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Abstract

This dissertation consists in effect, of three parts, each involving some aspect
of intramolecular vibrational relaxation. The first section contains simple approxi-
mate statistical formulas for the density of vibrational and rovibrational states by
symmetry type for non-linear molecules. A modified Whitten-Rabinovitch estimate
of the density of states by symmetry type for linear molecules is also derived. Sam-
ple calculations are given, which serve to demonstrate the accuracy of all formulas
given. In the second section, a 4-coordinate model is presented and is used to treat
the vibrational energy redistribution in a molecule with a heavy central metal atom.
Local group modes are identified using perturbation theory, and their dynamical
separation and importance in analyzing energy redistribution is noted. A compari-
son of classical and quantum calculations on the model system is also given. In the
third section, artificial intelligence methods are used to treat the time-evolution of
intramolecular quantum dynamics. Comparison is made of several Al search algo-
rithms and of evaluation functions, proposed here, in an application to the study
of quantum intramolecular vibrational relaxation. The methods developed are ap-
plied to an 11l-coordinate heavy central mass problem and are used to treat both

vibrational quantum beats and ”dissipative” intramolecular energy transfer.
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Introduction

The common theme throughout this dissertation is the study of intramolecular
vibrational relaxation (IVR). The thesis can be regarded as divided into three sec-
tions, each involving different aspects of IVR. Chapters 1 and 2 contain discussions
of approximate density of states by symmetry type. In the second section, which
comprises Chapters 3 and 4, a model is developed to investigate the problem of
laser selective chemistry for the specific problem of a heavy central mass. Finally,
in Chapter 5, a method is presented for using artificial intelligence for the solution

of high-dimensional, quantum mechanical IVR problems.

The first chapter of this thesis is concerned with simple, statistical estimates
of the density of vibrational states by symmetry type for non-linear molecules. The
formulas derived are for harmonic and separable degrees of freedom in the limit of at
least several quanta in each mode. (Subsequently, this work was supplemented by
a clever group theoretical proof in the high temperature limit by Pechukas,’ and by
the treatment of non-separable degrees of freedom using a Monte Carlo integration
and involving a solution by computer simulation.?) Since the formulas derived in
Chapter 1 represent the density of vibrational states of a given symmetry type as
a fraction of the total density of states, previous estimates for the total density of
states, such as that of Whitten-Rabinovitch, could easily be used to estimate the
density of states by symmetry type. The results presented in Chapter 1 show that
the approximate, statistical formulas are accurate even at relatively low energies of

vibrational excitation.

The results of Chapter 1 are extended in Chapter 2 to vibrational state densi-
ties of linear molecules and to rovibrational state densities of non-linear molecules.
Non-linear rovibrational states show the same fraction of the total density of rovibra-
tional states in each symmetry type as vibrational states. However, the statistical

estimates of the rovibrational density of states proved to be more accurate at the
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same excess energy than for vibrational states alone. Also, linear molecules are dis-
cussed, where the density of states by each angular momentum or symmetry type,
is given in the form of a modified Whitten-Rabinovitch formula.

The interest in density of states by symmetry type arrives from the many types
of matrix elements for which forbidden transitions can be classified by symmetry
selection rules. For example, a coupling by Fermi resonance must have a component
of total symmetry in the product of the two coupled states or the coupling will
be zero. Thus, if only a pure Fermi resonance is involved, the number of states
involved in the couplings and redistribution of energy would be the subset of the
total number of states that are of the proper symmetry. Clearly, realistic coupling in
multidimensional systems is more complex and may have fewer symmetry selection
rules. However, in many systems, the simply symmetry selection rules serve as a
good first-order approximation, which can lead to important physical insights.

Our work on the density of states of specific symmetry types has already found
use in several chemical applications. For example, an estimate of the vibrational
density of states by symmetry type in p-difluorobenzene leads to the conclusion that
coupling of the vibrational states to the rotational manifold was probably present,
since the experimental results indicated participation by a higher density of states.?
Also, the vibrational density of states by symmetry type was used to conclude that
Coriolis forces were playing a role in the energy redistribution in formaldehyde.*
Furthermore, by using density of vibrational states by symmetry type and Fermi’s
Golden Rule, it was shown that the rate of IVR in anthracene was consistent with

the redistribution occurring in a subset of states defined by symmetry.’

The second section of this thesis is ultimately related to the possibility of laser-
selective chemistry when a heavy central atom is present in a molecular system. The
goal of intramolecular laser-selective chemistry is to produce chemical reactions by
laser excitation of molecules such that the products formed are not statistically

distributed. The hope is that the short-time pulse and narrow bandwidth of lasers
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can produce such specific excitations of a molecule that only the excited degrees of
freedom would be involved in a chemical reaction. However, thus far this hope has
not been realized for chemically interesting reactions because of the redistribution
of energy occurring on a time scale that is faster than that of the reaction. The
difficulty in performing laser-selective chemistry is consistent with the success of
the statistical RRKM theory in predicting reaction rates.

In this context, two interesting and somewhat contradictory experiments were
performed approximately five years ago. Both experiments were of the chemical
activation type in which an atom was added to a double bond in a metal ligand
system. This produced a vibrationally hot-free radical, and the rate of its chemical
reaction was studied to see if the energy redistributed across the heavy central metal

atom. In one experiment,® the reaction performed was
F + M(CH,CH = CH;); — (CH = CHCH,); MCH,CHFCH;(A)

A — CH; = CHF + C — M(CH,; = CHCH;)3,M = Sn, Ge,

where the rate of chemical reaction was faster than that predicted by an RRKM
theory, in which the full molecular system was assumed to be involved in redis-
tribution. This result was used to conclude that the energy remained trapped in
the ligand where the initial excitation occurred. In a different experiment,” the

chemical reaction
(CH3)3Sn —C—-C—-C =C+H — (CH;)3Sn — C — C — C — CH(B)

B — (CH;3)3SnC+C-C=C

was studied. The decomposition rate observed was consistent with an RRKM calcu-
lation in which the energy was redistributed throughout the molecule, and thus no
heavy central atom blockage of energy transfer across the metal atom was observed.

Several theoretical studies, the first initially in our laboratory,® had been per-

formed previously, to probe the question of blockage of energy redistribution by a
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heavy central metal atom because of the experimental motivation. In the first of
these, classical trajectories were used to treat the dynamics of a linear, seven-atom
model C—C — C —Sn — C — C — C.% The results showed that the amount of en-
ergy transfer depended upon the type of potential and energy of excitation. Another
classical trajectory study® was performed using a model M(—C — C = C)4, where
M was either tin or carbon. In the results, both blockage and redistribution across
the central atom (M) were found, depending on the type of potential energy surface
used.

In Chapters 3 and 4 of this thesis, a modification of the numerical classical
mechanical, seven-atom model of Lopez and Marcus is investigated. It involves
the five-atom model C — C — Sn — C — C, for which an analytic classical analysis
was possible because of the presence of only a few degrees of freedom. The vari-
ables of the system can be separated approximately into those involving the left.
(C — C — Sn) and right (Sn — C — C) ligands, because of the presence of the heavy
central metal atom. In our study of this model, the existence of two type of motions
was found to occur in each ligand. They were termed the X and Y modes. The X
mode consisted mainly of the C — C motion in each ligand, whereas the Y mode was
predominantly the vibration of the C — C center of mass relative to the Sn. These
two "local group modes” were found to be approximately dynamically separable.
Excitation of the X mode was shown to cause only a slow ”transfer” of energy across
the central atom, whereas excitation of the Y mode showed, in contrast, a rapid
energy transfer across the metal atom. These analytic results were shown to agree

with the classical and quantum calculations. On the basis of these results, a model
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was developed. Its intramolecular classical and quantum dynamics will be discussed
in a future article. Several quantum results for this model are presented in Chapter

5.

In the final chapter of this thesis, Chapter 5, the question of accurate quan-
tum mechanical calculations of IVR in high-dimensional systems is addressed. A
commonly encountered problem in performing quantum calculations in IVR is the
treatment of the very large number of states that must be considered. However, of
the large number of states that are present in many molecules, only a small subset
might be involved in any particular excitation of the system. This subset is deter-
mined, in part, by energetics, and in part, by couplings. Thus, a crucial question
in accurate quantum mechanical modeling of large molecules is determining the

important subset of zeroth order states.

The redistribution of a vibrational excitation can be viewed as a sequential
process where the probability flows from one state to another via various paths.
Each state involved in the flow is often crucial, such that if a.ny. state in a path were
removed from the description of the process, the outcome would be dramatically
changed. Artificial Intelligence (AI) search methods for finding important pa.ths'-
are particularly well suited to this problem. The use of AI had already been used

successfully in the field of multiphoton dynamics.1?

Two important questions in applying Al search methods to quantum IVR prob-
lems are the search algorithm and evaluation function. The search algorithm de-
termines in what order the possible states are found, and the evaluation function
determines how an estimate of the importance of different paths is assigned. Several
different search algorithms and evaluation functions are investigated in Chapter 5
and applied to the latest heavy mass model for quantitative comparisons. These
results show the accuracy and dramatic reduction in the number of states needed
to be considered through the use of Al search methods. The development of Al

methods for solving quantum IVR problems could represent a significant step for-
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ward in the study of high dimension IVR problems because it is a reliable, efficient,

and easily implemented technique.
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and Their Use in Statistical Estimates Involving Coriolis
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Densities of Vibrational States of Given Symmetry Species and Their Use In Statistical
Estimates Involving Corlolis and Anharmonic Effects

Steven M. Lederman, John H. Runnels, and R. A. Marcus*®
Arthur Amos Noyes Laboratory of Chemical Physics, ' California Instiute of Technology. Pasadena, Calfornis 01125

(Received: August 24, 1983)

A simple approximate statistical formula for densities of vibrational states of given symmetry is presented.
The formula becomes increasingly exact at higher vibrational energies. Application to Coriolis and anharmonic

effects is discussed.

1. Introduction

The symmetry of a vibrational quantum state affects its
coupling to other vibrational states via anharmonic and
Coriolis forces, and thereby can influence intramolecular
relaxation. In recent experiments on vibronic excitation
of molecules, specific vibrational modes of given symmetry
have been excited in an electronically excited state and
their spectroscopic behavior has been investigated. Coriolis
coupling between degenerate or nearly degenerate states'™
and between nondegenerate states®® has been invoked.

It is of interest to know the density of vibrational states
of the desired symmetry for such coupling to a particular
vibrational state. For example, a statistical theory of
density of states of a given symmetry has been used.as a
possible explanation of the disappearance, via Coriolis
coupling, of certain spectral lines.>* This statistical ap-
proach involved direct counting of combination and ov-
ertone states having the specified symmetry. In the course
of our study we noticed a striking regularity in this
counting of states. We present here a simple statistical
approximation for the density of states of any specified
symmetry species, eq 2. We first illustrate it for several
molecules of different symmetry types (section 2) and then
give an approximate derivation in section 3. Equation 2
becomes increasingly exact with increasing vibrational
energy. Applications are noted in section 4.

2. Results

All exact results were determined by precise computer
counting of harmonic states. The number of states of a
given symmetry species was determined by allowing any
combination of overtones (and fundamentals). All quan-
tum states were considered with equal a priori probability
and standard rules were used to determine the symmetry
species of the various resultant states.” Degeneracy was
allowed for, but all energy splittings due to perturbations
were ignored and energies were assigned their unperturbed
values. The sum of the number of states of each symmetry
species with this counting method represents the total
number of states at any energy. A check of values was
performed by comparing this total number of states to the
semiclassical Whitten-Rabinovitch approximation.’® At
the energies investigated the total density of states (re-
moving scatter and oscillations) was negligibly different
from the Whitten-Rabinovitch estimate.

Tables I-111 list the results for several representative
molecules for various energies ¢ in excess of the zero-point
energy. The values reported are the actual number N(T")
of harmonic states of each symmetry species I (equiva-
lently, of each irreducible representation) with exceas en-

" Contribution No. 6900.

TABLE I: Numbers and Ratio of States of Benzene for
Each Representation at Various Excess Energies?

e = 2004
cm™* €= 4009 cm™! ¢= 6013 cm™
24~- 244- 244-

r N(r) (r) N(r) (r) N(T) (r)

8, 99 139 10759 1.03 508350 1.00
a, 67 094 10304 0.899 504 540 1.00
b,g 47 0.66 10122 0.97 503872 1.00
b,g 71 1.00 10499 1.01 507 273 1.00
2y 73 1.03 10387 1.00 506161 1.00
Bl 1.14 10533 1.01 507388 1.00
b,y 71 1.00 10425 1.00 506 267 1.00
b,y 62 0.87 10292 0.99 505311 1.00
ey 236 3.32 41210 396 2022314 4.00
e,y 330 464 42124 4.04 2025738 4.00

e, 262 3.69 41440 3.98 2023098 4.00
e,, 306 4.31 41836 4.02 2027070 4.00

@ The symbols are defined in the text: +(I') equals
N(r)/N. The zero-point energy is 20 034 cm™'. The
number 24 is introduced to make clearer the relations
among the v's.

TABLE II: Numbers and Ratio of States of Methane for
Each Representation at Various Excess Energies?

«= 9883
cm™! e=19766cm™' e= 29648 cm™’
24~- 24~- 24+-
r N(r) (r) N(r) (r) N(r) (r)
a, 83 1.52 3131 112 41114 1.05
a, 38 0.70 2545 0.91 37687 0.96

e 236 4.33 11326 4.06 157536 4.02
t, 408 7.49 24063 B.64 346749 B.B5
t, 543 9.96 25812 9.26 356985 9.11

@ See footnote to Table I. Zero-point energy is 9882
em™'.

TABLE III: Numbers and Ratio of States of
Formaldehyde at Various Excess Energies®

€e=11293 e= 22586
cm™! em™! ¢e=45157 cm™

I N(r) 42(r) N(T') 4y(r) N(I') 4y(T)

a, 322 132 6508 1.16 210880 1.08
a, 172 0.70 4724 0.84 179835 092
b, 215 0.88 5073 0.90 183701 0.94
b, 268 1.10 6098 1.09 206653 1.06

@ See footnote to Table I. Zero-point energy = 5644
em™'. The number multiplying 4(I') is now 4 instead of
24.

ergy equal or less than e. Also given is v(T'), namely, the
ratio N(I')/N, N being the total number of states with
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TABLE IV: Groups of Molecular Symmetries,
Rules, and R Values

Ry,
molecular multiplication averaged R:g.
symmetry rules? overtone rules Ry
Group 1
0,0, T AxT= AV = A 1,1, 3
Tg Ty ExE=2A+E E'zZA+E
ExT=2T ™=
TxT= A+ E+ 3T
A+ E+ 2T
Group 2
Ci Cip:i Css ExXxE=24+E A"z A 1,10
Drb:dpnh EV=ZA+E
ccv Cth C“,
Do Dih sc
Group 3
CoCur Con ExE=44A A' = 2,1,0
ud Ve E'=24A+E

D,y S,

@ There are also the rules, A X A=A and A XE=E,
which are the same for groups 1, 2, and 3.

energy equal or less than . Throughout, we suppress the
¢ in the notation for brevity. The sum of v(I') over all T
equals unity.

The results in Table I are for benzene, an exmaple of
the Dg, point group.!! One sees that the populations of
the nondengenerate symmetry species rapidly become
equal as ¢ increases, as do those of the doubly degenerate
symmetry species. One also sees that the ratio of the
number of states for any nondegenerate symmetry species
to that for any double degenerate one rapidly converges
to 1:4.

The results in Table II are for methane,’? an example
of the Ty point group. As the energy increases, the ratio
of the number of states for any nondegenerate to the
doubly degenerate to any triply degenerate symmetry
species approaches 1:4:9. Higher energies are needed to
reach the limiting ratio than was needed in Table I, for
reasons evident from the derivation in section 3.1?

The results in Table III are for a C,, molecule, form-
aldehyde, for which Coriolis coupling has been discussed,
eg. ref 4,5 and 7. Only nondegenerate symmetry species
occur and these populations become equal. We have also
studied molecules in the point groups D, Dy, Dy, Cq,
and O, and in every case have found, as ¢ becomes large,

(l)MF.N-\-rH.J Schalg, E. W. J. Phys. Chem. 1982, 86,

“glnamu.: H. M.S. Thesis, California Institute of Technology,
(S)Rndlei. Neusser, H. J., Schlag, E. W. Faraday Discuss. Chem.

G:.)anHLKorpQCL.KMJLFuIdR.W to be sub-
mit

(5) Tang, K. Y.; Fairchild, P. W.; Lee, E. K. C. J. Chem. Phys. 1977,
66, 3303.

(6) Forch, B. E; Chen, K. T.; Saigusa, H.; Lim, E. C. J. Phys. Chem.
::g g;. %2580 Chen, K. T.; Forch, B. E.; Lim, E. C. Chem. Phys. Lett.
(7) Garland, N. L; Lee, E. K. C. Faraday Discuss. Chem. Soc. in press.

(8) E.g., Mills, 1. M. Pure Appl. Chem. 1965, 11, 325.

(9) Wilson, E. B.; Decius, J. C.; Cross, P. C. "Molecular Vibrations™;
McGraw-Hill: New York, 1955; pp 331 ff.

(10) Robinson, P. J.; Holbrook. K. A. *Unimolecular Reactions™; Wi-
ley-Interscience: New York, 1972; pp 131 ff.

(11) Robey, M. J.; Schlag, E. W. J. Chem. Phys. 1977, 67, 2775.

(12) Gray, D. L.; Robiette, A. G. Mol. Phys. 1979, 37, 1901.

(13) The exact recursion relation for the representation of triply de-
generate overtones has a longer recursion cycle. Further, the approxi-
mation used in section 3 (Table IV) for the triply degenerate overtone
rule is less accurate than the others at low gies, though it b
increasingly exact at high energies.

that the numbers of states of each symmetry species with
the same degeneracy become equal, and that the ratio of
states of nondegenerate to doubly degenerate to triply
degenerate symmetry species approaches a constant value.
These results for specific molecules can be generalized
into three broad classes of molecular point groups listed
in Table IV. We shall show that the ratio of the numbers
of states of any nondegenerate to any doubly degenerate
to any triply degenerate symmetry species N(A).N(E):N-
(T, is given by eq 1, with increasing accuracy as ¢ increases
N(AEN(E):N(T) = R, /ns:2Rg/ng:3Rr/ny (1)

where R,, Rg, and Ry are given in Table IV for the various
types of molecular symmetry point groups. n, is the total
number of nondegenerate symmetry species from a char-
acter table of the relevant point group; ng and ny are the
analogous quantities for the doubly and triply degenerate
symmetry species, respectively. Equation 1 is derived in
section 3, together with the values of the R’s listed in Table
IV. Using eq 1 we also show in section 3 that the density
of states p(I") for any particular symmetry species is given,
with increasing accuracy as ¢ increases, by

p(T) = pgrRr/(R4 + 2Rg + 3Ry)nyr 2)

where p is the total dennty of states at the excess energy
€; gris 1,2, or 3, Ry is R,, Ry, or Ry, and ny is n,, ng, or
nr, aceordmg as the I' belongs to a nondegenerate, doubly
degenerate, or triply degenerate symmetry species.
Equations 1 and 2 are the principal results of this paper.
Equations 1 and 2 assume that all nr symmetry species
are accessible. If some symmetry speecies are not acces-
sible, nr refers only to the accessible species. However,
for all real molecules we have studied thus far, all sym-
metry species in a point group have been accessible. When
the vibrations are anharmonic, the use of different sym-
metry types remains valid (ref 9, p 146).

In applications of eq 2 to molecules such as CH,0, which
have only nondengenerate representations, we have R, =
1 and R‘ - R-r = (.

3. Derivation of Eq |1 and 2

To simplify the derivation of eq 1 and 2, two assump-
tions will be made:

The first assumption is that in building up various
combinations of overtones of the various fundamentals
there is randomization of the numbers of states between
symmetry species having the same degeneracy (e.g., among
the four E-symmetry species in Table I). The tendency
to randomization is indeed evident in the exact multipli-
cation rules given in ref 9.

The second assumption is that the energy is sufficently
high that frequently some degenerate fundamental has
several quanta in it. This causes representations of ov-
ertones of degenerate fundamentals to obey the averaged
overtone rules given in the third column of Table IV.

The first assumption is seen to be true in Tables I-1II
within statistical deviations, for the three molecules given
there. Consistent with this assumption, we adopt a no-
tation such that all nondegenerate symmetry species are
grouped together and each is called A (which now includes
all A and B represent.alions). each doubly degenerate
symmetry species is called E (i.e., irrespective of whether
lt is e, €,,, etc.), and each t.nply degenerate one is

5" i..ach E label contains two states and T contains
three states. The first assumption simplifies the multi-
plication rules and, after examining Table X-12 of ref 9,
led to the three sets of groups in Table IV. Within each
set the now simplfied multiplication rules have become
similar. The overtone rules of ref 9 also became simple
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after introducing the two assumptions, and represent av-
erages, e.g, over the variable ¢ in Table X-13, ref 9. (In
the case of the overtone rule for a triply degenerate fun-
damental, the result in Table IV is an approximate average
over ¢ and over even and odd v in ref 9 and becomes
increasingly exact as p in ref 9 becomes large.)

We illustrate the first assumption using a combination
level in Dg,, such as a,, + a,; + a;, + 85, + e, + ey + €y,
+ ey, Because of the il"mt assumption this representation
can be rewritten as 44 + 4EF. Because we are mainly
interested in ratio of labels, we introduce an equivalency
symbol =:

4A+4E=A+ E 3)

Thus, the representation of the cited combination level in
Dy, is, in this sense, equivalent to A + E. Its ratio of A
labels to E labels is 1:1.

The following derivation of eq 1 and 2 is first given for
group 1 type molecular point group symmetries in Table
IV. We order the vibrational fundamentals of a molecule
8o that the first k of them are of the A type, the next m
are of the E type, and the final n are of the T type, k +
2m + 3n being therefore the total number of normal
modes. We let A" signify that the ith nondegenerate
fundamental contains v; quanta, and use an analogous
notation for the other (E and 7T) fundamentals. The
representation of any given vibrational excitation can be
written as

= An  ABEVe: | EvremTVeewss | TVhewss = T\ [ely
4)

where I', denotes the product of the A factors, etc. We
evaluate I',, T'g, and I'y separately. We shall assume in
the following that at least one v; in I'z and at least one in
I'r exceeds unity.
We have
Ty= A" . A% (5)
From Table IV we know that A* = A for any v, so that
Fr,=A. A=A (6)
independently of k, using the multiplication rules for group
1 in Table IV.

Using the same method for combinations of overtones
of E-type fundamentals, 'z is given by

g = Eve . Evee= M
From Table IV one sees that
EE=A+E@Ww>1) E=E@=1) (8)
From the multiplication rules in Table IV
(A+ENA+E)=A+E EMA+E)=A+E (9
Application of eq 8 and 9 to eq 7 yields'*
Te=A+E (10)
as long as at least one v; > 1. For I'r we have
Ty = TVremsi ,, TUremen an
From the overtone rules in Table IV we have TV= A + E

(14) The associative law converts a multiplication such as (E x E x
E) % (A+ E) o (E x E) X (E x (A+ E)) and hence successive appli-
cations of eq 9 may be used to obtain eq 10.

+ 3T or T, according as v > 1 or v = 1. The multiplication
rules in Table IV yield

(A+E+3TNA+E+3TN=A+E+3T

TA+E+3T)=A+E+3T (2
Application of eq 12 to 11 yields 13, as long as at least one
v, > 1

Ir=A+E+3T . (13)

Equations 4, 6, 10, and 13 plus the multiplication rules in
Table IV then yield

Tr=A(A+E)NA+E+3T =
B3A+3E+9T=A+ E + 3T (14)

The ratio of labels given by eq 14 is seen to be independent
of the specific vibrational excitation level. Therefore, the
ratio of the total number of A labels to E labels to T labels
is always 1:1:3. These numbers provide the R values listed -
as in the last column of Table IV.

To obtain eq 1 we now note that the ratio of labels is
R,:Rg:Ry, and so the ratio of states is R :2Rc:3Rr when
degeneracy is included. Since there are n, symmetry
species of the A type which share this R4, ny which share
this 2R, and ny sharing the 3Ry, eq 1 for ratios of numbers
of states of specific symmetry species immediately follows.

We turn next to group 2 in Table IV, for which R, =
1 and Rg = 1. Since the multiplication and overtone rules
for group 2 are identical with those for group 1 except that
there are no triply degenerate symmetry species, one finds
that the representation of a combination of overtones is
now given by

I'= A%  A%EWw == A(A+E)=A+E (15

Once again, the ratio of A to E labels is independent of
the vibrational excitation, namely, 1:1. One thus has R,
= 1 and Ry = 1, as reported in the last column of Table
IV. Equation 1 again follows.

For group 3 one uses the same logic, except that now the
rules for the E representations are different, as seen in
Table IV. For the A overtones we have I', = A as before.
However, we have E¥ = 24 + E or E, according as v > 1
or v = 1. Use of multiplication rules in Table IV yields

(2A+E)Y2A+E)=24+ E

EQA+E)=24+E $16)
Application to eq 7 gives 2A + E for I'y. Hence
I's AA+E)=2A+E amn

Thus, the ratio of A labels to E labels is 2:1 for group 3
symmetries, independently of the vibrational excitation.
Hence, one obtains the R4 = 2, Rg = 1 in the last column
of Table IV and eq 1 follows.

To obtain eq 2 we note that the total number of states
N with excess energy equal to or less than e is n,N(T',) +
negN(T'g) + nyN(Ty), where T, is a T of type A, etc.
Equation 1 can be rewritten as n,N(I'y) = cR,, ngN(Tg)
= 2cRg, andnyN(T'7) = 3cRy, where c is constant. Sum-
ming yields N = c(R, + 2Ry + 3R7) and hence yields
N/(R4 + 2Rg + 3R7) for c. One thus obtains (using the
definition of gr given earlier)

N(T) = NgcRy/(Ry + 2Rg + 3Rpny  (18)

Differentiation of this equation with respect to ¢ yields eq
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2, since the R's, n's, and gr's in eq 18 are independent of
e

4. Discussion

Coriolis Coupling. To illustrate an application of eq 2
we consider benzene and parallel type Coriolis coupling.
Riedle et al.'? measured the Doppler-free rotationally re-
solved two-photon spectrum of the 14§ 1§ bands of benzene
(n = 1, 2). They excited an electronic state of B,, sym-
metry and a vibrational state of b,, symmetry, and exam-
ined the fluorescence excitation spectrum of the Q branch.
Only the K = 0 levels remained when n = 2, plus some
residual structure from the K » 0 states. One of the
possible explanations involves Coriolis effects.!®

The b,, vibrational state couples by parallel Coriolis
interactions to b,, states,'™ giving new levels'® !/,(E, +
E)) = [(H,9)? + (AE/2)*]Y/2. H,, is the Coriolis interaction
energy and AE (= E, - E,) is the energy difference of the
by, and b,, states. When AE = 0 there is extensive transfer
of the oscillator strength from the b, level (50%), while
when |H,,/AFE]| <« 1 there is little. There can be further
splitting due to Coriolis effects, yielding a further reduction
in intensity of K # O lines and still further irregularities
in the spectrum. If the b,, states to which the original b,,
state is coupled have large nonradiative rates, the total
fluorescence intensity is also decreased,? in agreement with
the experiment.!?

The transfer of oscillator strength due to Coriolis cou-
pling is significant for states within an energy AE of about,
uy. H,,. H);equals £2C{KI, where C (= A2/2],) is'" 0.09

1, K and | are the z rotational and z vibrational angular
momtum quantum numbers (K > 0), and { is a Coriolis
interaction constant. If the maximum { is'® about 0.8, H,,
is about £0.15K! cm™ or less. (Any unfavorable vibrational
overlap'® decreases this {.) For comparison it may be noted

(15) An alternative hanism which still distinguishes K = 0 states
is given by Callomon, J. H. Faraday Discuss. Chem. Soc., in press (dis-
cussion comment).

(16) E.g., Hougen, J. T. J. Chem. Phys. 1963, 38, 1167. Hougen, J. T.

In “Physical Chemistry. An Advanced T‘ruuu Hudcnon D; Ed;

Acsdemic Press: New York, 1970; Vol. IV,

'Mohn:.l.n pectroscopy: Modern Research®;
Ed.; Academic Press: Nn\’whlwz.

‘mﬂﬂw E.; Neusser, H. J.; Schlag, E.

(IS)WO\nodmhunon-ulnuludbn!ll

(19) Eg., for h ic states one req '® Ay, m -Ap; = &1, Av, =
0. Sufficient anharmonicity would distribute the on;un.l vibrational
parentage of the harmonic states more widely over the anharmonic states,
and so the state-by-state requirement would then be less severe.

that the separation of adjacent K states in the Q branch
is about 0.008K c¢m™', according to available rotational
constants.!”

One sees that if there is sufficient parallel Coriolis
coupling (sufficient proximity of suitable b,, states to the
original b, state) the fluorescence excitation spectrum will
contain the K = 0 lines, which are unaffected by parallel
Coriolis coupling, plus some residual irregular structure
from the K # 0 lines. To create this Coriolis coupling the
density of suitable vibrational states of thé b,, symmetry
species would have to be about 6 per cm™ (~1/H,,) when
K = | = 1. The total density of b,, states (suitable and
unsuitable) is given by eq 2 and by the R values in Table
IV. It is approximately 1/24 the total density of states.
In order for the total density of b,, states to reach 6 per
cm™, the total density of states would therefore have to
be 144 per cm™. This density corresponds to an energy,
determined from the Whitten—Rabinovitch approximation
or from direct counting, of about 3370 cm™. This energy
also corresponds roughly to the energy where disappear-
ance of the K # 0 lines occurs in experimental measure-
ments by Riedle et al.,! and so one has a possible statis-
tical?® explanation of the results. However, consistency
of argument would require that one examine the effect of
perpendicular Coriolis interactions'® on the K = 0 state,
using assumptions analogous to those used above, and
vibrational overlap'®®® aspects should also be explored.

Anhramonic Coupling. Other questions which can be
addressed by use of eq 2 involve other types of coupling.
For example, if a zeroth-order state (wavepacket) of some
given symmetry species is excited, one can use eq 2 to
calculate the density of vibrational states of the same
symmetry species with which the wavepacket can be as-

Acknowledgment. We are pleased to acknowledge the
support of this research by a grant from the National
Science Foundation. J.H.R. also acknowledges a fellowship
from the Fannie and John Hertz Foundation.

(20) Eg., if as a minimal requirement one added the supplementary
mnd.mannonl.heb..mu-thl vy = 0 and that v, = 1 or 2, the density
d‘luchbl muuu-aa'mm 1is found by using eq 2 and calculating

p. One d ining 28 modes an energy (3370-923)
cm ! when vy, = 1, y!uldm; p(by,) = 0.65 per em™! nnd an energy
{3370-1846) cm™' when v, = 2, yielding o(b,,) = 0.05 pcr cm'. The total
density ol‘ such by, states is about 0.7 per cm™ at 3370 cm™ ! instead of
6 per cm™




- 13 -

Chapter 2: Densities of Vibrational States of Given Symmetry Species.
Linear Molecules and Rovibrational States of NNonlinear

Molecules

[The text of this chapter appeared in: S. M. Lederman and R. A. Marcus, J. Chem.
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A simple statistical expression is given for the density of states of any symmetry species for linear
molecules. Molecules with one and two pairs of doubly degenerate bending modes are considered.
The results of our previous paper for vibrational states of nonlinear molecules are also extended to
include density of rotational-vibrational states by symmetry species. The various expressions are

tested by comparing with exact counts of states.

L. INTRODUCTION

In 8 recent paper,’ we derived a simple statistical
expression for the density p(I" ) of vibrational states with sym-
metry species I for nonlinear molecules, or for the number
N (I'") of states of symmetry I” with energy less than or equal
to £'in terms of the total number of states N with energy less
than or equal to E:

piC)=pfr., N()=Nfr, (1a)
where the fraction of states of symmetry I is
Jr=8rR; /Ry +2Rg + 3R)np. (1b)

Here, p is the total density of states, determined by exact
count or by use of an approximate formula such as that of
Whitten—Rabinovitch. [In using a formula such as Eq. (1a)
one is often interested in the case of high energies, where
Whitten-Rabinovitch is applicable.] g~ is 1, 2, or 3 accord-
ingly as I"is of an A, E, or T (non, doubly, or triply degener-
ate) species, the R ’s are small integers whose values for the
various types of molecular point groups are given in Ref. 1
and 7 is the number of symmetry species of type 4, E, or T.
An equivalent equation appears in the general work by
Quack? on group representationr. in scattering theory and
most recently by Pechukas® in his nice treatment of molecu-
lar symmetry point groups. For any given symmetry species
the number of scattering channels (Quack) or fraction of vi-
brational states (Pechukas) is written in their notation as
[I.] WI(EJ)/gor n /g, respectively. In each case the result
excluded the symmetry associated with rotation about the
C_ symmetry axis of linear molecules.

Exact counts were given 10 test the accuracy of the for-
mula in Ref. 1.Sinha and Kinsey* have recently presented a
fast computational method for an exact count.

In Sec. II of the present paper we develop statistical
formulas for the density of vibrational states by symmetry
species for linear molecules. In the process we first consider
the purely classical density of states, using the vibrational
angular momentum component as a representation of sym-
metry species. The formulas are then converted to a “semi-
classical” form (to agree better with the exact quantum
count) by introducing an expression analogous to that of

*'Contribution No. 7026.

Whitten and Rabinovitch® for unrestricted counts of states.
Comparisons with exact quantum counts are given in Sec.
III.

The density of rovibrational states by symmetry species
is treated for nonlinear molecules in Sec IV. Such systems
are of interest because coupled rovibrational states have been
invoked to explain the onset of intramolecular vibrational
relaxation at energies where the density of vibrational states
alone is too small to explain the data.® A simple formula,
analogous to that which we derived in Ref. 1, is obtained for
these rovibrational states. The formula is compared with an
exact quantum count of rovibrational states. The results are
discussed in Sec. V.

Il. DENSITY OF VIBRATIONAL STATES OF LINEAR
MOLECULES BY SYMMETRY SPECIES

In the case of nonlinear molecules there are a finite
number of symmetry species. With increasing energy, the
partitioning of states among symmetry species became ener-
gy independent and was given by a simple formula [Eq. (1)].
In the case of linear molecules, however, there are an infinite
number of symmetry species, each characterized by the pro-
jection of the angular momentum along the internuclear
axis.” The partitioning of states by symmetry species no
longer approaches a constant value with increasing energy,
and so the formula derived in the present paper is no longer
quite as simple.

Two cases are considered below: (A) linear molecules
with one degenerate pair of bending modes (e.g., CO,); and
(B) linear molecules with two degenerate pairs of bending
modes (e.g., C,H,). The case of more than two degenerate
modes can be treated similarly, but is rarer and is omitted
here.

A. One degenerate pair of modes

We use the symbol / to denote quantum number for the
(signed) component of angular momentum along the inter-
nuclear axis of the molecule. We first show that the classical
number of vibrational states with energy less than or equal to
E for a molecule with s vibrations and with a given value of /
isN!(E):

NLUE) = (E— |l |hv)~"/2(s — 1)hvILAv,, 2



=

where v is the vibration frequency of the degenerate bending
mode (i = 1,2) and in the present section the v, (i = 3 tos) are
vibration frequencies of the remaining s-2 modes.

The derivation of Eqg. (2) is given in Appendix A. It
involves consideration of the partitioning of the energy E
among all vibrational modes subject to the constraint that
the (signed) component of the vibrational angular momen-
tum along the internulcear axis is specified. Incidentally, in-
tegration of Eq. (2) over the limits of /, namely from — E /Av
to E /hv (Appendix A), for a given E yields E* /s!(hv)*I1, hv,,
the conventional expression for the classical number of
states of s oscillators with energy less than or equal to E.

The accuracy of Eq. (2) can be improved by converting
to an expression which parallels that used by Whitten and
Rabinovitch® for the unrestricted number of states (cf. Ap-
pendix A)

N'l(e)= (e + aE,, — |l |hv}~'/2(s — 1)hvIL, hv,, (3a)
where

e=E—E, (3b)
and E, , is the zero-point energy of the set of s oscillators; a is

a factor given by Whitten and Rabinovitch, which we calcu-l :

NiE)=

hvo(E — | |Av,Y =" — hvy(E — |l [hvol = "6 (E /hv, — |1 )

late at a reduced® energy (E — |/ |hv)/E,, and for the given s
frequencies.

The density of states by angular momentum is found by
differentiating Eq. (3):

(e+aE,, — |l |hvf-?
2(s — 2)thvIl, Ay,
When + /and — [/ states are grouped together, to form the

I1,4,... states,” we have as their number
NI =2N! (1#£0)
=N (=0,
where N! is given by Eq. (3). Similar remarks are applicable
in obtaining p|'!(¢) from the p}(€) in Eqg. (4).

P:(f)‘ [1+ 'Z%Eu]' (4)

(5)

B. Two degenerate pairs of modes

The derivation for this case parallels the previous one,
but involves more complicated limits. If v, and v, are the
vibration frequencies of the two degenerate pairs of modes
(i = 1—4),the classical expression for the number of states
with a specified (signed) / and with an energy less than or
equal to E is shown in Appendix B to be

(6)

(s — 1)2Av kv, [(vy)* — (hv,)* 111, Ay,

when v, >v,. Here, the product I1, is from i = 5 to s throughout this section and 6 (x) is 0if x <0 and 1 if x > 0. Integration of
Eg. (6) over all/ from — E /hv, to E /hv, yields the conventional classical expression for the number of states, namely, E* /

slhv, P hvo) 1L Ay, .

Once again, a Whitten-Rabinovitch® type of modification is introduced 1o convert the expression in Eq. (6) to one which

better approximates the quantum results, namely,

Nile)=

hvile +a,E,, — |l |hv,}' ="' = hv\(€ + a,E,, — |l |iva)' ~ "6 (E /hva) = 1)

5]

2(s — 1)thvyhv,[(hvy) — (R, 1T Ay,

where ¢ is again given by Eq. (3b), a, is computed at a reduced energy (¢ — |/ |hv,)/E,,, and a, at a reduced energy of

(€ — |/ |hv,)/E,, and in each case for s oscillators.

The density of states, obtained by differentiating Eq. (7) is

pile)=

hvile —a,E,, — |l|hvF (1 + £)) — hvi(e — a,E,, — |1 |Ava) (1 + §,)8(E /hv, = 1)

(8)

2(s — 2)thv,hv, [ (hvy)? — (Av,)* 110, Ay,

where {; = (da, /de)E, ,.

Once again, when + /and — [ states are grouped to-
gether to represent the symmetry species we have

N =2N(I#0) (9a)
=N!(l=0), {9b)

where N| is given by Eq. (7) and with analogous remarks for
I j
P (€)-

lll. RESULTS FOR LINEAR MOLECULES

In this section we give the quantum count N (I") of har-
monic vibrational states by symmetry species I” with energy
less than or equal to €. Standard tables were used for comput-
ing the symmetry of overtone and combination states.®

The X states are those for which |/ | = 0, the E, states (or
IT states) are those for which |/ | = 1, etc.” When two degen-
erate pairs of modes are present both £ * and 5 ~ states oc-
cur. In applying Egs. (7) and (9) we assume a randomness

among these states and so to count each of the symmetry
speciesT * and T ~ wedivide Eq. (7)for/ = Oby afactorof 2.
In examples of molecules with an inversion center, g and u
states occur, but Egs. (3), (5), (7), and (9) refer to the sum of
the (g,u) pairs. We assume a randomness among this type of
pair and so also divide these equations by a factor of 2. Thus,
whenonehas X 7, 2, ¥ ~,and T [ states, the equations
for / = 0 are divided by a factor of 4.

Results for four representative linear molecules are giv-
enin Tables I to IV. Results for HCN,?a C_, molecule with
one degenerate pair of normal modes, are given in Table I. R
is the ratio of the exact N(I") to the approximate number
given by Eq. (3) and (5). In the last row (“total”) the item
labeled N (I ) is really the total number of states [i.e., N (I"),
summed over all I', even those that are not listed]. The “R ™’
in this row isthe ratio of this. TN (I" ) to the standard Whitten-
Rabinovitch expression® for the total number of states. We
also note that T ~ states are not allowed for a molecule with
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TABLE 1. Number of vibrational states of HCN by Symmetry type at var-
Jous excess energies and ratio R of exact number (o approximate formulas *

TABLE I1. Number of vibrational states for CO; by symmetry type at (A
€=2025%cm~"' and (B) € = 40 250 cm ™' and ratio of exact number 1o
approxi formula.*

€=10250cm™"' €=20250cm™' €=40250cm™'

r NI R N(r) R N(I) R
> 4] 0.98 221 1.00 1404 1.00¢

H 70 0.99 404 1.00 2672 1.00
E, 60 1.01 368 1.00 2544 1.00
Es 50 1.01 332 1.00 2416 1.00
E, 40 099 300 1.00 2294 1.00
ES 34 1.04 270 1.00 2176 1.00
E, 26 1.00 242 1.00 2062 1.00
E 20 098 216 100 1952 1.0
E 16 1.04 192 1.00 1846 1.00
Ey 12 1.05 170 1.00 1744 1.00
E, 8 099 1% 100 1646  1.00
E, 6 110 130 1.00 155  1.00
E,s " 116 114 100 1460 100
E, 2 0.94 98 1.00 1372 1.00
Ei 2 235 84 100 1288 100
. 1 098 1208 100
Ey &0 1.00 1132 1.00
Ey 50 1.00 1058 1.00
e %0 0.98 988  1.00
E. 34 1.03 922 1.00
Ey 26 099 856  1.00
B, 20 0.97 79% 100
E,; 16 1.02 738 1.00
Total 391 0.9% 3641 099 42952 1.00

*Zero-point energy is 3412.5em ™",

“Asin Ref. 7, E, is a /7 state, E; is a 4 state, eic.

“In this and other tables the formulas in Ref. 4 were used in some cases
outside the suggested range of accuracy, but we still, as the results show,
found the formula of Ref. 4 to be quite accurate.

only one pair-of degenerate modes'® and hence we did not
divide Eq. (7) for / = 0 by the factor of 2 mentioned in the
preceding paragraph.

Results for CO,,'' a D, molecule with one degenerate
pair of modes, are given in Table I1. Here, there are g and u
statesduetotheinversioncenterand N, (" )and N, (I" ) repre-
sent the exact quantum number of states with g and u sym-
metry, respectively, with the cited value of |/ |. Thus, R, and
R, denote the ratios of exact counts to those based on the
right-hand side of Eq. (5) divided by 2, as discussed above. R
in the last column represents the ratio of N, (I") + N, (") to
the number of states given by Egs. (3) and (5).

Table 111 contains results for C,BrCl,'?a C_, molecule
with two degenerate pairs of modes. R is the ratio of exact
count N (I" )tothe number given by Eq. (9a) when/ 0. When
I=0(i.e., I '=X),Ristheratioof thesumof N (I")’sfor I *
and 2 ~ to the number given by Eq. (9b).

Table IV contains results for C,H,,'* a D_, molecule
with two degenerate modes. Here, there are both g and u
states and 2 ~ and X ~ states occur. Thus, for / 0, one di-
vides the right-hand side of Eq. (9a) by a factor of 2 to calcu-
late R, and R,,. When computing R, and R, for the four
states one divides the right-hand side of Eq. (9b) by a factor of
4, as already noted. When / = 0, R is the ratio of the sum of
N(MferZ [, X .2 ,andS3 [, tothenumbergivenby Eq.
(9b).

r N,(IM) R, N ) R, R
A)

P kg 276 1.18 154 0.83 101
E, 346 0.81 500 LIE * 0.99
E 466 1.20 320 0.82 1.01
E, 282 0.80 418 1.18 0.99
E, 388 1.21 260 0.81 1.01
E, 226 0.78 346 1.20 0.99
E, 320 1.23 208 0.80 1.01
E, 178 0.76 282 1.21 0.99
E, 260 1.25 164 0.79 1.02
E, 138 078 226 122 0.98
Epo 208 127 126 0.77 1.02
E,, 104 072 178 1.23 0.98
E, 164 1.30 9 0.75 1.02
iy 76  0.69 138 1.26 0.98
E 126 1.33 68 0.72 1.03
Eys 54 0.67 104 1.28 0.97
E, 9 1.37 48 0.70 1.03
E; 36 0.62 76 1.31 0.97
Ei 68 141 32 0.66 1.04
E, 2 0.56 54 1.36 0.96
Eo 48 1.49 20 0.62 1.06
E,, 12 0.47 36 1.41 0.94
Ey 2 160 12 0.60 1.10
Total 7926 1.00
(B)

> 1706 1.10 1417 0.91 1.01
E, 2684 0.91 3250 1.10 1.00
E, 3114 1.10 2568 091 1.01
E, 2428 0.90 2958 1.10 1.00
E, 2832 1L 2320 091 1.01
Eg 2188 0.90 2684 1.10 1.00
E, 2568 1.1 2088 0.90 1.01
E, 1964 0.89 2428 111 1.00
E, 2320 111 1872 0.90 1.01
Ey 1756 0.89 2188 1.11 1.00
Ey 2088 112 1672 0.90 1.01
Ey, 1564 0.89 1964 111 1.00
Ey 1872 1.12 1486 0.89 1.01
E, 1386 0.88 1756 1.12 1.00
& 1672 113 1314 0.89 1.01
E,, 1222 088 1564 112 1.00
Eyo 1486 113 1156 0.88 1.01
E, 1072 0.87 1386 1.13 1.00
E, 1314 114 1012 0.88 1.01
Ey 934 0.86 1222 1.13 1.00
Eyp 1156 1.14 880 0.87 1.01
E,, 808 0.86 1072 1.14 1.00
Ex 1012 115 760 0.87 1.01
Total 99 757 1.00
* Zero-point energy is 2510 cm ™",

IV. DENSITY OF ROVIBRATIONAL STATES FOR
NONLINEAR MOLECULES

Just as the vibrational states in Ref. 1 were character-
ized by symmetry species, the rotational and the rovibra-
tional states are similarly characterized. It is shown in Ap-
pendix C that the fraction of rovibrational states of a given
symmetry species is the same as that of vibrational states
alone and is therefore equal to the f- given by Eq. (1b).
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TABLE II1. Number of vibrational states for C,BrCl by symmetry type at
various cacess energics and ratio of exact number to approximate formula *

TABLE IV. Number of vibrational states for C,H, by symmetry type at (A)
€ = 9900 cm ™' and (B) € = 19 900 cm~' and ratio of exact number to ap-
proxi formulas.*

€=3050cm™! € = 6050 cm ™! €= 9050 cm~’
r NI R NI R NI) R

¥ 393 107 6317y 1.03 40594, 1.01
k. Jad 216 1.06 4405/ 1.2 31313J 101
E, 1170 21110 142760
E, 1096 1.07 20564 1.03 140632 1.01
E, 962 1.06 19562 1.02 136936 1.01
E, 848 1.08 18512 L.03 132642 1.01
E; 702 1.07 17156 1.02 127216 1.01
Eg 586 1.09 15886 1.03 121580 1.01
E, 460 1.08 14414 1.02 115148 1.01
E 368 111 13100 1.03 108804 1.01
E; 274 1.09 11668 1.02 101928 1.01
E, 210 1.13 10436 1.03 95364 1.01
E, 148 1.10 9132 103 88464 1.01
E,; 108 114 8054 1.04 82040 1.01
E, T2 112 6932 1.03 75416 1.01
E\. 50 117 6034 1.04 69374 1.01
E, 30 1.12 s110 103 63236 1.01
E 20 1.26 4396 1.05 57734 1.02
E,, 10 1.15 3662 1.04 52202 1.01
E, 6 1.43 3118 1.06 47322 1.02
Ey 2 1.24 2554 1.04 42458 1.02
Ey 2 4.19 2152 1.06 38232 1.02
E,, 1734 1.05 34038 1.02
E, 1446 1.08 30464 1.02
Total 7733 0.99 232508 1.00 2177519 1.00
* Zero-point energy is 2245.5 cm™".

In the exact counts of rovibrational states listed in Ta-
bies V to VIII each harmonic vibrational state was coupled
to each of the 2J + 1 rotational states, where J was assigned
various values. The coupling was assumed weak and the new
states were assumed to have the sum of the energies of the
scparated states. The symmetry of the rotational states was
found within the full molecular point group using the meth-
od given by Hougen.' The tables of the symmetry of rota-
tional states for the molecular groups D,,, D,,, C,., and
C., by Weber'® were useful, as were the symmetries for
methane. '

Results for benzene,'” a symmetric top, are given in
Table V. N vy (I'" ) denotes the exact quantum number of rovi-
brational states of energy less than or equal to & for symme-
try species I', € being the total rovibrational energy above the
zero-point energy and Y(I” )isthe ratio N vy (I" )/fr Z N, (),
where N, (I" ) is the exact number of vibrational states of sym-
metry I'. The results are given for several values of J, where
J = 30 s close to the room temperature value. One sees that
for the rovibrational states the ratio of any nondegenerate
symmetry species to any double degenerate symmetry spe-
cies is 1:4, just as it was for the vibrational states.

We explore three approximations for the number of ro-
vibrational states from a knowledge of the number of vibra-
tional states:

{i) In this first approximation the rotational energy is
neglected in the approximate formula for the number of
states, i.e., we assume in this approximation that

Nﬂ(rv€)=(u+ lv'an“)’ “O}

r N,ir) R NN R, R
(A)

g 223 1.49 17 L4y 1.04
= 97 0.68 131 0.88 1.05
E, 608 1.05 608 1.05

E, 578 1.07 s44 1.01 1.04
E, 508 1.0 506 1.04 1.0
E, 448 1.07 424 1.01 1.04
E, mn 1.08 368 1.04 1.05
E, 308 1.07 294 1.02 1.0
E, 244 1.07 242 1.07 1.07
E, 188 1.08 178 1.02 1.08
E, 144 112 138 1.07 1.10
E, 98 1.07 92 1.01 1.04
i 7 114 64 1.04 1.09
E, “ 1.13 40 1.03 1.08
E, 28 112 26 1.04 1.08
E, 14 117 12 1.00 1.09
E, 8 1.68 6 1.26 1.48
E, 2 1.70 0 0.00 0.85
Total 7826 1.00
B)

L e 3979 123 3600 112y 102
F- 2612 0.90 2895 0.90 1.0
E, 12922 1.01 12 964 1.02

E, 12 678 102 12510 1.01 1.01
E, 12042 101 12078 1.01 1.01
E, 11488 102 11342 1.00 1.01
E, 10 644 1.01 10 678 1.01 1.01
E . - 9928 1.02 9798 1.01 1.01
E, 9006 101 9034 1.02 1.01
E, 8228 1.02 8120 1.01 1.01
E, 7314 1.01 7340 1.02 1.01
E, 6562 1.02 6468 1.01 1.01
B 5710 1.01 5736 1.02 1.02
E, 5032 1.02 4952 1.01 1.01
E, 4282 1.01 4310 1.02 1.02
E. 3700 1.03 3636 1.01 1.02
E; 3078 101 3098 1.02 1.02
E, 2602 1.03 255 1.01 1.02
E, 2112 102 2124 1.02 1.02
£ 1740 1.04 1706 1.02 1.03
E, 1370 1.02 1376 1.03 1.02
B, 1092 1.04 1074 10.2 1.03
E, 830 1.03 832 1.03 1.03
En 638 1.0 628 1.03 1.04
Total 281 302 1.00

* Zero-point energy is 5860.5 cm ™",

where N yg (7€) denotes the number of rovibrational states
of symmetry I~ with total energy less than or equal to € and
N, (€) is the number of vibrational states for this €, regardless
of symmetry. € is the fozal energy in excess of the zero-point
energy, as before. To test the approximation given by Eq. (10)
we calculate a quantity a(I” ) defined by

a(l’)= N vg (Fe)/(2J + 1)f-N,(€). (11)

(ii) In this second approximation the rotational energy
E,., of the molecule (as a symmetric top) is averaged over the
K quantum number assuming # uniform distribution in K.
Instead of Eq. (10) we now use

Nvr(li€)= (2 + 1[N, (€ — {Eo.)). (12)
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TABLE V. Number and ratio of rotational-vibrational states N . (I") for
benzene at € = 3004.8 cm ~' for various J 's.*

TABLE VII. Ratio of exact to two approximate results for formaldebyde at
Various cxcess energics.”

J=1 J =20 J =30 e=5640cm™' ew=11280cm™' €m=22572cm™!
r Nw(l) nln) Nw(l) Al Nw(l) Hr) r Ar)y a\r) Br) 4r) pBr) 4
ay, 3100 1.00 36545 1.00 44682 1.00 a, 1.03 1.00 1.02 1.01 1.01 1.01
ay 302¢ 097 36430 1.00 44582 1.00 a, 1.05 1.01 1.00 099 - 1.00 1.00
by, 3100 1.00 36334 1.00 44562 1.00 b, 1.03 1.00 1.01 1.00 1.00 1.00
by 3200 1.03 36431 1.00 44648 1.00 by 1.04 1.00 1.02 1.01 1.01 1.00
a,, 3066 099 36464 1.00 44 544 1.00 N ) =73 N.AT) =976 N =221392
8, 3108 1.00 36506 1.00 44584 1.00 2 ) ?3 (F) Z o)
by, 3150 101 36424 1.00 44 557 1.00
b, 3118 1.00 36387 1.00 44 531 1.00 *J =18, (E., ) = 946.72 cm™ ', zero-point energy is 5644 cm ™~ '.
' 12586 1.01 145538 1.00 178402 1.00
€4 12262 098 145958 1.00 178 544 1.00
e 1258 101 145654 1.00 178 148 1.00 whess
€. 123% 1.00 145918 1.00 178278 1.00
J 4
*Zero-point energy is 20034 cm ~ . Note that [ ) is defined differently than Ni= 3 Nle—E UK/ +1). (18)
in paper ] w include the degeneracy. K=
To test this approximation we define a ratio 4 (I"):
The rotational energy E,,, of a symmetric top having mo- AN =Nyw(C'V/(2JJ+ 1Y-N.. (19)

ments of inertia [y and /, = I is
E (K)=BJIJ+1)+K¥C—-B), (13)
where the rotational constant C> B for an oblate and C < B

for a prolate, symmetric top. Thus, (E,, ) depends on the
(K ?). For a given J, we have

(k%) = f; K2+ 1)={JJ+1). (14)
K= —J
Thereby,
(E) =BJIJ+1)+{JJ+1)C—B) (15)

The expression for a spherical top is obtained by setting
C = Bin Eqgs. (13) and (15). To test Eq. (12) we define a ratio
B(I):
B()=N vy (Fe)/(2T + 1) N, (e = (Eo)). (16)
(iii) In this third approximation we calculate an N, (I") at
€ — E,,(J,K ) and then average this over-X. Thus, now

Kyp(lie)= (2 + 1N, (17)

TABLE V1. Ratio of exact 10 three approximate results for benzene at var-
ious J's* and € = 3004.8 cm .

=1 J =20 J=30

I al') () Ar') aiI') BU") A(F) ail') B(I') AN

e, 100 100 100 086 100 100 Q71 101 1.00
a, 097 098 098 086 10O 1.00 071 100 1.00
b, 100 100 100 086 100 100 071 100 1.00
b, 103 103 103 08 100 100 071 100 1.00
@, 099 09 09 086 100 1.00 071 100 100
e, 100 100 100 08 100 1.00 071 100 1.00
b, 101 102 102 086 100 100 071 100 1.00
5,, 100 101 101 086 100 100 071 1.00 1.00
e, 102 101 101 086 100 100 071 100 100
&, 09 09 09 08 100 100 071 100 1.00
e, 101 101 101 08 100 100 071 100 1.00
e, 09 100 100 08 100 100 071 100 1.00

“The total number of all vibrational states is 24 866. When J=1,
(Ex) =03 cm™'; when J =20, (E..) =63.5 cm™'; when J =30,
(E) = 1406 com™'.

Equations (10), (12), and (17) are tested for benzene, by
calculatingthea(l" ),B(I"),and 4 (I" Jusing Egs. (11),(16),and
(19), respectively. The results are given in Table VI for sever-
al I’s. Equations (12) and (16) are tested for formaldehyde,'®
2 near symmetric top, in Table VII and for methane,'® a
spherical top, in Table VIII. The closer the values of a, £, or
4 to unity the better, of course, the approximation.

V. DISCUSSION

Examination of Table I for linear molecules shows that
the approximate formula [Egs. (3) and (5)] for linear mole-
cules agrees well with the exact results at the given energies.
Thedeviations at very high |/ | at the lowest energy are due to
poor statistics. Comparison of the R ’s calculated at each /
with the R in the last line shows that our Whitten-Rabino-
vitch type expression by angular momentum [Eq. (3)] is vir-
tually as accurate as the standard total Whitten-Rabino-
vitch expression (except at large enough |/|’s). Similar
remarks apply to its use for the sum of g and u states in Table
11, but even for the counting of g states or u states alone it is
seen to agree quite well. The remarks about Table 1 apply
also to Table 111, though there is less randomization between
the Z * and F ~ than between g and « states. Equations (7)
and (9) are seen to agree well with the exact count. A similar
remark applies to Table IV.

TABLE VIII. Ratio of exact to two approximate results for methane. *

€=4%40cm~' €=9880cm™' €=19760cm™'
i Arja(r) Biryar) B(r)4(r)
a, 0.88 . 095 0.99
a; 1.05 1.03 1.01
e 0.98 0.9 1.00
1, 1.03 1.02 1.00
I 0.99 0.9 1.00

;N.lr)-'l? ;h’,[rl- 1308 ;N,[l‘)z“ﬂ?

*J =35, (E,) = 157.56 cm™', zero-point energy is 9883 cm~".
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In Table V for rovibrational states, {I" ) for benzene is
even closer to unity than it was in Ref. 1 at the same number
of states, perhaps due to the extra number of degrees of free-
dom. The three approximations for counting rovibrational
states of nonlinear molecules of any symmetry species are
embodied in Eqgs. (10), (12), and (17). The results in Table VI
for benzene show that even Eq. (10) is a good approximation
except at high J. Equation (12) is seen to be even better than
Eg. (10) and it agrees so closely with the exact results as not
to make the use of Eq. (17) worthwhile for the present results.
The tests in Table VII of Egs. (12) and (17) for formaldehyde
shows them to be satisfactory for the energy and J tested.
Once again Eq. (17) contributes a negligible improvement
over Eq. (12). Since methane is a spherical top, E,, is inde-
pendent of K and Eqs. (12) and (17) give identical results in
Table VIII
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APPENDIX A: DERIVATION OF EQS. (2) AND (3)

We let v be the vibration frequency of each member of
the degenerate pair and let n° kv and n® Av be the amounts of
energy present in each member of the degenerate pair.
Thereby n° h and n®h are the values of the classical action.
Classically, n® and n® are continuous variables with a mini-
mum value of zero. Quantum mechanically, n° and n® are
half-integers, 1/2,3/2,... . For any pair of values (n°,n°) the
component of angular momentum |/ | along the molecular
axis is [n* — n*|.

We define a variable /' equal to n° — n® and note that it
can be positive or negative. We also define a principal vibra-
tional “‘quantum number” » (the corresponding classical ac-
tion being nA ) for the degenerate pair

l'=n,—n,,

n=mn,+n, (Al)

1" is the quantum number for a signed angular momentum
component along the internuclear axis. The classical num-
ber of states N | (E ) with a particular value of / of //, and with
energy less than or equal to E, is

E thv sy —m,
NUE)= J' dn,r s,
ny =0 ', -0

XN, _1(E = njhv — nyhvibin, — n, — 1),
(A2)
where s is the total number of vibrations and N, _, (x) is the

number of vibrational states of s — 2 oscillators with energy
equal or less than x:

XJ -2

No-alx) (s — 2)M,Av,
Here, the product over i is from { = 3 toss, oscillators 1 and 2
being the pair of degenerate bending vibrations. Using the
transformation in Eq. (A1), the area element dn, dn, in Eq.
(A2) becomes ldnd/’ and the delta function becomes
8(!" — 1). We consider first the case of I > 0. Here, because of
the delta function, only the domain of /' > 0 need be consid-
ered. Equation (A2) then becomes

(A3)

E /hv E /hv

NU(E)= —;- dr dn N,_,(E— nhvis(l’ —1).
0 (N

(A4)

[The limits on n and /' follows from those in Eq. (A2) and
from the transformation given by Eq. (A 1).] Integration over
n yields

NiE)

-

E /hv
= [J. di'\E = I'"hv) = '8(1" — 1)/2(s — I}Ulvn,hv,] X
’ (AS)

Integrating over /’ yields Eq. (2) of the text. A similar argu-
ment applies to the case / < 0. One then uses in Eq. (A4) the
limits( — /" ,E /hv)fornand ( — E /hv,0)for!’'.For/ = 0, the
delta function occurs at an endpoint in Eq. (A5) and in a
corresponding expression for /'<0. Integrals over the /' <0
and /> 0 domains each yield 1/2 and so Eq. (2) of the text is
once again obtained.

In modifying Eq. (2) so as to yield Eq. (3) we have done
30 in a way which permits the standard Whitten—Rabino-
vitch expression® to be recovered from Eq. (3) with only a
minor approximation. If we integrate the right-hand side of
Eq. (3) over all /, we first reexpress (€ +aE,, — lhvf~'dl
forall/positiveas — d [(€ + aE,, — lhv)’'V/shv]l + E,,(da/
de)). [We have used the fact that da/d ( — lhv) equals da/de].
An analogous change is made in the domain of / negative.
We then note that the dominant contribution of the original
integrand occurs at / = 0 and then replace the da/de by its
value at / =0, i.c., at the “reduced energy” of €/E,,. This
derivative is negligible at the E’s we have investigated (a is
close to unity there) and so the standard® Whitten—Rabino-
vitch expression is obtained after integration over /.

APPENDIX B: DERIVATION OF EQ. (6)

Let n v, and n,Av, denote the classical energies in the
two pairs of degenerate modes, and let n? kv, and n® hv, de-
note the classical energies of each member of the first pair
and similarly for the second pair. We define

li=n{—n}, li=n3—n,
ny=nj +ns. (B1)
As independent variables in the integration domain we use
n,,ny1;,and ]’ (instead of / | and 1 }), where !’ equals /{/;.
The volume element dnf dn} dng dn} becomes dl;
dn,dl’' dn,/4.

The equation analogous to Eq. (A2) is found to be

NUE)= —l—”ffdl'dz: dn, dn,

XN, _o(E—nhv, — nohv)S(l" —1)  (B2)
where N, _ . (x) is the number of states of the s — 4 oscillators
with energy equal to or less than x:

N,_ix)=x""*/(s — 4)I1 hv,. (B3)
Here, i goes from 5 to s throughout, the oscillators i = 1-4
being the two pairs of degenerate bending vibrations. The /in
the delta function isa particular value of / '. The limits on the
variables are as follows: n, goes from |/ | | to (E — nyhv,)/hv,

ny=n +nt,
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and n, from |/}]| (ie., |I'=1}]|) 1o (E — |I}|hv,)/hv,. For
example, the lower limit just cited for the n, integral |/ ]| is
seen by noting that n, =/ + 2n} = 2n? — [} and observ-
ing that when /| > O the smallest value of n, is obtianed by
making n! = Oand hence n, = /|, and that when /| is nega-

tive, the smallest value of n, is obtained by making n{ =0.

and hence making n, = — /]. That is, for both cases, we
have n,>|/{|. The limits on /| and /" in Eq. (B2) are given
later:
NIE)
ff(.E— [ Vhyvy = |1 =1 |hvF — 28" = 1)dl jdl’
= 45 — 2k hvall v, ‘

(B4)
Thelimitson/, and / * are found by noting that the quantity in
parentheses in Eq. (B4) must be nonnegative. Because of the
absolute value signs, it is convenient to divide the integration
region into several subdomains, in each of which the integral
over /| can be easily evaluated. For example, we let v;> v,
and let the most negative and most positive values of /| for
which the quantity in parentheses in Eq. (B4) is nonnegative
be denoted by / 7" and / P**. Then, for the domain with/* > 0,
the 1] domains are found to be as follows:

When !’ < E /hv,, there are three subdomains of /],
namely (/ " to0) (Oto/’)and (/* to! P**). Here, ! 7" is given by
E—Il'hvy—(I'=17"hv,=0; and IT* is given by
E—1I'hv, — (IT* — I')hv, = 0. (We have used the fact that
1] can exceed !’ since / ; can be negative.)

When!’> E /hv,(itsmaximum valueis E /Av,)onefinds
that the above /7" is positive rather than negative and so
now there are only two subdomains of / | namely (/™" to /")
and (/’ to/ ). Furthermore, when /is positive, we need only
use the positive /' integration domain, because of the delta
function. One thus finds, for /> 0, an expression identical
with Eq. (6), but with |/ | replaced by /. Similar remarks apply
for the case when / is negative, with an obvious change in
limits, and once again obtains Eq. (6), but with |/ | replaced by

— 1. Equation (6) still applies when / = 0.

APPENDIX C: DERIVATION OF EQ. (1b) FOR
ROVIBRATIONAL STATES

In what follows, we use the notation and method of
paper 1. For group I molecules (defined there) we showed
that a vibrational state with several quanta in at least one
degenerate mode hasaratioof 1:1:3for 4 labels to £ labels to
T labels (“labels™ defined there). This symmetry species of
the vibrational state was represented as equivalent to
A + E + 3T. If we couple this symmetry species for the vi-
brational state to a rotational state having a general symme-
try species /4 + mE + nT in the molecular point group,

where /, m, and n are zeros or integers, the overall symmetry
of the coupled state is

(A+ E+ 3T)(l4 + mE +nT)
=(+2m+ 3n + (I +2n + 3n)E
+ (3! + 6m + 9n)T
=A+E+3T. : (€1

(The equivalent sign is defined in Ref. 1). Thus, the ratio of 4
labelsto E labelsto T labels of the coupled rovibrational state
is 1:1:3, as it was for the vibrational state alone. If we assume
a randomization of the labels among all of the symmetry
species as in Ref. |, the analysis is identical to that given for
vibrational states alone there and yields the value of /- given
by Eq. (1b). It is of interest to note, though the results are
independent of this, that if one averages over the rotational
symmetry species given by Weber'® by averaging over all
K ’s, one obtains the same results as the averaged overtone
rules given in Table I of Ref. 1 for vibrational state alone.

Similar arguments are applicable to groups 2 and 3 in
Ref. 1, and so Eq. (1b) applies to rovibrational states of these
molecular point groups as well.
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Chapter 3: Local Group Modes and the Dynamics of Intramolecular
Energy Transfer Across a Heavy Atom

[The text of this chapter appeared in: V. Lopez, V. Fairen, S. M. Lederman and R.
A. Marcus, J. Chem. Phys., 84, 5494 (1986).]
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The dynamics of energy transfer is discussed for a model system in which two ligands are
separated by a heavy atom. Numerical and analytical results are given for the case that each ligand
is a CC. In the quasiperiodic regime, the dynamics are interpreted using perturbation theory.
Local group modes involved in an intramolecular energy localization which can occur in this
regime are identified. An approximate separation of the primarily ligand-ligand motions from the
primarily ligand-metal-ligand ones occurs in the clearly quasiperiodic regime and also at an
energy where the power spectra of the bond coordinates are “grassy.” The overall analysis is used
to make predictions for systems with larger ligands, when the primarily metal atom-ligand modes

are, as above, approximately separable from the primarily intraligand ones.

L. INTRODUCTION

In a previous paper’ we considered the energy transfer
between two ligands attached to a heavy atom M. Classical
trajectories were calculated for model system C-C-C-M-
C-C-C. While energy transfer occurred at low energies,
there was only a restricted energy transfer when the energy
of one ligand was high enough that the vibration frequencies
in the two ligands were no longer “‘resonant.” More recently,
calculations? were also reported for a system with more co-
ordinates, including bending motions. For excitation ener-
gies of 50 kcal mol™', the energy transfer was restricted for
the potential energy surface used.

In the present paper we treat the motion analytically for
the five-atom system C-C-M-C-C. The extent of energy
transfer in the quasiperiodic regime is analyzed in terms of
the “local group modes’—the anharmonic modes for each
ligand—using perturbation theory to calculate the proper-
ties of these modes. The perturbation theory is also tested by
comparison of semiclassical and quantum eigenvalues of a
ligand. At high energies a regime that may be partially chao-
tic occurs for the five-atom system and is discussed.

Based on the analytical and numerical findings in the
present paper it is shown how certain features of the results
can be extended to larger systems, provided an approximate
separation condition is fulfilled.

Il. EXCITATION ENERGY AND ENERGY TRANSFER

In this section the results of numerical trajectory calcu-
lations are described for the C~C-M—C~C system, where the
bonds are, as before, Morse oscillators coupled by the
stretching momenta cross terms and where the masses have
been chosen to roughly reproduce the C/Sn mass ratio.’

* California I of Technology Contribution No. 7255.

These calculations are aimed at exploring the range of be-
havior found in the previous model. Because of the smaller
number of coordinates now, a perturbation analysis is
simpler. Nevertheless, the qualitative numerical behavior is
similar to that found' for the seven-atom chain. In the analy-
sis we focus attention on local group modes of each metal-
ligand subsystem, the present system being the simplest ex-
ample where these group modes can be studied.
The model Hamiltonian used is

- 4
H-:l 2 suppt ZD:[l—c""-"?’]i' m
2.5 =

where the g,'s are the usual Wilson G-matrix elements® that
couple adjacent bonds. The Morse potential parameters are
the same as those in Ref. 1, namely, D, = 84.1 kcal mol ™",
a=154 A=, and 7 = 1.54 A (cf. Ref. 1 for precise values
in a.u.). The r,’s in Eq. (1) are the bond distances and the
p,’s denote their canonically conjugate momenta. In order to
describe the energy transfer across the heavy atom, approxi-
mate energies E; and E, for both halves of the model chain
(the left containing / = 1,2 and the right containing i = 3,4)
are defined in such a way that the Hamiltonian (1) can be
rewritten as

H=H; + Hy + Vpa, (2)
where

E =H, =H +H;+8:p P> (3a)

Ep =Hy =H;+ H,+ 8493 P (3b)

Vir =82P:Pn (3¢)

and H, (i = 1—4) denotes the Hamiltonian of the ith Morse
bond given by

H=}g.p+D[1—e"""""] 4
Equation (4) can be reduced to its normal form
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H, =J,o)(1 —xJ) (5)

using the usual action-angle variables* related to the bond
coordinates and momenta according to

i l-fuma-5g]). e

- 2 s
4, _m,l( z, — 1 + (g, pi/2z,D) ) o
[1—2z + 27 + (g, pi/2D)]'?
Here,
of = [2Da’g,]'?, x.=w{/4D,
z,=exp[ —a(r,—7)]. (8)

The trajectories were calculated with an initial excita-
tion energy E, of bond 1. All other bonds were taken to have,
at time zero, the zero-point energy value with the action
variable J, = | (inunitsof i= 1), r, = r/ and p, > 0. A pre-
dictor—corrector method® with double precision arithmetic
was first used to perform the numerical integration of Ham-
ilton’s equations of motion. All forward trajectories were
back integrated to check their reliability and the initial con-
ditions were found to be preserved for all but one trajectory,
discussed later, that at £, = 0.5 D. To back integrate the
latter it was necessary to go to the unusual step of using
quadruple precision.® All trajectory data given in the present
paper are now quadruple precision, with initial conditions
being preserved, on back integration, to within 0.01%.

In Fig. 1 the time evolution of E; and E, is depicted for
an initial excitation of bond 1to E, = 0.3 D. When averaged
over an ensemble of trajectories with the same initial excita-
tion energy E, and different phases for bond 1, the oscillating
components in E; and E, disappear, while the nonequili-
brated final distribution of energy is preserved. There is an
excess of energy in the originally excited left-hand side of the
molecule. While the excitation is redistributed between the
bonds 1 and 2 in less than a picosecond, no complete energy
transfer is observed across the heavy atom for a time of inte-
gration as long as 0.25 ns for the cited initial energy E,.
(Approximately 25 harmonic oscillations of each C—C bond
occur per picosecond. ) Results for only a portion of the total
trajectory time are given in Fig. 1, the remaining portion
being similar to that depicted there.

In Fig. 2 power spectra of the dynamical variable r, and
its symmetric counterpart r, are given for the above trajec-
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FIG. 1. Energy localization for E, = 0.3 D and ¢, = 0.5. Figure depicts £,
and E, (ina.u.) vs time. (One unit is 27/w] with o given by Eq. (8) and
being about 0.038 ps.)
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tory. The spectra show that the motion is regular (quasiper-
iodic). The coordinates have the same frequencies, as they
should in a coupled system, with a different intensity pattern
as expected. The four fundamental frequencies should ap-
pear in pairs, due to the symmetry of the model chain. The
fundamentals occur near @ = 3 and 7 (units in caption).

The trajectory used for Fig. 1 is characteristic of a group
of trajectories we will refer to as “localizing.” They are prev-
alent for initial conditions corresponding to the energy range
E, = 0.15100.40 D (depending on initial phases, however).
“Nonlocalizing’ trajectories prevail for energies E, <0.1 D.
In the latter, energy equilibration between the two halves of
the model chain is complete on the time scale of a C—C vibra-
tion. Power spectra for variables r, and 7, for such trajector-
ies are rather similar to the r, power spectrum displayed in
Fig. 2.

‘When the excitation energy exceeds 0.4 D, the behavior
is different, although it is difficult to be precise about the
energy range in which this new behavior appears. In Fig. 3
the time evolution of E, is shown after an initial excitation of
bond 1 to an energy of 0.5 D. The trajectory is nonlocalizing
and its power spectra (Fig. 4) have a number of grassy
peaks; the model chain achieves a complete energy equilibra-
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(the same units as in Fig. 2).
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tion across the heavy atom after some induction period has
elapsed. In the corresponding power spectra for 7, and r, in
Fig. 4, a grasslike collection of lines appears that partially
replaces the high frequency mode peak found in the previous
quasiperiodic trajectories. On the other hand, the two low-
frequency mode peaks, red shifted from their values in Fig. 2,
still appear to be sharply defined. A combination band at an
intermediate frequency has also become grassy.

Finally, at a still higher excitation energy of E, = 0.7 D,
the seeming chaos has disappeared. A typical result is shown
in Fig. 5 for the time evolution of E; and E, and in Fig. 6 for
the power spectra of 7, and r,. This result is an example of a
localizing trajectory occurring for excitation energies E,
near D. The intensity pattern in Fig. 6 differs from that in
Fig. 1.

The above results summarize the different types of mo-
tion and energy transfer that we have encountered in this
model system.

Ill. LOCAL GROUP MODE ANALYSIS

In this section the localization of energy described in
Sec. Il is analyzed in terms of resonances between the local
group modes in each ligand, when the initial excitation of the
left ligand is in the moderate energy range, namely for quasi-
periodic trajectories in the range E, <0.4 D. Local group
modes involve a collective motion of the atoms of each li-
gand. The motion may be compared with that in a symmet-
ric triatomic molecule ABA, with m,»m . Here, the local-
ization is due to nonlinear resonances between the two local
bond modes®” AB and BA.. A similar phenomenon is expect-
ed to occur in the present symmetric model chain, with a
resonance now occurring between corresponding local
group modes of each ligand. Only one of the two local group
modes in each ligand, it will be shown, actively participates
in the localization of energy in the present case.

Relative Amplitude

FIG. 4. Power spectra of bond
di ryand r, for E, = 0.5
D and ¢, = 0.5 for the trajec-
| tory used for Fig. 3 (the same
units as in Fig. 2).
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F1G. 5. Energy localization shown in the time evolution of E, and E,.
E,=0.7D and ¢, = 0.5 (the same units as in Fig. 1).

The analysis of results in Sec. 11 is performed by first
identifying the local group modes of each ligand-metal sub-
system. In the moderate to Jow energy range in which they
occur (£, <0.4 D), we will presume they are somewhat per-
turbed from the harmonic local group modes, i.e., from the .
standard normal modes of the ligand-metal subsystem. The
corrections to normal modes are found in Appendix A using
a Birkhoff—-Gustavson perturbation scheme. In that analysis
the Hamiltonians &, and M, in Eq. (3) are each cast into
normal form [Egs. (Al1l) and (A13)]. They are thereby
expressed in terms of a polynomial in the local group mode
actions, a polynomial generated here using terms up to and
including fourth order analytically and sixth order numeri-
cally. The resulting &, and H, do not depend upon the new
angle variables. The corresponding new action variables are
thereby, within this order of approximation, constants of
motion for L-M and M-R, respectively. Physically, the two
anharmonic local group modes in a ligand represent a pri-
marily C—C stretching motion (termed the “X mode™) and a
primarily C-C group vs M motion (termed the “Y mode™).*
The Y mode has a lower frequency of oscillation, due to a

i

Relative Amplitude

FIG. 6. Power spectra of bond

0 . ryandr, for E, = 0.7
s D and ¢, = 0.5 for the trajec-
tory used for Fig. 5.
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nigner ettective mass. This perturbation scheme also yields
the generating function needed to transform the original to
the new action-angle variables.

Once an approximation to H, and H, has been con-
structed in terms of the actions of the local group modes,
these expressions are introduced into Eq. (2), while the
complicated expression for ¥, in terms of action-angle co-
ordinates is expressed in terms of a Fourier series in the angle
coordinates ¢, and @, for the X and Y modes for the left
ligand and @, and @, for the equivalent X ' and"Y ' modes for
the nght ligand. The resulting equation is

H= CuJ, +7.00)

mm )it jmn

+L; Vima (Jx Jx'

Xexplilkg, + lp, + mp, +np,)]. 9
In the standard Chirikov analysis®'® of nonlinear reson-

ances, only the leading terms of the expansion are usually
taken into account. In the present problem we make the
same approximation and see how well the results serve to
interpret the trajectory results. From Eq. (A11) and leading
terms of the Fourier expansion of V., the resulting reso-
nance Hamiltonian is'*
H=au(J, +J) v 0o, (J, +1,) =4, (J] +J2)

=4, +T0) =AU, + 1))

— €, (Jx‘,x' )”2 GOS(P' - @x )

—&,(2,7,)" cos(p, — @y ). (10)
where the 4 ’s are given in Eq. (A12) in Appendix A and the
€s in Ref. 11. One omits thereby terms such as
cos 2(@, —@,) and crossterms such as
cos(p, — @, )cos(@, — @, ). However, the omission does
not decouple the (X, X ') modes from the (Y,Y ') ones, since
there remain in Eq. (10) the A, crossterms.

New variables are next introduced via a canonical trans-
formation

IL=J 47, 6,=(g.+@.)/2
-’;=J. - [ = (P —@x)/2, an
I,=J+J, 6, = (¢, +9,)/2,
I,=J,-7, 8,=(p,—@,)"2

The new action variables 7, and 7, are particularly suited for
monitoring the extent of energy transfer across the heavy
atom. They describe what we shall call the X and ¥ motion of
the molecular system. Equation (10) becomes

2H = 2o I, + 2001, — A, (J2 +72)
—A,U2+T) =AU, +11)
— €, (12 —T2)"2c05 28,
—&,(J2 —T2)"2cos 28,.

(12)

As seen from the Hamiltonian in Eq. (12), J, and J, are
constants of motion in this approximation. Including all the
constants in a single term H,, Eq. (12) may be rewritten as

0015~

0010

Energy

0005

F1G. 7. Time evolution of E, and E, for nonlocalizing trajectory. E, = 0.1
D.¢,=05.

2H —E)y=AT12+4,1? +4,117,
+ & (75 —T3)"c0s 28,
+€,(I2 —T3)"%c0s 28,. (13)

The resulting Hamiltonian is equivalent to that of two cou-
pled hindered rotors, each having a potential which is depen-
dent on the action variables. Their momenta 7, and ! repre-
sent differences between left and right local group mode
actions, as in Eq. (11).

Numerical calculations for the energy and the actions
are given in Figs. 7-14. They are made using the trajectory
data for the conditions in Figs. 7 and 10 and using the sixth
order actions (Appendix A) and the transformation equa-
tion (11). The time evolution of E; and of E, is depicted in
Fig. 7 for a nonlocalizing group mode trajectory, and J, and
I, for this trajectory are plotted vs time in Fig. 8. It is clear
that both 7, and J, are, as previously suggested, approximate
constants of motion. On the other hand, it can be seen in
Figs. 9 and 10 that both 7, and T, each undergo a change of
sign, i.e., they undergo an oscillatory motion. For the loca-
lizing trajectory whose energy in each ligand is plotted in

0 L i

160 320
Twme

FIG. 8. Approximste invariants of the motion for the J, and J, (sixth or-
der) modes of the molecule, corresponding 1o the trajectory used for Fig. 7.
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FIG. 9. Oscillating regime near the resonance for J, for the trajectory of
Fig. 7.

Fig. 11,1, and J, are again approximate constants of motion
(Fig. 12), l st:ll oscillates (Fig. 13), but the motion ofl
has become “rotatlonn.l", i.e., it no longer changes sign dur-
ing the motion (Fig. 14). As a consequence there is no longer
a complete equilibration of energy between the two ligands.
That is, the X motion (primarily an antisymmetric ligand—
ligand motion) is responsible for the energy localization.

The above results and the behavior of the apparently
only partially grassy spectrum in Fig. 4 indicate that the X
and Y motions behave rather independently. They also indi-
cate that although the ¥ motion is only oscillatory in the
examples given, the X motion has two accessible possibili-
ties, oscillation and rotation. A detailed understanding of
this behavior is based on the following analysis.

When the frequency of the J, motion is significantly
faster than that for /, as it is in Figs. 9 and 10 and Figs. 13
and 14, the A,, term tends to average to zero during the slow
T, motion. Indeed, a subsequent numerical solution of the
equations of motion based on the Hamiltonian (13) showed,
for the conditions in Figs. 9 and 10, relatively little effect of
the coupling term A, l 1,. It produces the slow modulation
of the amplitude of the 1 molion noticeable in Fig. 10 and, to
alesser extent, in Fig. 14 For the solution based on Eq. (13),
this modulation disappeared when 4, was set equal to zero.
In what follows, we shall assume theI and I motions to be
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FIG. 10. Oscillating regime near the resonance for 7, for the trajectory of
Fig. 7.
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FIG. 11. Time evolution of E; and E, for a localizing trajectory. E, = 0.15
D, ¢, =05

largely decoupled by neglecting this A,, term. However,
when the frequencies of those motions become comparable
that term should be considered.

With the neglect of 4,,, we may define an “energy” E,,
where a refersto X or ¥:

2E, =A% +€,(I2 (a=X.1.

(14)

The domain of interest in the phase space for @, and ¢, is
(0,27) and, as one sees from Eq. (11), the correspondmg
domain for &, and for B is ( — m,m). The potential in Eq.
(14) is periodic in 6., thb period 7. Its maximum occurs at
8, =0and + = and its minimum at 9 = + im. When the
full ( — ,7) domain of 8, is covered in the motion, the
motion is “rotational”; when this domain is not fully ex-
plored 8, oscillates about the point 8, = m/2 (or — 7/2).

A separatrix in the (7,,6,) phase plane separates the
rotational from the oscillatory 7, motion. The energy E S for
the separatrix found by noting um T, vanishes on the separ-
atrix when cos 26, reaches its maximum + 1. Thereby,
from Eq. (14), we have

E; =l€,1,. (15)
We next consider the conditions for 7, to oscillate (i.e., that

—712)"%c0s 28,

|
|
|
0 &0

Time

320

FIG. 12. Approximate invariants of the motion for J, and 7, modes of the
molecule (sixth order), corresponding to the trajectory of Fig. 11.
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FIG. 13. Rotating regime for I, for the trajectory of Fig. 11.

E, <E§) or rotate (E, > EJ ), and to understand why the
ease in attaining the “rotational” condition differs markedly
forT, nndl (cf. Figs. 13 and 14).

We denot.e the maximum in ! during the motion by
7 Smeeltoccursnoosza = — 1, Eq. (14) shows that

2E, =2, T3, —e, (I3 =T2 )2 (16)
In the particular case that the initial value of J,. (@ = X or
Y) is cither small or if, due to energy transfer with J,,J,.
becomes very small at some time during the motion, the
maximum value of 7, is seen from Eq. (11) tobecloseto’,.
In this case, Eq. (16) simplifies to

E, i 2. 17)

From Egs. (15) and (17), one can easily determine the
conditions for the 7, motion to become localized on the hot
ligand (i.e., for the motion of T, to become rotational),
namely for E, > E 3. Since E, grows quadratically with 7,
as in Eq. (17), while E grows only linearly with I, as in
Eq. (15), the condition E, > E$ is realized when I, be-
comes large enough. When A, is small, as it is for the 7,
motion, the condition E, > E3 becomes difficult to attain
and so the 7, motion remains oscillatory, as in Figs. 10 and
14. From Eqgs. (15) and (17), one sees that this condition
E_ > E7 is attained when I, exceeds a critical value of 7§
given by

IS=¢,/A,. (18)

Soi‘“'i‘“‘iiiill:lllltilll‘l““[
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FIG. 14. Oxcillating regime resonance for J, for the trajectory of Fig,. 11.

For the values of the parameters considered in Sec. II, one
finds A, = 6.24, ¢, = 11.44, 4, = 0.99, and €, = 65.98, all
in units of cm~'. Thereby, J S = 1.83 and J { = 66.6. Examin-
ing the I,’sand /,'s in Figs. 8 and 12, it beoomsclcarwhy in
both cases the motion of 7, (Figs. 10 and 14) is oscillatory,
why it should remain so even at much higher values of /,,
and why the 7, motion is oscillatory in Fig. 9 (the I, in the
corresponding Fig. 8 is about 1.5), but rotational in Fig. 13
(7, in the corresponding Fig. 12 is about 2.1).

Whetherornot 7, ,, in Eq. (16) can attain a value near-
ly equal to J, during the motion and hence permit use of the
very simple Eq. (17), rather than requiring the use of Eq.
(16), depends on the initial conditions. If J,. is made rela-
tively small initially, as in the present examples, Eq. (17)
becomes an increasingly good approximation to Eq. (16).

From Eq. (14), the frequency of the motion for I, can
also be calculated, for any E_ and 7. Equation (14) can be
rearranged to give an equation containing second and zeroth
powers of 2, expressed as a function of powers of cos? 26,
and E, . This quadratic equation for the variable 72 can be
solved and the phase integral 7, then calculated:

i, =§7,(a,.£, )dB, . (19)

Here, the domain of 3, is ( — =,7) for a rotational motion of
71, and from turning point to turning point in the case that 7,
is oscillatory. The frequency @, of the I, motion is then
calculated from the standard formula

@, =dE,/dl, = (dI,/dE,)™". (20)
We omit any further details of @, but merely note that a
numerical solution of the equations of motion based on the
Hamiltonian (13) gave good results for the frequency for the
I motion when there is a frequency gap of 7, and 1 motions,
wnh or without the A, term, at least if the system is not near
the separatrix. The J, motion for the conditions in Fig. 13 is
a very close to the separatrix and so whether or not it is
localized (i.e., rotational) can also be sensitive to the initial
conditions. A choice of the initial value of 7, very closeto I,
produced a rotational motion for the energy for Fig. 10.

We conclude this section by relating the preceding anal-
ysis to the matching or near matching of frequencies of the
subsystems. The Hamiltonian (14) serves as a ““resonance”
Hamiltonian for transfer of action between the J, and J,,
modes. It is more complicated than the standard Chirikov
Hamiltonian,”'® because the amplitude of this cosine term in
Eq. (14) can vary markedly from nearly zero to some appre-
ciable value, rather than being a nearly constant. The fre-
quency @, of the J, motion within a ligand is seen from Eq.
(10), with the coupling terms 4, €,, and ¢, set equal to
2ero, to be

w, =0H /dJ), = wg, —24_J,. (21)

A resonance condition, and hence an extensive transfer of
energy between the J, and J_. modes (a = X or ), occurs
when o, sw,, i.c., when J, &xJ., for similar ligands. If the
conditions are such that J_, and J,,. are sufficiently different,
which may require a high value of J, + J,. and an initially
small J,., @, and w,. can be sufficiently different that a lo-
calization of the energy in the J, mode can be achieved. We
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have seen that this condition is difficult to achieve for the ¥
and ¥’ modes (i.e., for the T, motion )—there is too easy an
energy transfer between the L-M and M-R modes—but it is
achievable for the X and X ' modes. Thereby, the restriction
to the energy transfer is concentrated primarily in the intrali-
gand modes J, and J ..

IV. DISCUSSION

From the results of Secs. II and 111, the following profile
of the response of the system to increasing the excitation
energy can be given: The local group modes involve collec-
tive motions of the ligands of the heavy central mass. A low-
frequency mode in each ligand (the Y mode) has as its mo-
tion primarily that of the center of mass of a ligand vs the
heavy atom; a high-frequency mode (the X mode) can be
viewed as a relative motion of atoms within this ligand. Two
key couplings occur in the local mode interaction: that
between the modes of a particular ligand-metal atom sub-
system, and that leading to the resonances between modes of
the two subsystems. The rate and extent of energy transfer
results from the interplay of both mechanisms. The former
governs energy exchange within one ligand, while the latter
regulates its flow between ligands.

_ At least for a moderate degree of excitation, the T, and
I, motions appear to be approximately separable. Simulta-
neously, the ligand-ligand interaction may be explained as a
1:1 resonance between equivalent modes (J, withJ,. andJ,
with J,, ). For very low excitations, namely for E, less than
0.1D, thel and 7, motions are both oscillatory. The motion
of the system is mdecd expected to be largely that of some-
what perturbed normal modes of the whole chain. As the
initial excitation energy is increased slightly, both the I, and
the I motion continue to be oscillatory, with the I motion
havmg the higher frequency of oscillation for the hgand to
ligand energy transfer. There is no barrier to the energy flow
in this region. Ultimately, the relatively small energy needed
to exceed that of the separatrix of the resonance in the I,
motion is responsible for the energy localization. Because of
this small critical energy, the 7, motion changes, for higher
excitation, rapidly from oscillation about the resonance cen-
ter to rotation, while the 7, motion is still quasiharmonically
oscillating. That is, the former, a primarily asymmetric li-
gand-ligand motion, serves to localize the energy while the
other, a primarily asymmetric ligand-M-ligand motion, still
transfers it.

The 1:1 resonance approximation used in Sec. II ceases
to be valid when, at higher excitations, other X mode reson-
ances become accessible to the system. These resonances
arise from the neglected terms in the double Fourier expan-
sion of the coupling term ¥V, in Eq. (9). As is well known,
the presence of several accessible resonances leads to an ir-
regular (“chaotic™) motion whenever the resonances begin
to “overlap” (Chirikov theory), and power spectra then be-
come grassy. With this aspect in mind we next consider the
behavior in Figs. 3 and 4. A detailed analysis of this trajec-
tory is beyond the scope of the present paper, which focuses
instead on an analysis of the clearly quasiperiodic regime of
E,<0.4 D. However, a few remarks are in order. The most
striking feature in Fig. 4 (E, = 0.5 D) is that the low fre-

quency peaks remain sharp while the high frequency ones
and the combination band have become grassy. It follows
that the approximate separation of the (XX ) motions from
the (Y,Y’) ones found at £,<0.4 D continues at E, = 0.5 D.

The sharp low frequency lines show that the motion of /, and
T, continues to be quasiperiodic. The grassy appearance of
the other bands cannot be due to 7, moving outside a reso-
nance: A comparison of Fig. 9 with Fig. 13 shows that it
already did so at an E, = 0.15 D and indeed such a move is
expected to simplify the spectra. It could, of course, be due to
7, moving into a new isolated resonance. Then to explain the
grassy behavior in Fig. 4 one would presumably need to pos-
tulate that r, and r, are complicated functions of 7, ./, and of
the (X,X ') variables at E, = 0.5 D. (An isolated resonance
yields a simple spectrum, a set of equally spaced lines in a
single coordinate case, and hence the need to invoke compli-
cated functions for r, and for r,, yielding many Fourier com-
ponents.) Alternatively, the grassy appearance could be due
to the onset of chaotic behavior'? in the (X, X ') motion. In-
deed, the inability to back integrate this trajectory in double
precision provides some evidence for this possibility. We
shall not attempt to resolve this interesting question in the
present paper.

Noting the above behavior of reducing to two separate
two-coordinate problems for this five-atom system, one in-
volving the X and X' motion and the other the Y and Y’
motion, we briefly consider the induction period observed in
Fig. 3. This induction period has been presumed in systems
of two (chaotic) degrees of freedom to be related to the mean
time'® needed to exit an area of phase space confined by the
remnants of an invariant torus.'*'® Such a confinement
need not occur in systems having a higher number of coupled
anharmonic degrees of freedom.

At very high values of £,( = 0.7 D) a second clearly
quasiperiodic regime for the entire system enters. We have
not studied and attempted to characterize it as yet.

The 7 motion was seen earlier to occur deep in a poten-
tial well, in virtue of the small value of 4, and the large value
for €;, for the given I,. The I, motion was seen to be closer 1o
the separatrix. Perhaps for this reason the I motion appears
to remain quasiperiodic in Figs. 3and 4, while the I, motion
showed a greater tendency to have a more complicated pow-
er spectrum (Fig. 4).

Using the above results, we next consider the behavior
which might be predicted for system with many coordinates,
i.e., for systems which approximate real molecules more clo-
sely. The Yand ¥’ modes were primarily the low frequency L
vs M and M vs R motions, and are expected to remain so
when L and R each become larger than 2 mere CC bond. For
the conditions studied for Figs. 10 and 14, there was an easy
energy exchange between these L vs M and M vs R modes.
However, in large molecules this energy becomes typically
only a small fraction of the total. The X and X ' modes were
primarily CC vibrations and now become primarily vibra-
tions within L and R, respectively. At moderate encrgies
they ceased to exchange energy significantly, but at energies
where the power spectra became grassy they did so, though
only after an induction period. A similar behavior can occur
for the larger molecular system under certain conditions.
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One condition for this energy localization in the excited
ligand in larger systems is that there continue to be an ap-
proximate separation of the (X.X') from the (Y,Y’) varia-
bles. In the present case, the frequency of the L vs M (and M
vs R) motion was substantially less than that of the modes
within L and R. Larger ligands will have some low frequency
modes. If they are not coupled to the (Y,Y ') variables, the
approximate separation of variables can again occur. It is
interesting to note therefore that in Ref. 2, which gave nu-
merical results for larger systems, there was little energy
transfer at moderate energies.

In the present analysis, attention has been focused for
simplicity on the kinetic coupling in the C-M-C stretching
motions. Potential energy coupling and a bending C-M-C
coupling can also occur. This bond angle motion does not,
however, appear to be involved in any major low order reso-
nance (e.g., 1:1 or 1:2) with the C-M~-C stretches, for the
real molecules that we have examined. The results of Ref. 2,
which included both of these additional couplings are there-
by of added interest.

Perhaps the most striking finding in the present analysis
is the approximate separation of variables in the primarily
. intraligand-intraligand motion from those in the primarily
ligand-metal-ligand motion, a separation which appears in
the clearly quasiperiodic regime for £,<0.4 D and in the new
regime (E,~0.5 D) whose power spectrum is grassy for
certain lines and sharp for others.

The present calculations are classical. Some quantum
mechanical calculations have been made in our group on the
present system.'” We found that energy transfer occurs even
when little occurred classically and hence that it occurred in
that case by a tunneling mechanism and, thereby, at a re-
duced rate. Evidence is also obtained again for the approxi-
mate separation of variables. A detailed description of the
results will be presented elsewhere.
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APPENDIX A: PERTURBATION HAMILTONIAN FOR
METAL-LIGAND SUBSYSTEM

A perturbation technique is used in this appendix to find
the approximate constants of the motion for H, , and for Hy,
and to examine the transition from nonlocalizing to localiz-
ing group mode trajectories at excitation energies E, <0.4 D.
For this range of energies, the vibrational modes in H, and
Hy cannot be too different from normal modes. Therefore, a
perturbation scheme is used, the reference Hamiltonian be-
ing the one for which normal modes are valid. The Morse
potentials are first expanded in a Taylor series around the
equilibrium position

] —atr - < (2=
I Da—e =2 § (=D D
X[(ry=r)"+ (r,—r)").
(A1)
The Hamiltonian /), is then divided into two parts
H, =Hy+V, . (A2)
where H, contains the quadratic terms
Ho=1g,,pi + 182201 + 8122\ P2
+Da[(r, =) + (r,—1r5)%] (A3)

and V the anharmonic corrections

v= S 22V,
=3
where
(=D"Q2"~'—1)
n!

Vo - [(rn=P)"+ (r=12)"].

(A4)
H,is an integrable Hamiltonian of a system that can be writ-
ten as the sum of two independent harmonic oscillators of
unit mass
Hy = (P + P} + 03X + 03,)7). (AS)
where x and y are normal mode coordinates obtained from r,
and r, by a linear transformation. In this notation x repre-
sents the high frequency normal mode and sow,, > @y, -
The anharmonic correction ¥ has the following form in
these new coordinates:
r=3 3 B,xYy’,

Amdidjmn

(A6)

where the B, are combinations'® of the g,,, g2, and g,, ap-
pearing in Eq. (A3).

There is, therefore, a classical nonintegrable Hamilton-
ian

H=)(p +at) + (P40t + 5 T Bxy
M3 iy jmn
(A7)

which for low energies can be approximated with a few terms
and in which the nonintegrable part is a homogeneous po-
lynomial in the coordinates.

An appropriate procedure for this case that permits the
transformation of this Hamiltonian into a normal form, con-
sisting of a power series of one dimensional uncoupled har-
monic oscillators, has been given by Birkhoff'® and modified
by Gustavson® to include systems with commensurable fre-
quencies. This procedure has been reviewed elsewhere.?'

The Birkhoff-Gustavson method was implemented
with the aid of an automatic algebraic manipulator (SMP)?*
to obtain A, (M) in the normal form

HL___;Ht:-):Z 2 C:’-)[P:n)'_'_xt.)-']r

WP 4 Y'Y (AB)

This result can be achieved by successive canonical transfor-
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TABLE 1. Coefficients of the sixth order normal form of H, (H,).*

Cho 1014244 245 Ch —6.235703 968 s
c, 420.166 950 6 C, —09851352796 G,
C, —4.567716084 Cyw  0.00499926 Ci

— 0.004 006 13
—0.049 3629
0.038 3903

*Units of the C,’s are cm ™.

mations of the so called F, type, F{™ being the mth generat-
ing function:
F;n)gpﬁm)x(n‘—l) +P(-)y(-—l)
= y
s W(P:"".P;"’.X""".Y“"”), (A9)

where P{™ and P{™ are a new momenta and X "~ '’ and
¥ =1 are the old coordinates. The transformations equa-
tions are

XM Xm0 W™ | yom o pomen W™ '
aPL™ aPy™
W m
(m=—1) _ pim)
Pt P e,
—y aw =
P; D= P;"” -+ (A10)

gy m-1n ’
where X ™ and ¥ ™ are new coordinates and P ™~ " and
P{™=" are the old momenta.

The generating function W ™’ was obtained analytical-
Iy up to and including m = 4. The normal form of H, in-
cluding termsupto H “is given by Eq. (A11) (the odd order
terms vanish)

Hymand, + oo, —AJ2 =3,02 -4 T,

(A11)
where
. . 1563, b, (8}, — 3w},)
= 2 7 4w 4w (4l —a},)
1t —ib & 1563, b1, (Bwj, — 30, )
¥ 27 4wy, 4wy, (40}, —wd)
2
,{“,g _bn.',.M.;M__ﬁ.ﬁ'Zbi__
@, o, (W — 4w},)
2o, b2
=2l (A12)

(0, —408.)
The b,'s are related to the coefficients appearing in Eg.
(A7), b, = B,/ (wp,@%,)"'? and J, and J, in Eq. (A11)
are the standard harmonic oscillator actions for the fourth
order variables X, P,, Y, and P,.

These transformations have also been performed up to
sixth order when the numerical values of the model system
under study are used for wg, , @,,, and b;. The C,’s in the
resulting Ha:millonian

- (6) y (8)' y (6)/

H, '\e‘oc o o 4
are given in Table I for all (7, j) pairs whose sum lies between
1and 3.

This approximate Hamiltonian is well suited** for EBK
semiclassical quantization, and the accuracy of Eq. (A13)
has been tested, by comparing the EBK semiclassical eigen-

(A13)

values E € obtained from Egs. (A11) and (A13) with the
quantum eigenvalues E £ obtained with a variational calcu-
lation using Morse wave functions as the basis set. In Table
II we present numerical values of EZ— E§ and of the
E 3 — E ¢ obtained? with Egs. (A11) and (A13) fori<30,
together with the number of quantan, and n, in the Xand ¥
modes, respectively. For eigenvalues with less than ten quan-
ta in any mode, the quantity E$€— E3C reproduces
E2_ E2 within 0.1%. Therefore, it can be expected that _
the actions J {* and J {*’ for the sixth order calculation rep-
resent with some accuracy the constants of the H, motion
for the range of energy containing at least up to the 30 quan-
tum states in Table I1. Thus, for sufficiently low energy, the
motion of the C-C-Sn model system almost lies on the sur-

TABLE 11. Comparison of variational eigenvalues E ¢ of 5, and semiclas-
sical values E *€ obtained with Eq. (A11).*

EF_EE E‘Elll_srtll E"ll] _Efli’
", ®, (em™") (cm™") (em™")
0 1 415913 415913 415.925
0 2 829.859 829.855 829.884
1 0 999.482 999.489 999 465
0 3 1241.81 1241.83 1241.85
1 1 1410.80 1410.83 1410.80
0 4 1651.75 1651.83 1651.80
1 2 1820.24 1820.21 1820.25
2 ] 1986.49 1986.51 1986.45
[] 5 2059.64 2059.86 2059.71
1 3 2221.76 2227.61 2227.78
2 1 2393.12 2393.28 2393.10
[ 6 2465.46 2465.92 2465.55
1 4 2633.35 2633.05 2633.37
2 2 2797.92 2798.09 2797.94
0 7 2869.18 2870.01 2869.31
3 0 2961.05 2961.05 2961.00
1 s 3036.99 3036.51 3036.99
2 3 3200.90 3200.93 3200.93
0 (] 3270.76 3272.13 3270.96
3 1 3362.88 3363.26 3362.86
1 6 3438.66 3438.00 3438.73
2 4 3602.03 3601.79 3602.06
[ 9 3670.19 3672.29 3670.47
3 2 3762.96 3763.50 3762.98
1 7 3838.32 3837.53 3838.26
4 0 3923.22 3923.13 3923.13
2 s 4001.28 4000.69 4001.31
0 10 4067.42 4070.47 4067.82
3 3 4161.27 4161.67 4161.34
1 8 4235.96 4235.08 4235.86

*n, and n, are the number of quanta in the X and ¥ modes. E*'*’ and
E ™ are obtained to fourth order [Eq. (A11)] and sixth order, respec-
tively. E§ = 715.084 cm™"', E3'* = 714258 cm™', E3*'® = 714.257
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face of an invariant torus of radii given by J {*’ and J {*’. The
X '’ motion in this torus mainly corresponds to the vibration
of the C—C bond with a frequency dH, /dJ {*’ or, using Eq.
(A13),

3
w, = ,CmJ:c)“‘Jml'
2'C y
whereas the ¥ ' motion corresponds mostly to the vibration
of the C—C center of mass against the Sn, with a lower fre-

quency
3 ] J=1
w, = 'E_ojC‘v"J_‘,"J;" =

(Al4)

(A15)

Comparison of the numerical values of these frequencies
using the C (*”’s given in Table 1 shows the difference in
anharmonicities between the two group modes. The X mode,
with higher frequency, has also a larger anharmonicity (Cyq
=6.3 Cpy).
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Quantum and classical vibrational energy transfer between two ligands separated by a heavy atom are compared for a model
sysiem, one ligand being vibrationally excited initially and the other unexcited. Similarities and differences of quantum and
classical results are noted. The approximate separability of certain modes simplifies the interpretation.

1. Introduction

There has been recent interest in the effect of a
heavy central atom on intramolecular vibrational re-
distribution [1—5]. Experimental studies on some or-
ganometallic compounds have suggested that a heavy
metal atom may reduce the energy transfer between
the ligands [1], while in another study on a somewhat
different system this effect was not observed [2].
Several classical trajectory calculations on models of
ligand—metal atom systems have also been reported
[3—5]. Studies were made for a non-bending seven-
atom chain C—C—C—-M—C—C—C [3], an analogous
five-atom chain [5], and a much larger system [4].
Analytical results were given for the five-atom sys-
tem (four coupled Morse oscillators) [5] and com-
pared with trajectory results. A condition that the
analysis be applicable or extendable to larger and
hence more realistic molecular systems was also de-
scribed [5].

Quantum and classical dynamical calculations are
presented and compared here for the model system
studied in ref. [5], the initial state in each case being
that of excited “local group modes” described below.
The initial classical states are chosen by a semiclas-
sical procedure to permit a direct comparison with
the quantum results. The methods used for the cal-
culations are outlined in section 2 and the preliminary

! Contribution No. 7298.

quantum and classical results for the model system
are reported in section 3. In section 4 these results are
discussed. Implications of the quantum—classical
comparison for classical trajectory studies of uni-
molecular reactions are also noted.

2. Theory

We first recall several results obtained in our earlier
study [5], where both the C—C—M—C—C system and
the C—C—M subsystem were investigated. In this
study the C—C bond in one ligand was initially excit-
ed (the other bonds had zero-point energy) and ener-
gy transfer to the other ligand was examined. The
concept of anharmonic collective modes (local group
modes) for the C—C—M subsystem was introduced.
They were calculated using sixth-order Birkhoff—
Gustavson perturbation theory, the unperturbed
modes being the (harmonic) normal modes of the
C—C—M subsystem. The resonant coupling of the
C—C—M and M—C—C modes was then investigated
analytically, supplementing the trajectory studies.
The local group modes of the C—C—M ligand—metal
subsystem were found to be of two quite different
types. One such anharmonic group mode was largely,
though not entirely, a ligand mode (termed the X
mode). For the initial excitations studied it showed
little energy transfer at moderate energies to the un-
excited ligand but extensive exchange at low energies.
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The other (termed the Y mode) was primarily,
though not entirely, a C—C versus M vibration. It
showed extensive energy exchange with the Y mode
of the other ligand in both energy regions.

There are a number of advantages in introducing
these X and Y local group modes: (1) There is an ap-
proximate separation of variables for these two
modes, even when they are coupled to X and Y
modes in the second (M—C—C) subsystem [5]. This
approximate separation arises because of a frequency
gap of the X and Y modes, and occurs except near
the “separatrix” of the X motion in C—C-M-C-C
[5]. (2) They facilitate the comparison of classical
and quantum results, as described later. (3) Their use
in the quantum calculation itself is advantageous:
Initial quantum calculations using states of local
bond mode Morse oscillators, instead of local group
mode oscillators, as the basis functions showed con-
vergence difficulties due to the large kinetic coupling
between the zeroth-order bond mode Morse oscillator
states. To avoid this difficulty, the eigenstates for
each subsystem, C—C—M and M—C—-C, were first ob-
tained by “‘prediagonalizing”™ the couplings in these
two subsystems. The new states thus obtained cor-
respond to various excitations of the two local group
modes of C—C—M (and similarly for M—C—C). Next,
symmetrical and antisymmetrical products of the
eigenstates of C—C—M and M—C—C were used as ele-
ments of a basis set to represent the Hamiltonian of
the total system, which includes the kinetic energy
coupling of the two subsystems across the heavy
mass M. In this way convergence was obtained more
readily for the full system, compared with that when
the bond mode basis set was used.

In the quantum calculations the initial non-station-
ary wavefunction was chosen to be the product of
two local group mode wavefunctions, one for each
subsystemn, which was then propagated in time. The
identity of each eigenstate of a subsystem was de-
termined using a classical analysis for local group
modes and semiclassical methods. The Hamiltonian
and the molecular parameters used were those in ref.
[5]:

4

H= %?,:.;1"1”"’1 +2D{1 - expl-a; = DI, (1)

where the g;; are the usual Wilson G-matrix elements
[6] that couple adjacent bonds i and j. The Morse

potential parameters are the same as those in refs.
[3,5], the r; are the bond distances and the p; are
their canonically conjugate momenta. From the eigen-
values and eigenvectors of the system C—C-M—-C—C
and a knowledge of the initial state, all determined as
above, the expectation value of the energy in the ex-
cited subsystem, C—C—M, was then determined as a
function of time. (The kinetic energy coupling term
£23P,P3 across the heavy mass was small and was not
included in the energy of the C—C—M subsystem dis-
played in figs. 1—4.)

Classical trajectories were also calculated to com-
pare with the quantum results. The adiabatic switch-
ing method [7] was used to prepare an initial classic-
al state having the desired quantized anharmonic
local group mode action variables for the C—C—M
and M—C—C subsystems. These initial action variables
correspond semiclassically to the initial local group
mode quantum numbers of the two uncoupled sub-
systems in the quantum calculation. Results for the
eigenvalues of C—C—M obtained in this way are
given in section 3.

Because of the absence of degeneracies, the adia-
batic switching method gave excellent results. In par-
ticular, the final C—C—M—C—C energy, after the
adiabatic switching but before the g53p,p3 term was
introduced, was independent of the initial phase of
the trajectory. An initial zeroth-order (harmonic)
classical state before adiabatic switching consisted of
some excitation of the normal modes of C—C—M
(M—C—C) in a harmonic Hamiltonian and had speci-
fied action variables. It was used to prepare by adia-
batic switching an actual group mode state of C—C—M
(M—C—C) having the same action variables. (The
fourth- or sixth-order perturbation theory had establish-
ed earlier the correspondence between the harmonic
states of C—C—M and those of the anharmonic
C—C—M [5].) The adiabatic switching thus involved
the slow conversion of the harmonic potentials to the
Morse bond potentials to obtain the desired anhar-
monic group mode trajectories. Switching times of
50, 100 and 200 C—C vibrational periods (1.9, 3.8
and 7.6 ps) were used and gave essentially the same
results for the eigenvalues. The 100-period switching
time was used in the calculations reported below.

An ensemble of these trajectories, each prepared
by adiabatic switching and having the same initial ac-
tion variables and a random selection of the four ini-
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tial phases for the harmonic system, was then used 0024
to calculate the ensuing dynamics. Only forty such E\’WWMMWM P
trajectories were used for the present preliminary g 006
calculations in each case. The average energy in the 9 CLASSICAL
C—C—M subsystem was then computed as a function ¥ oooe-
of time after this C—M—C coupling was initiated. .
c L I ' ' J
ooR4ar
3. Results ol
g ooisf
The initial excmtmn is denoted by (nx. ny)
where the nlg and ny denote the number of quanta g cooer-
in the X and Y group modes in the first subsystem
(the *‘left subsystem') C—C—M. (This description of % N = ,’a o %
the states is the one used in table 2 of ref. [5].) The TIME (pa)
initial state assigned to the X and Y group modes in the Fig. 1. Energy of C—C—M subsystem in C—C—M—C~C versus
neond subsystem M—C—C was the ground state time, when the initial exditation is (4,0), and the M—C—Cis
(=}, n$) =(0,0)). Thus, the u'uual state of the entire initially in the state (0,0). Upper curve: classical. Lower curve:
system is a product of the (nk, "‘Y) state of C—C—M quantum.
and the (0,0) state of M—C—C. In the figures the ener-
gy of the C—C—M in atomic units is plotted versus C—C—M—C-C system with an initial state of (4,0)
time in picoseconds. Results were obtained using ini- for C—C—M are given in fig. 1, and the quantum re-
tial C—C—M states of (n}‘, n!;) =(4,0),(0,10), and sults for a longer time are given in fig. 2. This excita-
3B3). tion represents one of an X-type group mode with a
We first report the results of the semiclassical quan- C—C—M energy of 0.021 au or 0.16 D. In figs. 1 and
tization procedure used to identify the local group 2 it is seen that in the quantum case there is a periodic
mode quantum numbers in the quantum calculations transfer of energy from one side of the molecule to
and to prepare the corresponding trajectories in the the other. The corresponding classical results, also
classical calculations. The semiclassical eigenvalues ob- given in fig. 1, show no energy transfer.
tained by the adiabatic switching method for these In fig. 3 the energy of the C—C—M subsystem is
states were 3923.16, 4067.60 and 4161.25 em™!,
respectively, for energies in excess of the zero-point
energy, while those obtained [5] by sixth-order Birk- 0024
hoff—Gustavson perturbation theory were 3923.13, SUBHRM

4067.82 and 416134 cm™!, The quantum mechanic-
al eigenvalues which were closest to these semiclassic-
al elgenva.lues were 392321, 4067.42,and 416127 ooisk
em~!, respectively [S], and this matching provided

a simple identification of the local group mode quan-
tum numbers of these states in the quantum mechanic-
al calculations. The convergence of the quantum cal- ooo8f-
culations themselves was tested by increasing the basis
set for C—C—M—C—C from 1764 to 2500 basis func-
tions, and no significant difference in eigenvalues, to
twelve places, was found. In addition, no significant o5 + & - = =
difference was found for the various expectation TIME (ps)

value plots in figs. 1—4.

. Fig. 2. Quantum results for conditions same as fig. 1 but plot-
The quantum and classical results for the ted for a longer time.

ENERGY (AL)
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Fig. 3. Same as fig. 1 but for s (0,10) and (0,0) excitation of
C-C-Mand M—C-C, respectively.

plotted for an initial excitation of (0,10), which cor-
responds to the excitation of a Y-type group mode of
C—C—M. The rate of transfer is much more rapid,
both classically and quantum mechanically.

The time behavior of the energy of the C—C—-M
subsystem for an excitation of the initial state (3,3) is
given in fig. 4. This state is a combination state of ex-
cited X- and Y-group modes, and shows a behavior
characteristic of each (cf. figs. 2 and 3).

The mean energies (/) for the wavepackets describ-
ing the states with initial excitations of (4,0), (0,10)
and (3,3) for C—C—M and (0,0) for M—C—C were

0.0R4

o DAY

TME (ps)

Fig. 4. Same as fig. 1 but for a (3,3) and (0,0) excitation of
C—C—~M and M—C—-C, respectively.

1 1
(s] 4 8 12 L] 2

calculated to be 2.44 X 1072,2.50 X 102, and 2.55

X 102 au, respectively. (H denotes the full Hamiltoni-
an of C—C—M—C—C.) The root mean square deviation
((H?2) — tN?)Y2 of the energies of the initial wave
packet was, in each case, relatively small;being 2.6
X1074,7.2X107*,and 4.5 X 107, respectively.

4. Discussion

In the case of the excitation of the (4,0) state in
fig. 1, no energy transfer occurs classically for the
sample of trajectories used. In contrast, a periodic
energy transfer (figs. 1 and 2) occurs quantum
mechanically and is apparently due, therefore, to a
classically forbidden process (*tunneling™). The period
of the energy transfer is seen to be about 50 ps.

The behavior when the initial excitation is (0,10),
namely of the Y mode, is seen in fig. 3 to be quite
different, although the initial energy is approximate-
ly the same. The transfer of energy in both the clas-
sical and quantum cases occurs much more rapidly,
each with the same period of about 0.5 ps for the
high-frequency oscillation. This period agrees well
with that computed numerically from the relatively
simple classical resonance Hamiltonian derived using
perturbation theory in ref. [5] (eq. (13)). The oscil-
lation in energy of C—C—M is approximately from
the initial excitation of the C—C—M subsystem to its
zero-point energy and then back again. Also seen in

.< quantum plot in fig. 3 is a damping to a near-
stationary value which corresponds to an equal en-
ergy on each side of the molecule. Subsequently the
amplitude of oscillation again increases and ultimate-
ly the slow time behavior observed in this figure will
repeat itself. A detailed comparison of the quantum
and classical longer time behavior is not appropriate
at this time, in virtue of the small sample of classical
trajectories.

An initial excitation of the (3,3) state (fig. 4)
yields a time dependence in the quantum case for the
energy of the C—C—M subsystem whose qualitative
appearance is that of a combination of that in figs. 2
and 3. It shows the rapid oscillations of energy found
for a Y-mode excitation (fig. 3) and the slower oscilla-
tion seen for an X-mode excitation (fig. 2). The clas-
sical result itself does not show the slow energy oscil-
lation found in the quantum result (nor did it for the
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(4,0) case). The high-frequency oscillation is again
similar for the two results. This behaviour for the
(3,3) excitation, namely being approximately the
superposition of that for the X-mode and for the Y-
mode excitation, can be interpreted in terms of the
approximate separation of variables used to analyze
the classical results in ref. [5].

Further support for an approximate separation
of variables in the energy regime examined in the
present paper comes from a comparison of the quan-
tum results with those obtained (but not cited in
section 3) using smaller basis sets: To compare with
the results for the (4,0) excitation in figs. 1 and 2,2
basis set was used consisting purely of X-mode exci-
tations for the left and right subsystems, and using
the ground state for the Y mode. The results for the
energy of C—C—M subsystem versus time were es-
sentially the same as in fig. 2. Indeed, even a five-state
basis set having n}( * n% = 4 provided good agreement
with this plot. A similar remark applies to an analo-
gous calculation for an excitation of the (0,10) state
in fig. 3 using purely Y-mode excitations and also
such excitations with n% + n§ = 10.

The lack of classical energy transfer when the X
mode of C—C—M is excited, in contrast to the ready
transfer when the Y mode is excited to about the
same energy, was explained in ref. [5]: A classical res-
onance theory was described there and applied to
those local group modes and to those of the M—C—C
subsystem. The analysis also applies, semiclassically,
to the quantum case. However, in the case of a high
X-mode excitation, ¢.g., the (4,0) state, a classically
forbidden transfer between two symmetrically relat-
ed classical tori can occur and permits quantum
mechanical energy transfer where it did not occur
classically.

The present comparison of classical and quantum
results also illustrates a potential shortcoming of
classical trajectory calculations of unimolecular pro-
cesses, a shortcoming sometimes overlooked in such
studies when classical tori exist. In fig. 1 an example
is given where there is essentially no energy transfer
between two parts of a molecule classically (between
two tori [5]), but there is a slow transfer quantum
mechanically. In this way classical trajectories can
give the appearance of less energy redistribution in an
isolated molecule than would occur for a wave packet
in a corresponding quantum mechanical and hence

more realistic calculation. This type of behavior is
well known for ABA triatomic systems [8].

If there is an approximate separation of the intra-
ligand and metal—ligand modes in a real molecule (X
and Y modes, respectively), energy localization in a
ligand may be obtained by an appropriate, excitation
of the X modes. For example, in the case of alkyl
ligands, the X modes would involve the stretching and
bending modes of the ligand’s carbon and hydrogen
atoms. Excitation of X modes of a particular ligand
can then be made either via a single-photon high C—H
stretching overtone excitation or via an infrared multi-
photon excitation of CH bends. (The other ligands
could contain D atoms rather than H atoms, to reduce
their absorption at the relevant frequencies.) These
methods for exciting X modes are suitable, unless
some overtone of the metal—ligand Y mode has suf-
ficiently large absorption in the excitation range. It
may also be noted that the shorter the excitation pulse,
for a given total integrated intensity, the more likely
that a localized excitation would cause the excited
ligand to react before its energy decays by classical
or tunneling processes to the remaining ligands. A
direct excitation of the metal—ligand (Y mode)
states is perhaps possible using a suitable laser, but
would not be useful for the purpose of energy locali-
zation and subsequent reaction within one ligand.

The main question to be resolved, of course, is
whether the Y-mode states are, in real molecules, reso-
nantly coupled to X-mode states, thereby eliminating
any separability of the two types of motion.

A more detailed paper amplifying and extending
the present results will be submitted for publication, in-
cluding the extension to larger systems.
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Chapter 5: The Use of Artificial Intelligence Methods in Studying Quan-

tum Intramolecular Vibrational Relaxation

[A modified version of the text of this chapter is being submitted to the Journal of
Chemical Physics.]
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Arthur Amos Noyes Laboratory of Chemical Physics, f California Institute of
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Abstract

Artificial intelligence methods are used to treat the time evolution in intramolec-
ular quantum dynamics. Comparison is made of several Al search algorithms and
evaluation functions in an application to the study of quantum intramolecular vi-
brational relaxation. The methods developed are applied to an 11-coordinate heavy
central mass problem and used to treat both quantum beats and “dissipative” in-

tramolecular energy transfer.

I. Introduction

The quantum mechanical study of intramolecular vibrational relaxation (IVR)
in complex molecules is often limited by the computational time associated with
the use of a large number of states in high-dimensional systems. However, although
a large number of vibrational states exist in the molecular system, only a small
subset of these states might be involved in any particular excitation and ensuing
dynamics of the molecule. This subset is limited, in part, by energetics and, in
part, by couplings. The development of efficient and convenient methods that can
identify the subset of important zeroth-order states should provide one approach to

the practical solution of many IVR problems.

i Contribution No. 7694
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In many IVR problems, a description of the redistribution of probability from
an initial vibrational excitation is desired. This process can be viewed as the prob-
ability starting in an initial state and flowing through or between a series of states
in the molecule. In this paper, Al techniques!'? are used to find the most impor-
tant subset of states from the many possible zeroth-order states. The states in
the zeroth-order description can be ordered to form paths as illustrated in Fig. 1
and discussed in detail later. If any single state in a relevant path is excluded, the
description of the dynamics can be dramatically changed. Thus, since entire paths
are desired, the Al searching techniques, which generally find the most important
paths first, are ideally suited as an aid in the solution of such quantum dynamics
problems. Once the AI method finds the important subset of states, the dynamics
can be analyzed, using this reduced block of states of the full Hamiltonian. With
this subset of states, the specific search methods are designed to reproduce the

important features of the dynamics of the full Hamiltonian.

Several papers have appeared that use a variety of Al techniques, for exam-
ple, for solving multiphoton dynamics,® vibrational eigenvalues,* computational
physics,® and organic syntheses® problems. These papers have shown the feasi-
bility and success of a variety of Al methods in their respective applications. The
strength of Al search methods lies in their ability to search efficiently many possible
zeroth-order paths that could be important to the process. In the present case, the
paths are found while utilizing the selection rules of the Hamiltonian which limit
the possible non-zero coupled states, and a function is implemented that gives an

estimate of the importance of each state in the actual dynamics.

In Sec. II, several search algorithms and their applicability to the IVR problem
are discussed, while in Sec. III, a number of possible evaluation functions are
examined for estimating the importance of possible zeroth-order states. An 11-
dimensional model central mass IVR problem is described in Sec. IV and used

in Sec. V for comparing the different search algorithms and evaluation functions.
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The results of the different AI methods are discussed in Sec. VI, followed by some

conclusions.

I1. Search Algorithms

The use of AI methods in IVR combines the use of search algorithms and
evaluation functions. The search algorithm determines the order in which possible
zeroth-order paths are considered. The evaluation function is an estimate of the
importance of the possible zeroth-order paths in the dynamics. The search algo-
rithm will generally use the estimates of the evaluation function in deciding what
path or paths to consider. Though these two concepts are not independent, the
search algorithms are discussed in the present section and the evaluation functions
are discussed in the next section.

There are a number of different types of search algorithms that have been
proposed in the Al field; their efficiency and accuracy depends upon the type of
problem to which they are applied.! In Al searching, the possible direct paths from
an initial state (or states) are considered. Subsequent states in the possible paths
are then considered, and in the process a directed graph or tree is formed in which
each state is a node and the connections between the states are directed arcs. A
path from an initial state can be found by following the directed arcs to a given
destination state. One way to find the optimal path between these two states is
to form the complete tree and consider all possible paths to decide definitely on
the best possible path. However, since the tree can be extremely large, or even
infinite, such a method is generally intractable for large (many-state) problems.
The alternative is to construct intelligently only part of the tree, i.e., the search
tree or subtree, which includes the most important paths for a given problem. The
challenge in the Al search field is determining search techniques that can reliably

and efficiently yield the important subtree.

In the IVR problem, the probability from the initial state will generally become
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distributed over a few or many final zeroth-order states, the goal states. In this paper
we focus on the two types of search algorithms that seem best suited to our problem
in IVR. Both methods are combinations of beam and best-first searches.! A beam
search considers all possible paths from every newly found state whose evaluation
function is above a minimum value.” A best-first search first considers the most
promising of all incomplete paths. Although a beam search can be exhaustive, it
can require inordinate amounts of computer time to find the best paths, especially
when many couplings exist, as in our model. (The rapid escalation of states that
have to be considered is the commonly referred to combinatorial ezplosion.) For this
reason we use a compromise wherein a beam search is performed for the first two
levels of searching, and then a best-first search is utilized thereafter. We found that
using only a best-first search yielded less accurate results. Two search methods
are used in the present article, each implemented utilizing the selection rules of
the Hamiltonian to allow the algorithm to generate and explore only those states
that have non-zero couplings from the rsta.te of interest. In AI terminology, the
Hamiltonian can be used to form a special operator, the successor operator, which,
applied to a chosen state, yields all states that can be directly reached in a single
step from the chosen state. The process of applying the successor operator to the

state chosen for consideration next has been termed ezpanding the state.

We use two specific algorithms, i.e., two search methods, for finding acceptable
states. The first search algorithm, which will be referred to as the best complete
paths search, accepts only states that form a complete path to one of a specified set
of goal states. A goal statein this search method will be defined as one whose energy
is within a given energy range of the initial state and whose evaluation function is
above a certain minimum value. The intuitive reason for this type of search is that
the prepared state (the initial state) has a certain spread o in energy, which is
time-invariant. The zeroth-order basis states, which will have large probability at

long times, will be typically close in energy to the initial state. This feature can be
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seen from the relationship of time and energy given by the uncertainty principle.
In our calculations, a state will be chosen as a goal state if its energy difference
from the initial state is less than twice the root mean square of the energy width
o of the wavefunction. Paths can include states that are outside the spread of the
wavefunction, but these states are expected to have significant probability only for
short times. Such states that are important at early times are frequently referred
to in the literature on radiationless transition and IVR as doorway states. In the
current best complete paths search, incomplete paths are not accepted, even if they
have a higher evaluation function than a complete path. The minimum value of
the evaluation function for a goal state was used so that the accepted paths had
a reasonable contribution to the actual dynamics. The value was chosen through
experience such that the excluded paths did not noticeably change the dynamics.
With increasing deviation of the zeroth-order basis from the actual eigenstates of
the system, the zeroth-order states that are farther away in energy from the initial
state have a greater likelihood of having a significant probability at long times. This
behavior could lead to important states’ being difficult to find by the best complete
paths search algorithm.

In a second search algorithm, which we shall term the best incomplete paths
search, there is no insistence that acceptable states lead to any one of a specific set
of goal states. In the searching, a beam search is again used for the first two levels
in the search, and this search is followed by a best-first search for all subsequent
steps. However, a goal state is now defined as the state that has the best evaluation
function at each step of the best-first part of the search. These goal states are the
same as the states that are expanded at each step of the best-first search. All states

in the path to any such goal state at each step are accepted.

In each of our search algorithms we start from a given zeroth-order initial state
and apply the successor operator to determine all states that are coupled to it.

We assign a value of the evaluation function to each of these coupled states, states
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which we will designate as S;. The successor operator is applied to all states in
S1 whose evaluation function is above a minimum value, one at a time. The newly
formed states are called S,. The evaluation function associated with each path to
states in S; is assigned. The minimum value in the beam search is chosen through
experience such that the states eliminated from consideration have essentially no
effect upon the dynamics. A balance is sought between including too many states in
the beam search and eliminating states from consideration that may be important
to the dynamics. At this point a beam search of the first two levels of the tree has
been performed. The states in S, are sorted by their evaluation function. Duplicate
states, i.e., the same zeroth-order state found from two different paths, are located
in S;, and the state with lower evaluation function is removed from S,. The state
in S with the highest (best) evaluation function is removed from S, and selected
for consideration next. The successor operator is applied to form a set of states, S3.
The combined set of states of the new S; and S3 are sorted by evaluation function,
and duplicates are removed as before. The successor operator is applied to the state
with the best evaluation function in S; 4+ S3 to form S4, and the state chosen to
expand is removed from S; + S;. All states in the new (S; + S3) and in Sy are
sorted with duplicates removed. The process is repeated until a desired number of
states are chosen. These search algorithms are not limited in any way by the length
of the path but use the evaluation function to determine the best possible paths to

pursue.

An example of our two search algorithms is given below and illustrated in Fig.
1. Both methods in this example consider the same states in their search. In actual
applications, the evaluation function and states considered can differ in the two
search methods. The states are numbered in the order in which they are found,
the first number above the line representing the number of each state and the next
number giving the evaluation function for that state. Both searches begin with the

initial state #1, and upon expansion by applying the successor operator find the two
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states #2,#3 coupled to it which have, say, an evaluation function of 1.5 and 1.0,
respectively. The successor operator is applied to state #2 and then to state #3,
since they are both above the assumed minimum evaluation function value of 0.5
in the beam search. This procedure yields states #4,#5,#6. The beam search for
the first two levels is now complete and the search continues as a best-first search.
Of the states that have not yet been expanded (#4,#35,#6), the path to state #4
has the best evaluation function and state #4 is expanded to yield state #7. Let
us suppose that state #7 is a duplicate of state #2. Since state #7 reached by the
above path has a lower evaluation function than state #2, state #7 is removed from
the list of states to be consider. (This removal is represented by the “X”.) Of the
remaining states not yet expanded (#°5,#6), state #5 has the highest evaluation
function. Application of the successor operator yields states #8,#9. The procedure
up to now applies to both search methods used. We stop the search here for brevity

of presentation and illustrate next the process of accepting the states.

The best complete paths search accepts only paths that lead to states that are
within +2¢ of the energy spread of the wavefunction of the initial state (represented
by the dotted lines in Fig. 1) and that have at least the minimum value of the
evaluation function. States #6,#9 are the only two states found by the search that
are within +20 of the initial state. If the minimum acceptable evaluation function
to be a goal state is 0.3, only state #6 is a goal state. Since the path leading to
state #6 is included, states #1,#3,#6 are accepted.

In the best incomplete paths search, the path is accepted that leads to the
state with highest evaluation function among the set of states that have not yet
been expanded during the best-first search process. Thus, state #4 with the path of
states #1,#2 to state #4 is accepted first, since state #4 has the highest evaluation
function of states #4,#5,#6. State #5 is accepted next, since it has the best
evaluation function of states #5,#6, which are left after state #4 is expanded and.
duplicates removed. Since the path of states #1,#2 to state #5 is already accepted
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with a higher evaluation function, the states #1,#2 are not included again. Finally,
state #8 is accepted since it has the best evaluation function of states #6,#8,#9.
Thus, the best incomplete paths search accepts states #1,#2,#4,#5,#8, whereas
the best complete paths search accepts states #1,#3,#6.

III1. Evaluation Functions

Any evaluation function must be simple enough so that it can be quickly calcu-
lated, in order to provide an easy evaluation of the many possible choices of paths.
The three evaluation functions below are motivated by perturbative expressions. (A
discussion of the perturbative expressions is given at the end of this section.) They
heuristically combine terms for both the energy difference from the initial state and
the energy difference from the previous state. If the initial state in a path is num-
bered 1 and the final state is numbered n + 1, there are n — 1 intermediate states
and n links between the initial and final state. Three possible evaluation functions

of this type are considered in this paper:

EF = z ,it1
. 12 E ;(AEWH-] + A-E,l t+])
.EF2 — fI : i1
i3 V(AE;i11AF; i)
1 -~ Vi i+1
EF, = |V; . A
P AB a1 pf ABiia | ()

where each factor after the product sign is set equal to unity whenever its magnitude
exceeds unity in analogy to an approximately degenerate perturbation theory for
the amplitudes. V; ;41 represents the matrix element between the 7 and i+ 1 zeroth-
order states and AE; ;. is the analogous energy difference. AE; ;1 is the energy
difference between the initial state and state i. The terms after the product sign
are included only for n greater than one. (Incidentally, the use of our evaluation

function, which is maximized, may be compared with the use of a cost function,
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which is minimized.)

Evaluation functions EF; and EF, give an equal weighting to the two energy
differences AFE; ;41 and AFE, ;y1, whereas evaluation function EF3 includes only
the energy difference AE, ;;1 between the initial state and the last state in the
path. These features lead to the property that evaluation functions EF; and EF)
are monotonically decreasing functions of n, whereas EF3 is not monotonic, since
the energy difference from the initial state AFE; ,+1 is taken only to the last state,
n+1,in the path, and that state will change with increasing n. This non-monotonic
property leads to greater difficulties in using evaluation function E Fj3, because its
use is more likely to find paths with an evaluation function higher than that of
some state previously chosen in the search. Furthermore, the units for the first step
in EF; are different from those in all future steps. Because EFj generally caused
a large reordering of the importance of paths by their evaluation function from
level 1 to level 2, the minimum value for the evaluation function EFj in the beam
search was set equal to zero, but not for the other evaluation functions. When the
best complete paths search is performed using EFj, the 1/AE; ;11 term is deleted
in computing the final evaluation function of the final state. This deletion is made
since no energy preference is given here to one state over another within the spread of
the wavefunction. (We also note that the deletion yields a final evaluation function
in units of energy, the same units as EF; and EF;.)

From n'® order perturbation theory, one of the matrix elements between state

1 and state n in a path is®

EF4 = IV ‘[12 H Aét‘F]
1,i+1

; (2)

when V;iy1/AE; it1 is small, and thereby when non-degenerate perturbation the-
ory holds. (In the actual perturbation expression many other terms are actually
present.?) One choice of the evaluation function would be to use Eq. (2), but with

each V;;y1/AE, iy set equal to unity whenever this factor exceeds unity, so as to
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simulate very roughly the amplitude in degenerate perturbation theory.
An alternative effective matrix element would be to consider each step in the
path as involved in an independent step-by-step perturbation and include only the

energy difference between the 7z and 1 + 1 states:

EFs = , (3)

.:+1
V12 H AE: i1

with each V; ;11 /AFE; ;11 being replaced by unity whenever it exceeds unity. The
problem encountered with using EFs as the evaluation function is that it gives
states with optimal evaluation function having no preference to be near the energy
of the initial state. In tests of EFs, we sometimes found that the states with the
largest couplings to the initial state are remote in energy from the initial state.
Since all other steps in the path have some energy difference from the previous
state in the denominator, the states with the best evaluation function would stay
near the energy of the state in the first step, if Eq. (3) were used for the evaluation -
function. This result would lead to the best incomplete paths search wandering off
to energies far from the initial state and to the best complete paths search never or
only rarely finding complete paths that return nearly the amount of energy of the
initial state in a reasonable amount of computer time.

Evaluation functions EF;, EF, and EF; represent three choices that heuris-
tically combine both the energy difference to the initial state (AFE; ;y1) and the
energy difference to the previous state (AE;;11) to encourages searching of possi-
bly dynamically important states. This choice combines the advantages of the two

perturbation ideas in Eqgs. (2) and (3).
IV. Model System
The AI methods were tested on an 1l-dimension IVR problem involving a

heavy central mass.® The model represents the system C, — C, — M — CD; — C,

where M is the central mass that can act as a barrier to energy redistribution in the
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molecule and C and D denote carbon and deuterium atoms.!® C,, C, and C. have
as effective masses those of CH3, CH; and CDj, respectively. The Hamiltonian for
the system is given by

H=H;+Hp+Vir, (4)

where

2

2 2
Hi = % Z Z Gi; P Pj + ZD.‘(I — exp|ai(ri — 'r‘f)])z (5)

i=1 j=1 i=1
11 11 11 1 i
1 9G.; 1
Hp == ! ' ;. P, = (ri —1r)? 6
R=F D, KG,JJ,ZBN rk)PP, -i—ZZk(r r¢) (6)
=3 j=3 k=3 =3
cos @
Vir =)\ P,P; . (7)

Here, r; and P; are the bond-coordinate and momentum, respectively. G;; is the
standard Wilson G matrix!! where its derivatives in Eq. (6) are evaluated at the
equilibrium value.of the bond-coordinates. The detailed parameters of this model
are discussed elsewhere.!® Hy,, the Hamiltonian for the left ligand of the molecule,
contained two Morse potentials for a non-bending chain, and that for the right
ligand, Hg, contained only harmonic potentials in the present tests. In addition,
the kinetic energy couplingin Hp included a first-order correction to the equilibrium
G matrix term, thereby adding a non-quadratic term.!? In the calculations, Hg was
transformed into a normal mode coordinates Hamiltonian.!?

The Hamiltonian is written as having left (L) and right (R) contributions, so
as to represent the physical notion of approximate separability of the motion of
two ligands attached to a relatively heavy central atom. The basis set used in the
calculations was the product of a wavefunction of H;, and one of the normal modes
of Hg, the latter found when the derivatives of the G matrix in Hg are omitted.
Hy had been “pre-diagonalized” to yield wavefunctions of the left ligand, because
of the high energies of excitation used for the left ligand. The A parameter in Vg

allows for the variation of the kinetic coupling between left and right ligands in a
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way that mimicked changing the central mass M. The advantage of using A instead
of actually changing the central mass is that the frequencies of the left and right
ligands remained unchanged. Thus, a “pure” mass effect is achieved in this model

calculation without the possibility of resonances’ accidentally being modified.

The system was initially “prepared” in a zeroth-order state that had excess
energy only in the left ligand (the initial wave function being a product of a pre-
diagonalized state of Hy, and the normal mode ground state of Hg). The quantum
dynamics of the system was then determined by full matrix diagonalization of the
zeroth-order basis set determined by the Al methods. A physical quantity of interest
is the amount of energy in the left ligand of the molecule as a function of time

because it indiates the amount of IVR occurring between the ligands.

V. Results

The two I search algorithms and the five evaluation functions were compared
with the bestexact” result, a result that was achievable in a reasonable amount of
computer tir by imposing a simple energy constraint on the zeroth-order states
used in the lculation. In this large “exact” calculation, the basis set consisted
of all zerotlrder states within 650 cm™?! in energy of the initial state. For the
model syste and excitations studied, there were then 1112 basis functions. In
order to corare the AI methods to the exact result, the search was restricted to
the set of t€ 1112 basis. These calculations were performed so as to compare the
quality of - different AT methods with the ultimate goal of using the developed
techniquesthout constraint on the basis states chosen, both for this system and
other s3tis. In the present comparison, A in Eq. (7) is set to 0.5 and 0.1012, to

represt 1 masses of twice carbon and tin, respectively, and M in Eq. (7) has
the m f carbon. In the exact calculations, the lighter mass system showed a
grea‘issipation Qf energy from the left ligand into the right, whereas the heavier

mastem displayed, instead, vibrational quantum beats. Even though the latter
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resembled largely an effective two-state problem in an eigenstate representation, it
involved many zeroth-order basis states. These two situations, quantum beats and
dissipation, represent different dynamical situations and serve to test the robustness
of the present AI methods.

In Tables Ia and Ib, the different combinations of Al-search algorithms and
evaluation functions are compared for the model system and for the conditions
described. For all of these calculations, the Al methods were used to find the same
number of basis states for the same initial conditions so that a direct comparison
could be made. The number of states chosen was the number required to give
an approximate convergence by the better methods (described later in Tables ITa
and IIb). Two quantitative measures used to compare the different methods are
the long-time average of the energy in the left ligand < Ep >, and the spread of

energies in the left ligand og, , given by
oo

1 T
< Ep>= Tlim —/ EL(‘t)dt
i 0

1 T
< Ei > =T11_,3;fj0 E%(t)dt

[N

op, = [< B} > — < Er >?]

(8)

< Ep > indicates the average energy in the left ligand and g, is related to the
amplitude of the energy fluctuations. An additional quantitative measure for the tin
system (Tables Ia and Ib) is the time period 71 corresponding to the dominant peak
in the Fourier transform of E[(t), since this time period (along with its amplitude)
characterizes the dominant oscillation that acts as an effective two-state oscillation.
(The dominant peak in the transform had a coefficient that was approximately
one order of magnitude larger then the next most important peak.) All values
in Tables Ia and Ib are given as the absolute value of the percent difference from
the exact result. Although none of the methods are totally unacceptable, the best

incomplete paths search with evaluation function EF; and the best complete paths
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with evaluation function EF3 gave the best overall results and are given at the top
of Tables Ia and Ib. These two methods are seen to be the best at reproducing
both types of dynamical situations. For the best incomplete paths search in Table
Ta, the two evaluation functions EF; and EF, show good results. However, EF;
gave a substantially better result than EFy for |%AE|| for the dissipative case and
was the method chosen for further analysis in this investigation. The final row of
Table Ia contains the results for evaluation function EF;, when a pure best-first
search was performed for all levels of searching. As previously noted, these results
using EFy in a pure best-first search are less accurate than those using E; in the
combined beam search and best-first search in the proposed best incomplete paths

search.

In Figs. 2 and 3, plots of the time behavior of the energy in the left ligand are
given for the two best AT methods, for the two different dynamical situations given in
Tables Ia and Ib and compared with the exact results. The short-time agreement is
excellent and the overall agreement reasonable, confirming the quantitative numbers
listed in Tables Ia and Ib. In Tables Ila and IIb, the convergence of the two best
Al methods are shown as a function of the number of basis functions chosen. It
shows that the two methods tend to approach the exact result as the number of

basis states is increased for the quantitative measures used in Tables Ia and Ib.

An additional example is given in Table III, using these two best AI methods
for the model Hamiltonian where the search for basis sets was not constrained by
energy (i.e., where the condition AE < 650 cm™! was not imposed). No “exact”
calculations are given now, since it was not presently computationally practical to
include the many thousands of zeroth-order states that are within the range of
energies included by the present Al results, when the dynamics is performed by full
matrix diagonalization. The parameter A was varied from 1 to 9.9 to mimic the
masses of Sn, Ge, Ti, Si and C (where the central mass M in Eq. (7) is now that
of Sn). In Table III the long-time average energy in the left ligand is given. The
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agreement of the two different methods is very good, with the largest difference

being for carbon, where the zeroth-order basis set is furthest from the eigenstates.

VI. Discussion

The results show that consideration must be given to both the type of search
algorithm and the evaluation function used in IVR problems. It is seen in Tables
Ia and Ib that the same evaluation function can give very different results when
used with a different type of search algorithm. Furthermore, the results show that
inclusion of a weighting factor employing both the energy difference from the initial
state AF, i1 and from the previous state AE; ;11 leads to a better Al evaluation

function for our problem than the use of either one alone.

Of all the methods presented, the two best AI methods for reproducing both
types of dynamical situations are listed, as already noted, at the top of Tables Ia
and Ib. Even though they give similar qualitative results, implementation of these
two methods is quite different. Evaluation function EFj3 can have both increases
and decreases in the evaluation function, whereas EF) is monotonically decreasing.
The variations in the value of EF; implies that a better path can be be found at
a later time in the search process from a path with a lower evaluation function.
This situation leads to additional complications in verifying the convergence of the
Al method when EF; is used. Furthermore, the best complete paths search needs
additional Al parameters not present in the best incomplete paths search. One
parameter is the minimum acceptable evaluation function for a final path, and
the other is the assigned energy range for acceptable final states to form paths.
It is also shown in Tables IIa and IIb that the best incomplete paths search, for
the examples studied, converges more rapidly for most measures of accuracy than
the best complete paths search. Additionally, Tables Ia and Ib show that the
best incomplete paths search has a lesser dependence on the specific details of the

evaluation function used than the best complete paths search. In summary, the
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best incomplete paths search was easier to implement, and with it the AI searches

were performed more quickly.

One useful feature of the AI method is in finding the states important to the
dynamics. Originally, before we considered adopting an AI procedure to IVR, we
had found some of the important states in an energy transfer path by considering
the overlap (squared) of the wavefunction with each of the basis states as a function
of time. By examining these overlaps as a function of time at very short times, six
successive important states in a path were found for the A = 0.1012 case. The states
had greater than one percent overlap at all short-time points examined. However,
both AI methods not only found these six states first in their searching, but then
proceeded to find states with less than one percent overlap that were important
to the dynamics. Without these additional states, the period of oscillation and
the amplitude of the fluctuations of the energy in the left ligand as a function of
time had an error of approximately 40%. Thus, these two AI methods found states
of highest overlap first and then found states with small overlap but dynamically
important.

It should be stressed that the AI search is performed within the set of zeroth-
order states. Thus, the Al method is not a replacement for an intelligent choice
of the model or the zeroth-order description. (Indeed, the A in AI might better
denote “automated” rather than “artificial”!) The larger discrepancies between Al
methods in Table III for carbon than for the other central atoms may be due to the
much larger left /right couplings of the zeroth-order basis, because of the increased
breakdown of the separation of variables for the left and right ligands in the case of
a light central atom.

One final aspect is the amount of computer time required by the AI method
to find the states of importance. Though our codes were not optimized for speed,
the best incomplete paths search took 10 to 20 minutes on a VAX 11/780 for the
results given in Table III. (The best complete paths search took 40 minutes to 3
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hours.) Omnce the AI search was complete, the time to perform the dynamics for
the 1000 states was then 150 seconds on a Cray X-MP, a time that may be loosely
equated to 30 hours of VAX 11/780 time. Typically, in fact, the time spent doing

the AI searches is a small percent of the total computer time needed to solve the

problem.

VII. Conclusion

The development of AI search methods is seen to represent a significant step
forward in the ability to study IVR problems with many degrees of freedom. The
Al technique is a method of distinguishing the important dynamical states from
thousands or millions of zeroth-order states. Explicit inclusion of millions of states is
beyond the scope of currently available methods.!? Furthermore, the computer time
necessary for performing the AI methods on higher energy excitations of a molecule
is comparable to that in the case of lower molecular energies states, provided the
number of possible states searched by the AI method is the same, even though the
total number of available states increases exponentially with energy.

In this paper we have systematically compared several possible choices for
search algorithms and evaluation functions. These comparisons, made for two com-
mon dynamical situations in IVR, quantum beats and dissipation, should prove
helpful in the application of AI methods to a variety of IVR problems. The Al
methods presented in this paper are implemented in a modular fashion, such that
all of the search and decisions sections of the code can be easily used in any type
of IVR problem. Only the sections of the code that involve the description of the
Hamiltonian and the specific evaluation function desired need to be changed for
each specific application. Thus, the current Al methods are not only extremely

promising but can be easily applied to a large range of potential applications.
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Table Ia: Comparison of AI evaluation functions for best incomplete paths

search?®
A = 0.1012, 70 states® A = 0.5, 20 states®
Evaluation %A < Ep > |° |%AcEe,| |%ATET| %A < Ep > | |NhAcEg,|
EF, 1.7 14 6.6 2.3 14
EF, 5.9 47 18 3.6 15
EF; 4.4 35 34 3.1 14
EF, 1.2 10 4.9 14 15
EFs 1.4 11 20 0.86 35
EF,¢ 5.8 47 17 11 18

2Values for “exact” results for A = 0.1012 are < E >= 3834 cm™!, og, = 337
cm™!, and Tpr = 32 ps, where Tpr is the period for the peak with the dominant
amplitude in the Fourier transformation of E;. For A = 0.5, the values are <
E; >= 2521 em™?! and op, = 316 cm~!. The initial energy on the left is 4433
cm ~!, which includes a zero-point energy in the left ligand of 972 cm™'. The
minimum value in the beam search (except EF3) was generally 1 x 1072 cm™!.
This compares with the smallest evaluation function for an accepted path, which
was generally 1 x 1072 cm™! for A = 0.1012 and 5.0 cm™?! for A = 0.5.

®The total number of states sometimes varied by one, more or less, so that only
complete paths were included.

“Defined as 100(< Ep > — < Eg*ect >)/ < E§*** >, and similarly for %Acg, and
N ATRT.

dUses a pure best-first search, as discussed in the text.
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Table Ib: Comparison of Al evaluation functions for best complete paths

search?
A = 0.1012, 70 states® A = 0.5, 20 states®
Evaluation |%A < Ef, > |© |%Acge,| |%ATET| |%A < EL > | |%AcE, |
EF,? 2.2 18 10 57 15
EF, 6.9 56 18 16 3.2
EF, 6.5 52 19 16 3.2
EF, 7.3 58 19 30 7.2
EF; 5.1 41 19 17 12

a:b:.cSee footnotes of Table Ia.
4The minimum value of the evaluation function for a goal state for EF; was 7.5 X
103 ecm™! for A = 0.1012 and 10 cm™?! for A = 0.5. The values for the other

evaluation functions varied by their specific form and numerical value.
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Table ITa: Comparison of convergence of two best AI methods as a function of

number of basis states chosen for A = 0.1012

Best Incomplete Paths/EFy Best Complete Paths/EF3

# Basis NA < Er > %Aocr, %ATeT %A < Er > %Acg, %Ater

30 1.9 —13 —30 4.0 —30 —38
50 —7.6 61 22 0.72 —38 N.A.@
70 -1.7 14 6.6 2.2 18 10
90 —-3.6 14 4.6 —-2.2 18 9.7

*Method fails to give only a single dominant period.

Table ITb: Comparison of convergence of two best Al methods as a function of

number of basis states chosen for A = 0.5

Best Incomplete Paths/EF Best Complete Paths/EF;

# Basis %A < Ep > NAog, %A < Ep > %AcE,
10 17 20 14 5.7
20 2.3 14 3.7 15
30 —4.3 6.2 —2.7 12

40 —-1.4 3.8 —0.29 rl
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Table ITI: Comparison of < Er > for Two Best AI Methods on Model Hamil-
tonian with 1000 Basis States®

Best Incomplete Paths/EF; Best Complete Paths/EF;

Mass < EL > < Er, >
Sn 4120 4094
Ge 3627 3718b
i 3465 3289
Si 2831 2736
C 2829 3226

¢The initial energy on the left is 4582 ém_l, which includes a zero-point energy in
the left ligand of 727 ecm™?.
®AI method was able to find only 717 states in a reasonable amount of computer

time (less than 3 hours on a VAX 11/780).
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44;1.5

Fig. 1. Sample search tree for the two proposed search algorithms. The first
number above each line is the number of the state and the second number the value
of its evaluations function. The initial state (#1) has no evaluation function value

associated with it. See text for discussion of search.
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ENERGY ON LEFT AS A FUNCTION OF TIME FOR A = 0.1012
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Fig. 2. Comparison of “exact” and two best AI methods for energy on the left as

a function of time for A = 0.1012 (Sn) for the conditions given in Tables Ia and Ib.
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ENERGY ON LEFT AS A FUNCTION OF TIME FOR A = 0.5
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Fig. 3. Comparison of “exact” and two best Al methods for energy on the left as

a function of time for A = 0.5 (2C) for the conditions given in Tables Ia and Ib.



