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ABSTRACT 

This thesis is mainly concerned with the application of 

groups of transformations to differential equations and in particular 

with the connection between the group structure of a given equation 

and the existence of exact solutions and conservation laws. In this 

respect the Lie- Backlund groups of tangent transformations, par­

ticular cases of which are the Lie tangent and the Lie point groups, 

are extensively used. 

In Chapter I we first review the classical results of Lie, 

Backlund and Bianchi as well as the more recent ones due mainly 

to Ovsjannikov. We then concentrate on the Lie-Backlund groups 

(or more precisely on the corresponding Lie-Backlund operators), 

as introduced by Ibragimov and Anderson, and prove some lemmas 

about them which are useful for the following chapters. Finally 

we introduce the concept of a conditionally admissible operator (as 

opposed to an admissible one) and show how this can be used to 

generate exact solutions. 

In Chapter II we establish the group nature of all separable 

solutions and conserved quantities in classical mechanics by ana-

lyzing the group structure of the Hamilton- Jacobi equation. It is 

shown that consideration of only Lie point groups is insufficient. 

For this purpose a special type of Lie-Backlund groups, those 

equivalent to Lie tangent groups, is used. It is also shown how 

these generalized groups induce Lie point groups on Hamilton• s 

equations. The gene ralization of the above results to any fir s t 

order equation, where the dependent variable does not appear 
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explicitly, is obvious. In the second part of this chapter we 

investigate admissible operators (or equivalently constants of motion) 

of the Hamilton-Jacobi equation with polynornial dependence on the 

momenta. The form of the most general constant of motion linear, 

quadratic and cubic in the momenta is explicitly found. Emphasis 

is given to the quadratic case, where the particular case of a fixed 

(say zero) energy state is also considered; it is shown that in the 

latter case additional symmetries may appear. Finally, some 

potentials of physical interest admitting higher symmetries are con­

sidered. These include potentials due to two centers and limiting 

cases thereof. The most general two-center potential admitting a · 

quadratic constant of motion is obtained, as well as the corresponding 

invariant~ Also some new cubic invariants are found. 

In Chapter III we first establish the group nature of all 

separable solutions of any linear, homogeneous equation. We then 

concentrate on the Schrodinger equation and look for an algorithm 

which generates a quantum invariant from a classical one. The 

problem of an isomorphism between functions in classical observables 

and quantum observables is studied cone retely and constructively. 

For functions at most quadratic in the momenta an isomorphism is 

possible which agrees with Weyl' s transform and which takes inva r i-

ants into invariants . It is not possible to extend the isomorphism 

indefinitely. The requirement that an invariant goes into an invarl -

ant may necessitate variants of Weyl' s transform. This is illus-

trated for the case of cubic invariants. Finally, the case of a 

specific value of energy is considered; in this case Weyl' s trans ­

form does not yield an isomorphism even for the quadratic case. 
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However, for this case a correspondence mapping a classical 

invariant to a quantum orie is explicitly found. 

Chapters IV and V are concerned with the general group 

structure of evolution equations. In Chapter IV we establish a 

one to one correspondence between admissible Lie-Backlund 

operators of evolution equations (derivable from a variational 

principle) and conservation laws of these equations. This 

correspondence takes the form of a s imple alg orithm. 

In Chapter V we first establish the group nature of all 

Backlund transformations (BT) by proving that any solution gener­

ated by a BT is invariant under the action of some conditionally 

admissible operator. We then use an algorithm based on invari-

ance criteria to rederive many known BT and to derive some new 

ones. Finally, we propose a generalization of BT which, among 

other advantages, clarifies the connection between the wave-train 

solution and a BT in the sense that, a BT may be thought of as a 

variation of parameters of some . special case of the wave-train 

solution (usually the solitary wave one). Some open problems are 

indicated. 

Most of the material of Chapters II and III is contained 

in [I] , [II] , [III] and [IV ] and the first part of Chapter V 

in [ V ] . 
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CHAPTER I 

1. 1 INTRODUCTION 

This thesis is mainly concerned with the application of 

groups of transformations to differential equations and in particu­

lar with the connection between the group properties of a given 

equation and the existence of exact solutions and conservation laws. 

In this respect it is essential to d e fine what group of transforma- . 

tions we are concerned with . S. Lie developed and applied in his 

study of differential equations what we shall call Lie. point and 

Lie tangent groups of transformations. These g roups although 

very useful in practice are quite restricted and are not adequate 

for the complete analysis of many physical phenomena. The 

classical literature evidenced two directions of efforts to g eneral­

ize these transformations: first, a search for groups of higher­

order (but finite) tangent transformations which was essentially 

abortive; second, a development of a special type of surface trans­

formation (first discovered by Lie and then formally g e neralized 

by Backlund) which led to what was later called a Backlund trans-

formation. Recently the search for groups of higher-order tan-

gent transformations has been realized with the notion of Lie­

Bac.klund (LB) gror ps which are infinite-order tangent transforma-

tions. These groups are characterized infinitesimally by the Lie-

Backlund operators which are extensive ly used in this work. 

In this chapter, after presenting a rather detailed account 

of the development of the theory of surface transformations and 

its application to differential equations, we concentrate on LB 

operators. We prove different theorems about them (most of 

which are new) which clarify the ir nature and also s how how they 
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can be used effectively for deriving exact solutions. This 

naturally leads to consideration of admissible and conditionally 

admissible LB operators. 
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1 . 2 HISTORICAL INTRODUCTION 

In this section we present the fundam.ental ideas, notions 

and results of the classical papers of Lie and Backlund as well 

as the more recent development of Lie's theory due mainly to 

Ovsjannikov. 

1. 2. 1 Groups of Lie Point Transformations 

We shall briefly review those definitions and results from 

the theory of continuous groups necessary to the understanding of 

the succeeding sections. This material can be found in [1], [2], 

[ 3 J and some additional examples in [ 4] and [ 5] . 

We shall consider a one parameter continuous group of 

transformations of 

x. = f . (x;a), 
1 1 

1 ~ i ~ n, (1. 1) 

where x = (x1, ..• , xn)' x = (x1, .. . , xn)' a is a real parameter 

and Rn is an n-dimensional real space. For brevity we shall 

denote the above as 

x = f(x;a), or x = T x. 
a 

(1.2) 

We assume that each such transformation is invertible and in 

addition; i) There exists an ao such that 

X = f(x;a
0

) for all X . 

ii) For any two values al and a2 of the parameter a, there 

exists a unique a 3 such that 

iii) For each a
1 

there is a unique a
2 

such that 

- 1 -
x = f (x, a 1) 
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A. Infinitesimal formulation. 

S. Lie was the first to systematically develop an infinitesi-

mal characterization of the above group of transformation. He 

considered the tangent vector field . €. of the above group, defined 

by 

1 .:$ i .:$ n, 

and associated with €. an infinitesimal generator, or Lie operator 

X, defined by 

(1. 3) 

Geometrically X is the operator of differentiation in the direction. 

of the curve a - T x. 
a 

Lie proved that X uniquely specifies 

the group defined by (1. 1) through the solution of equations 

f. (X, a
0

) = X .. 
1 1 

(1. 4) 

In practice, most of the time we only consider X and not the 

group defined by (1. 1), which sometimes is called the global group; 

(however, this terminology is unfortunate since all considerations 

in Lie' s theory are local). 

B. Invariants. 

A function I(x) is an invariant uncle r the action of the 

group X - T X 
a 

if 

I(T x) = I(x) for all x and a. 
a 

It is easily proved that I(x) is an invariant iff 

XI = L €.. oi = o. 
J "B"x." 

j J 

(1. 5) 
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C. Invariant Manifolds. 

Associated with any set of functions 1/Jv(x), v = 1, ... , p, 

is a manifold (surface) M consisting of all x satisfying 

1/J (x) = 0, 
v 

v = 1, . •. , p. (1. 6) 

We say that M is an invariant manifold for the group x = Tax' 

if T x lies in M for every x initially in M (and any a 
Q' 

sufficiently close to a
0

). It is easily proved that M is an 

invariant manifold iff 

XI/J = 0 on M, v v = 1, ... , p. 

The above equation is denoted as 

XI/J 1=0 , 
v 1/J =0 v 

v=l, ..• ,p. 

D. Application to differential equations. 

(I. 7) 

(1. 8) 

Suppose we are given the system of differential equations 

F (x, u, u, ..• , u) = 0, 
v 1 s 

where 
M N x€R , uER , N+M =n and 

v = 1, ... , N, (1. 9) 

u 
k 

denotes the set of all kth 

order derivatives of u with respect to x. We may think of 

(1.9) as defining a manifold in (x,u,u, ... ,u)-space. In order 
1 s 

to examine the group properties of this manifold we must extend 

the group X= T X, 
Q' 

so that it can act on the above space. To 

fix · the ideas let us consider the case of one independent and one 

dependent variable. Consider the group of transformation G de-

fined by 

x = f(x, u;a), (1. 1 Oa) 

G: 

u = g(x, u;a) . (1. lOb) 
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We must extend G to include as many derivatives as specified 

by the given equation under consideration. The easiest way to 

achieve this is by the chain rule. The first extension of G, 

denoted by G is given by equations (1.10a), (1.10b) and 
1 

where 

u = <j>(x, u, u ;a), 
X 

X 

<j> = df/~ 
dx dx · 

(1. 1 Oc) 

(I. 11) 

Let us now obtain an infinitesimal characterization of G: Suppos e 
1 

~~ = n(x, u), Cfa a=O 

Opl = t;,1(x, u, ux)' (where we have assumed 
1rQ a=O 

Then using (1.11 ), 

Therefore, 

2 
0 (a ) • 

t;,
1 

= D l'J - u D €, , 
X X X 

u +an rj 
X X 

1 + aD £ 
X 

where D is the total derivate o/8-x + u 8/ou + ... 
X X 

above analysis can be easily extended to any order. Let us 

summarize: Suppose we are given an equation of sth order, 

F(x, u,u, .. . ,u ) = 0; 
X X ••• X 

·~ s 

a 0 = 0) 

+ 

(1. 12) 

The 

(1. 13) 

In order to examine its group properties with respect to a group 

G, specified by the Lie operator 
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we extend this operator to 

a X = X + r ""lSU 
a 

+, ···•~sna~u------
S X x •. . X 

s 

where is defined by (1. 12), D s -u D t: 
X 1 XX X<;:, 

(1. 14) 

• etc. 

There is also another way of defining the extended group 

G (which can be trivially generalized to cover any extended group 
1 
G): We must choose <j> in such a way that the group of transfor-
s 
mations defined by (l.lOa, b, c) (and obviously extended to differen-

tials dx, du, du_), leaves the first order tangency condition 
X 

invariant. 

du - u dx = 0 
X 

We will return to this point of view later. 

E. Admissible operators. 

Having obtained the extended Lie operator (1.14) we can 

now examine the action of the group G on the manifold defined 
s 

by equation (1.13). In accordance with our definition of an invari-

ant manifold, the equation F = 0 is invariant under G, or 

more precisely, the manifold defined by F = 0 in the 

(x, u, u , ... , u )-space is an invariant manifold for G, iff 
X X ••• X 

I ___.I 
s 

XF 1=0 . 
s F=O 

(1. 15) 

In this case we say that X (or X) is an admissible (Lie point) 
s 

operator for equation F = 0. Writing out e quation (1. 15) we 

obtain a set of linear overdetermined equations for s and n 
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the solution of which specifies X. If this system has r solu-

tions, with corresponding Lie operators x1, ... , Xr' we say that 

equation F = 0 is invariant under an r-parameter group of 

transformations. It can be proved that these operators form a 

Lie Algebra with commutator 

(X.,X.) = X.X. - X .X .• 
1 J 1 J J 1 

F. Invariant solutions. 

The solution manifolds of equations (1. 9) are submanifolds 

of the equation manifold. An admissible operator takes a solution 

manifold into a (possibly different) solution manifold. A solution 

manifold is called invariant with respect to some operator X if 

under its actions it is taken into itself. The corresponding solu-

tions are called invariant, or similarity solutions. The interest-

ing question arising is the following: Given a set of equations 

F (x, u, u, ... , u) = 0, 
v 1 s 

v = 1, ... , N, (1. 9) 

where n-N 
X € R , u € and an r parameter gro up of trans-

formations G which leave (1.9) invariant, (or equivale ntly r 
r 

Lie point operators x
1

, ... , Xr) when can we find invariant solu-

tions and what is their form? A partial answer to this question 

was given by Ovsjannikov who found a necessary condition for the 

existence of invariant solutions as well as their general form: 

Given X., 
1 

we find n-1-L 

1 ~ i ~ r and solving 

X.J(x, u) = 0, 
1 

1 ~ i ~ r, 

invariants J 'T(x, u). 1 ~ 'T ~ n-1-L , where 1-L 

the rank of the matrix of the infinitesimal generators g (x, u) 

is 
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associated with Xi. Let p be the rank of the matrix (oJ ,/ou). 

Then a necessary condition for the existence of invariant solutions 

is p = N, and the invariant solutions are given by 

<1> (Jl' • • • ' J II ) : 0' T . n-,.... T = 1, ... 'N. 

Clearly the invariant manifold just defined has dimension n-N-1-' 

in contrast with any non-invariant manifold which has dimension 

n-N. After having developed the general mechanism for obtaining 

invariant solutions one has to decide which of them are e ssentially 

distinct, i.e. which is the basic set of invariant solutions; basic 

in the sense that all other invariant solutions can be obtained from 

this set with the aid of the group G. 
r 

This problem has been 

solved also by Ovsjannikov with the use of the adjoint group, see 

[ 1] . 

We conclude this subsection with pointing out that there are 

two types of groups which can be found by inspection; translations 

x = x+a , u = u+{3 and stretc hings x = yx, ~ = ou. The invariant solu-

tions corresponding to the stretching group can also be obtained 

using dimensional analysis. However, this is the only type of 

invariant solutions obtained through dimensional analysis. Let us 

give a trivial example, where we can find groups by inspection: 

Consider the heat equation 

u - u = 0. 
t XX 

(1.16) 

Letting x --

2 
t - (l+a5 ) t, equation (1.16) remains invariant. The operators 

corresponding to the parameters ai' 1 ~ i ~ 5 are 

0 
= 1Jx' 

0 
= 1fli' 
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Let us find the invariant solutions under the operator X = x
5
+x.x

4
. 

T he 1"nvar1·ants are J - u/tX./2 J - x 2/t 1 - ' 2 - . The necessary condi-

tion of Ovsjannikov' s theorem is satisfied and therefore, the simi-

larity solution is specified by 

or 

Substituting the above in (1.16) we obtain an ordinary equation for 

F. The case X. = -1 corresponds to the source solution. 

1 . 2. 2 Groups of Lie Tangent Transformations 

The transformations defined by e quations (l.lOa,b,c) 

although very useful in practice are quite restricted. In the last 

one hundred years many generalizations of the above transforma-

tions have been proposed. A crucial step in this process was made 

by S. Lie who formulated two very important 

questions in his 1874 paper [ 6]. These questions are presented 

in the next two subsections. For their understanding the intra-

duction of what we call Lie tangent transformations is essential; 

The historical perspective and the basic material of this subsection 

as well as that of § §1-4 may be found in [ 7] and [ 8 J • 
A first generalization of the transformations defined by 

(1. 1 Oa, b, c) was given by Lie himself: Consider the group G of 

point transformations 
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(1.17) 

u = f 3 (x,u,u ;cr), 
- X 
X 

in the space of independent variables (x, u, u ); this group can be 
X 

trivially extended to differentials (dx, du, du-). 
X 

Let us call the 

extended group G, which now acts in the space of independent 

variables (x, u, u , dx, du, du ) . Lie called the group G a group 
X X 

of contact transformations, if the equation 

du - u dx = 0 
X ' 

(I. 18} 

is invariant with respect to the extended group G. Hereafter, we 

refer to this particular group as the group of Lie tangent transfor-

mations. A priori it is not obvious that such a group exists 

(other than the particular case of a Lie point group): Let us work 

infinitesimally; ; and 11 will depend now on 

therefore t;.
1 

will in general depend also on 

u as well, 
X 

u 
XX 

For the exis ·-

tence of a Lie tangent group it is necessary to eliminate the de-

pendence of sl on . uxx Using equation (1.12) to express t;.
1 

in terms of 11 and and then equating the coefficient of 

to zero we obtain 

- u ; = 0. 
X U 

X 

The general solution of (1. 19) is given by 

; = ow 
- ou . 

X 

oW 
l1 = w - ux -au- . 

X 

u 
XX 

(1.19} 

(1. 20) 

where w is some function of Therefore, equations 

(1. 17) form a group of Lie tange nt transformations if there exists 

a function W(x, u, u ) such that equations (1. 20) hold. The above 
X 
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analysis can be generalized when x is a vector, but it cannot 

be generalized when u is a vector. 

1. 2. 3 Lie's First Question 

Let us now consider the group Gn of the point transfer-

mations 

x = g 1(x, u, u, ... , u;a), 
I n 

Gn.. ( ) u = g 2 x, u, u, ... , u;a , 
1 n 

~ = gn+2 (x, u, ~· ... , ~;a), 

(1.21) 

in the space of the variables (x, u, u, ... , u). In this case we say 
1 n 

that Gn is a group of contact transformations of nth-order if 

du - udx = 0, 
1 

du udx = 0 
1 2 

du udx = 0, 
n-1 n 

are invariant with respect to the group Gn obtained by the 

extension of the group G to the differentials dx, du, ... , du. 
n 

After Lie's success in obtaining groups of tangent (or contact of 

first order) transformations, which a re not just extensions of Lie 

point transformations (i.e. £; and/or n depend necessarily upon 

u ), the next question is to ask if there exist groups of c ontact 
X 

transformations of nth-order, n > 1, which are not just exten-

sions of Lie point or Lie tangent groups. This is essentially the 

first question of S. Lie. He predicted a negative answer to this 



question. The results m Backlund's first papers [ 9 J , [ lO J can be 

interpreted as proving Lie's conjecture; the proof is geometrical. 

An analytical proof i s given in [ 8) . Backlund's results can be 

summarized in the following statement: There are no nontrivial 

higher- order generalizations of Lie tangent transformations if one 

understands a transformation as an inve rtible one to one mao in a 

finite-dime nsiona l s:eace. 

I. 2. 4 . . Lie's Second Question 

Now let us go back to point transformations define d by 

equation (1.17). If these transformations are viewed as surface-

· transformations then necessarily they are single- valued surface-

transformations acting invariantly in a finite- dimensional s pace . 

Lie, in his second important question asked, if there exist any 

useful many-valued surface-transformations. Before explaining 

what we mean by useful l e t us define such a transformation. To 

fix the ideas we take the case of two independent variables and 

one dependent variable; let 

p = zx' q = z y' r = zxx' s = z xy' t = z 
yy 

(1. 22) 

The capital letters will denote the corresponding transformed 

quantities . A many-valued surface-transformation is one which 

takes the surface element {x,y,z(x,y),z ,z) to 
X y one-fold 

infinity elements (X, Y, Z , P, Q), which actually are surface ele-

ments; i.e. 

aP aQ 
aY - ax = 0 • on z = z(x, y), (1.23) 

where z = z {x, y) define s a surface in the (x, y, z )- space. This 

transformation (althoug h not single- valued) can still be useful in 
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the transformation theory of differential equations if it satisfies 

two requirements: i) if it transforms a given differential equation 

to one of the same or lower order; ii) if it becomes a surface 

transformation on any surface which belongs in the family of solu-

tion surfaces of the given differential equation. 

Lie's analytical treatment of Bianchi's geometrical con-

struction of a transformation of surfaces of constant curvature, 

was the first example of a useful many-valued surface-transforma;... 

tion. He con side red the transformation 

2 2 (z- Z )2 2 
(x-X) + (y- Y) + = a ,. 

p(x-X) + q(y- Y) (z- Z) = 0, 
(1. 24) 

P(x-X) + Q(y- Y) (z- Z) ::: 0, 

pP + qQ + 1 = 0. 

The above equations are the equivalent analytical form of Bianchi's 

geometrical construction. First we observe, that given any sur-

face element (x, y, z, p, q) equations (1. 24) give a one- fold infinity 

of potential surface elements (X,Y,Z,P,Q). Lie proved that if 

z = z(x, y) is a surface of constant curvature 

solves 

2 2 2 2 
s - rt = (1 + p + q )/a , 

2 
-1/a , i.e. if it 

(1.25) 

then the element (X,Y,Z,P,Q) is a surface element (i.e. equa-

tion (1. 23) is satisfied) and further the surface Z = Z (X, Y) is 

also a surface of constant curvature 
2 -1/a . Equations (1. 24) 

define what today we call a Backlund transformation. Therefore, 

the first Backlund transformation was due to Lie! 

A generalization of the above transformation was introduced 

by Backlund [Ill who considered four general relations between 
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two sets of surface elements: 

F i (x, y, z, p, q, X, Y, Z , P, Q) = 0, i = 1,2,3,4. (1.26) 

A literal repetition of Lie's considerations and teclmiques for 

treating (1. 24), applied to (1. 26) leads to what is called in the 

literature a Backlund transformation . Further, without loss 

of generality we can take equations (1. 26) to be 

X-x = 0, 

Y-y = 0, 
(1. 27) 

F 1(x, y, z, p, q, Z, P,Q) = 0, 

F 
2 

(x, y, z, p, q, Z , P, Q) = 0. 

As Goursat [ 12] has remarked one can generalize this form in 

many ways, including increasing the dimension of the underlying 

space, the order of the surface elements and the number of re ­

lations in (1. 27), etc . 
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•• 
1. 3 GROUPS OF LIE-BACKLUND (LB) TANGENT TRANSFORMATIONS 

As it was pointed out in § 1. 2. 3 Backlund proved that there 

are no nontrivial finite higher-order generalizations of Lie-tangent 

transformations. Expressing this fact in terms of an infinitesimal 

operator we may say that, if the operator X, given by (1. 14) 
s 

characterizes a group of contact transformations of sth-order 

then, either 

; = s(x,u), r) = n(x, u) 

and X is a Lie-point operator, or 
s 

; = s(x,u,u ), 
X 

(1.28) 

(1.29) 

where g and T1 satisfy equations (1. 20), and X is a Lie tan­
s 

gent operator. The above groups of transformations express sym-

metries of a geometrical origin. However, in trying to explain 

some physical phenomena (for example, the conservation of the 

quantum mechanical analogue of the Runge- Lenz vector for the 

hydrogen atom) the "dynamical symmetries" were introduced. 

These were symmetries of a non-geometrical origin. This led to 

a consideration of infinitesimal operators of the form (1. 14), 

where ; and 11 depended on higher derivatives (see for 

example [ 13]). It was clearly shown that there exist infinitesimal 

transformations depending on higher derivatives, which l e ave 

equations of physical importance (like the Schroding er' s equation) 

invariant . Although the group nature of those transformations 

was not very clear, the necessity for a generalization of Lie 

theory was evident . However, Backlund's result indicates that 

such a generaliza tion for finite-order contact transformations 
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is impossible o Recently, lbragimov and Anderson established 

rigorously the only possible generalization, of the original Lie 

formulation, based on the notion of infinite-order c ontact trans-

formations. They called these generalized transformation groups 

Lie- Backlund (LB) tangent transformations. Because our work is 

heavily based on the existence of these groups we briefly summar-

ize some results of [ 8], [ 14], [ 15]: 

A o Definition. 

( ) RN ( 1 M M Let x = x 1, o o • , xn E , u = u , . o • , u ) E R 

every k = 1,2,3,. 0., u be the set of partial derivatives 
k 

and for 

a 
u. . , (a = 1, o •• , M;i

1
,. o., ik = 1, o •• , N), symmetric in their 

llo 0 • lk 

lower indi ces o Let us consider a one-parameter group G of 

point transformations 

G: x~ = f. (x, u, u, u, ••• ;a), 
1 1 1 2 

,a a ) u = <j> (x, u, u, u, ••• ;a , 
1 2 

(1. 3 0) 

,a = a u. 1/J. (x, u, u, u, ••• ;a), 
1 1 1 2 

in the infinite dimensional space (x, u, u, u, . .. ) . 
1 2 

In the above 

equations, the number of arguments of e ach of the functions 

<I>' ••• ' is a priori arbitrary and may be finite or infinite . 

f.' 
1 

Together with the g r oup G , w e c onside r its ext e nsion G to 

the differentials 
a a dx. , du , du ... . 

1 1 

A g roup G i s called a g roup o f Lie - Backlund tangent 

transforma tions if the infinite s y s t e m o f equa tion s : 



dua - u~dx. = 0, 
J J 

du?' 
1 

du?' . 
1t1z 

u?'.dx. = 0, 
1J J 

u?' . .dx. = 0, 
11 1z J J 
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is invariant with respect to the group G. (The summation con-

vention will be implied for repeated indices.) 

B. Infinitesimal characterizations. 

In order to give an infinitesimal characterization of the 

group G we define the operator 

z = t; . ...;.- + r{'-8- + s?'-8- + 
1 xi OUQ' 

1 au?' 
••• + 

where 

= afil t; i a a , 
a=O 

a .,., 

1 

=~I aa , 
a=O 

, 
a=O 

k = 1,2,3, •••• 

The operator (l.Z) fully characterizes the group G if we 

ensure the existence and uniqueness of the solution of the 

Lie equation: 

where 

dF 
da = e (F), F la=O = z, 

(1. 32) 

(1. 31) 
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a a 
z = (x.,u ,u .••• ), 

1 1 

a a 
F = (f.,<j> ,1/J., ••• ), 

1 1 

a a e = <~ .• 11 • s ..... > • 
1 1 

The group F of transformations (1. 30)is a group of Lie­

Backlund tangent transformations if and only if coordinates 

of the infinitesimal operator (1. 31) satisfy the equations: 

where 

s?' = 
1 

D. 
1 

a a 
D. ( 1J ) - u. D.(~.), 

1 J 1 J 

a = D. (~. ) 
tz 11 

a 
u .. D. (~.), 

11 J 1z J 

C. Application to differential equations. 

+ . • • • 

Consider a given system of differential equations 

n (x, u, u, ... 'u) = 0. 
1 n 

(1. 33) 

(1. 34) 

(1.35) . 

The equation Q = 0 together with all its differential consequences: 

n = o, D. n = o, 
1-

D. (D. Q) = 0, ... , 
11 12-

(1.36) 

defines a manifold n in the (x, u, u, ... , )-space. The system 
I 

of equations (I. 35) is called invariant with respect to a Lie-

Backlund group G if the manifold n is invariant under the 

transformations (I. 30). In this case G is called admissible 

for the e quation (1. 35 ). The crite rion fnr invariance of the 



system (1. 35) is 

zn1(1.36)=o, 

-20-

where the subscript means that (1.36) are assumed. 

(1.37) 
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1.4 BACKLUND TRANSFORMATIONS 

BT were introduced in §I. Z. 4. We will consider in 

Chapter V BT admitted by (mainly) evolution equations. In this 

section we introduce general BT, a clear understanding of which 

will be essential for understanding Chapter V. 

We will consider BT which map an nth order surface 

element (x
1

, x
2

, v, v, ... , v) into a family of nth_ order surface 
1 n 

elements (x
1
,x

2
, u, u, ... , u). Without loss of generality, we may 

I n 
take such a BT in the form 

u. = 1/J.(x, u, v, v, . . . , v), 
1 1 I n 

u .. = 1/J .. (x,u,v,v, ... ,v), 
lJ 1J 1 n 

(I. 38) 

= l/J. . (x, u, v, v, 
11' · · 1n 1 

.•• , v), 
n 

where i,j, i 1, ... , in = l, 2 and 
st 

u, ... , u denote the set of 1 , ... , 
1 11 

th d d . t' n or e r e r1 va 1 ve s , respectively and X = (xl,x2). Observe that 

less restrictive BT are obtained if we require only 

u
1 

= l/;
1
(x, u, v, v, ... , v), 

I n 

= rjJ
2

(x, u, v, v, ... , v). 
1 n 

(1.39a) 

(I.39b) 

The terminology "less restrictive" is employed here in the sense 

that in general the set of u and v satisfying (1. 39) is larger 

than the one satisfying (1 . 3 8). Further, observe that if (1. 39) is 

admitted by the differential equation 

w(x, u, u , . .. , u) = O, (1. 40) 
1 ll1 



-22-

whenever v satisfies the differential equation 

n (x' v' v' ... ' v ) = 0' (1. 41) 
1 m 

then in general the least restrictive of the transformations of type 

(1.39) are those for which the system (1.39b), (1.40), (1.41) 

implies (1. 39a) through the process of differentiation and elimina-

tion. We shall make this assumption here; furthermore we 

assume that (1. 39b) is independent of x and that (1.40) and (1 . 41) 

are evolution equations. These restrictions are imposed in order 

to make the reasoning more transparent. Thus we shall study the 

following situation: The BT determined by 

u
2 

-I/J
2

(u,v,v, ... ,v) = 0, 
1 n 

(1 . 42) 

is admitted by the evolution equation 

(1.43) 

whenever v satisfies the (possibly different) evolution equation 

vl + G(v,v2,v22' ' ""'v2 . . . 2> = 0 
I___J 

rn 

(1. 44) 

The assumption that (1.43) and (1.44) are of the same order is 

made only for convenience of writing . 
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1 . 5 MATHEMATICAL PRELIMINARIES 

A LB operator as defined by (1. 31) acts on an infinite-

dimensional space. However, the following points should be 

stressed: 

i) A LB operator is uniquely specified if ~ and 11 are 

given (using equations (1. 32)). Therefore the defining part of the 

LB operator (1 . 31) is 

a a a 
~ . .....--- + f'J --. 

1 ox. . a. a 
1 . uu 

Hereafter we only give the defining part of a LB; however we 

should remember that a LB contains implicitly its infinitely many 

extensions. The operator (1.31) will be denoted as 

(1. 45) 

where the (+ ••• ) sometimes will be dropped for convenience of 

writing. 

ii) In a given problem only a finite number o f extensions 

of the defining part is needed. We shall call the minimal e x ten-

sion necessary the relevant part. What is relevant will vary 

from problem to problem. 

We now prove some results which are of general mathe -

matical nature. 

1. 5. 1 Computation of Commutators 

It is convenient in practice to consider LB operators with 

g = 0. This can be done without loss of generality (see §1.5.2) . 

Next we shall give a lemma regarding the computations of the 

commutator of two such operators. We r estrict ourselves to 
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one independent and one dependent variable only. This is done 

only for convenience of writing; the idea of the proof is equally 

valid for several independent variables. 

Lemma 1.1. Let 

If we regard the Y k as infinitely extended operators and compute 

their commutator Y 3 in the ordinary Lie sense then the defining 

part of the resulting LB operator is, 

Proof. If the extension is written explicitly we have 

where the operator D is 

a a a 
D = ox + ux ou + uxx au- + . . . . 

X 

Then 

= z + z 

It is easily verified that Z is zero;also D and Yk commute, 

see [ 14] . Hence 

The first term above is the defining part of an operator and the 

other term is part of the extension. The lemma is thus proved . 

The formula given above has an especially simple form 
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if the Ak have a special form occurring in many applications. 

This is shown in the following corollary of the first lemma: 

Lemma 1. 2. Let Y k have the special form 

Then is 

computed as a Poisson bracket, 

Proof. From Lemma 1. 1 (generalized to several indepen-

dent variables), 

1. 5. 2 A Commutation Relation as a Condition for Admissibility 

Consider an arbitrary differential equation, 

B(x,u,ux,uxx' ..• ) = 0. (1. 46} 

(For simplicity we assume only one independent variable; the 

generalization is obvious). With (1. 46) we associate the LB oper-

a tor The : following lemma will be important later. 

Lemma 1. 3. The equation (1. 46) admits the LB operator 

X A( ) 
8 ~ff = x,u,u ,u ' . .. ...,.- .. 

X XX uU 
(1. 47 ) 
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The subscript B=O means that (1. 46) and its differential con-

sequences D B=O D B=O etc., are assumed. 
X ' XX ' 

Proof. By definition (1. 46) admits X iff 

XB = F(B) 

where F(B) is a function of B, D B, 
X 

when (1. 46) holds. From Lemma 1. 1 

etc . , which vanishes 

[X, Y) 
() 

= C au, C = XB- YA = XB - (BoA + au 

From (1 . 46) it follows that the expression in parenthesis equals 

zero and hence that [X,Y]B=O Thus 

iff X is admissible . 

Comment on preceding lemma. From (1. 47) we s e e that a 

sufficient condition for admissibility of X is [X, YJ = 0 . How-

ever, a necessary condition is only that this relation be valid o n 

the manifold B =O in (x, u, u , .. . )-space . Consider now the 
X 

Hamilton-Jacobi equation H=E for a general value of E. By 

giving the constant E all values consistent with the problem, w e 

get a continuum of equations. If we require X to be admissible 

for all such equations we must require that the commutator of X 

and · Y be identically zero. In other words a constant of motion 

is a dynamical variable which is constant along the path of a 

particlP., no matter what e nergy surface the path lies on; the union 

of all energy surfaces is the entire phase space. On the other 

hand if we only require an o perator to b e a dmis s ible for one 

fixed value o f E (which we can take to be z ero after shifting 
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the value of the potential by a constant) then admissibility of X 

requires only that X commutes with Y on the special manifold 

B :::; H - E = 0. This is the reason why additional symmetries 

may appear if E = 0, see Chapter II. 

1. 5. 3 First Correspondence Rule 

This rule has been used by many authors, but its content 

will be stated more explicitly below: 

Theorem 1. 1. Consider the correspondence rule 

- \' a a , ., a 
X :::; ( LJ ~ . -a -) + 11 1) - X = (- LJ ~ . v + 11) n-

j J xj v j J xj vv 
(1. 48) 

where ~. and 11 
J 

may depend on x, v, v , x . etc. Then: a) (1.48) 

is an isomorphism, 
J 

b) an equation admits X iff it . admits X. 

Proof. Part a) is proved by direct computation of the 

commutator of an arbitrary pair of operators of the type X and 

the commutator of the pair of corresponding operators. Part b) 

is a consequence of the isomorphism and Lemma 1.3 . 

1. 5. 4 Second Correspondence Rule 

In (1. 47) only first-order differential operators occur 

although their coefficients may depend on higher-order derivatives. 

In quantum mechanics and more generally in the study of linear 

differential equations, see for instance [16 J, one often uses higher-

order operators of the form 

l: a A = a(x) + a.(x)....._-- + 
- J- ox . 

j J 

az L: a .k (x) a a + J x. xk 
. k J J • 

(1. 49 } 

(As usual a(x), . regarded as a n operator, take s the function f(x) 
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into a(~)f(~}). Consider the special case for which only the 

second term of (1. 49) occurs. The operator is then an infinitesi-

mal Lie point operator in ~-space. One might let the a. depend 
J 

a on v also and add a term n(x, v}~; one then obtains generators 
- uV 

of Lie point transformations in (x, v)- space. The space of such 

operators has two important properties. 1) It is closed under 

commutation and is thus a Lie algebra. Z) The question of its 

admissibility is well-defined for any linear or nonline ar equation. 

This case may be contrasted with the case of second-order differ-

ential operators of the form (1. 49}: 1) The space of such opera-

tors is not closed under commutation since the commutator of two 

such operators is in general a third-order differential operator. 

Z} What is more important, the question whether such ope rators 

are admitted by a differential equation makes sense only for linear 

equations. To remedy these shortcomings we shall recast oper-

ators of the form (1.49} in Lie-Backlund form. Suc h a c orre s-

pondence rule is actually given by Anders on and Ibragimov in [ 7] 

Our version will be given in Theorem 1. Z below. It diffe r s from 

that of [ 7] by a minus sign. This sig n i s irrelevant for the pur­

poses of [ 7] but needed here since we want the c orrespondenc e to 

be an isomorphism. 

Theorem 1. Z. Let A be defined by (1. 49} and A be d e -

fine d by 

- a 
A = - (Av) av. 

Then, a} the mapping A A i s an isomorphis m and b) a 

linear equation admits A iff it admits A . 

Proof. The proof i s paralle l to that o f Theo rem I. I a n d 
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and need not be g iven here. We o b se rve that A may b e an 

admissible operator for a nonlinear equation . In this case the 

question whether A is admissible does not make sense (unless 

admissibility of A is defined as the admissibility of the c orres­

ponding A). 
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1. 6 LB OPERATORS AND VARIATIONAL EQUATIONS 

As it was pointed out e arlie r , in practice , it is very con-

venient to cast every LB operator in the form 

a a z = l1 + ... 
OUO' 

(1. 51) 

One of the reasons for doing it is that the above operator c an be 

extended very easily; (using e quations (1 . 33) with ~. = 0). 
1 

Using 

the first correspondence rule (1. 48) (obviously extended to many 

dependent variables) every LB operator, and in particular every 

Lie point or Lie tangent operator, can be cast in the form (1. 51). 

Therefore, hereafter when proving general theorems about LB 

operators we shall always use the form (1. 51). One example of 

how convenient it is to work with this form is provided by the 

following lemma: 

Lemma 1.4. Let 

B = 0 (1. 46) 

be some nonlinear equation for u. This equation admits the LB 

operator (1.47), iff A solves the variational equation associate d 

with equation (1.46). 

Proof. The proof is a direct consequence of the definition 

of an admissible operator of the form (1.46). Let us give some 

examples: (prime denotes differentiation with respect to x) 

i) 

u" + uu' = 0. (1. 52) 

The linearized equation is 

v" + uv' + vu' = 0. (1. 53 ) 

It is well known that, because (1. 52) does not depend on x 
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explicitly, v
1 

= u' is a solution of (1. 53). From the group 

theoretical point of view this solution is a consequence of the 

in variance of the equation (1. 52) under translation in x: Letting 

x -- x + a equation ( 1. 52) remains invariant, therefore the Lie 

operator 

is an admissible operator. Using (1.48), X\ is equivalent to 

Therefore, 

,a 
= u au 

v = u' is a solution of equation (1. 53). How can we 

find a second solution of equation (1. 53)? One may think of trying 

variation of parameters but the answer would be in terms of an 

-1 
integral. However, letting x -- ax, u -- a u, 

remains invariant. Therefore the operator 

a 
uau· 

is an admissible operator, which is equivalent to 

a x 2 = (xu' +u) au. 

equation (1. 52) 

Therefore, using lemma l. 4 v = u+xu' is another solution of 

equation (1. 53) . 

Note . Another way of finding solutions of the variational 

equation, when u is known and depending on some parameters, 

is to differentiate with respect to these parameters . Here 

u = a tanh a/2(x+j3), and therefore aujaa, auj aj3 are solutions 

of (1. 53). It is easily seen that aujaj3 = u' and 8u/8a = l/j3(u+ 

xu'). This result is not surprising since a and j3 are the 

group parameters corresponding to stretching and trans lation 
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respectively. 

ii) 

l '2 
u" + - u' + u = 0. 

X 
(1. 54) 

Letting x - ax equation (l. 54) remains invariant. Therefore 

and xu' 

a 
X= X­OX' 

a 
X = xu' au , 

solves the variational equation. 

indicates that constant is another solution. 

Also u - u + a 
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1. 7 ADMISSIBLE AND CONDITIONALLY ADMISSIBLE LB 

OPERATORS. INVARIANT SOLUTIONS. 

One of the main goals of this research is to provide a 

systematic group theoretical characterization of many exact solu-

tions of physical interest. The main tool for implementing this 

will be a LB operator. Most of the time we will be concerned 

with one dependent and several independent variables. Then the 

most general LB operator is o f the form 

Z = A(x, u, u, 
1 

. . . , u) ~ + (D.A)~ + ... , 
k uu J uux. 

J 

(1. 55) 

where 
n 

x € R and D. 
J 

denotes total differentiation with respect 

to x ., 
J 

(summation of j i s assume d). 

The question w e a ddre s s in this section i s c e ntral to our 

work: Given an e quation 

w(x,u , u, . .. ) = 0, (1. 56) 
1 

what requirements must be satisfied by a group o f transformations, 

(or more precisely by a LB operator of the fo rm (1. 55)) , in o rder 

for this g roup to be u sed f o r obta ining e x act solutio n s of e qua tion 

(1. 56)? Two different type s o f requi reme nts l e a d t o c onsideration 

of i) admissible LB o p e r a tors a nd ii) c onditionally admissible 

LB operato rs (CAO). 

1. 7. 1 Admissible LB Operators 

An obvious require m e nt is to require the ope rator Z to 

l eave e qua tion (l. 56 ) invari a nt. The n the o p e rato r Z i s calle d 

admis s ible and can b e fo und by solving 
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Zwl =0, 
w=O 

(1. 57) 

where equation (1. 57) means that the operator Z is applied to 

equation ( l. 56) and then evaluated on the manifold defined by 

equation (1. 56) and all its differential consequences. 

In order to see how an admissible LB operator may be 

used for obtaining exact solutions Let us first recall the case of 
1\ 

a Lie point admissible operator: If A = A(x, u, u) in (1. 55) and 
1\ 1 

furthermore if A depends on u linearly, then the operator 
I 

(1. 55) is equivalent to a Lie point operator 

"'z="-< >a <>a "'. x, u Bx":" + r) x, u au + ... , 
J xj 

(1. 58) 

where 
1\ 

A = rJ - s .u . 
J xj 

(1 . 59) 

In §1. 2.1 it was shown how admissible Lie point operators may be · 

used for obtaining invariant (or similarity) solutions. The analysis 

presented there was based on the assumption that the invariants of 

the given operators may be found. However, in order to charac-

terize the similarity solutions this assumption is not necessary, 

see [5]: Assume that equation (1.56) admits the operator (1.58). 

Then the class of solutions of equation (1. 56)) which remain invari-

ant under the action of this operator is characterized by the simul-

taneous validity of equation (1. 56) and of 
1\ 
A = 0. (1. 60) 

Writing the Lie point operator (1. 58) in the standard form 
1\ 

(1. 55) we see that A is the 
latter 

advantage of using the/form . 

coefficient of 
a 
au· This is another 

As an illustration let us recall the 

example given in §1.2.1: Equation (1.59) now becomes 
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xu + 2tu - X.u = 0. 
X X (1. 61) 

Integrating (1. 61) we obtain u = tX./
2

F(x
2
/t), where F is deter-

mined by requiring it to solve equation (1.16). This procedure is 

typical when dealing with Lie point operators: Equation (1. 59) is 

always a quasilinear first o rder equation for u and therefore in 

general it is easier to solve than equation (1. 56); after solving 

equation (1. 59) and obtaining the general form of u finally we 

use equation (1. 56). 

The notion of invariant solutions and in particular the above 

characterization may be directly carried over when dealing with LB 

operators . This is given in the form of a theorem: 

Theorem 1.3. Assume that equation (1. 59) admits the LB 

operator given by (1. 55), i. e .' 

Zwl =0 . 
w=O 

(I. 57) 

Then the class of solutions invariant under the action of Z may 

be characterized by the simultane ous validity of equation (1. 58) and 

of 

A = 0, (I. 62) 

where A is the coe fficient of ajau in (1. 55) . 

Equation (1. 62) in contrast with equation (l. 60)) is not a first 

order equation for u and it might be harder to solve than equa-

tion (1. 56) itself. However, in g e n e ral it is easier solving the 

system of equations (1.56), (1.62) than just solving equation (1.56); 

this will be illustrated in Chapters II and III where the sepa rable 

solutions of a given equation will be c onsidere d. 

The a bo ve theore m indicates how different types of exa ct 

solutions may be characterize d group theo retically: Rega rd them 
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as solutions of a system of two equations and then pro ve that one 

of the two equations corresponds to equation (1. 62). This will be 

elaborated in Chapte rs II, III and V. 

1. 7. 2 Conditionally Admis sible LB Operators 

An admissible operator (or actually the corresponding group) 

takes i) a solution manifold into a (possibly different) solution 

manifold, and ii) an invariant solution manifold (assuming that 

such a manifold exists) into itself . In obtaining invariant solutions 

we only use the second (ii) property of an admissible operator. This 

motivates us to look for a LB operator whic h does not in general 

take solution manifolds of a given equation into solution manifold s of 

the same equation; however, we require a certain class of · solution 

manifolds·, also called invariant manifolds, to be taken into them-

selves under the action of this LB operator. Such a LB operator 

is then called GAO and can be found by solving 

Zwl = 
w=O 

F(x, u, u, ... ;D., D .. , ... )A 
1 J 1J 

(1. 63) 

whe re F is a linear operator in D :, D .. , . . . with coefficients 
J 1J 

depending on x , u, u, Equation (1. 63) is denoted as 
1 

Zwl = 0. 
w=O, A = O 

(1. 64) 

The solutions corresponding to the a bove invariant manifold are 

also calle d invariant solutions (or gen eralized invariant solutions) 

and are characterized by the simultaneous validity of equations 

(1.58) and (1.62) where A is now the coefficient of 8/8u of the 

GAO satisfying equation (1. 64). Actually particul ar solutions of the 

above type h ave been sought in [ 17] and [ 18 ] ; however it was 
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in [ 18] 
thought/that these solutions are not physically interesting. In 

Chapter V we present a detailed algorithm for handling such 

solutions and further we establish their importance (both mathe-

matically and physically) by proving that the solutions obtained 

through Backlund transformations are of the above type . 
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CHAPTER II 

2.1 INTRODUCTION 

The use of group theoretical methods for the understanding 

and solving of problems arising in c lassical mechanics has been 

well established. In spite of this, it seems that many fundamental 

questions still exist. For example, it is known that in Hamilton's 

canonical equations the constants of motion linear in the momenta 

are related to Lie point groups of the Hamilton-Jacobi equation. 

However, in general, there is no way of using Lie point theory on 

the Hamilton-Jacobi equation to explain the existence of conserved 

quantities which are nonlinear in the momenta. Another open 

question is the group theoretical characterization of all separable 

solutions of the Hamilton-Jacobi equation. It seems that by using 

Lie point theory we can characterize only some of the separable 

solutions. 

Similar problems appear in quantum mechanics . E . Noether 

has established a connection between conservation laws and invariant 

properties of a given system of equations, under the assumption 

that the system possesses a Langrangian [ 19]. However, Noether' s 

theorem c annot guarantee that every conservation law comes from 

Lie point g roups. Actually, in quantum mechanics, some conserved 

quantities were discovered which were not the consequence of Lie · 

groups (for example, the quantum mechanical analogue of the Runge -

Lenz vector for the hydrogen atom). In order to explain these con-

servation laws the "dynamical symmetries" were introduc ed, see 

for example [ 20] . These w e re symmetries o f a non- geometrical 
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origin. The "dynamical symmetries" in quantum mechanics were, 

at an early stage, related to the problem of separation of variables 

of the Schrodinger equation. It was noted that potentials admitting 

"higher symmetries" also allow separation in more coordinate sys­

tems (for example, the equation for the hydrogen atom also separ-

ates in parabolic coordinates). The connection between group 

theory and separation of variables was discussed for many interest­

ing equations of mathematical physics. However, using Lie point 

theory it seems :that the characterization of separable solutions is 

incomplete [16]. 

In spite of the great applicability of group theoretical methods 

in quantum mechanics, and the fact that classical mechanics is the 

geometrical limit of quantum mechanics, the group theoretical con­

sideration of the above problems in classical mechanics has not 

been extensive [ 21] . Actually, it was thought that the meaning of 

dynamical invariance groups in classical mechanics is less straight­

forward [ 20] . We think the investigation of the above questions in 

classical mechanics will clarify the role played by higher (Lie­

Backlund) symmetries and will provide a better understanding of the 

corresponding problems in quantum mechanics. 

2. 1. 1 Outline of this Chapter 

In §2. 2 we present a general analysis of the group structure 

of the Hamilton-Jacobi equation. More specifically: In §2.2.1 we 

give an isomorphism between invariants of Hamilton's equation and 

admissible LB operators of the Hamilton- Jacobi equation. More 

generally, this isomo rphism relates dynan1ical variables (that is, 
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functions in phase space) and LB operators. This isomorphism is 

not surprising since Hamilton's equations and the Hamilton-Jacobi 

equation are mathematically equivalent formulations of the same 

physical theory. However, this result is interesting in the follow­

ing sense: If we want to explain the existence of conserved quan­

tities in classical mechanics analyzing the group structure of 

Hamilton's equations we see that not every symmetry of Hamilton's 

equations produces a conserved quantity (see theorem 2. 2 ); however, 

theorem 2.1 indicates that every symmetry of the Hamilton-Jacobi 

equation generates a conserved quantity. In § 2. 2. 2 we show how 

Lie-Backlund groups of the Hamilton-Jacobi equation induce Lie 

point groups of Hamilton's equations. These groups were emphasized 

in [ 22] , but a logical explanation for their existence was not given. 

In §2. 2. 3 we establish a group-theoretic characterization of a~l the 

separable solutions of the Hamilton-Jacobi equation. This result 

reveals the group basis of total separation as well as partial separ-

ation. We emphasize the latter case which does not seem to have 

been sufficiently considered in the literature (the connection between 

separation of variables and degeneracy is thoroughly discussed in 

[ 23]). 

The above results illustrate the importance of Lie-Backlund 

groups in classical mechanics. Their existence leads to: 

i) conserved quantities of Hamilton's equations. 

ii) separable solutions of Hamilton-Jacobi equation. 

iii) Lie point groups of Hamilton's equations. 

We want to stress at this point that the LB operators associated 

with the group structure of the Hamilton-Jacobi equation are a 
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special class of LB operators, which are equivalent to Lie tangent 

operators (see §2.1.2). 

In §2. 3 we consider the equation 

!. S S + ~ (x) = 0, 
2 X. X. 

1 1 

i = 1,2,3 (2 .13) 

(a special case of which is the time-independent Hamilton-Jacobi 
1\ 

equation, V = V - E) and investigate constants of motion (or 

admissible operators) with polynomial dependence on the momenta . 

Concrete results are obtained for the cases of constants of motion 

linear, quadratic and cubic in the momenta. Emphasis is given to 

the linear and quadratic cases, for which the particular case of 

zero energy state is also investigated; it is shown that in the latter 

case additional symmetries may appear . 

In §2.4 we present some applications which include: 

i) Investigation of potentials depending only on the distance 

to one or two fixed centers. It is found that the most general case 

of a two ce'nter-potential having a nontrivial quadratic invariant is 

that of two Newtonian centers of arbitrary strength at arbitrary 

locations with two superimposed harmonic centers of equal strength 

at the same locations . (equivalently, we may have one harmonic 

center of arbitrary strength located at the midpoint of the two 

Newtonian centers), we call this potential a "mixed" one. The 

corresponding quadratic invariant is also given. 

ii) Investigation of central fields for the case of zero energy 

state. 

iii) Characterization of all separable solutions of the one-

body Keplerian problem. 

In §2. 5 we extend and discuss further some of the above 
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results: From the "mixed" potential we obtain by limit processes 

all known cases of potentials with quadratic invariants . The same 

limit processes also give us invariants of the limiting potentials. 

We discuss not only the Lie algebra of these invariants t but also 

show how linearly independent elements may be functionally depend-

ent; this leads naturally to a discussion of the concept of degeneracy. 

We have thus shown, for a class of important nontrivial nonlinear 

invariants that they are special or limiting cases of one single case. 

A different and in a sense complementary point of view is also 

interesting: Let the potentials V 1 and V 2 each have quadratic 

invariants. Under which conditions is the same true for the com-

bined potential V 
1 

+ V 2 ? The answer is found to be that the 

strictly quadratic terms of each invariant must be the same. A 

simple rule is given for the construction of the new invariant. Finally 

the new invariants cubic in the momenta are found. 

2 .1. 2 An Important Equivalence 

In this chapter we shall be primarily concerned with LB 

operators of the form 

0 
Y = A(x .• s. s hrs, 

1 x . v 
i = l, .. . ,n. 

1 

We remind the reader (see §1.2.2) that an operator 

where s. and 11 depend on x., S, S is a Lie tangent operator 
1 1 x . 

1 

provided that there exists a function W(x., S, S ) such that 
1 x. 

1 

t For the case of a constant force field we get a basic set of 
linearly independent invariants which is not closed under commutation. 
This leads to the unresolved problem of determining the structure of 
its symmetry group. 
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Y1=W-S~ x.as 
1 x . 

1 

In our case ~. = 0 and Yl = A . Therefore the operator Y is 
1 

not a Lie tangent operator . However , in [ 7] it is shown that, 

every operator Y is equivalent to a Lie tangent operator (two LB 

operators are equivalent if they differ by an operator of the type 

a D. = a. ajax. + a.u.ajau + ... ). So, although we still call the 
i 1 1 1 1 1 

operator Y a LB operator we stress that it belongs in a special 

class of LB operators, which are equivalent to Lie tangent oper-

ators. 

Taking into consideration the above discussion as well as 

the correspondence rule(l.48)(see §1.5.3) we may now state: 

i) · If A (the coefficient of a;au) is linear in s ' then 
X. 

1 

the LB operator y is equivalent to a Lie point operator . 

ii) If A is nonlinear in s x. 
1 

then y is equivalent to a 

Lie tangent operator o 

From theorem 2.1 it will then follow that constants of motion 

linear in the momenta correspond to Lie point groups while non-

trivial constants of motion nonlinear in the momenta correspond to 

Lie tangent groups 0 

Nontrivial constants of motion 0 

What we mean by 11 nontrivial11 is best understood with the 

aid of an example: Consider the case of a central potential in two 

dimensions; the angular momentum m 3 is conserved 0 is 

linear in the momenta and therefore its conservation is a consequence 

of a Lie point group (rotation about the z axis) . Of course 

is also a constant of motion, which we call trivial; it is quadratic 

in the momenta but it still reflects a Lie point symme try in the 
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sense that the LB operator corresponding to belongs in the 

enveloping algebra of the Lie algebra of Lie point operators. Non-

trivial constants of motion nonlinear in the momenta are those 

which cannot be expressed in terms of linear constants of motion 

(for example, the Runge-Lenz vector is a nontrivial quadratic con-

stant of motion). 

We conclude the introduction by reminding the reader that 

if a canonical transformation is made in which the new coordinates 

depend only on the old coordinates then the new momenta are linear 

in the old momenta . If a new coordinate (say angles in spherical 

symmetry) does not appear in the new Hamiltonian, then the cor-

responding momentum (say angular momentum) is constant; this 

constant reflects a geometrical symmetry. Obviously, a nonlinear 

constant represents a more sophisticated symmetry (dynamical or 

more general Lie-Backlund). 
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2. 2 A GROUP ANALYSIS OF THE HAMILTON-JACOBI EQUATION 

The Hamilton-Jacobi equation is regarded as the basic equa-

tion of classical mechanics. An analysis of its group ·structure pro-

vides the explanation for the exi stence of all conserved quantities 

and separable solutions in classical mechanics. Furthermore it 

clarifies the origin of the Lie point symmetries of Hamilton's 

equations . Also, an understanding of the group structure of the 

Hamilton-Jacobi equation is essential for the LB group analysis of the 

Schrodinge r equation, to follow in the next chapter . 

•• 2 . 2.1 Lie-Backlund Groups of the Hamilton- Jacobi Equation 

and Constants of Motion of Hamilton's Equations 

Let 

n = St + H(t,x.,S) = 0, 
~ x. 

~ 

i = 1, . .. , n (2 .1) 

be the Hamilton-Jacobi equation describing the motion of a given 

dynamical system [ 23] . The corresponding Hamilton's equations 

are: 

Theorem 2 .1. 

. 
X. = H J 

~ pi 

p. 
~ 

H x. 
~ 

(2. 2) 

The Hamilton-Jacobi e quation (2 .1) admits the Lie- Backlund 

operator y = A(t,x.,S )8/oS, i = l, .. . ,n, if and only if A(t, x.,p. ) 
~ x . 1 1 

1 

i s a constant of motion of Hamilton's equations. Furthermore the 

correspondence 

A(t, x ., p . ) 
1 1 

a 
A(t, x .,S ) "'S ' 

1 x . u 
1 

(2. 3 ) 

i s an i somorphism for a ny A which is a function of the variables 
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indicated. 

Proof 

The proof that (2. 3) is an isomorphism is a consequence of 

the fact that a commutator of two constants of motion is their 

Poisson bracket and of lemma 1. 2. The first part of the theorem 

then follows using lemma 1. 3 (trivially extended to the case of many 

independent variables). 

An illustration of this Theorem is the following: Assume (2 .1) 

is invariant under rotation about the x 3 - axis . Then it admits the 

which is equivalent to Y = (x1S -
x2 

x
2

sx
1
)ajas. Therefore m 3 = x 1p 2 - x 2 p 1, the x 3 - component of 

the angular momentum is conserved. 

2. 2. 2 Groups of Hamilton's Equations Induced by Groups 

of the Hamilton-Jacobi Equation. 

Let S(t, xi) be a solution of (2 .1). 

under the group G 8 . 

Let (2 .1) be invariant 

where 

S-S+EA, 

GS: t- t + ET, 

F: 

x.- X.+ EX., 
1 1 1 

are functions of t,x.,S, i = l, ... ,n. 
1 X. 

as 
Pi = -a­

x. 
1 

1 

i = 1, ... , n, 

Define 

then pi, qi satisfy the Hamilton's equations (2. 2). The trans-

formation F maps G 8 onto son'c group GH of equations 
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(2. 2) defined by: 

pi - p. + · EP. 
1 1 

GH: t t + e-T 

q . - q. + e-Q. 
1 1 1 

where 

X. 
1 

= Q. 
1 

dA dX. 
s dT I P. = 

dx. s ___1 - (2. 4) 
1 x.dx. tdx. 

1 J 1 1 n 

From the above it is clear that if a g r oup of (2 .1) is given, the 

induced group on (2.2) can be found using (2.4). Suppose Y is 

a Lie- Backlund operator of (2 .1). To find the induced operator of 

(2 .2), extend 

a;as . x. 
1 

Y and keep t he coefficients of 8/ox. , 8/ot 
. 1 

and 

Theorem 2.2. If Y = A(t,x.,S )8/oS, i = l, .. . ,n, is an 
1 x. 

1 

admissible Lie-Backlund operator of the Hamilton-Jacobi equation, 

then Z = o/ot + A o/op. - A 8/8 is an admissible Lie point 
xi 1 pi xi 

operator of the corresponding Hamilton' s e quations. 

Proof. Extend Y: 

Adding and subtracting AS o/oxi we get: 

where 

X. 
1 

8 8 8 8 
Y = A as + At ast + Ax. as- - As a x. + ~ 

1 x. x . 1 
1 1 

Ill = S A ..2..._ + S A -
8
- + AS a: .. tx. s a st x .x. s as 

1 X. 1 J X . X. X. 1 
1 J J 1 
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Apply ~ to (2 .1) 

Cb(2.1) =AS Di(2.1). 
x. 

1 

Therefore 

Yl = A a a A a A a n as+ at+ x.as-- s ax:-· 
1 X . X. 1 

1 1 

and the induced group on (2.2) is Z. Q.E.D. 

2. 2. 3 Separation of the Hamiltbn-Jacobi Equation 

Lemma 2 . 1. Let 

rJ;(x., S , <j>(x, S )) = 0, 
1 X. X 

i = l, .•• ,n-1 (2. 5) 
1 

be a first order partial differential equation in which x and s 
X 

enter only in some combination <j>(x,S) 
X 

not involving the other 

coordinates. Assume that S does not appear explicitly in (2.5). 

Then (2. 5) admits Y = · <j>(x , S )ajas. 
X 

Proof. Extending Y and applying it to (2.5) we get: 

therefore 

Q.E.D. 

The equation (2. 5) is also invariant under translation in S, 

i.e., it admits the operator Y 0 = x.ajas, where X. any constant. 

Theorem 2. 3. Suppose an additive separable solution exists 

for equation (2.5) of the form 

1\ 
S = S(x.) + S(x). 

1 
(2. 6) 

Then S is an invariant solution of {2. 5) under the action of the 
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admissible LB operator 

1\ 

Y = Y - Yo = ( <1> (x, s ) - >..] a I as. 
X 

(2. 7) 

Proof. The solution of equation (2. 5) invariant under the 
1\ 

action of the operator Y given by (2. 7), is specified by the 

simultaneous validity of equation (2. 5) and of 

(2. 8) 

(see theorem 1. 4). However, by definition a separable solution 

also satisfies equation (2 . 8) for some constant ~- Q.E.D. 

From the above it is clear that every additively separable 

solution of (2.5) is invariant under a LB operator. If the separ-

able coordinates are known, this operator is found by inspection. 

In the special case for which (2.5) is the Hamilton-Jacobi 

equation theorem 2.1 establishes a way of evaluating >.., the con-

stant of separation: >.. = <j>(x, p). 

The above results complete our analysis of the g roup prope r-

ties of the Hamilton-Jacobi e quation and Hamilton's e quations . How-

ever, Hamilton's equations are the characteristic equations of the 

Hamilton-Jacobi equation . This provides the motivation for the 

following generalization. 

2.2.4 Lie-Backlund Groups of Some First-Order Partial 

Differential Equations 

Let 

n(x.,S,S ) = 0, 
1 x. 

1 

i = 1, .•• , n. (2. 9) 

Recall [ 24] that the characteristic equations of (2. 9) are given by: 
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dp. 
1 

dX. 

_ as 
pi = 1Jx':" • 

1 
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(2 .10) 

Lemma 2.2. The ope ration Y = A(x., S, S )8/oS is an 
1 x. 

1 

admissible operator of (2.9) if and only if 

(2.11) 

Proof. Extending Y, applying it to (2. 9), and using 

we obtain, 

st=O 

Now using (2 .10) we find, 

- I dA 
Y n n = o = [ dX. + Ast sl 

Sl = 0 
Q.E.D. 

From (2 .11) it is clear that if (2. 9) does not involve S explicitly~ 

then n = 0 admits the operator Y if and only if A is a con-

served quantity of the characteristic equations of Sl = 0. 



2.3 CONSTANTS OF MOTION WITH POLYNOMIAL DEPENDENCE 

ON THE MOMENTA 

In order to gain some insight of the proble m we start with 

the quadratic case . 

2. 3 .1. Constants of Motion Quadratic in the Momenta 

A. Hamilton-Jacobi equation for the zero energy state. 

In thi s subsection we restrict our sel ves t o operators of the 

from 

where 

Let 

a 
Y.::: (a.S + b .. S S + 2c) as 

1 xi 1J xi xj 

H(x. ,S ) 
1 X. 

1 

b .. = b .. = b .. (x
1 

), 
1J J1 1J ~ 

- _!_ s s + ~ (x. ) 
2 x. x. lc 

1 1 

= 0 tt 

In theorem 2 .1 we proved that the operator 

(2 .12) 

i,k = 1,2,3. 

(2 .13) 

Y - A (x . , s )o/oS is 
1 x. 

1 

an admissible operator of (2.13) if and only if 

[ Hx. aasA - Hs ~~ ] = o, 
1 x. X. i H=O 

1 1 

i = 1,2,3. 

Substituting for H from {2.13), for A from {2.12), equating to 

zero the coefficients of S S S , i, j, k = 0, 1, 2, 3, we obtain the 
x. x. xk 

1 J 
following set of equations: 

t It is convenient to use various notations. The position vector 
x will be denoted by (x,y,z) or xi= (x1,x2 , x 3 ). 

tt Equation (2.13) can be thoug ht of as the eikonal e quation of some 
generalised Helmholtz equation, (where the fr e quency depends on 
~), or as the Hamilton-Jacobi equation for the zero e nergy state. 



al Xt 

al 
Xz 

1\ 
a.V 

1 X. 

(bu 

c 
Xt 

1 

= 

= 

+ 

az 
Xz 

- az 
Xt 

1\ 
2a3 V = 0, 

x3 

1\ 

+ Vb11 • 
Xt 

-5.2-

(a .I) 

(a.2) 

i = 1, 2. 3 

(~ .1) 

(j3.2) 

(j3.7) 

i = 1,2,3 (y.l) 

(a.k) , (j3.k), 3 ~ k ~ 6, (y.2) and (y.3) by cyclic permutation 

1 - 2 - 3. 

The compatibility e quations of the set (y) are the follow-

ing: 
1\ 1\ 1\ . 1\ 1\ 

(b b )V + b V b V + b (V - V ) + 
11 - 22 Xt Xz 13 X2X3 - 23 X3Xl 12 XzX2 Xt Xt 

1\ 1\ 1\ 1\ 

2b12 V+3b12 V -3bt 2 Vx +(bux -b23x
1 

)Vx3 = 0 • 
x 2 Xz x 2 X2 Xt 1 2 

(o . 1) 

(o. 2) and (o. 3) by cyclic permutation. 

It should be noted that the equations determining a. and 
1 

b.. are uncoupled. Therefore, operators linear and quadratic in 
1J 

the derivatives respectively, can be found independently. 

and 

Let 

a 
Y 1 = a .S "'S 

1 X . u 
1 

v = (b .. S S + lc(x)) ~s, 
1J x. x. u 

1 J 
i,j = 1, 2,3 

(2.14) 

(2. 15) 
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To find an admissible operator of the form (2 .14), equations (a), 
1\ 

which are independent of V, are completely solved. Then, sub-

stituting a. in equation 
1 

1\ 
(a) we determine which groups, if any, 

1\ 
are admitted by a given V . Similarly to find an admissible oper-

ator of the form (2.15), equations (~) are completely solved. 

Then, substitute b.. in equations (o) we determine which groups 
1J 

1\ 

are admitted by a given V. Finally integration of equations (y) 

determines c{x). 

bz3, 

- (a4 

Solving equations (a) and (~) we obtain (see Appendix I): 

a I = A 3 {xz - yz - z z ) + 2 (AI xy + A 2 xz) + Biz - Bzy + Cx + DI 

az = AI (yz-xz-zz) + 2 (A 2 yz + A 3 xy) + B 2 x - B 3 z + Cy + Dz 

a3 = Az(zz-xz-yz) + 2 (A3 xz + A 1 yz) + B3 y - Bix + Cz + D3 

biZ = a1 +a2 y+a3 x+a4 z-a5 z2 +~sxz+ysyz+a6xy+a7(x2 -y2 )-

b:n by 

+ ~4), 

bu 

~7 xz+y7 yz- a 8 z 3 - 2~a z 3 +a a (3y2 z- 3x2 z )+ (a9 +2yl 0 )y(y2
- 3x2

) + 

(a10 +213 9 )x(x2 -3 y 2 )+3a 9 z
2 y+3a1 0 xz2

- 6 (~1 0 +y 9 )xyz + 

2a
11 

zy(3x2 -z2 -y2 )+!3 11 (z4 -y4 -x4 +6x2 y 2 )+2y11 xz(3y2 -x2 -z2
) + 

(2.17a) 

cyclic permutation where and 'Y4 = 

'{a = - (a a + ~a), 'VIZ = - (al z + ~IZ ). 

= ot 

t Wit'·10ut loss of generality we can assume b 11 = 0, as we can 

always eliminate s2 from the operator (2.. 12) using equation (2 .13) . 
X 

(2. 16) 
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2 f39 y(y2
- 3x2 }+y9 z (- 3x2 +3 y 2 - z 2 }+a1 0 y(- 3x2- 3z2 + y2} + 

i3Ioz(-3x2 +3y2+z2 }+2y 10 x(3y2 -x2 )+2a 11 xz(x2 -z2 -3y2) + 

. 3 
41Ju xy(x2- y2 )+2yu zy(3x2- y2 +z2 )+ z a l2 z2 (x2- y2) + 

1 
4 (i312-YI2)(x4 +y4 +z4 -6x2 y 2 )]. (2.18a) 

a 7 xy- i37 yz+2y7 zx- 6ys x yz+2 a 9 x (3 z 2 -x2 }+ f39 y(- 3x2 +3z 2 +y2
) + 

y 9 z (-3x 2 - 3 y 2 +z2 )+a 1 0 y(- 3x2 +3z2 - y 2 )+21J 10 z (z2 -3x2 ) + 

y 10 x(3y2+3z2 -x2 )+4a 11 xz(x2 -z2 )+213 11 xy(x2 -3 z 2 -y2 ) + 

2 2 2 3 2 2 2) 2y11 yz(3x +y -z }+z- y 12 y (x -z + 

(2 .18b) 

where a., f3., y.; 1 ~ i ~ 12 
1 1 1 

and A . , B., C, D . , i = 1,2,3 
' 1 1 1 

are 

constant parame ters. 

U s ing equations (2 .16), (2.17) and (2.18) we can find all 

distinct operators of the form (2 .14) and (2.15). H oweve r, in 

order to reveal the ir structure , it is better to express the m 

in an alte rnative form, although in the new form s ome of the 

quadratic operators are equivalent. t 

t Two admissible operators of e quation (2 . 13 ) are equivale nt 
if one can b e obtained from the other with the a id of e quation 
(2 .13). 
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Let 

P. - s . a - x.P., M . - E . • kx.P1 , K. = 2x.x.P. r 2 P., 1 x. 1 1 1 1J J ~ 1 1 J J 1 1 

where 

r2 = x.x.; i, j. k = 1,2,3. 
1 1 

Then 

(K.P. >...M . IJ..K. 
a 

Yt = + + + va) as, (2.20) 
1 1 1 1 1 1 

= (a .. P .P. + (3 .. P.M. + -y •• M.M. + Ot:,_Z + E.P.A + 
1J 1 J 1J 1 J 1J 1 J 1 1 

!;, .M.a + n.K.a + e .. P.K. + ~ .. M.K. + <r •• K .K. + 
1 1 1 1 1J 1 J 1J 1 J 1J 1 J 

a 
2c (x)) as (2 . 21) 

where all lower-case Greek letters denote constant parameters 

symmetric in their indices. 

The operators Y 
1 

represent the Lie algebra of the confor-

mal group, P. and M. generate the Euclidean group of motions, 
1 1 

K. are the generators of the special confo rmal transformations 
1 

and a generates the dilatations. 

It is clear that when c(~) = 0 the operator Y 2 belongs 

in the enveloping algebra of the conformal group. However, when 
1\ 

c(x) :f: 0 Y
2 

is Lie-Backlund (independently of V). 

B. The Hamilton-Jacobi equation (for arbitrary value of E). 

Let 

1\ l" 1\ 
St + -S S + V(x) = 0, 2 x. x. 

1 1 

i = 1,2,3 

be the time-dependent Hamilton-Jacobi equation, and 

.!.s s + V(x) - E = o, i = l, 2, 3 
2 X. X. 

1 1 

(2. 22) 

(2 . 23) 

(2.19) 
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the corresponding time-independent equation obtained by additive 
1\ 

separation of variable s, S{x, t) = S(x) - Et. It is obvious that 

the operator 

1\ 1\ a 
z = A{x.,S )<::>s• 

1 x . v 
1 

i = 1,2,3 (2. 24) 

is an admissible operator of the equation (2 .22), iff the operator 

- a z - A (x . , s ) <::los, 
1 X. v 

1 

i = 1,2,3 

is an admissible operator of equation {2. 23). 

Therefore, looking for admissible operators of the form 

(2.24), it is sufficient to consider equation (2.23). Equation (2.23) 

is a special case of {2.13), where ~ = V - E. t Equations (2.17) 

indicate that a necessary condition for an operator of the form 

(2.12) to be admitted by equation (2 . 23) is to be admitted by a 

constant potential. Hence 

i.e., the relevant group parameters are ai' f3i, 'Vi' 0 ~ i ~ 6 . 

Using the notation introduced in {2 .19) we c an express the 

relevant admissible operators as: 

0 
Z 1 = (K .P.+X..M.)!:>S' 

1 1 1 1 v 
i ::: 1, 2, 3 

a = (a .. P.P. + (3 •• P.M. + 'Y· .M. M. + 2c(~)) as, 
1J 1 J 1J 1 J 1J 1 J 

(.2 • .2 5) 

i , j = 1,2,3. 

t For· a fixed function V (which is the potential energy of the 
dynamical system), the energy E may vary c ontinuously over all 
positive numbers (e.g. the harmonic oscillator) or all real . num­
bers (e.g. the K e plerian problem). 

(Z. 26) 
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Equation (2.23) is the eil<:onal equation of the time-indepen-

dent normalised Schrodinger equation 

1 
- u + (V(x) 2 x.x. 

E)u = 0, i = 1,2,3 
1 1 

Therefore, being an approximate equation, its group-theoretical 

analysis is simpler. However, it is of interest that its group 

theoretical consideration was preceded by that of (2. 23). 

The quantum mechanical analogues of z
1

, z 2 have been found in 

[ 20] . By taking the classical mechanics limit of these operators 

we obtain z 1, z
2

. Since the Hamilton-Jacobi equation is a limit-

ing case of the Schrodinger equation w e expect the symmetry group 

of the latter to be the same or a proper subgroup of the former. 

Here we see that the groups actually are the same (if the nature 

of the potential is not considered), at least up to second order 

operators. 

2. 3. 2 Constants of Motion Cubic in the Momenta 

We now concentrate on the more interesting case of an 

arbitrary range of values of E (the case E = 0 is not very 

interesting physically). Also we only present the results for the 

two dimensional case; the extention to thre e dimensions is obvious. 

For completeness we also include the relevant results of the pre-

vious lemma. 

Lemma 2. 3 The most general constants of motion of the 

time-independent Hamilton-Jac obi equation (2.3), linear, quadratic 

and cubic in the momenta are, 
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11 = (linear combinations with constant coefficients of pl' Pz, m 3 ) 

- '~>a/x)pj • (2.27a) 
J 

12 = (quadratic combinations of pl' p 2 , m 3 ) + c (x) 

= \' b.k(x)p.pk + c(x) , .u J - J -
J, k 

13 = (cubic combinations of 

3 3 
- dlll (x) P 1 + d222 (x) P2 + 

where 

(2.27b) 

(2.27c) 

'0 a/x)pj , 
J 

The a. in (2. 27a) are coupled with the potential V through the 
J 

equation 

a 1vx + a 2vy = 0 . 
' 

the bjk in (2. 27b) through the equation 

The c (x) satisfies 

The 

(from the above by cyclic permutation) • 

a. in (2. 27c) are coupled with the potential 
J 

through the followin g equations 

- 3V xdlll - V ydll2 = 0 ' 
' 

(from the above by cyclic permutation), 

A I. 
a v + az vy -1 X 

0 . 

(2. 28a) 

(2.28b) 

(2. 28c) 

v 

(2.29a) 

(2. 29b) 

(2. 29c) 

(2 . 29d) 
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Proof. The derivation of the above results, although very 

cumbersome, is similar to that of §2.3.1 and is therefore omitted. 

Note that equations (2. 27) define the 

constant parameters. For example, 

aj' bjk' djk£ 

a 1 == a -{3 y, a 

to within 

and (3 

arbitrary constants, etc. Also (2. 28a) is linear in V and the 

is rmcoupled from the b . . and the 
lJ 

V. This may be 

contrasted with the case of a constant of motion cubic in the 

momenta where the 
il. 
a. are coupled with the 

1 

Let us now come back to equations (2.29). 

can be solved for and 

djk£ and the V. 

First note that they 

(2.29e) 

Vx 
Vy 

(2.29f) 

Then substituting (2.9e,f) in (2.29a,b) we obtain two equations 

relating djk£ with V. However, these equations are nonlinear in 

V and therefore are not very suitable for discovering which potentials 

admit a given invariant or which invariants are admitted by a given 

potential. (For a discussion of the corresponding problems for the 

quadratic case see §2.4). In order to obtain a linear equation 

relating djk.e with V we disregard for the moment equation 

(2. 29d) and eliminate and from equations (2.27a,b,c). This 

yields the equation below, (which is necessary but not sufficient) 

d221V XXX + d112 V yyy + (3 d222- 2 d112)V xxy + (3 d111- 2 d221)V yyx 

2 (d221 -dll2 )(Vxx-V ) + (6dlll 
X y yy y 

+ 6 d222 - 2 d221 - 2 dnz )V x 
X y X y 

(2.29h) 

+ (3d222 
XX 

+ dnz - 2d221 )V + 
yy xy y 

(3dnl +dzzl - Zdnz )V x == o. 
yy XX xy 
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2.4 APPLICATIONS TO CLASSICAL MECHANICS 

2. 4.1 The Hamilton-Jacobi Equation (for arbitrary value of E). 

In §2. 3 we showed how one can find admissible operators 

(and hence invariants) of equations (2 .13) and (2. 23) when the 
1\ 

functions V and V, respectively, are given. 

In the present subsection we shall first consider the inverse 

problem: Given an operator, find all V which admit it. Some 

classes of solutions to this problem are given in §2. 4.1 A, as well 

as an example illustrating the incompleteness of these results. In 

§ 2. 4.1 B we shall consider potentials of a prescribed general form 

which are of physical interest and shall find all potentials of this 

form which give nontrivial invariants as well as the corresponding 

invariants . It is believed that some of these invariants are new. 

Their extension to quantum mechanics is given in Chapter III and 

some important limiting cases in §2.5 . 1. In §2.4.1 C we shall 

reveal the group-theoretical nature of all the separable solutions 

of the one-body Keplerian problem . 

A. The inverse problem. 

a. Operators linear in the momenta. 
1\ . 

Instead of integrating (a) directly we follow [20 J and 

perform a Euclidean coordinate transformation: 

x'. = a.kxk+l3., 
1 1 1 

where i,j,k = 1,2,3 

sue h that the operator Z 1 of (6.14) takes a simple (normalized) 

form z.', where 

(2 . 30) 

a 2 = a.a . , 
1 1 

a. b. = ab; i = I , 2, 3 . 
1 1 

Therefore , in the normalize d c oo r dinates, the g eneral s olutio n 
1\ 

of (a) is: 
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z' e' = tan-1 -y' 

where for physically meaningful potentials the first derivatives 

of F must be periodic in e'. 

[3. Operators quadratic in the momenta (without linear terms) 

Solving equations (6) completely is quite complicated. 

While one can easily find some solutions of these equations, it 

is very difficult to determine when one has found all solutions. 

The corresponding problem in quantun1 mechanics has been con-

sidered in (20] and (15]. In looking for potentials admitting 

second order operators Winternitz and others considered a set of 

equations equivalent to ( 6). Initially, they performed a coordinate 

transformation of the form (2 .30),rather than integrating the 

relevant equations directly. Their procedure, when applied 

here, corresponds to using (2.30)to simplify the operator Z 2 

of (2.,26), and then integrating equations (6). The results 

of [20] and [2.5] are directly applicable here: 

1) In two dimensions all the potentials admitting 

symn1etries of the form (Z. 25) are those which allow separation 

of equation (2 . 23) in one of the four. coordinate systems: 

cartesian, polar , parabolic and elliptic. 

2) In three dimensions, all the potentials admitting two 

commuting operators of the form (2. 25), are those which allow 

complete separation of the time-independent Hamilton-Jacobi 

equation. 

The above relationship between symmetries and complete 

separation of variables is very interesting . Actually the corres-

ponding problem in quantum mechanics was the motivation fo r the 

group characterisation of complete separation of variables. How-
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ever, in our view, the problem of partial separation has been 

unduly neglected.' Theorem (2. 3) expresses the group nature of 

the partial separation and provides a way of finding a more general 

class of potentials admitting symmetries: Any potential allowing 

partial separation of the Hamilton-Jacobi equation must be a solu-

tion of (o). 

To obtain simple solutions of (o) directly, we let all the 

independent parameters in (2.17) and (2.18)be zero except one, 

which is put equal to unity. In this way we derive potentials 

covered by 1) and 2) above. However, other solutions may be 

obtained using the parameters a4, l34, 'V4. If we put l34 = 1 

and all other group parameters equal to zero, equations (o) 

yield: 

z 2 z 
V = K(q} + "j?) + 'Acp + ~7 + f(p) 

cp = tan-1 ::l.., 
X 

K, 'A, ~ arbitrary constants, 

f(p) arbitrary function of p. However, for physically meaningful 

potential, the first derivatives of V must be single-valued, there-

fore K = 0. 

The admissible operator corresponding to this potential is: 

The potentials and invariants obtained by replacing l34 by a4 or 

y 4 can be obtained by cyclic permutation. 

B. Potentials due to one or two fixed centers. 

We now investigate a class of potentials of physical interest, 

Their inter-namely potentials due to one or two fixed centers. 

relation will be discussed in §2. 5 . 1 with the aid of various limit 

processes, which also will yield new potentials not considered 
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h ere. It will then b ecome clear that the t wo fixed cente r s have 

a logical priority to the one fixed center. However, we shall. 

start with the latter c ase, i.e. of a central field in three · dimen-

sions. It is well known that for a fixed center there e xists only 

one type of geometrical symmetry, the spherical symmetry, whic h 

leads to the conservation of the angular momentum vector. We 

shall check using our methods that the only central 

potentia ls which g i ve nontrivial invariants (quadra tic 1n the mo-

menta) are of form V "" r 2 The first case is 

that of an isotropic harmonic oscillator and the second case 

occurs in Newtonian gravitational theory. In the above cases we 

shall refer to the origin as a harmonic or a Newtonian center, 

respectively. 

A natural generalization of the fixed center potential is, 

especially in view of an old discovery of Euler (see below), the 

potential due to two fixed centers. Since the s pherical symmetry 

is now reduced to cylindrical we conside r thi s problem in the 

(x, y) plane. Then the invariants can be extended to three dimen-

sions using the cylindrical symmetry. It turns out that the only 

two centers which admit a geometrical symmetry are the two 

harmonic centers. Also, the o nly two centers which admit non­

geometrical symmetries are two Newtonian or two harmonic centers. In 

both cases the distance between and the strength of each center 

are arbitrary. It is interesting that a curious hybrid also 

exists: two harmonic centers at the same location as two 

Newtonian centers, provide d the forme r have the same strength. 

a. Central Fields 

To find admissible operato rs linear i n the momenta, let 
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1\ 1\ 
A.= C = 0, i = 1,2,3 in (2.16), V = V(r) in a, and substitute 

1 
1\ 1\ 

(2.16) in a. Then integrating a, the only invariants found are 

M., i = 1,2,3 as expected. 
1 

To find admissible operator quadratic in the momenta, let 

V(r) = F(r2 ), 
dF 

F' = d(r2 )' 

dF' 
F" = <f(rZ). 

Substituting(?.l7) and(2.18) in (6.1) we obtain: 

[ (ya2 -xa3 }(x2 +y2
) + (y)' 3 -x(32 )z2 + 2xya0 + z(YY'l -X)'l) + 

(y2 -x2 )al + xyz(f33-Y'Z) + z(y2 -x2 )(a4+)'-4. )] F" + 

[(ya2 -xa3 ) + j-()'4 -(34 )]F' = 0, (2. 3la) 

(7.1.2), (7.1.3) by cyclic permutation. 

i) Note that the parameters a., (3., Y'·• i = 5,6 
1 1 1 

do not appear 

in (2 .13). Therefore the operators corresponding to those parameters 

are admissible for any V (r). Abbreviating Zz of (2.26) to 

X .. 
a 

= Aij as' (2. 32) 
1J 

we find that now A .. = M.M., i, j = 1, 2' 3 . 
1J 1 J 

ii) Let a. = (3. = Y'· = 0, 
1 1 1 

i = 2,3,4 

Then F " = 0 and "' A ""i' ~-'i' Y'i' i = 0,1 are arbitrary. Hence 

A .. = P.P. + 2ax.x., i, j = 1, 2' 3 
1J 1 J 1 J 

(2 . 33) 

iii) Let a. = (3. = Y'· = 0, i = 0, 1, 4. 
1 1 1 

Also a3 = f3z ' f33 = Y' 2 ' "Y3 = az 

az = "Y3• f3z = a3, Y'z = (33 

Therefore F" r 2 + ~ F' : = 0 and a 2 , (3 2 , "Yz are arbitrary 

Then 

i,j,k = 1,2,3 (2 . 34) 
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Comments 

1. Clearly the operator (2. 32) where A .. = l\1.M., 
lJ 1 J 

i, j = l, 2 , 3 although nonlinear in the momenta, is a trivial 

consequence of the spherical symmetry (therefore it is of type 

(ii) of (1.4)). This symmetry also allows separation of variabl es 

of the Hamilton-Jacobi equation in spherical c oordinates. 

2 . The use of the tensor (2. 33) and the Runge- Lenz vector 

f2.34)have been well established in the literature. We just stress 

that their existence is the consequence of non-geometrical sym-

metries. These strictly Lie-Backlund s ymmetries also lead to 

separation of variabl es in cartesian and parabolic coordinates 

respectively. The separation of the e q uation for the harmonic 

oscillator is trivial. The separation of the equation for the one-

body Keplerian problem will be discussed later. The Lie- Backlund 

algebras of the above groups are isomorphic to algebras of 

finite dimensions (2 6] . 

p. Two fixed centers. 

Let 

V = V 1 ( p) + V z (Po ) 

where 

Pz = xz + yZ' Po
2 = (x - Xo)Z + yZ. 

An analysis similar to that of 4) yields (see Appendix III) : 

i) v = apz + f3 Po
2 

Then 

Ao = (x - ~ a+f3)Pz - yPl (2. 3 5 ) 

A . . = P.P. + 2( ax.x. + l3(x.-x0 .)(x.-x0 . )] 
1J 1 J 1 J 1 1 J J , i,j = 1,2 (2.36a ) 

(2 . 36b) 



where 

Xq, 

= [ 
0, 

Then 

where 

Comments 

i = 1 

i = 2 

1\ 

M = (x - 2xo f3 )P p 
a+(3 2 - Y 1 

1. It is interesting that, for every symmetry of the 

(2. 3 7) 

one harmonic center corresponds one for two harmonic centers. 

This is a consequence of the fact that the two harmonic centers 

are equivalent to one, located at 

(a+(3). 

2. The invariant (2.36b) is a 

the invariants A 0 and A2 2 since 

ever, the form(2.36b) is also useful 

and having strength 

trivial consequence of 

X 2 

~A22· How-

as it illustrates the 

connection of (2. 36b) and · (2. 37). As a and (3 - a 0 

3 . The invariant for the two Newtonian centers was 

found by Euler in 1760 and is discussed in [ 2.7] , using elliptic 

. coordinates which are the appropriate separating coordinates for 

this problem. A more transparent form of this invariant, namely 

the one obtained from (2 •.37) _putting a 0 = 0, was used in [28]. 

4. The invariant corres ponding to the "mixed" ca se is 

given by (2. 3 7). The spherical symmetry is d estroye d, but this 

time (as in the case of two Newtonian center s) it is replaced by 
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a Lie- Backlund one. 

C . One- Body Keplerian Problem 

As an illustration of Theorem 2. 3 we investigate the 

group-theoretical nature of all separable solutions of the one-

body Keplerian problem: 

st + .!_ s s + ~-' = o , 
2 x. x . r 

1 1 

i = i, 2' 3. 

The following admissible operators will be used: 

Y. a 0 ~ i ~ 6, where Ao l, Al st, = Ai as' = = 
1 

(2 . 3 8 ) 

Az = M3, A3 = Ml' A.., = Mz, As = Al + Al + A/, 

A6 = P 1 Mz - PzM1 + #.tZ 
r 

Spherical 

in 

Writing (G. :J8)and the operators 

spherical coordinates we 

st + lsz 
2 r 

st = x.l 

S = X.z 
ep 

+ 1 sz zrz< e 

obtain the 

sz 

+ p ) 
sinle + 

sz + 1 sz = X. 
e sin2 e ep 3 • 

separated equations: 

#.t = 0 
r 

Using Theorem (2 .1): >-. 1 = - E, >-. 2 = pep, X. 3 = M 2
, where pep is 

the ep component of the angular momentum and M the t o tal angular 

momentum. 

Parabolic 

Writing (2. 38) and the operators 

in parabolic coordinates w e obtain: 



S2 s2 
St + 2sSg + f.J. + sSt + zf + 2nS~ + nst + ~ = 0 

st = x.l 

S = X. 2 cp 

e 2 e 1 2 
- 2 '=' SS - fl. + E '=' - 2I S <p = X. 3 • 

Using Theorem 2. 3: . X. 3 = L 3 , the z component of the 

Runge-Lenz vector . 

We see that for the complete characterization of the 

separable solutions in parabolic coordinates, the operator y 6 

which is strictly a Lie-Backlund operator is neces!:?ary. 

2.4.2 Hamilton- Jacobi equation for the zero energy state . 
.. . ,-

that, when E = 0, the 

Hamilton-Jacobi equation may possess additional symmetries, 

not present for E =I= 0. As in §2. 4 .lA we first give some classes 

of solutions of the inverse problem. We then concentrate on 

potentials due to one fixed center. Although the zero energy 

state is a very special case the results (which are new) may 

be of some interest. t 

A. The inverse problem. 

a. Operators linear in the m omenta. 

Abbreviating the operator (2. 20) to 
1\ 

(a) we obtain: 

a 
= A as 

1) K. = X.. = J..L· = 0, 
1 1 1 

v =I= 0; i . - 1, 2' 3 

1\ 

v = .!_2 F(y_ ~) · 
X X 'x' A = A 

and solving 

t As an analogy we point out that certain dynamical systems 
admit periodic solution s only under very special conditions. 
These special solutions may, however be of interest . 

(2. 3 9) 



2) K. = A. = v = 0, 
1 1 J..t. * 0; 1 

1\ 1 2 2 2 
V = - F(Y x -y -z )· 

z 2 z ' z ' 
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i ::: 1, 2, 3 

Additional potentials can be obtained by cyclic permutation, 

as well as combining different group parameters. 

(2. 40) 

!3. Operators quadratic in the momenta (without linear terms). 

The possible systems of coordinates allowing additive separation 

of (2 . 13) have been found [2 ~] . Again , using Theorem 2. 3, any 
1\ 

function V (x) allowing partial or total separation of (2 .13) is a 

solution of (o). We emphasize the case of partial separation, 

which in three dimensions can be quite useful in deriving 

invariants. 

B.. Central Potentials. 
1\ 1\ 

Assume V = V(r) in (2 .13~. 

a. Operators linear in the momenta. 
1\ 

Integrating (a) We o btain: 

Potential 
1\ 
V(r) 

-2 
ar 

-4 
ar 

Invariant 

M . , 
1 

K., 
1 

i = 1, 2, 3 

i ::: 1, 2, 3 

j3. Operators quadratic in the momenta. 

Integrating ()') and (o ), in addition to the cases con­

sidered in ~2 . 4.1 we find 

Potential 

-2 ar 

Invariant 

AM., 
1 

i = 1,2,3 

(2. 4la) 

(2. 4lb) 

(2.4lc) 

(2 . 42a) 

- 3 -4 
ar +f3r 

- 1 -2 A K.I-ax.r +2px.r , 
1 1 1 

i = 1,2,3 (2.42b) 



-6 -4 
ar +l3r 
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K . K . + 2 ax. x . r-
4 

i, j = 1, 2 , 3 
1 J 1 J 

The invariant (2. 42a) is of course a trivial consequence of (2. 41). 

(2.43c) 
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2 . 5 FURTHER APPLICATIONS 

2. 5.1 Potentials Generated by Fixed Centers and Limiting 

Cases. . Associated Invariants . 

In the present subsection we consider an important class o f 

potentials. A fixed point P
1 

is a center if there is a potential 

V 
1 

whose value at an arbitrary point Q depends only on the dis-

tance IOP1 1. If V 2 is a potential depending only on the distance 

to the point P 
2

, one may form a two-c enter potential by super-

position, V 
1 

+ V 
2

• By varying the strength of the potentials and 

the distance between P
1 

and P 2 one can obtain various limiting 

cases which need not be center-potentials. 

In discussing invariants in this section we shall deal only 

with constants of motion of Hamilton's equations, that is with 

functions f(x., p.), j = 1, 2, 3, 
J J 

constant along any orbits . The 

commutator of two functions f and g is the Pois son bracket 

which we define as 

3 

[ f, g] = L(~~-~~) ox. 8]:):" op. ox. · 
j =l J J J J 

(2. 44) 

In Chapter III we shall discuss the relations between s uch invariants 

and the corresponding operators admitted by the Schrodinger equa-

tion . For the purposes of Chapter III it is instructive to deal with 

potentials having nontrivial invariants nonlinear in the momenta . 

The potentials discussed below are interesting in the ir own right, 

and they will also be used to illustrate the use of limit processes 

for potentials and their assoc iated invaria nts. 

Below we shall mainly disc uss the c ase x 3 = 0; the e x t e n-

sion to three d ime n s i on s is easily made . W e conside r a t w o-cen te r 
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potential; without loss of generality we may place the centers at 

(0,0) and (x>:,,O). It was found in §2.4.1 that the most general 

two-center potential with a nontrivial quadratic invariant has the 

formt 

V = a ( 2 + 2) + R -1 + -1 z P P't., t-'P "'P ,,, • ,,, 
(2 . 45a) 

where 

2 2 z 
p = X + y , (2. 45b) 

a, p, 'I, x :<, arbitrary constants. 

The nonlinear invariant is 

(Z. 46) 

where 

We shall now study special and limiting cases of the poten-

tial (2. 45) and the Lie algebra structure of the associated invari-

ants as well as nonlinear relations between linearly independent 

invariants. We first discuss Newtonian centers and then harmonic 

centers; in each case various limits will be discussed. 

A. Newtonian Centers . 

Putting a = 0 in (2 .45) we obtain the potential due to two 

fixed Newtonian centers . The invariant C reduces to the inva r i-

ant found by Euler in 1760. Table 2.1 below shows various limit-

ing caS*!S: 

t The case of two harmonic centers of different strengths is 
included in (2.45) in a sens e to be discussed later. 
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Lim i t Poten tial Constant o f Motion 
--- -

-- -1 -1 - 1 -1 
a -o in (2 . 45 ) & (2 . 4 6 ) V1 = Pp + 'YP o;: C 1 = m 3 m ,;, -[3 x,;,xp + yx ,Jx-x ,) p ,;, 

-1 

} Y t- V z y = Ex_,_ , 
x~,-o 

= 
C z = m z -1 .,. - 2£xp . -1 - 1 -3 p = o-Ex ... op -Exp 3 

.... 

-
Not a limit V3 = f(p) -£xp 

-3 
C 3 Cz = 

-
0 -o 

-3 
V 2 -V4 = -Ex p c4 = Cz 

sx~, 
-1 - 1 2 . 

+ {3x p 
-1 - i-sY2 '{ = ; x ... - 00 V 1 - V 5 =Pp +sx - x C -t;,x -Cs= m 3pz -.- * 1 '!~ 

-
x * -o v. cl -c~l) = mz 

3 

--------- ----- ---"' - ---- - ----------- -
-o Vs_..V6 

- -1 
Cs c<z) m 3 Pz +(3xp 

- 1 
s == (3 p - 6 = 

-------------- -- ~! ------- - --------- -
c. c (3) c il) - x * ciz) y-o vl - 6 = 

(3 -o Vs - v7 = t;, x C s - c 7 = m 3 Pz- ~ sY2 

( i n c o m plete ) 
-

where 

T able 2 . 1. Potential and C on s t ants of Motion (Inva ria nts) fo r 
Two Newtonian Centers, a nd Lim itin g C a ses. t 

t See a l so [ 30, IX] a n d, for some specific comput ations, [ 23 §.<!8) . 
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V 2 and C 2 are obtained from V 
1 

and c
1 

by a dipole 

limit, more precisely by a limit which yields one center and one 

dipole directed along the x-axis, at the origin (5 and E are con-

sidered fixed as the limit is taken). If one uses (5.1) of §2.3.1 

to find the general potential at the origin which has the invariant 

C 
2 

one finds V 3 which is due to an arbitrary center and a 

Newtonian dipole, both at the origin. (See also discussion of invari-

ants of superimposed potentials at the end of this section). Putting 

the strength of the center equal to zero yields V 4 which still has 

the invariant c
2

• V 5 is obtained from V 
1 

by the constant-

force limit: The second center recedes to infinity and its strength 

increases in such a way that a constant force field remains. (For 

a Newtonian center the strength has to increase as because of 

the inverse- square force law.) The resulting potential may be 

called the Stark potential. To obtain C 5 from c
1 

some care 

must be exercised: one reason is indicated in the table, it is also 

necessary to expand p,:, to second order in -1 
x~,c : 

2 1 2 -1 
S,x,:, - 2 s y + 0 (x,~ ) 

In C 5 one may regard Pz as the angular momentum about the 

center at infinity. More precisely as x~" - oo. 

The case of the potential V 6 , that is of one Newtonian center, is 

instructive . The separating coordinates corresponding to c 1 are 

elliptic -hyperbolic with foci at (0, 0) and (x~,, 0). If one obtains 

one center by merging (x,!< 0) these coordinates become polar 

and the corresponding invariant is the trivial one, C (1) = m32. . 6 
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However, if one lets x,:, tend to infinity the -coordinates become 

parabolic. The corresponding invariant i:s C S for the Stark po-

tential and in the limiting case s ::_ o. The connection 

between separation of variables and admissible operators of the 

Hamilton- Jacobi equation is explained in § 2. 2. 3 and the connection 

between admissible operators and constants of motion in §2. 2 .1. 

Note that is equal to the x-component of the Runge-

Lenz vector. t Thus the fact that the Hamilton-Jacobi equation 

with a Newtonian potential separates in two distinct coordinate 

systems (polar and parabolic) and has two distinct invariants, 

angular momentum and Runge-Lenz, is a direct consequence of 

Euler's discovery that c
1 

is an invariant associated with V 
1 

for arbitrary values of x,:,• and -y. Note further that the third 

gives an invariant c (3) 
6 which is a 

and 

way of obtaining V 6 (-y -- 0) 

linear combination of C ~) 

ating coordinates are elliptic. 

The corresppnding separ-

This may be formulated as a general 

principle. Assume that the Hamilton-Jacobi equation separates in 

two distinct coordinate systems. To these correspond two inde-

pendent quadratic invariants. From these invariants one finds an 

infinity of invariants by linear combinations. By this detour one 

discovers that two separating coordinate systems generate a one-

parameter family of separating syste1ns. This family, however, 

does not give any new independent i.:nvariants. 

For one Newtonian center the problem has spherical sym-

metry and all components of the angular momentum vector are 

t Since V 
6 

could also be obtained as a limit of two centers on 
the y-axis it follows that A 2 is also invariant. 



-76-

geometric invariants . Similarly all components of the Rrmge- Lenz 

vector are dynamic invariants. These may be obtaine d from the 

Rrmge- Lenz component shown in Table 2.1 by forming the commu-

tator with the components of the angular momentum. As is well-

known, see e.g. [ 31] , when the energy E is negative (elliptic 

orbits) the six invariants form the Lie algebra 0(4;R). When 

E > 0 (hyperbolic orbits) the algebra is 0(3, l;R). The case 

E = 0 (parabolic orbits) is a limiting case of both E < 0 and 

E > 0. Thus we expect the Lie algebra for E = 0 to contain 

the algebra of Euclidean motions in three dimensions, since this 

algebra is obtained by the limit process called contraction tt from 

both of the two algebras mentioned; as is easily seen it is actually 

the full symmetry algebra. Obviously, as long as quadratic invari-

ants are considered the Hamiltonian frmction H itself may b e 

cormted. (The special role of the Hamiltonian is discussed below) . 

However, by definition H commutes with every constant of motion. 

Thus by adding H to the invariant one obtains the direct product 

of a one-dimensional Lie algebra and whatever algebra one has 

without H. For instance, adding H to the algebra of the har-

monic oscillator, which is su(3) (see below), gives u(3). 

Finally we remark that the invariant c
7 

obtained in Table 

2.1 does not give the complete set of invariants for V 
7

. We shall, 

however, see below that a complete set of invariants is obtained by 

way of the harmonic center . 

B. Harmonic Centers. 

Considering now harmonic c enters one finds that due to the 

tt See, for instance [ 32) . 
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quadratic nature of the potential there are actually only two cases: 

One harmonic center, or a constant force field (which corresponds 

to a harmonic center located at infinity). Since 2 2 
(x- x~J = x 

2xx>:< + constant, one harmonic center at a point is the same as 

one harmonic center a t a displaced point and a constant-force 

potential . Displacing two centers t o the same point , chosen such 

t hat the constant forces cancel, one finds that Ap2 + 2 . 
I-' '(pj~ g1ves 

the same force field as where 2 2 2 
P = (x - x ) + y , 

e e 

X = '(X-;,J (f3 + '(). If 13 + '( = 0, the effective l ocation of the center e 

is a t infinity and using a proper limit one gets a constant fo r ce 

field. Similarly, 13/ + sx, f3 * 0 gives one harmonic center at 

(x , 0 ), X = - s/213. e e 
F i nally , the d i pole l i mit and t h e const ant-

force limits yield the same results. 

We shall define the potential of a harmonic cent er (at the 

origin) by 

(2 . 47a ) 

In o n e dimension o is then t h e ordinary spring constant if it is 

positive . We may, however, allow o to be any real number. 

As stat ed above the number of cases is small. However, the 

number of linearly independent invariants is larger than in t h e 

Newtonian case. The spherical symmetry gives the obvious 

geometrical invariants m . . 
J 

In addition there are dynamical 

invariants which form a symmetric tensor. 

(2 . 47b) 

The Hamiltonian equals half the trac e of this tensor~ If we ex-

elude the Hamiltonian we find that the Ajk gives five linearly 
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independent invariants. The m. gives three additional ones and 
J 

the linear space spanned by these eight invariants is closed under 

commutation. In fact restricting ourselves to the (x
1

, x
2

)-plane a 

simple computation yields, for b > 0, 

commute like that is the algebra is 

Since the same is true for the (x2 , x 3 
)-plane and the 

(x3 ,x
1
)-plane the algebra, including the Hamiltonian, is u(3) and, 

excluding the Hamiltonian, su(3). This is a well- known result, 

see for instance [ 31] . 

We now consider the limiting case of a harmonic center at 

infinity, that is a constant force field . A harmonic center at 

2 2 
(x*, 0) has potential 5/2[ (x-x,.,) + y ] . If one subtracts the con-

ox:./2. and puts b 
-1 obtains the potential sx stant = - sx,:, one .,. 

as x>:, - oo, s fixed . Putting m>:, = (x - x>:,)p2 - yp
1 

one finds 

-1 
- x,..c m,:, - p2 . (2.48a) 

Furthermore, in the limit described above 

(2.48b) 

Al2 - B2 = plp2 + sY (2. 48c) 

The invariant A 22 
yields 

2 
P2 

is invariant. Above the Ajk 

location of the center, that is 

which is a trivial result since P2 

are of course adjusted to the new 

etc . Compar-

ing with Table 2.1 one sees that the invariants B
1 

and B
2 

are 

not obtained as limits if one lets a Newtonian center tend to 

infinity. On the other hand another quadratic invariant, called 

there c
7

, was obtained. The same invariant may also be obtained 

in the harmonic case. Define A by 
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A = 

Then 

A ~ 2 
- 2x,:, - B3 = m3p2 - zY (2.48d) 

Note that A is obviously dependent on m,:, and A
22

. Below, 

see (2. 52 b) we shall show a nonlinear relation between p
2 

and 

the B .. 
J 

The commutation relations between the invariants. are 

(2. 49) 

In previous cases discussed here the linear closure of the basic 

invariants was also closed under commutation . This is not true 

in the present case (although the right- hand sides of the above 

equations belong to the e nveloping algebra of the basic invariants) . 

Clearly, the commutator of two functions linear and homogeneous 

in the momenta is also linear and homogeneous. However, one 

expects commutators of quadratic functions to be cubic and by 

repeated application of the corrunutator to obtain functions of 

arbitrarily high degree in the momenta. This argument is analogous 

to the reasoning showing that the proper generalization of Lie point 

operators are LB operators which in principle form an infinite-

dimensional space. The linear and quadratic invariants of a New-

tonian cente r and those of a harmonic center have a very special 

form and their linear closure happens to be closed under commu-

tation; this cannot be e x p e cted in g eneral. The s ymme t r y prope r -

tie s of a harmonic pote ntial a r e s aid to be desc ribed by s u(3 ). 
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How do the relations (2. 49) describe the symmetry of a constant-

force field? We remark only that it is surprising that this ques-

tion arises for such an elementary problem. The discussion of 

the symmetry algebra will not be pursued further in this work. 

C. The Hamiltonian as a Distinguished Invariant. 

To find the symmetry algebra of the Newtonian center one 

replaces the Hamiltonian H(p.,x.) = 1/2L;p~ + V 
J J j J 

by its constant 

value E . This leads to different algebras for the different cases 

E < 0, E = 0, E > 0. However, m (3. 5) we did not give constant 

values to the invariants appearing in the right- hand sides of the 

equations. The reason the Hamiltonian is distinguished is that in 

testing an invariant we restrict ourselves to the manifold defined 

by the equation, in the prese nt case 

may replace H by E. 

H(S , x.) - E = 0. 
xj J 

D. Functional versus Linear Dependence . 

Thus we 

Consider for e xample the harmonic oscillator in three di-

mens ions . Its symmetry algebra is su(3 ); it has eight linearly 

independent invariants . However, clearly there can be only five 

functionally independent invariants since the phase- spac e is six-

dimensional. Thus a linear Lie-alg ebra description i s insufficient. 

For the potentials studie d in this section the nonline a r functional 

relations are actually simple polynomials in the e nveloping algeb r a. 

We shall give these relations below. First, however, let u s con-

sider the simplest possible c ase, namely the motion of a free 

particle . There are six linear invariants namely p. 
J 

and m., 
J 

j = 1,2,3. Since the angular momentum vector i s by its definition 

orthogonal to the m o mentum v ector we have, for any potential , 
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(2.50) 

For the free particle this equation is a functional relation between 

invariants. The Hamiltonian is always an invariant. In the present 

2 
case H = ~p .. 

J 
It is functionally dependent on the linear invariants 

as are in fact all other invariants. Thus there are exactly five 

functionally independent invariants. Next we consider the potentials 

in Table 2 .1. We shall restrict ourselves to motions in the (x, y)-

plane. Since phase space then is four-dimensional we can have at 

most three functionally independent invariants. For V, given by 

(2. 45) and for V 
1 

to V 
5 

(see Table 2 .1) we have two linearly 

independent invariants, namely C or c
1 

to c 5 and H. There 

is no functional relation between the two invariants. However for 

one Newtonian center (V 
6

) there are four invariants, namely the 

Hamiltonian, m 3 , and two components of the Runge- Lenz vector A1, A 2 

( -1) \.Al = m 3p 2 + J3xp • The functional relation is 

(2. 51) 

For the constant-force field (V 
7

) we have five linearly independ-

ent invariants: H,p2 ,Bl'B2 ,B3 . 

2 
P2 1 

H = T + -zBI, 

and 

The functional relations are 

(2. 52a) 

(2.52b) 

Finally, for the harmonic center the linearly independent invariants 

the last three defined by (2 . 47). The 

Hamiltonian is linearly dependent on these 

2H = All + ALl (2.53a) 



and we have the additional relation 

(2.53b) 

2. 5. 2 Complete Set of Invariants. DegeneracY:· 

In Hamiltonian mechanics a problem in 2n-dimensional phase 

space is called completely integrable if we have n constants of motion 

in evolution. The time-dependent Hamilton-Jacobi equation can 

then be completely separated (see for instance [ 23, §47 and §48]). 

The Hamiltonian itself (assumed not to involve time explicitly) 

accounts for separating out the time-dependence. Thus we find a 

complete integral of the Hamilton-Jacobi equation. 

Existence of invariants is also tied to degeneracy. For 

classical mechanics this concept is discussed in [23, §52]. In 

quantum mechanics degeneracy means degeneracy of an eigenvalue 

of the energy, namely the existence of several linearly independent 

eigenfunctions belonging to the same eigenvalue. The number of 

such functions may depend on the eigenvalue. We therefore propose 

to define the degree of degeneracy as the number of functionally in-

dependent invariants minus one. To illustrate the idea consider 

motions in the (x, y)-plane. If the potential is due to any center 

the problem is completely integrable since we have two independent 

invariants, the Hamiltonian and the angular momentum. Thus there 

is degeneracy of degree one. If the center is Newtonian or har-

monic the degree of degeneracy is maximal (=3) due to the added 

invariants. For bounded motion we can use an alternative formula­

tion. We consider the dimension of the topological closure t of the 

t This is a more pre cise notion than that of "spa c e -filling" u sed 
in [30). 



orbll in phase-space. Harmonic and Newtonian centers have maxi-

mal de generacy . The dimension of the orbit (as d e fine d above) is 

one, and the motion is periodic. Other centers have only two invari-

ants, the motion is not periodic (we exclude isolated periodic motions) 

and the dimension of the orbit is two. Finally, if we have no invari-

ants except the Hamiltonian the dimension is three. Ergodic motion, 

for which the orbit comes arbitrarily close to any point on a hyper-

surface in phase space given by H = constant, thus has no deger~-

eracy . Degeneracy and "ergodicity" are complementary concepts. 

In § 2. 2. 3 we considered the r e lation between invariants and separ-

ability of the time-independent Hamilton-Jacobi 
the 

equation. Any 

additive separation offiHamilton-Jacobi equation is equivalent to a 

multiplicative separation of the Schrodinger equation (c£. also § 3. 2). 

To obtain a variety of examples we consider three-dimensional 

motions. I£ the degree of degenera cy is one, that is there is only 

one· invariant {in addition to the Hamiltonian), the (time-independent ) 

Hamilton-Jacobi e quation separates once so that S may be expressed 

/ 

as the sum of one function of one variable and one function of two 

variables. Examples are potentials cylindrical around the x-axis 

with as the only invariant The potenti~l given by (2. 45a). ,. and 

V 
1 

and V 
5 

of Table 2 . 1 have degeneracy t wo (since m
1 

is also 

invariant). The Hamilton-Jacobi equation then separate s completely 

and the problem is completely integrable. (See, for instance, the 

end §48 of [ 23]). A central potential, excepting the Newtonian and 

Hamiltonian centers , has degeneracy three. The most famous ex-

ample i s the N ewtonian potential with an Einsteinian correction. 

The motion of the p e rihelion cause s the orbit to fill a two-dimen-

sional region in configuration space a nd in phase s pace. Finally, 
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Newtonian and harmonic cente rs have degenerac y four . Complete 

separation of variables is possible in two independent systems of 

coordinates, and bounded orbits are always one- dimensional and 

periodic. 

2. 5. 3 Invariants of Supe rimposed Potentials. 

In §2.5.1 the approach of limit processes was used to obtain 

new potentials admitting higher symmetries from k:r:wwn ones. In 

this subsection a different and in a sense complementary approach 

is used. This is expressed in the form o f the following l e mma: 

Lemma 2. 5. Let the potentials V 
1 

and V 
2 

each have 

quadratic invariants. Then if the strictly quadratic terms of each 

invariant are the same, . the combine d potential V 
1
+ V 

2 
has also a 

quadratic invariant given by the sum of the two invariants minus 

the common part. 

Proof. This is a consequence of the ge neral form of an 

invariant quadratic in the momenta and the linearity of equations 

(o) in §2.4.1. Let us g ive some illustrations of the above lemma . 

Example 1. 

The potential 
1\ 2 1\ 2 

V = Cl'.p + [3p >!c ' where 

has the invariant (see 2. 36b) 

] - A A 
cr. + f3 

p~, is g ive n by (2. 45' 

The potential 
-1 -1 = ap + f3p,:c has the invariant (see (2 . 37) with 

cr. = 0) 
0 

Then according to the lemma 2 . 5 we can superimpose V and V 1 
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1\ 1\ 1\ 
without breaking the symmetry if x,:, = 2x~,f3/(a + f3), that is 
1\ 1\ 

Q = f3. Therefore, if we have two Newtonian centers and add 

two harmonic centers at the same locations the latter must be 

of equal strength if we want to have a dynamic invariant. The 

invariant of the superimposed potential is given by equation (2.46), 
1\ 

where a/2 = a . 

Example 2. 

Consider the potentia l V 3 in Table 2. 1. The s trictly 

quadratic part of the corresponding invariant c 2 is 

consider any central potential g(p); this potential has 

Now 

as an 

invariant. Therefore to the potential V 3 we can add any potential 

depending only on p without breaking the symmetry. 

2.5.4 Some Ne'vv Cubic Invariants. 

In Appendix II we investigate the existence of invari?-nts cubic 

in the momenta, admitted by potentials of the general form 

2 2 
V =. V(x + vy ), v = constant. The following potentials and 

corresponding invariants are found: 

Potential 

1 2 9 2 -zx + 2 y 

2. 
2 2- 3 

(x - y ) 

Invariant 
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CHAPTER III 

3 .l INTRODUCTION 

In Chapte r II we considered two ways of describing the 

motion of a particle : l) Hamilton's e quations and 2) The Hamilton-

Jacobi equation. The group properties of H a milton' s e quations 

Lie tangent groups. In this cha pter we describe the motion of a 

particle using the Schrodinger equation . In this cas e a n invariant 

is expressed by an admissible LB operator; the equivalenc e of 

this description to the customa ry one follows from the corres-

pondence rule . discussed in §1.5.4. The main goal of thi s chapte r 

is to relate the group structure of the Hamilton-Jacobi equation 

to that of the Schrodinger equation. 

In disc us sing the group structure connected with the exis-

tence of invariants we shall use the word "group" somewhat loos e ly: 

It may refer to a g lobal group, but usually refers to the corres-

pending infinitesimal operator, that is a Lie algebra. This last 

t e rm i s taken in the technical sense of a linea r space (which m a y 

be infinite-dimension a l) for w hich a bilinear skew product (commu-

tation) obeying Jacobi's identity is defined . Thus there a re Lie 

alge bra s of LB operators although such o p erators are not o f a 

type envisag ed by Lie . In a ll Lie a lgebras considered there i s 

also an associative (often n o n commutative) product d efined. Thus 

we may s peak of the (associative) e nve loping a lgebra of a Lie 

algebra . Invariants linear t in the momenta are u sually associated 

tThis t erm is well-defined provided we u se as canonical coordin ates 
either Cartesian coordinates and their conjugate momenta or coordinates 
obtained therefrom by an extended point transformations. 



with geometric symmetries and the nontrivial nonlinear ones with 

dynamic symmetries. For lack of a better alternative we still 

use thi s unfortunate terminology . Actually a linear invariant de-

pends on a geometrical symmetry which can be expressed in con­

figuration space; the othe r invariants may often be related to geo­

metrical symmetries in other spaces whose physical meaning may 

not be immediately obvious (see for instance [ 3 OJ). 

As is well known, symmetries, or invariants, are related 

to the possibility of separating variables. In §3. 2 we show the 

correspondence between a (partial) multiplicative separation of an 

arbitrary linear homogeneous equation and an admissible LB oper­

ator, and point out how this result may be used. In § 3. 3 we give 

an algorithm for constructing a LB operator, admitted by the 

Schrodinger equation, from a LB operator, at most cubic in the 

momenta, admitted by the Hamilton-Jacobi equation. This is of 

practical interest~ In [ 20] the general form of quadratic invari­

ants for the stationary Schrodinger equation with a general value 

of the e nergy E . was determined. The corresponding problem 

for the Hamilton-Jacobi equation is much simpler to solve, as was 

shown in §2. 3 .1. Also, the more difficult (although pres umably 

less important) proble m for the case E = 0 was solved in §2.3.1. 

The correspondence rule of §3. 3 imme diately transfers these r e -

sults to the Schrodinger equation. In §3. 4 we dis cus s relations 

between quantum mechanics, as expressed by the Schrodinger equation, 

and classical m e chanics, as expressed by Hamilton's equation or, 

equivalently, by the Hamilton-Jacobi equation. First we look for a 

mapping b etween c lassical ob se r vables and quantum-mecha nical 

observables ; the former are expre ssed a s functions in phase 
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space and the latter as LB operators. The Weyl transform gives 

a mapping between the two sets of objects. It can be u sed to des-

cribe general canonical transforma tions in qua ntum mechanics and 

Weyl s hows that the equation of motion, that is the Schrodinger 

e quation or equivalent formulations , may be expressed in a form 

which does not depend on any specific canonical coordinates. Thus 

Weyl has shown that an essential fact of classical mechanics is 

also true for quantum mechanics. Weyl i s not interested in find~ 

ing an isomorphic transform. In fact it can be s hown that this is 

impossible. Howeve r, Weyl' s transform justifies the basic assump-

tion of quantum mechanics that commutation relations between any 

set of canonical variables are isomorphically mirrored by relations 

between the corresponding operators. Our approach is to show 

concretely how, s tarting with a correspondence rule for very 

simple functio ns in phase space, the requirer.nent of isomorphism 

extends the correspondenc e to more complicated functions. W e 

also use a differe nt method of constructing corresponde n c e rules, 

namely requiring that classical invariants map into quantum-mech­

anical invariants. The question arises whether these two methods 

give the same results and whether they give the Weyl transform. 

For invariants at most quadratic in the momenta we find that o ur 

cons truction agrees with W eyl' s transform, and that the corres-

pondence rule is a n isomorphism. For cubic invariants this is no 

longer true; Weyl' s rule does not necessarily take an invariant into 

an invariant. However , one can sometimes a c hieve thi s by modi-

fying W eyl' s rule. The case of quantities which a r e invariant for 

one value of energ y only, which we may normaliz e to be zero, 

may not be physically very important but l ead s to mathematically 
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interesting problems as discus sed in § 3. 4 . 

We are left with various mathematical questions. Are there 

variations of Weyl' s rule which still solve the problems Weyl posed? 

In particular, in special cases the requirement of admissibility 

leads to variations of Weyl' s rule. Can this be formulated in a 

general way? In view of the impossibility of a complete isomor-

phism, how do we describe the difference in group structure of 

classical and quantum mechanics? Our method of constructing cor-

respondence rules by a combination of the requirement of isomorp hism 

and the requirement of invariants being mapped on invariants seetns 

fruitful but needs further discus sian. 
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3.2 SEPARATION OF VARIABLES IN ANY LINEAR 

HOMOGENEOUS EQUATION 

The problem of determining dynamical symmetries of the 

Schrodinger equation was at an early stage related to the problem 

of separation of variables. For m .ore recent studies of this prob­

lem see for instance [ 33] and [ 25). This gave rise to a system­

atic study of the connection between group theory and separation of 

variables for various important equations. An account of this re­

search is given by one of the main investigators in this field in 

[ 16 J . Let us recall very briefly the relevant ideas. Suppose we 

are given a linear, homogeneous second-order partial differential 

equation 

n = o. 

Together with (3 .1) we consider the equation 

Au= ~u 

where A is a second order linear operator. 

(3. 1) 

(3. 2) 

The separable solu-

tions are exactly those solutions of (3 .1) which are simultaneously 

eigenfunctions of (3.2). Here ~ is the separation constant. 

Obviously we do not know a priori the operator A but with every 

separable coordinate system of equation (3 .1) we can easily associate 

an operator A. There are two cases to be distinguished: 

i) The operator A belongs in the enveloping algebra of 

some Lie algebra G of Lie point operators of equation (3 .1). 

j_i) The operator A does not belong in the enveloping alg t=~bra 

of G. 

The separation associated with the first case can be com­

pletely explained using Lie point operators. However, for the 



group-theoretical characterization of the separation associated with 

the second case the Lie point theory is insufficient. In this section 

we use LB theory to characterize completely all separable solutions 

of any linear homogeneous equation: 

Lemma 1.1. Let u depend on x = (x
1

, . .. ,xn) and y, 

and let 
m . 

0 * L(x, u, u, ... , u ) + f(x) [ g(y)u + L, g.(y) aJ u] = 0 
- I m j=l J Y 

(3 . 31) 

be any linear, homogeneous equation of order m in (n+l) dimen-

sions, separable in the y coordinate . Here L is linear in u 

and its derivatives, and 

u s {u. . } , 1 < i 1 , ••. ik < n, 1 < k < m . 
k 11 ••• lk 

Then the LB operator T, 

a 
T E (Au) au ' where A = g(y) + ~ g/y) a~ , 

1 

is an admissible operator of (3.3). 

Proof. 

(3 . 4) 

TO = Lu(Au) + ~ Lu (A~) + f(~)( g(y)Au + ~ g/y)a~(Au)] . 

k 
Therefore , 

m . ~ 
T n = g ( y )(O- L ) + ,L g . ( y) aJ o + g ( y )[ uL + L u L ] . 

1 J y u lk u 

However, 

uL 
u 

L 
u hence 

k 

k 

TO 
m . 

= g < y > o + )' g . < y > aJ o 1: J y 



Thus Tnj =0 
11=0 
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and(3.3)admits T. 

Equation (3. 3) also admits the stretching operator 

- _Q_ To - AU au . A = constant, (3. 5) 

since it is linear and homogeneous. Therefore equation (3. 3) 

admits the LB operator 

A a 
T = T - TO = (Au - X. u) au, (3. 6) 

where A is defined by (3.4). 

Theorem 3 .l. If a multiplicatively separable solution for 
A 

(3. 3) of the for.m u = u(x)u(y) exists, then u is an invariant 
A 

solution of (3. 3) uncle r the action of the LB operator T defined 

by (3. 6). 

Proof. The .solution of equation (3. 3) invariant under the 
A 

action of the operator T given by (3. 6), is specified by the simul-

taneous validity of equation (3. 3) and of 

Au - AU = 0, (3. 7) 

(see Theorem 1. 4). However, by definition of a separable solu­
it 

tion/ also satisfies equation (3.7) for some c onstant A. Q.E.D. 

From the above it is clear that eve ry separable solution 

of (3. 3) is invariant under a LB operator. If the separable coor-

dinates are known, this operator is found by inspection. Thi s can 

be quite useful in obtaining admissible operators and hence con-

servation laws provided we know the separable coordinates. Con.-

versely, knowing an admissible operator the corresponding separable 

coordinates can be found. 

Let us now give som.e illustrations of the above theorem: 

Example l. Consider the Helmholtz equation 
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u + u - Ku = 0. 
XX yy 

It obviously adrnits tht• opc·t·;tt '' n; 

Therefore, it also admits the LB operator 

x
1 

= (u 
XX 

(3. 8) 

(3. 9) 

(3 .10) 

which belongs in the enveloping algebra of the Lie point operators 

(3.9) (i.e. it is of type i) defined above). The solution of equation 

(3. 8) invariant under the action of x
1 

(which is obtained by 

solving (3. 8) together with A
1 

= 0), is the separable solution in 

cartesian coordinates of equation (3,8). 

Example 2. Consider the Schrodinger equation for the hydrogen 

atom, 

- E)u = 0 . (3. 11) 

The LB operator 

x
2 

= (xu - yu - .!.. u + ~)~ = A ~ 
YY XX 2 X p ou 2 ou ' (3. 12) 

is an admissible operator of equation (3 .11); it does not belong in 

the enveloping algebra of any Lie algebra of e quation (3 .11) (i.e . 

it is of type ii)). The solution of equation (3 .11) invariant under 

the action of x
2 

is the separable solution in parabolic coor­

dinates of equation (3. 11). This is easily seen by writing equation 

A
2 

= 0 in parabolic coordinates: Let 

y = ~rj. 

Then A
2 

= 0 becomes 

u~s - u 
rjr) 

(3. 13 ) 

(3 .14) 
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Solving equation (3 .14) together with equation (3. 11) (written in 

parabolic coordinates), we obtain the parabolic solution. 

In §2. 4 we saw that the Hamilton-Jacobi equation with 

potential 1/p has two distinguished properties: i) it possess es 

an additional (to angular momentum) conserved quantity (the 

Runge-Lenz vector) and ii) it also separates in parabolic coor-

dinates. Both of these properties are a consequence of the 

existenc e of a dynamical symmetry expressed by some LB oper-

ator. This LB operator is mirrored in quantum mechanics to 

the operator x
2 

(see § 3. 3) which leads to the conservation of the 

quantum mechanical analogue of the Runge- L enz vector and to the 
the 

separation of~ Schrodinger equation in parabolic coordinates 0 

E x ample 3 . We now consider Tricomi' s equation 

xu - u = 0 . yy XX 
(3. 15) 

Looking for second order LB operators we obtain (see Appendix 

IV): 

where 

x. 
1 

i=O,l, .. o,7, 

A 0 = 1, A 1 = u, A 2 = uy, A 3 = 4xux + 6yuy, 

2 4 3 
A 4 = yu + 4xyux + (3y + 3 x }uy, A 5 = 

6yu , A 6 = yy 
2 

= 4xyu + (3y + 
xy 

4xu + xy 

4 3 
- x }u 
3 YY 

Note that the operators X., i = 5,6,7, 
1 

belong in the enve loping alge bra 

of the Lie point operators X., j = 0,1,2,3,4. 
J 

The solution o f e qua-

tion (3 015) invariant under the LB operator 

(3.17) 
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is the separable solution in elliptic coordinates of equation (3 .15) . 

This solution was recently obtained by Cole [ 40]: Let T = 2/3(-x)
3

/ 2 

and equation (3.15) becomes 

+ 1 0. ( 3. 18) u u + -u = yy TT 3T T 

Now let 

T = sinh£ sin11, 
(3. 19) 

y = cosh£ cos 11' 

and write equations (3. 18) and A = 0 (where A is defined by 

(3.17)) in s and 11 variables. This yields the sought separable 

solution. 
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3. 3 RELATIONS BETWEEN ADMISSIBLE LB OPERATORS OF THE 

SCHRODINGER EQUATION AND THOSE OF THE 

HAMILTON-JACOBI EQUATION 

3. 3.1 Operators Quadratic in the Momenta 

We shall consider a time-independent Schr<Jdinger equation 

for a single particle of unit mass, 
3 

_21 , -, u = L.J u - v (2f) u = 0 x.x . 
j=l .1 J 

and its associated eikonal equation (Hamilton-Jacobi equation) 

where 

Here 

and 

3 
H 1 2: sz - 2 X. 

+ V(2f) = 0 . 

j= 1 J 

Theorem 3. 2. Equation (3. 21) admits the operator 

y = L: 
j,k 

bjk ;::: bkj 

X = 2: 
j,k 

[ a.(x) s + b.k~) s s + c(2f>] a~ • J- X. J xj xk J 

iff (2. 1.) admits the operator 

[<aj +a .) u 
J X . 

+ b.k u 
J xjxk 

a. 
J 

aF 
ax. 

J 

ab .k -2: ~ - ax 
k:tj k 

= 
a3 bz 3 

OXJ OXz ax3 

and oF 
ox3 

+ (c-c)u-- J a au . 

zc- aal 
= 

OXJ 
+ F, 

(3. 2 0) 

(3. 21) 
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are obtained by cyclic permutation. Note that F itself is 

determined only within a constant. This constant is irrelevant 

since a linear homogeneous equation for u admits the operator 

u8/8u. 

Proof. In §2.3.1 the conditions on aj, bjk and c for 

Y to be an admissible operator of (3. 21) were completely deter-

mined. The results needed for the proof of the present theorem 

are reviewed below: An operator of the general form 

is an admissible operator of (3. 21) iff 

6 [ ~~. 
. J 
J 

a A 
as 

X. 
J 

aH aAJ - as- ax . 
X . J 

J 

= 0 

H=O 

Applying this result to the operator Y we find, 

. (by cyclic permutations) 

a 1 :::: -az 
Xz xr 

A(x~,S )8/8S 
~ XI. 

(3.22a) 

(3 . 22b) 

(3.22c,d,e,f) 

(3.22g) 

(3. 23a, b) 
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(by cyclic permutations) ( 3 . 2 3 c , d, e, f) 

k = ( 3 . 2 4a, b, c) 

o. (3. 2 5) 

First we find some corollaries of the above equations, The 

compatibility conditions for (3. 22 )are 

b12 x
1 

x
1 

+ b1z Xz Xz = 0 , etc. by cyclic permutation, (3. 26a, b, c) 

b 
IZ Xz Xz 0 , etc. by cyclic permutation. 

(3.27a,b,c) 

Using (3.22f), (3.26) and (3.27) we find, 

(3.28) 

The compatibility equations of (3. 23) imply 

i::<'V 2 a.) = 0 
J x . 

. J 
J 

(3 • 2 9) 

where vz is the Laplacian operator in three dimensions. 

Next we derive some formulas for an admissible operator of 

the Schrodinger equation, An operator of the form 

X = ( 1:: A.u + B .ku + 
J x. J x .xk 

. k J J 
J• 

cu) ...£.. au 

is an admissible operator of (3. 20) iff 
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xu' = o. u = 0 

This leads to the following set of equations: 

(by cyclic permutation) 

2A2 Xz 

Az + X} 

Al 

Al 

c 
~ 

XI 

xl 

- 2A3 

A1 
Xz 

+ A1 
x3 

+ Az 
xl 

xl 
+ \JZ (Bzz 

+ \J Z BIZ = 0 

+ y>Z Bll = 

+ \l z Bzl = 

- Bn) = 0 

0 • 

0 

(3 . 30a) 

(3. 30b) 

(3. 3 Oc , d, e, f) 

(3,30g) 

' 

(3,31) 

k = 1., 2, 3 (3. 32a, b, c) 

(3. 3 3 ) 
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We may now establish relations between the operators Y 

and X. The set (3.30) is identical with the set (3.22) if onere-

places Bjk by bjk' and the homogeneous par t of the set (3 . 31) 

is equivalent to the set (3 . 23) if one replaces A . 
J 

by a . . 
J 

There -

fore, we propose and A . = a. + a .. Using (3 . 25) t o 
J J J 

simplify (3 . 31) we find a particular solution 

a. = L: b.k 
J J X 

k k 

j = 1, 2, 3 . (3. 34) 

Now (3. 32 ) becomes 

j = t, 2, 3. (3.35,a,b,c) 

Before proceeding further we must prove that the set (3. 35) is 

compatible, 

terms c , x. 
1 

i.e . ' 

a. 
Jx.x. 

1 1 

that C 
x jxk 

= c 
x kxj 

The compatibility of the 

is obvious . Furthermore, 

where we have used (3 . 26), (3 .2 7), and (3.28) . The set i s thus 

c ompatible and 

c = -c+i(atx
1

+F) (3. 3 6) 

The equations for the first derivatives of F follow from (3 . 35). 

Finally, using (3 . 34) and (3.36) in (3.33), and noting that from 

(3.22f) and (3.29) 

w e see that (3.33) reduce s t o (3. 25) . This concludes the proof 

o f the theo rem. 
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We shall now derive a corollary from Theorem 3. 2 which 

gives correspondence between the operators Y and X in a more 

transparent form. In §2. 3 . 1 it was shown that the most general 

quadratic operator admitted by (3. 21) is the sum of a linear operator 

Y
1

, given by equation (2. 20), and a quadratic operator without linear 

terms Y 2 , given by equation (2 . 21). Using these results and the 

notation introduced by equations (2. 19) we may now state the 

corollary. 

Corollary of Theorem 3. 2. The correspondence rule of 

Theorem 3. 2 may now be expressed as the following substitutions 

Y = [A + c(x)J ~ -- as 
a 

au 

where A is obtained from A as follows 

P - p _ _L M . . - ox.' . 
J J J J 

Mj = l: Ejkl xkP.l 
k,1 

6. - 6. = ~ + L x.P. , K.- K. = x. + 2 l: x.xkPk - rz P. 
J J J J J J. J J 

j 

(3 . 37a) 

(3.37b) 

I£ A and B are two of the quantities Pj, Mj, etc . , then 

AB - 1/Z{A, B} = 1/2 (A B + B A) with the following two 

exceptions 

AZ_Az._ 1 PK 1 {P K} ~ ~ 4' jJ-2 j'J.-

We start with P.­
J 

P.. However, since the 
J 

(3.37c) 

differential operator P. no 
J 

longer commutes with functions of the 

x. the correct ordering has to be found. The two basic rules are 
J 

to let the functions of x. precede the differential operator (in the 
J 

linear case) and to use the anticommutator for purely quadratic 

terms. The same function c (x) is used in Y and X. The 

additional terms l/2 and x. 
J 

appearing in b. and K. 
J 
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contribute to c(x), as shown in the examples below. The basic 

reason for these terms is that the stretching operator (correspond-

ing to A) and the special conformal operators K. 
J 

leave the 

Laplacean of u invariant only if the u is suitably modified. 

Note that the formula for the quantum mechanical analogue of the 

Runge- Lenz vector (see, for instance, [ 31]) becomes a special 

case of our use of anticommutators. 

Rather than give a general proof of the corollary, we shall 

give two special examples. First consider the special case 

y = [L\ + c~)J a 
ax 

Then a. = x., = 0, a. = 0, zc: = al = 1. Thus according to bjk J J J 

Theorem 3.2 
xl 

X = (~ 
j 

a.u 
J x. 

J 
+ cu - c~)u) ..£.. au 

= ( L x. aa + ~ - c ~>) u ..£.. = 
J x. z au 

j J 

Secondly, let 

( L\ - c(x)) u ..£.. - au 

Using the explicit form of Y we find from (3. 34) 

and from (3. 35) and (3. 36) 

F = F = 0 F = -1, 2 ~ = -x3 • 
Xl Xz ' X3 

We can now write X from Theorem 3. 2. On the other hand, a 

straightforward calculation of 1/Z{ M
1

, K
2

} , which we advise the 

reader to carry out, shows that the substitutions described in (3. 37) 
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give the same result. 

General value of E. As shown in §2.3.1, if V(x) is re-
A A 

placed by V(x} - E where V is fixed and the energy E may 

take any value consistent with the problem the general form of y 

reduces to 

Y = 2: ( ajkpjpk + f3jkPjMj + yjkMjk + KjPj + >..jMj + c~)) a~ 
j,k 

(3 . 3 8) 

The corresponding operator for X is then 

K.P. +A.M. - cw) u aau. 
J J J J 

(3. 39) 

3. 3. 2 Operators Cubic in the Momenta 

In this subsection we only consider the more interesting 

case of arbitrary values of E, we also restrict ourselves to two 

dimensions. The most general invariant of the Hamilton-Jacobi 

equation, cubic in the momenta, for the above case, was given in 

§ 2 . 3 . 2 by equation (2. 2 7 c). To this invariant corresponds a 

quantum mechanical one, given by equation (3. 40) below iff equa-

tion (3. 42) holds . 

Theorem 3.3. To the invariant 1
3 

defined by (2.27c) of 

§2.3.2 corresponds the quantum-mechanical invariant 

X = (dllluxxx + d222uyyy + dll2uxxy + d22luyyx + j;(Bjkuxjxk + 

where 

A. = -a . + a., 
J J J 

(3. 41) 
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iff 

d V + d.,n V + d 11., V + d 2 ., 1 V + (4al -Zdm ) V + 
111 xxx ...... yyy .. xxy .. yyx xy x 

(4a2 -2d2 z1 ) V + 4 2_' b 
xy y . k jk 

J, 

In (3. 41), the functions a.(x) 
J 

and 

(2. 27a, b). For example, 

stants, etc . 

= 0 . 
(3 . 42) 

b .k(x) J . 

and ~ 

are defined by 

arbitrary con-

Proof. The proof although cumbersome is similar to that 

of Theorem 3 . 2 and is omitted. Let us give an illustration. 

Example. We now consider a non-trivial invariant, cubic in the 

momenta. Consider the special case of a non-isotropic oscillator 

with potential 

Then 

z ~ xvZ = m3pz + 27 Pt - }Pz 

is a classical invariant. (See Appendix II). Therefore 

d222 = x , d221 = - y, all other 

1\ 3 1\ 2 

al = fr, a2 = - q-. 
In order to satisfy equation (3.42) take 

Equations (3. 41) indicate that 
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c - -

Therefore to the classical invariant A
3 

corresponds the quantum 

invariant 

The question of g ene ral correspondenc e rule s between 

c lassical dynamical variable s and quantum-mechanical observables 

will be discussed furthe r in § 3. 4 . 
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3. 4 AN ISOMORPHIC CORRESPONDENCE,. WEYL' S TRANSFORM 

AND THEIR LIMITATIONS 

3.4.1 The Problem of an Isomorphic Correspondence 

We shall now discuss correspondences between classical 

quantities and quantum-mechanical quantities. The former will be 

represented by dynamical variables, that is functions of the x. 
J 

and p. (but not of time). The latter are the quantum mechanical 
J 

observables which normally are expressed as Hermitian differential 

operators. Sinc e infinitesimal unitary operators are skew-Hermitian 

and since the commutator of two Hermitian operators is skew the 

number i = ..r:J. occurs frequently in quantum mechanical formu-

las. However, as will be seen, this can be avoided, see also [ 34, 

CH. 16] . Furthermore, we shall express all operators in Lie-

Backlund form, the correspondence rule 1. 49, given in § l. 5 . 4 es-

tablishes the connection with other forms used in the literature. 

In the Heisenberg approach to quantum mechanics it is 

assumed that to a set of classical c anonical variables (q., p.) 
J J 

correspond quantum mechanical operators 

classical commutation rules 

are mirrored by the rules 

(Q., P.) 
J J 

sue h that the 

(3. 43a) 

(3.43b) 

Here c is a constant and I is the identity operator. For a 

discussion of this approach, see for instance [ 35, Ch. IV]. 

This basic correspondence principle just described was 

assumed on physical g rounds. It involves a limited isomorphism. 
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It assumes that there is a mapping from functions in phase space to 

a space of operators which preserves certain commutation relations. 

Note that, from a mathematical point of view, the correspondence 

rule is incomplete: Assume that we have made the correspondence 

for rectangular coordinates q . = x. and their conjugate momenta n.. 
J J ~ I< 

and then make a canonical trans formation to variables qj, Pk:· A con-

structive formula giving the corresponding Q'. P'. as functions of Q. 
J J J 

and P. is needed. Also it must be shown that assuming (3. 43b) for 
J 

both systems is consistent. Weyl [ 36 , II . lO and IV 15] made a pro-

found investigation of some relevant mathematical problems: 1) Assume 

that the operators corresponding to x . and p. have bee n found. Weyl 
J J 

gave a rule, called the Weyl transform, for constructing an operator 

corresponding to any (reasonable!) function of x . and p. . 2) He showed 
J J 

that applying this rule to any classical canonical transformation one gets 

a quantum-mechanical canonical transformation which has the desired 

property that the equation of motion (in this case the Schrodinger equa-

tion) can be formulated in a coordinate-fre e way. The relations (3 . 43b) 

follow for any set of canonically conjugate · variables. 

Weyl only shows a limited isomorphism, and he never claims 

that his transform is a full isomorphism t . In fact, Van Hove [ 37] shows 

that a full isomorphism is not possible. H e re we shall show this same re-

sult in an elementary way . Our approach will be to assume a correspon-

dence rule for very simple dynamical variables and then try to extend 

them to more complicated ones so that isomorphism is retained as long 

as possible. The rules so obtained will be identical with Weyl' s. The 

Weyl transforms of certain simple variables are given explicitly in [ 38] 

The discussion by Hermann [ 34, Ch . 16] is a useful reference; we agree 

with him that there are many mathematical problems in elen1entary quantum. 

t Dirac [ 35 , p. 87] considers the as s untption of a full isomorphism but 
quickly retreats to physically safe ground, namely to (3 . 43). 
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mechanics to which mathematicians have paid insufficient attention. 

Step A. (Linear Quantities). As stated above we shall pro-

ceed from simple cases to successively more complicated ones. 

One measure of simplicity is the degree in the momentum variable. 

We note that the difficulties arise because x. and p. do not 
J J 

commute. For this reason a term such as may for practi-

cal purposes be counted as linear. Thus many of the essential 

points can be shown by considering only one pair of conjugate vari-

abies (x, p). Using this simplification, we may write the corres-

pondence rules for linear operators as 

f(x) 
a 

f(x)u au' 

~ g' (x)u) ;u. 

g(x)p - (g(x)ux + 

(3. 44a, b, c) 

The second rule is, of course, only a very special case of the 

third. However, it is written out explicitly because the third rule 

may be derived if we assume the first two rules and isomorphism. 

The correspondence (3. 44) has all the desired properties: The 

linear quantities (classical and quantum mechanical) are closed 

under commutation and are hence Lie algebras . The correspon-

dence (3 . 44) is a (complete) isomorphism. If one quantity happens 

to be an invariant then so is the corresponding quantity. 

transformation rule also 

Step B. We now 

cally, we find 

gives (3.44). 

2 
add p to the linear quantities. 

2 2 2 
[ g(x)p, p ] = 2g' (x)p = h(x)p . 

Weyl' s ' 

Classi-

(3 . 45) 

Thus, we no longer have a closed Lie algebra. We require a 

limited isomorphism in the sense that ~ application of the com-

n1utator to any linear combinations of the basic set f(x), g(x)p, 
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2 p should give an isomorphism (repeated application of the 

commutator would give cubic quantities and are not considered at 

this step.) The following correspondence rule leads to an iso-

morphism 

2 
h(x)p - (hu + h 1 u 

XX X + 1 hll )~ 4 u ou. 

This includes as a special case p
2 

- u o/ou. 
XX 

(3 . 46) 

Conversely, 

assuming the special rule and r equiring isomorphism leads to the 

general rule (3. 46) 

Invariants will be considered after the next step. 

Step C. The function 

2 
of quantities f(x), g(x)p, p 

2 
h(x)p was not among our basic set 

but was obtained . from them by com-

mutation. We now add 
2 

h(x)p to our collection, or rather gener-

alize 
2 

p to 
2 

h(x)p . Any commutator of a linear combination of 

the first three quantities will be a linear combination of the aug-

mented set and the correspondence rules yield an isomorphism. 

If we now let 
2 

h(x)p be a factor in a commutator with the fi rst 

three, in particular if we form 
2 2 

[ p , h(x)p ] and require isomor-

phism we are led to the rule (3.47) below. However, if we also 

consider [ g(x)p, h(x)p
2

] we see that (3. 47) gives an isomorphism 

iff g 11 (x) = 0 . Thus adding the rule 

k(x)p
3 

- (kuxxx + ~ k'uxx + !k"ux + ~k111 u):u (3.47) 

to the previous rules we have isomorphisms for commutators of 

linear combinations of the set 

2 
f(x), p, xp, h(x)p . (3. 48) 

The rule (3. 47) is s till a special case o f W e yl' s transform . Note 

that in g ene ralizing 
2 

p t o 
2 

h (x)p w e have to spe c ialize the 
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function g(x)p considered in Step B to the two cases p or xp. 

Even with the specialization mentioned the rules obtained 

are useful for discussing the invariants . The most general quad-

ratic invariant in two dimensions is, for a general value of E, 

a linear combination of 

§2.3.1) . Let us consider for instance in detail. It is 

2 2 2 2 
x p

2 
+ y p

1 
- 2xyp

1
p

2
. As remarked earlier only canonically 

conjugate variables can cause trouble. Thus the first two terms 

are essentially of the form 
2 

p and the second term of the forr.n 

xp. The set (3 . 48) thus gives rise to all possible quadratic invari-

ants, including the Har.niltonian. Thus, at this state our corres­
into invariants 

pondence rules still take invariants /as seen by using Ler.nma 1. 3 

of § 1. 5. 2. Note that for this to be true the specialization g(x)p 

to p or xp turned out to be harmless whereas it is essential 

to keep the function f(x) in full generality. 

3 
Step D . Adding the function k(x)p to the basic set (3. 48) 

we obtain the set 

f(x), p, xp, 
2 3 

h(x)p , k(x)p . (3. 49) 

Taking the comr.nutator of linear cor.nbinations of the old set with 

3 4 
k(x)p we obtain a correspondence rule for l(x)p which agrees 

with Weyl' s rule (an explicit forr.nula, in different notation from 

ours, is given in [ 38] ) . However, in order to obtain an isor.nor-

phisr.n it is necessary to s p ec ialize the basic set by the require-

r.nent f"' = 0. This restriction is necessary even if we specializ e 

2 
h(x)p to 

2 
p It is clear from the results of §2 . 3.2 that the 

general cubic invariant is not a linear combination of the set (3 . 49) 

with f(x) restricted to be at most quadratic. Thus we cannot 

use Lemr.na 1.3 of §1.5.2 to derive admissibility. (A c cording to 
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[ 39] , if one considers the basic set 
2 2 

(x, x , xp, p ) and their 

Weyl transforms, and then forms the commutators with the Weyl 

transform of an arbitrary function F(x, p), an isomorphism is 

obtained.) 

3.4.2 Weyl's Transform Versus the Rules Derived in §3.3 

A. Arbitrary value of E. 

a . Operators linear and quadratic in the momenta. 

The most general classical invariant is given by (3. 38) and 

the corresponding quantum invariant by (3. 39). The latter agrees 

with both the construction given above, based on the requirement 

of an isomorphism (see equations (3.44), (3.45), (3.46)), as well 

as with the results obtained using the Weyl' s transform. There-

fore, for invariants at most quadratic, the "quantizations" obtained 

through Weyl' s transform, the requirement of an isomorphism and 

our rule are identical. 

f3. Operators cubic in the momenta. 

It was shown in §3.4.1 that we cannot extend the isomorphism 

indefinitely (see step D). Trying to achieve an isomorphism 

for as long as possible we obtained some correspondence rules which 

were identical with Weyl' s rules. However, because these corres-

pondence rules do not form an isomorphism they will not in general 

take a classical invariant into a quantum mechanical one. On the 

other hand our rules derived in §3. 3 will achieve this if equation 

(3 .42) is satisfied. It turns out that Weyl' s transform is a special 

case of our rule given by (3. 41), where 

b.l = 0, 
J { 

2a = d 1 ll2xy' 

In this case (3. 42) reduces to 

(3. 50) 
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dlllV XXX + d222 V yyy + dl12 V xxy + d221V yyx = O' 

(3. 51) 

Let us summarize: For potentials V, where V satisfies equa-

tion (3. 51) our rule and Weyl' s rule are identical. However for 

potentials V which do not satisfy equation (3. 51), but satisfy equa-

tion (3.42), the two rules are different and only our rule generates 

a quantum invariant. 

In example 1 below, which is very simple, equation (3. 51) 

is satisfied identically. This is no longer the case for example 2. 

Example 1. a) Let V = F(y). Then and hence 

are invariants. Put djkt equal to zero except that d
111 

= 1. 

Then (3. 51) is trivially satisfied. b) Let V = G(x
2

+y
2

), then 

3 3 3 
m

3 
and hence m 3 are invariants. Let d

111 
= - y , d

222 
= x 

2 
= 3xy ' d221 

or or 

2 
3x y and (3. 51) is satisfied. Thus, if 

are invariants then Weyl' s transform gives the 

3 
quantum-mechanical analogues of pl' or 

3 
Pz· or 

Example 2. Let v = (x
2

+y
2

(
1

/
2

. Then the x- component 

of the Runge-Lenz vector m 3 p 2 + x/p is an invariant. Multiply-

ing this invariant by m 3 we obtain another (trivial) invariant . 

Letting d 111 = 0, d 222 = 

hand side of (3. 51) gives 

2 2 
x , dll2 = y d 221 = - 2xy, the left 

3y(x
2
+y2 )-

3
/ 2 . Therefore (3.51) is not 

satisfied and Weyl' s rule does not give a quantum invariant. Now 

we return to equation (3.42) and to more general rules (3.41). In 

this case it turns out that (3. 42) can be satisfied if we take a 1 = 
1 

0, bij = 0, a 2 = - 4 (the Weyl rules give bij = 0, a 1 = 0, 

1). 

Example 3. For the example presented in § 3. 3. 2 equation 

(3. 51) is satisfied identically and therefore in this case (3. 41) reduces 
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to Weyl' s rule. 

B . The case E = 0 . 

The general form of a quadratic c lassical invariant for this 

case is given by the operator Y 
2 

(2. 21). Operators of this type (or 

rather the corresponding function in phase space) are no longer, in 

general, in the linear closure of the set (3. 48). Therefore, if we 

find the corresponding operator by Weyl' s rules we do not exp ect 

it to be admissible; since Weyl' s rul es do not fo rm an isornorphlsm 

and lemma 1. 3 can not be applied. Actually one can verify directly 

that the correspondence rule derived in §3. 3.1 (based on admissibility) 

is different from Weyl' s rule. 

The following point is worth noting: Consider the special 

case of (2.21), . Z = (6.
2 + c(x));

5
. This operator is in the linear 

closure of (3. 48), but its Weyl transform is still not an admissible 

operator. The reason is that in proving that an operator is admissi-

ble for E = 0, (but not for general values of E), we assume 

H = 0 as well as D H = 0, D D H = 0 and then the isomor-
xj x j xk 

phism is destroyed . 

C. Generalizations . 

The corres pondence rules derived from isomorphism can be 

very useful for relating invariants of two e quation s , provided the 

equations belong in the clo s ure of the rules. As an example con-

sider the following corollary of step C of § 3. 4.1: A ssume that 

2 
A = g(x}S + f(x} - E = 0, 

X 

admits the LB operator 

B = [ G(x)Sx 
2 + axSx + F (x )J :s. 
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Then, if A and B are constructed from A and B with the 

aid of formulae (3 . 44), (3 . 45), (3 . 46), the equation A = 0 admits 

-a 
the LB operator B au. 

However, deriving correspondence rules on the assumption 

that these rules form an isomorphism is not always possible . Then 

a synthesis of the algebraic approach used above and of the direct 

approach used in § 3. 2 is very fruitful in dealing with the problem 

of relating the group structure of two different equations. 
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CHAPTER IV 

4.1 INTRODUCTION 

In this and the next chapter we shall be concerned with 

the general group properties of evolution equations. The aim 

of this chapter is to establish a one-to-one correspondence between 

admissible operators of evolution equations (derivable from a vari-

ational principle) and conservation laws of these equations. This 

correspondence takes the form of a simple algorithm given in 

§4.2. 

The existence of a connection between the conservation laws, 

for differential equations obtained from a variational principle, and 

the invariance of the corresponding variational integral was estab-

lished in the works of Jacobi, Klein and Noethe r. Jacobi [ 41] con-

side red the equations of classical mechanics, Klein [ 42], [ 43] the 

equations of general relativity, and Noether [ 19] an arbitrary system 

of differential equations. Noether' s result, now known as Noether' s 

theorem t, says that if the values of a variational integral, for 

arbitrary admissible functions, are invariant with respect to an 

r-parameter continuous group of transformations of the dependent 

and independent variables, then the Euler equations, for the 

extremals of the functional under consideration, have r linearly 

independent conservation laws. All these conserva:tion laws can 

be obtained by a certain standard formula. Noether' s theorem 

has two limitations: i) it provides a sufficient condition for the 

existence of conservation laws and ii) the order of the derivatives 

on which the conservation law depends does not exceed the largest 

order of the derivatives which appear in the corresponding 

Lagrang e function (i.e. LB groups of transformations were not 

tActually this is the first of the two important theorems of [ 19] . 
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considered). The inve r se o f Noethe r ' s theorem (i. e . given a con-

servation law find the generator of the co r responding group) was 

considere d by Bess e l- Hag en [ 44] in 1921. Sinc e then many gene r-

alizations of Noether' s theorem and its inverse have been investi-

gated, see for example [ 45] , [ 46} , [ 47] , [ 48]. In particular, 

Ibragimov [ 49 ] observed that in considering the invariance proper-

ties of the variational integral, it is sufficient to consider only its 

extre mal v alues (i. e . the value s obtaine d w hen the f unctions oc cur ring 

in the integrand satisfy· Euler's equations) instead of all its admissible 

values; this weak invariance condition turns out to be a necessary and 

sufficient condition for the validity of the conservation laws considered 

in Noether' s work . Also, Ibragimov [ 15] recently proposed anothe r 

generalization of Noether' s theorem based on the notion of a weak 

Lagrang ian and the concept of LB groups of tangent transformations 

[ 15 ] • 

However, in spite of all the above generalizations, any 

approach based on Noether' s theorem has the following disadvantages: 

i) Noether' s theorem (and its generalizations) does not relate admis-

sible operators of Euler's equations to conservation laws; it relates 

admissible operators of the variational integral to conservation laws 

(of Euler's equations) . The latter · admissible operators, are, of 

course, also admitted by Euler's equations; but not every admissible 

operator of Euler's equations is an admissible operator of the vari-

ational integral. Therefore, given an admissible operator of Euler's 

equation we must first check if it is also an admissible operator of 

the variational integral; only then can we construct a conservation 

law (using a standard algorithm). 
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ii) The inverse of Noether' s theorem provides a way of 

finding an admissible operator of Euler's e quations given a con-

servation law, which however may be only of formal value (different 

quotients are invol ved which may not be well defined). t 

For the above reasons we shall examine the connection 

between admissible operators of evolution equations and conser-

vation laws using a rather direct approach which is not based on 

Noether' s theorem. 

Before presenting this result we first review in §4.1.1 some 

methods of obtaining LB operators and then review in §4.1.2 different 

methods of obtaining conservation laws. 

4.1.1 Methods of Obtaining LB Operators 

1) The first natural way is to use the definition of a LB 

admissible operator (see § 1. 7 equation (1. 57)). This classical 

approach, although in principle straightforward, is in practice very 

cumbersome. It has been used by Kumei [ 68] for obtaining LB 

operators of the Korteweg-de Vries equation and of the cubic 

Schrodinger equation. 

2) Kumei [ 5 0] used a series expansion {given by Scott et al. .. 
[51] ) based on a Backlund transformation (BT), to obtain LB oper-

ators for the Sine-Gordon equation. This approach can also be 

used for other e quations possessing BT [ 52 ] 

3) Olver [53 ] uses what he calls a recursion operator 

to obtain new LB operators from known ones . The idea is 

t Note added in proof: However , Olver [ 7 2 ] has recently obtained 
results similar to the ones presented here, by analyzing further 
No eth er' s theorem. I thank Professor G.B. Whitham for communi­
cating to me this interesting preprint. 
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quite simple: Let S1 = 0 be the equation under consideration . . 

Define the operator A(S1) by XS1 = A(S1)77, where X = 778/ou 

is some LB operator . A recursion operator A is one which satis-

fies [A(S1),A] = 0. Assume that the operator X is an admissible 

LB operator; then, by definition 

or 

xnl · = o 
S1=0 

AA(s-2)771 = 0 
S1=0 

or 

or 

A(S1)771 = 0 
S1=0 

A (S1 )A 71 I = 0 . 
S1=0 

Therefore, if the operator X = 778/ou is an admissible LB oper-

ator and A is a recursion operator, then Y = A778/8u is also 

an admissible operator . The above approach is used in [53] for 

obtaining LB ope r ators for the Korteweg -de Vries (KdV) equation, 

for the modified KdV equation, for the Burger's equation and for 

the Sine-Gordon equation . This approach has the disadvantage that 

a recursion operator must be found, whose general form is not 

a priori known. 

4. 1. 2 Methods of Obtaining Conse;rvation Laws 

For the sake of completeness we first present some 

early important results·· in the study of evolution equations in 
the 

general and of/KdV equation in particular: Let us consider con-

servation laws of the KdV equation, 

ut + uu + u = 0, 
X XXX 

(4. 1) 

in the form 

(4. 2) 
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where P• the conserved denstiy, and -B, the flux of P• are 

functionals of u. The following four functionals are among the 

polynomial conserved densities of the KdV equation: 

PI = u, 
1 2 

Pz = z u , 

(4 . 3) 

P:t originates from writing KdV itself in a conservation form and 

p
2 

follows after multiplying the KdV equation by u. These are 

obvious and correspond to c onservation of mass and momentum. 

The P3 was found by Whitham [54] in his development of a 

variational approach to the study of nonlinear dispersive phe-

nomena . and P5 (which is not given here) were found by 

Kruskal and Zabusky [55] in their development of a nonlinear ex-

tension of the WKB method. Five more explicit conservation laws 

were given in [56] and it was conjectured that there were infin-

itely many of them. Similar conserved densities were also found 

for the modified KdV equation . This apparent distinguished feature 

of both the KdV equation and the modifie d KdV equation led Miura 

to conjecture that the solutions of these two equations are related. 

Miura observed that u occurs in powers of 1, 2, 3, 4 in the con-

served densities given by (4. 3 ), whereas v (the dependent vari-

able for the modified KdV) occurs in powers of 1, 2, 4, 6 in the 

corresponding conserved densities, see [57] . This led him [58) · · 

to the discovery of the nonlinear transformation 

(4. 4) 

which transforms solutions of the KdV equation (4 . 1), to solutions 

of the modified KdV equation 
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2 
vt+v v +v = 0 . 

X XXX 
(4. 5) 

Transformation (4. 4) defines "half" a Backlund transformation 

(see Chapter V ). Regarded as an equation for v, it is of the 

Ricatti type and therefore it can be linearized to become a 

Schrodinger equation. This provides the starting point for the 

inverse scattering method. Furthermore a modification of equa-

tion (4. 4). yields a powerful way of constructing conservation 

laws (see Al below). 

After the above historical remarks we now review different 

ways for obtaining conservation laws. 

A. Methods based on a BT. 

1. Consider the following generalization of Miura's trans-

formation, which was proposed by Gardner, 

U = W + E:W 
X 

2 2 + € w 

which relates solutions of 

u - 6uu + u = 0, 
t X XXX 

to solution of 

2 2 3 
wt + (- 3w - 2e- w +w ) = 0. 

XX X 

(4. 6) 

(4. 7) 

(4. 8) 

Solving (4. 6) for w in a form of a formal power series in e-, 

with coefficients which are functions of u and x-derivatives of 

u, we obtain 

2 2 
w = u-e-u -€ (u -u ) + . . . 

X XX 
(4 . 9) 

Substituting the above in equation (4. 8), the coefficient of each 

power of e- generates a conservation law. It can be shown [56] 

that the coefficients of the even powers of e- give nontrivial 
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conservation laws. 

The methods 2 and 3 below are simple variants of the 

above. 

2. Scott et al.[ 51) derived a power series, similar to 

one given by (4. 9), from the BT of the Sine-Gordon equation. 

It is clear that substitution of that series in any conservation 

law yields infinitely many conservation laws; Scott et al. derived 

such a series of conservation laws by using the · law of conservai:i.on 

of energy associated with the Sine-Gordon equation. 

3. Wadati et al. [59] used an approach similar to the above 

to construct conservation laws for the KdV, modified KdV and the 

Sine-Gordon equations. However, instead of s ubstituting the power 

series obtained through "half" a BT into some conservation law, 

they substituted it into the other "half" BT which they wrote in a 

form of a conservation law. 

4. Steudel [ 60] was the first, to our knowledge, to consider 

the conservation laws of evolution equations from a group theoreti-

cal point of view. Scott et al. [51] posed the problem of using 

Noethers theorem to explain the existence of infinitely many con­

servation laws. Steudel, starting from the BT of the Sine-Gordon 

equation, constructed infinitesimal invariant transformations (gen­

erators of LB groups), which he proved were Noether transfor-

mations (i.e. they left the variational integral invariant). Then, 

using No ether's theorem obtained a series of conservation laws . . 

He also used the above approach for the KdV equation [ 61] . 

B. Other Methods . 

1. Another way of finding conservation laws is to use the 

fact that the KdV equation can be viewed as a completely integrable 
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Hamiltonian system [ 62] . For details see [ 63 ] , [ 64] and [ 65 ] . 

2. Pseudo potentials, a s developed by Wahlquist and Estabrook 

provide another way of obtaining conservation laws [ 66] , [ 67 ] . It 

is interesting that these conservation laws proceed in an 11 opposite 

direction11 to the ones found in [56], in the sense that they depend 

on integrals of u instead on derivatives of u. 

3. Given a conservation law and a LB operator X it is 

possible to derive a new (sometimes nontrivial) conservation law. 

If p is a conserved density and X an admissible LB qperator, 

then Xp is also a conserved density see ( 14] and [50 ] • This 

approach yields nontrivial conservation laws for the Sine-Gordon 

equation [50] , but trivial ones for the KdV equation [ 68] . Re­

cently Kumei [ 69 ] established a connection between LB operators 

and conservation laws of nonlinear field equations in Hamilton• s 

canonical form. 

4. As was noted earlier Steudel was the first to consider 

the group-theoretical nature of the conservation laws of the Sine-

Gordon equation and of the KdV equation. His approach was based 

on Noether1 s theorem. Kumei considered the same problem but he 

used rather direct approaches: For the Sine-Gordon equation he 

used the approach presented in B3; for the KdV he considered 

the equation 

ut + a(u)u + u = 0 , 
X XXX 

(4 . 10) 

(where a(u) is a function of u only) and the constant of motion 

I(u) = J p(u)dx , ( 4. 11) 

where p(u) = p(x,t,u,u, •.• ). 
X 

If r is the gradient of the 

functional I(u) , then the LB operator 
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D := D 
X 

(4. 12) 

is an admissible operator for equation (4 . 10) . The proof of the 

last statement (for this particular equation (4 . 10)) is very s imple 

and it is not clear how it could be generalized to cover other 

equations . However, it is well known that equation (4 . 10) can be 

derived from a variational principle; this motivated us to s eek 

for a generalization of the above result , which will be presented in 

§ 4.2. 

Equation (4.12} was used in [ 68] to explain why the 

approach used in [55) yields equations describing soliton inter-

actions. Let us summarize: Kruskal and Zabusky observed that 

by considering the extremal value of P3 (see equations (4. 3)) 

subject to the constraint Pz = constant an equation is obtained 

which yields the soliton solution; let Pz 3 = P3 - cPz, then 

2 
r23 = u + 2uxx - cu . (4. 13) 

Now according to equation (4.12} the operator x
23 

= (Dr 
23

)8/ou 

is an admissible operator for the KdV equation (4.1). Actually 

x ( c ) a a c a (4 . 14) 
23 = ut + 2 ux au "' at + 2 ox, 

(where we used (4. 1) to replace u + uu by - ut}, is obviously 
XXX X 

an admissible operator , as the KdV is invariant under translations 

in x and t. Similarly, let it was 

shown numerically by Kruskal and Zabusky that the equation 

r 234 = o, (4.15) 

contains a two soliton solution . Lax [ 7 0) proved this analytically. 

In [ 68] it is shown that the operator x 2 34 = (Dr234 )EJ/ 8 u is an 



-124-

admissible operator of the KdV equation. It was then claimed 

that the two soliton solution of the KdV equation is the invariant 

solution of the operator x234. However, the two soliton solution 

is just a member of a subclass of the class of invariant solutions 

of (4.1) under the action of x 234 . We shall discuss the above 

problems further in § 5. 6. 
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4.2 ADMISSIBLE LB OPERATORS AND CONSERVATION 

LAWS OF EVOLUTION EQUATIONS 

In this section the following notation for a LB operat<:'r 

will be used, 

X =B_2_ 
B - au. (4. 16) 

The lemma given below will be essential for the proof of the 

main theorems given later: 

Lemma 4.1. Assume that A = A(x, u, u , •.. ) can be 
X 

expressed in terms of a variational derivative, i.e. there exists 

an L = L(x, u, u , ... ) such that 
X 

where 

Then 

A = oL 
ou 

a D-a-- au - au + ... 
X 

where B = Bfx . t .u, u , u , .. . ), 
. X XX 

cj> = cj>(x,t,u,u ,u , ... ), 
X XX 

(4.17) 

(4.18) 

(4.19) 

the 

integrals defined in (4 .19) are extended over an arbitrary region 

of the space of the independent variable x, and the function cj> 

must vanish on the boundary of this region. 

Note. It will be clear from the proof that the result of the lemma 

is stronger than what follows from the above proposition. 

Proof. There are two possible ways to proceed . The 

first way is to assume that A = oL/ou and then prove equation 

(4.19); the second way is not to assume equation (4.17) a priori 

and to discover the necessary restrictions on A such that equa-

tion (4. 19) is satisfied. We shall follow the second way and we 



-126-

shall assume for the sake of concreteness that A depends on 

no higher derivative than the fourth x-de rivative; the extension to 

higher derivatives is straightforward. Let 

A.-
1 

(i.e.' 

a A 
au x....:.....:..-: 

i 

i = 0, ... ' 

= aA/au, . . . ). 
X 

4 

Then 

(4.20) 

4 

J - j BX<j>Adx = j B I: (Dj<j>)Ajdx = 

j = O 

j <j> I: (-D)j[ BA .] dx, 
J 

j=O 

where the first equality follows by the definition of a LB operator 

and the second follows by integrating by parts. Using Leibniz' s 

rule in the third integral and rearranging we obtain: 

4 3 

J = j <~>[l.: (DjB)Aj-( 2(DB)+BD) [ I: (-D)jAj+l) 

j=O j=O 

[ 2(D
3

B)+3(D
2

B)D+(DB)D
2

] ( A 3 -2DA 4 J] dx 

Therefore, equation (4.19) holds for any <j> and B iff 

3 

and 

I: (- D )j A j+ l = 0, 

j = O 

(4. 2la) 

(4. 2lb) 

Equations (4. 21) express the nece s sa ry r e strictions on a function 

A = A(x , u, u , ... , u ), 
X XXXX 

such that e quation (4.19) holds. It can 

be easily checked, using the identity 

a a 
[au 'D] = au ( 4. 22) 

'E...:....:.... x...:....:....:. 
i i-1 

v 
given in G e lfand and Dikii [ 71] that if there exists an L such that 
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A = oL/ou, equations (4.21) follow. Q.E . D. 

From the above proof it is clear that equation (4.17) is a 

sufficient condition. It is natural to ask the following question: 

Is equation (4 . 17) also a necessary condition? That is,does there 

exist an A which satisfies equation (4.19) and whic h cannot be 

expressed as a variational derivative? W e expect a negative 

answer to this question and we verify this for the case that 

A = A (x, u, u , u ) . 
X XX 

(4 . 23) 

Then A satisfies equation (4.19) iff (see equations (4. 21)) 

(4. 24) 

The left hand side of the above equation does not depend on uxxx' 

whereas the right hand side contains the term u A22. The r e -
XXX 

fore A
22 

= 0 and 

A = a
1
.1(x, u, u )u + b(x, u, u ), 

X XX X 
(4.25) 

where a and b are arbitrary functions of x, u, ux and is 

defined by (4 . 20). Substituting the above in (4.24) we obtain 

therefore, 

Therefore, the most general function A of the form (4 . 23) 

for which equation (4.19) is valid is given by (using now explicit 

notation), 

a2
a 

A = --2 (x, u, u )u 
OU X XX 

X 

8c 
au(x,u), 

oa 
au + 

(4 . 26) 

where a = a(x, u, u ) and c = c(x, u) are arbitrary functions o f 
X 
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the arguments indicated. Furthermore it is easily verified that 

A = oL/ou, where 

L =- a(x,u,u) + c(x,u). 
X 

(4.27) 

From the theorems to be proved below it will be clear that 

the algorithm relating LB operators to conservation laws does not 

depend explicitly on the Lagrangian L; only its existence is required, 

not its particular form. Given an A therefore, we just have to see 

if equation (4. 21) (suitably extended if A depends on higher derivatives 

than the fourth x-derivative) are satisfied for the theorems to hold. 

This is much easier to check than finding an L associated with the 

given A (see Example 2). This justifies in our opinion the note 

made after the statement of the lemma 4.1. 

It is well known that an evolution equation in the form 

ut + N(u) = 0, (4. 28) 

where N(u) denotes a function of x, u, and x-derivatives of u, 

can never be derived from. a variational integral (because of the 

ut term). However, there exist two tricks for writing equation 

(4. 28) as the Euler equation of some variational problem: The 

first trick is to differentiate equation (4.28) with r espect to x 

and the second is to replac e in equation (4 . 28) u by v • 
X 

These 

two tricks lead to two different algorithms for relating admissible 

LB operators to conservation laws: 

Theorem 4 . 1. Assume that the x-derivative of the evolu-

tion equation 

ut + K (u) = 0, (4. 29 ) 

(where K(u) = K(x,u,ux, . . )) is the Euler's equation of some 

variational proble m, i.e. the r e exists a Lagrangian L such that 
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Further assume that 

I(u) == J p(u)dx, 
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(4.30) 

(4. 31) 

(where p(u) == p(x, t, u, ux' ... )) is a constant of motion of equation 

(4.29). Then r is the gradient of a constant of motion I iff the 

LB operator is an admissible operator for equation (4. 29) . 

That is 

(4.32) 

where the above correspondence means that p is a conserved 

density iff X is an admissible LB operator . 

Proof. Let us consider the infinitesimal transformation 

u' == u 
2 + E<j> + O(E ) • This transformation is an invariant one for 

equation (4. 29) iff 

X,~..( ut+K] I == 0 . 
't' (4.29) 

(4.33) 

Considering the effect of this transformation on a constant of 

motion I(u) it is easily seen (see [ 64], [ 70]) that 

(4.34) 

where r is defined in (4.32). Using the fact that X<j> and D 

commute, equation (4.33) yields 

X J ut + DK] I == 0 . 
't' X (4.29) 

(4.35) 

Multiplying the above by (D-~), integrating (and dropping the 

subscript (4. 29)) we obtain 

(4.36) 

where A - DK. Now integrating the first term in the above by 

parts and using lem1na 4.1 for the second tern1, equation (4.36) 
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j[ -rtt>t + tt>X -L A]dx = 0. 
(D T) 

Using equation (4. 34) we obtain 

J tP[ D tr + X _ 1 A] dx = o . 
(D r) 

Finally, noting that the above equation reduces 

to 

f tt>X _ l [ ut + DK] = 0 . 
(D r) x 

Therefore, the LB operator X(D-~) is an admissible operator 

for the x-derivative of equation (4. 29); hence, it is also an 

admissible operator of equation (4. 29) (using again the fact that 

X and D commute). Q . E.D. 

Theorem 4.2. Assume that if u is replaced by 

the evolution equation 

ut + M(u) = 0, 

v 
X 

in 

(4.37) 

then equation (4. 37) is the Euler's equation of some variational 
1\ 

problem, i.e. there exists a Lagrangian L such that 

Then 

1\ 

oL M(v ) = 
X OV . 

r = .9.11.. - x = (Dr)~ cSu au· 

(4.38) 

(4. 39) 

where the above corresponde nc e m .eans that p is a c onserved 

density of (4.37), iff X is an admissible operator. 

Proof. The proof is analogous to the previous one: To 

equation (4 .35 ) c orrespond s th e following equation, 

X [ v + M(v )] I = 0. 
( D- 1 tP) t x x ( 4 . 3 7 ) 
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Then proceeding as before (where now the above equation is multi-

plied by r and then integrated) we obtain 

Therefore, the LB operator Xr is an admissible operator of 

equation vtx + M(vx) = 0; hence, XDr is an admissible operator 

of equation (4. 37) (it is clear that if w(u) = 0 admits then 

w(v} = 0 admits X _
1 

). Q.E.D . 
x D n 

EXAMPLE 1. Consider the evolution equation 

u +a 11 (u)u + u = 0, 
t X ~ 

(4. 40) 

2rtl 

where 
d

2
a 

a 11 (u) = --::--7 and a (u) some function of u. This equation 
du 

can be obtained from a variational formulation after replacing u 

by v . 
X 

Therefore, formula (4.39) can be used. Writing the 

above in a conservation form we obtain 

PJ. = u. (4. 4la) 

Equation (4. 40) is invariant under x-translation, i.e. X is an 

admissible operator. Therefore r = u and 

- 1 2 
P2 = z:u . 

u 
X 

Equation (4. 40) is also invariant under t-translation, i. e. 

is an admissible operator. Therefore n = ut or 

u + a'(u). 
X . .. X 

z;-
n = u + a" (u)u 

L.:....:2f X 

2r+l 

and r = Therefore, 

1 r 2 
P3 = 2 (-1) (ux ... x) +a(u) . ..._____. 

r 

(4. 4lb) 

(4. 41c) 

Therefore, every evolution equation of the form (4. 40) has at 

least thre e conse rvation laws, whose c onserved densities a re 
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given by equations (4. 41) . 

Example 2. In chapter V we shall consider ·the equation 

(4. 42) 

where 

u - u 
n x ... x 

L_j 
n 

For a = 20 the above equation becornes the first rnernber of the 

Lax's heirarc hy associated with the KdV equation. 

and then 

Let u = v 
X 

(4. 43) 

When A= A(x,t,v,v
1

, . . • v
6

), to equations (4.20) there 

correspond the following equations; 

5 

Ml - L (-D)jA .+1 = 0 
' j=O J 

M2= A3 2DA
4 + 5 D

3
A 6 = 0 , ( 4. 44) 

Substituting A as defined by (4.43) in equations (4.44) we obtain 

Therefore, theorem 4.2. applies to equation (4.42) iff a= 20. 
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CHAPTER V 

5. 1 INTRODUCTION 

The last decade has clearly shown that Backlund transfor­

rnations (BT) play many useful roles in the analysis of nonlinear 

phenomena. They provide a powerful way of analyzing soliton 

interaction, they can be used for constructing conservation laws 

and they provide a constructive method for finding eig envalue 

problems associated with the inverse scattering method, see 

Appendix VII. For this reason, it is certainly worth investigating 

them independently and trying to find their essential mathematical 

structure. Also, the deeper understanding of the ir basic nature 

will, hopefully, provide a better algorithm for finding them. 

Generally speaking, the use of BT is a mathematical 

technique for producing physically meaningful exact s olutions . The 

main question we raise in this chapter is: Is it possible for these 

solutions to be characterized g roup theoretically? An affirmative 

answer to the above question would have two implications . Firstly, 

a theoretical one as it would unify our view of exact solutions . 

Two seemingly different classes of exact solutions, one obtained 

by the customary Lie-Ovsjannikov analysis of a given equation 

(similarity solutions) and one obtained through BT will turn out to 

have similar theoretical origin. Secondly, a practical one as the 

techniques used in deriving invariant solutions could b e used to 

obtain BT. 

In §5.2,3,4 the above question is considered. This leads 

to a new method for obtaining BT, which is investigated in the 

r e maining subsections. Some new BT are obtained. 



5. 2 CONDITIONALLY ADMISSIBLE OPERA TORS 

The ideas will be introduced with the aid of an example. 

Consider the Korteweg-de Vries potential equation in the form 

( 5. 1) 

"Half" of the Backlund transformation admitted by (5 .1) is, see 

[ 73] 

(5. 2) 

where v satisfies 

(5. 3) 

In analyzing group theoretically the solutions obtained from (5. 1), 

(5. 2), (5. 3), we shall use two, in a sense complementary 

approaches. The first approach is to regard equation (5. 2) as 

imposing some group theoretical constraint on the solutions of 

(5 . 1) and (5. 3 ). The second approach is to regard (5. 1) and (5. 3) 

as equations imposing some constraint on solutions of (5. 2}. The 

notion of a conditionally admissible operator is necessary to 

describe the first point of view. 

First approach. 

For the sake of clarity we start with the special solution of 

equation (5~ 1} which can be obtained by the Backlund transformation 

(5. 2} with v = 0. (This happens to be the soliton solution). 

the above system reduces to (5. 1} and to 

where 

T = 0 0 

Then 

(5. 4) 



2 
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(5. 5) 

In order to reveal the group nature of the constraint imposed by 

equation (5. 4) on the class of solutions of (5. l) we determine the 

action of the LB operator 

xo ii To a: + ~ (D.To> _aa + (D23To>aau + ... 
j=l, 2 J uj 222 

(5. 6) 

on equation (5. 1): 

(5. 7) 

The next step is to restrict the action of x
0 

to the solution of 

(5. 1) and its differential consequences. This can be accomplished 

by substituting for the various . x
1
-derivatives. The only term 

affected by this is D
1 

T 
0 

(since the other terms do not involve a 

x
1
-derivative which can be replaced by x

2 
-derivatives using (5 . l) 

and its differential consequences). Since 

we conclude from (5. 1) 

( 5. 9) 

Examining the right hand side of ( 5 . 9) we see that it can be 

written in terms of To as 

3 
- yu2D2 To DlTO I = -D2TO 

K=O 

(5 . 10) 

Therefore, equation (5. 7) finally yields 

(5. 11) 

What is the meaning of equation (5. 11)? Cle arly, the operator 
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x 0 is not an admissible operator of equation (5. 1) because 

X 0K I -+ 0 . However, the operator x
0 

is an admissible 
K=O 

operator on a subclass of solutions of (5. 1), namely the ones for . 

which (5. 4) is also valid. It is in this sense that the operator 

x 0 is a conditionally admissible operator . The operator X 
0 

defines locally a · group of transformations which in general maps 

solutions of (5. 1) into solutions of some other equation, say, 

K' = 0. However, there exists a special class of solutions of 

(5. 1), nam.ely the one characteri z ed by the nontrivial simultaneous 

validity o f (5. 1) and (5. 4), for which this group maps solutions of 

(5 . 1) into themselves (so that K' = K). This class of solutions 

is precisely the invariant class of solutions of (5. 1) under the 

action of operator x
0

. With this special e xample in mind we 

give a general definition of a conditionally admissible ope rator. 

Definition 

The LB operator 

C = B (x, u, u, ... u ) -{- + L (D .B) f- + . .. 
1 n u J J uj 

(5. 12) 

is a conditionally admissible operator for the e quation 

W(x, u, u, ... , u ) = 0 
1 m 

iff 

cw I ill o, 
W=O 

nontrivially when B = 0. (5. 13) 

Equation (5 . 13) is written for simplicity as 

cwj = o , 
W =O, B =O 

( 5. 14) 
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However , we stress that the order in which W=O and B=O are 

assumed is of vital importance (otherwise the whole concept 

becom.es trivial). 

The extension of the above to systems of equations is ex-

actly parallel to the extension of the notion of an admissible oper-

a tor to systems of equations. As an example we consider the 

system.s of equations (5.1) and (5. 3). Consider the action of the 

LB operator 

X • T a~ +. . . = [ u1 + v l + t ( u-v) 
2 

] a~ +. . . (5. 15) 

on equations (5. 1) and (5. 3 ). The action of X on (5. 3) is 

trivial. Applying X to (5. 1) we obtain 

(5. 16) 

where (we use a bar to remind the reader that the total derivatives 

now are applied to functions which also involve v) 

i=l, 2. (5. 17) 

The next step is the crucial one. Before assuming T = 0 we 

must utilize (5. 1) and (5. 3) to replace u
1

, vl' u12, v 12 by 

x
2 

-derivatives. At this stage it is not a priori obvious that what 

we get after doing this will depend on T, D 2 T, ... 

way that it will vanish when T,D2T, ... 

the present case 

and hence 

XKI 
(5.1),(5.3) 

= 0 when 

vanish. 

T ::: 0 . 

in such a 

However, in 
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In this particular example, therefore, we see that the 

solutions obtaine d from the system of equations (5. 1), (5 . 2), (5 . 3) 

are the invariant solutions of the system. of equations (5. 1), ( 5. 3) 

under the action of the GAO X. 

The above shows that if we want a group theoretical char-

acterization of the Backlund solutions starting with a given mani-

fold specified by equations (5. 1) and (5. 3) we need to extend our 

customary clas s of invariant solutions to includ e the ones which 

are invariant only under the action of conditionally admissible 

operators. This already suggests an alternative way of deriving 

BT. However, before elaborating on this, we give another group 

theoretical characterization of the above solutions. 

Second approach. 

We now regard {5. 2) as our basic equation and ( 5. 1), (5. 3) 

as equations imposing some constraint of group theoretical nature 

on the manifold defined by (5 . 2 ). We therefore examine the 

action of the LB operator 

on equation (5. 2). Clearly equation (5. 2) is invariant under trans-

a a 
lation in x. , i.e. it admits the LB operator Y 0 = u - + v - • 

1 l au l av 
Therefore, we only have to examine the action of the LB operator 

on equation (5. 2). A straightforward computation yields 

YTI = 0 
(5. 2) 
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1\ 
i.e. Y and therefore Y is an admissible LB operator of 

equation (5. 2). 

Therefore, 
of 

the Backlund solutions may alternatively be 

thought~ as the invariant solutions of equation (5. 2) under the action 

of the admissible LB operator (5 . 18 ). 
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5. 3 CONDITIONALLY ADMISSIBLE VERSUS ADMISSIBLE LB 
OPERATORS 

Before concentrating on the algoritlunic implications of the 

above results we elaborate on the equivalence between the two 

approaches considered in section 5. 2 . This equivalence is pre-

sented in the form of the following lem.ma: 

Lem.ma 5.1 The LB operator 

X T( ) _Q_ + D T _Q_ + D T a + : U, V, U2' V2 au 1 au
1 

2 au
2 

'' . ' 

is a CAO for the evolution equation 

u 1 + F(u, u 2 , u 22 , ... u 2 ... 2 ) = 0 , 
(_____] 

m 

for all v satisfying 

v 1 + G(v,v2 ,v22, .. . v 2 .. _2 ) = 0, 
1..--1 

m 

iff the LB operator 

is an admissible operator of equation 

(5.19) 

(5. 20) 

(5. 21) 

( 5. 22) 

Proof. The proof is constructive . Assume that X is a CAO 

for (5. 19) whenever (5. 20) is satisfied. 

when T = 0 . 

F D~ 
u2 ... 2 

1---1 

m 

Then 

T ) = 0 ' 
(5. 19), (5. 20) 
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The only term effected by assuming (5. 19 ), (5. 20) is n
1 
T. 

This is important for the computations, as all the other terms of 

the above equation can be ignored immediately. Assuming (5. 19), 

(5 . 20) to evaluate D
1

T and then assuming T = 0, the above 

reduces to 

( T F + T G + T D 2 F + T D 2G ] _ O 
u v u2 v 2 IT = o - . (5 . 23) 

However, equation ( 5 . 23) is precisely the condition that the equation 

T = 0 admits the LB operator defined by (5. 22). 

This proof is easily extended to the case 

T = T(u, v, u2, v2, . . . u2 ... 2, v2 . . . 2) 
'---l L___l 

n n 

see [ V] . 

Q.E.D. 

From equation (5 . 23) we see that the problem of finding a 

conditionally admissible operator is in a sense complementary to 

that of finding an admissible operator. The question of finding T 

can be stated as follows: Find a function T(u, v , u
2

, v 
2

) such 

that the equation T = 0 admits the LB operator Y. 

In section 5. 2 we considered the solutions of the Korteweg-

de Vries equation obtained through the BT (5. 2) and proved that 

they are group-theoretically characterizable in two ways. In order 

to characterize them the first way (which is also the m .ost natural) 

we introduced the notion of a CAO. Further, w e proved the 

equivale n c e of the two ways for any evolution equation. 

The natural question arising is the following: Are the 

Backlund solutions of any evolution equation characterizable in the 

a bove two w a ys? The a n s w e r is affirmative and the proof is g iven 

in [ V]. 
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5.4 A FIRST WAY OF D;ERIVING BT. 

In this section we utilize the group nature of BT to derive 

them. However, although we established their basic structure, we 

still denote them in the traditional way. This complicates the 

algorithm and hides the connection of the BT to the existence of a 

"nice" (in a sense to be defined in section 5. 5. 1) soliton solution. 

This connection will become clear in the next section. 

5. 4. 1 Burgers Eguation and Generalizations. 

We consider a generalization of Burger 1 s equation given by 

(5. 24) 

and we are looking for a BT which linearizes it _,in particular one 

which maps solutions of (5. 24) into solutions of 

(5. 25) 

At this point it is necessary to assume the form. of the BT (this 

is a definite weakness of any method concerned with BT; we shall 

elaborate more on this point in the next section). So, let 11 hal£ 11 

of the BT be 

v - f(u, v) = 0 . 
X 

(5. 26) 

The problem of finding f reduces to the following: Find the 

function f(u, v) such that equation (5. 26) admits the LB operator 

Y = v -f.-+ [ u + F(u, u ) ] -f.- + v ':Iva + ... 
XX vV XX X vU XXX V X ( 5. 27) 

Applying Y to the l eft hand side of (5 . 26) we obtain, 

(5. 28 ) 
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where 

f = Q.i 
1 au 

For Y to be admissible we require 

Y(5.26)1 = 0 . 

(5. 26) 

(5. 29) 

The rest is the usual routine applied when looking for adm.is sible 

operators: We first find the relevant differential consequences of 

(5. 2 6), 

v = f 
X 

v = f u + f£2 
XX 1 X 

Then we substitute the above expressions in ( 5 . 29) to obtain, (after 

some cancellation) 

or 

F(u, u ) = 
X 

otherwise the BT is trivial) 

(5. 30) 

(5. 31) 

Equation (5. 31) implies that the following ex p ressions depend on 

u only, 

fu = A(u), 
~ 

f£12 

~ 
= A 2 (u), 

2 
f f 2 2 = A

3
(u) . 

fl 

The last equations determine f and the n equation ( 5 . 31) deter-

mines F: 
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2 
F = A(u) u + 2aB(u)u 

X X 

v = f = (av + j3)B(u) 
X 

~ 
u f A(T)dT 

B(u) • J e 
0 d~ + y . 

0 

('5. 32) 

(5. 33) 

(5. 34) 

Therefore, we conclude that the most general equation of the form 

(5. 24) which admits a linearization of the form (5. 26) is 

2 
ut + uxx + A(u)ux + 2aB(u)ux = 0 , (5. 35) 

where A(u) is arbitrary and B(u) depends on A(u) as given 

by (5. 34)t. 

Particular cases. 

Equation (5. 35) takes a simple form when the integration 

of A(u) defined by (5. 34) is simple. For example, let 

" 
A(u) a C• (u) , then B(u) = C(u) + y , and equations (5. 30), 

C (u) 
(5. 31) yield, 

11 

ut + uxx + C (u) u
2 + 2aC(u)u = 0 , 

Cl(u) X X 

C(u) = 
V' 

X 

av t {3 
- y 

where C(u) is an a rbitrary function of u and a, J3 are 

constant parameters 

(5 .36) 

(5. 3 7) 

t Note that by putting a = 0 in (5. 35) we see that equation 
2 

u + u + A(u) u - 0 linearizes for any A(u). This is well 
t XX X -

known, sec §5. S. 2. 
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A well known particular cas e of (5. 36) is the Burger's 

equation. If we let C(u) = u in the above equations they reduce to 

ut + u + 2auu = 0 , 
XX X 

v 
X 

u = 
av+{3 

i.e. to Burger's equation and to the Cole-Hop£ transformation. 

If C(u) = X.u 
e equations (5 . 36), 

2 X.u 
ut + u + X.u + pe u = 0 

XX X X 

(5. 37) give 

A generalization of the BT given by (5 . 26) is u -f(u, v , v ) = 0. 
X X 

This leads to a new class of equations, of the general form (5. 24), 

which may be linearized. Assuming other form.s of BT n e w classes 

of equations may be obtained . However, the above approach ha s the 

disadvantage that every time a new form of BT is assumed the whole 

algorithm must be repeated. An alternative approach without this 

disadvantage is consi~er ed in §5. 5. 2. 

5 . 4. 2 KdV Equation and Generalizations. 

We consider a g e neralization of ·K dV' s potential equation 

given by 

ut + uxxx + yu~ = 0 , (5. 38) 

and we are looking for a BT which maps solutions of (5 . 38) to 

solutions of 

a 
vt + v + yv = 0 xxx · x 

( 5. 39) 

We are taking "half" of the BT to b e of the form 

v -f3u - ~(u+X.v) = 0 . 
X X 

(5 . 4 0) 
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(If we start with u -f(u, v, v ), 
X X 

a lengthy analysis shows that 

(5. 40) is a proper form). The determination of {3 and ~ 

follows from the requirement that equation (5. 40) admits the LB 

operator 

Y = (v + -vva) _Q_ + (u + -vua )_Q_ 
XXX F X OV XXX 1 X 0 U 

( 5. 41) 

i.e., 

[ a-1 a-1 a a 
v +ayv v -{3u -{3ayu u -~'(u +yu +X.v +X.yv ) ~ = 0 

XXXX X XX XXXX X XX XXX X XXX X 

(5. 4 0) 

Using equation (5. 40) and its differential consequences to replace 

vx, vxx, vxxx, vxxxx by u derivatives, the above equation 

finally yields 

u [ -3(1+ X.{3)
2

u ~" -3X.(l+X.{3)~" + a{3yua-l -a{3y({3u + ~)a -l] -
XX X X X 

(5. 42) 

Now, we equate the coefficients of to zero. 

Looking at the coefficient of u 
XX 

w e deduce that in order f o r it 

to vanish, u nust appear in it linearly or quadratically, i.e . 
X 

a = 2 or a = 3. 

i) a = 2 (KdV potential equation) 

Now equating to zero the coefficient of u we obtain; 
XX 

[ 3(1+>--{3)
2 ~" + 2{3y({3-1)] u + 3 X.(l+X.{3) ~" + 2{3y = 0 . 

X 

Therefore, 

2 " 3(l+X.f:3) ~ + 2{3y({3-l) = 0 , (5 . 43. a ) 

and 
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II 

3>..(1+>..{:3)~ + 2J3y ::: 0 . (5.43.b) 

From (5.43) we deduce that 

..1f:l = 1 
1+ >..{:3 }, ' or >.. = -1 • 

The coefficient of 

u
2 

vanishes iff 
X 

3 
u 

X 
vanishes identically. The coefficient of 

From the above equation we choose the solution satisfying 

II 

3~ + y = 0 • (5. 44) 

Comparing (5. 44) to (5. 43) we find {3 = -1. Further, if equation 

(5 . 44) holds the coefficients of u 
X 

and of the term independent 

of u vanish identically. 
X 

Therefore, a BT for the equation 

is given by 

ux + vx + t (u-v)
2 + A(u-v) + B = 0 , 

where A and B are arbitrary constants. 

ii) a = 3 (Modified KdV potential equation) 

Equating to zero the coefficient of u 
XX 

Therefore, 

II 

}, ::: {:3' 2~ + y <I> = 0 . . 

we obtain 

(5. 45) 

(5. 46) 

The coefficients of 
3 2 

u ' u ' X X 

0 
u ' u X X 

also vanish when the above 

equations hold. 

is given by 

Therefore, a BT for the equation 

u 
XXX 

3 + yu = 0 , 
X 

(5.47) 
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ux -{3vx +A cos <!) Yz (u+{3v) + B sin<!) Yz(u+{3v) = 0 , (5. 48) 

Where P.
2 

-- 1 and A, B b"t t t tJ ar 1 rary cons an s. 

The BT given by equations (5. 46 ), (5. 48) have been pre­

viously obtained by classical methods, see [ 73] and [ 74]. The 

above results are further discussed and generalized in §5. 5 . l. 

5. 4. 3 Sine- Gordon El:)uation and Generalizations. 

The discussion so far has been limited to evolution equations 

for which general theorems have been proved. However, the idea 

of a GAO can be used for the group theoretical characterization of 

Backlund solutions for any equation. As an example we consider 

the equation 

u -F(u) = 0 , 
xy 

(5. 49) 

and we look for a BT which maps solutions of (5. 49) to solutions 

of 

v -G(v) = 0 . 
xy 

Let us assume that "half" of the BT is 

u -v -~(u+v) = 0 . 
X X 

(If we start with u -f(u, v, v ) = 0, 
X X 

we will discover that 

(5. 50) 

(5. 51) 

(5 . 51) is a proper form., see Appendix V) . To determine <I> , 

for a given F, we require that the operator 

X = [ ux -v X -<I>(u+v)] a: + . .. • B a: + ... (5. 5 2) 

is a CAO for equation (5. 49). Applying the operator X to 

(5. 49) we obtain 

II I 

X(u -F(u)) = u -v -(u +v )(u +v )<I> -(u +v )<I>•-(u -v - <I>)F (u). 
xy xxy xxy x x y y xy xy x . x 
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Assuming (5. 49), (5. 50) the above becomes 

X(u -F) J = F' (u)u -G 1 (v)v -(u +v )(u +v )~" -(F(u)+G(v))~' -(u -v -~)F' (u) xy X X X X y y X X ' 

(5. 49), (5. 50) (5 . 53) 

However, 

or 

Also 

D B = u -v -(u +v )~' 
y xy xy y y ' 

u +v y y 
= F(u)-G(v) 

~· 

u =B+v +~ 
X X 

DB 
_y_ 

<I>' 

Susbtituting (5. 54), (5. 55) in (5. 53) and then assuming 

we finally obtain 

X{u -F{u)) I = xy 
(5 . 49), (5 . 50), (5. 51) 

( 5. 54) 

(5. 55) 

B=DB=O 
y 

~II } . ~~~ 
{ F'(u)-G' (v)-2 ~· ( F(u)-G(v)) v x + F' (u)~-~· ( F(u) +G(v)]- ~( F(u)-G(v)]. 

Therefore, 

and 

F'(u)-G'(v) 

F(u)-G(v) 

= 2 <I>" ( u +v) 
~' (u+v) 

~~ ~II 
F' (u) - ~ [ F(u)+G(v)] - 7 [ F(u)-G(v)] = 0 . 

Replacing in (5. 57) 

we obtain 

~II ¥ [ F(u)-G(v)] by 

F'(u)+G'(v) 
F(u)+G(v) 

= 2 ~'(u+v) 
<I>(u+v) · 

![ F'(u)-G'(v)] 

(5. 56) 

(5. 57) 

( 5. 58 ) 
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Equations (5. 56) and (5. 58) determine which equations admit a BT 

of the form (5. 51). We shall now discuss some special cases. 

i) Linearizations 

Let us first look for equations (5. 49 ), which can be linearized 

under the BT (5. 51). Putting G(v) = 0 in equations (5. 56), (5. 58) 

we obtain 

F'(u) 
F(u) 

= 2 ~· (u+v) 
~u+v) 

The above equations yield 

= 2 ~"{u+v) 

~· (u+v) 

a 
z(u+v) 

~ = y e 

where a, (3, y are constants. 

Therefore, the only equation of the form (5. 49) which 

linearizes under the BT (5. 51) is 

au 
u = {3e xy , 

and the linearizing BT is given by 

where v 

a 
z(u+v) 

ux- vx-y e = 0 , 

satisfies v = 0 xy 

ii} Restricted BT 

(5. 59) 

By restricted B T we mean transformations which map 

solutions of some equation among themselves. Putting G(v) = F(v ) 

in equations (5. 56), (5. 58), the equation (5. 58) yields F={3 sin au. 

Then 

~'(u+v) = a 1 ( 
~(u+v) 2 tan z- a u+v). 
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Therefore, 

~ = y sin ia (u+v). 

Substituting the above forms of F and ~ in (5. 56) it is seen 

that (5 . 56) is satisfied identically. Therefore, the only equation 

of the form (5. 49) admitting a restricted BT of the form (5. 51) is 

the Sine-Gordon equation 

u = {3 sin au , xy 

and the BT is determined by 

u -v -ysinia(u+v) = 0. 
X X 

In the Appendix V it is shown that the most general BT of 

the form u -f(u, v, v ) 
X X 

is given by u -a v - ~(u+av+g(u-av)) . 
X X 

Starting with this form (instead of (5. 51)) it can be shown that the 

only equations (5. 49) which admit a restricted BT are those for 

which F" (u) ± X. F(u) = 0. Similar non-existence proofs are given 

in the literature, see for example [ 75]. However, we think that 

their use is very limited since u -f(u, v, v ) = 0 defines a BT of 
X X 

a very restricted form. A more general BT is, for example, 

u -f(u, v, v , v , ... ) = 0, 
X X XX 

for which a non-existence proof would 

be very difficult. In §5 . 5 a generalization of (5. 51) is proposed. 

This also suggests an alternative way of obtaining non-existence 

proofs. 
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5. 5 A SECOND WAY OF DERIVING BT GENERALIZATIONS. 

In §5. 2 we established the basic nature of solutions obtained 

through BT and indicated two equivalent ways for characterizing 

them. In §5. 4 we used an algorithm based on invariance criteria 

to rederive some of the well known BT and to derive some new 

ones (see §5. 4. 1). The basic idea was that if an equation 

...., 
ut + F ( u, ux' ... ) = 0 (5. 60) 

admits a BT of the form 

u -T(u, v, v , ... ) = 0 
X X 

(5. 61) 

which maps solutions of (5. 60) to solutions of 

vt + G(v,vx' ... ) = 0 (5 . 62.) 

then the operator 

~ = [ u -T(u, v, v , ... )] -
0
° (5. 63) 

X X U 

is a CAO for the above evolution equations. However, the form 
1\ 

of X is quite restricted. A more general operator is 

a X = [ u -g(x, t, u)] -
0 X U 

(5. 64) 

1\ 
Clearly this class of operators includes the class of the form X . 

In this section we investigate CAO of the form given by (5. 64). 

This new approach has the following advantages: i) when we are 

looking for BT of the form. (5. 61) we have to assume the argum.ents 

of T. As it was pointed out earlier, this is a definite weakness 

of any method used for obtaining BT. In our approach this is not 

necessary, since the clas s of operators of the form (5 . 6 3 ) is a 

subclass of the clas s of operators defined by (5. 64). ii) It 
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clarifies the connection between the wave-train solution and the 

existence of a BT and in that respect provides a very easy test 

for expecting BT based on the general structure of the wave-train 

solution (see §5. 5. 1) . iii) It obtains exact solutions in some 

cases where BT do not exist. We will elaborate more on the 

above points in section 5. 6. 
I\ 

In §5. 3 the equivalence between CAO of the f orm X ' and 

admissible operators was proved . Here we give a similar result 

for the case that the CAO is of the forrn (5. 64): 

Lemma 5. 2 The LB operator 

a X = [ u -g{x, t, u)) -a 
X U 

is a CAO for the evolution equation 

ut + F ( u , u , . . . u ) = 0 , 
X X ••• X 

l___) 
m 

iff the LB opera tor 

is an admissible operator for equation 

ux -g = 0 . 

Proof. X is a CAO for (5. 65 ) iff 

X{ut + F) J = 0 . 

(5. 65), (5. 67) 

Applying X to (5 . 65) we obtain 

m 
F D {u - g )+ ... F D (u - g ) 

U X X U X X 
x .. . x 
L__j 

lll 

(5 . 64) 

(5. 6 5 ) 

(5 . 66) 

( 5 . 6 7) 

( 5. 68) 

( 5 . 69 ) 
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Assuming (5. 65), i.e. replacing t-derivatives, (5. 69) yields 

X(u +F)j = -D F-g + g F+ F D (u -g)+ .. . F Dm(u -g) 
t . X t U UXX U XX 

(5.65) ~ 
m 

Finally assuming (5. 67), equation (5. 68) gives 

[ -D F-g + g F] = 0 . 
X t U (5.67) 

(5. 70) 

Y is an admissible operator of (5 . 67) iff 

Y(ux-g)1 = 0 

(5. 67) 

or 

[ utx + D F -( ut+ F) g ] = 0 . 
X U 1(5. 67) 

(5. 71) 

Differentiating equation (5. 67) with respect to x we obtain 

Using (5 . 72), equation (5 . 71) reduces to ( 5. 70). Q.E.D. 

5. 5. 1 KdV and Generalizations. 

In this section we investigate CAO of the form 

X = [ u -g(x, t , u)] -
3
3 , 

X U 
( 5 .64) 

for evolution equations of the form 

u + F(u, u ) = 0 
XXX X 

( 5. 73) 

Requiring X to be a CAO for equation ( 5 . 73), (or equivalently 

to be an admissible operator for equation 
~ 

(5. 67)), equation (5 . 70) yields (with F = u + F) 
XXX 

[ u + Flu + Fzu + g2 - g3 (u + F)1 
XXXX . . X XX XXX 

u =g 
. X 

= 0 t 

(5. 74) 
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where 

g _Q.g_ g _QK g =£.& 
1 - ax ' 2 - at ' 3 au (5.75) 

. Now we have to replace the x-derivatives of u using the following 

equations 

(5 . 76) 

This yields (after some cancellation) 

(5. 77) 

where now 

F - F(u g) F = aF , F
2 - ' ' 1 au 

Noticing that and rearranging, equation (5. 77) 

can be written as 

3 2 [ 2[ 1 2 F] 
glll + g2 + F 2gl + Zg(g )331 + 3 (ggl3\ -g3(ggl3)] + g ~ (g )33 + g 3 = O. 

( 5 . 78) 

Let us summarize: We are investigating the existence of CAO 

given by (5 . 64) for equation (5. 73). It turns o ut that g satisfies 

a nonlinear e quation in three independent variables x, t, u. Solving 



-156-

equation (5. 78) seems much more difficult than solving equation 

(5. 73). However, we are only looking for particular solutions of 

(5 . 78). So we have inflated our problem (in the sense that ( 5. 78) 

is more complicated than (5. 73)) but have deflated our goal (in the 

sense that we are looking for particular solutions only). 

A. Wave-train solution. 

We will discuss diffe rent ways for obtaining particular solu-

tions of equation (5. 78 ). However, we start with an obvious one, 

which also turns out to be very important: Assume g = <I>(u). 

This corresponds to CAO of the form 

X = [ u -<I>(u)] _Q_ . 
0 X au ( 5. 79) 

The invariant solutions corresponding to x
0 

are the wave-train 

solutions, as seen by the following lemma: 

Lemma 5. 3 . Assume that equation (5. 73) possesses a wave-train 

solution. Then this solution is the invariant solution of equation 

(5. 73) under the action of the CAO x
0 

given by ( 5 . 79 )L 

Proof. The wave-train solution of (5. 73) is given by u = u(x-Ut), 

and for such a solution ut =-Uux. 

u + F(u, u )-U u = 0 , 
XXX X X 

Let u = <I>(u) in (5. 80) to obtain 
X 

I 

ci> ( ci>ci>1 
) + F - U ci> = 0 • 

Then (5. 73) becomes 

( 5 . 80) 

(5 .81) 

If the LB operator x
0 

is a CAO for equation ( 5. 73), the n equation 

(5. 78) yields (with g :::: <I>(u)) 

[ t ( (b2) II + ~ ] I = 0 ( 5 . 82) 

Comparing (5 . 82) with (5 . 81) concludes the proof. 
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B. Backlund transformations. 

We now come back to equation (5. 78) and look for other 

particular solutions. We .just proved that g = cl?(u) corresponds 

to the wave-train solution. What choice of g corresponds to 

interaction of solitons? The answer to this question is not a 

priori obvious. One of the well known tricks for finding particular 

solutions of differential equations is to use variation of parameters 

on the homogeneous solution. This trick is also used here: We 

look for solutions of ( 5. 78) which satisfy 

[ 
1 2 F] z: (g )33 + g 3 = 0 (5. 83) 

This is equivalent to look for g = cl?(u), i. e. for the wave-train 

solution, and then to let the param e ters depend on x and t. 

Let us look at some particular cases. 

1. F = y ua 
X 

If we look for functions g of the form g = ci? (u), 

tions (5. 77) or (5. 78) indicate that we must solve 

or equivalently, 

In this case a F=y<fi, 

and (5. 85) gives 

therefore 

~~~ + ( a-1) ~a-2 _ c ~-3 
Y (a+l) - o 

equa ·· 

(5 . 84) 

(5.8 5 ) 

(5 . 86) 

where is a constant of integration. The above equation can 

be integrated again to give 

.!. ~· 2 = c ~- 2 + ._..2:_ "'a -1 
z 1 c2 - a+l "" (5. 87) 
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where are constants. 

i) a = 2 (KdV potential equation) 

Assuming c = 0 0 
in equation (5 . 86) we obtain 

z 2 
~ = -

6 
u + Au + B , (5. 88) 

where · A, B are constants. If we look for a solution of equation 

(5 . 78) in the form 

+ A(x, t)u + B(x, t) , (5. 89) 

the bracket 

g = - t u2 

2 g [ ... ] is identically zero. Substituting (5. 89) in 

(5.78) we see that the left hand side of (5.78) becomes, 

(3A +3AA +yB )u
2 

+ (At+ A + 3A 
2 

+ A(3A +3AA +yB )) u + 
XX X X XXX X XX X . X 

Bt + Bxxx + 3A B + B(3A + 3AA + y B ) . 
X X XX X X 

Therefore, g defined by (5. 89) is a solution of (5 . 78) iff 

3A + 3AA + yB = 0 , 
XX X X 

A + A + 3A 
2 

= 0 
t XXX X 

B + B + 3A B = 0 
t XXX X X 

Equation (5. 90. a) implies that 

3 A
2 

B = - -(A + - 2 ) + c(t) 
')I X 

(5.9 0 .a) 

( 5 .90.b) 

(5 . 90.c) 

Substituting the above in (5. 90. c) and assuming A satisfies (5. 90. b) 

we get c{t) = constant. Therefore 

z 2 1_ (A A 2 
g = - 6 u + Au - y x + 2 ) + k , (5 . 91) 

where A satisfies (5. 90. b). To express the BT in the customary 

form let 

A = }v + A. , 
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then equation (5. 91) gives 

g = - '{; (u-v)
2 

-v x + X.(u-v) + JJ. , (5. 92) 

where v satisfies 

2 
v + yv 

XXX X 
= 0 , 

and 
3X.2 

X., . JJ. = k - 2y are constants. Equation (5. 92) defines a 

BT identical to the one given by -{5.46 ) . 

Before proceeding further let us extract the essentials of 

the above example. After establi,shing the basic nature of Backlund 

solutions, as invariant solutions under some CAO, we were 

naturally led to consider CAO of the form X = [ ux- g(x, t, u)] a au 

where g(x, t, u) satisfies (5. 78 ). We then observed that a par-

ticular solution of equation (5. 78 ), namely g = c;t?(u; A, B, C) 

where A, B, C constants, corresponds to the wave-train solution. 

Further we noticed that if C = 0 (which corresponds to the 

solitary-wave solution) the form of g is very simple; we then 

looked for a solution of equation (5. 78) in the form 

g = c;t?(u;A(x, t), B(x, t)). With this .choice of g som.e terms of 

equation (5. 78) are identically zero; requiring the remaining terms 

of (5. 78) to vanish too, we obtained some equations for A and B. 

3 A
2 

In the example just considered B = --(A + - 2 ) + k , and A y X 

any solution of (5. 90. b). 

The obvious question arising is the following: Given a 

particular case of a wave-train solution in the form g = c;t>(u;A, B) 

and then letting A and B depend on x and t, when do we 

expect the system. of equations for A and B to have a non-

trivial solution? From. the analysis carrie d above it is clear that 



a necessary condition is g? to be a "nice" function of u, for 

example polynomial of integer powers of u or some trigonometric 

function of u. Still, this does not guarantee that non-trivial A 

and B exist, as in general A and B satisfy a system of 

ove rdetermined equations (in the above example A and B satisfy 

a system of three equations). The following cases are possible: 

i) The only solution for A and B is A, B constants. This 

correspond s to the case that the only exact solution obtained 

through this approach is the wave-train solution. ii) A, B are 

any solutions of sante differential equations (like in the example 

just considered). This corresponds to the case where a BT exists 

for the given equation. iii) A, B are some given functions of 

x, t. This corresponds to the case where a BT does not exist, 

however an exact solution can still be found, which may be 

different than the wave-train solution. In the remaining examples 

the above points will be clarified further. 

ii) a = 3 (Modified KdV potential equation) 

Assuming c = 0 
0 

If we now substitute 

in equation (5 . 86) we obtain 

(5.93) 

in equation (5. 78) we get an overdetermined system of equations 

for A and B the solution of which leads to a BT identical to 

the one given by (5. 49). 



2. F = a 
yu u 

X 

In thi s case equation (5. 84) can b e integ rated twice to give 

i) a = 1 

l.. Cf!2 = 
2 

Then the above equatio n yields 

( 5. 9 4 ) 

(5. 95) 

Because of the 
3 

u t erm there i s no way to make t h e r i g ht hand 
a 

side of equation (5. 95 )~perfect square, so we do not expec t a BT 

for this ca s e. 

ii) a = 2 (Modified KdV equation) 

Equation (5. 94) yields 

= - (5 .96) 

Taking c = 0 w e can write the right h a nd · side of (5. 96) a s a 
1 

perfect square and 

Now letting A to d e p end on x, t and substituting 

'\/ 11 2 
g = {- (;) 12 u + A(x , t) in {5. 78) we obt a in 

Therefore, 

At + Axxx + 6{-t) Yz AAx = 0 . 

u 
X 

~ Yz 2 = (- 6 ) u + A (x , t) , 

is a BT mapping solutions of e quation 

(5. 97) 

(5. 98) 

(5 . 99) 

(5 . 100) 

to solutions of equat ion (5. 98 ). Equ ation {5 . 99 ) defines the well 

known Miura t ransformation [ 5 8]. 



-lb.:=.-

5.5.2 Hierarchies of KdV equations. A new BT. 

It is well known that associated with the KdV equation there 

exists a hierarchy of equations, first found by Lax [ 64] , [ 70], 

each member of which has the same interesting properties possessed 

by the KdV equation, namely 

i) each equation can be solved by the inverse-s c attering method and 

therefore has N- soliton solutions; 

ii) each equation possesses the same BT possessed by the KdV 

equation (from which. the N-soliton ladder can be generated); 

(iii) each equation possesses an infinity of independent polynomial 

conservation laws. 

One way of looking at these equations is to regard them as LB 

symmetries of the KdV equation. Let us be more specific; it was 

noted in §4.1.1. that one method of obtaining LB operators is to 

use a recursion operator D. (If X = TJ o/ou is an admissible LB 

operator of a given equation and D. is .a recursion operator for the 

same equation then the LB operator (b.TJ) o/ou is also admissible). 

It was shown in [53 ] that the operator 

where 

2 - 1 
D. = D + 8u + 4~D , 

D-D 
X 

u. - u 
1 X ••• X 

'-----' 
i 

is a recursion operator for the KdV equation 

(5.101) 

(5 .102) 

(5. l03a) 

The LB operator u1 o/ou is a trivial admi ssible operator of 

(5 . 103a) (translation in x ). The n the ope rators (D..ju1) o/ou, j=l, 2, .. . 
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are also admissible; finally the operators [ ut + (L)u
1

)] 8/8u are 

also admissible because equation (5 .103a) admits the operator 

ut 8/8u {translation in t). The equations 

ut + {.6j~) = 0 j=l, 2. 3 •... 

give Lax's hierarchy {this method of construction differs from 

Lax's original method). The value j=l defines the KdV itself 

and j=2 gives 

(5.103b) 

where u
1

, u 2 , u 3 , u 5 are defined by {5 .102). Similar hie ra rc hies 

may be obtained for the modified KdV, the Sine-Gordon and the 

Burgers' equations . In this way we obtain evolution equations, 

of order higher than three, which admit a BT; however, to 

obtain such a BT we need only consider the first . member of the 

co rresponding hierarchy which is at most of third order. In this 

sense we may claim that the only BT obtained so far in the 

literature are essentially admitted by at most third-order equations. 

In this subsection we shall derive a BT for the equation 

(5. 104) 

However, we consider the above equation not only because it is of 

fifth order, without being a LB symmetry of some other lower 

order evolution equation, but also for the following reason: 

P. J. Caudrey et al. [ 80] considered equation (5 .104) and noted that 

although it possesses multiple soliton solutions and some higher 

conservation laws, it does not appear to· fit the present inverse-

scattering formulism and does not seem to possess a BT; in this 

sense it seems to be the only known evolution equation not fitting 
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the usual scheme (BT-inverse scattering-multiple solitons- infinite 

conservation laws). However, if we regard the multisoliton solu-

tions as invariant solutions, we do expect that the existence of 

multisolitons implies the existence of a BT. This BT will be 

given below; however let us first motivate equation (5 .104} 

mathematically. Caudrey et al. noted that each of the two equations 

(5 .'103b} and (5 .104} is a special case of the more general equation 

(4.41) 

where a = 20 gives (5 .103b} and a = 30 gives (5 .104}. Equation 

(4. 41} has a single soliton solution for all values of a. We 

suggest here the following method for obtaining (4. 41}: The 

recursion operator for the KdV equation £::.. 

3 

commutes by con-

struction with A = Dt + D + 1 2 uD + 12 u1 . In order to obtain 

equations admitting at least single solitons we look fo.r an operator 

£::.. which commutes only with the x-dependent part of A. Then it 

is easily found that - 2 -1 
£::.. = D + ~-12)u + (24-a}~D , where a . is 

an arbitrary constant parameter. Any member · of the class of 

equations 

ut + L::..j ~ = 0, j=l,2, ... 

has (at least} single soliton solutions; j=l gives the KdV itself 

and j=2 gives equation (4. 41}. After this mathematical digression 

let us derive the new BT. 

A New BT. 

For simplicity we consider the potential version of equation 

(4.41} 

(5.105} 
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where w- u. Motivated by the discussion in §5.5.1 we look for 
X 

a BT of the form 

2 
w = -w + A (x, t)w + B (x, t) , 1 . (5.106) 

(compare with (5.89), where 'I= 6); recall that equation (5.106) 

(solved together with (5.105) when A,B are constants generates 

the single soliton solution. The functions A(x,t) and B(x,t) are 

found by the requirement that the operator 
2 

(w1 + w -Aw-B)o/ou 

is a GAO for equation (5 .10 5). This yields 

2 
Bt + Atw + w 6 + (60-a )w2w 3 + aw1w 4 + ~w1 w 2 + 2ww5 

3 3 . 2 
2aww1w 3 + 4aww 

1 
- Aw5 - aAw

1
w 3 - 2aAw 

1 
- (30-a )Aw2. + 

2 
2(30-a)ww2 = 0, when (5.105) holds. 

Using (5.105) and (5.106) in the above, we obtain 

( )w7 + ( ) 6 5 w + ( )w + ... ( ) w +( )=0' 

where the parentheses enclose some combinations of derivatives of 

A and B. Actually the coefficients of 
7 6 5 

w,w ,w are identically 

equal to zero; equating to zero the coefficients of 4 w we obtain 

i.e. either a= 30 and A,B arbitrary, or a= arbitrary and 

2 
B = -A1j 2 - A j4 + k, k = constant . 

equals to zero iff the coe fficients of 

equating to zero the coefficient of 

a = 20 and 

or 

a = 30 and 

2 
w 

w 

The coefficient of 

4 equals to zero; 

3 
w 

we obtain that either 
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i) Ct = 20 

To express the B.T in the customary form let A = 2v; then 

2 
B = -v

1
-v +k and (5. 106) gives 

2 
w

1 
= -(w-v) -v1 + k 

The equation which is satisfied by v i s determined by the 

coefficient of wj, . j=l, 0. These coefficients equal to zero iff 

i.e. as it was expected v and u satisfy the same equation 

(the potential version of the second member of Lax's hierarchy). 

ii) Ct = 3 0 

A similar analysis shows that 

vl 2 
w 1 + 2 + (w-v) = 0 , (5.107) 

where 

(5.108) 

Therefore, the equation (5 .104) admits the BT given by equation 

(5.107) whenever v satisfies equation (5.108). The interesting 

feature of this BT is that equation (5.108) is different from 

equation (5 .104) ~ This exemplifies another advantage of our 

method: when the classical approach is used one must assume 

i) the general form of (5.107); ii) the equation satisfied by 

v (in practice it is assumed that either v satisfies the same 

equation as u, or its linearized version) . None of the above 

assumptions is made when our method is used. 
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Introducing a parameter in the BT. 

The BT defined by equation Ci .107) is not in a proper form 

for discussing solitons because it does not depend on a free para-

meter; furthermore equation (5 .108) does not possess a soliton 

solution. In the known BT the free parameter reflects the existence 

of a Lie point symmetry of the e quation under consideration (coordinate 

stretchings for the Sine-Gordon equation, Galilean invariance for the 

KdV, etc. , see also § 5. 5. 3) . However, equation (5 .104) admits no 

nontrivial Lie point g r oups, therefore we cannot introduce a para-

meter in equation (5 .107) using an invariant transformation of equation 

(5 .104). Instead, we introduc e a parameter in (5 .107) using a 

coordinate transformation which affects only equation (5.108), requiring 

only that the transformed e quation obtained from (5 .108) admits a 

soliton. This can be achie ved by considering 

v = v + 32 AX - 160 A\ 9 , 

where the c oefficient of t is chosen so that the constant term in 

the transformed equation is identically e qual to zero (othe r wis e the 

transformed equation will not admit V = 0 as a solution). Then 

equations (5 .107), (5.108) become 

VI 2 
W l + -z- + (W-V) - A = 0 , (5 .109) 

3 4 5 2 2 
30V1v 3 + 60V1 +--zV 2 -20A[V 3 + 6V 1 -4AVd = 0, (5. 110) 

where 

2 
W = w + 3Ax 

(i) v = 0 

Then 

2 
!;, = x-16A t . 
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Therefore 

w s = w s - ~ AX + 1~0 A 
3 

t 

is the potential version of the soliton solution. 

(ii) w = 0. 

Then and is 

the potential version of the soliton solution of (5 .110). 

Inserting the above solution in (5 .109) we obtain the two- soliton 

solution. However, in order to have a nice algebraic formulation · 

of the multisoliton solution we need to find a superposition principle 

(analogous to the Bianchi diagram) for the Riccati equation when 

V S is not the solution obtained with W = 0; this problem is under 

consideration. 

5. 5. 3 Burgers' Equation and Generalizations. 

In this section we investigate CAO of the form 

X = ( ux -g(x, t, u)] a: (5. 64) 

for evolution equations of the form. 

ut + u + F(u, u ) = 0 · . 
XX X 

(5. 24) 

Requiring X to be a CAO for equation (5. 24), equation (5. 70) 

yields (with F = u + F) 
XX 

(5 . 111) 

where F
1 

= ~~ , F 2 = ~~ and g 1, g 2 , g 3 defined by (5. 75). 
X 

Replacing the x-derivatives of u, using (5. 76a, b, c) we obtain 

(5. 112) 
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In order to find invariant solutions of equation (5. 24) we must 

find particular solutions of equation (5. 112). Motivated by the 

discussion in §5. 5.1 we seek solutions such that [ g
3 

+ :] 
3 

= 0. 

Therefore, we week solutions which satisfy simultaneously 

F 
g 3 + g A (x, t) , 

Let us look at som.e particular cases. 

1. F = a'(u)u 
X 

Then equation (5. 113) yields 

g = - a(u) + A(x, t)u + B(x, t) 

Substituting the above in (5. 114) we obtain 

( 5 . 113) 

(5. 114) 

( 5.115) 

(Bt+B +2A B) + (At+A +2AA )u + (-2a+ua')A + B a'(u) = 0. 
XX X XX X X X 

(5.116) 

The above equation has non-trivial solutions for A and B iff 

a'(u) = constant or 2a-ua' = constant. 

to consider a(u) = 0 or 
2 

a(u) = au 

Therefore, it is sufficient 

(as we can get rid of the 

linear terms in the equation using a linear transformation). 

i) a(u) = 0 

Then equation (5. 116) yields 

At + A + 2AA = 0 
XX X 

(5. 117) 

Bt + B + 2BA = 0 . 
XX X 

( 5. 118 ) 

Clearly B = kA, where k = constant. Therefore, the equation 

ut + u = 0 . 
XX 

(5. 119) 



admits the BT 

u = A(u+k) , 
X 

(5.120) 

where A satisfies (5.117). The above corresponds to the Cole-

Hop£ [ 78], [ 79] linearization of Burgers equation. t From our 

point of view it is interesting that this BT can also be thought as 

a generalization of ux = ci> (u; A, B), 

allowed to depend on x and t. 

ii) a(u) = 2 au 

when A and B are 

Then equation (5.116) yields (with B = 0) 

At + A + 2AA = 0 , ( 5. 117) 
XX X 

and equation (5. 115) indicates that the BT is given by 

2 
u = -au + Au • 

X 

However, letting A = a.v, 

Therefore, the BT 

v satisfies the same equation as u. 

2 
u = -au + auv , 

X 
(5. 121) 

maps solutions of equation 

(5. 122) 

among them.selves. This seems to be a new result. Let us 

summarize: It is well known that the Burgers' equation can be 

linearized. The linearizing transformation, as was pointed out 

by many investigators is a BT. Many investigators tried 

unsuccessfully to obtain linearizations for other interesting evo-

lution equations (KDV, etc., ). However, it was discovered that 

some of these higher order evolution equations possess BT which 

map solutions among themselves. Here, it has been shown that 



the Burgers equation also possesses such a BT given by equation 

(5. 121). 

2. 
2 

g = a'(u)u 
X 

Now equation (5.113) yields 

-a J a(u) -a 
g = Ae e du + Be . 

Substituting the above in (5. 114) we obtain 

(At+ A + 2AA )e-aJea(u)du + (Bt + B + 2BA )e-a = 0 . . 
XX X XX X 

(5. 123) 

( 5. 124) 

The above equation has non-trivial solutions for A and B for 

any A and B for any a(u). 

a) A = 0 

The BT 

u = Be -a(u) 
• X 

(5.125) 

maps solutions of equation 

2 
ut + uxx + a'(u)ux = 0 , (5. 126) 

to solutions of equation 

( 5. 127) 

{3) B = 0 

The BT 

ux = Ae -a(u) Jea(u)du , (5. 128) 

maps solutions of equation (5. 126), to solutions of Burgers' 

equation (5. 117). Therefore, equation (5. 126) can be linearized 

and also can be transformed to Burgers' equation for any a(u). 

This result can be rederived very easily (and in a sense explained ) 

as follows: L et cp satisfy the equation 



cpt + cpxx = 0 ' (5.129} 

and let cp = A(u). Then equation (5.129} becomes equation (5. 126) 

with 
_ A" (u) 

a'(u) - A'(u} , w hich shows that equation (5. 126) can be 

linearized for any a(u}. By the way, the last approach provides 

the easiest way for obtaining· the Cole-Hop£ transformation: 

Let 
A "(u} 
A' (u} = f3 ' therefore and "' - .!.. ef3u 

Y' - f3 

Differentiating the last equation with respect to x · we obtain 

"' = (.)u cp . ..,-X J:J X Equation (5.126), w ith a '(u} = {3 becomes 

u 
XX 

2 
+ f3u = 0 . 

X 

Differentiating this with respect to x and letting v = u "I.Ve 
X 

The BT now be comes · cpx = f3vcp. 

There are different ways by which the above results can 

be generalized. First we can look for solutions of equation (5 . 112} 

in the form g(x, t, u} = g (v, u); in this way the results of §5. 4.1 

may be rederived. Alternatively, instead of generalizing the solu-

tion g=<j>(u ; A,B} by g=cli(u; A(x,t}, B(x,t)}, we can 

generalize it by g = cii(u; A(v}, B {v)}. For example, the BT 

given by (5. 121} generalizes to the BT 

2 
u = -au + auA(v) 

X 

which maps solutions of the Burger's. equation (5.122) to solutions 

of equation 

vt + v 
XX 

A"(v} 2 · 
+ A'(v} v x + ZaA(v)vx = 0 . (5. 130) 

From the above it is clear that the new approach is quite powerful: 

By generalizing the solution g = cli (u; A, B ) (le tting A and B 

to d e p end on x and t} some basic BT can be derived; by 

generalizing it further A = A(v}, B = B (v} more general BT may 

obtained. 
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A. Introd ucing a paramete r in a BT. 

Here we shall use the BT given by (5 .121) to illustrate 

i) how a parame ter can be introduc ed in a BT and ii) the use of 

Bianchi diag rams . 

A trivial chang e of variables transforms equation (5 .121) and 

(5 .122) to 

and 

2vu 
X 

uu - vu = 0 ' X XX 

2 
= u -uv 

Equation { 5 .131) admits the following obvious Lie point groups 

t' = t + a ' 
x' = X +J3 , u' = u 

' 

t' 
2 

x' u' -1 = '( t, =-y x, = '( u 

t' = t, x' = x-Ut u' = u- U; U= const. 

(5 . 131) 

(5 .. 132) 

(5 . 133) 

(5 . 134) 

( 5 . 13 5) 

The transformations defined by {5 . 133} and (5 .134) l e ave the equation 

(5.132} invariant. However, using the transformations {5.135} (and 

dropping the primes) equation (5 . 132) b e comes 

2 
2vu = u -uv + U{u-v). 

X 
(5. 13 6} 

Note further that equation (5 . 131) admits the following Lie point 

group of transformations 

t l - t 
- 1--rt x' = X 

1--rt u' = u + -r (x- ut}. (5 . 13 7} 

Using the above g roup, we obtain the following BT which d e pends 

explicitly on x 

2vu 
X 

and t· , 

2 = u -uv + U(u-v) + ,. [ x (u-v)- 2v] • 
l+Tt l+Tt 

(5.138} 



B. Bianchi diagrams. 

Let us call the solution obtained from (5 .136) when 

and and u2 the solution obtained from (5 . 13 6) 

when and u = u2 . The Bianchi diagram indicates that 

the solution can be obtained either using and 

or v = and Therefore the following 

equations hold; 

2v~ 
2 = u -uv

0 + ul (ul- v 0), (5. n9a) 
X 

2vu2 
2 

U2(u2-vo), = u -uv0 + (5 .139b) 
X 

2v~2 
2 = u12 

X 

- u~ + U2(ul2-ul)' (5 .139c) 

2v~2 
2 

ul (ul2- u2) = u12 - uu2 + . (5 .139d) 
X 

Equations (5.139c,d) imply that 

(5 .140) 

where ~,u2 are defined by (5.139a,b). Let v
0 

= c 2 , u
1 

= -c
1

, 

where are constants; then (5 .139a, b) desc ribe 

tw0 single shocks, whereas (5.140) describes the interaction of two 

single shocks. The formulae obtained this way coincide with the 

corresponding ones given in [ 24) (see also D below). The validity 

of the Bianchi diagram can be proved by checking that ~2 as 
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defined by (5.140) solves equations (5.139c,d). 

C. The Burgers hierarchy. 

Let us take v=l for convenience of writing. It is shown 

in [53 ] that the operator 

= 1 1 -1 !:::. -D + z u + z- ~D , 

is a recursion operator for the equation 

(where u. 
1 

u ). 
x .•. x 

There fore, the class of equations 
'---.1 

i 

U + "ju = 0, J. - 1 2 t ~ 1 - ' , ... 

(5.141) 

(5.142) 

defines the hierarchy of Burgers equation. The equation (5.142) 

admits the BT defined by equation (5 . 136) (where v=l) and the 

linearization u = -2cp
1
/ cp. These BT are admitted by e very 

member of the hierarchy; in particular the hierarchy can be 

linearized, 

- u = cpt - cpj+l = 0, j=l,2, ... 

D. The in variance of shock solutions. 

Using the recursion operator !:::. defined by (5 .141) we have 

the following collection of admissible LB operators 

. a 
Xj = (6.J~) au , j=O, 1, 2, ... 

It turns out, that the solution describing the interaction of n 

shocks is invariant under the action of the LB operator 

X 
n 

n . a 
- 2:: ~ L'c.J u.. ) -

j=O J 1 au 
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where a . are constant parameters. 
J 

Let us illust rate the above res ult for the case of the interaction 

of two shocks; we must pro ve that the solution obtained by solving 

simultaneously equation (5 .142 ) together with 

(5.143) 

describes the interaction of two shocks. Using the lineari z ation 

u = -2 cp
1

jcp equations (5 .142) and. (5.143) become 

= 0 . 

Solving the abo ve we obtain 
2 

where 

c.x c . t 
1 1 

fi = exp(- -z- + -:;r -bi)' 

c., b. are constants. 
1 1 

Then the solution 

u = 
clfl + c2f2 + c3£3 

£1 + £2 + £3 

which is identical with ~2 defined by (5 .140) is the sought 

solution (see [ 24] page 111). 
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5. 6 CONCLUSIONS 

Let us try to summarize the main results obtained in this 

chapter. First of all we proved that all solutions of evolution 

equations obtained through BT can be characterized as invariant 

solutions under the action of some CAO. We also gave an alter-

native way of characterizing them, as invariant solutions of the 

equation defining the BT under the action of some admissible LB 

operator, which is completely determined by the given evolution 

equation. The above characterizations , (which were proved to be 

equivalent), led to an algorithm for obtaining BT based on invariance 

criteria. In this way many known BT were rederived and the 

problem of linearizing the equation ut + u + F(u, u ) = 0, 
XX X 

using 

the BT v -f(u, v) = 0, 
X 

was completely solved; it was also shown 

how to extend the above ideas to non evolution equations, for ex-

ample the Sine-Gordon equation. 

After establishing the basic nature of Backlund solutions we 

generalized the BT in the following way: Instead of looking for 
1\ _Q_ 

CAO of the form X = ( u -f(u, v, v , ... ) ] we look for CAO 
au X X 

[ u -g(x, t, u)] f 1\ 

of the form X = Clearly every operator X 
X U 

is a sEecial case of some operator X. Requiring X to be a 

CAO for the given equation, we obtain a nonlinear equation for g 

in three independent variables x, t, u . The main problem is how 

to find particular solutions of this equation. One way, not very 

efficient in practice, is to let g = f(u, v, v , . . . ). 
X 

The obvious 

question is the following: What is the advantage of starting with 

g(x, t, u) and then letting g = f(u,v,v , ... ), 
X 

instead of the 

classical approach starting directly with f(u, v, v , ... ) ? In 
X 
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practice, when looking for BT we have to assume the arguments 

of f, and if we want to change the argum.ents of f the whole 

process must be repeated. In our approach this is not necessary 

as we only have to check if a particular form of g is actually a 

solution of a given equation. 

However, we have developed a more efficient way of finding 

particular solutions of the equation for g: It turns out that there 

is a particular choice of g which is physically very interesting, 

g = II> (u). This corresponds to the wave-train solution of the given 

equation (i.e. the solution of the equation invariant under the acti.on 

of x
0 

= [ ux -<I>(u)] a: , is the wave-train solution, assuming that 

such a solution exists). In general this solution will depend on some 

constant parameters say A . ,i = 1,2, . . . 
1 

So let us denote it by 

writing g = <I>(u;A. ). 
1 

One very efficient way of finding other parti-

cular solutions for g is to let g = <I>(u;A . (x, t) ), where it might be 
1 

necessary to set some of the A . s: 0 
1 

in order to simplify the form 

of g; i.e., we do not generalize the most general wave-train 

solution but just a particular one, usually the solitary-wave solution. 

This is interesting both mathematically and physically as the solu-

tions representing soliton interaction can be thought as variation of 

parameters of som.e wave-train solution (usually the solitary wave 

solution). 1n this way new BT can be obtained. (Also in this way 

some exact solutions have been found for cases that BT do not exist, 

for example for the equation 
3 

u = u x y however, these solutions 

do not seem physically interesting and therefore are not presented 

here). 
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Using the above approach a BT was obtained for a fifth order 

evolution equation first introduced by Caudrey et al. [ 80 ] and known 

to have some interesting properties (multisolitons and some conserva-

tion laws). The discovery of this BT for the only known evolution 

equation not fitting the usual scheme (BT, inverse scattering, multi­

solitons, conservation laws) strengthens our belief in the existence 

of a one to one correspondence between multisolitons (or multishocks) 

and BT (this will be exemplified below). This BT has the interesting 

feature that it maps solutions of the above equation to solutions of 

another fifth order equation. This poses the problem of finding a 

new superposition principle for the corresponding Riccati equation 

and also formulating a new inverse-scattering scheme; this problem 

is under consideration. 

Using the above approach also, a new BT was obtained which 

maps solutions of Burgers' equation among themselves. This BT 

was used to illustrate; i) how a parameter can be introduced in a 

BT using an admissible Lie point group of the equation under consid­

eration; ii) the use of Bianchi diagrams for constructing a multi­

shock (or multisoliton) solution; iii) that the hierarchy obtained 

from a given equation possesses the BT possessed by the first 

member of the hierarchy (the members of the hierarchy are viewed 

here as LB symmetries of the given equation); iv) that the 

multishocks (or multisolitons) solutions are invariant under the 

action of some LB operators uniquely defined by the above hierarchy; 

v) that it is possible to have a BT without having infinite conserva­

tion laws or solitons. 

The results of chapter IV and V (and in particular the con­

sideration of the above comments) justify in our opinion the following 
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statements: 

i) An evolution equation possessing an infinite number of symmetries 

or a BT or multisolitons (multishocks) automatically possesses the 

other two. 

ii) An evolution equation possesses N- solitons for any N iff it 

possesses an infinite number of conservation laws. 

iii) An evolution equation possessing infinite symmetries and a 

Lagrangian possesses infinite conservation laws. 

Further discussion and some open problems. 

In §5. 5 it was shown how to relate a CAO to an admissible 

LB operator (see lemma 5. 2). However, this was achieved only 

by interchanging the roles of the given evolution equation and the 

equation imposing some group theoretical constraint on this evolu-

tion equation: Consider the e quation 

ut + F ( u, u , ... , u ) = 0 , 
X X . .. X 

L--..J 

together with the equation 

u -g = 0 
X 

The LB opera tor 

m 

(5. 65 ) 

( 5. 67) 

a X = (u -g)- (5. 64) 
X au 

is a C.:AO for the equation (5. 65 ), iff the LB operator 

y ( + F) __£_ = ut au 

is an admissible operator for the e quation (5. 67). 
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We would like now to relate a CAO of a g iven evolution 

equation to an admissible LB ope rator of the same equation. That 

is, now we raise the following question: 

Given the evolution e quation (5. 65) and the CAO (5. 64), is 

it always possible to find an admissible operator Z for e gua tioi-1 

(5.65)? 

We conjecture an affirmative answer to this q ue stion. Let 

us give a very simple example supporting our conjecture. Con-

sider the KdV potential equation 

1 2 
wt+w -z-w = 0 

XXX X 
(5 . 144) 

It was shown in §5. 5 (see equation (5. 88)) that the soliton solution 

of this equation is the invariant solution under the a ction of the 

CAO 

[ 
1 2 1 a x 0 = wx -(z-w +Aw+B) ow . (5 . 145) 

However, any wave-train solution of (5. 144) is an invariant solution 

under the action of the admissible LB operator 

(5. 146) 

Therefore, to the CAO x
0 

must correspond the admissible oper -

This is actually easily verified: From equation (5 . 144) 

it follows that 

1 2 
w = -w + z-wx t XXX 

(5 . 14 7) 

Using the equation 

1 2 
wx = 12 w + Au + B , 

(and its differential cons e que nces) to simplify the rig ht hand side 

of equation (5. 147) we obtain 

2 2 
w t = (A + 3 B )w x 

There fore, to the CAO (5. 145 ) there corresponds the admissible 
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t (5 146) h U -- (A2 + 23 B) Yz . opera or . , w ere Notice however, that 

obtaining an admissible operator frorn a CAO requires a process 

of differentiation; therefore the class of the invariant solutions 

corresponding to a CAO, will be just a subclass of the class of the 

invariant solutions corresponding to the admissible operator. In 

the above example, the soliton solution is just a special case of 

the wave-train solution. 

Now let us consider the case of the two-soliton solution of 

the KdV equation 

uu + u 
X XXX 

= 0 . (5.148 ) 

The two-soliton solution of the above equation is the invariant 

solution under the action of the CAO 

(5. 149) 

where w is a solution of (5. 144), v(£) is the one-soliton 
1\ 

solution with speed 4U, and U is a constant. To the above 

CAO corresponds the admissible operator 

Z = [ 3
5 

u + uu +2u u +tu
2

u +U
1
(u +uu )+U 2 u ]-aa a 0-aa , 

XXXXX XXX XXX X XXX X XU U 

1\ 

where ul and u 2 are functions of u and u. 

( 5. 15 0) 

The above 

operator was obtained in [ 68], see also the discussion in §4. l. 2B. 

The invariant solution corresponding to the CAO (5. 149) i s the two -

soliton solution; what is the invariant solution corresponding to 

the admissible operator (5. 15 0)? We conjecture that this solution 

is the one describing the inte raction of two wave-train solutions . 

The conj e cture is based on the a nalog y with the one-soliton case: 

The CAO x
0 

characterizes the soliton solution and the corresponding 

admissible operat or z
0 

c harac t eri zes the wave-train soluti on . 
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Similarly the GAO X characterizes the two-soliton solution; 

therefore, we expect the corresponding admissible operator Z to 

characte.rize the two-wave-train solution. Our conjecture is 

consistent with the fact that the equation n = 0 (where n is 

defined in (5.150)) contains the two-soliton solution; (this was 

proved by Lax [ 70] ). Our speculation would be proved by proving 

that the solution of equation n = 0 describes the interaction of 

two wave-train solutions of the KdV equation. 

Our conjecture is further supported by considering the case 

of a BT: A BT define s infinitely many GAO; howeve r, it also 

defines infinitely many admissible operators (see for example [ 50]). 

Therefore, in this case to e ach GAO there corresponds an ad­

missible operator. Furthermore each admis sible operator generate s 

a conservation law (see §4. 2); this underlines the connE;!ction be­

tween BT and conservation laws. 

We remark that proving our conjecture would also clarify 

the connection between the e x istence of a two-soliton solution and 

the existence of an additional cons e rvation law for the equation 

possessing the two-soliton solution (when a BT does not exist): 

The two-soliton is the invariant solution under some GAO; to this 

GAO corresponds som.e admissible operator which g enerates a c on­

servation law (using the algorithm developed in chapter IV). 

In concluding we point out that proving the above conjecture 

would unify the two approaches proposed here for obtaining inva r i­

ant solutions : Let us call (for the sake of this argument) a solu­

tion invariant under the action of an admissible LB operator an 

invariant solution and the solution invariant under the action of -a 

GAO a restricted invariant solution. Proving our conjecture would 
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mean that every restricted invariant solution may be regarded 

as an invariant solution. However, the concept of a CAO would 

still be useful because it is in general easier to find a restricted 

invariant solution than the corresponding invariant solution. 
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APPENDICES 

In Appendix I, the sets of equations (a) and (j3) (see §2. 3) 

are completely solved. 

In Appendix II, some invariants cubic in the momenta are derived 

for potentials of the general form 

2 2 
V = V(x + vy ), v = constant. 

In Appendix III, the calculations of §2. 4B, regarding the most 

general two-center potentials admitting quadratic invariants, are 

elaborated . 

In Appendix IV, all the LB operators, linear in u and in all 

first and second order derivatives of u, 

equation 

xu - u = 0, yy XX 

which leave T ricomi' s 

invariant are found. This example also serves as an illustration of 

how to obtain admissible LB operators for linear e quations . 

In Appendix V it is shown that the most g eneral BT o f the 

form 

u - f(u, v, v ) = 0, 
X X 

mapping solutions of the equation 

u - F(u) = 0, 
xy 

among themselves is given by 

u - av - CI>(u + av- g (u- av)) = 0. 
X X 

In Appendix VI it is shown that the only type of equations, of 

the g eneral form 
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u = F(u), 
xy 

F" (u) =I= 0, 

which admit higher order symmetries (i.e. LB as opposed to Lie 

point) are those for which 

F"(u) - A.F(u} = 0. 

This is consistent with the fact that the above type of equations are 

the only ones admitting a BT. This appendix also provides an illus-

tration of how to derive admissible LB operators for nonlinear equa-

tions. 

It has been observed that all the well known BT can be trans-

formed to the Riccati equation. Further, it is well known that the 

Riccati equation possesses a nonlinear superposition principle. 

The nonlinear superposition laws have been emphasized by Ames 

[ 81] . In Appendix VII we review some of the above results and show 

that all BT considered in Chapter V are special cases of the gener-

alized Riccati equation. 
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APPENDIX I 

I. The general solution of the set (a) 

The compatibility equations for a 1 are: 

al + al ::: 0 
Xl XI XzXz 

( 1) 

al + al ::: 0 
xl xl x3x3 

(2) 

(at Xz Xz + al ) ::: 0 
x3x3 Xz 

(3) 

Therefore 

(4.1) 

(4.2), (4.3) by cyclic permutation. Using (4) in the set (a ) 

we obtain: 

( 5 .1) 

Therefore 
1\ 

a1 == a1 (x)+at y2 x+~1 z 2 x+'Y1 xy+o1 xz+E 1 yz+t;1 y2 +r11 z 2 +e1 y+K1 z, 

az, a 3 by cyclic permutation. Substituting the above in (a) we 

obtain (2.16) . 

II. The general solution of the set ({3) 

The compatibility equations for b.. are: 
1J 

\7 2 (b .. ) ::: o, 
X., X. 1J i * j; i, j ::: 1, 2, 3 

1 J 

where 

\JZ 
x.,x. 

1 J 
(2-)z + (2-)z • - ax. ax. 

1 J 

Also 

(7. 2 ), (7. 3) are obtained by cyclic permutation. Eliminating b12 

from (7.2), (7.3) and replacing - bz3 XzXz 
by we obtain 

(6) 

(7 .1) 

(8 .1) 
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However.> (from (f3. 7)) and therefore 

(8.1) together with (8.Z) yield : 

\74 bl3 = v4 bz3 = o. 
x 1 ,x2 x1 ,x2 

Cyclically we obtain the following set for b12 : 

and 

Adding (9.1) and (9.Z)_,and using (9.3): 

Finally using (9. 4) in (9 .1) and (9. Z ): 

Integrating equation (10) we get: 

b1 2 = A(z)xy+A1 (z)x+A 2 (z)y+A3 (z)+A4 (x, y)z+As (x, y), 

b 23 , b 31 are obtained by cyclic permutation where x-y-z, 

A-B-C, A .-B.-C . , 1 ~ i ~ 5. 
1 1 1 

To determine the form of A, A., B, B., C, C. we 
1 1 1 

must substitute (13) in (8) and (9). Substituting (13) in (8): 

\7 2 A 4 = \7 2 As = 0, x,y x,y 

(1Z.Z), (12.3) are obtained cyclically. 

Substituting (11) in (7.1): 

A 4 (x,y)z+As (x,y)+B 1 (x)y+B~(x)+B4 ('y,z)-C 1(y)x-
YY YY z 

c; (y)- c4 (z, x) = 0 
. z 

Differentiating the above with respect to z and using 

(8. 2) 

(9. 3) 

(9. 4) 

(10) 

(11. 1) 

(JZ .1) 

(13 ) 
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A4 (x,y) + B4 (y,z) + C4 (z,x) = O. yy ZZ XX 

A 4 yy = a 41 (x) + a~2 (y) 

B4zz = b41 (y) + b~2 (z) 

c 4 xx 
= c 41 (z) + c~2 (x) (14) 

c~2 (x) = - a41 (x), c41 (z) = - b~2 (z), b41 (y) = - <1'~2 (y). (15) 

Therefore 

2 
A4 = a41 (x)f + a42 (y) + a43 (x)y + a 44 (x) ..~ (16.1) 

similarly for B4, C4. 

Using (16) in (12) we obtain: 

(17. 1) 

(15) yields: 

(18. 1) 

Using the above expressions (and the ones obtained from the 

above cvclically) in (13) we get: 

As yy - -
x2 

B' (x)y + C' (y)x- Bt (x)+ C~ (y) + 'Y42 z + '{4ax 

2 

- l344f - 134BY- l349 - 1346 + Y410 • (19. 1) 
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Using (19 .1) and Asxx + As YY = 0: 

B(x) 
x4 x3 xz 

f34x + f3s = f3I 24 + f3z 6 + f33 2 + 

Bz (x) 
x4 x3 xz 

f3ax [39 = 'Yzz;r + [36 6 + f37- + + 2 

4 3 z 
cl (y) = f3z{;i + f36 f + c1o Y.. + cu y + Ctz 2 

(2 0) 

Also As is now completely determined. A, c, Az, Cz, AI , 

B 1 are obtained by cyclic permutation where [31 = a 1 = 'Yl • 

Substituting (16), (17), (20) in (11) and then (11) in ([3. 7) we 

obtain (2 .17), (2 .18) . 
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APPENPIX .JI 

In this appendix we shall investigate cubic invariants 

admitted by potentials of the general form 

2 2 
V = V (x + vy ) . (1) 

The most general invariant cubic in the momenta is given by 

(see lemma 2 .1) 

3 3 2 2 3 2 2 
13 = ap 1 + {3p2 + yp lp2 + c5 PzPl + Em + splm + 9p2m 

2 2 
(2) 

+ kplm+ X.p2m+pplp2m+al(x)pl +a2(~)p2 . 

Equations (2) and (2. 27c) define the within the constant 

parameters a, {3 .•. p. Substituting these djki in (2. 29h} and using 

equation (1) to evalute the relevant derivatives of V, we obtain 

an equation coupling V and the parameters a ,{3 •. ·1--l· Solving this 

equation we find that 

i) For v = 1, no new nontrivial cubic invariants are found • 

ii) For v * 1, the parameters k, X. generate nontrivial cubic 

invariants: The parameters k, A. correspond to 

dill = -ky, d222 = X.x, dll2 = kx, d221 = -A.y. (31. 

Using (2.) and (3) in (2.27h) we find 

2 2 2 
[ (3v-13)vk-(3 - 13v)X.) V" + 2( (-X.-2kv+3vX.)x + (kv-3k+2A.)v y] V"' = 0, 

where 

V' = dV 
dz ' z 

2 2 = x +vy . 

(4) 
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1. V" =0 
1 2 1 2 

(V = 2 x + z-vy ) 

Then k,A are arbitrary. Using (3) and (1) in (2.29e,f) we 

find 

2 2 2 3x 2 2 2 
a 1 = 3y(kx + v Ay ), a 2 = ---;-(kx + v AY ) • (5) 

However, because equation (2. 29h) is only a necessary condition 

we have to check if the djk.e as defined by 

defined by (5) satisfy equations (2.9) with 

(3) and the a. 
1 

2 2 
V = tx + tvy 

straightforward substitution shows that this is the case iff 

k{v-9) = 0, A(9v-1) = 0 . 

Therefore, either v=9, A=O and k=aribtrary or v = 
1 
9' 

as 

A 

k=O, A=arbitrary. Finally using these values in {5) w e obtain: 

Potential Invariant 

.!.x 2 9 2 2 2 1 3 
2 + zY plm + 3x ypl- 3x P2' 

.!.x 
2 1 2 2 1 3 1 2 

2 + 18 y ' p2m + TIY pl- 3xy P1· 

2. V" =I= 0 

Then equation (4) makes sense iff 

{kv-3k+2A)v = (-A-2kv+ 3vA), or vk = A. 

Then it becomes 3zV"' +8V' = 0, or 

2 

V Az- 3 + Bz. (6) 

Letting 

dlll = -y, d222 = vx, dll2 = x, d221 = -vy (7) 

in (2. 29e, f) we find 

2 3 2 
a = 6y(x + v y )V', 

1 
_ -6x ( 2 + 3 2)V' az - -V- X V y , 

F inally u s ing (6 }, (7), (8) in (2 .9) w e find B= O, v = -1. 

(8) 
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APPENDIX III 

In this appendix it is proved that the most general two-

center potentials admitting constants of motion quadratic in the 

momenta are: 

i) 
2 2 v 1 = ap + {3p o , (1) 

with corresponding invariants given by equations (2 . 35 ), (2. 36 ), 

and 

ii) 
2 2 -1 -1 

v 2 = aop + aop o + ap + [3p ' (2) 

with corresponding invariant given by equation (2. 37). 

In §2. 5 . it was shown that the most general constant 

of motion quadratic in the momenta is given by 

where all the greek letters denote constant parameters. Letting 

r2 • 
2 

bllpl + 
2 

b22P2 + 2bl2plp2 + c(x, y), (4) 

we obtain 
1\ 2 

bll = a-oy + sY 

1\ 2 
b22 = [3 + £X + l;,x (5) 

2bl2 = y + ox - £Y -2 s xy 

Let 

V = F(R) + G(R0 ) , (6) 

where 

2 2 2 2 2 2 
R = p • x + y , R 0 = Po = (x-x0 ) + y (7) 

The b . . , defined by equation (5 ), are coupled with the potentia l 
lJ 

V through the equation ( o. 1) (when r es tricted to two dimensions). 
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L e tting 

equation (o. 1) yields: 

{ 2(~-~)xy + y(y
2 
-x

2
)-oxR- EyR} F" + t{ -Ey-ox} F' + 

1\ 1\ 2 2 2 
{ 2(a-{3)(x-x

0
)y + y ( y -(x - x

0
) ] + o[ -x(R+x

0
) + 2x

0
R] (8) 

2 3 2xoz;, 
-Ey(R-x

0 
)-2 z;,x

0
y(R-2x

0
x)}G" + z{- £(1 + -£-. )y-ox-x

0
o}G' = 0 

i) 

Then the potential V takes the form 

v = aR + {3R0 . (9) 

1\ 1\ 

From equation (8) it follows that a, {3,y are arbitrary, and 

o = 0; also 

= 0 (10) 

Therefore, 

s = arbitrary and E = (11) 

Therefore the potential V g iven by e qua tion (9) admits the 

following invariants: 

a 

{3 

(12) 
y 
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Integrating equations (y ) we determine the functions 1 < i < 4 . 

Then the formulae (2. 35), (2. 36) follow. 

ii) G" 'sf< 0 

1\ 1\ 

From equation (8) it follows that a = {3 = y = o = 0; also £ :#- 0 , 

iff 

3 2 2 sxo 3 2xoz;, 
RF" + -F' = - [ R-x + -- (R-2x x)]G" - -(1 + -- )G' (13) 

2 0 E 0 2 o 

The above equation has a nontrivial solution iff the coefficient of 

G" is a function of R
0 

only. Let 

= -1 (14) 

and this coefficient becomes R
0

. Then equation (13) reduces to 

R F" + 1. F I = R G II + l G I 
2 0 2 ' 

which can b e solved to yield the potential (2). The invariant 

corresponding to s = arbitrary and E = -z;,x
0 

(see equation (14)) 

is given by 

Integrating equations (y) we determine c(x, y) and then the 

invariant given by (2. 37) follows . 
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APPENDIX IV. 

In this appendix we derive LB operators of the form 

X = (1) 

admitted by Tricomi~ equation 

xu -u = 0 , 
YY XX 

(3. 15) 

where 

D = au + bu + cu + du + fu + g 
x y xy yy 

(2) 

and a, b, d, f, g are functions of x and y. 

Note that the operator (1) with D defined by (2), is the 

most general LB operator linear in u and in all first and second 

order derivatives of u; the term u is missing, but this is 
XX 

without loss of the generality as u can be expressed in terms 
XX 

of u ' yy 
using equation (3.15). 

Extending the operator X and applying it to equation (3. 15) 

we obtain 

2 2 
X(3.15) = x(D) D-(D) D y X 

Therefore, X is admissible iff 

2 2 I x(D ) D - (D ) D 
y X (3.15) 

= 0 (3) 

Writing the above equation in full, using equation (3. 15) and its 

differential consequences to eliminate u and higher x-derivatives, 
XX 

and then equating to zero the coefficients of u and its derivatives 

we obtain: 
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u: xa -a = 0 ( 4) YY XX 

u : xb -b -2a = 0 ( 5 ) X YY XX X 

u : XC -c + Zxa = 0 (6 ) y yy XX y 

u : xf -f + 2xc -2xb -b = 0 (7 ) yy yy XX y X 

u xd -d + 2xb -2c = 0 (8 ) xy YY XX y X 

u 2xd -2£ = 0 (9 ) yyx y X 

u Zxf -2xd -d = 0 (10) YYY y X 

0 
(u) : xgyy-gxx = 0 (11) 

To solve equations (5) and (6) we introduce the auxiliary functions 

tP and 0 defined by: 

olo ill xb 
'~'x y , 

-2a + tP -= b y X 

Oy • c 
X 

-2xa + 0 "' xc . 
X y 

(12. a) 

(12. [; ) 

(13. a ) 

(13. b ) 

Note that the compatibility equation of equations (12) (tPxy = tPyx) 

implies equation (5) and the compatibility equation of equations (13) 

implies (6). Now equation (8) yields 

~ (d ) + 2tP -2c = 0 , 
X X X X 

or 

d = xA(y) + 4xc -4xtP . (14) 

Equation (9) implies 

f = X d 
X y (1 5 ) 

Then, using equation (14) and (15) equation (7) can be integ rate d 
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to yield 

b = 4xa - ixA' ( y). (16) 

Now solving equation (5) for a, we obtain 

1 3 
a = - 6QX A'"(y) + B(y) . (17) 

Using the above in (4) we find 

A'"" = 0 B" = 1 
--A"' 10 

(18) 

To completely determine d we need lJ;, which is found by 

integrating equations (12 ); 

lJ; =- 9~ 6 x
6

A"" +! x
3
B' - ~x 3A" + 6jBdy -iA + K, 

(19) 

where K is a constant. Then d and f follow from equation 

(14) and (15 ): 

d = 4 4 f 30 X A" + X [ 4D(y) -24 Bdy + 3A -4K] ' (20) 

f = 1 6 
- -x A"' 45 

3 
+ \ [ 4D'-24B + 3A'] + 97(y). (21) 

Now using equation (8) we can determine c: 

4 3 
c =-xa-

3 y 
1 3 
5x A" (y) + D(y) . (22) 

Using the above expressions in (6) and (7) we deduce that, 

A" = 0, D" = 6B', ; 97' = 4D-24jBdy + 3A-4K. ( 23) 

Equations (23) and (18) yield, 

B = ay + {3 , A = yy + o; 2 
D = 3ay + 6[.3y + s, 

(24) 

where all the greek letters denote constant parameters. There-

fore, 
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B, b 4xB-ixA' 
4 3 

a = = ' 
c = -x B' + D, 

3 

2 1 3 2 (25) 
d = -x cp' f = 3x - cp' + cp 

3 3 

Finally, equations (23 ), (24) and (25) completely determine 

a, b, c, d, f; and g is any solution of equation (3. 15 ). Hence the 

LB operators given by equations (3. 16) follow. 
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APPENDIX V 

In this appendix it is shown that the most general BT of 

the form 

u -f(u, v, v ) = 0 , 
X X 

mapping solutions of the equation 

u -F(u) = 0 , 
xy 

among themselves, is given by 

u -av -ljl(u+av-g(u-av)) = 0 
X X 

where a = constant, and ljl and g depend on F(u). A 

special case of the above is 

u -v -ljl(u+v) = 0 
X X 

which was used in §5. 4. 3. 

As s uming that 

is a CAO for equation (5. 49) we obtain 

[ u -D f-F'(u)(u -f)] (
5 49

) = 0 , whe n T = 0. 
xxy xy x . . 

Therefore, 

F' (u)ux -ux(f11 uy +£12 v y +£13F(v))-v x (£21 uy +£22 v y +f23F(v)) 

(5 . 49) 

(1) 

(5. 51) 

-v xx(£
31

uy +f
32 

v y +f
33

F(v) )-f
1 
F(u)-f2 F(v)-£3 F• (v)v x -F' (u)(ux-f) = 

0 ' when T = 0 , (2) 

where f % QL 
3 av 

X 

Taking the y-derivative of 

T, 

( 3 ) 
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T o solve (2) we replace u by f, 
X 

u be the r i g h t hand side y 

of ( 3) (with T = 0), and the n equate to z ero the coefficie nts of 

vxx' v v ' X y v and v From the coe fficie nts of v we 
X y 

deduce that 

or 

f = av + cj>( u, v ) . 
X 

From the coeffi cient of v v w e 
X y 

a<1>21 +<!>22 acj>ll +<!>12 

where 

<1>2 

,j..l iii! li 
't' a u ' 

= 

_Q.t 
<1>2 - av 

cj>l 

L et 

u iii! u + av , v : u-a v , 

and equati on ( 5) becomes 

1 < <!>2 ) - 1 < <!>1 ) 
u =- u 

<!>2 <!>1 

or 

XX 

(4) 

deduc e that 

( 5) 

(6) 

( 7) 

Writing equation ( 7) in t e rms of the u , v variables and integrating 

we fi nd 

cj> = cj>(u+a v, g(u-a v)) . 

To compl etely determine cj> in te r ms of F(u) we must equate 

to z e ro the coefficie nts of v and v . 
X y 

This is done in 

§5 . 4 . 3 for the special case that cj> = cj>(u+av) . 
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APPENDIX VI 

In this appendix it is shown that the only type of equations, 

of the general form 

u = F(u). F"{u) ¢ 0 
xy (5 . 49) 

which admit higher order symmetries are those for which 

F II { u) - X.F ( u) = 0 . {1) 

To prove the above statement we should consider the 

operator 

a 
X = n au ' (2) 

where n = n(u, u ' u ' u 'u 'u ' u ' ... ) . 
X y XX XXX yy yyy 

However, we 

only present the proof for the case that 

n = n(u, u , u , u ); 
X XX XXX 

(3) 

the generalization is straightforward. The operator X, where 

n is defined by (3) is an admissible LB operator of equation 

(5. 49) iff 

D n-F'(u)n f = o (4) 
xy (5. 49) 

Writing the above equation in full, using equation (5. 49) and its 

differential consequences to replace u 
xyx' u 

xyxxx 
by 

lower x-derivatives, and then equating to zero the coefficients of 

uxxxx, u u ' ... ' y X 
we obtain the following: From. the coefficient 

of u we deduce that 
xxxx 

n = f(u, u 'u ) + u . 
X XX XXX 

(5) 

Then, from the coefficients of u u ' y X 
u u ' u u ' y XX y XXX 

u u ' 
X XXX 

u we deduce that 
XXX 
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where a and {5 are constants and a(u ) is an arbitary 
X 

function of u . 
X 

Then, equation (4) reduces to 

( F(u)a"(u ) + 3u F"(u)]u + ag + u F 1 (u)a 1 + {3u
3 

F"(u) + 
X X XX X X 

. 2 
+ u F"' ( u) - auF 1 

( u) - F 1 
( u )a = 0 

X 

(6) 

(7) 

Equating the coefficient of u 
XX 

to zero, in equation (7 ), we 

obtain 

where A 

and 

where y 

F"(u) 

F(u) = 1 
3 

a"(u ) 
X 

u 
X 

= A. ' 

is a constant. Therefore 

F" (u) - AF(u) = 0 
' 

a(u ) 
A 3 · 

0 = - -u + yu + ' X 2 X X 

and 0 are arbitrary constants. Substituting 

(8) 

(1 ) 

(9) 

a(u ), 
X 

as defined by equation (9 ), in equation (7) and using (1) (where w e 

assume A :1-: 0) we deduc e that (7) is identically satisfied iff 

a=O, {3=0, o=O, y = arbitrary constant (10) 

Equations (5) , (6), (9) and (10) imply that, the equation ( 5. 49 ) 

admits the LB operator (2), where 77 is given by (3) iff 

equation (1) holds; then the operator X is given by 

>-- 3 a 
X = (- - u + u + yu )-;-2 X XXX X u U 

(11) 

Note that the pressence of the term yux' in the a bove expressio n 

is well justified as the equation ( 5 . 49) is invariant under 

x -transla tion, i. e. 

u 
X 

if admits the o p erat or 

_Q_ 
au 
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APPENDIX VII 

In this appendix we review some results about the nonlinear 

supperposition of solutions of nonlinear first order equations. These 

results are important in connection with the BT c onsidered in 

chapter V, because all these BT can be thoug ht of as a s pecial case 

of a generalized Riccati equation (s ee below for the definition of 

this equation). 

Vessiot [ 82] in 1893! pos ed the following interesting q uestion: 

Which equations of the form 

u = F(u, x), 
X 

(1) 

have the property that, any solution u of e quation (1) can be 

expressed in terms of a fixed function of n o ther solutions of 

the sam.e equation {1)? That is, for which equations (1) there exist 

a function f such that 

where u , u. ; 1 < i < n, 
1 

(2) 

are solutions of {l)? Vessiot with the 

above question posed the problem of determining all equations (1) 

which possess the nonlinear superposition law expressed by 

equation (2}. He solved this problem, using group-theoretical 

arguments: 

An equation {1) possesses a nonlinear superposition law 

expressed by (2) iff it can be expressed in one of the following 

three forms: 

A A 
1) u = U(u}X(x} 

X 
(3) 

A A 
where U and X are arbitrary. functions of u a nd x 

respectively. 
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2) ux = a{x)yl {u) + b{x)y 2(u) ' (4) 

where a and b are arbitrary functions of x and are 

two linearly independent solutions of 

d
2 

d ~ + >..(u) ~ + >..'{u)y = 0 
du2 dx 

(5) 

where >..(u) is an arbitrary function of u. 

3) ux = A{x)V
1
{u) + B(x)V 

2
(u) + C(x)V 

3
{u) , {6) 

where A, B and C are arbitrary functions of x and v
1

, V 
2

, 

V 
3 

are three linearly independent solutions of 

d
3 v dV 1 

du3 + p(u) du + 2 p'(u)V = 0 ' (7) 

where t-t(u) is an arbitrary function of u. 

It is interesting that letting u = qJ {U) equations {3), {4) 

and (6) can be transformed to equations (8), {9), and (10) 

respectively, where 

U + P(x)U = 0 , 
X 

Ux + P(x)U = Q(x), 

U = p(x)U
2 + q(x)U + v(x) 

X 

(8) 

(9) 

(10) 

Clearly equation (10), the Riccati equation, contains equations (8) 

and (9). Similarly equation (6) contains equations (3) and ( 4); 

equation (6) is called the generalized Riccati equation. Therefore, the 

Ves siot result can be restate d in the following form.: 

An equation (1) possesses a nonlinear superposition law 

expressed by (2) iff under the transformation u = qJ {U), it can 

be transformed to the Riccati equation. 
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Now we show that the BT considered in chapter V are of 

the above type {if t is regarded as a parameter): 

i) The Sine-Gordon equation 

The BT is given by 

{ ) {2 . v ) u {2 v) . u 
UX = V X + a Sln z COS 2 + a COS 2 Sln 2 

Regarding the function v as some given function of x and t, 

the above equation is of the type {6) iff there exists an ,u{u) such 

that equation {7) has as solutions 

Clearly 

,u{u) = i ' 

is the proper ,u{u). 

u = cos 2 

ii) The KDV potential equation 

. u 
== s1n2 

The BT is given by {see equation {5. 91)) 

u 
X 

= - ~ u
2 

+ Au -
3
y {Ax + A2

2
) + k . 

The above equation is already of the Riccati type; 

v1 = 1, v 2 = u, 

and 

.u = 0 

2 v = u 3 

(11) 

( 12) 

( 13) 

(14} 

Similarly, it is easily verified that the BT of the modified KDV 

potential equation, as well as the Cole-Hop£ linearization of 

Burgers equation, are of the above type. It is also interesting 

that the BT derived in §5 . 5. 2 (see equation {5. 121)) is also of the 

Ricatti type. 

Ricatti type. 

Finally, the equation (5.107) is already of the 
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It is well known that the Riccati e quation (and the refore the 

generalized Riccati equation) can be linearized . This e stablishe s 

the connection with the inverse scattering method . Also, for the 

Riccati equation, the superposition law (2) takes the form 

= k (15) 

where U., 1 < i < 4 ar e solution of (10) and k is a c o nstant. 
1 

The above superposition law is obviously reflecte d to a s imilar 

one for the generalized Riccati e quation . This provides th e e x -

planation for the existence of the Bianchi diagrams [ 8 3 ) 
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