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SUMMARY
Solutions to ﬁhe Prandtl-Glauert differential equation expressed
in terms of polynomial type Lamé funoctions can be applied to the pro-
blem of the thin delte wings with subsonio leading edges in a super-
sonic flow field, It is demonstrated how thess functions of different
sfecies aend degrees of homogeneity may be employed to obtain previously
known results for certsin lifting ceses, For the non-lifting or thick-
ness case which is treated in deteil in this paper it is shown that a
large class of thiokness distributions with blunt leading edges mey be
obtained by systematically studying the lemé functions of the first
species, In particuler these functions have been investigated up %o,
end ineluding, n = 5, It is further shown by the methods of this paper
that the presoription of the pressure distribution in problems of this
sort is not always sufficient to determine the thickness distribution

uniquely.
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I. INTRODUCTICH

It has been shown by various authors that the supersonic flow fields
associated with thin triengular wings may be determined to first approxi-
mation by means of linearized compressible-flow theory. These wing prob-
lems may be further specialized and subdivided into two general types.

The first of these is the so-called "Lifting Case" where the wing may be
thought of as having zero thickness, and it is required to find the 1lift
distribution associgted with a specified angle of attack distribution,

or to find an angle of attack distribution (Camber) to support a given
1ift distribution. The second type problem is the so-called 'Non-lifting"
or thickuness case usually‘associated with the form drag of a wing. In
this case the boundary conditions given for e wing with a thin symmetrie
profile are either the pressure distribution et the surface or the thick-
ness distribution,.and the problem is to find réspectively the thickness
distribution or the pressure distribution. Cther boundary value problems
of the so-called mixed type involving both 1lifting and non-lifting regions
on a wing (say) as in the case of control surfaces on a wing at zero in-
cidence may be handled by a superposition of solutions to the problems of
the type outlined above.

This paper is primarily concerned with the second of these boundary
value problems, namely the thickness case associated with triangular wings
vhose leading edges are swept behind the liach cone and whose section
profiles give blunt leading edges. Thiclmess problems of this type have
been treated by Squire (Ref. 1) and Lomax and Heazlet (Ref. 2). The
approach used by Sguire is en application of the method developed by

Robinson for expressing the solutions of the linearized eguations of
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motion in terms of Lamé Funotions, In this way Squire hes demonstrated
how to obtain the pressure distribution over thin triasngular wings having
elliptio oross-sections normal to the flow direction. Lomax and Heazlet,
‘on the other hand, have used integral equation technigues relating the
pressure distribution to the thickness distribution to solve problems of
a similar nature in which they may prescribe the mressure to obtein thick-
ness or thiokness to obtein the pressure. In this paper, however, it will
be shown that the former method mey be applied snd extended to provide a
direet approach for relating the pressure distribution to the thickness
distribution and may be used to obtain a large variety of continuous thick-
ness distributions over triangular wings with blunt subsonic leading edges.
Further it will be indicated how by superposition, wings with olosed trailing

edges may be obtained,



II. ANALYSIS

" A. General Theory

Incorporating the usual assumptions of zero viscosity énd heat
conduction, irrotstionality, isentropy, no body forces, and no dis=-
continuous shock phenomens, it cen be shown that the steady-state com-
pressible potential flow for a perfect gas may be described by the

equation - 2
28(v*9) = v v (v ) (1)

where a“:fg is the local speed of sound and@ is the velocity

potential where

VQ):A \Al= Vur4vz, w? (2)

Using the well known concepts of smell perturbation theory (see
Ref, 4) wherein it is assumed that the velocity components vary slightly
from the uniform flow of velocity,\];, equation (1) mey be linearized

snd expressed as
3 2 2
2_\249 _ 3¢ _ 3¢ _
the Prendtl-Gleuert equaetion. Here Mfgﬁ is the iMach number associgted
I
with the conditions in the undisturbed free-stresm. The velocity potential
¢ in equation (3) is now thet poténtial which is asgociated with the dis-

turbance (perturbation) welocities and may be considered additive to the

uniform flow potential V; % 3 that is

§-Vox+q (¢)
vq= A Wi=Vuzvive ()




The perturbation pressure, the difference between the local and free-~

streanm pressure, is

- =~ b|=- 03_9
P-B=-pVuw=-¢,V 39 (5)

The boundary condition governing the local flow inclination is

dz _ w'_ 1 29 | (6)

dx- o V. 3%
which is prescribed in the x-y plane.
B. Hyperboleido-Conal Coordinates

It has been shown by A. Robinson (Ref. 5) to' be of advantzge when treat-
ing problemg dealing with triangular wings with subsonic leading edges in
supersonic flow to re-express equation (3) in terms of the so-called Hyper-
boloido-Conal Coordinate system which is cheracteristic of the geometry of
these wings (see Appendix A-I). This system of coordinates él., 1), M oig
defined by three families of quasi-orthogonal quadric surfaces whose equa-
tions may be written in general as

x> ¥t Z% e )
For” o5R T 851 T (e kNe™y)

where O LM S0 and k$9$1$&$¢0. Taking © in equation (7) equal

(7

to é,\,,'a) and 00 , respectively, the equations for these surfaces be-
c.ome
xt - y* _ z % = O , (8)
U pERE S e
<2 _ Y% . z% | (9)
R=¥*  Yik® YA
—g;-sz“zz = 2 (10)

Equations (8) and (9) represent families of elliptic cones while equa-
tion (10) represents a hyperboloid of two sheets. While M,  ana Nt

zay not vYe expressed simply in terms of X, 4 , 7, these Cartesian
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coordinates mey be readily expressed in terms of&l s V ., as follows:

R \
2_ Z r%) .
I (T [
YT e (1)
2 N(EE—a-»2l
= %
LEETT

In Fige 1 it may be observed that traces of the families of cones in

the, planes X oconst?O sars ellipses for the surfaces(u const., and
reotangul:‘arv hyperbolas for the surfaces 3 oonst., For each point
(th,v,lb), (See Fig. 1) there correspond four points ( oL, y .,z ),
hence, it is not clear what sign is associated with each of the quantities
under the square roots in equstion (11). This difficulty may be reisolved
by re-expressing these relations in terms of the Jacobi elliptic functions,
In Appendix A-II it is shown that over the range of variation ofé.l and ¥V ,
the square roots involving the var iable;\) only. change sign., That is,
W takes the same sign ss y and W tekes the same sign as Z .
The limit surfaces of the families of elliptic cones are of special
interest. It mey be noted from equations (8) and (10) that the surface
'éL= o0 end = O correspond to & circular cone emsnating from' the
origin and for the cases sonsidered here it represents the Mach cone

: 2
X _4°-z%=0 (12)

where é— is the slope of the Mach cone in a meridian plene through the
origin (See Fig, 1), I% may be further noted in Fig, 1 and from
equations (8), (9), and (10) thatzl-:lccrresponds to £#= 0 and that
part of the x - y plane bounded by the rays from the origin

3 :
_ K (13)

B%

5
*



where for

‘Qo=h .,'t:O and W=1, L=¢* 1-;2.?'._._ * Mo

Here the ray described by t = O corresponds to the positive x-axis and
the one given for 1) = 1 1is taken as the slope of the leading edge, mgq,
and where R=VI®Z = Mo that is; the ratio of the slope of the lead-
ing edge to the slope of the Mach lines, It should further be noted from
equation (12) that the traces of the Mach cone in the Z=O plane
corresponds 1o : .g, -+ L
o x=73

hence, the leading edges of the wings in question are always behind or, at
most, lie on the Mach cone. The latter case will be omitted from this
analysis and only the cases where \Bm\(i, namely %k >0, are treated.

In a similar manner if Yy is taken const. equal to one it will be

noted in Fig, 1 and equations (8), (9) and (10) that the surfaces degenerate

into that part of the x~y plane described by the rays from the origin

(;“_) o VR 1€Moo (1)
XD o -

730

(}.:‘L Y . 1‘—h2— *Mo
X
the slope ol the leading edge and for

= ) i
Pm i—:t‘é

corresponds to the Mach lines in the x~y plane. This region in the x-y

where for

plane therefore is that part between the leading edge and the Mach cone

(see Fig. 1).



C. Lamé Solutions

Equation (3) trensformed into the Hyperboloido-Conal System of

Coordinates becomes (See Appsndix A-I for Development).

' ({U.@_);a)g_(hz atﬂ) \K[L lez kz) C, (\M‘bﬂ@i ) a—@)(ls)
-\ a\w\fn ) Y)- o

If a solution of equation (15) is chosen as

Q:/(.n 1|f(t*)1))

a partial separation of wariables may be accomplished such that

satisfies the following equation.

2 2} -\ UE D (uER? z ZR2) oW
nlnes) (P22 Y- V(e D k)%&\[(g (T )5_[*) .
N1 z’;@v (\Kv"-\z")(t—vz)%gg) =0

A further separation of veariables is possible if {Jis chosen as

S TW)

Substituting this solution into equation (16) leads to the normal form

of Lamd equation as given in Hobson (Ref. 6)3namely'
é_ {n(mi)(fs —}l[(gz-hzﬁ(éf-l)] g|_§

(H hz)(t'k 1) dZS } P(k (17)
_L{h ) V2T - v[(v 218 -(-1d T
T dy

+ (9% B)({U-vd) dj-_]‘]: p (K2
3ve



- T8 -

In equation (17) above n is not necessarily an integer and it is
sufficient to take ﬁ > =1/2 (see Refe 62), Periodic solutions exist
for certain characteristic values of p. For integral values of n there
exist periodic Lamé functions which may be called Lamé Polynomials;
however, it should be pointed out that there are also periodic solutions for
integer values which are not polynomials, In this paper, however, only
those solutions of integral n which are polynomials are studied. These
polynomials are of degree n in one of the Jacobian elliptic functions or
in two or more of them together, Furthermore these polynomials are
doubly periodic of periods 2K or UK (see Ref., 6a), In this paper it has
been found that those polynomials which are doubly periodic of period 2K
in M and 2iK' in 3) have led to certain usable physical results. Tt
should be pointed out however that although solutions exist for non-
integral values they have not been studied here., The integral values for
which the Lamé polynomials exist of period LK do not exhibit the symmetry
conditions required for the particular boundary value problems under con=
sideration here and hence have not been studied,

In particular the polynomial solutions which have been used in this
paper may be determined in 2n + 1 different ways (see Refs., 6 or 6a).
These functions are doubly periodic of 2K or 2iK' and single valued
functions of the variables & and ¥ which are the arguments of the
Jacobian elliptic functions introduced by the relations A = ns(o¢ , k)
and Y/ = nd( ¥, k'), (See Appendix A-~II), The solutions which are
functions of ¥ are finite over the range k ¢« 2 £ 1, while the soiutions
which are functions of (A over the range of variations 1 £ (* S o0

are finite for 1 { A <00 , and approach infinity like FJ“ .



The notation of Ref, 6 has been employed here to define the Lamé

functions although alternative definitions may be used (see Refs, fa,

6b, and 6c)e These solutions for S( ) in equation (17) are character-
’ Y

ized as followss¥*

Jn he2i Jn o2
]K=§°: ajmp. = gajm(nSd) = ].E’(

. ﬂ n even neven
) ={2} No.ogp v, = zH(ney
n n—g— n Odd © q: N4 hodé
2

' :}'n . :Sn
L - Ve 2 amp ™2 dsa )y e dsa B

2-1)n
J\—F {n~1} cven No of SOL { n neven
> ) nodd nodd

M=V Lamil " s cox Lajmlnsd = csx B,

N_yYneven M Yneven
In = {% } No of SDL.‘*‘ 2
—?}' n odd "——*2'_‘ h odd

n-2(3+1)

N- {(t'\"ﬂ(“ hz) Za " Z(Jﬂ = CS« dS'XZr\Jm(\'\SD() = 5

N _4)neve
Jh:{:_a} h No o Sm_— 2 heven
Z)nodd “"‘ nodd

#*

Note: The symbols E( 3 R , and ]Pj)vl are polynomials

while E is a polynomial multiplied by \]él-bsl =d §e¢



In Table I may be found some examples of these functions up to
the degree' n = 34 In particular, Appendix B illustrates the method for
determining the coefficients for the UK type Lamé functions which are
polynomials of degree n, These polynomials will be referred to by the
symbol Sﬁ?{ﬂ where n is the degree of homogeneity and where (m) is
associated with the number of solutions, That is for the K species,
(n) = 1, 2500 %.._ 1 or [‘%_1 depending on whether n is odd or evens
In addition there exists a second solution to equations (17), Lamé's

Equation, which is usually described as a Lamé Function of the second

kind which may be given in terms of the first kind as

J (t“ S
ST [S‘""g)] VigZnE=k")

Lg pg (19)

where the upper limit is chosen such that ‘JLn\ vanishes at (A =00 ,
Equation (19) in general will be expressed in terms of the elliptic
integrals of the first and second kind and it is useful to introduce
the Jacobi elliptic functions, that is, if (Azﬂs(d,k)then equation (19)

may be re-~written as

) =80 g5
J ("Zw "y .
Scm) {* ) [ X;(“S"‘ﬂ (20)



From equations (19) or (20) it may be seen that there will be the same
nunber of solutions for the second kind of Lamé function as there are
for the first kind, namely (2n + 1). (See Appendix C,) The Lamé
functions of the second kind, defined in equation (20), are finite for
all space external to the elliptic cone Ck const > 1 and vanish on
the Mach cone tA =00 o Hence it is possible to define a perturbation
velocity potential in Hyperboloido=Conal Coordinates in terms of the

Lamé functions of the first and second kind as

m) {m) (m\
C mn JJ ( 8) " (V) - (21)
where Cgis a constant of proportionality and n is the degree of homogeneitye

D. Boundary Conditions

1, Thickness Case (Symmetrical Potential TK type Lamé Function
Symmetry with Respect to y and z)

The vertical velocity in the x-y plane is

’\]C!Z a(ﬂ _ w-zia“g §§ ?1"'»—
o = S

dx 3z =V (22)
e . €, 7 §
>0 ?s’” %3-_»
Z-70

where the values of 3_&% are given in Appendix A-I, equations A23) which

when substituted into the above expression becomes

A B
Ve &% ax - ﬁ\—v RO

B = Zam i (23)

Sy = k[&—ﬁ?‘f]_/& = ﬁ[M% £
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The thickness distribution then may be obtained by integrating

equation (23) with respect x = y/t as

N(z-2Z0) = Qs_ﬁj P ap|[ LB dt
P

..tz .t
m, gy, (24)

LS
V(Z z)= (WE'B (P egvi)dg

IPK“) lea&mg g R'z)z”q gz'

The pressure associated w:Lth this thickness distribution may be

or

expressed as

Ap_. _2 39 _ 2u 23@3 4 (25)
d . \Lax -\ Q
¢ VX € % Vi,
where the values for3§$ g?eoglven in Appendix Aj,equetion (A23). This
% .
expression becomes upon substituting 33_%
Ap _ z(ﬂn‘" ‘ (ﬂ[ml, () - (- kz) 9 “D(" AJS
+ "\L,R (28)

Jx—“ﬁﬁ

or, by putting in the values for 3, and inver ting the elliptic integral,

eqQuation (26) becomes*

a4 dn 2(+-25) k®)

%f“%?(*‘%%nz e \W’czzwwl = i

* The upper limit is K(k), the complete elliptio integral of first kind,end -

should not be confused with Lamé Funotion notation here.
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2. Lifting Case ( Asymetric Potential M type Lemé Functions
" Assymetric With Respeoct to Z )

The vertiocsl velocity distribution in the x - y plane is-

9 _ R PP d¢
Vcdli %z d:'f‘ HE\M 1)15 f“?.(ﬂ g\u‘?—ﬁ

él—)‘

70

or substituting values forlp, r and inveriting the integral

K()

Nz (;“(m) W’mfa,m(‘(\'@)[ ‘T_E_@éscg € (29)

The above expression leads to the Camber shape expressed as follows:

K
t
z)= Rk [d] s gt
V,(Z-Z, Q‘é R(‘) J@{W SQ&%M“&(’L)“ _t—zX( 30)

The 1lifting pressures, that is, coefficient of loeal 1ift @Q‘associated

with the ebove lifting surfasce, may be written as-

28p _ oAb (2P (s1)
+ - VopR ROV | 3-p° B0 | *
&30

— (3R GL
£3) ¢



E. Wave Drag For Wings Generated By Lamé Functions

1. ' Thickness .Case
The Wave drag of the wings which are aonsidered (blunt leading
‘edges) may be divided into two parts, that is: 1. drag due to the surfaoce
pressures vwhich contribute to the normel force end, 2., the drag due to
the pressure exerted at the leading edge in the stream direotion (finite
'i‘oroe acting over the érea at the leading edge), The pressure drag
desoribed in the former category may be determined simply by ihtegra ting

the component of the pressure in the stream direction over the wing surface

or.

Cor 3 JJ () PN -4 dllEEgen o

Substituting the values "Z_and (&x given in equatlons (23) and (26)

respectively, this drag may be expressed in cosfficient form as

KR

G __zC d% “IP(u,)[nh z@tza P(ﬂﬂ (35)
[q(i-B’i‘))  gdydt
—S.;‘)T 12 qmo -
The drag due to so-called leading edge “push" was computed by R. T, Jonses

in Ref. 7 for an elliptic leading edge,and it is given here in a more general

form as

e

Co

2

Coy= gme (L) j}\max (34)
T GI-gma\ 2CM!

T
where M. 2% shown in Fig, 2 may be considered a thickness ratio of

the oross-=section of an elliptio cone, The development of equation (34 )

and values for “(i)are given in Appendix D,



The total drag coefficlient is therefore

Co = Co,» ,C%- (35)

2, Lifting Case

Just as for the thickness case, the drag of a lifting wing
in supersonic flow may be determined by integrating the lifting pressures
o&er the wing surface and by subtracting from these forces the leading
edge "thrust" due to the sustion st the leading edge. For the infinite-
simally thin wing at angle of atteok the drag due to 1lift expressed in
coefficient form is Corco—c\—,“_ where Cooz CLO( and where CDG'
is the "ooefficient of drag" dus to leading edge suction which for a

flat trisngular wing is

= W o ?f_z_ 36
Co, R{1vms) = (36)

(Sge Ref. 7) E(k) is the normalized complete elliptic integral of the

|

second kind.
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I1I. APPLICATIONS

A. Lifting Cases

It will be of inbterest, before progressing to the thickness end
thickness drag coﬁsiderations, to demonstrete the utility of this approach
to obtein ocertsin well known solutions for the infinitesimally thin,
asym;tric. potential oase, trisngular wings.

l. Lift of a Flat Triangular Wing (n=1)
(Direot Problem Where Wing Geometry is Given)

B. C. ! =1 -
‘\; \lr az)g-" < U<
u. = (?%) 2y = (@) 3)02 pd 1

or from Equation (29) *Q

K(k)
V=R Cr- ‘Plﬂo)IP(nS ? f’"éz% (“gg)]scgdg (37)

.-v
C,= \e'p,,.(uap O GENE (58

It will be noted from Table II that m order that the wvertioal

velocity be = constaz(lt‘ in the x - y plene n = 1. Heneep( )“&(‘)
Kk

and the integral S Q(g)d? may be evaluated as follows:
KO K@ K
g Qe j (3 s - glsa ontgg

C Voo k'
E(R)

(39)
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. Substituting the appropriate values for the R and C,for n = 1’111

equetion (31), the loecal 1ift may be written as
20p_ - sAXRE | —Ao(mo (40)
3 - T @ E(m" FERTEE B Ynet

this is the result obtained by Stewart in Ref., 8, The totsl lift may be

obtained by integrating the local 1ift equation (40) over the wing surface,

Expressed in coefficient form

C, = 2Twme AG _ e,
L* Fm | AT B® e

2, Demping in Pitoh Derivative CMQ (n = 2)
(Direct Problem)

Bs Ce W' = ( )&—? "‘Q" vozsi

1T—>a’

ac? VE >y

& =

7 Q
Here Q is the pitchlng velocity in radians/seo.

Substituting this condltlon in equation (29) and choosing from

Table II, the appropriate wvalues for the“DSfor n=2, namely?(") p(\) \
then (k)

-Qx = Crky dg(Sh“G)scgég Cxéh'l (

(for evaluation of]z(‘-;:k)see Appendix E, Part I)

or C kh‘ Q B
w;qu R (2R ER)+R>KW]

(42)

The longitudinal velocity distribution which is proportional to

the 1ift distribution may be obtsined from squstion (31) and beoomes

K
gg) _ xQ ti—zﬁz;ﬂ%l[?mé-*:\[rztﬁ-tz] ® ()
DX s (1- 2R3 JE(R) + B2md K(R)
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where K(k) and E(k) are ocomplete elliptic integrals of the first and
, S
second kind respsotively for R N1-BMs, This solution agrees with
that obtained by Brown and Adams, Ref. 9., The Pitching Moment due to

the steady pitohing velocity Q may be obtained by integrating the local
1lift

Cq = 28P - _4xQft-gmelzms -2} md 421 %
S A B TR Y SO RS

about the wing apex, hence the pitching moment becomes

_M__ - _3WQ SCa Li- §mg) (45)
¢ 2% [2@mITER+ PR

where CM-.-. _-N%.to and the damping in piteh derivative may be written as

CM = dCm __ 3w - PPmd (46)
& JE%) L-28 m?]E(RH P*ms K(e)
3. “\ampmg in Roll Derivative (n =2)

(Direct Problem)

ne we(@) =Py i<
a3l
3& = QO —))oa 7 1
X (“‘>

Here P corresponds to the ‘rolllng; veloci‘by in radians/seo.
Substituting these oonditions ir equation (29) and noting from

)
Teble II, Appendix B, that the appropriate funotions are “X:‘ S (n= 2)

where “?4 Wo)= q voz_h?- ° pN (1) = h‘

then the boundary condition on W“may be written as

Py= Crk* HER ser[ £t \chqlg (a7)
P\; = Ca)lh‘zk\yig,(“/a, (I k) ‘i\él‘\"wgeo ™

_ P h\l h
C: R: \gi TR - pmdER-Fneke

or
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The longitudinal velocity distribution which is proportional to the

local 1lift may be obtained from equation (31) and is

_ \
(9@') __Ph-gmlmyims-12)'Z (49)
s [(2-FM)ER-Bme KR))

.This solution was obtained by Brown and Adams, Ref, 9, by other methods. The

rolling moment due to the steady roll velocity P may be obtained resdily by

integrating the local 1lift

e, - 28p - _ AYPm[1-Brilime ] e
27T T\ (PR gt KT o

about the longitudinal axis of the wing (root chord axls). The Rolling

Moment may be writtem as
L __ U PStmli-gme] -
L4 A (e Fm)ER- e Kk

or L = —— where the damping in roll derivative is writiten as

- &niﬂ . (52)
g2 )E(R)-F'm? K ()

C ‘P gCT‘;;))- -1%

B. Thlcknsss Cases

Mo
\(z-

1. Uniform Pressure Distribution = Elliptic Cone ( n = 1)
I{ can be shown that the functions K are those functions found to
give a symmetric potential,)and hence are asgsocizated with wing thickness,
(&) Direct Problem . -
If in equation (23) n = 1, then the local slope may be expressed as
vz Cyli-8me (53)
oI B Imz-e -
Upon comparing equation (53)} with the local slope of the elliptic cone

7 - Tx\NMo- t* (54)
Mo



which is
dz _ T _ms (55)
' dx  2m, m .
it may be moted that the constant ‘
- BV T li-gimal &2

T in the above equations is the thickness ratio of the cone, that is
where TCO is the minor axis of the elliptic cone at x = Co (see Fig. 3).
The pressure distribution for such a wing may be obtained directly

from equation (26) by substituting the velue for € and n = 1, that is

e‘b 2pmg T - [K(k) E(kﬂ | (57)

Here the pressure distribution is uniform all over the wing planform.

{b) Inverse Problem

The pressure distribution could have been prescribed ( a priori) as
uniform and the constant C determined, In any event the resultant thick-
ness distribution would be that of the elliptic cone,

(¢) Drag of Elliptic Cone

The drag due o the surface pressures is

__apnd( 7 \[K-EW] j j 1 Wddt  ®
(y Do B (Zm.) K= \mz A, 1) Y

or

6Bn,/ T\KR-EM@ v 1006 of Cone
CDQ 3 (zma} 5 (Vol f Cone)

The total drag is therefore

(C D(ris evaluated in Appendix D for the elliptic cone)
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or

3 z
C,- ZBme (-'5-“1)« 2 K®_E(R) (59)

A-pm3

2. Linearly Increasing Pressure Distribution (n = 2)

(Bypercone)
(a) Direct Problem

From equaticn (23) and Teble II, it will be noted that the

local slope may be written as

m AWM
\L(dz') @R Yotam = 1,2 (60)
dx - ‘ e vz 1+ Awm

where the equation relating the coefficients is

38,5+ 2(R31)am + K= 0

or

3,3, = - 2[R ) 1V R ) (61)

Thegse coefficients are plotted ageinst k over the range O to 1 in Fig, (3).
Equation (60) above mey be written as
am) ) 27 2 '
\L (d'L) Cm R -pm,+ am("ﬁ{z)l (62)
2 \r‘“"'“‘
dx k2> 6 m \2 1+dim

Comparing equation (62) with the equation for the slope of the surface

T \m2-¢2 | . (63)

ZCQmO

which is

dz _ Tx \amg-?) (630)
dx 2CMo inz_ 2
it will be noted that they are of the same general form, Equation (63) is
~ the equation of the surface whose thickness distribution or eross-section

normal to the flow direction is elliptic and whose semi-minor axie increases
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parabolically (see Fig. 7). It has been found that if the two solutions,

(m) = 1, 2 are added in the correct proportions equation (62) for the slope
will be proportional to equation (63a). The required superposition is

V- $Z =V ‘(ﬂ%ﬁ- (g‘—f‘-ﬁ\ (64)

dz _ Cx__ 3(ae-3)(zme-t7) (65)
dx T\gfm:tt  gtme

where for this casge

which becones

' (§)) ()
C= Ay C(z) = a\zcm

Comparing this equation with (63a) it may be seen that the value of C is

Bzmz
C - € o e (66)
2CMo 3(3yz-dw)

In Fig. 4 ig shown the geometry of the surface described by equation
(64).

The pressure distribution over such a body may be obtained by the follow-

ing superposition of solutions of equation (26) for the appropriate values

of n and R("o)

Q) 2) | 1
APy _ (Bk) _ (8P
(C})a (‘}lz, ((‘- 0Y (N
wher e o k(ﬂ
(m» N %
Ap) _ 47(C( \vawd (R aml | _Sh §dg
Vi A e

The elliptic integral in the above equation is evaluated in Appendix B and

if its value is substituted into (68), the equation for the pressure is
{m\

AP\ _ _ glg((_;: ((H’BIH\)K(R)" E(R)l (69)
(T ~awp

After substituting the appropriate values into the superposition (67) above,

the form for the pressure distiibution becomes
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@): exBing (Ta \[2(2 Bm2)E(R)- (3-Bm2)Kiw)] (70)
T ph-gmieen |

This pressure distribution is seen to be linearly increasing in the streanm-
wise (x direction) direction and hes parallel isobars normal to the stream
airection. |
(p) Inverse Problem ( n = 2 )
If now in this problem the pressure distribution is prescribed as
a linearly increasing distribution x-wise with parallel isobars normal to

the mean flow direction, namely

Kr)
() sr*edE
Apf™ A, X =_ 4X Cnlt+ayllk>a 1g~. §
(_f]m Vb 2 1m b TPE @1 (71)
where
A, = —2CH+aK (e -E(R)]
Vo B8y,
and whers C((l) is taken as
C(m) W, 82mZ (H-a,m (T )
3(Q- )\ R2 awn\) 2M.Cq

then the local slope associated with the gbove pressure distribution is

Cm X [ R%+ amm (1- @t) 72
Wk d"(z) [ 1+ 8im ]\Jm ~t2 (7%)
or substituting z) into equation (72)
(_c_l_;ﬂ)‘m_) max )[hﬁa‘m(i i) (72a)
dx (z)— 3(ar-a)(R? &m)\zm& Nz

The thickness distribution is obtained upon integrating (72a) with respsct
to x, or substrbutmg y-t for x the equation f‘or the thickness distribution is

Z. _miy® ( T ‘) S [hﬂa.m-afmeftzl dt
L TE WO Wh [{ v | PTTN N mz- v
m

L]
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or

z(m\= XZ ( T ) \[m;-_tz +
© 7 3(a,-a) \2Mels (73)
b4
£2 (4 +am)(1- ﬁ"’th)K am®m  Ycoshim
m& (RZ+aym) (1+aim)(1-8Mm3) \Fc\‘
-m<Esm  O<R¥*y '
For the range of variation of dynwith k, see Fig. 3. The two solutions for

Z(zm‘ may be written as

202 x2 T { TE, ke (1+a,.)\1 au B2 1c°sh~(\%\\(74>

3@-anmlo W G&a)  REay)

Z((,:: 3(7' T { mg-t* . £k (Halz){ 8y 62“\3 Xcosk\m_uﬂ(ma)
Ai-an)MeCo Mo (R24ay) R2(1+i2) t
Tt may be noted that by the proper superposition of equations (74) end
(74a) that the terms involving the cosh™t |'—23\ may be eliminated such that
the thickness distribution vhich is obtained will correspond to the previous
result given in equation (63). Further it may be seen that by taking the
difforence between equations (74) and (74a), the terms involving \mMZ-t2

may be elimineted so thabt

Q) - T ' e (75)
= 4n " Z(Z) mo (zc?m COSh \%\

This surface (see Fig. 6) has zero thiclmess along the roct chord, and has

its maximum thickness located at h’% satisfying the equation

where Y%_o _‘:__ 15 or t = Mo
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The prsssure distribution associsted with this thickness distribution is

KQP) = (QE (ﬂ“ (A_E)(Zz XBm"(Tb )[(?-' IKR-2ERY (76)
T4 q’)(z) % /@ Ho\zmc

Although it is possible to obtain many other thickness distribubions by
superposing equations (74) and (74a) in various ways, the thickness distribu-
tionsgiven by equations (83) and (75) will be used here as examples to demon-
strate the non-uniqueness of specifying a linearly inecreasing pressure dis-
tribution.

It may be shown that the linear pressure distribution sustained by the
elliptic hypercone of equation (63) may be of the same magnitude as the pres-
sure distribution given in equation (76); that is

GG

if TG _ [+ AmMITKR) - 2E(R) (778)
To  [3-Bme]KR) —2{z-RmE) E(R)

It is of interest here to determine whether it will be possible to ob-
tain a thickness distribubtion which corresponds to a zero pressure distribu-
tion making use of the relationship indicated in e quations (77) and (77a).
That is, if the pressure distribution is zero, the thickmess distribution way

be written as

Zy= gé"?ni [\;m:-'tz‘ _ _z_n_ff %cosh“‘r_%e\] (9



- 24 -
It follows therefore, thet if Z,is to be non-negative (i.e., the upper
end lower surfaces do not cross) then the terms in brackets must be great=

er then, or equal to zero, or .
5 = 2CO8 h! l 'Ca/,_,

Mo [ W’@o/a‘ < (79)

It may be shown readily that 0$AS2 fore2g2 >1therefore, —.Z—.>/2 however,

012 ,Cb.{ifor 0¢Bm.{4 (see Fige 7 for the range of % e

Hence, for any givenﬁ)mo, it will be noted that there will always be
a renge of mﬁfor which the inequality in (79) is in contradiction. There-
fore it follows that a zero pressure distribution obtained in the mammer
presoribed will always lesd to nonephysical thickness distributions.

It is possible, however, to obtain a multiplicity of thickness dis-
tributions which may have the same pressure distribufion.lf h is an ar-
bitrary multiplicative factor then these surfaces mé.y be characterized as

[h-t—ﬂ~1 [za+ h r |  (80)
The values for h are teken small enough so that z is always greater than
268ro.

It is indiecated, therefore, that the prescription of the pressure
distribution in this case will not result in a unique thickness distrie
bution.

This seame result was obserwed by Heazlet end Loma# in Ref. 2, using
integral equation technigues.

(¢c) Drag for Surfaces Generated for n = 2

The drag for the surface described by equatioh (83) is
CD = CD,, -+ CDG-

where
Mo

- BmeC: [(3-Bm2Ke - 2(e- P ER] S[zm,—ﬂdt
(\'D Bm (Com) . ﬁlh,\;.} ) = = (81)

C..= 6Bm? c’vw( )" [2(2-pm)ER - (3-Pmd)k(r) (82)
> M2 Ti- 5am5]""




- 25 -
The total drag is obtained by adding the coefficient CDA- equation (34) to C‘)o

that is

BmS { 2 ectl2(z-BmIER-(3-pMI)K(K)]
C" (zcomo) W-fs’m%, M [1 - @*mZ)%= 83)

The pressure drag for the general surface Z(z)’ls

mM) A
O apnit (1 >(1+a;m)[(ﬁa.mﬂ«k)‘ﬂh)] a1 dudt
V‘) 98 (@ aﬂ) (Zm" R% & A [ "‘a‘m ]'tﬂm%“tl

d 48“\0 Co ( T H‘a“’“)‘_(ﬁa\wa(k)"E(kﬂ {-L dwm t“'\% (84)
k) 9 yp(ar du)°\ oLof \ K2+ Qun 2 Rahawn
CD = CDo+ CD -

See Appendix D for C De

(85)

3¢ Surface forn= 3
(a) Direct Problem
In this case and in succeeding cases the direct problem will
be that problem for which the spanwise cross-section of the body will be
kept elliptic, while the inverse problem will be the case where the isobars
will be meinteined parallel, nomal to the flow direction.
It will be noted from Tsble II that there are two solutions for the IK
type Lsmé function of the form : _
-K§)=§+ank | (o6)
hence substituting in equation (23) it is observed that the local slope dis—

tribution is given as

-V(dZ)() Qa)'n {1)0+a\m~’]\)

87
dx /iy 192 \ 1+3m (87)
where the coefficients dyy, are related by the following equation
5am + 4(R%+1)ayy, + 3 k?=0
whera
dydiz = - [2(\2 +4) VAR ’(\Qz+41 (88)

these coefficients are plotted against k in Fig. 8., Equation (87) meay be
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rewritten as

V.,g_é)(“; d;""ah(kaa*m“k 9’;*23*“ ' (89)

Xy BF 1+ aum = aim) {2

It is interesting to note that the form of equation (89) is similar

to equation (62) multiplied by x. However, the constants dynare as defined
in (88) above. As previously it mesy be noted further that equation (89) is

of the seme general form as the local slope of the surface

SO [am—2?{mi-t3] _ =x® \mZ =

2Co m \‘mz 12 Lsm 2{2} 2.CEMo (90)
which is \ '
4
dz _ w™” [3me-2t%] (91)

d’( zcozmo \\'\‘\;"'—tz
This surface or thickness distribution is elliptic in lateral eross-section,
the semi-minor axis of which inereases as xa. See Fig, 9, It may be noted

that for the following superposition
1) .
(dz) (dz\m (dz)( (92)
ax 33 dX (3) dX /3y |

~\ (“
- 3 = 93
C=(+3) Gy = (14 2, C&a) - (98]
the local slope is

él;‘) - 5CXa\2(a\z‘3u\(5mZ_"2{:?‘)
(dx 23 Vo R°mZ {mz-t2

If this equation is compared with equation (91) it will be noted that the

where

constant of proportionelity is

C_:((T )V‘oﬁmo

5 ZCZ\T]O (aw_ a‘\)p
The pressure coefficient for n = 3 may be written as
(m)
(B9)72 2 (a2 00 Snégdg_
& /oy R PAREY-T L) §] (94)
Eveluating the elliptic integral in equation (94) (see Appendix E) the

pressure dist ribut:.on is

(é?)mﬂ (a) e [(5&“,\-*4\% +2)1J k’-][(___m_____ﬁa, i 24+Y) K‘E) E:\ (95)
(3) dim+RE R




Superposing the pressures in the same manner as indicated in equation (92),
that is
R Q) )
(22)- (_Ap_)_ (&9 (06)
T/ \G 4y tla

after some manipulation one gets for this superposition
(QE _ ( T ) ﬁ{m’{(tz~’rﬁ?fn"+5ﬁ4mf)(l<—lz) - (1-gm)(1-3gmE]
"r)aa 207/ R t2{(1+ Bm2)Bim2 (k- ) - 2(1 - pm"')‘f:]} (97)
The pressure distribution increases as x° in the stream direction

and has hyperbolic isobars which have the asymptotes
ootz [(12- 1A M3 N k-8)- (- Fmdr-sgmdE] -y Len ) B e-) - 261- BTN E)
in Fig. 9 the pressure distribution as given in equation (397) is chaggﬁikr-
ized by thelasoﬁaris‘distribution for a triengular wing whose semi-apex
angle is 31° when the Mach No. is N2 .

(b) Inverse Problem (n = 3)

| For the inverse problem n= 3 it is proposed that the pressure
distribution be proportional to the sescond power of x and have isobars '
normal to the streesm direction. In part (a) equations (95) and (89) give
the pressure distribution and the associated locel slope respectively for
any value of Q,,, hence by superposing the equation for f;he pressure, one
may obtain the desired distribution and the accompanying equation for com-

puting the thiclkmess, The desired pressure distribution is

{m)
ap) _ B _ Y @tk Ap
(‘F B ; [(3a‘m+2+\22)(k—E3‘sz}( C\-)ta) (59)
where i
(A )"‘" o 2[ dum i+ Bt i(sa‘wuh*\(k—;)—\z"l(} (100)
& \zva@ 4aym+ R
heoe pAp -5Cxagdd M - BRWR (101)
TTURG B >

The local slope associated with this pressure distribution mey be

written as
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X m 2 ' )
(2\_!;) _ oS (a|m+\iz) (d_z_Y |
M, L \(BamverR )K-EYNd¥ 4 (102)
where
az\" _BR™X® [R% awm - Bt?8w]
(dX)m 5082(a,-an) [+ apf{inr-*
Performing the operations in equation (102) the slope becomes

(dz) - BrR* x*_ {(1k46\e2+a)(k—s)+(5h _A)RE
3b

a'{ 3 \r“—z V- 2 -2 2 (ke s)K-E) + 5RE (103)
where '
- ] 2
B 2myt] R2 (1R )(K-E)-2R(4-KIE(k-E) + 5R*E"] (104)

T
Integrating equation (103) with respect to x the thickness distribution

associeted with the "parallel isobaric” distribution n= 3 is then

2 B (T nillem )t @ (oA
3R* s + t2[2(8R*-12k% A3)(k-E) + (15R% ‘3)\‘225]} (108)
This thickness distribution is plotted in Fig. 10 for & representa-

tive wing (()=31°) at a Mach ¥o. V2.

In generel it is possible to generate & large number of thickness dis-
tributions by superposing pressure distributions represented by equation
(100} end obtaining the associated thickness distribution by integrating
the appropriate superposition of equation (89), In Fig..ll, the pressure
and thickness distribution are computed for the two solutions to the Lemé
equation for n = 3. The Lamé coefficients for 'bhis case are piotted
against k =\ﬁ:@in Fig. 8 end the coeffioients for k = 6.8 ( m.°= 0.6
p =1 ,03:310} are selected to demonstrate this and other examples in
Section III. The appropriate values for this example as determined in
Fig. 8 are, &= =0.875 and 8 = 404450 The pressure distributions are

therefore

(A?}-P):‘) - \ng,x Li-1.90%%)

K‘Pm 1, (;:5 x211+4.121%)
(3) VD

(108)
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and the essociated slopes and thickness distributions are
(§2- o G Lioa2ty
3) Vo q n‘l.’z_. tz' ’ Mo= .6
2)
(di)mz _.55 Con [1 -4t (107)
S V., (metz

@ Q)
Z((;’ = 4‘3 3) Xa Jm:'- ‘\'.z [1"" i 84t2]
Yo

Zw ==-153 (é,x“{mo—t’- [1 + 5. \36’& (108)

(¢) Drag for Surfaces Generated forn 3

The drag coefficients associated with the warious surfaces of
triangular planform which were derived in the foregoing section may be

tabulated as follows

(1) Elliptie Hypercone

Z 4 2 4 4 2 .2 |
C = ...TI _'_r__. Co - °2 mo K“ "(9" Z' 1‘ mo)E (109)
o B L) &, (1o T8 M) s ]

Cﬁ_a.'- drag coefficient due to leading edge push given in equation (34).

(2) Pressure Distribution with Parallel Isobars
_T BRC zszm 242 BHE) (K-E)+ (1-Find)-15 8D E

Dab 6 m, [ + Coa-'
i (3) Arbitrary Thickness or Pressurs Distribution

} (110)
C [T b Moam 2+ K)ker) -RE]
® e i 8(1+k -+ 28“1\) & ﬁmo 11-43"11“3"11 (‘+a““\

(K% 2um) (111)
~3 (5 wm C
A R am + g
4, Surfaces forn = 4

(a)} Direct Problem

For this case there exist three real solutions to La.mé's

equation which may be represented by the polynomials

R‘—' K(g) = §4+ aim%z“‘ dzm m=1,2,5 h

(112)
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The wvalues for the 6 coefficients Qym are plotted in Fig, 12, as
. \l( 2 2 ‘ .
e function of k=\l-f31M. over the range of applieability of this moduilus, for
the cases considered hers (o<k € 1),
Substituting the polynomial of equation (112) into equation (23) the

locel slope distribution in the plane for n= 4 may be represented as

v C@_)FL 1, +El‘m1) +dym
vi ))z' [L+a{m +az_w|-] (113)

or

V(j )‘““ CanL01-810) 3By (- B XA-F1) + Byt 83 (114)
° 4 84 Ymz-+* [1+ Bipm+ Azm ]}
The thickness distribution associated with this loeal slope distributiom is
(m)
T U]
%4‘“:‘{ (1"‘3\\11'" aZ\'z\)

L t? {mo—t‘ l2(-gms )+(1—€> ) 3+48°M )a\m+(3+8§m23azm]

coshlmo([s(i B 4 Alt-BHn2X 3+ 4B +3,,(3- sﬁma»,sﬁm;")]}
7.\'\’\0

For this and higher order cases it has been found more convenient to
_examine the thickness distributions for the three solutions independently
and then to determine what distributions might be obtained by superposition.
It is not as apparent in this cese what the combinations of equation(1l4)
should be to produce the elliptiec hypercone, However, bv choosing a
specific case, i.e., where the apex angle and Mach number are known, and
computing the thickness distributions associated with each solution of the
Leme equation for n=4, (m)=1, 2, 3, see Figs, 13, 13a, and 13b; it is
poésible to superpose these solutions in the proper proportions to give the

elliptic contour, That is

Cg‘l zah - rca \! mu_{‘l qch \——‘\ _Z___

Xh Zmo - X“ (116)
where the values for 2(4) are given in Figse, 13, 13a, and 13b, For the

elliptie hypercone cese where w =31° » K=0.8, and =1 the coefficients
)
4 in equations (115) and (116) were determined as



[%2]
o]
1]

0 2 VBt oo AVt (gt
C(4s'2”5"°B C C(4) oB

&) 35
(117)
_3at My=.0
R= ch‘mo °

The elliptic cone resulting from this superposition is shown in Fig. (13C).
The pressure distribution is determined from the superposition of the

pressures associated with equation (115). Thet is if

Kie)
AP\™. 49078 G, T1+amt [ Gt 2] + 20,4 K| sn®ede
(TE)(‘» Yo Nk q‘h " me S[ua‘m%n §+a,m"‘€]
or
(§E (mz - ——- 4) [1 *‘al +8, | R @it 2R+ (2 Ao h?a\mxi" {2)] 14“3)
‘!-)u 3 ‘[ (118)

where l::‘_‘(“l) is evaluated in Appendix E, Part II, then the pressure dis-
tribution associated with the elliptic hypercone is

L (A%) Z (A ) For the case considered

x* @) the m, is given in (117) (119)

The abovs pressure distribution is shown in Fib, 1l3e¢, - Other super-
positions will be demonstrated in a leter section, hence any discussion
of this topic will be limited to obtaining the elliptic: hypercones or the
parellel isobars normal to the flow direction.

(b) Inverse Problem (n = 4)
In this case a superposition may be effected whereby the

"isobaric" distribution will be such thet the constent pressure lines will
be parallel end normal to the flow direction. This superposition may be

characterized as

(120)

L () - K Bi_'- (ée)"“’
X\ GE Ay, w1 X2 \F 4,

for the case under consmeration, nemely the wing with apex a,nglew = 31°
and ei = 1. The constants Cm may be determined with the help of the

pressure distributions given in Figs, 13, 13a, end 13b, and in this case



- 32 -

were found to be

Q) (74- 3 (3)_ 3
Coy="0. 805 8™V, Cm-o.zo'(ﬁ\fo Cop=" 125V,
K=B- chma

This superp081tlon requires that the thickness distribution to support

where (121)

such a pressure be )

Xz, = E‘T“ z | (122)

where the form for ‘Zm“ is glven 1n 9quation (115) and the appropriate
coefficients are given in (118). This thickness distribution is plotted
in Fig., 14.

It should be pointed out here that it is possible to supervose the
three solutions for n = 4 in such & way that the zero pressure case on
the wing plenform in the x-y plane may be realized. Hence, the prescrip-
tion of the pressure in this case mey lead to multiple solutions for the
thickness distribution just as for the n = 2 case. |

In general it may be readily shown that for any even degree of homo-
geneity there exists a sufficient number, d%-*—l), of solutions to Lamé's
" eguation of the type IB: which when superposed in the proper way will
result in a potentiel function ¢ which will be independent of x in the
x-y plene on the wing. Hence, the derivative %% ~ %'9: in the x-y plane
will be zero on the wing.

(¢} Dreg for Surfaces Generated for n = 4,
The drag coefficient given here is calculated for the
arﬁitrary surfece snd pressure distribution which may superposed in the
proper smounts for the shape under consideration. The values for theéwm%

are given in Fig. 12, end the total drag is:

) o)
C:‘ = e [C::,“]z I@_ (v { ZR*(14 2t 3m)(3 ;m+ AR RY)

@
- Bzm (25 + R¥ )[R Aunt Qg +2(azm* 3R K] (123)

83 &h’\a [.Z-aq_m(azm* a\mb* R )"’(Zazm ha‘—?‘mn 2]
- f%_ﬁfvnﬁ‘}%anZaqnf*hﬁaunT]}'4-(:Da—
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5. BSurfaces for n>>4 mey be obtained in the same wsy as outlined

in the preceding sections. Although no specific shape has been computed,
the values for the Lamé coefficients for the n = 5 case have been evalu-

ated and are presented in Fig. 15.
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I¥. SUPERPOSITIONS

In general the solutions in the preceding sections are classed
a8 wings with fixed cross-sections or with fixed pressures.

It is of interest to superpose those solutions (Direct Problem)
where the wing geometry is prescribed, in particular, for the
solutions which have elliptic cross-sections. This class of solu-

tions may be expressed in general as

Zo= L X \mJ-{ (12¢)

By combining the solutionsN= 1, 2, 3, 4 in various pro@or-
tions, it is possible to obtain a large number of wings of differ-
ent airfoil sections. Iﬁ the superpositions that are demonstrated
in Pigure 16, the root chord airfoil section is chosen as the
parameter governing the wing thickmess distribution, Hence, it

may be noted that
(125)

At x =1 all Z, have the same elliptic cross-section, Hence, the
direct subtraction of any two thickness distributions giveé a
straight closed trailing edge wing. Any disturbances which oceur
downstream of x = 1 are meglected since the Kutta condition is
automatically satisfied in supersonic flow at a supersonic trail-
‘ing edge and no disturbances introduced beyond the trailing edge
may affect. conditions on the wing,

The method of superposition is illustrated in Figure 16 and
the resulteant wing sections are as indicateds The corresponding

pressure distributions are shown in Figure 16a. For all cases

considered in this section, the leading edge slope was my=0.5,
P=1 R k=866 s W=26.56°,
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The foregoing example was inserted to demonstrate the case
where the geometry is prescribed (Direct Problem)., The same
technique mey be employed where the pressure is prescribed;
however, the closed trailing edges thet mey be obtained will
no longer be straight. These solutions, however, are admis-
sible as long as the edge remains supersonic (slope at treil-

ing edge 7-51. e
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NOMENCIATURE

local speed of sound, subsoript o free stream conditions
span at trailing edge
root chord of triangular wings

Jaocobi funotions desoribed in Appendix E

drag coefficient due to normal force c&i;'gg.

drag aoeffioient due to leading edge pressure (See Appendix D)

Coo + Coa.
local 1ift coefficient

1ift coefficient 14-%

)

rolling moment coefficient Mﬁ%&@%

£S5 %
Y C‘
demping in roll derivative 9 -L/Af(Pb
e _/2(2\/0 .
lnonine Mon
pitching moment coefficient B2 {gkczomn

demping in piteh derivative atw
)

drag due to leading edge suction (negative drag or thrust)

Jacobl function desoeribed in Appendix B

éomple'be normelized elliptic integral of the second kind of
modulus R

incomplete normelized elliptic integral of the second kind
of modulusk

incomplete normelized elliptic integral of thse first kind of
modulus ke .

\I\-ﬁ‘m?, modulus of elliptic integrals

- \‘\-—\Q"‘ conjugate modulus

complete normslized elliptio integral of the first kind of
modulus R '
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Lamé Functions of the first kind desoribed in equation (18)
of the text

slope of the leading edge of triangulear wings
supersoript

free stream iach number Vo/a,

degres of homogeneity

local stetic pressure on wing, also used ms rolling veloocity
radians/éac

fres stream pressurae

:E%; 1

SL [ élz_hzl—“f
Mlp=1177
N (417

pitching wvelocity, radians/éac

2
dynemic pressure %f’v;?
=N
nyperbolio distance "\ v_‘}-_gz-zz
‘37.

wing area

Leme Punction of first kind

1amé function of second kind
Jagobi funotion desoribed in detail in Appendix E,
Ray through the origin (z = 0) y/x

perturbation velocity in the stream direction {positive x
direction)

free stream velooity dirscted along positive x=-axis
perturbation velosity in oross-stream dirsection

perturbation velocity in the ver tiocal dirsction

Cartesian coordinates
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& - angle of attack, also used as argument of the Jacobi functions
8 — Wi
¥ - argument of Jacobi functions
%E’- local pressure coefficient
f, = free stream density

(‘_1 - Hyperboloido-Conal coordinates, also used as superécrip‘bs in
Appendix A-I

)
- -, =
A (1 ] a)M Yo
T - thickness ratio of wings and shapes at the tre;iling edge x = c,,

&b . velocity potential

(? -~ perturbation velocity potential
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APPENDIX A T,

Tt is often convenient to express the differential equation:
z ‘ (a1)
D9 =B @, - Pxexz- Qo3
in terms of a coordinate system which is more appropriate for the boundaries
of the particular problem under consideration. In this paper it has been
found useful to re-express U @ in terms of the Hyperboloido-Conal coordinates
described by Robinson in Ref. 5.
Equation (Al) alone may be expressed in terms of any desired new set of
X 1 2 3 , .
coordinates g ’ % s ? ,» that is:
B g8 (X 23 ,
3 =& (x', x5 %%) (a2)
where the differentials of the transformation are:
o o
& % d & (Afv
= 2% - 3)
dx ,—@%gﬁ- o£=1,2,3 -
where the repeated superscripts indicate summation over (L . (tensor
summation convention).

The differential form of the line element associated with equation (1)

iss
2 (4 2
da?= £ (dxh) - (dD) = (43
g2 (Als)
or in terms of the covariant metric tenscor it becomes:
’ N
ds*= Gpy dx?d)( &LY=12,3 - (85)

where Yu= ‘Ez > 9220554
duv=0 w3+

Since the interval ds® is invariant (independent of choice of coordinates)

then for any pair of coordinate systenss

ds™ 9&9 dx%dxt g«@d-qufﬁ (86)

ds Cﬁ‘.‘z_d zz—-d 322 h ‘z‘ zd 22_ d,’z
5 (2)-() )= (I d5)-(ndp) ()

waere
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Tron equation (A3) it may be seen that
& »
3 X" 3X
gocﬁ“-' 5?0(. agp Seh)] (A7)

hence in the new systen of coordinates

£
XZ )2__(3 3)2= _ h: (AB)
3 '

general coordinate system ass

Lo (V3 9Fa9 )\,
5199 3)- 0 w

where Q is a scaler field. This eguation may be seen to apply for ecua-

. - o <P . s
tion (Al) of the nroper values Zor g ' and g are inserted. That is:

e

ol = »
D d 20 \=t 3 ([Ta¥ag9\.,
3T % (TR o

where

making use of relations (A8)
e 21212 :
_ b G

e}
]
W
pial

™
N
w
W
W
|

and
2

goo] [hos

[ LR |
P d N A = = O .
@ = |o 3,0 SR (412)

0 ot o 0-12

933 3

substituting (A11) and (412) into (A10)
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S k) w

In the Hyoerboloido-Conal Srstem where

R L
h=B8  h=nl{g _ h. Al
(R4 (=)

equation (A13) becomes

(@93, (1 30) - E2X1-5T 2 =¥ 2
= \(pelp=4) 'g— N @1 g_Q =0

If a solution to eguation (A1) is known that is where

9-9(§, €% ) (422)

and it is desired to obtain %C_Pd (see equation (25) text) which may be
x

(a1l)

written as

f‘<’le

_g ,_4‘% (=3 (416)

oL£=4,2,3
. _ e . e a%él . .
then it is necessary to determine the derivatives 23 in terms of the
X~ *
known values for — .
og¢

Consider the differentials given in equation (A3)

dx%= ax™ dg(‘l (A17)
agt‘

and let @& represent the three by three matrix defined by

a=[ag] = Y%‘%‘E} (418)
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and the inverse matrlx dgefined oy

a_I= Co'caC\'.Ol’ Aag o [Abk - A (A]_S))

1a\
) (420)

it is observed thatl
] .[28¢
IA”] ) [ ax"’]

1t may be noted that equations (48) may be written in the

where

00~
O0=0
00

aa- Aa=1-= (

Solving (ALl7) for dg‘“

following matrix form

(1 ax  _ gax
nag  hiogt

|-o>

l
|

———
Q
>,
Q)
%ﬂ
)]
x’

ax’

%

h__
1.3
haf”

@
v-‘q
@
R
R
QU
)
W

SO S sz_
hﬂ{s"a? e 3?"

ES
l
o O -
0.—-—0
= 0 ©
3
o

-
A
[

Le5]
b 11
w

|

nax

\'ﬁj’a'gb W

)

where the matrix just to lefht of equal sism is seen to be [a;;-\]

f" I"P

%,
Q*)\ﬂ
2

l
!

>N

Q
ot
o
(s3]
"n
[
QU
“¥eh
w

and
from equation {A20) it will be noted that the left matrix is [Ag-,] .

Therefore, the following relations may be esbablisned

TR S WK X

n2agt  ax  h:ag % hrag!
§§‘_4 o oagt_ _\ 3f°_ 4 ax
-~ 2 2 W ks
T MR W N " 9% njof (422)
. 1 axt ¢

L) af” . L
X B o wPof % nidf
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-In the Hyperboloido-Conal System where

§5= R €z= 37 €3= t‘L
hy= B he= X ~Y hs‘%w
8 (t\z_ \f)(tf—\)

and

foox= By xEg o n\ “RIPE) =N (-y*
X=X __.@_R 3 tRHaz X Z= \i% ~

P Wi
then - K

an _ 1 Y 2y _ MY=RY(4-»?)

o B X BRR (pEyD)

ar - \pER)DIR> 3 _ Yy Nz

ad kk* W ARV (P

al_ (=) -y* Y _ _ Y(@ERINE-NE
z N1-k= OZ7 (A (prr?)

(423)

% - pch—mr"?)’w’?
R Tt ()
_& g N (A0 (-
oF e ()
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APPENDIX-IT
If in equation {11), pe 5

= ng(oR) = ksn(n(-tik')h.)
Y = RhA(T, k)= kon (K+ 5+ R)
OKxX<K ~2; K¢ w4 20K

then
= - BreRsh (@KL R) shlK +ix k)
y=-nR h enla+ Ak R) en(g+is JR)
7 == ;2 dnaxa AK R) dn(Kﬂ‘S’ R)
In Fige. A, the region inside the liach cone p== and exterior to
the plate tn& in the p ,¥,/L plane may be transformed into the rectangle,
2K, Ke2iK K—’Zik‘, end-2K in the «+i¥ plane by the mapping

Cd(oc+i'8“)~ ( E"XL_—z L3 N *_&_(WJ————“yz)v i
R (=) R (%)
It may be seen that the upper surface of the plate ¥G¥Y meps into the

strip between K‘—”ik' and the lower surface into the strips ﬁetween K—tZiK"
and K+iK' . The function ct(K¥) is positive for ZAK%.W‘o(y negative)
and negabive for O<a¥ < 2i K’ (y positive). As indicated in Fige A,

this Jacobi funct:.on corresponds to W Gomg from the top to the
‘bottom of the plate the function C\“(\(ﬂ’f)is positive for-i¥K' ¥ <2k
(z positive) and negative for LK'“‘&'('L,'«K‘,—?).‘k‘“K“‘!‘.' From Fig. A,it
will be noted that an{k+sd) corresponds to V1%, The functions involving
X A€ ZJ , do not change signs over the range of vafiation of X ,

sn(a+ i K'YyZ O
dn (£ v AK)Y <0
Cnfot + AK‘) <0

(see Ref. 10, p. 22)
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APPENDIX B
Eveluation of coefficients of Lamé Functions
| It is often oonvenient to re-express the equations given in (11)
in terms of the Jacobi Functions, as discussed in Whitteker and Watson,

Chapter XKL, Hence if:
aQ

c.\';hS(.ocgh) w\.nu'e d,h= -_—é———-———g————__
NE=N(ERD

equation (11) becomes:

Cyﬁg) “n(nu}(hSod \9(!3"4-1\] )—0 (B1)

() ‘%- neven
S K 2a3m(5“°‘) Jn iﬁ;‘} n odd

z
-n-1
AE{: Zajm(zﬁ_h)(fgno() C\:«dhd - (B2)
__K i (zymi(zs—m A)enis (\g%m.;-h\sn«
« Q

23-na2.
+ R (z5-n+1) snoc} | }

Subs%i’bu’bing (B2) in (B1), the equation relating the coeffiocients ym

bee omes H

Zasmi?.j (.l;-’&h-\) Sho( .\. (\QZ““P (7-5—\0\ ] S 2 23-1
+ th(7'5"“(23““ ) Sno( mz}: o (B3)
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Equating coeflicients of like powers of $Swnwol to zere, one obiains

the following set of relations;
23(2041-2§)3jm =3y, &) [p-tn2g02Y] 4G ) {r2y e4)¥n-2549)
(aga2Xen1-290, ) =a;, 0 Mp- (n25 ¥ 3 g, Wiln2 §drasels
grdlens 2 =2 0. wello-(n-23-2)")

Here, as in equation (B2) 3= % or "‘_'é_‘ as n is odd or even. The
value of p in equation (B4) is determined such that A(ggur 3(,n§;;,"a(s+\,.\:mo
Therefore, the funotion S&le is an algebraic polynomial of [xa nsq"\z
of degree n. The values of p may be obteined by solving the j+1
simulteneous equations which are obtained relating the coe_ffioients and
p (see (B4). However, as stated above, p is determined such that

aCHOM = 36,‘,,_““ = O ; therefore, p may be obiained by equa-

ting to zero the determinate. (See Ref. 6, pp. 460-461)

O, --------0, wa-ﬂ,—(\ﬁv\(v-\w“)q
4 (lh%);(h’;l)[?—,(h-lﬂ N Kn(n-1)

CO0

=0 (B5)

\

t

\

:
(RENp-le2 ) K (i n25u), -- - O



which is of degree :)-\-1 in p; hence, the resulting equation will bs one

of the same degres having J+4{ values for p.

In order to demonstrate the method for obtaining the Lamé Functions

Sa-K

Forn =3

s the osse where n = 3 is chosern as en example.

A 3 7 !
(Y . 23~ (Sho
S, = K-= ‘éam (Snec) S~ Aom(SNa) +am(sN)
however, from equation (18, there are 2 solutions, or

Y
(Al
Sa = 3o, NN +3,, S

From equation (B4) thers are two equations involving 8, 8uwms 20d p

namely:

103\ = Aam(K21) (P -9)
© = 6aom®" +aAyn(Kai)(p-)
svaluating p by use of equation (B5)
5 ~(R3)(p-9)
(&) , -6R*

the determinate becomses:

6ok (K1) (p-oXp-V=0
“-1op +9o reoRIR1 20

for which the roots aras.

or,

PR, = 5(R%1) + 2\ AR iRt 4

henoe R%41

An -15. [2(Ruy+ NAaRY k24 A
ot

Az -1 [2(& 0)-NarbwEy
a Qd 5

o
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If Q= Aoz= 1 then the two K species Leme Funotions of

degree 3 are S(n 9
), W8 + 3y, NS
S$@ = N8« +a,, h s

(See Table II) G

In general the golutions for tne W type funetions in this paper will

be evaluated for §r=\ wherse K- “S}‘“) .. The variable ¥ mey be represented
s

by the following Jacobi function

o »
y-r_ £ k' g 4 @
dn¥;R r \( \_€=x§z. )

Equation (11) becomes

1,7 I VRnd 5 b T, = 0 (26)
d X . ‘

(39)

m. v :
Th = k()ﬂ = 2 asm(d_hﬁr)ZS*w
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APFENDIX C
Lamef Functions of the Second Kind

. m P ‘
If, as was shown in Appendix A, that S,. satisfies Lamo's equetion,
2 ¢ : : N am
samely (51) 3\ S"_ [n(n+i)(0s%d - p(%1)] S =
m?.

w )
then there may exist other solutions /Jn for which the equation is also
satisfied, thet is:
m : )
d J’  Inrens3)-pREMS 0 (o)
)
The form for 5.,, is known therefore, end it remeins to find /Sn in
w) : m
terms of S& . If equations (Bl) and (Cl) are multiplied by.(?h (MSx)
. ™ ,
and Sn (WS®&() respectively, the difference between these two equations iss
m 1_5"\ m (2 -
S 1 4” d S = (c2)
de®
which mey be réstated as:
d [sndd A48
or

srddr_ A 487 Cover o

If both sides of equation (C4) are divided by ‘SM]Z “the 1eft hand sidse
m
1s seen to be the derivative of the fraction ,J /S‘\'“ »Or more precisely,

equation (C4) becomes:

I . Goner

% (35)- Eg;‘,ﬁ;,
Iresy S I (s _ J 2 (68)
STes«) Srsae) S]]

or
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()

Z"(h’%a() is chosen such that it goes to zero on the leoh cone, é(=€9

therefors; the lower limit of equation (C5) &= Sh“_f— = Q\W"‘O: o H

tl

hences
of =Sh [
xf A (nse) d Yé‘)
Cous'! of (cs)
:'(hsx) [ S "‘(hw)]
or ~9h"‘ :

S (ns) = S (s fmz

This second solution of Lamé's equation is always in terms of the first and

second kinds of elliptic integals.
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APPENDIX D
In Ref. (7) Jones has indicated that the force due to impaot pressure

per unit length normal to an oblique leading edge could be expressed as:

Iil - XTXZYnéZ 1
T Yewmd AFwd

where R is the radius of curvature of the leading edge, that is,

R- \H(“Zﬂ | .

Lyomx T
Jx
In the oases considered in this paper the loocal slope of the surfaces

(D-l)

generated are of the form:

— —— a— T

dx Vo Ec'—mo{g 2R\ (B-5)

dlxy) <o
and ié;}; ~ :2:' (}(Xn\a) ‘ : (5ot
xZ - zcd.mo “_——— D=4
Gxy)< o0 o

Substituting equation (D-3) and (D-4) in (D-5) and passing to the limit

the radius of ourvature et the leading edge is:

NIERY NS

The force exerted by the pressure per unit length on the leading

edge becomes:

Fh - _“'mﬁ‘}_ (T yr) “(‘) (D-G)
Q4 \yaws V2 \“ *me
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and the total drag in coefficient form may be written as:
Cod. Z_gmL_ ( “'«M ].\(!)ol# (D=7)
G- ‘a 2
For the case of the elliptic oone (n = 1),worked out by Jones in Ref, 7,

where 7 - I \T\;‘Xz— 2
2Mo

V)= m2x

the drag due to leading sdge pressure or push is:

and

¢ =™ m.T*

g 4 \\-@mé
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APPENDIX E
Evaluation of Certain Elliptic Integrals
Part I.
It has been found to be of definite adventage when solving elliptic
integrals to restate these integels in terms of the Jacobi elliptic
functions (see Refs 10 or Ref, 12 chapte XXII), The stenderd forms for

elliptic integrals in this notation are easier to recognize,

Al Deflnitlons

4
sn(q h)*F(Q\Q)-Sm j € (€1)
@=SIn'Shu = amu a4 |
sn'(3 k) = Ko = { g (51a)
u @ ‘
E(g,Rr)= S dhzéd% (22)
° u
E (@R = {K2ndE -k*snucdu
¢ k= . A (E2a.)
E(R) = gd“ gd€ = R S W €é§

Be Bvaluation of I, (k)

INCINE f dn® €d§ L2 (14 R E@RI- K2 P, R) +R Cdnnenugnu )
(see equatlon 569 Ref. 11) (&3)

1R = 1(E R)= L [k E(R - K2 K] |

. (E3a)
C. Eveluation of I, (k)

1(d4,R)= fund’%c\% = ?').R. Jz(ma'Z)E(q,n)-k‘zF‘(q,h) -

2 (kR Z)hzsuucnudnu—ﬁzk:ls“u N nolBu]
(24)

I(R) S(“k\ L(T )

o L oGk - 7 k(w)]
TRk 3K*
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De BEvaluation of I

2‘3 K(R)
1®=1(T &) = {%? (e ?)sc§dg~ (sn f(hdgw]d%
| k(w
{hd -2+ dnf—\f‘:}(l zdnpdn @]dg

= ,*‘?40[_*‘;z E(w) zk(a\}ﬁ [k(h) -2 E(R)+ TR}

T(1zk2) E(R) + R2 KR}

\Q\z w2 (E5)

E. Evaluation of Iz(k)

klk) K(r)
-3(R) I,& R)= / f a 4§ Sc§d€ /§__€ 3n<\g+1\é§

K(Rr)
= E"‘ {ta(y\c\ f —z2na5 +1)*(hd€ 2+dh€ﬂc§€

Q

- R% [S_\i_‘(:z) zE(R)+K(\2\]+ & [(PQ? Ve zk(k;k

=\ Y(H—k")E(le) - R2K®} (26)
R*R*
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APPENDIX E
Part I,

The elliptic integrals presented in Part I of this appendix have.
been manipulated so that they may be expressed in:terms of one of the
normalized forms for the first or second kind. In the following it has
been found convenient to express the elliptic integrals in terms of the
standardized third kind - (In all cases considered here the integrals
are the complete third kind). It has been noted, however, thé,t the Lamé
functions of the second kind which involve these elliptic integrals mey
be expressed in terms of the elliptic integrals of the first and second
kind only. This will be evident in the tebles of the complete third kind
included in this appendix pp.82-84 . It should be further noted, that
the squations involving the Lemé coefficients will be the coefficients
which are multiplied by the functions ./\o or Z which oharacterize the
elliptie integrals of the third kind,

The following integrels have been evaluated with the help of the
tables of integrals which are included toward the end of this eppendix
(pp.82-8L),

A. Bvaluation of I(Z,(k) K(R)
W)

(wm) 2
[& = g m€de  _d sn’g _ | )
Tivamen gl dam ) Ui+dumsh g] (27)
0 < ~Amwm < kz
If -Jym= o( it may be observed that 6ase III p.84 applies here and

equetion (E7) may be written as

m) K(RY
18 = 4, _sn*€dE . d S
©- ) Gi-ocisrig) S
- d KRZ(8,R B= 'sm"gc\rz

do* Ve 21X DR

- k(n){~ 7 (8,60) (3 - 2 (i) 4wty &, 2B }
i 7 T2 (1-a W RN T NRE )
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where

d Z(Bk)_ _{_[Q-ocz)k(m -E(R\X
doc? z R (& Xa-o2)
hence |
f"‘m “KRZ (B k) [t 2o (R \)+h7~] (1-2) K(®) - E(k)
A L (Y (oo L L vt ques Y e |

or ia terms of @y,

(m)
@ k(@ Z6xR) 138m+ 2] (ha VK@ -ER
¢ k ) 2 & A+ a.m)(\u 3\&““3/ 7 Awn(\+ a\mXR1+3\ ™)

2
The equations relating the coefficients for m = 2 is Adjm‘ za.m(hﬂ'\ +k=0

hence
(m)

= ~ () KE) £

2 im(1+3 \m\(kz-&—a\m) (E7a)
Bs Bvaluation of f@(k)

Kiw)

k(m
l(m(khj egdé - d 59h4§ d&
* o(\+a\m'%\n 5]2 d“‘zo [1-c28n°g) (28)

where
0 < < R?

-0z k.o (o
Vo h-oDR=x®) k2 (1) (k)
R(R)Z (8,8 [3x % 20t (K) + h’ll}
[1- 2] TR o o0-o0?) (R3X7)

I = -3, KOZER (s Agke)
<4 2 2\( 2 —al 2 \QZ i
o NotH(y- d)(t‘zz-o( ) 2(1-o?) Y(# Zdz)(‘_o( ) (kg - E]
Y X= 2(\-0("‘)(\27'-01‘)

)
If now it is noted that forn = 3 5a‘m+4a‘m+5k o . (h; (v)

becomes

RY= _ \ (3\%-\'8"‘\*\-?3;\1\) K-E E}
1(5’( za.m (\+am§(taa.m){ R* ( )- (E8a)

where &~ is replaced by —Quwv .
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(m)
Ce Evaluation of I, (k)

KGR
o= [ _snogde
| o Wrasngl |1rbsng ) | (89)

 where .

a= % lam+ 3243w _j
b= % {awm - (a5 - 4a.m |

Dividing through by the denominator of the integrand and putting
this expression in normal form, (see Integral Tables ppS2-84 ),

T = 4, {S«k\ 4Dz @ (2] T

( )(1+ Z }“(b k)
4 [ ( {d'ﬂa @R+ Ti(a m]
v (a_b (3, 12 )[4 TN Wb\qﬂ

s
¥%here from the Lemé differential equation the rela.tlon between the

(E10)

coafficientg for n= 4 is

—% [?’bz‘\' z (th)b"fhz]"{'(ba-kﬁ (H\Q")kyy 5\Q2] =0
b 2ab 2 (1 kDA R 18 6(1+¥7) a 4 5K®
a .

After substituting these relationships into the above form end expressing

the integrated expression in the original coeficients q,y,, and Qd,y one

obteins _(m)
: (®)_ i

@~ an(a = 48 K3t RAm+RY)

{E(m [Qm ~33m3Asm

4 ("\'hz)(a‘%“"zazm) + \Rza\m_.\. (E11)

- K(R) (143 it 3o ~28m* \Rzamﬂ}



D, Complete Elliptic Integrals of the Third Kind

1. Method for evaluating

The elliptic integrals which are evaluated in these tables
are of the following general type

(Y R)= f - ofzeN(s TR (a2
whieh when put into Je.cobi notation becomes
v u
d€ | :
T‘-(Q,OLZ; h‘) S ‘,1 &zshzg] (E12a)
whers U= sn"g,\q s for the cazas treatod here W= k(\z\ S“m B,

In the tables compiled here, equation (E12) has been evaluated for
different renges of the parameter o 2. As an example of the method used,
equation (12a) will be evaluated for k< xZ 1 (Case I)e

The following substitution o

o¢ = RZgn" \za = 8N A< plge

is introduced, and equation (12a) is now rewritten in a slightly different

form as K(R)
t&sn‘r\sn
TR - g RS
or K(R) |
T«GR) = K(R) + gny [.\?ZSN'\C“'LC\“*( sng dg
cay dnn A ‘1—\£an2'v\sn1§ (213)

It may be noted thet the second integal, which is designated as “(‘\‘R‘, is
the seme as given in Ref. 12 p. 523 as the fundamental integral of the
Third kind. This integral is evaluated in Ref, 12 in terms ot ® s Jaoobi
Thets function, and Zr » Jacobi Zeta function, For the case under consid-

eration

O(K-n) e
MR -4 log Griy ¥ K Z e e

However, ® is doubly-periodic in 2K and 2iK' (see Ref, 12, sec. 22.732)

hence

TR = KZ0,R) | @&\=0(K+y)
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or

T, RY = REE@R.R-F( Y E®R

(BE14s)

(see Ref, 12 sec, 22,731)

Here
F‘( ,k\ = A <L o(/ <L i
YK S \((1 gz)(\ \Qz% % .
_ S 5 d€
T(vg Xi- R’? Na-g-we™
F(v,R) = Km - S‘%\TTT% (515)
- If now the substitution - [ e k‘lé/o(k' is,introduced, equation

(E15) may be written as follows
, Yoz ?

: ®
. : 45
F(V‘,h\ = K(Rr) - 4 (0 \Kf\,%zx‘-k‘zfj)

or

F(, ) = Kk -5 ¥4, %) 4= sw' "“2-‘?1 K (E16)

The integral XX may be written for L <% 4§ es

E K= S‘{ L A;.A W[g AT 2A§
EMR - E(m -A\z'jm {i-6*

[T K (217)
Introducing the Jacobi notation /= sn(u,R") equation (E17) becomes
gw (;—h-/z &
E@ R =E() -4 \22,(’; cd*s d¢ (E17a)

The integral involving cc\e, is evaluated in Ref, 12 p. 516 as

12 d )
fcdgég— u- E@MW R éz(uh)e (v@

' Hence equation (17a) becomes

E(R)= B -2\F@ W -E@,k) + \l(\-«fz{“("«e"\a')‘] -
El8

Upon substituting equations (E16) and (E18) back into (El4s)
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Ty, R)= KE -4 TF(g,k)-E@) + (IR R | (e
-ER K - i FOR] (519)
DRy A TT A@w) + Ke-Fta

or

where Ac is defined in Ref, 14 s

A, = 2 L(E-K) ¥, ) - INQR=CRDY

1f ¥ as given in equation (E19) is put into (13), the integral

representation given in CaseI is obtained; that is

T R) = Kiw) + (bfw)ﬁ INCIAR % .\(\ru )k(\ﬂ

X( )
TR - T A(@, ) = swi' \EEy A
2 N&@zo(ReaD ‘ (E20)

It should be pointed out here that if the range of X were 0L KX R>
(Case III) then the evaluation of equation (E13) could be obtained

readily by substituting the value for E\) given in (14a) into (E13) or

T2 RY = KRy o K(R) Z_.(B,h) |
¥ (G- (RE ) (E21)

- -V ot
\'\zB- S %
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E., Tables of Elliptic Integrals
RZ<xX*< 1

Case I.

ANCAYE % (E-K)F@ R)+ K Elq,r)]

This function may be found tabulated in Ref. 14 for various values of

q and k @= S Y= k?

R
k(k\
- TVO(ZJAlo(qu)
GO J -o250%E o(zsvng} AT S (F22-1)
k() ?c\t '
ey, [ sn = A 2y K (!
S(d’m:f U—o&zsn £) dlhﬂd’m Kol (B22-2)

Ce? k)= f h_Ch ZA% TU R - S(«2 k) (m22-5)

k(n) ‘
dn EA& 2\ A2 2

D(O( k’) [ {1 o(zsh ?] ]P[(d )h\ k S(O‘)k) (322-4:)
K(wr) | '

g t-o, SN d€: T R) - F S k) (B22-5)
2 ‘L-o(zSn’$

Ky

d¢ - 0(23 ﬂ(d k) + T k) -
[\ o8y, 5’3 (B22.8)

K 2 (K—o*)K
BT k‘>{ S )

Tor (2% 2R 3R*- o M\
ATEDICSES)
In all succeeding cases equations (1) and (8) will be given only, since

gy

equations (2) - (5) may be obtained from (1).
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- v
Alternate Form for Case I. Q"' Sin h-k;

DAL R = 2 TER) TR K EG 8]

TTR = K 4 wh-NALE RN

2 N (&) (1-e?) (£28-1)
k() |
dy 3 i {cx"E + (2 B2k K
[aasnul®  20-o)(Ek?)
° 4 et (-2 k- 243 WY(-ALER)
2\ (Y42 )
Cese II. O L -l 2L 0O £23-8)
= Sin” \l oz
" LR
AR ZUE-KTFWR) + K E(wK)]
Tl k) = KK _ 12 A(wR) (£26.1)

o P (e O
KR :
du - \ B 42 K2kt ok 2
s U-a2swul™ 2620 (R dz){ R&-0C® K
_T (2o*R%+ 2o T3 Rl A&‘\ﬁk)}
V(- ¥t = R (E24-6)

O

Alternate Case II.

B=sm* !

e
A (e R = 2 {E-KF(®,R) + K (8]

M= &, w2 [AE R

- K(\Q‘ ‘—O<L 2 ﬁzu__dz)(dz_@ (E25-1)
dUu - 4 S\T\'dz(b\a"—zm" k=2a4 4 N(8,Q
Loosnul®  20-a2)ak?)
[

.
+ o E Z-k’7'~d,___._-:-;°‘zk k} (E25-6)
\-—
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Cass III. O LAT¢R? B=3wm %

Z® ,\é\s E(®B,R) - %F(B, R)

W) < 1oa X R Z(BR) (26

ANIGS ‘_-) K+ N | E26-1)
K(r)

(% 2R 2K K ()

dy 4
S l-oCsnul® zws(az.ow{
° —a?E 4 (d-2oc®R3- 23R K'Z(B,\z\}
V(o) (Rex)

(E26-8)
 Case IV. oo DX "1 A‘-‘-S\ﬂ-‘(g{-)
Z(AR= EAR-EFAR
Tk - X KZAR) )
’ . \Ro(e.ﬂ(o@\i{)
K ' |
clu i (d%.bz)K - O(ZE

) T-olsi] ™ 7 2R
ooy 20 -3 K 7 A,w}
k) (E27-6)




1.

2e

3.

he

Se

63..

6b,

6c,

Te

Be

e

10,

11,

12,

13.

he

REFERENCES

Squire, He Be, An Example in Wing Theory at Supersonic Speed, R

Lomax, He and Heazlet, Generalized Conical-flow Fields in Supersonic
Wing Theory, NACA TN 2497, September 1951,

Germain, P., La theorie des mouvements homogenes et son application
au calcu de certaines ailes delta en regime supersonique, La Recherche
Aeronautique No, 7, January - February 1949

Lagerstrom, Pe Ae, Linearized Supersonic Theory of Conical Wings,
NACA TN 1685, 19h8.

Robinson, A., Aerofoil Theory of a Flat Delta Wing at Supersonlc
Speeds, R and M, 2548, September 196,

‘Hobson, E, W., The Theory of Spherical and Ellipsoidal Harmonics,

The University Press, Cambridge, 1931,

Ince, E, L., Periodic Lamé Functions, Mathematical Institute, Univer-
sity of Edinburgh, Royal Soce. of Edinburgh Proceedings, Vol. IX,

PDe h?"‘63, » 1939"Ll-00

Ince, Es Le, Further Investigations into Periodic Lamé Functions,

Royal Soce of Edinburgh Proceedings, Vols IX, pp. 83-99, 1939-L0.

Erdelyi, Ae, Expansions of Lamé Functions into Series of Legendre
Functions, Mathematical Institute, University of Edinburgh, Royal
Society of Edinburgh Proceedings, ppe 247-67, 19L.3-L49,

Jones, R, T., Leading Edge Singularities in Thin-Airfoil Theory,
Journal Aeronautical Sciences, Vole 17, Noe 5, pe 307 May 1950,

Stewart, He Je, The Lift of a Delta Wing at Supersonic Speeds,

Quarterly Apple Mathe, Vols IV, Noe 3, October 1946. ppe 246-254,

Brown, Clinton E, and Adams, Mac Ce, Damping in Pitch and Roll of
Triangular Wings at Supersonic Speeds, NACA Repe 892, 1948,

Oberhettinger, ¥, and Magnus, W, Anwendung der Elliptischen
Funktionen in Physik und Technik, Springer-Verlag Gottingen, 1549,

Pierce, Bs Os, A Short Table of Integrals, New York, Ginn and
Company, 1929 .

Whittaker, B4 To and Watson, Go Ne, A Course of Modern Analysis,
Cambridge Press, 1946, :

Michal, A. Ds, Matrix and Tensor Calculus, John Wiley and Sons,
Inc., New York, 1947,

Heuman, Carl, Tables of Complete Elliptic Integrals, Journal Math,
Physics, Vole 19-20 (19L40-1941), pp. 127-49,



