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ABSTRACT 

Fast and slow contracting fibers in neonatal mammalian skeletal muscle are each 

innervated in a highly specific manner by motor neurons of the corresponding type, 

even at an age when polyinnervation is widespread. Chemospecific recognition is 

a possible mechanism by which this pattern of innervation could be established. 

I have investigated this possibility by studying the degree of specificity during 

reinnervation of neonatal rabbit soleus muscle. Fiber type composition was assayed 

by measuring the twitch rise times of motor units within two days of the onset of 

functional reinnervation. In contrast to the broad, bimodal distribution of single 

motor unit twitch rise times seen in normal muscles, motor units in reinnervated 

muscles yielded a narrower, unimodal distribution of rise times. Rise times of 

reinnervated units were intermediate to those of normal fast and slow units, 

suggesting that reinnervated units were composed of a mixture of fast and slow 

contracting muscle fibers. An alternative possibility, that specific reinnervation 

was masked by contractile de-differentiation of muscle fibers, was examined by 

maintaining a transmission blockade induced by botulinum toxin poisoning for an 

equivalent interval. Twitch rise times of treated motor units exhibited the distinctly 

bimodal distribution characteristic of normal muscles, suggesting that muscle fibers 

can retain contractile diversity during a transient period of denervation. Computer 

simulations were employed to estimate the amount of rise time diversity induced 

by varying degrees of specificity during reinnervation. Based on this analysis, I 

conclude that there is little if any selective reinnervation of muscle fiber types at 

the ages studied. 

In a second experiment, I compared the development of fast and slow motor 

innervation in the neonatal rabbit soleus, a muscle which contains two distinct motor 
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unit types during the early period of polyneuronal innervation. The innervation 

state of individual muscle fibers was ascertained using an intracellular electrode; 

a fluorescent dye was then injected into particular fibers to permit subsequent 

identification of histochemical type. No significant difference in the time course 

of synapse elimination was observed for fast and slow motor units as judged by 

the percentage of fibers remaining polyneuronally innervated at two ages: 7-8 

days, when most fibers are multiply innervated, and lQ-11 days, when the level 

of polyinnervation is low. 

In a third experiment, I examined a phenomenon in which compound endplate 

potentials were occasionally seen in muscle fibers at an age (17-23 days) well past 

the major episode of synapse elimination. Several lines of evidence indicate that 

this apparent polyinnervation in fact derives from an electrode-induced electrical 

coupling artifact, and that genuinely polyinnervated fibers are very rare at this 

stage, if present at all. 

A computer model of neuromuscular synapse elimination was developed to serve 

as an analytical tool in exploring the potential roles of candidate mechanisms 

in regulating the normal process and in shaping its response to experimental 

perturbations. Synapse elimination is a complex process likely to involve the 

dynamic interaction of several specific mechanisms. This situation limits the 

reliability of a strictly inductive theoretical investigation into how these mechanisms 

might act. Three mechanisms which have been previously proposed and discussed 

in the literature are simulated, including a synaptic stabilization molecule, a muscle 

derived trophic factor, and a hypothesized intrinsic tendency of motor neurons to 

limit their arbor. The model is stochastic rather than deterministic in character, 

and is also dynamic, tracing the growth and retraction of individual presynaptic 

terminals at each iteration as they compete for limited synaptic space. 
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Nine experimental observations were selected to guide development of the model 

and evaluate its performance. All but one of the experimental observations can 

be simulated by at least one of the mechanisms studied. No single mechanism, 

however, is adequate to duplicate the entire body of experimental evidence. A 

relative advantage for larger terminals appears critical for convergence in both the 

scaffolding and trophic factor mechanisms. Several alternative roles for activity are 

compared. 
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Chapter 1 

GENERAL INTRODUCTION: 

THE DEVELOPMENT OF SPECIFICITY 

IN THE PERIPHERAL MOTOR SYSTEM 
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INTRODUCTION 

The mammalian nervous system is exceedingly intricate and complex. Precise 

connections are required to support coordinated and purposeful behavior. A 

fundamental goal in the study of the nervous system is to achieve a clear 

understanding of the events and processes by which this precise cellular connectivity 

arises during development. Beyond the intellectual challenge, the issue is a practical 

one with obvious therapeutic implications. Grasping developmental strategies 

should also provide important clues to how the completed assemblage functions. 

The formation and organization of so complex a system involves many distinct 

activities. Cellular proliferation and its regulation, differentiation and commitment, 

and cellular migration are processes which define neural populations and their 

spatial relationships during embryonic development. Guidance and pathfinding 

functions during axonal outgrowth are crucial in assuring appropriate patterns of 

projection. Once axons reach their target tissue, a process of mutual recognition 

is essential for axons to form synaptic connections at the appropriate locations 

with the correct target cells. Equally important is the development of appropriate 

cellular morphology, to encourage the proper number and relative positioning of 

synaptic inputs. 

The peripheral motor system offers an accessible system for the study of these 

important developmental processes. The mature organization of spinal motor pools 

focuses attention upon the mitotic and migratory processes which may produce 

these functional groupings (Hollyday and Hamburger, 1977). Muscle fibers develop 

independently from somitic precursors {Chevallier et al., 1977; Shellswell, 1977), 

although the final number of fibers in a muscle is neurogenically regulated (Betz et 

al., 1980; Ross et al., 1987). Motor axons follow highly stereotyped pathways to 
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find and innervate their appropriate target muscles (Landmesser, 1984). Within a 

muscle, the projection may be ordered topographically (Hardman and Brown, 1985) 

and according to muscle fiber contractile type (Thompson et al., 1984). 

Operating together with these active, expansionary processes are two apparently 

regressive events, naturally occurring cell death, and an episode of synaptic 

remodeling generally referred to as synapse elimination. While seemingly wasteful 

of developmental energy or resources, each may play an essential role in assuring 

functional integrity. Occurring during the early phase of interactions between 

afferent neurons and their targets, cell death is a widespread phenomenon 

apparently affecting all aspects of the central and peripheral nervous systems 

(Cowan et al., 1984). Unlike the programmed cell death common in simple 

invertebrates (Sulston and Horvitz, 1977), the mammalian version of the process is 

not lineage dependent, acting upon specifically identifiable cells, but rather affects 

neuronal populations, albeit in a repeatable and predictable fashion. Two potential 

roles for cell death have been suggested: error correction and numerical matching. 

While cell death has been shown to selectively remove incorrectly projecting 

ganglion cells from the rat retina (O'Leary et al., 1986), aberrant pathfinding is 

very rare in the peripheral motor system {Lance-Jones and Landmesser, 1981a), so 

error correction is apparently unnecessary to achieve muscle specificity. Whether 

cell death refines the organization of the projection at an intramuscular scale, 

perhaps by contributing to the early formation of compartmentalized innervation 

(English and Weeks, 1984; Balice-Gordon and Thompson, 1988), is not known. 

Population matching appears to be a more significant consequence of cell death. Its 

function in achieving the appropriate numerical ratio between afferent and target 

neural populations (Hamburger, 1975; Katz and Lasek, 1978) has been clearly 

demonstrated in both the motor system (Lanser et al., 1986) and the central nervous 
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system (Herrup and Sunter, 1987) . 

The second process, in which an initial hyperinnervation is followed by 

developmental elimination of the excessive synaptic connections, also occurs 

throughout the nervous system. In the neonatal cerebellum, Purkinje cells are 

initially innervated by climbing fibers originating from as many as five distinct 

olivary neurons, and then lose all but one of these inputs during subsequent 

development (Crepel et al., 1976; Mariani and Changeux, 1981). Similar events have 

been documented in autonomic ganglia: in rat submandibular ganglion (Lichtman, 

1977), hamster superior cervical ganglion (Lichtman and Purves, 1980), and rabbit 

ciliary ganglion (Johnson and Purves, 1981), there is a significant reduction during 

early maturation in the number of preganglionic axons innervating a particular cell, 

although the total number of synaptic boutons actually increase significantly during 

this period of cell growth (Purves and Lichtman, 1985). Intrahemispheric cortical 

projections passing through the corpus callosum are substantially reduced during 

early development through a process of axon collateral withdrawal (Innocenti, 1981; 

O'Leary et al., 1981; Ivy and Killackey, 1982). The developmental restriction of the 

genicula-cortical projection which gives rise to ocular dominance columns in visual 

cortex provides another well documented example of synaptic rearrangement in the 

central nervous system (LeVay et al., 1978, 1980). 

Synapse elimination is most accessible in the neuromuscular system, and hence it 

is here that it has been most thoroughly studied. The phenomenon is widespread, 

having been described in a number of mammalian species (Bagust et al., 1973; 

Brown et al., 1976; Bixby and Van Essen, 1979a; Fladby, 1987), as well as 

chicks (Bennett and Pettigrew, 1974) and amphibians (Letinsky, 1974; Bennett 

and Pettigrew, 1975). During the interval of neuromuscular synaptogenesis which 

occurs in late embryonic development, muscle fibers readily accept innervation 



-S-

well in excess of the normal adult complement of one presynaptic motor axon per 

muscle fiber. A corollary of this polyneuronal innervation is that the neonatal 

motor projection is considerably more divergent than that found in adults. Motor 

unit size, defined as the number of muscle fibers innervated by a single motor 

neuron, is typically three to six times the mature value. In the weeks that follow, 

excessive synaptic inputs gradually disappear, apparently through a process of 

axonal retraction (Riley, 1977a, 1981; Bixby, 1981). The fact that denervated 

muscle fibers are not observed in significant numbers demonstrates that the process 

is an orderly one, and that the loss of connections is not random. Experimental 

perturbations, such as partial denervation (Brown et al., 1976; Thompson and 

Jansen, 1977) or partial activity blocks (Callaway et al., 1987) further suggest that 

the process is competitive, at least in the sense that the behavior of a presynaptic 

terminal depends upon the presence and relative status of other terminals at the 

end plate. Cell death among motor neurons takes place before birth (Oppenheim, 

1986), when neuromuscular connections are first forming, whereas the bulk of 

synapse elimination occurs neonatally (Bixby and Van Essen, 1979a). Hence the 

timing of cell death and synapse elimination are distinct in the neuromuscular 

system (Brown et al., 1976; Dennis et al., 1981; but see Bennett et al., 1983), 

so that cell death does not contribute to synapse loss in any meaningful way. 

The developmental rationale underlying this phenomenon remains unclear. One 

possibility is that the excess innervation is necessary to establish full connectivity; 

specifically, in the neuromuscular case, to ensure that each muscle fiber receives 

at least one input. The observed levels of polyinnervation are in fact adequate to 

guarantee that virtually all muscle fibers will be innervated under the assumption 

that initial synapse formation in a muscle is completely random (Willshaw, 1981). 

Error correction is another possible motive, although excepting a certain degree 
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of topographic sharpening (Brown and Booth, 1983; Bennett and Lavidis, 1984a; 

Callaway et al., 1987; Bennett and Ho, 1988), there is little evidence from the 

neuromuscular system to support this view. Early hyperinnervation may allow 

for developmental plasticity, in which the adult pattern of connectivity emerges 

based upon early activity or other expressions of developmental requirements. It 

has been suggested, for example (Callaway et al., 1987), that synapse elimination 

may help establish the recruitment ordering of motor units found in mature 

muscles (Henneman and Olson, 1965; Zajac and Faden, 1985). Alternatively, the 

processes of neuronal outgrowth, arborization, and synapse formation may require 

a degree of neuronal vigor so great that a substantial degree of polyinnervation is 

inevitable. Beyond offering a logic for the phenomenon, elucidating the mechanisms 

of the competitive interactions of motor nerve terminals at muscle endplates might 

contribute to understanding the strategies employed by the nervous system to 

establish the appropriate pattern of connectivity during development. A portion 

of the research described in this thesis (Chapter 4) compares the ability of several 

proposed mechanisms to account for several of the experimental findings which 

currently describe the synapse elimination process. 

The remainder of this thesis (Chapters 2 and 3) presents research relating to 

fiber type selectivity in early motor unit development. The mammalian soleus 

muscle provides an interesting opportunity to study the origin of neuromuscular 

specificity during neonatal synaptic development. Although maturing to become 

a predominantly slow contracting muscle, the soleus exhibits a mixed composition 

during early postnatal development, containing substantial numbers of both fast 

contracting and slow contracting twitch fibers. These two fiber types are also 

distinguishable based upon metabolic enzyme histochemistry (Burke et al., 1973), 

actomyosin ATPase activity (Stein and Padykula, 1962; Guth and Samaha, 1969), 
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and the presence of immunologically distinct contractile protein isoforms (Butler­

Browne and Whalen, 1984). 

Two complementary experiments have recently demonstrated that the 

innervation of these two fiber types is distinctly non-random, even at early 

postnatal ages when a substantial degree of polyinnervation is present . Using the 

glycogen depletion technique to label most of the fibers belonging to single motor 

units, Thompson t.t al. (1984) established that motor units in polyinnervated 

muscle are each composed predominantly, but not exclusively, of a single fiber 

type. An independent approach has yielded a similar conclusion: By stimulating 

isolated single motor units and recording the time required to achieve maximal 

twitch tension, Gordon and Van Essen (1985) demonstrated two clearly separable 

populations of fast contracting and slow contracting units, again indicating that 

single motor units are largely homogeneous in their fiber type composition. These 

findings also suggest, but do not prove, that distinct fast and slow motor axons 

are present at birth. It should be noted that Jones et al. (1987), in a study 

of fiber type specificity in the fourth deep lumbrical muscle of the neonatal rat, 

found only small variations from random fiber type composition. Five of twelve 

units appeared marginally selective; the remainder were randomly innervated. The 

lumbrical muscle is not an ideal choice for a study of selectivity, however. The fiber 

count in this muscle is relatively low at birth, and secondary myotubes continue 

to form in parallel wit h synapse elimination (Betz et al., 1979). It is a small, 

predominantly fast muscle innervated by few (about 10) motor axons, and hence a 

simple numerical dominance of fast motor axons could effectively prevent selective 

innervation. Because of its fiber type balance, the soleus is a more appropriate 

candidate for study. The case for specificity in this muscle is a strong one, based 

upon two independent measures of motor unit fiber type composition. 
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Several developmental mechanisms have been proposed to account for this early 

fiber type specificity. Motor neurons could innervate undifferentiated muscle fibers 

at random and subsequently specify their fiber type. Alternatively, an early wave 

of selective synapse elimination, representing a form of error correction, could occur 

following an initially random innervation. Developmental timing differences in the 

early maturation of fast and slow muscle fibers might passively yield fiber type 

specificity. Or ingrowing axons might recognize muscle fiber types according to 

the presence of specific chemical markers and selectively innervate those of the 

corresponding type. These alternatives will be discussed at greater length in a 

subsequent section. 

The remainder of this chapter will analyze the development of peripheral 

motor specificity in more detail. For specific recognition to be a viable route to 

achieving fiber type selectivity, it is essential that myotubes express some type 

specific characteristics prior to innervation. The next section addresses this issue 

by considering the timing and neural dependence of muscle fiber differentiation. 

The third section compares the development of specificity at three distinct levels: 

the matching of motor axons to correct target muscles, topographic relationships 

between spinal motor pools and intramuscular motor unit localization, and selective 

innervation of muscle fiber types. It is interesting to consider whether all three 

matching processes utilize similar strategies, or whether independent mechanisms 

are required. Based upon this background, the final section introduces the studies 

described in this thesis. 
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THE ORIGIN OF FIBER TYPE DIVERSITY 

In a mature animal, all muscle fibers of a single motor unit share the same 

metabolic and contractile properties (Edstrom and Kugelberg, 1968; Burke et 

al., 1973; Kugelberg, 1973; Nemeth et al., 1981). This pattern suggests an 

instructive role for the motor neuron, and indeed there is considerable evidence that 

a motor neuron regulates the phenotype of the muscle fibers which it innervates. 

Cross reinnervation experiments demonstrate that when a nerve which normally 

innervates a fast muscle, such as the extensor digitorum longus (EDL), is severed 

and positioned so that it reinnervates a slow muscle such as the soleus (or vice 

versa), the reinnervated muscle is altered so that both its contractile rate (Buller et 

al., 1960) and histochemical properties (Buller et al., 1969; Barany and Close, 

1971; Mommaerts et al., 1977) match its new nerve supply. A similar neuron 

directed conversion of muscle fiber type can be recognized in self reinnervated muscle 

(Kugelberg et al., 1970). Artificial nerve stimulation using implanted electrodes 

has identified the pattern of neural activity as the critical parameter in fiber type 

regulation (Salmons and Vrbova, 1969; Sreter et al., 1973; Salmons and Sreter, 1976; 

Pette et al., 1976), and in fact the direct activation of denervated muscle using an 

appropriate stimulus pattern is sufficient to elicit fiber type transformation (L¢mo et 

al., 1974). 

Innervation also influences muscle development in neonates. Secondary 

myotubes, which normally form as satellites of primary myofibers, fail to appear in 

the absence of functional innervation (Harris, 1981; McLennan, 1983; Ross et al., 

1987). Transection of the rat sciatic nerve soon after birth inhibits the growth 

and differentiation of muscle fibers in denervated muscles (Shafiq et al., 1972; 

Dhoot and Perry, 1983). Although subject to atrophy following denervation, fast 
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muscle fibers progress through a normal sequence of contractile protein expression, 

whereas postnatal maturation of slow contracting fibers appears to be innervation 

dependent (Rubinstein and Kelly, 1978; Butler-Browne et al., 1982; Butler-Browne 

and Whalen, 1984). 

Does this instructive role for motor neurons apply to the earliest stages of muscle 

fiber differentiation, when muscle fibers first express their contractile identity, or 

do muscle fibers establish their contractile phenotype according to an intrinsic 

developmental program? This question is particularly relevant when considering 

the origin of the selective innervation of muscle fiber types: information about 

the timing and regulation of phenotypic development can provide a sharper focus 

to the analysis of how specific innervation arises, and whether chemospecific 

recognition is a viable possibility. Motor unit type homogeneity could result 

from neurogenic regulation of muscle fiber type, or from the specific matching 

of motor neurons and muscles fibers, each of which have become committed to 

a particular developmental program. In the event of neurogenic regulation, the 

most plausible scenario features the random innervation of undifferentiated muscle 

fibers, although it is conceivable that neurons might specifically recognize markers 

unrelated to fiber type, or that fiber type differences might exist but not affect 

synaptogenesis. H selective association of neurons and muscle fibers is the rule, 

then this process could involve active recognition mediated by molecular markers, or 

could be governed by some passive process, such as matched developmental timing. 

Evidence favoring autonomous contractile development of muscle fibers supports 

the feasibility of specific recognition in that differentiated targets are potentially 

available for selective recognition. The absence of detectable early contractile 

commitment does not preclude molecular recognition, as it could still be mediated 

by markers expressed in advance of the type specific array of intracellular proteins. 
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Nevertheless, it seems reasonable to expect that the two phenotypic characteristics 

would be coordinately expressed. 

Experimental evidence regarding fiber type differentiation is most complete for 

the chick. Muscle colony forming cells cultured from the early chick limb bud form 

at least two distinct populations based on the time at which they first appear, 

their culture requirements, and the morphology of myotubes which subsequently 

form (White et al., 1975). Cloned myoblasts retain their identity by these criteria 

through many generations (Rutz and Hauschka, 1982). Early and late myoblasts 

also exhibit differential expression of myosin light chain isoforms (Toutant et al., 

1984) . Myogenic precursors migrate into the developing limb bud from their 

source in the somitic mesoderm {Chevallier et al., 1977; Jacob et al., 1979). By 

transplanting limb buds at various stages, Seed and Hauschka {1984) demonstrated 

that precursors to the two populations enter the wing buds at different stages of 

maturation. Based on their developmental timing, it would appear likely that these 

two populations contribute selectively to the formation of primary and secondary 

myotubes. 

Immunocytochemical labeling using antibodies specific to fast and slow myosin 

heavy chain isoforms has shown that cultured early stage myoblasts give rise 

to three distinct classes of myotubes: fast, fast/slow, and slow (Miller et al., 

1985). Using these antibodies, each of the three classes is found among primary 

myofibers in embryonic chick limb in a pattern which remains consistent during 

early development (Crow and Stockdale, 1986; Miller and Stockdale, 1986a). Clonal 

analysis in culture demonstrates that the early myoblasts themselves comprise three 

distinct populations, each of which reliably and exclusively gives rise to one of the 

three classes of myotubes (Miller and Stockdale, 1986b). In these experiments, 

multiple types of myotubes were never seen together in a single clonal culture. 
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Late stage myoblasts primarily form myotubes of the fast class, although fast/slow 

myotubes also occur infrequently (Miller et al., 1985). Serial subcloning reveals 

that fast myoblasts occasionally undergo further differentiation to yield a fast/slow 

lineage (Schaefer et al., 1987). Taken together, these studies demonstrate that 

myoblasts sharing a common lineage selectively fuse to produce myotubes of a 

particular type, thereby establishing a stable pattern of fiber types in the developing 

chick limb. The fact that this process also occurs in culture in the absence of 

neurons is strong evidence that the contractile identity of muscle fibers follows 

from an intrinsic developmental program which does not require neural supervision 

(Stockdale and Miller, 1987). 

Further evidence that muscle fiber contractile development in the chick 

is initially independent of neural influences arises from experiments in which 

innervation is either removed, or its pattern altered, during early development. 

Excision of an appropriate region of the neural tube prior to axon outgrowth yields 

wing buds which are totally devoid of innervation (Butler et al., 1982). While 

secondary myotubes do not appear, primary myofibers develop normally for the 

first few days in these aneurogenic wings, and display the same pattern of fiber 

type expression according to ATPase histochemistry as do control limbs (Butler et 

al., 1982; Phillips and Bennett, 1984}. Laing and Lamb (1983) transplanted wing 

buds to an ectopic position near the hindlimb, causing them to receive innervation 

from a novel set of motor neurons. Subsequent ATPase staining revealed a normal 

pattern of fiber types in the ulnimetacarpalis dorsalis muscle of the wrist. In 

similar experiments, Vogel and Landmesser (1987} altered the pattern of chick 

hindlimb innervation using both hindlimb shifts and spinal cord reversals. Aberrant 

innervation was verified by EMG recording of muscle activation patterns and by 

retrograde labeling of spinal motor pools using HRP. In 85% of muscles analyzed, 
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the spatial distribution of fiber types defined by ATPase activity appeared normal. 

These findings suggest that muscle fiber type develops intrinsically, and that either 

these fiber types were selectively innervated or neural activity differences had not 

yet produced fiber type transitions. In the remaining 15% of cases in the latter 

study, alterations of the normal pattern were seen. These indicate that fiber type 

respecification was possible during the experimental interval, but their relatively 

low frequence of occurrence is consistent with inappropriate innervation arising 

only when there was a gross numerical mismatch between neural and muscle fiber 

types (Vogel and Landmesser, 1987). 

While less information is available regarding the initial phases of fiber type 

differentiation in mammalian skeletal muscle, there are indications that it may 

occur prior to functional innervation. Little concrete information regarding early 

type expression has emerged from tissue culture studies. Ecob and Whalen (1986) 

have studied the appearance of myosin heavy chain isozymes among newly formed 

myotubes which arise from satellite cells present when adult muscle fibers are 

introduced into culture. In the context of the chick culture studies, these mature 

cells would be expected to yield fast myotubes. While embryonic and neonatal heavy 

chains were always found, the appearance of adult fast myosin required the presence 

of spinal explants. In contrast, Weydert et al. (1987) observed the expression of 

adult myosin mRNA in maturing myotubes arising from cultured myogenic cell lines 

in the absence of nerve, although no information is available concerning whether the 

resulting protein is of the fast or slow type. Clearly such data is extremely sketchy 

in regard to the present issue. 

In vivo, primary myotubes exhibit a pronounced preference to mature as slow 

fibers, while secondary myotubes initially adopt the fast pathway (Rubinstein and 

Kelly, 1981). Using an antibody specific to myosin heavy chain, Narusawa et al. 
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(1987) have demonstrated that slow myosin accumulates in all primary myofibers 

in the hindlimb of 16 day rat fetuses, an age at which synaptic connections are 

still forming (Rubinstein and Kelly, 1981). Expression of slow myosin is then 

inhibited in those primary cells which diverge to a fast developmental pathway. 

Neonatal denervation led to a decrease in slow myosin, suggesting that innervation 

is required to maintain or protect the maturation of slow fibers. In a similar study, 

Dhoot (1986) was able to distinguish between presumptive fast and slow fibers 

within predominantly fast muscles at 17 days gestation, using a slow type specific 

antibody. In this study, fiber type differentiation in the soleus muscle did not 

become apparent until about 4 days postnatal. While secondary myofibers will not 

form if primary muscle fibers are not innervated (Harris, 1981; Ross et al., 1987), 

subsequent denervation does not prevent fast fibers from continuing their normal 

developmental sequence of myosin isozyme expression (Butler-Browne et al., 1982). 

This does not conclusively establish, however, that secondary myotubes express a 

recognizable type identity prior to innervation. 

The fact that primary and secondary myotubes are connected by gap junctions 

during early development (Schmalbruch, 1982) has implications for the early 

development of muscle fiber type. Even if the activity patterns of embryonic 

motor neurons are differentiated into tonic and phasic forms, it would seem that 

the spread of activity between fibers in a cluster would expose individual fibers 

to an ambiguous pattern of activation. A further interesting consideration is that 

individual motor terminals are occasionally observed to form dual synapses with 

both a primary and secondary myotube (Duxson t!t al., 1986), suggesting that at 

least some of the innervation of secondary myotubes may develop by a transfer 

of existing terminals. The implications of this observation for either fiber type 

differentiation or the formation of specific innervation remain unclear. 
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DEVELOPMENT OF SPECIFIC INNERVATION 

An organized, accurate pattern of neural connections within the motor system is 

essential for the precise execution of complex and coordinated behaviors. Specificity 

is present at several loci within the system. In the spinal cord, both descending and 

afferent sensory inputs must be correctly organized. Motor axons originating from 

reproducibly positioned longitudinal pools within the spinal cord follow consistent 

neural pathways to innervate appropriate muscles. Within individual muscles, fiber 

type selectivity is prevalent, and motor units are at least occasionally organized 

topographically. While most of the experiments described in this thesis relate to 

the organization of motor units according to muscle fiber type, it is interesting and 

worthwhile to examine and compare the development of specificity at various points 

within the system, searching both for common principles and distinctive features. 

Innervation of Appropriate Muscles 

Considerable research attention has been devoted to understanding the sequence 

of events through which motor specificity arises. Much of this work has been 

performed in chick, both because of the relative accessibility of this preparation 

for embryonic surgical manipulations and the extensive description of its early 

development (Hamburger and Hamilton, 1951). The earliest motor axons emerge 

from the spinal column while the generation of motor neurons is still in progress 

(Hollyday and Hamburger, 1977). Axonal pathways into the developing limb appear 

to be permissively regulated by the limb itself, as these define a highly stereotyped 

pattern of plexuses and nerve trunks even in supernumerary limbs innervated by 

axons from unusual spinal segments (Hamburger, 1939; Morris, 1978). By the time 

that growing axons have reached their targets, neurons innervating a particular 

muscle are organized into longitudinal motor pools (Landmesser, 1978a). During 
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early axonal outgrowth, the developing limb bud consists largely of undifferentiated 

mesenchyme cells, although cells of precartilage and premuscle regions can be 

distinguished ultrastructually based on their cell-cell contacts (Hilfer et al., 1973; 

Tosney and Landmesser, 1985a). Differentiation and fusion of myogenic cells soon 

define the dorsal and ventral primary muscle masses. Motor neuron pools located 

medially in the spinal cord grow into the ventral muscle mass, while those from 

lateral pools innervate muscles deriving from the dorsal muscle mass (Landmesser, 

1978a; Hollyday, 1980). 

When considering the process by which motor axons find and establish 

connections with the appropriate muscle, an early question to arise is whether 

specificity follows from precise and ordered outgrowth, or whether an initially less 

accurate projection is refined by an error correction process. One experimental 

approach to this issue has been to retrogradely label motor axons projecting to 

a limited region in a developing limb. In this procedure, horseradish peroxidase 

(HRP) is injected locally into a region of the premuscle mass believed to give rise 

to a particular muscle, and the positions of labeled motor neurons in the spinal 

cord are subsequently analyzed. HRP labeled motor neurons found beyond the 

boundaries of the relevant motor pool are presumed to have projected incorrectly. 

Experiments of this nature in amphibian hind limb (Lamb, 1976, 1977; McGrath 

and Bennett, 1979) and chick wing (Pettigrew et al., 1979) indicated a significant 

fraction of initial projections to be in error. In contrast to these reports, other 

studies in chick hindlimb, involving both retrograde HRP labeling (Landmesser, 

1978a,b) and the electrophysiological association of muscle nerves and spinal nerves 

(Landmesser and Morris, 1975), suggested that motor projections are remarkably 

specific and free of errors from the earliest stages analyzed. Retrograde labeling 

studies in early embryos are unfortunately clouded by a technical complication, 
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namely that it is difficult to completely rule out the possibility that HRP may have 

leaked or diffused into other regions of the uncleaved muscle mass. 

More recent experiments have used superior labeling strategies to describe the 

accuracy of axonal outgrowth. The injection of HRP into embryonic chick spinal 

cord permits the positions of axons labeled by orthograde transport to be assessed 

at intermediate times during their outgrowth, before they actually reach their target 

tissue. Using this technique, Lance-Jones and Landmesser (1981a) found that axons 

from any of the lumbar spinal roots followed consistent pathways through the plexus 

region and along major nerve tracts into the growing hindlimb. Furthermore, they 

saw virtually no significant deviations from these normal pathways, arguing that 

not only do axons rarely grow to an incorrect muscle, but in fact seldom make 

inappropriate choices at nerve branch points. It remained possible that axons 

might reach their target muscle by correct routes and then ramify across future 

boundaries, thereby accounting for errors detected by retrograde transport. Tosney 

and Landmesser (1985b) analyzed this possibility by observing the projections of 

segmentally labeled axons between their time of entry into the primary muscle 

masses and the completion of muscle cleavage. They found that early projections 

were spatially restricted to the central portion of the appropriate target region, and 

did not begin to fully invade the muscle until cleavage had occurred. 

Another technique with great promise involves the injection of dextran, 

conjugated with a fluorescent dye, directly into individual cells. This method 

has been used to follow the actual outgrowth of pioneer motor axons in zebrafish 

embryos. As these embryos are conveniently transparent, the pathway selection 

process employed by growing axons can be observed over time by using enhanced 

video imaging (Eisen et al., 1986) . Preliminary studies have shown that pioneering 

axons consistently select the appropriate pathway, avoiding even transient errors 
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(Westerfield and Eisen, 1988). Whether differences in the timing of outgrowth 

control the pathway selections made by these pioneering axons requires additional 

study. On balance, current evidence would appear to refute the conjecture that 

error correction plays a major role in establishing the mature pattern of motor 

innervation. 

If directed neural outgrowth along consistent, predictable pathways is an 

established feature of embryonic limb development, then what factors are dominant 

in axonal pathfinding? The fact that spinal motor pools are organized in a manner 

bearing loose topographic similarity to the arrangement of limb musculature has 

led to the hypothesis that an ordered outgrowth of motor axons, together with 

mechanical constraints and contact guidance, is sufficient to produce myospecificity 

in the developing limb (Horder, 1978). Evidence against this proposal arises from 

a study in which lengths of the neural tube were deleted just prior to generation of 

motor neurons (Lance-Jones and Landmesser, 1980a). AB missing segments did not 

regenerate, distinct gaps were apparent in the spinal cord after further development. 

Orthograde labeling of adjacent remaining segments revealed that these projected 

in a normal fashion rather than altering their course to occupy depleted or absent 

nerve trunks. Electrophysiological analysis further showed that muscles normally 

innervated by the missing segments did not receive compensatory innervation from 

remaining motor pools. Retrograde labeling studies provide additional evidence of 

active guidance. Motor axons bound for a particular muscle are scattered more 

or less randomly through multiple spinal nerves as they emerge from the spinal 

cord, but then collect to form discrete bundles as they pass through the plexus 

(Lance-Jones and Landmesser, 1981a; Tosney and Landmesser, 1985b). 

The process of axonal reorganization within the plexus is further demonstrated 

by studies in which the relationship of the spinal cord and the limb have been 
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experimentally altered. When sections of the lumbrosacral spinal cord were 

rotated prior to axonal outgrowth, motor neurons were able to find and innervate 

their original target muscles despite their new spinal roots of origin, provided 

that the positional shifts were small enough so that they entered the same 

plexus (Lance-Jones and Landmesser, 1980b, 1981b). Similarly, following dorsal­

ventral rotations of limb buds, motor axons regrouped within the plexus and 

innervated the appropriate hindlimb muscles despite their new orientation relative 

to the spinal cord (Ferguson, 1983). In contrast, Summerbell and Stirling (1981) 

reported that following either dorsal-ventral or anterior-posterior rotations (the 

latter accomplished by switching left and right limb buds), the dorsal-ventral 

selectivity of motor neurons was usually although not always lost. Their result has 

since been attributed to inconsistencies in the level at which donor limb buds were 

grafted, so that correctly oriented tissue was not always present in the plexus region 

(Hollyday, 1981). This proposed reconciliation of apparently divergent observations 

was supported by experiments in which the level of grafting was more carefully 

controlled: grafting of limb buds distal to the plexus produced dorsal-ventral errors 

in connectivity beyond the graft (Whitelaw and Hollyday, 1983c). Finally, Tosney 

and Landmesser (1984) have demonstrated the normal sorting of motor axons in 

the plexus even after the surgical ablation of more distal tissue. 

The topographic relationship between mediolateral position of spinal motor 

pools and the ventral or dorsal origin of the their target muscles, together with 

the coalescence of axon families in the plexus regions, provide compelling evidence 

for molecular labeling of related sets of motor neurons. Studies of both normal and 

perturbed development strongly suggest that this identifying information governs 

the sorting of axons into appropriate groupings during early outgrowth. But what 

about the latter stages of outgrowth, and invasion of the target muscle: Do processes 
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such as timing and passive guidance suffice to lead ordered groups of axons to their 

targets, or does molecular recognition, involving either nerve branch points or the 

target muscles themselves, play any role? 

Unfortunately, the experimental evidence does not provide a clear answer. The 

behavior of motor axons in serial limb segment duplications argues against the 

presence of specific chemical markers. In these experiments, a second {donor) 

limb bud is grafted distally onto the tip of the host bud, leading to repeated 

limb segments. In the normal wing, for example, the inferior brachialis longus 

nerve separates into three branches at the elbow. One of the branches, the median 

nerve, continues on to innervate the hand. By constructing wings containing two 

elbows, Lewis {1978) was able to test the behavior of the median nerve when it 

encountered the second elbow. IT the constituent axons responded solely to specific 

chemical cues, they should all repeat the choice made at the first elbow. Instead, 

the nerve again separated into three distinct branches, a behavior more consistent 

with either mechanical guidance or a gradient of directional markers. In serial 

hindlimb segment duplications, Whitelaw and Hollyday {1983b) found that the 

proximal pathway which a nerve trunk followed in the plexus region seemed to 

confer segmental selectivity. Thus those nerves issuing from the sciatic plexuS which 

normally innervate muscles in the calf would instead innervate a second thigh were 

this the second segment encountered, even though a calf segment was available 

distally. 

Other observations are more suggestive of the possible presence of molecular 

markers. At the growing tip of advancing nerve bundles, growth cones viewed in 

silver stained whole mounts diverge somewhat, as if exploring the local territory 

{Al-Ghaith and Lewis, 1982). This "frayed" character appears more pronounced in 

regions where branching occurs. A quantitative analysis of growth cone trajectory 
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(Tosney and Landmesser, 1985c) indicated substantially greater complexity in 

regions where pathway decisions occur. At the branches of muscle nerves, axons do 

not diverge as an orderly group; rather, axons exiting toward the muscle cross over 

others which choose to continue along the trunk (Tosney and Landmesser, 1985b). 

Ultrastructural examination of advancing growth cones reveals no preference for 

extracellular matrix or other oriented substrata which might be expected from 

a passive guidance model (Al-Ghaith and Lewis, 1982; Tosney and Landmesser, 

1985a). 

While the experiments described above suggest a role for selective markers 

during axonal outgrowth, they provide little if any direct evidence that molecular 

labels are present on muscle fibers and contribute in a meaningful way to target 

recognition. While these experiments offer interesting and informative pathway 

choices to growing motor neurons, it is difficult to design an experiment in which 

motor axons are offered an equal choice between an appropriate and inappropriate 

target muscle. An alternate paradigm, in which correct and incorrect motor 

axons are forced to compete for synaptic sites within individual muscles, is more 

practical. A situation resembling this paradigm occurs in experiments in which 

a chick hindlimb segment has been selectively deleted prior to axon outgrowth 

(Whitelaw and Hollyday, 1983a). When either a thigh or a calf segment is missing, 

axons destined for both segments are effectively restrained to innervate only the 

remaining one. While both sets of axons reach the available segment and can be 

retrogradely labeled with HRP, cell death results in the selective depletion of motor 

pools supplying the inappropriate axons. Unfortunately, although inappropriate 

axons are observed adjacent to potential target muscle, the result does not 

conclusively demonstrate that the unsuccessful axons were losers in a direct synaptic 

competition. The effective phase of the competition may have occurred earlier, 
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involving the pathway guidance cues which appear so likely to be present. 

More commonly, competition between native and foreign axons has been studied 

in reinnervation experiments. In contrast to the selectivity exhibited by lower 

vertebrates (Bennett and Raftos, 1977; Dennis and Yip, 1978; Wigston and 

Kennedy, 1987), mammalian muscle appears to be equally receptive to reinnervation 

by either native or foreign motor axons. Weiss and Hoag (1946) cut the peroneal 

and tibial nerves in rat hindlimb, then arranged for the proximal stumps of these 

two nerves to regenerate through a 'Y'-shaped artery segment and converge upon 

the distal stump of the tibial nerve. Following reinnervation, the original and foreign 

nerves were stimulated, and tension generated by the triceps surae recorded. On 

average, there was no significant difference in the tension measurements. There 

were, however, substantial differences for individual animals, and the experiment 

has since been criticized on the grounds that whichever nerve reached the 'Y' first 

may have effectively limited the access of the other nerve. Gerding et al. (1977) 

performed a similar experiment by implanting the proximal ends of the transected 

tibial and peroneal nerves into the denervated lateral gastrocnemius muscle. As 

long as both nerves were allowed equal access to endplate regions, no preference 

during reinnervation was detected. In a related experiment, Bixby and Van Essen 

(1979b) positioned a transected foreign nerve on the surface of a fully innervated 

rat soleus muscle and observed that foreign axons were occasionally able to displace 

the native innervation. 

While competitive reinnervation experiments in intact limb muscles have failed 

to detect molecular recognition of specific muscles, Wigston and Sanes (1982) have 

conducted a similar experiment which appears to reveal at least weak positional 

labeling. They transplanted external intercostal muscles from various levels 

into the neck, then positioned the severed cervical sympathetic trunk onto the 
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muscle, thereby allowing cholinergic preganglionic axons originating from different 

spinal segments to compete for synaptic sites. Subsequent stimulation of ventral 

roots demonstrated a moderate yet significant competitive advantage for axons 

originating from or near the segment giving rise to the transplanted intercostal, 

suggesting that both muscles and nerves may carry labels indicating their segment 

of origin. Studies using chick-quail chimeras have shown that precursors from 

individual somites contribute only to certain limb muscles (Beresford, 1983), and 

that furthermore, the spinal position of motor neurons closely matches the somitic 

origin of the muscles they innervate (Lance-Jones, 1985). All of these observations 

lend credence to the idea that recognition of segmental labels may be important in 

establishing specific muscular innervation. 

Alternatively, segmental recognition could play a role in axon navigation: 

a trail of labeled extracellular matrix or premuscle cells deposited by muscle 

precursors during their migration into the developing limb might provide the cues 

necessary for motor neurons to make appropriate choices in the plexus and at other 

decision regions (Keynes and Stern, 1985). Interestingly, while discounting the 

role of extracellular matrix, Tosney and Landmesser (1985a) observed a cellular 

contact unique to pioneering axons in which filipodial processes of growth cones 

would occasionally penetrate deeply into mesenchymal cells, reminiscent of the 

contact between pioneering axons and guidepost cells in invertebrates (Bastiani and 

Goodman, 1984). To investigate this possibility, Keynes et al. (1987) first grafted 

quail somites into chick embryos, altering their positions along the anterior-posterior 

axis, and found that muscle precursors migrated according to their new position. 

Next, they performed shifts and reversals of somitic mesoderm in chick embryos and 

analyzed the subsequent positions of motor neuron pools. H pathfinding growth 

cones followed segmentally identified trails, they should pursue transplanted muscle 
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precursors to a new and ectopic position in the limb. The fact that motor pools 

were instead found in their normal positions despite the altered segmental origin of 

their target muscle argues that segmental labeling, while it may be present, is not 

crucial to axon guidance. Relevant to this issue is the earlier finding by Lewis et al. 

(1981) that normal branching of nerve trunks occurs in limbs which lack muscles 

due to early somite ablation. Muscle nerves, however, do not form in limbs lacking 

muscles. 

Topographic Innervation of Individual Muscles 

Given the organization of motor pools within the spinal column and the 

widespread occurrence of topographic projections in the central nervous system, 

it is of interest to determine whether individual motor units are spatially localized 

to limited regions within a muscle, and if so, whether there may be any topographic 

structure relating a motor neuron's position in its motor pool to the intramuscular 

location of the fibers it innervates. In various two dimensional sheet-like muscles, 

including cat diaphragm (Duron et al., 1979), rat intercostal (Dennis et al., 1981) 

and rat gluteus (Brown and Booth, 1983), it has been possible to roughly identify 

the boundaries of individual motor units as they contract following stimulation of 

single motor axons. In each case, motor units were observed to occupy specific 

subregions within the muscle rather than being spread uniformly throughout. 

Furthermore, because of the longitudinally elongate character of spinal motor 

pools, axons innervating mammalian skeletal muscle generally emerge from the 

cord through more than one ventral root. In experiments where both the spinal 

root position of a motor axon and the intramuscular location of its motor unit have 

been recorded, a clear correlation between rostrocaudal position of a motor neuron 

and the anterior-posterior location of its motor unit has been demonstrated in thin 
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muscles {Duron et al., 1979; Brown and Booth, 1983; Laskowski and Sanes, 1987a). 

These electrophysiological findings have been confirmed by retrograde transport of 

locally injected dyes (Hardman and Brown, 1985; Laskowski and Sanes, 1987a). 

Topography along another axis has been reported by Hardman and Brown (1985) 

based on retrograde labeling experiments in rat internal intercostal muscles. F ibers 

in these thin muscles are distributed along a proximo-distal axis, and the motor 

neurons supplying their innervation are arranged dorsoventrally within the motor 

pool such that more dorsal neurons control distally located units. When considered 

together with the fact, described previously, that medial pools innervate ventrally 

derived muscles while lateral pools innervate muscles originating from the dorsal 

premuscle mass, there is evidence for topographic organization, and hence possibly 

positional markers, along all three axis of the spinal cord (Hardman and Brown, 

1985) . 

Whether topography is present in the innervation of thick non-sheetlike muscles 

is less clear. Based on visual observation of surface contractions of cat medial 

gastrocnemius, Swett et al. (1970) found evidence for an organized progression of 

motor unit position as ventral root filaments were stimulated sequentially along 

the rostrocaudal axis. Sampling surface fibers with an intracellular microelectrode, 

Bennett and Lavidis found a clear progression of segmental innervation across the 

rat lateral gastrocnemius (1984a) and biceps brachii (1984b). In contrast, Fladby 

(1987) was unable to detect similar topography in the innervation of mouse soleus 

muscle despite a careful search. Glycogen depletion labeling of motor units in rat 

soleus (Soileau et al., 1988) indicates that fibers belonging to a single motor unit 

may be widely dispersed in thick muscles. It is relevant to note (Hardman and 

Brown, 1985) that in those three dimensional muscles where all fibers converge 

onto a single tendon, a topographic distribution of motor units would make little 
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difference, while for several of the sheet like muscles studied, spatial segregation of 

motor units could have practical functional significance. 

How might a topographic relationship develop between neurons of a spinal 

motor pool and the intramuscular position of their target muscle fibers? In large 

sheet muscles like the diaphragm, the obvious pattern of intramuscular nerve trunks 

suggest the possibility that axon guidance might play a role, as it clearly does in 

establishing myospecificity. In some muscles, such as the lateral gastrocnemius and 

the extensor digitorum longus, primary nerve branches to the muscle are readily 

accessible. Glycogen depletion and recording of evoked EMG have been used to map 

the territory innervated by these primary branches. These techniques have revealed 

the existence of spatially distinct compartments within muscle, each innervated 

exclusively by axons carried by one of the primary nerve branches (English and 

Ledbetter, 1982; English and Weeks, 1984; Balice-Gordon and Thompson, 1988; 

Bennett and Ho, 1988). Such compartments could be significant elements in 

generating a topographic mapping. Weeks and English (1985) have demonstrated by 

retrograde HRP labeling that axons in a particular primary branch arise from motor 

neurons grouped within a restricted region of the motor pool. While the groups 

supplying different branches overlap, a clear topographic organization is present. 

Whether subcompartments defined by secondary intramuscular nerve branches also 

exist, or contribute to topography, remains unknown. 

Factors other than branching may mediate the development of topographic 

innervation. The relative timing of axon ingrowth is a second parameter which 

might determine motor unit position. A third possibility involves chemospecific 

recognition: motor neurons which are somehow labeled according to their spinal 

position might selectively form synapses with muscle fibers bearing compatible 

labels. Hardman and Brown (1987) have approached this question through 
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reinnervation experiments in rat intercostal muscles. When muscle nerves were cut 

in animals aged 10 days postnatal, subsequent reinnervation closely approximated 

the topographic pattern observed in normal animals. The same procedure applied 

to animals aged 6-8 weeks, however, led to an apparently random reinnervation. 

Laskowski and Sanes (1987b) have reported topographically selective reinnervation 

of rat serratus anterior and diaphragm muscles in both neonates and adults, 

although selectivity was somewhat greater in younger animals. The finding of 

topographic reinnervation of younger muscles in each of these cases would appear to 

rule out timing as a mechanism. The discrepancy between these findings regarding 

the pattern of mature reinnervation leaves doubt concerning the fate of whatever 

markers might guide the initial formation of a topographic projection. A possible 

reconciliation of these differing results might involve two sets of markers: Signals 

mediating pathway selection at branch points may persist, while positional markers 

on muscle fibers themselves might disappear or become inaccessible. Differences in 

the primary branching patterns of the muscles studied could then account for the 

varying specificity of reinnervation. 

Some investigators have reported that synapse elimination also plays a role in 

establishing topographic projections, although this claim remains controversial. In 

their study of the rat gluteus, Brown and Booth (1983) found that the topographic 

arrangement of motor units, while present in polyinnervated neonatal muscle, was 

considerably enhanced during the episode of synapse elimination. The spatial extent 

of individual motor units, defined visually, was reduced by about threefold. Fibers 

were not lost equally at both extremes of a motor unit. Instead, motor units near the 

edges of the muscle preferentially lost muscle fibers from their border nearest to the 

center of the muscle, and their midpoints shifted so as to sharpen the rostrocaudal 

mapping of motor neurons onto the anterior-posterior axis of the muscle. English 
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(1986) questions the conclusions of this study. Mapping the same muscle using 

evoked EMG, he finds a compartmentalized organization which remains unchanged 

during synapse elimination, although he cannot rule out topographic sharpening 

within compartments. 

The surface topography described by Bennett and Lavidis (1984a,b) also 

developed during synapse elimination; in fact, in these cases, virtually no 

segmentally derived topographic organization was visible in polyinnervated neonatal 

muscles. These investigators also examined the fraction of whole muscle tension 

which could be elicited by stimulation of either of the two ventral roots supplying 

innervation, and found that the relative contribution measured in this way changed 

during synapse elimination. Observations of this nature, however, are difficult to 

interpret. Because the degree of overlap due to polyneuronal innervation may 

differ for the two roots, it is not safe to conclude that differential synapse loss 

has occurred. Hence the relation which such changes may bear to the development 

of topography are unclear. Detailed study of motor unit size in rat and rabbit 

soleus (Gordon and Van Essen, 1983; Thompson, 1983) have shown that actual 

synapse loss does not vary segmentally. Interestingly, Callaway et al. (1987, 1988) 

have demonstrated that motor neurons occupying extremal positions in the soleus 

motor pool in rabbits experience significantly greater synapse loss than those in 

the central regions of the pool. Whether this difference contributes to topography 

in the projection is not known. Another problem in analyzing the findings of 

Bennett and Lavidis (1984a) is that the relationship of their observations to the 

compartmental organization of the muscle was not considered. Studies in both 

the rat LG (Donahue and English, 1987) and EDL muscles (Balice-Gordon and 

Thompson, 1988) indicate that synapse elimination is not involved in the restriction 

of motor units to individual compartments. In a recent study, however, Bennett 
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and Ho (1988) report that synapse elimination contributes to the development of 

topography within an individual compartment. 

Innervation of Muscle Fiber Types 

As described earlier, all muscle fibers in an adult motor unit display a 

remarkable similarity in contractile and metabolic properties, probably reflecting 

neural regulation of these characteristics (Kugelberg, 1973; Nemeth et al., 1981). 

There is a good deal of evidence indicating that this segregation of fiber types does 

not arise simply by neuronal specification of fiber type following random innervation. 

In the transversus abdominus, a one fiber thick muscle of the garter snake, fast 

twitch, slow twitch and tonic fibers are arrayed in a regular geometric pattern, yet 

each is incorporated in a motor unit containing exclusively fibers of its own type 

(Lichtman and Wilkinson, 1987). It is difficult to imagine how random innervation 

of an array of equally developed fibers could yield such a regular pattern. Similarly, 

the mosaic of fast and slow fibers in neonatal mammalian muscle does not appear to 

be a random spatial distribution, but rather to reflect the development of primary 

and secondary generation myotubes (Kelly and Rubinstein, 1980). 

A second and more powerful line of evidence is that the fiber type composition 

of neonatal motor units in the soleus muscle is strongly biased toward one of the 

two fiber types, even while a substantial degree of polyinnervation is present in 

the muscle (Thompson et al., 1984; Gordon and Van Essen, 1985). H fibers 

were innervated randomly, and then awaited instructions before differentiating, 

conflicting signals would be commonplace. Electrical coupling of embryonic muscle 

fibers (Dennis et al., 1981; Schmalbruch, 1982) further complicates the problem 

of regulation. There remains doubt as to whether embryonic motor neurons 

exhibit differentiated activity patterns capable of driving fiber type differentiation 
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(Navarrete and Vrbova, 1983). Also, under experimental conditions, neuron 

directed fiber type conversion does not occur quickly enough to yield the observed 

motor unit differentiation. 

Alternatively, it is possible that motor neurons randomly innervate muscle 

fibers without regard for their type, but that during the earliest phase of 

synapse elimination, occurring prior to ages examined in the studies cited above, 

inappropriate connections are preferentially lost. Error correction of this sort 

would presumably require some form of selective recognition and would define 

an interesting pathway to achieving specificity. This explanation, however, would 

require an extraordinarily high peak level of polyinnervation, considering the 3-6 

fold polyinnervation present among slow motor units in rabbit soleus at an age when 

motor unit clearly exhibit distinct contractile properties (Gordon and Van Essen, 

1985). Glycogen depletion labeling of a small number of motor units before and 

immediately following the peak observed episode of synapse elimination provides no 

evidence of a selective loss of inappropriate connections (Thompson et al., 1984). 

More consistent with the available evidence is the hypothesis that two classes of 

motor neurons specifically innervate differentiated muscle fibers. The preceding 

section presented evidence that there is a substantial intrinsic component to the 

development of muscle fiber type, and that each fiber is in fact committed to the 

expression of a particular contractile type prior to synaptogenesis. 

Two distinct mechanisms have been proposed to explain how specific 

connections are established during development. The first does not require 

active recognition of fiber type, but rather relies on timing differences in the 

developmental program of the two fiber types. As discussed in the previous section, 

primary myotubes preferentially develop into slow fibers, while secondary myotubes 

generally become fast fibers (Rubinstein and Kelly, 1981). Primary myotubes 
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mature first, and begin to receive innervation earlier than secondary myotubes 

(Kelly and Zacks, 1969). If slow motor axons began to branch and form synapses as 

soon as primary myofibers were competent to receive them, while fast motor axons 

experienced a delay in this process, each neuronal type might find the available 

target heavily biased toward muscle fibers of the appropriate type (Rubinstein 

and Kelly, 1981). While some inappropriate connections would likely form, such 

a passive sorting process could produce substantial specificity. The second possible 

mechanism is chemospecific recognition. Under this scheme, fast and slow motor 

axons would identify and select muscle fibers of the appropriate type based upon 

the presence of molecular markers. Recognition need not be of the lock and key 

variety; differences in adhesivity could suffice. Furthermore, selectivity need not 

be perfect: fibers of an inappropriate type make up 10-20% of polyinnervated 

neonatal motor units which have been labeled by glycogen depletion (Thompson et 

al., 1984). It is noteworthy, however, that while chemospecific recognition has long 

been considered to account for specificity in various neural projections (Sperry, 

1963), specific chemical markers which might mediate such recognition have not yet 

been identified. 

Little information is available regarding the generation of fiber type specificity 

during the normal developmental process. Given the absence of a marker to 

differentiate between embryonic fast and slow motor axons, it is difficult to 

design an experiment to directly probe the role of timing in securing appropriate 

connections. An alternative approach is to search for evidence of selectivity 

following reinnervation. Selective reinnervation of twitch and tonic muscle fibers 

has been demonstrated in frog pyriformis muscle (Elizalde et al., 1983). In an 

interesting variation of this experiment, Schmidt and Stefani (1976) crushed the 

sciatic nerve at a greater distance from the muscle. Fast conducting axons, which 
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normally innervate the twitch fibers, regenerated faster and reached the muscle 

first, innervating both twitch and tonic fibers and demonstrating that inappropriate 

innervation is not forbidden. As slow axons arrived, however, these displaced fast 

axons from tonic fibers, restoring the normal pattern of innervation. 

In adult mammalian muscle, experimental evidence strongly suggests that 

reinnervation is not selective according to fiber type. Histochemical analysis of 

reinnervated muscles following either nerve crush or section and suture reveals 

the existence of "type groups," or clumps of fibers exhibiting similar ATPase 

and metabolic enzyme histochemistry (Karpati and Engel, 1968; Kugelberg et 

al., 1970; Nemeth and Turk, 1984). This clustering of fiber types contrasts 

sharply with the normal mosaic arrangement, and is taken to reflect the failure 

of regenerating axons to selectively reinnervate fibers of the appropriate type. 

Glycogen depletion of reinnervated units under these conditions confirms that single 

units tend to observe the type group boundaries (Kugelberg et al., 1970). It 

remains possible, however, that molecular markers which guide specific innervation 

during development disappear during maturation. Using glycogen depletion to label 

reinnervated motor units in neonatal rat soleus, Soileau et al. (1987) presented 

evidence of selective reinnervation of fiber types. Reinnervated units were generally 

less homogeneous in fiber type composition than normal motor units, and 2 of 12 

actually exhibited a fiber mix which was consistent with random reinnervation. 

Nonetheless, the fiber type mix of each of the remaining 10 motor units analyzed 

was clearly biased toward one or the other type, and it is highly unlikely that such 

distributions could arise solely by chance. This result is consistent with the finding 

of Hardman and Brown (1987) that topographic reinnervation of intercostals, while 

not possible in adults, indeed occurs in young animals. These latter investigators, 

however, found evidence of type grouping following reinnervation, casting doubt 



-33-

upon the presence of fiber type specificity in their experiment. 

Summary 

Specificity has been examined at three distinct loci in the peripheral motor 

system: the innervation of appropriate muscles, topographic organization of motor 

units within certain muscles, and selective innervation of muscle fiber types. During 

normal development, motor neurons grouped in stereotypically positioned motor 

pools send axons along predictable routes to consistently innervate the appropriate 

muscles, making few if any mistakes in the process. Pathway guidance appears 

to be the dominant factor. Axonal trajectories indicate that routing choices are 

concentrated in certain "decision regions," such as the plexus and nerve branch 

points. Molecular cues may influence routing decisions at these points. Neurons are 

capable of innervating inappropriate muscles following experimental manipulations. 

Apart from the suggestion of segmental markers, little evidence exists to indicate 

that motor axons actively recognize specific molecular labels identifying their target 

muscle. There is good evidence for the existence of topographic mappings from 

motor pools to fibers within two dimensional sheet-like muscles, and weaker evidence 

for similar topography in the projections to 3-D muscles. When topography is 

present, it may be closely related to the existence of compartments within the 

muscle. Because these compartments are defined by the territory innervated by each 

of the primary muscle nerve branches, it is possible that topography develops via 

a guidance mechanism similar to that which generates muscle specificity. Whether 

synapse elimination plays a role in defining intramuscular topography remains 

uncertain. Finally, evidence from neonatal animals strongly suggests that motor 

neurons selectively innervate muscle fibers of the appropriate contractile type. 

Developmental timing has been suggested as an explanation for specificity 
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at all three levels. Limb manipulation experiments in the chick appear to rule 

out differences in the timing of outgrowth, coupled with passive guidance, as an 

adequate mechanism to explain the generation of muscular specificity. Similarly, 

reinnervation experiments suggest that timing does not play a central role in the 

generation of intramuscular topography. While some experimental evidence favors 

chemospecificity, the issue of whether timing is involved in generating fiber type 

specificity is not yet fully resolved. 
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THESIS EXPERIMENTS 

Chapter 2 of this thesis addresses the potential role of chemospecificity 

in generating the fiber type selectivity observed in neonatal motor units. 

Reinnervation experiments, conducted soon after birth in a muscle composed of 

both fast and slow fibers in roughly equal proportion, provide a promising avenue 

to approach the origin of specificity in the innervation of muscle fiber types. 

If a form of chemospecific recognition is an essential component in establishing 

specific connections, then it is possible, although not inevitable, that appropriate 

connections would again be established during reinnervation. If an ordered 

developmental sequence, including timing differences in the maturation of fast and 

slow neurons or muscle fibers, is required to achieve specificity, then it is doubtful 

that such a pattern could be reestablished following axon regeneration. 

The reinnervation study of Soileau et al. (1987) appears to provide strong 

evidence that selective connections reform, and that by inference, muscle fibers 

are labeled according to their type, allowing motor neurons to recognize and 

preferentially innervate the appropriate type. Why then is further study of this 

issue worthwhile? One problem inherent in the glycogen depletion approach was 

the need to wait for two weeks following reinnervation, to allow synapses to mature 

sufficiently to withstand the rigorous stimulation protocol required to succesfully 

deplete active fibers. During this interval, other processes could act to enhance 

the appearance of specificity. Polyneuronal reinnervation could be followed by 

selective synapse loss (Soileau et al., 1987), or muscle fiber contractile types could 

be respecified according to the pattern of neural activity, although steps were taken 

to control for this latter possibility. 

The experiments described in Chapter 2 provide an independent approach to 
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assessing fiber type selectivity during reinnervation. In the neonatal rabbit soleus 

muscle, the time required to achieve peak tension during the twitch contraction of 

an isolated motor unit is a reliable assay for motor unit type (Gordon and Van 

Essen, 1985). Unlike the situation in rat soleus, there is little overlap in the rise 

time distributions of fast and slow motor units. Comparing a histogram of twitch 

tension rise times for single motor units from reinnervated muscles to a histogram 

derived from control muscles revealed that there was little, if any, selectivity by 

fiber type during reinnervation at the ages studied. Reconciliation of this finding 

with the results of Soileau et al. {1987) is discussed in Chapter 2. 

The first of two experiments presented in Chapter 3 compares the timing of the 

later stages of synapse elimination from the end plates of fast and slow muscle fibers. 

Because most muscle fibers belong to motor units of the same contractile type, this 

study can also be regarded as addressing the relative timing of synapse elimination 

for fast and slow motor units. While the question is interesting on its own merits, 

it is also pertinent because of its relationship to the role of timing in achieving type 

specific innervation. A central feature of the timing hypothesis is that slow motor 

units begin to form from primary myofibers a day or more before innervation of fast 

fibers commences. H the two populations of motor units are relatively disjoint, it 

seems plausible that each might follow a similar but temporally offset program of 

early synaptic development. To separately monitor synapse elimination among both 

fast and slow muscle fibers, the following strategy was employed. The innervation 

state of individual fibers were first determined using in vitro intracellular recording 

with a glass microelectrode. Fibers meeting a particular criterion were labeled by 

pressure injection of the fluorescent dye lucifer yellow. After sectioning the muscle, 

the histochemical type of each dye labeled fiber was then determined by staining for 

alkali stable ATPase activity. Surprisingly, no significant difference was seen in the 
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fiber type breakdown of multiply innervated or singly innervated fibers at either of 

two ages studied, indicating that the endpoint of the synapse elimination process is 

nearly synchronous for the two fiber types. 

The second of the experiments of Chapter 3 was motivated by evidence for a fiber 

type selective reorganization of motor units following the major episode of synapse 

elimination. By two independent measures, Gordon (1983) observed a increase in 

the size of slow motor units relative to fast motor units in rabbit soleus muscle 

between 2 and 5 weeks of age. Because the ratio of fast and slow motor neurons did 

not appear to change during this interval, he hypothesized that fast muscle fibers 

were being selectively removed from fast motor units and added to slow motor 

units. This synaptic reorganization would be fundamentally different in character 

from the later wholesale conversion of motor units from fast to slow described by 

Kugelberg (1976) in the rat soleus. A possible anatomical substrate for this synaptic 

reorganization appeared to be available when Taxt et al. (1983) reported finding 

a small yet significant incidence of polyinnervation in rat muscles aged 3-6 weeks. 

While this could represent residual polyinnervation not fully removed during the 

nominal interval of synapse elimination, the fact that one of the synaptic inputs 

on multiply innervated fibers always appeared to be substantially smaller than the 

other suggested that each occurrence might be transient, and that the phenomenon 

therefore represented genuine synaptic plasticity. It thus appeared that transient 

dual innervation might be an intermediate stage in a process producing a net 

transfer of muscle fibers from fast to slow motor units. The experiment described in 

Chapter 3 set out to corroborate the existence of the phenomenon, relate it to the 

hypothesized secondary synaptic reorganization, and to further determine whether 

such a process might be overtly type selective, or whether initial differences in 

motor unit size imposed a dynamic upon an otherwise random process. This latter 
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question was to be addressed by studying the fiber type distribution of the late 

stage polyinnervated fibers, using the intracellular lucifer yellow labeling technique 

to mark multiply innervated fibers for subsequent ATPase processing. 

Using the in vitro cut muscle technique {Barstad, 1962), which provides high 

sensitivity while eliminating muscle contraction, compound endplate potentials were 

in fact observed in 17-23 day rabbit soleus muscles at a low frequency comparable 

to that reported by Taxt et al. (1983). Furthermore, the character of these 

potentials matched those described by Taxt, consisting of one large component, 

and one which was much smaller; too small, presumably, to be seen in curarized 

preparations. The spatial distribution of fibers exhibiting compound e.p.p.'s soon 

became a cause for concern, however. None of these fibers were found on the 

surface of the muscle, even though several hundred surface fibers were examined. 

Compound e.p.p. 's were only observed in deeper fibers, after the electrode had 

passed through at least one other muscle fiber. By this and several other criteria 

fully described in Chapter 3, it appears likely that the compound endplate potentials 

do not in fact represent genuine polyneuronal innervation, but instead are an artifact 

resulting from electrical coupling of muscle fibers induced by the process of electrode 

penetration. I conclude that the incidence of genuine polyinnervation in muscle of 

this age is very low, if any exists at all. This finding is more significant than might 

first be apparent. First, it constrains the operation of the proposed secondary 

synaptic reorganization by establishing a stringent upper limit upon transient dual 

innervation, although transiently denervated fibers remain a viable alternative 

mechanism through which the process could unfold. Perhaps more importantly, 

it dampens unwarranted enthusiasm for what appeared to be the first physiological 

evidence for continuing plasticity in the innervation of healthy skeletal muscle, a 

topic which has received attention for many years {Barker and lp, 1966). 



-39-

The final chapter of this thesis presents a computer model of neuromuscular 

synapse elimination, and describes a series of modeling experiments intended to 

study and compare various mechanisms which might play a role in the process. 

Synapse elimination is a complex phenomenon involving the interplay of many 

distinct aspects. Among the processes and interactions which have been implicated 

in synapse elimination are neural induction of endplate specializations, adhesive 

interactions, competition for space, the dynamics of terminal growth and retraction, 

competition for trophic support, noncompetitive trophic influences, protease effects, 

neuronal and muscle activity, and neuronal metabolic capacity. Computer modeling 

offers a objective framework for exploring ideas regarding how the process might 

work. 

Previous computer models of synapse elimination (Willshaw, 1981; Gouze et 

al., 1983) can be faulted on several grounds, including an overly analytic approach, 

a failure to relate intermediate parameters to tangible characteristics, and in 

the latter instance, questionable mechanistic assumptions. The present model 

attempts to avoid these pitfalls. The model focuses on terminal dynamics: the 

growth and retraction of individual presynaptic terminals constitutes the principal 

outcome of each iteration. Dynamic choices are made stochastically based upon 

the state of the parameter ensemble. Key parameters, such as terminal size, 

neuronal and muscular activity, neuronal metabolic loading, and the concentration 

of hypothesized molecular constituents, are physically identifiable. 

Three mechanisms potentially involved in synapse elimination have been 

implemented in the model. The first of these invokes a synaptic stabilization 

molecule, termed "scaffolding" (Van Essen, 1982), which anchors a presynaptic 

terminal to the basal lamina, thereby increasing its bias for growth over retraction. 

Central to the second mechanism is a hypothesized trophic factor (Jansen et al., 
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1978), synthesized by muscle fibers as a function of their activity, secreted into the 

synaptic cleft, and subsequently accumulated by presynaptic terminals. Variants of 

this mechanism consider the growth enhancing effects of the factor to be confined 

to individual presynaptic terminals, or to be integrated by axonal transport and 

act centrally, yielding a coordinated response throughout any particular neuronal 

arbor. The third mechanism reflects the intrinsic capacity of a motor neuron to 

support the metabolic demands of its terminal arbor (Brown et al., 1976; Thompson 

and Jansen, 1977). Within the overall framework of each mechanism, variations 

are included to compare the avenues by which activity influences the process, 

or to explore the role of terminal size. The three mechanisms are not mutually 

incompatible, and may be combined during simulations. Nine experimental 

observations were selected to evaluate the performance of the model. These describe 

the behavior of synapse elimination both under normal conditions, and following 

experimental perturbations, including altered activity and partial denervation. The 

performance of the model, and its ability to simulate the selected experimental 

criteria, are described in detail in Chapter 4. 
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Chapter 2 

LACK OF FIBER TYPE SPECIFICITY 

DURING REINNERVATION 

OF NEONATAL RABBIT SOLEUS MUSCLE 
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INTRODUCTION 

The neonatal rabbit soleus is a mixed muscle, composed primarily of two distinct 

muscle fiber types that can be distinguished by differences in their contractile speed 

and the pH stability of their actomyosin ATPase activity. During the first two weeks 

after birth, histochemical type I fibers (slow contracting) constitute approximately 

30% of the total fiber count, while type II fibers (fast contracting) constitute about 

70% (Gordon, 1983) . In adult mixed muscles, individual motor units exclusively 

contain muscle fibers of a single type (Edstrom and Kugelberg, 1968; Kugelberg, 

1973; Burke et al., 1973), a pattern consistent with the dependence of fiber 

type upon the pattern of neural input (Salmons and Sreter, 1976). Considerable 

specificity of innervation by fiber type is also present during the first week after 

birth (Gordon and Van Essen, 1985), at a time when all muscle fibers are heavily 

polyinnervated (Redfern, 1970; Brown et al., 1976; Bixby and Van Essen, 1979) . 

Histograms of twitch tension rise times for single motor units from 1-4 day 

rabbit soleus muscles are bimodal, indicating substantial homogeneity in the fiber 

type composition of individual motor units. Glycogen depletion experiments in 

polyinnervated neonatal rat soleus (Thompson et al., 1984) indicate a similar 

anatomical specificity (but see Jones et al., 1987). 

Several possible mechanisms by which this specificity could be established have 

been suggested (Thompson et al. , 1984; Gordon and Van Essen, 1985). Initial 

innervation of muscle fibers might actually be random, producing a degree of 

polyinnervation well in excess of that observed in early postnatal studies. Specific 

loss of inappropriate connections during an early phase of synapse elimination would 

then be necessary to yield two largely distinct populations of polyinnervated motor 

units. A second suggestion derives from the observation that primary and secondary 
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myotubes are formed at different times (Wirsen and Larsson, 1964; Kelly and Zacks, 

1969), and develop preferentially to become the initial complement of slow and fast 

fibers, respectively {Rubinstein and Kelly, 1981). Specificity of innervation by fiber 

type might result from the sequential arrival of two sets of motor neurons timed to 

match the staggered developmental schedule of primary and secondary myotubes 

(Rubinstein and Kelly, 1981). Sperry's chemoaffinity hypothesis (Sperry, 1963) 

offers a third possible mechanism. Chemospecific recognition of appropriate muscle 

fibers by motor neurons during the initial episode of innervation might provide an 

active process by which individual muscle fibers could become multiply innervated 

by motor neurons of the same type. 

Reinnervation experiments offer an approach for studying the possible role 

of chemospecificity in the establishment of neuromuscular connections. The 

alternative hypotheses cited above could not account for fiber type specificity which 

might be observed at an early stage of reinnervation. While reinnervation is known 

to be non-specific in adults (Kugelberg et al., 1970; Brooke et al., 1971), it remains 

possible that recognition molecules which have vanished at this later age might 

still be present soon after birth. Indeed, Soileau et al. {1987) have presented 

evidence suggestive of fiber type specific reinnervation in neonatal rat soleus, by 

employing glycogen depletion to label the majority of muscle fibers composing 

individual reinnervated motor units. We have chosen an alternative approach to 

assess the specificity of reinnervation in neonatal rabbits, using the distribution 

of single motor unit twitch tension rise times as an assay of motor unit diversity. 

Our results indicate that specificity is largely absent during reinnervation in the 

particular species and developmental age that we examined. 
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MATERIALS AND METHODS 

Pregnant female New Zealand White rabbits were obtained from ABC Rabbitry 

(Pomona, CA). Experiments were conducted using soleus muscles of immature 

animals of either sex. Surgical procedures were performed on animals aged 1 day 

or 4 days postnatal, while in vitro analysis of single motor units was performed 

using animals aged 7-10 days. Ages were calculated from the time of birth. Prior 

to surgery, animals were anesthetized either with methoxyflurane (Pitman-Moore) 

followed by ether (1 day rabbits), or with Ketamine HCl by intramuscular injection 

of the contralateral hindlimb (4 day rabbits). In one series of animals, the soleus 

muscle nerve was crushed at least three times near its entry to the muscle, using 

No. 5 forceps. In another series of animals, 1 ng (2 ~-£1 of 0.5 ~-£g/ml) of botulinum 

toxin (BoTx; Type A, Sigma, in 0.2% gelatin and 0.07% phosphate buffer, pH 6.5) 

was injected superficially over the ventral face of the muscle following surgical 

exposure and freeing of connective tissue. Full in vivo block of reflexive hindfoot 

flexure and extension was evident by the following day, and continued through the 

6 day interval preceding in vitro analysis. A third group of unoperated animals was 

used in control experiments. 

For in vitro experiments, animals were anesthetized with methoxyflurane 

followed by ether, and soleus muscles were dissected free, together with their 

innervation back to contributing spinal roots. A bone fragment including the 

proximal tendon insertion was pinned to the bottom of a shallow wax-lined 

dish, and the distal tendon was affixed via 6-Q surgical silk to a piezoresistive 

tension gauge (Aksjeselskapet MikroElektronikk, Horten, Norway, Model AE 875) . 

Responses were linear up to 9 grams. The preparation was continuously superfused 

with chilled, oxygenated Ringer's (Gordon and Van Essen, 1985), with flow rate 
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adjusted as necessary to maintain temperature in the range 18.8-19.2 °C. Following 

verification of block in BoTx poisoned muscles, transmission was restored (Lundh et 

al., 1977; Brown et al., 1981) by superfusing with Ringer's containing 0.15 mM 4-

aminopyridine (4-AP) and elevated Ca2+ (15m.M). 

Whole muscle twitch contractions were stimulated using pulses of 2 msec 

duration and 60 V amplitude applied with bipolar electrodes spanning the muscle. 

The muscle was stretched to a length yielding maximal whole muscle contractions 

and maintained at this length throughout the experiment. Single motor units were 

isolated by applying carefully graded stimuli to teased ventral root filaments using 

a suction electrode. Twitch tension traces were recorded using an IBM PC jXT 

computer equipped with a Tecmar Labmaster analog input board. Occasionally, 

multiple units were recorded from single filaments, and off-line computer subtraction 

was used to estimate single unit twitch responses. Contraction times computed from 

summed traces are accurate to within approximately 10% (Gordon and Van Essen, 

1985) . 

Following completion of in vitro analysis, muscles were frozen by immersing 

them, stretched, in isopentane cooled by dry ice, and then stored at -70°C. Cross 

sections from representative muscles selected at random were cut on a cryostat 

at -20°C and processed for myofibrillar ATPase activity at pH 10.4 following the 

procedure of Guth and Samaha (1970). 

Motor unit twitch tension traces were analyzed off-line to determine rise times, 

taken to be the interval between stimulus and the moment of peak tension. The 

timing of peak tension was determined by a computer algorithm following computer 

smoothing of the digitized tension record. The width of the smoothing window 

was varied if necessary so that the computed time of peak tension was within 
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5% of a visually estimated time of peak. Histograms of single motor unit twitch 

tension rise times were tabulated to compare contractile diversity between different 

experimental groups. Generally, rise time data were pooled directly within each 

group. In cases where we were concerned that systematic differences in average rise 

time between animals in a group might obscure the inherent variability measured in 

individual muscles, we employed a non-parametric normalization. In this procedure, 

the rise time of each motor unit was expressed as a percentage of the median rise 

time value for the muscle of origin before data from individual muscles were pooled. 

The interquartile ratio (IQR), defined as the ratio of the 75% and 25% points 

in a cumulative rise time distribution (t.76 /t.25), provides a non-parametric, scale 

invariant measure of motor unit contractile diversity within individual muscles or 

pooled experimental groups. 

We conducted computer simulations to establish an upper limit on the degree of 

fiber type selectivity consistent with the diversity in rise times in our experimental 

data. The first step in assembling a simulated motor unit was to determine the 

number of fibers it would contain. The experimental histogram describing the sizes 

of reinnervated motor units (Fig. 2A) was regarded as a probability distribution, 

and motor unit sizes were randomly sampled from this distribution. The concept 

of selectivity presumes that each motor neuron participating in the reinnervation 

process possesses a type identity, either fast or slow. We assigned each motor unit 

an inherent type with equal likelihood, reflecting the approximately equal frequency 

of fast and slow motor units in normal rabbit soleus muscles of this age (Gordon, 

1983). Next, each fiber in the simulated unit was randomly assigned a contractile 

type, based upon a specified level of fiber type selectivity. The probability PM that 

the type of any particular fiber matched the inherent type of its motor unit was 
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taken to be 

where S is fiber type selectivity, ranging between O% and 100%. Twitch rise times 

of individual fibers were then sampled from rise time probability density functions 

defined separately for fast and slow fibers . These probability distributions were 

estimated from a histogram of normal single motor unit rise times from 9 day 

muscles (Fig. 3A) using two different procedures described in Results. Finally, 

simulated motor unit rise times were calculated by averaging single fiber rise times. 

Simulations were conducted for a range of fiber type selectivities. The number of 

units simulated (162) was equal to the number of experimentally reinnervated units. 

Histograms were plotted and IQRs calculated for comparison with the experimental 

distribution of reinnervated motor unit rise times. 
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RESULTS 

The soleus muscle nerve was crushed unilaterally in rabbits aged 1 day or 4 

days postnatal at a point just proximal to its insertion into the soleus muscle. 

Reinnervation was subsequently assessed in vitro at 19°C by comparing nerve evoked 

twitch tension to the tension produced by direct whole muscle stimulation. For 

animals operated on day 4, the first indication of functional reinnervation appeared 

4 days following nerve crush (Fig. 1, circles), but was insufficient to permit reliable 

tension measurements from single motor units. Reinnervation progressed rapidly 

to 8% ± 3% (N = 5, mean ± S.E.M.) at 5 days post-crush and 32% ± 4% 

(N = 9) at 6 days post-crush, and continued to increase thereafter. Animals 

operated on day 1 (Fig. 1, triangles) displayed essentially the same degree of 

reinnervation at 6 days post-crush, and thus presumably had a similar time course 

of reinnervation. We selected 5-6 days post-crush as an appropriate interval for 

analysis of reinnervated single motor units based upon two considerations. First, a 

sufficient degree of reinnervation had occurred in these muscles to allow successful 

isolation of individual motor units and a meaningful analysis of their contractile 

properties. Second, because individual muscle fibers had been reinnervated for 

2 days or less, insufficient time had elapsed for neuron-directed respecification of 

muscle fiber type to have occurred (Pette et al., 1976; Klug et al., 1983). 

Motor unit properties in reinnervated muscles, specifically motor unit size and 

twitch tension rise time, were analyzed in vitro at 19° C (Methods). At 5-6 days 

following nerve crush, reinnervated muscles clearly contained fewer detectable motor 

units than normal muscles. Difficulties in recognizing very small units when these 

were recruited in combination with one or more larger units prevented an exhaustive 

count. Nevertheless, based upon the average size of teased filaments and the number 
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Figure 1 . Percent reinnervation in experimental muscles 

examined in vitro at various times following crush of the 

soleus muscle nerve near its entry to the muscle at 1 day 

(triangles) or 4 days (circles) postnatal. Reinnervation was 

estimated by dividing maximum nerve evoked twitch tension 

by the peak tension recorded following direct stimulation of the 

whole muscle using bipolar electrodes. The interval 5-6 days 

post-crush was selected for analysis of the contractile diversity 

of reinnervated motor units. Individual units at this time 

were large enough for meaningful analysis of twitch tension 

rise times, yet the interval of functional reinnervation was 

sufficiently brief to preclude muscle fiber type respecification. 
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of units elicited when these were stimulated, we estimate that 6 day reinnervated 

muscles contained roughly half of the normal complement of 60-70 motor units 

(Bixby and Van Essen, 1979a; Gordon and Van Essen, 1985). 

Motor unit sizes were expressed as a percentage of maximal twitch tension 

obtained by direct whole muscle stimulation. The distribution of motor unit sizes 

for reinnervated units estimated according to this procedure is shown in Fig. 2 

for muscles examined in normal Ringer's (Fig. 2A) and for muscles examined in 

Ringer's containing 4-AP and high Ca2+ (Fig. 2B). We also estimated the number of 

muscle fibers per motor unit by assuming that the rabbit soleus consists of 11,000 

fibers (Bixby and Van Essen, 1979a) of equal cross-section and specific tension. 

This information was needed in order to estimate the degree of diversity that would 

result from purely random reinnervation or from a low level of selectivity. At 5 days 

after nerve crush, reinnervated units averaged 0.27% of maximal direct tension, 

corresponding to 30 ± 5 muscle fibers (n = 19, 1 muscle), while 6 day reinnervated 

units averaged 0.64% of maximal direct tension , corresponding to 69 ± 6 muscle 

fibers (n = 143, 6 muscles). About 13% of reinnervated units analyzed (21 of 162) 

contained fewer than 10 muscle fibers. Interestingly, in the muscles analyzed in 

Ringer's containing 4-AP and elevated Ca2+, motor unit sizes averaged 1.58% of 

maximal direct tension, corresponding to 174 ± 23 fibers (n=58, 3 muscles). This 

2.5-fold increase suggests that many newly formed synapses are subthreshold when 

tested in normal Ringer's. 

A histogram of single motor unit twitch tension rise times recorded in vitro 

m 9 day normal rabbit soleus muscles (Fig. 3A; n = 127, 3 muscles) exhibits 

roughly a 2-fold diversity in contractile rate (total range 18D-450 msec, IQR = 

1.61). A population of fast contracting units (18Q-250 msec) clearly forms a single 

peak. Whether the slow contracting population consists of one or more distinct 
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Figure 2. Size distribution of reinnervated motor units 

analyzed in (A) normal Ringer's solution (5 or 6 days post­

crush) or (B) Ringer's containing 4-aminopyridine and elevated 

Ca2+ (6 days post-crush). The larger sizes of units measured 

under the latter conditions suggests that a substantial degree 

of normally subthreshold innervation is present during this 

early stage of reinnervation. Sizes of isolated motor units are 

expressed as the ratio of their peak twitch tension to maximal 

whole muscle twitch tension. A rough estimate of motor unit 

fiber count can be obtained by multiplying horizontal axis 

values by 110. 
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Figure 3. The distribution of single motor unit twitch 

tension rise times in (A) normal control muscles aged 9 days 

postnatal and (B) reinnervated muscles 5-6 days after nerve 

crush at postnatal day 4. Normal muscles exhibit a distinctly 

multimodal distribution of twitch rise times, evidence of 

substantial homogeneity m the fiber type composition of 

individual fast or slow neonatal motor units. The arrow 

suggests a split point for separating fast and slow units. In 

contrast, reinnervated motor units appear to constitute a single 

population with intermediate rise times, suggesting that each 

comprises a similar proportion of fast and slow muscle fibers. 

A comparable result (C) was obtained following crush of the 

soleus muscle nerve at the earliest convenient opportunity, 

during postnatal day 1. Apart from a marginal slowing of 

all contractions in the less mature muscles, the distribution of 

rise times is indistinguishable from that observed when nerve 

crush is performed on postnatal day 4. Because motor unit 

contractile properties were assayed in vitro at 19,°Ctwitch rise 

times were considerably slower than the normal range in vivo. 
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peaks is less clear, but is not of critical importance for the present study. This 

heterogeneity in motor unit contractile speed is present at all ages studied during 

the first several weeks of life (Gordon and Van Essen, 1985), and suggests strongly 

that individual neonatal motor units are composed primarily of a single muscle fiber 

type. In contrast, a similar histogram of twitch tension rise times of 162 motor 

units from 7 reinnervated muscles 5-6 days following nerve crush at day 4 is narrow 

(total range 22G-420 msec, IQR = 1.16), unimodal, and centered on intermediate 

speeds (Fig. 3B). These features suggest that reinnervated motor units constitute 

a relatively uniform population, with most units composed of a similar mixture of 

fast and slow muscle fibers. 

A possibility we considered is that the capacity for specific recognition and 

reinnervation according to fiber type is lost by postnatal day 4, but is present at 

earlier ages. We therefore performed soleus nerve crushes in another group of 4 

animals at the earliest practical time, during the first postnatal day, and analyzed 

reinnervation 6 days later. The level of reinnervation in these muscles was similar 

to that observed following nerve crush at day 4. A histogram of twitch tension rise 

times of 95 isolated motor units from these muscles is unimodal (Fig. 3C; IQR = 

1.17) and similar to that seen when nerve crushes were performed on day 4 (Fig. 3B), 

again suggesting random reinnervation. 

There are, however, alternative explanations whereby these results would be 

consistent with the specific or preferential reinnervation of muscle fibers by motor 

neurons of the corresponding type. One possibility is that a de-differentiation of 

muscle fiber contractile properties occurs during the short interval of denervation 

following nerve crush. In this event, differences in the twitch tension rise time of 

motor units composed predominantly of either fast or slow muscle fibers could 

be substantially reduced. A second alternative is that at the early stage of 
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reinnervation, only one population of motor neurons had reestablished connections, 

and that these connections specifically favored the corresponding muscle fiber type. 

To investigate the possibility of muscle fiber de-differentiation during a short 

interval of inactivity, botulinum toxin was applied to soleus muscles in a separate 

group of animals aged 4 days. Subsequent paralysis of the affected lower hindlimb 

became apparent within a day of toxin application and remained present throughout 

the survival period. Transmission blockade continued for 5~ days, after which 

muscles were removed for in vitro analysis. Following verification of full blockade, 

synaptic transmission was restored by superfusing muscles with Ringer's containing 

4-AP and high Ca2+ (Brown et al., 1981). This treatment is thought to act by 

increasing the duration of presynaptic action potentials, thereby elevating internal 

Ca2+ sufficiently to restore effective transmitter vesicle release (Lundh et al., 1977). 

A histogram of twitch tension rise times of 175 single motor units from 5 BoTx 

treated muscles (Fig. 4A) yielded an IQR of 1.53 and a total range of 23o-650 msec. 

This histogram is quite similar in shape to the distribution of rise times in untreated 

muscles (Fig. 3A), indicating that heterogeneity of motor unit contractile properties 

was maintained during the period of inactivity. The overall lengthening of twitch 

rise times apparent in toxin treated muscles may derive from events pursuant to 

a doubling in the duration of muscle fiber action potentials due to the presence of 

4-AP (Lundh et al., 1977). Preservation of motor unit properties during the interval 

of transmission blockade is further confirmed by a two dimensional plot of motor 

unit size vs. twitch rise time of isolated motor units from a single muscle (Fig. 5) . 

Separation of clusters representing fast and slow motor units is comparable to that 

seen with normal muscles (Burke, 1967; Gordon and Van Essen, 1985). 

Additional evidence that muscle fibers maintained their contractile identity 

during the interval of functional denervation was obtained by examining muscle 
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Figure 4. Motor units from muscles in which transmission 

blockade was induced by administration of botulinum toxin 

exhibit a multimodal distribution of twitch rise times (A) 

following 5-6 days of inactivity in vivo. 4-AP and elevated 

Ca2+ were included in the bathing medium to restore synaptic 

transmission during the in vitro assay, leading to a general 

slowing of all contractions. Otherwise, the distribution of 

rise times is not readily distinguishable from that of normal 

muscles. Reinnervated muscles analyzed 5-6 days post-crush 

in the same bath yield a unimodal distribution of twitch rise 

times (B) intermediate to those of toxin treated motor units, 

but slower than motor units assayed in normal Ringer's. 
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Figure 5. A two dimensional plot of motor unit size vs. 

twitch rise time for isolated motor units (circles) from a single 

muscle following blockade of synaptic transmission with BoTx 

for 6 days in vivo demonstrates that fast and slow motor 

units maintain differentiated contractile properties during the 

interval of inactivity. Transmission was restored for assay using 

4-AP and high Ca2+ in the bathing medium. 
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cross-sections stained for alkali stable ATPase activity. Contrast in fiber type 

staining in reinnervated muscles appears to be equivalent to that of normal muscles 

(Fig. 6), suggesting that substantial changes in the distribution of contractile 

isoforms did not occur. Also, the spatial distribution of fiber types lacks the 

clumping or type grouping characteristic of reinnervated transformed muscle 

(Kugelberg et al., 1970). 

Rise times for reinnervated motor units were intermediate to those of fast 

and slow units from normal muscles (Fig. 3), suggesting that reinnervated units 

contained both fast and slow muscle fibers in comparable numbers. However, the 

period of denervation might have affected the contraction rate of all muscle fibers, 

thereby altering the rise times of reinnervated units. Comparison of reinnervated 

units with motor units from animals treated with BoTx is more appropriate for 

approaching this issue. Thus we analyzed 3 additional 6 day reinnervated muscles in 

a bath containing 4-AP and elevated Ca2+. Contraction times of reinnervated units 

(n = 58) were lengthened when 4-AP was present, and in fact were intermediate 

to those of fast and slow units from BoTx treated muscles analyzed in an identical 

solution (Fig. 4). This finding is consistent with the idea that reinnervated units 

contain a similar combination of fast and slow muscle fibers. 

An independent way to approach the issue of motor unit fiber type composition 

is to compare contractile diversity at early and later stages of reinnervation. H 

early reinnervation were specific, but consisted exclusively of fast (or slow) motor 

units, then a second population of units would likely appear as later arriving slow 

(or fast) axons reestablished functional connections. We therefore analyzed twitch 

tension rise times in another group of 109 motor units from 3 muscles 14 days after 

soleus muscle nerve crush at postnatal day 4. Reinnervation averaged 84% at this 

later time, and there appeared to be approximately 50% more motor units than 
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Figure 6. Sections from (A) a reinnervated muscle analyzed 

6 days after soleus nerve crush on postnatal day 4, and (B) 

a soleus muscle from a 9 day normal animal, each stained to 

demonstrate alkali stable actomyosin ATPase activity. Type II 

(fast contracting) fibers are darkly stained, while type I (slow 

contracting) fibers remain largely unstained. Contrast between 

the two fiber types in the reinnervated muscle is similar 

to that of the normal muscle, indicating that histochemical 

differentiation of fibers types is maintained during early 

reinnervation. Type II fibers appear relatively less mature in 

the reinnervated muscle. Scale bar = 100 p,m. 
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in 5-6 day reinnervated muscles, although once again an exhaustive count was not 

feasible. The rise time diversity found within individual14 day reinnervated muscles 

was virtually identical to that present after 5-6 days of reinnervation (average IQR 

= 1.15 ± 0.01 S. E. M. for 14 day vs. 1.15 ± 0.02 for 5-6 day). While the rise 

time distribution for each of these older muscles was narrow, there were systematic 

differences in median rise times in different muscles (range 275-330 msec). To 

prevent a misleading broadening of the distribution when the rise times of all motor 

units are pooled, we first scaled individual distributions to the median value for 

each muscle. The similarity in rise time diversity is readily seen when distributions 

from individual animals are pooled in this manner (Fig. 7), suggesting that motor 

units continue to represent a single population at the later age. 

The close similarity in twitch rise time diversity between the two age groups 

further argues that no appreciable respecification of fiber types by motor neurons 

occurred during the extended interval following early reinnervation. Whether the 

additional 8 days of functional activity would be sufficient to produce phenotypic 

changes in muscle fibers is uncertain. Significant changes in the activity of the 

sarcoplasmic Ca2+ pump first become apparent after 6 days of chronic stimulation 

(Klug et al., 1983). Considerably more time may be required to produce ch~ges in 

contractile rate (Salmons and Vrbova, 1969) or myosin expression (Pette et al., 

1976). Finally, it is possible that the differentiation of activity into tonic and 

phasic patterns has not yet occurred among neonatal motor neurons (Navarrete 

and Vrbova, 1983). 

While rise time histograms are narrow for both 5-6 day and 14 day reinnervated 

motor units, some diversity is apparent. But does this diversity reflect a low level of 

selectivity in the reinnervation process, or does it merely reflect random fluctuations 

in the composition of motor units in which there is no inherent specificity? To 
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Figure '1. Single motor unit twitch tension rise times 

from reinnervated muscles 5-6 days (A; 7 muscles, 162 units) 

and 14 days (B; 3 muscles, 109 units) following crush of the 

soleus muscle nerve at postnatal day 4. To remove systematic 

differences in contractile speed between muscles, motor unit 

rise times were expressed as a percentage of the median rise 

time for the muscle of origin before data from individual 

animals were pooled. The similarity of the within animal 

variation in rise times for the two intervals of reinnervation 

suggest that little if any muscle fiber type respecification occurs 

in the first two weeks following nerve crush. Three additional 

13-15 day reinnervated muscles (n = 107) were examined using 

a less sensitive tension gauge. Rise time distributions from 

these muscles were somewhat broader (reflecting the decreased 

signal to noise ratio), yielding an average quartile ratio of 1.25 

± 0.02, but were nonetheless substantially narrower than either 

the 9 day normal distribution of Fig. 3A (IQR = 1.61) or the 

distribution of BoTx treated units (Fig. 4A, IQR = 1.53). 
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help distinguish between these possibilities, we conducted computer simulations to 

estimate the motor unit rise time diversity which would be expected to follow from 

various levels of fiber type selectivity, ranging from O% (completely random) to 

100% (perfect homogeneity). 

Simulations were predicated on the assumption that the rise time of motor unit 

tension during a twitch contraction can reasonably be estimated by averaging the 

individual rise times of all of the fibers in the unit, were these to be stimulated one 

at a time. Simulated units were assigned varying numbers of muscle fibers selected 

at random to satisfy two criteria: The distribution of motor unit sizes matched 

that of actual 5-6 day reinnervated units (Fig. 2A), while the distribution of fibers 

types within individual units reflected a specified degree of selectivity. Each fiber 

within a motor unit was assigned a twitch rise time selected randomly from fast and 

slow distributions derived from the histogram of rise times for normal 9 day motor 

units (Fig. 3A). The twitch rise time of the full motor unit was then estimated 

by averaging the individual rise times of its constituent fibers (see Materials and 

Methods for additional details). 

A key consideration in this analysis is the assignment of rise times to individual 

fibers. In particular, what are the appropriate single fiber rise time distributions 

for fast and slow fibers? Two different strategies were employed to estimate 

these distributions. In adult muscles, there is little variability in a variety of 

metabolic and contractile properties among individual fibers of a single motor unit 

(Kugelberg, 1976; Nemeth et al., 1981). H this uniformity were also characteristic 

of neonatal motor units, then the distribution of single fiber rise times would be 

virtually the same as the distribution of motor unit rise times, so that fast and slow 

distributions could be obtained by splitting the histogram of Fig. 3A into its fast 

and slow components. Using this strategy, rise time histograms describing simulated 
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reinnervated motor units were produced for a range of fiber type selectivities and 

compared with the observed rise time distribution of experimentally reinnervated 

motor units (Fig. 3B). As fiber type selectivity was increased, the breadth of the 

simulated rise time histogram expanded monotonically, as shown in Fig. 8 (open 

squares) . Histograms of width equal to the experimental data (as measured by IQR) 

resulted from fiber type selectivity of about 30%, suggesting that this value is an 

upper bound for the degree of fiber type selectivity present during our reinnervation 

experiments. Interestingly, the rise time histogram of simulated units obtained when 

selectivity was set at 30% is bimodal, exhibiting small yet distinctive fast and slow 

peaks (Fig. 9A). 

Because the experimental histogram is unimodal (Fig. 3B), this finding argues 

that either actual selectivity was not as great as 30%, or the estimated distributions 

of fast and slow single muscle fiber rise times were not appropriate. 

An alternative possibility is that there might be substantial diversity in the 

contractile speeds of fibers within individual neonatal motor units, even though 

they consist predominantly (ca. 90%) of the same fiber type (Thompson et al., 

1984). This seems particularly likely considering that the polyinnervation present in 

neonatal muscles would prevent all fibers in a unit from receiving identical patterns 

of activation. In this case, the distribution of motor unit rise times (Fig. 3A) would 

not provide an accurate estimate of either the fast or slow rise time distributions 

for single fibers. Motor units at the extremes of this distribution would themselves 

contain fibers exhibiting a range of contraction times. Hence the distribution of 

single fiber contraction times would be substantially broader. To simulate this 

alternative, we developed estimates of the applicable fast and slow single fiber rise 

time distributions by adding extra random variation to the full unit distributions 

defined by separating the fast and slow components of Fig. 3A. The magnitude of 
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Figure 8. Expected motor unit nse time diversity as 

a function of fiber type selectivity during reinnervation, as 

estimated by computer simulation. Rise times of units whose 

size distribution was consistent with experimental units {Fig. 

2A) were computed by averaging the individual rise times of 

constituent fibers, sampled from fast and slow distributions 

derived from a histogram of the rise times of normal motor 

units {Fig. 3A). Two d istinct strategies for selecting the fast 

and slow fiber distributions provide upper and lower bounds for 

the expected rise time diversity. H the normal neonatal units of 

Fig. 3A are composed of fibers having very similar contractile 

rates, narrower single fiber rise time distributions and hence 

less rise time diversity would be expected among reinnervated 

units (open squares) than if normal neonatal units are instead 

formed of muscle fibers whose contractile rates vary across the 

available range {filled diamonds). Points are mean ± sd of three 

simulations. Horizontal line illustrates IQR of experimentally 

reinnervated units {Fig. 3B). 
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Figure 9. Rise time histograms of simulated reinnervated 

motor units. IT single fiber rise time distributions are identical 

to the fast and slow modes of Fig. 3A, fiber type selectivity 

of about 30% is required to yield a rise time histogram equal 

in breadth to the experimental histogram {A} . The fact that 

this simulated histogram is bimodal while the experimental 

histogram (Fig. 3B} is not suggests that actual selectivity is 

not this great. H single fiber rise times are estimated by a 

second procedure which is also consistent with the rise time 

diversity of normal units, a histogram of simulated units is 

broader than the experimental distribution even in the absence 

of fiber type selectivity {B) . 
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this additional variance was chosen so that use of the simulation algorithm for units 

of normal size (200 ± 70 fibers) with a selectivity of 90% yielded a distribution of 

rise times similar to Fig. 3A. When the alternative fast and slow single unit rise 

time distributions were used to simulate reinnervated units equivalent in size to 

the 5-6 day experimental units, the breadth of the simulated rise time histograms 

again increased with increasing fiber type selectivity (Fig. 8, filled diamonds), but 

was always greater than the width of the histogram determined by experimentally 

reinnervated units (Fig. 3B). The histogram generated when selectivity was set to 

zero is illustrated in Fig. 9B. This result implies that there was little or no fiber 

type selectivity present during actual reinnervation. 

The two alternatives examined above represent extremes in the spectrum of 

possible fast and slow fiber rise time distributions. Real muscle fibers may form 

distributions intermediate to these two cases. In any event, the simulations suggest 

that the degree of fiber type selectivity indicated by our experimental observations 

was probably less than 30%, and that in fact, selectivity may have been totally 

absent. 



-75-

DISCUSSION 

The development of specificity in the innervation of skeletal muscles has received 

considerable experimental attention. Several studies address the issue of whether 

positional markers may be present within muscle and play a role in establishing the 

correct pattern of connectivity during normal development. During original axon 

outgrowth in the chick limb, motor neurons prefer their correct target muscles, 

even when normal ordering in the spinal column has been disrupted (Lance-Jones 

and Landmesser, 1980a,b). This process is largely dependent upon axonal sorting 

within the appropriate plexus and nerve branching regions, and hence appears to 

represent pathway selection and guidance (Lance-Jones and Landmesser, 1981a; 

Tosney and Landmesser, 1985b,c). While these experiments suggest that motor 

neurons bear molecular labels based upon their position, or are able to selectively 

react to positional signals encountered during outgrowth, they provide no indication 

of specific molecular markers on muscle fibers. 

Other indirect experimental evidence suggests that such positional markers may 

be present. In the competitive environment created by embryonic limb segment 

deletion experiments, Whitelaw and Hollyday (1983a) showed that motor neurons 

deprived of their normal target preferentially succumbed to cell death, whereas 

neurons normally innervating the remaining segment survived and innervated 

appropriate target muscles. This finding points to positional markers, but does not 

fully constrain their location to target muscles as opposed to distal growth pathways. 

The apparent peripheral specification of transplanted dorsal root ganglion sensory 

neurons in bullfrog (Frank and Westerfield, 1982; Smith and Frank, 1987) could 

reflect common markers shared by muscles and spinal motor neurons. In mammals, 

preganglionic axons of the rat cervical sympathetic trunk reinnervate transplanted 
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intercostal muscle in a segmentally selective manner, suggesting the presence of 

positional labels which vary along the rostrocaudal axis (Wigston and Sanes, 1985) . 

Experiments using chick-quail chimeras have shown that individual limb muscles 

are populated by myogenic precursors deriving from particular somites (Beresford, 

1983), and that motor axons from a given spinal segment preferentially innervate 

muscles of matched segmental origin (Lance-Jones, 1985). However, Keynes et al., 

(1987) observed that following shifts and reversals of embryonic somitic mesoderm, 

myogenic precursors migrate according to their new segmental position, but motor 

neurons continue to find and innervate their normal target muscles rather than 

following the segmentally labeled muscle fibers to their new positions. This finding 

casts doubt on the idea that segmental markers are a major factor in the origin of 

specific innervation. 

Topographic ordering of motor projections to a given muscle based upon 

rostrocaudal position within the spinal motor pool has been reported in several 

cases (Brown and Booth, 1983; Bennett and Lavidis, 1984a; Hardman and Brown, 

1985; Bennett et al., 1986; Laskowski and Sanes, 1987a). Such patterns might 

reflect differential labeling of muscle fibers or motor neurons according to their 

position. Neonatal synapse elimination has been proposed to strengthen an initially 

weaker topographic gradient (Brown and Booth, 1983; Hardman and Brown, 1985; 

Bennett and Ho, 1988; but see English, 1986). The fact that topographic accuracy 

can be reestablished during reinnervation (Hardman and Brown, 1987; Laskowski 

and Sanes, 1987b) indicates that timing differences in outgrowth and synapse 

formation are not required to establish the pattern, thereby strengthening the 

proposition that molecular markers are involved. In at least some muscles, however, 

axons entering through different primary nerve branches innervate contiguous but 

spatially distinct compartments within the muscle (English and Weeks, 1984; Balice-
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Gordon and Thompson, 1988). Synapse elimination does not contribute to this 

pattern (Donahue and English, 1987; Balice.-Gordon and Thompson, 1988). The 

compartmental innervation itself is topographically represented in the spinal motor 

pool (Weeks and English, 1985). Hence while synapse elimination might serve to 

further refine topography within compartments (Bennett and Ho, 1988) , axonal 

guidance mechanisms may be largely responsible for the initial development of this 

intramuscular organization. 

Reinnervation studies afford a convenient paradigm for analysis of specificity 

m a competitive environment, particularly because a positive finding implicates 

molecular markers. A clear preference for muscles to be reinnervated by their 

original motor neurons has been demonstrated in leech (Van Essen and Jansen, 

1977) and axolotl (Wigston and Kennedy, 1987) . In adult mammalian muscle, 

specific recognition of appropriate muscles does not appear to occur during 

reinnervation (Weiss and Hoag, 1946; Bernstein and Guth, 1961; Gerding et al., 

1977; but see Hoh, 1975) . Similarly, specific reinnervation of muscle fiber types 

is not found in mature animals (Karpati and Engel, 1968; Miledi and Stefani, 

1969; Kugelberg et al., 1970). Whether type selective reinnervation could occur 

in neonates remains an interesting question. The topographic reinnervation of 

intercostal muscle in neonatal rats contrasts with the situation in adults, where 

the pattern of reinnervation was random (Hardman and Brown, 1987). In two 

other muscles, Laskowski and Sanes (1987b) report topographic reinnervation at 

both ages, although they observed greater selectivity in neonates. Interestingly, 

a study by Hoh (1975) conducted on younger (3 week) rats suggested specificity 

of reinnervation when soleus and extensor digitorum longus (EDL) muscle nerves 

competed to reinnervate the EDL or soleus muscles. The finding that the EDL was 

preferentially reinnervated by the EDL nerve, while both muscle nerves competed 



-78-

equally within the soleus muscle, is consistent with fiber type selectivity. In the 

present study, we have examined single motor unit contractile properties following 

reinnervation in newborn rabbits, which we feel offers a more direct approach to 

the issue of fiber type specificity during reinnervation. 

The tw<>- to threefold range of single motor unit twitch tension rise times in 

normal neonatal rabbit soleus muscles analyzed in vitro at 19°C offers a convenient 

assay for possible fiber type specificity in reinnervation. While a measure of the 

breadth of the rise time distribution would be adequate, the distribution is in 

fact multimodal, exhibiting a well defined peak of fast contracting motor units, 

and a broader band of slow contracting motor units possibly encompassing two 

distinct peaks. Early glycogen depletion studies in adult animals (Kugelberg, 

1973, 1976; Burke et al., 1973) together with direct evidence concerning the fiber 

type composition of neonatal motor units (Thompson et al., 1984) support the 

inference that fast contracting units are composed primarily of type II muscle 

fibers, while slow contracting· units comprise mostly type I muscle fibers. The 

distributions of twitch rise times of reinnervated units which we obtain following 

nerve crush at either postnatal day 1 or 4 are substantially narrower than the normal 

control distribution, are unimodal in appearance, and are intermediate in timing 

to the normal fast and slow populations. Computer simulations indicate an upper 

bound of 30% for fiber type selectivity during reinnervation, but also suggest that 

selectivity is probably less, and may be absent altogether. A reasonable conclusion 

to draw from these results is that returning motor axons reinnervate muscle fibers 

largely at random, independent of their type, and that reinnervated units consist 

of combinations of fast and slow muscle fibers which fluctuate around the average 

frequency of occurrence within the muscle. 

To support this conclusion, it was essential to establish that during the brief 
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interval of denervation following nerve crush, muscle fibers had not de-differentiated 

in a manner which would either prevent recognition of their type by ingrowing motor 

axons or hinder the detection of specific reinnervation by our assay. The approach 

we adopted was to emulate the denervation episode by inducing a transmission 

blockade, using BoTx, for an equal interval. Both neurally evoked and spontaneous 

transmitter release are drastically reduced but not completely eliminated by BoTx 

(Cull-Candy et al., 1976). This approach would not be effective in duplicating 

the possible loss of trophic influences which might be present due to physical 

proximity, but not involving neural activity. However, changes in any of a wide 

array of fiber type related characteristics, including contractile rate and ATPase 

histochemistry (Salmons and Sreter, 1976), and metabolic properties and contractile 

protein isoforms (Pette et al., 1976; Klug et al., 1983) are dependent upon the 

character of neural activity, and most likely, of muscle fiber activity (L!Zimo and 

Rosenthal, 1972; L!Zimo et al., 1974). Hence a treatment which blocks activity 

should provide an adequate control for denervation effects. We find that a nearly 

normal distribution of twitch rise times is maintained during a 6 day interval of 

transmission blockade, indicating that loss of muscle fiber differentiation is not 

likely to be a factor in our results. Thus we conclude that chemospecific recognition 

leading to selective reinnervation according to muscle fiber type was not present 

to any substantial degree in our experiment. We cannot rule out the possibility 

that recognition molecules present at the moment of surgery were lost due to the 

disruption of connectivity. More significantly, our results leave open the possibility 

that chemospecific recognition is important in establishing the initial specificity of 

innervation. Markers present during ingrowth and synaptogenesis could disappear 

early in development. 

Soileau et al. (1987) have reported results from reinnervation studies in neonatal 
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rat soleus which appear to be in conflict with our own. Using glycogen depletion 

to label muscle fibers in individual motor units, they found that the fiber type 

composition of reinnervated units was distinctly non-random for 10 of the 12 units 

studied, although it varied almost continuously across the available spectrum. A 

key difference in their paradigm is that they waited 10 days or more following 

reinnervation for synaptic connections to strengthen sufficiently to support the long 

term tetanic stimulation required to achieve depletion. Thus one formal possibility 

is that random reinnervation is followed by fiber type respecification deriving from 

the subsequent pattern of neural activity. They offered plausible controls to rule 

out this possibility, and in any event, we saw no indication of an increase in 

reinnervated motor unit contractile diversity in rabbit soleus analyzed 2 weeks 

post-crush. Differences in the ability of appropriate vs. inappropriate synaptic 

connections to maintain transmission during the rigorous glycogen depletion process 

is also possible (Soileau et al., 1987). Such a difference would reflect small yet 

interesting variations in selectivity which may not be detectable using an assay 

based on twitch contractions. Another possibility (Soileau et al., 1987) is that 

an initially random polyneuronal reinnervation is followed by loss of inappropriate 

connections. Once again, our histogram of reinnervated units at two weeks following 

crush does not support this explanation. It is interesting to note that gestation in 

rabbit is 10 days longer than in rat, and at least one early developmental event, 

the episode of neonatal synapse elimination, is completed at a significantly earlier 

postnatal age (by 4-7 days) in rabbits (Bixby and Van Essen, 1979a) than in rat 

(Brown et al., 1976). Hence, a particularly interesting alternative for reconciling 

the two results is that the rat experiments were conducted just prior to the loss of 

markers necessary for selective reinnervation, while our study on rabbits involved 

reinnervation just after this milestone. 
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Defining the roles which positional or type specific markers may play 

m the development of motor specificity remains a challenging problem. If 

molecular markers are in fact significant in the generation of fiber type specificity 

during normal development, it will be interesting to understand the expression 

and regulation of these markers, and the process by which they are lost or 

rendered inaccessible near the age of birth. Our results suggest, however, that 

further consideration of alternative mechanisms, perhaps including differences in 

developmental timing, remains worthwhile. 
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Chapter 3 

SYNAPSE ELIMINATION BY FIDER TYPE 

AND MATURATIONAL STATE 

IN RABBIT SOLEUS MUSCLE 
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INTRODUCTION 

The soleus muscle at birth consists of a matrix of distinct muscle fiber types 

differing in metabolic and contractile properties as well as enzyme immunoreactivity 

and histochemistry. Of the two predominant fiber types, type II (fast contracting) 

are roughly twice as common as type I (slow contracting) in neonatal rabbit soleus 

(Gordon, 1983). Muscle fibers are extensively polyinnervated at birth, but soon 

experience an episode of synapse elimination during which they attain their mature 

configuration of a single neural input (Redfern, 1970; Brown et al., 1976; Van Essen, 

1982). In mature animals, motor units (each consisting of a motorneuron together 

with the muscle fibers it innervates) are composed almost exclusively of a single 

fiber type (Edstrom and Kugelberg, 1968; Kugelberg, 1973; Burke et al., 1973) . 

Recently, glycogen depletion experiments in rat (Thompson et al., 1984) and twitch 

tension measurements in rabbits (Gordon and Van Essen, 1985) have demonstrated 

that a similar pattern of specific innervation by fiber type exists in neonatal muscles 

well before synapse elimination is completed. While less homogeneous than in the 

adult, the composition of individual motor units is heavily biased toward one or 

the other of the two major fiber types. In the rabbit soleus, two largely distinct 

populations of motor units exist even at a time of fourfold polyinnervation. 

In the present study, we have utilized the technique of intracellular labeling of 

particular muscle fibers with the fluorescent dye Lucifer Yellow to investigate two 

issues involving the relative development of the two classes of motor units. The 

first issue concerns whether there are differences in the timing of synapse loss for 

fast and slow motor neurons. Consideration of this possibility is motivated by the 

observations that primary and secondary myotubes are formed at different times 

(Wirsen and Larsson, 1964; Kelly and Zacks, 1969), and develop preferentially 
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to become the initial complement of slow and fast muscle fibers, respectively 

{Rubinstein and Kelly, 1981). This leads to the suggestion that the specificity 

of innervation by fiber type in early muscles might involve the sequential arrival of 

two sets of motorneurons timed to match the staggered developmental schedule of 

primary and secondary myotubes (Rubinstein and Kelly, 1981), thereby producing 

two largely independent sets of motor units. H there is indeed a significant temporal 

difference in the initial formation of fast and slow motor units, a corresponding 

timing difference might persist through subsequent developmental events. Relevant 

to this hypothesis is the report by Riley (1977b) that, in the rat soleus, the last fibers 

to lose their polyneuronal innervation are predominantly of the fast histochemical 

type. To study more directly the relative time course of synapse elimination in 

the two fiber populations, we injected Lucifer Yellow into individual muscle fibers 

whose innervation state was first clearly identified by recording single or compound 

intracellular end plate potentials. The histochemical type of each labeled fiber was 

then determined in muscle cross sections. 

The second issue deals with the state of innervation in juvenile animals, well 

after the bulk of synapse elimination is completed. A significant incidence of 

residual polyinnervation has been reported in the soleus and lumbrical muscles 

of rats aged 3-6 weeks (Taxt et al., 1983; Taxt, 1983), whereas the peak period 

of synapse elimination occurs during the first two postnatal weeks (Brown et al., 

1976; Betz et al., 1979) . This finding was of particular interest owing to other 

evidence for a synaptic reorganization at a late developmental stage. Gordon 

(1983) has found changes in the relative sizes of motor units, as measured by twitch 

tension, between 2 and 5 weeks of age in rabbit soleus. His evidence suggests 

that slow motor units expand in size relative to fast motor units. This could 

imply a secondary stage of synaptic reorganization well after the initial period of 
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heavy polyneuronal innervation. Transient dual innervation of some muscle fibers 

could be an intermediate state in such a reorganization, reflecting the capture 

of histochemically fast muscle fibers by slow motorneurons. In this scenario, 

histochemical type conversion of the newly captured muscle fibers {Buller et al., 

1960; Kugelberg et al., 1970; Salmons and Sreter, 1976) would lag the onset of dual 

innervation by at least several days (Pette et al., 1976; Klug et al., 1983). Our 

initial intent was to identify polyinnervated fibers in the soleus of juvenile rabbits, 

and to determine their histochemical type by using the Lucifer Yellow labeling 

technique. While we replicated the basic observations of apparent compound 

endplate potentials in soleus muscles of the appropriate age, a more detailed analysis 

suggests that the multicomponent responses are artifactual and do not represent 

genuine polyneuronal innervation. 
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MATERIALS AND METHODS 

Pregnant female New Zealand White rabbits were obtained from ABC Rabbitry 

(Pomona, CA), and a pregnant female Sprague-Dawley rat was obtained from 

Simonsen (Gilroy, CA). Experiments were conducted using soleus muscles of 

immature animals of either sex. Relative time course studies (Experiment 1) were 

performed using rabbits aged from 7 to 11 days, while late stage polyinnervation 

experiments (Experiment 2) utilized rabbits aged from 17 to 23 days and rats aged 

from 22 to 30 days. Animals were aged from the time of birth, even though the 

gestation period in rabbits varied by as much as three days. Previous evidence from 

this laboratory (Bixby and Van Essen, 1979a; Gordon and Van Essen, 1985) has 

indicated that intra-litter variation in size, weight, and muscle fiber differentiation 

is comparable to the variability between litters of the same age as calculated by 

this method. Physiological measurements (see Results) confirmed the separability 

of the two age groups (7-8 days and 10-11 days) used for Experiment 1 in terms of 

the overall degree of polyneuronal innervation. 

In Vitro Physiology and Dye Labeling. For the relative time course 

experiment, the soleus muscle along with several mm of its nerve was isolated 

under ether anesthesia, freed of excess connective tissue, and pinned out in a 

plexiglass chamber. The muscle was continuously superfused with oxygenated 

Ringer's (Gordon and Van Essen, 1985) at room temperature, to which was 

added o-tubocurarine (Sigma; 1-2 mg/liter) to prevent nerve evoked muscle 

contraction. Graded stimuli were applied to the muscle nerve using a suction 

electrode, and endplate potentials (e.p.p.'s) were monitored with an intracellular 

glass microelectrode. While e.p.p. 's often fluctuated considerably in magnitude 

(Bixby and Van Essen, 1979a), the presence or absence of multicomponent e.p.p. 's, 
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indicative of polyneuronal innervation of the muscle fiber, could be reliably assessed 

in nearly all fibers having responses greater than about 2 mV. 

Glass microelectrodes, produced using a Brown-Flaming P77 micropipette 

puller, were filled with a 12% solution of Lucifer Yellow CH (Sigma) in 1M lithium 

chloride. When a muscle fiber exhibiting the desired response (single- or multi­

component e.p.p.) was unequivocally identified, Lucifer Yellow was pressure injected 

into the fiber. Applied air pressure was gradually increased from zero to 20 psi 

and maintained at that level for 2-3 minutes. Pressure injection was chosen over 

iontophoresis both for convenience and to allow a greater salt concentration within 

the micropipette, which in turn permitted reduced resistance values and hence lower 

noise levels. A drop in electrode resistance resulting from electrolyte flow was also 

useful in monitoring dye injection. Electrodes having a resistance of about 20 MO 

proved most effective. Resistance above 25 MO permitted little if any dye flow, 

while resistance values below 16 MO often resulted in leakage of Lucifer Yellow into 

all fibers penetrated. Generally between 10 and 30 muscle fibers were examined in 

each muscle analyzed, while between 1 and 6 of these fibers were labeled by dye 

injection. Following examination and dye labeling, surface fibers of the muscle were 

lightly fixed for 40 seconds in 0.5% paraformaldehyde in 0.1 M phosphate buffer 

(pH = 7.3). Fixed muscles were rinsed twice in 30% sucrose, then stretched and 

frozen in isopentane cooled to dry ice temperature, and stored at -70°C. 

For the residual polyinnervation analysis (Experiment 2), the cut muscle 

preparation (Barstad, 1962) was employed to prevent muscle contraction while 

preserving larger stimulus evoked endplate responses. As shown by Taxt et al. 

(1983), this procedure gave a better signal to noise ratio, making it easier to 

detect tiny e.p.p. components than the conventional curarized preparation. For 

the rabbit, because of the more proximal nerve insertion, the proximal end must 
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be cut obliquely, between (and parallel to) the tendon and the major intramuscular 

nerve trunk. The distal end was also removed, and the central muscle fragment was 

pinned in the Sylgard (Dow Corning) coated lid of a small plastic petri dish. The 

geometry of the nerve insertion, together with the need to occasionally trim the 

muscle further to maintain appropriate resting potentials, made recording from the 

ventral surface of the muscle difficult. Thus we examined the dorsal surface, even 

though the majority of postnatal fiber conversion takes place in the ventral half 

of the muscle (Gordon, 1983). The more central nerve insertion in the rat soleus 

allowed the muscle to first be pinned tightly and then trimmed squarely at each 

end. The Sylgard filled dish was anchored in the aforementioned plexiglas chamber 

and superfused with oxygenated Ringer's. 

Electrophysiology with the cut muscle preparation was performed using Lucifer 

Yellow filled electrodes, as described above, for rabbit experiments. The rat 

experiments, aimed at repeating the observations of Taxt et al. (1983), were 

performed using electrodes filled with 5 M potassium acetate (without Lucifer 

Yellow). On average, 26 fibers per muscle were examined. Resting potentials in 

the cut muscle preparations ranged between -50 mV and -20mV, while e.p.p.'s were 

generally 3-12 mV. Labeled muscles were briefly fixed as above, then frozen while 

still pinned by dropping the entire Sylgard coated petri dish into cold isopentane. 

The central section of the muscle was cut away from the pins and stored at -70°C. 

Fiber Type Identification. Muscle cross sections were cut at 10 p.m in 

a cryostat (-20°C), and approximately 1 in 5 was saved in the region of dye 

injection. We adopted a strategy of both identifying fluorescent fibers and then 

determining their histochemical type using the same sections, as we found that small 

variations in geometry near the muscle margin often made correlation difficult in 

serial sections. Sections were air dried, then inspected for the presence of fluorescent 
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dye-filled fibers using a Leitz microscope. To reduce the likelihood of scoring fibers 

labeled by inadvertant dye leakage, two criteria were adopted. First, the geometry 

and order of initial appearance of labeled fibers must match that of rough maps 

sketched during physiology sessions. Second, dye labeling must persist through a 

series of sections extending at least 0.5-1.0 mm of muscle length. Following initial 

visual characterization of labeling, short wavelength illumination was discontinued 

and representative sections were photographed using Polaroid 55 P /N film and 

transmitted white light. Photography of the unstained, uncoverslipped sections 

was necessary since Lucifer Yellow fluorescence does not survive ATPase staining. 

After photographing a section, labeled fibers were identified and marked on the print 

by alternating between fluorescence and normal viewing. Generally, each labeled 

fiber was located and marked on photos of at least 5 sections. 

Sections were stained for myofibrillar ATPase activity following pre-incubation 

at pH 10.4 according to the method of Guth and Samaha (1970). Stained sections 

were moistened with a drop of distilled water and again photographed with Polaroid 

film. Corresponding photos before and after staining were compared to identify the 

histochemical fiber types of the previously marked dye labeled fibers. In every 

section in which a labeled fiber was identified, an assignment was made to one of 

five descriptive categories: definite Type I, probable Type I, uncertain, probable 

Type II, or definite Type II. A clear consensus classification was apparent for each 

fiber. About 6% (29 of 480) of all sections were scored as uncertain, while only 

2.9% (14 of 480 sections) were scored contrary to the ultimate consensus type, 

and these appeared as isolated single occurrences scattered among the 97 labeled 

fibers. Incorrect identification of the injected fiber when matching the fluorescence 

and ATPase photographs, due primarily to minor geometric distortions during 

processing, is the most likely source of these occasional inconsistencies in fiber type 
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determination. 

Data Analysis. For the time course experiment, statistical comparison of the 

degree of polyinnervation by fiber type for a given age group was made using the raw 

observational data of Fig. 3. The relative number of Type I and Type II fibers in 

the singly innervated group was compared directly to the fiber type distribution of 

the multiply innervated group, using the X2 test. We also estimated the percentage 

of fibers of either histochemical type which were polyinnervated at a given age 

by applying Bayes' theorem (e.g., Papoulis, 1965). The probability P(MAIT1 ) of 

finding multiple innervation at age A, conditioned upon the assumption that only 

Type I fibers are sampled, is: 

Estimates of the conditional probability P(T1 IMA), that a multiply innervated fiber 

is also Type I, and P(T1 ISA), that a singly innervated fiber is also Type I, were 

provided directly by the type distributions of dye-labeled fibers (Fig. 3). The 

probability of a fiber being multiply innervated, P(MA), or singly innervated, P(SA), 

at age A was taken to be the average prevalence of polyinnervation in all muscles 

from that age group (Fig. 1). 

To determine the sensitivity of the time course experiment, we calculated, 

for each age group, hypothetical experimental outcomes corresponding to the 

minimum difference in the distributions of Type I and Type II fibers which would 

be significant at the 1% level, using the X2 test. First, the experimental data 

from the singly innervated group was taken to define the "expected" outcome, and 

hypothetical fiber type distributions were calculated for the multiply innervated 

group to satisfy the significance constraint. The relevant quadratic equation yields 

two such distributions. The total number of hypothetical observations was forced 
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to equal the actual total of labeled, multiply innervated fibers, and fractional 

fibers were permitted. Next, the multiply innervated group was taken to define 

the expected outcome, and the calculation was repeated, yielding a total of 4 

hypothetical outcomes for each age group. For each hypothetical outcome, the 

corresponding frequency of polyinnervation for each fiber type was calculated using 

Bayes' theorem, as described above. The resulting differences between Type I 

and Type II fibers in percent polyinnervation provide estimates of the minimum 

detectable difference inherent in our experiment. The four estimates for each age 

group were averaged, and then converted to a timing difference by dividing by the 

average rate of synapse elimination defined by the slope of Fig. 1. 
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RESULTS 

Experiment 1. Polyinnervation by Fiber Type 

Neonatal rabbit soleus muscles were examined in a curarized, m vitro 

preparation, using intracellular recordings to determine the innervation state 

of individual muscle fibers. Particular muscle fibers were classed as either 

singly innervated or multiply innervated depending upon whether one or more 

distinct components of the endplate potentials were distinguishable during careful 

gradations of nerve stimuli. To avoid incorrect identifications within the small 

population to be analyzed, fibers having any hint of ambiguous classification were 

not injected. Fibers having the desired innervation pattern were labeled by pressure 

injection of the fluorescent dye Lucifer Yellow. For one series of muscles, only singly 

innervated fibers were labeled; multiply innervated fibers were labeled in a second 

set of muscles. 

Two age groups, 7-8 days and 1Q-11 days postnatal, were selected for study. 

These ages correspond to the early and late stages of the appearance of singly 

innervated fibers (Fig. 1). In 7 day and 8 day rabbits, the mean incidence (± 

standard deviation) of polyinnervation was 81% ± 10% and 69% ± 13% respectively. 

By days 10 and 11, the percentage of multiply innervated fibers had declined to 

20% ± 13% and 15% ± 10% respectively. From these data we estimate the rate 

of synapse elimination in the intervening period (7.5-10.5 day) to be 19% per day; 

synapse loss occurred on more than half of the muscle fibers between these two time 

windows. 

Labeled fibers were subsequently identified and their histochemical types 

determined in a series of cryostat sections (see Methods). Two multiply innervated 
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Figure 1. Percentage of muscle fibers remaining 

polyneuronally innervated in each of the muscles examined 

in the time course experiment. The two age groups chosen 

for study, 7-8 days and 10-11 days postnatal, were selected as 

defining the extremes of the steep sloping region of the synapse 

elimination curve. Muscles in which only singly innervated 

fibers were injected (circles) are distinguished from those in 

which only multiply innervated fibers were injected (triangles) 

to highlight any detection bias. A few 9 and 13 day muscles 

are included to more fully delineate the shape of the curve. 
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fibers appearing at the surface of an 11 day soleus are shown in Fig. 2. Both fibers 

were pale staining and identified as Type I. 

Comparative time course results are summarized in Fig. 3. For the 7-8 day 

group, the incidence of Type I fibers was 59% {13 of 22) among the singly innervated 

fibers and 53% {14 of 26) among multiply innervated fibers. This difference is not 

significant (p > 0.5, x2 test). Among the 10-11 day age group, the incidence of 

Type I fibers was 70% {16 of 23) among singly innervated fibers and 81% {21 of 26) 

among multiply innervated fibers. This difference is also not statistically significant 

(p > 0.2). Despite the 2-fold greater prevalence of type II fibers, a sampling bias 

favoring type I fibers is apparent, presumably owing to their larger size: the cross­

sectional area of the slow fiber type averages twice that of fast fibers at these ages 

(Gordon, 1983). The fact that this sampling bias is greater for the older group is 

puzzling. The two age groups were examined sequentially; hence, one possibility is 

that there were systematic changes in any of several factors involved in successful 

dye labeling, such as electrode properties or details of pressure application. In any 

event, because analysis of the two age groups is independent, a change in sampling 

bias is not critical to our major findings. 

While the experimental observations reflect the distribution of fiber types for a 

given innervation state, it is also of interest to reverse this ordering and express the 

degree of polyinnervation as a function of fiber type. Because singly and multiply 

innervated fibers were labeled in separate sets of muscles, the relative number in 

each category identified in this study (Fig. 3) does not reflect their actual frequency 

of occurrence in muscles of the appropriate age (Fig. 1). Hence polyinnervation by 

fiber type cannot simply be determined by regrouping the data of Fig. 3. However, 

Bayes' theorem can be applied to obtain the desired transformation, as described in 

Methods. Essentially, this procedure weights the observations of Fig. 3 in a manner 
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Figure 2. Two dye labeled, multiply innervated fibers from 

an 11 day muscle. Both fibers were located on the dorsal 

surface of the muscle. (A) Fluorescent fibers (arrows) are 

readily detected against faintly illuminated background in 

unstained cross sections. (B) The same section stained for 

alkali stable ATPase activity. Both fibers were Type I (slow). 

Just under half of the fibers labeled appeared at the surface 

in at least one section. The artifacts encountered in cut 

muscles (see Experiment 2) would not be expected in the 

less sensitive curarized preparation, and indeed there was no 

significant difference between singly and multiply innervated 

fibers regarding the percentage appearing at the surface. Scale 

bar = 100 J.Lm. 
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Figure 3. Distributions of histochemical fiber types for 

singly innervated and multiply innervated fibers in each age 

group. Height of bars normalized to Type I frequency for each 

pair. Total number of fibers appears above each bar. The 

difference in percent polyinnervation between fiber types is not 

statistically signficant at either age. A moderate sampling bias 

for slow fibers is apparent, probably owing to their larger size. 

It should be noted that 3 of the 5 type II fibers in the lG-11 

day multiply innervated group were found in a single muscle. 

Three other labeled fibers in this muscle were type I. Omitting 

this muscle from the scoring would result in a difference which, 

while still not significant at the 1% level, would suggest a 

tendency of type I fibers to retain their polyinnervation slightly 

longer. There is no evidence that this particular rabbit lagged 

developmentally, however, as the percentage of polyneuronally 

innervated fibers in this muscle (21 %) was well within the 

normal range for a 10 day muscle. 



DAYS 

7-8 

DAYS 

10-11 

-99-

SINGLY 

INNERVATED 

13 

9 

Type I Type II 

16 

7 

Figure 3 

MULTIPLY 

INNERVATED 

14 

12 

21 

5 



-100-

consistent with the actual overall frequency of polyinnervation (Fig. 1) prior to 

regrouping. The estimates thus obtained suggest that in the 7-8 day age group, 

the incidence of polyinnervation was 73% for Type I fibers and 77% for Type II 

fibers; in the 1Q-11 day group, 19% of Type I fibers and 12% of Type ll fibers were 

multiply innervated. 

The ability of our approach to detect any small differences there might be 

in timing between the fast and slow types is limited by the actual numbers of 

fibers labeled. To estimate the sensitivity of this analysis, we first ascertained 

what difference in the incidence of the two fiber types between the singly and 

multiply innervated populations would just be significant at the p = .01 level (see 

Methods). This numerical difference was converted into a minimum detectable 

difference in the percentage of polyinnervation for fast and slow fibers, again using 

Bayes' theorem. The percentage differences, 23% at days 7-8 and 15% at days 

1Q-11, can be transformed to a time difference using the appropriate average rate 

of synapse elimination. Using the rate of 19% per day loss in polyinnervation 

from Fig. 1, this translates to a timing difference of about 1 day that would be 

detectable given our particular sample size. The detectable difference would be 

somewhat larger if one used the lower rates associated with early and late parts of 

the sigmoidal curve of Fig. 1; on the other hand, it would be smaller if one used a 

less stringent (p < .05) criterion. 

Experiment 2. A Test for Residual Polyinnervation in Older Muscles 

Based upon observations in curarized muscles, the bulk of synapse elimination 

in the rabbit soleus muscle is completed by day 13 postnatal (Fig. 1; see also Bixby 

and Van Essen, 1979a). Using the cut muscle preparation (Barstad, 1962), we 

observed a low incidence of compound e.p.p.'s in response to graded nerve stimulus 
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in muscles from rabbits aged 17-23 days. These closely resembled the compound 

e.p.p.'s originally described by Taxt et al. (1983) at a comparable stage in rat 

soleus (25-31 days postnatal). One component was consistently much smaller, with 

a peak amplitude rarely exceeding 10% of the larger component . Occasionally, but 

not always, a distinct latency difference existed in the onset of the two components. 

We observed such compound e.p.p. 's in 2.8% of fibers tested (24 of 863 fibers in 32 

muscles). Our original intention was to test whether multiply innervated fibers 

at this age would consist predominantly of a single histochemical type. Using 

the Lucifer Yellow labeling technique, 4 of the first 7 fibers labeled were Type II. 

However, this part of the analysis was discontinued when it became apparent that 

the compound e.p.p.'s were unlikely to represent genuine polyneuronal innervation 

of the monitored fibers. 

Several observations support the view that the compound e.p.p. 's reflect an 

electrical coupling between muscle fibers that was artifactually induced by the 

process of electrode penetration (Fig. 4}. The first indication of this came from 

the biased distribution of compound e.p.p.'s with respect to fiber depth. In order 

to maximize the number of fibers sampled in a situation where we were looking for a 

rarely occurring event, we routinely recorded from both surface and deeper fibers in 

succession. After each surface fiber was characterized, the electrode was advanced 

until resting potential was lost. H a second stable resting potential with a large 

e.p.p. was encountered within a reasonable distance, the recording was accepted as 

a "deep" fiber. Interestingly, compound e.p.p.'s were never observed in recordings 

from the 450 fibers noted at the time of the recording to be on the muscle surface. 

Instead, 20 of the 24 compound e.p.p.'s encountered could be assigned to a deep 

fiber. Seventeen of these were based on depth assignments made at the time of 

the recording and came from a population of 208 deep fibers, an 8 .2% incidence. 
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Figure 4. Example of a compound endplate potential 

occurring under circumstances consistent with a coupling 

artifact. The first response of each set of superimposed traces 

is to test stimuli varied gradually in strength. The second 

peak is the response to supramaximal stimuli delivered 20 msec 

later. (A) The surface fiber penetrated initially was singly 

innervated, as were all surface fibers examined. (B) Advancing 

the electrode into a deeper fiber yielded a compound response. 

The smaller component had a threshold indistinguishable from 

that of surface fiber (A). 
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Three additional cases were based on dye-labeled fibers identified in histological 

sections. No depth information is available concerning the remaining 4 compound 

responses, which were observed before we began routine monitoring of fiber depth. 

The total absence of any surface polyinnervation is highly significant (p < .005) 

when compared with the overall frequency of compound e.p.p.'s of 2.8%, and even 

more significant (p < .001) when compared with the rate of compound e.p.p.'s in 

deep fibers . 

After noticing this segregation by recording depth, we began to carefully monitor 

and record the stimulus threshold at which e.p.p. components were observed, in 

order to assess whether the minor input to deeper fibers was distinct from the main 

input to overlying fibers. For all 6 fibers appropriately tested, the threshold of the 

small component was indistinguishable (within 1-2%, or 0.05 V out of 3-5 V) from 

that of the overlying fiber previously penetrated (Fig. 4). In contrast, for only 15 

of the 82 instances in which adjacent pairs were examined did the thresholds of the 

upper and lower fibers differ by 0.05 V or less, implying that the chance occurrence 

of such minimal threshold differences in 6 of 6 cases is extremely unlikely (p < .001). 

Additional evidence suggestive of transient induced coupling arises from 

comparison of the peak amplitude of the two components during the course of 

individual penetrations. We often observed the large component change in size 

independently of the small one during the course of a single observation, for 

example when the resting potential slowly declined. In a genuinely polyinnervated 

fiber, reductions in e.p.p. magnitude resulting from loss of resting potential 

would be expected to affect both components proportionally. Similarly, the 

smaller component sometimes shrank visibly, and occasionally vanished, in a 

manner apparently independent of the larger component, probably resulting from 

a weakening in the electrical continuity with the overlying fiber. 
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One final observation was particularly suggestive of coupling artifacts. 

Occasionally, apparent compound e.p.p. 's were induced by slowly withdrawing the 

recording electrode after verifying single innervation of a deeper layer fiber. In two 

of the five examples observed, the electrode remained within the deeper fiber while 

apparent electrical continuity with the surface fiber, previously determined to be 

singly innervated, was reestablished (Fig. 5). In these cases, the smaller component 

of the compound response appeared at the stimulus threshold of the surface fiber, 

which was lower than that of the deeper fiber. In another case, the electrode 

appeared to have returned to the surface fiber, based upon the higher stimulus 

threshold originally observed in the surface fiber, while leaving a low resistance 

pathway to the deeper fiber along its track. In the remaining two cases, the 

e.p.p. threshold of the surface and underlying fibers were too similar to distinguish 

between these possibilities. Although the precise sequence of events was not always 

the same, the important point is that multicomponent responses were induced in 

fibers previously determined to be free of compound e.p.p. 's. 

Pursuant to these observations in rabbit soleus, we attempted to replicate the 

observations of Taxt et al. (1983) in rat soleus in order to analyze the character 

of any compound e.p.p. 's. In tightly pinned cut muscles from animals aged 22-30 

days (see Methods), we failed to observe any compound potentials in 160 fibers 

from 7 muscles in which the amplitude of observed responses was at least 4 mV. 

Such a result is highly unlikely (p < .005, x~ test) if multiply innervated endplates 

occurred at the 5% frequency suggested by Taxt et al. (1983). We then analyzed 

two muscles which were pinned loosely (a situation prevelant in cut rabbit muscles 

due to the less favorable nerve insertion), and observed two fibers demonstrating 

compound potentials from among 45 tested. Each of these fibers was found beneath 

the surface layer and yielded responses which resembled the artifacts encountered in 



-106-

Figure 5. Example of apparent compound endplate 

potential established by slow electrode withdrawal. (A) 

Singly innervated surface fiber. (B) Deeper fiber was also 

singly innervated, with response appearing at higher stimulus 

threshold. (C) Slow electrode withdrawal yielded a compound 

response. The electrode remained in deeper fiber, as the 

smaller component appeared at the threshold of the surface 

fiber response, while the upper trace continued at the threshold 

of the deeper fiber. In other cases, repositioning of the 

electrode into the surface fiber apparently occurred. 
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the rabbit: one small component appeared at the voltage threshold of the overlying 

fiber, with the major component at a higher threshold. 
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DISCUSSION 

Polyinnervation by Fiber Type 

From the first experiment in this study, we conclude that there is no discernible 

difference in the degree of polyinnervation of fast vs. slow muscle fibers in the 

rabbit soleus during the interval of 7-11 days postnatal. While a substantial 

majority of fibers remain polyinnervated at day 7, the interval studied constitutes 

the late phase of synapse elimination. It is useful to discuss our finding in 

relation to what else is known about the timing and extent of synapse formation 

and elimination. In particular, there have been several suggestions of significant 

differences in maturation of the fast and slow motor units, which contrast with the 

nearly synchronous endpoint indicated by our results. 

The earliest indication of a timing differential occurs with the formation of 

primary and secondary myotubes in two relatively distinct waves separated by about 

a day in the rat {Wirsen and Larsson, 1964; Kelly and Zacks, 1969). Innervation 

that is distinguishable by ultrastructural criteria first occurs on primary myotubes, 

which subsequently differentiate into Type I fibers, and about a day later on the 

secondary myotubes that become Type II fibers (Rubinstein and Kelly, 1981) . 

Gordon, (1983) has suggested that the degree of polyinnervation at an early 

stage in the rabbit may be substantially greater on slow fibers than on fast fibers 

(6-fold vs. 3-fold on average). This inference, which is based on comparison of 

motor unit twitch tensions at early (1-4 day) and late (11-16 day) ages, is critically 

dependent on an unproven assumption that any changes in the specific tension 

of muscle fibers during this period occur in parallel for fast and slow fibers. (A 

second crucial parameter, the relative cross-sectional areas of the two fiber types, 
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changes little during this interval.) Using the same method, Callaway et al. (1987) 

found a similar pattem at days 4-5 ( 4-fold polyinnervation on slow fibers vs. 2-fold 

on fast fibers). Based upon the trend established by these two observations, the 

peak level of polyinnervation in rabbit soleus apparently occurs sometime before 

day 2 postnatal. Glycogen depletion experiments in rat soleus by Thompson et 

al. (1984) are also consistent with a greater early degree of polyinnervation on 

slow compared to fast fibers (3.5-fold vs. 2-fold at 8 days, based upon comparison 

to motor units sizes at 16 days), although their sample size was too small for 

statistical significance in this respect. The peak degree of polyinnervation occurs 

within 4-5 days following the initial appearance of functional innervation in rat 

diaphragm (Bennett and Pettigrew, 1974) and intercostal muscle (Dennis et al., 

1981), and hence probably occurs near the date of birth in rat soleus, based on the 

first appearance of neuromuscular contacts (Rubinstein and Kelly, 1981). To obtain 

a greater degree of polyinnervation on slow fibers during the early phase of synapse 

elimination, either the peak polyinnervation of slow fibers must be greater, or the 

onset of synapse elimination must occur earlier on fast fibers. 

For the apparently greater degree of early polyinnervation on slow fibers to 

be consistent with similarity in polyinnervation at days 7-11, a steeper initial 

rate of synapse elimination on slow fibers is required. That the rate of synapse 

elimination is susceptible to modulation is now well documented. In particular, 

experimental perturbations that increase or decrease nerve and/ or muscle activity 

cause corresponding changes in the overall rate of synapse elimination (Thompson, 

1985). H the greater mean activity of slow motor units in adult muscle (Hennig 

and L~mo, 1985} is also characteristic of the pattern of neonatal activity, then 

activity differences might contribute to a greater rate of synapse elimination among 

slow muscle fibers. EMG studies of neonatal rabbit and rat soleus and EDL 
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muscles {Navarrete and Vrbova, 1983) suggest, however, that the substantially 

greater activity characteristic of adult slow muscles may not be present before the 

completion of synapse elimination. 

Another piece of evidence suggestive of differential maturation comes from 

the report by Riley {1977b) that in the rat soleus, the last fibers to lose their 

polyinnervation are predominantly fast. He observed that, at 15 days, the few 

remaining muscle fibers with more than one terminal branch in longitudinal silver 

stained sections were among the smallest diameter fibers; in ATPase cross-sections, 

most such small fibers were type IT. Because there is overlap in both the size 

histograms of Type I and Type IT fibers and the size histograms of multiply 

innervated and singly innervated fibers, this inference cannot be regarded as 

conclusive, however. 

In view of the complex interplay of factors leading to the concluding phase of 

synapse elimination, it is noteworthy that we see little difference in polyinnervation 

by fiber type at either of the ages studied. Several aspects of the process, including 

the timing of synaptogenesis, the peak level of polyinnervation or the onset of 

synapse elimination, and the initial rate of synapse loss, appear to differ for the 

two fiber types. A systemic factor controlling the timing of synapse elimination is 

unlikely, as there are clear regional differences in the timing of synapse elimination 

in the rabbit {Bixby and Van Essen, 1979a). It would be of interest to know 

whether the nearly synchronous conclusion of synapse elimination in the fast and 

slow populations is merely coincidental, or is a necessary consequence of certain 

aspects of the process. 
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Innervation State of .Juvenile Muscles 

Based upon two independent, but indirect, measures of motor unit size, Gordon, 

(1983) has suggested a stage of synaptic reorganization in juvenile (3-5 week) 

muscles, involving the capture and conversion of originally fast muscle fibers by slow 

motor neurons. This hypothesis invokes synaptic remodeling, and thus differs from 

that described by Kugelberg (1976), in which fast motor units in maturing rat soleus 

(5-34 weeks) undergo gradual wholesale conversion to the slow type. The recent 

report by Taxt et al. (1983) describing a low level of residual polyinnervation in rat 

soleus following the nominal completion of synapse elimination appeared to offer an 

anatomical substrate for the proposed juvenile stage of reorganization. Transient 

dual innervation of fibers undergoing conversion would be a likely intermediate in a 

reorganization process. We sought to confirm the existence of multiply innervated 

fibers in 3 week rabbit soleus and to determine the distribution of their histochemical 

types. 

While we have in fact observed compound e.p.p.'s, we attribute these to 

artifactual electrical coupling between fibers. Taxt et al. (1983) acknowledged 

the possibility of naturally occurring electrical coupling, which is common in 

embryonic muscles (Dennis et al., 1981); however, this phenomenon appears to 

have disappeared by birth (Brown et al., 1976). The fact that we never observed 

compound e.p.p.'s in surface fibers argues against electrical coupling being a normal 

event. Instead, the relationship of the stimulus thresholds of observed multiple 

e.p.p. components to the response threshold of the overlying surface fiber, together 

with the occasional ability during electrode withdrawal to generate these in fibers 

previously characterized as singly innervated, suggest that the electrical coupling is 

induced by the actual electrode penetration of a series of muscle fibers. Presumably 

this reflects electrical continuity associated with leaks around the electrode shaft. 
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Our failure to observe compound e.p.p. 's in rat soleus except when the muscle was 

loosely pinned leads us to suspect that the artifact is most likely to occur when the 

cut muscle fibers are not stretched sufficiently. 

While we failed to detect late stage polyinnervation, we cannot rule it out 

categorically. It might occur at a very low rate or in different regions of the 

muscle. For technical reasons (see Methods), we examined the dorsal aspect of 

the muscle, where fiber type conversion is substantial, rather than the ventral 

aspect, where fiber type conversion is even more prominent (Gordon, 1983). 

Thus, these findings constrain, but do not invalidate, the hypothesis of a juvenile 

stage of synaptic reorganization, which might also proceed via the intermediate of 

transiently denervated fibers. 
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Chapter 4 

A COMPUTER MODEL 

OF NEUROMUSCULAR SYNAPSE ELIMINATION 
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INTRODUCTION 

For a brief interval following birth, mammalian skeletal muscle is innervated 

substantially in excess of the normal adult configuration, in which each muscle 

fiber receives its entire synaptic input from a single motor nerve terminal. 

This phenomenon of transient polyneuronal innervation has been observed and 

characterized in several mammalian species, including rat (Redfern, 1970; Bennett 

and Pettigrew, 1974; Brown et al., 1976; Betz et al., 1979), mouse (Fladby, 1987), 

cat (Bagust et al., 1973), and rabbit (Bixby and Van Essen, 1979a; Gordon and Van 

Essen, 1985). In the focal polyinnervation characteristic of mammalian muscle, all 

presynaptic motor terminals innervating a particular muscle fiber share a single 

endplate region. Multiple terminal profiles often appear in close apposition in 

electron micrographs (Korneliussen and Jansen, 1976). Beginning near the time 

of birth and continuing for about two weeks thereafter, excess synaptic inputs 

gradually disappear. This process of synapse elimination is largely distinct from 

the separate episode of motor neuron cell death (Brown et al., 1976; Dennis et 

al., 1981, Oppenheim, 1986), and is an orderly one in that denervated endplates 

are not observed under normal conditions (Brown et al., 1976). The behavior of a 

particular motor nerve terminal is dependent on the presence of other terminals 

at the endplate, implying that the process is competitive (Van Essen, 1982). 

Elucidating the logic and the mechanisms underlying this competitive interaction 

is a fundamental problem in the study of synaptic development. 

While a substantial body of experimental evidence pertinent to neuromuscular 

synapse elimination has been accumulated, many aspects of the process remain 

unclear. Current evidence suggests that synapse elimination is likely to be a richly 

complex process involving the interplay of multiple, and fundamentally differing, 
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mechanisms and factors. It is often difficult to design experiments which isolate 

specific aspects of the phenomenon. Because of this complexity, applying inductive 

reasoning to the established data base in an attempt to formulate a mechanistic 

description of the process is a hazardous undertaking. For these reasons, we 

have chosen to develop a computer model of neuromuscular synapse elimination 

to provide an objective framework for assessing the ability of proposed mechanisms 

to account for observed behavior. 

Previous theoretical consideration of polyneuronal innervation and synapse 

elimination has ranged from conceptual analysis (Jansen et al., 1976; Jansen et 

al., 1978; O'Brien et al., 1978, 1984; Van Essen, 1982; Smalheiser and Crane, 

1984) to mathematical formulations amenable to computer simulation (Willshaw, 

1981; Gouze et al., 1983). Each of the earlier computer models relied on an 

analytic approach in which a descriptive set of equations was solved iteratively 

to reveal a fully deterministic course of development. The progressive status of 

individual terminals was not tied to a clearly identifiable physical characteristic such 

as terminal size, but instead expressed in terms of a more nebulous overall property 

such as "survival strength" (Willshaw, 1981), or an idealized molecule termed 

"stabilization factor" (Gouze et al., 1983). Our approach differs significantly from 

these previous modeling efforts in both respects. First, our model is highly dynamic 

in nature, tracking each step in the growth and retraction of individual presynaptic 

terminals. Nerve terminal extent is the principal outcome of each iteration of the 

model. Limited endplate space provides the primary basis for competition in the 

current implementation. While we regard this as a plausible mechanism, worthy 

of detailed exploration, it is certainly not the only possibility (see Discussion) . 

Second, rather than iteratively solving a set of analytically formulated equations, 

our model is stochastic in character. Terminal size changes are determined according 
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to probabilities of growth or retraction which are recalculated for all terminals at 

each iteration. Anatomical studies support the dynamic emphasis of our approach. 

Closely apposed multiple terminal profiles have been traced through serial sections 

to distinct preterminal axons (Bixby, 1981), consistent with short range competitive 

interaction. While terminal morphology is relatively static at adult mammalian 

endplates (Lichtman et al., 1987), observations suggesting a higher rate of sprouting 

and regression have been reported for younger animals (Bixby, 1981; Robbins and 

Polak, 1987). Finally, vanquished terminals appear to withdraw through a process of 

orderly retraction rather than by wholesale degeneration (Korneliussen and Jansen, 

1976; Riley, 1977a, 1981; Bixby, 1981; but see Rosenthal and Taraskevich, 1977). 

Synapse elimination cannot be explained by a strictly random loss of 

connections, as this would unavoidably lead to the appearance of denervated 

end plates and some residual longer term polyinnervation (Brown et al., 1976). 

Some additional mechanism must be operating to ensure that the last presynaptic 

terminal is stably retained. The fact that postsynaptic activity is required 

for normal synapse loss argues that some sort of feedback relationship between 

nerve terminals and muscle fibers is involved. Several mechanisms have been 

proposed to account for various aspects of the synapse elimination process. We 

offer no additional novel mechanisms, but instead seek to clarify the details of 

existing hypotheses, and evaluate and compare their performance in a quantitative 

simulation. 

One of our primary interests has been to study the possible role of a hypothesized 

synaptic stabilization molecule (Van Essen, 1982). By anchoring the presynaptic 

terminal to the synaptic basal lamina, this "scaffolding" molecule would act to 

stabilize terminals by increasing their preference for growth over retraction. IT 

muscle fibers synthesize scaffolding in an activity regulated manner, then this 
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mechanism would establish a positive feedback relationship between muscle fibers 

and nerve terminals. Regeneration experiments in amphibians have provided clear 

evidence for the presence of basal lamina constituents which are capable of inducing 

synaptic specializations in either pre- or postsynaptic cells in the absence of the 

other member of the pair (Sanes et al., 1978; Burden et al., 1979). The 

neuronal adhesion molecule N-CAM is concentrated at both pre- and postsynaptic 

components of mammalian neuromuscular junctions at later stages of synaptic 

development (Covault and Sanes, 1986), and further accumulates following either 

denervation or paralysis (Covault and Sanes, 1985). Whether one of these or 

a distinct molecule serves as scaffolding, the presence of a synaptic stabilization 

molecule would appear highly plausible. 

A second mechanism simulated in our model is a proposed intrinsic tendency of 

motor neurons to reduce their arborization following synaptogenesis (Brown et 

al., 1976; Thompson and Jansen, 1977). The principal evidence supportive of 

this conjecture derives from partial denervation experiments in newborn rats. In 

neonatal animals in which very few motor axons remain intact following the surgical 

partial denervation procedure, motor units appear to have the opportunity to nearly 

maintain their peak size. In fact, there is a substantial reduction in the number of 

fibers in each unit, even though this produces many additional denervated end plates. 

In contrast, motor units in adult animals can expand by sprouting to as large as five 

times their normal adult size following partial denervation (Thompson and Jansen~ 

1977; Brown and Ironton, 1978). At either age, there appears to be a definite limit 

to the maximum arbor size which can be supported by a motor neuron. While it 

may appear that the metabolic output of a motor neuron is actually programmed to 

contract during the period of synapse elimination, it is important to keep in mind 

that while some terminals are retracting, others are growing to occupy most or all 
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of the available endplate territory. Endplate specializations themselves increase in 

size during this period of muscle growth (Hopkins et al., 1985). Thus total terminal 

length or volume supported by individual motor neurons is likely to increase during 

synapse elimination. Any of several parameters relating to arbor size (e.g., number 

of terminals, terminal complexity, or integrated terminal length), as well as activity, 

are potentially important in determining metabolic load. 

Another proposal, that motor nerve terminals compete for a trophic factor 

released by muscle fibers (Jansen et al., 1978), arises by analogy to nerve growth 

factor (Purves and Lichtman, 1980), whose stimulatory effects upon sympathetic 

and sensory neurons are familiar (Levi-Montalcini and Angeletti, 1968; Greene 

and Shooter, 1980). Evidence of factors which are secreted by denervated muscle 

and promote survival and neurite outgrowth among cultured motor neurons 

(Nurcombe et al., 1984) or sprouting of motor terminals in vivo (Gurney, 1984) 

has been reported. There is as yet no evidence that these particular molecules 

are involved in competitive synapse elimination. It is not difficult to imagine 

such molecules acting as a neural attractant during synaptogenesis, then declining 

abruptly in concentration to a level inadequate to support extensive polyinnervation 

and large motor units (Jansen et al., 1978). Just as nerve growth factor affects both 

neurite behavior (Campenot, 1977; Gunderson and Barrett, 1979) and neuronal 

vigor (Levi-Montalcini and Angeletti, 1963; Chun and Patterson, 1977), a muscle 

derived trophic factor could act either locally, by stimulating growth of individual 

presynaptic terminals, or via a cumulative effect on an entire motor neuron resulting 

from the combined uptake and transport from all of its terminals. A muscle 

derived trophic factor is a centerpiece of a previous mathematical model of synapse 

elimination (Gouze et al., 1983). 

While each of the mechanisms described above differs in character from the 
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others, they are not mutually incompatible. It may be that no single mechanism 

is capable of explaining the entire range of observational data. Limits imposed 

by arbor size do not appear likely to explain why long term polyinnervation does 

not routinely occur, but may be essential to account for the outcome of partial 

denervation experiments. The model has been designed so that two or more 

mechanisms can be combined in a single simulation, and so that the relative 

weighting of each mechanism can be freely varied. In the present study, however, 

we focus on exploring the mechanisms one at a time. 

Certain issues are common to more than one of the simulated mechanisms. A 

critical factor in each of the models is the relevance of terminal size. It would 

be surprising if there were not systematic differences in strength or vigor between 

smaller and larger terminals. Any growth advantage accruing to larger terminals 

would go far in explaining the rapid and complete attainment of a singly innervated 

state. To investigate this matter, we have incorporated the potential for a selective 

size advantage into each of the mechanisms simulated. Each mechanism also offers 

some means by which activity could influence the course of synapse elimination. 

The models afford an opportunity to compare the importance of presynaptic 

and postsynaptic events in accounting for experimental observations. Computer 

modeling offers a reasonable approach for analyzing these and other basic issues 

affecting the course of synaptic maturation. The goal of this type of modeling is 

neither to prove nor disprove particular mechanisms, but to better understand the 

dynamics of each, and the constraints within which they might successfully operate. 
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EXPERIMENTAL FRAMEWORK 

A substantial body of experimental observations concerning neuromuscular 

synapse elimination has been accumulated, descriptive both of the normal 

developmental process and of responses of the system to various experimental 

perturbations. Taken together, these influence the design of a computer model, 

establish initial conditions, and provide the reference against which performance 

of the model should be judged. As would be expected in a biological system, 

details vary between species, or even between different muscles in the same species. 

Nevertheless, several general characteristics of the process can be readily discerned. 

Terminal Interactions at the Endplate 

It is important to consider observational evidence relating to terminal 

interactions within an endplate, and the nature of terminal growth and retraction. 

Our interpretation of this evidence forms the heart of our modeling strategy. When 

neonatal endplates are viewed in cross-section in electron micrographs, multiple 

terminal profiles are often seen in close apposition in a gap between the muscle fiber 

sarcolemma and an overlying Schwann cell {Korneliussen and Jansen, 1976; Bixby, 

1981; Riley, 1981). By following profiles in serial sections, Bixby {1981) observed 

that closely apposed terminals often originated from distinct axons. Interestingly, 

some terminal profiles are not immediately adjacent to the muscle fiber. The 

orthographic view of multiply innervated endplates available in light micrographs 

of silver or zinc iodide-osmium stained longitudinal sections (e.g. Jansen et al., 

1976; Brown et al., 1981) is useful in completing a three dimensional impression 

of endplate structure. Considerable branching complexity is evident, and while the 

terminal processes associated with separate axons cannot be distinctly resolved, 

close contact appears probable. Although there is no direct evidence of competition 
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for synaptic space, the apparent proximity of distinct terminals lends credibility to 

the concept. 

Only sketchy and indirect evidence is available concerning terminal dynamics 

at polyinnervated endplates. It seems clear that at least some terminals increase 

in size substantially during development: integrated terminal length and branching 

complexity continues to increase steadily, paralleling muscle fiber growth, in the 

several weeks following the peak episode of synapse elimination (Hopkins et al., 

1985). Evidence suggesting continuing sprouting and regression of terminals at 

amphibian neuromuscular junctions has been reported (Wernig et al., 1980), and 

recently, clear differences have been observed in the configuration of identified 

endplates in living frogs at two different time points using fluorescent dyes 

(Herrera et al., 1987). The same technique applied to the mouse sternomastoid 

muscle (Lichtman et al., 1987), and a related technique involving fluorescent labeling 

of acetylcholine receptors in mouse soleus (Wigston, 1987), both indicate that there 

are only limited changes in terminal morphology at mature endplates over intervals 

as long as several months. It is possible, however, that this relatively static picture of 

the adult mammalian neuromuscular junction may not apply to rapidly developing 

polyinnervated endplates. Staining of terminals with dye-coupled tetanus toxin 

fragments has revealed filipodial and lamellipodial structures suggestive of sprouting 

which are transient in nature and more prevalent in younger animals (Robbins and 

Polak, 1987; Hill and Robbins, 1987). In his ultrastructural study of immature 

endplates, Bixby (1981) frequently observed both extrasynaptic protrusions from 

presynaptic terminals and regions of postsynaptic specialization in the absence 

of terminals. Hence, whether individual terminals alternate between growth and 

retraction in a short term dynamic equilibrium during the competitive phase of 

synapse elimination remains an open question. 
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A final significant issue concerns the means by which terminals are eliminated. 

Specifically, are they lost through wholesale degeneration, or do they withdraw from 

the endplate in a more continuous and orderly process? Despite one study indicating 

degeneration (Rosenthal and Taraskevich, 1977), a preponderance of experimental 

evidence favors the mechanism of orderly retraction. In three ultrastructural 

studies (Korneliussen and Jansen, 1976; Bixby, 1981; Riley, 1981), no signs of 

terminal degeneration were detected. In the latter two instances, a parallel 

study of denervated muscles was conducted to define the likelihood of finding 

products of degeneration if these were indeed present. In silver stained sections of 

polyinnervated muscle, Riley (1977a) also found swellings at the distal tips of axons 

terminating in extrasynaptic regions which he interpreted to be retraction bulbs, 

and subsequently described similar structures in electron micrographs (Riley, 1981). 

In view of the evidence cited above, it seems reasonable to suppose that terminals 

at multiply innervated endplates experience both growth and retraction, and that 

all but one of the terminals ultimately are removed from the endplate in an orderly 

process of withdrawal. 

Experimental Criteria 

Initial Conditions. The degree of polyinnervation at any particular time 

can be assessed by any of three independent techniques. In vitro intracellular 

recording of compound endplate potentials (e.p.p.'s) elicited by graded stumulation 

of the muscle nerve in curarized preparations indicates that peak polyinnervation 

occurs near birth and averages about 3 ± 1 synaptic inputs per muscle fiber 

in rat diaphragm (Bennett and Pettigrew, 1974), soleus (Brown et al., 1976), 

and intercostal muscle (Dennis et al., 1981). The number of preterminal axons 

entering a cholinesterase positive endplate region can be counted in silver or zinc 
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iodide/osmium stained sections, yielding similar estimates. Because the difficulty 

of accurately counting compound e.p.p.'s or the number of preterminal a.xons 

increases with number, a more reliable estimate can be obtained by comparing 

motor unit sizes at their peak with those at maturity. This approach indicates 

an average of 5 inputs per muscle fiber in rat soleus (Brown et al., 1976) and 

fourfold polyinnervation in rabbit soleus (Gordon, 1983). Variance in the degree 

of polyinnervation cannot be directly estimated by this method. The mean and 

variance of the distribution of motor unit sizes before and after synapse elimination 

have been estimated for several muscles, including both rat and rabbit soleus. In 

the soleus muscle of one rat strain, for example, the range of motor unit sizes at days 

2-3 postnatal is 700 ± 300 (mean± std. dev.) vs. 150 ± 65 in adults (Thompson 

and Jansen 1977). Callaway et al. (1988) estimated motor unit sizes separately 

for fast and slow motor units in rabbit soleus. Fast units declined from 480 ± 170 

fibers at days 4-5 to 225 ± 115 fibers at days 11-15, while slow units contracted 

from 250 ± 115 to 70 ± 35 fibers . 

Normal synapse elimination. The time course of synapse loss has been 

described in several muscles. When the percentage of muscle fibers which are 

polyneuronally innervated are plotted vs. time, a characteristic sigmoidal curve 

is obtained (Brown et al., 1976). This curve is similar in shape but shifted 

in time for muscles from different regions of the body (Bixby and Van Essen, 

1979a), indicating that synapse elimination is not regulated by a systemic factor; 

Denervated muscle fibers have not been demonstrated either during or following 

synapse elimination, although it is difficult to completely rule out the possible 

occasional presence of transiently denervated fibers. Diversity in motor unit 

size is maintained virtually unchanged during synapse elimination (Gordon, 1983; 

Callaway et al., 1988), contradicting an earlier speculation that larger motor units 
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might suffer a competitive disadvantage (Brown et al., 1976). Interestingly, in the 

mixed rabbit soleus muscle, while slow muscle fibers are polyinnervated at about 

twice the level of fast fibers (Gordon, 1983; Callaway et al., 1987), the endpoint of 

the synapse elimination process appears to occur at nearly the same time for both 

of the fiber populations (Soha et al., 1987). Apparently, a substantially greater 

rate of synapse loss among slow fibers early in the process can compensate for the 

disparity in initial innervation. 

Activity. Experimental perturbations have revealed that neuromuscular 

activity is an important factor influencing the rate of synapse elimination 

(Thompson, 1985). Application of the sodium channel blocker tetrodotoxin in a 

timed release fashion to the sciatic nerve of neonatal rats severely retards or halts 

synapse loss in the soleus muscle (Thompson et al., 1979). Following restoration 

of neural transmission, synapse elimination resumes and proceeds to completion 

(Thompson, 1985). Botulinum toxin, which blocks synaptic transmission, also 

retards synapse elimination {Brown et al., 1982), as does o:-bungarotoxin, a post­

synaptic blocker (Duxson, 1982). Callaway and Van Essen {1988) observed regional 

differences in the degree to which synapse elimination was retarded by superficially 

applied o:-bungarotoxin which appeared correlated with the degree of transmission 

block, suggesting that the rate of synapse elimination may respond to activity in a 

continuous, monotonic fashion. Consistent with this idea, an increase in activity due 

to stimulation of nerve or muscle hastens synapse elimination (O'Brien et al., 1978; 

Thompson, 1983b). The relative importance of pre-synaptic and post-synaptic 

activity in mediating this effect remains uncertain. 

In addition to the effect of activity on the overall rate of synapse elimination, 

activity differences among nerve terminals at the same endplate affect their relative 

competitive ability. When a small fraction of the axons innervating the rabbit 
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soleus muscle are blocked using TTX, while the vast majority remain active (as 

do all muscle fibers), the inactive motor neurons exhibit a distinct competitive 

advantage: motor units whose activity was blocked remain about SO% larger than 

under normal conditions (Callaway et al., 1987; but see Ridge and Betz, 1984). 

Partial denervation. Another developmental perturbation which has proven 

informative is partial denervation. In this procedure, a large fraction of the axons 

innervating a particular muscle are severed at a time when polyinnervation is 

extensive, thereby altering the competitive equation. Interestingly, following partial 

denervation, synapses continue to be lost and motor units still shrink in size even 

though many muscle fibers lose their last synaptic input as a result (Brown et al., 

1976; Thompson and Jansen, 1977; Fladby and Jansen, 1987). The remaining motor 

units do end up about SO% larger than those in normal muscles, reflecting either 

reduced competitive pressure or the stimulative effects of inactive muscle fibers. 

Furthermore, synapse elimination is delayed in those muscle fibers which remain 

multiply innervated. 
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MODEL FORMULATION AND PERFORMANCE 

Muscle fibers, motor neurons, endplates and presynaptic terminals form the 

basic structural components of the model. Each muscle fiber possesses a single 

endplate specialization where motor nerve terminals make synaptic contact. For 

simplicity, endplates in the current model are one-dimensional, although we 

eventually hope to simulate more realistic two-dimensional endplates. They are 

divided into a discrete number of positions (generally 100), and remain constant 

in size throughout a run. Presynaptic terminals each occupy a continuous patch 

of endplate territory, and hence contact at most two other terminals. Unoccupied 

space between terminals or at endplate boundaries is permitted. Sprouting into 

vacant territory beyond the endplate is not allowed. Motor neurons branch to 

innervate multiple muscle fibers, but contact a given fiber only once. There is no 

differentiation of muscle fibers into fast or slow contracting, nor of motor neurons 

into tonic and phasic types. 

A starting configuration is established by wiring motor neurons to muscle fibers 

using a procedure that makes the distributions of motor unit sizes and number of 

terminals per endplate each conform to a Gaussian distribution of specified width. 

First, the number of terminals initially present at each endplate is chosen according 

to the selected probability distribution. This could result in a few endplates starting 

the simulation with fewer than two terminals. Because we wish to start with 100% 

polyinnervation, we force these endplates to begin with two terminals. Next, the 

motor unit allegiance of each terminal is randomly selected to reflect the specified 

probability distribution of motor unit sizes. Finally, the starting boundaries of 

each terminal are established. The percentage of available endplate space which 

is occupied at the outset can be varied. Because the model simulates synapse 



-128-

elimination rather than synapse formation, we generally assign starting terminal 

lengths so that 90% of all end plate positions are initially occupied. At each endplate, 

initial terminal lengths (l,) are selected to approximate a specified relative dispersion 

in size ( u1; / J.Lc,); accordingly there are greater initial differences in absolute size 

at endplates with fewer terminals. Unless otherwise indicated, simulations were 

conducted assuming a hypothetical muscle containing 800 fibers and innervated by 

10 motor neurons, and began with 3 ± 0.5 -fold polyinnervation and motor units 

containing 240 ± 40 muscle fibers. 

Because 3 of the 9 experimental criteria of Table 1 involve activity, it is essential 

to define this parameter for both motor neurons and muscle fibers. Rather than 

attempt to track short term fluctuations in neural activity, we assign a single 

numerical value, in arbitrary units, to represent the time-averaged activity of an 

individual motor neuron. This value in turn defines the activity of all presynaptic 

terminals associated with that neuron. Each muscle fiber also has a numerical 

activity level that is recalculated at each iteration from the activity levels of 

the presynaptic terminals occupying its endplate. Postsynaptic activity may be 

specified to be the sum of presynaptic activities, or a correction for temporal overlap 

of presynaptic activity can be applied. The contribution of an individual presynaptic 

terminal to the activity level of its target muscle fiber is further adjusted according 

to the size of the terminal: terminals that are shorter than a specified length 11 

are considered subthreshold and hence do not contribute to postsynaptic activity; 

terminals longer than a second specified value 12 contribute their full activity; 

terminals intermediate in length contribute proportionately. Motor neuron activity 

levels are sampled randomly from a specified normal distribution at the outset of a 

simulation. 
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Terminal Growth and Retraction 

Change in the size of presynaptic terminals with time, as represented by model 

iterations, forms the dynamic focus of the model. At each iteration an individual 

terminal may grow by one endplate unit, retract by one unit, or remain unchanged, 

at either of its two boundaries. By this process, terminals compete for the limited 

synaptic space available at each endplate. 

Certain general principles were adopted to govern terminal dynamics. The size 

changes of individual presynaptic terminals are stochastic; there is always a non-zero 

probability of both growth and retraction at any iteration. Throughout the course 

of the model, terminals may vary in their relative preference to grow or retract. 

This growth-retraction bias is represented by the state variable b, ranging from -1 

to 1; a more positive value of b indicates a greater probability of growth. Terminals 

may also vary in their tendency to do anything at all. The dynamic state d, ranging 

from 0 to 1, defines the probability that a terminal will seek to change its size (either 

by growth or retraction) at any iteration, and effectively regulates the overall rate 

of development. Together, these two state variables define the probability that the 

terminal will seek to grow (Pa), that it will seek to retract (PR), or that it will be 

satisfied to remain unchanged (PN ). The preference for growth increases linearly 

from 0 to its maximum value of d as the bias b increases from -1 to 1, as illustrated 

in Fig. 1, while the preference for retraction decreases in a complementary fashion. 

The preference for no change is independent of the growth-retraction bias. In the 

present simulations, we chose d = 1 to reflect our view that the neonatal situation is 

highly dynamic. In the future, this state variable will permit consideration of how 

factors such as presynaptic activity might affect synapse elimination by modulating 

the dynamic vigor of individual terminals. 
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Figure 1 Terminal dynamics are governed by two state 

variables, the growth-retraction bias (b) and the dynamic state 

(d), according to simple linear relationships. The preference 

for growth (Po) and the preference for retraction (PR) range 

between 0 and their maximum value d in a complementary 

fashion. Actual size changes are determined stochastically, 

guided by these preferences. Hence, even when the bias is 

near unity and the preference for growth is high, there remains 

a non-zero probability that the terminal will actually retract. 

H d ~ 1, then there is also a non-zero probability that there 

will be no size change at all. 
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The growth-retraction bias b is itself a deterministic function of various other 

parameters representing the state of the muscle, terminal, or motor neuron, whose 

identity depends upon which of the putative synapse elimination mechanisms are 

being simulated. For each of the mechanisms, there is one key variable, such as the 

available quantity of scaffolding or trophic factor, which dominates the calculation of 

the bias. A general sigmoidal function, shown in Fig. 2, was selected to describe the 

dependence of the bias upon this key mechanism-specific variable. This functional 

form has two principal advantages. First, because it asymptotically approaches 

but never achieves the values b = ±1, it satisfies our criterion that there must 

always be a non-zero probability for both growth and retraction, regardless of how 

much scaffolding or trophic factor may accumulate. Second, the steeper central 

region concentrates most of the variation into a smaller, biologically relevant region. 

Where other secondary variables enter into the calculation of the bias, they can be 

considered to offset the entire sigmoidal curve to the left or right. 

Because of the competition for space, actual terminal size changes at each 

iteration may differ on average from the innate preferences. Actual changes are 

determined according to the following sequence. First, the bias function b is 

evaluated for each boundary of every terminal at a given endplate. Then the 

developmental preference of each terminal boundary, i.e., whether to grow, retract, 

or remain unchanged, is determined stochastically based on the calculated value 

of b. All retractions are implemented first. Subsequently, terminals are allowed 

to grow, but only into vacant positions. H two terminals seek to occupy the same 

vacant position, neither is permitted to grow. Alternative strategies for resolving 

encounters between terminals can be readily devised (e.g ., probabilistic selection 

of a victor or allowing "stronger" terminals to dislodge their weaker rivals), but in 

the absence of experimental evidence, we prefer a simple algorithm. The mutual 
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Figure 2. The bias for growth or retraction depends on 

the momentary state of the system. Relevant parameters 

differ for the different mechanisms, but in each case there is 

a key mechanism-specific variable which exerts the dominant 

influence. A sigmoidal form was adopted for the bias function 

for two reasons. First, because the function only approaches 

but never achieves its limits of b = ±1, it satisfies our criterion 

that there should always be a non-zero probability of both 

growth and retraction. Second, the steep central portion of the 

curve defines a narrower region where the biologically relevant 

interactions can take place. 
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hindrance of growth due to competition causes the effective probability of growth to 

be less than the preference for growth (Pa) calculated from the growth-retraction 

bias, and the likelihood of no size change to be correspondingly greater than PN. 

This effect becomes important in the performance of the model in certain situations, 

notably during an experimentally applied wholesale block of neural activity. 

In the model, time is measured by iterations (the time required for a terminal to 

grow or retract by one endplate position). Because little is known about the actual 

dynamics of terminal growth and retraction at end plates, it is difficult to relate this 

artificial unit to a physically meaningful interval. A rough estimate of this interval 

can be obtained by considering the rate of neurite extension in vivo. H the length 

of a neonatal endplate is roughly 10 p.m, then each of the 100 positions at a model 

endplate is about 0.1 p.m in dimension. H presynaptic terminals matched a typical 

neurite growth rate of 30 p.m per hour (Bray, 1970), then a terminal could expand 

by one position in about 10 seconds. Because terminals are not growing steadily, it 

would seem likely that the actual rate of growth or retraction is considerably slower. 

Nonetheless, a time scale of the order of minutes for each iteration seems plausible. 

The Scaffolding Model 

Basic operation. How the model works can be illustrated by first considering 

a series of simulations employing the scaffolding mechanism. Other mechanisms 

employ the same basic principles; the respects in which they differ will be discussed 

in subsequent paragraphs. In the scaffolding model, the growth-retraction bias 

applicable to either boundary of a terminal is regulated by the local concentration 

of a hypothesized synaptic stabilization molecule, termed scaffolding, which can 

be visualized as anchoring presynaptic terminals to the synaptic basal lamina. 

Scaffolding is synthesized by muscle fibers and accumulates to form a pool 
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of available scaffolding, presumably within the muscle fiber. In the simplest 

circumstance, scaffolding synthesis is presumed to proceed at a constant rate, 

independent of activity. The presence of a presynaptic terminal is required to 

induce secretion of scaffolding into the synaptic cleft, and its subsequent insertion 

into the synaptic basal lamina. Accordingly, at each iteration of the model, a 

percentage of the available pool of scaffolding is incorporated into the basal lamina 

at each occupied endplate position and bound by the resident presynaptic terminal. 

Balancing the process of synthesis, insertion and binding are decay rates that are 

applied to scaffolding in both the basal lamina and the available free pool. Because 

of its association with the basal lamina, scaffolding is immobile and remains at 

an unoccupied endplate position when a terminal retracts; it can then be bound 

again when that position is reoccupied by the same or another terminal. Unbound 

scaffolding is presumed to decay at a higher rate than bound scaffolding. An 

estimate of the average equilibrium value of bound scaffolding at an occupied 

endplate position, Seq' can be readily calculated from the rates of scaffolding 

synthesis, binding and decay. Following the random wiring which establishes the 

starting configuration, scaffolding at each occupied endplate position is initialized 

randomly from a normal distribution having mean Seq• 

The activity of scaffolding in promoting terminal growth is presumed to be 

localized to terminal boundaries. Nevertheless, the effect must occur over a 

finite range. Hence we compute a weighted average of bound scaffolding S for 

each boundary region of every terminal, and it is this local scaffolding value 

which is presumed to regulate terminal growth by determining the value of the 

growth-retraction bias applicable to that terminal boundary. Simulations have 

demonstrated that the length of the region over which average bound scaffolding 

is computed does not have a strong impact on the performance of the model. The 
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bias b is then determined from S according to the sigmoidal function of Fig. 2. The 

mathematical details of this relationship are given in the Appendix. The biologically 

relevant consideration is whether the shape or scale of this curve, together with its 

offset to the left or right, are significant in determining how synapse elimination 

proceeds. Two parameters control the shape and location of this curve under the 

simplest circumstances. The offset S0 locates the horizontal (S-axis) intercept, 

which corresponds to the quantity of terminal boundary scaffolding that leads to 

an equal preference for growth or retraction. A scale factor determines the steepness 

of the curve; when this factor is set to unity and S 0 = 0, numbers typical of our 

simulations, then local scaffolding values which are near the average equilibrium 

value Seq yield bias values of 0.4-Q.S (see Appendix), comfortably within the steeply 

rising portion of the curve. Performance of the model generally does not appear to 

be critically dependent on the precise position or slope of the bias curve, provided 

that most bias values are greater than zero. 

When the scaffolding model is run using these parameters, terminals are 

gradually withdrawn, and synapse elimination proceeds without the appearance 

of denervated endplates. While motor units gradually shrink in size, the diversity 

in the distribution of motor unit sizes shows little change. A plot of the percentage 

of muscle fibers remaining polyinnervated vs. time (in iterations) yields a curve 

(Fig. 3) similar to that seen during actual synapse elimination, By these criteria, 

the model appears to adequately simulate several of the features of normal synapse 

elimination. The rate of convergence toward the singly innervated state appears 

slow, however. About 3400 model iterations are required to progress from 80% to 

50% polyinnervation, a transition that requires two days in neonatal rabbit soleus 

(Soha et al., 1987) . Thus each iteration (the time required for a size change of about 

0.1 JLm) is equivalent to less than a minute of actual time. While this is within the 
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Figure 3. In the simplest version of the scaffolding model, 

synapse elimination follows a generally appropriate time course 

without causing denervated end plates to appear. Measured 

in iterations, however, convergence toward single innervation 

progresses slowly. H this curve is to be reconciled with 

experimental data from rabbit soleus muscle, then one iteration 

must correspond to just under a minute of actual time. During 

this interval, a terminal must be capable of growing one 

endplate unit, or roughly 0 .1 p.m. 
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range defined by the average rate of neurite elongation in culture, it in fact requires 

a disturbingly high rate of growth. Observing the movement of terminal boundaries 

at a single endplate as a function of time suggests an explanation: their behavior is 

reminiscent of a random walk (Fig. 4A), and consequently, during the competitive 

phase, no single terminal ever clearly gains the upper hand. 

The role of terminal size. A potentially critical factor influencing the rate of 

synapse elimination involves consideration of terminal size. The model as described 

to this point assumes that a change in terminal size has no consequences for the 

probability of growth, and hence does not affect competitive ability. Even when 

a terminal reaches the smallest possible size, it is neither more nor less likely to 

grow. While this is the simplest formulation, it is arguably not the most reasonable 

one in biological terms. As a terminal changes in size, there will be changes in the 

surface to volume ratio, the extent of active zones, the percentage of volume readily 

competent to support growth, and several other factors which are likely to perturb 

the kinetics of terminal growth. These factors would have to balance out perfectly 

in order for terminal size to be irrelevant. To address this issue, we introduced 

an explicit term into the bias function whereby terminal size may influence the 

likelihood of growth. When this approach is used to confer a competitive advantage 

upon larger terminals, the bias function is shifted to the left (for larger terminals) or 

to the right (for smaller terminals) by an amount linearly proportional to terminal 

length before each calculation of a growth-retraction bias value (see Appendix for 

details). The effect of this shift is that an equivalent quantity of bound scaffold will 

produce a greater bias toward growth in a larger terminal. Invoking this strategy 

accelerates the synapse elimination process considerably, as illustrated in Fig. 5. 

Subsequent simulations assume a degree of terminal length dependence signified by 

the arrow in Fig. 5, near the inflection point of the rate curve. The movements of 
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Figure 4. Following the movements of individual terminal 

boundaries with time at a single endplate illustrates the 

competition for synaptic space and the stochastic character of 

our model. On average, terminals must maintain a bias that 

favors growth; otherwise at some endplates, all terminals will 

shrink and disappear. One consequence of this bias toward 

growth is that boundaries of adjacent terminals are generally 

in close contact. Another result is that the winning terminal 

generally maintains occupancy of virtually the entire endplate. 

When the bias does not depend upon terminal length (A), 

the process proceeds slowly, and the movement of individual 

terminal boundaries resembles a random walk. Conferring a 

selective advantage onto larger terminals (B), accelerates the 

process. 
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Figure 5. It is reasonable to expect that the growth­

retraction bias of a terminal might depend upon its size. The 

consequences of this possibility can be analyzed by the model. 

As an increasing advantage is conferred upon longer terminals, 

the rate of synapse elimination accelerates. In most simulations 

using the scaffolding model, we used a degree of length 

dependence signified by the arrow. This action accelerated the 

rate of synapse loss by about 10-fold. To facilitate comparison 

with other models, the coefficient describing length dependence 

(see Appendix) is measured in units related to the width (or 

slope) of the bias function. 
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terminal boundaries at individual endplates during simulations now appear more 

directed and display obvious convergence toward a singly innervated state (Fig. 4B). 

The length dependent simulations emphasized a finding which is also true to a lesser 

extent in the length independent case. Unless the majority of bias values calculated 

during the simulation are greater than zero (i.e. biased toward growth), denervated 

end plates will occasionally arise (data not shown). 

One approach to assessing the importance of terminal length dependence in the 

operation of the scaffolding model is to examine its sensitivity to changes in the size 

of the incremental step (i.e., the fraction of endplate length which can be occupied in 

a single iteration). While we generally take this step size to be 1% of total endplate 

length, it may be varied in the model. In a one dimensional random walk, the mean 

square displacement x of a terminal boundary would depend upon the step size 6 

and the number of iterations n according to x2 = 62 n (e.g., Berg, 1983). Hence 

the number of iterations required on average for a terminal to randomly retract a 

distance equal to it length l is inversely proportional to the square of incremental 

step size, i.e., n ex P /62
• In the model, variations in boundary scaffolding prevent 

the process from being identical to a random walk, even when bias is independent of 

terminal length. Nonetheless, this reasoning suggests that the number of iterations, 

and hence the time, required to reach single innervation should increase dramatically 

as the step size decreases, at least in the length independent case. To study this 

matter, we conducted a series of simulations, with and without length dependence, 

in which the effective step size was varied across a 4-fold range by altering the 

number of endplate positions. Plotting the rate of synapse elimination vs. step size 

yields a relatively shallow slope when a competitive advantage based on terminal 

size is present (Fig. 6A). In contrast, removing length dependence yields a curve 

suggestive of the inverse quadratic relationship predicted by the analogy to a random 
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Figure 6. Plotting the rate of synapse elimination as a 

function of the step size of incremental growth or retraction 

(expressed as a percentage of total endplate length) illustrates 

a fundamental difference in behavior between length dependent 

and length independent versions of the model. As iterations are 

related to time (in particular, the length of time required for 

an average terminal to grow by one position), the curves define 

a range of growth rates which are compatible with the normal 

course of synapse elimination. For both the scaffolding model 

(A) and the neural energy model (B), length independent 

simulations exhibit much greater sensitivity to incremental 

step size than is apparent in length dependent simulations. 

The length independent models can only function accurately if 

actual growth rates are sufficiently high. The neuronal energy 

model converges over a somewhat braoder range of incremental 

step sizes. The curves in each plot have been normalized to 

their values at a step size equal to 2% of total endplate length. 
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walk. The time course of synapse elimination clearly depends more critically upon 

step size (or equivalently, upon terminal growth rate) when growth-retraction bias 

is independent of length. Consequently, a much narrower range of growth rates 

are compatible with realistic rates of synapse loss in the length independent case. 

While biological systems may operate within this restricted range, it appears more 

reasonable to conclude that an advantage for larger terminals is required to achieve 

an effective rate of synapse elimination with the scaffolding mechanism. 

Activity. One potential influence of activity considered by the scaffolding 

model is that the synthesis of scaffolding by a muscle fiber may be dependent 

upon its activity level. A family of exponential functions (Fig. 7; see Appendix 

for definition) is employed to describe the dependence of scaffolding synthesis upon 

activity; the strength of the activity effect depends upon which member of the family 

is selected to regulate synthesis. Synthesis may be positively or negatively correlated 

with activity, depending on whether an increasing or decreasing exponential 

function is selected. Constant rate scaffolding synthesis can be considered a member 

of this family of curves. The activity distribution of neonatal motor neurons under 

normal conditions is uncertain (cf. Navarrete and Vrbova, 1983). When a Gaussian 

distribution of neural activity levels with a moderate variance (e.g., u / J.L = 0.2) 

was assumed, simulations yielded results which did not differ noticeably from those 

obtained without including activity (data not shown). 

More interesting are the results obtained when experimental activity 

perturbations are simulated. Two such perturbations are allowed by the model: 

wholesale activity alterations, where the activity of every neuron is blocked or 

increased, and partial activity blocks, where the activity of a fraction of the motor 

neurons is reset to zero while the others remain unaffected. The effects of activity­

dependent scaffolding synthesis are illustrated by the performance of the model 
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Figure 7. Three members of the family of exponential curves 

(defined in Appendix) which are used in the model to describe 

activity dependent behavior. A representative activity effect 

occurs when the synthesis of scaffolding is presumed to be 

regulated by activity. IT synthesis were described by the 

steepest curve shown, then it would be increased over 7 -fold 

during an activity block. Curves from this family are also used 

to describe trophic factor synthesis, trophic factor uptake, and 

scaffolding induction. 
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following wholesale activity perturbations. The ability of a complete activity block 

to retard or suspend synapse elimination could be correctly simulated by the model 

(Fig. 8) . Interestingly, it was necessary to assume that the rate of synthesis is 

inversely related to activity as defined by a decreasing exponential curve from 

Fig. 7. When a 5-fold or greater increase in scaffolding synthesis accompanied 

the elimination of activity, a realistic slowing of synapse elimination occurred. This 

increased synthesis leads to greatly enhanced incorporation of scaffolding into the 

basal lamina and consequent binding to presynaptic terminals. As a result, growth­

retraction bias values for all terminals are increased to near unity, and they seek to 

grow at nearly every iteration. Each terminal is stymied, however, by the similar 

preference of all other terminals sharing the endplate, and hence the competitive 

interaction is retarded. Note that synapse elimination proceeds for several hundred 

iterations following sudden imposition of activity blockade, reflecting the interval 

required for bound scaffolding levels to equilibrate under the new circumstances. 

This behavior resembles the dip in polyinnervation observed following transmission 

block with tetrodotoxin (Thompson e.t al., 1979; Brown e.t al., 1981), except that no 

recovery of polyinnervation could occur in the simulations as new synapse formation 

by sprouting is not allowed. A small but appropriate effect was also seen when 

activity levels were increased to simulate whole nerve or muscle stimulation. For 

example, doubling activity increased the rate of synapse elimination by 5-10%. 

A second potential role for activity considered by the model involves modulating 

the effectiveness of presynaptic terminals in inducing the incorporation of scaffolding 

into the synaptic basal lamina. Thus the rate of incorporation of scaffolding from 

the free pool into the basal lamina, and its subsequent binding by the overlying 

terminal, will vary depending upon the activity level of the particular terminal 

occupying that endplate position. The functional dependence of induction upon 
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Figure 8. If scaffolding synthesis is presumed to be inversely 

dependent on postsynaptic activity, then simulated synapse 

elimination is retarded by a wholesale activity block. As 

illustrated, the effect is greater when synthesis is more strongly 

regulated by activity. The exponential coefficient c is defined 

in the Appendix 
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activity is described by an exponential curve selected from the family of Fig. 7. 

The performance of the model under this assumption is discussed in Results. 

Neuronal Energy Model 

The neuronal energy mechanism acts by comparing the energy load imposed 

upon a neuron by its arbor with its capacity to metabolically support that load. 

If the energy load is smaller than the metabolic capacity, individual terminals 

of that neuron experience a bias toward growth, whereas if the neuron becomes 

overextended, the bias alters toward retraction. Motor neuron energy loading E 

is assumed to be proportional to integrated terminal size, and hence is computed 

at each iteration as the sum of the lengths of all terminals associated with that 

neuron. In other words, the energy loading is proportional to motor unit size 

(i.e., the number of muscle fibers} times the average length of each terminal. The 

same functional form (Fig. 2} is used to determine the growth-retraction bias as 

is used in the scaffolding model, except that the horizontal axis represents the 

difference between metabolic capability M and actual energy load, i.e., M-E. 

When energy loading exactly equals metabolic capacity, there is an equal likelihood 

of growth or retraction; hence the horizontal axis intercept normally occurs at 

M - E = 0. Essentially, this mechanism defines a negative feedback relationship 

in which terminal size changes are biased toward correcting deviations in neural 

energy from its natural target value M. An additional dependence of the bias upon 

terminal length, such that larger terminals enjoy a relative advantage, can also be 

introduced as before, by horizontal translation of the bias curve. 

Metabolic capacity. Appropriate selection of M is clearly a significant 

issue. While there is no direct experimental evidence to guide the selection of this 

parameter, the performance of the model itself during simulations of experimental 
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observations provides relevant information. The simplest available strategy is to set 

M equal to a constant and identical value for all motor neurons; a reasonable choice 

is the initial energy load of an average motor unit. When this was done, synapse 

elimination proceeded at a realistic rate without the appearance of denervated 

muscle fibers. Motor unit sizes, however, all converged rapidly to a common value 

(data not shown), an outcome clearly at variance with the experimental evidence. 

This behavior illustrates the feedback effect inherent in this mechanism: the energy 

expenditure of each neuron seeks the common target value M, and because average 

terminal size varies little between motor units, all units effectively seek a common 

size. Clearly, introducing variation into neural metabolic capacity values relieves 

this problem. However, the fact that final motor unit size diversity is so closely 

regulated by the distribution of M, (and hence so easily manipulated by the modeler) 

suggests that the experimental criterion of unchanging motor unit size diversity is 

of little value in judging the performance of the model. 

A somewhat more sophisticated strategy for determining M arises from the 

notion that, since our model begins at a moment of peak polyinnervation, the full 

arborization of a motor neuron at that point in time reflects its metabolic capacity. 

Accordingly, in another series of simulations, the metabolic capacity of each motor 

neuron was set equal to the inith~l energy load experienced by that particular neuron. 

As before, the metabolic capacity of each motor neuron was assumed not to vary 

with time; a simplifying assumption of our model, that endplates remain constant in 

size, facilitates this approach. Simulations utilizing this approach again converged to 

single innervation without giving rise to denervated endplates, but as expected, the 

distribution of motor unit sizes remain~d relatively unchanged. When one examines 

a histogram of bias function values occurring during a simulation employing this 

strategy (Fig. 9), it is interesting to observe that the distribution, while centered 
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Figure 9. A histogram of bias function values calculated 

during a simulation using the neuronal energy model 

demonstrates a modest bias toward growth even when 

metabolic capacity is taken to be equal to initial energy 

loading. The explanation for this effect derives from the 

frequent mutual hindrance of terminal growth at a crowded 

endplate, as described in the text. 
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near zero, is distinctly offset in the positive direction. The explanation for this 

effect derives from the fact that the model is initialized with endplates almost 

fully occupied. For the first few iterations, terminals seek to grow or retract with 

roughly equal probability. Because growth is often hindered by the presence of other 

terminals, while retraction is not, average terminal size tends to decline slightly 

from its initial levels, intoducing a slight bias for growth which remains present 

throughout the simulation. When we began one simulation with endplates only half 

occupied, the bias function histogram was symmetric about zero, and a large number 

of denervated endplates arose as development proceeded. This result illustrates the 

most serious difficulty inherent in the preceding strategy for assigning M: even 

marginal reductions in M lead to instability in the model, in which a significant 

degree of retraction bias produces an unacceptable number of denervated end plates. 

The instability problem would be resolved if each motor neuron possessed an 

additional incremental bias toward growth. In the context of the neuronal energy 

model, this goal would be attained if each motor neuron were granted a reservoir of 

additional metabolic capacity beyond what is necessary to support its initial energy 

load. A useful strategy for providing excess capacity while retaining a linkage 

between metabolic capacity and initial arbor size is to assume that the metabolic 

capacity of any neuron is a multiple of that neuron's initial energy loading, i.e. 

Mi = cmEio. The preceding approach is thus a special case in which the coefficient 

is unity. 

Partial Denervation. Simulations of partial denervation, the remaining 

experimental perturbation implemented in our model, both confirm the value 

of this approach and provide a criterion for selecting the value of em. In this 

procedure, a subset consisting of a specified number of motor neurons (usually 

a small percentage of the total) is randomly selected to emerge from the procedure 
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intact. All terminals of the remaining neurons, whose axons are presumed to have 

been "severed," are removed from endplates, leaving vacant territory. As described 

earlier (Experimental Framework), experimental motor units shrink considerably 

from their early size even at the expense of creating denervated muscle fibers, yet 

remain about 50% larger than mature units in a fully innervated muscle. Partial 

denervation simulations revealed that motor unit sizes at the completion of synapse 

elimination increased linearly with increasing values of the coefficient c,. (Fig. 10). 

Simulations with c,. = 1 produced motor units which were clearly too small; a 

30--60% excess in metabolic capacity yielded a realistic distribution of motor unit 

sizes. 

Terminal size. Simulations indicated that synapse elimination was accelerated 

substantially when a relative advantage was conferred upon larger terminals 

(Fig. 11). In all cases, regardless of the magnitude of the size advantage, 

the standard sigmoidal time course was observed, and no denervated endplates 

appeared. As before, variations in the step size of incremental growth and retraction 

were simulated to evaluate the viability of the neural energy mechanism in the 

absence of size dependent bias. The rate of synapse elimination varied almost 

linearly with step size in the length dependent case (Fig. 6B), whereas rate appeared 

to follow power law behavior when bias was independent of terminal length. As in 

the case of the scaffolding model, this relationship suggests that only limited range 

of relative growth rates will allow the process to converge in a reasonable interval of 

time. However, the number of iterations required to achieve 50% single innervation 

clearly increases much less dramatically with decreasing step size than was the case 

for the scaffolding model (cf. Fig. 6A). Hence the neural energy mechanism is 

convergent over a broader range of incremental step sizes than is the case for the 

scaffolding mechanism, and it seems more reasonable to suppose that the mechanism 
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could operate in the absence of an explicit advantage for larger terminals. For this 

reason, further simulations using the neural energy model were conducted both with 

and without the assumption of length dependent bias. 

Activity. It seems reasonable to speculate that energy loading may be greater 

in motor neurons which experience higher levels of activity. Hence the model 

optionally allows activity to modulate neural energy in a linear fashion, such 

that energy remains equal to integrated terminal length at a specified nominal 

activity level (see Appendix) . For normal, unperturbed activity ranges, metabolic 

capacity is calculated as before, based on the activity adjusted value of initial energy. 

Care is taken during activity perturbations to ensure that M is determined based 

upon normal unperturbed activity. Simulations in which activity plays a role are 

described in Results. 

Trophic Factor Model (Local Mode) 

In this positive feedback mechanism, a soluble factor synthesized and secreted 

by muscle fibers is taken up by presynaptic terminals, where it acts locally to 

increase the bias toward growth. Trophic factor synthesis is inversely proportional 

to muscle fiber activity in a relationship defined by any of the family of decreasing 

exponential functions of Fig. 7 (see Appendix), and is then secreted into an available 

pool in the synaptic cleft where it is subject to diffusional loss. Uptake by terminals 

is proportional to the available concentration, and is optionally dependent upon 

presynaptic activity in a manner once again defined by the curves of Fig. 7. 

Factor accumulates in the terminal, but is also removed by decay or axonal 

transport. Axonally transported trophic factor will, in a future enhancement of the 

model, accumulate in the cell body and optionally act to regulate global neuronal 

tendencies. Locally, the concentration of trophic factor within a terminal determines 
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An extra reservoir of metabolic capacity, 

minimum required to support the neuronal 

arbor, is necessary if the neuronal energy model is to 

successfully simulate the development of motor unit sizes 

following experimentally induced partial denervation. In 

treated animals, motor units still lose many synapses, yet 

emerge from synapse elimination with about 50% more than 

the normal number of muscle fibers. The degree of extra 

capacity required to match this finding varies depending upon 

the initial level of polyinnervation and whether terminal size 

plays a role in the determination of growth-retraction bias. 
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Figure 11. Conferring a relative advantage upon larger 

terminals accelerates the rate of synapse elimination in the 

neuronal energy model. 
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its growth-retraction bias according to a sigmoidal curve defined similarly to that 

of Fig. 2 (Appendix). 

In initial simulations with the local trophic factor model, synapse elimination 

proceeded extremely slowly. This stems from a provision of the model that 

inherently resists convergence to single innervation: We assumed that, excluding 

uptake, decay and transport, trophic factor is conserved within presynaptic 

terminals. Thus when a terminal retracts, the concentration of trophic factor 

within the terminal increases proportionately, increasing the subsequent likelihood 

of growth. Similarly, growth reduces the internal trophic factor concentration, 

thereby tending to promote retraction. The combination of these two effects tends 

to stabilize the polyinnervated state. This problem can be moderated by assuming 

a rapid rate of decay or transport of intra terminal trophic factor. Regulating 

terminal uptake of trophic factor based on presynaptic activity level also accelerates 

synapse elimination, even at lower intraterminal decay or transport rates. This 

effect depends upon the unproven assumption that activity differences exist among 

neonatal motor neurons. The associated competitive advantage for either more or 

less active neurons also affects other properties of the process, as will be described 

later. A third strategy for increasing the rate of synapse loss was actually adopted: 

an explicit dependence on terminal length was introduced into the bias function 

{Fig. 12), as was done with other mechanisms. We used a degree of length 

dependence consistent with that employed in simulations with the other mechanism 

(see Appendix). 
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Figure 12. Terminal size dependence also plays a significant 

role in the rate of synapse elimination in the local trophic 

factor model. This curve is virtually identical to that of the 

scaffolding model (Fig. 5) . 



0:: 
tfl 
0 an 
0 -en 
c 
0 

~ ... 
C1) 
:::: 

- 167-

Rate vs. Length Dependence 

6000 
Local Trophic Factor Model 

4000 

2000 

0~-------T--------~------~------~ 
0 1 2 

Length Dependence (% bias fn width) 

Figure 12 



- 168-

SUMMARY OF EXPERIMENTAL SIMULATIONS 

To assess and compare the ability of the three proposed mechanisms to 

accurately describe the process of synapse elimination, we used the model to 

simulate the 9 experimental observations listed in Table 1. Some of these simulations 

were presented in the previous section to illustrate the operation of the model. 

These are noted briefly below, while the remaining simulations are described in 

greater detail. Our findings concerning the performance of the model in simulating 

the experimental criteria are summarized for comparison in Table 2. In addition to 

testing the model against the experimental criteria, we were interested in examining 

whether a competitive role for activity during synapse elimination could promote the 

recruitment ordering of motor units according their size, as speculated by Callaway 

et al. (1987). 

Scaffolding Model 

Simulations using the scaffolding model were conducted assuming a competitive 

advantage for larger terminals, based on our earlier finding (see Model Formulation 

and Performance) that this provision ensured convergence over a suitable range 

of incremental step sizes. Our experience during these earlier tests led us to 

suspect that similar results would follow simulations in which length dependence 

was omitted from calculation of growth-retraction bias, but that vastly more model 

iterations would be required. Simulations assuming terminal length dependence 

yielded an appropriate sigmoidal time course for the disappearance of multiple 

innervation. No endplates became denervated during the process, and in fact, 

surviving terminals expanded to occupy virtually the entire available endplate 

region. Diversity in the distribution of motor unit sizes was compared before 

and after synapse elimination by combining the results of 7 independent model 
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SELECTED EXPERIM:ENTAL OBSERVATIONS 

Normal Synapse Elimination 

1. No denervated endplates appear under normal conditions. 

2. Appearance of singly innervated fibers follows a sigmoidal time course. 

3. Similar endpoint timing despite initial level of polyinnervation. 

4. Motor unit size diversity changes little during synapse elimination. 

Activity Perturbations 

5. Wholesale activity block retards synapse elimination. 

6. Increased overall activity hastens synapse elimination. 

7. In partial activity blocks, less active units enjoy a competitive advantage. 

Partial Denervation 

8. In partially denervated muscle, motor units remain larger than normal, but 
nevertheless decrease in size even though denervated muscle fibers consequently 
appear. 

9. Partial denervation retards synapse elimination among remaining polyinnervated 
muscle fibers. 

Table 1 
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Experimental Neuronal Local 
0 bserva tions Scaffolding Energy Trophic Factor 

No Denervated 
End plates YES YES YES 

Normal YES - Requires YES - Requires 
Time Course Size Dependence YES Size Dependence 

Synchronous 
Endpoint YES YES MARGINAL 

Equivalent MU YES - Affected . YES - Affected YES - Affected 
Size Diversity by Activity by Activity by Activity 

Activity Block 
Retards SE YES YES YES 

Stimulation 
Hastens SE YES YES YES 

Competitive 
Activity Role YES YES YES 

Partial Denervation 
Affects MU Size NO YES NO 

Partial Denervation 
Retards SE NO NO NO 

Table 2 
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simulations. The pooled distributions, shown in Fig. 13, reveal little change in motor 

unit size diversity. Two scale invariant measures of diversity, the standard deviation 

normalized by the mean, and the interquartile ratio, confirm this conclusion. 

Another performance issue concerns the relationship between the time course of 

synapse elimination and the initial level of polyinnervation. Specifically, how well 

does the scaffolding model simulate the evidence (Soha et al., 1987) for a nearly 

synchronous endpoint of the synapse elimination process for the fast and slow fiber 

populations in the rabbit soleus muscle? Because of the specific innervation of fiber 

types in rat and rabbit soleus (Thompson et al., 1984; Gordon and Van Essen, 

1985), fast and slow motor units are largely distinct. Hence we were able to 

conduct the simulation by comparing different model runs with varying initial 

levels of polyinnervation ( 6-fold for slow units vs. 3-fold for fast units). The 

results of this analysis are summarized in Fig. 14. While small differences in the 

percentage of multiply innervated fibers are apparent at the earlier age ("d7" in 

Fig. 14A), variation is negligible at the later age ("dll"). This surprising similarity 

in polyinnervation at both times results from a much larger early rate of synapse 

loss when initial polyinnervation is higher (Fig. 14B). 

As described in the preceding section, the observed slowing of the rate of synapse 

elimination following a wholesale activity block could be correctly simulated by 

the model (Fig. 8) provided that the exponential relationship selected to describe 

scaffolding synthesis as a function of muscle fiber activity produced as sufficiently 

large increase in synthesis in the absence of activity. The same exponential 

relationship then yielded an appropriate increase in the rate of synapse loss when 

activity was increased above normal levels. The assumption of activity dependent 

scaffolding synthesis yielded no discernible effects in response to the third activity 

perturbation, a partial activity block. This is not surprising, considering that the 
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Figure 13. The relative diversity of motor unit sizes 

determined by scale invariant measures remains largely 

unchanged during normal synapse elimination as simulated by 

the scaffolding model. 
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Figure 14. The scaffolding model is remarkably accurate 

in simulating experimental evidence indicating a nearly 

synchronous endpoint for synapse elimination regardless of the 

initial level of polyinnervation (A). A greater initial degree of 

polyinnervation (6-fold vs. 3-fold) leads to the early loss of 

a substantially higher fraction of terminals (B), presumably 

owing to their smaller size. Iterations corresponding to days 7 

and 11 in the rabbit soleus muscle are indicated by arrows. 
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altered rate of scaffolding synthesis at an endplate affects all terminals at that 

endplate similarly, regardless of their particular activity. 

A complementary constellation of effects was observed when the activity of 

presynaptic terminals was allowed to regulate the incorporation of scaffolding into 

the synaptic basal lamina, while scaffolding synthesis remained independent of 

activity. In this circumstance, a total block of activity had virtually no effect 

upon the rate of synapse elimination, suggesting that scaffolding synthesis was 

indeed a rate limiting step. Similarly, no change in rate was observed when overall 

activity levels were doubled. In contrast, this hypothesized role for activity enabled 

the model to correctly simulate the effect of a partial activity block upon the 

development of motor unit size, but only if less active terminals were assumed 

to induce greater incorporation of scaffolding ( cbl 2:: 0, Appendix). In this case, 

while both lost the majority of their terminals, inactive axons retained control of 

larger motor units than did their active rivals, reflecting a competitive advantage 

for less active units (Callaway et al., 1987). In some model experiments, the 

block was maintained for the entire run, while in other cases, to simulate the 

experiments of Callaway et al. (1988), the partial block was removed at a model 

iteration found to be roughly equivalent to 9 days postnatal in rabbits based on 

the level of polyinnervation at this iteration in unperturbed model runs. An 

appropriate slope for the activity dependence (cbl = 1.25, Appendix) correctly 

simulated the magnitude of the inactivity advantage reported by Callaway et al. 

(1988). Interestingly, the ultimate size of both blocked and active motor units 

depended little on whether the block was lifted at the iteration corresponding to 9 

days. However, the ratio of motor unit sizes for blocked vs. active units continued 

to increase after removal of the block, reaching about twice its value at the moment 

the block was lifted. In the experiments of Callaway et al. (1988), only a moderate 
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further increase in this ratio was seen following failure of the block. 

Having selected parameters which correctly simulated partial activity block 

experiments, we employed these same parameters in a series of normal, unperturbed 

model runs. While activity dependent scaffolding incorporation was assumed in all 

cases, simulations were conducted with and without activity dependent scaffolding 

synthesis. Two issues were addressed, one regarding changes in motor unit size 

diversity, the other concerning the conjecture of Callaway et al. (1987) that 

activity differences in neonates might promote recruitment order sorting of motor 

units during synapse elimination. The assumption that scaffolding incorporation is 

dependent on activity of the overlying presynaptic terminal led to a clear increase 

in motor unit size diversity during synapse elimination (data not shown). A 

further consequence was the development of a substantial degree of recruitment 

order sorting consistent with the size principle (Fig. 15), especially evident when 

the results of several simulations were pooled. Inclusion of postsynaptic activity 

dependent synthesis moderated both effects. 

The final developmental perturbation simulated with the scaffolding model was 

partial denervation. When the majority of motor neurons and their terminals were 

suddenly removed, synapse elimination continued with a moderately accelerated 

time course at the remaining polyinnervated endplates, regardless of which of 

the postulated activity influences were invoked. More significantly, no additional 

denervated endplates appeared as synapse elimination progressed, so that the 

remaining motor units emerged from the process much larger than has been observed 

experimentally (Brown et al., 1976; Thompson and Jansen, 1977). The rate of 

synapse elimination among remaining polyinnervated terminals was marginally 

increased. Hence the scaffolding model was unable to simulate the experimentally 

observed effects of partial denervation. 
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Figure 15. Simulations suggest that the ordering of motor 

unit sizes according to their recruitment thresholds can 

be enhanced during synapse elimination under appropriate 

assumptions. In these simulations of unperturbed synapse 

elimination, we assumed that the induction and incorporation 

of scaffolding into the synaptic basal lamina is inversely 

dependent upon presynaptic activity. This assumption was 

successful in simulating the competitive advantage experienced 

by less active terminals during a partial activity block. While 

initial motor unit sizes are not correlated with activity (A), a 

clear negative correlation develops during synapse elimination 

(B), as less active motor units retain more terminals. Activity 

presumably reflects recruitment threshold, so that more active 

units are recruited first. 
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Neural Energy Model 

Because a growth advantage for larger terminals appears to be less important for 

convergence in the neural energy model (see Model Formulation and Performance), 

simulations were run both with and without terminal length dependence. In either 

case, the model produced synapse elimination which proceeded to completion with 

a normal time course and without producing denervated endplates. Motor unit size 

diversity closely matched the assigned diversity in metabolic capacity. 

Simulations demonstrated that the time course of synapse elimination initiated 

with either 3-fold or 6-fold polyinnervation were similar at the two time points 

corresponding to days 7 and 11 in the rabbit soleus muscle (Fig 16), at least to 

within the 1 day experimental resolution of Soha et al. (1987). A much greater 

early rate of synapse loss in the 6-fold case was again responsible for this similarity. 

Timing differences were greater under the assumption of a terminal size advantage, 

averaging 0. 7 days (shown in Fig. 16) compared to an average difference of 0.3 days 

(data not shown) when bias was assumed to be independent of terminal length. 

When neural energy was modulated by activity, wholesale activity block 

simulations produced a delay in the rate of synapse elimination (Fig. 17), whether 

or not terminal length dependence was included in the bias function. While the 

delay was significant (approximately 5-fold), the maximal effect was less than that 

produced by the scaffolding model, where polyinnervation could be maintained 

indefinitely. As with the scaffolding mechanism, the retarding effect resulted from an 

increased preference for growth among all competing terminals. Increased activity 

accelerated synapse elimination moderately. In partial activity block simulations, 

blocked units enjoyed a competitive advantage and became relatively larger than 

their active rivals, in accordance with the observations of Callaway et al. (1987) . 
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Figure 16. Simulations with the neuronal energy model 

show a considerable similarity in the time course of synapse 

elimination for widely varying initial levels of polyinnervation 

(A), although the behavior is somewhat less striking than that 

shown by the scaffolding model. Again, a much higher early 

rate of synapse loss for ~fold vs. 3-fold initial polyinnervation 

(B) accounts for the phenomenon. 
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Figure 17. If activity modulates neural energy loading such 

that more active neurons must support greater demands, the 

the neural energy model is able to simulate the retarding 

effect of a presynaptic activity block, or the hastening of 

synapse elimination when activity is increased by neural 

stimulation. Because the mechanism works presynaptically, 

it cannot simulate the effect of a postsynaptic activity block. 
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Interestingly, however, activity differences during normal synapse elimination do 

not yield an increased correlation between motor unit size and the presumptive 

recruitment order reflected by the level of neural activity. 

The neural energy model was particularly successful in simulating the altered 

development of motor unit size following partial denervation, provided that each 

neuron's metabolic capacity exceeded the energy demands of its arbor by an 

adequate percentage. No delay in the rate of synapse elimination was apparent, 

however; if anything, the presence of fewer competing terminals accelerated synapse 

elimination at endplates which remained polyinnervated following experimental 

perturbation. 

Trophic Factor Model 

Conferring a competitive advantage upon terminals in proportion to their 

length was necessary to obtain timely convergence with the locally acting trophic 

factor model. Synapse elimination then proceeded in an orderly fashion without 

the development of denervated endplates. Motor unit size diversity was largely 

unchanged during synapse elimination. Pooling results of 5 simulations with 

differing random number seeds yielded a final diversity (s.d.jmean) of 0.149 vs. 

an initial diversity of 0.135. Simulations were also conducted to compare the 

timing of synapse elimination for differing initial levels of polyinnervation. Early 

synapse loss was substantially greater for 6-fold vs. 3-fold initial polyinnervation 

(Fig. 18). However, a moderately higher percentage of muscle fibers remained 

multiply innervated both at "day 7" and "day 11." The differences in both cases 

were close to the limit of detectability in the experiments of Soha et al. (1987). 

The interruption of synapse loss which follows wholesale activity block has 
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Figure 18. Under the local trophic factor model, the 

time course of synapse elimination differs by less than a 

day despite substantial differences in the initial level of 

polyinnervation. Iterations corresponding to days 7 and 11 in 

rabbit soleus can be estimated based on the average percentage 

of polyinnervation remaining at those times. 
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been a primary consideration in motivating previous theroretical consideration of 

trophic factors in synapse elimination (Jansen et al., 1978; Thompson, 1985). The 

local trophic factor model simulates this experimental observation successfully with 

or without inclusion of terminal size dependence. Clearly it is the hypothesized 

reciprocal exponential dependence of trophic factor synthesis upon postsynaptic 

activity (see Model Formulation and Performance) which is responsible for this 

behavior. The degree to which the process is retarded is strongly dependent 

upon the selected steepness of the exponential activity dependence (Fig. 19). 

Acceleration of synapse elimination following experimentally increased activity was 

also simulated correctly. When only trophic factor synthesis depends on activity, a 

partial activity block has no apparent on the development of motor unit sizes. 

When the uptake of trophic factor by presynaptic terminals was also presumed 

to be dependent upon activity, the response of the process to either a removal or 

increase of activity increased modestly. More importantly, this assumption allowed 

successful simulation of partial activity block experiments. Blocked motor units 

retained a significantly larger fraction of their original synaptic connections than 

did more active units, but only if a decreasing exponential function of activity 

(Fig. 7) was employed to describe trophic factor uptake. The effect was greater for 

steeper exponential functions. At first glance, it would seem intuitively dissatisfying 

to postulate that uptake might proceed at a greater rate at less active terminals. 

It is possible, however, that uptake itself is independent of activity, while the 

inactivation of trophic factor could be positively regulated by intracellular Ca2+. We 

again examined whether this process could contribute to recruitment order sorting 

during normal synapse elimination. First, we determined the slope of the activity 

uptake dependence which yielded an increase in relative motor unit size for blocked 

units comparable to that observed by Callaway et al. (1988) when the activity 
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Figure 19. The inverse dependence of trophic factor synthesis 

upon muscle fiber activity allows the local trophic factor model 

to simulate the effects of wholesale activity perturbations. 
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block was removed at an appropriate time. Then we simulated normal synapse 

elimination, assuming a systematic variability in neural activity, and observed the 

development of motor unit sizes. As shown in Fig. 20, final motor unit sizes were 

indeed negatively correlated with neural activity as would be appropriate were 

the recruitment ordering implicit in this activity pattern to be maintained into 

adulthood. 

The local operation of trophic factor as described in our model is not effective 

in simulating the effects of partial denervation. Synapse elimination is accelerated 

modestly, presumably due to the reduced competition for space at endplates which 

remain polyinnervated. After the initial denervation, no additional endplates 

become denervated. Hence, motor unit sizes remain much larger than is observed 

in experimental animals. 
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Figure 20. H uptake of trophic factor is inversely dependent 

upon the activity of a presynaptic terminal, then recruitment 

order sorting may develop during synapse elimination. The 

inverse dependence might occur if uptake were independent 

of activity, but removal of factor depended upon intracellular 

Ca2+ levels. 
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DISCUSSION 

Several interesting findings have emerged from the modeling experiments. The 

most fundamental of these is that synapse elimination, as simulated by the model, 

proceeds in an orderly and appropriate manner under a very simple set of rules. Two 

key assumptions are largely responsible for this result: (1} Terminals compete for 

limited endplate space, and (2} all terminals experience an overall bias for growth. 

In a basic scaffolding simulation, without length dependence or activity effects, all 

terminals are on an approximately equal footing. Even so, synapses are gradually 

lost without producing denervated endplates, and the distribution of motor unit 

sizes maintains appropriate diversity as all units shrink in size. Adding a terminal 

size dependence, so that larger terminals enjoy a competitive advantage, accelerates 

synapse elimination to a perhaps more realistic rate, but does not disturb the orderly 

nature of the process. The neural energy model displays similar behavior, with or 

without length dependence. Because of our assumptions concerning the internal 

localization of factor, the local trophic factor model requires that terminal size 

modulate growth-retraction bias in order to converge to the singly innervated state. 

Several findings are particularly interesting because they would not have been 

readily predictable in advance. One of these concerns the comparative time course 

of synapse elimination for differing initial levels of polyinnervation. The underlying 

experimental observation, that fast and slow muscle fibers in rabbit soleus muscle 

reach the latter stages of synapse elimination at approximately the same time 

(Chapter 3}, was itself surprising, considering that earlier in the process, slow fibers 

receive about twice the synaptic input of fast fibers (Gordon, 1983; Callaway et 

al., 1988). We were curious, and somewhat doubtful, as to whether the model 

would yield a similar result. In fact, as described earlier, all three mechanisms 

yielded remarkably similar timing near the endpoint, regardless of the initial level 
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of polyinnervation, although the trophic factor model was less effective in simulating 

this observation. The explanation for this result involves the substantially elevated 

rate of early synapse loss associated with greater initial polyinnervation. 

Another example of a non-intuitive result concerns the role of scaffolding 

synthesis in accounting for the delay in synapse elimination that follows a wholesale 

block of neural activity. While it seemed likely that modulating synthesis by activity 

would alter the rate of competition, we were uncertain what the sign of the effect 

might be. It seemed reasonable to suppose that if scaffolding were important in 

establishing a competitive framework, then more scaffolding might accelerate the 

competition. In fact, the opposite is true: higher levels of scaffolding increase the 

growth preference of all terminals. Each terminal clings to its territory, thereby 

slowing the rate of synapse loss. Thus to correctly simulate the effect of an activity 

block, it is necessary that there be an inverse dependence of scaffolding synthesis 

upon muscle fiber activity. Furthermore, synthesis in inactive fibers must increase 

by several fold over normal rates to adequately mimic experimental evidence. A 

similar relationship links the rate of trophic factor synthesis to the rate of synapse 

elimination under the trophic factor mechanism. 

A third example concerns the relationship between potential activity differences 

among neonatal motor neurons and the early development of correct recruitment 

ordering among motor units according to their size. Recruitment ordering 

consistent with the size principle (Henneman and Olson, 1965) could develop in 

two fundamentally different ways. The recruitment thresholds of motor neurons 

could develop according to their motor unit size, or alternatively, motor unit sizes 

might develop so as to become consistent with existing recruitment thresholds. 

When Callaway et al. (1987) observed that blocking the activity of a small fraction 

of motor neurons gave their terminals a competitive advantage over their normally 
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active rivals, they noted that this non-Hebbian behavior could in fact promote 

recruitment ordering according to the second of these two mechanisms. This 

process would of course require that there be consistent differences in activity 

among neonatal motor neurons, an issue which has not yet been fully resolved. In 

this example, while it seems intuitively likely that any activity dependence which 

simulated the results of a partial activity block would indeed tend to promote 

recruitment ordering, one cannot readily predict whether the magnitude of this 

effect would be sufficient to produce meaningful changes in relative motor unit size. 

Additionally, one would like to determine how large the activity differences must 

be to produce substantial ordering in the relatively short interval available. For 

both the scaffolding and local trophic factor models, simulations established that 

presynaptic mechanisms which could mimic the effect of a partial activity block 

would also promote recruitment order sorting in response to consistent differences 

in activity. Furthermore, a relatively small range of activity levels (20-40%) was 

sufficient to produce a significant degree of ordering. Surprisingly, this relationship 

did not apply to the neural energy model. While the effect of a partial activity 

block could be simulated if presynaptic activity were presumed to modulate energy 

loading, moderate differences in normal activity produced no noticeable recruitment 

order sorting. 

These three examples illustrate the rationale for modeling, and confirm its 

practical value in understanding the behavior of a complex system. In each case, 

the inherent complexity of the situation was too great to permit the outcome to 

be assessed in advance with a high degree of confidence. In some cases, overtly 

surprising or unpredictable results were obtained, although in retrospective analysis, 

these results seem entirely reasonable. In other situations, modeling can confirm 

initial expectations, while providing greater detail or a quantitative perspective. 
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Two of the models work through interactions which are local to the endplate, 

while the other operates on a system-wide basis. It is interesting to examine 

more fully the underlying similarities and differences in these mechanisms. While 

certainly not identical, the locally acting trophic factor mechanism is similar in 

several interesting respects to the scaffolding model. In both cases, the growth­

retraction bias of presynaptic terminals is influenced by a molecule synthesized and 

secreted by muscle fibers . Scaffolding remains external to a terminal, while trophic 

factor acts intracellularly. Synthesis of each is regulated in an inverse exponential 

manner by muscle fiber activity. The scale at which the mechanisms operate differs. 

Scaffolding affects only a local region at a terminal boundary, hence it operates at 

a sub-micron scale. Trophic factor is presumed to distribute equally throughout a 

presynaptic terminal. The rates at which the two molecules are removed (by decay 

or transport) were presumed to differ by two orders of magnitude (with scaffolding 

being more stable); otherwise the intracellular accumulation of trophic factor could 

effectively prevent the removal of any terminals. Activity dependent trophic factor 

uptake is analogous to assuming that the induction of scaffolding incorporation 

into the basal lamina is dependent on presynaptic activity. We allow the efficacy of 

either scaffolding or trophic factor in promoting terminal growth to he modulated 

by activity, mediated in both cases by shifts in the bias function. 

Given the degree of structural similarity between the two models one would 

expect a corresponding similarity in performance. As described earlier (Model 

Formulation and Performance), the local trophic model manifests an inherent 

tendency to resist convergence. Hence, a relative growth advantage for larger 

terminals is even more critical in this model if the process is to proceed at a 

reasonable rate. As with the scaffolding mechanism, once a terminal size dependence 

is introduced into the bias function, the model is quite successful in simulating the 
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selected experimental features of synapse elimination, with one possible exception: 

The initial level of polyinnervation retains greater influence on the timing of synapse 

elimination in the trophic factor model, although the difference in single innervation 

at the equivalent to days 7 and 11 would be only marginally detectable in the 

labeling experiment of Soha et al. (1987). An inverse exponential relation between 

activity and trophic factor synthesis leads to appropriate behavior in response to 

overall activity perturbations, as did the activity dependent synthesis of scaffolding. 

This effect is stronger in the local trophic factor model, in that a smaller value 

of the exponential coefficient (c1 vs. c., see Appendix) is required to produce a 

similar degree of retardation following activity block. Including activity dependent 

uptake of trophic factor in the model allows partial activity block experiments to 

be simulated, but only if increased activity results in less uptake. This is another 

example of a finding which at first glance would seem counter-intuitive. As described 

earlier, however, it is conceivable that uptake itself might be unaffected by activity, 

while inactivation of trophic factor could be positively regulated by intracellular 

Ca2+ in an activity dependent manner. The necessary inverse dependence of 

uptake on activity is similar to the relationship between scaffolding incorporation 

and activity required to simulate partial activity block experiments. Another 

similarity in these aspects of the models is the effect on motor unit size. Given 

that one assumes a range of activity levels among unperturbed neonatal motor 

neurons, activity dependent uptake of trophic factor and the activity dependent 

induction of scaffolding both lead to substantially increased diversity in motor unit 

size, regardless of the sign of the exponential dependence on activity. In both 

cases, an inverse dependence can produce recruitment order sorting during synapse 

elimination. A final similarity between the local trophic factor and scaffolding 

models is their failure to simulate the effects of partial denervation. 
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The neural energy model differs fundamentally from the scaffolding and local 

trophic factor models in that, at any iteration, all terminals in the arbor of 

a given motor neuron experience the same growth-retraction bias, subject to 

optional modulation by terminal length. Conversely, terminals are unaffected 

by local endplate considerations save for the inevitable competition for synaptic 

space. While conferring a growth advantage onto larger terminals hastens synapse 

elimination considerably, terminal size dependence is less critical for convergence 

in the neural energy model in that synapse elimination proceeds at a credible rate 

across a fairly broad range of dynamic step sizes. Hence we conducted simulations 

both with and without the assumption of terminal size dependence. In either case, 

the tested aspects of normal synapse elimination were accurately simulated. To 

investigate activity perturbations, we allowed activity to modulate the calculated 

energy load such that more active neurons require additional metabolic support. 

This assumption accurately simulates the effect of a presynaptic activity block or 

of neural stimulation, but because it is independent of muscle fiber activity, it 

cannot duplicate the effect of a postsynaptic block with a-bungarotoxin (Duxson, 

1982; Callaway and Van Essen, 1988), or the possible effect of direct muscle 

stimulation (Thompson, 1983). Also, while this assumption produces the correct 

response to a partial activity block, it does not promote recruitment order sorting. 

Because motor neurons resist excessive expansion of their arbors, the neural 

energy model responds appropriately to the reduced competitive environment which 

follows partial denervation by withdrawing completely from some endplates, even 

though these may become denervated as a result. Even this mechanism, although 

specifically formulated to explain partial denervation, fails to simulate the delay in 

synapse elimination which is seen following partial denervation. 

The results of our simulations are highly dependent upon several key 
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assumptions inherent in our model. The first of these is that the development 

of presynaptic terminals is a highly dynamic process, alternating between brief 

episodes of growth and retraction. Indirect evidence of dynamic behavior from 

both light and EM level observations has been cited (Wernig et al., 1980; Bixby, 

1981). Two other critical assumptions are that terminals compete for limited 

endplate space, and that available endplate space is almost fully occupied during 

the dynamic competitive process. While these assumptions represent reasonable 

(perhaps even likely) possibilities, there are plausible alternatives. H there is no 

lateral competition for space between the multiple terminal profiles underlying a 

single Schwann cell in ultrastructural cross-sectional views of the endplate, then 

perhaps all available endplate space could be simultaneously occupied by several 

presynaptic terminals. In this case, an alternative substrate for the competitive 

interaction among terminals would be required. It has also been suggested, based 

upon repeated observations of dye-labeled terminals (Balice-Gordon and Lichtman, 

1987), that once a terminal has withdrawn from a significant region of an endplate, 

no terminal may reoccupy the vacated territory. H strictly true, such a behavior 

is potentially in conflict with all three of the critical assumptions itemized above. 

However, such behavior might apply only to regions which become totally vacant, 

while dynamic behavior and competition for space continue within local regions. 

Alternative assumptions such as these can ultimately be addressed within the 

framework of our model. 

Our model was constructed in a manner designed to retain generality, and as 

such is intended to evolve. Additional mechanisms can be readily implemented and 

analyzed within the same general framework. For example, a prevalent conception 

of trophic factors suggests that their central effects on overall neuronal vigor may be 

more significant than any local effects. A muscle-derived trophic factor may operate 
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in this manner, and we intend to implement this capability soon. Experimental 

evidence has been reported which implicates proteases, particularly Ca2+ -activated 

neutral protease, as key agents in mediating synapse elimination (O'Brien et al., 

1978, 1984; Connold et al., 1986). The structure of our model should allow this 

mechanism to be simulated. Another objective is to identify means by which partial 

denervation might delay synapse elimination. Allowing a diffusional spreading of 

trophic factor among adjacent endplates, or invoking a distinct sprouting factor, are 

possible approaches. Finally, the model was designed to support studies of these 

mechanisms in various combinations, and with differing relative weightings. We 

intend to undertake these studies in the near future. 
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APPENDIX: MATHEMATICAL DESCRIPTION 

In accordance with a basic design goal of the model, changes in terminal size 

are determined stochastically, while the probabilities of either growth or retraction 

depend upon the recent state of the system. Two state variables regulate terminal 

growth and retraction at each model iteration. The dynamic state d (0 :::; d ~ 1) 

describes the probability that a terminal will seek to change its size at the next 

iteration, and thereby controls the overall rate of development. While d = 1 in all 

simulations described earlier in the text, other possibilities are that d might vary 

as a function of time or presynaptic activity. Another state variable b ( -1 < b < 1) 

determines the relative bias for growth or retraction. Bias increases linearly in favor 

of growth as b increases. Together, these state variables define the preference for 

growth Pa(b, d), the preference for retraction PR(b, d), and the preference for no 

change in size PN(d) (see Fig. 1): 

d 
Pa = 2(b+ 1) 

d 
PR = -2(b -1) 

Pa+PR =d 

Because terminals are not allowed to grow into occupied or contested territory, the 

term "preference" is used to make clear that these values differ somewhat from the 

true probabilities of growth, retraction, or no change. 

It is convenient to group terms contributing to the bias function according to the 

mechanism they describe, thereby treating bas the weighted average of mechanism-

specific bias functions: 
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As before, more negative values of b, reflect a greater bias toward retraction, 

while more positive values indicate an increased preference for growth. A general 

sigmoidal form (Fig. 2) was adopted for the mechanism-specific bias functions: 

2 
b· = -1, • 1 + e±l:l(v;,l) 

The function {3 is linear in its dependence on the relevant mechanism specific variable 

v, (scaffolding, trophic factor, or neural energy load). In some simulations, terminal 

length l was included explicitly in the bias function. The sign of the exponential 

function varies depending on the mechanism. 

Among the possible roles for activity which we simulate in the model are 

regulation of the synthesis and incorporation or uptake of both scaffolding and 

trophic factor. The family of exponential curves (Fig. 7) defined by 

o:(A) = ec(l-A/Ao) 

possesses certain features which appropriately describe the potential effects of 

activity in these cases. When activity A is constant at the reference level A0 , 

generally taken to be the average activity of a motor neuron under normal 

conditions, then o:(A) = 1, and activity has no effect. The exponential coefficient 

c determines the rate at which the function increases or decreases monotonically 

with increasing activity. In either case, small activity differences have their greatest 

effect at low activity levels. 

Mechanisms of Synapse Elimination: Bias Functions 

Scaffolding (b1). Scaffolding is synthesized by muscle fibers at a rate which is 

optionally a function of postsynaptic activity AMF, 
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and accumulates to form a pool of available scaffolding SMF, For r 81 > 0 and 

c. > 0, the inverse exponential dependence on activity implies that maximum 

synthesis occurs when all activity is blocked, and that increasing activity through 

stimulation results in a moderate decrease in scaffolding synthesis. At each iteration, 

a percentage of the available pool of scaffolding is incorporated into the basal lamina 

at each occupied endplate position and bound by the resident presynaptic terminal, 

in a manner optionally dependent on presynaptic activity: 

AS _ r ""· (A)S _ r ecbr(l-A/Aols 
L.lo. BL - s....._.,. MF - S MF• 

A weighted average of bound scaffolding is computed for each boundary region 

of every terminal, 
k 

E w,S,o±• 
S = -•=_o __ _ 

k 

Ew, 
i=O 

where S, is the bound scaffolding at endplate position i, and i 0 is a boundary 

position. A typical set of weights is w = (1, 1, .5, .5), with k = 4. The bias 

component b1 due to scaffolding is then determined according to 

2 
bl = - 1, 1 + e-c.(S-So+~(l))fs., 

where S0 controls the position of the S-axis intercept and Se9 , an estimate of the 

average equilibrium value of bound scaffolding at an occupied endplate position, 

provides a convenient unit for scaling the slope c. of b1 (but can be replaced if 

desired) . The function 

A(l) = c11 (l -10 ), 

permits the bias to depend explicitly upon terminal length, and can be viewed as 

introducing a horizontal translation into b1 • Typically, 10 = 50, or half of the total 

endplate length. The magnitude of the competitive advantage enjoyed by larger 
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terminals is regulated by c11 • In the majority of our simulations, c11 = 0.01S.,q . 

Coefficients regulating length advantage were selected similarly in simulations with 

the other mechanisms. 

Neural Energy (b2 ). The energy demand imposed upon a neuron by its 

arbor is proportional to the combined lengths l, of all of its terminals, optionally 

modulated by its activity A, 

where the coefficient cs controls the magnitude of the activity influence. The neural 

energy bias b2 is defined by 

2 
b2 = ---:-:-----:-:--:-:--- - 1 

1 + e(E-M->..(1)/E., 

2 
- -1 1 + e-((M-E)->..(1))/E., • 

The metabolic capacity M of the neuron is the coordinate of the E-axis intercept, 

and b2 is anti-symmetric about this point. A fundamental distinction of this 

mechanism lies in the sign of the exponential: viewed as a function of (M - E), 

b2 is sigmoidal as in Fig. 2, but if b2 is regarded as a function of E, it is a 

monotonically decreasing sigmoidal function similar to Fig. 2 but reflected about 

the E-axis intercept. Terminal length dependence ). (l) is implemented as in the 

scaffolding mechanism. The width or slope of b2 is controlled by Ew, which is 

generally set to a fraction of the average initial energy, e .g., Ew = 0.4JLs
0 

in certain 

length dependent simulations. 

Trophic Factor (b3 ). Trophic factor f is synthesized at a rate inversely 

dependent upon activity 

and secreted into an available pool. Uptake by a presynaptic terminal is 

proportional to the available concentration f, and is optionally dependent upon 
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the level of activity: 

l::..fT = r,.fa,.(A) = r,.fec .. (l-A/Ao) 

Trophic factor within a terminal is subject to removal by decay and axonal 

transport. The intracellular quantity of factor IT is converted to a concentration ft 

which regulates the bias according to 

b- 2 -1. 3 - 1 + e-ca(!t - fto+>.(l))/!t., 

The / -axis intercept is controlled by Ito' while the slope of the sigmoidal function 

is determined by c3 and the expected average equilibrium concentration of trophic 

factor ft.,· Length dependence .A(l) is defined as before. 
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