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Abstract 

This dissertation is concerned with the problem of determining the dynamic 

characteristics of complicated engineering systems and structures from the mea

surements made during dynamic tests or natural excitations. Particular attention 

is given to the identification and modeling of the behavior of structural dynamic 

systems in the nonlinear hysteretic response regime. Once a model for the system 

has been identified, it is intended to use this model to assess the condition of the 

system and to predict the response to future excitations. 

A new identification methodology based upon a generalization of the method 

of modal identification for multi-degree-of-freedom dynaimcal systems subjected to 

base motion is developed. The situation considered herein is that in which only the 

base input and the response of a small number of degrees-of-freedom of the system 

are measured. In this method, called the generalized modal identification method, 

the response is separated into "modes" which are analogous to those of a linear 

system. Both parametric and nonparametric models can be employed to extract 

the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force 

for each mode. 

In this study, a simple four-term nonparametric model is used first to provide 

a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. 

To extract the hysteretic nature of nonlinear systems, a two-parameter distributed

element model is then employed. This model exploits the results of the nonpara

metric identification as an initial estimate for the model parameters. This approach 

greatly improves the convergence of the subsequent optimization process. 

The capability of the new method is verified using simulated response data from 

a three-degree-of-freedom system. The new method is also applied to the analysis 

of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of 
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a full-scale six-story steel-frame structure. 

The new system identification method described has been found to be both 

accurate and computationally efficient. It is believed that it will provide a useful 

tool for the analysis of structural response data. 
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Chapter 1 

Introduction 

The determination of mathematical models of dynamic systems from vibration mea

surements is a problem, commonly called system identification, of considerable importance 

in the area of applied mechanics. One major reason for this importance is the fact that it 

is not always possible to develop realistic, reliable theoretical and computational models 

for today's complicated engineering systems and structures. In situations where a more 

accurate interpretation/prediction of the behavior of systems is required, it is often nec

essary to develop an experimentally verified model. For example, in order to describe 

the response of structures to damaging excitations like earthquakes, consideration must 

be given to proper understanding and modeling of nonlinear structural behavior during 

strong ground motions. The rapid advance in high-speed digital computation and the in

creasing use of dynamic testing of complex systems have led to a growing interest in the 

development of new methodologies for efficient system identification [1-27]. 

Analytical modeling of dynamical systems is usually carried out at the design stage. 

Because of a priori knowledge, the dynamic response of many physical systems is typi

cally described by a set of second order ordinary differential equations [28-30]. This set 

of equations represents a discrete model for the physical· system of interest and may, for 

conceptual purposes, be thought of in terms of a system of mass or nodal points inter

connected by elements whose behavior depends upon the relative motion between these 

points. Many analytical techniques, such as finite difference and finite element methods, 

[31-33] are available to derive such dynamic models for complex engineering systems and 

structures. These analytical models are used for response prediction during design. How

ever, there are uncertainties involved in determining analytical models and assumptions 

have to be made accordingly. 
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In order to evaluate the assumptions made in design or to improve analytical models, 

it is often necessary, after the system has been built, to determine its actual characteristics 

experimentally based on response and/or excitation data measured during dynamic tests 

or natural excitations [34-37). This gives rise to the development of various techniques 

for analyzing measured vibration data. Though any method used to determine the dy

namic characteristics of a system from test data may, in a broad sense, be considered a 

system identification method, usually only those methods that use systematic mathemat

ical techniques in the analysis are so designated [1-4}. The models derived from system 

identification may not only be used to assess the engineering practice in developing design 

models but can also themselves be taken as more realistic models for predicting the system 

response to future excitations. 

In applications in the field of structural dynamics [38-41], most system identification 

performed so far has assumed that the structure is linear and that its properties are in

dependent of the characteristics of the excitation or the response. It is further assumed 

that all the energy dissipation of the structural system may be represented by classical 

viscous damping. Thus, the analysis reduces to the problem of identifying the parameters 

of a structural model from its response, and excitation if available. Since a linear vis

cously damped system may be represented by its physical parameters (mass, stiffness and 

damping matrices), or by its modal parameters (natural frequency, modal damping, modal 

participation factors), there is a choice of which parameters can be identified reliably in a 

given situation [42-52]. 

Two problems are common to all the efforts of structural identification. First, the 

number of response measurements is usually small. Frequently, only two records may be 

available, one at the base of the structure and the other near the top of the structure. Be

cause of this problem and noise in the measurements [ 42-4 7], it is necessary in practice to 

estimate the parameters of the dominant modes in the response, rather than the physical 

parameters [48-49]. The process of characterizing the dynamic properties of an elastic stru-
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cuture by identifying its modes of vibration is commonly referred as modal identification 

(50-52]. Second, nonlinear behavior is observed for many cases of strong shaking [8-14]. 

Thus, linear time-invariant models cannot be used successfully to treat the entire duration 

of response. The absence of a well-established analytical technique for determining non

linear structural models from vibration measurements has seriously limited the utility of 

these data. 

The objective of the research described in this dissertation is to solve some of the 

above-mentioned problems by developing a relatively simple approach to the identification 

of nonlinear dynamic systems that is suitable for application to seismically excited struc

tures. For this purpose, particular attention is given to the identification and modeling of 

the response behavior of nonlinear hysteretic systems under the action of base motion. 

The problem is formulated in Chapter 2 through a generalization of the method of 

modal identification for multi-degree-of-freedom nonlinear dynamical systems subjected to 

base motion. This method, called the generalized modal identification method, considers 

the situation in which only the support excitation and the response at a small number 

of points in the system are measured. Both parametric and nonparametric models can 

be employed with the method. The error measure employed throughout is the difference 

between the actual system and model response at peaks only. 

In Chapter 3 consideration is given to the generalized modal identification method 

incorporating nonhysteretic restoring force models. First, ·a class of nonparametric models 

which is suitable for nonlinear memoryless systems is reviewed. Subsequently, a model with 

only four parameters is proposed based on model simplicity and computational consider

ations. The identification algorithm together with the model are tested with simulated 

data generated for a nonlinear hysteretic system. The results provide insight into the use 

of nonparametric methods in the preliminary identification studies of hysteretic systems. 

In order to extract the hysteretic response behavior of a nonlinear structural system, 

Chapter 4 is concerned with the generalized modal identification method incorporating 
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hysteretic restoring force models. A discussion of available models for hysteretic systems 

is presented with emphasis on the mathematical form of the backbone curve. Based on this 

investigation and the insight obtained in Chapter 3, a physically motivated model with a 

backbone curve characterized by only two parameters is proposed. This model employs 

the results of the nonpa.ram.etric identification as an initial estimate for the backbone pa

rameters. This apporach greatly improves the convergence and efficiency of the subsequent 

parameter optimization process. 

Finally, in Chapter 5 the generalized modal identification method is applied to the 

analysis of response data obtained from the U.S.-lapan cooperative pseudo-dynamic test 

of a full-scale six-story steel-frame structure. In marked contrast to most nonlinear sys

tem identification techniques, the roof response and base input only are employed in the 

analysis. This example is intended to illustrate that the method proposed in this disserta

tion is capable of providing an accurate representation of the hysteretic response of a real 

structure. Both nonhysteretic and hysteretic models are identified using the generalized 

modal identification method. The nonpara.metric model proposed in Chapter 3 is employed 

initially to give a nonhysteretic estimate of the nonlinear stiffness and energy dissipation 

behavior. Subsequently, the parametric model introduced in Chapter 4 is used to obtain 

the final hysteretic model which characterizes the nonlinear behavior of the test structure. 

General conclusions and recommendations for further study are presented in 

Chapter 6. 



-5-

References 

[1] G. A. Bekey, "System Identification, an Introduction and a Survey," Simula
tion, October 1970. 

[2] P. Eykhoff, System Identification, John Wiley & Sons, Inc., 1974. 

[3] R. K. Mehra and D. G. Lainiotis (editors), System Identification: Advances and 
Case Studies, Mathematics in Science and Engineering, Vol. 126, Academic 
Press, New York, 1976. 

[4} J. V. Beck and K. J. Aenold, Parameter Estimation in Engineering and Science, 
John Wiley & Sons, Inc., 1977. 

[5] N. Distefano and R. Todeschini, "Modeling, Identification and Prediction of a 
Class of Nonlinear Viscoelastic Materials," International Journal of Solids and 
Structures, Vol. 9, 1976. 

[6] W. D. Pilkey and R. Cohen (editors), "System Identification of Vibrating Struc
tures: Mathematical Models from Test Data," ASME publications, 1972. 

[7] P. Ibanez, "Identification of Dynamic Parameters of Linear and Nonlinear 
Structural Models from Experimental Data," Journal of Nuclear Engineering 
and Design, Vol. 25, 1975. 

[8] F. E. Udwadia and M.D. Trifunac, "Time and Amplitude Dependent Response 
of Structures," International Journal of Earthquake Engineering and Structural 
Dynamics, Vol. 2, 197 4. 

[9] H. Iemura and P. C. Jennings, "Hysteretic Response of a Nine-Storey Rein
forced Concrete Building," International Journal of Earthquake Engineering 
and Structural Dynamics, Vol. 3, 197 4. 

[10] A.M. Abdel-Ghaffar and R. F. Scott, "Experimental Investigation of the Dy
namic Response Characteristics of an Earth Dam," Proceedings of the end U.S. 
National Conference on Earthquake Engineering, _1979. 

[11] A. M. Abdel-Ghaffar and R. F. Scott, "Vibration Tests of Full-Scale Earth 
Dam," ASCE Journal of Geotechnical Engineering Division, 1981. 

[12] S. Toussi and J. Yao, "Identification of Hysteretic Behavior for Existing Struc
tures," Report No. CE-STR-80-19, School of Civil Engineering, Purdue Uni
versity, December 1980. 

[13] S. Toussi and J. Yao, "Hysteretic Identification of Multi-Story Buildings," Re
port No. CE-STR-81-15, School of Civil Engineering, Purdue University, May 
1981. 

[14] A. 0. Cifuentes, "System Identification of Hysteretic Structures," Earthquake 



-6-

Engineering Research Laboratory, Report No. EERL 84-04, California Insti
tute of Technology, September 1984. 

(15) P. Eykhoff (editor), Trends and Progress in System Identification, Pergamon 
Press, New York, 1981. 

[16] B. J. Heieh, C. A. Kot, and M. G. Srinivasan, "Evaluation of System Identi
fication Methodology and Application," U. S. Nuclear Regulatory Committee 
Report NUREG/CR-3388, Argonne National Laboratory ANL-83-38, Wash
ington, D. C., May 1983. 

(17] T. K. Caughey, "Nonlinear Analysis, Synthesis and Identification Theory," Pro
ceedings of the Symposium on Testing and Identification of Nonlinear Systems, 
California Institute of Technology, March 1975. 

{18} S. F. Masri, T. K. Caughey, "A Nonparam.etric Identification Technique for 
Nonlinear Dynamic Problems," ASME Journal of Applied Mechanics, Vol. 46, 
June 1979. 

(19] S. F. Masri, H. Sassi, and T. K. Caughey, "Nonparametric Identification of 
Nearly Arbitrary Nonlinear Systems," ASME Journal of Applied Mechanics, 
Vol. 11, January 1981. 

[20] S. F. Masri, G. A. Bekey, H. Sassi, and T. K. Caughey, "Nonparametric Iden
tification of a Class of Nonlinear Multidegree Dynamic Systems," Journal of 
Earthquake Engineering and Structural Dynamics, Vol. 10, 1982. 

[21] F. E. Udwadia and C-P Kuo, "Nonparametric Identification of a Class of Non
linear Close-Coupled Dynamic Systems," International Journal of Earthquake 
Engineering and Structural Dynamics, Vol. 9, 1981. 

[22] M. B. Priestley, Spectral Analysis and Time Series, Vol. 1 and 2, Acacemic 
Press, Inc., 1981. 

[23] M. Hoshiya and E. Saito, "Structural Identification by Extended Kalman Fil
ter," ASCE Journal of Engineen'ng Mechanics Division, Vol. 110, No. 12, 
1984. 

[24) M. H. A. Davis, "New Approach to Filtering for Nonlinear Systems," lEE 
Proc., Vol. 128, PT. D, No. 5, September 1981. 

[25) S. A. Billings, "Identification of Nonlinear Systems - A Survey," lEE Proc., 
Vol. 127, PT. D, No. 6, November 1980. 

[26] J. L. Beck and P. Jayakumar, "Pseudo-Dynamic Testing and Model Identifi
cation," Proceedings of the 9rd U.S. National Conference on Earthquake Engi
neering, Charleston, South Carolina, August, 1986. 

[27} J. L. Beck and P. Jayakumar, "Application of System Identification to Pseudo
Dynamic Test Data from a Full-Scale Six-Story Steel Structure," Proceedings 



-7-

of the International Conference on Vibration Problems in Engineering, Xian, 
China, June 1986. 

[28] Lectures by Professor W. D. Iwan on Dynamics and Vibrations, California 
Institute of Technology, Pasadena., California., 1982-83. 

[29] Lectures by Professor P. C. Jennings on Earthquake Engineering, California 
Institute of Technology, Pasadena., California, 1983-84. 

{30] Lectures by Professor T. K. Caughey on Advanced Dynamics, California Insti
tute of Technology, Pasadena, California, 1984-85. 

[31] Lectures by Professor J. F. Hall on Finite Element Method, California Institute 
of Technology, Pasadena, California, 1983-84. 

[32] 0. C. Zienkiewicz, The Finite Element Method in Engineering Science, 
McGraw-Hill, London, 1971. 

[33] K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, 
Prentice-Hall, Englewood Cliff's, N.J., 1976. 

[34] J. L. Beck, "System Identification Applied to Strong Motion Records from 
Structures," Earthquake Ground Motion and Its Effects on Structures, S. K. 
Datta (ed.) ASME, AMD-Vol. 53, New York, 1982. 

[35] M. G. Srinivasan, C. A. Kot, and B. J. Hsieh, "Dynamic Testing of As
Built Civil Engineering Structures- A Review and Evaluation," U. S. Nuclear 
Regulatory Committee Report NUREG/CR-36, Argonne National Laboratory 
ANL-83-20, Washington, D. C., January 1983. 

[36] M. G. Srinivasan, C. A. Kot, B. J. Hsieh, and H. H. Chung, "Feasibility of 
Dynamic Testing of As-Built Nuclear Power Plant Structures: An Interim 
Evaluation," U. S. Nuclear Regulatory Committee Report NUREG/CR-1937, 
Argonne National Laboratory ANL-CT-81-5, Washington, D. C., May 1981. 

{37] E. C. Ting, S. J. H. Chen, and J. T. P. Yao, "System Identification, Damage 
Assessment and Reliability Evaluation of Structures," School of Civil Engineer
ing, GE-STR-78-1, Purdur University, W. Lafayette, Indiana, 1978. 

[38] S. D. Werner, J. L. Beck, and M. B. Levine, "Seismic Response Evaluation 
of Meloland Road Overpass Using 1979 Imperial Valley Earthquake Records," 
International Journal of Earthquake Engineering and Structural Dynamics, Vol. 
15, 1987. 

[39] P. Ibanez, "Review of Analytical and Experimental Techniques for Improving 
Structural Dynamic Models," Welding Research Council Bulletin, No. 249, 
June 1979. 

[40] G. C. Hart and J. T. P. Yao, "System Identification in Structural Dynam
ics," ASCE Journal of Engineering Mechanics Division, Vol. 103, No. 6, 



-8-

December 1977. 

[41] F. E. Udwadia. and P. Z. Marmarelis, "System Identification of Building Struc
tural Systems" Bulletin of Seismological Society of America, Vol. 66, February, 
1976. 

[42] J. S. Bendat and K. J. Arnold, Random Data: Analysis and Measurement 
Procedures, John Wiley &; Sons, Inc., 1977. 

{43) J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and 
Spectral Analysis, John Wiley &; Sons, Inc., 1980. 

[44] M.D. Trifunac and V. Lee, "Routine Computer Processing of Strong-Motion 
Accelerograms," Earthquake Engineering Research Laboratory, Report No. 
EERL 73-03, California Institute of Technology, Pasadena, California, October 
1973. 

(45) D. E. Hudson, Reading and Interpreting Strong Motion Accelerograms, Earth
quake Engineering Research Institute, Berkeley, California, 1979. 

{46] V. W. Lee and M.D. Trifunac, "Current Developments in Data Processing of 
Strong Motion Accelerograms," University of Southern California, Department 
of Civil Engineering, Report No. CE-84-01, Los Angeles, California, August 
1984. 

[47) W. D. Iwan, M. A. Moser, and C. Y. Peng, "Some Observations on Strong
Motion Earthquake Measurement Using a Digital Accelerograph," Bulletin of 
Seismological Society of America, Vol. 75, October 1985. 

[48) F. E. Udwadia, D. K. Sharma, and P. C. Shah, "Uniqueness of Damping and 
Stiffness Distribution in the Identification of Soil and Structural Systems," 
ASME Journal of Applied Mechanics, Vol. 45, March 1978. 

[49) J. L. Beck and P. C. Jennings, "Structural Identification Using Linear Models 
and Earthquake Records," International Journal of Earthquake Engineering 
and Structural Dynamics, Vol. 8, 1980. 

(50] "Modal Analysis - A Special Supplement to Experimental Techniques Supplied 
by the SEM Modal Analysis/Dynamic Systems Technical Activity Committee," 
Experimental Techniques, October 1985. 

[51} S. R. Ibrahim, "Modal Identification Techniques Assessment and Compari
son," Proceedings of the 9rd International Modal Analysis Conference, Orlando, 
Florida, January 1985. 

[521 R. Schmidtberg, "Solving Vibration Problems Using Modal Analysis," Sound 
and Vibration, March 1986. 



-9-

Chapter 2 

Generalized Modal Identification Method 

2.1 Introduction 

In this Chapter a generalization of the method of modal identification for multi

degree-of-freedom nonlinear dynamical systems subjected to base excitation is pre

sented. The case considered here is that in which only the base input and the 

response at a small number of points in the system are measured. 

For the case of linear systems, the method of modal identification has been de

veloped in both the time and frequency domains. References (1} and (2] are examples 

of two fundamentally equivalent approaches in the time and frequency domains, re

spectively. In general, linear models are only sufficient to describe and predict the 

dynamic response resulting from low-level excitations. However, the response of 

many systems during strong excitations is highly nonlinear and hysteretic. This 

reveals the inadequacies of many assumptions made in conventional modal identi

fication methods using linear models, and the need for a well-established identifi

cation technique for nonlinearly responding systems. This motivates the present 

development. 

Herein, an appropriate form of the equations of motion for a nonlinear system 

is derived. This form is then used to develop a new identification methodology. In 

this methodology, the response is decomposed into "modes" which are analogous to 

those for a linear system. The generalized restoring force for each mode is identified 

by employing nonparametric or parametric models. Consequently, the methodology 

reduces the identification problem to the determination of the effective participation 

factor for each mode which is performed by means of a one-dimensional optimization 

algorithm. The error minimization criterion selected is the difference between the 
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pe'a.ks of actual system and corresponding model response. This approach is moti

vated by the observation that peaks are generally the points of greatest significance 

in the response time history. 

The new identification methodology proposed results in considerable computa

tional efficiency. The information obtained is useful for characterizing the nonlinear 

behavior of structures and for predicting structural response to future excitations. 

2.2 Nonlinear System 

In this section the equations of motion which describe the response of a time

invariant nonlinear dynamical system are considered. 

Although most engineering systems are continuous, in some cases, including 

building structures, the dynamics can be represented adequately by assuming the 

systems as an assemblage of lumped masses which are interconnected by discrete 

elements with arbitrary nonlinear characteristics. The motion of each lumped mass 

is governed by Newton's second law. This will yield one equation for each degree

of-freedom of each mass in the system. Combined, the equations of motion of the 

entire system are obtained and can be written in matrix form as 

My+!( y, iJ) = p(t) , 
,.,.; ,..,.,~,..,., ~ 

{2.1) 

where a dot above a variable denotes differentiation with respect to the temporal 

variable t. M is a constant n x n inertia matrix, y represents the state vector, f is - ,..,. 
the nonlinear restoring force vector, and p(t) is the dynamic forcing vector. ,.... 

For systems with complex geometries, material properties or boundary condi-

tions, many analytical tools have been developed to derive equation (2.1). One of 

the most powerful and popular techniques is the finite element method. In this 

method, M and f are assembled systematically by summing the contributions from -
each of the subcomponents of the system, called the finite elements. However, there 
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are uncertainties involved in determining the nature of the loading conditions and 

material properties and in modeling of certain physical aspects. These uncertain

ties impose limitations on the method and require other techniques to determine an 

experimentally verified model (2.1). One of the techniques is system identification. 

For seismically excited structures, equation (2.1) may be expressed as 

Mii+f(y, y) = -Mlz(t), 
~ ,...,,.,.,,.,., ,..., (2.2) 

where M is the mass matrix of order n, y is the relative displacement vector with -
respect to the base, f is the nonlinear restoring force vector and z(t) is the base ....., 

acceleration. All the components of l are unity. 

Equation (2.2), representing an open system (i.e., no feedback of the output 

of the system as input to the system), is the basic mathematical model used in 

almost all system identification methodologies for analyzing the seismic response of 

a. structure. 

2.3 Modal Representation 

Consider the response of a representative six-story steel frame structure which 

was excited pseudo-dynamically into the inelastic range (3,4]. Figure 2.1 shows the 

Fourier amplitude spectrum for the relative acceleration at the roof with respect 

to the base. From the figure, the dominance of a number of frequencies and cor-

responding "modes" is clearly observed. The somewhat erratic appearance around 

each dominant frequency peak is partly due to the nonlinearity of the system. A 

similar response frequency spectrum is also observed for the nonlinear response 

of structures excited by actual earthquakes. For example, Figure 2.2 shows the 

Fourier amplitude spectrum of acceleration for the NllE component of the Bank 

of California building [5]. Based on these observations of nonlinear response in the 

frequency domain, it is assumed that the nonlinear response can be decomposed 
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into "modes" which are analogous to those of a linear system. Accordingly, a more 

appropriate form of the nonlinear system (2.2) is necessary to describe these modes. 

This form is an analogy to the modal equations of a linear system, and is derived 

from equation (2.2) by a similar transformation procedure. 

Consider a nonlinear dynamic system whose motion is governed by (2.2). 

Let 

y(t) = tu(t) , 
..... - (2.3) 

where tis ann x m transformation matrix whose columns are a set of appropriate 

orthonormal "modal vectors" for the system (2.2). It will be assumed that m is less 

than or equal to n. Substituting (2.3) into (2.2) and pre-multiplying by 4)T yields 

ii + g( u. u) = -az(t) , 
/"'ltJ tJI'IW ,., l"ttJ "' 

(2.4) 

where g = ~T f and a= ~Tl. In component form, equation (2.4) becomes 
~ ~ ,...., ~ 

ii,. + g,.(~, .Q_) = -a,.z(t) ; r = 1, 2, ... , m. (2.5) 

Equations (2.5) are analogous to the modal equations for a linear system. 

Next, define yi(t) as 

y[(t) = 1/>ir u,.(t) . (2.6) 

y[ may be considered to be the rth generalized modal displacement at station i. 

Then, the total displacement at station i may be expressed as 

m 

Yi(t) = _E y[(t) , (2.7) 
r=l 

where the y[ satisfies the equation 

iii+ hi(yt, iii) = -.Bi z(t) ; s = 1, 2, ... , m. (2.8) 

h[ is herein referred to as the generalized modal restoring force and fJ[ as the 

effective modal participation factor. In general, h[ is coupled as shown in equation 
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(2.8) since hi = 4>ir gr and gr is coupled in ,!!. and J6. Equation (2. 7) represents a 

kind of modal superposition. 

Equations (2.7) and (2.8) are the basic equations used to describe the response 

of the ,-th degree of freedom. They are fundamental to the development and appli

cation of the method. 

2.4 Identification Problem 

The problem of system identification is to determine a model that describes 

input-output data. obtained from a given system. The choice of model parameters 

is, as a. rule, made based on some optimality criterion. The criterion is that the 

prediction error is minimized. The prediction error is usually defined as a function 

. of the difference between the response predicted by the model and that actually 

measured from the system. Minimization criteria. based on the prediction error are 

employed throughout in this dissertation to develop both parametric and nonpara

metric identification methods in a unified framework. This framework is described 

below. 

As applied to dynamical systems, the identification problem can be formulated 

as minimizing the prediction error P according to the criterion 

P(!) = P(~(t)- :@.(t; !}) =minimum w.r.t.! (2.9) 

subject to 
d'X(t· (}) 
.., ' ,., = /(X z(t) t· tJ) 

dt ""' ..,, er ' ' """ 
(2.10) 

and 

g(!) ~Q. 
N 

(2.11) 

In this formulation, the function P needs to be specified in each case in terms 

the difference between the measured response x and the predicted response x. A 
""' er 

common definition of P is given in the next section. (} is the vector of model 
N 
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parameters. Note that in the case of nonparametric identification, ! is a vector of 

unknown functions rather than unknown parameters. The model state~ is described 

by a state equation expressed in the general first-order form (2.10) in which ~(t) 

represents the input to the system and the model. The parameter constraints are 

specified through (2.11). Any solution must satisfy both the dynamic constraints 

(2.10) and the static constraints (2.11). 

2.5 Minimization Criterion 

A simple mathematical model can never represent every detail of an actual 

system, and vibration measurements are inevitably contaminated by noise. There

fore, it is impossible that the parameters of an assumed model will ever result in a 

perfect match between the measured and computed responses. In the present for

mulation, the discrepancy between the state of the model and system is measured 

by the prediction error P. The parameters fJ are considered being determined if the 
""' 

prediction error P is minimized to an acceptable degree. 

A variety of different error minimization criteria may be employed. The root

mean-squares criterion has been used by many researchers [6-8]. A common defini-

tion is 

where To is the time interval for which data are available. i, is the response predicted 

by the model and iE, is the measured response of the system. 

It has been found that an alternative criterion which minimizes the root-mean-

square of the difference between the measured and model response at peaks only 

is adequate for structural stystems. This approach is motivated by the observation 

that peaks are generally the points of greatest significance in the response time 

history. The error minimization criterion employed in this work is therefore defined 
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in this way. Hence, 

( ) 
r.m.s. of [£(tp) - ~(tp;!) ] P! = 1 ... 

1 
= minimumw.r.t.f, 

~max 
(2.13) 

where l~lmax is the maximum of the absolute value of the components of ~(t). 

The peak x(tp) is the local extremum of the measured response which occurs at a 

time tp, and x(tp;!) is the corresponding model response at time tP. All the peaks 

so defined are checked and used in (2.13). The implicit dependence of the model 

response on the parameters of the model,/!..; has been shown in equation (2.13). 

In general, P is a nonlinear scalar function in the parameters P.: Therefore, the 

task of finding parameters that minimize P is a nonlinear optimization problem in 

which the initial guess for! is crucial. When the initial guess is far away from the 

minimum value, some algorithms will either not converge at all, or will converge to 

a local minimum or to a nonphysical set of parameters 19]. 

2.6 Identification Methodology 

2.6.1 Single-Mode Identification 

The case considered here is that in which the base excitation z(t) and the 

parallel component of the response Yi(t) at some point in the structure are measured . 

. The subscript i will be omitted from this point on because the response of only one 

coordinate is used. The problem is to identify a nonlinear model for the system from 

thelmeasured response and base excitation. The model used is defined by (2.7) and 

(2.8) which for only one response measurement may be written as 

(2.14) 
r=1 

s = 1,2, ... ,m. (2.15) 

The generalized restoring force function J!:. = [ h 1 , h 2 , ••• , h m] T and effective 

participation factor {3 = [!31 , {32 , ••• , pm J T are estimated optimally according to -
P(l!:., [!) = P( y(t) - y(t; ~' f!)) =minimum w.r.t. ~' f!w (2.16) 
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subject to (2.14) and (2.15). 

This is a complex multi-variable nonlinear optimization problem. The difficul

ties involved in solving such a problem are: 

(1) It is difficult to get good initial estimates for all parameters but these are 

crucial for the minimization algorithm to converge. Otherwise, the algorithm 

may diverge or converge to some nonphysical parameters. 

(2) Even if the algorithm converges to some minimum, it is difficult to assure this 

is a global minimum. 

(3) If there are too many parameters to be optimized at one time, P may be 

insensitive to the change in a single parameter. Also, if noise exists in the 

measurement, some parameters may be determined by identifying noise. Both 

situations result in unreliable answers. 

The generalized modal identification method presented herein alleviates the 

aforementioned problems associated with nonlinear optimization by determining 

the modal properties mode by mode, sequentially. Single-mode identification is 

the "building block" of the identification methodology (2.16). Each single-mode 

identification problem is performed based on 

(2.17) 

subject to (2.15). 

It is convenient to formulate the single-mode identification problem in three 

parts: 

(1) estimation of the modal response yr, yr and gr, 

(2) estimation of the modal restoring force hr, and 

(3) estimation of the modal participation factor pr. 
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2.6.2 Estimation of the Modal Response 

Recall that it was assumed that the nonlinear response can be decomposed into 

modes based on an analogy to the modes of a linear system. Initially, the modes are 

separated by band-pass filtering based on the information contained in the frequency 

domain. A similar approach has been used to extract the modal parameters of a 

linear system, [10-11], and to study the fundamental mode behavior of the response 

of a nonlinear system [12-15]. 

Consider that the rth dominant mode is under identification. The modal re

sponse yr is estimated initially by applying a band-pass filter to the response data 

over a frequency band selected for this mode. The motivation for this operation is 

to define each dominant mode by an appropriate frequency band and to eliminate 

the influence of other modes by band-pass filtering. Consequently, the coupling in 

modes is effectively eliminated. 

The determination of the appropriate frequency band is made by inspection of 

the Fourier amplitude spectrum of the response acceleration. The nonlinear effect 

may cause some erratic appearance around each dominant peak which makes the 

choice more difficult. However, any mistake made in choosing the frequency band 

can be corrected later if it is found that some parameters identified are nonphysical 

or the identification algorithm does not converge. 

In practice, the band-pass filtering is performed in two stages: low-pass fil

tering of the signal and high-pass filtering of the filtered signal. The ideal low-, 

high- and band-pass filters have amplitude response of unity within the passband 

and zero elsewhere. The passbands for low-, high- and band-pass filters are as 

shown in Figure 2.3. The frequencies WL and WH are the cutoff frequencies. The 

response functions in the figure are those of ideal filters, and will have to be approx

imated in practice [16-20]. The attention will focus herein on a specific low-pass 

filter, the Ormsby filter, which provides the "building block" for band-pass filters. 
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The frequency response function of the Ormsby filter, shown in Figure 2.4, is given 

by 

{ 

1 lwl < Wo 

H(w) - 0 lwl > w, 
- (w +w,)j~w -w, < w <-We 

(w, -w)j~w W 0 < w < w, 

(2.18) 

where (we,w,) is the transition band, 6.w = w,- We. The corresponding impulse 

response h(t) is given by 

h(t) = cosw0 t- cosw,t . 
271"2t2 l:J.w 

(2.19) 

The impulse response filter weights for discrete data are obtained by quantizing h(t) 

at equal time intervals. 

As a means of sharpening the result, the estimation of the modal response is 

actually performed iteratively in the generalized modal identification method. The 

algorithm is described herein. 

From previous iterations, the latest estimate of the modal response yr is ob

tained and is denoted by fir, where r = 1, ... , m. Initially, all modes are estimated 

by band-pass filtering. Based on equation (2.14), the model response fj is the sum

mation of all fr. That is 
rn. 

fJ(t) = L: fjr(t) . (2.20) 
r=l 

The difference between the actual response yr and the model response fir is defined 

as the residual error e 

e(t) = yr(t) - flr(t) . (2.21) 

The modal error er(t) is then calculated by band-pass filtering e(t) over the same 

frequency band chosen for the rth mode. The new estimate of yr is then determined 

by adding the modal error er(t) to the latest estimate yr. The yr and it are updated 

in the same manner. All the new estimates of yr, yr and gr are used to updated 

the modal response employed in the subsequent estimation process. 
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2.6.3 Estimation of the Modal Restoring Force 

Since the coupling of modes is essentially eliminated in estimation of the modal 

response as described in section 2.6.2. The modal equation (2.9) may be written as 

(2.22) 

When the right hand side of equation (2.22) is specified, the identification problem 

is reduced to identifying the generalized restoring force hr. 

In the case of linear systems with classical normal modes [21], the generalized 

restoring force will be of the form 

(2.23) 

where ~r and Wr are the modal damping ratio and frequency, respectively. Since the 

form is specified in terms of two parameters, ~r and Wr, the identification task is 

to determine these two parameters for each mode. For a general nonlinear system, 

the analytical form of the generalized restoring force hr is unknown and can only 

be estimated. Both parametric and nonparametric restoring force models can be 

employed to extract the nature of hr. 

Let h.r(,~.J be the estimate given by the restoring force model. The parameters 

! of the model are then selected based on an optimal matching of hr and h,r. That 

is 

P(!) = P( hr(t)- hr(t; £,)) =minimum w.r.t.! (2.24) 

subject to (2.22), where P is the prediction error which quantifies the difference 

between hr and h,r, 

At this stage of the identification process, the numerical values of the modal 

restoring force function and corresponding state, the modal displacement and ve

locity, are known at discrete time steps. It is therefore important to notice that the 
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parameters ft can be determined by minimizing P(!!{) without solving the equa

tions of motion, which are in general nonlinear differential equations. This is in 

clear contrast to the traditional approach in which each new estimate of!£ requires 

a new differential equation to be solved. Accordingly, the identification based on 

restoring force can be performed more efficiently. 

Two nonlinear restoring force models are employed herein in the generalized 

modal identification method. The first, a nonparametric model, is used to obtain 

an initial estimate of the backbone relationship of the hysteretic restoring force and 

the second, a parametric hysteretic model, is used to obtain the final modal model. 

The detailed description of the identification models is presented in Chapters 3 and 

4, respectively. 

2.6.4 Estimation of the Modal Participation Factor 

For a given effective participation factor, the modal parameters may be esti

mated directly according to (2.24). However, this leaves the participation factor to 

be determined. This simplifies the single-mode identificaiton problem to a single

parameter optimization with respect to pr only, namely 

P(lr) = P(t((t)- if(t; {J,.)) =minimum w.r.t. {J,. (2.25) 

subject to (2.15), where any of yr, iJ,. and yr can be substituted in (2.13) for~ 

depending on the application. Any one-dimensional nonlinear optimization scheme 

can be employed to minimize P(fJ,.) in a straightforward manner (22-28]. Each 

numerical evaluation of P(fJ,.) requires solving (2.15) once only. Note that the 

estimation of pr is a loop that contains the previous estimation process for h,.(,!). 

A one-dimensional minimization method is selected in the present study which 

involves only evaluating the function and not the gradient of the function. Let 

the minimizing function be denoted by f (a). The method starts with an initial 

estimate range, [aL, aH], of the minimum of /(a), and a step-size 6 = (aH -aL)/N, 



-25-

where N is the total number of steps. a is incremented continually by 6, that is, 

a = aL, aL + 8, aL + 28, ... , until a = aH. The value off is then calculated at 

each step from aLto aH and the minimum is taken. 

The key point is the choice of range [ a:L, a:H J and step-size 8. H the range 

[aL,aH] is too small or the step-size 8 is too big, the minimum of /(a:) may be 

missed. On the other hand, if the range is too large or the step-size is too small, too 

much time may be spent in the stepping required to find the minimum of f (a). An 

approach which was found to work well is to start with a bigger range of (a:L,aH] 

and larger 8 to get an approximate minimum of f (a:). Subsequently, this minimum 

is refined by choosing a narrower [aL, aH] and smaller 8. 

2.7 Summary 

A practical identification methodology has been presented that is suitable for 

application to multi-degree-of-freedom nonlinear structural systems. The method 

requires information regarding the base motion and system response at only one 

point. 

The features of this identification methodology are: 

(1) Frequency domain information is used to estimate the "modal" response of 

the structure. Coupling in the generalized modal restoring force is thereby 

effectively eliminated. 

(2) The modal restoring force parameters are estimated by a nonparametric identi

fication technique based on the generalized modal restoring force. This stage of 

the identification process requires no solution of nonlinear differential equations 

of motion and results in considerable computational saving. 

(3) The problem is reduced to determining an optimal estimate of the effective 

modal participation factor only. Any simple one-dimensional nonlinear opti

mization scheme can be employed for this process. The difficulties associated 
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with multi-variable nonlinear optimization are thereby avoided and additional 

computational efficiency results. 

In the subsequent chapters, the generalized modal identification method, in

corporating nonparametric and hysteretic restoring force models, will be described 

in more detail. The validation of the method and the model will be performed with 

simulated data. Application to real data from structures will also be presented. 
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Chapter 3 

Generalized Modal Identification 
Using Nonhysteretic Models 

3.1 Introduction 

This chapter is concerned with the generalized modal identification method 

incorporating nonhysteretic restoring force models. After reviewing a class of non

hysteretic models, a "nonparametric" model with only four terms is proposed based 

on model simplicity and computational considerations. The coefficients of these four 

terms are determined directly by approximating the system generalized restoring 

force in a .least-squares sense. 

The identification algorithm together with the model are verified using simu

lated data generated for a nonlinear (hysteretic) system. The results provide an 

excellent example of the use of nonparametric restoring force models and a good 

motivation for further studies on employing hysteretic restoring force models in the 

generalized modal identification method. 

3.2 Nonparametric Identification Techniques 

H a mathematical model of a system is known a priori, and the input and 

output data are used to determine the parameters of the model, then the process is 

known as a parametric identification. Most system identification techniques are of 

this type. Certain methods are termed "nonparametric" because they do not seek 

to determine the parameters of an assumed model. Instead, their objective is to 

arrive at a functional representation of the system that is capable of predicting the 

output for a given input. 

Traditionally, nonparametric identification for a dynamic system is performed 

using the Volterra-series or Wiener-kernel approach [1-5]. However, these approaches 
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have various restrictions which limit their use in practice. For example, the nature 

of dynamic systems to be identified must be nonhysteretic, and only stationary 

and white noise can be used as the input signal. Furthermore, when dealing with 

systems that incorporate commonly encountered nonlinearities, such as polynomial 

nonlinearities, the evaluation of higher-order terms requires a prohibitive amount of 

computational effort, coupled with very demanding ,and usually unrealistic, storage 

requirements. 

Recent nonparametric identification development has been devoted to estimat

ing the nonlinear restoring force in a dynamic system. This approach was first 

introduced by Masri, Caughey, et al. [6-Sj in order to alleviate some of the afore

mentioned problems associated with traditional nonparametric identification tech

niques. This concept is extended in the present work to obtain a first estimate of 

the generalized modal restoring force of a hysteretic system. 

3.3 Nonhysteretic Restoring Force Models 

Consider the general form of the equation of motion for a single degree-of

freedom system 

g + h(y,y) = a(t), (3.1) 

where y is the generalized relative displacement, h(y, y) is the generalized restoring 

force per unit mass and a(t) is the excitation acceleration. Equation (3.1) can be 

used as the basic model to represent the dynamics of a system or of a particular 

mode of a system. Note that the physical and modal coordinates are the same for 

a single degree-of-freedom system and no distinction between them is made in this 

section. 

3.3.1 Linear Models 

The system (3.1) is said to be linear if h(y, y) can be expressed as 

h(y,y) = 2~0 WoY + w;y, (3.2) 
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where ~o represents the fraction of viscous damping and w0 is the natural frequency 

of the system. Since the form representing the restoring force is known in terms 

of two parameters, !:o and w0 , there is no need to identify h using nonparametric 

techniques. The identification of the linear system (3.2) is therefore a parameter 

estimation problem in which the parameters, ~0 and W0 , can be determined in either 

time or frequency domain. References [9] and [10] are examples of two fundamen

tally equivalent approaches in the time and frequency domains, respectively. It has 

been found that the response of buildings subject to earthquakes can be reproduced 

well by linear models only when the nonlinear behavior is not pronounced. This 

shows the limitation of linear models for describing nonlinear systems. 

3.3.2 Non parametric Models 

In many cases, the system (3.1} is nonlinear and the analytical form of h(y, y) is 

unknown. Determining an appropriate nonlinear model for the generalized restoring 

force h can be formulated as a nonparametric identification problem. Among many 

nonlinear models which have been used to extract the nonlinear nature of h, some 

nonhysteretic models will be briefly described in this section. 

Masri, Caughey, Miller, et al. [6-8] have proposed a non parametric identifica

tion technique for general nonlinear problems. The main idea behind their method 

is to estimate the restoring force h(y, iJ) by an approximation function h(y', y') 

expressed in terms Chebyshev orthogonal polynomials in the form 
I J 

h(y', !i') = L L cii 1i (y') T; (!i') , (3.3) 
i=O j=O 

where I and J represent the order of the expansion, the functions T1 are Chebyshev 

polynomials and Ci;'s are constant coefficients. Both the generalized displacement 

y and velocity iJ have been normalized to lie in the range -1 and 1. The normalized 

values y' and y' corresponding to y and y are defined as 

Y
1 

= [y- (Ymax + Ymin)/2]/[(Ymax- Ymin)/2] 



-32-

and 

f/ = [y - (Ymax + Ymin) /2] / [ (Ymax - Ymin) /2] • 

The Chebyshev polynomials are defined as 

Tn(e) = cos(ncos-1 e) ; 

They satisfy the weighted orthogonality property 

-1 < e < 1. 

n=tfm 

n=m#O 

n=m=O, 

(3.4) 

(3.5) 

(3.6) 

in which the weighting function w(e) is (1- e2)112 • By making use of the orthog

onality of Chebyshev polynomials, the coefficients c,,. of equation (3.3) are given 

by 

where 

{ 

(2/1r)2 D,,. i and j =I= 0 

c,i = (2/,.-2) n,,. i or j = 0 

(lj,.-2) D,; i = j = 0, 

(3.7) 

D,;=/
1 ! 1 

h(y',y')Ti(Y')T;(ti')w(y')w(y')dy'dy'. (3.8) 
-1 -1 

Since the orthogonal polynomials form a complete set of functions, any con-

tinuous function can be expanded in terms of the Chebyshev polynomials. This 

is the common basis for using orthogonal polynomials to represent or approximate 

functions whose exact mathematical forms are unknown. Because the form of the 

restoring force h is not assumed at the beginning of the identification problem, 

this method is referred to as a nonparametric method; yet when the function h 

is represented mathematically by orthogonal polynomials, the coefficients of the 

polynomials are the parameters of the model. 

Note that in the special case when no cross-product terms are involved in any 

of the series terms, functions h can be expressed as the sum of t~o one-dimensional 
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orthogonal polynomial series instead of a single two-dimensional series of the form 

(3.3). Note also that the Chebyshev polynomials are only a subclass of the orthog

onal polynomials which satisfy the orthogonality condition 

L" w(e) cPn(e) 1/Jn-de> de= o, (3.9) 

where w(e) is the weighting function, 1/Jn-l(e) is an arbitrary polynomial of degree 

n-1 or less, and cPn(e) is a polynomial of degree n. Other orthogonal polynomials, 

such as the Legendre polynomials, the Laguerre polynomials, and the Hermite poly

nomials, can be defined by using different weighting functiond over the domain of 

interest (a,b1 [11-12}. However, Chebyshev polynomials have the desirable feature 

of equal-error (equal-ripple) approximation within an interval of interest [6-SJ. 

Udwadia and Kuo {13} extended the method of Masri, Caughey, et alto identify 

a chain-like nonlinear memoryless dynamic system. The problem is formuated in 

terms of general orthogonal polynomials rather than the specific Chebyshev polyno

mials. The restoring forces are assumed to be represented by two additive functions 

of the velocity and displacement vectors, each being represented by a sum of general 

orthogonal polynomials. However, a method for the general form of the restoring 

force is reported to be available. 

Toussi and Yao [8] have used an approach similar to the method of orthogonal 

polynomial expansion. Instead of using orthogonal polynomials such as Chebyshev 

polynomials, they assumed that the restoring force can be represented as the sum of 

two additive functions of displacement and velocity respectively (namely, stiffness 

and damping functions), and that these functions are simple polynomials of their 

arguments, that is 

(3.10) 

where 

h,(y) = ao + a1y + · · · + amym 
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and (3.11) 

This model can be viewed as a truncated form of previous nonparametric models 

without cross-product terms. Note that Toussi and Yao called their method a 

parametric method. 

In principle, all the restoring force models reviewed above are nonhysteretic 

and are strictly only suitable for nonlinear systems with memoryless nonlinearities. 

The applicability of these models for nonlinear hysteretic systems is questionable. 

As applied to simulated data generated from a nonlinear system consisting of some 

hysteretic elements and some nonhysteretic elements, however, some positive results 

have been reported [14-15}. These positive results have indicated that nonparamet

ric methods have a place in preliminary identification studies of hysteretic systems. 

That is, they may suggest forms for the parametric model which should be used and 

they may even provide a good initial estimate of parameters for the model which 

should be selected. 

This important insight is exploited in this thesis to identify the hysteretk 

behavior of a nonlinear system in two stages. A nonparametric model is used 

to obtain an initial nonhysteretic estimate of the generalized restoring force for 

each mode. This nonparametric model suggests the parametric relationship for the 

backbone of the hysteretic model employed in the final stage of identification. The 

results of the nonparametric identification thereby can be used as an initial estimate 

for the backbone of the final model. 

The final stage of identification is left to be discussed in Chapter 4. In this 

chapter, the initial stage is investigated using a simple non parametric model. 
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3.4 Four-Parameter Nonparametric Model 

A relatively simple nonparam.etric model with only four terms is herein intro

duced. The simplicity of the model makes it easy to illustrate the point made above 

regarding the role of nonparam.etric techniques using nonhysteretic models in the 

preliminary identification studies of hysteretic systems. 

3.4.1 Model Considerations 

A good "model" of a dynamic system is a reasonably simple mathematical 

description of that system which is capable of representing or extracting the essential 

aspects of the response in usable form. H a. model is too complex, its usefulness 

is questionable. Simplicity is a major objective in model construction. In fact, a 

model is a representation of reality with complexities reduced to the extent possible. 

In a nonparam.etric approach, the system under consideration is treated as a 

"bla.ck box" and the model is identified assuming no a priori knowledge. Such an 

approach usually results in a model which is exceedingly complex so as to make 

computation and interpretation difficult. The complexity is caused by attempting 

to describe not only the response due to important mechanisms, but also every 

detail resulting from unimportant mechanisms or simply from noise. 

This section represents an attempt to limit the representation of a nonpara

metric restoring force model to the extent possible based on both computational 

considerations and particular aspects that are essential to select the final parametric 

hysteresis model. 

Recall the modal equation (2.23) 

(3.12) 

When the right hand side of equation (3.12) is measured or estimated at each time 

step, the modal restoring force hr is known as a function of the modal displacement 

yr and modal velocity yr. Thus, the numerical values of hr, yr and yr for each 
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time step can be stored in tabular form for later reference. This approach needs no 

computational effort, but usually demands unrealistic storage requirements. Also, 

it is difficult to interpret the tabular data, especially when they are contaminated by 

noise. Alternatively, for purpose of either condensing the data or extracting certain 

characteristics of hr from the noise contaminated data, a. function ht of yr and yr 

can be introduced which gives an approximation of hr(yr,yr) in some least-squares 
.... 

sense. The so-identified representation hr usually provides valuable information for 

interpreting the physical nature of hr. 

For a general nonlinear system, the analytical form of hr is unknown and 

various non parametric models may be employed to estimate hr. Initially, it is 

assumed in this study that the generalized restoring force hr can be expanded by a 

two-dimensional power series in yr and fir. That is 

I J 

h"(yr' y'") = L L Ai; (yr)i(yr).i ' {3.13) 
i=O i=O 

where I and J represent the order of the expansion and Ai1 's are the coefficients 

or parameters of the model which need to be determined numerically using a least

squares method. Note that the ordinary polynomials have been used to make the 

physical meaning of Ai,. more explicit. For example, A10 and A01 can, rather than 

just mathematical coefficients, be interpreted as the natural frequency and viscous 

damping coefficient at small amplitude oscillations, respectively. 

For the nonhysteretic case, the general form (3.13) in principle yields a "best" 

least-squares fit of the restoring force function hr. However, when the data are 

contaminated by noise and the order of expansion is allowed to be large, the results 

may be the identification of a function that fits not only the actual response part 

of the data but also the noise. It is therefore expected that nonzero coefficients will 

be identified for initially nonexistent terms in the system if noisy data are used. 

Even if the coefficients may be small compared to the predominant coefficients, 
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these additional coefficients have no physical significance. They also degrade the 

potential of using the identified parameters to extrapolate or to predict the response 

of the system for other than the identification signal. 

In order to illustrate this point, consider a linear single degreEH>f-freedom sys

tem being identified by employing the general model (3.13). Because of noise in 

the data, nonzero coefficients, including a. constant term, will be identified for ini

tially nonexistent terms in the system. If the entire model is used to predict the 

response to another excitation, all these additional terms identified will degrade the 

predicted response. For example, the constant term will drive a motionless system 

to move even if there is no excitation, while the additional higher-order powers will 

contribute to the response unrealistically when the system is subjected to high-level 

loading. 

It is concluded that if the general model (3.13) is used solely to compress or 

smooth the tabular function hr in the approximate sense, the orders I and J can 

be allowed to be as large as needed for minimizing the least-square error between 

hr and h,r. On the other hand, if the model is used to extrapolate or predict the 

response of the system, the order should not be determined by mechanically best

fitting polynomials to the data. All a priori knowledge and physical information 

should be used to arrive at the best representation. 

Based on the above observations, an appropriate-truncated version of the non

parametric model {3.13) is sought herein. All the cross-product terms are first 

eliminated from (3.13) because the interpretation of coefficients A~m' where n # 0 

and m # 0, is less obvious or may require considerable effort. All the even-power 

terms, including the constant term, with coefficients A~m' where n (even) ~ 0 

or m (even) ~ 0 are also eliminated because they make the restoring force non

symmetric which is not the case of interest herein. Finally, among all the odd-power 

terms left, only four terms with coefficients A10 , A3o, A01 and A03 are preserved. 
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The reason is that, intuitively, these four coefficients alone should be sufficient to ex

tract the main feature of nonlinearities which are commonly encountered in physical 

systems. It is also perceived that the nonparam.etric model may provide important 

information for constructing the final parametric model to describe the hysteretic 

response of a nonlinear system. The reality of the model must, of course, be justified 

by applying the model to both simulated and real data. This is done in the latter 

parts of the thesis. 

From another point of view, the final truncated non parametric model may also 

be considered the simplest extension of the linear model (3.2) by simply adding two 

cubic nonlinear terms with the coefficients A30 and A03. It is then interesting to 

examine how well this simple nonhysteretic model can reproduce hysteretic response 

and how much information it provides in the preliminary identification studies of 

hysteretic systems. 

3.4.2 General Description 

Let aJ:, a2, a3 and a4 denote the coefficients AJ:0 , A30 , A 01 and A03, respec

tively, and h.r the estimate of the generalized modal restoring force hr. The above 

truncated nonpara.metric model, called the four-parameter nonpara.metric model, 

can be expressed as 

(3.14) 

where the coefficients aJ:, a2, a;, and a4 are the four "parameters" of the model. 

The parameters can be described in two categories: 

( 1) small amplitude parameters- a!, a; 

When the system is subjected to low-level loading, the lower-power terms in 

(3.11) will dominate the response, i.e. the parameters a! and a3 control the small 

amplitude behavior of the model. Hence, under small amplitude response, it is 

assumed that the model behaves like a linear oscillator. 
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(2) large amplitude parameters- a~, a~ 

The parameters ai and a3 are used to describe the nonlinear behavior at large 

amplitude oscillations. The nonlinearity is represented by a polynomial type that is 

defined by cubic displacement and cubic velocity terms without cross-product terms. 

Depending on the sign of a2, the form of (3.14) can be made to represent restoring 

forces with hardening or softing nonlinearities. Similarly, depending on the sign of 

a~, the equivalent viscous damping can increase or decrease with amplitude. Thus, 

the nature of the system nonlinearity is reflected in both the magnitude and sign 

of these coefficients. 

3.4.3 Parameter Estimation 

The coefficients ai, i = 1, 2, 3, 4 , appearing in the four-parameter non paramet

ric model (3.14) may be evaluated numerically by approximating each hr in some 

least-squares sense. The least-squares approximation problem is described below in 

general form. 

Let f(x) be a given real-valued function defined at discrete points Xk, k -
..... 

1, 2, .•. , K. Choose an approximating function f(x) of the form 

I 

/(x) = L a,;tfoi(x) {3.15) 
i=l 

for any real set a,;, i = 1, 2, ... , I and suitable basis functions 1/1,;, i = 1, 2, ... , I. 

The coefficients a,; are to be determined so that the ·error between f(x) and f(x) 

at Xk, k = 1, 2, ... , K , is minimized, say in the least-squares sense. That is, the 

coefficients ai are estimated based on the following criterion 

i = 1, 2, ... , I , (3.16) 

Estimates of a-& then require the solution of the linear simultaneous equations 

I 

L Cijai = b;' 
i=l 

{3.17) 
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where 

K 

bi = L f(x~~;) tPi(x~~;) (3.18) 
k=l 

and 
K 

c,i = I: t!J,(x~~;) tPi(x~~:) . (3.19) 
k=l 

As applied to the identification of the four-pa.ra.meter "nonparametric" model, 

the basis functions are ordinary polynomials and the discrete points are chosen 

at peaks only. Note that this method involves no iterative nonlinear optimization 

process to estimate the model parameters. This results in additional efficiency 

besides those points mentioned in section 2.6. 

3.5 Verification with Simulated Data 

The validity of the generalized modal identification method incorporating the 

four-parameter nonparametric model is now examined by reporting the results of 

identification and prediction performed with simulated data. 

3.5.1 Data Generation 

Verification System To test the identification approach proposed herein for 

hysteretic response, the verification system used is the hysteretic three-degree-of

freedom mathematical model shown schematically in Figure 3.1(a). 

This planar system consists of three lumped masses m,, i = 1, 2, 3. The ab

solute displacement of m, is denoted by Xi, while the prescribed base acceleration 

is designated by xb(t). The relative displacement with respect to the moving base 

is given by Yi = Xi - Xb(t), and the inter-mass relative motion is specified by 

Zi = X& - Xi-l for i > 1, and z1 = x 1 - xb(t). The nonlinear restoring force of 

each element, denoted by gi, is assumed to be the distributed-element hysteretic 

model with 15 subelements. There is no viscous damping assumed in the verification 

system. 
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To represent a realistic physical system, the characteristics of the verification 

system are chosen to approximate those of a three-story steel frame structure tested 

on the shaking table at the University of California, Berkeley, Figure 3.1(b). This 

test structure has been extensively analyzed, both analytically and experimentally 

[16-17]. 

The values of the system masses are chosen as: 

m 1 = 2110 kg, m2 = 2110 kg, ms = 2110 kg. 

The hysteretic behavior of all elements g;, i = 1, 2, 3, is illustrated by the actual 

inter-mass restoring force diagrams, shown in Figures 3.5, 3.6 and 3.7, for three 

different base excitations described below. 

Probing Signals For identifying the nonlinear model of a general system, the 

probing signal should be rich in frequency content and should contain sufficient 

energy to excite the system to a response level that would bring its nonlinearities 

into play. For hysteretic systems, the response is nonlinear and path-dependent, i.e. 

dependent on the time history of the dynamic loading. It is therefore desirable to 

generate the simulated response with several inputs of different characteristics. 

Based on the above considerations, three different earthquake accelerograms 

are selected as a broad-band base excitation to generate response data for the ver

ification system. The first accelerogram, El Centro, 1940, SOOE, is used to identify 

the system. The second accelerogram, Taft, 1952, S69E and the third, Parkfield, 

1966, N65E, are used to study the prediction capability of the identified model. To 

assure significant nonlinear response,. the amplitude of the three accelerograms are 

scaled to peak accelerations of 57% g, 50% g and 61% g, respectively. 

The different characteristics of these three scaled accelerograms can be com

pared in both the time and frequency domains. Figures 3.2-4(a) show the time 

histories of the two accelerograms from 0 to 15 seconds which is the segment used 
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Figure 3.2 Scaled El Centro accelerogram, 1940, SOOE. 
(a) Time history (peak = 0.57 g). 
(b) Fourier spectrum. 
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Figure 3.4 Scaled Parkfield accelerogram, 1966, N65E. 
(a) Time history (peak= 0.61 g). 
(b) Fourier spectrum. 
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to generate the simulated response for the system. The frequency domain compar

ison is made by showing the corresponding Fourier amplitude spectra in Figures 

3.2-4(b). The corresponding inter-mass restoring force diagrams are shown in Fig

ures 3.5-3. 7. Note that Figures 3.6 and 3. 7 exhibit more significant hysteretic 

behavior than does Figure 3.5. 

"Measured" Data In the present study, it will be assumed that the only "mea

sured" data. is the absolute acceleration at the roof, xa(t), and at the base, Xb(t). 

By substra.cting the base input from the absolute response, the relative response 

with respect to the base is obtained. The velocities and displacements are obtained 

by integration of the accelerations. The system is taken to be initially at rest. 

3.5.2 Model Identification - Parameter Calibration 

The first stage is to identify a. nonlinear model for the verification system. In 

this stage, the model parameters are calibrated using a particular set of simulated 

input and response "measurements". The data used herein are the above-mentioned 

scaled El Centro accelerogra.m and the corresponding acceleration response at the 

"roof". 

Observe the Fourier amplitude spectrum for the relative acceleration of the 

roof with respect to the base shown in Figure 3.8. Dominant frequencies are clearly 

visible. The somewhat erratic appearance around each dominant frequency peak is 

partly due to the nonlinearity of the system. However, ·the dominance of a number of 

frequencies and corresponding "modes" is quite clear. A similar phenomenon is also 

observed for the response frequency spectra. of actual structures subjected to strong 

ground motions. As mentioned in Section 2.6.2, this frequency domain information 

can provide important guidance in choosing the frequency band of dominant modes 

in the response. The values of frequency bands chosen for the first two dominant 

modes are indicated in Table 3.1. 
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Following the procedures described in Section 2.6, a succession of single-mode 

identifications is performed one mode at a time and a final modal model based on 

dominant modes is obtained. For each single-mode identification, initial estimates 

are not required because the method reduces the problem to single-parameter iden

tification with respect to the modal effective participation factor {3r. The optimal 

estimate pr is easily obtained by a simple one-dimensional nonlinear optimization 

scheme outlined in Section 2.6.4. For given pr, the modal parameters for the gen

eralized modal restoring force hr are estimated directly by the nonparametric iden

tification technique described in Section 3.4.3. 

The only potential frequency domain problem is the determination of the ap

propriate frequency band for each mode from the Fourier amplitude spectra. of the 

response. The erratic appearance around each dominant peak may sometimes make 

the choice difficult. However, it is found that any mistake made in choosing the 

frequency band will result in some parameters identified being nonphysical or the 

convergence of the identification algorithm being difficult. Subsequent corrections 

can be made if either of these two situations is encountered. 

The effective participation factor pr is determined by minimizing the difference 

between the model and actual system response. Recall the definition of P in Section 

2.5; that is, the ratio of the r .m.s. difference of the response at peaks only to the 

maximum response of the system. Any response quantity can be chosen in P. The 

acceleration is used in this study because the signal of the high frequency modes is 

relatively small in both velocity and displacement and also because the acceleration 

time history has relatively more peaks. 

The results for the optimal model determined by acceleration matching are 

given in Table 3.1. The prediction error P is also given. Table 3.1 shows that 

after the second mode has been identified, the prediction error P based on the ac

celeration peaks is 0.13. Softening behavior is observed from the negative sign of a2 
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for both modes. This is also clearly seen from the generalized modal restoring force 

diagrams shown in Figure 3.9. Note that an attempt to identify the third mode is 

not successful because the third mode component of the response is relatively too 

small. 

The fit of the response time histories using two modes is shown in Figure 

3.1Q-3.12. The solid line is the "measured" system response and the dashed line 

represents the response predicted by the model. From Figure 3.10, it is seen that the 

two-mode model gives a very good frequency and amplitude estimate of the actual 

acceleration data. The identified velocity and displacement for the two-mode model 

are compared with the actual velocity and displacement in Figures 3.11 and 3.12, 

respectively. These figures show that a good frequency and amplitude match is still 

obtained even though the model is determined by minimizing the prediction error 

based on acceleration response only. 

Finally, Figure 3.13(a) shows a profile of the prediction error P with respect 

to the effective participation factor for the first mode. The range of the effective 

participation factor is increased from 0 to 3 and the corresponding values of P 

are plotted. Observe that the profile is very smooth and that the global minimum 

corresponding to the effective participation factor of the first mode is apparent. 

The absence of other local minima is expected because other modes have been 

eliminated from the response by band-pass filtering. ~his supports the point made 

previously that the global minimum can be easily obtained by any one-dimensional 

optimization method and no initial estimates of the modal parameters are necessary. 

A similar plot is shown for the second mode identification in Figure 3.13(b). The 

global minimum corresponding to the effective participation factor of the second 

mode is also apparent. 
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3.5.3 Model Validation - Response Prediction 

AB the second stage of verification, the previously identified nonlinear model is 

used to predict the roof response to two different base excitations consisting of the 

scaled Taft and Parkfield earthquakes mentioned above. 

Figures 3.14-3.16 show the response time histories of the system to the scaled 

Taft earthquake as obtained from the model identified using the scaled El Centro 

earthquake. The predition error P based on acceleration peaks is summarized in 

Table 3.1. In general, the agreement between the actual response (solid) and that 

predicted by the model (dashed) is seen to be quite good. This shows that the 

nonlinear stiffness and energy dissipation behavior of the system can be fairly well 

predicted in this case by the equivalent nonhysteretic model identified previously. 

However, some details of the response time histories, especially the permanent or 

drift displacement, are not reproduced by the model. This illustrates the fundamen

tal problem of all nonhysteretic models that they have no mechanism with which 

the hysteretic behavior of a nonlinear system can be identified. 

In order to support this point, the previously identified model is used to predict 

the response to the scaled Parkfield accelerogram. The characteristics of the exci

tation and response in this case are quite different from those in the identification 

case. The prediction error P based on acceleration peaks is summarized in the last 

column of Table 3.1. The fit of the time histories is shown in Figures 17-19. From 

the results, it is clearly seen that the model does not predict the response as well 

as before, especially the prediction of the displacement time history. This is due to 

the limitation of nonhysteretic models for identifying and predicting the nonlinear 

response behavior of hysteretic systems. 
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3.6 Summary 

It is concluded that the identification process presented in this chapter yields a 

nonparametric nonhysteretic model for an equivalent memoryless nonlinear system 

[18-24]. The energy dissipated per cycle of motion by the hysteretic elements in the 

system is approximately equal to that dissipated by the equivalent nonparametric 

model identified. It should be noted that the identification does not find any char

acteristics of the hysteretic response. Rather, it produces the "best" coefficients of 

a model whose response matches the measured system response in a least-square 

sense for the given excitation. 

An important objective of this dissertation is to identify and to characterize 

the hysteretic behavior for a nonlinearly responding system from a single measured 

response and base input. Once a model for the system has been identified, it is 

intended to use this model to predict its response to other excitations. It is clear 

from the above prediction studies that the four-paramter nonparametric model iden

tified cannot serve this purpose and a parametric hysteresis model must ultimately 

be employed. However, some preliminary results estimated from the nonparamet

ric identification can be exploited in the further identification studies of hysteretic 

systems. This point will be illustrated in the remaining parts of the thesis. 
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Chapter 4 

Generalized Modal Identification 
Using Hysteretic Models 

4.1 Introduction 

The objective of this chapter is to improve the modeling of the hysteretic be

havior of a nonlinear structural system by employing a hysteretic restoring force 

model in the generalized modal identification method. This is done against the 

backdrop of the observations made in Chapter 3 regarding nonhysteretic nonlinear 

models. 

First, a number of hysteretic models are reviewed with emphasis on the mathe

matical form of the backbone curves. A physically motivated model with the back

bone characterized by only two parameters, called the two-parameter distributed

element model, is then introduced. This model employs the results of the nonpara

metric identification as an initial estimate for the model parameters. This approach 

greatly improves the convergence and efficiency of the subsequent parameter opti

mization process. 

The validity of the identification method presented is verified with the same 

simulated data used in Chapter 3. Improved results are obtained including the 

prediction of the permanent drift of the response. 
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4.2 The Backbone Curve 

Figure 4.1 [1] shows a typical force-deformation behavior commonly encoun

tered in the systems composed of nonlinear constitutive materials. Observe that the 

behavior is not elastic even at relatively small force and is hysteretic for forces far 

below the ultimate strength. Observe also that all the hysteresis loops are smooth 

except at the turning points. 

Many one-dimensional force-deformation relationships have been proposed to 

model actual hysteretic behavior as observed above. In most of these models, the 

basic concept is that the hysteretic loops can be characterized by the "skeleton, 

or "backbone" curve, which has features similar to the force-deformation curve for 

initial monotonic loading. Hysteretic behavior for these models is usually described 

using the criterion suggested by Masing in 1926 [2]. The Masing criterion stipu

lates that the unloading and reloading portions of a hysteresis loop have the same 

shape as the backbone curve but with the scale expanded by a factor of two and 

with the origin translated to the point of force reversal. The family of cyclic load

ing/reloading curves resulting from this assumption is shown in Figure 4.2. Note 

that Masing's hypothesis is the one-dimensional equivalent of the kinematic hard

ening law for an elasto-plastic material. 

The use of the backbone curve for nonlinear analysis of structures subjected 

to earthquake excitations was initiated in the early 1!;)60s [3-4]. A variety of math

ematical forms have since been suggested for the backbone curve, including the 

bilinear, multilinear, hyperbolic and Ramberg-Osgood formulations. In most cases, 

the construction of hysteresis loops for steady-state cyclic loading is performed by 

means of the Masing criterion as described above, while for transient cyclic loading, 

rules such as those proposed by Jennings (1965) or Iwan (1967) are utilized. The 

latter has been shown to be consistent with test results [5,10-13]. 
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4.3 Hysteretic Restoring Force Models 

Consider the equation of motion of the system or a particular mode of the 

system which can be written in the form 

ii + h(y, y) = a(t), (4.1) 

where y and y are the generalized relative displacement and velocity, respectively. 

h(y,y) is the generalized restoring force per unit of mass and a(t) represents the 

excitation acceleration. 

Hysteretic behavior of h(y, y) is commonly observed in many nonlinear systems. 

These range from systems composed of a single structural component to structures 

consisting of a number of separate elements. In order to identify the hysteretic 

behavior of real systems, it is desirable to have a model which is mathematically 

tractable and physically meaningful. Many analytical models have been proposed 

to describe the hysteresis in nonlinearly restoring systems. It is of interest to review 

some of these models. This is done below with an emphasis on the initial loading 

curve, or the backbone curve. 

4.3.1 The Elasto-Plastic Model 

The elasto-plastic model may be considered a "building block" for more so

phisticated hysteretic models. This model has the simplest backbone curve, shown 

in Figure 4.3(a), that is 

h=ky; 

= ky*; 

if > o, 0 ::5 y :5 y* 

y > 0, y ~ y* 
(4.2) 

A physical idealization of such behavior is illustrated in Figure 4.3(b) which consists 

of a linear spring with stiffness k in series with a Coulomb or slip damper with a 

maximum allowable force ky*, where y* denotes the yielding level. 
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Due to its simplicity, this model has been used by many analysts. However, 

for many hysteretic systems, it is too idealized to represent the actual hysteretic 

characteristics of restoring force such as the post-yield hardening behavior [14]. 

4.3.2 The Bilinear Model 

The bilinear model is the simplest model proposed so far for the study of 

hysteretic systems with post-yield hardening behavior. As shown in Figure 4.4(a), 

this model approximates the backbone curve by line segments with two different 

slopes, (k1 + k2 ) and k2 , which can be expressed as 

f; > 0, 0 < y ~ y* 
(4.3) 

= k2Yi f; > 0, y ~ y* 

where (k1 +k2 ) represents the initial stiffness, and the post-yield hardening behavior 

is modeled by the second slope k2 • An idealized system that behaves consistently 

with the model is shown in Figure 4.4(b). This system is made by adding the second 

linear spring to the elasto-plastic system shown in Figure_4.3(b). The bilinear model 

is, therefore, a physically motivated model. 

Considerable research has been done using the bilinear model [3,4,7-9,15-16]. 

In general, the results have been satisfactory. This is because the model captures 

the most important features of hysteretic behavior. However, in system modeling 

and identification, it is difficult to describe the detailed hysteretic behavior of real 

systems using this simplified model, especially, when the transient response is im

portant. For example, Iemura and Jennings [17] showed that it was not possible to 

model the E-W response of Millikan Library during the San Fernando earthquake 

using a single time invariant bilinar model. 

4.3.3 Smooth Backbone Models 

Both elasto-plastic and bilinear models are too simplified to describe the actual 

hysteretic behavior observed in Figure 4.1. In an effort to overcome this difficulty, 
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several hysteretic models giving smooth backbone of hysteresis curves have been 

proposed [18-21]. They are motivated either mathematically or physically. Two 

illustrative examples are given below based on these two approaches, respectively. 

Bouc and Wen [22-23] modeled the hysteretic component of the restoring force 

mathematically by defining an additional variable z(t), where 

h(y, 1i) = z(t) , (4.4) 

z(t) is then defined by the auxilary equations 

for n odd, (4.5) 

or, 

for n even. (4.6) 

a, {3, 1 and n are the model parameters. This model has been generalized to 

exhibit different types of hysteretic behavior. A detailed review of all these models 

is available in a recent paper by Wen [24]. 

By defining an additional state variable z( t), these models allow analytical 

treatment and have been applied to system identification problems. It has been 

found recently [13,25] that these models behave inconsistently in certain situations. 

As shown in Figure 4.5, the hysteresis loops generated by the model are not always 

closed under cyclic displacement loading and the loops drift continuously under 

certain types of cyclic force loading. This is due to the fact that the hysteresis loops 

are constructed mathematically and may not be physical under some circumstances. 

For most hysteretic models which are mathematically motivated, the drawback 

lies in the areas of transient loading and cycling between variable limits where 

additional mathematical assumptions must be made. Also, it is sometimes difficult 

to relate the mathematical model parameters to the physical parameters of a system. 
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Figure 4.5 Inconsistent behavior of Wen's model in certain loading aituations [25]. 
(a) Open hysteretic Joop under symmetric cyclic loading. 

(b) Drifting ch&ract.eriatic under certain cyclic loading. 
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However, all these problems can be alleviated by developing a physically based 

hysteretic model. 

Iwan [26] introduced a physically motivated model, called the distributed

element model. Based on the general approach suggested by S. P. Timoshenko 

in 1930, this model assumes that a general hysteretic system may be represented 

by a series of so-called Jenkin's elements. Each Jenkin's element is actually an 

elasto-plastic unit consisting of a linear spring with stiffness K / N in series with a 

Coulomb or slip damper that has a maximum allowable force J; f N. N is the total 

number of elements. The backbone curve of the entire system is given by 

N 

h = L ft jN + Ky(N- n)/N; y>O (4.7) 
i=l 

where the first term represents the contribution from n yielded elements and the 

second from the ( N- n) elements which have not as yet yielded. If the total number 

of elements N becomes very large, the backbone curve expressed by (4.7) can be 

very smooth. 

Since the hysteretic behavior of the model is based on the physics of a particular 

mechanical system, no mathematical rules are needed to assure physical hysteresis 

loops under complicated loading histories. 
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4.4 Two-Parameter Distributed-Element Model 

There are two attractive features of the distributed-element model: 

(1) The relationship between the backbone and hysteresis loops are determined by 

the physical nature of the model. Thus, no mathematical rules are necessary 

to assure physical behavior of hysteresis under complicated loading histories. 

(2) It is relatively easy to estimate the model parameters by fitting the backbone 

of the model to a variety of initial loading or backbone curves. 

The first feature has been explained in the last section and the second is explored in 

this section to develop a simple hysteretic model with only two parameters, called 

the two-parameter distributed element model. 

4.4.1 Model Considerations 

Figure 4.6(a) illustrates a general distributed element model, which is a col

lection of elasto-plastic elements arranged in a parallel configuration. Each elasto

plastic sub-element is completely defined in terms of two parameters: the spring 

stiffness k[ and the yielding displacement y["'. Therefore, for a model consisting 

of N elements, there will be 2N parameters, k[ and y(, i = 1, 2, ... , N, to be 

determined in an identification problem. 

In order to make such a model attractive for use in system identification, the 

number of parameters to be identified must be reduced. One approach presented 

herein is to prescribe the form of the backbone in terms of M parameters and then 

establish a relationship between the 2N model parameters and the M backbone 

parameters. Using this approach, the number of parameters which need to be 

identified is reduced from 2N to M. In general, M is much less than 2N. A 

relationship is derived in the section 4.4:.3 which can be used to determine the 

model parameters from any prescribed backbone curve. 

The problem now is the choice of the mathematical form of the backbone curve. 



A
 hr

 
b~

yr
 +

 b
~(
yr
)3
 Yr
 

(b
) 

I 
.. 

Yr
 

(a
) 

F
ig

u
re

 4
.6

 
Tw

~>
op

ar
am
et
er
 d

is
tr

ib
ut

ed
-e

le
m

en
t 

hy
st

er
et

ic
 m

od
el

. 
(a

) 
P

hy
si

ca
l 

re
pr

es
en

ta
ti

on
 o

f 
m

od
el

. 
(b

) 
T

yp
ic

al
 r

es
to

ri
ng

 f
or

ce
 d

ia
gr

am
 f

or
 c

as
e 

in
 w

hi
ch

 N
 b

ec
om

es
 l

ar
ge

, 
in

di
ca

ti
ng

 b
ac

kb
on

e 
eq

ua
ti

on
. 

0
0

 
.....

 



-82-

In this study, the form is assumed to be 

};.r = b~yr + b;(yr)3; Yr S yr* and f/ > 0 
(4.8) 

};.r is the estimate of the generalized modal restoring force hr given by the two

parameter distributed element model. bi, and b; are two parameters used to specify 

the backbone curve of the model. The numerical values of b! and b2 need to be 

estimated to capture the essential features of the hysteretic behavior being modeled. 

This simple parametric backbone relationship is proposed based on the results 

of the nonparametric identification studies in Chapter 3. It is observed that the 

four-parameter "nonparametric" model provides a good nonhysteretic estimate of 

the nonlinear stiffness behavior of the system. However, the hysteretic nature of 

the response is not identifiable by the nonparametric model. The failure to identify 

the hysteretic component of the response is due to the nonhysteretic nature of the 

model and motivates the present study of using hysteretic models. The fairly good 

match of time history response data indicates that the backbone identified by the 

form aJ.yr + a2(Yr) 3 can be used as an initial estimate of the backbone relationship 

(4.8) of the distributed-element model. By doing this, the subsequent optimization 

process for refining the backbone parameters bJ: and b; becomes very straightforward 

and efficient. A simple parameter estimation algorithm is described in section 4.4.4. 

Note that the power series expansion of hysteretic rel~tions with damping has been 

used by Jennings for a simple yielding structure [32]. 

4.3.2 General Description 

The initial stiffness of the model is denoted by bJ. and the ultimate strength 

of the system is given by b'iyr* + b2(yr*) 3 , where yr* = y'-b'i/3b2 representing 

the yielding displacement of the system. The smoothness of the transition from 

elastic to plastic response of the force-deformation curve is controlled by the cubic 

relationship ( 4.8). 
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The force-deformation relation of the model for any hysteresis loop other than 

the backbone curve is determined by the ela.sto-pla.stic behavior of each sub-element 

and no mathematical hysteresis rules are needed. For cyclic loading, the hysteresis 

loops generated by the model are consistent with Ma.sing's criterion. For transient 

response, it has been shown that the hysteresis loops generated by the model are 

consistent with the testing behavior of some actual systems [13J. Figure 4.6(b) 

shows the typical restoring force diagram of the model for for the case in which the 

total number of elements, N, becomes very large. 

4.4.3 Specification of kf and yf* 

Consider the distributed-element model shown in Figure 4.5(a) with the back

bone curve prescribed by 

(4.9) 

where fr(yr) is any mathematical form which approximates the backbone curve of 

hr. 

If the model has N elasto-plastic elements, the parameters needing to be spec-

i:fied are k[ and y[*, i = 1, 2, ... , N. 

When the total number of elements, i.e., N, is sufficiently large, the choice 

of the yielding displacement of each element, y1*, Y2*, ... , y'i{, becomes immaterial. 

For simplicity, it is convenient to take the values yi:*, y2*, .•. , y'i{ equally spaced and 

let Y'N be the yielding displacement of the system, yr*. This simplification leads to 

i = 1,2, .. . ,N. (4.10) 

Therefore, the parameters remaining to be specified are k[, i = 1, 2, ... , N. 

By fitting the backbone of the model to the expression fr(yr), one may obtain 

k[ = fr' (y[*) - fr' (0) fori= 1 (4.11) 

or 
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= r-' (yf*) - r' (yf~l) for i = 2, 3, ... , N . 

This relationship allows k[ to be determined from the Yi and fr (yr). 

(4.12) 

In this study, r(yr) is chosen to be of the form (4.8) which has two parameters, 

b! and b2. The above procedure reduces the number of parameters associated with 

the distributed-element model consisting of N elements, initially equal to 2N, to 

only two. It will be seen later, this two-parameter distributed-element model is able 

to capture the essential features of the hysteretic behavior under consideration. 

4.4.4 Parameter Estimation 

Let ht be the estimate of the restoring force hr by the two-parameter distribut

ed element model. The coefficients b! and b2 appearing in the backbone relationship 

(4.8) of the model are determined by minimizing the prediction error P. In this 

study, P is defined as the r .m.s. value of the difference between the the peaks of 

the system and model response in acceleration. 

Noting that the prediction error P is a function of b! and b2, the optimal 

estimate of these two parameters can be obtained as 

P = P(b~,b;) =minimum w.r.t. b~ and b;. (4.13) 

This is a standard nonlinear optimization problem, in which the optimum must 

be found by means of numerical techniques. Many approaches are available to 

solve such a problem [27-30]. In this investigation; a series of one-dimensional 

minimizations are performed by minimizing P alternately with respect to b! and 

with respect to b2. Each one-dimensional minimization process is performed using 

the same algorithm described in Section 2.6.4 for optimizing 13r. 

Two features of the method for finding the minimum of the function P ( b!, b2) 

are: 

( 1) The method is equivalent to the steepest descent method because there are only 

two parameters being optimized [31]. In the latter approach, the gradient of P 



-85-

needs to be evaluated to determine the direction of steepest descent and then a 

one-dimensional minimization would be performed in this direction. However, 

the present approach needs no such evaluations. 

(2) The initial estimates of b! and b2 may be taken from the a! and a2 identified 

by the four-parameter "nonparametric" model which are generally very dose 

to the optimal parameters of the model. This saves considerable computational 

effort in finding appropriate initial estimates for bJ: and b2. 

4.5 Verification with Simulated Data 

The validity of the generalized modal identification method incorporating the 

two-parameter distributed-element model is now tested with simulated data for a 

verification system. The excitation and response data used in the present study 

are the same as those in Chapter 3. The results of identification and prediction are 

reported herein. 

4.5.1 Model Identification - Parameter Calibration 

To initiate the verification study, a nonlinear model for the verification system 

is identified first from the "measured" response and base input. The simulated input 

and output data used to calibrate the model parameters are the scaled El Centro 

accelerogram and the corresponding absolute acceleration response of the top mass. 

By processing these data, the relative response with respect to the moving base is 

readily obtained. 

By observing the Fourier amplitude spectrum for the relative acceleration of 

the top mass, the frequency band of the dominant modes can be determined. The 

same values of the frequency band for the first two dominant modes are chosen 

as in Chapter 3. The values are listed in Table 4.1 and are used to estimate the 

uncoupled modal response following the band-pass filtering procedures explained in 

Section 2.6.2. 
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As described in Section 2.6, the dominant modes are identified one at a time 

by performing a succession of single-mode identifications. The optimal estimate 

13r is determined by a simple and direct one-dimensional minimization scheme as 

outlined in Section 2.6.4. For given {3r, the backbone parameters bi and b2 of the 

generalized restoring force hr are estimated by a parametric identification technique 

described in Section 4.4.4. Note that the initial estimates of the modal parameters 

b!, b2 and 13r are taken from the optimal values of a!, a2 and 13r obtained in 

previous identification using the the four-parameter "nonparametric" model. Since 

the initial values of parameters estimated in this way are generally very close to 

the final optimal values, the optimization process used to refine the parameters is 

performed very efficiently. No convergence problems have been encountered. 

Determined by minimizing the prediction error based on the acceleration peaks 

of the system response, the results for the optimal models are given in Table 4.1. 

Only a two-mode model is identified for the same reason as in previous nonparamet

ric study. Comparing Table 4.1 with Table 3.1, it is clear that the model parameters 

b!' b2 and {3r are indeed close to their counterparts, a!' a2 and rr' r = 1, 2, obtained 

in Chapter 3. This supprots the point made above regarding the closeness of the 

values of these parameters. 

The negative sign of b~ and b~ indicated the softening stiffness behavior of 

the hysteretic system. This is also illustrated by the. identified generalized modal 

restoring force diagrams depicted in Figure 4. 7. 

The quality of the response match using two modes is shown in Figures 8-10. 

In general, the model fits the actual time history response better than does the four

parameter nonparametric model. This improvement is considered the consequence 

that the hysteretic component of the response has been identified by employing the 

two-parameter distributed element model. 
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It is next desirable to examine how well the identified model can predict the 

hysteretic response to other excitations and how much it improves the results pre

dicted by the four-parameter nonparam.etric model. 

4.5.2 Model Validation - Response Prediction 

To continue the verification study, the nonlinear model identified in section 

4.4.2 is used to predict the roof response of the same system when subjected to other 

base excitations. The same scaled Taft and Parkfield earthquakes and corresponding 

response of the top mass are employed as in Chapter 3 and the prediction results 

are compared. 

Figures 11-13 show the time histories predicted by the model and "measured" 

from the system to the scaled Taft earthquake. A similar comparison for the re

sponse to the scaled Parkfield earthquake is presented in Figures 14-16. The predic

tion error P based on acceleration peaks is summarized in the last two columns of 

Table 4.1 for both cases. By comparing all these results with their counterparts in 

Chapter 3, it is dearly seen that the prediction of the time history of the response 

made by the optimal two-parameter distributed-element model is superior to that 

obtained using the four-parameter nonhysteretic model. Especially significant are 

the better reproduction of the hysteretic features of the response such as the drift 

displacement shown in Figures 10 and 13. 

It is concluded that the two-parameter distributed-element model with a small 

number of modes is capable of predicting the hysteretic response, including the 

permanent displacement, under different base excitations. Noting that the hys

teretic behavior is more pronouned in the response used for prediction than for 

identification, this example emphasizes the importance of employing an appropri

ate hysteretic model in the identification study of a hysteretic system so that the 
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identified model is capable of prediCting the response to the input motions other 

than the identification signal. 

4.6 Summary 

An efficient algorithm has been developed for the generalized modal identifica

tion method using a special form of the -distributed element hysteresis model. The 

backbone relationship of the model is characterized by only two parameters which 

is based on insight obtained from previous nonparametric studies in Chapter 3 and 

an understanding of the physical nature of the distributed-element model. As ap

plied to identifying the generalized modal restoring force of a hysteretic system, it 

is totally unnecessary to specify any additional mathematical rules for generating 

physical hysteresis loops. Furthermore, since the initial estimate of the backbone 

parameters obtained from the nonparametric technique using the four-parameter 

model is generally very close to the optimal estimate, the subsequent optimization 

process is very straightforward and efficient and no convergence problems have been· 

encountered. 

The identification method together with the model is verified with simulated 

data generated for a hysteretic system. The results illustrate the excellent ability 

of the present approach to identify and also predict the nonlinear response for a 

hysteretic verification system including the permanent displacement. The improve

ment of identification/prediction is due to the hysteretic response being modeled 

appropriately by the two-parameter distributed-element model. 

Encouraged by the results of applying the generalized modal identification 

method to simulated data, the method is applied to the pseudo-dynamic test data 

from a full scale steel structure in the next chapter. 
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Chapter 5 

Application to Pseudo-Dynamic Test Data 

5.1 Introduction 

The objective of this chapter is to apply the method of generalized modal iden

tification to the analysis of response data obtained from an actual structure. The 

structure selected is a full-scale six-story steel-frame structure which was excited 

into the nonlinear range in the U.S.-Japan cooperative pseudo-dynamic test. It is 

intended to use this example to illustrate that the method proposed in this disser

tation is capable of providing an accurate representation of the hysteretic response 

of a real structure. 

Generalized modal identification is performed with the two simple nonlinear 

models introduced previously. In the preliminary investigation, the test structure 

is identified by employing a four-parameter nonparametric model. This model pro

vides a nonhysteretic estimate of the nonlinear stiffness and energy dissipation be

havior. Subsequently, a two-parameter distributed-element model is used to obtain 

a hysteretic estimate of the nonlinear behavior. This model employs the results 

of the nonparametric identification as the prior estimates of the model parame

ters. The final result is a fully hysteretic structural model which characterizes the 

nonlinear behavior of the test structure. 



-104-

5.2 Pseudo-Dynamic Testing Method 

This section contains an overview of the pseudo-dynamic testing method for 

simulating or estimating seismic effects on buildings and similar structures. 

5.2.1 General Features 

The pseudo-dynamic method is an on-line computer-controlled, experimen

tal technique which can be used to evaluate the inelastic seismic behavior of full

scale strucutural systems. This relatively new technique was initiated in 1975 by 

Takanashi, et al. {1-5} at the University of Tokyo, Japan. In this method the usual 

pseudo-static test procedures are combined with an on-line computer control sys

tem. The on-line computer is used to control the simulated earthquake force applied 

by hydraulic actuators so as to model the inertial properties of the structure. 

In contrast to the usual pseudo-static test procedures, the restoring force

displacement relationship of a test specimen is not prescribed prior to the test. 

Instead, the actual restoring force characteristics measured by the displacement 

and force transducers are used to compute the movement that must be enforced at 

each degree-of-freedom. The process is performed interactively at each time step as 

the experiment proceeds. Hence, the pseudo-dynamic method makes it possible to 

simulate the dynamic behavior of a structure subjected to strong ground motions 

in a step-by-step procedure while taking into account the continuously changing 

structural stiffness. 

The physical equipment used in the pseudo-static experiments is largely ap

plicable for pseudo-dynamic testing. However, very precise displacement control 

systems must be implemented. This requires the use of some very sensitive servo

valves, as well as a suitable on-line computer and a rapid data-acquisition system 

[6-7]. The test results in many respects are comparable to those achieved on more 

costly shaking tables. Moreover the testing structure can be of large size limited 
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mainly by the capacity of conventional test equipment. Studies of subassemblages 

can also be made with relative ease. This emerging technology offers a means for 

seismic testing of full-size structures into the inelastic region. 

5.2.2 Test Procedure 

In a pseudo-dynamic test, the equilibrium of a multi-degree-of-freedom struc-

tural system is enforced only at discrete time steps. For such a step-by-step proce

dure, the basic equation is 

(5.1) 

where M and C are the mass and viscous-damping matrices; y(i), y(i), and f(i) - ""' ""' 
are the acceleration, velocity, and restoring force vectors at time itlt; and p(i) is 

""' 
the external excitation force vector due to earthquake acceleration z(i). All the 

components of 1 are unity. ,..., 

Using the central-difference method, velocity and accelerations can be approx

imated as 

and 

Y{i+1) - y(i-1) 
·(i)- ....._ __ ......... __ 
! - 2.tlt 

-(i) - y(i+l) - 2y(i) + y(i-1) 

! - .tlt2 

(5.2) 

(5.3) 

in which y(i- 1), y(i), and yf"+1) are displacement vectors at consecutive loading - - -
steps. On combining equations (5.1), (5.2) and (5.3), one obtains an explicit ex

pression for y(i + 1) [7] as ,..... 

J!.(i+t) = [ M + ~~ C] -t [ Llt2 &!,l'l - £1')) + 

( ~t C- M) !(t:-1) + 2M!{i)] 
(5.4) 

Based on the known mass distribution of the test structure and the assump-

tion of the mass being lumped at each degree-of-freedom, the mass matrix M is 
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obtained. The viscous-damping matrix C is estimated from the preliminary tests 

at low amplitudes assuming Rayleigh damping. For a given earthquake p(i) or _z(i) ,..., 

is prescribed. Thus, once f(i) is experimentally measured, equation (5.4) can be ,..., 

solved by an on-line computer, and the increments in displacements at nodal points 

can be determined. The calcuated nodal displacements are then imposed on the 

structure using hydraulic actuators. This process is illustrated schematically in 

Figure 5.1. 

Since in a pseudo-dynamic test the displacements to be imposed on a test struc

ture are computed based on the structural restoring forces directly measured from 

the deformed structure, experimental errors associated with displacement control 

and force measurement are inevitably introduced into the computational procedure. 

Because of the large number of loading steps generally involved, cumulative errors 

in the numerical results can be significant even though the experimental feedback 

errors introduced in each step are small. The studies of Shing and Mahin [8-12] 

showed that the rate of cumulative error growth with respect to the loading step in

creases rapidly with the natural frequency of the test structure and the integration 

time interval used. Hence, the higher frequency response is more sensitive to exper

imental errors and the cumulative growth of errors can be minimized by reduding 

the integration time interval At. 
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5.3 BRI Testing Program 

Although the pseudo-dynamic testing method is still in a developmental stage, 

very significant seismic research has already been completed using this approach. 

The recent work on building systems at the Building Research Institute (BRI) in 

Tsukuba, Japan, under the U.S.-Japan Cooperative Research Program Utilizing 

Large-Scale Testing facilities is particularly noteworthy [13-14J. Figure 5.2 shows 

the pseudo-dynamic testing facility of the Building Research Institute [15]. The 

facility permits the test specimen to be anchored to the floor and lateral forces 

are applied by hydraulic actuators attached to a cellular strong-wall. Large pro-

grammed actuators were used to apply lateral forces from one side at each floor level. 

The test under the :U.S.-Japan Cooperative Research Program for steel structures 

is briefly described below. 

A six-story, two-bay, full-scale steel-frame structure was tested at the pseudo-

dynamic testing facility at BRI during November, 1983 - March, 1984. The plan 

and cross-section of the test structure are shown in Figure 5.3. This structure was 

designed to satisfy the requirements of both the 1979 U.S. Uniform Building Code 

(UBC) and the 1981 Architectural Institute of Japan code [16]. The dimension was 

15 m X 15 m in plan and 21.5 m high. In the direction of loading, the structure 

consisted of three moment resistant frames. The two exterior frames A and C 

were unbraced. The north bay of the interior frame B. was braced with eccentric K

bracing. All the girder-to--column connections were designed as moment connections 

in the loading direction and shear connections in the transverse direction. The floor 

was built compositely with the girders and floor beams with a formed metal decking 

and cast-in-place light-weight concrete. No nonstructural components were attached 

to the frame system. 

The pseudo--dynamic tests were performed at low amplitudes to give nominally 

elastic response and at larger amplitude to excite the structure into the inelastic 
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range. In the elastic and inelastic tests, the test structure was subjected to the 821 W 

component of the Taft record from the 1952 Kern County, California, earthquake 

scaled to a peak acceleration of 6.5% and 50%. 

The study of the elastic response data using system identification techniques 

performed by J ayakumar and Beck revealed the cumulative effect of experimental 

errors inherent in the test [17-20]. They observed that a negative damping present 

in the third mode and the accelerations calculated from system identification did 

not agree well with the test accelerations. The inelastic data have also been an

alyzed using the response data of all six floors [17,21] based on a shear building 

idealization with a three-parameter hysteretic model relating the story shear and 

story drift of each inter-story structure. The algorithm developed involved continual 

alternating between the steepest descent and the modified Gauss-Newton methods 

for the simultaneous identification of the optimal parameter values in a (3N + I)

dimensional space where N is the number of floors. Therefore, the final results were 

a shear building model with 18 model parameters. 

In the next two sections, an analysis of the inelastic test data is performed 

using the generalized modal identification method. Both nonlinear nonhysteretic 

and hysteretic models are employed. In marked constrast to most nonlinear system 

identification approaches, the input and roof response data only are used in the 

analysis. 
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Figure 5.4 Taft S21W ac:celerogram. 1952 Kern County, California. 
(a) Time history (peak= 0.50 g). 

(b) Fourier spectrum. 



-113-

5.4 Four-Parameter Nonhysteretic Model 

In the preliminary investigation into the nonlinear behavior of the test struc

ture, the pseudo-dynamic data are analyzed by employing the four-parameter non

parametric model (3.14). The purpose of doing this is to obtain an initial nonhys

teretic estimate of the nonlinear behavior. 

The test input to the structure is used as the base excitation to the models. The 

time history and Fourier amplitude spectra are shown in Figure 5.4. The relative 

acceleration of the roof with respect to the base is used as the response data in the 

analysis. The length of the pseudo-dynamic test records is 17.1 seconds. The model 

parameters are estimated for the segment from 0 to 15 seconds. 

Observe the Fourier amplitude spectrum of the relative acceleration of the roof 

in Figure 5.5. The erratic appearance around each dominant frequency peak is 

typical of the frequency spectra for nonlinear system. However, the dominance 

of three "modal" frequencies is clearly observed and can be used to estimate the 

frequency band of each dominant mode. The values of frequency band chosen for 

the first two dominant modes are summarized in Table 5.1. These values are used to 

obtain the uncoupled modal response by band-pass filtering as described in Section 

2.6.2. 

Following the general procedure described in section 2.6, the modal parameters 

are estimated one mode at a time by a succession of single-mode identifications until 

a final modal model based on dominant modes is obtained. For each single-mode 

identification, initial estimates for parameters are not required because the method 

reduces the problem to single-parameter identification with respect to the effective 

participation factor 13r. The optimal value for the effective participation factor 13r 

is determined by a simple one-dimensional nonlinear optimization scheme outlined 

in Section 2.6.4. For given /3r, the parameters a[, i = 1,2,3,4 of the generalized 
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modal restoring force hr are estimated directly by the nonparametric identification 

technique outlined in Section 3.4.3. 

The optimal modal effective participation factor pr is considered determined 

when the difference between the model and system response is minimized. The 

difference is quantified by an error function P, called the prediction error. As 

defined in Section 2.5, P is the ratio of the r .m.s. difference at the system response 

peaks and corresponding model response to the maximum response of the system. 

The response quantity used in this study is the relative acceleration since it has the 

richest high frequency content and therefore allows more reliable estimation of the 

parameters of the high frequency modes. Also, the acceleration time history has 

relatively more peaks than the velocity and displacement. 

Only a two-mode model is determined herein because the signal of the higher 

modes is very small, as can be observed from Figure 5.5. The optimal model 

parameters identified by acceleration matching are presented in Table 5.1, including 

the prediction error P. It is seen from the table that after the second mode has 

been identified, the predition error P based on acceleration peaks is 0.146. This 

indicates a fairly good acceleration match. The negative sign of a~ and a~ indicates 

the softening behavior of the system stiffness. The equivalent viscous damping 

increases with velocity amplitude as a consequence of the positive sign of a! and 

2 a4. 

Figure 5.6 illustrates the identified generalized restoring force diagram for the 

first and second modes. These diagrams exhibit softening stiffness and nonlinear 

damping behavior which are consistent with the previous observations based on the 

sign of ai, i = 1, 2, 3, 4. Observe that the generalized restoring force for the second 

mode is comparable to that of the first mode in amplitude. However, the second 

mode has relatively small generalized displacement. 

The test roof response relative to the base is compared with its counterpart 
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predicted by the identified two-mode model in Figures 5.7-5.9. The solid line is the 

test response and dashed line represents the response predicted by the model. The 

quality of the acceleration match of the two mode-model is illustrated in Figure 

5. 7. Some of the high frequency discrepancies are due partly to the control and 

measurement errors during the test. Figure 5.8 shows that a fairly good velocity 

match is obtained even when the model is determined by matching accelerations. 

It is of interest that the model does not estimate well the peaks of the measured 

displacement, as observed from Figure 5.9. This cannot be accounted for in the two

mode model solely from the control and measurement errors or from the exclusion 

of higher modes. A possible explanation for this discrepancy is the hysteretic nature 

of the response, especially the permanent displacement, which is not identified at 

all by the model. 

In summary, it is seen from the results that the four-parameter nonparametric 

model with a small number of modes gives a good nonhysteretic estimate of the 

response time history. However, some discrepancies in the time history, especially 

in the displacement, are observed. This cannot be explained solely by the exper

imental errors or the exclusion of higher modes in the model. It is thought that 

the main reason is that the hereditary nature of the structural response has not 

been identified since the model employed herein has no mechanism with which the 

hystertic behavior can be modeled. 
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5.5 Two-Parameter Hysteretic Model 

In order to identify the hysteretic behavior of the test structure, the two

parameter distributed-element model ( 4.8) is employed in the generalized modal 

identification method to obtain the final hysteretic model. This is done to extract 

the hysteretic nature of the response and to improve the agreement with the test 

response, especially the displacement. The identification approach when used with 

simulated data has been presented in Chapter 4. 

The same pseudo-dynamic test data and values of frequency band for the first 

two dominant modes are choosen as in the nonparametric identification. These val

ues are used to estimate the uncoupled modal response as described in Section 2.6.2. 

In this study, the modal responses are identified by the two-parameter distributed

element model. 

The general identificaiton procedure of Section 2.6 is followed. The value for 

the effective participation factor pr is optimized as outlined in Section 2.6.4. For 

given pr, the parameters bi, i = 1, 2, for the generalized modal restoring force hr 

are estimated by a parametric identification technique outlined in Section 4.4.4. 

However, the efficiency and convergency of the parameter optimization process are 

greatly improved because some parameters can be estimated from the results of the 

previous nonparametric identification. 

The results for the optimal two-mode model determined by matching the rela

tive acceleration are summarized in Table 5.2 and compared with previous nonpara

metric identification results herein. It is seen that the model parameters identified 

during the initial stage of nonparametric identification are generally very close to 

the optimal parameters of the parametric model. This supports the point made 

above regarding the closeness of the optimal model parameters and their initial 

estimates obtained from the nonparametric identification. 

The softening stiffness behavior of the backbone curve is indicated by the sign 
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of the parameter b2 for both modes. This is also shown in the identified generalized 

modal restoring force diagrams of Figure 5.10. The general features of the hysteresis 

loops are quite similar to those of the four-parameter nonparametric model shown 

in Figure 5.6. 

The actual roof time history is compared with its counterpart predicted by 

the hysteretic model in Figure 5.11-5.13. In general, the agreement in response, 

especially in displacement, is better than previous results. This is due to the fact 

that the hysteretic nature of the response can be identified by the hysteretic model 

employed herein. 

Based on the identified generalized restoring force and linear mode shape of the 

first mode, an estimation of the inter-story restoring force behavior is attempted. 

The mass distribution and the mode shape of the first mode from references l17,22) 

are used. The values from the roof to the first floor are: 

mi = 0.077, 0.090, 0.090, 0.090, 0.090, 0.095 ton 

c!>l = 1.40, 1.22, 1.01, 0. 78, 0.53, 0.30 . 

Inter-story restoring force diagrams obtained from the pseudo-dynamic test 

are compared with the estimated diagrams in Figures 5.14-5.15. The estimated 

hysteresis in general is acceptable. 

All the results clearly show that the two-parameter distributed-element model 

gives an improved representation of the nonlinear response of the test structure and 

offers a means to estimate the hysteretic behavior of the inter-story restoring forces. 

The discrepency in the time history of response, especially in the displacement, is 

reduced. Considering the fact that the two-parameter distributed-element model 

has less number of parameters than does the four-parameter nonparametric model, 

it is thought that the main reason for this improvemnt is that the hysteretic nature 

of the response has been identified. 
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Pigure 5.14 Comparison of inter-atory restoring force behavior. 
(a) Experimental hysteresis loops [17]. 
(b) Estimated hysteresis loops. 
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5.6 Summary 

Inelastic pseudo-dynamic test data are analyzed using the generalized modal 

identification method incorporating two simple nonlinear models, in order to exam

ine the applicability of the method and the models to a real structure. In marked 

contrast to most nonlinear system identification methods developed so far, only two 

test records, one at the base of the structure and the other at the roof, are used 

to determine the optimal nonlinear models. The final hysteretic model exploits 

the results from nonparametric identification as an initial estimate for the model 

parameters. This approach greatly improves the efficiency and convergence of the 

subsequent nonlinear optimization process. 

Of the two simple models identified to describe the nonlinear response of 

the steel structure tested by the pseudo-dynamic method, the better agreement 

is achieved by the use of a two-parameter distributed-element hysteretic model. 

Due to two more parameters in the nonhysteretic model, the four-parameter non

parametric model fits the acceleration slightly better. However, this model is not 

capable of duplicating the displacement response nearly so well as the hysteretic 

model. The nonhysteretic model does give maximum response close to those ob

served in this particular test, however, due to the fact that the hysteretic nature of 

the system is not identified, its use might not provide valid information in predicting 

the response of the hysteretic system to other excitations. 

On the basis of all the results in this chapter, it was shown that the simple 

two-parameter relationship for the backbone of the distributed-element model is suf

ficient to capture the essential features of the hysteretic behavior of the generalized 

modal restoring force for the steel structure. Also, the two-parameter distributed

element model with a small number of modes provides a fully hysteretic structural 

model which characterizes the nonlinear response of the test structure. 
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Chapter 6 

Conclusions 

A relatively simple and accurate system identification method has been pre

sented in this thesis that is suitable for use with multi-degree-of-freedom nonlinear 

hysteretic dynamic systems under the action of base motion. The method considers 

the situtation in which only the base input and the response of a small number of 

degrees-of-freedom in the system are measured. The main objective of this study 

has been the identification and modeling of the behavior of structural dynamic sys

tems in the nonlinear hysteretic response regime. Once a model for the system has 

been identified, it is intended to use this model to assess structural damage and to 

predict response of the structure to future excitations. A general synopsis of the 

work performed in the preceding chapters is presented herein. 

In Chapter 2 a new methodology, called the generalized modal identification 

method, is formulated for determining an optimal model of a general nonlinear 

dynamical system from its measured base excitation and response. The method 

is based on the separation of the response into "modes" which are analogous to 

those of a linear system. Once the response of each mode has been estimated and 

the participation factor assumed, the generalized restoring force for each mode is 

readily obtained. 

Various nonparametric or parametric models can be used to extract the un

known nature of system nonlinearity, hysteretic or nonhysteretic. By matching 

the obtained restoring force directly, the solution of nonlinear differential equa

tions of motion may be avoided at this stage of the identification. Consequently, 

the methodology reduces the identification problem to the determination of the 

effective participation factor for each mode. This can be performed by means of 

any simple one-dimensional optimization scheme. The difficulties of multi-variable 
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nonlinear optimization are thereby avoided. 

The optimality criterion employed throughout is based on minimizing the r.m.s. 

of the difference between the actual system and model response at the peaks of time 

histories only. By satisfying this criterion, the model identified is one which best 

describes the peaks of system response which are generally the points of greatest 

engineering significance in the response time history. 

The new identification methodology proposed results in considerable compu

tational efficiency without sacrificing accuracy. The information obtained is useful 

for characterizing the nonlinear behavior of structures and for predicting structural 

response to future excitations. 

The main features of this identification methodology are: 

(1) Various restoring force models can be incorporated in the method to iden

tify virtually any type of nonlinear system characteristics. Hysteretic systems, 

which pose problems for most identification techniques, can be easily handled 

by the present approach in a unified framework. 

(2) In marked contrast to most nonlinear system identification methods, the mea

surements required are the base motion and response at only one location in 

the system. Furthermore, the method requires no information regarding the 

estimates of mass distribution and pertinent "mode shapes" of the system. 

(3) Convergence of the associated nonlinear optimization algorithm is fast because 

the problem has been reduced to determining only an optimal estimate of the 

effective modal participation factor. This process can be performed with any 

simple one-dimensional nonlinear optimization scheme with resulting compu

tational efficiency. 

{4) The computational requirements, both in terms of CPU time as well as storage, 

are very small for the characterization of a general nonlinear system. 
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(5) There is no practical limitation on the nature of probing signal that can be 

used for identification. 

(6) The identified generalized modal restoring force models allow one not only to 

obtain valuable physical insight into the nonlinear stiffness and energy dissipa

tion behavior of the system but also to assess the condition of the system and 

to predict its response to other excitations. 

(7) The identification results obtained are relatively insensitive to measurement 

noise due to the use of r.m.s. error measure based on response peaks since at 

these points the signal to noise ratio is relatively high. 

Chapter 3 is concerned with the generalized modal identification method in

corporating nonhysteretic restoring force models. Based on model simplicity and 

computational considerations, a particular nonlinear nonhysteretic model with only 

four terms is introduced. This model, called the four-parameter nonparametric 

model, is a truncated form of a more general class of nonparametric models. The 

simplicity of the model makes it easy to illustrate the role of nonparametric tech

niques in the preliminary identification studies of hysteretic systems. 

The parameters of the model are determined by approximating the generalized 

modal restoring force in the sense of least-squares. This identification technique 

involves no iterative nonlinear optimization process and requires no solution of 

nonlinear equations of motion. Hence, additional computational saving is attained. 

The validation of the identification algorithm and the model are performed with 

simulated data. Three different scaled earthquake accelerograms are selected as a 

broad-band base excitation to generate response data for a nonlinear hysteretic 

system. The first accelerogram is used to identify the system. The second and 

third are used to study the prediction capability of the identified model. The 

characteristics of the third scaled earthquake are selected to be quite different from 

those of the first and second excitations and the corresponding response exhibits 
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more significant hysteretic behavior. 

From the results of the verification study, it is demonstrated that the nonhys

teretic model has only limited capability for predicting the hysteretic features in the 

nonlinear response; for example, the permanent displacement of the response. How

ever, the identified model provides a good estimate of the nonlinear stiffness and 

energy dissipation behavior of the system. Hence, the nonparametric identification 

results can be exploited to suggest the parametric form of the final hysteretic model 

which should be used and to provide a priori estimates of the model parameters 

which should be selected. 

Motivated by the above observations, in Chapter 4 the generalized modal iden

tification method incorporating hysteretic restoring models is studied. A physically 

motivated model, called the two-parameter distributed-element model, is proposed. 

The backbone relationship of the model is characterized by only two parameters 

which are based on insight obtained from the previous nonparametric studies. 

The relationship between the backbone and hysteresis loops are determined by 

the physical nature of the model which is consistent with Masing's hypothesis. Thus, 

no mathematical rules are necessary to assure the physical behavior of hysteresis 

under various loading histories. 

This model employs the results of the previous nonparametric identification as 

an initial estimate for the model parameters. Since the nonhysteretic estimate of 

the model parameters obtained from the nonparametric identification study using 

the four-parameter model is generally very close to the optimal estimate, this ap

proach greatly improves the convergence and efficiency properties of the subsequent 

parameter optimization process. 

The identification algorithm together with the model are verified using the 

same simulated data as in Chapter 3. The model predictions for the hysteretic 

features of the response time histories, including the permanent displacement, are 
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greatly improved. The excellent identification/prediction capability of the present 

approach emphasizes the importance of choosing an appropriate hysteresis model 

in the generalized modal identification method to extract the hysteretic nature of a 

nonlinear system. 

In Chapter 5, the generalized modal identification method is applied to the 

analysis of inelastic response data obtained from the U.S.-Japan cooporative pseudo

dynamic test of a full-scale six-story steel-frame structure. The analysis employs 

only two test records, one at the base of the structure and the other at the roof. Both 

four-parameter nonhysteretic and two-parameter distributed-element hysteretic 

models are identified. The latter model exploits the results from the former as 

an initial estimate for the model parameters. This approach again results in con

siderable saving of computational effort to find appropriate starting values for the 

optimization process. 

From the identification results, it is shown that a better description of the 

hysteretic response is obtained with the use of a two-parameter hysteretic model. 

Without extracting the hysteretic nature of the system, the identified nonhystertic 

model will not provide valid predictions of the response to other excitations. In 

contrast, the identified hysteretic model will have better capability for response 

prediction. 

This application example shows that the simple two-parameter backbone re

lationship is sufficient to capture the main hysteretic behavior of the generalized 

modal restoring force for a real steel structure. Furthermore, the two-parameter 

distributed-element model with a small number of modes gives an accurate repre

sentation of the hysteretic behavior of the structure. 

Based on the verification and application studies performed in this thesis, the 

new system identification method has been found to be both accurate and compu

tationally efficient. It is believed that it will provide a useful tool for the analysis 
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of structural response data. 


