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ABSTRACT

The properties of capillary-gravity waves of permanent

form on deep water are studied. Two different formulations
to the problem are given. The theory of simple bifurcation
is reviewed. For small amplitude waves a formal perturba-
tion series is used. The Wilton ripple phenomenon is re-
examined and shown to be associated with a bifurcation in
which a wave of permanent form can double its period. It

is shown further that Wilton's ripples are a special case
of a more general phenomenon in which bifurcation into
subharmonics and factorial higher harmonics can occur.
Numerical procedures for the calculation of waves of finite
amplitude are developed. Bifurcation and limit lines are
calculated. Pure and combination waves are continued to
maximum amplitude. It is found that the height is limited
in all cases by the surface enclosing one or more bubbles.
Results for the shape of gravity waves are obtained by
solving an integro-differential equation. It is found that
the family of solutions giving the waveheight or equivalent
parameter has bifurcation points. Two bifurcation points
and the branches emanating from them are found specifical-
ly, corresponding to a doubling and tripling of the wave-

length. Solutions on the new branches are calculated.
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INTRODUCTION

Since the last century, there has been an undecaying
interest in the study of periodic, irrotational, permanent
surface waves on a deep heavy inviscid fluid. Most of the
work done considers gravity as the only restoring force.

In his now classic paper of 1847, Stokes (27) proposed the
existence of a solution for the non-linear problem as a
perturbation series in the amplitude. He calculated the
first three terms of the series and found that the speed
of propagation ¢ depends on the amplitude. When he revised
this paper in 1880 (28), he found it simpler to reformulate
the problem using the complex potential as the independent
variable. He also added an appendix proving that if the
surface has a cusp, the internal angle is 120°. Since, as
the amplitude grows, the crests become steeper and the
troughs shallower, he speculated that the highest wave
would have a 120° corner and a wide shallow trough. Michell
(17) and Yamada (32) incorporated this singular behavior
into the approximate calculation of waves of maximum
height, and found that ©/JI=0.MI2 , where h is the verti-
cal distance between crest and trough, and A is the wave-
length. Schwartz (23), using Padé approximants to sum a

Stokes type expansion to high order, calculated numerical
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solutions for waves of any height up to almost the maximum.
His surface profiles tend to those of Michell and Yamada,
as the waveheight increases. Longuet-Higgins (13), using
the same method as Schwartz, found that the wavespeed and
the energy are not monotonic functions of the waveheight,
and established some integral and differential properties
of gravity waves. Longuet-Higgins and Fox (15) constructed
asymptotic expansions close to the 120° -cusped wave of
greatest height and showed that both the wavespeed and the
energy oscillate infinitely often as the limiting wave is
approached, and moreover, the maximum slope is greater
than 30°. The stability of finite amplitude, steady gravity
waves to infinitesimal sinusoidal disturbances has also
been investigated by Longuet-Higgins (14). He determined
that for a superharmonic perturbation (the wavelength of
the perturbation is less than that of the unperturbed
steady wave) there is an instability at h/j=0.139 ’
which is also the value for which the wavespeed has a max-
imum. When the perturbations are subharmonic, he found
that for small amplitudes all modes are neutrally stable;
become unstable when the waveheight reaches a certain value
corresponding to the Benjamin & Feir (1) instability; and,
as the amplitude continues to increase, become stable and
then unstable again at about h/A=0.129 .

If we include the effects of surface tension, the re-

sults are fewer. However, if surface tension is the only
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force, Crapper (4) solved the problem analytically. He
found that the wavespeed decreases monotonically with the
waveheight, and that the highest wave encloses a bubble.
For higher amplitudes the surface crosses itself making
the solution unphysical.

Harrison (6) approximated the solution to the problem
with both surface tension and gravity by a Fourier series
using Stokes' hypothesis that the nth Fourier coefficient
is nth order in the amplitude. He calculated three terms
and found that the approximation broke down when the wave-
length was such that the wavespeed was the same as the
speed of waves with a half or a third of the wavelength.
He showed that the profiles for waves of very short and
very long wavelength are essentially different. Wilton (31)
extended the expansion to fifth order and showed how to
correct the inconsistency at the critical wavelengths
AN-_-.:_“(NT/PS)& , where N is an integer greater than 1, T
the surface tension, p the density of the fluid and g the
acceleration due to gravity. He proposed that at the crit-
ical wavelengths, the first and Nth harmonics are of the
same order and all the others of smaller order. He found
further that two different solutions exist at A,= 2“(1"79;3”'.
the so-called Wilton ripples.

Pierson and Fife (21) using the method of strained
coordinates extended Wilton's solutions to wavelengths

near Al( A1=2.44 cm in water). Nayfeh (19) obtained a
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second order expansion valid near AS(.A3=2.99 em in water)
using the technique of multiple scales and found three
different profiles.

Schooley (22) observed experimentally in wind generated
waves profiles close to those predicted by Wilton near
X=2.bb cm. However, McGoldrick (16) using a wavemaker
could not produce a uniform profile for A=2.44 cm. The
physical existence of capillary-gravity waves near the
critical wavelengths is still an open question.

Results about the mathematical existence and unique-
ness are few and most are limited to small amplitude. For
gravity waves (1=0), Nekrasov (20) formulated the problem,
for symmetric waves about verticals through the crest and
trough, as a non-linear integral equation. He proposed a
series solution and proved the convergence for sufficiently
small amplitude, but did not give the radius of convergence.
Levi-Civita (12) used a similar series to prove the exis-
tence of water waves for sufficiently small amplitude. His
proof yields solutions that are symmetric with respect to
crest and trough, but, contrary to popular belief, he did
not prove that all gravity waves mﬁst be symmetric. More
recently, Krasovskii (9) gave an existence proof valid for
waves of finite amplitude with slopes measured from the
horizontal less than 30°. Keady and Norbury (7) reformulated
the problem using the inverse of the speed at the crest

as the expansion parameter and proved convergence of the
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series for all crest speeds down to but not including zero.
The highest wave with an stagnation point at the crest is
the only wave not included in the proof, which allows even
for the existence of waves with slopes greater than 30“.
Garabedian (5) using variational methods gave another
existence proof and, under the assumption that there is
only one crest and trough per period, proved that the waves
are symmetric about the crest and trough. A corollary of
his proof is the uniqueness of symmetric waves with the
same crests and troughs. He could not prove symmetry for
waves whose crests or troughs have unequal heights. Toland
(30) proved the existence of the highest wave having a
stagnation point at the crest, and showed that the crest
has to be either a 120%° cusp or the limit point of a
sequence of steep ripples.

For capillary-gravity waves, Sekerzh-Zen'kovich (24)
gave the outline of an existence proof. Zeidler (33) did a
comprehensive study of existence and uniqueness proofs,
together with the functional analysis methods used. One of
the most important results is his constructive proof of
existence and uniqueness for capillary-gravity waves of
sufficiently small amplitude for all wavelengths, except
the critical ones found by Wilton. He supposed symmetry of
the waves.

The existence, uniqueness and symmetry of capillary-

gravity waves is still not completely solved. They exist
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for sufficiently small amplitude and it is likely that
they cease to exist when the amplitude reaches some finite
critical value. Gravity waves do not appear to exist when
Wi o.142. Also, capillary waves cease to exist for
h/\ 7 ©-730. The limiting wave touches itself and encloses
a bubble but the shape is otherwise smooth. The results of
Wilton (31), Pierson and Fife (21) and Nayfeh (19) show
that capillary-gravity waves are not unigue, even for wave-
lengths not equal to the critical ones. It is not obvious
that permanent nonsymmetrical capillary-gravity waves of
sufficiently large amplitude do not exist. Wilton ripples
are not symmetric with respect to all their crests or

troughs.

Our main objective is to investigate the properties
of capillary-gravity waves, analytically for small ampli-
tude and numerically for amplitudes up to the maximum. We
will study the bifurcation of waves into subharmonics and
fractional higher harmonics, and show that finite amplitude
capillary-gravity waves are not unique. We will also give
evidence of nonuniqueness for gravity waves. We will re-
strict ourselves mainly to symmetrical waves about a crest
or a trough. But for gravity waves we will explore the
possivility of nonsymmetrical solutions. The mathematical
existence and stability of the solutions are beyond the

scope of this work.
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In chapter 1, the physical problem is established and
the mathematical equations derived. Some integral and
differential properties of water waves are formulated. A
review of simple bifurcation and arclength continuation is
given.

In chapter 2, we consider the form of weakly non-
linear waves of permanent shape on deep water under the
effects of both surface tension and gravity. A formal per-
turbation series is used to find uniformly valid solutions
and to establish the bifurcation of waves. Wilton ripples
are a special case of this phenomenon.

Chapter 3 is the development of the numerical proce-
dures used to solve the problem for finite amplitude.

Chapter 4 contains the numerical results for finite
amplitude capillary-gravity waves.

Chapter 5 is the numerical study of high amplitude

gravity waves and their subharmonic bifurcation.



CHAPTER 1

FORMULATION OF THE PROBLEM

1.1 The Fourier series expansion.

We consider periodic, steady or permanent, one-dimen-
sional, inviscid, irrotational, progressive water waves of
finite amplitude on deep water otherwise at rest, under
the influence of both gravity and surface tension. The
density of the upper fluid, usually air, is neglected.

We take rectangular coordinate axes Ox'y', with Ox'
horizontal and Oy' vertically upwards in a frame of refer-
ence moving with the wave. Let x=x+*iy denote the complex
physical coordinate. We study the wave in a window of
horizontal extent L, where L is an integral multiple of
the wavelength A, that is defined as the shortest period
of the wave. Let ¢ be the wave speed and W the height,
defined as the vertical distance between the top of the
highest crest and the bottom of the lowest trough. Denote
the components of the velocity vector in the direction 0x'
and Oy' by 4 and v, respectively, the pressure by p and

the acceleration of gravity (positive downwards) by qg. The
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density o of the fluid will be taken equal to 1 with no
loss of generality.

Since in this frame of reference the motion is steady,
the equations of motion for an inviscid, incompressible

and one-dimensional fluid are

o -
K %ﬁ =0 (1.1.1)
- ; A ¥
u%‘ﬁ-"'@‘%_ 3 ( 2)
u%+\r1bg°=_3-?;‘%a . 1,4 .9
Further, since the motion is irrotational,
A _ M _p (1.1.4)

AX 2y
and there exists a complex potential w=# +i¥ such that

u—id”=%‘>;‘—: . (1.1.5)

For incompressible fluids, we have Bernoulli's integral

L(ur+v?) vy + p=A (1.1.6)

where A is a constant.

Next consider the boundary conditions. Let F(x,y)=0
describe the surface, then the condition that there is no
transfer of matter across the surface gives the first

boundary condition

ug§+w%§3=o. (1.1.7)
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That is, the velocity at the surface is tangential to the
surface. Since the surface is not known a priori, we need

an additional condition. This is the dynamic condition
P: ‘-I_ " (1'1-8)
R

where T is the surface tension and R the radius of curva-
ture of the interface taken positive when the surface is
concave upwards.

Since the surface is a streamline, say V¥Y=0, it is
more convenient to work with z as a function of the complex
potential. The fluid occupies the region W<£O0. See figure
1. The equation of continuity (1.1.1) and the irrotation-

ality of the fluid (1.1.4) give

o P2 L2 -
Vis 22 +2& =0 (1.1.9)
2% 2y

n

on «<0. The boundary conditions imply that

g+ 29Y - 2L = *(1-b) (1.1.10)

on ¥ =0. In (1.1.10) q=]dg/dw|" evaluated on the surface,
Y is the height of the free surface above Some origin.
Bernoulli's constant is written as c*(1-b), where € is the
wavespeed. The magnitude of the wave determines the param-
eter b, but its precise specification depends upon the
choice of origin for Y. For instance, if ¥ is measured
from the mean water level, then the argument in Lamb (10,

section 250) is easily extended to include surface tension
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to show that b=0. (See appendix A). However, we find it
convenient in our discussion to measure Y, and the horizon-
tal coordinate, from a crest or a trough (i.e. a local

maximum or minimum of Y) where w is also supposed to van-

ish. In this case

b=1-Y%e 4 2T, (1.1.11)
where suffix , refers to the origin and w, 1is the speed

at the crest or trough.

We are going to use two completely different methods
to find solutions to the problem. The first one consists
in expressing z in terms of the complex potential w by a
Stokes type expansion. The second is to consider the sur-
face as a vortex sheet and obtain an integro-differential
equation for the problem. This method will be developed in
section 1.2,

Returning to the first method, 1let

o

- ; & .
Z-%+~%TZ <3 eyp(-l“niw/cl_)-p;,_l_lég (1.1.12)

which satisfies Laplace's equation (1.1.9). Since z(0)=0,
we have that ( is given in terms of all the other C, 's.
The unknowns are the complex constants C,, the wavespeed
and the parameter b. They are determined by Bernoulli's
equation (1,1.10) and by the amplitude of the wave.
Equation (1.1.12) evaluated at ¥ =0 gives parametric

equations for X and Y as functions of the velocity
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potential ¢ . Evaluation of q and R and substitution into
(1.1,10), which must be satisfied for 0 ¢<cL , together
with a specification of the amplitude, provides the neces-
sary equations for the unknowns.

We now assume further that the waves are symmetrical
about the origin; that is, we suppose that a crest or a
trough exists about which the wave is symmetrical and
choose it as the origin. It was proved by Levi-Civita (12)
and others that permanent symmetric gravity waves exist.
Zeidler (33) proved the same for capillary-gravity waves.
To our knowledge, it has not been proved that all waves
must be symmetric. However, this is a matter for further
study and we shall restrict attention to symmetrical waves.
Then it can be supposed that the constants Cn=A,*i8,, say,
are real (i.e. B, =0) and the parametric equation of the

interface is

X= S _1:-__6.‘J i o
= mznsnns (1.1.13)
Yool Prigey (1.1.14)
an n S Y‘SF—')J Cie
where
§=zange, o (1.1,15)
&Y. 8 i & 1AL '
and the origin is taken at §=0. Since gsec= (X' "+Y ) and
R..I - (XJYN_X”Y')/(X|2+Y12) 3/2 . where ‘ =d/d-§ i equation

(1.1.10) gives
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- oo 2 °° iy =
3L2An (cos mg - 1) -Te*(1=b) + W[ (147 An cos ng) +(7 A, sin r\s)_]

n

oo oo

+"’_TEJ’{( ’Zb A, sin ng)( Zl nAp sin n5\+(l+ZAncos ns){ Z|_ nA, cos “S)_}

o0 o0 -3/2
xQ(142 Agcosngd+ (Z Ay sinag )} =o0. (1.1.16)

Because of the assumed symmetry, ¢-m is also a crest or
trough and it is sufficient to satisfy (1.1.16) for ocs<ir.,
This equation was given by Wilton (31), with a slightly
different notation.

The unknowns in (1.1.16) are the A,, n = 1,2,..., the
wave speed c, and the parameter b. The period L is supposed
known. Therefore a further condition is necessary to spec-
ify the solution. This is usually taken to be the wave-
height h, say, i.e. vertical distance between crest and
trough, or perhaps the energy of the wave measured relative
to a fixed frame, or the leading coefficient A|;. We found
from experience that none of these parameters were univer-
sally useful for describing the bifurcation phenomenon to
be described in this work, and in fact we have been unable
to construct a parameter which characterized the magnitude
of the wave for all the phenomena in a satisfactory way.
For the computations we used the following method of
characterizing the wave magnitude in terms of an amplitude

parameter £ . The sequence A, A, A,,... is chosen so that
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2 1A\ = 1. Then we take

Z A A, = E {1.1.17)

Different classes of waves correspond to various choices
of the sequence M .« The parameter & may be positive or
negative. This approach is not particularly elegant and
lacks a clear physical interpretation, but it is the most
convenient one we have found so far. The basic difficulty
is the lack of a parameter which is a monotonic function
of a physically significant wave magnitude. An alternative
approach is to specify b as the amplitude parameter.

Our task will be to study the solutions of (1.1.16).

1.2 The vortex sheet formulation.

There are several alternative schemes which reduce
the calculation of the wave profile to the solution of
non-linear integro-differential equations. See, for
example, Nekrasov (20), Milne-Thompson (18) and Bloor (2).
We have found convenient a method of this type based on
the fact that the surface of a water wave is a vortex
sheet.

We work in the coordinate system fixed in the wave,
see figure 1. Since the inertia of the air is neglected,

we can without loss of generality suppose the velocity of
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the air (or upper fluid) is identically zero. Then the
surface of the wave is a vortex sheet of strength qﬂs).
where s is arclength along the surface and q is the tangen-
tial velocity of the fluid. The surface has the parametric
representation Z(s) = X(s)+Ai¥Y(s) . Let w - iar denote
the components of velocity in the fluid. Then from the

Biot-Savart law, the velocity at z = x+ Ly is given by

l)\‘l-v = E‘SI) dS|+J—C_a (1-2-1)
1“ z- 1L(5)

The reason for the {: is that the Biot-Savart law gives
the velocity only to the extent of an arbitrary constant.
The velocity induced by the vortex sheet has equal and
opposite limits as y —s*e. Hence, to make the velocity as
y =+ =20 equal to zero and the velocity as y —-=2 equal to
¢, the additive constant must be 4c.
Plemelj's formula states that
45) ds, = P\LG) &, 3 cmflo) (1.2.2)
2-*2(5) Lisy Ztsy-1(s) 75

The minus sign is for z approaching the surface from above,
and the plus sign from below. P denotes the Cauchy princi-
pal value.

From (1.2.1) and (1.2.2), we have

-i0(%)
u(s)-ivis) = 4(s) € = -4_n sz%%_fs_)ds.»f 40) 4,7-_6.) +5

where BO(s) 1is the slope of the surface measured from the

(1,2.3)

x axis. Also



-e ) (1«2:8)

where the overbar denotes the complex conjugate. Thus

-

©dZ - _ i P 86 __ds, + 4 (1.2.5)
900 = ~& Bl 489 * e

Bernoulli's equation (1.1.10) gives

a(s)z(c‘(t-b)-zgxf(sw%?\(lﬂ i (1.2.6)

Equation (1.2.5) is then a non-linear, singular, integro-
differential equation for Z(s). It can be simplified by a
change of variable. Introduce $ or €& as independent

variables instead of s. Then

S
¢‘5)=jo Q(s)ds, , § = E‘I:sé (1.2.%)
and =0
19*°dL - _sipl dB L1, . (1.2.8)
AR TA sz-m)*lc :

or since the problem is periodic of period L for Z and b

for ¢ , using that

=o clL <L
P db 7 e[ dh__mpleau VLGN (1.2.9)
- L#)- Z!¢:) ré-oc Jo Z(¢)-’Z{¢r)_n\_ LPj)c [L( 4 ] s 9
and writing
L=%735, (1.2.10)

we have
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(i-b-gL ImS+—'E)_£-|+.Lchot[15)_I_LEA]A5 o, {L2011)

where

#zlﬁfm[d_.. olg/|d_5]) . (1.2.12)

To equation (1.2.11) must be added some condition
that specifies the magnitude of the wave. The simplest

procedure conceptually is to specify

h = maxtY)=min(Y) . (1.2.13)

Equation (1.2.11) then has solutions of period 2m in §

3%15= 2= x+iy, X=X(5h ), y=GEH), T (L), b-Blhi), (1.2.14)

provided hq is sufficiently small. These solutions are,

however, not isolated for

X=X &+ i)+ X, ‘3:5(§+d;l’)/|_\+‘jo, C:if(h/f_),

b=bhi) - gLyo/net (1.2.15)

is obviously also a solution of (1.2.11) and (1.2.13) for
arbitrary values of « , x, and y,. Equation (1.2.15)
describes the same wave displaced horizontally and vertical
ly, moving in the same or opposite direction, with the
origin of arclength displaced along the surface. We can
remove the degeneracy by putting the origin of coordinates

and arclength at a crest or trough, i.e. we can require
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X(©) = o, y(o)= 0, %%1(0\:0. (1.2.16)

The three equations (1.2.16) then suffice in principle to
determine the three arbitrary constants in the general
solution (1.2.15). Implementation of (1.2.16) can be made
automatic when the solution is assumed to be symmetric.
However, for T=0 we also prepared a numerical method which
does not assume that the wave is necessarily symmetric.
The purpose was twofold; first to provide a check on cal-
culations assuming symmetry, and second to try and find
nonsymmetrical solutions. Implementation of (1.2.16) then
proved difficult until overcome by a trick; see equation
(3.2.13) of chapter 3.

Equations (1.2.11) and (1.2.16) together with (1.2.13)
or an equivalent measure of wave magnitude, provide us in
principle with a complete set of equations to determine
water waves of finite amplitude. This approach is very

useful in calculating high amplitude gravity waves.

1.3 Some integral properties.

Integral properties of interest are the kinetic and
potential energies per unit length. The kinetic energy X
is measured in a frame fixed relative to the fluid. Defin-

ing W=+ iy =w-cx , we have
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Y L
k=30 | [ 142) dedy= o [ [dBay - 45 (1.3.1)
L | ldz J =ad Y .

The physical and potential planes are sketched in figure 1.
The last equality of (1.3.1) is Stokes' theorem. The inte-
gration along the boundary is in the clockwise direction.
Using the periodicity of the solution, and that the fluid
is at rest at y =-<0, the only contribution to the line

integral is from the boundary OAB where

\I-/:—C\(,: QZ(P‘CX_

It follows that

K=-f\:{ij¢-cSY0\x}:-C§{_ZLKYJS ‘f} 1)

o

Here Y is the mean height defined as

—

Y= Lj de-/$ Y P d5 L3

Substituting (1.1.13) and (1.1.14) into (1.3.3) and inte-

grating we have

OO 1

T-L(Zh 27 A (1.3.4)

1 n

Now, using (1.1.14) and (1.3.4), the kinetic energy is
ooxf 3
K=<l 7 AL (1.3.5)
gw v W

The potential energy has two contributions, Vé due to
gravity and V} due to surface tension. The gravitational

potential energy is measured relative to the mean heightzq.
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[P 4 2T

Vg=1( SY%"‘J""“%L”Z‘ ?‘)% It (1.3.6)

and upon substitution of the parametric egquations for X

and Y
PR

G AL T8 v o [ (2 A wn)(Z Avemn)as

(o)

o 2
-5[Z 8] (1:3:7)
or calculating the integral,
Wb 1T % w37 A A 7 A AnlAnrAnd]  (1.3.8)

The surface tension contribution is
| 4 210 _s_

or T {usdasp ([T -axds 50

or using (1.1.13) and (1.1.14)

an L

V = gi[(HZA cnsns)Jf(Z_A smv\g)] } ) {1.3.:10)

Other important physical quantities are the momentum

per unit length
LY

szj g b, dydx | (1.3.11)

0 -«

the excess flux of momentum due to the wave
L Y

X
S5+ UtT-—b""{ rll: So &D(?'rq"l)djdxr-[o fo d'j 3 = 13420

where ¢ = - 3(3-?) is the hydrostatic pressure in the

absence of waves, and the energy flux per unit length F
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defined by _
L Y
Fep {Drsl g oty Dl E g (1.3.13

Levi-Civita (11), Starr (25), Starr and Platzman (26)

and Longuet-Higgins (13) established the following rela-

tions
[= -28 (1.3.14)
(8
S = HK-3V, (1.3.15)
F e [3T—2V¢53C _ (1.3.16)

Of these three relations, only the first one is valid for
T#0.
Provided g9 # 0, the following relation gives a useful

check on the accuracy of the calculations
29Y = -bc* (1.3.17)

We will prove it following Lamb (10, p. 420) and Starr (25)
in appendix A.
If the amplitude is allowed to vary, the following

differential relation governs the rates of change of K, V3

and c¢

2 (K+Vo)= -c 21 1.3.18
A b G

(1.3.18) is valid only for gravity waves. It is also a

useful check on the numerical results. The proof of (1.3.18)



.-

follows Longuet-Higgins (13) and is given in appendix B.

1.4 Simple Bifurcation.

gether with some amplitude equation such as (1.1.17) or

(1.2.13), abstractly as

G(u;&£,T)=0, (1.4.1)

where the element w is the solution (the Fourier coeffi-
cients An'“=1'2'°"' or the wave profile for 0% §<2T )
the wavespeed ¢ and the parameter b), £ is the parameter
which determines the magnitude of the wave and T is the
surface tension. Since we are only going to consider
branches of solutions of (1.4.1) that have one of the two
parameters € or T constant, the notation can be simplified

by writing (1.4.1) as
G(UL_',p3:DJ (1.4.2)

where p now represents the parameter that is allowed to
vary.

In practice, G and w will be finite dimensional vec-
tors arising from the discretization of the governing
equations. To follow solution branches of (1.4.2), determine

the existence of 1limit or bifurcation points, and switch
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branches at the latter, we follow Keller (8) and introduce
the arclength S5 in (W,p) space. Instead of finding solu-
tions of (1.4.2) in the form w=w(p) with the parameter
P given, we calculate W= wis) ,10:p6) . An additional

equation of the form

Nl pss) =41 515 (43120 (1.4.3)

is needed to determine p as a function of § . A point
(W),p62))  on the branch is a regular point if the Fréchet
derivative thith“J) is non-singular. Otherwise we have
a critical point. In general, a critical point is either
a limit or a bifurcation point, but it can be both. At a
limit point, the value of 4 has a maximum or a minimum
and W 1is not a single valued function of P in the vicini-
ty of the point. Since the arclength § 1is always monotonic
on a branch, limit points disappear when s 1is the parame-
ter. At a bifurcation point two or more solution branches
intersect.

The following relations hold if s=5, is a simple
bifurcation point where two smooth solutions intersect

non-tangentially:

dimN(G':)=cod(m RIGC)=1
(1.4.4)

G?" £ R(G)

where GozG(ub,pisa) » G =6a(us),pise) , and N demotes the

null space and R the range. Denote by # and ¥ the
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unit norm elements which span N(6.S) and the adjoint space
o
NG respectively. (1.4.4) implies the existence of a

unique element ¢, such that

G—:éo:—cr;) \,;/I*%-_—o_ (1.4.5)

It follows from the definition of W* and (1.4.5) that

\K"‘(,P‘):O ). (1.4.6)

this equation provides a way to check for bifurcation and
distinguish it from limit point behavior.

To find the branches at a simple bifurcation point we
first differentiate (1.4.2) twice with respect to s , eval-
uate at 5, , and multiply the second derivative on the left

by ¥ ., giving for each branch (u =uys.), P = f,(5):
o .o 0. .y 0
Gu_ l&s a1 (:rP PS =0 (1.“’-7)

* o ot 0 s - o -
Y {GMLWS)+2G%F W P+ Gpo (£,%) }
- e * © ] o
The right hand side of (1.4.8) is zero because G?° is in

the range of G, and ¥ is orthogonal to the range of & .

Since the null space of G, is one dimensional, we have

from (1.4.7)

;.{50 = K, ¢o + A, ¢' , (1.4.9)
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with

do= B, A=W (1.4.10)

Substituting (1.4.9) into (1.4.8) gives the quadratic

equation
Adr 1 B Ao + LA, =0 (1.4.11)
with
AEVY Gy 9, (1.4.12)
B= Y (44 +94)+ 200 ] (1.4.13)
C= ¥ 6l g+ 26ug 4+ Gp | (1.4.14)

Solution of the quadratic, the so called algebraic
bifurcation equation, gives the branches intersecting at
the bifurcation point and makes it possible to switch from
one branch to the other. Note that prior knowledge of one
branch gives one root of the quadratic. For further details
and a general treatment see Keller (8). In chapter 3 we
describe the actual procedure by which solution branches
were followed and simple bifurcation points found. As we
shall see later, it is likely that more complex behavior
may be associated with high order bifurcation, but the
techniques for analysing such bifurcations have not reached

the same level of development as those for simple
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CHAPTER 2

WEAKLY NON-LINEAR WAVES

The object of this chapter is to study the solutions
of (1.1.16) and determine the slope of symmetrical waves
of permanent form. We shall examine analytically the
properties of solutions of small but not infinitesimal
magnitude as described by formal perturbation series. In
later chapters we obtain approximate solutions for finite

amplitude using numerical methods.

2.1 Pure and combination waves.

If we suppose that the magnitude of the wave is
small, we may expand equation (1.1.16) in powers of the A,.

We obtain after some algebra an expression
~o o0 N v 3 o0
Mb- ,; - f};-Z:/&‘-g% Z:nAn-fZi‘ﬁ p €S pg

o0

é
ZZ{“MU’S(? PY+P,, os (pr Tl ALA *Z["‘PP HPpp 05 IPS]A

; ppp COSPY + 13 cos 3T’5] A + Z Z ["( cos 35 t PqPP“’S“P'?)S
a2p
+15$?Pcosflp+j)5]AgAP 4o, =0 (2.1.1)

2
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where the omitted terms are quartic and higher order, and

“P:'-'F‘/‘”“Kf" Xp,q ~ it oy KPRy

NpTEpoLKP B A R,

g
Bop = M3 kP Rppp = x4 F P bEkaE)
Bopp = MR AP Agpp = Tprd Klapry),
Bpp = A4 5 R0PY, 57 Yt Buclaprp) )
In these equations the dimensionless parameter
/r=‘+n’T/le [Eula3)

measures the relative importance of surface tension and

gravity, while

= ame/gL | (2.1.4)

is a dimensionless form of the unknown wavespeed.
We characterize the wave magnitude in terms of an

amplitude parameter £ by taking
2 Ay = E, (2.1.5)
|

where the sequence AQLI,L3 y+++ is chosen depending on the
type of wave we want to study. If we now, following Wilton
(31), equate the coefficients of cs ny in (2.1.1) to zero
for wn=0,1,2,..., we obtain an infinite number of algebraic

equations of infinite degree. The counting seems to be
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correct, in the sense that truncation at order M by
setting A,=0 for w>M and ignoring coefficients of «os ng
for n>M gives, together with (2.1.5), ™*2 equations for
the M+2 unknowns A, Ai-Au, »,b . The problem seems, there-
fore, to be well posed, although convergence proofs are
lacking.

Let us suppose now that all the Aw are zero except
A » say. Then Ay=€ , and if lel<«| , we can expect a
solution to exist in which the A, are powers of £ . In
particular, the solution will have A,=0 unless n is a

multiple of N , and further
n
V7

Ahz @(E N)) (2-1-6)

when N divides n . We shall call a solution of this kind
a pure wave of degree N and magnitude £ . Pure waves of
degree 1 were calculated by Wilton up to order £5 , using
the ansatz expressed by (2.1.6). A pure wave of degree N ,
amplitude £ and k=K', say, consists, of course, of pure
waves of degree 1, wavelength L/N , and the same magnitude
with A=N'4A’ . It might therefore be thought that there
would be no loss of generality in following Wilton and re-
stricting attention to pure waves of degree 1, but this
actually turns out not to be the case.

Since Ay is the dominant coefficient in a pure wave
of degree N , we expect that the coefficient of A, in

(2.1.1) must be small and hence
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%_#+KN?Q(L ﬂéﬂN§#+KN. (2.1.7)

Only the harmonics of s Ng are generated and their coef-
ficients are uniquely determined by the equations derivable

from (2.1.1), provided the coefficients

a(P(N):—:-:‘JD_,jLN+)(P#O (2:1.8)

for £ a multiple of N . Elementary algebra shows that
(2.1.8) is violated for YN (i.e. ®p(N)=0) if A= YrN?) .
When (2.1.8) fails, it is found that the ansatz (2.1.6)
is inconsistent and the expansion fails.

Wilton examined in detail the case N=| ,v=2, k=4
He showed that in this case the ansatz (2.1.6) should be
replaced by the assumption that both A, and A1 are of

order £ . It is then found that in the infinitesimal limit

A’_::‘:A (2:1.:9)

B

so that the wave of given magnitude (however this is de-
fined) is not unique, but the higher order coefficients are
determined uniquely once the sign in (2.1.9) is specified.
The two waves with the same A, are quite distinct, and
cannot be made to coincide by a change of phase. These
waves are called Wilton's ripples. The lack of uniqueness
or ambiguity can be explained physically by a resonance

mechanism due to the fact that infinitesimal waves of
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wavelength L and {L have the same phase speed when K=73 .

Wilton noted that the ansatz might also fail when
K=+ , but stated that only for ¢=2 was there any
ambiguity in the value of A, for K=/ . This statement
is literally correct for v¥>3 , but as we shall see in the
course of this work there can be ambiguity for K slightly
greater than Y . It is false for v=3 . A difference
between r=2 and the other cases is that only in the
former case is the important interaction quadratic. For
v23 , the interaction is cubic.

We can generalize Wilton's approach by examining the
possibility that, with A given, A, vanishes for two or
more values of ¢ . From the definition of «#p , it is easily

seen that a necessary and sufficient condition is

4
i B . Al (2.1.10)
K=mn - T‘anww d
In this case, «y=<,=0 , if
> - i 1 U |
/“N-/“n*#"—',g . ( )

Even though Y& may be an integer with many decompositions
into a pair of factors, for only one decomposition at a
time can &« and Ay vanish. These considerations suggest

the existence of combination waves, in which for an arbi-

trary pair of integers N and M , the coefficients Ay and
AL are of comparable order £ and all the other A, are

of higher order in £ . The consistency of the perturbation
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expansion should fix the ratio of A, to Ay , as for the
Wilton ripple which is the particular case N=! ,M=2 |
We shall see below that combination waves exist for all
sets of positive integers M and N for appropriate value
of X . The Wilton ripples are the simplest but not particu-
larly typical example.

Clearly without loss of generality, we can now suppose
that M and N are coprime, and we take for definiteness
I£N<M | Wwe will call such a wave a combination (N,M)
wave. Multiplication of N and ™M by an integer corre-
sponds to dividing K by the square of the same integer.

The concept of pure and combination waves can be
extended to finite amplitude although not without some
ambiguity. The wave will be said to be pure if the coeffi-
cient of the lowest order harmonic clearly determines the
wave in a unique manner. Thus, Crapper's exact capillary

waves, for which in our notation

n

A, = dnlAH) , m=23M,..., (2.3.12)

are pure waves of degree 1. Similarly, Stokes gravity
waves of permanent form found by expansion in Ah y where
A1=A3+®(Aﬁ) etc, are pure waves. If, on the other hand,
the lowest order harmonic is relatively insignificant or
does not specify the wave uniquely in a clear way, we
shall speak of a combination wave. A precise classification

for finite amplitude waves does not seem possible, because
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as we shall see a combination wave for some value of A
may be the analytic continuation of a pure wave for a

different « .
The existence of combination waves of small magnitude

will now be considered. First we deal with the case M=2N .

2.2 Wilton ripples.

Combination waves with N=1 ,M=2 are typical of
the case M=1N ., We suppose that A, and A, are both O(¢)
and that the remaining A, are of smaller order. The con-
sistency of the ordering is easily checked a posteriori.
Then the coefficients of cos g and cos 2§ in (2.1.1)

give the equations

(-t KA, + (- 2 K)A A, = 067, (2.2.1)
(4 -pt2,)A, +lu-3IAY = 0 (€7) (2.2.2)

These eguations, together with a form of the amplitude

equation (2.1.5)
A +A, = 2¢€ (2:2:3)

constitute three equations for the three unknowns A, , Ay s
M in terms of the given parameters A and £ .

We note first that for all values of A there is a
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solution with

A|=OJ Az: 2€ /u:-;--»ZK-rO(Ca)_ (2.2.4)

In this wave, A, 0 , A, =O(€") , and it is a pure
wave of degree 2. There is nothing special about A=% for
this wave. (There may of course be ambiguity around K=Y(2p),
P2l L)

We wish to consider now the solutions for which A %0 .

For A not close to %, there is a solution with

A, = 2640(7) };=|+K+B(£‘), AI:?'_';:EHO(E’)J (2:2.5)

which is recognisable as a pure wave of degree 1. (The
difficulties that might arise when A= W , n>2 , are the
subjects of the following sections.) But this solution is
not uniformly valid as X approaches 4. To obtain a uni-
formly valid solution, we solve (2.2.1) for # and substi-

tute into (2.2.2), neglecting the O(®) terms on the right

hand sides. This gives

= |+K;—A~,3: KAz ) (2.2.6)
iRy

AX= (-20A, +(HIOA° (2.2.7)
e

The dependence on &£ can be found by substituting into
(2.2.3), but it is better to work with (2.2.7) which con-

tains the whole phenomenon of Wilton's ripples in a simple

way.
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First we note that if K is not close to %, we recover
the pure wave (2.2.5). If Ax=4 , we obtain Wilton's for-
mula (2.1.9). Equation (2.2.7) in fact contains the uni-
formly valid relation between A, and A, . Once the rela-
tion between A, and A, is established to lowest order,
the equations derivable from (1.1.16) or (2.1.1) allow in
principle the unique calculation of the remaining An to
arbitrary order.

There are now two alternative methods of procedure.
The first is to interpret (2.2.7) as a quadratic giving A,
in terms of A, . Thus

Az ~ _|+3_K1'J{(|-2K)1+‘4(2-K)(i+K)A.1}
201+ K)

(2:2.8)

This is the approach of Pierson and Fife (21), who studied
the nature of Wilton ripples for X close to % by a some-
what different method than that used here. It appears that
one should take the positive square root for K <4 and
the negative square root for K> % , in order to join
smoothly with the pure wave (2.2.5) for A not close to 3.
However, this leaves uncertain the status of the other
root.

The second and more informative approach is to inter-
pret (2.2.7) as specifying A, . given A, . Then we see
that solutions exist only if A1 is such that the right
hand side is positive. In figure 2.1, we have plotted the

accessible regions of the A, Kk plane as given by (2.2.7).
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It is convenient to use K = A/I+k) in order to include the
capillary waves in the figure. Notice that A, vanishes
when A,=0 and A,:=3K-] . Accessible regions are hatched.
The analysis is for weakly non-linear waves, so0 we cannot
say which regions are accessible when A, is O(I) . From
Crapper's calculations, we know that A, < 1.654 for pure
capillary waves of degree 1. (it is equal to 1.819 for the
pure capillary wave of degree 2.) For the pure gravity
wave of degree 1, Schwartz's (23) results suggest an upper
limit of about 0.18 for A, (or 0.29 for the limiting pure
wave of degree 2). Note that these results also suggest
that the highest wave does not have the greatest value of
A,, so that the A,,K plane will be covered more than once
near the limiting wave.

The boundary of the region is unknown at present and
needs numerical work for its determination. The results of
such study will be reported in chapter 4. There is, of
course, no reason to believe that the accessible region is
singly covered, so the topology of the covering may be
fairly complicated. The point K=-%3 , K=21 , has the
property that A, vanishes at this value for the weakly
non-linear pure wave of degree 1. It is an apparent singu-
larity caused by the choice of plot and does not have a
physical significance.

The point x =4 , Rfr-% is a fundamental singulari-

ty. If A;+ O 1in the viecinity of k=%, it implies that
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A, 0 and the wave disappears. Thus we conclude from this
figure that an analytic transformation is not possible
from gravity waves of finite amplitude to capillary waves
of finite amplitude as the surface tension increases con-
tinuously with the wave always having a non-zero magnitude.
The significance of the Wilton ripples is now clear. In the
vieinity of K=L , there are two weakly nonlinear solu-
tions, one for a gravity-side wave (A,>0 ) and the other
for the capillary-side wave (A, <0 ). It can be shown that
the wave with Ah<:o can be continued analytically to a
capillary wave of degree 1. The gravity-side waves can
apparently not be continued analytically to gravity waves
(at least with small amplitude) for reasons to be given
later (section 2.7). Note that although according to
(2.2.7) there are two combination waves for each A, ,
depending oﬁ the sign of A, , these waves are not in fact
distinct, since a change of sign of A, , leaving A, con-
stant, corresponds simply to a phase shift of T or moving
the origin horizontally by L/ . The meaning of the two
signs in (2.2.8) is also now apparent. The positive sign
gives gravity-side waves, the negative sign gives capil-
lary-side waves. The paradox, that A, tends to a finite
limit independent of A, as k-4 increases when the
positive sign is taken, is to be interpreted as saying
that A, —»34k-/ and A, —+0 ; similarly as K-4 decreases

when the negative sign is used. The Wilton ripples are the
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particular solutions on the line ;{:.}. » K= % , but
there are clearly neighboring solutions for K not exactly
equal to 3.

There is an interesting difference between capillary-
side and gravity-side waves. For A1<O , the crests of the
combination waves are of equal height and unegqual spacing,
whereas the troughs are of unequal depth but uniform
separation L/2 . The waves are symmetrical about troughs
but not about crests. The converse is true for the grav-
ity-side waves. Thus the analytic continuation of a pure
capillary wave of degree 1 into a Wilton ripple is asso-
ciated with the creation of another trough, or going in
the reverse direction with the disappearance of a trough.
Conversely the appearance or disappearance of the gravity-
side Wilton ripple as A-+% becomes small or large is
associated with the creation or disappearance of a crest.
Sample profiles showing these changes are shown in figure
2.2.

We now discuss an interpretation of Wilton's ripples
as a bifurcation phenomenon in which the wavelength of a
pure wave can suddenly double when it attains a certain

amplitude.
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2.3 Wilton ripples as a 2-+1 bifurcation.

The regions marked 'no solution' in figure 2.1 show
where no combination (1,2) wave exists. However, pure waves
of degree 2 exist in these regions (provided the magnitude
is less than some as yet unknown value). Thus if we de-
scribe waves by the relation between A, and A, , we see
that there are solutions with A, =0 for arbitrary A,
(within the limits of existence of pure waves), and there
are also solutions with non-zero A, provided, according
1o (2.2.7},

A1>&’%‘%’_>o or AL 241 (o, (2.3:1)
for A<2, The result (2.3.1) is of course limited to
|Al<< |, and is therefore valid only for A close to %.

These results are shown graphically in figure 2.3,
where we sketch A, vs A, for K< 4 and AK>4 , with
J#A-%|<<1 , as given by equation (2.2.7). For a given
value of A >4 , there always exists a pure wave of degree
2, marked by the A, axis. For A, 0 , there is also a
combination wave which is a capillary-side wave. Thus A,=D
is a bifurcation point, but this is the trivial bifurcation
of a flat surface into infinitesimal waves of arbitrary
wavelength. For A2>C). only the pure wave is possible
until A, reaches the critical value (2k-1)/(1+#x) , at which

value the pure wave of degree 2 can bifurcate into a
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combination wave of twice the wavelength. The bifurcation
wave has the shape shown in figure 2.2, the middle crest
being slightly decreased ( A,20 ) or increased (A,<0 ),
and is a gravity-side wave. Similarly for A< 4 , there
is a trivial bifurcation at A,=0 into a combination
gravity-side wave, and a non-trivial bifurcation at
A,=(2k-1)/(1+K) of the pure wave of degree 2 into a combina-
tion wave. For K=4 , the figure would reduce to the two
straight lines A, = £ A, .

It is to be noted that although the solutions A, and
‘A. are mathematically distinct in the formulation, they
are physically the same wave displaced a distance L/2 .
The difference between the pure wave of degree 2 with A
and-A2 is a similar transformation. The reason why
bifurcation occurs for A,>0 when K >4 , say, and not
also for A,<0 , lies in the constraint that the wave is
symmetrical about the origin. When A, >0 , the origin is a
crest and the bifurcated waves for A >4 are symmetrical
about crests. They are not symmetrical about troughs and
therefore bifurcation with A, <0 , when the origin is a
trough, is excluded for A >+ .

It is to be expected that the bifurcation phenomenon
will be associated with a change in stability of the pure
wave to small disturbances, the combination wave being
perhaps stable while the pure wave loses its stability.

The stability of the waves is an interesting question, but
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although calculations of stability are straightforward
they seem to be rather tedious and we shall defer the
question for later study. The present work is restricted
to an investigation of possible forms of steady waves.
Suppose now that we have a weakly non-linear pure
wave of height h (vertical distance between crest and
trough) and wavelength A . This wave can be described as a

pure wave of degree 2, with

4

L=2A, A,=Th/ K:Tﬂﬂ%f_ (2:3:2)

Then if the amplitude of the wave is such that

yA|m*T
WSHAIRT .y, (2.3,

the wave can bifurcate into a combination wave of wave-
length 24 . In other words, waves such that ﬂ‘T/jl} is
close to % could spontaneously double their wavelength when
the amplitude exceeds the critical value given by (2.3.3).
The locus of bifurcation points given by (2.3.3) is
only valid for small amplitude. The gpape of the curve for
finite amplitude can be investigated by numerical means, to
be described in chapter 4. We now continue the analysis by

studying (N ,M) combination waves.
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2.4 Combination (N ,M ) waves.

The coefficients A. of a permanent wave can be de-
rived in principle from the equations obtained by setting
the coefficients of cos ng to zero in the master equation
(2.1.1). As mentioned earlier, pure waves of degree 1 can
be constructed by solving recursively, and the series
presumably converges if A, 1is sufficiently small, provided
HKEM. If k=Y/M , X420 and the first approximation
to Ay gives Aw%=0 . The previous sections studied this
problem for the case M=2 , and it was seen that the way
to avoid the difficulty and obtain a uniformly wvalid solu-
tion was to suppose that A, and A, are both of order £ .

We now study the existence of a combination (N ,M)

wave, with 2N #M, for which

s
Ay=0E), A =00, /(-.P'm_vﬂ@(c) (2.4.1)

and the other coefficients of higher order. The value of s
is to be determined, and will be seen below that S=2 .
Without loss of generality, we suppose that N and M are
coprime and 14N{M ., The case N=1 , M=3 has special
features and is deferred to a later section.

With the assumption (2.4.1) and supposing that N<M ,
N#3M , N#4M , it follows from (2.1.1) that

AlN:@(g ), Azn =O(¢ ), AN+M: o(€?) AM—N = ()({1)J (2.4.2)
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and all remaining coefficients are of higher order. Equat-
ing in (2.1.1) the coefficients of cos Ng , cos My ,cos 2Ng,
cos 2Mg , cos(N+M)y and cos(M-N)¥ to zero, and neglecting

terms smaller than 0(£°) , we obtain

3
Hn Ay * S AN * 2%y Ay AzN 2% M Moy AMAI“\—'N
+ 1
2% 11000 P Prarse T Xropas APy = 0, (2.4.3)
3
ql“\ AM +4”HM AM N 10('“‘. LM AM l'\mJr 1)"’(N, Mt AN AM-’-N
B
+le,H—~ ANAM"N"‘G(MNNAM AN-O’ (2-4.“)
% .
dzNAZM+PNJNAN -O.f (Z'L}'S)
3
Fam Ay * B A =0, (2.4.6)
o -
H+NAM+N+2PM‘NAMAN’Q (2.4.7)
Aprois P ¥ 2% Ay Ry= 0, (2.4.8)

The « and # coefficients are given by (2.1.2). However, we
can simplify the expressions by substituting the leading
order values K= !/Mn » M=) t+ YN  except in &, and «,.
Thus,
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S . . U - e - AN-M

le TMTAN? TN T MY T Man T eN dM-N = M(M-N)
o ol K ks =L . L i TR

a‘ﬂ;” 2 M + yN - dN‘, AN 2N yM p(M 2M 2M _27\/ :

« = 4 & =_L -
M,M-N"qzﬂ ’ MM+n ~ 4HM NyMEN T TN
= e ke L S S
13N,M-N TV 1g~~ N 2M’ ﬁa,n M anv?
B = J T
M, N gM T 4N -
:J—- | = o ol A :_5 5
4~u~ M- N dMMM gN M NMM 4M  2NV?
3 i, )

Mwn ~ qN'i'T'\J
Ay = NIK- S) = dr =), o =Mk 30 (- ).

It is clear from these equations that consistency requires

K-mn=0E), m-k-§-= o). (2.4.9)

The procedure now is to substitute from (2.4.5),
(2.4.6), (2.4.7), (2.4.8) into (2.4.3) and (2.4.4), and

then eliminate M to obtain a relation between AM and AN

of the form
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2 -
5,A0 = ¥y AL = (k- gy (MWD (2.4.10)
where
- (N+I10M)
b T o o (8811}
¥, = ZM-IMCN +uprEN - 23N g ' (2.4.12)

EM*N (ZM-N)(2N-M)

It is evident from these expressions that ¥y >0 for
all appropriate pairs N , M, while ¥4 >0 for N>4M and
¥m {0 for N<4M . Then provided A, and Ay satisfy the
relation (2.4.10), where 2N#M , 3N %M , a combination
wave exists. This wave exists in addition to pure waves of
degree M , for which l\N:O . Pure waves of degree N also
exist if N>| , and have A,=0 . If N=| , the pure wave
has a more complicated structure and will be discussed
separately. If |K- ﬁp\5>£1 , the combination waves are
not infinitesimal and must be studied numerically.

Convergence of the expansions has not been proved, but
there is no reason to doubt existence if the amplitudes are
sufficiently small and A is sufficiently close to “Mn -
The pure and combination waves all move with approximately

the same speed

pEda L cz#%(*ﬁq‘*#) ‘ (2.4.13)
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2.5 The M+»N and N-»M bifurcations, N>+M™M .

We consider first the case that N>4{M and examine
the implications in terms of bifurcation phenomena. Equa-
tion (2.4.10) is now a hyperbola in a plot of A, vs A
as shown in figure 2.4. There are two cases according as
A DN or K< YN -

The figure can be interpreted as follows. For arbi-
trary values of 4 - '‘'/Mn of O(£") , there exist pure waves
of degree N and M of O(¢) amplitude. However, the pure

waves of degree M can bifurcate when

ks
- + | o= M-N |
Auct Ll MM for wedn, (s
into a combination (N,M) wave. Similarly, the pure wave of

degree N can bifurcate into a combination (N,M) wave

when

Al RN T ror sy (2e5.2)

If K= YN » the hyperbolae degenerate into two pairs

of straight lines

T +
Y, Ay = X, A, {245+3)

There are four types of combination waves depending
on the signs of Ay and A, . These waves appear to be
different, they cannot be brought into coincidence by a

change of phase. These combination waves cannot exist for
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arbitrary (small) amplitude. The accessible region is
shown in figure 2.5.
Suppose now that we have a weakly non-linear pure

wave of height h and wavelength A . This wave can be

described as a pure wave of degree M , with
L = =2Th  p=4TT (2.5.4)
Mk,. AM A E 3M1A1 -

Only the Fourier components which are integer multiples
of M are non-zero. Now according to (2.5.1), this wave
can bifurcate into a combination (M,N) wave by adding a

Fourier component A, , and the associated harmonics, if

. 0
h>%[(%-%§)(\—%\ﬁ‘—fﬂ] , (2.5.5)

We call this an M=+ N bifurcation. The properties of
combination waves of finite amplitude remain to be eluci-
dated by numerical methods, but it can be expected that
as the wave grows, the Ay component will grow so that the
wavelength (interpreted as an average distance between
crests or troughs) will change from A to MA/N . Thus
there is the possibility of an increase of wavelength of
capillary-gravity waves as their amplitude increases.
Similarly, we can have a N-®M bifurcation if
1

oA [T --Hgg] . s

However, this bifurcation adds a higher harmonic and so

could not be expected to reduce the wavelength.
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In figure 2.6, we show an example of waves produced

by the 5-#4 and 45 bifurcation.

2.6 The case I&NLYM .

When ¥,40, as occurs when N<%fM , equation (2.4.10)
is that of an ellipse and has solutions only for K >/MN.

Provided

M-N
Y,

N

AL (K- B or  ALLlk-wR) TN o (2:6.1)

a pure wave of degree N (for which An=0 ) or a pure wave
of degree M (for which Ay, =0 ) can bifurcate respective-
ly into a combination (M,N) wave. In this discussion,
N>| ; otherwise A,#0 for the pure wave of degree N .
(Remember that N and M are coprime.) In terms of a wave
magnitude, defined like equation (2.1.5), we see that &£
must be confined to the region such that the line A +A =&

intersects the ellipse (2.4.10), i.e.

€< (Kn- ﬁp)(n-u\‘% : (2.6.2)

Thus in the XA, plane, the accessible region for the
existence of the (M,N) combination is above the parabola
given by (2.6.1), see figure 2.5. In this case, the combi-
nation wave can exist only for sufficiently small ampli-

tude. The bifurcation of a pure wave takes place as its
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amplitude is reduced.

2.7 The case N=| , M724 .,

The analysis of the previous section shows that in
the vicinity of 4= YM , there exists a pure wave of
degree M . There also exists a combination (M,!) wave, in

which A, and A,\ are of comparable magnitude where

4 3 73
OM+! pt o 2M -TMI+48MT-28M-H AN o M- L) (2.7.1)
A+ At w T ke s)

and M) 3 . These combination waves can exist only if K 7 /m
and their amplitude is not too large.

We now investigate the structure of the pure wave of
degree 1 in the vicinity of A=!M. Since &, is now small,
it is clear that an expansion in which A, =0(€") is not
possible, where it is supposed that A,z 0O(E) . But we can
proceed as follows to demonstrate that a consistent expan-
sion exists with Am-:pﬁ”‘y From the coefficients of «os §

and cos 2¢ in (2.1.1), we have
a A, + % Al + 24,0 A, = BEY), (2.7.2)

WAt B Al = o). (2.7.3)

The & and £ coefficients are given as before by (2.1.2),

and we can simplify by putting x= /M , M =1+ M except
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in «, , so that the appropriate values are
P S A 40 "
WE PR AaTEodR acdod. sk -

Thus, it follows that

A= k-3 - —l—ﬁ)-—- ~8H'+M+2 A2
MA SR AL (2u7.8)

Since
Ay = ML =AY = (u-1- L), (2.7.5)
it follows from (2.7.4) that K,:=0(t). Thus we see that

M-

AM: O(E ) (2-?'6)

is a possibility which allows the equation obtained from
the ¢0s M term in (2.1.1) to be satisfied. To obtain the

value of A, , we need the equations

dh AM + lPl,n_. Ai AH‘i + 2 q':"'\-ﬂ AI A

Ml
% M
+O{M||AMA- = O(g )J (2.7.7)
M-1
4&lAwf+zdn”AMA|:O(a ). (247+8)
XHH Aﬁﬂ 42 15”“ AHAl = U(£M+|) ” (2.7.9)

The terms on the right hand sides of (2.7.7) and
(2.7.8) of the stated order are sums and products of AP ;

I$ p4M-2. They are uniquely determined to the required
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order by A, , as is easily verified by inspection. Elimi-
nating AH_‘ and AMH » and substituting for M from
(2.7.4), we obtain

A L (M- K- J—\—'DM”A ] oe™) (2.7.10)

where the right-hand-side is uniquely determined by A, to
the stated order. Thus A, is uniquely determined if its
coefficient in (2.7.10) does not vanish. In particular,

the coefficient does not vanish if 4-'YM , exactly. In

this case, the wave is uniquely determined by A, as stated
by Wilton.

However, if A > /M and

. 8M_ - < s «7a11
Al Ehs (M-D(K- 7)), (2.7-11)

the coefficient does vanish. Comparison with (2.7.1) shows
that this is just the value of A, for which Ap=0 in the
combination (M,)) wave. Thus (2.7.11) gives the values
of A, for which there is bifurcation between the pure
wave of degree 1 and the combination (M,1) wave in the
vicinity of A=!/M . But the structure of this bifurcation
is that associated with a 1limit line, with a relationship
between Ay and A, or K as sketched in figure 2.7. This
result shows that a pure wave of small amplitude cannot be
continued analytically as K0 into a gravity wave, be-
cause at each value of 4A=1!/m , for all integer My Y,

there is a 1limit line behavior and the pure wave becomes a
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combination (1,M) wave. The gravity wave (k=0 ) is
therefore a singular limit which cannot be reached smoothly
by applying the limit A—-+»0 to a gravity-capillary wave.
The numerical studies to be reported in chapter 4 indicate
that this result remains true for finite amplitude.

The results also show that the effect of small surface
tension on a pure gravity wave of degree 1 could produce
either a pure capillary-gravity wave of degree 1 or a
combination wave in which a higher harmonic, of order =)k,
would have the same magnitude. In reality, such higher har-
monics would be damped out by viscosity, but the study of

viscous effects is beyond the scope of the present work.

2.8 Bifurcation of (I,3) combination waves.

The remaining case is N=| ,M=3, and K=Yy . We
now show that a consistent expansion can be developed with
A, and Az both of order £ . In addition, there is of
course a pure wave of degree 3. Equating the coefficients

of cos § and cos 3% in (2.1.1) to zero we obtain
KA, +AnAT 22 A A, s x5 A AT 24y AGA 2, A

LI
+ AulAs = O(f )) {(2s8.1)
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AJAS‘*"JSJA?’*’ 20(1 HA‘l AI 4 lpbl A, A‘+2d3:6AJA‘+ plu A'3 4

oy, ATA, = OeY) | (2.8.2)
From the coefficients of cos2§ » COSHE , cos 6F , We obtain
KA p AN 28, AR, 2 o), (2.8.3)
Ay Ay s 2, A A, = 0(8), (2.8.4)
% E
Ky Ay +py, Ay 000D, (2.8.5)

All coefficients are given by (2.1.2) with M=43 ,

K= 1l/3 , except for «#, and «; which must be given exact

values
= (- -(m-F), Ay = 3k-F) - p-d) (2.8.6)

Eliminating A, , Ay » A, , and excluding the pure wave

of degree 3 by supposing that A, #0 , we obtain

A, + ILAYy RIA A, -23 A -0, (2.8.7)
 + 5 A+ = 3 " A,

Ay + 23 AT - 2 A y 123 Al _o. (2.8.8)
2 24 As

The consistency relation between A and /\3 is obtained by

eliminating M , and gives a cubic for A, /A
M 3

3 2
123(A-31AN- 23 A 311 48(Kk-F) .8.
(A;;) (7\3“) A3 'ILS_ A (2eBa5)

Note that for A= Y3 , there are three real roots
A/A, = -0.76, -0.)3, 1.20, (2.8.10)
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and three possible (|,3) combination waves of given (small)

magnitude exist. The maximum and minimum of the cubic on

the left-hand-side of (2.8.9) are

f, =124, { = -8047,

There are therefore three roots if J # Y3z provided that

-1, < ‘Mg—}ﬂ-(-ﬁ (2.8.11)

3

and only one root otherwise. The situation in the A A, plane
is shown in figure 2.5. In figure 2.8, we sketch the locus
of A, vs Ay for A>3 and K< Y3 . The pure wave of
degree 3 is represented by the Aj axis. It is clear from
this figure that for sufficiently small amplitude, a unique
combination wave exists. This could be thought of as the
pure wave of degree 1 since

A,~—L‘}§E&L A, —*0 (2.8.12)

T

As the magnitude grows, another solution branch becomes
possible when the coefficient of the third harmonic reaches

a critical value.

The previous sections have discussed the form of
steady progressive capillary-gravity waves of small magni-
tude. It has been shown that there exist pure waves and
combination waves, and that bifurcation loci occur at

which solutions can pick up subharmonics or higher
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harmonics which are not integer multiples of the fundamen-
tal. Limit line behavior has also been found. Two important
questions remain. The first is the stability of the waves
and the possible change of stability of a solution on
crossing a bifurcation line or passing a 1limit point. This
question will not be treated in this thesis. The second

is the property of the solutions for finite amplitude. In
the next chapter we will develop the numerical procedures

necessary to answer the second question.



-56-

CHAPTER 3

NUMERICAL PROCEDURES

3.1 The Fourier series method.

Let us consider a pure wave of wavelength A and
height W . This can be regarded as a pure wave of degreeM
and period L=MA . We expect that bifurcation of type M-N
may occur for some value of hW . The bifurcation will occur

when

A =1 (k,MN) (53.1.1)

M
where +h is some unknown function. Now M—-N bifurcation
with period L must be identical with pM—wPhl bifurcation
with period-PL » where p 1is an arbitrary integer. Hence,

(3.1.1) must take the form

A, = £ (5. emt) (3.1.2)

h = f (M, T ils
x-qﬁ(w, = ). (3.1.3)

(3]

We know that as W0 .,
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. . .

{LE annN i

and the limiting forms of the function are given by (2.3.3)
for the 2—*1 bifurcation and by (2.5.5) and (2.5.6) for
the M—#N and N*M bifurcation with N>%M |, Similar
criteria can be found from (2.6.2) and (2.7.11) for the
M-»N and N+M bifurcations when I«N<4+M™M and for the
[+M 1limit points with M2>Y.

Another question of interest is the largest value of
h/k for which waves can exist, and how this depends on &
or T/9A* and the type of waves.

There are many possible methods for calculating the
shape of steady water waves of finite amplitude. One of
the simplest is to truncate equation (1.1.16) obtained in
chapter 1 for some integer J and evaluate at 5d=%P ’

024473 , to give the J+I| equations

# < 3 .
/L—I[ZT_ An (1- cos ngi)) [(Z.'A“ Sin "Si\ +(1+ 2 A, cos "'SQJ
3 S 3J g
+2KI_(ZI_A,\ sin nsi\{z”_ nA,, sin ngj)+{|+2"_A“cos "Sj)(Z,—“An <05 hss)] X
2 i I 27”1
X [( Z_An sin V\g‘s) +(l+Z_Ahcos "5,-):‘

3 3 )
-/A(\-L\}:(ZA,, sin n;J.)IJr (1+ ZA, cos ng;) ] =0, (3.1.5)

for the J+2 unknowns, A505§$353./1 and b. We found it more

convenient to work with the dimensionless guantities
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A= 2-77C1/3L and l('—"“Tl/gL" instead of <* and the surface
tension T . The remaining equation is a specification of
wave magnitude. We used mainly equation (1.1.17), but some-
times we specified the parameter b .

Thus, we have a non-linear algebraic system of
equations in J+2 unknowns, depending on two parameters,
the surface tension quantity A and the amplitude quantity
€ . To include the case A—¥°° into the general scheme, we
divide equation (3.1.5) by |+A and work with X = %fi+k) and
M=p1+r)» instead of K and M.

This system will be denoted by

G-(Lk)"P)'—' 0, (3.1.5)

where for simplicity we are using the same notation for
the truncated and for the infinite dimensional problems.
Here uz(AU“,Ajvﬁ;g)and.p is the parameter we are allowing
to vary, either X or € . To solve (3.1.6) we use Newton's
method:

an initial guess to the solution LUO) is given. An

approximation to the solution is calculated iteratively

G (wWip) dW = - 6w p), (3217

Y+l

W e u¥s fu” (3.1.8)

We stopped the iteration when the maximum residual was 016"

Here G, 1is the Jacobian matrix of the truncated system.
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The linear system (3.1.7) in each iteration is solved by
a LU decomposition with column pivoting, where L is lower
triangular with 1's in the diagonal and \U is upper trian-
gular. The Jacobian (det (;, ) is the product of the diag-
onal elements of U , with a possible sign change depending
on the pivoting.

The method was checked by comparing with Crapper's
results for capillary waves, Schwartz's for gravity waves,
and Wilton's for small amplitude capillary-gravity waves.
In all cases the agreement was to the order expected.

A useful check on the accuracy of each calculated

solution is to verify that the relation
29Y =-bc? (3.1.9)

is satisfied. The error obtained was at most 000°7).

The mean water level and the kinetic and gravitational
potential energies were calculated by truncating (1.3.4),
(1.3.5) and (1.3.8) to J terms. The surface tension con-
tribution was calculated by approximating the integral
using the trapezoidal rule, since the problem is periodic.
The mean water level and the potential energies were also
calculated by using the trapezoidal rule to approximate
the integrals in (1.3.3) and (1.3.6) or (1.3.7). The
agreement, as expected, was at least ono ) .

The arclength procedure used to find branches of

solutions, bifurcation and 1imit points, is described in
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section 3.3.

3.2 The vortex sheet method.

We now show how to solve numerically the non-linear,

singular integro-differential equation derived in section

453

— 2m
-b-49L T T)dS i HOED! =
(Fb- 3L T s+%§);_§_ | ﬁpjowt[_ll_ﬁ.)]ds, 0,  (3.2.1)

where

T %‘_JI’“(%—S, d?/lﬁ_ﬂa) (3.2.2)

together with

X(0)=0, y()=0, %:é(okO. (3.2.3)

It was convenient to specify b as the amplitude parameter.
Given the value of b , the solution of (3.2.1) and (3.2.3)
will still not be unique until we specify the number of
waves in the window or equivalently the shortest period A .
(We neglect the trivial degeneracy associated with the
direction of the wave and take ¢ >0 .)

First consider the case of symmetric waves that
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satisfy

5(-5)=-3(8) ,  3(TM+E)=-3(T-§), (3.2.4)

It is sufficient to work in the interval [o,1] . Introduce

a uniform mesh

e ﬂ = gt N -2- )
53 D/N 2 b OJI)2J 3 Vg (3 5

and the unknown values

5, * 3(533=1_L‘l (Xsfi'-ji)_‘ 4301,

at the mesh points.

The derivatives in (3.2.1) and (3.2.2) are replaced

by a seven point finite difference formula

dial(g_g) - [svols, -3 ) -108(3, -5, )
+|1(~S_j1\3'33-_3)1/ASx6_’+ o(at°) (3.2.6)

d'5(5) - [-9805; + S40(5, +5; ) -54(5;,, 435, )
dg*

+H(Sﬂ.ﬂ+ Sﬂﬂ “/6.'*(&5)‘ + O(A;"J, (342:7)

where A¥ =T/N.

To calculate the integral introduce an integration
mesh at g}:ﬂﬁ+%)hv » halfway between the mesh §; to take
care of the principal value, express the values of 5 on

the integration mesh in terms of the 55 by a sixth order
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Lagrange interpolation formula

S(gj) = £|SO(35+33+\3 - 25 (53-|+ 53+1)
+ 305+ 5,3) /256 + 0(43°), (3.2.8)

and, since the integrand is periodic, use the trapezoidal

rule
2NV-

2m
Peot[508) - SENIT = AS Z <ot [ 515 ST, ockart3.2.9)

(o]

The values of 5 outside the range L[0,71] are obtained from
the symmetry. The real and imaginary parts of this discre-
tized version of (3.1.1) at the N+| mesh points gives 2N
equations, because the imaginary values of (3.2.1) at §=0
and §=T are identically zero from symmetry. Further we
take %=0 , Y,=0 , XyzL ; the first two come from (3.2.3)
and the last from symmetry. The last equation of (3.2.3) is
automatically satisfied from symmetry. Thus, we have 2N
non-linear algebraic equations for the 2N unknowns,
XiXpees Y39, Y0, 9y 20d ¢* . The parameters b and T are
given.

Now consider the case of nonsymmetric waves. This is

more difficult. We introduce a uniform mesh

F.=22ls | j=201,2,...,M (3.2.10)

M4

]

and the values 55 at the mesh points. The values outside

the range are given by periodicity. Discretizing the
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integro-differential equation as for the symmetrical case
and taking real and imaginary parts at the M+ | mesh
points, we obtain 2M+ 21 equations for the 2M+*3 unknowns
Xy ,ga and ¢* . Equations (3.2.3), with a seven point
finite difference formula for the derivative, provide a
further three equations, giving 2M+5 equations for 1M+3
unknowns. The system is thus apparently overdetermined.
The difficulty arises from the fact that the 2M+2 equa-
tions derived from the integro-differential equation are
not independent because of the degeneracy expressed by
(1.2.15). The degeneracy arises from the fact that (3.2.1)
is invariant under the addition of constants to X and § .
In principle, (3.2.3) handles the degeneracy, but it is
not clear how it is to be incorporated into the numerical
scheme other than by throwing away two of the equations
which come from (3.2.1). This was tried but did not work.
The problem does not rise in the symmetric case because
the imposition of symmetry destroys the degeneracy.

The following trick proved satisfactory and was easy
to implement.

First note that when b , rather than h , is the param-
eter, the degeneracy with respect to 9o disappears because
the equation is not invariant under Y translation; hence
we can take Y,=0 without loss of generality, and this is
done henceforth. Now instead of solving (3.2.1) and

(3.2.3), we solve a discretized form of the equation
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(-5~ sﬁ.{I s+1T)2§ -|+,ij cot[_’g D=5 ]d3 + kis)x(0) +

+k1(g)?;§1(o):o, (3.2.11)

where k, and k, are arbitrary functions of § chosen so
that the Fréchet derivative of (3.2.11) is in general non-
singular. This can be done because (3.2.11) is not invari-
ant under translation of X and § . Then the discretized
form of equation (3.2.11) gives 2M+2 equations for the

2M +2 unknowns Xo,Xi,..., %, ;49,Y,,.-,Yy;¢" + This system has solu-
tions with X(0)-0, dgoydgzzo , which provide a solution

of (3.2.1) and (3.2.3). The reason this works is that by
hypothesis the equations (3.2.1) and (3.2.3) have isolated
solutions. Since the Fréchet derivative of (3.2.11) is by
construction in general non-singular, (3.2.11) also has
isolated solutions. A solution of (3.2.1) and (3.2.3) ob-
viously satisfies (3.2.11). Therefore (3.2.11) has isolated
solutions which satisfy (3.2.1) and (3.2.3). The system is
now 2M+3 equations in 2M+3 unknowns.

(When using the Fourier series method, if we allow
for nonsymmetric solutions, we also obtain an overdeter-
mined system of equations, and the degeneracy can be
eliminated using a similar trick.)

The problem is thus reduced to calculating the in
general isolated solutions of a system of non-linear

algebraic equations. The eguations involve two parameters,
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T and b . The unknowns are the coordinates of the wave
at mesh points and the wave speed. The system of equations,

for the symmetric or nonsymmetric problem, can be written

as

G(u;p) =0, (3.2.12)

where W 1is the vector of unknowns, and p is the one
parameter we are allowing to vary. The system (3.2.12) is
solved by Newton's method. The Jacobian matrix is obtained
by calculating first the Fréchet derivative of the exact

equations (3.2.1) or (3.2.11)

Gulw;pldu= Gluru;p)-6(u;p), (3:2.13)

and then discretizing it in the analogous way. At each
Newton iteration we solve the finite dimensional linear

problem

Gy (u; p) bu = - Glw,p) (3.2.14)

by LU decomposition.

The method of solution was tested by comparison with
Longuet-Higgins' (13) results for gravity waves, with
Crapper's capillary waves (taking 3=0 ), and with the
results obtained with the Fourier series method. The agree-
ment was very good as reported in the next two chapters.
Equation (3.1.9) was also used to check the accuracy of

the calculated waves. For gravity waves, relation (1.3.18)
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was verified to within a relative error of 0.1%. This
error is bigger than the errors in the other checks because
it was calculated with only six decimal places and round-
off is important.

The mean water level, the kinetic and potential ener-
gies were calculated using equations (1.3.2), (1.3.3),
(1.3.6) and (1.3.9). The derivatives were approximated
using a sixth order finite difference formula and the
integrals using the trapezoidal rule.

The implementation of the arclength continuation is

described in the following section.

3.3 Arclength continuation.

To implement the arclength continuation procedure
described in section 1.4, instead of using the actual arc-

length S defined by

Ll %%“H Jl_(%f)ls l, (3.3.1)

it was found more convenient to continue in terms of a

pseudo arclength, also denoted by § , introduced by the

equation

N(w, p;5) 25U (SOLws)-ues)] + 4 #,5) [ pls) - pls)l-(s:5)= 0, (3:3.2)
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Here,(d“&,fﬁﬂ) is some known solution, the star denotes
the adjoint element and the value of §, is updated every
time we calculate a new solution; ¢ represents the param-

eter that is allowed to vary, either X or & for the

Fourier series method, or, T or b for the vortex sheet

method, and W is the vector of unknowns. The system of

equations is written as

G(M._,PJ'S)‘-:O (3.3.3)

for any of the formulations given before. As was done
before, we will keep the notation of chapter 1 for the
truncated, finite dimensional problem.

To use (3.3.2), we need to calculate (U(s), £(S)) .

First solve for Wpl(%)  from

C"\AP:'(J' (3.3.4)

Since we already have the LU decomposition of (¢, at
(ulSﬂ,<p(&)) , the solution of (3.3.4) is inexpensive.

From the chain rule we have

msts.\:ur(m P (S, (3:345)
Taking the 1limit s-»$, of (3.3.2), we have

B Up(s)ll+1 =2 (3.3.6)

and the value of p,($,) . The choice of sign for the

square root is arbitrary: the positive sign means that p
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increases as § 1increases. At a 1limit point where =0
it is necessary to choose the other sign to follow the
new branch.

To calculate a new solution (MH)JPU)) , we will
solve the inflated system consisting of (3.3.3) and (3.3.2).
Newton's method is used. To obtain a first guess for the

iteration a one step Euler method is applied

wis) = Wis) + U (5,)(5-5,),
(3:3:7)

()= pls)+ ps (5] (5-5,)

Each step of Newton's method requires the solution of the

following system of linear equations

G, G, dul = - [ G (3.3.8)

w

/

where everything is evaluated at the old iterate, and au
and Sp are the corrections to the solution.

Keller (8) suggested the following algorithm to solve
(3.3.8):

obtain the vectors 4 and 2 from

G’ bé = CJ'}O (30309)

6' 7 = "[T (3'3-10)

Then
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Sp=-(NeNI2) (3.3.11)
(N.P'Nu‘j)

Su: Z_SP\Q' (3'3'12)

(3.3.9) and (3.3.10) are solved by doing a LU decomposi-
tion with partial column pivoting. This is the most expen-
sive part of the calculation. In this way, even if we are
solving an inflated system, we need only to do the LU
decomposition of &, and obtain its Jacobian by multiplying
the diagonal elements of U, with a possible sign change
due to the pivoting.

Newton's method is considered to have converged when
the residuals are very small (typically 0(10'") for the
Fourier series method and ©(107'°) for the integro- dif-
ferential equation). Szeto (29) proved that Newton's method
using the above algorithm converges quadratically for
regular and 1limit points, and only linearly near simple
bifurcation points.

It was sometimes convenient to use s=q as the arc-

length parameter, replacing (3.3.2) with

N(u,P;s)zp-S:O. (3+3.13)

Solutions for small amplitude are found using the results
of chapter 2 as the first guess for the Newton iteration.
Solutions for higher amplitude are obtained using the

arclength continuation described above.
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Simple bifurcation points at §=¢§, are detected by
monitoring changes in sign of the Jacobian and pinpointed
by bisection. Numerically the Jacobian is never zero, but
the last pivot is O(|0°®) times smaller than the others.
The right and left eigenvectors of G, , &, and ¥* , are
approximated by inverse iteration. Again, this is not
expensive since we already have the LU decomposition of
Gu .« The product W¥ Gp is calculated; it should be
close to zero for bifurcation.

Once determined that <=5, is a simple bifurcation
point, in order to switch to the bifurcating branch, we
use the fact that the method of calculation gives an
approximation (G5, P, () to the tangent to the original
solution branch at the point $o, . We compute as an approx-
imation to ¢, the element

[ 85, - wur,b“o)ﬂ (3.3.14)

The leading coefficients of the quadratic

A

% (&Q

Adr + BxAy + CAs =0 (3.3.15)
are approximated by
¥[G“(M°¥S¢.,P°)-GZ]¢, (3.3.16)

Bf%‘H‘{[G—u(u"»«w,,p")‘(f:lé+[6—P(u°+5¢ur°)-(r’,o_ul (3.3.17)

where & is a given small number. This finite difference
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approximation is necessary because of the great complexity
of the second Fréchet derivatives. Since one root of the
quadratic is known (the tangent to the original branch),

B/A suffices to determine the other root:
X, _ _ [
T, (MJ,_E_). (3.3.18)

Since only the direction of the tangent is important, we

can choose it as

Wi =2 g+ & (3.3.19)

7 = r(—,;-i;—'a:s-) (3.3.20)

The sign of the square root depends on the direction in
which we want to do the continuation on the bifurcating
branch.

In this way, we were able to detect simple bifurcation
points and calculate new branches. The method of monitoring
the Jacobian will fail, however, if the bifurcation is not
simple and the Jacobian has a root of even order. We have
not yet been able to check systematically for higher order
even bifurcation and the possibility of their existence
cannot be excluded and should be kept in mind during the

reading of the results.
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CHAPTER 4

FINITE AMPLITUDE CAPILLARY-GRAVITY WAVES

4,1 Introduction.

The purpose of this chapter is to extend some of the
results obtained in chapter 2 for waves of small amplitude
to waves of finite amplitude. The structure of capillary-
gravity waves appears to be extremely rich, and our con-
tribution is far from being an exhaustive study. We shall
concentrate on extending to finite amplitude some of the
bifurcation loci examined in chapter 2 and also on investi-
gating limiting waves of greatest height. The equations to
be solved and the numerical procedure are described in
chapters 1 and 3.

The method of Fourier series truncation (sections 1.1
and 3.1) was completely adequate for the calculation of
capillary-gravity waves up to waves of greatest height,
but some results were checked using the vortex sheet inte-
gro-differential approach (sections 1.2 and 3.2) which is
necessary for gravity waves of large amplitude because of

the incipient cusp which causes slow decay of the Fourier
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coefficients. As will be seen, capillary-gravity waves are
limited in height by the surface crossing itself, as for
capillary waves with 3:(9 (Crapper (4)), but the surface
remains smooth and the rate of decay of the Fourier coef-
ficients is not significantly affected as the limiting
wave 1is approached.

The coefficients A, are dimensionless. Dimensionless
groups involving the surface tension which are convenient

for the presentation of the results are

-y K=K _ .11
x= i%t; T+ K ( )

The latter is useful for the capillary wave limit, g »0 .
In the actual calculations, the scales of length and time
were fixed by taking g¢=1 , L=27W. Continuation along a
solution branch was carried out either in an amplitude
parameter £ , that was either b or a linear combination of
Fourier coefficients, or in the surface tension variable K.
With the integro-differential equation approach, the con-
tinuation was either in b or in the surface tension T .
Symmetry of the solutions about §=0 and £=1 , which cor-
respond to a crest or a trough, was supposed.

All numerical calculations were carried out on the

CDC STAR 100 computer.
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4.2 The finite amplitude 2—+1 and 2—3 bifurcations.

In section 2.3, it was shown that a weakly non-linear
pure wave of degree 2 bifurcates into a combination (2,1)

wave when

-::- -'—2:'-:- ~- & < L 3]
AEdn- 2 2 R-4), lk-$H<l, (b.2.1)

In physical variables, this condition is equivalent to

h = 8 |\ET . J.\
AT an g A" 2

(Be2e2)
as the condition for a pure wave of height h and wave-
length A to bifurcate by the addition of a subharmonic
of wavelength 2A .

To extend the bifurcation curve (4.2.1) to waves of
finite amplitude, we employed continuation alternatively
in & and K . Starting for A >4 with a small amplitude
pure wave of degree 2 with.;Al>O , we increased the ampli-
tude until a change of sign of the determinant of the
Jacobian matrix occurred, indicating that the solution
branch went through a critical point. Since it was easily
seen that this was not a limit point, as all variables
were changing monotonically, a crossing of the bifurcation
curve had taken place. A continuation increasing A was
then carried out until the bifurcation curve was crossed
again. The process was continued and in this way a rough

profile of the bifurcation curve was obtained. The curve
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ended at A=134Y2 , A,=0.77 + W/ .: 0.4% » where the surface
crossed itself. The unphysical nature of the solutions

for larger amplitudes was not marked by any singularity in
the equations for the Fourier coefficients, which could be
calculated without difficulty for unphysical solutions.

Note the conclusion that for A > 1342 the only solu-
tions with A, = 0(€) have h=0() , while for H<1.342 there
are also solutions with A, =0(£) , h>> € .

A similar procedure was carried out for A< % , A, <0 .
In this case, it was found that the bifurcation curve turns
around and returns to the small amplitude state with a
value of A 1lying between 0.170 and 0.160. As will shortly
be explained, this result is consistent with the 2-—+3
bifurcation locus springing from 4= '/ .

Figures 4.1 and 4.2 show the approximate bifurcation
curve, at which a pure wave of degree 2 may bifurcate by
the addition of subharmonic and odd superharmonic compo-
nents, obtained in the way just described. In figure 4.1,
the locus is plotted in the A,A, plane. Figure 4.2 shows
the results in the K, h/L plane.

It is only for small amplitude waves that it is
meaningful to talk of a (M,N) combination wave. When
bifurcation occurs at finite amplitude, many Fourier compo-
nents are introduced. The combination waves which exist
only outside the A, {0 bubble in figure 4.1 are analytic

continuations of one another as the bifurcation locus is
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traversed from K =V2 tok =Y . For k= Vo ,As/A << '
and for K= Y ,A/A<L| . Thus the return of the bifurca-
tion locus to the K -axis is consistent with the 23
bifurcation curve coming from kK= 1/ .

As follows from the results of section 2.5, the
bifurcation locus for o< k- /4<&| 1is the parabola

A:*:)-l(fc-*)}y2 (k ‘o 3 - ) (4.2.3)

1 2 6 . I) 2 Eﬁi(K ). 25

The continuation of the bifurcation locus across £=z0 at
k= Y6 initially follows equation (4.2.3), but as € in-
creases the curvature changes and the locus turns down in
K , as seen in figures 4.1 and 4.2. Above A= /g we can
speak of this line as being the 23 bifurcation line. The
reason is that if we continue pure waves of degree 2 from
infinitesimal to finite amplitude, keeping A constant and
Vg L KL Y6, we obtain the same solutions as the ones
found following the bifurcation locus. These waves have
Ay<0 ., For K near but less than 1/8, the continuation of
an infinitesimal wave of degree 2 to maximum amplitude
with & constant does not have any critical points but has
Aq 2?0 . The behavior of pure waves of degree 2 near A= V7§
is the same as that of pure waves of degree 1 near K =Y2
(see sections 2.2 and 2.3). Therefore, the finite amplitude
bifurcation locus for A < Y® describes the subharmonic
bifurcation of combination (4,2) waves. In the 4,A, plane

the locus eventually returns to the H-axis at about
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K=0.062 , but the wave has nonzero amplitude when this
occurs and the crossing is not related to the behavior
near singular points described in chapter 2.

The uncertainty in the values of 4, A, and h/A for the
curves shown in figures 4.1 and 4.2 is about 0.01 for X
and about the same for A, and h/A when A,>0 , and about
0.003 for A, and h/A when A,<0O .

The bifurcation point was determined more exactly at
a few points on the bifurcation curve and it was verified
that the bifurcation conditions were satisfied. Eguation
(1.4.6) was satisfied to O(107). The bifurcating branches
were calculated; the new solutions have wavelength L and
A/ #0 ., To one side of the bifurcation point A, is posi-
tive and to the other negative, but they represent physi-
cally the same solution shifted by L/2 . For A£=z0.3, the
pure wave of degree 2 bifurcates at A,=-0.1S¥ . The combi-
nation wave originating at this value was continued in Az
until it reached its maximum height, with an enclosed
bubble, at A,=-0.48 , A, <0.34, h/A=0.27 . Plots of the pro-
files for this solution branch are shown in figure 4.3.
Profiles of combination waves emanating fromA,=20.032,
continued in A were plotted in figure 2.2. These waves
start to resemble pure waves of degree 1 as A moves away
from the bifurcation curve.

Most of the calculations were done using 64 Fourier

coefficients. The Newton iteration converged guadratically
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and three or four iterations were sufficient to reduce the
residuals to @(10'") . Each solution required less than 0.5
sec. on the CDC STAR 100 computer. Some of the higher
amplitude waves were recalculated using 128 Fourier coef-
ficients. Then the computing time per solution was about
1.5 sec. In both cases all the last coefficients were 006"
and the solutions agreed to at least 8 significant figures.

Bifurcated solutions for A=04¥ and K=052 were also
calculated using the vortex sheet method with N=20 . Agree-
ment was at least 4 significant figures. Since this method
was slower and it was difficult to classify the solutions
obtained with it, we used it mainly'on gravity waves.

It is noteworthy that Choi (3) observed experimentally
a doubling of wavelength like that predicted by our bifur-
cation analysis for capillary waves produced by wind
blowing over water in a wind-water tunnel. A wind of speed
5m/sec initially produced waves of freguency 16Hz which
stayed constant, until after a certain fetch where the
frequency appeared to drop to about 9Hz. The value of A
corresponding to Choi's experiment is 0.23 (with T= 72
dynes/cm). Our results indicate that bifurcation is then
possible at A;<-0.14 or h= 0.% mm. Unfortunately, Choi does
not give the waveheight at which the dominant frequency
changed from 16 to 9Hz, but we roughly estimated it to be
h= .7 mm. The quantitative agreement is poor but the

effects of wind and shear in the water are probably
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significant. The observed wave speed is about 6cm/sec.

greater than that given by the linear dispersion relation.

4.3 The finite amplitude MesN bifurcation with N>% .

As examples, we followed the 3—++2 , the 5—»4 and
the 523 ©bifurcation lines. These curves were found in
the same approximate way as the 12—+ line.

For the 3—+2 bifurcation we start with # Jjust less
than 1/6 and a pure 3 wave of small amplitude and, by
changing the parameters, determine where the determinant of
the Jacobian matrix changes sign. This bifurcation line
also turns back, at about A,=0.4 , k=0.Il , and tends to
the A -axis between 0.075 and 0.087. For small amplitude
waves the 3—+ 4 bifurcation starts at £z /12 . It there-
fore appears that the 3-—> 2 and the 34 bifurcation lines
are different ends of the same line and the (3,2) and the
(3,4) combination waves are analytic continuations of one
another. The step sizes used in finding the changes of
sign of the Jacobian were at most |Ak\=0.012,|AA;l= 0.0 .
Figure 4.4 is a sketch of this bifurcation line. It is
symmetric with respect to the M -axis. The maximum error
in the curves is of the order indicated.

The §S— 44 bifurcation line was followed in the same

way, determining the changes of sign of the Jacobian for
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a pure wave of degree 5. In the K ,A¢ plane, this line
turns back and returns to the MA-axis as the $-+6 line,
the same behavior occurs for the S+ 3 1line that joins

to the 57 1line. Both lines are symmetrical about the

K -axis. The step sizes in determining these lines were
[AK[=0.00l and I0Agl=0.01 ., Figure 4.5 shows sketches of the
curves. The (5,4) and the (5,6) combination waves are
analytic continuations of each other, as are also the
(5,3) and the (5,7) waves.

Since all the waves that we calculate are symmetric
about £=T , each wave displaced horizontally by a distance
L/2 is also a solution of the system of equations for
the A,, . Thus if the set {An} constitutes a solution, so
does the set {Fﬂ“/\hg . It follows that the bifurcation
loci for pure waves of odd degree N are symmetrical about
the A -axis in the A,A, plane. This is not necessarily
true for pure waves of even degree and it was shown in
section 4.2 that the 2—#3 bifurcation locus is not sym-
metrical. However, it was found that the H¥3 and 4-75
bifurcation lines join up and are symmetric.

All these calculations employed 128 Fourier coeffi-
cients, the computing time for each iteration being about
1.5 seconds on the CDC STAR 100. The number of iterations
depended on the initial guess, but convergence was guadrat-
ic and typically 3 or 4 iterations were sufficient to

reduce the residuals to 0(10°'%).
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L.,4 The |—+®M 1imit line.

As shown in chapter 2, the behavior of small pure
waves of degree 1 near XYM is a special kind. For M24 ,
a pure 1 wave continued in A with A, kept constant turns
as A—* )M into a combination wave in which A, and A, are
of the same order. If k-»YM from above, the solution branch
has a 1limit point in A and turns back, with the magnitude
of Au increasing. If we start with a pure 1 wave and K{'Y/M,
and then increase X , there is no limit point but Am in-
creases rapidly as A-»YM. This means that pure 1 waves on
different sides of ="M are not analytic continuations
of one another.

As an example, an initially pure wave of degree 1
with A,=0.05, and 128 coefficients retained, was continued
down from A=0.22 to A= 0.20]] where a limit point was
encountered, and the on the second branch to K=0.32S5 ., At
this point the surface of the wave crosses itself, with
A=0.05 and Ag=-LS59 . The solution looks almost like a
pure 5 wave, but the crests are of slightly different
height and only two troughs enclose a bubble. The calcula-
tion was repeated keeping A,:=0.] constant. Now the limit
point is at X=0.1038, so that the line moves up with increas-
ing A. in agreement with the analysis of section 2.7,

according to which the |5 1limit line is
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K=t +SLAT (4.4.1)
S "0 =

Also, a pure wave of degree 1 with A,z0.05 was continued
up from A=0.171 . Around K=0.200, As starts growing very
fast and dominates the behavior. At K =0.325, the wave,
which looks almost like a pure 5 wave with Ag=1.56 ,
achieves its maximum height by enclosing a bubble. Figure
4,6 is a plot of K vs As for these solutions with A =005 .
Compare with figure 2.7 (b).

In section 4.5 we give some additional evidence that
the |5 1limit line intersects the highest wave line. This
is probably true for all \—M 1limit lines, for M2 4 .

These results confirm the impossibility of going
continuously from a pure capillary-gravity wave to a gravi-
ty wave by letting =0 . We also tested to see if a
combination wave could go continuously to a gravity wave.
This was done by starting with a (5,4) combination wave at
K£=0.05 , As=0.122 ,A4=z0.1719, and continuing by decreasing K
with Ag¢ kept constant. This solution branch has a limit
point in 4 at 4=0.0I95 , A= 0.122 ,A4=0.0712 , and turns
back. The value of Ag was chosen so that the solutions
were outside the §—+4 , 526 bifurcation line. We believe
that, in general, it is impossible to continue a combina-
tion wave to a gravity wave by letting A-»0 .

The (3,1) combination waves are also special. As

shown in section 2.8, for A near 1/3 there are three
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(1,3) combination waves. One of them has A3=0(A?) as
A0 ., The other two exist only for finite amplitude.

We investigated one of the latter solutions for
K=0.316 , The continuation was done in A, . There is a
limit point at A,=0.08)8 ,A;=-0.2667 . Continuing the solution
to either side a wave of maximum height is obtained. Figure
4,7 is a plot of A, and A3 for this solution. On the top
branch the maximum height wave has A,=0.453 ,A;=-055% There
is also a limit point with respect to Aj; at A=D.103,
A3="Q2°1 . The other branch has a maximum height wave at
A= 0.151 , Ay=-p.909 . This solution has A, negative, and
exists inside the 2] bifurcation line. There is no incon-
sistency since the solution is not a combination (2,1)
wave.

Figure 4.8 shows plots of the surface profile for
different solutions on this branch. The top three plots
correspond to the upper branch, the fourth to the limit
point in A, and the last two to the lower branch. A, de-
creases from the top until the fourth plot and then in-

creases again.

L.5 Waves of maximum height on deep water.

Gravity waves have a maximum height when the surface

cusps and includes an internal angle of 120°. This occurs
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for the pure wave at h/A= 0.4\l .

Capillary waves, as shown by Crapper (4), have a maxi-
mum height of WA=0.730, but in this case the wave is
limited because it encloses a bubble. For greater heights
the surface crosses itself making the solution unphysical,
even though there is no mathematical problem in the calcu-
lation of the Fourier coefficients or in determining
parametric equations for the surface.

In this section we give some answers to the questions
of the existence and shape of capillary-gravity waves of
maximum height on deep water.

First we reproduced numerically Crapper's results
with a pure wave of degree 1 up to the limiting height. We
know of no simple analytical criterion to determine from a
parametric Fourier representation like (1.1.13) and
(1.1.14) if a surface crosses itself. We used some suffi-
cient conditions for the curve to be simple and visual
aids to determine when this happened. The method does
not give the maximum height to great accuracy, but it
turned out to be sufficient for our purposes. For pure
capillary waves we found in this way the maximum height
to be h/A=0.7305 , which agrees well with Crapper's exact
value.

We repeated the calculation using A=L/2 and A= \/3
seeking subharmonic bifurcations. None were found. If we

apply the intuitive argument that bifurcation occurs when
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two different waves move with the same speed we would not
expect any bifurcations since the speed decreases monotoni-
cally as the height increases. Also the 2-®! bifurcation
line does not intersect the line k=<0 , K=1 .

Waves of greatest height were found in two different
ways. The first method was to take Crapper's limiting solu-
tion and, by decreasing A and then changing the amplitude,
obtain waves of maximum height for different values of & ,
With this method of continuation it was possible to calcu-
late waves with A down to about 0.04, where the numerical
solution started to become inconsistent because the higher
coefficients did not remain small. We were working with
128 harmonics. Increasing this number permitted us to go
to lower values of X , but it was found that the higher
order coefficients quickly grew more and more important
as X decreased. A, , which is positive for capillary
waves, changes sign as K decreases at about k=195 and
stays negative afterwards. All the waves of greatest
height calculated in this way look similar to each other;
they all enclose a single bubble and are all smooth. But
as X decreases the bubble gets smaller and the change of
slope faster. Figure 4.9 shows the profiles for these waves
for K==, 2.333, 0.666, 0.250 and 0.042,

The second way was to start with pure waves of degree
1 of small amplitude, and increase the waveheight by

changing A, with X kept constant. For K>% the waves of
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greatest height are the same as those obtained by the first
method of continuation. But for A< Y2 , the highest waves
found in this way are multi-bubbled. The number of bubbles
depends on the value of K . For gy <% <& , with N2 2
integer, the highest waves have N crests of different
height and enclose N bubbles, not all completely closed.
For example, for K=0.493 ,0.429 and 0.370 , the highest
waves enclose two bubbles; for K =0.3/6 and 0.266 , three
bubbles exist, with only the middle one completely closed;
for A=0.220, four bubbles exist, with two closed; for
K=0.10, five bubbles exist, with only the middle one
closed; and for kK=0.163 , Six bubbles exist, with two
closed. Figure 4.10 shows the wave profiles of waves of
almost maximum height for k-=0.493 ,0.3/6 ,0.220,0.190 ang
0.163 .

Figure 4.11 shows the change of form of a pure wave
of degree 1 from infinitesimal to maximum height for 4-0)90.

For small A , the continuation in A/ with K kept
constant sometimes hits the |-#M 1imit lines in the KA,
plane. The solution branch with A=0205 hits the |-#5 1limit
line at A,=0.1192 and turns back. After going through this
limit point the solution has five crests. For X=0.176the
solution has a limit point at about A~0.193 and turns back
looking like a modulated 6 wave. For 4=0.14 the solutions
meet the I»7 1limit line at A,=0.15.

For all the smaller X , for which we used the second
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method of continuation, the solutions all have limit
points corresponding to |-M 1limit lines, before getting
to the maximum. These solutions were not continued to the
highest wave because it would have required more than 128
harmonics to get a consistent solution. Since the |-»M
limit lines become more concentrated as K+0 and since
they are not horizontal in the X,A, plane, the continua-
tion of the solutions using A, as the parameter will
probably always have limit points for very small K .

Figure 4.12 is a plot of K vs h/A for maximum ampli-
tude waves. The continuous line is for single bubbled
waves which are the analytic continuation of Crapper's
solution. The + signs represent multi-bubbled waves which
are the continuation of small amplitude pure waves of
degree 1, as described above.

Figure 4.13 is a plot of K vs A, , and of K vs A,
for maximum amplitude waves. The continuous lines are for
the single bubbled waves which are the analytic continua-
tion of Crapper's waves. The + signs and the X signs repre-
sent the values of A, and A, respectively for the multi-
bubbled waves which are the continuation of small ampli-
tude pure waves of degree 1. This figure complements
figur= 2.1 to show the accessible regions for pure waves
of degree 1 in the E,Az plane.

In section 2.6, we showed that for [{N<{XM , the

(M.,N)  combination wave can exist only for sufficiently
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small amplitude. To see if there were other solutions that
did not achieve a limiting height in the sense of the sur-
face crossing itself, we continued a (5,4) combination
wave on €=Ag , with =005 kept constant. The solution goes
through several 1imit points in As , but does not attained
a maximum height. Figure 4.14 is a plot of/a=4fz vs As for
the (5,4) combination wave. The nearly horizontal line
represents the pure wave of degree 5 from which the (5,4)

combination wave bifurcated. Note that the wave speed is

not a monotonic function of Ag (or of h/A ).
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CHAPTER 5

FINITE AMPLITUDE GRAVITY WAVES

5.1 Introduction.

In all numerical studies to date of which we are
aware, it appears to have been assumed, either implicitly
or explicitly, that steady, one-dimensional gravity waves
are unique in the sense that given the height, wavelength
and direction only one wave exists. Owing to the time-
reversibility of the Euler equations, it follows that the
wave must be symmetrical about its crest and trough. There
is no doubt that permanent gravity waves of sufficiently
small amplitude are unique, but to our knowledge there is
no proof of uniqueness or symmetry for waves of all ampli-
tudes up to the maximum. Garabedian (5) proved that the
waves are indeed symmetric and unique in the special case
that all the crests and troughs are equal.

The object of this chapter is to give evidence that
symmetrical gravity waves of large amplitude are not
unique. In chapter 4 we found that finite amplitude capil-

lary-gravity waves are not unique for general values of
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the surface tension. However, the 1imit T»0 is highly
singular and we have already shown that gravity waves
cannot be obtained as the continuocus limit of a capillary-
gravity wave as T—#0 , so the non-uniqueness of capillary-
gravity waves does not imply the non-uniqueness of gravity
waves., On the other hand, Wilton's ripples can be explained
"physically" as fixed points of the non-linear resonance
between a wave and its first harmonic which travel at the
same speed. Since there exist permanent gravity waves of
large but different amplitude that move at the same speed,
because the wave speed is not a monotonic function of

wave height, analogy suggests as a possibility some combi-
nation may exist thét is also a gravity wave of permanent
form. The argument is weak, but it does suggest that if
gravity waves are not unique, it may only be for waves
with heights close to the maximum and that the method of
study will need to be one that can handle waves of large
height.

Our procedure is to study numerically the solutions
of the singular integro-differential equation given in
section 1.2, with T=0 . This eguation has the property
that it can be solved accurately for waves close to the
limiting 120° -cusped wave, with a reasonable amount of
computation, using the methods of sections 3.2 and 3.3
that allow the systematic search for other solutions

different from those obtained from the Stokes expansion.
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For almost all the computations reported here, it was
convenient to use b as the parameter that determined the
wave magnitude. It is clear that b4\ 1is necessary. Since
p=0 at the surface, from Bernoulli's equation (1.1.10)
we have that when b=\ , the origin is at the highest
crest and is a stagnation point; the wave is then a limit-
ing wave with a 120° cusp. The identity 23?=='bf-2 implies
that at y=Y , 9*z¢* , and that the speed at the highest
crest is less than ¢ . Therefore, without loss of general-
ity we can take the origin at the highest crest and confine
attention to the fixed range 0¢b<| . The height is then
determined as a function of b . Infinitesimal waves are
given by b<d<&l ,

Given the value of b , the solution of (1.2.11) and
(1.2.16) will still not be unique until we specify the
number of waves in the window or equivalently the shortest
period A . (We neglect the trivial degeneracy associated
with the direction of the wave and take < >0 .) Then the
existence theory of finite amplitude water waves implies
that for o< b< b, there is a unique solution of period 2T ,
which is moreover symmetrical about §=o0 and §=T . The
assumption that water waves are unique is equivalent to

the statement

bc = | (5.1.1)

We shall present evidence that this statement is incorrect



=2

and that there are values of b for which more than one
wave, with A=L , exists. Let us introduce the name regular
wave for the symmetric water waves that are the continua-
tion to finite amplitude of the weakly non-linear waves
calculated by Stokes by expansion in wave amplitude. The
regular waves are those calculated by Schwartz (23),
Longuet-Higgins (13) and others. The new types of waves,

which we may call irregular waves, arise from subharmonic

bifurcations of the regular waves. We shall show that
regular wave solutions of (1.2.11) and (1.2.16) with more
than one wave in the window, i.e. with A=zl where n>! is
the number of waves in the window, may bifurcate at
critical values of b into solutions with AzL which are
not regular waves. We shall call n the class of the regu-
lar wave solution. Regular waves of class 1 do not appear
to have any critical values of b and are not connected
continuously with the irregular waves. It is perhaps for
this reason that their existence has apparently so far been
overlooked. Irregular waves have crests of different
heights so there is no contradiction with Garabedian (5).
The following equations of section 1.3 provide useful

checks on the accuracy of the numerical computations

29Y =-bd? (5 d:2)
J(K+Va) _ _ < 2L (5.1.3)
>b b

Equation (5.1.3) relates the properties of waves on a
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solution branch.

In all the calculations, the length and time scales
are normalized to

g=1, L= 2T, (5.1.4)

While the first solutions were being computed, it
was noticed that the mesh points tended to concentrate
near the troughs where the curvature changes relatively
slowly. In order to resolve properly the crests which
become sharp when the wave height increases, while keeping
the number of mesh points as small as possible, a change
of independent variables was introduced. A new independent

variable ¥ is defined by

g:‘o’-%sm ny | 0c ¥ < 1M, (5:1.5)

where n 1is the number of waves in the window and O0& 4| .
This transformation concentrates points at the crests
where ¢ is equal to ¥ and an integer multiple of 2m/n .
The closer o 1is to 1, the greater the concentration. It
was found that very steep waves could be resolved satis-
factorily with «=0.99 , which was the usual value taken.
The calculations were done for one case with «=0.999 +to
verify that the results were independent of « . The
method worked well for regular waves. However, the spacing
of the crests on the irregular waves is not necessarily
uniform. In this case, (5.1.5) was replaced for calcula-

tions along the new branches of irregular waves by
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g:x—.%.ﬂnn3~b§(ﬂJ (5+1.6)

where (¥) is a periodic function chosen by iteration so
that d§/d¥ is a (positive) minimum and the crests occur
at values of ¥ which are integer multiples of 2M/n .

For example, for irregular waves of class 2 the spac-
ing of the crests is uniform so that 4\¥)=0 . For irregular
waves of class 3, where the spacing is not uniform, when

supposing symmetry of the solution we picked

F(¥)= &, Sin ¥ + o, sth 2Y ¥ oy sin 1Y, (5.1.7)

The constants o« , &., «, and «y4 are chosen such that
¥=0 , and ¥= 27/3 are the crests, and such that the con-
centration of points at both crests is the same. This gives

the following system of equations

B = 21/3 44,50 Af3 + A, Stn /3 +dy sin B13

dx? 3 (G1.8)

df _ ¢ a4 X:q};? , €&l given

(usually 0.01)
Here § 2 1s the value of § at the second crest. Since we
do not know a priori where that crest is, it is necessary
to do the following iteration:
the position of the second crest is estimated. The solution

is calculated with the values of &, «, , o, and «y
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obtained from the estimate. From this new solution a better
approximation to the position of the crest is found.
Usually only two or three iterations were necessary to

calculate §. to within 1072 of the true value.

5.2 Numerical results for regular waves of class 1.

Fortran programs to implement the numerical procedures
were run on the CDC STAR 100 at Minneapolis. The symmetric
code was first checked by calculating regular waves and
comparing with the results given by Longuet-Higgins (13).
The wave height was used as the continuation parameter
and his table 2, which runs from w/A=004527 to h/i=0.1Y053 ,
was reproduced. The calculated values of ¢ agreed to six
significant figures and the other parameters, energies
and fluid velocity at crest and trough, agreed to the
published figures. These calculations were done with N=40 .
Each individual wave required about 4 seconds of computing
time. The lastest published value for the height of the
limiting wave of greatest height is (Longuet-Higgins and
Fox (15)) h/A=0.14107 . The maximum value of ¢ occurs at
b=0.9728 , W/L=0.13273 . These calculations check not
only our program but also the use of Padé& approximants
to sum high order series, since the latter method is not

rigorous and is based on the uncertain (but apparently in
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this case valid) assumption that a large but finite number
of terms contains the behavior of the solution near
singularities.

We then repeated the calculations using b as a param-
eter with N=80 . These calculations were also carried out
with the non-symmetric code and produced the same results.
For the same values of b or h/A , agreement to six sig-
nificant figures was obtained. Equation (5.1.2) was
checked, the integral being evaluated by the trapezoidal
rule. The error detected in this relation was typically
O(ng) + The relative error in egquation (5.1.3) was less
than 0.1%. This error is bigger because the calculations
to evaluate (5.1.3) were done with only six significant
figures. The derivatives were approximated by a fourth
order difference formula. We concluded that the code was
satisfactory, provided the wave was not too close to the
limiting wave of maximum height.

The method worked very well for b4099% , W)< o.a4og7 .
Newton's method converged guadratically. The iteration was
terminated when the residuals were less than 10'10; this
usually took 3 or 4 iterations. For larger values of b ,
the method started to fail; convergence became slow and
the residuals could not be made to tend to zero. We expect
that the failure is associated with the truncation error
in resolving the sharp peak.

Table 1 lists some of our calculated values of 6,, ¢ ,
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WL s w0 » R a Vg and Y for a range of b for regular

waves of class 1, where 6, is the maximum slope, ¢ is

the wave speed,

S
w:;_im%immtpguﬁyrﬂhwa (5.2.1)
Yo

ugh
is Longuet-Higgins' (13) parameter (units have been chosen
so that the speed of infinitesimal waves of wavelength L
is unity), and K and Vg are the average kinetic and
potential energies per unit length.

Longuet-Higgins and Fox (15) predicted that the wave
speed and energies would oscillate infinitely often as
h—vhmﬁx. We appear to have been able to pick up the first
relative minima of these quantities. The maximum slope
is difficult to calculate. We used the slope of the chord
between mesh points and their bisections. Values of 6,730
were found, as predicted by Longuet-Higgins and Fox; our
results for b4 0.99¢ agree well with the extrapolation
curve shown in figure 12 of their paper. The disagreement
at the top of the table is probably due to inadequate
resolution at the peak.

We followed the solution branch for regular waves of
class 1 from b=0 to b:z0p.99¢ , with both the symmetric and
non-symmetric programs. The Jacobian never changed sign
and we conclude that there are no simple bifurcation
points on this branch. We cannot, however, at present rule

out completely the possibility of higher order even
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bifurcations, but the indications are that they are absent.

5.3 Bifurcation of regular class 2 waves: a new type of

symmetrical solution.

In our studies of capillary-gravity waves (chapter 2),
we showed that these waves could undergo subharmonic
bifurcation. In the simplest case, associated with Wilton's
ripples, a regular wave of wavelength A could bifurcate

continuously into a wave of wavelength 2 A when

W 4|7 T 1)
XTmlge 1|+O{gﬁ 1) iaied

This behavior was called a 2-1 bifurcation. The numerical
results ( chapter 4) show that the bifurcation exists for
finite amplitude capillary-gravity waves for values of T
not close to 317&TT , but the theoretical and numerical
results showed that the bifurcation locus in an h,T plane
does not intersect T=0 . Nevertheless, the results sug-
gested that a search for 2—®| Dbifurcation for gravity
waves would be of interest and we now describe the results.
We first followed the solution branch for 0.I<b<0.99
for regular waves of class 2 (with two periodic waves in
the window, A= L/2 and n=2) using the symmetric code
and N=40 . No significant differences were found in the

properties of the regular waves of class 2 and those of
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class 1 found previously after the appropriate changes of
scale were made. The sign of the Jacobian was monitored
and it was observed that a critical point exists for b:b, ,

where

0.37969< b £ 0.87970, W/A = 0.12%9, (5.3.2)

The criterion (1.4.6) was tested and found to be satisfied
with an error OUO0™') , confirming the existence of a
simple bifurcation.

The tangent vector to the new branch was computed as
described in section 3.3 and the new branch was followed
by pseudo arclength continuation. Figure 5.1 shows a plot
of ¢ vs b for the regular wave of class 2 and the sym-
metric (by construction) bifurcated solution. The regular
wave of wavelength L/2 bifurcates into an irregular wave
of wavelength L . The tangent to the new branch in the

C,b plane is horizontal at the bifurcation point. The
crests in the new solutions are of unequal height. From
symmetry consideration, the two branches must describe
physically identical waves translated relative to one
another through L/2 and hence (d*’-/db)c must be zero on
the new branch. It is sufficient therefore to present
results for b‘)bc «» Table 2 contains properties of the new
type of solution and in figure 5.2 are presented plots of
the wave profile for various values of b from the bifurca-

tion value to b=| . Note that as b <! , the highest crest
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tends to the 120° cusp, while the lower crest stays
rounded.

To check the accuracy of the scheme, the calculations
were repeated with N=60 and N=%0 . The discretization
error was proportional to NTe as expected for a sixth
order scheme. The accuracy drops for b> 0.99 and no
attempt was made to compute the wave of greatest height.
The behavior near the sharp crest would, of course, be
that described by Longuet-Higgins and Fox (15).

To corroborate further the existence of new solutions,
we used the Fourier series method described in sections

1.1 and 3.1, which consists in solving
o0 -] 3
gl Z' éﬁz‘.(cos ng -|‘)—nc‘[(| +Z|A,\ cosng)

oo 29!
¥ Z,'_A“ S(n "S)] = 0, (5:3.3)

for 0«§ =T . This approach assumes symmetrical waves.
The numerical method truncates the series to J terms,
satisfies (5.3.3) at T+ equally spaced points in (o,m] ,
and solves the resulting J+!| equations in the J+! un-

2

knowns A, A, ., A ¢ by Newton's method. Iteration is

J 2
stopped when the residuals were @(IOJO) « The method of
continuation and the determination of bifurcation points
and new branches proceeds as described before. We followed

the branch of regular solutions of class 2, starting with

a wave of small amplitude. Taking J=5/2, the bifurcation
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was found to occur at b =0.8793 . The higher coefficients
were OUI0'Y) ; the machine round off is ©(I07'%) . A
bifurcated solution was calculated for b=0.§78S; its prop-
erties checked to five figures with those found by the
integro-differential equation method. The Fourier series
method is not a good one for steep gravity waves since

the sharp crests produce a slow decay of the Fourier coef-
ficients. The amount of computing time to calculate a
Fourier series solution with 3=%5)2 was about 80 secs.

The integro-differential equation with N=30 took 15 secs.
per solution; with N=40 only 4 seconds were required.

Note that the value of b, and the corresponding h/A
(0.1289) are less than the values at which ¢ has its
maximum (b=0.9725 ,h/A=0.1387 ). The bifurcation also
occurs for smaller values of b than those at which K and
Vg  have their maxima.

No further symmetrical bifurcations on the new branch
were found. Both solution branches were followed with the
non-symmetrical program, but no simple bifurcation points
were found, other than the symmetrical 2-»| bifurcation
at bc . We cannot exclude, however, the possibility of
bifurcation into non-symmetrical solutions through a high
order even bifurcation, but no indications of such behavior
were seen.

Equations (5.1.2) and (5.1.3) were checked for the

branch of solutions of irregular waves and were satisfied
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to the same accuracy as on the original branch.

5.4 Bifurcation of regular class 3 waves.

We now describe the results of calculations following
the solution branch for regular waves of class 3 (i.e.
A=%/3 ,n=3 ). Using the symmetrical wave formulation,

we found a symmetrical bifurcation for

0.87901< b, £0.87902 | h/A = 0.1288, (5.4.1)

calculated the tangent vector to the new branch, and com-
puted the new solutions. The values of b and hW/A are
very close to those for the 2| ©bifurcation. These
results were obtained with N=60 and N=%0 . About 15
seconds on the CDC STAR 100 were required for each solu-
tion. A few solutions were calculated with N=120 to check
that the discretization error was O(N°) .

In this case, the solutions for b>b. and b<b. are
physically distinct. For b>b, , the origin is the highest
crest. The other two crests inside the window are equal
to one another and smaller. The troughs are of the same
depth. In the wave, the highest crests are separated by a
pair of lower crests. As b—rl , the highest crest tends to
a 120° cusp and the others remain rounded. The wave

height increases but the wave speed and energies decrease



L
as b increases along this branch.

For beb, , the situation is reversed. The origin is
not the highest crest. The two crests inside the window
are equal and highest. In this wave, a pair of high crests
is separated by a single lower one. The troughs are again
of equal depth. As b decreases, the wave height increases
until the highest crest is cusped. The wave speed and
energies increase at first and then decrease as the limit-
ing wave is approached.

Since the waves for b>b, and b<b, are physically
distinct, there is no reason why d¢/db should vanish on
the new branch at the bifurcation point, and in fact it is
non zero.

Figure 5.3 shows a plot of wave speed vs b for the
regular class 3 wave and the bifurcated symmetric solu-
tions. Some properties of the new waves are listed in
table 3. Figure 5.4 shows some wave profiles. Since there
are two crests of different heights, the value of b for
the wave is not unique and depends on which crest is chosen
as origin. If AW is the height of the other crest above
the one at the origin, the value of the parameter, b say,

obtained taking the other crest as origin is

b =b+ 20h/2 (5.4.2)

|
For \o'?b‘ , we have b < b, , and vice versa. The dashed

line in figure 5.3 shows < vs b .
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It was not possible to check these calculations with
the Fourier method, as sufficient resolution of a wave
with three crests at the steepness where it bifurcates
required a value of J of at least 750, and the program
became too expensive to run.

A.check was made, however, by repeating the calcula-
tions with the non-symmetric program. The symmetric bifur-
cation of class 3 waves produces waves which are not sym-
metric about all the crests. Thus, if symmetry is not
imposed, the regular wave will bifurcate at b=b, into the
symmetric waves as calculated and two apparently non-sym-
metrical waves which are, however the same wave with the
origin at the other crests about which the wave is not
symmetric. Hence, b=, must be a non-simple bifurcation
of the non-symmetric formulation. Four branches of solu-
tions pass through the bifurcation point; a regular wave
of class 3, a symmetric irregular wave, and two non-symmet-
ric irregular waves. The irregular waves are physically
identical, the difference between them being a horizontal
displacement. A non-symmetric wave with value b:=b, , say,
is identical to the symmetric wave with bzb, . The
properties of the non-symmetric branches are therefore
given by table 3 with b instead of b . Corresponding to
the existence of four branches, we expect the Jacobian to
have a double zero.(The branches at a nth order zero of

the Jacobian correspond to the roots of n quadratic
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polynomials.)

Following the regular branch with the non-symmetric
program, we found no change of sign of the Jacobian between
b=0.2 and b=0.9 . This confirms that the bifurcation is
not simple. Closer examination showed that two diagonal
elements of the matrix UV of the LU decomposition were
small near b-0.879 ; their magnitudes were 10*4 smaller
than the other elements on the diagonal. These two
elements changed sign, but not exactly at the same value
of b, the difference being O(F") . The calculation was
carried out with M=%0 , 120 and 160 . No discernible
changes in the separation as M changes could be detected.
The residuals of the Newton iteration around the bifurca-
tion point were 6(1077) . The difference appears to be
within the limits of numerical error and we can conlude
that a double zero of the Jacobian does exist as predicted.
We also calculated a non-symmetrical branch. The value of
¢ vs b is shown on figure 5.3 as a dashed line. Its
properties agreed to five significant figures with those

of the symmetrical branch on making the identification of

b and b .
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5.5 Discussion.

We have presented numerical evidence that permanent
gravity waves of finite amplitude are not unigue when their
height is sufficiently large. Two new types of wave with
wavelength L have been calculated, coming respectively
from the bifurcation of regular wave trains of wavelength
L/2 and L/3 . The bifurcation points were calculated
by finding the values of a parameter b in the range (0,1)
at which the Fréchet derivative of the equation defining
the system for each value of b is singular and testing
that a bifurcation criterion is satisfied. Branches were
followed by Keller's method of pseudo arclength continua-
tion.

The Fréchet derivative is calculated approximately by
a discretization or truncation of the exact system. We
have not proved convergence. However, the scheme appears
to behave satisfactorily as the number of mesh points is
changed and there is no reason to doubt that the results
are genuine and not an artifact of the numerics. Three
methods, of which one was very different from the others,
have been employed and give consistent answers.

Important questions which remain unanswered are the
existence of bifurcation at small values of h/A and thé
possibility of bifurcation into genuinely non-symmetric

solutions. Unfortunately, it appears that the latter type
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of bifurcation, if it exists, is probably of high order
and conseguently difficult to detect, at least by the
preseﬁt method. Consider for example a wave of class 4.
Suppose an infinitesimal perturbation onto a symmetric
bifurcation branch changes the heights of the five crests
in the window [o,2M] by (€,€ , - ,€ ,E ). On the new
branch on the other side of the bifurcation point, the
change would be (-€,-¢ ,€,-&£ ,-€ ). These waves are
physically distinct and hence d¢/db #0 for this branch;
but they are physically the same as ( -£, €, €,£€ , =& )
and (£ ,-£,-€¢, -£,£ ) respectively. Hence the bifurca-
tion must be of second order. Similar arguments can be
made for bifurcation into non-symmetric waves. Progress
in answering the questions may therefore have to wait on
the refinement of the techniques for detecting high order

bifurcations.
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APPENDIX A

Here we are going to prove that for capillary-gravity

waves

29Y =-b<t, (A.1)

The momentum conservation equations (1.1.2) and (1.2.3)

can be written

Wy 4w AP o upr, pder o DALY, (A.2)
X 2y ER X 2y 2y
and from the continuity equation (1.1.1)
W YV e B o .
2= J%.g = S;(uvhsbg(u’), (Ae9)
Integrating (A.3), and using Stokes' theorem
i ¥
J g[l(qu)+_§_(a")]dxd‘j=éuw'alj'u‘ld\(, (A.4)
o ) X >

Since the top and bottom of the circuit are streamlines
along which udj-vdx , no contribution results from the
integration along these parts. As u 1is periodic, the
contribution of the remaining two portions cancel so that
the integral is zero.

Hence,
D’H[M%{( +U‘%-:;:]0|Xc,j=—Jf2%f;ﬂ)dxdj:§(p+jj)ds=q (A+5)

Since p+9y is periodic, the last equality of (A.5) gives
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L L
J (P+3Y3dx :j (P,—3D3d>(. (A.6)

Here for simplicity, we are supposing for the moment that
the bottom is the horizontal line 4:=-D , where the pressure
is £ . As before the surface is 4= Y and the pressure

there is -P .

Therefore

L L _
j(F-F,\dX & -5JD (Y+D)dx = —3[ (D+Y)., (A.7)

By comparing pressures in the same vertical line

Ji. ‘414-? +%Y = -;- <+ P 30 = C‘(\'LD (A.8)

2

or
PP = -3(‘(#034--)‘_—((1‘ ") . (A.9)
Integrating from 0 to L we have

L
jqfdx = ¢*L (A.10)

Thus, from integrating Bernoulli's equation (A.8) along

the surface we have
23\? =z -hct (A.11)

since %

L
SL?dx:-TJ_L(thTJ_Iu_# dx = 0. (A.12)
(v}

3
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APPENDIX B

We will now prove the relation

2 (K+Ve) = ~¢
N 9 % : (B.1)

Using (1.3.1), (1.3.2) and (1.3.6) we have
Y -1
L2 (kavg) = 2 { II(Q VB3 dyels L X‘-(T-T)JX}:

H g 238 8,28, My o[3 08480 any)

-o) '_‘}:T

-aY Y
9 S’EBAY' (B.2)

The kinematic and dynamic boundary conditions (1.1.7) and

(1.1.10) can be written as

(@”czﬂ $y LqY = lish) (B.3)

"Yx Qx’(@b = < Y,( . (B.4)
For T=0 , Y is a well defined function of x . Therefore

L%_B(Kﬁr\/%):& ig [L(@ ‘;5534-3, (¢ ‘I’ﬂdj-z\( [ ‘I’fﬂ LJ QIHX

=§(¢3@bdx—¢,@5 dy)- chs ngumr AR (8.5)

0“—(!



-111-

Here we used equation (A.1) and that ? is harmonic. As

before, only the integral along the surface is non-zero.

(K+\/% S@(@ -®, Yy )dx - cij@,(ax:

:CS [QFbe_Yb @x}dx ) (B.6)
In the last equality we used (B.4).
Now
ekl [ ([l
_35;. [ Yol J *[Y"’q”‘]g:Y gdx=
=j (Y,,cb,—\’x@h)w dx . (B.7)

In obtaining the last equality we used that
L

Y Y Y

[ 2] 2dg)de- | ?hdj] - by 0 9
—0 = ol %=1 ~ o0 X 20

by periodicity.

Comparison of (B.6) and (B.7) gives the desired

relation (B.1).
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« =.050039
x = .050033
x = .050027
Kk = 050016

K = 050005

K = 049987

Kk = 04996|
x = 049934
Kk =.049920
Kk = 049913

Figure 2.56. Plots of combination (5,4) waves with

Ay/4 +As/5 = 0.00267 near K = 1/20, showing smooth transition
from a pure wave of degree 5 to one of degree 4 and vice versa.
Vertical scale is magnified 333 times.
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Figure 4.3. Profiles of (2,1)

# g
combination waves for X= 0.03.

The lowest profile corresponds to just after the bifurcation

point and the top one to the

highest wave. They origin is at Y .
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Figure 4.8. Profiles of (1,3

) combination waves with K= 0.316,

for different points on the A vs Ay diagram of figure 4.7.

yorigin is at mean water le

vel.
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Figure 4.9. Profiles of wavea.of maximum height for f=-+,2.333,
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tion of Crapper's limiting solution. y origin is atY.
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Figure 5.1, Wave speed vs amplitude parameter b for regular
waves of class 2 and the bifurcated solutions. The two parts
of the bifurcated solution describe physically identical

wgvgs_shifted by L/2. The dots represent schematically the
limiting waves.
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