Iet us be more specific; it was
noted in §4.1.1. that one method of obtaining LB opéra.tors is to
use a recursion operator A (If X = 1n 8/8u is an admissible LB
operator of a given equation and A 1is a recursion operator for the
same equation then the LB operator (An)d/9u 1is also admissible).

It was shown in [ 53 ] that the operator

A= B + 8u ¥ 4uD7Y, (5.101)
where
D=D , u =u . (5.102)
X 1 K o B
|

i
is a recursion operator for the KdV equation

u + ug + 121.7.u1 =0 . (5.103a)

The LB operator uy 9/9u is a trivial admissible operator of

(5.103a) (translation in x). Then the operators (AJul) B/8a; =12,
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are also admissible; finally the operators [utf (AJul)] 9/0u are
also admissible because equation (5.103a) admits the operator

u 9/0u (translation in t). The equations

j = .:
ut+ (Aul) 0 ’ J 132‘773’---

give Lax's hierarchy (this method of construction differs from
Lax's original method). The value j=1 defines the KdV itself

and j=2 gives

. 2
u, +oug 4 40u1u2 + ZOuu3 + 120u w = 0, (5.103b)

where Uy, Uy, Uz, Uy are defined by (5.102). Similar hierarchies
may be obtained for the modified KdV, the Sine-Gordon and the
Burgers' equations. In this way we obtain evolution equations,

of order higher than three, which admit a BT; however, to
obtain such a BT we need only consider the first member of the
corresponding hierarchy which is at most of third order. 1In this
sense we may claim that the only BT obtained so far in the
literature are essentially admitted by at most third-order equations.

In this subsection we shall derive a BT for the equation

u, +oug + 30uu3 + 3(?uiu2 ; 180\.121.11 = 0. (5.104)
However, we consider the above equation not only because it is of |
fifth order, without being a LB symmetry of some other lower
order evolution equation, but also for the following reasomn:

P.J. Caudrey et al, [80] considered equation (5.104) and noted that
although it possesses multiple soliton solutions and some higher
conservation laws, it does not appear to fit the present inverse-

scattering formulism and does not seem to possess a BT; in this

sense it seems to be the only known evolution equation not fitting
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the usual scheme (BT-inverse scattering-multiple solitons- infinite
conservation laws). However, if we regard the multisoliton solu-
tions as invariant solutions, we do expect that‘the existence of

multisolitons implies the existence of a BT. This BT will be

given below; however let us first motivate equation (5.104)

mathematically. Caudrey et al. noted that each of the two equations.

(5.103b) and (5.104) is a special case of the more general equation
&
u, + ug + guug + (60—a)ulu2 + bau uy = O,. (4.41)

where o = 20 gives (5.103b) and ¢ = 30 gives (5.104). FEquation
(4.41) has a single soliton solution for all values of . We
suggest here the following method for obtaining (4.41): The
recursion operator for the KdV equation A commutes by con-
struction with A = D, + D3 + 12uD + 12u1. In order to obtain
equations admitting at least single solitons we look for an operator

A  which commutes only with the x-dependent part of A. Then it
is easily found that A = D2 + @-12)u + (24-o )ulD_l, where ¢ .is
an arbitrary constant parameter. Any member of the class of

equations

has (at least) single soliton solutions; j=1 | gives the KdV itself
and j=2 gives equation (4.41). After this mathematical digression
let us derive the new BT.
A New BT..

7 For simplicity we consider the potential version of equation

(4.41)

2 3
w, + owg +awgws + (30—a)w2 + Zawl = 10, (5.105)
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where w = u_. Motivated by the discussion in §5.5.1 we look for

a BT of the form

w, = ~w2 + A(x,t)w + B(x,t) , (5.106)

1
(compare with (5.89), where y = 6); recall that equation (5.106)
(solved together with (5.105) when A,B are constants generates
the single soliton solution. The functions A(x,t) and B(x,t) are
found by the requirement that the operétor (W1 + wz-Aw-B)a/au

isa CAO for equation (5.105). This yields
2
Bt + Atw + W + (60—a)wzw3 + awlw4+ fxzwlwz + ?-WW5
2o ww.,w, + 4awv13 -Aw,. -agAw,w, - 2aAw3 - (30 7 )sz +
173 1 § = ESYITE 1 i 2
2.(30—cz)ww§ = 0, when (5.105) holds.
Using (5.105) and (5.106) in the above, we obtain
7 6 5
(w + (2w +()w +...¢)w +()=0,

where the parentheses enclose some combinations of derivatives of
A and B. Actually the coefficients of W7,W6,W5 are identically

equal to zero; equating to zero the coefficients of w4 we obtain

@-30)(AA; + 2B, + A,) = 0,

1
i.e. either ¢ = 30 and A,B arbitrary, or ¢ = arbitrary and
2 - .3
B = —Al/z - A /4 + k, k = constant. The coefficient of w
equals to zero iff the coefficients of w4 equals to zero;

o 2 ‘ ; 5
equating to zero the coefficient of w we obtain that either

A 2
1 A
Q’ZZO and Bz——z"——4-+k,
or
AI AZ

- —

R
]
w
le]
o
=)
[o 7]
vy
]
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i) o =20

To express the BT 1in the customary form let A = 2v

; then
2 ’
B = =Yy +k and (5.106) gives
- R &k
Wy = - (w-v) -V

The equation which is satisfied by v 1is determined by the

coefficient of WJ, j=1,0. These coefficients equal to zero iff
+ + 20 + 10 & + 40 + 0;
Ve T Vs V1V3 i G R

i,e. as it was expected v and u satisfy the same equation
(the potential yersion of the second member of Lax's hierarchy).
ii) @ = 30

A similar analysis shows that

vy 2
Wy + =5+ (w-v) =0, (5.107)
where
: 3 45 2
Vi + vy + 30v1\_r3 + 60V1 + = v, = 0. (5.108)

Therefore, the equation (5.104) admits the BT given by equation
(5.107) whenever v satisfies equation (5.108). The interesting
feature of this BT is that equation (5.108) is different from
equation (5.104). This exemplifies another advantage of our
method: when the classical approach is used one must assume

i) the general form of (5.107); ii) the equation satisfied by

v (in practice it is assumed that either v satisfies the same
equation as u, or its linearized version). None of the above

assumptions is made when our method is used.
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Introducing a parameter in the BT.

The BT defined by equation (».107) is not in a proper form
for discussing solitons because it does not depend on a free para-
meter; furthermore equation (5.108) does not possess a soliton
solution. In the known BT the free parameter reflects the existence
of a Lie point symmetry of the equation under consideration (coordinate
stretchings for the Sine-Gordon equation, Galilean invariance for the
KdV, etc., see also §5.5.3). However, equation (5.104) admits no
nontrivial Lie point groups, therefore we cannot introduce a para-
meter in equation (5.107) using an invariant transformation of equation
(5.104). Instead, we introduce a parameter in (5.107) using a
coordinate transformation which affects only equation (5.108), requiring

only that the transformed equation obtained from (5.108) admits a

soliton. This can be achieved by considering
_ 2 160 3
V = v + 3 Ax - 5 ATt o,

where the coefficient of t is chosen so that the constant term in
the transformed equation is identically equal to zero (otherwise the
transformed equation will not admit V = 0 as a solution). Then

equations (5.107), (5.108) become

v

1 2
Vo+ Vot 30V.Y, + 60V + 22vE 200 v, + 6V _aav.] =0, (5.110)
et Vs 1¥3 1 P Vg 3 1 1 ' :
where
_ 2 160 , 3
W = w + g)\.x - —q—)\.
(1) V.= 0
Then
W), = -W2 4N, Wg= W = x-161%t
( S)l - T S ’ S - S(é)! g - X-
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Therefore

_ 2 160 .3
Wg = Wg = s & S ne

is the potential version of the soliton solution.

(ii) W = 0.
Th (v rvin=o0, Vo=V = e TR d V. i
en 3 S)l s - = ’ g = S“;)’ £ = x- t an s 18

the potential version of the soliton solution of (5,110).

Inserting the above solution in (5.109) we obtain the two-soliton

solution. However, in order to have a nice algebraic formulation
of the multisoliton solution we need to find a superposition principle
(analogous to the Bianchi diagram) for the Riccati equation ﬁhen

Vg is not the solution obtained with W = 0; this problem is under

consideration.

5.5.3 Burgers' Equation and Generalizations.

In this section we investigate CAO of the form
X = [u_-gxt u)] == (5. 64)
X ’ 2 au ] -
for evolution equations of the form

u, + U + F(u, ux) =0 . ‘ (5.24)

Requiring X to be a CAO for equation (5.24), equation (5.70)

yields (with F = u t F)

{gz + u + Fju 4+ FZuxx-g3(uxx+F)} L E 0, (5.111)
u_=g
x
_ 3F _2F :
where F1 ==s F, = a‘lx and 81> Bpr B3 defined by (5. 75).
Replacing the x-derivatives of u, using (5. 76a,b,c) we obtain
2 F(u, g) B
g, + g t+ 2885 + Fog + g lgy + 5 1, = 0.

(5. 112)



e ST

In order to find invariant solutions of equation (5.24) we must
find particular solutions of equation (5.112). Motivated by the
discussion in §5.5.1 we seek solutions such that [g3 + 5]3 = 0.

Therefore, we week solutions which satisfy simultaneously

F
B3 * o = Alx, t) , (5.113)

g, t g t 2885 t gF, =0. (5.114)

Let us look at some particular cases.

= !
1. F = a (u)uX

Then equation (5.113) yields
g = = a(u) + A(x, t)u + B(x, t) . (5.115)
Substituting the above in (5. 114) we obtain

" ] 1 -
(Bt+Bxx+2AxB) + (At+Axx+2AAx)u + (-2a+ua )Ax + Bxa (u) = 0.

(5.116)

The above equation has non-trivial solutions for A and B iff
a'(u) = constant or Z2Za-ua' = constant. Therefore, it is sufficient
to consider a(u) = 0 or a(u) = auz (as we can get rid of the
linear terms in the equation using a linear transformation).

i) a(u) = 0

Then equation (5.116) yields

A, + A + 2AA
XX X

£ o, (5. 17}

1l
o

B, + B + 2BA
XX X

. (5.118)

Clearly B = kA, where Lk = constant. Therefore, the equation

u + u =0, (5.119)



admits the BT
u = A{u+k) , ‘ (5.120) -

where A satisfies (5.117). The above corresponds to the Cole-
Hopf [78]1, [79] linearization of Burgers equation.T From our
point of view it is interesting that this BT can also be thought as
a generalization of u, = D(u; A, B), when A and B are

allowed to depend on x and ¢t.

ii) afu) = a.'u2

Then equation (5.116) yields (with B = 0)

A+ A__+28A_ =0, (5.117)

and equation (5.115) indicates that the BT is given by

u‘—'-au2+Au..
X

However, letting A = @v, v satisfies the same equation as wu.-

Therefore, the BT

2
u, = -qu  + ouv , (5.121)

maps solutions of equation

u +ou o+ Zauux =0, (5.122)

among themselves. This seems to be a new result. Let us
summarize: It is well known that the Burgers' equation can be
linearized. The linearizing transformation, as was pointed out
by many investigators is a BT. Many investigators tried
unsuccessfully to obtain linearizations for other interesting evo-
lution equations (KDV, etc.,). However, it was discovered that
some of these higher order evolution equations possess BT which

map solutions among themselves. Here, it has been shown that



the Burgers equation also possesses such & BT given by equation

(5.121).

2
2. g = a'(u)uX

Now equation (5.113) yields
_ -a  a(u) -a .
g = Ae fe du + Be . (5.123)

Substituting the above in (5.114) we obtain

-a r a(u) -a _
(A, + A+ 2AA )e Je*Wau + (B, +B__ +2BA_Je " =0 .  (5.124)

The above equation has non-trivial solutions for A and B for
any A and B for any af(u).
a) A =0
The BT
= pe~2(9) | 5.125
u, = e . . . (5.125)
maps solutions of equation

2
u, + u  t a.'(u)uX =40 , (5.126)

to solutions of equation
Bt+Bxx:0 . : (5.127)
B) B =0
The BT
w = Ae"a(“’fea(“)du (5.128)
x ? ’

maps solutions of equation (5.126), to solutions of Burgers'

equation (5.117). Therefore, equation (5.126) can be linearized
and also can be transformed to Burgers" equation for any af(u).

This result can be rederived very easily (and in a sense explained)

as follows: Let ¢ satisfy the equation
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Py + Py = B . {5, 129)
and let ¢ = A(u). Then equation (5.129) becomes equation (5.126)
n
with a'(u) = i,(z) ,  which shows that equation (5.126) can be
linearized for any a(u). By the way, the last approach provides

the easiest way for obtaining the Cole-Hopf transformation:
A"(u) _ 1 Bu il eBu

A (a) - B . therefore A = Ee and ¢ B

Differentiating the last equation with respect to x we obtain

Let

¢, = Buxga. Equation (5.126), with a'(u) = § becomes

Differentiating this with respect to =x and letting v = u_ we

obtain v, + v__ + Zﬁvvx = 0. The BT now becomes P, = Bve.
There are different ways by which the above results can
be generalized. First we can look for solutionsof equation (5.112)
in the form g(x,t,u) = g(v,u); in this way the results of §5.4.1
may be rederived. Alternatively, instead of generalizing the solu-
tion g = ¢(u; A,B) by g = &(u; A(x, t), B(x,t)), we can |
generalize it by g = ®(u; A(v), B(v)). For example, the BT

given by (5.121) generalizes to the BT

u. = —auz + ouA(v) ,
x

which maps solutions of the Burger's equation (5.122) to solutions

of equation

A"(v)
Vg ¥ Ve T A'(v)

Vi + Z(IA(V)VX = o (5.130)
From the above it is clear that the new approach is quite powerful:
By generalizing the solution g = ®(u; A,B) (letting A and B
to depend on x and t) some basic BT can be derived; by

generalizing it further A = A(v), B = B(v) more general BT may

obtained.
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A. Introducing a parameter in a BT.

Here we shall use the BT given by (5.121) to illustrate
i) how a parameter can be Introduced in a BT and ii) the use of
Bianchi diagrams.
A trivial change of variables transforms equation (5.121) and
(5.122) to
u o -, B o, (5.131)
and

2*|,au,X = uz—uv' . ‘ (5.132)

Equation (5.131) admits the following obvious Lie poinf groups

' =ttogx =x+fg, & = 1, (5.133)
1 = 2 | t = = -

eyt w sg, W=y, (5.134)
t' = t, x' = %x-Ut v = u-U; U= const. (5.135)

The transformations defined by (5.133) and (5.134) leave the equation
(5.132) invariant. However, using the transformations (5.135) (and
dropping the primes) equation (5.132) becomes

Zvux = uz-uv-!- U(u-v).. (5.136)

Note further that equation (5.131) admits the following Lie point

group of transformations

t' = s X' = , ' = u+ T(x-ut). (5.157)

Using the above group, we obtain the following BT which depends
explicitly on =x and t;

o U(u-v) T
2vu, = u-uv + e [ x(u-v)-2v] | (5.138)
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B. Bianchi diagrams.

Y

Let us call w the solution obtained from (5.136) when

¥ s Wy and U = Ul' and u, the solution obtained from (5.136)

when v=v0 and U = U

the solution U, can be obtained either using v = uy and

2 The Bianchi diagram indicates that |

U=10,, or v=u and U= Ul' Therefore the following

equations hold;

2-1)!.1.1X = uz—uvo + Ul(ul—vo), (5.139a)
ZuvuZx = uz-lffro + Uz(uz-vo), (5.139b)
2vu12x= uziz - uy + Uz(ulz—ul), (5.139c)
Zvu12x= u212 = uué + Ul(ulz—uz) . (5.1394d)

Equations (5.139c,d) imply that

o, = 2% (5.140)
12 (uz-u1)+(U2-U1) d o
where u,u, are defined by (5.139a,b). Let Vo T C2» U1 = -cys
UZ = Qs where CysCpsCy arve constants; then (5.139a,b) desc;ribe

two single sbocks, whereas (5.140) describes the interaction of two
single shocks. The formulae obtained this way coincide with the
corresponding ones given in [ 24| (see also D below). The validity

of the Bianchi diagram can be proved by checking that u, as
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defined by (5.140) solves equations (5.139c,d).

C. The Burgers hierarchy.

Let us take v=1 for convenience of writing, It is shown
in [ 53 | that the operator

A= -D+Ltutteyp?, (5.141)

is a recursion operator for the equation

u, + uy, -u, = 0. (5.142)
(where u, = u_ - ). Therefore, the class of equations

j - .
ut+Au1—0, j=1,2,...

defines the hierarchy of Burgers equation. The equation (5.142)
admits the BT defined by equation (5.136) (where v=1) and the
linearization u = —thl/(p. These BT are admitted by every
member of the hierarchy; in particular the hierarchy can be

linearized,

~2g,

j =i -— 3 " - i~ 1= 2
ut+Au1 0 u pr ?, <pj+1 0, j=1,4,...

D. The invariance of shock solutions.,

Using the recursion operator A defined by (5.141) we have

the following collection of admissible LB operators

s Wyl | &
Xj & (Au-l) du ’ 3—09:'-:2,---

It turns out, that the solution describing the interaction of n

shocks is invariant under the action of the LB operator
n

» I 50
Xn - JZ‘O(Q_‘}A ul) du ?
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where a; are constant parameters.
Let us illustrate the above result for the case of the interaction
of two shocks; we must prove that the solution obtained by solving

simultaneously equation (5.142) together with

3 3 2 3 2 '

gy - g +a2(—u3+§uu2 +—2-u1-zu ul) = 0, (5.143)
describes the interaction of two shocks. Using the linearization
= —2¢1/¢ equations (5.142) and (5.143) become

901: i (PZ = 0 5

gy - C1P — @39, =0
Solving the above we obtain

c.x c.t

- - i i
@ = fl + £, + £, fi = aupl~ = + -y -bi),

where c:i,bi are constants. Then the solution
lel + <:Zf2 + c:3f3

u..'_.. - s
, TG T o .

which is identical with wu, defined by (5.140) is the sought

solution (see [24] page 111).
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5.6 CONCLUSIONS

Let us try to summarize the main results obtained in this
chapter. First of all we proved that all solutions of evolution
equations obtained through BT can be characterized as invariant
solutions under the action of some CAO. We also gave an alter-
native way of characterizing them, as invariant solutions of the
equation defining the BT under the action of some admissible LB
operator, which is completely determined by the given evolution
equation. The above characterizations, (which were proved to be
equivalent), led to an algorithm for obtaining BT based on invariance
criteria. In this way many known BT were rederived and the

problem of linearizing the equation u +U‘xx+ F(u, ux) = 0,  using

t
the BT vx—f(u, v) =0, was completely solved; it was also shown
how to extend the above ideas to non evolution equations, for ex-
ample the Sine-Gordon equation.

After establishing the basic nature of Bidcklund solutions we

generalized the BT in the following way: Instead of looking for

A
CAQ of the form X = [ux—f(u, Vy Vs oo )] é% , we look for CAO
A
of the form X = [ux-g(x, t,u)] 565 . Clearly every operator X
is a special case of some operator X, Requiring X to be a

CAQ for the given equation, we obtain a nonlinear equation for g

in three independent variables x,t, u. The main problem is how
to find particular solutions of this equation. One way, not very
efficient in practice, is to let g = f(u, v, Vs ). The obvious

question is the following: What is the advantage of starting withv
g(x, t,u) and then letting g = f(u,v, Vs ), instead of the

classical approach starting directly with f(u, v, Voo )? In
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practice, when looking for BT we have to assume the arguments

of f, and if we want to change the arguments of f the whole
process must be repeated. In our approach this is not necessary
as we only have to check if a particular form of g 1is actually a
solution of a given equation.

However, we have developed a more efficient way of finding
particular solutions of the equation for g: It turns out that there
is a particular choice of g which is physically very interesting,

g = ®(u). This corresponds to the wave-train solution of the given
equation (i.e. the solution of the equation invariant under the action
of XO = [ux-'i]?(u)] a—au' , is the wave-train solution, assuming that
such a solution exists). In general this solution will depend on some
constant parameters say Ai’ i=12,... . So let us denote it by
writing g = @(u;Ai). One very efficient way of finding other parti-
cular solutions for g is to let g = tI’(u;Ai(x,t)), where it might be
necessary to set some of the Ai £ 0 in order to simplify the form
of g; 1i.e., we do not generalize the most general wave-train |
solution but just a particular one, usually the solitary-wave solution.
This is interesting both mathematically and physically as the solu-

tions representing soliton interaction can be thought as variation of

parameters of some wave-train solution (usually the solitary wave
solution). In this way new BT can be obtained, (Also in this way
some exact solutions have been found for cases that BT do not exist,
for example for the equation uxy = u3; however, these solutions

do not seem physically interesting and therefore are not presented

here).
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Using the above approach a BT was obtained for a fifth order
evolution equation first introduced by Caudrey et al. [ 80 | and known
to have some interesting properties (multisolitons and some conserva-
tion laws). The discovery of this BT for the only known evolution
equation not fitting the usual scheme (BT, inverse scattering, multi-
solitons, conservation laws) strengthens our belief in the existence
of a one to one correspondence between multisolitons (or multishocks)
and BT (this will be exemplified below). This BT has the interesting
feature that it maps solutions of the above equation to solutions of
another fifth order equation. This poses the problem of finding a
new superposition principle for the corresponding Riccati equation
and also formulating a new inverse-scattering scheme; this problem
is under consideration.

Using the above approach also, a new BT was obtained which
maps solutions of Burgers' equation among themselves. This BT
was used to illustrate; 1) how a parameter can be introduced in a
BT using an admissible Lie point group of the equation under consid-
eration; ii) the use of Bianchi diagrams for constructing a multi-
shock (or multisoliton) solution; 1iii) that the hierarchy obtained
from a given equation possesses the BT possessed by the first
member of the hierarchy (the members of the hierarchy are viewed
here as LB symmetries of the given equation); iv) that the
multishocks (or multisolitons) solutions are invariant under the
action of some LB operators uniquely defined by the above hierarchy;
v) that it is possible to have a BT without having infinite conserva-
tion laws or solitons.

The results of chapter IV and V (and in particular the con-

sideration of the above comments) justify in our opinion the following
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statements:

i) An evolution equation possessing an infinite number of symmetries
or a BT or multisolitons (multishocks) automatically possesses the
other two,

ii) An evolution equation possesses N-solitons for any N iff it
possesses an infinite number of conservation laws.

iii) An evolution equation possessing infinite symmetries and a

Lagrangian possesses infinite conservation laws.

Further discussion and some open problems.

In §5.5 it was shown how to relate a CAQO to an admissible
LB operator (see lemma 5.2). However, this was achieved only
by interchanging the roles of the given evolution equation and the
equation imposing some group theoretical constraint on this evolu-

tion equation: Consider the equation

1:+F(u,ux,...,uX-”X)=0, (5. 65)
—1

m

u

together with the equation

u_-g =0 . (5.67)
The LB operator
X = (a_-g) = (5. 64)
X du
is a CAO for the equation (5.65), iff the LB oi)erator

Y = (u

is an admissible operator for the equation (5. 67).
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We would like now to relate a CAO of a given evolution
equation to an admissible LB operator of the same equation. That
is, now we raise the following question:

Given the evolution equation (5. 65) and the CAO (5. 64), is

it always possible to find an admissible operator Z for equation

(5.65)?

We conjecture an affirmative answer to this question. Let

us give a very simple example supporting our conjecture. Con-

sider the KdV potential equation
w, + w___~2w. =0 . (5.144)

It was shown in §5.5 (see equation (5. 88)) that the soliton solution
of this equation is the invariant solution under the action of the
CAO

2 d
Ky = [wx-(%w +Aw+B)}W . (5.145)
However, any wave-train solution of (5.144) is an invariant solution

under the action of the admissible LLB operator
Z. = (w,-Uw )'—a (5.146)
0 t x' dw : :

Therefore, to the CAO XO must correspond the admissible oper-

ator ZO' This is actually easily verified: From equation (5.144)

it follows that

2
T 4
We % BWon T BW, » (5.147)
Using the equation
w_ = l-'Wz + Au + B ,

x 12

(and its differential consequences) to simplify the right hand side

of equation (5.147) we obtain
2 2
Wy = (A~ + 3 B)Wx ;

Therefore, to the CAO (5.145) there corresponds the admissible



-182-

operator (5.146), where U = (A2 + %B)%. Notice however, that
obtaining an admissible operator from a CAQO requires a process
of differentiation; therefore the class of the invariant solutions
corresponding to a CAQO, will be just a subclass of the class of the
invariant solutions corresponding to the admissible operator. In
the above example, the soliton solution is just a special case of
the wave-train solution.

Now let us consider the case of the two-soliton solution of

the KdV equation

u, + uu_ + u =0 . (5.148)
t x XXX

The two-soliton solution of the above equation is the invariant

solution under the action of the CAO

b, (-u-W2 + 2v(§)w-{])—a% s (5.149)

where w is a solution of (5.144), v(£) is the one-soliton
A
solution with speed 4U, and U is a constant. To the above

CAQ corresponds the admissible operator

-3 1.2 i (—
Z = [Suxxxxx+ uum+2uxuxx+?_u ux+U1(uxxx+uux)+U2ux]auinau ?
{5.150)
N
where U1 and UZ are functions of U and U. The above

operator was obtained in [68], see also the discussion in §4.1.2B.
The invariant solution corresponding to the CAO (5.149) is the two-

soliton solution; what is the invariant solution corresponding to

the admissible operator (5.150)? We conjecture that this solution

is the one describing the interaction of two wave-train solutions.

The conjecture is based on the analogy with the one-soliton case:

The CAO X characterizes the soliton solution and the corresponding

0

admissible operator Zy characterizes the wave-train solution.
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Similarly the CAO X characterizes the two-soliton solution;
therefore, we expect the corresponding admissible operator Z to
characterize the two-wave-train solution. QOur conjecture is
consistent with the fact that the equation = 0 (where 2 is
defined in (5.150)) contains the two-soliton solution; (this was
proved by Lax [ 70]). Our speculation would be proved by proving
that the solution of equation 2 = 0 describes the interaction of
two wave~train solutions of the KdV equation.

Our conjecture is further supported by considering the case
of a BT: A BT defines infinitely manf CAQO; however, it also
defines infinitely many admissible operators (see for example [50]).
Therefore, in this case to each CAO there corresponds an ad-
missible operator. Furthermore each admissible operator generates

a conservation law (see §4.2); this underlines the connection be-~

tween BT and conservation laws.

We remark that proving our conjecture would also clarify
the connection between the existence of a two-soliton solution and
the existence of an additional conservation law for the equation
possessing the two-soliton solution (when a BT does not exist):
The two-soliton is the invariant solution under some CAOQO; to this
CAO corresponds some admissible operator which generates a con-

servation law (using the algorithm developed in chapter IV).

In concluding we point out that proving the above conjecture
would unify the two approaches proposed here for obtaining invari-
ant solutions. Let us call (for the sake of this argument) a solu-
tion invariant under the action of an admissible LB operator an

invariant solution and the solution invariant under the action of a

CAO a restricted invariant solution. Proving our conjecture would
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mean that every restricted invariant solution may be regarded
as an invariant solution. However, the concept of a CAO would
still be useful because it is in general easier to find a restricted

invariant solution than the corresponding invariant solution.
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APPENDICES

In Appendix I, the sets of equations (¢) and (B) (see §2.3)
are completely solved.
In Appendix II, some invariants cubic in the momenta are derived

for potentials of the general form

vV = V(xz + vyz), v = constant.

In Appendix III, the calculations of §2.4B, regarding the most
general two-center potentials admitting quadratic invariants, are
elaborated.

In Appendix IV, all the LB operators, linear in u and in all

first and second order derivatives of wu, which leave Tricomi's
equation

xuyy * B 0,
invariant are found. This example also serves as an illustration of

how to obtain admissible LB operators for linear equations.
In Appendix V it is shown that the most general BT of the
form

W - f(u,v,vx) = 0,

mapping solutions of the equation

uxy - Fu) = 0,

among themselves is given by
u_ - av, - d(u+ av - g(u - av))= 0.
In Appendix VI it is shown that the only type of equations, of

the general form
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1.1}{}’r = F(u), F'"(u) # 0,

which admit higher order symmetries (i.e. LB as opposed to Lie
point) are those for which

F'(u) - AF(u) = 0.
This is consistent with the fact that the above type of equations are
the only ones admitting a BT. This appendix also provides an illus-
tration of how to derive admissible LB operators for nonlinear equa-
tions.

It has been observed that all the well known BT can be trans-
formed to the Riccati equation. Further, it is well known that the
Riccati equation possesses a nonlinear superposition principle.

The nomnlinear superposition laws have been emphasized by Ames
[81]. In Appendix VII we review some of the above results and show
that all BT considered in Chapter V are special cases of the gener-

alized Riccati equation.
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APPENDIX I

I. The general solution of the set (o)

The compatibility equations for a; are:

3 ¥, % ¥ Moy, x, v (1)

Byt agmy = O (2)

(21 X, %5 + 2 %3 X3 )Xz = 0 (3)
Therefore

My xix, | Mxaxx,  Vxaxax, B 2 (4.1)

(4.2), (4.3) by cyclic permutation. Using (4) in the set (o)

we obtain:

= a = ay .

ay 1 a; =0 (5.1)
X X1 X3 HKpXpX3 X3 X3z Xa X) Xz X3

Therefore
A
ay; = a; (x)toy y"- x+ B z2x+yl xy+6; xztey yz+i, Y2+Th z2 +0; ytK; Z,
a, az by cyclic permutation. Substituting the above in (o) we

obtain (2,16).

II. The general solution of the set (B)

The compatibility equations for bij are:

2 s = s g
vx.,x.(bij) - 0! 1# Js 1,7 112I3 (6)
1" ]
where
9 3
2 - 2 2
vx,,x. - (ax.) (ax.) g
i’7j i
Also
byz s x, = Plag,x, T P2y o = O (7.1)

(7.2), (7.3) are obtained by cyclic permutation. Eliminating by,

by b23x we obtain

from (7.2), (7.3) and replacing -b23x <36
2

X2

2
X1 X2

(blsxl - bzaxz) = 0- (8.1)
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However, (bl?’xz ¥ b23X1) = - b12x3 (from (B.7)) and therefore

2 b + b = 0,
=3 ,Xz( 13y, 23x1)
(8.1) together with (8.2) yield :

v by = T2 bow, = B
Xy 2 X2 * Ay , X 2

Cyclically we obtain the following set for 1b;:

v4 bis = O
X1 ,X3 i
Ve b = 0
X249 X3 i
and
LY by = O
X3 %32 iz

Adding (9.1) and (9.2),and using (9.3):
) 9
[(3;{-3)4 + g P = 0.
Finally using (9.4) in (9.1) and (9.2):

= blZ = 0.

b
AR X3X3XpXp

X3X3X¥X) Xh
Integrating equation (10) we get:
bz = A(z)xytAy (z)xtA, (z)ytAs (z)tA4 (%, ¥)ztAs (X, V),
bz, bsy are obtained by cyclic permutation where x—y—z,
A—-B—-C, A.—+B.—C., 1 < i < 5,
i i i
To determine the form of A, Ai' B, Bi’ Ci Ci we
must substitute (13) in (8) and (9). Substituting (13) in (8):
VE Ag =VE A = 0,
Xy Y Xs ¥
(12.2), (12.3) are obtained cyclically.
Substituting (11) in (7.1):

Aqgo(x, y)z+As o (x, y)FB! (x)yB} (x)+ By (y, 2)-Clly)x -
Cy(y)-Cy,(2,%) = 0

Differentiating the above with respect to z and using

(8.2)

(9.1)

(9.2)

(9.3)

(9.4)

(10)

(11.1)

(12.1)

(13)
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(12.3):

Ag  (5,y) + Ba (y,2) + Cap (2,%) = 0.
Therefore

Aggo = 2a(x) + ak(y)

By, , = baly) + by (z)

Cs, = ca(z) + cfp(x) (14)
where

Ciz(x) = - ag (x), cau(2)= - by (z), by (y) = - agp(y). (15)
Therefore | '

Ap = ag 0T + an(y) + anb)y + au) (16.1)

similarly for Byg, Cg4.

Using (16) in (12) we obtain:

2

ay (x) = 0.’4_.1225' + agex + a43
4 3 2
ag(y) = - 041“224' = 0!44%" + 0'45% toagy + ap
a8
343 (x) = a5 + apx + ag
4 3 2
X
agu(x) = - aas57 - 0!42% - (o + 0!43)% t agox + aa .
(17.1)
(15) yields:
@y = Yo, Q42 T Yaas Y43 T - Y5 e (18.1)
Using the above expressions (and the ones obtained from the
above cvclically) in (13) we get:
' 1 xz
Asyy = - B'(x)y + C'{y)x - Bi(x)+ C (y) + yaa 5 + va8X
y?
- Pass - Pasy - Pag - Pas + Yaro- (19.1)

2
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Using (19.1) and Asxx + Asg i = 0:

3

S

X

2
B(x) = Bi3g + Bzg + Bz + Pax + Ps

4 3 "
B, (x) = Yz%; + ﬁé% + ﬁ?% + Bsx + Py

4 3 2
Cy () ﬁz‘g:f + 56% + Clo'zz + cipy + ¢y (20)

Also As is now completely determined. A, C, A,, C,, A;,
B; are obtained by cyclic permutation where f; = o = v;.
Substituting (16), (17), (20) in (11) and then (11) in (B.7) we

obtain (2.17), (2.18).
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APPENDIX II

In this appendix we shall investigate cubic invariants

admitted by potentials of the general form
2 2
V = V{x + vy ). (1)

The most general invariant cubic in the momenta is given by
(see lemma 2.1)
3 3 2 2 2 2 2
Iy =apy + Bpy + YPPp * 6P,py t €Em + Lpym + 6p,m ,
(2)
2 2
+ kpym + Apym + up pm + o (x)p; +a, (X)p;, -
Equations (2) and (2.27c) define the djk!? within the constant
parameters o,83...M. Substituting these djkﬂ in (2.29h) and using
equation (1) to evalute the relevant derivatives of V, we obtain
an equation coupling V and the parameters o,B...p. Solving this
equation we find that
i) For v =1, no new nontrivial cubic invariants are found ,

ii) For v # 1, the parameters k,\N generate nontrivial cubic

invariants: The parameters k,N correspond to
d111 = —ky, dzzz = )\X, d112 = kx, dzzl = —)\.Y. (3:

Using (2) and (3) in (2.27h) we find

2’ 2‘ Z (A1) —_
[(3v_13)vk_(3-13v)x] V' o+ 2 (-h-2kvH3vN)x + (kv-3k+2\ vy | V" = 0,
(4)

where
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1. V"=0 (Vv = %X + %VY )
Then k,\A are arbitrary. Using (3) and (1) in (2.29%e,f) we

find

2, B 2 2 2. B
a; = 3y(lkx + vTAy), azz-}-s‘-(kx Ty, (B)

However, because equation (2.29h)is only a necessary condition
we have to check if the djkﬂ as defined by (3) and the a, as
defined by (5) satisfy equations (2..9.) with V = %xz + Jvy . A

straightforward substitution shows that this is the case iff

k(v-9) = 0, A(9v-1) = 0

Therefore, either »=9, A=0 and k=aribtrary or v :-(15,
k=0, A=arbitrary. Finally using these values in (5) we obtain:

Potential Invariant

2 9 2 2 2 1 3

3x + 3y pym + 3x yp;-3Xx py,

L2 1 2 2 1 3 1 2

2x t9gy Ppm t >my Dy- IXY Py-
2, N"# 0
Then equation (4) makes sense iff

(kv-3k+2A v = (-A-2kv+ 3vN), or vk = \.
Then it becomes 3zV'" +8V' = 0, or

ol

vV = Az * + Bsz. (6)
Letting

dip = =¥y dazz T vEs dygp = X, dppy T -y (7)
in (2.29e,f) we find

2. 32 _6x , 2, 3.2 .
a; = by(x” + vy V', a, = = +vy yvr.  (8)

Finally using (6), (7), (8) in (2.9) we find B=0, v = -1.
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APPENDIX TII

In this appendix it is proved that the most general two-
center potentials admitting constants of motion quadratic in the
momenta are:

i) v, = ap® + fpg | &
with corresponding invariants given by equations (2.35), (2.36),
and

-1 =1

o 2 2
ii) v, = a@up  + agp, + ap + Bp . (2)

2
with corresponding invariant given by equation (2. 37).

In §2.5. it was shown that the most general constant

of motion quadratic in the momenta is given by

1, = ap® + B> + + 8p;m + gp,m + Lm° 3

3 = B ﬁpz yplpz plm szm tm  + c(x,y), (3)

where all the greek letters denote constant parameters. Letting
I,® b p° + b,,p> + 2b | 4
2™ PPy * PaaPp 12P1P2 *+ <% y), (4)

we obtain

A
bll = g-6y + Ly ,
A 2
b22=[3+£x+gx ; (5)
Zbl2 =% + 6x ~-gy -2l xy
Let
V = F(R) + G(Ry) , (6)
where
2 2 Z 2 2 2
R=p = x +vy, Ry =py=(xx5) +y . (7)
The b.., defined by equation (5), are coupled with the potential

ij
V through the equation (6.1) (when restricted to two dimensions).
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Letting

dF dG
F' = — G! =
dR ’

equation (6.1) yields:
& z _2
{2(@-B)xy + y(y“-x")-6xR-gyR} F" + %{-ey-ﬁx}F' §

{Z(Q-ﬁ)(x-xo)y + 'y[yz—-(x-xo)z] + 8[ —x(R+x(Z)) + 2x4R] (8)

> . 3 Zxog
—sy(R—xD)—Z raxoy(R-—ZxOx)}G +E{-€(1 + - r)y-ax—xoé}G' =0
i) F'=q G' = 8.

Then the potential V takes the form

V = aR + AR,

(9)
A A
From equation (8) it follows that @, 8,y are arbitrary, and
&6 = 0; also
ZXOQB
a+ B+ = = 0 (10)
Therefore,
ZXO;
{ = arbitrary and g = - (11)
[*4
1+ £
B
Therefore the potential V given by equation (9) admits the
following invariants:
5 b e
a : pl 1
2
B P, + c,
(12)
Y ¢ P1p2 & G
Zx
3 4 mz-—gp2m+c4.
1+



-195-

Integrating equations (y) we determine the functions c;

Then the formulae (2. 35), (2.36) follow.

ii) G" % 0

AA
From equation (8) it follows that @ = 8 = ¥y = 6§ = 0; also g # 0 ,

iff

2Lx 2x L

2 0 . . 3 0
(R—Zxox)]G' ~ S +

3
0" T 5

RFY + SF' = -[Rex

G - (13)

The above equation has a nontrivial solution iff the coefficient of

G" is a function of R only. Let

0

Tx,

— = ] 4

- (14)
and this coefficient becomes Ry- ‘Then equation (13) reduces to

RF" + 3F' = R.G" + =G’

2 0 2 ’

which can be solved to yield the potential (2). The invariant
corresponding to [ = arbitrary and g = -gxo (see equation (14))

I = m x P m l C
0 2

Integrating equations (y ) we determine c(x,y) and then the

invariant given by (2. 37) follows.
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APPENDIX IV.

In this appendix we derive LB operators of the form
)
X = n35 (1)
admitted by Tricomis equation

x = 10 (3.15)

b

u  -u
yy XX
where

n:au+bux+cuy+du + fu + g (2)

and a,b,d,f,g are functions of x and vy.

Note that the operator (1) with n defined by (2), is the
most general LLB operator linear in u and in all first and second
order derivatives of u; the term U is missing, but this is
without loss of the generality as u . can be expressed in terms
of uyy, using equation (3.15).

Extending the operator X and applying it to equation (3.15)

we obtain
2 2
X(3.15) = =(D)"n-(D_)"n .

Therefore, X is admissible iff

I
o

2 2
x(Dy) n - (D) (3)

(3.15)

Writing the above equation in full, using equation (3.15) and its
differential consequences to eliminate U and higher x-derivatives,

and then equating to zero the coefficients of u and its derivatives

we obtain:
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u: Xayy_axx =0 (4)
W xbo b 22 =0 (5)
uy: chy_cxx + Zxay =0 (6)
uyy: Xfyy_fxx + Zxcy-beX—b =0 (7)
Yo Xdyy_dxx + bey—Zc:X = 0 (8)
Upyyt 2xd -2f =0 | 9)
uyYY: ZXfy_Zde—d =0 (10) .
(0)°: Xg By = O (1)

To solve equations (5) and (6) we introduce the auxiliary functions

¢ and 2 defined by:

4, = xb, (12. a)
-2a + pr =b_, ' (12. 1)
Uy = Ty s (13.2)
-2xa + ﬂx = ch' (13.b)

Note that the compatibility equation of equations (12) (pry = prx)'
implies equation (5) and the compatibility equation of equations (13)

implies (6).. Now equation (8) yields
+ ZLLJX-ZCX = 0,
or
d = xA(y) + 4xc-4xy . (14)
Equation (9) implies
£ =xdg . (15)

Then, using equation (14) and (15) equation (7) can be integrated
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to yield
b = 4xa -ixA'(y). (16)
Now solving equation (5) for a, we obtain
1 .3
a = - ggx A™y) + Bly) . (17)

Using the above in (4) we find

1
AH"I -— 0 ; Bll = - E—Ar" (18)

To completely determine d we need , which is found by
integrating equations (12);

6 4 3 1 3

o= - ;5%)"-6—): AMo4 3 * B' - X A"+ 6dey -+A 4+ K,
(19)
where K is a constant. Then d and f follow from equation
(14) and (15):
4 4 "
d = - 5ox Al 4 x[ 4D(y)-24 [Bdy + 3A-4K] , (20)
1 6 n X3 t '
f=-75x A +—3—[4D—24}3+3A] + o(y). (21)
Now using equation (8) we can determine c:
g = %x?)ay— L A"(y) + D(y). (22)

Using the above expressions in (6) and (7) we deduce that,
A" = 0, D" = 6B', ?3—4;' = 4D-24[Bdy + 3A-4K. (23)
Equations (23) and (18) yield,

B =ay + 3, A =1yy + §&; D=3ay2+6ﬁy+g,
(24)

where all the greek letters denote constant parameters. There-

fore,
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25)
S 2. o oy s 2 |
d—3x<p, f—3x—3qo + ¢ .

Finally, equations (23), (24) and (25) completely determine
a,b,c,d,f; and g 1is any solution of equation (3.15). Hence the

1.B operators given by equations (3.16) follow.
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APPENDIX V

In this appendix it is shown that the most general

BT of

the form

ux-f(u, v, Vx) =0,
mapping solutions of the equation

u . ~Fla) = 0, (5. 49)
among themselves, is given by

ux-avx-¢(u+av—g(u-av)) =0 (1)
where @ = constant, and ¢ and g depend on F(u). A
special case of the above is

ux-vx—¢(u+v) =0, (5.51)

which was used in §5. 4. 3.

Assuming that

_ 9 9
X = [ux-f(u, v, Vx)] 2a = T v

is a CAO for equation (5.49) we obtain

[uxxy-nyf—F‘(u)(ux-f)](5'49) =0, when T=0.

Therefore,

1 - o -
F (u)uX ux(fnuy+f12vy+fl3F(v)) vx(f21uy+f22vy+f23f‘(v))

- - - -— -— ! - —
vxx(f31uy+f32vy+f33F(v)) le(u) fZF(v) f3F'(V)Vx F (u.)(uX f)
0o, when T =0 , (2)
af _ of _ of g ; . :
where fl 5 T fZ 5w f3 —"‘“"avx . Taking the y-derivative of
T;

- L 5 - -
uy = f1 (F{u) fzvy f3 DyT) ; (3)
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To solve (2) we replace u_ by f,

of (3) (with T = 0),

uY be the right hand side

and then equate to zero the coefficients of

L vay’ Vi and vy. From the coefficients of Vo WE
deduce that

fig ¥ =55 = 0 s
or

f = av_ + ¢(u, v) . (4)

From the coefficient of vxvy

Ado TP Adpytéy,
\7) 1 ’
3
where q;ligﬁ’-, ¢2=5‘$. Let

Uz u+av, v=Eu-av,

and equation (5) becomes

L () _
B == u

b2 ] ’

L ()
u

or
A
¢2'g(v )dPl =0.
Writing equation (7) in terms of the

we find

¢ = ¢(utav, g(u-av)) .

To completely determine ¢

to zero the coefficients of v and

§5.4.3 for the special case that

in terms of

we deduce that

(5)

(6)

(7)

u, v variables and integrating

F(u) we must equate

v . This is done in

y

¢ = ¢d(utav).
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APPENDIX VI

In this appendix it is shown that the only type of equations,

of the general form

uxy = F(u), F'"(u) = 0 (5. 49)
which admit higher order symmetries are those for which

F'"(u) - AF(u) = 0 . ‘ (1)

To prove the above statement we should consider the

operator
a
X =n37 (2)
where n = nfu, u, uy, L uyy’ uyyy’ ...) . However, we
only present the proof for the case that
n = nfu, u,u .U ); (3)
the generalization is straightforward. The operator X, where

n is defined by (3) is an admissible LLB operator of equation

(5.49) iff

D, n-F'(a)n 5 a9 0 (4)

Writing the above equation in full, using equation (5.49) and its

differential consequences to replace u__, by

u o W
Xy XyX KYXKX

lower x-derivatives, and then equating to zero the coefficients of

. W ., a5, we obtain the following: From the coefficient
XXXX v x

of u we deduce that
KKK

n = f(u, u_, uxx) tou -

Then, from the coefficients of u u, wuu_ , uu , u
y X y XX Yy XXX ¥ XXX

u we deduce that
KXX
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f=au+ fu_ + afu), (6)

where @ and [ are constants and a(ux) is an arbitary

function of u_. Then, equation (4) reduces to
3
n n - 1 1 n
[ F(u)a (ux) + 3uxF (u)]uXX + ag + uxF (u)a' + ﬁuxF () +
. (7)
+ uxF"'(u) - quF'(u) - F'(u)a = 0

Equating the coefficient of U to zero, in equation (7), we

obtain
= i
i_(‘(jl i i‘(au““) = % 5 (8)
x

where A\ 1is a constant. Therefore

F'"(u) - \F(u) = 0 , (1)
and

a(ux) = - -;—ui +oyu 4 65, (9)
where ¥ and & are arbitrary constants. Substituting a(ux),

as defined by equation (9), in equation (7) and using (1) (where we

assume A # 0) we deduce that (7) is identically satisfied iff
a=0, (=0, 6=0, ¢ = arbitrary constant (10)

Equations (5), (6), (9) and (10) imply that, the equation (5.49)
admits the LB operator (2), where n 1is given by (3) iff

equation (1) holds; then the operator X is given by

- Yo 2w’ 2
& =i 2 Ux bt Ugxx T VY% du - L)
Note that the pressence of the term YU in the above expression

is well justified as the equation (5.49) is invariant under
x-translation, i.e. if admits the operator

2 .,

0x X 3u
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APPENDIX VII

In this appendix we review some results about the nonlinear
supperposition of solutions of nonlinear first ordef equations. These
results are important in connection with the BT considered in
chapter V, because all these BT can be thought of as a spec-:'tal case
of a generalized Riccati equation (see below for the definition of
this equation).

Vessiot [ 82] in 1893! posed the following interesting question:

Which equations of the form

a = F(u,x), | (1)

have the property that, any solution u of equation (1) can be
expressed in terms of a fixed function of n other solutions of
the same equation (1)? That is, for which equations (1) there exist

a function f such that
w s Hueeasity s (2)

where wu, u, 3 1< i < n, are solutions of (1)? Vessiot with the
above question posed the problem of determining all equations (1)

which possess the nonlinear superposition law expressed by

equation (2). He solved this problem, using group-theoretical
arguments:

An equation (1) possesses a nonlinear superposition law
expressed by (2) iff it can be expressed in one of therfollowing
three forms:

A A
1) U = U(u)X(x) , (3)

A A
where U and X are arbitrary functions of u and x

respectively.
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2) u, = a(y(e) + bE)y,) (4)

where a and b are arbitrary functions of x and v ¥, are

two linearly independent solutions of

dzy_' | dy
7+ Mu) oo+ My =0, | (5)
du ~ '

where AN(u) is an arbitrary function of wu.

3) u = A(x)Vl(u) -+ B(X)Vz(u) * C(X)V3(u) ; (6)
where A, B and C are arbitrary functions of =x and Vl’ VZ’
V3 are three linearly independent solutions of
a’v dv |
tople) gt oz w'@V =0, (7)
du3 du

where p{u) is an arbitrary function of u.
It is interesting that letting u = ¢ (U) equations (3), (4)
and (6) can be transformed to equations (8), (9), and (10)

respectively, where

U_+ PU =0, (8)
U_ + PE)U = Q(x), (9)
U, = pEIU% + q(x)U + v(x) - (10)

Clearly equation (10), the Riccati equation, contains equations (8)

and (9). Similarly equation (6) contains equations (3) and (4);

equation (6) is called the generalized Riccati equation. Therefore, the

Vessiot result can be restated in the following form:

An equation (1) possesses a nonlinear superposition law
expressed by (2) iff under the transformation u = ¢(U), it can

be transformed to the Riccati equation.
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Now we show that the BT considered in chapter V are of

the above type (if t 1is regarded as a parameter):

i) The Sine-Gordon equation

The BT is given by

- T 2 X, i 2
u = (vx) + (2@ sin 2.) cos 3 + (Zacosz) sin > .

Regarding the function v as some given function of x and t,
the above equation is of the type (6) iff there exists an p(u) such

that equation (7) has as solutions

- = o . T
V1 = V2 = cos 3, V3 = sinz . (11)
Clearly
plu) = &, , _ ' (12)
is the proper u{u).
ii) The KDV potential equation
The BT is given by (see equation (5.91))
' 2
= = P 2 - 2 _A.._
u_ g U + Au ')J(AX+2)+k'

The above equation is already of the Riccati type;
VvV, =1 V, =u, V_, =u |, (13)

and

u =0 : (14)

Similarly, it is easily verified that the BT of the modified KDV
potential equation, as well as the Cole-Hopf linearization of
Burgers equation, are of the above type. It ié also interesting
~that the BT derived in §5.5.2 (see equation (5.121)) is also of the
Ricatti type. Finally, the equation (5.107) is already of the

Ricatti type,



-207-

It is well known that the Riccati equation (and therefore the

generalized Riccati equation) can be linearized. This establishes

the connection with the inverse scattering method. Also, for the

Riccati equation, the superposition law (2) takes the form
EI.:I_-EJ_}. = k _..LEZ_.-[I_S_ (15)
U4-U1 U,-U,

where Ui’ 1< i< 4 are solution of (10) and k is a constant.

The above superposition law is obviously reflected to a similar

one for the generalized Riccati equation. This provides the ex-

planation for the existence of the Bianchi diagrams [ 83 ]
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