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Abstract

Searches for the monopoles predicted by Grand Unified Theories (GUTs) have required new approaches, since these monopoles should be both slow and highly penetrating. The ability of scintillator to respond to particles of velocity < 10-3 c has been demonstrated, indicating that scintillator detectors should be useful in GUT monopole searches.A small monopole detector prototype at the Earth’s surface was operated in an effort to understand the problems and possibilities of monopole detection. The design philosophy, techniques, and the lessons learned from the prototype detector could then be applied to much larger monopole detectors. The prototype was not able to set new limits for the GUT monopole flux in cosmic rays, but in a more general analysis it was found that new limits could be set on the flux of lightly ionizing particles of mass ~ 10lθ GeV.When GUT monopole detectors are scaled up to the size needed to chai-
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lenge astrophysical limits, it becomes more likely that a flux could be found. This motivates a more careful examination of the scintillator counters, since their signal should be clear and unambiguous for a monopole candidate. The performance of the liquid scintillator counters for the MACRO (Monopole And Cosmic Ray Observatory) experiment was given considerable scrutiny, both to try to understand the observed behavior of these counters, and also to improve them for monopole detection.The results of these tests indicate that MACRO should be able either toestablish a monopole flux or to limit it to a small fraction of the ‘missingmass’ of the universe.
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Chapter 1

Introduction

Dirac1 introduced Magnetic monopoles into quantum physics and showed that the magnetic charge is quantized in units of e∕2α, where a ≈ 1/137is the fine structure constant. There were a number of searches for Diracmagnetic monopoles, but there was little theoretical guidance to the masses of these monopoles or the way in which they could be produced. More recently, Grand Unified Theories (GUTs) have been postulated in which magnetic monopoles are a natural ∞nsequence of the theory. This has given impetus to the search for magnetic monopoles, since monopoles are a resultof a broad class of these GUT theories.The GUT monopole has a magnetic charge quantized in units of the
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Dirac charge (e∕2α), and a mass of order of the GUT scale (~ 1016GeV). The large mass of GUT monopoles indicate that they would be impossible to produce in the laboratory in the forseeable future, and so one must search for these monopoles as remnants of the extremely high temperatures in the early universe. The presence (or absence) of remnant GUT monopoles is thus one of the few probes one has for the very high-energy GUT scale.The searches for GUT monopoles, like those for other hypothetical particles, are also impelled by the ‘missing mass problem’ of cosmology and astrophysics. In short, it appears that much of the mass density of the universe isn’t visible to normal observation and is possibly non-baryonic. Monopoles are possible constituents of the missing mass, and the search for magnetic monopoles therefore has implications for cosmology.This thesis is primarily concerned with monopoles and their detection, emphasizing the design, construction and analysis of monopole detectors. The monopole detection effort at Caltech has evolved from one of trying new and different detection techniques to one of designing and building a large underground monopole detector known as MACRO.The expected flux of GUT monopoles is quite low, so an inexpensive detector technology is desirable for covering large areas. Scintillation count
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ers are attractive in this respect, but there was some uncertainty about the amount of signal that a monopole would produce in scintillator. The major question was in the amount of scintillation that could be produced by a very slow particle like a GUT monopole.Some experimental guidance was called for, and S. Ahlen, T. Liss, G. Liu and I went to Brookhaven National Laboratory with an experiment to try to observe scintillation light from low-velocity protons. The experiment has been reported elsewhere2, and the results have since been extended to lower velocities3, but the experiment has not been fully described in the hterature.This thesis contains a description of the low-velocity scintillation experiment, of which my own contribution was the trigger electronics. I will alsopresent an independent analysis of the experimental data, which I hope is more thorough than the original analysis. The experiments at Brookhaven showed that scintillation occurs even for very low-velocity protons.This gave considerable confidence that slow monopoles could also be detected with scintillator, but some experience in the construction and operation of scintillator monopole detectors was also desirable before a majormonopole detector project was attempted.The Caltech monopole group put together a small (4.6 m2) scintillator
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monopole detector prototype, using plastic scintillator borrowed from a Fer- milab neutrino experiment. I will describe the prototype in more detail in Chapter 4, giving an overall picture of its construction and operation. My own contribution to the prototype was primarily in the data acquisition electronics and software, particularly in the modification and testing of DAQ modules to be used as a waveform digitizer. I also did some analysis of the prototype data, primarily in extracting the stopping muon decay curve, and in testing and tuning the acquistion system.We learned a number of valuable things from the Caltech prototype; in particular, we learned the value of a closed geometry and of going underground to reduce the backgrounds. These factors also motivated a numberof the people involved with monopole scintillator detectors to form a collaboration to build a large underground detector: MACRO. The MACRO detector provides the ability for the first time to search directly for monopolefluxes below the astrophysical bounds. The MACRO detector, as of this writing, is in the early stages of construction, but much design and development had to be done before the detector could be proposed4.The large area of such a detector drives the detection technology towards the use of large individual scintillator ∞unters. The main constraint in in
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creasing the size of counters is the attenuation length of the scintillator. Plastic scintillators have attenuation lengths of 1-2 m, but a few liquid scintillators were found that have 5-7 m attenuation lengths, and so attention was turned toward liquid scintillator techniques.A prototype of a MACRO liquid scintillator counter was built at Caltech, and a number of tests were done with it. I developed a Monte Carlo ray- tracing program that was used to examine some timing and light collection questions, and also (with S. Torres) examined the differences between the Caltech prototype and a prototype built with different techniques at the University of Michigan.I will try to examine the liquid scintillator work in a coherent way, notas it actually happened, and to indicate the understanding that has emerged from these dissections of counter performance. Some of the more recent results, such as the measurements of scintillator oil attenuation length, will be mentioned only in passing. These results are of interest in the design of MACRO counters, but they can mostly be ‘decoupled’ from the rest of the counter design issues, and my involvement in them was peripheral.Inevitably, there was much work that was not included in this thesis, but that formed an important background for the development of monopole
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detection techniques and of the MACRO collaboration.
1.1 Monopoles in GUTs

Monopoles arise in non-Abelian GUTs when there is a compact covering group G that has at∕(l) factor when it is broken. The breakdown may be illustrated schematically (with a standard model) by
G → 5i∕c(3) × SUl{2) × Uγ(l) → SUc(3) × UemO-∖

where the second breakdown here is due to the electroweak theory. The GUT mass scale is on the order of 1014-1018 GeV, and it is at this mass scale that the breakdown of G occurs. The ‘desert hypothesis’ asserts that there are nointermediate mass scales between the GUT scale and the electroweak scale(~ 100GeV), and so the results of GUT calculations need not be modified by intermediate scale physics.The covering group G is broken when the scaler field Φ takes a vacuum expectation value. It was shown by ’t Hooft5 and Polyakov6 that suitable configurations of Φ describe magnetic monopoles. These configurations cannot be transformed to the vacuum by a gauge transformation and so are
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topologically stable. The GUT monopoles produced by this mechanism havea Dirac magnetic charge

rt ∕o 137eQm = e∕2α ≈ -y-,
or some multiple of a Dirac charge, which appears quite naturally in thetheory.’t Hooft used an example with G = 50(3) in which the monopole solution is particularly clear; if T, are the generators of G (i = 1,...,3), then the monopole solution has Φ = φ(r)riTi

(for a monopole at the origin). It can be seen that Φ is in a ‘hedgehog’ configuration: the direction in group space is aligned with the direction vector r. Such a configuration cannot be unwound by a gauge transformation. The 
ansatz for Φ can be inserted into the 50(3) Lagrangian

£ = -iτrGμμGμμ - ⅛I>μΦΩμΦ - V(Φ)*and a solution obtained for <∕>(r) and the gauge fields. When the electromagnetic part of the gauge field is extracted, one finds that it describes the fieldof a magnetic monopole at the origin.
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,t Hooft showed only an S0(3) monopole, but indicated that the solutions should exist in a large class of gauge theories. Explicit monopole solutions have been found for more realistic covering groups, such as Si∕(5)7, and a lower limit for monopole masses has been found8,

M > Mχ∣a,

in the limit of vanishing potential in the Lagrangian, where Mχ is the GUT mass scale. The GUT monopole which this theory predicts is thus extremelymassive and could be produced only in the very early universe.There are other phenomena that arise with GUT monopoles (nucleon decay catalysis, nucleon binding, dyons, etc.) that have not been considered because they are not particularly important to the detection efforts, which will be discussed later. For the detection of magnetic monopoles experimentally, the quantities of interest from the above calculations are the mass of the monopole and the magnetic charge. Most of the ‘GUT’ effects of the monopole are hidden in the short-range behavior and generally are too model-dependent to be useful as an experimental signature.It is the superheavy mass and the Dirac magnetic charge of the monopole that are useful parameters in the design of experiments: the mass because
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it indicates that GUT monopoles should be slow and yet highly penetrating, and the charge, indicating the ‘minimum’ interaction that one should expect from a monopole passing through a detector. When the model-dependent GUT effects are considered, they generally increase the detectability of the monopole.
1.2 Monopoles in Astrophysics

If one naively adds up all the matter that one sees in the universe, one finds that the ‘visible’ density is considerably less than that needed for the universe to be closed. However, it is known from cosmological evidence that the universe is near closure, and so it seems that a substantial fraction (0.5- 0.9) of the density of the universe is unaccounted for; this is what is called the ‘missing’ or ‘dark’ matter.The problems that arise when explaining the missing mass in terms of normal astronomical objects have led many to speculate that the missing mass is non-baryonic and interacts only weakly with normal matter. Remnant GUT monopoles from the early universe would be a constitutent of non-baryonic missing mass, and so the limits on the amount of missing mass
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can be applied to monopole fluxes.
1.2.1 The Parker Bound

The connection of GUT monopoles with astrophysics allowed Turner, Parker, and Bogdan9 to propose limits on the monopole flux based on the mass density of the universe and on the effect of monopoles on galactic magneticfields. The mass density limits are based on two possibilities: the monopoles are distributed uniformly, or they are ‘clumped’ on a galactic scale.Monopoles are accelerated by magnetic fields, and thus extract energy from the fields. The existence of galactic magnetic fields thus allows a limit to be set on the maximum flux of monopoles. This is lower than those obtained so far by direct searches for slow (< 10~2 c) monopoles and are useful for evaluating the plausible fluxes of GUT monopoles.Figure 1.1 shows the astrophysical limits displayed as a function of monopole velocity for a monopole mass of 10lθ GeV. The limits are conservative, erring on the side of being less restrictive. These limits are commonly known as the ‘Parker bound’ on monopole flux.There have also been suggestions10 that the galactic magnetic field ∞uld
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Figure 1.1: Astrophysical limits on GUT monopole flux, for a 10lθ GeV monopole as a function of velocity. The escape velocities from the galaxy (vg) the solar system (υ@) and the earth (υφ) are shown. The ‘uniform’ and ‘clumped’ indicate the limits obtained for monopoles that are distributed uniformly, or clumped on a galactic scale.
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be generated as a result of a monopole-plasma oscillation. This, in fact, gives a lower bound on the acceptable monopole flux, but direct monopole searches seem to rule out this possibility, and further calculations have shown this scenario to have stability problems.There are stringent experimental limits on monopoles with velocities > IO“2 c, primarily from pre-GUT monopole searches, which are not shown in the figure above. The velocities expected of GUT monopoles are lower than this, and so the Parker bound remains the best limit on the GUT monopoleflux.
1.2.2 Monopole velocities

Monopole velocities in cosmic rays are estimated from astrophysical velocity scales. The lighter GUT monopoles can be accelerated to galactic escape velocities, and so would not clump on galactic scales. These ‘extragalactic’ monopoles would have velocities of ~ 10“2 c, while more massive monopoles bound gravitationally in galaxies would have velocities of order 10^3 c.It is possible that GUT monopoles could be gravitationally bound in the solar system, with even lower characteristic velocities. Monopoles bound
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on this ‘local’ scale would show an greatly enhanced flux over galactic or extragalactic monopoles. The escape velocity from the earth, 3.7 × 10”5 c, is the minimum velocity expected of a monopole in cosmic rays, and so local monopoles should have velocities ~ 10^4 c.Overall, it is most plausible that GUT monopoles will have characteristic velocities ~ 10~3 c in cosmic rays, but lower velocities are still a possibility. This has been a motivation for the efforts made to extend detector responseto lower velocities.
1.2.3 Discussion

The astrophysical limits are useful as a guide for what fluxes are plausible, which then indicates the size of detectors required to establish a monopole flux. The Parker bound indicates that detectors of ‘football field’ (~ 104 m2) size are required if one hopes to see a flux in about a year.The monopole velocities obtained from astrophysical arguments must be considered in the design of GUT monopole detectors, since it raises questions about the detectability of such slow particles in scintillator.The expected velocities of GUT monopoles also invalidate many of the
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previous monopole searches. The old pre-GUT monopole searches were generally looking for relatively light monopoles that would have velocities ~ c because of acceleration by the galactic magnetic field. These searches for fast, highly ionizing monopoles are not applicable to GUT monopoles, primarily because of the difference in the expected monopole velocity.
1.3 Summary

I have indicated how monopoles arise in a natural way in GUTs and have shown how their fluxes are constrained by some astrophysical limits. Other experimental limits have not been cited explicitly, since they aren’t very pertinent to the rest of this thesis, and astrophysical Emits of a more speculativenature have been ignored here as well.The GUT monopole has been shown to have some basic characteristicsthat are relevant to their detection: They have magnetic charge quantized in units of the Dirac charge; they should be supermassive (~ 1016 GeV) and hence highly penetrating; their velocities should be typically υ ~ 10^^3 c from gravitational and magnetic acceleration, and their expected flux in cosmic rays should be very low.
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A magnetic monopole detector should then look for lightly ionizing particles moving with a low, constant velocity. This signature is not unique to monopoles; supermassive particles with electric charge would produce a similar signal. This should not be considered to be a disadvantage, since thedetection of a supermassive particle would be remarkable regardless of itsnature.
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Chapter 2

Monopole Scintillation

2.1 Introduction

One attractive possibility for large-scale GUT monopole detectors is the use of scintillation techniques, but first one must have some ∞nfidence that monopoles can be detected in such a fashion. This is particularly true for very slow GUT monopoles where the energy loss mechanism is not as well understood as it is for larger velocities.In the discussion of the stopping power and scintillation yield of magnetic monopoles, it is convenient to have a standard scintillator with whichto compare results. The plastic scintillator known as ‘NE-110’ is used here as
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Table 2.1: NE-110 Properties SummaryDensity 1.032 g∕cm3Refractive Index 1.58Light Output (ref. Anthracene) 60 %Decay Constant (primary) 3.3 nsWavelength of Maximum Emission 434 nmH/C atomic ratio 1.104n∏ 5.24 × 1022 cm“3

∏c 4.74 × 1022 cm-3
such a standard of comparison. The characteristics of NE-110 for detectingelectrically charged particles are well known, and there are tabulated lightyield figures that allow ∞mparison to other commercial scintillators. Table 2.1 gives a summary of the physical properties of NE-110, as published by its manufacturer11.
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2.2 Monopole Stopping Power

The stopping power of magnetic monopoles in matter is the starting point for examining the detectability of monopoles in scintillator. In what follows I will use the notation S for the stopping power, defined as —dE/dx of the projectile, and in general the quantity β refers to υ∕c of the projectile.Stopping power calculations will be done for Dirac monopoles (charge 137e∕2), since this represents a minimum plausible monopole charge. Since the stopping powers increase as the square of the projectile charge, it is easy to scale the calculations here to other magnetic charges. Similarly, calculations of stopping power for electrically charged particles are done forprotons, since they are of unit electric charge and may be considered to be ‘infinitely massive’ for many of the calculations.There is an intimate connection between the calculation of stopping power for electrically and magnetically charged particles, and they will be shown together below. It should also be mentioned that there is a natural dichotomy between the high- and low-/? regimes where the behavior of the stopping power is quite different. The dividing line between the regimes is the orbital velocity of electrons in the medium, since at projectile velocities less than
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electron orbital velocities it is the electron orbital velocities that dominatethe relative velocity of the system.At even lower projectile velocities (β < 10-4) the effects of ‘nuclear’ stopping dominate. Nuclear stopping comes from energy loss to atoms as awhole, rather than to individual electrons. It seems unlikely that this energyloss mechanism could contribute to scintillation, and so it will not be treated directly here. Empirical formulae that were used for nuclear stopping weretaken from Wilson et al.12i based on the work of Lindhard, Scharff, andSchi0tt13.The ‘high-/?’ regime (0.1 < β < 0.9) is the most familiar for stopping power calculations, and so will be dealt with first. The stopping powers of relativistic projectiles (β ∕> 0.9) will not be examined since they are notpertinent to GUT monopoles.
2.2.1 Fast Projectiles

A natural starting point for stopping power calculations is the Bethe-Bloch equation14,15, which describes the stopping power of electrically charged particles. Here I am ignoring some of the terms that are important for relativistic
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particles, but are small corrections for the β range of interest.

Se =
⅛πNe4Z2

mc2β2
In ^mc2β2γ j _ β2 (2.1)

where N is the number density of electrons in the medium, Z is the atomic number of the projectile, 7 has the usual definition
7 = (1 - β2)~1'2,

and m is the electron mass. Density and shell-correction terms have beenignored above, and I is the ionization energy of the medium.An estimate of monopole stopping power comes from the examination ofthe induced electric field of a monopole of charge g, which can be used tomake an ‘effective’ Z,
eZcff = βg,

when compared to electrically charged projectiles. This procedure gives a monopole stopping power
c, 4πNe2g2 mc2

where the l∕β2 of the Bethe-Bloch equation has been cancelled. It would be mistaken to continue the analogy with electrically charged particles fur-
(... other terms ...),
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ther here, since the close scattering and large impact parameter effects of monopoles and electrically charged particles are quite different.Ahlen15,16 calculated the monopole stopping power properly, using the Kazama, Yang, Goldhaber (KYG) calculation17 for the monopole-electron scattering cross section. The result for monopoles of β > 0.1 is
Sm =

⅛πNe2g'i
mc2 In (elmc2β2^i2∖ ι ∕f(∣0∣)2 -2-B(∣5∣) (2-2)+

where the density effect term in the original equation has been ignored. Here 
Irn is the counterpart of the ionization energy I above, and ∕f(∣<7∣) and £( ∣<7∣) are the KYG and Bloch correction terms, repectively. For a Dirac magnetic charge (g = 137e∕2), the values of these two terms are K ≈ 0.41 and B ≈ 0.25. Both I and Im may be calculated from the complex dielectric constant of the medium, and Im may be approximated by I for NE-110 with only≈ 5% error.
2.2.2 Slow Projectiles

When monopole and charged particle stopping powers are examined at lower velocities, the assumptions used in the derivation of the equations above break down. It is then necessary to examine the atomic physics of energy
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loss more carefully. A useful approximation is to treat the electrons of themedium as a degenerate Fermi gas with a Fermi velocity vp. The crossover from the high-∕3 to the low-∕3 regimes is at βc ~ υp'∙, below this the relative velocity of the projectile-electron system comes primarily from the electron.The Fermi velocity is

vp = — (37γ27V) , (2.3)
m x 'which gives (using Λr = 3.37 × 1023∕cm3)

vp = 8.3 × 10^3c
for NE-110. This value is actually somewhat of an overestimate for NE-110,since it assumes that all of the electrons in the solid are part of the Fermigas, but it will be used here since it results in a lower bound on the stoppingpower of monopoles.Lindhard18 obtained a stopping power for low-velocity, electrically charged projectiles using a Fermi gas model,

a 4πNe4Z2βc^ 
5e ^ 2mv3p Cl’ (2∙4)

which is a good fit to the experimental data. Note that the stopping power is now linear in projectile velocity, rather than the 1/β2 dependence of the
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Figure 2.1: Stopping power of protons in NE-110. The electronic stopping power Se comes from the equations in the text. The nuclear stopping power 
Sn is shown, and Stot is the sum of the electronic and nuclear stopping power. Sτnin is the stopping power of a minimum-ionizing particle.
Bethe-Bloch equation. Lindhard’s Cχ term depends on υp, and may be evaluated numerically. This gives Cι = 0.423 for a proton in NE-110; the stopping power obtained is

Se = (127 GeV∕cm)/?.
Figure 2.1 shows the stopping powers calculated for protons in NE-110. The nuclear stopping power is also shown, which was calculated from Wilson et 
al.12, and Stot is the sum of the nuclear and electronic stopping powers.The stopping power for slow monopoles is a bit more complicated to
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derive, but it has the same basic form as Eqn. 2.4. The induced electric field of the moving monopole is not screened by the atomic electrons, unlike that of an electrically charged projectile, but it is generally less efficient at transferring energy to the electrons. The interaction of the monopole’s magnetic field with the magnetic moment of an orbital electron can also complicate the issue. This effect has been ignored, but it should be noted that it can increase the stopping power.Ahlen and Kinoshita19 calculated the stopping power of monopoles at low velocities, using the same techniques as those used by Lindhard for slowelectrically charged projectiles, and obtained

Sm =
4πNe2g2β

2mcυp
In '2υττ∖ 1 

. ac ) 2. (2∙5)
When evaluated for NE-110, this gives

Sm = (15.6 GeV/cm)/?
for a Dirac monopole. Figure 2.2 shows calculations of monopole stopping power in the the high- and low-/? regimes for NE-110. Unlike the proton stopping powers, no interpolation has been done between the two regimes.
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Figure 2.2: Dirac monopole stopping power in NE-110. The high- and low-/? calculations are shown, with the value of the stopping power of a minimum- ionizing particle shown for comparison.
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2.3 Scintillation Yield

The stopping power is informative, but it is the energy that is available as scintillation light (here denoted L) that produces the experimental signal, so one should ask how much energy dissipated by a monopole is going to result in scintillation light.It is well known that scintillators saturate when the stopping power is large20, becoming less efficient at converting the energy loss of a projectile into scintillation. Although there are more complex models for scintillatorsaturation, the data are well characterized by the expression for the scintillation efficiency S=G⅛) o+i> ⅛)-,∙ <2∙6>
with B an empirical constant in the range of 0.01 cm∕MeV, and typical plastic scintillators (such as NE-110) having

≈ 0.03 .
Scintillators require excitation above a threshold in order to produce scintillation. This has been modeled as a band gap in the electron Fermi gas, and should have an effect on the scintillation efficiency. The effect of a gap is
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to produce a sharp threshold in β below which there is no scintillation light,because of the kinematics of a projectile-electron collision. The maximum energy which a slow massive particle can impart to an electron in an elasticcollision is

δEmax = 2mυ(υ + vF),

where the electron is originally on the Fermi surface.Aromatic molecules, which are the basis of most organic scintillators, havea band gap which is roughly 5eV. This would give a sharp cutoff in dL∣dE and dL∕dτ at ≈ 6 × 10^4 for both monopoles and electrically charged projectiles. For example, NE-110 consists primarily of polyvinyltoluene (PVT), which has benzine rings connected to a long hydrocarbon ‘backbone.’ The lowest energy absorption feature (corresponding to an electronic transition) of PVT occurs at about 4.1 eV, and its absorption peak is at about 4.6eV21. These are the transitions that are excited to produce scintillation hght, and so a cutoff at β = 4.6 × 10^4 might be expected. Figure 2.3 shows the stopping power Sg, which goes to exciting a band gap, in this case assumed tobe 5eV.Figure 2.4 shows the scintillation efficiency of protons in NE-110 as a



-28-

Figure 2.3: Stopping power to excite electrons across a 5eV band gap Sg, estimated for NE-110 by Ahlen and Tarie22. Sg is zero below β ≈ 6 × 10^4 because of kinematic constraints.
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function of energy. The data points are from Verbinski et al.23, and the 
dL∕dE curves were fitted to the data. In these fits it was found that a singlevalue of B in Eqn. 2.6 would not fit the data well for the full energy range,and so a C ∙ S2 term was included. The fitted value of C was small enough (C ~ 10^6 cm2∕MeV2) that it only affected the fit near the stopping power peak.The extrapolation of the scintillation efficiency to lower β is shown, using the stopping power models with and without a 5eV band gap. Theseextrapolations should be considered speculative, since the mechanisms forscintillator saturation by low-velocity particles have not been examined verymuch.
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Figure 2.4: Scintillation efficiency for protons in NE-110, as a function of proton β. The data points have been fitted with an empirical dL∕dE function and extrapolated to lower β. The ‘band gap’ curve was calculated using the stopping power Sg of a previous figure, and the ino band gap’ curve using
se.
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2.4 Other Energy Loss Terms

There were terms left out of the derivation of Eqn. 2.5, and in particular the effect of a monopole’s magnetic field on the energy levels of an atom ormolecule has been neglected. This effect has been calculated for hydrogen and helium24, and it results in an enhanced light yield at low-/?.This level of detail in calculating monopole-atom interactions is only feasible for simple systems, which is why the calculations have been confined tohydrogen and helium atoms. It is possible that other atomic or molecular systems exhibit similar enhancements, but without a calculation of the effectone must rely on the more general stopping power estimates.Monopoles should also lose energy through the effects of nuclear stoppingpower. There has been a calculation of this effect25, but it becomes dominant only for very low monopole vélocités (/? ⅜ 10“4), which are less plausible cosmologically. It does not seem likely that nuclear stopping could add to the detectability of monopoles in scintillator.Coupling between electron magnetic moments and the magnetic field ofa monopole has been ignored here. This subject has not been adequately treated in the literature, but it has been estimated19 that this coupling could
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increase the stopping power of monopoles by as much as a factor of two.
2.5 Summary

Both electrically and magnetically charged particles have stopping powers that are proportional to velocity in the low-/? regime. It is this velocity range that is of particular interest for GUT monopole searches in cosmicrays.Taking the ratio of the monopole and charged particle stopping powersgives
Sm 0.12 137e∕2 (2.7)

for low velocities in NE-110. This should be treated as a lower hmit, since some possible effects mentioned above have been left out of the monopole stopping power.It should be mentioned that the ratio Sm∣Se is sensitive to the value chosen for υp. A calculation was made by Ahlen and Tarlé22 used υp = 6.9 × 10~3 c, based on an argument that four out of seven of the electrons in an aromatic hydrocarbon system could participate in low energy plasma excitations. They found Sm∣Se ≈ 0.25 for Dirac monopoles in NE-110.
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Perhaps a more realistic estimate of vp is the velocity of a π electron in a benzine ring. A calculation using a simple molecular model gives υp = 2.9 × 10"3 c for the Fermi velocity. The monopole stopping power calculation in Eqn. 2.5 must be modified somewhat, since the π electrons are spreadover the entire molecule rather than a single atom. This affects only the logarithmic term, and the result is Srn∣Se ≈ 0.4 for a Dirac monopole inNE-110.The range of values for Sm∣Se just mentioned illustrates the bounds that may be safely placed on this ratio. Since it is primarily the minimum detectability of a monopole that is of interest in the design of a detector, the ratio Sm∕Se = 0.12 for a Dirac monopole in NE-110 will be used in furthercalculations.Determination of the scintillation yield from monopoles requires a better understanding of the scintillation efficiency for slow particles. It is not clearthat the simple models for scintillation efficiency remain valid at very lowvelocities, and some experimental guidance is required.An examination of the scintillation efficiency of low-velocity protons can thus shed some light on low-velocity monopole scintillation. Since the stopping power of slow monopoles will be less than that of protons of the same
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velocity, monopoles should not saturate scintillator to the same extent asprotons. Thus, the scintillation efficiency of monopoles should be at least aslarge as that of protons, and in combination with the stopping power ratio provides a useful lower bound on the signal expected of a slow monopole inscintillator.
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Chapter 3

Low /3 Scintillation Experiment

3.1 Description

An experiment was undertaken at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory to measure the scintillation yield from low- beta protons. This experiment established that scintillation light is produced for protons with velocities ≈ 10~3 c, and so monopoles should be detectableat velocities this low.Figure 3.1 shows the general layout of the HFBR experiment. A filteredbeam of neutrons was elastically scattered from protons in a plastic scintillator target and scintillation from the recoil protons detected with photomulti-
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light-tight boxI

neutron
beam

Al window

Figure 3.1: Layout of HFBR experiment.
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pier tubes. The scattered neutrons were detected with 6Li-glass scintillators and the relative timing between the scintillation in the target and the θLi- glass gave a time-of-flight signature. It has been noted that scintillators have surface effects20 that reduce their scintillation efficiency for particles introduced at the surface of the scintillator. The use of recoil protons produced by np elastic scattering in the scintillator was motivated by the need to avoidsuch surface effects.The angle of scattering determined the energy of the recoil protons bytwo body kinematics, with

Ep = Eq sin2 θ,

where Eo is the neutron beam energy and Θ is the scattering angle, and the neutron/proton mass difference is neglected (See Figure 3.2). The time-of- flight (TOF) between a signal in the target scintillator and in the θLi-glass scintillators was used to distinguish the signal from the background countsand contaminant energy groups in the neutron beam.The apparatus was contained in a light-tight box to avoid the necessity ofwrapping the scintillator target. Although the figure shows a 6Li-glass scintillator in a boron-loaded wax enclosure, they were used in these enclosures
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Figure 3.2: Energy of recoil proton with θ', the neutron beam energy is 24.3 keV.only during the last half of the experimental runs, including those taken at low scattering angles. The wax enclosures were used to reduce the thermal neutron background in the 6Li-glass scintillators.The scintillator target was viewed by a pair of RCA 8850 photomultiplier tubes. These photomultiplier tubes (PMTs) have a high-gain first stage, which made it possible to determine the number of photoelectrons in a signal by the pulse amplitude. The single- and double-photoelectron peaks weredistinct and separable.The θLi-glass scintillators were coupled with optical grease to RCA 4900
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PMTs and covered with aluminum foil to improve the light collection efficiency and to isolate them optically from the scintillator target. The light collection from the 6Li-glass scintillators was excellent, yielding large pulsesfrom detected neutrons.The neutron beam consisted of ‘filtered’ neutrons from the core of theHFBR. A quasi-monochromatic beam was produced by passing neutrons through an iron-aluminum filter. The 56Fe I = 0 resonance at 27.70 keV gives an interference minimum in the total neutron cross section at about 24.3 keV,and a similar resonance in 27A1 results in a beam with about 2 keV FWHMand with contamination from other resonances < 1% of the 24.3 keV flux26. Figure 3.3 shows the beam intensity (as a neutron time-of-flight plot) that was calculated for the beam filter, using tabulated cross sections for the 56Fe and 27A1 resonances27 and a, 1/E epithermal neutron distribution. The energy spread of the 24.3 keV beam has little effect on the TOF measurements, since it is completely obscured by experimental timing resolutions.Neutrons scattered in the scintillator target were detected with θLi-loaded glass scintillators. The θLi(n,3H)4He reaction has a cross section27

σc = (941 ±3b) ∙ -, 
υ (3.1)



-40-

Time of flight relative to 24.3 keV groupFigure 3.3: Calculated HFBR filtered neutron beam flux shown in a time-of- flight plot.
where υt is the velocity of a thermal neutron (2200 m/s), and the reaction has Q = 4.78 MeV. The large amount of light from the 6Li-glass scintillators allowed a tight discriminator window to be set on their signals, removing essentially all of the noise rate associated with the photomultiplier tubes. The singles rate from the 6Li-glass scintillators was measured as ~ 75 Hz while running, from stray neutrons, 7s, and cosmic rays.The experiment was triggered by a delayed coincidence of the target and θLi-glass scintillators in a coincidence gate of 400 ns. Figure 3.4 shows the electronics used. The PMT outputs from the target and 6Li-glass scintillators
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Figure 3.4: Trigger electronics for the low β scintillation experiment. A delayed coincidence of the target scintillator PMTs and the θLi-glass scintillator PMTs generates the trigger. The ADC gates are taken from the trigger and delayed so that they ‘track’ the PMT pulses. The neutron time-of-flight timing range could be selected by transferring cables between the cable delays 
Stof and 3μs — δj,oFι leaving the rest of the trigger timing invariant.



-42-
were amplified and fanned out to the acquisition electronics. The two target PMT signals were then summed and passed through upper- and lower-level discrimators, forming an acceptance window in pulse height. The 6Li-glass scintillators were treated similarly, and the output used to trigger a gate generator that produced a 400 ns pulse.The coincidence of the target scintillator PMT delayed by 6tof and the gate generator output produced a trigger. The trigger was delayed by 3 μs —
Stof a∏d used to form an ADC gate for the target PMT signals. The delays were accomplished by shifting cables between 8tof and 3 μs — 8tof, leaving the total delay in the ADC gate signal constant while changing the TOF timing range in steps of 200 ns. This allowed the ADC gate to ‘track’ the PMT pulses within the 400 ns coincidence window, regardless of the TOF timing offset.The ADC gate for the 6Li-glass scintillator signals was taken from the end of the gate generator signal, so that it was at a fixed delay from the 6Li-glass signal, and would also ‘track’ the θLi-glass pulse. The pulses were sent to LeCroy 2259B ADCs and 2222 TDCs for digitization, and the datawere read out and recorded by a LeCroy 3500 computer for offline analysis.The pulse-shaping electronics used in this experiment gave Gaussian pulse
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shapes. This provides optimal pulse height resolution, but since the timing was done with fixed voltage discriminators, there was a considerable amount of ltime-walk, in the signals from the discriminators.The time-walk was corrected in the TOF spectra by fitting the time vs. amplitude scatterplot of events caused by 7s, which had good statistics and a large amplitude range, with a Gaussian peak shape scaled by threshold levels. This was found to be a good correction for all of the runs.One effect of the time-walk was to cause some high-amplitude 7 events tofall inside the delayed coincidence window, while the 7 events with low pulse height were rejected. This helped to reduce the event rate of background events, while still leaving part of the 7 peak to help define the timing. Thispeak is seen on the left side of the TOF histograms.A total of 40 runs was taken over a period of five days, with scattering angles between 50° and 7.5°; there was a total of 64.5 hours of five time with5.9 × 104 events.
3.2 The Data

Figures 3.5 through 3.7 show the TOF histograms obtained for several of the
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Figure 3.5: Neutron time-of-flight (TOF) histogram at θ = 30°. Each TDC tick is approximately 0.25 ns. The trigger timing puts the 7 peak (TOF≈O) at about 500 TDC ticks. The peak from 24.3 keV neutron scattering is indicated.
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Figure 3.6: Neutron time-of-flight (TOF) histogram at θ = 20°. A different trigger timing offset has suppressed the 7 peak, so that the 24.3 keV neutron scattering is more prominent.
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Figure 3.7: Neutron time-of-flight (TOF) histogram at θ = 15°. The TOF background is slightly higher at TOFs greater than that of the 24.3 keV neutron scattering peak.
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runs. The time scale is relative to the TDC gate, after time-walk correction. There is typically a prominent 7 peak on the low TOF side of the histogram, and a smaller peak from 24.3 keV np elastic scattering. The positions of both the 7 and the TOF peak match the times expected, based on kinematics andthe event delays.Several of the histograms show a background level ‘shift’ between one side of the neutron scattering peak and the other, with a higher background level at larger TOFs. In general, the earher runs with a 0.1 cm target and without a wax PMT enclosure show an overall flat background, while the later ones show the background shift. It was not possible to determine whether this was an effect of the thicker target or of the wax enlosure (or just more visible because of reduced background with a wax enclosure) since these changes were made at nearly the same time. The flat background was calculable within about 10% from measured noise rates, but ‘shifted’ background levels were several times higher than calculated, often with a > 5σ significance.This background shift had to be accounted for in fitting the peaks, since one could not be certain of the background shape under the TOF peak. An examination of the backgrounds that could produce such a shift was thus necessary before the analysis could proceed.
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3.3 Backgrounds

In the analysis of the data from this experiment, any events that were not the result of a single np elastic scattering of a 24.3 keV beam neutron in the target were considered to be background. This included multiple scattering, randoms, Compton scattering, etc. These will be detailed individually, with possible effects on the background shift noted.A simple neutron scattering Monte Carlo was written to examine some of the issues with backgrounds and efficiencies. It will be referred to occasionally in connection with some of the more difficult background questions.
3.3.1 Randoms

The simplest background was from the random coincidence of singles from the target and θLi-glass scintillators. The neutron beam passing through the target scintillator generated a 5-10 kHz PMT singles rate from neutron scattering, which dominated the dark current of the PMTs. Singles from the 6Li-glass scintillators were at a much lower rate (50-100 Hz) and were primarily caused by thermal or other stray neutrons.Random coincidences of the singles then could not be distinguished from
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scattering signals by their pulse heights, since the pulse heights in both the target and the 6Li-glass scintillators were correct for neutron scattering events. The random coincidences occurred with equal probability throughoutthe coincidence window and could be taken as a flat background in TOF. A flat background was included in all of the TOF fits.
3.3.2 Multiple Scattering in the Target

Multiple scattering of neutrons in the target scintillator caused a background with a ‘tail’ on the long-TOF side of the single scattering peak. At larger scattering angles it was also possible for the multiple scattering to have shorter TOFs than the single scattering by scattering from both protons and carbonnuclei.The background from multiple scattering decreases quickly with TOF. When it is adjusted for the 6Li-glass target scintillator photoelectron efficiencies, then it becomes flat enough to be a plausible source for the ‘background shift.’ The multiple scattering TOF spectra obtained with the neutron Monte Carlo (and corrected for efficiencies) still had too few events at long TOFs to account completely for the background shift.
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3.3.3 Compton Scattering and Capture Reactions

Compton scattering of 7 contamination of the beam into the 6Li-glass scintillator produces a ‘prompt’ (TOF ≈ 0) coincidence between the target and 6Li-glass scintillators. Neutron capture in the target, dominated by the 1H(n,7)2D reaction (Q=2.22MeV), also gives a prompt coincidence similar to Compton scattering.Neutrons detected by the 6Li-glass scintillators show a narrow peak in their pulse height distribution, while 7s have a much wider pulse height distribution, which is then cut off by the lower- and upper-level discriminators.Most of the 7 peak came from thermal neutron capture events in thescintillator or plastic light guides; the cross section for Compton scattering of 7s energetic enough to register in the 6Li-glass scintillator drops rapidly with increasing scattering angle, yet the 7 peak appears to be as evident at 45° as at 15°. An isotropic 7 flux is typical of (n,7) captures; however, the cross section for (n, 7) captures from the beam at 24.3 keV is much too small to account for the number of events because of the l∕υ capture cross section. Thermal neutron contamination of the beam can account for much of the 7 peak, since thermal neutrons have much higher capture cross sections.
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These effects all produce prompt coincidences, which are easily separable from the neutron scattering signal. While they are a prominent feature of the TOF histograms, it seems unlikely that they could have a role in the background shift.
3.3.4 Neutron Scattering and Capture in Wax PMT

Enclosures

Some Monte Carlo runs were made to determine the effect of neutrons scattering in the boron-loaded wax enclosures. While the exact geometry and acceptances were somewhat uncertain, the Monte Carlo did indicate that for typical situations, the flux of scattered neutrons would drop very rapidly with time (~ 3 decades in 100 ns) after the single scatter neutron TOF. This is only slightly affected by corrections for target and 6Li-glass scintillator efficiencies. Since the observed TOF dependence of the background shows at most a small variation in background level, it seems unlikely that this ∞uld contribute much to the background.Neutron (n,7) reactions in the enclosures produce similar delayed TOF signatures, but it should be noted that the θLi-glass scintillator ADC distri-
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butions of the post-TOF background rule out significant (n,7) contribution to this background.
3.3.5 Trigger Electronics Effects

The possibility of an electronic effect, in which a noise pulse from the target scintillator could trigger the experiment before the recoil-proton signal arrived, was examined carefully, since the difference of background levels would then be an independent measure of the number of photoelectrons in the TOF peak. This would provide a useful check on the neutron beam intensity. This effect gives a flat post-TOF background, and so would make an attractiveexplanation of the background level shift.The probability of a noise pulse ‘pre-empting’ the scintillation pulse wascalculated, based on PMT singles rates and the coincidence gate width, to be about 3 × 10~3. This is too small to be a significant effect in the backgroundshift.
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3.3.6 Discussion

The shape of the background is consistent with multiple scattering effects; however, the level is still higher than one would expect on the basis of MonteCarlo calculations.After examining the hypotheses above, multiple scattering in the targetstill seemed the most likely cause of the raised background levels in the post- TOF signal. The other hypotheses have much larger discrepancies with the background rate or TOF distribution. While one hopes that such scatteringcalculations can be done accurately, perhaps it should not be so surprisingthat a discrepancy could exist between the calculated and observed multiplescattering backgrounds.Because of this, it was necessary to scale the Monte Carlo TOF histograms for use in fitting the experimental data. The change in the fitted peak areasfrom this background scaling was comparable to statistical errors.
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3.4 Analysis

The counting rate for coincidences due to neutron scattering in the scintillator target may be expressed as:
N = ΊΤ T,s ^iΛ^PE∙i (3.2)

where N is the number of scattering events detected in time 71, T is the neutron beam intensity, 7⅝ is the probability of scattering a beam neutron into a 6Li-glass scintillator, eu is the efficiency of the 6Li-glass and cpe is the statistical photoelectron efficiency of the target scintillator signal. We may also express cpe as
tPE = 1 — e^μ,

using Poisson statistics, where μ is the mean number of photoelectrons per scatter. The object of most of the analysis will be to determine values of μ.The calculation of the various terms of 3.2 will be dealt with separately below, and the determination of N was accomplished by fitting the TOF peaks.
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Figure 3.8: 6Li-glass scintillator efficiency as a function of neutron scattering angle, labelled by the 6Li-glass thickness. The data points were calculated by Monte Carlo for the actual 6Li-glass configurations which that used in the experiment. Errors are statistical.
3.4.1 θLi-glass Scintillator Efficiency

The quantity cu may be calculated from cross section data for 6Li and the concentration of θLi in the 6Li-glass scintillators:
cu = 1 - exp (-σcnuδz), (3.3)

where 8z is the thickness of the θLi-glass, ∏Li is the number density of θLi, and σc is the capture cross section, which is given by Equation 3.1. Figure 3.8 shows curves of calculated from the equation above. The 6Li capture cross
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section varies with the scattered neutron velocity, causing the variation in euwith scattering angle.Equation 3.3 is an approximation, since it takes into account only the effect of direct capture by the 6Li, not of scattering in the 6Li-glass scintillator. Studies of these effects have been done previously28, but the exact geometry of the 6Li-glass plays an important role in the efficiency, and so Monte Carlo calculations were used to determine cl∣.The θLi-glass scintillator efficiencies were typically 2-5%, and there is good agreement between the efficiencies calculated with Eqn. 3.3 and thoseobtained by Monte Carlo. In most configurations the Monte Carlo efficiencies are slightly higher because of scattering effects in the 6Li-glass. A few runs have a lower Clî from having the θLi-glass scintillators stacked parallel to the neutron direction of flight; any scattering tends to scatter neutrons out of the 6Li-glass and reduce its efficiency (See Table 3.1). The expected systematic errors from the 6Li-glass scintillator efficiency are on the order of 2-3%, and come from differences between the actual 6Li-glass composition and thestandard tabulated values11.
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Table 3.1: Comparison of calculated and Monte Carlo clî valuesRun(s) θ δz cLi (Calc.) ⅛i (M∕C)1 50° 1.00 cm 2.56 × 10^2 (2.63 ± 0.05) X IO“24, 8, 19-21 20 1.00 1.76 × 10^2 (1.79 ±0.04) × 10"26, 7, 16 30 1.00 1.91 × 10~2 (1.97 ±0.04) × IO“210-15 10 1.27 2.13 × 10^2 (2.13 ±0.04) × 10~217, 18 25 1.00 1.82 × IO“2 (1.86 ±0.04) × IO’222-24 20 2.00 3.49 × 10~2 (3.43 ±0.06) × 10"225 50 2.00 5.06 × 10-2 (5.02 ±0.07) × 10~226 45 2.00 4.61 × IO"2 (4.51 ±0.07) × 10"227-29 15 2.00 3.39 × 10"2 (3.36 ±0.06) × IO“230-33,35,38-40 7.5 2.54 4.18 × IO“2 (3.89 ±0.06) × IO“2
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3.4.2 Scattering Probability

An expression for Vs in Eqn. 3.2 may be obtained in the thin-target approximation: ¾ = ∙ ΔΩ ∙ πh ∙ a, (3.4)
where dσ∣dΩ is the differential np scattering cross section, ΔΩ is the solid angle subtended by the 6Li-glass scintillators, n# is the number density of hydrogen atoms in the target, and a is the target thickness. The equationabove is valid only in the limit of thin targets, in which the probability of multiple scattering is small. In the case at hand, the probability of a neutronscattering in the target is ~ 0.2, and so a better approximation to Vs isrequired.If the intensity remaining in the beam is denoted ∑(z), then we find that

Z(z) =∑oe-≈zλ∖ (3.5)
where ‰ is the neutron beam intensity with energy Eq entering the target, and Λ1 is the attenuation length of the beam neutrons, which we may obtainfrom λι = Λ(E0), (3∙6)
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with λ(£) = ∑⅛,(fi)"j. J (3∙7)being the more general expression for attenuation length. Here, σj∙∖E) and 
∏j are the total neutron cross section (at energy E} and the number density of the jth species in the target, respectively. We examine the case of a neutronentering the target, scattering once from a hydrogen nucleus at a distance z into the target, and exiting with scattering angle θ without suffering further scattering. Let λ2 be the attenuation length of ‘scattered once’ neutrons:

λ2 = Λ(En),
where En is the energy of the neutron after scattering once from hydrogen, given by

En = Eq cos2 θ .

The scattering cross sections are mostly constant in the energy region of interest, the variation being dominated by the np cross section for which thetheoretical cross section was used29.The outgoing intensity per unit solid angle for single scattering from hydrogen is given by
= Jo -z°exP(-z∕λl)'-jQ-(0)nH∙exP[-(α - ^)∕(λ2cos0)] dz, (3.8)
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Figure 3.9: Comparison of scattering probability per unit solid angle for 0.3 cm of NE-110. The dashed line shows the thin-target approximation and the solid line the more exact calculation. The histogram was produced by a Monte Carlo.where a is the thickness of the target. The integral yields
Ps =

dσW
ΔΩ-πh- e~a'^ ■ Xτ (e~a'λτ - l) , (3∙9)

where Λτ1 = λ2 1 sec θ — λ11
Figure 3.9 shows the comparison of the thin-target calculation of Ps (Eqn. 3.4)and the more exact calculation above and the data from the Monte Carloobtained by selecting those events that scatter only once from hydrogen. The
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thin-target approximtion overestimates T⅛, while the more exact calculation and the Monte Carlo are in good agreement.
3.4.3 Fitting TOF Peaks

Runs at the same angle were combined for fitting whenever this was possible, as is reflected in Table 3.2. In some cases this was not possible because of differences in trigger timing or thresholds, and these runs were treated separately. The TOF peaks were fitted with Gaussians, using a combination of a flat overall background level and a background from multiple scatteringthat was obtained by Monte Carlo calculations.The Monte Carlo used 3 × 107 beam neutrons and collected TOF histograms for a 0.3 cm target at the scattering angles and distances that corresponded to those of the HFBR runs. The runs with 0.1cm targets had little or no significant background shift, and so a flat background was used in fitting them.The Monte Carlo gave the number of multiple scattered neutrons in a 1° angular bin in scattering angle and at a particular TOF. These ‘events’ then had to be weighted by an estimated detection efficiency in order to
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Table 3.2: HFBR Experiment Run SummaryRun(s) T (min.) θ ΔΩ (sr) eLi T>S Counts1 59 50° 1.13 × 10“2 2.63% 1.81 × IO“4 268±234 128 20 4.06 × 10"3 1.79 9.85 × IO“5 68±186,7 64 30 1.13 × 10~2 1.97 2.51 × 10~4 156±188 33 20 1.63 × IO“2 1.79 3.94 × 10^4 70±1210 21 10 1.28 × 10"2 2.13 3.26 × 10^^4 33±1011-13 176* 10 6.53 × 10^3 2.13 1.66 × IO“4 78±1714,15 107 10 6.53 × 10"3 2.13 1.66 × IO“4 46±1116 86 30 6.35 × IO“3 1.97 1.41 × IO"4 140±1817,18 158 25 6.35 × 10~3 1.86 1.48 × 10^4 227±2619 80 20 6.35 × 10-3 1.79 1.54 × 10"4 77±1420,21 96* 20 6.35 × 10~3 1.79 3.59 × 10^4 198±2422-24 112* 20 3.18 × IO“3 3.43 1.79 × 10~4 271±2625 65 50 3.18 × IO“3 5.02 1.12 × 10"4 365±2826 81 45 3.92 × 10^3 4.51 1.56 × 10"4 375±2927-29 374 15 2.12 × 10"3 3.36 1.24 X 10^4 331±2830-33,35,38-40 1383 7.5 2.84 × 10"3 3.89 1.71 × 10^4 598±45* Estimated time, ± 2 min.



-63-
have a proper TOF distribution. The efficiency of detecting the event in the target scintillator was estimated as proportional to the total amount of proton recoil energy; carbon recoils were not considered as contributing to the detection efficiency. The events were also weighted inversely with the scattered neutron velocity to simulate the l∕υ cross section of the 6Li in the 6Li-glass scintillators. The effect of the 6Li-glass timing resolution was included by ‘smearing’ the background with a Gaussian of the same width as the TOF peak. This also smoothed the background to a more suitable shape for use in fitting.The effects of the weighting were most noticable in the long-TOF tail, where the weighting was necessary to obtain the observed flatness of the background. Near the TOF peak the variation of the weighting factors wassmall, and the shape of the multiple scattering background was not much affected; the fitted area under the TOF peak was thus mostly insensitive to the weighting. The resolution smearing affected the fitted areas very slightly; the change was typically < 1% of the fitted area, amounting to a ≈ 0.1 σdifference in area.The multiple scattering background was aligned with the TOF peak and scaled to fit the TOF distributions. The scaling factor and the flat back
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ground level were the only parameters used for background fitting. This procedure was found to fit the data quite well (See Figure 3.10) and was a definite improvement over more naive backgrounds. This background was also used for the fitting of single and double photoelectron TOF distributions.
3.4.4 Neutron Beam Intensity

The neutron beam intensity was the major unknown of this experiment and was the largest source of systematic error. Fortunately, the beam intensity was found to be constant, as measured by 6Li-glass scintillator monitors that were placed in the beam on several occasions. The beam monitor was notparticularly helpful for determining the actual beam intensity, since thermalneutron contamination of the beam has eti ≈ 1, while the 24.3 keV beam has Cu ≈ 1.7 × 10 . Thus, a small thermal contamination can seriouslybias any intensity measurement, but the constancy of the monitor rates to within about 1%, together with other flux measurements, indicated that the 24.3 keV beam intensity was constant at the few percent level. This is much less than the systematic errors inherent in the beam intensity determination.The beam intensity was obtained by determining the mean number of



-65-
Co

un
ts 

Co
un

ts

Figure 3.10: Fits of runs at 45oand 7.5°. The background used in the fits is indicated.
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photoelectrons μ in the TO F peak, using the ratio of the number of double to single photoelectron events
from Poisson statistics. This then gives an estimate for epE which, when combined with the TOF peak area and other calculated factors, gives a value for the beam intensity. The determination of the number of photoelectrons was done with the data from runs at 45° and 50° where μ was relatively large; this reduces the relative error in cpe, since the propagation of the error in μ to epE is given by (here σ2 is the variance):

σe2 = e~2μσ2 .

The photomultipliers had good separation of single and double photoelectron signals, but even in the 45° and 50° runs the number of photoelectrons was only ~ 0.5. Care was required in separating the single and double photoelectron events, so that the more numerous single photoelectron events wouldn’t contaminate the double photoelectron events.The single and double photoelectron TOF distributions were obtained by making a pulse-height cut. They were then fitted separately using the backgrounds mentioned previously. The double photoelectron events obtained in
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this way have some events with three or more photoelectrons; this can be accounted for in the calculation of /2, but is a small effect compared to theother errors.The single and double photoelectron events were then corrected for the presence of the cut according to

7V1' /1 1-/2

l-∕ι /2 n2where /1 and ∕2 are the fractions of 1 and 2 photoelectron events that are on the correct side of the cut, respectively, the 7Vj∙ are the measured number of events on each side of the cut, and the Nj are the true values.The ∕2 factor was determined by examining the effect of the cut on events that were recorded in both target scintillator PMTs and hence were a ‘pure’ sample of double photoelectron events. A histogram of a single photoelectron ADC distribution was made after the experiment, and it was found be Gaussian for pulse heights greater than the 1 photoelectron peak. Scaling this to the observed pulse height distributions (which contained both single and double photoelectron events) indicated approximate values for ∕1. The cuts were placed ≈ 3σ above the 1 photoelectron peak to minimize the contamination of the doubles by the more numerous singles, and the error in /1
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Table 3.3: Calculated Neutron Beam IntensitiesRun θ l-∕1 /2 %cλIc1 50° 2 × 10~3 0.77 ±0.19 0.52 ±0.26 (39. ± 15.) kHz25 50 4 × 10^^3 0.77 ±0.13 0.63 ±0.24 (36.± 10.)26 45 3 × IO“3 0.85 ±0.16 0.37 ±0.15 (36. ± 12.)Average (36.5 ±7) kHz

was estimated (conservatively) as < 0.01.Table 3.3 shows the beam intensities that were calculated by this procedure. The errors given are statistical; it is possible that systematic errors dominate, but they could not be estimated from the available data. The beam intensity calculation includes the effects of errors in ∕1 and ∕2∙For convenience, the statistical error in this determination of Ί will besubsumed into the systematic error, and the value
1 = 36.5 kHz

used for the remainder of this analysis.
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Figure 3.11: Calculated photoelectron yield as a function of proton recoil energy.
3.4.5 Light Yields

With a determination of the beam intensity the epE values may now be calculated, and from them the average number of photoelectrons μ for a proton recoil may be obtained. Table 3.4 shows the calculated ep√s and μ,s, where the errors are the statistical errors and do not include any error from
Ί. Figure 3.11 shows the photoelectron yields plotted against recoil proton energy. There is some scatter, and it looks as though run 26 may have some systematic deviation, but the overall fit looks quite encouraging. At this



-70-
Table 3.4: HFBR Light YieldsRun(s) θ Ep (keV) tPE μ1 50° 14.3 (4.36 ±0.44) × 10^1 (5.72 ± 0.66) × 10^14 20 2.84 (1.39 ±0.36) × 10"1 (1.49 ±0.42) × 10^16, 7 30 6.08 (2.26 ±0.26) × 10-1 (2.56 ±0.34) × IO“18 20 2.84 (1.37 ±0.24) × IO“1 (1.47 ±0.28) × 10~110 10 0.733 (1.03 ±0.30) × 10"1 (1.09 ±0.33) × IO“111-13 10 0.733 (5.70 ± 1.26) × 10"2 (5.87 ±1.34) × 10-214, 15 10 0.733 (5.56 ± 1.34) × IO“2 (5.73 ±1.42) × 10-216 30 6.08 (2.68 ±0.34) × 10~1 (3.12 ±0.47) × IO“117, 18 25 4.34 (2.38 ±0.27) × IO“1 (2.72 ±0.36) × IO“119 20 2.84 (1.60 ±0.29) × 10^1 (1.74 ±0.34) × 10^120, 21 20 2.84 (1.46 ±0.18) × IO“1 (1.58 ±0.21) × IO“122-24 20 2.84 (1.37 ±0.17) × IO“1 (1.48 ±0.20) × 10-125 50 14.3 (4.59 ±0.35) × 10^1 (6.14 ±0.65) × 10^126 45 12.2 (3.00 ±0.21) × 10^1 (3.56 ±0.30) × IO“127-29 15 1.63 (9.81 ±0.84) × IO"2 (1.03 ±0.93) × IO“130-33,35, 38-40 7.5 0.414 (2.98 ±0.22) × IO“2 (3.02 ±0.23) × IO“2
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Figure 3.12: Averaged photoelectron yield as a function of proton recoil energy for all runs. A least-squares fit to the data is shown, point it is useful to start combining runs at the same angle by averaging their epE values. Table 3.5 and Fig. 3.12 show the averages that wereobtained for each angle. A least-squares fit gives
∕ E ∖ 0.78±0.03μ(FJ) = (6.64 ± 0.29) × 10-2 photoelectrons ∙ -j , (3.11)

where the errors are statistical, and doesn’t include errors from the beamintensity.Before comparing with other experiments, it is necessary to normalize the data to a standard light level. This normalization was accomplished by measuring the number of photoelectrons in the sum of both target scintillator
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Table 3.5: HFBR Light Yield Averages by Scattering Angle
θ Avg. epE μ7.5° 0.414 keV (2.98 ±0.22) × IO’2 (3.02 ±0.23) × 10^210 0.733 (6.05 ± 0.88) × IO“2 (6.24 ±0.93) × 10-215 1.63 (9.81 ±0.84) × IO“2 (1.03 ±0.93) × IO’120 2.84 (1.43 ±0.10) × IO“1 (1.54 ±0.11) × 10^125 4.34 (2.38 ±0.27) × 10"1 (2.72 ±0.36) × 10^130 6.08 (2.41 ±0.21) × IO“1 (2.76 ±0.27) × 10^145 12.2 (3.00 ±0.21) × 10^1 (3.56 ±0.30) × 10^150 14.3 (4.48 ±0.26) × IO“1 (5.94 ±0.46) × 10~1
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PMTs when an 241Am source was placed on the target scintillator. This measurement was done for both the 0.1 cm and the 0.3 cm NE-110 targets, andyielded 107 ± 5 photoelectrons for the 5.48 MeV a. The difference between the light yield of the two targets was less than the estimated error in the measurements, and so the two sets of data were combined without a relativeadjustment.The 241Am calibration could then be used to normalize to previous proton light yield (Lp(E)) measurements, since a set of standardized La(E) and 
Lp(E) measurements were available in the literature23. The quoted error for 
La(E) was 10%, and that of Lp(E) was 2%. It should be noted that the 
Lp and La measurements were made using NE-213, but it has been shown30 that the light output from NE-213 is identical to that from NE-110 over a range of 24keV-20MeV. The normalization with La(E) gives a light yield of 116 ± 13 eV/photoelectron, where the error contributes to the systematic error of light level normalization.Figure 3.13 shows the comparison of this experiment to the Lp(E) curve derived from previous experiments at higher energies23,30,31. It appears that the data points obtained here are offset from the previous measurements by about 15%, an offset is perhaps not so surprising, given the difficulties with
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Figure 3.13: Light yield of recoil protons as function of energy. The data points are from this experiment, with a least-squares fit.systematics in the neutron flux determination and in finding absolute lightlevels and efficiencies.
3.4.6 Discussion

A previously published analysis2 shows a curve that is 20% below the level of the the higher energy data, but lacks a number of the points that were used here. The difference in slope (0.86 as opposed to 0.78 here) can be attributed the method in which the scattering probabilities and 6Li-glass efficiencies were calculated, but the two slopes are not inconsistent with each
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other when the statistical and systematic errors are considered.
Scintillation Efficiency

The normalization of the response curve is less important than its shape and slope. Just the fact that the trend of the light output as a function of proton energy is continuing is important in evaluating mechanisms of scintillation at low velocity.The scintillation efficiency may be estimated from the slope of the fitobtained above and compared with the models for scintillation efficiency as a function of dE∕dx. An ‘average’ scintillation efficiency L∣E is also useful as an estimate of the scintillation efficiency for proton velocities less than thosemeasured in this experiment. Figure 3.14 shows the fit of the data from thisexperiment,
4⅛ = (6.01 ±0.35) × IO“3 - 0.22±0.03

and scintillation efficiencies derived from higher energy data.A more useful form of the scintillation efficiency fit above is in terms ofproton β, since this can be used as an estimate of monopole scintillation



-76-

Figure 3.14: Scintillation efficiency calculated from light yield fit, compared with calculations of the previous chapter and the data of Verbinski et al.23 The dashed fine shows the scintillation efficiency from the fit when the light yield is matched to the data of Verbinski et al.
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efficiency.

dE = (7.1 ±0.4) × IO“3 —0.44±0.06

In fact, the scintillation yield at 414 eV (θ = 7.5°) gives a minimum scintillation efficiency (L∕E) of (8.5 ± 0.6) × 10~3.The dL/dE curves show calculations based on a 5eV band gap in the scintillator and with no gap. If such a gap is present in NE-110, then there would be no contribution to L from energies below the kinematic cutoff. One then expects L/E to decrease sharply as the proton energy approaches the cutoff. This experiment found no evidence for such a decrease in L/E or in scintillation efficiency with decreasing proton energy.A kinematic cutoff in scintillation efficiency is ruled out for proton energies greater than 400 eV and seems unlikely for energies greater than ≈ 200 eV, which corresponds to a band gap of 5.5 eV. Since the most probable value of aband gap is 4-5 eV, this experiment must leave the question of the existenceof such a band gap open.
Other possible effects

Scintillation from carbon re∞ils in the scintillator was not observed in thisexperiment, even at the larger scattering angles where it would be most
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noticeable. Because of the low velocity of carbon recoils, it was expected that no signal would be seen corresponding to neutron scattering from carbon; previous studies23 have reported carbon recoils at higher energies and we may take their data as indicative.Direct neutron-electron scattering was also not considered as an effectin this experiment as the cross sections are much too small to produce an observable effect. Magnetic scattering of neutrons from electrons was alsoexpected to have no effect on this experiment, since it depends on coherent scattering from unpaired electrons. Coherent scattering is negligable at24.3 keV, and the covalent bonds in a plastic scintillator should have no suchunpaired electrons.
3.5 Conclusions

The primary result of the HFBR experiment was the detection of scintillation light at β = 9.4 × 10^4. This is a strong indication that magnetic monopoles will also be detectable at low velocities, and that the light yield for a typical counter thickness (~ 10 cm) is large enough to make detection practical. Using the Lindhard stopping power for protons 5e, and the results from the
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Figure 3.15: Results of this experiment, and more recent low β scintillation results.previous section for a β = 10 3 monopole:
5e(∕3 = IO'3) Sm dL 10 cm 5∑dE 3eV= 3.6 × 105 photons,

which should be enough for detection.There has been a further low-velocity scintillation experiment3 since thisexperiment, extending to vélocités as low as β ≈ 2.5 × 10”4, with scintillation observed even at these low velocities. Figure 3.15 shows the results of this experiment with the higher-energy light yield data, and the newer results. It can be seen that there is no sudden drop in the light yield that would imply
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a threshold.If there is a band gap, these recent results indicate that it must be less than ≈ 2.5 eV, using the calculations of the previous chapter. Since the spectrographic evidence indicates 4-4.5 eV required to excite scintillation, one must conclude that the scintillation mechanism is not as simple as the band-gap model implies.A rough fit of the newer data gives

0.85⅛ ≈ (1.0 × 10-2) (■ β
dE v ' ∖ 10-3

for 1.5 × 10~3 > β > 2.5 × 10-4. No errors are given with this fit, since theycould not be calculated from the available data.Further developement will be required before the mechanism of low- velocity scintillation is fully understood, but the implication for the detection of monopoles is clear. Slow monopoles should produce detectable scintillation in the velocity range expected from cosmological arguments, and at light levels that are experimentally useful.
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Chapter 4

The Caltech Prototype

Monopole Detector

4.1 Introduction

Although the astrophysical limits indicate that very large detectors are required to achieve significant monopole flux limits, it was desirable to gain experience with smaller experiments before building very large ones. The Caltech Prototype Monopole Detector was an attempt at building and operating a smaller version of what was hoped could be scaled to the size needed to challenge astrophysical limits.
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Monopole detectors that are too small to search for monopoles below the astrophysical limits have only a small probability that a monopole could actually be detected. Such detectors had sometimes been designed such that a limit could be set by seeing no monopole candidates, but that a monopole candidate would not be unambiguous enough to establish a flux. It is generally easier to limit than to demonstrate a flux, but a large monopole detector must use a different design philosophy since there is a reasonable possibility that viable monopole candidates would be seen.While we were limited by the available equipment, we attempted to designthe detector as if it were a full-scale experiment, with the philosophy that wewere trying to establish rather than to limit a flux. We were not completelysuccessful in this, of course, since prototypes are built to find the mistakesin design and execution.Thus, one of the goals of the design was to try to detect monopoles unambiguously, so that a monopole signal could not be confused with background processes. This goal indicated that a coincidence of several independent scintillators was desirable, and that they should be separated so that the low velocity of a GUT monopole would be apparent in the timing of signals between different scintillators. The use of a timing coincidence then implies
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Figure 4.1: Monopole signature expected for slow, lightly ionizing monopole.
that a trigger would be generated near the end of an event, possibly manymicroseconds after a GUT monopole entered the detector. Figure 4.1 shows the timing signature of a monopole passing through slabs of scintillator, compared with a β = 1 cosmic ray. For a ‘typical’ monopole of β = 10~3, the transit time through our detector was 3 μs at vertical incidence, and so the relationship of the trigger to the event timing indicated that some form ofsignal storage was required. This led to a form of waveform digitization thatallowed the events to be reconstructed in time.When the detector was set up, relatively little was known about the
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efficiency of monopoles at producing scintillation light. It was conservatively estimated that slow monopoles would produce a rather small amount of hght, on the order of 0.1-0.5 times that of a minimum ionizing particle. Thus,one would expect to observe a few isolated photoelectrons from the PMTsduring the transit time of a monopole through a piece of scintillator. If this is the case, then the pulse height information isn’t very important, and the monopole signature can be seen in the timing of single photoelectron pulses.
4.2 General Description

The Caltech Prototype Monopole Detector consisted of six 1" thick planes of NE-114 plastic scintillator of dimensions 5' × 10, (See Fig. 4.2). Each plane had two pieces of plastic scintillator with BBQ shifter bars, so that therewere four 56DVP PMTs per plane. There was a ‘stopping muon target’ that consisted of 4" of wood placed between the middle two planes of the detector; some cosmic ray muons would stop in the target and subsequently decay, and the incoming muon and outgoing electron tracks could be detected by thescintillator.The light yield from a minimum ionizing particle passing through a single
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Figure 4.2: The Caltech Prototype Monopole Detector.
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scintillator plane was found to be ≈ 14 p.e. in the sum of two PMTs. ThePMT signals from each plane were discriminated at the 0.6 photoelectron level and sent to the acquistion electronics. The signals from each plane were also combined to make a timing signal for use in the triggers. Figure 4.3shows a general overview of the electronics for the monopole detector.The sum of the PMT signals for each plane was also sent to the acquisition electronics for online monitoring of the detector. This was found to beessential for finding light leaks, bad PMTs, and gain drifts.The detector was run with several separate triggers:
Slow Particle Trigger: A delayed coincidence of all six scintillator planes, vetoed by the fast particle trigger.
Fast Particle Trigger: Majority of 4 out of 6 planes firing within 50 ns.
Stopping muon Trigger: Coincidence of the top 3 planes and a small scintillator in the center of the array, vetoed by the bottom 3 planes.
‘Random’ Trigger: A puiser running at 0.01 Hz. Used for diagnostics and in the offline analysis.
The ‘Fast Particle’ and ‘Stopping muon’ triggers were prescaled down to rates
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Figure 4.3: Caltech Prototype Electronics overview
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of ~ 0.01 Hz so that they would not cause too much deadtime, and to allowtapes on the acquisition computer to be changed at reasonable intervals.The slow particle trigger used a delayed coincidence between planes tolook for downgoing particles. A pulse in the top scintillator plane generated a 2.4 μs gate after a ≈ 70 ns delay. A pulse in the second plane in coincidencewith this gate would then trigger another delayed gate for coincidence withthe third plane. The final coincidence with the bottom plane of the detector was vetoed by the fast particle trigger before triggering the experiment. The slow particle trigger timing was deliberately loose, so that slow particlecandidates could be examined offline with better efficiency.The stopping muon trigger used the coincidence signal of two PMTs on a ≈ 1 ft2 plastic scintillator, which was placed in the center of the detector on top of the wood muon target. This reduced the number of ‘double corner clipper’ events, which were a major background for this trigger. The signal from the paddle scintillator was not sent to the acquisition system, nor used for any of the other triggers.The ‘random’ trigger was implemented for several purposes. It provided the offline analysis with a sample of typical PMT signals, which were found to be very useful in simulating events and efficiencies offline. As a diagnostic,
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it yielded a rough check on the PMT noise rates, which was kept in the datasample. Finally, it provided a minimal event rate which, was useful for theacquisition and monitoring systems.The various triggers were combined to form a global trigger, which wasthen sent with the trigger type to the acquisition electronics.
4.3 Acquisition Electronics

The acquisition electronics was contained on 3 CAMAC crates controlled by a PDP 11/34 minicomputer. One of the crates had been previously modified to contain drift chamber DAQ modules for a cosmic ray telescope, with an auxiliary backplane for distributing a global clock.The DAQ modules were used to record pulses from a multiwire drift chamber. There were 8 ECL inputs for each DAQ, and the logic (aside from the CAMAC interface) was implemented in ECL for speed purposes. The DAQ would record the time from an 8-bit gray code clock running at 125 MHz and 8 bits indicating which wires had fired, allowing a pulse timing resolution of 2ns over a 512 ns range.The asynchronous gating of clock times from the auxiliary backplane
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required the use of gray code for the clocks. Gray code has only one bit transition per clock interval, which gives an error of at most ±1 tick because of timing mismatch with the clock transition.In the original DAQs, the memory filled after the fifteenth pulse and thememory counter would stop at the last memory location so that no more pulses would be recorded. An ‘End-Of-Drift’ (eod) signal caused a mark to be written to the ECL memory, and the memory counter reset in preparation for reading out the memory via CAMAC. There was a deadtime after the receipt of a pulse in the DAQ during which another pulse could not be accepted. This was due to the time required (≈ 15 ns) to write the previous pulse into the ECL memory and to update the memory counter.The original DAQs were read out in time sequence starting at the first pulse in memory and ending when the mark was encountered in the memory. At that point the DAQ would indicate the end of the available data by turning off the CAMAC ‘Q’ signal and resetting its memory counter. When used with drift chambers, the EOD signal would then be turned off at the start of the next event so that the DAQs would record pulses from it.Unlike the drift chambers, the prototype monopole detector couldn’t turn on the DAQs just before an event, since the event was over by the time a
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trigger could be developed. It was necessary to make the DAQs ‘free run’ until a trigger occurred, and then to read out the most recent pulses. To accomplish this, the DAQs were modified to allow the memory counter to ‘roll-over’ at the end of its range rather than stopping. The memory would thus constantly overwrite the oldest pulse by the most recent one. To make this work properly on readout, the memory counter had to be prevented from being reset when the EOD signal was turned on. The memory counter would then point to the location after the mark which was written in memory whenEOD was turned on, and on readout would cycle through the memory until the mark was encountered, yielding the time history of the event, starting at the oldest pulse.Both of the modifications above were accomplished with some minimalchanges of the DAQ modules, and were fully reversible. Twelve DAQ modules were modified in such a fashion and tested to check for proper functioning.The timing range of the DAQs as originally used was too short to be useful for examining possible monopole events. The range was increased by using them in pairs with a ‘high’ and ‘low’ byte of gray code, yielding 16 bits of clock information, and by slowing the clock rate from 125 MHz to 70Mhz. This required the design and construction of a 70 MHz 16 bit gray code
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Figure 4.4: Pairs of DAQs used to record PMT pulse times
clock in ECL. The DAQs then had a pulse timing resolution of 7.14 ns with a clock roll-over time of 468 μs. Figure 4.4 shows schematically how the PMT signals were put into the DAQs with the gray code clock times.The gray code clock was running while waiting for an event, so it was likely that a clock roll-over would occur at some point in the timing history of an event. The roll-overs could be corrected offline as long as a pulse arrived at the DAQ within the clock roll-over interval. The PMT singles rates made the probability of an undetected clock roll-over quite small (≈ 3 × 10^7).Since the average singles rate from a scintillator plane was about 32 kHz,
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the DAQs held an average of 470 μs of event history. In practice, the event history was shorter for all but the ‘random’ triggers, since the triggers generally picked events which had higher than average pulse rates.Figure 4.5 shows an event that was taken with the slow particle trigger, but that was the result of a very ‘noisy’ cosmic ray shower. The timing history of the event is shown like a multitrace oscilliscope, with the horizontal lines representing the six planes of scintillator, and the ticks being pulses from the planes. The relative spacing of the horizontal Unes is the same as that of the
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detector, so that constant velocities through the detector are seen as straight lines in the timing history.

This event has an extraordinary number of pulses, both from cosmic raysand in afterpulsing by PMTs or scintillator. The DAQs of several of the planes have filled up in this event, and this is why the early history of this eventwas not seen by all of the planes. The pattern of pulses that fired the slowtrigger is indicated.The experiment was controlled by a PDP 11/34 running a customized version of RT∕MULTI. Events from the experiment were logged onto tape for offline analysis on a VAX 780. The events were read into the 11/34 by an interrupt-triggered acquisition subprocess, and there were other subprocesses that handled event logging, experiment monitoring, online analysis, and experiment control. This design allowed the acquisition to proceed with minimal software imposed deadtime, and still to be convenient to work with.When a trigger occurred, a delay of approximately 10 μs was generated to allow post-trigger pulses to be recorded. The trigger type was latched, the DAQ modules were stopped by turning on the EOD signal, and the 11/34 interrupted via CAMAC to start reading in the event data.The acquisition subprocess on the 11/34 would then stop the gray code
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clock, and then start reading out the DAQs into the event record. The trigger type and the gray code clock time were read and stored in the event record. At the end of an event, the gray code clock was restarted, the interrupt reset, and a pulse sent to turn off the EOD signal and thus to re-enable the DAQs for taking data. A post-acquisition deadtime of ≈ 100 μs was imposed on the triggers to restrict the burst trigger rate to one which the 11/34 could handle. The event was tagged with run and event number and the date andtime and was passed to the logging subprocess for writing on tape.The third CAMAC crate was used for experiment monitoring, and wasoperated from a separate CAMAC controller to avoid contention with theacquisition processes. The monitoring was accomplished by gating a multichannel scaler for ≈ 0.5 s and counting PMT singles from each plane, as well as from a puiser. Since a gating period long enough to obtain reasonable count statistics (> 100 ms) was required, and the scaler could not be free-running because of roll-over problems, the monitoring was done by a separate subprocess in the 11/34. The gating period of the monitoring scaler was slightly variable because of the acquisition and logging subprocesses having priority on the available processor time, so the fixed rate puiser was usedto normalize the singles counts to a standard interval.
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A running average was kept of the PMT singles rates, and messages were logged on a hardcopy terminal when the singles rates deviated from the average by more than about 4σ. It was also possible to make a plot of thesingles rate as a function of event number so that PMT noise rate excursionscould be seen directly.The monitoring function was found to be extremely useful during the early shakedown running of the experiment, in which a number of PMTs were found to be bad and a NIM crate power supply failed. After the shakedown period, the monitoring gave considerable confidence that the detector couldbe left unattended and yet not have problems go unnoticed.

4.4 Operation &: Analysis

The detector was run for approximately 100 days, taking 9.8 × 105 events for offline analysis.The first steps of the analysis were to extract and combine the DAQ clock times and PMT bits, convert the DAQ clock times from gray code to standard binary, and insert clock roll-overs where needed. The relative timing of the planes were adjusted by the small amounts needed (typically ±1 tick) to
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account for relative delays in the DAQ modules. The timing of an event was referenced to the gray code time at the end of the event (eod), since it was uniquely defined by the trigger. Working backwards from the EOD, clockroll-overs were inserted wherever the DAQ time was found to increase from apulse to the preceding pulse.The relative timing of the planes was adjusted in software since the cables and other components made such adjustments difficult to do directly. Asample of cosmic ray events was taken and the tracks found in the timinghistory by their position relative to the EOD. The timing differences betweenplanes were averaged and the offsets applied to bring the planes into agreement. This did not account for timing variations between different PMTs of a plane, nor for variations due to the position of a cosmic ray hit on ascintillator plane, but these effects had been observed to be small enough to be ignored and the subsequent analysis was insensitive to them.There were a small number of events that required fixing offline due tomismatches of the PMT bits between the high- and low-DAQs, and some that were incomplete because the trigger for them arrived before the DAQs could refill with timing history. These latter events were necessarily removed fromthe analysis, since the design of the modified DAQs caused them to read out
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pulses left from the previous event in such cases, rather than the new pulses. The PMT bit mismatches were due to slight differences in the gating intervals between the high- and low-DAQs, and were fixable by ORing the PMT bitsfrom the two. In nearly all cases, these events were the result of two PMTsof the same plane firing within a short interval.Another more difficult class of 4bad but fixable’ events were those in whichthere was an offset between high- and low-DAQ timing histories, in general occurring when one of them recorded two PMTs firing at once and the other recorded them as separate pulses. These were found to be fixable by patternmatching the PMT bits and checking for offsets while scanning through the timing history. A small number of these events were ambiguous enough so as to defy fixing, and were necessarily thrown out.There was about 30% of the events that required the offset fixing at some point in their event history, but in almost all cases the offset occurred early in the timing history and the pulses in the region of interest near thetrigger time were not affected by offsets. The slow particle candidates in the analysis were checked and found not to have such possible offsets during thetime interval for which candidates were found. The number of events leftafter the procedures above was 9.6 × 105.
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run: 171 event: 552Θ; type: Fast ParticleT I ΓT ΓτT Γ

I I†
muon track, , . I , . ■ I , . . I ■ ■ ■ ■ » ■

-β -7 -β -5
time relative to EOD (μs)Figure 4.6: Fast particle event taken with the detector. The timing coincidence between the scintillator planes allows the identification of β = 1 cosmic ray background.

4.4.1 The Data

Figures 4.6 and 4.7 show events that were taken with this detector. The tracks of cosmic rays are clear and distinctive, with a timing difference of±1 tick between planes. It is also clear from even a small sample of events that the singles rate after a cosmic ray is much higher than at earlier times.This was due to afterpulsing in PMTs or the BBQ shifter bars and wasa major nuisance in this experiment. Afterpulsing from PMTs occurs when electrons inside the PMT ionize gas atoms, which then drift to a dynode and
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run: 6 event: 4313 type: Slow Particle

1 I--- ■ ■ ■ I » « I I I I I I I L
-15 -10 -5 0

time relative to EOD (∕xs)Figure 4.7: An event which fired the slow particle trigger. This particular event was a slow particle candidate in the analysis, but some of the pulses come from a β = 1 cosmic ray at ≈ — llμs. The higher rate of pulses to the right of the cosmic ray track comes from afterpulsing.
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produce a late pulse. PMTs that have been in a helium-rich environment areparticularly prone to afterpulsing, since the helium will diffuse through the glass envelope of the PMT and contaminate it.BBQ afterpulsing occurs when metastable states in the fluors are excitedand subsequently decay. This was not believed to be the primary source of afterpulsing in this experiment, but it could not be ruled out. In either case, the result is that a cosmic ray would often cause afterpulsing for some microseconds after its passage. While the cosmic ray could be identified, and to some extent vetoed at the trigger level, the afterpulses were more difficultto deal with.
4.4.2 Slow Particle Analysis

The slow particle trigger analysis was done elsewhere32, but a short summary of the analysis is appropriate here.Slow particle candidates were found by searching the events for tracks that corresponded to a fixed, low velocity through the scintillator array. Fast particle tracks were removed by looking for coincidences between adjacent planes within a short period of time, and PMT afterpulses were checked for,
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after fast particle tracks, and removed if present. A check was made based on the track geometry, so that candidate tracks were consistent with a straight line through the detector.The cuts mentioned above were also performed on a sample of MonteCarlo slow particle events. These events were generated by adding pulses typical of a slow particle signature to events of the ‘random trigger’ data sample. The Monte Carlo events gave an idea of what a slow particle would look like when present in the cosmic rays and PMT noise of the detector. The number of these Monte Carlo slow particle events that passed the cutsabove was then used to quantify the efficiency of the cuts.The analysis efficiencies were factored into the experimental efficienciesand live-time calculations. The final sample of slow particle candidates wasexamined in terms of ionization and β distribution, and a flux limit set.
4.5 Results

A valuable check on the operation of the detector was provided by eventsobtained with the stopping muon trigger. The stopping muon trigger events were separated from the data, and an analysis program was used to find
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run: 171 event: 2742; type: Stopping Muon 

]jiuon---------------1—I-----------------------------------------
tι----------------------- r
late electron

-0 -β -4 -2
time relative to EOD (∕xs)Figure 4.8: A stopping muon event. The stopping muon event has a timing coincidence of the top three planes from the incoming muon, and a later coincidence of the lower three planes from the outgoing electron.

the outgoing electron track from the μ → evcvμ decay. Figure 4.8 shows a particularly clear example of such an event. The electron track was takento be a timing coincidence in the bottom three planes at least 50 ns afterthe stopping muon track. The delay was to help reduce contamination frommuon events with afterpulsing.A histogram of the number of events as a function of the time betweenthe muon and electron tracks is shown in Fig. 4.9. A ‘lifetime’ slope of ≈ 2 μs was fitted to the decay curve. The μ+ and μ~ lifetimes are different in the
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Figure 4.9: Lifetime curve for cosmic ray μs stopping in the detector. The 
fitted slope of the curve is consistent with muon decay in the wood target. 
The statistics are insufficient to separate the μ+ and μ~ components.
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target because of nuclear capture effects, but they cannot be separated with the statistics of the decay plot shown.The analysis of slow particle triggers resulted in a flux limit (90% confidence) of 4.7 × 10"12 /(cm2 srs) for massive particles with 2.7 × 10^4 ≤ β ≤ 5 × 10^3 and with a light yield greater than 1/3 that of a minimum ionizing particle.If the stopping power calculations and light yields from preceding chapters are used, a monopole with a Dirac magnetic charge should produce light equivalent to 1/3 of that of a minimum ionizing particle down to at least 
β ≈ 4 × 10^4, and possibly as low as β ≈ 2 × 10-4. It is assumed here that since no β cutoff was observed for proton scintillation, this should also holdfor monopoles.The monopole flux limit achieved with this experiment is well above the Parker bound (See Fig. 4.10), and in fact other experiments have achieved lower flux limits. This was, however, one of the better scintillator monopolesearches that have been conducted on the Earth’s surface. As such, it was sensitive to slow ‘medium heavy’ particles of mass ~ 10θ GeV, of either electric or magnetic charge33. Examples of such particles are nuclearites34, also known as ‘strange quark matter,’ and particles of 1/5 charge from superstring
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Figure 4.10: Comparison of the monopole flux limit achieved with the prototype monopole detector with the astrophysical limits of Turner, et al.9 for a 10lθGeV monopole.
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theories35.Underground experiments are generally insensitive to this mass range because of the particles stopping in the Earth’s crust. Some of the monopole detectors at the Earth’s surface used a geometry with vertical layers or high ionization thresholds, and hence were also not very sensitive to these particles. While cosmological limits and bulk matter searches make a significant flux of monopoles of this mass range unlikely, these limits do not apply to electrically charged particles.The calculations and results from previous chapters indicate that ‘medium heavy’ electrically charged particles should produce enough light to exceed the 1/3 minimum ionizing threshold when β > 6 × 10~4 for a ∖Z∖ = 1/5 particle, β > 3.5 × 10^4 for a ∖Z∖ = 1/3 particle, and the full trigger β range is sensitive for a ∣Z∣ ≥ 1 particle. These β thresholds are conservative and will probably decrease when better scintillation efficiency measurements areavailable.A new upper flux limit was set for these ‘medium heavy’ slow particles in cosmic rays, which gives a stringent Emit on the fraction of the dark matter that can be composed of such ‘medium heavy’ particles, shown in Fig. 4.11.
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Figure 4.11: Limit of the fraction of dark matter that can be attributed to heavy charged particles, as a function of mass.
particle mass (GeV)
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4.6 Conclusions

The results obtained with the prototype for ‘medium heavy’ charged particles are certainly new and interesting, but the primary gain that was achieved with our detector was in knowledge applicable to the design and operation of large-scale monopole detectors.It was clear that the detector had too much background for monopole detection to be unambiguous. The major source of slow particle background was cosmic rays; there was very little slow particle background associatedwith PMT dark noise or radioactivity. In particular, cosmic rays passingthrough the detector would cause many afterpulses, which would then generate false slow particle triggers. Direct coupling of the PMTs to the scintillator could eliminate BBQ afterpulsing, and better PMTs were also needed to help reduce afterpulsing.Cosmic rays would still remain the major background, and the desire to reduce this background led to the consideration of underground detectors. The use of a closed geometry was indicated by the numerous ‘corner clipper’ events that were found among the slow particle candidates.The desire for coincidence between independent detector elements as part
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of a slow particle signature and the use of slow particle timing as part of thatsignature pointed the way for the use of waveform digitizers in recording slow particle events. More modern techniques for waveform digitization have evolved since this experiment, particularly in providing accurate pulse-height information, but the techniques used in this experiment still stand up well for obtaining accurate pulse times over a wide timing range.The detector certainly had too little light from the scintillator, which aggravated some of the problems mentioned above. It was clear that a realistic design for a large monopole detector would have to do better at light collection from scintillator, since the scintillation light is the raw material for the subsequent steps in the triggering and data collection processes.
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Chapter 5

Liquid Scintillator Optics

5.1 Introduction

The use of liquid scintillator detectors was motivated by the availability oflong attenuation length liquid scintillators. These scintillators are based on a solution of pseudocumine (1,2,4-trimethylbenzine) in mineral oil and have relatively low light output compared to plastic scintillators or other liquid scintillators such as NE-213. Still, their attenuation lengths of 6-8 m makethem attractive for large detectors.The MACRO experiment4 is a large-scale monopole detector for which liquid scintillation counters were selected. A prototype MACRO liquid sein-
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tillation counter was built at Caltech, and much effort has gone into measuring and explaining its performance, and into finding ways to optimize liquid scintillation counters for both slow and fast particle detection. This counter was then shipped to Italy so that it could be used in tests to be conductedin the Gran Sasso tunnel, where the MACRO detector will be built.There was another prototype counter built with somewhat different techniques at the University of Michigan for essentially the same purpose. This counter used the same photomultiplier tubes (PMTs) and basic dimensions as the Caltech counter, but also had a different fining (aluminized Teflon)and a more transparent window between the PMTs and the scintillator. Thedifferences in response of the Caltech and Michigan counters prompted much of the work in this chapter.One of the goals of MACRO is to identify upward-going muons producedby neutrino interactions in the rock below the detector. There is a background of ~ 104 downward-going cosmic ray muons for each upward-going muon, and the separation of the upward-going muons from the background is done with time-of-flight between liquid scintillator counters. Timing and pulse-height measurements are also used to obtain information about theposition and ionization of particles passing through the liquid scintillator
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counters.A ray-tracing program was written to simulate the optics in the liquidscintillator counters, to help isolate the effects of various components of thesystem in a way that can be difficult on an actual prototype, and to helpoptimize the design. The optimization was primarily directed toward the overall light level, but considerations of dynamic range and pulse timing were still important. In this chapter I will be presenting prototype data, results from the ray-tracing program, and direct calculations with the goal in mind that they should all fit together in explaining the behavior of the counters, and in pointing the way to improve performance of these counters.In most of this chapter it will be assumed that the scintillation light is monochromatic, so that the refractive indices, attenuation lengths, etc. will be constants. Of course, the light from a scintillator is only approximately monochromatic, and the major effect for which this fact is relevant is in the decrease of attenuation length with decreasing wavelength. Much progresshas been made in understanding the wavelength-dependent features of theseliquid scintillation counters, but discussion of these issues will be confined tothe section on wavelength dependence.
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5.2 Basic Concepts

5.2.1 Total Internal Reflection

Light produced by particles passing through a liquid scintillator counter is propagated to photomultiplier tubes by means of total internal reflection.This is accomplished by surrounding the liquid scintillator with a medium of lower refractive index (a ‘lining’). The critical angle with respect to the surface normal is given by

where n is the refractive index of the liquid scintillator (typ. 1.45) and n, is the refractive index of the lining. Rays of angle Θ > Θc with respect to the surface normal will be totally reflected, while others will be only partially reflected from the lining.It can be seen that n, should be made as small as possible to increase the amount of light that is totally reflected. Air makes a good lining (n, = 1.00029), but there are difficulties in surrounding a liquid with air on all sides. Instead, Teflon with n, = 1.33 is used, giving Θc = 66.5°.The subject of reflection from Equid scintillator linings will be dealt with



-115-
further in a later section of this chapter. However, the concepts outlined above are fundamental to the understanding of the optics of liquid scintillator counters, and the rest of this chapter will draw heavily on them.
5.2.2 A Standard Counter

Figure 5.1 shows the liquid scintillator counter which was used for most of the prototype work. The counter was a 50 cm wide and 12 m long tank that was filled to a depth of 25 cm with liquid scintillator (Bicron BC-517P),with a Teflon fining on the bottom and sides for total reflection. The airabove the scintillator produced total reflection from the top surface. The dimensions (primarily the width) of the prototype are different from that of the liquid scintillation counters that will be used in MACRO, but sincethe data from the prototype and many of the simulations use the prototypedimensions above, the 50 × 25 × 1200 cm counter will be used as a standardof comparison.It is convenient to define a coordinate system on the counter, with the z axis along the length of the counter and the x and y axes along the bottom and left side, respectively. Photomultiplier tubes are placed at z = 0 and
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Figure 5.1: Liquid scintillation counter prototype that was constructed for 
tests. This counter was used at Caltech for about a year, then shipped to 
Italy for tests in the Gran Sasso tunnel.
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z = 1200 cm, although in general I will only refer to the PMT at z = 0 for simplicity.For a long rectangular counter it is also useful to use the angle 0 of a ray with respect to the z axis in examining its behavior. The use of Q is motivated by the invariance of 0 for a ray moving down a rectangular counter by reflections from the sides, and also by its relation to the total internal reflection angles. The angle φ denotes the angle of a ray about the z axis with respect to the x axis, so that θ and φ are the angles of a spherical coordinate system.There is a point that may cause some confusion: θ is measured from the
z axis, which lies in the planes where most of the reflection occurs, while the angles of reflection are measured from surface normals that are generally perpendicular to the z axis. In this chapter, the symbol Θ will be reserved for angles with respect to surface normals, which is the usual convention inoptics, while θ denotes angles from the z axis. In particular, a ray travelling down a counter with angle θ will experience reflections at normal angles that can range from 7γ∕2 to the minimum Θ given by

θmin = l~θ'
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In general, I will use Θ when analyzing individual reflections, and θ and 

φ for describing the propagation of a population of photons. Since rays with Θ > Θc will be totally reflected by the lining material, it can be seen from the equation above that there is an angle θc such that all rays with θ < Θcwill be totally reflected.
5.2.3 Attenuation

Scintillation light from an ionizing particle is propagated down the counter to the PMTs by total internal reflection, and attenuated by the scintillator and imperfect reflections from the walls of the counter. If ∕(z) is taken as the intensity of light from a source located at a distance z along the counter, then one can approximate the attenuation in the limit of large z by
∕(z) = ∕0e→ , (5.2)

where a is the attenuation length. The quantity ∕0 is called the ‘light level,’ since the equation above decouples the overall light level from the effects ofattenuation.The intensity I(z) is properly a photon or energy flux, but it is often put in terms of the number of photoelectrons detected at the PMT for a
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Figure 5.2: Response curve of the Caltech MACRO prototype counter, in photoelectrons for a vertically incident minimium ionizing cosmic ray. The response has been fitted with an exponential. The PMTs were contained in oil-filled housings, with a ‘blueish’ plastic window.
minimum ionizing particle (such as a cosmic ray muon) passing through a counter vertically. This convention lumps factors such as scintillation and PMT efficiencies into the light level, and is convenient both for experimental calibration and for comparison with theory predictions for other particles. The function ∕(z) is referred to as the ‘response curve’ of the counter. Figure 5.2 shows a response curve that was measured on the liquid scintillationcounter at Caltech36.The attenuation length a is also called an ‘effective’ attenuation length,
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since it is the attenuation with distance along the counter rather than along the actual path of a ray. If a given ray propagates down the counter with an angle θ with respect to the z axis, then there is a factor of cos 0 betweenthe ‘effective’ path length and the actual distance travelled through the scintillator. The attenuation due to the scintillator (‘bulk’ attenuation) occurs over the actual path length, so the relationship between the bulk attenuation length (aζ) of the scintillator and effective attenuation length (a) may be expressed as

a = α⅛ cos θ (5.3)
for a single ray. Thus, for rays emitted within a solid angle element dΩ onehas

dlo
dΩ (5∙4)

for rays that are totally reflected by the lining. An effective attenuation length then represents an average over the angular distribution that is totally reflected. The effective attenuation length will increase with distance as the short attenuation length components of the light die out.In practice, as long as Θc 45°, there is little change in the effective attenuation length with distance. Figure 5.3 shows the ratio of effective to
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Figure 5.3: Factor for obtaining the effective attenuation length in counters with dielectric lining, as a function of the critical angle Θc. The curves have been calculated at several values of z/a^.
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bulk attenuation lengths as a function of Θc for several distances z∣aι3. For liquid scintillator with a Teflon lining (using the Θc obtained previously) onefinds

a = (0.943)α<,
with less than 0.5% variation from 1 to 5 attenuation lengths.
5.2.4 Design Variations

There are variations to be considered in the width of counters, the numberand size of the PMTs at each end, and of the lining materials used to achievetotal internal reflection. The response curve scaling caused by variation of the counter width, as well as the scaling due to variatons of PMT size and number, are subsumed into the factor f for the fraction of the area on the end of a counter which is covered by PMTs. This factor appears in the acceptance equations below, where the counter details concealed in f willnot be dealt with separately.The analysis of the different linings of the counters is more difficult, andthere are separate calculations applied to the main cases in a section below.The use of mirrors around the PMTs at the ends of the counters is also
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dealt with in a separate section. There are many ways that such mirrorscould be configured, but only a few configurations merit consideration.It is generally undesirable to place PMTs directly in scintillation oil, sincethe amount of fight from radioactive background near the PMTs is then quite large. The PMTs were separated from the scintillator by windows, so that thetransparency of the windows becomes an issue in the counter design. Someearly tests were done with the PMTs in air; this decreased the response ofthe counters because of the air/window interface.Immersing the PMTs in mineral oil (non-scintillating) increased the response by 50% or more. Since the plastics used for windows (PVC’s and acrylic) had indices of refraction close to that of mineral oil, the fight loss from this PMT coupling arrangement should be minimal. The effects of window variations is considered in the wavelength dependence section (5.9),since that was were they had the greatest effect.
5.3 Total Internal Reflection Optics

Consider a scintillator of refractive index n that exibits total internal reflection with an external medium, so that the critical angle is Θc. Rays with
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Θ > Θc will be totally reflected at the surface, while those with Θ < Θc will be only partially reflected and will eventually attenuate to a negligable intensity.The response curve shown of the scintillation counters may be characterized in two regimes. There is the ‘near’ response (z < 2m), for which most of the detected light doesn’t reflect from the lining but instead is intercepted by a PMT directly. This may be approximated by/(«) = js‰(^)e-x∕α (5,5)4πwhere Ωprni is the solid angle subtended by the PMT as viewed from the source of light, and Is is the intensity of the source. If the PMT is approximated as a circular aperture of radius R centered on the end of a counter, and a point source of light on the centerline of a counter is assumed, then an expression is obtained,= 2τr (l - -7=L=) ≈ for z » R (5∙6)
which shows ‘l/r2’ behavior.When the light source is far enough from the PMT so that several reflections can take place (z > 2m), the response is dominated by a different behavior. Some of the photons will be totally reflected by the counter lining
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and propagate down to the end of the counter, with attenuation due to absorption by the scintillator. The rays thatare only partially reflected by the lining will lose intensity at each reflection and will quickly fade to a negliga- ble intensity. After a few reflections, the distribution of photons on the end of the counter is essentially random, and the response may be modeled as

Λ*) = ls2 ⅜e~z'a' (5J)

where f is the ratio of the area of the PMT to that of the end of the counter, and Ωc is the solid angle from a source which is contained within the total internal reflection angles. The factor of one-half indicates that half of the totally reflected light propagates towards each end of a counter. This is the Tar’ or ‘exponential’ response that dominates the response curves of the liquid scintillation counters.The response curve shown in Fig. 5.2 illustrates the exponential response of these scintillation counters at sufficiently large z, but the response near the PMT doesn’t fall off fast enough to be described by Eqn. 5.5 above. This is because the ‘1/r2’ feature seen in prototype data is not geometric in origin, but rather, spectral; part of the scintillation spectrum is being attenuated preferentially, and this shorter attenuation length component mimics al∕r2
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response.The effect of using different lining materials in varying the critical angle is contained in Ωc, so the calculation of Ωc is very useful in examining the light level of these counters.
5.4 Solid Angle Calculations

There are some ideas and calculations that should be shown before obtaining a value for Ωc. Consider an infinite plane that is the interface between scintillator and a medium with a lower refractive index. The critical angle is taken to be Θc. A point source of light is assumed in the scintillator, and only those rays outside a cone of half-opening angle Θc with respect to the surface normal will be totally reflected (See Fig. 5.4(a)).If a unit sphere is placed around the source point, then the intersection of the cone and the sphere defines a circle on the sphere. The solid angle that is not totally reflected may now be identified with the area interior to this circle, and is denoted Ω∕. One finds
Ωy = 2ττ(l — cos Θc) (5.8)

by simple geometry.
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Figure 5.4: Solid angles useful in analyzing rectangular liquid scintillator boxes, (a) Figure shows the solid angle from a point light source that can escape by partial transmission through a plane surface. The solid angle Ωj is equivalent to the area of a circle on the unit sphere, (b) When the top, bottom, and sides of a box are included, one obtains four such circles on the unit sphere, (c) If Θc > 45°, the circles overlap at their edges. The area of each overlap is denoted Ωυ. The solid angle that remains after removing these circles is Ωc.
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If the other planes of a rectangular box are added, then the result is a set of circles (possibly intersecting) on the surface of a unit sphere (see Fig. 5.4(b)). It should be clear that rays from the source point that are emitted into one of these circular areas will escape from one of the faces ofthe box, although it may require a reflection from one of the other faces. Raysthat are not emitted into a circular area will be trapped in the scintillator,and eventually will be attenuated or scattered.The case of interest is a scintillator counter that is much longer than itswidth. In calculating Ωc then, one should subtract from 4π those solid anglesthat are not totally reflected from the sides, top, and bottom of the counter, and the remainer is what will propagate to the ends of the counter by total reflection. This solid angle corresponds to the area of the unit sphere withfour circular areas cut out.When Θc is larger than 45°, the circular areas will overlap at their edges, and this must be accounted for in calculating Ωc. The solid angle contained in the overlap of two circular areas centered 90° apart on the unit sphere is denoted Ωυ (see Fig. 5.4(c)). It is obtained from the integration of the
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overlap area on the unit sphere
which eventually yields

Ωυ = 2 cos“1 (cot2 Θc) — 4 cos Θc cos“1 (cot Θc). (5.10)
The derivation of the above equation is tedious and has been omitted here.For Ωc it is assumed that the PMTs at the ends of the counters are completely absorbing: there is no ‘exit’ solid angle for a photon to be detected. This is the case when PMTs are immersed in the liquid scintillator, or otherwise optically coupled with matching refractive indices, and yields

∫4τr - 4Ω,(Θc) Θc < 45° (5.11)[ 4ττ - 4Ωz(Θc) + 4Ωυ(Θc) 90° > Θc > 45°.Figure 5.5 shows the value of Ωc as a function of the critical angle Θc.Values of Θc for scintillator-oil/Teflon and scintillator-oil/air interfaces are indicated on the figure. Some specific values are:1.35 sr TeflonΩr = 5.63 sr air,showing that the use of an ‘air lining’ should increase the light level by afactor of 4.2 over Teflon.
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Figure 5.5: Solid angle (as a fraction of 4π) that can propagate by total internal reflection in a rectangular counter with dielectic hning, as a function of the critical angle Θc. The values of Θc for liquid scintillation counters with air and Teflon linings are shown.
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5.5 The Optical Monte Carlo

A Monte Carlo program called OMC2 was developed to study liquid scintillator optics systematically. Appendix A gives details about the program andits capabilities, but a general overview will be given here since the program figures prominently in the rest of this chapter.The program OMC2 differs from a ‘traditional’ ray-tracing program in its attention to such issues as scattering, attenuation and timing, which are more characteristic of detector Monte Carlos than of ray-tracing programs. It assumes that the light is in the form of monochromatic ‘classical’ rays (t.e. with continuously variable intensity) rather than photons, and also that thelight is unpolarized. Media are either dielectric or metal, and the surfacesare modeled as general quadratic surfaces.Rays are started with random directions from a light source, propagatedthrough the optical system, and are collected on areas that simulate PMTs. The intensity collected at the PMTs as a fraction of the source intensity is called the ‘acceptance’ of the optical system, and may be compared to models and to prototype data.Figure 5.6 shows a response curve for a 50 × 25 cm counter with a single
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Figure 5.6: Response curve obtained by OMC2 for a Teflon-lined scintillation counter, compared with analytic calculations.
PMT. The straight line shown on the figure is not a fit, but rather a directcalculation from the discussion above. It can be seen that there is excellentagreement between OMC2 and the analytic calculations for the exponentialresponse.The l∕r2 acceptance calculation is also shown and seems not to fit the OMC2 points very well. This is because OMC2 was used with a distributed source of light in order to obtain an average acceptance over the cross sectionof a ∞unter, while the direct calculation assumes a point source on thecenterline. With an appropriate source, there is a better match between
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calculation and simulation, but the calculations are slightly inaccurate in the region z ≈ 100 cm where there is typically 1-2 reflections.Perhaps the most useful application of OMC2 has been in modeling the effect of different lining materials, and in the examination of light collection mirrors around the PMTs. These applications will be discussed in moredetail in the following sections of this chapter.
5.6 End Mirrors and Focussing

One useful application of OMC2 was the simulation of mirrors around thePMTs. The PMTs generally cover only a fraction of the end of large liquid scintillator counters, while the rest of the light striking the end of a counter is lost. One attempts to collect some of the light that would otherwise be lost by using mirrors placed around the PMTs.There were two distinct situations for the use of mirrors: flat mirrors toreflect light missed by one PMT towards the other end of the counter, and ‘focussing’ mirrors to reflect light into the nearer PMT.
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Figure 5.7: Response curve for a counter with flat end mirrors. The data points were calculated by OMC2 for a 50 × 25 × 1200 cm counter with a flat mirror placed around the PMTs. The ‘far end’ response is increased by nearly a factor of two. The response of a counter without such a mirror is shown for reference.
5.6.1 Flat Mirrors

The flat mirrors have the effect of raising the response curve of a ∞unter at the far end, as shown in Figure 5.7.The difficulty with flat mirrors shows up in the timing of PMT pulses with a flat mirror; a fast particle passing through the counter produces several distinct pulses separated by the light propagation time to the mirror and back (See Figure 5.8). The reflected pulse is close enough in time to increase
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Figure 5.8: Time distribution of photoelectron pulses calculated by OMC2 for a cosmic ray in a counter with flat end mirrors. The cosmic ray was incident at z = 500 cm and had a total intensity of 37 photoelectrons. The pulse at 
t ≈ 25 ns is direct light from the cosmic ray, and the later pulses are a result of light reflected by the flat end mirrors.
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the pulse height of particles that pass through the counter near the far end, but otherwise the extraneous pulses don’t help to refine either the timing or pulse height information.As mentioned in Chapter 4, one of the major problems with background for slow particle recognition came from afterpulses in either the PMT or the scintillator. The time and pulse height distributions of reflected light pulses are more regular than these other sources of afterpulses, and presumably could be removed in offline analysis, but it seems unlikely that a triggerscheme would be able to do so with much efficiency.Since flat mirrors were found to yield only rather marginal gains and produce serious background problems for slow particle triggers, it was decided that these mirrors should not be given further consideration.
5.6.2 Focussing Mirrors

The focussing mirrors are those which, when placed around a PMT, tend to focus scintillation light onto the PMT. This has the effect of raising the overall light level of a counter, without changing the shape of its exponential response; however, there is some change in the form of the l∕r2 response.
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It should be noted that the effect of the focussing mirrors depends strongly on the details of the ends of the counters. Without focussing mirrors it was possible to model the PMTs as flat circular apertures with only ≈ 4% error,and the light level could be easily scaled with the dimensions of the counters.This is not the case with focussing mirrors, and so a different approach was required.A counter was simulated in OMC2, using the configuration of an actualMACRO counter, that is, with an inside width of 73.5 cm and two 8 inch Hammamatsu R1408 PMTs (see Fig. 5.9). The PMTs have a front surface that can be described as an oblate spheroid with 10.2 cm semimajor axes and a 7.5 cm semiminor axis. The purpose of this simulation was not todetermine absolute acceptances, which is more easily and accurately done with the simpler models described above, but rather to find the factor by which the acceptance increases, and the changes in the light distribution on the PMT when a focussing mirror is added to the configuration.A distributed source of rays was used, covering the width and height of the scintillator, 600 cm from the PMT. The distance was chosen to allow the rays propagating down the box to establish an ‘equilibrium’ angulardistribution in θ. The source was restricted so that much of the non-total
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Figure 5.9: Drawing of the MACRO horizontal counters, showing the configuration of PMTs at the ends. These counters use a light focussing cone discussed in the text.
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Figure 5.10: Focussing cone intensity comparison. Intensity calculated by 
OMC2 for PMTs with straight conical reflectors in a MACRO counter, as a function of the cone half opening angle. The reflectors were taken to have 85% reflectivity, and the OMC2 intensity calculations for Winston cones of 85% reflectivity and for a MACRO counter without focussing cones are shown.internal reflection solid angle was excluded, for the purpose of speeding thesimulation.Figure 5.10 shows the intensity on the PMTs using simple or ‘straight’ conical mirrors of 85% reflectivity, as a function of cone half-opening angle. Physical constraints on the length of focussing mirrors make cones with larger opening angles more desirable, and it can be seen from the figure that a cone of 25-30° should give a light level increase of ≈ 2.2 times, with only slight
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Figure 5.11: Compound parabolic (‘Winston’ cone) curve calculated for MACRO liquid scintillation counters. The equation for the curve is given in the text. Paraxial rays within ≈ 24° of the z axis are focussed on the PMT. The PMT is modeled by a spheroid with semimajor axis a = 10.2 cm and semiminor axis b = 7.5 cm.dependence on the opening angle.Others have studied the methods of such light collection schemes37, and the application of the general principles of nonimaging light collection yields the equation for a compound parabolic reflector (‘Winston cone’), which is optimal for paraxial rays. The radius R from the axis of the PMT is given by (See Fig. 5.11)
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2∖∕∕2 + (* - δ)∕sinΘc - cos Θc (2/ + (z - δ) sin Θc) I ,(5.12)

where Θc is the critical angle of previous sections, and f is the focal length 

given by (5.13)
and a and b are, respectively, the lengths of the semimajor and semiminoraxes of the PMT.The curve described by Eqn. 5.12 is a quartic (4th order) surface, and so it was not modeled directly in OMC2. Instead, it was approximated by quadratic surfaces within 1 cm slices in z. The error in this approximation was found to be < 10^4 cm over the full length of the Winston cone.An OMC2 simulation of two such cones with PMTs in a MACRO ∞untershowed an increase of light by a factor of 2.40, using a reflectivity of 85% for the cones and the same light source used above for conical mirrors. This is to be compared with a factor of 2.15 for a 23° simple cone, which has the same length as the Winston cone. Although the response improvement of the more complicated surface over that of simple cones is small, they are nomore difficult to build, and so this geometry was chosen for use in MACRO



-142-
counters.The distribution of light on the PMTs is shown in Figs. 5.12 and 5.13 in terms of the intensity/area on the PMT face as a function of angle from the 
z axis. When compared with the distribution of light without a focussing cone, it is seen that the greatest increase in light intensity is at z ≈ 2.5 cm.Comparison of the maximum possible collection efficiency for a focussing cone of reflectivity R = 0.85,

__ Apmt + R(Aend — A pmt )
^max — 2

A end= 0.903,
with the collection efficiency with no cone

Apmt
^τnin — ~~1

f*end= 0.354,
gives a maximum improvement factor of 2.55, which is to be compared with the factor of 2.40 observed with the Winston cone. This improvement factor indicates that the Winston cone is nearly optimal.The efficiency comparison above also indicates that some of the Monte Carlo calculations may be done with a ‘PMT’ that covers the entire end of
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Figure 5.12: Polar plot of the intensity/unit area for a PMT with a Winston cone and without a cone, as a function of angle from the z axis. The data were obtained from OMC2 runs. Note that the largest increase occurs at 
Q ≈ 75°, which corresponds to z ≈ 2.5cm from the equator of the PMT.
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Figure 5.13: Intensity/area on a PMT with and without a Winston cone as a function of the angle θ from the z axis.the counter. This is very desirable, since OMC2 runs with the Winston cone are quite slow. However, the l∕r2 response of a counter and the variations in response over the cross section of a counter must be modeled using the Winston cone, since these cases are sensitive to the details of the optical configuration.
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5.7 Lining Materials

There were several different types of lining materials available for the counters. Since each of them has its own pecularities, they will be dealt with separately. Generally, one has either a dielectric lining of low refractive index that uses total internal reflection, or a reflective metallic lining.It is also possible to have a dielectric lining with another material behind it, such as Teflon with a reflective aluminum backing. Another such material of interest was white vinyl-backed Teflon, since the vinyl could be modeledas a perfect scatterer.
5.7.1 Dielectric Lining Materials

Dielectric linings may be described by their refractive index, or equivalently by the critical angle Θc. The light intensity at a PMT may be expressed by integrating Eqn. 5.4 over the solid angle that is totally reflected./(z)=∣z4 ⅛ expi^⅞sec0) jω, (5'14)
where f is the area fraction of the end of the counter that is covered by PMTs, and dIs∣dΩ is the source intensity per unit solid angle. The fraction of 1/2 comes from the fact that half of the totally reflected light propagates in either
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direction down the counter. Scintillation light is produced isotropically, so that the equation above becomes

λ*) = Pë exp(-⅛sec^tm∙ (5∙15)
It is now possible to replace the integral above with an effective attenuation length term multiplied by Ωc, the solid angle that is totally reflected towards one end of the counter, giving an approximation for the intensity at large z

/(z) = 2⅛ise^vβ, (5-16) 
which is the same as that obtained earlier, where a is an effective attenuationlength that has a weak dependence on z.

5.7.2 Metallic Linings

Metallic linings are of interest as a simplified case of Teflon linings with an aluminized backing. These finings may be characterized by their reflectivity Ä, which for simplicity is assumed not to depend on reflection angle.The attenuation that results from reflections from the fining may be approximated as:
I ~ Rz∕zr = exp(zln R∣zr),
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where zr is the average distance along the counter between successive reflections from the hning. The distance zr may also be expressed in terms of anaverage ‘width’ of the counter D,.

zr = D cot θ,

where θ is the angle of the ray with respect to the z axis. There is also the attenuation due to the scintillator to be accounted for, which gives⅛(*) = z⅛ exp(-⅛sec 0) exp⅛ln r tan *)∙ (5.17)
As a simplifying assumption, we may ignore the attenuation by the medium. The equation above may then be integrated over <∕>,

I(z) = -fls [ exp(-— tan 0) dcos 0, (5.18)
2 Jo arwhere ar plays a role similar to attenuation length

ar =
lnR >0,

with the result of
W = ^fls^z∕ar),where the functional dependence has been gathered into given by

5*(z∕αr) = 1 - -(√αr) [H0(√αr) - Y0(*∕αr)],
(5.19)
(5.20)
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Figure 5.14: Calculated response curve for metallic lining, using values of 
R = 0.80, D = 50 cm and f = 0.251, typical of the prototypes. Attenuation by the scintillator is not included in the calculation. Response measurments from a counter lined with aluminum-backed Teflon is shown for comparison on an arbitrary vertical scale.
where Ho is a Struve function, and Yq is a Bessel function of the 2nd kind.This parameterization makes the shape of the response depend on a singlescale length.Figure 5.14 shows a response curve calculated from the equations above.While it is smooth and appears to have much the same shape as the measuredresponse curve, this is partially accidental. The effects both of a Teflon over the metallic lining and of attenuation length tend to cancel at z > 800 cm.
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At smaller z, the response curve of the prototype data is reasonably well modeled by a metallic lining, and the equations above may be useful in examining these counters.Including the effect of bulk attenuation makes the calculations much more difficult, and it is necessary to use numerical integration of Eqn. 5.17. Metallic linings are clearly inferior to Teflon linings with a metallic backing, and so metallic linings were not considered for prototype tests. The calculationsabove are thus most useful as a limiting case for the aluminum-backed Teflon lining.
5.7.3 Aluminum-Backed Teflon

The analysis of this lining begins with the general equation used above to describe metallic linings. The effect of the Teflon will be to make the reflectivity of the lining unity when total internal reflection is achieved.
I(z) = f— f dcos θ exp(---- sec#) i d<∕> exp(-In/2(0, <∕>) tan 0) (5.21)4π Jo a Jo a

Figure 5.15 shows an ‘average’ reflectivity with R = 0.80 for the aluminum,where a numerical integration over φ has been done. The reflectivity at large 
θ is increased by the ≈ 4% reflectivity of the Teflon at normal incidence.
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Figure 5.15: Average reflectivity of an aluminized Teflon lining for light propagating down a counter with angle θ to the z axis. Light with Θ < θc is totally reflected from the Teflon. A reflectivity of 80% has been assumed for the aluminum.
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Figure 5.16: Response curve of a scintillation counter with an aluminized 
Teflon lining, generated by OMC2. The response of the Michigan prototype, 
which has such a lining, is shown for comparison on an arbitrary vertical 
scale.

The expression above for the response is complicated enough that it is 

best evaluated by Monte Carlo methods, since the reflectivity depends on the 

angles θ and φ in a complex manner. Figure 5.16 shows the response curve 

produced by OMC2 for aluminum-backed Teflon, using 80% reflectivity for 

the aluminum and a bulk attenuation length of 7 m. The figure also shows 

some data points (on an arbitrary intensity scale) taken on the Michigan 

prototype counter38, which has an aluminum-backed Teflon lining. While it

is difficult to see if there is an exact match between the two, it can be seen
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that the OMC2 data have a similar shape as that from the prototype.The reflective backing increases the amount of light from the far side of the counter by only about 7%, while light from the near side (where there is already plenty of light) is greatly increased.While it is generally desirable to have more light from a counter, the increased dynamic range of counters lined with aluminum-backed Teflon cancause problems in the instrumentation. For example, it is difficult to discriminate against radioactivity in a 10 MeV neutrino trigger, when the signalfrom a 1 MeV decay varies by a factor of ≈ 20 from one end of the counterto the other.
5.7.4 Vinyl-Backed Teflon

It was found that a Teflon film with a white vinyl backing was both economical and easily applied as a scintillation counter lining. The Teflon determines most of the optical properties; however, the light that is not totally reflected by the lining can be scattered by the vinyl backing. Since the scattering takes place outside the scintillator, it cannot give light that will be propagated bytotal reflection.
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Figure 5.17: Comparison of response curves (generated by OMC2) for a MACRO counter with several different linings. Winston cones were simulated by making the PMT acceptance cover the ends of the counters. There is very little difference between the vinyl-backed Teflon and unbacked Teflon at z > 200 cm.Direct calculation of this effect is more difficult than with an aluminumbacking, but it is amenable to Monte Carlo simulation. Figure 5.17 showsa response curve generated with a simulated MACRO counter with a vinyl- backed Teflon lining. The vinyl is assumed to be a diffuse scatterer with 80% reflectivity. The effect of Winston focussing cones on the PMTs was simulated by making the full end of the counter accept hght. A curve with unbacked Teflon lining is also shown, as well as a curve generated with 80%
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specular reflection, as from aluminum-backed Teflon.The effect of the vinyl scattering is small at distances greater than about2m. The vinyl backing thus increases the response of the counters in the first meter or two, but when wavelength dependence (discussed below) and other small z effects are included, this increase is probably not noticable.
5.7.5 The Effect of Wrinkles

Differences in light output of two prototype counters caused the question of whether small wrinkles in the finer material could appreciably affect the light output of a counter. It was understood that a finer with a reflective backingshould be mostly immune to such effects since it would still have considerablyreflectivity outside of total reflection, but an unbacked liner would lose any ray that hit a wrinkle and was reflected outside the critical angle.This effect was studied with OMC2 by applying a random variation of the surface normal to simulate a surface with wrinkles. Thus, every ray reflectedfrom a wrinkled surface had a random ‘wrinkle vector’ added to the surfacenormal. This behaves like a microscopically wrinkled surface, where thereis no correlation of the surface normals with position. The distribution of
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Figure 5.18: Response curves generated by OMC2 for a ∞unter with a wrinkled Teflon lining, with several values of the ‘wrinkledness’ σρ. Exponential fits to the curves are shown. It can be seen that the primary effect of the wrinkles is to reduce the attenuation length.
wrinkle vector components was taken to be Gaussian along each axis in the surface, and σβ denotes the standard deviation of the Gaussians, in degrees from the normal, as the parameter that describes how wrinkled the surfacewas.Figure 5.18 shows the response curves that were generated by OMC2 with several values of σθ. There is little difference for z < 100 cm, since most ofthe light from sources this close doesn’t reflect from the walls. It shows that the primary effect of the wrinkles is to reduce the attenuation length.
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Figure 5.19: Values of the attenuation (1/attenuation length) from fits of wrinkled Teflon response curves. The attenuation increases with the degree of wrinkfing. The calculated attenuation for an unwrinkled Teflon lining is shown. Error bars are from the fits.When the response curves are fitted with exponentials, the fitted attenuation lengths and acceptances may be examined as a function of σe (See Figures 5.19 and 5.20). Linear regression shows that the effect of wrinkles on the light level is < 10%, even when the wrinkles decrease the attenuation length substantially.Measurements made on the Caltech counter prototype constructed with a loose Teflon lining (and an abundance of wrinkles) showed an attenuation length of 5.3 m, indicating that wrinkles in the lining are only a minor con-
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σβ (Deg.)Figure 5.20: Values of the acceptance level from fits of wrinkled Teflon response curves. The calculated value for unwrinkled Teflon is shown. The data show no dependence of acceptance (equivalent to light level here) on the amount of wrinkling in the lining. Errors are from the fits.
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cern for the attenuation length. After this counter was relined with a very smooth Teflon lining (among other improvements), it showed a decrease in attenuation length, which has since been traced to wavelength-dependent effects (see Section 5.9 below). So far, the ‘wrinkledness’ of prototype linings have shown no definite effect on either the attenuation length or the lightlevel.
5.8 Timing

The MACRO counters need to have good timing accuracy for fast particles, so that the time-of-flight between two counters may be used to determine the direction in which the particle was moving. This capability is particularly important for the separation of up- and downgoing muons, since there are ~ 104 times as many downgoing cosmic ray muons as there are upgoing muons induced by neutrino interactions in the rock around the MACROdetector.For counters separated by the 4-5 m between MACRO horizonal planes, the time-of-flight of a relativistic particle is 13-17 ns, and hence the separation between up- and downgoing muons is 26-34 ns. Only a small fraction
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of misidentified downgoing muon flux is enough to contaminate the upgoing events, and so it is useful to see how much the optics contributes to the timing jitter of the counters.Triggers that have been designed for slow particle detection39,40 use the characteristic pulse shape of a slow particle passing through a counter as a means of discriminating against background. The pulse shape from these counters has contributions from both the optics and the electronics; the optical pulse shape will be examined here, and some characteristic pulse shapes will be calculated for different counter lining materials.
5.8.1 Optical Pulse Shape

The time distribution of fight at the PMTs (optical pulse shape) may be examined analytically in the case of dielectric or metallic finings. A ray from a source of fight at a distance z from the PMT, emitted at t = 0, will havephotons arrive at the PMT at time
ΖΊΊ

t = — sec0, (5.22)
c

where θ is the angle of the ray with respect to the z axis, and n is the refractive index of the oil. This allows the integrals over solid angle for fight
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intensity to be used for obtaining pulse shapes. Thus, for a dielectric lining

I = -f [ exp(-— sec #) dΩ = f— [ A(θ) exp(—— secθ) dcosθ,
2 ∙^rte°fl. ûfe 4τr Jl v 7 fκ ab 7 (5.23)where

y∕- cos 2Θc Θc > 45°
L = 0 Θc < 45iand A(θ) is the remnant of the integral over φ:

2π 1 > cos θ > sin Θc
aW =

2π — 8>v∕l — c^¾θfi sin Θc > cos θ > L. When this is made into a timing distribution, one obtains
dl(t) = fy--^A[0(t)] exp(——)dt,

4π ct2 nab
(5.24)

which agrees with photon timing from OMC2 as shown in Fig. 5.21.For metallic linings, the integral is over the entire solid angle, and thereis an extra term from the reflectivity of the lining (see previous section):
dim - ∕⅛⅞eχp (--!£- - ≤2ZΞΞΞ l λ,

ct2 ∖ nab arn
(5.25)

Figure 5.22 shows the optical pulse shapes obtained from these equations for Teflon, air, and metallic linings (85% reflectivity, D = 50 cm) at z = 600 cm.
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Figure 5.21: Time distribution of light calculated analytically, compared with OMC2 data for the same optical configuration.Notice that while the air lining has considerably more light, the width of the light pulse is quite large. Both the air and the metallic linings have long ‘tails’ in their pulses, which have a considerable fraction of their total light. An aluminized-Teflon curve was not calculated directly, but can be approximated as the maximum of the Teflon and the metallic curves in eachtime bin. This indicates that aluminized Teflon will have the same ‘promptlight’ characteristics as Teflon linings, but also has tails on the pulses with about 1/3—1/4 of the total light, from metallic reflection.The pulse shapes obtained so far are from a point source with a delta-
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Time (ns)Figure 5.22: Calculated time distributions of light from a source at z = 600 cm from the PMTs for various counter linings. The intensities have been scaled to the expected MACRO counter response to a minimum ionizing particle at this distance. It can be seen that air and metallic linings have tails on their optical pulses.
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function in intensity at t = 0. A pulse from an actual cosmic ray will be smeared by the transit time of the cosmic ray through the counter (~1 ns for 
β = 1), and also have smearing due to the PMT and other electronics. This will have the effect of smoothing the pulses over time scales of 5-10 ns, but the slow decay of the light tails will still remain. Such pulse tails could cause problems for slow particle triggers that use pulse shape to distinguish a slow particle from a fast cosmic ray particle.
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5.8.2 Timing Jitter

This is one instance where it is necessary to distinguish between the ‘classical’ rays that have been used in the Monte Carlo and ‘photons,’ since photon statistics are needed for timing jitter calculations. The intensity of the classical rays may be used as probability amplitudes for the photons, however, and Poisson statistics applied.If we take dl∣dt to be in terms of photoelectrons per unit time, then the probability of the first photoelectron of the pulse arriving between t and t + dtis
dt = ^(t) exp (- j'∞ d-L(t') dt^ dt. (5.26)

The width of the probability distribution above is a measure of the timing jitter contributed by the optics. The timing jitter decreases very quickly with increasing light intensity, and the jitter from the optical pulses calculated above (with intensities scaled to match prototype data) is negligably small.The scintillation fight from a cosmic ray is spread out over its transit time through the counter. The timing jitter from a typical cosmic ray was obtained by examining the ‘intensity vs. time’ histogram shown in Fig. 5.23, where the rays were produced along simulated β = 1 particle tracks at z = 600 cm
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Figure 5.23: Time distribution of light from a β = 1 cosmic ray at z = 600 cm simulated by OMC2. This was then normalized to make a probability distribution for photon arrival times.
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from the PMT. This histogram was normalized and used as a probability distribution for calculating photon arrival times.From this distribution and μ, the mean number of photoelectrons for a minimum ionizing particle at the distance z, the probability distributionof the first photoelectron arriving in timing bin k was calculated (hke the probability function above)⅛rii = (1 - e^μpt) eχp ∑ pjj > (5∙27)
where pj is the the probability of a photoelectron arriving in timing bin 
j obtained from the Monte Carlo histogram. Poisson statistics has been assumed. Figure 5.24 shows the resulting distribution using a value of μ = 30;the standard deviation of the distribution is about 670 ps.There is also timing jitter because of electron transit time variations in thePMTs. This jitter is typically ~ 1 ns and seems to be the dominant source of timing jitter. Figure 5.2532 shows timing measurements made with the liquid scintillator prototype at Caltech. These were taken with approximately 85 photoelectrons for a cosmic ray muon. Direct calculation indicates that the optics contributes a small amount of timing jitter compared with the other sources, as long as the intensity of the source is sufficiently large.
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Figure 5.24: Time of first photoelectron calculated from the previous time distribution, with μ = 30 photoelectrons mean intensity. The width of this distribution is indicative of the optical timing jitter.
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Figure 5.25: Time difference between PMTs at either end of the liquid scintillator prototype at Caltech for cosmic rays in the center of the counter. The width of the distribution gives the time jitter.
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5.9 Wavelength Dependence

Response measurements taken with the liquid scintillator prototype show a ‘1/r2’ feature out to distances several times larger than the calculations or Monte Carlos can account for. It was suggested that this could be due to wavelength-dependent attenuation of the scintillation light, and this hypothesis has been found to be correct.Some of the attenuation length differences observed between differentcounters, and between our prototype counter with different window materials, have also been attributed to wavelength-dependent attenuation in the commercial scintillator oil that was used in the prototype.While the ‘light level’ measurments have the attenuation length effects removed, the wavelength-dependent transmission of the windows that were used in the early tests had the effect of lowering the light level by about 20% and increasing the measured attenuation length. This was due to the removal of short wavelength components (with shorter attenuation lengths) in the scintillation light. When the windows were replaced, it was found that the light level was improved, but the attenuation length was significantlydecreased.
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Figure 5.26: Transmission of PVC windows used on Caltech and Michigan prototypes as a function of wavelength. The Caltech PVC windows were later replaced with acrylic windows of much better transparency.
5.9.1 Window Materials

The original liquid scintillator counter at Caltech used hemispherical PVCwindows in front of the PMTs. These windows had a blueish cast to them,and were found to have rather poor transmission of blue light. A prototype counter constructed later at the University of Michigan used a different type of PVC windows that were considerably more transparent.Figure 5.26 shows curves of the transmission of the two window materials as a function of wavelength. The data have been corrected for the air-plastic
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Figure 5.27: Response curves for liquid scintillator prototype with clear acrylic windows. Exponential fits to the data are shown.interfaces. Blue scintillation light was attenuated preferentially, increasing the average wavelength to which the PMTs responded. This decreased the overall light level, but since the attenuation length increases with wavelength, the measured attenuation length was increased.The early PVC windows on the Caltech prototype were replaced withacrylic windows before the counter was shipped to Italy. The acrylic windows were considerably more transparent (≈ 95% transmission) with a cutoff in the blue at about 340 nm. Measurements taken with these windows (see Fig. 5.27) showed a higher light level with a shorter attenuation length.
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The figure also shows the effect of using an oil-filled PMT housing to achieve better optical coupling of the PMT to the scintillator. There is an improvement of a factor of ≈ 2.3 in the light level over a configuration inwhich there is air between the PMT and the scintillator.

5.9.2 Bulk Attenuation

The short attenuation length of the prototype counter with acrylic windows prompted an examination of the attenuation properties of the scintillator.The results of these measurements41 indicated that the Bicron scintillatorused in the prototype had an inferior bulk attenuation length compared to that of the scintillator used in the Michigan prototype. This was not noticed originally, because of the effect of the tblueish, PVC window, mentionedabove.The differences between the various prototype configurations were not laid to rest until the bulk attenuation length measurements were done, since measurements in the counters could not separate attenuation due to the scintillator and that due to the lining. It now seems that the fining has little effect on the attenuation length in Teflon-lined counters, while large
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variations in attenuation length are found between different scintillator oils.

5.10 Prototype Results

It should now be possible to apply some of the matters discussed above tothe prototype measurements.A numerical calculation shows that the ratio of aluminum-backed Teflonto non-backed Teflon response curves,
IAl+Teflon(z 1 G,bι ^r)

ITeflon^Zι ^fe)is only weakly dependent on df,, the bulk attenuation length. This allows one to adjust the response curve obtained on the Michigan prototype, in order to see what its response curve would look like without the aluminum backing. It should be noted that the attenuation length observed on the corrected curve may have considerable error, but the light level should still be accurateto ≈ 20%.Figure 5.28 shows the results of this correction proceedure, where 80% reflectivity of the aluminum backing has been used. The exponential response of the resulting curve indicates that the reflectivity is approximately correct.
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Figure 5.28: Response curve from the Michigan prototype, corrected for aluminized Teflon hning. An exponential fit of the resulting response curve is shown.
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The light level obtained from this curve is in good agreement with those measured on the prototype in Italy (see Fig. 5.27).The light level of ≈ 250 photoelectrons for a single 8 inch PMT in a25 × 50 cm counter can be used to obtain the source intensities for minimumionizing cosmic rays. Using the solid angles and factors mentioned above,

Is = 1.85 × 104p.e.
for a vertically incident minimum ionizing particle through 25 cm of scintillator. This gives a source intensity of 740p.e.∕cm for a minimum ionizing particle, or (using 2MeV∕cm for the stopping power in oil) 370p.e.∕MeV.This may also be used to estimate the scintillation efficiency, since one may assume 3eV per ultraviolet primary scintillation photon. When the ≈ 20% quantum efficiency of the PMTs and the window transmission factors are included, this gives an estimated scintillation efficiency of 0.6%, which is reasonable for this low pulse height liquid scintillator. The estimated light yield of this liquid scintillator is then ≈ 1/5 that of NE-110.
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5.11 MACRO Counters

A number of different techniques were combined, trying to use the best points from each, in producing a design for MACRO counters. Some of the results of these optimizations were mentioned previously in this chapter.The MACRO counter lining was done with vinyl-backed Teflon, avoiding the large PMT signal range of aluminized Teflon and having major advantages in ease of application and cost. Possible difficulties with tails on the light pulses from aluminum-backed Teflon linings were not a factor in this decision, although it can now be seen that such linings could cause problems for triggers.The scintillation oil will be formulated in the same way as that used in the Michigan prototype, giving long attenuation lengths with good light output. The large differences in attenuation length that have been seen for scintillators that are superficially identical show that a great deal of care is required in the selection of mineral oil for the scintillator.Winston cones are used around the PMTs at either end of the countersto improve the light collection. Both the cones and the PMTs are immersed in mineral oil for good optical coupling, and separated from the scintillator
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by a window of clear PVC like that used on the Michigan prototype.This chapter would not be complete without an estimation of the lightlevel of a MACRO scintillation counter. So far, no light measurements have been made on a complete MACRO counter, so the calculations are necessarily a bit rough. It is difficult to do more than guess at the attenuation length of a completed counter, since it depends critically on the scintillation oil. One can make a rough estimate of 6 meters for the attenuation length and canhope that the proper selection of mineral oil for the scintillator will improvethis.Extrapolating the light level measurements made on the Caltech prototype is more straightforward, since it’s primarily the effect of different counterdimensions and the use of Winston ∞nes, which must be accounted for. Using the results in this chapter, a large z response estimate is obtained:

∕(z) = (850 p.e.)e-z^600cln∖ (5.28)
for a minimum ionizing particle passing through a MACRO counter vertically. A ±10% error in the light level is likely due to details of the window transmission, Winston cone reflectivity, and other unknown factors.This light level is impressive when compared to the early measurements
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on the prototypes and should be more than sufficient for accurate timing and pulse height information. With ≈ 100 photoelectrons at the far end of the counter, the detection of slow particles of ionization as low as 0.1 minimumshould be efficient.
5.12 Response to Magnetic Monopoles

The results from previous chapters can be applied to the MACRO liquid scintillation counters to estimate the detectability of magnetic monopoles. Other components of MACRO affect the detection abilities as well; the information from streamer tubes and track-etch detectors would be includedin a real situation. The primary concern here is to examine the detection ability of the liquid scintillator counters when considered in isolation fromthe other detector elements.Applying the low-velocity scintillation results, one may then calculatethe photoelectron rate for a monopole penetrating a MACRO counter at a velocity 1.5 × 10^3 > β > 2.5 × 10-4,^)≈(1.0p.e.∕ns)(j∣y e→. (5.29)
It is assumed here that since protons seem not to have a threshold in their
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scintillation efficiency, the same should hold for monopoles. Again, because it is based on ‘minimum’ figures from Chapter 2, this should be taken as a lower limit estimate and should have validity for β down to ≈3 × 10-4.The existing trigger circuits that have been designed for these counters39,40 should be able to trigger efficiently on a signal of this magnitude down to 
β ≈ 4 × 10-4 with 1 photoelectron/100 ns at the far end of a counter.Since the trigger sensitivity limitations are determined by the acceptable false trigger rate, it is difficult at this point to estimate the lowest β for which the monopole trigger circuits will be able to respond. It is likely that efficient detection of Dirac-charged monopoles down to 10“4 c is possible.
5.13 Conclusions

The examination of differences between liquid scintillation prototypes hasprompted the calculations and simulations that have been presented here.Many of the details of this process of examination have been omitted here; once the cause of a phenomenon is known, the process by which it was found is mostly uninteresting. However, in tracking down these effects, much has been learned about how to improve the design of large liquid scintillator
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counters, and this knowledge was then applied to the design of MACROcounters.The completed MACRO detector will have an outstanding ability to identify GUT monopoles and the size needed to search for them at fluxes below the Parker Bound. A substantial part of this capability is due to the liquid scintillator counters, which have been the subject of this chapter.
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Chapter 6

Conclusions

This thesis presents an evolution in the methods of detection of GUT monopoles.The GUT monopole is unlike the ‘usual’ elementary particles, in that it is both slow and highly penetrating. This posed a serious problem to those searching for monopoles, since it was uncertain whether existing detectiontechniques were sensitive to slow particles. The low β scintillation experimentdemonstrated that slow particles could be detected in scintillator, and pavedthe way for large monopole detectors such as MACRO.The experience gained by operating smaller monopole detectors was invaluable when the design of large detectors was considered. The desire for



-182-
an underground location, closed geometry, and a coincidence of many detector elements was a result of this experience. The analysis of the prototype monopole detector indicated the need for maximizing the scintillator light output, so that monopole signals would be clear and unambiguous.The MACRO counters were examined with this goal in mind, and the tests and calculations have resulted in an improvement of the MACRO counter response and a better understanding of the counters in general. There is now considerable confidence that MACRO will be able to place new lower limits on the flux of magnetic monopoles in cosmic rays, or that the signature of a monopole candidate will be clear enough to firmly establish a flux.
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Appendix A

The Optical Monte Carlo

The development of a Monte Carlo program to simulate the optics of a scintillator counter was motivated by a desire to study systematically the effects of changes in the optical configuration. It is possible to do this by means of prototypes, but for a 12 m long prototype the difficulty of varying a major component, such as relining with a different material for example, isprohibitive. There are other effects that are quite difficult to study systematically in a prototype, such as the effects of wrinkles in reflecting surfaces,and these are natural candidates for Monte Carlo simulation.A ray-tracing program (θMC2) was developed for these purposes, which was intended to avoid problems found in other such programs, and which
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was more flexible in its optical configurations.The surfaces used in the program were modeled as general quadratic surfaces, which include most surfaces of interest optically. For simulating scintillator counters it was found that planes, spheres, and the occasionalcone and oblate spheroid (for an accurate PMT shape) would cover most ofthe cases of interest.Options were included in the program for turning off rays generated by partial reflection and refraction, so that the ray-tracing process may be faster when these rays are not of interest. Bulk attenuation by the medium is included by degrading the intensity of the ray, and the propagation time is also kept for each ray.
A.l Description of a Surface

An optical configuration consists of different media with interfaces between them. Since most of the optics is in the interfaces, the volumes of the mediaare described in terms of the surfaces between them.The surfaces are modeled with general quadratic surfaces, which may be
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represented in the form∕(x,j∕,z) = axxx2+ayyy2+axxz2+alyxy+a xz xz+ayzyz+axx+ayy+aiz+a = θ’
or more conveniently as

f{x,y,z) = [τ, y, z, 1]

CLxχ 2θχy 2

^axy ayy ∣αjzχ iα

20,χz 2ayχ ⅛α

2^,χ 2av a

= 0.
When the quadratic surfaces are represented in this form, one may distinguish an ‘inside’ and an ‘outside’ of each surface by the ∞ndition that> 0 outside

f(x,y,*)' =0 on surface < 0 inside,and one should notice that — f gives the same surface but with the designation of ‘inside’ and ‘outside’ reversed. This feature makes it simple to ‘bound’the surfaces which are of interest optically with other quadratic surfaces by testing that f(x,y1z) < 0 for each bounding surface.Thus, a cone used for a reflector may be bounded with planes to cut off the parts that are not used, and bounded with the outside of an oblate spheroid describing the PMT to remove a part that would be inside the PMT.
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This representation of surfaces is also useful in the evaluation of the surface normal vector (pointing towards the ‘outside’) at some point on the surface, since ή = V∕,

which is easily evaluated in the matrix form above.
A.2 Optical Surfaces

The general quadratics describes the surfaces mathematically, but the opticalcharacteristics of the surfaces must be described as well. This was done byindicating the media that lie on each side of the surface, as well as a scattering probability of the interface that is used for simulating diffuse reflectors. Themedia are either metals with a given reflectivity, or dielectrics with a given index of refraction and attenuation length.The optical surface may also have the characteristic of being a gate. Rays that hit gate surfaces cause data about the ray to be entered into histograms, so that the position, time, intensity, etc. of a ray hitting a gate can be recorded. Gates have the option of being totally absorbing, which is generally used if the ray is of no further interest after having hit the gate; otherwise
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the optical surface on which the gate is placed acts on the ray in the normalway.
A.3 Sources &: Rays

The rays are propagated in ‘vectored’ form in sets of about 1,000. This makes the inclusion of partial reflection and transmission straightforward, since it just adds rays to the set. The use of vectorized lists of rays also speeds the calculations. Each ray is represented by a vector of an ID number, position and direction vectors, intensity, and time.The rays are started from a source with unit intensity and random direction. The directions are actually random within bins of cos#, and the binsselected sequentially in order to smooth the distribution somewhat and avoid forward∕backward asymmetries along the z axis. For a simulation in which fluctuations are of interest rather than the mean values, this feature couldbe disabled.There are several standard sources that were used: a simple point source, a line of constant velocity to simulate a particle track, and from random points in a box to simulate an ‘averaged’ response. The ‘time’ value for rays
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generated by a line source were initialized according to their position alongthe line so that slow particles could be simulated with some accuracy.One iteration of the program propagates the rays from their current position to the next interface that they hit. The new position x, is calculatedfrom the original position x and the direction vector v of the photon

x, = X + ∕v,

and for each quadratic surface the equation
∕(x') = 0

gives a quadratic equation for I for each ray. The positive real solutions for Iare checked against the bounds on the surface, and the minimum I for eachray is taken for all of the optical surfaces in the system. The result of thisprocedure is the first surface hit by the ray, and the position at which theray hits that surface.The ray was then attenuated by its path through the medium, and its ‘time’ value adjusted. Reflected and refracted rays were then calculated andchecks made that the rays should continue propagation. A rather tricky point should be mentioned here: the reflected (and refracted) rays had to be displaced into the media in which they would be travelling on the next
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iteration. This was because their starting position on the next iteration would otherwise be on an interface, and the machine accuracy could place them on
either side. A displacement of ~ 1 micron was found to be sufficient to curethis problem in most cases. This was not directly dependent on the size ofthe optical system, but rather on the numerical precision of the computer. The ray-tracing accuracy was limited by the single precision machineaccuracy, but is estimated to be ~ 10 microns for optical configurations oftypical ~ 100 cm size. Polarization effects are not included and the rays arealways treated as incoherent light for the purposes of reflection and refraction.Rays are discarded when they miss all optical surfaces (and hence are lost from the apparatus), when their intensity falls below a threshold (typically set at ≈ 10-6), when they have propagated for a time longer than the maximumallowed (typically ≈ 100 ns), or when they hit an absorbing ‘gate.’
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