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Abstract 

In this thesis we uncover a new relation which links thermodynamics 

and information theory. We consider time as a channel and the detailed 

state of a physical system as a message. As the system evolves with time, 

ever present noise insures that the "message" is corrupted. Thermodynamic 

free energy measures the approach of the system toward equilibrium. 

Information theoretical mutual information measures the loes of memory of 

initial state. We regard the free energy and the mutual information as 

operators which map probability distributions over state space to real 

numbers. In the limit of long times, we show how the free energy operator 

and the mutual information operator asymptotically attain a very simple 

relationship to one another. This relationship is founded on the common 

appearance of entropy in the two operators and on an identity between 

internal energy and conditional entropy. The U8e of conditional entropy is 

what distinguishes our approach from previous efforts to relate 

thermodynamics and information theory. 
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Thesis Introduction 

In this thesis we uncover a new relation which links information 

theory to thermodynamics. This relation is suggested by a structural simile 

which we draw between these two subjects. We find that free energy of 

thermodynamics, and mutual information of information theory are related to 

one another in a simple way. This relation follows from an asymptotic 

identity, which also is new, between conditional entropy and internal energy. 

These findings are best appreciated in a context which emphasizes the 

structure and organization of thermodynamics and information theory. 

Accordingly, we have devoted chapter I to a di8CUMion of these two subjects; 

at the close of this chapter we outline the current undemanding of the 

relation between them. AOO, at the end of this chapter we sketch what we 

have done and how it augments this understanding. Chapter IT contains the 

detailed presentation of our original work in this area. 

At its moet fundamental, thermodynamics introduces heat, 

temperature, entropy and the law dQ<=TdS. One can arrive at these 

precepts of thermodynamics from three different directions. The line of 

development currently in vogue is that of statistical mechanics. Statistical 

mechanics owes its aecendancy partly to the current popularity of quantum 

mechanics and partly to the deep insights that have come from its 

integration of thermodynamica with the rest of theoretical physics. In the 

nineteenth century, thermodynamics enjoyed a finely reasoned, cl888ical 

development; this was the handiwork of the old masters. In I!IOme respects 

this claseical line still provides the best explanation for the general success of 

thermodynamics and its sweeping applicability. Somewhat more recently the 

predictions of thermodynamics have been shown to be consistent with a 
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principle of maximum entropy. Th.UJ principle constitutes a third and 

somewhat leas well known line of development. We tum now to an 

extended di8cW!II8ion of these three linea of development. 

Statistical Mechanics 

The notion of a state space is employed throughout theoretical physics. 

In non-statistical physics, systems are described by specifying the point m 

state space corresponding to their condition. It would be very arduous to 

exactly specify the state of a macroscopic system having of order Avogadro's 

number degrees of freedom. The essential comprom.i!le of statistical 

mechanics is to relinquish exact specification of system state. In practice we 

effect this compromise by working only with parameters that we can 

macroscopically measure. H we confine our attention to the macroscopic 

level, then the development of thermodynamics from mechanics proceed8 

quite simply; we will sketch th.UJ development first. An excellent introduction 

to statistical physics at th.UJ level is found in [Reif]. When we consider 

systems in microscopic detail (but still in the classical limit), the task of 

relating the precepts of thermodynamics to the foundations of mechanics 

becomes quite challenging. The basic idea m to consider the probability 

distribution over state space, p, defined by an eiU!Iemble of macroecopically 

identical systems.1 We introduce this deeper view of statistical mechanics 

second; here [Tolman] has been an invaluable source. 

1Syetema are m&croecopically identical if they are independent of one another except that 
they share equivalent values of their macroeeopic p&r&metera. 
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Equilibrium: state is independent of past history. 

A system that ha.e evolved for a sufficiently long time ultimately 

approaches equilibrium. In equilibrium the state of a system is independent 

of all pa.et history; it is decoupled from its initial configuration. A neceeaary 

(but not sufficient) condition for equilibrium is that the system be 

macl"'8Copically t'ltationary. Microecopically, equilibrium happeu when the 

system ha.e made enough tra.n.sitiou to have sampled a repret'lentative fraction 

of its acceeaible state space. Equilibrium is thus a statistical concept; it 

tends to defy a preciee physical definition. Traditionally the defmition of 

equilibrium ha.e been something of a tautalogy: an equilibrium system is one 

which is coll8istent with the predictioll8 of equilibrium thermodynamics. 

EntroPY mea.eures state space volume. 

A heat bath is an equilibrium system which is sufficiently large that it 

poeseseee a huge number of degrees of freedom, 2 typically of order 

Avogadro's number. Note that almost any macroecopic system which is in 

equilibrium can qualify a.e a heat bath. The eeeence of statical mechanics 

lies in estimating the volume of state space 0 which is acceeaible to the heat 

bath, given that the bath has an energy which is known to lie in some small 

interval around E. The typical result, which always emerges, is that 0 is 

roughly proportional to E', where f is of order the number of degrees of 

freedom of the heat bath. Since the exponent f is of order 1o28, the volume 

2The number of degrees of freedom of a ~tem ia the dimeuion of the etate space in 
which the syetem finda a complete deac:ription. Counting degrees of freedom can be a bit 
tricky; the number depends on which abstraction of physics one ie uaing. In clueical 
physics a particle hu six degrees of freedom; three of these are position coordinates and 
three are velocity (or momentum) coordinates. In the risid-body approximation of clueical 
physics, a body bu nine degrees of freedom; six of tbeee are ueociated with position and 
velocity, and three more come from the abstraction of angular momentum. In quantum 
physics a panicle can have more than six degrees of freedom; it can have spin, for example, 
and it can have even more exotic attributes u well. 



4 

of accessible state space is an exceedingly rapidly varying function of the 

energy. It 18 rea.sonable to employ logarithms in such circumstances. The 

entropy H is defined a.s the log of the volume of state space which is 

accessible to the heat bath; thWJ H= lnrn. The parameter {j is defmed as 

the partial derivative of entropy with respect to energy; in taking this 

derivative the heat bath is 888umed to be dynamically isolated, so E lB 

varied becaWJe of heat exchanged and not becaWJe of work performed. {j 18 

the proportional rate of change of 0 with respect to E on account of heat 

flow; this partial derivative works out to be {j= f/E. The reciprocal of {j 

ha.s units of energy; it is defined to be kT. kT= E/f and is approximately 

the energy per degree of freedom. Thus thermodynamics introduces H which 

is dimensionless and {j which ha.s dimensions of reciprocal energy. These two 

WJeful quantities summarize the state of systems for which our information is 

otherwise incomplete. 3 

Entropr & heat. The 2nd law. 

We can exactly calculate the change in entropy which accompanies the 

flow of heat into a system which is at equilibrium. Using the definition of {j 

as the partial derivative of entropy with respect to energy on account of heat 

flow, it is easy to see that dH= {j dQ (or equivalently, dS= dQ/T). {j is 

defined for a heat bath at equilibrium. What is the relationship between dH 

and dQ for a non equilibrium system? The 2nd law of thermodynamics 

postulates that for any system, the change in entropy dH is never less than 

~n the early daya when thermodynamics wu hom there happened an unhappy confusion 
of units; the two primary quantities were t&ken to be the physical entropy, S, and the 
temperature, T, where S= kH and T =1/('k{J). This hapleae choice foreed phyaic:a to accept 
& new unit, the degree, which had no relation to any other commodity except through 
Boltzm&nn'a conatant k. 
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(J dQ} Thu dH>= (J dQ (or equivalently, dS>= dQ/T). We would like 

to deduce this inequality from a more intuitive starting point; unfortunately, 

wiih ihe methods of siaiiaiical mechanics we cannot easily do 80. This 

difficulty is a shortcoming of the statistical mechanical approach to thermo

dynamics. 

The Boltzmann distribution. 

The canonical quedion of thermodynamics couples a small sysiem to a 

heat bath and asb how a fixed energy shared between them is apportioned. 

The small sysiem and heat bath are thermally iaolated from· the rest of the 

univeree eo that their total energy is conaerved. The heai bath is assumed 

to remain at 80me constant temperature T . The Boltzmann distribution 

answers the question: what is the probability P(E) for the small sysiem to be 

in a particular state which has energy e? The derivation of the Boltzmann 

distribution P(E) 88115U11le& the equipariition principle; this principle aseeri8 

that, in equilibrium, the composition of heat bath + small system is equally 

likely to be found at any of the pointe in state space thai are consistent 

with them sharing together a total energy of E. H the small system is to 

have an energy E and the total energy is to be E, then the energy of the 

heat bath mu.ei be E-E. The probability that the small system is in a state 

with energy E, P(E), is proportional to the volume of state space which is 

acceeeible to the heat bath when the latter hu an energy near E-E. Thus 

P(E) is proportional to (E-e)1 which equals E1(1-E/E)1; 80 the dependence of 

P(E) on E goes lite (1-E/E)1. Now we recall that E, which is very nearly 

the energy of the heat bath, is equal to f/(J; thus P(E) is proportional to 

4 A ~em which ia out of equiBbrium ia a 8)"1tem in which irrevenible proc...- are 
b&ppeoins. For the.e 8)"1tema, the dlrectton in which time tlowa Ia liplificant. The aecond 
law appUee to ch&n~ee in entropy which occur u & 8)"1tem movee forward throqb time, i.e., 
u the 8)"1tem aces normally. 
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(1-{3€/f{ Since f is huge, this reduces to the familiar re8ult: w:},,(-{3€). 

Thus the Boltzmann distribution follows readily from the methods of 

statistical mechanics; notice how few 888umptions are required. This 

economy of aMumption gives insight to the wide applicability of the 

Boltzmann distribution. 

Heat & entroPY in theoretical mechanics 

In the world of Newtonian physics, heat appear8 when energy is lost 

to friction. Unfortunately, friction has no place in the elegant theoretical 

world of Lagrangian (or Hamiltonian) physics. Rather, what appears as 

friction is actually some small interaction whoee only significance .18 to 

provide a coupling between otherwise orthogonal modes of a system. Heat 

manifests it8eH in such a system as the incoherent spread of energy from one 

mode into many.6 

Consider, for example, the frictional heat that is generated when a 

moving block of material scrapes against a rough surface and slows to a halt. 

A cl888ical analysis of this situation models the block as a collection of 

m888e8 interconnected with springs. Suppoee that before the block interacts 

with the rough surface, all of its component masees are moving with the 

same velocity, and the springs connecting the masees are unstretched. Thus 

the block is quiescent internally; all of its energy 18 due to the velocity of its 

6yn mechanics the detailed state of a system c&n be specified in either of two ways. For 
one of the ways the detailed state corresponds to a point in state apace, where the 
coordinate. of the point are the poatitions a.nd velocities of each particle in the system. 
Alternatively, for linear systems, the detailed state c&n tJao be regarded u corresponding to 
a point in eigen-state apace where the coordinates of the point are the amplitudes a.nd 
phases of each normal mode of the system. The two specifications carry equivalent 
information in that a conata.nt, linear, nonaingular transformation carries one into the other. 
Thus, a probability distribution over the amplitudes a.nd phases of the normal modes of a 
system corresponds uniquely to a probability distribution over the positions a.nd velocities of 
the particles of the system. The entropies of these two probability distributions will agree 
with one a.nother to within a conata.nt additive factor having to do with the log of the 
jacobi&n of the transformation which connects one apace to the other. 



7 

center of maBB. We can model the rough surface as a collection of little 

rigid posts. As some of the m888e8 of the block impact with these posts, 

internal vibrations of the block are established. The continued action of the 

rough surface ultimately leachee away nearly all the kinetic energy of the 

center of mass, converting it into energy of vibration about the center of 

mass. Thus the energy of the block gets distributed among all of its 

vibrational modes. Macroscopically, we see the block come to a quivering 

halt. 

The example of the block shows us that heat and entropy are related. 

Initially, the distribution over mode amplitudee of the block is tightly 

confined to the zero frequency modes of uniform translation. As the block 

slows, the distribution over mode amplitudee widens; its entropy increases. 

A flow of heat (or, more properly, a conversion of mechanical energy to 

heat) accompaniee this increase in entropy. The heat flow is the funneling of 

energy from the zero frequency modes to the multitude of higher frequency 

modes. Thus the flow of heat and the widening of the distribution over 

mode amplitudes are directly connected; in a sense, the increase of entropy 

describes the flow of heat. 

The relative nature of entropY. Quantum physics & heat. 

Entropy measures the volume of state space in which a system may 

be found. This volume depends critically on any constraints which the 

system is known to satisfy. For example, if the total energy of the system 

is known, then the system must be on the hyper-plane in state space which 

corresponds to that energy. If in addition to the energy, the momentum of 

the system is known, then the system is even more tightly constrained and 

the region of state space which is acceesible to it becomee even smaller. 

Thus the entropy of a system depends on how much we know about the 
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system. Aa we measure more and more parameters of a system, ita entropy 

becomes smaller and smaller. 

The obeervation that the entropy of a system depends on our 

meuurement skilla is conaistant with our interpretationa of heat and work. 

Energy which is exchanpd via a mechanism which we caa. obeerve is work, 

energy which is exchanpd via a mechanism which we can not obee"e is 

heat. For example, consider the block made of manes aa.d springs. Suppoee 

that in addition to the sero frequency mode of uniform translation, we are 

alao able to measure the amplitude of the next higher frequency mode. 

With theee meuurement skills we would eee changes in the amplitudes of 

either of the lowest two modes as being work exchanpd aad we would 

interpret chaagee in the net excitation eneJ'SY of all of the other modee 

together as being the flow of heat. 

Ia entropy ever abeolute? Yee, in quaa.tum mechanics entropy aUaine 

aD abeolute definition. A. systems become larger, the eaerv BpKing of their 

quantum states, dE, becomes smaller. Physical procee~ee (traa.sitiou between 

quantum states) take eome finite time to happen; call this minimum time M. 

When a physical p1'0C8118 taking time M happena in a system which .is larp 

enough eo that the dE of ita quaa.tum states is Ieee than h/b.t, then8 the 

uncertainty principle demaada that qU.&Dtum mechanical phue illformation be 

lost. This phue raa.domisation is the quantum mechanical repneentatioll of 

heat. [Feymnaa - penonal communication). 7 Thus, quantum mechanical 

uncertainty places limite on meuurement skill and eetabliahee aa abeolute 

lower limit for entropy. 

~ Ia Planck'• coDI&Ult. 

7'1'hll inqht underli• the 10-c.lled •Nuter Equalioo• approach to dlermodynamic:a. The 
maHer equa&ioD is what ODe pU by c:arefully &Yenciol over phue in the itanclard 
dynamical equa&ioDI of quantum mechanic. (PricoceoeJ. 
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Finding a well-behaved eairopY. The Boltzmann H theorem. 

The eecond law impliee that the entropy of an ieolated system (or, 

more properly, an en&emble of ieola~ systems) cannot decreue with time. 

~ an ieolated system evolvee toward equilibrium, ita entropy will increue 

monotonically. This time behavior of eniropy holds even thoqh the system 

is governed on a m.icroec:opic ecale by dynamical laws which are invariant 

under time revenal. The Bolbman.n H theorem attempts to show how 

microecopically reversible laws caa imply macroecopically irreversible 

behavior.8 The H theorem can be better appreciated if we try tint on our 

own to define an entropy which evolves in the way we expect and which ill 

computable in terms of microecopic quantities. Simply computing the 

integral over state space of p tn,{p), where p is the state spt~Ce probability 

density, doee not do the job; we will shortly see that this 'fine-grained' 

eniropy doee not evolve, it is a constant of the motion. The Boltml&llll H 

theorem, u interpreted by Gibbe and modified by P. and T. Ehrenfeet, 

succeeds in deftnlng a qll&lltity H whkh behaves corredly. Glbbe intel'preU 

H in the context of an enaemble of systema. He sugpete that an eD8811lble 

flows through state space much u ink mixee with water when the two are 

stirred. The Ehrenfeets inject Gibbe' interpreU.tion into the definition of H. 

They introduce a •coume graining' procedure which allows the calculation of 

H in terms of the probability density p. 

Recall that the detailed configuration of a system corresponds to a 

point in state space. ~ the system evolves with time, its detailed 

configuration changes and the point in state space corresponding to the 

system moves. Now consider the time evolution of a small element of state 

&rbe foresoing ia the ataodt.rd introduetion to the H theorem which one finda in many 
texta. We think the H theorem ia aipificaot for a different reuon; the H theorem ahowa 
how probabili'Y theory can apply to determiniatic ayUema. 
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space volume. A way to keep track of the volume element is to follow the 

points which comprise its boundary as they move.9 As time goes by, we see 

the volume element stretch into a long and complex filament which wraps 

round and round the state space. Note that in spite of this stretching we 

know, by Liouville's theorem, that the volume of the little element will be 

conserved. Suppose that all of the members of an ensemble of systems have 

initial configurations which correspond to points in this little volume element. 

The ensemble is described by a probability density which is initially quite 

simple. The density is uniform inside of the volume element and it is zero 

outside. After a while the volume element has become a convoluted 

filament; this filament still includes the configurations of all of the members 

of the ensemble. The probability density of the ensemble is uniform inside 

the filament and it is zero outside of the filament. Liouville's theorem 

implies that inside the filament this density has the same value as it had 

initially. 

Now consider an ensemble of systems with a probability distribution 

over state space described by some density function p. Conceptually we can 

partition the state space with a grid of very fine (differential sized) volume 

elements. The density function p can be taken to be uniform within any 

one of these differential volume elements. Now we let the ensemble evolve. 

The differential volume elements all stretch into convoluted filamentary 

shapes; these shapes never actually intersect one another, but they do 

become mutually entwined in very complicated ways. Within any filament 

the density p retains the same value as it had initially. Since the fine grid 

9Recall that &n elementaey property of et&te space is th&t two distinct pointe can never 
collide, bec&uee &t the instant of collision and forever after they muat follow the same 
traJectory and by time revere&! symmetry they muat have been on the same trajectory 
forever before u well. Thua, pointe inaide & closed boundaey c&n never escape to the 
outside, because they cannot cro• the boundaey. 
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partitioned the space initially, the unruly collection of filamentary shapes 

which the grid has become still does manage to partition the space. The 

constancy of the density p within a filament, coupled with the space 

partitioning property of the filaments implies a remarkable fact: the integral 

of p or of any function of p over the entire state space will remain constant 

over time. Thus the entropy, which is the integral of p im-(p) over the 

space, will remain constant in time. 

Consider the behavior of the filaments. They become increasingly 

disordered and jumbled as time progresses. The course graining procedure of 

the Ehrenfests captures the essence of this fllamenta.ry behavior. At time 

zero partition the state space with a small (but not differential sized) grid. 

This grid is fixed once and for all; it does not change with time. Form a 

new di8tribution function P (capital p) which is constant within each cell and 

which in each cell is equal to the average of p over that cell. The quantity 

H of the Boltzmann H theorem is the entropy of the di8tribution P. We 

may suppoee that at time zero the function p has been chosen so that the 

two functions p and P agree with one another very nearly. Now let time 

evolve. Each cell is invaded by a jumbled mixture of filaments; the 

filaments began life in other cells and so each carries a (generally) different, 

constant density. Thus each cell, which initially contained but a single 

density, now contains a jumbled mixture of densities. The function P is the 

average of these densities on a cell by cell basis. It is obvious (or anyway it 

is trivial to show) that the entropy of P, which we recall is H, will increase 

provided that the mixing of the filaments becomes ever more fine. A 
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hypothesis of the Boltzmann H theorem is that the mixing of the filaments 

does become ever more fine.10 

How ensembles predict single systems. Ergodicity. 

Notice that a probability distribution over state space only attains a 

predictive value in the context of a large ensemble of systems. 

Unfortunately, in statistical mechanics, we usually work with only a single 

system. At any instant of time our system occupies only a single point in 

state space; one cannot do statistics on a single point! The usual remedy for 

this deficiency is to replace the set of points in state space which the 

ensemble would have provided with the set of points occupied over time by 

the single system under investigation. The replacement of ensemble averages 

by time averages produces results which agree with experiment. 

Experimental verification aside, nobody has ever been able to prove 

the validity of this replacement without introducing some hypothesis in 

addition to the known laws of physics. Such hypotheses have usually been 

called "ergodic hypotheses." The first of them was advanced by Boltzmann 

who also was the first to use the current terminology. Boltzmann 

conjectured that each surface of constant energy consists of a single 

trajectory. In other words, no matter what is the state of the system at a 

given time, it will pass (or has already passed) through any other state with 

the same value of the total energy. Using this hypothesis, it is possible to 

establish the coincidence of time averages with ell8emble averages on surfaces 

of constant energy. Unfortunately, subsequent to Boltzmann, mathematicians 

have pointed out that this ergodic hypothesis is self contradictory; since a 

trajectory cannot have multiple points, it cannot fill a multidimensional 

10The "theorem• in Boltzm&nn's H theorem is something of & misnomer since bonafide 
theorems don't ordinarily h&ve hypotheses in them. 
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volume. The ergodic hypothesis is associated with the most profound 

questions of statistical mechanics. These questions have been much studied 

in the decades since Boltzmann introduced them, [Khinchin 1] is a readable 

review. They have not been resolved completely even yet. 

Classical thermodynamics 

The classical approach to thermodynamics starts with the first and 

second laws and from them coll8tructs an elegant chain of reasoning along 

which the entire subject is developed. The fJI'St of the classical laws is 

conservation of energy. This law, which really is more a defmition than a 

law, defines heat and work as the two form8 in which energy can occur. 

The second law states that the natural direction in which heat flows is 

always from wanner bodies to cooler bodies. This law is supported by years 

and years of accumulated experience. From these two laws and one 

ingenious construct, the reversible cyclic engine, the old masters were able to 

define abeolute temperature and to deduce the existence of entropy. They 

then defined a useful quantity, the free energy, and U8ed this quantity to 

characterize the nature of equilibrium. Thus they deduced the whole subject 

from two laws. [Fermi] is an excellent expoeition of this approach to 

thermodynamics. [Callen] contains a more modem treatment, but one that is 

still very much in the classical tradition. 

Energy can be neither created nor destroyed: dU=dQtdW. 

This law can be regarded as the definition of heat: the amount of heat 

dQ which flows into a system is always that exact quantity which makes up 

the difference between the change in internal energy dU and the mechanical 

work dW for which we can account. In practice dQ is determined 
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experimentally by calibration against a phenomenological scale of temperature. 

One assumes that the unknown heat dQ is equal to that work dW which 

produces an equivalent chan~ in temperature. 

The poesible transformatiou of energy & the second law. 

Coll8ervation of energy, the first law of thermodynamics, places no 

limitations on the possibility of transforming energy from one form into 

another. Both empirically and theoretically there appear to be no limitations 

on the transformation of work into heat; mechanical work can always be 

converted totally into heat by means of friction. There are very definite 

limitations however, to the possibility of transforming heat into work. Heat 

flows spontaneously from warmer bodies to cooler bodies when the bodies are 

in contact.11 Clausius postulates that it is impossible to find a 

transformation whose only fmal result is to transfer heat from a body at a 

given temperature to a body at a higher temperature. Lord Kelvin 

postulates that it is impossible to find a transformation whose only final 

result is to transform into work heat extracted from a source which is at the 

same temperature throughout. 

Either of these postulates can be taken as the classical version of the 

second law of thermodynamics; we can show that the two are equivalent. 

This equivalence is proved by showing that if the Clausius postulate were 

not valid, then neither would be the Kelvin postulate, and vice versa. H the 

Kelvin postulate were not valid, then we could perform a transformation 

whose only final result would be to transform completely into work a definite 

amount of heat taken from a single source at the temperature t 1. But we 

could then convert this work by means of friction into heat, with which we 

11Thie behavior defines an empirical scale of temperature according to which we ca.n 
compare the relative hotness of things. 
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raise the temperature of some other body. If this other body initially was at 

a. higher temperature t2, then the only final result of this process would be 

the transfer of heat from a. body a.t a. given temperature to a. body at a 

higher temperature. This would be a. violation of the Cla.U8ius postulate. 

On the other hand, suppose that the Cla.usi\18 postulate were invalid. Then 

we could transfer some heat Q2 from a. body at temperature t1 to a. body at 

the higher temperature t2 in such a way that no other change in the state of 

the system occurred. But then, with the aid of a heat engine (to be 

discU8Sed shortly), we could absorb this same heat Q2 and extract work as 

we cooled back down to the temperature t 1. Since the source at the 

temperature t2 receives and gives up the same amount of heat, it suffem no 

net change. But this would violate the Kelvin postulate, since we have 

succeeded in transforming into work, heat extracted from a. source which is 

a.t the same temperature t 1 throughout. 

Work from heat via. Carnot cycle. The efficiency !} 

If we have two sources of heat a.t different temperatures, then we can 

transform heat into work via. an elegant process known as a Ca.rnot cycle. 

This revemible process consists of an alternating sequence of isothermal and 

adiabatic transforma.tiou cleverly arranged so that the engine performing the 

transformations ends the cycle in the same maci'08Copic state as when it 

began. The ftmt isothermal transformation absorbs an amount of heat Q2 

from a. source a.t temperature t 2, while the second isothermal transformation 

surrenders an amount of heat Q1 to a source a.t a. lower termperature t 1. 

The purpose of the first adiabatic transformation is to cool the engine from 

the temperature t 2 down to t 1; since no heat flows during this phase, some 

work is performed. Similarly, the second adiabatic transformation warms the 

engine back up to t2; again no heat flows, but in this case some work is 
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absorbed. Since the engine begins and ends in the same state, it must be 

that the total work performed during one cycle is W= Q2-Q1. The 

efficiency of the Carnot cycle is defined as the ratio of the work performed 

to the heat extracted from the high temperature source. Thus the efficiency 

1J= W /Q2= 1-Q1/~. Whatever limitations attend the transformation of 

heat into work must show up as limitations on the ratio Q1/Q2. 

!}(irreversible)<= 1}(Camot)= !}(reversible). 

If all the transformations comprising the Carnot cycle are reversed 

then we have a refrigerator. The net effect of a reversed Carnot cycle is to 

absorb the work W instead of producing it; also, Q1 is absorbed at 

temperature t1 and Q2 is surrendered at temperature t2 . Using the Kelvin 

postulate and the idea of a reverse Carnot cycle, it is po88ible to prove that 

of all cyclic engines operating between the temperatures t 1 and t2, the 

reversible ones all have the same efficiency and this efficiency exceeds that of 

any nonreversible engine. The old masters prove this fundamental result by 

devising an ingeneous "null" process whereby an arbitrary heat engine and a 

reversed Carnot engine exactly cancel out one another's effect on the heat 

source at the higher temperature t2. 

Specifically, N reverse cycles of the Carnot engme follow N' cycles of 

the arbitrary engine where N and N' are chosen so that N'Q2'= NQ2; in this 

defining relation Q2 ' is the unsigned heat absorbed per cycle by the arbitrary 

engine from the source at the higher temperature t2, and Q2 is the unsigned 

heat surrendered to this source by a reverse Carnot cycle. The Kelvin 

postulate then implies that the total work W total accomplished by this 

combination of engines musi be nonpositive, since the entire process 

exchanges net heat only with a source at a single temperature t1. Since 

Q2,total= 0 by construction, conservation of energy implies that W total= 
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-Ql,totaJ• Thus the Kelvin poetulate implies Ql,total>= 0. But Ql,total= 

N'Q1'-NQ1, since the process consists of N' cycles of the arbitrary engine 

surrendering the unsigned heat Q1' per cycle followed by N reverse Carnot 

cycles, each absorbing the unsigned heat Q1. Thus N'Q1'-NQ1>= 0. 

Substitute in this last relation the expression N'=N*~/Q2', obtained from 

the defining relation of N and N'. The result is N(Q2Q 1'/Q2'-Q1)>= 0. In 

this last relation we can divide by the factor NQ2 without altering the sense 

of the inequality since, by hypothesis, N> 0 and Q2> 0 on account of it 

being an unsigned quantity. Thus we obtain the fundamental result: 

Q1 '/Q2'>= Q1/~. The fundamental result implies directly that 1]'<=1}; 

thus the efficiency of the arbitrary engine can never be greater than the 

efficiency of the Carnot engine. Finally, consider the ca.ee where the 

arbitrary engine is itself reversible. In this case we can interchange the roles 

of the two engines in our construction and obtain an inequality oppoeite in 

sense to that which we had previously. Both inequalities must hold and so 

we conclude that the arbitrary reversible engine has the same efficiency a.s 

the Carnot engine. 

The absolute temperature. T 2/T 1 Q2/Q1 of a reversible cyclic engine. 

The fundamental theorem shows that the ratio ~/Q1 is the same for 

all reversible engines operating between the empirical temperatures t 1 and t2. 

Thus Q2/Q1=f(tpt2). We now deduce a key property of the function f via 

another tricky construction of the clll88ical line - this time a "null" process 

involving three heat sources. Imagine two reversible cyclic engines R1 and 

~· R1 operates between the temperatures t 0 and tl' thus f(t0,t1)= Q1/Q0. 

~ operates between t0 and t2, thus f(t0,t2)=Q2/Q0. Dividing we obtain 

Q2/Q1= f(t0,t2)/f(t0,t1). Notice that we have conveniently arranged things so 

that both engines exchange the same heat Q0 with the body at t 0. Now the 



18 

classic trick: consider the reversible process consisting of a direct cycle of ~ 

and a reverse cyclic of R1. This compound process exchanges no net heat 

with the t0 source; it absorbs Q2 from the source at t2, and expells Q1 to 

the source at t 1. Thus, from the definition of the function f, Q2/Q1 = 

f(t11t2) . Equating the two expressions for ~/Q11 we obtain f(t11t2)= 

f(t0,t2)/f(t0,t1). Since t 0 is arbitrary, we conclude that f(t11t2)= T(t2)/T(t1), 

where T is some function which depends upon the choice of empirical 

temperature scale. The scale of temperature is arbitrary; a very convenient 

choice is to use T itself instead of t . T is called the absolute 

thermodynamic temperature. Notice that T is determined to within a 

constant multiplicative factor; we are thus free to ch0015e the units of the 

new temperature scale; conventionally the difference between the boiling and 

freezing temperature of water at one atmosphere of pressure is taken to be 

100 degrees. It is poesible to show that this absolute thermodynamic scale 

of temperature coincides with the empirical temperature as determined by a 

gas thermometer. 

Entropy. 

The discovery of the state function entropy 18 the crownmg 

achievement of cl888ical thermodynamics. 

Sum of Q/Ti<= 0. 

Consider a system running a cycle which exchanges heat with several 

different sources. Suppose the system exchanges the signed heat Q1 with the 

source at temperature Ti; Q1 is positive if the system absorbs the heat from 

the source i, otherwise it is negative. Now introduce one last source at 

temperature T and a bevy of Carnot engines Ci' where for each i, Ci runs 

between the source at temperature Ti and the source at temperature T . We 
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adjust each q so that it absorbs from the source i the heat -Qi. Thus 

after a complex cycle consisting of one cycle of the system and one cycle of 

each of the Carnot engines, we find that no net heat has been exchanged 

with any of the sources i. However, the source at temperature T has 

surrendered an amount of heat Q equal to the sum over the other sources i 

of TQ/Ti. Thus the net effect of the complex cycle has been to transform 

into work an amount of heat Q received from a source at a uniform 

temperature T. The Kelvin postulate requires that Q<= 0. Thus, for any 

cyclic process the sum of Qi/Ti is always<= 0. 

Integral dQ/T= 0 around any reversible cyclic transformation. 

In deriving the result that the sum of Qi/Ti<= 0 for an arbitrary 

cyclic system, we assumed that the system exchanged heat with a finite 

number of sources. Instead, the system might exchange heat with a 

continuous distribution of sources; then the sum over the sources becomes an 

integral around the cycle and the heat received by the system from any 

single source at a temperature T becomes the infinitesimal dQ. Thus, for an 

arbitrary system exchanging heat with a continuous distribution of sources, 

we know that the integral of dQ/T around a cycle is<= 0. Notice that if 

the system is reversible, then by running it in reverse we conclude that the 

integral of -dQ/T around the cycle is<= 0. Thus we conclude that the 

integral of dQ/T around a reversible cycle is identically zero. 

State function S: dS= dQ/T for reversible dQ. 

Consider now the integral of dQ/T along some reversible tran.sformtion 

which takes the system from a standard initial state 0 to some fmal state 

A. Let the value of this integral be S. We could make a complete cycle 

and net a zero result by continuing the integral along any reversible 
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transformation from A back to 0. Thus the integral along any reversible 

transformation from A to 0 must be -S. Evidently for a fixed initial state 

0, the integral S depends only on the final state A; thus S= S(A). S is a 

state function; it is called the entropy. More generally, the integral of dQ/T 

from A to B along any reversible transformation 18 S(B)-S(A). 

Differentiating the integral relation, we see that dS= dQ/T along any 

reversible infinitesimal transformation. 

dS>= dQ/T for general dQ. 

Suppoee we take our system from some state A to soiQ.e other state B 

via an irreversible transformation I, and back to A again via a reversible 

transformation R. I and R together form an irreversible cycle. We know 

that the integral of dQ/T around this cycle is <=0. But this integral 

consists of two pieces: the integral along I and the integral along R. The 

integral from B to A along the reversible transformation R, by definition just 

gives the entropy of A relative to B, S(A)-S(B). The integral around the 

entire cycle, which we know is <=0, equals the integral along the irreversible 

transformation I plU8 S(A)-S(B). Thus the integral along the irreversible 

transformation I <= S((B)-S(A). The differential form of this result is that 

dS>= dQ/T for an arbitrary infinitesimal transformation involving a heat 

fiow dQ from a heat bath at temperature T. 

Thermodynamic potentials. The free energy. 

The work L performed by a purely mechanical system 18 always equal 

to minus the variation of its energy ~U. ThU8 L= For 

thermodynamic systeiD8 there is no such simple relationship between the 

work performed and the variation in energy, because the energy can be 

exchanged between the system and its environment in the form of heat. The 
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first law of thermodynamics correctly accounts the relationship between heat, 

work and energy. This la.w takes the form L= -aU+Q. Suppose tha.t a. 

system is in thermal contact with its environment (to be modeled as a heat 

bath), which remains at a constant temperature T as the system is 

transformed from an initial state A to a final state B. We know that the 

integral of dQ/T is lese than the change in entropy aseociated with the 

transformation from A to B. Because T is a.ssumed constant, we even know 

that the integral of dQ from A to B is<= T[S(B)-S(A)]. We thus obtain 

an upper bound on the amount of heat which the system can receive from 

the environment. Combining this bound with the first law, we conclude that 

the work L perfomed by the system during the transformation from A to B 

is<= U(A)-U(B) + T[S(A)-S(B)]. This motivates the defmition of the 

state function F where F= U-TS. F is called the free energy and evidently 

the work L<=F(A)-F(B) = -aF. Compare the thermodynamic result L<= 

-aF with the corresponding identity from mechanics L= -aU; this is what 

motivates the name free energy, the work performed is bounded above by 

minus the change in the energy that is free. 

Equilibrium & the minimum of free energy. 

Consider a system S, which can exchange heat but not work with its 

environment. Systems such as S are said to be dynamically isolated. For 

any transformation of S, we know that L= 0; if the environment of S is at a 

constant temperature, then we can conclude that 0<= F(A)-F(B) and hence 

that F(B)<= F(A). So we see that the free energy of a dynamically isolated 

system is always decreasing, or at least is always nonincreasing. A 

consequence of this fact is that, if the free energy 18 a minimum, then the 

system is in a. state of stable equilibrium. 



22 

The principle of maximum entropy 

The combined use of probability theory and the Boltzmann distribution 

makes possible a natural and mathematically clean formulation of thermo

dynamics.12 However, probability theory alone can not generate the 

Boltzmann distribution; arriving at this distribution requires some sort of 

additional assumption. The principle of maximum entropy provides such an 

assumption in a simple and usable way. A drawback of this line of 

development is its blindness to some of the really fundamental issues of 

statistical mechanics; issues like ergodicity and generally the question of the 

extent to which an ensemble average represents the behavior of any one 

particular system. On the other hand, the maximum entropy principle has a 

strong foundation in statistics. In fact, if maximum entropy based inference 

should fail, then one can draw some very powerful conclusions. The original 

references on maximum entropy are the pair of papers [Jaynes 1] and 

[Jaynes 2]. More recently, the text [Tribus] does a very credible job of 

developing thermodynamics from the hypothesis of maximum entropy. 

Statistical estimation & maximum entropy. 

The generic problem which the principle of maximum entropy 

addresses is that of estimating some parameter of a probability distribution 

when this distribution is only partially specified. The problem is ill-posed; 

its solution requires some extra principle of statistical estimation, such as one 

of "minimum bias," or equivalently, "maximum uncertainty." A great 

advance provided by information theory lies in the discovery that there is a 

unique, unambiguous criterion for the "amount of uncertainty" represented by 

a discrete probability distribution. Shannon has proved that entropy can be 

12w e will explore thia formulation a little later in the thesis. 
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uniquely characterized as that quantity which is positive, which increases 

with increasing uncertainty and which is additive for independent sourcee of 

uncertainty. The generic problem becomes one of finding a probability 

assignment which maxim.izee entropy while agreeing with whatever constraints 

are implied by the partial specification of the distribution. 

The Boltzmann distribution from maximum entropy + constraints. 

The canonical example of the application of maximum entropy to 

thermodynamics is its derivation of the Boltzmann distribution. The problem 

is to find the probability distribution over state space which has maximum 

entropy, and which satisfiee two constraints: the sum over the probabilitiee so 

deduced should be unity, and the expected energy of the distribution should 

agree with a particular given value U. Lagrange's method of undetermined 

multipliers is used to solve this problem of constrained extremization. P is 

the Lagrange multiplier associated with constraint of fixed expected energy. 

1m- Z is the Lagrange multiplier associated with the constraint of a unity sum 

over the assigned probabilities. The result is the familiar Boltzmann 

distribution. 

A general identity 8880Ciated with this method of constrained 

extremization is that the partial derivative of the extremized quantity 

(entropy) with respect to the value of the constraint (U) equals the value of 

the Lagrange multiplier ({3). In taking this partial derivative, the variations 

are confined to those quantities over which the extremization has been taken. 

In the case at hand, this identity says that the partial derivative of entropy 

with respect to (mean) energy is p. In this partial derivative, the probability 

assignments are varied, not the state energiee. Since changes in U on 

account of probability variations do constitute heat fiow, we see that {3 as a 

Lagrange multiplier in the maximization of entropy is exactly the same as 
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the fJ defined in statistical mechanics. In each case {3 is the partial 

derivative of H with respect to U, and in each case the variation in U is to 

be accomplished by means of heat flow alone.13 

B's are equal in equilibrium. 

A nice feature of the definition of fJ with maximum entropy is that it 

allows us to readily deduce that the (j's of two systems in thermal contact 

must agree if the two are to be mutually in equilibrium. We suppose that 

entropy is additive (extensive), so that the entropy of two systems in thermal 

contact is just the sum of their separate entropies. This extensivity of 

entropy will be true if the interaction of the two systems occurs only 

through mechanisms that already have been operating in each syetem alone, 

i.e., no surface interactions. Now we consider maximizing the combined 

entropy of the two syetems. Suppose that the fJ of syetem one is less than 

the fJ of system two. Then by taking a. little energy in the form of heat, 

dQ, from system one, and adding that energy as heat to system two, we 

would increase the joint entropy of the two syetems by the amount 

dQ({J2-{J1). We could effect this flow of heat by appropriately diddling the 

state occupation probabilities of the two systems. Similarly, if the (3 of 

system one is larger then the (3 of system two, then by moving heat in the 

opposite direction we could again increase the total entropy. So we see that 

in order for the entropy of the combination to be at a. maximum, it must be 

that the (j's throughout agree uniformly. 

13w e note in paaaing th&t this definition of he&t flow is somewh&t over-restrictive; 
confining va.ri&tiona solely to the et&te oeeup&tion probabilities isn't the only w&y to insure 
th&t he&t flow alone h&ppena. In principle, the et&te energies e&n be allowed to vary too, 
provided th&t the &verage of their va.ri&tiona, weighted by the prob&bilitiee of et&te 
oeeup&tion, rem&ina zero. 
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Any failure of maximum entropy uncovers new physics. 

The maximum entropy principle leads to the broadest distribution that 

is consonant with the initial data. It follows that any sharp predictions of 

the principle must be consistant with the vast majority of states to which 

any appreciable weight is aseigned. In a similar vein, it is reasonable to 

aseume that experimentally reproducible results must be consistant with the 

vast majority of states that are compatible with the conditions of an 

experiment. Suppose that maximum entropy inference, based on knowledge 

of experimentally imposed conditions, makes a prediction which is refuted by 

further experiments. Then there must be a serious discrepancy between the 

fraction of states in the maximum entropy distribution that are consistant 

with the prediction, and the fraction of physically allowed states that are 

consistant with the prediction. A similar discrepancy will be revealed if a 

phenomenon is found which is experimentally reproducible, but which is not 

predictable by maximum entropy inference. 

"In either case there must exist new physical states, or new 
constraints on the physically accessible states, not contained in the 
presently known laws of physics. Thus if it can be shown that the 
class of phenomena predictable by maximum entropy differs in any 
way from the claM of experimentally reproducible phenomena, that fact 
would demonstrate the existence of new laws of physics, not presently 
known.nl4 

Information Theory 

In 1948 Claude Shannon published a seminal article in which he 

developed a mathematical theory of communication. The fundamental 

problem of communication, according to Shannon, "is that of reproducing at 

14(Jaynea II, pg 172) 
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one point either exactly or approximately a mestage selected at another 

point." The message m generated by an information source; this source 

selects the message from a large set of possible messages. The message m 

tranmnitted from one point to another via an imperfect channel; on account 

of noise, the message received at the output of the channel may not exactly 

correspond to the message that was transmitted. Information theory, as 

Shannon's theory has come to be called, quantifies and compare8 the rate of 

information production of a source, with the information carrying capacity of 

a channel.15 [Shannon] remains, in many respects, the best exposition of 

information theory. [McEliece] is a modem textbook on information theory 

which contaiu, among other thingl!l, a compendium of all the inequalities 

around which the subject is built. [Pierce] m a readable and thoughtful text 

which develope information theory and traces its connection to other 

disciplines. [Khinchin 2] diecU88e8 the mathematical foundatiou of 

information theory; his treatment of entropy m especially significant. 

Insight into entroPY m the eseence of information theory. 

Shannon propoees that the amount of information in a message 

depends on how much "choice" is involved in the selection of the message. 

The selection process chooees the message from a set of possible messages in 

a random way. Our uncertainty about the outcome of the selection process 

measures the amount of information in the mestage. Shannon proves that 

any internally consistant measure of choice or uncertainty must necessarily be 

based on entropy. H all the messages in the set of possible messages are 

equally likely' then the entropy m just the logarithm of the number of 

15Shannon develope two versions of hie theory: one version for discrete sources and channela, 
and another where sources and ehannele are continuous. In thie theeia, we will deal only 
with the diacrete version of Shannon's theory. 
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messages. If all the meMages are not equally likely, then the entropy i.8 

proportional to the logarithm of the number of "reuonably probable" 

meseages. The number of reasonably probable meMages would appear to be 

a somewhat subjective quantity. Surprisingly, when the set of po88ible 

meMages is sufficiently large, this seemingly qualitative definition of entropy 

actually does manage to specify a precise quantity. The notion of a set of 

"reasonably probable" alternatives, where the size of the set somehow 

manages to be independent of one's precise interpretation of the words 

"reasonably probable" is subtle and difficult to appreciate.16 This notion 

motivates a powerful understanding of entropy which Shannon WJe8 very 

effectively; it is perhaps his moet significant contribution. 

The entropy of an information source 

We can think of a discrete source as generating a meMage, symbol by 

symbol. One model of a discrete source might be that the succeMive 

symbols of a meMage are choeen at random from some probability 

distribution over the set of pot!l8ible symbols. A slightly more sophisticated 

model for a source would take into account the probabilities of pairs of 

symbols. Here the source would be modeled as a Markoff proceM, so that 

the probability distribution governing the ith symbol i.8 conditional upon the 

(i-1)8t symbol. The point at issue is the statistical structure of the source. 

We can generate a more and more accurate statistical approximation to any 

source, if we let the probability distribution of a symbol depend on more and 

more of the preceeding symbols. 

We want to know the number of messages of length n, N(n), which 

such a source might produce. Clearly this number will be variable since the 

16we will explore thia idea more deeply in the body of the thesis. 
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meMage generation process involves chance. Shannon directs our attention to 

long messages for which we expect the statistical variability to be 

proportionately Ieee significant. He proves the remarkable fact that, in the 

limit as n goes to infmity, the log of the number of "reasonably probable 

meeeages", ~N(n), is independent of the precll!le definition of "reasonably 

probable." He shows that, as n becomes large, the measure (1/n)~N(n) 

approaches a fixed limit H, where H depends only on the statistical 

properties of the source. 

The quantity H measures the information content of the source. H is 

known as the entropy of the source. Typically H will have dimensions like 

bits per symbol. Fortunately, H can be calculated without resorting to the 

difficult technique of counting N(n) . In the simple case where the source 

produces symbols as though they are independent random draws of some 

probability distribution, Shannon shows that H is just the entropy of the 

probability distribution. H can al8o be calculated for the more complicated 

case, where the probability distribution of the ith symbol is conditional upon 

some number of preceeding symbols. Here Shannon introduces a new kind of 

entropy: conditional entropy. The conditional entropy is just the entropy of 

a conditional probability distribution. H is the expected value of the 

conditional entropy of the (conditional) probability distribution which govei'Il8 

the generation of symbom by the source.17 

The capacity of a channel & mutual information. 

A meeeage is transmitted acl'088 a channel one symbol at a time. 

Different symbom may take different amounts of time to transmit. The 

capacity C of a discrete noll!leleee channel is defined as C= (1/n)Log N(n), 

17L&ter we will foeua mueh more eloeely on eondition&l entropy. 
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where N(n) is the number of poesible messages of duration n; C is to be 

evaluated in the limit where n is taken to infmity. This limit is intere8ting 

because the number of different messagee of duration n invariably grows 

exponentially with n. 

A noisy channel is one which corrupts symbols so that the received 

message doee not necessarily reflect the message that is transmitted. A 

reasonably general model of a channel with noise is the so called discrete 

memoryless channel.18 Discrete memoryless channels are th08e for which the 

probability that any transmitted symbol x is corrupted, so that it is received 

as some other symbol y, depends only on x and y, and not on the symbols 

preceeding x which already have passed through the channel. The behavior 

of a discrete memoryless channel is thus completely specified by the set of 

conditional probabilitiee p(ylx). 

Channel noise is significant only insofar as it makee it impo88ible for 

us to distinguish, on the basis of the received signal alone, between similar 

but distinct transmitted messages. Shannon suggeets that the relevant 

measure of the information carrying capacity of a noisy channel is given by 

(1/n)~N(n); here N(n) is the number of reasonably probable distinct 

transmittable messages of length n which can be reliably distinguished at the 

output of the channel. This information measure, which has come to be 

known as the mutual information, I, can be expret!ISed as a difference of 

entropiee. The entropy H(y) is the logarithm of the number of reasonably 

probable meesages that can happen at the output of the channel. The 

conditional entropy H(ylx) is the logarithm of the number of reasonably 

probable output messages to which a single typical input message may give 

rise. The mutual information is given by their difference; thus I= H(y)-

18 Anywa.y, it's the most realistic model for which a.nything ca.n be a.ecomplisbed a.na.lytically. 
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H(yjx). We can understand this expreseion for I by noticing that the 

number of a distinguishable messages N(n) can be estimated as: (# output 

messages) 1 (#output messages that may arise from a single input message). 

I is just the logarithm of this quotient. 

In general, the mutual information depends on both the symbol 

corruption probabilities of the channel p(ylx) and on the statistical 

composition of the messages we transmit p(x) . The maximum of the mutual 

information I is defmed as the capacity C of the noisy channel. In finding 

this maximum we are to search over the space of all po88ible statistical 

sources of messages. Thus C= maxover p(x) of I. 

Comparing source entropY & channel capacity: the fundamental theorem. 

The justification, ultimately, for Shannon's defmition of the channel 

capacity C and the source entropy H is that they can be meaningfully 

intercompared. Shannon proves a fundamental theorem: when H is less than 

C it is poesible to transmit long messages acroes the channel and have them 

be received with a negligible probability of error. When H is greater than 

C, such error-free reception is not possible, even in principle. Shannon's 

theorem rests upon two obeervatiou. The first is that for a channel with 

capacity C, there exists a set of about 2°C messages of length n which can 

be sent acroes the channel and be reliably distinguished upon reception. The 

aecond obeervation is that a source with entropy H will produce no more 

than about 2°H distinct messages of length n. The theorem is really just the 

statement that error-free transmission is possible only when the set of 

messages produced by the source is smaller in number than the set which 

can croes the channel and remain distinguishable. 

Even when error-free performance is allowed by Shannon's theorem, 

it 18 not easy to attain. In general, the set of messages produced by the 
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source will not be the same as the set of messages which can be reliably 

distinguished after transmission across the channel. In order to use the 

channel effectively, we must transmit only messages of the distinguishable set. 

On the other hand, our whole purpose for using the channel 18 to 

communicate arbitrary messages. The resolution to this dilemma. 18 to 

encode the messages produced by the source so that they appear to be 

messages of the distinguishable set. In other words, we must concoct a. 

transformation which carries each element of the set of poesible source 

messages into a. unique element of the set of distinguishable messages. This 

transformation should have an inverse so that upon reception, the original 

message of the source can be recovered. Shannon's theorem is the statement 

that when H<C such a. transformation exists; conversely, when H>C such a. 

transformation doee not exist. Finding the transformation in any particular 

case is usua.lly extemely difficult; this is the province of coding theory. 

The fundamental theorem & coding theory. 

Coding theory is a. difficult subject. Designing codes which are 

tailored to optima.lly handle the corruption probabilities of any particular 

channel is beyond the current state of the art in coding theory. Instead, 

attention has focused on the construction of so-ca.lled error correcting codes. 

A typical example of an error correcting code is the (7,4) Ha.mming code 

which forms words of 7 binary symbols apiece. Each (7,4) codeword consists 

of 4 bits of source information (=4 binary symbols if the source has an 

entropy of 1 bit per symbol) concatenated with 3 binary symbols of 

generalized parity. The (7,4) code enables us to recognize and correct any 

one symbol error in a. codeword. Notice that the (7,4) codeword pa.cb only 

4 bits of information into 7 binary symbols; thus the effective entropy rate of 

the source is reduced to 4/7 =.67 bits of information per symboL In the 
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years since Shannon developed the theory of communication, coding theory 

has grown into a rich and active discipline. Several ingenious and elegant 

algorith.ms are now known which implement a few kinds of error correcting 

codes. To date all of the known codes are based on the algebra of finite 

fields. These codes enjoy widespread use in diverse applications. The search 

for more and better codes continues, but progress is slow; coding theory 

remains a difficult subject. See [McEliece) for a thorough introduction to 

coding theory. 

The data processing theorem. 

Consider a communication setup in which the signal is transmitted 

sequentially through two independent channels. The signal suffers some 

degradation as it passes through the first channel, and then it suffers 

additional degradation as it passes through the second channel. Suppose that 

the mutual information between the source and the output of the first 

channel is 11, and that the mutual information between the source and the 

output of the second channel is 12· A fundamental result of information 

theory is that 12 can never exceed 11. Thus the information content of a 

signal 18 never enhanced by transmission through an additional channel. 

This result, which is known as the data processing theorem, applies in any 

situation where data is processed and where the most direct connection 

between the proceesing equipment and the source of the data is the data 

itself. In these situations, the mutual information which connects the data to 

its source is always degraded (or at best is unchanged) by the processing 

which the data receives. 
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The relation between thermodynamics and 
information theory 

Since its inception m 1948, information theory has stirred the 

imagination of physicists. The feeling has remained that, in some way, 

information theory and physics must share a profound connection. 

Nonetheless, very little has been accomplished in the way of connecting the 

two subjects at a deep theoretical level; to date, [Szilard] and [Brillouin] are 

the best known attempts in this direction. Both of these authors concentrate 

on the problem of Maxwell's demon. The problem or paradox of Maxwell's 

demon has been the battle ground where theoretical physics and abstract 

information collide. More recently, researchers working on the physics of 

computation have met up with the demon; [Bennett] contains a summary of 

this work. Historical popularity notwithstanding, Maxwell's demon has not 

been a fruitful avenue of inveatigation for those wishing to find a connection 

between information theory and physics. In this theais we take a different 

tack and try to eatablish a structural relation between the two subjects. 

This approach leads us to an identity involving mutual information and free 

energy. The statement and proof of this identity foi'IIlS the core of this 

theais. 

Maxwell's demon: the canonical crucible for mixing information & physics. 

Historically, the problem of Maxwell's demon has been the point of 

departure for any diacUMion which combinea physics with a theory of 

information. The sorting demon was bom in 1871 in Maxwell's Theory of 
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Heat as "a being whose faculties are so sharpened that he can follow every 

molecule" and is thus 

"able to do what is at present impoMible to us. Let us suppose that 
a vessel is divided into two portions, A and B by a division in which 
there is a small hole, and that a being who can see the individual 
molecules opens and cloees this hole, so as to allow only the swifter 
molecules pass from A to B, and only the slower ones to pass from B 
to A. He will thus, without expenditure of work, raise the 
temperature of B and lower that of A, in contradiction to the second 
law of thermodynamics." 

Generations of physicists have considered this paradox; there have been 

various attempts to discredit the demon. One line of attack proceeds by 

analyzing various prototype demons. The results suggest (but do not prove) 

that failure of the demon is always inherent in the physical attributes which 

comprise the demon.19 A fundamentally different kind of explanation for the 

demon was first raised by Szilard. He investigated the connection between 

the information which the demon must acqwre about the detailed motion of 

the gas and the change in entropy of the physical system which this 

information makes poMible. 

The inherent imperfections of a physical demon. 

Various simple demon prototypes have been proposed. Common to all 

the prototypes has been the use of some device having an asymmetric 

response function. The idea here is to extract energy from thermal noise by 

rigging some sort of asymmetric widget (the demon) which does work when 

random thermal agitation moves it m one direction, and which 1.8 

unresponsive to thermal agitation which would tend to move it in the 

opposite direction. Detailed analysis of each of these mechanisms shows that 

19There have been other, leu significant attempt11 to di11credit the demon. (Brillouin) 
contain11 a nice review. 
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none of them is viable for long term ("perpetual") operation of the demon. 

The similar manner by which each mechanism fails suggests that a deep 

physical principle i.8 at work. 

Smoluchowski hM analyzed a one-way valve which controls the flow 

of a gas between two veseels. Brillouin hM analyzed an electrical rectifier 

connected in series with an inductor; the series combination is driven by a 

noise source such 8.8 a resistor. Feynman hM analyzed a ratchet and pawl 

arranged so that the rotation of the ratchet lift8 a weight; the ratchet is also 

connected to a set of vanes which are bombarded by the molecules of a gas. 

All three individuals conclude that the demon mechanism gets warmer and 

warmer with continued operation and that this heating ultimately nullifies the 

demon's ability to convert random thermal agitation into stored energy. In 

each cMe, heating of the demon causes it to function less than perfectly. 

Thu the one way valve leaks slightly, the rectifier conducts slightly when it 

is reverse biUied, and the pawl occMionally slipe and lets the ratchet tum 

the wrong way. 

The intriguing thing about these examples is that in each cMe heating 

of the demon and its subsequent failure appears to be an inherent aspect of 

the design of the demon. Consider, for example, the simple one-way valve, 

which consists of a thin plate, which in the resting poeition fol'Dl8 a seal 

against an orifice. Pressure fluctuations of the right kind deflect the plate 

and flow past it. Pressure fluctuations of the wrong kind merely seal the 

plate more firmly against the orifice and are unable to flow past. The plate 

mut return to the resting poeition after a right kind of fluctuation has 

passed; thus a restoring force is necessary. Also the plate and the other 

parts of the valve cannot all be constructed of perfectly elMtic parts. H the 

parts were elMtic, then after the passage of a favorable fluctuation, the 
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restoring force would cause the plate to bounce against the orifice and to 

keep bouncing. Some kind of a damping or deadening mechanism Is 

necessary to stop the bouncing; this mechanism converts the kinetic energy of 

the plate, as it returns to the resting position, into heat. Thus the heating 

of the valve is an essential aspect of its one-way operation. 

Can this heating go on forever? No! The plate and the rest of the 

valve, all at some temperature T, also have a fluctuating (brownian) motion. 

This motion is such that, every once in a while, by accident, the plate 

pushes itself away from the orifice just at the moment when a wrong kind of 

pressure fluctuation is trying to go backwards through the valve. The valve 

faim to block the wrong way fluctuation; as things become hotter th.i!l type of 

failure occurs more and more often. Th.i!l failure through heating happens 

also to the rectifier and to the ratchet and pawl. In each case a damping 

mechanism is necessary; the damping mechanism allows the demon to settle 

back to its resting configuration after it has acted to trap a fluctuation. The 

damping heats the demon and the efficiency of the demon falls as it becomes 

hotter and hotter. 

The implicit coet of information. 

In 1929, Szilard published a remarkable paper on the demon which 

uncovered, for the first time, a connection between information and entropy. 

Szilard considers a simplified version of Maxwell's demon which operates with 

only a single gas molecule. The molecule lives in a cylinder which is closed 

at both ends; the volume of the cylinder can be divided in two (without 

expending energy) by sliding in a partition at the middle. Szilard's demon 

extracts work from this apparatus by running a simple cycle. First, the 

demon installs the partition in the middle of the cylinder. Next, the demon 

ascertains in which half of the cylinder the molecule is trapped. Finally, the 
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demon extracts work by slowly expanding the volume accessible to the 

molecule; this expansion is achieved by sliding the partition, as though it 

were a piston, toward the end of the cylinder away from the molecule. The 

demon can then remove the partition from whichever end of the cylinder it 

has reached and repeat the cycle. Operating in this fashion, the demon 

gradually converts heat, in the form of the kinetic energy of the molecule, 

into work. 

Szilard studied this paradox and unearthed a fundamental discrepancy 

at its core. He observed that the entropy measured for the single molecule 

system would depend on the fund of information available to the measurer. 

H, for example, the measurer knows m which half-cylinder the molecule 

resides, then the quoted entropy will be one-half as large as the entropy 

when measured by an individual who is not so informed. The re880n is that 

the informed measurer sees (or measures, or knows) that the molecule 

occupies a volume which is half as big as the volume determined by an 

uninformed measurer. Like most physicists, Szilard desired to save the 2nd 

law from the demon; his own analysis suggested however, that information 

about a system can be equivalent to a reduction in entropy of that system. 

Szilard reached the only conclusion which accommodates both of these 

concei'Il.8: somehow the gathering of the information itself must already cause 

an increase in entropy somewhere in the universe; moreover, this increase 

must be at least as large as the decrease which the information effects. 

The diecrepancy in entropy on account of the demon's knowledge hints 

that the crucial step to investigate is the one whereby the demon learns the 

location of the molecule. In 1966, Brillouin published an extensive study on 

the problem of physical measurement which corroborated Szilard's conclusion 

and expanded on it. Brillouin succeeded where Szilard had not, because of 
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an essential ingredient which Shannon had provided in the intervening years: 

the 8880Ciation of information content with uncertainty, as measured by 

entropy. Using this 8880Ciation, Brillouin found that any experiment which 

obtains information about a physical system produces, on average, an 

mcrease of entropy in the system or in its surroundings. The average 

entropy increase, is always at least a.s great a.s the amount of information 

obtained. When Szilard's demon learns in which half of the cylinder the 

molecule resides, he obtains one bit of information or equivalently lm-t nats 

of information; in physical units this corresponds to an entropy of ~t. 

Thus Brillouin's principle says that the entropy of the unive1'8e increases by 

at lea.st klnt-t for every bit of information which the demon learns. 

Recently, Bennett and others have studied the thermodynamics of 

computation. These studies uncover a connection between logical 

irreversibility and thermodynamic irreversibility. Apparently, only the 

performance of an operation which is logically irreversible nece88a.rily 

dissipates free energy; the performance of an operation which is logically 

rever8ible can be achieved in a thermodynamically reversible manner. 

Bennett states that the proceM of mea.surement can always be accomplished 

in a manner that is logically and thermodynamically rever8ible. He 

concludes20 that the step which prevents Maxwell's demon from breaking the 

2nd law is not the making of a measurement, but rather the logically 

irreversible act of erasing the record of one measurement to make room for 

the next. 

20Profeaeor Mead disputes this conclusion; he observes that Bennett's proof fails to account 
the state of the demon's decision-making apparatus during the meuurement process. 
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Information Theory & Thermodynamics Share a Common Structure. 

In the past, as we have summarized, the attempts to relate thermo

dynamics and information theory have mostly amounted to detailed analyses 

of Maxwell demon-type mecha.ni8ms. The conclusions of these analyses are 

interesting, but they are a.l8o in conflict with one another. It is fair to say 

that thermodynamics and information theory are much better understood in 

isolation than they are in combination. We have a different strategy for 

relating these two subjects. We proceed from a structural simile: thermo

dynamics is to free energy as information theory is to mutual information.21 

Consider thermodynamic free energy and information theoretical mutual 

information. Both of these measures are of central importance to their 

respective subjects. Free energy is minimized by a special distribution - the 

Boltzmann distribution of equilibrium. Mutual information is maximized by 

a special distribution - the distribution which achieves channel capacity. 

Both are measures of state space volume; both involve entropy. The 2nd law 

of thermodynamics stipulates that the free energy of an isolated system will 

always tend to decrease. The data processing theorem of information theory 

proves that the mutual information of a signal will always be decreased by 

additional processing. These likenesses suggest that free energy and mutual 

21While writing this section we found it moat helpful to eee wh&t & dic:tion&ry h&d to e&y 
&bout worda which rel&te things to other things. Four worda seem eepeci&lly relev&nt -

homologous: correeponding in structure &nd evolutionuy origin, u the ffippere of & seal 
&nd the &rms of & m&n. 

&nalogous: similar in function but not evolution&ry origin. 

met&phor: & figure of speech in which & word denoting one subject or ide& ill used in 
pl&ce of &nother to suggeet & likenCIIII between them (u in •the ship plows 
the se&.•) 

simile: & figure of speech in which two dieeimilar things &re comp&red by the use of 
like or u (u in •cheeks like roeee). • 
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information are analogous measures. Ia ii poeeible that free energy and 

mutual information share even a doeer bond than this structural analogy? 

Y ee! In ihia iheeis we show thai in a certain limit and for the right clue of 

systems the free energy and the mutual information become identical 

measures. This identity comes from a new asymptotic equality between 

thermodynamic internal energy and information theoretical conditional 

entropy. 

To obtain theee results, we need a viewpoint which allows definition of 

both thermodynamic and information theoretical quantities simultaneously. 

Regard time as a channel and the detailed state of a physical system as a 

message; the state at time zero is the transmitted meeease, and the state at 

time t is the received message. In this context, the free energy of the 

physical system at time t, and the mutual information which linb the initial 

state of the system to the state at the later time t, can be calculated and 

compared. Since thermodynamics is concerned primarily with equilibrium, we 

might expect it to overlap information theory only in the limit as the time 

interval t is taken to infinity. Indeed, we can easily see that the free energy 

and the mutual information agree with one another in the asymptotic limit 

of 1arp t. In this limit the mutual information approaches zero becaue, as 

the time interval t becomes very long, the state of the system at time t 

becomes nearly independent of its initial state, and eo the mutual information 

coupling the two becomes negligible. In the limit of large t, physical systems 

approach equilibrium. The free energy approaches zero in this limit because, 

in an ieolated system at equilibrium, there is no energy which is free and 
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available for ue. 22 Thus, trivialJy, the free energy and the mutual 

information both approach zero as t becomes large. 

We have found that the asymptotic relation between the free energy 

and mutual inform.a.tion me88Ul'e8 is actually much deeper than the trivial 

statement that zero equals zero. Regard free energy and mutual information 

not as numbers, but aa operators which map state vectors to numbers. 

Theae two fundamental operators can be recut 80 that they share quite 

similar forma. We "reecale• the free energy 80 that it is expreeeed in units 

of -kT. Also we "rereference" the mutual information 80 that it deals only 

with the state vector at time t, and no longer makes explicit reference to the 

state vector at time aero. The difference between the reecaled free energy 

operator and the rereferenced mutual inform.a.tion operator is a special kind 

of operator; it is a linear operator. This linear operator comparee the 

(reecaled) internal energy to the (rereferenced) conditional entropy. In the 

asymptotic limit of long times, we prove that every component of this linear 

operator vanishes; thus, asymptotically, the reecaled free energy and the 

rereferenced mutual information become identical operators. 28 

22nu. explanadon ia eomewhat dec:ep*lve einee it hide. the faet that we are really ju.R 
definins the r.ero of eDeJ'IY. The free enerv depend. on the in*emal enerv, which, like auy 
other meuure of potential enerv, Ia only ever determined to within an additive conH&Dt. 
Deftnins the free eDei'IY to be r.ero at equiUbrium d~in• thla co.-.nt. 

~ole that an operator equality Ia richer than a liqle equation between ec:alan. The 
operator equality appHe. to all .,-ble ~tate vec:ton and 10 impli• MVeral independeat 
•calar equationa. 
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Relatin1 free energy and mutual Information 

In thJs chapter we state and prove our main result: the equ&my of the 

free energy and mutual information operators. The mathematics of Markov 

proceeees is a languap common to both thermodynamics and information 

theory. In the first pari of this chapter we sketch the eeeentiaJs of both 

subjects in this languap.1 Mathematically, a Markov prooeee consists of a 

probability state vector and a dynamical law of evolution which operates on 

the state vector. The dynamical law can be repreeented .. a matrix r; 
element r t; specifies the probability that a system in state j will transit to 

state i in the next time period. 

Free Energy & Thennodinam.ica. 
A. an example of a simple thermodynam.ie p1'0C81!18, we conaider an 

euemble of non-intending spin 1/2 particlee.2 Each particle in this 

physical system hu two states: a or b, corresponding to the two poesible 

diredions of its spin. A heat bath at temperature T agitates the system, 

causing the pariiclee to Dip-flop independently between the two states. If 

each particle hu a magnetic moment (which aligns with its spin) and if we 

apply an external magnetic field, then the two states are at different energy 

levels; label theee E~ and E;,. For convenience, collect theee two energies 

1For a 1- erypuc review, akip ahead and read the tint two pqee or 10 of the aeciion on 
Markov proc--. 

2Spin 1/2 ia a quantum mechanical concept. A meuurement of a component (along any 
apecifted direc:uon) of angular momentum of a apin 1/2 particle can have only two diacrete 
pC*ible outcomea: +h/411' or -h/411'. Thua the apin point. either p&r&llel or antip&r&llel to 
the specified direction. 
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into a row vector ~ The system's internal energy U is defined as the 

mathematical expectation of the system's energy at time n:3 

~ .....,y ... 
U[P(n)] = E .. P .. (n) + E1,Pb(n) • E P(n) , (1) 

where P(n) is the system's probability state vector, (a column vector) with 

P .. (n) repreeenting the probability that any particular particle of the system 

is in state a at time n, and Pb(n) repreeenting the probability that the 

particle is in state b at time n. 

In general, the internal energy of the system changes if either ET 
changes or P changes. Changes in ET happen when we adjust the energy 

levels of the states of a system. This kind of change requires that we or the 

system expend work. If, for example, we instantaneously increue the 

strength of the magnetic field surrounding our spin system, we find that the 

energy leveJs of the two states become farther apart and that during the 

pl0C81!18 we exchange work with the system. Changes in P happen because 

the system evolves under the combined influence of the heat bath and the 

vector of state energies f. This kind of change corresponds to shifts in the 

fraction of spins pointing up or down in our enaemble of spin 1/2 particles. 

The internal energy of the enaemble changes u P changes, but no useable 

work is performed. Instead, heat flows between the eneemble and the heat 

bath. By differentiating (1) and identifying terms, we obtain expressions for 

work and heat; these definitions compriae the first law of thermodynamics. 

cro =- <4 )P + E\tiP> 
where, 

dW = ( ~T )P is the work performed on lAs qatem, and 

~ == f (liP) is the heat ftow stato lle qat em. 

3Actu&lly, U Ia 'he ln'ernal enerv pn p•riW. Particle number Ia UIUIIled conatan'; all 
eodenaive quantitie. will be normalized per particle. 
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Thermodynamic equilibrium can be characterized by Boltzmann's 

equation which relates negative logs of equilibrium probabilities to energy 

d.Hrerences (in uni~ of tT). Recall that r is the transition matrix describing, 

for each state i, the poasible states to which a system in state i can jump, 

and the probabilities of theee jumpe. The components of the equilibrium 

probability vector P a(8q), Pb(eq) are thoee which balance the probabilities of 

jumping into and out of each state, so that the net flow ("into• minus "out 

of") is zero. Thus the transition matrix r determines the equilibrium 

probabilities and hence the ratio Pb(eq)/P .feq). Now, since Boltzmann's 

equation for a two-state system equates the ratio Pb(eq}/P .feq) to the 

negative exponential of (~ -E.)/kT, we aee that this energy difference is 

implicitly specified by r. 
Thermodynamic equilibrium can be more elegantly described as the 

state space probability distribution (a vector 'f>(eqJ) which minimises the 

system's free energy. Free energy is denoted Jt[P], and is defined u 

St~=- UrPJ-TS~], where U[P) Is the intemal energy deftned by equation 

(1), and s[PJ is the conventional thermodynamic entropy with dimensions 

JouieerK. 4 By way of brief intuitive review, one might say that the 

equation St-U-TS reckons the free energy St as the total energy internal to 

the system, U, Ieee an amount of energy that is tied up in the system as 

heat and is unavailable for use. This unueable energy, which is estimated 

by the term TS, is the unique contribution of thermodynamics. 

Boltsmann wu the first to deduce the remarkable fact that the 

thermodynamic entropy S may be identified with the quantity kH~), where k 

is (Boltzmann's) constant and H~] is the mathematical entropy of the 

probability distribution P: 
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(2) 

We can interpret the entropy as defined by Equation (2) as Shannon 

suggests; it meuuree our uncertainty about which way the spin of a 

particular particle points. But, u Szilard suggests, our unceriainty (or lack 

of same) can have physical con.eequence. [Bennett) shows how, with clever 

manipulation of a magnetic field, we can extract ueful work from a spin by 

randomizing its orientation. EMentiaUy, we expand the volume of state 

8J*:e avail&ble to the spin. The succeee or failure of this procedure depends 

on how well we bow the state of the spin initially. We can only expand 

the volume of state space acceeeible to a spin when the spin doesn't aire.dy 

occupy that volume. Thua, the greater the entropy in (2), the more energy 

in the system will be tied up and unavailable for ue. Using (2), the 

expre~~Bion for free energy may be written as 

.st[P). f P - kT H{P) (8) 

Mutual Information ~ Information Theory. 

Information theory modeJe the ti'&IIBIJliaeion of meeeagee over a noisy 

channel. At one end of the channel is the eource and at the other end the 

receiver. The eou.rce transmits a meeeage consisting of a eequenee of 

symbols, much as grammatical text consieis of a eequence of letters. We 

trace the evolution of the message through the channel in units of time: at 

time 0, the meeeage is transmitted at the source, and at some later time, n, 

it arrives at the receiver. Now consider a typical message sequence of length 

M. At time 0 the elements of M are generated at the eource u independent 

random draws from the probability distribution P(0),6 where P~,(O) is the 

5Ac:tually, information theory du readily with m....- that have a much more 
eompllca&ed etatiatie&l etrudure; for our p~ea, it is eufticiently gener&l to have me.qee 
which are compoeed of independently, randomly drawn IIYmbols. 
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probability of drawing symbol i to be the resident of an arbitrary element of 

the M eequence. AlJ the meeeage travei'Bet!l the channel, its elements are 

subject to distortion. It at time 0 the resident of element m is symbol i, 

then the probability that it will be corrupted to symbol j by time period 1 

is rj• . Similarly, the probability that the original symbol i will be corrupted 

to symbol j by time period n, at the receiver, is just (r),., . The 

probability of any particular element being corrupted is independent of the 

probabilities of any other elements being corrupted. Recall that the 

probability distribution of symbols at the 80urce is given by P(O). Due to 

corruption, the probability distribution of symbols at the receiver will not 

equal P(O); instead, it will be P(n), where P(n)=- JClP(O). 

AlJ a relevant physical example of a channel, consider an ell8emble of 

M spin 1/2 particles. A.eaume that the particles are &eparated from one 

another 80 that at time 0 we can prepare each spin 80 that it is in whatever 

state we desire. The particular configuration of the entire ell8emble of spins 

constitutes the "meeeage" at the 80urce; each spin contains one symbol's 

worth of the message. The ell8emble is now allowed to evolve with time in 

the presence of a heat bath (and alao, perhape, an extemal magnetic field). 

The configuration of the spina at time ,. constitutes the received meeeage. 

Becaue of the heat bath, the received message only partially reeemblee the 

transmitted message. We are interested in the amount of information which 

survives the heat bath; this information, which Shannon termed the mutual 

information, connects the configuration of the spins at time " with their 

configuration at time 0. The mutual information depends on both entropy 

and conditional entropy for its definition. We now di8cuse these two kinds 

of entropy and how they are combined to form mutual information. 
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Shannon defines the information content of a meeaage to be the log of 

the number of meeeagee in the set from which the particular meeaage 18 

choeen. To eetima~ th.ia number, he invitee us to con.sider the set of 

"reuonably probable" meeeagee. The set of reuonably probable messages is 

typically very large. H meeeages of M symbols are drawn from an alphabet 

of two symbola, then the set of reuonably probable meesagee could contain 

88 many 88 2M elements. We might expect that the size of the set of 

reuonably probable messages should depend upon the exact definition of 

"reuonably probable." Let's investigate more deeply the relaiion between 

the size of the reuonably probable set and the definition of reuonably 

probable. Imagine an enumeration of all 2M poesible meaeages. Each 

meeaage in this 1iai haa a particular probability of being generated at the 

eource end of our channel. Suppoee that the meeeagee are listed in in 

deecending order of probability from the single moet probable message to the 

least probable one. Starling with the moet probable meeaage, we go down 

the 1iai and keep track of the sum of the probabilities of the succeeeive 

meeeagee. Suppoee that at the Wh meeaage we have accumulated a total 

probability q. What is q? q is the probability that a meeaage generated by 

the eource will be an element of the set of the N(q) most probable messages. 

In Figure 1, we plot the quantity H(q) == (1/M)Le,1 N(q) venus q for 

various values of M for a two symbol alphabet with symbol probabilities 0.8 

and 0. t . Notice that 88 M becomes large and for q not too near 0 or 1 the 

graph of H(q) becomes incmusingly flat and hoven near the value 

~,fe) H[.8,.2].8 We have discovered graphically that which Shannon first 

deduced: the log of the size of the set of reuonably probable meaeages, 

e H(.8,.2J ia the entropy funedon of equation (2) applied to a aue vedor eontalnin1 the 
probabilities .8 and .1. The loprithm prefactor in thia expre.ion convene the In'• of HI , ) 
to bue 2. 
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8C&led by the number of symbols per meeeage, yields a quantity which is 

independent of the definition of "reuonably probable" for sufficiently long 

meeeagee. Moreover, this scaled log-of-eet-size attains a value which is 

equal to the entropy of the probability distribution of the symbols. Thus, to 

diecriminate a particular meeeage from among all the other 2MH(q) reuonably 

probable meeeagee, one needs M ~1(e) H~) bite of information, where HtPl 

is the entropy defined by equation (2) taken over the distribution of symbol 

usage frequencies P. In the remainder of this paper we shall drop the 

IM;1(e) factor, dealing with information in "nata" instead of bite; aleo, 

following Shannon, we shall normalize the meeeage information by the 

number of symbols in the meeeage. In summary, Shannon equated the 

entropy of the distribution of symbol frequencies in a message to the 

information content, in nate per symbol, of the message. 

Shannon realized that while entropy 18 sufficient to characterize 

information content, it 18 not sufficient to characterize information 

tranmn.iaeion. Therefore he defined a new quantity, conditional entropy, 

which me881ll'eS the information lost to channel noise during transmission of 

each element of a meeeage. Channel noise corrupts a message element by 

randomly transmuting the symbol in that element to 80me other symbol. 

Suppoee the original resident of a particular element is symbol j. Symbol i 

faces a probability (r')~ of being turned into symbol i during an n step 

journey through the channel The eet of transition probabilities which govem 

the fate of symbol i actually comprise the ,~h column of ro. It is ueeful to 

think of the matrix ro as a collection of col11Dlll.S; each column i is a 

probability distribution deecribing the likelihoods of the different alternatives 

which symbol i may become if it is mangled in tranmnission. Information is 

loet when a mesaage element is transmitted becauee of uncertainty about 
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what the identity of the element will be upon reception.7 If the original 

resident of a message element is symbol j, then the information loet is 

exactly equal to the mathematical entropy of the probabilliy disiribution 

which is the Jt.h column of rn. 
Let if(n) be the vector whoee components are these column entropiee.8 

Thus, 

Hln)= (H(column 1 of J"l), H(column 2 of J"l)) , (4) 

where H[.] is the mathematical entropy function defined m equation (2). 

Each component of if( n) is the information loet during tranemilmion of a 

particular symbol Conditional entropy, denoted by H(nj0),9 summarizes the 

channel's overall information loee per meeeage element as the weighted 

average of if( n)'s components, where the weights refiect the relative usage 

probabilities of different symbols at the eource, P (0): 

H(njO) = Ha(n)P a(O) + Hb(n)Pb(O) 

= Hln)P(O) (6) 

We have seen that entropy measu.ree the information content of a 

m~ and that conditional entropy measuree the information lost to noiae 

during tl'&Jl8it of the meeeage through the channel. Shannon showed that the 

difference of theee two is a measure of the amount of information su.rviving 

tl'an811lission through the channel; in a eenae, this is the amount of 

7 We emphuise uncen&inty; a chumel whleh always complements .ymbol a to .ymbol b and 
vice-vena tn.namiu m~ perfedly, if peroieioualy. 

~t ia interesting to note that the vedor of conditional ennoplee aummarizes mo.\ of what 
one needa to know &bout a chumel in order to study information tn.namiiUon and 
distonion. 

9H ( nl t1) is voe&llzed u •the conditional entropy of the distribution at time n, fi"e" the 
distribution at rime 0. • 
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information that is mutually shared by the source and the receiver. Thus 

the mutual information, J, acroes a channel is defined u 

(6) 

Equating the Free Energy and Mutual Information Operato111. 

In the previous two eubeections we have introduced thermodynamica 

and information theory from the viewpoint of Markov proceeees. We have 

suggested that each subject can be organized around a defining measure 

whoee behavior characterizes the system: free energy for thermodynamica, 

mutual information for information theory. 

We now preeent a BUDllllal')' of our main result. We view the two 

quantities free energy and mutual information u operato111 which map state 

space probability distributions into real numbe111. Then we demonstrate that 

in the appropriate limit of long times, theee two operato111 an asymptotically 

equivalent. 

Consider Equations (3) and (6): 

~[P(n))• ET lS(n) - kT H~(n)) and (3) 

J(P(n), P(O)J- HfP(n)) - if{n)~(O) . (6) 

Structurally theee equations an quite similar. Both involve the function 

H[P(n)), the entropy of the system's state space probability vector. Both 

involve linear operato111 acting on state vecto111: the thermodynamic operator 

~ which we call the intemal energy operator, and the information theoretical 

if(n), which we call the conditional entropy operator.10 ~ yet, however, the 

1~or our purpoees, a Unear opei'Uor » ju.t the traupoee of a vector. Linear operaloN act 
on probabili*f liue vecton by a limple inner produci; the renlt ia limply the IUm af the 
c:omponenta of the etue vector weighted by the c:omponente of the opera&or. Equivalently, 
and more intuitively, the reeult la the aver.p of the c:omponeota of the oper"Uor weipted 
by the probabilltiee in the atue vector. 
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two operatom are not alike in detaiL We now e1iminate two easily remedied 

algebraic differences; afterwards, we explore what remains. 

The f.i.nR algebraic difference Is ~ha~ ~he equations have dHferen~ unite, 

since the free energy g, is expreeeed in Joules, while mutual information is 

expl'e8Bed in nate, which are dimensionleee.11 The eecond difference is that 

the internal energy and conditional entropy operators are acting on state 

vectors P corresponding to different time periods; conditional entropy requires 

the state vector from time 0, while intemal energy ueee the state vector at 

time ta. Theee differences may be eliminated as follows. To bring the 

respective units of equations (3) and (6) into agreement, we measure the free 

energy g, in units of -kT. Now the entropy term.s H[P(n)) of the two 

equatiou agree exactly. Notice that the intemal energy operator has become 

E/kT; we call this the "reecaled" intemal energy operator. Next, using the 

identity P(O)= rnP(n) rewrite the conditional entropy operator as (if(n)r0
) 

eo that it acts on P(n) iutead of P(O). Notice that (Hl•)r0
) is still an 

operator; we will call it the rereferenced conditional entropy operator. Notice 

that we could have accomplished this alignment of reference times by 

reexpreMing intemal energy as (EfkT)rn, which would have established time 

0 as the common point of reference, rather than time ta. Both choices of 

reference time alignment are useful; we proceed here with the first method of 

realignment because this method leads to a more spectacular and stronger 

form of our main result.12 

llone might compare nate to bite u one relatee n.diana to desreee; in each cue the former 
are without dlmenaion. 

12-ro eome extent, the choice to be made here depends on one'• purp08e. Our major 
enthu8lum ia to enhance thermodynamic. by u.ing ideu from information theory. 
Accordingly, we heed the common uaap of phy.ia, which generally eetabU.hee the preeent 
(time n) u the preferred point of reference. 
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Equations (3) and (6) have now become 

-.9f[P( n)]/kT= H[P( n)] (EJkT) P( n) 

i['P(n)]= H[P(n)] 

and (7) 

(8) 

Notice how similar are the right hand sides of Equations (7) and (8) with 

respect to their dependence on P(n). In fact, as n becomes sufficiently large, 

these two equations become identical. We now demonstrate this asymptotic 

identity by exploring graphically the relationship over time between the two 

linear operators E/kT and if( n)rn. Start by picking, at random, a lbc.! 

Markov matrix r. Any r will do just as long as it has nonnegative elements 

and columns which sum to unity. Since we have picked r at random, we 

don't immediately know the vector of state energies, E/kT. Thus, we find 

next the equilibrium state vector, P(eq), of r, in order that we may 

determine the state energies by Boltzmann's equation. Now, since from 

physics we know that only differences in energy effect system dynamics, we 

calculate the difference of the components of the reecaled internal energy 

operator. This difference, which is just (E;, -EJ/kT, is equal to 

/m,(P .. feq}/Pb(eq)) using Boltzmann's equation. Finally, analogously, we 

calculate the difference of the components of the rereferenced conditional 

entropy operator for values of the time n, ranging from say 1 to 40.13 This 

last step is tedious but simple: for each n determine ro, if( n) and the 

difference of the two components of if( n)rn. 

Figure (2) illustrates graphically the relationship that emerges from 

these calculations. The straight line depicts the component difference of the 

reecaled internal energy operator. This line is horizontal because we have 

aesumed that r is constant which impliee that the state energies are 

13uow large n need be \aken depends on how clOH l"'a non-uni\y eigenvalue ia to 1. For 
moe\ random l"'a, 40 will u.ually be adequate. 



C
or

n
p

on
en

t 
d

if
fe

re
r1

ce
 o

f 
HT

(n
.f 

-
n

 
v

er
su

s 
n 

2 
Tr

a·
ns

it
·i

on
 m

a
tr

ix
 h

a
s 

la
rn

b
d

a
=

.9
, 

d
el

ta
_

E
/

k
T

=
1.

7 

1.
8 

-
-

-
--

--
-

-

1.
6 

.---
-. 

---
(f

) 
+

-

---
0 

1.
4 

c 
---

.....
.....

.--

c 
.
/
 

.....
..._

, 
1.

2 
Q

) 

~
 

,
.
/
 

u c Q
) 

J.
.. 

Q
) 

/
~
 

.
/
 

~
 

'+
-

'+
-

.
/
 

-o
 

0.
8 

/ 
>- 0.

. 
0 

0
.6

 
J.

.. 
1

/ 
+

- c Q
) 

0.
4 

II
 

/ 
0.

2 
I 

0 
0 

10
 

20
 

3
0

 
40

 

F
ig

·u
re

 2
 

n 
(d

is
cr

et
e 

ti
m

e 
in

 
st

ep
s)

 



55 

unchanging. The points on the smoothly interpolated curve depict the 

component difference of the rereferenced conditional entropy operator at a 

variety of time values n. The main thing to notice is that uymptoticaUy, as 

n goee to infinity, the curve merges with the line. This merging of curve 

with line is a general result; later on in this chapter we show that it occUI'8 

for all !x! Markov mairicee r, and that eomething similar happens for 

suitably restricted systems of arbitrary size. Thus, modulo the question of 

abeolute energies, the two linear operaton become identical as n goes to 

infinity. What is the sign.ificance of this identity? Tracing back through the 

argument, we see that in Equations (7) and (8), theee linear operaton were 

the only terms that were not obviously identical. Their graphical asymptotic 

equality implies that the two defining measures, free energy and mutual 

information, become identical operaton (to within an additive conatut) aa " 

goee to infinity. 

Figure (2) exhibits our main result if one is content to leave energies 

relative to one uother. It is interesting to ask what the appropriate 

definition of the zero of energy would be in order for the free energy and 

mutual information operaton to become abeolutely identical as n goes to 

infinity. The &IUJWer is simple and intuitive: ofraet the energies E. and E1, 

by an amount which cauaee the free energy of the equilibrium state to be 

This offaet allows u to meaningfully compare, component by 

component, the linear operaton ~/kT and if( t~)r-0• Figure (3) graphicaUy 

accomplishes this comparieon. In Figure (3), we interpret the carieeian 

coordinates of a point u specifying the two components of aD operator. 

Consider an arbitrary point R on the curve which is labeled •FW(eqJ)-=O;• 

14 
This happeoa when 'he enerv of eaeh Rate l hu become -lr:T ln(P1(et)). Thua 'he 

paninon fundi on Z which ia 'he eum of neptive exponen~ of ~/lr:T ia uni'Y. 
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Comparing rereferenced conditional 
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the coordinates of R are just the reecaled state energies (EJkT, E;,/kT) of 

eome two-state system which has zero free energy at equilibrium. Thus the 

reecaled iniemal energy operaior E)tT of any two-staie system speci11ee 

eome point on the curve labeled •F[P(eq)J=O" after we adjust both state 

energies by the same additive constant, eo that the free energy at equilibrium 

9[P(eqJ) is zero. The remaining curves in Figure (3), which are labeled 

"Wl" through "W4," depict the rereferenced conditional entropy operator 

H' n)rn as a function of time n for four repreeentative matrices, one matrix 

per curve. Each curve remits from a smooth interpolation of the set of 

points that is generated by evaluating H' n)r-n for different n.15 The 

essential feature to notice in Figure (3) is that each curve has an 

accumulation point as n goes to infinity which always lies on the curve 

labeled F(P(eqJJ=O. Thus, Figure (3) lets us eee how the individual 

components of the rereferenced conditional entropy asymptotically approach 

the corresponding components of the reecaled intemal energy as time n goes 

to infinity. 

It seems reasonable to hope that even for small values of n, where the 

rereferenced conditional entropy does not doeely match the reecaled intemal 

energy, still there might be a physical interpretation of if(n)r-n which is 

hued on energy. Suppoee that for n time periods we obeerve the fluctuating 

state of a physical thermodynamic system such as the two-state system 

deecribed previously. Then we try to infer the energies of the states of this 

15conceptually, the curve Ia generated u described in the ten; actually it Ia generated by 
smoothly eweepins the eigenvalue of the murix r from nearly 1 down to 0. Thua the 
curve shows a continuous time analog of the reeulte for deserete eysteme. N egt.*ive 
eigenvalues have no continuous time analog. However, had the eigenvalue been swept from 
1 down to below 0, then each curve would have continued smoothly put the accumulation 
point, never croeeins the F[E( ef})=O curve, until it exited the first quadrant. 
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system as best we can, using our obeervations.16 Ultimately, we will be able 

to deduce the equilibrium probabilities of occupation and hence the energies 

of all the states, although this may require times that are long, even when 

oompared to the time required by the mathematical Markov model to reach 

equilibrium. Initially, we can tell very little, since the statistical imprint left 

by the different; state energies on our data will not yet have sufficient 

definition to be visible above the noiae. In between, we can presumably 

deduce an intermediate amount about the state energy levels. 

Figures (2) and (3) suggest that we can view if( n)rn u a vector of 

"revealed state energies." 17 Qualitatively if( n)rn behaves much as our 

inferred energies should; initially its oomponents are the same, suggesting that 

for short observation times, noiae fluctuations oonceal any differences between 

the energies of the states. Later its oomponents approach E/kT, which is 

ooll80nant with the fact that to the patient obeerver and data analyst 

ultimately all is revealed. More deeply, we might have expected a relation 

between conditional entropy and state energy on physical grounds. 

Intuitively, we expect high-energy states to be lees aceeesible than low

energy states, since high-energy states are generally lees populated than 

low-energy states. It ia al8o intuitively reasonable to estimate state 

aceeesability by counting the number of reasonably probable ways of entering 

16It ia crucial here to diatincuiah the phyeic:al ~)'Rem from ita ma&hema&ical model which ia 
the Markov proce-. Tboush it ia true tha& on •t~et'•f• the ~)'Rem evolve. according to a 
Markov proceee, it ia not true tha& we ever obeerve the eta&e vector of this ma&hema&ical 
proc:e.. The eta&e vector of the ma&hematieal proc- recorda the outcome of a 
hypothetical experiment involving a larp eoaemble of eystem.. We obeerve only & eingle 
eyetem; moreover our obeerv&tiona do not take the form of probabilitie., ra&her they are a 
record of the eequence of eta&• occupied by our eystem durins the interval tba& we obeerve 
it. 

17 By •revealed eta&e energis• we mean the energis of the eta&s u revealed to an urute 
obeerver who c:aleula&• them by applying 10pbiatiea&ed et&tiatical stimaion to m. daiL 
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or leaving a sta~. Thu it is plauible for conditional entropy, which 

performs counts such as theee, to be related to state energy. 

Markov processes in the spectral representation 

In addition to being physically interesting, the behavior of if( ta)r-0 as 

a function of " is curiou mathematically. Correctly evaluating if{ta)r0 in 

the limit as ta goes to infinity is tricky; this is a singular limit. Even for 

the txt cue, slogging through with only naive algebra is remarkably difficult. 

There is a better way: first, decompoee the matrix r into its spectral 

repreeentation eo that it is expreeeed as a sum of orthogonal projectors; with 

r in this form, we are able to evalua~ the limit easily and elegantly. An 

added benefit of uing the spectral repreeentation is that it affords a direct 

insight into the operation of the limit. With the spectral repreeentation, we 

shall see how new time scales are generated in systems with more than two 

states, and the manner in which theee time scalee can caue the limit to fail 

to exist. Now we tum to a discl188ion of Markov proceeees and the spectral 

repreeentation of stochastic matrices. We work through the 2 by 2 cue in 

detail, and then state the results for the N by N cue. Afterwards, we WJe 

this repreeentation to evaluate fi1 n)r-0 in the limit as n goes to infinity. 

Modeling spin 1/2 as a two-state Markov procees. 

Consider the system of spin 1/2 particlee. The spin eta~ of any 

given particle fluctuates with time on account of thermal agitation. We can 

model the spin as a two state Markov process. Suppose that when the spin 

is oriented so that it is in state b, it is at a higher energy than when it is 

in state a. Let p "' be the probability that a particle with spin state a 

transits to sta~ b in eome fixed interval of time, and let p dn be the 
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probability that a particle in spin state b transits to state a in the same 

interval of time. Correspondingly, 1-p"' denotes the probability of a particle 

remaining in state a, and 1-p 4~ the probability of a particle remaining in 

state b. 

We can now write 

P a<n+1)= (1-p.,)P a(n) + p4~Pb(n) 
and Pb(n+1)= Pupp a(n) + (1-p4~)Pb(n) 

(1) 

as the total probabilities of a particle residing in states a or b at time period 

(n+1), conditional on the probabilities of time period n. Theee equations are 

intuitive; each accounts for all the po68ible ways that a particle may find 

itseH in a given state. 

We may collect equations (1) into matrix form: 

[

1-Pup P4,. ] 
P(n+1)= P(n) = rP(n) . P., 1-p~~~ 

(2) 

The matrix r pouesees a number of remarkable properties. The moet 

interesting, from our point of view, is that each column of r sums 

independently to unity. Matrices with eolely non-negative elements and 

unity column sums are known as stochastic matrices. Physically, a typical 

column i of r accounts for all the po68ible ways of either departing state i, 

or remaining in state •· Hence the stochasticity of r embodies 

mathematically, conservation of probability. In Equation (2) write P(n) as 

rP(n-1) and iterate to obtain 

P<n> = fDP(O). (3) 

As currently written, Equation (3) is not analytically convenient. The 

usual alternative to (3) expreMes r (and hence JCl) in diagonal (or perhaps 

only Jordan normal) form by transforming the coordinate basis of the state 

vector. Here, unfortunately, such a transformation will not suffice. We are 
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interested in calculating the conditional entropy. This calculation combines 

matrix elements in a novel way that can not be expreseed in tei'ID8 of 

elementary fnnctiou of a matrix. On account of this novelty, the calculation 

of the conditional entropy does not commute with the operation of 

diagonalization. 

The spectral repreeentation of a 2 by 2 stochastic matrix. 

The spectral repreeentation offel'8 an alternative method of simplifying 

(3). This repreeentation is especially effective for calculating high powel'8 of 

r and for evaluating the conditional entropy in this long time limit. 

Felicitously, in the case of two-state procet!ill!le8 (hence 2x2 trall8ition 

matrices), this repreeentation can always be expreseed in tei'ID8 of only two 

projectol'8 which we obtain through the following steps: first, we determine 

l"s equilibrium state vector, P(8q), and from P(aq) deduce one of l"s 

projectol'8. Second, we coll8iruct a second projector repreeented as the 

difference between the identity operator and the first projector. This second 

projector t111'D8 out to be orthogonal to the first; therefore, the two in 

combination span l"s two-dimeuional range. Factoring each projector into 

outer-product form allows us to deduce l"s eigenvalues, and, in combination 

with the projectol'8, r iteelf in the spectral repreeentaiion. 

System equilibrium is defined as a state vector P ( eq) with components 

P .. faq), Pb(flq) which satisfies the condition rP(e~ P(eq). For all physically 

relevant f's, P ( eq) exists and is unique. 18 Equilibrium is important becauae, 

given any initial vector P(O), JGP(O) will eventually converge to P(eq) as " 

increues towards infinity (i.e. after a sufficiently long time). In other words, 

18nu. wW be true provided tha& r modela a phyalcal proce11 with a unique ground eta&e. 
More formally, in the standard terminology of Markov proee~~ee, we are ...wning tha& r ill 
irreducible. 
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for any initial P(O), defining rnf:: /vm, (as n goes to infinity) of r', we can 

write 

P(eqJ- rmP(O) (4) 

What are P ( eq) and rW? Consider an arbitrary probability state vector 

with components 1-8, B. Since rinf mape all such vectors into P ( eq), it 

must be that 

[ ::~::}- [; i [l 81 ::haUO~~<l 
where w, :r, r, and z repreeent the four elements of J'nf. Hence 

[ ::~:~= [~:=;:: I :haUO:<l. 
Clearly :r-w and z:=r, and w==P .Jeq) and r=Pb(eq). We conclude that 

J"nf :a lp .. feq) P .. feq)l 

Pb(eq) Pb(eq)j 

Notice that F factors, allowing expreeeion as an outer product: 

[ P .. feq)l (1 1) ~ = [ 1 l =- P(eq)f, ~ 
Pb(eq) 1 

(6) 

A projector is a matrix whoee square is iteelf; intuitively, a projector 

murix projects vectors into a subspace, but leaves vectors already in the 

subspace unaltered. Using equation (6), the outer product repreeentation, we 

can simply show that rm is a projector: 

= ( P(eq)f) ( P(eq)~) 

= P(eq) ( f' P(eq) ) f' 
= Pfeq) (1) f = rm 

(6) 



63 

Equation (6) uses two nifty concepte: 1.) the re&880Ciation made poesible by 

the outer product representation, and 2.) the fact that f SUD18 elements of a 

vector, and, by the definition of probability measure, SUD18 probability vectors 

to unity. 

U will be uaeful to know the components of P(eq). In fact, P(eq) 

tUI'Jl8 out to be an eigenvector of r, with eigenvalue 1. Why is this true? 

P( n) repreeente the BYStem state at time n, and r applied to P( n) evolves 

the system one time period, to P(n+l}. Since P(eq) is the point of system 

equilibrium, r applied to PfeqJ must leave P(eqJ unchanged: rPfeqJ = P(eqJ. 

We can determine the components of P(eq) by writing out the equation 

rP ( eq)= P ( eq) in component form. 

[ '::·· ,_:::) f ::~:~) = [ ::~:~] (7) 

Aa is the way of these things, the two equations implied by (7) are linearly 

dependent; it is easy to verify that both equationa are satisfied when 

P .. feq)p"' = Pb(eq)p41".19 Combining this equation together with one 

specifying unity total probability: P .. ( eq) + P b ( eq) = 1 we obtain 

P 4ra P., 
p .. feqJ = ------- and Pb(eqJ = ------- (8) 

P.,+P4" P.,+Pl" 

19N otice that due relation determine. equilibrium for the two-et&te eyetem by directly 
equating the flow from a to b with the flow from b to &. Thua the eigen-rel&tion for the 
unity eigenv&lue of r determine. the ratio P a(ef}/Pb(ef} u we uaerted in the beginning of 

thia chapter in the eedion on thermodyna.mica. 
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We have now identified one of f's projectors, rtm, and have written 

rW as the outer product of P ( eq) with !f. In addition, we have obeerved 

that P ( eq) is the eigenvector of r with unity eigenvalue. It happens that 

1-rW i8 aJao a projector: (l-rW}2= l-2rW+(rW)2= 1-rW. 1-rW i8 

orthogonal to rW; it projects to a subspace which lies in the null space of 

rW: rW(I-rW)= rW-(rW)2= o. In fact, I-rnf has an outer product 

representation: 

~l-P0(oq) -P.(•q)J I Pb(•q) -P.(•q)J 
1-rm = = -Pb(eq) 1-Pb(eq) -Pb(e~ P .. (eq) 

(~~) {Pb(eq) -P .. feq)) 

- (9) 

Compare the outer product form of 1-rW in (9) with the outer product 

form of r'nf iteeH, (5). rW had an eigenvector of r as the left component of 

its outer product factorization. Analogously, we might hope to have found 

another eigenvector of r &8 the left component in the outer product 

factorization of our new projector 1-rtm. Ia the vector with components 

(1, -1) an eigenvector? Yes, 

[

1-p .. , 

P., 
= ( 1-p.,-P.tn ) 

P.,,.J Ill 
1-p., -1 ::a 

[ _:J = x!_:] 
(10) 

Equation (10) buys us a lot, since it directly provides us with r's other 

eigenvalue, >.; evidently I-rinf projects to a subspace aseociated with >.. 

We eee that, along with rtm, 1-rtm holds a special place in the 

scheme of things. Together, these two can do all that r does. In fact 

r- rinf+>-(1-rW}, &8 we can readily show: 
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:rW + A(I-F) = AI + (1-A)F 

[: :] r·(·q) P.(•q)J 
- (1-p.,-pli.J + (P.,+Plla) 

Pb(eq) Pb(eq) 

r-:P.,+Pl,.) 1-(p.,+~J [P4n P4j = + (11) 
P .. , P. 

r-p .. P4J -
P., l-p4A 

The spectral repreeentation of general stochastic matrices. 

The above diacUMion, which, for simplicity, has been confined to tx! 

matrices, illuetrates certain properties which are more generally true. 

Explicitly, avery M by M matrix hu a epectnl rvpnMDtation. In general, 

the projectors UBOCiated with distinct eigenvalues are orthogonal, and the 

sum of theee eigenprojecton is the identity matrix, L If the matrix is 

diagonalisable, then it can be expreeeed as the weighted sum of its eigen

projecton; in this sum the weights are the eigenvalues ueociated with each 

projector. 20 If the matrix is not diagonalisable, then the situation is 

I!JOmewhat more complicated; the decomposition of the matrix involves eigen

nilpotente as well as eigenprojecton. A matrix N is nilpotent if NID=O for 

I!JOme positive number m. The nilpotent& can appear only in connection with 

repeated eigenvalues. See [Kato] for a thorough exposition of the general 

cue. For a general M state Markov process with transition matrix r, define 

F to be the projector ueociated with the unique unity eigenvalue, and 

20 A matrix will be dlagon&lizable if all of ita eigenvalues have an algebraic: multiplicity of 1; 
thia prospect ia overwelmingly likely to be true in any phyaieal litu&tion. 
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P ( eq) to be the eigenvector BMOCiated with this eigenvalue. 21 Set 

I!= {1, ... , 1)y· Let x, be other distinct eigenvalues, IX, I< 1. Each X1 i8 

8880Ciated with an eigenprojector r 1 , and possibly also with an eigennilpotent 

N, . 

where 

Then 

r = rm + x1r1 + x~, + ... + r,x, p<N 

+ N1 + N, + ... + NP 

rm = P(eq/l, 

Expanding if(n)r-n Around EquUibrium 
The 2x2 Case 

(12) 

We are now ready to calculate the rereferenced conditional entropy 

if(n)r-n in the limit u n is taken to infinity. In this eeetion, we show this 

calculation for the caee of a two-state system. The calculation proceeds in 

three stepe. First, we shall find r-n, an operation that is made very easy 

by the spectral repreeentation. Second, we shall calculate the conditional 

entropy operator if(n). Hln) is messy for arbitrary n, however, for large n 

it may be expanded in a Taylor 8eries about its equilibrium value. The 

spectral repreeentation allows us to readily calculate the first couple of terms 

of this Taylor eeriee. In the third and final step, we shall ue the spectral 

repreeentation yet again to recut our expansion for if(n) to a simple and 

beautiful form from which calculation of the limit H{n)r-n becomes especially 

easy. 

21We have been u.uminr thai the ei(envalue 1 ~ simple. IOantmacherJ proves that all the 
eigenvalues with unity modulu. of a atochutie matrix are u worst aem~imple and thua 
have no nilpotent. uaociated with them. 
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Calculating powei'B of r. 
Let us begin by calculating powel'8 of r. In tei'ID8 of projectoi'B, r to 

the ftr8t power is r'nf + A(l-r'nf). Using the orthogonality of these 

projectoi'B, see that r2 is rW + A2(I-Jinl}. It is apparent that only the 

eigenvalue A has been affected by the operation of aquaring r. Continuing, 

we calculate rt inductively as the product of rt-1 and r; with each multiply 

the orthogonal projectol'8 produce no cl"081!1 tei'ID8, so the only net effect is 

that the power of A has been increued by one. Thus, P may be 

determined from ~rinf + A0 (1-Jinl}. What about rn? The form of rt 

for positive powei'B strongly suggests that 

(1) 

Check this by multiplying the right hand side by the projector form of JG; 

u always the projecton produce no croee tei'ID8, and the net effect is that 

the power to which A appear15 becomee zero. Since both sides of Equation 

(1) become the identity matrix I when they are multiplied by r', it must be 

that Equation (1) correctly expneeee inverse powel'8 of r. 
Notice that rn diverges as n goes to infinity. This behavior is to be 

expected; since IAI<1, we know that IA-11>1, and hence that IA-nl grows 

exponentially with n. Thus the eigenvalue of rn grows exponentially with 

n. 22 From a state-space penpective, the cauae of this divergence is 

intuitive. rn diverges because always it must be able to invert the 

mapping which is JG. ~ n gets large, the mapping which is rn must be 

able to magnify a tiny volume of state space which is centered on the 

equilibrium point P ( eq) so that the mapped image of this volume fills the 

22nteee remarb concerning the algebraic divergence of r-n, ud the remarb thai foUow 
conaidering the aituation in atate apace apply equally weU to general aystema with arbitrary 
numben of atatea. In the general cue all of I"a nonunit;y eigenvalues contribute to the 
divergence of r-n and the eigenvalue of r with the amalleat modulua dominates the 
divergence. 
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entire state space.23 What is the effect of rn when it multiplies a linear 

operator such as the conditional entropy operator if(n)? Corresponding to 

the equilibrium point P(eq) in state space there is the point ET in the adjoint 

apace.24 Just as (for large n) rn maps a tiny volume around P(eq) onto 

the entire state space, so alao does it map a tiny volume around f onto the 

entire adjoint space. The fact that f is the fixed point of rn is the central 

mechanism which allows the large n limit of H,n)r-0 to exist. Aa n goes to 

infmity if(n) becomes proportional to f. 

Finding Hln) for large n 

Now we investigate the large n behavior of if(n). We advance this 

investigation by obtaining the conditional entropy operator ii{n) in a form 

that is analytically tractable when n is large. Recall that the components of 

if(n) are the column entropies of JG: 
--:r: 
H(n)= (H[column 1 of JG], H[column 2 of JG]) 

What does a typical column j of rt look like when n m large? Since rt= 

:r'nf + X0 (I-J"nf} and the coll1DlD8 of :rinf are all alike and are equal to 

P(eqJ, we can see that column i of ro takes the form: P(eqJ + oe where 

c5=>.0 and oC is a vector whoee components are the elements of the J~h 

column of the projector 1-rW. By hypothesis, n is large, thus o is small, 

and it is reuonable to expand the entropy of the Jth column of JCl, 

23Since any multiple of E(et) i. a1ao a fixed point of r-0
, we mipt more properly eay 

that r-n magnifies .. cylindrical volume of state apace which i. infinitely long but 
inft.niteeimally alender so that the mapped image of thia cylinder fil1a the entire state space. 
The cylinder i. concentric about a fine which contains both the origin of the ltate apace and 
the point E(et). 

24Reeall that linear operators are tranepoees of vectors and eo have a correspondence to 
pointe in a apace which i. known formally u the adjoint of the etate apace. 
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HcP(eq) + oCJ, m a power series in o around O=o. Performing this 

expansion, 26 we obtain 

2 
-E(P l eq)+OC Jln-(P l eq)+c5Cl) 
i=l 

= H[P(eq)J 

where the last equality follows on account of the definition If= (1 , 1), and on 

account of the Boltzmann relation EJkT= -ln-PJeq), which 888UD1es g is 

constrained 1!10 the free energy of equilibrium is zero. Recall that rW= 
P ( eq)f; the orthogonality of the projectors in a projection decomposition 

Ulturee us that the (inner) product of !!'with a column from any projector 

other than rW must always be zero; thus If 0=0.26 Note that the O(lloCII2) 

term contains sums of squares of components of oC; that this ia an 

unsimplifiable mesa becomes evident when one considers that in general (for 

S)'Btema with more than 2 states), oC is itself a sum of vectors. Fortunately, 

further expansion of this term will not be necessary to establish the limit in 

which we are interested. 

The limit of Hln)rn. 

We have now ueembled all the ingredients which are eeaential in the 

Taylor series expansion of the conditional entropy operator if(n). We know 

~member d(:ri,.,.)Jd• ia 1+/.w., and 10 (~-+0} is J,.. + (1-tltwr)d + O(c52). Also 
note that the eummatlon index i enumera&e8 the dlfterent elemenY of the fixed column 
vedol"' 'f{ef) and cSQ. 

26 Actually the co~~Rralnt on ~ that there be aero free enet'IY in equilibrium ian't neceeauy, 
eince all phywically equiv.Jent E'e are the I&IDe up to an additive multiple of ~ which in 
any event maltee no difference here. 
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the components of H{n) are column entropies of ~. We have shown that 
~ ~T ..., 

for large n, all these column entropies take the form H[P(eqJJ+(E/kT)X"C. 

Thus, 

if(n)= H[P(eqJ]f" + (EJkT)X0 (1-rW) + i(IXI2n) 

where ctJX12n) stands for a vector transpose all of whose components are 

O(IX12n). C{IX12n) is the error we incur when we truncate the Taylor !eries 

after two terms. Thi8 equation for Hln) po88e88e8 an intriguing factorization 

if we recast the leading order term, H[P ( eqJ]!f, in an alternate form. To find 

thi8 alternative, notice that H[P(eq)], the entropy of equilibrium, is just the 
.... :r .... 

same as the inner product (E/kT)P(eq), if we agree as before to reference 

energies from a zero free energy at equilibrium so that EJkT= -Im-P l eq). 

Then, H[P(eqJ]f" becomes (EJkT)P(eqJ!f, which we can reduce immediately to 

(EfkT)rW. Subeiituting (EJkT)rW for H[P(eqJ)f" allows us to expre88 H(n) 

very elegantly: 

if(n) = (E/JtT) (l'nf + X0 (I-r"d}) + U{JX12n) 

(3) 

In spite of its compactness, note that equation (3) does give the asymptotic 

form of H(n) accurate to second order, since the error in (3) diminishes as 

the square of IXI0
• Thi8 quad.ratic dependence of the error on IXI0 is 

generally what we would expect from two terms of a Taylor series; the 

surprising thing here is the way the two terms cooperate to produce an 

expre88ion which has the matrix JCl as a factor. H we imagine that JCl 

propagates transposes of vectors forward through time, just as it does for 

state vectors, then equation (3) has a curious interpretation; it suggests that 

the conditional entropy operator at time n is the result of propagating the 

tran.spoee vector of state energies forward through n time steps, at least 

asymptotically. 
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Let u.s now show that if(n)rn approaches E/kT in the limit as n 

goes to infinity and thereby complete the chain of reasoning which 

asymptotically linb mutual information to free energy. Multiplying both 

sides of equation (3) by r-n, we can see that the difference 

Hln)rn - E/kT approaches DliAI2n)rn. Now D'IAI2n) has no special 

direction relative to the projectors of r, 80 multiplication by rn magnifies it 

by a factor of order IAI-n.27 The result of thia multiplication is aome vector 

D'IAI0
) which still manages to go to zero as n goes to infinity. Thus, we 

have established that if(n)rn does indeed approach E/kT asymptotically as 

n goes to infinity, at least for the two-state cue. 

The rereferenc:ing theorem 

The existence of the limit of if(n)rn (for a general system) tU!'IU5 out 

to be independent of many of the properties of the conditional entropy 

operator if(n). The existence of this limit depends only on the spectrum of 
---;r. 

the stochastic matrix r, and on the fact that H(n) is a function of the 

columns of r. In this eection, we state and prove a theorem about the 

rereferencing of linear operators which are generated from the columns of a 

stochastic matrix. In order that this eection should be as self contained as 

poesible, we explain the notation with several definitions prior to stating and 

proving the theorem. 

f"= (1 , l, ... , 1)N. 

27Moet relevant hen is the direction of 7J with respect to "f Split 7J into a. aum of two 
veetora, one panllel to If and the other perpendicular to "f., The panllel pieee remaina 
fixed under the mapping r-n, while the piece perpendic:ular to if gete mapified by ~~-n. 
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DeflaRioa: The clt188 of matrices having a unt'l"e equilibrium 

stale. 

r 18 an NxN siochMtic matrix if 
--:r ~ 

a) f>= 0 and ~ r= l..;. 

r is a regular NxN stochMtic matrix if 

a) holds and 

b) IAI=l implies A=l, A an eigenvalue of r. 
r is a fully regular NxN stochMtic matrix if 

a) holds and 

b) holds and 

c) A=l is an eigenvalue with algebraic multiplicity 1. 

Defiaitioa: The eqsililwium vector' of r. 
P ( eq) is the equilibrium vector of a fully regular stochMtic matrix r if 

rP ( eq)= P ( eq) and !! P ( eq)= 1. 

Dellaltloa: Funetiom of ,wobability vector's. 

fl 1 is a function on a probability vector28 if 

flP)= f(P1, P 2, ..• , PN), where f is a scalar valued function of the N 

numben P1, P2, ... , PN which are the components of the probability 

vector P. 
Df[P] is the linear operator which is the derivative of the function fl 1 

evaluated at P if 

28P ia a probability vector if P>= 0 and !! P= 1. 
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Deflaltioa: Bvilding an operator by applying a fvnction to the 

colvmm of ro. 
r(n) is the !-operator 8880Ciated with r if 

{i(n) h= f( column i of :rn ], where f( ] is some given function. 

Theorem: Rereferencing linear operatora. 

Given a fully regular NxN stochastic matrix r with the equilibrium vector 

P ( eq), and a function f(P] which is continuously differentiable in the 

neighborhood of P= P(eqJ, then 

IX112< IX,I implies 

ivm,n-->infinu•1tn>rn= {f"'-rn"' P(eqJ}f! + me, , 

where ... /(n) is the !-operator ueociated with r, r., flPfeqJJ, rn,,= lli[P(eqJJ, 

and ~ (i=1, ... ,p) are the distinct non-unity eigenvalues of r, arranged so 

that IX11>= 1~1>= ... >=1\1 (p<=N-1). 

The proof follows directly from an expansion of 1(n) for large n. To 

perform this expansion, we need ro in an accessible form. If the spectral 

representation of r is 

r = rm + 
, 
t x,r, + N,, 

1=1 

then the spectral representation of :rn is 

In the first expression, each eigenvalue x, is ueociated with eigenprojector 

r, , and a poeeible eigennilpotent N, . In the second expression, each eigen

value x,n is ueociated with eigenprojector r, , and a poeeible eigennilpotent 
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N/. 29 In both of these expre88ions, rW is the projector associated with the 

unity eigenvalue. By hypothesis, the unity eigenvalue is not degenerate. 

Therefore, rnf has rank 1. Alao, we know that rnf'P(eq)= P(eq). Thus, 

every column of rm is identical to P(eqJ, and we conclude that rm P(evf. 

We can now proceed with the expansion of ... /(n) for large n. The first 

term in this expansion is the row vector which is obtained by applying f[ I 

to the columns of rW. Since all the column.s of rW are identical to P ( eq), 

we see that the lint term in the expansion is f[P ( eq))f. The second term in 

the expansion of ... i(n) is obtained by applying the derivative of f[P ( eq)) to the 

column.s of the difference JG-rnf. Thus, the second term in. the expansion is 

DftP(eqJ)(r-rW). H we truncate the expansion of1(n) after these first two 

terms, then we incur an error. We assume the magnitude of this error can 

be estimated from the first neglected term in the expansion. The third term 

in the expansion of ... /(n) is quadratic in the elements of the column.s of 

fD-r'nf. llfD-rinfll is O(nmlll-ll>-11°), where m[l) does not exceed the 

algebraic multiplicity of the eigenvalue X1. Thus, the error incurred by 

truncating the expansion after the first two terms is O(n2mlll-21>-112n) . 

... i(n)= f{P(eqJ)!f + Di[P(eq))(fD-rnf) + 'D{n2mlli-21X112n), 

where Dla) is a row vector with norm O(a). We assume the direction of 

D{n2m(l)-21>-112n) is arbitrary.30 ... /(n) can be expre88ed more compactly if we 

employ the definitions WJed in the statement of our theorem. Replace 

flP(eqJJ with f,, and Di[P(eqJJ with rn.,. 
1(n)= f,j + rn,

9
(fD-rW) + D{n2mlli-2IX112n). 

29we h&ve pulled out the factor nmPI-1x,n so th&t the norm of N1• remains 0(1) u n ia 

t&lten to infinity. 
30Tbia ia & WOI'IIt cue ueumption bee&uae it implies th&t urn1>11 ia u large U it C&n 

poeaibly be. It ia, however, u strong &n ueumption u the hypothesi~ of the theorem 
allows. On &ecount of this ueumption, the theorem est&blishes & sufficient (&nd not & 
neeeae&ry) condition for the limit of the rereferenced line&r operator to exist. 
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We now complete the proof of our theorem . 

.a.i{n)r-0 = f.j.T + m.,<I-Jin1) + Cln2m(l)-21Atl2n)rn. 

From the spectral representation31 of r-n, 

p 
E Ai-n(ri+nmral-INt"), 

1=1 

we see nrnll= O(nmlPI-1tA,I-n), where m[p] does not exceed the algebraic 

multiplicity of the eigenvalue A,. Th118 the error term in ..... i{n)rn is 

Dln2m(l)+m(p)-31A1
2/A,I0 ) . Clearly, when IA1

2/A,I< 1, this error term is o(l). 

Therefore, if IA112< IA,I, then 

/vmn-->irafinit' 1(n)r-n== r., + m.,(I-rn'}. 
The proof of our theorem is completed if we subetitute P ( eq)~ for Jinf in this 

expreseion. 

if(n)rn in the general case 

Does if(n)rn approach EYkT in systelll8 having more than two 

states? Since if(n) is a function of the colUDlll8 of :r, this question can be 

answered by an application of our rereferencing theorem. The theorem tells 

118 immediately that the limit of if(n)rn will exist if IA112<1A,I, where A1 is 

the nonunity eigenvalue of r with the largest modul118, and IA,I is the 

eigenvalue of r with the smalleet modul118. When the limit exists, what is 

its value? This question requires 118 to connect the quantities which appear 

in the theorem with quantities which appear in the preeent circUII18tances. 

Evidently, 1(n)= if(n), f[ ]= H[ J and r.,= H[P(eqJJ. rn., is a row vector 

whoee elements, in this cue, are the partial derivatives of H[PJ with respect 

to the components of P, evaluated at P= P(eqJ. The ith component of rn., 
31In thia expreuion r1 ia the eitfenproje«or and N/' ia the eipnnllpotent ueoclated with 

the eigenvalue >..i-n' JINlllz 0(1) (n -->infinity). 
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is aH(P(eq}J/ aPleq)= -(1+/tn,Pleq))= -(f"-E~kT), , and so Df,
9
= 

- (f-E~kT). The rereferencing theorem tell8 us that, in the limit as n goes 

to infinity, f(n)r- 0 = {feq-rneq P(eqJ}I:"'+rneq . Notice that rneq P(eq)= 

-(f"-E~kT)P(eq}= -l+H[P(eq)]. Thus, {fe
9
-Df89 P(eqJ}f+Dfe

9
= 

{l+O}f-(f-E/kT)= E~kT. We conclude that IA112<1A,I implies 

if(n)r-0 = E/kT, in the limit as n goes to infinity. Actually, the proof of 

the theorem tell8 us somewhat more than this. We know that 

H(n)r-0 = E/kT + D\c(n)1Al/A,I0
), where 

c(n)= ,.2JDI1J+m(p)-3. 

~112<1A111 compre1!18e8 the time scales of a system. 

Physically, the limitation IA/I<IA,I is rather severe; it specifically 

includes only thoee systelll8 having decay time ecales which span lees than a 

factor of two. This interpretation follows directly from a reasonable 

definition of decay time scale. Notice that 1~1°= w;,ft-(n tn-1~1); compare this 

with the standard form of exponential decay: w;,ft-{ -n/r1), where 'T i is the 

one over e time of decay of mode i. We see that -r, = -1/tn-1~1· Taking 

logs of both sides of the inequality IA1
21<1A,I and then negating we obtain 

-Un1A11 > tn,IA,I, whence. comes our result: 

T1 < t 'Tp • 

When interpreting this inequality, remember that the 'T; are in decreasing 

order. The decay time of the equilibrium mode which is 'T (}I is infinite.32 'T 1 

is the nexi largest decay time; it is follwed by 'T 1, and so on down to 'T ,, 

which is the smallest of the decay times. 

The notion of decay time is especially useful when our theorem does 

apply. Recall that il(n)r-0 = E~kT + c\c(n)IAt2 /A,I0
). The residual term 

~ormally thia follows from T rF-1/tnfJ...,j, if we take a Umit where X0 approac:hea 1 from 

below. 
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clcfn)IAt21A,I0
) decays as 1At21A,I0

• This corresponds io a decay time Tg, 

where:33 'Tg= T 1'T, 1 {fT, -T 1). 'Tg is a nonlinear combination of the smallest 

and largest (but finite) decay times of the system. It is easy to show that 

'Tg>T i~4 this me&IU!I that 'T, is still the shortest time scale of the system. 

However, Tg is unbounded above, eo that as 'T 1 approaches 2'T, , 'Tg becomes 

infinite. Thus the rereferenced conditional entropy can take a longer time io 

approach its equilibrium value than any of the modes of the system take io 

decay. In fact it is precieely as 'T H becomes infinite that the theorem breab 

down and if(n)r-0 fails io approach E/kT. 

A three-state example. 

We cloee this section with a graphical preeentation showing the 

behavior of the rereferenced conditional entropy as a function of time for two 

similar (but distinct) three-state systelll8. The fint two graphs (Figures 4 

and 5) deal with a three-state system having a transition matrix which 

satisfies the conditions of our theorem. This transition matrix has the 

eigenvalues 1, 0.9, 0.85; since .i'-=.81 which is lese than .85, we expect the 

rereferenced conditional entropy of this system to be well-behaved. Figure 4 

shows that in this cue each component of if(n)r-0 does indeed approach the 
..... :T 

corresponding component of E/kT as n becomes large. Figure 5 plots the 

components of the difference liftn)r-0
- E/kTI versus n on a log scale for the 

same system. The theory predicts that this difference should agree very 

nearly with the residual term UCIX1
2 /X,l0

). All of the components of 

UCIX1
2 /X,I0

) decay io zero as (.81/.85]0; this corresponds io a 1/e decay time 

33'Tg = (-2lnf).tl+lnl).pl)-l = (2/T1-1/T.)-l = T1T,I(2Tp-T1) 

34Conaider \he expreeaion e=d/(16-a) where 6<a<f6. Suppoae \ha\ •=(1+8)6 wi\h 0<6<1. 
Then e::6(1+8)/{1~). The graph of (1+8)/{1~) vemm 8 increuee emoo\hly from \he 
value 1 when 8 ie zero to infinity u 8 approachee 1. 
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1"g of tO. 7 time steps which is what we observe in figure 5. Note that the 

system of Figures 4 and 6 has eigenvalues corresponding to decay times T 1, 

T 1 of 9.5 and 6.1! respectively. Tg is more than twice as big as the largest 

of these times; this lends support to our obeervation that the rereferenced 

conditional entropy operates on a time scale which is different from, and 

conceivably much larger than, the natural time scales of the system. 

Figures 6 and 7 display the rereferenced conditional entropy on linear 

and log scales versus time for another three state system. The transition 

matrix of the system portrayed in Figures 6 and 7 is different in only one 

respect from the transition matrix used in Figures 4 and 6; the eigenvalue 

0.85 has been changed to the value 0. 77. In every other respect, the 

transtion matrices of Figures 4 and 5 and of Figures 6 and 7 are identical; 

they have exactly the same eigenprojectors, and two of these projectors are 

weighted by the common eigenvalues 1 and 0. 9. The change of one eigen

value from 0.85 to 0. 77 is crucial to the rereferenced conditional entropy 

operator becauae it leaves UDB&tisfied the existence condition which this 

operator requires in order to be well behaved as n goes to infinity. "Al=.81 

is no longer lese than "A,=. 77; Figure 6 shows the conaequences of this 

inequality failure. Notice that for small n the curves of Figure 6 behave in 

a somewhat similar manner to thoee of Figure 4, then the divergence hits 

and they move off toward infinity. Can we account for the curves rate of 

divergence? Figure 7, which is a semilog plot of the components of 

liftn)r-0 -EfkTI, shows us that all the components grow exponentially, 

increasing by a factor of e every tO or so time stepe. This agrees with the 

calculated e folding time 'Tg=19. 7 which one gets by assuming that the 

(diverging) "residual term" U<IA1
2/A,I0

) still dominates the large n behavior of 

liftn)r-0
- ~kTI. 
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A composition law for if(n)rn 

We have shown that, /Of' ca genercal 8f8lem, if(n)rn poesesses an 

equilibrium limit only when the time constants of the system span less than 

an octave. This restriction will almoet certainly be violated if we construct 

a system out of several independent subsystems. Consider, for example, a 

four-state system which consists of two independent spin 1/2 particles. The 

time constants of this system never span less than a factor of two. Systems 

which are built of independent pieces have a special kind of structure. For 

such systems, we can relax somewhat the conditions of our theorem.35 In 

this section, we prove that if(n)rn always p088e88e8 an equilibrium limit for 

a system consisting of two independent spin 1/2 particles. The proof 

suggests that if(n)rn poeseeees an equilibrium limit for a system compoeed 

of several independent components if and only if this limit exists for each of 

the components taken separately. 38 

Consider a system which is compoeed of two, independent, spm 1/2 

particles. Let the particles be labeled r and s respectively. Suppoee that r 

is governed by a 2x2 stochastic matrix of transition probabilities f(r) . 

Similarly, s is governed by the 2x2 stochastic matrix f(s) . If we consider r 

and s jointly, then we have a single system with four states. We label these 

four states as follows: 

36The rereferencing theorem eatabliahea a condition which ia sufficient to ensure that the 
Umit of a rereferenced operator exiata. The eatabliahed condition is not a neceaaary 
condition, i.e., the converae of the theorem does not hold. 

86(1cte note ~~~~ed •t fincl prtnttnf 5/11/88): It appean certain that the argument of this 
aeetion can be directly extended to cover the composition of two independent syetema of 
arbitrary size. Simple induction on this enhanced argument yielda the general composition 
law which we have stated. 
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state of state of state of 
:Qarticle r :Qarticle s COml>08ite sYStem 

1 1 1 

1 2 2 

2 1 3 

2 2 4 

Operators which factor the four-state system. 

The transition matrix of the four-state system is r 4x4• r 4x4 has a 

special structure; it is the product of a pair of factors, both of which have a 

noteworthy form. The forms of theee factors motivate us to introduce two 

pairs of operators. Theee operators convert back and forth between the two, 

two-state systems and the single four-state system which is their 

composition. 37 

r 11 (r)r 11 (s) r 11 (r)r 12(s) r 12(r)r 11 (s) r12(r)r12(s) 

r4x.== ru (r)r21 (s) 11 22 12 21 12 22 
flU (r)f 11 (s) 21 12 22 11 22 12 
r 21 (r)r 21 (s) 21 22 22 21 22 22 

r4x.== ru(r) f(o) r,2(r)f(•)] 
r21(r) f(s) r 22(r)f(s) 

r4x.== ru(r) I r,2(r)l~ [~(•) f(o~ r 21 (r) I r 22(r) 1 

Each element of f4x4 is the product of an "r type" transition probability 

with an "s type" transition probability. This product comes about because 

each element of r 4x4 specifies the probability of a pair of independent events. 

Notice that each factor of r 4x4 is a 4x4 matrix which is built in a simple 

37More preciaely, these are imbedding operatol'll. The four-state tystem ia the tensor 
produd of the two two-state systems. Thia seetion ia really jUit a simple introduction to 
the algebra of tensor products. 
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way from one or the other of the 2x2 matrices f(r) or f(s). We now defme 

two operators, B. and S, which map 2x2 matrices to 4x4 matrices. 

B.[ A]= [A111 :::] S[B]= 

~ =l ~11 

A and B are arbitrary 2x2 matrices; A has elemente Aii. I is the 2x2 

identity matrix. 0 is the 2x2 matrix of zeroes. It is easy to verify that 

B.[A]S[B]= S[B]B.[A.], thus B. and S commute with one another. Also we see 

(B.[A])0 = B.[A0 ) and (S(B])0 = S(B0
). 

Two more operators prove useful u well. 

row vecton to four element row vectors. 

Rl\il= (V 1' V 1' V 2, V 2) and 

sl\il= (Vl' v2, vl' V2), 

.....T ...... T 
R and S map 2 element 

where V: (V 1, V ~) is an arbitrary 2 element row vector. Rl\1 and 81\1 
satisfy several interesting identities involving B.[11 and 8[11, when r is any 

(2x2) matrix with colUIDJ18 that sum to unity:38 

Rl\ilS[l']= Rtv1, 

Rl\1B.[11= RlV\1 and 

stv1a[l']= slVl 

sl\'1s[11= slVI'J. 

Thus, B.[l'] is an identity for s~ and 8[1'] is an identity for R~ We can 

deecribe the second pair of identities by saying RT consolidates the argument 
...... T 

of B.[r], and S coll80lidates the argument of S[r). We verify th~ identities 

by direct inspection. 

~n our application, r will alwaye be & stochuiie matrix or & poeitive or negative power of 
a stochutic matrix. 
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The conditional entropY of r 4x4!-

--;r n l f H4(n) is a row vector of column entropies of (r.tx4) • Any co umn o 

r.tx-4 (or its nth power) has the form of a probability distribution over two 

independent events. What is the entropy of such a probability distribution? 

The entropy of the four element probability vector P "' where 
""":f P 4= (p1 (r)p1 (s), p1 (r)p2(s), p2(r)p1 (s), p2(r)p2(s)), 

is just the sum of the entropies of the independent distributions of which P 4 

is compoeed.39 Thus, the entropy of P4 equals H[P(r)] + H[P(s)], where 

Plr)= ((p1 (r), .p2(r)) and Pls)z: ((p1 (s), .p2(s)). 

Each COlumn Of (r tx4) 0 is a probability distribution With the form Of 

P _.. Thus the entropy of each column of (r .tx4) 0 is just the sum of the 

entropies of the distributions of which the column is compoeed. The first 

two colUIIlll8 of (I' .tx4) 0 involve transitions out of the "1" state of particle r. 

Thus the contribution of particle r to the entropy of both of these two 

columns is the same, and is just the entropy of the fll'8t column of the 2x2 

transition matrix r(r). This entropy is the first element of H:<n), where 

if,.(n) is the conditional entropy of (r(r))0
• Similarly, the last two columns 

of (r .tx4)0 involve transitions out of the "2" state of particle r . Thus the 

contribution of particle r to the entropy of both of these two columns is the 

same, and is just the second element of H:(n). Thus, particle r contributes 

R.lff,.Cn)] to if.Cn). Recall that in the state 81J8ignments of the four-state 

system, particle s had the pattern: l, 2, l , 2. Particle s therefore 

~ntropies sum for independent dietributio011 euentially becauae the '-? of a product is the 

sum of the t.,.. Let's calcu!Ue the entropy of P 4• The flnt two element. of P 4 
contribute Pt (r)p1 (e)(ln.p1 (r)+ln.p1 (e)) + p1 (r)p2(s)(ln.p1 (r)+ln.p2(e)) which factors and 

becomes Pt (r)H[P(s)) + Pt (r)ln.p1 (r). In a similar way, the lut two elements of P 4 
contribute p2(r)H[P(s)) + p2(r)ln.p2(r). The sum of these two contributio011 is 

H[P(e)) + H[P(r)). 
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contributes slil:(n)] to the four-state conditional entropy H~(n) . Summing 

these two contributions we obtain: 

fi~(n)= iitif,.<nH + slif,Cn>J 

~ n 
tt4(n)(f4x~ 

If we 888emble the identities detailed above, we can calculate the 

four-state rereferenced conditional entropy. We find that jf.(n)(fu4)-n 

becomes:40 

= ( Rlif,.(n)) + StH:(n)) ) B.[rr- nl S[f
1 
-n] 

= Rtif,.(n)] S[f
8 
-n] Jl[fr -n] + StH:(n)] ll[fr -n] S[f

1 
-n] 

= R.1if,.cn)] Jl[fr -n] + s1if,(n)] srr. -n] 

= Rtif,.(n)f r -n] + Slif,(n)f
1 
-n] . 

The first equality utilizee the expreeeion for H~ (n) and the factorization of 

The second equality requires the distributivity of matrix 

multiplication and the com.mutivity of the factors of (f4x4)-n. The third 

equality depends on S[l'] being an identity for R~ and on B.[l'] being an 

identity for s~ Finally, in the fourth equality, RT COI180lidates the argument 
.,T 

of B.[f] and S COI180lidates the argument of S[l']. 

Thus, if.<nHfu4)-n= Rtif,.(n)rr - n] + s1il:(n)r. -n). This identity is 

very intuitive. It says, the rereferenced conditional entropy of the four-state 

system is the direct 8UDl of the rereferenced conditional entropies of the two 

spins which compoee the four-state system. The operators B. and S merely 

serve to convert between the baeee of the independent spin systems and their 

four-state composition. If the limit exists as n goes to infinity of if,.(n)fr -n 

and if,(n)f1 -n, then obviously it exists for the four-state composition, 

•Ow e've streamlined the notation •lishtly by 1ublcripting the r and • of r. ThUI f(r)=r r' 
etc. 
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H~ (n)(f h-i) -n. Note that our result is valid, not only in the limit as n 

becomes infinite, but al8o for finite n as well.41 

41Profeuor Hopfield pointe out that phyaical quantities of independent system• do not 
change merely beeau.e we assrePte the syatema in our notation. He reaaona th&t, if the 
rereferenced conditional entropy ia to have any phyaical significance, then, at the very leut, 
it must satisfy some sort of compoaition law. 
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Conclusion 

In this thesis we have viewed time as a channel and the state of a 

system as a message. ~ the system state evolves with time, the message 

gets degraded. Thermodynamics quantifies the advance of the system toward 

equilibrium with the free energy measure. Information theory quantifies the 

lou of memory of initial state with the mutual information measure. The 

free energy depends on the internal energy. The mutual information depends 

on the conditional entropy. The internal energy is a linear operator which 

mape the state vector at time t to a scalar with the dimeuiou of energy. 

The conditional entropy is a linear operator which mape the state vector at 

time zero to a dimeuionless scalar. "Rescaling" the internal energy makes it 

dimeuionless. "Rereferencing" the conditional entropy makes it refer to the 

state vector at time t, rather than the state vector at time zero. In this 

thesis, we have proved that the rescaled internal energy and the rereferenced 

conditional entropy become identical operators in the asymptotic limit of long 

times. This identity holds for the class of systelll8 where the time coMtante 

of different modes span less than a factor of two. 

This thesis contains several itelll8 which are original. In particular, 

our calculation of the long time limit of the rereferenced conditional entropy 

m new. This limit is nifty because it is a singular limit. Our statement of 

the relation between the internal energy and the conditional entropy U!l new. 

Our statement of the relation between the free energy and the mutual 

information is new. These relatioM imply that thermodynamics and 

information theory are structurally similar. Any new relation between 

thermodynamics and information theory J8 intriMically interesting; a 

structural relation is valuable because it allows us to reuon by analogy. H 

we strip away all this hype, then what is left of the contribution of this 
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thesis? In preparing this thesis, we have come to believe that Shannon's 

conditional entropy baa a place in physics, either in thermodynamics or some 

other allied area. We think that the thesis makes this conjecture credible 

and we see this credibility aa the contribution of the thesis. Conditional 

entropy may have a place in nonequilibrium thermodynamics; it may al8o 

have a place in that area of statistical physics which deals with things like 

fluctuation diaipation theorems. We now briefly elaborate these poesibilities. 

Conditional entroPY and nonequilibrium thermodynamics. 

All physical theories simplify reality by abstracting it; this is necessary 

becauee reality is terribly complicated. Physical theories are judged by their 

simplicity and by the accuracy of their predictions. Thermodynamics works 

in an abstraction which discards the complications of detailed dynamics; for 

equilibrium systems, heat, temperature and entropy effectively summarize 

what is left of dynamics. A major impediment to the development of a 

satisfactory theory of nonequilibrium thermodynamics has been the lack of an 

appropriate abstraction. Nonequilibrium thermodynamics needs to retain 

more of system dynamics than heat, temperature and entropy; still it should 

retain appreciably lees of system dynamics than, say, the first order rate 

equations of chemical kinetics. In this context, conditional entropy, or 

perhaps H'n), seem especially attractive. The components of if(n) effectively 

summarize system dynamics; since these components measure volumes in 

state space, they should fit naturally into the framework of any theory which 

is built upon thermodynamics. 

Conditional entropY and fluctuation dissipation theorems. 

Physical systems usually are found in thermal environments where they 

are bombarded by noiee. Such systems exhibit fluctuations. .AJeo, such 
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systems exhibit dissipation; if we disturb them, then they respond, but in 

time the disturbance dies away. Einstein was the first to point out that the 

bombarding no.iae is the common caU8e of both the fluctuations and the 

dissipation. 42 Conditional entropy might offer another way to connect 

fluctuations and dissipation. Conditional entropy measures the volume of 

state space which is swept out on account of noise. Thus, conditional 

entropy connects fluctuations to state space. A fundamental result of the 

theory of dynamical systems connects dissipation with contraction of state 

space volume. Thus, with conditional entropy, we can hope to link 

fluctuations with dissipation via state space. 

·~IDReln studied brownian motion; be concluded the.& microscopic bombardment caused 
these ftuctua&iona and tba& the aame bombardment wu also responsible for the diaeipa&ion 
which wu ob.erved. Sub.equent)y, Nyquist studied voltage ftuctua&iona aero. a resistor; he 
too concluded the.& the source of the fluctuations wu also the source of the resistance. 
La&er, Callen & Welton and then Kubo proved •nuctua&ion diaeipa&ion• theorems of 
increuing elepnce. 
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