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PART 1
PROPAGATION OF ACOUSTICAL GRAVITY WAVES

FROM AN EXPLOSIVE SOURCE IN THE ATMOSPHERE



ABSTRACT

A matrix formulation is used to derive the pressure variation
for acoustic gravity waves froman explosive source in an atmosphere
modelled by a large numbef of isothermal layers., Comparison of
theoretical and experimental barograms from large thermonuclear
explosions leads to the following conclusions: (1) The major
features on the barogram can be explained by the super-position of
four modes, (2) Different portions of the vertical temperature
structure of the atmosphere control the relative excitation of these
modes, (3) A normalized point source is sufficient to model
thermonuclear explosions, (4) The observed shift in dominance of
certain frequencies with yield and altitude can be explained using the
empirical scaling laws derived from the direct wave near the

explosion.
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I. INTRODUCTION

Over the past few years, a large number of thermonuclear
bombs have been exploded in the atmosphere. These events have
given geophysicists a controlled experiment with which to test
the theories of pulse propagation in a complex wave guide. The
value of the experiment is enhanced by the fact that the "megaton' -
class explosions were large .enough to excite long atmospheric waves
which were recorded by a world wide net of sensitive barographs.

(Yamomoto, 1956, 1957; Hunt, Palmer and Penney, 1960; Oksman

and Katajo, 1961; Carpenter, Harwood and Whiteside, 1961;

Donn and Ewing 1961; Wexler and Haas, 1962.)

Interest in the propagation of a pulse in the atmosphere was
initiated by the world Wi.de‘ pressure disturbances produced b}% the
Krakatoa volcanic eruption of 1883. Additional data was obtained
by the Siberian meteorite of 1908. The early studies of these events
were primarily concerned with correlating the observed velocity
and signature of the pulse with theories of pulse propagation. In
addition the pulse was of interest to early investigators because it
could provide information concerning the structure of the atmosphere.
Today the structure of the atmosphére is not a significant variable
of the problem since it is sufficiently well-known from rocket

soundings and satellite observations. Therefore more recent studies



of pulses generated by nuclear explosions have placed major emphasis
on using a reasonably well-known structure to explain the significant
features observed on the barograms.

The first theoretical studies with this emphasis (Scorer, 1950;
Pekeris, 1948; Yamomoto, 1957) provided much insight into the
nature of pulse propagation, but their use in analyzing the barograms
- was limited since they were forced to assume oversimplified models
of the atmosphere in order to obtain solutions.

With the advent of high speed computers it became possible
to obtain numerical solution for more realistic atmospheric models.
Numerical solutioné of the problem have been formulated using two
different approaches. The first study with a complex temperature
model was given by Weston (1960, 196la, 1961b, 196lc). He formu-
lated the inhomogeneous problem of an explosive source in an atmos-
phere with a continuous vertical temperature distribution. The
problem of determining the eigen frequencies and eigen functions
was reduced to the evaluation of a second order differential equation
with variable coefficients with respect to altitude. With the re-
straints of the boundary conditions at the earth's surface and at
large altitude, the differential equation was solved numerically
using the method of Runge-Kutta to obtain phase velocity and the

vertical eigen function distribution as a function of frequency.
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Papers by Press and Harkrider (1962) and Pfeffer and Zarichny
- (1962) used a matrix formulation suggested by Haskell (1953) in which
thevw}ertical temperature of the atmosphere was represented by a
large number of isothermal layers. The equations of motion for

each layer took on a particular simple form. Their solutions in
matrix form yield a linear transforrﬁation of a pressure-displacement
vector from the bottom to the top of each layer. Since this vector is
continuous across each interface, it is possible to obtain a product
matrix relation between the top and bottom of the multilayered array
by successive matrix multiplication from layer to layer. With the
matrix product relation and the boundary conditions at the earth's
surface and at infinite altitudes they obtained a characteristic equation
relating period and phase velocity. This matrix formulation is
particularly suited for programing on a digital computer. In practice,
20 to 40 layers are sufficient to obtain an adequate approximation of
the real atmo sPhgre.

These papers presented results for the homogeneous problem
of wave propagation in which the atmosphere is considered a two
dimensional wave guide without a source. Phase and group velocity
dispersion curves and vertical pressure distributions were numerical-
ly evaluated for a number of modes and discussed in terms of the
different models of atmospheric structure. The results of Press and

Harkrider (1962) and Pfeffer and Zarichny (1962) differed somewhat.



This was because the latter authors terminated their atmosphere
model at a lower altitude. Later work with a more complete model |
gave results which agreed with the work of Press and Harkrider (1962).

This paper extends the homogeneous theory of Press and
Harkrider (1962) to include the effect of an explosive source at
various altitudes in the atmosphere.. The strength of the source in the
irequency domain is normalized so that the pressure variation with
time of the direct wave near the source is in agreement with the ob-
servations near actual nuclear detonations. The inhomogeneous
theory,. 1_e_ , source inclusion, then allows one to calculate the effect
of source altitude and yield on the spectral amplitude of various modes.
With the inhomogeneous theory and the known response of the observing
barograph we are able to calculate theoretical barograms in the time
domain. These theoretical barograms afe compared to actual
barograms recorded at Pasadena for the 1961 Russian nuclear
atmospheric test series.

Earlier theoretical studies also included the effect of sources

(Pekeris, 1948; Hunt, Palmer and Penny, 1960). These studies were

restricted by the use of over simple atmosphere models. In addition
the effect of source altitude was not investigated since they were
concerned with surface explosions. The recent papers by Weston

as mentioned earlier included the effect of source height. His
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results are limited by the unrealistic nature of his assumed atmospher-
ic temperature distribution and the approximations and assumptions
used to normalize his source or Green's Function in order to re-
present an explosion in the frequency domain. The latter difficulty

is overcome in this paper by obtaining a closed form expression for

the source in an isothermal gravitating medium. The form of the
source term is such that it may be readily normalized to represent

the observed pressure-time variation of the direct wave at locati‘ons

near the source.
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II. THEORY

Introduction

In this chapter a theoretical model for the propagation of
acoustic-gravity waves generated by an explosive source in the
atmosphere is developed. We first represent the complex vertical
temperature structure of the atmosphere by a large number of
horizontally stratified isothermal layers. In one of the layers, we
place a point source. The point source is then represented as a
double integration over frequency and waye number of an integrand
representing outgoing waves. The integrand is composed of terms
which are the homogeneous solutions of the harmonic time eth:ation
of excess pressure for a layer without a source. To the integrand
term we add the two homogeneous solutions for the source layer, one
representing upgoing waves and the other downgoing, each with an
arbitrary coefficient which is determined from the boundary condition
at the layer interface. For the other isothermal layers, we use the
two homogeneous solutions alone.

The solutions for the layers and the boundary conditions at each
interface are then cast into a matrix formulation. The source is
introduced into the formulation by a vector equation relating the source
discontinuity acfoss the horizontal source plane. Using the vector

equation and the matrix formulation, we solve for the pressure
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integrand at the surface. The actual pfessure at the surface is then
given by the double integral over frequency and wave number.

The far field term of the solution is obtained by evaluating
the residue of the wave number intégration. This solution is then
approximately corrected for the curvature of a concentric layered
atmosphere to obtain acoustic gravify waves traveling over a
spherical earth.

Weston (1961) formulated a point source or Green's Function
for a spherical atmosphere in terms of the homogeneous solutions.
He then obtained a solution in terms of the Green's Function, the
excess pressure, and normal velocity integrated over an area en-
closing a general explosion. Since the needed observational data from
a nuclear explosion, _1__e_ » the actual excess pressure and normal
velocity on a surface enclosing an explosion, were not available,
he simplified the problem in the following manner. First, he let
the surface be a small sphere about the source location. He then
took the limit as the radius went to zero. Assuming an: instantaneous
velocity source, he obtained a solution for a point source located at the
center of the explosion in terms of the homogeneous solutions and the
total volume of gas introduced.

Since the total volume of gas introduced by a nuclear explosion

is equally difficult to obtain from available data, we will take as our



source the Green's Function located at the explosion and then
normalize the source so that the pressure variation with time for the
direct wave is the same as actually measured near nuclear tests.

In order to retain cohtinuity of presentation the following parts
of this paper are given in the appendices:

Appendix A contains the derivation of the linearized
equations of motion in terms of the perturbation pressure. The
derivation has been obtained by many authors and is given only for
reference.

Appendix B contains the derivation of a closed form
expression for the Green's Function solution of the inhomogeneous
equations of motion. When the gravity field is zero, the Green's
Function reduces to the acoustic point source.

Appendix C develops the numerical technique used to

evaluate the Fourier synthesis of barograms.

Explosive Source

As a source model for an atmospheric nuclear blast, we use
an azimuthal symmetric simple point source located in layer S
at an altitude £ . We then normalize the source so that at a
A
standard yield, M ,» and distance, <_ , under the source, it will

have the same pressure perturbation and time variation as measured in

actual nuclear atmospheric tests. For bombs of different yields
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A
and altitudes, ‘we adjust this distance, Ay , by means of empirically
derived scaling laws.
cwl
Assume an ¢ time dependence. The point source is the
Green's Function for the partial differential equation governing the ex-

—

cess pressure /O in a gravitating isothermal space, or the solution

of
cewl
FEOR) (T B L)y e @

Quantities not defined in the text are given in Appendix D. The LHS
of equation 1 equal to zero is the honmo geneous equation for excess pres-
sure in media without a source as shown in Appendix A, equation Al5.

The solution of equation 1 as derived in Appendix B, equation Bl9 is

given by
“t fo5 (2 oF 7%
_— AslF0) M [ e E 0
/ofos,fg fo e — e =)
Z [ by (2-00" ]
where

) fa?: (04,2/\}4,;) s 09" and A =Z£fg, (3)

Z’(’

Pay .
We now insert 7[(40, s in equation 2 so that after integrating

equation 2. over &’ we have at a distance, s » directly below the

source, the observed excess pressure-time variation ( The Effects of
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Nuclear Weapons, 1962).

| .z
[/os(o a-é)-z)]z/gs( ’ff;})d 7z

L 2O
)
= O <o
where 7 = ¢ - fa_‘_
and where Cas is the arrival time of the peak pressure, /40;,\,.

is the peak excess pressure, and 7,;, is the duration of the
A

positive phase measured at distance (7, . Applying a

Fourier transform to equation 4

oo

[/o,, (0,0-d.5¢)] £°“%, ‘- o -l ()

]
o /‘ fza:
1'45‘

‘and equating the result to equation 2 evaluated at ( ¢, 0~d} )

A c'a) Z‘
with an #¢%0, @)  inserted and the & excluded, yields

7[;/547) d«f) _ —Z/ég 5/2}“/1,—)&: (ﬁ(&)éj

G, ‘@ 9,
b+ cw)

|

where 19 = 5—:——
tas

and  X'. K 4
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Thus, for an explosive source, we have

A 2 ' _ z/lé
i~ vz (X:'r)as ,25[2—9) "Z(‘)Z;Ja" . émj[g*é;(z wjeéwt

o‘o*‘é—ﬁs c o4 e [ ‘e —
(4 #ecof i e hol2-0)]

We note that s has four branch points located at

4 /
w=-f ¢, +d, and ﬁf 2 pas two branch points located at

~ 2 2,2 s Z z
w= 1 Uy, where & =Y %s and &, - (Y“/)gs
Ao o}

In order that the integration of equation 7 over < be convergent

A

for all reasonable ( &, 2 ) outside of (s we require that

for - i
o, >0 >-4,

7, = W and Ay = £ VAT
S ~2
/a:—:; Z

for &’,7(4)742 and - O <w< -,

(7)
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for w>4, and - >

. s A Va 2 2z
/Qﬁ/@‘d - and é— = L V-4,
oy z w2 /6(.)/
2,
~ 2 ~ 2
where «, >, for ¥ > / . Although not shown here,

the above criteria can be obtained by shifting paths of integration in

the complex «’ plane arbitrarily close to the real axis under the

condition that £ ¢ ’ﬁr) zo and ﬂ ( é_fz) > O

The condition that ﬂ (/) >o and (B¢ A,Vz) >0

enables us to write equation 7 as an integral expression from

equation B18
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=)

- (= A)8y N, G-Diyl. a . | —tFlls (70! wt
/0 = é/@ e & ZDc"”Z;’J; o & e kb e Co)
So as (—————-—',é/L(s )

o

This form will be used as our source term in the matrix formulation
of the layered atmosphere because its integrand is ex pressed in
the solutions of the homogeneous excess pressure equation.
. . . . 4 Z(
Now instead of inserting a different ﬂs , e, Cas,
and 7;45 for different yields and altitudes in order to
synthesize a barogram, we use the measurements from a "standard"
A
bomb size of one kiloton at a /&m such that <7, is in the
linear region, and then keeping /bd, fixed we scale the other

quantities to explosives under different conditions by means of the

empirical scale factors given in The Effects of Nuclear Weapons, 1962.
For a given excess pressure, the distance at which it is found from the

blast is given by the distance scale factor

g = (V((« %}%})W )

For the time measurements Z(a_f and 7;4, at this new
distance, we use |3 and in addition a velocity ratio, since they

are given at surface or sea level velocities. Using these scaling laws,
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the appropriate bomb characteristics for yields and altitudes other

than the reference or '"standard' bomb are

>

A
5=§d,

2

| _ re
14&525552 ZAo and 77‘;:—.?9—(: Z‘;a (/‘2)

5

2

where §=<M,§;)'/3 _ <W%5_})/ 13)

since, by the equation of state

Matrix Formulation and Solution for the Explosive Source in a

Horizontally Stratified Atmosphere

For an isothermal or constant velocity layer »» in a hori-
zontally stratified atmosphere not containing the source, the equation

for excess pressure is given from equation A1l5 by

2 2
FH0%) g (A E )
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Assuming that the radial or / dependence of | /%,, is given

by jo— ['é/’) , equation 14 reduces to

D ¢ Y 3 o (L K o 22,
+ + - — =
FY SRR (o(m, % ) [
and by equation Al2, the vertical velocity perturbation is given as
Wy = (%7’%’*%/%) &)
m/gﬂ(a)éo,, m

In addition, we have for the equilibrium state in each layer

ff":ﬂﬁ/o’ J /9"—:/?/(/"0")0(1%2 YRK " a7

From equation 17, we obtain for layer .»»7

2AnE2,,) o 24, ZE, )

/g,,o/z) =ﬁ,,°(2’ e = /o ©

where /NL,, = Zﬁm} R /0,,,7 =/fn @n—//,z) : ,

2

s
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and Z 1 { is the altitude of the 7 layer mid-point.

Since /g:(z/mﬂ/):/gj_, (2,7,,,,,) , we have

o Cnt) - At o) /)

We have assumed small motions and will impose the boundary
conditions of continuity of vertical particle velocity and total pressure
across the disturbed interfaces. Retaining only first order terms,
we find that the change in total pfessure of a small parcel which is
displaced a vertical distance 7 from its static equilibrium
position £ is the pressure perturbation, /7/3) , at the

zero displacement position plus a_;@ = ,7/&0(59 7 . Now

defining
[ @) = fo2) + Sp

using equation 16 and W= ¢ 77 we obtain

for layer 777
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(Fom - /o - %22;‘ (jzm ’ %ﬂ”) “7)

At the layer interfaces we will now require

/?a””_, /Z,,,,-,) - /%’” @”—/)

in order to guarantee continuity of pressure. It is interesting
to note that when there is no temperature or gravity discontinuity

across an interface, one can use as a boundary condition continuity

/)(3) since for that particular case / ,,,_,] /bwfa? )

is equivalent to /‘?m (Zm—-/) = /Z,,, /Z/)x—-/)
This relation was used by Pekeris (1948) in his model of the atmosphere.

The general solution of equation 14 is given by

/ -u.é/&/ v A, cwl
T4l ol S T8 e ° )

=

™
i

where

Z:JAA z"l‘
(Al < o J

2

NS

/)

and using the definition of phase velocity
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&R

we can write equation 21 as

2 2 2 2 Va
o - JH(E) - E (5

(22)

for (c, k) such that (f/qm)z > o and
2 2 YZ,
floy = JE(1-2 ) = Do ﬂ%)
” Ky c ,4”
2
for (c, k) such that (é@,w) <o . Here
/fﬂ = 2 ”(m/ 40(”" for
J

all Yy > / and d}:ﬂ is the Brunt resonant

angular frequency for the constant velocity layer m, and is

given by
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Va
fﬁon = ?—“@0("[ I /) = &;

7]

In order to facilitate the evaluation of W, and
/%,M at the top, £, , and bottom, z;_ , ,

of layer 277 , we define

A / A / - t/é[afw Z»r—/

S = Eom fart
and

V4 4 /’/ééqy 53:97—/
‘—4/»7 = = <

and equation 20 becomes

/Z (Z) = 5—),"2/'4,,; cfﬁhéémé?ﬂz;w)f

~

Substituting equation 24 in equation 16 and 19, evaluating at

Z,, and Zir—/ and eliminating the constants
e /7
_4,”, and 4”,, we obtain the following matrix relation

47 e & g'{][ (é/i)ng‘

2#)
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WL, (2,) @), @) | | we ]
/dp /Z-? ) (am)z/ (d'”"]::z dg 5 ("3» /)
where

d,
a,, ) =€2¢, "”[(’05’/9 o( Y\ s /7}
+Z— et 2>//é/z«,,,>

@), - Gy 1 o)
/%% 5 eten)

(2¢)
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A 4
(G )y = 7 ('OJ/,Z« Tz [ - ¥ 2 )

c* Z2

b = (Bt ol

and fm :f,:, éz-— 604 . In equations 26

we see that matrix elements @"")/k are pure real
or pure imaginary for (c, k) real and j+k equal to even and odd
integers respectively. Therefore the elements of a matrix
resulting from the matrix multiplication of any number of Alayer
matrices will be pure real or pure imaginary in the same sense

as the individual matrices.

For - g/m:o the (7 matrix reduces to a form
equivalent to the non-gravitating liquid layer matrix given by
Dorman (1962) in his discussion of elastic wave propagation in

layered wave guides.

For layer 5 containing the source, we add a source

term of the form
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L - D) _ kg /20! cw?
(22 S GNED SR iy o)

o
where S, is not a function of £ or X/ , so that we now have

- é/a@ 7 ¢ : 3 - ol
/b (=)= 2‘/2] ’ = & /(,L\,Z'%‘gf/]f @—['é&/i ﬁ-//té/«é/)é’

(27)

Decomposing layer 5 into two layers with the same temperature

and 7 ; layer s for F_Sz722

and layer S/ for L2Z »Z5,

we can write equation 28 as

/a,f/é//«,) chF s hg Z ‘s
oo )= /2’,5 £ 3Se % # A (L) <

(29)
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and

Y A Qs -chlus)O] L7 o
fr e % el s ” T jz T g0

Similar to our treatment of layer , we define

+ G &

4 ’ /’A/ < s *l;é&o‘)p/e._z' //;’(54_?%—/

P v Ss Exo
452 = éfé
317)
/ / ,c}é&;é,-,

and

Y ‘ ‘ - /é@a’)ﬂ - 27_,
4 ‘. _ fﬂ,/ f-sg_ézgg, ¢ J] Cf(f@?; o



where Z_, =2, L, Ty, =0, =D

2.

and é/‘/ = ZZ_, . Using relations 31, we can rewrite

equations 29 and 30 respectively as

A ﬁ/ —Z,é/,,s(?-z},-,) ” bl .
/??Z/Z) == /452 & 4 éfzc(é/S/ éz-/)JKé[)fsz (‘72)

- -z /Z"Z_;— s 4 4' s Z"f—/./ )
/@/ /z):e)’g/ﬂ,:e (s ’ )7« 4,,/@”4/ 8 ')/J;(él/cfwzf (33)

Comparing equations 32 and 33 with equation 23, we see that for
layers 52 and 57/ we have the same matrix relations

as given in equations 25 and 26 with the 77 subscripts replaced

by s> and S/ respectively, where
05/-2 =2 -0 and O/f/=ﬂ' Zey
In addition, since temperature or velocity and g are the same

for layers 52 and J7/ , we have
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/Z’(sz =/7cx,7 :/Z(; 3 sz - )J/ = ); >
(G+¢)
P o
b2 "{sz ’"’5;- ) /dfz ‘ﬁ— (é,_,/z)
o 2
= - 22D
/0.5“/ /0; /ZS/— ’/e) > Z_\—;g_ 2 - 5-2
and = = DO+,
S/~ V2
ra

Also, it can be shown that the matrix product

a4, @, =& (357
where ﬁ; is the layer matrix for layer 5 if no source

is present.

For all interfaces except the interface between layer
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S2 ‘and s/ , we have continuity of w-
and /&f. . Using this continuity and the matrix relation

25, the following is obtained

and
WL, ) W)
Wy, (o w; (2)
= e
/Oﬂf/ (0) /Up/ (0)
sz

where /4 = 4”“;"'452 and /i,/:dﬂ....al
At Z =0 , layer / is in contact with a flat rigid

boundary where we require W, o) = o and thus
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>, ) = ﬁ (o) = /&o . Equation 37 then reduces to
W, (0) o
= A, 5%)
s @ />
Since "—)ff’ is discontinuous across £ =2’ s
o/

we have, from equations 29 and 30 substituted in equations 16 and

19, the following relations

/05.2 ) - ﬁ/ (ﬂ) =0

WE, (D)= we ) - 2.2 @/

G

/@%QQ»"/QV(ZU: ,.;%Z
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and

'Q;Z/
? D Jasa (P)_ s (D); = -/ N/ d
‘7& -ﬁ /st Seo &%) e

where the partial derivatives with respect to & are evaluated
at & by letting £ approach /Z  from their

respective layers. From equation 39 we obtain the vector relation

) Wy, (&) i W, (2) ] sz
= # (@)
/?‘J'Z (&) /b/%? (ﬂ} gﬂbﬂs
where
cw?
Swy = 24055, T, (kp) &
why 5P
/)

wmd S, = CEAD S0

o

We now define X and Y by the matrix operation
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X ’ . W, 1
- A, “2)

| Y | /q,ﬂ (o)

L

-/
Multiplying equation 40 by /4,—, , and using equations

42 and 38, we have

= + A, 43)

or

X = %/—),/ 5% 7> //i‘/‘/)/; %’f
| 4

. /2 = )/‘ [//f‘/‘)z/ ;W; ¥//’/_2z fﬂ:]

For the case of an atmosphere bounded by an isothermal

| th 7
half-space, we require that the n— layer coefficient _4,,, =0
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' 2
-~ For (c, k) suqh that /é@,ﬂ) zO this is equivalent to
requiring that there be no radiation from infinity into the wave
. 3 < . o
guide. For (c, k) such that Ké/;(n,) <0 this condition
guarantees that the kinetic energy integrated over a column of

atmosphere be finite.

V4
Setting 4 =0 in equations for yj, (&/
and ﬁ’m =) evaluated at =, ~ we find that
- — —
Loy » W (%)
= l;; /4\,—) .
/
é/ﬂ /?’ -/ /Zm-/)
L L _
-/ :
and the matrix f:n is given by
-/
%,) o
£ #)
-/
O (éz/n)

where
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e £ R e f (E- ) ol L)
3 E

#7)
N Br i, e P z o’
B e b/, &C)/%__{z;%,)% 5 ke
s (kc)
d
Defining the matrix A by the matrix product
2 [ —

%’/4 /45/ =4’"/ dgzd‘f/ 4} - q‘?-/ 4’ d/ ,
since by equations 35, sz @/ = @, » and in turn defin-
ing J by

T -/ | 45
<&, A

we obtain from equations 45, 36, and 42
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49

Ve
Finally eliminating ,4’,,,‘ from equation 49, we have

7)
>/= - ("7/-/—_____.-—-—]%—;)-2 X = < %( X (5_0)
(/.z— 22 a
where
7)
WA - e A
57)

and Z M*;. é

Substituting equation 50 in equation 44 yields

) & '
;Swe M M )

- i

where
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From equation 26, we see that the determinant of the

individual layer matrix is equal to unity or

/)= &)

and therefore, the determinant of any matrix product of these

layer matrices is also equal to unity, and we have
/Al =/

Using equation 55, the inverse of /é/ is given by

p %‘/ ) 72 - %’/ 22
A, = &2)

| - (/Z—/zy/ | (/Z/)//
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- Substituting this result in equation 53 yields
z) ,
), - A« & JO0)- )] &
a

and using equation 41, the definition of /Qp , and

equation 38

Y ® L * 2)
N e L ) - g o

Now performing an integration over /é where
o® o <
/b/nﬁj/%a% . W= W;,,c/é,ﬁm=[/%mo//é &2)
o o

o

and letting

R R BY A il
&5; = s 72 @— cC __,é*’—«—————?_ gi_/f) “ @O)
(é\’. flz‘)) /ers
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in order that /?,—D = f/f»o vy be equal to equation 10
o

we have from equation 41

A /,« :)dﬂo' (a -—Z;.:
Swy = 2f § L]J&/)e/ #ee)

Ly i a— <7)
/g'o(p) / (b + )

and

=24

: - 7/
-2 fas P PR VY Vel TNV R
Ve (+Z(o) s A

In this‘ paper we are interested only in the waves which
are 0&2"/7 . These waves are given by the residue
contribution of equation 62 due to the zero's of 5 ,
Evaluating equation 62 for the residue contribution, we obtain

for each mode or /é/- root, cv fixed, of /;: o)
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Kx’, A, @ 2 @) Clr (- las)
;[/f —3/7% b Mo Moy 7 ) (63)

Cbrcw) (;f)
R272%
) z)
where (2)_/5) s /(/a/ and /Ié.
PR S, 7
are evaluated at (w, ,é/) such that £ (2o f)=o
/f’/@,é}) =0 is the period equation given in

Press and Harkrider (1962). Roots, dispersion curves, and the
homogeneous velocity and pressure ratios at altitude for various
temperature models of the atmosphere, along with a discussion

of the "cut-off'! region can be found in this reference.

At 5/&0,/6) =o by equation 58

%/2) ) ﬁ’"&/ﬁ) )
Vi

and since by equation 54

+
NN
¥
Ny
i
~N

)= Ay

/2

and
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© *— )
é: = %/z + éflf ﬁ?z =
. é;m )
we have
'
e

Evaluating the residue contributions of the integral

representations for Wz, (o) )/?oj/(p)) /5,—, (), }’Z.;/ﬂ) 5 /2;,_,,2 2
and /é‘z o) by using equations 38 and 40, we

find that

275;’603é;- = /42;22 (i;i>j?.
/ %

; Frs (p)}a/? (2,), J /% )Z@

9,

w3, <[ iP9:2),] 231,

i

@5, - Ji, @Y,
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3 y W)i/ = Z};ﬂ Zi 4{

<7)

J 0, = I @

and thus there is no discontinuity across the source plane,
Z= % for the residue contributions. From equation 67

we have that

X

e‘@(z)f;”%://;/z)]; 245, =//W§‘=’/ 5,

f/é/;m/z)é:[/;m/z)g? Z%é 5[%52)/ g%fa/.
K “8)

PR YA /;,,zggﬂ,’//;,,@j;}’ %8,

[, .

/Z.
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" is true for all ,2» above and below the source, and where

47/7}):&/)»(57)@”_,”“0/

and g,m (Z) is the layer matrix for a sublayer in layer

of thickness

= Z- :
J,,,,(Z) zjv—/

Rewriting equation 63 using equations 64, 65 and the
definitions in equations 68, we obtain for the residue contribution

for excess pressure at the surface of a horizontally stratified

atmosphere

————

A ..r 1/ t' — &gz
SR8, = rdfie SR, A s
y ; o) G
PO o) /5_3]@ (3% L, G2

where

i)

X

Approximate Curvature Correction

It has been shown by Weston (1961) that a good approxima-

tion to the equation for excess pressure in an isothermal gravitating
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spherical layer, assuming that the radial dimension of the
atmosphere is small compared to the earth's radius, <, ,

can be given for longitudinal symmetry by

/ 9__({/4(9 9?%_@») 4 )/()///)/g, =g (%)
s 0 D6
and
2 2 2z

2 ,Lrgﬂa&/za,L{%_@é)fm:o )

2.2° - OZ o

where Z is the radial coordinate, @S is the colatitude,
and

Aéizga ;:;y(ﬁ/f() (72)

To this approximation the & dependence of /m
is given by the Legendre functions /3 @59) and
Q, (Cosd) , and the radial dependence is determined by
the same differential equation as 15 which governed the vertical
dependence of /b,m for the horizontal layer. In addition the
approximate radial boundary conditions across spherical Iyayers

are the same as for the horizontal layers. Thus we have the



-41-

same relation for the spherically layered atmosphere as
equation 52 with the I(éﬂ) dependence of ;W;
’replaced by some linear combination of /5/5'05(9)
é,nd Qp (605' o)

Now, near the source, the residue contribution, equation
69, should be valid for ,é}' . large, i.e., small horizontal

wave lengths. Thus for an approximate curvature correction to

equation 69, valid for large /é, &, we will use an asymptotic

expansion, valid for large Y , of the Legendre functions which
2)

reduces to /%Z %/) near the source, i.e., &

small. Such an expansion was given by Szegt (1933)
A -
[ors) 22 Q) Gass) 2 (57 ) A es] o)

For Y large, ,é/de = VY and

equation 73 yields

' Y7 )
Please) s & 2 @, (Cosg) % (L __ )" &~ &) A
7 . S5/

where /Z is the distance from the source measured on the
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surface of the earth, i.e., A= <.
e

Therefore including the above approximation for curvature,

our solution is

.02 a ) (P ps
| s ~As); ,é f_ ( /;a/ /‘é/f)é @ )
/ B G i) ( a.5:n8, )
. A5,

Furthermore since we are interested in waves at large Z

from the source, we now make use of the asymptotic expansion
)

for large arguments of /y Ké/f) and

obtain from equation 75

) |
5/7;? - 27y s G/Z,-—% & /’/—;‘;””' (/z 9)1/2 = )Kz ]
a; /(p) (é -,c((d) [ﬁn_-_/ é_é— a, s Y4

o (-Tr - L9745 )
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From this form of the solution, we see that our curvature correction

(Fore)
A 5‘/09)

factor

alters the amplitude in order to compensate for the effect of energy

spreading over a spherical surface instead of a flat surface.

Barograph Response and Calibration

The type of microbarograph at Donnelley Seismological
Liaboratory has been previously described in the literature by
Ewihg and Press, (1953),and Donn, Rommer, Press, and Ewing, (1954) .
The frequency response of this instrument is given by the following

equations

Fre) Xo o

2
[{@1402[&,@ val + 4 ‘2(’“05)]* “’:“%?*/:"”3("*@)‘2‘0(‘%&§= *“’;%)f?z ]K1

= X,v %3/’ 77
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| o L
Z = Lo ' - Slat 4 rtE -] 4k & ([ P
2 (@) e+ ) & )-2 5EAE)

where
f/w) <?.~ ‘& is the barograph frequency response
) is the angular frequency of the pressure
disturbance

728 is the natural frequency of the float transducer
g is the natural frequency of the galvanometer
€ is the damping constant of the float transducer
& is the damping constant of the galvanometer

a is the coupling factor

The instrument constants are such that the galvanometer and float
systems are critically damped, Cr ==/ and the coupling
factor is negligible, ¢ = ©

Since there was no record of an absolute response calibration
for the instrument; it was decided that the best method of determining
the frequency independent X/, was to compare responses with
a well calibrated barograph at the U.S. Naval Electronics Laboratory,

San Diego, California. .At our request, they sent us their calibrated
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record of the 4 October 1961 Russian explosion. In additionwe
received NEL/Report 773 which contained a description and frequency
respoﬁse of their barograph.

Performing Fourier analyses of the explosion recorded at
NEL and the same event recorded here, we see from equation 76 that

Xp can be found by

//) & Spe (75)
éazz Swes

where S is the absolute value of the Fourier
analysis, [;,4,2 is the amplitude response for the NEL barograph,

Wmﬂ is as defined in equation 77, and e
and ~ subscripts denote NEL and Pasadena respectively.

In the actual analysis, we used the same window length and
digital interval for each record. A value of )(,o was

then calculated using equations 77 and 78 for 40 frequencies, and the
resulting mean value of /Y/p was used in the barogram
synthesis program.

A resulting )(/p = .57 was determined for t%le
microbarograph with a critically damped 15 second period float

and a critically damped 90 second galvonometer.
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Barogram Synthesis

For spherical boundary value problems with harmonic time
dependence, the requirement that the solutions be periodic in &
causes ¥ to be an integer. This requirement by equation 72
restricts é to particular values reducing our continuous
75 ,é,) phase spectra for /fs <« to discrete points.

For this problem, we use the continuous c/a),/é) or

(w, Q}) curves when we integrate our solution over co to
obtain theoretical barograms. Using the continuous (&J,/é;/)
curves has been shown by Weston (1961) to be equivalent to only keeping
terms in the spherical solution which represent waves which have ar-
rived at the detector without encircling the earth.

The flat earth result given by equation 76 is obviously the
wave which has come directly to the detector by way of the shortest
route without passing the antipode. For reference purposes and to be
consistent with other authors we designate this arrival in the time
domain as 4/ . This solution is very similar in form to the
result given by Weston (1961) for the spherical problem assuming a

flat earth approximation. In factthe & or # dependence for

spectral amplitude and phase are identical. The solution differs

from ours in the manner of calculating the homogeneous solutions,
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the mode excitatiqn, source normalization, and the detail

in modeling the atmosphere realistically. Moreover he showed

that for the 4 arrival, which had traveled by way of the

antip'odal route, the spectral amplitude was the same as for

the shorter route and had a phase corresponding to the longer

route with a positive phase shift of 2,77'
Since the derivation used here is for a horizontally

stratified atmosphere with an approximate curvature correc-

tion, our solution cannot possibly give /2 . Therefore

using Weston's result as a justification, we obtain the /?z arrival

by replacing /4 in the phase of equation 76 by /% and by adding

a positive phase shift of 7% , where /2 is given by
4 = & Cr-&) = 27 - X (79
Leaving the spectral amplitude the same for /g as 4
after /i has traveled a longer route can be physically interpreted

as a refocusing of the spectral energy at the antipode with a resultant
shift in phase of 7% which often occurs in problems involving
a focus.

Now performing the integration over < so that the source
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used in the derivation of equation 76 has the observed pressure-

variation in the time domain, we have for /4, from equation 76

[f“//é‘, 0, z‘)_;j = [‘/O"'Zg =é;/g;é% o

D A
/\ . (
Cf/é) e L fi ez "

L = G SHO

where &‘:
Ay wd-77)
o~ () (w/(’—- C‘
JZ-= L (W) E 4)* 574 @) oo
[»]
00 ‘“é
@ fu (A7) o) gy t-T20)
Z, = e dw ¢ H, ) e %
3/’ -~00

- (57)
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Y B G,

7

Bl rn- 7 08 )
-/ 4 7
(95 = ZéJ/? /Z,Q_) 714 = 74? # /7
Mz
N 2
73 - - gi fKO a, )
¥ X o
)
and where the phase velocity, q , and /23_.’_/ d.(a—))
1%~z 4
are even functions of <o . Thus from the criteria of equation 9
and the fact that co (&- 72) is odd about & =0 .

we have for calculating purposes

¥

f( d’\s(dﬂ;iwz)
/ / /(fé ) Aé cosw/?- 7] ol
z+(4)
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and (F2)

Z,=2 [[’/ﬁ/%@z_/_,) 6’&&%9/%(/ ff)]o/zo
(éz,ca)

g,
where 7 A; Coo2 mz)/’z
Ay o
For /42 the above equations remain the same with the exception
that 77 is now given by

Lkl 37 oo (#5
o "7 vy - &7

where /, is given by equation 79.
" For the /4/ barogram, we include the instrument

response f(w) and L o> given by equation 77, and obtain

L =z /w/f——/ﬂ/( ( € = w)@a‘wﬁ Z +Qf)] o>
b+ to

(84)
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)/j{é’aﬂoﬁ (%% f@*/)/c/w

7 =z /Jt?w) @/ ﬂ /w)lﬂ/
g

The barogram for /?2 is obtained by the same modification.
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IIl. COMPUTATIONAL METHOD

The calculation of theoretical 'barograms is accomplished

by means of two FORTRAN programs written for the IBM 7090

computer. The first is a modification of the air wave disper-

sion program described in Press and Harkrider (1962). Its

purpose is to calculate all the quantities in equation 82 which depend

on layering alone. These quantities are ,ﬁ’@ (w) | /g/ ,

and the group velocity, U/ = 9_/_‘?
ol a/,éf,-

In order to reduce the number of calculations for a given

root, we find the zero's of the function 5 in terms of &
and /é instead of /é/ and (7%
- There is further economy of calculation if we specify <
and use trial k's until a zero of 5 is found. This is due to
the large number of terms in /2"_ which are a function of

7/

and the layer constants alone. Thus once calculated for a given (/’

they remain the same for every trial k used in computing 6

Therefore for the computation of 5 we use the

following form of equation 51
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/o= ﬂ/; 4 (&) [?’” (~"Z> s (é/z(”)] A 22 (957
XA

All quantities in equation 85 are always real for all (c, k)

real except for ('&%ﬂ’) which is real or imaginary

depending on the values of real (c, k). Since in this paper we are
interested in undamped propagation, we now make the requirement
that (é/‘yﬂ)z be <& . This excludes leaking or

complex modes of propagation. Under this condition, equation 85

is real and takes the form used in numerical calculation of dispersion

curves:

~ A7+ k) /? (% %f‘/é/@// A. )

2

//z,,-,)oa, 5.
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' 2
The condition that /'é%\/m) <o now pre-
scribes a cutoff region in the (c, k) plane defined by (é[q',,ﬂ) =0
The boundary of this region is obtained in terms of ¢ and period T

by sétting equation 22 equal to zero. This yields

o* 2
Lo -7
yas 75,” _62;—-/.___’ ®7)
c® )/2
z
where
Z is the Brunt resonant period of the halfspace and

is given by

G, = 27
L
9.

From equation 85 we have the following asymptotic values of the

boundaries of the cutoff region
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No cutoff region occurs for S, SC S o,

(F5)

7_-——7 - /0/ C'—av/g;

7[;/‘ <=0

No cutoff region occurs for

27

(&) 7 <7< 7,

The flow of this program is similar to that in the programs
described in Press, Harkrider and Seafeldt (1961) and Harkrider
and Anderson (1962). The zeros of /; are determined by
initially specifying the pha se velocity, CJ , and a trial value of the

wave number, # . The elements of the J,m matrix are formed at
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each layér and then multiplied by the matrix of the layer above it,
starting with the layer at the surface. After the matrix product
for all layers has been calculated, the program then combines
these numerical quantities to obtain a value for /g . New

trial values of k (of increasing or decreasing size depending

on the sign of the initial /, value) specified by an input 4 k
are used to calculate new £ values until the root is bracketed
by a change of sign in E. Linear interpolation and extrapolation
are then repeatedly used to find small F values until k's of
d'ifferent’ i signs are within the precision interval desired.
The resulting interpolated value of k is the output value given

as the root for the input c-

The program has an additional feature in that as an input
option, the first or second roots (two smallest k foots) will be found
for a given c. This is accomplished by starting at the smallest k
outside of the cutoff region ( 6 complex) and finding either the
first or second sign changes of F. The roots associated with either
mode are then computed. For C > /Jf” in the isothermal
halfspace model, this initial k is zero. For c <4,

the initial k is determined by equation 87.

In all models calculated we found that each continuous dispersion
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curve or mode was a monotonic decreasing function of c versus

k or T and always had the same F’a éign change through the root

region. This made it easy to track all of the roots of a preselected

mode. In order to save computer time and keep from jumping modes,

the k root for the previous c is used as the starting point for the

new c. Further details about root hunting procedures can be found

in papers by Press et al (1961) and Harkrider and Anderson (1962).
Once a root is found by the computer, the homogeneous

velocity and pressure ratios given by equation 68 are calculated

at the midpoint in each layer. The vertical distribution of these

ratios is generally diagnostic of the particular mode and provides

a check against mode jumping.

Next the program computes the root values of /@’/ (@)

and UJ . In order to calculate Jgﬂ/‘ w) , we need
the value of 97__/5 . This is accomplished by
2k Jew, )
.. e . 3L
defining a layer derivative matrix =7 where
ey 0

2k ), Y
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' . 7
is the definition of the /g 74 matrix element. From equation 89

and the definition of matrix multiplication, we see that the matrix

(%’” 3 can be given by the matrix products
o). (%) 4, - (L) oo
2k, \2k) T Ik 4,

Therefore using equation 90 and analytic expressions for equation 89

in each layer starting from the surface layer, we can calculate

the matrix (_92,4 . With the elements from this
R
matrix, we compute (Dlé':) from equation 86. Similarly we
L, |
calculate (9__24; and form the group velocity 4
J0%

by the relation

y-- (%) NE) 2

The form of ﬂd/ ‘W) given by equation 81 ’is due to a
simplification in the numerator of the integral expression 62

evaluated at the zeros of the denominator. This simplification is
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based on the fact that 5 is exactly zero at the poles of
the integrand. But since a root is designated by the significance
in k and not in how close 5 is to zero for root k, we

o
felt that it would be desirable to calculate two ug;,) s

) z)
The first, 2, » is defined by equation 81. The second, 2,

is calculated using the numerator of equation 51 of the integrand prior
to the residue evaluation. The advisability of calculating two

is demonstrated in the following paragraphs.

The value of <2_£) depends on the number of
r 2y
layers used in calculating the roots of 5 . But since /ga/-

is the frequency response at the surface for a source infinitesimally
near the surface, one would expect it to be relatively insensitive

to the higher layers especiaily at high frequencies. The same is
true for <, and q as long as the number of layers is such
that all the minimum velocity layers are represented and the
halfspace used in the root calculation is the highest velocity used

in the calculating array. With this in mind the program calculates

/) 2)
a "pseudo” 4/?@/ , (/40/ J and (//

at each layer starting from the surface by assuming that the next
higher layer is the halfspace. For some layers this is impossible
since the '""pseudo" 5 at that altitude is complex. For these

' ) (‘2
layers the machine prints out zero for ‘/44/ , ‘/?a ) ) and g.
4
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As the."'pseudo' calculations approach the root halfspace,
(z)
we found that ﬁa/ and ﬂ/ v converge rapidly
to their value at the root halfspace. (Here and later we designate
the halfspace or last layer used in the root calculation as the root
halfspace.) The difference in significance was often outside the
"print out" value. As expected, we found that the higher the
frequency the lower the altitude at which this convergence occured.
A Y
Once ''pseudo" a, and & begin to converge, they never
"blow up' with increasing altitude, even at very high frequencies.
)
This was not true for "pseudo" /Zd/. which converged slowly with
)
altitude until it was near the convergent value indicated by /44/-

at the root halfspace. It then began to diverge rapidly as the layer

number or altitude increased. At long periods where the convergence

) 22)
for ﬂa’, and ﬂa’/ was slow, the root halfspace
) ) '
values for ﬂa/ and 44/- agreed to "print out"
significance.

Because of the above, we used for ﬂa/ the root halfspace
=)
value of ﬂa/ for all frequencies. The rapid convergence
@) 2>
at high frequencies and the AA : and jﬂ .
agreement at small frequencies gave us confidence that our computed

values of ‘/44/’- and U/ were correct. As a further
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check, we calculated a rough group velocity in two ways. The
first is by numerical differentiation of the phase velocity. dc/aé

is obtained by perturbing <  slightly and then finding a new k

root. The second method is by numerical differentiation of 5

and using equation 91.

Before going on to a new root, the program stores. /6 2 S

g , z/{a/ ) and//?[g”;ﬂz] , the pressure ratios at each
3 /{(

iayer mid-point, on a magnetic tape to be used in the barogram
synthesis program. The location or file number of this data on the
tape is printed out and the proéess is repeated for a new C/
until all the requested roots are determined.

The programhas two options for input of layer constants.

The first reads a/ and /(,:, from data cards. From equations 17

(e g
)

and 18 we then calculate &7, and /S where for calculation

purposes /O/m is given by

-/

/éga ://g°j£%; exp (f;?/z‘%/og-—/1m<im/) (72)

/>

o ©

Here /0,,, and /(0 are the equilibrium values for

surface density and temperature. The second input option is to read
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o

Jin 0,{,, o> ’(m , and /‘Zm directly.
From equation 18 we see that in order to obtain Ao
and in turn equation 92, we must calculate the layer gravity ?,m
In the cases given in this paper the constant gravity in layer 7 ,
?M , was chosen to be the value of gravity for a spherical
earth at an altitude equal to the layer midpoint 2,
As in previous dispersion programs, numbers of the order

,1
of exp (,é Jf ci,) are involved in the calculation of E

Therefore, as ¢ decreases and k increases, the larger root values
of k will lead to machine overflow, if the total number of layers
remains constant. When this occurs, the program will automatically
reduce layers starting at high altitudes until E, no longer overflows.
The program then recalculates the root for the previous larger c
in order to verify that no loss in precision of the k root was caused
by layer reduction.,

It can be shown that the determinants of the 7 matrices
are identically equal to unity for all‘ values of (c, k). It follows that the
determinant of the product matfii: A is also equal to one.

Therefore, if loss in significance occurs due to machine round-off

during the matrix multiplication loop, the numerical values of the
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product matrix determinant differs greatly from one. As a check
on the validity of roots, the program calculates and prints this
deterrﬁinant for each root.
From equation 26 ’wé see that certain matrix elements
are infinite at 5/»7 =0 . For each layer, 5,,,,2 o defines

a straight line in the (c, T) plane given by

L, = 27€
777 7/»’
Since ?M is bounded by f, > 7,,., =z ?m , the §,/s=0

for all layers fall in the region bounded by /= 2 and 7= 27C .
7o T

This region will be shown on the dispersion curve figures as a

stippled wedge starting at (c, T)=(0, 0) and extending to the top of

the figures. In order to keep the programs from needlessly reducing

layers due to overflow caused by a trial k being close to the zeros

of [,»; , the computation is programed to keep ¢ and k out of this

region.

The purposé of the second program is to take the quantities
calculated by the dispersion program and synthesize the pressure and
barogram time variations at some surface detector. This is accomplish-
ed by applying the Aki approximation with linear amplitude intervals to

equations 82 and 84. The approximation is given in appendix C by

equation Cll. Rearranging equation 82 into the form of equation C 11,
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we see that the group delay, ff , not previously defined, is

LR

and

= G/_,' 2 C()‘.
Z;. Zédj?‘f%»?é_gj —% ((d"z"ﬁ/'z)l/z

Similarly for equation 84, we obtain

5ot o) (%)

and

s* *?/@‘”%(@ a7 )= (

for

for

=

or

=

or

o <C()('<&:

(97)

N

\\
v

o<, <d

(94)

Jd'7g,

For convenience the input layer parameters are in the same

format as the dispersion program. Along with the model or layer

parameters we have as input the "standard" bomb characteristics

and the barograph constants. From this point on the program input
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is dividea into cases. As many of these cases can be run as
desired depending on available machine time. Each case consists
of input cards stating the number of modes, the source height,
bomb yield, detector distance, approximate frequency interval,
initial time at the detector, time interval between points, and the
number of points to be calculated in the time series. From the
source height, the program determines the source layer and the
densityat the source altitude. Thus with the yield, density, and source
layer velocity, the distance scaling factor f is calculated by
equation 13. Using § we obtain the needed bomb characteristics
for the given case. |

Each case is divided into modes. The mode input cards
contain the number of frequencies previously calculated and the
location of each frequency result on the dispersion storage tape.
The location or file number order is by increasing frequency. Using

the input file locations the computer reads /é/') 9,. 4; 4/65}/ 5

and [ﬁ-kj./ , where 27 is the layer containing
L4 .
£y,

the source, from this tape. Using the input layer constants for the
source layer and the source altitude, the homogeneous pressure ratios

at the source layer midpoint are corrected to the ratios at the source

C;.

altitude, /ﬁi{pf] . With the frequencies, dj = éz_
1 Jp
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3
and ﬂ,/, - éﬂa‘/.[,/ﬂ)

[-] //J~

tables of &, y)'

2

are formed and stored for later use.
Using the initial frequency, the final frequency, the approximate

AL,  and aﬂ: calculated from the source layer constants, the
program computes new frequency intervals subdividing the mode |
frequency band into equal intervals on each side of ﬁ’: . The new
intervals are formed under the restriction that at most their width

is less than the input interval and that there are at least 10 intervals -
for synthesis. For each interval midpoint, <o, , the program calculakes

the exact values of the following source dependent quantities and their

first derivatives with respect to w

és (72’ wi) -
oG
A - | )
(b:v‘ 2D : ‘ for o<l LQ,
-/ )
@; = L[C{/? ==

b
(957)
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/P —
% (éj+a)j’)
65 = fg}?—/(_z_d_f) for ‘dz >&:
2
< y?—
AR IE A,
X s iy

Using linear interpolation between the stored tape values,

we obtain: <, ﬂ‘ (/45‘. and (C_'/_ﬂr at
| ’ dew Jy
the frequency midpoints. Combining these quantities with A R

equations 93, 94, 95 and their evaluated derivatives, we obtain the
values of ﬁ/, (% / , 7; and fﬂ to be used in

4
equation C11. When /4 is greater than the half circumference of
the earth the program automatically corrects the phase delay
and group delay to correspond to waves traveling the long way around
the earth. The pressure at the detector is then calculated for an
initial time and as many time increments as specified by the input.

Next we calculate the exact barograph quantities %/a),-)) (Z/—/—é—?)
, w /)y

% and éa;/fff) . With these we modify the previous
w‘. 2 75 A

frequency values to obtain the barogram time series by means of

equation C11.
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The process is repeated for each mode specified by input.
In addition, an accumulated’ pressure and barogram time series
is dbtainéd by adding the time series of this mode to the previous mode.
The fime series values are printed out and graphically displayed by the
printer and a Mosley Plotter, As soon as all modes have been compﬁted

the program goes to the next case.
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IV. DISCUSSION

Frequency Domain

The vertical temperature structure used to model the
earth's atmosphere is the ARDC standard atmosphere (Figure 1)
used in Press and Harkrider (1962). This model is chosen since it
was shown to explain adequately all the significant group-frequency
arrivals in the observed barograms from the Russian Nuclear Tests
(Figures 2 and 3).

The ARDC standard model of the atmosphere is characterized
by the presence of two temperature minimums; one at 18.5 km
and the other at 85 km. For computation it is represented by a
digital model with 39 layers and is terminated with an isothermal
half-space beginning at an elevation of 220 km. In addition to this
model, we show dispersion curves fo.r‘ the following modifications
" of the ARDC standard atmosphere: an atmoéphere terminated with a free
surface at 220 km; an atmosphere with the upper temperature
minimum removed; an atmosphere with the lower temperature minimum
removed. The temperature structures for these‘ models are shown in
Figures 1 and 5. The atmosphere terminated by a free surface is
studied to see how dispersion curves and spectral amplitude are
effected by the method of termination. The remaining models are

studied in order to estimate the effect of upper and lower temperature
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minimurﬁs.
The following is a discussion of the dispersion curves for
the various models. A more detailed ‘discussion for these and other
models can be found in Press and Harkrider (1962).. Phase and
group velocity curves are presented as a function of period for
several modes of propagation.in each model.
Dispersion curves are plotted in Figures 6 and 7 for the
ARDC atmosphere terminated with an isothermal halfspace at 200 km.
Figure 8 contains dispersion curves for this model terminated
with a free surface at 220 km. The hatched areas in the upper
half and lower right portions of Figures 6 and 7 are the cutoff‘
regions within which lossless propagation does not occur because of
radiation into the halfspace. Radiation losses do not occur for the modéd
with a free surface termination. The oblique stippled band represents
a region of singular values of é: corresponding to Sq,, = ©. The
program avoids these regions.
The dispersion curves are separated into modes S, and 5, |,
52 and G£, G, . The S modes are the first three of an
infinite set, analogous to the corresponding acoustic modes of a non-
gravitating model. This ‘correspondence is based on the éimilarity

in dispersion curves for T<4 min; it also follows from the fact that
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in both cases the pressufe—height curve has no nodes for 5, s
one node for &, , and two nodes for 9z
The high frequency limit of the S, , ¥,/ , and 52
curves is the sound Velocitg; in the upper channel. At infinite
period phase and group velocities of 5. reach values of about
.75 km/sec. S, and S, have long period cutoffs near
4 and 3 minutes respectively with limiting phase and group velocities
somewhat higher than the halfspace sound velocity (Figures 6 and 7).
For the free surface model (Figure 8) 5, , 5, and S, approach
i‘nﬁnite phase velocities and zero group velocities at long period
cutoffs. |
The modes GA and £, are not present for a non-gravitating
m.odel. G/£, is characterized by vertical particle displacement with
no nodes, G-/f, has one node, etc. A large number of GR modes have
been found, but only a few are plotted. It is unusual that with increas-
ing mode number (as defined by an increasing number of nodal surfaces)
the period increaées. With decreasing period the GR modes are

characterized by phase and group velocities which reach zero. For

increasing periods, phase velocity curves run into cutoffs for the
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halfspace models. Group velocity maximums for GH and 2.
form flat plat(eaus at 312 meters/sec. For the model with a free
surface termination phase and group velocity for the GR modes have
. no long period cutoffs. (7, shows the same plateau in group velocity
at 312vmet'ers/sec. The higher GR modes have plateaus below this.
Dispersion curves corresponding to GR modes were first shown by
Gazaryan (1961).

These two models have the foll'owing features in common:
(1) Phase and group velocities between 400 and 200 ‘meters/sec
are essentially the same for S, S/ , 22 and 6/6 modes for
periods less than 5 minutes; (2) Between 5 and 15 minutes, a broad
flat ;rnaximum in group velocity occurs at a value of 312 meters/sec.
For the standard ARDC this plateau is formed by &€ and &€&
with a ""hole" in the plateau between 13 1/2 and 14 minutes. For
the free surface model é/@ forms the entire plateau and no
"hole'" is present. The dispersion curves J£>or the two models differ
for periods greater than 4 1/2 minutes in the regions of steeply
rising phase and group velocities. From the study of other cases
we have found that these portions of the dispersion curves are
sensitive to the precise manner in which the very low den‘sity atmosphere
above 100 km is vspecified.

It is interesting that flat segments of phase and group velocity
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of &, S ,.5 - 5/6 » &/ for the ARDC standard model are
nearly connected to form a’ common dispersion curve. The steep
segrhents of the phase velocity curves are similarly related. The
character of the propagatinvg disturbance: at any time is perhaps
better represented by pseudo-dispersioﬁ curves formed from seg-
ments of several modes. The segménts which form a pseudo-mode
are all particularly sensitive to a given region of the waveguide. It
will be shown that the sequence of maxima in group velocity are all
associated with the properties of the lower channel of the atmosphere.
This phenomenon has also been observed for multilayered elastic
wave guides (Tolstoy, 1959).

The ARDC model with no upper temperature minimum
(Figures 5 and 9) was studied to see how the upper channel of the
atmosphere affects the dispersion curve. The major changesvhich
occur are: (1) very short period energy now travels with sound
velocity in the lower channel; (2) the minima in group velocity for the

S5, and S, mocies shown in Figure 6 almost disappear. The time
of arrival of the first waves, corresponding to the group velocity

maxima of @£, 5, , S, is almost unchanged, and is therefore
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unaffected by the properties of the atmosphere above 50 km.

The ARDC nﬁodel with no lower temperature model
(Figures 5 and 10) demonstrates that the arrival time of the first
waveé is particularly senéitive to the properties of the lower
atmospheric channel which occupies the region 0-50 km. The maxima
in group velocity associated with thek first waves are shifted from
305 - 312 meters/sec to 320-335 meters/sec. GA2 and G.£
are otherwise unchanged. The minima in group velocity of 5
and 5, are deepened but the short period limit of phase and
group velocity is unchanged.

In Press and Harkrider (1962) the ARDC models of
tropical, artic winter and arctic summer atmospheres were
studied to explore seasonal and geographic influences on dispersion
(Figure 4). In these models the properties of the atmosphere
i)elow 40 or 50 km were varied.v Of these models the dispersion
results for the arqtic winter model (Figures 4 and 11) deviated most
from the ARDC standard. As might be expected from the previous
section, the major difference between the ARDC standard and the
arctic winter results (Figures 2 and 3) is the arrival time of the
first waves. The group velocity plateé.u is reduced from 312 m.v/sec
to 302 m/sec. The steeply rising portions of the group velocity which

form the "legs'" of the plateau are shifted to shorter periods.
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" This shift occurs for all modes with the exception of the short period
- Mleg" of G, and the long period "leg" of S, . This has the effect
‘of increasing the width of the 5; plateau at the expense of &€
The effect of lower portions of the wave guide on spectral ampli-
tude can best be seen in the following. From Chapter II we know that the
response of the medium for a surface source and receiver is given by
ﬂa[w) . This response for 5; , S .S, ,GAL, and &,@
for the ARDC standard and arctic winter models are illustrated in Figure
12. The most striking feature is the similarity in shape between group
velocity and amplitude. This similarity in shape demonstrates that the
early arriving waves are more efficiently excited by near ground distur-
bances recorded by ground based detectors fhan the later arrivals corres-
ponding to the group velocity minima. This effect was predicted in
Press and Harkrider (1962) on the grounds that the early arrivals corres-
ponding to the group velocity plateaus were controlled by the atmosphere
structure below 50 kmm where as the group velocity minima were sensitive
to the atmosphere above 50 km. |
Another interesting feature of the response curves is the secon-
dary plateaus of 5, and S, (shown as A and B on Figure 12)
at frequencies corresponding to later long period group arrivals.
The secondary plateaus of 5_; and 5, extend from a period of 2 and

3 minutes respectively to the long period cutoff of each mode.
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For the 5, mode this plateau for the late arriving 2 - 3 1/2

minute wave yiel&s an exciﬁtion equivalent to the earlier arriving
1- 1 1/4 minute wave. The effect of terminating the:model with a
free surface instead of a half space is to eliminate the hole in the
spectrum near 14 minutes with a continuation of J/@, at an

amplitude equal to that shown for 5/6 . A sirﬁilar effect is shown
for the group velocity plateau in figures 7 and 8. Superimposed on
the mode response curves is the amplitude response of the
microbarograph with a peak amplitude of . 021 inches//( bar at

a period of 1.6 minutes.

The effect of source and receiver height on spectral
amplitude can be determined by the vertical distribution of the
homogeneous pressure ratios. The distribution of this ratio as
a function of period at a particular altitude is given in Figures
13, 14, and 15 for the ARDC standard model. The spectral
amplitude is giyen by the product of ﬂa and the homogeneous
pressure ratios af the source and receiver elevation. Thus a horizon-
tal line in Figures 13, 14, and 15 with a constant value less than
one would indicate a uniform reduction in amplitude over surface

amplitudes.
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Iﬁ Figure 13, we display the ratio for an altitude of 18.5 km
corresponding to the midpoint of the lower velocity channel. Other
than a uniform reduction in amplitude as compared to surface
excitation, this ratio shows the following effects on amplitude.

(1) There is very little change in the general shape of &4, and

5;6 . The late arriving waves for G£ are decreased slightly.
The late arriving G/, are increased slightly especially at the
short period end. (2) The early arriving waves for the acoustic
modes corresponding to the group velocity plateaus show an
increase in amplitude relative to the gravity modes. With either the :
source or detector at this altitude the peak amplitudes of the Se 5
5; , and S, modes are equal to the peak amplitudes of the
and @& modes. With both source and detector at this altitude the &
peak amplitudes of the acoustic modes are greater than the gravity
modes in the following order S >S, > SoA . (3) The secondary
plateaus of 5; and S, are reduced relative to the plateaus of
early arriving waves of all the modes. (4) The high frequency late
arriving waves for the acoustic modes show an increase in excitation
and the long period late arriving waves for S, and S, show a decrease.

A detailed discussion on the amplitude or excitation effects
of placing the source or receiver in the more interesting parts of the
atmosphere is beyond the scope of this paper. This is in part due

to the fact that the observed barograms used in this paper were
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produced by nuclear explosions at an altitude of less than 4 km.

The ratios necessary for determining these effects are
givén in Figures 13, 14, and 15 and can be summarizéd as
follows: (1) In the lower velocit&r"miminum, the gravity modes
are comparatively unaffected as to shape. The excitation of the
) early arriving waves for the acoustic modes are increased relative
to early arriving gravity waves. (2) In the relative velocity
maximum between the minima, the early arriving acoustic waves
are less excited than the corresponding gravity waves. (3) The
effect of increasing altitude is to increase the excitation of the late
arriving waves relative to the early arriving waves for each mode.
For the short period acoustic waves which travel near the acoustic
velocity of the upper minimum, the relative increase in excitation
is maximum in this channel * while the excitation of the long period
late arrivals continues to increase with altitude. The majority of
these results were postulated in Press and Harkrider (1962) from the
manner in which different portions of the atmosphere affected the
dispersion results. In addition, it must be remembered that these
results hold for a "white'' source only. The effect of the scaling
laws for nuclear weapons is such that some of these effects will not

be apparent for theoretical barograms in the time domain. This
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will be discussed in greater detail later.

Time Domain

In order to study the effect of source yield and altitude
in the time domain under realistic bomb test conditions, we
constructed theoretical barograms using the amplitude and
dispersion results for the ARDC model, terminated by a half
space at 220 km. As a check on the conclusions drawn in the
following paragraphs, selected barograms were made for an ARDC
arctic winter model.

From seismic evidence the approximate location of the
Russian tests gives a path of #5000 km for /4/ and an
antipodal path of /§= 32000 km for /42 to the microbarograph
at Donnelley Seismological Laboratory, Pasadena, California. The
constants used for the bomb characteristics of a one kiloton explosion

from 'The Effects of Nuclear Weapons, 1962 are as follows; a

peak excess pressure of/% = 34.45 milibars at a range of
A
d, = 1.61 km, and a positive phase duration of 7,;-40 = .48 sec.

All theoretical barograms given in this section are on the same
horizontal time scale and have a common fiducial time at the left
hand margin of the figure. Since the plotting scale is determined
internally by the program, the scales for various traces may differ

even in the same figure. Therefore in order to facilitate
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arﬁplitude conipar’isons, we have indicated certain vertical
amplitudés in the figures by means of numbers, arrows and

é horizontal dash at a peak and trough. The vertical scale

for pressure waves is given in /( bars of pressure and

the vertical scale for barograms is given in inches of barograph
recording.

The most significant features of the theoretical barogram
for the ARDC standard and .arctic winter models are given by the
summation of five modes, 5; , S, 5; s §/g and 6/6 .

Of these, the least significa'nt contribution was that of 6’/6, .

In Figure 16 we show the theoretical pressure variation of /{ for
a 4 megaton nuclear explosion at 7000 feet elevation. The first four
'traces are the individual modes G, S5, , O, , and Sz

The fifth trace is the summation of all the modes. It also

contains 5’6 whose contribution is negligible. In Figure 17,

we have the corresponding A, theoretical barograms f(;r the same
explosion. Comparisbn‘of Figures 16 and 17 demonstrates the
response of the barograph to the pressure wave arriving at the
detector. This is seen in the relative increase in respon>se 0{ the

higher frequency modes S, , S5,/ , and 5, to GA,
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In both Figures 16 and 17 we see that mode interferenc.e in
the time domain significatly changes the character of the composite
barbgram. This is especially evident in the pressure variation where
the Super—position of modes results in spurious period arrival.

For determining the effect of yield with source altitude
constant, five barograms were synthesized for the following yields
at an altitude of 7000 feet; 1, 5, 10, 30, and 60 megatons (Figure 18).
The most striking qualitative effect of increasing yield at the same
source altitude other than the obvious increase in amplitude is
the relative inérease in the long period part of the wave train
~ to the shorter period arrivals. This is especially noticeable in the
extremes of the chosen yields. For 1 megaton blasts the S,
mode is the major mode with S ‘and 6#& almost equal to each
other and somewhat less than S, . For the 60 megaton explosion
the GA£, mode is by far the largest while 5. is almost
non-existant and 5, gives the only high frequency character of
the wave albeit sfnall. This effect océurs despite the instrument
response which accentuates the higher frequency modes 5,
and especially S,

From equation 82 we see that the only terms which could

emphasize this mode with yield changes ate the source terms in
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the spectral amplitude

2- IAZ
_QA; ( /2_ 4())
o
(bF+ 602)
é"' for the long period modes
and
Y A— :
@11, &) for the short period modes
<2

A
where (/, is the acoustic cutoff for the medium surrounding

the source. Since &// = 2‘: X is independent of the yield

and by equations 11 and 12 J:. increases with yield so that the
exponential term increases the relative excitation of the longer
periods relative to the short periods with a yield increase.
Similarly éf decreases with increasing‘ yield and thus increases
the spectral amplitude at long periods while decreasing the short
periods. From these factors we see that the scaling laws induce

a '""pseudo' non-linearity to the problem. This is especially true
for the time scale of the initial pressure variation as the bomb

size increases. Figure 19 shows the increase in amplitude and

fundamental period with increasing yield for /4, barograms of a
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siﬁgle mode, G}ﬁ .

The effect of altitude for a constant yield is illuétrated
in Figure 20. For this purpose, we constructed three //
barograms for 5 megaton explosions at altitudes of 3500, 7000
and 14000 feet. In addition we made three more /4, barograms
for 30 megaton explosions at altitudes of 7000, 28000 and 56000 feet.
With an increase of altitude from 3500 to 1400 feet for a 5
megaton bomb the barograms show an increase in amplitude
of almost 50% in the portion of the wave train corresponding
to group al;rival of é/@ .. For a group arrival corresponding
to S, amplitude change is negligible. Both the overall ampli-
tude increase and the relative increase of the long waves to the
short waves with increasing altitude are due to the scaling lawsused.
This phenomenon is similar to the effect caused by increasing
the yield at constant altitude discussed previously since d/:,.
increases and A_,. decreases with either an increase in yield or
-altitude.

For the early arriving short periods such as S, the
decrease in short period due to decreasing é, is compensated

in this altitude range by the inverse effect of the wave guide itself.
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In the frequency domain discgssion it was pointed out that in the
portion of the wave guide from the surface to the low velocity
chaﬁnel the effect of increasing altitude is to increase the relative
excitation of the acoustic modes relative to the longer period

GR modes.

For the 30 megaton bombs, the increase in altitude
shows as increase in the long period arrivals and a decrease in the
short period arrivals. From an altitude of 28000 feet to 56000 feet
the short period part of train is negligible in amplitude. In this
region of the atmosphere the long period emphasis of the scaling
laws,is.increased by the wave guide since at altitudes near the
relative temperature maximum the long period gravity modes are
more easily excited than the short period acoustic modes.

Figure 21 shows 4, barograms for an ARDC arctic
winter atmosphere under various conditions of yield and bomb
altitude. A comparison with theoretical barograms for the ARDC
standard atmospﬁere yields the following observations: (1) The
arctic winter wave train arrives at a later time than the ARDC
standard corresponding to its lower group velocity plateaus.

(2) The qualitative effects of varying yield and source altitude
are the same as the ARDC standard model. (3) The major difference

in wave train character is caused by mode interference. This is due to



-85-

the shift in phase for each mode caused by different phase
velocities for the two models. (4) The amplitudes are essentially
the same for the two models. Quantitative estimates of amplitudes
for the composite barograms are complicated by mode interference.
Because of mode interference and the '"pseudo' non-
linearity induced by scaling laws, it is difficult to recover
bomb yield and altitude from measurements on an observed or
experimental barogram. Another method of attack is to compare
observed barograms with theoretical barograms constructed from

estimates of approximate yield and altitude.

Comparison of Theoretical and Observed Barograms

In this section we compare theoretical barograms with
observed barograms at Pasadena produced by the Soviet nuclear
explosions in Novaya Zemlya during the fall of 1961. The
yields of the explosions are taken from the reported seismic
estimations given by Bith (1962). The altitudes for the 60 megaton
explosion on October 30 and the 25 megaton explosion on 23 October
were reported in the newspapers as being 12000 feet. Bith (1962)
classified the altitudes as low, intermediate and high for the 1961
explosions, with the 23 and 30 October being classifed as highu.

- With this in mind we have arbitrarily assigned the following



-86-

altitudes to B&th'»s qualitative estimates; 12000 feet for high
altitude explosions, 8000 feet for intermediate altitude explosions,
and 4000 feet for low _altitude explosions.
In the following figures the theoretical and experimental
records have been aligned on the time scale for the best fit.
The arrows indicate where a fiduciai time would fall on each record.
In Figure 22 the first two traces are the theoretical and
observed recordings of /4/ waves from:a 9 megaton explosion
at 8000 feet on 10 Sgptember. In comparing the records we see
that there is good agreement in phase, group and amplitude except
in the region corresponding to the S5, group arrival. In this region
between the numbers .8 and . 85 on the theoretical trace we have
a slight phase shift and mede interference resulting in a spurious
long period. On the obseryed trace the 3 1/2 minute 5, arrival
is well developed. In this figure and the following Figures 23 and 24,
the 5; arrival is distorted, while on the observed records fhe
arrival is well developed. The relative excitation between early
group arrivals is consistent on both traces.
The last two traces are the observed and theoretical
recordings of 4, waves from an 8 megaton explosion at '8006

feet on 4 October. The overall amplitude is in fair agreement
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There is a disagreement in the relative excitation of the early
group arrivals. Comparing the observed barogram with the
theoretical recording of ﬁ for 5 megatons at 7000 feet in
Figure 20 and the third trace in this figure gives a much better
fit in relative excitation.
In Figure 23 the first two traces are the theoretical and
observed recordings of /4/ for 11 megatons at 8000 feet on
6 October. The third and fourth traces are the theoretical and
observed recordings respectively for 5 megatons at 4000 feet on
20 October. The theoretical and observed records for both explo-
sions show reasonably good agreement in overall amplitude of the
early portion of the wave train. The fifth trace is a theoretical
recording of ﬁ, for an explosion of 1 megaton at 7000 feet.
The bomb yield and elevation were chosen so as to match the
amplitude with the observed recording of 20 October. This
change in yield and altitude reduces the amplitude of the long period
component at the beginning of the wave train relative to 2.
In the previous comparisons of theoretical and observed
4, recordings, there is one major discrepancy. The obsefved

recording shows a late arriving wave train of an almost constant
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-period of from 1 to 2 minutes. This train is not found on the
theoretical barograms. From the dispersion curves in Figure 6
this arrival could well be the steep portion of the group velocity
curves of 5; and S, which coincide at about 1 1/4. The portion
at the far right of the record might correspond to the relative
maximum in group velocity of 268 m/sec at a period of 2 minutes
for the 5;_ mode. This'late arrival would correspond to the secondary
plateau in amplitude for 52,
For the large explosions of 23 and 30 October, there
were no complete A, recordings at Pasadena. In Figure 24
the first two traces are the theoretical and the incomplete
portion of the observed A, recording respectively for the
25 megatc}n explosiox; at 12000 feet on 23 October. The
theoretical amplitude is down by a factor of at least ten. The group
and phase character show very little if any agreement.
Theoretical and observed recordings for /4; are shown.
in Figure 25. These records are for the large explosions on
23 and 30 October. For the 25 megaton explosion shown in the
top two traces the agree.ment in phase, group, and amplitude |
characteristics is excellent for the early arriving waves. For the

60 megaton explosion shown in the third and fourth traces the
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the agreement is still good. The distortion is period between
the number .51 and 2. 1 for the observed record appeérs to be
due to séme sort of interference.

The differences in arrival times between the theoretical
and observed / and /42 records leads to at most discrepancies
in times of 3 per cent. The discrepancy in excitation between the
acoustic modes and gravity modes for large yields and altitudes
is due to the scaling laws.which are not valid for large yields

and altitudes.
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V. CONCLUSIONS

The conclusions reached in this paper are summarized
as follows:

(1) The major features on the barogram can be explained
by the super-position of four modes 5 , 5, , 5; and G

(2) Different portions of the vertical temperature
structure of the atmosphere control the excitation of these modes.
The zone with a velocity minimum near 20 km controls the early
arriving acoustic modes. The region with a veiocity maximum at
about 50 km controls the early arriving gravity modes. The
minimum velocity region at about 85 km controls the short period
acoustic mnodes which travel at a group velocity equal to the
acoustic velocity of this channel. The upper atmosphere controls
the late arriving long period waves of each mode.

(3) A normalized point source is sufficient to model thermo-
nuclear explosions.

(4) The observed shift in dominance of certain frequencies
with yield and altitude can in general be explained using the empirical
scaling laws derived from the direct wave near the explosion.

(5) Mode interference in the time domain and the "pseudo"
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non-linearity induced by scaling laws makes it difficult to
determine bomb yield and altitude from observed barograms. If
elevation is provided, rough estimates of yield can be obtained
with this theory.

(6) For large yields and altitudes the scaling laws
seem to over-excite the long period gravity arrivals relative
to the short period acoustic arrivals. Thus, some changes
in scaling laws are indicated for these large events, a result
which does not surprise us in view of the use of low yield data in

deriving these laws.
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APPENDIX A

Derivation of the Linearized Equationsof Motion in Terms of the

Perturbation Pressure for a Gravitating Constant Velocity Plane

of Atmosphere

The initial part of this appendix follows closely the derivation
given by Lamb (1879) and Pekeris (1948) and only deviates in the
latter stages in order to obtain an equation of motion in terms of
perturbation pressure rather than the first time derivative of the
dilatation. The derivation assumes azimuthal symmetry using a
cylindrical coordinate system (r, z) with the positive direction of
the z axis to be taken upward.

The Eulerian equations of small motion are
24 - - 7/
/ Ve 5//_?

oM _ - - G
QU _ ;?,Zf g/° 2)

A
where the particle velocity is E(X, w) and from the equation

of continuity we have

r A “
oO//Vﬂ/' = O (2)
g
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where KO//Q/AI':: 90(7/),‘ QW
H2/T DZ

and C_{_ = 2« A /2-‘-grad

Then rewriting equation 3 gives

T A a o A
%5%,‘”,7}9@;& .—._/oo//y/d’ ‘2)

or
Y &7
wde -
FrE -,
-
where /0T=/° -/—/ and ﬁo ’-/Oo +/7
and small quantities of second order have been neglected.

Now we assume that the perturbations of the pressure and

density are connected by the adiabatic relation

-

a’zo(d%g s

QU

where

YK~

W

& = ¥4
4

Substituting equation 4 into 5 yields
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In addition, the pressure distribution in the equilibrium

state is

b 7 §

and with equation 7 we may rewrite equation 6 as

0%5’,?/"&1/': -K/oao?y/l/’ &)

. eopl
Assuming all the perturbation quantities have an &

time dependence, we obtain from equation 8
V) .
Ry B Fgu o= o 7)
and from equation 4/and equation 8
2 2({ o o]
—o o= W[ *vf + - o)

Using equation 10 to:eliminate /O from equation 2 yields
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or cao W= - 7,"(;3 g a<2/0>

since for an isothermal or constant velocity layer

-

Now  diw v o= kL) , 2w
Tk IZ

Then from equation 1

)

(r2)
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Xew) . 2 - #
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and from equation 12

Wt 5P Y

Substituting in equation 8 we obtain

‘ap- ;ﬁ @.,5 *0_22/0) =~ dhir A

7)

)

[t32) 5 H B R 5 2]

or



thus

”Lo%//za/z)*;&%

or

¢Q
L (23] ¢

wa
V4

since

%)

(L)

=L 2./,
N

(%/)5 ‘ ég), -
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(3 (3 %)ﬁf XGhoit 2,

[ L7 -

#
Z 40(2-22

(457)
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APPENDIX B

Green's Function for an Isothermal Gravitating Atmosphere

The equation of pressure perturbation for a spatially
unlimited isothermal gravitating atmosphere is given in cylindrical

coordinates by equation Al5 as

%;%/”%)+;”K§-Z+j%§§+g/5) =o )

where
z 2-
- /.-. ( =7 = / - J.;
é lo*x (73]
lewZ
and a time dependence of & @ has been assumed.

We will define the Green's Function as the particular

solution of the elementary inhomogeneous form of equation 1, or

— 2 - = 2 — lenZ
FHOH) (o BE L) D,

=0, Zso/

which corresponds to a point source located at

Now applying the double spatial transform
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P

/j/é 7,w)~ ),,Z[I/,é,,),;/ﬂ/ /9//72;4;)0/2 1))

o

where the inverse is given by

20

PE; w)— ffaé,),éa/é/ /e//fy (0)0/7 %)

to equation 2, we obtain

=& e (57

Solving equation 5 yields
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_ é 6—&)7'0/6 cw
7)™ 98,75 )

<)

where /?\(,é)7,'é))://é2¥7io%%f__ d;%g’ﬁ

Now inverting by equation 4, we have the integral

o2 o2

_z o zZ | :
> - - L, A 79 eiy (e

p2] D

(=

. v P /z-d)
= - é_gifa)z‘/ ﬁy)éa/,é/._y,—.. 0/7 7)
7) AR50

0 —p0
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' 2
since # = / - %‘)2"? is independent of /é and 7
-7
The poles of ﬁ //é, 75 w) are given by

I~ 4

778~ (=L)< 0
p(»z

or
. L 2 ' Yz
= < _)_/? +44 ) > L__@ij
%ﬂr A »;‘j‘#-ﬁ/ék 0(1)

=. /(L X%) (&)

22 . =217 %2
where A= .[.?_ and % :[j;%?‘; */é,é_;(é%)f

2>
To evaluate, for =>d we close the 7
contour by a semi-infinite arc in the upper 77 half plane
or ~_4” /17) > O . The contribution along this arc to

the integral is zero and by Cauch's Theorem
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oo ,
¢ plE~d) i lZ-d) ()
fej | 0/7 +[€ 70z 0/7 o7 He [€ 7 / o)
J ARy s@) L A,y 50 Atk 7;

L (P-dl) ¢ i2-d)
or //4//;2?(()) 0/7 27/2%//,@72 /
75407
‘7/’7«- /Z-'a/)
o7l & )

&,

and
%2 27 “;Z%.

or
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Ay . .
(214 Y PRI AT L NS 72)
077 /éa 7/°-f
and
417/5—0’ . _(z-d) oL (F-d)
= dy - 7e e for 254 (1)
A7 %? %
Now for Z<°/ we close the contour in the lower 7
half plane or ,Zy, /7) o) and obtain
T iptet) LAl L @-2)
c 0/7 = 7€ c |
A 7;@) Y for 2 <o @)

From inspection of equation 13 and equation 14, we can write

”eé-y(z—a/) y QA md) g SEd

e’ 7 e < )
k750 / %
-0

-

for all =z
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and we obtain for out solution in integral form

o0

wl| -a@-d0 _sy /2-d/
/=—é‘fw/5 R WY,
/a V4 32

4

[~ 4

: / “"a//
P e'”‘*"’)/ EXTT T ) b b
Z X

2 2 2
[o] 1: 7 Y é)_ = - //é/o(
Now )%( é/é ;’%4 oz )

or )g(z—_- é (;éz+ /ﬁz) where 4= Z/:.(z({% B

giving us an integral of the form

22 o,

o0 w P
/5 (% fﬂéﬁ)é Ik
Wiy

e

«7)

@7/
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and from Erdelyi et al. Tables of Integral Transforms, II

we have.
% 2V 2 2 2 //2
" _a (kP B K a?
c I L/ N - /&)
(& 15" (z*ra?)*
o :
for %d > o and 6 A >o
Thus identifying @ with A /2/2"6// we

obtain as our Green's function

- Z - & 2 z 4.
22 /5(‘) - /2-0/) é//z—?‘a//Ké %/5/
e

or
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5/

o o

_ Vo A@-d) % hED] w?

/é,:-é/c Cy/zf[/?y‘ 5/@
< [ 4 a-d ]

It is easy to verify by direct substitution that the Green's
Function, equation 19, is a solution of the homogeneous equation 1
for all (r, z) except at the point (0, d). In addition if we let

; -0 , the Green's Function reduces to the well known

point source for outgoing spherical pressure waves in a liquid.

fw#- ;’f)

/2_:_24_% z0)

where

oo it (2d) ”
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APPENDIX C

The Aki Approximation with Linear Amplitude Intervals

This appendix is an extension of an approximate evaluation

developed by K. Aki (1960) of the following integral.

oo

H(#) =z | frwd) cos 4)[2‘—7%«))_7 dew 7)

o

where /4_@) is real in the frequency interval &J, < &0, and
zero outside the interval. InAki's evaluation it was also
assumed that //40) was constant in this interval.

The first step in the evaluation is to divide the integration
interval <&, to e, into subintervals over which
pha se and amplitude are approximately linear in %

With this approximation, equation 1 takes the form

il
h(Z) = zj///@) Cos P A 2)
{ w, - AW

2
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where

/4—/50) = /% # (w-a) é’%j) = ﬂ: # (lo-&.)
(3)

/@/a)): Wl - w7w) s & £ (-wy,) (%)
Z

with the i subscripted variables evaluated at the midpoint of the

l th frequency interval 44,

Defining 547 by 5:7 =74 (")37[77; )

we see that

égﬁ.:ﬁ_/mw%)z . 74, <z

Thus expanding cos 7 in terms of these quantities

yields
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Cos g = corjay #-7) ¢ -ty ) -2
= Cosay(¢-7) cos [ttt ) w-2,) ]

~ Sy b (AT s /é/—{;-)/w—@f <)

and /@a})(’of% = /{ coz ) (F-7 ) caf/k '{%,-)/tc) —/@)_7

- A sim & (#-77) 5/)7%- {%/’)/fd ~éJ,')]

4

r G (0-&,) Cosw, 7)) C’af// -{7/)/@—/0;)7

_ Qj@-a)/)o’/b é()/é"@)f/)? / ‘%},)/ld'é)z)]

7
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Now since the second and third terms in equation 7 are odd

in @ about Ly , the resultant integration over this

interval is zero and the integral over the ith interval is

Jw) €03 9D iy = ) cos (872 | coslfét-5) o-w0 )]
w, - A @), — 4&e
< 2 Z
W, * éz_é)t'

- G S CY(ET) (W wi)sinflE S o) ]l e

@) - A
2

¢

(5)
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Changing the variable of integration from w to ¥ =

@ - Ly , we obtain
AW
wy + 4% Z
0" —- %@‘ — A:zé_d(' ‘
A
2

(725 )%/

N 727)
72,
A
2
Ja%iz-2,))
= A&, 5/0[2 é‘ ?() (9)

/4 5]
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and

25 .
/{)‘1‘ ‘4._‘ ,_defgf

J (w-a,) sinllt-5:)@ )y | ¥ % )]y

. .—.Aw('
AL, —
&/, 7 >

= . / 577 /;;"@IZé'%’j _ cos f’.e_‘i/"é/— Zy,)/ )Z o)
5. [ Sl -Z‘;z)]

In equation 10 as 7 - Z}J. the expression approaches
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Ay | Awe
é/‘{}(-) é/’z(.)

so that equation 10 is bounded and approaches zero as Z‘—QZ%(

Substituting equations 9 and 10 in equation 8, we obtain the

approximate evaluation of equation 1.

é//)%ZZ /,—.4@- cam),é‘—?) ._)’7./7/?_0(%‘_{}/)]
‘ [t

773
- /Qj— Au, sy (Z-77) f/h/z Té(—%(j ans /42 é‘?&j
EnY, 4D | [4%p-5)] )

)
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APPENDIX D

List of Symbols not Defined in Text

Symbol Definition
m subscript indicating mﬁl layer constants

layer sound velocity

o<
g gravitational constant
7% angular frequency
k wave number in horizontal direction
c . ¢ /k: horizontal phase velocity
r horizontal cylindrical coordinate
Y CP/CV : specific heat ratio
R* universal gas constant
M, molecular weight at ground
R R* /Mo
K* real kinetic temperature indegrees Kelvin
K (MO/M)K*: molecular scale temperature
u radial particle velocity perturbation
W vertical particle velocity perturbation
p excess pressure
/O density perturbation
o superscript denotes the static equilibrium

quantity
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Definition

the altitude at the top of the mth layer

Zm " Zp 1’ layer thickness

time wvariable

=27  : period

£C

subscript denotes the roots of E, = 0

subscript denotes the source layer

Acoustic cﬁ.toff frequency

Brunt cutoff frequency

exponential decay factor of density with altitude
in isothermal layer.

yield for layers

standard yield

normalizing distance for direct wave in layer

standard normalizing distance

positive phase duration time in layer. s

standard positive phase duration time.

horizontal wave number of direct wave

vertical wave number of direct wave.

residue contribution of integral solution

homogeneous ratio evaluated at g & root of £ =0,
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FIGURE CAPTIONS

Figure 1. ARDC standard atmosphere and its approximation
by isothermal layers.

Figure 2. Comparison. of experimental group velocities for
A waves from Novaya Zemlya explosions with
standard and extreme ARDC models. Data curves
1-8 from Donn and Ewing (1962).

Figure 3. Comparison of experimental and theoretical curves
for Az and A3 waves from Novaya Zemlya

explosions. Data curves 1-4 from Donn and Ewing

(1962).
Figure 4. Standard and extreme ARDC atmospheres.
Figure 5. Modifications to the standard atmosphere made in

order to study the effect of different zones.

Figure 6. Phase and group velocity dispersion curves for
So, 1,2 and GRO, ; modes of ARDC standard atmosphere
with half-space beginning at 220 km. Stippled
region indicates where singular values of F occur.
Cutoffs indicated by hatch region.

Figure 7. Same as Figure 6 with different scale.
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Figure 8. Phase and group velocity dispersion curves for
So, 1 and GRo, 1, 2,3, modes of ARDC standard

atmosphere with free surface at 220 km.

Figure 9. Dispersion curves for modified ARDC model with
no upper temperature ﬁinimum.
Figure 10. Dispersion curves for modified ARDC model with
no lower temperature minimum.
Figure 11. Dispervsion curves for ARDC arctic winter atmosphere.
Figure 12. Spectral amplitude of ‘/44 for the ARDC
standard and arctic winter atmospheres. Spectral

amplitude of the barograph is superimposed.

Figure 13. Homogeneous pressure ratios at an altitude of 18.5

and 50 km for S and GR modes.

o,1,2 0,1

Figure 14. Homogeneous pressure ratios at an altitude of

85 km for So, 1,2, and GRO, ) modes.
Figure 15. Homogeneous pressure ratios at an altitude of

125 km for S and GR modes.

0, 1’ '2 0, 1

Figure 16. Theoretical pressure variations of A, waves for the

1
individual modes GR_and S . The fifth trace
o o,1,2

is the resultant wave for GRO+S 0+Sl -i-S2
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Theoretical barograms of Al waves for the individual

modes GRO and S The fifth trace is the

o,1,2°

resultant wave for GRO + So + S1 + SZ'
The effect of yield on theoretical barograms for

Al- waves.

The effect of yield on theoretical barograms of

A, waves for the single mode GR.

The effect of altitude on theoretical barograms of

A1 waves.

The effect of yield and altitude on theoretical
barograms of A1 waves in an ARDC arctic winter
atmosphere.

Comparisons of theoretical and observed barograms
of A1 waves 7,; arrows show common fiducial
time.

Comparisons of theoretical and observed barograms
of A1 waves. 7,; arrows show common fiducial time.
Comparisons of theoretical and observed barograms
of A, wayes. /p arrows show common fiducial
time.

Comparison of theoretical and observed barograms
of A_ waves. 7} arrows show common fiducial

2

time.
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PART 1I
RAYLEIGH AND LOVE WAVES FROM SOURCES IN

A MULTILAYERED ELASTIC HALF-SPACE



ABSTRACT

A matrix formulation is used to derive integral expressions for
the time transformed displacement fieldé produced by simple sources
at depth in a multilayered elastic isotropic halfspace. The integrals
are evaluated for their residue contribution to obtain surface wave dis-
placements in the frequency domain. The theory includes the effect
of layering and source depth for the following: (1) Rayleigh waves from
an explosive source, (2) Rayleigh waves from a vertical point source,
(3) Rayleigh and Love waves from a vertical strike slip fault model.

The latter source also includes the effect of fault dimensions and rupture
velocity. The theory presented here is the ground work for the numeri-
cal computation of theoretical seismograms for use in a later paper in
which a comparison will be made between observations and theory in
both the time and frequency domain. A discussion is included on how
these comparisons might be used in the frequency domain to estimate

source depth.
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I. INTRODUCTION

Several years ago Dorman, Ewing, and Oliver (1960) success-
fully adapted the THOMSON-HASKELL matrix formulation to calcu-
lating dispersion of surface waves on multilayered elastic media using
a higi'l speed computer, Since that time surface wave dispersion has
been used extensively in the interpretation of the earth's structure.
Dorman et al. were able to establish the presence of the mantle's low
velocity zone under the oceans., The presence of this zone under
continents had long been postulated from the amplitude and travel time
of body waves, but this was the first independent evidence of its
existence., <Calculation of dispersion had previously been limited to
simple earth models consisting of at most three layers, This early
work also established the fact that complex earth structures could be
modelled by replacing the actual structure with 'a large number of
is;otropic, homogeneous layers.

| The matrix methodology which made possible the systematic
and straightforward computation of surface wave dispersion on multi-
layered elastic media for any number of plane parallel isotropic layers,
was first introduced by Thomson (1950)‘, He developed the technique
in order to determine the reflection and transmission coefficients for
plane body waves propagating through a stratified solid medium.,
Haskell (1953) realized that the dispersion relation between pe‘riod and
phase velocity in plane layered elastic media appears in the same form
regardless of thé source type, With this in mind he developed this

plane wave formulation into a technique for determining dispersion of
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surface waves. Since no source was involved, the dispersion relation
was obtained b}tr solving a set of homogeneous simultaneous linear
equations. The resulting ratios ofgplanev wave displacements and
stresses, which are a by-product of the dispersion computation, play
an irﬁportant part in the source formulation and will be referred to in
subsequent discussions as the homogeneous motion stress ratios. The
usage of the terms inhomogeneous and homogeneous stems from the
fact that the equations of motion can be reduced to inhomogeneous or
hombgeneous, second order, linear equations depending on whether

a driving force is present or not present respectively in the elastic
system.

The success of surface wave dispersion in yvielding additional
knowledge on the earth’s upper mantle structure and on the earthquake
source mechanism has given hope to seismologists that the amplitude
spectra of surface waves may provide further information concerning
the mechanism of seismic sources. This is especially true for source
depth which has no influence on dispersion. In order to determine the
effect of source depth on surface wave amplitudes it is necessary to
include a source at depth in the multilayered formulation. Also without
a specific sour ce one is unable to determine the relative excitation
Between modes as a function of frequency.

There are two methods of attacking the source problem for an
n-layered medium. The classical technique uses the determinants that

result from Cramer?

s rule for solving a set of inhomogeneous linear
equations. One expresses the source as an integration of homogeneous

solutions to which have been added homogeneous layer solutions with
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arbitrary coefficients so as to be able to satisfy the boundary conditions
at each intérfa;ce.' In this way one arrives at a formal integral solﬁtion
with an integrand given in terms of the ratios of two determinants of
order (4n-2) for Rayleigh waves and (2n-2) for Love waves.

This method, although easy to formulate, is extremely cumber-
some if not dangerous to evaluate numerically on a computer. The
danger involved results from the fact that deter minants in general are

‘not slowly varying functions of their elements. The determinant solution
Waé obtained by Jaedetsky (1953) and Kellis-Borok (1953). Besides the
numerical difficulties inherent in solving larger order determinants
there is the practical difficulty of reordering or simplifying the deter-
minants into a form which provides insight as to the individual effects

of receiver depth, source depth, and layering on the spectral amplitude.

The second method is to use a matrix formulation. Previously
this has been done in two ways. Using the THOMSON-HASKELL
matrices to obtain the reflection and transmission coefficients for plane
waves in multilayered media, and an integral representation of a point
source in terme of plane waves, Gilbert (1956) obtained a formal integral
solution for the compressional point source, but made no effort to evalu-
ate the integral for the surface wave contribution.,

Gilbert and MacDonald (1961) applied the THOMSON-HASKELL
matrix method to a layered sphere using the solutions of the equations
of motion for an elastic shell. They obtained the solution to the source-
at-depth problem of the sphere by operating on the source vector equation

with a matrix product of the shell matrices. The source vector equation
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was obtained by evaluating the source at positions infinitesimally above
and below the s;ource depth.

The theory presented here is the ground work for the numerical
computation of seismograms in a later paper. In that paper we will
synthesize seismograms under various conditions of source type,
structure, and source depth. Then by comparing seismograms, we
will see if the various parameters have qualitative characteristics in
the time domain. In addition we will attempt to use the techniques
suggested in this paper as a means of estimating source depth in the
frequency domain. In both cases the theory will be compared to ob-
served seismograms in both frequency and time domains.

This paper derives in detail an integral solution for the time
transformed displacements for certain elementary sources at depth
in a multilayered isotropic halfspace. The integrands are expressed
in terms of elements from the matrix product of the THOM SON-
HASKELL layer matrices in the layered array. These integrands are
obtained by a technique similar to that used by Gilbert and MacDonald,
namely, by a matrix operation on a general source vector equation.
The elements of the vector equation depend on the integrand of the
particular type of source under investigation. The transformed sources
considered are as follows: (1) An explosive or spherical pressure
source, (2) A horizontal and vertical point force, (3) A model of vertical
strike slip fault sources formed by integration of a time lagged hori-
zontal singlet or doublet point force over the fault surface.

The vertical and horizontal point forces are not as restrictive
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as one might surmize. Their geﬁerality was shown by Kellis-Borok
(1953) who poin(ted out that the field due to a point force, F, of arbi-
trary direction in a multilayered media can be obtained by the super-
position of the fields due to a vertical point force, F sind, and a
horizontal point force, F cos A, where A is the vertical angle between
F and the horizontal. Furthermore, displacement fields for multipole
sources can be determined by _‘_spatiéjal diffe rentiation.

From the residue contribution of the integral solutions, we obtain
the Rayleigh and Love wave displacements for various source types.
If we had stopped here this problem would have been merely an exten-
sion of théL matrix technique of Gilbert and MacDonald to Rayleigh and
Love waves on a multilayered media for different types of sources.
Extensive programming and numerical analysis would have been needed
to compute amplitude speétra or theoretical seismograms. However
by obtainin.g a simple form of the inverse of the product matrix in terms
of the elements of the product matrix itself and simplifying the residue
numerator we are able to separate the solution into factors representing
source depth, receiver depth, layering, and path of propagation. The
necessary simplification of the numerator is accomplished by using
relations determined by setting the integrand denominator to zero.
The factors representing source and recéiver depth are shown to be
simple functions of quantities calculated in the plane wave problem.
Using the numerical techniques described in Part I, ‘the excitation
function for the layered medium can be calculated analytically by adapt-

ing the computer programs which are currently used in seismology to
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calculate dispersion for Rayleigh and Love surface waves.

From tilese results we are also able to show certain reciprocity
relations for surface waves which had been previously proved for the
total displacement field. In addition we discuss how numerical calcu-
lations in the frequency domain rhight be used to estimate source depth

from a Fourier analysis of observed seismograms.
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II. THEORY

Introduction

The adaption of the plane wave matrix formulation to the point
source theory is accomplished by using a general source vector equation.
The source vector equation is general in that it can be used for a wider |
variety of' point sources than considered in this paper. The vector
equation is composed of elements which correspond to a discontinuity
in the plane of the soﬁrce of the motion-stress elements of the plane
wave theory. These motion-stress elements are shown to be the ver-
tically dependent parts of the integrand for the general solution of the
problem., The discontinuity at the source results from the fact that
point sources can be expressed as an integral over the horizontal wave
number of an integrand which has a first or second order discontinuity
across the horizontal source plane

For sources defined by potentials instead of vectors, we use an
alternate method. Here the integrands of the source potentials are ex-

pressed in the following form

-ikr |z-D]|
- Si CLS .
?50l2) = Sppe
~ikr, |z-D|
(z) = S P * 2 D
bgol?) = 5gp¢ as z
and “ikr _ |z-D]|
+ ps
Xgol2) = Spse
where

7z is the vertical coordinate



-8-

D is the source depth
rpso(z) is the z dependent part of the dilatational potential

source integrand

(z) is the z dependent part of the shear potential source

7

SO

integrand for Rayleigh type motion
X {z) is the =z dependent part of the shear potential source
integrand for Love type motion

+ =+

and S 1 SOZ’ S are spatially independent constants which depend on

+

0 03
the source type. Quantitites not defined in the text are defined in
Appendix E. Substituting these relations in the THOMSON-HASKELL
relations, we obtain the necessary discontinuity in the motion stress

= +

elements in terms of S(:)tl’ SOZ’ 803 and the elastic constants of layer
containing the source. This method is used in the formulation of an
explosive source at depth.

In order to retain a continuity of presentation, the following

parts of this paper are given in the appendices:

Appendix A: This appendix derives the vector and matrix relations for
the z dependent motion-stress elements in each layer, which form the
integrands of the solutions and are characteristic of Rayleigh and Love
type motion. The derivation is in an appendix since it is essentially a
reorganization of the matrix formulation given by Haskell {1953), The
reorganization is presented in such a manner as to make the inclusion
of a general point source in the layer a simple and straightforward ex-

tension of the formulation.
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Appendices B and C: These appendicés contain the derivation of source

~ expressions in an integral form suitable for the matrix formulation.

Appendices D and E: These appendices contain the inversion of the

Rayleigh layer and product matrix, and the derivation of relations ob-

tained from the zeros of the integrand denominator,

All of the above appendices except A contain a large number
of algebraic steps. Their results are necessary for the solution of the

problem but their derivation is not essential to understanding the theory.

Rayleigh Waves From an Explosive Source At Depth

For an explosive source, we use the Fourier time transformed
spherical compressional potential derived in Appendix C for a pressure
suddenly applied to the walls of a spherical cavity in medium s. It
must be pointed out that only the source term "sees" the spherical
cavity. In other words, we do not impose on the multilayer problem
the boundary condition that normal and tangential stress over the cavity
walls vanish for the homogeneous terms; thus waves reflected and
scattered by the cavity are not considered.

We consider a semi infinite elastic medium made up of n parallel
solid homogeneous, isotropic layers (Figure 1). We number the array
such that the layer at the free surface is layer o and the half space is
layer n., Consider a compressional point source in layer s at a depth
D from the free surface. The potential of this explosive source is given

by equation C8 as



‘ S 1(kasa - GSP) _,1k°'SR
— B os _3 e e
q)so(R) =T Zn %s 2. 2 ' R (1)
s a’k 1
SBs 2 2 272
1- ) + k7 a
4 g 8

where R 1is the distance from the source and

= tan~

GSP

222
SB

(-

Other terms are defined in Appendix F,
Placing the origin of a cylindrical coordinate system (r,0,z) at
the free surface the layer interfaces are defined by z constant and

layer s is bounded by z and z_  with z_ >D >z We can

-1 s s s-1°

write R as
/2
R = {rz‘f' (z - D)Z] (2)

By means of the Sommerfeldt integral, we can rewrite equation 1 as

-ikr !z-Dl
_ o) a
q)so(r', z) = go SOle Jo(kr) dk (3)
where
~ 1(kasa - GSP)
. Pos?s®
SOl =i Z Z ) (4)
s ﬁ H
{(1 - ) + K2 az]
Mg a 4
s
and
1{2):2 = kz - k2
a
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is symmetric and the only boundary conditions

are at the layer interfaces, z constant, the problem is axially symmet-

ric. The displacements

and stresses for this symmetry are given in

terms of potentials Zm(r,z) and am(r,z) for layer m by

85m

2—
Bme

9 (22) = 57— * 5702

— 2— ’
8¢’1‘n 8 L!Jrn 2

wm(r,z) = 7oz * 5 2 +kﬁ Ym
Z m
2— 3— — (5)
0 9 0 .
=l (r,2) = 2 m + lJ“]:n -I—kz me
ZZ * Mm 2 3 B o0z
m 0z 0z m
2 -
h )\mka ?m
m
2— 3 —
97 ¢ oy S T
= B m m 2 m
Pz (r,2) = Hm[z 525t | ° 3 +k[3 or J
m ordz m
where —CI s W, P and P are the radial displacement, nor-
m m ZZ rz

mal displacement, normal stress, and radial tangential stress to the

z plane respectively and where the potentials are solutions of

1 }a B9, a"25’;m 2
e S+ = - 1= 5 .
T or (r ot ) onl kam(Pm
and (6)
- 2
1 9 'a¢m'+a¢m__k2-—
T 9r \' or ) 972 - ﬁmqjm

We define
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Yo / oo
am(r, z) = S qm(r, z;k) dk , wm(r, z) = g Wm(r, z;k)dk ,
o - v 0
m—— . ) —— m
P (r, z) =5Pzz (r, z;k) dk , P (r, z) =S‘ Prz (r, z;k)dk
m m m 0 m
_ ‘ 0 o _ 00 |
q)m(r, z) = So gom(r, z;k) dk and me(r, z) = So q.:m(r, z;k) dk

and assume the same radial dependence as the source integrand for

gom(r, z;k) and mj_,:m(r, z;k), i.e.

o (r, W) = _(2)T (k)

(8)
'qu(r, z;k) = LIJm(Z)JO(kl’)

Substituting equations 7 and 8 in 5, and equating integrands, we obtain

the following;

dy
q (r,zk) = - k [}Pm(Z) t— (Z)_J J,(kr)
R
=- =2 (2) 5yk)
o ko, T
Wm(r, z;k) = [—E-Z—— (z) + p=: (z) + k:BmL]Jm(Z)J Jo(kr)
o \;VR (9)
= - E (Z J (k.l‘
2 3
PZ'Zm(r’z;k) i me[ dz2 (=) * dz]';’n =) * kﬁm—ln—(Z)J

2 =
- )\mka <pm(z) Jo(kr) =0p
m m

(z) T (kr)

(7)
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» 2
de d odys -
SO P R YRR WHI Y
m dz m
=~ iTp (z) Jl(kr)

Similarly, from equation 6, qom(z) and LlJm(z) are solutions of

2
d7e
m 2 .2 2.2
(z) =(k"-k_ Jo_(2)=-k"r o (z)
dzz a, ) m o, m
(10)
2.,
d*y
m 2 2 _ 2 2
2 (Z) - (k - ks )me(z) =-k rﬁ lpm(Z)
dz m m
Using the definition of phase velocity c :-E we can write
2 2 2 2 cZ
(kr )" =k -k :k[———l]
o} a 2
m m a
m
2 _ 2 2 _2[c® ]
(kr, )7 =k, -k =k[—-——-1J
!3m Bnrl ﬁz
m
where k = 2k == and a_ and B_ are the compressional
a a B B m m
m m m m

and shear velocities respectively of layer m. We use the following

~ sign criteria for T and r6 as given in Haskell (1953);

m m
2 2
r, = ) —1J for ¢ > a
m - a m
m
2
To = -1 1-—-ZJ, forc<am
m a
m
[CZ "T%
T = ——-1J forc> B



&
(rﬁ‘:_l[l-_—?‘l forc<ﬁm
m B
m

At the interface between two layers, we impose the conditions
of continuity of displacement and stress. In order that this be true for
all r along the boundary, the integrands of displacement and stress
show that the z dependent quantities defined by equation 9 must also
be continuous. In vector notation this boundary condition can be ex-

pressed as

[ -
in (z_ ) 4 (z_ )
Rm m-l Rm"]. ) m"l
C C
we  (z_ o) W (z_ )
Rm , m-—].» Rm"]. ) m“l ]
C ‘ = C .. (11)
UR (Zm-l) 0'R (Zm-l)
m m-1
TR (2.1 TR (2,
m m-1

The vector used in equation 11 will be referred to as the motion-~
stress vector. In Appendix A, it is shown that the motion-stress
vectors at the top and bottom of a layer are related by the linear

transformation equation All

R (zm) uR (Zm-r'il)
m m
c ‘ I

WRm (zm) WRm '(Zm~1)
- ; = ap — (12)

m

O'R (Z ) UR (Zm—l)
m m

TR () TR (Zmo)
m m

S — S pe—
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where the elements of the layer matrix 2R are given by equation Al3,
' m
For the source layer, s, the integrand of the source term is

from equation 3
¢ (1 z5k) = o (z) T (kr) (13)

where -ikr_ |z-D|

o (7)) =Sye % (14)

For a point source of this form, the vector equations for a
general point source derived in Appendix A, equations Al9 and A20,

reduce to

u (z ) u, (D)
RsZ -8 RsZ o
C c
w (z ) wo (D)
RSZ - 4 RsZ
c - RsZ C
o (z ) o (D)
RsZ s RsZ
T (z ) T (D)
RSZ 8 RsZ
~ - — | — (15)
ug (D) ug {25
sl sl
C C
sl - a sl
C Rsl' c
o (D) o (z_ )
Ra1 Ry s-l
r_,(D) TR_,(%s-1)
sl sl

and



(D)
TRsl

. . + _
Comparing equations 14 and Al4, we see that SOl = SOl = S01

+
So2

or

o
u

o

°

R
8
c

):o

YR

60‘R
s

6T

Combining equations 11 and 12, we have

S) = Zkzr

o(—

= 2 and thus, by equation A2l,

S

01

S

]
I
)
~
0
]
©
-2
H

(D)

T
Rsl

(16)

(17)

(18)
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a (z__. ip (D)
: Rn—l n-l Rz
c c
v’vR (z ) \;VR (D)
n-1 _ ASZ s2 (19)
C ‘ TR C
v {z_ ) o {D)
R -1 n-1 RSZ
a  (z,9 7z (D)
n-1 s2
i, (D) . N
Ra1 ugg (0)
c c
YRy ®) wpy (0 |
c : = AR c (20)
sl
R (D) O'Rl‘(O)
sl
TR (D) 'rRl(O)
where ASI’{Z = aR o aR and AR = aR ...al » At the free surface
n-1 s2 sl sl

z = 0, we require that the stresses vanish, Thus by equation 9, equation

20 reduces to

ug (D) iR
sl o}
c c
WRsl D) WRo
c = AR C (21)
sl
R (D) 0
sl
TR {D) 0
sl
where ig g (0) i W (O
R R R R
o _ 1 o _ 1
= and =
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We now define W, X, Y and Z by the matrix operation

dRSI (D)
w c
-1 WRsl (D)
X = A
R c
sl
o (D)
sl
Z TR (D)
sl

Multiplying the vector source equation 18 by AR

(22)

and using equations

sl
22 and 21, we have
_ —_ - — . -
uRO
W 0
C
w W
X | = %o + A7 6( s (23)
c R c )
sl
Y 0 0
Z 0 6'rR
S ——
or
u w
R R : . =
o) sy(a=1 -1 -
% _w- [5( A +s7. (A J
¢ ¢ )( Rsl 12 Rs( Rsl)14
W w
R R . . . ~
o s -1 -1
= X - l_ﬁ 4 (A + &7 (A J
c L (=) Ra/22 R Rsl)24 (24)
wp B
\ -1 <1
Y = [6( S3(a + o1, (A J
. ¢ )( Rsl 32 Rs( Rsl 34
W
R -
-1 -1
Z = [5 —= (A + 8T (A J
( ¢ )( Rsl 42 Rs Rsl 44
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From Appendix D the inverse of AR is given by

s1
<ARsly44 ) (ARs1)34 (ARsl)zzz ) (ARsi)m
R ) (ARs1)43 <ARS1)33 ) <ARzi 23 (AR51)13 5
o (ARS1)42 ) (ARSI)SZ (ARS1>22 ) (ARsi)lz .
L— (ARsl) 4 (ARS1)$1 ] <ARs1) 21 <AR51 1 |

Replacing the (A;il elements in equation 24 by their AR equiva-
sl sl
lents, yields

- w [ 8 "o (g ). +org (A ) ]
c c /N Ry/ag RV Ro/ig

\;[R \%/R : T
: CO TR l-ﬁ( CS (ARsl 33 ' 6'TRS (ARSI)IBJ

wR , - (26)
e [6(——5?_) (AR51)32 ! STRS(ARSI)R J

N
I

[5(WRS)(A ) + &7 (A } |
c R/ RgV Ry |

From equation D7, we have for the halfspace or layer n
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' - u n(zn_p
A+ A —
—n  —n c
, . wgr (2,9
é - én _1 {‘
n - ER c . (27)
1
w - w B o (z_ )
—n —n R n-1
n
H + "
-(in i“)-n TR (Zn—l)
L_ ) n

As a boundary condition for the halfspace, we require that the coef-

ficients _A_:l and g'r'l vanish, For c¢ greater than eithe r of the half-
space body velocities, this is equivalent to requiring that there be no
radiation from infinity into the wave guide due to equation A5 and the
sign criteria of rCLn and rﬁn, Similarly, for c less than either of
the body velocities, this is equivalent to requiring that displacements

and stress remain finite as the depth becomes infinite, With this

boundary condition, equation 27 reduces to

- - o _—
K Rn 4 n=-1
—_1n C
. \;VR (Zn—l)
A X n ,
—n _ - c
. = ER (28)
: n
Zn og (Z5.1)
n
1
Zn R (z -1)
n

Defining the matrix AR by the matrix product

: _ a82 _ ~
AR = AR AR = .a
sl
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since it can be shown that a = a a , and in turn defining J by
Rs RsZ Rsl

J=ES A (29)

we obtain from equations 28, 19, and 22

— - -
A W
- 11
AL X
@ ¥
@y z
L. .- L -

Eliminating éln from the linear equations given by equation 30 yields

0 = (I~ T,)W + (Jp- Tp0)X 4 (J5-0,3)Y + (Jyy- T 02 (31

Similarly eliminating c_u_'n yields

0 = (T3m T IW + (J5,-T )X + (Jy5- )Y +(Jg,- T, 02 (32)

Combining equations 31 and 32 to eliminate W we obtain

. [GN-LH]Y +[RN - SL] Z
X=- [NK - LM] (33)
where
¢ 137923 H 9337 Y43 R _ Y147 Y24
T - b ] Ex ] T -
Loy -9y N T3 -y L Jyp-Ian
(34)

s _ U347 Jus k _JiznTer oM Ts2 Y4
N~ 7 7. T “T7.-3J ane [ °7F Nj
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Using the definition of J and the elements of Ei{l given in
n
equation Al2, we can write the following

T

a (AR 41
L=y, 7, (Agly + (v, -IHAR) 5 - —5(Ap) 5 oz
n pn n
I
a (A),
R'42
K =y, (Ag)t (v -I{AR) 55 - —(Ag)5,+ -—-—-—-—-‘é
n PLC Pn€
Ir
a (AL)
R)43
= y7o (Ag)st (Y -I{AR) p3- —S(AR) g5+ ——=
n p_cC p_C
n n
T
a (AL)
| R44
R =y,r, (Ap)yt (v -IAR) 5y —5(AR) 5, + —5—
n p,.C p,.C
. (35)
(AR)3y
N = - (v, -DAR v, 7 g (AR) it ——5— +—5(AR)y
n p,.C P.C
(AL) B
— R'32 n
M= -y, -IAR) T vy rg (AR) 5T 5— T ——{Agly,
n p._c p._c
n n
(AL) t
_ rR)33 . Py
H = - {y -D(AR) 3t v, (ARl st ——5—+ ——lAR)y;
n P,C P,C
(AL)
_ | R34
S= - vy IMAR) T v, T (AR) gt —5— T —5(AR)yy
n p_c p_c
n n
Similarly
[on(M) - Lr(E) vy + (R M) - s )2 -
W - N T N T (36)

[ NK - LM]

Using equations 33 and 36, we have from equation 26
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Vg N (2
o _ R "R
c F (37)
R
and
ip N3 @)
o R R
— = i (38)
R
where

Fp = [ NK - LM]

{v_ i v + LRN - SL]
Ng [ GN - LH] Y+[GN-LH] z}

(2) _ Fr " "R, » - C T o
N2 = gy 5 A + 6= (A 39
: 1:{(1? - ( c )( Rs)33 TRs( Rs)13j 9

| [RN()- SL{)]

(3) _ M K N L'z
NG = o) -y iy o+

ro= LN (L)]{ [GN(DF) - LH($ )] ?

w

(4 _ ., Tr Ry - L

Nr 1T ) [6(‘7 ) (ARS " 5"RS(ARS)14J

R

It is convenient at this point to examine equations 39 when FR

is equal to zero. In Appendix E, it was shown that when FR = 0 the

following is true

M = _IS , (40)
GN - HL L

In addition, from the definition of FR in equation 39, we have
M _E (41)
N L
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 and thus fof the case of FR = 0, equations 39 reduce to
&g)e [GN - LE) {Y + £ 2}

M2 2

(3) _
NR

(42)

and

(4) _
Ny =1

Thus by equations 7, 9, 37, and 38, the displacements at the

free surface are given by

NN
(o] NI'N
v = 1§ 1 B R (k) ak (43)
0 R
and .
— *1 Ng)Ng)
a, = —So T T J (k) dk o (44)

Evaluating equations 43 and 44 for the residue contribution, we obtain

for each jth mode or root, w fixed, at FR(w, kR )y =0
' j
D) 2
+ ), = 0 e S O PO
YolR, T K 5F . o R,
j R. ( R j
b5k ) . :
@Jo (45)
I¢(3)I¢(4)
o SO S e B £
9WBIRIR 5F.~ .
j R, ( R j
b 6k ) .
Wy J

™

or by equation 42



e
{wod R~ Ty (a_FB_ H, (kRjr)
%), |
- K Ngz {2) -
{qo)Rj =i g kRj (%I;{R Hy (kRjr)

oF
R 2 3 4
where (_517:—_) B N;‘, N( '), N;) and N;.) are evaluated at {w, kR.)
Ws J J J J J
such that FR(w, kRj) =0,
FR(w, kp ) =0 is a form of the period equation for Rayleigh

J
wave propagation in plane multilayered isotropic solids {Haskell, 1953;

Dorman, M. Ewing, and Oliver, 1960; Press, Harkrider and Seafeldt,
1961; Dorman, 1962; Harkrider and Anderson, 1962)., For all real {w,k)
or {c,k) the elements in the ap matrix are either always real or

m
always imaginary according to the following criteria (Haskell, 1953).

Real (aR )

m

ik if j + k even integer

Imaginary (aRm)jk if j +k odd integer

The same is true also for the product matrix AR“ For a phase velocity
less than or equal to the halfspace shear velocity |3.n,’ we see that the
quantities defined in equation 35 are also real or imaginary for all real
ke We now express the imaginary quantities as a real quantity (desig-

nated by an asterisk superscript) multiplied by i or

L=il*, G=iG* M=iM* and S =is*
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and thus -
‘ ' Bk
FR(oo, k)= NK+L M

which is real for all real k and c¢c = ﬁn .

Taking the ratio of {EO}R to {WO}R » we obtain from equation
j .

46
— 2
{adgr. . H{ )(kR.r)
—_— =i = J
o : L ]2)
{WO}R' Ho (kR‘r)
J J
or
{q_}
° RJ -~ _K _. K —
- TS i— as kR r (0o}
{w Ir L ]

Thus at horizontal ranges large compared to the wavelength, the sur-
face displacements are either prograde elliptical or retrograde ellipti-
cal dependent on whetehr the real ratio (-LI%k) is positive or negative
respectively., This large distance result is the same as obtained by
Haskell {1953) for the homogeneous case of plane two-dimensional

Rayleigh waves:

Rewriting equation 46 in Haskell's notation

_—
{abg = -1 [”‘QJ Wolr, H{Z)(kR.r)/HS)(kR.r)
j 6" H J ] j

Evaluating the residue contributions of the integral represen-

o — — —

S}_(D), SZ(D)’ ‘WSZ(D)a ZZSZ

(D), (D)

sl

0

ZZ

t;tions for qsl(D), P .
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- and -p-rz . (D) by using equations 21 and 18 we find that

s2
) 1}/( R }12 [w J (AR > g H(Z)(k )/Hc(DZ)(kRjr)

(D) -
[ 1 J {W }R H(Z RJr)/H(OZ)(kRJr)

{a (D) g

{we (P }R {(AR )Z;[;’f : AR )215 Wolr

_ Wsl(D% —_
[ - JH{WO}RJ_ (47)

J

W .
o J

°

7, (D)} R, (AR ) [W} (Rs1)31 W"}Rj
J

ﬁ .
(T (D). =k [A +[-.2 A %{"} IR T
vz Ry R ( RS) WOJ H( Rsl>41 Yo R, Rjr/ o ¢ le')

{w_} R, ng)(kRj r)/ Héz) (kRjr)

and

{a D}z ={q, Dy
J J

gD, = g, (48)
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(P, Dy ={F,, O}y
s2

j 2251 j

{Prz (D)}R. {Prz (D)}R

s2 sl ]
From the set of equations 48, we see that there is no discontinuity in
displacement or stress across the source plane z = D, for the residue

contributions, Thus from equation 47 we obtain

u (z) 5
G = -1 [ 2] (5 0g w0 /5P
W, HH, j j j
& o -2 =,
(2) =[ =
“m \;]6 JHJ Yo Rj
o) (49)
it o (z
{B,, (=)} =ik = (W iy
m il Wo j
c H.
j
T _(2)
(P, )=k | = Wolr, H{Z)(kR.r)AI(OZ)(kR.r)
m J W, J J J
< Hj

where the homogeneous ratios {(H subscripts) are given for all m in

terms of

AR (z) = ap (z)aR
m m

and where ap (z) is the layer matrix for a sublayer in m of thick-

m
ness dm.(z) =z -2z i

From equation 26 and the definitions of the homogeneous ratios

implied in equations 47 and 49, we have



-29-

| YR_. [o_ (D) -4_(D) -
[Y +%‘z] = - 6( - s) Usf +6Tp [us. } (50)
» Wo S Wo H.
< |H. J

J

Inserting real quantities (asterisked) and using equations 4, 18 and

42, vyields
% .
1 crs(D) ] u.S(D)J
(1) s ‘;Vo \;,o H
R, T Jn, J 1(kasa -b5p)
5T = 1kRja Pys 7.2 1 «A/RJ(w)e
("”““ak). T s B2 2 277
w’J - 4 ) + ka as
s
where
* 3
GN-L H
j (____13_
ok
- w’j

Therefore the Fourier time transformed Rayleigh wave surface displace-

ments for an explosive spherical source at depth D are

(D) (D) J
\%/
'3 - o ik, ag-Ogp)
— . _ s
{WO}R.= 1 kp Poglg 2.2 Age
J J .1 J
S B 2 2
[(1 - =7 ) + k as ]
X H( (kg

: J
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2 . o
dIE Yo
_ u _ 3 c Hj
{qo}R.z :;]— 1ﬂ.kijosas aZkZ .
J O HJ S QSZ Z 2 2
(1 - — ) +k” a }
i(kas"l;z"esp) 2)
»-'X"A'R'je Hl (kRjr)

Before proceeding to the next section, it should be noted that by means
of equations 9, the part of our solution dependent on source depth D

can be written as

* o
1 (D) ) [us(D)} . EE ¢ (D)
ZMS \;vo \;Vo H, Vs ‘;Vo
< Jm, J < JH,
J J

Rayleigh Waves From a Vertical Point Force at Depth

Consider the same elastic medium as before but with a vertical
point force in layer s at (0,0, The Fourier time transformed vertical
point force L(w), positive in the downward or positive z direction is
defined (Pekeris, 1955) in terms of the transformed normal stress to

z = D plane as

(0 0]
— + — - —_
2w S;) [Pzzs(r,D ) - ?Zzs(r,D lrdr = -L : (53)
or
am + J— - ~ il
[Pzzs(r,D ) - Pzzs(r,D )] = - 7175‘0 J (kr)k dk
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with continuous as’ -\_:v-s and —p.rz for all r along z = D.

Since this source is aximutlfally symmetric about the z axis and
the boundary conditions are at the z constant plane interfaces this
problem reduces, as before, to cylindrical symmetry. All the defini-

tions and relations used in the previous section apply here up to equa-

tions 17. Comparing equation 53 with equation 5, we obtain

u
6( 1:9’)-_-0
YR
6( cs)=0 (54)
‘SURs:’%
BTR. =0
S

Thus the vector equation in the source layer s for the vertical point

force is
. — — — _ -

u (D) u (D)
RSZ Rsl 0
I c

GvRsz (D) GVRSI(D)
= = = + 0 (55)

o, (D) on (D) so
RSZ Rsl Rs

T (D) T, (D) 0
RSZ ] - Rsl ] n B

Following the same procedure of the first section we obtain
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uRo 1
‘ =W - 6¢ (A
c R,VR 1)13
\;VR
°© - X- 60 (A‘l
¢ RyVRy1/23
Y = bop (A; ) 5
s sl”33
-1
Z = 6o (A
Rs Rsl )43
and by equation 25, the inverse of AR s
sl
1;’R
—2 =W - b0 (A
c RV Rg1/54
w
o i .
c * 6URS (ARs1)23
(57)
Y = bc¢ (A
Rs Rsl 22
Z = - &0 (A |
Rs Rsl)Zl
- Using equations 27 through 38 yields
o _ _ R R (58)
c F
R
and
up NI
c F
R

where from equations 57



(2) R ( |
N =1- oo A
R NR(1 ) TR Rsl)23
‘ 60)
F (
(4) R ( ‘
N =1 - oc A
R NR(3 bR, Rsl) 24
As before the displacements at the free surface are
_ o 4 N%)Ng“)
0 R
#nd o . NG
3 S‘ L ZR "R 5 (kr)dk (62)
q = - — ——————————
o 0 k FR 1
The residue contribution of equations 61 and 62 are thus
N
W 1, = & B 12k 7
YolR.T & o YR
: J R, ,0F,.
J ( R )
ok VAN
!
- _ .K = j (2)
lagbr = i 7oro— Hy (kg ?)
j R. ( R j
AN ) .
W J

where Ng) is, as before,
J

1) _ K ;
Np' = [ GN - LH] {Y+-l-:z

J
but now from equation 57

(1) y _K N 2
Ny =[GN - LH] 6 {A -= (A (64)
R; "Ry ( Rsl)ZZ £ Rs1 21§

All the relations concerning FR and the displacements and

stresses at depth in terms of the homogeneous solutions shown for the



-34-

explosive source are also true for the vertical point force. With these

relations Ng)‘ can be rewritten as
J — |
O R ¥s (D)
NR. = - [ GN - LH] —\;— (65)
J o) Hj

Therefore the Fourier time transformed Rayleigh wave displacements

for a vertical point force at depth D are

— [w_ (D)
—_ T | Vs (D 2
Flr=-iF (= | agHPg o
J Wo H. / J
! (66)
— . L uo w 2
@l =-1% (2| 2] agEPug
J Yo Hj Vol H. J J
where, as in equation 51,
* S,
A = LGN- L H]
R)' 8FR..)
ok / .
Wy J

Rayleigh and Love Waves From a Horizontal Point Force at Depth

We now consider a Fourier time transformed horizontal point
force in layer s at depth D directed in the 6 =0 .direction, As our
source displacement field, we use the displacements due to a horizontal
point force of strength L{w) in an elastic space with the same elastic
properties as layer s, The displacements as derived in Appehdix B

are



_\gso(r,e s Z) =

-ikr lz—D|
Z( Fss
e

-ikr  |zeD|
o
- e s ) Jl(_kr) dk

'—" (0 o]
._._Z__—._ cos 6 J.E—RJ. S‘
0

4w P

-ik‘3 R -ikcL R -ik, R
o e . e S 2 e S
(r,6 z) = >— COs 6 > = + k[3
4o Py or s
-1kﬁ R -1ka R sik. R
T 1 9 fe ° e S Bs
(r,@,z)-—4 2—51n9 < 5 i +k‘3 e (67
W P s
-ik, R -ik R
P a
- 2 s - s
(r,06 z)=—-—:£"—-cos€9 9 < "
v 2 8z0r ' R
4w p
8
where
R2=r2+(z —D)Z
Rewriting as an integral representation, yields
=1kr Iz DI
_ 0
qso(r’a’z) = -1 cos 9(‘
411'w Pg
: ikr, |z-D]
-ikrg lz DI\ 45 (k) Py I (kr)
trg e —a é ) | &
Py r < Tk
wikr lz-—D]
a
— @ 5 s
(r,@ z) = s1nGS. k =
41rw p 0 a
(68)
-ikr ‘Z-DI T (kr) [z Dld.]' (kr
fr, e s L ikl e L dk
[33 kr [38 dkr
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In oﬁr cylindrical coordinate system, the problem no longer
exhibits azimuthal symmetry, We now have a 8 dependence caused
by the directed horizontal point force., In order to include the aximuthal
depéndence, we add to the cylindrical set of potentials (¢, ) a new

potential X such that

— 2— —
9¢ 9™y X

— , _ m m 1 m
Up(T:002) = = + 5o+ T

- o

0 97y 9x
— 1 m 1 m m
Vmlt0:2) = S 55— T 5550 - oy (69)

— 2

5 (0. m 12 Pm) 1 %,
m' 0z r or or 1_2 89‘2

By substition of equations 69 into the transformed vector equation of

motion
~ ~ 2 -
. c“ - : -
()\m-l- Zp,m) grad div S, umcurl {curl Sm) w prnsrn (70)
where
Sm = (qms Vms m)

we see that
divsS_ =V%%
m m

and that equation 70 is satisfied if Zﬁm, -nFm and _)Zm are the solutions

of
— 2 2
v =l_a..( *m +1 agom}aq)m—-kz ?
Pm = T 3F \F BT 2 2 2 a m
T 06 o9z m

2= 2 -
vqjm_-kﬁym (71)

m
2— _ 2 -
V)(m——k;3 X m
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With equations 69 and 71, the definitions of stress yields

— 2— —
qum 2 LIJ.‘rn n 1 axm

qm(r,Gaz) = or * 9rdz T 00

- 1 1
vm(r,e,z) ) +-f 9z00 ~ Or

o¢ V)
— 2 -
Wm:(r,G,z) = Bzm+ ;n-Fkﬁ ¢m
0z m
B | ow 5
Pzzm(r,G, z) = me 5a + )\m div Sm (72)
2 3—
o VT oy
2 2 -
= 2u L < L -N_k% 9
m[ azz 823 B 92 mey, m

2
2— 3— k 2
- 23¢m+28¢m+ﬁm8¢m—8xm
"B [T Bz00 T 2 80 5700
82°06
- dw_ 8q
Prz (r,@,z)=p.m or * oz
m
2— 3— _ 2—
_ agt)m_|_28'“IJrn+k2 8"Pnt:t_*__}_axrn
= Fm 9z0r 2 B_ O8r r 0200
oz Or m

In passing, we note that if )Tm is independent of r and if Em, LIJm
and Ym are independent of 0, equations 72 reduce to the azimuthal
symmetric equations 5,

Using the integral definitions of equations 7 and extending them

to v, _ls'Gz and Ym’ we have after separating the solutions of
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equations 71

¢m(r: 9: Z;k) = ¢m,(z)J1(kr) cos 8
me(r, 0, z;k) = q;m(z).]l(kr)' cos 6O (73)

Xm{r: 9, z;k) = va(Z)Jl(kl') sin 0

whe re
2 .
d%e  (z) 2.2 )
2 - I'a (Pm Z
d=z m
2 .
k-SSR e
dz2 ﬁm m
2
a™X .(z)= Sk2e2 b ()
dz2 5m m

Since there are no boundaries at r or 8. constant, the solutions to
this problem will have the same r and € dependence as the source
integrande The r and €@ dependence of equations 73 were chosen for
this reason as we will now demonstrate, Subs.tituting the integral
repres\entations into equations 72 using‘73, and equating integrands

we obtain

ay_{z)| dJ; (kr) 7, licx)
qm(r, 6, z;k) = gom(z) + P T + Xm(z) - cos

1 (z) v (z) ’
{I—[uRm zf i\ o L / ool f? cos &
k c dkr k c kr ’

1l
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| o ay_{z)| Jy(kr) a7, (kr)
Vm'(r’ 0, z:k) =4- [(Pm(z) * dz r X1rn(z') dr sin 0

B { ) uRm(Z)’ 7, (kz) N VLm(Z)dJl(kr)Jz .
=4-F sin 60

k¢ dkr

, —_ 2
de_{z) d™y_(2)
Wm(r,e , z3k) = [ m'” + ;n + kgmq;m(z)] Jl(kr) cos O

= -

R (z) Jl(kr) cos 6

m

—_ 2
dp (z) 474 _(2) J; (k)
Psz(r’e’Z;k) =" Fm {{2 dznrl e 2 f kﬁmlpm(Z)] r

dz
dx _(z)dJ,(kr)
+________dzrn -a—rl— } sin 6
7 (kr) a7, (kz)
=q-itg @)= - Ty (B sinf
m m
2
do_ (z) d™y_ (z) dJ, (kr)
Prz (r,0,2;k) = Mm {[2_&13 2 1';1 ¥ kg me(k)]-&'lz}f
m dz m
dx _ (z) J,(kr) .
+ dzrn 11_ }cos 0

‘ dJ, (kr) J;kr)
=ity (z) T +7L (z) 5 cos 6
m m
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We see from equations 74 that two new z dependent quantities

have been introduced into our boundary value problem; i. e, vy, (z)
m

and 'TL (z)e These quantities are defined in equations A22 and are

m
associated with Love type surface waves as will be demonstrated later.

As before the boundary conditions are continuity of displacement

Jl(kr) dJl(kr)
and stress at the welded interfaces., Since and ———— are
kr dkr

linearly independent and continuous across interfaces, we must impose
continuity on their individual coefficients in order that continuity of
displacement and stress be satisfied for all r. From equations 74, we

see that the following must be continuous at the Z. 1 interface;

L ug  (Zp)
m m-1

c c

wr (Zp,p) wr o (Z )
m -1

C = C

°R (Zm-l) °R (zm—l)
m -1

c c

T (2o ) T,z )

B Rm m 1_4 an_1 m-1
and = . . _

vy, (Zp9) v, Zpp)
m m-1

c = c (77)

T, Zm-1) L (Zma)
m m-1

The above boundary conditions are written as two vector equations since
the two motions stress vectors 76 and 77 at one side of a layer are

related to those at the other side by the following linear transformations.



-4]1-

R () ig (2
m m
C C
‘;VR (z,,) ‘;’R (2 -1
m
c = aRm c (78)
TR (z_) R (z ..1)
m m
TR (z_ ) TR (Zm—l)
. ™ | L m _
and
‘;L (Zm) ‘;L (Zm-l)
m m
¢ = a ¢ (79)
. (z ) S N
L m L m-1
- m — e m —

given in Appendix A as equations All and A3l.
Comparing equations 74 with the source integrands, equations 68,

we obtain

gy (z) _ -ikr, [z-D| -ikr, |z-D]|
R S B
so L 3] e S
= -1 k +r, e
c 2 T B
4w Py a, s
v (z) -ikr |Z—D|
L T B
so  _ L 2 S
- T ————— kkB e (80)
4w Pg s '
wy, (z) _ -ikr, |z-D| ~ikr |z-D|
Rso s L lz—DI 3 ﬁs %
=1 > 5] k7 |e -e .
c 4 o z -,

Evaluating the source stresses from equations 68 and comparing the
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integrands with equations 74, we obtain

B -ikry [2-D| ke, |2-D|
o (z)=-iE [y -n & ° yr e s
R Zw | Vs r Ys B
SO G.S S
. ' -ikr |z-D]| -ikr, |z-D]
L kL z-Dig s s
'TRSO(Z) = Tﬁr-{ -5 Ve - (ys-—l)e (81)
_ -ikr[3 |z-D]|
_ kL z-—DI s
TLSO(Z) = T I { z-D }e

Evaluation of equations 80 and 81 leads to the vector equations

for the source layer at z = D,

. —_ ,._ — . —_
ip (D) up (D)
s2 sl 0
c c
Wi Z(D) Wr 1(D)
s = S + 0 (82)
c c
T (D) a (D) 0
RsZ Rsl
TR (D) TR (D) 5TR
s2 sl s
e Ju— —— ——n— I —
where
. KL
&t = i e—
RS 2
and
__ —_ — — _ —_
vy, (D) vy, (D)
s2 sl 0
c - c +
T (D) T (D) 8T
L32 le Ls
where - _
oT - . kL
| P 2T
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e same result can be derived by noting that the source dis-

nts can be‘ obtained from the source potentials
-ikr |z-D|
_ y o
(z) = - i kL e
so 4 2 Kr
W p a
s s
_ | | -ik:c';3 |z-D|
_ L z~-D v s
Lpso(z) - 2 { z-D © (84)
4w p
s
2
k -ikr, |z-D]|
T Ps s

2 kr
B

X gol7) = -1
4w p
3 S

by comparison with equations Al4 and A33 we have

+ o= il k
501‘301"14 7 F
™ Pg. %
. - T
So2 = =502 —3— (85)
47w Py
2
Kk
+ - . i ISs
S =S = -1
03 = S03 P =
™ Py B

Substitution of equations 85 into equations A2l and A36 yields the same

result as above,
_ . kL kL
STR =i5= and GTLS = - 5=

S

The horizontal force problem has now separated into two sets
the first set given by

of vector relations independent of each other,
The

equations 76, 78, and 82 and the second set by 77, 79, and 83,

The first set represents Rayleigh type surface waves and the second
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set, Love type surface waves when the residue contributions are ob-
tained., Following the procedure of the previous sections, we obtain

for the first set

11R
o
=W + o7 A
¢ R ( Rsl>14
w
R ,
o
— =X -587, (A (86)
¢ Rs( Rs1)13
Y=-6t, (A,
Rs( Rsl)lz
7 = &7 (A \
Rs Rsl)ll
Solving equations 86 yields
W (1)(2) (87)
Ro - NR NR
c FR
and
u (3)(4)
Ro _ NR NR
c F (88)
R
where
G S (a5 )
R NRU ) R VTR,
(89)
F
(4) R
N =1+ NE] oT A
R NR3 Rs( Rs1)1~’.1:

For the second set, we have similar to equations 19 and 20
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v (z_ ;) v (D)
Ln—l -1 LSZ
2
c - Ai c (90)
T (z_ ) T (D)
L _1 n 1 LSZ
and
[ . ] [ . ]
sl o)
c c
= AL : (91)
T, (D) sl 0
sl
— p— - —
where
s2
.A = a so0es d
L Ln-l LsZ
A = a e d
le le 1
and
Vi, VL (0)
o _ 1
c - c
Using the following defidition
_ = - . —_
v, (D)
v 52
-1 c
= AL (92)
T s1 7, (D)
and multiplying the source layer vector equation 83 by ALI yields
sl
C—LO
Vv < 0
= + ALl
T 0 sl 6’TL
L L - L 5
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or
‘VL‘; =V -5 (A‘l *
c ) 1-Ls le)lz
N (93)
T (Ale)zz

From the elements of ag, equation A32, we see that the determinant
m v

of a is unity, Therefore the determinant of the product matrices

L
m

is equal to one and thus the inverse of AL can be written immediately
sl

as

-1
AL = (94)

{}Lo «
— =V + 07T (A
Ls le)lz
| (95)
T = 67T (A
L le)ll
From equations A26, we have for the halfspace or layer n
S 1 e
=ELn c (96)
1 _ en
gn En TL (Z _1)

Our boundary conditions at ‘infinity in the halfspace as before requires

that gr'l = 0, Defining



.82
A -—_—’—'AS A = a eood a s 0o d = a seed ceed
L le Ln-l LsZ le Ll Ln-l Ls Ll
where it can be shown that ay, @y, Tap » we obtain using equations
s2 sl s
96, 90, and 91
€! v
. 1
=E; Al (97)
€! " T
-n
or
[(T5)15- (37),,]
V= - 1L'12 1’22 T (98)
[Ty - )z
where — — - —
sy -1
. (i%) 0 (A)y  (App,
J= ELnAL = . (99)
0 '“k“nrsn) (Ar)on Br)s
Evaluation of equation 99 and substitution of equation 98 in 95,
yields
YL Nﬁ’NS)
— = T (100)
L
where
Fp = - (Ap), - (A .
TS A R
(1) _ . kL ) * \
Ny = i52 AL )5, - (Ap )k, T n] ‘(ALsi)ll' (101)
and

_1-il_<_]:‘FL (A )*
L 2w NL(” Lo/
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since

5TLS="%§
The matrix elements of ar, are real or imaginary by the same cri-
teria as ap o These criten;ia will also hold for the matrix product
elements, 11:11 addition for c = Bn we have as before that rﬁn is

imaginary., The imaginary quantities are expressed as real quantities
(designated by asterisks) multiplied‘by i. This notation was used in
equations 101,

FL(w, k) = 0 is a form of the period equation for Love wave pro-
pagation in plane multilayered isotropic solids, Since we are interested
in the residue contribution we note that when FL = 0, equations 101

reduce to

M I‘* = - (AL)ZI
n F'J)n {Alel

N2 =1
- (102)

and « .

N(l) kL[(AL)ll(AL)ZZ+(AL)IZ(AL)Zl] (Ale)u

‘o (A

And since the determinant of AL =1, we have

]ALIE(ALMﬂALQZ+(ALMﬂA 51 1
and ' (103)

(1) kL A .

Thus by equations 87, 88, 103, and 74 for m = 0, the Fourier

displacements at the free surface are
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_ o ee(y NS)NQ) ar(kr) (”N(Z) 7, k)
qo(r: 0, Z) = =

- dk cos 6
.0 k FR | dkr k

1) N(B)N(4) J (kr) . N(l) (2) dJ, (kr)
= e ) = 1 "R YR Y1 i L 1 .
volrs 0, z) = Tk TF o TETF Ty | dksin b

0 R L (104)
_ fe'o) Ng)N;,Z)
wo(r, 0,z) = S‘O X ——F;-——-— Jl(kr) dk cos 6

Evaluating the residue contribution of equations 104 for the zeros

of FR we obtain for each jth mode
NGINE)
- B R @),
{WO}R K 5F Hl \kR r) cos 8
j R. R j
J & .
Wy J
NG {4) 12k )
. . RJ RJ (2) 1 Rj
{9 }Jp=-1i H " (k, t) ~ ————=—¢ cos 6 (105)
o Rj kR. aFR‘ o Rj kR.r
J ———f) . J
W
(3) \;(4) (2)
=) NRj NRJ‘ H1 (kRjr)
v = sin 6
o 3 ( R‘) kR‘r
oK - J
Wy
As shown before
(2) _ (4
Ng ' =Ng' =1
J J
. K
3) _ K __.|% (1)
Ng., = lNg =-i= Ng
J J Wolu, 4
J
)

5 = [oN - LHI{Y +%z}
j

and by equations 86 and 82



(1) T * * ( ‘ K ( ‘
Ny =k, 5= [G N-L H] )(A -={A {(106)
Ry "Ry 2w Rsl)lz L Rsl>11

_— , D)
n _. T, ok, k| Bt
Np' =ikp ==[GN-LH |
J J Yo H

—, _.T |% D (2)
{WO}R =i "A'R H1 (kR r) cos @
J Yo H,
J
. (2)
_ N I
{qo}R.= - - vArR H_ <kR.1’)~ T cos 6
J w B R.
o . HJ j
> ' (2) (107)
_ =18 i (D) = (kRjr)
{VO}R.= 15— — AR————-———————kR - sin @
Yo H, Yo I, ;

where A R is given by equation 51,
Evaluating the residue of equations 104 for the zeros of FL, we

obtain for each jth mode

(1)34(2) (2)
NN H, " (k, r)
R T e e H O P n 0
VolL, ~kL BFL o L.t kL r st
J (—5—-) . j
Ng)Nﬁ) Hl(Z)(kL.r)
{EO}L_ = - " cos 0 (108)

™ NN
j Ky, (BFL‘ L.
I \3x )w, j i

{WO}Lj =0
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where from equations 103 we have

n&2) _
NLl =1 |
(109)

and

GS(D
B ) (AL 1)11
Vo H. s
J
and
LEN IR S N
v - \.r - L1
e} H. o H.
J J
Thus, for the Love contribution
(2)
_ T | V™D (2) ! (ijr) .
Wolp =13 |5 | Ap JHo ey 1) - —— (sinf
J o “JH J J j
. (2)
B = [v,D Hy kg, 1)
{qo}L. =-i5 | AL. —-—J——k - cos 8 (110)
J o H J L
; J
J
where
e ——
J V-1 (BFL )
s ok Lo, 3
fe) Hj ’J

As in previous sections the residue contributions are continuous

through the source plane, and it follows that the residue displacements
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at depth for the horizontal point force are

. (2)
‘ ° H (k I')
u_ (=) 1 R.
{arn(,z)}R.:i —-Ln {-\;V—O}R. HE)Z)(kR.r) - k rJ /H{Z)(kR.r)
I Wo dn, J. R; !
J
_ G
e} Hj
and )
_ w|
vmPL = T ol
J Vo HJ J

for all m, The homogeneous ratios are given for Rayleigh in terms of

AR (z) as before, The Love ratios are similarly given in terms of
m

A, (z)=a

L (z) ap
m

Lm m-1 1

where AL (z) is the matrix for a sublayer in m of thickness
m

d =2z ~2z
m m-1°

In the remainder of this paper, we will be interested in Rayleigh
and Love waves at large r. Neglecting terms in r"?’/2 which are small

compared to terms in r-l/Z, we have as the dominant surface displace-

ments,
.
Y

— . 2
wolg, = 1%[—3 ~ “A‘R.H‘i )(kR.r) cos 0

J LWo 1m, J J

. g *‘

- _ . L% Ys (D) (2)
{qo}R_ =-is = -— ‘A'R.Ho (kR.r) cos 0 (112)

J Yo IH. | Yo H, . J
_ T [V4(D) (2) .
{v3}. =1i=5|— A- H'Y(k, r)sin6

o} Lj 2 v, Hj Lj fe} Lj
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Extension of the Horizontal Point Force Solutions To a Model of a

Vertical Strike Fault

In this section, we take the solutions for a horizontal point force
at depth in a multilayered medium and extend them by spatial integration
to represent a model for a vertical strike fault, This method of inte-
gration over a finite vertical fault plane was used by Ben-Menahem (1961).
For Rayleigh waves he used the horizontal point force solutions of an
elastic halfspace and for the Love waves the corresponding solutions for
one layer over a halfspace. In this multilaye: red formulation, the vertical
integration is evaluated exactly, For the time lagged integration over
the horizontal fault dimension, we use the approximate evaluation given
by Ben-Menahem.

Now consider, in phase, horizontal point forces distributed con-
tinuously on the vertical z axis for the interval h1 =z = hz. The
strength is adjusted so that as Ah = h2 - h1 approaches zero, the inte-
grated effect reverts to the point force solution at z = h1 = hZ“ Then
using equations 112, we obtain for a vertical segment of horizontal forces

in a single source layer s,

.

T hy, lu_(h)
ek = it A 5P reos 057 S‘ 2 1Ls dh (113)
J J J h1 Yo H,
J
whe re
o 3¢ o 3
u (h) & u:
= = A, (B)] + = A (h)
w Rg 12 w Rs 11
o H. oJH,
J J
.k
Yo
and | — is a function of the layer array and hot h,
W
o"H
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Now since a given layer can be divided into as many sublayers as

desired by the matrix relations of Appendix A, we can write

ARS(h) = aRS(f)ARs(hl) where £ =h - hl

Performing the integration, we obtain

o3k PR °
h, |u (h) u _(h,) w_ (h;)
2 S - sl ‘ s 1 *
S‘ 2 dh = | ==Z I,(8h) + | = I ,(Ah)
hl Yo H. Yo H. Yo H.
J J J
cr (h ) TRS (hl) "
+| =2 I;3(8h) +] — L ,(Ah) (114)
w W
) _9
c H. c .,
J J
where
(-Ah sin AP sin AQS
@h) = | fag )] at =y (y_-1)
1 JO R s Kkr ] krﬁs

h %
Il*Z(Ah) = Sj [aRs(ﬂ )] 1Zd£ = (ys-—l) 1—(-—-1-—-2— (1 - cos APS)

T
Rj as
(1 - cos AQ )

kRj s (115)

: Ah 1 sin APS sin AQS

(Ah) =5‘ [a (2)} a = - _S .
113 0 Rs 13 p c%{ kﬁR.;r_c_L kR.r[?)
s"R, s i s

l#A
>
=
(_/3
>
oy
Y
0
~
[
p—t
H
&
11

{1 - cos AP
P .
%s
+

J
T(-l—‘(l-cosAQ)
RJ



-55-

When the line of sources extends through the interface between

layers say S, : k=1,m, we generalize our result to
Yy Y Pp g

(= }Ah ; 'I._:

oI R. .A, {2)(kR'r) cos 6
J J
where ; .
Zsl G.k( ) m-1 aF (h)
1 1 \' k| sy
e) = dh + dh
R ~ Ah N KX - .
S 1 o °H, k=2 “s Yo o JH.
j k-1 j
o
h2 u (h)
+ ( o dh
vy w
s o H.
m-1 A
The —];- is carried outside the summation, instead of —-—1———- with
Ah ! Ah

s
k
each element, so that if all the layers were the same material the

result would be consistent with a single layer,

Similarly
& :
—Ah . . T | o (2)
{qo}R. =-is0 Ag O R (k ’r) cos 6 (117)
J WolH, j J
J

Now for Love waves, the integrated effect for a single source
layer is

h. [
- 2 | v (h)
{5 } -211 AL H(Z)(k r) sin 6 z%f £ dh (118)
h v
‘] ‘] ‘ 1 Lo H
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where
v, (h)
_S = [AL (hﬂ -
s 11
Vo JH,
J
Decomposing A. (h) to

L
S

Ap (B)=a; (A (n)

s s s
where
£ =h - h1
the integration yields
7 (b))
(\hz Vs(h) v (hl) Ls 1 “
‘) = dh ={ — Ill(Ah) - — IlZ(Ah) (119)
h1 Vo H, Yo H. Yo
) J < Im
J
where
Ah sin AQS
(Ah) =§‘ [a )y at = ——=
! Jo L g dn K1, 7g
j Vs
(120)
% Ah * 1
I, (Ah) =S [a (l)] d! = s—re— (1 - cos AQ )
12 0 LS 12 p,SijrpS s

When the segment extends vertically through many layers, we generalize

to
Zs1 v, (h) m-1 Zsk ‘;s (h)
OLS_ 4h h v ¢ 7 \;
1 o I—Ij k=2 Sk—l o Hj
RS \:‘s (h)
+4 s dh (121)
Yz v H.
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and obtain

—3Ah_ . T (2) .
{VO}L. =15 ‘A'L.Ho (kL.r)OL sin 0
J J J S
We now shift the vertical line of horizontal forces in the horizontal

direction from 0 to b with velocity v. We take into consideration the

necessary phase shift corresponding to a time shift in the source time

function at each source point. We obtain

ok
—yAn,b_ . T | %
Ny “'l'z‘[:-]“ 'A’ROR ToR
J o H_] J

— . L
¥)g, =17 #gOR iR (122)
j d s

where by Ben-Menahem (1961)

' b .
c _ 1 (2) -1§/v
JOR = -5-5“0 cos 6 Ho (kRjr)e d§ .
. (¢} 7
cos 90 (2)1/2 {sin XRE —16) E_Rj+ XR.' 4
S 172 \7 X |¢
(kR.r) R
J
and )
. (723,
chR = -]1-3-5 cos 6 H (2) (kR'r)e i£/v daé
J wr 37
-1{—— + X T
cos 6 \1/2(¢sin X °R, R’
(kR r)172 Ul XR
J
where
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For the Love wave contribution, we obtain

- Ah,b T »
{vo}Lj = I—Z_‘A‘LOLSJOL (124)
where
)
JoL= —5 sin 0 H( )(k lg/"dg
L _1( 0 i _-r_r)
sin 6 1/2 (sin X, gL. L 4
( ) —-—-—-—e J (125)
172 L
and ggL
_ wb j ) ' . W
XL = & (-—V—Q- - CcOSs 60) and Q.Lj = -E-I:—
j j

The source fault plane geometry, used in the above evaluation,
is the same as in Ben-Menahem except that ours is a right-hand
coordinate system with 6 being the negative of his (figures 2 and 3).

The r and 6 in the integrals are given by

. 2{1/2
ro[l -2 (}%) cos 60 + (?&:)]

.1 §rcos 60 - £
cos -

The evaluation of the integrals is approximate and based on the assump-

=]
H

(126)

fes)
1]

tion that the range r is large compared to the wavelength of the surface

waves and the horizontal extent of the fault 61'

Ty 22 kR.’kL.
J ) (127)

r >>b
o)



Ah, b 1/2 - q* sin X
—_ (2 L, -1/2 ] R
lab g =- 1«(11'1' ) cos 0,7 kg’ || ©Og ’A’R-{—'_X“_'—
j 0 j w s 4 R
o Hj
wro ™
i —2+ X - —>
cp R 4
Xe J
wr .
-.(c O+XR—%E
Ah, b 1/2 - . (sin X R.
— (2 L, -1/2 R J
{Wo}Rj 1(————"r ) cos 90 > kRj ORS R %q e (128)

wro TI'.
A2, 3)

1/2 — sin X

- _f 2 : L, -1/2 L

T =i(55) om0, 3R 0 AL.{—X—%'
j o] J s L

In addition we may extend our model to a strike slip fault by
considering a point couple instead of a point force moving along the
finite fault plane. We accomplish this by differentiating the point
force results with respect to the horizontal coordinate n perpendicular

to the fault plane where

-y cos 0 : ‘
-g% = sin 0 (ai >+ - 2 (ag ) (129)
. o (o} Q

Equation 129 applies strictly to the single horizontal couple or the
vertical line of couples. However, to our order of approximation
in the horizontal integration, it can also be applied to the horizontal
moving couples on é finite fault. As a result, neglecting all but the

lowest order of roe We obtain from equations 128
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c,Ah,b > \1/2 T 1/2 u¥
— . - _ e . = -—-0_
{adg = (ﬂ) sin 6_cos 6_ = e Og Ag;
J ‘ . J WolH, S
j
er m
NESS
sin X j R,
X R J
X (S
R
. ¢ Ah,b 5 \1/2 T 12
{wo} Rj = (———ﬂroj sin 9 cos 6 —2— kRJ O ‘A'R

c,Ah, b 1/2 T si
- /2 2 1/
Gl = (?&") sin®0, 3 .LJ OL ALTX

where "I:g, the time transformed couple strength has the dimensions

of L X length or force X time X length,

Synthesis For Time Domain Displacements

In this section we write the displacements for a given source-
time variation in such a form that the Fourier inversion can be ac-
complished numerically using the Aki synthesis with linear amplitude
intervals described in Appendix C, Part 1.

We take the following as the time variation at the sour;:e for

the various sources studied in the previous sections:
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l. Pressure-time variation on a cavity of radius ag
- P e olt-t) t>t
as o
[Pos(®)] =
0 ‘ t<t
o
2, Force-time variation
~o(t-ty) t>ty
Loe
[Liy] =
0 t<t
o
3. Couple-time variation
IJ|e~01t—t0) t>t
[vw] =1 °
0 t<t
o

Defining the time Fourier transform as

T =S' £(t) e 1t g

we obtain the transformed source functions

-iwt

e
Pas

1. —~ Tio

Pos =

-iwt
o]

T =L =

Ze o ¢ +iw

~-iwt
fo}
e
o ¢ tiw

e

For use with the inversion program, we write the denominator

-iGs
1 _ e
o tiw (0_2+ w2)1/2

(131)

(132)

(133)

(134)

(135)

(136)

as

(137)
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where

.0 =tan—1f-°-
s - o

Substituting the above source transforms in the previous source solu-

tions and inverting where

£(t) = _ZL_S 1(»1:
-00

we obtain the following for large epicentral distances;

1, Buried spherical source, from equations 52,

fw} 2/7/1)/2 af k, Z{/’I[J /o)j [K/ msz/zf o5 Tl 0>
);e[/_ 4_{_4“)% dJVa.

(138)

(9.5 =~ (=) 4;/0 [ Z(//f?)] ‘famj‘/j;/moa 7l
) é’tw) [(/,,da ‘)Ms Y
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where - v
0 0

T =t +-X + S4 SP_ s 3w
w w 4w
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Vertical point force at depth, from equations 66,
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3. Horizontal point force at depth, from equations 112,
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where

where for the above, we have used the Hankel function expansion for

ranges (r) large compared to the surface wave length -EZ—T-[— s -EZI—>
R, L.
J J

2

H'2) (1cr) = ( 2

wkr

>1/2 e—i(kr L % )

4, Model vertical strike fault, from equations 128
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where
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III. DISCUSSION

Almos't all previous work on sources in layered elastic media
has been restricted to simple layer models. The frequency domain
displacements derived in this paper exhibit many of the characteristics
inferred from the work on simple models. Obviously, the radial and
azimuthal dependence are the same as obtained for simple models.
Therefore the factors obtained for a model of a vertical strike slip
fault which depend on r and 6 are identical to the ones obtained by
Ben-Menahem (1960) for the same model. Their application in deter-
mining fault pérameters such as fault length and rupture velocity is
thoroughly described by Ben-Menahem and thus will not be discussed
here.

We will restrict our discussion to the effects of source depth
and layering on the spectral amplitude of displacements as derived in
this paper. Jardetsky (1953) and Kellis-Borok (1953) have also given
expressions for these effects in t-errns of ratios of determinants of
order (4n - 2). The significant difference in their formulation and the
one given here, is that we are able to simplify the displacement expres-
sion so that the effects of layering, source depth and receiver depth
are separated into independent factors,

For the various sources investigated, the factors are as follows

1. Explosive source

_ wp(z)] |9 (D) 1
° THj o g
c ]
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L] *
_ up (z) ¢, (D) 1
BN 2 W H. lﬂf - J o)
J 1T ;3
2. Vertical point force
° N r o
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| (144)
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3. Horizontal point force
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where the R and s subscripts in the Hj subscripted brackets refer
to receiver and source layers respectively. The Hj subscripted
quantities in equations 144 and 145 refer to the ratios of vélocifcy or
displacement with depth for the homogeneous case in the jth mode.
The homogeneoﬁs ratio of dilation, Pg s with dépth used in equations

143 can also be given in terms of the homogeneous ratios of horizontal
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displacement and normal stress with depth. In the vertical fault models,
the source depth effect of equations 45 is replaced by the average value
of the point force factor over the vertical dimension of the finite fault,
The homogeneous ratios were defined in Chapter II in terms of the

THOMSON-HASKELL matrix elements as

2 (2 o
u_ (z u
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e} H. ol H.
J J
o vk
w__ (=) o *
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From equations 143, 144, and 145 we see that the relations be-
tween displacement and receiver depth, z, are the same regardless
of the type of source considered here. This fact was pointed out by
Kellis-Borok and Yanovskaya (1962) as being true for all sources.
They failed to realize though that for vector point forces and the ex-
ploéive source, the relations between displacement and source depth,
D, for a given mode j can be expressed by similar relations, From

our results, we have as the source depth relations

1. Explosive source

{.‘;(ZsD)}R {E(Z, D)}R
J = J

{V—V'(Za 0)}R. {.CI(Z: 0)}R.
J

) 2.2 1
a, k 2 -1 2
¢, (D) (SS)Z -2 el <a5)3
9 (0) |4 Py agké N Po1 \?
j 2 2
J (1 - ) S) + kasas | (146)
2. Vertical point force
{-\;’(Z9 D)}R {EI(Z: D)}R {Q(D: Z)} R
J . jo. j
0y {0y WO,y
J . J J (147)
[
\;vo H,

J
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3. Horizontal point force

{%(zD)},  {Q=Dlp @D}y
Faong oo {'c1<o,z>}R_J
J * ﬁ:(D) J J
) \;vo Hj : (148)
{v(z, D)}, {v(D, Z)}Lj
{V(z,on; T 0.2,
J — ‘;S(D) J
) ‘;0 HJ

For volume sources, not considered in this paper, Kellis-Borok and
Yanovskaya (1962) give a set of formulas taken from M, G. Niegaus
which allow one to calculate source depth relations. This is ac~
complished by performing integrations over the vertical coordinate of
the homogeneous solutions weighted by the actual source forces.
Actually the source depth relations given in equations 147 and
148 could have been determined using theorems on scalar and elastic
reciprocity given by, among others, Rayleigh (1855) and Knopoff and
Gangi (1958). These theorems apply to the total motion but as seen
from our results, they are also true for the surface wave contribution
to the total motion. For Rayleigh waves we see that the vertical sur-
face displacement at A due to an internal horizontal point force at B

is equal to the horizontal displacement at B due to a surface vertical
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point force of the same strength at A. Love waves obey scalar reci-
procity in that the source and receiver depth factors are interchangeable.

Sherwood and Spencer (1962) using another reciprocity theorem
by Rayleigh (1855) postulated that the surface displacement at A due
to an internal dilatational source at B 1is identical to the dilatation at
B produced by a vertical point force at A, From our results we see
that this is true if the magnitude of the force is properly normalized
to the dilatation source, that is, if we set the coefficient of the radial
part of the dilatation source in equation 1 equal to unity then our vertical
force, L, must be of magnitude i41rw2ps.

The factors ‘A'R and 'A'L for Rayleigh and Love waves re-
spectively are independént of scurce and receiver depth and also the:
type of source and receiver. They depend only on the properties of
the layers in the array. From equations 65, -‘?‘-2-1-{- can be considered
as the spectral vertical response of Rayleigh waves at the free surface
to a unit vertical surface point force after removing the transmission

A

effect in .the r direction. Similarly from equations 110, —-E-I—J— is the
spectral SH response of Love waves at the free surface to a unit
horizontal surface point force.

Computer vprograms based on the THOMSON-HASKELL matrices
for the computation of dispersion (c, T) in multilayered halfspaces
yield the homogeneous motion stress ratios as a by product. Several
such programs are described in the literature., Using the technique
given in Part I to calculate analytic ( g—%)w, it is therefore possible to

modify these programs to compute analytically values of .A,R and ‘A'L

as a function of phase velotity or frequency.
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The estimation of source depth from surface wave data has
intrigues seisrmologists for many years. Basically the methods were
limited by not knowing the relative excitation from one frequency to
another for a given mode and from one mode to another for a given
frequency. This relative excitation is given by the variation in 'A'R
and 'A'L with frequency and mode, All previous attempts have been
based on the results of simple layer models. Now we may use values
of ‘A'R and 'A'L for more realistic earth models in these estimates.

With this possibility in mind, we now write down the spectral

ratios of displacement for a vector point force at a vertical angle of

8 with the horizontal

i (D) W, (D) 1
— 0| — + tan 6 | — 5
{W } cos - - A c 5
I 'R, | ) Vo  JH, Vo JHy TRy TRy
— = % : -\t
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I © le cos © —:—S ttan & |— J J
w W
o Hj o H (149)
[ e
v (D)
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where 1 and j are different modes. The use of matched digital
seismographs and computer programs for epicenter location and spectral
analysis allow one to readily combine the horizontal components to form
a horizontal tranverse component, Vs and to obtain its spectral ampli-
tude, Assuming that v, can be obtained either by the above or a
fortuitous alignment between horizontal seismographs and epicenter,
equation 150 is the least effected by possibly unknown parameters such
as O and 8. Using group velocity windows and performing a series

of narrow band spectral analyses to separate modes (Alexander, 1963)
we can form the ratio given in equation 150 and obtain its frequency
dependence. After a structure has been found which agrees with the
observedvdispersion, which is independent of depth, one can determine
the mode order and then eliminate 'A'L and 1, from equation 150
leaving the homogeneous ratios for different modes. Comparing the
resultant values with theoretical curves for various depths gives an
estimate of the source depth.

If there is no appreciable Love type motion for any azimuth, we
can assume that the event has either explosive or involved mostly vertical
motion at the source. For a vertical point force, we let 6 = 90° in
equation 149 and then can perform an analysis on W corresponding to
equation 150 to obtain a fault depth estimate, If the source is explosive,
we have a ratio similar to the & = 90° form of equation 150 involving
the variation of dilatation with depth from mode to mode.

If the source involves primarily horizontal motion, equation 151
is especially attractive, particularly if © can be determined by either

after shocks or fault plane solutions. This is due to the fact that,
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except for structures with extremely low velocity zones at depth

o %
u (D)
(Harkrider, Hales, and Press, 1963), the quantity —.E for funda-
W .
o HJ

mental mode Rayleigh waves at a given depth has only one zero in the
frequency domain, and the Love ratio none. Thus the presence of a
strong minimum in the spectral ratios is then diagnostic of the source
depth,

The above techniques hold strictly only for point sources and

explosions, For finite faults with a rupture velocity and amplitude, the

XR

gin X
amplitude picture is complicated by the directivity or{————-—f—{] and
sin XL
———-—-——-—}. If the epicenter is surrounded by enough matched instruments,

XL

it may be possible to remove this factor or give a reasonable bound on
its effect,

Another technique is to construct theoretical seismograms for
different structures, source types and source depths using the relations
in the synthesis section, Then we compare the theoretical seismograms
. to see if the various parameters have qualitative characteristics in the
time domain, This will be done in later papers.

Although the above techniques have éll been suggested in the
past by other authors they were never carried out because of the unwieldy
formulation and the difficulties of numerical evaluation. The techniques
developed here remove these difficulties and make possible direct com-
parison of theory and data to yield additional information about the

source,.
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IV. CONCLTUSIONS

The mo st impo rtant theoretical result obtained from this investi-
gation of point sources is that the sﬁectral amt)litude can be factored
into terms representing, separately, the effect of layering, source, and
receiver. These factors may be summarized as follows;

1l The factor representing the layering, 'A'R or 'A'L depends
on the layered earth structur e and the type of surface wave motion under
consideration, This term remains unchanged for the different types of
source, source depth, receiver depth, epicentral distance, and azimuth,

2. The effect of source and receiver depth can be determined
from the same set of relations., These relationg are the motion-stress
ratios for the homogeneous problem, The particular combination of
ratios depends on the type of source and receiver,

For our models of the vertical fault, the above separation also
holds. This is because, to our order of approximation, the horizontal
source integration is equivalent to keeping the spectral amplitude
constant while varying the phase over the fault surface. From the exact
vertical integration over the extended source we introduce a concept of
a mean value of the source depth, However one would expect that for
more realistic volume sources this result would prove approximately
valid especially at large epicentral distance compared to the wave length
and source dimensions,

The obvious advantages of the factoring is that the homogeneous
stress and displacement ratios, and the layering effect need be calculated

only once for a given frequency and mode. Once these quantities are
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plotted, .they can easily be used to calculate the spectrum under many
different conditions of source type, source depth, and receiver depth.

For many years the homogeneous stress and displacement ratios
were calculated as a function of depth as standard procedure in com-
puter programs used for calculating dispersion of Rayleigh and Love
waves on multilayered elastic halfspaces. At the Cal Tech Seismo-
logical Laboratory as part of the research here described, the Rayleigh
and Love dispersion programs have been converted to calculate also
the layering effects 'A'R and Mg .

The use of digital seismographs in recent years has made possible
the routine Fourier analysis of a large number of seismic events., Up to
the present, only the phase and directivity information obtained from
this data have been used to estimate source parameters, The use of
directivity has been restricted to sources of large enough magnitudes
to create waves which circle the world. The calculation of the effect
of source depth on spectral amplitude using previ‘ous techniques was
prohibitively slow and expensive, even on large computers, Now with
stress and displacement ratios calculated for realistic earth structures,
one can use a desk calculator to estimate source depth and type for

relatively small events from their spectral amplitude.
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APPENDIX A

MATRIX AND VECTOR RELATIONS FOR A GENERAL SOURCE
IN AN ELASTIC LAYER

In obtaining expressions for Rayleigh and Love type surface
waves generated by point sources in Chapter 11, we used vector and
matrix relations for z dependent quantities characteristics of each
type of wave, These relations are derived in this appendix. The
derivation is essentially a reorganization of the matrix formulation
given by Haskell (1953) for an elastic layer without a source. His
results are rederived in such a manner as to make the inclusion of a
general point source in the layer a simple and straightforward exten-

sion of the formulation,

Rayleigh
Consider an elastic layer m with the following z dependent

quantities defined by

del? & @, %+ 9./.%(2)/
z
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X e
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Ko / Jz * 07;3. w71
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where the potentials gom(z) and L]Jm(z) are solutions of

z /Z) 2 z /
27/‘?: == A P (2)

SEE Lt Y cz)
Jz*

For layers not containing a source, we use for gam(z) and me(z) the

¥

general solutions of equations 2 with arbitrary coefficients.
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and substituting equations 3 in equations 1, we obtain
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where we have made use of the following relations

Vo Epre b A

and

Evaluating equations 5 at z = zZ_ 1 and writing the result in

vector notation, we have

B . ) T B / 7 ]
C
. Vs AI/ (7)
!_A./'etﬂf [Zﬂ-/) o Lo
C
- &,
/ ”
O (Zoter) Do = Lo
/ 7
TR (Zm-y) Lom * L2, |




where the matrix ER

%
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is
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Combining equations 7 and 9, we obtain
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From equations 10 and 12, the elements of the layer matrix aR is
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For the source layer s defined by the planes z and Zg 1
we use a general point source located at D (zS >D> zs-l) such that
the source potentials cpso(z) and Lbso(z) are solutions of equations 2

everywhere in s and continuous with continuous derivatives except

at D, or

z _.J;é%(a' /Z'O/

%0(2):5;/ E P J_fZZD
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Combining equations 14 with the solutions of equations 2 with arbitrary

coefficients, the general potentials for the source layer are
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or rewriting y
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Decomposing layer s into two layers with the sam= elastic

constants; layer; layer s, for z32z2D and layer 84 for

D=z= Zg_q and defining new constants
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Comparing equations 18 with 3 and the relations derived from equation 3,

we have the following relations for the source layer
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Furthermore it can be shown that their matrix product yields
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In addition we have the vector equation
U s () Loy @ &
Leore Z,er/ 5[ _a,esj
_M_Zlé’q (0) _ﬂ;f (ﬂ) 7 s
< = < PS8 (20)
0;}_,_2 (O) J;ef, (ﬂ) S a,—éx
ﬁsz (o 7:&*/ w 5 7,\35
L v h— ——— ‘e w—




-85-

where from equations 1 and 16
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Love

For Love wave propagation, we are concerned with the following

z dependent quantities defined by
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where the potential Xm(z) is a solution of
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Similar to the preceding section, we form ’xm(z) from the general

solutions of equation 23 for layers without a source
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(25)

7, (2= -Cr €0 s, ) sind 7t~ Cn SL VAL, O, G B,)

Evaluating equations 25at z =2z _ ,» yields

.Y‘Lzm /Zm-/) _6,,,: *émr”
P2
= ZM ,
/7”7
770 (Zms) €™ Em
‘where -
Y
(/&) o
—_ . ¢/
é-”” - 0 ('z'é/l//”/(:@m)

and the inverse of EL is
m

£ 27! o
£ - o “‘(‘/é‘/nﬁ/gg’,,,,)

Evaluating at z =z, we have

Vv - / ”
ZL/M P ) ) pL €L+ &)
1 7/ 4
Town  (Zon) Eon ™ Com
where
_ (/é('dfézm ;éf/’?ézz,m
Low

Kl Loty 5792, el

(26)

(27)

(28)

(29)

(30)
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With equations 27 and 30 we obtain

g!m [ZM) _\_)Lt’" (Z,"_/_)
c

i

-

where ,
ﬁz = pfm 50"

Vi d

and the elements of ar, are

), = (@,,). = cos@,,

(32)

U}

i Sn&)
Cops ) g

M G
As in the Rayleigh section, we have as our general point source

in layer s at z =D

. /z-
X, = 50;: e_zéiﬂf (z-0f

(33)
Performing ope rations similar to the preceding section we obtain

_\_)Lsz (Z5) _L)A.;‘z o)
C = dé:’z o
Tisz (Z) sz (P)

,\,/l\ 57 ( o) Viesr (Zs.r)

< . = al.f/ <

7:_07 (D)_‘ 725‘/ (Z.f-‘/)
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and the vector equation

V, v, ., (©) ;.
_a,z. 52 (D) 3 21-:/ ., g ( Zl/ s)
35
7, (2 Tysr €O | $ Tis (33)

where by equations 22

(36)

§(ls)-c#(5] - 537)

ST =-ck /z%f//s, (%5 + %)
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APPENDIX B
THE DISPLACEMENTS FOR A POINT FORCE IN AN ELASTIC SPACE
IN TERMS OF A CYLINDRICAL COORDINATE SYSTEM

AT RIGHT ANGLES TO THE FORCE

In this appendix we first derive the solutions in terms of the
natural coordinate system, i.e., a cylindrical coordinate system,
(€,8,x), coincident with the force in ‘order to make use of the aximuthal
symmetry of the force, then transform the solutions to a cylindrical
coordinate system, (r,0,z), perpendicular to the force. The coordinate
systems are as shown in figure 4.

We now define a point'force, T, positive in the positive x

direction, located at the origin by

z/f/[f" G097 (e o)]Eds- T

or (1)
P 6" - £, o ]f(éf)ko/é

and from the following definition

(5’ x) = f@fo,Xﬂé)O/é (2)

we have

e (E,O?k)*/fx(f)a-ﬁ'k]:”gg\ € LCkS) (3)

where _ISXX(E.,X) is the time transformed normal stress in the x

direction,
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Using the potentials ¢ and ¢ which satisfy

- ‘fi: 99
723” = “/éaz V

it can be shown from the equations of motion that stress and displace-

(4)

ment for aximuthal symmetry are given by (Ewing, Jardetzky, and

Press; 1957)

Ve = =N, ¢*2/((;§ﬂ 37 "/f,py)

e p ST V) ®
2 (7+2¥)
- 2T RY

where P_,, u. and u_ are defined similarly to P
xE? & X : XX

N

in terms of
P £ —E,’ and u_; the tangential stress, the radial displacement and the

normal displacement in the x direction respectively.

The general solutions for equations 4 are

p-d % e

x>0
V;'éié’—(/é/’/}z J, (k%) “
and
0= A &N T
. XL o
7},3 a <fzxéé§)’ JC(<é§7
where '

= -[(éf;é;)p,)!é for ,é > zéa(,,d
SR ter h< kg
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Substituting equations 6 in the following boundary conditions at x = 0
Uy (50" 4) -ty (5,05 4) = 0

ax (5)0*3&-)“6/‘1(;,0—)‘,@):0
lff(f',O*;k)-P;(f o 3 A) =0
oo k)= By i k) <= L 4o (85

(7)

and solving for the constants Al, AZ’ Bl’ and BZ we obtain

[ £ AL an ,5;=4>=-z[/é
4 I Vs g A70,° d ‘Ww/’o/&a (8)

where we have made use of the relations

/éz = ‘:02 nd /@ 2-: @ (9
> /_740 a (/1*&;/4/) )

Substituting equations 8 into equations 6 and 5 we have as our

solutions

-l 2. J [ mn ] s ke
7wy 5 o
G. L. f ST gt L] Tandi
and 47707 o //,é&> (10)
_ Z' :yg él I(Qt:57 Aé%&l’ zt@ﬁk ;7 u/ (2;§i>a‘é
2 X< o

nx, g Y] TGs) dk

Y //,é/(,e

z

NQ‘

i

™
“TQT“%
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From the well known integral relation

iy B[ kg i3
e =f€ T T (kb b (11)
< - z)é/g/,
where
= (F2% x2)" and A/, , G 'é )ﬁﬁ Hor K7 ks

- % Ll bk,

we obtain the following relations,

—i ks

%(% - {47 [« sun o

and (12)

«//é/F 7 _< /x V.74
%"’"): /(aé//:g/,)g o TbE) db

Comparing equations 11 and 12 with equations 10 we obtain for

K/_; - L 2 élé"f— cfv‘./é(?
7w D5IX A

all x

(13)
/— -d/é&/g ,gé/ 2 “f'é'f/
“ 47“10 a
Now defining
7 —Z;é/d/e —"}éx/?
A = e - e 14)

A
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- b2
A= (x* €)% (zre )™
or 8 we find

whe re

and making use of the fact that R is not a function of §

that ”
JA. - wre 4
IEIX sr S NAZ
‘A A (15)
- 5//?&6’&)‘9/{2}_4_ 4
s S IR N7 (16)
and
(17)

2 VAl A . PAl
0 - cwsie 2H , sine A
2 X A E A

The displacements ¢, v, and W in the r, O, and z directions

respectively from the geometry are given by

7'—._- cos O 4, %J‘//’?éd’off(?b;
(18)

V = s o fo(/}—-ﬂk&é?x
W = s/pm ; C/;
Substituting equations 13, 15, 16 and 17 into 18 we obtain for the displace-

ments in the (r,0,z) coordinates the following,

;7 = L (o5& %¢/é/6 gﬁ_d&/
/ S 27 £
(19)
— 7 ‘ _’/_ o)j 2 “.'/é?/g
L 57A7Ci/cg = v‘xée;E;

Vo= b
A7 [°
227

v - L
W = R Cos & S5%
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Now using equations 11 in terms of r,z instead of £, x,

equations 19 become

C“éf[lé[-zlé%/z/ »aé//za/f(é/{) kz@‘ pf(kﬂ))a//e

- A
g / a//l /,/a R
(20)
Geil s 6/[5 _(Z/Z/z/ zéﬂ'/z J'dv ) ,é _(,ééia/a/ ) de
477(()/ [,9 ,é((ﬂ
e &‘058[_/2567 ﬁ}"/ g“‘;é/&’ 2/ e"(.’é/z"/ﬂ)f/»é/r)] Y-

Then using the stress-strain relations for the (r, ®, z) coordinates

o ol
loz = (,7/7 ,7 and /’ o ,72) (21)

and evaluating at z = 0 we obtain

e~ L cuso | L) EdE
47 .
Z= 0
B Lo /f/éxr)éc/é .
and
B _L wso / T (ep) bk
27 .

.—.-éf /J’(é/)éJé

O

and therefore
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492 /ﬂ;b’?-— /,éz @,07 - ‘zé/; Cas & /J,,—f,é//),é 7
’ o
. (23)
G, ot o= & r/hgfffé/)é Sk
27 Y
In addition, inspection of equations 20 at z = 0 yield
- + = -
g o )—?///,0}= o
(o -Vipo)=0 (24)
and W ot Wigo7)= o
since W (I,O’? = M7//,0') =0
Now

o L
2 e p (e F ) )

which from equations 19 involves either none or two differentials of
. IN . . . .
A with respect to z. Therefore since A and its even derivatives with

respect to z are continuous across z = 0, we find that

- » - = -
52’ (/770)‘52//,’0):‘0 (26)
For the horizontal point force in multilayered media, we will
use relations 23, 24, and 26 as the boundary conditions representing
the source in the matrix formulation, It is interesting to note that

from the geometry

—

/fz = Cas & AZ; "Jﬁé?é9lé1
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— —

(e = s [ + caso £ (27)

rZ -4

and by equations 23 we obtain

0% £, 07 = —z-f;—: /J;/éxz),é ok

;f\:

(28)

/p;z //7,0+)= /5z ///,0“).—.-.0

And using the integral relation (Snedon 1950)
0 oo o0
o c(5x 4 pY)
| /\]o’ﬂé/f)éo/,é _2-/7//6 0/50//@ (29)
o ot —ot

where

Ve .
/éc’[ —‘=J'7‘~d/o

co X
a_nd e = X+ ey

we finally obtain

2 o), o) o L fezzfﬁ,bwﬂ//b
7)
-0 T

(30)
2 (1,0) - o
which except for a factor of -%E are the boundary conditions used to

describe a horizontal point force by Yanovskaya {1958) and Ben-Menahem

(1961).
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APPENDIX C

TIME TRANSFORMED SOURCE POTENTIAL FOR A PRESSURE
UNIFORMLY APPLIED TO THE WALLS OF A CAVITY
IN AN ELASTIC SPACE

The following derivation has been given by many authors
(Kawasumi and Yosiyama, 1935; Sharpe, 1942; Fu, 1945; Menzel, 1951;
Blake, 1952). It is rederived here only for the purpose of rapid refer-
ence for those not familiar with the result,

Consider an elastic space s with a spherical cavity of radius
a whose center is located at the origin of the spherical coordinate
system (R,0,¢)s If a pressure is uniformly applied to the walls of
the cavity, a spherical wave dependent only on R will radiate in the

solid from the cavity walls, The radial displacement and stress with

R dependence only can be expressed in terms of a potential qos(R) by

Uy, (R) =24 (R)
IR

k,e‘r

- +2 5)9_!_45 jé/.r
7o (R = (As 2 A = 2/?;?€

v 204) 2
N “* %)527? *z%%

where
Ol _ L 2°% (2)
R S A
Applying a Fourier time transformed pressure Eos at R = a
given by

/5;, = [[/7,, (L‘)]c’—(&)/a’f
- o0
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we obtain for the transfcrmed stress and potential at the cavity walls

2 = —_—
7 ) = (Aret) DB , , A, od) b
e ST A F

where ES(R) satisfies the Fourier transform of equation 2

0/7?5 Rk F R (5)

with

The negative sign in equation 4 is the result of a positive pressure
corresponding to a compression and a positive stress corresponding
to a rarification,

Assuming that the medium is quiet before the pressure is applied,
we have for the solution of equation 5

) _(,é /?

. (R) = ,e o

where Zs is to be determined by the transformed boundary condition 4.

We now substitute equation 6 in equation 4 and obtain

ol — z o - @5‘/’)
/i»:*-ﬁ{ df c p(fz—-zwz 2745 (7)
A e

whe re

,éf,d
e :Z‘g;; :2- and ,é" ;—.a)z___aj;—
74 (/Ad: /.’!’) lald /ﬁ'
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Rewriting equation 6 with equation 7 we have the desired result.

_ —_ _ [@r)_f %/-’-7
Fe(R)=-for. g &7 , (8)
v R-CESLalt
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APPENDIX D

INVERSION OF RAYLEIGH LAYER AND PRODUCT LAYER MATRICES

1. Layer Matrix Inverse
The inverse will be obtained by a physical argument using the
elastic relations of azimuthal symmetry. This approach reduces the
algebra considerably compared to a straight forward matrix inversion,
The elastic relations for azimuthal symmetry are as follows.
The displacements in the positive z and r directions are w and gq

respectively, and the normal and tangential stress in planes perpendi-

cular to the z axis are defined by

_ ow
PZZ = N6 + 2p =— 55
(1)
P = (aq + )
rz
respectively where
0=294 ;0w , g
or z r

Now defining ﬁR(z), \;VR(Z), O'R(Z) and 'TR(z) by

U, (z)
q=-—= 7 (kr)

(z)
w = -1 —-—(13-—- Jo(kr)

(2)

P
z2z

H

U'R(Z) Jo(kr)

1]

P

o =T iTR(z)Jl(kr)

It has been shown previously that these quantities evaluated at the
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bounding surfaces z = zZ 2% 5 of the mth layer are related by the

vector equation

g (e gl
z
WR (Zm) WR (zm_l)
c _ c
- a-Rm (3)
oR (z_ ) o (z 1)
TR (Zm) 7'R(Zm-l)
where z_ - =z =d_.
m m-1 m

For the inverse of ar we now consider the m layer with a
m

new coordinate £ in the negative z direction with the r coordinate

unchanged. The new elastic relations with azimuthal symmetry are

given by
£=-2z
N
q=9
A
W= =W
4)

"_.3q 8\/;5 a_aq ow q _ (
O=3z *se "7 "er tes T 0
A A ow
ZZz)\e-'-aJ'_g ")\.9+2|J,a
A /\

- L oWy
Prz“ -5-5 '5—) 'H( ar) -Prz

~

Defiping ﬁR(z), \?/’R(Z),’ o-R(z) and ';‘\R(z) by equations 2 replacing

A

A oA A .
qs W, Pzz and PrZ by q, w, Pzz and Prz respectively, we have

as a new vector equation
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l ug (7 ) ag ()
c c
wgp (z ) wp (2 )
< =ap < (5)
m
°R (Zrn-l) °R (2 )
TR (z 1) ] TR (zm)

The m layer matrix being the same as in equation 3, since the layer
is elastically isotropic. In other words the expression for transforming
displacement and stress from one side of the layer to the other side

is the same as long as the displacement and stress are defined in the
same sense as the direction of the transformation.

From equation 4 we see that equation 5 can be rewritten as

. . - . ]
| ug (2, 4) R (Z)
< <
~wp (2 ) - wp (z_)
= ag (6)
R (Zpy.p) m R (2
- TR (z _1) - T (zm)
or
Gp (e ) y R (2
c "@&JHTT '(R)12 c +(R) )



O-R(Zm-l) =2
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R R m
_f:_ + ( 2R 2 C
+ (a. ‘ )
Rm) 24 m

3 ) Wg (zm)
Rm 32 ¢

which in turn can be rewritten as

and by definition

up (z_ )] [

—clz\ el '(aRm)u
W (z__

ol ),
op (2 1) (""-R;)ﬂ
LTR (Z 1)—; :(aRm)41

(7)
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ip (2 ) | [ ip (2 ) |
© ©
‘;"R (z -1 \;VR (z,,)
c - a;{l C (9)
R (zm-l) i °R (Zm)
TR (= -1) | I__‘TR (Zrn> _}

Therefore comparing equations 8 and 9, we have for the inverse of

2R
. m

(aﬁin ‘ jk= (_1)j+k(aRm>jk (10)

On inspecting the matrix elements we see that this result could have

been obtained by replacing dm by - dm in the aRm matrix,
In order to obtain a simple expression for the inverse of the

layer product matrix in the next section we now rewrite the inverse of

making use of relations between individual ap elene nts.

m . m

( >»=(aR)

21 m 42

--< >--<aRm>34 <a; <R>32

( °R ) (aRm)24
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m 23 m. 23 m 43 43 m
(a; >24= (aR )24_ (aR )13 : (a;rr) 44' (aR >44= (aR )11
(11)

2. Product Matrix Inverse

The product matrix is defined by the product

A (12)

and its inverse is the same in terms of the product matrix as the layer
matrix inverse given in equation 1l. In order to prove this we will use

induction,

First we assume that it is true for A; +« Then forming the

m-1
product AE{I = Aél ai‘{l and using equations 1l for the inverses
m m-1 "m
aZl  and A7} we obtain

Rm Rm -1

D)2 ) () () () i ) ()
(ARm 11 (ARm—l 11(aRm) n (ARm-l)lz aRm) a (ARm-1 13 (aRm 31
-1 -1
) (ARm- )14(aRm) 4]
_ -1 1) ) (s
(aRm) 44(ARm-1) i (aRm)43 (ARm—l’) 34 VR, 42(ARm-1>z4

-1
' (aRm> 4 (ARm—l) 14,

) (A Rzn) 44
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) len )RR ) LERD, e )R ),
lan ) (er )

SR N L O R D R CE R CR S
(), e ),

- - (g )

m 34

N L (a-l -1.-1)-1“-1)-1
(ARm)B (ARm—l)ll(aRm)13'+ (ARm-l 1z<aRm)z; (ARm—l 13 (aRm).as
o bR,
i (aRm)z4(ARm—1)44+ (aRm) 23 (ARm-1)34+ (aRm) zz(ARm-1>é4
i (aRm) Zl(ARm—l) 14

= (ARm) "

(g ) =(an ) G ) g ) Gx ), rar ) b)),
lon ) (R )

- -ar ) e ), Gr ) (an ) len ) (ar )
- Ge ) AR )

o (ARm) 14
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' -1 = -1 ' -1) -1 (—1‘ -1 (—-1‘
(ARm>21 S (aRm 11+ (ARm—l)ZZ aRm)mJr (Aan—l)23 aRm)?:l

m-1"21
‘ . (A;Sm_gM(a;m)ﬂ |
S N S C S NS R IO
-(er ), (Br_ )
)

LS 0 B G I G (ax_ ). (ar)
A I C
ok UL G IR G IO (S B D I C
+(er ), (ar_ )
= (ARm> 33

()

m 22

e I i I G- MR C I C i e G A C I
lag )R )
S I R L G A G NS DI C
(e ), (ar )

T (ARm) 23
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-1 (At -1 -1 (-1) -1 -1)
(ARm>z4 (ARm—l) 2,11(aRm) e (ARm-l) 22V Ry z4+ (ARm—l) 23 (aRm 34
' (Al-alm-l) 24(ai{1m) 44
- (4 ) | ). +ep ) (4x )
| (aRm) 24 AR 43+ (aRm)13(ARm—1 53 VR, AR 23

* (aRm)n (4R

: m-1)13
i (ARm) 13

-1>= -1 -1) (-1 )(-1) -1 )(—1)
(ARm 31 (ARm-l) 31(aRm n R R (ARm—l 33" Ry 31
R, L),
- (4z_ ) ), ( ), (4 )
(aRm)-’-]A R an (aRm 43 ARm-1>3.2+ (aRm 2" R 22
i (aRm> 41(ARm-1) 12

= (ARm) 4

(a3), - () ) rlea ) Gerd) +lan ) GR),
“lar),GR),,
--(or ) (ar_ ) - (er ) (A ) (e ) (4 )
(e ), (ar_ )
=~ (4 )
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Al L (acl ‘(-1») S (-1) 1 (-1)
(ARm>33 (ARm—1)31 aan 13+ (ARm—l)32 aRm 23+ (ARm—l)33 a‘Rnrl 33
-1y (-1 )
' (ARm-1)34(aRm 43
i (aRm)24(ARm~l)42+ (‘aRm)23 (ARm-1>3 2+ (aRm)ZZ(ARm—l)ZZ
! (aRm) Zl(ARm)IZ

= (ARm) -

(), -G ) ) i ) ), rlag ) G5,
+ax ) GR ),
S O I U D B S N G N G
(e ) (r_ )

T (ARm) 12

e I S N i I N G I TN
lar ) er ),
R D G IR CND I CS S I A I C
-(er ) ar_ ),

o (ARm-) 4;
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(a1 s (an) -1 -1 (1) (a2t 1)
(ARm>42 (ARm-l)&l(aRm)lZ-l- (Aan—l)ﬁlz a‘Rmn_ 22+ ARm-1)43 (aRm 32
-1 (a7 )
) (ARm-1>44 -
) (aRm>34(ARm-1>41+ (aRm)33(ARm-1)31+ (aRm)_%z(ARm-l) 21

! (aRm) 31(ARm-1) 11

il (ARm) 31

()= G ) G2+ G ) 6, s ) LR,
fler ), 6R)
R O N G I CND I A (r ) ()
(), (ar_ )
(o) v

m 21

(), e ) ) len )R ), ), Gr)
TR ) bR
SO N R e G B N S
+ (o ) (e )
- (ar )
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From the above we see that if the assumption is true for

- - -1 -
:ARI it is also true for ARl - Now Ap = aRl and by equation
m-1 ' m 1 1

11, the inverse matrix assumption is true for m = 1. Therefore,

by induction, the product matrix inversion is true for all m.
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APPENDIX E
RELATION BETWEEN (GN - HL) AND (RN-SL) WITH F =0
This appendix proves the important relation that

RN - SL  _ K )
GN - HL L

when
F=NK~-LM=0 (2)
The proof is as follows. Rewriting equations 1 and 2 we obtain
R_S
L N _ K
9’_ __I:I - f (3)
L N
and
K M
T @

From the following definitions

c_ J137 923 H 337943 R 147 T4

T —— s R°T—F— [ “F—T—

LoIp-In NoJg=dy 7 L Iyg- 9y

s _ 934774 k127722 g M _J327 9y
S T T T — T =77

N T ] NIy Jy

equations 3 and 4 can be written as

4 Uy~ 7)) - T127 T22 (5)
I

J J

(Jyg= T 00597 Tyg) - Ugym
(3= o305y T ) - Uggm Jy5d0gy- Joy)

and
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J127 922 327 T4
; (6)

11-.-.]' J J41

21 317

Then rearranging the L HS of equation 5 using equation 6 yields

(T340, U39 ) - U3gmIgUnTo) - T127 920 12" T2z o
T 39,30005,7045) = Ua3-T4300015-050)0 Iy = Jyn  In- I
Therefore if we can show that
(Tg™ T 00317 Tgq) = Ugym T)Uym T3
= (T3~ T30 T3pm Tgp) - Ug3- J43)(035- 050 (8)
or
(T33- T4l T55m Jyp) - (Tpygm 000597 Tgy)
= (3= T23005 T30 = Ugam T4g)lyy= J3)) ©)

we will have proved that equation 1 is true when equation 2 is satisfied.

By definition J = E.1 A where A= A and since (E_5)., =0
m m-~-1 m’ jk

for j +k = odd integer, we have

=J,, T - Jaade,- Jod 1 3,0

(J 339227 9339127 J439227 Y4312

3377430227915

1
= EjE; (A13 22) T B3 33 zz(A33 22)

31522 )t Es

31 24(A13 4

+elg’l

e lg R
33 24(A33 42) - E31Ey

(A13 12/~ Fa 13(A13 32)

(A (A (A

31 13 13 32) 33 11 33 12) 33 13 33 32)

-1
E E24(A

-1 ) -
23 22 42

’EE(A

42722 A

23 42) h 44 22( 43 22)
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-1

-t E4:2}’"‘11 (A,34,) + E4z 13(Az3 320 * E 2E(B A 12)
+ E44E13(A43 32) (10)
and
(Jpg = To00307 Tap) = J10T39- T4y - 24731 T 9247

-1p-1
—E11E31(A14 11) + E (A, A )+E

133 A 8s) T Epg 31(A App)

-1 -1

el
‘“‘“313‘“333(A Ag) - B EplA 4, - EQ E (A 4?47
elg
E13E42(A Ayl - Eyg 44(A Agl - zz 31(Az4 1
-1

EzzE?,z.(A Az - 24 EqlAeby) - 24 33(A Az
+elgta. A y+etela. A y+Ede?! (A, A,)

22E (Ao o) T ELE (A Ay) TEELAL A
+ g lgl (A, A,

LAV

where we have dropped the n subscript on E;l elements to simplify

the notation,

From the elements of 'E;l we have in addition the féllowing

relations
I S T |
EgyEy, = - Eyuly
- (12)
O S |
Eg®y = EgEy

Regrouping, making use of equations 12, we obtain
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(T53-T4300355-015) = (Ty4=T500T51-T )

1.-1 1..-1

= EL;E (A A, HA, AL T E;

31722V 13722 2471 33E22(A33A22”A13A42+A24A31'A44A11)
+ELYEYALA +A, A,) - ELE(A A +A AL
33 B a(Ag3A A 4 A5y) - By By (89381578148
el N A AL +AL A ) -ELENALA tA LA
m By By (A Ayt Ag Ay) - Egglyg 8538157 S1453
e leNa. A _+A, A,)-ESEZ(A A _+A A ) (13)
5313 (Ag3 gt A A sy) — BB 8y385,7 8o48 '
-E'lE"l(A A _+A A )-E”IE'I(A A__+A_ A )
42Bog Aoz By T AR - By BoolBy38 T 8040
el la A +a,A)+ELENA A A LA
4B B g Byt Ay hy) T E G B30T B148

+e5lg A LA, +A A1)+E”1E'1(A

445138438327 348%41) T FagF ~AL AL TA Ay A

438127 B0 A5 A A "B ))

Similarly for the RHS of equation 9, we have

(333-T53003457T35) = 130427 J137327 T237427 J23732
11 1-1 -1
= E11]E42(A13Azz) +EE 4(A134,,) t ERE 5 (A554,))
11 : 11 -1
tELE ,(A55A5)- ENES (A4 )- EjE 53(A)345))
-1 -1 -1 11
- ELRE(AL3AL) - ERE(Ag AL)) - BypE o (8,348,,)
' 1..~1 1..-1 1_.-1 ‘ (14)
- BB (A a8 0) - B E (AR ) - EpyEuy(By3hy))
-1 -1 -1 -1 -1..-1,
+ELE (A A ) FEE (A AL) + By By (A4,
-1
TE, Ey3(Ayz45,)

and
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34" J44)(J11- J, J..+J, J

(J Topd =T34 9997 T390 Taa It Tuad
1l 11 21 -1
= Eg By (Agfy) ¥ EjjEj (A4 A) + ESE (A, A),)
11 -1 11
T E 3 E3(AgAg)- EfJE (A, A) - EJE (A A,)
11 1-1 -
- Ej3E (A5 A5) - EgsE (A A) - E42E11]‘A24A11) (15)
11 a1 -1 -1
- EpE(Ay Ag) - B En(Aay) T ELE (A A)
-1 -1 A1l 11
FEHE A 80 TELE (A AL T ELE (A4
+elte A A
PV PACIVE I

Regrouping, again using equations 12, yields

(Jyg= To3dTyp= T3p) = Tayum T4 0030- T )
-ele AL A +A A )V+ELAEY (A LA, A, A A A_-A A )
3182 Ang At A ghog) T EE (A 3 A Ay s A mAg o A Ay
+e g la A +a A )-EXENA A _+A, A
33Eog B 3 gt Agyliy) - EgjE (A A A Ay
cEdE N AL A +A A ) -ELXENA LA, +A, A
31813 Ag3 8T Ay fg) - B B (A58, Ay
el laL A +a A e AL A A ALY
33813 Ag3 A5, A Ag) = BB A 38,51 Ay Ay
(16)
2l _glgta A +aay-BlelaA +A, A
42804 By B ot Boyhyg) - BB (A At Ayudg
-E‘lE'l(A A ‘+A A )+E’1E'1(A A+ A A)
4a4Fo4 (B3 By ot Ayybyy) TELE) (A)38,,% Ay 8y
+e e A A +A A NV+EIETL(AL A -A A +A A A A.)
44%13 11 Eaalf13847 4338048 A2t

337742 "7447 31
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From the inverse of A given in Appendix D, we see that

L -1 1 -1 -1
Apg Ayt Ay A= Ap Byt Ay A= ~Auhyym AysAgy

(17)
- - -1 =
-A1413\21+A23A12 since (AA )24}-0
ALA. +A A=A A A Al A atoa oAl
338421 Bugahs® A33h51T A58y 320217 P34ty
\ , (18)
) | . 1L
..A43A32+ A34A41 since (AA )31— 0
AA +A A.=-A A A ATl atlia a7t
138321 A348y 134327 A118127 A12f22T A1elan
(19)
— - —1 =
~A12A33+ A14A31 since (AA )12—0
A A +A, A=-A ALY A A oa o alia ATl
238421 Bysfn 428237 Aaaty3™ Atz T Aasfss
(20)
— 3 -1 =
= A43A22 + A41A24 since (AA )43 =0
In addition
A A +A A =A At a At A atloa afd
338227 Apgfgr™ Bpphpt Aouby, 238327 By,
(21)
) . L
—1+A23A32+ A21A34 since (AA )22-—1
A A A A=A aleaaloroa aloa al
139427 PaaP™ B398t A 129217 M4ty
(22)

=1t ApA ALY,

. 5 N
since (AA )11 =1
and thus

Agg BT Ao gfgym Bygfyom Auyhy™ Aoyt Ay Ag A A g-A By

(23)
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N’ow comparing equation 13, the LHS of equation 9, with equation

16, the RHS of eqliation 9, using equations 17, 18, 19, 20, and 23 we sece

that equation 9 is indeed true. Therefore we have proved that

——

GN - HL ~ L

when

F=NK -LM=0 (2)
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APPENDIX F

LIST OF SYMBOLS DEFINED IN TEXT

Symbol

Type Script

m m

a %

B g

w w

k )2

] c
kr Y YA
kr 8 /é%'ﬂ

d f

v 4

w w-

0 u

g a

R K

Definition

subscript indicating mth layer
constants

layer compressional velocity
layer shear velocity

angular frequency

horizontal wave number

= @/k : horizontal phase velocity

vertical compressional wave
number

vertical shear wave number
radial displacement
azimuthal displacement
vertical displacement
horizontal plane wave velocity
normal plane wave stress

spherical coordinate



Symbol
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Definition

sﬁbscript denoting quantities
associated with Rayleigh waves
subscript denoting quantities
associated with Love waves
force

couple

subscript denoting the layer
containing the source

cavity radius for explosive
source

Lamé's constant

Lamé's constant of elastic
rigidity

density |

= % : spherical compressional
wave number

= % . spherical shear wave

Vd
number

depth to bottom of layer m

Zm - Zyp-1- layer thickness



Symbol

N

{5y

j
[,
tas

A,
ORs
oLs
T
T
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Definition
superscript denoting Fourier
time transformed quantity
subscript denoting evaluation
at free surface
residue contribution for

t mode

Rayleigh waves, J
residue contribution for

Love waves, J % hode
homogeneous plane wave ratios,
J # mode

superscript denoting first
derivative with respect to time
source origin time

spectral amplitude

vertical. finite fault factor

for Rayleigh waves

vertical finite fault factor

for Love waves

tangential plane wave stress

= 27 . period

Vi



Symboi
r 7z
Z
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radial cylindrical coordinate

vertical cylindrical coordinate
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FIGURE CAPTIONS

Direction of axes, numbering of layers, and the
depth of interfaces and source.

Realization of vertical fault-plane.

Geometry of free surface.

Horizontal force geometry
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