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ABSTRACT 

The problem of 11 exit against a flow" for dynamical sys­

tems subject to small Gaussian white noise excitation is studied. 

·Here the word "flow" refers to the behavior in phase space of 

the unperturbed system's state variables. "Exit against a flow" 

occurs if a perturbation causes the phase point to leave a phase 

space region within which it would normally be confined. In 

particular, there are two components of the problem of exit 

against a flow: 

i) the mean exit time 

ii) the phase- space distribution of exit locations. 

When the noise perturbing the dynamical systems is small, the 

solution of each component of the problem of exit against a flow 

is, in general, the solution of a singularly perturbed, degenerate 

elliptic-parabolic boundary value problem. 

Singular perturbation tee hniques are used to express the 

asymptotic solution in terms of an unknown parameter. The un­

known parameter is determined using the solution of the adjoint 

boundary value problem. 

The problem of exit against a flow for several dynamical 

systems of physical interest is considered, and the mean exit 

times and distributions of exit positions are calculated. The sys -

tems are then simulated numerically, using Monte Carlo techniques, 

in order to determine the validity of the asymptotic solutions. 
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INTRODUCTION 

It is known that dynamical systems, even asymptotically 

stabl e sys tems, will exit from any bounded domain in phase space 

if they are perturbed w ith white noise for a suitably long period of 

time . It is the purpose of thi s thesis to study this problem of 

exit for asymptotically stable dyna mical systems which are forced 

with small Gaussian white noise in orde r to determine the m ean 

exit time a nd the distribution of exit positions. To this end, the 

firs t chapter consists of the mathematical formulation of the 

appropriate boundary value problems. 

In the second chapter, we demonstrate that regular pertur­

bation techniques are inapplicable to the boundary value problems . 

We use singular perturbation t echnique s to generate uniformly valid , 

asymptotic solutions to the boundary value proble ms in terms of an 

unknown parameter whi ch we a re unable to determine usi n g 

s i ngular perturbation principles . Instead, we apply methods 

suggested by Matkowsky and S chuss to determine the unknown 

parameter . We modify the technique of Matkowsky and Schuss in 

order to predict the mean exit time and the distribution of exit 

positions f rom an asymptotically stabl e limit cycle as "\Vell as 

asymptotically stable equilibrium points . 

A compari son of our results with the r es ults of other authors 

is made in the thi r d chapter . The theoretical re sults of Ventsel1 

and Freidlin are studied as are the results of Matkowsky a nd Schuss . 
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The asymptotic results of the mean exit time problem, calculated 

us ing the results of Miller and Ludwig, are also compared w i th 

our results from the second chapter. 

The four th chapter is d evoted to a study of the distribution 

of exit positions for various dynamical systems. We demonstrate 

that the asymptotic results of the second chapter agree with the 

asymptotic approximation of the exact solution in the case of the 

Ornstein -Uhlenbeck process. We study the asymptotic distribution 

of exit positions for two problems of physical inte rest: a dampe d 

linear harmonic oscillator and a damped pendulum. We conclude 

the chapter with a s tudy of the asymptotic distribution of exit 

positions for a d ynamical system with a limit cycle. 

We study the m ean exit time for these same four d ynamical 

systems in the fifth chapter . We show that the asymptotic results 

of the second chapter agree asymptotically with the exact solution 

of the mean exit time problem for the Ornstein -Uhlenbeck process. 

We calculate the mean e xit times for a damped linear harmonic 

oscillator and a damped pendulum, and compare the results. The n 

the m ean exit time for a process with a limit cyc le is determined. 

In order to answer how small a small parameter must be 

for various dynamical systems, we present the results of Monte 

Carlo simulations in the sixth chapter. We t est the h ypo thesis 

that a dynamical system will exit at the most probable point on the 

boundary as the noise parameter becomes small. We u se the 

s imulations to study the mean exit time and the distribution of exit 
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positions for the damped, linear harmonic oscillator, the damped 

pendulum, and a system with a limit cycle. We conclude the 

chapter with a discussion of the possible sources of discrepancy 

between the simulated results and the predicted results. 
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CHAPTER I 

The aim of this chapter is to review known results for 

infinites i mal operators of Markov processes. W e beg in by 

examining a process whose behavior i s governed by a stochastic 

differential equation and then we derive the infinitesimal generator 

for the process. We shall conclude the chapter by giving i nter -

preta tions to two different boundary value prob lems associated w ith 

the infinitesim al generator. 

1 . 1 Infinitesimal Generators f or Markov Processes 

We wish to study the effec t of perturbing dynamical systems 

with Gaussian white noise. Let r.l be a bounde d domain in IR n 

whose boundary an is smooth. 

represent the b ehavior in tin1.e of some dynamical system or 

process. L et b(x(t)) = col(b\£(t)), b
2

(x(t)), ···, bn(x (t))) be a 

bounded, smooth vector field in r.l. . We now consider a dynamical 

syste m, or process , g overned by the differential equation 

d 
dt x (t) = £(x(t)) (1.1.1) 

It is ofte n more convenient to consider the diffe r ential form of 

(1.1.1): 

d ~(t) = £ (~(t))dt (1.1.2) 

If the d e terministic system (1. 1. 2) is p e rturbed by Gaussian white 

nois e , the resulting motion x ( t ) satisfies 
~ -£ 
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(1. 1. 3) 

where cr(x (t)) i s the diffusion matrix, w(t) is an n-dimensional 
-£ -

Wiener process (brownian motion), and £ · is a small, real 

parameter . 

We observe that ( 1. 1. 3) is the form for which Ito's L emma 

for a stochastic calculus i s most useful. We also note from ( 1. 1. 3) 

that if we know x (t), then we do not need x {s), s < t, in order to -s -s 
calculate x

8 
(t+T), T > 0. Thus x (t) is a Markov process . -s 

We consider Markov processes whose transition probabilities 

satisfy the following conditions: for o > 0, 

n 
lim 

.6-tJO J ... J P(s+.6.t,c;s,x)(s.-x.)(s.-x.)ds =£
2

\' cr.k(x)crk.(x).6.t+o(.6.t) 
. !::>.. - 1 1 J J - /_; 1 " - J-

Il l -~ll<o k=1 

1:s_i,j < n 

lim J J · .6-tJO . . . p(s+.6.t, S,_;s, ~d~ = o(.6.t) 

lll-~ ll>o 

(1. 1.4) 
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Notice that the vector b(x (t)) characterizes the average trend of --£ 

evolution of the random process x (t) in a small increment of -£ 

time from s to s + l:\t, subJ·ect to x (s) = x , a nd is called the drift 
-£ 

coefficient. 

We now invoke Ito's Lemma for the n-dimensional Markov 

P rocess x (t): 
-£ 

Let 

Let 

f 

z ( t) 

1Rn _ IR 1 

= f(x ( t)) . 
-£ 

Expand z(t) in a Taylor series, retaining the first two terms: 

n 
z(t+dt) = z(t) +I: a£

1 

i=l ox £ 

Thus we see that 

i 1 n a2£ · · 
dx (t) + -

2 
)' . . dx~ (t)dx! (t) 

£ Li <:I 1<::1 J 0 0 .. l ux ux 
l,J= £ £ 

(1.1.5) 
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n 

[ b.(x (t))dt+8 \' o-.. (x (t))dw .(t)J 
1 -8 Li 1J -8 J 

j=l 

[ b.(x (t))dt + 8 fi o-. n(x (t))dwn(t)J 
J -8 Li J.x. -8 .... 

.R. =1 

= f' o£1. [b.(x (t))dt + s fi 0: .(x (t))dw.(t)J Li 1 -8 Li 1J -8 J 
i=l ox8 j=l 

[ b.(x (t))b.(x (t) (dt) 2 
1 -8 J -8 

n 
+ 8 b/~~-8 (t)) l: o-j.R. (~8 (t))dw.R. (t) dt 

1 =1 

n 
+8b.(x (t)\' o-.k(x (t))dwk(t)dt J -8 LJ 1 -8 

"k=l 

(1.1.6) 

When we apply Ito's multiplication table for the infinitesimals of the 

n-dimensional Markov process x (t): 
-8 
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dt dw
1

(t) dw
2 

(t) ... dw (t) 
n 

dt 0 0 0 ... 0 

dw 
1 

( t) 0 dt 0 0 

dw
2

(t) 0 0 dt 0 

. . . . . . 0 . . 

dw (t) 0 0 0 dt 
n 

Fig ure 1.1.1 

we find that 

2 n ( ~ 8 2f dz(t) == { 8
2 

'\' a. 0 x ( t) . 0 

U lJ -8 a 1 a J 
• 0 1 ux ux 
l,J = 8 8 

n 

+ '\' bo(x (t)) ~ } dt 
Ll l. - 8 8xl 

i=1 8 

n 

~ 8f + 8 <r. o(x (t)) -.- dw.(t) 
. . l.J - 8 8x1 J 
l,J=l 8 

(1. 1. 7 ) 

wher e ( aij(x (t)~ = a(x ( t)) = (} (X (t)) <rT (x (t)). 
-8 J) -8 -8 -8 A p roof o f Ito' s 

L e mma can b e found in McKean [ 13]. 

We can w rite this more compactly as 

n 

dz(t) = (Af)(x (t)) d t + 8 '\' 
-8 Ll <r. o(x (t) ) ~ dw . (t) 

l.J - 8 3x1 J 
i ,j=l 8 

(1.1. 8 ) 

We call the operator A the infinite s imal ge n e rator fo r the Markov 

P rocess x (t). 
-8 
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1. 2 An Interpretation of Problems Involving Infinitesima l 

Generators for Markov Processes 

If we know x ( t) for some time t
0

, we d e fine a bounded -s 
Markov time T for the process x (t) to b e a bounded time for an -s 
event which is independent of ~£ ( s) for s < t

0
. In particular, let 

T be the time at which the process ~£ (t) first reaches the boundary 

of Q, an, provided that X (O)E~. We d efine T =: 0 if X (O) Eo f.l. We -s -s 
integrate ( 1. 1. 8) between 0 and T to find 

... 
J dz(t) = z(T) - z(O) 
0 

= f(x (T) ) - f(x (0)) -s -s 

dw . (t) 
ox i J 

£ 

(1.2 . 1) 

L e t E~ [ ·] = E[ · ~ ~£(0) = x ] be the conditional e x p ec tation given t ha t 

the proc es s x (t) begins at the position x En. If we appl y the -s 
operator E [ ·] to both s ides of ( 1. 2. 1) we f ind 

X 

[ 

T T n of J 
E f_ (Af)(x (t)) dt +sf_ '\' a-. • (x ( t ) -. d w .(t) 

x -s Li 1J -s · 1 J 
- 0 0 .. 1 ox 

1,J = £ 

(1. 2 . 2 ) 

Since w (t) i s a Wien e r process , the second t erm on the r i ght hand 

s i de of ( 1. 2 . 2 ) vani shes and we find 
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(1.2.3) 

This is Dynkin' s formula for the n-dimensional Markov process, 

X (t). 
-8 

Vv e now note that 

u(x) E [f(x (T) )] 
X -8 

solves the boundary value problem 

Au(x) ::: 0 

(1. 2. 4) 

To see this, we observe that due to the definition of the Markov 

time -r, X (t) E Q for t < T. 
-8 

Suppose we can find a function u(x) 

which satisfies ( 1. 2. 4). Then Dynkin' s formula ( 1. 2. 3) becomes 

(1.2.5) 

Since the boundary condition in (1.2.4) states u(x (T)) = f(x (T)), 
-8 -8 

the result follows. 

Thus u(~) represents the conditional expectation of an 

arbitrary function f of the exit position of the Markov process 

x (t) from s-2. Sinc e u(x) can be expressed as the integral around 
-8 
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a Q of a certain kernel multiplied by the function f(x (T)), we find 
-£ 

that the kernel represents the probability distribution of the exit 

position on os-2 of :x
8
(t). For purposes of calculations, we generally 

assume that the function f is a smooth (C
00

) function of the boundary 

values x (T). 
-£ 

A second problem associated with the process x (t), the 
-£ 

mean exit time problem, can be formulated in the following 

manner: Suppose we can find a solution v{x) of the boundary 

value problem 

Av(x) = - 1 

v(x) = 0 XEos-2 (1.2.6) 

When we apply Dynkin' s formula ( 1. 2. 3) we see that 

v (x) = E [ v(x ( T)) - ~T Av(x
8 

(t»dt] 
X -£ 

= E [ ~T dt] X 

= E [ T J • ( 1. 2. 7) 
X 

We see that the solution v (x) of 1. 2. 6) represents the conditional 

expectation of the exit time T of the Markov process ~£ (t) from s-2. 
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CHAPTER II 

The purpose of this chapter i s t o study the asyrnptotic 

behavior of the mean exit time and the probability di stribution of 

exit positions of the Markov process x ( t) from Q. -c vVe are 

primarily interes t ed in studying the solution of thes e problems for 

small £ in the case of diffusion against a flow. Sin gular pertur -

bation techniques are used to demonstr ate the existence of boundary 

layers and a method for determining unknown constants which 

appear in the solution is developed. 

2 . 1 Introduc tion 

We now consi der the problem of exit. Due to the presence 

of nois e , the Markov proc ess ~£ (t) does not follow a traj ec tory 

which is known a priori becaus e there i s diffu s ion p r esent. When 

the paramet er £ is small , n ote that the infinitesimal generator A 

b ecomes a singularly perturbed differential operator. Then Ventsel' 

and Fre idlin [ 15 ] tell us that the re a r e three distinctly d i ffe r e nt 

types of diffu sion probl ems to consider : 

a) diffusion a l ong a flow 

b) diffusion ac ross a flow 

c ) diffusion against a flow 

For diffusions of ty pe (a ), trajectories given b y the determinis tic 

equation (1. 1. 1) exit f rom Q ( see Fig . 2 . 1. 1a ) 
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Figure 2. 1. 1a 

Results for the singularly perturbed bounda r y value problems of 

this type were first gi ven by N. Levinson [9] in 1950 . 

For diffusions of type(b), trajectories given by the deter­

rninis tic equation ( 1. 1. 1) do not exit from ~. A particular 

example i s the case where the trajectories are concentric circles 

(see Fig. 2. 1. 1b). 

Figure 2. 1. 1b 

In general, the critica l point for (1. 1. 1), a center , will lie in ~. 

Khasminskii [ 6] was the firs t to use singnlar perturbation techniques 

to compute the probability di s tribution of the exit points for this 

t y p e of diffusion. 

Diffusions of type ( c} a l s o have traj ec tories w hich do not exit 

from~ ( see Figure 2 .1.1c). 



-11-

Figure 2. 1. 1c 

The difference between type (b) and type (c) is that the trajectories 

of the latter type pass from the boundary to some limit set (limit 

cycle, focal point, star point, etc.) which is asymptotically stable 

in the absence ·of noise. The problem for small 8 has been studied 

by V entsel' and Freidlin [ 15], [ 16], Ludwig Q-0], Matkowsky and 

Schuss (11], [12] and others. We at~e concerned with the study of 

diffusion problems of this type. 

In the s econd, third, and fourth sections, the singularly 

perturbed nature of the solution will be examined for general 

problems of diffus ions of type (c), and a method will be described 

to determine the solution of the boundary value problem. 

2. 2 Outer Solution of the Singularly Perturbed Boundary Value 

Problem 

Consider the process x ( t) which is governed by ( 1. 1. 3). 
-8 

Let ~(x) = col( v 
1 

(x), v2 (~), ···, vn(~) denote the outer normal vector 

to oSl. We require that all trajectorie s of th e dete rministic system 

( 1. 1. 1) converg e to a limit s e t as time t incr e ases and that the 

drift vee tor b(~) satisfy 
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(2.2.1) 

T h is is the requirement that ensures that the d i ffusion problem ( 1. 1. 3) 

i s of type (c). 

We w ish to a pply perturba tion tec h niques to the study of the 

boundary value problem 

Au(~) = g(~) 

u(x ) = f(~) 

in the case where the paramete r E t e n ds to zero. 

(2. 2 . 2 ) 

The solution of 

this boundary value p r obl em can repr esent e i ther the mean exit 

time of the Markov proces s x (t) from Q or i t can r e pr e sent the -s 
probability distribution of exi t positions; in the former case, we 

set g (x) = -1 and f(x ) = 0, a nd in the latter case, we set g (x) = 0 

and f(x) to be an arbitrary smooth func ti.on . We r e quir e that the 

soluti on of the mean exit time problem be nonnegative in Q and the 

solution of the probl em of the probabil i ty d i stribution of exi t 

positions b e the integral of f(~) multiplied by a nonnegati ve kerne l 

which can be suitably normalized. 

In accordance with reg ular perturbation theory, we begin by 

assuming that we c an represent the solution u(~; E ) and f(~;E) as 

power seri e s in E: 
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(2.2.3) 

Substitute this ansatz into (2. 2. 2), equate the coefficients of the 

2 
various powers of 8 . We find 

n 
\' i 3 (k) 
LJ b (x ) ox. u (~) = 
i=l 

1 

n 
l \' 

- 2 LJ 
i,j=l 

XE ~ 

X EO~ 

ij( ) 8
2 

{k-1)( ) 
a x 3x.3x. u x 

1 J 

u (k) (x ) = f (k) (~) 

k = l, 2, 3, ... 

(2. 2. 4a) 

XE ~ 

(2 .2.4b) 

We see that the components of the drift vector :e_(x), the sub-

c haracteristics of the problem, d etermine the l eading order 

asymptotic b ehavior of the solution u(x; s). Since (2.2.4a) is a 

linear, first order, partial differential equation, we solve it u s ing 

the method of c haracteristics. We introduce characteristic curves 

g i ven by 

d 
dt ~(t) = b{x(t)) (2.2.5) 



-14-

As an initial condition, we set ~(O)EEJQ. Along these characteristic 

curves, we note that 

~ u{O)(x (t)) = g(x_(t)) 
dt - (2.2.6) 

At this point, we consider the problems of the mean exit time and 

the probability distribution of exit positions separately. 

Problem 1: Probability distribution of exit positions 

In this problem, g(~( t)) = 0. Thus u(O)(x(t)) remains constant 

along the s ubcharac teris tics. The value of u(O)(x(t)) is of course 

determined by where the subcharacteristic cros ses the boundary. 

However, as the parameter t increases , all subcharacteristics 

converge to a limit set. At the limit set, the values of u(O)(~ (t)) 

from all subcharacteristics must be identical. We are forced to 

conclude that we cannot satisfy the boundary conditions a nd the 

consistency conditions at the limit set simultaneously. We 

then that the solution u(O)(~(t)) is composed of two parts: 

assume 

an 

"outer solution" which i s valid in most of Q and an "inner solution" 

which is valid near the boundary EJQ. Thus we have a singularly 

perturbed boundary value problem. For the "outer solution, 11 we 

ta ke u t (x(t)) to be an unknown constant. ou er-
We shall determine 

the "inner solution," or boundary laye r correction in the next 

section . 

Probl em 2: Mean exit time 

For thi s problem, we set g (x (t)) = -1 and f(x ) = 0. The n 
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u(O) (x(t)) decreases monotonically along the subcharacteris tics. But 

u(O)(x(O)) vanishes, so w e see tha t the solution we have gen erated 

violates the phys i cal r e quir ements of the solution. If we as sume 

- 2p ( -p) - 2p+2 ( -p+l) - 2p..L4 ( - p+2) . 
u(~;8)~8 u (~)+8 u (~)+ 8 'u (x )+···(2.2.7) 

for some positive integer p, substitute this ansatz into (2. 2 . 2), and 

2 equate the coefficients of the various powers of 8 , we find 

n 
\' b.(x) - 8- u(-p)(x ) = 0 
LJ 1- ax. -

1 

(2. 2. Ba) 
i=l 

n n a2 
L: b.(~~ n(k)(x) -6 1 L: a ij (x ) (k -1) 

= -2 ox. ax . u (~) 
1 ox . - k,O 

i =l 
]. 

i,j=l 
1 J 

eEr.! 

u (k) (x) = 0 XEOr.! 
(2. 2. 8b) 

k = - p+l, -p+2, -p+3, .• • 

w her e ok, O is the Kronecker delta. When we solve (2. 2. Sa), we 

find that u(-p)(~) is constant along the s ubcharac teristic s . Since 

u ( -p) (~ vanishes on 3 s-2, we conc lude that u ( -p) (x) vanishes 

i dentically. Since p i s an arbitrary positive integer, we are 

fo r ced to conclude that ther e is no uniformly valid solution of 

(2. 2. 2) in the form of (2. 2 . 7) for a ny p ositive integer p. This 
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conclusion, combined with the observation that the solution must 

grow unbounded for all points ln n in the absence of noise since 

deterministic sys t e m will always remain in n, suggests that the 

solution u(~; 8) might be transcendentally large compared with any 

finite power of 8 as 8 tends to zero in some portion of n. This 

immediately suggests that there should be a boundary layer some-

where in n, because the solution would be transcendentally large 

in some portion of n and would vanish on the boundary an. Again, 

the problem is a singularly perturbed boundary value problem. 

In order to test this hypothesis, we rescale u(~; 8) as 

u(~;8) = C(8) v(x;8) (2.2 .. 9) 

where C(8) is transcendentally large compared with any finite 

power of 8 as 8 tends to zero and v(x; 8) remains bounded as 8 

tends to zero. In addition, we assume that v(x; 8) can be expanded 

as a power series in 8 

(2.2.10) 

Sub s titute the ansatz for u(~ ;8) into (2. 2. 2) and divide b y the scaling 

factor C (8) to find 

A v(~; 8) = T. S. T. x cn 

xc o n (2.2.11) 
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Substitute the ansatz (2.2.10) into (2.2.11) and equate the 

2 
coefficients of the various powers of 8 . We find 

n 

L bi(~) a v(O) (x) 0 xEQ ox. = 

i= 1 1 

v(O)(x) = 0 XEOQ 

n n 
82 

L bi(x) a v(k) (x) 1 )' aij(x) v(k-1) (x) ox. = -z- ox. ox. xEQ 
LJ 

i =1 
1 

i, j=l 
1 J 

v(k) (x) = 0 XEOQ 

k=1,2,3 

(2.2.12a) 

(2. 2 . 12b) 

We solve (2. 2. 12a) by the method of characteristics to find that v(O} 

is constant. If we apply the boundary conditions, we would be 

forced to conclude that v(O)(~ vanishes identically in Q, and h ence 

by induction, all v(k)(~) would vanish identically in n. This 1s 

clearly unacceptable, and since we already had suspicions of the 

existence of a boundary layer somewhere in n, we conclude that 

v(O){~) represents an "outer solution 11 which is valid away from the 

boundary an. 

Thus we are forced to conclude that the "outer solution" of 

the (2.2.2) is given by 

u (O) (x · £) ~~ constant. 
outer-' 

(2. 2. 13) 
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Perturbation theory has f o rced us to the c onclusion that the 

solution of (2. 2. 2) beh aves d iffer ently J.n different portions of n. 

For that part of st w h ich is away from the boundary, we c onclude 

that the solution i s the "oute r solution" which is constant. F or 

that of st w hich is near the boundary, the solution will b e th e 

"inne r solution. 11 In the next section, w e examine the "inner 

solution'' of (2 . 2. 2) and dete rmine a uniformly valid asymptotic 

repr esentation for the solution of (2. 2. 2). 

2. 3 Inner Solution of the Singularly Perturbed Boundary Value 

Proble m 

We saw in the pr e vious section that the behavior of the 

solution of (2. 2. 2) was different near the boundary l ayer than it 

wa s elsewhere in st. vVe s hall now construct a boundary layer 

expans ion using singular perturbation theory. 

In accordance with standard singular perturbation practi ce , 

we wish to couple the higher orde r operator in (2. 2. 2), 

& 
2
/2 ~ aij(?:9 8 /oxi 8/oxj' w ith the drift term, ~ bi(x) o /8xi. We 

would like to do thi s b y introducing a l ocal coordinate system near 

the bounda r y, s tr e tching one of the coordinates appropriately, and 

applying matching conditions on the boundary 8 n a nd as the 

stretched variable g rows unbounded. Unfortunately, ther e is a 

s ubtle difficulty in this procedur e; we do not know how to extend 

the boundary values into the inte rior of st. Thus , we do not know 

how to fully define the bounda ry l a yer correction. 



-19 -

Instead, we assume that the boundary layer correction has 

the form 

(2.3.1) 

where 

s(~ = o 

(2 . 3.2) 

Substi tute (2 . 3.1) i nto (2 . 2. 2 ) , a n d equate the coefficient s of the 

various 
2 

powers of C - 2 The leading order equation, O(c ), is the 

eiconal equation for s (x ). In p artic ular , !;,(:~)satisfies 

n 
1 L 2 

i ,j=l i =l 

as (~) 

ax. 
1 

= 0 . 

Since the boundary an 1S the level surface s (~ = 0, we note 

(2.3.3) 

( 2 . 3.4) 

where n(~) = uni t inner normal vector to the boundary. We can 

now determine IV l;(x) I· We observe that if we substitute (2. 3 . 4) 

i nto (2. 3. 3) , we obtain 

n 

~L 
. . 2 

a 
1

J (x)n.n -I" s (x) 1 
- 1 J -

n 

L b \ x)ni IV s(x) I = 0 (2 . 3 . 5) 

i,j=l i=l 

Then we i gnore the sol ution I v l;,(x) j = 0 and find 
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2e_{~ . n(x) 
> 0 {2.3.6) 

where it is unde r s tood that the magnitude of the gradient may b e 

infinite and that L'Hopital' s rule may be required to determine the 

magnitude. Now that we h ave determined the magnitude of 'V ~(x) 

on the boundary, we solve (2. 3. 3) using the method of rays. Let 

Then (2. 3. 3) corresponds to the Hamiltonian 

n 

H(x, £) = ~ ~ ij 
a (x) p.p. 

- ]. J 
(2.3 .7) 

i,j=l i=l 

The corresponding system of ordinary differential equations for the 

rays i s 

dp. 
]. 

dt 
aH 

= - ox. = 
]. 

i = l, · · · , n 

n 
8 ( . - ~ -~ bJ{x)\p. 

ux . ') J 
. l ]. 
J= 

i = l, · · · , n 

Along such a system of trajectories, we s e t 

n 

9Jt = -H(x, E) + ~ pi 

i =l 

dx. l n 
J. "\' 

dt = 2 LJ 
i,j =l 

ij a (x )n.p. > O. - ~]. J 

W e solve the equations (2. 3 . 8 )-(2. 3 .10) s ubject to the initial 

conditions that 

(2. 3. 8) 

(2.3.9) 

( 2 . 3. 10) 
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~(O)Eorl 

(2. 3.11) 

The next leading term in the perturbation hierarchy of equations , 

0(£ 0 ), is the transport equa tion for z(~). In particular, z(x) 

satisfies 

n 

- ~ L 
i,j=l 

2 
ij [a s(~) 81;,(~) oz (x )J . n i oz(~ 

a (~ ox.ox. z + 2 ~ ax:- + L b (~ ~ = g(?£) 
1 J J 1 i =l 1 

(2. 3 . 12) 

We can again relate the partial derivatives to derivative s along the 

rays to find that z (t) = z(x(t)) satisfies 

n 
dz 1 '\' 
di: + 2 LJ 

i,j=l 

subject to the initial condition that 

z(t) = -g(x(t)) 

z(O) _ z (x(O)) = f(x(O))- c
0 

(2.3.13) 

(2. 3 . 14) 

When we solve for l;,(x) , we have found the leading order term of 

· the Hinner solution 11 of (2. 2 . 2) . When we match the "inner 

s olution 11 a nd the "outer solution" of (2 . 2. 2), we find that the 

l eading t e rm in the uniformly valid asymptotic expansion for u(x; £ ) 
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in (2.2.2) is given by 

(2. 3.15) 

It should be noted that the only requirement on the matrix ( a ij(x)J 

J.s that it be symmetric and positive semi-definite. If the matrix 

J.s singular, there may be a set of nonattainable, or inaccessible 

points on the boundary. Exit from Q i s impossible with probability 

one on this nonattainable set of points unless the process x (t) J.s -s 
initially at some point in the set. An example of a dynamical 

system with this type of behavior will be given J.n Chapter IV. In 

the next section, we present a rnethod for deter mining the unknown 

constant c
0 

in (2 . 3.15) by using the solution of the homogeneous 

adjoint problem of (2.2.2). 

2 . 4 Determination of the Unknown Parameter 

We see from (2. 3.15) that we have deterrnined the leading 

order asymptotic solution to (2. 2. 2) in terms of an unknown par am-

eter c
0

. That this is so is not particularly surprising since the 

unknown parameter is a global constant for the problem and the 

underlying tenent of singular perturbation theory is to s olve a 

series of local problems and then match the solutions i n such a 

manner as to generate a uniformly valid asymptotic representation 

for the solution . Thus in problems where the so - called "outer 

solution" is not requir e d to meet prescribed boundary conditions, 

we can expec t tha t the solutions will be expres sed in terms of 
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unknown parameters. We now present a method for determining 

the unknown parameter( s }. 

We begin by multiplying both sides of (2. 2. 2} by a function 

v(~; s} which will be determined later and integrating over Q . We 

find 

Integrate the l eft hand s ide of (2. 4.1) by parts to find 

1 {s 2 ~ ij au · s 2 ~ a ( ij ) 2 LJ a (x) ax . vi v(x;s)- 2 LJ ax . a (~}v(x; s) vi u(~; s) 
()Q .. 1 J . . 1 J . 

l.,J= l.,J= 

n 

+ ~ bi(x )u(x;s}v(x;s)vi }dS 

i=l 

(2. 4 .2) 

We see that if v(x;s) is a solution of the boundary value problem 

2 n 

82 I: 
i,j=l 

2 n 

~~ (2. 4 .3) 

i,j=l 
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then (2. 4. 2) r educes to 

2 n . . (\ 

J L \' 1 J( ) ~ ( · )dS -
2 L; a ~ v. (\ v x ,8 -

oQ . . 1 uxj 
1,] =1 

(2.4.4) 

W e seek a solution of (2 . 4 . 3) of the form 

ft'(X ) [ (0) 2 (1) 4 (2) J 
v(x;8) ~ exp { -

8
:; } w (~ + 8 w (x ) + 8 w (~) + · · · (2.4 . 5) 

where v(x ;8) = 1 a t the limit set. Substitute this ansatz into (2 . 4 . 3) 

2 
and equate the various powers of 8 . We find that ft'(X ) satisfies 

the eiconal equation 

n 

~ L XEQ 

i,j=l 

n 

1 L: 
2 

. . Off(x) n i 
a

1
J(x)vi(x) a:. + L b <~vi<~) = o XEB Q (2 . 4 . 6 ) 

i,j=l J i =l 

A gain, we associate (2. 4 . 6) with the Hamiltonian 

n 

= ~ ~ 
n 

ij ~ a (x) p . p . + 
1 - 1 J 

1 b (x )p. 
- 1 

XED (2 .4 . 7) 

i,j=l i = l 

The corresponding system of ordinary differential equations for the 

rays is 

dx. n 
1 EJH L a ij (x )p . + bi(~ i = l , 

... ( 2 . 4. 8) = Bp. = ,n 
d t - J 

1 
j = l 
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n dp. 
1 

dt 
8H 

= - Ox . 
1 

= - ~ ~ - aJ (x) p.p a ( ·k ) 
ox. - 1 k 

j,k=l 
1 

Along such a system of trajectories, we set 

n 

~ = -H(~, £) + L 
i=l 

dx. 
1 

pi ill 
i,j=l 

a ij(x)n.p. > 0 
- ' 1 J- (2. 4.10) 

We now examine the b ehavior of tp(~ near a single, stable limit 

point at the deterministic system (1.1.1). At the limit point, we 

take tp(x) = 0 and require that tp(x) achieve a minimum value there. 

We solve (2. 4. 6) using a method employed by Ludwig [ 10]. 

Cover Q with a family of rays which depend upon the parameters 

X = X ( t, $ 
1

, • . • , $ n _
1 

) 

E. = E.( t, e 1, ... , en- 1 ) (2. 4.11) 

Define the Jacobian of the transformation between x and (t, {t_) by 

dx
1 

ox 1 ox1 

dt ae
1 

ae n-1 
J = (2. 4 . 12) 

dx ox ox 
n n n 

dt ae 1 
se n-1 
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H J * 0, then locally, the trajectories give a s imple covering of 

the ~- space. Calcula t e the matrix of second deri va tive s of cp at 

the equilibrium point y_ : 

a 2 cp(y_) 

( 8x.8x. ) (2.4. 13) 
~ J 

Then the covariance matrix s satisfies 

n 8bk(~) n obi(~) 
ai\~) + L: 8

ik ox. + L: oxk skj = 0 

k=1 J k=1 

(2. 4. 14 ) 

Since q· {~) a nd its first derivatives vanish at the limit point, w e 

approxima te cp(x) and E.(~) in the neighborhood of the limit point as 

n 2 
1 L: 

a cp(y) 

= ox. ox. 2 
i,j= 1 

~ J 
(x.-y.)(x .- y .) + o(l x - y_1

2
) . 

~ ~ J J -

n 2 
= \' 0 p(y) (x - ) + o( lx_-yl ) Li ox. ox. j Yj 

~ J j= 1 

(2.4.15) 

(2. 4 . 16) 

The rays cannot be c hosen to emanate from the limit point since it 

i s a s ingular point of (2.4. 8) and (2.4. 9 ) . Instead, choose x to 

initially b e on an e llipsoid 

(2.4 . 17) 

wher e 6 i s a small parameter, s 
112 

denotes the square root of the 

matrix S and U(~) is a unit vee tor w hich depends on fl._. Then 
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(2.4. 15) implies that 

(2.4.18) 

Initial data for 12. are provided by neglecting the remainder in 

(2.4.16). Thus we can integrate along the rays and construct a 

solution in the neighborhood of the ellipsoid. The function w(O) (x) 

satisfies the transport equation 

n . . acp(x) aw(O}(x) 
I; a1J(x)---=-- -
.. 1 - ax. ax. 
1,J = J 1 

+[(L 
i,j=l 

a a ij (x} a cp(x) 1 . . 
- 1J ox. -ox. + 2 a (x} 

1 J 
(2 .4.19} 

We would like to write (2.4.1) as an ordinary differential equation 

along the rays given by (2.4.8), and (2.4.9). Since the rays 

cannot emanate from the limit point, expand w(O)(x) in a Taylor 

series about the limit point: 

0 
n ow (y) 

+ I; o (x.- y.) 
i=l xi 1 1 

= 1 + 0(6). (2.4.20) 

We find the initial condition for w (O} (x(t
0

, 6~~>) on the initial 

ellipsoid by ignoring the remainder in (2. 4 . 20). Then we treat 

(2.4.19} as an initial value problem, starting from the initial 

ellipsoid, a long each ray. Observe that the limiting values of cp (x ) 
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and w(O)(x) give the correct limiting value in (2.4.5) as o - 0. If 

the deterministic system ( 1. 1. 1) possesse s an asymptotically stable 

limit cycle, we must slightly modify the previous results. In 

order to determine cp(x) in the neighborhood of the limit cycle, set 

cp(x) = 0 on the limit cycle and study the eiconal equation. Since 

the limit cycle i s a level curve for <P(x), note 

(2 .4 .21) 

where x(x L) is the unit outer normal to the limit cycle at the 

point x L· Substitute this into the eiconal equation (2.4.6) to find 

n 2 n 

~ ~ a
1
J(.!S.L)vi(xL)vj(.!S.:2,!Vcp(xL)j + ~ b\~-L)vi(.!S.L)jV<P(xL)j = 0 (2. 4.22) 

i,j=l i=l 

Since .£(.!S.L) · x(xL) = 0 on the limit cycle, we conclude that 

j Vcp(xL) I = Vcp(x L) = 0 there. 

N ear the limit cycle, introduce a local, orthonormal · 

coordinate system ( T(~L) ,_!::.(XL)) where _I(xL) i s the unit tangent 

vector to the limit cycle at the point xL and x(xL) is the unit 

normal vector to the limit cycle at the same point. Since cp(x) = 0 

on the l imit cycle, all derivatives of <P (x ), evaluated on the limit 

cycle, vanish i n the tangential direction. Then for poLTlts ~ near 

the limit cycle, e x pand cpi(x), aij(.!S.), and bi(x ) in a Taylor series 

about points on the limit cycle. If 

X = XL +ox ( 2 . 4 . 23) 
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where ox is normal to the limit cycle at the point ~L' then 

n 3 
k 1 '\' o cp (xL) k n 3 

ox + - u -:----=--..;::;:_- ox ox.t:+ o /jox 1 ) 
- 2 ox. oxl OXn \1 

k f ::::1 1 c .t: , 

(2. 4. 24) 

i 1 
b (x) :::: b (xL) 

k ox + o(ox) 

Substitute these three quantities into the eiconal equation and equate 

the coefficients of the various powers of the incremental vector ox. 

We find that the coefficient of (o~) 1s g iven by 

k==l,···,n (2.4.25 ) 

This 1s just 

:::: constant 

Thus, (2.4.24) i s consistent with (2.4.21). W e find that the 

coefficient of ( o~) 2 
is 
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i,j=l 

If 

then we note 
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A= ( aki(xL)) 

B = ( obk(~L)) 
ox.R. 

(2.4.26) 

(2 . 4 . 27) 

on the limit cycle. When we rotate coordinates to the tangential­

T 
normal coordinate frame, we note T PT = cp = 0. We assume 

TT 

we can write P as 

(2.4.28) 

Then j3(t) satisfies 
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T 

[ 
T d!_ d!_ T T T J 

p(t) ~ dt + dt ~ +!. B~ + ~ B !. = 0 (2.4.29) 

H ence p(t) = 0 on the limit cycle. Also, -y(t) satisfie s 

(2.4.30) 

on the limit cycle , since the Frenet formulas from. differential 

geometry tell us that dddt cc --;r. We do not want -y(t) to vanish on 

the limit cycle, so we note that (2. 4. 2 8) is a Riccati equation and 

make the substitution 

(2.4.31) 

Then (2. 4. 29) becomes 

We find that f-L(t) is g iven by 

(2 . 4 . 33) 

Since the motion on the limit cycle i s periodic wi th period t ,:, , we 

choose f-L(O) to make f-L(t) t >:' -periodic. Hence 
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2 -1 

!-l(t) = [1-exp{ 2j: ds 1 2:~_Tc~~-L( s 1 ))B~(~L(s 1 ))}J · 

t·'· 
+ 2 J

0 
.,.ds 

1 
v T (xL( s 

1
) )B~(~L(s 

1 
))} J 

We can simplify (2. 4. 32) b y first noting 

D efine 

T 
b (xL(s ) )Bb(~L(s)) 

= tr B - _ ___;;~--~:;;.._-

lb(~L( s}) 12 

= tr B - ~ c!_ [ inlb(x L(s)) 1
2

] 

t ':" 
exp{J tr B (~L( s }} ds} = A. 

0 

Then (2. 4 . 32 ) becomes 

j-l ( t) = 

(2.4.34) 

(2.4.35) 

(2. 4 . 36) 

(2 . 4 . 37) 
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Thus 

The rays cannot be chosen to emanate from the limit cycle since it 

is a singular solution of (2.4.8) and (2.4.9). Instead, choose x to 

initially be on a a-tube 

(2.4.38) 

where a is a small parameter. Then in the neighborhood of the 

limit cycle 

(2. 4. 39) 

(2. 4. 40) 

Initial data for E. are provided by neglecting the remainder in 

(2. 4 . 40). Thus we can integrate along the rays and construct a 

solution of the eiconal equation in the neighborhood of the a-tube 

about the limit cycle. 

The solution w (O)(x ) satisfies the transport e quation (2. 4. 19). 
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vVe can write the transport equation as an ordinary differential 

equ ation along the rays. In particular the equation for w{O) {~) 

along the limit cycle becomes 

We can immediately integrate {2. 4. 40) to find 

{2 . 4 .42) 

If we perform a coordinate rotation, the trace remains invariant. 

Thus, if Q = [ -r, ~- ] , then 

1 1 T - T 
tr(2AP+B) = t r (zQ APQ + Q BQ) 

(2. 4.43) 

This l as t r esult is an immediate consequence of (2. 4. 29). Thus 

2 
1 1 d ( lb(xL(t)) I ) 

tr(-AP+B ) = --fn 
2 2 d t -y{t) 

(2. 4. 44) 

Then 
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2 
(0) (0) t 1 d ( lb(x L(s)) I 

w (xL(t)) = w (xL(O)) exp{-J 2 ds 1n - ) } 
0 -y( s) 

(2.4 .45) 

Observe that due to the t ':'-periodicity of b(xL(t)) and -y(t) 

w(O)(xL(t)) is also t':'-periodic. Again, we determine w(O)(x} on a 

o -tube about the limit cycle and then integrate a l ong the rays gi ven 

0 by (2. 4. 8) and (2. 4. 9). Also note that w (xL) is proportional to 

the reciprocal of the speed l!?..(xL) I· In order to determine the 

unknown parameter c
0

, let 

min 
<pmin = ~EaQ (2 . 4 . 46) 

At the point or points on a Q where <p(x) = cp _ , the level surface - mlll 

<p(x) = <p . is tangent to a Q . Thus, the boundary condition in 
- m~n 

(2. 4 . 3) is sati sfied there to leading order in 8 since \7<p(:?:0= l \l<p(~) I~· 

At all other points on a Q , v( :x:; 8) is transcendentally small compared 

with exp {- cp _ /8 
2

} as 8 I 0. Thus, v(x; 8) given by the leading term 
m~n v 

in (2. 4. 5) represents an asymptotic solution to (2. 4 . 3). 

Now that we have determined an asymptotic representation 

for v(x; 8), we substitute the result into (2. 4. 4) to find 
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( 
2 { cp min } )\l + 0 8 exp -

8 
2 1 ds 

( 0) cp(~) 
= J · · · J g(~) w (~ exp { - - 2 } d~ {2.4.47) 

8 

provided that the lea ding term on the l eft hand side of {2. 4. 47) is 

0 ( exp {- cpmin/ 8 
2
}). The integral on the left hand side of (2. 4 . 47) 

i s to be evaluated using Laplace ' s Method. We find 

N 
CO-D {2. 4.48) 

where 

(0) cp{x) 
N = J · · · J g(x) w (x ) exp {- 2 } dx 

n 8 

( 
2 { cpmin }) + 0 8 exp -

8 
2 -

and wher e 

1 n i . 81;, (x ) (0) cp(x ) 
D = J"-'n 2 [: a 3(x ) vi~ w (x ) e x p{- - 2-} dS. 

u ~' .• l J £ l,J= 

{2. 4. 49) 

{2 . 4 . 5 0) 
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But in both the numerator and denominator, we note that we can apply 

(2. 3. 3) and (2. 3 . 4) so tha t the expressions reduc e to 

(0) <p{x) 
N = J · · · J g(~)w (x) exp {- 2 }d~ 

Q 8 

I ~ i (0) { cp(x)} ( 2 { cpmin ) 
+ LJ b (~)v/(~~)w (x)exp --2- dS+O 8 exp --2-} (2.4.51) 

an i=l 8 8 

and 

(2. 4 . 52) 

If the leading term on the left hand side of (2. 4. 47) i s not 

o( exp{- cpmin/8
2

} ), then the terms which we have ignored may be 

significant. In that case, the dominant contribution to the boundary 

integrals w ill still occur in the neighborhood of the point or points 

where <p(x) = cp • , but Watson's Lemma must be invoked in order 
- rrun 

to evaluate the integrals asy·mptotically. 

Now that we h <=. ve determined the unknown p aramete r c
0 

for 

the general problem (2. 2. 2), we can restrict ourselves to the 

problems of the mean exit time and the probability distribution of 

exit positions. 

Problem 1: Probability distribution of exit positions. 

We set g(~ 0 

f(x) is an arbitrary smooth function 
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c ~ 
0 
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(0) cp(~) . J f(~) }2_(x) · .!:'._(~) w (x) exp { - 2 } dS 
an s 

(2.4.53) 

We first note that we meet the consistency condition that c
0 
~ 1 if 

Thus the proc ess will exit from Q with probability one in 

the pres ence of noise. Notice also that if there is a unique point 

on 0 n wher e c-p(x) = cp • ' then the probability distribution tends to - m1n 

a a-function at that point. If there is not a unique point on the 

boundary where cp{x) = cpmin' then the effects of the transport term 

w(O)(x) bec ome important. Further comparison with the results of 

other authors for this problem will be made in the next chapter. 

Problem 2: M ean exit time problem 

We s e t 

We find 

c ~ 
0 

g (x) - - 1 

f(x ) - 0 

r ( o) cp(~) . -J ... J w (~) exp { - - 2- } d x 
n r. (2.4. 54) 

We observe that the initial g u ess r egarding the magnitude of the 

solution c
0 

was correct since 
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(2.4.55) 

Ifthedeterrninistic system (1.1.1) possesses a limit cycle, then w e 

determine even more about the form of c
0

. We evaluate the 

numerator by noting that rp(~) is minimized on the limit cycle so 

that we can determine the numerator by considering YJ(X) in the 

n eighborhood of the limit cycle, rotating c oordinates into the 

tangential-normal coordinate system along the limit cycle, applying 

L aplace's method to evaluate the integral in the direction normal to 

the limit cycle, and integrating the results around the limit cycle. 

Observe in (2. 4. 44) that 

Thus 

c ~ 
0 

= 

where k = constant. 

{0) YJ(~ J Q_(x) · ~(x) w (x) exp { - - 2 } dS 
8Q s 

0 
w (x } 

J :e_(x) • ~(x) k-
8Q 

cp(x) 
exp{- 2 } dS 

s 

(2. 4. 56) 

(2.4.57) 

We will compare the results for the mean exit problem given by other 

authors with the results of this chapter in the next section. 
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CHAPTER III 

In this chapter we compare the results obtained 1n Chapter 

II with the results of other authors. Since the results of the 

previous chapter pertain to both the mean exit time problem and 

the problem of the probability distribution of exit positions, we 

compare results for both types of problems. The first section is 

devoted to a comparison of results for the problem of the prob-

ability distribution of exit positions. The results of the mean exit 

problem are compared in the second section. 

3. 1 A Comparison of Results for the Problem of the Probability 

Distribution of Exit Positions 

Results for this problem have been published in the 

literature for only about a decade . Early results can be attributed 

to Ventsel' and Freidlin [ 15] who studied the case where the 

matrix (aij(x)) is nonsingular. They proved, using probabilistic 

arguments, that the problem of determining the exit position can 

be reduced to determining the point on the boundary where a 

certain function V(y) attains its minimum value. In particular, the 

origin is a unique asymptotically stable point and 

V(y) = inf I (.~) 
cp E H(Q_, y) T 

1
, T 

2 
(3.1.1) 

where 
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H(x, y) is the set of all absolutely continuous 

functions <p(t) such that _q:(T1 ) = Q_ and _p_(T 
2

) = y_ 

and T
1 

and T
2 

are arbitrary 

IT T (_p_) 
1' 2 

(3.1.2) 

(3. 1. 3) 

(3. 1. 4) 

Thus Ventsel1 and Freidlin assUin.e that there is a unique point on 

a Q at which V(y_) attains its minimum value, so the probability 

distribution of exit positions must be a a-function centered at that 

unique point. 

In order to compare the results of Chapter II with the 

results of Ventsel' and Fre idlin, observe from (3. 1. 3) that 

IT T (_p_) = O. If we regard the integrand in (3.1.3) as a 
1' •1 

Lagrangian 

d_p_ 
L = L(.P.(t) , dt) 

then it can be shown that the Lagrangian corresponds to a 

Hamiltonian 

dy_ dy_ 
H = H(y_, E.) = E. • dt - L(y, dt) 

where 

(3.1. 5 ) 

(3. 1. 6) 
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( 3. 1.7) 

j=1 

Thus, if V (y) is defined as in (3 . 1. 1), then it satisfies the 

H a milton-Jacobi equation 

n 

~ ~ 
i, j= 1 

:n 
a ij(y) av av + ~ 

ay. ay. 
l. J i= 1 

(3. 1. 8) 

But this is exactly the eiconal equation ( 2. 4. 6) for a function which 

we called (/1(x) . Note that V(Q_) = 0 as does q:- (x) at the limit point. 

Thus, the function which "\Ve called (/1(X) is a solution which Ventsel' 

and Freidlin would denote by V(y). In particular, if there is a 

unique point on oQ which minimizes (/1(x) (or equivalently V(y)), 

then we see from the discussion following (2. 4. 53) that we have 

obtained the correct probability density for the exit position. 

V entsel' and Freidlin did not demonstrate a method to construct 

the solution, and the mathematical tools which they used are in-

capable of determining the distribution of exit positions in the case 

where the point which minimizes cp(~ (or V(y)) is not unique. 

Matkowsky and Schuss [11], [12] have been able to extend 

the results of Ventsel 1 and Freidlin. They also restrict themselves 

to the case where the matrix ( aij(~)) is nonsingular and to where 

the equilibrium points are dis tine t. They demonstrate the existence 

of the boundary lay er for the solution of (2. 2. 2). They also obtain 

exactly the same equation for the unknown parameter c 0 as (2.4. ~3). 
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Matkowsky and Schuss also examine the case where the vector b(x) 

is the g radient of some scalar field ~(x) . In that case, they were 

explicitly able to d e termine the function <;O(?£). The only differences 

in the two r esults are in the boundary layer correction and in the 

calculation of the asymptotic representation of the solution of the 

homogeneous adjoint problem, v(x; ~). 

The first difference lies in the calculation of the boundary 

layer correction and is rather subtle. The boundary value for the 

problem is u(x ) = f(~) which is an arbitrary unknown function. It 

is not a priori clear how to extend this unknown function into the 

interior of Q in order to obtain a uniformly valid expression for 

the solution u(x; ~) . There w ould also appear to be a question 

about how the distance between an arbitrary point x and the 

boundary i s to b e defined so that an "inner solution" of (2. 2. 2) 

can be constructed. vVe have chosen to circumvent these questions 

by assuming a typical form for the boundary layer correction and 

then determining the various unknown functions from the boundary 

layer equation and the boundary values . 

The second difference lies in the construction of the solution 

We both assume the same form for V(x; ~). but we con-

struct the s olution in different manners. Matkowsky and Schuss 

choose to solve the eic onal equation and the transport equation by 

starting at the boundary and integrating their r ay equations into 

the inte rior of a. They then try to meet a final condition on <;O(x ) 

and w (O)(x ) at the limit point. Tlus is unsatisfying since they are 
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unable to prescribe 'V cp(~) on the boundary as an initial condition 

for the integration of the ray equations. Instead, we integrate the 

ray equations (2. 4. 8) and (2. 4. 9) from the limit point oul-ward to 

the boundcay, using the technique of Ludwig [ 10]. Again, this 1s a 

subtle point . Also, Matkowsky and Schus s do not prescribe 

boundary values for the adjoint problem, as in (2. 4. 3). 

Thus we have been able to duplicate previous results in the 

case where the matrix ( aij(x)), is nonsingular in Q . The results 

of Chapter II indicate that this restriction is, in fact, unnecessary 

1n the general case. In the next section, we compare results for 

the mean exit time problem. 

3. 2 A Comparison of Results for the Mean Exit Time Problem 

Various authors have published results 1n this area for 

about fifteen years . Miller [ 14] developed a technique to study 

the persistence of dynamical systems in a genetics p roblem with 

one dimension. The problem was such that the infinitesima,.l 

generator degenerated, i.e., both b(x) and a(x) vanished on the 

boundary. Miller started with the Fokker -Planck equation, and 

assumed that he could find an eigenfunction expansion where the 

minimum eigenvalue would be a reasonable approximation to the 

reciprical of the mean exit time. 
-·-Specifically, if A-·- v is the 

adjoint operator to Au, Miller wanted to d e termine the minimum 

eigenvalue, A. • ' m1n 
such that 

(3.2.1) 



-45-

He integrated (3. 2. 1) over ~ to find 

Hence, 

A. . 
m1n J vdx 

~ 

J vdx 
~ 

- [ £
2 

.£._ (a(x)v)] 
2 8x 8~ 

(3. 2. 2) 

(3.2.3) 

Miller required that the solution be integrable in ~. that b(x) have 

a simple zero at an interior point --;c and that v(x; 8) could be 

w ritten asymptotically as 

v (x ; 8) ~ fJ (x) exp {- p(x
2

) } 
a(x) 

8 
(3.2.4) 

where 8(x) is a smooth function with 8(x ) = 1 in the neighborhood of 

A 
x , and 8(x ) = 0 in the neighborhood of the endpoints. He deter-

mined the eiconal equation for cp( x ), 

the integral using Laplace's method. 

2 
A 

a (x ) 

A 
set cp( x ) = 0, and evaluated 

He found 

1/2 

I 
(3.2 .5) 

Ludwig [ 10] extended the results of Mille r to higher 

dimensions. He assumed that 
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n 
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cp(x ) 
v(~ ~ z(x) exp{- ~ } 

~ 

I 
. . a cp(x) 

a 1 J(x) --=­- ox. 
cp(x) 

vi z(x) exp{- 2 } dS 

i, ·= 1 J 8 

cp(x) 
J · · · J z(~ exp{- 2 }dx 

Q 8 

(3.2.6) 

(3.2.7) 

-1 
This expression is equivalent to (2.4. 27), provided that c

0 
~'A since 

n a cp(~) n 
1 I a ij(~) L: i 
2 ox. v. = b (x)v. 

1 - 1 
X EOf2 (3.2. 8) 

i, j= 1 J i= 1 

when cp{x) = cpmin . Thus the results of Chapter II are consistent with 

Ludwig's results. 

Ventsel' and Freidlin [ 16 ] have also examined the asymp-

totic behavior of the mean exit time for the case where the param­

eter ~ i s small and where the matri x ( a ij(~)) is nonsingular. Using 

probabilistic methods, they proved that 

lim 
28 

2 .R.n E [ T] --
~ lO ~ 

min 
(3.2. 9) 

where ~ is an asymptotically stable limit point in n, and V(~, y) 

is defined as in Section 3. 1. Observe that these results are 

precisely the same as we observed in (2. 4 . 55). We have been 

able to determine the asymptotic constant w hic h Vents e l' and 
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CHA .. PTER IV 

We devote this chapter to a study of asymptotic represen­

tations for probability distributions of exit positions for various 

dynamical systems. We are interested in the asymptotic results 

when the magnitude of the noise perturbing the systems is small. 

In particular, we are concerned with a study of the probability 

distribution of exit positions for the Ornstein-Uhlenbeck process as 

well as a damped linear hannonic oscillator and a damped pendu-

lwn subject to Gaussian white noise excitation. We also study an 

example of exiting from the domain of attraction of a stable limit 

cycle . 

The chapter is divided into five sections. In the first 

section, we present the asymptotic evaluation of the exact solution 

of the distribution of exit positions for the Ornstein-Uhlenbeck 

process. The results of the second section predict the asymptotic 

distribution of exit positions, using the results of Chapter II. The 

third section is concerned with a study of the asymptotic distribution 

of exit positions for the damped linear harmonic oscillator. In the 

fourth section, we study the asymptotic distribution of exit positions 

for the damped pendulwn. Finally, we study a process diffusing 

from an asymptotically stable limit cycle. 

4. 1 Asymptotic E valuation of the Probability Distribution of Exit 

Positions for the Ornstein-Uhl enbeck Process 

W e begin w ith a study of the probability distribution of e xit 
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positions for the Ornstein-Uhlenbeck process. This process models 

a damped linear harmonic oscillator with a negligibly small spring 

constant. The equation of motion becomes 

x (t) + 13 x(t) (4.1 . 1) 

If we write y(t) = x(t) and take 13 = 1, we can rewrite ( 4 . 1. 1) as 

dy(t) = -y(t)dt + £dw(t) . (4.1.2) 

Take D = { y: -a < y < b} where a > 0, b > 0. The boundary value 

problem which one must solve in order to study the distribution of 

exit positions for the Ornstein-Uhlenbeck process is given by 

£2 d
2

u du 
0 ye: S1 2 2 - y dy = 

dy 
(4.1.3) 

u(y; £) = f(y) ye:aD 

We can formally integrate the equation twice to find 

y 2 
u(y; £) = £(-a ) +a j exp{~} dz . 

-a £ 
{4.1.4 

·when we a pply the boundary condition at y = b, we find 

- 1 
b 2 y 2 b 2 

u(y;£) = r J e x p{ z 2}dz] . rf(b) J exp{ z 2}dz + f{ - a ) J e x p{ z 2}dz] (4 . 1. 5 ) 
--a £ - -a £ y £ 
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In the notation of Chapter I, we note 

p {X ( T) =-a} = 
y £ 

y 2 
J exp{

2 

2}dz 
-a £ 

b 2 J exp{
2 

2}dz 
-a £ 

b 2 
J exp{

2 z}dz 
y £ 

b 2 . 

J exp{
2 

2}dz 
-a £ 

(4.1.6) 

(4.1.7) 

Observe that the integrals involved are such that the maximum 

contribution occurs at the end points. When we evaluate the 

integrals using Laplace r s method, we find we can distinguish three 

separate cases: 

Case 1: a < b. 

Provided that y is away from either end point, we see that 

P y { x£ ( T) ::: b} ~ 0 and P y { x£ ( T) = -a} ~ 1 . If y is near b, then 

Py {x£(T) =b}~ 1 and Py{x£(T) =-a}~ 0. Conversely, if y is near -a, 

then Py{x£(T)=b} ~o and Py{x£(T)=-a} ~ 1. Thus we expect that 

the Ornstein-Uhlenbeck process will be far more likely to exit at 

the point y = -a, provided that the process does not start too close 

to the point y = b initially. 

Case 2: a = b. 

If y is away from either endpoint, we see that Py{x£(T) =b}~ 
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P { x ( T) = -a} ~ i /2 . y f, 
If y is suffici e ntly near e ithe r e ndpoint, 

then the probability of exit at that point will tend t o one . Physically 

we would expect that the proc es s would b e about e qually like ly t o 

exit from ei ther s ide due t o symmetry, p rov ided that it was not 

too close to e ither endpoint i n i tially. 

Case 3: a > b. 

We find that the results in this case are exactly the opposite of the 

results in case 1. Again, we would expect that the Ornstein-

Uhlenbeck proces s would be most likely to exit at the point closest 

to the origin, provided that the proc e ss was not too close to the 

other boundary initially. 

These results a gree with physical intuition and are presen ted 

only because we can solve the boundary value p roble m exactly. In 

the next section, we u se the theory developed in Chapter II to 

predict the distribution of exit positions for the Ornste in-Uhle nbec k 

process . W e the n compare the results of this section and the next 

one . 

4 . 2 Predicted Probability Distribution of E x it Positions for the 

Ornstein-Uhlenbeck Proc e ss 

W e know from the previous s ec tion that the boundary v alue 

probl em which we must solve in order to determine the proba bility 

distribution of exit po sition s for the Ornstein-Uhlenbeck p r ocess is 
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y E (-a, b) 

(4 . 2. 1) 

u( -a) = f( -a) u(b) = f(b) 

When we apply the theory of Chapter II, w e assume 

(4.2.2) 

where s1(y) is small n ear y = -a and s
2

(y) is small near y =b. 

Because the boundary 8Q consists only of separate points, rather 

than being smooth, we observe in (4. 2. 2) that we do not have 

smooth functions z(y) and s(y). We find that we have two separate 

boundary layer corrections which become transcendentally small 

2 
compared with any finite power of 8 at the opposite endpoint. The 

homogeneous adjoint problem is given by 

C d
2

v d 
2 -- + -(yv) = 0 

dy2 dy 
yE( -a,b) 

(4 .2 .3) 

8
2 

dv 
2 dy + yv = 0 

By inspection, the properly normalized solution of (4 . 2. 3) is 

2 
v(y; 8) ~ e xp {- 7} 

8 

The parameter c 0 is give.n by 

(4.2. 4) 
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2 . 2 
bf(b) exp{- b 

2
} + a f( -<a) exp {- a 

2
} 

r. r. 
b2 2 

b exp{ - 2} + a exp{ - a 2 } 
r. 8 

(4.2.5) 

In order to specify the solution u(y;8), we must now solve for z
1
(yL 

s
1
(y), z

2
(y), and s

2
(y). For y near the point y = -a, we note 

·- 0 (4.2.6) 

Take 

= 2a 

So . s
1
(y) = 2a(a + y) (4.2.7) 

From (2. 3.13) we see that z
1

(y) satisfies 

= 0 (4. 2. 8) 

along the rays, with z 1 ( y(O)) = f( -a) - c 0 . Thus 

(4.2.9) 

Similarly 

s 2 ( y) = Zb (b -y) (4. 2.10) 

( 4. 2. 11) 
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Hence 

b2 2 
bf(b)exp{- -z} + a f( -a) exp{ - a 2} 

u(y; E)- £2 2 E 

b ex p{ - b 
2

} + a exp{ - a 2 } 
E E 

a [ f(b) -£( -a)}xp{- a 
2 +:~(b -y)}+b [ £(-a) - f(b)}xp{ - b 

2 +:~(a+y)} 
b2 2 

b exp{ - 2} + a exp{ - a 2 } 
8 8 (4. 2 .12) 

Thus, using the notation of Chapter I, we see that 

P {x (T) = b} 
y E 

2 2 2 
bexp{- :

2 
}taexp{- a +2~(b -y)} -bexp{- b +2~(a+y)} 

= 8 8 
b2 2 

b exp{ - 2} + a exp{ - a 2 } 
E 8 (4.2.13) 

2 2 2 
aexp{- a 2} -aexp{- a +2bjb -y)}+ bexp{- b +2~(aty)} 

p { x (-;r) = -a}= 8 E 8 
y ~ b2 2 

b exp{ - 2} + a exp{ - a 2 } 
8 8 (4.2.14) 

A g ain, w e find that we can distinguish three separate cas e s: 

C a se 1: a < b 

W e see that if y is a w a y from either e ndpoint, then P { x (T) = - a } y 8 

- 1 a nd P { x (T) = b} - 0. If y is n e ar b, the n P { x (T) = b} - l. 
y 8 y c 

C onver sely, if y is near -a, then P { x ( T) = - a } - l. 
y E 
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Case 2 a = b 

We see that if y is away fr om either endpoint, then P {x (T) =-a} 
y s 

~ P { x (T)=b} ~ 1/2. As in the first case, the probabilities tend to 
y s 

the limiting 0-1 probabilities as the initial point y moves to either 

endp oint. 

Case 3 : a> b 

The results for this case are exactly the appositive of case 1. 

vVe see that we have obtained exactly the same results using 

the theory developed in Chapter II as we found in the first section 

of thi s chapter. In the next section, we examine the problem of 

the probability di s tribution of ex it positions f or the damped linear 

harmonic oscillator . 

4 . 3 Probability Di s tribution of Exit Positions for the Damped 

Linear Harmonic Oscillator 

We now turn to a study of the dis tribution of exit positions 

of a damped linear harmonic oscillator subject to Gaussian white 

noise excitation. We can w rite the equa tion as 

x (t) + 213 x (t) + x (t) = S d w (t) (4 .3.1) 

In differential matrix form, we can w rite t h i s as 

d ( x (t)) = ( 
y (t ) 

y(t) ) 
dt 

- 213y( t) - x (t) 
+ s 

( 

dw 1 ( t)) 
dw

2
(t) 

(4.3 . 2) 
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The boundary val ue problem which we must solve in order to 

determine the distribution of exit positions for this d y namical 

system is given by 

2 82 8u 8u L~ - {2[3y + x) -+ y 
8x = 0 {x, y) E Q 

2 8y2 8y 

(4.3.3) 

u{x, y) = f(x, y) (x, y) E80 

We take O={(x,y) :x
2

+y
2
<r

2
} so that the boundary represents a 

surface of constant energy in the phase plane. When we apply the 

theory of Chapter II~ we assume that we can represent u(x, y;8) as 

u(x, y;8)- co + z(x, y) exp{- s(x~?)} 
8 

(4.3.4) 

In order to determine the unknown parameter c
0

, we must solve 

the general boundary value problem (2. 4 . 3) which for this process 

is 

2 8 2 8 [ J a [ J ~ Sy~ + 8y (2[3y+x)v - 8 x yv = 0 (x, y) E Q 

(4.3.5) 

(x,y) E80 
J 

We assume that v(x, y;8) has the asymptotic form (2. 4 . 5) so that 

the eiconal equation and boundary condition for <p(x, y) become 
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2 

1_ (8 <'1 ) 
2 8y 

(2[3 y + x) ~ + y ~ = 0 oy ox (x, y)E Q 

(4. 3. 6) 

(x, y)E 8 n 

In order to calculate <p(x, y}, we must calculate the matrix of 

second derivatives at the origin. The covariance matrix S satisfies 

the linear matrix equation (2. 4.14) whi ch, for this problem, we 

write as a system of simultaneous equations: 

= 0 (4.3.7a) 

( 4. 3 . 7b) 

s22- s11- 2 f3s21 = 0 (4.3.7c) 

(4. 3. 7d) 

Thus, one finds that S 
1 = 4[3 I . On the initial ellipsoid about the 

origin we assume that 

cp(x, y) = 2 2 2 2 
2[3 (x + y ) + o(x + y ) 

cpx(x , y ) = 4[3x + ( J 2 2 ' 
0 X +y ) (4.3.8) 

cpy(x, y) = 4[3y+ o ( Jx2+y2) 



-58-

Starting from the initial ellipsoid, we integrate cp( x(t1, y(t)) along the 

rays given by 

to find that 

{4.3.10) 

is the solution of the eiconal equation. At the boundary, the outer 

normal unit vector is given by 

~(x, y) = ~ ( ~) {4.3.11) 

Then cp(x, y), as given by (4. 3. 10) also satisfies the boundary 

condition of (4. 3. 6). Furthermore, cp(x, y) is properly normalized 

at the origin. 

We must now find the transport term w (O) (x, y). The trans-

port equation is 

4f3y ow(O) + y ow(O) (Zf3y+x) 8~~0)- [z1. 4f3- Zf3Jw(0)=0 
oy .ax (4 . 3.12) 
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We can rewrite this as an ordinary differential equation along the 

rays: 

(4 . 3. 13) 

Since w (O}{x, y ) is assumed to be unity on the initial elli psoid, we 

find that w (O)(x, y) = 1 in S1 . 

T hen the unknown parameter c
0 

is determined by 

J f(x , y) b(x, y) · ~{x, y) exp {- p(x~/)} dS 
8S1 £ co - --~--------------------------~--------
1 b(x, y) · ~(x, y) exp{- p(xz y} }dS 

8S1 £ 

2rr 2 ~ -1 f(r, 8) 2(3r sin eexp{- ~.}de 
0 £ 

2 rr 2 2Rr2 
- j 2pr sin e exp {- :::.t::..::2- ·· }de 

0 ' £ 

= 

1 2rr 2 
= J f(r, 8 ) sin 8 d8 

rr 0 
(4. 3. 14) 

Now that we h ave determined the parameter c
0

, we can calculate 

the boundary layer correction . We find from (2. 3. 6) that 

IV's(x ,y)j = 4f3r (4 . 3 .1 5) 

Thus we see 

Y's(x ,y) = -4f3( ~ ) (4 . 3. 16 ) 
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So 

Along the rays defined by 

x(t) = - y(t) 

y(t) = 2f3 y(t) + x(t) + q(t) 
(4.3.17) 

p(t) = q(t) 

q(t) = 2f3 q(t) - p{t) 

we find that the transport term z{x, y) satisfies the initial value 

problem 

fft z(x(t), y(t)) - 2f3 z( x(t), y(t)) = 0 

(4. 3. 18) 

z( x{O), y(o)) = f( x(O), y(o)) - c
0 

The form for z( x(t), y(t)) tells us how to extend the boundary 

conditions into the interior of n. As t becomes large, z( x (t), y(t)) 

will tend toward z(O. 0) due to the requirement that the rays converge 

to the limit set for large time. However, due to the form of s(x,y) 

we observe that the region where the boundary layer correction 

term is significant is only 0(£) wide . In order to predict the 
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distribution of exit positions from a point (x, y ) in the boundary 

layer, we would trace backward along the ray passing through (x , y) 

to find from where on the boundary the ray emanated since the 

trajectory of the process is most likely to be near the given ray for 

short distances. 

boundary layer, 

If the initial point (x, y ) does not lie in the 

then the distribution of exit p osi tions is .!_ sin2 8 
7T 

where 8 is the conventional polar angle. Note that the points 8 = 0 

and 8 = n are asymptotically inac cessible points o n the boundary, 

provided that the initial state of the oscillator is not at either point, 

. . 2l) 
s~nc e s~n u vanishes there . This is to be expected since the 

direction of the noise is tangent to the boundary at 8 = 0 and 8 = n. 

Thus we have been able to mirror a physical phenomenon in the 

mathematics. 

4. 4 Probability Distribution of Exit Positions for the Damped 

Pendulum 

We now consider the problem of determining the distribution 

of exit positions for a damped pendulum subject to Gaussian white 

noise excitation. We write the equation of motion as 

8 (t) + 2[3 e(t) + sin8(t) = ~dw(t) . (4.4. 1) 

In differential matrix form, we can write this as 

d (8 (t)) ( w(t) ) dt + ~( 0

0 w (t) - -2 w(t) - sin8 (t) 

0) (dw 1 (t)) 
1 dw

2
(t) 

(4. 4. 2) 
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The boundary value problem which we must solve in order to determine 

the distribution of exit positions for this particular dynamic al sys tem 

is 

(e, w)E Q 

} (4.4. 3) 

u(g,w) = f(g,w) 

We take n={(g,w) :w
2
-2cose<2}. When we apply the theory of 

Chapter II, we assume that we can represent u(g, w; 8) as 

u(g,w;8)~ co + z(g,w) ex p{- s(ezw)} 
8 

(4.4.4) 

In order to determine the unknown parameter c
0

, we must 

solve the general boundary v alue p r oble m (2. 4. 3) . For this 

particular dynamical system, we must solve 

8_
2 

a
2

v + _a [ J a [ J (2j3w + sin8)v - ,--
8 

wv = 0 
2 El w2 ow u (e,w)EQ } 

(4.4 . 5 ) 

{8,w)E8Q 

We assume the g e neral asymptotic form (2. 4. 5) for v(e, w ; 8) so that 

the eiconal equation and boundary condition for cp(e, w) become 

2 

~ ( ~) - (2 j3w +sin e) ~ + w ~ = 0 

( ~ ~: + 2j3w + sine) v w- w v e = 0 

(8, w) E Q } 

( 8, w) E 0 Q 

(4.4.6) 
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We observe that the origin 1s an asy1nptotically stable limit 

point in n and that the points ( ± 'IT, 0) on the boundary are asymp-

totically unstable. In order to determine cp(8, w) , we must calculate 

the matrix of second derivatives at the origin. The covariance 

matrix S satisfies the linear matrix equation (2. 4.14) which we write 

as a system of simultaneous equations 

5 21 + s12 = 0 (4. 4. ?a) 

(4. 4. ?b) 

(4. 4 . ?c) 

(4.4.7d) 

Thus we see that S = 4~ I . Then on the initial ellipsoid about 

the origin we assume 

<p(8, w) 
2 2 2 2 = 2[3(8 +w ) + o(e +w ) 

<p (e, w) = 4[3 e + o(Je
2

+w
2 

(4.4.8) 

<pw(e, w) = 4[3 w + o(Je
2+ w2 

Starting from the initial ellipsoid, we integrate <p(e(t), w(t)) along the 

rays given by 
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e (t) = w(t) 

w(t) = - ( 2(3w(t) + sine(t)) + q(t) 

(4 . 4. 9) 

p(t) = cose(t) q(t) 

q(t) = - p(t) + 2f:3q(t) 

to find that 

cp(8, w) = 2(3(w
2 + 2 - 2cose) (4 . 4. 10) 

is a solution of the eiconal equation. At the boundary, the outer 

normal unit vee tor is given by 

~(e, w) = 1 

17 . 2ll 
"-fw~ + s1n u 

(4.4 . 11) 

Then cp(8, w), as given by (4 . 4. 10) also satisfies the boundary con -

clition of ( 4. 3. 6) . Furthermore, cp(8, w) is properly normalized at 

the origin. 

We must now find the transport term w(O) (8, w). The trans­

port equation for w(O)(e, w) is given by 

Again, we rewrite this as an ordinary differential equation along the 

rays: 
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{4.4.13) 

Since w(O)(e, w) is assumed to be unity on the initial ellipsoid, we 

find that w(O)(e, w) = 1 in 0. 

c ~ 
0 

where 

Then the unknown parameter c
0 

1s determined by 

213 
2 ~ -j f(e,w)w dSexp{-

2
} 

· 30 I 2+ . 2L) c; 
= 

N 
= D 

"-f w s1n o 

2( 1tcose) J 2+2cosetsin
2

e 

----:======-- de 
.J2t2cos8 

Tr ( e) 2(1tcose) 
+ 213 J f e, -2cos z J 

2 -rr 2+2cosetsin e 
"'2+2cos etsin2 e 

.J 2+2cose 

-rr e e 
= + 213 J f( e, 2cos z) • 2cos z-de 

Tr 

e e 
f(e, - 2cos Z) · 2cos z-de 

(4. 4.14) 

de 

(4. 4. 15) 



D = 2f3 j 
-n 2( 1+cose) 

lT 

2( 1+cos 9) 

= 32 f3 

Thus we find that 
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J 2+2cos0+sin
2e de 

.J 2+2cose 

J 2+2cos e+sin
2 e 

"'2+2cos e 

1 -1T ( E.) fl 1 lT ( . E.) fl c 0 - 8 j f 9, 2cos 2 cos 2 d9+a j f e,-2cos 2 cos 2 d9 
lT -lT 

(4.4 .1 6) 

{4 . 4.17) 

Now that we have determined the parameter c
0

, we can calc ulate the 

boundary layer correction. We find from (2. 3. 6) that 

Thus we see 

So 

( s1w·ne ) VS,(e, w } = -4f3 

s ( e' w) = 2f3 ( 2 -w 
2 

+ 2 c 0 s e) 

( 4. 4 . 1 8) 

(4.4.1 9 ) 
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Then along the rays defined by 

e ( t) = -w( t) 

w(t) = 2!3w(t) + sinB(t) + q(t) 

p(t) = cose(t} q(t) 

q(t) = 2f3q(t) - p(t) 

(4. 4. 20) 

we find that the transport term z(e, w) satisfies the initial value 

problem 

d 
dt z(8(t), w(t)) - 2f3z(8(t), w(t)) = 0 

(4. 4. 21) 

z($(0), w(O)) = f($(0), w(O)) - c
0 

So we see that z(B(t), w(t)) = [f($(0), w(O)) - c
0

] e 2 f3t . 

The form for z(B(t}, w(t)) tells us how to extend the boundary 

conditions into the interior of n. As in the previous example, we 

again note that as t becomes large, z(B(t}, w(t)) will tend toward 

z(O, 0) due to the requirement that the :cays converge to the limit set 

for large time. Again, due to the form of s(8,w), we observe that 

the r egion where the boundary layer correction term is significant 

i s only 0(£) wide. In order to predict the distribution of exit 

positions from a point (8, w) in the boundary layer, we would trace 

backward along the r a y passing through (8, w) to find from w h ere on 

the boundary the ray emanated. If the initial point (8, w) is not in 

the boundary layer , then the distribution of exit position s is {cos ! 
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in both the upper half-plane and the lower half-plane where e now 

measures the angular deflection of the p e ndulum from the vertical. 

Note that the probability of escape through the asymptotically unstable 

critical points at (± 1T , 0) vanishes, provided that the initial state of 

the pendulum is not at either point, since cos 8/2 vanishes there. 

Again, this is to b e expected b ecause the direction of the tangent to 

the boundary at those two points. 

It is interesting to note that cp (8, w) in (4.4.10) and <"f (x ,y) in 

(4. 3. 10) represent multiples of the total energy for the undamped 

pendulum and the undamped linear harmonic oscillator, respectively. 

This is e ntirely due to the fact that the damping is linear in both 

problems. If the damping had been nonlinear in either case, then 

the function cp would not have represented an energy. It is also 

inte r-esting to note that the nonlinear restoring force for the pendu­

lum has tended to spread the distribution of exit positions from tha t 

of the linear harmonic oscillator. Again, the solution for the un­

known parameter c
0 

pred icts physical phenomena. 

4. 5 Asymptotic Evaluation of the Probability Distribution of Exit 

Positions for a Dynamical System with a Limit Cycle 

In this section, we apply the theory developed in Chapter II 

to predict the probability distribution of exit positions for a proces s 

whose deterministic trajectories wind onto an asymptotically stable 

limit cycle . Consider the stochastically perturbed dynamical system 
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(4. 5. 1) 

The boundary value problem which we must solv e in order to study 

the distribution of exit positions for this system is 

2[2 2l [ J [ J £ a u a u 2 2 ou 2 2 au z- --2 + --2 + x+y-x(x + y ) ox+ y-x-y(x + y ) a= 0 
-ox oy - . Y 

(x,y)E: Q 

u(x, y) = f(x, y) (x,y)coQ 

(4.5.2) 

If we multiply the deterrninistic portion of the first equa tion 

in (4. 5. 1) by x(t), multiply the deterministic portion of the second 

equation in (4.5.1) by y(t), add the two equations, and consider polar 

coordinates, we find 

(4.5.3) 

Thus the origin 1s an asymptotically unstable critical point and the 

2 
limit cycle r (t) = 1 is asymptotically stable. 

In order to apply the theory developed in Chapter II. we 

assume we can represent u(x, y;£) as 
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u(x, y;c) - c
0 

+ z (x , y) exp{- l;,(x,l)} 
c 

(4.5 .4) 

We must then solve the homogeneous boundary value problem 

0
: [ :) + ::n-a: [( x+y-x (x

2 
+ /l)v]- a~ [(y-x -y (x

2
+y

2l)+ o 
(x,y) Er2 

(x ,y)Eo r2 

(4.5.5) 

We assume that the solution v(x, y; C) has the asymptotic form (2. 4 . 5) 

s o tha t the eiconal equation and the boundary condition for rp(x , y ) 

become 

2 2 ' 

~ [(~) +(~) ]+[x +y - x (x
2
+/>] ~ + [y -x -y(i+l~ ~=0 (x , y)EQ 

[
1 ~ 2 2 j [1 ~ 2 2 j 
2 ox+ x+y -x(x +y ~ ·vx+ Zoy + y - z-y(x +y ~vy =O {x ,y)Eor2 . 

(4 . 5. 6) 

In order t o deter mine rp(x, y ) we m u s t de t ermine the unit 

n o rmal to the limit cycle , .!:_(~L)' as well as the f unction '((t) w hich 

is the c urvatu re of rp(x, y ) in the direc tion normal to the limit c yc l e , 

evalua t ed o n the limit cycl e . Now 

.!:_(X L) = ( ~ ) = radial vee tor (4.5 . 7 ) 
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On the limit cycle, the functio n y(t) satis fies the differential equation 

9:.Yill_ 2 2 2 3 2 4 
dt +y (t)(x + y )- 4y(t)(x +2x +y) = 0. (4. 5. 8) 

· Sinc e (4 . 5. 8) i s a Riccati equa tion, make the s ub s titution f.L(t) =y- 1(t) 

2 2 
and note that (x + y ) = 1 on the l imit cycle. Then 

dp.d~) + 4f-L ( t) = 1 (4.5.9) 

1 
The only periodic solution is p.(t) = 

4 
, so y(t) = 4 everywhere on 

the limit cycle. On the initial 6-tube about the limit cycle, we 

assume tha t 

2 2 ( 2 2) <p(x , y) = 2 (x + y -1) + o 11 -x - y I 

<px(x, y) = 4x + o( J l1-x2 - Y21 ) 

<py(x, y ) = 4y + o( J 11-x
2

- y
2

1 ) 

(4. 5. 10) 

Starting from the initial ellipsoid, we integrate <p( x (t), y( t~ alon g the 

rays g i ven b y 

. ( 2 2 ) x (t) = x (t) + y(t) - x(t)(x (t)+y (t)) + p(t) 

. ( 2 2 ) y ( t) = y(t) - x(t) - y (t)(x (t)+y (t)) + q ( !:) 

~ ( t) = [1- 3x2(t)-y2 ( t~p ( t)- [ 1+2x(t)y ( t~q(t) 

~( t) = [1-2x (t) y (t)Jp(t) + [ 1-x
2

(t )- 3y
2

( t )J q ( t) . 

(4 . 5.11) 
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2 

cp(x, y) = i (x2 +y2-1) (4. 5. 12) 

1.s a solution of the eiconal equation. At the boundary, the outer 

normal unit vector is given by 

(4.5.13) 

Then cp(x, y), as given by (4. 3. 10) also satisfies the boundary 

condition of (4. 5. 6) and is properly normalized at the limit cycle. 

We must now find the transport term w(O) (x, y). Along the 

limit cycle, we find 

2 2 

l!?_(x L(t»l
2 

= [ x(t)(l-x
2

(t)-y
2

(t)) +y(t~ +[y(t)(l-x
2

(t)-y
2

(t)) -x(t)J 

2 2 
=X (t) + y (t) = 1 . (4. 5. 14) 

Thus w(O)(~L(t)) = constant. We normalize w(O)(~L(t)) by setting 

the constant to unity. On the initial cS-tube about the limit cycle, 

set w(O)(x, y) = 1 and integrate the transport equation along the we 

rays t o determine cp(x, y) elsewhere in r2. For this problem, we 

find that the transport equation is 
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( 2x3 + 2 _ x3 _ xy2) ow(O) 
2xy - 2x + x+y ox 

+(2y3+2x2 -2y+y-x-y3-x2y) 3~~0) 

+ [3x
2

+y
2

-l+l-3x
2 

-y
2

+3y
2

+x
2
-l+l-3y

2
-x

2
]w(O)=O (4.5.15) 

W e can rewrite this more simply as an ordinary differential 

equation along the rays: 

(4.5.16) 

Thus w(O)(x, y) = 1 in Q, and we observe that v(x, y; c), as given by 

(2. 4 . 5) is actually an exact solution of (4. 5. 5). Then the unknown 

parameter c
0 

is determined by 

c ~ 
0 

J f(x, y)b(x , y) · ~(x, y)exp{- p(xz y)} dS 
()Q 8 . 

J b(x, y) · ~(x, y) exp{- p{xz y) }ds 
ar2 8 

2n 
9 -6 J £(2, 8)d8 exp{- - 2 } 

o 2c 
= 

2rr 
9 - 6J de exp{ --} 

o 2c
2 

1 
2rr 

= -
2 

J f(2, e) de . 
7r 0 

(4.5.17) 

For this particular process, we see that the probability distribution 

of exit positions is uniformly distributed on [0, 2-rr]. 

Now that we have d etermined the parameter c
0

, we can 

calculate the boundary layer correction term. We find from (2. 3. 6) 
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that 

l v s(x, y) 1 = 12 (x, y) Eo r.! (4. 5 .19) 

So we see 

(x, y) E or.! (4.5.20 ) 

Thus 

Then the transport term z (x, y) satisfies the initial value problem 

:t z ( x( t), y (t)) - 2 4z (x(t), y (t)) = 0 

along the rays defined by 

Hence 

. ( 2 2 ) y (t) = -y(t) +x(t) +y(t) x {t) +y (t) + q(t) 

p (t} = [3x
2

(t) .+y
2

(t)-l]p(t) + [ l+2x(t)y(t)J q(t) 

q(t) = [ 2x (t)y(t)-l]p(t) + [ 3y
2

( t) + x
2
(t)-l] q ( t) 

(4.5.21) 
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Again, as 1s typical in problems of this type, we now know 

how to extend the boundary values into the interior of st. Further­

n~ore, the boundary layer correction term will be significant only 

1n a region of width 0( E). Outside that r egion, the solution will 

be asymptotic to the parameter c
0

• 

In this chapter, we have presented results for the distribu­

tions of exit positions of dynamical systems diffusing against flows. 

For the examples of the damped linear harmonic oscillator and the 

damped pendulUin, the theory of Chapter II predicted behavior which 

is consistent with physical intuition. The results for the distribution 

of exit positions for the Ornstein-Uhlenbeck process demonstrate 

that the theory predicts results which are consistent with the 

asymptotic representation of the exact solution when the exact 

solution is known. The last example is not of interest by itself 

since it is not really a physical problem, but again, the theory 

predicted results which agree with intuition due to the radial nature 

of the problem. 
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CHAPTER V 

This chapter is devoted to the study of mean exit time problems 

for various dynamical systems. We are inter es t ed in determining the 

asymptotic behavior of the rnean exit times when the magnitude of the 

noise perturbing the systems is small. In particular, we shall be 

concerned with the s tudy of mean exit times for the Ornstein-Uhlenbeck 

process as w ell as a damped linear harmonic oscillator subject to 

Gaussian w hite noise excitation. We are also concerned with the mean 

exit time for a damped pendulum and a problem with a limit cycle. 

The chapter is divided into five sections. In the first section, 

the problem of the mean exit time for the Orns tein-Uhlenbeck proc ess 

i s solved exactly, and then evaluated asymptotically. The second sec­

tion contains asymptotic results for the mean e xit time of the Ornstein­

Uhlenbeck process, as predicted by the results of Chapter II. Results 

are presented in the third section for the mean exit time of the damped 

linear harmonic oscillator. In the fourth section, we predict the m e an 

exit time for a damped pendulum. Finally, we study the mean e x it time 

for a process with a limit cycle. 

5. 1 Asymptotic Evaluation of the Mean Exit Time for the Ornstein­

Uhlenbeck Process 

We begin this chapter w ith a study of the m e an exit time of the 

Ornstein-Uhlenbeck process. Using (4.1.2), we find that we must 

solve the boundary value problem 



-77-

yE(-a,b) 

(5. 1. 1) 

u(-a) = u(b) = 0 

Let z = y/r, be a new stretched independe nt variable and let v(z) = 

u(y) be the new dependent variable. The rescaled boundary value 

problem then becomes 

- z 
dv = -1 dz 

v(-: ) = v(:)= 0 

(5.1.2) 

We can make (5. 1. 2) self-adjoint by introducing the introducing 

factor exp{ -z
2

}. We find 

d~ ( exp{ -z
2

} ~:) = -2 exp{ -z
2

} 

(5.1.3) 

v (-:) = v(~) = 0 

We formally integ rate (5. 1. 3) twice to find [ 8] 

v(z) 
z 2 t 2 z 2 

= -2 J dx exp{s } J dtexp{ -t } +a' J ds exp{s }+~ 
0 0 ·. 0 

z 2 z 2 
= -.J; J ds exp{s } erf(s) + a'J ds exp{s } +~ 

. 0 0 
(5.1.4) 

where the constants a ' and~ are determined from the boundar y 



-78-

conditions. Let a' = a../-:;; and note that the problem is symmetric 

under reflections. Thus we find 

I z l I z I 
v(z) = ..;-:;;: (asgn(z)-0 j ds exp{s

2
}+v<:;;: J ds exp{s 2}erfc(s) + f3 (5.1. 5) 

0 0 

This result is valid for all z in - a < z < b .s .s. From Abramowitz and 

Stegun [ 1], . we find 

1 v-rr { 2} ----< 2 exp s . erfc(s) ~ 

s+~ s+/s
2

+4/-rr 

1 
for s > 0 • 

Hence 

I z I I z I I z I 
zf 

0 
ds < ..;-:;: r ds 

s+~ 'o 
exp{s

2
}erfc(s) ~ zf ds 

0 
s +Js 2+4/ -rr 

We find 

lzl+~ 2 l z l 2 
1 z 1-.rz:+Z + un( 2 ) -z <h j ds exp{s }erfc(s) 

0 

( 5. 1 . 6) 

(5.1.7) 

lz l 2 
We now consider J ds exp{ s } . The maximum contribution to the 

0 . 

integral comes from near the upp er limit, so we evaluate the 

integral using Laplace's method. Provided that I z I is away from 

the o rigin , we find 
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2 [Y -1
) 1 ( 3 -

1 
- \ J - exp{ - z } 2' l z l + I z I + 4 I z I + 2 I z I + 3 I z I + 3 I z I J + •.. (5.1.8) 

We also note that the integral vanishes, by definition, at the origin, 

so we are really most concerned with z in the neighborhood of the 

end points. We find that we can place the following bounds on the 

solution v(z) for z bounded away from the origin • 

.J7r ( asgn{z) -1) [ 2 sinh z2 (~ I zl-
1 
+0( I zl3

) -o( exp{-z
2
}) J +I zl J z 2 

+ 2 

( 
lzi+Jz2+2 2 

+ 2 .LYJ. 2 - z + f3 < v{z) 

< .f7i- (a sgn(z)-1) [ 2sinhz2(~ lzl
1 

+ o( lzl) -o( exp{-z
2
}) 

vlzl J 2 (-rrlzi+Jz
2
+4/or) orz2 

+ - 2- z + 4/'lr + 2 ..en 4 - - 2 - + f3 (5.1.9) 

We substitute z = y/8 and find that 

u(y ;8)- ,f;r( a sgn(y)-1) __L sinh(7) + (3. 

IYI 8 

When we apply the boundary conditions, we see 

. 2 2 
~ sinh ( b 2 ) - ! sinh( a 2 ) 

8 8 
a = 2 2 t sinh ( b 2 ) + ~sinh( a 2 ) 

8 8 
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Thus, 

2 .r-rr f. 
ab 
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1 
1 1 

2 + 2 
b sinh( a 2 ) a sinh( a 

2
) 

f. 8 

[ 

2 2 2 2 
+ s gn(y)(tsinh(b 2) - ! sinh (a 2 ))- ~ sinh02 )- ! sinh a 

2 
J · 

(5. 1. 11) 

Hence, ifb >a andy> 0, 

2 £ ( 
2

) [ 1 (b 
2 

) 1 ( 
2

) [ 1 (Q 
2 

) u(y;c)-a~ sinh a 2 b s inh -2 - y sinh ~ b sinh\ 2 + 
8 8 8 8 

-1 

! sinh(;~)] (5.1.12) 

Similarly, if b <a and y < 0, 

u(y ;c) -
2
b
8 

tJ7r sinh(b~) [! sinh(~~)+~ sinh(~)][~ sinh(b~)+ 
8 8 8 8 

2 -1 

! sinh(;2 ) J ( 5 .1. 13) 

We note from (5. 1. 12) and (5. 1. 13) that u(y; c) is asy mptotic to a 

very large constant within most of Q a nd thc.t the only regions of 

s i gnificant change are n e ar the boundaries. F urthe rmore, the 

magnit ude of the solution agrees with the results of Vents e l' and 

Fr eidlin [ 16 ] . In the n ext section, we appl y the theory of Chapter II to 
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the mean exit time problem for the Ornstein-Uhlenbeck process and 

con1.pare the results with the res ults in this section. 

5. 2 Predicted Mean Exit Time for the Ornstein-Uhlenbeck Process 

We know from the previous section that we must solve the 

following boundary value problem 

When we apply the theory of Chapter II, we assume 

u(y; 8) - c
0 

+ z(y) exp{- rJf } . 
8 

(5.2.2) 

Using ( 4. 2. 3) and (4. 2. 4), we see that the properly normalized 

solution of the homogeneous adjoint problem is given by 

2 
v(y;8) - exp{ - y_} . 

8 
(5.2.3) 

We substitute th i s expression into (2.4.27) 1n order to determine 

the unknown parameter c
0

• Thus 

c -0 

b 2 J exp{- ~} dy 
- a 8 

b2 2 
b e x p { - 2 } +a exp { - a 2 } 

8 8 

(5.2. 4) 
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for a * b 

where (aAb) = min(a,b). We employ the calculations (4 . 2.7), (4.2.9), 

( 4. 2. 10), and ( 4. 2. 11) to find 

If a = b, we find 

r,..r:;:- {b
2
}( 2) C 0 ~ -b- exp 2 1 + 0(£ ) 

£ 
(5.2.6) 

and 

u(y; £) ~ £~ (5.2.7) 

Thus we see that the results of t h e theory in Chapter II agree with 

the asymptotic evaluation of the exact solution as well as the 

r esults of Ventsel' and Freidlin. 

5. 3. Mean Exit Time for the Damped Linear Harmonic Oscillator 

The mean exit time for a damped linear harmonic oscillator 

satisfies the boundary value probl em 

£
2 a2

u ou ou 
2 8y2 - ( 2 [3y+x) oy + y ax = - 1 

u(x, y ) = 0 

(x, y) Er.l } 

(5. 3. 1) 

(x,y)Eas-2 
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{ 2 2 2} Take Q= (x,y) x +y <r . When we apply the theory of Chapter 

II, we assume 

u(x, y; t:) ~ co + z(x, y) exp{- s(xzy)} 
t: 

(5.3.2) 

We assume that the solution of the homogeneous adjoint boundary 

value problem (2. 4. 3) is of the form 

v(x, y; C:) ~ w(O) (x, y) exp {- p(x~?)J 
t: 

(5.3.3) 

From (4. 3.10) and {4 .. 3.13), · we see that the properly normalized 

solution for v(x, y; t:) is 

~2+y2) 
v(x, y; c:) ~ exp {-

2 
} • (5. 3.4) 

t: 

At the boundary, the outer normal unit vee tor is 

v(x, y) =.!.. (x) . 
- . r y 

(5.3.5) 

Then the unknown parameter c
0 

is determined by 
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2A( 2+ 2) -J J exp {- ~=' x Y } dx d y 
n 8

2 

co~ 2 2 
J b{x,y) · v(x ,y)exp{- 2f3{ x ;v) }dS 
an 8 

= 

- v ~ 
t. 1T J P exp{- 2 } d P 2 2 2 

0 8 -~ {~} . (~) 2 1T 2 - 2 exp 2 smh 2 

1 2 R • 2{) d£1 { ~} 2[3 r 8 8 
~='rs1n o oexp- 2 0 8 

(5.3.6) 

Then using (4. 3.18) and (2. 3. 13) we can determine the boundary layer 

correction z{x, y) exp{ -s(x, y)/8 
2

}. Again, we note that the boundary 

layer width is nominally 0(8), but the region where the solution is 

0(1) is transcendentally thin. 

5. 4 · Mean Exit Time for the Damped Pendulum 

The mean exit time for the damped pendulum s a tisfies the 

boundary value problem 

2 ~2 
8 v u 

2 aw2 

. au au 
(2[3w+smf)) ow + w of) = -1 (f),w)EQ 

(5. 4. 1) 

u(f), w) = 0 (f), w)Eo n 

Take n = { (e, w): w
2 - 2cose = 2}. When we apply the theory of Chapter 

II, we assume 

{ s(fJ,w)} u(f), w; 8) ~ c
0 

+ z(f), w) exp -
2 

8 
(5. 4 .2) 
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We assume that the solution of the homogeneous adjoint boundary 

value problem (2. 4. 3) is of the form 

v(e, w; 8)- ,)O)(e, w) exp{ p(el w)} 

8 
(5.4.3) 

From (4. 4. 10) and (4. 4. 13) we see that the properly normalized 

solution for v(fJ,w; 8) is 

At the boundary, the outer normal unit vector is 

y_(e, w) ::: 

Then the unknown parameter c
0 

is determined by 

c -0 

e::: 1T" w:::.J 2+2cos 8 213 (w2+2 -Zco~} -J dej . dw exp{- 2 e--·'"TT w- -.JZ+Zcose 8 

32!3 exp{- ~} 
8 

(5.4 . 4) 

(5.4.5) 

(5. 4. 6) 
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So 
2 

CO ~ 8 .-r exp{ ~2 } 
64[3 

2 
8 

(5.4.7) 

If we desire, we can now determine the boundary layer correction. 

The region where the solution is 0( 1) is transcendentally thin com-

2 
pared with any power of 8 , so the solution is asymptotically 

transcendentally large almost everywhere in n. 

It is interesting to note the difference in the values of c
0 

in 

(5. 3. 6) and (5. 4. 7) if we require that both the damped linear 

harmonic oscillator and the damped pendulum exit from regions 

bounded by curves which represent the same energy levels. The 

total energy for the pendulum on the curve 

C = { (f), w) : w
2 

-2cosf) = 2} (5. 4. 8) 

is 2 units. For the oscillator, the curve which corresponds to a 

curve with a total energy of 2 units is a circle with radius 2 . We 

can then compare the exit times by noting that for small 8 

E [ T ] Q_ pen 
7T 

8 (5.4.9) 

Thus the nonlinear restoring force for the pendulum has substan -

tially shortened the mean exit time for the pendulum from that of 

the linear harmonic oscillator. 
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5. 5 Predicted Mean Exit Time for a Dynamical System with a 

Limit Cycle 

vVe again consider the physical example of Section 4. 5: 

(5.5.1) 

The mean exit time for this process satisfies the boundary value 

problem 

u(x, y) = 0 (x,y) Eo S1. 

(x, y)EO } 

{5.5.2) 

Again, we take S1 ={(x,y) :x2+y
2

<4}. We assume that u(x,y) has 

the asymptotic representation 

u(x,y;s) ~co+ z(x,y)exp{- s{xzy)} 
8 

(5. 5. 3) 

Let v(x, y;S) satisfy the homogeneous adjoint boundary value problem 

(5.5.4) 
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We assume that we can write v(x,y;£) as 

v(x,y;£) ~w(O)(x,y)exp{- p(xzy)}. 

£ 

Then cp(x, y) satisfies the eiconal equation 

2 2 

~ [(~) + (~) J + [x+y-x(x
2
+y

2J ~ + [y-x-y(x
2
+y

2
)] ~ = 0 

(5.5.5) 

(x, y)E Q 

(x, y)E 8Q 

The solution to this problem, as given by (4. 5. 12), is 

2 

cp(x, y) = ~ ( 1-x
2

- y
2

) 

(5. 5. 6) 

(5. 5. 7) 

The function w(O){x,y) is again identically unity. Then the unknown 

parameter c
0 

is given by 
2 2rr 2 

1 
2 -J exp{- p(xzy) }dxdy J de J rdr exp{- ( -~ )} 

Q £ 0 0 2£ c ~ 
0 J b(x, y) · ~(x, y)exp{- ¥}dS = 24rr exp{- ~} 

BQ £ 2£ 

1 { 9 } J2 
Ti J4£ 

2 
Ti [ 1 ( 3 ) 1 ( 1 ) J = 24 exp 2 de 8 2 erf -- +z:erf --

rr ~ 0 £~ £~ 

So 

£ rrr {9} CO ~ IT .JT exp -2-
2£ 

( 5. 5. 8) 

(5.5.9) 
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vVe could also determine the boundary layer correction, if we 

de sired, by writing the transport equation as an initial value 

problem aiong the rays and then determining the ray parameter t 

as t(x, y). 

In this chapter, we have worked several examples of mean 

exit time problems for dynamical systems subject to small Gaussian 

white noise excitation. The results are all similar in that the 

solution is transcendentally large compared with any finite power of 

~ almost everywhere. This is not surprising since the deterministic 

systems are asymptotically stable. In the case where the exact 

solution can be determined and then evaluated asymptotically, the 

theory of Chapter II predicts the same asymptotic behavior. In 

other cases, the theory predicts results which are consistent with 

other authors. 
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CHAPTER VI 

In this chapter, we present the results of nmnerical 

simulation of asyTilp totically stable dynamical systems subject to 

small Gaussian white noise excitation. We use several different 

values of the noise parameter, r,, for each process we simulate 

in order to check the validity of the theory presented in Chapter Jl. 

All calculations presented in this chapter were performed on a 

Digital Equipment Corporation PDP-10 computer. 

The chapter is divided into four sections. In the first 

section, the method used to simulate the various dynamical systems 

is discussed and error estimates for the accuracy of the calcula-

tions are presented. The second section is devoted to a study of 

the sample paths of the various dynamical systems w hich exit 

against a flow. In the third section, we us e nmnerical techniques 

to study the distribution of exit positions for the damped linear 

harmonic oscillator, the damped pendulum, and a problem ·with a 

limit cycle. Finally, we present numerical results pertaining to 

the study of mean exit times for these same three dynamical 

systems. 

6. 1 A Description of the Numerical Methods Us e d in the 

Simulations 

In order to numerically simulate the solution of the differen-

tial matrix equation ( 1. 1. 3), we approx imate the random vector 

x (t) bv the vector x {n) defined by the difference equation -r, J -£, 
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X (Q) = ~ -8 --v 
(6. L 1) 

where t = k.6.t and g_(k) is a pseudo-random vector simulating a 

random Gaussian vee tor g_ where 

E g. = 0 i = 1, ,n 
J. 

(6. 1. 2) 

E g.g. = o-.. (x (t))At i, j = 1, ... , n. 
J. J l.J -8 

We do not use a more sophisticated nwnerical technique than (6. 1. 1), 

such as 

bounded 

Adams or Runge-Kutta, 

derivatives of b (x {t)) 
- -8 

because these methods require 

and o-(x
8

(t)) d~(t), and any s arnple 

of a white noise process , with positive variance is required to be 

everywhere unbounded, discontinuous, and nondifferentiable. 

It is nwnerically convenient to generate a sequence of 

Gaussian pseudo-random numbers with zero mean and unit variance 

and then multiply the numbers by .J?:;:t_ This produces a sequence 

of pseudo-random numbers with the proper mean and variance. 

It is well-known that the Euler Method for solving ( 1. 1. 3), 

as given by (6. 1. 1), is numerically accurate to 0(.6.t) [ 3] . Thus, it 

i s advantageous to pick the time -step, .6. t, as small as possible . 

However , this increases the amount of time necessary to compute 

the time of ex it b e cause more iterations are required. For 
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reference purposes, the value of At will always be given, and 

when possible, several sets of calculations with various values of 

At will be shown. 

6. 2 An Examination of Exit Trajectories 

In this section, we use (6. 1. 1) to simulate the Ornstein­

Uhlenbeck process, the damped linear harmonic oscillator, the 

damped pendulum, and a process with a limit cycle. For each 

dynamical system, we examine the exit trajectories in order to 

determine whether the hypotheses of Chapter II are consistent with 

experiment. 

We first consider a two-dimensional version of the Ornstein­

Uhlenbeck process in a region whose boundary is not symmetric 

about the origin . In particular, (6. 1. 1) becomes 

(6.2.1) 

where g 
1
, g

2 
are Gaussian pseudo - random numbers with zero mean. 

and unit variance. We take At = 0. 01, and then vary the parameter 

r.. The boundary of the region n is assumed to be a circle with 

radius 0. 75, centered at ( -0. 25, 0). Thus, the boundary has a 

unique nearest point to the origin at (0. 5 , 0). We pick the initial 

point to be the origin, and then integrate the equation of motion 

u s ing (6. 2. 1) The results for five escape trajectories are given 1n 
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Fig. 6. 2. 1 and Fig. 6. 2. 2; in the former figure, we set 0 = 0. 5, 

and in the latter figure, we set 8 = 0. 3. In Fig. 6. 2. 1, we note 

that the trajectories cover most of Q and that the re is certainly no 

reason to conclude that the process is most likely to exit at the 

point on the boundary nearest the origin. Fig . 6. 2. 2 is much 

closer to what we would expect, based on the results of Chapter II. 

The trajectories tend to cluster around the origin, with periodic 

excursions away from the origin. Observe that the diffusion 

against a flow is not a slow process, but rather, consists of 

excursions in the phase plane which cover a finite amount of 

distance in a relatively short amount of time. If the process does 

not reach the boundary, then it is attracted back to a neighborhood 

from where it b egins another excursion at a later time. The five 

exit points all li e in the neighborhood of the point on the boundary 

which is nearest the origin. We would expect that as we take 

values of 8 sufficiently small, we would concentrate the exit points 

in an e ven smaller neighborhood of (0. 5, 0). 

In Fig. 6 . 2. 3, we study the exit trajectories for a damped 

linear harmonic oscillator exiting from a unit circle in the phas e 

plane, centered a t the origin. Then (6. 1. 1) becomes 

(6 .2 .2) 

The initial point is taken to be the origin, we set 0 = 0. 3535, !3 = 0. 25, 
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and let .6.t = 0. 01. We then use (6. 2. 2) to determine the exit 

trajectories. Fig. 6. 2 . 3 is a plot of five escape trajectories for 

the oscillator. 

As we expect, the escape trajectories are generally concen-

trated near the origin, but make periodic excursions outward 

toward the boundary along the rays. If the excursion does not 

reach the boundary, then it is attracted back toward the origin 

from where it tries repeatedly to escape. The region where the 

escape trajectories are most heavily concentrated is a circle with 

a radius of about 0. 3. This is approximately the standard 

deviation of the noise, and is consistent with what one would expect 

based upon physical intuition. 

In Fig. 6. 2. 4 we plot five exit trajectories for a damped 

2 2 e 
pendulum exiting from the boundary w = 2cos 2 Then (6. 1. 1) 

becomes 

(6 .2 .3) 

w 
(k+ 1) 

The initial point is taken to be the origin, we set 8 = 0. 5, !3 = 0. 125, 

and take At = 0. 0 1. We then use (6.2. 3) to determine the exit 

trajectories. 

The escape trajectories are generally to be found in the 

neighborhood of the origin, with the heaviest concentration occurring 
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in an ellipse with a semi -major axis of about 1. 0 in the () -

direction and a serrri-minor axis of about 0. 7 in the w-direction. 

The trajectories for the damped pendulum appear to spread more 

rapidly than the trajectories for the damped oscillator because the 

damping parameter for the former problem is smaller and the 

noise parameter is larger. Again, we observe that the escape 

trajectories generally spiral outward along the rays, and that if 

the trajectories do not successfully exit, then they are attracted 

back to the neighborhood of the origin. 

Finally, we present a plot of five escape trajectories for a 

process with a limit cycle. In this example, (6. 1. 1) becomes 

Y(k+1) = Y(k) + [Y(k) _ x(k) _ Y(k)(<x(k))2 + (y(k))2)].D.t+ 8 .J .6.t g
2 

(6.2.4) 

We assume the initial point is on the limit cycle at ( 1, 0), and take 

8 = 0. 707 and At = 0. 01. As we can see from Fig. 6. 2. 5, the 

escape trajectories are most heavily concentrated in the neighbor-

hood of the lirrrit cycle. The concentration is not as heavy about 

the limit set as in previous examples because the magnitude of the 

noise parameter is greater. Hence, individual steps in the random 

walk approximation to the diffusion against the flow will tend to be 

longer . The excursions from the lirrrit cycle occur both toward 

and away from the boundary, as we would expect. 
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The results of this section are in qualitative agreement with 

the results of Chapter II. The function v(~;8) is proportional to 

the stationary probability distribution for the process being studied. 

In each of the figures, the dynamical system was most likely to be 

near the limit set within a region whose width was approximately 

8. It is apparent that the predicted results are more in agreement 

with numerical simulation as the noise parameter becomes smaller, 

but numerical simulations with smaller values of the noise could 

not be conveniently performed to more fully check this hypothesis. 

6. 3 Numerical Simulation to Determine the Distribution of Exit 

Positions 

In this section, we present results of the nurn.erical simula­

tions of a lightly damped linear harmonic oscillator, a damped 

pendulum, and a dynamical system with a lirnit cycle, in order to 

study the distribution of exit positions for these systems. In all 

examples in this section, we let the particular process being 

studied exit 250 times in order to determine the distribution of 

exit positions. 

In Figures 6. 3. 1 and 6. 3. 2, we plotted histograms of the 

exit positions of a damped linear harmonic oscillator, which exited 

from a unit circle, centered at the origin, in the phase plane. The 

left end of the axis corresponds to the ang le 0 in polar coordin ates 

a nd the r ight e nd corresponds to the angle 2or. In F i g . 6. 3. 1, we 

set 8 = 0. 707, !3 = 0. 25, a nd ..t.t = 0. 01, and used (6 . 2. 1) to calculate 

the exit trajectories. In Fig. 6.3.2, we set 8= 0.3535, !3 = 0. 25, 
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and .D..t = 0. 01, and then repreated the calculations. In both cases, 

all trajectories started at the origin. The predicted distribution, 

shown as a broken line, is (250j,r) sin 
2e, which is symmetric about 

e = 1T. Note that Fig. 6. 3. 1 is not particularly symmetric and that 

the simulated exits were generally distributed about e = ¥- and e = ~1T. 

When the magnitude of the noise parameter was decreased, then the 

distribution of exit positions, as shown in Fig. 6. 3. 2, became much 

more symmetric. The distribution broadened its elf out and the 

predicted curve fit it much better. There are still more exits near 

-rr 31T e = - and e = - 2 than Chapter II predicts, but this is to be expected 2_ 

since these are the most probable positions of exit for the system, 

and the tails of the distribution near e = 0, 1T, 21T are the least 

probable positions of exit . 

In Figs. 6. 3. 3 and 6. 3. 4, we plotted his tog rams of the exit 

positions of a damped pendulum, which exited from the region 

bounded by w
2 

= 2 cos
2 ~ in the phase plane. The left half of the 

axis represents the boundary in the lower half of the phase plane, 

and the right half of the axis represents the boundary in the upper 

half of the phase plane. In Fig. 6. 3. 3, we set 8 = 0. 707, j3 = 0. i25, 

and .D..t = 0. 01 and then used (6. 2. 3) to calculate the exit trajectories. 

In Fig. 6.3.4, we assumed 8= 0.5, j3 = 0.125 and .D..t= 0.01, and 

then repeated the calculations. As before, all trajectories began 

at the origin. In both figures, there are generally more exits near 

the peaks of the predicted curves, shown as broken lines, than the 

results of Chapter II would predict, and there are not as many exits 

near the tails of the distribution. Again, as the noise parameter 
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was decreased, the number of exits near the tails of the dis tri­

bution increased. A gain, it appears that th e predic ted dis tribution 

of exit positions is approximating the simulate d distribution bett er 

as the noise parameter £becomes smaller. 

Finally, w e consider Figs. 6. 3. 5 and 6. 3. 6, which are 

histogram plots of the exit position of a dynamical system with a 

limit cycle. The left end of the axis represents the polar angle 0 

and the right end represents the polar angle 211. In Fig . 6.3.5, 

we set £ = 0. 8 and ..6-t = 0. 0 1, and used ( 6. 2. 4) to calculate the exit 

trajectories. In Fig. 6. 3. 6, we set£= 0. 707 and At= 0.01, and 

repea ted the calculations. In both cases, all tra jec tories began at 

the point ( 1, 0) on the limit cycle. In both figures, we obs e rve 

that the di s tribution i s subje ct to a great deal of irregularity. 

Qualitatively, the distribution in F i g . 6. 3. 6 m ight a ppear s moother 

because the excursions from an approximate mean level are not as 

large in mag nitude . However, due to the relative ly great size of 

the s mall parame ter £, it is difficult to determine whether the pre­

dieted distribution of e x it pos itions is r e ally meaningful. 

In order to more fully demonstrat e that the theory of Cha pter 

II predicts correct results, we would need to de.crease the mag nitude 

of the noise parameter £ and increase the number of exits used to 

calculate the final distributions. This w ould be most costly in 

terms of c ompute r time. It is appar e nt, however, that the g oal o f 

r e a s onable c omputabili ty of exit t r aj e ctori e s c onflic t s ·with the 

d esir e to take the noi s e parameter £ a s small a s possible. Further-
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more, in order to justify the asymptotic results obtained in Chapter 

II, we should pick £. significantly smaller than the values which we 

assumed when performing the calculations presented in this section. 

Based upon the results for the damped oscillator and the damped 

pendulum, we are confident that the results of Chapter II are 

correct for sufficiently small £.. 

6. 4 Numerical Simulation to Determine Mean Exit Times 

In this section we present the results of numerical simula-

tions of a damped linear harmonic oscillator and a damped pendu-

lum ·which were made in order to study the mean exit times for 

these dynamical systems. In Figs. 6. 4. 1 and 6. 4. 2, mean exit 

times and the standard deviations of the mean exit times are given 

for a damped oscillator and a damped pendulum, respectively. The 

standard deviation of the mean was computed using the formula 

s = 
2 

(T. - T) 
1 

The sample mean is based upon 100 exit times. 

(6. 4. 1) 

The parameter 

values for each process are given in the appropriate figure. 

If one examines the figures, one notes that the predicted 

value is generally lower than the sample mean. The predicted 

values range from about 1. 3 times too grea[· when £. = 0. 707 to about 

0. 7 times the predicted value when £ = 0. 3535. We expect the 

discrepancy between prediction and simulation to have two sources; 

the value of the terms in (2. 4. 48) is approximated incorrectly, and 
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the numerical approximation used in the simulation provides an 

answer which is too low. We shall now comment on both sources 

of error. The greatest amount of error is probably caused by 

making an asyrnptotic approximation with a parameter which is too 

. 2 { cpmin} large. We J.gnored terms of order C exp - --
2
- , but in the 

c 
numerical simulations, C is riot particularly small, especially when 

compared ~th the damping parameter ~. It is encouraging that 

the ratio of the predicted mean exit time to the simulated mean 

exit time does not continue to decrease as C becomes smaller. The 

second possible source of error is much more subtle. We are 

trying to approximate a system of differential equations with a finite 

difference numerical scheme. The analytic solution should always 

be greater than the numerical solution because of the time lag in 

the Euler scheme (6. 1. 1). This difference ~ll become smaller as 

the parameter At decreases because the time lag for the effects of 

the stochastic perturbation to be felt is smaller. 

The results of the numerical simulations given in this chapter 

indicate that we are faced with a dilemma. We would like to check 

the accuracy of the results of Chapter II using numerical simulations, 

but the computations become intractable. Nonetheless, predictions 

based upon the results of Chapter II do appear to match simulated 

values as the noise parameter C becomes smaller. It is on this 

basis as well as the agreement of asymptoti~ results when exact 

solutions are known which gives us confidence that the theory 

proposed in Chapter II is valid. 
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Figure 6. 4. 1 

£ 13 L:,.t Mean Std. Dev . Predicted 
Value 

0.707 0.25 0.05 3 . 86 0. 27 3 .44 

0 .707 0.25 0.05 3.36 0.30 3 . 44 

0.707 0.25 0.03 3. 13 0.26 3.44 

0.707 0.25 0.03 3.33 0.28 3 . 44 

0.707 0 .25 0.01 2. 7 2 0.24 3 .44 

0.707 0 . 25 0.01 2.65 0.20 3.44 

0.707 0.5 0.05 4.52 0.43 3.20 

0.707 0. 5 0.05 4 . 93 0.44 3.20 

0.707 0. 5 0.03 5.04 0.50 3 .20 

0.707 0.5 0.03 4.79 0.37 3.20 

0.707 0.5 0.01 4.23 0.3 8 3.20 

0 .7 07 0. 5 0.01 4.82 0.39 3.20 

0. 5 0.25 0 .0 5 8 . 52 0.7 3 6.39 

0.5 0.25 0.05 8.00 0.66 6.39 

0. 5 0.25 0.03 7.38 0.58 6.39 

0. 5 0.25 0.03 7 .53 0. 71 6.39 

0.5 0. 25 0.01 6 . 63 0. 50 6.39 

0.5 0. 25 0.01 8 . 10 0.63 6 . 39 

0 .5 0. 5 0.05 21.96 1. 66 13.40 

0.5 0.5 0.05 19.31 1.63 13.40 

0. 5 0.5 0.03 21 . 61 2.04 13.40 

0.5 0.5 0.03 20.73 1. 81 13.40 

0.5 0.5 0.01 20.40 2 .06 13.40 

0.3535 0. 25 0.05 30 . 04 2.67 26. 80 

0.3535 0. 25 0.03 35.51 2 .61 26.80 

0.35 35 0. 25 0.01 43 . 87 3.83 26. 80 

0 .3535 0.5 0.05 452 .5 8 43 . 94 372.50 

0 . 3535 0 . 5 0.05 481 .7 2 47.51 372.50 

0.3535 0. 5 0.0 3 628 . 48 53.30 372 . 50 

0.3535 0. 5 0.03 541. 57 58 . 21 372.50 
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Figure 6 .4.2 

.6t Mean Std. Dev. 
Predicted 

Value 

0.707 0. 125 0 .05 15 . 32 1. 38 11. 60 

0.707 0. 125 0.05 15.45 1. 27 11 . 60 

0.707 0. 125 0.03 15 . 47 1.31 11. 60 

0.707 0. 125 0.03 13.42 1. 00 11. 60 

0.707 0. 125 0.01 16. 10 1. 29 11. 60 

0 .707 0.125 0 .01 14.46 1.22 11. 60 

(J. 7 07 0.25 0.06 38.67 3. 18 20.43 

0.707 0.25 0.0 5 36 . 75 3.36 20 . 43 

0.707 0.25 0.03 32.20 3 . 22 20 .43 

0.707 0.25 0.03 34.91 3.01 20.43 

0.707 0.25 0.01 40 . 53 3.71. 20 .43 

0.707 0.25 0.01 37.62 3 . 57 20. 43 

0.50 0. 125 0.0 5 59 . 65 5 .0 8 42.90 

0.50 0.125 0.0 5 57.60 5.05 42.90 

0.50 0. 125 0.03 59 . 58 5 . 42 42 . 90 

0. 50 0 . 125 0 .03 62.85 5 . 42 42.90 

0.50 0. 125 0.01 72.44 6 . 32 42.90 

0. 5 0 0. 125 0.01 65.62 5.93 42.90 

0.50 0. 25 0.05 692 .7 9 66.44 585.32 

0 . 50 o. 25 0.0 5 728.35 68.22 585.32 

0 . 50 0.25 0 . 03 685.22 62 . 41 585 . 32 

0. 5 0 0. 25 0.03 913.53 97.73 585.32 
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