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ABSTRACT

The problem of "exit against a flow" for dynamical sys-
tems subject to small Gaussian white noise excitation is studied.
Here the word "flow" refers to the behavior in phase space of
the unperturbed system's state variables. "Exit against a flow"
occurs if a perturbation causes the phase point to leave a phase
space region within which it would normally be confined. In
particular, there are two components of the problem of exit

against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the
solution of each component of the problem of exit against a flow
is, in general, the solution of a singularly perturbed, degenerate

elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the
asymptotic solution in terms of an unknown parameter, The un-
known parameter is determined using the solution of the adjoint

boundary value problem.

The problem of exit against a flow for several dynamical
systems of physical interest is considered, and the mean exit
titnes and distributions of exit positions are calculated. The sys-
tems are then simulated numerically, using Monte Carlo techniques,

in order to determine the validity of the asymptotic solutions.
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INTRODUCTION

It is known that dynamical systems, even asymptotically
stable systems, will exit from any bounded domain in phase space
if they are perturbed with white noise for a suitably long period of
time. It is the purpose of this thesis to study this problem of
exit for asymptotically stable dynamical systems which are forced
with small Gaussian white noise in order to determine the mean
exit time and the distribution of exit positions. To this end, the
first chapter consists of the mathematical formulation of the

appropriate boundary value problems.

In the second chapter, we demonstrate that regular pertur-
bation techniques are inapplicable to the boundary value problems.
We use singular perturbation techniques to generate uniformly valid,
asymptotic solutions to the boundary value problems in terms of an
unknown parameter which we are unable to determine using
singular perturbation principles. Instead, we apply methods
suggested by Matkowsky and Schuss to determine the unknown
parameter. We modify the technique of Matkowsky and Schuss in
order to predict the mean exit time and the distributior of exit
positions from an asymptotically stable limit cycle as well as

asymptotically stable equilibrium points.

A comparison of our results with the results of other authors
is made in the third chapter. The theoretical results of Ventsel’

and Freidlin are studied as are the results of Matkowsky and Schuss.



The asymptotic results of the mean exit time problem, calculated
using the results of Miller and Ludwig, are also compared with

our results from the second chapter.

The fourth chapter is devoted to a study of the distribution
of exit positions for various dynamical systems. We demonstrate
that the asymptotic results of the second chapter agree with the
asymptotic approximation of the exact solution in the case of the
Ornstein~Uhlenbeck process. We study the asymptotic distribution
of exit positions for two problems of physical interest: a damped
linear harmonic oscillator and a damped pendulum. We conclude
the chapter with a studjr of the asymptotic distribution of exit

positions for a dynamical system with a limit cycle.

We study the mean exit timne for these same four dynamical
systems in the fifth chapter. We show that the asymptotic results
of the second chapter agree asymptotically with the exact solution
of the mean exit time problem for the Ornstein-Uhlenbeck process,
We calculate the mean exit times for a damped linear harmonic
oscillator and a damped pendulum, and compare the results. Then

the mean exit time for a process with a limit cycle is determined.

In order to answer how small a small parameter must be
for wvarious dynamical systems, we present the results of Monte
Carlo simulations in the sixth chapter. Wer' test the hypothesis
that a dynamical system will exit at the most probable point on the
boundary as the noise parameter becomes small. We use the

simulations to study the mean exit time and the distribution of exit



positions for the damped, linear harmonic oscillator, the damped
pendulum, and a system with a limit cycle. We conclude the
chapter with a discussion of the possible sources of discrepancy

between the simulated results and the predicted results.
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CHAPTER I

The aim of this chapter is to review known results for
infinitesimal operators of Markov processes. We begin by
examining a process whose behavior is governed by a stochastic
differential equation and then we derive the infinitesimal generator
for the process. We shall conclude the chapter by giving inter-
pretations to two different boundary value problems associated with

the infinitesimal generator.

1.1 Infinitesimal Generators for Markov Processes

We wish to study the effect of perturbing dynamical systems
with Gaussian white noise. Let 2 be a bounded domain in IR"
whose boundary 9Q is smooth. Let x(t) = col(xi(t),xz(t), "',xn(tb
represent the behavior in time of some dynamical system or

— o 2 R
process. Let b E(t)) = col(o ((t)), bT(x(t)), , b (E(t))) be a
bounded, smooth vector field in . ‘We now consider a dynamical

system, or process, governed by the differential equation
L x(t) = blx(t)) (1.1.1)
dt = A= ks

It is often more convenient to consider the differential form of

(1.1.1):

d x(t) = b (x(t)dt (1.1.2)

If the deterministic system (1.1.2) is perturbed by Gaussian white

noise, the resulting motion >_s:8(t) satisfies



dzg_a(t) = E(Es(t))dt + 80‘(}_58(t))dy_(t) Clsil . 3)

where cr(ga(t)) is the diffusion matrix, w(t) is an n-dimensional
Wiener process (brownian motion), and g is a small, real

parameter.

We observe that (1.1.3) is the form for which Ito's Lemma
for a stochastic calculus is most useful. We also note from (1.1, 3)
that if we know §8(t), then we do not need ES(S)’ s <t in order to

calculate 7_{_8(t+‘r), T>0. Thus Es(t) is a Markov process.

We consider Markov processes whose transition probabilities

p(t, i__?,_; s, x)dE = Pr{g{_a(t)e(g_,g_-}-dg_) ]}ig(s) = E}

satisfy the following conditions: for 6>0,

\
Efjio Fous ) p(s+At, £35, x)(E, -x,)dE = b, (x)At+o(At) 1<i<n
T jlex]l<s
n
giﬁ [ ... [ P(s+at, g_;s,E)(§1~Xi)(§j-xj)d§_=82Z crik(g)trki(@ﬁt%(m)&
T Jemx]l<s k=1 '
1<i, j<n
Al?:jr(l) f f p(s+At, €35, x)dE = o(At)
e -x|[>6 y

(1.1.4)



B

Notice that the vector 13(}58(1:)) characterizes the average trend of
evolution of the random process Eg (t) in a small increment of
time from s to s+ At, subject to 3_«:_8(5) =x, and is called the drift

coefficient.

We now invoke Ito's Lemma for the n-dimensicnal Markov

process ga(t):
Let f:R" - R
Let z(t) = f(ga(t)).

Expand =z(t) in a Taylor series, retaining the first two terms:

E)X BX

L& 0%
z(t+dt) = z(t) + Z dx 0 +5 ), —g dx (t)dx (t)  (1.1.5)
’J =1

Thus we see that



n n

of
a0 = %, 2 [y ()ae + 8.21 o0 (a0
J:

1 & a%
+5 Z —C |:b (x (£))dt + az, 1 (E (1) dwk(t)] $
i,j=

J
18X8

Il
¥ [bj(ge(t))dt # sZ %y (gs(t))dvvf(t):l
=1

A of 8
= Z e l:bi(gi_s(t))dt + SZ O‘ij(ﬁs(t))dwj(t):t

el g j=1
2
13 9°f 2
b5 b 1.3 [bi(:‘i_s(t))bj(f_’ia(t) (dt)
ij=1 "~ [

n
+ebylx (8) ), o5 (g () (1) dt
£4=1

n
+Eb(x (8) ) Oy (2, (8))Aw, () dt
k=1

n
2 ) oty (8) oy (g (6))dwy (1) dvgy (o)
k,0=1

(1.1.6)

When we apply Ito's multiplication table for the infinitesimals of the

n-dimensional Markov process §8(t):



dt dwi(t) dwz(t) T dwn(t)
dt 0 0 0 Bk 0
dwl(t) 0 dt 0 0
dwz(t) 0 0 dt 0
0
de(t) 0 0 0 dt

Figure 1.1.1

we find that

n
dails) = {5 lj(x (t ) + Z b,(x, (t)) — b
’J 1 8 i=1 8
= of
te ), o, (6) 5wl (1.1.7)
i,j=1

where (aij(;ig(t)bz a(:’_gs(t)) = U(Ea(t)) O'T(;gs(t)). A proof of Ito's

Lemma can be found in McKean [13].

We can write this more compactly as

n
vy OF
da(t) = (Af)(x  (D)dt +€), 0,0, (8) "~

i,j=1

(1.1.8)

We call the operator A the infinitesimal generator for the Markowv

process Es(t).
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1.2 An Interpretation of Problems Involving Infinitesimal

Generators for Markov Processes

If we know Eg(t) for some time ty, we define a bounded
Markov time T for the process }_ga(t) to be a bounded time for an
event which is independent of }_:a(s) for s < ty- In particular, let
T be the time at which the process }__i_s(t) first reaches the boundary

of ©, 02, provided that 2(__8(0)65. We define 7= 0 if 358(0)6852. We

integrate (1.1.8) between 0 and T to find

o
f dz(t) = z(t) - =z(0)
0

= Iz (1) - iz, (0))

T T of
- fo (Af)(ia(t))dtJraJ(; > crij(gc_a(t))-é-;l—dwj(t) (1.2.1)
i,j=1

Let E_ (-1=E[" [}iS(O) = x | be the conditional expectation given that

the process g{_g(t) begins at the position g_geff. If we apply the
operator Ex[] to both sides of (1.2.1) we find
£, [ty () -t (0] =

of
- ’ L2
= dw-}(t):l {(1.2.2)

3 v 3
B[ [ a0t @atref T w0
i,j=1

Since w(t) is a Wiener process, the second term on the right hand

side of (1.2.2) vanishes and we find



T

B, [t (1) -

» (Af)(zc;s(t))dtil = £(x) (1.2.3)

o~

This is Dynkin's formula for the n-dimensional Markov process,

. (Eh

We now note that

Il

E, [f(gg (Tn]

u(x)
solves the boundary wvalue problem

Au(x)

il
(=)
%
m
2

u(x) = f(x) x€0Q (1.2.4)

To see this, we observe that due to the definition of the Markov
time T, Es(t) €2 for t< 1. Suppose we can find a function u(x)

which satisfies (1.2.4). Then Dynkin's formula (1.2.3) becomes

u(x) = E_ [u(ES(T))] (1.2.5)

Since the boundary condition in {1.2.4) states u(zc_a(-r)) — f(ga('r)),

the result follows.

Thus u(x) represents the conditional expectation of an
arbitrary function f of the exit position of the Markov process

§8(t) from Q. Since u(x) can be expressed as the integral around
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92 of a certain kernel multiplied by the function f(ggg('r)), we find
that the kernel represents the probability distribution of the exit
position on 982 of ;gg(t)_ For purposes of calculations, we generally
assume that the function f is a smooth (CCO) function of the boundary

al iy
values 58( )

A second problem associated with the process Es(t), the
mean exit time problem, can be formulated in the following
manner: Suppose we can find a solution v{x) of the boundary

value problem

v(x) = 0 : x €80 (1.2.6)

When we apply Dynkin's formula (1.2.3) we see that

' - T
v = B v ) - [ Av(ggg(t»dt]

b

|H

= K FT]. (1.2.7)

X

We see that the solution wv(x) of 1.2.6) represents the conditional

expectation of the exit time T of the Markov process :3;_8(1:) from Q.
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CHAPTER II

The purpose of this chapter is to study the asymptotic
behavior of the mean exit time and the probability distribution of
exit positions of the Markov process Es(t) from 2. We are
primarily interested in studying the solution of these problems for
small ¢ in the case of diffusion against a flow. Singular pertur-
bation techniques are used to demonstrate the existence of boundary
layers and a method for determining unknown constants which

appear in the solution is developed.

2.1 Introduction

We now consider the problem of exit. Due to the presence
of noise, the Markov process ?is(t) does not follow a trajectory
which is known a priori because there is diffusion present. When
the parameter & is small, note that the infinitesimal generator A
becomes a singularly perturbed differential operator. Then Ventsel
and Freidlin [15] tell us that there are three distinctly different

types of diffusion problems to consider:

a) diffusion along a flow
b) diffusion across a flow

c) diffusion against a flow

For diffusions of type @), trajectories given by the deterministic

equation (1.1.1) exit from  (see Fig. 2.1. ia)
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Figure 2.1. 1a

Results for the singularly perturbed boundary value problems of

this type were first given by N. Levinson [9] in 1950.

For diffusions of type(b), trajectories given by the deter-
ministic equation (1.1.1) do not exit from 2. A particular
example is the case where the trajectories are concentric circles

(see Fig. 2.1.1b).

O

Figure 2.1,1Db

In general, the critical point for (i.1.1), a center, will lie in .
Khasminskii [6] was the first to use singular perturbation techniques
to compute the probability distribution of the exit points for this

type of diffusion.

Diffusions of type(c) also have trajectories which do not exit

from Q (see Figure 2.1, 1c).
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Figure 2.1. 1c

The difference between type(b) and type(c) is that the trajectories
of the latter type pass from the boundary to some limit set (limit
cycle, focal point, star point, etc.) which is asymptotically stable
in the absence of noise, The problem for small ¢ has been studied
by Ventsel' and Freidlin [15], [16], Ludwig [10], Matkowsk-y and
Schuss [11], [12] and others. We are concerned with the study of

diffusion problems of this type.

In the second, third, and fourth sections, the singularly
perturbed nature of the solution will be examined for general
problems of diffusions of type (¢), and a method will be described

to determine the solution of the boundary wvalue problem.

2.2 Outer Solution of the Singularly Perturbed Boundary Value

Problem

Consider the process Ea(t) which is governed by (1.1.3).
Let v(x) = col(v1(§), vz(g), T vn(§)> denote the outer normal vector
to 92, We require that all trajectories of the deterministic system

(1.1.1) converge to a limit set as time t increases and that the

drift vector b(x) satisfy



=} 2=
blx) - v(x) = ), bHx) v,(x) < 0 xedq (2.2. 1)

This is the requirement that ensures that the diffusion problem (1. 1.3)

is of type (c).

We wish to apply perturbation techniques to the study of the

boundary value problem

Au(x) = gl(x) x e (2.2.2)
u(x) = £(x) x€edN
in the case where the parameter g tends to zero. The solution of

this boundary value problem can represent either the mean exit
time of the Markov process Ez(t) from 2 or it can represent the
probability distribution of exit positions; in the former case, we
set g(_g). = -1 and f(x) = 0, and in the latter case, we set g(x) =0
and f(x) to be an arbitrary smooth function. We require that the
solution of the mean exit time problem be nonnegative in Q and the
solution of the problem of the probability distribution of exit
positions be the integral of f(x) multiplied by a nonnegative kernel

which can be suitably normalized.

In accordance with regular perturbation theory, we begin by
assuming that we can represent the solution u(x;g) and f(x;g) as

power series in g:
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2)

U.(}i;g) ~ Ll( (X) -[-8 U. (_) + & u( (21—) g 7o

i se) ~ f{o)(g y+ B f(l)(X) + & e )( x) +°°° {2.2.3)

Substitute this ansatz into (2.2.2), equate the coefficients of the

various powers of 82. We find
o 9 (0
Y, b 5o ulV(x) = g(x) xeQ
- 1
A (2.2.4a)
u(o)(gc_) = f(o)(g) X €082
- phig B s o L o ij 8% (ik-1) o
Z ®oox. ¢ () = - 2 Z a™(x) ax.0x. (=) 2
" i ) i3
wl () = £ () () xedQ ) (2.2, 4b)
e = BT,

We see that the components of the drift vector b(x), the sub-
characteristics of the problem, determine the leading order
asymptotic behavior of the solution u(x ;e). Since (2.2.4a) is a
linear, first order, partial differential equation, we solve it using

the method of characteristics. We introduce characteristic curwves

given by

x(t) = b(x(t)) . (2.2.5)

e



As an initial condition, we set x(0)edQ. Along these characteristic

curves, we note that
L o)) = gz (2.2.6)

At this point, we consider the problems of the mean exit time and

the probability distribution of exit positions separately.
Problem 1: Probability distribution of exit positions

In this problem, g(x(t))=0. Thus u(o)(g(t)) remains constant
(0)

along the subcharacteristics. The wvalue of u' ’'(x(t)) is of course
determined by where the subcharacteristic crosses the boundary.
However, as the parameter t increases, all subcharacteristics
converge to a limit set. At the limit set, the wvalues of u(o)(z_g (t))
from all subcharacteristics must be identical. We are forced to
conclude that we cannot satisfy the boundary conditions and the
consistency conditions at the limit set simultaneously. We assume
then that the solution u(o)(g(t)) is composed of two parts: an
"outer solution" which is valid in most of 2 and an "inner solution"”
which is wvalid near the boundary 9f22. Thus we have a singularly
perturbed boundary value problem. For the "outer solution," we
take uouter(E(t)) to be an unknown constant. We shall determine

the "inner solution," or boundary layer correction in the next

section.

Probiem 2: Mean exit time

For this problem, we set g(x(t)) = -1 and f(x) = 0. Then
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u(o)(§(t)) decreases monotonically along the subcharacteristics. But

u(o)(:f;_(O)) vanishes, so we see that the solution we have generated

violates the physical requirements of the solution. If we assume
-2 - -2p+2 (- -Z2p+ ~

ufx ;a8) ~ & Pyl ID)(ﬁ) + g Pt ul pﬂ)(zs) 5 g oPH p+2)(g-;_)+ - (2.2.7)

for some positive integer p, substitute this ansatz into (2.2.2), and

equate the coefficients of the various powers of sz, we find

Z b(x) 8x u( p)(X) = 9 xeN
(2.2.8a)
u{"Plx) = 0 x€dQ
n n 2
N0 (K)o 1o\ _ij Sk=D) )
2 by g @ = =b -5 ), 2V 5p = (x)
i=] * .J=1 1]
xef2 &
u(k)(é) -0 x € 892 (2.2.8b)
k = -p+l, -p+2, =-p+3, °°° ;
where 6k 0 is the Kronecker delta. When we solve (2.2.8a), we
find that u(_p)(zi) is constant along the subcharacteristics. Since

u('P)(g vanishes on 9§, we conclude that u(hp)(:_g) vanishes
identically., Since p is an arbitrary positive integer, we are
forced to conclude that there is no uniformly wvalid solution of

(2.2.2) in the form of (2.2.7) for any positive integer p. This
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conclusion, combined with the observation that the solution must
grow unbounded for all points in £ in the absence of noise since
deterministic system will always remain in 2, suggests that the
solution u(x;g) might be transcendentally large compared with any
finite power of ¢ as g tends to zero in some portion of 2. This
immediately suggests that there should be a boundary layer some-
where in 2, because the solution would be transcendentally large
in some portion of 2 and would vanish on the boundary 9. Again,

the problem is a singularly perturbed boundary value problem.

In order to test this hypothesis, we rescale u(x;¢g) as
u(x;e) = Ce) vix;e) (Z:2.9)

where Cg) is transcendentally large compared with any finite
power of ¢ as £ tends to zero and v(x;£) remains bounded as g
tends to zero. In addition, we assume that v(x;g) can be expanded

as a power series in g
vix;e) ~ v(o)(zc_) re?v g + a4v(2)(z<_) c (2.2.10)

Substitute the ansatz for u(x;g) into (2.2.2) and divide by the scaling

factor C(g) to find

Aig) = Ted.Te e

ks

v(x;e) = 0 x€ed Q (Z.2.11)
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Substitute the ansatz (2.2.10) into (2.2.11) and equate the

coefficients of the various powers of 82. We find

n
E X) 8X1 V(O)(X) = 0 xeQ
3= (2.2.12a)
V(O)(E) &= x€08
S iy B (K Ly i, 8% (k-1
b o v - 1), e g2 e xea )
i=1 . i,j=
A gy = %€ Y (2.2.12D)

.J

We solve (2.2.122) by the method of characteristics to find that V(O)

is constant. If we apply the boundary conditions, we would be
forced to conclude that v(o)(g_) vanishes identically in £, and hence
by induction, all v(k)(§) would vanish identically in 2. This is
clearly unacceptable, and since we already had suspicions of the
existence of a boundary layer somewhere in 2, we conclude that

V(O)(E) represents an "outer solution” which is valid away from the

boundary 0 €,

Thus we are forced to conclude that the "outer solution? of

the (2.2.2) is given by

E}?J.)cer(“’z) ~ constant. (2.2 1.3)
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Perturbation theory has forced us to the conclusion that the
solution of (2.2.2) behaves differently in different portions of Q.
For that part of Q2 which is away from the boundary, we conclude
that the solution is the "outer solution" which is constant. For
that of @ which is near the boundary, the solution will be the
"inner solution.” In the next section, we examine the "inner
solution” of (2.2.2) and determine a uniformly valid asymptotic

representation for the solution of (2.2.2).

2.3 Inner Solution of the Singularly Perturbed Boundarv Value

Problem

We saw in the previous section that the behavior of the
solution of (2.2.2) was different near the boundary layer than it
was elsewhere in 2. We shall now construct a boundary layer

expansion using singular perturbation theory.

In accordance with standard singular perturbation practice,
we wish to couple the higher order operator in (2.2.2),
82‘/2 Z aij(,z) a/axi a/axj, with the drift term, Zbi(ﬁ) 8/8xi. We
would like to do this by introducing a local coordinate system near
the boundary, stretching one of the coordinates appropriately, and
applying matching conditions on the boundary 9 and as the
stretched wvariable grows unbounded. Unfortunately, there is a
subtle difficulty in this précedure; we do nbt know how to extend
the boundary values into the interior of £. Thus, we do not know

how to fully define the boundary layer correction.
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Instead, we assume that the boundary layer correction has

the form

{(x)
uinner(ﬁ) = CO  h Z(E’_{_) exp{-»--é-} (2.3. 1)
)
where
t(x) =0 X€oR
z(x) = f(x) -C xedQ (2.3.2)

0

Substitute (2.3.1) into (2.2.2), and equate the coefficients of the
various powers of 32. The leading order equation, O(s_‘,-z), is the

eiconal equation for {(x). In particular, {(x) satisfies

- «:  Btfx) aL(x) 2 . 9t(x)
LY o g e - L Ve 0. xen @39
a0 R '

Since the boundary 92 is the level surface {(x)= 0, we note

Vix) = |V ]| x€0Q (2.3.4)
where n(x) = unit inner normal vector to the boundary. We can
now determine IV {,(&)]. We observe that if we substitute (2. 3.4)

into (2.3.3), we obtain

- b z = |
D) aYnn Ve | - ), P |Viw] =0 xete (2.3.5
i,j=1 i=1

Then we ignore the solution |V §(§)|E 0 and find
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2b(x) " n(x)
Vi) = >0 x €9 (2:3.6)
n”(x) a(x) n(x)

where it is understood that the magnitude of the gradient may be
infinite and that L'Hopital's rule mmay be required to determine the
magnitude. Now that we have determined the magnitude of V {(x)
on the boundary, we solve (2.3.3) using the method of rays. Let

p = V{(x). Then (2.3.3) corresponds to the Hamiltonian

n — ‘[ .
Hip) =2 ) 29(x) p,p. - 3, bxp, = 0 (2.3.7)
i,j=1 i=1

The corresponding system of ordinary differential equations for the

rays 1is
dx. no.. :
i 9H”H o\ _1) _yd B ey, S
t ip, ~ L ® E v i=1,"",n  (2.3.8)
j=1
dp. & . it -
i oH _ 1 +« 0 jk 3 ( j
de - Tox, ~ "2 Z 8=, \? (?5)) PP = )i B A P (E))pj
‘ i . i
jrk=1 j=1
i =k ™ sm (2.3.9)
Along such a system of trajectories, we set
ag n dx. 1 n .
— £ ___3- T 3\ 1J S5
T -H(x, p) + Z’ P; 9t 2 Z a (}i)pipj = O (2.3.10)
i=1 i,j=1

We solve the equations (2.3.8)-(2.3.10) subject to the initial

conditions that



. .

p,(0) = 5‘3— t(x(0)) = | V&) | n, (x(0) (2.3.11)

£(0) = ¢(x(0)) = 0

The next leading term in the perturbation hierarchy of equations,

O(go), is the transport equation for z(x). In particular, z(x)
satisfies
- 84 (x) )y & az(x)
- Z &zl [Sx o=, 2 1 a Ox. ] Z b () = g(=)
. 177 j -1 1
N i
x €2 (2. 3.12)

We can again relate the partial derivatives to derivatives along the
rays to find that z(t) = z(x(t)) satisfies

2 8% (x(t)) _
Terz )l 2P g ) = -st) x0e@ (2.3.13
J

i,j=1

subject to the initial condition that
z(0) = =(x(0)) = £(x(0)) - C, (2.3.14)

When we solve for {(x), we have found the leading order term of
"the "inner solution! of (2.2.2). When we match the "inner
solution” and the "outer solution' of (2.2.2), we find that the

leading term in the uniformly valid asymptotic expansion for u(x;g)
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in {(2.2.2) is given by

L(x)
u, , (x:8) ~ Cy + zl(x) exp{- — } . (2.3.15)

u. 82.
It should be noted that the only requirement on the matrix (aij(g)\
is that it be symmetric and positive semi-definite. If the matrix
is singular, there may be a set of nonattainable, or inaccessible
points on the boundary. Exit from Q is impossible with probability
one on this nonattainable set of points unless the process }_ga(t) is
initially at some point in the set. An example of a dynamical
system with this type of behavior will be given in Chapter IV. In
the next section, we present a method for determining the unknown
constant C0 in (2.3.15) by using the solution of the homogeneous

adjoint problem of (2.2.2).

2.4 Determination of the Unknown Parameter

We see from (2.3.15) that we have determined the leading
order asymptotic solution to (2.2.2) in terms of an unknown param-
eter CO' That this is so is not particularly surprising since the
unknown parameter is a global constant for the problem and the
underlying tenent of singular perturbation theory is to solve a
series of local problems and then match the solutions in such a
manner as to generate a uniformly valid asymptotic representation
for the solution., Thus in problems where the so-called "outer
solution” is not required to meet prescribed boundary conditions,

we can expect that the solutions will be expressed in terms of
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unknown parameters. We now present a method for determining

the unknown parameter(s).

We begin by multiplying both sides of (2.2.2) by a function
vi(x;g) which will be determined later and integrating over £2. We

find

.
f {{5 Z al(x) 2B Bx == 4 Eb( )g—H}v(x £)dx = f [ g(x)vixe)dx

i,j=1 j i=1
(2.4.1)
Integrate the left hand side of (2.4.1) by parts to find
2 n 2 n i
\ \ 8
[ {5 T a2t vt - B o (2 vz o)) vyuls;
o - j il K
i,j=1 i, j=1
B,
i I
+ ), brEulme)vixe)v, tds
§=l
2 n 5
+fof{% Y S ( Uig)vixs e)) - 2 (b (2)vx ©)) bule)dx
- i,j=1 J i=1
S [esvizio)as . (2.4.2)
Q

We see that if v(x;g) is a solution of the boundary value problem

s}

n
) ax B, ( RIENEE) e))- Z 5, (b (vl 8)) 0. x&Q
i,j=1 J i=1

2 B - n .
Y == (aY@vime) v, - ), b@vimelv; =0 xedn (2.4.3)
EN

i,j=1 Y i=1
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then (2.4.2) reduces to

fag Z al‘](x)v -—v(x £)ds = f [ e@vixe)dx (2.4.4)
:J =1 J

We seek a solution of (2.4.3) of the form

(
v(x;g) ~ exp{ e [w(o)(x + & W(l)(x) + & w( )(§) + :I (2.4.5)
8

where v(x;g) =1 at the limit set. Substitute this ansatz into (2.4.3)
and equate the various powers of 32. We find that ¢(x) satisfies

the eiconal equation

n do(x) 9ep(x) 2 . Bex)

1 1J i ==

z Z (=) 8X ox, + bi(x) ox. 8 EEs
i,j=1 b= "

L B dolx) &

5 a13(§)vi(;§.‘_) + Z b (__)v (x) = X€EDQ (2.4.6)
i,j=1 i ia

Again, we associate (2.4.6) with the Hamiltonian

n |

1 . .

Hixp) = 3 ), 2 (@pp;+ ), by x €
i,j=1 i=1

<}

[2
[

{2:4.7)

The corresponding system of ordinary differential equations for the
rays is

dx.

e . OB ~ 13 6 o
dt - 9p, "Z: (XP +b(_) i=1,"",n (2.4.8)
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4, oH Lo @ e = § 1.

i RN - - U W S X SR B A%,

dat ~ T ax, z ) B (a (}—*))Pipk g = (b (3‘—))93'

1 5 i | ¥ il
J,k:l J:l
i =0, L, (2.4.9)
Along such a system of trajectories, we set
do e R SN
= Hzp + ), P =5 ), @ ()PP 20 (2.4.10)
i=1 i,j=1

We now examine the behavior of ¢(x) near a single, stable limit
point at the deterministic system (1.1.1). At the limit point, we

take ¢(x) = 0 and require that ¢(x) achieve a minimum wvalue there.

We solve (2.4.6) using a method employed by Ludwig [10].
Cover © with a family of rays which depend upon the parameters

t, 919 3 On_i. Then

I
Il

}—‘—(t’ 83" 8y )

o
1l

p(t 6,750, ) (2.4.11)

Define the Jacobian of the transformation between x and (t, 8) by

dx1 8X1 8x1
dt 891 aen_l
J & : 5 - (2.4.12)
dx ax ox
n n n
dt 8_91 BE)n_l
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If J+# 0, then locally, the trajectories give a simple covering of
the x - space. Calculate the matrix of second derivatives of ¢ at

the equilibrium point y :

2
° gp(l)) = g (2.4.13
3,05, ) = -4.13)

Then the covariance matrix S satisfies

ob(x) D 8bl(x)
+ ), 5 Sy: = 0 (2.4. 14)
k=1

. n
al(x) + Z Siic
k=1

o0x.
j J

Since ¢{x) and its first derivatives vanish at the limit point, we

approximate ¢(x) and p(x) in the neighborhood of the limit point as

2
no 97 e(y)
i 2
o) = 3 ) gmam Kt V)GTYy + o l=-x*) (0 2 B0
. . i 7]
i, j=1
n 82
pi(z;_) = Z B_ﬂﬂxiaxj (xj-yj) -+ 0(|§—1|> (2.4.16)
j=1 '

The rays cannot be chosen to emanate from the limit point since it
is a singular point of (2.4.8) and (2.4.9). Instead, choose x to
initially be on an ellipsoid

o) = 552 ya) (2.4.17)

x(ty, 8,

where 6 is a small parameter, Si/z denotes the square root of the

matrix S and U(Q) is a unit vector which depends on . Then



.

(2.4.15) implies that

¢<§(t0,5,§_)) =1 6% + o(s%) (2.4.18)

Initial data for p are provided by neglecting the remainder in
(2.4.16)., Thus we can integrate along the rays and construct a
solution in the neighborhood of the ellipsoid. The function W(O)(_}_s’._)

satisfies the transport equation

W) w(0)
= .. . Op(x) O (x) (x)
.Z alJ (_3_5_) B, e + }_{ b (x) -—-—-—-—-—-.—._-
I:J:]- J 1 1
(X) dp(x) - ] cp(x) n gpt (x
[(Z Bx, o= ¥ % 2™ (x) ax 5%, B2, jl Digy=0 (2.4.19)
Li=1 ‘ J i=1

We would like to write (2.4.1) as an ordinary differential equation
along the rays given by (2.4.8), and (2.4.9). Since the rays
cannot emanate from the limit point, expand W(O)(_}_{_) in a Taylor

series about the limit point:

I

BW (v)
W = wO@ + ), —5— -y + o(lx-x)
i=1 *4

=1 + O(5). (2.4.20)

We find the initial condition for w(*)(x(t,,5.0 )) oni the inibial
ellipsoid by ignoring the remainder in (2.4.20). Then we treat
(2.4.19) as an initial value problem, starting from the initial

ellipsoid, along each ray. Observe that the limiting values of o(x)
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and W(O)(_}_i_) give the correct limiting value in (2.4.5) as & — 0, If
the deterministic system (1.1.1) possesses an asymptotically stable
limit cycle, we must slightly modify the previous results. In
order to determine ¢(x) in the neighborhood of the limit cycle, set
©(x)=0 on the limit cycle and study the eiconal equation. Since

the limit cycle is a level curve for ¢(x), note
Volx ) = [Velx )|xx ) (2.4.21)

where z(ﬁL) is the wunit outer normal to the limit cycle at the

point Xy, Substitute this into the eiconal equation (2.4.6) to find
) A -
1., 1 -
i,j=1 i=1

Since _lg_(ggL) -—‘-)—(-}EL) = 0 on the limit cycle, we conclude that

|Volx )| = Volxy) = 0 there,

Near the limit cycle, introduce a local, orthonormal
coordinate system (T(EL),L(EC_L)) where _;r_(EL) is the unit tangent
vector to the limit cycle at the point X1 and —E(EL) is the unit
normal vector to the limit cycle at the same point. Since ¢(x)=0
on the limit cvycle, all derivatives of ¢(x), evaluated on the limit
cycle, vanish in the tangential direction. Then for points x near
the limit cycle, expand goi(gg}, aij(_:g), and bi(g) in a Taylor series

about points on the limit cycle. If

x = x; 7 6x (2.4.23)
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where 6x is normal to the limit cycle at the point X1 then
2 n g 3\
n (9
Pi® = ) prax 0% t3 5% 9% 0w, 0x ox to{|ox] )
k=l "7 7k i k™Y
k,2=1
- . o aaiJ(x )
aV(x) = allx ) + ) —5—= 8x" + o(6x) >(2,4_ 24)
k=1 k
. . B oabl(x )
blx) = bixy) + ), —é;{—i 5= + o(x)
k=1 k w

Substitute these three quantities into the eiconal equation and equate
the coefficients of the various powers of the incremental vector &x.

We find that the coefficient of (6x) is given by

S i %)
Z bim) oG = 0 k=1,"",n (2.4.25)
i=] ik

This is just

constant - LT(ESL) 'V(pk(ggL)) " blx;)
= constant '_KT(EEL) # ad?_'g(ggL)

Thus, (2.4.24) is consistent with (2.4.21). We find that the

coefficient of (6x)° is
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2 2 . ¥ 2
: i M, o Tring) e 2 W) Uln)
2 =L/ 9x.0x 0x.0k ox ox.0x
§ 1 K T £ C g k i 4
1, ]=1 =
3
‘ 0" p(x )
i =L ko 8
+é—b(§L) m}—c—a':z“:l ox &xT =0 (2.4.26)
: i LY
1f
2
) ¢(>_§L)
= ox, 0x )
k2
_ ke
A= (2%=y)
k
= ( ob (zaL))
ox
2
then we note
T . T dP
v ()_EL) [PAP + PB +B P+ E]l’-—(&L) =D (2.4.27)

on the limit cycle. When we rotate coordinates to the tangential-
normal coordinate frame, we note lTPT i T 0. We assume

we can write P as
T TP
P, (£) = B(E) 7l (D) 2" 2y (0) + B) vy () T e (1)
y T
+ v(t) vz (B) v (x; (8) (2.4.28)

Then B(t) satisfies
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ﬁ(t)[zT—:+;v+1TBz+ zTBT1]= 0 (2.4.29)
Hence B(t) = 0 on the limit cycle. Also, vy(t) satisfies

dy(t) dtt) + Yz(t)zT(EL(t))Av(ﬁL(t)) + y(t) [ZT(:,_;L(t))(B+BT)1(_>£L(t))]: 0

(2..4..30)
on the limit cycle, since the Frenet formulas from differential
geometry tell us that dv/dt oc 7. We do not want y(t) to vanish on
the limit cycle, so we note that (2.4.28) is a Riccati equation and

make the substitution
p(t) = vy (¢) (2.4.31)
Then (2.4.29) becomes
aqu(t) - 2p(t) I:y_T(:gL(t))Bz(gL(t))] = zT(}gL(t))Az(zc_L(t)) (2.4.32)
We find that p(t) is giveh by
t 7 ¢ T
u(t) = fods_v_ (ﬁL(S))Ay_(EL(S))eXP{ZfS ds, v (x5 (s Bz, (s, N}
B T
+ p(0) exp{Zf ds1 v (EL(SI))B—V—(EL(Sl);} (2.4.33)
0

Since the motion on the limit cycle is periodic with period t¥*, we

choose p(0) to make wp(t) t*-periodic. Hence
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2 -1
t
e = [1—exp{2f0 asy ey (5Bt (5 0}

E t
[ S as Ty (oAt (s)exp{z [ as 2Tl (5, )BuGs; (5,0}
0] s
I E o
+ft dsy (&L(s))Az(gL(s))exp{Zfs dsgv ™ (xp (s))Br(x; (s4))

t:::
3 zfo ds1KT(§_L(51))BL(§L(51))}] (2.4.34)

We can simplify (2.4.32) by first noting

v Ty (s)Bylx; (s) = tr B - 77 (x; (s)Bxlx, (5))
b (x, (s))Bb(x, (s))
b (xy (s))Bb(x;
=ftr B - >
[blsy ()]
=trB -5 = [m]g(gL(s))iz] (2.4.35)
Define
t:‘,:
exp{f tr B(EL(S))dS} = A (2.4.36)
0

Then (2.4.32) becomes
-1

2 1 F 2 m
p(t) = [1-K ] '[ F;;:*z;;}g‘ j;d3|tﬁ§{j5))l_z (x; (s))Avtx, (s))
' =L

t
exp{2 [ ds, tr B} (2.4.37)
S
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}\_2 t:,: 2

t
K T
o [ as bl (s)] 2 Gy (8)Av(x, () expl2 [ ds, trB
T2 L e 0] ot o ool [y een)]

Thus

d
i

2
07 o(x; (1) )

axkaxﬁ

1) wleg (6) v (g ()

The rays cannot be chosen to emanate from the limit cycle since it
is a singular solution of (2.4.8) and (2.4.9). Instead, choose x o

initially be on a &-~tube

}_{_(to, &) = Xy, * 61(§_L) (2.4. 38)

where 6 is a small parameter. Then in the neighborhood of the

limit cycle

o (x(ty, 6)) =5 Vitg)owT (s (t0)) 8x (xp (6} + o (] bv ] 2) (2.4.39)

p(zc_(to, 6)) = v(to)ﬁx(;_gL(tO)) + o(l 52_]) ' (2.4.40)

Initial data for p are provided by neglecting the remainder in
(2.4.40). Thus we can integrate along the rays and construct a
solution of the eiconal equation in the neighborhood of the &-tube

about the limit cycle.

The solution W(D)(E) satisfies the transport equation (2.4.19).
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We can write the transport equation as an ordinary differential
equation along the rays. In particular the equation for W(O)(g)

along the limit cycle becomes

d 0 0 r 1

Ty W( )(§L(t)) + VV( )(§L(t))Ltr(—2—AP - B)] =0 (2.4.41)
We can immediately integrate (2.4.40) to find

t
W(O)(g_L(t)) - w(o)(z{_L(O)) expf{- [ tr(%AP + B)ds} (2.4.42)
0

If we perform a coordinate rotation, the trace remains invariant.

Thus, if Q = [x,v ], then

tr(%AP+B) = tr(%QTAPQ +0TBQ)

1

S (g JAanle)ptey )y T (e el )+ 5w (e MAp(O)2 ey )6 (e Do)

trl(x ) Bl ) + ¥ (xp) Bulx;)

1
2y(t)

% v(t) + 1T(>_<L)BT(§L) (2.4.43)

This last result is an immediate consequence of (2.4.29). Thus

2
|blx, (£)) ]
tr(%AP+B) - —%a@t—zn(—y—s————-—) (2.4.44)

Then



BB

[bix, (s)) |*
w D, (1) = w®x, (0)) exp ] - fi T o —= )}
Y{(s)
2
[bx; (0)) |
= w(Wx, (0)) | —F— PR . - (2.4.45)

Y(0) bz, (8)) |2

Observe that due to the t¥-periodicity of b(xL(t ) and vy(f)
W( )(§L(t)) is also t¥*-periodic. Again, we determine w(o)(i) on a
&6-tube about the limit cycle and then integrate along the rays given
by (2.4.8) and (2.4.9). Also note that WO(EL) is proportional to
the reciprocal of the speed ]b(xL)l In order to determine the

unknown parameter CO, let

min
“min x€9Q el (&% db)
At the point or points on 9Q where ¢(x) = Prviin® the level surface
o(x) = Prnin is tangent to 9R. Thus, the boundary condition in
(2.4.3) is satisfied there to leading order in & since Vg(x)=|Vo(x)|v.

At all other points on 9%, v(x;&) is transcendentally small compared

with exp{ gamln/g 2} as g LO. Thus, v(x;g) given by the leading term

in (2.4.5) represents an asymptotic solution to (2.4.3).

Now that we have determined an asymptotic representation

for v(x;g), we substitute the result into (2.4.4) to find



B =

o 96 (x) (,;(«;)
fap [% 2 2 [004(5)] —— vt O(az)] e emp -
: i,j=1 J
+ O(g e:>s‘.p{w mln }) ds
=[] g w O (x) excp { - ——}dx (2.4.47)

provided that the leading term on the left hand side of (2.4.47) is
O(exp{ (pmln/ az}). The integral on the left hand side of (2.4.47)

is to be evaluated using Laplace’'s Method. We find

N
g =5 (2.4.48)
where
P(x)
= [ e w Ve exp {- —-}ax
8
B 8L (x) o(x)
+ f -é— Z al‘](ﬁ)vi f(g:_)w(o)(gc_) exp{— }dS
oQ el E‘,
+ O(E, expq - ____.,.,}) (2.4.49)
and where
L QLJ o(x)
B, -é- ), J(___)v w0 x) exp{-——}dS. (2.4.50)
o0 i,§=1 J' 2



But in both the numerator and denominator, we note that we can apply

(2.3.3) and (2.3.4) so that the expressions reduce to

Ax)
N = f . f g(_}i)w(o)(}i) exp{— *—-—}dg
2 sz

B i (0) wlE) 2 “min
Z b ()_;_)vif{ﬁ)w (E)exp{ -3 }dS + O(E, exp{— ——2—}) (2.4.51)
% & &

i=1

!

Q2

and

g P(x)
b= fasz 2,0 ) vy D aexp] - — as (2.4.52)

i=1 &

If the leading term on the left hand side of (2.4.47) is not

O( exp{-— ¢min/az}), then the terms which we have ignored may bé
significant., In that case, the dominant contribution to the boundary
integrals will still occur in the neighborhood of the point or points

where ¢(x) = Prnin but Watson's Lemma must be invoked in order

to evaluate the integrals asymptotically.

Now that we have determined the unknown parameter CO for

the general problem (2.2.2), we can restrict ourselves to the
problems of the mean exit time and the probability distribution of

exit positions.
Problem 1: Probability distribution of exit positions.

We set g{x)= 0

f(x) is an arbitrary smooth function



-38-

We find
o(x) |
[ #0156 v w D x) exp{- — }as
. Jen o~
CO - Ax) (2.4, 53)
[ bl px)w T (x) exp{ - —5-}as
e 19 I

We first note that we meet the consistency condition that CO~1 if

f(x) = 1. Thus the process will exit from £ with probability one in

the presence of noise. Notice also that if there is a unique point
on 2Q where ¢(x) = Penin’ then the probability distribution tends to

a 6-function at that point. If there is not a unique point on the
boundary where ¢(x) = Prnin’ then the effects of the transport term
W(O}(E) become important. Further comparison with the results of

other authors for this problem will be made in the next chapter.

Problem 2: Mean exit tirme problem

We set glx) = =1

f(x) = 0
We find

o{x)
S [V exp{- — }ax
& o i 2 . (2.4, 54)
0 (0) @(x)
[ b)) vE)w'" (x)exp{ - —5}dS
o2 g

We observe that the initial guess regarding the magnitude of the

solution CO was correct since



B

- |
€. = o(exp{ I:Z}n }). (2.4.55)

If the deterministic system (1.1.1) possesses a limit cycle, then we
determine even more about the form of CO. We evaluate the
numerator by noting that ¢(x) is minimized on the limit cycle so
that we can determine the numerator by considering ¢(x) in the
neighborhood of the limit cycle, rotating coordinates into the
tangential-normal coordinate system along the limit cycle, applying
Laplace's method to evaluate the integral in the direction normal to
the limit cycle, and integrating the results around the limit cycie.

Observe in (2.4.44) that

(0) i
W (XL(t}) — Bk P where k = constant. (2.4, 56)
|bGeg (8))]
Thus
Z'ITS J y(t) dt
J YO e )|
C
f b(x) v{x)w (x) exp{— —--2—-} ds
1519 &
enN 2T ft* 27
0 lh(zi_L(t)) I
= 0 (2.4.57)
wo(x) @(x)
[ bl wly) —— esp]>— 48
o2 g 3

We will compare the results for the mean exit problem given by other

authors with the results of this chapter in the next section.
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CHAPTER IiI

In this chapter we compare the results obtained in Chapter
IT with the results of other authors. Since the results of the
previous chapter pertain to both the mean exit time problem and
the problem of the probability distribution of exit positions, we
compare results for both types of problems. The first section is
devoted to a comparison of results for the problem of the prob-
ability distribution of exit positions. The results of the mean exit

problem are compared in the second section.

3.1 A Comparison of Results for the Problem of the Probability

Distribution of Exit Positions

Results for this problem have been published in the
literature for only about a decade. FEarly results can be attributed
to Ventsel' and Freidlin [ 15] who studied the case where the
matrix (aij(§)> is nonsingular. They proved, using probabilistic
arguments, that the problem of determining the exit position can
be reduced to determining the point on the boundary where a
certain function V(y) attains its minimum wvalue. In particular, the
origin is a unique asymptotically stable point and,

viy) = nf (3.1.1)

s )
2 cH(O,y) T, T2

where



I :
LTy

] ] e

H(x,y) is the set of all absolutely continuous

functions ¢(t) such that g(Tl) =0 and -‘(Q(TZ) == g

and T, and T, are arbitrary (3% 1.2)
M. R . i s .
(@ = [ %) a;{ey) (@1 ew) (#-pleen)at (3.1.3)
- g
35, 2t
(245¢)) = (37 (3.1.4)

Thus Ventsel'! and Freidlin assume that there is a unique point on

02 at which V(y) attains its minimum value, so the probability

distribution of exit positions must be a 6-function centered at that

unigue point.

In order to compare the results of Chapter II with the

results of Ventsel' and Freidlin, observe from (3.1.3) that

I (e
T g Ty

) = 0. If we regard the integrand in (3.1.3) as a

Lagrangian

i = L(_(,g(t) , i—f) (3.1.5)

then it can be shown that the Lagrangian corresponds to a

Hamiltonian

where

dy dy
H = Hyp =2 7 - My 3 (3.1.6)
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n
dy. 5
p; = ), 2@ (g - Pw) (3.1.7)
et

Thus, if V(y) is defined as in (3.1.1), then it satisfies the

Hamilton-Jacobi equation

n
1 o _ij, ., 8V 9V i, 8V _
z L @ Way, ay; * L VW gy =0 (3.1.8)
(- J - 1
i, j=1 i=d

But this is exactly the eiconal equation (2.4.6) for a function which
we called ¢(x). Note that V(0)=0 as does ¢(x) at the Iimit point.
Thus, the function which we called ¢(x) is a solution which Ventsel'
and Freidlin would denote by V(y). In particular, if there is a
unique point on 9Q which minimizes ¢(x) (or equivalently V(y)),

then we see from the discussion following (2.4.53) that we have
obtained the correct probability density for the exit position.
Ventsel'! and Freidlin did not demonstrate a method to construct

the solution, and the mathematical tools which they used are in-
capable of determining the distribution of exit positions in the case

where the point which minimizes ¢(x) (or V(y)) is not unique.

Matkowsky and Schuss [11], [12] have been able to extend
the results of Ventsel' and Freidlin. They also restrict themselves
to the case where the matrix (aij(ﬁ)) is nonsingular and to where
the equilibrium points are distinct. They demonstrate the existence
of the boundary layer for the solution of (2.2.2). They also obtain

exactly the same equation for the unknown parameter C, as (2.4. bay,
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Matkowsky and Schuss also examine the case where the vector b(x)
is the gradient of some scalar field y(x). In that case, they were
explicitly able to determine the function ¢(x). The only differences
in the two results are in the boundary layer correction and in the
calculation of the asymptotic representation of the solution of the

homogeneous adjoint problem, V(x;g).

The first difference lies in the calculation of the boundary
layer correction and is rather subtle. The boundary value for the
prob.lem is u(x) = f(x) which is an arbitrary unknown function. It
is not a priori clear how to extend this unknown function into the
interior of © in order to obtain a uniformly wvalid expression for
the solution u(x;¢). There would also appear to be a questién
about how the distance between an arbitrary point x and the
boundary is to be defined so that an "inner solution”" of (2.2.2)
can be constructed. We have chosen to circumvent these questions
by assuming a typical form for the boundary layer correction and
then determining the various unknown functions from the boundary

layer equation and the boundary values.

The second difference lies in the construction of the solution
vz e): We both assume the same fdrm for Vix;e), but we con-
struct the solution in different manners. Matkowsky and Schuss
choose to solve the eiconal equation and the transport equation by
starting at the boundary and integrating their ray equations into
the interior of 2, They then try to meet a final condition on ¢(x)

and w'(o)(-;_;) at the limit point. This is unsatisfying since they are
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unable to prescribe Vg¢(x) on the boundary as an initial condition
for the integration of the ray equations. Instead, we integrate the
ray equations (2.4.8) and (2.4.9) from the limit point outward to
the boundary, using the technique of Ludwig [ 10]. Again, this is a
subtle point. Also, Matkowsky and Schuss do not prescribe

boundary wvalues for the adjoint problem, as in (2.4.3).

Thus we have been able to duplicate previous results in the
case where the matrix (aij(>_:_)), is nonsingular in ©. The results
of Chapter II indicate that this restriction is, in fact, unnecessary
in the general case. In the next section, we compare results for

the mean exit time problem.

3.2 A Comparison of Results for the Mean Exit Time Problem

Various authors have published results in this area for
about fifteen years. Miller [14] developed a technique to study
the persistence of dynamical systems in a genetics problem with
one dimension. The problem was such that the infinitesimal
generator degenerated, i.e., both b(x) and a(x) vanished on the
boundary. Miller started with the Fokker~Planck equation, and
assumed that he could find an eigenfunction expansion where the
minimum eigenvalue would be a reasonable approximation to the
reciprical of the mean exit time. Specifically, if A*v is the
adjoint operator to Au, Miller wanted to determine the minimum

eigenvalue, A_ . , such that
: min

AP 4% .= 0. (3.2.1)
miain
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He integrated (3.2.1) over £ to find

e e (3.2.2)

Hence,

(3:2.3)

Miller required that the solution be integrable in £, that b(x) have
a simple zero at an interior point/z\c and that v(x;g) could be

written asymptotically as

vizig) N% expq - ﬂ}%}} (3.2.4)
g

where 0(x) is a smooth function with @(x)= 1 in the neighborhood of
;;\, and 8(x) = 0 in the heighborhood of the endpoints. He deter-
mined the eiconal equation for ¢(x), set (p(/}\{) = 0, and evaluated

the integral using Laplace's method. He found

1/2
A==
) a(®) | ¢1(R)
Efx] = (3.2.5)

[(p' (x)exp | - 5’?% }]a

Q2

Ludwig [ 10] extended the results of Miller to higher

dimensions. He assumed that



.

P(x)
V(E) L Z(ﬁ) exp{- __2.—} (3.2.6)
4
Thus, to leading order
SO TN ()
1 P —
fan z L =@ o Vi z(x) exp{ - 7 }as
.s =
" - o(x) (3.2.7)

f--- [ 2(x) exp{- ——}ax
o £

This expression is equivalent to (2.4.27), provided that CO = 7\"1 since

n n
=), alx) v, =), b(®v, ; x€dQ  (3.2.8)
i,j=1 J i=1
when ¢(x) = ¢ . Thus the results of Chapter II are consistent with

min
Ludwig's results.

Ventsel' and Freidlin [ 16] have also examined the asymp-
totic behavior of the mean exit time for the case where the param-
eter & is small and where the matrix (alj(g)) is nonsingular. Using
probabilistic methods, they proved that

lim 2 min
28" In Ex [#] = V(EO’X) [%:.2.9)
e [0 = y €9Q
where X4 is an asymptotically stable limit point in £, and V(x,,y)
is defined as in Section 3.%. Observe that these results are
precisely the same as we observed in (2.4.55). We have been

able to determine the asymptotic constant which Ventsel' and



o
Freidlin were unable to determine.

Finally, Matkowsky and Schuss [12] have studied the mean
exit time problem. The method which they employed is the same
as Ludwig's method. An analysis of the validity of each method
will not be presented here, but we will note the restrictions and
summarize the results. The two authors restrict themselves to
the case where the matrix (aij(§)) is nonsingular and the drift
vector b(x) is essentially the gradient of a scalar field. They
demonstrate the existence of a boundary layer for the solution of
the mean exit time problem and calculate the boundary layer
correction. They determine the solution of the homogeneous
adjoint problem and find an equation from which they determine the
unknown parameter CO. The equation for the parameter C0 is

exactly the same as (2.4.54).

Thus we have been able to reproduce previous results when
we restrict ourselves to the conditions which the original authors
used. We have been able to extend the results to the general

problem of exit against a flow.
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CHAPTER 1V

We devote this chapter to a study of asymptotic represen-
tations for probability distributions of exit positions for various
dynamical systems. We are interested in the asymptotic results
when the magnitude of the noise perturbing the systems is small.
In particular, we are concerned with a study of the probability
distribution of exit positions for the Ornstein-Uhlenbeck process as
well as a damped linear harmonic oscillator and a damped pendu-
lum subject to Gauésian white noise excitation. We also study an
example of exiting from the domain of attraction of a stable limit

cycle.

The chapter is divided into five sections. In the first
section, we present the asymptotic evaluation of the exact solution
of the distribution of exit positions for the Ornstein-Uhlenbeck |
process. The results of the second section predict the asymptotic
distribution of exit positions, using the results of Chapter II. The
third section is concerned with a study of the asymptotic distribution
of exit positions for the damped linear harmonic oscillator, In the
fourth section, we study the asymptotic distribution of exit positions
for the damped pendulum. Finally, we study a process diffusing

from an asymptotically stable limit cycle.

4,1 Asymptotic Evaluation of the Probability Distribution of Exit

Positions for the Ornstein-Uhlenbeck Process

We begin with a study of the probability distribution of exit
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positions for the Ornstein-Uhlenbeck process. This process models

a damped linear harmonic oscillator with a negligibly small spring

constant. The equation of motion becomes
.. - _ d
x(t) + B x(t) = & Frwlt) (4.1.1)

If we write y(t)= }:;(1:) and take P =1, we can rewrite (4.1.1) as
dy(t) = -y(t)dt + €dw(t) . _ (4.1.2)
Take Q= {y: -a <y< b} where a > 0, b> 0. The boundary value

problem which one must solve in order to study the distribution of

exit positions for the Ornstein-Uhlenbeck process is given by

2 du du
= T3 " Y¥Y§e -0 ye &
2 dyz dy
{4.1.3)
u(y; &) = f(y) yedn
We can formally integrate the equation twice to find
¥ 2
u(y; ) = f(-a) + a'_[a exp{i—f} dz . (4.1.4

When we apply the boundary condition at y = b, we find

=3

b b

2 Y 2 2
exp{—z—z}dz] -(f(b)fexp{'z—z-}dz + £(-a) [ exp{-z—z'}dz] (4.1.5)
) - -a 4 ) 3

u(y;€) = (f‘

- -a
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In the notation of Chapter I, we note

¥ 2

f exp{z—i dz

~ £

Py_{xa(-r) =b} = z (4.1.6)

f exp{% dz
-a &

1

b 7 2
f exp{'—i} dz

€
Py_{xa('r):—a} ‘lb s (4.1.7)
f exp{z-z- dz
-3 £

Observe that the integrals involved are such that the maximum
contribution occurs at the end points, When we evaluate the
integrals using Laplace's method, we find we can distinguish three

separate cases:
Case 1: a < b.

Provided that y is away from either end point, we see that
Py{xg("r):b}"‘ 0 and PV{XE(T):—EL}"’i, If vy is near b, then
PY{XS(T):b}~1 and Py_{xz(-r):—a} ~ 0. Conversely, if y is near -a,
then Py{xg('r) Zb} ~0 and Py{xg(‘r) = -a} ~ 1. Thus we expect that
the Ornstein-Uhlenbeck process will be far more likely to exit at
the point y = -a, provided that the process does not start too close

to the point y=b initially,
Case 2: a = b,

If v is away from either endpoint, we see that Py{xs(-r):b}'”
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Py{xa('r) = -a}~ 1/2. If y is sufficiently near either endpoint,
then the probability of exit at that point will tend to one. Physically 7
we would expect that the process would be about equally likely to
exit from either side due to symmetry, provided that it was not

too close to either endpoint initially.
Case 3: a>b.

We find that the results in this case are exactly the opposite of the
results in case 1. Apgain, we would expect that the Ornstein-
Uhlenbeck process would be most likely to exit at the point closest
to the origin, provided that the process was not too close to the

other boundary initially.

These results agree with physical intuition and are presented
only because we can solve the boundary value problem exactly. In
the next section, we use the theory developed in Chapter II to
predict the distribution of exit positions for the Ornstein-Uhlenbeck
process. We then compare the results of this section and the next

one.

4.2 Predicted Probability Distribution of Exit Positions for the

Ornstein-Uhlenbeck Process

We know from the previous section that the boundary wvalue
problem which we must solve in order to determine the probability

distribution of exit positions for the Ornstein-Uhlenbeck process is
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Z2 52
£ d u du
S e e === ve(-a,b)
2 dyz dy
(4.2.1)
u(-a) = f(-a) ; u(b) = £(b)
When we apply the theory of Chapter II, we assume
£,(v) £, (y)
1 2
u(y;e) ~ CO + zl(y) exp{-— — 5" }+ ZZ(Y) exp{— 2 } (4.2.2)
€ €
where ?;,l(y') is small near y = -a and Z_’,z(y) is small near y =bh.

Because the boundary 0f2 consists only of separate points, rather
than being smooth, we observe in (4.2.2) that we do not have
smooth functions z(y) and {(y). We find that we have two separate
boundary layer corrections which becoﬁne transcendentally small
compared with any finite power of 82 at the opposite endpoint. The

homogeneous adjoint problem is given by

52 dzv d
5" ——2'+ a—(yV)=0 ye€(-a,b)
dy ¥
(4.2.3)
€ dv o
2 dy+yv_

By inspection, the properly normalized solution of (4.2.3) is
2
#ly jg) ~ exp{- S} (4.2.4)
&

The parameter CO is given by
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B2 | a2
bi(b) exp{ = —-2-'} + a f(=+a) e:{p{ - -—-2-}
O~ ‘ e . (4.2.5)

b2 a
bexp{— 7} + aexp{— 3
& e

In order to specify the solution u(y;g), we must now solve for zl(y),

QI(Y)’ ZZ(Y), and E,Z(y). For y near the point y = -a, we note

2
dg.(-a) d¢.(-a)
1 1 1
Take
dg,(-2)
T w 2o
So 'C,l(y) = 2a(a + vy) (4.2, 7)

From (2.3.13) we see that z (y) satisfies
X g (4.2.8)
along the rays, with zl(y(O)) = f(~a) = C,. Thus
2,(v(0) = =)(y) = f(-a) - G, (4.2.9)

Similarly

L5(y) = 2b(b-y) (4.2.10)

z,(y) = £(b) - C, | (4.2.11)
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Hence

2 2
bf(b)exp{ - 13"2-} + a f(-a) exp{- a_z}
& g

wlyra)— > 23
b exp{— }3"2'} + a exp{n _a_z}
g £

2 2
a I:f(b) £ —a)]eXp{ - Lﬂ%@*ﬂ}m [f( -a) -f(b)]exP{ . b_(_Maz 2 )}
L £

b o
b exp{-— -—2-} + aexp{- 5
& & (4.2.12)

Thus, using the notation of Chapter I, we see that

2 2 2
bexpq - b_z'}+anP{ - = +Z}2) = )}Hbexp{ - b________(_—l—Zaé a.+2)}
£ £ £

gl =B = B 2
bexpq - —2-} + aexp{ - ~——2—}
- & (4.2.13)

2 2 2
aexp{ - -a—’z—} -aexp{ i E—j‘zi)éi‘b:ﬂ}—l-bexp{ - b +Zaé!a+y)}
PY{XS (7) = —a} = (3] £ e

bz a,2
b exp{- —'Z'} + a exp{- ——2—}
& €

(4.2.14)
Again, we find that we can distinguish three separate cases:
Case 1: a < b
We see that if y is away from either endpoint, then P_y_{xs('r) = —a}

~ 1 and PY{XS(T) = b}~ 0. If y is near b, then Py{XS(T) = "b} =1,

Converselﬂr, if y is near -a, then PY{XE(T) = -a} ~ .,
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Case 2 :a=>b

We see that if y is away from either endpoint, then PY{XE(T): -a}
~ PY xg('r):b}'“ 1/2. As in the first case, the probabilities tend to
the limiting 0-1 probabilities as the initial point y moves to either

endpoint.
Case 3: a>b
The results for this case are exactly the oppositive of case 1.

We see that we have obtained exactly the same results using
the theory developed in Chapter II as we found in the first section
of this chapter. In the ﬁext section, we examine the problem of
the probability distribution of exit positions for the damped linear

harmonic oscillator.

4.3 Probability Distribution of Exit Positions for the Damped

Iinear Harmonic Oscillator

We now turn to a study of the distribution of exit positions
of a damped linear harmonic oscillator subject to Gaussian white

noise excitation. We can write the equation as
x () + 2p x(t) + x(t) = & dw(t) (4.3.1)

In differential matrix form, we can write this as

<(t) ) \ 0 0 dwi(t))
d " at + & (4.3.2)

y{t) -2.[3y(t)—x(t)/ 0 1 dw,(t) |
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The boundary value problem which we must solve in order to

determine the distribution of exit positions for this dynamical

system is given by

82 82'1.1

ou ou
> ayz - 2By + x) —-ay + v T 0 (x,y) e
(4.3.3)

u(x,y) = f(x,y) (x,y) €0

We take Q :{(x, v) :x2+y2< rz} so that the boundary represents a

surface of constant energy in the phase plane. When we apply the

theory of Chapter II, we assume that we can represent u(x,y;e) as

u(x, v;e)~ CO + z(x,v) exp{-— _é_(i%Z_Y_)} (4. 3.4)
e

In order to determine the unknown parameter CO’ we must solve

the general boundary value problem (2.4.3) which for this process

is

i?i‘f_ _Q_.[z +)]__3_[ ]—0 (x,v) e
28Y2+8Y(5V X)vi =g | YV = >y

(4. 3. 5)
82 ov
(—2— 5_}--# (2[3y+X)V)vY'-YWX =0 (x,y) €0

J

We assume that v(x,y;e) has the asymptotic form (2.4.5) so that

the eiconal equation and boundary condition for ¢(x,y) become
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2
1(2¢ B & w08 &
> By) - (2B v+ x) 8y+y8x_0 (x,y)eQ
(4.3.6)
19¢ E
(Zay'Z?’V‘X)"y”LV"x“O (x,y)eod

In order to calculate ¢(x,vy), we must calculate the matrix of
second derivatives at the origin. The covariance matrix S satisfies
the linear matrix equation (2.4.14) which, for this problem, we

write as a system of simultaneous equations:

Sip t 85y = 0 (4.3.7a)
=544 -25512+s22:0 (4.3.7b)
522—511—2ﬁ521:0 (4. 3. Te)
1 —s21-25522-512-2{3522:0 (4.3.7d)
Thus, one finds that S = % I . On the initial ellipsoid about the

origin we assume that

i

o(x,y) = 28 (X2+Vz) + 0(X2+Y2)

qax(x, y) = 4px + o( '\/x2+yz ) > (4. 3. 8)
qay(x,y) = 43y + o ('\/xzi-y?) =

/
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Starting from the initial ellipsoid, we integrate ga(x(b),y(t)) along the

rays given by

x(t) = y(b) )
y(e) = ~(28y(0) + =(v) + q()
. > (4.3.9)
p(t) = q(t)
alt) = 2pq(t) - p(t)
v,
to find that
olx,y) = 2p (x2+y2) (4.3.10)

is the solution of the eiconal equation. At the boundary, the outer

normal unit wvector is given by

viey) = (3) (4.3.11)

Then ¢(x,vy), as given by (4.3.10) also satisfies the boundary
condition of (4.3.6). Furthermore, ¢(x,vy) is properly normalized

at the origin.

We must now find the transport term W(O)(X,Y). The trans-

port equation is

(0) (0) (0)
4y a;vy +y ?g; - (2py+x) a‘gy - [—21— 4p - Zﬂ:‘w(o) =il ki B L2
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We can rewrite this as an ordinary differential equation along the

rays:
L w‘o)(x(t),y(t)) = (4.3.13)

Since W(O)(x,y) is assumed to be unity on the initial ellipsoid, we

find that W(O)(X, yvi=1 in Q .

Then the unknown parameter CO is determined by

J, 26 y) Blesy) - ps y) exp - 23} as
Q g

f b(x,v) - v(x, y) expq - ﬂ%—ﬁ}ds
oQ £

2w 2
—f f(r, ) 2pr sinzeexp{— gﬁ%} dée
0 €
- 2m g
—f 2pr sinZB exp{— -zﬁ—g‘*-}de

0 ‘ g

1 2 2
—~ [ f(r,0) sin“6ds (4.3.14)
™

1l

Now that we have determined the parameter CO’ we can calculate

the boundary layer correction. We find from (2.3.6) that

'Vg(x,y)l = 4B r (4.3.15)

Thus we see

V(s y) = -4;5(?) (4.3.16)
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So

Lixy) = 2B (x2-x2-y?)

Along the rays defined by

2t = -~y )
y(E) = 2B y(t) + x(t) + q(t)
> (4.3.17)
p(t) = a(t)
alt) = 2Bq(t) - p(b) )

we find that the transport term z(x,y) satisfies the initial value

problem

c%z(x(t)"ﬂt)) - Z@Z(x(t),y(t)) = f)
(4.3.18)
Z(X(O)’ Y(O)) = f(X(O),Y(O)) = CO

So we see that z(x(t),y(t)) = [f(x(O),y(O)) —CO] ezﬁt.

The form for z(x(t),'y‘(t)) tells us how to extend the boundary
conditions into the interior of §2. As t becomes large, z(x(t),y(t))
will tend toward z(0,0) due to the requirement that the rays converge
to the limit set for large time. However, due to the form of {(x,y)
we observe that the region where the boundary layer correction

term is significant is only O(g) wide. In order to predict the
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distribution of exit positions from a point (x,y) in the boundary
layer, we would trace backward along the ray passing through (=, y)
to find from where on the boundary the ray emanated since the
trajectory of the process is most likely to be near the given ray for
short distances. If the initial point (x,y) does not lie in the
boundary layer, then the distribution of exit positions is isinze
where 6 is the conventional polar angle. Note that the points =0
and O=m are asymptotically inaccessible points on the boundary,
provided that the initial state of the oscillator is not at either point,
since sinZG vanishes there. This is to be expected since the
direction of the noise is tangent to the boundary at =0 and 6 = .
Thus we have been able to mirror a physical phenomenon in the

mathematics.

4.4 Probability Distribution of Exit Positions for the Damped

Pendulum

We now consider the problem of determining the distribution
of exit positions for a damped pendulum subject to Gaussian white

noise excitation. We write the equation of motion as
6 (t) + 2B 8{t) + sinb(t) = gdw(t) . (4.4.1)

In differential matrix form, we can write this as

6 (t) w(t) 0 0} [dw,(t)
d = dt + ¢ (4.4.2)
w (t) -2 w(t)-sing(t) o 1 dWZ(t)
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The boundary value problem which we must solve in order to determine
the distribution of exit positions for this particular dynamical system

is

52 8211 . u 3] :
ST (2Bw+sing) 'é':-i- W= 0. (8, w)e

ow 6
(4.4, 3)

u(g, w) = £(4, w) (6, w)e 82

We take Q2 = {{9, w) :wz—Zcosg < 2}. When we apply the theory of

Chapter I1I, we assume that we can represent u(g,w;g) as
u(g,wig)~ Cy + 2(6,) expf- B} (4.4.4)
&

In order to determine the unknown parameter CO’ we must
solve the general boundary value problem (2.4.3). For this

particular dynamical system, we must solve

2 L2 —
§-2-~ -:;—2‘5+ 5?—; [(2{3w+sin6)v] - 8—86- [wv] =0 (6,w)e2
(4.4.5)
a
[@E_ 5—}4— (2Bw+sin8)v:| B, B, = 0 (6,w)e 00

We assume the general asymptotic form (2.4.5) for v(6,w;g) so that

the eiconal eq