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ABSTRACT
In this work, time dependent and equilibrium stress-strain properties of elas-
tomeric networks are investigated for moderately large deformation. A two net-
work potential is proposed, which constitutively describes stress-strain behavior
at elastic equilibrium. The potential is applied to time dependent deformations

thorough a molecular model.
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INTRODUCTION

This work addresses some questions relating to nonlinear deformations of
crosslinked polymers. In Chapter I, the phenomenological theory of hyperelastic
materials is presented in its most general form. The theory is then specialized to
moderately large deformations of polymer networks through the introduction of

a strain energy density function, W, of the form

Gy

W= 0s NN -3) + 2

me

(A + A+ A -3) (1)

where Gy is the meodulus associated with the chemical crosslinks of the network,
and Gy is the modulus contribution arising from the presence of topological
constraints. The moduli are linked by the relation Gy+Gy=G, where G is the

shear modulus. The parameter m can be taken as 0.34.

The constitutiveness of this two network potential is demonstrated on pub-
lished data in general biaxial deformation of natural rubber. Some of cur own
data on natural and styrene-butadiene rubber crosslinked to different degrees
are also discussed. The nature of Gy has been studied on published data on

geveral swollen networks,

In Chapter 11, it is shown that, in moderately large deformations, Gy is pro-
portional to G, the plateau modulus of a high—moleculax—weight. uncrosslinked
sample of the same polymer. Since the sum of Gy and Gy, the equilibrium
modulus, &, can be obtained from stress relaxation measurements on the
crosslinked material in the linear region, it is possible to predict non-linear
stress-strain behavior in large deformations from linear behavior in small

(theoretically infinitesimal) deformations.

In Chapter III a molecular theory is proposed which is capable of describing
the nonlinear, time dependent properties of polymer networks. The model is
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derived for a uniaxial deformation applied as a step function of time. 1t is then
generalized to other strain histories via the Boltzmann superposition integral.
Although a full tensorial form for the constitutive equation is obtained through
the molecular model, the resulting strein function can be determined analyti-
celly only for a uniaxial deformation. To avoid the necessity of numerical
integrations, an approximation is proposed and its range of applicability is dis-

cussed.

This thesis was written as a collection of three independent papers.
Chapters I and II will be submitted to Macromolecules for publication. Chapter
Il together with Appendix III will be submitted to the Journal of Polymer Sci-
ence. For that reason, each chapter is complete in itself. Thus, the equations,

the flgures and the references are numbered starting from 1 in each chapter.
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1. PROPERTIES OF ELASTOMER NETWORKS AT ELASTIC EQUILIBRIUM

Introduction

The basic laws of motion, conservation of mass, balance of momenta, con-
servation of energy, and principle of entropy, valid for all types of continuum, do
not form a complete set of equations to describe the response of a material te a
mechanical excitation. It is necessary to complement the set with constitutive

equations that characterize the material response.

Though largely arbitrary in form, constitutive equations are subject to the
restrictions of the constitutive theory.! To formulate a constitutive equation
valid for all types of material is a useless task because, due to the generality of
such an equaticn, it would have to contain too many experimentally determined
parameters. 1t is more expedient to group materials into various classes and

find a constitutive equation for each class.

Because of their novel characteristics and easy processibility, polymeric
materials are being used in increasing amounts instead of conventional materi;
als. For design purposes it is necessary to be able to predict the deformation
properties of these materials under given conditions. The theories of linear elas-
ticity and linear viscoelasticity are exact theories that describe the equilibrium
and time dependent properties of polymeric materials when they undergo
infinitesimal deformations. In applications, however, the deformations are not
infinitesimal, and it is therefore necessary to be able to predict their behavior in

finite deformations.

Most crosslinked polymers in the rubbery state are capable of large defor-
mations vastly exceeding those of other elastic materials. Elongations of 300-
400% are not uncommon with rubber networks. Due to this characteristic, they

have been termed hyperalastic materials.
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To describe the equilibrium stress-strain behavior of hyperelastic materi-
als, two paths are available for the formulation of an elastic potential valid for
large deformations. Either the small-scale response of the polymer chains to a
given macroscopic excitation is assumed to be known, and one then describes
the material response using the methods of statistical mechanics; or one pro-
poses a potential consistent with the axioms of constitutive theory and the
available experimental data, and then tries to interpret the moiecular nature of
the phenomenological coefficients. This is needed to understand the region of
validity of the equation and to enable one, eventually, to design a material for a

given application.

A potential is commonly called constitutive when it does not violate any of
the principles of continuum mechanics. Many potentials which are constitutive
in this sense, are restricted to certain types of deformation. We call a potential
constitutive in the narrower sense when it appears to describe the mechanical
properties of the network with the same material parameters in any deforma-

tion. This will be discussed separately further below.

Molecular Theories of Rubber Elasticity

One of the earliest theories to describe the isothermal equilibrium stress-
strain behavior of polymeric materials in finite deformation has been formu-
lated by modelling a polymer network as a network of freely jointed chains. The
displacement length ( end-to-end distance ) of a chain is considered to be Gaus-
sian in the undeformed state. The chains are allowed to pass through each other
without hindrance, constituting what is commonly known as a phantom net-
work. The stress resuiting from a given elongation then is a result of a decrease
in entropy of the hypothetical network. Imperfections in the network structure,

such as dangling chain ends, loops, and entanglements, are neglected. The
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equilibrium stress resulting from an elongation is then given by
T = RIF(A\* = 1/A) (1)

where T is the Cauchy stress based on the deformed cross-sectional area, F is
the structure factor, A is the stretch ratio in the direction of the pull, R is the
gas constant, and T is the absolute temperature. The derivation and the thermo-

dynamic implications of eq 1 have been discussed in detail by Flory.?

The structure factor is determined by the specific assumptions made about
the microscopic movement of the junction points. James and Guth® assumed
that the displacements of the mean position of the junction points are affine in
the macroscopic strain and that the fluctuations about the junction points are
independent of the strain. These assumptions lead to a structure factor that

can be expressed as
F = uy(1-2/%) (2)

where vy is the number of chains between crosslink points per unit volume, and
¥ is the functionality of the junction points. Flory®? made the assumption thaf
the junction points are firmly imbedded in the polymer matrix and therefore do
not fluctuate. Their displacements, not the mean positions of the junctions, are
affine in the macroscopic strain. Flory's assumption led to a structure factor

given simply by
F=vyy (3)

Stress resulting from a given strain in a crosslinked rubber follows Flory's
predictions in small deformations, but is consistently overestimated in even
moderately large deformations. In simple tension we consider a deformation to
be moderately large if the principal stretch ratio remains below the inflection
point in a plot of the nominal stress vs the ratic. Our discussion will be confined

to moderately large deformations. We will give a more general description



further below.

More recently, Flory*, and Flory and Erman® proposed a new statistical
mechanical theory which is based on the idea that topological constraints affect
the fluctuations of the junction points. According to this theory, in small defor-
mations topological constraints restrict the fluctuations about the junction
points to a large extent so that their displacements are still affine in the
macroscopic strain. In large deformations, however, the chains are further
apart; therefore, only the mean positions of the junction points are affine in the
macroscopic strain. The fluctuations about the junction pointe are independent
of the strain in this region. To be able to make the transition between the two
limiting cases Flory expresses the stress resulting from a given strain as the
sum of two additive terms. The first arises from meodelling the displacement of
the mean positions of the junction points and has the form given by eq 1 with eg
2. The second term accounts for the severity of the constraints. The form of the
equation is too lengthy to be reported here, but it is important to point out that
the second term is evaluated using statistical mechanical methods and contains
one adjustable parameter to characterize the severity of topological constraints.

We will refer to this theory as the Flory-Frman theory.

Phenomenological Equations in Terms of the Invariants of the Deformation

Tensor

One can formulate a constitutive equation phenomenoclogically for large
equilibrium deformations of hyperelastic materials by postulating the existence
of a strain energy density function ( reversible work of deformation ), W, from
which the stress is derivable. The most general constitutive equation for equili-
brium deformations of an initially isotropic, homogeneous, incompressible

material has been derived by Rivlin ® and also by Ariano.”. It contains no
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assumptions other than the ones stated above. The Rivlin-Arianc equation has

the form
Oy = —Péy +22¥ g, 287 g1y, (4)
al, al;

in indicial notation,where @y; is the Cauchy stress tensor, B, is the Finger defor-
mation tensor, (B !)y is its inverse, and P is an arbitrary hydrostatic pressure
required by the assumption of incompressiblity. [, is the first, and /; is the
second invariant of the deformation tensor. Thus, {f W is known, one can
describe the equilibrium deformations of rubberlike materials using the Rivlin-
Ariano equation. W is most commonly expressed in terms of the invariants of
the deformation tensor for a material that is homogeneous, initially isotropic,
and incompressible. The assumption of incompressibility requires that the
third invariant be unity. If W is now expanded around the undeformed state of

the material in a Taylor series, one obtains
W= 3 Gy (L-3) (I-3) (5)
1j=0 '

where ; are the phenomenological coefficients. The two invariants of the defor-

mation tensor are given by
L= A+ +A8 - (6)
L=1/A3+1/08+2§ (7)
in terms of the stretch ratios. The fact that ¥ must be zero for an undeformed
material imposes the restriction that Cpp = 0. Once a form for W is known, the
stress resulting from a given deformation characterized by the three principal

stretch ratios A;, Ag, As (i.e., the positive square roots of the eigenvalues of the

deformation tensor) can be obtained as
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= L4 ,
o= N o -P i=1,2,3 (8)
where @; is the Cauchy stress in the ith principal direction. The assumption of

incompressibility further relates the three stretch ratios by the equation

AheAg =1 (9)

Thus only two of the three stretch ratios can be specified independently. Note
that eq B is identical with eq 4.

If one keeps only the first term of eq 5, then eqs 6, 7, 8, and 9 would yield
T~ 02 =RC10 W —-1/)\) (10)

for simple tension, where A, is the stretch ratio in the direction of the pull, 7, is
the corresponding Cauchy stress, and @ is zero since the boundary normal to
the direction of the pull is a free boundary. It is apparent that 2C,p = G, the
shear modulus, because of the requirement that the results of linear elasticity
should be reproduced as A;~1. It can be seen that eq 10 is identical with eq 1 let-
ting 2Cyg = RTF.

Equation 10 models the behavior of a polymer network constitutively in
deformations when the stretch ratio is not much larger than about 1.2.
Mooney® proposed an extension of eq 10 by postulating that a plot of 3/ (A2-A"1)
vs. 1/A is linear in simple tension, and Hooke's law is obeyed in simple shear.
Mooney's equation, which is commonly referred to as the Mooney-Rivlin equa-

tion, has the form
61—62=2CI()\12-1/AI)+2CZ ()\1""1/Alz) <11)

for simple tension, where C; and C; are the phenomenological coefficients. It is
required that 2C, + 2C; = G. Equation 11 can be derived with C, = Cyo and
Ca = Cp;, by retaining the first two terms of eq 5. It shows good agreement with

experimental data in simple tension, but it does not do so constitutively. In
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other words, if one estimates the values of £, and C; from simple tension data,
and predicts the results for a different mode of deformation, the predictions do

not fit the data.

Phenomenological Equations in Terms of the Stretch Ratios

Later workers in the field abandoned the idea that W is most easily formu-
lated in terms of the invariants of the Finger deformation tensor, and expressed

it in terms of the stretch ratios. ,

Carmichael and Holdaway®, Mooney'®.and Valanis and Landel!! concluded,
on the basis of certain symmetry arguments that ¥ should be the same func-

tion of the three stretch ratios. Thus W should have the form
W =w(h) +w(he) + w(ke) (12)

for a homogeneous, initially isotropic, incompressible rubber. Valanis and Lan-

del!!, and Kawabata et al.!?, have confirmed eq 12 experimentally.

Most of the well-known nonlinear strain measures can be subsumed in a

strain energy density function of the form
W= %g— (AP+AF+AF-3) (13)

where n is allowed to take on any integer value between - 2 and 2. With n=2, eq
13 reduces to the so-called neohookean potential from which eq 10 follows at
once. Eq 13 with integer values was first proposed by Seth.!3 It was later general-
ized by allowing n to be a material parameter,* which can take non-integral
values. Ogden'® used three terms of this same form to describe the behavior of
rubbers in large tensile deformations, up to break. By allowing n to be a
material parameter, none of the axioms of the constitutive theory are violated.!®
Hence from the point of view of continuum mechanics, eq 13 is a valid constitu-

tive equation. Equation 13 has been shown by Blatz, Sharda, and Tschoegl!* to
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be constitutive in the narrower sense for a styrene-butadiene rubber (SBR), and
for natural rubber (NR), below the upswing region. Henceforth we shall call eq 13

the BST potential for convenience.

The 2NW Potential

Although the BST potential is a valid constitutive equation, the parameter n
appears to be difficult to interpret molecularly. Tschoegl!” proposed a related

elastic potential which is based on the assumptions that:

(1) A crosslinked polymer can be modelled as consisting of two networks:

the phantom, and the constraint network.
(2) The contribution of the two networks to W is additive.

(3) The stress-strain behavior of the phantom and the constraint networks

can be described by the nechookean and the BST potentials, respectively.

The first network characterizes the effect of the change in the mean posi-
tions of the chemically crosslinked junction points. This network is called the
phantom network. The chains in the phantom network can freely pass through
each other and have no physical characteristics such as volume. Junction points
can fluctuate freely about their mean positions. The modulus associated with

the phantom network is denoted as Gy.Its stress-strain behavior is nechookean.

The second network will be called the constraint network. It models the
effects of the physical nature of the polymer chains, which causes the fluctua-
tions of the junction points to be different from their phantom counterparts.
The constraint network can be modelled as if it were held together by equivalent

crosslinks and may be considered to have a modulus Gy associated with it.

On the basis of these assumptions the most general form for the strain

energy density function W can be written as
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RGy

W=-%x-—(;\§’-+}\§+>\§—3)+;—2—()\{"+A§“+)\;"—-3) (14)

where the A's are the three principal stretch ratios, and m is the nonlinear
strain parameter of the BST potential. We use m=0.34 because it closely
approximates the strain function we obtain from a molecular theory which we
will discuss elsewhere!®, This reduces the unknown parameters to two, and they
occur linearly in the model. This is convenient when treating experimental data.
We will name the potential represented by eq 14 the 2NW (or two-network) poten-
tial. To investigate the validity of the above assumptions, we will show that eq 14
predicts the stress-strain behavior of rubber networks constitutively, in the nar-
rower sense, and is able to predict the swelling behavior correctly. The problem

of constitutiveness will be addressed first.

Constitutiveness in the Narrower Sense

In continuum mechanics, any equation that does not violate the axioms of
constitutive theory! is a valid constitutive equation. In a stricter sense, a consti-
tutive equation must represent material response to any mode of deformation
with the same set of phenomenological coefficients. The Flory-Erman theory as
well as the BST and the 2NW potentials discussed earlier appear to meet this
requirement. The 2NW potential is attractive, because it has only two linear

material parameters.

It can be shown!® that, for an initially isotropic, homogeneous, and
incompressible material, all possible deformations lie in the wedge-shaped
region of the /,,/; plane shown in Figure 1. Uniaxial tension and equibiaxial ten-
sion form the boundaries of this region, pure shear being the straight line with
unit slope. Deformations outside of this wedge-shaped region are not admissible.
{(For a mathematical definition of admissible deformations, see Appendix 1). The

whole region inside the wedge can be covered experimentally by biaxial tension
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experiments in which two dimensions of a rectangular piece of material are
changed independently, leaving the third dimension stress-free. Therefore, it is
possible to cover all deformations that an incompressible material can undergo
by performing biaxial tension measurements covering the whole range from
simple tension to equibiaxial tension. If a proposed equation can describe such
experiments with a single set of material parameters, the equation will very
likely be constitutive. We emphasize that it is not possible to prove constitutive-
ness in the narrower sense; it is only possible to disprove it. One can, however,
gather sufficient evidence from biaxial tension measurements to support the

constitutiveness of an equation in the narrower sense.

When eq 14 is used in the Riviin-Ariano equation, one obtains the true nor-

mal stress difference as
2G,
Ta=0p = Gx(AZ-Nf) + —= (AP =N (15)

Kawabata et al. have performed !° general biaxial tension measurements on
natural rubber crosslinked with dicumyl peroxide. Their data are plotted in Fig-
ure 2. The axes were chosen so that the theoretical predictions, as indicated by
eq 15, would lie on the straight line with unit slope. The two moduli, Gy and Gy,
were obtained from simple tension data. As can be seen from the figure, agree-
ment between experiment and theory is excellent. Some of the general biaxial
tension data were left out of the figure for clarity, but the agreement for those

is just as good.

Using egs 14 angd 4, one obtains

R0F _ 1 [N(BTp) _ M(5,75) ]

o, = N | A oF | a.fy=1.23 (18)
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v _ _1 Oa0p _ 2,y |
e = NF N M)

2 a,fy=123 (17)

where the stress differences are given by eq 15. Figures 3-6 show the contour
plots of 8% /37, and 8W/8I; vs I, and [;. The general shapes of the curves at
large I, and I, are in agreement with those shown by Kawabata®® et. al. They
observe rather complex behavior for these contours at infinitesimal deforma-
tions which are not reproduced by our theory. We would like to point out that
8W/8I, and 8W /08I, have meaning only in large deformation theory. Values
corresponding to infinitesimal deformations must be obtained from extrapola-
tion of large deformation data, and are critically dependent on experimental
accuracy in small extensions. Unfortunately, data in that region are subject to
the largest experimental error. Therefore, the discrepancy between the contours

given by our theory and Kawabata’s experimental contours is not critical.

Figure 3 shows plots of 8/ 8/, vs I, for various constant values of I for
representative values of Uy. Here Uy is the ratio Gy/ G. The various values of
this parameter represent different materials, Uy=0 corresponding to a material
whose stress-strain behavior is neohookean, and ¥y=1 corresponding to an
uncrosslinked rubber. In most phenomenological theories, it is assumed that
8% /8!, is constant with J, independent of /;. As can be seen from the figure,
8W/8I, as given by the 2NW potential varies linearly with 7, but it is not
independent of /5. The variati;)n with 7, is small but it is nonzero for Uy=0. The

dependence of 3W /3, on I is shown in Figure 4.

Figure 5 shows the variation of B_W/ 8l with I, for various constant values
of Io. It is usually assumed that this quantity is independent of /, and is éon—
stant with /,. It is apparent from the figure that the predicted behavior of
8W /81, is very complex with respect to the invariants. Clearly, if the 2NW poten-
tial describes observed behavior, the Mooney Rivlin equation can not be a valid
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constitutive equation. Figure 6 shows the variation of 8%/ 8/; with I for vari-

ous constant values of /;.
Crosslink Density

Figure 2 strongly supports the constitutiveness, in the narrower sense, of
the 2NW potential. We now proceed to probe the nature of the phenomenological
parameters. For that purpose natural rubber networks were prepared by
crosslinking them to various degrees with dicumyl peroxide. (The composition of
the networks and the conditions of crosslinking can be found in Appendix 2.)
The crosslinking conditions were chosen on the basis of the work of Lorenz and
Parks?!. The networks were tested in simple tension using a floor model Instron
Tensile Tester. The specimens prepared from the networks were end-bonded to

copper U-tabs to minimize problems with clamping. A large aspect ratio was

used to minimize end effects.
Applied to simple tension, eq 15 yields
oy = Gy + Gv¢m(N) (18)

where oy is the Mooney stress given by

_81~-0p
and ¢, (A) is given by
_ 2(AP-A™E)

These equations follow from eq 15 with =0, A,=A, and Ag=Ag=A"" 2 Figure 7
shows of the experimental data plotted according to eq 18. The straight lines are
the lines of best fit. A value of m=0.34 was used as mentioned earlier. The lines
for these samples are almost parallel to each other indicating that Gy is closely

the same for these networks,
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Similar results are shown in figure 8 for SBR networks crosslinked to vari-
ous extents with dicumyl peroxide. For composition of the networks, see Appen-
dix 1. Once again the lines of best fit to the data, for the three crosslinked sam-
ples, are parallel to each other indicating that Gy is again the same for all of the

networks. This point will be discussed in detail later.

We have produced evidence in support of the constitutiveness of the 2NW
potential in the narrower sense. It is capable of explaining the data on networks
crosslinked to various extent. The second term of the potential appears to be
independent of the degree of crosslinking. This supports the assumption of

additivity of the moduli as a plausible one.

Swelling of Elastomeric Networks

Swelling has been used for a long time to study the structure of polymeric
networks. The stress-strain behavior of swollen networks in a uniaxial deforma-
tion is frequently analysed using the Mooney-Rivlin equation. The most impor-
tant observation then concerns the Mooney constant, 2C;. This decreases with
increasing swelling ratio, eventually becoming zero. Therefore,it has commonly
been held that the values of the phantom meodulus, 2C,, obtained from extrai;o-
lation of swollen stress-strain data are closer to the modulus calculated from
the chemical constitution of these networks than 2C) obtained on the dry net-

works.

In this section we interpret the stress-strain behavior of swollen networks
using the 2NW potential. We discuss in detail the importance of the study of
swollen networks, and their topologiéal environment. We demonstrate that the
parameters of the 2NW potential required to describe the behavior of dry net-
works serve equally to describe the behavior of swollen networks. This implies

that the effect of an inert solvent is merely a dilution effect and the nature of
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the topological constraints are not altered in swelling. In conclusion, we discuss

these implications.

The strain energy density function, W, for unit volume of unswollen rubber
is given by eq 14. Equation 14 applies to swollen networks as well as dry net-
works. However, to describe the stress-strain behavior of swollen networks, one
needs to alter the reference state from the unswollen, undeformed state to the
swollen, undeformed state. To that end, let v; denote the volume fraction of the
polymer in the swollen state, and W, denote the strain energy density function

per unit volume of swollen rubber. Then,
Wew =ug W (21)
and
oy =vd/3 N i=1,2,3 (22)

Equation 14 then becomes

Pow = 5 wd (af b +ad=0) + T wgn V3 (aP+ o+ o -3) (29

the a 's being the stretch ratios referred to the swollen, undeformed lengths.

Using the Rivlin-Ariano equation, and the condition of incompressibility, one

obtains
Gy
7=Gvd? (af—ai!) + — ué-(m—s)lﬂ (o —a;™/?) (24)

for the true stress @ in simple tension. The symbol @ has been used to denote
the quantity &, — T3, since in simple tension, ; is zero. It is customary te report
the nominal Mooney stress f ° when relating the results of stress-strain meas-
urements. One can obtain the appropriate expression for f ° from eq 5 by con-
verting the swollen to the unswollen area, and dividing by the factor a®—a™t.

Thus
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. T4 ud?

= -m+2)/3
S x—o2 GX"'GN'Ué /3 om(a) (25)

where A is the unswollen, undeformed cross-sectional area, and f is the force
acting on it. Both eqs 24 and 25 describe the behavior of swollen networks in a
uniaxial deformation, if the solvent is inert, i.e., it does not interact with the

polymer chains to change their configuration, but acts merely as a diluent.

Figure 9 shows the data of Allen® et al. on natural rubber (NR) networks
swollen in n-decane. The solid lines show the predictions of eq 25. The parame-
ters of the two-network potential, Gy and Gy, were obtained from stress-strain
measurements on the dry network as Gy=0.107 MPa and Gy=0.144 MPa. The
value of m=0.34 was used for all predictions. As can be seen from the figure,
the predictions of the theory are excellent for the first three volume fractions,
vp=1.00, 0.79, and 0.61. For v,=0.42 and v,=0.38, the predictions are fair but
not very good. The discrepancy between the theory and the experiments is attri-
buted to the solvent interacting strongly with the polymer at those swelling
ratios. Such a behavior would be expected from a strong concentration depen-
dence of the Flory-Huggins x, factor. For v;=0.24 the agreement becomes very
good again. If the above inconsistency is due to a concentration effect, it is not
observed at this volume fraction, because the data lie on a curve that is rela-

tively flat.

Figure 10 shows the data of Flory and Tatara®® on poly(dimethyl siloxane)
(PDMS) networks swollen in benzene. It is apparent from the figure that the
polymer—solx}ent interactions play a dominant role in this system. Here the x,
factor is highly concentration dependent. implying a marked difference in poly-
mer configuration as the concentration is changed. Part of the difficulty arises
from the fact that the experiments were performed at constant solvent activity

rather than constant composition. Again the two parameters of the potential
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were obtained from experiments on the dry network, and a value of m=0.34 was

used. The ﬁlue of the moduli were Gx=0.056 MPa and Gy=0.149 MPa.

Figure 11 shows the eflect of polymer solvent interaction more clearly. In
the figure Mooney plots are shown for a PDMS network swollen in three different
diluents to the same volume fraction. The points in Figure 11 were calculated
using the values of 2C; and 2(; reported by Mark®. At v2=0.80 the data points
for all three diluents lie on the same curve indicating the absence of polymer-
solvent interactions. At vp=0.80, differences between the three diluents are

apparent.

Figure 12 shows the data of Erman and Flory * on poly{ethyl acrylate)
(PEA) networks swollen in bis(2-ethoxy ethyl) ether at 25°C. The experiments
were made on networks crosslinked to different degrees which were then swollen
to equilibrium. The open circles are the experimental points for dry networks,
and the closed circles are the experimental points for the swollen networks. The
solid lines show the predictions of eq 24 with m=0.34, and the two moduli
obtained from the dry network stress-strain data. As can be seen, the agreement

is very good.

One point is worth mentioning hére. Flory and Erman®® have examined the
same data sets using their two-network theory. The value of the phantom
modulus they obtain from their analysis is always large-r than our Gy. Although
the two quantities are supposed to represent the phantom network contribution
to stress, there apparently is a difference. The reason for this difference and the

resulting implications is unknown.

Conclusions

We have demonstrated the constitutiveness, in the narrower sense, of the

2N¥W potential. Further, we have shown that it represents data on varying
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crosslink densities adequately, with a Gy that is sensibly independent of

crosslink density.

We have also examined the stress-strain properties of swollen networks.
When the diluent does not interact with the polymer strongly (changing the
configuration of the chains in space), parameters obtained from the dry net-
work are adequate to describe the stress-strain behavior of swollen networks.
This implies that, when a network is swollen, the topological environment
around the network chains is not altered significantly. The effect of the neigh-
boring chains on a given network chain is diminished due to dilution only and is
not altered significantly in character. This observation casts doubt on the
existence of trapped entanglenients because once swollen, their nature as well

as their concentration would change.
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*a(2)
Equilibrium data on NR networks with varying crosslink

Figure 7:

densities compared with the predictions of the 2NW potential.
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0.00

SBR 6

oy ( MPa)

0.2 sBR 2

SBR &4

SBR 3

= 0.34

I 1 1 1 1
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Figure 8: Equilibrium data on SBR networks with varying crosslink

densities compared with the predictions of the 2NW potential.
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Figure 1l: Stress strain behavior of a PDMS network swollen in

different solvents.
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II. DETERMINATION OF THE PARAMETERS OF THE TWO-NETWORK POTENTIAL FROM
MEASUREMENTS IN SMALL DEFORMATIONS

Introduction

In two previous communications!?, we proposed an elastic potential of the

form
G,
W= EOFE NN -3) + SR OP N AR -8) (1)

This potential was shown to be highly successful in describing arbitrary defor-
mations { general biaxial tension ) of rubberlike materials, if the deformations
are moderately large, i.e., if they are restricted to the region below the upswing

in a plot of the stress vs. the largest principal stretch ratio.

The potential contains three material parameters. Of these, the strain
parameter m was originally left to be determined by experiment. Elsewhere,?
however, we presented arguments which led to the adoption of a "universal”
value of 0.34 for m. Qf the remaining two parameters, Gy and Gy, the first
represents the modulus ascribed to the presence of chemical crosslinks in the
network. The second expresses the contribution arising from topological con-
straints. The two moduli can be obtained from stress-strain experiments in sim-

ple tension for which eq 1 yields

oy = Gy + Gnym(A) (@)
where
_ 6,—0p

and
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2(A"-A™2)
A=
P S

m=0.34. (4)

In these equations A is the stretch ratio and 7 is the true stress in the direction

of the stretch. The two moduli are linked by the additivity relation
Gx+Gy=G (5)

in which G is the shear modulus of the material. If any two of the moduli G, Gy,

and Gy are known, the third can be obtained using eq 5.

We now examine the possibility of determining the parameters of the elastic
potential for moderately large deformations of rubberlike materials from meas-
urements in small (theoretically infinitesimal) deformations. Stress relaxation
measurements in such deformations on the crosslinked polymer yield the
(equilibrium) shear moduius, G. We have found that Gy is proporticnal to the
plateau modulus, G, of a high molecular weight precursor of the network, i.e.,

that

Gv=£GY . (6)

GJ can be obtained from stress relaxation measurements in small deformations
on the uncrosslinked polymer. Thus, if eq 8 is valid, and £ is known, Gy and Gy

can both be obtained from measurements in small deformations.

Results

We have tested the hypothesis contained in eq 8 on several materials for
which the necessary information could be found in the literature. These materi-
als were butyl rubber (IIR), natural rubber (NR), styrene-butadiene rubber
(SBR), crosslinked cis-1,4-polybutadiene (PBD), poly{ethyl acrylate) (PEA), and
poly{dimethyl siloxane) (PDMS). The values of G§ for these polymers were

obtained from J§ = 1/ G§ as given by Ferry’, except for PEA which was taken
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from Janacek? et al. The values are listed in Table 1, together with estimates of
Gy which were secured in the following manner. For each material, values of Gy
and Gy were obtained for several crosslink densities. If our hypothesis is
correct, then Gy is independent of the latter. Hence the values of Gy were aver-
aged. These averages are shown in Table 1 as Gy. together with their standard
deviations (s.d.). For SBR we obtained Gy and Gy from eq 2 using our own data.
For the other materials we used published values of the constants 2C, and 2C;

of the Mooney-Rivlin equation
oy = 2C, + 2Co A . (7)

References are listed in Table 1. From reference 6, we selected only those sets
which represent variations in crosslink density.
Table 1
Gy and G§ for Different Rubbers

Rubber Gy (MPa) s.d. N GR (MPa) Ref
PEA 0.0612 0.0185 5 0.160 5
PDMS 0.0764 0.0241 11 0.119 8
IIR 0.108 0.0143 3 0.288 7
NR 0.185 0.0513 37 0.575 6,8
SBR 0.244 0.0191 3 0.778 1
PBD 0.43B 0.135 11 1.148 8,9

To obtain Gy and Gy we first calculated pairs of values of oy and 1/A in the
interval 0.5 < 1/X < 0.8 at increments of A (1/X) = 0.05, using eq 7. We then used
those pairs to obtain Gy and Gy from eq 2. A plot of oy calculated from eq 7 is
not linear in ¢,,(A). However, in the interval 0.5<1/A<0.8 the departure from
linearity is indistinguishable within the usual experimental error. Details of the

calculations are tabulated elsewhere.!®
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A plot of Gy vs. Gf is shown in Figure 1. The slope of the straight line gives £
as 0.354. The line is the line of best fit to the natural rubber data. The error
bars represent limits of +1 standard deviation. The errors result from a
nﬁmber of sources such as differences in sample preparation, vagaries in the
determination of the Mooney-Rivliin constants, differences in the times used.to
establish equilibrium, etc. Figure 1 suggests that, for the other five materials, £

is the same as that for natural rubber within +1 standard deviation.

Any crosslink density dependence of Gy, if it exists, would be hidden within
the error bars in Figure 1. To determine if Gy is indeed independent of crosslink
density, a plot of Gy as a function of the latter would be required. Since for most
materials, the crosslinking reaction is not stoichiometric, we decided to use Gy .
as a measure of crosslink density instfaad of the amount of crosslinker. _It is
shown in another publication® that in crosslinked polymers Gy relaxes to its
equilibrium value much faster than Gy. If any long-time relaxation processes
persist, i.e, it is difficult to attain elastic equilibrium, the quantity that has not
relaxed to equilibrium would be Gy. Since G=Gy+Gy, the ratio Gy/ G can be
expected to minimize any lack of equilibrium. Also, as shown in the néxt section,
Gy depends more than Gy/ G on network imperfections such as loose chain
ends and the presence of a sol fraction. We therefore attenipted to reduce the
scatter by employing the ratio Uy=Gy/ G, instead of Gy. The quantity f‘y may be
viewed as the mole fraction of "equivalent crosslinks” modelling the effect of

topological constraints.!! Using eqs 5 and 6 it becomes

__ Gv _ _ _tGh |
VN—GX"-GN—GX'"fGﬂ (8)

which may be rearranged to

Gx

1 -
——=14¢ =
Un ¢ GH
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(9)

The latter form is convenient in assesing the effect of crosslink density, as

reflected in Gy.

The plot according to eq 9 is shown in Figure 2. The solid line is the line of
best fit to the natural rubber data, the slope yielding £=0.354. A few of the

natural rubber data were omitted from the plot for clarity of presentation.

Figure 2 strongly supports the validity of eq 8. It also suggests that ¢ is
independent of the nature of the polymer. A closer examination of the data
reveals, however, that although eq 9 is obeyed within experimental error by all
polymers examined, the main premise underlying that equation, namely,
Gy=£GR. sometimes appears not to be valid. A plot of Gy vs. Gy for various
natural rubber networks studied by Mullins et al.!?, is shown in Figure 3. The
data indicate that Gy may be weakly dependent on crosslink density. We found
this dependence to be due to the presence of loose chain ends in the network. As
we will show in the next section, the crosslink density dependence of Gy disap-

pears when this is accounted for.

The Loose End Correction

According to Flory'$, the number of moles per unit volume of elastically

active crosslinks, vy, is given by
vy = vy (L—-2M/ M) (10)

where v;**™ is the number of moles of chemical crosslinks per unit volume put
in, M, is the molecular weight between crosslinks, and M, is the number average
molecular weight of the polymer before crosslinking. The modulus due to the

presence of chemical crosslinks is then given by
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Gy= ZvyRT (11)

The volume fraction of loose ends, vy, is given by

M

T Wty “e

Vg

Therefore, if networks haﬁng the same vy (and thus the same M) were
prepared with differing M,. one would be able to determine the effect of loose

chain ends on Gy. Mullins et al.!? report stress-strain data on such networks.

As shown in a previous publication,!, in a swollen network the true stress

referred to the swollen, deformed area may be represented by

= Gx‘Ué/a ()\2-—)\“) + g_’%!_vé—mi-s)la ()\m _}\—m/'t.’) (13)

where v; is the volume fraction of the polymer. For v; close to unity, the dilu-
tion effect on Gy is minimal, while Gy varies linearly with the concentration of
network chains. Since at equilibrium the loose ends would act like a diluent, Gy

corrected for loose ends is given by

Gy

corr —
GN 1 -y

(14)

In Figure 4, Mullins’s data are plotted according to eqs 10 and 11. The

straight lines represent the least squares fit to the data. The intercept yields
the quantity Gy(¥, =m)=—é—vaT, and the slope divided by Gx{M,==) yields 2Mc.
Using eqs 12 and 14, one can calculate the Gy values corrected for loose ends.

Mullins's network designated by B was left out of our analysis because the data

on this particular network were badly scattered.

Gy vs. Gy plots are presented in Figure 5. As can be seen, there is no
clear trend in the data, and GfP™ appears to be indeed independent of crosslink

density.
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Conclusions

In this paper we have examined the validity of eq 8, which suggests that the
modulus characterizing the topological constraints is independent of crosslink
density, and that all the information which differentiates the topological
environment of a network can be obtained from the uncrosslinked polymer. One
important implication of the validity of eq 8 concerns the concept of trapped
entanglements. If the nature of Gy were related to trapped entanglements, its
crosslink densit} dependence would be more pronounced. Our analysis implies
that the nature of Gy is related to a decrease in the configurations available to
the network chains as compared to their phantom counterparts. This is implied
by the fact that the topological environment of the uncrosslinked polymer is

carried over to the crosslinked counterpart.

Although in form the preceding theory appears to be similar to the theory
of Langley,'* it is in fact quite different. The latter theory has been discussed at
length by Queslel and Mark!®. In the Langley theory, one has no way of separat-
ing the effect of topological constraints from the phantom network, because the
strain dependence of the constraint network is unspecified. Therefore, the con-
clusions one would draw from the Langley theory are dependent on the assump-
tion made about the relation of the chemical composition of the network to the
modulus due to chemical crosslinks. In our theory, no such assumption is neces-

sary, because we obtain both moduli from experimental data.

We would like to point out that the conclusions we have drawn are not
expected to be valid near the gel point. We have alse based all of our conclusions
on data on randomly crosslinked, tetrafunctional networks. Major differences
are not expected for end-linked networks. The value of { would probably depend
on network functionality. Most of the available data on networks that are not

tetrafunctional are on PDMS. Unfortunately, PDMS has a very low G§ so that the
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values of Gy would be relatively small. This fact precluded the study of func-

tionality dependence of £,
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I.MOLECULAR DESCRIPTION OF STRESS RELAXATION IN POLYMER NETWORKS
Introduction

In a previous publication! we described a two-network potential for
moderately large deformations of rubberlike materials at mechanical equili-
brium. Using published data, we showed! that the potential is constitutive in the
narrower sense, i.e., it is capable of describing equilibrium deformations in
different stress fields with the same set of material parameters. The potential
was derived from simple considerations. In the present paper we develop a
theory for the time dependent behavior of crosslinked networks, again in
moderately large deformations. Our approach is based on the ideas developed by

Doi? and, for ease of reference, we usemuch of the same notation.

We first tormulate the theory and then proceed to a discussion of it using

published data as well as our own obtained on styrene-butadiene rubber (SBR).

Theory

We use the mean-field approximation to formulate a molecular picture of
the dynamics of crosslinked polymers. We consider the properties of a single
chain embedded in a continuum formed by its neighbors. The interaction of' the
chain with its neighbors are modelled as interactions with this continuum. In
this way, we reduce a multi-chain problem to that of a single chain. We also
assume that the molecular motions of the chains result solely in changes in
configurational entropy, i.e. there are no enthalpic interactions between them.
These two assumptions are implicit in most theories describing the equilibrium
and time-dependent properties of both crosslinked and uncrosslinked polymers

in the rubbery region.

Consider a network chain terminated in chemical junction points at both of

its ends. At any instant in time, the chain is confined to a certain configuration
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by its neighbors. When deformed, it must move in the field so defined. To
describe the eflects of its neighbors on the chain, we place N slip links along its
length as shown in Figure 1. Let the chain segment between two slip links be
modelled by N, Rouse (bead-and-spring) units with mean-square separation b?.
Let ¢ denote the friction coefficient of the Rouse units. Let the total number of
Rouse units between two crosslink points be denoted by Ny, and let a be the dis-
tance between two slip links. The complete sequence of Rous-e units is called the
primitive chain. It has the same end-to-end distance as the real chain which
wraps around the primitive chain. Let its contour length (called the primitive

path length) be denoted by L. With the definitions given above, we have
N = No/ N, (1)
and
L =aN = Ngb%/a (2)

The slip links have been introduced merely as a mathematical convenience
in modelling the effect of the surrounding chains. We do not necessarily imply
physical entanglements, although our model could not differentiate between
entanglements and other types of topological interactions which restrict the

configurations of the chain in space.

To allow us to describe the dynamics of the chain mathematically, let r,(t)
be the position of the nth Rouse unit at time t, and let Ry(sq(¢):t) be the vector
defining the curvature of the primitive chain at point n, where s,(t) denotes the
arc length at the same point measured from the first {(r=0) segment. To
represent the wriggling motion of the chain along its primitive path, denote

rn(t) as
In(t) = Ry(sa(t)it) +dn(t) (3)

where d,{t) is a vector normal to Ra(sp(t)it) at s,(£). Then, s,(t) and d,{t)
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represent the wriggling motion in the longitudinal and transverse directions,
respectively. The relaxation of d,(t) corresponds to the relaxation of the Rouse
units between two slip links. The relaxation of s,(t) describes the relaxation of

the primitive chain between two crosslink points.

Stress Relaxation

It will be assumed that when a macroscopic deformation is applied to the
polymer network as a step function of time, all junction points and slip links
first move affinely with the deformation. They can then move further during the

two relaxation processes just discussed.

(a) Relaxation of d,(¢)

The relaxation of dn(t) corresponds to the transverse wriggling motion of
the chain. The mathematics of this process for an uncrosslinked polymer has
been described in detail by Doi.? In the time scale of this motion, the crosslinked
polymer relaxes in exactly the same way as the uncrosslinked polymer, since the
length a of the relaxing unit is much smaller than the the length between two
crosslinks (Ngb). Therefore, the true stress resulting from the wriggling motion

is the same as that given by Doi, and we have

Bap(t) = Bc(No/ NeaT[1+ 3 ezp (—tp%/ 74)] < (P)e (Fu)g>a = Pbog  (4)
p=1

where 74 = NE is the largest relaxation time associated with the relaxa-

2
8m%kgT
tion of d,(t), k5 and T have their usual significance, ¢ is the number of network
chains per unit volume, F is the deformation gradient tensor, and u is a unit

vector with random orientation, defined by
u = ( cosd , sin?d cosy , sin® sing ) (5)

The average over u is defined by
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<de= o I fu"(....) sindd 8 d¢ (6)

(b) Relaxation of s,(t)

Again following Doi, we assume that the relaxation of s, (t), corresponding
to the longitudinal wriggling motion of the chain, can be described by the equa-

tion for the free Rouse chain.? We have

Bsp(t)

= 2)
¢ T (3kpT/b

Falt) | poe) )

where f,(t) is a random force assumed to be Gaussian, characterized by the

moments
<fa(t)>a=0 and  <fult)fm(t')>u=R¢kpTo(n-m)s(t—t) (8)

Equation 7 is the continuous form of the diffusion equation for the Rouse

chain.3 The Cauchy stress tensor is then given by

Taplt) = (3ckgT/ b?) jN°<61',;;ft) ar,;ft) S>edn — Pl (9)
: 0

where P is the hydrostatic pressure required by the underlying assumption of
incompressibility. The approach taken here differs from the original theory of
Rouse in two important points. In the Rouse theory the boundary conditions at
the chain ends are 8s,(t)/8n=0 at n=0,N,. As discussed by Doi and Edwards*, a
fictitious tensile force Fyq must be assumed to act at the chain ends. If this
force were absent, the polymer chain would soon break free of the slip links and
assume configurations that would allow it to interpenetrate with the surround-

ing chains. For an uncrosslinked ;Solymer the average magnitude of this force is

SkpT
Fug = —

= (3kgT/ b%) <2‘{‘,,(-?- >a n=0,Np (10)

It follows from eq 10 that
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<sn()> b

an e ;—=l" n=0,Ng (11)

which implies that the primitive path length of the chain is equal to its equili-
brium length, L = INy, after s,(f) has relaxed. In other words, the chain eventu-
ally shrinks back to its undistorted length. In the case of a crosslinked polymer,
the chain cannot shrink to its undistorted length because the chemical junction
points will restrict its movement. The amount it can shrink will be assumed to
be proportional to the macroscopic deformation. Therefore, the beundary con-

ditions, eq 11, must be replaced by

s, (t -
<—S%(L—-z—>,=z <|Pu|>y! n =0,Np (12)

where z is a proportionality constant. Equation 7 and the boundary conditions
given by eq 12 describe the dynamics of the chain between two chemical junc-

tion points with the stress given by eq 9 or (see Appendix 3), equivalently by,

Oap(t) = (3ckpT/ b2 _/‘;Nu(<l,,(t)>..)2 <Vnalt) Vap(t)>qdn — Pbgg (13)

where
(e = Zokt) (19)
and
_ BR,(sa(t)it)
= e (15)

To evaluate the integral in eq 13, one needs to rewrite eqs 7 and 12 in terms of

<l,(t)>q Note that, by definition,

at ot on _omn ot (16)

Substituting eq 7 into eq 18 and taking the average, eq 7 becomes
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a%-a,,(t»,: (3kpT/b?) ‘5?’;5'<ln(t)>n (17)

with the boundary conditions
<(t)>p= 2z <| Fu > n=0,Ng (18)
and the initial condition
< (0)>p =1 <| Fru |>g=1a(F) {(19)

Equation 19 is the mathematical equivalent of the statement that the slip links
and the chain segments between them deform affinely with the macroscopic
deformation imposed at £=0. Equation 17, subject to eqs 18 and 19, can be

solved by the standard method of separation of variables. The result is

<, (t)>a =Ta(F)(1 —z)p?“péﬂ sinp;:‘ exp f:t + 2la(F) (20)

where the largest relaxation time, 75, is given by

= _{_b_z__.Nz (21)

BT SnfkgT

This is twice the longest Rouse relaxation time. Note that egs 17 or 7 can be
solved only for the average of s,{t). This results in the loss of the effects of the
random Gaussian force on the stress. Because the fluctuations of s, (¢) are con-
sequently not taken into account, eq 13 is true to a first approximation only. It
is relatively easy to account for fluctuations in eq 13 but s,(t), rather than its
average, can be calculated only as -+« Therefore we can assess the effects of
the random force on stress only at equilibrium. This problem is addressed and
discussed in detail in Appendix 3. It results that the expression for the stress
given by eq 13 lacks a second term whose time dependence is not known. We

therefore add it to eq 13 in its equilibrium form. This yields
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Gop(t) = (BckpT/0? [ U(<bp(£)>0)® Vg Vng>a dn
0

+ G <Vpa Vng>u — Plgg (22)
Using eq 20 we obtain
Oaglt) = Gx(t)Bag + GenQap — Ploag (23)
where
Gx(t) = (cNokpT/ No) z° f (t) = Gx [ (t) (24)
in which
0= § it i e -2 (25)
Qupg = VnaVnpPu = <-(-]E'-‘I!%l(—ll—?}l)—‘i~>, (26)
and
Bog = 3Qag0*(F) = 3 <(Fu)q (F-u)g)>y (27)

In obtaining @,s from eq 22, we have made use of Doi and Edwards's independent
alignment assumption, and the fact that <vp, Vag>y has not yet relaxed and
hence is constant. The eigenvalues of B, the Finger deformation tensor, are
By = AZ. Hence, the first term in eq 23 can be evaluated. The second term, how-
ever, can only be obtained analytically in case of a uniaxial deformation. For

uniaxial tension, eq 23 becomes
F(t) =7, (t) —Tpa(t) = Gx(t) (B11—Bee) + Gon(@11—C22) (28)
where
By1—Bgz = Ne~1/A (29)

and
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sl A [ ten VAL 2
Q11—@e2 = ?{)\3—1 ll B, i - 5-] (30)

The expression for §,,—ez has been adjusted by a numerical constant of 5/ 3to

yield 2 modulus of 1 as A-+1.

We now adduce evidence that eq 23 results from a potential that appears to
be constitutive in the narrower sense!. We then generalize it to different strain

histories. As t -»=, eq 23 yields

Ea‘:-' GoXB¢p+ G‘NQa,—PtSap i (31)
and in uniaxial tension
oy = Gox + Guwpp(N) (32)
where
_ 011 =022
W= AT (83)
and
@1, — 0,
#o(N) = g (34)

In eq 34, the expression for @;,— @z is given by eq 30. A plot of equilibrium
uniaxial tension data according to eq 32 yields a straight line with slope Gy and

intercept Gy.

Ye plotted the equilibrium simple tension data® of Kawabata et al. accord-
ing to eq 32 to obtain the two moduli. We then used those values together with
the appropriate expressions for B,s and @qs to predict their data for pure shear
end equibiaxial tension. The predictions of our theory for equibiaxial tension
were obtained using its predictions for compression, since the two deformations
are equivalent for an incompressible material. The expression for @;;—@z in

uniaxial compression can be evaluated as
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_15] A [tanhVIA® ] 1
Qu—Qe2 =3 | ViRl 1 3] (35)

The averages involved in evaluating @ug in the case of pure shear were obtained

by numerical integration of eq 26 using eq 6.

In Figure 2, we have plotted the predictions of eq 31 together with the
experimental data of Kawabata et al. In the figure, the ordinate shows the nor-
mal stress differences obtained from the data, and the abscissa shows the pred-
ictions of the theory. The agreement between the experiments and the theory is

excellent, and suggests that eq 31 results from a constitutive potential.

An Approximate Strain Function

To avoid the need for numerical integration, we suggest a simple expedient.

let the eigenvalues of Q be given by

@ =Aa %ﬁ‘ a=1,23 (36)
where
w = (2/m?) (AP + N\ + Af* - 3) (37)

is the normalized form (¥/ G) of the BST potential! with n replaced by m. A fit

of
@11 — @2z = (2/m) (A —A"™/) (38)

to eq 30 over the range 1 < A <2.5 by a nonlinear least squares procedure yields

m=0.34, Combining eq 37 with the (normalized) nechookean potential
w = (1/2) \f + M + \§ - 3) (39)
yields the 2NW potential

W = (Gex/2) (A2 + AF + A —3) + (RGn/m?) (A + AF* + \I* - 3) (40)
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which we have shown elsewhere! to be constitutive for deformations in elastic
equilibrium in a certain range of deformation. In uniaxial tension, the range is
1 = A <2.5. This is the range over which the upswing in the ¢ vs A curve is not
observed. We have called such deformations moderately large. The expedient we

are suggesting is, therefore, applicable only for moderately large deformations.

Currie et al. have given® an expression for the potential from which the ten-

sor Q can be obtained. It does not satisfy the Valanis-Landel! hypothesis. In
other words, the potential wp which, upon differentiation, would yield Q is not of

the form

wp = wi(A) + wi{A2) + wi(As) (41)

The expedient wé suggest does satisfy this hypothesis. It must therefore be con-
sidered to be a purely mathematical one, and must be justified by comparing

the mathematical predictions for the stress in both cases.

We demonstrate the close agreement between the two predictions in the
case of uniaxial tension, pure shear, and equibiaxial tension. In uniaxial ten-
sion, the two stresses agree to better than 1% over the range 1 <A <2.5. The
corresponding range would be 1 <A <1.5 for equibiaxial tension and 1 <A <22
for pure shear. The maximum stretch ratios, 1.5 and 2.2, were calculated from
the iso-wp lines® on a plot of /; vs. I, where /; is the first, and /; is the second
invariant of the Finger deformation tensor. When the neohookean potential is

used for w, these values do not change significantly.

The agreement is demonstrated in Figure 3. The parameter Uy is the ratio
Gyn/ G. For most rubbers encounteréd in practical applications, Uy falls in the
range’ 0.3 < Uy < 0.7 The largest deviation observed in Figure 3 is 10% for vy=0.7
in equibiaxial tension. The expedient we have suggested appears, therefore, to be

satisfactory for most crosslinked networks.
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Since the two expressions agree to within 1% in uniaxial tension, we will dis-
cuss the time dependent data in uniaxial tension in terms of eq 40. Fquation 23
has been derived for the stress response to a deformation applied as a step
function of time. Extension to arbitrary time histories is straightforward. Using
eq 3B, eq 23 gives

o(t) = Gx(t) W2 =X"1) + (RGw/m) (A™ —A™/2) (42)
in uniaxial tension. Figure 4 shows f (¢) given by eq 25 as a function of logt for
two different values of the relaxation time 75. It clearly shifts linearly with 75

along the logarithmic time axis. Consequently, eq 42 can be generalized to other

strain histories in uniaxial tension by
a(t) = [ Gu(t—u) E%D@(u)—k“(u)] du + (2Ga/m) (A™ —A"™/2)  (43)
0

Equation 43 is the time dependent form of the 2NW potential applied to uniaxial

deformations in arbitrary strain histories.

Although our theory does not predict the time dependence of Gy, we make
the assumption that it also satisfies the Boltzmann superposition principle.

Therefore we replace eq 43 by

3(t) = j:Gx(t-u) -&%—[Az(u) ~Al(2)] du

+@/m) [ Gt ) o MW -Mw)™¥ du (44)

This is the most general equation describing the time dependent behavior of
rubber networks in moderately large, uniaxial deformations in the framework of

our theory.
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Experimental Procedure

To investigate the time-dependent properties of polymer networks experi-
mentally, uniaxial tension measurements were made on a styrene-butadiéne
rubber sample designated as SBR 6. Its equilibrium stress-strain curve has been
reported elsewhere.! The sample and specimen preparation methods are sum-
marized in Appendix 2. The experiments were performed on a Floor .Model
Instron Tensile Tester equipped with an environmental chamber cooled with
-liquid nitrogen. The data were taken at -37.59C. The temperature was monitored
continually during the experiment by a thermocouple. The maximurm deviation

observed was 0.2°C.

To test the validity of the équations we obtained in the theoretical sectiﬁn,'
we needed stress relaxation data recorded at different elongations. To obtain
these, we would have had to conduct stress relaxation experiments at a given
elongation, let the specimen relax for about 30 hours at roocm temperature, and
repeat the procedure at another elongation. We were able to reproduce a given
temperature 1n our environmental chamber only within two degrees. Hence,
data taken under these conditions would require time-temperature superposi-
tion, Since, it is not clear whether this is permissible in large deformations, we
devised a different procedure. We extended a specimen to a specified elongatien,
let it relax for about 30 minutes, and then increased the deformation as
required. This method eliminates the problems associated with time-
temperature superposition but requires special processing of the data which will

now be discussed.

Stress relaxation measurements were made as a step function of time. For
a number of uniaxial steps superposed on one another, the time- dependent

elongation ratio is given by
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X‘(’U) = 1+’£ (kj "Aj-l) h(u —tj) (45)
=1
where A (u—-t,-) is the unit step function applied at w={;, A; is the jth elongation
ratio referred to the rest state, f; the time at which the jth deformation is

applied, Ag=1 and £, =0. With these definitions eq 45 implies
M) =1+ 3O =N h(u—t) (46)

where n will take the values 2,m, ~1, -m /2 as required. When substituted into
eq 44, eq 46 yields

a(t) = ;5 S Gelt ) [OF M) — 7 -A4] S —ty)

+ (zxm.)jzﬁl Jowt ) [P AR = ™2 N Suty) du (47)

where §(u—£;) is the delta function acting at w=t;. Performing the integration

and obtaining 7;(t)—6;—;(f) from eq 47 we find

Tilt) —Ta(t) = Gt —t) [(M —2NE-y) — (M =AY

+ (27 m)Gu(t —t;) [(N*—A) - (W™ 2-NT3)] (48)

This furnishes the stress in the ith experiment carried out at elongation A4, from
which the residual stress left over from the preceding experiment at the elonga-
tion A;-; has been subtracted. The response to a series of step elongations is
shown in Figure 5. The residual stress is, of course, not known since it has not
been recorded. If we could predict it, ;(t) —5;;(¢) where A; has been applied at
t;, would be completely equivalent to @{f) However, we cannot do this at this
stage. Instead, if the interval ¢;—¢;_, is large enough so that the residual relaxa-

tion is negligible, we can write with excellent approximation,
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Tt H") — T (b+8]) = Tt +8) —Tia(8s) (49)
where
t =t 0s s (bn~t) (50)

The £"s can, in general, be selected at will. We make them all equal, however, to
insure that the stress in each experiment represents the same state of relaxa-

tion, i.e. that it is isochronal. Substituting
t =t =t = .. =t (51)
into eq 50 and the result into eq 48, we obtain

Ti(ti+t ") — 0,4()
(AE-AE) ~ (N =N

= Gu(t )P\ ) + Gx(t") (52)

oui(t’) =

where

_ 2[R-AE) - AT
YO = E N — I A)

(53)

and m=0.34. The symbeol oi(t") is the equivalent of the Mooney stress at the
isochronal time £’ in the ith experiment. Equation 52 implies that a plot of
ouit’) vs ¥(A) yields a straight line with slope Gy(t*) and intercept Gx(t").
Data plotted according to eq 52 are shown in Figure 8 for three different iso-
chronal times ¢ °. The linearity of the plots indicates that our procedure for data
reduction is adequate. The plots were constructed by taking isochronal cuts
from Figure 7 which represents o;(f —£;;\) as a function of t in logarithmic coor-
dinates. The symbol o¢(t —£;;\;) refers to the nominal stress at the indicated time

and elongation.

Figure B compares the time dependence of Gx(t) obtained from these
experiments with the time dependence predicted by our theory. The prediction
requires knowledge of 2% and 7p. The parameter z? was obtained from eq 24

which gives
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G
g X
® = SkgTNo/ N, (54)
But
ckpTNo/ N, = pRT/ HX (55)

where p and R have their usual meaning, and M is the molecular mass of a seg-
ment between slip links in the crosslinked network. In a previous publication,’

we have shown that
Gy = EGR (56)

where the value of ¢ has been estimated as 0.354 for a tetrafunctional undiluted
network. Gf is the plateau modulus of the uncrosslinked polymer which has a

value of 0.778 MPa for SBR.2 Equation 56 together with eq 27 of Appendix 3 imply
pRT/ HZ = £GY (57)
which, using eq 54, allows us to estimate z®.

The value of log T = 1.70 was obtained by shifting the theoretical curve

onto the experimental points. Equation 21 can be scaled to yield

_ (¢o?) (aoZV2

8 3tk T

(58)

in terms of monomeric parameters. In eq 58 {; is the monomeric friction
coefficient, Z is the degree of polymerization, and a, is the monomer length. If
one calculates Z from the equilibrium value of Gx(t) as G,y = pRT/2HM;, and
uses the published values® for {; and ag, one obtains 75=1.78, in excellent agree-

ment with the experimental value.

Figure 9 shows the experimental time dependence of Gy(t). Although from
our theory we predict its existence and its strain dependence, we cannot predict

its time dependence. Knowledge of the linear relaxation modulus of the polymer
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is required before one can predict its nonlinear time-dependent properties.

As a further test of our theory, we examine its predictions when it is applied
to different strain histories. We consider two strain histories, namely constant
rate of strain, and trapezoidal excitation. The experimental data were taken

from the work of Bloch, Chang, and Tschoegl.®

Constant Rate of Strain

For a deformation in uniaxial tension at a constant rate of strain &, the

time-dependent extension ratio is given by
Mu)=1+éu (58)

Substituting this into eq 44 we obtain

o(ti8) = 26 [ 'Gylt —u) [(1+éu) + 0.5(1+iu)2ldu
0

+28 [ Gyt ~u) [(1+5u)™! + 0.5(1+éu) D 2]dy ~ (80)
: 0
where ¢ has been shown as a parameter in the symbol for the stress to distin-

guish the deformation from stress relaxation.

From the near equilibrium stress relaxation data at different levels of elon-
gation reported in reference 9, we obtained the parameters required for our
theory as follows. We took an isochronal cut at 10 minutes, and piotted a(t*) as
a function of A. We then used eq 52 with i=1, to obtain Gy(t*) and Gy(t ), where
t°=10 minutes. We found Gy(t *)=0.102 MPa and Gy(t *)=0.193 MPa. SBR allowed
to relax at room temperature for iD minutes is close to elastic equilibrium.
Thus, we obtained logTp=-5.63 min. and 22=0.371 from Gx(t "), using eqs 54 and
58. The sum of the two moduli G=Gx+Gy is different from the estimate pf the

linear shear modulus, given by Bloch et al. This is due to an error in their data
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reduction scheme,'® and associated with converting from engineering units to SI

units. Our estimate of G fits their data using their theory.

Bloch et al. approximate the linear shear modulus of their sample using the

equation

G

G(t)‘:G. + m

(81)

with G,=0.249 MPa, G=1.356 MPa, 7=6.8x1077 min, and k =0.1848. Once again the
values reported here differ from those of reference 8, by a constant factor. In

terms of our theory we have

Gy = Goy + Gay (62)
with Gx=0.102 MPa and G,5=0.1470 MPa, and we approximate Gy(t) by

G

TP )

Gn(t) = Gy +

Note that we have taken Gx{t) equal to its equilibrium value. As seen from Fig-
ure 4, relaxation of Gy(t) is complete when logt is greater than log Tp+1.
Experimentally, in relaxation at a constant rate of strain, the relaxation time of
order {(1/¢) is the most heavily weighted one. The highest strain rate used in
reference 9, 4568 min™!, correponds to a time of 0.22 min. That is several
decades longer than Tp, and therefore the relaxation of Gy{t) is not observable
in the experiments. We make the same assumnption in eq 80 also, and set
Gx(t —u)=G,x. Using eq 63 for Gy(t), we integrated eq 60 for the given strain
rates. The trapezoidal rule, with 500 subintervals, was used for the second term.
No appreciable difference was observed in the results when the number of subin-
tervals was increased to 1000. Figure 10 shows the experimental results of
Bloch, Tschoegl and Chang together with our predictions. The agreement is very

good.
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Trapezoidal Excitation

We now consider the following deformation. Impose a constant rate of
strain £; from £=0 to £=t,. Let the sample relax at that elongation until £=t,,
and impose another constant rate of strain —é in the opposite direction. The

excitation function thus has the shape of a trapezoid. The time-dependent elon-

gation ratio is now given by
Au) =t +éuh(u)—é (u—t)h(u~t,) - (u—ta)h(u—tz) {64)
Substituting eq 84 into eq 45, we obtain
o(t)=d(t:e;) O=tst, (65)

where (¢ ;£,) is given by eq 60, and

a(t) = o(tit 1) = Gax [N3(£1)-A7N(20)]

+26, [ Gy(t—u) [(1+su)™ + 0.5(14bu)MBRldu £, <t sty (66)
4]

T(t) = Bt t1.81) + Gax [NF(E)-AT1(E) A%t )+A7)(8))]

+ 285 [ fan(t —u) [(Ap(u))™ ! + 0.5(Ap(u)) ™ 2)du  tp <t (67)

In egs 85 through 87 7(t;:£,) is given by eq 68 and
Ap(u) =1 + &8y — Eg(u—t2) (68)

To obtain the stress resulting from this deformation, we used eqs 61
through 83 in eqs 85 through 89. Figure 11 shows the data of Bloch et al. and
our predictions as stress plotted as a function of time in logarithmic coordi-
nates. The value of &; we used for our predictions is 1/10 of the strain rate they

report, a difference attributed to typographical error.!® Since the plot in Figure
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11 is logarithmic, it is not very sensitive to differences between experiment and
theory. Therefore, we calculated the elongation ratio and the stress from the
strain rate and plotted the results in Figure 12 together with the data of Bloch
et al. The agreement between our theory and the experimental data is again

excellent even in this more sensitive plot.

Conclusions

We have developed a molecular theory which describes the time-dependent
properties of rubber networks. The theory predicts a two term potential which
determines the stress-strain properties of the network. The first term of the
potential has a modulus G,x associated with it at equilibrium. This term arises
from the change in the average path length of the primitive path. The predicted
stress-strain behavior is nechockean for this term. An expression for its time
dependence is also obtained. The second term of the potential, which has a
modulus Gy associated with it, arises from segment length fluctuations. It has a
complicated strain dependence which requires numerical integration in all but
uniaxial deformations. We have shown, however, that the simple BST potential

furnishes an adequate approximation.

The resemblence of the obtained form and the interpretation of its parame-
ters bears a striking resemblence to the equilibrium theory of Flory and

Erman,!! although the route we have chosen is quite different from theirs.

Our molecular picture for crosslinked networks is based on the ideas intro-
duced by Doi.? Thus, we would like to compare our predictions with Doi's predic-
tions for an uncrosslinked polymer. In the uncrosslinked polymer, the relaxa-
tion process corresponding to the relaxation of s,(t) is not. observed in
infinitesimal deformations. It becomes activated at large strains, and manifests

itself in a hump in a plot of log ot ) vs. log ¢. Furthermore, time-shift invariance
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is not preserved when this relaxation process is activated. All of these predic-
tions are in accordance with the stress relaxation data of Nordermeer and

Ferry.1®

An examination of egs 23 through 31 reveals that in a crosslinked
network,the restrictions that are imposed by the chemical junction points on
the movement of the chains results in a picture that is qualitatively different.
First, our theory predicts a plot of log o{t) vs. log ¢ which is monotone non-
increasing for a deformation applied as a step function of time. Also as A+1, we
obtain o(t)=3G(t)¢ in uniaxial tension, where G(t)=Gy(t)+ Gy(t). Conse-
quently, one can use the information obtained in linear stress-relaxation experi-
ments to predict nonlinear, time-dependent behavior. Second, when the poly-
mer is uncrosslinked, the chains can escape from their constraints and attain
random orientation after the relaxation of s,(f) reaches equilibrium.Such a
reptation motion is impossible in a crosslinked network, because of the pres-

ence of the chemical crosslinks.

The effects of segment length fluctuations are not considered by Doi in the
nonlinear deformation region. Graessley'® points out that such fluctuations
would compete with the reptation motion. This is not a problem for a mathemat-
ical description of the crosslinked network. Thus, the nonlinear stress-strain
behavior of crosslinked networks is predicted to be less complicated than the

behavior of the uncrosslinked polymer.

We consider it to be the outstanding feature of our theory that it allows one
to use the information gleaned from stress-relaxation experiments in
infinitesimal deformations to predict nonlinear, time-dependent stress-strain

behaviorin moderately large deformations.
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Figure 1: Schematic of the model of the polymer chain.
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Time dependent theory compared to data.
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Figure 3: Comparison of the full tensorial form of the strain

function with the BST potentisl.
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Figure 12: Response of SBR to a trapezoidal function of strain.
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Appendix 1
This appendix gives a mathematical description of admissible deformations,

and the related deformation gradient tensors. A schematic defining the various

vectors and tensors mentioned here, is supplied in Figure A-1.

Let the material points of a continuum occupy a region B before deforma-
tion. The position of a material point P in this region can be specified by a vec-
tor P with the cartesian coordinates X;, Xp, Xg. Let B be mapped into region b,
and P into p, as a result of the deformation. Denote the position vector of point
p with p, and let it have the cartesian coordinates z,, zz z3. Mathematically,

using indicial notation, this mapping can be described as

Zy = Y {X1.X2.X3) k=123 (A—l)
or the inverse mapping by

Xx = Y(z,.T2.%3) K=123 (A-2)

The deformation is admissible if the mapping is one-to-one with a nonvan-
ishing Jacobian. Yx and y, are then inverses of each other. Note that the condi-
tions of admissibility express the fact that matter is indistructible, i.e. no region
with a finite volurne is mapped into one with infinite or zero volumie, and that it
is impenetrable, i.e. the deformation carries curves into curves,surfaces into

surfaces, and a region into another region.
Equations A- 1 and A-2 imply
dry =ypx dXxg . dXg = Ypi dz (A-3)
where a comma indicates partial dﬁérentiation.

If one now defines the differential position vectors in both systems, one

obtains
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dp=dr, iy . dP=dXgly (A-4)

and
(ds)? =dpdp = 8y dz, dz; = dz dz, - (A-5)
(dS)? = dP-dP = g dXg dX; = dXyx dXi (A-6)

where ds and dS are the line elements in the two systems, and iy and Iy are the
unit vectors of the coordinate systems. Substituting eq A-3 intc eq A-4 one

obtains
dp=cydr, ., dP=CgdXy (A-7)
where
a=Yaly . Cx=trxi (A-8)
Substituting eq A-7 into eqs A-5 and A-8, one obtains
(ds)® = Cig dXgdX; . (dS)? = ¢y dz;, dz (A-9)

-

where

oy = . Cg=CgCp (A-9)

and ci; and Cxy are the Cauchy and the Green deformation tensors. Their

inverses are the Finger and the Piola deformation tensors respectively.
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Appendix I1

This appendix summarizes the sample and specimen preparation methods.

The styrene-butadiene rubber networks had the following composition:

SBR 1502 100 parts
antioxidant 1 part

crosslinker variable

The following amounts of crosslinker were added:

SAMPLE CROSSLINKER (phr)

SBR 8 1.02
SBR 2 0.87
SBR 4 0.5
SBR 3 0.3

N-phenyl-2-napthyl amine was used as antioxidant.The crosslinker was Her-
cules Inc. Di-Cup 40, which is dicumyl peroxide supported on calcium carbonate.
The weight fraction of dicumyl peroxide was 40%. This crosslinker was used

instead of straight dicumyl peroxide to facilitate dispersion.

The ingredients were milled on a two-roll laboratory mill cooled with water.
The SBR 1502 was milled for 15 minutes until an even spread was obtained on
the rolls. The antioxidant was then added and the sheet was milled for an addi-
tional 20 minutes. During this process, the roll separation was reduced and
again increased, and the sheet was folded several times both lengthwise and
widthwise to obtain better dispersion. The Di-Cup 40 was added, and the sheet
was milled for 10 more minutes, following the same procedure as in the case of
the antioxidant. Finally, the sheet was allowed to recover at room temperature

for at least 4B hours.
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After the recovery was complete, the required amount of material was
placed in a 15.2 by 15.2 by 0.2 cm. mold and cured at 157°C and 175 MPa for 45
minutes. The press, the mold and the rubber were then cooled to room tempera-
ture overnight. This molding procedure was necessary to avoid the formation of

bubbles in the sheet.

The natural rubber (NR) was obtained through the generosity of the Goo-
dyear Tire and Rubber Company in the form of cis-polyisoprene {NATSYN 2200).
The samples were prepared for us by the courtesy of Phillips Petroleum Com-
pany. The networks were prepared by adding the required amount of dicumyl
peroxide to the rubber. The sheets were then molded at 150°C for two hours. No
antioxidant was added. The amount of dicumyl peroxide used for the various

samples are listed below:

SAMPLE CROSSLINKER (phr)

B 3.44
C 2.31
D 1.13
E 0.77

Specimen Preparation

The same specimen preparation technique was used for both natural
rubber and for SBR. Strips were cut from the molded sheets by a knife-edged
mill blade. The sheets were bonded to the surface of a polyethylene sheet, using
double-sided adhesive tape to facilitate the cutting. The strips had dimensions
of 12 x 0.5 x 0.2 cm. Phosphor-bronze U-tabs were first bonded to the specimen
ends with epoxy resin. After the resin had set, the tabs were removed and were
then reglued using Zip-Grip 10. This procedure was necessary, because the Zip-

Grip did not form strong enough bonds between the U-tabs and the strips
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without the epoxy. To minimize end effects, the tab ends were made to extend
over the specimen for no more than 2 mm. Before testing, the specimens were

allowed to relax at room temperature.

Measurement of Mechanical Properties

A Floor Model Instron Tensile Tester was used in our stress relaxation
experiments. The temperature was controlled through a Missimer's Environ-

mental Chamber. Liquid nitrogen was used if cooling was needed.

The force measuring system of the Instron uses load cells with an accuracy
of + 0.25%.The output of the load cells was observed to be nonlinear and they
were therefore calibrated with several weights before and after an experiment. A
typical calibration curve is shown in Figure A-2. In the figure, the symbols show
the calibration points for the three scales of the load measuring system. The

solid line is the curve fitted to the experimental points.

In some instances the crosshead would creep, i.e. after the initial deforma-
tion, during stress relaxation, the crosshead would move up, changing the initial
elongation. For this reason, the elongation was measured before and after every
stress relaxation experiment. Data sets during which the elongation chanéed

were discarded.

The forces were recorded on a Hewlett-Packard recorder connected to the

load weighing system.
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Appendix Il

In this Appendix we derive the contribution of path length fluctuations to
stress at equilibrium. For completeness, parts of reference 2 have been repro-
duced. Our eqgs A-1 through A-5 correspond to egs 8.1, 6.2, 8.3, 8.5, 8.6 of refer-
ence 2. Our eq A-7 corresponds to eq 8.19, our egs A-8 and A-10 correspond to

egs 8.20 and 8.21, respectively.

Consider a Rouse chain consisting of N, + 1 Rouse segments, rp, 1y, ....... TN,
with its ends n =0 and = =N, fixed in space at the origin and at R, respectively.

Calculate the stress defined by

ﬁ‘ap(t) = (SCkBT/sz JN°< af,;ft) ﬂr,;ft) >n dn "'Pﬁaﬁ (A-1)
0

subject to the initial conditions
r,(0)=Fr , R=FFK (A-2)

where the superscript 0 denotes the quantities before deformation. The equa-

tion describing the motion of ry, is

Bra(t) — ) 3r,(t)
¢ ——= (3kpT/ b? ot

T = + 1 (t) (A-3)

Since rg{t) = 0 at n=0, and ry{t) = R at n=N,, we introduce the normal coordi-

nate xp as
_n 2 /2 ., PN i
ra(t) No R+ (F.—) Zp:xp(t)sm(%v:—? (A-4)

where the time dependence of X, is exponential and decays to zero as f-e.

Using eq A-4 in eq A-1 the integration can be carried out and yields

ﬁap(t) = (BCkBT/bz)[ <R¢R5>- / Ng
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+ )I_:)urm/zv.)2 <ZLpalt) Zpalt) >ul= Plag (A-5)

This describes the relaxation process characterized by 74. At its completion the
second term on the right hand side has decayed to zero. Therefore, the stress

due to a length of chain between slip links is

SckpT
af = W (R‘,R,), (A—G)

Next we show that for £>7, the stress is given by eq 13 of the text. Note that a
chain between two crosslink points has N slip-links, Ry, R;,.....Ry denoting their

positions. Then it follows from eq A-8 that the stress due to the complete chain

is

_ BckgpT
Oag = Bz ﬁ <( Rea=R(i—1)a){ Rrp—R(-1)8)>u (A-7)
Nlb k=1

since Rnow is Rg~Rg-;. We set

<( Bra~Rk-1)a){ Reg—RE-1)8)>a = <VnaVng>aNE <n()>8 (A-8)
for Ne(k—1)=sn< Nk because Vna¥ng ' gives the direction of
(Re —Ri—y)a(Fx —Ri—1)g and Ny<l(t)>y is the averuge length of (Ry—Ryy).
Therefore

! ]
<( Rka—R(k—l)a)( Rkﬁ—R(k—l)ﬂ)>u = Nn N,{:.l)qnavnﬁ>n (A-Q)
A

since v, and [, are independent of n provided N,(k—1)=n<N,k. Substituting eq

A-9 into eq A-7 we obtain

3ckzT b
x j: Vpa¥npulln (t)>E dn (A-10)

ag =

which is the stress due to the change in the average path length. This is eq 13 of
the text.
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As discussed in the text, we cannot write the boundary conditions and the
initial condition in terms of s,. We can only estimate the magnitude of fluctua-
tions on the stress at equilibrium. To calculate the contribution of the fluctua-
tions to the stress, we need to consider the boundary conditions at the chain

ends at equilibrium. By eq 7 of the text, the motion of sp(t) is described by

8%s,

8s.
L= (3kpT/b? o

<‘c3t

+ falt) (A-11)

The boundary conditions at equilibrium result from the requirement that the
chain ends be fixed at the crosslink points. Thus, we write the boundary condi-

tions as
Sn(t)lne =0 S8 ety = Nozla(F) (A-12)
In eq A-12 the random force satisfies
<fal(t)>a=0 and <Fnlt ) m(E)>g = 2Ekp TE(n~m)s(t —t') (A-13)
The following form satisfies eq A-12

sp(t) = nzla(F) + (2/ Ng)/?Y 2, (t) sin (pn/ Ny) (A-14)
P

Substituting eq A-14 into eq A-12, we obtain

20l - npzy () +15(8) (a-15)
where
_ BkpT pp?
M = Ser o (A-16)

and fp(t) is defined by

I5(t) = (R/No)? (1/¢) _l: “sin BEF-£a(t) dn (A-17)

Using eq A-13 it can be shown that the average of f is zero and
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<fp (tl) fp(t2)>n = '2‘N_°:'§"7; G(tl— tz) (A-lB)

Equation A-15 can be solved to yield
t
z(t) = 25 (0)exp (Hpt) + [ ‘exp[-Aplt ~ty] fp(ta)at, (A-19)
which when used in eq A-14, gives

8, (t) = nzla(F) + (2/ No)/ %) sin %exp(—)\pt) [z (0)
P

+ fo ‘exp(Apty) fa(t) dt; ] (A-20)

From eq A-20 the contribution of fluctuations to the arc length at equilibrium

can be calculated as

<{sp(t)— <sp(£)>0)%>a = Ngbzz) 2 __sin? 2T (A-21)
3 Spint Ng

The square of the primitive path length of the chain is given by
L2 =R+ <(L-L)%>, - (A-22)

where I is the average of L, and

S0 (5, (8 )< ()25 dm:
(L-L)B>q= — = Nob* (A-23)

j: °ndn ?

Per chain segment between two slip links, the square of the path length is

1 =1/N (<(L-L)>>y) (A-24)

where the subscript F has been used to denote fluctuations. Thus the curvature

of the chain due to fluctuations results as
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< Rra—Rpg-1)a) Reg—R(x-1)g)>8 = <VnaVnp>olF (A-25)

where now the superscript F on the components of R denote fluctuations. In
eq (A-25), <VpaVng> is the direction, and f is the square of the length due to

fluctuations, of R. Substituting eq A-24 and A-25 into eq A-7 gives
5l = ckpTNo/ Ny <VpaVngdu (A-286)
which is the contribution to stress at equilibrium due to fluctuations, We set
Gen = ckgTNo/ Ne = pRT/ M (A-27)

to obtain eq 22 of the text.
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Appendix IV

This appendix lists the values of C; and (; from which Gy and Gy were

obtained, in section 2. The references are given in Table 1 of section 2. Table

entries are grouped in fives for ease of reference

Table 1
Poly(Ethyt Acrylate)-(PEA)

2C, (MPa) 2C, (MPa) Gy (MPa)

Gy (MPa)
0.0814 0.0335 0.074 0.038
0.0462 0.0585 0.033 0.087
0.0357 0.0578 0.022 0.068
0.0385 0.0483 0.0260 0.053
0.0181 0.0718 0.001 0.082

Table 2
Butyl Rubber-(1IR)

2C, (MPa) RCp (MPa) Gy (MPa) Gy (MPa)
0.0772 0.100 0.054 0.114
0.0995 0.112 0.073 0.128
0.104 0.728 0.087 0.83
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Table 3
Poly(Dimethyl Siloxane)-(PDMS)

2C, (MPa) 2C; (MPa) Gy (MPa) Gy (MPa)
0.0861 0.054 0.048 0.081
0.065 - 0.051 0.054 0.058
0.068 0.039 0.080 0.045
0.074 0.083 0.054 0.095
0.080 | 0.049 0.088 0.058
0.098 0.105 0.073 0.120
0.100 : 0.078 0.082 0.089
0.120 0.108 0.095 0.124
0.036 0.062 0.022 0.071
0.071 D.057 0.058 0.065

0.079 0.049 0.068 0.058
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Table 4
Natural Rubber-(NR)

2C, (MPa) 2C; (MPa) Gy (MPa) Gy (MPa)
0.196 0.196 0.150 0.224
0.230 0.196 0.184 0.224
0.280 0.202 0.233 0.230
0.340 0.206 0.292 0.235
D344 0.208 0.296 0.235
0.498 0.204 0.450 0.233
0.604 0.280 0.557 0.228
0.031 0.088 0.011 0.101
0.048 0.123 0.020 0.140
0.068 0.127 0.037 0.145
0.076 0.128 0.046 0.146
0.092 0.133 0.081 0.152
0.107 0.129 0.077 0.147
0.129 0.145 0.095 0.165
0.150 0.152 0.115 0.173
0.088 0.139 0.056 0.159
0.149 0.137 0.117 0.156
0.188 0.157 0.151 0.179
0.196 0.147 0.182 0.168
0.186 0.196 0.150 0.224
0.122 0.112 0.096 0.128

0.140 0.138 0.108 0.155



0.198
0.286
0.300

0.358
0.304
0.340
— 0.230
0.188

0.147
0.265

0.142
0.158
0.166

0.176
0.119
0.110
0.188
0.157

0.112
0.108

96— .

0.165
0.249
D.261

0.317
0.278
0.314
0.184
0.161

0.121
0.240

0.162
0.180
0.189

0.201
0.136
0.125
0.224
0.178

0.128
0.123
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Table 5
cis-1,4-Poly-Butadiene Rubber-(PBD)

2C, (MPa) 2C, (MPa) Gy (MPa) Gy (MPa)
0.14 0.42 0.042 0.479
0.15 0.18 0.108 0.205
0.18 0.30 0.090 0.342
0.18 0.93 0.056 0.824
0.30 0.34 0.221 0.388
0.33 0.53 0.208 0.804
0.38 0.54 0.254 0.816
0.41 0.45 0.305 0.513
0.085 0.208 0.037 0.235
0.241 0.343 0.181 0.391
0.384 0.376 0.298 0.429

0.192 0.298 0.123 0.340



