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Abstract

In this thesis we uncover a new relation which links thermodynamics
and information theory. We consider time as a channel and the detailed
state of a physical system as a message. As the system evolves with time,
ever present noise insures that the "message" is corrupted. Thermodynamic
free energy measures the approach of the system toward equilibrium.
Information theoretical mutual information measures the loss of memory of
initial state. We regard the free energy and the mutual information as
operators which map probability distributions over state space to real
numbers. In the limit of long times, we show how the free energy operator
and the mutual information operator asymptotically attain a very simple
relationship to one another. This relationship is founded on the common
appearance of entropy in the two operators and on an identity between
internal energy and conditional entropy. The use of conditional entropy is
what distinguishes our approach from previous efforts to relate

thermodynamics and information theory.



Table of Contents

ACKNOWELBDGNIBNT . o v s meain i rsese 1o e 05 76 o v ons s 6 ) ol e ouas 6o 8 008 5% 0 8 8 8 ii
i 1 T T IITIT iv
EIT OF FIOGHRER. o vo v s 5w s s B 56 00 & o550 58 56 605 655 505 5 % 55000 a5 e e vi
CHAPTEBR L. « <« 50w o s n i ww w s 0 8 &8 @ % % % 0007300001 9580000 80 bk 9 5 o 1
Thesln: Inbeodoekion, . s 5 4544 s i E R+ S L he RN VN FRBENER SHE VS DS 1
SEREtIcR] MOCRADIC. « v vevorrssEr sy s rsap oo nen s s s e sees 2
Classical thermodynamics. . . .............cc0iiirennneenn. 13
The principle of maximum entropy. . .. ...........ovvvuvenn.. 22
Tforoakion TROMEY: ¢ 3408 b kb G bbsF e 6565 e b EEAF D EEERE 4 DS 26
The relation between thermodynamics and information theory...... 33
CHARTRE L. .« a0 mom v 0w 0 030 0 385 w0 et o om0 - S 42
Relating free energy and mutual information. . ................. 42
Markov processes in the spectral representation................. 59
Expanding H(n)I™" around equilibrium The 2x2 case. . ......... 66
The rereferencing theorem. .. ................. ... 71
H(n)I™™ in the RORBERL I & o 5 5.6 155 000 00K 03,0 106 6 6 0 06 6 75
A composition law for H(m)T ™ . . ..ottt 81
CONCLUSION. + 55 nss s Ra s s s i s BRSO IS e E AN RSN R e p R e e s e e 87

BIBLIOGRAPEY.: - - v 5 v om0 om0 w0000 0 000 a0 30 o o 8 90



List of Figures

H(q) is the log of the number of messages which account for a total
probability q. The graph suggests that the log of the number of
reasonably probable messages is independent of the definition of
reasonably probable for long messages.

The horizonal line depicts the difference of state energies in units of
kT. The curve is the difference of the components of i—ﬁn)l"“ versus
time n. Asymptotically, the curve merges with the line. Thus the
rereferenced conditional entropy is related to the rescaled internal
energy.

The coordinates of a point in the plane are the components of
fﬂn)l"“. By sweeping n for any particular matrix I, we generate a
curve. n= infinity is a point on this curve. Consider the locus of
points, generated by taking n= infinity for all possible matrices. This
locus is also the locus of state energy assignments for which the free
energy of equilibrium is 0. Thus the rescaled internal energy and the
rereferenced conditional entropy are identical at n= infinity.

See that the limit of H(n)I™ exists for all 3 components. The log
scale shows that the approach to the limit is as predicted. (The slight
ripple in the curves is caused by calculating with too few significant
figures.)

In this case, the limit of H(n)I™ does not exist. The log scale shows
that all three components diverge at the predicted rate.
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Thesis Introduction

In this thesis we uncover a new relation which links information
theory to thermodynamics. This relation is suggested by a structural simile
which we draw between these two subjects. We find that free energy of
thermodynamics, and mutual information of information theory are related to
one another in a simple way. This relation follows from an asymptotic
identity, which also is new, between conditional entropy and internal energy.
These findings are best appreciated in a context which emphasizes the
structure and organization of thermodynamics and information theory.
Accordingly, we have devoted chapter I to a discussion of these two subjects;
at the close of this chapter we outline the current understanding of the
relation between them. Also, at the end of this chapter we sketch what we
have done and how it augments this understanding. Chapter II contains the
detailed presentation of our original work in this area.

At its most fundamental, thermodynamics introduces heat,
temperature, entropy and the law dQ<=TdS. One can arrive at these
precepts of thermodynamics from three different directions. The line of
development currently in vogue is that of statistical mechanics. Statistical
mechanics owes its ascendancy partly to the current popularity of quantum
mechanics and partly to the deep insights that have come from its
integration of thermodynamics with the rest of theoretical physics. In the
nineteenth century, thermodynamics enjoyed a finely reasoned, classical
development; this was the handiwork of the old masters. In some respects
this classical line still provides the best explanation for the general success of
thermodynamics and its sweeping applicability. Somewhat more recently the
predictions of thermodynamics have been shown to be consistent with a
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principle of maximum entropy. This principle constitutes a third and

somewhat less well known line of development. We turn now to an

extended discussion of these three lines of development.

Statistical Mechanics

The notion of a state space is employed throughout theoretical physics.
In non—statistical physics, systems are described by specifying the point in
state space corresponding to their condition. It would be very arduous to
exactly specify the state of a macroscopic system having of order Avogadro’s
number degrees of freedom. The essential compromise of statistical
mechanics is to relinquish exact specification of system state. In practice we
effect this compromise by working only with parameters that we can
macroscopically measure. I we confine our attention to the macroscopic
level, then the development of thermodynamics from mechanics proceeds
quite simply; we will sketch this development first. An excellent introduction
to statistical physics at this level is found in [Reiff. When we consider
systems in microscopic detail (but still in the classical limit), the task of
relating the precepts of thermodynamics to the foundations of mechanics
becomes quite challenging. The basic idea is to consider the probability
distribution over state space, p, defined by an ensemble of macroscopically

1

identical systems.” We introduce this deeper view of statistical mechanics

second; here [Tolman] has been an invaluable source.

ISyutems are macroscopically identical if they are independent of one another except that
they share equivalent values of their macroscopic parameters.
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Equilibrium: state is independent of past history.

A system that has evolved for a sufficiently long time ultimately
approaches equilibrium. In equilibrium the state of a system is independent
of all past history; it is decoupled from its initial configuration. A necessary
(but not sufficient) condition for equilibrium is that the system be
macroscopically stationary. Microscopically, equilibrium happens when the
system has made enough transitions to have sampled a representative fraction
of its accessible state space. Equilibrium is thus a statistical concept; it
tends to defy a precise physical definition. Traditionally the definition of
equilibrium has been something of a tautalogy: an equilibrium system is one
which is consistent with the predictions of equilibrium thermodynamics.

Entropy measures state space volume.

A heat bath is an equilibrium system which is sufficiently large that it
possesses a huge number of degrees of freedom,2 typically of order
Avogadro’s number. Note that almost any macroscopic system which is in
equilibrium can qualify as a heat bath. The essence of statical mechanics
lies in estimating the volume of state space (1 which is accessible to the heat
bath, given that the bath has an energy which is known to lie in some small
interval around E. The typical result, which always emerges, is that (] is
roughly proportional to Ef, where f is of order the number of degrees of
freedom of the heat bath. Since the exponent f is of order 10%, the volume

2The number of degrees of freedom of a system is the dimension of the state space in
which the system finds a complete description. Counting degrees of freedom can be a bit
tricky; the number depends on which abstraction of physics one is using. In classical
physics a particle has six degrees of freedom; three of these are position coordinates and
three are velocity (or momentum) coordinates. In the rigid—body approximation of classical
physics, a body has nine degrees of freedom; six of these are associated with position and
velocity, and three more come from the abstraction of angular momentum. In quantum
physics a particle can have more than six degrees of freedom; it can have spin, for example,
and it can have even more exotic attributes as well.
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of accessible state space is an exceedingly rapidly varying function of the

energy. It is reasonable to employ logarithms in such circumstances. The
entropy H is defined as the log of the volume of state space which is
accessible to the heat bath; thus H= {n(). The parameter B is defined as
the partial derivative of entropy with respect to energy; in taking this
derivative the heat bath is assumed to be dynamically isolated, so E is
varied because of heat exchanged and not because of work performed. g is
the proportional rate of change of () with respect to E on account of heat
flow; this partial derivative works out to be f= f/E. The reciprocal of g
has units of energy; it is defined to be kT. kT= E/f and is approximately
the energy per degree of freedom. Thus thermodynamics introduces H which
is dimensionless and 8 which has dimensions of reciprocal energy. These two
useful quantities summarize the state of systems for which our information is

otherwise incomplete.?

Entropy & heat. The ond jaw.

We can exactly calculate the change in entropy which accompanies the
flow of heat into a system which is at equilibrium. Using the definition of
as the partial derivative of entropy with respect to energy on account of heat
flow, it is easy to see that dH= 8 dQ (or equivalently, dS= dQ/T). g is
defined for a heat bath at equilibrium. What is the relationship between dH
and dQ for a nonequilibrium system? The 204 Jaw of thermodynamics
postulates that for any system, the change in entropy dH is never less than

3n the early days when thermodynamics was born there happened an unhappy confusion
of units; the two primary quantities were taken to be the physical entropy, S, and the
temperature, T, where S= kH and T =1/(kf). This hapless choice forced physics to accept

& new unit, the degree, which had no relation to any other commodity except through
Boltzmann’s constant k.
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B dQ.* Thus dH>= B dQ (or equivalently, dS>= dQ/T). We would like

to deduce this inequality from a more intuitive starting point; unfortunately,
with the methods of statistical mechanics we cannot easily do so. This

difficulty is a shortcoming of the statistical mechanical approach to thermo—

dynamics.

The Boltzmann distribution.

The canonical question of thermodynamics couples a small system to a
heat bath and asks how a fixed energy shared between them is apportioned.
The small system and heat bath are thermally isolated from the rest of the
universe so that their total energy is conserved. The heat bath is assumed
to remain at some constant temperature T. The Boltzmann distribution
answers the question: what is the probability P(¢) for the small system to be
in a particular state which has energy €? The derivation of the Boltzmann
distribution P(c) assumes the equipartition principle; this principle asserts
that, in equilibrium, the composition of heat bath 4+ small system is equally
likely to be found at any of the points in state space that are consistent
with them sharing together a total energy of E. I the small system is to
have an energy € and the total energy is to be E, then the emergy of the
heat bath must be E—¢. The probability that the small system is in a state
with energy ¢, P(e), is proportional to the volume of state space which is
accessible to the heat bath when the latter has an energy near E—¢. Thus
P(e) is proportional to (E—¢)! which equals Ef(1—¢/E)f; so the dependence of
P(€) on € goes like (l—e/E)f. Now we recall that E, which is very nearly
the enmergy of the heat bath, is equal to f/B8; thus P(¢) is proportional to

A system which is out of equilibrium is s system in which irreversible processes are
happening. For these systems, the direction in which time flows is significant. The second
law applies to changes in entropy which occur as a system moves forward through time, i.e,,
as the system ages normally.
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(I—Be/f)f. Since f is huge, this reduces to the familiar result: w/w(-ﬁe).

Thus the Boltzmann distribution follows readily from the methods of
statistical mechanics; notice how few assumptions are required. This
economy of assumption gives insight to the wide applicability of the
Boltzmann distribution.

Heat & entropy in theoretical mechanics

In the world of Newtonian physics, heat appears when energy is lost
to friction. Unfortunately, friction has no place in the elegant theoretical
world of Lagrangian (or Hamiltonian) physics. Rather, what appears as
friction is actually some small interaction whose only significance is to
provide a coupling between otherwise orthogonal modes of a system. Heat
manifests itself in such a system as the incoherent spread of energy from one
mode into many.5

Consider, for example, the frictional heat that is generated when a
moving block of material scrapes against a rough surface and slows to a halt.
A classical analysis of this situation models the block as a collection of
masses interconnected with springs. Suppose that before the block interacts
with the rough surface, all of its component masses are moving with the
same velocity, and the springs connecting the masses are unstretched. Thus

the block is quiescent internally; all of its energy is due to the velocity of its

SIn mechanics the detailed state of a system can be specified in either of two ways. For
one of the ways the detailed state corresponds to a point in state space, where the
coordinates of the point are the postitions and velocities of each particle in the system.
Alternatively, for linear systems, the detailed state can also be regarded as corresponding to
a point in eigen—state space where the coordinates of the point are the amplitudes and
phases of each normal mode of the system. The two specifications carry equivalent
information in that a constant, linear, nonsingular transformation carries one into the other.
Thus, a probability distribution over the amplitudes and phases of the normal modes of a
system corresponds uniquely to a probability distribution over the positions and velocities of
the particles of the system. The entropies of these two probability distributions will agree
with one another to within a constant additive factor having to do with the log of the
jacobian of the transformation which connects one space to the other.
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center of mass. We can model the rough surface as a collection of little

rigid posts. As some of the masses of the block impact with these posts,
internal vibrations of the block are established. The continued action of the
rough surface ultimately leaches away nearly all the kinetic energy of the
center of mass, converting it into energy of vibration about the center of
mass. Thus the energy of the block gets distributed among all of its
vibrational modes. Macroscopically, we see the block come to a quivering
halt.

The example of the block shows us that heat and entropy are related.
Initially, the distribution over mode amplitudes of the block is tightly
confined to the zero frequency modes of uniform translation. As the block
slows, the distribution over mode amplitudes widens; its entropy increases.
A flow of heat (or, more properly, a conversion of mechanical energy to
heat) accompanies this increase in entropy. The heat flow is the funneling of
energy from the zero frequency modes to the multitude of higher frequency
modes. Thus the flow of heat and the widening of the distribution over
mode amplitudes are directly connected; in a sense, the increase of entropy

describes the flow of heat.

The relative nature of entropy. Quantum physics & heat.

Entropy measures the volume of state space in which a system may

be found. This volume depends critically on any constraints which the
system is known to satisfy. For example, if the total energy of the system
is known, then the system must be on the hyper—plane in state space which
corresponds to that energy. If in addition to the energy, the momentum of
the system is known, then the system is even more tightly constrained and
the region of state space which is accessible to it becomes even smaller.

Thus the entropy of a system depends on how much we know about the
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system. As we measure more and more parameters of a system, its entropy

becomes smaller and smaller.

The observation that the entropy of a system depends omn our
measurement skills is consistant with our interpretations of heat and work.
Energy which is exchanged via a mechanism which we can observe is work,
energy which is exchanged via a mechanism which we can not obeerve is
heat. For example, consider the block made of masses and springs. Suppose
that in addition to the szero frequency mode of uniform translation, we are
also able to measure the amplitude of the next higher frequency mode.
With these measurement skills we would see changes in the amplitudes of
either of the lowest two modes as being work exchanged and we would
interpret changes in the mnet excitation energy of all of the other modes
together as being the flow of heat.

Is entropy ever absolute? Yes, in quantum mechanics entropy attains
an absolute definition. As systems become larger, the emergy spacing of their
quantum states, AE, becomes smaller. Physical processes (transitions between
quantum states) take some finite time to happen; call this minimum time At.
When a physical process taking time At happens in a system which is large
enough so that the AE of its quantum states is less than h/At, then® the
uncertainty principle demands that quantum mechanical phase information be
lost. This phase randomization is the quantum mechanical representation of
heat. [Feynman — personal communication].” Thus, quantum mechanical
uncertainty places limits on measurement skill and establishes an absolute
lower limit for entropy.

‘h is Planck’s constant.

T This insight underlies the so—called "Master Equation® approach to thermodynamics. The

master equation is what one gets by carefully averaging over phase in the standard
dynamical equations of quantum mechanics [Prigogene].
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Finding a well-behaved entropy. The Boltzmann H theorem.

The second law implies that the entropy of an isolated system (or,
more properly, an ensemble of isolated systems) cannot decrease with time.
As an isolated system evolves toward equilibrium, its entropy will increase
monotonically. This time behavior of entropy holds even though the system
is governed on a microscopic scale by dynamical laws which are invariant
under time reversal The Boltzmann H theorem attempts to show how
microscopically reversible laws can imply macroscopically irreversible
behavior.® The H theorem can be better appreciated if we try first on our
own to define an entropy which evolves in the way we expect and which is
computable in terms of microscopic quantities. Simply computing the
integral over state space of p {n{(p), where p is the state space probability
density, does not do the job; we will shortly see that this "fine—grained"
entropy does not evolve, it is a constant of the motion. The Boltamann H
theorem, as interpreted by Gibbs and modified by P. and T. Ehrenfest,
succeeds in defining a quantity H which behaves correctly. Gibbs interprets
H in the context of an ensemble of systems. He suggests that an ensemble
flows through state space much as ink mixes with water when the two are
stirred. The Ehrenfests inject Gibbs’ interpretation into the definition of H.
They introduce a "course graining" procedure which allows the calculation of
H in terms of the probability density p.

Recall that the detailed configuration of a system corresponds to a
point in state space. As the system evolves with time, its detailed
configuration changes and the point in state space corresponding to the

system moves. Now consider the time evolution of a small element of state

8The foregoing is the standard introduction to the H theorem which one finds in many
texts. We think the H theorem is significant for a different reason; the H theorem shows
how probability theory can apply to deterministic systems.
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space volume. A way to keep track of the volume element is to follow the

points which comprise its boundary as they move.? As time goes by, we see
the volume element stretch into a long and complex filament which wraps
round and round the state space. Note that in spite of this stretching we
know, by Liouville’s theorem, that the volume of the little element will be
conserved. Suppose that all of the members of an ensemble of systems have
initial configurations which correspond to points in this little volume element.
The ensemble is described by a probability density which is initially quite
simple. The density is uniform inside of the volume element and it is zero
outside. After a while the volume element has become a convoluted
filament; this filament still includes the configurations of all of the members
of the ensemble. The probability density of the ensemble is uniform inside
the filament and it is zero outside of the filament. Liouville’s theorem
implies that inside the filament this density has the same value as it had
initially.

Now consider an ensemble of systems with a probability distribution
over state space described by some density function p. Conceptually we can
partition the state space with a grid of very fine (differential sized) volume
elements. The density function p can be taken to be uniform within any
one of these differential volume elements. Now we let the ensemble evolve.
The differential volume elements all stretch into convoluted filamentary
shapes; these shapes never actually intersect one another, but they do
become mutually entwined in very complicated ways. Within any filament
the density p retains the same value as it had initially. Since the fine grid

9Reca.ll that an elementary property of state space is that two distinct points can never
collide, because at the instant of collision and forever after they must follow the same
trajectory and by time reversal symmetry they must have been on the same trajectory

forever before as well. Thus, points inside a closed boundary can never escape to the
outside, because they cannot cross the boundary.
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partitioned the space initially, the unruly collection of filamentary shapes

which the grid has become still does manage to partition the space. The
constancy of the density p within a filament, coupled with the space
partitioning property of the filaments implies a remarkable fact: the integral
of p or of any function of p over the entire state space will remain constant
over time. Thus the entropy, which is the integral of p {n(p) over the
space, will remain constant in time.

Consider the behavior of the filaments. They become increasingly
disordered and jumbled as time progresses. The course graining procedure of
the Ehrenfests captures the essence of this filamentary behavior. At time
zero partition the state space with a small (but not differential sized) grid.
This grid is fixed once and for all; it does not change with time. Form a
new distribution function P (capital p) which is constant within each cell and
which in each cell is equal to the average of p over that cell. The quantity
H of the Boltzmann H theorem is the entropy of the distribution P. We
may suppose that at time zero the function p has been chosen so that the
two functions p and P agree with one another very nearly. Now let time
evolve. Each cell is invaded by a jumbled mixture of filaments; the
filaments began life in other cells and so each carries a (generally) different,
constant density. Thus each cell, which initially contained but a single
density, now contains a jumbled mixture of densities. The function P is the
average of these densities on a cell by cell basis. It is obvious (or anyway it
is trivial to show) that the entropy of P, which we recall is H, will increase
provided that the mixing of the filaments becomes ever more fine. A
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hypothesis of the Boltzmann H theorem is that the mixing of the filaments

does become ever more fine.!?

How ensembles predict single systems. Ergodicity.

Notice that a probability distribution over state space only attains a
predictive value in the context of a large ensemble of systems.
Unfortunately, in statistical mechanics, we usually work with only a single
system. At any instant of time our system occupies only a single point in
state space; one cannot do statistics on a single point! The usual remedy for
this deficiency is to replace the set of points in state space which the
ensemble would have provided with the set of points occupied over time by
the single system under investigation. The replacement of ensemble averages
by time averages produces results which agree with experiment.

Experimental verification aside, nobody has ever been able to prove
the wvalidity of this replacement without introducing some hypothesis in
addition to the known laws of physics. Such hypotheses have usually been
called "ergodic hypotheses." The first of them was advanced by Boltzmann
who also was the first to use the current terminology. Boltzmann
conjectured that each surface of constant energy consists of a single
trajectory. In other words, no matter what is the state of the system at a
given time, it will pass (or has already passed) through any other state with
the same value of the total energy. Using this hypothesis, it is possible to
establish the coincidence of time averages with ensemble averages on surfaces
of constant energy. Unfortunately, subsequent to Boltzmann, mathematicians
have pointed out that this ergodic hypothesis is self contradictory; since a

trajectory cannot have multiple points, it cannot fill a multidimensional

10The "theorem" in Boltzmann's H theorem is something of a misnomer since bonafide
theorems don’t ordinarily have hypotheses in them.
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volume. The ergodic hypothesis is associated with the most profound

questions of statistical mechanics. These questions have been much studied
in the decades since Boltzmann introduced them, [Khinchin 1] is a readable

review. They have not been resolved completely even yet.

Classical thermodynamics

The classical approach to thermodynamics starts with the first and
second laws and from them constructs an elegant chain of reasoning along
which the entire subject is developed. The first of the classical laws is
conservation of energy. This law, which really is more a definition than a
law, defines heat and work as the two forms in which energy can occur.
The second law states that the natural direction in which heat flows is
always from warmer bodies to cooler bodies. This law is supported by years
and years of accumulated experience. From these two laws and one
ingenious construct, the reversible cyclic engine, the old masters were able to
define absolute temperature and to deduce the existence of entropy. They
then defined a useful quantity, the free energy, and used this quantity to
characterize the nature of equilibrium. Thus they deduced the whole subject
from two laws. [Fermi] is an excellent exposition of this approach to
thermodynamics. [Callen] contains a more modern treatment, but one that is

still very much in the classical tradition.

Energy can be neither created nor destroyed: dU=dQ+dW.
This law can be regarded as the definition of heat: the amount of heat

dQ which flows into a system is always that exact quantity which makes up
the difference between the change in internal energy dU and the mechanical

work dW for which we can account. In practice dQ is determined
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experimentally by calibration against a phenomenological scale of temperature.

One assumes that the unknown heat dQ is equal to that work dW which
produces an equivalent change in temperature.

The possible transformations of energy & the second law.

Conservation of energy, the first law of thermodynamics, places no
limitations on the possibility of transforming energy from one form into
another. Both empirically and theoretically there appear to be no limitations
on the transformation of work into heat; mechanical work can always be
converted totally into heat by means of friction. There are very definite
limitations however, to the possibility of transforming heat into work. Heat
flows spontaneously from warmer bodies to cooler bodies when the bodies are
in contact.!! Clausius postulates that it is impossible to find a
transformation whose only final result is to transfer heat from a body at a
given temperature to a body at a higher temperature. Lord Kelvin
postulates that it is impossible to find a transformation whose only final
result is to transform into work heat extracted from a source which is at the
same temperature throughout.

Either of these postulates can be taken as the classical version of the
second law of thermodynamics; we can show that the two are equivalent.
This equivalence is proved by showing that if the Clausius postulate were
not valid, then neither would be the Kelvin postulate, and vice versa. I the
Kelvin postulate were not valid, then we could perform a transformation
whose only final result would be to transform completely into work a definite
amount of heat taken from a single source at the temperature t;. But we

could then convert this work by means of friction into heat, with which we

117This behavior defines an empirical scale of temperature according to which we can
compare the relative hotness of things.
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raise the temperature of some other body. If this other body initially was at

a higher temperature t,, then the only final result of this process would be
the transfer of heat from a body at a given temperature to a body at a
higher temperature. This would be a violation of the Clausius postulate.
On the other hand, suppose that the Clausius postulate were invalid. Then
we could transfer some heat Q, from a body at temperature t; to a body at
the higher temperature t, in such a way that no other change in the state of
the system occurred. But then, with the aid of a heat engine (to be
discussed shortly), we could absorb this same heat Q, and extract work as
we cooled back down to the temperature t,. Since the source at the
temperature t, receives and gives up the same amount of heat, it suffers no
net change. But this would violate the Kelvin postulate, since we have
succeeded in transforming into work, heat extracted from a source which is
at the same temperature t, throughout.

Work from heat via Carnot cycle. The efficiency 7

If we have two sources of heat at different temperatures, then we can
transform heat into work via an elegant process known as a Carnot cycle.
This reversible process consists of an alternating sequence of isothermal and
adiabatic transformations cleverly arranged so that the engine performing the
transformations ends the cycle in the same macroscopic state as when it
began. The first isothermal transformation absorbs an amount of heat Q,
from a source at temperature t5, while the second isothermal transformation
surrenders an amount of heat Q; to a source at a lower termperature t,.
The purpose of the first adiabatic transformation is to cool the engine from
the temperature t, down to t;; since no heat flows during this phase, some
work is performed. Similarly, the second adiabatic transformation warms the

engine back up to t,; again no heat flows, but in this case some work is
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absorbed. Since the engine begins and ends in the same state, it must be

that the total work performed during one cycle is W= Q,—Q,. The
efficiency of the Carnot cycle is defined as the ratio of the work performed
to the heat extracted from the high temperature source. Thus the efficiency
= W/Qy= 1-Q,;/Q,. ~Whatever limitations attend the transformation of

heat into work must show up as limitations on the ratio Q,/Q,.

T(irreversible) <= 7(Carnot)= 7)}reversible).

If all the transformations comprising the Carnot cycle are reversed
then we have a refrigerator. The net effect of a reversed Carnot cycle is to
absorb the work W instead of producing it; also, Q, is absorbed at
temperature t, and Q, is surrendered at temperature t,. Using the Kelvin
postulate and the idea of a reverse Carnot cycle, it is possible to prove that
of all cyclic engines operating between the temperatures t; and t,, the
reversible ones all have the same efficiency and this efficiency exceeds that of
any nonreversible engine. The old masters prove this fundamental result by
devising an ingeneous "null" process whereby an arbitrary heat engine and a
reversed Carnot engine exactly cancel out one another’s effect on the heat
source at the higher temperature t.,.

Specifically, N reverse cycles of the Carnot engine follow N’ cycles of
the arbitrary engine where N and N’ are chosen so that N'Q,’= NQ,; in this
defining relation Q,’ is the unsigned heat absorbed per cycle by the arbitrary
engine from the source at the higher temperature ty, and Q, is the unsigned
heat surrendered to this source by a reverse Carnot cycle. The Kelvin
postulate then implies that the total work W, .., accomplished by this
combination of engines must be nonpositive, since the entire process
exchanges net heat only with a source at a single temperature t,. Since

Qatotai= O by comstruction, conservation of enmergy implies that W, ...=
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—Ql’wm. Thus the Kelvin postulate implies Ql,wm)-—- 0. But Ql’mm=

N’Q,’-NQ,, since the process comsists of N’ cycles of the arbitrary engine
surrendering the unsigned heat Q,’ per cycle followed by N reverse Carnot
cycles, each absorbing the unsigned heat Q,. Thus N’Q,’-NQ,>= 0.
Substitute in this last relation the expression N'’=N*Q,/Q,’, obtained from
the defining relation of N and N’. The result is N(Q,Q,’/Q;’—Q;)>= 0. In
this last relation we can divide by the factor NQ, without altering the sense
of the inequality since, by hypothesis, N> 0 and Q,> 0 on account of it
being an unsigned quantity. Thus we obtain the fundamental result:
Q/Qy>= Q;/Qy- The fundamental result implies directly that 7»’<=m;
thus the efficiency of the arbitrary engine can never be greater than the
efficiency of the Carnot engine. Finally, consider the case where the
arbitrary engine is itself reversible. In this case we can interchange the roles
of the two engines in our construction and obtain an inequality opposite in
sense to that which we had previously. Both inequalities must hold and so
we conclude that the arbitrary reversible engine has the same efficiency as

the Carnot engine.

The absolute temperature. T,/T,= Q,/Q; of a reversible cyclic engine.

The fundamental theorem shows that the ratio Q,/Q, is the same for
all reversible engines operating between the empirical temperatures t; and t,.
Thus Q,/Q,=f(t;,t;). We now deduce a key property of the function f via
another tricky construction of the classical line — this time a "null" process
involving three heat sources. Imagine two reversible cyclic engines R, and
R,. R, operates between the temperatures t; and t,, thus f(t,t,)= Q,/Q,.
R, operates between t; and t,, thus f(t)t,)=Q,/Q,  Dividing we obtain
Qo/Q= 1(ty,t,)/1(ty,t;). Notice that we have conveniently arranged things so
that both engines exchange the same heat Q, with the body at t,. Now the
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classic trick: consider the reversible process consisting of a direct cycle of R,

and a reverse cyclic of R;. This compound process exchanges no net heat
with the t;, source; it absorbs Q, from the source at t,, and expells Q, to
the source at t;. Thus, from the definition of the function f, Q,/Q=
f(t,,t,). Equating the two expressions for Q,/Q,, we obtain f(tt))=
f(tg,85)/f(tg,t;). Since t; is arbitrary, we conclude that f(t,,t;)= T(t5)/T(t)),
where T is some function which depends upon the choice of empirical
temperature scale. The scale of temperature is arbitrary; a very convenient
choice is to use T itself instead of t. T is called the absolute
thermodynamic temperature. Notice that T is determined to within a
constant multiplicative factor; we are thus free to choose the units of the
new temperature scale; conventionally the difference between the boiling and
freezing temperature of water at one atmosphere of pressure is taken to be
100 degrees. It is possible to show that this absolute thermodynamic scale
of temperature coincides with the empirical temperature as determined by a

gas thermometer.

Entropy.
The discovery of the state function entropy is the crowning

achievement of classical thermodynamics.

Sum of Q/T,<= 0.

Consider a system running a cycle which exchanges heat with several
different sources. Suppose the system exchanges the signed heat Q; with the
source at temperature T;; Q; is positive if the system absorbs the heat from
the source i, otherwise it is negative. Now introduce one last source at
temperature T and a bevy of Carnot engines C;, where for each i, C, runs

between the source at temperature T, and the source at temperature T. We
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adjust each C; so that it absorbs from the source i the heat —Q;. Thus

after a complex cycle consisting of one cycle of the system and one cycle of
each of the Carnot engines, we find that no net heat has been exchanged
with any of the sources i. However, the source at temperature T has
surrendered an amount of heat Q equal to the sum over the other sources i
of TQ;/T;. Thus the net effect of the complex cycle has been to transform
into work an amount of heat Q received from a source at a uniform
temperature T. The Kelvin postulate requires that Q<= 0. Thus, for any
cyclic process the sum of Q,/T; is always<= 0.

Integral dQ/T= 0 around any reversible cyclic transformation.

In deriving the result that the sum of Q;/T;<= 0 for an arbitrary
cyclic system, we assumed that the system exchanged heat with a finite
number of sources. Instead, the system might exchange heat with a
continuous distribution of sources; then the sum over the sources becomes an
integral around the cycle and the heat received by the system from any
single source at a temperature T becomes the infinitesimal dQ. Thus, for an
arbitrary system exchanging heat with a continuous distribution of sources,
we know that the integral of dQ/T around a cycle is<= 0. Notice that if
the system is reversible, then by running it in reverse we conclude that the
integral of —dQ/T around the cycle is<= 0. Thus we conclude that the
integral of dQ/T around a reversible cycle is identically zero.

State function S: dS= dQ/T for reversible dQ.
Consider now the integral of dQ/T along some reversible transformtion

which takes the system from a standard initial state O to some final state
A. Let the value of this integral be S. We could make a complete cycle
and net a zero result by continuing the integral along any reversible
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transformation from A back to O. Thus the integral along any reversible

transformation from A to O must be —S. Evidently for a fixed initial state
O, the integral S depends only on the final state A; thus S= S(A). S is a
state function; it is called the entropy. More generally, the integral of dQ/T
from A to B along any reversible transformation is S(B)—S(A).
Differentiating the integral relation, we see that dS= dQ/T along any

reversible infinitesimal transformation.

dS>= dQ/T for general dQ.

Suppose we take our system from some state A to some other state B
via an irreversible transformation I, and back to A again via a reversible
transformation R. I and R together form an irreversible cycle. We know
that the integral of dQ/T around this cycle is <=0. But this integral
consists of two pieces: the integral along I and the integral along R. The
integral from B to A along the reversible transformation R, by definition just
gives the entropy of A relative to B, S(A)—S(B). The integral around the
entire cycle, which we know is <=0, equals the integral along the irreversible
transformation I plus S(A)—S(B). Thus the integral along the irreversible
transformation I <= S((B)—S(A). The differential form of this result is that
dS>= dQ/T for an arbitrary infinitesimal transformation involving a heat
flow dQ from a heat bath at temperature T.

Thermodynamic potentials. The free energy.

The work L performed by a purely mechanical system is always equal
to minus the variation of its energy AU. Thus L= —AU. For
thermodynamic systems there is no such simple relationship between the
work performed and the variation in energy, because the energy can be

exchanged between the system and its environment in the form of heat. The
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first law of thermodynamics correctly accounts the relationship between heat,

work and energy. This law takes the form L= —AU+Q. Suppose that a
system is in thermal contact with its environment (to be modeled as a heat
bath), which remains at a constant temperature T as the system is
transformed from an initial state A to a final state B. We know that the
integral of dQ/T is less than the change in entropy associated with the
transformation from A to B. Because T is assumed constant, we even know
that the integral of dQ from A to B is<= T[S(B)—S(A)]. We thus obtain
an upper bound on the amount of heat which the system can receive from
the environment. Combining this bound with the first law, we conclude that
the work L perfomed by the system during the transformation from A to B
is<= U(A)-U(B) + T[S(A)-S(B)]. This motivates the definition of the
state function F where F= U—-TS. F is called the free energy and evidently
the work L<=F(A)-F(B) = —AF. Compare the thermodynamic result L<=
—AF with the corresponding identity from mechanics L= —AU; this is what
motivates the name free energy, the work performed is bounded above by
minus the change in the energy that is free.

Equilibrium & the minimum of free energy.

Consider a system S, which can exchange heat but not work with its
environment. Systems such as S are said to be dynamically isolated. For
any transformation of S, we know that L= 0; if the environment of S is at a
constant temperature, then we can conclude that 0<= F(A)—F(B) and hence
that F(B)<= F(A). So we see that the free energy of a dynamically isolated
system is always decreasing, or at least is always nonincreasing. A
consequence of this fact is that, if the free energy is a minimum, then the

system is in a state of stable equilibrium.
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The principle of maximum entropy

The combined use of probability theory and the Boltzmann distribution
makes possible a natural and mathematically clean formulation of thermo-—

dynamics.!?

However, probability theory alone can not generate the
Boltzmann distribution; arriving at this distribution requires some sort of
additional assumption. The principle of maximum entropy provides such an
assumption in a simple and usable way. A drawback of this line of
development is its blindness to some of the really fundamental issues of
statistical mechanics; issues like ergodicity and generally the question of the
extent to which an ensemble average represents the behavior of any one
particular system. On the other hand, the maximum entropy principle has a
strong foundation in statistics. In fact, if maximum entropy based inference
should fail, then one can draw some very powerful conclusions. The original
references on maximum entropy are the pair of papers [Jaynes 1] and

[Jaynes 2]. More recently, the text [Tribus] does a very credible job of

developing thermodynamics from the hypothesis of maximum entropy.

Statistical estimation & maximum entropy.

The generic problem which the principle of maximum entropy
addresses is that of estimating some parameter of a probability distribution
when this distribution is only partially specified. The problem is ill—posed;
its solution requires some extra principle of statistical estimation, such as one
of "minimum bias," or equivalently, "maximum uncertainty." A great
advance provided by information theory lies in the discovery that there is a
unique, unambiguous criterion for the "amount of uncertainty" represented by

a discrete probability distribution. Shannon has proved that entropy can be

12we wil explore this formulation a little later in the thesis.
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uniquely characterized as that quantity which is positive, which increases

with increasing uncertainty and which is additive for independent sources of
uncertainty. The generic problem becomes one of finding a probability
assignment which maximizes entropy while agreeing with whatever constraints

are implied by the partial specification of the distribution.

The Boltzmann distribution from maximum entropy + constraints.

The canonical example of the application of maximum entropy to
thermodynamics is its derivation of the Boltzmann distribution. The problem
is to find the probability distribution over state space which has maximum
entropy, and which satisfies two constraints: the sum over the probabilities so
deduced should be unity, and the expected energy of the distribution should
agree with a particular given value U. Lagrange’s method of undetermined
multipliers is used to solve this problem of constrained extremization. g is
the Lagrange multiplier associated with constraint of fixed expected energy.
{n Z is the Lagrange multiplier associated with the constraint of a unity sum
over the assigned probabilities. @~ The result is the familiar Boltzmann
distribution.

A general identity associated with this method of constrained
extremization is that the partial derivative of the extremized quantity
(entropy) with respect to the value of the constraint (U) equals the value of
the Lagrange multiplier (8). In taking this partial derivative, the variations
are confined to those quantities over which the extremization has been taken.
In the case at hand, this identity says that the partial derivative of entropy
with respect to (mean) energy is . In this partial derivative, the probability
assignments are varied, not the state energies. Since changes in U on
account of probability variations do constitute heat flow, we see that § as a

Lagrange multiplier in the maximization of entropy is exactly the same as
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the f defined in statistical mechanics. In each case S is the partial

derivative of H with respect to U, and in each case the variation in U is to

be accomplished by means of heat flow alone.!3

f’s are equal in equilibrium.

A nice feature of the definition of § with maximum entropy is that it
allows us to readily deduce that the f’s of two systems in thermal contact
must agree if the two are to be mutually in equilibrium. We suppose that
entropy is additive (extensive), so that the entropy of two systems in thermal
contact is just the sum of their separate entropies. This extensivity of
entropy will be true if the interaction of the two systems occurs only
through mechanisms that already have been operating in each system alone,
i.e., no surface interactions. @Now we consider maximizing the combined
entropy of the two systems. Suppose that the § of system one is less than
the B of system two. Then by taking a little energy in the form of heat,
dQ, from system one, and adding that energy as heat to system two, we
would increase the joint entropy of the two systems by the amount
dQ(By—p;)- We could effect this flow of heat by appropriately diddling the
state occupation probabilities of the two systems. Similarly, if the S8 of
system one is larger then the 8 of system two, then by moving heat in the
opposite direction we could again increase the total entropy. So we see that
in order for the entropy of the combination to be at a maximum, it must be

that the f’s throughout agree uniformly.

13We note in passing that this definition of heat flow is somewhat over—restrictive;
confining variations solely to the state occupation probabilities isn’t the only way to insure
that heat flow alone happens. In principle, the state energies can be allowed to vary too,

provided that the average of their variations, weighted by the probabilities of state
occupation, remains zero.
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Any failure of maximum entropy uncovers new physics.

The maximum entropy principle leads to the broadest distribution that
is consonant with the initial data. It follows that any sharp predictions of
the principle must be consistant with the vast majority of states to which
any appreciable weight is assigned. In a similar vein, it is reasonable to
assume that experimentally reproducible results must be consistant with the
vast majority of states that are compatible with the conditions of an
experiment. Suppose that maximum entropy inference, based on knowledge
of experimentally imposed conditions, makes a prediction which is refuted by
further experiments. Then there must be a serious discrepancy between the
fraction of states in the maximum entropy distribution that are consistant
with the prediction, and the fraction of physically allowed states that are
consistant with the prediction. A similar discrepancy will be revealed if a
phenomenon is found which is experimentally reproducible, but which is not

predictable by maximum entropy inference.

"In either case there must exist new physical states, or new
constraints on the physically accessible states, not contained in the
presently known laws of physics. Thus if it can be shown that the
class of phenomena predictable by maximum entropy differs in any
way from the class of experimentally reproducible phenomena, that fact
would demonstrate the existence of new laws of physics, not presently
known."14

Information Theory

In 1948 Claude Shannon published a seminal article in which he
developed a mathematical theory of communication. The fundamental

problem of communication, according to Shannon, "is that of reproducing at

u[.}aynes II, pg 172}
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one point either exactly or approximately a message selected at another

point." The message is generated by an information source; this source
selects the message from a large set of possible messages. The message is
transmitted from one point to another via an imperfect channel; on account
of noise, the message received at the output of the channel may not exactly
correspond to the message that was transmitted. Information theory, as
Shannon’s theory has come to be called, quantifies and compares the rate of
information production of a source, with the information carrying capacity of
a channel.!® [Shannon] remains, in many respects, the best exposition of
information theory. [McEliece] is a modern textbook on information theory
which contains, among other things, a compendium of all the inequalities
around which the subject is built. [Pierce] is a readable and thoughtful text
which develops information theory and traces its connection to other
disciplines. [Khinchin 2] discusses the mathematical foundations of
information theory; his treatment of entropy is especially significant.

Insight into entropy is the essence of information theory.

Shannon proposes that the amount of information in a message
depends on how much "choice™ is involved in the selection of the message.
The selection process chooses the message from a set of possible messages in
a random way. Our uncertainty about the outcome of the selection process
measures the amount of information in the message. Shannon proves that
any internally consistant measure of choice or uncertainty must necessarily be
based on entropy. If all the messages in the set of possible messages are
equally likely, then the entropy is just the logarithm of the number of

15Shannon develops two versions of his theory: one version for discrete sources and channels,

and another where sources and channels are continuous. In this thesis, we will deal only
with the discrete version of Shannon’s theory.
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messages. If all the messages are not equally likely, then the entropy is

proportional to the logarithm of the number of "reasonably probable”
messages. The number of reasonably probable messages would appear to be
a somewhat subjective quantity. Surprisingly, when the set of possible
messages is sufficiently large, this seemingly qualitative definition of entropy
actually does manage to specify a precise quantity. The notion of a set of
"reasonably probable" alternatives, where the size of the set somehow
manages to be independent of one’s precise interpretation of the words
"reasonably probable" is subtle and difficult to appre:ciate.16 This notion
motivates a powerful understanding of entropy which Shannon uses very
effectively; it is perhaps his most significant contribution.

The entropy of an information source

We can think of a discrete source as generating a message, symbol by
symbol. One model of a discrete source might be that the successive
symbols of a message are chosen at random from some probability
distribution over the set of possible symbols. A slightly more sophisticated
model for a source would take into account the probabilities of pairs of
symbols. Here the source would be modeled as a Markoff process, so that
the probability distribution governing the ith symbol is conditional upon the
(i—=1)** symbol. The point at issue is the statistical structure of the source.
We can generate a more and more accurate statistical approximation to any
source, if we let the probability distribution of a symbol depend on more and
more of the preceeding symbols.

We want to know the number of messages of length n, N(n), which
such a source might produce. Clearly this number will be variable since the

18we will explore this idea more deeply in the body of the thesis.
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message generation process involves chance. Shannon directs our attention to

long messages for which we expect the statistical variability to be
proportionately less significant. He proves the remarkable fact that, in the
limit as n goes to infinity, the log of the number of "reasonably probable
messages”, log«N(n), is independent of the precise definition of "reasonably
probable." He shows that, as n becomes large, the measure (1/n)109N(n)
approaches a fixed limit H, where H depends only on the statistical
properties of the source.

The quantity H measures the information content of the source. H is
known as the entropy of the source. Typically H will have dimensions like
bits per symbol. Fortunately, H can be calculated without resorting to the
difficult technique of counting N(n). In the simple case where the source
produces symbols as though they are independent random draws of some
probability distribution, Shannon shows that H is just the entropy of the
probability distribution. H can also be calculated for the more complicated
case, where the probability distribution of the ith symbol is conditional upon
some number of preceeding symbols. Here Shannon introduces a new kind of
entropy: conditional entropy. The conditional entropy is just the entropy of
a conditional probability distribution. H is the expected value of the
conditional entropy of the (conditional) probability distribution which governs
the generation of symbols by the source.l”

The capacity of a channel & mutual information.

A message is transmitted across a channel one symbol at a time.
Different symbols may take different amounts of time to transmit. The
capacity C of a discrete noiseless channel is defined as C= (1/n)Log N(n),

17Ln.ter we will focus much more closely on conditional entropy.
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where N(n) is the number of possible messages of duration n; C is to be

evaluated in the limit where n is taken to infinity. This limit is interesting
because the number of different messages of duration n invariably grows
exponentially with n.

A noisy channel is one which corrupts symbols so that the received
message does not necessarily reflect the message that is transmitted. A
reasonably general model of a channel with noise is the so called discrete
memoryless channel.!® Discrete memoryless channels are those for which the
probability that any transmitted symbol x is corrupted, so that it is received
as some other symbol y, depends only on x and y, and not on the symbols
preceeding x which already have passed through the channel. The behavior
of a discrete memoryless channel is thus completely specified by the set of
conditional probabilities p(y|x).

Channel noise is significant only insofar as it makes it impossible for
us to distinguish, on the basis of the received signal alone, between similar
but distinct transmitted messages. Shannon suggests that the relevant
measure of the information carrying capacity of a noisy channel is given by
(l/n)loyN(n); here N(n) is the number of reasonably probable distinct
transmittable messages of length n which can be reliably distinguished at the
output of the channel. This information measure, which has come to be
known as the mutual information, I, can be expressed as a difference of
entropies. The entropy H(y) is the logarithm of the number of reasonably
probable messages that can happen at the output of the channel. The
conditional entropy H(y|x) is the logarithm of the number of reasonably
probable output messages to which a single typical input message may give

rise. The mutual information is given by their difference; thus I= H(y)—

I8Anyvm.y, it's the most realistic model for which anything can be accomplished analytically.
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H(y[x). We can understand this expression for I by noticing that the

number of a distinguishable messages N(n) can be estimated as: (# output
messages) / (Foutput messages that may arise from a single input message).
I is just the logarithm of this quotient.

In general, the mutual information depends on both the symbol
corruption probabilities of the channel p(y|x) and on the statistical
composition of the messages we transmit p(x). The maximum of the mutual
information I is defined as the capacity C of the noisy channel. In finding
this maximum we are to search over the space of all possible statistical

sources of messages. Thus C= max . s) of L

Comparing source entropy & channel capacity: the fundamental theorem.

The justification, ultimately, for Shannon’s definition of the channel
capacity C and the source entropy H is that they can be meaningfully
intercompared. Shannon proves a fundamental theorem: when H is less than
C it is possible to transmit long messages across the channel and have them
be received with a negligible probability of errorr When H is greater than
C, such error—free reception is not possible, even in principle. Shannon’s
theorem rests upon two observations. The first is that for a channel with
capacity C, there exists a set of about gnC messages of length n which can
be sent across the channel and be reliably distinguished upon reception. The
second observation is that a source with entropy H will produce no more
than about 2°H distinct messages of length n. The theorem is really just the
statement that error—free transmission is possible only when the set of
messages produced by the source is smaller in number than the set which
can cross the channel and remain distinguishable.

Even when error—free performance is allowed by Shannon’s theorem,

it is not easy to attain. In general, the set of messages produced by the
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source will not be the same as the set of messages which can be reliably

distinguished after transmission across the channel. In order to use the
channel effectively, we must transmit only messages of the distinguishable set.
On the other hand, our whole purpose for using the channel is to
communicate arbitrary messages. The resolution to this dilemma is to
encode the messages produced by the source so that they appear to be
messages of the distinguishable set. In other words, we must concoct a
transformation which carries each element of the set of possible source
messages into a unique element of the set of distinguishable messages. This
transformation should have an inverse so that upon reception, the original
message of the source can be recovered. Shannon’s theorem is the statement
that when H<C such a transformation exists; conversely, when H>C such a
transformation does not exist. Finding the transformation in any particular
case is usually extemely difficult; this is the province of coding theory.

The fundamental theorem & coding theory.
Coding theory is a difficult subject.  Designing codes which are

tailored to optimally handle the corruption probabilities of any particular
channel is beyond the current state of the art in coding theory. Instead,
attention has focused on the construction of so—called error correcting codes.
A typical example of an error correcting code is the (7,4) Hamming code
which forms words of 7 binary symbols apiece. Each (7,4) codeword consists
of 4 bits of source information (=4 binary symbols if the source has an
entropy of 1 bit per symbol) concatenated with 3 binary symbols of
generalized parity. The (7,4) code enables us to recognize and correct any
one symbol error in a codeword. Notice that the (7,4) codeword packs only
4 bits of information into 7 binary symbols; thus the effective entropy rate of
the source is reduced to 4/7 =.67 bits of information per symbol. In the
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years since Shannon developed the theory of communication, coding theory

has grown into a rich and active discipline. Several ingenious and elegant
algorithms are now known which implement a few kinds of error correcting
codes. To date all of the known codes are based on the algebra of finite
fields. These codes enjoy widespread use in diverse applications. The search
for more and better codes continues, but progress is slow; coding theory
remains a difficult subject. See [McEliece] for a thorough introduction to
coding theory.

The data processing theorem.

Consider a communication setup in which the signal is transmitted
sequentially through two independent channels. The signal suffers some
degradation as it passes through the first channel, and then it suffers
additional degradation as it passes through the second channel. Suppose that
the mutual information between the source and the output of the first
channel is I, and that the mutual information between the source and the
output of the second channel is I,, A fundamental result of information
theory is that I, can never exceed I,. Thus the information content of a
signal is never enhanced by transmission through an additional channel.
This result, which is known as the data processing theorem, applies in any
situation where data is processed and where the most direct connection
between the processing equipment and the source of the data is the data
itself. In these situations, the mutual information which connects the data to
its source is always degraded (or at best is unchanged) by the processing

which the data receives.
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The relation between thermodynamics and

information theory

Since its inception in 19048, information theory has stirred the
imagination of physicists. The feeling has remained that, in some way,
information theory and physics must share a profound connection.
Nonetheless, very little has been accomplished in the way of connecting the
two subjects at a deep theoretical level; to date, [Szilard] and [Brillouin] are
the best known attempts in this direction. Both of these authors concentrate
on the problem of Maxwell’'s demon. The problem or paradox of Maxwell’s
demon has been the battle ground where theoretical physics and abstract
information collide. More recently, researchers working on the physics of
computation have met up with the demon; [Bennett] contains a summary of
this work. Historical popularity notwithstanding, Maxwell’'s demon has not
been a fruitful avenue of investigation for those wishing to find a connection
between information theory and physics. In this thesis we take a different
tack and try to establish a structural relation between the two subjects.
This approach leads us to an identity involving mutual information and free
energy. The statement and proof of this identity forms the core of this

thesis.

Maxwell’s demon: the canonical crucible for mixing information & physics.

Historically, the problem of Maxwell’s demon has been the point of
departure for any discussion which combines physics with a theory of

information. The sorting demon was born in 1871 in Maxwell’s Theory of
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Heat as "a being whose faculties are so sharpened that he can follow every

molecule™” and is thus

"able to do what is at present impossible to us. Let us suppose that
a vessel is divided into two portions, A and B by a division in which
there is a small hole, and that a being who can see the individual
molecules opens and closes this hole, so as to allow only the swifter
molecules pass from A to B, and only the slower ones to pass from B
to A. He will thus, without expenditure of work, raise the
temperature of B and lower that of A, in contradiction to the second
law of thermodynamics."

Generations of physicists have considered this paradox; there have been
various attempts to discredit the demon. One line of attack proceeds by
analyzing various prototype demons. The results suggest (but do not prove)
that failure of the demon is always inherent in the physical attributes which
comprise the demon.!® A fundamentally different kind of explanation for the
demon was first raised by Szilard. He investigated the connection between
the information which the demon must acquire about the detailed motion of

the gas and the change in entropy of the physical system which this
information makes possible.

The inherent imperfections of a physical demon.

Various simple demon prototypes have been proposed. Common to all
the prototypes has been the use of some device having an asymmetric
response function. The idea here is to extract energy from thermal noise by
rigging some sort of asymmetric widget (the demon) which does work when
random thermal agitation moves it in one direction, and which is
unresponsive to thermal agitation which would tend to move it in the

opposite direction. Detailed analysis of each of these mechanisms shows that

197here have been other, less significant attempts to discredit the demon. [Brillouin]
contains a nice review.
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none of them is viable for long term ("perpetual") operation of the demon.

The similar manner by which each mechanism fails suggests that a deep
physical principle is at work.

Smoluchowski has analyzed a one—way valve which controls the flow
of a gas between two vessels. Brillouin has analyzed an electrical rectifier
connected in series with an inductor; the series combination is driven by a
noise source such as a resistor. Feynman has analyzed a ratchet and pawl
arranged so that the rotation of the ratchet lifts a weight; the ratchet is also
connected to a set of vanes which are bombarded by the mqlecules of a gas.
All three individuals conclude that the demon mechanism gets warmer and
warmer with continued operation and that this heating ultimately nullifies the
demon’s ability to convert random thermal agitation into stored energy. In
each case, heating of the demon causes it to function less than perfectly.
Thus the one way valve leaks slightly, the rectifier conducts slightly when it
is reverse biased, and the pawl occasionally slips and lets the ratchet turn
the wrong way.

The intriguing thing about these examples is that in each case heating
of the demon and its subsequent failure appears to be an inherent aspect of
the design of the demon. Consider, for example, the simple one—way valve,
which consists of a thin plate, which in the resting position forms a seal
against an orifice. Pressure fluctuations of the right kind deflect the plate
and flow past it. Pressure fluctuations of the wrong kind merely seal the
plate more firmly against the orifice and are unable to flow past. The plate
must return to the resting position after a right kind of fluctuation has
passed; thus a restoring force is necessary. Also the plate and the other
parts of the valve cannot all be constructed of perfectly elastic parts. If the
parts were elastic, then after the passage of a favorable fluctuation, the
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restoring force would cause the plate to bounce against the orifice and to

keep bouncing. Some kind of a damping or deadening mechanism is
necessary to stop the bouncing; this mechanism converts the kinetic energy of
the plate, as it returns to the resting position, into heat. Thus the heating
of the valve is an essential aspect of its one—way operation.

Can this heating go on forever? No! The plate and the rest of the
valve, all at some temperature T, also have a fluctuating (brownian) motion.
This motion is such that, every once in a while, by accident, the plate
pushes itself away from the orifice just at the moment when a wrong kind of
pressure fluctuation is trying to go backwards through the valve. The valve
fails to block the wrong way fluctuation; as things become hotter this type of
failure occurs more and more often. This failure through heating happens
also to the rectifier and to the ratchet and pawl. In each case a damping
mechanism is necessary; the damping mechanism allows the demon to settle
back to its resting configuration after it has acted to trap a fluctuation. The
damping heats the demon and the efficiency of the demon falls as it becomes
hotter and hotter.

The implicit cost of information.

In 1929, Szilard published a remarkable paper on the demon which

uncovered, for the first time, a connection between information and entropy.
Szilard considers a simplified version of Maxwell’s demon which operates with
only a single gas molecule. The molecule lives in a cylinder which is closed
at both ends; the volume of the cylinder can be divided in two (without
expending energy) by sliding in a partition at the middle. Szilard’s demon
extracts work from this apparatus by running a simple cycle. First, the
demon installs the partition in the middle of the cylinder. Next, the demon
ascertains in which half of the cylinder the molecule is trapped. Finally, the



37
demon extracts work by slowly expanding the volume accessible to the

molecule; this expansion is achieved by sliding the partition, as though it
were a piston, toward the end of the cylinder away from the molecule. The
demon can then remove the partition from whichever end of the cylinder it
has reached and repeat the cycle. Operating in this fashion, the demon
gradually converts heat, in the form of the kinetic energy of the molecule,
into work.

Szilard studied this paradox and unearthed a fundamental discrepancy
at its core. He observed that the entropy measured for the single molecule
system would depend on the fund of information available to the measurer.
If, for example, the measurer knows in which half—cylinder the molecule
resides, then the quoted entropy will be one—half as large as the entropy
when measured by an individual who is not so informed. The reason is that
the informed measurer sees (or measures, or knows) that the molecule
occupies a volume which is half as big as the volume determined by an
uninformed measurer. Like most physicists, Szilard desired to save the gnd
law from the demon; his own analysis suggested however, that information
about a system can be equivalent to a reduction in entropy of that system.
Szilard reached the only conclusion which accommodates both of these
concerns: somehow the gathering of the information itself must already cause
an increase in entropy somewhere in the universe; moreover, this increase
must be at least as large as the decrease which the information effects.

The discrepancy in entropy on account of the demon’s knowledge hints
that the crucial step to investigate is the one whereby the demon learns the
location of the molecule. In 1966, Brillouin published an extensive study on
the problem of physical measurement which corroborated Szilard’s conclusion

and expanded on it. Brillouin succeeded where Szilard had not, because of
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an essential ingredient which Shannon had provided in the intervening years:

the association of information content with uncertainty, as measured by
entropy. Using this association, Brillouin found that any experiment which
obtains information about a physical system produces, on average, an
increase of entropy in the system or in its surroundings. The average
entropy increase, is always at least as great as the amount of information
obtained. @ When Szilard’s demon learns in which half of the cylinder the
molecule resides, he obtains one bit of information or equivalently {n2 nats
of information; in physical units this corresponds to an entropy of kinf.
Thus Brillouin’s principle says that the entropy of the universe increases by
at least kin® for every bit of information which the demon learns.

Recently, Bennett and others have studied the thermodynamics of
computation. These studies uncover a connection between logical
irreversibility and thermodynamic irreversibility. Apparently, only the
performance of an operation which is logically irreversible necessarily
dissipates free energy; the performance of an operation which is logically
reversible can be achieved in a thermodynamically reversible manner.
Bennett states that the process of measurement can always be accomplished
in a manner that is logically and thermodynamically reversible. He
concludes?’ that the step which prevents Maxwell’s demon from breaking the
27 Jaw is not the making of a measurement, but rather the logically

irreversible act of erasing the record of one measurement to make room for

the next.

20Profesaor Mead disputes this conclusion; he observes that Bennett's proof fails to account
the state of the demon’s decision—making apparatus during the measurement process.
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Information Theory & Thermodynamics Share a Common Structure.

In the past, as we have summarized, the attempts to relate thermo—
dynamics and information theory have mostly amounted to detailed analyses
of Maxwell demon—type mechanisms. The conclusions of these analyses are
interesting, but they are also in conflict with one another. It is fair to say
that thermodynamics and information theory are much better understood in
isolation than they are in combination. We have a different strategy for
relating these two subjects. We proceed from a structural simile: thermo—
dynamics is to free energy as information theory is to mutual information.?!
Consider thermodynamic free energy and information theoretical mutual
information. Both of these measures are of central importance to their
respective subjects. Free energy is minimized by a special distribution — the
Boltzmann distribution of equilibrium. Mutual information is maximized by
a special distribution — the distribution which achieves channel capacity.
Both are measures of state space volume; both involve entropy. The 2nd Jaw
of thermodynamics stipulates that the free energy of an isolated system will
always tend to decrease. The data processing theorem of information theory

proves that the mutual information of a signal will always be decreased by
additional processing. These likenesses suggest that free energy and mutual

21While writing this section we found it most helpful to see what a dictionary had to say
about words which relate things to other things. Four words seem especially relevant —

homologous:  corresponding in structure and evolutionary origin, as the flippers of a seal
and the arms of a man.

analogous: similar in function but not evolutionary origin.

metaphor: a figure of speech in which a word denoting one subject or idea is used in
place of another to suggest a likeness between them (as in "the ship plows
the sea.m)

simile: a figure of speech in which two dissimilar things are compared by the use of

like or as (as in "cheeks like roses)."
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information are analogous measures. Is it possible that free energy and

mutual information share even a closer bond than this structural analogy?
Yes! In this thesis we show that in a certain limit and for the right class of
systems the free energy and the mutual information become identical
measures. This identity comes from a new asymptotic equality between
thermodynamic internal energy and information theoretical conditional
entropy.

To obtain these results, we need a viewpoint which allows definition of
both thermodynamic and information theoretical quantities simultaneously.
Regard time as a channel and the detailed state of a physical system as a
message; the state at time zero is the transmitted message, and the state at
time t is the received message. In this context, the free energy of the
physical system at time t, and the mutual information which links the initial
state of the system to the state at the later time t, can be calculated and
compared. Since thermodynamics is concerned primarily with equilibrium, we
might expect it to overlap information theory only in the limit as the time
interval t is taken to infinity. Indeed, we can easily see that the free energy
and the mutual information agree with one another in the asymptotic limit
of large t. In this limit the mutual information approaches zero because, as
the time interval t becomes very long, the state of the system at time t
becomes nearly independent of its initial state, and so the mutual information
coupling the two becomes negligible. In the limit of large t, physical systems
approach equilibrium. The free energy approaches zero in this limit because,
in an isolated system at equilibrium, there is no energy which is free and
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available for use.?? Thus, trivially, the free energy and the mutual

information both approach zero as t becomes large.

We have found that the asymptotic relation between the free energy
and mutual information measures is actually much deeper than the trivial
statement that zero equals zero. Regard free energy and mutual information

not as numbers, but as operators which map state vectors to numbers.
These two fundamental operators can be recast so that they share quite
similar forms. We "rescale” the free energy so that it is expressed in units
of —kT. Also we "rereference" the mutual information so that it deals only
with the state vector at time t, and no longer makes explicit reference to the
state vector at time zero. The difference between the rescaled free energy
operator and the rereferenced mutual information operator is a special kind
of operator; it is a linear operator. This linear operator compares the
(rescaled) internal energy to the (rereferenced) conditional entropy. In the
asymptotic limit of long times, we prove that every component of this linear
operator vanishes; thus, asymptotically, the rescaled free energy and the
rereferenced mutual information become identical operators.?

227 ni explanation is somewhat deceptive since it hides the fact that we are really just
defining the zero of energy. The free energy depends on the internal energy, which, like any
other measure of potential energy, is only ever determined to within an additive constant.
Defining the free energy to be zero at equilibrium determines this constant.

2Note that an operator equality is richer than s single equation between scalars. The

operator equality applies to all possible state vectors and so implies several independent
scalar equations.
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Relating free energy and mutual information

In this chapter we state and prove our main result: the equality of the
free energy and mutual information operators. The mathematics of Markov
processes is a language common to both thermodynamics and information
theory. In the first part of this chapter we sketch the essentials of both
subjects in this language.! Mathematically, a Markov process consists of a
probability state vector and a dynamical law of evolution which operates on
the state vector. The dynamical law can be represented as a matrix T;
element l‘ﬁ- specifies the probability that a system in state j will transit to
state ¢+ in the next time period.

Free Energy & Thermodynamics.

As an example of a simple thermodynamic process, we consider an
ensemble of non—interacting spin 1/2 particles.? [Each particle in this
physical system has two states: a or b, corresponding to the two possible
directions of its spin. A heat bath at temperature T agitates the system,
causing the particles to flip—flop independently between the two states. If
each particle has a magnetic moment (which aligns with its spin) and if we
apply an external magnetic field, then the two states are at different energy

levels; label these E, and E,. For convenience, collect these two energies

IFor a less cryptic review, skip ahead and read the first two pages or so of the section on
Markov processes.

zSpin 1/2 is a quantum mechanical concept. A measurement of a component (along any
specified direction) of angular momentum of a spin 1/2 particle can have only two discrete

possible outcomes: +h/4m or —h/4m. Thus the spin points either parallel or antiparallel to
the specified direction.
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into a row vector E. The system’s internal energy U is defined as the
mathematical expectation of the system’s energy at time n:3

UP(n)] = E,P,(n) + E,Py(m) = E P() , (1)
where P(n) is the system’s probability state vector, (a column vector) with
P,(n) representing the probability that any particular particle of the system
is in state a at time n, and P (n) representing the probability that the
particle is in state b at time n.

In general, the internal energy of the system changes if either E
changes or P changes. Changes in E happen when we adjust the energy
levels of the states of a system. This kind of change requires that we or the
system expend work. If, for example, we instantaneously increase the
strength of the magnetic field surrounding our spin system, we find that the
energy levels of the two states become farther apart and that during the
process we exchange work with the system. Changes in P happen because
the system evolves under the combined influence of the heat bath and the
vector of state energies E. This kind of change corresponds to shifts in the
fraction of spins pointing up or down in our ensemble of spin 1/2 particles.
The internal energy of the ensemble changes as P changes, but no useable
work is performed. Instead, heat flows between the ensemble and the heat
bath. By differentiating (1) and identifying terms, we obtain expressions for
work and heat; these definitions comprise the first law of thermodynamics.

@ = (dE)P + E(dP)

= dW 4 dQ where,

dW = (ciET )l'5 is the work performed on the system, and

dQ = E (dP) is the heat flow into the system.

3Actul.lly, U is the internal energy per particle. Particle number is assumed constant; all
extensive quantities will be normalized per particle.
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Thermodynamic equilibrium can be characterized by Boltzmann’s

equation which relates negative logs of equilibrium probabilities to energy
differences (in units of kT). Recall that I' is the transition matrix describing,
for each state i, the possible states to which a system in state s can jump,
and the probabilities of these jumps. The components of the equilibrium
probability vector P, (eg), P (eq) are those which balance the probabilities of
jumping into and out of each state, so that the net flow ("into" minus "out
of") is zero. Thus the transition matrix I determines the equilibrium
probabilities and hence the ratio P, (eq)/P ,(eq). Now, since Boltzmann’s
equation for a two—state system equates the ratio P,(cq)/P (eq) to the
negative exponential of (E,—E,)/kT, we see that this energy difference is
implicitly specified by T.

Thermodynamic equilibrium can be more elegantly described as the
state space probability distribution (a vector P( eq)) which minimizes the
system’s free enmergy. Free energy is denoted F[P], and is defined as
F(P)= U[P)-TS[P], where U[P] is the internal energy defined by equation
(1), and S[?] is the conventional thermodynamic entropy with dimensions
Joules/°K.* By way of brief intuitive review, ome might say that the
equation F=U—TS reckons the free energy F as the total energy internal to
the system, U, less an amount of energy that is tied up in the system as
heat and is unavailable for use. This unuseable emergy, which is estimated
by the term TS, is the unique contribution of thermodynamics.

Boltzmann was the first to deduce the remarkable fact that the
thermodynamic entropy S may be identified with the quantity kH[P], where k
is (Boltzmann‘s) constant and H[P] is the mathematical entropy of the
probability distribution P:

4Entmpy is extensive and is normalized per particle; so is the free energy.
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H[P) = —PnP, — P, InP, . (2)

We can interpret the entropy as defined by Equation (2) as Shannon
suggests; it measures our uncertainty about which way the spin of a
particular particle points. But, as Szilard suggests, our uncertainty (or lack
of same) can have physical consequence. [Bennett] shows how, with clever
manipulation of a magnetic field, we can extract useful work from a spin by
randomizing its orientation. Eassentially, we expand the volume of state
space available to the spin. The success or failure of this procedure depends
on how well we know the state of the spin initially. We can only expand
the volume of state space accessible to a spin when the spin doesn’t already
occupy that volume. Thus, the greater the entropy in (2), the more energy
in the system will be tied up and unavailable for use. Using (2), the
expression for free energy may be written as

FP=E P - xT HP] . (3)

Mutual Information & Information Theory.

Information theory models the transmission of messages over a noisy
channel. At one end of the channel is the source and at the other end the
receiver. The source transmits a message consisting of a sequence of
symbols, much as grammatical text consists of a sequence of letters. We
trace the evolution of the message through the channel in units of time: at
time 0, the message is transmitted at the source, and at some later time, n,
it arrives at the receiver. Now consider a typical message sequence of length
M. At time O the elements of M are generated at the source as independent
random draws from the probability distribution P(0),5> where P,(0) is the

5Actuu.|.ly, information theory deals readily with messages that have a much more
complicated statistical structure; for our purposes, it is sufficiently general to have messages
which are composed of independently, randomly drawn symbols.
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probability of drawing symbol s to be the resident of an arbitrary element of

the M sequence. As the message traverses the channel, its elements are
subject to distortion. If at time O the resident of element m is symbol 1,
then the probability that it will be corrupted to symbol j by time period I
is I'J-.- . Similarly, the probability that the original symbol ¢ will be corrupted
to symbol j by time period n, at the receiver, is just (l"’)’-‘- . The
probability of any particular element being corrupted is independent of the
probabilities of any other elements being corrupted. Recall that the
probability distribution of symbols at the source is given by P(0). Due to
corruption, the probability distribution of symbols at the receiver will not
equal P(0); instead, it will be P(n), where P(n)= I*P(0).

As a relevant physical example of a channel, consider an ensemble of
M spin 1/2 particles. Assume that the particles are separated from one
another so that at time O we can prepare each spin so that it is in whatever
state we desire. The particular configuration of the entire ensemble of spins
constitutes the "message" at the source; each spin contains one symbol’s
worth of the message. The ensemble is now allowed to evolve with time in
the presence of a heat bath (and also, perhaps, an external magnetic field).
The configuration of the spins at time m constitutes the received message.
Because of the heat bath, the received message only partially resembles the
transmitted message. We are interested in the amount of information which
survives the heat bath; this information, which Shannon termed the mutual
information, connects the configuration of the spins at time n with their
configuration at time 0. The mutual information depends on both entropy
and conditional entropy for its definition. We now discuss these two kinds
of entropy and how they are combined to form mutual information.
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Shannon defines the information content of a message to be the log of

the number of messages in the set from which the particular message is
chosen. To estimate this number, he invites us to consider the set of
"reasonably probable" messages. The set of reasonably probable messages is
typically very large. Hf messages of M symbols are drawn from an alphabet
of two symbols, then the set of reasonably probable messages could contain
as many as 2M elements. We might expect that the size of the set of
reasonably probable messages should depend upon the exact definition of
"reasonably probable." Let’s investigate more deeply the relation between
the size of the reasonably probable set and the definition of reasonably
probable. Imagine an enumeration of all oM possible messages. Each
message in this list has a particular probability of being generated at the
source end of our channel. Suppose that the messages are listed in in
descending order of probability from the single most probable message to the
least probable one. Starting with the most probable message, we go down
the list and keep track of the sum of the probabilities of the successive
messages. Suppose that at the Nth message we have accumulated a total
probability q. What is q7 q is the probability that a message generated by
the source will be an element of the set of the N(q) most probable messages.

In Figure 1, we plot the quantity H(q) = (1/M)leg, N(q) versus q for
various values of M for a two symbol alphabet with symbol probabilities 0.8
and 0.2. Notice that as M becomes large and for q not too near 0 or 1 the
graph of H(q) becomes increasingly flat and hovers near the value
logy(c) H[.8,2).5 We have discovered graphically that which Shannon first
deduced: the log of the size of the set of reasonably probable messages,

Gﬂl.B,.ﬂ] is the entropy function of equation (2) applied to a state vector containing the

pmll:ubmga .8 and .2, The logarithm prefactor in this expression converts the In's of H| , ]
to base
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scaled by the number of symbols per message, yields a quantity which is

independent of the definition of "reasonably probable" for sufficiently long
messages. Moreover, this scaled log—of—set—size attains a value which is
equal to the entropy of the probability distribution of the symbols. Thus, to
discriminate a particular message from among all the other 2ME(%) reasonably
probable messages, one needs M log,(e) H[P] bits of information, where H{P)
is the entropy defined by equation (2) taken over the distribution of symbol
usage frequencies P. In the remainder of this paper we shall drop the
logy(e) factor, dealing with information in "nats" instead of bits; also,
following Shannon, we shall normalize the message information by the
number of symbols in the message. In summary, Shannon equated the
entropy of the distribution of symbol frequencies in a message to the
information content, in nats per symbol, of the message.

Shannon realized that while entropy is sufficient to characterize
information content, it is not sufficient to characterize information
transmission.  Therefore he defined a new quantity, conditional entropy,
which measures the information lost to channel noise during transmission of
each element of a message. Channel noise corrupts a message element by
randomly transmuting the symbol in that element to some other symbol.
Suppose the original resident of a particular element is symbol ;. Symbol j
faces a probability (l‘“){'- of being turned into symbol s during an n step
journey through the channel. The set of transition probabilities which govern
the fate of symbol j actually comprise the fh column of I'™. It is useful to
think of the matrix I as a collection of columns; each column j is a
probability distribution describing the likelihoods of the different alternatives
which symbol j may become if it is mangled in transmission. Information is

lost when a message element is transmitted because of uncertainty about
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what the identity of the element will be upon recepi;ion.7

H the original
resident of a message element is symbol j then the information lost is
exactly equal to the mathematical entropy of the probability distribution
which is the ;*! column of I

Let I'-.!‘(u) be the vector whose components are these column entropiets.8

Thus,

H(n)= (H[column 1 of I}, Hlcolumn 2 of I']) , (4)
where H[.] is the mathematical entropy function defined in equation (2).
Each component of ﬁr(n) is the information lost during transmission of a
particular symbol. Conditional entropy, denoted by H(n|0),° summarizes the
channel’s overall information loss per message element as the weighted
average of ﬁr(n)’s components, where the weights reflect the relative usage
probabilities of different symbols at the source, ?{0):

H(nl0) = H, (n)P,(0) + Hy(n)P,(0)

= HnPo) . (5)

We have seen that entropy measures the information content of a
message and that conditional entropy measures the information lost to noise
during transit of the message through the channel. Shannon showed that the
difference of these two is a measure of the amount of information surviving

transmission through the channel; in a sense, this is the amount of

TWe emphasize uncertainty; a channel which always complements symbol a to symbol b and
vice—versa transmits messages perfectly, if perniciously.

8 is interesting to note that the vector of conditional entropies summarizes most of what
one needs to know about a channel in order to study information transmission and
distortion.

9H(n|0) is vocalized as "the conditional entropy of the distribution at time n, given the
distribution at time 0.®
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information that is mutually shared by the source and the receiver. Thus

the mutual information, J, across a channel is defined as

F(P(n), Pro)) = H[P(m)] — Hm)P) . (©)

uating the Free Energy and Mutual Information rators.

In the previous two subsections we have introduced thermodynamics
and information theory from the viewpoint of Markov processes. We have
suggested that each subject can be organized around a defining measure
whose behavior characterizes the system: free energy for thermodynamics,
mutual information for information theory.

We now present a summary of our main result. We view the two
quantities free energy and mutual information as operators which map state
space probability distributions into real numbers. Then we demonstrate that
in the appropriate limit of long times, these two operators are asymptotically

equivalent.
Consider Equations (3) and (6):
FP(n))= E P(n) — kT H[P(n)) and ()]
J(P(n), P(O))= H[P(m) — H(n)P(0) . 6)

Structurally these equations are quite similar. Both involve the function
H[f’(n)], the entropy of the system’s state space probability vector. Both
involve linear operators acting on state vectors: the thermodynamic operator
E, which we call the internal energy operator, and the information theoretical
Fﬂn), which we call the conditional entropy open.tor.lo As yet, however, the

10¢0r our purposes, a linear operator is just the transpose of a vector. Linear operators act
on probability state vectors by a simple inner product; the result is simply the sum of the
components of the state vector weighted by the components of the operator. Equivalently,

and more intuitively, the result is the average of the components of the operator weighted
by the probabilities in the state vector.
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two operators are not alike in detail. We now eliminate two easily remedied

algebraic differences; afterwards, we explore what remains.

The first algebraic difference is that the equations have different units,
since the free emergy J is expressed in Joules, while mutual information is
expressed in nats, which are dimensionless.!! The second difference is that
the internal energy and conditional entropy operators are acting on state
vectors P corresponding to different time periods; conditional entropy requires
the state vector from time 0, while internal energy uses the state vector at
time n. These differences may be eliminated as follows. To bring the
respective units of equations (3) and (6) into agreement, we measure the free
energy # in units of —kT. Now the entropy terms H[P(n)] of the two
equations agree exactly. Notice that the internal energy operator has become
ET/kT; we call this the "rescaled" internal energy operator. Next, using the
identity P(0)= I'""P(n) rewrite the conditional entropy operator as (H{m)I"™)
so that it acts on P(n) instead of P(0). Notice that (H(mI™™®) is still an
operator; we will call it the rereferenced conditional entropy operator. Notice
that we could have accomplished this alignment of reference times by
reexpressing internal energy as (E/kT)I™, which would have established time
0 as the common point of reference, rather than time n. Both choices of
reference time alignment are useful; we proceed here with the first method of
realignment because this method leads to a more spectacular and stronger

form of our main result.!?

Hone might compare nats to bits as one relates radians to degrees; in each case the former
are without dimension.

1276 some extent, the choice to be made here depends on one’s purpose. Our major
enthusiasm is to enhance thermodynamics by using ideas from information theory.
Accordingly, we heed the common usage of physics, which generally establishes the present
(time n) as the preferred point of reference.
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Equations (3) and (6) have now become

~J(P(n))/kT= H[P(n)] — (E/kT) P(n) and )
FP(m))= H[P(n)] — (H(mI") P(n) . (8)

Notice how similar are the right hand sides of Equations (7) and (8) with
respect to their dependence on P(n). In fact, as n becomes sufficiently large,
these two equations become identical. We now demonstrate this asymptotic
identity by exploring graphically the relationship over time between the two
linear operators E/kT and H(m)I™". Start by picking, at random, a £x2
Markov matrix I Any I will do just as long as it has nonnegative elements
and columns which sum to unity. Since we have picked I' at random, we
don’t immediately know the vector of state energies, ﬁr/kT. Thus, we find
next the equilibrium state vector, ?(eq), of I, in order that we may
determine the state energies by Boltzmann’s equation. Now, since from
physics we know that only differences in energy effect system dynamics, we
calculate the difference of the components of the rescaled internal energy
operator. This difference, which is just (E,—E)/kT, is equal to
l/n(P‘(cq)/Pb(eq)) using DBoltzmann’s equation. Finally, analogously, we
calculate the difference of the components of the rereferenced conditional
entropy operator for values of the time n, ranging from say 1 to 4012 This
last step is tedious but simple: for each n determine IT, H(n) and the
difference of the two components of FIT(n)r“.

Figure (2) illustrates graphically the relationship that emerges from
these calculations. The straight line depicts the component difference of the
rescaled internal energy operator. This line is horizontal because we have
assumed that I is constant which implies that the state energies are

1340w large n need be taken depends on how close I™s non—unity eigenvalue is to 1. For
most random ["s, 40 will usually be adequate.
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unchanging. The points on the smoothly interpolated curve depict the

component difference of the rereferenced conditional entropy operator at a
variety of time values n. The main thing to notice is that asymptotically, as
n goes to infinity, the curve merges with the line. This merging of curve
with line is a general result; later on in this chapter we show that it occurs
for all £x2 Markov matrices I, and that something similar happens for
suitably restricted systems of arbitrary size. Thus, modulo the question of
absolute energies, the two linear operators become identical as n goes to
infinity. What is the significance of this identity? Tracing back through the
argument, we see that in Equations (7) and (8), these linear operators were
the only terms that were not obviously identical. Their graphical asymptotic
equality implies that the two defining measures, free energy and mutual
information, become identical operators (to within an additive constant) as n
goes to infinity.

Figure (2) exhibits our main result if one is content to leave energies
relative to one another. It is interesting to ask what the appropriate
definition of the zero of emergy would be in order for the free emergy and
mutual information operators to become abeolutely identical as n» goes to
infinity. The answer is simple and intuitive: offset the energies E, and E,
by an amount which causes the free energy of the equilibrium state to be
zero.'*  This offset allows us to meaningfully compare, component by
component, the linear operators E/kT and H{m)I™". Figure (3) graphically
accomplishes this comparison. In Figure (3), we interpret the cartesian
coordinates of a point as specifying the two components of an operator.
Consider an arbitrary point R on the curve which is labeled "F[P(cq)]=0;"

s happens when the energy of each state i has become —kT In(P;(eg)). Thus the
partition function Z which is the sum of negative exponentials of E;/kT is unity.
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the coordinates of R are just the rescaled state energies (E /kT, E,/kT) of

some two—state system which has zero free energy at equilibrium. Thus the
rescaled internal energy operator E’/kT of any two—state system specifies

some point on the curve labeled "F[P(eg)j=0" after we adjust both state
energies by the same additive constant, so that the free energy at equilibrium
9[1'5(«1)] is zero. The remaining curves in Figure (3), which are labeled
"W1" through "W4," depict the rereferenced conditional entropy operator
ﬁT(n)r” as a function of time n for four representative matrices, one matrix
per curve. Each curve results from a smooth interpolation of the set of
points that is generated by evaluating H(m)I™" for different n.!®  The
essential feature to notice in Figure (3) is that each curve has an
accumulation point as n goes to infinity which always lies on the curve
labeled F[f’(eq)]=0. Thus, Figure (3) lets us see how the individual
components of the rereferenced conditional entropy asymptotically approach
the corresponding components of the rescaled internal energy as time n goes
to infinity.

It seems reasonable to hope that even for small values of n, where the
rereferenced conditional entropy does not closely match the rescaled internal
energy, still there might be a physical interpretation of ﬁr(n)l"“ which is
based on energy. Suppose that for n time periods we observe the fluctuating
state of a physical thermodynamic system such as the two—state system
desacribed previously. Then we try to infer the energies of the states of this

1SConceptua.lly, the curve is generated as described in the text; actually it is generated by
smoothly sweeping the eigenvalue of the matrix I' from nearly 1 down to 0. Thus the
curve shows a continuous time analog of the results for descrete systems. Negative
eigenvalues have no continuous time analog. However, had the eigenvalue been swept from
1 down to below 0, then each curve would have continued smoothly past the accumulation
point, never crossing the F[P (eg)]=0 curve, until it exited the first quadrant.
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system as best we can, using our observations.!® Ultimately, we will be able

to deduce the equilibrium probabilities of occupation and hence the energies
of all the states, although this may require times that are long, even when

compared to the time required by the mathematical Markov model to reach
equilibrium. Initially, we can tell very little, since the statistical imprint left
by the different state energies on our data will not yet have sufficient
definition to be visible above the noise. In between, we can presumably
deduce an intermediate amount about the state energy levels.

Figures (2) and (3) suggest that we can view H(m)I™™ as a vector of
"revealed state energies."17 Qualitatively ﬁr(n)l"“ behaves much as our
inferred energies should; initially its components are the same, suggesting that
for short observation times, noise fluctuations conceal any differences between
the energies of the states. Later its components approach ET/kT, which is
consonant with the fact that to the patient observer and data analyst
ultimately all is revealed. More deeply, we might have expected a relation
between conditional entropy and state energy on physical grounds.
Intuitively, we expect high—energy states to be less accessible than low—
energy states, since high—energy states are generally less populated than
low—energy states. It is also intuitively reasonable to estimate state
accessability by counting the number of reasonably probable ways of entering

16“ is crucial here to distinguish the physical system from its mathematical model which is
the Markov process. Though it is true that on aeverage the system evolves according to a
Markov process, it is not true that we ever observe the state vector of this mathematical
process. The state vector of the mathematical process records the outcome of a
hypothetical experiment involving a large ensemble of systems. We observe only a single
system; moreover our observations do not take the form of probabilities, rather they are a
record of the sequence of states occupied by our system during the interval that we observe
it.

173y "revealed state energies® we mean the energies of the states as revealed to an astute
observer who calculates them by applying sophisticated statistical estimators to his data.
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or leaving a state. Thus it is plausible for conditional entropy, which

performs counts such as these, to be related to state energy.

Markov processes in the spectral representation

In addition to being physically interesting, the behavior of H(mI™ as
a function of n is curious mathematically. Correctly evaluating HmIr ™" in
the limit as n goes to infinity is tricky; this is a singular limit. Even for
the £x2 case, slogging through with only naive algebra is remarkably difficult.
There is a better way: first, decompose the matrix I' into its spectral
representation so that it is expressed as a sum of orthogonal projectors; with
I' in this form, we are able to evaluate the limit easily and elegantly. An
added benefit of using the spectral representation is that it affords a direct
insight into the operation of the limit. With the spectral representation, we
shall see how new time scales are generated in systems with more than two
states, and the manner in which these time scales can cause the limit to fail
to exist. Now we turn to a discussion of Markov processes and the spectral
representation of stochastic matrices. We work through the 2 by 2 case in
detail, and then state the results for the N by N case. Afterwards, we use
this representation to evaluate H{n)I™™ in the limit as n goes to infinity.

Modeling spin 1/2 as a two—state Markov process.
Consider the system of spin 1/2 particles. The spin state of any

given particle fluctuates with time on account of thermal agitation. We can
model the spin as a two state Markov process. Suppose that when the spin
is oriented so that it is in state b, it is at a higher energy than when it is
in state a. Let By be the probability that a particle with spin state a
transits to state b in some fixed interval of time, and let p,, be the
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probability that a particle in spin state b transits to state a in the same

interval of time. Correspondingly, 1-p,, denotes the probability of a particle
remaining in state a, and 1—p, the probability of a particle remaining in
state b.

We can now write

P (n+1)= (1=, )P,(n) + Pz,Py(n) (1)
and  Py(n+0)= p,,P,(n) + (1-p,)P,(n)
as the total probabilities of a particle residing in states a or b at time period
(n+1), conditional on the probabilities of time period n. These equations are
intuitive; each accounts for all the possible ways that a particle may find
itself in a given state.

We may collect equations (1) into matrix form:

- 1-p, Pdn . N
P(n+1)= ’ 1 P(n) = I'P(n) . (2)
Pup ~Pdn

The matrix I' possesses a number of remarkable properties. @ The most
interesting, from our point of view, is that each column of T sums
independently to unity. Matrices with solely non—negative elements and
unity column sums are known as stochastic matrices. Physically, a typical
column ¢ of T accounts for all the possible ways of either departing state i,
or remaining in state 1. Hence the stochasticity of I embodies
mathematically, conservation of probability. In Equation (2) write f’(n) as
l'f’(n—l) and iterate to obtain

Pn) = I"P(0). (3)

As currently written, Equation (3) is not analytically convenient. The
usual alternative to (3) expresses I' (and hence I") in diagonal (or perhaps
only Jordan normal) form by transforming the coordinate basis of the state
vector. Here, unfortunately, such a transformation will not suffice. We are
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interested in calculating the conditional entropy. This calculation combines

matrix elements in a novel way that can not be expressed in terms of
elementary functions of a matrix. On account of this novelty, the calculation
of the conditional entropy does not commute with the operation of

diagonalization.

The spectral representation of a 2 by 2 stochastic matrix.

The spectral representation offers an alternative method of simplifying
(3). This representation is especially effective for calculating high powers of
I' and for evaluating the conditional entropy in this long time limit.
Felicitously, in the case of two-—state processes (hence 2x2 transition
matrices), this representation can always be expressed in terms of only two
projectors which we obtain through the following steps: first, we determine
I’s equilibrium state vector, ?(eq), and from ﬁ(cq) deduce one of I's
projectors. Second, we construct a second projector represented as the
difference between the identity operator and the first projector. This second
projector turns out to be orthogonal to the first; therefore, the two in
combination span I"s two—dimensional range. Factoring each projector into
outer—product form allows us to deduce I's eigenvalues, and, in combination
with the projectors, I' itsef in the spectral representation.

System equilibrium is defined as a state vector P(eq) with components
P_(eg), P, (eg) which satisfies the condition IP(eq)= P(eg). For all physically
relevant Is, f’(cq) exists and is unique.!® Equilibrium is important because,
given any initial vector P(0), l"‘ﬁ(O) will eventually converge to Pleg) as n
increases towards infinity (i.e. after a sufficiently long time). In other words,

18This will be true provided that I' models a physical process with a unique ground state.
More formally, in the standard terminology of Markov processes, we are assuming that I' is
irreducible.
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for any initial P(0), defining I"™= lm (as n goes to infinity) of I, we can

write
Pregy= r'™Pro) . (4)
What are P(eg) and I"™? Consider an arbitrary probability state vector

with components 1-8, 8. Since rint maps all such vectors into P(cq), it
must be that

/

P, (eq) 'w 1 for all 6,

P, (g v j [ 941 with 0<<1

where w, z, y, and z represent the four elements of ri®f  Hence
[ P g [-wptw for all 6,

| Pylew) = (z-y)B+y ] with 0<f<1.

Clearly z=w and z=y, and w=P (eq) and y=P (eq). We conclude that

P, (eq) P, (eq)
Py (eq) Py(eq)
Notice that o factors, allowing expression as an outer product:
P.(eg) 1 1 ~ R 1
- P, (0 = P(eg)T, E = [ . (5)

A projector is a matrix whose square is itself; intuitively, a projector
matrix projects vectors into a subspace, but leaves vectors already in the
subspace unaltered. Using equation (5), the outer product representation, we
can simply show that I™f is a projector:

refpet = (Plegf) (Plegl)

= Pleg (¥Pleg) ¥ 6)
= P(eg) 1) ¥ = rinf
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Equation (6) uses two nifty concepts: 1.) the reassociation made possible by

the outer product representation, and 2.) the fact that T sums elements of a
vector, and, by the definition of probability measure, sums probability vectors
to umity.

It will be useful to know the components of f’(eq). In fact, f’(cq)
turns out to be an eigenvector of T, with eigenvalue 1. Why is this true?
f’(n) represents the system state at time », and I applied to P(n) evolves
the system one time period, to 13(1;+1). Since f’(eq) is the point of system
equilibrium, I' applied to p(eq) must leave 13(¢q) unchanged: Pﬁ(cq) = E"(cq}.
We can determine the components of ?(eq) by writing out the equation
I‘I‘S(eq)= F(eq) in component form.

1-p,, Pin P (eq) P, (eq)
Pup 1-py, Pyleg)) | Pyleq)
As is the way of these things, the two equations implied by (7) are linearly
dependent; it is easy to verify that both equations are satisfied when

)

P‘{eq)p" = P,(eg)p “.19 Combining this equation together with one
specifying unity total probability: P, (eq) + P (eq) = 1 we obtain

P (g = —————— and P, (eq) =——————— ‘ (8)

19 otice that this relation determines equilibrium for the two—state system by directly
equating the flow from a to b with the flow from b to a. Thus the eigen—relation for the
unity eigenvalue of ' determines the ratio P, (eq)/Py(eq) as we asserted in the beginning of

this chapter in the section on thermodynamics.
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We have now identified one of I's projectors, l‘inf, and have written

riof as the outer product of 1'5(eq) with £. In addition, we have observed
that f’(cq) is the eigenvector of T with unity eigenvalue. It happens that
I-I'®f s also a projector: (I—I'i“f)2= I—2l‘i°f+(l“"f)2= I-riof,  ppinf jg
orthogonal to rinf, it projects to a subspace which lies in the null space of
riof. I'i"f(l—l"“f)= ﬁ“‘—(f“f)2= 0. In fact, I-I'"f has an outer product
representation:

1-P, (eq) —-P,_(eq) P, (eq) —P,(eq)
; —-Py (eq) 1-Py (eq) —Py(eq) P (eq)

I-riof =

(1] (Pylew) —P,(eq)
= |_, . (9)

Compare the outer product form of I-rinf i (9) with the outer product
form of T jtself, (6). T°f had an eigenvector of T as the left component of

its outer product factorization. Analogously, we might hope to have found

another eigenvector of I' as the left component in the outer product
factorization of our new projector I-ri"f,  [s the vector with components
, —1) an eigenvector? Yes,

1- pup Pin i 1 —p"P—p"‘
1 1
= (1 _..p”_p‘n ) = A where A= 1 —p”—P‘n-
-1 -1

Equation (10) buys us a lot, since it directly provides us with I"s other
eigenvalue, A; evidently I-rinf projects to a subspace associated with A.

We see that, along with I'™f I-rif holds a special place in the
scheme of things. Together, these two can do all that I' does. In fact
= l""f+)\(l—l""f), as we can readily show:
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rof 4 AI-r*f) = AI + (1-Arief

1 0 P, (eq) P (eq)
= (l—p”—p‘u) + (P.,‘H’J.)
0 1 P, (eq) Py(eq)
1-(Py,+P ) 0 P P,
=, 1 " (11)
L —(Pyp+Pyn) Pup P,
l-pup Pgn
Pup 1-pg

\

The spectral representation of general stochastic matrices.
The above discussion, which, for simplicity, has been confined to £x2

matrices, illustrates certain properties which are more generally true.
Explicitly, every M by M matrix has a spectral representation. In general,
the projectors associated with distinct eigenvalues are orthogonal, and the
sum of these eigenprojectors is the identity matrix, I I the matrix is
diagonalizable, then it can be expressed as the weighted sum of its eigen—
projectors; in this sum the weights are the eigenvalues associated with each
projector.2° I the matrix is not diagonalizable, then the situation is
somewhat more complicated; the decomposition of the matrix involves eigen—
nilpotents as well as eigenprojectors. A matrix N is nilpotent if N™=0 for
some positive number m. The nilpotents can appear only in connection with
repeated eigenvalues. See [Kato] for a thorough exposition of the general
case. For a general M state Markov process with transition matrix I, define

r'of {5 be the projector associated with the unique unity eigenvalue, and

20A matrix will be diagonalizable if all of its eigenvalues have an algebraic multiplicity of 1;
this prospect is overwelmingly likely to be true in any physical situation.
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f’(eq) to be the eigenvector associated with this eigenvalue.?! Set

T = (1, ..., 1)), Let A; be other distinct eigenvalues, |A; [< 1. Each A; is
associated with an eigenprojector T, , and possibly also with an eigennilpotent
N; . Then
Fr=r" 4 AF, +AL, +.. +TA p<M
+ N, + N, + .. -+ Np (12)
where TIitf = f*‘(eq)fr,
I'J'J-=t5‘-jl"- , I',N,:N,TFGEN,- & N,N,:O if 1,7 unequal.

Expanding #i{n)r= Around Equilibrium
The 2x2 Case

We are now ready to calculate the rereferenced conditional entropy
ﬁr(n)l"n in the limit as n is taken to infinity. In this section, we show this
calculation for the case of a two—state system. The calculation proceeds in
three steps. First, we shall find I'"?, an operation that is made very easy
by the spectral representation. Second, we shall calculate the conditional
entropy operator ﬁ'(n). ﬁr(n) is messy for arbitrary n, however, for large n
it may be expanded in a Taylor series about its equilibrium value. The
spectral representation allows us to readily calculate the first couple of terms
of this Taylor series. In the third and final step, we shall use the spectral
representation yet again to recast our expansion for Fﬂn) to a simple and
beautiful form from which calculation of the limit H{(n)I™ becomes especially
easy.

lwe have been assuming that the eigenvalue 1 is simple. [Gantmacher] proves that all the

cigenvalues with unity modulus of a stochastic matrix are at worst semisimple and thus
have no nilpotents associated with them.
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Calculating powers of T.

Let us begin by calculating powers of I. In terms of projectors, I to
the first power is rinf 4 )\(I—l’i"’). Using the orthogonality of these
projectors, see that I2 is pinf 4 Az(l—l'i“f). It is apparent that only the

eigenvalue A has been affected by the operation of squaring I. Continuing,
we calculate I inductively as the product of I'~! and I; with each multiply
the orthogonal projectors produce no cross terms, so the only net effect is
that the power of A has been increased by one. Thus, I™ may be
determined from I™=I"f 4 A\(I-Ii"f), What about I®? The form of I®
for positive powers strongly suggests that

r° = riof . \=oqrinfy | (1)
Check this by multiplying the right hand side by the projector form of I';
as always the projectors produce no croes terms, and the net effect is that
the power to which A appears becomes zero. Since both sides of Equation
(1) become the identity matrix I when they are multiplied by I", it must be
that Equation (1) correctly expresses inverse powers of T.

Notice that I'"" diverges as n goes to infinity. This behavior is to be
expected; since |\|<l, we know that |A~!|>1, and hence that |A™®| grows
exponentially with n. Thus the eigenvalue of I " grows exponentially with
n.22 From a state—space perspective, the cause of this divergence is
intuitive. I'™? diverges because always it must be able to invert the
mapping which is I®. As n gets large, the mapping which is I"™ must be
able to magnify a tiny volume of state space which is centered on the
equilibrium point f’(cq) so that the mapped image of this volume fills the

22T hese remarks concerning the algebraic divergence of I ", and the remarks that follow
considering the situation in state space apply equally well to general systems with arbitrary
numbers of states. In the general case all of ™s nonunity eigenvalues contribute to the

divergence of I'™™ and the eigenvalue of I' with the smallest modulus dominates the
divergence.
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entire state space.”2 What is the effect of I when it multiplies a linear

operator such as the conditional entropy operator fﬂn)? Corresponding to
the equilibrium point I"*‘(eq) in state space there is the point T in the adjoint

llpace.z4

Just as (for large n) I * maps a tiny volume around 1-5(eq) onto
the entire state space, so also does it map a tiny volume around ¥ onto the
entire adjoint space. The fact that T is the fixed point of I'"" is the central
mechanism which allows the large n limit of H(n)[™™ to exist. As n goes to

infinity ﬁ’(n) becomes proportional to ol

Finding H(n) for large n
Now we investigate the large n behavior of I'-.Ir(n). We advance this

investigation by obtaining the conditional entropy operator Fﬂn) in a form
that is analytically tractable when n is large. Recall that the components of
H(n) are the column entropies of I'™:
i-.IT(n)-—' (H[column 1 of I'|, H[column 2 of I'))

What does a typical column j of I™ look like when n is large? Since IM=
rinf 4 AYI-Iof) and the columns of I'®™ are all alike and are equal to
P(eq), we can see that column j of I'® takes the form: F(eq) + 6C where
6=A\" and 6C is a vector whose components are the elements of the J‘h
column of the projector I-I"™, By hypothesis, n is large, thus & is small,
and it is reasonable to expand the entropy of the fh column of I,

B3ince any multiple of P(eq) is also a fixed point of [ ", we might more properly say
that I'™" magnifies & cylindrical volume of state space which is infinitely long but
infinitesimally slender so that the mapped image of this cylinder fills the entire state space.
The cylinder is concentric about a line which contains both the origin of the state space and
the point P (eg).

2R ecall that linear operators are transposes of vectors and so have a correspondence to
points in a space which is known formally as the adjoint of the state space.
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H[f:‘(cq) - 65], in a power series in 6 around §=0. Performing this

expansion,?® we obtain

" - 2
HP(eg) + 601=  ~E(P(s0H+3C)In(P (e0)}+6C)
N 2 "
= H[P(eq)] —Z(1-+P(eq))6C; + 0(116C11%)

= H[P(eq)) — E-E/kT)6C + 0O(|16CI1%)

where the last equality follows on account of the definition f=(l, 1), and on
account of the Boltzmann relation E/kT= —/nP(eg), which assumes E is
constrained so the free energy of equilibrium is zero. Recall that rinf=
P(eg)T; the orthogonality of the projectors in a projection decomposition
assures us that the (inner) product of ¥ with a column from any projector
other than I'"™ must always be zero; thus ¥ $=0.2% Note that the 0(||¢Sé||2)
term contains sums of squares of components of SC; that this is an
unsimplifiable mess becomes evident when one considers that in general (for
systems with more than 2 states), 5C is itself a sum of vectors. Fortunately,
further expansion of this term will not be necessary to establish the limit in
which we are interested.

The limit of H{n)I™.
We have now assembled all the ingredients which are essential in the

Taylor series expansion of the conditional entropy operator fﬁn). We know

ZRemember d(ana)/ds is 1+ina, and so (3+0)in(a+5) is ains + (1+na)d + O(89). Also
note that the summation index ¢ enumerates the different elements of the fixed column
vectors P(eg) and 6C.

20At:mn.lly the constraint on E that there be zero free energy in equilibrium isn’t necessary,

since all physically equivalent E's are the same up to an additive multiple of I, which in
any event makes no difference here.
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the components of i-ﬁn) are column entropies of I". We have shown that

for large n, all these column entropies take the form H[f’(eq)]+(f37kT)?x“€'.
Thus,
H)= HP(egF + (E/KDAI-T™) + TN
where *0"(N2n) stands for a vector transpose all of whose components are
O(I)\lzn). ET(I?\I:')“) is the error we incur when we truncate the Taylor series
after two terms. This equation for H(n) possesses an intriguing factorization
if we recast the leading order term, H[l-s(eq)]f: in an alternate form. To find
this alternative, notice that H[ﬁ(eq)], the entropy of equilibrium, is just the
same as the inner product (ET/kT)f’(eq), if we agree as before to reference
energies from a zero free energy at equilibrium so that E/kT= —Ln,P‘-(eq).
Then, H[f’{eq)]'f!T becomes (ET/kT)l?’(cqj}.:T, which we can reduce immediately to
(E7kT)I™,  Substituting (E/kT)I™ for H[P(eg)]f allows us to express Hi{n)
very elegantly:
Hin) = E/&T) @ + @-r=h) + Gin>)

= (E/xD)I® + S(N>) . (3)
In spite of its compactness, note that equation (3) does give the asymptotic
form of I‘{T(n) accurate to second order, since the error in (3) diminishes as
the square of |A|". This quadratic dependence of the error on |A|" is
generally what we would expect from two terms of a Taylor series; the
surprising thing here is the way the two terms cooperate to produce an
expression which has the matrix I as a factor. If we imagine that I
propagates transposes of vectors forward through time, just as it does for
state vectors, then equation (3) has a curious interpretation; it suggests that
the conditional entropy operator at time n is the result of propagating the
transpose vector of state energies forward through n time steps, at least
asymptotically.



71
Let us now show that H(n)I™™ approaches E/KT in the limit as n

goes to infinity and thereby complete the chain of reasoning which
asymptotically links mutual information to free emergy. Multiplying both
sides of equation (3) by I™ we can see that the difference
H(n)I ™ — E/kT approaches O(AI2")I™™. Now O(/A|*®) has no special
direction relative to the projectors of I', so multiplication by I'"" magnifies it
by a factor of order |J\|'“.27 The result of this multiplication is some vector
BT(IAI“) which still manages to go to zero as n goes to infinity. Thus, we
have established that H{n)I™" does indeed approach ﬁ/k’l‘ asymptotically as
n goes to infinity, at least for the two—state case.

The rereferencing theorem

The existence of the limit of H(n)[™™ (for a general system) turns out
to be independent of many of the properties of the conditional entropy
operator I‘-ﬁn). The existence of this limit depends only on the spectrum of
the stochastic matrix T, and on the fact that H(n) is a function of the
columns of I. In this section, we state and prove a theorem about the
rereferencing of linear operators which are generated from the columns of a
stochastic matrix. In order that this section should be as self contained as
possible, we explain the notation with several definitions prior to stating and
proving the theorem.

Definition: =, 1, .., Dy

2TMost relevant here is the direction of 0 with respect to E Split H‘mto s sum of two
vectors, one parallel to f and the other perpendicular to E‘ The parallel piece remains
fixed under the mapping I'" ", while the piece perpendicular to ):Tsetl magnified by |A|7™.
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Definition: The class of matrices having a unigue equilibrium

state.
I is an NxN stochastic matrix if

a) TI>=0and £r=7%
I is a regular NxN stochastic matrix if

a) holds and

b) |Al=1 implies A=1, A an eigenvalue of T.
I is a fully regular NxN stochastic matrix if

a) holds and

b) holds and

c) A=1 is an eigenvalue with algebraic multiplicity 1.

Definition: The equslsbrium vector of T.
P(eg) is the equilibrium vector of a fully regular stochastic matrix T if
IP(eg)= P(eg) and T Pleg)= 1.

Definition: Functions of probabslity vectors.

f[ ] is a function on a probability vector?® if
fiP]= f(P,, P,, ... , Py), where f is a scalar valued function of the N
numbers P, P,, ... , Py which are the components of the probability
vector P.

fﬁ[f’] is the linear operator which is the derivative of the function f] ]
evaluated at P if

(DNP)=81(P,, P,, ... , Py)/dP;.

28D s « probability vector if P>= 0 and & P= 1.
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Definition: Buislding an operator by applying a function to the

columns of I".
'?(n) is the f—operator associated with I if

(f(n) );= f[ column i of I™ |, where f[ | is some given function.

Theorem: Rereferencing linear operators.

Given a fully regular NxN stochastic matrix I' with the equilibrium vector
P(eg), and a function f[P] which is continuously differentiable in the
neighborhood of P= f’{eq), then

I\2< Al implies
l"mn-'»"‘ﬁ""‘!?r(n)rn'—' {fel_ﬁ}cq Pleg)T + ﬁeq )

where (n) is the f—operator associated with T, fo= P (eq)], ﬂ.qg Di{P (eg)),
and A, (i=1, ...,p) are the distinct non—unity eigenvalues of I', arranged so
that |\ |>= [A|>= ...>=|Ap| (p<=N-1).

Proof:

The proof follows directly from an expansion of f(n) for large n. To
perform this expansion, we need I in an accessible form. I the spectral
representation of I is

i | 4
r=rof4+ IAL +N;,
=1
then the spectral representation of I is
; P
r=rofy I ARTAeHEINY) .
i=1
In the first expression, each eigenvalue A; is associated with eigenprojector
T; , and a possible eigennilpotent N; . In the second expression, each eigen—
value A" is associated with eigenprojector I; , and a possible eigennilpotent
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N;.2 In both of these expressions, I'™f is the projector associated with the

unity eigenvalue. By hypothesis, the unity eigenvalue is not degenerate.
Therefore, r'*f has rank 1. Also, we know that P (eg)= P(eq). Thus,
every column of r'f js identical to ?(cq), and we conclude that I'™= f’(eqfff

We can now proceed with the expansion of ‘ﬁn) for large n. The first
term in this expansion is the row vector which is obtained by applying f[ |
to the columns of "™ Since all the columns of I"™f are identical to f’(eq),
we see that the first term in the expansion is f[P(eg)]5. The second term in
the expansion of f(n) is obtained by applying the derivative of f[P(eg)] to the
columns of the difference I—Jiof, Thus, the second term in the expansion is
l‘j}ﬂs(eq)](l‘“-l'i“f). i we truncate the expansion of ‘ﬁn) after these first two
terms, then we incur an error. We assume the magnitude of this error can
be estimated from the first neglected term in the expansion. The third term
in the expansion of T(n) is quadratic in the elements of the columns of
r-rof re-riofy s O@™-1\ "), where m{l] does not exceed the
algebraic multiplicity of the eigenvalue A,. Thus, the error incurred by
truncating the expansion after the first two terms is O(nzmm'zl?\llzn).

To)= 1P (eg)lT + DHP (eg))(I°-T™) + GlaZ™ =21 2),
where 31(3) is a row vector with norm O(a). We assume the direction of
ET(nzmm'zl)\lIz“) is arbitrary.30 T(n) can be expressed more compactly if we
employ the definitions used in the statement of our theorem. Replace
fP(eq)] with f, and DYP(eq)] with ot,,

To)= 1,F + DI, (1) + Ganlll=2p, ).

29We have pulled out the factor nmﬁ]-lk.-n so that the norm of N'-‘ remains O(1) as n is
taken to infinity.

30This is a worst case assumption because it implies that ||l"“01| is as large as it can
possibly be. It is, however, as strong an assumption as the hypothesis of the theorem
allows. On account of this assumption, the theorem establishes a sufficient (and not a
necessary) condition for the limit of the rereferenced linear operator to exist.
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We now complete the proof of our theorem.

Tro= 1, F + DF, (-1 + Gn2l=2), 2=,
From the spectral representation®! of I'"?,
; p
ro=rof 4 3 ATE+EemEINg,
i=1
we see |[I7|= O(@™PI=1|\ |=®), where mlp] does not exceed the algebraic
multiplicity of the eigenvalue A, Thus the error term in (I is
G(nZmlH+mlpl=3)\ 2/) |9).  Clearly, when |A,%/A|< 1, this error term is of1).
Therefore, if |A;[°< |A,|, then
limy,__ s infimity T "= £, & + DY, (-1,
The proof of our theorem is completed if we substitute P( eq)f for Iof in this

expression.

fifn)r= in the general case

Does H(n)I™™ approach E/kT in systems having more than two
states? Since H(n) is a function of the columns of I", this question can be
answered by an application of our rereferencing theorem. The theorem tells
us immediately that the limit of ﬁr(n)l"n will exist if |)\1|2<|7\'|, where A, is
the nonunity eigenvalue of T with the largest modulus, and |)\'| is the
eigenvalue of I' with the smallest modulus. When the limit exists, what is
its value? This question requires us to connect the quantities which appear
in the theorem with quantities which appear in the present circumstances.
Evidently, f(n)= H(n), f{ |= H[ ] and f,= H[P(eg). Df,, is a row vector
whose elements, in this case, are the partial derivatives of H[P] with respect
to the components of F, evaluated at P= P(eq). The itk component of ﬁec

31in this expression l'l is the eigenprojector and N." is the eigennilpotent associated with
the eigenvalue A,”". |IN|l= O(1) (n ——>infinity).



76

is OQH[P(eq)l/ QP (eq)= —(1+nP(eg)= -(E-E/KT);, and so Df =
—(fZT—ET/kT). The rereferencing theorem tells us that, in the limit as n goes
to infinity, fim)I"= {f,~Dt,, P(eg}T4+DY, .  Notice that D1,, Preg=

~E-E/kT)Pleg= —1+H[P(eq)). Thus,  {f, DI, P(eg)}T+DI, =
{140}E—(T-E/kT)= E/KT. We conclude that |\/2<|A,| implies

H(n)I "= E/kT, in the limit as n goes to infinity. Actually, the proof of
the theorem tells us somewhat more than this. We know that
Hm)r" = E/kT + B‘(c(nmﬁ/xpj"), where
c(n): "2m[11+m!p}_3_

]A1|2<I)\;I compresses the time scales of a system.

Physically, the limitation |A 12|<|7\'| is rather severe; it specifically
includes only those systems having decay time scales which span less than a
factor of two. This interpretation follows directly from a reasonable
definition of decay time scale. Notice that |A|"= exwfi(n Lﬂ«l)\d); compare this
with the standard form of exponential decay: ewfp(—n/T)), where 7; is the
one over e time of decay of mode i. We see that T, = —1/l/n,|)\.‘|. Taking
logs of both sides of the inequality |)\12|<|)\’| and then negating we obtain
—214»|A1| > Lnl?\’l, whence comes our result:

T, < 2 Ty
When interpreting this inequality, remember that the T; are in decreasing
order. The decay time of the equilibrium mode which is 7, is infinite.32 T,
is the next largest decay time; it is follwed by T, and so on down to Tyr
which is the smallest of the decay times.

The notion of decay time is especially useful when our theorem does

apply. Recall that H(n)I "= E/kT + 'EJT(c(n)I)\lzl)\pln). The residual term

%orma.lly this follows from ‘ro=—1/lm{)\d, if we take a limit where A, approaches 1 from
below.



77
Olc(n)A,2/A,|") decays as |\,2/A |°. This corresponds to a decay time Ty,
1 /% 1 p H

where:33 "= T,T, / (21"—1'1). Ty is a nonlinear combination of the smallest
and largest (but finite) decay times of the system. It is easy to show that
TH>T';34 this means that LA is still the shortest time scale of the system.
However, T is unbounded above, so that as 7, approaches 21" , Ty becomes
infinite. Thus the rereferenced conditional entropy can take a longer time to
approach its equilibrium value than any of the modes of the system take to
decay. In fact it is precisely as T; becomes infinite that the theorem breaks
down and H(n)I™® fails to approach E/kT.

A three—state example.

We close this section with a graphical presentation showing the
behavior of the rereferenced conditional entropy as a function of time for two
similar (but distinct) three—state systems. The first two graphs (Figures 4
and 5) deal with a three—state system having a transition matrix which
satisfies the conditions of our theorem. This transition matrix has the
eigenvalues 1, 0.9, 0.85; since .9°=.81 which is less than .86, we expect the
rereferenced conditional entropy of this system to be well-behaved. Figure 4
shows that in this case each component of H(n)[™™ does indeed approach the
corresponding component of ET/kT as n becomes large. Figure 5 plots the
components of the difference |ﬁT(n)r“—ET/kT| versus n on a log scale for the
same system. The theory predicts that this difference should agree very
nearly with the residual term ET(MI?/A’]“). All of the components of
ﬁl)\f/?\,l“) decay to zero as (.81/.85)"; this corresponds to a 1/e decay time

Bra = U e D ! = @1 -1/ = 12 o1y

34Consider the expression c¢=ab/(2b—a) where b<a<fb. Suppose that a=(1+8)b with 0<f<I.
Then e=b(148)/(1—0). The graph of (1+8)/(1—6) versus 6 increases smoothly from the
value 1 when 0 is zero to infinity as 8 approaches 1.
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Rereferenced conditional entropy

3—state system with eigenvalues 1, .9, .85
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7y of 20.7 time steps which is what we observe in figure 6. Note that the

system of Figures 4 and 6 has eigenvalues corresponding to decay times T,
Te of 9.5 and 6.2 respectively. Ty is more than twice as big as the largest
of these times; this lends support to our observation that the rereferenced
conditional entropy operates on a time scale which is different from, and
conceivably much larger than, the natural time scales of the system.

Figures 6 and 7 display the rereferenced conditional entropy on linear
and log scales versus time for another three state system. The transition
matrix of the system portrayed in Figures 6 and 7 is different in only one
respect from the transition matrix used in Figures 4 and 5; the eigenvalue
0.85 has been changed to the value 0.77. In every other respect, the

transtion matrices of Figures 4 and 5 and of Figures 6 and 7 are identical;
they have exactly the same eigenprojectors, and two of these projectors are
weighted by the common eigenvalues 1 and 0.9. The change of one eigen—
value from 0.85 to 0.77 is crucial to the rereferenced conditional entropy
operator because it leaves unsatisfied the existence condition which this
operator requires in order to be well behaved as n goes to infinity. ?\12=.81
is no longer less than A'=. 7% Figure 6 shows the consequences of this
inequality failure. Notice that for small n the curves of Figure 6 behave in
a somewhat similar manner to those of Figure 4, then the divergence hits
and they move off toward infinity. Can we account for the curves rate of
divergence? Figure 7, which is a semilog plot of the components of
IFIT(n)r“—EVkTI, shows us that all the components grow exponentially,
increasing by a factor of e every 20 or so time steps. This agrees with the
calculated e folding time Tp=19.7 which one gets by assuming that the
(diverging) "residual term" T(|A,%/A |") still dominates the large n behavior of
|H)r—=-E7kT].
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Rereferenced conditional entropy
3—state system with eigenvalues 1, .9, .77
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A composition law for f{n)r—

We have shown that, for & gemeral system, H(n)I™™ possesses an
equilibrium limit only when the time constants of the system span less than
an octave. This restriction will almost certainly be violated if we construct
a system out of several independent subsystems. Consider, for example, a
four—state system which consists of two independent spin 1/2 particles. The
time constants of this system never span less than a factor of two. Systems
which are built of independent pieces have a special kind of structure. For
such systems, we can relax somewhat the conditions of our theorem.®> In
this section, we prove that H(n)I™™ always possesses an equilibrium limit for
a system consisting of two independent spin 1/2 particles. @ The proof
suggests that I-‘lin)l"u possesses an equilibrium limit for a system composed
of several independent components if and only if this limit exists for each of
the components taken sepa.mi;ely.30

Consider a system which is composed of two, independent, spin 1/2
particles. Let the particles be labeled r and s respectively. Suppose that r
is governed by a 2x2 stochastic matrix of transition probabilities I(r).
Similarly, s is governed by the 2x2 stochastic matrix I'(s). If we consider r
and s jointly, then we have a single system with four states. We label these

four states as follows:

35The rereferencing theorem establishes a condition which is sufficient to ensure that the
limit of a rereferenced operator exists. The established condition is not a necessary
condition, i.e., the converse of the theorem does not hold.

3e(l¢te note added at final printsng 5/80/86): It appears certain that the argument of this
section can be directly extended to cover the composition of two independent systems of

arbitrary size. Simple induction on this enhanced argument yields the general composition
law which we have stated.
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state of state of state of
particle r particle s composite system
1 1 1
1 2 2
2 1 3
2 2 4

Operators which factor the four—state system.

The transition matrix of the four—state system is I, ,. T, , has a
special structure; it is the product of a pair of factors, both of which have a
noteworthy form. The forms of these factors motivate us to introduce two
pairs of operators. These operators convert back and forth between the two,
two—state systems and the single four—state system which is their

compoeition.37

I (e, T(Tp(e)  Typ(r)Tyy(s)  Too(r)Tyo(s)

I'y,(r)T5(s) 11 22 12 21 12 22
2, (r)Ty,(8) 21 12 2 11 2 12
T'51(r)Tgy (s) 21 2 2 o1 2 2
T,,(r) T(e) T,,(r)T(s))
Tpy(r) I(s) [oo(r)T(s)
r,.- R I (0] T(s) 0
o1 (7) 1 Tyo(r) 1’ 0 I'(s)

Each element of I, , is the product of an "r type" transition probability
with an "s type" tranmsition probability. This product comes about because
each element of I, , specifies the probability of a pair of independent events.
Notice that each factor of I, , is a 4x4 matrix which is built in a simple

37More precisely, these are imbedding operators. The four—state system is the tensor

product of the two two-—state systems. This section is really just a simple introduction to
the algebra of tensor products.
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way from one or the other of the 2x2 matrices I'(r) or I'(s). We now define

two operators, R and S, which map 2x2 matrices to 4x4 matrices.
RA]= (AT AL sSBj= (B 0
Agl Agl 0 B

A and B are arbitrary 2x2 matrices; A has elements A‘-‘-. I is the 2x2

identity matrix. 0 is the 2x2 matrix of zeroes. It is easy to verify that
R[A|S[B]= S[BJR[A], thus R and S commute with one another. Also we see
(R[A])"= R[A"] and (S[B])"= S[B"].

Two more operators prove useful as well. R and § map 2 element
row vectors to four element row vectors.

RiVl= (v, V;, V,, V,) and

SVi= (vy, V,, Vy, V),
where V= (Vy, Vg) is an arbitrary 2 element row vector. ﬁm and §T\71
satisfy several interesting identities involving R[] and S[I'], when T is any
(2x2) matrix with columns that sum to unii'.y:38

RiVism= RV, SiVirm= SiV]

RIVIR[I]= R[VI] and  S[¥isim= SiV.
Thus, R[I] is an identity for JST and S[I] is an identity for R. We can
describe the second pair of identities by saying R’ consolidates the argument
of R[I], and §' consolidates the argument of S[T]. We verify these identities
by direct inspection.

3811 our application, I' will always be a stochastic matrix or a positive or negative power of
a stochastic matrix.
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The conditional entropy of I“_xg

ﬁT‘(n) is a row vector of column entropies of (I',,,)". Any column of
[y (or its nth power) has the form of a probability distribution over two
independent events. What is the entropy of such a probability distribution?
The entropy of the four element probability vector dlﬂ, where

F= (p,(0p,(8), P,(r)Po(8), P,(r)py(s), Po(r)p,(s)),
is just the sum of the entropies of the independent distributions of which P,
is composed.?® Thus, the entropy of 134 equals H[P(r)] + H[P(s)], where

Plr)= ((p, (1), -po(r)) and Ple)= ((p,(e), -p(®)).

Each column of (I, ,)" is a probability distribution with the form of
1-54. Thus the entropy of each column of (I, ,)" is just the sum of the
entropies of the distributions of which the column is composed. The first
two columns of ('l“M)n involve tramsitions out of the "1" state of particle r.
Thus the contribution of particle r to the entropy of both of these two
columns is the same, and is just the entropy of the first column of the 2x2
transition matrix I'(r). This entropy is the first element of ﬁr,(n), where
ﬁ:(n) is the conditional entropy of (I'(r))®. Similarly, the last two columns
of (Iy,,)" involve transitions out of the "2" state of particle r. Thus the
contribution of particle r to the entropy of both of these two columns is the
same, and is just the second element of ﬁTr(n). Thus, particle r contributes
ﬁTITIT',(n)] to F[:(n). Recall that in the state assignments of the four—state
system, particle s had the patterm: 1, 2, 1, 2. Particle s therefore

39Entropiel sum for independent distributions essentially because the lo, of a product is the
sum of the logs. Let's calculate the entropy of P,. The first two elements of P,
contribute Pl(l')Pl(l)(l"'Pl(r)'i""“Pl(')) + Pl(l')Pg(‘)(L'ipl(l')"’t"Pg(')) which factors and
becomes pl(r)HlP(a)} + pl(r)ﬁupl(r). In a similar way, the last two elements of P4
contribute po(r)H[P(s)] + p2(r)lnp2(r). The sum of these two contributions is
H[P(e)] + H[P(r)].
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contributes §Tﬁ1(n)] to the four—state conditional entropy ﬁ:(n). Summing

these two contributions we obtain:

H,(n)= RIH, ()] + S{H,(n)]

ﬁ',gnur, J"
I we assemble the identities detailed above, we can calculate the
four—state rereferenced conditional entropy. @We find that i:IT,‘(n)(I',‘M)'n

becomes: 40

= ( RiH,@)] + S{H,@)] ) BT, S[T,™

= Rlf,()) 8(r,™ R, + SiH,@) RE,™ S[F,™

= Rl ()] RII,™™ + S{H,@) sr,™

= Rif,mr,™ + S{Fmr,™
The first equality utilizes the expression for ITIZ(n) and the factorization of
§ P et The second equality requires the distributivity of matrix
multiplication and the commutivity of the factors of (I, ,)~". The third
equality depends on S[I'! being an identity for f{T, and on R[Il being an
identity for s Finally, in the fourth equality, R’ consolidates the argument
of R[] and S consolidates the argument of ST].

Thus, H,(n)(T, ) "= RIE ().~ + S[H,(m)I,™"]. This identity is
very intuitive. It says, the rereferenced conditional entropy of the four—state
system is the direct sum of the rereferenced conditional entropies of the two
spins which compose the four—state system. The operators R and 8 merely
serve to convert between the bases of the independent spin systems and their
four—state composition. If the limit exists as n goes to infinity of I‘IT,,(n)l"r"’n
and ﬁ'.(n)l‘.'“, then obviously it exists for the four—state composition,

Owe've streamlined the notation slightly by subecripting the r and s of I Thus I(r)=T,
etc.
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H,(n)(T,,,)™". Note that our result is valid, not only in the limit as n

becomes infinite, but also for finite n as well 41

41professor Hopfield points out that physical quantities of independent systems do not
change merely because we aggregate the systems in our notation. He reasons that, if the
rereferenced conditional entropy is to have any physical significance, then, at the very least,
it must satisfy some sort of composition law.
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Conclusion

In this thesis we have viewed time as a channel and the state of a
system as a message. As the system state evolves with time, the message
gets degraded. Thermodynamics quantifies the advance of the system toward
equilibrium with the free energy measure. Information theory quantifies the
loss of memory of initial state with the mutual information measure. The
free energy depends on the internal enmergy. The mutual information depends
on the conditional entropy. The internal energy is a linear operator which
maps the state vector at time t to a scalar with the dimensions of energy.
The conditional entropy is a linear operator which maps the state vector at
time zero to a dimensionless scalar. "Rescaling" the internal energy makes it
dimensionless. "Rereferencing” the conditional entropy makes it refer to the
state vector at time t, rather than the state vector at time zero. In this
thesis, we have proved that the rescaled internal energy and the rereferenced
conditional entropy become identical operators in the asymptotic limit of long
times. This identity holds for the class of systems where the time constants
of different modes span less than a factor of two.

This thesis contains several items which are original. In particular,
our calculation of the long time limit of the rereferenced conditional entropy
is new. This limit is nifty because it is a singular limit. Our statement of
the relation between the internal energy and the conditional entropy is new.
Our statement of the relation between the free enmergy and the mutual
information is new. These relations imply that thermodynamics and
information theory are structurally similar. Any new relation between
thermodynamics and information theory is intrinsically interesting; a
structural relation is valuable because it allows us to reason by analogy. If
we strip away all this hype, then what is left of the contribution of this
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thesis? In preparing this thesis, we have come to believe that Shannon’s

conditional entropy has a place in physics, either in thermodynamics or some
other allied area. We think that the thesis makes this conjecture credible
and we see this credibility as the contribution of the thesis. Conditional
entropy may have a place in nonequilibrium thermodynamics; it may also
have a place in that area of statistical physics which deals with things like

fluctuation dissipation theorems. We now briefly elaborate these possibilities.

Conditional entropy and nonequilibrium thermodynamics.
All physical theories simplify reality by abstracting it; this is necessary
because reality is terribly complicated. Physical theories are judged by their

simplicity and by the accuracy of their predictions. Thermodynamics works
in an abstraction which discards the complications of detailed dynamics; for
equilibrium systems, heat, temperature and entropy effectively summarize
what is left of dynamics. A major impediment to the development of a
satisfactory theory of nonequilibrium thermodynamics has been the lack of an
appropriate abstraction. Nonequilibrium thermodynamics needs to retain
more of system dynamics than heat, temperature and entropy; still it should
retain appreciably less of system dynamics than, say, the first order rate
equations of chemical kinetics. In this context, conditional entropy, or
perhaps ﬁr(n), seem especially attractive. The components of ?Ir(n) effectively
summarize system dynamics; since these components measure volumes in
state space, they should fit naturally into the framework of any theory which
is built upon thermodynamics.

Conditional entropy and fluctuation dissipation theorems.
Physical systems usually are found in thermal environments where they
are bombarded by noise. Such systems exhibit fluctuations. Also, such
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systems exhibit dissipation; if we disturb them, then they respond, but in

time the disturbance dies away. Einstein was the first to point out that the
bombarding noise is the common cause of both the fluctuations and the
dissipation.42  Conditional entropy might offer another way to connect
fluctuations and dissipation. Conditional entropy measures the volume of
state space which is swept out on account of noise. Thus, conditional
entropy connects fluctuations to state space. A fundamental result of the
theory of dynamical systems connects dissipation with contraction of state
space volume. Thus, with conditional entropy, we can hope to link

fluctuations with dissipation via state space.

42 nstein studied brownian motion; he concluded that microscopic bombardment caused
these fluctuations and that the same bombardment was also responsible for the dissipation
which was observed. Subsequently, Nyquist studied voltage fluctuations across a resistor; he
too concluded that the source of the fluctuations was also the source of the resistance.

Later, Callen & Welton and then Kubo proved "fluctuation dissipation® theorems of
increasing elegance.
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