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Abstract

We consider the radially symmetric nonlinear von Karméan plate equations
for circular or annular plates in the limit of small thickness. The loads on
the plate consist of a radially symmetric pressure load and a uniform edge
load. The dependence of the steady states on the edge load and thickness is
studied using asymptotics as well as numerical calculations. The von Karman
plate equations are a singular perturbation of the Foppl membrane equation
in the asymptotic limit of small thickness. We study the role of compressive
membrane solutions in the small thickness asymptotic behavior of the plate

solutions.

We give evidence for the existence of a singular compressive solution for
the circular membrane and show by a singular perturbation expansion that
the nonsingular compressive solutions approach this singular solution as the
radial stress at the center of the plate vanishes. In this limit, an infinite
number of folds occur with respect to the edge load. Similar behavior is
observed for the annular membrane with zero edge load at the inner radius

in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of
this family, for plates with edges that are elastically supported against ro-
tation. At some thicknesses this approgimat,ion breaks down and a bound-
ary layer appears at the center of the plate. In the limit of small normal
load, the points of breakdown approach the bifurcation points corresponding

to buckling of the nondeflected state. A uniform asymptotic expansion for
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small thickness combining the boundary layer with a multiscale approxima-
tion of the outer solution is developed for this case. These approximations
complement the well known boundary layer expansions based on tensile mem-
brane solutions in describing the bending and stretching of thin plates. The
approximation becomes inconsistent as the clamped state is approached by
increasing the resistance against rotation at the edge. We prove that such
an expansion for the clamped circular plate cannot exist unless the pressure

load is self-equilibrating.
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CHAPTER 1

Introduction

The design of light-weight structures often requires the determination of
the behavior of thin plates undergoing deformations greater than their thick-
ness. Linear plate theory is valid for deformations that are small compared
to the thickness; thus, a nonlinear theory is required for the study of this
problem. The von Kéarman theory is a nonlinear treatment valid for defor-
mations that are small compared to the large dimensions of the plate. We
study the steady states of the von Karman equations for circular and annular
plates subjected to a pressure load and a horizontal edge load in the asymp-
totic limit of small thickness. In particular, we are interested in constructing
solutions with compressive radial stress. In the limit of small thickness, the
von Karman plate equations are a singular perturbation of the Foppl mem-
brane equation. The main goal of this dissertation is to delineate cases where
it is and is not possible to approximate compressive plate solutions in some

asymptotic sense by compressive membrane solutions.

Formulation of the Problem. We take a plate with outer radius R, inner
radius aR and thickness H; the dimensionless parameter a is the ratio of inner
to outer radius; for the circular plate a = 0. The independent variables r, 8,
z represent postion in the undeformed plate in polar coordinates. We assume
radially symmetric deformation with the vertical and radial displacements of
the midplane z = 0 being w(r) and p(r), respectively. A schematic of the

deformation is shown in Figure (1.1). We denote by o, 0., and o, the normal



The Undeformed Plate The Deformed Plate

FIGURE 1.1. Deformation of an annular plate

The independent variables r, #, and ¢ represent position in the undeformed plate.
The dependent variables w and p measure the vertical and radial displacements in
the deformed plate.

stresses in the radial, circumferential, and vertical directions; in von Karman

plate theory, shear strains and stresses are considered negligible. We let

Oy = —V.

Note that positive © corresponds to compressive radial stress. It may be

shown that in the von Karman plate theory the circumferential stress is given

by
- dv
o, = —0—r—.
dr
A normal pressure p is applied to the upper surface = = H/2; we assume

that the pressure is positive at the inner radius aR. The normal stress in the
vertical direction is given by
H ) p(r)
um (54 H) 2
: 2/ H
We specify w(R) = 0 to locate the plate in the z-direction and let

1 dw
N = ——. 1.1
- r dr (1.1)
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Clearly, then, the vertical displacement of the midplane is given by

Also, the radial displacement is given by

plr) = ,% (rzg +r(1 — u)ﬁ)

where v is Poisson’s ratio. Thus, the normal stresses o,, 0., 0. and the
displacements w and p may be determined from the functions @ and v.

The equations of the von Karman' theory are the compatibility equation

Z(dzﬁ 3dv

= echoer Y. 1.2
E dr'*’+rdr) 4 (1:2)

and the equilibrium equation

d ; 1. d . ;
r— 1£1-2'&+ — (Tz'&'!}) — l (1.3)
dr rdr

dr rdr hR

for r € |aR, R|, where 4* = (6(1 — 1*))"! and F is Young’s modulus. Multi-

plying through by r in (1.3) and integrating from the inner radius aR to r,

we find
%(')rH)2 (1'2(;27? + 3r%) + r2id = r?g(r) + A (1.4)
where ¢ is
i) = — | eple)ds

and A is a constant given by

- E, o ,d% dii N
A= E(WH) (a W(a) +3a-d;(a.)) + a*u(a)v(a).

Lok 1. 4. Stoker, Nonlinear Elasticity, 1968
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We obtain a dimensionless form of the equations via the transformations

H r
"SR TR
R Z .
w= —1i, f = i),
T )
_R. 2
¥="Fg¥ "~ 73RE
where
3
s _ VR
=1 SfaR
=g PleR)
This choice of 7 gives us
2
g(z)~]—% as r — a.
T

We have utilized the assumption that p(aR) > 0 so that 7 > 0; the case of
p(aR) = 0 must be normalized differently. Note also that the dimensionless
parameter h may become small in a number of ways. We will refer to the
parameter h as the “thickness” because it varies directly with the actual
thickness H in the case of fixed outer fadius and pressure load, but it should
be kept in mind that A is also influenced by the magnitude of the pressure

load.

Using the above transformations, the equations (1.2, 1.4) become

y 3 A
R*(u" + —u') + un = g(z) + =,
i ) = (1.5)
v+ = = ol
T

for £ € [a,1]. The equations (1.5) along with suitably chosen boundary
conditions constitute the von Karman plate theory, which we employ for our
study of thin radially symmetric circular or annular plates. The von Karman

plate theory is discussed further in Appendix .
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For well-posedness, five boundary conditions are required. In the case of
the circular plate, we have three conditions arising from the requirement that

the solution be smooth at the origin. These are
A =0, u'(0) = 0, v'(0) = 0. (1.6)
For annular plates, we specify the radial stress at the inner edge
v(a) = n, (1.7)
and we take the conditions corresponding to a free edge
au'(a) + (1 + v)u(a) = 0, a*u(a)n = A. (1.8)

The last two conditions are the natural boundary conditions arising from the
variational formulation of the problem. Physically, the former implies that
the bending moment vanishes; the latter is a joint requirement embodying
the shears and rate of change of twisting moment. Note that in the case
n = 0, i.e., no applied stress at the inner edge, we have A = 0. For specified
n # 0, we cannot determine A a priori. For a given value of A, we define the
function g(z) = g(z) + A/z* .

At the outer edge in the case of either circular or annular plates, we
specify the stress

v(1) = A, (1.9)
and also we impose one of two boundary conditions:
u'(1) +Qu(l) =0, @Q>1+v or wll] =10 (1.10)

The first case, (1.10a), corresponds to the outer edge being elastically sup-

ported against rotation as described by MANSFIELD.? If @ = 1 + v we say

% The Bending and Stretching of Plates, p.17, 1964
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that the plate is simply supported: the support against rotation vanishes. As
@ increases, the strength of the support against rotation increases; in the
limit @ — + o0, we obtain the clamped edge condition (1.10b).

We study each of these problems individually in the asymptotic limit as
h — 0, and also we consider the limiting case; the plate elastically supported

against rotation passes into the clamped plate as Q@ — +oo.

Singular Perturbation of the Membrane Problem. The von Karmaéan

theory of thin plates is a singular perturbation of the Féppl® membrane equa-

tion
3 ~2
" + ot = 2 (=) (1.11)
& v?
for z € |a. 1], with boundary conditions
v'(0) =0 or v(a) =n,
(1.12)

As in most singular perturbation problems, we cannot expect the thin plate
solutions to pass uniformly into the membrane solutions as the thickness h
vanishes. We wish to study compressive plate solutions; thus, we attempt
to form asymptotic expansions for the plate solutions based on compressive

membrane solutions.

Compressive Membrane Solutions. We will first discuss the properties
of the compressive solutions of the membrane equation (1.11). The existence
of a branch of compressive circular membrane solutions is demonstrated by
CALLEGARI, REISS AND KELLER.' In this paper, phase-plane analysis is

performed in the case of uniform pressure load to show the existence of a value

5 Vorlesungen iiber technische Mechanik, Vol. 5, 1907

* Comm. Pure Appl. Math. 24 (1971)
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FIGURE 1.2. Continuation diagram for the circular membrane

The family of compressive circular membrane solutions for uniform pressure load

3(z) = 1 is shown. The components of the solution plotted are the radial stress

at the edge v(1) = A (abscissa) and the radial stress at the center v(0) (ordinate).

The folds A, and A, can be seen on the large scale plot; the inset shows the folds

A> and A;, which are closer to the limit A.,.
of the edge load, A, for which there are an infinite number of membrane
solutions. The compressive solution branch has an infinite number of folds
with respect to the edge load and the fold points converge to A.. These
folds are illustrated in Figure (1.2) where the compressive solution branch is
shown for the case of uniform pressure load.

It is observed by CALLEGARI, REISS AND KELLER that for uniform

pressure load, i.e., §(z) = 1, there exists a singular solution of the circular

membrane problem

which satisfies voo(1) = Aw = (2)3. This solution is compressive for z € (0, 1]
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but has v(0) = 0, while v'(z) becomes unbounded as r — 0. It may be shown
by phase-plane analysis that in the limit v(0) — 07 the solutions converge to
this singular solution.

In the second chapter, we will present evidence that such a singular com-
pressive solution exists for the circular membrane under arbitrary smooth
pressure load and also for the annular membrane with vanishing radial stress

at the inner edge. Specifically, we propose an iteration procedure

g

vo(z) = (§7)°,

i) = [ (e-5) 218 4,

0 o 2”,2.(5)

which we conjecture will converge to a singular compressive membrane solu-
tion. The iterations are carried out approximately using numerical integra-
tion, and these calculations support the conjecture of convergence. For the
annular membrane with n = 0, a similar iteration procedure may be defined
to obtain a singular compressive solution.

We derive the asymptotic behavior of the solutions near this singular
solution via perturbation analysis. The fold points Ay, Ay, ... alternate

about the limit A,. Thus we find

/\Zm < A:\) < A'.‘.m-»]

for m > 0. It is also observed that

Azm < Azmsz  and  Azpmiz < Agmin-

The asymptotic analysis gives these results for the folds A, Apmy1, ... Where
m is sufficiently large; numerical calculations for a variety of pressure loads

confirm that this property holds for m > 0. Thus, for Ay, < A < Appia,s
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there are 2m + 2 distinct solutions; for Ay, 1 < A < As,_q, there are 2m + 1
solutions. For 0 < A < )y, membrane solutions do not exist.

The fold points A,,, A,..» are called successive fold points; from the asymp-
totic analysis, the spacing between successive fold points is found at leading

order to decrease geometrically; i.e.,

Ansz — A x Antz — A
;- I Y ) s s SN} (1.13)

An o An—‘l An+l o Anfl

where b = exp(—57/4/23) =~ 0.038. These ratios are obtained for sufficiently
smooth pressure load given the assumption that the pressure does not vanish
at the center of the plate. For the annular plate with n = 0, the asymptotic
behavior (1.13) is also observed with the same value of the constant b as
for the circular membrane provided the pressure does not vanish at the inner
edge. The case where the pressure does vanish at the center or the inner edge
may be treated similarly, but a different value of b is obtained. A generalized
form of the circular membrane is studied by FIER® using phase-plane analysis,
and our results agree with the asymptotic behavior obtained in those cases

where both methods are applicable.

Plate Solutions—Background. Although solutions of the von Karman
plate equations with various boundary conditions have been studied using ap-
proximate methods by many investigators, few theoretical results are known
concerning plate solutions with compressive radial stress. For the case of van-
ishing pressure, the unbuckled states corresponding to zero vertical deflection

(v = 0) can be found exactly. The radial stress v must satisfy

5 Ph. D. Thesis, California Institute of Technology, 1985
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For the circular plate, this state has constant radial stress; for the annular
plate, the radial stress has the form
v = o+ ;

where a and 3 are chosen so that the conditions v(a) = n, v(1) = A are
satisfied. Buckled states for this problem have been studied by FRIEDRICHS
AND STOKER,® KELLER, KELLER AND REISS,” and WOLKOWISKY.® In
the first paper it is shown that for the clamped circular plate there is one
pair of buckled states with no internal nodes—an internal node is a point
z € (0,1), where u(z) = 0—for all values of A greater than the buckling load
A1 = h*z,%, where z, is the nth positive zero of J;; no other buckled states

exist when )\ is less than or equal to Ay = h%z,%.

In the second paper it is
shown that for every positive integer n a pair of buckled states with n — 1
internal nodes exists when the edge load ) is slightly larger than A\, = h%z,*.
The pairs of buckled states differ only in the sign of u. In the third paper it is
shown that these pairs of buckled states continue to exist for all A > A,. This
result is also extended to the case of the simply supported circular plate.
Fewer results are available for compressive solutions in the case of nonvan-
ishing pressure. KEENER AND KELLER® have applied perturbed bifurcation
theory to show that for small pressure load the bifurcations from the unbuck-
led state are perturbed in such a way that the solution branches separate from

each other—bifurcation is no longer present. On the other hand, asymptotic

analysis suggests that the perturbed solutions are asymptotic to the unper-

© Amer. J. Math. 63 (1941)
7 Q. Appl. Math. 20 (1962)

® Bifurcation Theory and Nonlinear Eigenvalue Problems, 1969

? Lecture Notes in Mathematics, Vol. 280, 1972
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u(0)/h
o

A/R2

FIGURE 1.3. A sketch of perturbed bifurcation for small pressure load

The bifurcation diagram for the case of vanishing pressure load is given by the
dashed lines. The solid lines represent families of solutions for the case of small
pressure load. Three different loads are shown; as the load becomes smaller, the
solution curve approaches the curve for zero load. Also, as the edge load A increases
for fixed pressure load, the solution curve is asymptotic to the curve for zero pressure

load.

turbed buckled states for A — +oco on a particular branch. This information

is presented pictorially in Figure (1.3).

Asymptotic Analysis for Compressive Plate Solutions. The compres-
sive solution branch with its infinite number of folds is observed in the mem-
brane problem for arbitrary smooth pressure load; however, such a branch
is not apparent for the plate problem as can be seen from the continuation
diagrams in Figures (1.4, 1.5). The numerical methods used to obtain these
plots are described in Appendix II. The family of plate solutions consists of

an infinite number of distinct branches, which are numbered as shown. The
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FIGURE 1.4. Continuation diagram for the simply supported circular plate, h = 0.20

The von Kirman plate equations for a simply supported circular plate under uni-
form pressure load are solved for varying edge load by continuation. The radial
stress at the center v(0) is plotted against the edge load A = v(1) for h fixed at
0.20. Several plate solution branches are shown by the solid lines. The family of
compressive membrane solutions is also Plotted for comparison and is represented
by the dotted line.

plot indicates that some plate solutions are related to compressive membrane
solutions; a segment of a branch of the plate solutions will approach a segment
of the compressive membrane solution branch. As the thickness vanishes, the
index of the plate branch having a point that is close to a given membrane so-
lution tends to infinity. We quantify this behavior by constructing asymptotic
expansions for the plate solutions based bn compressive membrane solutions.
For illustrative purposes, we first discuss the known asymptotic expan-

sions for plate solutions. Boundary layer constructions for the plate prob-

lem based on tensile membrane solutions have been developed by SRUB-
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FIGURE 1.5. Continuation diagram for the simply supported circular plate, A = 0.11

Similar to the previous Figure but with A fixed at 0.11.
SHCHIK AND YUDOVICH! for the case of tensile edge load, FRIEDRICHS
AND STOKER'" and BODNER!? for the case of compressive edge load and
BROMBERG!'? for the case of vanishing edge load. In these constructions, a
boundary layer appears at the edge of the plate and is necessary so that the

approximation satisfies the boundary condition
u(l) =0 or u'(1)+Qu(1) =0.

To illustrate the boundary layer construction, we derive the asymptotic ex-

pansion for the circular plate whose edge is elastically supported against

10 Dokl Akad. Nauk SSSR 139 (1961)
' Amer. J. Math. 64 (1941)

12 Q. Appl. Math. 12 (1955)

13 Comm. Pure Appl. Math. 9 (1956)
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rotation in the case of tensile edge load; i.e., v(1) = A < 0. The asymptotic
approximation of the solution that is presented below was derived and proven
to be valid by SRUBSHCHIK AND Y UDOVICH.

The outer solution for the stress v is taken to be a tensile (negative)
solution v, of the Féppl membrane equation (1.11) satisfying the membrane
boundary conditions (1.12). Letting uo = g(z)/vo(z), we then take u, as the
outer solution for the displacement variable u. Only for special choices of g
and v, does it happen that the boundary condition at r — 1 is satisfied by
the outer solution. We will assume that this is not the case, and so we must
introduce a boundary layer about z = 1. The boundary layer variables are

chosen to be

S — o o), e gl = e
& T—ihag T VB~

d*v 3h dv
di? 1—hzdz

(1.14)
= h%i°.

The boundary conditions at £ = 0 are
3(0) = A, h='4'(0) + Qu(0) = 0.

The boundary conditions for £ — +o0, which are required for the bound-
ary layer solution to match the outer solutions v, and u, in the overlap
region, are

5(Z) — vo(1) — hiEvy'(1),

u(z) — uo(l) — hzuy'(1),
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as T — oo. By inspection we find the boundary layer solutions to be

B(Z) = A — hiv'(1) + O(R?),
(%) = uo(1) — hZuy'(1) - --h:)\ﬁe-vfﬁ + O(h?)

where

_ u'(1) + Quo(1).

= 55
I+ 7

The uniform asymptotic expansion is thus

v(zx) ~ vo(x),
(1.15)

D

u(z) ~ uo(z) — \/’1/\166)(}) (~\/; (1 - I)) ;

Differentiating with respect to r, we have
v'(x) ~ vo'(z),

u'(z) ~ uo'(z) — Kexp (—\/;—/\(I - I)) :

Thus. we have a boundary layer in the derivative of the displacement vari-
able, u', which has the usual exponential decay.
If the construction is attempted in the case of compressive edge load, i.e.,

A > 0, we obtain a boundary layer solution of the form
9(Z) ~ A — hzvy'(1),

h P ‘
@(Z) ~ wo(1) — hduy'(1) - " cos(VAT + @)
Y

where

_ug'(1) + Que(1)

siné + ™ cos q)'
VA
This cannot be matched asymptotically to the outer solution and therefore
the boundary layer construction is inconsistent. The oscillatory character

of the rejected boundary layer solution suggests a global breakdown of the
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outer solution; that is, the outer solution must be modified throughout the
interval x € (0, 1] to obtain a valid asymptotic approximation. This is accom-
plished with multiscale analysis.

A simple asymptotic construction related to multiscale analysis can be
carried out for fixed pressure load and vanishing thickness if we allow the
edge load to tend to +o0o. The membrane solution approaches a state of
constant compression for large compressive edge load. Thus, taking v(z;h) =
vo(z) + o(1), we perturb about vo(z) = A under the assumption u = o(1) for

z > 0. The equation for u,, the leading term of u, is
2 " 3 [}
b | ug" + ;ug + Aug = g(z).

For small thickness h and llarge edge load A > 0, the solution has the asymp-

totic form
ki (h A2 ) (1.16)

where

o ‘ l : ™ (1.17)
A (TR + (R(Q — 1)/A) i (h1A%))

Clearly, the assumption that u = o(1) is satisfied provided = > hA~:. The
derivative of u has the asymptotic form

g9'(z)

= kJi(h~ A2 z).

u'(z) ~

Note that the expansion for u' differs by an O(1) amount from the estimate
of membrane theory, which is ¢'(z)/A. The expansion is consistent for A > 1.

In the third chapter we generalize the small thickness asymptotic approx-
imation (1.16) to the case of O(1) edge load for the circular or annular plate

whose edge is elastically supported against rotation. It cannot be assumed
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that the leading order behavior of the plate is a state of constant stress; how-
ever, the stress will vary “slowly” as compared to the O(h~') scale on which
the oscillations occur. The multiscale expansions thus obtained are compared
to the numerical calculations for the plate solutions and an estimate is made
for the order of the error.

The approximation (1.16) breaks down when
RIATJURTIAZ) + (Q — 1)Jy(R71AZ) = 0.

Letting z, be the nth zero of zJ|(z) + (Q — 1)J,(z), then for fixed h the

values A, that satisfy this condition are
A, = kx>, (1.18)

It is shown by KELLER, KELLER AND REISs' that the values A, given
by (1.18) are precisely the edge loads at which bifurcation from the trivial
state—or buckling—occurs in the case that the pressure load vanishes; i.e.,
g(zr) = 0. Asymptotically, as h — 0 for Q = O(1), this condition reduces to
h=1A

[

= (n+ %)71'. In the multiscale expansion derived in Chapter 3, a similar
breakdown of the expansion is observed. In particular, let v, be a compressive
solution of the Foppl membrane equation and let o = v,(0), A = vo(1). If we

have

1
h'K(a) = (n+3)r with K(a)= / vo? (s) ds,
0
then the multiscale approximation for the circular plate solution derived from

the assumption

v(z; k) ~ vy(x) + O(h?)

14 Q. Appl. Math. 20 (1962)
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is not valid for this choice of a« and h. We find that near these points an
asymptotic expansion may still be constructed if a boundary layer is intro-
duced at the center of the plate. The boundary layer solutions were calcu-
lated numerically and the asymptotic behavior of the family of expansions
constructed in this manner were studied in the limit as the stress at the center

of the plate approached —co.

The expansion for the clamped circular plate may be obtained from (1.16)
in the limit Q@ — oo. It is shown in Chapter 3 that the expansion for the
clamped circular plate is consistent provided A > h~ é, a much stronger re-
striction than that for the case of the plate whose edge is elastically supported
against rotation where we require A > 1. For the case of the clamped circular
plate, we show that the generalization of the expansion to O(1) edge load is

in general not consistent.

The Clamped Circular Plate. The clamped plate may be considered as
the limit where the support against rotation becomes unbounded (Q — +o0).
Inspection of the multiscale expansion derived in Chapter 3 in this limit shows
that the expansion is not valid for the clamped plate unless the pressure load
is self-equilibrating; i.e., g(1) = 0. In Chapter 4, the cause of the failure of
the expansion in the case of the clamped circular plate is investigated. We
show that, for the clamped circular plate problem, it is not possible to find
solutions that asymptotically approach a given Foppl membrane solution as

the thickness vanishes.

The method of proof is motivated in part by the results of KREISS.!

1% SIAM J. Numer. Anal. 16 (1979)
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Consider the system

hz;' = Bz; + F,(t,z,,zn;h),
(1.19)

zp' = Azg + Fy(t,z;,25; h)

where the real matrix B has imaginary eigenvalues only, and the functions
F;, Fy vanish quadratically in z;, zy for z;, zy — 0, h = 0. KREISS gives
sufficient conditions such that if a solution z;, zy is O(h) at some point
t € |79, T;|, then the solution is O(h) for all t € |7y, Ty|. In the fourth chapter,
we prove a lemma that provides sufficient conditions such that if z; and z g are
bounded by some constant é sufficiently small, then the solution is bounded
by 46 for all t € (1o, T)|.

We then obtain the result that it is not possible to find sequences {h,},
{un}, {vn},n =1, 2, ..., satisfying: h, — 0 as n — 00; u,, v, are continuous
solutions of the clamped circular plate problem with thickness h,, and fixed
g. g(1) # 0; for some C > 0 and points {z,}, 0 < 75 < z,, < 1, the solutions

un,, v, evaluated at z, satisfy

Vn(zn)| + [va'(20)| < C, (1.20)

|un(xn)vn(3n) - g(.’l:n)| T ]hnun’(xn)’ —0 (1'21)

as n — oo; for some m > 0, v,(z,) > m for all n.

To prove this result, we show that the plate equations can be transformed
into a system of the form (1.19) by subtracting the membrane approximation
from the solution and performing a few changes of variables. In this formu-
lation the condition (1.21) implies that the solution z;, zy is small at some
point. On the other hand, the clamped boundary condition implies that the
solution is bounded away from zero at the endpoint. The hypotheses of the

lemma discussed above are verified; the lemma is then used to show that a



-20-

sequence of solutions with h — 0 cannot be asymptotic to the membrane
approximation in the sense of (1.21) and also satisfy the clamped boundary
condition.

It is worthwhile to discuss just what is and what is not contained in this
result. For comparison, we consider the related problem of the elastica with
clamped ends under the same assumptions concerning the magnitudes of the
deformations as were used in the derivation of the von Karméan equations.

We obtain the equations
R*u" + vu = g(z), ' =0,

with boundary conditions

We may solve for v to get v(z) = A. Thus,
h*u" + Au = g(z).

The small thickness asymptotic expansions for u and u'are

A
u(z) ~ @— T)cos\/?r
0 (1.22)
u'(x sin — VA — .
(z) ~ hv/'A h
Clearly, u differs from the “membrane” approximation u, = g(z)/A by an

O(1) amount; in particular, for some # > 0 we have

|luv — g| + |hu'| > @
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for all z € [0,1]. . Thus, for the elastica, a result analogous to that for the
circular plate also holds. But we must note that for the 1-dimensional prob-
lem, the asymptotic expansion (1.22) is valid: compressive solutions of the

problem of the elastica with clamped edges do exist for A — 0 such that
vl + [¢'] + [u] + [hu'] = O(1).

For the plate problem, we have the additional complication that the equation

determining the stress

depends on u. This was not true for the 1-dimensional problem. Thus, if
u differs from the membrane approximation by an O(1) amount, we cannot
expect to recover the Foppl membrane equation for the leading order term of
the stress v. There is also a physical motivation for the condition that hu' —
0; the von Karman equations become invalid if this condition is not satisfied

because of the breakdown of the assumption of negligible shear strain.
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CHAPTER 2

Foppl Membrane Solutions

The fundamental assumption of membrane theory that distinguishes it
from plate theory is that the bending stresses are negligible. The membrane
equations can then be obtained! by analyzing the stresses and strains on the
structure, independent of the more complicated plate theory, which takes
bending stresses into account. Alternatively, setting the thickness to zero
in the plate theory may give rise to the same governing equations as the
membrane theory. For the problems we discuss—circular or annular plates
under radially symmetric loading and deformations—the von Karman plate
equations (1.5) reduce to the Foppl membrane equations when the thickness
vanishes.

The von Karman theory of thin plates is a singular perturbation of Foppl
membrane theory, and thus we cannot expect the thin plate solutions to
pass uniformly into the membrane solutions as the thickness vanishes. In
Chapter 3, we construct asymptotic expansions for the plate solutions based
on compressive membrane solutions. (It is possible to obtain compressive
solutions because the membrane does resist radial or circumferential com-
pression.) It is therefore necessary to know something about the behavior of
these membranes.

In the first section of this chapter, we discuss results from the literature,
including existence and uniqueness proofs for the case of tensile edge load,

proofs of nonexistence or nonuniqueness for the case of compressive edge load

! See, for example, A. Foppl, Vorlesungen tiber technische Mechanik, Vol. 5, 1907
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as well as characterization of the singular solutions that appear in the cases of
zero radial or circumferential stress either at the edges or at the center of the
membrane. The second section is devoted to a singular perturbation analysis
about the singular compressive solution in the case of arbitrary smooth pres-
sure load. The near-singular membrane solutions have been studied primarily
by phase-plane analysis in special cases where it is possible to transform the

equations into an autonomous system of ODE’s.
2.1 Background

Recall from (1.11, 1.12) that the the FOPPL membrane is the second-

order nonlinear equation

~2
n ! g (I)
) — = 2.1
s B TL (2.1)
with boundary conditions
v'(0) =0 or v(a) = n
(2.2)

CALLEGARI AND REISS? give existence and uniqueness results for so-
lutions of the circular membrane problem where A < 0, the case where the
radial stress is tensile at the edge. GRABMULLER AND WEINITSCHKE® have
shown existence and uniqueness for tensile solutions of the annular mem-
brane problem with n = 0, that is, vanishing radial stress at the inner edge,
and tensile edge load A < 0. For zero edge load, A = 0, SRUBSHCHIK" has
shown the existence of a unique circular membrane solution that is tensile
for z « [0,1); if the pressure load is not self-equilibrating, i.e., §(1) # O, then

the derivative v' becomes unbounded at the edge.

? Arch. Rat. Mech. Anal. 31 (1968)
% J. Elast., to appear
* Prikl. Mat. Mekh. 30 (1966)
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FIGURE 2.1. Solutions of the membrane equation

The vertical deflection w of the circular membrane under uniform pressure load is
plotted against the radial distance r. The pressure load is in the upward direction.
Vectors representing the radial stress are also plotted; those pointing towards the
edge of the membrane represent tensile =iress.

The existence of a branch of compressive circular membrane solutions is
demonstrated by CALLEGARI, REISS AND KELLER.? In this paper it is
shown that specifiying v(0) = a > 0 provides a unique characterization of
the nonsingular compressive membrane solutions. In Figure (2.1), we show
some circular membrane solutions for uniform pressure load. The numerical
methods used to obtain these solutions are discussed in Appeéendix II. Note
that tensile solutions are deflected inv'the same direction as the pressure,
while compressive solutions are deflected in the opposite direction. Also,

phase-plane analysis is performed in the case of uniform pressure load to

> Comm. Pure Appl. Math. 24 (1971)
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show the existence of a value of the edge stress, A., for which there are
an infinite number of membrane solutions. The compressive solution branch
has an infinite number of folds with respect to the edge load and the fold
points converge to A... These folds are illustrated in the continuation diagram
(1.2), where the compressive solution branch is shown for the case of uniform
pressure load. The phase-plane analysis is generalized to a class of problems

with variable pressure load in the thesis of KOSECOFF.®

It is observed by CALLEGARI, REISS AND KELLER that for uniform
pressure load, i.e., §(z) = 1, there exists a singular solution of the circular

membrane problem

wna

voo(z) = (37)

This solution is compressive for z € (0,1 but has v(0) = 0, while v'(z)
becomes unbounded as z — 0. It may be shown by phase-plane analysis
that in the limit v(0) — 0" the solutions converge to this singular solution.
Similarly, for the class of problems studied by KOSECOFF, there exist singular
solutions that are obtained in the limit v(0) — 0*. To our knowledge the
existence of such singular solutions for the case of general pressure load has

not been established in the [iterature.

2.2 Perturbation Analysis for General Pressure Load

The asymptotic behavior of circular membrane solutions near a singu-
lar solution—a solution that is not twice continuously differentiable for z €
10, 1—having zero radial stress at the origin is obtained by singular pertur-
bation. The small parameter is taken to be the radial stress at the origin.

The ratio of the spacing between successive folds is found to asymptotically

Y Ph. D. Thesis, California Institute of Technology, 1975
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approach a constant value. Similar results may be obtained for the annular
membrane with vanishing radial stress at the inner edge. In this case the
small parameter is v'(a), which is related to the circumferential stress at the

inner edge.

Singular Solution. In the case that §(z) is analytic, a series expansion
valid for z sufficiently small may be obtained for a singular solution of the

form
oo

voo(2) = ((2)3 (1 + Y anz”).

n=1

This solution is singular because v'(z) becomes unbounded as r — 0. The

recursion relations for the coefficients a,, are

32+ (3n + 2)(3n + 8)
arn
16

:bnfrn

where b,, is the nth Taylor series coefficient for §* expanded about z = 0 and

n—1 k n—1
3k +2)(3k +8 —
Z ( 36(5 )alc Z A Qp—k—m T+ Qo L Ay Ay m-

k=1 m=0 m=1

T =

It is not hard to show that

K

On S an

forn > 1
n

with K and p appropriately chosen.
In the more general case where § is only assumed to be continuous, we

propose the following iterations: let

w(z) = (§2)%,

Un+1(T) f/I(f— g) %df'

(8]
We conjecture that these iterations converge to the singular solution v, for

r < I sufficiently small; similar iterations are used by CALLEGARI, REISS
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FIGURE 2.2. Iterations for the singular solution

The approximate compressive singular solutions for the circular membrane are
shown for the case of §(zr) = 1 + z°. The stress v is plotted against the radial
distance z for the iterates 5, 10, 15, and 20.

AND KELLER to show existence of nonsingular membrane solutions. Note

that as z — 0

for all » and hence,

as r — 0.

=
2

t
- e
o

The iterations were performed numerically for several choices of § and were
observed to converge in every case. The iterations for §(z) = 1+ z* are shown
in Figure (2.2). That this singular solution is obtained in the limit v(0) — 0%

is supported by the perturbation analysis that follows.

The case of the annular membrane with vanishing radial stress at the



98-

8.8

-Illl‘llu_l‘jllI‘lllllllJlllllllll‘lllllllll‘ljllll]lll AAdAl.

.
-~
vnnnn'n"-u-lnu""rlIvnnnvllnunnlnunn-lnnunnlnuluu

IETPTTTITY [YYTTTTITY

U, [T T (O (S R TN [ R T

0.55 857

FIGURE 2.3. Continuation diagram for the annular membrane

The family of compressive annular membrane solutions for uniform pressure load
1s shown. The components of the solution plotted are the radial stress at the edge
v(l) = A (abscissa) and v'(a) (ordinate), which is related to the circumferential
stress at the inner edge. The folds A, and A; can be seen on this plot.
inner edge (n = 0) is similar. We have g(a) = 0 in this case. The compressive
solution branch for the annular membrane under uniform pressure load with

a = 0.5 is shown in Figure (2.3). Local analysis about r = a suggests the

existence of a singular solution of the form

Voo (Z) ~ (g) ) (z - a): asz —a.
In fact, letting
/
i(z) = -(z—a)\y 1+ ;(I —a),
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¥
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An iteration procedure may be defined for a singular solution of the annular
membrane problem, which is similar to the iterations obtained for the circular

membrane case.

Outer solution. Linearizing the membrane equation (2.1) about the
singular solution v, for the circular membrane problem gives rise to the

linear second order equation

z=0. (2.3)

hence

" 3 n 32 0

z -z + —z=

i 9x?

near the origin. If the pressure load is analytic. then it is clear that the
equation (2.3) has a regular singular point at the origin. The theory for
these equations is well known; the asymptotic form of the solutions near the
origin is obtained from the indicial equation. If we only assume that the

pressure load is continuous, then the same techniques are applicable, but the

asymptotic expansion is formal. Therefore, a solution z of (2.3) satisfies
v23
z~A-x'lsin(Tlogx+8) as ¢ — 0.

We define a set of linearly independent solutions based on their asymptotic

behavior near the origin. Let

i (V23 ), ;

Zy~<T sin(-TlogI 29 ~ T cos(TlogI)

as r — 0. In the case of uniform pressure load the above formulas are exact.

In general, a closed form cannot be found, but the solutions may be computed

numerically.
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The outer solution is of the form
Vo~ Vs + f(a)(A(a)zl + B(a)z2)

where ¢(a) = o(1) as @ — 0. The small z asymptotic expansion is

Qe

Y 23
+ e(a)(A(a):z:fl sin —:?) log z + B(a)z 'cos g logz).

o(z) ~ (3z)

The constants ¢, A and B, depending on «, are determined by asymptotic

matching for small r to a boundary layer solution.

Inner Solution. Locally about the origin, the boundary layer solution is
just the membrane solution under uniform pressure load; i.e., g(z) = 1. As
shown by CALLEGARI, REISS AND KELLER, the solution satisfying ¢(0) = a

is

where ¥ is the solution of

with

=
—_
o
—
Il
-

and ?'(0) = 0.

I
- 3 o8 T+ 4) 24)

We have determined the constants ¢ and k for the asymptotic behavior of
the inner solution by numerical calculation using the SANDIA-ODE solver.

The values are found to be k =~ 0.2571, ¢ =~ 1.4191.
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Matching. The contributions of each of the solutions z,, z, of the linearized
outer equation (2.3) can be found by matching to the asymptotic behavior
(2.4) of the inner solution in the limit as the boundary layer variable z/a>

becomes large. Thus we let

and
V23 _ 23
A:rc-cos(—Tloga+¢>), B:rc-sm(—\/TlogaJrqb).
The uniform asymptotic expansion is therefore

v(z; @) ~ve(x) + a%rccos(? log v + c,b) 2lz) =+

+a%msin(—§loga+¢)z2(r) + (2.5)
:  a: 23
+af)( I) — (Z2)3 . Ksin(\/—logia—%ab).
o2 & 3 a:z

The folds of the solution branch are determined by the condition

dv(1; @)
do

From the asymptotic expansion (2.5) we have

5 / ; i
v(1; @) ~vo(1) + azky 23(1) + 22(1) sin @

where

i
23 z1(1
® — —V? log @ + ¢ + tan #1(1) (2.6)

z3(1)

(the branch cut of the arctangent is chosen appropriately.) Differentiation
with respect to a gives

dv(1; a)

2 p 5 V23
T ~ain\/zf(1)+z.§(l)(§sin¢—?cosd))

(2.7)

2

2 I 5 ) 5 o /7273
~ 2V3a:ky 22(1) + z5(1) sin (q) — tan VS—) i
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The right-hand side of equation (2.7) vanishes when

V23
O =nr +tan_1 T

From the definition (2.6) of ®, we have that the corresponding values of &

are
( 2n7r)
a, =c-exp| ———
¢ V23
where
2 ( aall \/23)
¢ = exp—— |\ ¢+ tan —tan ~— )
V23 (1) 5
The values A,, of the edge load corresponding to a,, n = 0, 1, ... are the

asymptotic positions of the folds of the solution branch with respect to the
edge load A, valid for n — 00. The folds are labeled as in Figure (1.2)
according to their position on the solution branch, A; being the fold point
occurring at the smallest value of the edge load. Fold points A,, A, are
called successive because there are no other fold points between them. The
above discussion implies that
dnw
An ~ V(1) + Cexp ( - \/vﬁ)

for some constant C. Thus, the spacing of successive fold points decreases
geometrically at leading order; i.e.,

’\n+2 B )\n - bz )\n+‘.’ o )\n

. SEE TR (2.8)
'xn o )\n—'l )‘n+l o ’\nfl

as n — oo where b = exp(—57/v/23) ~ 0.038. This agrees with the result
obtained by FIER? from a phase-plane analysis in the case of uniform pressure

load.

" Ph. D. Thesis, California Institute of Technology, 1985
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The annular membrane problem with n = 0 may be treated similarly.
The small parameter is v'(a), which is related to the circumferential stress at
the inner edge. The ratio between successive fold spacings in the case of the
annular membrane with p(aR) # O turns out to be identical to that of the
circular membrane with p(0) # 0 as given by (2.8).

The advantage of the singular perturbation approach described here is
that it doesn’t depend on the knowledge of a transformation to put the equa-
tion into autonomous form. On the other hand, phase-plane analysis can be
rigorously justified while the perturbation expansion is formal; a proof of the
validity of the asymptotics would require careful analysis, which we have not

attempted.
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CHAPTER 3

Approximations from

Compressive Membrane Solutions

For boundary conditions that are not too restrictive, it is possible to con-
struct asymptotic approximations of solutions of the von Karman equations
(1.5) based on compressive membrane solutions. Boundary layer construc-
tions for the plate problem based on tensile membrane solutions have been
developed by SRUBSHCHIK AND Y UDOVICH! for the case of tensile edge load,
FRIEDRICHS AND STOKER® and BODNER?® for the case of compressive edge
load and BROMBERG?* for the case of vanishing edge load.

In these constructions, a boundary layer appears at the edge of the plate

and is necessary so that the approximation satisfies the boundary condition

(1) = 0 (3.1)

in the case of a clamped plate or

uw'(1) + Qu(1) =0 (3.2)

in the case of a plate whose edge is elastically supported against rotation.
The boundary layer construction for tensile edge load, i.e., v(1) = A < 0,
is derived in Chapter 1. Recall that the outer solution for the stress v is taken

to be a tensile (negative) solution vy of the Foppl membrane equation (2.1).

! Dokl. Akad. Nauk SSSR 139 (1961)
> Amer. J. Math. 64 (1941)
® Q. Appl. Math. 12 (1955)

* Comm. Pure Appl. Math. 9 (1956)
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The uniform asymptotic expansion is given in (1.15). If the construction is
attempted for a compressive outer solution, it is found that the boundary
layer solution contains oscillatory terms that cannot be matched to the outer
solution.

A multiscale type asymptotic construction is also carried out in Chapter 1
for fixed pressure load and vanishing thickness with A — +o0c. The expansion

(1.16) then obtained is

v(z) ~ A, u(z) ~ —= —

with « as defined in (1.17).

In the discussion that follows we generalize this asymptotic approxima-
tion to circular and annular plates with bounded edge load. We find that the
stress varies “slowly” as compared to the O(h ') scale on which the oscilla-
tions occur. Hence, multiscale analysis can be employed. The approximations
are carried out in detail for the case of a circular plate with the edge elasti-
cally supported against rotation. The simply-supported plate is contained in
this class of problems as the special case where the support against rotation
vanishes. The expansion is generalized to annular plates with the same sup-
port at the outer edge. The clamped plate may be considered as the limit
where the support against rotation becomes unbounded —in the boundary
condition (3.2), Q@ — +oo. Inspection of the asymptotic approximation in
this limit shows that the expansion is not valid for the clamped plate unless
the pressure load is self-equilibrating; i.e., g(1) = 0. We also consider the
asymptotic expansion (1.16) for large edge load as the support against rota-
tion becomes unbounded and show that as @ — oo we require A = h 3 for

consistency of the expansion.
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The approximation (1.16) breaks down when the condition (1.18) is met.
In the approximation derived below a similar breakdown of the expansion is
observed. For this case, we derive in Section (3.2) an asymptotic expansion

having a boundary layer at the center of the plate.

3.1 Smooth Stress Solutions

Recall the radially symmetric von Karman equations (1.5) for the bending

of a thin circular plate under a pressure load

3
h* (u" - —u') + vu = g{x),
‘ (3.3)
" 3 ' 2
v +—v —u°=0.
i

The function g is assumed to be twice continuously differentiable for z € [0, 1].
We suppose a solution exists where the radial stress v is positive and has the

asymptotic form
v(z; h) = vo(z) + O(h?) ash — 0 (3.4)

for > 0. Then WKB analysis is applicable to the equilibrium equation
(3.3a), which is linear in the displacement variable u. The approximation
thus obtained can be used to develop formal small h asymptotics of solutions
of the plate equations (3.3), which have compressive stress throughout. We
do not attempt to justify rigorously the asymptotic expansions; however,
numerical evidence is presented to support the conjecture that solutions of
the plate equations (3.3) exist that have the asymptotic expansions derived

below.
The Outer Solution. We first make the change of variable

w(zx:h) = 22 (u(z; k) — uo(z)) (3.5)
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where

il = g(z) 6
”( ) 1)0(1_)' (3 )

Applied to the equilibrium equation (3.3a), this transformation eliminates

the first derivative and the forcing terms—at least to leading order. Thus,

. 3h? h?
hw + (” - E) w = ——(2%u)" (3.7)
r:

If w(z;h) = wo(z)(1 + (1)), then the leading order equation, for z > h, is

h*w{ + vowe = 0. (3.8)
The WKB approximation is
wo(z) = JC - cos(Z + @) + O(ch) as h — 0 (3.9)
v (1)
where
1 [
&= .“z[ vp2(s) ds. (3.10)

0

Substituting the estimate (3.9) for w into the expression (3.5) and solving for

the original variable u gives

u(x; h) = uo(x) + -cos(z + @) + O(ch) as h — 0. (3.11)

r3vgs(z)
The error estimate for the solution is obtained from the formal expansion
carried out to higher order. The region of validity is £ > h. Provided the
assumption (3.4) concerning the asymptotic form of the stress v holds, then
the approximation (3.11) satisfies the equilibrium equation (3.3a) to O(ch)
in this region.

In the discussion pertaining to the clamped plate below we show it is

necessary that ¢ = O(h) for consistency with the original assumption (3.4) of
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the asymptotic form of v.° The constant ¢ is chosen to satisfy the boundary
condition at the edge of the plate. We discuss the case of a plate where the
edge is elastically supported against rotation; the corresponding boundary
condition is given in equation (3.2). The smoothness conditions (1.6) are
not satisfied by the outer solution, which is valid only for z > h. These
conditions will come into play in the construction of the uniform asymptotic
approximation, which follows the discussion of the outer solution. Using the

approximation (3.11), the boundary condition (3.2) becomes

i

Al
~CT~sin3+uo'(l)+Qu”(l)+ —f—f-cosﬂvLO(c) =10 (3.12)

where

A =wp(1), =" 1 (3:13)

K :/lvué(s) ds. (3.14)

The term containing the factor Qc is retained so that the formula will be
uniformly valid as Q — oc. In general, we will have sin@ # 0; provided
@ = O(1), then ¢ = O(h) as desired. The case sinfl = 0 is treated in the
subsequent Section (3.2), while the case @ — oo is discussed in the latter
part of this section.

To show explicitly the order of ¢, we let ¢ = hx. From (3.11) we obtain

the asymptotic expansions for v and u'

u(z; h) = uo(z) + h%l() - cos(z + ¢) + O(h?) (3.15)

and

% See equation (3.54)
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KU (z)

u'(z;h) = uo'(z) — -sin(Z + ¢) + O(h) (3.16)

I2
as h — 0. The approximation (3.15) satisfies the equilibrium equation (3.3a)
to O(h*). To satisfy the boundary condition (3.
B uo'(1) + Quo(1)
© Aisin® — (hQ/A%) cos 8
where @ is defined in (3.13). We are willing to settle for an error of O(h) here

2) to O(h), k is taken to be

(3.17)

because in the numerical formulation of the plate problem this boundary
condition gets multiplied by k, and so an error of O(h?) is observed.
Another case in which the condition that ¢ = O(h) is satisfied is the
clamped plate under self-equilibrating pressure load; that is, g(1) = 0. When
g(1) = 0, the approximation uy = ¢g/vg from membrane theory satisfies the
boundary condition (3.1), and one finds ¢ = O(h*) when the expansion is
carried out to the next order. The formula (3.17) gives k = 0 in this case.
Clearly, the requirement that ¢ = O(h) is met and thus the expansion is

consistent. However, if g(1) # 0, then in the limit Q@ — oo, we have
(1)
hAi cos @

and hence ¢ = O(1). Thus, for the clamped plate with nonself-equilibrating
pressure load, the expansion is not consistent. Detailed discussion of this
case is contained in the subsection entitled “The Clamped Plate.” We will
assume throughout the remaining derivation of the asymptotic expansion
that @ = O(1).

To obtain an asymptotic approximation for the stress, we substitute the
approximation (3.15) for u into the compatibility equation (3.3b) and retain

terms to O(h). Thus, for £ > h we have

2
+ §v' = g—(f—) Zh—’{gu cos(z + @) + O(h?). (3.18)
I Vo T2ugs

"
v
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Letting v(z; h) = vo(z) + vi(z; h) where v; = o(1) as h — 0, we see that the
leading order equation
3 g°(z)

" i
Vo + — Vg = 42 (319)
I Vo

is simply the FOPPL® membrane equation. The leading order boundary con-

ditions are

vo'(0) = 0, vo(l) = A (3.20)

as in the Foppl membrane theory. As discussed in Chapter 2, this problem
has both tensile and compressive solutions. We have assumed A > 0, so the
membrane solution vy will be compressive (positive) in the interval z € [0, 1].

The equation for v, is

vy + — 3 = GHSEE kg(z) cos(z + @) + O(R?) (3.21)
x x> Uoi

with boundary conditions

v,'(0;h) = 0, vy(1:h) =0, (3.22)

Multiplying through by r* and integrating from 0 to r gives

Isvll(li;h) ~ 2hkly(z;h) + R Yy (z; h) (3.23)
where
® £39() €
1 1 h) = . 02 d
1(-73 ) /0 Uoi(S) COS( 0 () §+d)) 6

The notation %, is used to indicate an unknown function having derivatives

up to order k that are O(1) as o — 0. The integral I, can be approximated

b Vorlesungen tiber technische Mechanik, Vol. 5, 1907
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using integration-by parts. Thus,

Elzih) = _[hﬁ S)d—isin(lfsv.,()df%cb) d¢

:M sin(Z + ¢) — hly(z; h)
Vo + (I)
where

3

I>(z; h) —[()xdié (i:%g((g))) sin(%ft)svoé(é’)d?‘kd’) dg.

Using the assumption that ¢ is twice continuously differentiable, we may

integrate I, by parts. Then, by the Riemann-Lebesgue lemma, the integral

I, is O(h) and hence

hx: g()

UU

Lz h)'= sin(z + ¢) + O(h?).

Substituting this estimate into the equation (3.23) and dividing through by

1%, we obtain

2%9( 9(z)

T3 Un4

v'(z:h) = R2= sin(z + @) + h*u&y(z;h). (3.24)

In this asymptotic expansion for vy, it appears that the error term is of the
same order as the leading term, but the expression is still useful because
it gives us the leading dependence of v, on = because the error term is
written as h*1;, we know that the & dependence in the error occurs only at
O(h®). Integrating from z to 1 in (3.24) and using the boundary condition
vi(1; k) = 0, we get

vi(z;h) = —2h*kI3(z; h) + h*a(z; h)

where
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By a similar argument as that used above to obtain the asymptotics for I,

integration by parts gives

hg(z)

I3(z;h) ~ 5 cos(T + @) + hyy(z; h)

T2vpi(zx
where we have included the O(h) contribution from the endpoint £ = 1 into

the error term hiv;. Therefore,
vi(z; h) = —hs-s—gr)) cos(T + ¢) + h*yy(z; k).

Here again we have the somewhat strange combination of an error term that
is asymptotically greater than the leading term of the expansion. Because
the error term h*y, has O(h*) derivatives up to the second order, we know
that the dependence on Z occurs in the error term at O(h?).

The approximation for v obtained by combining v, and the asymptotic

expansion for v, satisfies the equation (3.18) and the boundary condition

(1.9) to O(h*). Thus.

v(z; k) = vo(z) — hsiﬁgv(i‘) s(Z + @) + h'ys(zih) (3.25)
and
v'(z; ) = vo'(x) + h22rcg(_:r) sin(Z + @) + h*y,(z; h) (3.26)

T2ugs
as h — 0, where v, is a positive Foppl membrane solution.

To recap, the approximations (3.15, 3.16, 3.25, 3.26) satisfy the plate
equations (3.3) and the boundary condition (1.9) to O(h*) and the bound-
ary condition (3.2) to O(h), provided = > h. Estimates from the formal

expansion indicate errors in the solution of O(h?) for z in this region.

The Uniform Asymptotic Approximation. The asymptotics obtained

so far are not valid near the origin. Thus, for the circular plate there will be
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a region near the center of the plate that is not accurately described by the
expansions (3.15, 3.16, 3.25, 3.26). We will construct a uniform asymptotic
approximation, employing a multiscale analysis of the equilibrium equation
(3.3a). This approximation is equivalent asymptotically in the region = > h
to that obtained above but will also be valid for £ = O(h). The error es-
timates become quite complicated since the same term may be of different
order in the regions £ = O(1) and z = O(h). However, a numerical calcu-
lation of the order to which the asymptotic expansion satisfies the equation
and approximates the solution can be performed once the formula has been

obtained. The numerics are done on the first-order system

hz; = 232, h( 322)' = *132123,
(3.27)
25 = 24y (P z) = 221,

This system is equivalent to the von Karman equations (3.3) with

2 =u, g = Tl

“ go=1,

w

w
Il
S

Our aim is to obtain an asymptotic expansion z 4 satisfying the system (3.27)
to O(h2) and approximating the solution z = 12,0 = 1,...,4, with a relative
error of O(h). Consequently, terms in the equations or in the approximations
whose effects are asymptotically small relative to the desired level of accuracy
are generally neglected.

The following transformations are motivated by the discussions given in

FROMAN AND FROMAN? concerning the WKB equation. We let

3 1

w=z2(u — uy)vo?, (3.28)

T JWKB Approximation; Contributions to the Theory, 1965
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where u; is defined in (3.6) and, taking 7 as defined in (3.10), we suppose
w(z;h) ~ hw,(Z,7) + h*w, (T, 1),
v(z;h) ~ vo(z) + h*vy(x) + hPvs(Z, x),

where v, satisfies the membrane problem (3.19, 3.20). It follows from the

boundary condition (3.20a) that

hz
vo(z)x?

= _Lz +O(h*) ash—0 (3.29)
T

uniformly for z € [0, 1; thus, the factor h*z~* can be replaced as required by
an O(1) function of z.
Following the usual multiscale approach, we treat z and z formally as in-

dependent variables. The differential terms in the equilibrium equation (3.3a)

become
.,ld( d) hv(,i(z)(ﬁ‘ 3 )
he — — 3 g T o o
2dz \" dz" T2 dizwl Al.i'“'w1 T
(Pl (B, By B w)
3 \9#r ' 47 0 4 3(7)020%
3
+ h? (un"(z) + —u(,'(:r)) (3.30)
r

The rest of the equation (3.3a) takes the form

h h* ;
uv — g(z) ~ —Svow; + —vow; + R*F(z). (3.31)
Iz T2

Substituting the expressions (3.30, 3.31) into the equilibrium equation (3.3a)

and equating like terms, we obtain

a? :
a*ﬁwl + (] = 4—:_52) wy =0 (332)

and
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ﬁwz + (]. == @) Wy = — UO,—;(I) axa:_cwl + F(I). (333)

The benefits derived from making the transformations (3.10, 3.28) should
now be apparent, as we have obtained an equation for the variable w; that
is independent of z. The solution of the equation (3.32) that is bounded at
the origin is

wy = A(z)32J,(%) + B(z)22 Y1 (),

where B(z) = O(z) as z — 0. Solvability considerations in the higher-order

equation (3.33) require A and B to be constants. Hence,

for some constant . We define

ZA;(.’E;"L) = ug(:c) = h'g——-

zaz(z; h) = h.(uo'(.r) -

It may be verified from the recursion relations for the Bessel functions and

formula (3.29) that for z € [0,1],
hzly, (x;h) = zaz + O(h3).

From the definitions of z4,, z42 above we obtain the uniform small thickness

asymptotic approximations for u and u'

I'fvni(.r)

K T
u(z; h) = z; ~ up(z) + hi\/ 5 B
(3.34)

u'(z;h) = h™ 'z ~ uy'(z)
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The constant x is chosen such that the boundary condition (3.2) applied to

the uniform asymptotic approximation is satisfied exactly. The formula

) uy' (1) + Quo(1)

K="\ —-

T Aigi(Je(¢) — hQATEA(g))

with ¢ = A" 'K, can be derived from the approximations (3.34).

Large argument asymptotics of Bessel functions are given by

A w2 b [~ DL AR

2=

4

(3.35)

\/2 _14u2ﬁ1 , ( (1+2u)7r)
sinlz———).
El
For z > h, we then obtain from (3.34a) that
: Kkh
u(z; h) ~ uo(x) + ———— cos(z + ?),

z2vp4(z

where ¢ = —3—71': that is, the uniform asymptotic approximation z4, is equiv-

alent to the outer solution (3.15) in its region of validity. The expression

(3.17) for the multiplying factor & will hold asymptotically. Hence,

K
1) . where 0= —
) cos @ h

uo'(1) + Quof

o (3.36)
/\4 sinf — (hQ/As

3
4

and K is defined in (3.14). As long as the denominator is bounded away from

zero as h — 0, i.e.,
K

(n+2)n

h # : (3.37)

then « remains O(1). The case where (3.37) does not hold is treated in
Section (3.2).
We have now found the uniform approximations for u and u' in terms

of the membrane solution v,. To complete the analysis we must utilize the
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asymptotics derived so far to approximate the radial stress v and its deriva-
tive v' uniformly for z € [0, 1|. By substituting the asymptotics for u into the
compatibility equation and integrating by parts, the asymptotic expansions
for v and v' valid in the region z = O(h) are obtained. Judicious use of
the relation (3.29) then provides approximations that also match the outer
expansion (3.25) for £ > h. Maintaining the formalism of z and z as in-
dependent variables creates as much confusion as it alleviates, so hereafter
we treat everything—including z——as a function of the single independent
variable z.

Substituting the asymptotic expansion (3.34) for u into (3.3b) gives

3 2 K T . o adi
'U" -+ —U' ~ % + 2h ,g = — Jl(I) = h2 |IJ12(I)'
T Vg T2v9s ' 2 2z3v,2

K2

(M

Letting v = vy + vy and recalling that v, satisfies the membrane equation

(3.19), we have

gfn%Jl(i) ST 2 02(3).

2v,") ~ 2hg(.—%
(z°v1") ——% -

voi(z)
For z = O(h), this is by force of (3.29) equivalent to

2
g KT 2

Sk (O)iJl (z).

The factor vy2z2Jy(#) from the first term can be integrated exactly to yield
hz*J,(z). In the second term, the factor vO%iJ-z(i) may be treated similarly.

Thus, integration from 0 to = gives

P 7 7 0 K _EA. " ’Czﬂ' ~ LA . 5
Puy’ ~ 203 2% FEh(E) + 1 T (13) - Jo(2) (%))

Dividing through by z* and applying (3.29), we obtain

5 l%g(o)fc\/ii‘fl.]‘z(i.) n K"Trv()::(o)ifl(

v(0) V 2 - J2(E) - Jo(2)42(2)), (3.38)
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which is the asymptotic expansion for v,’ valid for £ = O(h). Another inte-

gration from 0 to z gives
;g( )}C /z“--l‘](

vy ~ — 2h2 —— z " Jy(z) —

w2(0) " 2 (3.39)
. 2~ - =
— h—S—(JD(I) +2J;(z) - Jo(I)Jg(.’E)) + constant,
which is the asymptotic expansion for v, valid for £ = O(h). In these manip-

ulations we have made use of the following formulas for indefinite integrals

of Bessel functions:

[ ) ds = 2z,

/z ¢~ i (chde = —é(J;f(z) +J32)),

‘ 1
[ ao(e) 6 de =~ (9o(2)dal2) — T (2)).
Matching with the outer solution shaws that the constant in the formula

(3.39) is O(h*) and hence is negligible for this approximation.

From (3.29) it can be shown that the estimates (3.38, 3.39) are asymp-

totically equivalent to

o~ -2t STt
z2v94(x) 2

SIU(]E - ' (340)
' 2 g(I B T4 T
NEE LTINSy
+ T 3(J3(F) - Jo(2) (7))
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in the region z = O(h). Furthermore, these approximations match asymptot-
ically the appropriate terms in the estimates (3.25, 3.26) valid for the region
x > h. This can be verified using the large argument asymptotic expansions
(3.35) of the Bessel functions. For if £ > h, then the first term of the formula

for v; becomes

\
o
=~
3
vl =]
=
[ 3
:
13—

2Jy(z) ~ —2h° 3K 5 COS X,

)
1 2 T2vp4

where x = 1 — %7(. The corresponding term for v,' becomes

2h* f'“,\/gi Jo(2) ~ 2h* 2= _sin x.
T2vg4 T2vp14

[0

Also, using two terms from the expansion (3.35), we find

oy K2

2(J2(2) + 2J2(7) — Jo(7)Ja(5)) ~ —h?

L |
8xv,2 2zvp2

—h? + O(h?)

for the second term in the formula for v,. Note that the O(h*) term does not

depend on z. Similarly, the second term in the formula for v,' satisfies

Kir 2

% F(J2(Z) — Jo(2)J2(3)) ~ A2 + O(h?).

(I

4x%v¢2 p.l Un
Thus, the approximations (3.40) agree with the formulas (3.25, 3.26) valid
for x = h, both in the terms that are retained and in the order of the error.

The uniform approximation is obtained by combining the membrane so-

lution vy, vy’ with the asymptotics for vy, v,'. Thus, let

zas(z; h) =vo — 2R° ;gK 5 [ 2230, (z) -
Tivgs ' 2
2 K’ . 27~ a 121~ ” e
—h 1 z(J5(Z) + 2J7(2) — Jo(2)J2(2)),
SIUUJ
Zaa (3 B) =vg' + 20325 /15::5J2(_%) -
T3 Un* 2
P R .
+ h*———2(J3(Z) — Jo(2)J2())-

41'2'00 Z
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The uniform asymptotic approximations of the radial stress and its derivative

are
v(z;h) ~ za3(x; h), v'(z; h) ~ za4(z; h) as h — 0. (3.41)

Observe that v and v’ are O(1) throughout the domain z € [0, 1]; that is, the
radial stress is smooth to order 1. This will not be the case for the asymptotic
approximation derived in Section (3.2), which has a boundary layer in the

stress near r = 0.

The Annular Plate. A multiscale asymptotic expansion for the annular
plate solution may be obtained similarly. We fix @ > 0; thus, a region about
the center of the plate is excluded, and the difficulties encountered in the
circular plate approximation for £ = O(h) are avoided in this case. If we take
v(a) = n > 0 and suppose that v(z:h) ~ vo(z; A) >0as h — 0 for z € |a, 1],

then the expansions (3.15, 3.25) are uniformly valid. Hence, we have

)

v(z: h) = vo(z; A) + O(R®),

hk o ) (3.42)
u(z; h) = uo(z; A) + —— cos(z + @) + O(h%)
I'jv”i(;’;)
where
. 1 S
z= [; vo2(s; A)ds,
) + 724
wo(z; A) = QL‘T)_I;’
vo(z; A)
and vg(z; A) is a positive solution of
3 2 4)2
v + gy = 942) e ) (3.43)
Vo*
with
vo(a; A) = n, vo(l; A) = A,

provided such a solution exists. Although the regions of parameter space

where solutions exist have not been quantitatively investigated by us, the
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equation (3.43) reveals that the quantity v,"(z) + (3/z)vo'(z) will be large if
vo(z) is small; thus, it is reasonable to suppose that solutions may not exist
if n and A are too small.

To satisfy the boundary condition
a*u(a)n = A, (3.44)

we require

u(a) = uo(a; A);

thus, we must have either k = 0 or cos ¢ = 0. We must also have

3

i h(1 + v)
sing — ————— €O

aug'(a; A) + (1 + v)uo(a; A) — & ( s¢) =0 (3.45)

(1)

a a?ni

and

cos(f(A) + qb)) =0 (3.46)

uo'(1; A) + Quo(1; A) — & (Ai sin(8(A) + ¢) — ';Q

4

where

a(A) = aug'(a; A) + (1 + v)ug(a; A)

°_A(l—u+vo'(a:44))

" na* an?

and

B(A) = uo'(1; A) + Quo(1; A)

g'(1) + Qg(1)  g(1)vwo'(1; A)
A A2

then if £ = 0, we must have from (3.45, 3.46) that



=

In general, we cannot choose a value of A such that both of these conditions
are satisfied; thus, to satisfy (3.44) we must have cos¢ = 0 and so we take
b= w2

The conditions (3.45, 3.46) become

3
ol

k)

a(A) = rca

(1]

K (/\i cos(A) + i sinB(A]) ;

1
4

B(A)

Eliminating « between these equations yields

-

a(A) ()\i cos0(A) + ’:\? sin H(A)) = B(A) ol (3.47)

Wit

=]

This condition implicitly defines A provided some solution of (3.47) exists.
Although we expect that for some values of n and A a solution of (3.47) may
not exist, we show that for @ = O(1) and n = A large as h — 0, a value of A
can be found that asymptotically satisfies this condition.

Thus, let n = A — +o0o0 and suppose A = O(1). Then
vo(z; A) ~ A;

that is, to leading order, v, is independent of A. Thus, in the first approxi-
mation,

0 =h'A2(1 - q)
and the condition (3.47) is then linear in A at leading order. Thus, as A — 0

we have

((1 —v)cosh + (Q —2)\/a)A ~ 2a*cos b — (g'(1) + Qg(1))va.

The coefficient of A will in general be nonzero and the solution for A will be
O(1). Thus, we conjecture that for A and n sufficiently large, there exists at

least one solution of (3.47).
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Once A is known, & is then found to be

This expansion is not uniformly valid as a — 0; the asymptotics must be
carried out with more care to be applicable in this limit.

In the limit @ — +o0, condition (3.47) becomes

h 1) + A)ns
a(A) L sing(a) = W)+ A)nt (3.48)
Al Aaz
Thus, A = —g(1) + O(h); that is, in the case of the annular plate clamped

at its outer edge with v(a) = n > 0, we choose A such that the function
d(z) = g(z) + %A satisfies §(1) = 0.

If we specify the radial stress to vanish at the inner edge, i.e., n = 0, then
v(a) = 0 and the expansion (3.15) is not uniformly valid as £ — a. To obtain
a uniformly valid expansion we use a formula related to Langer’s uniform

expansion for the WKB problem with one turning point. Thus,

v(z; h) = vo(z) + O(hC)

(3.49)

-y
b |-

u(z; h) = uo(z) + he (aAi(—¢) + BBi(—¢)) + O(h3)

&l

Vo4 |\ T

where

. T J* i Ve
I:hj vo2(s)ds, ¢ = (2%)5.

a

We let vo'(a) = . At £ = a we have

u(a) ~ = - O(hg).
ary
! —4 L gl ]
u (G) ~ (ﬁ‘—' = ')G((IAZ (0) -+ BBl (0))
Using
1 1
AN = e Bi'(0) = ——,
0= = 37
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then we must have

Jiq— B = 7331‘1(2) ( o +(l+l/)-—) (3.50)

to satisfy the boundary condition au'(a) + (1 + v)u(a) = 0.

At the outer edge we have

u'(1) + Qu(1) ~constant - h~ ¢ (acosﬂ — Bsinf+ hiQg(1) +
(3.51)

hQ(asinG + [ cos 0))

1

+

where

L[
8= f_L/ UOE(S) d5+4l71’.

a

Hence, to satisfy u'(1) + Qu(1) = 0 for Q = O(1), we take
a ~ Ksin 6, [ ~ kcos#.
We may solve in equation (3.50) for « provided

1
%f vo?(s) ds # (n — L —tan~1373.

a

For @ — 400 we find from (3.51) that & = O(h‘:ﬁ') unless g(1) = 0. We
cannot recover the Foppl membrane equation unless & = o(h‘%), so the
expansion is not valid for the clamped annular plate unless the load is self-

equilibrating.

The Clamped Circular Plate. The case of a plate with clamped edge may
be considered as the limit of the plate, with the edge elastically supported
against rotation, where the strength of support against rotation becomes

infinitely large; i.e., Q@ — +oo. Taking this limit in the expansion (3.11) for
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the circular plate yields

C

u(z; h) ~ ug(x) + cos( + @) (3.52)

r2vy1(z)

for £ > h, where
—wo(1)As  —¢(1)
cos(Z + @)  Alcos(z + )

(3.53)

Thus, if g(1) # 0 and A = O(1) then ¢ = O(1). Substitution of the expansion
(3.52) for u into the compatibility equation (3.3b) gives the leading-order

equation

3
WU JU . (3.54)
T vo?  2x3v,2

where we have dropped the oscillatory cross-term, which does not contribute
to v at O(1). Note that (3.54) illustrates the necessity of requiring ¢ = O(h)
to obtain v ~ vy + O(h?), where v, is a Féppl membrane solution. Thus
when ¢ = O(1) the Féppl membrane equation is no longer the leading order
equation for the stress. On the other hand, no solutions of this “membrane”
equation (3.54) that are positive on z € (0,1| remain bounded at the origin.
Solutions of these equations that are positive on r € (z;, 1| may be obtained
if g(zs) = 0. However, the expansion thus obtained will not satisfy hu' — 0
as h — 0. In Appendix I it is noted that this condition is required for validity
of the von Kdrmén equations.

One way to get around these difficulties is to remove the restriction that
v remain O(1) as A — 0. In Chapter 1 the asymptotic expansion (1.16)
was derived for the plate elastically supported against rotation. In the limit

Q — oo this expansion becomes

g(x) 1 | nx
u(l') m~ T s / &
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where £ = h~ A3z and

. g(1) _
Acos(h~1A% — )

For = > h/+/A this is equivalent to

u(r) ~ 9(z) _ 1_ ‘KZCOS(h_l/\%I - f—:ﬂ‘) ’

The equation for the next term of v = A + v, is then

K
"+ -v = —,
1 e 273’
which has the solution
vy = — K’ log z. (3.55)

For the validity of the expansion for u, WKB theory requires
1 1
h_lf vi(s)ds ~ h™'WA(1 — ) + o(1).

Now, expanding the integrand and inserting the formula (3.55) for v; we have

1 B 1
h_"/I vé(s)ds ~h WA - z) + 2h]/\13 /; vi(s) ds
~h WAL - z) + O(h 'A5),

)

Thus, it is necessary that A > h - for the consistency of this asymptotic
expansion.

We are forced to conclude that the assumption of smooth O(1) compres-
sive radial stress is not valid in the case of the clamped circular plate. In
Chapter 4 it is proved that solutions for the clamped circular plate with O(1)
stress cannot asymptotically approach the compressive Féppl membrane so-

lutions as the thickness tends to 0.
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Numerical Calculations. We wish to evaluate the uniform asymptotic
approximations (3.34, 3.41) derived in the previous section. These formulas
include the compressive membrane solution v,, which is not known analyti-
cally and thus must be calculated numerically. We use the finite difference
method described in Appendix II, a variation of the box scheme with a uni-
form grid. Oscillations occur in the asymptotic approximation with a fre-
quency of O(h™'); therefore, a mesh interval of O(h) is chosen to resolve
this structure uniformly. The iteration method described in Appendix II is
employed to obtain the solution of the finite difference equations.

The calculations were carried out with a uniform pressure load, i.e., ¢ = 1,
for the a values 0.50, 0.35, 0.25 and thicknesses h chosen to satisfy

};K(a) = (n+Yn

for n =1, ..., 6. The index n will be referred to as the branch number.

The approximations in the case of @ — 0.50 appear in Figures (3.1-3.4) as
solid curves. The dashed lines represent the membrane solution. Figure (3.3)
illustrates the convergence of the radial stress v to the membrane solution
vo. That u' is not asymptotic to u,' is clearly seen from Figure (3.2). Also
observe in Figures (3.1) and (3.2) the peaks at or near the center of the plate
of order O(h~ %) and O(h %), respectively.

We estimate the order to which the asymptotic approximation satisfies
the plate equations by inserting the calculated values into the finite difference
approximation of the first-order system (3.27) derived in Appendix II. In
Figure (3.5), we present a log-log plot of the maximum norm of the residual
versus the thickness. Lines are drawn between points corresponding to the

same membrane solution and same parity of the branch number n. The slopes
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FIGURE 3.1. Asymptotic approximation of u = z; with a = 0.50

The solid lines represent the uniform asymptotic approximation for the plate solu-
tion based on the membrane solution with v,(0) = a = 0.50; in this figure we plot
u(z). The thickness h is chosen such that A ' K(0.50) = (n + i)w The curves are
labeled by the index n with 1 < n < 6. The dashed line represents the membrane
solution u,(z) from which the asymptoti® expansion was constructed.

of these lines provide estimates of the order. The slopes in Figure (3.5) are
at least 1.5, supporting the conjecture that the residual is O(h%).

The order of the error in taking the uniform asymptotic expansions
(3.34, 3.41) as an approximation to a solution of the plate equations is esti-
mated similarly. For each choice of v5(0) = « and thickness h we must obtain
a nearby plate solution. This is done by .taking the asymptotic approximation
as an initial guess and then applying an iterative method of constrained New-
ton type to the discretized plate equations as described in Appendix II. There
is no guarantee that this method will converge for all values of a and h, but

convergence is obtained most of the time. Divergence is observed only near
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FIGURE 3.2. Asymptotic approximation of u' = h~ 'z, with a = 0.50

Similar to Figure (3.1) except that we plot u'(z) with solid lines and u,'(z) with
the dashed line.

the points where the uniform asymptotic approximation breaks down. The
results are presented in Figure (3.6). The conjecture of an O(h) remainder

in the asymptotic approximation is borne out by these calculations.

Breakdown of the Asyrn'ptotics. It has been observed that
1
K :[ v.]i(s) ds (3.56)
0
is a most critical quantity in determining the nature of plate solutions that are
asymptotic to the membrape solution v,. It is thus worthwhile to study how
this quantity varies with the solution considered. Recall from the discussion
of the compressive membrane solution in Chapter 2 that specification of the

radial stress at the center of the membrane v(0) = a > 0 uniquely determines
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FIGURE 3.3. Asymptotic approximation of v = zz with a = 0.50

Similar to Figure (3.1) except that we plot v(z) with solid lines and v, (z) with the
dashed line.

the membrane solution. Hence, if we let vo(z; @) be the membrane solution

with v4(0; @) = a > 0, then

K(a) = f l vo?(s; ) ds (3.57)

0
is well-defined.

Numerical estimates of K(«) are obtained by calculation of the membrane
solution on a nonuniform grid as described in Appendix II and integration
of the resulting discrete solution by the trapezoidal rule. Plots of a versus
K(a)/m appear in Figure (3.7). A variety of loads were used in the calcula-
tions. It appears from these plots that K is a single-valued function of a > 0.

We take this as sufficient evidence that this property holds regardless of the
load.
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FIGURE 3.4. Asymptotic approximation of v’ = z4 with a = 0.50

Similar to Figure (3.1) except that we plot v’(z) with solid lines and v,'(z) with a
dashed line.

Recall from (3.37) that the values of a and h at which the uniform asymp-

totic analysis breaks down are given by

1 3

EK(Q) = (n+ 32) n. (3.58)
For fixed h, unique values a, can be found that satisfy (3.58) provided

n K(0) - 3.

1
~ hm
The uniqueness of these values is a consequence of the monotonicity of K.
On the other hand, if a is fixed, then unique values h, can be found that
satisfy (3.58) for n > 0. These are given by

K(a)

(n+ 3

hp = (3.59)
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FIGURE 3.5. Estimation of the order of the residual

The marks represent the points (- log,,, h, —log,, R), where R is the maximum
norm of the residual obtained by substituting the uniforn asymptotic approxi-
mation into the discretized plate problem. Different symbols are used depending
on the value of @ = v,(0) of the membrane solution from which the approxi-
mation is constructed. Each point is labelled according to the index n, where
h,'K(x) = (n + ;)m. The slope m of the lines connecting these points provides
an estimate of the order of the residual; R = O(h™). We estimate R = O(h*®); a
dashed line of slope m = 1.5 is given for comparison.
Clearly, h, tends to zero as n tends to co. Thus, for a particular membrane
solution, plate solutions may be found that asymptotically approach this
membrane solution as A — 0 while excluding a countably infinite set of values
h, with h,, - 0 as n — +oo.
The significance of the breakdown of the approximation is that it indicates
a change in the dominant balance. In the discussion below, it is observed

that a boundary layer develops near z = 0, while the compressive membrane

solution with a correction of O(h) is a valid approximation of the radial
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FIGURE 3.6. Estimation of the order of the remainder

Similar to the last figure except that the points (— log,, h, —log,,, [|AZ]||) are plot-
ted, where AZ is the difference between the uniform asymptotic approximation and
a related plate solution calculated numerically. The maximum norm is used. We
-estimate ||AZ| = O(h); a dashed line of dope m = 1 is given for comparison.

-

stress v away from z = 0.

3.2 Solutions with a Boundary Layer in the Stress

With some modifications, the preceding analysis can be extended to the
case where the oscillatory contribution to u is of O(h:) for £ > h and the

radial stress v has the form
v(z; h) ~ vo(z) + hvy(z) + O(R?) for £ > h,
where v, is a positive membrane solution that satisfies

l. : 1 9
,;f vo:(s)ds = (n + ;) . (3.60)
0]
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FIGURE 3.7. Study of K ()

Curves of a(ordinate) and K («a)/r(abscissa) are labelled according to the function
g used in the membrane equation.

Denote by Ay the value vs(0). Recalling the definition (3.57) of K, we see

that (3.60) implies

lK(/\n) =(n+32)nr.

Bl

This is the case for which the asymptotics (3.34, 3.41) do not apply.

The Outer Solution. WKB analysis applied to the equilibrium equation

(3.3a) gives

u(z) ~ uo(z) — hvig(zr))vl(,r) +h> I:;/\—{%';I) .cos(Z + ¢) + O(h?) (3.61)

as h — 0, where the scale on which the oscillations occur is

i r®

- L & vl(.s}
= = v;‘-‘sd.s+[ ——— s, 3.62
Ry 00 w4 2093 (s) (3.62)
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The integrands in the definition (3.62) of T consist of the first two terms of

the expansion

1

h™'vi(z) = h Y (vo(z) + hvy(z) + O(R?))>

= h’lvué(z) - —L(I)— + O(h).

2003 (z)

03—

The second integral ranges over the interval (hA," 'I-‘,I), rather than (0,z),
because it turns out that v, has a singularity at the origin. The parameters
¢ and k are as yet undetermined constants.

Substitution of the asymptotics (3.61) for u into the compatibility equa-
tion (3.3b) yields the outer equation

3 3 2z
(U()"-t- —vg') + h('v'l'+ —v'l) il (2) -
b i x Vg

g*(z) ks
3 vy + 1 =
2up2x

+h(—2 ) . (3.63)

Vo
The neglected portion of this equation contains either smooth terms of O(h?)
or oscillatory terms of O(h%). Multiscale analysis can be used to justify
ignoring the O(hg) oscillatory terms even though they appear in the equa-

tion (3.63) to be asymptotically greater than some terms that are retained.

For if we have the linear equation

3 2g%(z)

n 1
+ =y +
4 z! vo3(z)

y = fcos(h '8(x)),
then let the solution y be of the form
Y= yl(Z,z) + hyy(2,2) + ...

where

i=h ().
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We find that y, and y, are functions of z only and

o* 39 2()
a2 " zaz ™ ve®(x) =5
i 33 2g%(z)
e e = 0,
a2 T oz T ve?(x) =
82
9" ;Y2 — fcosz =0

The solutions y, and y; could be taken to be arbitrary solutions of the ho-
mogeneous equation; however, that contribution can be absorbed into vy and
vy. Thus, we take y, = y; = 0. The leading contribution is from y, and is
O(f - h*). Thus, the oscillatory terms in the outer equation (3.63) contribute
to v at O(h?) and are neglected for this approximation.

Equating terms of O(h) in the outer equation (3.63), we obtain

3 (z KZX
v’l'+—v’1+2g( )vlz 2
T

(3.64)

=
2vug2 23

The homogeneous equation

3 z
vy + —v) + 29—(,,—)1’1 =0
T Jol

has two linearly independent solutions, one of which is bounded at the origin.
The multiple of this solution with value 1 at r = 0 is denoted by y;. Recalling

from the preceding section vy(0; @) = «, we see that

2 o(z0) = wi(2). (3.65)

The other solution of the homogeneous equation has a singularity at the
origin of the form 2 and thus will have no contribution at this order. There
is a particular solution of the equation (3.64) that has the form

gy 4
KZAo?

2%

ﬂ-52¢(1)

Ulp —



T

where ®(0) = 0. Letting

13—

Ao
2T

b(z) = —

+ ®(z),
then v, (z) = x*b(z) and hence, v; may be expressed as
vi(z) = Yy + £2b(z).

The constant v is determined so that the boundary condition (3.2) is
satisfied to O(h). We must have 7+ ¢ = nm when £ = 1. Thus, the condition

for v in terms of ¢ and k is
K (o) + 7K'(X) + BB + 6 = (3.66)

where the constant B is given by

We have used the relation
K'(a) = / .
0o 2vp2(s;a)
which follows from the definition (3.57) of K and the formula (3.65) for the
derivative of vo(z; @) with respect to a.

The asymptotics of the outer solution for £ — 0 are

2)\_%_
v(z) ~ Ao + by — h—,
2z
3 i A 1 2 A_: (367)
U.(.’L‘)*‘-'h%'cg cos(( e Fyk)m—ﬁ—logizﬁ—cﬁ).
z: h 27,2 4 h

The parameters x and ¢ will be determined by asymptotic matching with a

boundary layer solution about r — 0.
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The Boundary Layer. The asymptotics (3.67) for the outer solution be-
come invalid when z = O(h). In this region, the approximation for v is still

O(1), but the approximation for u is O(h '). This suggests the following

scaling; let

P (3.68)
u(z) = hu(z) + O(h), v(z) = v(z) + O(h).

Then the leading order boundary layer equations are

3
1" + —i' + 94 =0,
% (3.69)
P g =48,
I

Note that these equations are equivalent to the plate equations in the case of
no normal pressure.
The solutions of these equations that are bounded at the origin are de-

scribed by a 2-parameter family. A solution is characterized uniquely by

specifying

i — —i
and
v T
r— —,
c
o — %0, LU — el

take one solution into another. Thus, from the 1-parameter family of solutions

v, &, defined by specifying

(0 r) =¥, 4 (0r) = 1,
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FIGURE 3.8. The limit of ' as £ — +o0

The function ¢(r) = (lim, o 7' (:z;r))é 1s plotted.
we may obtain all the solutions—except the trivial solutions ¢ = r, @

an appropriate scaling of independent and dependent variables.

The asymptotic behavior for large z is that " tends to a constant value

and 4 vanishes as £ — +o0c. More precisely,

; R2(r)e(r)
¢ (Z37) ~ ¢*(r) — 5%
i (Z;r) ~ C;(;)K(r) cos (c(r):E - K-ir) log e(r)z + ag(r))

where for specificity we take & > 0.

The constant ¢(r) is defined by

e(7) = V/_lirn b (x5 7]

T— 00

The numerical calculations to obtain the values of ¢(r) as well as ¢(r) and
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k(r) are described below. In Figure (3.8), we have plotted ¢(r) versus r. For
5\0 > 0, let
5\0%
c(r)’
a(r,Ao) = rd®,  B(r, X)) = d.

d=

Then the boundary layer solutions u(z:r, :\0), o&; 7, 5«0) obtained by speci-

fying
(057, o) = a(r, Ao), @(0;7, o) = £A(r, o),
satisfy
lim &(z;7) = A
Note that

D(&:7, Ao) = d*0" (2d;7), a(Z;7,ho) = +d*a (2d;7).

The explicit dependence on r and Ao will hereafter be suppressed when the

notation is unambiguous. The large  asymptotics of these solutions are

(3.70)

Asymptotic Matching. Comparing (3.70) with (3.67) and recalling the
definitions (3.68) of the boundary layer variables, then to match with the

outer solution in the overlap region, h < z < 1, we must have

im = Ag + b7,



B, oy

Recalling the condition (3.66) for v, we see that

SROw (3.71)

The uniform asymptotic approximation for the plate solution is obtained
in the usual way by adding the outer and inner expansions and subtracting

the matching terms. Thus, as h — 0,
5 WE:
v(z) ~vo(z) + h(yyi(z) + £*b(Z)) + 0 (—;r, Ag + hn/) -

h
Aoz K2
—(/\0+h'yﬁh ”2”),

%
1
AnZ
u(zx) ~ug(z) — h%vl + h%f—? cos(T + @) + (3.72)
Uy T2vg4(z)
+h 4 (f—l;r,/\o + h’)«) ~
L kAo Ao? 2 .
~h5n 0 cos(( 2 ﬂr,) :z:—’ilog/\”'iE +—d>) .
Tz h 222 4 h
where
I f* 4 ‘ b(s
5= 7/ o) s +[ wils) + w70(s) 4 (3.73)
h’, W 2vp2(s)

The constants satisfy Ag = v(0) with h 'K (Ag) = (n + )7 and
k= +Rk(r), &= &(r),
with v defined as in (3.71).

Numerics of Boundary Layer Solutions. Numerical calculations of the
boundary layer solutions are performed using the SANDIA-ODE software
package. This canned routine uses a predictor-corrector method with auto-
matic step control for solving initial-value problems for first-order systems of

ordinary differential equations. Given initial values #(0) = v, @(0) = n > 0,
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the solution is estimated at a small value of z using the series expansion
about the singular point z = 0. The initial-value problem is then solved
using the packaged routine up to a value of & where the quantity ¢’ is found
to be sufficiently small. The estimates of the constants a(r,s), 3(r,s) > 0,

#(r) and &(r) are obtained from the formulas

2(r) /t')w2 + w'?
&(r —_—
St
— |’ ‘2
o(r) ~ tan™! :L _ S+ - (r) log St + nm.
Vow 4

The integer n is chosen such that ¢(r) — %ﬂ’ asr — +oo and ¢ is a continuous

function of r.

In Figure (3.9), 8(r,s) is plotted versus a(r,s) for s = +0.5, £1 and +2.
Recall that « gives the value of the radial stress at the center of the plate,
v(0) ~ a(r, Ao+ h~), and 3 is related to the value of the displacement variable
at the center of the plate, u(0) ~ h~'3(r, Ag + k). The points (s,0) and (0,0)
in the plane («, 3) correspond to r = +00 and r = —o00, respectively. Figure

(3.10) is the plot of # versus a and Figure (3.11) is the plot of ¢ versus e.

The Limiting Case r — —oo. The numerical calculations described above
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FIGURE 3.9. Boundary layer solutions—values at z = 0

The curve of points (a(r,s), 8(r, s)) parameterized by r is plotted for s values of
0.5, 1.0, and 2.0.

reveal as r — —oo, the constants a and 3 vanish, while the constants ¢ and

K become unbounded.

T o T l
o i log ¢/ log || log £/ log |/ I: log 3/ log || |
. -0.097 | —-2.113 —-0.632 = 1.200
~0.050 | —2.014 ~0.636 | 1.526
~0.036 | 1576 ~0.629 1.750
-0.020 | —1.355 ~0.620 2.117
— | — . g : <5
0.015 | 1.292 0.617 | 2.322
-0.000 |  -1.103 T —~0.608 | B

TABLE 3.1. Estimates of Exponents

The first 5 lines were obtained from numerical calculations; the last line is the
extrapolation to the singular case o = 0.

In Table (3.1) estimates are presented of the exponents of ®, & and A with
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FIGURE 3.10. Boundary layer solutions—the parameter &

The curve of points (a(r, S), £(r)) parameterized by r is plotted.

respect to a. In the last line are the linear extrapolations to a = 0 for the
exponents of ¢ and &—the exponent of 3 does not appear to converge. These

calculations indicate
2(r) = O (Ja(r)|™*)

and

&(r) = O (la(r)[™"°)

as r — —oo. The accuracy of these estimates is not high, but there is sufficient
evidence to claim ¢ < &% as r — —oo. Hence, the term in A* dominates
in the formula (3.71) for 4. Furthermore, B — —oo as h — 0 and thus
~ — +o0o0 as r — —oo for sufficiently small h. Clearly, the tendency is for

5\0 = Ay + h~ to increase in the limit r — —oo and, in fact, the estimates
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FIGURE 3.11. Boundary layer solutions—the parameter ¢

The curve of points (a(r, 5), #(r)) parameterized by r is plotted.

indicate v(0) ~ a(r.1)As = O(|a| "?). Furthermore, in the neighborhood
of the point a@ = 0, 3 = 0 the numerital estimates indicate that 3 becomes
transcendentally small; that is, 3 < o™ as r — —oo for any M > 0. Clearly,
the assumptions that v = O(1) and u = O(h™') near z = 0 break down in
this limit. There may be yet another dominan‘t balance in the equations.
Nonetheless, we will limit our discussion of the plate solution asymptotics
to those cases already introduced and leave any additional cases to future

investigators.
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CHAPTER 4

Nonexistence Result for the

Clamped Circular Plate

In the previous chapter, we constructed asymptotic expansions of plate
solutions based on compressive membrane solutions. There we saw that it
was possible to satisfy the boundary condition for the plate whose edge is
elastically supported against rotation; in the case of an annular plate, we
could in some cases satisfy the clamped edge condition. For the circular plate
however, the asymptotic expansion failed when the clamped edge condition
was imposed. In this chapter, the cause of the failure of the expansion in
the case of the clamped circular plate is investigated. We find that—taking
a quite general interpretation of what is meant by asymptotic approach—it
is not possible to find solutions of the circular clamped plate problem that
asymptotically approach a given Foppl membrane solution as the thickness
vanishes. The main result is stated and proved in Section 4; preliminary
transformations and lemmas to be used in the proof of the main result appear
in Sections 1-3. We now give an outline of the discussions contained in the

following sections.

Outline. The chapter is divided into four sections. We give here a brief

outline of the contents of each section.

Section 1. We make a set of transformations to convert the von Karman
plate equations (3.3) into a first-order system. First, we subtract out a pos-
itive solution vy, of the Foppl membrane equation; solutions that are un-

bounded at the origin are allowed in addition to the bounded Féppl mem-
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brane solutions. The new dependent variables measure the deviation from
the proposed “asymptotic limit” that is of interest—that is, v, and the cor-
responding function u, = g/v,. Several changes of variable are performed to

obtain a system that has the form

bz = Bz; +... ,
(4.1)
Zﬂ" = A(l;h)z,g & R

5=’ )

where

and A(t; h) is bounded uniformly for h sufficiently small. The remaining terms
are either o(1) as h — 0 or vanish quadratically as the dependent variables
vanish. Thus, we have partitioned the variables into two sets according to
their leading behavior in the linearized equations; the variables in z; have
simple oscillations of constant amplitude and frequency O(h '); the variables
in zy are smooth. The independent variable we choose is

= [t de

I
where 0 < Zy < zo < 1 and vy(z) > O for z € (Z,1]. Note that the domain

corresponding to = € (Z,,1] is t € (Ty, Ty|. where

Zn 1
Ip = = / Ut)é(ﬁ) ds > —oo, 15 = / ’Uﬂ‘!: (S) ds < +oc.
T £

Section 2. We next define a comparison function A for the solution z;, zy

by

91

4,

2 XY h)za(t)]

Alt) = (

zr(t))

where the norm is the Euclidean norm and the matrix X satisfies

X'(t;h) = A(t; R)X(t:h),  X(Tyh) = 1.
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The motivation for this definition is that a solution of the linearized equations
gives a constant value of A to leading order. We can study the growth of the
solution of the first-order system (4.1) through the behavior of this scalar
comparison function. An integral inequality is then derived for A(t), valid

for t € [70,T)], where 7, > Ty.

Section 3. We prove two lemmas for the growth of A based on the integral
inequality obtained in the previous step. Basically, the result is that if 4 is
small at some point, it will be small everywhere. The boundary conditions

for the differential equation (4.1) gives us that
Jq(Tl) > ay; > 0.

Hence we conclude that A is bounded away from zero uniformly for ¢ € |79, T |

in the limit h — 0.

Section 4. We show that assuming that the plate solution asymptotically
approaches the membrane solution leads to a contradiction, for if we suppose
that solutions u,, v, exist for corresp(;nding values of the thickness h, with
h, — 0asn — oo such that v,(z,), v,/ (z,) are O(1) and u,(z,)v,(z.) —9(Zn),
hnu,'(z,), are o(1) as n — oo for 0 < zo < z, < z;, then there is a subse-
quence for which the comparison function A,, is small at the corresponding
points t,, € [0,T;|. It was shown in the previous step that A, is bounded away
from zero on the interval [0, T}, and hence we have arrived at a contradiction.

Therefore, the plate solutions cannot asymptotically approach the membrane

solutions.
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4.1 Transformation to a First-Order System

Recall the von Karmén equations (3.3)

3
h* (u" + —u') + uv = g(z),

* (4.2)
vn =3 gvr - u-z
E A
The boundary conditions in the case of a clamped circular plate are
u'(0) =0, u(l) =0,
(4.3)
v'(0) = 0, v(1) = A

We make a sequence of tranformations to put these equations into a form

that is most useful for the theoretical study which follows.

Deviation from the Membrane Solution. We are interested in the
deviation of the plate solutions from a given solution of the Féppl equation.
Thus let vo(x) satisfy the Foppl membrane equation (2.1) on (0,1] and be
positive for z € (Zy,1]. It is possible for vy(Zy) to vanish for z, > 0 if
g(xy) = 0; the following analysis is valid only for r > ;. It is not assumed

that this solution is bounded at the origin. As before, let

uo(zx) =
We define
Ui = u — U, U1 = v — Vp.

Substitution into the plate equations (4.2) gives

. 3 3
h® (u1" + ;Uf + uyvg + uovy + uyvy = —h* {u" + ;Uu' )

(4.4)
" 3 9 2
V1 =1y = 2UWito + Ua"s

z
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The boundary conditions at the point z = 1 become

u1(1) = “’U,Q(l) = —g/(\li), 'U}(l) = )\ == /\()

where Ay = wo(1). Assuming g(1) # 0, we have that u,(1) must equal a

nonzero constant.

Scaling. We now scale the dependent variables as follows:

i @ L3
Uy = Vg*T>Uy, V9 = Vp4IT204.

Also, we define a new independent variable

T
t :f vo? (s) ds
where 75 < 5 < 1. These transformations eliminate the first derivative terms

and also give us a factor of 1 on the leading order linear term of u, in the

first equation. We set

T 1
T = —/ UO%(S) ds > —oo, T, = / Uoé(s)ds < +o0o.
F, Iy

Thus. after substitution into (4.4), we have

hlug" 4 ug + By, = —~usvs + h*q — hrau,,

(4.5)
vy" — 208u; + avy = yu,?,
for t € (T4, T;| where
d? 3 d
E=3d" ok
3 - § e
aft) = —/——L(x" 205" %(z)), glt] = ————Luglz), (4.6)
vy (r) vo s ()
T 3 &
B(t) = gz() ) 5 (t) = 27 2vo 4(z).
vo®(z)
The boundary conditions at the point t = T are
1 1
Uz(T1) = *g( 3__), U-z(Tl) :/\()“(A—/\U).

Observe that u,(77) is a nonzero constant.
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Conversion to a First-Order System. To convert these two second-order

equations (4.5) into a first-order system, we let

Us (32
¥r = s ¥ = -
hu-z' 1)2’

Substitution into the equations (4.5) yields

hy," = By; — BLyg + (h*q — v (Dyys1,yn))e: — h*aLy;,

(4.7)
yo' = 28Ly; + (—alL + U)yg + v (Dyyr,y1) ez,

where

1 0 0 0
1 0 0 O
Dl = 9 D2 = L]

0O O 0 1

1 0
el - = ez =
0 1
The boundary conditions at t = T are
1 1
<elvy1>:'g( g), (el,yu>~/\0*()\—)\0).

ot

The inner product (-,-) is the usual vector dot product.

Decoupling. We form linear combinations of the vectors y;, yy to eliminate

the coupling in the leading order linear terms of the system (4.7). Thus, let

z; =y1 + BDhyn, zg = yr + 2hB3D.y;.

Substitution in the system (4.7) yields

hz;' = (B + h*St)z; + hRizyg + h*qres + Q (z1,21),

(4.8)
Zn' o= (C + hZSH)Zy o= hRyZ] + hzq,']eg + Qg(Z[,ZH),
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where
()
C =
—(¢+28%) 0
(o) (s )
RI == 5 RH == 5
haB 0 —haB 28
() (o)
S_r = ) Sﬂ =
—a 0 2a3®> 0
qr = ¢, qn = 209,
Ql(an) = (171 - -Byl)yle21 Qﬂ'(an) = “'Y(II - 591)(-"1 - 3691)92’

with x = [z;| and y = |y;|. The boundary conditions at t = T) are

(e1,21) = ~i(11)(/\ — 2Xa), (e1,2p) = Aoi()\ — Xo)-

4

Note that with these boundary conditions we have

zs* + l|lzg|* > ao® (4.9)
where
> = min (92(}) (A —2X0)% + )\(,%(/\ — )\0)2) .
AE(—o00,+00) Ao?
Solving for ag, we find
f/ 9’2(1))\11%

ag =\ ——.
=V )+ A
Clearly, ap > 0 and so the quantity |z;(T})/* + lzg(Ty)||* is uniformly

bounded away from zero as h — 0.

Summary of the Transformations. The new variables t, z; and zy are

related to the original variables z, u and v as follows:
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r2vpt Au + zgg(z)vo’i(z)Av
zl = , (410)

a3

h(z:vys Au)'
I%’Uni Av
g — . . ;
(2051 Av)' + 2h*g(z)vo % (z)(z2vo 4 Au)'
where Au = u — up, Av = v — vy, and the prime denotes differentiation with

respect to . Furthermore, the following functions of the original variables u

and v may be obtained from the components of z; = |z;,] and zg = |z,

Jr= i 2

v(z) = vo(z) + :c‘%vn“i(:c)zﬂ,,

u(z) = uo(z) + = 2vy " 4(z)z1 — x Fvo i (z)g()2m,
; » , _3 _ao 3 vo'(z
v'(z) =vy'(z) + 2R’z 2uy i (z)g(x) (21 T 43(_)((1_))) % =

s 1 (E_ N UO'(I)) (1 ©op? g*(z) ) S (4.11)

vot(z)

1

hu'(z) =huy'(z) — hI"gvo'"i(I) (?I + 41}0(1')) zp +

| o 3 vo' ()
bt Hae(e) (5 + 200

-3 ~4
Zg, + X 2vg *(I)Z,'-z.

Note that the coeflicients in (4.10, 4.11) are uniformly bounded for z and h

suitably restricted. Thus, we have

v(zx) vo(z)

u(r) u(‘n(f) z-’(t('t))
= M(z;h)

v'(z) vo'(x) + M ( Zu(t(r)))

hu'(zx) huy'(z)
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where M (z) is a matrix satisfying
IM(z:h)|| < K. M Yz:h)) < K
for z € [z4,1], h € [0,1] with K independent of z and h. Also, note that
u(z)v(z) - g(z) = = Fvod (D)an + = *ve (@)za (o (2)an — o(2)zm).

Thus, for ||z/|| + ||zg|| — 0, u(z)v(z) — g(z) — O uniformly for z € [zq,1],
h €

0,1].
4.2 Derivation of an Integral Inequality

In this section we discuss solutions of a system of differential equations,

defined on the domain t € (T}, T,

, of form

hz,' - B(Z, +V d)(t,z,-.zn:_h)) + h.F](l,Z;,Zn,h),

(4.12)
Zn’ = AZg + Fy([.l;,ln,h)
where
o o
Vo= — (-, ¢, h), Vv = —— il e
1@ Y (¢ ) TP B¢ é(-,- ¢ h)

The matrix B is assumed to be independent of ¢, nonsingular and antisym-
metric. The vectors z; and zp are of dimension m and n, respectively; the
results that follow are essentially independent of the dimensions. However,
the m x m matrix B cannot be both nonsingular and antisymmetric unless
m is even. For the plate problem, of course, m and n are two.

The discussion is motivated in part by the results of KREISS.! The results
of this paper imply that for the system (4.12), if z; and zy are O(h) at some

point t & [7,,Ty], then the solution is O(h) for all t € 7, T;|. In the next

' SIAM J. Numer. Anal. 16 (1979)
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two sections, we show that if z; and z; are bounded by some constant é
sufficiently small, then the solution is bounded by 46 for all t & |7, T)].

We now state some hypotheses concerning ¢, F;, Fp and the matrix A.
The scalar function ¢ is assumed to vanish like the cube of z; and zy at
leading order in h. It may also have an o(1) contribution of arbitrary form.
More precisely, a region {2 in the space with elements (t,(z;,2zy),h) is defined

to be |75, Ty| x D x [0, hy|, with D being the ball of radius Z given by
D ={(x,y):z€ R™y<c R, x|’ + [ly|* < 2°}.

The norms used in this definition and subsequently are the Euclidean norms
for the appropriate spaces, IR™ and IR". The constants 7, > Ty, Z > 0 and
hy > 0 are considered ﬁxed for the remainder of the discussion. We assume
that

|6(t. %, ¥3 h)| < Colllx[I* + llylI*)= + vo(h) (4.13)
for (¢, (x,y),h) € 2. The notation C; will be used hereafter to denote positive
constants independent of ¢, x, y and h; C; may depend only on the choice
of 7o, Z and hy. The notation (k) is used to denote positive functions of
h that are independent of ¢, x and y, and satisfy ¢,(h) = o(1) as h — 0: ¥,

may depend on the choice of 75, Z and h,. We further suppose that

;g ¢(t.x,y;h)5 < Co(lIxI12 + [Iy1[*)? + vo(h), (4.14)

1¥ré(t,x,y5 k) || < Col[ix||* + I¥1[F) + vo(h) (4.15)
and

1V o(t.x,y: k)| < Co(llx|I* + [[¥]*) + ¢a(h) (4.16)

for (¢, (x,y),h) € 1. The vector function F; is assumed to be o(1) as h — 0;
that is,

| Fi(t.%,y5 k)| < wo(h) (4.17)
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for (t,(x,y),h) € Q. We suppose that the vector function Fj vanishes
quadratically in z; and zy to leading order in h. It may also have a con-

tribution that is o(1) as h — 0. Thus, let
| Fa(t,x,¥; k)| < Colllx[I* + [[¥]1*) + %o(k) (4.18)

for (t,(x,y),k) € 2. The matrix A(t;h) is required to be uniformly bounded

for t € |70, Ti|, h € [0, ho|. Thus, we assume
|A(t; R)|| < Co (4.19)

for t € |79, Ty, h € [0, hol.

In the case of the von Karman equations, we have shown that the two
second-order plate equations can be transformed into a system of first-order
equations that have the form (4.8). These equations can be put into the
form (4.12) and the hypotheses (4.13-4.19) verified if A, ¢, F; and Fjp are

appropriately chosen. Recall that

0,)

Clearly, B is antisymmetric and nonsingular. We let
2

Blt,x,y:h) =" (alt)} — 28°(1)73) -

— h2a(t)B(t)xy; + hO'(t) 2y + hB(E)T2y2 —

— h%q(t)z; + sz (20— 26(t)u)

Fi(t,x,y;h) = (z) .

and
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Taking the gradient of ¢ with respect to x, we have

h*a(xy, — By1) — h*q + ~(x) — By)n
—2h*3%*zy + hB'y; + hPBy:
Multiplying this expression by B gives

—2h232%z, + hB'y, + hBY;
Bvl ¢(t-xsy;h) = (
—h%a(

1 — Byr) + h*q — (21 — Byi)n
It may be easily verified that the equations (4.8a) are of the form (4.12a),

with B, ¢ and F; as defined.

To satisfy the assumptions (4.13-4.17) we must have a(t) be continuously
differentiable and 3(t) be twice continuously differentiable for 7, < t < Ti;
thus, we suppose that g is twice continuously differentiable on |0, 1|. Recalling
the definitions (4.6) of a and 3, we see that under this assumption o and 3

will have the necessary smoothness.

an=(° )

We now define

where

An = —a(t) — 26°(t) + 2h*a(t) B%(t).
The matrix A(¢; k) is uniformly bounded for 7, < t < T); this follows from
the assumption that g(z) is continuous. Hence. the assumption (4.19) is
satisfied. Note that ¢ and A are not uniformly bounded on [T}, T)| because
of the possible singularity at T, of the function «(t); this is the motivation
for the restriction 7, > T,.

Furthermore, we let

2h3(t) x;
Fp(t,x,y;h) = ( )

PH'I
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where
Fps = — h*a(t)3(t)x + 2hB3'(t)z2 + 2h0(t)q(t) +

- ’7(1)(1"1 = 3,5(1)1’;)(.’131 = B(t)Iz)
Clearly the equations (4.8b) are of the form (4.12b), with A and Fy as defined.

The assumptions (4.18, 4.19) are easily verified.

The Comparison Function. We may get some idea of the behavior of
the solutions of the nonlinear system (4.12) in the limit of small k, z; and zg

by studying the leading order linearized equations

hz;' = Bz, zg' = A(t;0)zg. (4.20)
We define a scalar function A > 0 by

A() = s ())* + | XM (Oza (0] (1.21)

where X is a fundamental matrix solution of the leading order linearization

of (4.12a); that is,

-

X't} = Alt;0)X (1), X5} = L. (4.22)

Because A is bounded for ¢ € [ry, T1|, then X(t) is invertible for all ¢ in this
interval. As discussed earlier, A is a comparison function for the solution
zr, zg. A solution of the leading order linearized system (4.20) will give a
constant value of A. To show this, we take the derivative of A with respect

to t. Thus,
A =2 2AX )T (X e ¢ (X 2g). (4.28)

From the identity

XX =1,
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differentiation with respect to t gives

(X )X+ XX =0.
From (4.22) we have

(X)X + X 'A(;0)X = 0.

Multiplying on the right by X ! and solving for (X !)’, we obtain

(XY =—-X"1A(t;0).
Substitution into the equation (4.23) gives

(A%)' = 22,72, + 2(X 20)T X Y(zg' — A(t;0)2p).

Using the differential equations (4.20b), the second term in the right-hand
side vanishes. Hence,

(A%)' = 22,72,
This is equivalent to
(ﬂz)’ = 72(Bz,)TB’1z,'
where we have made use of the fact that B is antisymmetric and nonsingu-

lar, and hence B! exists and is also antisymmetric. Substituting from the

differential equations (4.20a) for Bz;. we find
(ﬂ’l): - -2(Z{I)TB_1Z[’

and because B~! is antisymmetric, this term also vanishes. Thus, we have
shown that in the case of the linearized equations (4.20) A is a constant

independent of ¢; the value of A depends only on the choice of the solution

(ZI,ZH).
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Motivated by the above discussion for the linearized equations, we form,

from a solution (z;,zy) of the nonlinear equations (4.12), the scalar function
A2(t) = 2O + § X (s R)za(0) | (4.24)

where

X'(t:h) = A(t;R) X (t;h),  X(T;h) = 1.

We next derive estimates on the growth of A, which hold for h, z; and i
sufficiently small.

Taking the derivative of A* with respect to t, we find

(A%)' = 22,72, + 2(X '2g)T (X 2’ + (X 7V)'21). (4.25)

As noted before, the matrix X ! satisfies the differential equation
(X7 = =X"1A(t; h).

Substituting into the equation (4.25), we obtain

(A% = 22;Tz)' + 2(X '20)T X Yazp' — A(t; h)zg). (4.26)
Using the differential equations (4.12), then for the first term we have

2,72, = —(Bz;)TB 2, = —(hz,' - BV, ¢ — F;)TB'z,'.

Recall that xT B 'x = 0 for arbitrary x and in particular, this holds for

x = z;'. Therefore,

Z]T.‘Z‘(’ = (BV] qb T hF})T87111’
(4.27)
=~V ¢"2,' — (B F;) hay'.
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We may substitute from the differential equations (4.12a) for hz;' to obtain

ZITZ." = -V ¢TZI' - (BL]FI)T(BZI + BV, ¢ + Fy)

(4.28)

= -V ¢TZ[' i F[T(Z[ Y q&)

Furthermore, from the equations (4.12b) we have
(X‘lzu)TX_l(zy' - AZH) = (X“z,;)TX"Fg (4.29)

for the second term in the expression (4.26).

Integrating both sides of the equation (4.26) from 7 > 7, to t < T; and

employing the expressions (4.28, 4.29) gives

(1)~ #2() =2 [ (ma(s) + Jals) + Jo(s)) ds (4.30)
where
m(t) = =V o (t,2(t),zn(t); k) 2/'(t),
f2(t) = Fi" (t,21(t), 20 (t): k) (21(2) + Vi o(t,21(t),2n(t);h)), (4.31)
fa(t) = (XY (t;R)zg(t))" X Y(t; h) Fp(t,z,(t),zn(t); k).
We define

Iy(t) = 2/1 m(s) ds. (4.32)
Observe that
(%qb(t.z;(t),zn(t);h) :c'?t o(t,zs(t),zp(t);h) +

+ V0T (¢, 24(t),za(t); R)2/ (2) +

+ VH ¢T(t.21(t),2ﬁ(t);h)ZH’(t).
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Hence, from the definitions (4.31, 4.32) of m and I, we find
Io(t) = = 2(@(t,2:(t),2a(t); h) — &(7,2:1(7),2a(7); k) +

+2f —(;bsl.] Zn()h)ds-i—

+ 2[1VH o7 (s,21(s),zn(s); h)zg'(s), ds.

Substitution from the differential equations (4.12b) for zp' yields

() = folt) + 2 [ fu(s) ds

where
fo(t) = — 2(¢(t,z1(t),z?(t);h) — ¢(7,21(7),20(7); h)),
fi(t) :% o(t,z;(t),zp(t);h) +
+ Vo (t,21(t),2n(t); h) (A(t; h)zg + Fu(t,z1(t),zn(t); h)).

The expression (4.30) now becomes

A%(t) — A2(7) = folt) + I(t) + La(2) + Is(2) (4.33)

where
¢
i) = 2/ fi(s)ds for § =1,2,3

We may now employ the assumptions (4.13-4.19) to obtain an integral in-

equality for 4.

The Inequality. We will derive bounds for each of the terms in the right-
hand side of (4.33) separately. The assumptions (4.13-4.19) provide bounds

in terms of the norms of z; and z;. From the definition (4.24) of A and the
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Cauchy-Schwartz inequality, we obtain

lza ()]

£ = a0 + Tis

From the differential equation (4.22), which determines X and the assump-
tion (4.19) that A is uniformly bounded, it is clear that X is also uniformly

bounded for t € [7,,T}|, h € [0, hg|. For if

a4 = r[na.x‘ |A(t; h)]|, (4.34)
te|ry, T
he (0, byl
then
1X(t; h)|| < entTi-0,
We let,
Ci= max{Cu. eTi"8 | max wo(h)} .
he|0,hu]
Hence,

2(t)[]* + llza(t)]|* < CL24%(t) (4.35)

for t € [m9,Ty|, h < [0, ho]. We define il = (70, T1] *

x [0, hg|, where we

choose Z sufficiently small that if

m

(e, (el + X e R)y1?) 1) € 2,

then

m
=

(t’ (X,y),h) *

To accomplish this, we let

N
I

C

where a is defined as in (4.34).
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We now use the upper bound (4.13) for the absolute value of ¢ and the

lower bound (4.35) for A to obtain

ol <Cilllze @) + 2a(®)]*)? + Crlllze(7)]® + llzn(r)II*)? + 240 (k)

<C*(A°(t) + A%(7)) + 2¢0(h),
(4.36)

provided (s, A(s),h) € Q for s € |r,t|. Similarly, we use the bounds (4.13-
4.16) for @ and its derivatives as well as the bounds (4.17-4.19) for F;, Fy
and A to obtain

i< [ 200+ e+ 2) ()P + lza(s)P)E ds +

i g

=0 2(T| - T(‘))(l + C](]. + Z + 222))wn(h)

, (4.37)
< [ 2crt + 0P+ 2)A0(s) ds +
+ 2Ty — 7o) (1 + Ci(1 + Z + 22%))ebo(h),
2| < 2(Ty - 70)(Z + C1(1 + Z2%))4o(k), (4.38)
and ’
1ol < [ 203(laa(s))? + [2a(s)I)? ds + €12 Zuiolh)
i (4.39)

t
< / 2(/‘16.43(5) ds + Z(T] = T(,)C'12Z¢(|(h),
provided (s, A(s), k) < Q for s € |7.1]. We let
€ = max { G 20 + G (1 + 2)) + 20:°}

and

a(h) = (2+2(Th —n)(1 + Z + C1(1 + Z + 3Z%) + C,2Z))o(h).
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Therefore, from the expression (4.33) and the estimates (4.36-4.39), we have

the integral inequality
AR(t) — A%(7) < Co(AP(t) + A%(7 f Cy A (s) ds + a(h), (4.40)
provided (s, A(s), k) € Q for s € |7, t].

4.3 Two Lemmas

We showed in the previous section that the scalar function A satisfies -
t
(1) — A2(r) < Co(A%(1) + A3(1) + G [ #(s)ds+w(h)  (4.41)

for iy < 7 < t < Ty, provided (s, A(s),h) € Q for s € i7,t]. We now prove
a lemma that enables us to claim that A(t) is small for t € |7, Ty|, provided
A(7) is small.

Lemma 1. Let z(s) > 0 be a continuous function defined on s € (0,1]
satisfying

22(s) — 22(0) < Z3(s) + 2%(0) + [ S 2 (r) dr + ¢ (4.42)

0

where ¢ > 0. Then there exist a positive constant é, and a function €,(0)
positive for 6 < é, such that if z(0) < é < 6, and ¢ < ¢y(6), then z(s) < 46

for s € [0,1].

Proof. We show that z(s) is bounded above by a continuous function z(s)
that satisfies an integral equation related to the inequality (4.42) and also
satisfies Z(s) < 46 for s € [0,1]. Thus, let
2} (s) — 6% = 2%(s) + 6° + / 2(r)dr + e. (4.43)
0

At the initial point s = 0 we have
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We must have é and e sufficiently small so that there is a solution to this

equation for z(0) in the interval [é,00). Let
P)=¢*-¢2+62+8 +e

Clearly, P(6) > 0. If we specify 6 < &, < 1/3 and ¢ sufficiently small, we may
obtain P(26) < 0. This, then, assures us the existence of a zero of P between

6 and 26. We let 8, < 1/8 and €y(6) = 26%*(1 — 38). We then have
P(26) < —36%(1 — 36) + €(6) < O

as desired. Let ¢* € (6,26) satisfy P(¢') = 0. We specify 2(0) = ¢". Clearly,
2(0) > z(0).

Next, we show that a continuous solution of the integral equation (4.43)
exists for s € [0, 1]. This is accomplished by solving for z implicitly from the

integral equation. Differentiating (4.43) gives

2;;’ . 3__27' e ;3
This is equivalent to
2 — 3z
ds = ”.‘.) dz.
Integrating, we find
2
s=c— - —3logz (4.44)
where
2
c=— —3logg .
5

To show that the expression (4.44) implicitly defines a continuous function
Z(s) on the interval s € [0, 1]. it is sufficient to show that ds/dz is positive for

zZ © |6,46| and s(46) > 1. The implicit function theorem then implies that
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Z(s) exists for s € [0,1]. In addition, this gives us the desired estimate; that
is, Z(s) < 46 for s € [0,1]. The derivative of s(z) is

ds 2—3z2
dz 2

For 0 < z < 2/3, ds/dz > 0. Because we have chosen é < é, < 1/8, then

ds

s >0 for 6 < z < 46.

Furthermore, because ¢ < 26, we have from (4.44) that

1
46) > — — :
s( )_26 3log2

We now specify that

o {1 1 }
bo=miny—-,——— (.
8 2+ 6log2
Hence,

s(46) > 1

as desired. To recap, we have shown that a continuous solution z(s) of the
integral equation (4.43) exists for s ¢ 0, 1], satisfying 2(0) > é and 2(1) < 44.

We now show that z(s) > z(s) for s € [0,1]. Suppose this is not true.
We have assumed that z is continuous and have shown that z is continuous
by the implicit function theorem. Also recall that z(0) < Z(0). Hence, there

is a smallest value of s = s > 0 for which z(s") = z(s"). Thus, we have

(s) > 2(s) for0 < s <s

Wy

and therefore,
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From the inequality (4.42) satisfied by z and the integral equation (4.43)

satisfied by z, we then obtain

= N

S(s)+ 84604 [ B(r)ydr e

0

(8]
L]
——
7]
b'f
Il

> 23(s7) + 2(0)* + 2(0)® + / -‘ 2 (r) dr + € > 2%(s7).

0
But this implies that z(s') > z(s"), which contradicts the assumption that
Z(s’) = z(s'). Hence, 2(s) > z(s) for s € [0,1]. Recalling that 2(1) < 46,
then we have obtained the desired estimate for z(1). The constant &, and
function ¢, were chosen to be

. {1 1 }
6(7):mln e e TS
8 2+ 6log2

and
€o(6) = 26*(1 — 36).
Because 6, < 1/3, then the function ¢,(é) will be positive for 6 < ¢, as

desired. J

We will now apply Lemma 1 to obtain estimates for 4. We let 0 < h < hg

be fixed and set

C; = Cymax(1,T, — 7p), e = C3*y(h),
L =F

T]*T‘

S

z(s) = C3A(t).

The integral inequality (4.42) is then obtained by multiplying (4.41) by (@8
and substituting for A, t and ;. From the definition of A in terms of
the continuous functions z;, zy and X, it follows that A is continuous and

consequently, z is continuous. Because v, = o(1) as h — 0, we may find



— 90—
hy(é) € (0, ho| such that for h € |0,h(6)| we have
Cs*2(h) < €o(8)

for & > 0 arbitrarily small.

We now prove a lemma that gives an upper bound for the comparison
function evaluated at the endpoint, A(T)), based on the value of A at some
interior point.

Lemma 2. Leté < min{!C3Z,&} and h < hy(6). If

At) < lé for some t € (19, Ty,
Cs

then

AT < 2.

3
Proof. The integral inequality (4.41) holds, provided A(s) < Zfors e [t

We let T € (70, T'| be the greatest value such that

Alt) < Z for t € (70, T|.

Note from the continuity of 4 that if A(T) < Z, then T = T. From Lemma

1 it follows immediately that

1

A(T) <

o <

o

4
Hence. T = T and the proof is complete. I

Letting a; = a,/C3, we know from (4.9) and (4.35) that

A(T) = a, > 0.

Hence, we let

6 = min { :;(/‘3(11, ;(}32,60} .
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The Lemma 2 implies that for h € (0, h,(é)] we have
At) > =6 for t € |15, T|.

For if this does not hold for some ¢t € [r,, T and h € (0,h,(6)|, we obtain

from Lemma 2 that A(T) < a;, which contradicts that A(T") > a;.

4.4 The Main Result

We have shown that the comparison function A is bounded away from
zero uniformly as h — 0 on any interval |7y, 7|, with 7o > Ty, 1y < T;. We
now obtain the main result.

Theorem. The following statement is false: there exist sequences {hn},
{un}, {vp.},n=1,2, ..., satisfying
i) h, — 0asn — oc;
ii) u,, v, are continuous solutions of the clamped circular plate problem,
that is, the equations (4.2) with boundary conditions 4.3), with thickness
h, and fixed g, where ¢ is twice continuously differentiable and g(1) # 0;

iii) for some C > 0 and points {z,},0< zo < z, < 1,
[va(zn)| + |va' (2a)| < C,
Iun(xn)v;(In) = g(zn)| + |hnun'(zn)| — 0
as n — 0o;
iv) for some m > 0, v,(z,) > m for all n.

Proof. We assume the statement to be true and show that this assumption
leads to a contradiction. We may extract a subsequence such that for some

constants a > 0, 8 > 0, and for some & ¢ |z, 1],

T, — I, va(z,) - @, and v,'(z,) > B8 asn — oco. (4.45)
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We know that 3 > 0 because of

Also, a > m > 0. Let vy be the solution of the Féppl membrane equation
(2.1) satisfying vo(Z) = o, vi'(£) = 8. Clearly, vo(z) > a > 0 for £ > Z. Let
ug = g/vg.

Recall that we must choose z; such that vo(zs) > 0; because vo(Z) > 0,
we may choose z; < z. For some integer N, if n > N, then z, > z.

We form the sequences {z7}, {z}} and {4,} from the formulas (4.10),

(4.24). Recall from the definition (4.24) of A,, that if A, — 0 and

vn(2n) = vo(zn)| + [vn'(zn) — vo'(z4)| +

T Jun(-rn)UN(In) o g(:l:n)( + ‘hnun‘(In)‘ — 0

for z, > z;, > 0 as n — oo, then for points {¢,} corresponding to the points
{%a}s

An(ts) — 0 as n — 0o.

Because v and vy’ are continuous, the formulas (4.45) and assumption (iii)

imply that

An(ts) =0

where

T = it = / v(-,é(s) ds >0 forn > N.

But we have the implication from Lemma 2 that A,(t) is bounded uniformly
away from zero for t = (0,7, and hence we have arrived at a contradiction;

thus the proof is complete. §
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Discussion. In Chapter 1 we saw that for the elastica with clamped edges,
a similar result holds. It was shown that if the assumption hu' — 0 as
h — 0 is relaxed to allow hu' = O(1), then the asymptotic expansion (1.22)
is obtained. In Chapter 3, we attempted to find a similar expansion under
the assumption that hu' = O(1). The leading order equation (3.54) for the
stress is not the Foppl membrane equation in this case. In Appendix I, we
show that the assumption hu' — 0 as h — 0 can be motivated physically

from the assumption that the shear strains are negligible.
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APPENDIX I

The von Karman Plate Theory

As discussed in Chapter 1, we consider circular and annular plates un-
dergoing radially symmetric deformation; a schematic of the deformation is
shown in Figure (1.1). We denote by ¢,, €., ¢, the normal strains in the
radial, circumferential and vertical directions; o,, 0., 0, are the correspond-
ing stresses. In the von Karman plate theory, shear strains are considered

negligible. Following STOKER,! we adopt the nonlinear strains

dp 1 (dw)2 1
2 = L = I.1
b dr i 2 \dr : .- rp’ (11)

based on the assumptions that the displacements are small compared to the
large dimension R of the plate and that the derivative of the horizontal dis-
placement p is of the order of the square of the derivative of the vertical
displacement w. The compatibility condition is obtained by eliminating p

between the equations (I.1). Hence,

d 1(dw)2
WEIPUL QTR O. & .. 1.2
6L_‘_ra!:r(L e 2 \ dr (2]

We also make the assumption that at the middle surface z = 0, the shear

strains ¢,, and €., vanish with z to a power higher than the first; that is,

This is somewhat more general than the standard assumption that the nor-
mals to the undeformed middle surface remain the normals to the deformed

middle surface.

! Nonlinear Elasticity, 1968
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In Cartesian coordinates, the equilibrium conditions from the resolution
of forces at the middle surface, z = 0, that are parallel to the tangent plane

are

= (13)
where 0, and o, are the normal stresses in the horizontal directions z and y,

respectively; 7., is the horizontal shear stress. Using

g3 y? y? z3
Op = =——6 + ———=0p; 0= ——— =l
oty x4y Yoot y? 22 +y? "
Toy = —2— (0, — o)
Yy 2 + y2 O c)
the conditions (1.3) reduce to
o, —0,+r—o,=0. (1.4)
dr
To satisfy this condition we let
= - dv
o, = —0, .= —0—r—.
" - dr

According to standard notation, the Airy stress function ¢ is related to v by

1do
e L5
v  d ( )

Note that positive v corresponds to compressive radial stress.

We assume the linear stress-strain relations

E
(1+v)(1 - 2v)

((l‘— v)e, + ve, + uez),

((1 —u)e£+f/f,+1/e:), (1.6)

E
(1+ )1 —2v)
E

T = —— )((1 — v)e, + Ve, + ucL.)



-105-

where E is Young’s modulus and v is Poisson’s ratio. The normal stress in

the vertical direction o, is

where p is the pressure load. We assume p = O(H/R), and so 0, = O(H/R).

Thus, to leading order in H/R we have

v
o Y L7
€ I—U(E €c) (L7)

Using (1.7) to eliminate €, from (1.6), the expressions for o,, 0. now become

E E
= Uz(e, + &) By = ?ﬂ((c + vep)s

o, =

Solving for the strains in terms of the stresses, we find

1 ot (G d =
er—?(ar voc)El(vd (D), -
. = (0.~ voy) :427(3;(r6)4~uﬁ).

Substitution of (I1.8) into the compatibility equation (1.2) gives

2 ( ,d*% dv (dw)z
2 S, _ 19
E(T dr? %dr) (19)

dr
Letting
1 dw
o= ;ﬁ (1.10)
we have
TR

The relations (1.8) for the strains in terms of v also give

= f(r"?ﬁ' +r(l — v)v)

where we have utilized ¢, = r 1p.
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We may obtain from (1.11) the compatibility condition in the form in
which it is more commonly seen in the von Karman plate theory. The equa-
tion (1.9) may be written in terms of the Airy stress function as

B4 146, Lfdol!

= .32
E dr rdr dr dr “ ( )

The Laplacian for radially symmetric functions is

1d d
V2 =
rdr dr

thus

2 d :
—r— V3¢ + (d—w) = 0.
dr

Differentiating once and dividing by 2r, we obtain

1 1 d*w dw
=74 S ), 1.13
E ¢+ r dr® dr i ( )

which is the compatibility condition from the von Karmén plate theory when
radial symmetry is assumed.

The compatibility condition (1.12) implies the equation (1.13), but the
converse is not necessarily true. For if equation (1.13) is satisfied, then, mul-

tiplying by r and integrating once, we have

1 d1d dg‘)' (dw) _C.

E dr rdr dr dr

and this is equivalent to the equation (1.12) only if C' = 0.
The equilibrium equation obtained by resolving forces normal to the tan-
gent plane is exactly the same as in the von Karman plate theory derived

without assuming radial symmetry. Thus,

E Sk 1 d (d¢dzu) P
E ,_14d _ P 114
g YW - e A hR (L)
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where 4? = (6(1 — v?)) . From the definitions (1.5, 1.10) of ¢ and u, (1.14) is

equivalent to

E gpld d1d .. 1d

p
2“ ) rdrrdr rdrr M rdr

(r*uv) = 5 (1.15)
The equations (1.15, 1.11) are further manipulated to reduce the order and to
nondimensionalize the problem to obtain the equations (4.2) as described in
Chapter 1.

In terms of the dimensionless variables r, u and v, the original variables

evaluated at the midplane z = 0 are
r = e,

wHr) = —erlsu(s) ds,

z

or) = 2T (0 (x) + 2(1 - v)o(a).
o) = ) wa'(x) — (1 - )o(a),
() = T (a) + (1 v)u(a),
o) = “EC0(e), alr) = T (@) + u(a),
where
% = ';;—g . plaR).

We will use the formulas above to discuss the validity of the assumptions used
to derive the von Karman plate theory for the asymptotic expansions that
are derived in this dissertation. The first assumption we address is that the
strains are small. It is easy to verify that the asymptotic expansions (3.34,
3.41) and (3.72) for circular plates and (3.42), (3.49) for annular plates yield,
at z =0,

& = Or*), €. = O(r?) as h, 7 — 0;
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that is, it is sufficient to require 7 = o(1) as h — 0 to obtain small strains at

the midplane. The expansion (1.16) for large compressive edge load A yields
(P O(/\T?'), € O(/\T?') as h, 7 — 0.

Thus, we must have 7 < A~z for the strains to be small. We must also check
the validity of the assumption that the strains remain approximately constant
throughout the thickness. From the assumption that the shear strains are

negligible we have

dp  Ow
dz  or’
Thus
o
p(r,z) ~ p(r,0) — = —
ar

From the formula (1.1) for the strains we have

Thus, we must have

*w = 1 low 1
ar? H’ r ar H

as h, 7 — 0. This condition will be satisfied if
hzu'(x) — 0 and hu(z) — 0 uniformly as h — 0.

If these conditions are not satisfied, we must question the validity of the
assumption that the shear strains are negligible.
Thus, we see that the condition |hu'| — 0 for z > 0, that appeared in

the result presented in Chapter 4, is physically motivated by the assumption
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that the shear strains are negligible. We must also remark that the assump-
tion hu — 0 is violated for z = O(h) in the construction (3.72), where the
boundary layer appeared at the center of the plate. It may be possible to

deal with these cases within the framework of a plate theory that accounts

for shear strains.
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APPENDIX 11

Numerical Calculations for the

Plate and Membrane Equations

For the numerical calculations, the plate and membrane equations are
replaced by finite difference equations. In some applications, we need to
approximate a particular membrane solution for which we specify either
v(0) = @ > 0 or v(1) = A < 0. As discussed in Chapter 2, these condi-
tions specify unique membrane solutions. An iterative method is used to
obtain these solutions. For some applications it was found to be helpful to
use a nonuniform mesh. We generally calculate the solutions of the plate
equations by the HOC continuation procedure; the exception is in Chapter 3
where the asymptotic expansion for the plate solution is used as an initial
guess for the iteration procedure. The von Karman plate equations are found
to be particularly suitable for high-order continuation because of the simple
structure of the nonlinearities. The asymptotic expansion for large stress is
used to obtain a starting point for the continuation procedure and to enable
us to calculate more than one solution branch. We also discuss the implemen-
tation of this method for the membrane equations in which we use numerical
differentiation to obtain expansion coefficients. The methods described here

are equally applicable to the annular membrane and plate problems.

Discretization. We will discuss the discretization for the circular plate
elastically supported against rotation; the problem may be formulated sim-
ilarly for circular plates with other boundary conditions, for annular plates

with zero applied stress at the inner edge and circular or annular membranes.
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The annular plate with nonzero stress at the inner edge has the additional
complication that the constant A must be determined; we will not discuss
numerical calculations for this case. The von Karman plate equations (4.2)

are equivalent to the first-order system

h2y = fi(z,z) = 22, (Il.1a)
h(z®2z;)' = fa(z,2) = z*(g(z) — z123), (11.1b)
z3 = f3(z,2) = 24, (1.1c)
(2°24) = fulz 2) = 2°22. (11.1d)
The boundary conditions (1.6, 1.9, 1.10) become
2,(0) = 0, z(1) + hQz (1) = 0,
(11.2)
24(0) = 0, z3(1) — A =0.

To obtain this form of the problem, we have made the transformation u = z;,
hu' = z, v = z3, v' = z4 . The differential equations (I1.1) are approximated

by the finite difference equations

hD;,(Z“) = fl(;r]'+14/2, Zj+l,r'?.) = 0, (1133.)
hD+ (IJ?‘Z]‘-_)) - f‘g(IJ+1/g,Z]+1,’2) = (). (Hgb)
D, (Z;,) — f.'z(I;H,:-:erq 2) = 0. (11.3c)
Df(-tjszu) ' f4(IJ+l’2~z3*l‘*2) = (11.3d)
with
ZU,Z =0, mez ) hQZm,l = 0,
(11.4)
Zn,q — 0.. vag == /\ =0
where
Yji+1 — Y Yt Ys
D (y;) ;,‘1 ) z, Yjrr/2 = 9



e i

and the points{z;}, j =0, ..., m satisfy
== X C Ay s B By = 1;
For the annular plate or membrane we have z;, — a. The difference scheme

employed here is essentially the box scheme with the slight variation that
we include the factor z° in the difference quotient of the second and fourth
equations. This was found to decrease significantly the error in the finite
difference approximation as compared to the usual box scheme.

For the plate equations, a uniform mesh is most frequently employed.
However, if nearly singular membrane solutions are to be calculated, a fine
mesh is necessary near the point of singularity. Using a uniform grid in
this case would unnecessaril}_f increase the computing effort required. Also,
we have observed that the accuracy of the finite difference approximation
for the circular membrane equations is enhanced with a fine mesh near the
origin, independent of the smoothness of the desired solution. This may be
attributed to the equation’s (2.1) having a singular point at the origin; the
linearization of this equation has a solution with a singularity of O(z ?%).

To define a nonuniform grid, a transformation of the independent variable
is chosen to help resolve the difficulties we expect to encounter. A uniform
grid is applied in the new variable; then the secant method is used to solve for
the corresponding values in z. For example, the circular membrane solutions

are calculated on a nonuniform mesh obtained from the transformation

a b

2

+ ]
(+&)* (1-z+6):

afz) =

where a and b are fixed constants and &,, §, > 0 are parameters that tend to

zero as the mesh interval vanishes.
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The left-hand side of the equations (11.3, 11.4), depending on the unknowns

Z = |Z,,| and A, is denoted by G(Z,\) for the remainder of the chapter.

Iterations for Membrane Solutions. We first discuss the case where we
wish to obtain a numerical solution of the circular membrane equations (2.1),
satisfying

1(0) = a >0, z,(0) = 0;

I3

that is, we specify the stress at the center of the membrane. This can be
considered as an initial value problem and solved accordingly. The only
difficulty is that for the circular membrane the initial data are given at the
singular point, and so the usual schemes are not valid for the first step. This
is resolved by using the expansion about the origin to obtain values of z; and
z» at a nearby point z; > 0.

Normally, this method is not used, but instead we use a form of con-

strained Newton’s method. We take as an initial guess

Ll

3
Z;, = (iz; + a3)3,

1

Z;, = %(%IJ =+ a’—‘)7~“‘

(2]

This initial guess contains certain aspects of the behavior of the membrane

solutions at both ends of the compressive solution branch:
z1(z) ~ a, za(z) — 0 as @ — +o00,
zl(z)—v(gz)%. z3(z) ~ 2 5, asa— 0%, z—0.

Letting G be the set of finite difference equations for the membrane equa-

tion, then the iterations are as follows:

Ga 27, KAE + G20 , KN = —CUZ®, A7), (1L5)

dZj, = 0. (11.6)
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The equation (I11.5) is the usual linearization condition; the equation (I1.6)
is the condition that the stress remains fixed at the center. The equivalent

problem for the annular membrane has the boundary conditions
zi(a) =n > 0, zy(a) = a.
For the annular membrane we have instead of (11.6) the condition
dZ3, = 0. (11.7)

The procedure is observed to be convergent for both annular and circular

membranes, provided the mesh is sufficiently fine.

Iterations from an Asymptotic Expansion for Plate Solutions. In
Chapter 3 we compare the asymptotic expansions (3.34, 3.41) to plate solu-
tions calculated numerically. We describe in this section the method by which
these plate solutions are obtained. We take the asymptotic approximation
evaluated at the grid points z; as an initial guess and then apply an itera-
tive method of constrained Newton type. The discretized plate equations are
referred to as G(Z, ). To determine the correction dZ™, dA\" to be applied
to the nth iterate Z™, A", we take the linearization condition (11.5) as well as

the constraint

(¢",dZ") + dA™ =0

where

Gz(Z", A™)e™ + G, (Z", A") = 0.

This equation implies that the correction will be orthogonal (in the sense of

whatever inner product is chosen) to the level curve of GG passing through the
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nth iterate Z™, A". The inner product we choose corresponds to quadrature

over z € [0, 1] using the trapezoidal rule; that is,

1 m
(y,2) = 8 2. 2 (T — 2;) (Fi41.828541.5 T YikZ5k)- (11.8)

k=1 =0
Divergence is observed only near the points where the uniform asymptotic
approximation breaks down: the condition for the breakdown is discussed in

Chapter 3.

High-Order Continuation. Continuation is a numerical method for ob-
taining 1-parameter families of solutions of a set of equations. We will discuss
the general problem
G(Z,)\) =0 (11.9)
where Z is an n-vector, A is a scalar and G : IR" x IR — IR™ is a smooth vector
function. To construct a continuation step, we assume that a solution Zg, Ao
of (11.9) is known. If this solution is a regular point of G, then a continuous
branch of solutions of (I1.9) exists passing through Z,, A;. The solution
branch may be parameterized in terms of a scalar parameter s, s € [0,5],
where Z(0) = Zy, A(0) = As. For example, s may represent arclength or
pseudo-arclength.!'? The continuation step gives an approximation Z4, Aa
to a point Z(s), A(s) for some s, 0 < s < S. We prepare for the next
continuation step by solving iteratively for a solution of (11.9), using Z 4, As
as the initial guess.
The most frequently employed continuation methods are first-order ac-

curate; that is, the approximate solution Z 4, A4 satisfies

(:(ZA, )\4) = ()(Sz).

L H. B. Keller, Applications of Bifurcation Theory, 1977

& Ibid., Recent Advances in Numerical Analysis, 1979
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The first-order continuation method is performed by finding nontrivial Z,,

A1 such that

G(Zu 1= Z]S.)\U =+ /\18) — O(Qz) (]].10)

For example, in the Euler pseudo-arclength procedure we take

]
GZ (ZQ,AH)GA(Z()!’\U)‘ A = l (H.ll)

&y =~ R R

where R is chosen such that (Z,,Z,) + A1? = 1 for some inner product {-,-) on
IR™. This formula is valid except for points where G is singular; bifurcation
theory® yields formulas for the coefficients Z;, A; at some types of singular

points. Then we let
ZA:ZO—“’-Z]S‘, )\A:/\O-I'J\]S‘..

where s is taken sufficiently small that the new solution is obtainable from
the approximant by the chosen iterative method, usually within a prescribed

number of iterations.

A natural generalization of this technique to obtain a higher order of

accuracy in the continuation step is to let
N N
Za=)_ Z;s7, Ag =D Ajs™?
]:li J:I]
where the coefficients Z;, A, are chosen such that
M M
G(Z Z,s',) Ajsf) =O@EEM*Y) forM=1,..., N. (11.12)
3=0 7=0

Note that by letting M — 1, (11.12) reduces to the first-order condition (I1.10).

® H. B. Keller and W. Langford, Arch. Rat. Mech. Anal. 48 (1972)
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Let Z,, A\, be defined as in first-order pseudo-arclength continuation. We

now derive the following formula for Zys, Ay, M > 2:

| dM M-1 M-1 ‘
G2Znm + GHA :——~G( _ 2, A; J)

M T CAAM = T AN dM }“ = Z 7%/ =0 (1.13)

=0 7=0
= FM(Z() ..... ZM—l-yAUs"'s/\M—l)
where
GU == Gz(ZO,/\O), GL‘; —= G,\(Zn, /\U)

Let the sequences {Zys}, {Apg}, M = 2, 3, ..., satisfy (11.13). We wish to

show that (11.12) holds for M > 1. This may be verified by induction. Recall
from (I11.10) that
G(Z[) + Z]S, A() + )\15) = O(SZ).

Thus, (11.12) holds for M = 1. Now suppose (11.12) has been verified for 1,

... M —1. Then
M M M1 M-1
G(Z Z,s7,) /\].sj) :(;(Z Z;s", ) Ajsf) +
j=0 3=0 7=0 3=0
M-1 M-1
- GZ(Z Z;s%, > Ajsf‘) Zygs™ +
=0 j=0
M-1 M1
+ G,\(Z Z;s', > ,\jsl) AmsM + O(sMT).
=0 =0

From the induction hypothesis we have

M-1 M M M M1 M |
G(Z Z;s’, ,\Jsﬂ) = M!dSMG(Z Z,s, ,\J‘qf)lﬁ:(fO(sM“).
3=0 7=0 §=0 J=0

Also, because G is smooth, we have

M-1 M1
GZ(Z Z,8%, ) A,sf) = G + O(s),

3=0 =0

M-1 M-1
GA(Z Zat, > ,\,51) = G + O(s).
i=0

=0
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Hence,
M M SM dM M-1 M-1 |
i N 7 & B e N < " ,‘J) E
G(Z Z;s%,) A,s) /M,dsMc(L Z.sh, D ;s |t
j=0 j=0 o §=0 j=0

+ Gy Zys™ + GYAms™ + O(sMH).

From the formula (11.13) for Zjs and Apr, we thus obtain

M M ;
G‘(Z Z;s,> )\js’) =0
7=0

]:0
as desired.

The coefficients are not determined uniquely by the conditions (11.13). If

we impose the additional constraints
(Z], Z]w) T ’\IAM =i fOI' A! 2 2., (“14)

then the coefficients are well-defined to all orders provided Z,. A, is a regular
or simple fold point of the solution branch.

In the implementation of this method, we solve for Zys, Ay using the
bordering algorithm.* Note that in determining each coefficent we must solve

a linear system of the form

5a=b.

Thus, we perform one LU factorization on G'; to calculate each coefficient
we must perform one backsolve. The problems we wish to solve arise from
the discretization of a differential equation: thus, G5 is a band matrix. The
LINPACK subroutine for LU factorization of a general band matrix is used

as needed.

*H. B. Keller, SIAM J. Sci. Stat. Comput. 4 (1983)



=119

The pseudo-arclength variable 3 is defined by

LE — <Z1,Z o Z()> + /\I(A = A(:]).

We note that

M-1 , M-1 ,
8= Z <ZlaZ]>3J o Z ’\IAJ'SJ = (<Z1,Z1> 4 /\12)8 = 8.
=1 7=1

Thus, under the constraints (I1.14), s is the pseudo-arclength parameter.

Implementation of HOC for the Plate Equations. The high-order
continuation method described in the previous section is particularly effective
for the von Karman plate equations. The function G is obtained from the
finite difference equations (11.3, 11.4). The unknown Z is the discrete solution;
A is the specified value of Z,,; and represents the edge load. The inner
product we choose is given by (I1.8).

To obtain a starting point for continuation, we use the large stress asymp-
totic expansions for the plate solutions_ In the asymptotic limit A — —oo the

boundary layer construction (1.15) becomes

v~ A, U~ =" —

exp — Lh—(l — &) (11.15)

where
g1+ Qo)
A+ RQ/V=A)

For large compressive stress, the asymptotic expansion (1.16) may be used

to obtain a starting point at which the stress is everywhere compressive.
Recalling the equations determining the expansion coefficients (11.13), we
see that to implement the HOC procedure it is necessary to evaluate the

function Fy; at each order M. To illustrate, we take a particular element of
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Fys corresponding to an element of G, where the nonlinear contribution has

the form

<Q
(Ij+1/2) L‘Hl,f'zvj—:l/z

where U; = Z;; and V; = Z,3; This term appears in the discretization of the

equilibrium equation (4.2a). Let the expansion for U; and V;
M-1 M-1
> Ujast, 22 Ve
k=0 k=0

be known to order M — 1 for 7 = 0, ..., m. Then the chosen element of Fys

is given by
M-1
3
'(IJ'H/Z} Z Usiry2,6Vier2, M-k
k=1

Clearly, such formulas can be evaluated efficiently as long as the highest order
of the expansion N is not too large. In practice, we ch