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ABSTRACT 

Be it a physical object or a mathematical model, a nonlinear dynamical 

system can display complicated aperiodic behavior, or "chaos." In many cases, 

this chaos is associated with motion on a strange attractor in the system's phase 

space. And the dimension of the strange attractor indicates the effective 

number of degrees of freedom in the dynamical system. 

In this thesis, we investigate numerical issues involved with estimating 

the dimension of a strange attractor from a finite time series of measurements 

on the dynamical system. 

Of the various definitions of dimension, we argue that the correlation 

dimension is the most efficiently calculable and we remark further that it is the 

most commonly calculated. We are concerned with the practical problems that 

arise in attempting to compute the correlation dimension. We deal with 

geometrical effects (due to the inexact self -similarity of the at tractor), 

dynamical effects (due to the nonindependence of points generated by the 

dynamical system that defines the attractor), and statistical effects (due to the 

finite number of points that sample the attractor). We propose a modification of 

the standard algorithm, which eliminates a specific effect due to autocorrelation, 

and a new implementation of the correlation algorithm, which is computationally 

efficient. 

Finally, we apply the algorithm to chaotic data from the Caltech tokamak 

and the Texas tokamak (TEXT); we conclude that plasma turbulence is not a low­

dimensional phenomenon. 



1. INTRODUCTION 

1.1 Chaos 

- 1 -

CHAPTER ONE 

From economics [1] to epidemiology [2], the paradigm of deterministic chaos 

has been invoked to describe the irregular cycles and fluctuations that are 

observed in the physical world. According to the paradigm, chaotic motion can 

often be characterized as motion over a "strange attractor" in the system's 

phase space. The strange attractor is a complicated self -similar set whose 

(typically fractional) dimension indicates the effective number of degrees of 

freedom in the system. With varying success, evidence for the existence of 

these strange attractors (and in some cases, estimates of their dimensions) has 

been sought in a wide variety of physical systems [3]: in optical systems, such 

as lasers [4] and bistable devices [5]; in electrical circuits with nonlinear 

oscillators [6] or with p-n junctions [7]; in solid state phenomena, such as spin 

waves [8] and electronic transport [9]; in biological systems [10] such as 

stimulated cardiac cells [11], human electroencephalograms [12], giant squid axons 

[13], and slime mould [14]; in chemical systems such the Belousov-Zhabotinskii 

reaction [15], and in worldwide climatic patterns over the past million years [16]. 

Physicists and engineers have long sought models for hydrodynamical turbulence, 

and much of the work in the field of experimental nonlinear dynamics has 

concentrated on fluid mechanical systems; here, the most notable successes have 

been with Rayleigh-Benard convection [17], Couette-Taylor flow [18], and Robert 

Shaw's celebrated dripping faucet [19]. In each of these hydrodynamical 

examples, low dimensions were observed for systems just beyond the onset of 
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chaos. It is not known whether low-dimensional chaos can provide an adequate 

description of more fully deveoped turbulence. Our own investigations were 

stirred by the desire to characterize the turbulence exhibited by a t okamak 

plasma [20,21 ]. 

Numerical methods have been developed for estimating the dimension of a 

strange attractor directly from a time series of measurements taken of the 

system. Though these methods have only recently been developed, they are 

sufficiently general that they can be applied to any system or simulation that 

can provide a time series. 

Despite their popularity and wide applicability, these dimenson algorithms 

are subject to a profuse assortment of errors. A thorough analysis of these 

errors, and of the biases and limitations inherent in these algorithms, has been 

lacking. This thesis addresses that lack. We concentrate on the correlation 

dimension, as it is the most efficiently computable and (therefore) the most 

frequently used. We attempt to isolate and identify the causes of various 

"effects" that can lead to inefficient, imprecise, or incorrect estimates of 

dimension. 

1.1.1 Simple systems with complicated behavior 

The central observation of nonlinear dynamics is that simple deterministic 

systems with a few degrees of freedom can display chaotic behavior . This 

observation is credited to Lorenz [22], who in 1963 exhibited a system of three 

ordinary differential equations that were inspired by a model for convectiv e 

flow in the earth's atmosphere. His analysis was primarily numerical, and h is 
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computations revealed a com plica ted aperiodic flow. That such irregular 

behavior should arise from a simple deterministic system of equations came as a 

surprise to the physics community. 

We contrast these "simple deterministic" systems to stochastic systems, 

which evolve probabilistically in time. From the point of view of classical 

physics, all systems are, strictly speaking, deterministic. But some systems 

(such as a roomful of air molecules with ~ 1023 degrees of freedom) are so 

complicated that it is virtually impossible to specify their states exactly, and so 

a stochastic description is necessary. 

On the other hand, we point out that although a system may in principle 

have many degrees of freedom available to it, not all of them are necessarily 

used. A macroscopic fluid technically has ~1023 degrees of freedom, and a 

continuum model for the fluid will have an infinite number of degrees of 

freedom (though in a Navier-Stokes fluid, viscosity limits the continuum degrees 

of freedom to an upper bound which increases with the Reynolds number [23]). 

There are many microscopic degrees of freedom, but in the case of laminar flow, 

for instance, the microscopic motion is sufficiently collective that only a few 

degrees of freedom are needed to describe the macroscopic motion. 

1.1.2 Sensitive dependence on initial conditions 

A fundamental property of deterministic nonperiodic flow is its sensitive 

dependence on initial conditions. If the initial state of the system is known 

absolutely and with infinite precision, then the future of the deterministic 

system can be predicted with absolute precision. But if there is any uncertainty 
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at all in the initial condition, then that uncertainty is magnified with time. For 

this reason, the long-term future of such systems is essentially unpredictable. 

For this reason also, stochastic methods are often useful in analyzing 

such systems. This may seem paradoxical at first, for it is because these 

nonlinear systems are not stochastic that they are interesting. However, as the 

uncertainty in the initial conditions grows with time, the system effectively 

"forgets" its distant past, and states of the system well separated in time act as 

though statistically independent . 

Lorenz, who was a meteorologist, found that his extremely simplistic model 

of the weather exhibited a fundamental unpredictability. It is reasonable to 

speculate that a more realistic model would be at least as unpredictable as 

Lorenz's model (and that real weathermen should not be held too much to blame 

for their legendary inaccuracy). By showing that predictability requires more 

than identifying and enumerating all the degrees of freedom of a system, Lorenz 

effectively closed a door on the hope that a big enough computer could "solve" 

weather, and opened the door to a new branch of physics: deterministic chaos. 

1.2 Dynamical Systems 

A dynamical system is a system whose state may change in time. If the 

change from one state to another is governed by probabilistic considerations, the 

system is stochastic. A deterministic dynamical system is a dynamical system 

whose state in the future can be predicted from its state in the past. 

1.2.1 Evolution operators 
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In particular, a deterministic dynamical system has an evolution operator 

J, which specifies how the system changes in time. If x0 is the state of the 

system at some initial time t =0, then the state at time t is given by Xt =ftX0 . 

Here we will give some examples of deterministic 

dynamical systems. 

1.2.1.1 Ordinary Differential Equations 

A system of m autonomous ordinary differential equations (ODE's) 

provides the archetypal model for a dynamical system. The state is represented 

by the m dimensional vector x =(x0,xl' . . . ,xm_1), and the dynamical time evolution 

is given by a system of ODE's 

dx - -dt =A(x). (1.1) 

In terms of the evolution operator, we write x(t)=ft(x(O)), where x(t) is the 

solution of the ODE. The standard example due to Lorenz [23] is: 

dx 
dt 
dy 
dt 

-xz+rx-y 

dz dt = xy-bz. 

(1.2) 

A typical trajectory, for the parameter values C7 =10, b =8/3, and r =28, is shown 

in Figure 1.1. 

1.2.1.2 Maps 
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By considering the operator f acting at discrete intervals ~t of time, we 

obtain the map f =!~t. We usually take ~t =1, so 

(1.3) 

A particularly well-studied example is the Henon map [24]: 

xn+l = 1 - ax~ + Yn 

Y n+1 = bxn. (1.4) 

Here the state of the system at time t =n is given by the pair (Xn.Ynl. Knowing 

the state at time n, the map (1.4) gives the state of the system at time n +1. 

Reapplication of the map to (xn+1'Yn+l) gives the state at time n+2. By 

iterating the map, we are able to produce the entire future of the system. 

Figure 1.2 shows a typical trajectory of this map with Henon's original 

values of a=1.4 and b=0.3. 

1.2.2 Trajectories through state space 

A dynamical system's state space (often called phase space) is the space 

whose axes represent the state variables. Since the state of a system is given 

by the values of the state variables, a state can be represented by a single point 

in state space. For instance, if m variables specify the state, the state space is 

Rm. 

As a system evolves in time, its state changes and so does its position in 
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state space. The trajectory of this position through state space describes the 

evolution of the system with time. 

1.2.3 Conservative and dissipative dynamical systems 

We classify dynamical systems into conservative and neoconservative 

systems, according to whether or not Liouville's theorem applies. If ECRm is a 

bounded subset of the state space, then ft(E)CRm is the set after it has 

dynamically evolved for a time t >0. Let V(E) be the ordinary (Lebesgue) 

volume of E. Then, a system is conservative if volume is preserved under 

forward [25] evolution in time; that is, 

V(E) (1.5) 

We note that for conservative systems, the ordinary volume V is invariant 

under evolution f. We say in this case that V is an "invariant measure." 

A neoconservative system is said to be dissipative if the volume of a set 

E decreases as it evolves in time; that is, V(Jt(E)):5:V(E), at least for long 

enough time t. As an example, the Lorenz Equations (1.2) are dissipative since 

1 dV 
v dt -CT-1-b < 0 (1.6) 

for CT and b positive. Usually, the decrease in volume is exponential, that is 

~';- -kV, so V(Jt(E))-e-kt, and in particular V{ft(E))--.0 as t-.oo. That the 

volume of a chunk of state space decreases toward zero as t -.oo suggests that 

all the trajectories in that chunk of state space are being attracted to 
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something, that ft(E)--.A as t--<X> for some zero volume attracting set .A. 

1.3 Attractors 

Intuitively, we think of the attractor as a set of points in state space 

toward which trajectories in a dissipative dynamical system ultimately converge. 

There is obvious interest in the nature of the attractor, for this describes the 

asymptotic behavior of the system. In this section we will show some examples 

of "simple" and of "strange" attractors, and then we will proceed with a formal 

definition of what an attractor is and what properties we expect it to have. 

1.3.1 Simple Attractors 

Before giving a complete definition of what an attractor is, we provide 

two simple examples, shown in Figure 1.3. 

equilibrium of the dissipative dyamical system 

dx 
dt 
dy 
dt 

-x+y 

-x-y. 

The first is the stable static 

(1.7) 

As all trajectories spiral toward the origin, the origin is said to be the attractor . 

In the dynamical system 

dx 
dt 
dy 
dt 

-x(x2+y2-1) - Y 

-y(x2+y2-1) + x, (1.8) 
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trajectories converge not toward a single point but toward a limit cycle. The 

attractor in this case is the unit circle centered on the origin. 

We note in both cases that the volume of the attractor in state space is 

zero. The dimensions of the attractors for the systems defined in Equations 

(1.7) and (1.8) are zero and one, respectively. 

1.3.2 Strange and chaotic attractors 

A strange attractor is an attractor that is more complicated than a fixed 

point or a limit cycle. Often these volume-zero attractors have fractional 

dimension and com plica ted self -similar structure. 

Most strange attractors are chaotic [26]. An attractor is said to be 

chaotic if nearby trajectories diverge. Since volume is always decreasing in the 

state space of a dissipative dynamical system, it seems at first that the 

attractor is the place where trajectories would converge, and this is certainly 

the case for stable fixed points. But Figure 1.4 shows how volume may be 

reduced even as nearby trajectories are diverging. We see that trajectories are 

converging in some directions and diverging in others. The convergence is 

stronger than the divergence, so the overall volume is shrinking. But if the 

vector separating two nearby trajectories has a nonzero component in the 

direction of divergence, then those two trajectories will eventually diverge. 

Thus, if there is any direction of trajectory divergence, then most of the 

trajectories will diverge. 

1.3.3 Formal definition of an attractor 
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Informally, the attractor is what trajectories converge toward. Following 

Guckenheimer and Holmes [27], we begin our formal definition of an attractor 

with the concept of an w- limit set. 

The w-limit set of x for f is the set of accumulation points of ft(x) as 

t - oo, where Y is an accumulation point of ft(x) as t-oo, if there is a sequence 
t . 

t . -oo such that f 1(x)--. Y. 
1 

Since w-limit sets are defined for each initial condition X, a given 

evolution f may have many w-limit sets. A more global notion of an attractor is 

provided by n, the "nonwandering set." 

A point x is nonwanderlng if for every neighborhood U of x and every 

time T, there is a t>T such that ft(U) nU~0. That is, the trajectory for 

which x is the initial condition eventually comes back arbitrarily close to x . 

The nonwandering set f2 is the set of all nonwandering points x. 

It can be shown that n is closed and that it contains all the w-limit sets. 

Also, n is an invariant set; that is, ft(f2)=f2 for all t. We do not yet want to 

call n an attractor, because it may be composed of several distinct attracting 

units. The usual decomposition of n is into "maximal topologically transitive 

sets." We define a closed invariant set A to be topologically transitive if i t 

contains a dense orbit of f (that is, 3xcA such that the following holds: Vy cA 

and VE> O, 3t > 0 such that ft(x) is within E of y). A topologically transitive 

set is maximal if there is no larger topologically transitive set that contains it. 

If .A is a subset of n and is a maximal topologically transitive set, then we say 

that .A is an attractor. 

Here we mention that this is not the only formal definition that has been 
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proposed for attractors. A more general definition involves "chain recurrence"; 

we refer the reader to [27]. The important properties are just that the 

attractor ..A- be invariant under evolution and that it contain a dense orbit. 

1.3.4 Natural invariant measure 

In this section, we define another measure on the state space, one that is 

appropriate specifically to the attractor and that is usually much more 

complicated than the ordinary Lebesgue volume mentioned in §1.2.3. This new 

measure, .u(E), is tied to the long term dynamics on the attractor; it measures 

how often and for how long the set-E is visited by an orbit on the attractor. 

For a specific orbit {Jn(X0 )}
00 

, we can define a measure 
n-O 

.u(E) 

where 

Cf(X) 

lim 
N-oo 

if XEE 
otherwise. 

( 1.9) 

(1.10) 

We note that .u(E)=l if ..ACE C Rm and that the measure is invariant under 

evolution f. That is, 

(1.11) 

where E is a subset of Rm and f-t(E) is the set of points obtained by backward 

evolution of the points in E during time t [28]. 

We also note that this measure is manifestly dependent on the initial 
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condition X0 • We write ,u(E;X0 ) to express this dependence explicitly . For 

instance, if X0 is a fixed point of !, then the orbit {fn(X0 )} ={X0 } induces the 

trivial measure 

,u(E;X0 ) { 1 if X0 cE 
0 otherwise. (1.12) 

If X0 is a stable fixed point, I.e •• an attractor, then orbits that begin near the 

point X0 approach X0 , and the measure in Equation (1.12) will be valid for all 

orbits with initial conditions near X0 • That is, 

,u(E;X) { 1 if X0 cE 
0 otherwise, 

(1.13) 

for all X near X0 • On the other hand, if X0 is an unstable fixed point, then the 

static orbit is exceptional, and the .u defined in Equation (1.13) will not be 

appropriate for most X. 

The "natural" invariant measure of an attractor is the measure that /s 

appropriate for most initial points X. It is the measure that is induced by 

"typical" orbits that are dense on the attractor. 

Given the natural invariant measure ,u, we note that there is an ergodic 

property for orbits on the attractor [29]. For a function ~(X), we define the .u-

weighted spatial average [301 

<CJ'> = I CJ'(X) d,u(X) 

Rm 

and note that for almost all initial points X0 , 

(1.14) 
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(1.15) 

It is this equality, of a spatial average on the left-hand side and a time average 

on the right-hand side, that we refer to when we speak of an "ergodic" property 

for an attractor . 

Given an invariant measure JJ., the lrwarlant distribution, or sometimes, 

trwarlant density, p(X) is defined so that for any set E, 

JJ.(E) I p(X) dX. 

E 

(1.16) 

We point out that .o(X) may not be a function, per se (in the sense that the 

Dirac delta function is not a " function"), but the notation can simplify 

expressions involving the natural invariant measure. For instance, we can recast 

Equations (1.14) and (1.15) as 

I ~(X) p( X) dX 

E 

lim 
N-.co 

where E is any set for which .A C E C Rm. 

(1.17) 

For most purposes, when we speak of the attractor, we refer to the 

invariant measure over the embedding space, typically Rm. The attractor itself, 

t he set .A, is the subset of Rm over which the measure is " nonzero." .A is the 

"support" of the measure JJ., which is defined formally as the complement of the 

union of all open sets for which the measure is zero . 
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1.4 Time series 

An experimentalist, confronted with a physical dynamical system, measures 

at regular and discrete intervals of time the value of some state variable of the 

system (such as temperature or density or voltage) and records the time series: 

x0, xl' x2, . . .. Many variables may be necessary to describe the state of the 

system; a time series represents the value of just one of the state variables (or 

more generally, a one-dimensional projection from the state space) as a function 

of time. 

As such, the time series is an incomplete description of the system in its 

time evolution. On the other hand, many properties of the system can be 

inferred from the time series. 

The time series depends on the initial state of the system; it is thus 

useful to take the mathematical viewpoint that the time series at hand is just 

one from an ensemble of time series, each corresponding to a different initial 

condition. 

1.4.1 Time delay coordinates 

Time series are manifestly one-dimensional. A time series describes the 

evolution of a single state variable, even though several variables are usually 

required to fully describe the state of a system. Packard, Crutchfield, Farmer, 

and Shaw [31] devised a delay scheme to "reconstruct" the state space by 

embedding the time series into a higher dimensional space. From time-delayed 

values of the scalar time series, vectors are created, 
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(1.18) 

with the delay time T and the embedding dimension m parameters of the 

embedding procedure. Here v i represents a (possibly) more complete description 

of the state of the system at time t=i than does xi. The dynamical information 

in the one-dimensional time series has been "converted" to geometric information 

Takens [32] placed the time-delay embedding on solid mathematical footing 

by showing that this procedure does (almost always) reconstruct the state space 

of a dynamical system. To clarify this statement, we introduce some formalism. 

Let Xi eRM denote the state of the system in its original (M dimensional) 

state space, where M may be arbitrarily large (even infinite). Let the map 

?t' :RM -R correspond to the projection of the original system to the time series; 

that is, ?r(Xi)=xi is the "measurement" taken at time t -i. We note that 1r is in 

general a noninvertible many-to-one map . 

constructed by the time-delay formula in Equation (1.18), so that ?rm(Xi)=vi. 

Here, ?rm projects points in the original state space to the reconstructed state 

space, and particularly if M > m, we expect 1rm to be many-to-one. However, if 

we restrict ?rm to act on points in a d dimensional subspace, with d ~m, and in 

particular to points in the d dimensional attractor .A, we may find that 

1r mi.A: .A - 1r m(.A) is a continuous isomorphism (a one-to-one map). If this is so, 

the " real" attractor .A will be topologically equivalent (isomorphic) to the 

reconstructed attractor ?rm(.A). 

What Takens has shown is that for large enough m, almost all projections 



- 16-

;r lead to reconstructed attractors irm(..A.) that are isomorphic to the original 

attractor. This justifies the t ime-delay embedding scheme and enables us to 

probe the state space of a dynamical system from a one-dimensional time series. 

1.4.1.1 Optimal reconstruction of the state space 

Takens has shown that for virtually any T and for "large enough" m, an 

attractor can be reconstructed in Rm. The obvious questions to ask are: How 

large is a large enough m, and what is the best T? This is something of a 

technical detail; the purpose of this section is merely to point to some of the 

work that has addressed these issues. 

Mane [33] has shown that no more than m=2d+1 dimensions are 

generically required to isomorphically embed a d dimensional attractor into Rm. 

Eckmann and Ruelle [34], however, point out that as long as m ~d, the 

reconstructed attractor irm(..A.), while not necessarily isomorphic to .A., will 

(almost always) have the same dimension . 

The theorems tell us that in the limit of infinitely long (N -+oo) time 

series, any choice of T ~ 1 and m ~d will reconstruct an at tractor of the correct 

dimension . This is important to know, but another thing we'd like to know that 

the theorems do not tell us is this: What are the best (or for that matter, what 

are "good enough") values of T and m to use if our goal is to estimate the 

unknown d from a finite time series? The issue of optimum T has been 

addressed by Fraser and Swinney [35]; also by Havstad and Ehlers [36]. A 

variant of the embedding procedure with many more optimal parameters 

(essentially, each component is a linear combination of the delayed time series 
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values) was introduced by Broomhead and King [37]. 

Not knowing the dimension d of the attractor beforehand, we estimate the 

dimension d(m) of our reconstructed attractors for various m, increasing m until 

the estimated dimension d(m) saturates at some d(m)<m. Some authors [38] 

suggest increasing m until m~2d(m)+1 as a safe rule of thumb, this presumably 

having been inspired by Mane's theorem. But this is incorrect, because Mane's 

theorem says nothing about estimation of dimension from a finite sample of N 

points. 

1.4.2 Deterministic time series 

Primarily, we are concerned with deterministic dynamical systems. If Xn 

is the full state of the system at time t=n, then we have Xn+1 =f(Xn), where f 

is the evolution operator. From the time series, on the other hand, we cannot 

usually predict the "next" measurement xn+1 =1r(Xn+1) just from the most recent 

measurement xn =1r(Xn>· We say that a time series is deterministic if there is 

some function f for which 

(1.19) 

Given f and a sufficiently long list of past values xn, x 1, x 2, ... , it is n- n-

possible to generate an arbitrarily long time series. 

Going the other way, trying to guess what the function f is from the time 

series, requires a certain amount of imagination [39,40,41]. But once f is known, 

then precise predictions of the future, given precise measurements of the past, 
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are possible. 

It is not at all obvious that a deterministic dynamical system should give 

rise to a deterministic time series, yet Takens' demonstration that there is 

(almost always) an isomorphism between the full description Xn of the state and 

a set of consecutive values of the projected time series (xn, xn_1, . . .) shows, in 

fact, that these two senses of the word deterministic are essentially equivalent . 

A deterministic dynamical system generically gives rise to a deterministic time 

series. 

1.4.3 Stochastic time series 

We contrast these deterministic systems to systems that are stochastic. 

White noise is an important example of a purely stochastic system. In a white 

noise time series, {En}, each € is chosen Independently of its predecessors from a 

random distribution, which is typically, though not necessarily, a Gaussian. 

Predicting the future of a white noise time series is hopeless; successive values 

of € in no way depend upon previous values. 

More general stochastic time series combine white noise with some 

determinism. Here we write 

(1.20) 

with En from a standard white noise time series. "t is the noise level of the t ime 

series; if "t is small enough, then the time series is essentially deterministic and 

analysis and predictions can be done. We note that even our best prediction of 
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the future will be in error by "' on average. 

We will not have much to say about the effect of noise directly on 

nonlinear dynamical systems, though it is an interesting issue. The reader is 

referred to [42]. 

In Chapter Five, we do discuss the effect of additive noise in the 

measurement of a dynamical system . In constrast to Equation (1.20) above, the 

system Xn proceeds noiselessly according to Equation (1.19), but we measure 

Xn +"ft=;n· 

Occasionally, we find stochastic systems a useful tool for modeling certain 

effects that occur in analyzing deterministic systems. In Chapter Thirteen, for 

example, we mimic nonlinear deterministic time series with equations of the form 

(1.20) in which f is a linear function of its arguments, and the nonlinearity is 

taken up in the stochastic term. 

1.5 Quantifying chaos: numerical diagnostics 

Having embedded the time series into Rm, we are now in a position to 

characterize the orbits through the reconstructed state space. There are two 

main approaches. We can seek out some measure of the divergence of nearby 

trajectories, such as the Kolmogorov entropy and the Lyapunov exponents; or we 

can determine how much of this embedding space is actually occupied by 

trajectories of the dynamical system (after transients). Do they fill out the full 

m dimensional space (as the trajectories of a stochastic system, for instance, 

would be expected to do) or are they restricted to a d dimensional attractor, 

with d < m and d not necessarily an integer? 
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Both are useful measures of chaos, and both can be estimated numerically. 

We emphasize that these diagnostics are fully numerical, in that they use no 

information about the system that produced the time series. Indeed, from the 

point of view of these algorithms, the time series Is the system. 

1.5.1 Kolmogorov entropy and Lyapunov exponents 

These are dynamical measures of chaos, in contrast to the more geometric 

dimension. The Kolmogorov entropy and Lyapunov exponents quantify the 

sensitivity of a dynamical system to initial conditions. 

The Kolmogorov entropy K measures the rate at which information is 

"created" by the dynamical system. What is meant by this is the following. 

Given the evolution operator J and knowing the state of a system to an 

accuracy of, say, k bits, we can predict its state some time t in the future, 

though to less accuracy, say k-s bits. On the other hand, if we just wait that 

time t and observe the system to our usual accuracy of k bits, then that 

observation will net us s more bits of information. In this sense, the dynamical 

system creates an average of K =sit bits per unit time. 

The Lyapunov exponents measure the rate at which nearby trajectories 

diverge. As Figure 1.4 shows, this rate depends on which pair of nearby 

trajectories is being considered. In Rm, then, there are m distinct rates. If x(t) 

is the (reconstructed) state of the system at time t, and f is the evolution 

operator, then the Jacobian matrix is given by the linearization of j, 

J(t) al<x<on 
ax(O) 

ax<t). 
ax<o>' (1.21) 
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J .. (t) 
lJ 

axi(t) 
3x}O). 
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The nth Lyapunov exponent is given by 

~n lim !t log jnth eigenvalue of J(t)l. 
t ..... oo 

( 1.22) 

(1.23) 

The largest Lyapunov exponent is clearly the most important since if a pair of 

trajectories has any nonzero component in the eigendirection associated with the 

largest eigenvalue, then that rate of divergence will dominate. The Kolmogorov 

entropy K turns out to be given by the sum of the positive Lyapunov 

exponents [45]. 

This thesis will not have much to say about numerical estimation of 

Lyapunov exponents and Kolmogorov entropy from a time series. The issue is 

discussed in some detail by Wolf, et al. ~46]; also, more recently in [47]. A 

method for estimating Kolmogorov entropy that is related to the correlation 

algorithm is developed in [48] and [49]. 

1.5.2 Dimension 

Dimension is a geometric measure; it tells how much of the state space is 

explored by the system in its post-transient state (that is, how much of the 

state space is occupied by the system's attractor). Numerical estimation of 

dimension (in particular the correlation dimension of Takens [SO] and Grassberger 

and Procaccia [51]) will be our primary focus. This thesis will explore criteria 

for determining whether and to what extent the correlation dimension algorithm 
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can be trusted. 

Our emphasis will be on the practical. Because the "output" of the 

correlation algorithm is not a single number but a log-log plot of the correlation 

integral - or, less formally, the "C of r curve" - and because the output is 

often so crucially dependent on the various input parameters, the analysis has 

traditionally been a very human process, with a little bit of art mixed in with 

the science. An important concern will be with determining the optimal scaling 

range, which is the range of r over which C(r) is proportional to r11
; 

equivalently, the range over which the slope of a log C(r) versus log r curve 

provides the best estimate of the attractor dimension 11. There is always a 

danger in seeking slopes on log-log plots; they often are too easy to find: it is an 

old and wise if somewhat sexist adage that on a log-log plot, even Sophia Loren 

lies on a straight line. 

We will examine various features of strange attractors that can affect 

our interpretation of the C of r curve and poison our estimate of dimension. By 

choosing simple examples we hope to isolate and quantify the consequences of 

these features, so that we can diagnose symptoms and provide antidotes. We 

classify these effects into three main groups: geometrical, dynamical, and 

statistical. 

1.5.2.1 Geometrical effects 

Geometrical effects arise in cases of imperfect self -similarity. Points, 

lines, and planes look the same on all scales. Any magnification of a line still 

looks like a line. For many objects, however, this self -similarity is not so 
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precise. 

For instance, a circle, looked at globally, looks like a circle; but looking at 

a small part of the circle, it looks like an arc, and looking closely at a very tiny 

part of the circle it looks like a line. If we look at an €-sized chunk of the 

circle, then as € ---0, we see what looks more and more like a self -similar line. 

This kind of effect is due to the finite size of the attractor, or that the 

attractor has an "edge." We discuss the edge effect in Chapter Six. 

In Chapter Five, we point out that the effect of adding noise to the 

system is to prevent the € ---0 limit from being taken; also in that chapter, we 

show that the effect of discretization on the data (which also limits the smallest 

scale at which the attractor can be observed) can, to leading order, be 

counteracted. 

Chapter Seven discusses the kind of effect seen in a correlation integral 

when the self-similarity is discrete, as it is in most strange sets. We note for 

instance that the standard Cantor set exhibits self-similarity only on scales that 

are factors of 3 from each other. 

A few basic geometrical properties of the correlation integral are 

introduced in Chapter Three. 

1.5.2.2 Dynamical effects 

Dynamical effects arise from the nonrandomness in the way that points 

are placed on an attractor. Points on a highly chaotic attractor are distributed 

in a way that, although strictly deterministic, approximates randomness. When 

this approximation is poor, the performance of the correlation algorithm is 
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compromised. 

Chapter Eight describes the problems involved with using the correlation 

algorithm to measure the dimension of quasiperiodic attractors. Basically, since 

quasiperiodic attractors are not chaotic, points will be distributed too uniformly, 

and the correlation integral will not be able to sample the full range of scales 

that would be available to it if the points were distributed more randomly. 

Chapter Nine considers systems with autocorrelation (which is seen both 

in nonwhite noise and in deterministic chaos). The problem is that although 

pairs of points well separated in time act as though statistically independent, 

pairs that are temporally near to each other tend not to be independent, and the 

statistical assumptions that underly the correlation integral fail. We point out 

specifically what this does to the correlation integral and we suggest a remedy. 

1.5.2.3 Statistical effects 

Many of the problems that occur in attempting to measure the dimension 

of a strange attractor from a set of discrete points on the attractor are 

problems that fade as the number of points on the attractor is increased. In 

practical situations, of course, only a finite number N of points are available. 

Chapter Ten is devoted to the issue of statistical error due to a finite 

number of points. 

Chapter Eleven introduces a specific model in which the interaction of 

finite N and the edge effect are investigated as a function of attractor 

dimension. We find that the number of points needed scales exponentially with 

the dimension of the attractor. Chapter Eleven also provides a strategy for 
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estimating the optimal scaling range of the correlation integral. 

Chapter Four outlines the fundamental assumptions and ensembles that 

underlie the statistical analysis of motion on a strange attractor. 

1.5.3 Application 

Chapter Twelve is concerned with schemes to speed up computation of the 

correlation integral, by invoking either a faster (parallel) computer or a faster 

algorithm. In particular, our "box-assisted correlation" algorithm can compute 

the full range of C(N,r) in O(N log N) time, a significant improvement over the 

usual O(N2
) method. 

Linear methods for the analysis of time series are introduced in Chapter 

Thirteen. We discuss what contribution these methods may make to the 

understanding of nonlinear systems, arguing that their (albeit limited) power has 

not been fully exploited in this regard. 

In Chapter Fourteen, we finally apply these methods to particular 

physical systems. No dimension is observed for time series obtained from 

tokamak plasma machines. We conclude that tokamak turbulence cannot be 

characterized by low-dimensional chaos. 
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dx 
dt -
dy 
dt == -xz+rx-y 

-to 10 

dz dt = xy-bz 

Figure 1.1. Typical trajectory of the Lorenz equations, projected onto the x-y 

axis. Here, cr=lO, b=S/3, and r=28. 
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X - (x,y): xn+l = l-ax~ +Y n 

Yn+l - bxn 

Figure 1.2 Typical trajectory of the Henon map. The initial point (0,0} and 

first two iterates are labeled. The first 900 iterates are shown. 
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(a) 

(b) 

·""· -

Figure 1.3 Two simple attractors: (a) ;limit point, (b) limit cycle. Note in both 

cases that a volume element shrinks as it evolves forward in time. 
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Figure 1.4 Trajectory (a) diverges from the fiducial trajectory (•)J while 

trajectory (b) converaes toward (•). Since the converaence of (b) is .. faster" 

than the divergence of (a), the volume decreases in time. A typical trajectory, 

such as (c), contains nonzero components in the directions of (a) and of (b), and 

u lt imately diverges from (•). 
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CHAPTER TWO 

2. OVERVIEW OF DIMENSION ALGORITHMS 

The dimension of a set tells how many real numbers are needed to specify 

a point on that set. For instance, the position of a point on a line can be 

labeled by a single real number; the position on a plane, by two Cartesian 

coordinates; and the position in ordinary (three-dimensional) space is specified by 

three coordinates. For sets more complicated than lines, surfaces, and volumes, 

however, this informal definition of dimension needs to be extended. 

One way to extend this definition is to determine not how many real 

numbers but how many bits of information are needed to specify a point to an 

accuracy of €. On a line segment of unit length, k bits specify the position of a 

point to within E =2-k. For a unit square, 2k bits are needed to achieve the 

same accuracy (k bits for each of the two coordinates specified). And similarly, 

3k bits are needed for a three-dimensional cube. In general, S(E) = -d log2E bits 

of information specify the position on a unit d dimensional hypercube to an 

accuracy of E. This leads to a natural definition for the "information 

dimension" of a set; it is given by the small E limit of - S(E)/log2E, where S(d is 
' 

the information (in bits) needed to specify a point on the set to an accuracy E. 

In this extended definition (and we will discuss other definitions as well) 

the dimension need not be an integer; some sets can have fractional dimension. 

Among these are Cantor sets of various types, the fractal sets introduced by 

Mandlebrot [1], and the strange attractors seen in dynamical systems. It is the 

last of these that motivates the study in this thesis of practical means for 



- 36-

estimating dimension from a finite sample of points on the attractor. 

Hausdorff [2] introduced the first rigorous definition of dimension, though 

it is a definition that does not immediately lend itself to numerical estimates. 

Other definitions have been developed that are more straightforwardly adaptable 

to numerical estimation from a sample of discrete points. 

There are two types of dimension algorithms [3], those based on box-

counting schemes and those based on distances between pairs of points. The 

box-counting algorithms are not widely used, having been superseded by the 

more efficient pairwise distance algorithms. 

The notion of box-counting, however, is very useful for introducing the 

generalized dimensions, Dq. The Hausdorff and standard box-counting algorithms 

measure 0 0, which depends only on the support of the invariant distribution 

p(x); the generalized dimensions take account of the higher moments of p(x). 

2.1 Hausdorff dimension 

We recall the definition of the Hausdorff dimension for the set .A. First, 

let CJ>(E.,.A)={B0, Bl' ... , Bk_1> be a finite partition of the set .A into disjoint sets 
k-1 

whose diamaters are less than E.. That is, Bi n Bj=0 and UBi =.A and the 
i=O 

diameters oi =diam(Bi) satisfy oi <£. Then we define a partition function 

m(.A,d) - lim sup inf L: o~ 
E. ....... o Cj>( E.,.A) i 1 

(2.1) 

We find that there exists a value DH for which m(.A,d)=O for d>DH, and 

m(.A,d)=oo for d <Dw Thus, we define the Hausdorff dimension 
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inf { d I m(.A,d)=O }. (2.2) 

2.2 Box-counting algorithm 

The Hausdorff dimension is difficult to implement numerically; a simpler 

and more direct definition is provided by the "capacity" or "box-counting 

dimension!' For most "physically interesting" invariant sets of dynamical 

systems, the Hausdorff and the box-counting dimension are the same [4]. 

Break up the embedding space Rm into a grid of boxes of size €; then 

count the number of boxes n(d that intersect the at tractor. The capacity is 

defined [5] 

do = lim -log n(€) 
€ --o log € 

(2.3) 

Given only a finite sample of N points on the attractor, we estimate n(€) with 

n(N,€), the number of boxes inside of which at least one of the sample points 

lies. Thus, n(N,€) ~n(€), and 

n(d = lim n(N,€). 
N-+oo 

(2.4) 

Combining these, we have 

d 1
. 

1
. log n(N,€) 

0 = 1m 1m • 
€ --0 N --oo log(lh) 

(2.5) 

The order of the limits is crucial. For finite N, n(N,€) is bounded by N (there 
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can be no more nonempty boxes than there are things to put in the boxes), and 

t=: -0 gives a dimension of zero. 

In a formal sense, this is not surprising: a finite set of points does have 

dimension zero. But from a practical point of view, this is meaningless: what 

we are after is an estimate of the dimension of the full set, of which the N 

points are but a representative sample. 

Equation (2.3) implies a scaling of n(£) with £, namely, that nk)<X€ -do. 

-do 
However, we note that if n(d is of the form n(£)-n0 € , then Equation (2.3) 

converges with logarithmic slowness. 

-do 
-log n0 t=: 

lim 
t=:-0 log £ 

l
. d0 log € - log n0 _ d 

1
. log n0 = 1m - 0 - 1m 

€--+0 log € t=:-0 log € 
(2.6) 

A more practical and efficient way to observe this scaling, rather than directly 

applying Equation (2.3) with small €, is to plot log n(€) versus log t=:. The slope 

of this curve will give -d0 for small €. See Figure 2.1. We are essentially 

invoking l'Hopital's rule, and taking instead of the limit in Equation (2.3) the 

limit of the derivatives 

d[log n(£)] 
d[log £] • 

(2.7) 

If this limit exists [6], then l'Hopital's rule assures that it has the correct value. 

Furthermore, the logarithmic slowness in Equation (2.6) is corrected for, and 

convergence is much quicker. 

There is, it turns out, a more serious limitation. For many attractors, the 
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limit in Equation (2.4) converges very slowly. And although schemes have been 

devised [7] to accelerate the convergence (essentially to extrapolate the limit 

from a sequence of n(N,€) for increasing N), the box-counting method is generally 

regarded as impractical for numerical computation [8] . 

2.3 Generalized dimensions 

Acknowledging the limited practical value of the box-counting algorithm, 

we do note its easy adaptability to generalized dimension. The Hausdorff 

dimension and the standard box-counting dimension are purely geometrical 

quantities, describing only the attracting set itself (the support, or in a sense, 

the "zeroth moment" of the invariant measure). They do not account for 

information in the invariant measure, which tells how often or for how long 

certain regions of the attractor are visited. The generalized dimension was 

introduced for nonlinear dynamics by Hentschel and Procaccia [9], though it is 

based on an entropy formalism developed by Renyi [10], which makes use of the 

higher moments of the invariant measure. 

To see how these generalized dimensions work, again divide the embedding 

space into boxes of size €. For every box assign a value pi associated with 

t h e fraction of the attractor in the ith box, 

P· 1 

t.t(box i) 

t.tCA) ,u(~) I p(X) dX. 

box i 

(2.8) 

Recall that ,u(.A) = 1, so the denominators in Equation (2.8) are not really 

necessary. Now, define 
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(2.9) 

and note that q =0 leads to the definition of the usual box-counting dimension . 

q may range from -oo to +oo, but a dimension of much theoretical interest is 

the information dimension, which is given by q =1. 

lim Dq 
q --+1 

1: P· log P· S( ) 
lim 1 1 = lim - E 

E ..... Q log E E ..... Q log E' 
(2.10) 

where S(d is the information content in the partition {pi}. Because, as we will 

later see, it lends itself so well to numerical estimation, we are also interested in 

D2, the correlation dimension, which is often denoted v. 

There has been much recent interest in determining Dq for all q, though a 

reparameterization as a "spectrum of scaling indices," f(a), is usually introduced 

[11]. Here, 

a(q) (2.11) 

and 

f(q) (2.12) 

f(a) is usually interpreted as the fractal dimension CD0) of points on the 

attractor whose pointwise dimension (§2.4.1) is a [11]. Estimation of an f(a) 

curve may be done numerically, and has been even for experimental data [12], but 

this is difficult except at low dimension. Seminumerical results are promising 

[13] but these involve knowledge of the map that generates the strange 
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attractor. 

2.4 Pairwise distance algorithms 

A more successful class of numerical algorithms for estimating dimension 

is based on the principle of interpoint distances. By computing distances 

between pairs of points on the attractor, we avoid the deliberate "t::-fuzzying" of 

the box-counting algorithms. We obtain the behavior for the entire range of t:: 

at once, instead of having to recalculate n(N,t::) for each new t::. 

2.4.1 Pointwise dimension 

The most straightforward application is to the pointwise dimension. We 

define the dimension at a point X by 

dx = lim 
r -+0 

log J.L<Bx(r)) 

log r 
(2.13) 

where Bx(r) is a "ball" of radius r centered at the point X, and ,.u(Bx(r)) is its 

measure. As usual, 

J.L(Bx(r)) = j p(X) dX, (2.14) 

Bx(r) 

where p(X) is the invariant distribution, or "density." Note that this is a very 
d 

intuitive definition. For it says the "mass" of a ball of radius r scales like r X 

For isolated points, straight lines, and plane surfaces, this corresponds to 

dimensions of 0, 1, and 2, respectively. See Figure 2.2. For a solid, the 

dimension is clearly and properly 3. 
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Computing the dimension at a specific point is numerically very 

straightforward. Simply compute the distance between that point and every 

other sample point. Then estimate 

# of distances less than r 
total # of distances 

That is, with a sample of N points {X0,Xl' . . . ,XN-1} with Xi £.A, 

From this, the pointwise dimension at Xi is 

d. - dx . - lim lim 1 
1 r ..... o N ..... oo 

(2.15) 

(2.16) 

(2.17) 

Again, the order of limits is important. N is only as large as the number of 

points available and r can be only as small as the distance to the nearest point. 

As in the case of the box-counting dimension, Equation (2.17) is not directly 

evaluated; instead, a slope is sought in the small r region of a log-log plot of 

Ci(N,r) versus r. 

The pointwise dimension is the same for almost every point on the 

attractor of a generic dynamical map, and it is the information dimension 0 1 [14]. 

The "average pointwise dimension" is found by averaging the pointwise dimension 

at each point (or at a small set of Nref reference points) of the sample. 

<d -> - 1 L d -
1 N . 1 

1 

(2.18) 
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(or 

~~dj, 
ref J 

(2.19) 

where j indexes the reference points). See §10.3 for further discussion of the 

average pointwise dimension. 

2.4.2 Correlation integral 

Finally, we introduce the correlation integral [15,16]. This is obtained by 

a more direct kind of averaging, and it is statistically very powerful, since the 

averaging is done before the taking of logarithms or limits or slopes. We define 

C(N,r) - < Ci(N,r) > (2.20) 

Thus, we consider all distances between every pair of points. A slight variation, 

suggested in Chapter Nine, eliminates from consideration those pairs of points 

for which i-j ~W for some W::?: 1. That is, 

Note that W =1 gives the standard correlation integral (2. ). 

The correlation dimension is given by [17] 

lim lim 
r-.0 N -.oo 

log C(N,r) 
log r 

(2 .21) 

(2 .22) 

though, as in the case of the box-counting definition, what we actually do is plot 
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log C(N,r) versus log r for some large but fixed N, and seek a slope in the small 

r regime. 

Though in principle it is the small r limit that we seek, our interest in 

the dimension stems from the scaling properties of the strange at tractor. While 

we are seeking a slope in the small r regime, what we are really looking for is a 

wide regime in r over which C(N,r)cx:rv. Further, the more accurate estimates of 

JJ will be over the wider range. 

The power of the correlation integral is that it probes the structure of 

the attractor down to very small distances, down to the distance between the 

nearest pair of points. The range over which C(N,r) varies is from 1 to 2/N2
• 

This O(N2
) dynamic range is unique to the correlation dimension. In both the 

average pointwise dimension above, and the Termonia-Alexandrowicz dimension 

that we will discuss later, the range of distances over which slopes are sought is 

typically O(N). 

2.4.2.1 Takens' maximum likelihood estimate 

Rather than trying to find the best-fit slope on a log-log plot of the 

correlation integral C(N,r) versus r, Takens [18] provides a direct estimate of v 

from a list of all the D distances {r0, rl' r 2, . .. , r 0 _1} that are less than some 

fixed r 0 • Using the method of maximum likelihood, and assuming that the 

distances are independently chosen from a probability density P(r) cx:rv-1, Takens 

obtains an estimator for JJ 

1./ 
-1 (2.23) 
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which has an expected error 

(2.24) 

Takens further shows that this estimator is optimal in that its expected error is 

the smallest of all estimators. 

We note that the number of distances less than r 0 is D=N2C(N,r0 )/2, 

which for fixed r 0 , scales as N2
; so Takens' estimate has an error bar of 

(2.25) 

which scales as liN for fixed r 0 • 

There are a few notable disadvantages in using Takens' method. What 

seems at first an advantage is that it provides a direct output, a s ingle 

numerical estimate (not a bulky log-log plot) for the dimension. This is fine if 

all is going well, and a single number is all that is desired. But that bulky log-

log plot has powerful diagnostic value. It tells the experimentalist whether or 

not the scaling of C(N,r) with r truly is proportional to r v . If r 0 has been 

inappropriately chosen, or if there are any second-order effects, these can be 

seen on the C(N,r) plot. 

An apparent disadvantage of Takens' method is computational. It requires 

ev a luating the logarithm of every distance less than r 0 • The standard method 
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merely bins those distances into a histogram. As it turns out, however, we can 

apply Takens' analysis directly to the correlation integral 

1.1 ro I dC~~,r) ln(r / ro) 

0 

C(N,r0 ) 

ro I C(~,r) dr 

0 

(2 .26) 

A very good approximation to this formula, useful in the case of discretized 

data, with r - (k + P€ and r 0 - K€ (see §5.2), is ~iven by 

1.1 (2.27) 

There are no logarithms in this expression, and more to the point: this is an 

expression that is evaluated after the usual binning algorithm has provided us 

with a discretized C(N,r). Getting C(N,r) in the first place is the computationally 

expensive part; the analysis in Equation (2 .27) is relatively cheap. Here, the 

discretization error It--vi will be very small; in fact, it is 0(€2
). 

Finally, we note that Takens' estimate can be applied to Equation (2.17) 

for computation of the pointwise dimension as well. 

2.4.3 Nearest neighbors 

Having introduced the correlation algorithm, we now review a number of 

alternative distance algorithms for computing dimension. We begin with an 

algorithm proposed by Termonia and Alexandrowicz [20]. For a specific point 

X c..A., let r x(n) denote the distance to the nth nearest neighbor of X. Whereas 
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before we spoke of n scaling as rx(n)d, with d as the dimension of the set, here 

we speak of rx(n) scaling as n11d Let <rx(n)> be the average taken over X. 

Then a log-log plot of <rx(n)> versus n can be made, and the slope provides a 

value for 1/d. 

The dimension d that the Termonia-Alexandrowicz algorithm measures 

appears to be the "fractal" dimension 0 0, though Grassberger has provided some 

caveats [21]. 

Although it lacks the O(N2
) range that the correlation integral provides, 

our own numerical experiments suggest that the Termonia-Alexandrowicz 

algorithm is less sensitive to singularities and to "lacunarity" (see Chapters Six 

and Seven) than is the correlation integral, and for this reason we consider it a 

promising candidate for further development . 

2.4.4 Recurrence time algorithm 

Badii and Politi [22] have generalized the notion of Termonia and 

Alexandrowicz and consider the statistical properties of the distribution P(o,n) of 

nearest neighbor distances o among n randomly chosen points. These are related 

to the generalized dimensions discussed above and their numerical computation is 

discussed in [22]. 

2.4.5 Periodic orbits algorithm 

Recently, it has been- suggested [23] that the fractal invariant measure of 

a chaotic strange attractor can be systematically approximated by sets of 

unstable periodic orbits that can be extracted from the time series. The 
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algorithm permits surprisingly precise estimates of the Hausdorff dimension, and 

there is speculation that the generalized dimensions may be similarly computed. 
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Figure 2.1 (a) On a plot of log n(£) versus log £, the negative slope is the box­

countin& dimension d0 • As the box size ~ approaches the size of the attractor, 

the number n(£) of boxes needed to cover the attractor approaches one. (b) The 

effect of finite N is to restrict the scalin& ran&e over which a slope of d0 is 

observed, since n(N,£) -N as £-0. 
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Figure 2.2 Dimension as a scaling of "mass" with radius. Here, mass is taken as 

the number of points inside the circle or sphere of radius r. (a) d =0 is a point; 

mass is i~dependent of radius; (b) d =1 is a line; mass varies linearly with radius; 

(c) d-2 is a plane; mass varies quadratically with radius. 
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CHAPTER THREE 

3. GEOMETRICAL PROPERTIES OF THE CORRELATION INTEGRAL 

The correlation integral is the prime object of study in the remaining 

chapters. Before we begin the detailed analysis of the limitations and potential 

pitfalls in the use of the correlation integral, we relate in this chapter three 

crucial properties of the correlation integral and the correlation dimension. 

We classify the properties in this chapter as "geometrical," since they are 

concerned only with the attractor and its invariant measure, not with the 

dynamical process through which points on the attractor are sampled. In 

Chapter Four, we will discuss the statistical issues involved with sampling an 

invariant measure with a discrete set of points. 

3.1 Correlation dimension is norm-independent 

Finding the correlation dimension from a set of discrete points in Rm 

requires computing distances between pairs of points. There are a variety of 

ways to define what we mean by distance. Mathematically, the distance function 

d:Rm X Rm -+R need satisfy only these minimal requirements: 

d(x,y)- 0 ~ x =y; 

d(x,y) = d(y,x); 

d(x,y) + d(y,z) z d(x,z). 

(3.1) 

(3.2) 

(3.3) 

However, we will restrict our attention to a small class of distance functions 
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called Lp norms . For X&Rm, write in coordinate notation x = Cx0, Xp ... , xm_1). 

Then the distance function, dp(x,y), for the Lp norm is given by 

(3.4) 

Three specific cases will be considered, the "taxicab" norm, the usual Euclidean 

norm, and the maximum norm, corresponding to p =1, 2, and oo, respectively. 

In the L1 or "taxicab" norm, the distance between two points in Rm is 

given by the sum of the distances between each of the coordinates. For a 

taxicab to go three blocks north and four blocks west requires seven blocks of 

travel, as 7=3+4. 

L2, the Euclidean norm, is the distance "as the crow flies ." Three blocks 

north and four blocks west is a distance of only five blocks, as 5 =~ 32 +42 [1]. 

For the L00 norm, we have 

d00(x,y) = lim 
p-.oo 

(3.5) 

Three blocks north and four blocks west amounts in this norm to a distance of 

four blocks, as 4 =max(3,4). 

There are a number of advantages to using the L00 norm. For one, i t is 

efficient to compute, certainly more efficient than the Euclidean norm, which 

requires squares and square roots. Also, the size of the attractor does not grow 

as the embedding dimension is increased. Another advantage of L00 has to do 

with computation of a diagnostic called the K2 entropy [2]. The primary 
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advantage of the L2 norm is that it does not require any preferred directions; 

distances are invariant to changes in the orientation of the axes. 

Despite the various practical advantages and disadvantages of the 

different norms, it is an important fact that the correlation dimension itself is 

norm-independent. We can see this by looking at interiors of "circles" in the 

various norms. A circle of radius r is defined as the locus of points whose 

distance from the center is r. Figure 3.1 shows what these circles look like in 

the Ll' L2, and L00 norms. We have a diamond, a circle, and a square, 

respectively. Recalling the definition of C(r) as the fraction of distances less 

than r, we can see immediately that 

(3.6) 

In two dimensions, it is easy to see that a diamond ("Ll circle") of radius r will 

completely enclose a square ("Loo circle") of radius r/2; in m dimensions the 

square should be of radius r/m to be just enclosed by the diamond of radius r . 

That is, 

(3.7) 

From which, 

. log CL
00

(r/m) 
hm ~ 

r ..... Q log r 

. log Cu(r) 
l1m ~ 
r-0 log r 

. log CL
00

(r) 
hm 

1 
. 

r ..... o og r 
(3.8) 

But 



. log CL
00

(r/m) 
hm 

r ..... a log r 
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. log CL
00

(r') 
hm = lim 

r' ..... a log mr' r' ..... a 
log CL

00
(r') 

log m + log r' 

. log CL
00

(r') 
hm 

r' ..... a log r' 

. log CL
00

(r) 
hm 

1 
, 

r-+a og r 
(3.9) 

so the inequality in Equation (3.7) is in fact a strict equality, and in particular, 

(3.1a) 

we similarly have vLl =vL2. Thus, we can write 

(3 .11) 

Dimension is norm-independent. 

3.2 Dimensions of direct products add 

We will show that this is true for an aligned direct product in the L00 

norm, and will use the result above to assert that it is true as well for the L1 

and L2 norms. 

Let .A be an attractor in Rma, and let~ be an attractor in Rmb. 

m +m 
Consider the direct product .A X ':B C R a b. A point x in the set 

.A X ':B corresponds to a point Xa £.A, and xb £':8, where we usually write x =(x8 ,xb). 

The distance between the pair x and y is given in the L00 norm, by 
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(3.12) 

Thus, 

chosen at random, Xa and xb are entirely independent of each other; thus, 

P( lx -yl ~ r) (3.13) 

That is, 

Ca(r)Cb(r) (3.14) 

and 

. log Cab(r) log Ca(r)Cb(r) log Ca(r) + log Cb(r) 
v = hm = lim = lim 

ab r -o log r r --.0 log r r -o log r 

(3.15) 

We have shown that dimensions add in the case of aligned direct products 

in the L00 norm. We have seen above, however, that dimension is independent of 

norm, so we can say v ab =Va +vb in the L1 and L2 norms as well. Further, since 

L2 is a rotationally invariant norm, we see that v ab =Va +vb does not depend on 

the alignment of the axes. (Indeed, that dimension should not depend on 

alignment of the axes satisfies a very primal intuition.) 

3.3 A geometric definition of the correlation integral 

In [3], the correlation integral C(r) is defined as the N --.oo limit of the 
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function 

C(N,r) (3.16) 

where x0,x1, . .. is an orbit that is dense over the attractor. In this section, we 

will provide an expression for C(r) directly in terms of the invariant measure JJ. 

of the attractor. 

First, rewrite Equation (3.16) as 

C(r) l . 1 
= 1m -

N-oo N2 
.(3.17) 

which is clearly equivalent for N -.oo. Next use the ergodic property, see 

Equation (1.17), 

1 lim N­
N-oo 

to give 

I H{r - 1xi -xU P<x> dX 

.A 

We can again invoke the ergodic property, 

C(r) I I H(r - IY -XI) p(X) p(Y) dY dX. 

.A ..A 

(3.18) 

(3.19) 

(3.20) 

An equivalent form "measures" the subset of .A X ..A for which the condition 



IX-Y I ~r holds . 

C(r) = -! p(X) p(Y) dX dY 

.A X .A 
IX-YI~r 
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(3.21) 

We will find the previous two expressions useful in modeling the geometric 

effects that are discussed in Chapters Five, Six, and Seven. 

3.4 Notes and References 

[1] The geometrical significance of this arithmetic identity is credited to 

Pythagoras, d. 497 B.C. 

[2] Peter Grassberger and Itamar Procaccia. "Estimation of the Kolmogorov 

entropy from a chaotic signal," Phys. Rev. A 28 (1983) 2591; also, Aviad Cohen 

and Itamar Procaccia. "Computing the Kolmogorov entropy from time series of 

dissipative and conservative dynamical systems," Phys. Rev. A 31 (1985) 1872. 

[3] Peter Grassberger and !tamar Procaccia. "Measuring the strangeness of 

strange attractors," Physica 9D (1983) 189. 
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(a) 

r 

(b) 

(c) r 

r 

Figure 3.1 "Circles" of radius r in various Lp norms. (a) Ll' a diamond; (b) L2, 

a circle; (c) L00, a box. 
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CHAPTER FOUR 

4. STATISTICAL ANALYSIS OF CHATOIC MOTION 

We find the study of nonlinear systems amenable to statistical analysis in 

two distinct ways [1]. First, from an ensemble (E0) of dynamical orbits on the 

attractor, we can evaluate the performance of algorithms that compute dimension 

from a finite set of points. Although the dimension of an attractor is defined in 

terms of a limit as N --oo, our algorithms estimate the dimension from a finite set 

of N points on the attractor, and the value of a given estimate will depend on 

which N points are taken. We are interested in the accuracy of these finite N 

estimates (that is, how near a typical finite N estimate is to the N -+oo limit) and 

in their precision (that is, how near finite N estimates are to each other). 

Second, we can approximate chaotic orbits by stochastic orbits. This 

second approach is equivalent to replacing the dynamical ensemble E0 by larger 

ensembles (E1 and E2), which still capture the essential (geometric) features of 

the attractor. The advantage of these approximate ensembles is that they allow 

us to make theoretical predictions about an algorithm's behavior in certain model 

situations. 

4.1 Honest ensemble: E0 

In practice, a computation is based on a sample of N points on the 

attractor, and the N points are provided by an experiment (be it physical or 

numerical). A repeat of the experiment (with different initial conditions) will 

provide a different sample of N points, and - it follows a different 
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computational result. 

The first ensemble, E0, is the "honest" ensemble and is defined in terms 

of the true dynamics on the attractor. We begin with an ensemble of Initial 

conditions, points X0 on the attractor ..A weighted by the natural invariant 

measure f.J.. To each X0 , we can assign an orbit of length N: X0 , f(X0 ), f 2(X0 ), 

... , JN-l(X0 ). This orbit is a typical member of the ensemble E0(N). 

In practice, we are given not an ensemble but a single finite orbit (or at 

most a few orbits, from each repetition of the experiment). From this finite 

orbit, we attempt to estimate quantities (e.g., dimension) that characterize the 

attractor. Suppose F is such a quantity, and ff is the function (or algorithm) 

that estimates F from the finite time series. Then 

(4.1) 

defines a particular estimate. It is often the case that we do not have X, the 

position in the original phase space, but V=1rm(X), its projection into the 

reconstructed space Rm (see §1.4.1). Then, 

We define the accuracy of our algorithm 3' by IF(N)-F~ where F(N) is the 

(ensemble) average finite N estimate 

F(N) - ( F(N;X0 ) ) - J p(X) F(N;X) dX, 

..A 

(4.4) 
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and F is the quantity being estimated; of course, we expect 

lim F(N) 
N-+oo 

F. (4.5) 

The precision of the algorithm is defined by the spread in individual finite N 

estimates. 

(4.6) 

We want the precision to improve as the number of points is increased, and we 

express this with the condition 

lim CT(N) 
N-+oo 

0. (4.7) 

This is an important condition because it tells us that in the N -oo limit, the 

algorithm almost always yields the correct value; that is, 

F (4.8) 

for all but a measure zero set of X0 [2]. We note that Equation (4.8) is stronger 

than the usual ergodic property, which holds only for averages of a quantity 

c;:"(X); that is, for functions tJ of the form 

~(Xo) +· .. +~(XN-1) 

N 
(4.9) 
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However, we view Equation (4.8) not as a property of the motion's ergodicity, 

but instead as a property of the estimator algorithm ff. 

Our particular interest is with algorithms for estimating attractor 

dimension from a finite time series. The estimator for the correlation integral is 

(see §2.4.2) 

(4.10) 

And Takens' estimator [3] is given by 

(4.11) 

4.2 Approximate ensembles: El' E2 

As an approximation to the honest ensemble E0, we introduce El' which is 

based on the natural invariant measure but does not use the dynamical 

information that describes the motion of an orbit on the attractor. A typical 

member of E1(N) is the orbit x0,Xl' ... XN_1, where now each Xi is chosen 

independently from the ensemble of initial conditions. The constraint 

Xi+1 =f(Xi) that was present in E0 has been lifted. Indeed, we can think of E1 

as the honest ensemble associated with the stochastic dynamical system f* 

where j* is defined as the stochastic map which sends state X to any state in 

the original ensemble of initial conditions (according to the usual weighting by 

the invariant measure JJ.), independently of X. For highly chaotic systems 
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especially, the approximation of f by f* can be very useful. 

From N points on the attractor, the correlation integral considers the 

distances between each of the N(N -U/2 pairs. For instance, if N=4, the 

distances associated with a typical member of E 1(4) is the set {r0 10 r 02, r 03, r 12, 

r 13, r 23}, where rij =I Xi -X j~ with {X0,Xl'X2,X3l £E1(4). We note that the 

individual distances associated with a member of E 1 are not independent. We 

have, for instance, that they are constrained by the triangle inequality 

r · . ~r .k+rk .. lJ 1 J 

Incorporating these constraints into the statistics may be difficult, so we 

further approximate E1 with another ensemble CE2) in which these constraints 

are neglected. 

E2 is something of a specialized ensemble; it is applicable only to 

estimator functions that are based on pairwise distances 

(4.12) 

such as correlation dimension algorithms; see Equations (4.10, 4.11). 

Conceptually, E2(N) is constructed by taking N(N -1)/2 pairs of points, all 

points independent of each other, and dropping them onto the attractor. For 

each pair a distance is measured. For example, with N=4, six pairs or a total of 

twelve points are dropped (where only four points would be dropped in the E1 

ensemble). Distances in the E2 ensemble are independent of each other, and a 

typical member of the ensemble E2(4) produces distances {r0 , r 1, r 2 , r 3 , r "'' r 5}, 

where ri =IXia -Xibl with Xia and Xib the two points in the ith pair. 
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A typical member of E0(N) involves a single choice of initial condition. 

Choosing the initial condition, we have chosen the entire orbit, and the entire 

set of N(N-1)/2 distances rij=IXi -Xjl· A typical member of E1(N), on the other 

hand, involves N choices x0, ... , XN_1; and from these the N(N -1)/2 distances 

follow. There are N(N -1)12 distances between all the pairs of points in Eo and 

E1; but those distances are constrained by various triangle inequalities among 

the distances. In E2(N), we create an ensemble of N(N -1)/2 Independent 

distances. Each distance is chosen by taking a pair of points Xia and Xib 

independently from the ensemble of initial conditions and computing 

ri =IXia -Xibl ; thus, there are N(N -1) choices in each member of E2(N).· We 

have E0(N) C E 1(N) C E2(N). 

Although E0 is the ensemble that correctly describes the statistics on the 

attractor, calculations based on E0 are usually intractable. Approximating Eo by 

E1 or E2 often simplifies the calculations and permits theoretical treatment of 

algorithm performance. 

Replacing deterministic orbits by stochastic orbits is on its face invalid; 

points follow one another over the attractor of a dynamical system in an 

absolutely deterministic way. Yet for systems that are very "chaotic" (bounded 

systems with very sensitive dependence on initial conditions), this process of 

dropping points independently (E1) or pairs independently (E2) nonetheless leads 

to reasonable predictions of (e.g.,) the correlation integral behavior. 

For systems that are not chaotic, or are chaotic but still have an 

appreciable time autocorrelation, the approximation of E0 by E1 can lead to 

difficulties in estimating attractor dimension. We will discuss these effects in 
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Chapters Eight and Nine. 

The further approximation of E 1 by E2, on the other hand, is hardly ever 

a problem, as the rest of this chapter will attempt to demonstrate. 

4.3 Probability distribution 

We define the probability distribution of distances for an ensemble with 

where denotes the 

probability that the ith distance is between ri and ri +dri' for i=O,l, ... ,5. Were 

we to write out the probability distributions for the ensembles E0 and E1 and 

E2, we would see different expressions. In E0 and El' the expressions are liable 

to be unwieldy in the extreme for all but the simplest cases, whereas in E2 the 

property of independence allows us to write 

(4.13) 

4.4 Distinguishing E1 and ~ 

For the rest of this chapter, we will discuss the approximation of E1 by 

E2 for a specific model. We will say nothing about the dynamics of the system, 

and in fact we will specify the attractor only by its invariant measure. 

Our real concern is with "measurable" statistical properties, specifically 

with the expectation values of relevant random variables. We will find, for 

instance, that the random variable 

C(N,r) (4.14) 
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corresponding to the correlation integral, has the same expected value in 

ensembles E 1 and E2 (also the same variance, though the third moments do not 

agree). This is a very useful fact; it justifies using the second ensemble (which 

is easier to use) in place of the first ensemble (which is the geometrically 

correct one) for analysis of the correlation integral. 

On the other hand, the random variable 

(4.15) 

has a different expectation value in E1 and E2 for finite N; however, they both 

have the same N --oo limit. It is conjectured that all "interesting" [4] random 

variables have this asymptotic equality in the two ensembles. 

4.4.1 The "wraparound" metric 

We will now prove the assertions above for a specific model. Our 

attractor is the interval [0,1) with the "wraparound" metric: this is the same as a 

c ircle of unit circumference with distance measured along the arc between the 

two points on the circumference. In this metric, the distance between x and y is 

given by 

d(x ,y ) min(jx -yl, 1 - lx -yp. (4.16) 

For pairs of points dropped randomly on the interval, distances are uniformly 

distributed between 0 and ~ · This metric is also discussed in §6.1 and §8.1. 
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4.4.2 Ensemble E1 

The E1 ensemble incorporates the physical restrictions imposed by the 

geometry of distances (such as the various triangle inequalities). On the other 

hand, the calculations in the E1 ensemble are never as s t raightforward as in the 

E2 ensemble, and in many cases some cleverness (that is, nonrigorous heuristic 

reasoning) is necessary to work through to a solution. 

First, we write down an expression for P(rol'· .. ,r(N-2)(N-1)) for the N =3 

case of the wraparound model above. We find 

2o( rot + r 12 -ro2 ) + 

2o( r ot -r12 +ro2 ) + 

2o( -rot + r 12 + ro2 ) + 

2o( rot+r t2+r o2 -1). (4.17) 

We do not have independent distances (in the sense of Equation (4.13) for the E2 

ensemble), but we do have a symmetry in the arguments (that we could not, in 

general, expect for the E0 ensemble). Here [5], we have 

(4.18) 

4.4.2.1 E 1: Correlation integral 

To do this calculation, we require the probability density given in 

Equation (4.17); this necessarily limits us to the N =3 case. The symmetry in 



- 70-

the arguments of Equation (4.18) allows us to write 

N(N - 1) ( ~ H(r -ri) ) -
2 

(H(r -r01)) 
1 

(4.19) 

Hence, 

(C(N,r)) == ( N(N2_
1

) ~ H(r -ri)) - (H(r -r01)) (4.20) 
1 

1/z r/z 1h 

= J dr01 H(r -r01) J dr02 J dr12 P(r01,r02,r12). (4.21) 

0 0 0 

Let us do the inner integral first, letting r 12 range over {0,~]. We have, for 

instance, that 

th 

J drl2 o(rol + r l2 - r o2 ) 

0 

whereas 

·r dr., 6( -r .. + r., + r, ) 

0 

{ 1 
0 

{ ~ 

if 0 s<ro2 -rol) s~ 
otherwise, 

if 0 s(rol -ro2) s~ 
otherwise. 

(4 .22) 

(4.23) 

The two integrals are exactly complementary, and their sum is identically 1. 

The other two delta functions can also be shown to be complementary. The 

inner integral of Equation (4.21) is therefore given by 

th 

J drl2 P(rouro2,rl2) 

0 

2(1 +1) 4. (4.24) 
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Thus, 

!12 112 112 I dro2 I dr12 P(r0"r02,r12) I 4 dr02 = 2, 

0 0 0 

and finally 

(C(N =3,r)) 

liz I dr01 2 H(r -r01) - 2r. 

0 

(4.25) 

(4.26) 

We remark that the expected value of the correlation integral varies linearly 

with r. This is just what we expect for a one-dimensional system. 

The calculation of (C(N =3,r)2} follows similar lines. 

= 2 4 2 ( [~ H(r-ri)]2 ) 
N (N-1) ~ 

1 

(4.27) 

= 4 ( ~ H(r-r.) H(r - r .) ). 
N2(N - 1)2 ~ 1 J 

1,J 

(4.28) 

We note that H(r-r.)H(r-r .) - H(r-r .). This, and the symmetry of the indices 
1 1 1 

allow us to reduce the equation to 

(4.29) 

where D=N(N-1)/2=3 is the total number of distances. Thus, 

2 N(N -1) 
N(N-1) ( H(r-ro1) + ( 

2 
-l)·H(r-r01)·H(r-r02) }, (4.30) 



- 72 -

where now, 

1lz 1lz liz 

J dro1H(r -r0 1) J dr02H(r -roz) J 
0 0 0 (4.31) 

But we have seen that the inner integral is equal to the constant 4, leaving two 

integrals over r 01 and r 02, which can be evaluated Independently. The result is 

We have for (C(N =3,r)2
) , finally, 

We note that this leads to an "error bar" for C(N,r) of 

e7(N = 3,r) - ~ (C(N,rf) - (C(N,r))2 2 
r(l -2r) 
N(N -1) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

~2r(l-2r) 
3 . (4.36) 

We caution that this derivation is valid only for N =3. Even at N=4, the 

algebra (all those delta functions!) becomes difficult to manage. Nonetheless, 

there is still a high order of symmetry in the distances; as long as all but the 
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outer two integrals (in the N >3 equivalent of Equations (4.21, 4.31)) can be 

shown to be constants independent of r, then the results for (C(N,r)) and (C(N,r)2
) 

should hold for all N. We will do the general N calculation in the E2 ensemble. 

4.4.2.2 E1: Shortest distance 

We will attempt to calculate (r min) for arbitrary N in the E1 ensemble, 

apologizing in advance for any obscurity in the derivation. The fact is, E 1 is a 

difficult ensemble under which to perform these calculations. 

Begin by considering the probability PCrm;n>r) [6]. Drop the first point 

anywhere on the interval. Since we are using the wraparound metric, we can 

assume without loss of generality that the first point specifies the origin 0. 

The remaining N -1 points must be dropped so that the N intervals between 

neighboring points are all greater than r. This leaves a target area of 1-Nr 

that each of the N -1 points must land on [7]. Thus, 

(1-Nr)N-1, (4.37) 

1 - (1-Nr)N-1, and the probability density is 

and 

N(N -1) [1 -Nrf-2, 

liN 

N(N -1) J r · [1-Nr]N-2 dr 

0 

1 
N2. 

(4.38) 

(4.39) 

That (r m•n) =0(1/N2
) is an important property. It is this that allows the 
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correlation algorithm to "see" to such small scales . Since (rma.x) =0(1), we have a 

range in distances of order N2
• We emphasize that this O(N2

) result depends 

crucially on our assumption that we are in the E1 ensemble. We still observe 

(r m•n) =0(1/N2
) with numerical simulations of chaotic at tractors (in the honest 

ensemble E0), though usually with a different (larger) coefficient. For 

nonchaotic motion, however, as we will see in Chapter Eight, we have 

(r m.n> =0(1/N) and the algorithm does not probe so deeply to such small scales. 

4.4.3 Ensemble E2 

Calculating probabilities is much easier with the E2 ensemble; in fact, we 

will be able to do the calculations in this section for arbitrary N. We will 

estimate (C(N,r)), ([C(N,r)f), and (rmin>· Since the D-N(N -1)/2 distances are 

independent, we can write 

(4.40) 

4.4.3.1 ~: Correlation integral 

We compute (C(N,r)) and (C(N,rf) in the E2 ensemble. We write 

(4.41) 

(4.42) 

Symmetry of the arguments r0, . .. r 0 _1 implies that each term of the summation is 

equal; thus, 
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Here, we use independence of the probability distribution to write 

1h 1h liz 

(C(N,r)) = I dr0 H(r -r0) P(r0 ) J dr1 P(r1) • · · I dr0 _1 PCr0 _1) 

0 0 0 
th 

= I dr0 H(r -r0) P(r0 ), 

0 

using J dri P(ri) = 1 for i ~1. Finally, we use P(r0 )-2, and get 

(C(N,r)) = 2r 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

for r ~~. and C(N,r) =1 for r ~~· We remark that the ensemble average of C(N,r) 

is independent of N. Thus, 

(C(N,r)) = lim C(N,r) = C(r), 
N~oo 

and we say that C(N,r;X0 ) is an "accurate" estimate (see Equations (4.4, 4.5)) in 

the E2 ensemble. 

To calculate the precision of the estimate, we first calculate (C(N,r)2
) . 

Write 
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2 N(N -1) 
N(N -1) ( H(r -rol) + ( 2 -1) ·H(r -r01) ·H(r -ro2) ). (4.48) 

We have from Equations (4.46, 4.47) above that 

(H(r -r0 )) = 2r, 

and independence of the distances allows us to write 

Substituting these into Equation (4.48), 

so, following Equations (4.33-4.36), we have 

a(N,r) 2 rC1-2r) 
N(N -1) ' 

(4.49) 

(4.50) 

(4.51) . 

(4.52) 

which is the same result as in the E 1 ensemble (cf. Equation (4.36)). We note 

that for fixed r, a(N,r) -0 as N -oo, and in particular that the precision is 

0(1/N). 

As an aside we note that this agreement between E1 and E2 holds only for 

the first and second moments of the random variable for correlation integral. It 

can be shown that 
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for all N in the E2 ensemble (4.53) 

and 

3r2 for N =3 in the E1 ensemble. (4.54) 

There is a noticeable disagreement in expectation values of the third moment for 

the N=3 case. We do not know if this discrepancy holds for larger N; the 

algebra even at N =4 becomes very unwieldy. Our conjecture, though, is that 

the discrepancy vanishes in the N -oo limit. 

4.4.3.2 E:2: Shortest distance 

Let F i(r) denote the probability that ri ~r; for r ~~. this probability is 

given by Fi(r)=2r. Further, we have P(r) = ~~·so Pi(r)=2 and 

(4.55) 

Now, let Fm;n(r) denote the probability that rmin~r. We note that 

F mon(r) = P(rm;n>r) (4.56) 

1 - P(rmon>r) (4.57) 

1 - P(r0 >r and r 1 >r and ·· · and r 0 _1 >r) (4.58) 

1 - (P(ri >d]
0 (4.59) 

1 (1-P(ri ~r)JD (4.60) 

1 [1-2rf. (4.61) 

Thus, 

P m•n(r) dFm•n [ JD-1 (4.62) =dr =2Dl-2r , 
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1 
2(0+1) 
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lh 

20 J r[1 -2r]0 -1 

0 

1 

(4.63) 

(4 .64) 

a result in disagreement with Equation (4 .39) for the E 1 ensemble. We note, 

however, that the leading 1/N2 behavior agrees. For large N, the ensembles act 

almost as though they were identical. 

Intuition and example support the general conjecture that the asymptotic 

N -+oo behavior of relevant random variables will be the same in the E 1 and E2 

ensembles. Most of the analysis in the chapters that follow will be based on the 

E2 ensemble. 

4.5 Notes and References 

[1] A third way is suggested in §13.6, in which a "purely nonlinear" component 

of the motion is replaced by white noise of the same amplitude. 

(2] For example, if X0 £.A is an unstable fixed point of the ·motion, then the 

orbit X0 ,J(X0 ),!2(X0 ), . .. will fail to sample the full at tractor and it is likely that 

[3] Floris Takens. "On the numerical determination of the dimension of an 

attractor," in Dynamical Systems and Bifurcati ons, Groningen, 1984, Vol. 

1125 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1985). 
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[4] It Is possible to contrive exceptions: one that comes to mind is the 

expression N3 r mm -N, which has, in the N-co limit, an expectation value of one 

in E1(N) and zero in E2(N). 

[51 The symmetry over all permutations of the arguments is valid only for 

N =3. In general, we expect a symmetry that allows N! equal rearrangements of 

the distances (corresponding to the N! allowable orderings of the N points); 

however, t}:lere are N(N -1)/2 distances or [N(N -1)/2]! possible permutations of 

the distance arguments for general N. Thus, it is not generally true that all 

permutations of the arguments are allowed for N>3. 

[6] The notation P(X) is the probability that statement X is true; we hope that 

this is not confused with the notation P(r), which is the probability density 

defined in §4.3. 

[7] This is just the kind of "nonrigorous heuristic reasoning" we spoke of. We 

do point out that the solution (r mm> =11N2 was verified numerically to an 

accuracy of a few percent for N=3,4,5,6, and 7. 
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CHAPTER FIVE 

5. NOISE AND DISCRETIZATION 

Geometric effects arise from the lack of exact self -similarity on all 

scales. If an attractor is bounded, for instance, then the self -similarity must 

fail at large scales (these effects are discussed in Chapter Six). This chapter 

discusses the smallest scales and how they are affected by noise in the signal or 

by the digital measurement of the signal (so that a discrete and not a continuous 

variable is measured). 

Unlike the other geometric effects that we will discuss in subsequent 

chapters, the limitations at small scales are fundamental in that we cannot take 

the r --.0 limit, no matter how much data we have. 

5.1 Noise 

The effect of noise on the correlation integral is of obvious concern to 

experimentalists and has been well studied [1] in the literature. In this section, 

we will consider a very simple model of a low-dimensional system into which 

Gaussian noise has been introduced. 

The effect of noise, we argue, is to convolve the attractor with a 

Gaussian of width o-, where o- is the amplitude of the noise. Specifically, if 

.oquic::t(x) is the natural invariant distribution of the attractor. then for the 

noisy case, 

~ - x-y /2o- ~ I I ~ ~,2 2 
Pquiet(y) e dy · (5.1) 
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We will consider a d dimensional attractor embedded in m dimensional 

space, but we will consider the very special case of the attractor occupying only 

d of the m dimensions. Adding noise to the attractor will add a size (j to each 

of the m directions in the embedding space. The effect on the d dimensions 

over which the attractor already extends will be negligible, but the effect in the 

m - d directions will be to increase the "thickness" from zero to (j. See Figure 

5.1 for a picture of the d=l, m=2 case: the fuzzy line. 

Indeed, we can think of the noisy attractor as a direct product of the d 

dimensional noiseless (quiet) at tractor and an m -d dimensional Gaussian of 

width (j. 

Thus, we have 

d Cquiet(r) = (r/R) (5.2) 

for small r ~R. where R is the "size" of the attractor, and for Gaussian noise 

(see §6.2.3 and §9.2), 

[er f(r/2(7)]m-d. (5.3) 

In the L00 norm, the correlation integral for the direct product of two sets is 

just the product of the individual correlation integrals (see Equation (3.14)). 

C(r) (r/R)d [er f(r/2(7)]m-d (5.4) 
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As we see in Figure 5.2, the behavior of this correlation integral breaks up into 

distinct regimes. For a «r «R, we have a slope of d=v in the log-log plot of 

C(r) versus r; that is, C(r)cx::rv. However, for r::;a, the slope gets steeper and 

approaches m as r -0. 

The effect of noise, then, is to fill out the embedding space. As long as 

it is low amplitude noise, however, it leaves a fairly recognizable signature: a 

steepening only at small r. And there is a fairly straightforward remedy: just 

be sure to take the slope in the scaling regime, with r >a. 

5.2 Discretization 

Typically, values of xi measured in a time series {xi} are known only to 

finite precision, often because they have been measured digitally. And even if 

they are known to high precision, we often deliberately discretize the values in 

the time-series in order to improve the computational performance of our 

dimension algorithm [2]. Discretized time series are of the form xi =kiE' where 

ki is an integer and E is a discretization level. Thus, distances between pairs of 

discretized points will themselves be discrete multiples E. 

It seems likely that this built-in discretization might bias the dimension 

calculated from a log C(r) versus log r plot. In particular, the discretized points 

have a finite probability of producing ru==lxi -xjl-o distances; that is, C(O);rfO. 

Fortunately, there is a quick first-order correction, which unbiases the 

dimension estimate. Actually, we may think of it not as a correction but as the 

resolution of an ambiguity, for C(r) plotted as a continuous function of r 
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displays "steps," as shown in Figure 5.3, and it is not immediately obvious where 

to plot the best fit. We will show, below, a model that suggests that the 

appropriate plot to make is of log C(r) versus log (r+~d. This recipe is 

independent of embedding dimension and of norm, and is very easy to implement. 

5.2.1 Lattice Model 

We consider points dropped randomly onto an m dimensional lattice with 

node spacing f:. We assume that f: is small compared to the scale of variation of 

the invariant density p. Choosing one of the nodes as an origin, and we count 

the number of nearby nodes including the origin whose distance to the origin is 

less than or equal to r=h as a function of r. Let f(m,k) denote this count. 

Then C(r)cd(m,rh). We will do this for the L00 and the L1 norms; we do not 

know a good argument that can be used for the L2 norm (except in the trivial 

case m=l), but we conjecture that the basic result, r,_r+~f:, should apply there 

as well. 

5.2.1.1 L00 norm 

The distance to a point x = (x0,xl' ... ,xm-l) from the origin is given by 

r =mrx lxd. That lxl=:;;:k€ requires that lxd=:;;:k€ for all i. There are 2k +1 

choices of xi satsifying lxd=:;;:h, so there are (2k+l)m choices of x satisfying 

lxl=:;;:h. Thus, 

f(m,k) (5.5) 
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for the L00 norm. 

5.2.1.2 L1 norm 

Here, the distance to a point x 

by 

(5.6) 

In counting the number of lattice points satisfying lxl~k€, we find at once that 

f(l,k) = 2k+1 = 2<k+P + !, 
f(2,k) = 2k 2 + 2k + 1 = 2(k + f)2 + ~. 
f(m,O) = 1, 
f(m,l) = 1 + 2m. 

(5.7) 
. (5.8) 

(5.9) 
(5.10) 

Furthermore, to count the number of lattice points satisfying Equation (5.6), we 

note that fixing x0 =koE still leaves m-1 terms, which must add up to k-lkol· 

Thus, we can write 

k 
f(m,k) = L f(m-1,k-lkol) 

ko=-k 

or equivalently, 

k k-1 
f(m+1,k) = f(m,k) + 2 Lf(m,k-j) = f(m,k) + 2 Lf(m,i). 

j~1 i-0 

We will prove, given this recursion relation, the following: 

Claim: f(m k) = 2m(k +!)m + O(km-2). , m! 2 

(5.11) 

(5.12) 

(5.13) 
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Proof is by induction. The claim is true for m=1 and m=2; assume 

inductively that it is true for m. Then for m +1, 

k-1 
f(m+1,k) = f(m,k) + 2 Lf(m,i) 

2m m 
-k m! 

i=O 

Here we invoke the midpoint approximation for integrals: 

from which, 

f(m +l,k ) 
2m m -k m! 

k 

+ 2· 2m Jrmdr + O(km-1) 
m! 

0 

2m m 2m km +1 + O(km-1) 
m!k + 2 . m! · m+1 

5.2.1.3 Implications for C(r) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

0. (5.21) 

In general, in the limit E-+0 of no discretization, we know that C(r)cx:rm 

for random data. But for both the L1 and the L00 norms, we have 
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(5.22) 

so 

(5.23) 

To first order in E, then, we have that C(r) ex: (r+~E)m, so the appropriate plot 

is log C(r) versus log (r+~E). As a final comment, we note that from our 

definition of correlation dimension, we have for the discrete r case that C(r) is 

constant over any range kE~r<(k+l)E. Thus, it is an equivalent recipe to 

suggest that the appropriate plot is of log C(r +~E) versus log (r +~E), where the 

only points that are actually plotted are those for which r=kE with integer k. 

5.3 Notes and References 

[1] The reader is referred to the review article by J.-P. Eckmann and D. Ruelle. 

"Ergodic theory of chaos and strange attractors," Rev. Mod. Phys. 57 (1985) 

617. 

[2] We will not say much about this strategy of discretization in this thesis, 

but the idea is that since the only operations performed in computing C(r) are 

subtraction, addition, and counting, it is more efficient for most machines to do 

these with fixed (rather than floating) point precision. Further computational 

issues are discussed in Chapter Twelve. 
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(a) 

0 . . . ·· · ······· ···· ····-······· ·· ···· · · · · ···· ···-··-· · ···· · ·· 

0 R 

(b) 

. . . . . . . . 
0 . . . . . . . . . • • 

0 R 

Fiaure S.l The .. fuzzy" line: m =2, d =1. (a) Noiseless line seament. (b) The 

effect of noise is to widen the line by an amount cr in all m-2 directions. On 

scales r '5::.cr, the fuzzy line appears two-dimenaional; for r >cr, it appears line­

likeJ that is, one-dimensional. 
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log 1 

-L.. -u 
0 

_Q 

log u log R 

log r 

Figure 5.2 Distinct regimes in the correlation inte&ral C(r) for noisy data. For 

r ~u, where u is the amplitude of the noise, the slope will be the embedding 

dimension m. For u ~r ~R, where R is the size of the attractor, the slope will 

be the at tractor dimension v. For r ~R, the correlation integral saturates 

C(r) --.1, and the slope goes to zero. 
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log r 

Figure 5.3 The correlation integral C(r) for discretized data. Since distances 

are discrete multiples of some f:, the actual correlation intearal C(r) is a stair­

step function. The smooth curves are fits throuah the data accordina to the 

following schemes: (a) C(kf:) versus kf:; (b) C((k+Pf:) versus kf:; 

(c) C((k+l)£) versus kf:. It is pointed out in the text that (b) is equivalent to 

C(r) versus r for r =(k+p£. 
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CHAPTER SIX 

6. EDGES, SHARP EDGES, AND SINGULARITIES 

Because it is bounded, an attractor necessarily fails to be self-similar at 

large scales. This is inevitable, but in itself the "finite-size" effect is not so 

much of a problem. As long the effect is confined to large scales, r > r 0 for 

some r 0 , then accurate estimates of dimension can still be obtained from the 

slope of a log C(r) versus log r plot in the r ~r0 regime. 

The real problem stems from the "edges" that finite-sized objects in Rm 

all have. The neighborhoods around points near an edge are not similar to 

neighborhoods of points farther into the interior. This is an effect that occurs 

on all scales, though to a lesser degree at smaller scales. In fact, the effect 

vanishes as the scale goes to zero. In other words, the proportionality C(r)cx::rv 

becomes more accurate in the limit as r -0. 

In this chapter, we will discuss the rate of convergence to the correct 

dimension as r -0. We will find that the sharper the edge, the slower the 

convergence, and the more noticeable the effect. We will further see how "very 

sharp" edges, or singularities, can drastically reduce the rate of convergence and 

how in some cases these edges can alter the limit itself. 

For some fractal attractors, edges and singularities appear over the whole 

range of scales; the effect of these on the correlation integral is addressed in 

the next chapter. 
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6.1 Wraparound model 

We begin with an example of a finite-sized set for which there is a "finite 

size" effect but no "edge" effect. However, to do this we introduce a space 

that is topologically distinct from R m. We consider the interval [0,1) with the 

"wraparound" metric. We identify the interval with a circle of unit 

circumference; distance in the wraparound metric is measured as the shortest 

path along the circle. Specifically, 

d(x,y) min( lx-y~ 1-lx-yl). (6.1) 

On this space and in this metric (see also §4.4.1 and §8.1), distances are 

distributed uniformly over [0,~]. That is, if two points are chosen at random, 

the random variable corresponding to the distance between them will have a 

uniform distribution over the interval [0,~]. If not for the wraparound metric, as 

we will see in §6.2.1, distances could range from 0 to 1, with the small distances 
. 

preferred. We can compute the correlation integral for this wraparound model; 

we find 

C(r) { 
2r 

1 
(6 .2) 

We do have saturation of C(r)-1 for large r, but the proportionality C(r) ex: r 1 

is exact for all r ~~. so the dimension will be correctly found to be one. This is 

the best we could expect; the models below are more generally applicable and 

they will show that the saturation of C(r)-1 affects the proportionality 

C(r)cx:rv for all nonzero r. 
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6.2 One-dimensional models 

As a simple model to demonstrate the edge effect, consider "dropping" 

points on the real line ( -oo,oo) with probability density p(x). Of course, a real 

dynamical process drops points according to its own deterministic rules, but the 

result is that the line is populated according to a "natural invariant distribution" 

p(x). Other chapters will consider the dynamical means by which an invariant 

measure is populated or the statistical problems associated with finite samples of 

the invariant measure. All we will concern ourselves with here is the 

information that is contained in the density function p(x). In particular,_ drop 

two points and compute the probability that the points are separated by less 

than r. 

(6.3) 

00 00 

= I dx1p(x1) I dx2p(x2) H (r - lx1-x2 p, (6.4) 

-00 -00 

where H(x) is the Heaviside function. (See §3.3 for a more rigorous justification 

of this result.) Thus, 

oo xl +r 

C(r) = I dx1p(x1) I dx2p(x2). (6.5) 

-oo x1-r 

Alternatively, we can "measure" the set S. 

s (6.6) 



and 

,u(S) II dxldx2 p(x1)p(x2). 

s 
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(6.7) 

This geometric interpretation is, of course, equivalent to the integral in 

Equation (6.5}, but it is sometimes easier to visualize. We use this alternative 

in the next section and in §7 .4.1. 

6.2.1 Uniform distribution 

Let us consider, as a specific p(x), uniform distribution over the unit 

interval. That is, p(x}=l for O~x~1, and p(x)=O otherwise. We can follow the 

recipe in Equation (6.5}, 

oo xl +r 

P( lx1-x21~r ) I dx1p(xl) I dx2p(x2). (6.8) 

-oo x 1 -r 
1 min(x1 +r,l} 

= Jdx1 Idx2 . 

0 max(O,x1 -d 

(6.9) 

= 2r-r2 • (6.10) 

In this case, the geometric approach provides a quick result. We measure (the 

area of) the set defined by 

(6.11) 

This is just the shaded region of Figure 6.1, and its area is clearly 1-2 · ~(1-r)2 

= 2r -r2
• Here, C(r) cx:r only if the quadratic term is negligible, r 2 «2r, or r is 
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very small. If we compute the dimension by taking the slope of a log C(r) 

versus log r curve at a specific r, we find 

v(r) 
d[Zog C(r)] r dC 

d[log r] C(r) · dr (6.12) 

r 
2
(2-2r) 1-r 

1-!r' 2r-r 2 

(6.13) 

or v(r)=1-~r, for small r. Sure enough, this approaches v=1 in the limit as 

r ..... a, but more specifically it indicates how fast the calculated dimension 

approaches the actual dimension. 

In this case, we find the approach linear in r. As this model and the one 

in the next section suggest, a linear approach is symptomatic of a "sharp" edge, 

such as this uniform p(x) displays at its endpoints 0 and 1. 

6.2.2 "Butterfly" distribution 

Let us modify the above example by introducing the following density 

whose "edgeness" is parameterized by a. 

p(x) { (1-a) - (1-2a) lxl 
0 

for -1 ~x ~1 
otherwise 

(6.14) 

First of all, note that a=~ is just the uniform distribution studied above. For 

a =0, we have a density function that is triangular and essentially "edgeless." 

For a =1 we have a butterfly-shaped density function with maximum-sized edges. 

See Figure 6.2. The integration is straightforward to show that 
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C(r) = r- ~r2 
2 

- ~(1 - 2a)r3
, (6.15) 

from which 

v(r) = 1 ~r a2 2 + O(r3
). (6.16) (1-2a--)r 

2 4 

We see that the coefficient of the leading term of v(r) -1 is directly 

proportional to the "edgeness" parameter, a. In particular, a =0 (no edge) 

eliminates the linear term and provides a quadratic approach for .v(r) --1 as r --0. 

Conversely, a=2 (with the most edge) has the slowest approach. 

6.2.3 Gaussian distribution 

Consider as a final example the Gaussian density: 

p(x) (6.17) 

There is still an edge (in the sense that < x2 > is bounded), but it is "softer" 

than the edge for the uniform density. We find in this case 

C(r) 

1 
2'1{'<72 

1 
2'1{' 

1 
2'1{' 

oo xl +r I dxlp(x1) I dx2p(x2) 

-oo x 1 -r 
00 x1+r 

I d 
- x?/2cr2 

x 1e I d 
-x~/2cr2 x2e 

-00 x 1-r 
oo r/2cr 
J dx

1 
J dx2 e-x~ -(x,+x.)

2 

-oo - r/2cr 
r/2cr oo I dx2 I dxl 

-r/2cr -oo 

(6.18) 

(6.19) 

(6.21) 
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(6.22) 

= er f(r/2(7), (6 .23) 

where er f is the error function. er f(x) is linear with x for small x, but 

saturates to 1 as x is large. So again, we have the appropriate levelling off of 

C(r) to 1 as r gets large, and further, 

v(r) (6.24) 

so the approach of v(r) --.1 as r --.0 is quadratic in r . 

6.2.4 General one-dimensional distribution 

In general, if p(x) is a smooth function of x, then v -1 =0(r2) for small r. 

In particular, we can show that 

00 00 

C(r) 2r -J [p(x)]2 dx ~3. I [p'(x)]2 dx + O(r") (6.25) 

-00 -00 
and 

v(r) 
r 2 J [p'(x)]2dx + O(r3

) 1 - - · 
3 j[p(x)fdx 

(6.26) 

so that as long as p'(x)=~~ is bounded, we will have quadratic convergence of 

v(r) -.v as r --.0. Also, in this one-dimensional case, we have v(r) <v strictly for 

nonzero r. 
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6.3 A two-dimensional model 

We have seen in one dimension that the effect of the edge is usually to 

underestimate the dimension. We present an example here of a one-dimensional 

set embedded in R2 for which the effect of the edge is to cause the dimension 

to be overestimated. 

Consider a uniformly dense circle of radius R. We will take the distance 

between two points on the circle to be given by the two-dimensional Euclidean 

norm [1]; that is, 

We find 

for which 

2 
v = 1 + 1L(r /2R)2 

12 

{6.27) 

* arcsin(ri2R), (6.28) 

(6.29) 

for r <<R. Again, we see quadratic convergence, indicative of a "soft" edge, but 

v is actually overestimated. See Figure 6.3. 

6.4 A higher dimensional model 

Here, we consider the very particular case of a v =m dimensional set 

embedded in Rm and formed from the direct product of m identical one-

dimensional sets. That is, we consider the invariant distribution 
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where p 1(x) is the one-dimensional invariant distribution. We know in this case 

(see §3.2) that the correlation integral cm(r) is just the product of the m one-

dimensional correlation integrals. Thus, 

(6.31) 

and the estimated dimension Vm(r) is given by 

Vm(r) r dCm(r) r d[C(r)]m r m[C(r)]m-1 dC(r) (6.32) 
= cm(r) dr [C(r)]m dr [C(r)]m dr 

r dC(r) mv1 (r ), (6.33) m----
C(r) dr 

so 

Vm(r) 
vl(r) (6.34) til 

or 

Vm(r) -m 
vl(r) -1. (6.35) m 

What this tells us, somewhat surprisingly, is that the relative error in the 

approximation of v by v(r) depends only on r and is independent of the dimension 

v ( =m in this case). We caution that this does not imply that higher dimensions 

are in practice as easy to obtain accurately as lower dimensions; on the contrary, 

at higher dimensions it is more difficult to obtain the small r behavior of the 

correlation integral (as we discuss in Chapter Eleven), so that at higher 
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dimensions the edge effect is even more noticeable. 

6.5 Singularities 

Again, we consider one-dimensional density functions p(x), but with edges 

t hat are very sharp. We've seen that the "sharper" the edge, the poorer the 

approximation for v. Here, we investigate singular edges, whose effect should be 

even worse . 

6.5.1 Logistic map 

In [2], Grassberger and Procaccia point out that the natural invariant 

distribution of the logistic map xn+ 1 =4xnU-xn) is given by the density 

p(x) 1 (6.36) 

which has singular edges at x=O and x=l. The correlation integral for this 

density distribution can (after a little bit of work) be shown to be 

(6.37) 

which leads to a logarithmically slow convergence of v(r) to 1. 

v(r) ~ 1 - 1 
In(~) +1 

(6.38) 

In their paper, Grassberger and Procaccia describe a "remedy" for this effect, 

which involves embedding the invariant set into Rm with m > 1. The remedy 
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does reduce the coefficient of the logarithmic term, but the logarithm remains. 

The singularity acts as a very sharp edge, slowing the convergence of v to 1. 

6.5.2 Power law singularities 

The above example had a singularity at the edges proportional to x-1/z; 

we say that it has a singularity of index -~. We consider now the density 

function 

p(x) for x>O 

for x ~0, 

which has a singularity at the origin of index ex.. 

(6.39) 

e-x 
The factor of is just 

r(cx.+ 1) 

to ensure that I p(x)dx =1. Computing the correlation integral, we find for small 

r that 

C(r) 2cx. +2 for -1<cx.<-! (6.40) cx::r 2 

ex: r log r for ex.=-! 
2 

(6.41) 

ex: r + 0(r2
) for _!<ex.<! 

2 2 
(6.42) 

ex: r + O(r3
) for ~<ex.. (6.43) 

For ex.~ -1, r(cx. + 1) does not exist and I p(x)dx cannot be bounded. What is 

notable is that too sharp an edge actually not only affects the approach of v to 

its limit as r --0, but affects the limit as well. Even the dimension of the set is 

affected by very singular edges. This may seem counterintuitive at first, but 

remember that it is the correlation dimension 0 2 that is being measured, and that 

depends on the invariant density, whereas the capacity 0 0 or Hausdorff 
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dimension DH depends only on the underlying set (the "support" of the invariant 

measure), and these, in fact, are insensitive to singularities in the invariant 

measure. In [3], it is shown that the generalized dimension, Dq, of a power law 

singularity a is given by 

. ( q(a +1) 1 ) mm 
1 

, . 
q-

(6.44) 

For the correlation dimension q =2, and substitution into this equation repeats 

our result. See Figure 6.4. 

6.6 Notes and References 

[1] We find the same result with other norms, but the derivation isn't as clear. 

[2] Peter Grassberger and Itamar Procaccia. "Measuring the strangeness of 

strange attractors," Physica 90 (1983) 189. 

[3] Thomas C . Halsey, Mogens H. Jensen, Leo P. Kadanoff, !tamar Procaccia, and 

Boris I. Shraiman. "Fractal measures and their singularities: the 

characterization of strange sets," Phys. Rev . A 33 (1986) 1141. 
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1 

r 

0 

0 r 1 

Figure 6.1 The set S={Cx1,x2h[O,l] X[O,ll such that lx1-x2l<r} is the shaded 

reiion . Note that the area is 1-2[~(1-r)2] = 2r-r2
• 
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p(x) 

(a) 

X 

-1 1 

(b) (c) (d) 

Figure 6.2 "Butterfly" density p(x) on interval [ -1,1). (a) for arbitrary edge 

parameter a. (b) for a =0, or no edge; (c) for a= ~. or uniform distribution; 

(d) for a=1, or maximum edge. 
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(a) 

log R 

log r 

Fi&ure 6.3 (a) Uniformly dense circle in L2. (b) Correlation inte&ral C(r). 
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v 

1-----t---------
I 

1.,.~----- linear 
I convergence 

0 1 
2 

quadratic ---~~•~ 
convergence 

(fastest) 

1 

Figure 6.4 Convergence to correlation dimension v for singularity index ex.. 

ex. 
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CHAPTER SEVEN 

7. LACUNARITY IN FRACTAL SETS 

While points, lines, and planes are continuously self -similar, in that they 

look identical under any magnification, sets with fractional dimension usually 

display a " texture" or "lacunarity" that leads to self-similiarity only at 

particular magnifications. For instance, the fractal set in Figure 7.1 looks like 

itself only when magnified by a power of two. The strange attractors of many 

dissipative dynamical systems display such a textured fractal structure. 

In [1,2). it is shown empirically that this property of lacunarity can lead 

to an oscillation in the correlation integral that degrades the accuracy of the 

dimension estimate. In this chapter, we introduce a Cantor set model that 

exhibits lacunarity, and we find for this model an implicit analytical expression 

for the oscillations in the correlation integral [3). F inally, we show examples of 

dynamical maps that display these oscillations. 

7.1 Cantor sets 

7 .1.1 Standard Cantor set 

We begin with a definition of what we will call the "standard" Cantor set. 

This set is usually constructed in stages by removing the middle third from the 

segments remaining in the previous stage. Thus, c0 =[0,1] becomes c1 =[o.~]u[~.l] 

in the first stage. The segments of the first stage are sliced to give 

c2 =[o.~]u[~·~] u[~·~]u[~,1] in the second stage, and so on. The Cantor set itself is 

just the limit 
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c (7 .1) 

7.1.2 Weighted Cantor sets 

Next, we generalize this definition of the Cantor set, and at the same 

time, impose a measure JJ. upon it. To construct a weighted Cantor set, we first 

specify a · nonnegative partition of unity with 

Po+P1 +P2+···+Pn-l =1 and Ps2:0 for all s. For instance, the choice P=q,o,p 

leads to the standard Cantor set defined in the previous section. 

Divide the unit interval into n equal segments ... , 
Define the measure of these segments in terms of the "probabilities" Ps· 

JJ.( [~. s~ t] ) Ps (7.2) 

At the next stage, we divide each of these intervals into n subintervals, each of 

length lln2
, and assign them measures according, again, to the probabilities Ps· 

Here, taking the s2 subinterval of the s 1 interval (see Figure 7 .2), 

(7.3) 

The procedure is carried out for all intervals of the form [n~' ~~1} If we write 

the base n expansion for k/nm, 

(7.4) 

then 



m 

= fl Ps . 
. 1 J 
J= 
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(7.5) 

Having defined the measure on these basis intervals, we can find the measure of 

any interval (since any interval can be expressed as a countable disjoint union 

of the basis intervals) and therefore the measure of any conventionally 

measurable subset of the unit interval. 

This measure defines the weighted Cantor set. 

The "support" of the measure J-1. is the set composed of points whose 

neighborhoods have nonzero measure; alternatively, the support may be defined 

as the complement of the union of all open sets C! for which J.J.(C!)=O. We note 

that if all of the probabilities are nonzero, then every interval has a positive 

measure, and the "support" of the set is the full unit interval. On the other 

hand, if any of the middle probabilities (Pp· . . ,pn_2) are zero, the support will be 

a fractal Cantor set. 

Having defined a measure on the unit interval, we can associate a density 

p(x), which satisfies 

J-1.( [a,b] ) 

b 

J p(x) dx. 

a 

(7.6) 

We note that p(x) is a "distribution," not a proper function (in the same sense 

that the Dirac "delta function" is not a proper function). 

At each stage, we have divided intervals into n equal segments . Weighted 

Cantor sets can be defined just as easily in terms of inequal segment lengths, 

but we have avoided this generalization because it makes more difficult the 
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expressions for oscillations in the correlation integral. 

We note finally that the special case of these weighted Cantor sets in 

1 1 11 1 . which all nonzero probabilities are equal - e.g., P =(5,o,o,5,o,5,5,o,5) - descnbe 

the class of Cantor sets considered in [1]. 

7.2 Generating Sample points 

Having defined the weighted Cantor measure JJ., we may ask if there is a 

dynamical system for which JJ. is the natural invariant measure. First of all, 

just knowing that there /s a such a dynamical system, we are more justified in 

studying the invariant measure. It lends credence to the notion that the 

properties this measure exhibits are relevant to the natural invariant measures 

of common dynamical systems. Secondly, given the dynamical system, we have a 

direct procedure for generating a series of points that sample the interval with a 

distribution p(x). This is useful for numerical studies. 

7 .2.1 Iterated Function System (IFS) 

The dynamical system defined by the following map of the unit interval 

into itself has a natural invariant measure that corresponds to the JJ. defined by 

the weighted Cantor set. 

f: X 1 ,_. n:x+%, (7.7) 

where 

0 with probability Po 

{ 1 with probability p1 % n (7 .8) 

n - 1 -n- with probability Pn _ 1. 
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This is an example of what Barnsley and Demko [4] call an Iterated Function 

System or an IFS. The IFS has many interesting properties in its own right; 

among other uses, it is currently being applied to image compression and 

computer graphics [5]. It provides an efficient way to populate the unit interval 

with a sample of points corresponding to the measure of the weighted Cantor set 

discussed above (also it provides the nomenclature we use for referring to the 

partition of unity as a set of "probabilities"). 

We can create a time series, a list of numbers {x} that populate the unit 

interval, with iterates of the stochastic map x j+l =f(x j) [6]. Note that an 

iteration of the map contracts volume, so an attractor is expected. In fact, after 

the initial transients die out, the limiting set is a weighted Cantor set with the 

above measure. 

It is clear, for instance, that the probability for a point x to be mapped 

into the segment f(x) e:[~. s~ 1] is Ps· Furthermore, for two iterates of a point x 

. 2 ls1+s2 ns1+s2 + 1] . to be mapped tnto the narrower segment f (x) e: n2 , n2 the f1rst must 

have been mapped to the segment f(x)e:[~2, s2
:

1
] and the second iterate from this 

segment into f(f(x))e:[i. s 1
:

1J. The probability for both to occur is the product 

Ps
1
Ps

2
, which is just the measure of the interval. In general, the probability 

after "many" iterates for a point to be mapped into any interval is given by the 

measure of that interval. If the interval is specified to a precision of 1/nm, 

then m iterates are sufficiently many. 

Because computing the value of the next xj, given the history xj-l'xj_2, . .. , 
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involves the choice among n objects with probabilities p0,pl' ... ,pn_1, we can write 

down the entropy per step of the sequence: 

s 
n-1 - L Pk log pk. 
k=O 

(7.9) 

That this is a finite entropy tells us that successive values of x are not 

independent. 

7 .2.2 Independent sample points 

Another method for generating points to sample the weighted ~antor 

measure is the following. Choose the sequence sl's2,s3,... randomly and 

independently, each from the set {O,l, ... ,n-1} with a probability for sj=s given 

by Ps· Then let 

X 
00 

2: 
j=l 

be the point. To get more points just repeat the process. 

(7 .10) 

In practice, of course, only a finite sequence sl's2, .. . ,sm is taken for each 

point, and the points x sample the measure to a precision of n -m. Still, this is a 

lot of choosing; there are m choices for each point; the IFS above made only one 

choice per point. In fact, to that same precision of n-m, we can express this 

method of generating points with the map fm, where f is the IFS. The entropy 

per step of this method is 
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s (7.11 ) 

For large m, the entropy per step is high . Successive values of x by this 

method are essentially independent. For the IFS, successive values are 

correlated, but values well separated in time become increasingly less correlated. 

7.3 Pointw.se dimension at the origin 

Recall the definition (§2.4.1) of pointwise dimension at x. 

dx = lim 
r~o 

log Cx(r) 
log r ' 

(7 .12) 

where Cx(r)=J.t(Bx(r)) is the measure of a ball of radius r centered at x. At the 

origin of the unit interval [0,1] with the weighted Cantor measure 

lim 
r~o 

log J..t( [O,r] ) 
log r 

7 .3.1 The Fraction function 

(7 .13) 

We define a function F(r), which we call the "fraction" of the weighted 

Cantor set, by 

F(r) - Cx_0(r) J..t( [O,r] ), (7 .14) 

f or O ~r ~ l. F(r) denotes the fracti on of the Cantor set within r of the origin. 

For completeness, and what will turn out to be ease of notation, we further 

define 



F(r) 
F(r) 

0, for r sO, 
1, for r ~ 1. 

7 .3.2 Standard Cantor Set 
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(7 .15) 

We'll first compute F(r) for the standard Cantor set, and then generalize. 

What we do is break up the Cantor set into the union of two smaller Cantor 

sets, each of which is precisely similar to the original Cantor set. 

Let C(a,b] denote the intersection of the Cantor set C with the interval 

[a,b], that is C(a,b] = C n (a,b]. Then our union looks like 

c[o,1] 

and the similarity maps are defined 

r 1: c[o,1] -- c[o,~] 

f 2: C(0,1) -- c[~.1] 

Now let 

(7 .16) 

by f 1(x)=~x ; (7 .17) 

1 2 by f 2(x)=3x + 3 (7 .18) 

F 1(r) = fraction of points on Cantor subset c[o.~] within r of the origin 0; 

F 2(r) == fraction of points on Cantor subset c[~,l] within r of the point ~· 

In this case, since c[~,l] is just a translation of c[o.n we have F 1(r) =F2(r). 

Also, by the definition of " fraction" we have endpoints : F(O) =0, F(l) =1; and 
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F 
1
(r) and F2(r) completely in terms of F(r). 

F(3r) (7 .19) 

The geometry of the placement of c[o.~] and c(~.1] provides an expression for 

F(r) in terms of F 1(r) and F2(r). 

F(r) ={ 
~F 1(r) for O~r~~ 

1 
2 for ! ~r ~~ 

3 3 
(7 .20) 

We can combine these with Equation (7 .19) into a single implicit equation for F(r) 

F(r) ~ [F(3r) + F(3r-2)], (7 .21) 

where we have made use of Equation (7.15) to simplify the expression. 

This may be "solved" for F(r) by taking a sequence of functions Fc01(r), 

F01(r), etc ., defined by 

(7 .22) 

where p !Ol is any function that satisfies the boundary conditions Fc01(0) =0, 

Fc01(1)=1; for example, Fc01(r )= r. Then, 

F(r) = lim F(j)(r). 
j-oo 

(7 .23) 
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More practically, the exact value of F(r) may be obtained at a discrete set of 

points with only a finite number of iterations. Begin with F(O)=O, F(1)=1, 

1 2 12457 8 follow by evaluation at r = 3 and r = 3, then at r = 9, 9, 9, 9, 9, and 9, and so on. 

In each case, evaluation at r = kn can be expressed in terms of values already 
3 

k' computed at r's of the form --
1
; e.g., 

3n-

F(20) 
27 

1 + !F(3.2°- 2) 
2 2 27 

! + ![!F(3 -~)] 
2 22 9 

~ + ~[!(~+F<3 ·~-2)J] 
5 s· 

~ + ~F(~) 

~ + ~[~F(~)] 

~ + ~[~[~ +F(O)]] 

(7 .24) 

This provides a way to very quickly get a plot F(r) versus r, such as is shown 

in Figure 7.3. This is a graph of the "Devil's staircase." It is a staircase 

because the function increases monotonically, and the slope dF is almost 
dr 

everywhere zero. But the function, amazingly enough, is continuous - the 

Devil need never lift his foot! 

From the recursion in Equation (7.21), we can determine F(r) well enough 

to find the pointwise dimension of the Cantor set at the origin. 

do = lim log F(r) 
r .... o log r 

For r <j, we ho.ve F(r) - ~F(Jr), o.nd for r <-\c, we ho.ve F(r) 
3 

log F(r) 
log r 

log[ ~F(3kr)J 
log r 

log F(3kr) - k log 2 

log 3kr - k log 3 

(7 .25) 

(7 .26) 
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If for a given r we take k so that ~ ~3kr <1, then 

log ~ ~ log 3kr < log 1 

and 

log F(~) ~ log F(3kr) < log F(1), 

so 

log F(~) - k log 2 log F(r) log F(l) - k log 2 
log 1 - k log 3 ~ log r < 1 • log 3 - k log 3 

Finally, since r -0 implies k -+oo, we have rigorously that 

=- 11. m log F(r) log 2 
d0 l = l-3 = 0.6309. r _.o og r og 

(7 .27) 

(7 .28) 

(7 .29) 

(7.30) 

It is worth noting that the following "alternate" definition of d0 involving the 

slope of a log F(r) vs. log r plot leads to a limit that does not exist. 

? . d[log FCr)] r dF 
d0 = hm = lim 

r -0 d[log r] r -0 F(r) dr 
(7.31) 

The problem is caused by lacunarity in the Cantor set. For if the limit exists, 

then L'Hopital's rule assures us that the limit is d0 =(log 2)/(log 3). But if we 

consider the set of points 112, 1/6, ... , 1/2 .3k, all of which are in voids of the 

Cantor set, we have that dF =0 at each of those points, implying that the limit 
dr 

is d0 =0, a contradiction. 

Looking at a log-log plot of F(r) vs. r, Figure 7 .4, we can see why this 

limit fails. There is a periodic undulation to the curve whose "average slope" is 

well defined as d0 =Clog 2/log 3). This effect provides another argument in 
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favor of a wide scaling regime in r; to numerically determine the average slope, 

we want to see as many "periods" of the fraction curve as possible . 

7.3.3 Weighted Cantor Set 

At this point we can generalize. Compute the fraction F(r) for the 

weighted Cantor set specified by the partition P=(p0,pl' ... ,pn_1). We can write 

down the implicit expression for F(r) in terms of F(nr -k). Following Equation 

(7 .21), 

F(r) p0F(nr) + p1F(nr -1) + ... + Pn_1FCnr -(n -1)) (7 .32) 

s s s+1 = F(n) + PsF(nr-s), for n:S:r:S:-n-· (7 .33) 

And again, we can compute F(r), starting at the endpoints F(O) =0, F(l) =1, 

1 2 1 2 
and then at r=n• n•···· then r=-z· 2•···· etc. 

n n 

Equation (7.32) is sufficient to define F(r) at arbitrary r. We can, 

however, give a direct series expression for F(r), where r is expressed in base n 

notation, 

r (7 .34) 

with 0 s s j < n as usual. 

F (r ) (7 .35) 
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where, in general, 

(7 .36) 

(7 .37) 

and so on; 

(7 .38) 

an expression which, along with Equation (7 .36), gives F(r) in terms of 

Finally, we are able to find the pointwise dimension at the origin from 

F(r) =PoF(nr) for r <~. It is 

log Po 
log(l/n)' 

7 .3.4 Pointwise dimension at other points 

(7.39) 

By symmetry (thinking of r =1 as the "origin" on the other side), we have 

that the pointwise dimension at r=1 is 

log Pn_1 
log (1/n)' 

(7 .40) 

In general, the pointwise dimension depends on the point at which it is taken. At 



- 119 -

an arbitrary point, r 0 =O.s1s2s 3 ... , we have that the pointwise dimension is 

defined by 

log .u.CBr
0

(r)) 
lim l , 
r-0 og r 

(7 .41) 

where .u.CBr
0

(r)) =F(r0 +r) -F(r0 -r) is the fraction of the Cantor set within r of 

the point r 0 • By choosing intervals 

(7 .42) 

we have at the kth step an interval of length n-k and of measure Ps
0
Ps

1
Ps

2
-. -Psk· 

It follows that the dimension is given by 

:L Ps log Ps 
s 

log( lin) 
(7 .43) 

where Ps is the fraction of the s j 's in the base n expansion of r 0 that are equal 

to s. F · t t th · t 0 th d · · · d log Ps or ms ance, a e pom r 0 = .sssssss ... , e 1mens10n ts = log(l!n)" 

If Ps <~, we get the nonintuitive result that the pointwise dimension can be 

greater than one, that is, greater than the dimension of the embedding space! 

For a typical r 0 (and all but a measure zero set of r 0 are "typical"), we 

have PrPs for all s and 

L Ps log Ps 
s 

log(lln) 
(7 .44) 

or d =SISmax• where S =-LPslog(ps) is the entropy of the partition P, and 
s 
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Smax =log n is the entropy of the equidistributed partition (~, ~ .... , ~) . Of 

course, S ~Smax• so the pointwise dimension at a typical point is never greater 

than the embedding dimension. 

In §10.3, we speak of the "average pointwise dimension" of the attractor, 

and we show for this model that the "average" and the " typical" pointwise 

dimensions are the same. 

7.3.5 Pointwise dimension on an attractor 

We consider the pointwise dimension at the fixed point of the Henon map 

[8], 

[
xn+1] [ 1 - ax~ + Yn ]· 
Yn+1 bxn 

(7 .45) 

For the canonical values a=1.4, b-0.3, we have a saddle fixed point at (x0 ,y0 )= 

(0.6313, 0.1894). The linearization of the map about this point 

(7 .46) 

has eigenvalues 0.1559 and -1.9243. The stable Cl~< l<1) eigenvalue defines the 

self -similarity ratio (the same role as lin in the Cantor model), and the unstable 

Cl~>l>l) eigenvalue tells how fast points leave a neighborhood of the fixed point, 

so 1 /l~> l corresponds to the probability, p0 , that an iterate stays in the 

neighborhood. The pointwise dimension of the "Cantor slice" in the fractal 

direction is therefore 



dcantor 
logo 11 ~> I> 

log 1~<1 · 
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(7 .47) 

Perpendicular to this slice, the attractor is linelike, so we have that the 

pointwise dimension at (x0 ,y0 ) is 

d 1 + llog 1.92431 
log 0.1559 

1.338. (7 .48) 

Figure 7.5 shows the self-similarity (and lacunarity) of the Henon attractor at 

the fixed point and Figure 7 .6 is a log-log plot of the fraction F(r) =Cx y (r) of 
0> 0 

points within r of the fixed point; here the oscillations are quite noticeable. 

7.4 The correlation integral 

We have seen how lacunarity can lead to oscillation of the "fraction" F(r); 

we now discuss how lacunarity can cause similar oscillations in the correlation 

integral. 

7 .4.1 Standard Cantor set 

As with the fraction, we start by computing the correlation integral for 

the standard Cantor set. We are looking for the proportion of the distances 

between pairs of points that are less than r. Choosing x 1 cC and x2 cC, we 

measure the fraction of the set C X C for which lx 1 -x2 1~r. 

C(r) (7 .49) 

By symmetry, we need only consider the " upper left half" of C X C, where 
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x1 ~x2. If we project this set along the x2-x1 =constant axis, we obtain a set 

whose fraction corresponds to the correlation integral C(r) of the Cantor set. 

Using the same tools we used to express F(r) recursively, we can analytically 

express the correlation integral for the Cantor set. 

In Figure 7. 7, each of the shaded triangles is similar to the fu~l triangle, 

and each of unshaded triangles is empty. 1 For r~j• we can write C(r), the 

fraction of ·the set below r, 

C(r) 1 2 .4 ·C(3r), (7 .SO) 

where "2" is the number of triangles, "~" is the mass of a small triangle relative 

to the full triangle, and "3" is the length of a large triangle relative to the small 

one. For r ~~. we can write, 

C(r) (7 .51) 

where~ is the mass of the set below r=l For ~~r~~. it's a bit tricky because 

the triangle is upside down, but it's not too hard to see that 

C(r) 1 1 [ 2 J 2 + 1 · 4 · 1 - C(3(3 -r)) . (7 .52) 

Combining these into a single expression for C(r), 

~C(3r) for O~r~~ 

C(r) { 3 1 for l~r~~ (7 .53) -- -C(2-3r) 
4 4 3 3 

3 1 ) 2 - + -C(3r -2 for 3 ~r~l. 4 4 
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We make several observations. Because C(r) = ~C(3r) for r ~ ~. we have strict 

self -similarity of the correlation integral C(r). Whatever lacunarity we see in 

C(r) for ~ ~r ~1 occurs in precisely similar detail over every range 
3

1k ~r ~ 
3
L

1
. 

The correlation dimension is 

11 
= lim log C(r) 

r -0 log r 

log ~C(3r) 
1 log - ·3r 
3 

log 2 
log 3' 

(7 .54) 

which is the same as the pointwise dimension at the origin that we calculated 

earlier. On the other hand, dC=O for r =l, so we have in particular that the 
dr 3k 

limit 

11 
= lim d[Zog C(r)] 

r -0 d[Zog r 1 
lim _r_ dC(r) 

r -+0 C(r) dr 
(7 .55) 

does not exist . In Figure 7.8 we show a log-log plot of the correlation integral 

of the Cantor set. 

7.4.2 Weighted Cantor set 

Now we compute C(r ) for a more general member o f our class of Cantor 

sets. We can write the correlation integral in terms of the contributions from 

all the smaller triangles. 

C(r) (7 .56) 
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where 

0 for O~r~knj 

c 6 jk(r) { p jPk C( nr - (k-j)) for 
k-j k-j + l 

(7 .57) -n-~r~ n 

PjPk for k -~+l~r~l 

and 

0 for 
k-j-1 

O~r~ n 

Cv jk(r) { P jPk[l -C(k-j + 1 -nr )] for 
k-j-1 k-j 

(7 .58) n ~r~-n-

k-j 
PjPk for -n-~r~l. 

Adding the contributions from all the triangles gives 

C(r) C(~)+ <PoPs + + Pn-l-sPn_1)C(nr-s) 

+ <PoPs+l + ... + Pn_2_sPn_1)[1-C(l + s-nr)] (7 .59) 

for ~ ~r ~s t 1. This allows computation of C(r) exactly at rational points k / nm 

in terms of values at k' /nm -l. And although it is in principle possible to 

express C(r) as a series in terms of the base n expansion of r, as we did for F(r) 

above, it is an unwieldy series of limited value. 

7 .4.3 Strict and asymptotic self -similarity 

What is noteworthy about this function is that it is not in general 

strictly self-similar for small r. There is no equation of the form C(r) = 

constant XC(nr) for r ~~· Instead, that relation is "contaminated" by a term with 

coefficient 
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which vanishes only if every term pkpk+ 1 vanishes. This occurs only when 

there are no adjacent nonempty segments. 

In this case of nonadjacent nonempty segments, we can easily write down 

the correlation dimension: 

1
. log C(r) 
1m-:='--­

r-+0 log r 

log [fP~ C(nr)J 

1 log n ·nr 

log [fP~] 
log ~ 

(7 .61) 

We note that this agrees with the formula for generalized dimension [9] . of a 

Cantor set. 

1 
(q-1f 

log[~P~] 
log ~ ' 

recalling that q =2 corresponds to the correlation dimension. 

(7 .62) 

Equation (7 .62) makes no assumptions about strictness of self -similarity, 

and in fact, we can show that self -similarity is not necessary for Equation (7 .61). 

We begin with the statement that 

which follows from Equation (7 .59) with s =n -1. This enables us to write 

C(llnk+ 1) = (pO + ··· +P~-1) ·C( lk) +<PoPl + ... + Pn-2Pn-l) ·<PoPn-l)k. 
n 

(7 .63) 

(7 .64) 



Write 

so 

a. = Po + . . . + p~-1 
/3 == PoPt + ... + Pn-2Pn-l 

"' = PoPn-1' 
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(7 .65) 

(7 .66) 

(7 .67) 

C(l/nk+ 1) = a.C(llnk) + /3"/k (7 .68) 

= a.k+l + a.k/3 + a.k-1/3"/ + a.k-2/3"/2 + ... + /3"/k (7.69) 

= a.k+1[ 1 + a.-1/3[ 1 + a.-1"/ + a.-2"/2 + ... + a.-k"'k]} (7.70) 

we remark that PoPn_1 < Po + ... + p~_1 ~ a.-1"1<1 ~ the series is bounded ~ 

1
. log C(r) v = 1m----,::'--­

r --.0 log r 

(k+l) log a. 
(k+1) log(l/n) 

for large k. 

log a. 
log(l/n) 

log [~P~J 
log ~ 

in agreement with the fully self -similar case. 

7 .4.4 Correlation integral on an attractor 

The reader is referred to [10] in which the Zaslavskii [11] map 

xn+1 = [ Xn + v(l +..UYn) + €1/,U cos(2'1t"Xn) ] (mod 1), 

Yn+1 = e-r<Yn +f. cos(2'1t"xn)), 

(7.71) 

(7 .72) 

(7 .73) 

with the parameters ..u=U-e-r)!r, r=3.0, v=40013, and €=0.3, is studied. The 

authors find a "kink" in their correlation integral for this map. A look at the 
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attractor itself explains the source of the kink. There is a very-long-period 

oscillation in the correlation integral (the "period" here has nothing to do with 

time, but is the ratio of length scales for which self -similarity is observed). 

There is an infinite train of kinks, but only the first kink is observed. 

There is an obvious danger in trying to compute the dimension of such 

long-period attractors; the value can be skewed if slopes are taken over 

incomplete periods. 

7.5 Conclusion 

Periodic undulations in correlation integrals and fraction curves are 

common for weighted Cantor sets and are seen as well in generic dynamical 

attractors. These undulations demand that extra care be taken when estimating 

the dimension from the average slope of these curves. 

In [1], it is observed numerically that the correlation integral C(r) is of 

the form C(r) =rdljJ(log r), where lj)(x) is periodic function in x. What we have 

shown here is that 1jJ is strictly periodic for the standard Cantor set, and for any 

weighted Cantor set whose nonempty segments are not adjacent. Also, we have 

provided an implicit formula for C(r) from which 1jJ can be more directly 

computed. 
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(a} 

Figure 7.1 Discrete self -similarity of a fractal. (a) The Sierpinski gasket. 

(b) Magnification by a factor of two yields a figure tho..+ is congruent to the 

original. (c) Magnification by an arbitrary factor +~a..t is not a power of two 

yields a figure not congruent to the original. 
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Figure 7.2 The weighted Cantor measure. (a) The interval [0,1] is divided into 

subi.ntervals of size lin, and each is assigned a measure t.L([k/n,(k+1)/n]) =pk. 

We have Po+P1 + ··· +Pn-l =1, so t,.£([0,1])-1. (b) The interval [l / n,2/ n] is further 

divided into n subi-ntervals, each of length 1/n2
, and each assigned a measure 

PtPk· (c) The process continues until intervals of arbitrarily small length are 

assigned measures . 
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Figure 7.3 Devil's Staircase: the fraction F(r) for the standard Cantor set. 
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Fiaure 7.4 Periodic undulations in a loa-loa plot of the fraction F{r). Althouah 

the slope at almost every r is zero, the overall slope is log 2/log 3 ~ 0.6309. 
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Figure 7. 7 (a) The set C XC, where C is the standard Cantor set. (b) C XC on 

rotated axes. Each shaded triangle is s imilar to the large trian&le. The 

correlation integral C(r) measures the fraction of the set below r. 
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Fi&ure 7.8 Oscillations in the correlation inte&ral for standard Cantor set. 
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periodicity in the correlation inte&ral is evident. 



- 138-

CHAPTER EIGHT 

8. NONCHAOTIC A TTRACTORS: QUASIPERIODICITY 

Though dimension is a geometric property of an attractor, we find that 

the accuracy and efficiency of dimension estimates from a finite sample of N 

points depend as well on the dynamics of the system. In this and the next 

chapter, we are concerned not only with the attractor's natural invariant 

measure, but with the dynamical process by which points are placed on the 

attractor. 

Deterministic dynamical systems can be classified into two categories, 

chaotic and nonchaotic. (As an aside, we remark that these two categories are 

not at all related to the classification into conservative and nonconservative 

dynamical systems.) Chaotic systems are characterized by their sensitive 

dependence on initial conditions. 

We argue that the best way to populate an attractor .A with a finite set 

of points is to drop the points randomly and independently over .A with a weight 

given by the invariant measure. Although a dynamical system places points on 

the attractor in a manner that is strictly deterministic, we find that chaotic 

dynamical systems are qualitatively better at populating their attractors than 

nonchaotic systems. 

In Chapter Four, we show that points dropped randomly and independently 

over an attractor lead to a scaling range in C(N,r) of order N2
• That is, 

C(N,r) <X r .v over a range in which C(N,r) varies from 2/N2 to 1. Experience with 

chaotic attractors leads us to expect this same O(N2
) scaling range in C(N,r). For 
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nonchaotlc attractors, on the other hand, we find an O(N) scaling range . 

This chapter discusses nonchaotic attractors, particularly those with 

periodic or quasiperiodic motion. (Quasiperiodic motion can be characterized by 

functions of angular variables 

X(t) (8.1) 

where 

(J . =W· t (mod 2'71:), 
1 1 

(8.2) 

and the frequencies wl'w2,... are incommensurate. Since periodic moti9n is 

trivially quasiperiodic, we will henceforth use the term "quasiperiodic" to refer 

to both kinds of motion.) Limit cycles and limit tori are the usual sources of 

quasiperiodic motion; we will consider a simplified limit cycle defined by a one-

dimensional twist map with a single winding number fP. Before analyzing the 

twist map model, however, we will do two "control experiments," in which the 

attractor is populated according to very specific strategies that caricature the 

distribution of points as laid down by nonchaotic and by chaotic dynamical 

systems. 

In the next chapter, we will address an effect that occurs with systems 

that are chaotic but that have time autocorrelations. 

8.1 Wraparound metric 

We again (see §4.4.1 and §6.1) introduce as an embedding space the unit 

interval with the wraparound metric. The distance between two points x,y c[0,1) 
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is given by 

d(x,y) min( lx-y l, 1- lx-yl). (8.3) 

This is equivalent to the arcwise distance between two points on a circle of unit 

circumference. The advantage of this metric is that it eliminates edge and 

curvature effects (see §6.1 and §6.3). 

8.2 Two control experiments 

To illustrate the two qualitatively different behaviors that the C(N,r) 

curve can display, we perform two experiments in which we populate the interval 

[0,1) in the wraparound metric with points according to two strategies; the first 

models the essential features of a quasiperiodic system, and the second models a 

highly chaotic system. 

The first control experiment is to populate the circle uniformly, with N 

points, dropped so that every point is situated at the midpoint between its 

nearest neighbors on either side of it. This very organized distribution 

simulates the kind of behavior that would be expected from a nonchaotic system. 

In other words, if the first point defines x0=0, then x1=1/N, ... , xk=k/N, etc. In 

this case, we see that the shortest distance is just r min =liN. In fact, there will 

be N of these distances, so C(N,r=1/N) - 2
2
N - 2/N. Further, all distances will 

N 
be multiples of 1/N, and it is not too hard to see that C(N,r-k/N) = 2k/N. The 

correlation integral is plotted on a log-log graph in Figure 8 .1. Though the 

curve jumps in big steps, the overall slope is one - as expected, our points 

"sample" a one-dimensional space. The range over which this slope of one 
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persists is O(N). This seems a bit wasteful, since the algorithm computed O(N2
) 

distances. We see that this is a worst case example, however, and that for any 

sampling of N points, we will always have r mon sliN. 

The second control experiment is to populate the circle randomly with N 

points, all dropped independently of each other. This is not unlike how a highly 

chaotic system would distribute points . In this case (see §4.2.2 and §4.3.2), we 

find that the nearest pair of points is r min =0(1/N2
). A typical correlation 

integral is plotted in Figure 8.2. Here we get the full O(N2
) range from our 

correlation integral; this is twice as many orders of magnitude as the O(N) range 

observed for the more organized distribution of points. This enables a much 

more accurate estimate of t he slope, which again is one. 

8.3 Twist map 

Now, to model the effect of quasiperiodicity, we consider a simple twist 

map 

Xn + tP (modulo 1). (8.4) 

Though this particular model is a conservative system, that is not an essential 

feature; we could have designed a two-dimensional model [1] for which this would 

be the "limit cycle." 

8 .3.1 Rational ~ 

If t/J is rational, then the trajectory is periodic with period ~. where t/J=~ 
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is the fraction expressed in reduced form. The motion in this case is not 

ergodic; a single trajectory is not dense on the at tractor. The at tractor will 

appear as a finite set of points, and will be seen to have dimension zero. 

8.3.2 Irrational •: the golden mean 

For <P irrational, the trajectory is aperiodic and dense on the circle . 

Consider an orbit of length N, {x0,x1, ... ,xN_1} C [0,1). We will show that the 

smallest distance rmin varies with N in a way that is reminiscent of the uniform 

control experiment above; that is r min =0(1/N). It is for this reason that the 

correlation integral performs poorly for quasiperiodic systems. 

Suppose that the smallest distance r min is between the two points xa and 

xb, with a <b for definiteness. Because of the nature of the twist map, the 

distance between Xa and xb is the same as the distance between x0 and xb-a. 

(Indeed, this implies that there are at most N distinct distances, our first hint 

that the smallest of them is only of order 1/N.) Taking k=b-a, we can write 

xk x0 + k<P (modulo 1), (8.5) 

or 

Xk - XQ k¢ (modulo 1), (8.6) 

which implies 

lxk - xol lk<P - [k¢11, (8.7) 

where [k</J] is the nearest integer to k¢. Thus, 

r m1n min lk¢ - [k¢]j. 
15:k < N 

(8.8) 
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We introduce 

(8.9) 

as the error that a fraction with denominator k makes in estimating the 

irrational (/). In this notation, 

rmin (8.10) 

and the problem of finding the minimum distance between pairs of points becomes 

a matter of rationally approximating (/). Fortunately, there is ample theory for 

this [2]. 

Let [a0 ,a1,a2 , ••• ] denote the continued fraction expansion for (/). That is, 

1 (8.11) 

It is truncations of the continued fraction expansion that provide the "best" 

rational approximations of (/), and that allow us to estimate the behavior of E:k(¢J) . 

We have from the theory of continued fractions the following inequality: 

(8.12) 

which enables us to put bounds on E:k(¢J). We will in particular consider the case 
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where <P=[0,1,1,1,1, ... ]=(..J5-1)/2 is the golden mean. 

TABLE 8.1: Rational approximations to <P= .,[5
2 

1 

<P [k<P]/k Ek k ·Ek k2·€k 

I o.61803 112 0.5 0 .11803 0.23607 0.472141 

1 o.618o3 2/3 0.66667 0.04863 0.14590 0.437691 

0.61803 2/4 0.5 0.11803 0.47214 1.88854 

1 o.618o3 315 0.6 0.01803 0.09017 o.45o85 I 
0.61803 4/6 0.66667 0.04863 0.29180 1.75078 

0.61803 417 0.57143 0.04661 0.32624 2.28367 

I o.618o3 5/8 0.625 0.00697 0.05573 0.445821 

0.61803 6/9 0.66667 0.04863 0.43769 3.93925 

0.61803 6/10 0.6 0.01803 0.18034 1.80340 

0.61803 7/11 0.63636 0.01833 0.20163 2.21789 

0.61803 7/12 0.58333 0.03470 0.41641 4.99689 

I o.618o3 8/13 0.61538 0.00265 0.03444 0.447741 

We see that the best approximations are given by the truncated continued 

fractions. In particular, we find that k ·Ek(<P) is smallest when k is a truncated 

continued fraction denominator. In fact, the k for which the minimum holds in 

Equation (8.10) is just the largest truncated denominator less than N. This 

largest denominator is usually of order N; further, k2 ·Ek(<P) - constant 

(~11.,[5=0.4472 when <P is the golden mean), so we expect 

r min 

= k &--(<P), 
k 

(8.13) 

(8.14) 



- 145-

where k is the value of k that minimizes kEk(~), 

(8.15) 
k 

..fS-1-In particular, for f/J- -
2
-, k is the largest Fibonacci number less than N. Thus, 

¢JN ~k <N, so we can bound 

(8.16) 

or 

0.447 / / 0.724 
~.::::.. rmon.::::.. N · (8.17) 

This is to be contrasted with rmon=0(1/N2) that is expected for chaotic data. 

Now, we can estimate the value of the correlation integral C(N,r) for 

-r =r min· If the minimum in Equation (8.13) is achieved for k=k, then the number 

of distances for which r=rmon is just N -k. Thus, 

2 -C(N,rmon) - -z(N -k ). (8.18) 
N 

Again, ¢JN ~kmin<N, so 

2 < C(N ) < 0.76 N2 ,rmin N · (8.19) 

For any value of N, C(N,rm;n) < 2rmin• In particular, if we take a "typical" N, we 

expect k =# ·N; and from this, we get 
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rmon=.56/N, (8.20) 

C(N,r min) =0.43/N. (8.21) 

In the model above we expect C(N,r) = 2r, at least for large r. In the 

example of perfectly uniform distribution of N points on the circle, we find 

r m,n-1/N, but C(N,rm;n)-(2/N2
) ·N-2/N-2rmin• Thus, we have C(N,r)-2rcx:r for the 

full range rmon~r~~· But for the case of quasiperiodic data with frequency 

ratio ~-(.JS-1)/2, we find that although C(N,r)-2r for large r, C(N,rm•n)<2rmon• 

This leads to a correlation integral such as is shown in Figure 8.3. 

For two reasons the correlation integral is not well suited for finding the 

dimension of quasiperiodic systems. The first is a matter of fundamental 

inefficiency: the range available is only O(N), even though there are O(N2
) 

distances to compute. The second reason is that the curve is not even expected 

to show a constant slope over the range of distances that are available. The 

tail at the low end of the curve leads to systematically high estimates of 

dimension. 

In principle, this analysis based on continued fractions can be applied to 

any irrational; the results we have quoted however, in Equations (8.17, 8.19, 

8.20, 8.21) for instance, are specific to ~=(.JS-1)12, and a new calculation would 

have to be done for each ~. Instead, we will consider the generic ~ as a 

separate case, taking ~ as a random variable uniformly distributed over [0,1). 

8.3.3 Generic ~ 

We have shown that for the highly incommensurate ~=[0,1,1,1, . . . ]= 
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c..fs-1)12, we have for quasiperiodic data a systematic effect that tends to 

overestimate the dimension. At the other extreme, we might consider a highly 

commensurate frequency ratio, one that is rational or very nearly rational. We 

would find in this case that rm;n is very small (it is zero for rational t/> if number 

of points N is greater than smallest denominator of ¢), and that dimension could 

well be underestimated. A question to ask is: What about "typical" frequency 

ratios ¢; is dimension on the average correctly estimated? 

We can model the concept of a "typical" frequency ratio ¢, by treating ¢J 

as a random variable that is uniformly distributed over the interval [0,1). For 

fixed N, we can compute exactly the expected value for r min• 

<rm;n> (8.22) 

The integrand is sketched in Figure 8.4. By numerical computation, we find for 

the large N behavior 

<rmon> 
0.4215 ± 0.0005 

= N (8.23) 

for N_2:1000, and where the"±" denotes the variation of <rm;n> over N. 

We see that the 0(1/N) behavior of rm;n is generic in ¢. This compares 

with the 0(1/N2
) behavior of rmin that is exhibited by stochastic systems and by 

chaotic systems. The sample of points generated by a quasiperiodic system does 

not provide an efficient representation of the underlying attractor. 

In Figure 8.5, we show pictures of the correlation integral for several 
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randomly chosen </>. We find that for "very irrational" <P, the shape of the 

correlation integral looks like that of the golden mean <P, fairly smooth but with 

a slope that is too steep for small r near r min• For "nearly rational" </>, on the 

other hand, we see a "stair-steppy" shape from which a reasonable slope would 

be difficult to obtain. 

We see that if <P is "very" irrational, dimension tends to be slightly 

overestimated, and if <P is "nearly" rational, dimension is likely to be badly 

estimated. In a numerical experiment, we considered a large sample of <P e:[O,l), 

and computed dimension of points on the unit interval [0,1] with the usual (not 

the wraparound) metric. The analysis was done automatically according t? the 

Takens maximum likelihood formula (see §10.2), disregarding the shape of the 

correlation integral. With quasiperiodic data, we found an average dimension of 

d =1.075 ±0.02, whereas for random data we obtained an average of 

d =0.971 ±0.006 [3]. The five sigma effect suggests that on the average, 

quasiperiodic data can be expected to overestimate dimension. 

There is some ambiguity in the physical meaning of the term "generic." 

For instance, the golden mean is very often the winding number in experiments 

at critical transitions [4]. It may be that the <P's that come up in typical 

nonlinear dynamical systems in a quasiperiodic regime do not spread themselves 

uniformly over the interval [0,1). This is a deep issue, beyond the scope of the 

work presented here. 

As an example, though, the reader is referred to [5] in which the 

correlation integral is plotted for points from the logistic map Xn =~xn_1(1 -xn_1) 

at ~ =3.5699 . . . , the limit point of the period doubling bifurcation. Here, although 
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the system is by no means periodic, it has zero entropy (see §13.4.4), and we f ind 

it interesting that the correlation integral should look so similar t o 

Figure 8 .3 [6] . 

8.4 Notes and References 

[1] For example: xn+1=xn+Yn+<P; Yn+1=0.5Yn· Here Yn-0 as n increases, 

and the limit cycle is given by xn+ 1 =Xn +<P; Yn =0. 

[2] As well as the continued fractions that are discussed in the text, an 

interesting alternative scheme for rational approximation is given by Seung-hwan 

Kim and Stellan Ostlund. "Simultaneous rational approximations in the study of 

dynamical systems," Phys. Rev. A 34 (1986) 3426. 

[3] The underestimate from the random data is caused by the "edge" effect (see 

§6.2 .1); in the wraparound metric there is no edge effect (see §6.1), but for the 

sake of the numerical experiment, the correlation integral was based on the 

conventional distance. 

[4] Mogens H. Jensen, Leo P. Kadanoff, Albert Libchaber, !tamar Procaccia, and 

Joel Stavans. "Global universality at the onset of chaos: results of a forced 

Rayleigh-Benard experiment," Phys. Rev. Lett. 55 (1985) 2798; E. G. Gwinn and 

R. M. Westervelt. "Scaling structure of attractors at the transition from 

quasiperiodicity to chaos in electronic transport in Ge," Phys. Rev . Lett. 59 

(1987) 157. 

[5] Peter Grassberger and Itamar Procaccia . "Measuring the strangeness of 

strange attractors," Physica 90 (1983) 189. 

[6] See F igure 2 of Reference 5 . 
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Fi&ure 8.1 The correlation inte&ral C(N,r) versus r on lo&arithmically scaled 

axes for N points equally spaced over [0,1) in the wraparound metric. Note that 

the useful ran&e in C(N,r) is only O(N). 
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Figure 8.2 The correlation integral C(N,r) versus r on logarithmically scaled 

axes for N points randomly distributed over [0,1) in the wraparound metric. 

Here, the useful range in C(N,r) is 0(N2
). 
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Figure 8 .3 The correlation integral C(N,r) versus r on logarithmically scaled 

axes for N =100 points quasiperiodically generated according to winding number 

~=0.618034··· = ({5-1)12- [0,1,1,1, ... ]. Again, note that the range over which 

C(N,r) varies is only O(N). 
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Figure 8 .4 1--[k~J/k~ where [k~] is the integer nearest to k-. plotted as a 

function of - for k-1,2,3,4,5. rm,n =min1 ~k ~N ~~-[k-11kl is plotted as a 

function of ~ for N =5. The average value <rm,n> is the area of the shaded 

region. 
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(b) ~ =0.30277564 = [0,3,3,3, ... ]. (c) ; =0.23606798 = [0,4,4,4, .. . ]. 
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CHAPTER NINE 

9. AUTOCORRELATION 

Autocorrelation is ubiquitous in time series data. For continuous signals 

x(t), there is always some time T over which x(t) and x(t +T) are strongly 

correlated. In this chapter, we point out an effect due to autocorrelation, an 

anomalous "shoulder" in the correlation integral, which can lead to inaccurate 

and possibly spurious estimates of dimension [1]. We have seen this shoulder in 

our own data (see §14.1.1) and in the literature [2,3,4]. 

The correlation integral probes the geometry of the attractot by 

measuring distances between pairs of points on the at tractor. In Chapter Four, 

we showed that an ensemble CE2) of distances between uncorrelated points on the 

attractor leads to accurate finite N estimates of the correlation integral [5]. As 

long as the dynamical system is chaotic [6], pairs of points well separated in time 

are essentially uncorrela ted, and the distances between these pairs effectively 

satisfy the assumptions of the E2 ensemble. 

On the other hand, we do expect correlations for pairs of points that are 

not well separated in time. For time series with positive autocorrelation, pairs 

of points within a characteristic autocorrelation time T of each other will be 

correlated, and this (dynamical, not geometrical) correlation can alter the shape 

of the finite N correlation integral. The distances between these correlated 

pairs of points do not really reflect the geometrical properties (such as the 

dimension) of the a ttractor. 

In this chapter, we show how this dynamical correlation causes a kink to 
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form in the correlation integral at C(N,r)=2/N, spoiling the O(N2
) scaling range of 

C(N,r). The kink vanishes in the N -oo limit, but only for N ?:_2-rv12, where 7" is 

the autocorrelation time (in units of sample time), and v is the dimension of the 

attractor. We propose a generalized finite N correlation integral C(W,N,r), which 

disregards pairs of points closer together in time than W. We find that 

C(W =-r,N,r) more accurately reflects the nature of the attractor, and in 

particular, converges toward C(r) more efficiently than the standard C(N,r). 

We introduce a stochastic model from which analytic results are obtained; 

then we consider a deterministic dynamical system for which numerical results 

bear out the analytical conclusions. 

9.1 The modified correlation algorithm 

We begin with a time series {v0,vl' ... ,vN_1} of m dimensional vectors 

vi £lRm. For what follows, it does not matter whether the vectors were measured 

directly or constructed by embedding a one-dimensional time series into JRm. 

Recall the definition of the correlation integral [7], 

C(N,r) 2 (9.1) 
N(N-1) 

which we rewrite in equivalent form for the purposes of this exposition 

N-1 
C(N,r) 2 2: (9.2) 

NCN-1) 
n=1 

Here, we propose a generalization that eliminates those pairs (vi,vi+n) with n < W. 
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N-1 
C(W,N,r) 2 L: 

n=W 

(9.3) 
(N+ 1-W)(N-W) 

Note that W=1 is just the standard algorithm. What we will show is that W>l 

can improve the convergence properties of the correlation integral. 

9.2 Autocorrelated Stochastic data 

Consider a limited (finite N) time series of autocorrelated Gaussian noise 

[8]. Specify the mean J1. =0, the variance (7
2

, and the autocorrelation a <1. For 

convenience [9], we will further assume that 

independent of each other. Thus, we might write 

V · 
1 

the coordinates of v . are 
1 

(9.4) 

where xi ER is one of the coordinates of vi. And then 

<xi> =j.J. 0 (9.5) 

<x~>=(72 
1 

(9.6) 

<xixi+n> a". (9.7) 
(72 

Note that as a-+1, the time series becomes more and more highly autocorrelated. 

The autocorrelation time (in units with .:1t =1) is given by T =llln(lla) or 

T=ll(l-a) for a near unity. 

Because we have stochastic data, we can use statistical methods to obtain 

an analytical expression for the correlation integral. We will see that the 

behavior of the correlation integral can be classified into two qualitatively 
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distinct regimes. If N is large enough (or ex. small enough), then the effect of 

autocorrelation is negligible, the trajectory "fills out" the phase space, and the 

slope of the log C(W,N,r) versus log r curve approaches the embedding dimension 

m for r «cr. On the other hand, for N not sufficiently large (or for a. too near 

unity), the effect of autocorrelation becomes noticeable and although the 

trajectory still fills out phase space, the correlation integral is not so well 

behaved; a structure is induced in the correlation curve, which inhibits good 

dimension estimates. And as we will see, the "sufficiently large" N that 

separates these two regimes can be extremely large. 

Rewrite Equation (9.3) for the correlation integral, replacing the inner sum 

over Heaviside functions with its expectation value 

C(W,N,r) 2 
(N+ 1-W)(N-W) 

(9.8) 

where P(X) denotes the probability that statement X is true. Now, 

P(lxi -xi+nlsr and lyi -Yi+nlsr and lzi -zi+nlsr and ···) 

(9.9) 

(9.10) 

For correlated Gaussian variables, the probability density is 

P(x s: xi s: x+dx, y s:xi+n S: Y+dy) 
X -2o: XY Y dx dy. 2 n + 2] 

2cr2(1 -a. 2n) 
(9.11) 

Then 



- 159-

1 
00

J dx xJ+r dy exp [ -

211<Y2~ 1 -a. 2n -oo x-r 

(9.12) 

where er f is the error function. Substitution back into Equation (9.8) yields 

our main analytical result 

C(W,N,r) 2 (9.14) 
CN+1-W)(N-W) 

9.2.1 Uncorrelated limit 

In the case of zero autocorrelation, Equation (9.14) reduces to a simple 

form: 

C(W,N,r) [er f(rl2a)]m (9~1 5) 

for a.=O. Recall that erj(x)et:.x for x<t:l and erj(x)-1 for x~l. The 

. rm 
correlation integral looks hke C(W,N,r) R:j {"i m for r <t:2a. And the exponent 

(<Y 11) 

m is just the value that we want our log-log plot to pick out. 

In fact, this is the same limit that is approached for N -oo, independent 

of a.. Since a. n -0 as n-co, most of the terms in the sum will be error functions 

with arguments very near r /2a; thus, 

lim C(W,N,r) 
N-oo 

[erf(r/2a)]m (9 .16) 
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for any value of ex. <1 , and again the embedding dimension m will be approached. 

9.2.2 Effect of Autocorrelation 

On the other hand, if ex. is very nearly one, or if N is not sufficiently 

large, the sum in Equation (9.14) cannot be so simply expressed. For small n, 

l-ex. n is noticeably less than unity and the argument of the error function will 

be noticeably larger than r/2(7. Also, since the er f is raised to the mth power, 

this effect is magnified with greater embedding dimension. Although r /2(7 is a 

good approximation to the argument of the er f for most of the terms (those 

with large n), those few for which this is not the case can actually dominate the 

sum for small r. 

In particular, for r <2(j~ 1 -ex. w, the first term (n = W) of the right hand 

side of Equation (9.14) is 

2(1 -ex. w rm
12 

(-r-)m 
N (j{i • 

(9.17) 

As N -oo this vanishes. But if N <20-cx. Wrm12, then the f irst term will be 

much larger than [er f(r/2(7)]m = ( ~r:;;:)m and indeed will dominate the entire sum. 
(j"'l?{' 

In this case, 

C(W,N,r) (9.18) 

for r «2(j~1 -cx. W+1. For r=2(j~1-cx. w, the error function saturates at unity 

and a log-log plot of C(W,N,r) versus r displays a plateau at C(W,N,r)=2/N. 

Finally, for r > (j{i(2/N)llm, the first term loses its significance and the 
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correlation integral C(W,N,r) begins to look like its corresponding a. -.0 (or N -.oo) 

limit. 

Now, the least nonzero value that C(W,N,r) may have is 2/N2
; this is 

because the number of distances must be integral. The usable range of C(W,N,r), 

I .e., the range over which C(W,N,r) cx:: rm, will be between 2/N2 and of order 1 for 

the uncorrela ted limit, and between 2/N2 and 2/ N for the case where 

autocorrelation is important. These two cases are qualitatively different, and the 

first is better by a factor of N/ 2. On logarithmic axes, the first has almost 

double the range of the second. 

The uncorrelated limit may be achieved by taking N sufficiently large, 

but "sufficiently large" can be tremendously large. With W =1, one needs 

N»2Tm12. For example, T-10 and m=20 demands N » 2 X 1010
• This is 

N2 /2 » 1020 distances to compute! One possibility is to decrease the sampling ra t e 

in the original data, thereby decreasing T . Another recommendation, which our 

notation has pro ba bl y made obvious by now, is to take W > 1. 

9.2.3 Recommendations for W 

As a minimum recommendation, we point out that if W > T(2/N)21m, then 

t here will be "sufficiently many" data points N that the range of linearity in the 

log-log plot will not be compromised. We note that this W is typically much less 

than N, so the modification is actually quite minor. 

Up to now, the problem has been discussed as one that "goes away" when 

N --oo . As has been seen, though, it is the first few t erms t ha t cause all the 

trouble: and they do not go away; they are merely overwhelmed . A better 
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algorithm, even If N Is sufficiently large, is to toss out those overcontributing 

early terms right from the start. In the example of autocorrelated stochastic 

data, this is achieved with W >T ln(m/2). 

From a more intuitive point of view, the taking of W ?_T ensures that the 

small r behavior of the correlation integral counts only the "accidentally" close 

pairs of vectors; it is not biased by those pairs whose vectors are close in space 

only because they are close in time. In other words, it is the geometrical 

properties of the attractor that are measured, unbiased by the dynamical process 

by which the attractor points are sampled. 

9.3 Numerical Results 

In this section we verify our analytical results with two numerical 

examples. First, we consider autocorrelated stochastic data such as was 

discussed in the analytical model. Then, we show that the results are more 

general, and apply as well to a deterministic dynamical system with 

autocorrelation. 

9.3.1 Stochastic data 

With the initial goal of mimicking real data from a specific physical 

system (the Caltech research tokamak [10]), we created a one-dimensional time 

series with f.J. =0, cr =20, ex. =0.9 (so T =10), and N =10000. We created m 

dimensional vectors, using the delayed coordinate embedding with a delay time of 

T=S so that a typical vector is 
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(9.19) 

Correlation integrals were computed with this data, see Figure 9.1(a). A quick 

and careless look at these curves might suggest a slope v that saturates with 

increasing m. A closer look, hcwever, reveals a more complicated structure. 

There is an extra shoulder, due almost entirely to the (anomalously large) n=1 

term. When a W =2 curve is plotted (Figure 9.2), the shoulder disappears, 

though as the W >2 curves demonstrate, anomalous contributions come also from 

the n =2 term. Notice, however, that. for W :?:3 the correlation integrals are 

essentially unaffected by further incr-eases in W. Figure 9.3(a) shows that the 

spurious saturation with m that was seen in the W =1 curves is not present for 

W =T=10; as m increases so does the slope of the log C(W =10,N,r) versus log r 

curve. These effects are more dramatically apparent in plots (Figures 9.1(b) and 

9.2(b)) of the slopes of the C(W,N,r) curves as a function of r. 

9.3.2 Deterministic dynamical data 

Although the effect we describe is best modeled with stochastic data, it 

is, in fact, a general feature of autocorrelated input and can be seen in 

dynamical data as well. The Mackey-Glass [11} differential delay equation, 

dx 
dt 

0.2x(t -s) _ 0.1x(t), 

1 + [x(t-s)]10 
(9.20) 

models a dynamical system of arbitrary complexity. Strictly there are an 

infinite number of degrees of freedom - note that the initial condition is the 

function x(t) specified over the range t&[t0 -s,t0 ]. Farmer [12], however, has 
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found that the effective number of degrees of freedom (I.e., the dimension) is 

finite and increases with delay time s. Grassberger and Procaccia [ 1 give a 

dimension of about 7.5 for the s =100 case. Using s =100 and the same numerical 

algorithm that is used in [ ], but increasing the sampling frequency so that the 

autocorrelation time is T=10, and renormalizing so that J.J.=O, and o-=20 - all 

this so that comparisons can be made with the random data), we compute 

correlation integrals of the Mackey-Glass data for various W and m. As in the 

stochastic case, the standard (W =1) curves display the unwanted shoulders 

(Figure 9.4(a)) and the modified (W =10) curves do not (Figure 9.S(a)). Again, 

the plots of the slopes are especially compelling. Convergence of the slope to 

the attractor dimension ( ~ 7 .5) is readily apparent for the modified correlation 

(Figure 9.S(b)), but no convergence is seen in the curves (Figure 9.4(b)) obtained 

by the standard algorithm. 

9.4 Conclusion 

We find that the introduction of a cutoff parameter W > 1 improves the 

convergence of the standard correlation algorithm toward its N -oo limit. 

Although we recommend W =T, where T is the autocorrelation time of the input 

time series; we point out that as long as W >T(2!N)21m, where N is the number of 

points in the time series and m is the embedding dimension, the exact choice of 

W is not important. 

As a final comment, we remark that these W >1 curves, once the standard 

W =1 curves had already been calculated, were very easy to obtain. We merely 

computed the n = 1, 2, . .. , W - 1 terms separately (each of which required only 

2/N, or 0.02% in our examples, of the work required to compute the whole curve) 
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and subtracted them from the W =1 curve. 
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Fiaure 9.1 Standard correlation intearals for autocorrelated random data. 

(a) Loa-loa plot of the standard (W =1) correlation intearal over a ranae of 

embeddina dimension m for stochastic data with N =10000 points, standard 

deviation r:T =20, and autocorrelation a. -0.9. Notice the horizontal plateau at 

C(N,W,r) .... 2/N; n.b .• log2C2/N)~-12.29. (b) Slope of the curves in (a). Here, the 

derivative v(N,W,r) = d(Zog C(N,W,r)]/d[Zog r] is approximated by v(N,W,r) =­

~[log C(N,W,r))/ 4[log r)> where the operator 4 is defined by ~f(r) =f(r+l) -f(r). 
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Fiaure 9.4 Standard correlation inte&ral for Mackey-Glass dynamical data. 

(a) Log-log plot of standard correlation integral over a range of embedding 

dimension m for Mackey-Glass differential: delay equation with N =-10000 points, 

renormalized so that c:r =20 and sampled at a rate 4t =2. (b) Slope of curves 

in (a). 
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Figure 9.5 Modified correlation integral for Mackey-Glass dynamical data. 

(a) Log-log plot of modified (W =10) correlation integral over a range of 

embedding dimension m for Mackey-Glass differential delay equation. (b) Slope 

of curves in (a). Note convergence toward dimension v -1 .S. 
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CHAPTER TEN 

10. STATISTICAL ERROR 

To a dynamical system we associate an ensemble of finite N time series, 

each corresponding to a different initial condition on the at tractor. For each 

time series we find a single dimension estimate d(N;X0 ), indexed by the initial 

condtion X0 £.A. We have, in effect, an ensemble of dimension estimates. 

In practice, we are provided with only a single finite N time series, so our 

estimate of dimension is a single value d(N;X0 ) for some X0 • If there are no 

systematic effects to bias our estimate, then the ensemble average is equal to 

the actual attractor dimension, 

d <d(N;X0 )>. (10.1) 

The root-mean-square deviation 

(10.2) 

provides the statistical error bar that we associate with our dimension estimate. 

Of course, we expect cr(N) -0 as N -oo, so the more points N in the time series, 

the closer is a typical estimate d(N;X0 ) to the actual dimension d. 

Despite the abundance of dynamical systems whose dimension is calculated, 

estimates of error bars in the literature have primarily been heuristic, "educated 

guesses." 
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10.1 Least-squares fit 

The commonest method for estimating the error in the slope of a 

log C(N,r) versus log r curve has been to take the usual linear fit error bar 

corresponding to the spread of points from a straight line. This method, 

unfortunately, is flawed in a fundamental way, and nearly always underestimates 

the correct value of the error. Probably this, as much as anything else, has led 

to the folklore of distrust that surrounds the correlation algorithm. 

Difficult as it may be to get an error bar for the final dimension estimate, 

it is fairly straightforward to put error bars on values of C(N,r) in· the 

correlation integral. Recall that C(N,r) counts the fraction of distances (out of a 

total N2/2) less than r. In particular, there are D =N2C(N,r)/2 of these 

distances. Treating distances as independent [1] allows us to use the Poisson 

error of {0. The error bar on C(N,r) is therefore 

cr C(N,r) ~2 c~~,r). (10.3) 

Using these error bars on the individual C(N,r) points, a weighted fit can be made 

through the log-log plot of C(N,r) versus r. 

The problem with this method is that the values of C(N,r) for various r 

are not independent. If C(N,r) counts the fraction of distances less than r, then 

C(N,r +d is the sum of C(N,r) and the fraction of distances between r and r + L 

It is clear that C(N,r +E) is quite dependent on C(N,r), especially for small E. If 

C(N,r) is computed at equally spaced intervals in r, the effect is to overweigh 
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the points with large r. In principle this should not affect the dimension 

estimate itself, as long as r is in the scaling regime over which C(N,r)o::r11, but it 

does decidedly underestimate the error bar. 

For E large (more particularly, for C(N,r +E) »C(N,r)), this objection is not 

as significant. In this case, though, there are few points through which the 

straight line is to be fit, and with only a few points on the C(N,r) curve, it is 

easy to miss second order features (such as the shoulder that is discussed in 

Chapter Nine or the oscillations due to lacunarity in Chapter Seven), which are 

diagnostic of systematic defects in the correlation integral. 

One possible compromise is to compute dimension by least-squares fit 

through all of the points in the scaling regime of the correlation integral, but 

then to estimate statistical error by considering the spread from this line of 

only a few well-separated points. This is something of a tortured compromise, 

and although we do not have any objections, we do not necessarily recommend it 

[2]. It provides, after all, a very Indirect measurement of the error bar defined 

in Equation (10.2). 

Experience has shown that unwelghted least-squares fits often give better 

dimension estimates than the weighted fits described above. That is because the 

failure to take into account the extra relative accuracy of the large C(N,r) 

values tends to give more weight to the small r values. This tends to 

compensate for the overvaluation of large r values discussed above; also, the 

added weight given to the small r values tends to favor the r -0 limit. However, 

this coincidental cancellation of effects (the magnitudes of which we have no 

reason to think will be commensurate) does not by any means justify the use of 



- 175 -

an unweighted fit. 

10.2 Takens' maximum likelihood estimate 

Rather than trying to find the best-fit slope on a log-log plot of the 

correlation integral C(N,r) versus r, Takens [3] provides an estimate of v directly 

from the list of all the D distances {r0, r 1, r 2, ... , r 0 _1} that are less than some 

fixed r 0 • Using the method of maximum likelihood, and assuming that the 

distances are independently chosen from a probability density P(r)cx:rv-1, Takens 

finds an estimator for v, 

1/ 
-1 (10.4) 

which has an expected error 

(10.5) 

Takens further shows that this estimator is optimal in that its expected error is 

the smallest of all estimators. 

We note that the number of distances less than r 0 is D=N2C(N,r0 )/2, 

which for fixed r 0 , scales as N2
; so Takens' estimate has an error bar of 

(10.6) 

which scales as liN for fixed r 0 • If the correlation integral scales as C(N,r)C<r v , 
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a 
1/ 
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(10.7) 

Equations (10.4, 10.5) are based on assumptions that may not be strictly 

true, namely, that the distances {r0,r1,r2, . .. ,r0 _1} are truly independent, and that 

the correlation integral C(N,r) scales exactly as rv. For a deterministic 

dynamical system, the distances between pairs of points cannot be truly 

independent. On the other hand, if the dynamical system is chaotic, then as 

nearby trajectories diverge, they "forget" about their previous association, and 

distances well separated in time become effectively independent. The effect on 

Equation (10.5) is to replace D with Deff' which we presume is proportional to D. 

Thus, the 0(1/N) scaling still holds, but the coefficient is increased [4]. For the 

Henan attractor, this increase amounts to a factor of about three. Note that for 

a quasiperiodic (or any nonchaotic) dynamical system, the assumption of 

independence fails completely and the 0(1/N) scaling can no longer be trusted. 

In other chapters (Chapters Six and Seven, most notably), we have seen 

examples of strange attractors for which C(N,r) does not scale strictly as rv 

We might ask whether these effects will alter the statistical error bar predicted 

in Equation (10.6). A full investigation of this question remains to be 

undertaken. 

Numerical evidence allows us to claim that an estimate of v based on a 

linear fit through a log-log plot provides a value in most cases as good as v. 
What the linear fit does not provide is an estimate of the error bar. We 
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suggest that the error bar in Equation (10.6) is appropriate, though we note that 

the coefficent may be off by a constant factor. 

10.3 Average pointwise dimension 

Because of the difficulty in obtaining reliable error bars on dimension 

estimates, Holzfuss and Mayer-Kress [5] have advocated individual pointwise 

dimension estimates at each point (or at a sampling of Nref reference points) on 

the attractor. The immediate advantage of this approach is that from a single 

time series many estimates of (pointwise) dimension are taken. From these, a 

mean provides a natural estimate, and the standard deviation of the _mean 

(o-1 ~Nref' where o- is the ordinary standard deviation) provides an error bar. 

Though more careful numerical experimentation is needed to justify the 

usefulness of this approach, a leading order analysis suggests that the approach 

is reasonable. Using Takens' estimate for pointwise dimension will give estimates 

of pointwise dimension that have a standard deviation of 0(1!.[0), where D is the 

number of distances in the estimate; we have D :s_N, so we can estimate the 

standard deviation as O(l!{N). The standard deviation of the mean is therefore 

0(1/ ~NrefN). With Nref=N, which means that all O(N2
) distances are computed, 

we predict a statistical error of 0(1/N), the same as the full correlation integral. 

10.3.1 Nonuniformity 

A possible disadvantage to the use of the average pointwise dimension is 

that the pointwise dimension varies over the attractor. Although "a lmost all" of 

the points on the attractor have the same pointwise dimension, the finite 
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resolution at which the attractor is viewed leads to a nonuniformity in the 

observed pointwise dimension. This is an effect we shall attempt to quantify in 

this section. 

Consider the model of the weighted Cantor set introduced in §7.1.2. In 

the language of that chapter, a typical point x could be expressed 

X (10.8) 

but since the set would be viewed with a finite resolution of, say, E.=n-m, the 

point could be approximated by x =" .s1s2 ... sm," and the dimension at that point 

would be observed to be 

d = lim log .u<Bx(r)) 
r -o log r 

(10.9) 

where .u is the invariant measure, and Bx(r) is the ball of radius r centered at 

the point x. Thus, 

d 
m Zog(l/n) ' 

(10.10) 

where Nk is the number of times "k" appears in the sequence "s1s 2 ... sm." Note 

that the expected value <Nk> is given by m ·pk, and so the average value <d> 

of this measurement of pointwise dimension gives the information dimension, 

<d> 
m log{l/n) Zog(lln) 

(10.11) 
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To quantify how much a typical value of d varies from this average, compute 

the variance 

7f <NjNk> log Pj log pk 

(m Zog(l/n))2 

Now the joint probability distribution of N j and Nk, for j ~k, is given by 

m! s t (1 )m-s-t 
ltl( - -t)l Pj pk -pj-pk . s . . m s . 

For j=k, this reduces to 

P( N --s, N -- t ) 
J J P(N rs)ost m! s m-s 

1( _ )1 PJ· (1-pJ.) 0st• s . m s . 

from which it follows that 

Hence, 

7f [m(m-1) Pj Pk + m Pj ojk] log Pj log pk 

(m log(l/n))2 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

(10 .16) 
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m(m-1) [ f pk log pkr + m f pk (log pk)2 

(m log(l/n))2 

(log(l I n))2 

Write 

so that . 

and 

<log p> = L pk log pk 
k 

Note then that, from (10.10) and (10.21), 

<log p> 
<d> = log(l/n) · 

Also note that 

or 

cr2 = _ 1_ { <Clog p)
2

> - <log p>
2 

} 
d log E log(lln) ' 

(10.18) 

(10 .19) 

(1 0.20) 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

(1 0.26) 

where E=n -m is the resolution to which the dimension in computed, and the term 
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in braces is a coefficient that corresponds to the "nonuniformity" of the set. 

We will show that this nonuniformity can be expressed in terms of the 

generalized dimensions of Hentschel and Procaccia [6]. In [6], this formula is 

given for the generalized dimension: 

l 
(q-l)log p> 

1 
1
. og<e 

-- 1m --='-----=-----
q -1 E--+0 log E 

(10.27) 

where the angle brackets <> denote the average of probabilities p in boxes of 

size E. Since our model involves a strict self-similarity, we can write 

Dq 1 
q-1 

l 
(q-l)log p 

og<e > 
log(l/n) 

(10.28) 

and now the angle brackets have the meaning assigned them in Equation (10.21). 

In particular, we find 

dDql 
dq =1 

<(log p)2> -<log p>2 

2 log(l/n) 

so that with the definition [7], 

the variance of d, given by Equation (10.26), becomes 

2 -2~01 
C7d = log E • 

(10.29) 

(10.30) 

(10.31) 
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Suppose we have N points on the d dimensional attractor, and let us 

estimate the pointwise dimension at each of these N points . The resolution e: to 

which we can compute pointwise dimension will be limited by the finite N, and in 

particular, e: =N - 1/d. We have 

2 -2}-.d 
(1d = -­

log e: 
(10.32) 

Now an average of N estimates of d will have an error bar of 11{N the size of a 

single estimate, so our error bar on d will be 

(10.33) 

We see that the statistical error bar for the average pointwise dimension is 

much larger, 0(1/~N log N) instead of 0(1/N), for nonuniform attractors. 

Whether or not a similar problem affects the ordinary correlation dimension 

remains to be investigated. 

10.4 Notes and References 

[1] This invokes the assumption of the E2 ensemble discussed in Chapter Four. 

[2] On the other hand, we note that this method does predict an error bar of 

0(1/N), in agreement with §10.2. 

[3] Floris Takens. "On the numerical determination of the dimension of an 

attractor," in Dynamical Systems and Bifurcations, Groningen 1984, Vol. 

1125 of Lecture Notes in Mathematics (Springer-Verlag, Berlin 1985). 
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[4] In the language of Chapter Four, this paragraph is arguing that the E1 

ensemble can replace the E0 ensemble, and the effect on the error bar is only 

that it is multiplied by a constant (the scaling with N is not altered) . We note 

that the Takens estimate actually assumes the E2 ensemble (distances are 

independent); that we are justified in replacing E1 by E2 is argued in Chapter 

Four. 

[5] Joachim Holzfuss and Gottfried Mayer-Kress. "An approach to error­

estimation in the application of dimension algorithms," in Dimensions and 

Entropies in Chaotic Systems, ed. G. Mayer-Kress (Springer-Verlag, Berlin, 

1986). 

[6] H. G. E. Hentschel and Itamar Procaccia. "The infinite number of 

generalized dimensions of fractals and strange attractors," Physica 80 (1983) 

435. 

[7] have chosen ~ to correspond to the " uniformity factor" described in 

Section IV of R. Badii and A. Politi. "Renyi dimensions from local expansion 

rates," Phys. Rev. A 35 (1987) 1288. 
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CHAPTER ELEVEN 

11. LIMITATIONS ON DIMENSION IMPOSED BY FINITE N 

In the previous chapter, we discussed the statistical error that arises 

from finite N time series. In this chapter we note that there are systematic 

finite N errors as well. Taking as a specific systematic error the edge effect 

that comes from a Gaussian distribution of points in the embedding space, we will 

find that the number of points N needed to maintain a given error tolerance 

increases exponentially with 1.1. Finally, by comparing the systematic and the 

statistical error, we will obtain a strategy for choosing the optimal scaling 

regime cutoff r 0 • It is for values of r ~r0 that we seek scaling C(N,r) <Xrv. 

We recall the definition of the correlation dimension 

v =lim 
r -o 

log C(r) 
log r ' 

where C(r) = lim C(N,r). 
N--+oo 

(11.1 ) 

In practice, we cannot take N ..... oo, since we have only a finite amount of 

data, and so we usually approximate C(r)=C(N,r) with large N. The 

approximation is a reasonable one only for large r; In particular, for r < r mon 

where r mon is the smallest of the N(N -1)12 distances, we have C(N,r) =0, and the 

limit 

1
. log C(N,r) 
1m l , 

r -o og r 
(11.2) 
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cannot be taken. 
log C(N,r) 

Instead, we might define v(N,r) = and then say 
log r 

v=v(N,r ) "for small r." Or, somewhat more practically, 

v(N,r) -
d[Zog C(N,r)] 

d[Zog r] 
r 

C(N,r) 
dC(N,r) 

dr 

noting as usual the exceptions discussed in Chapter Seven. 

In Chapter Six, we discuss 

v(r) 
r dC(r) 

- C(r) Cfr 

(11.3) 

(11.4) 

as an approximation to 1.1 at finite (nonzero) r in the context of the "edge 

effect." In this chapter, we will estimate rmon as a function of N and 1.1, and then, 

approximating v(N,r) by v(r) at r =r min• we will obtain an expression for computed 

dimension as a function of N. (Note that we have discussed r mon as a function of 

N in the case 1.1 =1 in §4.2.2 and §4.3.2.) 

We, of course, expect to find that N ...... oo leads to the correct dimension, 

but what we are after is an indication of just how large N has to be in order to 

achieve accurate results. 

11.1 Edge effect model 

We will use the edge effect as a canonical example of a systematic error 

that vanishes as N ...... oo. We have seen (in Chapter Six) that the error vanishes 

as r ...... o and that, typically, it vanishes quadratically with r. In this section we 

will relate the N ...... oo and the r ...... Q limits and then will observe the systematic 
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error as a function of N for large N. 

Although we are going to address a very specific source of systematic 

error, we do not mean for the results to be taken too literally. After all, if this 

were an accurate description of the error in the dimension estimate, then the 

thing to do would not be to quote it as an error bar, but to make the 

appropriate correction to the estimate. In the model below, the edge effect 

causes the algorithm to underestimate the actual dimension, yet we have seen 

(§6.3) examples where the the edge effect causes an overestimate. 

Our model is a Gaussian distribution of points in Rm. The "at tractor" 

fills out the entire embedding space, so its dimension is 11 =m. We have fot the 

correlation integral (see §9.2) that 

C(r) 

or C(r)= ( ~'-( at small r. We measure the dimension 
O'""'i1t' 

so 

v(r) 

v(r) 
Jl 

(11.5) 

(11.6) 

(11.7) 

Using the Taylor series expansions for the error function and the exponential, 

er f(r/20'") r - (11.8) 

and 
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we can get the small r behavior of Equation (11.7): 

v(r ) 
J/ 

(1 1.9) 

(11.10) 

We note that for fixed r, the relative error is independent of the actual 

dimension v . 

However, we will evalutate the expression at an r that is not fixed, but 

depends on N and v . In this case, with N fixed, we have 

(11.11) 

However, the smallest that C(N,r) is allowed to be is 2/N2
• This gives an implicit 

ex pression for rm,n [1]. 

(11.12) 

which gives 

-1rl[ z]ll v] r m'" = 2a erf U2/N . (1 1.13) 

T he relative error depends on the square of r m,"' according to Equation (11.10). 

v -v(N) 
J/ 

~ ~ [ ,-1[ [-2 zog(NI-I2)Jn ]

2 
~ 3 er exp v U 

(1 1.14) 

(1 1.15) 
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Figure 11 .1 shows .v(N) versus .v as given by this equation. For large N, so 

log N » m, we have 

.v - .v(r) 
J/ 

5?r [ 4 log(NI {2)] 
= 12 ex p - v 51!" [li]-41 

J/ 
12 -!2 . 

11.2 Number of points N needed to achieve specified accuracy 

(1 1.16) 

log(NIN ) 
That the error should depend on the term v 0 implies that for a 

fixed relative error, say 10%, the number of points needed to get a dimension 

within that error will depend exponentially on v. That is, 

(11.17) 

for some k. For Equation (11.16), an error of 10% requires at least N=1.4e0·64
V 

points to see a dimension v . This tells us, for instance, that we would need only 

- 1000 points to see a dimension of 1/=10; experience tells us that this is a 

serious underestimate. 

T his expression for relative error assumes that the slope is taken at 

r-r mm• an extremely optimistic assumption. In practice, the slope is taken over 

some appreciable range r mm ~r ~r0 of the correlation integral, so there are 

enough distances that statistical error is not a problem. If, for instance, we take 

the slope "halfway up the curve," where C(N,r)=liN, then our expression for 

t he error in v becomes 

v - v(N) 
J/ 

5?r [ 2 l og(N)J = 12 exp - -v- ' (1 1.18) 
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and the 10% error will take N =e1.28
V, so v = 10 requires over 3 X 105 points (an 

order of magnitude more than is usually available). 

It is clear that these estimates are very sensitive to the assumptions 

(they are also sensitve to the values of the coefficients i; and ..[2, which 

themselves are by no means universal and depend on the nature of the system -

our model of Gaussian distribution is meant merely as an example), and for this 

reason their value for quantitative predicition is limited. Nonetheless, they 

demonstrate the exponential scaling of N with JJ, which, in turn, explains why it 

is so difficult to analyze high-dimensional time series data. 

11.3 Optimal scaling regime 

We have seen above that the systematic error decreases as r 0 decreases. 

(11.19) 

However, as r 0 decreases, fewer distances will be actually calculated in the 

estimation of v, and the statistical error will increase; in Chapter Ten, we have 

from Equation (10.5) 

(11.20) 

To prevent one or the other error from dominating, we choose our scaling cutoff 

r 0 so that both errors are roughly the same magnitude: equating 

O(r~) =0(N-1r~v/2) gives 
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(11.21) 

the scaling with N of the optimal cutoff r 0 • This gives an estimate of how the 

relative error scales with N: 

(11.22) 

Including both statistical and systematic error in this sense, we see that the 

number of points N needed to see a dimension v to a specified accuracy varies 

as 

(11.23) 

where k = -~ln(<YI v) increases as the desired error (j decreases. 

11.4 Notes and References 

[1] This estimate of rmin is based on the assumption that the correlation integral 

is smooth all the way down to C(N,r) =2/N2
; we have seen this in highly chaotic 

systems, but for quasiperiodic systems, as discussed in Chapter Eight, r m,n 

typically satisfies an implicit equation of the form C(N,rm,n)=O(l/N). In this 

case, the error will be much greater; equivalently, many more points N will be 

needed to achieve the same accuracy. 



v(N) 
log N 

0 1 

- 191 -

2 3 4 5 6 

Fiaure 11.1 Finite N edae effect (see text for model): v{N) veraus v, where v is 

the correct dimension. v -limN ...,.
00

v{N). Note that both axes have been scaled 

by log N, so the curve is universal for all N. 
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CHAPTER TWELVE 

12. COMPUTATION 

Implementation of the correlation algorithm involves computing the O(N2
) 

distances between every pair of points in a data set of N points. The operations 

involved in computing all these distances dominate the computation time and limit 

how large N can be. On the other hand, to compute dimensions accurately, N 

should be as large as possible. If the bottleneck is in the computation (and not, 

for instance, as it is for some systems, in the collection of the data), then one is 

motivated to improve either the hardware or the software that performs the 

computation. 

12.1 Hardware: parallel processor 

Our first approach in this direction was to enlist the aid [1] of the 

Caltech Hypercube Mark II, a parallel processor based on thirty-two nodes each 

containing an Intel 8086 microprocessor. Implementing any problem on a parallel 

computer involves decomposing the problem into separate tasks that can be 

performed simultaneously. Finding distances between pairs of points, it turns 

out, is a problem with a very straightforward decomposition. We will not 

discuss the details here but refer the reader to [2,3). With the Hypercube, we 

were able to achieve a speedup very near the theoretical limit. 

12.2 Software: box-assisted correlation 

Recently, we devised a new algorithm [4] for computing C(N,r) more 
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efficiently. The idea is that although there are a total of O(N2
) distances, it is 

only the small distances that contribute to the r --+0 limit of the correlation 

integral. The standard algorithm computes all of the distances and then 

estimates a dimension from the slope of log C(r) versus log r, based only on 

distances less than some cutoff r 0 • 

The box-assisted algorithm computes all distances r~r0 and some (but not 

all) of the distances r>r0 • It is by not computing all those extra distances that 

this algorithm is able to achieve its advantage. 

Indeed, we find that for appropriately chosen r 0 , we can find the smallest 

O(N) distances in O(N log N) time [5]. This can be dramatically faster than the 

O(N2
) time that is usually required. We present an example below with N-64000 

points that can be implemented on a Personal Computer; the box-assisted 

algorithm cuts the computation time by a factor of over a thousand. 

In this procedure, points are distributed into m-dimensional "boxes" of 

size r 0 • Then, rather than compute distances between every pair of points, we 

compute distances only between points that are either in the same box or else 

are in neighboring boxes. This way, we get all of the distances in the range 

0 ~r ~r0 • In the process, we also compute a few extra distances in the range 

r 0 <r ~2r0 [6], which are discarded. See Figure 12.1. 

There is, to be sure, an inefficiency in these discarded distances, but it is 

no more inefficient than the standard algorithm that computes and discards a// 

distances r > r 0 • On the other hand, there is a certain amount of "overhead" 

with the box-assisted correlation algorithm: one must keep track of which points 

are in which box and which boxes are neighbors of each other. 
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The primary extra work, we find, comes from searching for boxes' 

neighbors. When we set up our grid of boxes we do not actually provide a 

separate memory location for each box. If we did, then we would find, for a 

typical at tractor of dimension v <m, that most of the boxes would be empty. 

Instead, we have what amounts to a list of box positions. From the point of 

view of computer storage, empty boxes do not exist. Given the position of a 

box's neighbor, the searching routine must determine whether or not a box exists 

at that neighboring position, and if it does, which points are inside it. 

In this algorithm, we associate a box position with each point. Then the 

points are sorted lexicographically [7] according to the position of each box. 

This effectively sorts our list of boxes and at the same time provides a 

convenient way to determine which points are in a given box. Furthermore, 

since the boxes are sorted in linear order, a binary search can efficiently find 

which if any box is at a given position. 

The cost of all this extra sorting and searching is only O(N log N). For 

small r 0 , therefore, the total execution time for computing a correlation 

dimension can be dramatically reduced. 

12.2.1 Evaluation of effectiveness 

In this section, we analyze the efficiency of the box-assisted correlation 

method and discuss in more detail the various operations that comprise the 

algorithm's over head. 
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12.2.1.1 Run time 

We divide time required to execute the box-assisted correlation 

computation into four components: a reading time, a sorting time, a distance 

computation t ime, and a neighbor searching time. We write 

T box -assisted = Tread + T sort + T dist + T search· (12.1) 

These correspond more or less to the chronological operations of the algorithm. 

First, it reads all the points, next it sorts the points, and finally, for the rest of 

the time it switches back and forth between searching for neighboring boxes and 

computing distances between points in those boxes. 

The reading time we can write directly, 

Tread T readN, (12.2) 

where Tread is the time to read a single point and associate a box location with 

it. Sorting N points can be done in O(N log N) time, so we write 

(12.3) 

The time spent computing distances is proportional to the number of distances D 

that are ultimately computed; that is, 

T dist T dist0 • (1 2 .4) 
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which still leaves us to estimate D for this algorithm. Just as the searching 

routine is the most complicated part of the algorithm, estimation of T search is 

the most difficult. For now we will write it 

Tsearch T searchs ·B, (12 .5) 

where B is the number of nonempty boxes and the variable S - into which all 

of the complication is incorporated - is the average number of "search steps" 

per box. 

In practice, it is these last two terms, the distance computations an~ the 

neighbor searches, which take all the time. Except for very low-dimensional 

systems (m ~2) and/or very small boxes r 0 --.0, the reading and sorting times are 

comparatively negligible. 

In the standard algorithm, by contrast, there is no searching and sorting, 

but all of the distances are computed, so 

T standard - T readN + T dist -~N
2 

• 
(12 .6) 

• As long as D «~N2 and the searching term does not dominate [the sorting time 

cannot dominate, since it is manifestly O(N log N)], the running t ime for the 

box-assisted correlation algorithm will be much less than for the standard 

algorithm. 

The coefficients Tread' T sort• T dist' and T search are machine-dependent 

[8], though they are all of essentially the same magnitude. T dist increases 
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directly with embedding dimension m; T sort and T search increase more or less 

linearly with m but level off for large m. For our program, points are read in 

directly as a time series and then embedded [9] into Rm, so Tread is independent 

of m. 

12.2.1.2 Choice of box size 

The box size r 0 is the only parameter over which the user has full 

control in the box-assisted correlation algorithm. How D, B, and especially S 

depend upon r 0 is nontrivial, though we will make some estimates below. 

Two attitudes can be taken toward optimum choice of box size r 0 . - We 

might for instance specify beforehand that we want all distances less than that 

value of r 0 that determines the scaling region. Arguing that the more distances 

the better the statistics [10], we say that we want to compute as many distances 

as possible and exclude only those beyond which the r 11 scaling fails. 

The second approach chooses r 0 so that O(N) of the ~N2 distances are less 

than r 0 • The standard algorithm provides the full O(N2
) range of C(N,r), but it 

takes a time that is also O(N2
). Since it is a log-log plot of C(N,r) versus r that 

will be ultimately constructed, we may want to optimize the logarithmic range 

obtained per unit of computing time; that is (log D*)IT, where D* is the number 

of distances less than r 0 , and T is the time to do the computation. We will later 

see that 

T (12. 7) 
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Thus, choosing D* =O(N) optimizes (log D*)IT. 

Now we can estimate C(N,r) with C(...[N,r); this will cost O(N) and will give 

a range in the correlation integral of O(N) - in particular, this estimates C(N,r) 

for the larger distances. If we can compute the smallest O(N) distances cheaply, 

in O(N log N) time, say, then we will have obtained an O(N) range for the C(N,r) 

curve, which is distinct from the large-distance O(N) range. These two ranges 

may then be "pasted together" on logarithmic axes, providing O(N2
) range with 

significantly less than O(N2
) work. 

To find r 0 so that N distances are less than r 0 , we invoke the definition 

of the correlation integral to get the implicit equation 

(12.8) 

which, when we apply the approximation C(N,r0 ) ~ (r0 /R)v, we can invert for r 0 • 

(12.9) 

This may seem a bit circular, defining r 0 in terms of v, the quantity we 

are ultimately after, but rough estimates of v and R are usually available, and 

at any rate can be estimated from cc...[N,r). 

12.2.1.3 Number of distances 

Of the D distances we compute, the "desirable" distances are those less 

than r 0 • We can write this number down exactly, in terms of the correlation 
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integral 

02.10) 

Now the actual D includes some distances that are greater than r 0 , and so will be 

larger than this. We estmate the ratio of "desirable" distances to the total D 

by considering distances from a single (typical) point. See Figure 12.1. The 

number of "desirable" distances measured from this particular point will be 

proportional to (2r0 )
11

, since a hypercube with diameter 2r0 centered on the 

particular point will contain all those points to which the distance is less than 

r 0 • By the same token, a hypercube of diameter 3r0 centered not at the 

particular point but at the center of the box in which the particular point 

resides will contain all the points to which distances are measured. Hence, the 

ratio of desirable distances to total distances computed will be (2/3)11
, and 

D (12 .11) 

For r0~2R/3, this equation overestimates D; the number of distances calculated 

is never larger than ~N2 • It follows that the time spent computing distances is 

(12.12) 

which for fixed 11 varies linearly with the number of desirable distances. 

Should we desire O(N) distances, T dist will be O(N) as long as the coefficient 

(3/2)11 «N. That is, 
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(12.13) 

In fact, as we will see later, it is not the extra distances but the increased 

search time that limits how large a dimension we are able to compute efficiently 

with the box-assisted correlation algorithm. 

12.2.1.4 Number of boxes 

If R is the "radius" of the attractor, then (2R/r0 ) estimates the number of 

boxes along any one dimension, and (2R/r0 )
11 [11) is the number of boxes exp_ected 

to cover the attractor. Now if r 0 is sufficiently large that there are many 

points per box, then (2R/r0 )
11 is a reasonable estimate of B. On the other hand, 

since the number of points N is finite, we expect that as r 0 decreases, more and 

more of these covering boxes will be empty. In particular, as the boxes become 

ever tinier, the points will eventually come to be individually wrapped - a 

separate box for each point. That is, 

lim B N. (12.14) 
r 0 -0 

If we model the distribution of points among the available boxes with the 

Possion formula [12), then the number of nonempty boxes is 

(12.15) 
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12.2.1.5 Number of neighbor searches 

Unlike D and B, which depend on the geometry of the attractor, S - the 

average number of searching steps from each box - depends on the cleverness 

of our search strategy . Although this makes it difficult to give a good general 

estimate for S in terms of the other parameters, we can provide some upper 

bounds. We will provide two upper bounds in particular, each associated with a 

different strategy for neighbor searching. Our algorithm uses a hybrid of these 

two strategies, so both bounds apply. In many cases, it turns out that the 

actual S is much less than both bounds. 

From every box, we can search each of the neighboring positions to see if 

there is a nonempty box at that position. Since the boxes are sorted, each 

search can be done in log2B steps. If (bl' ... ,bm) is the position of the "from" 

box, then the positions of the " to" boxes will be of the form (b 1+~b1, ... , 

bm+~bm) where ~bid -1,0,1} for i=1, .. ,m. Thus, there are 3m "to" positions. We 

can write 

(12.16) 

where the -1 is to exclude the case ~b1 =~b2 = · · · =~bm =0 (the "to" box is 

the same as the "from" box) and and the factor of two stems from the symmetry 

of distance: d(A,B)=d(B,A). Having found all the distances from points in Box #1 

to those in Box #2, we needn't compute distances from points in Box #2 to those 

in Box #1. 

For intermediate numbers of boxes, 3m < B ~N, and with v~m, Equation 
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(12.16) not only bounds but reasonably estimates S. For low-dimensional 

attractors, v«m, a box typically will have many empty neighbors, and the 

effective S will be much lower than this bound. 

The alternative strategy is to go through the list of boxes one at a time 

and to ask each of them: Are you my neighbor? There are B/2 such candidates 

(with the factor of two arising as above), and the binary search is avoided, so 

S ~~B. (12.17) 

This second bound provides a reasonable estimate of S only when B is very 

small or when v is very large (see §12.3). 

We can use these bounds on S to bound the search time. Using B ~N and 

Equation (12.16), we have 

3m-1 
T search ~ T search -2- N log2N, (12.18) 

which formally is O(N log N). We note, however, that this "order" is sensible 

only if the coefficient is not too large; this is for 3m «N, or 

(12.19) 

In practice, we find the search time begins to overrun the total execution time 

of the standard algorithm at m =0.75 log2N. From the second bound, in Equation 

(12.17), we have 
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(12.20) 

which shows that in the worst case the search time is O(N2
). In this case, the 

total execution time for the box-assisted correlation method may exceed that of 

the standard method - this certainly is a case to be avoided! But at least the 

search time is never any worse than O(N2
). No matter how large m or how 

poorly chosen r 0 , the search time will never be atrociously longer than the total 

execution time for the standard algorithm. 

12.2.1.6 Large and small box size limits 

Our bound in Equation (12.17) tells us that the search time is negligible if 

r 0 is so large that all the points fall into a single box. In that case all of the 

distances are computed, and all of the computation time goes into computing 

distances. In other words, the r0 ~R limit of box-assisted correlation does 

exactly what the standard algorithm does and does it for essentially the same 

computational cost. 

We consider also the limit r 0 -0. In this case, B -N, and although 

formally both bounds on the search time are at their maximum here, the boxes 

are becoming sparser and more isolated from each other. Eventually, none of 

the boxes have any neighbors and the actual search time plummets to as low as 

T searchN. In this limit we also have D-o, so the total execution time is very 

small. Of course, with no distances computed, not much is learned about the 

attractor (this much is learned: that the smallest distance is greater than r 0 ), so 

there is not much practical benefit in this limit. 
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12.2.2 Implementation 

A pro~ram [14] to implement this algorithm has been written in the C 

language and tested on an IBM PC running at 4.77 MHz with 640K RAM. We find 

that memory limitations [15] (not time constraints!) prevent us from processing a 

time series of more than 64000 points. 

As an example, we compute the dimension of the Henon attractor [16] from 

a sample of N-64000 points. Using r 0 -0.0005 and m-2, the whole computation 

takes about 36 minutes . Only four of those minutes are actually spent 

computing distances (and of the 1.88 X 105 distances that are computed, · only 

1.15 X 105 are actually used); the rest of the time is spent "setting up:" it takes 7 

minutes to read in and box the points, 15 minutes to sort the points, and 10 

minutes to search for neighboring boxes. However inefficient this seems at 

first, it is still dramatically faster than the standard approach of computing all 

~N2 
= 2.05 X 109 distances, which on our PC would take over thirty days! 

This choice of r0~0.0005 is much smaller than what might conventionally 

be considered the scaling regime, but it enables us to get the shortest O(N) 

distances computed and tabulated. As a separate computation, we can take a 

smaller sample of O(...[N) points and get an estimate for what the " rest" of the 

correlation curve looks like, and again this will take only O(N) time. What we 

end up with. in this case. is the full 0(N2
) dynamic ran~e in C(N,r) computed with 

O(N log N) work. See Figure 12.2. 
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12.3 Prism-assisted correlation 

Because there are so many potential neighbors (~3m) in systems of large 

embedding dimension, we find that the search time increases very rapidly (though 

not quite exponentially it is limited ultimately by the bound in 

Equation (12.20)) with increasing m. Empirically, we find with random data [17] 

that the box-assisted algorithm becomes worse than the standard algorithm for 

embedding dimensions larger than m=0.75 log2N. 

However, we have devised a variant of this algorithm, which gets around 

the large m limitation. In the m-dimensional space we impose a b-dimensional grid 

where b is less than m. The "boxes" in this space are m-dimensional rectangular 

prisms with b short sides of length r 0 and m-b long sides, which extend the 

entire length of the attractor. As before, we compute distances between pairs of 

points only if those points are in the same or in adjoining prisms. Note that 

b~m is just the regular box-assisted algorithm and b=O corresponds to the 

standard algorithm. 

With b <m, there are fewer neighbors, and the coefficient of the search 

time looks like 3b instead of 3m. We can take m as large as we like, and the 

search time will not increase. 

On the other hand, for fixed m, a smaller value of b means that more 

distances are computed. This is because of the distances we have to compute 

between points at opposite "ends" of these long prisms. Following Equation 

(12.11), we have 

(12.21) 
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distances to compute. Let us take r 0 , as usual, so that O(N) desirable distances 

are computed. We substitute Equation (12.9) into the above to get 

(12.22) 

In choosing the best value for b, we have these two competing effects. The 

number of distances computed decreases with increasing b, and the number of 

neighbors the program has to search for Increases. We can estimate the sum of 

the two times, 

noting that the term for search time is valid only for b < .v. Formally, we can 

optimize by setting aT / ob=O. The resulting expression is quite unwieldy, but in 

the limit of large N and large .v (:»log N), we have 

b 
log N 

log (9/ 2) = 0.5 log2N. (1 2 .24) 

Numerical experiments with random data confirm this estimate. See Figure 12.3. 

12.4 Notes and References 

[1] We are indebted to Professor Geoffrey C. Fox and the Caltech Concurrent 

Computing Project (C3 P) for assistance and use of their machine. 



- 207 -

[2] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. W. Walker. 

Solving Problems on Concurrent Processors (Prentice-Hall, Englewood Cliffs, 

New Jersey, 1987). 

[3] James Theiler. "Strange attractors and turbulence," Cal tech Concurrent 

Computation Program (C3P) Technical Bulletin 56.43, 56.44 (1985) 1:11. 

[4] James Theiler. "Efficient algorithm for estimating the correlation dimension 

from a set of discrete points," Phys. Rev. A (In press). 

[5] A general discussion of related problems from a computer science point of 

view can be found in Jon Louis Bentley. "Multidimensional Divide-and-Conquer," 

Comm. ACM 23 (1980) 214. We are indebted to J. D. Farmer for this reference. 

[6] This assumes the L00 or "maximum" metric. For the L1 or "taxicab" metric, 

the appropriate inequality is r ~2mr0; for the L2 or Euclidean metric, it is 

r~2{til·r0 • 

[7] In the "lexicographic" ordering, we say that a <b, where in coordinate 

notation a = (al'a2, ... ,am) and b = (bl'b2, ... ,bm), if and only if ak <bk for some 

k ~m, and ai=bi V i <k. 

[8] On an IBM PC, we find T dist=(0.5 +0.2m) msec. In the Takens method, we 

also have to take the logarithm of all distances less than r0 ; these cost 4.3 msec 

each (with an 8087 floating point coprocessor). Also T search =(1.5+0.6m) msec 

and T sort=(0.44 +0.09m) msec, with some levelling off at large m. Finally, 

Tread = 6.7 msec. There is a small memory compiler option that cuts these 

times in half, but it can be used only for N <5000. 

[9] Floris Takens. "Detecting Strange Attractors in Turbulence," in Dynamical 

Systems and Turbulence, Warwick, 1980, Vol. 898 of Lecture Notes in 

Mathematics (Springer-Verlag, Berlin, 1981). 
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[10] The error bar on v will scale as 1/~D*, where D* is the number of 

distances less than r 0 • Floris Takens. "On the numerical determination of the 

dimension of an attractor," in Dynamical Systems and Bifurcations, 

Groningen, 1984, Vol. 1125 of Lecture Notes in Mathematics (Springer-Verlag, 

Berlin, 1985). 

[11] Properly, we should write B=(2R/r0 )d, where d is the "capacity" of the set. 

Though capacity and correlation dimension are not precisely the same thing, our 

approximations do not distinguish between them. 

[12] What we really assume is that points are distributed uniformly among those 

boxes that cover the attractor; this presumes not only that the distribution of 

points is uniform over the attractor, but that the intersection of the attractor 

with boxes is uniform - in fact, there are often a lot of "clipped edges." For 

details of this effect in another context, see W. E. Caswell and J. A. Yorke. 

"Invisible Errors in Dimension Calculations: Geometric and Systematic Effects," 

in Dimensions and Entropies in Chaotic Systems, ed. G. Mayer-Kress 

(Springer, Berlin, 1986). 

[13] The source code, further documentation, and executable files, which run on 

an IBM PC (or compatible), are available from the author. 

[14] In our Grassberger-Procaccia routine, we use 8N + 4xr0 bytes, where x is 

the "expansion factor," which is multiplied by the floating point input before 

discretizing into integers. In our Takens maximum likelihood routine, we use 14N 

bytes, since the floating point input is stored in double precision. 

[15] M. Himon. "A two-dimensional mapping with a strange attractor," Comm. 

Math. Phys. SO (1976) 69. The mapping is given by xi+1-yi +1-axj; Yi+1=bxi. 

Following Henan, we use a~1.4, b-0.3. 
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[16] For low-dimensional attractor data, we find that the search time increases so 

slowly with m that O(N) distances can always be computed faster with the box­

assisted algorithm than with the standard algorithm. But even in these cases, we 

find that the "prism-assisted" variant provides further improvement. 



(a) - 210 -

(b) I< 3ro >I 
f-E-- 2ro >i 

~ ro-?t 

.. . . . ... . ~ 
c 

Fieure 12.1 (a) A square &rid of boxes of width r 0 is placed over the attractor 

points. (b) Here, distances are computed from point x to other points on the 

attractor. Distances are computed to points +ho.+ are in the same (e.g •• point a) 

or in adja.cent boxes (e.g •• points b,c). If any of those distances are ereater than 

r 0 (e.g •• to point c), then those distances are discarded. Points (e.g •• point d) not 

in adjacent boxes are not considered. In other words, distances to points (a,b,c, 

not d) inside the box are computed, but only those (a,b, not c) inside the dotted 

box are used. 



0 

-1 

-2 

-J -~ 
z -· -u -5 

0 
~ 

0 
-e 

.2 -7 

-a 

-9 

-10 

c 

-7 

- 211 -

Henon attractor, m=2 

Box-assisted eorrela tion 
with N•64000 points 

-J -1 

Fiiure 12.2 Loi-lOi plot of the correlation inteiral for the Henon attractor. 

The small distances in the lower half (0) of the curve were computed with 

N =64000 points, usini a box size of r 0 =0.000S. The upper half (+) was 

computed with a much smaller sample of N =1000 points and a box size so larie 

(r0 =3.0) that all the distances were computed. Both computations to&ether took 

less than an hour on a personal computer. To compute the entire curve in one 

piece with the standard aliorithm would have taken over a month. 
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F igure 12.3 Prism-assisted correlation for N =4500 points of random data 

(uniformly distributed over (-1,1]mCRm) embedded in m=-=13 space with r0 -0.66J 

chosen so that -4500 "desirable" distances are computed. Taking b =m 

corresponds to the usual box-assisted alaorithmJ and b =0 is the standard 

unassisted alaorithm . Althouah this is a case where the standard (b =0) 

alaorithm is better than the box-assisted (b=m) method, we find that we do get 

improvement from the "prism-assisted" correlation algorithm with 1 ~b ~8 and 

that the best performance is achieved at b=6~0.5 log24SOO. The contribution 

to total execution time due to initial readin& and sorting is about one minute, a 

nealigible amount. 
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CHAPTER THIRTEEN 

13. LINEAR ANALYSIS OF TIME SERIES 

In this chapter, we will introduce some of the more conventional methods 

of time series analysis and will discuss their potential applicability to analyzing 

the time series of nonlinear dynamical systems. These methods are 

fundamentally linear, and in most cases have been known for some time. The 

results reported here are from Robinson 's book [1], though much of the work was 

originally done in the early 1940's by Kolmogorov and Wiener (independently of 

each other). 

Linear analysis offers two hopes: one, as a direct means of inferring 

properties of the system from its time series; and two, as an enhancement to 

nonlinear methods of analysis, such as the correlation integral. 

Some of the first excitement in the field of nonlinear dynamics began 

when researchers noticed broadband Fourier spectra from deterministic chaos, 

something formerly associated with nondeterministic noise. In general, it is not 

possible [2] to distinguish deterministic from nondeterministic systems directly 

from the power spectrum - it is for this purpose that nonlinear methods (such 

as correlation dimension) were developed. 

Directly from the power spectrum, however, we will be able to distinguish 

systems which, on the one hand, are nonchaotic and deterministic from systems 

which, on the other hand, are either chaotic or stochastic; in the vocabulary of 

fluid dynamics: we can distinguish laminar from turbulent flow. 

Linear methods can be useful enhancements to the nonlinear methods of 
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analysis such as the dimension algorithm. Among these enhancements is a 

modification of the usual embedding procedure so that the axes are uncorrelated 

with each other. We propose further enhancements based on the decomposition 

of time series into linear and "purely nonlinear" components. The decomposition 

allows us, for instance, to filter out the linear component, and apply the 

nonlinear analysis just to the nonlinear component. Though one might imagine 

that this provides a more efficient analysis, experience suggests the opposite. A 

more successful application of the decompositon is the creation of a "linearly 

equivalent" time series that has the same linear component as the original time 

series, but its nonlinear component is generated stochastically. We can use the 

new time series as a benchmark against which the original (possibly deterministic 

- we do not always know a priori) time series may be compared. 

13.1 Autocorrelation and Fourier spectrum 

Among the immediate characteristics of a time series, we can write the 

mean JJ., and standard deviation a, defined by 

(13.1) 

(13.2) 

where the angle brackets, <>, denote the average over n. The autocorrelation is 

defined 

(13.3) 
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Note that this implies that the autocorrelation is even; that is, A( -T) =A(T). It 

is a common practice, not adopted here, to normalize the autocorrelation, dividing 

A(T) by o-2
, so that A(O)=l. On the other hand, much of the analysis will be 

with "standardized" time series, for which <xn> =0 and <x~> =1. In this case, 

A(O) =1 . 

We define the Fourier transform, a continuous periodic function with a 

period of 271", 

+ oo 
X(w) 2: 

n--oo 

x e-iwn 
n 

It is invertible, of course; 

Xn 

7\" 

1 I X(w) eiwn dw. 
2ir 

-7\" 

(13.4) 

( 13.5) 

The Wiener-Khintchine relations for a discrete time series allow us to write the 

Fourier spectrum in terms of the autocorrelation 

00 

A(O) + 2 L A(T) cos(TW), 

T-1 

and vice-versa, 

A(T) 

7\" 

2
; J IX(w)f co:s(Tw) dw. 

-7\" 

13.2 White noise 

(13.6) 

(13.7) 
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White noise is an important example of a purely stochastic system. In a 

white noise time series {E:n}, each E: is chosen Independently from some random 

distribution. It follows from this independence that distinct elements of the time 

series will be uncorrelated; that is, <E:rE:s> =<E:r><E:s> for r ~s [3]. 

Standard white noise has mean zero and standard deviation unity. Since 

it is uncorrelated, <E:rE:s> = Ors· Thus, A(O) =1 and A(T) =0 for T ~ 1. The 

Fourier spectrum in this case IX(w)f =1 is said to be flat (or "white") since it 

has no dependence on w. We note that predicting the future of a time series of 

white noise is essentially hopeless; successive values of E: depend in no way upon 

previous values. 

13.3 Prediction 

There is an obvious motivation for being able to predict xn+ 1 from time 

series history xn,xn-l'xn_2,. . .. Methods of nonlinear prediction are still being 

developed [4,5,6], but linear prediction is a very straightforward technique. 

Furthermore, we will find the language and results of prediciton theory useful in 

other applications of linear methods. 

13.3.1 Linear prediction 

h . h -(m) 
In linear prediction t eory, we estimate xn+1 wtt xn+l' the linear 

combination of the previous m values of the time series (we assume .U =0). 

(13.8) 
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where the coefficients k0, kl' k2, ... , km_1 are chosen to minimize the mean­

square deviation of xn+1 from its predictor. Here 

2 ( ( ~ (m) )2 ) 
Xm - xn+1- xn+l (13.9) 

measures that deviation. The more values of k that we are free to introduce, 

the better our predictor can be. Thus, X~ decreases monotonically with m. On 

the other hand, X~ is bounded from below by zero (it is by definition positive). 

Thus, we can define the limit 

x2 - lim x~ (13.10) 
m-+oo 

as a measure of the "linear unpredictability" of the time series. If x2 =0, then 

the system is completely predictable. Such time series we classify as linearly 

deterministic, and included in this class are periodic and quasiperiodic systems, 

though the class is not limited to these types. However, there is no reason to 

expect generic nonlinear deterministic dynamical systems to be linearly 

deterministic. 

Nonlinear deterministic systems are those for which a function f exists, 

which satisfies 

(13.11) 

but the function is not linear in its arguments. Attempting to predict the future 

from a linear function such as Equation (13.8) leads to x2 > 0. Linear analysis 
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cannot predict the future exactly, no matter how many terms are taken. The 

nonlinear deterministic system, from the point of view of the linear analysts, has 

a component that is linearly predictable and a component that is like white noise; 

this second component is the "purely nonlinear component" that we discuss 

further in §13.6. 

13.3.2 Least Squares 

We begin by computing the linear coefficients k0, ... ,km_1 in terms of the 

autocorrelation. We want the miminum value of X~, so take partial derivatives 

with respect to each of the parameters kj for j=O, ... ,m-1 and set these to zero. 

Thus, 

(13.12) 

(13.13) 

Expand the square. 

(13.14) 

Bring the averages "inside" the summation 

(13.15) 

Use the definition of autocorrelation A(T). 
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m- 1 m- 1 ] 
+ ~ ~ krks A(r - s ) (13 .16) 

Take the partial derivative. Use ok-/ok . = o . .. 1 J lJ 

(13.17) 

m-1 m-1 
-2A(j + l) + L ksA(j-s) + L krA(r-j) (13.18) 

s=O r-0 

Combine the sums, using A( -T) =A(T), to get an equation that holds for 

j=O, ... ,m-1 . 

0 

We 

m-1 
-2A(j + 1) + 2 L kiA(j-i) 

i=O 

introduce the covariance matrix defined in terms 

autocorrelation. We have B~j) = 2~~) = A(i-j) = A<li-jp; that is, 

A(O) A(1) A(m -1) 

=(m) A(l) A(O) A(m-2) 

.. 
A(m-1) A(m-2) A(O) 

(13 .19) 

of the 

(13.20) 

Elements along any subdiagonal are identical, so this is a Toeplitz matrix [7]. 

Though there are m2 entries in the matrix, only m of them are distinct. The 

equations obtained above for the k j's can be expressed in terms of the 

covariance matrix. 
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A(m-1) 

A(m -2) 

A(O) 

A(l) 

A(2) 

A(m) 

(13.21) 

Having solved the matrix equation, we can compute our "goodness" parameter, 

(13.22) 

m-1 m-1 m - 1 
A(O) - 2 L kiA(i+l) + L L krks A{r-s). (13.23) 

A(O) 

i-0 r~O s-O 

m-1 L kiA(i+l) 
i=O 

(13.24) 

Kac [8] gives the more compact formula in terms of the determinants of the 

covariance matrices, 

(13.25) 

The information about whether or not our system is linearly predictable 

is all contained in the autocorrelation values. Because they are Fourier 

transforms of each other, that information is also in the power spectrum. In 

fact, there is an explicit form, due to Grenander and Szego [9], for the limit as 

m -+00 of x~: 

(13.26) 
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This formula provides a measure of linear unpredictability directly from the 

Fourier power spectrum. If x2 > 0, then the system is linearly unpredictable, and 

we call it "turbulent." If x2 =0, then the system is linearly deterministic, and 

we call it "laminar." 

The condition for linear unpredictability is that the Fourier spectrum be 

almost everywhere nonzero. For example, systems with quasiperiodic time series, 

the Fourier spectra of which are sums of delta functions, are linearly 

predictable. In the next section, we discuss the linear predictability of a number 

of examples. 

13.4 Linear predictability: some examples 

Here are some deterministic and nondeterministic systems. We will measure 

and discuss their linear predictability x2. We'll find that x2 =0 for nonchaotic 

deterministic (laminar) systems and that x2 >0 for chaotic or stochastic 

(turbulent) systems. 

13.4.1 Periodic (sinusoidal) 

Consider the sinusoidal time series with unit amplitude and zero initial 

phase. 

sin( niP) (13.27) 

We note that this prescription is not manifestly time-independent. Although we 
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can recast the equation in deterministic nonlinear form 

(13.28) 

we note that there is an ambiguity in the inverse sine. It turns out that we can 

also write this as a deterministic linear equation in terms of the previous two 

time series values: 

Xn·+1 = sin( (n+1)~ ) 

= sin(n~)cos(~) + sin(~)cos(n~) 
= sin(n~)cos(~) + sin(~)[cos( (n -1)~ + ~>] 
= sin(n~)cos(~) + sin(~)[cos((n -l)~)cos(~) - sin((n -1)~)sin(~)] 

= sin(n~)cos(~) + sin(~)[cos((n -1)~)cos(~) - sin((n -1)~)sin(~)]. 

But we have from Equation (13.30) that 

cos(n~) 

thus, 

xn+1 - sin(n~)cos(~) 

sin(~) 

cos((n -1)~) 
Xn - sin((n -l)~)cos(~) 

sin(~) 

so we can finally write 

x
0

+ 1 = sin(n~)cos(~) + 
sin(~{ Xn - sin~~:~)l)~)cos(~)cos(~) - sin((n-l)~)sin(~)J 

[
x - xn 1cos(~) ] 

= xncos(~) + sin(~) n sin(~) cos(~) - x0_ 1sin(~) 

(13.29) 

(13.30) 

(13.31) 

(13.32) 

(13.33) 

(13.34) 

(13.35) 

(13.36) 

(13.37) 
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(13.38) 

Periodic sinusoidal time series are linearly determinisitic, and depend only on the 

previous two values of the time series. Thus X~ =0 for all m ::=::2, and in 

particular, in the limit m-oo, we have x2 =0. Since the dependence is on two 

previous values, we can, given starting values x0 and x1, produce the entire time 

series. These two free parameters, it turns out, specify the amplitude and phase 

of the sine wave. Thus Equation (13.38) is in fact more general than (13.27). 

13.4.2 Quasiperiodic (sinusoidal) 

Here, consider the sum of two sinusoidal time series. There are four free 

parameters, two amplitudes and two initial phases (we do not think of the 

frequencies as free parameters since they are fixed by the system). 

(13.39) 

Again, this formulation is not manifestly time-invariant. However, we can write 

xn+1 = [2cos(~1) + 2cos(~2)] xn 

[2 + 4cos(~ 1)cos(~2)] xn-l 

+ [2cos(~ 1) + 2cos(~2)] xn-2 

(13.40) 

In general, a sum of N sine waves may be combined into a single linear difference 
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equation with 2N terms . And again, 2 X = 0, so the system is linearly 

deterministic. 

13.4.3 Periodic (not sinusoidal) 

Consider the following map: 

xn + </J (modulo 1). (13.41) 

(This is the twist map that was introduced in §8.3.) But for the modulo 1, this 

is already linear. However, the modulo operator is decidedly nonlinear (it is not 

even continuous). To compare it to the sinusoidal case, we note that we can 

write this time series also as 

x0 + n<P (modulo 1) (13.42) 

f(x0 +n<P), (13.43) 

where the function f is the fractional part. This is not the same as the sine 

function, but it is periodic and we know that we can express it as a sum of sine 

waves. (There are a few details: the function f has a nonzero offset, and a 

different period than the sine waves in the previous examples, but these are 

only details.) We might expect, therefore, that with enough terms (to account 

for enough of the sine wave components), we can write an arbitrarily precise 

predictor; that 2 is, that X =0. 

2 argument to verify that X =0. 

And this is true, but we will use another 

Given t: >0, choose some N for which the fractional part of N<P is less 
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than E. It is not hard to see that this can always be done (for instance, take N 

to be the denominator of a continued fraction expansion of ¢J - see §8.3.2). 

Then, take as a predictor 

(13.44) 

This is probably not the best predictor, but its deviation from the actual xn+l 

will be less than E, and in particular, X~ < E2
• Thus, we can see that x2 =0. 

13.4.4 Feigenbaum attractor [10] 

Take the logistic map 

(13.45) 

at }.. =Aonset =3.5699 ... , which is the limit point of the bifurcation cascade. The 

time series is aperiodic but it is not chaotic; that is, nearby trajectories do not 

diverge. 

In fact, every orbit on the attractor is shadowed by (unstable) orbits of 

period N =2K. That is, for any orbit {x0, ... } and any E >0, there is an orbit 

{x' 0, ... } of period 2K for some K and with lx'n -xni<E for all n. Now we can 

construct predictors of the form 

-CN) 
xn+l (13.46) 

with N =2K, which will be at most E away from the actual value; thus, X~ <E2 
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and 

lim X~ m-oo 
0. (13.47) 

The system is linearly determinsitic. 

13.4.5 Damped random walk 

This. time, we consider a system that is manifestly nondeterminsitic. 

White noise has been added to what would otherwise be a linear map. 

(13.48) 

Here, ~ <1 is the damping factor. Without the noise term, the time series 

would damp to zero. We have 

<x> "t<E.> 0 
1-~ 

and 

<x2> 
"12<£2> -y2 

1-~2 1-~2 

Further, 

<xnxn+1> = ~<x~> + 'Y<xnf.n+l> 

= ~<x~> 

implies 

A(l) ~A(O). 

More generally, 

(13.49) 

(13.50) 

(13.51) 

(13.52) 

(13.53) 
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Xn+T = ~Xn+T-1 + En+T 

XnXn+T = ~xnxn+T-1 + XnEn+T 

<xnxn+T> = ~<xnxn+T-1> + <XnEn+T>, 

(13.54) 

(13.55) 

(13.56) 

and since the noise at time n +T is uncorrelated with the value of x at time n, 

(13.57) 

so that 

A(T) ~A(T -1) ~ T A(O). (13.58) 

The autocorrelation decreases exponentially with T. Our best linear estimate in 

this case can be shown to be k0 =~, k1 =k2 =· · · =0. And this leads to 

(13.59) 

Our conclusion that this is not linearly predictable comes as no surprise, f or we 

have directly and deliberately added noise to the system. The future is not 

completely predictable by any means. 

13.4.6 Positive expansion rate 

Every one of the deterministic examples so far have been nonchaotic; 

nearby trajectories did not diverge. And each turned out as well to be linearly 

deterministic. In the example in this section, we take 
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(modulo 1). (13.60) 

If 77>1, we have a positive expansion rate, nearby trajectories diverge, and chaos 

ensues. (If 77<1, then the time series converges, Xn-+0 as n-+oo.) 

Another way to write this rule is 

(1 3.61) 

where the function f is the fractional part. In this example, we will take 1] to be 

an integer . 

We will compute the autocorrelation function, 

(13.62) 

noting the need to subtract the mean since J1.~0. Further, instead of averaging 

over n, we will average over x£[0,1). This is valid if the orbit fills the interval 

uniformly. It can be shown that this is the case for generic orbits [11] as long 

as 17 is an integer. Thus, 

1 

<xn+Txn> = J f(7] T x) x dx 

0 

2/1]T 

+ J f(7] T x) x dx + 
1/7]T 

(13.63) 

1 

+ J f(77 T x) x dx 

(1]T -1)/7]T (13.64) 
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r
(k+l)/T]T l 

J f(T]T x) x dx 

k/T]T 

(13.65) 

T]T - 1 

=I: 
k=O 

- k) x dx 1 (13.66) 

-k x dx] (13.67) 

(13.68) 

r 
T]T -1 1 T]T 1 2 

=--- ~ 2k + k 
3 2T]2T £...J 

k-0 
(13.69) 

(13.70) 

(13.71) 

(13.72) 

Now, 1J. =~. so we have that 



A(T) 

- 230 -

1 
12TJT' 

(13.73) 

The autocorrelation decreases exponentially with T. In fact, this is the same 

autocorrelation (with TJ =11>--) that was observed in Equation (13.58) of the 

damped random walk. So here, following Equation (13.59), we have 

1 A(O)(l--) 
TJ2 

We have a deterministic system that is not linearly deterministic. 

(13.74) 

For noninteger T], the result is basically the same, though the derivation 

is not as clean. We do not, for instance, have uniformity over the interval [0,1). 

However, we do have the result for noninteger T]~l, that A(T)=c(T)IT]7 with 

c(T) a slowly varying pre-exponential [12]. 

13.4.7 Generic attractor 

1 - ax~ + bxn-l (13.75) 

This is the well-known Henon map. A plot of xn+1 vs. xn shows the 

appearance of a chaotic attractor (see Figure 13.1(a)). There are few conclusions 

that can be derived analytically from the map, so we resort to numerical 

experiment. Figure 13.1(b) shows how X~ varies with m, and that x2 >0. Like 

most nonlinear deterministic systems, this one is not linearly deterministic. 

13.4.8 In general 
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We find in general for chaotic or expanding systems that x2 > 0. For 

systems in which nearby trajectories do not diverge, we can always find some 

near periodic motion, and given this, we can find nearly perfect predictors. In 

these cases, taking large enough m reduces X~ to be arbitrarily small. That is, 

x2 =0 for nonchaotic systems. We have then, from the linear analysts, a way to 

distinguish chaotic from nonchaotic motion . As an example, in Figure 13.2(a), we 

plot x2 as a function of the logistic parameter >.. in the map xn+ 1 = ~xn(l-xn). 

There is a general increase in linear unpredictability, though windows of 

nonchaotic x2 =0 motion can be seen; the same general increase, and the same 

windows of nonchaotic motion, are seen in Figure 13.2(b), which is a plot of 

Lyapunov exponent as a function of ~. 

13.5 Orthogonal embedding 

The method of time-delayed coordinates for embedding a one-dimensional 

time series into Rm defines the m dimensional vector 

V · 
1 

(13.76) 

The idea of Broomhead and King [13,14] is to generalize the embedding, so that 

each component is a linear combination of the available time-delayed coordinates. 

sll s12 s1m X· 
1 

v i 
s21 s22 s2m xi+T (13.77) 

sm1 8 m2 sm3 smm xi+(m-l)T 



That is, the kth component of vi is 

(k) 
V · 

1 

m 

2: skj xi+(j-1)T 
j - 1 
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(13.78) 

What Broomhead and King show is that if [ skj J is the matrix of eigenvectors 

of the covariance matrix E, then the components of the vector vi will be linearly 

uncorrelated. That is, 

(13.79) 

where the angle brackets () denote an average over i. The advantage of this 

embedding is that points are efficiently spread over Rm. 

The issue of optimal coordinates for the embedding process is discussed in 

a nonlinear context by Fraser and Swinney [15]. Here the criterion that axes be 

uncorrelated is replaced by the criterion that axes be as independent as possible. 

13.6 Nonlinear component 

In this section, we decompose nonlinear deterministic time series into a 

linear component and a "purely nonlinear" component. The nonlinear component 

is distinguished by its lack of autocorrelation; it is by linear standards 

equivalent to white noise. 

Given this decomposition, we can take two approaches. One approach is to 
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just "subtract off" (or to "filter out") the linear component and be left with the 

purely nonlinear component, and then to restrict analysis to this standardized 

time series. Though very straightforward, there are practical difficulties with 

this approach. A second approach is to create a new time series which are 

"linearly equivalent" to the original time series; these time series are created by 

replacing the nonlinear component with the equivalent white noise. The new 

time series will be nondeterministic and have many degrees of freedom, but its 

properties are well understood. It provides a benchmark against which to test 

the original time series. 

13.6.1 Filtering out the linear component or a time series 

We have seen that any time series can be separated into a linearly 

predictable component and a "noise" term. We can write 

(13.80) 

where k0, kl' ... ,km_1 are the best fit in the sense of Equation (13.12). We can 

solve for En+ 1, 

xn+1 - (koxn + k1xn-1 + · ·· + km-1xn-m+1) 
"t 

(13.81) 

and treat kn} as the time series of interest. This time series should in some 

sense be equivalent to the original time series [16]; it is completely deterministic 

for instance, but there will be no autocorrelation (it will have been "subtracted 

out") and the Fourier spectrum will be flat, or white. 
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In practice, however, we find that when we do this the new time series 

looks "fuzzy." Though the system is strictly deterministic, the linear 

combination of values well separated in time and therefore nearly uncorrelated 

from each other leads to behavior that looks very random. For the example of 

the Himon map, see Figure 13.3. We have not investigated the effect of this 

subtracting out on numerical computations of Kolmogorov entropy (and there is 

still some hope that they may be improved), but we have seen that dimension 

estimates are adversely affected. 

13.6.2 Creating linearly equivalent time series 

Our original time series can be rewritten in terms of a linearly predictable 

component and a "noise" term, 

(13.82) 

where the noise level 1 is given by 1 =~X~. The so-called noise term may be 

completely determinsitic (if the original time series was deterministic) but its 

correlation properties will be very much like white noise. As m-oo, in fact, it 

will satisfy <£r£s> = Ors· If we replace the deterministic £n with real white 

noise, we will obtain a new time series that is linearly indistinguishable from the 

original, but that is fundamentally stochastic. 

As an aside, we point out that there is another way, conceptually more 

direct, though computationally awkward, of creating linearly equivalent time 

series. The trick is that the original and the equivalent time series will have 

the same power spectrum. So, from the Fourier spectrum P(w) =IX(w)l
2

, we can 
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get a Fourier transform just by taking the "square root" of the power. An 

ordinary square r oot gives the magnitude of the Fourier transform; there is no 

phase information · in the power spectrum. Take a random function ~(W), and so 

the transform of the new series is 

(13.83) 

The series itself is just the Fourier transform of this, and is given by Equation 

(13.5). 

Such a time series, we argue, could be very useful as a benchmark against 

which the original may be measured. The new time series is essentially 

stochastic, but its linear properties are indistinguishible from the original time 

series. We can test a dimension algorithm, for instance, by applying it to both 

time series. If the correlation curves are nearly the same, we have evidence 

that the original series came from a high dimensional system. On the other 

hand, if we see a low dimension for our original system, and a high or 

unsaturating dimension for our new time series, then we have all the more reason 

to trust the low dimensional result. 

determinsitic or a stochastic system. 
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and the values of 1c0, .. . ,km-l are chosen to minimize (~2) . As m is increased, the 

plot of ~n+l vera~• ~n becomes ever fuzzier, and the dimension tends to be 

overestimated. 
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CHAPTER FOURTEEN 

14. ANALYSIS OF PHYSICAL DATA 

Though the bulk of this thesis is devoted to test cases and numerical 

examples, the dimension algorithm was developed primarily for analyzing time 

series data from a physical experiment. 

There is a vast literature [1] describing physical systems that exhibit 

deterministic chaos as evidenced by their finite dimensional time series. Most of 

these cases are either simple systems (e.g., electric circuits) or systems just 

beyond their onset to turbulence (e.g., fluid flows). It is in principle possible 

for more complicated systems or for more fully developed turbulence to exhibit 

low-dimensional chaos. We have little evidence to expect that result, but in 

this chapter, we explore the possibility. 

We will discuss some experiments in plasma physics [2]. The two cases we 

describe involve complicated systems in a regime of well-developed turbulence. 

Our results are negative, in that we did not observe a dimension; at best we can 

estimate a lower limit. The turbulence observed in the Caltech tokamak and in 

the Texas tokamak (TEXT), we can assert, is motion involving many (> 10) 

effective degrees of freedom. 

Whether the systems are fundamentally stochastic (with an "infinite" 

number of degrees of freedom) or "merely" chaotic (with, say, ,:SlOO degrees of 

freedom) we cannot say. But knowing that the dimension is larger than ~10 is 

still useful; it tells us, for instance, that we could not expect to realistically 

model the system with less than ten variables. 
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14.1 The Caltech tokamak 

It was in an attempt to understand certain time series output from the 

Caltech research tokamak [3,4] that the project of this thesis to isolate and 

identify features of the correlation integral began. 

The time series itself was taken from a biased Langmuir probe inserted 

into the interior of the tokamak machine. Since the probe is biased with respect 

to the potential of the plasma, it draws a current that is more or less 

proportional to the local density of the plasma at the probe. Precise 

proportionality is not important for the time series analysis; we view the. time 

series as a one-dimensional projection from the actual state space, and what 

Takens [5] proved is that virtually all projections permit a faithful re-embedding 

into Rm for large enough m. 

A time series from a typical "shot" is shown in Figure 14.1. The tokamak 

is not quite an autonomous system; each shot must be started up individually, 

and a single shot lasts 14 milliseconds, and only for about a third of that time 

can the system be considered stationary. In fact, there is a general drift caused 

by the deterioration of the plasma (it is compensated somewhat by "puffing," a 

process of slowly pumping in extra gas to be ionized in the plasma), and our 

approach has been to subtract a linear fit to the drift from the data, leaving a 

time series with zero mean and a standard deviation, after discretization, of 

~=20 . 

14.1.1 Case history: how not to compute a correlation dimension 
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Since our goal was to classify tokamak turbulence either as stochastic 

noise or as deterministic chaos, we created stochastic time series (this in keeping 

with the philosophy of §13.6.2) with the same variance CT
2 and the same 

autocorrelation a. (see §9.2 for the model) as the tokamak time series. 

With the usual time-delayed coordinate embedding procedure (see §1.4.1 ), 

we embedded both time series in Rm for m = 4, 8, 12, and 16. We computed the 

correlation integral by the standard recipe 

C(N,r) # of distances less than r 
# of distances altogether' 

(14.1) 

evaluating at logarithmic increments in r. These are plotted in Figure 14.2. 

From these plots, we were led to the tentative conclusion that there was a 

seven-dimensional attractor in the tokamak system. 

Our first clue that something was amiss came with the realization that we 

could evaluate C(N,r) at a// r more efficiently than at just the logarithmic 

increments. The efficiency was just an issue of better bookkeeping, but having 

this extra resolution enabled us to see a "shoulder" in the C(N,r) curves for 

both the tokamak and the stochastic data. When we understood this effect (it is 

discussed in Chapter Nine), we were able to eliminate it with a slightly modified 

correlation integral: 

C(W,N,r) 

# of distances less than r, except for those from 
pairs of points closer together in time than W 

# of distances altogether 
(14.2) 

~ less wordy definition is given in Equation (9.3). Plots of the modified (W =10) 

correlation integrals showed nearly identical curves for the tokamak and the 
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stochastic data. 

14.1.2 Conclusion for the Caltech tokamak 

Our dimension algorithms are unable to distinguish the tokamak time 

series from a stochastic time series of the same autocorrelation. 

provide no evidence that plasma turbulence is deterministic chaos. 

14.2 Texa.s tokamak (TEXT) 

We can 

Similar analysis was performed on data from the Texas tokamak [61. We 

found the Texas data to be a little bit "cleaner" than the Caltech data; tl1e time 

series was stationary over a longer time, and it had been measured with greater 

precision (Texas: 12 bits, Caltech: 8 bits). 

Nonetheless, as Figure 14.3 shows, our conclusion for the Texas tokamak 

is about the same as for the Caltech tokamak. There is no evider1ce for 

saturation of slope with increasing m, no evidence of a low dimensional strange 

attractor, and no evidence that plasma turbulence is not a fundamentally 

stochastic process. 

14.3 Notes and References 
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Fiiure 14.1 Typical "shot" time series from Caltech tokamak. There are 

N-32768 values in a shot, correspondini to a total time of about 15 msec . 
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Figure 14.2 Correlation integral for Caltech tokamak data. (a) Standard 
correlation integral for embeddin& dimensions m =4,8,12,16 . There is an apparent 
convergence to a slope of about seven, suggestin& a seven-dimensional attractor . 
(b) Standard correlation integral for the same Caltech tokamak data, here at 
more closely spaced values of r, and for m-8,12,16,20. Here a shoulder is 
observed for the large m curves. (c) Comparison of autocorrelated stochastic 
data with tokamak data (same autocorrelation time T =10) shows that at small r, 
the value of C(N,r) is much larger for tokamak data than for stochastic data. 
One inference is that the tokamak da..+a. a.1""t- n.ot "as random" as the stochastic data; 
however, this notion is suspicious since the difference appears to be in the shape 
of the shoulders. (d) Modified correlation integral (W =2, see Chapter Nine) 
eliminates most of the shoulder and shows much less distinction between the 
tokamak and the stochastic correlation inte&rals. For W =10 (not shown), the 
tokamak and stochastic correlation inte&rals are nearly identical. 
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Fi&ure 14.3 Correlation inte&ral for Texas tokamak (TEXT) data. (a) Modified 

correlation inte&ral (W =10, see Chapter Nine) for embeddin& dimensions 

m =4,8,12,16,20,24. (b) Slope of the correlation inte&rals in (a). We note that no 

conver&ence toward dimension is observed. 
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