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A~STRACT 

The properties of capillary-gravity waves of permanent 

form on deep water are studied. Two different formulations 

to the problem are given. The theory of simple bifurcation 

is reviewed. For small amplitude waves a formal perturba

tion series is used. The Wilton ripple phenomenon is re

examined and shown to be associated with a bifurcation in 

which a wave of permanent form can double its period. It 

is shown further that Wilton's ripples are a special case 

of a more general phenomenon in which bifurcation into 

subharmonics and factorial higher harmonics can occur. 

Numerical procedures for the calculation of waves of finite 

amplitude are developed. Bifurcation and limit lines are 

calculated. Pure and combination waves are continued to 

maximum amplitude. It is found that the height is limited 

in all cases by the surface enclosing one or more bubbles. 

Results for the shape of gravity waves are obtained by 

solving an integra-differential equation. It is found that 

the family of solutions giving the waveheight or equivalent 

parameter has bifurcation points. Two bifurcation points 

and the branches emanating from them are found specifical

ly, corresponding to a doubling and tripling of the wave

length. Solutions on the new branches are calculated. 
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INTRODUCTION 

Since the last century, there has been an undecaying 

interest in the study of periodic, irrotational, permanent 

surface waves on a deep heavy inviscid fluid. Most of the 

work done considers gravity as the only restoring force. 

In his now classic paper of 184?, Stokes (27) proposed the 

existence of a solution for the non-linear problem as a 

perturbation series in the amplitude. He calculated the 

first three terms of the series and found that the speed 

of propagation c depends on the amplitude. When he revised 

this paper in 1880 (28), he found it simpler to reformulate 

the problem using the complex potential as the independent 

variable. He also added an appendix proving that if the 

surface has a cusp, the internal angle is 120°. Since, as 

the amplitude grows, the crests become steeper and the 

troughs shallower, he speculated that the highest wave 

would have a 120° corner and a wide shallow trough. Miche l l 

(1?) and Yamada (32) incorporated this singular behavior 

into the approximate calculation of waves of maximum 

height, and found that h/,l-:: 0. t'i f '2.. , where )\ is the vert i -

cal distance between crest and trough, and A is the wave

length. Schwartz (231 using Pade approximants to sum a 

Stokes type expansion to hig h order, calculated numerical 
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solutions for waves of any height up to almost the maximum. 

His surface profiles tend to those of Michell and Yamada, 

as the waveheight increases. Longuet- Higgins (13), using 

the same method as Schwartz, found that the wavespeed and 

the energy are not monotonic functions of the waveheight, 

and established some integral and differential properties 

of gravity waves. Longuet-Higgins and Fox (15) constructed 

asymptotic expansions close to the 120G-cusped wave of 

greatest height and showed that both the wavespeed and the 

energy oscillate infinitely often as the limiting wave is 

approached, and moreover, the maximum slope is greater 

than 30°. The stability of finite amplitude, steady gravi t y 

waves to infinitesimal sinusoidal disturbances has also 

been investigated by Longuet-Higgins (14). He determined 

that for a superharmonic perturbation (the wavelength of 

the perturbation is less than that of the unperturbed 

steady wave) there is an instability at h!J .. :=· 0.13'1 

which is also the value for which the wavespeed h a s a max

imum. When the perturbations are subharmonic, he found 

that for small amplitudes all modes are neutrally stable; 

become unstable when the waveheight reaches a certain value 

corresponding to the Benjamin & Feir (1) instability, and, 

as the amplitude continues to increase, become stab le and 

then unstable again at about h/,.\:::0 .1 2 9 

If we include the effects of surface tension, the re

sults are fewer. However, if surface tension is the only 
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force, Crapper (4) solved the problem analytically. He 

found that the wavespeed decreases monotonically with the 

waveheight, and that the highest wave encloses a bubble. 

For higher amplitudes the surface crosses itself making 

the solution unphysical. 

Harrison (6) approximated the solution to the problem 

with both surface tension and gravity by a Fourier series 

using Stokes' hypothesis that the nth Fourier coefficient 

is nth order in the amplitude. He calculated three terms 

and found that the approximation broke down when the wave

length was such that the wavespeed was the same as the 

speed of waves with a half or a third of the wavelength. 

He showed that the profiles for waves of very short and 

very long wavelength are essentially different. Wilton (31 ) 

extended the expansion to fifth order and showed how to 

correct the inconsistency at the critical waveleng ths 

~ AN:4n(NT/pg) , where N is an integer greater than 1, I 

the surface tension,~ the density of the fluid and 3 the 

acceleration due to gravity. He proposed that at the crit

ical wavelengths, the first and Nth harmonics are of the 

same order and all the others of smaller order. He found 
~ 

further that two different solutions exist at A1·~n(4~,) , 
the so-called Wilton ripples. 

Pierson and Fife (21) using the method of s trained 

coordinates extended Wilton's solutions to wavelengths 

near Al( A1 =2.44 e m in wate r). Nayfeh (19) obtained a 
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second order expansion valid near _.\ 3 ( ).. 3 =2. 99 om in water) 

using the technique of multiple scales and found three 

different profiles. 

Schooley (22) observed experimentally in wind generated 

waves profiles close to those predicted by Wilton near 

A=2.44 em. However, McGoldrick (16) using a wavemaker 

could not produce a uniform profile for A =2. 44 em. The 

physical existence of capillary-gravity waves near the 

critical wavelengths is still an open question. 

Results about the mathematical existence and unique

ness are few and most are limited to small amplitude. For 

gravity waves \\=0), Nekrasov (20) formulated the problem, 

for symmetric waves about verticals through the crest and 

trough, as a non-linear integral equation. He proposed a 

series solution and proved the convergence for sufficiently 

small amplitude, but did not give the radius of convergence. 

Levi-Civita (12) used a similar series to prove the exis

tence of water waves for sufficiently small amplitude. His 

proof yields solutions that are symmetric with respect to 

crest and trough, but, contrary to popular belief, he did 

not prove that all gravity waves must be symmetric. More 

recently, Krasovskii (9) gave an existence proof valid for 

waves of finite amplitude with slopes measured from the 

horizontal less than )0°. Keady and Norbury (7) reformulated 

the problem using the inverse of the speed at the crest 

as the expansion parameter and proved convergence of the 
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series for all crest speeds down to but not including zero. 

The highest wave with an stagnation point at the crest is 

the only wave not included in the proof, which allows even 
0 

for the existence of waves with slopes greater than 30 . 

Garabedian (5) using variational methods gave another 

existence proof and, under the assumption that there is 

only one crest and trough per period, proved that the waves 

are symmetric about the crest and trough. A corollary of 

his proof is the uniqueness of symmetric waves with the 

same crests and troughs. He could not prove symmetry for 

waves whose crests or troughs have unequal heights. Toland 

(30) proved the existence of the highest wave having a 

stagnation point at the crest, and showed that the crest 

has to be either a 120° cusp or the limit point of a 

sequence of steep ripples. 

For capillary-gravity waves, Sekerzh-Zen'kovich (24) 

gave the outline of an existence proof. Zeidler (33) did a 

comprehensive study of existence and uniqueness proofs, 

together with the functional analysis methods used. One of 

the most important results is his constructive proof of 

existence and uniqueness for capillary-gravity waves of 

sufficiently small amplitude for all wavelengths, except 

the critical ones found by Wilton. He supposed symmetry of 

the waves. 

The existence, uniqueness and symmetry of capillary

gravity waves is still not completely solved. They exist 
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for sufficiently small amplitude and it is likely that 

they cease to exist when the amplitude reaches some finite 

critical value. Gravity waves do not appear to exist when 

VA) o. ILl 'l. Also, capillary waves cease to exist for 

h/J...) o. 7 )0. The limiting wave touches i tsel:f and encloses 

a bubble but the shape is otherwise smooth. The results of 

Wilton (31), Pierson and Fife (21) and Nayfeh (19) show 

that capillary-gravity waves are not unique, even for wave

lengths not equal to the critical ones. It is not obvious 

that permanent nonsyrnmetrical capillary-gravity waves of 

sufficiently large amplitude do not exist. Wilton ripples 

are not symmetric with respect to all their crests or 

troughs. 

Our main objective is to investigate the properties 

of capillary-gravity waves, analytically for small ampli

tude and numerically for amplitudes up to the maximum. We 

will study the bifurcation of waves into subharrnonics and 

fractional higher harmonics, and show that finite amplitude 

capillary-gravity waves are not unique. We will also give 

evidence of nonuniqueness for gravity waves. We will re

strict ourselves mainly to symmetrical waves about a crest 

or a trough. But for gravity waves we will explore the 

possi-uili ty of nonsyrnmetrical solutions. The mathematical 

existence and stability of the solutions are beyond the 

scope of this work. 
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In chapter 1, the physical problem is established and 

the mathematical equations derived. Some integral and 

differential properties of water waves are formulated. A 

review of simple bifurcation and arclength continuation is 

given. 

In chapter 2, we consider the form of weakly non

linear waves of permanent shape on deep water under the 

effects of both surface tension and gravity. A formal per

turbation series is used to find uniformly valid solutions 

and to establish the bifurcation of waves. Wilton ripples 

are a special case of this phenomenon. 

Chapter 3 is the development of the numerical proce

dures used to solve the problem for finite amplitude. 

Chapter 4 contains the numerical results for finite 

amplitude capillary-gravity waves. 

Chapter 5 is the numerical study of high amplitude 

gravity waves and their subharmonic bifurcation. 
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CHAPTER 1 

FORMULATION OF THE PROBLEM 

1.1 The Fourier series expansion. 

We consider periodic, steady or permanent, one-dimen

sional, inviscid, irrotational, progressive water waves of 

finite amplitude on deep water otherwise at rest, under 

the influence of both gravity and surface tension. The 

density of the upper fluid, usually air, is neglected. 

We take rectangular coordinate axes Ox'y', with Ox' 

horizontal and Oy' vertically upwards in a frame of refer

ence moving with the wave. Let 2=~~~y denote the complex 

physical coordinate. We study the wave in a window of 

horizontal extent L, where Lis an integral multiple of 

the wavelength A , that is defined as the shortest period 

of the wave. Let c be the wave speed and h the height, 

defined as the vertical distance between the top of the 

highest crest and the bottom of the lowest trough. Denote 

the components of the velocity vector in the direction Ox' 

and Oy' by~ and~. respectively, the pressure by ? and 

the acceleration of gravity (positive downwards) by 9· The 
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density )' of the fluid will be taken equal to 1 with no 

loss of generality. 

Since in this frame of reference the motion is steady, 

the equations of motion for an inviscid, incompressible 

and one-dimensional fluid are 

~+~-.::0 
~')( ~1 

u. ~..,.. .r ~ -:: _ cP.. 
'b'X ()6 ~ 

u. ~ + \]" }.\t -=- -~ - ~ 
b'X ~~ d ~~ • 

Further, since the motion is irrotational~ 

(1.1.1) 

(1.1.2) 

(1.1.3) 

~- ~:: 0 (1.1.4) 
ax (}~ 

and there exists a complex potential w~; +-1."{1 such that 

u..- ..\ v :: ~ ( 1 1 5) 
d~ • • 

For incompressible fluids, we have Bernoulli's integral 

(1.1.6) 

where A is a constant. 

Next consider the boundary conditions. Let f(x~~)=O 

describe the surface, then the condition that there is no 

transfer of matter across the surface gives the first 

boundary condition 

(1.1.7) 
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That is, the velocity at the surface is tangential to the 

surface. Since the surface is not known a priori, we need 

an additional condition. This is the dynamic condition 

-p: -T 
"R" 

(1.1.8) 

where T is the surface tension and R the radius of curva-

ture of the interface taken positive when the surface is 

concave upwards. 

Since the surface is a streamline, say 'I' • o, it is 

more convenient to work with ~ as a function of the complex 

potential. The fluid occupies the region 'f'~ 0. See figure 

1. The equation of continuity (1.1.1) and the irrotation

ality of the fluid (1.1.4) give 

(1.1.9) 

on 'f'~ o. The boundary conditions imply that 

f"+ 1.~'1'- ~::: cl.(t-b) (1.1.10 ) 

on 't' =o. In ( 1.1.10) <:J,= l d~/cAwl ~' evaluated on the surface , 

Y is the height of the free surface above some or1g1n. 

Bernoulli's constant is written as c~(l-b}, where cis the 

wavespeed. The magnitude of the wave determines the param

eter b, but its precise specification depends upon the 

choice of origin for Y. For instance, if Y is measured 

from the mean water level, then the argument in Lamb (10, 

section 250) is easily extended to include surface tension 
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to show that b=O. (See appendix A). However, we find it 

convenient in our discussion to measure "'( , and the horizon-

tal coordinate, from a crest or a trough (i.e. a local 

maximum or minimum of Y) where w is also supposed to van

ish. In this case 

b ~ 1-
1.. 

V..o 
c1.. 

+ l. T , 
R0 c'1.. 

(1.1.11) 

where suffix 
0 

refers to the origin and ~0 is the speed 

at the crest or trough. 

We are going to use two completely different methods 

to find solutions to the problem. The first one consists 

in expressing z in terms of the complex potential w by a 

Stokes type expansion. The second is to consider the sur-

face as a vortex sheet and obtain an integra-differential 

equation for the problem. This method will be developed in 

section 1.2. 

Returning to the first method, let 

..0 

z.: W- ~.A. b. <;" ("' e.><p(-:tl\1'\.i'AikL) + ~ 
C l.lT 4- n .2.1T 

(1.1.12) 

which satisfies Laplace's equation (1.1.9). Since ~(0)=0, 

we have that Co is given in terms of all the other C~ 's. 

The unknowns are the complex constants en, the wavespeed 

and the parameter b. They are determined by Bernoulli's 

equation (1.1.10) and by the amplitude of the wave. 

Equation (1.1.12) evaluated at~ =O gives parametric 

equations for X and Y as functions of the velocity 
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potential ¢ . Evaluation of ~ and ~and substitution into 

(1.1.10), which must be satisfied foro~ p~cL, together 

with a specification of the amplitude, provides the neces-

sary equations for the unknowns. 

We now assume further that the waves are symmetrical 

about the origin; that is, we suppose that a crest or a 

trough exists about which the wave is symmetrical and 

choose it as the origin. It was proved by Levi-Civita (12) 

and others that permanent symmetric gravity waves exist. 

Zeidler (33) proved the same for capillary-gravity waves. 

To our knowledge, it has not been proved that all waves 

must be symmetric. However, this is a matter for further 

study and we shall restrict attention to symmetrical waves. 

Then it can be supposed that the constants Cn~An+~Bn, say, 

are real (i.e. Bn~o) and the parametric equation of the 

interface is 

oO 

X==- _L S t h " A ... L __..., Sirl. ns 
2.1T lTT I I') 

(1.1.13) 

y ~ LlT f._ ~ ((OS Y\F -1) 
;l_ Y\ .J ~ 

(1.1.14) 

where 

(1.1.15) 

'2_ I l .\_ 
and the origin is taken at 5 =o. Since g,.;c.~ (X' t-Y ) and 

R-' = cx'Y"-x"Y')/(X' 2 +Y' 2 ) 312 , where I =d/d"_5, equation 

( 1. 1 • 10) gives 
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(1.1.16) 

Because of the assumed symmetry, s ~n is also a crest or 

trough and it is sufficient to satisfy ( 1.1.16) for o~ 5 ~ TT • 

This equation was given by Wilton (31), with a slightly 

different notation. 

The unknowns in (1.1.16) are the An, n = 1,2, ••• , the 

wave speed c, and the parameter b. The period L is supposed 

known. Therefore a fUrther condition is necessary to spec-

ify the solution. This is usually taken to be the wave

height h, say, i.e. vertical distance between crest and 

trough, or perhaps the energy of the wave measured relative 

to a fixed frame, or the leading coefficient A1 • We found 

from experience that none of these parameters were univer-

sally useful for describing the bifurcation phenomenon to 

be described in this work, and in fact we have been unable 

to construct a parameter which characterized the magnitude 

of the wave for all the phenomena in a satisfactory way. 

For the computations we used the following method of 

characterizing the wave magnitude in terms of an amplitude 

parameter £. • The sequence A1 , Al.). 3 ) ••• is chosen so that 
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L AY\ An:: f. 
I 
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(1.1.17) 

Different classes of waves correspond to various choices 

of the sequence ~ . The parameter E. may be positive or 

negative. This approach is not particularly elegant and 

lacks a clear physical interpretation, but it is the most 

convenient one we have found so far. The basic difficulty 

is the lack of a parameter which is a monotonic function 

of a physically significant wave magnitude. An alternative 

approach is to specify b as the amplitude parameter. 

Our task will be to study the solutions of (1.1.16). 

1.2 The vortex sheet formulation. 

There are several alternative schemes which reduce 

the calculation of the wave profile to the solution of 

non-linear integra-differential equations. See, for 

example, Nekrasov (20), Milne-Thompsen (18) and Bloor (2). 

We have found convenient a method of this type based on 

the fact that the surface of a water wave is a vortex 

sheet. 

We work in the coordinate system fixed in the wave, 

see figure 1. Since the inertia of the air is neglected, 

we can without loss of generality suppose the velocity of 
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the air (or upper fluid) is identically zero. Then the 

surface of the wave is a vortex sheet of strength '?t\$) , 

where s is arclength along the surface and ~ is the tangen

tial velocity of the fluid. The surface has the parametric 

representation Zl s) = X( s}+ J.... Y (S) . Let u... - A.v denote 

the components of velocity in the fluid. Then from the 

Biot-Savart law, the velocity at z. = x + ...l ~ 

u..-iv- =- i.._Joo=t(S,) ds, + J.. c. 
:nr z.- 2cs,) :z 

-..c 

is given by 

(1.2.1) 

The reason for the 1c is that the Biot-Savart law gives 

the velocity only to the extent of an arbitrary constant. 

The velocity induced by the vortex sheet has equal and 

opposite limits as ':} .... -too. Hence, to make the velocity as 

'j -+a() equal to zero and the velocity as ~ _.- 00 equal to 

c, the additive constant must be ic. 
Plemelj's formula states that 

llm ( f(s,) ds, :: Pj f (SJ Js, .-; ~ n _:f,.W_ 
2 -+Zfs)j z-7As,) Zts)-Z{s,) 2 cs> 

(1.2.2) 

The minus sign is for z. approaching the surface from above, 

and the plus sign from below. P denotes the Cauchy princi

pal value. 

From (1.2.1) and (1.2.2), we have 

(1.2.3) 

where 8(s) is the slope of the surface measured from the 

x axis. Also 
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d.Z ~e g _ -i.e 
cl s = e J Js - e " (1.2.4) 

where the overbar denotes the complex conjugate. Thus 

'""' 
~ ~(s) cli ::: _ .:i.. Pj 51 <s,) cls, -+ -\. <-. 

cis l.TT -..o L(s)· 'Z(S,) 

Bernoulli's equation (1.1.10) gives 

I 

~(s)= (c~(l-b)-:z~)(S)-t-2T )
2 

R<s) 

(1.2.5) 

(1.2.6) 

Equation (1.2.5) is then a non-linear, singular, integra

differential equation for Z(s). It can be simplified by a 

change of variable. Introduce ¢ or 5 as independent 

variables instead of s. Then 

(1.2.7) 

and aO 

- - _;_ Pj d¢, +-Lc 
2.1r -oD Zf~)-7 MJ 2 ~ 

(1.2.8) 

or since the problem is periodic of period L for Z and cl 

for ¢ , using that 
<><> _, ,L c.L 

p r d ¢, = L PJ d rA .:: JL p( <.Ot[n (7.(~)- Zl~,)~d¢,J ( 1. 2. 9) 
~-a 71¢) -lf¢,) ~"-- o 7A~)-Lf¢,)-Yll L ~ L 

and writing 

z- l s 
~lT ~ 

(1.2.10) 

we have 
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(1.2.11) 

where 

..L = :2.. rr Tm ( Q d S /I c.lij 3 
) 

R L d ~
4 

J 5 d 5 • 
(1.2.12) 

To equation (1.2.11) must be added some condition 

that specifies the magnitude of the wave. The simplest 

procedure conceptually is to specify 

h= Yl'\axlY)-mi.n(Y). (1.2.13) 

Equation (1.2.11) then has solutions of period 2rr in J , 

provided ~ is sufficiently small. These solutions are, 

however, not isolated for 

(1.2.15) 

is obviously also a solution of (1.2.11) and (1.2.13) for 

arbitrary values of ~ , ;(0 and 'J 
0

• Equation ( 1. 2 .15) 

descri bes the same wave displaced horizontally and vertical 

ly, moving in the same or opposite direction, with the 

origin of arclength displaced along the surface. We can 

remove the degeneracy by putting the origin of coordinates 

and arclength at a crest or trough, i.e. we can require 
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X(O) = 0, (1.2.16) 

The three equations (1.2.16) then suffice in principle to 

determine the three arbitrary constants in the general 

solution (1.2.15). Implementation of (1.2.16) can be made 

automatic when the solution is assumed to be symmetric. 

However, for T=O we also prepared a numerical method which 

does not assume that the wave is necessarily symmetric. 

The purpose was twofold; first to provide a check on cal

culations assuming symmetry, and second to try and find 

nonsymmetrical solutions. Implementation of (1.2.16) then 

proved difficult until overcome by a trick; see equation 

(3.2.13) of chapter 3. 

Equations (1.2.11) and (1.2.16) together with (1.2.13) 

or an equivalent measure of wave magnitude, provide us in 

principle with a complete set of equations to determine 

water waves of finite amplitude. This approach is very 

usefUl in calculating high amplitude gravity waves. 

1.3 Some integral properties. 

Integral properties of interest are the kinetic and 

potential energies per unit length. The kinetic energy K 

is measured in a frame fixed relative to the fluid. Defin-

ing \J = i> + A. 'f : "" - c: :r , we have 
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(1.3.1) 

The physical and potential planes are sketched in figure 1. 

The last equality of (1.3.1) is Stokes' theorem. The inte-

gration along the boundary is in the clockwise direction. 

Using the periodicity of the solution, and that the fluid 

is at rest at ::1 = -co , the only contribution to the line 

integral is from the boundary OAB where 

'f-::- cl 
) 

~ = ~-eX. 

It follows that 

(1.3.2) 

Here Y is the mean height defined as 

L l.1T 

Y= L_ J YJx ::_L l Y~ ds (1.3.3) 
o L o 

I 

Substituting (1.1.13) and (1.1.14) into (1.3.3) and inte-

grating we have 

(1.3.4) 

Now, using (1.1.14) and (1.3.4), the kinetic energy is 

The potential energy has two contributions, V~ due to 

gravity and VT due to surface tension. The gravitational 

potential energy is measured relative to the mean height Y, 
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L y 2.1T 

v~ -= ~ j j _ ~ 'j d'j d x ::: .i.. ( , Y l_ 9 l ) ~ J 5 J 

o '( .2 L )o cl_5 
(1.3.6) 

and upon substitution of the parametric equations for X 

(1.3.7) 

or calculating the integral, 

(1.3.8) 

The surface tension contribution is 

L 2n ~ 

vT= I ((ds-dx)= t ( l [[&X)~(J'<}] -ax}Js 
Jo .)0 l d ~ J1 a) ,J 

(1.3.9) 

or using (1.1.13) and (1.1.14) 

~n ~ 

VT = ~ joi[(I+~A .. ~~~j)\(4A"str~V\g)L]~-IJ~_5. (1.3.10) 

Other important physical quantities are the momentum 

per unit length 
l y 

1 = t J ~ ~ )( d'j d >( ) 
0 --o 

(1.3.11) 

the excess flux of momentum due to the wave 

(1.3.12) 

is the hydrostatic pressure in the 

absence of waves, and the energy flux per unit length f 
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defined by 
L y 

f = T J ( [ -p + ~ \ ~\ L + d ( J- Y )] 1x dJ d X • 
0 - cD 

(1 . .3.1.3) 

Levi-Civita (11), Starr (25), Starr and Platzman (26) 

and Longuet-Higgins (1.3) established the following rela-

tions 

(1..3.14) 

5 = L! K- 3\J'~ (1 • .).15) 

f o= ( 3 T - 2 v~ > c (1..3.16) 

Of these three relations, only the first one is valid for 

T ~ o . 
Provided ~ f 0 , the following relation gives a useful 

check on the accuracy of the calculations 

(1 • .).17) 

We will prove it following Lamb (10, p. 420) and Starr (25) 

in appendix A. 

If the amplitude is allowed to vary, the following 

differential relation governs the rates of change of K, V~ 

and c 

(1..3.18) 

(1 • .).18) is valid only for gravity waves. It is also a 

useful check on the numerical results. The proof of (1 • .).18) 
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follows Longuet-Higgins (13) and is given in appendix B. 

1.4 Simple Bifurcation. 

We can write (1.1.16) or (1.2.11) and (1.2.16), to

gether with some amplitude equation such as (1.1.17) or 

(1.2.13), abstractly as 

(1.4.1) 

where the element ~is the solution (the Fourier coeffi

cients AV~'"'=1,2, ... , or the wave profile for 0 ~ _5 £- 2TT 

the wavespeed c and the parameter b), tis the parameter 

which determines the magnitude of the wave and T is the 

surface tension. Since we are only going to consider 

branches of solutions of (1.4.1) that have one of the two 

parameters £ or T constant, the notation can be simplified 

by writing (1.4.1) as 

(1.4.2) 

where ~ now represents the parameter that is allowed to 

vary. 

In practic e , & and~ will be finite dimensional vec

tors arising from the discretization of the governing 

equations. To follow solution branches of (1.4.2), determine 

the existence of limit or bifurcation points, and switch 
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branches at the latter, we follow Keller (8) and introduce 

the arclength S in ( u._, f') space. Instead of finding solu

tions of ( 1. 4. 2) in the form u.-= U.l'f>) with the parameter 

"P given, we calculate u-= u.ts) , f::. pCS) • An additional 

equation of the form 

(1.4.3) 

is needed to determine 'P as a function of S • A point 

(u.\~o),p{s,)) on the branch is a regular point if the Fr~chet 

derivative &u.(u l).,),pl5o)) is non-singular. Otherwise we have 

a critical point. In general, a critical point is either 

a limit or a bifurcation point, but it can be both. At a 

limit point, the value of f has a maximum or a minimum 

and ~ is not a single valued function of -p in the vicini

ty of the point. Since the arclength S is always monotonic 

on a branch, limit points disappear when s is the parame-

ter. At a bifurcation point two or more solution branches 

intersect. 

The following relations hold if s =5
0 

is a simple 

bifurcation point where two smooth solutions intersect 

non-tangentially I 

di.m N { &: ) = codlWI ft. ( &-;) = I } 

& o E R(fr.o) 
1' v.. 

null space and R. the range. Denote by ¢, 

(1.4.4) 

if 
and 'f, the 
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unit norm elements which span /V(&:) and the adjoint space 

!Vl&:~) respectively. (1.4.4) implies the existence of a 

unique element ¢0 such that 

-If It follows from the definition of ~ 

(1.4.5) 

and (1.4.5) that 

(1.4.6) 

this equation provides a way to check for bifurcation and 

distinguish it from limit point behavior. 

To find the branches at a simple bifUrcation point we 

first differentiate (1.4.2) twice with respect to s , eval-

uate at 50 , and multiply the second derivative on the left 

by 'f.*" , giving for each branch ( lAs0 ~lJ.~<S.\, fs0 ~f,(5.,)): 

(1.4.7) 

The right hand side of (1.4.8) is zero because &; is in 

the range of & ~ and y-'
1 

.>J- is orthogonal to the range of &~ 

Since the null space of is one dimensional, we have 

from ( 1. 4. 7) 

(1.4.9) 
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with 

(1.4.10) 

Substituting (1.4.9) into (1.4.8) gives the quadratic 

equation 

A 1. l 
()(., t B o<.,o<o + ( o<o ;; 0 (1.4.11) 

with 

"1- 0 

A ~ 'f. & U.\A ~I ¢, (1.4.12) 

B :: r,'* { &u: ( ~0 ¢, + ~ ¢o) t 2 {y u; ~~} (1.4.13) 

(1.4.14) 

Solution of the quadratic, the so called algebraic 

bifurcation equation, gives the branches intersecting at 

the bifUrcation point and makes it possible to switch from 

one branch to the other. Note that prior knowledge of one 

branch gives one root of the quadratic. For further details 

and a general treatment see Keller (8). In chapter 3 we 

describe the actual procedure by which solution branches 

were followed and simple bifurcation points found. As we 

shall see later, it is likely that more complex behavior 

may be associated with high order bifurcation, but the 

techniques for analysing such bifurcations have not reached 

the same level of development as those for simple 
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bifurcation. 
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CHAPTER 2 

WEAKLY NON-LINEAR WAVES 

The object of this chapter is to study the solutions 

of (1.1.16) and determine the slope of symmetrical waves 

of permanent form. We shall examine analytically the 

properties of solutions of small but not infinitesimal 

magnitude as described by formal perturbation series. In 

later chapters we obtain approximate solutions for finite 

amplitude using numerical methods. 

2.1 Pure and combination waves. 

If we suppose that the magnitude of the wave is 

small, we may expand equation (1.1.16) in powers of the An• 

We obtain after some algebra an expression 

"'0 oo ..o oa 

t )A b- 2 ~n t-/j: L A~ - K L n A~+ L o(f Af' CO'> p..$ 
I I :2 ) I 

~~ ~ 

+ f ~ [ ~r,, c.os( p-~)) + f f)~ cos ( p+~) _s] AP A~ + ~ [ "(p-p +pff cos 1p_5] A~ 
Pt'} 

- oa«> 

+ ~ [ o(1'ff cos 1 s + "?f 1'f ws 3 r 3 J A~ + ~- ~ [ o( ~ 1'1' cos ~ ~ + ? ~ PP <.os ( 1p-1) 3 
1tr 

(2.1.1) 
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where the omitted terms are quartic and higher order, and 

o(f = ~ - M. + K .()I o( = l..f- -Is K. (p+~ ~ 
I / I f>~ 2 ' > 

13 :: )"- - t }( ( f-t 1 \ 
f ,1 

o<.fff -= 'l + 1 J<-p J 

(2.1.2) 

PN'f' = -/ + 'i )( f~ o<.'~fF ::. - 2ft+ .t I{ (lpt t), 

~ fP = )" ~ f X. {2ptj) I P;,p ~ -3)"- -1- % K {2pt1). 

In these equations the dimensionless parameter 

(2.1.3) 

measures the relative importance of surface tension and 

gravity, while 

(2.1.4) 

is a dimensionless form of the unknown wavespeed. 

We characterize the wave magnitude in terms of an 

amplitude parameter f. by taking 

(2.1.5) 

where the sequence ...\,, A..l., ,t 3 ' ... is chosen depending on the 

type of wave we want to study, If we now, following Wilton 

( Jl), equate the coefficients of c.os ~~ in (2.1.1) to zero 

for n:O,I,l, ••• , we obtain an infinite number of algebraic 

equations of infinite degree. The counting seems to be 
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correct, in the sense that truncation at order M by 

setting Al'l =o for n>M and ignoring coefficients of (OS l'l~ 

for n > M gives, together with ( 2.1. 5) , Mt 1. equations for 

the M ~ 1. unknowns A,,A1, ... A,..,,JA J b • The problem seems, there-

fore, to be well posed, although convergence proofs are 

lacking. 

Let us suppose now that all the A~ are zero except 

AN , say. Then AN= f._ , and if lc l L..' I , we can expect a 

solution to exist in which the An are powers of E.. • In 

particular, the solution will have A~= o unless VI is a 

multiple of N , and further 

"''tv) AYI -= f) {c. ) (2.1.6) 

when N divides ~ . We shall call a solution of this kind 

a pure wave of degree N and magnitude ~ . Pure waves of 

degree 1 were calculated by Wilton up to order E
5 

, using 

the ansatz expressed by (2.1.6). A pure wave of degree N , 

amplitude c and k=~' , say, consists, of course, of pure 

waves of degree 1, wavelength LfN , and the same magnitude 

with !r:. =- N2.1<..' • It might therefore be thought that there 

would be no loss of generality in following Wilton and re

stricting attention to pure waves of degree 1, but this 

actually turns out not to be the case. 

Since AN is the dominant coefficient in a pure wave 

of degree N , we expect that the coefficient of AN in 

(2.1.1) must be small and hence 
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(2.1.7) 

Only the harmonics of Los NS are generated and their coef

ficients are uniquely determined by the equations derivable 

from (2.1.1), provided the coefficients 

G'< ( N) := j_ - u + K f -:1 0 p -f /- N 
(2.1.8) 

for f a multiple of~ • Elementary algebra shows that 

(2.1.8) is violated for -p=-rN (i.e. o<.p(N)=o) if J< =Yf.,..N 4
). 

When (2.1.8) fails, it is found that the ansatz (2.1.6) 

is inconsistent and the expansion fails. 

Wilton examined in detail the case N=l '("- 2 }(; .L 
' - ' 2 

He showed that in this case the ansatz (2.1.6) should be 

replaced by the assumption that both A, and A.,_ are of 

order E • It is then found that in the infinitesimal limit 

(2.1.9) 

so that the wave of given magnitude (however this is de

fined) is not unique, but the higher order coefficients are 

determined uniquely once the sign in (2.1.9) is specified. 

The two waves with the same A, are quite distinct, and 

cannot be made to coincide by a change of phase. These 

waves are called Wilton's ripples. The lack of uniqueness 

or ambiguity can be explained physically by a resonance 

mechanism due to the fact that infinitesimal waves of 
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wavelength L and i L have the same phase speed when K-= 1 . 

Wilton noted that the ansatz might also fail when 

, but stated that only £or Y-=2. was there any 

ambiguity in the value of' Ar for K-= YY • This statement 

is literally correct for r>3 , but as we shall see in the 

course of this work there can be ambiguity for K slightly 

greater than Yr . It is false £or Y~3 . A difference 

between ~'""= 2.. and the other cases is that only in the 

former case is the important interaction quadratic. For 

v- ~ 3 , the interaction is cubic. 

We can generalize Wilton's approach by examining the 

possibility that, with K given, c>{-p vanishes £or two or 

more values o£ ~ • From the definition o£ ~~ , it is easily 

seen that a necessary and sufficient condition is 

(2.1.10) 

In this case, o<.~ = o(M :::. o , i£ 

(2.1.11) 

Even though Y~ may be an integer with many decompositions 

into a pair o£ factors, £or only one decomposition at a 

time can o<"' and o(M vanish. These considerations suggest 

the existence of combination waves, in which for an arbi

trary pair o£ integers N and M , the coefficients AN and 

AM are o£ comparable order t.. and all the other An are 

o£ higher order in [ . The consistency of' the perturbation 
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expansion should fix the ratio of Atv to AM as for the 

Wilton ripple which is the particular case N = I , M-= 2 

We shall see below that combination waves exist for all 

sets of positive integers M and N for appropriate value 

of K • The Wilton ripples are the simplest but not particu

larly typical example. 

Clearly without loss of generality, we can now suppose 

that M and N are copr'ime, and we take for definiteness 

I~ N L M • We will call such a wave a combination ( 1\1, M) 

wave. Multiplication of N and M by an integer corre

sponds to dividing K by the square of the same integer. 

The concept of pure and combination waves can be 

extended to finite amplitude although not without some 

ambiguity. The wave will be said to be pure if the coeffi

cient of the lowest order harmonic clearly determines the 

wave in a unique manner. Thus, Crapper's exact capillary 

waves, for which in our notation 
1'\ 

A~ = LJ Y\ ( A,;4 ) J n = 2) 3, '1, . . . .J (2.1.12) 

are pure waves of degree 1. Similarly, Stokes gravity 

waves of permanent form found by expansion in A, , where 

Al = A~+ tJ ( A,4
) etc, are pure waves. If, on the other hand, 

the lowest order harmonic is relatively insignificant or 

does not specify the wave uniquely in a clear way, we 

shall speak of a combination wave. A precise classification 

for finite amplitude waves does not seem possible, because 
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as we shall see a combination wave for some value of X 

may be the analytic continuation of a pure wave for a 

different k. • 

The existence of combination waves of small magnitude 

will now be considered. First we deal with the case M~lN. 

2.2 Wilton ripples. 

Combination waves with N"" I , M :::. 1 are typical of 

the case M:: lN • We suppose that A, and A,_ are both B (£ ) 

and that the remaining A~ are of smaller order. The con -

sistency of the ordering is easily checked a posteriori. 

Then the coefficients of cos 5 

give the equations 

and c.os 2) 

(1-JA+K)A, +(;t- ~ K)A,Al-= ()(( 3 )~ 

(J.-u+.<.K)A~+lu. - .lK)A 4 -= 0(E. 3
) 

2 / • I 2. I • 

in ( 2.1 .1) 

(2.2.1) 

( 2.2.2) 

These equations, together with a form of the amplitude 

equation (2.1.5) 

(2.2.3) 

constitute three equations for the three unknowns A, , A4 , 

p- in terms of the given parameters /( and {_ • 

We note first that for all values of K there is a 
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solution with 

A -::. o A = 2.€ 
I ' 4 j 

(2.2.4) 

In this wave, , A =<'(E"'), and it is a pure 
ll'"l 

wave of degree 2. There is nothing special about K. = f for 

this wave. (There may of course be ambiguity around J<.::: V(2:p) , 

-p>l .) 

We wish to consider now the solutions :for which A. :1= 0 • 

For X not close to i, there is a solution with 

which is recognisable as a pure wave of degree 1. (The 

difficulties that might arise when K ~ Y111 , ~"'~) 2 , are the 

subjects of the following sections.) But this solution is 

not uniformly valid as K approaches t. To obtain a uni

formly valid solution, we solve (2.2.1) for r and substi

tute into (2.2.2), neglecting the 0(£ 3
) terms on the right 

hand sides. This gives 

Al= 
I 

1-+K--fKAl 

1-A._ 
~ 

( 1- 2.. K )Al. + ( l+ K.) Al 
2-K. 

(2.2.6) 

(2.2.7) 

The dependence on t. can be found by substituting into 

(2.2.)), but it is better to work with (2.2.7) which con-

tains the whole phenomenon of Wilton's ripples in a simple 

way. 
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First we note that if X is not close to i, we recover 

the pure wave ( 2. 2. 5) • If 1< = t , we obtain Wilton's for

mula (2.1.9). Equation (2.2.7) in fact contains the uni

formly valid relation between A, and A2 • Once the rela

tion between A, and Al. is established to lowest order, 

the equations derivable from (1.1.16) or (2.1.1) allow in 

principle the unique calculation of the remaining A~ to 

arbitrary order. 

There are now two alternative methods of procedure. 

The first is to interpret (2.2.7) as a quadratic giving A2 

in terms of A. • Thus 

Al. -:: -I+ .2.K. "t J {(I- 2 k )
4
+ 4 (2-K ){It K )All.} 

'2.( It K.) • 
(2.2.8) 

This is the approach of Pierson and Fife (21), who studied 

the nature of Wilton ripples for K close to i by a some-

what different method than that used here. It appears that 

one should take the positive square root for K .:: -t and 

the negative square root for K > 1 , in order to join 

smoothly with the pure wave (2.2.5) for K not close to t. 
However, this leaves uncertain the status of the other 

root. 

The second and more informative approach is to inter

pret (2.2.7) as specifying A, . given A1 • Then we see 

that solutions exist only if A, is such that the right 

hand side is positive. In figure 2.1, we have plotted the 

accessible regions of the A1 , k plane as given by (2.2.7). 
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It is convenient to use k :: K/( 1-+K.) in order to include the 

capillary waves in the figure. Notice that A, vanishes 

when Al.:: o and A,_ = 3 k- 1 Accessible regions are hatched. 

The analysis is for weakly non-linear waves, so we cannot 

say which regions are accessible when A"l. is 0(1) • From 

Crapper' s calculations, we know that A~ '- I. 65 4 for pure 

capillary waves of degree 1. (it is equal to 1.819 for the 

pure capillary wave of degree 2.) For the pure gravity 

wave of degree 1, Schwartz's (23) results suggest an upper 

limit of about 0.18 for A, (or 0.29 for the limiting pure 

wave of degree 2). Note that these results also suggest 

that the highest wave does not have the greatest value of 

A'l , so that the A2 , K plane will be covered more than once 

near the limiting wave. 

The boundary of the region is unknown at present and 

needs numerical work for its determination. The results of 

such study will be reported in chapter 4. There is, of 

course, no reason to believe that the accessible region is 

singly covered, so the topology of the covering may be 

fairly complicated. The point K = 2.13 , K = 1.. , has the 

property that A,_ vanishes at this value for the weakly 

non-linear pure wave of degree 1. It is an apparent singu

larity caused by the choic e of plot and does not have a 

physical significance. 

The point K = t is a fundamental singulari-

ty. If A~~ 0 in the v ic inity of k -= :J: , it implies that 
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A • _. o and the wave disappears. Thus we conclude from this 

figure that an analytic transformation is not possible 

from gravity waves of' finite amplitude to capillary waves 

of' finite amplitude as the surface tension increases con

tinuously with the wave always having a non- zero magnitude. 

The significance of' the Wilton ripples is now clear. In the 

vicinity of' I(= ± , there are two weakly nonlinear solu-

tions, one for a gravity-side wave (A~)O) and the other 

for the capillary-side wave (A 1 ~0 ). It can be shown that 

the wave with Al < o can be continued analytically to a 

capillary wave of' degree 1. The gravity-side waves can 

apparently not be continued analytically to gravity waves 

(at least with small amplitude) for reasons to be given 

later (section 2.7). Note that although according to 

(2.2.7) there are two combination waves for each A, 

depending on the sign of' A. , these waves are not in fact 

distinct, since a change of sign of' A. , leaving A2. con

stant, corresponds simply to a phase shift of' n or moving 

the origin horizontally by L/2, • The meaning of' the two 

signs in (2.2.8) is also now apparent. The positive sign 

gives gravity-side waves, the negative sign gives capil~ 

lary-side waves. The paradox, that A, tends to a finite 

limit independent of' A. as k..- .L 
4 increases when the 

positive sign is taken, is to be interpreted as saying 

that A1. ~3k-1 and A.- 0 ; similarly as 1<. -1: decreases 

when the negative sign is used. The Wilton ripples are the 
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particular solutions on the line ){ :: 1 , 1<. = f , but 

there are clearly neighboring solutions £or K not exactly 

equal to !. 

There is an interesting di££erence between capillary

side and gravity-side waves. For A~<.. 0 , the crests o£ the 

combination waves are o£ equal height and unequal spacing, 

whereas the troughs are o£ unequal depth but uni£orm 

separation Lfl • The waves are symmetrical about troughs 

but not about crests. The converse is true for the grav

ity-side waves. Thus the analytic continuation o£ a pure 

capillary wave o£ degree 1 into a Wilton ripple is asso

ciated with the creation o£ another trough, or going in 

the reverse direction with the disappearance o£ a trough. 

Conversely the appearance or disappearance o£ the gravity-

side Wilton ripple as K._-.L 
:L becomes small or large is 

associated with the creation or disappearance o£ a crest. 

Sample pro£iles showing these changes are shown in £igure 

2.2. 

We now discuss an interpretation of Wilton's ripples 

as a bifUrcation phenomenon in which the wavelength o£ a 

pure wave can suddenly double when it attains a certain 

amplitude. 
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2.) Wilton ripples as a 2-+1 bifurcation. 

The regions marked 'no solution' in figure 2.1 show 

where no combination (1,2) wave exists. However, pure waves 

of degree 2 exist in these regions (provided the magnitude 

is less than some as yet unknown value). Thus if we de

scribe waves by the relation between A, and A 'l. , we see 

that there are solutions with A,::: 0 for arbitrary A4 

(within the limits of existence of pure waves), and there 

are also solutions with non- zero A 1 provided, according 

to ( 2. 2. 7) , 

or (2.).1) 

for k <... 2 . The result ( 2. J .1) is of course limited to 

I A1 1<<. I , and is therefore valid only for K close to t. 
These results are shown graphically in figure 2.), 

where we sketch A, vs A"t for fL <... t and K > -5:- , with 

).k-1:1<<..\ , as given by equation (2,2.?). For a given 

value of I( >-!:' , there always exists a pure wave of degree 

2, marked by the A2.. axis. For A2 <.o there is also a 

combination wave which is a capillary-side wave. Thus A1 =0 

is a bifurcation point, but this is the trivial bifurcation 

of a flat surface into infinitesimal waves of arbitrary 

wavelength. For A~)O , only the pure wave is possible 

until Al. reaches the critical value (l.k~l)/( I+K) , at which 

value the pure wave of degree 2 can bifurcate into a 
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combination wave of twice the wavelength. The bifUrcation 

wave has the shape shown in figure 2.2, the middle crest 

being slightly decreased ( A 1 ) 0 ) or increased (A ,I.. O ) , 

and is a gravity-side wave. Similarly for K < t , there 

is a trivial bifurcation at A4 = 0 into a combinat i on 

gravity-side wave, and a non-trivial bifurcation at 

Al. :::(.lk-1)/( l+K.) of the pure wave of degree 2 into a combina

tion wave. For I(:: -I , the figure would reduce to the two 

straight lines A, :: .:t A2 • 

It is to be noted that although the solutions A, and 

-A 1 are mathematically distinct in the formulation, they 

are physically the same wave displaced a distance L/~ . 

The difference between the pure wave of degree 2 with A~ 

and - A2 is a similar transformation. The reason why 

bifurcation occurs for A~ >o when k > y , say, and not 

also for A~<o , lies in the constraint that the wave is 

symmetrical about the origin. When Al )0 , the origin is a 

crest and the bifurcated waves for /( > -i are symmetrical 

about crests. They are not symmetrical about troughs and 

therefore bifurcation with Al < 0 , when the origin is a 

trough, is excluded for K > -f 
I t is to be expected that the bifurcation phenomenon 

will be associated with a change in stability of the pure 

wave to small disturbances, the combination wave being 

perhaps stable while the pure wave loses its stability. 

The stability of the wave s i s an interesting question, but 
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although calculations of stability are straightforward 

they seem to be rather tedious and we shall defer the 

question for later study. The present work is restricted 

to an investigation of possible forms of steady waves. 

Suppose now that we have a weakly non-linear pure 

wave of height h (vertical distance between crest and 

trough) and wavelength A. • This wave can be described as a 

pure wave of degree 2, with 

(2.).2) 

Then if the amplitude of the wave is such that 

h > 4 A Ill 'l.T - ..L \ 
311 ~A 1. 4 ) 

(2.J.J) 

the wave can bifurcate into a combination wave of wave-

length 2A. In other words, waves such that ~~T/jAL is 

close to i could spontaneously double their wavelength when 

the amplitude exceeds the critical value given by (2.J.J). 

The locus of bifurcation points given by (2.J.J) is 

only valid for small amplitude. The shape of the curve for 
• 

finite amplitude can be investigated by numerical means, to 

be described in chapter 4. We now continue the analysis by 

studying ( N , M ) combination waves. 
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2. 4 Combination ( N , M ) waves. 

The coefficients A.,., of a permanent wave can be de

rived in principle from the equations obtained by setting 

the coefficients of cos n ~ to zero in the master equation 

(2.1.1). As mentioned earlier, pure waves of degree 1 can 

be constructed by solving recursively, and the series 

presumably converges if A, is sufficiently small, provided 

K "* YM • If K = YM , c:>(M ~ 0 and the first approximation 

to AM gives At1:? .a • The previous sections studied this 

problem for the case M =- 1. , and it was seen that the way 

to avoid the difficulty and obtain a uniformly valid solu

tion was to suppose that A, and A1 are both of order E • 

We now study the existence of a combination ( N , M ) 

wave, with l. N 't"M , for which 

A =c;)(£) A =B(£.) /{ - -L-=~(CS") 
N J H J Ml\l 

(2.4.1) 

and the other coefficients of higher order. The value of s 

is to be determined, and will be seen below that 5= 2 • 

Without loss of generality, we suppose that N and M are 

coprime and I~N<M . The case N = \ , M-= 3 has special 

features and is deferred to a later section. 

With the assumption (2.4.1) and supposing that N < M , 

N -:t ~ M , N 1= -J M , it follows from ( 2.1 .1) that 

A =B(,(·) A =0(t.l.) A :: O(C) A = 0CE 1
) (2.4.2) 

l.N J lH ' N+M ' M-N J 
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and all remaining coefficients are of higher order. Equat-

ing in ( 2 .1.1) the coefficients of cos Ns , c.o5 M ~ , cos 2~5, 

c.os .ZM 5 , c.os (N-rM)s and c.os(M-N) ~ to zero, and neglecting 

terms smaller than 0([ 3
) , we obtain 

-+2o( A A +o< A A' -o 
M•M+t.t M M+N NMM N M - ' (2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

(2.4.8) 

The~ and p coefficients are given by (2.1.2). However, we 

can simplify the expressions by substituting the leading 

order values K:: 'IMN , )A= YM -t 'IN , except in <><rv and o<M. 

Thus, 
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p( _ _L _ _1_ .::>( _ J_ _ ...L o<. = _1_ o<. _ :l.N-M 
.l.N - M ltV J lM- 1'1 .lM ) M-+N t-\HJ J M-tv- MlM-N) 

-J -..L o< -_L. 
v-.M,M+N - 4t1 ' NJ M+N - 4111 ) 

= J_ - j_ 
M lN' 

1'\ - J_ j_ 1-M, N Ll M + 4 rv , 

<='<, - I I o( 
NfoJN - 8M - N l MMI'-1 

~ --_2_ I 
MIVtv - I.{N - 1M .1 

It is clear £rom these equations that consistency requires 

(2.4.9) 

The procedure now is to substitute £rom (2.4.5), 

(2.4.6), (2.4.7), (2.4.8) into (2.4.J) and (2.4.4), and 

then eliminate )A to obtain a relation between AM and AN 

of the form 
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(2.4.10) 

where 

'( = CN+ 10M} (2.4.11) 
N I?MN I 

It is evident from these expressions that ~N ) 0 for 

all appropriate pairs N , M , while ¥M ) 0 for N > f M and 

~M /.... 0 for N <. tM . Then provided AN and AM satisfy the 

relation ( 2. 4.10) , where 2tv't M , 3N + M , a combination 

wave exists. This wave exists in addition to pure waves of 

degree M , for which AN= 0 • Pure waves of degree N also 

exist if t\1)\ , and have Ay.,=O • If N=-\ , the pure wave 

has a more complicated structure and will be discussed 

separately. If I K- A-w \ >) E. 
4 

, the combination waves are 

not infinitesimal and must be studied numerically. 

Convergence of the expansions has not been proved, but 

there is no reason to doubt existence if the amplitudes are 

sufficiently small and K is sufficiently close to 1/MN • 

The pure and combination waves all move with approximately 

the same speed 

c~ :: .1.1:.. (_L -+ .J._) 
· 2.11 M N • (2.4.13) 
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2. 5 The M-+N and N-.M bifurcations, N > ..r M 

We consider first the case that tV >1M and examine 

the implications in terms of bifurcation phenomena. Equa

tion (2.4.10) is now a hyperbola in a plot of AN vs AM 
as shown in figure 2.4. There are two cases according as 

The figure can be interpreted as follows. For arbi

trary values of /{- '/M rv of (5(Et.) , there exist pure waves 

of degree N and M of (;}([) amplitude. However, the pure 

waves of degree M can bifurcate when 

Ji 
A = -:! [ ( _!_ - k) M-N ] for 

M MN YM ' 
I 

J( c( Mf\/ ' (2.5.1) 

into a combination (N,M) wave. Similarly, the pure wave of 

degree N can bifurcate into a combination (N)M) wave 

when 

for i-( ) .-l-
M IV • 

(2.5.2) 

If K = YHN , the hyperbolae degenerate into two pairs 

of straight lines 

(2.5.3) 

There are four types of combination waves depending 

on the signs of AN and AM • These waves appear to be 

different, they cannot be brought into coincidence by a 

change of phase. These combination waves cannot exist for 
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arbitrary (small) amplitude. The accessible region is 

shown in figure 2.5. 

Suppose now that we have a weakly non-linear pure 

wave of height h and wavelength A. • This wave can be 

described as a pure wave of degree M , with 

L=MA. 
" 

A = :± 1lh. 
M )... ' 

Only the Fourier components which are integer multiples 

of M are non-zero. Now according to (2.5.1), this wave 

can bifurcate into a combination (M,N) wave by adding a 

Fourier component AN , and the associated harmonics, if 

~ >l..[(tl_'jn'T)(I-*)~ ]-:i 
TT N ~ ).._1.. MOM 

We call this an M-. N bifurcation. The properties of 

combination waves of finite amplitude remain to be eluci-

dated by numerical methods, but it can be expected that 

as the wave grows, the AN component will grow so that the 

wavelength (interpreted as an average distance between 

crests or troughs) will change f'rom A to M AjN • Thus 

there is the possibility of' an increase of wavelength of 

capillary-gravity waves as their amplitude increases. 

Similarly, we can have a N ~ M bifurcation if' 

However, this bifurcation adds a higher harmonic and so 

could not be expected to reduce the wavelength. 
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In figure 2.6, we show an example of waves produced 

by the 5_.4 and 4_. 5 bifurcation. 

2.6 The case ll.. N <.~M . 

When ~M~O, as occurs when N<!M , equation (2.4.10) 

is that of an ellipse and has solutions only for K > I'MN. 

Provided 

A 't <. ( K- MN) ~ or 
N '{N 

(2.6.1) 

a pure wave of degree N (for which At\= 0 ) or a pure wave 

of degree M (for which AN = 0 ) can bifurcate respective-

ly into a combination (M,N) wave. In this discussion, 

N > I ; otherwise AM -:F 0 for the pure wave of degree N • 

(Remember that N and M are coprime.) In terms of a wave 

magnitude, defined like equation (2.1.5), we see that € 

must be confined to the region such that the line AN+AM=! 

intersects the ellipse (2.4.10), i.e. 

(2.6.2) 

Thus in the K,c plane, the accessible region for the 

existence of the (M,N) combination is above the parabola 

given by (2.6.1), see figure 2.5. In this case, the combi-

nation wave can exist only for sufficiently small ampli

tude. The bifurcation of a pure wave takes place as its 
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amplitude is reduced. 

2 . 7 The case N -= I 

The analysis of the previous section shows that in 

the vicinity of K. = YM , there exists a pure wave of 

degree M. There also exists a combination (M,I) wave, in 

which A, and AM are of comparable magnitude where 

and M) 3 • These combination waves can exist only if I<. 'l YM 

and their amplitude is not too large. 

We now investigate the structure of the pure wave of 

degree 1 in the vicinity of J(= YM • Since c< 111 is now small , 

it is clear that an expansion in which AM-= CJ{tM) is not 

possible, where it is supposed that A,-= 0(0 • But we can 

proceed as follows to demonstrate that a consistent expan

sion exists with ~ -= O(t''H). From the coefficients of <.OS J 

and c..os l~ in (2.1.1), we have 

(2.?.2) 

The~ and~ coefficients are given as before by (2.1.2), 

and we can simplify by putting I(:: I!M , jJ. = I+ YT-'\ except 
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in o< 1 , so that the appropriate values are 

"1',,, = iM - I I c( =..L-..!. 
l. "" ").' 

13 -=1--' n.1 2M 

Thus, it follows that 

~. = )(- M' - ( M.-1- _j_)= -~t1l.+M+'2. A' / H I • 
~M(M-2) 

Since 

o<.M = M ( K.. - ..!..-) - ( .LA - I - -' ) M / M ) 

it follows from ( 2. 7. 4) that o(l"\ = EJ(£
1
). Thus we see that 

M-<. 
AM:: 0 ( E ) 

is a possibility which allows the equation obtained from 

the cos M~ term in (2.1.1) to be satisfied. To obtain the 

value of AM , we need the equations 

(2.7.8) 

The terms on the right hand sides of (2.7.7) and 

(2.7.8) of the stated order are sums and products of Ar, 

I ~ 1' !:- M-l . They are uniquely determined to the required 
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order by A, , as is easily verified by inspection. Elimi-

nating AM-I and AM+I , and substituting for )A from 

(2.?.4), we obtain 

where the right-hand-side is uniquely determined by A, to 

the stated order. Thus AM is uniquely determined if its 

coefficient in (2.?.10) does not vanish. In particular, 

the coefficient does not vanish if k= VM , exactly. In 

this case, the wave is uniquely determined by A, as stated 

by Wilton. 

However, if )( > '/M and 

A'= _lli_(M-I)(K-l__) 
' IOM+l M ) 

(2.?.11) 

the coefficient does vanish. Comparison with (2.?.1) shows 

that this is just the value of A, for which An:: 0 in the 

combination ( M, I) wave. Thus (2.?.11) gives the values 

of A 1 for which there is bifurcation between the pure 

wave of degree 1 and the combination (M,I) wave in the 

vicinity of )(-= '/M • But the structure of this bifurcation 

is that associated with a limit line, with a relationship 

between AM and A, or ){ as sketched in figure 2. 7. This 

result shows that a pure wave of small amplitude cannot be 

continued analytically as K-.0 into a gravity wave, bs

cause at each value of I(= 'IM , for all integer M ~ li , 

there is a limit line behavior and the pure wave becomes a 



-52-

combination (IJM) wave. The gravity wave ( 1<.:.0 ) is 

therefore a singular limit which cannot be reached smoothly 

by applying the limit k. ~o to a gravity-capillary wave. 

The numerical studies to be reported in chapter 4 indicate 

that this result remains true for finite amplitude. 

The results also show that the effect of small surface 

tension on a pure gravity wave of degree 1 could produce 

either a pure capillary-gravity wave of degree 1 or a 

combination wave in which a higher harmonic, of order xYK, 

would have the same magnitude. In reality, such higher har

monics would be damped out by viscosity, but the study of 

viscous effects is beyond the scope of the present work. 

2.8 Bifurcation of (L.3) combination waves. 

The remaining case is N ~ \ , M = 3 , and K-::;: 1/3 . We 

now show that a consistent expansion can be developed with 

A, and A3 both of order [ . In addition, there is of 

course a pure wave of degree J. Equating the coefficients 

of <.OS ~ and cos 3 ~ in (2.1.1) to zero we obtain 

(2.8.1) 
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~JA~ +<'(333A;+ :;.o<,_,.4 A'fA ~ lf,, 1 A, A1+"2«.3, 6 A3 A, + -P. .. A?"' 

~3, A;>- A');, = CJ(£ 14 J • (2.8.2) 

From the coefficients of c.os 2. s , c.os "'~ , c:.os 6 ~ , we obtain 

(2.8.3) 

(2.8.4) 

(2.8.5) 

All coefficients are given by ( 2 .1. 2) with )A-= 1{/3 , 

K::: 1/3 , except for o<, and a< 3 which must be given exact 

values 

o(3 ::: 3( k -t>- (_;A-rJ. (2.8.6) 

Eliminating A1 , A~ , Ab , and excluding the pure wave 

of degree 3 by supposing that A, :f. 0 , we obtain 

(2.8.?) 

(2.8.8) 

The consistency relation between A, and A3 is obtained by 

eliminating f' , and gives a cubic for A,JA 3 

/23{fu\
3-.?l{fu.)1

-123.fu.- ill::_ 48(K- f) 
AJ ) A3 A1 Is A 'l. • 

) 

(2.8.9) 

Note that for K = y3 , there are three real roots 

A,/Al = -0.76, -O.)CL 1.20 , (2.8.10) 
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and three possible (1,3) combination waves of given (small) 

magnitude exist. The maximum and minimum of the cubic on 

the left-hand-side of (2.8.9) are 

t = - 550.47 • 

There are therefore three roots if )( -t '!3 provided that 

(2.8.11) 

and only one root otherwise. The situation in the K~AJ plane 

is shown in figure 2.5. In figure 2.8, we sketch the locus 

of A, vs A1 for K ) Y3 and K < Y3 • The pure wave of 

degree J is represented by the A 3 axis. It is clear from 

this figure that for sufficiently small amplitude, a unique 

combination wave exists. This could be thought of as the 

pure wave of degree 1 since 

(2.8.12) 

As the magnitude grows, another solution branch becomes 

possible when the coefficient of the third harmonic reaches 

a critical value. 

The previous sections have discussed the form of 

steady progressive capillary-gravity waves of small magni

tude. It has been shown that there exist pure waves and 

combination waves, and that bifurcation loci occur at 

which solutions can pick up subharmonics or higher 
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harmonics which are not integer multiples of the fundamen

tal. Limit line behavior has also been found. Two important 

questions remain. The first is the stability of the waves 

and the possible change of stability of a solution on 

crossing a bifurcation line or passing a limit point. This 

question will not be treated in this thesis. The second 

is the property of the solutions for finite amplitude. In 

the next chapter we will develop the numerical procedures 

necessary to answer the second question. 
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CHAPTER 3 

NUMERICAL PROCEDURES 

J.l The Fourier series method. 

Let us consider a pure wave of wavelength A and 

height n. This can be regarded as a pure wave of degreeM 

and period L-= M A • We expect that bifurcation of type M_.N 

may occur for some value of h . The bifurcation will occur 

when 

(3.1.1) 

where +~ is some unknown function. Now M _...N bifurcation 

with period L must be identical with -pM-t~-pN bifurcation 

with period ~L , where ? is an arbitrary integer. Hence , 

(3.1.1) must take the form 

(3.1.2) 

or in dimensional terms 

(3.1.3) 

We know that as 'n ~ 0 
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().1.4) 

and the limiting forms of the function are given by (2.J.J) 

for the 2_.1 bifurcation and by (2.5.5) and (2.5.6) for 

the M~N and N~M bifurcation with N :> 1: M • Similar 

criteria can be found from (2.6.2) and (2.?.11) for the 

M -+N and N_..M bifurcations when I<. N < -i' M and for the 

I~M limit points with M~Y. 

Another question of interest is the largest value of 

h;A for which waves can exist, and how this depends onK 

or T/~ ..t 4 and the type of waves. 

There are many possible methods for calculating the 

shape of steady water waves of finite amplitude. One of 

the simplest is to truncate equation (1.1.16) obtained in 

chapter 1 for some integer J and evaluate at ,!~ = .ijl , 
~ ~ ~ ~ , to give the :r + I equations 

:r r, 71 1.. ::s , 
M.-1..[1.&(\-(0S n~ . ))L(LAn Si.\'\ Y\,S .) +(l+l-A..., cos 11s .)J 

I ,n ) ' ~ ' J 

().1.5) 

for the :r + 2 unknowns, A~ (I~ j ~ :J) , )A and b. We found it more 

convenient to work with the dimensionless quantities 
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.JA=.lnc/~L and )(='iTT~Ll. instead of£:,_ and the surface 

tensionT. The remaining equation is a specification of 

wave magnitude. We used mainly equation (1.1.17), but some

times we specified the parameter b • 

Thus, we have a non-linear algebraic system of 

equations in .J + l unknowns, depending on two parameters, 

the surface tension quantity K and the amplitude quantity 

f. • To include the case )(~ oa into the general scheme,· we 

divide equation ( 3.1. 5) by I+..K and work with k = .ssfH)() and 

)J =?AI+K.), instead of K and)!-- • 

This system will be denoted by 

(J.1.6) 

where for simplicity we are using the same notation for 

the truncated and for the infinite dimensional problems. 

Here ~'!!(A, . . . A., ;;. ·b) and -o is the parameter we are allowing 
J .I .J " / ., ,-

to vary, either R or € . To solve (J.1. 6 ) we use Newton's 

method: 
(0) 

an initial guess to the solution U.. is g iven. An 

approximation to the solution is calculated iteratively 

( .J.1.7) 

..v~ I v ( v 
lA. ::. u. + oLA. • (J .1. 8) 

We stopped the iteration when the maximum residual was B(l6'\ 

Here ~~ is the Jacobian matrix of the truncated system. 
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The linear system (3.1.7) in each iteration is solved by 

a LU decomposition with column pivoting, where L is lower 

triangular with 1's in the diagonal and U is upper trian

gular. The Jacobian (det ~~ ) is the product of the diag

onal elements of U , with a possible sign change depending 

on the pivoting. 

The method was checked by comparing with Crapper's 

results for capillary waves, Schwartz's for gravity waves, 

and Wilton's for small amplitude capillary-gravity waves. 

In all cases the agreement was to the order expected. 

A useful check on the accuracy of each calculated 

solution is to verify that the relation 

(3.1.9) 

is satisfied. The error obtained was at most 0(1~~). 

The mean water level and the kinetic and gravitational 

potential energies were calculated by truncating (1.3.4), 

( 1. 3. 5) and ( 1. 3. 8) to J terms. The surface tension con

tribution was calculated by approximating the integral 

using the trapezoidal rule, since the problem is periodic. 

The mean water level and the potential energies were also 

calculated by using the trapezoidal rule to approximate 

the integrals in (1.3.3) and (1.3.6) or (1.3.7). The 

agreement, as expected, was at least "(10-~) . 

The arclength procedure used to find branches of 

solutions, bifurcation and limit points, is described in 
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section 3.3. 

].2 The vortex sheet method. 

We now show how to solve numerically the non-linear, 

singular integra-differential equation derived in section 

1.2_, 
- l.TI 

(1-b-l-1- TM 5+ll )42. -1 +£ p( <.Otl )(~)- 5(5J]J~ =D .. 
fie. "'I. c'R d ~ llT )

0 
2 1 (3.2.1) 

where 

(3.2.2) 

and 

5 = 2.n 2 = 2.n (~-t~y) T L d ) 

together with 

~ (0) = 0 J ~ (0) = 0. 
~~ 

().2.3) 

It was convenient to specify b as the amplitude parameter. 

Given the value of b , the solution of (3.2.1) and (3.2.3) 

will still not be unique until we specify the number of 

waves in the window or equivalently the shortest period A . 
(We neglect the trivial degeneracy associated with the 

direction of the wave and take c.> 0 • ) 

First consider the case of symmetric waves that 
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satisfy 

().2.4) 

It is sufficient to work in the interval [oJn] . Introduce 

a uniform mesh 

.I 
().2.5) 

and the unknown values 

) . :: 5(~ · )= 4TI (X · t..i.'j .) 
J ) L j ~ .J 

-\=012 ... 1\J J .)- J I J 

at the mesh points. 

The derivatives in ().2.1) and ().2.2) are replaced 

by a seven point finite difference formula 

().2.6) 

().2.?) 

where .65 = lTJN, 

To calculate the integral introduce an integration 

mesh at Jj = 11l~+t )/N , halfway between the mesh S j to take 

care of the principal value, express the values of 5 on 

the integration mesh in terms of the ~j by a sixth order 
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Lagrange interpolation formula 

3(I
1
)::: [ISO()~ +5~+,)- 2S l 3~-~ + .s.i+l.) 

+ 3(\-~+ s6+3)]/156 + OCL1~b)J ().2.8) 

and, since the integrand is periodic, use the trapezoidal 

rule 
2TI 2~1 

Pj c:ot[S(t,)-SC5)]J~:::t.\~b c.ot[~rs");S(W1) LXIdtJJ.2.9) 
0 2. 

The values of S outside the range Co, n] are obtained from 

the symmetry. The real and imaginary parts of this discre

tized version of (3.1.1) at the N~l mesh points gives 2N 

equations, because the imaginary values of (J.2.1) at s~o 

and ~-:. n are identically zero from symmetry. Further we 

take Xo :.0 , Yo-= o , )(N= ~ ; the first two come from (J.2.J) 

and the last from symmetry. The last equation of (J.2.J) is 

automatically satisfied from symmetry. Thus, we have 2N 

non-linear algebraic equations for the 2. N unknowns, 

X,Jx-1, ... , 'iN-1i'1, ,~ 1 , ... , ":)N and c.l. • The parameters b and T are 

given. 

Now consider the case of nonsymmetric waves. This is 

more difficult. We introduce a uniform mesh 

().2.10) 

and the values 5j at the mesh points. The values outside 

the range are given by periodicity. Discretizing the 
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integra-differential equation as for the symmetrical case 

and taking real and imaginary parts at the M +I mesh 

points, we obtain 2.M + l equations for the 2.M + 3 unknowns 

and c. '1 • Equations ( 3. 2. 3) , with a seven point 

finite difference formula for the derivative, provide a 

further three equations, giving 2. M ~ S equations for lM+ 3 

unknowns. The system is thus apparently overdetermined. 

The dif'ficul ty arises from the fact that the 2M+ 2 equa-

tions derived from the integra-differential equation are 

not independent because of the degeneracy expressed by 

(1.2.15). The degeneracy arises from the fact that (3.2.1) 

is invariant under the addition of' constants to X and) 

In principle, (3.2.3) handles the degeneracy, but it is 

not clear how it is to be incorporated into the numerical 

scheme other than by throwing away two of the equations 

which come from (3.2.1). This was tried but did not work. 

The problem does not rise in the symmetric case because 

the imposition of symmetry destroys the degeneracy. 

The following trick proved satisfactory and was easy 

to implement. 

First note that when b , rather than h , is the param

eter, the degeneracy with respect to ~o disappears because 

the equation is not invariant under ~ translation; hence 

we can take ~0 ~0 without loss of generality, and this is 

done henceforth. Now instead of' solving (3.2.1) and 

(3.2.3), we solve a discretized form of' the equation 
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().2.11) 

where ~. and K4 are arbitrary functions of J chosen so 

that the Frechet derivative of ().2.11) is in general non

singular. This can be done because ().2.11) is not invari-

ant under translation of x and 5 • Then the discretized 

form of equation ().2.11) gives l..M-1-'l equations for the 

2M+~ unknowns XoJXIJ ... ,'XMj'j1 ,':j
1

) .•. J'j
11
;c.'. This system has solu

tions with X!O)=O , d~jloy d S = o , which provide a solution 

of ().2.1) and (3.2.3). The reason this works is that by 

hypothesis the equations (3.2.1) and (3.2.3) have isolated 

solutions. Since the Frechet derivative of ().2.11) is by 

construction in general non-singular, (3.2.11) also has 

isolated solutions. A solution of (J.2.1) and ().2.3) ob

viously satisfies (3.2.11). Therefore ().2.11) has isolated 

solutions which satisfy ().2.1) and (J.2.J). The system is 

now .<M + 3 equations in 2.K + 3 unknowns. 

(When using the Fourier series method, if we allow 

for nonsymmetric solutions, we also obtain an overdeter-

mined system of equations, and the degeneracy can be 

eliminated using a similar trick.) 

The problem is thus reduced to calculating the in 

general isolated solutions of a system of non-linear 

algebraic equations. The equations involve two parameters, 
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T and b • The unknowns are the coordinates of the wave 

at mesh points and the wave speed. The system of equations, 

for the symmetric or nonsymmetric problem, can be written 

as 

(3.2.12) 

where I.A.. is the vector of unknowns, and 1' is the one 

parameter we are allowing to vary. The system (3.2.12) is 

solved by Newton's method. The Jacobian matrix is obtained 

by calculating first the Frechet derivative of the exact 

equations (3.2.1) or (3.2.11) 

& \.1, ( v-~f) ~I).. -:: & ( 1..\ t- ~v.. j 1')- & ( u. j 1') J (3.2.13) 

and then discretizing it in the analogous way. At each 

Newton iteration we solve the finite dimensional linear 

problem 

(3.2.14) 

by L U decomposition. 

The method of solution was tested by comparison with 

Longuet-Higgins' (13) results for gravity waves, with 

Crapper' s capillary waves (taking 3-: 0 ) , and with the 

results obtained with the Fourier series method. The agre e 

ment was very good as reported in the next two chapters. 

Equation (3.1.9) was also used to check the accuracy of 

the calculated waves. For gravity waves, relation (1.3.18) 
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was verified to within a relative error of 0.1%. This 

error is bigger than the errors in the other checks because 

it was calculated with only six decimal places and round

off is important. 

The mean water level, the kinetic and potential ener

gies were calculated using equations (1.].2), (1.J.J), 

(1.).6) and (1.].9). The derivatives were approximated 

using a sixth order finite difference formula and the 

integrals using the trapezoidal rule. 

The implementation of the arclength continuation is 

described in the following section. 

J.J Arclength continuation. 

To implement the arclength continuation procedure 

described in section 1.4, instead of using the actual arc 

length S defined by 

(J.J.1) 

it was found more convenient to continue in terms of a 

pseudo arclength, also denoted by S , introduced by the 

equation 
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Here, (\A.tS,),-pCS,>) is some known solution, the star denotes 

the adjoint element and the value of S 1 is updated every 

time we calculate a new solution;~ represents the param

eter that is allowed to vary, either K or [ for the 

Fourier series method, or, T or b for the vortex sheet 

method, and ~ is the vector of unknowns. The system of 

equations is written as 

(J.J.J) 

for any of the formulations given before. As was done 

before, we will keep the notation of chapter 1 for the 

tru'ncated, finite dimensional problem. 

To use (J.J.2), we need to calculate (lA~~S,)Jf~<S,)) • 

First solve for lA-r ( S,) from 

6-u. \A f' :: - C:r f . (J.J.4) 

Since we already have the LV decomposition of (,.."" at 

(V..tS,)J f(S,)) , the solution of (J.J.4) is inexpensive. 

From the chain rule we have 

Taking the limit S_. S
1 

of (J.J.2), we have 

(J.J.6) 

and the value of P.s ( S,) • The choice of sign for the 

square root is arbitraryr the positive sign means that f 
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increases as s increases. At a limit point where -p~ :: o 

it is necessary to choose the other sign to follow the 

new branch. 

To calculate a new solution (U.IS)J p(S)) , we will 

solve the inflated system consisting of (J.J.J) and (J.J. 2). 

Newton's method is used. To obtain a first guess for the 

iteration a one step Euler method is applied 

lA ( s) ::: u. ( s,) +- us ( s, )( s- s, ), J 
-p<s)~ p(5, ) + f 5 lS,)(s-s,) 

(J.J.?) 

Each step of Newton's method requires the solution of the 

following system of linear equations 

(J.J.8) 

where everything is evaluated at the old iterate, and ~u 

and 6f are the corrections to the solution. 

Keller (8) suggested the following algorithm to solve 

{J.J.8)1 

obtain the vectors ~ and 2 from 

& ~ = c,..l" v. 
(J.J.9 ) 

and 

6-l.l 7. - -&-- (J.J.lO) 

Then 
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6u.-: 2- ~p~. (J.J.l2) 

(J.J.9) and ().).10) are solved by doing a LU decomposi-

tion with partial column pivoting. This is the most expen

sive part of the calculation. In this way, even if we are 

solving an inflated system, we need only to do the LU 

decomposition of &'"" and obtain its Jacobian by multiplying 

the diagonal elements of U , with a possible sign change 

due to the pivoting. 

Newton's method is considered to have converged when 

-11.) the residuals are very small (typically 0(10 for the 

Fourier series method and ec 10-
10

) for the integro- dif-

ferential equation). Szeto (29) proved that Newton's method 

using the above algorithm converges quadratically for 

regular and limit points, and only linearly near simple 

bifurcation points. 

It was sometimes convenient to use s = -p as the arc

length parameter, replacing (J.J.2) with 

(J.J.lJ ) 

Solutions for small amplitude are found using the results 

of chapter 2 as the first guess for the Newton iteration. 

Solutions for higher amplitude are obtained using the 

arclength continuation described above. 
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Simple bifurcation points at S = S0 are detected by 

monitoring changes in sign of the Jacobian and pinpointed 

by bisection. Numerically the Jacobian is never zero, but 

the last pivot is (;}( I0- 6 ) times smaller than the others. 

* The right and left eigenvectors of G-IA , ¢
1 

and '-P, , are 

approximated by inverse iteration. Again, this is not 

expensive since we already have the LV decomposition of 

6-c.A. • The product 'P, * · 6-p is calculated; it should be 

close to zero for bifurcation. 

Once determined that s~so is a simple bifurcation 

point, in order to switch to the bifurcating branch, we 

use the fact that the method of calculation gives an 

approximation ( Us(So) J Ps (So)) to the tangent to the original 

solution branch at the point 50 • We compute as an approx

imation to ¢0 the element 

if " ,J. 
¢_"' I [ " ( S l 'fl. LAs (So) 1'-'t J 

0 -= r~ (So) U.s 0 - If: /f ¢, • 
(3.3.14) 

The leading coefficients of the quadratic 

(3.3.15) 

are approximated by 

A -= f* [ (r lA ( V..
0 + ~ ¢, > f 0

) - & ~ J ¢, ( 3 • 3 • 16 ) 

13 = 3f~{[G-\A.l U.
0 +b¢,Jp0

)- &:1 ~ + [&f(L/ + £¢, 1 p0)-6p
0

] t ( 3. 3.17) 

where ~ is a given small number. This finite difference 
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approximation is necessary because of the great complexity 

of the second Frechet derivatives. Since one root of the 

quadratic is known (the tangent to the original branch), 

B/A suffices to determine the other roots 

~. =- (:· +li) 
o{o o A • 

(J.J.18) 

Since only the direction of the tangent is important, we 

can choose it as 

(J.J.19) 

and from (J.J.6) 

(J.J.20) 

The sign of the square root depends on the direction in 

which we want to do the continuation on the bifurcating 

branch. 

In this way, we were able to detect simple bifurcation 

points and calculate new branches. The method of monitorin g 

the Jacobian will fail, however, if the bifurcation is not 

simple and the Jacobian has a root of even order. We have 

not yet been able to check systematically for higher order 

even bifurcation and the possibility of their existence 

cannot be excluded and should be kept in mind during the 

reading of the results. 
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CHAPTER 4 

FINITE AMPLITUDE CAPILLARY-~RAVITY WAVES 

4.1 Introduction. 

The purpose of this chapter is to extend some of the 

results obtained in chapter 2 for waves of small amplitude 

to waves of finite amplitude. The structure of capillary

gravity waves appears to be extremely rich, and our con

tribution is far from being an exhaustive study. We shall 

concentrate on extending to finite amplitude some of the 

bifurcation loci examined in chapter 2 and also on investi

~ating limiting waves of greatest height. The equations to 

be solved and the numerical procedure are described in 

chapters 1 and J, 

The method of Fourier series truncation (sections 1.1 

and J.1) was completely adequate for the calculation of 

capillary-gravity waves up to waves of greatest height, 

but some results were checked using the vortex shee t inte

gra-differential approach (sec tions 1.2 and J.2) which is 

necessary for gravity waves of large amplitude because of 

the incipient cusp which c auses slow decay of the Fourier 
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coefficients. As will be seen, capillary-gravity waves are 

limited in height by the surface crossing itself, as for 

capillary waves with 9:: 0 ( Crapper ( 4)) , but the surface 

remains smooth and the rate of decay of the Fourier coef

ficients is not significantly affected as the limiting 

wave is approached. 

The coefficients An are dimensionless. Dimensionless 

groups involving the surface tension which are convenient 

for the presentation of the results are 

(4.1.1) 

The latter is useful for the capillary wave limit, 9 ~ 0 • 

In the actual calculations, the scales of length and time 

were fixed by taking ~::.I , L-:: llT • Continuation along a 

solution branch was carried out either in an amplitude 

parameter f.. , that was either b or a linear combination of 

Fourier coefficients, or in the surface tension variable k. 

With the integra-differential equation approach, the con

tinuation was either in b or in the surface tension T 

Symmetry of the solutions about J:: o and _r::. TT , which cor

respond to a crest or a trough, was supposed. 

All numerical calculations were carried out on the 

CDC S~AR 100 computer. 
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4.2 The finite amplitude 2_.1 and 2-+3 bifurcations. 

In section 2.3, it was shown that a weakly non-linear 

pure wave of degree 2 bifurcates into a combination (2,1) 

wave when 

(4.2.1) 

In physical variables, this condition is equivalent to 

h -
)... 

(4.2.2) 

as the condition for a pure wave of height h and wave

length A to bifurcate by the addition of a subharmonic 

of wavelength 2A . 

To extend the bifurcation curve (4.2.1) to waves of 

finite amplitude, we employed continuation alternatively 

in E. and K.. • Starting for K > t with a small amplitude 

pure wave of degree 2 with A~ )0 , we increased the ampli

tude until a change of sign of the determinant of the 

Jacobian matrix occurred, indicating that the solution 

branch went through a critical point. Since it was easily 

seen that this was not a limit point, as all variables 

were changing monotonically, a crossing of the bifurcation 

curvE· had taken place, A continuation increasing K was 

then carried out until the bifurcation curve was crossed 

again. The process was continued and in this way a rough 

profile of the bifurcation curve was obtained. The curve 
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ended at I<=/. J"'/2.. , A1 = 0.77 , '-'1.-t = O.Y~ , where the surface 

crossed itself. The unphysical nature of the solutions 

for larger amplitudes was not marked by any singularity in 

the equations for the Fourier coefficients, which could be 

calculated without difficulty for unphysical solutions. 

Note the conclusion that for K > I. )l.j 2 the only solu

tions with A,= (7([) have h=0(£) , while fork< 1.3Y2 there 

are also solutions with A,-=()([_) , h>> C. 

A similar procedure was carried out for l<.(. ± , A4 < 0 . 

In this case, it was found that the bifurcation curve turns 

around and returns to the small amplitude state with a 

value of K lying between 0.170 and 0.160. As will shortly 

be explained, this result is consistent with the 2~ 3 

bifurcation locus springing from 1<. = 1/6 • 

Figures 4.1 and 4.2 show the approximate bifurcation 

curve, at which a pure wave of degree 2 may bifurcate by 

the addition of subharmonic and odd superharmonic compo

nents, obtained in the way just described. In figure 4.1, 

the locus is plotted in the KJA1 plane. Figure 4.2 shows 

the results in the K, h/).. plane. 

It is only for small amplitude waves that it is 

meaningful to talk of a (M,~) combination wave. When 

bifurcation occurs at finite amplitude, many Fourier compo

nents are introduced. The combination waves which exist 

only outside the At< 0 bubble in figure 4.1 are analytic 

continuations of one another as the bifurcation locus is 
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traversed from /( = 'h. to I< .:: Yb • For I( ":t V4 , AJJA, << I 
and for I<~ Vb , A•/A

3
<.< I • Thus the return of the bifurca

tion locus to the K -axis is consistent with the 2. _, 3 

bifurcation curve coming from k = '16 

As follows from the results of section 2.5, the 

bifurcation locus for o < I(- Yo<.<:. I is the parabola 

( ~ )\ = l ( K- t) . 
"- .2 n 1. 

(4.2.3) 

The continuation of the bifurcation locus across E=o at 

k~ Y6 initially follows equation (4.2.3), but as E in

creases the curvature changes and the locus turns down in 

k.. , as seen in figures 4.1 and 4. 2. Above K = 1/8 we can 

speak of this line as being the 2_,3 bifurcation line. The 

reason is that if we continue pure waves of degree 2 from 

infinitesimal to finite amplitude, keeping 1<. constant and 

Ya~ K ~ Y6, we obtain the same solutions as the ones 

found following the bifurcation locus. These waves have 

Ay<O . ForK near but less than 1/8, the continuation of 

an infinitesimal wave of degree 2 to maximum amplitude 

with K constant does not have any critical points but has 

A'f) 0 • The behavior of pure waves of degree 2 near K: 1/~ 

is the same as that of pure waves of degree 1 near k= V2 

(see sections 2.2 and 2.J). Therefore, the finite amplitude 

bifurcation locus for k. <. 1/~ describes the subharmonic 

bifurcation of combination (4,2) waves. In the KJA2 plane 

the locus eventually returns to the K-axis at about 
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)(-:::0.061.. , but the wave has nonzero amplitude when this 

occurs and the crossing is not related to the behavior 

near singular points described in chapter 2. 

The uncertainty in the values of !<., A1. and h/A. for the 

curves shown in figures 4.1 and 4.2 is about 0.01 for k 

and about the same for A1 and h/).. when A2 )0 , and about 

0. OOJ for A.,_ and h/ A. when Al <.. 0 . 

The bifUrcation point was determined more exactly at 

a few points on the bifurcation curve and it was verified 

that the bifUrcation conditions were satisfied. Equation 

( 1 .4. 6) was satisfied to 0( 10.
1
). The bifUrcating branches 

were calculated; the new solutions have wavelength L and 

A • -# 0 • To one side of the bifUrcation point A, is posi

tive and to the other negative, but they represent physi

cally the same solution shifted by L/1 • For )( = O. 3 , the 

pure wave of degree 2 bifurcates at A"l = -O.IS ~ • The combi

nation wave originating at this value was continued in A.,_ 

until it reached its maximum height, with an enclosed 

bubble, at A1 =- o. !.{ e , A,-: o. 34, h/A:: 0.11 • Plots of the pro

files for this solution branch are shown in figure 4.). 

Profiles of combination waves emanating from A1 ::.! 0.0 ?> 2 , 

continued inK were plotted in figure 2.2. These waves 

start to resemble pure waves of degree 1 as K moves away 

from the bifurcation curve. 

Most of the calculations were done using 64 Fourier 

coefficients. The Newton iteration converged quadratically 
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and three or four iterations were sufficient to reduce the 

residuals to C)( 10-•'1) • Each solution required less than 0. 5 

sec. on the CDC STAR 100 computer. Some of the higher 

amplitude waves were recalculated using 128 Fourier coef-

ficients. Then the computing time per solution was about 

1. 5 sec. In both cases all the last coefficients were Oll0
11

) 

and the solutions agreed to at least 8 significant figures. 

Bifurcated solutions for )(-:0.~8' and J.<=O.S2 were also 

calculated using the vortex sheet method with N=20. Agree

ment was at least 4 significant figures. Since this method 

was slower and it was difficult to classify the solutions 

obtained with it, we used it mainly on gravity waves. 

It is noteworthy that Choi (3) observed experimentally 

a doubling of wavelength like that predicted by our bifur

cation analysis for capillary waves produced by wind 

blowing over water in a wind-water tunnel. A wind of speed 

5m/sec initially produced waves of frequency 16Hz which 

stayed constant, until after a certain fetch where t he 

frequency appeared t o drop to about 9Hz. The value of K 

corresponding to Choi's experiment is 0.23 (withT-= 72 

dynes/em). Our results indicate that bifurcation is then 

possible at A1~-0-IY or h= 0. i mm. Unfortunately, Choi does 

not give the waveheight at which the dominant frequency 

changed from 16 to 9Hz, but we roughly estimated it to be 

h-: I. 7 mm. The quantitative agreement is poor but the 

effects of wind and shear i n the water are probably 
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significant. The observed wave speed is about 6cm/sec. 

greater than that given by the linear dispersion relation. 

4. 3 The :finite amplitude M...,.N bifurcation with N > t 

As examples, we followed the '3 ~ 2 , the 5....,. ~ and 

the S ~ 3 bifurcation lines. These curves were found in 

the same approximate way as the ~~~ line. 

For the 3 ~ 2 bifurcation we start with K just less 

than 1/6 and a pure 3 wave of small amplitude and, by 

changing the parameters, determine where the determinant of 

the Jacobian matrix changes sign. This bifurcation line 

also turns back, at about A
3 

::. O.IL/ , 1<.-= o. II , and tends to 

the K -axis between 0. 075 and 0. 087. For small amplitude 

waves the 3 ~ L{ bifurcation starts at K. = 1/l:t • It there

fore appears that the 3~ 2.. and the 3_.~ bifurcation lines 

are different ends of the same line and the (3,2) and the 

(3,4) combination waves are analytic continuations of one 

another. The step sizes used in finding the changes of 

sign of the Jacobian were at most 16 K \::: 0.011 , I~A3 I -= 0. 01 

Figure 4.4 is a sketch of this bifurcation line. It is 

symmetric with respect to the K-axis. The maximum error 

in the curves is of the order indicated. 

The S _...... LJ bifurcation line was followed in the same 

way, determining the changes of sign of the Jacobian for 
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a pure wave of degree 5. In the K, As plane, this line 

turns back and returns to the K-axis as the s~ 6 line, 

the same behavior occurs for the S _. 3 line that joins 

to the 5 ~ 7 line. Both lines are symmetrical about the 

K-axis. The step sizes in determining these lines were 

/ilk!-= 0.001 and I~A5 1 = 0.01 • Figure 4.5 shows sketches of the 

curves. The (5,4) and the (5,6) combination waves are 

analytic continuations of each other, as are also the 

(5,3) and the (5,7) waves. 

Since all the waves that we calculate are symmetric 

about ~-= n , each wave displaced horizontally by a distance 

L/2 is also a solution of the system of equations for 

the A~ • Thus if the set LA"~~ J constitutes a solution, so 

does the set {H{' A~'~~ • It follows that the bifurcation 

loci for pure waves of odd degree N are symmetrical about 

the f( -axis in the K, AN plane. This is not necessarily 

true for pure waves of even degree and it was shown in 

section 4.2 that the 2~3 bifurcation locus is not sym

metrical. However, it was found that the ti-13 and ~_,5 

bifurcation lines join up and are symmetric. 

All these calculations employed 128 Fourier coeffi

cients, the computing time for each iteration being about 

1.5 seconds on the CDC STAR 100. The number of iterations 

depended on the initial guess, but convergence was quadrat

ic and typically 3 or 4 iterations were sufficient to 

reduce the residuals to tHI0- 12
) • 
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4.4 The l_.M limit line. 

As shown in chapter 2, the behavior of small pure 

waves of degree 1 near)(.~ VM is a special kind. For M ~ 4 , 

a pure 1 wave continued in K with A, kept constant turns 

as /(.~ YM into a combination wave in which A, and AM are 

of the same order. If 1<. ~ YM from above, the solution branch 

has a limit point in K and turns back, with the magnitude 

of AH increasing. If we start with a pure 1 wave andK('/M, 

and then increase K , there is no limit point but AM in

creases rapidly as J<.~ VM. This means that pure 1 waves on 

different sides of K= 11M are not analytic continuations 

of one another. 

As an example, an initially pure wave of degree 1 

with A,= 0.05 , and 128 coefficients retained, was continued 

down from K=O.~J. to K=0.20J/ where a limit point was 

encountered, and the on the second branch to K= 0.3l). At 

this point the surface of the wave crosses itself, with 

A,-: O.OS and As= -I. S'l • The solution looks almost like a 

pure 5 wave, but the crests are of slightly different 

height and only two troughs enclose a bubble. The calcula

tion was repeated keeping A,:~/ constant. Now the limit 

point is at K;D,l038• so that the line moves up with increas

ing A, in agreement with the analysis of section 2.7, 

according to which the 1~5 limit line is 
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(4.4.1) 

Also, a pure wave of degree 1 with A,= 0.05 was continued 

up from J.<.:: 0.171 • Around k= 0.100, As starts growing very 

fast and dominates the behavior. At I( -:0. 32<; , the wave, 

which looks almost like a pure 5 wave with As=- f. 56 

achieves its maximum height by enclosing a bubble. Figure 

4. 6 is a plot of ){. vs As for these solutions with A,= 0.05 • 

Compare with figure 2.7 (b). 

In section 4.5 we give some additional evidence that 

the I_, 5 limit line intersects the highest wave line. This 

is probably true for all 1 ~M limit lines, for M ~ L4 • 

These results confirm the impossibility of going 

continuously from a pure capillary-gravity wave to a gravi 

ty wave by letting J<..- 0 • We also tested to see if a 

combination wave could go continuously to a gravity wave. 

This was done by starting with a (5,4) combination wave at 

l(~o.os ,A5 :.0.1'l'l. ,A"f::-0.17'l, and continuing by decreasing!( 

with As kept constant. This solution branch has a limit 

point in K. at K ::O.o I "S ,A5-:0. Il.l ,A'i:0.071 , and turns 

back. The value of As was chosen so that the solutions 

were outside the S _. 1./ , S ~ 6 bifurcation line. We believe 

that, in general, it is impossible to continue a combina-

tion wave to a gravity wave by letting )(-I'D 

The (3,1) combination waves are also special. As 

shown in section 2.8, for K near 1/3 there are three 
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(1,J) combination waves. One of them has A3 ~~rA;) as 

A,~O . The other two exist only for finite amplitude. 

We investigated one of the latter solutions for 

/<..: o. "316 • The continuation was done in A, • There is a 

limit point at A,-= O.OS?l8 , A3 =-0. 2.bb7 • Continuing the solution 

to either side a wave of maximum height is obtained. Figure 

4. 7 is a plot of A, and A3 for this solution. On the top 

branch the maximum height wave has A,:: o. ~ S 3 , A3:. -O.S5?. There 

is also a limit point with respect to A~ at A.= 0.103, 

A}.-:-0.~0"2. • The other branch has a maximum height wave at 

A,-= o.lc;; I , A3 ~ -o.qoq • This solution has A1 negative, and 

exists inside the ~_.I bifurcation line. There is no inc on-

sistency since the solution is not a combination (2,1) 

wave. 

Figure 4.8 shows plots of the surface profile for 

different solutions on this branch. The top three plots 

correspond to the upper branch, the fourth to the limit 

point in A, and the last two to the lower branch. A, de

creases from the top until the fourth plot and then in-

creases again. 

4. 5 \'laves of maximum height on deep water. 

Gravity waves have a maximum height when the surface 

cusps and includes an i nternal angle of 120°. This occurs 
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for the pure wave at 'n/A.~ 0.1411 

Capillary waves, as shown by Crapper (4), have a maxi

mum height of h/A-=0.730, but in this case the wave is 

limited because it encloses a bubble. For greater heights 

the surface crosses itself making the solution unphysical, 

even though there is no mathematical problem in the calcu

lation of the Fourier coefficients or in determining 

parametric equations for the surface. 
, 

In this section we give some answers to the questions 

of the existence and shape of capillary-gravity waves of 

maximum height on deep water. 

First we reproduced numerically Crapper's results 

with a pure wave of degree 1 up to the limiting height. We 

know of no simple analytical criterion to determine from a 

parametric Fourier representation like (1.1.13) and 

(1.1.14) if a surface crosses itself. We used some suffi-

cient conditions for the curve to be simple and visual 

aids to determine when this happened. The method does 

not give the maximum height to great accuracy, but it 

turned out to be sufficient for our purposes. For pure 

capillary waves we found in this way the maximum height 

to be h/A.-= 0. 7 305 , which agrees well with Crapper' s exact 

value. 

We repeated the calculation using A.-= L/1 .. and A-:: L/3 

seeking subharmonic bifurcations. None were found. If we 

apply the intuitive argument that bifurcation occurs when 
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two different waves move with the same speed we would not 

expect any bifurcations since the speed decreases monotoni

cally as the height increases. Also the~~~ bifurcation 

line does not intersect the line 1<. = oa , 'il: \ 
Waves of greatest height were found in two different 

ways. The first method was to take Crapper's limiting solu

tion and, by decreasing ~ and then changing the amplitude, 

obtain waves of maximum height for different values of K. • 

With this method of continuation it was possible to calcu

late waves with K down to about 0.04, where the numerical 

solution started to become inconsistent because the higher 

coefficients did not remain small. We were working with 

128 harmonics. Increasing this number permitted us to go 

to lower values ofK, but it was found that the higher 

order coefficients quickly grew more and more important 

as K decreased. A~ , which is positive for capillary 

waves, changes sign as k. decreases at about K == 1. ~5 and 

stays negative afterwards. All the waves of greatest 

height calculated in this way look similar to each other; 

they all enclose a single bubble and are all smooth. But 

as K decreases the bubble gets smaller and the change of 

slope faster. Figure 4.9 shows the profiles for these waves 

for J<.-:.ca, 2.333, 0.666, 0.250 and 0.042. 

The second way was to start with pure waves of degree 

1 of small amplitude, and increase the waveheight by 

changing A 1 with J<. kept constant. For K > ~ the waves of 
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greatest height are the same as those obtained by the first 

method of continuation. But for X< 1/4 , the highest waves 

found in this way are multi-bubbled. The number of bubbles 

depends on the value of K • For~< K L.. 1:1 , with N ~ 2 

integer, the highest waves have N crests of different 

height and enclose N bubbles, not all completely closed. 

For example, for k= o. yq 3 , o. 4H and 0. 3 70 , the highest 

waves enclose two bubbles; for K = o. 316 and o. 26b , three 

bubbles exist, with only the middle one completely closed; 

for }(::0.2l.O, four bubbles exist, with two closed; for 

K =o.tqo, five bubbles exist, with only the middle one 

closed; and for I<.-= o. lb 3 , six bubbles exist, with two 

closed. Figure 4.10 shows the wave profiles of waves of 

almost maximum height for K-= 0. Llq3 , 0. 3/6 0. 12.0 O.JqO 
' ' and 

0./63 

Figure 4.11 shows the change of form of a pure wave 

of degree 1 from infinitesimal to maximum height for 1(: 0./~0· 

For small K , the continuation in A1 with K kept 

constant sometimes hits the I~M limit lines in the K)AI 

plane. The solution branch with lc-=0.2.05 hits the 1-.s limit 

line at A1 = 0.11'?2 and turns back. After going through this 

limit point the solution has five crests. For l-<=0.17bthe 

solution has a limit point at about A1= O.lq 3 and turns back 

looking like a modulated 6 wave. For K = 0.14~ the solutions 

meet the I~ 7 limit line at A,= 0.1 S • 

For all the smaller K , for which we used the second 
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method of continuation, the solutions all have limit 

points corresponding to I~M limit lines, before getting 

to the maximum. These solutions were not continued to the 

highest wave because it would have required more than 128 

harmonics to get a consistent solution. Since the \-PM 

limit lines become more concentrated as H._.O and since 

they are not horizontal in the x~A, plane, the continua

tion of the solutions using A, as the parameter will 

probably always have limit points for very small K • 

Figure 4.12 is a plot of kvs h/A for maximum ampli

tude waves. The continuous line is for single bubbled 

waves which are the analytic continuation of Crapper's 

solution. The + signs represent multi-bubbled waves which 

are the continuation of small ampli t ude pure waves of 

degree 1, as described above. 

Figure 4.13 is a plot of k vs A, , and of K vs A,_ 

for maximum amplitude waves. The continuous lines are for 

the single bubbled waves which are the analytic continua

tion of Crapper' s waves. The + signs and the>< signs repre

sent the values of A 1 and A l. respectively for the multi

bubbled waves which are the continuation of small ampli

tude pure waves of degree 1. 'rhis figure complements 

figur= 2.1 to show the accessible regions for pure waves 

of degree 1 in the KJ A,. plane. 

In section 2.6, we showed that for t<Nc(tM , the 

(M.N) combination wave c an exist only for sufficiently 
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small amplitude. To see if there were other solutions that 

did not achieve a limiting height in the sense of the sur

face crossing itself, we continued a (5,4) combination 

wave on t.::: A5 , with 1<.~ o.os kept constant. The solution goes 

through several limit points in A5 , but does not attained 

a maximum height. Figure 4.14 is a plot off:::~ vs As for 

the (5,4) combination wave. The nearly horizontal line 

represents the pure wave of degree 5 from which the (5,4) 

combination wave bifurcated. Note that the wave speed is 

not a monotonic function of A5 (or of~~~ ). 
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CHAPTER 5 

FINITE AMPLITUDE GRAVITY WAVES 

5.1 Introduction. 

In all numerical studies to date of which we are 

aware, it appears to have been assumed, either implicitly 

or explicitly, that steady, one-dimensional gravity waves 

are unique in the sense that given the height, wavelength 

and direction only one wave exists. Owing to the time

reversibility of the Euler equations, it follows that the 

wave must be symmetrical about its crest and trough. There 

is no doubt that permanent gravity waves of sufficiently 

small amplitude are unique, but to our knowledge there is 

no proof of uniqueness or symmetry for waves of all ampli

tudes up to the maximum. Garabedian (5) proved that the 

waves are indeed symmetric and unique in the special case 

that all the crests and troughs are equal. 

The object of this chapter is to give evidence that 

symmetrical gravity waves of large amplitude are not 

unique. In chapter 4 we found that finite amplitude capil

lary-gravity waves are not unique for general values of 
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the surface tension. However, the limit T.....,O is highly 

singular and we have already shown that gravity waves 

cannot be obtained as the continuous limit of' a capillary

gravity wave as T~O , so the non-uniqueness of' capillary

gravity waves does not imply the non-uniqueness of' gravity 

waves. On the other hand, Wilton's ripples can be explained 

"physically" as fixed points of' the non-linear resonance 

between a wave and its first harmonic which travel at the 

same speed. Since there exist permanent gravity waves of' 

large but different amplitude that move at the same speed, 

because the wave speed is not a monotonic function of' 

wave height, analogy suggests as a possibility some combi

nation may exist that is also a gravity wave of' permanent 

form. The argument is weak, but it does suggest that if' 

gravity waves are not unique, it may only be for waves 

with heights close to the maximum and that the method of 

study will need to be one that can handle waves of' large 

height. 

Our procedure is to study numerically the solutions 

of' the singular integra-differential equation given in 

section 1.2, with T:O . This equation has the property 

that it can be solved accurately for waves close to the 

limiting 120° -cusped wave, with a reasonable amount of' 

computation, using the methods of' sections 3.2 and 3.3 

that allow the systematic search for other solutions 

different from those obtained from the Stokes expansion. 
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For almost all the computations reported here, it was 

convenient to use b as the parameter that determined the 

wave magnitude. It is clear that b:\ is necessary. Since 

~:0 at the surface, from Bernoulli's equation (1.1.10) 

we have that when b=l , the origin is at the highest 

crest and is a stagnation point; the wave is then a limit

ing wave with a 120° cusp. The identity 1~~=-bc~ implies 

that at ~=Y, ~~=c~ , and that the speed at the highest 

crest is less than c • Therefore, without loss of general

ity we can take the origin at the highest crest and confine 

attention to the fixed range o<b~l • The height is then 

determined as a function of b • Infinitesimal waves are 

given by b ~l.l • 

Given the value of b , the solution of (1.2.11) and 

(1.2.16) will still not be unique until we specify the 

number of waves in the window or equivalently the shortest 

period A • (We neglect the trivial degeneracy associated 

with the direction of the wave and take c > 0 • ) Then the 

existence theory of finite amplitude water waves implies 

that for o<. b ~ b<- there is a unique solution of period 2.1T 

which is moreover symmetrical about 5~0 and g~n . The 

assumption that water waves are unique is equivalent to 

the statement 

b :: c. (5.1.1) 

We shall present evidence that this statement is incorrect 
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and that there are values of b for which more than one 

wave, with A:L , exists. Let us introduce the name regular 

wave for the symmetric water waves that are the continua

tion to finite amplitude of the weakly non-linear waves 

calculated by Stokes by expansion in wave amplitude. The 

regular waves are those calculated by Schwartz (23), 

Longuet-Higgins (13) and others. The new types of waves, 

which we may call irregular waves, arise from subharmonic 

bifurcations of the regular waves. We shall show that 

regular wave solutions of (1.2.11) and (1.2.16) with more 

than one wave in the window, i.e. with A::: L/V'I where Y'l >I is 

the number of waves in the window, may bifurcate at 

critical values of b into solutions with k::: L which are 

not regular waves. We shall call ~ the class of the regu-

lar wave solution. Regular waves of class 1 do not appear 

to have any critical values of b and are not connected 

continuously with the irregular waves. It is perhaps for 

this reason that their existence has apparently so far been 

overlooked. Irregular waves have crests of different 

heights so there is no contradiction with Garabedian (5). 

The following equations of section 1.3 provide useful 

checks on the accuracy of the numerical computations 

:l~Y =-be.' (5.1.2) 

o c K + v~ ) _ _ c. ll. 
~b - ~b 

(5.1.3) 

Equation (5.1.3) relates the properties of waves on a 
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solution branch. 

In all the calculations, the length and time scales 

are normalized to 

~ = 1., L :: 2.11 • (5.1.4) 

While the first solutions were being computed, it 

was noticed that the mesh points tended to concentrate 

near the troughs where the curvature changes relatively 

slowly. In order to resolve properly the crests which 

become sharp when the wave height increases, while keeping 

the number of mesh points as small as possible, a change 

of independent variables was introduced. A new independent 

variable Y is defined by 

(5.1.5) 

where n is the number of waves in the window and 0 f: c< L. I 

This transformation concentrates points at the crests 

where ~ is equal to ~ and an integer multiple of l~/n • 

The closer~ is to 1, the greater the concentration. It 

was found that very steep waves could be resolved satis

factorily with o<. = O.~!f , which was the usual value taken. 

The calculations were done for one case with o< = o.<Jqq to 

verif y that the results were independent of~ • The 

method worked well for regular waves. However, the spacing 

of the crests on the irregular waves is not necessarily 

uniform. In this case, (5.1.5) was replaced for calcula

tions along the new branches of irregular waves by 
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(5.1.6) 

where t\~) is a periodic function chosen by iteration so 

that d~ I~)( is a (positive) minimum and the crests occur 

at values of~ which are integer multiples of 2~/n . 

For example, for irregular waves of class 2 the spac

ing of the crests is uniform so that t\~)=0 • For irregular 

waves of class J, where the spacing is not uniform, when 

supposing symmetry of the solution we picked 

(5.1.7) 

The constants o( , o<, , co( l. and c< 'i are chosen such that 

¥-= 0 , and ~ = 2Tij3 are the crests, and such that the con-

centration of points at both crests is the same. This gives 

the following system of equations 

c1 $ =- f. at 
d~ 

'6 = Y! 
3 

t <.<.I given 

(usually 0.01) 

(5.1.8) 

Here ~' is the value of ~ at the second crest. Since we 

do not know a priori where that crest is, it is necessary 

to do the following iterations 

the position of the second crest is estimated. The solution 

is calculated with the values of <X , (!( 
1 

, o( l. and d. 'I 
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obtained ~rom the estimate. From this new solution a better 

approximation to the position o~ the crest is ~ound. 

Usually only two or three iterations were necessary to 

calculate 5, to within 10-J o~ the true value. 

5.2 Numerical results ~or regular waves o~ class 1. 

Fortran programs to implement the numerical procedures 

were run on the CDC STAR 100 at Minneapolis. The symmetric 

code was ~irst checked by calculating regular waves and 

comparing with the results given by Longuet-Higgins (1J). 

The wave height was used as the continuation parameter 

and his table 2, which runs ~rom h/A::0,04S27 to I\/A=0.I~053 , 

was reproduced. The calculated values o~ c agreed to six 

signi~icant ~igures and the other parameters, energies 

and ~luid velocity at crest and trough, agreed to the 

published ~igures . These calculations were done with N~Yo • 

Each individual wave required about 4 seconds o~ computing 

time. The lastest published value for the height o~ the 

limiting wave o~ greatest height is (Longuet-Higgins and 

Fox ( 15)) h/ A.= 0.1~ 107 • The maximum value o~ c. occurs at 

b: O.q(2C) , h/).:. 0.13~71 . These calculations check not 

only our program but also the use o~ Pade approximants 

to sum high order series, since the latter method is not 

rigorous and is based on the uncertain (but apparently in 
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this case valid) assumption that a large but finite number 

of terms contains the behavior of the solution near 

singularities. 

We then repeated the calculations .using b as a param

eter with N:~O • These calculations were also carried out 

with the non-symmetric code and produced the same results. 

For the same values of b or h/~ , agreement to six sig

nificant figures was obtained. Equation (5.1.2) was 

checked, the integral being evaluated by the trapezoidal 

rule. The error detected in this relation was typically 

• The relative error in equation (5.1.3) was less 

than 0.1%. This error is bigger because the calculations 

to evaluate (5.1.3) were done with only six significant 

figures. The derivatives were approximated by a fourth 

order difference formula. We concluded that the code was 

satisfactory, provided the wave was not too close to the 

limiting wave of maximum height. 

The method worked very well for b4. o.qCf i , "'lA!:: O.I"40i7 • 

Newton's method converged quadratically. The iteration was 

terminated when the residuals were less than 1o-10 ; this 

usually took 3 or 4 iterations. For larger values of b 

the method started to fail; convergence became slow and 

the r~siduals could not be made to tend to zero. We expect 

that the failure is associated with the truncation error 

in resolving the sharp peak. 

Table 1 lists some of our calculated values of e~, c 
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h/ L , w , K , 'V~ and Y for a range of b for regular 

waves of class 1, where e~ is the maximum slope, c is 

the wave speed, 
l. 1. 

W = I - ~c.r~~\'ltro.J~h :: 1- c..l( 1-b)\ 2.( l-b) 'j 
C tvov~h 

(_5.2.1) 

is Longuet-Higgins' (13) parameter (units have been chosen 

so that the speed of infinitesimal waves of wavelength L 

is unity), and K and 'V~ are the average kinetic and 

potential energies per unit length. 

Longuet-Higgins and Fox (1.5) predicted that the wave 

speed and energies would oscillate infinitely often as 

h~~~~x . We appear to have been able to pick up the first 

relative minima of these quantities. The maximum slope 

is difficult to calculate. We used the slope of the chord 

between mesh points and their bisections. Values of 9~)30° 

were found, as predicted by Longuet-Higgins and Fox; our 

results for 6 f O. Cf~ b agree well with the extrapolation 

curve shown in figure 12 of their paper. The disagreement 

at the top of the table is probably due to inadequate 

resolution at the peak. 

We followed the solution branch for regular waves of 

class 1 from b =.o to b: o. q~ e ' with both the symmetric and 

non-8ymmetric programs. The Jacobian never changed sign 

and we conclude that there are no simple bifurcation 

points on this branch. We cannot, however, at present rule 

out completely the possibility of higher order even 
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bifurcations, but the indications are that they are absent. 

5.3 Bifurcation of regular class 2 waves& a new type of 

symmetrical solution. 

In our studies of capillary-gravity waves (chapter 2), 

we showed that these waves could undergo subharmonic 

bifurcation. In the simplest case, associated with Wilton's 

ripples, a regular wave of wavelength A could bifurcate 

continuously into a wave of wavelength l A when 

h.= i.!.n:r. - .l I+ o( Jt]: _ _i.)' 
).. 3TT ~ A~ 1 ~ ~ 1. l 

(5.).1) 

This behavior was called a 2-. I bifurcation. The numerical 

results ( chapter 4) show that the bifurcation exists for 

finite amplitude capillary-gravity waves for values of T 

not close to 9A~/2TI , but the theoretical and numerical 

results showed that the bifurcation locus in an hJT plane 

does not intersect T~o . Nevertheless, the results sug

gested that a search for 2~1 bifurcation for gravity 

waves would be of interest and we now describe the results. 

We first followed the solution branch for 0.1 < b < 0. ~~ 

for regular waves of class 2 (with two periodic waves in 

the window, ,.{-= L/2 and Vl = 2 ) using the symmetric code 

and N = 40 • No significant differences were found in the 

properties of the regular waves of class 2 and those of 
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class 1 found previously after the appropriate changes of 

scale were made. The sign of the Jacobian was monitored 

and it was observed that a critical point exists for b=~ , 

where 

(5.J.2) 

The criterion (1.4.6) was tested and found to be satisfied 

with an error 0(10-
7

) , confirming the existence of a 

simple bifurcation. 

The tangent vector to the new branch was computed as 

described in section J,J and the new branch was followed 

by pseudo arclength continuation. Figure 5.1 shows a plot 

of c. vs b for the regular wave of class 2 and the sym

metric (by construction) bifurcated solution. The regular 

wave of wavelength L/l bifurcates into an irregular wave 

of wavelength L . The tangent to the new branch in the 

~.b plane is horizontal at the bifurcation point. The 

crests in the new solutions are of unequal height. From 

symmetry consideration, the two branches must describe 

physically identical waves translated relative to one 

another through L/ 2 and hence ( dc.f db\ must be zero on 

the new branch. It is sufficient therefore to present 

results for b ) be: • Table 2 contains properties of the new 

type of solution and in figure 5.2 are presented plots of 

the wave profile for various values of b from the bifurca-

tion value to b -=-I • Note that as b ~ 1 , the highest crest 



-100-

tends to the 120° cusp, while the lower crest stays 

rounded. 

To check the accuracy o£ the scheme, the calculations 

were repeated with 1\J:: 60 and N= b'O • The discretization 

-b error was proportional to N as expected f'or a sixth 

order scheme. The accuracy drops £or b ') 0. 9~ and no 

attempt was made to compute the wave of greatest height. 

The behavior near the sharp crest would, of course, be 

that described by Longuet-Higgins and Fox (15). 

To corroborate further the existence of new solutions, 

we used the Fourier series method described in sections 

1.1 and 3.1, which consists in solving 

gl 
.0 C>O 

L A VI ( <.OS Y\ ~ - I ) - 1l c \ [ ( I + L A... c:.os Y\ ~ l 'l. 
I n I 

- -1 
+- ( !... A ~(Ill ~H )

1 J = D, 
I "' ;) 

(5.3.3) 

for 0!: ~ ~ Tl • This approach assumes symmetrical waves. 

The numerical method truncates the series to j terms, 

satisfies ( 5. 3. 3) at :f+l equally spaced points in to_ n] 

and solves the resulting :r + I equations in the '3' + l un

knowns A,, AJ.J .. 'J A~ ) c.' by Newton's method. Iteration is 

stopped when the residuals were C ( 10-'o) • The method of 

continuation and the determination of bifurcation points 

and new branches proceeds as described before. We followed 

the branch of regular solutions of class 2, starting with 

a wave of small amplitude. Taking J"::.SJ2, the bifurcation 
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was found to occur at b, = 0. '87cn • The higher coefficients 

were t5(1D-") ; the machine round off is 0( 10-
13

) • A 

bifurcated solution was calculated for b~Q~7~S; its prop-

erties checked to five figures with those found by the 

integra-differential equation method. The Fourier series 

method is not a good one for steep gravity waves since 

the sharp crests produce a slow decay of the Fourier coef

ficients. The amount of computing time to calculate a 

Fourier series solution with j:512 was about 80 sees. 

The integra-differential equation with N=80 took 15 sees. 

per solution; with N=YO only 4 seconds were required. 

Note that the value of b, and the corresponding ~/A 

(0.1289) are less than the values at which ~ has its 

maximum ( b: 0. 9715 , h/A.:: 0.13 n ) . The bifurcation also 

occurs for smaller values of b than those at which K and 

Vs have their maxima. 

No further symmetrical bifurcations on the new branch 

were found. Both solution branches were followed with the 

non-symmetrical program, but no simple bifurcation points 

were found, other than the symmetrical 2.. _, l bifurcation 

at b~ . We cannot exclude, however, the possibility of 

bifurcation into non-symmetrical solutions through a high 

order even bifurcation, but no indications of such behavior 

were seen. 

Equations (5.1.2) and (5.1.3) were checked for the 

branch of solutions of irregular waves and were satisfie d 
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to the same accuracy as on the original branch. 

5.4 Bifurcation of regular class 3 waves. 

We now describe the results of calculations following 

the solution branch for regular waves of class 3 (i.e. 

A.: L/3 , Y\-= 3 ) • Using the symmetrical wave formulation, 

we found a symmetrical bifurcation for 

o. r?7~o' < b, 1... o. i7~0l _, h/J. ::a. 12~i.. (5.4.1) 

calculated the tangent vector to the new branch, and com

puted the new solutions. The values of b and h/A are 

very close to those for the l_.l bifurcation. These 

results were obtained with N= 60 and N= iO • About 15 

seconds on the CDC STAR 100 were required for each solu

tion. A few solutions were calculated with N=l~O to check 

that the discretization error was 0( N~ 6 ) 

In this case, the solutions for b)b, and b< b, are 

physically distinct. For b ") b, , the origin is the highest 

crest. The other two crests inside the window are equal 

to 'one another and smaller. The troughs are of the same 

depth. In the wave, the highest crests are separated by a 

pair of lower crests. As b~l , the highest crest tends to 

a 120° cusp and the others remain rounded. The wave 

height increases but the wave speed and energies decrease 
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as b increases along this branch. 

For b ~be. , the situation is reversed. The origin is 

not the highest crest. The two crests inside the window 

are equal and highest. In this wave, a pair of high crests 

is separated by a single lower one. The troughs are again 

of equal depth. As b decreases, the wave height increases 

until the highest crest is cusped. The wave speed and 

energies increase at first and then decrease as the limit

ing wave is approached. 

Since the waves for b '>be. and b <.be. are physically 

distinct, there is no reason why dC/db should vanish on 

the new branch at the bifurcation point, and in fact it is 

non zero. 

Figure 5.3 shows a plot of wave speed vs b for the 

regular class 3 wave and the bifurcated symmetric solu

tions. Some properties of the new waves are listed in 

table 3. Figure 5.4 shows some wave profiles. Since there 

are two crests of different heights, the value of b for 

the wave is not unique and depends on which crest is chosen 

as origin. If ..6 'n is the height of the other crest above 

the one at the origin, the value of the parameter, b' say, 

obtained taking the other crest as origin is 

(5.4.2) 

For b) be. , we have 'b' <. be. , and vice versa. The dashed 

line in figure 5. 3 shows c:. vs 6' 
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It was not possible to check these calculations with 

the Fourier method, as su£ficient resolution of a wave 

with three crests at the steepness where it bifurcates 

required a value of ~ of at least 750, and the program 

became too expensive to run. 

A. check was made, however, by repeating the calcula

tions with the non-symmetric program. The symmetric bifur

cation o£ class J waves produces waves which are not sym

metric about all the crests. Thus, if symmetry is not 

imposed, the regular wave will bifurcate at b = b<. into the 

symmetric waves as calculated and two apparently non-sym

metrical waves which are, however the same wave with the 

origin at the other crests about which the wave is not 

symmetric. Hence, b:b, must be a non-simple bifurcation 

of the non-symmetric formulation. Four branches of solu

tions pass through the bifurcation point; a regular wave 

of class J, a symmetric irregular wave, and two non-symmet

ric irregular waves. The irregular waves are physically 

identical, the difference between them being a horizontal 

displacement. A non-symmetric wave with value b:b, , say, 

is identical to the symmetric wave with b' = b, • The 

properties of the non-symmetric branches are therefore 

given by table J with b' instead of b • Corresponding to 

the existence o£ four branches, we expect the Jacobian to 

have a double zero.(The branches at a nth order zero of 

the Jacobian correspond to the roots of ~ quadratic 
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polynomials.) 

Following the regular branch with the non-symmetric 

program, we ~ound no change of sign of the Jacobian between 

b-:: o. i and b-:: o. 9 This confirms that the bi~rcation is 

not simple. Closer examination showed that two diagonal 

elements of the matrix U o~ the LU decomposition were 

small near b-: Q. i7'1 ; their magnitudes were 10-4 smaller 

than the other elements on the diagonal. These two 

elements changed sign, but not exactly at the same value 

of b , the difference being e< IO'f) • The calculation was 

carried out with M = Cjj'O , 110 and 160 • No discernible 

changes in the separation as M changes could be detected. 

The residuals of the Newton iteration around the bi~rca

tion point were e( 10-.,.) • The difference appears to be 

within the limits of numerical error and we can conlude 

that a double zero of the Jacobian does exist as predicted. 

We also calculated a non-symmetrical branch. The value of 

c vs b is shown on figure 5.3 as a dashed line. Its 

properties agreed to five signi~icant figures with those 

of the symmetrical branch on making the identi~ication of 

b and 6 
I 
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5.5 Discussion. 

We have presented numerical evidence that permanent 

gravity waves of finite amplitude are not unique when their 

height is sufficiently large. Two new types of wave with 

wavelength L have been calculated, coming respectively 

from the bifurcation of regular wave trains of wavelength 

L/2 and L/3 • The bifurcation points were calculated 

by finding the values of a parameter b in the range (0,1) 

at which the Frechet derivative of the equation defining 

the system for each value of b is singular and testing 

that a bifurcation criterion is satisfied. Branches were 

followed by Keller's method of pseudo arclength continua

tion. 

The Frechet derivative is calculated approximately by 

a discretization or truncation of the exact system. We 

have not proved convergence. However, the scheme appears 

to behave satisfactorily as the number of mesh points is 

changed and there is no reason to doubt that the results 

are genuine and not an artifact of the numerics. Three 

methods, of which one was very different from the others, 

have been employed and give consistent answers. 

Important questions which remain unanswered are the 

existence of bifurcation at small values of h/A and the 

possibility of bifurcation into genuinely non-symmetric 

solutions. Unfortunately, it appears that the latter type 
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of bifurcation, if it exists, is probably of high order 

and consequently difficult to detect, at least by the 

present method. Consider for example a wave of class 4. 

Suppose an infinitesimal perturbation onto a symmetric 

bifUrcation branch changes the heights of the five crests 

in the window Co_,2.n1 by ( £ , f.. , -f. , E. , f.. ) • On the new 

branch on the other side of the bifurcation point, the 

change would be (- £. , - E , £: , -f.. , -c ) . These waves are 

physically distinct and hence dc/db*O for this branch; 

but they are physically the same as ( -£ , c. , e. , i. , -t.. ) 

and ( €. , -£ , - t.. , -f.. , c. ) respectively. Hence the bifurca

tion must be of second order. Similar arguments can be 

made for bifUrcation into non-symmetric waves. Progress 

in answering the questions may therefore have to wait on 

the refinement of the techniques for detecting high order 

bifUrcations. 
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APPENDIX A 

Here we are going to prove that for capillary-gravity 

waves 

( A.1) 

The momentum conservation equations (1.1.2) and (1.2.3) 

can be written 

u.. ~ + ~ ~:: _ o( f +s 'j) . u.~ + "w = _ ~ ( f'-f'~jJ, 
~x o~j ax J ?rx o~ od 

(A. 2) 

and £rom the continuity equation (1.1.1) 

(A. 3) 

Integrating (A.3), and using Stokes' theorem 
l. y 

J ( [ ~(u.")+~ (..r"l)]clxd'j ~ i v.v-~J#v-... dx. 
o J ox o'j ~ 

-..o 

(A.4) 

Since the top and bottom of the circuit are streamlines 

, no contribution results from the 

integration along these parts. As ~ is periodic, the 

contribution of the remaining two portions cancel so that 

the integral is zero. 

Hence, 

(A.5) 

Since f+~d is periodic, t h e last equality of (A. 5 ) gives 
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(A. 6) 

Here for simplicity, we are supposing for the moment that 

the bottom is the horizontal line j~-D , where the pressure 

is -p, • As be.fore the sur.face is :r= Y and the pressure 

there is f . 

Therefore 
l 

=-~J(Y+D)d~-= ~L(D+'f). 
0 

(A. 7) 

By comparing pressures in the same vertical line 

(A.8) 

or 

(A. 9) 

Integrating from 0 to L we have 

(A.lO) 

Thus, from integrating Bernoulli's equation (A.8) along 

the surface we have 

(A .ll) 

since 
l L L 

( f dx = - T ( J.. v\x :: - T J I)(){ _ d ;< = 0. 
J J R ( ~)3/1 o o 0 11Yx 

(A.12) 
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APPENDIX B 

We will now prove the relation 

( B .1) 

Using (1.).1), (1.).2) and (1.).6) we have 

l ~IKtV~) = ~ { r (1(<1',,+ .p1)2 d~JH ~5(('(-f)J+ 
0 -DO 

L y 

~J [ r tip)(~ ~~~~)dj+[~~r~:+~~)\~~~J 
o )..o v'o l>b ~=Y 

(B.2) 

The kinematic and dynamic boundary conditions (1.1.7) and 

(1.1.10) can be written as 

(B.J) 

(B.4) 

For T= 0 , Y is a well defined function of X • Therefore 
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Here we used equation (A.1) and that ~ is harmonic. As 

before, only the integral along the surface is non-zero. 

L L 

L ~ ( ~h V~ ) -:: ( ~ b ( <f - if!>< '( ~ J cJ X - c. f ~ b <Ji'" eN = 
"Clb Jo ~ Jo 

l 

:: c. J [ ~ b Tx - Yb P X 1 d X • 
0 

In the last equality we used (B.4). 

Now 

In obtaining the last equality we used that 

L '( y y t }x( j ~bda )clx= J Pbd~J - f ~ 13 aaJ :o 
-dl - <JO X= l -..D X =o 

by periodicity. 

Comparison of (B.6) and (B.?) gives the desired 

relation (B.1). 

(B.6) 

(B.?) 

(B.8) 
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Figure 2.6. Plots of combination (5,4) waves with 
A.,/4 +As/5 = 0.00267 near K = 1/20, showing smooth transition 
from a pure wave of degree 5 to one of degree 4 and vice versa. 
Vertical scale is magnified 333 times. 
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Figure 4.). Profiles of (2,1') combination waves for J<.= 0.03. · 
The lowest profile corresponds to just after the bifUrcation_ 
point and the top one to the h ighest wave. The j origin is at Y • 



K
 0.

20
 

0.
15

 

0.
10

 

K
 

vs
 h

/A
 

I ~
 

N
 
~
 

I 

0.
05

 ..._
__

 _
_

 
~
 _

_
 __

.__
 _

_
 ..__

.__
 _

_
 __

.....
. _

_
 _.

...
. _

_
 _ 

0
.0

0
 

0.
03

 
0.

06
 

0.
09

 
O.

J 2
 

F
ig

u
re

 4
.4

. 
S

k
et

ch
 o

f 
th

e
 
~
2
 

an
d

 3
_.

4 
b

if
u

rc
a
ti

o
n

 l
in

e
 p

lo
tt

e
d

 
as

 
K

 V
S

 
A 3

 
an

d 
K

 V
S

 h
/ J

.. 
• 

0.
15

 
0.

18
 

A
3,

 h
/>.

. 



K
 0.

07
 5 

0.
06

 

0.
05

jrJ
f..

.._
_ _

_
_

_
_

_
_

_
_

_
 .....

.....
.....

 

5 
-

0.
04

 
5 ~,

 

Q
03

 
,6

 
~,
~-
--
--
--

--
--

--
--

--
--

--
--

--
--

-
1 

7 
-

I ~
 

N
 

\J
1.

 
I 

0.
02

 ..
__

 _
_

_
_

_
 ....

.._
 _

_
_

_
_

_
_

_
_

_
_

_
_

 __
_ 

0.
0 

0
.0

5
 

0.
1 

A
 

F
ig

u
re

 
4

.5
. 

S
k

e
tc

h
 o

f 
th

e
 

5.
-.

3,
 

5_
,.4

, 
5-

+
6 

an
d

 
5-

+
7 

b
if

u
rc

a
ti

o
n

 l
in

e
s
 

5 
in

 t
h

e
 I

(
, 

As
 

p
la

n
e
. 

0.
15

 



-2
.0

 

f{
 

-1
.5

 
-1

.0
 

-0
.5

 

U
')

 
('

f)
 • 

0 \1
) - 0.

0 
0

.5
 

1
.0

 
1

.5
 As

 
F

ig
u

re
 4

.6
. 

P
lo

t 
o

f 
J
(V

S
 
A

s 
fo

r 
co

m
b

in
at

io
n

 
(1

,5
) 

w
av

es
 

w
it

h
A

,=
 

0
.0

5
. 

T
he

 
d

o
ts

 
re

p
re

se
n

t 
w

av
es

 
o

f 
m

ax
im

um
 
h

e
ig

h
t.

 

I ~
 

N
 

0
\ 

I 

2.
0 



0.
5 

0.
4 

0
.3

 

0.
2 

0.
1 

~
-
-
-
-
~
-
-
-
-
~
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
~
-
-
~
0
.
0
 

-1
.0

5 
-0

.9
0

 
-0

.7
5

 
-0

.6
0

 
-0

.4
5

 
-0

.3
0

 
-0

.1
5 

QO
O 

A
 F~g
ure

 4
.?

. 
P

lo
t 

o
f 

A
.v

s 
A

3 
fo

r 
a 

(1
,3

) 
co

m
b

in
at

io
n

 w
av

e 
w

it
h

k
=

O
.J

1
6

. 
T

he
 

d
o

ts
 r

e
p

re
se

n
t 

w
av

es
 

o
f 

m
ax

im
um

 
h

e
ig

h
t.

 
T

he
 

+
 
si

g
n

s 
re

p
re

se
n

t 
th

e 
so

lu
ti

o
n

s 
o

f 
fi

g
u

re
 
4

.8
. 

A,
 

I ~
 

N
 

--
J I 



~ = 0. I 433 , A 1 = 0.1 507, 

c = 0.8987 

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 

~ = 0.1087, A 1 = 0.1340, 

c = 1.0443 

-).5 -).0 -2.5 

~= 0.0438, A 1 = 0.0818, 

c = 1.1256 

~ :0.0723, 

c = 1.0845 

h X= 0.1081, A1 = 0.3354, 

c= 1.0053 

h 
X= 0.1422, A1 = 0.4527, 
c = 0.8541 

-128-

1.0 1.5 2.0 2.S 3.0 l.S 

": 
D 

Figure 4.8. Profiles of (1,~ combination waves withK= 0.)16, 
for different points on the A, vs A3 diagram of figure 4.?. 

':1 origin is at mean water level. · 
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Figure 4.10. Profiles of wave~ of almost maximum heigh~, that 
are the analytic continuation of pure waves of degree 1, for 
several values of k.. Origin is at mean water level. 
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K= 0.190 that started as a pure wave of degree 1 for small 
amplitude. Origin is at mean water level. 
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