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Abstract 

In this thesis theoretical models a.re developed and/or applied to the study 

of the dynamics of a variety of chemical reactions. First, a semiclassical model is 

developed to describe the effect of mutual orientation of the donor and acceptor 

on the rate of electron transfer between two la.rge a.romatic groups. The next 

reaction considered is that of gas phase H-atom transfer reactions. In this case a 

compa.rison is made of two previously developed approximations for the treatment 

of the particula.r case of H-atom transfer between two heavy pa.rticles. 

The next topic involves the study of the rate of intramolecula.r vibrational 

redistribution of energy. First, an iterative procedure is developed for determin

ing more and more accurate effective Hamiltonians for the description of the 

dynamics. The foundation of this method is the sepa.ration of the basis states 

into resonant and nonresonant sets followed by an adiabatic approximation for 

the dynamics of the off-resonant set. A second study involves the application of 

a.rtificial intelligence techniques to the choice of a small set of basis states which 

a.re the states of greatest importance to the redistribution dynamics. 

The remainder of the thesis is devoted to the study of those unimolecula.r 

dissociation/free radical recombination reactions which contain highly flexible 

transition states. For these reactions, a method for determining the quantum 

pa.rtition function for the transition state in terms of path integral ratios is de

veloped and applied to the study of the thermally activated methyl radical re

combination. Subsequently, a method is developed for determining the number 

of states, for the transition state, at a given energy and angula.r momentum. 

The basis of the method is the use of conventional Euler angle coordinates in 

the Monte Ca.rlo evaluation of phase space integrals. This method is applied to 

the NCNO, CHlCO, and HlOl photodissociation processes. Also presented is a 

discussion of both the trend of the location of the transition state with increasing 

energy and the possible influence of excited potential energy surfaces. 
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INTRODUCTION 

A chemical reaction process can only be termed completely understood when 

a theoretical model exists which accurately describes all of the experimentally 

observed quantities. The topic of this thesis is the development and application 

of models for the dynamics of a few specific chemical processes . In particular, 

theoretical studies of electron transfer reactions, gas phase H-atom transfer re

actions, the dynamics of intramolecular vibrational redistribution of energy, and 

unimolecular dissociation reactions are presented. 

Electron transfer reactions are important steps in biological processes.1 •2 In 

biological electron transfer reactions (e.g., photosynthetic reaction centers) the 

donor and acceptor moieties are often fixed with respect to each other. As a 

result, studies on the dependence of the rate of electron transfer on the distance 

separating the donor and acceptor and also on their mutual orientation are of in

terest. Recent experimental studies have examined this distance and orientation 

dependence through the chemical synthesis of a set of rigid molecules having dif

ferent bridging groups linking the donor and acceptor.3 The first chapter of this 

thesis deals with the theoretical description of the orientation dependence of the 

rate of electron transfer between two large aromatic molecules. A semiclassical 

method for determining approximate wavefunctions corresponding to the lowest 

unoccupied and highest occupied molecular orbitals of porphyrin-like molecules 

is developed in Chapter 1. The model used was developed by Siders, Cave, and 

Marcus,4 •5 and is based on the use of oblate spheroidal potential wells to describe 

the interaction between the electron which is transferred and the donor and ac

ceptor subgroups. From the resulting one-electron wavefunctions the electronic 

matrix element HBA, which contains most of the orientation dependence for a 

nonadiabatic electron transfer, is calculated through Gauss-Legendre quadrature. 

The semiclassical calculations of HBA give good agreement (within the spheroidal 

model) with quantum calculations,• while requiring much less computer time and 

may be applied to the study of specific, experimentally determined, orientation 
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dependences of the electron transfer rate. 

There have been numerous theoretical studies recently on the dynamics of 

light-atom exchange between two heavy particles.8 Comparisons of the results 

from the different methods are of use in evaluating the validity of any approxima

tions involved. Chapter 2 of this thesis examines two approximate treatments7
•
8 

for the particular case of H-atom transfers, both of which involve a two-state 

approximation. One of the treatments 7 is based on a partial exponentiation of 

the distorted wave Born approximation9 formula for the two-state reactive tran

sition probability. The other treatment8 is based on the Crothers-Stiickelberg10 

expression for the two-state reactive transition probability. A comparison of the 

Boltzmann-averaged reactive transition probabilities for these two different ap

proximate treatments with the exact two-state result shows that for energies of 

chemical interest the distorted wave treatment is considerably more accurate. 

Unimolecular dissociation reactions have been of interest to chemical physi

cists for many years. One standard theory, RRKM theory11 , for describing the 

rate of unimolecular dissociation reactions is based on statistical and transi

t ion state theory approximations. One factor of importance in unimolecular 

dissociation reactions is the dynamics of the distribution of energy among the 

vibrational and rotational states of the molecule. RRKM theory assumes that 

this energy rapidly becomes statistically distributed among the available states. 

Experiments have shown that this is indeed a valid assumption for thermally 

activated dissociation processes. However, when laser induced dissociation pro

cesses are considered, the time scale for the redistribution of energy and the 

dissociation time-scale are not necessarily well separated. A necessary condition 

for the development of a "laser selective chemistry" 12 where lasers are used to 

control dissociation processes is that the dissociation time-scale be shorter than 

the redistribution time-scale. 

The high density of states for polyatomic molecules at typical energies of 

interest causes difficulties in the theoretical study of the energy redistribution 
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process. Because of this high density of states, the number of basis states in 

some reasonable energy range is much too large to be feasibly handled computa

tionally. Thus, one method for decreasing the difficulty of the theoretical study 

of this problem is to find some way to consider only a part of all the basis states. 

Chapters 3 and 4 present two such methods for reducing the number of basis 

states which have to be expliclitly included when calculating the time-evolution 

of an initially prepared nonstationary rovibrational state. In particular, in Chap

ter 3 a previously developed adiabatic elimination scheme13 for the theoretical 

treatment of intramolecular vibrational dynamics is generalized. The adiabatic 

elimination scheme discussed here is motivated by13 the partitioning of the ba

sis states into a set which is resonant in energy and/or strongly coupled and 

another set which is nonresonant and/or weakly coupled. The time dynamics 

of the nonresonant states may then be expected to adiabatically follow that of 

the resonant states. As a result, the nonresonant states may be adiabatically 

eliminated to given an effective Hamiltonian for the dynamics of the resonant 

states. The generalization presented in Chapter 3 involves the determination of 

an iterative scheme for determining higher-order effective Hamiltonians. 

In Chapter 4 an alternative approach is presented for the problem of the large 

number of basis states involved in the description of intramolecular vibrational 

distribution {IVR) problems. In this chapter an artificial intelligence method14 

is presented for use in the IVR problem. This method is based on choosing only 

those basis states which will have a significant effect on the dynamics. This is 

done by searching through the "tree" formed by the coupling of the basis states 

to each other, and assigning an importance function to each of the basis states 

encountered in the search. Only those basis states with a high importance func

tion are then retained for later use in determining the dynamics. The importance 

function used is motivated by perturbation theory considerations. Application of 

this method to a model el.even-coordinate IVR problem150 is also presented there. 

Further application of this method to the study of the intramolecular dynamics 
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of highly excited CH overtone states in benzene is currently being considered.15
b 

Recent experimental studies16 •17 have probed the energy and angular mo

mentum dependence of unimolecular reaction rates and product state distribu

tions for dissociation reactions in which there is no barrier to dissociation. The 

last four chapters of the thesis focus on the calculation of unimolecular reaction 

rates for these dissociation reactions which have a highly flexible transition state. 

Statistical theories have been found to provide a ground description of many uni

molecular dissociation reactions. In particular, two statistical theories commonly 

being used at present are RRKM theory11 and phase space theory (PST).18 In 

the standard implementation of RRKM theory the hindered rotational modes of 

the separating fragments at the transition state are treated as quantum vibrators 

whereas in PST they are treated as quantum free rotors. 

A common requirement of statistical theories for dissociation reactions is 

the need to evaluate the amount of phase space available for the two separating 

fragments as a function of energy, angular momentum and separation distance. 

Recently, Wardlaw and Marcus19 have developed and applied a method for per

forming the phase space integral while treating the hindered rotational modes as 

classical hindered rotors and the vibrational modes quantum mechanically. This 

classical treatment of the hindered rotational motion raises the question of the 

possibility for quantum corrections. In Chapter 5 the cumulative effect of quan

tum mechanics on the hindered rotational modes is studied for the methyl radical 

recombination reaction. This is done by calculating various partition function 

ratios through the Monte Carlo evaluation20 of Feynman path-integral21 expres

sions. The result of this study is that at least for the particular reaction and 

conditions there is a negligible quantum effect for the hindered rotational modes. 

An alternative method for treating the hindered rotational modes is pre

sented in Chapter 6 of the thesis and further expounded in Chapter 7. This 

method gives equivalent results to the action-angle coordinate based method of 

Ref. 19, but is based instead on the use of conventional Euler angle coordinates22 
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and their conjugate momenta. In both of these treatments the reaction coordi

nate is implicitly assumed to be the separation distance. They are also both 

based on the approximate separation of the modes into the "conserved" vibra

tional modes which have little change in going from reactants to products and 

the remaining transitional modes which include the free and hindered rotations. 

The conserved modes are then treated as quantum oscillators while the rotational 

modes are treated as classical motion on a given potential energy surface. The fi

nal result is an integral expression for the number of states for a given energy and 

angular momentum which can be evaluated through Monte Carlo integration.20 

The integration method suggested here also differs from that of Ref. 19. Also 

presented in Chapter 6 is a comparison of the results of the present method and 

of that of Ref. 19 for the methyl radical recombination reaction. 

In Chapter 6 formulae are presented for the specific case of two nonlinear 

fragments. The corresponding formalism for all combinations of atomic, linear, 

and nonlinear fragments is presented in Chapter 7. It has been observed in several 

calculations23 that as the total energy E increases, the separation between the 

two fragments at the transition states decreases. This point is also discussed in 

Chapter 7 along with a discussion of the role of repulsive potential energy curves 

and the role of two minima in the plot of the number of states versus separation 

distance. 

A detailed application of the formalism presented in Chapters 6 and 7 is 

given in Chapter 8 where theoretical results for the dissociation of NCNO into 

NC and NO are compared to the corresponding experimental results18• The cal

culations given there indicate that the present implementation of RRKM theory 

together with a dynamical assumption about motion after the transition state 

gives product vibrational distributions that are in better agreement with the 

experimental determined distributions than are those of PST. Also the present 

implementation of RRKM theory aids in the understanding of the possible role 

of the upper triplet state by indicating that for a simple model triplet surface the 
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contribution of the triplet state is much less in terms of RRKM than in terms of 

PST. The rate constants determined from PST and the present implementation 

of RRKM are quite similar (when only the singlet state is included) for excess 

energies up to about 1000 em -l. The results also indicate the desirability of 

obtaining accurate ab initio potential energy surfaces for the hindered rotational 

modes. 

The dissociation of CH2 CO into CH2 and CO is another reaction which has 

received considerable experimental attention recently.24 In Chapter 9 further re

sults are briefly presented for the dissociation of CH:z CO into the CH:z and CO 

radicals. The results for the CH2 CO dissociation indicate a greater difference 

from PST than did those for the NCNO dissociation. Also, these results reem

phasize the need for more accurate potential energy surfaces for the hindered 

rotational modes. 

An alternative model, labelled the statistical adiabatic channel model, has 

been proposed by Quack and Troe25 for treating the hindered rotational motions 

of the separation fragments. This method is based on the exponential interpola

tion of energy levels from reactant to product. In the appendix a brief comparison 

is given of the present implementation of RRKM theory and the statistical adia

batic channel model25 of Quack and Troe for the dissociation of H2 0:z into 20H 

radicals. 
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An approximate solution to the sinJie-particle SchrOdinaer equation with ao oblate spheroidal 
potenti&l well offuUte depth is presented. The electronic matrix element H._. for thermal electron 
transfer is calculated usina these wave functions, aod is compared with v&lues of H._. obtained 
usina the exact solution of the same SchrOdinaer equation. The present method yields accurate 
results for H •A , within the oblate spheroidal potelltial well model, aod is useful for examinina the 
orientational effects of the two centen on the rate of electron transfer. 

I. INTRODUCTION 

Increased undent&Ddina of biolopcal redox systems 
bas led to the need for detailed information reaardina the 
effects of mutual orientation aod separation dist&Dce on the 
rate of electron transfer. The nonspherical structure ofmaoy 
bioloa1cal redox components, such as hemes, chlorophyll a 
and b, and quinones leads one to expect that the mutual 
orientation of redox pannen can sianificantly a1fect the rate 
of electron transfer. 

Examples of systems for which orientation&! effects are 
expected include electron transfen involvina cytochrome c 
as well as various components in photosynthetic reaction 
centen. It will be recalled that cytochrome c is a complex in 
which a heme lies in a crevice created by a surroundina pro
tein and is bonded to the protein by thioether bridges. 1 It is 
believed that electron transfers to and from the heme occur 
predominantly near the opening of the crevice to the solu
tion. 

Sever&! previous studies have attempted to qualitatively 
assess orientation&! effects using simplified models.1 Recent
ly, Siders rt a/., developed a model for eu.minina orientation 
effects in traosfen between Jarae, aromatic molecules, when: 
the high lying electrons are deloc:aliz.ed, aod have applied4 it 
to several systems of current experimental interest. The basis 
of the model is the calculation of sinJ~e-site, one-electron 
wave functions of oblate-spheroidal wells havina const&Dt 
potentials. These wave functions are then used to calculate 
the electron-transfer matrix element. the predominant dis
tance dependent quantity in theories of nonadiabatic elec
tron transfer. 

In the present paper two simple approximations to this 
model are introduced. The resultina approximate model is 
computationally much faster, conceptually simpler, aod will 
be seen to yield accurate results for H._., within the original 
model. The paper is oraaniud as follows. The exact model 
and the form of the electron-transfer matrix element are out
lined in Sec. II. The exact wave functions for the original 
model' are described in Sec. Ill and the two additional ap
proximations are introduced in Sec. IV. The calculation of 
H •A and the energy quantization for the approximate wave 

' ' Con1nbu11on No. 7267 

functions are briefly discussed there. The exact and approxi
mate results for the wave function and the electron-transfer 
matrix element are compared and discussed in Sec. V, with 
concludina remarks made in Sec. VI. 

II. THE THEORETICAL MODEL 

The present model' is inte11ded to describe electron 
transfer between two fixed sites, A and B. In the zeroth-order 
problem A and B do not interact and only the transferable 
electron is considered explicitly, i.e., each electronic wave 
function is a one-electron wave function. The states localized 
at sites A and B are labeled 'IIA and 'II•, respectively. The 
model bas been desianed to assess orientational effects, at 
various dist&Dces, in electron transfer between larae aroma
tic systems and it is thus assumed that the transferable elec
tron is deloc:aliz.ed over the aromatic rina system. 

Each isolated site is modeled as an oblate spheroid of 
const&Dt neptive potential inside the well and zero potential 
outside the well. Thus, in oblate spheroidal coordinates' 
<l,f14') the potential Jo'is a const&Dt. - Jo'"' inside the well 
<lC:.l0 ), and another const&Dt ( Jo'- 0) outside,' and is de
picted in Fia. I. The molecule is taken to lie in the xy plane of 
the spheroid; a (in Fig. I) is chosen as an approximate in
plane radius of the molecule, and b is chosen to yield a rea
sonable thickness for the electronic orbitd of interest. The 
usual Cartesian coordinates are readily defined in terms of 
these coordinates [Eq. (2) ofRef. 3) . 

z 

V=O 

FlO. I. POICDtial well for aliJIIk lite. 1'beft io cylindrical symmetry about 
the z UJS. 0.. the ... u bowwlaty the coordiDate t equals t .. 
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The single-site one-electron Scb.rodinaer equation may 
be written as 

(1) 

where Jcl equals ~(E+ V0)/#fl•lc~ inside the well and 
~E l lfl•lc ~ ouuide. A choice of V0 yields a specific value of 
an orbital's energy E upon quantization. 

The rate of nonadiabatic electron transfer between two 
such localized fixed states A-B may be written as~ 

Jc .. _. = 2; I r ... ll<FCl, <2> 
where (FC) is a Franck-Condon sum, discussed in detail 
elsewhere, e.J ., Refs. S-10. T ~ is the electronic matrix ele
ment which, in the present model, was expressed in terms of 
H .... HAA,andSd as 

T ~ =<H ... - SdHAA )/(I- \Sd \1 ) , (3a) 

H~ ~ J ...,••v•..., .. dr, HAA = J ..., ... V...., .. dr, (3b) 

s ... = f ............ dT, (3c) 

where v• is the potential of the transferable electron for the 
isolated site B. T ~ is the primary distance and orientation 
dependent quantity in the expression for k.c-• · T ~ was 
found' to aaree with H~ when n ... was nonzero to within 
3% for states similar to those examined here, when the wells 
were in contact and the aareement improved with increasina 
separation distance. Furthermore, the zeros of ·r ~ and H ~ 
were within 2" of one another (for a specific state exam
ined ). • Since the evaluation of T ~ requires considerably 
more computational rime, only H ~ is calculated here. 

The present model was developed to obtain approxi
mate expressions for ..., .. and ...,. and thereby to sianificantly 
simplify the calculation of H~ . To facilitate the description 
of the two approximations introduced below, the calculation 
of the exact wave function is outlined briefty fi.nt. 

Ill. THE EXACT SINGLE· WELL EIGENFUNCTIONS 

In the oblate spheroidal coordinate system, Eq. ( 1 ) is 
separable.5 Therefore, assumina that ...,_...,~<&.'74') 
- R..,. Cl'lS..,. ('7)~ ... (f>) one obtains the separated equa
tions5 

(4a) 

(4b) 

(4c) 

where d = 2v~. and m1 and A :.,. are separation con
stants. The superscript i indicates a function appropriate to 
the potential region inside the weU <l'<s0 ) , while a super-

script o will indicate these properties ouuide Cs>so>· 
~ ... (f>) is equal to A sin Mf> + B cos mf>, and since ~ ... 
must be sinaJe valued, m is an inteaer. The index" orders the 
eiaenvalucs A..,. in order of increasina value and is chosen to 
have the possible values n - m,m + 1,m + 2,.. . . This 
choice is convenient since in the spherical limit, where a 
tends to b, the eiaenfunction given below reduces to a single 
term ..., _ with " ... I, I beina the angular momentum quan
tum number of the particle for the spherical case.5 

Since the method is primarily desiJDed to assess orienta
tion eff'ecu in electron transfen between delocalized rr sys
tems, only states with nos-type nodes, and one !7-type node 
are considered. • These states are odd with respect to reflec
tion in the xy plane and are labeled (m,rr) ; they are rr-like 
states with azimuthal quantum number m . (A more com
plete description of the states is given elsewhere. ' ·•) 

To satisfy the quantization conditions, namely the con
tinuity of the wave function and of iu normal derivative at 
the weU boundary, the exact solution ..., .... is written as a 
linear combination of the separated solutions,' that is, as 
:I;"_ 0 C~ .... :_. fors<s.,. and as :I;-_ 0C~~. for s>so· Here, 
11 .. 2T + m + 1. Quantization is accomplished by iterating 
the energy E until ..., .... and iu derivative are continuous at 
the wen boundary l' - so-

IV. APPROXIMATE SINGLE·WELL EIGENFUNCTIONS 
AND H., CALCULATION 

The two new approximations made in the present paper 
to obtain sinaJe-weU functions for use in calculating H ... are 
the following: ( 1) The sums for the inner and outer quan
tized wave functions are each truncated to a single term. one 
inside and one ouuide the weU, and ( 2) each R .... and S .... , 
inside and ouuide the weU, is evaluated semiclassically rath
er than as a sum of known special functions. 

The fi.nt approximation was prompted by two observa
tions: (a) In the spherical limit the inner and outer wave 
functions are each represented by a sinaJe mn term. (For the 
case of II'· like states this sinaJe term has n - m + 1.3 ) Since 
an oblate spheroid can be viewed as a "ftattened sphere" it is 
reasonable that the use of only one term in the sum will be 
adequate when the ecccntricity is not too hiJh. (b) Empiri
cally, we noted in our numerical calculations'·• that both 
inside and outside the potential well it was common for a 
llinaJe c~ and a llinaJe c: to dominate the other coelficienu 
for the swa considered. 

In view of approximation ( I ) above, the total wave 
~on. for the (m,r) states of interest here may now be 
written as 

{
c:...l .... :...,..+l(s.'74'); s<.lo (~) 

......... c:..~'~':.. •• .c:.'74'>: s>lo-

Within this approximation the quantization conditions can 
now be satWled only approximately at the weU boundary: 

c:...l .... :...,..+l.c:..lv...- • . 1 <l•lo>· (6a) 

c' a...:.. ..... I I c• a....-....... I I . <6b> 
.... I at ,_,. • .... 1 at ,_,. 

To satisfy Eq. (6a) both sides were squared and then 
intearated over '7 and 9' at s - soo thereby averaging over the 

J Cl'lem. Phys .. Vol a.. No. fl. 1 5 March 1 HfS 
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boundary. Taking the square root, and following the same 
procedure for Eq. ( 6b) one obtains an equality of 
c;._IR :..~-1 <sol and ore:.. IR :..~+I <sol and also of 
their derivatives, when S :... ~ _ 1 , S :..~. 1 and 4> .. are each 
normalized to unity. Thereby, the ratio yields 

_ __;:....,__ :k' R :... ... 1 <s>lc-c. 
R:. ... . l <s> !> 

__ :....,_-:- :k' R:..~ .. ~<s> l,-c.. <'> 
R :. .... I <s> !> 

This equation serves to determine the approximate sinaJe
site wave function to within a normalization constant (Ap
pendix A) . 

A semiclassical approximation is now introduced to 
simplify evaluauon of R ... and S~. both inside and outside 
the well . In previous applications'·• the individual inner and 
outer R~. 's and inner and outer S~. 's were evaluated in
stead through series e:~~pansions in spherical Bessel function& 
and associated Legendre functions.'·" a process which can 
be time consuming. In the present study, semiclassical ap
prollimations were used for s:., •• s:, •. R :... , and R :.. (uni
form semiclassical approximations for the first two and 
primitive for the latter two, for reasons given in Appendix 
A) . The resulting functions are seen (in Tables II, III, V, 
and VI given later) to be accurate. Previous uniform semi
classical approllimations to pro/au spheroidal wave func
tions, described by Sink and Eu, 12 have a number of di6er
ences from oun. 13 Our expressions for the wave functions 
and the procedure for calculating H •A are given in Appendix 
A. The semiclassical treatment of S :... ( '7) itself involves 
four turning points for the states of interest in the present 
article. 

The general procedure used for calculations of H"" 
(both approllimate and exact) was to choose a value for E 
which yielded the desired decay of H"" with distance, after 
adjusting v.,. Thus, an accurate quantization of the enerJY 
for a given value of the potential was not needed. What is 
required is, given this decay, that the orientation dependence 
of H •A be accurate for the states of interest. Nevertheless, for 
completeness, results for quantization of E are given in Ap
pendix B. 

V. RESULTS AND DISCUSSION 

In this section the exact and approximate reaults for 
H"" are compared and discussed for a number of states of 
interest. The physical significance of these (m,~r) states was 
discussed earlier.'·• In particular, (4,~r) states are used to 
model the HOMO's of porphyrin derivatives and (S,17') 
states to model the LUMO's in such molecules. The value of 
E (and hence of V0 ) is chosen so as to Jive a fall off with 
distance of the rate which is fairly consistent with presently 
available data. The exact'·• and approximate electronic ma
trix elements H •A so calculated are compared below in Table 
I and in Figs. 3, 4, and 6. 

To describe the orientation of the two wells for the cal
culation of H.A the (R,0) coordinate system shown in Fia. 
2 is used. Unless otherwise specified, the xy planes of both 
wells are chosen to be parallel and the centenofthe wells are 

TABLE I. E.uo:l and approximate H ... 'ofora pairo( (4,r ) llatca ua func· 
tioa o( diat&DcX at 9 • (]' and 9 • 'K!. 

8(dq) ~<A > sa..· H&. . Hr:" ' 

10 1.1( -4). 1.0(- 4) 7.0 ( - 4 ) 

I' 2.0( -6) 1.1( - 6) 2.2(- 6) 
lO 2.2(- I) 2.1(- I) 2.0( -I ) 

2' 1.1(- 10) 1.7(- 10) 1.0(- 10) 

10 -4.1( -2) _ , ,I ( -2) -9.9(-1) , -l.l( -4) - U(-4) - 4., (- ,, 
lO - U(- 6) - 1.7(-6) -H(-71 
2' -1.0(- ll -1.4(-1) -1.2( -I) 

'For ..:b (4,r ) llaU E • - I.U2' eV, 1'0 • 17.15297 eV, o • 4.15 A. 
b•2.,A. 

•For..:b (4,r) otat<£- -1.1'2'tV, 1'0 - 17.54121tV, o-4.15 A. 
b -2·'' A. 

' For -b (4,r ) apbencal alate E- - 1.1'2' tV, 1'0 • 11.0111 tV, 
, -1.91' A. 

4 Tbe DWDbcn iD pumtbooa arc tile powers o( tal by Wbicb -b <IIU)' 

abould be lllwbplled. 

held at a given separation distance R. The anaJe 0 - rt (Fig. 
2) corresponds to a "face-te>-face" confiJUT&tion and 
0 =- 9(1' to an "edge-t<>-edae" one. 

The exact and approximate H"" 'a are presented as func
tions of distance for transfer between two ( 4,~r) states, for 
the 0 .. rt and 0- 9(1' orientations in Table I. The agree
ment is seen to be aood. The deviation in Table I is largest at 
small R, and, especially in the 0 - rt orientation, is due to 
the contribution of other states in the exact state sum over 
R ... s~. [cf. Eq. (6) ofRef. 3]atthesesmaliR 's. It is clear 
that this contribution from other n's is only serious at very 
small R. For comparison, results usina spherical wells of 
similar volume and eneri)' are also given in Table I. They are 
seen to be sipillicantly less accurate than the present approx· 
imation to the spheroidal problem, particularly at 0 - rt. 

In Fia. 3 exact and approximate results for transfer 
between two ( !5,11') states are compared at constant edge-t<>
edge distance for various 0 's. As the edae-t<>-edge distance 
increases from 0 to 4 A, the accuncy of the present appro xi-

z(Al 

FIG. 2. CoordiDat< ays1e111111fld to apeci1y tile mun.al oria>tatioo of welb A 
aad 8 . Tbe X a.ua o( tile wdil OR parallel and lie iD tile pi&Dt o( tbe 6IJUTO. U 

dotilezua 
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mate calculation also increases. The qreement is good for 
an edge-to-edge distance of 4 A, and for larger separations 
the aJreement remains aood. 

In Fia. 4 H.., 's for the same set of orientations are aiven 
for transfer between (~,1r) and (4,11") states. Calculations 
similar to those in Fip. 3 and 4 have been used previously!·• 
to model the orientation dependence of the electron transfer 
rate between two porphyrins. Aaain, at all distances the a~ 
proximate results for the H.,. 's show similar behavior to the 
exact ones and for an edae-to-edae separation of 4 A or larger 
the aareement is aood. 

Results for a dilrerent class of orientations ( cf. Fia. ~) 
are aiven in Fia. 6. For these results, the wells are held at a 
aiven R, in the edae-to-edae (0- 90') orientation. but the 

xy planes are twisted about the line of centen through an 
angler relative to each other. The qreement is again good at 
all distances. 

The present approximation has several advantaaes over 
the exact method developed in Ref. 3: (I ) The present meth-
od is easier to implement. In the exact method the individual 
inner and outer R~. 's and inner and outer S~. 's were con-
structed as sums of known speclal functions. Each sum was 
then checked for convergence at all values of the araument 
for which the function was evaluated. Moreover, the total 
wave function was it.self (in principle) an infinite sum which 
had to be checked for converaence at each evaluation. In the 
present method each inner and outer R~. and each inner and 

> 
! 
; 

> 
.3. 
} 

4~0 

300 

--. . 
to I 

e~aoo; .... , 
FlO. 4. The -uU dcmcDt H .. • I fwM:noa ole II oevorallbod odac-t<>
edi< scpanriODI for (5,r)-(4,r) tramfer. For tbe ciDDor and ac:uptor 
Nt• • • 5 A. b • 2 A.£ • - l .lcV. For tbe cuct c:akulalloriJ (- - - l the 
ciODor V0 i126.l022 cV IDd tbe acocpc« V0 io 22.199 eV. For tbe scmiclasa•
c:ol c:akulanoaa (-) tbc doaor V0 11 25.532cV IDd tbe occep<or 1'0 11 21.499 
cV. (a) £dae-1<>4dJ<scpanUOD ioOA. (b) £dae-1<>4dJ<scpanUoo IS 2 A. 
(c) Edae-10-edJ< aopanDOD ia 4 A. 
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ua o( the wells IK U1 tbe plane of tbe !a
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aame Wte but are aatipuallel. 

outer S~. is evaluated as a single term, with convergence 
needed only for the respective integrals involved in the semi· 
classical expressions. The problem of convergence of a sum 
thus disappears. ( 2) The current method is considerably fas· 
ter computationally. For each geometry in Figs. 3, 4, and 6, 
and Table I, the current method, treating H u as a three
dimensional volume integral, required about 10 min CPU 
time (VAX 11· 780) while the e:uct method required about 
50 times longer. •• (A method of reducing computation time 
for the e:uct method by reducing the dimensionality of the 
H •A integral is given in Ref. 4. It could be adapted using the 
present approximations to the wave functions, but we have 
not done so. It is expected to give essentially the same results 
as the present three-dimensional integration. ) ( 3) The accu
racy of the present method supports the simple conceptual 
previously introduced'·• to understand the orientation de
pendence of HliA . Previously, this simple conceptual model 
was understood' by analogy with results from the use of 
spherical wells, where the inner and outer wave functions are 
each single terms. The spheroidal functions were envisioned 
as distoned spherical functions. Here. a related assumption 
is made explicitly by treating the inner and outer 'l''s as sin-

TABLE II. Rdati•e •&liMO o( s:.,t'!l'• for varioul 17'1-

"'_, ... _6. ,. ••• ,. _ 5" 

" Semicl.ulicaJ< Euo:t Semicla•~a~r Euo:t 

0.9 9.13(1 )4 9.13(1) 1.93( I) 1.92(1) 
0.1 4.71(2) 4.70(2) 6.11(1) 6.79( I) 
0.7 1.06(3) 1.06(3) 1.30(2) 1.30(2) 
0.6 1.71(3) 1.71 (3) 1.19(2) 1.19(2) 
0., 2.24(3) 2.24(3) 2.31(2) 2.31(2) 
0.4 2.41(3 ) 2.48(3) 2.44(2) 2.44(2) 
0.3 2.36(3) 2.36(3) 2.23(2) 2.23(2) 
0.2 1.14(3) 1.14(3) 1.70(2) 1.70(2) 
0.1 1.01(3) 1.01(3) 9.21( I) 9.21 (1) 

'For both euct and oemicluaicalcua, E • - 2.1 eV, Y0 • 26.3022 eV, 
• - ' A. b- 2 A. A 'lO'- 44.9,, A~ -., 17. 

•For both e.uct and oomicluaical-. E • -2.1 cV, Y0 • 22. 19., eV, 
• • 'A. b • 2 A. A :t' • 33.36, A~ • 33.67. 

' The oeaucluaical 1\mction wu ICI eqll&lto the aact 1\mctioe 01 '7 • 0.4. 
This wu doDo for campariloot ~ only and il - reqllired for the 
H.,. calcu.l&tioaa pr.euted bore. 

4 Tbc numbc:n iD pareD~ are the JIOWa' o( ten by wbicb -b entry 
aboWd bo muJtiplied. 

J . Chern. Pttys .. Vol. 8-4, No. e. 151Aarc11111M 
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TABLE Ill Relan•e v&lua o{ S:... ( 'I )'o for vanous '1'1. 

"'- ' ·"- 6. 
"'•4,11- , .. 

'I Semlcl.uai<&J< Euct Semictua.car Euct 

0.9 1.03(3 )' 1.03(3) 1.21(3) 1.11(3) 
0.1 I 71 (4) 1.71(4) l . U(J) 1.16(3) 
0.7 1.94(4) 1.94(4) 1.07( 3) 1.07(3) 
0.6 1.60(4) 1.60(4) Ul(3) U9(3) 
0., 1.1)(4) 1.14(4) 1.01()) 1.01()) 
0.4 7.3'(3 ) 7.36()) 6.11 (1) 6.1-4(1) 
0.3 4 44(3) 44'(3) 406(1) 4.01(1) 
O.l 1 . .,(3 ) 2.46(3 ) l .l3(l) l .H(l) 
0.1 1.01(3 ) 1.09(3) 9.79( ll 9.11( I l 

• £ . V., a, and ban the oameu for the"' • ' · ~ • 6otateofTablc II. I::' 
• -O. IIII,A~-0.4711. 

'£. v..,r. and ban the same u for tbt"' • 4, ~ • 'state of Table II. I U" 
- -9.371 , ..t :-;"- -1.790. 

' See Ref. co{ Table II With '7• 0.4 repl.oood by '7 • 0.6. 
'See Ref. d of Table II. 

gle-term functions. The accuracy of these results therefore 
supports this model. 

Although the goal of this paper is the calculation of 
H.,. 's, it is interesting to also compare the shape ofthe wave 
functions used with the exact ones. We do this next. More 
precisely we select the principal R.,..s .... term in the exact 
sum (largest coel!icient) and compare (in Tables II to VI 
given later) its R.,.. and s ... , inside and outside the well, 
with those of the corresponding approximate functions used 
in the present single-term calculation of H •A . They are com
pared on a relative basis to emphasize their similar shape. 
(Normalized wave functions were, as already noted, used to 
calculate H •A . ) Also included in these comparisons are the 
exact and semiclassical A.,.. 's inside and outside the well. 

The exact and approximate results for the S :.. 's and 
A :.. 's for two of the states used in the present H •A calcula
tions are compared in Table II. The agreement for the S :.. 's 
and for the A:.. 'sis generally better than I%. In Table Ill, 
exact and approximate S !... 'a and A !... 's are compared for 
the same two states. The aareement for the S!..., 's is apin 
excellent, the largest error being less than 1%. (The a,ne
ment for both the R :.. 's and R !.... 's, discuued later, is also 
good.) The A :... 's themselves are somewhat inaccurate, 
though the splittings are in good agreement with those of the 
exact A!... 's (Table IV). (A similar problem was encoun-

TABLE IV. Correc:taU :_'a. 

"'- ,. 
I ' • Euct Semlc'-ic:al A' • 
A;, -0.193 0.311 A~ 
A ' .. - 0. 111 o."l A~, 

A~ -A;, 0.112 0. 111 A~, -A~ 

'£. v., a , and b.,.. the..- u for tbt"' • ' · ~ • 6 state ofT able II. 
• £ , v., a. and b.,.. tbt....,. u for the"' • 4, ~ • 'otate ofT able II. 

TABLE V. Relative v&lua o( ~:.., <Cl'• for varicNa C 'o. 

"'- , ... - 6' ... -··"- ,. 
' SemlclaMi<:al" Euct Scmicluoical' Euct 

1.0 3.47( -ll • 3.47( - ll 1.44( -2) 1.44( -ll 
l .O 1.03( - 4) l .O,(- 4) l.ll(- 4) 1.13( - 4 ) 
3.0 1.16(- 6) 1.11(-6) 1.20(- 6) 1.21( -6) 
4.0 2.19(- ll l .ll(- ll 1."(- ll U7( - ll 
, ,0 1.97(- 10) 3.00(- 10) l .l3(- 10) 2.17( - 10) 
6.0 4.31( - Ill 4.43( - Ill 3.44(- Ill UO(-Il l 
7.0 6.13(- 14) 6.90(- 14) B3( - 14) '-63( - 14) 
1.0 1.11(-U) l.ll(- U) 9.11(- )6) 9.35(- 16) 

'£, V., a , and ban tbt aame u for the"' • '· ~ • 611ate ofT able II. A 'l:' 
- 44.9,, A ~ -u11. 

'£. v.,a, and b.,.. the....,.uforthe"'- 4, ~-'state ofTableii. A '!:" 
• 33.36, A~ • 33.67. 

'See Ref. c ofT able II with '7• 0.4 repl.oood by C • 1.0. 
'See Ref. d ofT able II. 

tered by Sink and Eu in the prolate spheroidal problem. t 2 ) 

The inaccuracy is seen, however, not to seriously afl'ect the 
semiclassical S !... 'a and R !.... 'a. 

The exact and semiclassical R :.. 's are compared in Ta· 
ble V for the same two states as in Tables II and Ill. For 
comparison purposes. the functions are equated at the small
est S· The agreement is good over the entire region of inter
est. Similar accuracy is obtained for other states. The A :.. 
values used in the calculations of R:,. 'a for Table V were 
from exact and semiclassical methods, respectively. The ex· 
act and semiclassical R !... 's are compared in Table VI. The 
agreement is again good and similar accuracy can be expect· 
ed for other states. 

The accuracy of the semiclassical functions and the 
agreement of the semiclassical and exact H ... 's indicate that 
the relevant shapes of the semiclassical and exact wave func· 
tions are quite similar. The shapes of the exact ( 4,17') and 
(~,1r) states are compared elsewhere• to the shapes of por
phyrin HOMO's and LUMO's obtained in molecular orbital 
calculations and are found to be in qualitative agreement. It 
would be uaeful to compare also the present H &4 results with 
calculations which miJbt be based on the corresponding m~ 
lecular orbital wave functions. For fa.ce•to-fa.ce orientations 
T &4 las been evaluated using molecular orbital tech· 
Diques. 15

•
16 Molecular orbital calculations of H ... lave not 

,.. -.. 
Euct Semic:'-ic:al 

-9.49 - .. ., 
-9.37 -1.73 

O.ll O. ll 
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TABLE VI. llclatiw val,_ o( A:., (fl'a for varioal f'L 

,._ 5 ... _,. "'- .... -, .. 
t Sem.cl.uaical' E.uct Semicl••ic.r E.uct 

005 3.24( -2)" 3.11( -2) 3.31( -2) 3.35( -2) 
0. 10 6.2$ ( -2) 6.14( -2) 6.51( -2) 6.41( -2) 
0. 15 1.10( -2) 1.61( -2) 9.19( -2) 9.16( -2) 
0.20 1.07( - I) 1.06( -I) 1.12(- 1) 1.12( -I) 
0.25 1.11(- 1) 1.11(- 1) 1.24( - 1) 1.24(- 1) 
0.30 1.20( -I) 1.20( -I) 1.27(- I) 1.27( -1) 
0.35 1.13(- I) 1.13( -I) 1.20( -I) 1.20( -1) 
0.40 9.59( -2) 9.73( -2) 1.04( -I) 1.04( -1) 
0.45 7.13( -2) 7.31( -2) 1.02( - 2) 7.99( -2) 
0.~ 4.01( -2) 4.29( -2) 5.00( -2) 4.93( -2) 

• E. V., G, &Dd ben the I&IDe u for them- 5, ~- 6 atat.e (I( Table 11. A l:' 
- -O.III , AM'-0.562. 

• E. v., G, &Dd ben the I&IDC u for the"'- 4, ~- 5 a&aU o(Table II. A~ 
- - 9.37 • ..t ~- - 1.73. 

' Set Rd. c (I( Table II With 'I- 0.4 replaced by t- 0.30. 
•s... Rd. d (I( Table II. 

been made for the variety of orientati011.1 e.u.mined here. 
Such a study s.bould include the role of the aolvent mole
cules, e.g., via a superexchanae mechanism. and such molec
ular orbital-based calculations do not appear to be available 
as yet. 

VI. CONCLUSION 

A semiclassical plus sin&)e-term approximation for cal
culating the electron transfer matrix element H._. bas been 
formulated. It was sbown to yield good aareement 'With re
sults" in wbich the exact solution of the ScbrOdi.nger equa
tion for the same model potential was used. This method also 
bas much Jreatcr computational efficiency. In future appli
cations of the model of Ref. 3 to the calculation of mutual 
orientation and separation distance elrects, use of this meth
od should be appropriate. 
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APPENDIX A:. PAESCAIPT10N FOR CALCULATING THE 
R- 'a, s_ 'a, }._,'a AND Ha~~ 

To facilitate use of the present method, details are Jiven 
here on the calculation of H ... . To tbi5 end, the R..,. 's, s_ 'a 
and A .... 's are calculated lint, for any Jiven E and J'. 

In obtaining a uniform semiclassical solution for s:.., 
s:;.. is convened'l." to a function (1-1]l) 11ls:;. •• whoee 

di!'erential equatiou contains no lint derivatives. Tbe com
parison functiou chosen for ma.kina the uniform approxima
tiou is (I- vl) 11lPj(v),u where Pj(v) is the associated 
Leaendre functiou. Thereby, we have 

(I- vl>"l 
S:,.(1J)•A l 11lPj(v), 

(1-1]) 
(AI) 

where A is a constant wbich normaliusS:,. (1J), and where 
the functiou v ( 11 ) is defi.ned below. 

Tbe mappma 1J--V(1J) leads in a standard way'l." to 
the equatiou 

where p, is the classical1] momentum 

P!- A:,.+ 1Jldlk~/4 _ (m1
- I) • 

• (I -1]l) (I - 1Jl)l 

and p. ia the classical v momentum 

p'; _ I (I+ 1) _ (m2
- 1) 

• 1- yl (I - vl)2 • 

(Al) 

(A3) 

(A4) 

'With r- II. At 1J - ± 1JTP• P. - 0 while p. "" 0 at 
v • ± vrr. Tbe left-hand side of Eq. (Al) was evaluated 
numerically, using a standard routine. Tbe ript-hand side 
equals { [/(/ + 1) ] 111 - (m2- 1) 112},-. Tbe quantized val
ue of A :;.. wbich appears in Eq. ( A3) is that wbich permits 
Eq. (Al) to be satisfied. 

Tbe v in Eq. (AI) is Jiven by Eq. (All 'With the upper 
(or lower) limits of intep-ation 011 each side of the equation 
replaced by 1J and v( 1J). 19 ( Tbe choice of wbich set of tum· 
ina points to use is a matter of convenience in performina the 
integration. In principle either choice ll'iiJl sullice.) With tbi5 
v(1J) theS:;,. (1J) Jiven in Eq. (AI) was calculated forsub
sequent use in the calculation of H.., . 

Tbe function R:.. (~).the "radial" function outside the 
potential well, satisfies Eq. ( 4c), 'With the i superscripts and 
subscripts there replaced by o's. In tbe present study the 
followina primitive semiclassical approximation'l·" for 
R:.. (~) sulliced because of the absence ofturnina points for 
the~ motion: 

R:;,.c~>• [ex~- £1P1 1d~)]/<~ 2 +1l"l~ l"l, 
(A5) 

where the classical~ momentum p1 is defined by 

r, -c! 
_ {[<c! +..t:..><tl+ 1) _ (ml-1))1(~2 + l) l}, 

with c! - d 1k !14 and where A:,. was calculated above. 
Tbe calculation of ..t :.._. and s:,... is lenatbier and is dis

cussed at the end of this Appendix. 
Tbe inner radial functiou R !... (~) satisfies Eq. ( 4c) . 

Tbe tendency towards an ablence of tumiD I points, i.e., for 
the etrective eneriY for the ~ motiou to exceed the elrective 
potential eneriY for all ~. increases 'With increasing d, in
creasinl k: and decreasina 11 . For tbe (m,v) states and 
choice of parameters appropriate to the modelina of large 
aromatic systems discussed here there are no turning points 
for the t motiou in the rqion t c;;~.,. and so a primitive semi-

J . c,.,_ Pttvs .. vot ... No. a. 15 Marefl , ... 
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classical approximation suffices for R :... <s>. The boundary 
condition for 1r-like states is that the wave function be zero in 
the xy plane. Thereby, it is also zero on the disk of diameter 
d. centered at the origin, in the xy plane, and hence at s = 0. 
(It is also zero at 'I = 0.) The primitive semiclassical 
R :.. <s> satisfying this condition is 

R:...<s> .. [sin(f lp, lds )]/<s 1 + 1)"
1IP,I"1

• 

(A6) 

where p: is the same as that given foUowing Eq. (A5 ) , but 
with o subscripts and superscripts replacecl by ts. 

All the components of '1'::, ... • 1 and '1':., .... 1 have now 
been considered [ 4>~ ( ({J) '"' B cos M((J + C sin M((J, with 
appropriate normalization I and thus the next step is to aa
tisfy the quantization conditions. This is done by choosina 
the desired value of E and then usinaa root search technique 
(we used the Newton-Rapb.son method) to lind the value of 
the weU depth V0 which allows Eq. ( 7) of the text to be 
satisfied. C::, • , • and C!.. • 1 are determined usinl Eq. ( 6a) 
and normalizina the 'I' ... r defined in Eq. ( S) of the text. The 
entire procedure is foUowed for both weUs A and B. H.,. can 
then be calculated straiahtforwardly from Eq. ( 3b) of the 
text using nested numerical integration to perform the three
dimensional intearaJ. We note that the integration only 
needs to be performed over weU B, since this is the only 
region where V • is nonzero. 

In the above discussion we deferred consideration of 
S :... and A:.. •. We now treat them by first describing a new 
procedure for delininaloc.tli.zed wave functions. 

First introducina11 the function U!... (f/) 
= ( 1 - f/1

) '
11S;.,. (f/), as noted earlier, then usingl0 the 

Bethe modification, namely, substituting m 1 for m1
- I , we 

obtain an equation for U :... ('I): 

dl u~ v• I df/l ... ('1)- (f/)U.,.(f/)-0, (A7) 

[

ml- (A!...+ C:f/l)(l- f/l) 

Vi(f/),. (1 _ f/l)l 

v• 

where V' equals m1 - A!... and f/ 1 is the ., in the interval 
(0,1) where Vi(f/,),. V'. The single-weD potential for a 
wave function loc.tli.zed between 0 < f/<; I is simply the re
flection of the potential depicted in Fia. 8 about.,'"' 0. Each 
of these effective single-weD potentials yields a two-tumina 
point problem which can be solved usinaa uniform approxi
mation based on a comparison equation for the two-tumina 
point problem. The harmonic oscillator equation was chosen 
for the latter .n A zeroth order separation constant A 1 is 
then obtained serniclassically from the single-weD probiem 
in a way analagous to the determination of A ::. •. The analoa 
of Eq. ( A2) for the determination of A ' is 

~. ( Vi(f/) J"l df/- s••..,. [<2N :·!)- r]ln dx 
J- "" -."' 2 

= (2N +I) ; , (A9) 

where 

with 

C:-.d 11c ~/4 = d 1J.l(E + V0 )/ 21f2. 

This v• ('I) serves as an effective "V- E" term for the ., 
motion. 

Wben C: is zero the numerator in v• (.,) is quadratic in 
'I· For C: "'0, this numerator is a quartic function which, for 
Iarae enou&h C:. has four real zeros. Examples of plots of 
v• ('I) for various positive values of V0 and thus for various 
C:'s are given in Fia. 7. It is seen that as V0 and thus as C: 
increases. v• (.,) cbanaes from having two zeros to having 
four. For the states of interest in the present paper v• ('I) in 
Eq. (A7) typically has four zeros (i.e. , the problem has four 
tumina points), and we devised the foUowina method for 
obtaining S :. •. [Had there been only two turning points an 
equation analoaous to Eq. (A I ) for S ::.. (.,) would have 
been appropriate.) 

In principle, a four turning-point problem can be treated 
with a comparison function that arises from a potential 
which itself yields four turning points, but such functions are 
typically as complicated ass;... (f/) itself. Accordingly, re
sults for two sinale-weU problems were used, noting that the 
eiaenvalues of a symmetric double weU potential for a high 
barrier ()C(:ur in pairs and the eiaenfunctions can be repre
sented to a high delfee of accuracy by symmetric and anti
symmetric combinations of the single-weD wave functions.11 

Single-weD potentials were devised for the ponions of the 
wave function loc.tli.zed to the left- and the ri&ht-band side of 
'I ,.. 0. Linear combinations of two semiclassical single-weD 
eiaenfunctions then yielded an approximate S :... (.,) . 

For this purpose we introduce an effective sinaJe-weU 
Vi(f/) to repl.ace v•(f/), 10 as to yield a wave function 
Iaraely loc.tli.zed in the (- 1.;;.,.;;0) region. (cf. Fia. 8) 11: 

(A8) 

where Vi(f/) is defined in Eq. (A8),.xTP is the.x for which 
the.x integrand vanishes, and the '1\::. 's are the values off/ for 
which the 'I integrand vanishes. The !nt intearaJ in Eq. 
(A9) was evaluated numerically, choosing A!... 10 as to 
aatisfy Eq. (A9) . 

The choice of the quantum number N for the harmonic 
oscillator comparison wave function lfJN(x) is determined 
by the state to be modeled. The number of nodes for the 
function S!... ( f/) ( excludina those at 'I - ± I ) is 11 - m. 
Thereby, S !... .. ( f/) has no nodes, whileS!... .. + 1 ('I) has one. 
The number of nodes of lfJN (x) is N. Since pairs of lfJN 's are 

combined, one member from each weU, S!..,. states are ob
tained by tak.ina the symmetric combination of two around
state harmonic Olcillator·like wave functions, ((J0 (.x), re
prdleu of the value of m . For a ,. state, we need consider 
only statcl where 11 - m + I. S!...... + 1 is obtained by taking 

J . c-.. - v"' ........ - 111u.rm 1Me 
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FIG. 7. Ell"ecuv• potential for s:.. u a function of '1 for three di6ennt 
values of V .. Th• other puam•ten UICid in all ) plots an" • ' A. b - 2 A. 
"" - '· • • 6, 1.11d £ • - 2.1 .v. - com:aponcb to V0 - 26.3022 .v a.od 
.<;. - 0.)807. • • • comsponcb to V0 - 12.00 .v a.od .<;. - 30.60. • -· • 
comsponcb to V0 - ) .00 .v 1.11d .<;. - 42.02. 

the antisymmetric combination of the two 9'o(X) wave func· 
tions. (Similar reasoning shows that for S :... states for which 
n > m + I, and when there are four turning points, linear 
combinations of two 9' . ., 's with N = 1,2, ... , would be used. ) 

Thus S~.~ + 1 iS then given by 

s:...~ .1< 11l = (l-~2 ) 112 (U1 ( 17l- U,(17 lj , (AIO) 

where U, ( 17) is exp( - xf ( 17) ), i.e., a ground state harmonic 
oscillator wave function in the new variable x, ( 17) for the 
left-hand side single well; x 1 ( 17 ) is defined by Eq. (A9) with 
the upper or lower integration limits replaced by 17 and 
x 1 ( 17) .2• Similar definitions apply to U,(17) andx, but with 
/'s replaced by l"s and with v: (17) as the single-well poten
tial for a wave function " loca.li.zcd" in 0<17< 1. A is a con
stant wh1ch normalizes S :.. .~ + 1 ( 17) . 

0 / 

~f V. 
· 10 -05 

I 

0 
I J 

05 10 

FIG I Ell"ecuv• stn&J•-w•U potmnal for a localiud s:.. state. loc:aliud 
~ .. ..., - I<: '1<:0 as a function of '1· The param.,•n o, b, "'· • · a.od £an 
tb• same as m Fia. 7, and V0 - 26.3022 .v. 

The above ..t ~-~ + 1 's can be termed uroth order 
..t ~-~ + 1 's. We also calculated "corrected" ..t ~-~. 1 's which 
allow for the splitting of the eigenvalues by tunneling in the 
double-well problem. To do this we use the above U, and U, 
as basis functions, and obtain solutions of Eq. (A 7) by solv
ing 

[
F 11 F,,] [c1] = ..t [ I G,,] [c1] • 

F.., F" c2 G.., I c2 

(All) 

where F• denotes the matru element ( U, IF I U,) of 

F = (I - 'I'Hd 21d17') + [m2/(l - f12)] - C:172 

and Gil denotes ( U, IU). Equation (All) yields two eigen
values ..t.._~ and ..t~.~. 1 • This corrected ..t :...~. 1 was used 
in the calculation of R :.,,.. + 1 utilizing Eq. ( A6) u and so to 
obtain the results given in the various tables and figures. 
However, we have found that for the parameters and states 
employed here, use of the zeroth order ..t ~-~ + 1 , i.e., values 
without the splitting, gave results for the R :... 's which dif
fered negligibly in the domain of interest and hence could 
have been used instead. 

APPENDIX B: SEMICLASSICAL ENERGY 
EIGENVALUES 

Using the semiclassical approximations to the individ
ual R~. 'sandS~. 's, and inside and outside the well, togeth· 
er with the single-term approximation, the energy values can 
be calculated using Eqs. (6) and (7) for given values of the 
potential and for various states. When V., a, and b form = 5, 
n = 6 were chosen to be the values in Table II ( Ref. a ), the 
exact value of E was - 2.8 eV, but the approximate value 
was - 3.46 eV. To obtain the desired E of - 2.8 eV in the 
approximate quantization, a V0 of 25.5316 eV was needed 
and was used. When V., a, and b form == 4,n = S were cho
sen to be the values in Table II (Ref. b) the exact value of E 
was - 2.8 eV, while the approximate value was - 3.39 eV. 
To obtain the desired E of - 2.8 eV in the approximate 
quantization, a V0 of 21.4993 eV was needed and used. 

There is seen to be a fairly large error in this calculated 
eiaenvalue. a result not unexpected, because of the observed 
contribution of several terms to the total wave functions near 
the well boundary. As wu seen previously, however, these 
sinJ)e-term functions are still accurate enouah to yield rea· 
sonable results for H..,. . 
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Chapter 2: A Test of Two Approximate Two-State Treatments for the 

Dynamics of H-atom Transfer Between Two Heavy Particles 

[The text of this chapter appeared in: S. J . Klippenstein, V. K. Babamov, and 

R. A. Marcus, J. Chern. Phys. 85, 1924 (1986).] 
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ABSTRACT 

Reactive transition probabilities and Boltzmann-averaged reactive transi

tion probabilities for a slightly off-resonant model H-atom transfer system with 

a.n appreciable energy barrier are calculated using the approximate methods of 

Baba.mov et al. and of Crothers-Stiickelberg. Both are compared with the corre

sponding quantities obtained from a numerical two-state treatment of the same 

model system. The method of Babamov et al. is seen to give more accurate 

results for the transition probabilities at energies below and around the reaction 

threshold, and much more accurate results for the Boltzmann-averaged proba

bilities in a. wide range of temperatures than the second method. The relative 

merits of the two formulae are discussed. 
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I. INTRODUCTION 

There have been a number of recent theoretical studies on the dynamics of 

chemical reactions in which an H atom is exchanged between two different heavier 

atoms or molecular fragments.1 - 14 A method for reducing the dynamics of the 

reactive collision to two coupled ordinary differential equations, in the case when 

the initial reactant state and the final product state are nearly degenerate, was 

proposed recently by Babamov et al.5 •1 and applied to a collinear collision using 

a model LEPS potential energy surface for such reaction. This two-state method, 

which is only applicable to reactions with a substantial potential energy barrier 

to the reaction, has been showne to give results for the transition probabilities in 

good agreement with the corresponding accurate (many states) coupled-channel 

calculations. e 

A simple analytical formula for the reactive transition probabilities within 

the two-state approximation has also been proposed by Babamov et al.8 and 

shown to give results in good agreement in the threshold region with those ob

tained from a numerical solution of the two-state model, and thus with the results 

of the accurate coupled channel calculations. The principal purpose of these 

treatments5 - 8 has been to provide a practical simplified treatment of the dy

namics of chemical reactions which correctly simulates the quantum mechanical 

tunneling of the light H-atom and is also accurate in the range of energies which 

contribute significantly to the kinetics of the reaction under typical conditions. 

More recently the use of the Crothers-Stiickelberg ( CS) perturbed symmetric 

resonance formula15•18 has been suggested11 •12 as an alternative simplified ana

lytical treatment of the two-state model. The two methods have been applied12 

to an approximate analytical fit of the two-state representation of Babamov et al. 

for comparison purposes. However, the use of an incorrect analytical fit to the 

two-state modeP 7 and the overlooking of the importance of the near-threshold 

region led to an incorrect conclusion12 about the relative usefulness of the two 

methods. 
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In this paper reactive transition probabilities from the two approximate 

methods are compared with those obtained from the exact two-state (numerical) 

treatment, for the model system of Ref. 9, as a function of the total energy. The 

results are also given in terms of Boltzmann-averaged reaction rate probabilities 

Po2(T). Limitations of the CS method, already specifically mentioned by Barany 

and Crothers,18 will be seen to appear here in the threshold region. 

II. TWO-STATE APPROXIMATION AND REACTIVE TRANSI

TION PROBABILITY CALCULATIONS 

Starting with the Schrodinger equation for the collision in mass-weighted 

polar (hyperspherical18 ) coordinates and expanding the solution in terms of the 

eigenfunctions for the "vibrational" motion15 •111 rJi( 8; p) 

(1) 

one obtains, after some manipulation, a pair of coupled ordinary differential 

equations in the adiabatic representation:15 •111 •20 

(2) 

where mH is the mass ofthe H-atom, E is the energy, the e,(p)'s are the eigenval

ues associated with the 7Ji, and the Pa; 's and Q;; 's are matrix elements defined in 

Ref. 19. A closely related, but not entirely equivalent, pair of coupled equations 

in the diabatic representation can also be defined:1 •21 

(3) 

The '~'• in Eq. (3) are the coefficients in an expansion 

(4) 
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in which the (i are localized vibrational wavefunctions obtained as linear combi

nations of the 7Ji · The matrix V in Eq. (3), with elements Vi;, can be obtained 

by applying to the diagonal matrix ofthe E1 's the orthogonal transformation21 •22 

that converts the adiabatic vibrational basis 7Ji( 8; p) into a diabatic one (i( 8; p ). 

The E/s in Eq. (2) are then related to the Vi;'s by 

(5) 

where the minus sign is for t 1 • 

It has been showne that the reactive transition probabilities Po2(E) obtained 

from a numerical solution of Eq. (3) for the slightly off-resonant model system 

considered here are in good agreement with those of a 12-state accurate numer

ical quantum mechanical calculatione for the same system. Thus, the two-state 

treatment based on Eq. (3) provides an accurate simulation of the dynamics for 

the model system studied. 

Babamov et al. gave8 a simple analytical partially "exponentiated" dis

torted wave expression for the reactive transition probability from state n of the 

reactants to state m of the products, assuming approximately equal slopes23 in 

plots of V11 and V22 versus p at the classical turning points: 

where 

F = [-m~ .!!:_ vo(p)] . 
1i. dp p=po 

(7) 

Here, Po is the classical turning point for the p-motion on a mean potential 

V 0 (p) = [Vu(p) + V22(p)]j2. The approximations contained in Eq. (6) are given 

in the Discussion. Another formula proposed by Babamov et al. 8 is treated in 
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the Appendix. It should be stressed that the formula in the Appendix gives 

better results at higher energies than Eq. (6), and reduces to the exact two-state 

answer when Ll vanishes, but gives similar results in the threshold region. Eq. 

(6) is easier to use than the equation in the Appendix. 

The Crothers-Stiickelberg expression P~! for the reactive transition proba

bility, for a transition from staten to state m, in a perturbed symmetric resonance 

problem, is given by:15 ,1& 

(8) 

where 

(9) 

k,(p) = { 2mH [E - ea(P )] /1i2 } 
112 

, Pi is the classical turning point for the p

motion on the adiabatic potential e,(p ) , and p. is the complex-valued p at which 

ei(P) = e2(p). ¢is a phase correction which to a good approximation18 is zero 

for the perturbed symmetric resonance problem. 

Nakamura et al.12 recently suggested the application of Eq. (8) to the 

collinear H-transfer system studied in Ref. 9. As seen from Eqs. (8) and (9), the 

use of the formula does not explicitly require knowledge of the full coupled equa

tions (2). It does, however, require knowledge of the two adiabatic potentials ea(P) 

in the complex plane, in order to determine the complex-valued crossing-point P• 

and to perform the integration in the complex plane. One procedure11 •12 •14 for 

implementing the formula is to attempt to construct an analytic representation 

of the diabatic matrix elements V;; in Eq. (3) by making simple approximate 

analytic fits to a known numerical description of the latter. The adiabatic po

tentials are then determined from Eq. (5), with analytic continuation serving 

to extend them into the complex plane. This continuation yields a value for p., 

namely the value of p wh~re the square root in Eq. (5) vanishes. This procedure 

appears to be the one used by Nakamura and Ohsaki12 . 



-26-

The functional form assumed by the latter authors for the Vi; 's is12 

(10) 

where A, B, C, G, ~o, and {3, are all constants obtained from a fitting procedure, 

and Pc is an arbitrarily chosen constant. 

In our applications we adopt the functional form of Nakamura and Ohsaki 

given by Eq. {10) and determine the parameters by fitting the values of V11 , V22, 

V12, the first derivative of V 0 , and the first and second derivatives of Vu to the 

corresponding quantities in the numerical two-state representation, all at a given 

Pc · The parameter Pc in Eq. {10) was chosen in Sec. III to be 31.75 bohr, which 

is approximately the value of p at the classical turning-point at energies near the 

threshold energy. Other possible ways of applying the formula and of choosing 

Pc are explored in the Appendix. 

III. RESULTS AND DISCUSSION 

Since both the method of Babamov et al. and the CS method are based 

on the two-state approximation, the results for these methods are compared 

with those from a numerical solution of the two-state model. The two-state 

representation was used for a model LEPS surface for H-atom transfer between 

two heavy atoms.24 The transition probability P02 (E) obtained from the exact 

numerical solution of the two coupled equations as well as those from the two 

approximate formulae, P~(E) and PS5 (E), were calculated for various energies. 

A plot of these quantities versus total energy is given in Fig. 2.1. One can see that 

at the lower energies the results of the formula of Babamov et al., Po"~(E) are in 

excellent agreement with those of the numerical solution of the two-state model 

Po2(E). The agreement gradually becomes worse as the energy increases well 

above the threshold. The results of the Crothers-Stiickelberg formula P~5(E) 

on the other hand are quite inaccurate at energies near and below the reaction 
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threshold and become more accurate at higher energies. At a total collision 

energy of 10.0 kcal/mol, PS5 (E) is seen to be too large by a factor of about 6. 

At higher energies, PS5 (E) is still not in good agreement with Po2(E) although 

it does have the correct shape and is in better agreement than P0~(E). Another 

formula of Babamov et al. which is more accurate than Eq. (6) at higher energies, 

albeit somewhat more laborious to evaluate, is discussed in the Appendix. 

In chemical reactions the quantity of primary interest is the reaction rate 

constant. For a collinear reaction a one-dimensional rate constant for the reaction 

from quantum state n of the reactants to form state m of the products can be 

defined as 

( 
kT )1/2 

knm(T) = 
2

7rp, Pnm(T), (11) 

where 

{

00 (-E) dE Pnm(T) = Jo Pnm(E) exp kT kT' (12) 

p, is the Cl-HBr reduced mass and E is the translational energy of the reactants. 

In Fig. 2.2 plots of log10 Po2(T), log10 P0~(T) and log10 Pf25 (T) versus 1/T 

are given. At T = 300° K, the values of P 02 (T), Pl~(T), and Pf25 (T) are 6.2 x 

to-e, 6.3 x to-e, and 2.8 x 10-5 , respectively. At T = 600° K, they are 1.6 x 

10-3 , l.Sxlo-3 , and 2.7xlo-3 , respectively. The corresponding one-dimensional 

rates (k02 (T), k£(T) and k~25(T)) given by Eq. (11) are 7.9 x 10-2 , 8.0 x 10-2 

and 3.6 x 10-1 em molecule-1 s-1 at T = 300° K. At T = 600° K they are 29, 

27 and 49 em molecule-1 s-1 • 

The rate constants k02 (T) calculated using the P02(E) obtained from the 

exact numerical solution of the two-state problem are in good agreement with 

the rate constants calculated by Garrett et al.13 using the P02(E) obtained from 

the accurate twelve channel11 numerical solution. For example at T = 300° K the 

twelve channel rate constant13 is 6.37 x 10-2 em molecule-1 s-1 as compared 

with the above two channel rate constant of 7.9 x 10-2 em molecule-1 s-1 • At 

T = 600° K the twelve channel result is 24.9 em molecule-1 s-1 as compared 
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with the above two channel result of 29 em molecule-1 s - 1 • 

Approximate semiclassical calculations of one-dimensional rate constants 

summed over the final states have been reported by Garrett et az.u for the 

same model system using various versions of variational transition state theory25 • 

Those rates, which are also in good agreement with the corresponding results ob

tained from the accurate twelve channel quantum mechanical calculations13 , are 

not directly comparable to the state to state rates presented here. 

The effective reaction threshold occurs at a translational energy of ::::::: 7 

kcal/moP8 which, when equated to kT, corresponds to a temperature T of 

3500° K. Hence, for temperatures of practical interest the major contribution 

to Pnm(T) arises from the reaction probabilities Pnm(E) in the near-threshold 

region. Thus, although the application of the CS expression is better at high en

ergies than the method of Babamov et al ., one sees that as far as the important 

temperature region is concerned, the Boltzmann-averaged Babamov probabilities 

PlHT) are in better agreement with the exact two-state result Po:z(T) than are 

the Boltzmann-averaged CS probabilities P~5 (T), for the model system studied 

(high energy barrier). 

Some remarks about the "threshold region" are perhaps relevant here: At 

125° K, 80% of the integral P02(T) in Eq. (12) is contributed by energies equal 

to or less than 11.0 kcal/mol. At 250° K and 500° K the corresponding energies 

are~ 11.3 and~ 11.8 kcal/mol respectively. In these energy regions the Po"HE) 

curve in Fig. 2.1 is seen to be accurate. 

In order to study the possibility that the differences between the P~5 's and 

the Po:z 's are due to problems with the analytical fits, calculations were performed 

assuming that the dynamics occur on given analytical diabatic potentials of the 

form of Eq. (10). In Fig. 2.3 the quantities Po:r(E), Po"~(E) and P~5 (E) are 

calculated using these analytic diabatic potentials, P~5(E) thus being the same 

as before. They are compared there as a function of total energy. Once again 

one sees that PlHE) is much better than P~5(E) at energies near and below 
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the reaction threshold. Also, the superiority of the PS,5 (E) over the Pl~(E) at 

higher energies is again evident. Comparison of Figs. 2.1 and 2.3 also shows 

that at high energies there is a large discrepancy between Po:z(E) for the exact 

potentials and P02 (E) calculated for the dynamics on the analytical fit in Eq. 

(10). 

In Fig. 2.4 plots oflog10 Po:z(T), log10 Pl~(T) and log10 PS,5 (T) versus 1/T 

are given. The results observed in Fig. 2.4 reemphasize the fact that the transi

tion probability versus energy dependence at high energies is not important for 

this model system, in determining the low to moderate temperature Boltzmann

averaged reactive transition probabilities. Thus, one can conclude that the dis

crepancies between PS,5 (T) and P02 (T) found in Fig. 2.2 are not due to the 

analytical fit, but to the breakdown of the CS approximation in the threshold 

region. 

We turn next to a discussion of the error of the CS approximation in the 

threshold region. Barany and Crothers pointed out18 that as one condition of 

validity of Eq. (8) the real phase u in Eq. (9) should not be small, more 

specifically not ~ 1. Values of u are given in Table 2.1. Comparison with Fig. 

2.4 shows that Eq. (8) for PS,5 (E) indeed becomes invalid when u ~ 1, confirming 

their prediction. At least in part, it is the smallness of the p-momentum which 

makes u small in the threshold region. 

We mention here some pertinent approximations used in obtaining Eq. (6) 

for P!m(E), though they are evident in the derivation given in Refs. 5 and 6: 

(1) There are no potential wells in the Vii's as a function of p contributing im

portantly at the energy of interest. (This point, explicitly noted elsewhere,5 •21 

follows from the derivation5 - 1 •28 which excludes21 this possibility.) (2) The tran

sition is largely localized in the vicinity ofthe classical turning-point p0 •28 •30 • (3) 

The resonance defect .6. at p0 is small relative to the vibrational spacing, at least 

if Eq. (6) is used in the higher energy region. 

In virtue of (3) the accuracy of the formula at energies above the threshold 
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region can be expected to gradually deteriorate with increasing resonance defect . 

However, it should be kept in mind that a good two-state approximation for 

the type of problem discussed above, valid in a wide energy region (as distinct 

from the threshold region), can only be made if the resonance defect .6. is small 

compared to the vibrational level spacing. 

IV. CONCLUDING REMARKS 

The formula of Babamov et al., as shown in Figs. 2.1-2.4 above and Fig. 

2.5 given in the Appendix, is an accurate approximation for energies near and 

below the reaction threshold, for this case of a high barrier slightly off-resonant 

reaction. At high energies the method is less accurate, but as seen in the previous 

section, these higher energies are not as important in determining the quantity of 

chemical interest knm(T) for such reactions. In addition, the formula of Babamov 

et al ., given by Eq. (6), is a simple analytical formula and is expressed in terms of 

parameters that can be readily extracted from the numerical diabatic potentials. 

The results obtained using the CS expression, on the other hand, are inaccu

rate at energies near and below the threshold for the present system, and begin 

to be accurate only at energies well above the threshold energy for this system. 

Thus, the important quantity knm(T) is not accurately given for this system 

at low and moderate temperatures by the CS expression. A second difficulty 

with the CS formula (Eqs. {8) and {9)), which may hinder its wide applicability 

at present, is that the adiabatic potentials must be known in the complex plane 

and the complex integrals must somehow be evaluated. Thus far, for that reason, 

the only applications of the CS formula to H-atom transfers have involved con

structing a set of approximate diabatic potentials rather than using the adiabatic 

potentials directly. 

It may be emphasized that the results presented here do not bear any relation 

to the applicability of the Crothers-Stiickelberg formula to problems in which the 

energies of interest are well above the threshold. The CS formula, as well as other 

simpler semiclassical formulae, should be applicable to problems for which the 



-31-

transition probabilities at higher energies are the important ones. One example is 

the calculation of electron transfer cross sections in medium energy (Kev) atomic 

collisions for which such formulae are frequently used. The applicability of the 

CS formula to a low barrier reaction has been discussed elsewhere.11 •12 •27 
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APPENDIX. ALTERNATIVE PROBABILITY CALCULATIONS 

An alternative expression for the transition probability obtained by Babamov 

et al. 8 •7 is 

(A1) 

where eo and eo are the elastic phase shifts for the p-motion on the "symmetrized" 

potentials, 

t•(p) = ~ [Vn(P) + V22(p))- Vt2(P) 

f
4 (p) = ~ [Vn(P) + V22(p)) + Vt:~(p). (A2) 

In Fig. 2.5 plots of P02(E), PlHE) and P~' (E) versus energy are given. At 

energies near the reaction threshold and below they are all equivalent. However, 

at higher energies P~' (E) is seen to have the correct phase, whereas P~(E) does 

not. This difference in phase does not significantly affect the calculation of the 

Boltzmann-averaged transition probabilities for moderate and low temperatures. 

Two other expressions31 given by Babamov et al. are not examined here. Our 

current calculations showed that they lead to reaction probabilities very similar 

to those of PlHE) and P~' (E). When .::l vanishes Eq. (A1) reduces to the exact 

two-state formula.18 

We turn next to the choice of the value of Pc used in the functional forms for 

the Vi;'s (Eq. (10)) in the CS calculations. The choice of this Pc depends on the 

choice of the p-region which needs to be the best represented. One can either use 

a single Pc, regardless of the collision energy, or let the choice of Pc depend on 

that energy. In obtaining the real parts of the integrals in Eq. (9) one may use 

either the adiabatic potentials calculated from the analytic diabatic potentials 

of Eq. (10), or the adiabatic potentials calculated from the real (numerical) 

diabatic potentials (i.e., not the fits to the diabatics). The adiabatic potentials 

calculated from the analytic diabatic potentials of Eq. (10) must be used in the 

determination of the imaginary parts of the integrals in Eq. (9). 
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For Fig. 2.6 we introduce the following notation: P~!(E) corresponds (as 

before) to calculations using the analytic fits of Eq. (10) at Pc = 31.75 bohr, 

independent of the energy, for both the real and imaginary parts of the integrals 

in Eq. (9). P~!' (E) corresponds to calculations using the fits of Eq. (10), with 

Pc = Po (the classical turning point for the mean potential V 0 (p) previously 

defined) at every collision energy, for both the real and imaginary parts of the 

integrals. Finally, P~!" (E) corresponds to using the actual diabatic potentials 

to calculate the adiabatic ones for the real parts of the integrals and using fits, 

with Pc =Po at every collision energy, for the imaginary parts of the integrals. 

The PS5 (E)'s are plotted along with P02 (E) as a function of total energy 

m Fig. 2.6. PS5" (E) shows the best agreement at higher energies and also 

involves the most complicated calculations. At energies well below the reaction 

threshold, not shown in Fig. 2.6, PS5' (E) and PS5" are both less accurate than 

PS5 (E) and thus result in less accurate Boltzmann-averaged reactive transition 

probabilities. 
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Table 2.1: Crothers-Stiickelberg u a.s a Function of Energy. 

E 4 (kcal/mol) (!' 

7.0 0 .22 

7.5 0.24 

8.0 0.26 

8.5 0.29 

9.0 0.33 

9.5 0.39 

10.0 0 .50 

10.5 0.72 

11.0 1.25 

11.5 2.10 

12.0 2.95 

12.5 3.70 

13.0 4.39 

13.5 4 .99 

4 Total energy measured relative to the minimum of the HBR potential. 
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FIG. 2.1. The probabilities P02 as a function of the total energy E measured 

relative to the minimum of the HBr potential. The translational energy is 3.83 

kcal/mol (i.e., the zero-point energy of the HBr well) less than E. Po2(E) is 

the two-state numerical reactive transition probability and is denoted by - . 

P0~(E) is the reactive transition probability of Babamov et al., calculated from 

Eq. (6), and is denoted by-- . PS5 (E) is the reaction transition probability 

calculated from the CS expression, Eqs. (8) and (9), and is denoted by - - - . 
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forE> 12 kcal/mol is discussed in the text. 
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Chapter 3: Iteratively Determined Effective Hamiltonians for the Adi

abatically Reduced Coupled Equations Approach to Intramolecular 

Dynamics Calculations 

[The text of this chapter appeared in: S. J . Klippenstein, G . A. Voth, and R . A. 

M arcus , J. Chern. Phys. 85 , 5019 (1986).] 
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ABSTRACT 

An iterative procedure is proposed for determining increasingly accurate 

effective Hamiltonians for use in the adiabatically reduced coupled equations 

approach to intramolecular dynamics calculations [J. Chern. Phys. 84, 2254 

(1986)]. The relationships between this iterative determination of the effective 

Hamiltonian, which is based on an adiabatic approximation, and some other 

partitioning methods for determining an effective Hamiltonian are discussed. The 

present iterative procedure provides accurate agreement with the exact dynamics 

for the two specific model systems studied. 
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I. INTRODUCTION 

In recent years, there has been considerable theoretical and experimental 

interest in the quantum dynamics of initially prepared nonstationary states in 

isolated polyatomic molecules. More specifically, the · time-evolution of initially 

prepared states resulting from vibronic,1 vibrational,2 and rovibrational3 cou

pling mechanisms is of particular interest. The "exact" treatment of the dynam

ics of these states requires, in typical situations, the numerical diagonalization 

of a Hamiltonian matrix having a very large number of basis states. Since there 

are, at present, computational limitations on the size of matrices which can 

be diagonalized, methods which reduce the size of the Hamiltonian matrix to 

be diagonalized, or, alternatively, new methods for determining the quantum 

dynamics,4 must be developed. 

By virtue of clever numerical methods, several authors have been able to in

crease the number of basis states which may be included in a typical calculation. 

For example, Nauts and Wyatt5 have developed the recursive residue generation 

method (RRGM) to determine the relevant time-dependent transition amplitudes 

directly without requiring the diagonalization of the Hamiltonian matrix. More

over, Tietz and Chu,11 as well as Chang and Wyatt,7 have implemented artificial 

intelligence algorithms in their studies of multiphoton excitation of molecules 

which allowed them to consider a large number of basis states and then to in

clude in their dynamical calculations only those states which had the largest effect 

on the dynamics. These methods represent potentially quite powerful numerical 

approaches for obtaining the dynamics of nonstationary states. 

Recently, Voth and Marcus8 have developed an approximate dynamical ap

proach which is based on a partitioning8 •8 of the basis set into a subset of states 

which are resonant and/or strongly interacting with the initial state, and a sub

set of states containing the remaining off-resonant/weakly coupled states.8 Their 

approach then treats the off-resonant/weakly coupled states in an effective man

ner by virtue of an adiabatic approximation. This latter method also allows one 
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to determine the dynamics directly by integrating the effective coupled equa

tions and hence does not rely on a calculation (and computer storage) of the 

eigenvalues and eigenvectors of the system. 

In this article, an iterative scheme is applied to the adiabatically reduced 

coupled equations approach of Voth and Marcus8 • With each iterative step, 

new effective coupled equations for the resonant/strongly coupled subspace are 

obtained, and hence a new effective Hamiltonian is derived. If the initial adiabatic 

approximation is a good one ( cf. discussion in Ref. 8), the resulting dynamics 

calculated from the effective coupled equations exhibit accurate agreement with 

the exact dynamics. 

The derivation of the reduced coupled equations is reviewed in Sec. II, and 

the iterative scheme is presented there. In Sec. III the present time-dependent 

method for determining the effective coupled equations is shown to be related to 

the iterative solution of an equation for the effective interaction in nuclei derived 

from a time-independent viewpoint by Schucan and Weidenmiiller10 • The rela

tionship of the present effective Hamiltonian to that given by Lee and Suzuki 11 

and to the partitioning formalism of Lowdin12 is also discussed in Sec. III. An 

application of the effective coupled equations to two model problems is given in 

Sec. IV, and the results are discussed in Sec. V. Concluding remarks appear in 

Sec. VI. 

II. THEORY 

A. Coupled Equations 

The time-dependent wavefunction (in atomic units) is expanded as8 •13 

N 

l'it(t)) = exp ( -i (H) t) L bi(t) lct?i) , (1) 
i=l 

where the basis states lct?i) are eigenfunctions of a suitably chosen zeroth-order 

Hamiltonian Ho , and (H) is the expectation value of the total Hamiltonian 

H( = Ho + V), defined as (H) = ('it(t)IHI'i'(t)). By substituting this expansion 



-49-

for i'll(t)) into the time-dependent Schrodinger equation and using the orthonor

mal properties of the { I'Pi)} basis, the following coupled first-order differential 

equations for the amplitudes bi(t) are obtained: 

N 

db~~t) = i (H) b;(t) - i L H;ibi(t) , 
i=l 

(2) 

where H;i = (<p; IH I 'Pi)· 

The zeroth-order basis is now partitioned into a subset of states which are 

nearly resonant with and/or strongly coupled to the initial state and another 

subset containing all remaining off-resonant/weakly coupled states. The coupled 

equations may then be written in vector-matrix notation as8 

(3) 

(4) 

By denoting the dimension of the resonant/strongly coupled subspace by NR 

and the off-resonant/weakly coupled subspace by No, the quantities in Eqs. (3) 

and (4) are defined as follows: bR(t) [b0 (t)] is an NR (No)-dimensional column 

vector containing the amplitudes for the resonant (off-resonant) states, 1 R ( 1°) 

is the NR x NR(No x No) identity matrix, HR (H0 ) is the NR x NR (No x No) 

Hamiltonian sub-matrix for the resonant (off-resonant) states, and yRo (V0 R) 

is the NR x No (No X NR) coupling matrix between the two subspaces. 

B. Iterative Scheme for the Effective Coupled Equations 

The adiabatic approximation given in Ref. 8 was based on the physical prop

erty that the off-resonant amplitudes b 0 (t) will remain negligibly small during 

the time evolution, and hence the derivatives db 0 (t)jdt in Eq. (4) are effectively 

equal to zero. The validity of this approximation depends on the partitioning 

scheme, and the reader is referred to Ref. 8 for further details in that regard. 

With the approximation of db 0 (t)/dt ~ 0 , which hereafter will be termed the 
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"zeroth-order" approximation, effective coupled equations for calculating the dy

namics of the resonant amplitudes may be derived.8 It will be shown here how 

increasingly accurate higher-order effective coupled equations can be derived it

eratively by obtaining improved approximations for the off-resonant derivatives 

in Eq. (4). 

Equation (3) can be rewritten in the form 

(5) 

and Eq. ( 4) can also be rearranged to give 

As mentioned before, the zeroth-order adiabatic approximation used in Ref. 

8 was 
d 0 
dt b (t) ~ o, (7) 

which, when substituted into Eq. (6), yields 

(8) 

Substitution of this expression for b 0 (t) into Eq. (3) gives 

(9) 

where the zeroth-order effective Hamiltonian is given by 

An iterative formula for the general n'th-order effective Hamiltonian, H~fl,n' 

may be derived as shown below, for which the corresponding coupled equations 

are given by 

(11) 
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where 

R [ R - I ( R ( ) R R)] -1 R Hef/,n = 1 + F Hef/,n- t + H 1 - H Hef/,o , (12) 

and 

(13) 

Equations (11)- (13) constitute the central result of the present paper. 

To derive Eqs. (11) - (13), Eq. (5) is first rewritten as 

where (VR0 )-
1 

is a "left" inverse, and idbR(t)fdt in Eq. (5) has been taken to 

be equal to H~lf,n-I bR(t) (i .e., it is taken from the previous iteration). For ex

ample, the first-order approximation to b 0 (t) is obtained by replacing idbR(t)fdt 

in Eq. (5) by H~/f,obR(t) . By taking the derivative of Eq. (14) and then sub

stituting the resulting expression for db 0 (t)fdt into Eq. (6), an approximation 

for b 0 (t) is obtained, namely 

b 0 (t) ~ -i ((H) 1°- H 0 )-
1 

(VR0 )-
1 (H~/f,n-l +(H) 1R- HR) ~bR(t) 

+ ((H) 10- HO) -1 yORbR(t). 

(15) 

Substitution of Eq. (15) for the off-resonant amplitudes into Eq. (3) and col

lecting the terms for dbR( t) / dt yields the n 'th-order effective coupled equations 

given by Eqs. (11) - (13). 

The present iterative procedure can be repeated ad infinitum to give, in 

principle, better and better approximations to the off-resonant amplitudes and 

hence to give more and more accurate effective coupled equations. However, the 

accuracy of the coupled equations determined from this procedure depends cru

cially on how good the initial choice for the time derivatives of the off-resonant 

states is. (This choice was zero in the present case.8 ) When the initial ap

proximation for those derivatives is not a sufficiently accurate one, the iterative 
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procedure may give qualitatively incorrect results for the dynamics. From the 

nature of the iterative formula, it is clear that the convergence properties depend 

very much on the "magnitude" of yRO (or Y 0 R) relative to the "magnitude" of 

The following notation is introduced here to simplify the expressions for the 

effective Hamiltonians: 

Yo= H~11,0 

y, = yRo ((H) 1o _ Ho)-(H1)yon, i ~ 1. (16) 

For example, the first-order effective Hamiltonian is now given by 

HR = [1n + yRo ((H) 1 o _ Ho)-2 yon] -
1 

HR 
ef/,1 eff,O 

( 
R )-1 = 1 + Y1 Yo, 

(17) 

and the second-order effective Hamiltonian by 

R [ R ( R ) -1 ] -
1 

He/1,2 = 1 +Y1-Y2 1 +Y1 Yo Yo (18) 

C. Expansions of the Effective Hamiltonian 

The effective Hamiltonian determined from the present iterative procedure 

may be expanded in various ways. For example, due to computational limita

tions, it may not always be desirable to invert the matrix ((H) 1° - H 0 ) present 

in Y, [Eq. (16)]. In that case, the following expansion could prove useful (e.g., 

Ref. 12, with (H) replaced by an energy eigenvalue E): 

~ n 

((H) 1°- H 0 )-
1 

=((H) 1°- E 0 )-
1 L [Y0 ((H) 1°- E 0)-

1
] , (19) 

n=O 

where the matrix H 0 has been separated into E 0 + Y 0 , with E 0 containing 

the diagonal elements of H 0 and Y 0 containing the off-diagonal elements of 

H 0 . Since the matrix ((H) 1° - E 0 ) is a diagonal matrix and thereby trivial to 

invert, each of the terms in the expansion may be straightforwardly evaluated. 
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Another expansion which may prove useful is a series expansion in powers 

of Vi [cf. Eq. (16), and see, e .g ., Ref. 10] . For example, the series expansion of 

H~lf,2 in powers of Vi is given by 

(20) 

With the further definition of 

i ~ o, (21) 

the second order effective Hamiltonian may be rewritten as 

(22) 

A final series expansion which may prove useful is one in powers of Vi [see, e.g., 

Ref. 10], which for H~f/.2 is given by 

00 

H~f/.2 = L (v; v~)" v~. (23) 
n=O 

III. RELATIONSHIP TO OTHER PARTITIONING TECHNIQUES 

The relationship between the present time-dependent method for determin

mg the effective coupled equations, and hence the effective Hamiltonian, and 

some time-independent methods10 - 12 •14-H1 for determining eigenvalues using ef

fective Hamiltonians is discussed next. For the purpose of comparison, the pre

ceeding dynamical analysis of Sec. II B may be viewed as a complementary way 

of determining an effective Hamiltonian, although the focus of the present paper 

is towards a determination of the dynamics rather than the eigenvalues. 

Several authors (e.g., Refs. 10, 11, 14-16) have used partitioning techniques 

to construct an effective interaction Hamiltonian for the determination of a subset 

of energy levels in nuclei. A summary of the work in this field is given in Ref. 



-54-

16. One frequently used formula for determining the effective interactions is the 

Des Cloiseaux and Brandow expansion,14•15 given in the present notation17 by 

In this equation, the quantity >. is taken to be a general parameter which should, 

in principle, be chosen to give the best agreement between the eigenvalues of the 

effective Hamiltonian and the corresponding eigenvalues of the exact Hamilto

nian. For a non-degenerate resonant subspace, deciding upon the appropriate 

choice of>. is non-trivia.l.17 Following our analysis in Ref. 8, we make the choice 

>. = (H), since it gave the most accurate effective coupled equations for calculat

ing the resonant state dynamic&. The relationship of the effective Hamiltonians 

determined by the present iterative scheme to those determined by previous 

authors10- 12 •14 - 111 can also be shown, noting that we have replaced their >. by 

our (H). 

Schucan and Weidenmiiller10 (SW) have considered the application of par

titioning techniques to the determination of energy levels in nuclei. SW derived 

the following equation for the effective interaction:17 

(25) 

where this F-1 denotes yRO (>.t 0 - H 0 ) -
1 (VR0 ) -

1
, and V 0 is given in terms 

of). by HR- >.tR + yRO (>.1°- Ho)-1 V 0 R. This equation is equivalent10 to 

the implicit equation for H~11 given by the Des Cloiseaux and Brandow expan

sion [Eq. (24)]. Comparison of Eq. (25) above for the SW effective interaction 

with Eq. (12) for the present n'th-order effective Hamiltonian shows that H~fl,n 

is just the n'th iterative solution to Eq. (25), with the 6pecific choice of>.= (H) . 

SW discuss solving Eq. (25) iteratively, and, by making expansions in powers of 

Vs 's or V~'s, they derive series expansions for the effective Hamiltonian which 

are similarly related to n'th order forms of Eqs. (20) and (23) by making the 

choice >. = (H). Discussions of the convergence properties of the eigenvalues of 
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the unexpanded and various expanded forms of the effective Hamiltonians are 

given in Refs . 10, 11, and 14-16, for example. 

Recently, Lee and Suzuki11 have derived an iterative formula for an effec

tive Hamiltonian Hn for use in obtaining the eigenvalues in the case of a de

generate subspace. This formula, generalized to the case of a non-degenerate 

subspace,18 •17 is given in the present notation [Eq. (16)] by 

Ho =Vo 

with Vo given as in the expression following Eq. (25) and with the V,'s fori> 0 

given by Eq. (16) and having the (H) replaced by .>.. In Appendix A, it is shown 

that the present H~f/,n is equivalent to the n'th-order effective Hamiltonian Hn 

of Lee and Suzuki11 , given by Eq. (26), once the specific choice of). = (H) is 

made. 

The eigenvalues obtained from the present iterative scheme for the effective 

Hamiltonian are also related to the Newton-Raphson technique for determining 

the eigenvalues for the exact partitioned Hamiltonian of Lowdin.12 The exact 

partitioned Hamiltonian is given in the present notation by8 

HR = HR + yRo (Elo _ Ho)-1 yoR ezact I (27) 

where the constant factor -(H) 1 R has been omitted. The eigenvalues are then 

determined by solving the secular equation 

det IH~zact- El Rl = 0, (28) 

which, due to the dependence of H~zact on E, may require the use of a root 

search technique such as the Newton-Raphson method.12 

The relationship between the Newton-Raphson solution to the above secular 

equation and the present effective Hamiltonian method may be established in the 
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case of a one-dimensional resonant subspace. In this situation, the expression 

for the eigenvalue derived from the first-order effective Hamiltonian is identical 

with the expression derived from the first iteration of the the Newton-Raphson 

method with the initial guess forE of (H). However, the relationship between 

the higher-order effective Hamiltonians and further iterations of the Newton

Raphson method (as well as for resonant subspaces of dimension greater than 

one) requires further investigation. 

The effective Hamiltonian method for determining eigenvalues is also related 

to various other formulations of degenerate or nearly degenerate perturbation 

theory. These relationships are not as relevant to the dynamical analysis of the 

present paper and will not be discussed here. Further discussions in that regard 

are given in Refs. 18 and 19. 

IV. APPLICATIONS 

In order to illustrate the possible applications of this technique and the 

accuracy of the effective coupled equations, two model systems are considered 

here. The zeroth-order energy levels and couplings for the first system studied 

are depicted schematically in Fig. 3.1. The four basis states for this system are 

separated into two resonant states llf'1 ) and llf'2 ) and two off-resonant states ilf'3) 

and ilf'4) . The state llf'1 ) is taken to be the initially prepared state. This effective 

two-level model has features in common with the energy transfer dynamics of 

the local mode states in a model of H2 0.8 •20 In the present model, the relevant 

matrix elements are given by HR = EtlR, Hfl = Et + .6., HS = H~ = v2, and 

V.7° = v_~R = V1 oi;. 

By using the formulas for the zeroth- and first-order effective Hamiltonians 

given in Eqs. (10) and (17), the following analytic result for the time-dependent 

probability P 1 ( t) of the initial zeroth-order state is obtained: 

(i = o, 1) (29) 

where the zeroth- and first-order effective frequencies no and nl are gtven, re-
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spectively, by 

2 (.6.2 - Vl) { [ (.6.2 - V22)2 + V12 (.6.2 + Vl)] V12V2- 2.6.2V14V2} 

[ (.6.2 - Vl)2 + V12 (.6.2 + Vl)] 
2 

- 4.6.2VlVl 

{30) 

(31) 

An analogous analytical formula for the second-order effective frequency fh can 

be obtained from Eq. (18), although it is omitted here for brevity. The "exact" 

frequency,21 which would appear instead of Oi in Eq. (29), is denoted below by 

o. 
The time evolution of P 1 (t) is plotted in Fig. 3.2 for the exact, zeroth- and 

first-order coupled equations. The parameters used in making this plot were 

V1 = -43.9, V2 = -50.6,.6. = 337.7 cm-1. For these parameters, the values of 

Oo, 0 1 and 0 2 were calculated to be 1.7495, 1.6588 and 1.6614 cm-1, respectively, 

while the result for 0 is 1.6613 cm-1. In Fig. 3.3, the initial state probability 

P1(t) is plotted once again, but now for the exact, zeroth- and second-order 

coupled equations, and with the zeroth-order detuning ~decreased to 150 cm-1. 

In this case, the values of 0 0 , 0 1 and 0 2 were calculated to be 9.781, 7.056 and 

7.481 cm- 1 , respectively, while the result for 0 is 7.426 cm-1 • In Table 3.1, the 

resonant subspace eigenvalues for the above two sets of parameters, as calculated 

from the exact, zeroth-, first- and second-order effective Hamiltonians, are given. 

The second model system considered consists of 55 basis states, with the 

resonant subspace having 10 states and the off-resonant subspace having 45 

states. The initial state energy H[i was arbitrarily set equal to zero and all 

the other diagonal elements of HR were chosen to have random values between 

±10 cm- 1 • The diagonal elements of H 0 were chosen randomly within the limits 

- 55 ~ HF/ ~ -10 cm- 1 and 10 ~ HF/ ~ 55 cm-1 • The off-diagonal elements 

of H R, H 0 , and all the elements of V RO and V 0 R were chosen randomly to 

be between ±2 cm-1 • These matrices were made to be Hermitean. The initial 
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state probability P 1 (t) as calculated by the exact, zeroth- and first-order coupled 

equations is plotted in Fig. 3.4 for this system. In Table 3.2, the eigenvalues for 

the resonant subspace, as calculated from the exact Hamiltonian, and the zeroth

and first-order effective Hamiltonians, are given. 

The probabilities in Figs. 3.2-3.4 obtained by integration of the effective 

coupled equations are seen to remain somewhat above the peaks and valleys 

of the exact probability curves. It is perhaps desirable to have the effective 

probability curves follow the "average" of the exact curves. For this purpose, 

a correction factor JR, derived in Appendix B, may be used. This factor takes 

into account the small fraction of probability remaining, on the average, in the 

off-resonant states (cf. Appendix B) and is given by 

(32) 

where the matrix M is 

(33) 

In Figs. 3.5 and 3.6, all the initial state probabilities from Figs. 3.3 and 3.4 are 

plotted, but the approximate ones are now multiplied by the overall correction 

factor fR· 

V. DISCUSSION 

From the results shown in Figs. 3.2-3.6, it is clear that by using such higher

order effective Hamiltonians one can obtain more accurate approximations to the 

dynamics than by just using the zeroth-order one. In addition, the results shown 

in Fig. 3.3 indicate that, even in the case of an interaction with the off-resonant 

states, which is fairly large relative to the splitting between the resonant and 

off-resonant subspaces, the approximate resonant state dynamics obtained from 

a higher-order effective Hamiltonian may still be able to reproduce the most 

important trends in the dynamics. However, in each case it is also apparent that 
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the zeroth-order approximation gives a reasonably good description of the correct 

"average" behavior, apart from a shift in the oscillation frequency. As mentioned 

before, this situation is necessary for the higher-order effective coupled equations 

to be accurate. In addition, Figs. 3.5 and 3.6 indicate that the correction factor 

fR [Eq. (32)] is indeed useful for obtaining better "average" dynamics. 

An inspection of the results given in Table 3.1 shows that the eigenvalues 

in the effective two-level model become more accurate with succesive steps in 

the iteration procedure. From the results given in Table 3.2 for the second 

model system, one can again see that the eigenvalues which are obtained from 

the first-order effective Hamiltonian are more accurate than those obtained from 

the zeroth-order effective Hamiltonian, with the ones closest to the initial state 

energy (H)(= Hfi = 0) being the most accurately determined. In addition, 

calculations for this and other model systems have shown that more accurate 

dynamics and eigenvalues may also be obtained by increasing the dimension 

of the resonant subspace relative to the dimension of the off-resonant subspace. 

This result illustrates the potential power of a combined partitioning and iterative 

formalism. 

It is also noted here that although the zeroth-order effective Hamiltonian is 

Hermitean, since His Hermitean, the n'th-order effective Hamiltonian is not in 

general Hermitean. If desired, this situation can be remedied in various ways. 

For example, a Hermitean effective Hamiltonian may by obtained by defining it 

to be ( H~1 f ,n + H~} f ,n) /2. This simple symmetrization of the effective Hamil

tonian has been used in nuclear physics applications,18 but was found in those 

applications and in the present dynamical calculations to have a negligible effect. 

Other alternatives in this regard include transformations which make the initial 

non-Hermitean effective Hamiltonian Hermitean.14•15 •18 

VI. CONCLUDING REMARKS 

An iterative procedure for obtaining increasingly accurate effective coupled 
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equations has been presented in the present paper. This procedure extends the 

adiabatic approximation developed by Voth and Marcus8 and is related to several 

effective Hamiltonian techniques10 - 12•14 - 115 •18•19 used predominantly in the nu

clear physics literature. A general prescription for obtaining the effective coupled 

equations, and hence an effective Hamiltonian, has been formulated. This pre

scription may be used to calculate the dynamics of a subset of resonant/strongly 

coupled states (relative to the initially prepared state). The model calculations 

performed to test the accuracy of the iterative procedure indeed yielded very 

encouraging results. 

The results presented in this paper suggest the following possibilities for use 

of the higher-order effective coupled equations in intramolecular dynamics calcu

lations: (1) as a test for the usefulness/accuracy of the zeroth-order adiabatically 

reduced coupled equations approach,8 (2) as a means for obtaining more accurate 

dynamics in any given application of the zeroth-order coupled equations, and (3) 

as a means to obtain the approximate intramolecular dynamics in a situation 

where, due to computational limitations, one cannot obtain convergence of the 

zeroth-order dynamics by simply increasing the dimension of the resonant sub

space. It is planned to give specific applications of the present theory in later 

publications. 
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APPENDIX A: EQUIVALENCE OF EQ. (12) TO EQ. (26). 

It is given that Ho = H~lf,o, and so using the method of induction, the 

equality of the two effective Hamiltonians H~lf,n and Hn [Eqs. (12) and (26), 

respectively] may be established by assuming that H~lf,n = Hn and then show

ing that H~/f,n+l = Hn+l· 

Equation (12), with n replaced by n + 1 and setting H~l/,n = Hn, yields 

HR = [lR+F-1 (H +(H)1R-HR))-1 F-1FV eff,n+1 n 0 

= (F + Hn +(H) lR- HR)-1 FVo, 
(A1) 

recalling Eq. (16) for V 0 • There is also the identity, 

(A2) 

Introducing the expression for Hn, given by Eq. (26), into the first Hn term on 

the right hand side of Eq. (A2) yields 

Hn = Vo- [v1- t (-)"'Vm IT HJ!-1] Hn 
m=2 k=n-m+2 

n+1 (A3) 

=Vo-L (-)"'Vm-1 
m=2 k=n-m+3 

upon using Eq. (16). Substituting this expression for Hn into Eq. (A1) yields 

H!'ft,n+1 = [F + Vo +(H) lR- HR- ~' (-)m Vm-1 •~.!!.+, H•-1]-

1 

FVo 

(A4) 

Observing that 

(A5) 

and 

FVm = Vm-1, (m ~ 2) (A6) 
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one sees that Eq. (A4) may be rewritten as 

H!'tt.•+• ~ { F [ 1 R + V, -};, (-)~ V ~ •~fl.+> H•-• l} _, FV0 

= Hn+1 V 01 F-1 FV0 

(A7) 

upon using a result for the product of inverses, and introducing Eq. (26) (for 

n + 1 instead of n ). 
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APPENDIX B: DERIVATION OF THE CORRECTION FACTOR 

The total probability ('l'(t) i'l'(t)) of the quantum dynamical system satisfies 

the condition 

PR(t) + Po(t) = 1 (Bl) 

where PR(t) and Po(t) are the resonant and off-resonant basis state probabilities, 

respectively (cf. Sec. II A). The latter two quantities may be written in terms 

of the vectors containing the resonant and off-resonant state amplitudes as 

(B2) 

respectively. If the probabilities are now long-time-averaged, the average reso

nant state probability PR is given from Eq. (Bl) as 

(B3) 

where PR and Po are given by 

Pi = lim - Pi(t)dt , 11T 
T-+00 T 0 

(i = R,O) . (B4) 

By virtue of Eq. (B2) and the "zeroth-order" adiabatic approximation for 

the amplitudes b 0 (t) (Eq. (8)], the long-time-averaged off-resonant state proba

bility may be approximated as 

where the matrix Misgiven by Eq. (33) of the text, and NR is the dimension 

of the resonant subspace (cf. Sec. II A). This expression could, in principle, 

be evaluated from an actual dynamical calculation of the vector bR(t) using the 

effective coupled equations [Eqs. (11)-(13)]. 
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It is desirable, however, to obtain simple approximations for the long-time

averages of lbfl(t) i2 and bfl*(t)b:(t) and to thereby simplify Eq. (B5). To achieve 

this goal, the resonant state basis functions I cpfl) are assumed to be adequately 

described as a linear combination of the resonant state eigenfunctions I 1P~), i .e ., 

as 
NR 

jcpf) ~ L Gin I7J1~) (B6) 
n=l 

It is assumed here that the contributions from the off-resonant basis functions 

jcpp) to the resonant eigenfunctions I7J1:) are small. With the further assumption 

of strong mixing among the resonant basis functions due to the perturbation and 

their near degeneracy, the magnitude of the expansion coefficients ICinl may be 

approximated by 1/ .;NR. By virtue of these latter two approximations and the 

fact that bfl(t) = (cpfll'l'(t)), the first term in Eq. (B5) becomes 

1 NR lr 1 NR 
lim - """"M·· lb~(t)i2dt ,...... - """"M·· L- .. I - N L- ... 

r-+oo 'T i=l 0 R i=l 
(B7) 

The second term in Eq. (B5) is assumed to be approximately equal to zero 

since each bfl*(t)b:(t) term, with i =f. j, is highly oscillatory. With the above 

approximations for the long-time-averages in Eq. (B5), the simple approximate 

formula for Po is obtained: 

1 
NR 

Po ~ N LMii . 
R i=l 

(BB) 

If dynamics calculations are performed using the effective coupled equations 

[Eqs. (11)-(13)) and an initial state probability normalized to unity, the results 

of Eqs. (B3) and (B8) suggest that the calculated resonant state probabilities 

should be multiplied by the correction factor 

!R = 1 - Po (B9) 

where Po is given by Eq. (B8). The factor fR corrects phenomenologically for the 

small fraction of probability which is present, on the average, in the off-resonant 

"virtual" states.8 
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Table 3.1: Eigenvalues for the Resonant Subspace in the Four-State Model 

System. 

Exact Second First Zeroth 

337.7 -6.56266 -6.56274 -6.55932 -6.71268 

-4.90133 -4.90134 -4.90056 -4.96320 

150.0 -16.61214 -16.66792 -16.223.89 -19.33843 

-9.18653 -9.18733 -9.16814 -9.60723 

a The other parameters in the four-state model were V1 = -43.9 and V2 -

-50.6 cm-1 • All units are in cm-1 • 
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Table 3.2: Eigenvalues for the Resonant Subspace in the 55-State Model 

System.11 

Exact First Zeroth 

-7.8342 -8.1506 -9.1006 

-3.4768 -3.5308 -4.1809 

-2.6149 -2.6338 -2.9832 

-1.3356 -1.3344 -1.5533 

0.6269 0.6268 0.7097 

1.1780 1.1811 1.3642 

4.5006 4.3520 5.3627 

5.9862 6.1315 6.8652 

6.1681 6.2137 7.3159 

7.6073 7.7074 8.5667 

11 All units are cm-1 • 
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FIG. 3.1. A schematic diagram of the four-state model system used in Sec. IV. 
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FIG. 3.2. Initial state probability P1 (t) for the model system shown in Fig. 3.1, 

with ~ = 337.7, V1 = -43.9 and ~ = -50.6 cm-1 • The exact results are 

given by the solid line, the zeroth-order results by the long dashed line and the 

first-order results by the short dashed line. 
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Chapter 4: Application of Artificial Intelligence Methods to Intramolec

ular Dynamics Calculations 

[The text of this chapter is in press and will appear in: S. M. Lederman, S. J . 

Klippenstein, and R. A. Marcus, Chern. Phys. Letts. (1988).) 
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ABSTRACT 

The application of artificial intelligence (AI) methods to the determination 

of intramolecular quantum dynamics for multidimensional systems is described. 

An AI method based on a physically motivated search algorithm and evaluation 

function is considered. In both the cases of quantum beats and energy "dissipa

tion" the results for the intramolecular vibrational energy redistribution within 

an eleven-coordinate model system are shown to be accurate with a considerably 

reduced number of basis states. 



-77-

I. INTRODUCTION 

The quantum dynamics of the intramolecular vibrational redistribution (IVR) 

of energy poses, in general, a quite difficult problem, because of the large num

ber of basis states required for the correct modelling of the physical process. For 

this reason, many different approaches have been developed for increasing the 

number of basis states which may be effectively handled in the computations. 

Sometimes physical arguments have been used to limit consideration to only a 

few of the degrees of freedom. 1 In other approaches methods such as recursive 

residue generation,2 partitioning,3 and a generalized moment expansion• have 

been used. 

A reduction in the number of basis states to the subset of dynamically im

portant states is an alternative method for solving high dimensional problems. 

Recent experimental work has, in fact, provided examples of selective mode cou

pling among a subset of states.5 In the present letter we use an AI method to 

select the states important to the dynamics and to examine convergence prop

erties. AI methods are particularly well suited to performing the reduction in 

basis set size and thus more degrees of freedom may be considered, thereby con

tributing to the study of actual molecular systems. 

We describe a method for applying AI to the treatment of the time-behavior 

of an initially prepared vibrational state and apply it to an eleven-coordinate 

model system. The results from this AI method tend to converge toward the 

"exact" results as the number of basis states generated by the AI method in

creases. Examples are given for the cases of quantum beats and of quasidis

sipative dynamics. AI methods have previously been applied to the study of 

the dynamics of multiphoton excitation8 and to the determination of individual 

eigenvalues.7 The basis for these applications was the use of AI search meth

ods, as it is here. However, since the present application is to IVR, the search 
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algorithms and evaluation functions presented here are quite different from those 

given previously. 

II. SEARCH ALGORITHM AND EVALUATION FUNCTION 

In the IVR problem the probability distribution function among zeroth-order 

states is often initially localized and can be represented by a single basis state 

or a set of basis states. This probability becomes redistributed over some set of 

final basis states. However, this set of final basis states over which the probability 

is distributed is not in general known a priori. A search algorithm is discussed 

next for determining the dynamically important basis states and followed by a 

description of the evaluation function which is used to estimate the importance 

of each path in the search process. 

The search algorithm,8 which we have called a beJt incomplete path" .9earch, 

is a combination of a "beam search" and a "best-first search." A beam search 

considers all states directly coupled to every incomplete path whose evaluation 

function is above a certain minimum. • A best-first search considers only the most 

promising incomplete path as determined by the evaluation function EF for each 

path (the EF is described later). An example of the search is given in Fig. 4.1 in 

which the horizontal lines represent basis states with the first number above the 

line numbering the states in the order searched and the second number giving 

the evaluation function for the path to that basis state. The first part of the best 

incomplete paths search involves a beam search for the first two levels as seen in 

Fig. 4 .1. In the example, every state directly coupled to the initial state (I.S.= 1) 

is found and this yields states 2, 3 and 4. The "X" after state 4 represents the fact 

that the evaluation function for its path of 0.1 is below the minimum (0.15 say) 

used for this example, and this path is thus removed from future consideration. 

• The minimum is chosen through experience to reduce the number of states 

searched without removing states of importance. A more detailed discussion 

appears in Ref. 9. 
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The present beam search continues for one more step and all states coupled to 

states 2 and 3 are found (states 5, 6 and 7). Though the beam search considers 

many possible choices of paths simultaneously, it necessitates keeping track of 

a rapidly increasing list of paths. To avoid maintaining an unmaiiagable list of 

potential paths, a best-first search is then implemented for all future choices. 

The beam search is utilized for the first two steps because poor estimates by the 

evaluation function at early steps can cause important paths to be discounted 

unless many possible alternatives are considered. 

The best-first search begins at the end of the second level of the two level 

beam search. In the example in Fig. 4 .1, the path to basis state 5 has the highest 

evaluation function (0. 7) of the three incomplete paths leading to states 5, 6 and 

7. All states coupled to state 5 are then found and this yields a path to state 8. 

There are now three incomplete paths to states 6, 7 and 8, of which the path to 

state 8 has the highest evaluation function (0.6). When all states coupled to this 

state 8 are found this only gives state 9, which is a duplicate of state 5. This 

duplicate state (9) is removed from consideration (marked by "X") since it has a 

lower evaluation function for its path than the earlier path to state 5.t Removal 

of the new path to state 9 leaves two incomplete paths to states 6 and 7 for 

consideration. Since the evaluation function for the path to state 7 is greatest, 

all states coupled to state 7 are found to yield the paths to states 10 and 11. The 

best-first search process of considering the best incomplete path can continue but 

is stopped here for brevity of presentation. 

The states included in the dynamical calculation are the states for those 

paths with the best evaluation function at each step in the best-first phase of the 

search. The states along the path are thereby included. In the example in Fig. 

4.1, the path up to and including state 5 (states 1, 2 and 5) are chosen first. This 

is followed by the path to state 8 for which only state 8 has not been previously 

t A further discussion pf duplicate states and multiple paths to the same state 

is given in Ref. 9. 
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chosen. Finally, the path to state 7 is included for which states 3 and 7 are new. 

A new path of states is included for each step in the best-first search. The search 

process is stopped when a preassigned number of states for the dynamics has 

been chosen. 

The choice of an evaluation function in the present work was based pri

marily on several considerations: (a) a high weighting for the most dynamically 

important states must be used in order to encourage these states to be accepted 

first; (b) the calculation of the evaluation function must be rapid since it has 

to be determined many times during the searching process; (c) paths should be 

encouraged to return to an energy near that of the initial state, reflecting the 

role of the uncertainty principle at long times. The evaluation function given 

below, motivated by perturbative expressions Ref. 10, is a heuristic combination 

of terms which encourage a return to the initial energy region and which still 

encourage some searching at energies near that of the previous energy level. 

The evaluation function used here in the best incomplete paths search is 

given by 

(1) 

Each factor after the product sign was set equal to unity whenever its magnitude 

exceeds unity (again motivated by perturbation arguments). Vi,i+l and 6.Ei,i+l 

represent the Hamiltonian matrix element and energy difference, respectively, 

between the i and i + 1 basis states and 6.E1 ,i+1 is the energy difference between 

the initial state and state i + 1. The evaluation function EF gives an equal 

weighting to 6.Ei,i+l and 6.E1 ,i+1 for each state in the path. The evaluation 

function estimates the importance of the path and is a function of the specific 

path. The search algorithm compares the magnitude of the evaluation functions 

for the various states (for the particular paths), and selects states, and their 

paths, with the largest EF's. It does not maximize (in the sense of setting 

some derivative equal to zero) the evaluation function for a given state. Other 
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evaluations functions and search methods were studied and are discussed in detail 

elsewhere." (This more detailed discussion introduces other terms and concepts 

such as a goal 3tate and ezpan3ion of states.) 

After the determination of the important subset of states by the AI proce

dure, the quantum dynamics of the system was then determined by full matrix 

diagonalization of this subset. From the resulting eigenvalues and eigenvectors 

the quantities of physical interest were determined. 

III. MODEL SYSTEM 

In the testing of the AI method an eleven-coordinate IVR problem involv

ing a heavy central mass was examined.11 • The model represents the system 

C. - Cb - M - CD:z - Cc where M is a relatively heavy central mass that can 

act as a barrier to energy redistribution in the molecule, and C and D denote 

carbon and deuterium atoms.12 c., Cb and Cc have as effective masses those of 

CH3, CH2 and CD3, respectively. The Hamiltonian for the system is given by 

the sum of the Hamiltonians for the left and right ligands and the coupling term: 

(2) 

where 

(3) 

(4) 

(5) 

Here, ri and Pi are the bond-coordinate and momentum, respectively. The left 

Hamiltonian, Eq. {3), contains two streching coordinates and the right Hamil

tonian, Eq. ( 4), contains four stretching and five bending coordinates as in a 
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methane-like ligand (but our model system has a reduced C 2 sym.metry).t Gi; is 

the Wilson G matrix13 where it and its derivatives in Eqs. (3) and ( 4) are eval

uated at the equilibrium value of the bond-coordinates. In Eq. (5) 8 represents 

the fixed enclosed angle between the left and right ligand (i.e., the Cb - M- C 

angle). The detailed parameters used in the model and a detailed discussion of 

its relevance to IVR calculations are given elsewhere.12 

The approximate separability of the Hamiltonian into the left and right 

contributions suggested the use of a basis set with its elements given by the 

product of a wavefunction of a pre-diagonalized HL and one of the normal modes 

of HR, the latter found when the derivatives of the G matrix in HR are omitted. 

HL was pre-diagonalized because of the high energies of excitation used for the 

left ligand. The AI technique was applied to vibrational energy transfer between 

the left and right ligands. The system was initially "prepared" in a basis state 

that only had excess energy in the left ligand, and the amount of energy in the 

left ligand of the molecule as a function of time was studied. 

The >.parameter in VLR permits the variation of the kinetic coupling between 

left and right ligands in a way which mimics changing the central mass M. The 

advantage of using >. instead of actually changing the central mass is that the 

frequencies of the left and right ligands remain unchanged. Thus, a "pure" mass 

effect is achieved in this model calculation without the possibility of resonances 

accidentally being modified. 

t The right Hamiltonian, HR, in Eq. (4) contains 10 bond coordinates for 

which one of the bending coordinates is redundant and linearly dependent on the 

other four bending coordinates. The calculations were performed in symmetry 

coordinates which remove this redundant coordinate. Details are given in Ref. 

13. 
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IV. RESULTS 

The AI method described in Sec. II is compared with the "exact" result, 

for two different initial states and masses in Figs. 4.2 and 4.3. These "exact" 

results involved large calculations that were still practical with currently available 

computers by imposing a simple energy constraint on the basis states used in the 

calculation. In order to compare the results of the AI method with these exact 

results, the AI search was constrained to those basis states used in the exact 

calculations. These calculations were performed so as to determine the quality of 

the AI method, with the ultimate goal of using the developed technique without 

such a constraint on the basis states chosen, both for this and for other systems. 

In the present comparison, min Eq. (5) is the mass of carbon. In Fig. 4.2, the 

basis set for this large, exact calculation consisted of all basis states within an 

energy of± 1300 cm-1 of the initial state, thereby giving 1023 basis functions . 

Also, A was set to 0.1655 to represent the mass of Ge. In Fig. 4.3 twice the mass 

of carbon was used giving a A of 0.5, and all basis states within an energy of 

± 650 cm-1 of the initial state were included, resulting in a basis set size of 1112 

for the higher energy excitation. 

In the exact calculations, the heavier mass system (Fig. 4.2) displayed vi

brational quantum beats, whereas the lighter mass system (Fig. 4.3) showed, 

instead, a greater dissipation of energy from the left ligand into the right ligand. 

In both cases, results from the AI method are seen to be in good agreement with 

the exact results, especially at short times. Even though the quantum beats 

case resembles an effective three-state problem it involved many basis states for 

an accurate description. Thus, 125 basis states had to be generated by the AI 

method and used in the calculation of the dynamics in order to obtain good 

agreement with the exact results as given in Fig. 4.2. In a quantum beats case 

that resembled an effective two-state problem, 70 states were needed and will 

be discussed in Ref. 9. In the dissipative case only 20 states were generated by 
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the AI method for the plot in Fig. 4.3. These two situations, quantum beats 

and dissipation, represent different dynamical situations and serve to test the 

robustness of the present AI method. 

V. DISCUSSION 

The AI method presented here has several attractive features for studying 

IVR problems with many degrees of freedom. The AI technique can efficiently 

identify a subset of thousands of dynamically important states from a set of a 

million or more possible basis states. It should, however, be stressed that the AI 

search is performed within the set of basis states. Thus, it is still important that 

an intelligent choice be made for the zeroth-order description of the problem. 

Without the use of AI searching, the determination of the dynamics within a 

basis of a million of states is beyond the scope of currently available methods.2 - 4 

For the examples studied, the time spent in the AI searches is typically only a 

small fraction of the total computer time (e.g., < 1 %for the examples given here) 

needed to solve the problem. Furthermore the computer time for the AI search 

scales linearly with the number of basis states chosen (provided the number of 

basis states considered scales linearly with the number of basis states chosen, as 

is the case for the present model problem) but the dynamics scales as a cube 

of the number of basis states. Thus, the AI search will be a smaller percent of 

the total computer time for larger problems. Also, the computer time necessary 

for performing the AI methods on higher energy excitations of a molecule is 

comparable to that at lower molecular energy excitations, provided that the 

number of possible states searched by the AI method is the same, even though 

the total number of available states increases exponentially with energy. 

In the present letter a search algorithm and evaluation function have been 

presented, and an AI technique has been applied to the determination of the 

dynamics for two common situations in IVR, quantum beats and dissipation. 

In the examples given, the AI search method was able to converge towards and 
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represent well the exact calculations. The AI method presented can be readily 

adapted for use in many problems, since only the description of the Hamiltonian 

needs to be changed. (A different problem might involve a different choice of 

search algorithm and/or evaluation function .) Thus, the present AI method is 

not only promising but can be readily applied to a range of problems. 
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FIG. 4.1. Example of a best incomplete paths search in which two levels of 

beam search are performed. The horizontal lines represent states and the dashed 

diagonal connecting lines represent non-zero couplings. The first number above 

each line is the number given to the basis state (according to the order in which 

it is found in the search), and the second number is the evaluation function for 

the path leading to that basis state. 
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Ei the zero-point energy, in the left ligand. 
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Chapter 5: High Pressure Rate Constants for Unimolecular Dissoci

ation / Free Radical Recombination: Determination of the Quantum 

Correction via Quantum Monte Carlo Path Integration 

(The text of this chapter appeared in: S. J. Klippenstein and R. A. Marcus, J . 

Chem. Phys. 87, 3410 (1987).] 
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ABSTRACT 

The determination of a quantum correction factor for the transitional modes of 

a unimolecular dissociation j free radical recombination reaction having a tran

sition state of varying looseness is described. The quantum correction factor for 

the high pressure canonical rate constant is calculated via Monte Carlo path in

tegral evaluation of partition function ratios, and is applied to the recombination 

reaction 2CH3 -+ C2Hs. 
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I. INTRODUCTION 

In RRKM theory the (microcanonical) unimolecular rate constant kEJ is 

given by1 - 3 

NkJ 
kEJ = -h-- 1 

PEJ 
(1) 

where NkJ is the number of states of the transition state with energy equal to or 

less than E, and with a given total angular momentum J; PEJ is the density of 

states for the reactants at the given E and J. In the case of a unimolecular disso

ciation of the parent molecule into two particles, the coordinates which contribute 

to N!J are largely of two types: i) vibrational modes, usually of high frequency, 

whose characteristic motion doesn't change appreciably from the parent molecule 

to the transition state, and ii) the remaining modes whose characteristic motion 

does change. The latter consist, typically, of coupled degrees of freedom which 

are fragment bending plus overall rotational motions, and which subsequently 

become hindered relative rotations plus overall rotational motion in the transi

tion state. In the fragment molecules these modes are typically the free rotations 

and relative translation of the two fragments. The fragment-fragment stretching 

in the parent molecule typically becomes the reaction coordinate itself. 

Wardlaw and Marcus4 - 7 separated the modes into these "conserved" and 

"transitional" modes, respectively. In this separation the conserved modes were 

treated quantum mechanically and the transitional modes were treated classi

cally. Their result for the number of states of the transition state for a given 

energy and total angular momentum J was, thereby, given as the convolution 

(2) 

where Nv(E- ~) is the number of states in the conserved modes with energy 

less than or equal toE-~, and nJ(~) is the number of states in the transitional 

modes with total angul~ momentum equal to J, and with energy in the range 

~to~+ d~. Nv(E- ~) was calculated via a direct quantum count, while nJ(~) 
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was obtained by transformation to action angle coordinates followed by "crude" 

Monte Carlo evaluation of the phase space integral. Purely cla.uical Monte Carlo 

phase space volume calculations are described in, e.g., Refs. 8 - 17. 

Many other approaches to the treatment of the transitional modes have been 

given previously. (See, e.g., Refs . 18 - 26.) However, the only treatment which 

has included all of the couplings within the transitional modes, while maintaining 

a quantum treatment for the conserved modes, appears to be that of Wardlaw and 

Marcus.4 -T In a recent article, Pacey27 has discussed and applied many of the 

approaches to the 2-dimensional hindered rotor motion on a model sinusoidal 

potential. Comparison of the results obtained for the partition function from 

the various approaches with that determined from the exact quantum partition 

function for the same model potential shows the differences between the various 

approaches can be significant. In another recent study on the bending / rotation 

problem, Hase et al.28 have compared rate constants for the H + CH3 --+ CH4 

recombination reaction with the transitional modes treated as either classical 

hindered rotors or harmonic oscillators (quantum or classical). They find that 

the partition functions and rate constants can vary by about 10 %depending on 

how these modes are treated. 

As noted in the studies of Wardlaw and Marcus, the question arises, what 

are the quantum corrections for the contribution of the transitional modes to the 

overall rate. When the transition state is nearly "loose" such a correction is ex

pected to be minor. One direct approach to calculating the correction would be to 

determine the number of quantum states for the transitional modes as a function 

of energy and total angular momentum, and convolute that result with the quan

tum result for the "conserved" modes. This approach is currently under study. 

In the present manuscript, however, rather than looking at individual kEJ's, we 

have chosen to consider first the cumulative effect of the transitional modes by 

determining their quantum mechanical contribution to the high pressure canon

ical rate constant, koo(T), defined below. The position of the transition state is 
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determined variationally,211 •30 •31 namely as that value (the "transition value") of 

the reaction coordinate for which the calculated k00(T) is a minimum. 

In the present study we note that k00(T) is given by a ratio of partition func

tions and so the quantum mechanical corrections, aside from quantum corrections 

due to tunneling along the reaction coordinate, may be determined by consider

ing the Monte Carlo path integral evaluation of partition function ratios. The 

correction factor can thus be obtained for any potential energy surface and is for 

the canonical rate constant. In Section II, for comparison, the canonical rate con

stant is determined using quantum partition functions for the conserved modes 

and classical partition functions for the transitional modes. The determination 

of the quantum correction for the transitional modes is presented in Sec. III. In 

Sec. IV results for the methyl radical recombination reaction: 2CHs --+ C2Hs 

are presented and discussed. The correction proves to be relatively small for the 

temperatures investigated. 

II. DETERMINATION OF koo(T) USING CLASSICAL CANONICAL 

TST FOR THE TRANSITIONAL MODES 

The canonical rate constant k00(T) is given in terms of NlJ by32 

roo 00 t 
koo(T) = hQ"r(T) Jo dE~ (2J + 1) N EJ exp ( -{JE), (3) 

where Qr(T) is the partition function for the reactants (in the center of mass 

system and excluding electronic degrees of freedom), De is the ratio of the elec

tronic partition function for the transition state to that for the reactants, and 

/3 = 1/ksT. In a comparative study Wardlaw and Marcus have evaluated koo(T) 

at several levels. 8 In the first method they determined the location of the tran

sition state variationally for each E and J and then evaluated the sum and 

integral in Eq. (3) numerically. In a second calculation, which represents an 

approximation to the first, they determined the transition state location for each 

E by minimizing a J -sampled integrand, and in a third calculation, which rep

resents still a further approximation, they found the transition state location of 
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an ensemble which sampled over E and J at a given T. They noted that the 

three k00(T)'s are related by k~(T) ~ k[,!(T) ~ k[,!1 (T), k~(T) being the cor

rect one. This last calculation, k[,!1(T), is equivalent1 •33 to determining k00(T) 

variationally from the expression 

(4) 

where Qt is the partition function for the transition state. The Qt and Qr in 

Eq. (4) are calculated relative to the same energy zero. Separating the modes 

into the conserved modes (c) and the transitional modes (t) implies that 

k (T) = ksT Q! Q! 
oo 9e h Q~ Qr , (5) 

where Q! and Q~ are the partition functions for the conserved modes at the 

transition state and at the reactant configuration, respectively. They can be 

evaluated using quantum oscillator partition functions. Q! and Qr are the par

tition functions for the transitional modes at the transition state and at the 

reactant configuration, respectively. 

For a free radical recombination reaction, the classical partition function 

for the transitional modes of the reactants, Q~, separates into the translational 

partition function for a particle of mass p.12 , where p.12 is the reduced mass of the 

two fragments, and the product of the classical free-rotor partition functions for 

2 -1 [ ( 2)3 ]1/2 the two reactant fragments, ni=1 CTi 7r 2ksT /li. lAJs,Ic, ' where IA., 

Is,, and Ic, are the moments of inertia of reactant fragment i, and CTi is the 

symmetry number for reactant fragment i. The classical partition function for 

the transitional modes of the transition state is given by 

where CT t is the symmetry factor for the transition state, 6,, q,, and tPi are the 

Euler angles34 for the absolute orientation in space of fragment i, and 612 and 
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</J12 describe the absolute orientation in space of the line of centers. Ht is the 

classical Hamiltonian for the transitional degrees of freedom and is given by 

H _ 1 ( 2 P~u ) 
t - -t PBu + . 2 (} 

2Id sm 12 

+ t { t 1
. 

2 
[(p.p, - p,p, cos Oi) cos '1/Ji - PB, sin Oi sin -r/Ji]2 

i=l 2I A, sm Oi (7) 

+ t 
1
. 2 ((p.p, - p,p, cos 8i) sin 1/Ji + PB, sin 8i cos -r/Ji)2 + -TP~,} 

2I B, sm Oi 2I0 , 

+ V(Rt, Ou, </J12, 0, ~, '11) , 

where 0 = (81t82), ~ = (<jJ1 ,</J2), lJt = (.,P1,.,P2) and V(Rt,Ou,</Ju,E>,~, '11) is 

the potential energy for the given separation Rt, and orientation of the rigid rotor 

fragments. Ij is the "diatomic" moment of inertia for the centers of mass of the 

two fragments and equals p 12Rt
2

• It,I!,, and Ib, are the principal moments 

of inertia of the rigid body fragments with their transition state structure. 

Evaluation of the integral over the momenta yields 

Qt = ..!_ 27rijkBT {rr2 [s7r3It It It (k T/h2)3]t/2} 
t t h2 A, B, c, B 

(T i=l 

X 1 dO" d.Pu sin 012 (;1] dO; d<f,; d,P; sin 0;) exp [-,BV ( R'' Ou ' .p,,' e' +' "'i') 1 . 
(8) 

Upon integration over the Oi, </Ji, and 1/Ja for a fixed 812 and </J12 , the result, 

by symmetry, is independent of the actual orientation in space, 812 and <jJ12 , of 

the two fragments, and so the integral over 812 and <jJ12 may be immediately 

evaluated to give 

(9) 
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where Qt d is the usual classical diatomic partition function 21j kBT /h2
, and 

I 

(10) 

with 012 and ¢ 12 having been set equal to zero. 

For the case of a reasonably loose transition state, Q] hr can be evaluated 
I 

via crude Monte Carlo integration.35 For a tight transition state many of the 

configurations sampled will not contribute to the integral and one might revert 

to the calculation method of Wardlaw and Marcus4 - 7 or else use some form of 

stratified sampling such as that discussed by Farantos et al.11 for microcanonical 

RRKM determinations. In the present application to the methyl radical recom

bination reaction, crude Monte Carlo integration sufficed. The final Monte Carlo 

result for the rate constant for the case of free radical recombination is 

(11) 

where Nv is the number of conserved vibrational modes for the two fragments, 

and Vi and v! are the vibration frequencies for the i'th conserved mode of the 

reactants and of the transition state, respectively. Vi is the value of the potential 

for the i 'th randomly selected configuration, and N MC is the number of random 

points. 

III. DETERMINATION OF THE QUANTUM PARTITION FUNC

TION FOR THE TRANSITIONAL MODES 

The primitive P-point discretization of the path integral expression for the 
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quantum transitional mode partition function is given by 

Qt = J dA1 
• ··dAPd01 ···dOP 

p . (12) 

x gPo (A•+ 1 ,A•;f3/P)po (n•+t,n•;/3/P)exp [-!V(A•,n•)] 

where A • refers to the line of centers orientations 

(13) 

and n• refers to the Euler angles 

2 2 

n· =II n,· =II (cosB;,¢;,1/7:} (14) 
i=l i=l 

In Eq. (12) AP+l = A 1 and nP+l = 0 1 , while Po (A•+1 ,A•;f3/P) and 

p0 (n•+1 ,n•;f3/P), the "free density matrices," are the density matrices for 

the free-rotor system at a temperature PT. (The latter has V(A, 0) = 0.) 

In the present treatment the quantity of interest is the combined partition 

function for the hindered rotation of the two separate fragments and for the 

rotation of the line of centers. H the integrals over n• at fixed line of centers 

orientations A• are performed first, the resulting expression is independent of A• 

because there is no external field acting on the reacting pair. Thus the integrals 

over the A • may be evaluated separately to give the partition function for the 

rotation of a diatomic molecule with point masses equal to those of the two 

fragments. Expressions for the remaining partition function for the hindered 

rotations are now easily obtained from the analogous expressions derived by 

Kuharski and Rossky,311 who utilized some results of Schulman37 and introduced a 

short-time ("fixed-axis") method38 to determine the quantum partition function 

for the hindered translational and hindered rotational degrees of freedom of liquid 

H 2 0 and D 2 0. A brief review of their derivations, with application to the present 

two-fragment case, is presented below for clarity. 
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The quantum partition function may be expressed as in Eq. (9) except that 

now Q!,d and Q!,hr are to be evaluated quantum mechanically. In particular 

and Q! d' the quantum diatomic partition function, is given (forT> 2Ijksl1i? = 
' 

0;1 ) by the expansion3g 

t _ T 1 9r 1 0r 4 0r 
[ ( ) ( )2 ( )3 ] 

Qt,d- er 1 + 3 'i' + 15 T + 315 T + ... . (16) 

Using the least action approximation to the sum over all classical paths for 

the transition from the orientation n• to the orientation n•+l in the time period 

f31il P gives the free rotation matrix as37 

2 

Po (n•+I,n•;,BIP) =err (D (Oi+1 ,0i;,BIP)) 112 

i=l (17) 

X exp (-Scl (ni+1 ,0i;,B/P) /h) 

where C is a constant, D (n:+I, nz; f3 / P) is the Van Vleck determinant40 as

sociated with the transition from n: to n:+l in a time period of ,Bh/ p' and 

Sc, ( n:+l' n: j ,8 I P) is the action along the least action classical path between 

the two orientations. In the exact free rotation matrix there are contributions 

from multiple rotations. However, for sufficiently large P ("sufficiently small 

times ,8 I P") these contributions are negligible, and, in the limit of large enough 

P, Eq. (17) becomes exact. 

A fixed-axis approximation is next introduced to determine the Van Vleck 

determinant and the classical action.38 This fixed-axis approximation, which is 

valid for short times and is thus accurate at large P or high temperature, yields38 

(18) 
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where r;+I,•, the arc length of the rotation from orientations to orientation 8 + 1 

of fragment i, is given by38 

(19) 

and x:+l,• is a quaternion parameter for the rotation from orientation n: to 

orientation n;+1
, the four of which, in general, are given in terms of Euler angles 

as•l,42 

(J ('1/J+<I>) 
X = cos- cos 

2 2 ' 
(J ('1/J-4>) 

.,., = s1n- cos ., 2 2 ' 

e . (J. ('1/J-4>) 
= s1n - s1n ..:....;__~ 

2 2 ' 
(J • (.,P + ¢) 

(=cos- s1n . 
2 2 

(20) 

The use of these quaternion parameters provides a convenient set of parame

ters to describe the orientation after a rotation has been performed on some 

initial orientation, and they also provide a convenient method for determining 

the relative orientation of two orientations. (See, e.g., Refs. 41 and 42.) 

The least classical action for the rotation from orientation 8 to orientation 

8 + 1 of fragment i, in the fixed-axis approximation, is given by 

(r;+1,•)2 P 

2/31t 
(21) 

where, using the quaternions, the rotation axis, n;+l,•' is given in the principal 

axis frame by38 

(22) 

and the last term in parentheses in Eq. (21) is a tensor product, I being the 

moment of inertia tensor in the principal axis frame. Equation (21) has the 

form which parallels the usual one for a free translational coordinate: a distance 

squared (here an arc length squared), multiplied by a mass (here a moment of 

inertia), and divided by twice a time, /31t/ P. 
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The final expression for the quantum partition function for the hindered 

rotation of two rigid rotor molecules is thus 

(23) 

As discussed by Doll and Myers,·U quantum partition functions may be ob

tained from Monte Carlo evaluation of an appropriate partition function ratio. 

In the present article two alternative partition function ratios were used to deter

mine the quantum partition function. One alternative involves the determination 

of the ratio of the quantum partition function relative to that for two free-rotors: 

t 
Qt,hrq 

t 
Qt,frq 

_ J dr Aexp [ -~ L~=1 V (n•)] 
- fdrA 

(24) 

where 

Q!,frq = J dr A, (25a) 

dr = d0 1 
• ··dOP, (25b) 

and 
p 

A= IT Po (n•+1 ,n•;,B/P). (25c) 
•=1 

The quantum partition function for the free rotation of the two fragments in 

their transition state configuration, Q tfrq, is given by the high temperature 

expansion44 

{26) 

where 

(27) 
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Thus Q t, h may be obtained from Eqs. (24) - (27) with Monte Carlo evalua-
' rq 

tion of the ratio given in Eq. (24). This alternative is once again restricted to 

reasonably loose transition states. 

The other alternative is to calculate the ratio of the quantum to the classical 

partition function. The classical partition function for the hindered rotor degrees 

of freedom may be written as 

(28) 

Multiplying both sides of Eq. (28) by Q!,/rq /Q!,/rc,, and using Eq. (25a), yields 

(29) 

where ell' and A are given by Eq. (25b) and Eq. (25c), respectively. Since 

J Ad02 • • • dOP is independent of 0 1 , Jell' A can be written as 

(J d01 )(J Ad02 • • • dOP), and hence Eq. (29) may be written as 

(30) 

Thus, using Eqs. (24), (25a), and (30), the ratio of the quantum to classical 

partition functions for the transitional modes may be written as 

t 
Qt,hrq 

t 
Qt,hrc1 

_ q!,1,.q JdrAexp [-~E~=l V(O•)] 

- qt JdrAexp[-,BV(OI)] 
t,frc1 

(31) 

The Monte Carlo calculation of t~s ratio is feasible regardless of how tight or 

loose the transition state is. On the other hand, the determination of k£,(T) 

(the quantum free radical recombination rate constant) from the Q!,hrq in Eq. 

(24) requires only a 'ingle Monte Carlo integration, rather than, as in Eq (31), 

the Monte Carlo evaluation of both the ratio qt," /Q!" and the quantity , rq ., rc1 
t 

Qt,hrc, • 
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Importance sampling techniques45 •48 may now be used together with the 

fixed-axis approximation for A discussed above, in the Monte Carlo evaluation 

of the path integral ratios given in Eqs. (24) and (31). In particular, in the 

evaluation of Eq. (31) a weighting factor 

W; =A exp [- ~ V (01
)] , (32) 

with A given by Eq. (25c), is used to determine whether to accept or reject each 

random step generated in accordance with the parameters described in the next 

section. The integrand in Eq. (31) which is summed up is then 

(33) 

with the quantum to classical ratio being given by 

Qt Qt NMc 
t,hrq _ t,frq """" Y.· t - t ~ ,. 

Q t,hrcr Q t.frcr 1=1 

(34) 

Multiplying the result of this Monte Carlo evaluation of Eq. (24) by the quantum 

correction factor for the diatomic term Q t d (given by the quantity in brackets in 
' 

Eq. (16)) and then dividing by the quantum correction factor for Qr (given by the 

term multiplying Q!,Jrcr in Eq. (26), with the transition state moments of inertia 

replaced by those for the reactant configuration) yields the ratio k£,(T)/k~(T). 

For the quantum to free-rotor ratio given in Eq. (24) the weighting factor 

is, instead, 

W; =A, (35) 

and the integrand in Eq. (24) is now given by 

(36) 

The result of this Monte Carlo evaluation of Eq. (24) is next multiplied by the 

quantum expression for Q!,d, given by Eq. (16) , to give the quantum result for 



-105-

Qt. Substituting this result into Eq. (5) and inserting the quantum correction 

factor for Qr yields the quantum free radical recombination rate constant, k£,(T). 

IV. RESULTS AND DISCUSSION 

The two formalisms described above were implemented for the methyl radical 

recombination reaction using the potential energy function employed by Wardlaw 

and Marcus. 5•8 The structure of the rigid body fragments for a given Rt were 

also taken to be as in Refs. 5 , and 6. 9e, CTCHa, and CTt were taken to be 1/4, 6, 

and 72, respectively. 

For the evaluation of the quantum to free-rotor ratio the following proce

dure was followed: {1) One of the two fragments i was chosen randomly and 

an absolute orientation in space, which we will denote by & = 0, was chosen 

randomly.47 The subsequent points (the path integral points in Eq. {12)) cor

respond to & = 1, · · · , P . The molecule corresponding to fragment i, and path 

integral discretization point 8 will be denoted as ( i , 8), and the molecule corre

sponding to the 8 = 0 point is denoted by ( i, 0). For this method, this orientation 

has no effect on the weighting factor and so was always accepted. {2) Next, one of 

the discretization points 8 was chosen randomly, and then a rotation about a ran

domly chosen axis48 of the old orientation of molecule ( i, & ) relative to mole~ule 

( i, 0) was performed. The magnitude of the rotation was chosen as R 6tr', where 

R is a random number between 0 and 1, and 6tr', the maximum magnitude of the 

rotation, was chosen to give a roughly 50% acceptance ratio48 of the rotations. 

(3) The new orientation of molecule ( i, 8) relative to the zeroth order orientation 

(i, 0) was then calculated using the formula for the composition of quaternions 

given in Eq. (33) of Ref. 41. (4) The new orientation of molecule (i,&) relative 

to that of (i,8 + 1), and that of (i,8 -1) was next calculated from the known 

orientations of (i,8), (i,8 + 1), and (i,8- 1) relative to that of (i,O), using the 

formula for relative quaternions given by Eq. (38) of Ref. 41. {5) The ratio 

of the weighting factor W;, given in Eq. (35), for this new orientation relative 
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to W; for the old orientation was calculated. If this number was greater than 

a random number between 0 and 1, then the rotation was accepted. Otherwise 

the rotation in step (2) was rejected and the old relative orientations of ( i, ") to 

( i, 0), ( i, s) to ( i, s + 1 ), and ( i, s) to ( i, s - 1) were restored to their old values. 

( 6) The absolute orientation in space of molecule ( i, ") was then calculated, from 

Eq. {33) of Ref. 41 for the composition of quaternions, using the orientation 

of molecule ( i, s) relative to that of molecule ( i, 0) and the absolute orientation 

in space of molecule (i,O). The new value of the integrand was then calculated 

from Eq. {36) using the new absolute orientation in space of molecule ( i, "). This 

process was then repeated until the desired number of Monte Carlo points was 

reached. 

The evaluation of the quantum to classical ratio was calculated in a similar 

manner except that now the weighting factor W; given in Eq. (32) is used. In 

this case W; does depend on the 'zeroth' order orientation so that step (1) now 

involves a rotation of random magnitude, within a maximum magnitude 6f1, of 

the 'zeroth' order orientation about a randomly chosen a.xis.48 The maximum 

magnitude of the rotation here was much larger than that of step (2) (labelled 

6f1
) in order to allow for an efficient sampling over configuration space, as dis

cussed by K uharski and Rossky. 38 The other steps were identical to those in 

the quantum to free-rotor case, except in the present case the old (i,O) absolute 

orientation also had to be restored in step (5) whenever a move was rejected. 

The overall acceptance ratio was once again kept at about 50%48 by varying the 

parameters 6f1 and 6f1• 

All of the calculations discussed here were easily programmed and large 

computation times were not required.50 The results for k~1(T), k~(T), and the 

ratio k£,(T)/k~(T) obtained from these calculations are given in Table 5.1 for 

the four temperatures 300, 500, 1000, and 2000 K. All of the quantum results 

reported in Table 5.1 were calculated using P = 6 discretization points, since it 

was found that the results had converged by this value of P.51 In the classical 
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calculations the estimated error, crMC, was evaluated from 

( 4.1) 

where f is the Monte Carlo result for the quantity being evaluated (in the present 

case k~(T)) and fi is a particular value of the integrand. In the quantum 

calculations, due to the strong correlation between successive states, crMC was 

instead calculated from the variance of sequences of estimates to f (! being either 

k~(T) or the ratio k~(T)/k~(T)) over blocks of 100 to 1000 Monte Carlo steps. 

(See, e.g., Ref. 46.) 

Comparison of the results for k~1(T) given in Table 5.1, with those given in 

Table VII of Ref. 6, shows that within the Monte Carlo error bars the two calcu

lations give the same result. One also sees from Table 5.1 that, within the Monte 

Carlo error bars, the quantum correction for recombination in the present case 

is negligible, and is at most about 1 to 2 %, and its temperature depednence is, 

within the statistical error, also negligible. At low temperatures one might expect 

that there would be a larger quantum correction for these modes. However, when 

the temperature is reduced the location of the transition state moves to larger 

separation distances and so the partition function for the transitional modes be

comes more and more like the product of free-rotor partition functions for which 

the quantum correction is relatively minor (except at quite low temperatures in 

which case one expects the quantum corrections for the transitional modes of 

the transition state and for the transitional modes of the reactants to cancel). 

Conversely, at high temperatures one might expect a quantum correction due to 

the decrease in Rt, causing an increase in the steepness of the potential energy 

function. That this is not the case here must be because the increase in tem-

perature causing more classical behaviour balances out the increase in steepness 

causing quantum effects. In other systems which are "tighter" in the transition 

state region (have stronger fragment-fragment bending forces there) there may 
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be larger quantum effects and the present method may be used to determine the 

quantum correction. 

It is interesting to compare these results with those which can be obtained 

from a generalized Wigner-Kirkwood expansion of the partition funCtion. 52 •53 For 

the present system of two symmetric tops plus a linear rigid rotor this expansion 

of the partition function is given by52 •53 

t 
Qt,hr q 

t 
Qt,hrcl 

(4.2) 

where 

_1 ( \7~: V)2 = _1t [ (-808 v) 2 + ------,---; - ( 88A. v) 2] 
m~: 1

4 
12 sin 812 'I' 

2 

[ 1 ( 8 )
2 

1 ( 8 8 )
2 

+L- -V + -V--V 
i=l 11, 80

i 11, sin2 O, 84>• tnp, 
(4.3) 

+I~ (0:, V )'] 
c, 

The derivation of the Wigner-Kirkwood expansion for symmetric tops and for 

diatomic rotors has been given previously, (see, e.g. Refs. 54, and 55). 

Results based on Eqs. ( 4.2) and ( 4 .3) are presented in Table 5.2. The 

Monte Carlo evaluations in the calculation of k£,(T) have been performed in 

exact analogy to the classical calculations of Table 5.1. The ratio calculations 

have been performed along the lines of the quantum calculations in Table 5.1. In 

both cases the derivatives given in Eq. ( 4.3) were calculated numerically, and, 

as a result of the extra potential calls thus required, the evaluation of Eq. ( 4.2) 

required more CPU time than the exact calculations. However, this would not 



- 109-

case if the potential was given in a form which was easily differentiated analyt

ically. Comparison of the results given for k~(T) in Tables 5.1 and 5.2 shows 

that the Wigner-Kirkwood result is approximately within the error bars of the 

nonperturbative result . The smallness of UMC in the last column of Table 5.2 

is presumably because in that calculation of a ratio k~(T)/k~1(T) only a small 

correction term had to be averaged. 

Although the results given in Table 5.1 indicate a very small correction for 

the transitional modes of a relatively loose transition state at reasonable tem

peratures, there may still be a large correction to some of the kEJ's at lower 

energies. For some experimental situations quantities of particular interest are 

these kEJ's, and, for this reason, we are currently studying the possibility of 

obtaining accurate microcanonical correction factors. When only microcanonical 

rate constants, kE, are needed, they can be obtained by inverse Laplace transfor

mation of results at fixed R, provided one evaluates k00 ,q(T) over a wide enough 

range of temperatures. However, the determination of the constant E and J rate 

constants requires a different approach. 
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integral. The values of otr used were 0.25, 0.20, 0.14, 0.09, for T = 300, 500, 

1000, and 2000 K, respectively. The values of (of1 , of1) were (1.0,0.22), 

(0.65,0.17), (0.45,0.09), and {0.4,0.06), for the same four temperatures. 

52 E. Wigner, Phys. Rev. 40, 749 (1932). 

53 J. G. Kirkwood, Phys. Rev. 44, 31 (1933). 

54 H. Friedmann, Adv. Chern. Phys. 4, 262 (1976). 

55 J. G. Powles and G. Rickayzen, Mol. Phys. 38, 1875 (1979); ibid 40, 1533 

(1980). 
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Table 5.1: Quantum Corrections from Path Integration 

Temp RtG k~(T)11 ± lTMCc k£,(T)d ± lTMCc Ratioe ± lTMCc 

(K) (A) (1013 cm3 mol - 1 ) (1013 cm3 mol - 1 ) 

300 4.2 5.06 ± 0.02 4.99 ± 0.02 1.002 ± 0.004 

500 3.8 4.32 ± 0.03 4.31 ± 0.04 0.999 ± 0.006 

1000 3.4 2.83 ± 0.03 2.75 ± 0.04 0.997 ± 0.007 

2000 3.0 1.38 ± 0.02 1.34 ± 0.03 1.024 ± 0.008 

G As determined in Ref. 6. 

11 As determined by the present classical Monte Carlo calculation. 

c UMC refers to the Monte Carlo uncertainties determined as discussed in the 

text. 

ci As determined by the quantum to free-rotor ratio path integral ratio calcu

lation. (See Eq. (24) .) 

e k~/ k~ as determined by the quantum to classical ratio path integral cal

culation. (See Eq. (31).) 



- 115-

Table 5.2: Quantum Corrections from Generalized Wigner-Kirkwood Expan-

SlOn 

Temp Rt'• k£,(T)b ± UMCc Ratioci ± UMCc 

(K) (A) (1013 cm3 mol -l ) 

300 4.2 5.00 ± 0.03 0.990 ± 0.001 

500 3.8 4.22 ± 0.05 0.980 ± 0.001 

1000 3.4 2.70 ± 0.06 0.980 ± 0.001 

2000 3.0 1.29 ± 0.05 0.982 ± 0.001 

a As determined in Ref. 6. 

11 Determined by the direct evaluation of k£,(T) from the generalized Wigner

Kirkwood expansion. 

c UMC refers to the Monte Carlo uncertainties determined as discussed in the 

text. 

d Determined by the direct evaluation of k£,/k~ from the generalized Wigner

Kirkwood expansion calculation. The Monte Ca.rlo error ba.rs in this calu

lation a.re negligible. 
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Chapter 6: Unimolecular Reaction Rate Theory for Highly Flexible 

Transition States. I. Use of Conventional Coordinates 

[The text of this chapter is in press and will appear in: S. J. Klippenstein and 

R. A. Marcus, J. Phys. Chern. (1988).] 
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ABSTRACT 

An alternative method for implementing RRKM theory for unimolecular reac

tions with highly flexible transition states is described using conventional coor

dinates. The number of available states for motion in the transition state N EJ is 

determined via an appropriate average over the absolute space orientations and 

body-fixed momenta of the two fragments. The results of calculations of N EJ 

for the C2H6 --t 2CH3 reaction (or alternatively for the corresponding recombi

nation reaction) obtained from the present expression are shown to be equivalent 

numerically to those obtained previously by Wardlaw and Marcus. 



- 118-

I. INTRODUCTION 

In recent years there has been an increase in the degree of molecular state 

selection available in experimental studies of unimolecular reactions.1 Concur

rent with this increase in state resolution has been an increased need for the 

theoretical determination of energy and angular momentum-resolved unimolec

ular dissociation or isomerization rate constants kEJ for realistic potential en

ergy surfaces. Previous calculations of kEJ have included those involving fully 

classical methods (both trajectory calculations and variationally implemented 

RRKM theory),2 the statistical adiabatic channel model,3 and a partially quan

tum partially classical variationally implemented RRKM theory." The present 

paper focuses on an alternative method for implementing the latter. 

In RRKM theory the specific rate constant, kEJ, for the dissociation or 

isomerization at a given energy E and total angular momentum quantum number 

J is given by 5 

NEJ 
kEJ = -h--' 

PEJ 
(1) 

where PEJ is the density of states for the reactant at the given E and J. The 

quantity N EJ is the number of available states for motion in the transition state, 

which is to be determined variationally, i.e., by finding a potential hypersurface 

for which N EJ is minimized. In most practical applications the full hypersurface 

is not varied but rather some coordinate R, which describes the progress of the 

reaction. The value of R that gives a minimum in NEJ, labeled Rt, is a function 

of E and J. 

In a recent series of articles," Wardlaw and Marcus have shown how Monte 

Carlo integration techniques may be used to facilitate the calculation of NEJ's . 

The basis of this method is the introduction of an approximate separation of 

variables into the conserved modes, i .e., modes which do not change their na

ture in the transition from reactant to products, and the transitional modes, 

i.e., modes which do have a considerable such change. The conserved modes are 

typically vibrations and were treated quantum mechanically. In a unimolecular 
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dissociation the transitional modes are typically the fragment-fragment hindered 

rotations (or bending modes) and the overall rotations, and were treated classi

cally. [A quantum correction for the latter for the high pressure (i.e., canonically 

averaged) kEJ'S was recently given.6 ] 

The number of states N EJ is then given by the convolution4 

(2) 

where Nv(E) is the number of quantum states for the conserved modes with 

an energy less than or equal to E, and PJ(f) is the density of states for the 

transitional modes at the given energy f and total angular momentum quantum 

number J for the given R. Upon introducing various canonical transformations 

using action-angle variables, Wardlaw and Marcus obtained PJ (f) as a reduced 

phase space average of the product of triangle inequalities and a delta function in 

f-H, where His the classical Hamiltonian for the relevant modes. In this reduced 

phase space average the total angular momentum was fixed, and the z-component 

of the total angular momentum and the two coordinates conjugate to these two 

momenta had been eliminated via an analytical integration. The problem was 

thereby reduced to a Monte Carlo integration of a given analytical expression 

over typically (for the case of two polyatomic fragments) six coordinates and six 

momenta. 

In the present article a simple alternative method for evaluating N EJ is pre

sented, in which the transformation of variables to action-angle coordinates is 

avoided. For the conditions we have explored it is also shown how an alternative 

method for handling the integration limits can be used. The resulting overall 

method is very easily programmed and executed. In Sec. II a series of trans

formations is introduced which serves to reduce the dimensionality of the phase 

space integral, without making any transformations in the remaining variables. 

The resulting phase space integral is then evaluated as a free-rotation canonical 

average in Sec. III. Results for N EJ from calculations using this method are 
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discussed and compared with previous results of Wardlaw and Marcus in Sec. 

IV. 

II. DETERMINATION OF NEJ USING ABSOLUTE SPACE ORI

ENTATIONS AND CONJUGATE MOMENTA 

Since the rapid determination of accurate Nv(E)'s for Eq. (2) is usually 

possible through direct count algorithms,7 the evaluation of NEJ mainly involves 

finding a rapid method for determining PJ(f). The first step in evaluating the 

latter involves the choice of an appropriate coordinate system. In the present 

article the coordinates chosen are the conventional Euler angles8 ( Oi, <Pi, 1/Ji) for 

the ab&olute orientation in space of fragment i, denoted by ni, and the two angles 

812 and ¢12 which describe the spatial orientation of the line of centers of the 

two fragments. The conjugate momenta for these coordinates are then denoted 

by Pi = (P8;, P<Pn Pt/J; ), P812 , and Pq,12 , respectively. 

In terms of these coordinates PJ (f) can be written as 

PJ(f) = u~8 J c5[f-H(r)]Tic5(Jh-JT(r)]dr, (3) 

where T denotes the above described coordinates and their conjugate momenta. 

JT is the magnitude of the total angular momentum as a function of the coor

dinates and momenta, and now a delta function in Jh- JT is present, unlike 

in the treatment of Wardlaw and Marcus, who used a fixed JT as one of their 

action-angle coordinates. We have introduced the h in Eq. (3) with the follow

ing reasoning: Without it the right hand side of Eq. (3) would be the classical 

number of quantum states per unit energy per unit angular momentum JT. By 

multiplying by h we have obtained the semiclassical equiv~ent of the number 

of states per unit energy for a given value of the angular momentum quantum 

number J. 

The integral over fin Eq. (2) can now be performed to yield 

NEJ = u~8 J Nv [E- H (r)] c5 [Jh- JT(r)] dr. (4) 
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The above choice of conventional coordinates is convenient in that it allows for 

a simple evaluation of the Hamiltonian. However, the dimensionality of the 

phase-space integral should still be reduced by four, to obtain the dimensional

ity of integration used previously by Wardlaw and Marcus. To this end, several 

transformations of the coordinates and momenta describing the line of centers 

orientation and momenta are now introduced. These transformations, in conjunc

tion with several observations about the dependence of the integral on certain 

variables, permit the desired reduction in dimensionality of the integral. 

The first observation is that the integrand in Eq. ( 4) is independent of the 

direction of the total angular momentum vector J T and, hence, of the value 

of JTz, the z-component of JT. Thus, the integral will be unchanged if JT is 

restricted to lie along the z-a.xis by introducing a delta function in JT - JTz, 

which singles out a particular JTz , multiplying again by 1i. for reasons analogous 

to those described for Eq. (3) , and then multiplying by the actual number of 

JTz quantum states (semiclassically speaking), for the given JT, namely 2J + 1. 

Thereby, 

The dimensionality of the integral in Eq. (5) can be reduced by two by 

performing an analytical integration over the arguments of the delta functions . 

To this end, a transformation of variables is needed to new variables which include 

JT and JTz or their equivalents. For simplicity, the required transformation is 

divided into two steps with the first transformation being from 812, PBu, and 

P,p12 to the Cartesian components of the orbital angular momentum lz, 111 , and 

lz:9 

111 = P812 cos l/Ju - P,p12 sin l/J12 cot 812, (6) 
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the Jacobian of the transformation being I8(012P912Pq,12 ) /8(lzl11lz) I 

I sin2 812 /Pct>ul· The latter equals liz 1/ [ (cos </>12lz + sin <!>12l11 )
2 

+ l~], thereby yield

lng 

NEJ = {2J + !) 1i
2 J Nv [E _ H (r')] c5 [JTi- JT (r')] c5 [JT (r')- ~Tz (r')]llzl dr', 

uh (cos¢12lz+sin¢12l11 ) +I~ 
(7) 

where T
1 denotes n,,p,,¢12,Zz,ZJI,IZ, and dr' is the corresponding volume ele

ment . 

The second transformation is from lz, 111 , and Za to JT, 0, and ¢, where the 

0 and 4> are the polar coordinates of J T: 

Here, kz, k11 and kz are the Cartesian components of the sum of the space-fixed 

rotational angular momenta of the individual fragments j,, which in turn are 

given in terms of the PI bye 

}z; = - [(cos O,pq,, - p,p,) cos <Pi/ sinO, +sin <l>iP9;] , 

} 11, = - [(cos O,pq,, - P,P;) sin <Pi/ sinO, - cos <l>iP9;] , } z; = pq,,. (9) 

The Jacobian of the transformation is given in this case by 18 ( lzl11lz) /8 ( JTO¢) I = 

J} sin 0, yielding 

(2J + 1) 1i
2 J [ ( ")] ( ) ( ) N E J = (1' h8 N v E - H T c5 JTi - J T c5 J T - J T cos 0 

IJTcosO- kzl J}sinOdr" 
X--------------------~~------~~----------~------------~ 

[cos </>12 ( JT sin 0 cos 4>- kz) +sin </>12 ( JT sin 0 sin 4>- k11 )]
2 + ( JT cos 0 - ka)2 ' 

(10) 

where T
11 denotes the variables n,, Pi, 4>t2, JT, 0, ¢. 

The integrals over JT and cos 0 may now be performed using the delta 

functions, whence 

(2J + 1) 1i
2 J 

NEJ = uhs Nv [E- H (01, p 1, ¢12, JTi, 8 = 0, ¢)] 

IJTi- kzl JTi 
2 

X :l :l d<f>d¢12 II dO,dp,. 
(cos¢12kz + sin</>1:zk11 ) + (JTi- kz) i=l 

(11) 
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Two final observations permit the analytic evaluation of the ¢ and ¢12 in

tegrations in Eq. (11) and thus complete the reduction in dimensionality of the 

integral. Firstly, in the Appendix it is shown that the integrand of Eq. (11) is 

independent of ¢ and therefore one may integrate over ¢ yielding a factor of 27r. 

Next, in the Appendix it is also shown that the dependence of the integrand on 

the three variables ¢t, ¢2, and ¢ 12 occurs only via ¢ 1 - ¢12 and ¢2 - ¢12. There

fore, one may choose tP12 in the integrand to have any constant value, labeled 

¢i2 , and then integrate over ¢ 12, yielding a value of 21r10 • These steps yield 

The above expression is seen to involve only conventional coordinates. A 

Monte Carlo evaluation of this integral requires some treatment of the sampling 

limits (e.g., assigning some maximum values for the Pi's). In the next section 

it is shown how the integral in Eq. (12) may conveniently be transformed into 

a form where importance sampling can be used in the Monte Carlo evaluation, 

thereby eliminating the need for this specific consideration of maximum values. 

III. FREE-ROTATION CANONICAL AVERAGE 

The first step in simplifying the Monte Carlo evaluation of N EJ is to remove 

the dependence of TP, the kinetic energy of rotation of fragment i about its cen

ter of mass, on its orientation Oi, ¢i, ..Pi· This step serves to make the evaluation 

of weighting factors more efficient in the importance sampling Monte Carlo in

tegration to follow. To remove this orientation dependence of TP the space-fixed 

Pi are first transformed to the three fragment i-fixed components of the angular 

momenta, p4,, Pb;, Pc;, defined by8 

p4, = - cos ..Pi esc Oipq,, + cos ..Pi cot Oip,p, + sin 1/JiPB,, 

Pb, = sin ..Pi esc Oipq,, - sin ..Pi cot Oip,p, + cos 1/JiPB;, Pc; = p,p,. (13) 



-124-

In terms of these new momenta TP is given by 

2 2 2 
T~ = Po, + Pb; + ~' 

• 2It 2It 2It 
A; B, c, 

(14) 

where It, I!; , and It , are the principal moments of inertia of the rigid body 

fragment i for the transition state structure. The Jacobian of the transformation 

in Eq. (13) introduces a factor of sin 81 sin 82 into the integrand of Eq. (12). 

The next step is to select an appropriate weighting function. We recall that 

in importance sampling11 a weighting function is introduced which has a large 

weight in the regions where the integrand is large and also for which the integral 

over the desired coordinates is known. The function exp [ -{3 (T: + T~)) sin 81 sin 82 

is suitable, since {3 may be chosen to restrict the momenta coordinates to the 

region where the mean value of the kinetic part of H is less than E, the region 

of importance to the integrand given in Eq. (12). In addition, the integral of 

this function over Oi, Pan Pbn Pen fori = 1,2 (i.e., the coordinates which specify 

the orientation in space of each fragment and the body-fixed momenta of each 

fragment) is just h 8 times the product of the free-rotation canonical partition 

functions for the two fragments, Q0 , defined by 

2 

Qo = : 8 j exp [-!3 (T: + TnJ II dcos8id¢id'I/JidPa;dPb;dPc; 
i=l (15) 

Making the transformation described in Eq. (13) and introducing the above 

weight function into Eq. (12) by multiplying the integrand by 

exp (!3 2:~=1 Ti0 ) exp ( -{3 2:~=1 Ti0 ), Eq. (12) for N EJ becomes 

N = (2J+1)JnQ (Nv(E-H)IJn-k.~~lexp(f3(Tf+TnJ) 
EJ 0 2 2 ' 

u (cos¢i2 kz + sin¢i2 k11 ) + (Jn- k.~~) 
(16) 

where (!) denotes an average with respect to the free-rotation weight function, 

2 

(!) = j fexp [-!3 (T: + TnJ II dcos8id¢id'I/JidPa1 dpb1 dpcJQoh8
• (17) 

i=1 
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For each sampling point the integrand f is set equal to zero whenever H >E. 

A Monte Carlo evaluation of Eq. {16) is now straightforward using crude 

sampling for the orientational coordinates and importance sampling11 for the 

momentum coordinates, with exp[-.B(T1° + Tl)J as the weighting function. This 

sampling using the free-rotation canonical distribution is most effective in those 

cases in which the potential energy is not too large in the regions of importance 

to the original integral. This situation corresponds to large values of Rt, since 

the interaction potentials are smaller at large Rt. However, in the present calcu

lations it was observed that the free-rotation sampling was reasonably efficient at 

all E's and J's of interest (e.g., see discussion and Table 6.1 in the next section.) 

IV. RESULTS AND DISCUSSION 

The formalism described above for evaluating N EJ was applied to the methyl 

radical recombination reaction (or ethane dissociation) using the same potential 

energy function as that employed by Wardlaw and Marcus.4 b The structure of 

the rigid body fragments for a given Rt was taken to be as in Ref. 4b, and u 

was taken to be 72. 

The results for N EJ are given in Table 6.1, together with the previous results 

of Ref. 4c, the latter multiplied by (2J + 1)/u, since the results reported there 

are actually NEJu/(2J + 1) (cf. Footnote in Ref. 4d). Also, no J = 0 results 

are presented here since the transformation given by Eq. (8) is not valid in 

this special case. In the calculations 80,000 Monte Carlo points were used and 

typical computation times were only 10 to 15 minutes on a Vax 11/780. The 

sampling temperature was chosen to keep the maximum kinetic energy sampled 

one to two times the maximum available energy (E minus the minimum V(R) 

for the given R, minus the zero-point energy difference), since this choice seemed 

to give the most rapid convergence. At small Rt there is a slower convergence 

of this particular importance sampling because of the increased importance of 

the potential energy term, although, as we have noted previously, we did not 

encounter any difficulty in our current calculations. Had such a difficulty been 
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encountered we could have used a sampling method analogous to the earlier one.4 

Inspection of the results given in Table 6.1 indicates that both methods 

give equivalent numerical results.12 As mentioned previously, the action-angle 

transformations are now avoided and an alternative method for handling the 

integration limits has been used. To be sure, the action-angle transformations 

are straightforward albeit a little tedious. It may also be possible to implement in 

the method of Wardlaw and Marcus the same idea of avoiding these integration 

limits, although this possiblity has not yet been explored. The present calculation 

is very easily programmed and implemented. 
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APPENDIX. DEPENDENCE OF THE INTEGRAND IN EQ. {11) 

ON ¢, t/Ji, AND tP12 
The Hamiltonian may be written as H = T 0 + V, where T 0 is the kinetic 

energy and V is the potential energy. The kinetic energy may be written as 

(A1) 

where T1°2 is the kinetic energy of rotation of the line of centers about the overall 

center of mass and TP is given by Eq. (14) of the text. Tf2 is given by 

( 
2 ) 0 1 2 Pq,u 

T12 = -t- Psu + . 2 fJ ' 
2Idi Sln 12 

(A2) 

where rl is the "diatomic" moment of inertia for the centers of mass of the two 

fragments. Upon transforming to the variables appearing in Eq. ( 11) of the text, 

Eq. (A2) becomes 

0 1 ( )2 1 ( 2 2 2 :1 k ) 
T12 = -t- JT- k = -t- JT + kz + k'll + kz- 2JT z , 

2Idi 2Idi 
(A3) 

since J T is chosen to have only one nonzero component, JTz· 

We now consider how T 0 depends on the four variables ¢, ¢1 = tP1 - tP12, 

¢2 = t/J:z- tPI:z, and tPl:t· An inspection of Eqs (Al) - (A3) shows that k~ + k; is 

the only quantity in T 0 which depends on the above angles. Referring to Eq. (9) 

of the text and focussing on the dependence of kz and kv on these above angles, 

it is seen that kz and kv may be written in the form 

:1 

kz = L (fi cos tPi + Di sin tPi) (A4a) 
i=l 

:1 

kv = L (fi sin tPi - Di cos ¢•) (A4b) 
i=l 

where /i and Di are functions of the remaining variables (fJi,~i,Pi)· Thereby, 

after some simplification 

k! + k! = R + Ji + u~ + u~ 
(AS) 
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We note, too, that </J1- </J2 can be written as (fi1 - <fi2- Thus, the T 0 in Eqs. (Al) 

is independent of </J12 . Also, Eqs. (Al) - (A3) and (AS) show that T 0 is also 

independent of </J. 

It remains to be shown that the potential energy V(8,,<jJ,,.,P,,</J12 ,f)12 ) is 

independent of </J12 and <P when the {fii are introduced. This independence can be 

shown by first considering the dependence of 812 on the variables <jJ,, </J12 and </J, 

and then considering the dependence of the interatomic separation distances on 

these same variables. 

We first note that 812 depends on </Jl'J. via the expression, obtained from a 

consideration of Eqs. (6) and (8) with sin() set to zero, 

() _ t-1 ( kz cos </J12 + kv sin </J12 ) 
12 - CO JT _ kJ& • (A6) 

Use of the definitions of kz and kv and use of Eq. (A4) shows that an expression 

occurnng m Eq. (A6), as well as in the Jacobian term in Eq. (11), may be 

written as 
2 

kz cos </J12 + kv sin </J12 = L (fi cos {fii + 9i sin {fii) . (A7) 
i=l 

Thus, 812 is independent of <P and </J12 when written in terms of the ¢a's. 

The space-fixed coordinates Xi of a specific point in fragment i relative to the 

space-fixed coordinates of the center of mass of fragment i are given by A;1xi, 
where the xi are the body-fixed coordinates of the point in fragment i and Ai1 

is the inverse rotation matrix8 (using the convention in Ref. 8). The space-fixed 

coordinates of the center of mass of fragment i relative to a space-fixed origin 

at the overall center of mass are A}21 x~ 2 ,i where the x~ 2 ,i are the coordinates 

describing the initial location (i.e., along the space-fixed z-axis) of the center 

of mass of fragment i, and A}.} is the inverse rotation matrix describing the 

orientation of the line of centers. Thereby, 

A -1 I+ A-1 I Xi = i xi 12 xl2 ,i· (AS) 
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The separation distance r 12 between a point in fragment 1 and a point in 

fragment 2 is given by 

(A9) 

Here, the observation is made that any inverse rotation matrix for rotation 

through (Bi,</>i,'t/Ji) may be written in the form8 Ai1 = Di1 Ci1Bi1
, where 

all of the dependence of Ai1 on </>i is in the matrix Di1
, which in turn is given 

by II 

(A10) 

Also, A}2
1 for rotation through (812,</>12) may be written in the form A}2

1 
-

D}.}C}.}, where D}2
1 contains all the ¢ 12 dependence and is given by Eq. (A10) 

with </>i replaced by ¢ 12 • Upon substituting Eqs. (A10) and (AS) into Eq. (A9) 

one finds after some straightforward algebraic manipulations that the separation 

distance r12 depends on the variables </>i and ¢ 1 2 only through the variables (fii 

and is independent of¢. Thus, all the quantities in Eq. (11) have now been 

shown to be independent of 4> and of </>12 when written in terms of the (/J/s. 
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Table 6.1: Test of NEJ· Calculation for the Reaction 2CH3 --+ C 2 H8 

E- Ezp(oo) 0 J Rt Ntu NEJ 
kcal mol-1 n. A 

0.13 25 5.7 1.4 1.7 
0.44 25 5.6 1.4 (3) 1.4 (3) 
1.18 25 5.6 4.5 (4) 4.4 ( 4) 

50 4.4 1.1 ( 4) 1.1 ( 4) 
2.36 25 3.8 4.4 (5) 4.3 (5) 

50 4.0 2.7 (5) 2.8 (5) 
4.73 25 3.6 4.3 (6) 4.2 (6) 

50 3.6 4.2 (6) 4.1 (6) 
100 3.7 1.5 (5) 1.4 (5) 

9.53 25 3.3 7.5 (7) 7.1 (7) 
50 3.4 9.4 (7) 8.8 (7) 

100 3.4 1.7 (7) 1.7 (7) 
19.55 25 3.1 3.1 (9) 3.4 (9) 

50 3.1 5.0 (9) 4.9 (9) 
100 3.1 1.9 (9) 1.8 (9) 
150 3.1 1.1 (8) 1.0 (8) 

39.10 25 2.8 3.6 (11) 3.7 (11) 
50 2.8 6.9 (11) 6.7 (11) 

100 2.8 4.1 (11) 4.2 (11) 
150 2.8 6.4 (10) 6.7 (10) 

63.52 25 2.6 1.6 (13) 2.0 (13) 
50 2.6 4.3 (13) 3.9 (13) 
100 2.6 3.5 (13) 2.8 (13) 
150 2.6 8.5 (12) 7.9 (12) 

a Ezp(oo) refers to the zero-point energy of the products (i.e., the zero point 

energy of two isolated CH3 fragments.) 

b Present calculations of N E J. The numbers in parentheses denote the power 

of 10. Monte Carlo errors are in all cases less than 7%, with the largest error 

bars arising in the highest energy calculations. 

c NEJ taken from Ref. 4c. 
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Chapter 7: Unimolecular Reaction Rate Theory for Highly Flexible 

Transition States. II. Conventional Coordinate Formulae for the 

Various Possible Fragment Combinations. Miscellaneous Topics 

[The text of this chapter is in press a.nd will appear in: S . J . Klippenstein and 

R. A . Marcus, J . Phys. Chern. (1988) .] 
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ABSTRACT 

A method for using conventional coordinates in the implementation of RRKM 

theory for unimolecular dissociations was described in part I of this series, for the 

case where both fragment molecules are nonlinear. The corresponding formalism 

for all possible types of fragments, atomic, linear and nonlinear fragments and 

their combinations, is presented here. Also discussed analytically is the tendency, 

in a unimolecular dissociation, for the position of the transition state to move to 

shorter fragment-fragment separation distances with increasing total energy E. 

This tendency has marked consequences, including increasing deviation of rate 

constants from those of phase space theory with increasing E and, in the case 

of fragment-fragment recombination, a corresponding tendency for high-pressure 

rate constants to decrease with increasing temperature. Two other topics consid

ered in this paper are the case of two minima in the variational calculation, and 

the role of the repulsive potential energy curves in the unimolecular dissociations 

under consideration. 



- 136-

I. INTRODUCTION 

The number of states N EJ(R) for a given excess energy E, total angular mo

mentum quantum number J, and position along a reaction coordinate enters into 

the RRKM theory1 of unimolecular dissociations. With a sufficiently accurate 

determination of this quantity and of the density of states PEJ of the molecule 

itself, good agreement between theoretically and experimentally determined rate 

constants kEJ is anticipated, as long as the statistical assumption is valid. For 

kEJ we have 

(1) 

where Rt is variationally determined. (A correction for nuclear tunneling along 

the reaction coordinate, a rare circumstance in dissociations into two polyatomic 

fragments, may be found in Ref. 2.) 

One facet of an accurate treatment of NEJ(R) is the manner in which the 

"transitional" modes are treated. These transitional modes are those modes 

which undergo a considerable change in character during the transformation 

from reactants to products. In particular these modes are typically the bend

ing/hindered rotor and overall rotational modes of the reactant which change to 

free rotations and to translations of the products. The remaining modes (apart 

from the reaction coordinate) have been termed the "conserved" modes, and are 

typically vibrations in both the reactant and product configurations. 

Recently, Wardlaw and Marcus3 described a method for treating the transi

tional mode interactions within a claJJical framework, while retaining a quantum 

treatment for the conserved modes. The method of Ref. 3 for determining 

NEJ(R) was based on the approximate separation of variables into the tran

sitional modes and conserved modes described above, with a transformation 

of variables to canonically conjugate action-angle variables being used for the 

transitional modes. That method also implicitly assumed a reaction coordinate 

defined by the center of mass to center of mass separation distance of the two 

fragments. Subsequently the present authors calculated the effect of using a 
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quantum mechanical treatment of the transitional modes on thermally averaged 

rate constants.4 This calculation was performed via a Feynman path integration 

of partition function ratios. It indicated, at least for the reaction studied, the 

C2 H6 -+ 2CH3 dissociation reaction, that the quantum mechanical correction for 

the transitional modes was negligible at the temperatures investigated. 

The present authors have also shown in part JS how conventional coordi

nates could be used to implement RRKM theory in a formalism based on the 

same separation of variables as that of Ref. 3. The formalism presented in part 

I was for the specific case of two nonlinear fragments. In the present article ex

pressions are given for the determination of N EJ for the various other possible 

fragment-fragment cases which arise in practice. In section II a brief summary of 

the derivation of N EJ'S in terms of conventional coordinates is given. In section 

III the definition of certain quantities needed in the evaluation of NEJ(R) and 

which are specific to the given fragment type are given. In particular the detailed 

formulae pertaining to the cases of an atomic fragment, a linear fragment, and 

a nonlinear fragment are considered. In section IV a particular phenomenon is 

discussed in which the position of the transition state tends to move to shorter 

fragment-fragment separation distance with increasing total energy. Its conse

quences are also described there. In section V a third topic is considered: the 

case of two minima in the plot of the number of states versus reaction coordinate 

curve, in particular the results which we have obtained in a practical case. In 

section VI the role (or nonrole) of repulsive potential energy curves in the type 

of dissociation into two fragments that is being considered is discussed, together 

with the corresponding question in phase space theory6 (PST). Concluding re

marks follow in section VII. 

II. THEORY 

Conventional coordinates were introduced in part I instead of the action

angle coordinates used earlier3 in calculating N E J. The reaction coordinate R in 

part I was again taken to be the the center-of-mass to center-of-mass separation 



- 138-

distance between the two fragments . The approximate separation of variables 

into the conserved modes and the transitional modes, which was the basis of the 

previous method,3 results in the number of states being given by the convolution 

NEJ(R) = 1E Nv (E- ~) PJ (~) d~, (2) 

where Nv(E- f) is the number of quantum states for the conserved modes with 

an energy less than or equal toE- f, and PJ(f) is the density of states for the 

transitional modes at the given energy f and total angular momentum quantum 

number J for the given R. 

The evaluation of PJ(f) involves the choice of a coordinate system. The 

appropriate coordinate system depends upon whether the fragments have zero, 

two, or three rotational degrees of freedom. However, in all cases the rotation of 

the line of centers connecting the two centers of masses of the fragments is a two 

degree of freedom rotation and so may be described by the coordinates 812 and ¢12 

defining the spatial orientation of this line of centers. For the other coordinates, 

the case of two nonlinear polyatomic fragments (i.e., each a three-dimensional 

rotor) was considered in part I, and the coordinates chosen were for the ab.wlute 

orientation in space of fragment i and were the conventional Euler angles 7 • If 

fragment i is, instead, linear, and so is a two-dimensional rotor, the appropriate 

coordinates for this fragment are the angles 8i and ¢i, which describe the abJolute 

orientation in space of the axis of this linear species. When fragment i is an atom 

no orientational coordinates are needed for it. The coordinates describing the 

orientation of fragment i are denoted Oi and their conjugate momenta by Pi, 

regardless of which type of fragment is being referred to. 

With the above choice of coordinate system for the appropriate fragment 

cases, PJ (f) is given, as in part I, by 

PJ(f) = uh(n:':n,+2 ) j D[f-H(T)j1ic5[J1i-JT(T)jdT, (3) 

where T denotes the orientational coordinates Oi, 812 , and ¢u and their conju

gate momenta, and dT denotes the corresponding phase space volume element. 
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The quantity JT in Eq. (3) is the magnitude of the total angular momentum 

as a function of the coordinates, whereas J in the second delta function in Eq. 

(3) is the total angular momentum quantum number. The quantities n 1 and 

n2 are the number of rotational degrees of freedom for fragment~ 1 and 2; 9e 

is the electronic degeneracy factor, and u is the usual degeneracy factor for the 

fragment pair; and u equals 2u1 u 2 or u 1 u 2 , according as the fragments are or are 

not identical; Ui denotes the symmetry number of fragment i . The Hamiltonian 

H is given by H = T 0 + V, where V is the potential energy and T 0 the total 

kinetic energy for the transitional modes. T 0 in turn is given by the sum of T1°2 , 

the kinetic energy for the line of centers rotation and the kinetic energies Tf and 

T2° of the two fragments. The former is given by 

( 
2 ) 0 1 2 P<Pu 

T12 = -t- Peu + · (J2 ' 
2Idi Sin 12 

(4) 

with 11 being the diatomic moment of inertia for the line of centers, i.e., Il 
equals M1M2R2 /(M1 + M 2), where M 1 and M 2 are the masses of fragment 1 

and 2, respectively. The kinetic energy Tl is given in section III for each of the 

separate fragment cases. 

Substituting the above expression for PJ(~) into Eq. (2) and performing the 

integration over ~ yields 

Equation (5) provides an expression for NEJ· Next, the dimension of the phase 

space integral in Eq. (5) is reduced as in part I. 

First, the angular momentum is fixed along the z-direction by introduc

ing a delta function in JT - JT., multiplying by the range of JT., (2J + 1 )n, 
and then transforming from the line of centers coordinates and conjugate mo

menta to the Cartesian components of the orbital angular momentum (lz,l11 , l~) 

and the line of centers coordinate </>12. This transformation is specified by8 
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Zz = -po12 sin ¢12 - Pt/Ju cos ¢12 cot 812, 

with the Jacobian of the transformation being given by 

18 ( Bt2P8uPifJ12 ) /8 ( lzlJilz) I = I sin2 812 /Pt~Ju l 

= IZz l/ [<cos¢12Zz + sin¢12ZJ1)
2 + z~]. 

With these results the expression for N EJ(R) becomes 

NEJ(R) =9e (2J + 1) 1i2 
uh(nt+n2+2) 

(6) 

(7) 

X j Nv [E _ H (r')] 6 [Jii- JT (r')] 6 [JT (r') - ;Tz (r')] IZzl dr' , 
(cos </J12Zz + sin </J12l11 ) + l~ 

(8) 

where r' now denotes the coordinates n,, Pi, ¢ 12 , Zz, 111 , l,~, and dr' is the corre

sponding volume element. 

Next, a transformation is made from Zz, 111 , and z .. to JT, 8, and¢, where the 

(} and ¢ are the polar coordinates of J T : 

Here, kz, k 11 and k,~ are the Cartesian components of the sum of the space-fixed 

rotational angular momenta of the individual fragments j, (e.g., kz = iz1 + iz2 ), 

which in turn are specified in section III for each of the fragment types. The 

Jacobian of the transformation in Eq. (9) is given by l8(lzZ11 Z,~) /8(JTB¢) I = 

JJ. sin 8. 

Integration in Eq. (8), using the delta functions, over JT and (} and then 

over ¢n and ¢, after considering the dependence of the resulting integral on the 

¢, ¢• and ¢n coordinates, yields 

( ) 9e (2J + 1) J • 
NEJ R = uh(nt+n2) Nv [E- H (01, p 1, ¢ 12 , Jli, (} = 0)] 

2 {10) 
IJ1i- k .. l Jli II dO ·d . 

X 2 2 1 p,. 
(cos¢hkz + sin¢hk11 ) + (Jii- k,~) i=l 
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The quantity <Ph defines a fixed azimuthal angle for the line of centers orientation 

and can be set equal to zero (i.e., </> 12 = 4>i2 = 0), as was shown in part I. 

The integration over the delta functions also results in expressions for the 

quantities lz, lv, and lz in terms of the coordinates and momenta Oi and Pi (or 

alternatively the k's) . These expressions, in turn, specify the quantities B12, </>12, 

P912 , and Pl/>u in terms of the k's, </>i2 and JT. More specifically, the coordinates 

for the orientation of the line of centers ( 012 , </>12 ) and their conjugate momenta 

are specified to be 

(11) 

The expressions given in Eq. (11) are used in all terms in the final integral 

involving these quantities, e.g., in Tf2 and in the expressions for the determination 

of the potential energy given in section III. 

With these definitions, Eq. (10) for NEJ provides an expression which can 

be used for all possible fragment types. By combining Eq. (10) with the defini

tions of the various fragment-dependent quantities given in section III an explicit 

expression is obtained for NEJ for each fragment case. The integral in Eq. (10) 

may be evaluated through Monte Carlo importance sampling by introducing 

the weighting function exp( -,BTf) exp( -,BTn. The integral over this weighting 

function is given by the product Q~ Qg of the free-rotation canonical partition 

functions for each fragment, 1 and 2. The result of the introduction of this 

weighting function and a transformation of momenta variables to p~, defined in 

section III for each of the different types of fragments, yields N EJ in the form 

N (R) = 9e (2J + 1) J1i.Q0 Q 0 (Nv (E- H) (J1i.- kz)exp [,8 (Tf + TnJ) 
EJ 1 2 2 2 ' 

u (cos</>i2 kz + sin</>i2 kv) + (J1i.- kz) 
(12) 

where (f) denotes an average with respect to the free-rotation weight function, 

(f)= QoQo~n1+nJ) j fexp [- ,8 (Tf + TnJ ii dOidPi 18p8p~ I· (13) 
1 2 •=1 • 
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In Eq. (13) J8pi/8piJ is the Jacobian of the transformation to be given in section 

III. The explicit definitions of the partition functions Q~ and fragment kinetic 

energies Ti0 for the specific cases are also given in section III. 

The {3 in Eqs. (12) and (13) equals 1/kBT, where Tis a sampling temper

ature and kB is Boltzmann's constant. In the calculation this T is chosen to 

ensure that the maximum kinetic energy sampled is about two to three times the 

maximum available energy. 

N EJ may now be straightforwardly evaluated from Eq. (12) by using, as 

in part I, crude sampling over all space for the orientational coordinates and 

importance sampling11 for the momentum coordinates, with exp[ -{3(Tf + T~ )] 
as the weighting function. In the importance sampling over the momentum 

coordinates, step sizes which gave a roughly 50 % acceptance ratio were typically 

used in the applications in part I and Ref. 10. 

III. PROPERTIES OF DIFFERENT FRAGMENTS 

{a) General Formulae 

We consider here the calculation of the potential energy V(ri,;), where ri,; 

denotes the space-fixed position of atom j in fragment i, in terms of the orienta

tional coordinates ni, 812 and </>12 , and the reaction coordinate R. The position 

ri.; of atom j in fragment i may be written in terms of its position in space 

relative to the center-of-mass of fragment i, and in terms of the position of the 

center-of-mass of fragment i in space. This latter position is determined by the 

orientation of the line of centers connecting the two fragments and by the center

of-mass to center-of-mass separation distance. In particular, this position may 

be writ ten as A ;:-l ( 812 , </>12 )ri, where 7 

- sin </>12 
cos </>12 

0 

sin 812 cos </>12 ) 
sin 812 sin </>u 

cos 812 

and ri is the body-fixed position of the center of mass of fragment i, 

I ( M2 ) I ( Mt ) r 1 = 0, O, M M R , r 2 = O, O,- M M R , 
t+ 2 t+ 2 

(14) 

(15) 
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and the axis of the body in space is defined by e12 and ¢12. The position of the 

center-of-mass as a whole, as seen from Eq. (15), is chosen to be at the origin. 

The position of atom j of fragment i in space relative to the center-of-mass 

of fragment i can be written as Ai1 (Oa)ri,;, where the ri,; are the body-fixed 

coordinates which describe the initial position (prior to any rotations) of atom 

j in fragment i, relative to the center of mass of fragment i. The orientation of 

the body-fixed axes of fragment i relative to the space-fixed Cartesian axes is 

defined by the Oa coordinates. The specific form of the inverse rotation matrix 

Ai1 (Oa) describing this orientation of the body-fixed axes is discussed later for 

different types of the fragment. 

Thus, finally we have 

(16) 

In sections III(b) to (d) the detailed expressions involved in the determination 

of N EJ for the different types of fragments are given. 

{b) Atomic Fragment 

When fragment i is an atom rather than a molecule there are no orientational 

coordinates or rotational momenta for this fragment and so the quantities TP, 
izn j'll., ian and ni are all replaced by zero. The matrix Ai1 is replaced by the 

3 by 3 identity matrix. Also, the free-rotation canonical partition function Q2 
is replaced by unity and the differentials dOt, dpi, and dpi do not appear. The 

body-fixed coordinates for the atomic fragment i, ri 1 , are just the coordinates 
' 

of the origin (the center of fragment i), i.e., ri,1 = (0,0,0). 

{c) Linear Fragment 

When fragment i is linear, the orientational coordinates are chosen to be 

the spherical polar angles ei and ¢•. Their conjugate momenta are denoted by 

pe, and pq,,, respectively. The transformed momenta are given by Pi = (Pa1 , Pb;) 

with Pa; = -pq,Jsinea and Pb, = pe,. The Jacobian l8pa/8pil is thus equal to 

sin e •. 
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The kinetic energy for fragment i is g1ven m terms of these transformed 

momenta by 

(17) 

where Jj is the moment of inertia for fragment i in its transition state structure. 

For a diatomic fragment we have, for example, Jj = m1m2r~(R)j(m1 + m2), 

where m 1 and m2 are the masses of the two atoms in the diatomic fragment and 

re(R) is the equilibrium separation distance between the two atoms for the given 

separation distance R between the centers of masses of the two fragments. 

The Cartesian components of the space-fixed rotational angular momentum 

for fragment i, iz,, j 11, and j;,, are now given by8 

)z; = P<Po. (18) 

The inverse rotation matrix Ai1 (0i) used to determine the transformation 

from orientational coordinates to space-fixed coordinates is given by7 

(19) 

The initial body-fixed coordinates ri,; of atom j in fragment i must be aligned 

in agreement with the definition of the Cartesian components of the angular 

momenta given in Eq. (18). For this reason the axis of the linear fragment for 

these initial coordinates ri,; is aligned along the space-fixed z-axis, and the center 

of mass of ri.; is placed at the origin. For the specific case of a diatomic fragment 

the body-fixed coordinates ri,; are thus given as 

(20) 
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The free-rotation canonical partition function for use in the averaging in Eq. 

{12) is11 

Q~ = : 2 j exp ( -{3Tn sin B,dO,dp~ 

= 2I,t kBT jn2
, 

(21) 

where no degeneracy factor need be included in a partition function used purely 

for averaging. 

(d) Nonlinear Fragment 

When fragment i is nonlinear, the treatment is analogous to that given pre

viously in part I, where the dissociation into two nonlinear fragments was treated. 

The results are given here for completeness. The orientational coordinates are 

taken to be the Euler angles 8,, </>&, and '1/J,. Their conjugate momenta are then 

denoted by pe1 , P¢1 , and p,p1 , respectively. The transformed momenta are given 

by P~ = (Pan Pbn Pc1 ) with 8 

(22) 

The Jacobian !8p,j8pil is then equal to sinO,. 

For the kinetic energy of fragment i the specific express10n depends on 

whether the fragment is an asymmetric top, a symmetric top, or a spherical 

top. Since all cases are included in the asymmetric top expression, we employ it. 

In terms of the transformed momenta pi, this kinetic energy is given by8 

(23) 

where It, 1l, and Ib,, are the principal moments of inertia of fragment i for 

the transition state structure. 
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The Cartesian components of the space-fixed rotational angular momentum 

for fragment i, iz., j'll, and iz, are given in terms of the transformed momenta 

Pi by 

iz, = (cos Oi cos </Ji cos 1/Ji - sin ¢• sin 1/Ji) Pa; - (cos 8, cos </Ji sin 1/11 +sin ¢• cos 1/Ji) Pb; 

+ sin 8, cos <PiPe; 

)JI; = (cos 8, sin </Ji cos 1/Ji +cos ¢• sin 1/Ji) Pa; + (cos ¢• cos 1/Ji - cos 8, sin </Ji sin 1/Ji) Pb; 

+ sin 8, sin <PiPe; 

j z; = - sin 8, cos 1/JiPa; + sin 8, sin 1/JiPb; + cos O,pe, (24) 

The inverse rotation matrix Ai 1 
( n,) used to determine the transformation 

from orientational coordinates to space fixed coordinates is given by 1 

(

- sin tPi sin ¢• + cos 8i cos ¢i cos tPi 
sin tPi cos ¢i + cos 8i sin ¢i cos tPi 

- cos tPi sin 8i 

- cos tPi sin ¢i - cos 8i cos ¢i sin tPi 
cos tPi cos ¢i - cos 8, sin ¢• sin tPi 

sin tPi sin 8, 

sin 8, cos ¢i ) 
sin 8i sin <Pi . 

cos 8, 

(25) 

The initial body-fixed coordinates r~,; must be aligned in agreement with the 

definition of the Cartesian components of the angular momenta given in Eq. 

(24) . Thus, the principal axes a, b, and c for these body-fixed coordinates r~.; 

are aligned along the space-fixed z, y, and z axes, respectively. Additionally, the 

center of mass of r~,; is at the origin. 

The definition of the free-rotation canonical partition function for use in the 

averaging is 11 

Q~ = ::s j exp ( -{3Tn sin O,dO,dp~ 

= (s7rlft Ift Ift) 1/2 (kBT):S/2 /"-s. 
(26) 

IV. TREND OF Rt WITH INCREASING ENERGY E 

In several calculations3 •5 •10 •12•13 we and others have noticed a tendency of 

Rt, the fragment-fragment separation distance in the transition state, to decrease 
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with increasing energy E. This effect has certain important consequences, which 

we describe after first considering its origin analytically. 

The position Rt of the transition state is the solution of 

(27) 

which yields, implicitly, Rt as a function of E. We may write the left hand side 

as a function f(Rt, E) and note that in the standard way the ordinary derivative 

dRt /dE is given by 

dRt /dE= -(8f j8E)j(8f j8Rt). (28) 

But 8f j8Rt equals 8 2 NEJ(Rt)j8Rt', and this quantity is positive since NEJ(R) 

is a minimum at R = Rt. Further, upon interchanging the order of par

tial differentiation, 8f/8E can be written as (8j8Rt)(8NEJ(Rt)j8E), i.e., 

(8j8Rt)PkARt), where PkARt) is the density of states, 8NEJ(R)j8R of the 

transition state at R = Rt and at the energy E. It has usually been the 

case that since the hindered rotations at smaller R become free rotations at 

larger Rand, hence, that the states become more closely spaced as R increases, 

(8j8Rt)PkARt) tends to be positive. One circumstance could modify this. As 

R increases, there will be somewhat less energy available for distribution among 

the transitional modes, since the bonding potential energy of the fragments is less 

negative. This factor above would make 8pkARt)j8Rt negative, but apparently 

the first factor is the dominant one in the few cases we have considered thus far 

and for the limited energy range for which the model potential energy surfaces 

used are valid. At higher energies (e.g., above about 3000 cm-1 for the study of 

Ref. 10) the model potential energy surfaces are not accurate enough and so no 

conclusions may be drawn as to which of the above factors is the dominant one. 

This result on dRt /dE has some major implications: At very low energies 

E the Rt occurs at the R-+ oo limit and phase space theory8 (PST), and the 

variationally implemented RRKM theory become rather similar. However, with 
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increasing energy the overall minimum in the number of states N EJ(Rt) occurs at 

R's which are less than the PST R,'s, where the latter denote the location of the 

orbital angular momentum (I)-dependent effective potential energy barriers. As 

a result, at these energies, when dRt /dE is negative, there is increasing deviation 

between PST and variationally implemented RRKM theory. I.e., the transition 

state under these conditions becomes increasingly "tight." Again, in the case of 

fragment-fragment recombination this effect, when thermally averaged to yield 

a high pressure rate constant , yields an Rt which decreases as the temperature 

increases. Such an effect causes the high pressure recombination rate constant 

to decrease with increasing temperature.3 •4 •12•13 

V. CASE OF TWO MINIMA IN THE NEJ(R) PLOT 

From our previous calculations we have found that in a certain energy range 

there may be two local minima in the number of states. In particular, we have 

observed the following change in the plot of the number of states versus R as the 

energy E is increased above the dissociation limit: At low excess energies there 

is basically only one minimum (or smallest value) which occurs at Rt = oo. 

At slightly higher excess energies an inner minimum appears with this inner 

minimum being very shallow and having a much larger number of states than the 

Rt = oo one. At still higher energies the number of states at the inner minimum 

begins to approach the number at the Rt = oo minimum. Our potential energy 

surface needs improvement at smaller Rt 's to see how the trend changes as E is 

increased further. 

In the energy region where there are two transition states it is useful to 

consider the modified formalism resulting from the two transition states which act 

in series. In the case of the recently studied NCNO dissociation reaction,10 N'Ejz 

typically proved to be a small maximum relative to the larger value of the number 

of states occurring at each of the two minima, i.e., N'Ejz ::::::: maz(N};J, NkJ ), 

where N};J, and NkJ are the number of states for the two minima. Thus, the 

various two-transition state theories14•15 largely reduced almost everywhere to 
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Eq. (1), where NEJ(Rt) now denotes the smaller of N}u and Nj;J. In particular, 

we found that the rate constants calculated from the lower bound formula given 

below differed by at most a factor of 0.5 from those calculated with Eq. (1), 

using in the latter the global minimum for NEJ(Rt) . Additionally, the rate 

constant obtained from the "unified statistical theory" discussed below differed 

by, at most, a factor of 0.8. 

A treatment of the typical situation in chemical reactions when there are two 

values of R where the reactive flux may be reflected and/or transmitted was first 

given by Hirschfelder and Wigner.te Subsequently, Miller14 introduced into that 

formalism expressions for the reflection probabilities in terms of statistical flux 

ratios (or equivalently in terms of the number of states) and obtained a "unified 

statistical theory" (UST). As noted by Chesnavich et al.11 when these ideas are 

applied to a unimolecular dissociation reaction the rate constant is given by1 1 

tt t2 
kEJ = _1_ N EJN EJ 

hpEJ tt t2 Ntl Nt2 . 
N EJ + N EJ f/n..!' 

1111 

(29) 

Subsequently, studies by Pollak et al.15 showed that the assumption embod

ied in Eq. (29) of having statistically determined reflection probabilities is not a 

good one at all energies . For simple reactions such as H + H2 --+ H:z + H and 

F + H2 --+ FH + H, UST was shown to give substantially larger reaction proba

bilities at high energies than those determined from classical trajectories. Pollak 

et al.15 then presented a method for determining a lower bound for the reaction 

probabilities based on consideration of only those trajectories which cross the 

surface having the maximum flux two times or less. The dynamical results of 

Ref. 15 were shown to be in significantly better agreement with the lower bound 

probabilities than with UST for the cases examined. This result can once again 

be directly applied to the unimolecular dissociation case and the rate constant is 

then given by 

(30) 
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However, as already noted, for the NCNO system we have studied, these formulae 

(29) and (30) reduce in practice to Eq. (1), with NlJ having now the smaller of 

the number of states at the two local minima. 

VI. ROLE OF THE REPULSIVE CURVES IN UNIMOLECULAR 

DISSOCIATION 

Typically, in a unimolecular dissociation into two fragments there are two 

or more potential energy curves, for example the singlet and triplet curves in 

Fig. 7.1. If phase space theory is applied,18 the l-dependent effective potential 

energy barriers may occur at such large separation distances that these curves 

are almost degenerate at the barrier maximum, and the question arises whether 

both the singlet and triplet levels or just the singlet one should be used in the 

PST calculation. In the variational RRKM method, on the other hand, the Rt 

moves to shorter fragment-fragment separation distances, even when the excess 

energy is quite small (e.g., when E ::::::: 500 cm-1 in both the C2 He --+ 2CH3 

and the NCNO --+ NC + NO cases). In particular, it moves to a value where 

the singlet-triplet splitting becomes fairly large relative to the excess energy. In 

this case the contribution of the triplet state to N lJ becomes relatively minor. 

Moreover, it is also arguable whether there would be time between Rt and the 

PST R, for the system to undergo an intersystem crossing from the singlet to 

the triplet state. 

Thus, in our past and current applications we have largely confined our at

tention to calculating N lJ from the singlet curve, rather than from any excited 

state curves. We have examined in detail in Ref. 10 the case of NCNO decom-

position. Here, there is the ground state singlet S0 and a weakly bound triplet 

T1, both leading to the quadruply degerate asymptotic state (N01; 2 ,CN). There 

are also the upper repulsive singlet S1 and T 2 curves, leading to an asymptote 

(N03 ; 2 ,CN) 120 cm-1 higher in energy than that of (N01; 2 ,CN). The upper 

two curves (Ref. 10) may he disregarded in the reaction rate calculation, for the 

reason described in the previous paragraph. We found, using an approximate 
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potential energy function and assuming rapid singlet-triplet conversions, that the 

lower triplet T 1 state made a contribution to NlJ only at lowE's. But even the 

inclusion of that contribution becomes uncertain if the singlet-triplet conversion 

rate is not high in the transition state region. 

VII. CONCLUDING REMARKS 

General formulae for determining N EJ(R), the number of states as a function 

of center-of-mass to center-of-mass separation for the various possible fragment 

cases, have been presented. From the specific formulae given for the three dif

ferent possible types of fragments the overall computational expression for any 

combination of two fragments is immediately obtained. In particular Eqs. (12) 

and (13) are used with the combinations (sum, product, etc. ) of the formulae 

given for the two separate types of fragments. This method is a general one 

and may be easily applied to a large variety of unimolecular dissociation reac

tions. The method can also be modified to treat unimolecular isomerizations, in 

which case there is only one fragment. It has been applied in recent papers to 

experimental data on the unimolecular dissociation reactions C:~He -t 2CH3 /' 

and NCNO -t NC + NO.to 

In the application of this method the uncertain quantity is the molecular 

potential energy surface. In previous applications3 •5 •10 model potential energy 

surfaces were used. At short separation distances the repulsive interactions be

tween the nonbonded atoms are much too strong in these model potential energy 

functions. We found as a result that there appeared to be no local minimum 

in the N EJ(R) plot at energies above about 3000 cm-1 for the NCNO -t NC 

+ NO reaction. This disappearance of the local minimum in NEJ(R) indicates 

the need for more accurate potential energy surfaces. A further indication of 

just how strongly repulsive the model potential energy surface is at short dis

tances is given by the comparison of NEJ(R) at R = Re with the number of 

states for the reactant (excluding the dissociation coordinate) as determined 

by Whitten-Rabinovitch type calculations. These two quantities are given by 
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0.1 x 107 and 4 x 107 , respectively, for an excess energy of 2348 cm-1 and a total 

angular momentum of 5, for the parameters in Ref. 10. One hope is that studies 

such as those of Ref. 10 will motivate the ab initio calculation of potential energy 

surfaces for the fragment-fragment hindered rotational motions at center of mass 

to center of mass separation distances near Rt (about 3.0 to 4.5 A for the NCNO 

-+ NC + NO reaction). 

We have also presented here arguments providing some insight into the pre

viously observed trend of Rt decreasing with increasing energy. This trend in

dicates a larger deviation with increasing energy of RRKM rates from those of 

PST. A discussion of the various formulae for considering the effect of two tran

sition states in series has also been given, along with a consideration of their 

importance in unimolecular dissociation reactions. Finally a discussion of which 

potential energy surfaces should be used in unimolecular dissociation rate calcu

lations has also been given. 
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V(R) 

R 

FIG. 7.1. Schematic diagram of potential energy curves for typical unimolecular 

dissociation into two fragments. S denotes the lower singlet level and T denotes 

the upper triplet level. V(R) is the minimum potential energy for a given center 

of mass to center of mass separation distance R. 
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Chapter 8: Application of Unirnolecular Reaction Rate Theory for 

Highly Flexible Transition States to the Dissociation of NCNO into 

NC and NO 

[A modified version of the text of this chapter is to be submitted to J. Phys. 

Chem. and is authored by S. J. Klippenstein, L. R . Khundka.r, A. H. Zewail and 

R. A. Marcus) 
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ABSTRACT 

A recently described method for implementing RRKM theory for unimolecular 

reactions with highly flexible transition states is applied to the calculation of 

energy and angular momentum resolved rate constants and rotational-vibrational 

energy distributions for the reaction NCNO ~ NCNO• -+NCNO(vib. hot) -+NC 

+ NO. The dissociation rate results are compared to the recent experimental 

results of Khundkar et al., and the vibrational and rotational distribution results 

are compared to the experimental values of Nadler et al. Comparison is also made 

with phase space theory calculations. The calculated rotational distributions at 

energies below the vibrational threshold of the products are the same as those of 

PST. At energies (2348, 2875 cm-1 ) above this threshold energy the rovibrational 

distributions are in better agreement with the data than are those of PST. The 

need for obtaining more accurate ab initio potential energy surfaces is noted, 

particularly for treating reactions at still higher energies. 
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I. INTRODUCTION 

Recent detailed experimental results for energy-resolved reaction rates have 

been compared with several simplified models of the transition state. In particu

lar, the energy and partially-angular momentum resolved reaction rate constants 

for the unimolecular dissociation of NCNO determined by Khundkar et ai.l via 

picosecond photofragment spectroscopy could not be fit 1 using a tight transition 

state form of RRKM theory,2 i.e., one having transition state modes that are 

treated as harmonic oscillators. As they noted, too, there was also uncertainty1 

in comparing the results with phase space theory3 regarding the role played 

by the near-degeneracy of the various electronic states at large distances where 

phase space theory (PST) has its "transition state". In PST the transition state 

is postulated to consist of two fragments which rotate freely. 

It is desirable, therefore, to explore a more detailed model of the transition 

state (TS), as part of a study on the suitability of statistical models for rates and 

product state distributions. The rotational and vibrational energy distributions 

of the products of the same dissociation reaction have been experimentally deter

mined by Nadler et al.4 and were in good agreement with those predicted by PST 

when the energy was below that needed to produce vibrationally excited frag

ments. Some deviations were found at somewhat higher energies. In the case of 

RRKM theory some added assumption regarding the dynamics in the exit chan

nel is needed for predicting product energy distributions. One such dynamical 

approximation was described recently5 in conjunction with a recent implemen

tation of RRKM theory.e-a The results of this method will be compared with 

the experimentally determined vibrational-rotational distributions for NCNO, 

together with the results of RRKM theory for the rate constants themselves. 

In the present treatment the transformation of the bending modes of the 

reactant to the hindered rotations of the transition state and then finally to the 

free rotations of the products is considered, using a potential energy surface. In 

addition, the coupling of these hindered rotational modes with the overall rota-



- 159-

tions is included. Examples of this variational implementation of RRKM theory 

for flexible transition states of other systems are given in several recent papers6
-

8 

from this laboratory. In the nomenclature of Refs. 6 - 8 the modes which change 

their nature appreciably are termed the transitional modes and the remaining 

modes, excluding the reaction coordinate, the conserved modes. In this work the 

full coupling between the various transitional modes is considered together with 

conservation of total angular momentum. The method is based on Monte Carlo 

integration of the phase space volume for the transitional modes, convoluted 

with the distribution of the conserved modes, treated quantum mechanically. A 

given potential energy surface is used, together with an assumed separability of 

the conserved modes from the transitional modes. In the transition state region 

the conserved modes are treated as quantum mechanical oscillators while the 

transitional modes are treated classically but otherwise generally for any given 

potential energy surface. 

In the present article this implementation of RRKM theory is applied to 

the calculation of rate constants and product state distributions for the NCNO 

dissociation. There are four potential energy surfaces involved in the transition 

state region, namely two singlet states and two triplets. Consideration is given to 

which states are involved in determining the transition state. At the present time, 

the potential energy surfaces for the transition state (TS) region of unimolecular 

dissociations are not well-known, and so the dependence of the results on various 

model potential energy surfaces is also discussed. The results obtained may 

then be used as a guide for the subsequent determination of an ab initio or 

improved semi-empirical potential energy surface in the TS region. In section II 

a brief description of the theoretical determination of the number of states for 

the highly flexible transition state of NCNO is given. Results for the present 

kEJ calculations are given in section III, and discussed in section IV. In section 

V the corresponding results for the NC and NO rovibrational distributions are 

given and discussed, and are followed by concluding remarks in section VI. 
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II. THEORY 

The specific rate constant kEJ for unimolecular dissociation at a given energy 

E and total angular momentum quantum number J is given by2 

(1) 

where PEJ is the density of states for the reactant at the given E and J . The 

quantity N!J is the number of available quantum states of the transition state 

with energy less than or equal to E and with the given J. 

When a tight transition state is used in RRKM theory, harmonic frequen

cies are usually assumed for the various vibrational modes, and some rotational 

constants are employed for the transition state. N !J is then determined through 

a direct count of the available vibrational-rotational states at the given energy 

and total angular momentum. 

In phase space theory3 (PST) the TS involves two freely rotating fragments, 

whose vibrational modes are those of the fragments themselves. The rotational 

modes are approximated as free rotations. An attractive fragment-fragment po

tential of the form R-n is used, where n is usually 6 and R is the dissociation 

coordinate. In the present application the dissociation coordinate R is chosen 

to be the separation distance between the centers of masses of the NC and NO 

fragments. In PST effective barriers are calculated as a function of the orbital 

angular momentum quantum number of the two fragments l, and N!J denotes 

the total number of these vibrational-rotational-orbital states which satisfy the 

total angular momentum conservation rule and have an energy greater than that 

of the Z-dependent effective barrier. The allowed l's are those consistent with the 

triangular inequality for the total angular momentum and with a radial kinetic 

energy sufficient to exceed the barrier's maximum. The Rt of the latter varies 

with l, and so there are a number of such Rt(l)'s for the given J. 

In Refs. 7 and 8 it has been shown how conventional coordinates may be 

used in an implementation of RRKM theory developed by Wardlaw and Marcus 
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to treat these highly flexible transition states. They used action-angle variables 

to facilitate the imposition of the constraint of fixed total angular momentum. 

In Ref. 7 a convenient way for imposing this constraint using conventional coor

dinates was presented. In these studies an approximate separation of variables 

into the conserved and transitional modes mentioned earlier is introduced. In 

the present article the method of Refs. 7 and 8 is used in all determinations of 

N EJ(R). In particular, a computational method based on Eqs. (12), (13) and 

(17) - (21) of Ref. 8 is employed. 

Before proceeding with the determination of kEJ'S using Eq. (1 ), several 

points are considered first: The fragments NC and NO each have a doubly degen

erate ground state (spin degeneracy). In addition, NO has a doubly-degenerate 

excited electronic state at 120 cm-1 excess energy, this splitting arising from 

a spin-orbit interaction (i~1 = 1/2, 3/2). In Fig. 8.1 a schematic correlation 

diagram is given for the present NCNO photodissociation. The initial photoexci

tation involves excitation to the S1 state. The latter state is calculated" to have 

a barrier height above the value at R = oo of 6674 cm-1 , and thus for excess 

energies below this amount either internal conversion to the So ( cf. Fig. 8.1) 

or intersystem crossing to the T 1 state must occur before dissociation can take 

place. Because of the usual rapidity of internal conversion processes the former 

is assumed typically to occur next in the dissociation. Following this step there 

may be "intersystem crossings" and "internal conversions" between the various 

states in the region of the transition state. However, the calculated barrier of 

6674 cm-1 for the S1 state indicates that the S1 and T 2 states probably have 

little influence on the rates. In principle, they could play a role in a determina

tion of the product state distributions in the case of PST, since in PST itself no 

detailed dynamics are postulated to restrict such usage of these states, intersys

tem crossing, etc., and the states may be nearly degenerate at the large Rt(l)'s 

involved in PST. 

A general discussion of the role of the triplet level in RRKM calculations has 
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been given in Ref. 8. The discussion there indicates that what appears to be the 

best current approach to the rate calculations, in the case where the intersystem 

crossing rates and triplet potential energy surfaces are not well-known, is to 

consider only the singlet state So . An alternative model is to consider a limiting 

case where the intersystem crossing rates are very rapid and calculate an NkJ(R) 

as the sum of the number of states for both the S0 and T 1 states (N EJ = 
Nff:J + N'f'J, each of which contains a degeneracy factor Ue which is one for the 

singlet state and three for the triplet state). Then the Rt at which this NEJ(R) 

has a minimum is calculated. 

In order to perform the above calculation a potential energy surface for the 

triplet state T1 is needed. This triplet state is expected to be initially repulsive 

with a small barrier, before becoming attractive by an amount of about 11000 

cm-1 at its equilibrium configuration. (The singlet-triplet splitting is then about 

6000 cm-1 or about half the singlet-singlet energy difference as in other nitroso 

compounds.'') Recent ab initio calculations8 of the T 1 potential surface indicate 

that the barrier height above the value at infinite separation is 4597 cm-1. This 

reasonably large barrier height indicates that the T 1 triplet state is not likely to 

play a major role in the determination of the dissociation rates. 

However, in section III we consider a simple barrierless model for the T 1 

state (which overestimates the possible effect of the triplet state based on the 

ab initio results of Ref. 9) to indicate the difference between a PST and a 

RRKM treatment of an excited triplet state for the case in which the intersystem 

crossing rates are rapid. In PST one typically considers the degeneracies at 

R = oo {because the Rt(Z)'s of PST are usually quite large) in which case the 

T1 contributes an extra factor of 3. For comparison with the contribution of 

T1 with RRKM theory the triplet potential energy is set to zero throughout the 

transition state region (the dashed line in Fig. 8.1.) 

Another point discussed elsewhere8 is that in the expression for kEJ given 

in Eq. (1) it is assumed that there is one dominant minimum in the number of 
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states NEJ as a function of the dissociation coordinate R. For highly flexible 

transition states there may, in fact, be two local minima in the plot of N EJ 

versus R . In section IV, results are given which indicate that although there are 

two local minima in the N EJ(R) plot for a certain energy range, the rate is still 

well-described by merely using the principal minimum in NEJ(R) for N!J· 

One final consideration involves the determination of the density of states for 

the reactant molecule. For the present NCNO dissociation reaction, the number 

of vibrational modes for the reactant is small enough that a direct count of the 

number of states is easily performed. Diagonal anharmonicities were included 

in the direct count used here. These diagonal anharmonicities were estimated 

through consideration of the frequencies and dissociation energies of the respec

tive bonds. Their inclusion increased the density of states by a factor of only 

1.25 at energies near the dissociation threshold of 17085 cm-1 . Off-diagonal an

harmonicites are expected to increase the density of states further, perhaps by 

a factor of similar magnitude. These off-diagonal anharmonicities were not in

cluded in the present density of states calculation, their values not being known. 

However, the correction due to these anharmonicities should be reasonably con

stant over the experimentally-considered energy range of only 700 cm-1 for the 

rates. 

III. REACTION RATE CONSTANT RESULTS 

In this section the results of the present kEJ calculations are compared with 

the experimental results of Ref. 1. Unless otherwise specified the results given 

here are for the case of reaction on only the singlet state S0 • Also, all reaction 

rate calculations were performed for a total angular momentum quantum number 

J of 3, which is the estimate of its average value given in Refs. 1 and 4. 

Before presenting these results we first consider properties of the conserved 

and the transitional modes used here. In the absence of a detailed potential 

energy surface the conserved modes were treated as harmonic oscillators with 

an exponential interpolation between the reactant and product frequencies and 
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reactant and product bond distances being used. 

,\i(R) = .\f +Pi - .\f)g(R), (2) 

where g(R) = exp(-a(R- Re)],8 •10 Re is the equilibrium value of R for the 

reactants, and ,\ denotes v or re, i denotes NC or NO, VNC and re,NC are 

the terminal NC stretch frequency and separation distance, and VNO and re,NO 

denote those of NO. The r and p superscripts denote the reactant (NCNO) and 

products (NC + NO), respectively. A value of 1.0 A -l for the parameter a, 

which has been commonly found to provide agreement with experiment in the 

adiabatic channel model, 10 was used. The properties for the conserved modes 

are given in Table 8.1, together with the frequencies and anharmonicities for the 

transitional modes of the reactant. 

In the model of the potential energy surface assumed here for the transitional 

modes, the sum of a bonding potential for the central NC-NO bond and a 

nonbonding potential for the other interactions within the transitional modes 

was used. The nonbonding potential was chosen to be a sum of 6-12 Lennard

lones potentials for the van der Waals interactions between the nonbonded atoms 

of the two separate fragments, as in Eq. (3) below.11 The bonding potential was 

approximated by a Varshni potential,12 •13 multiplied by the factor cos2(8NcN

Be,NCN) cos2
(8cNo -8e,CNo) to allow for the loss of bonding which occurs when 

the fragments are improperly oriented. Here, 8NcN and 8cNO are the NCN 

and CNO bending angles, respectively, while 8e,NCN and 8e,CNO denote their 

equilibrium values, as given in Table 8.1. The Varshni potential rather than a 

Morse potential was employed since the latter is known10•13 to decay to zero too 

slowly at large separation distances, whereas the former is believed to provide a 

better representation for this region.13 

Assuming this representation of the nonbonding potential VLJ in terms of 

van der Waals interactions we have 
2 

VLJ = ·L '4~ii [Ccri;/ri;)12
- (cri;/ri;)8

], 

i,j=l 

(3) 
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where i and j label atoms in the NC and NO fragments, respectively, and the 

prime indicates that the central NC-NO bond is not included in the sum. The 

parameters CTij and Eij denote the usual Lennard-Jones parameters for the inter

action between atoms i and j; ri; is then the separation distance between atoms 

i and j . The Varshni potential Vv for the NC-NO bond, denoted by CN in Eq. 

( 4), is given by the standard form12 •13 

Vv =DeN { 1- (r;;:) exp [- .BeN (r&N- r~,eN)]} 
2

- DeN· (4) 

The parameters for this model potential energy surface for the transitional 

modes are given in Tables 8.2 and 8.3. The parameters for the Lennard-Jones 

potential VLJ (Table 8.2) were taken for convenience to be the same as those 

which gave good results in Monte Carlo simulations of amides and peptides.14 

The parameters DeN and .BeN of the Varshni potential were chosen to fit the 

total potential energy function to an assumed Varshni potential surface for the 

NC-NO separation distance in the range of 3.3 A. The parameters for this 

assumed Varshni potential surface are given in Table 8.3 and were determined 

here from a consideration of the spectroscopic constants and the force constants 

determined by Wilson G-matrix analysis of the harmonic frequencies in Ref. 15. 

The parameter re,eN for the fitted potential was held fixed at 1.2 A. The results 

depended relatively little on this parameter. 

Results for kEJ calculations for the above model of the potential energy 

surface are given in Fig. 8.2, where the dissociation rates are plotted versus 

energy. Also given for comparison in Fig. 8.2 are results for the case in which 

T1 is included (but with no barrier) and in which the intersystem crossing rate 

in the transition state region is assumed to be much larger than the dissociation 

rates. Recent ab initio calculations show that the triplet state T1 is even more 

repulsive than this simplified model. The result of this is that the contribution 

from the T1 state will be even less than that shown in Fig. 8.2, and it will also 

disappear at lower excess energies. Results are given in Fig. 8.3 for a potential 
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energy surface for which the dissociative singlet state (So) potential has been 

fit to an assumed {3 parameter of 0. 7 A -
2 

rather than 0.48A -l. The resulting 

parameters for this surface are also given in Table 8.3 and labelled as potential 

surface (ii). 

Results of three types of PST calculations are given in Fig. 8.4. They in

volve a classical PST, a quantum PST, and a calculation in which NEJ(oo) is 

used for N kJ in Eq. (1 ). (The latter calculation corresponds to a PST calcula

tion in which the Z-dependent barriers are all at "infinite" separation. While the 

effective barriers can never be at infinity, they can be at such a large separation 

distance that the effective barrier energy, a centrifugal potential plus an attrac

tive potential, is negligible.) The PST calculations have all been performed as 

described in Refs. 1 and 4 with a C8 potential parameter of 1.6 x 105 em - 1 A 8 • 

IV. REACTION RATE DISCUSSION 

The results in Fig. 8.2 corresponding to the singlet plus triplet deviate 

significantly from the singlet state calculation only in the low energy region, 

namely, for E less than about 400 cm- 1 • This disappearing contribution of the 

triplet state occurs as the rate changes from being determined mainly by the 

number of states at R = oo to being determined mainly by the the number of 

states at the inner minimum in NEJ· Also, this effect reflects the R of the inner 

minimum in the number of states being small enough that the singlet-triplet gap 

for the present model surfaces is comparable to or larger than the excess energy. 

That is, when this inner minimum in N EJ is less than about 4 A the difference 

between the minimum potential energy for a given R on the singlet and triplet 

states becomes quite large, while at the same time the orbital kinetic energy of 

the two fragments is becoming relatively large, resulting in a much lower number 

of states for the triplet potential surface. In PST the R-value of the purely Z

dependent barrier of PST does not become this small until much higher energies 

are reached and so the contribution from the triplet remains considerable until 

much higher energies. 
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The results given for the low energies E in Fig. 8.2 for dissociation on the 

singlet state only are quite similar to the PST results for the singlet state shown 

in Fig. 8.4. This similarity arises because at these energies the inner minimum 

in the number of states N EJ is about the same or more than the number of PST 

states (and because the triplet state is being neglected). At higher energies this 

value of this minimum of NEJ actually becomes less than that for PST and so, 

within the framework of the present potential energy surface this new minimum 

represents a better transition state. This effect can be seen in Figs. 8 .5 - 8.7, 

where plots of NEJ(R) versus Rare given for the {3 = 0.7A -
2 

potential energy 

surface at the the three energies, 50 cm-1 , 700 cm-1 and 2000 cm-1 • The results 

in Figs. 8.5- 8. 7 indicate that with increasing energy the inner minimum becomes 

more and more the dominant minimum. 

There are two parts of the potential energy surface function which can sig

nificantly affect the calculated rates: the dissociative and the hindered rotational 

potentials. If the dissociative (bonding) potential actually approaches zero more 

rapidly than that given by the Varshni potential energy surface considered in Fig. 

8.2 the results start to deviate from PST results at lower energies. This effect 

can be seen in Fig. 8.3, where results are given for the different values of the {3 

parameter. In this case for a {3 = 0. 70 A -
2 

the RRKM results already differ from 

those of PST by a factor of 0.69 at an E = 700 cm-1 • The calculated rates also 

depend on the strength and location of the attractive wells of the Lennard-Jones 

potentials describing the hindered rotation of the fragments. While results for 

this case are not presented here, when one simply increases Ui; by about 0.3A, 

the results are analogous to those obtained for the larger {3 parameter study. 

The results in Fig. 8.4 indicate that classical PST and the N EJ( oo) treat

ments of the transitional modes are very similar for these energies, with the 

differences being only about one to two percent. This similarity occurs because 

for the energies employed in the experimental work in Ref. 1 the assumed attrac

tive potential in PST is essentially such a long range potential that Rt(l) is so 
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large that the effective barrier is negligible for even the largest l's present. If these 

1-dependent barriers were completely negligible then the N EJ( oo) and PST cal

culations would give identical results. Similarly, the classical and quantum phase 

space theory results are in good agreement, with the classical calculation being 

typically 10 to 15 percent below the quantum one. Finally, it also interesting 

to note that when only the singlet surface S0 is considered as here, the present 

results using the different types of PST or using RRKM theory are in better 

agreement with the experimental results than the PST calculations given in Fig. 

14 of Ref. 1, where the electronic degeneracy was treated simply as some con

stant over the energy range with a second contribution arising from the upper 

singlet and triplet states shlfted by 120 cm-1 • 

In Fig. 8 .8 the results from three methods for taking into account the 

presence of two minima in the NEJ(R) plot are given. The simplest method 

is to take NlJ as the overall minimum in NEJ(R), and thls is what has been 

done in Figs. 8.2 and 8 .3 here. In another method, termed unified statistical 

theory, HI statistical reflection and transmission probabilities are introduced to 

obtain NlJ· In a thlrd method17 a lower bound is determined (withln certain 

dynamical assumptions) to NlJ· Formulae for these different treatments are 

summarized in Ref. 8. The results plotted in Fig. 8.8 for potential surface (i) 

indicate that in the present case the effect of there being two minima was never 

larger than a factor of 1.4. Similar results for potential surface (ii) indicate that 

the effect was never larger than a factor of 2.0. 

In Figs. 8.9 - 8.12 the dependence of the present potential energy surfaces 

on certain bending angles are presented for typical Rt's. These figures are given 

for a range of R where an ab initio determination of the potential surface for the 

transitional modes would be particularly useful for obtaining improved bending 

and hlndered rotational potential energy surfaces. In particular, from thls figure 

it is seen that in the TS region the absolute minimum in the potential for a given 

R is negative and has a magnitude of a few thousand cm-1 whlle the rotational 
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barriers are positive and have a much larger magnitude. 

V. PRODUCT STATE DISTRIBUTIONS 

In order to calculate vibrational and rotational distributions of the products 

using RRKM theory, some dynamical assumption needs to be introduced regard

ing the motion in the exit channel. In particular, it was assumed in Ref. 5 that 

the conserved modes are adiabatic from Rt toR= oo, and that the transitional 

modes, which are usually of low frequency in the TS region, behave quite differ

ently. Namely, it was assumed that they may freely interchange energy from Rt 
to R,, the position of the loose (PST) transition state. In implementing such a 

theory, the number of states NEJa(R) for a state of excitation i of the conserved 

modes is calculated and its minimum found, at R = R!, say, as in Eq. (6) of 

Ref. 5. (The corresponding rate expression is given by Eq. (7) there.) This 

procedure is followed in obtaining the results in Table 8.4. A more approximate 

procedure is to remove from NEJ(Rt) any states i whose channels are "closed" 

at R = oo, as discussed in Ref. 5. We have used this procedure also. It entails 

less calculation, particularly at large E's, since only one Rt is required instead of 

an R! for each i . In each case, using this vibrational distribution the rotational 

distribution is then calculated from the statistics at Rt (l).5 

Results for energies below the vibrational excitation threshold for the prod

ucts are not presented here, since the distributions predicted by the theory de

scribed in Ref. 5 at those energies are the same as the PST distributions. The 

latter have been described in detail in Ref. 4. For energies above the vibrational 

excitation thresholds calculations have been performed as described in sections 

III and IV except that the conserved modes were treated as Morse rather than 

harmonic oscillators and now the total angular momentum quantum number J 

was taken to be 5 so as to compare with the previous calculations of Nadler et 

al.4 Potential surface (i) was used. 

Plots of the NO and NC rotational distributions, determined by the above 

method are given in Figs. 8.13 - 8.15. Also given there are the corresponding 
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plots determined experimentally and by PST. These results indicate that the 

theory of Ref. 5 provides an improvement over PST in describing the rotational 

distributions at excitation energies above the vibrational threshold. 

In Table 8.4 the vibrational distributions calculated from the present im

plementation of RRKM theory are compared with those determined both ex

perimentally and from PST by Nadler et al.4 It is seen from Table 8.4 that the 

RRKM distributions for the excess energies of 2348 cm-1 and 2875 cm-1 are 

in better agreement with the experimental distributions than are the PST dis

tributions. The RRKM theory distributions could not be determined for excess 

energies higher than 3000 cm-1 because the assumed Lennard-Jones potentials 

were so strongly repulsive in this region that there was no local minimum in the 

NEJ(R) plot. Indeed, by calculating this NEJ(R) at the equilibrium value of R 

in the NCNO molecule, where NEJ(R) is known, it is clear that the Lennard

J ones /V arshni combination does not yield a good result for N E J( Re), at such 

small R's. There is no reason why it should. Instead, the Lennard-Jones poten

tials might only be accurate at low excess energies. Thus, the need for accurate 

ab initio potentials for the transitional modes is once again emphasized. 

Nadler et al. have obtained similar improved agreement with the experimen

tal vibrational-rotational distributions at excess energies above the vibrational 

threshold. Their modifaction of PST labelled SSE in effect calculated the vi

brational distribution for a constant l in the exit channel and neglected the 

centrifugal and radial potentials. The resulting vibrational distribution was then 

used to determine the full rotational-vibrational distribution from PST. 

VI. CONCLUDING REMARKS 

An implementation of RRKM theory for highly flexible transition states has 

been applied to the NCNO dissociation reaction. The ground singlet state So 

is most likely the only state contributing to the determination of the rate con

stants. The results also indicate that the rate constants determined from RRKM 

theory are similar to the PST results for the S0 state only with minor differences 
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at the highest energies studied. The results for the rotational-vibrational dis

tributions indicate that the RRKM-theory-based method of Ref. 5 may explain 

the difference between the experimental and the PST rotational-vibrational dis

tributions at energies above the vibrational excitation threshold. One common 

point of the results presented here is the dependence on the values used for the 

potential surface parameters. Also, the product state distributions could not be 

determined for excess energies above about 3000 cm-1 due to the inaccuracies of 

the repulsive Lennard-Jones surface at these high energies. Thus, an accurate ab 

initio potential energy surface for the transition state region is highly desirable. 
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Table 8.1: Spectroscopic Parameters for NCNO 

Parameter 

(i) Frequencies NC stretch 

( cm-1 ) NO stretch 

CN stretch 

CNO bend 

NCN bend 

(ii) Anharmonicitiesb NC stretch 

(cm-1 ) NO stretch 

CN stretch 

CNO bend 

NCN bend 

Coordinates Re 

re,NC 

re,NO 

8e,CNO c 

8e,NCN c 

Reactants 

Valuea 

2170 

1501 

820 

216.5 

588.5 

13.1 

14.1 

9.4 

0.2 

0.5 

2.4A 

1.163 A 

1.211 A 

120° 

180° 

Products 

Valuea 

2068.7 

1904.03 

13.1 

14.1 

1.1718 A 

1.1508 A 

a Unless stated otherwise, all values are as specified in Ref. 4. 

b Anharmonicities have been obtained from Ref. 4 or estimated from the 

dissociation energy. 

c The values used correspond to .sp and .sp2 bonding geometries rather than 

to the equilibrium bending angles. 
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Table 8.2: Lennard-Jones Potential Parameters for NCNO 

Parameter Units 

uco 3.36 A 

lTNN 3 .25 A 

lTNO 3.11 A 

t.co 51.9 cm-1 

lNN 59.5 cm-1 

lNO 46.7 cm-1 

" All values have been obtained from Ref. 14 making use of the combination 

rules Eij = (t.iit.;;)l/2 and Uij = Huii + u;;). 
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Table 8.3: Varshni Potential Parameters for NCNO 

Surface Parameter Assumed potential11 Effective potential 

(i) re,eN 1.418 A 1.2 A 

f3eN 0.48 A - 2 0.517 A - 2 

DeN 17880 cm-1 32110 cm-1 

(ii) re,eN 1.418 A 1.2 A 

f3eN 0.10 A - 2 0.7725 A - 2 

DeN 17880 cm-1 42600 cm-1 

11 The parameter f3eN was obtained by setting 8 2 V.,11r•h./8rbN = k where k is 

the force constant for the central CN stretch given in Ref. 15. For surface (ii) 

f3eN was arbitrarily set to 0. 70 A - 2 • All other parameters of the assumed 

potential are as determined spectroscopically in Ref. 4. 
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Table 8.4: Vibrational Distributions for NCNO at Different Excess Energies 

Vibrational Excess Vibrational distributions 

level energy (em - 1 ) Exptl. Rt 4 

• Rtb PST 

VCN = 1 2348 0.07 ± 0.02 0.06 0.07 0.034 

VNO = 1 2348 0.12 ± 0.03 0.13 0.13 0.07 

VCN = 1 2875 0.16 ± 0.02 c 0.13 0.11 

VCN = 1 3514 0.20 ± 0.03 c c 0.17 

VCN = 1 4050 0.24 ± 0.03 c c 0.20 

VCN = 1 4269 0.27 ± 0.04 c c 0.21 

4 Rj corresponds to the use of the minimum of NEJ,s(R) for each vibrational 

level i. 

b Rt corresponds to the use of the minimum of N EJ(R). 

c Rt not known. H Rt or Rj ::::::: oo, the results are similar to those of PST. 

H instead Rt = 3.3A, the value at E = 2875 cm-1 , the values for E -

3514,4050, and 4269 cm-1 are 0.15 , 0.20 and 0.23, respectively. 
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Relevant Potential Energy Surfaces of NCNO 

FIG. 8.1. Schematic potential energy diagram for the dissociation of NCNO into 

NC and NO, indicating singlet and triplet states. 
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FIG. 8.11. The dependence of potential energy surface (i) on 8Nc for 8No = 

30 and R = 3.3, 3.5, and 3. 7 A is given by the solid, dashed, and dotted lines, 

respectively. 
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FIG. 8.13. Plot of CN rotational distribution for both the v=O and the v=1 

CN vibrational states at an excess energy of 2348 cm-1 • For v= O the triangles 

denote the experimental results, the circles the present RRKM results, and the 

pluses the PST results. For v=1 the boxes denote the experimental results, the 

x's the present RRKM results, and the asterisks the PST results. 



N 
_o 0 
0 0 _o 
0 
~ 

Q_ 

0 

-191-

N0(2 n112) Rotational Distributions: PST vs. RRKM 
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FIG. 8 .14. Plot of N0(2IT1;l) rotational distribution for both the v=O and v=1 

NO vibrational states at an excess energy of 2348 cm-1 • The triangles denote 

the experimental results, the circles the present results, and the pluses the PST 

results. The v=1 results are the ones with the lower populations. 
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N0(2n312) Rotational Distributions: PST vs. RRKM 
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FIG. 8.15. As in Fig. 8.14 but for the N0(2 ll3 t 2 ) state. 
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Chapter 9: Application of Unimolecular Reaction Rate Theory for 

Highly Flexible Transition States to the Dissociation of CH2 CO into 

CH2 and CO 



- 194-

I. INTRODUCTION 

Detailed experimental results on the energy dependence of unimolecular dis

sociation reactions are just beginning to be obtained. In particular, energy and 

partially angular momentum resolved rate constants and/or energy resolved rovi

brational product state distributions have recently been obtained for a variety 

of unimolecular dissociations reactions including those of NCN0,1•2 H202,3 •4 

CH2C0,5 - 11 and C6Ht .10 A recent series of experiments by Moore et az.s-e has 

examined particularly the nascent product state distributions of the CH2 CO ---+ 

CH2 + CO dissociation reaction. In these latter experiments ketene molecules 

have been photoexcited from both cold molecular beams7 •8 and room temper

ature samples5 •6 at a variety of wavelengths. Also, picosecond photofragment 

spectroscopy experiments are currently in progress in the Zewail group 11 to de

termine the unimolecular dissociation rate constant for this CH2 CO dissociation 

reaction. 

As in NCNO (e.g., see chapter 8 of the present thesis), the ketene photofrag

mentation occurs through first a photoexcitation to the 51 state followed by either 

an internal conversion to the 50 state or an intersystem crossing to the T1 state. 

Dissociation can then occur on either the 50 or T 1 state with the possiblity of 

intersystem crossing occurring between these two states. 

For a given energy there are basically five different rates which must be con

sidered when assessing the relative contributions of the singlet and triplet states 

to the overall dissociation process: 

(i) The rate of internal conversion from 51 to So. 

(ii) The rate of intersystem crossing from 51 to T 1. 

(iii) The rate of dissociation on the 50 state. 

(iv) The rate of dissociation on the T1 state. 

( v) The rate of intersystem crossing from the 50 to T 1 states. 

The question of the role of the first triplet state for ketene is slightly more 
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complicated than it is for NCNO (e.g., see chapter 8 of the present thesis). In 

the case of NCNO the singlet and triplet states correlate to product states of 

the same energy, while the triplet state is postulated to have a barrier with a 

height of approximately 4500 cm-1 above the value of the potential at infinite 

separation. This relatively large barrier height indicates that the first triplet 

state has a negligible contribution to the dissociation process for excess energies 

below about 5000 em - 1 . The schematic diagram of the low-lying electronic states 

for ketene, given in Fig. 9.1, indicates that the situation is quite different in this 

case. In particular, the triplet state correlates to a product 3 CH2 + CO state 

which is 3556 cm-1 below the product 1 CH2 +CO state to which the singlet state 

correlates. The ketene triplet state does have a barrier; however, experiments 

suggest11 that this barrier is less than about 1500 cm-1 • The above two differences 

from the NCNO dissociation process suggest that the triplet state may make a 

large contribution to the overall dissociation rate. At low enough excess energies 

(e.g., at and below the threshold for the singlet) the dissociation must of course 

occur only on the triplet potential energy surface. At slightly higher energies the 

situation is not so clear, while at energies of about 2500 cm-1 or more above 

the singlet threshold the singlet state appears to have the only nonnegligible 

contribution to the dissociation. 

A discussion of a few possible limiting cases for these rates has been given in 

Ref. 8. In the photofragment excitation spectroscopy experiment of Ref. 8, Chen 

et al. found that the singlet/triplet branching ratio increases from 0 to 2 in the 

first 125 cm-1 above threshold. The absence of observation of a triplet product 

at an excess energy of 2350 cm-1 in both the molecular beam study of Hayden et 

al.11 and the VUV LIF study Nesbitt et aZ.S indicates that for this higher excess 

energy the singlet/triplet branching ratio is at least 10. Therefore, the triplet 

state has little effect on the dissociation process at this dissociation energy, and 

only the singlet state needs to be considered when calculating the unimolecular 

dissociation rate constant for this energy region. Actually, the rapid rise from 0 
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to 2 in the singlet/triplet branching ratio suggests that the triplet level may be 

of negligible importance to the dissociation even at excess energies considerably 

lower than 2350 cm-1. 

These results can be understood if one assumes that the rate of internal 

conversion from the 51 state to the So state is considerably greater than the rate 

of intersystem crossing from the 5 1 state to the T 1 state. Then, as the number 

of singlet states rapidly increases with energy, the singlet dissociation rate also 

rapidly increases until the dissociation occurs so rapidly that there is no time for 

an intersystem crossing from the 50 to the T 1 surface to occur. Additionally, the 

presence of a barrier in the triplet surface may cause the number of states for 

the triplet state to increase much more slowly than the number for the singlet 

state. As a result, the dissociation rate constant for the singlet state may become 

considerably larger than that for the triplet state, giving rise to only singlet 

products regardless of the rate of intersystem crossing from So to T1. 

The results of the photofragment excitation spectroscopy experiments of 

Refs. 7 and 8 for the rotational state distribution at low excess energies are 

well modelled by phase space theory12 (PST). However, PST is not expected 

to give a particularly good description of the dissociation rate constant and the 

vibrational-rotational distribution at higher excess energy. For this reason, the 

theoretical method presented in chapters 6 and 7 is applied here to the calculation 

of rate constants and vibrational state distribution for the dissociation of ketene. 

The rate constant and vibrational distribution for a dissociation process occurring 

on only the singlet state will be studied. The model potential surface used is 

similar to that of chapter 8 and is briefly described in Sec. II. The results are 

presented and discussed in Sec. III. The calculational method used here is as 

described in chapters 6 through 8 of the present thesis and so is not discussed 

here. 

II. POTENTIAL ENE.RGY SURFACES 

The potential surface for the transitional modes is taken as the sum of a 
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bonding potential for the breaking CC bond and a nonbonding potential for the 

interfragment interactions for the remaining atoms. The intrafragment interac

tions correspond to the conserved modes and were not represented by a potential 

surface but rather by interpolation formulae. 

The bonding potential was given by a modified effective Varshni potential 

written as 

Vbond =V~/1 cos2 (9cco- 9cco) 

x [cos2 (9Hcc1 - 9iiccJ + cos2 (9Hcc, - 9iicc,)] /2 
(1) 

Here, 9cco, 9Hcc1 and 9Hcc, denote the CCO, and two HCC bending angles, 

while the e superscripts here and elsewhere denote equilibrium values. These 

equilibrium values along with the other spectroscopic parameters used here may 

be found in Table 9.1. 

In Eq. (1) v;ff denotes an effective Varshni potential18 given by the stan

dard form 

( ) }

2 e,e// 
2 

rcc exp [-ae/1 (r2 - re,eff )] -neff -r-- fJCC CC CC CC • 
cc 

(2) 

The quantities D~J, and r';J~f correspond to the C-C dissociation energy and 

separation distance, respectively, while /J~J is the standard Varshni /3 constant 

and is related to the C-C force constant. The parameters for this surface are 

given in Table 9.2 and were determined through a fit of the total potential sur

face (including the nonbonding interactions) to the Varshni parameters, which 

correspond to the spectroscopically determined force constant, dissociation en

ergy and separation distance. This fit was performed for a center-of-mass to 

center-of-mass separation R of 2.8 to 3.0 A. 

The nonbonding potential was taken as the sum of the van der Waals in

teractions between the nonbonded atoms, with the Van der Waals interactions 

represented by Lennard-Jones 6-12 potentials: 

3 2 

VLJ = L'L'4fi; [<u•;/r•;)
12

- (u•;/r•;)
8

] , 

i=l i=l 

(3) 
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where i and j label atoms in the CH2 and CO fragments, respectively, and the 

prime indicates that the C-C bond is not included in the sum. The parameters Uii 

and eii denote the usual Lennard-Jones parameters for the interaction between 

atoms i and j while rii is the separation distance between atoms i and j . The 

Lennard-Jones parameters used here were taken from Ref. 19 and are given in 

Table 9.3. 

The conserved modes were treated with an exponential interpolation20 •21 

between their reactant and product values given by 

~.(R) = ~f + (~i- ~f)g(R), (4) 

where g(R) = exp[-a(R-Re)].20•21 The quantity~ denotes v, re, or ee, the fre

quency, separation distance and bending angle, respectively, for the given atoms, 

and i denotes CH, CO, or HCH. The r and p superscripts denote the reactant 

(CH2CO) and products (1CH2 +CO), respectively. The parameters for the con

served modes are given along with the other spectroscopic parameters in Table 

9.1. 

III. RESULTS AND DISCUSSION 

The calculations presented here are all for a total angular momentum J of 

3. The overall statistical factor for the dissociation on the singlet state only is 

given by 1. The density of states was calculated from the harmonic frequencies 

given in Table 9.1. The contribution of the anharmonicities to the density of 

states should be small (i.e., less than about 2) and also it should be the same for 

both of the calculations to be presented. Thus the qualitative findings would be 

unchanged. 

In Fig. 9.2 results are presented for the rate constant for the dissociation on 

So in the energy range from 100 to 5000 cm- 1 above the singlet threshold. Given 

there are results from both a variational treatment of the transition state and 

from an alternative calculation where the transition state location ( Rt) is fixed at 

co. This latter calculation corresponds to a classical PST12 calculation on a very 
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strongly attractive potential, because in the case of a strongly attractive potential 

the orbital angular-momentum-dependent effective barriers are negligible. Chen 

et al.8 have found that in the PST model a very strongly attractive potential gives 

the best agreement with the experimental results. From the results given in Fig. 

9.2 it is seen that the deviation between the variational RRKM calculation and 

the Rt = oo calculation rapidly increases as the energy increases. The ratio of 

the result at Rt = oo to the variational result increases from 1.5 to 7.5 as the 

excess energy increases from 100 to 5000 cm- 1 • 

It is interesting to note that this deviation of the variationally determined 

rate constant from the Rt = oo rate constant is considerably larger than that 

observed in the previous applications of this method. One reason for this can 

be seen when making a comparison of the Varshni {3 parameter for the previous 

applications with that for CH2 CO. For NCNO, C2 H8 , and H2 0 2 the {3 parameter 

is given by 0.48, 0.37 and 0.61 A - 2 , whereas for CH2 CO the {3 parameter is given 

by 0.73 A - 2 • As a result, the fragments come in closer contact before feeling any 

strong bonding attraction, thereby allowing the repulsions between them (i.e., 

the Van der Waals repulsions and the orbital angular momentum repulsion) to 

be of larger magnitude, leading to a smaller value for the phase space integral at 

the transition state, which enters the variational RRKM rate constant. 

Preliminary calculations on the distribution of vibrational states have also 

been performed. These calculations are based on the method presented in Ref. 

22 and are similar to those described in chapter 8 of the present thesis for NCNO. 

In particular, the vibrational distribution is postulated to be determined by the 

number of states at RJ, i.e., the location of the minimum in the number of states 

for vibrational state i. The rotations, however, are postulated to be determined 

by the statistical PST12 distribution at the location of the PST orbital angular 

momentum-Z-dependent transition state Rz. In Table 9.4 results of calculations 

for the vibrational distribution are presented for three different energies. These 

three energies correspond to typical energies of the photoexcited ketene molecules 
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in the experimental work of Ref. 5 (taking into account both the initial ther

mal energy of the ketene molecules and the laser excitation energy). The laser 

wavelength used in Ref. 5 corresponds to an excess energy of 2350 cm-1 while 

the thermal distribution resulted in populations of initial ketene of greater than 

0.01 for energies in excess of 1000 cm-1 (e.g., see Fig. 4 of Ref. 5). For a direct 

comparison of the present results with those of Ref. 5 the vibrational distribu

tions should be averaged over the thermal distribution given there. However, 

for purposes of illustration the calculated vibrational distribution is given for an 

energy which corresponds to the laser excitation energy and also for two other 

energies which correspond to the sum of the laser excitation and 500 and 1000 

cm-1 • 

The experimental results for the vco = 1 vibrational distribution was 

0 .09 ± 0 .05 at an excess energy of 2350 cm-1 . Taking into account the initial 

thermal distribution of the ketene molecules, the PST results was given by 0.013. 

The results given in Table 9.4 suggest that with the proper thermal averaging, 

the RRKM theory result would increase the PST result by roughly the amount 

necessary to accommodate the experimental data. 

Perhaps it should be mentioned here that a difficulty arises in the calculation 

of the vibrational distributions in the case where an overall Rt is used rather than 

individual Rj 's. This difficulty occurs for the following reason: The total number 

of states is at its minimum at R = Rt and thus slowly varies with R for R near 

Rt. The number of states for the particular vibrational state of interest is instead 

far from its minimum at R = Rt and thus rapidly varies with R in this region. 

Thus, a small error in Rt can result in a large error in the number of states for 

the particular vibrational state of interest. Correspondingly, the value obtained 

for the particular vibrational distribution depends strongly on the exact location 

of Rt. 

In summary, the CH2 CO dissociation process presents a good example of a 

dissociation process where the hindered rotor nature of a loose transition state 
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causes considerable differences from PST to occur. The present implementation 

of RRKM theory predicts a decrease by a factor of about 7 from the PST result 

for the singlet state rate constant at an excess energy of 5000 cm-1 . Such a 

difference could well be distinguished experimentally. Also, the present imple

mentation predicts an increased vibrational excitation over PST in accord with 

the experimental observations of Ref. 5. 
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Table 9.1: Spectroscopic Parameters for CH2CO 

Parameter 

Frequencies CH stretch 

(cm- 1 ) CH stretch 

CO stretch 

HCH bend 

CC stretch 

CH2 rock 

CH2 wag 

ceo bend 

ceo bend 

Coordinates Re 

re,CH 

re ,CO 

81fcH 

Be co 

Reactants11 

Value 

3166 

3070 

2152 

1388 

1118 

977 

591 

525 

438 

2.054 A 
1.011 A 

1.161 A 

122.0° 

180° 

Products" 

Value 

2864 

2806 

2156 

1352 

1.11 A 

1.128 A 

102.0° 

11 The parameters for the reactants have been obtained from Refs. 13 and 14. 

b The parameters for the products have been obtained from Refs. 15 - 17. 
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Table 9.2: Lennard-lones Potential Parameters for CH:rCO 

Parameter Units 

uco 3.36 A 

UCH 3.40 A 

UOH 3.00 A 

~co 56. cm-1 

~CH 11. cm-1 

~OH 13. cm-1 

4 All values have been obtained from Ref. 19 making use of the combination 

rules ~ij = (~ii~;;)ll2 and Uij = l{uii + u;;). 
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Table 9.3: Varshni Potential Parameters for CH2CO 

Parameter Assumed potential<~ Effective potential 

re,CC 1.316 A 1.15 A 

f3cc o.73 A - 2 0.7765 A - 2 

Dec 32304 cm-1 65750 cm-1 

G The parameter f3cc was obtained by setting 8 2V"ar•h/8rb0 = k where k is 

the force constant for the central CC stretch given in Ref. 14. 
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Table 9.4: Vibrational Distributions for CH2 CO at Different Excess Energies 

Vibrational Excess Vibrational distributions 

level energy ( cm-1 ) RtG 
• 

Rt~> 

vco = 1 2350 0.016 0.06 

vco = 1 2850 0.07 0.11 

vco = 1 3350 0.10 0.09 

11 R] corresponds to the use of the minimum of N EJ,i(R) for each vibrational 

level i. 

b Rt corresponds to the use of the minimum of NEJ(R). 
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FIG. 9.1. Schematic potential energy diagram for the dissociation of CH2CO 

into CH2 and CO. (Taken from Ref. 8.) 
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Appendix: Comparison of RRKM Theory with the Statistical Adi

abatic Channel Model and with Phase Space Theory for the H2 0 2 

Dissociation 
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An alternative method for determining the transition state number of states 

for dissociation reactions containing highly flexible transition states was devel

oped by Quack and Troe1 and has been termed the statistical adiabatic channel 

model (SACM). This method is based on an adiabatic approximation for the 

motion from the reactants to the product. Interpolation formulae are then used 

to calculate the energy levels as a function of separation distance R. The number 

of states for a given energy E and angular momentum J is then given by the sum 

over all the different rotational vibrational states whose total angular momentum 

is J and whose maximum energy as a function of R is less than the energy E. 

In this appendix the results of a variational RRKM theory calculation are 

given and compared with the corresponding results of a SACM calculation. Also 

given, for comparison, are results of calculations based on classical phase space 

theory2 and calculations based on the number of states when the fragments are 

at infinite separation. The SACM calculations are taken from Ref. 3, while the 

variational RRKM calculations are based on the formalism presented in chapters 

6 through 9 of the present thesis. 

The calculations presented are for the photodissociation of H 2 0 2 • This 

photodissociation reaction has been of considerable interest recently.3 - 11 Scherer 

et al. 8 used picosecond photofragment spectroscopy to determine the dissociation 

rate constant for the VCH = 5 overtone. The energy of this overtone state is just 

below the threshold for dissociation, and so the dissociating molecules must have 

an initial thermal excitation of either a vibrational mode or, alternatively, their 

rotational state. Other experiments have been performed by Crim et al. 4 in which 

the product state distribution is determined for both the vcH = 5 and VCH = 6 

overtones. They also used linewidth measurements in Ref. 5 to estimate the 

lifetimes for these same overtone states. 

The potential energy surface used is identical to that discussed in Ref. 9. For 

completeness the spectroscopic parameters and the parameters for the potential 

energy surface are given here in Table A.l. The potential surface used is based on 
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a sum of exponentially interpolated bending potentials for the HOO bends and 

an exponentially interpolated torsional potential. Also, the bonding interaction 

is treated as a Morse potential. More detail of the potential surface used is given 

in Ref. 9. The density of states was not calculated here, but rather the values 

listed in Table I of Ref. 3 were used. 

The results of the present RRKM theory calculations are given in Tables 

A.2 and A.3, along with the results from the SACM calculation of Ref. 3, a 

classical phase space theory2 (PST) calculation and a calculation based on infinite 

separation of the fragments. Quantum PST calculations are very similar to the 

classical PST calculations, differing by at most 10%, and so are not presented. 

The Cs parameter used in the PST calculations is 1 x 10s cm-1 As. 

Considering first the J = 10 results of Table A.2 we observe that the results 

of all four calculations are quite similar. The N EJ( CX>) and the PST results are 

within 3% for all energies listed, indicating that the orbital angular momentum 

effective barriers play little role. The variational RRKM results are a factor 

of 0.61 below the NEJ(CX>) results atE= 200 cm-1 and rapidly increase to a 

factor of 0.88 at energies of 1200 cm-1 • It appears that the reason for the greater 

difference at lower energies is due to the torsional potential which rapidly loses its 

importance as the energy increases. Also, the torsional potential is interpolated 

with the exponential interpolation g(R) rather than its square as in the bending 

potential and for this reason may be dominant at large separation distance. The 

ratio of the SACM calculations to theN EJ( CX>) on the other hand is more constant 

ranging from 0.62 to 0. 75. 

In the J = 40 calculations much larger differences are observed between the 

four calculations. For this large value of the total angular momentum quantum 

number J, the orbital angular momentum (1) dependent effective barriers now be

come a dominant factor at the lower energies. The importance of the I-dependent 

effective barriers can be easily seen by comparing the N EJ( CX>) calculation, for 

which the Z-dependent barriers are neglected, with the PST calculation. Here, 
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the PST results obtained are quite strongly dependent on the value of C6 po

tential parameter. For example, a C6 parameter of 5x105 gives PST results of 

1.4 x 109 and 1.0 x 1010 for excess energies of 200 and 400 cm-1 • 

Once again the exponentially interpolated torsional potential causes the 

RRKM calculation results to be below those of the SACM calculation at the 

lowest energies. However, at higher energies the RRKM calculation gives results 

which more closely approach the PST and N EJ( oo) results than do the SACM 

results. A possible explanation for this effect lies in the fact that the SACM cal

culation assumes harmonic oscillator bending energy levels in its interpolation 

formulae regardless of the excess energy. In fact these bending motions are hin

dered rotational motions, and so at high enough energies the energy levels will 

deviate quite strongly from the equivalent harmonic oscillator levels. The energy 

levels are actually more closely spaced than the harmonic oscillator energy levels 

and as result the number of states is closer to that of PST. 

In summary, for the parameters used here to model the H:zO:z dissociation 

reaction there is little difference, in the results for the rate constant, between 

the PST calculations and the more detailed RRKM and SACM calculations. 

The differences that do arise between the results of the different calculations are 

largest in the case of low energy for J = 40. In particular, the importance of the 

orbital angular momentum effective barriers is evident in the latter case. 
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Table A.l: Potential and Spectroscopic Parameters for H 3 03.11 

Parameter Value Parameter Value 

Reactants 

oe 
1 100° fs1 6.34 x 104 cm-1 

oe 
2 100° fs, 6.34 x 104 cm-1 

rHO-OH 1.462 A DHO-OH 19097 cm-1 

roH o.965 A f3HO-OH 2.45 A - 1 

Re 1.485 A 7"e 120° 

voH stretch 3608 cm-1 Vo 876.3 cm-1 

voH stretch 3599 cm-1 V1 1093.4 cm-1 

VHOO bend 1402 cm-1 
V2 546.7 cm-1 

VHOO bend 1266 cm-1 v3 -56.4 cm-1 

voo stretch 877 cm-1 

vT torsion 243 cm-1 

Products 

voH stretch 3735 cm- 1 
roH 0.9710 cm-1 

Interpolation 

a t.08 A - 1 

11 All parameters except for f3HO-OH and a are as described in Ref. 3. The 

latter two parameters are as described in Ref. 9 . 
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Table A.2: Comparison of RRKM, SACM, N EJ( oo ), and PST Calculations of 

k(E, J) for the Unimolecular Dissociation of H2 02 . J = 10 

Ea kRRKM (s- 1 )b ksACM (s-1 )c kN1u(oo) (s-1 )d 

J = 10 

200 3.7 (9)1 4.2 (9) 6.1 (9) 

400 1.8 (10) 1.8 (10) 2.4 (10) 

800 7.0 (10) 6.0 (10) 8.5 (10) 

1200 1.6 (11) 1.2 (11) 1.8 (11) 

1600 2.5 (11) 1.8 (11) 2.9 (11) 

2000 3.5 (11) 2.7 (11) 4.0 (11) 

2400 4.6 (11) 3.6 (11) 5.2 (11) 

2800 5.7 (11) 4.3 (11) 6.4 (11) 

a Energy above the zero-point energy level of the products. 

b RRKM calculations of kEJ· 

c SACM result from Ref. 3. 

kpsT (s-1 )e 

5.9 (9) 

2.3 (10) 

8.4 (10) 

1.8 (11) 

2.9 (11) 

4.0 (11) 

5.2 (11) 

6.3 (11) 

d Calculation using the number of states at infinite separation of the two OH 

fragments. 

e Classical PST calculation. 

I The numbers in parentheses denote the power of 10. Monte Carlo errors are 

in all cases less than 5%. 
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Table A.3: Comparison of RRKM, SACM, NEJ(oo), and PST Calculations of 

k(E, J) for the Unimolecular Dissociation of H202. J = 40 

Ea. kRRKM (s-1 )11 ksACM (s-1 )c kN~J(oo) (s-1 )d 

J = 40 

200 5.7 (7)1 4.6 (8) 4.3 (9) 

400 2.7 (9) 4.5 {9) 1.7 {10) 

800 2.4 {10) 2.5 {10) 6.1 (10) 

1200 6.5 (10) 6.0 (10) 1.2 (11) 

1600 1.2 {11) 1.0 (11) 2.0 (11) 

2000 1.9 (11) 1.5 (11) 2.8 (11) 

2400 2.6 (11) 2.1 (11) 3.7 (11) 

2800 3.4 (11) 2.7 (11) 4.5 (11) 

a. Energy above the zero-point energy level of the products. 

11 RRKM calculations of kEJ · 

c SACM result from Ref. 3. 

kpsT (s-1 )e 

0 

3.6 (9) 

3.2 (10) 

8.0 (10) 

1.4 {11) 

2.2 (11) 

3.0 (11) 

3.8 {11) 

d Calculation using the number of states at infinite separation of the two OH 

fragments. 

e Classical PST calculation. 

I The numbers in parentheses denote the power of 10. Monte Carlo errors are 

in all cases less than 5%. 


