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Abstract

This dissertation is concerned with the problem of determining the dynamic
characteristics of complicated engineering systems and structures from the mea-
surements made during dynamic tests or natural excitations. Particular attention
is given to the identification and modeling of the behavior of structural dynamic
systems in the nonlinear hysteretic response regime. Once a model for the system
has been identified, it is intended to use this model to assess the condition of the
system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method
of modal identification for multi-degree-of-freedom dynaimcal systems subjected to
base motion is developed. The situation considered herein is that in which only the
base input and the response of a small number of degrees-of-freedom of the system
are measured. In this method, called the generalized modal identification method,
the response is separated into “modes” which are analogous to those of a linear
system. Both parametric and nonparametric models can be employed to extract
the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force
for each mode.

In this study, a simple four-term nonparametric model is used first to provide
a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior.
To extract the hysteretic nature of nonlinear systems, a two-parameter distributed-
element model is then employed. This model exploits the results of the nonpara-
metric identification as an initial estimate for the model parameters. This approach
greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from
a three-degree-of-freedom system. The new method is also applied to the analysis

of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of
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a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both
accurate and computationally efficient. It is believed that it will provide a useful

tool for the analysis of structural response data.
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Chapter 1
Introduction

The determination of mathematical models of dynamic systems from vibration mea-
surements is a problem, commonly called system identification, of considerable importance
in the area of applied mechanics. One major reason for this importance is the fact that it
is not always possible to develop realistic, reliable theoretical and computational models
for today’s complicated engineering systems and structures. In situations where a more
accurate interpretation/prediction of the behavior of systems is required, it is often nec-
essary to develop an experimentally verified model. For example, in order to describe
the response of structures to damaging excitations like earthquakes, consideration must
be given to proper understanding and modeling of nonlinear structural behavior during
strong ground motions. The rapid advance in high-speed digital computation and the in-
creasing use of dynamic testing of complex systems have led to a growing interest in the

development of new methodologies for efficient system identification [1-27].

Analytical modeling of dynamical systems is usually carried out at the design stage.
Because of a priori knowledge, the dynamic response of many physical systems is typi-
cally described by a set of second order ordinary differential equations [28-30]. This set
of equations represents a discrete model for the physical system of interest and may, for
conceptual purposes, be thought of in terms of a system of mass or nodal points inter-
connected by elements whose behavior depends upon the relative motion between these
points. Many analytical techniques, such as finite difference and finite element methods,
[31-33] are available to derive such dynamic models for complex engineering systems and
structures. These analytical models are used for response prediction during design. How-
ever, there are uncertainties involved in determining analytical models and assumptions

have to be made accordingly.
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In order to evaluate the assumptions made in design or to improve analytical models,
it is often necessary, after the system has been built, to determine its actual characteristics
experimentally based on response and/or excitation data measured during dynamic tests
or natural excitations [34-37]. This gives rise to the development of various techniques
for analyzing measured vibration data. Though any method used to determine the dy-
namic characteristics of a system from test data may, in a broad sense, be considered a
system identification method, usually only those methods that use systematic mathemat-
ical techniques in the analysis are so designated [1-4]. The models derived from system
identification may not only be used to assess the engineering practice in developing design
models but can also themselves be taken as more realistic models for predicting the system

response to future excitations.

In applications in the field of structural dynamics [38-41], most system identification
performed so far has assumed that the structure is linear and that its properties are in-
dependent of the characteristics of the excitation or the response. It is further assumed
that all the energy dissipation of the structural system may be represented by classical
viscous damping. Thus, the analysis reduces to the problem of identifying the parameters
of a structural model from its response, and excitation if available. Since a linear vis-
cously damped system may be represented by its physical parameters (mass, stiffness and
damping matrices), or by its modal parameters (natural frequency, modal damping, modal

participation factors), there is a choice of which parameters can be identified reliably in a

given situation [42-52].

Two problems are common to all the efforts of structural identification. First, the
number of response measurements is usually small. Frequently, only two records may be
available, one at the base of the structure and the other near the top of the structure. Be-
cause of this problem and noise in the measurements [42-47], it is necessary in practice to
estimate the parameters of the dominant modes in the response, rather than the physical

parameters [48-49]. The process of characterizing the dynamic properties of an elastic stru-
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cuture by identifying its modes of vibration is commonly referred as modal identification
[50-52]. Second, nonlinear behavior is observed for many cases of strong shaking [8-14].
Thus, linear time-invariant models cannot be used successfully to treat the entire duration
of response. The absence of a well-established analytical technique for determining non-
linear structural models from vibration measurements has seriously limited the utility of

these data.

The objective of the research described in this dissertation is to solve some of the
above-mentioned problems by developing a relatively simple approach to the identification
of nonlinear dynamic systems that is suitable for application to seismically excited struc-
tures. For this purpose, particular attention is given to the identification and modeling of
the response behavior of nonlinear hysteretic systems under the action of base motion.

The problem is formulated in Chapter 2 through a generalization of the method of
modal identification for multi-degree-of-freedom nonlinear dynamical systems subjected to
base motion. This method, called the generalized modal identification method, considers
the situation in which only the support excitation and the response at a small number
of points in the system are measured. Both parametric and nonparametric models can
be employed with the method. The error measure employed throughout is the difference
between the actual system and model response at peaks only.

In Chapter 3 consideration is given to the generalized modal identification method
incorporating nonhysteretic restoring force models. First, a class of nonparametric models
which is suitable for nonlinear memoryless systems is reviewed. Subsequently, a model with
only four parameters is proposed based on model simplicity and computational consider-
ations. The identification algorithm together with the model are tested with simulated
data generated for a nonlinear hysteretic system. The results provide insight into the use
of nonparametric methods in the preliminary identification studies of hysteretic systems.

In order to extract the hysteretic response behavior of a nonlinear structural system,

Chapter 4 is concerned with the generalized modal identification method incorporating
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hysteretic restoring force models. A discussion of available models for hysteretic systems
is presented with emphasis on the mathematical form of the backbone curve. Based on this
investigation and the insight obtained in Chapter 3, 2 physically motivated model with a
backbone curve characterized by only two par-a.meters is proposed. This model employs
the results of the nonparametric identification as an initial estimate for the backbone pa-
rameters. This apporach greatly improves the convergence and efficiency of the subsequent
parameter optimization process.

~Finally, in Chapter 5 the generalized modal identification method is applied to the
analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test
of a full-scale six-story steel-frame structure. In marked contrast to most nonlinear sys-
tem identification techniques, the roof response and base input only are employed in the
analysis. This example is intended to illustrate that the method proposed in this disserta-
tion is capable of providing an accurate representation of the hysteretic response of a real
structure. Both nonhysteretic and hysteretic models are identified using the generalized
rgodal identification method. The nonparametric model proposed in Chapter 3 is employed
initially to give a nonhysteretic estimate of the nonlinear stiffness and energy dissipation
behavior. Subsequently, the parametric model introduced in Chapter 4 is used to obtain
the final hysteretic model which characterizes the nonlinear behavior of the test structure.

General conclusions and recommendations for further study are presented in

Chapter 6.



~5—

References

[1] G. A. Bekey, “System Identification, an Introduction and a Survey,” Simula-
tion, October 1970.

[2] P. Eykhoff, System Identification, John Wiley & Sons, Inc., 1974.

[3] R. K.Mehra and D. G. Lainiotis (editors), System Identification: Advances and
Case Studies, Mathematics in Science and Engineering, Vol. 126, Academic
Press, New York, 1976.

[4] J.V.Beckand K. J. Aenold, Parameter Estimation in Engincering and Science,
John Wiley & Sons, Inc., 1977.

[6] N. Distefano and R. Todeschini, “Modeling, Identification and Prediction of a
Class of Nonlinear Viscoelastic Materials,” International Journal of Solids and
Structures, Vol. 9, 1976.

[6] W.D. Pilkey and R. Cohen (editors), “System Identification of Vibrating Struc-
tures: Mathematical Models from Test Data,” ASME publications, 1972.

[7] P. Ibanez, “Identification of Dynamic Parameters of Linear and Nonlinear
Structural Models from Experimental Data,” Journal of Nuclear Engineering
and Design, Vol. 25, 1975.

[8] F.E. Udwadia and M. D. Trifunac, “Time and Amplitude Dependent Response
of Structures,” International Journal of Earthquake Engineering and Structural
Dynamies, Vol. 2, 1974.

[9] H. Iemura and P. C. Jennings, “Hysteretic Response of a Nine-Storey Rein-
forced Concrete Building,” International Journal of Earthquake Engineering
and Structural Dynamics, Vol. 3, 1974.

[10] A. M. Abdel-Ghaffar and R. F. Scott, “Experimental Investigation of the Dy-
namic Response Characteristics of an Earth Dam,” Proceedings of the 2nd U.S.
National Conference on Earthquake Engineering, 1979.

[11] A. M. Abdel-Ghaffar and R. F. Scott, “Vibration Tests of Full-Scale Earth
Dam,” ASCE Journal of Geotechnical Engineering Division, 1981.

[12] S. Toussi and J. Yao, “Identification of Hysteretic Behavior for Existing Struc-
tures,” Report No. CE-STR-80-19, School of Civil Engineering, Purdue Uni-
versity, December 1980. '

[13] S. Toussi and J. Yao, “Hysteretic Identification of Multi-Story Buildings,” Re-
port No. CE-STR-81-15, School of Civil Engineering, Purdue University, May
1081.

[14] A. O. Cifuentes, “System Identification of Hysteretic Structures,” Earthquake



-6-—

Engineering Research Laboratory, Report No. EERL 84-04, California Insti-
tute of Technology, September 1984.

[15] P. Eykhoff (editor), Trends and Progress in System Identification, Pergamon
Press, New York, 1981.

[16] B. J. Heieh, C. A. Kot, and M. G. Srinivasan, “Evaluation of System Identi-
fication Methodology and Application,” U. S. Nuclear Regulatory Committee
Report NUREG/CR-3388, Argonne National Laboratory ANL-83-38, Wash-
ington, D. C., May 1983.

[17] T. K. Caughey, “Nonlinear Analysis, Synthesis and Identification Theory,” Pro-
ceedings of the Symposium on Testing and Identification of Nonlinear Systems,
California Institute of Technology, March 1975.

{18] S. F. Masri, T. K. Caughey, “A Nonparametric Identification Technique for

Nonlinear Dynamic Problems,” ASME Journal of Applied Mechanies, Vol. 46,
June 1979.

[19] S. F. Masri, H. Sassi, and T. K. Caughey, “Nonparametric Identification of
Nearly Arbitrary Nonlinear Systems,” ASME Journal of Applied Mechanics,
Vol. 11, January 1981.

[20] S. F. Masri, G. A. Bekey, H. Sassi, and T. K. Caughey, “Nonparametric Iden-
tification of a Class of Nonlinear Multidegree Dynamic Systems,” Journal of
Earthquake Engineering and Structural Dynamics, Vol. 10, 1982.

[21] F. E. Udwadia and C-P Kuo, “Nonparametric Identification of a Class of Non-
linear Close-Coupled Dynamic Systems,” International Journal of Earthquake
Engineering and Structural Dynamies, Vol. 9, 1981.

[22] M. B. Priestley, Spectral Analysis and Time Series, Vol. 1 and 2, Acacemic
Press, Inc., 1981.

[23] M. Hoshiya and E. Saito, “Structural Identification by Extended Kalman Fil-

ter,” ASCE Journal of Engineering Mechanics Division, Vol. 110, No. 12,
1984.

[24] M. H. A. Davis, “New Approach to Filtering for Nonlinear Systems,” IEE
Proc., Vol. 128, PT. D, No. 5, September 1981.

[25] S. A. Billings, “Identification of Nonlinear Systems - A Survey,” IEE Proc.,
Vol. 127, PT. D, No. 6, November 1980.

[26] J. L. Beck and P. Jayakumar, “Pseud&Dyn@c Testing and Model Identifi-
cation,” Proceedings of the 8rd U.S. National Conference on Earthquake Engi-
neering, Charleston, South Carolina, August, 1986.

[27] J. L. Beck and P. Jayakumar, “Application of System Identification to Pseudo-
Dynamic Test Data from a Full-Scale Six-Story Steel Structure,” Proceedings



.

of the International Conference on Vibration Problems in Engineering, Xian,
China, June 1986.

[28] Lectures by Professor W. D. Iwan on Dynamics and Vibrations, California
Institute of Technology, Pasadena, California, 1982-83.

[29] Lectures by Professor P. C. Jennings on Earthquake Engineering, California
Institute of Technology, Pasadena, California, 1983-84.

[30] Lectures by Professor T. K. Caughey on Advanced Dynamics, California Insti-
tute of Technology, Pasadena, California, 1984-85.

[31] Lectures by Professor J. F. Hall on Finite Element Method, California Institute
of Technology, Pasadena, California, 1983-84.

[32] O. C. Zienkiewicz, The Finite Element Method in Engineering Science,
McGraw-Hill, London, 1971.

[33] K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis,
Prentice-Hall, Englewood Cliffs, N.J., 1976.

[34] J. L. Beck, “System Identification Applied to Strong Motion Records from
Structures,” Earthquake Ground Motion and Its Effects on Structures, S. K.
Datta (ed.) ASME, AMD-Vol. 53, New York, 1982.

[35] M. G. Srinivasan, C. A. Kot, and B. J. Hsieh, “Dynamic Testing of As-
Built Civil Engineering Structures - A Review and Evaluation,” U. S. Nuclear
Regulatory Committee Report NUREG/CR-36, Argonne National Laboratory
ANL-83-20, Washington, D. C., January 1983.

[36] M. G. Srinivasan, C. A. Kot, B. J. Hsieh, and H. H. Chung, “Feasibility of
Dynamic Testing of As-Built Nuclear Power Plant Structures: An Interim
Evaluation,” U. S. Nuclear Regulatory Committee Report NUREG/CR-1937,
Argonne National Laboratory ANL-CT-81-5, Washington, D. C., May 1981.

[37] E. C. Ting, S. J. H. Chen, and J. T. P. Yao, “System Identification, Damage
Assessment and Reliability Evaluation of Structures,” School of Civil Engineer-
ing, GE-STR-78-1, Purdur University, W. Lafayette, Indiana, 1978.

[38] S. D. Werner, J. L. Beck, and M. B. Levine, “Seismic Response Evaluation
of Meloland Road Overpass Using 1979 Imperial Valley Earthquake Records,”

International Journal of Earthquake Engineersng and Structural Dynamics, Vol.
15, 1987.

[39] P. Ibanez, “Review of Analytical and Experimental Techniques for Improving
Structural Dynamic Models,” Welding Research Council Bulletin, No. 249,
June 1979.

[40] G. C. Hart and J. T. P. Yao, “System Identification in Structural Dynam-
ics,” ASCE Journal of Engineering Mechanics Division, Vol. 103, No. 6,



December 1977.

[41] F. E. Udwadia and P. Z. Marmarelis, “System Identification of Building Struc-
tural Systems” Bulletin of Seismological Society of America, Vol. 66, February,
1976.

[42] J. S. Bendat and K. J. Arnold, Random Data: Analysis and Measurement
Procedures, John Wiley & Sons, Inc., 1977.

[43] J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and
Spectral Analysts, John Wiley & Sons, Inc., 1980.

[44] M. D. Trifunac and V. Lee, “Routine Computer Processing of Strong-Motion
Accelerograms,” Earthquake Engineering Research Laboratory, Report No.
EERL 73-03, California Institute of Technology, Pasadena, California, October
1973.

[45] D. E. Hudson, Reading and Interpreting Strong Motion Accelerograms, Earth-
quake Engineering Research Institute, Berkeley, California, 1979.

[46] V. W. Lee and M. D. Trifunac, “Current Developments in Data Processing of
Strong Motion Accelerograms,” University of Southern California, Department

of Civil Engineering, Report No. CE-84-01, Los Angeles, California, August
1984.

[47] W. D. Iwan, M. A. Moser, and C. Y. Peng, “Some Observations on Strong-
Motion Earthquake Measurement Using a Digital Accelerograph,” Bulletin of
Setsmological Sociely of America, Vol. 75, October 1985.

[48] F. E. Udwadia, D. K. Sharma, and P. C. Shah, “Uniqueness of Damping and
Stiffness Distribution in the Identification of Soil and Structural Systems,”
ASME Journal of Applied Mechanics, Vol. 45, March 1978.

[49] J. L. Beck and P. C. Jennings, “Structural Identification Using Linear Models
and Earthquake Records,” International Journal of Earthquake Engineering
and Structural Dynamics, Vol. 8, 1980.

[50] “Modal Analysis - A Special Supplement to Experimental Techniques Supplied
by the SEM Modal Analysis/Dynamic Systems Technical Activity Committee,”
Ezperimental Techniques, October 1985.

[51] S. R. Tbrahim, “Modal Identification Techniques Assessment and Compari-

son,” Proceedings of the 8rd International Modal Analysis Conference, Orlando,
Florida, January 1985.

[52] R. Schmidtberg, “Solving Vibration Problems Using Modal Analysis,” Sound
and Vibration, March 1986.



—9-

Chapter 2

Generalized Modal Identification Method

2.1 Introduction

In this Chapter a generalization of the method of modal identification for multi-
degree-of-freedom nonlinear dynamical systems subjected to base excitation is pre-
sented. The case considered here is that in which only the base input and the
response at a small number of points in the system are measured.

For the case of linear systems, the method of modal identification has been de-
veloped in both the time and frequency domains. References [1] and [2] are examples
of two fundamentally equivalent approaches in the time and frequency domains, re-
spectively. In general, linear models are only sufficient to describe and predict the
dynamic response resulting from low-level excitations. However, the response of
many systems during strong excitations is highly nonlinear and hysteretic. This
reveals the inadequacies of many assumptions made in conventional modal identi-
fication methods using linear models, and the need for a well-established identifi-
cation technique for nonlinearly responding systems. This motivates the present
development.

Herein, an appropriate form of the equations of motion for a nonlinear system
is derived. This form is then used to develop a new identification methodology. In
this methodology, the response is decomposed into “modes” which are analogous to
those for a linear system. The generalized restoring force for each mode is identified
by employing nonparametric or parametric models. Consequently, the methodology
reduces the identification problem to the determination of the effective participation
factor for each mode which is performed by means of a one-dimensional optimization

algorithm. The error minimization criterion selected is the difference between the
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pe;z.ks of actual system and corresponding model response. This approach is moti-
vated by the observation that peaks are generally the points of greatest significance
in the response time history.

The new identification methodology proposed results in considerable computa-
tional efficiency. The information obtained is useful for characterizing the nonlinear

behavior of structures and for predicting structural response to future excitations.

2.2 Nonlinear System

In this section the equations of motion which describe the response of a time-
invariant nonlinear dynamical system are considered.

Although most engineering systems are continuous, in some cases, including
building structures, the dynamics can be represented adequately by assuming the
systems as an assemblage of lumped masses which are interconnected by discrete
elements with arbitrary nonlinear characteristics. The motion of each lumped mass
is governed by Newton’s second law. This will yield one equation for each degree-
of-freedom of each mass in the system. Combined, the equations of motion of the

entire system are obtained and can be written in matrix form as
My + f(y, §) = p(t) (2.1

where a dot above a variable denotes differentiation with respect to the temporal
variable t. M is a constant n X n inertia matrix, ¥ represents the state vector, £ is
the nonlinear restoring force vector, and g(t) is the dynamic forcing vector.

For systems with complex geometries, material properties or boundary condi-
tions, many analytical tools have been developed to derive equation (2.1). One of
the most powerful and popular techniques is the finite element method. In this
method, M and L are assembled systematically by summing the contributions from

each of the subcomponents of the system, called the finite elements. However, there
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are uncertainties involved in determining the nature of the loading conditions and
material properties and in modeling of certain physical aspects. These uncertain-
ties impose limitations on the method and require other techniques to determine an

experimentally verified model (2.1). One of the techniques is system identification.

For seismically excited structures, equation (2.1) may be expressed as
M£+£(£, g) = —-M1Z2(t), (2.2)

where M is the mass matrix of order n, y is the relative displacement vector with
respect to the base, f is the nonlinear restoring force vector and £(t) is the base
acceleration. All the components of } are unity.

Equation (2.2), representing an open system (i.e., no feedback of the output
of the system as input to the system), is the basic mathematical model used in

almost all system identification methodologies for analyzing the seismic response of

a structure.

2.3 Modal Representation

Consider the response of a representative six-story steel frame structure which
was excited pseudo-dynamically into the inelastic range [3,4]. Figure 2.1 shows the
Fourier amplitude spectrum for the relative acceleration at the roof with respect
to the base. From the figure, the dominance of a number of frequencies and cor-
responding “modes” is clearly observed. The somewhat erratic appearance around
each dominant frequency peak is partly due to the nonlinearity of the system. A
similar response frequency spectrum is also observed for the nonlinear response
of structures excited by actual earthquakes. For example, Figure 2.2 shows the
Fourier amplitude spectrum of acceleration for the N11E component of the Bank
of California building [5]. Based on these observations of nonlinear response in the

frequency domain, it is assumed that the nonlinear response can be decomposed
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into “modes” which are analogous to those of a linear system. Accordingly, a more
appropriate form of the nonlinear system (2.2) is necessary to describe these modes.
This form is an analogy to the modal equations of a linear system, and is derived
from equation (2.2) by a similar transformation procedure.

Consider a nonlinear dynamic system whose motion is governed by (2.2).

Let
y(t) = ®x(t), (2.3)

where @ is an n X m transformation matrix whose columns are a set of appropriate
orthonormal “modal vectors” for the system (2.2). It will be assumed that m is less

than or equal to n. Substituting (2.3) into (2.2) and pre-multiplying by &7 yields

i+g(ni)=-a2@), (2-4)

where g = 37 f and ¢ = 3T1. In component form, equation (2.4) becomes
i, +g-(u, &) = —a,2(2) ; r=1,2,...,m. (2.5)

Equations (2.5) are analogous to the modal equations for a linear system.

Next, define y7(t) as
yI(t) = diru (2) . (2.6)

y7 may be considered to be the r*» generalized modal displacement at station t.

Then, the total displacement at station ¢ may be expressed as

m
wu(t) =) vi(t), (2.7)
r=1
where the y[ satisfies the equation
¥ + hi(y:, 92) = —BLz(t) ; s=12,...,m. (2.8)

h? is herein referred to as the generalized modal restoring force and B; as the

effective modal participation factor. In general, A is coupled as shown in equation
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(2.8) since hl = ¢;, g, and g, is coupled in ¥ and %. Equation (2.7) represents a
kind of modal superposition.

Equations (2.7) and (2.8) are the basic equations used to describe the response

of the i*# degree of freedom. They are fundamental to the development and appli-

cation of the method.

2.4 Identification Problem

The problem of system identification is to determine a model that describes
input-output data obtained from a given system. The choice of model parameters
is, as a rule, made based on some optimality criterion. The criterion is that the
prediction error is minimized. The prediction error is usually defined as a function

“of the difference between the response predicted by the model and that actually
measured from the system. Minimization criteria based on the prediction error are
employed throughout in this dissertation to develop both parametric and nonpara-
metric identification methods in a unified framework. This framework is described
below.

As applied to dynamical systems, the identification problem can be formulated

as minimizing the prediction error P according to the criterion

P(8) = P(z(t) —Z(t; 8)) = minimum w.rt. § (2.9)
subject to
dz(t;
BEL) _ 1z 20.50) (2.10)
and
9(8)20. (21)

In this formulation, the function P needs to be specified in each case in terms
the difference between the measured response z and the predicted response Z. A

common definition of P is given in the next section. § is the vector of model
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parameters. Note that in the case of nonparametric identification, § is a vector of
unknown functions rather than unknown parameters. The model state Z is described
by a state equation expressed in the general first-order form (2.10) in which z(t)
represents the input to the system and the model. The parameter constraints are

specified through (2.11). Any solution must satisfy both the dynamic constraints
(2.10) and the static constraints (2.11).

2.5 Minimization Criterion

A simple mathematical model can never represent every detail of an actual
system, and vibration measurements are inevitably contaminated by noise. There-
fore, it is impossible that the parameters of an assumed model will ever result in a
perfect match between the measured and computed responses. In the present for-
mulation, the discrepancy between the state of the model and system is measured
by the prediction error P. The parameters § are considered being determined if the
prediction error P is minimized to an acceptable degree.

A variety of different error minimization criteria may be employed. The root-

mean-squares criterion has been used by many researchers [6-8]. A common defini-

tion is

P(8) = ?'IZ'fo > [z(2) “z(t;ﬁ)]r [2(t) —B(t; 0)]at

= = minimum w.r.t. §, (2.12)
7, Jo* Z(B)T g(t)dt

where T, is the time interval for which data are available. Z is the response predicted
by the model and z is the measured response of the system.

It has been found that an alternative criterion which minimizes the root-mean-
square of the difference between the measured and model response at peaks only
is adequate for structural stystems. This approach is motivated by the observation
that peaks are generally the points of greatest significance in the response time

history. The error minimization criterion employed in this work is therefore defined
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in this way. Hence,

m.s. of (z(t,) — Z(tp; 8
P(8) = ki Lﬁl:)ax A(ts38) ] = minimum w.r.t. § , (2.13)

where | Z |max is the maximum of the absolute value of the components of z(t).
The peak z(tp) is the local extremum of the measured response which occurs at a
time t,, and Z(t,; §) is the corresponding model response at time ¢,,. All the peaks
so defined are checked and used in (2.13). The implicit dependence of the model
response on the parameters of the model, §, has been shown in equation (2.13).

In general, P is a nonlinear scalar function in the parameters §. Therefore, the
task of finding parameters that minimize P is a nonlinear optimization problem in
which the initial guess for § is crucial. When the initial guess is far away from the
minimum value, some algorithms will either not converge at all, or will converge to

a local minimum or to a nonphysical set of parameters [9].

2.6 Identification Methodology
2.6.1 Single-Mode Identification

The case considered here is that in which the base excitation z(t) and the
parallel component of the response y;(t) at some point in the structure are measured.
. The subscript ¢ will be omitted from this point on because the response of only one
coordinate is used. The problem is to identify a nonlinear model for the system from
thelmeasured response and base excitation. The model used is defined by (2.7) and
(2.8) which for only one response measurement may be written as

=3 v () (214

r=1

g +h (v, 9°) = —-B73(t) ; s=1,2,....m. (2.15)

The generalized restoring force function k = [hl,hz,. .. ,h"‘}T and effective
participation factor # = [,B 1B2,..., ﬁ"‘]T are estimated optimally according to

P(r,B) = P(y(t) — (¢ &, E)) = minimum w.r.t. k, 8 (2.16)
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subject to (2.14) and (2.15).

This is a complex multi-variable nonlinear optimization problem. The difficul-

ties involved in solving such a problem are:

(1) It is difficult to get good initial estimates for all parameters but these are
crucial for the minimization algorithm to converge. Otherwise, the algorithm
may diverge or converge to some nonphysical parameters.

(2) Even if the algorithm converges to some minimum, it is difficult to assure this

is a global minimum.

(3) If there are too many parameters to be optimized at one time, P may be
insensitive to the change in a single parameter. Also, if noise exists in the
measurement, some parameters may be determined by identifying noise. Both

situations result in unreliable answers.

The generalized modal identification method presented herein alleviates the
aforementioned problems associated with nonlinear optimization by determining
the modal properties mode by mode, sequentially. Single-mode identification is
the “building block” of the identification methodology (2.16). Each single-mode

identification problem is performed based on

P(r, 87y =P(y"(t) — 7" (t; ", 7)) = minimum w.r.t. A", 5" (2.17)

subject to (2.15).

It is convenient to formulate the single-mode identification problem in three

parts:
(1) estimation of the modal response y", " and §”,
(2) estimation of the modal restoring force k", and

(3) estimation of the modal participation factor 3.
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2.6.2 Estimation of the Modal Response

Recall that it was assumed that the nonlinear response can be decomposed into
modes based on an analogy to the modes of a linear system. Initially, the modes are
separated by band-pass filtering based on the information contained in the frequency
domain. A similar approach has been used to extract the modal parameters of a
linear system, [10-11], and to study the fundamental mode behavior of the response
of a nonlinear system [12-15].

Consider that the r** dominant mode is under identification. The modal re-
sponse y” is estimated initially by applying a band-pass ﬁltex; to the response data
over a frequency band selected for this mode. The motivation for this operation is
to define each dominant mode by an appropriate frequency band and to eliminate
the influence of other modes by band-pass filtering. Consequently, the coupling in
modes is effectively eliminated.

The determination of the appropriate frequency band is made by inspection of
the Fourier amplitude spectrum of the response acceleration. The nonlinear effect
may cause some erratic appearance around each dominant peak which makes the
choice more difficult. However, any mistake made in choosing the frequency band
can be corrected later if it is found that some parameters identified are nonphysical
or the identification algorithm does not converge.

In practice, the band-pass filtering is performed in two stages: low-pass fil-
tering of the signal and high-pass filtering of the filtered signal. The ideal low-,
high- and band-pass filters have amplitude response of unity within the passband
and zero elsewhere. The passbands for low-, high- and band-pass filters are as
shown in Figure 2.3. The frequencies wy, and wy are the cutoff frequencies. The
response functions in the figure are those of ideal filters, and will have to be approx-
imated in practice [16-20]. The attention will focus herein on a specific low-pass

filter, the Ormsby filter, which provides the “building block” for band-pass filters.
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Figure 2.3  Ideal low-pass (top), high-pass {center) and band-pass (bottom) filters [19].
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The frequency response function of the Ormsby filter, shown in Figure 2.4, is given

by
1 lw] € w,
_Jo jw| > w,
H(w) = (w+w)/Aw —ws <w < —we (2.18)
(ws —w)/Aw w,<w < w,
where (we,w,) is the transition band, Aw = w, — w,. The corresponding impulse

response h(t) is given by

__ COBwel — cosw,t
h(t) = 2722 Aw

(2.19)

The impulse response filter weights for discrete data are obtained by quantizing A(t)
at equal time intervals.

As a means of sharpening the result, the estimation of the modal response is
actually performed iteratively in the generalized modal identification method. The
algorithm is described herein.

From previous iterations, the latest estimate of the modal response y” is ob-
tained and is denoted by ¥7, where r = 1,...,m. Initially, all modes are estimated

by band-pass filtering. Based on equation (2.14), the model respornse ¥ is the sum-

mation of all 7. That is
9() =) _77(t) . (2.20)
r=1

The difference between the actual response y™ and the model response YT is defined

as the residual error e
o) =¥ (t) - 77(2) - (2.21)

The modal error e”(t) is then calculated by band-pass filtering e(t) over the same
frequency band chosen for the r** mode. The new estimate of y" is then determined
by adding the modal error e”(t) to the latest estimate §7. The g™ and §" are updated
in the same manner. All the new estimates of y", §” and §" are used to updated

the modal response employed in the subsequent estimation process.
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2.6.3 Estimation of the Modal Restoring Force

Since the coupling of modes is essentially eliminated in estimation of the modal

response as described in section 2.6.2. The modal equation (2.9) may be written as
h"(y", §7) = —B72(t) — " (t} . (2.22)

When the right hand side of equation {2.22) is specified, the identification problem
is reduced to identifying the generalized restoring force A".
In the case of linear systems with classical normal modes [21], the generalized

restoring force will be of the form
R =2 w g +wly?, (2.23)

where ¢, and w, are the modal damping ratio and frequency, respectively. Since the
form is specified in terms of two parameters, ¢, and w,, the identification task is
to determine these two parameters for each mode. For a general nonlinear system,
the analytical form of the generalized restoring force A" is unknown and can only
be estimated. Both parametric and nonparametric restoring force models can be
employed to extract the nature of A”.

Let 71’( 8) be the estimate given by the restoring force model. The parameters
8 of the model are then selected based on an optimal matching of A" and h'. That
is

P(8) = P(h"(t) — h"(t; §)) = minimum w.r.t. § (2.24)

subject to (2.22), where P is the prediction error which quantifies the difference
between A" and &".

At this stage of the identification process, the numerical values of the modal
restoring force function and corresponding state, the modal displacement and ve-

locity, are known at discrete time steps. It is therefore important to notice that the
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parameters g” can be determined by minimizing P(ga") without solving the equa-
tions of motion, which are in general nonlinear differential equations. This is in
clear contrast to the traditional approach in which each new estimate of g" requires
a new differential equation to be solved. Accordingly, the identification based on
restoring force can be performed more efficiently.

Two nonlinear restoring force models are employed herein in the generalized
modal ideﬁtiﬁcation method. The first, a nonparametric model, is used to obtain
an initial estimate of the backbone relationship of the hysteretic restoring force and
the second, a ba.ra.metric hysteretic model, is used to obtain the final modal model.
The detailed description of the identification models is presented in Chapters 3 and

4, respectively.

2.6.4 Estimation of the Modal Participation Factor

For a given effective participation factor, the modal parameters may be esti-
mated directly according to (2.24). However, this leaves the participation factor to
be determined. This simplifies the single-mode identificaiton problem to a single-

parameter optimization with respect to 87 only, namely
P(") =P(y (t) -9 (t; ")) = minimum w.r.t. §" (2.25)

subject to (2.15), where any of y", §” and §" can be substituted in (2.13) for z
depending on the application. Any one-dimensional nonlinear optimization scheme
can be employed to minimize P(B7) in a straightforward manner [22-28]. Each
numerical evaluation of P(8") requires solving (2.15) once only. Note that the
estimation of 8" is a loop that contains the previous estimation process for Tz'( 8).

A one-dimensional minimization method is selected in the present study which
involves only evaluating the function and not the gradient of the function. Let
the minimizing function be denoted by f(a). The method starts with an initial

estimate range, [ar, x|, of the minimum of f(a), and a step-size § = (ay —ar)/N,
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where N is the total number of steps. « is incremented continually by 6, that is,
a= a,ar + 6,ar + 26,..., until @ = ay. The value of f is then calculated at
each step from ar to ay and the minimum is taken.

The key point is the choice of range |[ar,ay] and step-size §. If the range
[@r,ax] is too small or the step-size é is too big, the minimum of f(a) may be
missed. On the other hand, if the range is too large or the step-size is too small, too
much time may be spent in the stepping required to find the minimum of f(a). An
approach which was found to work well is to start with a bigger range of (o, ax]|
and larger § to get an approximate minimum of f(c). Subsequently, this minimum

is refined by choosing a narrower [ar,ay] and smaller 4.

2.7 Summary

A practical identification methodology has been presented that is suitable for
application to multi-degree-of-freedom nonlinear structural systems. The method
requires information regarding the base motion and system response at only one
point.

The features of this idéntiﬁca.tion methodology are:

(1) Frequency domain information is used to estimate the “modal” response of
the structure. Coupling in the generalized modal restoring force is thereby
effectively eliminated.

(2) The modal restoring force parameters are estimated by a nonparametric identi-
fication technique based on the generalized modal restoring force. This stage of
the identification process requires no solution of nonlinear differential equations
of motion and results in considerable computational saving.

(3) The problem is reduced to determining an optimal estimate of the effective
modal participation factor only. Any simple one-dimensional nonlinear opti-

mization scheme can be employed for this process. The difficulties associated
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with multi-variable nonlinear optimization are thereby avoided and additional

computational efficiency results.

In the subsequent chapters, the generalized modal identification method, in-
corporating nonparametric and hysteretic restoring force models, will be described
in more detail. The validation of the method and the model will be performed with

simulated data. Application to real data from structures will also be presented.
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Chapter 3

Generalized Modal Identification
Using Nonhysteretic Models

3.1 Introduction

This chapter is concerned with the generalized modal identification method
incorporating nonhysteretic restoring force models. After reviewing a class of non-
hysteretic models, a “nonparametric” model with only four terms is proposed based
on model simplicity and computational considerations. The coefficients of these four
terms are determined directly by approximating the system generalized restoring
force in a least-squares sense.

The identification algorithm together with the model are verified using simu-
lated data generated for a nonlinear (hysteretic) system. The results provide an
excellent example of the use of nonparametric restoring force models and a good
motivation for further studies on employing hysteretic restoring force models in the

generalized modal identification method.

3.2 Nonparametric Identification Techniques

If a mathematical model of a system is known a priori, and the input and
output data are used to determine the parameters of the model, then the process is
known as a parametric identification. Most system identification techniques are of
this type. Certain methods are termed “nonparametric” because they do not seek
to determine the parameters of an assumed model. Instead, their objective is to
arrive at a functional representation of the system that is capable of predicting the
output for a given input.

Traditionally, nonparametric identification for a dynamic system is performed

using the Volterra-series or Wiener-kernel approach [1-5]. However, these approaches
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have various restrictions which limit their use in practice. For example, the nature
of dynamic systems to be identified must be nonhysteretic, and only stationary
and white noise can be used as the input signal. Furthermore, when dealing with
systems that incorporate commonly encountered nonlinearities, such as polynomial
nonlinearities, the evaluation of higher-order terms requires a prohibitive amount of
computational effort, coupled with very demanding ,and usually unrealistic, storage
requirements.

Recent nonparametric identification development has been devoted to estimat-
ing the nonlinear restoring force in a dynamic system. This approach was first
introduced by Masri, Caughey, et al. [6-8] in order to alleviate some of the afore-
mentioned problems associated with traditional nonparametric identification tech-
niques. This concept is extended in the present work to obtain a first estimate of

the generalized modal restoring force of a hysteretic system.

3.3 Nonhysteretic Restoring Force Models

Consider the general form of the equation of motion for a single degree-of-
freedom system

i+ h(y,9) =a(), (3.1)

where y is the generalized relative displacement, h(y,y) is the generalized restoring

force per unit mass and &(t) is the excitation acceleration. Equation (3.1) can be

used as the basic model to represent the dynamics of a system or of a particular

mode of a system. Note that the physical and modal coordinates are the same for

a single degree-of-freedom system and no distinction between them is made in this

section.

3.3.1 Linear Models

The system (3.1) is said to be linear if h(y,y) can be expressed as

h(y,9) = 26 wol + Wiy , (3.2)
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where ¢, represents the fraction of viscous damping and w, is the natural frequency
of the system. Since the form representing the restoring force is known in terms
of two parameters, ¢, and w,, there is no need to identify h using nonparametric
techniques. The identification of the linear systeﬁ (3.2) is therefore a parameter
estimation problem in which the parameters, ¢, and w,, can be determined in either
time or frequency domain. References [9] and [10] are examples of two fundamen-
tally equivalent approaches in the time and frequency domains, respectively. It has
been found that the response of buildings subject to earthquakes can be reproduced
well by linear models only when the nonlinear behavior is not pronounced. This

shows the limitation of linear models for describing nonlinear systems.

3.3.2 Nonparametric Models

In many cases, the system (3.1) is nonlinear and the analytical form of h(y, ) is
unknown. Determining an appropriate nonlinear model for the generalized restoring
force h can be formulated as a nonparametric identification problem. Among many
nonlinear models which have been used to extract the nonlinear nature of h, some
nonhysteretic models will be briefly described in this section.

Masri, Caughey, Miller, et al. [6-8] have proposed a nonparametric identifica-
tion technique for general nonlinear problems. The main idea behind their method

is to estimate the restoring force h(y,7) by an approximation function Tz(y' »v')

expressed in terms Chebyshev orthogonal polynomials in the form

I J
hy,9) =) Y Cu Ty L) (3-3)

1=0 7=0
where I and J represent the order of the expansion, the functions T; are Chebyshev

polynomials and C;;’s are constant coefficients. Both the generalized displacement
y and velocity § have been normalized to lie in the range -1 and 1. The normalized
values y’ and ¢’ corresponding to y and y are defined as

¢

y = [y - (ymax + ymin)/z]/[(ymax - ymin)/z]
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and (3.4)

!." = [!.I - (gmax + gmin) /2]/[(3}111&:: - gmin)/z] .
The Chebyshev polynomials are defined as
T.(¢) = cos(ncos™ ¢) ; -1<€<1. (3.5)

They satisfy the weighted orthogonality property

. 0 n#m
[ w(OTu(@Tn(@de = { x/2 n=m#o0 (3.6)

g n=m=20,

in which the weighting function w(¢) is (1 — £2)!/2. By making use of the orthog-
onality of Chebyshev polynomials, the coeficients C;; of equation (3.3) are given

by
(2/1!’)2.0,",' ia.ndj '7'£ 0

Ci; =12 (2/7?)D;; iorj=0 (3.7)
(1/#*) Dy; i=j=0,
where

pi=[ [ M NN T e @ . 69

Since the orthogonal polynomials form a complete set of functions, any con-
tinuous function can be expanded in terms of the Chebyshev polynomials. This
is the common basis for using orthogonal polynomials to represent or approximate
functions whose exact mathematical forms are unknown. Because the form of the
restoring force h is not assumed at the beginning of the identification problem,
this method is referred to as a nonparametric method; yet when the function h
is represented mathematically by orthogonal polynomials, the coefficients of the
polynomials are the parameters of the model.

Note that in the special case when no cross-product terms are involved in any

of the series terms, functions % can be expressed as the sum of two one-dimensional
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orthogonal polynomial series instead of a single two-dimensional series of the form

(3.3). Note also that the Chebyshev polynomials are only a subclass of the orthog-
onal polynomials which satisfy the orthogonality condition

[ 0@ ga@)$a-s(1 4t =0, (9)

where w(¢) is the weighting function, ¥,-1(£) is an arbitrary polynomial of degree
n—1 or less, and ¢, (&) is a polynomial of degree n. Other orthogonal polynomials,
such as the Legendre polynomials, the Laguerre polynomials, and the Hermite poly-
nomials, can be defined by using different weighting functiond over the domain of
interest [a,b] [11-12]. However, Chebyshev polynomials have the desirable feature
of equal-error (equal-ripple) approximation within an interval of interest [6-8].

Udwadia and Kuo [13] extended the method of Masri, Caughey, et al to identify
a chain-like nonlinear memoryless dynamic system. The problem is formuated in
terms of general orthogonal polynomials rather than the specific Chebyshev polyno-
mials. The restoring forces are assumed to be represented by two additive functions
of the velocity and displacement vectors, each being represented by a sum of general
orthogonal polynomials. However, a method for the general form of the restoring
force is reported to be available.

Toussi and Yao [8] have used an approach similar to the method of orthogonal
polynomial expansion. Instead of using orthogonal polynomials such as Chebyshev
polynomials, they assumed that the restoring force can be represented as the sum of
two additive functions of displacement and velocity respectively (namely, stiffness
and damping functions), and that these functions are simple polynomials of their

arguments, that is
R(y,9) = ha(y) + ha(3) , (3.10)

where

hsy(y) =ag+ary+---+a,y™



- 34 -
and (3.11)

Ra(9) =bo+ b1y + -+ + bad™ .

This model can be viewed as a truncated form of previous nonparametric models
without cross-product terms. Note that Toussi and Yao called their method a
parametric method.

In principle, all the restoring force models reviewed above are nonhysteretic
and are strictly only suitable for nonlinear systems with memoryless nonlinearities.
The applicability of these models for nonlinear hysteretic systems is questionable.
As applied to simulated data generated from a nonlinear system consisting of some
hysteretic elements and some nonhysteretic elements, however, some positive results
have been reported [14-15]. These positive results have indicated that nonparamet-
ric methods have a place in preliminary identification studies of hysteretic systems.
That is, they may suggest forms for the parametric model which should be used and
they may even provide a good initial estimate of parameters for the model which
should be selected.

This important insight is exploited in this thesis to identify the hysteretic
behavior of a nonlinear system in two stages. A nonparametric model is used
to obtain an initial nonhysteretic estimate of the generalized restoring force for
each mode. This nonparametric model suggests the parametric relationship for the
backbone of the hysteretic model employed in the ﬁnal stage of identification. The
results of the nonparametric identification thereby can be used as an initial estimate
for the backbone of the final model.

The final stage of identification is left to be discussed in Chapter 4. In this

chapter, the initial stage is investigated using a simple nonparametric model.
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3.4 Four-Parameter Nonparametric Model

A relatively simple nonparametric model with only four terms is herein intro-
duced. The simplicity of the model makes it easy to illustrate the point made above
regarding the role of nonparametric techniques using nonhysteretic models in the

preliminary identification studies of hysteretic systems.

3.4.1 Model Considerations

A good “model” of a dynamic system is a reasonably simple mathematical
description of that system which is capable of representing or extracting the essential
aspects of the response in usable form. If a model is toﬁ complex, its usefulness
is questionable. Simplicity is a major objective in model construction. In fact, a
model is a representation of reality with complexities reduced to the extent possible.

In a nonparametric approach, the system under consideration is treated as a
“black box” and the model is identified assuming no a priori knowledge. Such an
approach usually results in a model which is exceedingly complex so as to make
computation and interpretation difficult. The complexity is caused by attempting
to describe not only the response due to important mechanisms, but also every
detail resulting from unimportant mechanisms or simply from noise.

This section represents an attempt to limit the representation of a nonpara-
metric restoring force model to the extent possible based on both computational
considerations and particular aspects that are essential to select the final parametric
hysteresis model.

Recall the modal equation (2.23)
R (y",97) = —B72(t) — §"() - (3.12)

When the right hand side of equation (3.12) is measured or estimated at each time
step, the modal restoring force hA™ is known as a function of the modal displacement

y" and modal velocity §". Thus, the numerical values of kA", y* and y" for each
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time step can be stored in tabular form for later reference. This approach needs no
computational effort, but usually demands unrealistic storage requirements. Also,
it is difficult to interpret the tabular data, especially when they are contaminated by
noise. Alternatively, for purpose of either condensing the data or extracting certain
characteristics of A™ from the noise contaminated data, a function kT of y" and §"
can be introduced which gives an approximation of h"(y",4") in some least-squares
sense. The so-identified representation B usually provides valuable information for
interpreting the physical nature of A'.

For a general nonlinear system, the analytical form of A" is unknown and
various nonparametric models may be employed to estimate A". Initially, it is
assumed in this study that the generalized restoring force k™ can be expanded by a
two-dimensional power series in y” and y". That is

I J
RN =) Y AL WYEY, (3.13)
i=0 ;=0

where I and J represent the order of the expansion and A};’s are the coefficients
or parameters of the model which need to be determined numerically using a least-
squares method. Note that the ordinary polynomials have been used to make the
physical meaning of Aj; more explicit. For example, A7, and A§; can, rather than
just mathematical coefficients, be interpreted as the natural frequency and viscous
damping coefficient at small amplitude oscillations, respectively.

For the nonhysteretic case, the general form (3.13) in principle yields a “best”
least-squares fit of the restoring force function h". However, when the data are
contaminated by noise and the order of expansion is allowed to be large, the results
may be the identification of a function that fits not only the actual response part
of the data but also the noise. It is therefore expected that nonzero coefficients will

be identified for initially nonexistent terms in the system if noisy data are used.

Even if the coefficients may be small compared to the predominant coefficients,
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these additional coefficients have no physical significance. They also degrade the
potential of using the identified parameters to extrapolate or to predict the response

of the system for other than the identification signal.

In order to illustrate this point, consider a linear single degree-of-freedom sys-
tem being identified by employing the general model (3.13). Because of noise in
the data, nonzero coefficients, including a constant term, will be identified for ini-
tially nonexistent terms in the system. If the entire model is used to predict the
response to another excitation, all these additional terms identified will degrade the
predicted response. For example, the constant term will drive a motionless system
to move even if there is no excitation, while the additional higher-order powers will
contribute to the response unrealistically when the system is subjected to high-level
loading.

It is concluded that if the general model (3.13) is used solely to compress or
smooth the tabular function A" in the approximate sense, the orders I and J can
be allowed to be as large as needed for minimizing the least-square error between
h™ and k7. On the other hand, if the model is used to extrapolate or predict the
response of the system, the order should not be determined by mechanically best-
fitting polynomials to the data. All a priori knowledge and physical information

should be used to arrive at the best representation.

Based on the above observations, an appropriate truncated version of the non-
parametric model (3.13) is sought herein. All the cross-product terms are first
eliminated from (3.13) because the interpretation of coefficients A7, , where n # 0
and m # 0, is less obvious or may require considerable effort. All the even-power
terms, including the constant term, with coefficients A],,., where n (even) > 0
or m (even) > 0 are also eliminated because they make the restoring force non-

symmetric which is not the case of interest herein. Finally, among all the odd-power

terms left, only four terms with coefficients A7y, A%y, A5; and Aj,; are preserved.
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The reason is that, intuitively, these four coefficients alone should be sufficient to ex-
tract the main feature of nonlinearities which are commonly encountered in physical
systems. It is also perceived that the nonparametric model may provide important
information for constructing the final parametric model to describe the hysteretic
response of a nonlinear system. The reality of the model must, of course, be justified
by applying the model to both simulated and real data. This is done in the latter
parts of the thesis.

From another point of view, the final truncated nonparametric model may also
be considered the simplest extension of the linear model (3.2) by simply adding two
cubic nonlinear terms with the coefficients A}, and Afs. It is then interesting to
examine how well this simple nonhysteretic model can reproduce hysteretic response

and how much information it provides in the preliminary identification studies of

hysteretic systems.

3.4.2 General Description

Let af, a3, a5 and aj denote the coefficients A],, A%, A, and Ag,, respec-
tively, and h" the estimate of the generalized modal restoring force h”. The above

truncated nonparametric model, called the four-parameter nonparametric model,

can be expressed as
R (y",37) = a1y" +a5(y7)° + a59” + ai(y7)°, (3.14)

where the coefficients af, a3, af, and a] are the four “parameters” of the model.
The parameters can be described in two categories:

(1) small amplitude parameters— aj, aj

When the system is subjected to low-level loading, the lower-power terms in
(3.11) will dominate the response, i.e. the parameters aj and a§ control the small
amplitude behavior of the model. Hence, under small amplitude response, it is

assumed that the model behaves like a linear oscillator.
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(2) large amplitude parameters— a}, a}
The parameters a] and aj are used to describe the nonlinear behavior at large
amplitude oscillations. The nonlinearity is represented by a polynomial type that is
defined by cubic displacement and cubic velocity terms without cross-product terms.
Depending on the sign of a3, the form of (3.14) can be made to represent restoring
forces with hardening or softing nonlinearities. Similarly, depending on the sign of
a}, the equivalent viscous damping can increase or decrease with amplitude. Thus,
the nature of the system nonlinearity is reflected in both the magnitude and sign

of these coefficients.

3.4.3 Parameter Estimation

The coefficients af, : = 1,2, 3,4 , appearing in the four-parameter nonparamet-
ric model (3.14) may be evaluated numerically by approximating each A" in some

least-squares sense. The least-squares approximation problem is described below in

general form.

Let f(z) be a given real-valued function defined at discrete points zx, k =

1,2,..., K. Choose an approximating function f (z) of the form

I

f(z) = Z a;y;(z) (3.15)

i=1
for any real set a;, 1 = 1,2,...,J and suitable basis functions ¥;, 1 = 1,2,...,1.
The coefficients a; are to be determined so that the -error between f(z) and f(z)
at zx, k = 1,2,..., K , is minimized, say in the least-squares sense. That is, the
coefficients a; are estimated based on the following criterion

K 1 2

= Z flzx) — Z a;Yi(zx) | = minimumw.rt.oe;, ¢=1,2,...,1, (3.16)
k=1 =1

Estimates of a; then require the solution of the linear simultaneous equations

I
Z C,'J' a; = bj s (3.17)

=1
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where

K
E (z&) ¥ (ze) (3.18)

and
K
Cis = ), diler) ¥ilzs) - (3.19)
k=1

As applied to the identification of the four-parameter “nonparametric® model,
the basis functions are ordinary polynomials and the discrete points are chosen
at peaks only. Note that this method involves no iterative nonlinear optimization
process to estimate the model parameters. This results in additional efficiency

besides those points mentioned in section 2.6.

3.5 Verification with Simulated Data

The validity of the generalized modal identification method incorporating the
four-parameter nonparametric model is now examined by reporting the results of

identification and prediction performed with simulated data.

3.5.1 Data Generation

Verification System To test the identification approach proposed herein for
hysteretic response, the verification system used is the hysteretic three-degree-of-
freedom mathematical model shown schematically in Figure 3.1(a).

This planar system consists of three lumped masses m;, t = 1,2,3. The ab-
solute displacement of m; is denoted by z;, while the prescribed base acceleration
is designated by %,(t). The relative displacement with respect to the moving base
is given by y; = z; — zp(t), and the inter-mass relative motion is specified by
2z = z; —z;—y for ¢ > 1, and 2; = z; — zp(t). The nonlinear restoring force of
each element, denoted by g;, is assumed to be the distributed-element hysteretic

model with 15 subelements. There is no viscous damping assumed in the verification

system.
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To represent a realistic physical system, the characteristics of the verification
system are chosen to approximate those of a three-story steel frame structure tested
on the shaking table at the University of California, Berkeley, Figure 3.1(b). This
test structure has been extensively analyzed, both analytically and experimentally
[16-17).

The values of the system masses are chosen as:
m, = 2110 kg, m, = 2110 kg, ms = 2110 kg .

The hysteretic behavior of all elements g;, t = 1,2, 3, is illustrated by the actual

inter-mass restoring force diagrams, shown in Figures 3.5, 3.6 and 3.7, for three

different base excitations described below.

Probing Signals For identifying the nonlinear model of a general system, the
probing signal should be rich in frequency content and should contain sufficient
energy to excite the system to a response level that would bring its nonlinearities
into play. For hysteretic systems, the response is nonlinear and path-dependent, i.e.
dependent on the time history of the dynamic loading. It is therefore desirable to
generate the simulated response with several inputs of different characteristics.

Based on the above considerations, three different earthquake accelerograms
are selected as a broad-band base excitation to generate response data for the ver-
ification system. The first accelerogram, El Centro, 1940, SOOE, is used to identify
the system. The second accelerogram, Taft, 1952, S69E and the third, Parkfield,
1966, N65E, are used to study the prediction capability of the identified model. To
assure significant nonlinear response, the amplitude of the three accelerograms are
scaled to peak accelerations of 57% g, 50% g and 61% g, respectively.

The different characteristics of these three scaled accelerograms can be com-
pared in both the time and frequency domains. Figures 3.2-4(a) show the time

histories of the two accelerograms from 0 to 15 seconds which is the segment used
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to generate the simulated response for the system. The frequency domain compar-
ison is made by showing the corresponding Fourier amplitude spectra in Figures
3.2-4(b). The corresponding inter-mass restoring force diagrams are shown in Fig-
ures 3.5-3.7. Note that Figures 3.6 and 3.7 exhibit more significant hysteretic
behavior than does Figure 3.5.

“Measured” Data In the present study, it will be assumed that the only “mea-
sured” data is the absolute acceleration at the roof, Z3(t), and at the base, Z(t).
By substracting the base input from the absolute response, the relative response
with respect to the base is obtained. The velocities and displacements are obtained

by integration of the accelerations. The system is taken to be initially at rest.

3.5.2 Model Identification - Parameter Calibration

The first stage is to identify a nonlinear model for the verification system. In
this stage, the model parameters are calibrated using a particular set of simulated
input and response “measurements”. The data used herein are the above-mentioned
scaled El Centro accelerogram and the corresponding acceleration response at the
“roof”.

Observe the Fourier amplitude spectrum for the relative acceleration of the
roof with respect to the base shown in Figure 3.8. Dominant frequencies are clearly
visible. The somewhat erratic appearance around each dominant frequency peak is
partly due to the nonlinearity of the system. However, the dominance of a number of
frequencies and corresponding “modes” is quite clear. A similar phenomenon is also
observed for the response frequency spectra of actual structures subjected to strong
ground motions. As mentioned in Section 2.6.2, this frequency domain information
can provide important guidance in choosing the frequency band of dominant modes
in the response. The values of frequency bands chosen for the first two dominant

modes are indicated in Table 3.1.
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Following the procedures described in Section 2.8, a succession of single-mode
identifications is performed one mode at a time and a final modal model based on
dominant modes is obtained. For each single-mode identification, initial estimates
are not required because the methéd reduces the problem to single-parameter iden-
tification with respect to the modal effective participation factor 8”. The optimal
estimate 8" is easily obtained by a simple one-dimensional nonlinear optimization
scheme outlined in Section 2.6.4. For given 87, the modal parameters for the gen-
eralized modal restoring force A™ are estimated directly by the nonparametric iden-

tification technique described in Section 3.4.3.

The only potential frequency domain problem is the determination of the ap-
propriate frequency band for each mode from the Fourier amplitude spectra of the
response. The erratic appearance around each dominant peak may sometimes make
the choice difficult. However, it is found that any mistake made in choosing the
frequency band will result in some parameters identified being nonphysical or the
convergence of the identification algorithm being difficult. Subsequent corrections

can be made if either of these two situations is encountered.

The effective participation factor 8 is determined by minimizing the difference
between the model and actual system response. Recall the definition of P in Section
2.5; that is, the ratio of the r.m.s. difference of the response at peaks only to the
maximum response of the system. Any response quantity can be chosen in P. The
acceleration is used in this study because the signal of the high frequency modes is
relatively small in both velocity and displacement and also because the acceleration

time history has relatively more peaks.

The results for the optimal model determined by acceleration matching are
given in Table 3.1. The prediction error P is also given. Table 3.1 shows that
after the second mode has been identified, the prediction error P based on the ac-

celeration peaks is 0.13. Softening behavior is observed from the negative sign of a}
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for both modes. This is also clearly seen from the generalized modal restoring force
diagrams shown in Figure 3.9. Note that an attempt to identify the third mode is
not successful because the third mode component of the response is relatively too
small.

The fit of the response time histories using two modes is shown in Figure
3.10-3.12. The solid line is the “measured” system response and the dashed line
represents the response predicted by the model. From Figure 3.10, it is seen that the
two-mode model gives a very good frequency and amplitude estimate of the actual
acceleration data. The identified velocity and displacement for the two-mode model
are compared with the actual velocity and displacement in Figures 3.11 and 3.12,
respectively. These figures show that a good frequency and amplitude match is still
obtained even though the model is determined by minimizing the prediction error
based on acceleration response only.

Finally, Figure 3.13(a) shows a profile of the prediction error P with respect
to the effective participation factor for the first mode. The range of the effective
participation factor is increased from O to 3 and the corresponding values of P
are plotted. Observe that the profile is very smooth and that the global minimum
corresponding to the effective participation factor of the first mode is apparent.
The absence of other local minima is expected because other modes have been
eliminated from the response by band-pass filtering. This supports the point made
previously that the global minimum can be easily obtained by any one-dimensional
optimization method and no initial estimates of the modal parameters are necessary.
A similar plot is shown for the second mode identification in Figure 3.13(b). The
global minimum corresponding to the effective participation factor of the second

mode is also apparent.
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3.5.3 Model Validation - Response Prediction

As the second stage of verification, the previously identified nonlinear model is
used to predict the roof response to two different base excitations consisting of the
scaled Taft and Parkfield earthquakes mentioned above.

Figures 3.14-3.16 show the response time histories of the system to the scaled
Taft earthquake as obtained from the model identified using the scaled El Centro
earthquake. The predition error P based on acceleration peaks is summarized in
Table 3.1. In general, the agreement between the actual response (solid) and that
predicted by the model (dashed) is seen to be quite good. This shows that the
nonlinear stiffness and energy dissipation behavior of the system can be fairly well
predicted in this case by the equivalent nonhysteretic model identified previously.
However, some details of the response time histories, especially the permanent or
drift displacement, are not reproduced by the model. This illustrates the fundamen-
tal problem of all nonhysteretic models that they have no mechanism with which
the hysteretic behavior of a nonlinear system can be identified.

In order to support this point, the previously identified model is used to predict
the response to the scaled Parkfield accelerogram. The characteristics of the exci-
tation and response in this case are quite different from those in the identification
case. The prediction error P based on acceleration peaks is summarized in the last
column of Table 3.1. The fit of the time histories is shown in Figures 17-19. From
the results, it is clearly seen that the model does not predict the response as well
as before, especially the prediction of the displacement time history. This is due to

the limitation of nonhysteretic models for identifying and predicting the nonlinear

response behavior of hysteretic systems.
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3.6 Summary

It is concluded that the identification process presented in this chapter yields a
nonparametric nonhysteretic model for an equivalent memoryless nonlinear system
[18-24]. The energy dissipated per cycle of motion by the hysteretic elements in the
system is approximately equal to that dissipated by the equivalent nonparametric
model identified. It should be noted that the identification does not find any char-
acteristics of the hysteretic response. Rather, it produces the “best” coefficients of
a model whose response matches the measured system response in a least-square
sense for the given excitation.

An important objective of this dissertation is to identify and to characterize
the hysteretic behavior for a nonlinearly responding system from a single measured
response and base input. Once a model for the system has been identified, it is
intended to use this model to predict its response to other excitations. It is clear
from the above prediction studies that the four-paramter nonparametric model iden-
tified cannot serve this purpose and a parametric hysteresis model must ultimately
be employed. However, some preliminary results estimated from the nonparamet-
ric identification can be exploited in the further identification studies of hysteretic

systems. This point will be illustrated in the remaining parts of the thesis.
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Chapter 4

Generalized Modal Identification
Using Hysteretic Models

4.1 Introduction

The objective of this chapter is to improve the modeling of the hysteretic be-
havior of a nonlinear structural system by employing a hysteretic restoring force
model in the generalized modal identification method. This is done against the
backdrop of the observations made in Chapter 3 regarding nonhysteretic nonlinear
models.

First, a number of hysteretic models are reviewed with emphasis on the mathe-
matical form of the backbone curves. A physically motivated model with the back-
bone characterized by only two parameters, called the two-parameter distributed-
element model, is then introduced. This model employs the results of the nonpara-
metric identification as an initial estimate for the model parameters. This approach
greatly improves the convergence and efficiency of the subsequent parameter opti-
mization process.

The validity of the identification method presented is verified with the same
simulated data used in Chapter 3. Improved results are obtained including the

prediction of the permanent drift of the response.
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4.2 The Backbone Curve

Figure 4.1 [1] shows a typical force-deformation behavior commonly encoun-
tered in the systems composed of nonlinear constitutive materials. Observe that the
behavior is not elastic even at relatively small force and is hysteretic for forces far
below the ultimate strength. Observe also that all the hysteresis loops are smooth
except at the turning points.

Many one-dimensional force-deformation relationships have been proposed to
model actual hysteretic behavior as observed above. In most of these models, the
basic concept is that the hysteretic loops can be characterized by the “skeleton™
or “backbone” curve, which has features similar to the force-deformation curve for
initial monotonic loading. Hysteretic behavior for these models is usually described
using the criterion suggested by Masing in 1926 {2]. The Masing criterion stipu-
lates that the unloading and reloading portions of a hysteresis loop have the same
shape as the backbone curve but with the scale expanded by a factor of two and
with the origin translated to the point of force reversal. The family of cyclic load-
ing/reloading curves resulting from this assumption is shown in Figure 4.2. Note
that Masing’s hypothesis is the one-dimensional equivalent of the kinematic hard-
ening law for an elasto-plastic material.

The use of the backbone curve for nonlinear analysis of structures subjected
to earthquake excitations was initiated in the early 1960s [3-4]. A variety of math-
ematical forms have since been suggested for the backbone curve, including the
bilinear, multilinear, hyperbolic and Ramberg-Osgood formulations. In most cases,
the construction of hysteresis loops for steady-state cyclic loading is performed by
~ means of the Masing criterion as described above, while for transient cyclic loading,
rules such as those proposed by Jennings (1965) or Iwan (1967) are utilized. The

latter has been shown to be consistent with test results [5,10-13].
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4.3 Hysteretic Restoring Force Models

Consider the equation of motion of the system or a particular mode of the

system which can be written in the form

¥+ h(y,9) = a(t), (4.1)

where y and y are the generalized relative displacement and velocity, respectively.
h(y,y) is the generalized restoring force per unit of mass and &(t) represents the
excitation acceleration.

Hysteretic behavior of h(y, ¥) is commonly observed in many nonlinear systems.
These range from systems composed of a single structural component to structures
consisting of a number of separate elements. In order to identify the hysteretic
behavior of real systems, it is desirable to have a model which is mé.thematically
tractable and physically meaningful. Many analytical models have been proposed
to describe the hysteresis in nonlinearly restoring systems. It is of interest to review

some of these models. This is done below with an emphasis on the initial loading

curve, or the backbone curve.

4.3.1 The Elasto-Plastic Model

The elasto-plastic model may be considered a “building block” for more so-
phisticated hysteretic models. This model has the simplest backbone curve, shown

in Figure 4.3(a), that is

h = ky; y>0,0<y<y"
(4.2)

=ky*;  §>0,y>y*
A physical idealization of such behavior is illustrated in Figure 4.3{b) which consists
of a linear spring with stiffness & in series with a Coulomb or slip damper with a

maximum allowable force ky*, where y* denotes the yielding level.
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Due to its simplicity, this model has been used by many analysts. However,
for many hysteretic systems, it is too idealized to represent the actual hysteretic

characteristics of restoring force such as the post-yield hardening behavior [14].
4.3.2 The Bilinear Model

The bilinear model is the simplest model proposed so far for the study of
hysteretic systems with post-yield hardening behavior. As shown in Figure 4.4(a),
this model approximates the backbone curve by line segments with two different
slopes, (ky + k2) and ko, which can be expressed as

h=(ki+k)y; 9>0,0<y<y’
(4.3)
=koy;  9>0,y2y"

where (k1 +k2) represents the initial stiffness, and the post-yield hardening behavior
is modeled by the second slope k3. An idealized system that behaves consistently
with the model is shown in Figure 4.4(b). This system is made by adding the second
linear spring to the elasto-plastic system shown in Figure 4.3(b). The bilinear model
is, therefore, a physically motivated model.

Considerable research has been done using the bilinear model [3,4,7-9,15-16].
In general, the results have been satisfactory. This is because the model captures
the most important features of hysteretic behavior. However, in system modeling
and identification, it is difficult to describe the detailed hysteretic behavior of real
systems using this simplified model, especially, when the transient response is im-
portant. For example, lemura and Jennings [17] showed that it was not possible to
model the E-W response of Millikan Library during the San Fernando earthquake

using a single time invariant bilinar model.
4.3.3 Smooth Backbone Models

Both elasto-plastic and bilinear models are too simplified to describe the actual

hysteretic behavior observed in Figure 4.1. In an effort to overcome this difficulty,
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several hysteretic models giving smooth backbone of hysteresis curves have been
proposed [18-21]. They are motivated either mathematically or physically. Two
illustrative examples are given below based on these two approaches, respectively.

Bouc and Wen [22-23] modeled the hysteretic component of the restoring force

mathematically by defining an additional variable z(t), where

h(y,9) = 2(t) , (4.4)
z(t) is then defined by the auxilary equations

2= —aly|z™ - By|z"| + 1y for n odd, (4.5)

or,

z = —alyjz” | — By + vy for n even. (4.6)

«, B, v and n are the model parameters. This model has been generalized to
exhibit different types of hysteretic behavior. A detailed review of all these models
is available in a recent paper by Wen [24].

By defining a.n' additional state variable z(t), these models allow analytical
treatment and have been applied to system identification problems. It has been
found recently [13,25] that these models behave inconsistently in certain situations.
As shown in Figure 4.5, the hysteresis loops generated by the model are not always
closed under cyclic displacement loading and the lobps drift continuously under
certain types of cyclic force loading. This is due to the fact that the hysteresis loops
are constructed mathematically and may not be physical under some circumstances.

For most hysteretic models which are mathematically motivated, the drawback
lies in the areas of transient loading and cycling between variable limits where
additional mathematical assumptions must be made. Also, it is sometimes difficult

to relate the mathematical model parameters to the physical parameters of a system.



- 78 -

1.0 — r
0.0 / -

-1.0 '
20 -10 00 10 20

1.0 ‘ ! !

0.0

-1.0 . ‘ '
20 -10 00 10 20

(b)

Figure 4.5  Inconsistent behavior of Wen’s model in certain loading situations {25].
(a) Open hysteretic loop under symmetric cyclic loading.
(b) Drifting characteristic under certain cyclic loading.
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However, all these problems can be alleviated by developing a physically based
hysteretic model.

Iwan [26] introduced a physically motivated model, called the distributed-
element model. Based on the general approach suggested by S. P. Timoshenko
in 1930, this model assumes that a general hysteretic system may be represented
by a series of so-called Jenkin’s elements. Each Jenkin’s element is actually an
elasto-plastic unit consisting of a linear spring with stiffness K /N in series with a
Coulomb or slip damper that has a maximum allowable force f}/N. N is the total

number of elements. The backbone curve of the entire system is given by

N
h=>Y_ f{/N+Ky(N-n)/N; §>0 (4.7)

i=1
where the first term represents the contribution from n yielded elements and the
second from the (N —n) elements which have not as yet yielded. If the total number
of elements N becomes very large, the backbone curve expressed by (4.7) can be
very smooth.
Since the hysteretic behavior of the model is based on the physics of a particular

mechanical system, no mathematical rules are needed to assure physical hysteresis

loops under complicated loading histories.
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4.4 Two-Parameter Distributed-Element Model

There are two attractive features of the distributed-element model:

(1) The relationship between the backbone and hysteresis loops are determined by
the physical nature of the model. Thus, no mathematical rules are necessary
to assure physical behavior of hysteresis under complicated loading histories.

(2) It is relatively easy to estimate the model parameters by fitting the backbone
of the model to a variety of initial loading or backbone curves.

The first feature has been explained in the last section and the second is explored in

this section to develop a simple hysteretic model with only two parameters, called

the two-parameter distributed element model.

4.4.1 Model Considerations

Figure 4.6(a) illustrates a general distributed element model, which is a col-
lection of elasto-plastic elements arranged in a parallel configuration. Each elasto-
plastic sub-element is completely defined in terms of two parameters: the spring
stiffness k] and the yielding displacement y!*. Therefore, for a model consisting
of N elements, there will be 2N parameters, k] and y‘-", 1t =12,...,N, to be
determined in an identification problem.

In order to make such a model attractive for use in system identification, the
number of parameters to be identified must be reduced. One approach presented
herein is to prescribe the form of the backbone in terms of M parameters and then
establish a relationship between the 2N model parameters and the M backbone
parameters. Using this approach, the number of parameters which need to be
identified is reduced from 2N to M. In general, M is much less than 2N. A
relationship is derived in the section 4.4.3 which can be used to determine the
model parameters from any prescribed backbone curve.

The problem now is the choice of the mathematical form of the backbone curve.
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In this study, the form is assumed to be
RT=bly" +b5(¥)% ¥ <y™ and §" >0
. (4.8)
=by™ +05(4™)% Yy 2y and >0

A" is the estimate of the generalized modal restoring force h" given by the two-
parameter distributed element model. 5] and b} are two parameters used to specify
the backbone curve of the model. The numerical values of 4] and b7 need to be
estimated to capture the essential features of the hysteretic behavior being modeled.

This simple parametric backbone relationship is proposed based on the results
of the nonparametric identification studies in Chapter 3. It is observed that the
four-parameter “nonparametric” model provides a good nonhysteretic estimate of
the nonlinear stiffness behavior of the system. However, the hysteretic nature of
the response is not identifiable by the nonparametric model. The failure to identify
the hysteretic component of the response is due to the nonhysteretic nature of the
model and motivates the present study of using hysteretic models. The fairly good
match of time history response data indicates that the backbone identified by the
form aly” + a5 (y")? can be used as an initial estimate of the backbone relationship
(4.8) of the distributed-element model. By doing this, the subsequent optimization
process for refining the backbone parameters 5] and b5 becomes very straightforward
and efficient. A simple parameter estimation algorithm is described in section 4.4.4.
Note that the power series expansion of hysteretic relations with damping has been

used by Jennings for a simple yielding structure [32].
4.3.2 General Description

The initial stiffness of the model is denoted by d] and the ultimate strength
of the system is given by bJy™ + b5(y™*)3, where y™ = \/:W representing
the yielding displacement of the system. The smoothness of the transition from
elastic to plastic response of the force-deformation curve is controlled by the cubic

relationship (4.8).
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The force-deformation relation of the model for any hysteresis loop other than
the backbone curve is determined by the elasto-plastic behavior of each sub-element
and no mathematical hysteresis rules are needed. For cyclic loading, the hysteresis
loops generated by the model are consistent with Masing’s criterion. For transient
response, it has been shown that the hysteresis loops generated by the model are
consistent with the testing behavior of some actual systems [13]. Figure 4.6(b)
shows the typical restoring force diagram of the model for for the case in which the

total number of elements, N, becomes very large.

4.4.3 Specification of k] and yI*

Consider the distributed-element model shown in Figure 4.5(a) with the back-

bone curve prescribed by
=), (49)

where f7(y") is any mathematical form which approximates the backbone curve of
hT.

If the model has N elasto-plastic elements, the parameters needing to be spec-
ified are k7 and y{*,+=1,2,...,N.

When the total number of elements, i.e., N, is sufficiently large, the choice
of the yielding displacement of each element, y7*,y5*,...,y}, becomes immaterial.
For simplicity, it is convenient to take the values y7*,y%%,...,y}y equally spaced and

let 3 be the yielding displacement of the system, y™*. This simplification leads to

T L. )
—N-y" 1i=1,2,...,N. (4.10)

e __
B =

Therefore, the parameters remaining to be specified are k¥, 7 =1,2,...,N.

By fitting the backbone of the model to the expression f"(y"), one may obtain

ki =f"(yf*)—f7(0) fori=1 (4.11)

aor



-84 —
= f"(yf*) - f"'(y’-':l) fori=2,3,...,N. (4.12)

This relationship allows kI to be determined from the y; and f"(y").

In this study, f7(y") is chosen to be of the form (4.8) which has two parameters,
b7 and b%. The above procedure reduces the number of parameters associated with
the distributed-element model consisting of N elements, initially equal to 2N, to
only two. It will be seen later, this two-parameter distributed-element model is able

to capture the essential features of the hysteretic behavior under consideration.
4.4.4 Parameter Estimation

Let A" be the estimate of the restoring force A" by the two-parameter distribut-
ed element model. The coefficients 5] and b7 appearing in the backbone relationship
(4.8) of the model are determined by minimizing the prediction error P. In this
study, P is defined as the r.m.s. value of the difference between the the peaks of
the system and model response in acceleration.

Noting that the prediction error P is a function of ] and b5, the optimal

estimate of these two parameters can be obtained as
P = P(b7,b5) = minimum w.r.t. b] and b, . (4.13)

This is a standard nonlinear optimization problem, in which the optimum must
be found by means of numerical techniques. Many approaches are available to
solve such a problem [27-30]. In this investigation; a series of one-dimensional
minimizations are performed by minimizing P alternately with respect to 4] and
with respect to 5. Each one-dimensional minimization process is performed using
the same algorithm described in Section 2.6.4 for optimizing 87.

Two features of the method for finding the minimum of the function P(b7, b3)
are:

(1) The method is equivalent to the steepest descent method because there are only

two parameters being optimized [31]. In the latter approach, the gradient of P
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needs to be evaluated to determine the direction of steepest descent and then a
one-dimensional minimization would be performed in this direction. However,
the present approach needs no such evaluations.

(2) The initial estimates of b] and b5 may be taken from the a] and a} identified
by the four-parameter “nonparametric” model which are generally very close
to the optimal parameters of the model. This saves considerable computational

effort in finding appropriate initial estimates for 4] and b5.

4.5 Verification with Simulated Data

The validity of the generalized modal identification method incorporating the
two-parameter distributed-element model is now tested with simulated data for a
verification system. The excitation and response data used in the present study
are the same as those in Chapter 3. The results of identification and prediction are

reported herein.

4.5.1 Model Identification - Parameter Calibration

To initiate the verification study, a nonlinear model for the verification system
is identified first from the “measured” response and base input. The simulated input
and output data used to calibrate the model parameters are the scaled El Centro
accelerogram and the corresponding absolute acceleration response of the top mass.
By processing these data, the relative response with respect to the moving base is
readily obtained.

By observing the Fourier amplitude spectrum for the relative acceleration of
the top mass, the frequency band of the dominant modes can be determined. The
same values of the frequency band for the first two dominant modes are chosen
as in Chapter 3. The values are listed in Table 4.1 and are used to estimate the

uncoupled modal response following the band-pass filtering procedures explained in

Section 2.6.2.
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As described in Section 2.6, the dominant modes are identified one at a time
by performing a succession of single-mode identifications. The optimal estimate
B7 is determined by a simple and direct one-dimensional minimization scheme as
outlined in Section 2.6.4. For given A7, the backbone parameters b{v and b5 of the
generalized restoring force A" are estimated by a parametric identification technique
described in Section 4.4.4. Note that the initial estimates of the modal parameters

7, b5 and B" are taken from the optimal values of aj, a5 and 8" obtained in
previous identification using the the four-parameter “nonparametric” model. Since
the initial values of parameters estimated in this way are generally very close to
the final optimal values, the optimization process used to refine the parameters is
performed very efficiently. No convergence problems have been encountered.

Determined by minimizing the prediction error based on the acceleration peaks
of the system response, the results for the optimal models are given in Table 4.1.
Only a two-mode model is identified for the same reason as in previous nonparamet-
ric study. Comparing Table 4.1 with Table 3.1, it is clear that the model parameters

1> b5 and B are indeed close to their counterparts, a], a5 and 7, r = 1, 2, obtained
in Chapter 3. This supprots the point made above regarding the closeness of the
values of these parameters.

The negative sign of b} and b2 indicated the softening stiffness behavior of
the hysteretic system. This is also illustrated by the identified generalized modal
restoring force diagrams depicted in Figure 4.7.

The quality of the response match using two modes is shown in Figures 8-10.
In general, the model fits the actual time history response better than does the four-
parameter nonparametric model. This improvement is considered the consequence
that the hysteretic component of the response has been identified by employing the

two-parameter distributed element model.
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It is next desirable to examine how well the identified model can predict the
hysteretic response to other excitations and how much it improves the results pre-

dicted by the four-parameter nonparametric model.

4.5.2 Model Validation - Response Prediction

To continue the verification study, the nonlinear model identified in section
4.4.2 is used to predict the roof response of the same system when subjected to other
base excitations. The same scaled Taft and Parkfield earthquakes and corresponding

response of the top mass are employed as in Chapter 3 and the prediction results

are compared.

Figures 11-13 show the time histories predicted by the model and “measured”
from the system to the scaled Taft earthquake. A similar comparison for the re-
sponse to fhe scaled Parkfield earthquake is presented in Figures 14-16. The predic-
tion error P based on acceleration peaks is summarized in the last two columns of
Table 4.1 for both cases. By comparing all these results with their counterparts in
Chapter 3, it is clearly seen that the prediction of the time history of the response
made by the optimal two-parameter distributed-element model is superior to that
obtained using the four-parameter nonhysteretic model. Especially significant are
the better reproduction of the hysteretic features of the response such as the drift
displacement shown in Figures 10 and 13.

It is concluded that the two-parameter distributed-element model with a small
number of modes is capable of predicting the hysteretic response, including the
permanent displacement, under different base excitations. Noting that the hys-
teretic behavior is more pronouned in the response used for prediction than for
identification, this example emphasizes the importance of employing an appropri-

ate hysteretic model in the identification study of a hysteretic system so that the
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identified model is capable of predicting the response to the input motions other

than the identification signal.

4.6 Summary

An efficient algorithm has been developed for the generalized modal identifica-
tion method using a special form of the distributed element hysteresis model. The
backbone relationship of the model is characterized by only two parameters which
is based on insight obtained from previous nonparametric studies in Chapter 3 and
an understanding of the physical nature of the distributed-element model. As ap-
plied to identifying the generalized modal restoring force of a hysteretic system, it
is totally unnecessary to specify any additional mathematical rules for generating
physical hysteresis loops. Furthermore, since the initial estimate of the backbone
parameters obtained from the nonparametric technique using the four-parameter
model is generally very close to the optimal estimate, the subsequent optimization
process is very straightforward and efficient and no convergence problems have been’
encountered.

The identification method together with the model is verified with simulated
data generated for a hysteretic system. The results illustrate the excellent ability
of the present approach to identify and also predict the nonlinear response for a
hysteretic verification system including the permanent displacement. The improve-
ment of identification/prediction is due to the hysterétic response being modeled
appropriately by the two-parameter distributed-element model.

Encouraged by the results of applying the generalized modal identification
method to simulated data, the method is applied to the pseudo-dynamic test data

from a full scale steel structure in the next chapter.
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Chapter 5

Application to Pseudo-Dynamic Test Data

5.1 Introduction

The objective of this chapter is to apply the method of generalized modal iden-
tification to the analysis of response data obtained from an actual structure. The
structure selected is a full-scale six-story steel-frame structure which was excited
into the nonlinear range in the U.S.-Japan cooperative pseudo-dynamic test. It is
intended to use this example to illustrate that the method proposed in this disser-
tation is capable of providing an accurate representation of the hysteretic response
of a real structure.

Generalized modal identification is performed with the two simple nonlinear
models introduced previously. In the preliminary investigation, the test structure
is identified by employing a four-parameter nonparametric model. This model pro-
vides a nonhysteretic estimate of the nonlinear stiffness and energy dissipation be-
havior. Subsequently, a two-parameter distributed-element model is used to obtain
a hysteretic estimate of the nonlinear behavior. This model employs the results
of the nonparametric identification as the prior estimates of the model parame-
ters. The final result is a fully hysteretic structural model which characterizes the

nonlinear behavior of the test structure.
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5.2 Pseudo-Dynamic Testing Method

This section contains an overview of the pseudo-dynamic testing method for

simulating or estimating seismic effects on buildings and similar structures.

5.2.1 General Features

The pseudo-dynamic method is an on-line computer-controlled, experimen-
tal technique which can be used to evaluate the inelastic seismic behavior of full-
scale strucutural systems. This relatively new technique was initiated in 1975 by
Takanashi, et al. {1-5] at the University of Tokyo, Japan. In this method the usual
pseudo-static test procedures are combined with an on-line computer control sys-
tem. The on-line computer is used to control the simulated earthquake force applied

by hydraulic actuators so as to model the inertial properties of the structure.

In contrast to the usual pseudo-static test procedures, the restoring force-
displacement relationship of a test specimen is not prescribed prior to the test.
Instéad, the actual restoring forc-e characteristics measured by the displacement
and force transducers are used to compute the movement that must be enforced at
each degree-of-freedom. The process is performed interactively at each time step as
the experiment proceeds. Hence, the pseudo-dynamic method makes it possible to
simulate the dynamic behavior of a structure subjected to strong ground motions
in a step-by-step procedure while taking into account the continuously changing
structural stiffness.

The physical equipment used in the pseudo-static experiments is largely ap-
plicable for pseudo-dynamic testing. However, very precise displacement control
systems must be implemented. This requires the use of some very sensitive servo-
valves, as well as a suitable on-line computer and a rapid data-acquisition system
[6-7]. The test results in many respects are comparable to those achieved on more

costly shaking tables. Moreover the testing structure can be of large size limited
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mainly by the capacity of conventional test equipment. Studies of subassemblages
can also be made with relative ease. This emerging technology offers a means for

seismic testing of full-size structures into the inelastic region.

5.2.2 Test Procedure

In a pseudo-dynamic test, the equilibrium of a multi-degree-of-freedom struc-
tural system is enforced only at discrete time steps. For such a step-by-step proce-

dure, the basic equation is
Mg 4 Cg(") +£(i) =£(*') = —ML;’E(’.) (5.1)

where M and C are the mass and viscous-damping matrices; }Z("), 2("), and ;f. )
are the acceleration, velocity, and restoring force vectors at time 7At¢; and g(") is
the external excitation force vector due to earthquake acceleration (). All the
components of 1 are unity.

Using the central-difference method, velocity and accelerations can be approx-

imated as
(3+1) _ ,,(3-1)
e y y
gV =S (5.2
and
. (i+1) _ 9 (1) (3-1)
(i y yie) +y

in which y(—1, y®, and yl+1) are displacement vectors at consecutive loading
steps. On combining equations (5.1), (5.2) and (5.3), one obtains an explicit ex-

pression for y(¢ + 1) [7] as
' -1
g(i+1) = [M-i— %EC] [Atz (g(a) _i(;)) +

A _ | (5.4)
( C - M) yi-1 4 2My(‘)]

2
Based on the known mass distribution of the test structure and the assump-

tion of the mass being lumped at each degree-of-freedom, the mass matrix M is
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obtained. The viscous-damping matrix C is estimated from the preliminary tests
at low amplitudes assuming Rayleigh damping. For a given earthquake 2(") or 30
is prescribed. Thus, once ’): @) s experimentally measured, equation (5.4) can be
solved by an on-line computer, and the increments in displacements at nodal points
can be determined. The calcuated nodal displacements are then imposed on the
structure using hydraulic actuators. This process is illustrated schematically in
Figure 5.1.

Since in a pseudo-dynamic test the displacements to be imposed on a test struc-
ture are computed based on the structural restoring forces directly measured from
the deformed structure, experimental errors associated with displacement control
and force measurement are inevitably introduced into the computational procedure.
Because of the large number of loading steps generally involved, cumulative errors
in the numerical results can be significant even though the experimental feedback
errors introduced in each step are small. The studies of Shing and Mahin [8-12]
showed that the rate of cumulative error growth with respect to the loading step in-
creases rapidly with the natural frequency of the test structure and the integration
time interval used. Hence, the higher frequency response is more sensitive to exper-

imental errors and the cumulative growth of errors can be minimized by reduding

the integration time interval At.
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5.3 BRI Testing Program

Although the pseudo-dynamic testing method is still in a developmental stage,
very significant seismic research has already been completed using this approach.
The recent work on building systems at the Building Research Institute (BRI} in
Tsukuba, Japan, under the U.S.-Japan Cooperative Research Program Utilizing
Large-Scale Testing facilities is particularly noteworthy [13-14]. Figure 5.2 shows
the pseudo-dynamic testing facility of the Building Research Institute [15]. The
facility permits the test specimen to be anchored to the floor and lateral forces
are applied by hydraulic actuators attached to a cellular strong-wall. Large pro-
grammed actuators were used to apply lateral forces from one side at each floor level.
The test under the U.S.~Japan Cooperative Research Program for steel structures
is briefly described below.

A six-story, two-bay, full-scale steel-frame structure was tested at the pseudo-
dynamic testing facility at BRI during November, 1983 — March, 1984. The plan
and cross-section of the test structure are shown in Figure 5.3. This structure was
designed to satisfy the requirements of both the 1979 U.S. Uniform Building Code
(UBC) and the 1981 Architectural Institute of Japan code [16]. The dimension was
15 m X 15 m in plan and 21.5 m high. In the direction of loading, the structure
consisted of three moment resistant frames. The two exterior frames A and C
were unbraced. The north bay of the interior frame B was braced with eccentric K-
bracing. All the girder-to-column connections were designed as moment connections
in the loading direction and shear connections in the transverse direction. The floor
was built compositely with the girders and floor beams with a formed metal decking
and cast-in-place light-weight concrete. No nonstructural components were attached
to the frame system.

The pseudo-dynamic tests were performed at low amplitudes to give nominally

elastic response and at larger amplitude to excite the structure into the inelastic
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range. In the elastic and inelastic tests, the test structure was subjected to the S21W
component of the Taft record from the 1952 Kern County, California, earthquake
scaled to a peak acceleration of 6.5% and 50%. |

The study of the elastic response data using system identification techniques
performed by Jayakumar and Beck revealed the cumulative effect of experimental
errors inherent in the test [17-20]. They observed that a negative damping present
in the third mode and the accelerations calculated from system identification did
not agree well with the test accelerations. The inelastic data have also been an-
alyzed using the response data of all six floors [17,21] based on a shear building
idealization with a three-parameter hysteretic model relating the story shear and
story drift of each inter-story structure. The algorithm developed involved continual
alternating between the steepest descent and the modified Gauss-Newton methods
for the simultaneous identification of the optimal parameter values in a (3N + 1)-
dimensional space where N is the number of floors. Therefore, the final results were
a shear building model with 18 model parameters.

In the next two sections, an analysis of the inelastic test data is performed
using the generalized modal identification method. Both nonlinear nonhysteretic
and hysteretic models are employed. In marked constrast to most nonlinear system

identification approaches, the input and roof response data only are used in the

analysis.
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5.4 Four-Parameter Nonhysteretic Model

In the preliminary investigation into the nonlinear behavior of the test struc-
ture, the pseudo-dynamic data are analyzed by employing the four-parameter non-
parametric model (3.14). The purpose of doing this is to obtain an initial nonhys-
teretic estimate of the nonlinear behavior.

The test input to the structure is used as the base excitation to the models. The
time history and Fourier amplitude spectra are shown in Figure 5.4. The relative
acceleration of the roof with respect to the base is used as the response data in the
analysis. The length of the pseudo-dynamic test records is 17.1 seconds. The model
parameters are estimated for the segment from 0 to 15 seconds.

Observe the Fourier amplitude spectrum of the relative acceleration of the roof
in Figure 5.5. The erratic appearance around each dominant frequency peak is
typical of the frequency spectra for nonlinear system. However, the dominance
of three “modal” frequencies is clearly observed and can be used to estimate the
frequency band of each dominant mode. The values of frequency band chosen for
the first two dominant modes are summarized in Table 5.1. These values are used to
obtain the uncoupled modal response by band-pass filtering as described in Section
2.6.2.

Following the general procedure described in section 2.6, the modal parameters
are estimated one mode at a time by a succession of single-mode identifications until
a final modal model based on dominant modes is obtained. For each single-mode
identification, initial estimates for parameters are not required because the method
reduces the problem to single-parameter identification with respect to the effective
participation factor 7. The optimal value for the effective participation factor 7
is determined by a simple one-dimensional nonlinear optimization scheme outlined

in Section 2.6.4. For given (37, the parameters af, ¢ = 1,2, 3,4 of the generalized
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modal restoring force A" are estimated directly by the nonparametric identification
technique outlined in Section 3.4.3.

The optimal modal effective participation factor 87 is considered determined
when the difference between the model and system response is minimized. The
difference is quantified by an error function P, called the prediction error. As
defined in Section 2.5, P is the ratio of the r.m.s. difference at the system response
peaks and corresponding model response to the maximum response of the system.
The response quantity used in this study is the relative acceleration since it has the
richest high frequency content and therefore allows more reliable estimation of the
parameters of the high frequency modes. Also, the acceleration time history has

relatively more peaks than the velocity and displacement.

Only a two-mode model is determined herein because the signal of the higher
modes is very small, as can be observed from Figure 5.5. The optimal model
parameters identified by acceleration matching are presented in Table 5.1, including
the prediction error P. It is seen from the table that after the second mode has
been identified, the predition error P based on acceleration peaks is 0.146. This
indicates a fairly good acceleration match. The negative sign of a} and a2 indicates
the softening behavior of the system stiffness. The equivalent viscous damping

increases with velocity amplitude as a consequence of the positive sign of a} and

a2

Figure 5.6 illustrates the identified generalized restoring force diagram for the
first and second modes. These diagrams exhibit softening stiffness and nonlinear
damping behavior which are consistent with the previous observations based on the
sign of a}, 1t = 1,2, 3,4. Observe that the generalized restoring force for the second
mode is comparable to that of the first mode in amplitude. However, the second

mode has relatively small generalized displacement.

The test roof response relative to the base is compared with its counterpart
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predicted by the identified two-mode model in Figures 5.7-5.9. The solid line is the
test response and dashed line represents the response predicted by the model. The
quality of the acceleration match of the two mode-model is illustrated in Figure
5.7. Some of the high frequency discrepancies are due partly to the control and
measurement errors during the test. Figure 5.8 shows that a fairly good velocity
match is obtained even when the model is determined by matching accelerations.
It is of interest that the model does not estimate well the peaks of the measured
displacement, as observed from Figure 5.9. This cannot be accounted for in the two-
mode model solely from the control and measurement errors or from the exclusion
of higher modes. A possible explanation for this discrepancy is the hysteretic nature
of the response, especially the permanent displacement, which is not identified at
all by the model.

In summary, it is seen from the results that the four-parameter nonparametric
model with a small number of modes gives a good nonhysteretic estimate of the
response time history. However, some discrepancies in the time history, especially
in the displacement, are observed. This cannot be explained solely by the exper-
imental errors or the exclusion of higher modes in the model. It is thought that
the main reason is that the hereditary nature of the structural response has not

been identified since the model employed herein has no mechanism with which the

hystertic behavior can be modeled.
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5.5 Two-Parameter Hysteretic Model

In order to identify the hysteretic behavior of the test structure, the two-
parameter distributed-element model (4.8) is employed in the generalized modal
identification method to obtain the final hysteretic model. This is done to extract
the hysteretic nature of the response and to improve the agreement with the test
response, especially the displacement. The identification approach when used with
simulated data has been presented in Chapter 4.

The same pseudo-dynamic test data and values of frequency band for the first
two dominant modes are choosen as in the nonparametric identification. These val-
ues are used to estimate the uncoupled modal response as described in Section 2.6.2.
In this study, the modal responses are identified by the two-parameter distributed-
element model.

The general identificaiton procedure of Section 2.6 is followed. The value for
the effective participation factor 87 is optimized as outlined in Section 2.6.4. For
given 8", the parameters b}, + = 1,2, for the generalized modal restoring force A"
are estimated by a parametric identification technique outlined in Section 4.4.4.
However, the efficiency and convergency of the parameter optimization process are
greatly improved because some parameters can be estimated from the results of the
previous nonparametric identification.

The results for the optimal two-mode model determined by matching the rela-
tive acceleration are summarized in Table 5.2 and compared with previous nonpara-
metric identification results herein. It is seen that the model parameters identified
during the initial stage of nonparametric identification are generally very close to
the optimal parameters of the parametric model. This supports the point made
above regarding the closeness of the optimal model parameters and their initial

estimates obtained from the nonparametric identification.

The softening stiffness behavior of the backbone curve is indicated by the sign
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of the parameter b5 for both modes. This is also shown in the identified generalized
modal restoring force diagrams of Figure 5.10. The general features of the hysteresis
loops are quite similar to those of the four-parameter nonparametric model shown
in Figure 5.6.

The actual roof time history is compared with its counterpart predicted by
the hysteretic model in Figure 5.11-5.13. In general, the agreement in response,
especially in displacement, is better than previous results. This is due to the fact
that the hysteretic nature of the response can be identified by the hysteretic model
employed herein.

Based on the identified generalized restoring force and linear mode shape of the
first mode, an estimation of the inter-story restoring force behavior is attempted.
The mass distribution and the mode shape of the first mode from references |17,22)

are used. The values from the roof to the first floor are:
m; = 0.077,0.090, 0.090, 0.090, 0.090, 0.095 ton

$% = 1.40,1.22,1.01,0.78,0.53,0.30 .

Inter-story restoring force diagrams obtained from the pseudo-dynamic test
are compared with the estimated diagrams in Figures 5.14-5.15. The estimated
hysteresis in general is acceptable.

All the results clearly show that the two-parameter distributed-element model
gives an improved representation of the nonlinear response of the test structure and
offers a means to estimate the hysteretic behavior of the inter-story restoring forces.
The discrepency in the time history of response, especially in the displacement, is
reduced. Considering the fact that the two-parameter distributed-element model
has less number of parameters than does the four-parameter nonparametric model,

it is thought that the main reason for this improvemnt is that the hysteretic nature

of the response has been identified.
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Figure 5.14 Comparison of inter-story restoring force behavior.

(a) Experimental hysteresis loops [17).
(b) Estimated bysteresis loops.
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5.6 Summary

Inelastic pseudo-dynamic test data are analyzed using the generalized modal
identification method incorporating two simple nonlinear models, in order to exam-
ine the applicability of the method and the models to a real structure. In marked
contrast to most nonlinear system identification methods developed so far, only two
test records, one at the base of the structure and the other at the roof, are used
to determine the optimal nonlinear models. The final hysteretic model exploits
the results from nonparametric identification as an initial estimate for the model
parameters. This approach greatly improves the efficiency and convergence of the
subsequent nonlinear optimization process.

Of the two simple models identified to describe the nonlinear response of
the steel structure tested by the pseudo-dynamic method, the better agreement
is achieved by the use of a two-parameter distributed-element hysteretic model.
Due to two more parameters in the nonhysteretic model, the four-parameter non-
parametric model fits the acceleration slightly better. However, this model is not
capable of duplicating the displacement response nearly so well as the hysteretic
model. The nonhysteretic model does give maximum response close to those ob-
served in this particular test, however, due to the fact that the hysteretic nature of
the system is not identified, its use might not provide valid information in predicting
the response of the hysteretic system to other excitations.

On the basis of all the results in this chapter, it was shown that the simple
two-parameter relationship for the backbone of the distributed-element model is suf-
ficient to capture the essential features of the hysteretic behavior of the generalized
modal restoring force for the steel structure. Also, the two-parameter distributed-
element model with a small number of modes provides a fully hysteretic structural

model which characterizes the nonlinear response of the test structure.
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Chapter 6

Conclusions

A relatively simple and accurate system identification method has been pre-
sented in this thesis that is suitable for use with multi-degree-of-freedom nonlinear
hysteretic dynamic systems under the action of base motion. The method considers
the situtation in which only the base input and the response of a small number of
degrees-of-freedom in the system are measured. The main objective of this study
has been the identification and modeling of the behavior of structural dynamic sys-
tems in the nonlinear hysteretic response regime. Once a model for the system has
been identified, it is intended to use this model to assess structural damage and to
predict response of the structure to future excitations. A general synopsis of the
work performed in the preceding chapters is presented herein.

In Chapter 2 a new methodology, called the generalized modal identification
method, is formulated for determining an optimal model of a general nonlinear
dynamical system from its measured base excitation and response. The method
is based on the separation of the response into “modes” which are analogous to
those of a linear system. Once the response of each mode has been estimated and
the participation factor assumed, the generalized restoring force for each mode is
readily obtained.

Various nonparametric or parametric models can be used to extract the un-
known nature of system nonlinearity, hysteretic or nonhysteretic. By matching
the obtained restoring force directly, the solution of nonlinear differential equa-
tions of motion may be avoided at this stage of the identification. Consequently,
the methodology reduces the identification problem to the determination of the
effective participation factor for each mode. This can be performed by means of

any simple one-dimensional optimization scheme. The difficulties of multi-variable
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nonlinear optimization are thereby avoided.

The optimality criterion employed throughout is based on minimizing the r.m.s.

of the difference between the actual system and model response at the peaks of time

histories only. By satisfying this criterion, the model identified is one which best

describes the peaks of system response which are generally the points of greatest

engineering significance in the response time history.

The new identification methodology proposed results in considerable compu-

tational efficiency without sacrificing accuracy. The information obtained is useful

for characterizing the nonlinear behavior of structures and for predicting structural

response to future excitations.

(1)

(2)

(3)

(4)

The main features of this identification methodology are:

Various restoring force models can be incorporated in the method to iden-
tify virtually any type of nonlinear system characteristics. Hysteretic systems,
which pose problems for most identification techniques, can be easily handled

by the present approach in a unified framework.

In marked contrast to most nonlinear system identification methods, the mea-
surements required are the base motion and response at only one location in
the system. Furthermore, the method requires no information regarding the

estimates of mass distribution and pertinent “mode shapes” of the system.

Convergence of the associated nonlinear optimization algorithm is fast because
the problem has been reduced to determining only an optimal estimate of the
effective modal participation factor. This process can be performed with any
simple one-dimensional nonlinear optimization scheme with resulting compu-

tational efficiency.

The computational requirements, both in terms of CPU time as well as storage,

are very small for the characterization of a general nonlinear system.
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(5) There is no practical limitation on the nature of probing signal that can be
used for identification.

(6) The identified generalized modal restoring force models allow one not only to
obtain valuable physical insight into the nonlinear stiffness and energy dissipa-
tion behavior of the system but also to assess the condition of the system and

to predict its response to other excitations.

(7) The identification results obtained are relatively insensitive to measurement
noise due to the use of r.m.s. error measure based on response peaks since at
these points the signal to noise ratio is relatively high.

Chapter 3 is concerned with the generalized modal identification method in-
corporating nonhysteretic restoring force models. Based on model simplicity and
computational considerations, a particular nonlinear nonhysteretic model with only
four terms is introduced. This model, called the four-parameter nonparametric
model, is a truncated form of a more general class of nonparametric models. The
simplicity of the model makes it easy to illustrate the role of nonparametric tech-
niques in the preliminary identification studies of hysteretic systems.

The parameters of the model are determined by approximating the generalized
modal restoring force in the sense of least-squares. This identification technique
involves no iterative nonlinear optimization process and requires no solution of
nonlinear equations of motion. Hence, additional computational saving is attained.

The validation of the identification algorithm and the model are performed with
simulated data. Three different scaled earthquake accelerograms are selected as a
broad-band base excitation to generate response data for a nonlinear hysteretic
system. The first accelerogram is used to identify the system. The second and
third are used to study the prediction capability of the identified model. The
characteristics of the third scaled earthquake are selected to be quite different from

those of the first and second excitations and the corresponding response exhibits



- 137 -

more significant hysteretic behavior.

From the results of the verification study, it is demonstrated that the nonhys-
teretic model has only limited capability for predicting the hysteretic features in the
nonlinear response; for example, the permanent displacement of the response. How-
ever, the identified model provides a good estimate of the nonlinear stiffness and
energy dissipation behavior of the system. Hence, the nonparametric identification
results can be exploited to suggest the parametric form of the final hysteretic model
which should be used and to provide a priori estimates of the model parameters
which should be selected.

Motivated by the above observations, in Chapter 4 the generalized modal iden-
tification method incorporating hysteretic restoring models is studied. A physically
motivated model, called the two-parameter distributed-element model, is proposed.
The backbone relationship of the model is characterized by only two parameters
which are based on insight obtained from the previous nonparametric studies.

The relationship between the backbone and hysteresis loops are determined by
the physical nature of the model which is consistent with Masing’s hypothesis. Thus,
no mathematical rules are necessary to assure the physical behavior of hysteresis

under various loading histories.

This model employs the results of the previous nonparametric identification as
an initial estimate for the model parameters. Since the nonhysteretic estimate of
the model parameters obtained from the nonparametric identification study using
the four-parameter model is generally very close to the optimal estimate, this ap-
proach greatly improves the convergence and efficiency properties of the subsequent
parameter optimization process.

The identification algorithm together with the model are verified using the
same simulated data as in Chapter 3. The model predictions for the hysteretic

features of the response time histories, including the permanent displacement, are
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greatly improved. The excellent identification/prediction capability of the present
approach emphasizes the importance of choosing an appropriate hysteresis model
in the generalized modal identification method to extract the hysteretic nature of a

nonlinear system.

In Chapter 5, the generalized modal identification method is applied to the
analysis of inelastic response data obtained from the U.S.-Japan cooporative pseudo-
dynamic test of a full-scale six-story steel-frame structure. The analysis employs
only two test records, one at the base of the structure and the other at the roof. Both
four-parameter nonhysteretic and two-parameter distributed-element hysteretic
models are identified. The latter model exploits the results from the former as
an initial estimate for the model parameters. This approach again results in con-
siderable saving of computational effort to find appropriate starting values for the
optimization process.

From the identification results, it is shown that a better description of the
hysteretic response is obtained with the use of a two-parameter hysteretic model.
Without extracting the hysteretic nature of the system, the identified nonhystertic
model will not provide valid predictions of the response to other excitations. In

contrast, the identified hysteretic model will have better capability for response

prediction.

This application example shows that the simple two-parameter backbone re-
lationship is sufficient to capture the main hysteretic behavior of the generalized
modal restoring force for a real steel structure. Furthermore, the two-parameter
distributed-element model with a small number of modes gives an accurate repre-

sentation of the hysteretic behavior of the structure.
Based on the verification and application studies performed in this thesis, the
new system identification method has been found to be both accurate and compu-

tationally efficient. It is believed that it will provide a useful tool for the analysis
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of structural response data.



