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Abstract 

Many particles proposed by theories, such as GUT monopoles, nuclearites 

and 1/ 5 charge superstring particles, can be categorized as Slow-moving, Ionizing, 

Massive Particles (SIMPs). 

Detailed calculations of the signal-to-noise ratios in vanous acoustic and 

mechanical methods for detecting such SIMPs are presented. It is shown that the 

previous belief that such methods are intrinsically prohibited by the thermal noise 

is incorrect, and that ways to solve the thermal noise problem are already within 

the reach of today's technology. In fact, many running and finished gravitational 

wave detection ( GWD) experiments are already sensitive to certain SI11Ps. As 

an example, a published GWD result is used to obtain a flux limit for nuclearites. 

The result of a search using a scintillator array on Earth 's surface is reported. 

A flux limit of 4.7 x 10-12 cm- 2 sr- 1s- 1 (90% c.l.) is set for any SIMP with 

2.7 x 10- 4 < (3 < 5 x 10- 3 and ionization greater than 1/ 3 of minimum ionizing 

muons. Although thi::: limit is above the limits from underground experiments 

for typical supermassive particles (1016 GeV), it is a new limit in certain (3 and 

ionization regions for less massive ones ( '""'"' 109 Ge V) not able to penetrate deep 

underground, and implies a stringent limit on the fraction of the dark matter that 

can be composed of massive electrically and/ or magnetically charged particles. 

The prospect of the future SIMP search in the MACRO detector is discussed. 

The special problem of SIMP trigger is examined and a circuit proposed, which 

may solve most of the problems of the previous ones proposed or used by others 

and may even enable MACRO to detect certain SIMP species with (3 as low as 

the orbital velocity around the earth. 
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Chapter 1 
Introduction 
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Imagine a particle coming with a velocity as low as {3 ,..__, 10- 3 , leaving energy 

of 1GeV / em on its path, but so massive that it travels through a large detector 

with virtually constant velocity and can even penetrate the earth. No such 

particle can be found in the particle data table today, yet detecting them has 

recently grown into an active area in physics. Searching for such strange particles 

is not merely due to curiosity about finding new phenomena, it has become a 

subject of profound importance in particle physics, astrophysics and cosmology. 

In this chapter, I will try to outline some of the reasons for the general search 

for such Slow-moving, Ionizing, Massive Particles (SIMPs). 

1.1. D ark Matter Problem 

Observations and theoretical work have revealed that most of the matter in 

the universe is dark and that the density of the luminous matter is only a small 

fraction of the total mass density of the universe1
. The strongest evidence of 

the existence of dark matter is from the observation of the rotation velocities of 

spiral galaxies2
• The rotation velocities at the edge of these galaxies do not fall 

off as would be expected if the galaxies were made only of luminous matter. The 

rotation velocities , as well as the stability of spiral galaxies, can be explained 

by assuming that the visible galaxies are each imbedded in a large, roughly 
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spherical distribution of dark matter, or a galactic "halo." The halo density near 

the sun is certainly of the greatest interest so far as the experimental detection is 

concerned. Several authors have made detailed models of the mass distribution of 

our galaxy and have estimated the local halo density. A model made by Caldwell 

and Ostriker3 gives a local halo density of 0.006M0/ pc3 
"' 0.4GeV / cm3 , with 

other models giving estimates of the same order of magnitude4
. 

The galactic halo is not the only unseen matter in the universe. If one be­

lieves the inflationary scenario5 -
7

, the universe should be flat and has a mass den­

sity essentially exactly the critical density Pc "' 2 x 10- 29g / cm3 
"' lo-s Ge V / cm3

. 

However, if one adds up the total mass of the galaxies, including the dark halos 

(which can be measured by their gravitational effects), one can only make up 

20% of the critical density8 - 9 • Therefore, 80% of the mass in the universe is 

still missing. Such intergalactic dark matter is usually assumed to be uniformly 

distributed throughout the universe. 

Dark matter may simply be ordinary matter being dark, such as stars with 

the size of Jupiter , white dwarfs or even black holes that do not emit or scatter 

much light. This possibility, however, is very unlikely because of a more profound 

reason. The big bang cosmology has been very successful in calculating the ratios 

ofthe primordial abundance of light elements10 , such as D, 3 He and 7 Li. However, 

the calculation is correct only when the present ratio of the nucleon number to 

the photon number lies in the range from 3 x 10- 10 to 10- 9 . Since the photon 

number density is well known from the 2 .7° K background radiation, an allowed 



-3-

range of the nucleon mass density can be obtained. It turns out , even if every 

possible error is stretched to its limit , the nucleon mass density still cannot be 

more than 20% of the critical density Pc · 

Since the dark matter is very unlikely to be ordinary matter, various exotic 

particles have been proposed as candidates of the dark matter at different scales 

and the list is still growing. To explain the absence of their detection, such 

particles must either be very weakly interacting or have very low number density, 

or both. If dark matter particles are very weakly interacting, direct experimental 

detection is very difficult . It is interesting to note that the ultracold bolometric 

detectors may make those invisible particles visible11 - 12 , but such detectors are 

only at the stage of prototypes and proposals. On the other hand, if dark matter 

particles are not very weakly interacting, for instance, if they carry an electric 

charge or a magnetic charge, or for any other reason have large enough dE / dx 

when passing through matter, their detection becomes much easier. In this case, 

their number density must be very low, and to make up the required mass density, 

they must be supermassive. Unless galactic field acceleration plays an important 

role, supermassive particles are naturally expected to have the virial velocity of 

our galaxy (/3 "'"' 10- 3
) if they are of galactic origin, and a velocity slightly higher 

than the escape velocity (/3 "'"' 3 x 10- 3 ) if they come from outside our galaxy. 

To detect charged dark matter particles or to rule them out is the first reason 

that SIMPs should be sought for . 
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1 .2. Magnetic Monopoles 

The history of the conjecture that magnetic monopoles may exist in nature 

has probably existed as long as the history of physics. The serious monopole 

theories, however, only began in 1931 when Dirac showed that the existence of 

magnetic monopoles was consistent with Maxwell equations and could provide 

the reason for charge quantization13
•
14

. 

More recently, 't Hooft and Polyakov15
- 16 showed that magnetic monopoles 

were simply unavoidable in most of the non-Abelian gauge theories. Since then, 

interest in experimental search for such poles has markedly increased. Monopoles 

associated with non-Abelian gauge theories are predicted to have a mass of order 

of the unification mass scale divided by the coupling constant. Although most 

formulations of Grand Unified Theories (GUTs) predict a monopole mass of 

approximately 1016 GeV, there are models that have monopoles with mass ranging 

in value from as low17 as 105 CeV up to the Planck mass (1019 GeV). 

Like any other supermassive particles, if galactic field acceleration is not 

important, GUT monopoles should have f3 '"" 10-3 if they are confined to our 

galaxy and f3 '"'"' 3 x 10- 3 if they come from outside our galaxy. For monopoles 

of mass 1016 GeV, the velocity gained by galactic magnetic field acceleration is 

the same order of magnitude as the virial velocity, while monopoles lighter than 

1010 GeV may have been accelerated to near the speed of light. However, in 

some models involving certain symmetries or plasma oscillations , the galactic 

field acceleration does not necessarily happen18
. 
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The expected monopole flux is subject to vanous cosmological and astro­

physical constraints. The most stringent astrophysical constraint is set by Turner 

and Parker19
•
20 based on the survival of the galactic magnetic field. lf the ob­

served galactic magnetic field is produced by the dynamo action, as usually ex­

pected, then the flux of magnetic monopoles cannot exceed 10- 15 cm- 2 s- 1 sr- 1 . 

This limit is usually referred to as "Parker bound." To detect such a small 

monopole flux, one needs a detector of more than 103 m 2 in the area. 

Since GUT monopoles are supermassive, they are very unlikely to stop in 

the Earth's crust and the Moon's surface; therefore, previous searches in iron 

ores or moon rocks etc. 21
•
22 are irrelevant. It is also impossible to generate GUT 

monopoles in particle accelerators; the only place to find them seems to be in 

cosmic rays. The superconducting loop techniques, first used by Cabrera23
, can 

provide a clear and unique signature fur cosmic ray magnetic monopoles , but 

there are limited possibilities for expanding to very large areas24 . On the other 

hand, since slow GUT monopoles have quite large dE / dx in matter, they can be 

seen in detectors based on the ionization and excitation mechanism. Although 

such detectors do not provide a unique signature for monopoles, they can be 

easily expanded into very large areas24
. 

Looking for GUT magnetic monopoles Is another reason that large area 

searches for SIMPs are necessary. 

1 .3. N uclearit es 

It has been suggested recently25
-

27 that certain quark matter, called "nu-
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clearites," which contain proper numbers of up, down and strange quarks may 

be absolutely stable and might be the true ground state of QCD at finite baryon 

numbers (instead of the usual nuclei). If nuclearites do exist, they may solve 

the dark matter problem in the frame·work of QCD, which, unlike the theories of 

many other candidates, is a theory well tested in experiments. 

Within the allowed range of QCD parameters (the strange quark mass excess 

m, the coupling constant o:,, and B, the "bag constant") , the baryon number 

and mass of a nuclearite can be any value from that of a usual nucleus to that 

Nuclearites are electrically charged but have extraordinarily low charge-to­

mass ratio. A nuclearite with a baryon number of order of 1000 may carry a 

positive charge of, say, 53 and acts like a superheavy iodine nucleus, while a 

nuclearite with a baryon number of 1010 may carry a charge of 1000 to 10000. 

Positively charged nuclearites are expected to be surrounded by electrons and 

appear neutral. For a small nuclearite , the surrounding electrons are not much 

different from that of an ordinary atom of the same charge, while a very large 

nuclearite can have an electron "atmosphere" continually distributed into the 

nuclear body, like that of a neutron star. 

While very light nuclearites can stop and thus be found in rocks, and very 

large ones can be detected by earthquakes, the most interesting region (from 

10-14g to a few milligrams) can be sought for in cosmic rays as slow-moving, 
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ionizing, massive particles. This is the third reason that SIMPs should be sought 

for. 

1.4. Other Particles? 

In addition to those mentioned above, there may be many other kinds of 

SIMPs that are possible in various theories. For instance, the superstring theo-

ries may contain superheavy particles of fractional charge (1 / 5 electron charge, 

say )29
. I will not attempt to make a full list of all the SIMPs that are possible 

in various current and future theories, because such list can never be complete. 

In the pursuing unification, modern particle theories have been seeking new 

symmetries at much higher energy scales than what is accessible by any con­

ceivable accelerators. Most of the Grand Unification Theories have unification 

scales at 1015 GeV. Theories t rying to unify with gravity have energy scales at 

the Plank mass (1019 GeV). Since accelerators are hopeless, one hopes that sys-

tematically searching for SIMPs in cosmic rays, with large area detectors, may 

provide a way to explore such high energy scales directly. A positive discovery 

of anything at such high energy is undoubtedly of great impor tance, but even a 

negative result with a flux limit is a very useful piece of information. ln fact, the 

absence of GUT monopoles has already played a crucial role in showing that the 

standard GUT is not compatible with the standard cosmology and has provided 

an important reason for the inflationary scenario . 
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1.5. Stopping Power of Slow Particles 

The most important question about the experimental detection of SIMPs 

IS their dE or "stopping power" in various materials. Because of the lack of 
dx 

experimental data and the complexity of theoretical treatment, stopping power 

at very low f3 is still not fully understood. There are various models giving wide 

range of results. To get some estimates, I will use the models that seem most 

convincing to me. 

Stopping power is usually calculated as the sum of electronic stopping power 

and nuclear stopping power. 

dE 
dx 

{1.5.1) 

Based on the Thomas-Fermi picture, J. Lindhard and M. Scharff have found 

an expression of electronic stopping power for electrically charged particles at 

very low velocity30 - 31 : 

(1.5.2) 

where z 1 is the charge of the traveling particle, z2 is the atomic number of the 

stopping material, N is the number of atoms in unit volume, a 0 is the Bohr 

radius of a hydrogen atom and a is the fine structure constant. 

An expression for nuclear stopping power of electrically charged particles 

was also derived by J. Lindhard and M. Scharff based on the Thomas-Fermi 



-9-

model, but the ((average" model of W. D. Wilson et al. seems to fit experimental 

data better32 . According to this ((average" model, 

(1 .5.3) 

where Jv/ 1 and ]11[2 are the masses of the projectile and the t arget atom respec-

is a universal function approximately parameterized as 

and 

0.5ln(1 + ~:) 
Sn(t:) = € + 0.14120€0.42059. 

For SIMPs, .!1!1 ~ .!112, t herefore, 

where c is the speed of light. 

(1.5.4) 

(1 .5.5) 

(1.5.6) 

For slow GUT monopoles , S. P . Ahlen and K. Kinoshita have derived both 

electronic and nuclear stopping powers and the sum is the following33 : 

where Zrn is the magnetic charge of the GUT m onopole in uni ts of e/a (for 

Dirac monopole Zrn = 1/ 2), me is ihe mass of electron , Ne is t he number of 

electrons per unit volume in the stopping medium, cf3F = (!i./ me)(37r2 Ne) 113 is 

their Fermi velocity, and Zrnin is a cutoff parameter. For nonconductors, 1/ Zmin = 
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2kfao, where k1 = mecf3F / n, and Ne and fJF should be calculated by the total 

number of electrons in the medium. For conductors, the contribution of the 

nonconducting electrons can be calculated in the same way as for nonconductors, 

and the contribution of the conducting electrons should be calculated separately 

using 1/ Zrnin ~ lOOk 1a1T rn / T, where a1 is the lattice constant , T rn is the melting 

temperature of the metal and T is the actual temperature. 

Low Z nuclearites are not much different from usual electrically charged 

particles, and their stopping power is given by Equations {1.5.2) and (1.5.5). For 

a nuclearite of very large Z, the electron atmosphere is so dense that it effectively 

becomes an impenetrable hard ball and can displace all matter in its pat h. In 

this case, the stopping power of a nuclearite with velocity v is given by27 

2 2 - = 1r-r pv , 
dx 

dE 
(1.5.8) 

where pis the density of the medium and r is the effective radius of the nuclearite, 

including the surrounding electrons. For nuclearites lighter than 1.5g, r is roughly 

the radius of an atom("" 10-8 cm) and for larger ones r'"" (311I j 41Tpn) 1 13 , where 

Pn"" 3.6 X 1014g/cm3 is the density of the nuclear matter. 

Figure 1.5.1 shows the stopping power of several species of SIMPs calculated 

by the above formulas . Note that conductors have much larger stopping power 

than insulators for magnetic monopoles. This is due to the interaction of the long-

range magnetic field with the conducting electrons. Such long-range interaction 

does not happen for electrically charged particles, because the electric field is 

shielded by the abundant electric charges existing in the medium. As shown in 
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Fig. 1.5.1 - Stopping power versus fJ of various SIMPs. (a) nuclearites 
lighter than 1.5g in Si; (b) Z = 6 particles in Si; (c) unit charge particles in Si; 
(d) t charge particles in Si; (e) monopoles in Al; (f) monopoles in Si. 

Figure 1.5.1, the stopping power of various SIMPs in different materials differs 

by several orders of magnitude. However, for the convenience of later discussions, 

I will take 1 Ge V / em as a "typical value" of the stopping power of a SIMP and 

whenever possible, the explicit dependence on dE j dx will be given. 
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Chapter 2 
Acoustic and Mechanical Detection Methods 

In order to detect SIMPs effectively and to address the related cosmological 

and astrophysical questions, very large area searches are needed. To make areas 

large, reducing the cost of the detector materials becomes important. Ordinary 

materials such as aluminum, etc. have large stopping power for SIMPs and 

are much cheaper than ordinary scintillators. B. Barish first noticed this and 

pointed out the possibility that such materials may be used for SIMP detection 

so that large areas can be covered with low cost 1 . v\Thether or not this goal can 

be realized is a rather practical question and can be answered only when the 

detection techniques are well understood and developed. Before this, some more 

immediate questions are: How can we detect the ionization energy deposited 

in a material that does not scintillate and is mostly opaque? What are the 

major factors that limit the sensitivity of such detection techniques? Are these 

limits merely due to some technical problems that can be solved by improving 

technology or are they inherently unavoidable? In this chapter, I attempt to 

answer these questions. 

2.1. Acoustic Detection in Infinite Medium 

I will first consider the method of detecting acoustic waves produced by 

a SIMP in infinite medium. Here, "infinite" means that the dimension of the 
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detector is much larger than the acoustic wave length and the attenuation length. 

The detection in the deep ocean (for instance in DUMAND2
) is a good example 

of this case. The first Caltech prototype1 does not really belong to this case, 

but the result can still be applied to obtain an approximate evaluation, since the 

attenuation length of the acoustic signal is not much larger than the size of the 

detector. 

Acoustic radiation produced by traveling particles and showers in infinite 

fluid has been studied theoretically by J. Learned3 and experimentally by L. R. 

Sulak4 et al. In addition, C. Akerlo:£5 has also made an estimation of acoustic 

signal produced by a GUT monopole in an infinite conductor. ln order to simplify 

their calculations, the heat conductivity of the medium has been ignored and it 

has been assumed that the particle is infinitely fast and the track is infinitely thin, 

so that the acoustic source can be treated as a line source occurring instantly. 

In the following, I will present another treatment explicitly containing the 

heat conductivity of the medium, the finite velocity of the particle and the finite 

size of the heat source it produces. Such an approach allows one to see explicitly 

how large these effects are and to estimate the errors. In case these effects are 

not negligible, they can be easily calculated. 

The calculation is based on a simple picture: when the particle goes through 

the medium, the ionization energy loss turns into heat, raising up the tempera­

ture of the material near the track; then the thermal expansion of the material 

produces the acoustic signal. Such a "thermal expansion model" is supported 
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by the experiment4 of L. R. Sulak et al. It was observed in their experiment 

that the acoustic signals in various liquids were proportional to the thermal ex-

pansion coefficient divided by the specific heat. Interesting enough, when the 

temperature of the tested water was reduced below 4°C, the thermal expansion 

coefficient became negative, and the signal was observed with reversed polarity. 

For simplicity, I will ignore the difference between the isothermal elastic 

constants and the adiabatic ones and also the difference between the the specific 

heat under constant pressure and the specific heat with constant volume. The 

calculation starts with an isotropic solid, and the liquid case can be obtained by 

letting the Poisson's ratio be 1/ 2. 

First, write down the equations for the heat conduction and the elasticity. 

8T(x, t) KH 2 1 
8t = C "V T(x, t) + CQ(x, t) 

p p 
(2.1.1) 

and 

(2.1.2) 

where T(x, t) is the temperature distribution, Q(x, t) is the heat source produced 

by the traveling particle, KH is t he heat conductivity, Cp is the specific heat, p 

is the density, Ui is the ith component of the displacement vector u , and Si j 's 

are the components of the stress tensor s. 

In the usual theory of elasticity, the relationship between the stress Sij and 

1 8u· 8u · 
the strain eij = -( -

8 
• + -

8 
1

) for uniform isotropic material is given by 
2 Xj X i 

(2.1.3) 
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where (} = en + en + e33 = \1 · u, and K and J.L are elastic constants related to 

the Young's modules Y and the Poisson 's ratio u by 

y 
K = --:-----=-

3(1 - 2u) 
and 

y 
J.L=---

2{1 + u) 
(2.1.4) 

When there is a temperature rise T , there will be thermal expansion a.T in every 

direction, where a is the linear thermal expansion coefficient. If now the stress 

is kept unchanged, the strain will be increased by a.Tbij . Since this additional 

amount of strain is not due to the applied stress, it should be subtracted from 

the total strain when calculating the stress. Thus, replacing eij by eij - a.Toij 

in Equation (2.1.3) and also adding the friction stress, one gets the following 

modified strain-stress relation. 

where ry and ( are the bulk and shear viscosity constants. 

Substituting (2 .1.5) into Equation (2.1.2), one gets 

82 u J.1- 2 ( 8u 2 8u 
p-

8 2 
= (K+-)\1(\l· u )+J.L\1 u +(ry + -)\1\1·(-

8 
)+ (\! -

8 
- 3a.K\!T. (2.1.6) 

t 3 3 t t 

Taking divergence of the above equation gives the following equation for the 

longitudinal waves: 

Taking Fourier transforms of Equations (2.1.1) and (2.1.7) with respect to 

time and eliminating T(x, w) from them, one obtains 

(2 .1.8) 
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where 

2 
b2 = w p 

K + tJL- iw(ry +tO 
3o:K 

v = -[ (_K_+___,..t_JL_) -- iw_(_TT_+---:-t (-)-] K-H- . 

(2.1.9) 

Equation (2.1.8) is a fourth order partial differential equation. Following 

the same route of proving the "Green's Function" method for usual second order 

equations, one can prove that if the "Green's Function" G(x, x') satisfying 

(2.1.10) 

is found , then the solution of Equation (2.1.8) is given by 

O(x ,w) = - v J Q(x',w)G(x,x' )d3 x' . (2.1.11) 

The solution of Equation (2.1.10) is easily found by the usual Fourier trans-

form method, resulting in 

- 1 a2 eia. jx- x' l _ b2 eibjx- x' l 

G(x,x' )= 4rr(a2- b2 ) lx-x' l (2.1.12) 

Since a has a large imaginary part, the term containing eia. jx-x' l in the above 

equation can be ignored if the acoustic wave is detected at a reasonable distance 

from the source. For example, at 10MHZ and for lx - x'l "' 1m, eia. lx- x' l is only 

order of e-800000 . Equation (2.1.11) thus becomes 

- vb2 J J . , eib jx- x' l 
O(x,w) = 4rr(a2- b2 ) . elwt Q(x,t') lx - x' l dt'd3 x '. (2.1.13) 

dE 
For a particle traveling along z-axis with velocity Vm and energy loss dz , the 

heat source can writ ten as 

(2.1.14) 
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where r' = )x'2 + y'2 and J(r,z) is the clistribution of the ionization energy 

around the traveling particle normalized as J f( r, z )d3 x = 1. 

Substituting Equation (2.1.14) into (2.1.13) and properly changing the vari-

ables in the integral, one gets 

( ) - vb
2 

dE J ( 1 , , ")/( , ") 3 , " 0 x,w = 41r(a2 _ b2 ) dz . F x,y,z,x ,y ,z ,z r ,z d x dz , (2.1.15) 

where 

eiw(z' -z")fV,.+iblx-x' l 

F( , , , ") x,y, z,x ,y ,z ,z = I I x - x' 
(2 .1.16) 

F can be expanded around x' = y' = z" = 0, giving 

,aF I ,aF I "aF I 
F = F lo + X ax' 0 + y ay' 0 + z az" 0 + ...... ' (2.1.17) 

where F l0 = F jz'=y'=z"=O etc. Equation (2.1.15) can now be written as 

- vb
2 

dE aF I aF I aF I 
O(x,w) = 47r(a2 - b2) dz (qFio + dz ax' o + dy ay' o +dz az" o + ...... ). 

(2.1.18) 

where 

q = j f(r,z)d3 x = 1 (2.1.19) 

is the "monopole" of the heat source distribution and 

(2.1.20) 

are the "eli pole" components. According to the symmetry off ( r, z), dz and dy are 

equal to zero. dz also becomes zero when the origin of J( r, z) is chosen properly. 

The reason that all the clipole components vanish is due to the fact that Q(x, t) 
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contains only sources and does not contain any "sinks." When quadrapoles and 

higher poles are ignored, one has 

-vb
2 

dE J 1 

O(x,w) = 47r(a2 - b2) dz F lo dz . (2.1.21) 

The integral in the above equation is easily carried out to be 

(2.1.22) 

where Hl is the Hankel function of the second kind. 

For longitudinal waves, the pressure Pn on a surface parallel to the wave 

front is given by 

A 4 4 ae 
P = - n · s · n = -(I< + -J.L)O- (77 + -()-. 

n 3 3 fJt 
(2.1.22) 

where n is a unit vector perpendicular to the wave front. This gives 

a.p dE (1 + <7) weiwz/ VmH~(r.Jb2 - w 2 j V;,J 
Pn(x,w) = 4Cp--;[; 1- <7 (1- b2 j a2 )[1- iw(71 +~()/(I<+ ~J.L) ] · (2

.1.
23

) 

One can now make estimations of the effects of the heat conductivity, the 

finite velocity of the particle and the futite size of the heat source. 

The importance of the heat conduction is characterized by the dimensionless 

number: 

(2.1.24) 

where V, = j(K + tJ.L) / pis the velocity of the sound. For aluminum at 10MHZ, 

this number is only 1.5 X 10- 4 . 
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The effect of the finite velocity of the particle is given by the dimensionless 

number: 

(2.1.25) 

For f3 ,....., 10- 3 this number is ,....., 5 x 10-4 • 

As for the effect of the finite size of the heat source, there are reasons1
•
6 

to believe that the size of the heat source cannot be much larger than 10- 5 em. 

Therefore, ignoring the quadrapoles and higher terms causes only an error of 

order (r/ >.)2 
,....., 2 x 10- 8

, where f is the size of the heat source and >. is the 

wavelength. 

Letting Vrn -+ oo, KH -+ 0, and ignoring the attenuation effects, Equation 

(2 .1.23) reduces to 

P (x w) = ap dE (1 + cr) 2 ~). 
n ' 4Cp dz 1 - CT wHo ( v6 (2.1.26) 

Letting cr -+ ~, the above equation becomes exactly twice the Equation ( 44) 

in Ref. 3 (note there is a factor of p difference in the defmition of the specific 

heat). This is correct, since Equation (44) of Ref. 3 is for a line source from 

z = 0 to z = oo, while our case is a line source from z :::: - oo to z = + oo, the 

signal in our case should be twice as large as in the Ref. 3 case. This verifies that 

Equation (2 .1.26) can be reduced to the correct form for liquid. 

Taking the absolute value of Equation (2.1.26) and using the asymptotic 

expansion of the Hankel function at large distances, one gets 

IPn(x,w )I :::::: ap dE ( 1 + CT) {2:;Y;. 
4Cp dz 1 - cr V --;;- (2.1.27) 
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Taking the frequency w and the effective band width /:j.w as L of Ref. 5, the 

signal size IPn(x,w) l/:j.w agrees with its equation (39). 

In order to calculate the signal-to-noise ratio , one has to determine the noise 

spectrum. At this moment , I consider only the thermal acoustic noise from the 

infinite medium seen by the transducer and ignore the noise from the transducer 

itself and from the electronics. The thermal acoustic noise seen by a spherical 

transducer imbedded in an infinite medium has been calculated by Akerlof. 

This has been done by assigning kT energy to each spherical harmonic normal 

mode in a large sphere and summing up their contributions to the pressure 

on the transducer. This may seem surpriseing, because the thermal noise has 

been calculated without putting any energy dissipation into the formalism! We 

know from the general fluctuation-dissipation theorem 7 that the thermal noise 

is always associated with energy dissipation, and a lossless system should be in 

principle noiseless. However, Akerlof's calculation is valid for infinite medium, 

in which the energy can be assumed to be dissipated at infinity. This , in fact, 

is completely analogous to the first derivation of the Nyquist law8 , where the 

voltage fluctuations due to the kT thermal energy of each normal mode of an 

infinitely long lossless cable, are summed up to calculate the fl. uct uation at a 

resistor of equivalent impedance. The second law of thermodynamics guarantees 

that the fluctuation at the end of an infinite lossless cable with impedance R is 

exactly equivalent to that of a resistor R . 
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Bearing this analogy in mined, finding the thermal acoustic noise on a fiat 

transducer becomes extremely easy. A flat transducer attached to the surface 

of an infinite medium is analogous to a voltmeter connected to the end of an 

infinite cable. Therefore, the force fluctuation felt by the transducer is simply 

determined by the mechanical impedance of the surface it contacts. The mechan-

ical impedance of a surface is defined as the following. 

If a surface has such a property that when acted by a force Fit acquires a 

velocity v proportional to the force, namely, 

F 
V = -, 

Zm 
(2.1.28) 

then the surface is said to have mechanical impedance Zm. · Equation (2.1.28) is 

analogous to 

v 
I=-

R 
(2.1.29) 

of an electric circuit. Such analogy can be used to discuss the energy dissipation 

and the noise because the power transfer in both cases is given by the analogous 

forms 

H' = VI and H' = Fv. (2.1.30) 

The mechanical impedance of a surface depends on its shape and is generally 

a function of frequency. However, for a Rat surface whose size is much larger than 

the wavelength, the mechanical impedance is independent of the frequency and 

is simply given by 

Zm. = ApV.,, (2.1.31) 
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where A is the area of the surface in contact with the transducer. By the analogy 

with an electric circuit, the rms of the force fluctuation at the transducer is 

J4kTZmlif and the power spectral density is9 

<I>(w) = 2kTZm = 2kTApV&. (2 .1.32) 

Equation (2 .1.27) is not valid for very large w, not only because the attenua-

tion is not negligible at high frequencies but also because the multipole expansion 

(2.1.18) is no longer valid when the acoustic wave length is comparable to the 

size of the heat source. Since the detection of very high frequency acoustic waves 

is not practical anyway, I assume that the transducer and electronics can handle 

signals only up to a cutoff frequency We (27r x lOMHZ say), and the effective signal 

spectrum is given by Equation (2.1.27) up to We and equal to 0 for lwl > we. 

The maximum signal-to-noise ratio that can be achieved by using an optimal 

filter is given by9 

s 
N joo IS(w) l2 dw 

_ 00 <I>(w) 21r' 
(2.1.33) 

where S( w) is the Fourier transform of the signal and <I>( w) is the noise spectrum; 

in the case here, <I>(w) is given by Equation (2 .1.32). This gives 

(2.1.34) 

where fe = wc/27r. 

One may notice that the above equation agrees with equation ( 45) of Ref. 5 

only when A ........ .X2
, where .X is the acoustic wave length. This is expected , because 

the size of a spherical transducer must be roughly equal to half a wavelength for 
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efficient acoustic detection, while a fiat transducer can have a much larger area 

as long as its thickness is about half of the wave length. 

For an aluminum medium at room temperature, with A = lcm2
, r = lOOcm 

and fc = lOMHZ, one gets 

S 5 ( dE / dx )
2 

- ,.._, 9 X 10 -
N lGeV / em 

(2.1.35) 

According to the noise level observed on the Caltech prototype, the actual S / N 

may be more than one order of magnitude lower than this ideal value10
. 

According to Equation (2.1.35) and the dE/ dx calculated in Chapter 1, it 

is obvious that the acoustic detection of most SIMPs in an infinite medium is 

simply hopeless, except for some highly ionizing nuclearites. 

2.2. Is the Thermal Noise Limit "Intrinsic"? 

Except for highly ionizing nuclearites , the expected acoustic signal from most 

of the SIMPs is much smaller than the thermal noise in infinite medium, and there 

is not much room left for improvements. Reducing temperature does not help 

much because even at 3oK, the S / N is still 9 x 10-3 for dE/ dx ,.._, 1 Ge V / em. 

One may increase the area A to enhance the signal-to-noise ratio, but this comes 

with a penalty, that the angular response of the transducer becomes so narrow 

(order of >.. jD where Dis the diameter of the transducer) that the solid angle 

acceptance for particle detection is severely limited. It is interesting to note that 

even if A is taken as the total vertical surface area of a cylinder lm long and 

lm in radius around the particle track, the S / N is still only an order of unity. 
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This agrees with the argument of Akerlof11 , that even if one can collect a large 

portion of the total acoustic energy, the maximum possible signal-to-noise ratio 

is only an order of unity. However , it should be kept in mind that the above 

discussions, as well as the calculations in Ref. 5, are only valid for the method 

of detection in infinite medium; it may not be applied to other cases, especially 

the case of an almost lossless finite detector. 

Akerlof has gone too far to generalize the above limit11
. He regards it as 

"intrinsic," meaning that no technical improvements are possible to give enough 

signal-to-noise ratio. It is "categorically infeasibe" at room temperature, even "a 

slightly greater hope" at low temperature has to be given up and "future work 

in this area seems pointless." All these conclusions were drawn for magnetic 

monopoles, but since the only property used in the discussion was its dE/ dx , the 

conclusions should apply to any SIMP with dE/ dx '"'"' 1 GeV / em. 

To prove something to be so "intrinsic," one should make some general 

statements without any assumption of the special properties of certain cases. 

Akerlof's argument certainly looks like this. His major point can be summarized 

as the following. The total acoustic energy Ea below 10MHZ produced by a 

particle of dE/ dx '"'"' 1GeV is the same order of magnitude of kT, and Ea / tkT 

is the maximum signal-to-noise ratio one can possibly get by using a matched 

filter . A practical device can extract only a very small portion of the total acoustic 

energy Ea (in order to extract a good portion of Ea, 20002 = 4 X 106 transducers 

are needed); thus, acoustic detection of particles is practically impossible. This 
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seemingly strong argument contains a major flaw: that is, the simple relation 

SIN '"" E I kT is valid only for very special cases and is not at all universal and 

"intrinsic." In fact, Akerlof has already noticed an exception to this criterion; 

that is , in a high Q device, signal-to-noise ratio can be increased by a factor of 

Q since "signal can be coherently added over many cycles." However, he finally 

gave up the hope for such devices by saying that an effective temperature of a 

few microdegrees has to be reached to detect the acoustic signal. It will be shown 

in the next section that Akerlof's estimate of the capability of such devices is 

too pessimistic , but in this section, l will concentrate on the seemingly universal 

criterion: 

S E 
(2.2.1) _,..._._ 

N kT 

Whether or not energy below kT is detectable has been argued at the very 

early stage of the development of gravitational wave antennae and the answer 

is definitely positive12 . In fact, energy below kT is not only measured in grav-

itational wave antennae but is detected every minute in life. The fact that an 

amplifier can have a noise temperature lower than its physical temperature clearly 

means that energy below kT is detectable. A SQUID (Superconducting Quan-

tum Interference Device) having a noise temperature of 10-6 °K when operating 

at 4°K is a device capable of measuring energy of l0 - 6 kT. A theory that the 

threshold of hearing is quantum limit instead of the much higher thermal noise 

limit13 implies that if energy below kT were not detectable , human hearing would 

be impossible. 



-27-

In most of the above cases, instead of Equation (2.2.1) , the optimal signal 

to noise ratio is given by 

s 
N 

(2.2.2) 

where r* is the "relaxation time" of the system, the time scale the system ap-

proaches equilibrium once disturbed, and Tis the "signal acting time," the time 

during which the signal energy E is deposited and other changes necessary for 

signal detection are induced. 

Equation (2.2.2) tells us that a signal with energy much smaller than kT 

can be detectable if the relaxation time of the system is much larger than the 

signal acting time. Although the sensitivity of a high Q device can be explained as 

r•w 
"signal coherently added over many cycles," the fundamental reason is Q = -

2
-. 

The important role of the relaxation time r* of the system can be easily un-

derstood by the following discussion . Suppose a system of one degree of freedom 

is in equilibrium with a heat bath at temperature T and has a random motion 

energy of order of kT. Because of the friction or damping, the energy of the 

motion is dissipated into the heat bath with a characteristic time r* and the 

heat bath is putting it back randomly with the same characteristic time. This 

is what "equilibrium" means. The motion of the system thus randomly changes 

with a characteristic amplitude corresponding to kT energy in a characteristic 

time scaler* . Since the change in the amplitude of the motion is a random walk, 

the expected energy change of the system in a short timeT « r* is only kTr / r *. 

Therefore, when a signal deposits energy 6E considerably larger than kTr / r* 
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T * ---- ---1> 

time 

Fig. 2.2.1 - The energy fluctuation in a short timeT ~ T"' is much smaller 
than kT. 

in time T, this energy change is totally unexpected and can be recognized as a 

signal (see Fig. 2.2.1). It is not the absolute value of the thermal motion but its 

unpredictable changes that produce unavoidable noise. For many systems, the re-

laxation time is a measure of the energy dissipation. In principle, the only truly 

unavoidable noise is the generalized Nyquist noise associated with the energy 

dissipation 7 . Reducing energy dissipation, one reduces noise. A lossless system 

is noiseless. Equation (2.2.1) may be useful in many cases with T > T"' , but when 

T* 
applied to the case of T ~ T"', it is wrong by a factor of - . 

T 

When energy dissipation is minimized, it is no longer correct to say that 

a practical device can extract only a very small portion of the total energy. 

Suppose the whole detector block is made almost lossless up to 10MHZ except at 
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one single transducer. The transducer has a reasonable bandwidth up to 1011IHZ 

and can convert the acoustic energy into electric energy. Since the detector block 

is lossless , all the acoustic energy below 10MHZ, after bouncing around several 

times, will wind up being absorbed only at the transducer. In this way, a large 

portion of the total acoustic energy below 10MHZ can be collected by using only 

one transducer. 20002 = 4 x 106 transducers are not necessary. This idea has 

been vaguely expressed as the ((focusing technique" in Ref. 10. It is now more 

clearly and correctly stated here. 

As clearly shown above, "lossless" is the key word to reduce noise and en­

hance signal. Making a system lossless is a technical problem rather than a matter 

of principle; thus, no limit based on energy dissipation can be called ((intrinsic." 

If the energy dissipation of the detector can be reduced without limit, then, in 

the regime of classical physics , the noise can be reduced without limit. In quan­

tum mechanics, however, R. P. Giffard has shown that an ultimate limit imposed 

by the uncertainty principle cannot be avoided by any linear detector14
. If one 

is not restricted to linear detectors, then various quantum nondemolition m eth­

ods are possible to surpass the linear detector limit. A ((back-action-evading" 

method has been proposed by C. Caves, K. Thorne R . Drever, et al. which, in 

principle, can make arbitrarily quick and accurate measurements of weak clas­

sical forces 15 . So far as the principle is concerned, there is no ultimate limit 

that applies, regardless of the measuring technique. Various limits exist only for 

certain measuring techniques. 
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2.3. Finite Detectors 

Since there is no general "intrinsic" limit for measuring small forces , tech-

nical improvements to achieve enough signal-to-noise ratio for acoustic particle 

detection are always possible in principle . 

It has been shown in the last section that the formidable noise in the infinite 

medium stems from the fact that the energy dissipation at infinity cannot be 

avoided; therefore, one obvious technical improvement is to make the detector 

finite and minimize energy dissipation. Acoustic particle detection going from 

the infinite ocean (DUMAND) to the finite Caltech prototype1 is obviously on 

the right track, although its energy dissipation is not low enough, and geometry 

not ideal for achieving high sensitivity. 

Resonant bar gravitational wave detectors having extremely low energy dis-

sipation and simple geometry are ideal examples of finite detectors. The interac-

tion of such a bar with a traversing particle has been studied by A.M. Allega and 

N. Cabibbo16
. For the convenience of discussing energy dissipation and noise, I 

present a somewhat different approach here. 

For a finite detector, Equation (2.1.6) can be formally solved by decomposing 

it into normal modes: 

u (2.3.1) 
n 

The normal modes satisfy the equation: 

(2.3.2) 
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and are normalized as 

(2.3.3) 

where V is the volume of the detector. 

With Equations (2.3.1), (2.3.2) and (2.3.3), the equation of motion (2.1.6) 

becomes: 

Jvf En + Afw~Bn + L Hnkih = Fn(t), (2.3.4) 
k 

where lllf = p V is the total mass of the detector, 

(2.3.5) 

and 

(2.3.6) 

It is easy to show that H nk = H kn. H nk 's characterize the energy dissipation 

and the interactions between normal modes. For a complete treatment, Equation 

(2.3 .6) should include terms that result from other sources of dissipation, such 

as damping at the surface and the friction caused by the supporting structure, 

etc. 

Since the thickness of the particle track is much smaller than the wave length 

of most of the normal modes, and since the particle crossing time is much shorter 

than their periods, Equation (2.3.5) can be written as a line integral along the 

particle track and the time dependence can be regarded as a step function. Thus, 

(2.3.7) 
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where O(t) is the step function( = 1 fort ~ 0 and = 0 fort < 0) and 

(2 .3.8) 

Equation (2.3.4) shows that the motion of the finite detector is equivalent to 

a series of mechanical oscillators; each is driven by a force Fn ( t) and is coupled to 

other modes through H nk · If one considers only the normal modes decomposing 

as a mathematical way to solve Equation (2 .1.6), the masses of the oscillators 

can be chosen arbitrarily. However, when the noise and the energy dissipation 

are under consideration, the mass of each oscillator must be chosen properly so 

that its energy is exactly equal to the energy associated with the corresponding 

normal mode. The choice }.f = p V is correct since the kinetic energy of nth 

normal mode is given by 

(2.3.9) 

Because of the Hnk coupling, finding the exact solution of Equation (2.3.4) 

is extremely difficult. However, if one is only interested in those very weakly 

damped normal modes, H nk can be ignored to obtain a solution that is valid for 

a time much shorter than the damping time. This gives 

Bn(t) = B~(t) + O(t) ~F~ 
2 
(1- COSWni) , 

1~fwn 
(2.3.10) 

where B~(t) is the solution without the signal (due to fluctuations). 
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When one considers the noise, II nk can no longer be ignored, because they 

are the very source of the thermal noise. Taking Fourier transformation of Equa-

tion (2 .3.4) one gets 

L[M(w~- w2 )onk - iwHnk]Bk(w) = Fn(w). (2.3.11) 
k 

If the non-diagonal elements (interaction between normal modes) of the 

matrix [M(w;- w2 )onk- iwHnk] are treated as small perturbations, the above 

expression can be reversed as 

B,.(w) = L ank(w)Fk(w), (2.3.12) 
k 

where 

(2.3.13) 

IS the "generalized susceptibility." According to the generalized fluctuation-

dissipation theorem, the fluctuation spectrum is given by17 

(2.3.14) 

For k i= n, the above equation gives the correlation between the fluctuations 

of different normal modes and may be useful for the consideration of making 

coincidence of two or more normal modes to enhance the noise rejection. For 

k = n, Equation (2.3.14) gives the noise spectrum of nth normal mode: 

0 2 wHnn hw 2kTHnn 
(( Bn) ) w = hcoth- ::::::: ----::----::---::-:--:-----:--

M2(w~- w 2
)

2 + w 2 H~n 2kT N£2(w~ - w 2 )2 + w 2 Hnn · 

(2.3.15) 
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The above discussions apply to any finite detector with small energy dis-

sipation. To be specific, I will consider a resonant bar of length L and radius 

R. The exact solution of normal modes for such a bar has been found18
, but 

unfortunately it cannot be put into finite analytical form. However, if R <t: L, 

good analytical approximations exist. For axial symmetric modes, l take19 

r r . n1rz 3 un(r,z) = An<Tn7rLsm(y) + O((R/L)) 

z <T n1rr 2 n1rz 4 un(r,z) = An[1 - 2( L) ]cos( L) + O((R/ L) ) 
(2.3.16) 

This gives , for the leading order, 

,0 , E . [n1r(z1 + z2) ] F = - An-sin _ __:__ __ ...:.... 
n L 2L ' 

(2.3.17) 

where ,\ = ..f21raYjCP is a dimensionless number of order of 1, E is the total 

• 
energy deposited in the bar by the particle, z 1 is the z-coordinate of the particle 

entry point and z2 is its exit point. 

One way to detect the signal is to measure the sudden change in the oscilla-

tion amplitude of a certain normal mode. For a particle going through the center 

of an aluminum bar at right angle, the amplitude change of the first normal mode 

IS 

-F~ _17 (10cm) ( dE/ dx ) 
Bsig = ll!w~ = 4.5 X 10 em ~ 1GeV / em . (2.3.18) 

This signal is very small indeed compared with the rms of the thermal motion 

amplitude: 
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However, since the signal is detected by monitoring the change of the oscilla-

tion amplitude, the true noise of the measurement is not the absolute amplitude 

of the thermal motion but its unpredictable changes during the signal acting time. 

The mean-square change of the thermal motion in a time T is 

The autocorrelation function ( B~(t + r)B~(t) ) is the inverse Fourier transform 

of the noise spectral density given by Equation (2.3.15) and the result is, when 

certain non-critical small numbers are ignored: 

(2 .3.21) 

where r:; = 
2
lvf is the relaxation time of nth normal mode. 

Hn 

A convenient way to measure the amplitude change is to compare the am-

plitude at one time with the amplitude one or more cycles earlier. In such a case, 

T is the multiple of the oscillation period and 

(2.3.22) 

forT ~ rr. The signal-to-noise ratio is then given by 

§_ "' s;ig rf 
N ( (B~)2 ) 2r. 

(2.3.23) 

B?;g Esig 
It can be much larger than ( (B~)2 ) "' kT if rF is sufficiently larger than r. 

The above calculations have shown explicitly how energy below kT can be 

detected. The autocorrelation function of the noise has played a central role here. 
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Because of the strong correlation between the noise amplitudes at one time and 

a short time earlier, one can fairly accurately predict its behavior in a short time 

interval. Although predicting the oscillation amplitude without any knowledge 

of the system generally has uncertainty corresponding to kT energy, knowing 

the amplitude at one moment and predicting it a short time later can be done 

much more accurately. When the signal is detected by comparing the measured 

amplitude with the one predicted according to the autocorrelation function of 

the thermal motion, the true noise of the detection is not the actual value to be 

predicted but the uncertainty of this prediction, which can be many orders of 

magnitude smaller. 

27r 
To get some actual numbers, I chose r = - and obtain 

W] 

§_ "'1.7 x 10_7 Q
1 

(300°K) (lm) ( dE j dx )
2

, 

N T L lGeV/ cm 

rfwi 
where Q 1 = -

2
- is the quality factor of the first normal mode. 

(2.3 .24) 

It is not very hard to have enough signal-to-noise ratio at low temperature. 

For example, at T = 4°K, it requires only Q1 > 105 , while Q 1 ,....... 106 is easy to 

achieve20
. At room temperature, it requires Q1 > 107 . This may be difficult for 

a aluminum bar, but for a single crystal bar, Q1 ......... 108 has been achieved21
. 

Equation (2 .3.24) shows a great improvement on the signal-to-noise ratio 

over the case of infinite medium. Note that in both cases, the noise of the devices 

used to pick up the signal has been ignored. In reality, the noise of such sensing 

devices can be very serious. It has been observed on the Caltech prototype that 

the preamplifier was the major noise source. 
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In order to evaluate the effect of the noise of the sensing devices, I assume 

that they have an effective displacement noise proportional to the square root of 

1 
the bandwidth, and the bandwidth is roughly !:.1w "' -, in order to measure the 

T 

amplitude changes in a time T . Thus, the total noise is 

(2.3 .25) 

where D 2 is the mean-square noise per HZ of the sensing device. 

It is obvious, when 

T = (2.3.26) 

the noise gets its minimum: 

(2.3.27) 

This gives 

_§___ "' _ 3 (1m) 1 ( lOcm) ( 300°K) t (9__!_) 1 ( 1Q-
15

cm/ .JHZ) 
N 4.5 x 10 L R T lOB D 

( 
dE j dx ) 

2 

x lGeV / em 
(2.3.28) 

At room temperature, even with Q 1 ,...., 108 of a single crystal and D ,...., 

10- 15 cm of an active cavity laser sensor22
, it is still three orders of magnitude 

away from detecting SIMPs with ~~ ,....., lGeV / em. However, there is nothing 

"intrinsic" and "categorical" here. It has been pointed out in Ref. 22 that the 

sensitivity of the active cavity laser sensor can be improved by three orders of 

magnitude if better materials and mirrors are used. If this can be achieved, then 

a marginal signal-to-noise ratio may be obtained at room temperature. 
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At low temperature, achieving enough signal-to-noise ratio should not be 

very hard. To see how well today's gravitational wave detectors are doing in 

practice, one may evaluate the signal in terms of the "temperature rise" of the 

normal modes. For a gravitational wave detector of "' 5000kg (L = 3m), the 

"temperature rise" in the first normal mode caused by a SIMP is 

tiT=lvlwfB2. = 5.3xlo- soK( dE / dx )2 
2k 51

g lGeV / em 
(2.3.29) 

There is no major difficulty in obtaining an effective noise temperature of 

lm°K in today's gravitational wave detectors of,...., 5000kg, and this is not too far 

away for detecting dE / dx ""' lGeV / em particles. It can be seen from Equation 

(2.3.28) that the sIN is inversely proportional to m. Noting that Q-factors 

can be increased considerably in a small bar and cooling it off is much easier, a 

sizable signal to noise ratio should not be hard to achieve in a small bar of, say 

"' 5kg. In the above, only the information of the first normal mode has been 

used. Using the information contained in other normal modes may enhance the 

signal-to-noise ratio considerably. Therefore, in contrast. t.o the previous belief 

that acoustic detection of SIMPs are "intrinsically" prohibited by the thermal 

noise, the techniques for today's gravitational wave detectors are already able to 

make a detector sensitive to dE/ dx ,...., lGeV / em, although the goal of low cost 

can not be realized yet. 

For the nuclearites of (J = 10-3 , Equation (2.3.29) gives tiT ""' 13°1<. Detect-

ing such a signal is very easy in low temperature gravitational wave detectors 

and can even be done at room temperature. It seems worthwhile to search for 
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nuclearites in the existing data of the gravitational wave detectors. In the pub-

lished result of the Stanford gravitational wave search23
, 40 events above 0.25°K 

were rejected as gravitational waves because the second normal mode was also 

excited. This, however, happens to be a signature of nuclearites, so the 40 events 

may be the candidates of nuclearites. If these events can be rejected as nude-

arites by looking at the phase and amplitude correlations between the first and 

second normal modes, then a flux limit of F < 2 x 10- 12cm- 2 s- 1 sr- 1 (90% c.l.) 

can be set for {3 > 3. 7 x 10- 4 (corresponding to the 0.25°1< cut). Even if the 

40 events are not rejected, one still gets a limit ofF < 4.4 x 10-11 cm- 2 s- 1 sr - 1 

which is only slightly higher than the limit of a scintillator search24 performed 

three years later. 

2.4. Measuring the Thermal Expansion of the Bar 

It can be seen from Equation (2.3.10) that a crossing SIMP not only changes 

the oscillation amplitude of each oscillator, but also produces a sudden shift 
11
::

2 
n 

in its equilibrium position. The origin of this equilibrium position shift is easy to 

understand. When the particle track is suddenly heated, it produces stress in the 

bar and suddenly changes its equilibrium length. Just because the actual length 

of the bar cannot follow this change so quickly, osci llation is induced. Although 

the new equilibrium length cannot actually be reached until the oscillation ceases, 

it can be easily and quickly detected by taking the average over several periods 

of the normal mode oscillations. 
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A displacement of the oscillator Bn corresponds to a stretch Bn [u~(L) -

u~(O) ] of the bar. Adding up the contributions of all the normal modes and 

reducing the infinite sum to finite form by the Fourier series of certain functions , 

one obtains the net stretch of the equilibrium length of the bar immediately after 

the particle goes through: 

~ F~ [ z ( ) z ( ) ] o:EL 
l::.L = L.__; lvfw2 un L - un 0 = VC 

n = I n P 

(2.4.1) 

This is exactly equal to the thermal expansiOn of the bar after energy E .is 

uniformly deposited. One now reaches a conclusion that the change in the the 

equilibrium length of the bar due to the thermal expansion of the heated particle 

track is exactly the same as if the heat is uniformly distributed in the whole 

volume of the bar (Fig. 2.4.1). One may worry that this conclusion may be 

approximate because of the use of the approximate expressions of the normal 

modes, but the following theorem ensures that the conclusion is exactly correct. 

The theorem states that when a certain amount of heat energy is deposited 

into a free bar with a uniform cross section, the change in its average equilibrium 

length depends only on the total heat energy deposited and is independent of its 

distribution inside the bar. The following is the proof of the theorem. 

The change in the average length of the bar is 

1 J 1 J 3 l = A dxdy [uz(x,y , L) - Uz(x,y ,O)] = A ezzd x , (2.4.2) 

OUz 
where A is the area of the cross section and ezz = oz . Taking the integral of 

Equation (2.1.5) and noting that J Sijd3 x = 0 for a free bar in equilibrium, one 
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h cxEL (1j 
,..0 VCP 

Q) 

j_r ~ 
+-> 
4-1 
0 

1 ~ 
+-> 
QO The particle 
~ hits the bar (t = O) Q) 

.---1 

time 

Fig. 2.4.1 - The change in the equilibrium length of the bar produced by 

a crossing particle is '{,rlf::L. It is exactly equal to the thermal expansion of the 
p 

bar, assuming the energy E is uniformly distributed in the whole volume. 

gets 

J 3 J 3 aE ezzd X = a T(x)d X = Cp · (2.4.3) 

Equations (2.4.2) and (2.4.3) give exactly the same l as Equation (2.4.1) without 

any assumption about the distribution of T(x). 

According to the theorem, the thermal expansion of the bar, when inter-

preted as the change in its average equilibrium length , is only a function of the 

total energy deposited and is independent of its distribution inside the bar. Since 

the ionization energy is deposited promptly, the thermal expansion is a very quick 

process. It rises up almost like a step function as soon as the particle goes through 

and stays the same as long as the heat energy is still inside the bar. By taking 
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the average of the actual length of the bar over several cycles of the normal mode 

oscillations, the change of such average equilibrium length can be detected. The 

signal acting time of the thermal expansion is thus only a few times the funda-

mental period and is much shorter than the time for the heat to disperse into 

the whole volume of the bar. 

The above theorem is also useful for noise considerations. It ensures that the 

fluctuation of the average length of the bar depends only on the fluctuation of 

the to tal thermal energy inside the bar, while the energy redistri bu ti on bet ween 

different parts of the bar is irrelevant. The fluctuation of the total energy is25 

(2.4 .4) 

• 
this gives the random thermal expansion: 

(l~ ) (;~J (E~ ) (2.4.5) 

For an aluminum bar, 

~ _ _ 4 (lm) (300°K) 2 

( dE j dx )
2 

( l~ ) - 1.
1 x 10 

L T 1GeV / em 
(2.4.6) 

Although the ratio of the signal amplitude to the noise amplitude is very 

small, the S / N can be much larger than this ratio if the relaxation time of the 

system is much larger than the signal acting time. The relaxation time here 

is actually the time for the bar to cool down, once it is heated. Indeed, it 

can be made extremely long, from several hours to several days (think about a 

thermos). In a reasonable vacuum, the energy exchange between the bar and the 
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environment is mainly through blackbody radiation. In this case, the relaxation 

time is given by 

vc p {2.4.7) 

where <Tb is Stephen-Boltzman constant and Sis the total surface area of the bar . 

For the example of an L = lm, R = lOcm aluminum bar at room temperature, 

this gives Th = 1.8 x 104 sec if it is a blackbody. A polished metal surface can 

have reflectivity of 99% at the wave length of the black body radiation at room 

temperature. Thus, 7}1 ,....., 1.8 X 106sec = 500hours can be achieved. 

For quantitative discussions, one may write down the differential equation 

for the total energy of the bar: 

dEn Eft - +- = Jft(t), 
dt 7}, 

(2.4.8) 

where Jft(t) is the power flow into the bar due to fluctuation. According to 

Equation {2.4.8), the power spectral density of Eft is given by9 

(2.4.9) 

where (JJ)w is the power spectral density of Jft. Since Jft(t) is mainly due to 

the uncorrelated bombardments of thermal photons and gas molecules, it should 

have a "white" spectrum and (JJ )w is basically a constant. The autocorrelation 

function of Eft is then found by the inverse Fourier transformation of Equation 

(2.4.9), resulting in 

(2.4.10) 
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This gives 

(2.4.11) 

Similar to the case of measming the change of the normal mode oscillations, 

if the change in the equilibrium length oft he bar in a short time T is measured, 

the noise is a factor of 'Th smaller than the random thermal expansion given by 
2T 

Equation (2.4.5). 

\1\Then the noise of the sensing device is added, the total noise is similar to 

Equation (2.3.25): 

(2.4.12) 

For optimal T, 

(2.4.13) 

This gives the signal-to-noise ratio: 

§_ ~ . (1m)t (10cm) ( Th )t (300°K) (10-15 cm/v'HZ) 
N O 93 

L R 106 sec T D 

( 
dE j dx )

2 

x 1GeV / em 
(2.4.14) 

Comparing the above equation with Equation (2 .3.28) and noting that Th ~ 

106 sec is quite easy to achieve while Q1 ,...., 108 is very hard, it seems, at least 

in theory, measuring thermal expansion may be much easier than measuring the 

change in the amplitude of normal mode oscillations. 

In the above discussions, it has been assumed that, m the measurement 

of the thermal expansion, the influence of the normal mode oscillations can be 
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eliminated by taking an average over several cycles. This assumption, however, 

is correct only when the normal mode oscillations are reasonably regular. If there 

are enough irregularities in the normal m ode oscillations, t his assumption may 

become invalid. In other words, if the normal modes do not have enough Q, their 

noise spectrum may be a wide distribution instead of narrow peaks and may have 

a considerable amount of low frequency components which cannot be averaged 

out. To determine the importance of this effect, I will consider the first normal 

mode as an example. 

The noise spectrum of the first normal mode is 

2kTIT1 (2.4.15) 
I AI(w~- w2 ) + iHw j2 · 

Taking the average over several cycles implies w ~ w 1 . In this low frequency 

region, the spectrum is rather flat and it is as though the noise of the sensing 

device D 2 is increased by an amount: 

(2.4.16) 

This contribution is not important unless Q1 is order of unity. The contribution 

of any higher normal mode is down by a factor of n 3 and is less important. 

Since high Q is not necessary here, the choice of the materials becomes 

much wider. Plastics usually have a thermal expansion coefficient one order of 

magnitude higher than aluminum and may be a good choice. ~~ in pure plastic 

is less than in metal, but it may be possible to make certain plastic loaded with 

dE 
heavy metals so that dx is comparable or even higher than that in aluminum. 
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When high Q is not needed, the task for the sensmg devices becomes much 

easter. In gravitational wave detectors, the electric fielJ in the capacitance meter 

is limited to 104 V / em because of the low breakdown voltage of the air gap. Air 

or vacuum gap is necessary to retain high Q. 'iVhen high Q is not required, one 

may put good insulating oil between the plates of the capacitance meter, then 

the electric field in the capacitance meter can probably be increased to 106 V /em. 

Using a FET preamplifier26 developed for gravitational wave detectors, which 

has a noise of en"' 0.4nV/ VHZ, one may achieveD ""' 4 x 10-16 cm/VHZ. In 

order to avoid the 1/ f noise region, it is necessary to modulate the quasi-static 

distance changes with high frequency before it is amplified. A high frequency 

driven capacitance meter will do the job. It may be possible to connect the four 

capacitance meters of two identical bars into a bridge (Fig. 2.4.2), so that the 

noise and drifts of the high frequency driver can be canceled; the effect of the 

motion of each bar relative to the supporting structures without net expansion 

can be compensated while a particle going through one bar but not the other 

can be detected. 

With all the above improvements possible, particle detection by measuring 

the thermal expansion of the bar seems very promising. However, because of the 

difficulties of working at relatively low frequency, it may not be easy to achieve 

enough sensitivity in practice. ·whether or not the technical problems can be 

solved at low cost is certainly worth experimental investigation. 
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pre­
amp. 

Fig. 2.4.2 - The four capacitance meters of two identical bars can be 
connected into a bridge. 

From Equations (2.4.5), (2.4.7) and (2.4.13) and noting that a. / Cp is ap-

proximately independent of the temperature (Griineisen's Law27
), the benefit of 

reducing temperature is easily seen. The noise is proportional to T~ D. Since 

D can also be reduced greatly at low temperature, it may be possible that this 

technique, when employed at low temperature, will be able to detect not only 

SIMPs but also usual relativistic particles. 

2.5. Measuring the Stopping Force Directly 

dE 
The stopping power dx , in fact , is the 3lopping force. It is the force the 

travelling particle feels. According to Newton's third law, the stopping mate-

rial feels a force of the same size in the opposite direction, the direction of the 
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M 

partic le 
t rack 

Fig. 2.5.1 - Mechanical oscillator for measuring stopping force produced 
by a SIMP. 

particle's motion. To determine if this force can be detected, let us consider a 

mechanical oscillator of mass !vi, resonant frequency w 0 and damping constant 

H (Fig. 2.5.1) . The equation of motion is 

Afx + H x + Afw~x = F(t) (2.5.1) 

Since the particle's crossing time is very short, F(t) can be treated as a 8-function 

dE 
and can be written as : F( t) = 10 8( t), where 10 = dx r and r is the particle's 

crossing time. Since r is inversely proportional the particle's velocity, this tech-

nique has advantages for very low (J particles. According to the discussions of 

Section 1.5, ~~ of monopoles in the most interesting (J region is virtually pro-

portional to its velocity; therefore, the momentum transfer 10 is independent 

of (J. For nucleari tes, Io is proportional to (J although the stopping power is 
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proportional to {32. For electrically charged SIMPs, ! 0 at low {3 can be tremen-

dously enhanced and almost goes as {3 - 1 because of the contribution of the nearly 

constant nuclear stopping power. 

For such a simple harmonic oscillator, a matched or nearly matched fi lter is 

not particularly difficult to build; thus , one can calculate the optimal signal-to-

noise ratio by equation (2.1.33) . In this case, 

S(w)= Io 
1VI(w5 - w 2 ) + iHw 

and 
2kTH 2 

~(w)= M2(w~-w2)2 + 1J2w2 + D ' 

(2.5.2) 

where D 2 is the mean-square noise per HZ of the device for monitoring small 

displacements. Using Equation (2.1.33) , one obtains 

(2.5.3) 

Carrying out this integral and ignoring some noncritical small numbers, one gets 

5 I~ ( T • ) 
3

/
4 

N = sVJJM kT liJ ' 
(2 .5.4) 

where T* = 2M/ H is the relaxation time of the oscillator. 

To make the relaxation time as long as possible, using torsion pendulums 

may be a good idea. In an experiment using a torsion pendulum of a few grams 

for testing the equivalence principle of general relativity, T" ........, 3 x 109 sec may 

have been achieved, although the actual measurement has set a lower limit of 

only T * > 6 x 107 sec, because the damping was too small to be measured in a 

reasonable length of time28
• If the damping is dominated by the residual gas in 
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Fig. 2.5.2 - A torsion pendulum for measuring the stopping force. 

the vacuum chamber, T• should be proportional to the ratio of the mass to the 

surface area. Thus, a torsion pendulum made of bvo (10cm) 3 aluminum cubes 

(see Fig. 2.5.2) may have a relaxation time ofT* ......, 1010sec. For such a torsion 

pendulum and a particle going through one of the two masses, one gets 

§_ =s.s(lo-15cm/VHZ)t( T* )t(300°K)1(1o-3) 2
( dE / dx )

2 

N D 1010 sec T fJ lGeV/ cm 

(2.5.5) 

In the above calculation, F(t) is assumed to be a 5-function. For extremely 

slow particles, the crossing time may be quite long and this assumption becomes 

invalid. It is then important to determine how a finite crossing time affects 

the above results. A finite crossing time T would modify the numerator of the 

2 WT 
integrand in Equation (2.5.3) by a factor of(- sin -)2

. 
WT 2 

Such modification 

does not change the value of the integral drastically if WT ;S 1 in the major 

contributing frequency region . It is seen from Equation (2.5 .3) that the major 
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contributing frequency region is 

(
2kTH)

1
/

4 

lw I ~ Wcut = D 2 }.;[ 2 
(2.5.6) 

Outside this regwn, the integrand dies away as w - 4 . The finite crossmg time 

thus has li tle effect on the above result if r ;::; 1 I Wc ut , or 

< x _9 (10-15
cml v'HZ) ~ ( T ) t (lotosec) t 

{3'"" 3 lO D 300°K r* 
(2 .5.7) 

As long as this condition holds, the S I N for monopoles and electrically 

charged particles at low {3 is the same or even larger than that at higher {3 . There 

seem to be no other techniques that have any hope to detect SIMPs of such hw 

{3 except for the superconducting ring,29 which is sensitive only to monopoles. 

Like the method of measuring thermal expansion, since the method of de-

tecting stopping force works at low frequency, many practical problems may 

arise. Whether or not those problems can be solved can be answered only by 

experimental investigation. 

The methods discussed in this chapter are only a few examples of the options 

for detecting small forces associated with a traveling particle. Except for the 

acoustic detection in the infinite medium, none of the methods is "intrisically" 

limited by the thermal noise, and their feasibility is only a question of the state-

of-art of present technology. 

Particle detection by measuring small forces is a very interesting area that 

is just beginning to be made possible by modern technology. Future work is 

certainly not "pointless." 
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Chapter 3 

A Scintillator Search at Earth's Surface 

Although the acoustic or mechanical detection of SIMPs is possible in prin­

ciple and not far away from practice, the cheapest way to cover a large area is 

still the conventional ionization-scintillation techniques. In this chapter, I report 

the result of a search using a scintillator detector at Caltech. 

3.1. Scintillation at Low (3 

Since SIMPs have large dE I dx, it may seem obvious that they can be de­

tected by scintillators. However, this is not so obviou3 because a large stopping 

power does not always mean a high light yield. In order to produce light, elec­

trons near the particle track have to be excited to higher energy levels and this 

can happen only when the electromagnetic field driving the electrons contains 

high enough frequency components. Since the frequency of the electromagnetic 

field near a travelling particle is proportional to its velocity, it is quite possible 

that a very slow particle may not be able to produce an electromagnetic field 

of high enough frequency to excite scintillation light, a lthough it may have very 

large dE I dx due to low velocity collisions. 

In order to determine whether or not scintillators can be used to detect slow 

particles, several theoretical and experimental studies have been carried out, and 

the results are very encouraging. A conservative calculation of the scintillation 
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yield of magnetic monopoles in organic scintillator has been done by Ahlen and 

Tarle1
, which shows that for {3 2: 7 x 10-4 , the scintillation yield of a magnetic 

monopole is larger than a minimal ionizing muon. Although the calculation 

shows an abrupt cutoff below {3 ,....., 6 x 10-4 , it is speculated that there might 

still be a considerable amount of scintillation in this low {3 region due to other 

effects such as Zeeman splitting and energy level crossing, etc.2
•3 . An experiment 

at Brookhaven National Lab4 has measured considerable scintillation light yields 

for protons with a velocity as slow as {3 = 9 x 10-4 . A more recent measurement5 

down to {3 = 2.5 x 10- 4 has indicated that the light yield of most SIMPs stays 

well above minimal ionization for the whole measured {3 range. There is no doubt 

that scintillator detectors are sensitive to nuclearites; let alone the scintillation 

mechanism, even the black body radiation of the heated track can produce enough 

light6
• According to all these encouraging studies, it is clear that scintillation 

techniques are an effective way of SIMP detection. 

3.2. The Caltech Scintillator Detector 

The basic scheme employed in the Caltech experiment is a multilayer detec­

tor. In such a detector, the velocity of a traversing particle is measured by the 

iuterlayer timing, and a SIMP is recognized by its ability to penetrate the detec­

tor with constant low velocity (10 - 3 c). None of the known particles with such low 

velocity can penetrate several layers and keep its speed, while {3 ,....., 1 cosmic rays 

are easily identified as signals occurring in all the layers almost simultaneously. 
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Fig. 3.2.1 - Comparison of signals produced by a {3 ""' 1 muon and a SIMP. 

For a very slow SIMP, because of its extremely long crossing time, the signal in 

each layer becomes a train of single photoelectron pulses. (Figure 3.2.1). 

The Caltech detector consisted of 6 planes of 1 inch thick NE 114 scintillator, 

measuring 5 by 10 feet . Each plane was made up of two pieces of scintillator, 

each having two 56 DVP photomultiplier tubes (PMTs) attached to the BBQ 

wave length shifter bars running along the sides, which were used to collect the 

light from the scintillator. The two PMTs on the same piece of scintillator were 

summed, yielding a signal for a minimum ionizing muon ranging from 12 to 16 

photoelectrons , depeuding on the position. The spacing between the first and 

the second planes was 9 em, with the other spacings all 20 em (See Figure 3.2.2). 

From these dimensions , the geometrical acceptance can be determined from 

the following formula derived by me, assuming the expected isotropic flux and 

requiring the particles to go through all six planes in one direction (down going), 
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Fig. 3.2.2 - Geometry of the Caltech scintillator detector. 
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(3.2.1) 

a and b are the length and the width of the detector and c is the separation 

between the first and last planes. The formula yields a geometrical acceptance 

of 6.7 m2sr for the Caltech detector. Equation (3.2.1) seems to be a useful 

formula, considering that most similar experiments have relied on Monte Carlo 

and numerical integration to find their acceptance. 
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Fig. 3.2.3 - Overall electronics of the Caltech scintillator detector. 

The overall electronics in this search is shown in Figure 3.2.3. The signal 

from each PMT was sent to a discriminator set. at a threshold of 0.6 p.e. The 

output of the discriminator was sent to the trigger logic and the data acquisition 

system, which recorded the time of each pulse with a time resolution of 7ns. This 

timing information allowed the identificatjon of long pulse trains characteristic 

of a SIMP. In addition, some pulse height information could be obtained by 

counting the number of pulses in the train. 
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The threshold setting of 0.6 photoelectrons resulted in some inefficiency be­

cause of the rather broatl single photoelectron distributions of the PMTs. In 

order to determine this "single photoelectron discrimination efficiency," I mea­

sured the single photoelectron pulse height spectrum and determined that,..._, 75% 

of the single photoelectrons yielded pulses above the 0.6 photoelectron threshold . 

At this level, the probability of missing a SIMP entirely in a given plane is very 

small since it produces a train of many single or multiple photoelectron pulses . 

For instance, a typical SIMP of (3 ,..._, 6 x 10- 4 is expected to produce a pulse train 

of at least 12 photoelectrons per plane ( ~ minimal ionizing) spread over ,..._, 140 

ns . The statistical probability of missing this signal is less than ,..._, 10-4
. 

The trigger logic contained four separate triggers, which were ORed to gen­

erate the event trigger. The four triggers included a SIMP candidate trigger and 

three other triggers used for diagnostic studies (Fig. 3.2.4 ). 

The four triggers are the following: 

1) Muon Trigger: This trigger was a 3 out of 4 fast coincidence of the four 

center planes. The raw trigger rate was 1.27KHz. However, in actual data 

recording these triggers were prescaled to 0.0127Hz, resulting in a total sample 

of about 105 events. The prescaling was to prevent this trigger from creating too 

much dead time for data acquisition. The muon events were used to calibrate 

electronics, monitor efficiencies, etc. 

2) Stopping Muon Trigger: This trigger was a fast coincidence between the 

top three planes and a small 25cm x 50cm scintillator detector placed in the 
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Fig. 3.2.4 - Trigger electronics of the Caltech scintillator detector. The 
SIMP trigger is a delayed coincidence of the six planes produced by a series of 
Delayed Gates (D.G.s). The delay 0 was set at 70 ns and the gate width r at 
2.4 f.LS, resulting in a trigger {3 range from 5 X 10- 3 to 2.7 x 10-4 . 

center of the array, vetoed by any in-time signal from the lower t hree planes. 4 

inches of wood were placed between the small scintillator and the fourth plane 

as a low-Z muon target. Stopping muon events provided a valuable check on the 

performance of the detector by measuring the muon lifetime. The stopping muon 

trigger rate was 0.15 Hz, and it was prescaled down to 0.015 Hz in the actual 

data recording. 

3) Random Trigger: This trigger was generated by a pulse generator set at 

about 0.03 Hz. Events produced with this trigger contained random samples of 

background signals from the PMTs and have been used for off-line analysis of 

the background. 
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4) SIMP Trigger: This event trigger was a set of delayed coincidence between 

all six planes of the detector. I designed a simple TTL circuit to achieve this 

delayed coincidence. The function of this circuit is explained in Fig. 3.2.4. A 

pulse in the first plane generates a gate after a fixed delay ; a pulse from the 

second plane arriving within this gate triggers a delay and gate for the third 

plane, etc. The delays were set at 70 ns and the gate widths at 2.4 J.LS, resulting 

in a (3 range from 5 x 10- 3 to 2.7 X 10-4 . This trigger was vetoed by the cosmic 

ray muon trigger for about 30J.Ls, to prevent cosmic ray muons from generating an 

excessive number of false triggers. Although the muon trigger rate was 1.27kHZ, 

the rate that the 30J.Ls veto gates generated was only about 580HZ. This was 

because a cosmic ray muon often gave two or more muon triggers because of the 

timing spread of the BBQ wave shifter ("" 25ns) and the PMT afterpulses. From 

this veto rate, the veto dead time has been calculated to be only 1. 7%. 

The data acquisition system7 (Fig. 3.2.5) consisted of 12 data acquisition 

(DAQ) timing modules. Two DAQ modules were used for each plane serving as 

a 32 bit x 15 location memory stack. 16 bits were used to register the time of 

a 70 MHZ greycode clock, 8 bits were used to register a code indicating which 

PMT of the plane fired and another 8 bits were reserved for future expansion. 

The memory contents were shifted by one location when any Pl\1T of the cor­

responding plane fired and the content of the last cell was pushed out . In this 

way the DAQs always contained the latest 15 pulses of each plane and covered 
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Fig. 3.2.5- The data acquisition (OAQ) module of the Caltech scintillator 
detect.or. 

approximately 450 J.LS. The on-line computer was a PDPll / 34, using a modified 

version of "MULTI" as a data acquisition program. 

The event triggers were used to stop the DAQs and interrupt the computer 

for reading the DAQs and writing the data on the magnetic tapes. A post-trigger 

delay was added to allow post-trigger data to be collected for about 7.7J.Ls. 

A sample of events (See Figure 3.2.6) presented at a variety of time scales 

illustrates the type of data available for off-line analysis from individual events . 

The tracks of f3 .-...- 1 cosmic rays through the detector are clear and distinctive, 

and any residual contamination can be easily removed. 

The data of cosmic ray muon events provided a valuable calibration of the 

efficiency of the detector. Since the muon trigger required at least 3 of the 4 
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Fig. 3.2.6 -- A Sample of events presented with different time scales. 
a) SIMP trigger event with the de layed gates indicated; b) muon t rigger event 
with muon at -7.7 f..LSj c) stopping muon trigger event with the muon and the 
late electron indicated; d) random trigger event containing only background 
BOISe. 

center p lanes to have a signal, the inefficiency for muons can be measured by 

finding muon tracks that missed a given plane. By this method, I determined 

that the muon inefficiency of each plane was only about 1%. 

The stopping muon events offered another convenient test of the performance 

of the detector. A measurement 7 of the muon lifetime from the stopping muon 

samples has yielded the expected value of about 2 f..LS . 
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3.3. Data Analysis 

The experiment was run from December 3, 1983 through March 1984 for 

an effective running time of 8.2 x 106 sec. The 195 data runs contained 985,495 

events, of which 959,697 were ccgoocl" events not subject to equipment failure 

and data errors. About half of the data consisted of SIMP trigger events. 

The basic object of off-line analysis was to search for any ionizing particle 

that penetrated through the detector with a low constant velocity, that is, to 

search for pulses that lined up in a straight line on the time versus distance 

graph. More specifically, my first pass through the data consisted of identifying 

SIMP candidate tracks by searching for the pulses having acceptable timing and 

patterns. The particles were required to go through all six planes and produce at 

least one pulse in each plane with relative tinting indicative of a constant velocity. 

In order to ensure good efficiency and to account for any possible nlisalignments 

of the scintillator planes, I allowed time jitters up to 18% larger than the time for 

the particle to cross each plane. A high {3 cutoff at {3 ~ 0.01 was set to elinlinate 

muons and a low {3 cutoff at {3 = 2 x 10-4 to speed up the search. These cutoffs 

were well beyond the triggering cutoffs; therefore, no additional inefficiency was 

produced. This data selection reduced the original data of 959,697 trigger events 

to 1,113 candidate events. The unshaded histogram of Fig. 3.3.1 shows the {3 

distribution of these candidate tracks. Even though the trigger-type information 

was not used in the analysis (and roughly half the original triggers were of the 

diagnostic types), all surviving events came from the SIMP trigger. 
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Fig. 3.3.1 - (3 distributions of the 1,113 candidate events ( unshaded) and 
the 35 final candidates (shaded). The solid straight line is the calculated back­
ground. 
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Fig. 3.3.2 - Typical SIMP candidate events. 

I examined samples of the surviving 1,113 candidate events that had hits 

giving satisfactory timing and geometry (see Fig. 3.3.2), and found that most of 
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Fig. 3.3.3 - The events are required to be "quiet" before the candidate 
track; that is, the number of pulses in a 7 J.LS window before the earlie3t candidate 
track must not exceed 7. 

them had a large number of extra h.its outside the allowed window. Also, many 

events were obviously caused by muons and the PMT afterpulses induced by 

them. It is impossible to determine the cause of all the spurious pulses from the 

recorded information, but they were likely to be caused by cosmic ray shovvers 

or some h.igh energy interactions inside or near the detector. 

In order to analyze these events systematically, I made a second pass. In 

this pass, the events were required to be "quiet"; that is, the number of pulses 

around a candidate track window does not exceed a certain value. Since heavily 

ionizing particles may have given rise to a large number of PMT afterpulses, it 

is only sensible to require the events to be quiet before the candidate track but 

not after it. Specifically, I required in this pass that the number of pulses in a 

7J.Ls window before the earliest candidate track not exceed 7 (Fig 3.3.3). Such a 
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value corresponds to a temporary noise rate of lMHZ, which is about 6 times the 

average noise rate of the whole detector. SIMPs may interact (such as catalyzing 

baryon decays, etc.) with the concrete and atmosphere above and cause showers 

that arrive at the detector just before themselves and thus would be thrown away 

by this analysis. However, this is very unlikely unless the interaction cross section 

is unreasonably large. Additional requirements were also applied in this pass to 

remove muon pulses and their PMT after-pulses. Muon pulses were identified 

by fast coincidence between adjacent planes and after-pulses as those happening 

lOOns or less after a muon pulse. 

The above analysis has relied on veto schemes, and therefore it is crucial to 

determine the veto dead time. I measured this in a realistic way by superposing 

random trigger events onto Monte Carlo generated SIMP tracks. As shown in 

Figure 3.3.4, 469 of the 500 background superposed Monte Carlo events have 

survived the above analysis . Therefore, the inefficiency due to these veto re­

quirements is only 6.2%. 

I applied the second pass analysis to the 1,113 candidate events surviving the 

first pass and obtained 35 final candidates , all having a measured {3 < 5 x 10- 4 

(see the shaded histogram in Fig. 3.3.1). In such a low {3 region, a particle needs 

more than 170ns to cross one scintillator plane; therefore, the signal from each 

plane must be either a wide pulse or a pulse train lasting for > 170 ns . The 

former corresponds to the case of relatively high ionization ( ~ Imin) · Although 

only one pulse per plane could be registered in this case, the recorded pulses 
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Fig. 3.3.4 - /3 distributions of the original 500 Monte Carlo events ( un­
shaded) and the 469 events (shaded) that survived the same analysis that was 
applied to the actual data. 

should have small time jitter and lie very close to a straight line. I examined the 

35 final candidates and ruled out such a possibility, since all the slow particle 

tracks found in the 35 candidates deviated from an actual straight line by more 

than 90 ns . In order to study the latter case, I analyzed the 35 final candidates 

further to determine the number of planes that actually had pulse trains. A train 

was defined in the most minimal way as having at least two pulses . The result 

is the following: 

Table 3.3.1 - Number of Planes Having a Pulse Train 

number of planes having a pulse train 0 1 2 2 3 

number of events 15 16 4 0 
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Therefore, there has been no indication that any of the 35 events came from 

slow moving particles crossing the detector. 

The entire hardware {3-range is eliminated for SIMPs if one requires at least 

three planes to have two or more pulses. This requirement and the requirement 

that each plane has to have at least one pulse set an ionization threshold for the 

detector. At 1/ 3 of the minimum ionization, each plane gets 4.5 photoelectrons on 

the average and the efficiency to satisfy these requirements drops to about 80%. 

Therefore, I take l I =in as the ionization threshold of the detector, although the 

threshold cutoff is not a sharp one and the detector had considerable sensitivity 

even below this threshold. 

The effective exposure time for the detector, corrected for the dead time, is 

8.0 x 106 sec. Using this effective running time, the acceptance of the detector 

and applying efficiency corrections, I determined an upper limit for SIMP flux 

within the detector's {3 acceptance (90% confidence): 

SIMP Flux < 4. 7 x 10 - 12 cm- 2 sr - 1s - 1 

(3.3 .1) 
for 2.7 x 10-4 

::; {3 ::; 5 x 10- 3 . 

This flux limit applies to any particles having ionization above ~I=in 1ll 

terms of scintillation yield. 

3.4. Background Studies 

The 35 final candidates have been rejected as SIMPs, but what caused them 

is still a question that should be answered . In the following, I will show that 

they can be explained as the coincidences of random background pulses. 
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In an n-layer detector in which slow particles are recognized only by inter-

layer timing, the rate that random pulses happen to line up and fake a track of 

f3 in a small bin 6./3 can be shown as 

6.R (3.4.1) 

where H is the height of the detector, Vi is the noise rate of ith plane, c is the 

speed of light and W is the thickness of the scintillator used to calculate the 

allowed time jitter (I have taken it as 3 em, which is 18% wider than the real 

t hickness). If each plane has several pieces of scintillator, then the detector has 

some tracking ability and the above formula should be multiplied by a "geometri-

cal factor ." The geometrical factor is defined as the probability t hat a legitimate 

track in 3pace can be formed if each plane is given one pulse randomly occurring 

in any piece of the scintillator. The geometrical factor of the Caltech detector is 

easily found to be 1
3
6 • 

In order to find the actual random noise rate of each plane, highly correlated 

backgrounds such as muons and cosmic ray showers have to be removed. I 

have done this using the random trigger events and applying the same "quiet" 

requirement and muon and afterpulsing veto schemes as applied in the actual 

data analysis. The result is the following: 

Table 3 4 1 - Random Noise Rate of Each Plane .. 
plane 1 2 3 4 5 6 

rate (kHz) 24.3 19.9 21.2 20 .9 29.2 21.9 
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From these data, Equation (3.4.1) gives 

3.05 X 10- 16 ~~. (3.4.2) 

The calculated background is drawn on the histograms of the 1,113 candi­

date events and the 35 final candidates (Figure 3.3.1). The histogram of the 

1,113 original candidates is far above the calculated background and has a dif­

ferent shape, indicating that the pulses from the cosmic ray showers and muons 

are highly correlated and tend to make many more coincidences than random 

nmse. After removing the highly correlated backgrounds, the noise becomes 

truly random, and the histogram of the 35 final candidates agrees very well with 

the calculated background. Considering that there is no free parameter here, the 

agreement is remarkable. From this, I conclude that the final 35 candidates came 

from the coincidence of the uncorrelated random noise. 

3.5. Comparison with Other Experiments and Implicatio ns 

To compare this result with other reported experiments, I divide them into 

two types, underground experiments and surface experiments. Several under-

ground experiments have reported lower flux limits than this experiment. Al-

though some of them covered a very different f3 and ionization region (for in­

stance, the Baksan experiment8 had an ionization threshold at least 5Imin be­

cause of their improper integration time), there are those that have both a wider 

f3 range and lower ionization threshold than this experiment and have reported 
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lower flux limit9
• The relevance of this surface measurement, therefore, Js to 

particles that would not be detected unt.lerground. 

The differences in sensitivity between the experiments at Earth's surface 

and the underground experiments are for particles having masses such that they 

penetrate the atmosphere with low velocity but do not penetrate to the depth 

of the deep underground detectors . I call such particles "medium heavy," with 

masses ......., 109 Ge V , in contrast to the more penetrating "super heavy" particles 

with masses ,..._, 1016 GeV typical of the GUT scale. For these medium heavy 

particles, the flux limits set by underground experiments do not rule out a much 

higher flux on Earth's surface. 

For certain medium heavy SIMPs such as magnetic monopoles, one may ex-

pect them to be accelerated to (3 ......., 1 by the galactic magnetic field. However, this 

is not true in certain models involving symmetries or plasma oscillations10
-

11
• 

If the galactic magnetic field acceleration is avoided, the Parker bound does not 

apply. The monopole candidates observed by Cabrera12 and the Imperial Col­

lege group13
, which imply flux well above the Parker bound, have motivated such 

models. 

As an example, Figure 3.5.1 shows the lower mass limit versus the original 

(3 of various SIMPs that can reach the Caltech detector and fall into i ts (3 win­

dow, as compared with the experiment in Kamioka Mine9 , 250m deep , the only 

published underground experiment that has reported lower flux limit and had a 

wider (3 window and a lower ionization threshold than ours . I calculated these 
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Fig. 3.5.1 - The lower mass limit versus the original {J of various SIMPs 
that can reach our detector and have {J within its {J acceptance. The similar 
limit of the experiment in Kamioka Mine is also drawn for comparison. 

curves according to the stopping power formulas discussed in Chapter 1, usmg 

the average values of z2 = 7.3 ]1;12 = 14.7mp for the atmosphere and z2 = 12.2 

M 2 = 24.7mp for Earth's crust. Our experiment is calculated as a 60cm deep 

"underground" experiment to account for the concrete building above the detec-

tor . Note that our experiment is sensitive to particles having masses two orders 

of magnitude lower than those accessible to underground experiments. 

Table 3.5.1 is a compilation14 of the upper flux limits of several experiments 

on Earth's surface that have similar a {J range and ionization sensitivity to this 

experiment. The ionization threshold Ithr is shown in units of minimum ioniz-
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Table 3.5.1- Flux Limits from Surface Experiments (90% c.l.) 

experiment fthr f3 range fl ux li rn_j t 

BNL (p) 2.0 3 X 10- 4 - 1.2 X 10- 3 3.4 x 10-11 

Tokyo (s) 1.2 10- 2 - 0.1 1.5 X 10- l 1 

Tokyo (s) 0.025 2 X 10- 4 - 5 X 10- 3 1.5 x 1o- 11 

BNL-Brown-KEK (s) 0.3 10-3 - 0.2 5.2 x 10- 12 

Tokyo( Kajino) ( sp) 1/ 20 10- 4 - 1o-2 1.6 x 10- 12 

Akeno (p) 10 7 X 10- 4 - 1 1.2 x 10- 13 

Indiana-Berkeley ( s) 0.6 6 x 10- 4 - 2.1 x 10- 3 9.4 x 10-13 

This experiment (s) 1/ 3 2.7 X 10- 4 - 5 X 10-3 4.7 X 10- 12 

ing muons and the letter in the brackets after each experiment name indicates 

whether it uses proportional counters (p) or scintillator detectors (s), or both 

(sp ). 

For superheavy particles, the result of this experiment does not improve on 

the lirn.it set by Kajino et al. in any f3 region, However, for the more relevant 

"medium heavy" particles that cannot penetrate deep underground, their lirn.it 

(and others) must be reconsidered. It must be immediately doubled since their 

acceptance for up-going particles is no longer relevant. In addition, their detec-

tor had sensitivity mainly to large zenith angles because of the geometry using 

vertical layers. This greatly reduced the sensitivity to medium heavy particles , 

since they must pass through a large amount of matter to reach the detector. 

Furthermore, because of the 3m iron absorber between the layers, medium heavy 

particles could be slowed considerably in the detector and be thrown away in the 

analysis which essentially looked for objects with constant velocity. The same 

arguments apply to the limit of the BNL-Brown-KEK experiment since it also 
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uses vertical layers. The limit from the Indiana-Berkeley experiment must also be 

doubled, because of their up-going acceptance, making their limit comparable to 

this experiment but with somewhat different /3 coverage and ionization threshold 

as shown in Table 3.5.1. Lastly, the experiment in the Akeno Air Shower Obser-

vatory has yielded a limit one order of magnitude lower than this experiment but 

only for particles exceeding their ionization threshold, which is 30 times higher. 

Since medium heavy particles stop in matter, our flux limit might also be 

compared with the results of searches in bulk matter. There is no bulk matter 

limit for electrically charged particles that is comparable to our flux limit, but 

monopole searches in lunar rock and iron ores are very sensitive, and much lower 

flux limits have been reported15 . The results of these bulk matter searches, 

however, are actually limits on the monopole density in certain samples. To 

interpret the results in terms of a monopole flux limit in cosmic rays, many 

assumptions are necessary regarding the age of the samples, how deep they have 

been buried, whether or not they have been heated in their entire history over a 

few million years, etc., and therefore the results should be regarded as indirect. 

Experiments using track etch techniques16
-

18 have also been reported with 

very impressive flux limits. Such techniques, however, are sensitive only to highly 

ionizing particles ("' 30I=in)i therefore, the results are often quoted as having 

a low /3 cutoff in the order of 10- 2
, although there are arguments19 suggesting 

that such techniques may be sensitive to particles as slow as /3 = 3 x 10- 5 . 
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Fig. 3.5.2 - The limit of the fraction of the dark matter that can be 
attributed to massive charged particles, as a function of mass. 

In summary, the limit presented here represents a flux limit for any ionizing 

(> kimin) medium heavy particles that can penetrate the atmosphere but not 

deep underground. After correcting other results for the sensitivity to such par-

tides, none would be more sensitive than the result reported here, and none has 

been analyzed in such detail to address medium heavy particles, which are the 

only relevance of surface experiments when a much lower limit has been set by 

underground detectors. 

A major implication of this result is that it can be used to address the dark 

matter of the universe. Assuming an isotropic flux and a nominal velocity of 

3 X 10- 3 c for the dark matter, I calculated the upper limit of the fraction of the 
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Fig. 3.5.3 - The limit of the fraction of t he galartic halo that can be 
attributed to massive charged particles , as a function of mass. 

dark matter that can be attributed to charged massive particles, as implied by our 

flux limit (Fig. 3.5.2). Lower mass cutoffs for different particles are determined 

using the stopping power models mentioned in Chapter 1, and the detector's 

f3 acceptance is tr uncated at 6.5 x 1 o- 4 for monopoles and at 8 x 10- 4 for 

1/ 5 charge particles in accord with the conservative light yield estimation in 

Ref. 5. It is obvious that the major dark matter component cannot be monopoles 

or 1/ 5 charge particles with mass 7 X 107 Ge V < /1.1 < 1012 Ge V, nor can it 

be unit charge particles with 3 x 107 GeV < 111 < 1012 GeV or nuclearites of 

1.4 x 108 GeV < /1.{ < 1012 GeV. For some particles and certain mass , a fraction 

as low as 10- 6 has been excluded. 
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Similar limits for the halo dark matter are even more stringent. Fig. 3.5.3 

shows such limits, calculated assuming an isotropic flux and a nominal velocity 

of 10-3 c. Because of many uncertainties in the density, velocity and direction of 

the dark matter, Figs. 3.5.2 and 3.5.3 should be regarded as a rough estimation 

and give only the correct order of magnitude. 
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Chapter 4 
Future Searches -the MACRO Experiment 

The MACRO detector1 (Monopole, Astrophysics and Cosmic Ray Observa­

tory) , now being built in the Gran Sasso Laboratory in Italy, will soon be the 

world's largest SIMP search detector. The present design of the detector consists 

of three layers of thick (25 em) scintillator planes, 18 layers of streamer tubes 

and one layer of track etch detector, enclosed on the four sides by one layer of 

vertical scintillator plane and five layers of vertical streamer tubes. ·with an 

acceptance of over 10000 m 2 sr, the detector can reach a flux sensitivity of 10% 

of t he Parker bound2 after five years' running, and can rule out any electrically 

and/ or magnetically charged particles with mass below 1017 GeV as the major 

component of the dark matter of the universe . In this chapter , I report the work 

I have done toward developing this future SlMP search detector. 

4.1. The Test of the First MACRO Scintillator Counter Prototype 

The MACRO scintillator detector will utilize about 1000m3 of liquid scin­

tillator contained in 484 counters. Each counter is a 12m long PVC tank lined 

inside with FEP teflon and viewed hy 8 inch hemispherical PMTs at both ends. 

The counters in the three horizontal layers have a cross section of 75cm x 25cm 

and those in the vertical layers, 25cm x 50cm. FEP teflon has a refraction index 

of 1.33, giving the teflon-oil interface a total reflection angle of about 23° . 
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Fig. 4.1.1 - The first prototype of the MACRO scintillator counter built 
at Caltech. 

In order to achieve MACRO's physics goals, the scintillator counters must 

meet very special requirements. It must have high light level and long attenuation 

length so that a low energy event ( 5Me V, say) occurring near one end of the 

counter can be seen at the opposite end. Seeing by both ends is necessary to 

determine the energy and the position of the event. The MACRO scintillator 

counters must also have good time resolution in order to distinguish up-going 

and down-going cosmic rays and to determine the position of an event IJy the 

time difference of the signals from the two ends of the counter. 

The first prototype of the MACRO scintillator counter was a box 12m long 
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Fig. 4.1.2 - The light level of cosmic ray muons versus distance , measured 
on the first prototype of the MACRO scintillator counters . After various im­
provements, the expected light level of the present design is a factor of 10 higher 
than these data. 

and 50cm wide containing 25cm high liquid scintillator with two 8 inch PMTs 

coupled to the two ends (Fig. 4.1.1). Figure 4.1.2 shows the light level I mea-

sured for cosmic ray muons penetrating at various distances from one end of this 

prototype. Except for the nearest 2 meters, the data points lie very close to a 

straight line corresponding to an "attenuation length" of 5.3m. Since this first 

light level measurement, various improvements have been made or proposed, and 

now the light level of the present design of the MACRO counter is expected to 

be about a factor of 10 higher than that shown in Figure 4.1.2. This means that 

a minimal ionizing muon crossing one end of the counter can produce more than 
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Fig. 4.1.3 - The setup for measuring the time resolution of the MACRO 
prototype counter. 
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Fig. 4.1.4 -The histogram of the time difference between the two ends of 
the counter. 

100 photoelectrons at the opposite end. 

I also measured the timing characteristics of the counter, using cosmic rays. 

The setup of this measurement is shown in Fig. 4.1.3 . Two small scintillators 
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5cm wide placed at the center of the MACRO counter, one above and one below, 

were used to trigger a data acquisition system which recorded the time of the 

signal from each end of the counter. The histogram of the time difference between 

the two ends is shown in Fig. 4.1.4. The u of the distribution is 1.63ns. Since 

this jitter includes the contributions of both ends, the jitter of each end is about 

1.63ns/ v'2 = 1.15ns. 

Such a time resolution allows one to determine the position of an event 

according to the time difference between the signals from the two ends. Since 

the effective light speed in the counter has been measured to be 18.5cm/ ns, 

a time difference resolution of 1.63 ns corresponds to a position resolution of 

about 15cm. Using the time difference to determine position, I measured the 

attenuation length of the counter in another way. The setup is shown in Fig. 4.1.5. 

The coincidence of the two ends of the counter was used to trigger the data 

acquisition system, which then recorded the time and pulse height of the signal 

from each end. The ratio of the pulse height from the two ends versus the 

time difference is shown in Fig. 4.1.6. The linear regression of the central part 

of Fig. 4.1.6 gives a straight line of slope 0.0343 ns- 1 corresponding to 5.4m 

attenuation length, which agrees with the measurement mentioned earlier. 

The time resolution of the prototype also made it possible to measure the 

time of flight of cosmic ray muons. The test set up is shown in Fig. 4.1. 7. A pair 

of small scintillators were put close to each other and 4.5 m below the MACRO 

prototype (the same distance as the separation of the scintillator planes of the 
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Fig. 4.1.5 - A way to measure the attenuation length usmg timing to 
determine position. 
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Fig. 4.1.6 - The scatterplot of the ratio of the pulse height from the two 
ends versus the time difference. The straight line is the linear regression of the 
central part of the scatterplot, corresponding to 5.4m attenuation length. 

MACRO detector). The trigger was produced by the coincidence of the MACRO 

prototype with the _two small scintillators, and the time and pulse height of the 

signals from all the PMTs were recorded. Using the time differences of the signals 
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Fig. 4.1.7- The setup for measuring the time of flight of cosmic ray muons. 
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Fig. 4.1.8 - The measured fJ of the cosmic ray muons. It is obvious that 
the MACRO counter is capable of distinguishing up-going (fJ = - 1) and down­
going (fJ = 1) muons. 

to determine the time of flight and the horizontal distance X, the velocity of the 

muons can be calculated. The measured fJ of the muon events from a 10 hour run 
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is shown in Fig. 4.1.8. The u of this distribution agrees exactly with the value 

calculated according to the 1.15 ns time jitter of the MACRO prototype counter. 

It is obvious that the MACRO counter is capable of distinguishing up-going and 

down-going muons. Up-going muon events correspond to {3 = - 1 in Fig. 4.1.8; 

none has been observed in the 10 hour run. 

To summarize, the test of the prototype has shown that the MACRO scin­

tillator counter has adequate light level and time resolution to achieve its physics 

goals, including SIMP detection. 

4.2. Slow Particle Trigger of MACRO Detector 

Because of the wide range of the possible velocity and ionization of various 

SIMPs, developing triggering electronics for them presents a very special chal­

lenge. Unlike the usual particle detection, which often uses fast coincidences to 

generate triggers, there is no such coincidence available for SIMPs. The delayed 

coincidence scheme for the search described in the last chapter could be used in 

MACRO, but it would not work as well since MACRO has only three scintillator 

planes. On the other hand, each layer of MACRO's scintillator counters are made 

25cm thick, giving another handle on the passage of a slow particle. A SIMP 

needs a much longer time ("' 1J.Ls) to cross each scintillator layer compared with 

usual relativistic particles and therefore can be recognized by the duration of its 

signal. 

Although this feature is very clear, the task of using it to generate triggers 

is not trivial, because of the extremely wide range of possible {3 and ionization 
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of various SIMPs. 

At the high (3 end, in order to connect the (3 range of the SIMP trigger to 

that of the fast particle trigger, (3 as high as 10- 2 should be covered. At this (3, 

a SIMP produces a large pulse of ,..._, 83 ns wide. 

For the low (3 region, if possible, one would like to extend it to include the 

earth's escape velocity ((3 = 3.7 x lo- s) and even the orbital velocity around the 

earth ((J = 2.6 x lo-s). Although the scintillation yield at such extremely low 

(3 is not well understood, there are indications that this goal may be achievable 

at least for some species of SIMPs. If one extrapolates the dyon 's dL / dx curve 

from the recent low (3 scintillation experiment3 down to (3 = 2.6 x lo- s, it gives 

a light yield about 1/ 10 of the minimal ionizing muons. A unit charge particle 

is expected to have a light yield 4/ 5 of that of a dyon; higher charged particles, 

including nuclearites, may produce a much higher light yield. For the central 

3/ 5 of the total length of the counter, a crossing particle with (3 = 2.6 x lo -s 

and I = /
0 
I min produces for each end of the counter a pulse train 32p.s long 

containing 16 to 60 single photoelectron pulses. Note that the pulse rate in such 

a train is at least 20 times the typical noise rate (25kHZ) of the counter measured 

in the Gran Sasso tunnel, and the probability that such pulse trains arise from 

random noise fluctuations is extremely small. 

The difficulty of the SIMP trigger is now obvious: it has to trigger on signals 

that are qualitatively different, ranging from a short pulse of 83ns to a long pulse 

train of 32p.s containing only 16 single photoelectron pulses. 
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Fig. 4.2.1 -Time over threshold (TOT) discriminator. 

The first trigger electronics that relies on the signal duration instead of on the 

time of flight to recognize SIMPs has been used in the lndiana-Berkerly monopole 

search experiment4
, where the pulse durations have been actually measured to 

generate triggers. This scheme, however, is not suitable for MACRO, because it 

cannot trigger on pulse trains of very low f3 particles. 

A circuit that triggers on pulse trains has been proposed by M. Sevcri et al.5 

This circuit, however, has several problems making it not optimal for the MACRO 

detector. The Severi circuit works as the following: First, a time over threshold 

discriminator (TOT) set below the single photoelectron level converts the PMT 

signal to a series of logic pulses with variable widths and gaps (Fig. 4.2.1 ). Then, 

a digital circuit looks at the gaps and the train lengths of the TOT signal. 

Whenever it finds a train longer than a given value T0 in which no gaps larger 

than the "gap threshold" t 0 have ever occurred, a trigger is generated. A single 

pulse lasting for longer than T0 is itself a qualified train and can cause a trigger. 
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Fig. 4.2.2 - Large muon or radioactivity pulses can be very wide at the 
single photoelectron level and give wide TOT outputs faking SIMP signals. 
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Fig. 4.2.3 - When the Severi circuit is set with t0 > T0 , it is equivalent 
to this simple self-delayed coincidence logic with Delay = T0 and Gate = t 0 + 
W - T0 , where W is the width of the single photoelectron TOT pulse. 

The weakness of the Severi circuit is obvious. First, since the TOT threshold 

IS set below the single photoelectron level, large muon or radioactivity pulses 

(200-2000 photoelectrons), although intrinsically narrow, can be very wide at 

the single photoelectron level and can give wide TOT outputs, faking relatively 

fast SIMPs (Fig. 4.2.2). The second problem of this circuit is a dynamical range 

problem due to the use of a fixed gap and train length criterion. As discussed 

above, a SIMP signal in the full region of 2.6 X 10- 5 < f3 < 10- 2 and I 2: O.llmin , 
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ranges from a short pulse of 83ns to a 32J.£S long pulse train containing 16 single 

photoelectron pulses spread with an average gap of 2J.£S. This immediately puts 

Severi 's circuit into a dilemma, that the train length requirement T0 has to be 

less than 83 ns while the gap threshold t0 must be longer than 2 J.L.S. In spite of 

the conceptual difficulty of imagining a pulse train having gaps larger than the 

total train length, one may technically set t0 ;::: T0 . However, in such a case, the 

Severi circuit would trigger on any two pulses close to each other to within t 0 and 

could be replaced by a much simpler "self-delayed coincidence" logic shown in 

Fig. 4 .2.3. Such a loose trigger criterion is obviously very vulnerable to random 

noise. The Severi circuit is inherently incapable of covering the whole interesting 

f3 and ionization region and, when forced to do so, it becomes vulnerable to 

random noise and also becomes unnecessary Lecause a much simpler self-delayed 

coincidence logic can have the same function. 

In order to solve the problems of the Severi circuit, I proposed to the 

MACRO collaboration a new SIMP trigger circuit for the experiment. First, 

instead of TOT, I proposed that a TOHM (Time Over Half l\faximum) discrim-

inator should be used. This discriminator dynamically raises up its threshold to 

about half of the pulse peak and produces a logic output pulse with width equal 

to the time over half-maximum of the input pulse (Fig. 4.2.4). In order to treat 

the narrow single photoelectron pulses consistently, any pulse narrower than a 

minimal width W is extended to TV and pulses wider than W are unaltered. The 

TOHM output is then sent to an integrator and discriminated at a certain level 
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Fig. 4.2.4 - Time Over Half Maximum (TOHM) discriminator. 

to generate SIMP triggers. The integrator can be an ordinary RC integrator or a 

digital version (Fig. 4.2 .5). The digital version uses an up / down counter counted 

up and down with different rates (Ru and Rd) to simulate the charging and leak-

ing processes of the RC circuit, and the trigger occurs whenever the content of 

the counter reaches a threshold value Cth· Since the leakage of the integrator 

here is not a shortcoming of the circuit, but rather an important feature that 

plays a crucial role, I call it "Leakiug integrator" and the circuit "Ll circuit." 

The advantage of the TOIIM discriminator is obvious. Since its output is 

independent of the pulse height and counts for only the half-ma.'Cimum width, 

the signals of all prompt processes such as muons and radioactivity are greatly 

suppressed, while slow particle signals, which are widely spread in time, are 

amplified. For instance, a muon pulse of 300 photoelectrons may have a half-

maximum width not much larger than TV and gives the integrator only the same 
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Fig. 4.2.5 - Analog and digital versions of the LI circuit. 

amount of charge as a single photoelectron pulse. A preliminary test has shown 

that TOHM replacing TOT can improve the muon and radioactivity rejection 

rate by several orders of magnitude. 

The advantage of the LI circuit is that it can solve the dynamical range 

problem of the Severi circuit. To show this, let us consider the analog version 

as an example. For a relatively fast SIMP, the TOHM output is a short pulse 

having the logic high level V H and a duration equal to the particle's crossing 

time. Since the time needed for VH to charge up the capacitor to the threshold 

vtl~ is 

Vth 
T=in = - RCln(l - VH ). (4.2.1) 

The LI circuit acts as a discriminator on the pulse width or the particle crossing 

time. 

For pulse trains lasting longer than RC, the integrator acts as a rate meter, 

and the LI circuit is a discriminator on the pulse rate with a mte threshold: 

(4.2.2) 
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Fig. 4.2.6 - Trigger efficiencies using the analog LI circuits. 

In order to trigger on a range of SIMP signals from a 16 pulse train of 32 f.LS 

long to a single pulse 83 ns wide, one only needs to set the parameters of the 

circuit so that T min = 83 ns and Tmi n = 0.5 MHZ. This is easily accomplished 

by letting W = 20 ns, Vth / VH = 0.01 and RC = 8.33 f.LS. With these parameter 

settings, I calculated the trigger efficiencies as a function of {3 and ionization, 

assuming that the trigger is generated by the coincidence of the two 11 circuits, 

each connected io one end of the counter (Fig. 4.2.6). All the curves are calculated 

by a Monte Carlo program, assuming an isotropic particle flux , a response curve 

exponentially decaying by a factor of 10 from the near end to the far end and 

a light level of 100 photoelectrons for a minimal ionizing muon crossing the far 
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Fig. 4.2. 7 - Trigger efficiencies using the digital LI circuits. 

end. For I 2 /0 Irnin, the whole range of 2.6 x 10- 5 < {3 < 10-2 is completely 

covered with efficiency close to 100%. The efficiency curves of the digital version 

(Fig. 4.2. 7) are almost identical to those of the analog version, if the parameters 

of the circuits are chosen properly. In order to match those efficiency curves, the 

Severi circuit has to be awkwardly set with to > To. Fig.4.2.8 is an example of 

such parameter settings and the corresponding efficiency curves. 

V{ith the same trigger circuit parameters used in generating t he above effi-

ciency curves, the background trigger rate is calculated as a function of the noise 

rate and is shown in Fig. 4.2.9 . At the typical 25kHZ noise rate, the background 

trigger rate of the Ll circui ts is about 3 orders of magnitude lower than that of 
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Fig. 4.2.8 - Trigger efficiencies using the Severi circuits with T0 < to. 

the Severi circuit. Even under a random noise rate of 50 KHZ, the background 

trigger rate from a single LI circuit is only an order of 1 HZ. The coincidence of 

the two circuits connected to the two ends of the counter may reduce the false 

trigger rate to a level of 10- 6 HZ. Although the background may be highly cor-

related and the real background trigger rate may not be as low as calculated, it 

may still be low enough to be tolerable. 

Fig. 4.2.10 shows what kind of new physics might be available when MACRO 

uses the LI circuit instead of the Severi circuit. The efficiency con tours of the two 

circuits are drawn on the /3 versus ionization plane together with the extrapolated 

tails of the dL / dX curves from Ref. 3. In these contours, I have chosen the loosest 
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Fig. 4.2.9- Background trigger rate of a single circuit as a function of the 

random noise rate. The trigger parameters are the same as in Figures 4.2.6, 
4.2. 7 and 4.2.8 . 

possible genuine parameters for the Severi circuit (not making it equivalent to 

a self-delayed coincidence logic) and have used the same LI circuit parameters 

as before. It can be seen from the graph, that the LI circuit trigger covers a 

{J range of 2.3 x 10-5 - 10- 2 for dyons, comfortably containing Earth's escape 

velocity and the orbital velocity around Earth, while the coverage of the Severi 

circuit just misses these important velocities. For 1/ 5 charge particles, the LI 

circuit starts its coverage at {J = 1.1 x 10-4
, including the escape velocity of the 

sun, which is outside the coverage of the Severi circuit. It is also seen from the 

graph that, although there is a large difference in the ionization thresholds of the 
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Fig. 4.2.10 - 50% and 90% efficiency contours drawn on the /3 versus 
ionization plane. The contours for the Severi circuit are generated using To = 
lOOns, t 0 = 70ns, lV = 20ns. For the LI circuits, the same parameters as 
in Fig. 4.2.6 and Fig. 4.2.7 are used. Note that the digital and the analog LI 
circuits have the same efficiencies so that only one set of the contours is shown. 
The straight lines are the extrapolated tails of the dL / dX curves from Ref. 3. 
The escape velocities from Earth (ll€9) and from the sun (V0 ) and the orbital 
velocity around Earth ( V0 ) are also indicated on the /3 axes. 

two circuits, the difference in the /3 coverage is quite small (only a factor of 2) 

because of the steep cutoff of the particles ' dL j dX curves. The dL j dX curves 

have been calculated by multiplying a nearly constant scintillation efficiency to 

the electronic stopping power and applying a steep ((adiabatic correction factor" 

(see Ref. 3). Such an ((adiabatic correction factor" has been added in an ad hoc 

fashion and it is just as plausible to fit the data and extrapolate them with a 

much less steep function , such as a power law6 . The nuclear stopping power that 
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dominates at low {3 may also contribute some light yield and make the dL j dX 

curves even less steep. For all these reasons, I consider it very likely that the 

actual dL / dX tails are much less steep than those shown in Fig. 4.2.10 and that 

the difference in the {3 coverage of the two circuits is much larger. 

If an acceptable background trigger rate can be obtained in the real con-

di tions for the above LI trigger parameters, the conclusion is very impressive. 

·when the new trigger circuit is useu, MACRO may have the sensitivity for all 

conceivable SIMPs having a velocity as low as the escape velocity of the sun and 

for some species it is even sensitive to the orbital velocity around Earth. Since 

this is the lowest velocity possible for SIMPs, the MACRO experiment may pro-

vide an ezhau3tive search for these SIMP species over the whole conceivable {3 

range. 
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Chapter 5 

Conclusions 

The conclusions of this work are the following: 

1) The acoustic signal produced by a particle traveling through matter is 

reliably calculated, taking into account the heat conduction, the finite velocity 

of the particle and the s1ze of the heat source it produces. These effects are 

explicitly evaluated and in certain cases they are proven to be negligible. 

2) The method of acoustic detection of Slow-moving Ionizing Massive Parti-

des (SIMPs) in an infinite medium is severely limited by thermal noise. Although 

such techniques could be made sensitive to particles like nuclearites having ex-

tremely large dE / dx , for other SIMPs, the thermal noise would dominate as 

previously stated by Akerlof. 

3) In contrast to A kerlof's assertion, his limit does not apply to finite detec-

tors in which energy dissipation is minimized. I conclude that, by simply reducing 

the size, the technology of today's gravitational wave detectors should be able to 

make a particle detector sensitive to dE / dx "'"' lGeV / em, and I point out that 

many running and finished gravitational wave detection experiments are already 
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sensitive to nuclearites and the available data may be useful for finding such par-

tides or setting a flux limit. As an example, the result of a gravitational wave 

search published in 1982 is used to obtain a flux limit of 4.4 x 10- 11 cm- 2 s- 1 sr - 1 

for nuclearites, which is only slightly higher than the limit of a scintillator search 

three years later. 

4) Other acoustic and mechanical techniques for particle detection have been 

studied. In theory, measuring the thermal expansion of a bar may yield a much 

higher signal-to-noise ratio than measuring the change of the normal mode os-

cillations, and the method of measuring the stopping force directly may have 

sensitivity for extremely low {3. Whether such techniques are feasible in practice 

is worth experimental investigation. 

5) The result of a SIMP search experiment at Caltech implies that the flux 

of any massive particles having I 2: timin and 2.7 x 10- 4 < {3 < 5 x 10- 3 cannot 

be larger than 4.7 x 10- 12 cm- 2 sr- 1 s- 1 (90% c.l.) at Earth's surface. 

6) Although this flux limit is above the limits from underground experiments , 

it applies to particles about two orders of magnitude lighter than those that can 

be detected underground (see Fig. 3.5.1). When other published experiments on 

Earth's surface are corrected to address such relatively light particles, none of 
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them have better sensitivity than our experiment in the same f3 and ionization 

regwn. 

7) The flux limit presented here implies a stringent limit on the fraction of the 

dark matter that can be attributed to massive electrically and/ or magnetically 

charged particles, as shown in Fig. 3.5.2 and Fig. 3.5.3. 

8) The test of a prototype shows that the MACRO scintillator detector has 

adequate light level and time resolution for achieving its physics goals. 

9) \.Vhen the new SIMP trigger circuit presented in th.is work is used in 

MACRO, it may be sensitive to all conceivable SIMPs having f3 as low as the 

escape velocity of the sun and for some species as low as the orbital velocity 

around the earth. 


