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Abstract

A search for gravitational radiation from coalescing compact binary stars was
conducted. This is the first time that the Caltech gravity wave detector has been
used to search for burst sources. This detector is made of two 40 meter Fabry-
Perot interferometers. The mirrors of the Fabry-Perot cavities are suspended, so
that they are free to move in response to a gravity wave. The Caltech detector
is a prototype for a set of larger detectors (4 km long cavities). The purpose of
this search was to develop techniques applicable to the larger detectors.

An algorithm was developed which searches for the distinctive waveform of a
coalescing binary, regardless of the masses of the stars in that binary. Thirty-six
minutes of data were analyzed. These data spanned one hour and were collected
when the Glasgow detector was also operating, (the Glasgow and Caltech detec-
tors had comparable sensitivity at the time of this experiment). The limit this
search sets varies with the mass parameter, n, which is a function of the stars’
masses. For two 1.4Mg stars no coalescences were observed with A > 5 x 10717;
this corresponds to a binary approximately 25 parsecs away.

At the time of this experiment the Caltech detector had a displacement sen-
sitivity of 10~ m/ VHz at frequencies near 1kHz. Since then the detector
has improved so that at frequencies near 1kHz the displacement sensitivity is
4 x 107'®*m/y/Hz. At this level of sensitivity there are many conceivable sources
of noise which must be considered and, if necessary, eliminated. How fluctuations
in the spatial geometry of the input beam and the cavities can cause displace-
ment noise is discussed in Chapter 4. Work which has been done to reduce these

fluctuations is also described.
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Chapter 1

Introduction

1.1 What are Gravity Waves?

All geometric theories of gravity, including general relativity, include gravita-
tional radiation. In a manner analogous to accelerating charges emitting elec-
tromagnetic waves, gravity waves are created when mass accelerates; but since
momentum is conserved, the dipole moment doesn’t radiate. The quadrupole
moment of an accelerating system of masses is the lowest moment to produce
radiation, so spherically symmetric systems do not radiate.

As a gravitational wave goes by, it distorts the curvature of space-time such
that the distances between free masses change. Gravity waves are transverse
waves, and have two possible polarizations. The easiest way to explain how
gravity waves interact with matter is to look at their effect on a ring of test
particles; this is illustrated in Figure 1.1. This figure shows how a gravity wave
deforms a circular ring of test masses into an ellipse. The wave amplitude is
the change in distance between two free masses divided by twice the distance

between them, this is called the strain, h.
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Figure 1.1: The effect of a gravity wave on a ring of test particles.

Gravitational waves have been indirectly observed. Two stars rotating about
each other have a quadrupole moment; hence they should emit gravitational
radiation. The energy lost to gravity waves causes the stars to spiral together,
and their orbital frequency will increase. Taylor and Weisberg have made careful
measurements of the orbital period of the binary pulsar PSR 1913+16, and have
found that the binary pulsar and its companion star are losing orbital energy
at precisely the rate predicted by general relativity.[1] It is hard to conceive of
another effect which could cause the orbit to behave in this manner, therefore

this is strong evidence that gravity waves do exist.
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1.2 Attempts to Detect Gravity Waves

The binary pulsar provides strong evidence that Einstein’s theory is correct, and
that gravity waves exist, but they have yet to be directly observed. The first
attempts at detection were made by Weber in the 1960s using a resonant bar
detector.[2] As a gravity wave goes by it excites a resonance in the bar, which
acts like a big spring connecting two masses. This resonance is detected using
a transducer, piezoelectric strain sensors in the original bars. Since then bar
detectors have been further developed and used in searches. The most sensi-
tive bar detectors, cooled to liquid helium temperatures with superconducting
displacement transducers, have a sensitivity of h ~ 107!® and a bandwidth of
approximately 1Hz around the bar’s resonant frequency (usually about 1kHz).[3]

For the past decade, detectors employing laser interferometry have been under
development at Caltech, MIT, Glasgow University and the Max Planck Institute,
Garching. As a gravity wave goes by, the masses move relative to each other so
that one arm of the interferometer becomes longer as the other becomes shorter,
this appears as a phase shift in the light in the two arms. The primary advantage
this has over bar detectors is that the arms can be made very long, and since the
signal strength is proportional to the distance between the masses, the detectors
signal-to-noise ratio can be improved.

The first interferometric gravity wave detector was made by Moss, Miller and
Forward in 1971.[4] In 1975, work on the Max Planck interferometer began. In
1977, the Glasgow group also started work on an interferometric gravity wave
detector. Work on the Caltech and MIT gravity wave detectors began in 1979.
The Caltech detector is made of two Fabry-Perot cavities. It is discussed in detail

in Chapter 3.



The Caltech detector is a prototype for two larger detectors which would form
a national observatory for gravitational astronomy, known as the LIGO, (Laser
Interferometer Gravitational Wave Observatory). This facility would be made
of two 4km detectors separated by transcontinental distances. Eventually this
observatory should be sensitive to events as far away as one giga-parsec.|5]

In 1983, the Caltech prototype was used to search for periodic gravitational
radiation from the millisecond pulsar.[6] In 1985, the MIT prototype was used

to search for radiation from both periodic and burst sources.|7,8]

1.3 Scientific Benefits of Detection

The scientific benefits of detecting gravity waves can be broken into two classes,
those which benefit physics and those which benefit astrophysics; of course, the
distinction is not always clear.

The most obvious payoff is the verification that gravitational radiation ex-
ists, supplementing the strong, but indirect, evidence from the binary pulsar.
Through direct detection of gravitational radiation one can confirm that gravi-
tons have zero rest mass and spin s = 2, as predicted by general relativity.
Observation of the coalescence of two black holes would provide the first test of
general relativity in a highly non-linear, dynamic system. This would be done
by comparing theoretical waveforms with those observed.[5,9]

The establishment of gravitational astronomy should provide astrophysicists
with information unavailable through traditional astronomy. This is because
gravitational waves carry much different information from electromagnetic waves.
Observation of supernovae should lead to more information about the physics

of neutron stars. Gravitational waves from coalescing binaries can be used as



“standard candles” to determine the Hubble constant; this would be the most
direct measure of the Hubble constant to date.[10| Detection of primordial gravity
waves would provide information on the earliest moments of the universe. Even
if these were not detected, the LIGO could eventually place interesting limits on

the strength of this background.

1.4 Outline of this Thesis

The rest of this thesis is organized in the following manner:
1. a description of sources, emphasizing coalescing compact binaries.
2. a description of the Caltech detector.

3. an analysis of a specific noise source in interferometric detectors, and a

description of work done to reduce this in the Caltech prototype.

4. a description of the data analysis: the algorithm used, data collection and

processing methods.

5. the results of this data analysis, and the conclusions one can draw from

those results.

6. the appendices, which contain information that I felt was too detailed for

the body of the thesis, e.g. the computer codes used in the data analysis.



Chapter 2

Sources of Gravity Waves

2.1 Generation of Gravitational Radiation

Gravity waves are generated when mass accelerates in a non-spherical manner.
The amplitude of a gravity wave is called h. A rough estimate of h is:

M (27rL)2 &

h| s — — £
w~ = (50) 2 (2.1)

where L is the typical length scale of the radiating system, r is the distance
from the observer to the source, M is the accelerating mass (the fraction of
the mass accelerating in a non-spherical manner) and A is the wavelength of
the gravitational radiation, (the frequency will be ¢/A, and depends upon the
acceleration); G and ¢ are the gravitational constant and the speed of light
respectively.

The theory of gravity wave generation is discussed extensively elsewhere,
[9,11,12]. An excellent review of the theory of gravitational radiation and pre-
dicted source strengths is given in 300 Years of Gravitation. (9]

Because gravity is such a weak force, it would be exceedingly difficult to

generate detectable gravity waves in a laboratory. The only hope for detection
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is to look for astrophysical events involving large amounts of mass undergoing

violent motion, such as in a supernova.

2.2 Astrophysical Sources

Astrophysical sources are usually broken into three groups—burst sources, peri-
odic sources and the stochastic background. In the following paragraphs, each
of these astrophysical sources is discussed briefly. In Section 2.3, coalescing bi-
naries are described in detail, since it is this source that this thesis concentrates
on. Compact binaries do not cleanly fall into any one of the above categories.
They are quasi-periodic, having a signal which changes frequency quite slowly
until the last few moments before the stars collide. However, since the signal
would be in the bandwidth of an Earth-bound detector for only a few seconds,
from the detector viewpoint these sources resemble bursts.

Periodic gravitational radiation is characterized by having a fixed well-defined
frequency. It could be generated by rotating neutron stars, where any lack in
axial symmetry would cause the system to radiate. Figure 2.1 [5] shows expected
source strengths for gravitational radiation from neutron stars. The data ana-
lyzed in this thesis will also be used to look for periodic gravitational radiation
[13]. This should set the best limit to date on periodic sources.

Burst sources are those which only last a few brief moments and, hence, tend
to cover a wide range of frequencies. Predicted sources of bursts of radiation
include collapse of a star to form a black hole, supernovae (collapse to a neutron
star), and matter falling into black holes. It is difficult to predict the strength
of radiation from supernovae and black hole formation, since it is unknown how

aspherical the collapse of a star would be. It is possible to predict the expected
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event rate for supernovae, but the event rate for anything involving black holes
is a complete mystery. Predicted event strengths for various burst sources are
shown in Figure 2.2. [5]

The stochastic background is broad band continuous radiation. The most
interesting source of this would be the big bang. Just as there is a 3K back-
ground of electromagnetic radiation, one would expect there to be a background
of gravitational radiation. The gravitational radiation would probably not be
at 3K, since gravitons decoupled from matter at approximately the Planck time
(107*3 seconds after the big bang; primordial photons did not decouple from mat-
ter until approximately one million years after the big bang). The strength of
the primordial background is still very speculative, with estimates varying by as
much as fourteen orders of magnitude. Other sources of a stochastic background
would be radiation from many individual sources which added together to form
a continuous background radiation. These individual events could include the
deaths (by collapse to a black hole or neutron star) of population III stars. These
are hypothesized pre-galactic massive stars that died long ago. Another source
of this background would be the decay of nonsuperconducting cosmic strings. A
third source would be binary stars (here I am referring to ordinary stars, not
necessarily compact stars). There are so many binary stars that together they
would produce a strong stochastic background at frequencies less than .03 Hz.[9]

All the astrophysical sources mentioned so far are rather unreliable; either the
event rate or the source strength is largely unknown. The most reliable source

predicted so far is radiation from compact coalescing binaries.
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2.3 Coalescing Compact Binaries

One promising source of gravity waves is coalescing compact binary stars.
(11,14,15,16,17] As two stars rotate about each other they emit energy in the
form of gravitational radiation, causing the stars to spiral together. As the stars
get closer together their angular velocity w increases; hence, the radiation they

emit changes frequency. The frequency of the radiation changes as

fraa=fo (1- ;)_3/8 (2:2)

where f, equals the radiation frequency at t = 0, and 7 is the time at which the
two stars would collide, if no tidal disruption occurs. This calculation assumes
nonrelativistic velocities and ignores the eccentricity of the orbit. Since emission
of gravity waves tends to circularize the stars’ orbit it is reasonable to assume
that by the time the stars are about to coalesce their orbits are nearly circular. It
also treats the stars as point particles, a good approximation for compact stars
such as black holes and neutron stars. The frequency of the stars’ orbit is a

function of their masses and the time until coalescence:
i —3/8
- ((m‘) (1 o ;)) (2.3)

256 mimy
5 (ml -+ mg) 1/3

where

(2.4)

'] —
(in geometrized units, G = ¢ = 1, My = 4.9255usec). The gravitational radiation

will have twice this frequency:

frad = ﬂ- (25)
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The amplitude of the radiation is a function of the distance from the detector to

the binary, r, the star masses and 7. The strain has amplitude:

4 myMms 2/3
= —— 2-6
r (my + mg)1/3 (2.6}
_i S/A(r _ 4)-1/4 2.7
CEn 64"’7 (T ) o4 ( % )

(See Figures 2.3 and 2.4.) The exact amplitude of the strain measured at the
detector depends on the observer’s position relative to the binary. The expected

signal at the detector would be:

8(t) = ah(t) cos [(21r /i f,,,d)dt) + ¢] (2.8)

where a depends on the orientation of the binary relative to the detector and ¢
is the signal’s phase. The larger the stars’ masses the greater h and the slower
the frequency. The radiation reaching Earth will be elliptically polarized; since
detectors tend to be sensitive to only one linear polarization, this implies the
strain measured at the detector will be at most h/2. The signal strength will
almost certainly be less than this, since it is unlikely that the source and detector
will be optimally aligned.

At some time close to 7 this calculation will break down and the strain will
no longer be accurately described by Equation 2.8. If the two stars are neutron
stars then this will occur when tidal disruption occurs, and the gravitational field
of the heavier star tears the other neutron star apart. The time at which this
is expected to occur depends on the masses of the neutron stars; the lighter the
stars the earlier they would tidally disrupt.[18] A binary consisting of a 1.3Mg
neutron star and a 1.5M; neutron star would tidally disrupt at ¢ ~ 7 — .003

seconds. For black holes one might expect Equation 2.8 to break down when the
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velocities become too relativistic. For two 10M,, black holes their velocity would
exceed .5¢ at t = 7 — 107° seconds.

Work has been done to estimate the event rate of bursts from coalescing
compact binaries, but without more observational data it is difficult to reach
any firm conclusions. The event rate for radiation from neutron stars has been
estimated by Clark, van den Heuvel, and Sutantyo.[19] They make a statistical
argument based on the number of observed pulsars, and the fraction of those in
a close binary (a binary which would be expected to coalesce within the Hubble
time). Assuming that the death rate of neutron stars equals the birth rate, and
calculating the birth rate from the number of observed supernovae, they predict
an event rate of approximately 3 x 10™* per year per galaxy. This estimate is
based on a very small set of observations (1 binary pulsar out of 315 known
pulsars), and hence is probably inaccurate. Even less is known about the event
rate of bursts from black hole coalescences. The most optimistic scenario was
proposed by Bond and Carr [20,21]. They hypothesize that a large fraction of
the “missing mass” may be in black hole remnants of population III stars. This
would lead to an event rate of approximately 3 bursts/year at the strain level of
h =~ 1071€ [9].

As mentioned earlier (in Chapter 1), the detection of any gravitational radi-
ation would be of enormous import. The detection of coalescing binaries would
have some unusual benefits, different from the detection of radiation from other
sources. If one or both of the stars were neutron stars, then by carefully study-
ing the waveform while tidal disruption occurred, one could learn a great deal
about the nature of neutron stars. The fact that tidal disruption occurs after a
long precursor, (the chirp waveform described by Equation 2.8), makes it easier

to find these events. An additional benefit, which seems to be truly unique to
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gravitational radiation from coalescing binaries, is that detection can lead to a
direct measure of Hubble’s constant. If a coalescence were observed in 3 or 4
detectors, then the location of the binary could be determined within an error
box of approximately 36 square degrees. Multiple detection will also allow one to
accurately measure the absolute strain h, given in Equation 2.6. By measuring
both the amplitude h and the frequency, one can calculate both n and r. If
one knows r and where in the sky the binary was, one can associate that binary
coalescence with either an optical event or the galaxy in which it was located,
leading to a known distance, r, between here and the galaxy. Hubble’s constant
would then be determined by the Doppler shift of light from that galaxy. This
would be the most direct measure of Hubble’s constant to date.[10]

Because compact binary stars are known to exist and one can make rough
estimates of their coalescence rate, and because the strength of the radiation is
well known, compact binary stars offer one of the most reliable potential sources
of radiation. It is for this reason that efforts should be made to develop techniques

for searching for this radiation.
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Chapter 3

The Caltech Detector

3.1 The Detector

3.1.1 Theory of Operation

The Caltech gravity wave detector is made of four “free” masses arranged to
form two optical cavities perpendicular to one another. The two Fabry-Perot
cavities in the Caltech detector share the same input beam but, unlike a Michel-
son detector, the output beams are not recombined. In its simplest configuration,
which was used when this search was carried out, the laser light is stabilized to
one cavity, the first arm of the detector. This light is then an excellent length
standard above a few hundred hertz. The second cavity is held in resonance by
moving the far mass (see Figure 3.1).

Imagine a gravity wave traveling perpendicularly to the detector. As it goes
by it will change the length of the first arm by an amount hL/2; the laser light
will track this and its wavelength, A, will change accordingly. The gravity wave
will cause the second cavity’s length to change by an equal and opposite amount.

To remain on resonance the feedback will compensate for both this motion and



18

intensity
servo A
e
optical
fiber Q
Faraday []
isolator B

LASER
pockels [}—4<}J ] EZiiehs

cell

i Sy
12MH f£>
e detector
S lqg, i i)
detector . | a
\\\:‘ piezo-driven
mirror
(for calibration)
40m
" 5 piezo-driven
v mirror
Displacement
Signal

Figure 3.1: A simplified schematic of the Caltech detector.
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the change in A. Hence if a gravity wave goes by it appears in the feedback signal
as a relative displacement between the two arms of hL. Gravity waves affect all
objects this way. What makes the test masses special is the accuracy with which
we monitor their position, and the care we take to isolate them from other forces.

The detector is calibrated by moving the far mirror of the first cavity a set
amount. At the time of this experiment this was done by applying a sinusoidal
voltage near 1kHz across a piezo mounted between the mirror and the test mass.
Currently we calibrate our detector by putting a low current through coils located
near magnets mounted on the test mass.

In March, 1987, when this search was conducted, the Caltech detector had a
noise level of h ~ 5 x 107'°/y/Hz, and a bandwidth from 300Hz to 5kHz. This
noise level would fluctuate by as much as a factor of two. Its noise spectrum
is shown in Figure 3.2. Since then the detector has been improved so that its
current noise level is h ~ 1 x 10~'°/\/Hz; see Figure 3.3.

The detector can be thought of as consisting of three parts:
1. the test masses—which are as “inertial” as possible
2. the light—which monitors the distance between the test masses

3. the orientation control system—which keeps the mirrors on the test masses
well aligned relative to the light, while not compromising the masses’ isola-
tion. I have worked on understanding how spatial fluctuations in the laser
beam and the cavity mirrors can couple into the detector’s output noise,

and how to reduce this noise. This is discussed extensively in Chapter 4 .

In designing this detector, sensitivity, rather than stability, has always been

of primary importance. This is because this detector is a prototype for two
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4km detectors (the LIGO). Before that is built, it is important that what will
limit its performance is understood. In order to optimize the stability of the
detector, we would first have to freeze various components design—this would
essentially freeze the detector’s performance, which we are not yet willing to
do. At the time this experiment was carried out, the detector was “on” 70%
of the time. After the data run was over, the chart recorder data was carefully
examined and it was discovered that the main limitation on the live time was
caused by servos running out of dynamic range due to thermal drift. Since t.hen
the piezo-electric transducers in the cavities have been replaced with coils and
magnets. Although this was done to improve the detector’s sensitivity, it also
has the effect of increasing the dynamic range of the servos, and hence should

improve the detector’s stability.

3.1.2 The Test Masses

The test masses are cylinders with high reflection mirrors attached. These masses
are suspended from 1Hz pendula, so that they are essentially free to move along
the optical axis at frequencies above 1Hz. This implies that they are approxi-
mately inertial along the beam axis. The object is to prevent any forces other
than gravity from acting upon these test masses. Since what one wishes to mea-
sure is the distance between three inertial reference points, it is important that
the masses be as quiet as possible. It is also important that the mirrors do not
move relative to the center of mass of the test masses. This can be caused by
thermal noise. Four years ago, mechanically complicated test masses were re-
placed with simple cylinders so that the thermal noise in the test masses would

not limit the detector’s sensitivity. The joint between the mirror and the test
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mass is also critical; this is discussed more in Section 3.2.3. The fact that the test
masses are free to move at frequencies above 1Hz implies that the detector can
be broad band. Currently the bandwidth of the detector ranges from 300Hz to
about 5kHz. The lower limit is probably caused by seismic noise and resonances
in the beam splitter mass; the upper limit is caused by shot noise in the light.
Both these noise sources and others are discussed more in Section 3.2.

The fact that this detector is broad band implies that it is well suited for
a search for gravitational waves from coalescing binaries. This is because the

radiation from a coalescing binary sweeps through many frequencies. [14]

3.1.3 The Light

The Caltech detector uses a Coherent Innova 100 argon-ion laser, operating single
line, single mode. The light travels through a chain of optics designed to “clean”
the beam in various ways; it is then directed into the vacuum tank. There it
goes through a beam splitter. At this point the beam is vertically polarized. The
two beams are then reflected off of steering mirrors, through polarizing beam
splitter cubes and 1/4 wave plates, and then into the cavities. The beam splitter
cubes and 1/4 wave plates act as “circulators.” Because the light is vertically
polarized it is first reflected by the cubes, then the wave plates circularize the
light. The light reflected from the input cavity mirror and the light leaking out
of the cavity go back through the wave plate, where they become horizontally
polarized. This light is transmitted through the beam splitting cube; it then hits
another steering mirror, exits the vacuum tank and hits the photodiode. Use of
these circulators isolates the laser from the light reflected from the cavity and

insures that the photodiodes see as much light as possible.
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The input laser beam must be very quiet in all respects. The most important
aspect of the light is its frequency, since this is our length standard. Gas lasers
have much more frequency noise than is acceptable, but, by servoing the laser
frequency to a cavity, one can get to the shot noise limit. At the time of this
experiment the laser was stabilized to one arm of the gravity wave detector using
a back-reflection locking technique. [22] The light is phase modulated at 12MHz
to put sidebands on the light. Since the free spectral range of the cavities is
approximately 3.7MHz and these are high finesse cavities, the sidebands do not
resonate with the cavity. By looking at the interference of the sidebands with the
light leaking from the cavity and demodulating the signal, one gets a measure of
the relative phase of the input light to the light from the cavity. The frequency
stabilization is discussed extensively in M. E. Zucker’s thesis. [13]

The second cavity is held on resonance using a similar method. The phase
error is detected in the same way, but rather than feeding this signal back to the
laser, the cavity is held on resonance by moving the far mirror. At the time of
this experiment that was done using piezoelectric discs between the mass and the
mirror. These servos hold the cavity resonance on a dark fringe—so that most
of the light is transmitted through the cavities, or lost through absorption and
scattering at the cavity mirror surfaces.

Because the light at the photodiode is modulated at 12MHz, the detector
is insensitive to low frequency intensity noise to first order. However, because
the detector is so sensitive, second order effects cannot be lightly dismissed.
An intensity servo has been installed. There is a pick-off window in the beam,
not far from the beam splitter mass. This is pointed into a photodiode which
measures the incident power to the two cavities of the detector. Any fluctuations

can be removed using a servo. The signal from the photodiode is amplified and
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filtered and then fed back to an acousto-optic modulator (AOM). By changing
the amplitude of the RF drive to the AOM, one can vary the amount of light
in the first order spot, and hence the amount of light input into the detector.
This servo is discussed more in M. E. Zucker’s thesis. [13| One problem with this
servo is that varying the amplitude of the drive of the AOM can cause spatial
fluctuations in the beam, converting intensity noise into beam fluctuations. For
this reason the AOM is placed before a single mode optical fiber (discussed more
in Section 4.2.2). The optical fiber converts spatial fluctuations into intensity
fluctuations, but by putting the intensity monitor after the fiber one can servo
out this effect. This arrangement leads to a light beam which has both low
intensity noise and spatial fluctuations. Currently the detector is not limited by
intensity noise, so that the intensity servo is usually left off.

It is important to eliminate spurious interferometers in the beam path. Light
back-reflected into the laser can cause optical feedback, which will cause the laser
to go multimode. Spurious interferometers elsewhere can cause phase noise—so
that the laser is stabilized not to the cavity, but to a combination of the cavity and
the spurious interferometer. The AOM used in the intensity servo is also used as
an optical isolator. We use the first order spot of the acousto, which is frequency
shifted from the input light by 40MHz. Any back-reflected light (from the fiber
input, for example) is shifted 80MHz from the laser, so that it does not cause any
optical feedback problems. Occasionally the AOM’s frequency will drift so that
the offset equals the free spectral range of the laser (approximately 75MHz), at
which point optical feedback becomes a problem again. When this happens one
merely needs to adjust the modulation frequency of the AOM slightly. Between
the fiber’s output and the beam splitter there is a Faraday isolator, preventing

the output cleave of the fiber from forming a spurious interferometer with the
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cavity mirrors. The fiber itself can act as an interferometer, but by placing the
phase modulator after the fiber this problem is made negligible. Since the fiber-
interferometer is quiet at frequencies near the modulation frequency, it does not
cause problems in the measurement of the phase at the modulation frequency.
If the modulator were placed before the fiber, this would not be true; the fiber’s

noise would be inseparable from the phase fluctuations in the cavities.

3.2 Noise Sources

Potential noise sources in interferometric gravity wave detectors have been dis-
cussed extensively elsewhere; [6,23,24,25] below, a brief explanation of many of
the more important ones is given. First those sources which move the masses—
preventing them from being ideal inertial test masses, are discussed, then those
which affect one’s ability to measure the distance between the masses accurately

are described.

3.2.1 Noise Sources which Affect the Test Masses

There are many effects which can cause a test mass, or a test mass’ mirror to

move. These include:
e seismic noise
e gravity gradient noise
e thermal noise

e the standard quantum limit.
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Seismic noise can directly cause the length of each cavity to change. To
prevent this from happening, the suspension point of each pendulum is attached
to the top of a stack of lead and rubber. In addition, the pendulum itself gives
isolation that improves as 1/f? at frequencies above 1Hz. The seismic isolation
has been directly measured [26] and it was found to currently be adequate at
frequencies above 300Hz. Seismic noise can also cause noise by causing the
masses to twist and turn. How this causes displacement noise is discussed in
Chapter 4.

Another way in which seismic noise can now enter in is through the coil/magnet
arrangement used to adjust the length of the second cavity. Seismic noise can
cause the coils to move, so that the magnetic field of the coils is moving. This
is a second order effect because the coils and magnets are spaced such that the
coil’s force on the magnet is at a maximum. Since the amplitude of this noise is
a function of the amount of current through the coils, if the coils are driven hard
enough, one can see the seismic motion come through. Figure 3.4 shows how the
seismic noise can enter into the interferometer non-linearly via the coils. The
coils were driven with a 1.53kHz sine wave, I = .36mAmps. This moved the far
mass 2.4 X 10™!® meters. There is excess noise on either side of this peak due to
the ground motion of the coils, and the 1Hz pendular motion of the mass. This
noise completely vanishes when the sine wave is turned off. Eventually the coils
will also need to be isolated from ground motion, either by placing them on a
stack of lead and rubber, or, for more isolation, by attaching them to another
suspended mass. Seismic noise is not a fundamental limitation, since one can
conceivably isolate the masses from all seismic noise.

A more fundamental limit to the detector’s low frequency performance is due

to gravitational gradients. Local fluctuations in the gravitational field will cause
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the masses to move. This can be due to planes flying overhead, for example. This
is different from low frequency gravitational waves, since it is a purely Newtonian
effect. This would prevent the proposed LIGO from ever being sensitive to
frequencies below approximately 10Hz.

Thermal noise enters in through driving mechanical resonances in the system.
The most important of these is the mechanical resonance of the test mass itself.
Currently the test masses are made of fused quartz, and have a mechanical @
of 50,000, and a resonant frequency of 27kHz. At frequencies well below the

resonant frequency of the test masses, the displacement noise this causes goes as

[6]:

6z? 4kT
— T —— 3-1
o5f mQuwd a1

(6z is the displacement noise in a bandwidth &6 f, wp is the resonant frequency of
the test mass, m is its mass and T is the temperature). This implies that the
thermal noise would be approximately 10-2°meters//Hz. Because of the Q and
high resonant frequency of our test masses, the thermal noise in the test masses
is negligible in our prototype detector.

The beam splitter mass is a much more complicated structure than the test
masses, and consequently has many more mechanical resonances, at lower fre-
quencies and with lower Q. Though the detector should not be as sensitive to
the motion of this mass as it is to the test masses, the beam splitter mass is so
noisy that it probably is a contributor to the low frequency noise of the detector.

Another mechanical resonance which causes problems is the suspension wire
resonances. These are the resonances corresponding to the “violin” modes of the
wires. To minimize the effect of these resonances, the wires used are at approx-

imately half their breaking strength; this causes the resonances to be at high



30

frequencies (700Hz) so that few harmonics enter into the detector’s bandwidth.
The wires are probably excited by seismic noise, but eventually (in the LIGO)
even the thermal noise in these could become a limitation.

The standard quantum limit is not currently a problem, but it could conceiv-
ably become a problem in the future. Heisenberg’s uncertainty principle sets a

limit on the sensitivity which is a function of frequency.[27]

6z 2h
;= ~\f o (3.2)

The detector currently has 1.5kg test masses, yielding a limit of A ~ 2x107%! //Hz

at 1kHz; it is still approximately a factor of 50 away from this limit. When this
limit is no longer negligible, heavier test masses will be used.

All the noise sources just mentioned are independent of the cavities’ length,
therefore the signal-to-noise ratio due to these effects would be improved by a

factor of 100 by making a detector with 4km cavities.

3.2.2 Noise Sources Limiting the Measurement Accuracy
Many things can mar the measurement of the light’s phase. These include:

e shot noise

e frequency noise

e intensity noise.

The term “shot noise” refers to photon counting statistics. One cannot measure
the phase of the light better than §o ~ 1/4/N, where N is the number of photons.

The displacement sensitivity is a function of the phase sensitivity and the number
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of bounces, B, that the light makes in traveling back and forth in the cavity;*

A

6L~ ——=—bp.
(27)?B i

(3.3)

The actual limit on performance is much more complicated than that, it is a
function of the fringe visibility of the cavities, the cavity mirrors’ reflectivities
and losses, and the light’s intensity. [25,28] Currently we avoid this noise source
by turning up the laser power whenever shot noise becomes a problem. Shot noise
is not a fundamental limitation, it is possible to decrease the shot noise without
using more laser power by injecting squeezed light into the unused port of the
beam splitter.[29,30] Eventually shot noise will become a technical problem, since
both the use of squeezed light and very high laser power are not trivial.

As mentioned in Section 3.1.3, any frequency noise in the light can cause
noise in the detector because the light is the length standard. Since this noise is
common to both arms, one can tolerate some frequency noise by subtracting the
phase error signal of the first cavity from that of the second. This subtraction
can gain one a factor of more than 100 attenuation in frequency noise, (this is
measured by adding frequency noise at 1kHz to the light and seeing how well the
electronic subtraction can remove it). Eventually the light from the two cavities
will be recombined, this will optically subtract the common frequency noise.

Intensity noise in the light can also cause noise in the detector. This can
come in through at least two distinct mechanisms. First, intensity fluctuations
can mimic phase fluctuations. This is usually not a problem. Since the phase
is measured at the modulation frequency, where there is not excessive intensity

noise in the laser, the detector is insensitive to intensity fluctuations to first order.

*In a Fabry-Perot, B is defined as cr/L, where 7 is the storage time of the light in the cavity.
In the Caltech detector, B a 3000.
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The second mechanism is caused by fluctuations in the shape of the mirror surface
due to the heating of the mirror. These fluctuations actually cause the length
of the cavity to change. This will not be a problem until we are forced to use
very high power to eliminate shot noise. In the Caltech interferometer, if one
employed enough power to reach the standard quantum limit, then these mirror
heating effects would dominate the standard quantum limit at all frequencies

above f = 220Hz, even if the intensity of the light were shot noise limited.[31]

3.2.3 Other Noise Sources

In addition to the noise sources mentioned above, there are always the unexpected
noise sources which are only discovered through building a detector. These noise
sources tend to appear in groups. The detector’s sensitivity will reach a plateau
at which there are many noise sources of comparable magnitude. All must be
eliminated before the detector’s sensitivity will improve significantly. Two prime
examples of these unexpected noise sources were uncovered within the past two
years.

The first of these was discovered by our colleagues in Glasgow. Both the
Caltech and Glasgow detectors were limited to a displacement sensitivity of ap-
proximately 2 x 107"m/+/Hz. Both groups had metal test masses with mirrors
attached with a thin layer of vacuum grease. Glasgow discovered that by re-
placing the grease with glue joints their noise level improved. Our group quickly
followed suit, and replaced the grease with a thin layer of epoxy resin. This resin
is melted between the mirror and the test mass; as the test mass cools, the resin
hardens. Our detector’s performance improved slightly but, unfortunately, the

glue joint distorted the mirrors so that “bad” (non-gaussian) modes would res-
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onate. When these modes were resonating, the detector’s noise was worse than
before. Both the Glasgow group and the Caltech group decided that the best way
to join the mirrors to the test masses was to have them made of the same material
(fused quartz) and to optically contact them together.! This entailed removing
our piezo-electric transducers, replacing them with coils and magnets. At the
time of this experiment, the fused quartz test masses had not yet arrived, so that
during the data run the mirrors were distorted and occasionally a cavity would
jump into a bad mode. When the Glasgow group replaced their test masses with
fused quartz, the noise level of their detector improved dramatically; its current
sensitivity is 1.2 x 10~ ®meters/y/Hz. When we made a similar change, our noise
level only improved a small amount. We had to continue to search for what was
limiting our detector’s performance.

This noise source was uncovered last fall, and has led to our most recent
improvement in sensitivity. The laser locking servo has a unity gain point of 1
MHz.[13| Excessive frequency noise above a few hundred kilohertz was mixing
down to our frequency band.

The only way to be certain that this non-linear frequency noise was the noise
source limiting our detector’s performance was to eliminate it and see if the
detector’s performance improved. This was done by placing a short Fabry-Perot
cavity in the main beam path. This cavity acts like a narrow band filter—
transmitting only light with frequency in a 200kHz band. Installation of this
cavity improved the signal-to-noise by a factor of two.

Unfortunately this cavity attenuates the light so that our best spectrum is

uncomfortably close to the shot-noise limit. This problem can be alleviated by

tThis is done by polishing two surfaces until they are both optically flat, and just putting

them together; molecular forces will hold them together.
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removing the optical fiber—whose transmission is less than that of the cavity.
The optical fiber’s purpose is to remove beam jitter—angular fluctuations in
the laser beam. The Fabry-Perot cavity will also do this [32], making the fiber
extraneous.

In designing any instrument as sensitive as a gravity wave detector, it is
important to remember that there will always be the unexpected problems. An
instrument like the LIGO cannot just be developed on paper—it is vital that

prototype work be done in order to reveal the unexpected.
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Chapter 4

Spatial Fluctuations of the Test Masses
and Light Source

4.1 Effects on the Detector Sensitivity

Apparent displacement noise can be caused by the fluctuations in the orientation
of the mirrors relative to the input beam and to each other. When perfectly
aligned, the two cavity mirrors are pointed directly at one another and the input
beam is perpendicular to both. The fundamental mode of the cavity ( TEMgo )
matches the input beam exactly, (Figure 4.1). If the alignment is perfect then
the fundamental mode is of length L, and no other modes are excited. When
operating the gravity wave detector it is always the TEMyo, mode of the cavity
which is resonating. If one of the masses is slightly tilted, the length of the
TEMy, mode will change from L to L + AL, even though the distance between
the test masses’ center of mass is unchanged. This is one way fluctuations in the
cavity geometry can cause displacement noise. Another is caused by the relative
motion between the input laser beam and the TEMgy, mode of the cavity. Spatial

fluctuations in the input light will excite small amounts of off-axis modes. Since
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these modes have different resonant frequencies than the TEMgy, mode, they
will cause phase noise, which cannot be distinguished from displacement noise.
These two effects can be treated separately since only a small amount of an off-
axis mode is ever excited.[33] A third spatial fluctuation in the cavity is caused by
transverse motion of the test mirrors. In the following sections the contribution
to the displacement noise due to each of these effects is presented. Throughout
this chapter it is assumed that the mirrors are spatially uniform; any noise which

may be caused by scanning an imperfect mirror surface is neglected.

4.1.1 Change in the Length of the TEM,;,, Mode

Consider a cavity made of two mirrors, each mounted to a test mass which is
suspended at its center of mass. Assume the input mirror is flat, and the output
mirror has a radius of curvature R. On each mass let the distance between the

mirror surface and the center of mass be d, and the distance between the mirror
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Figure 4.2: Angular motion of the test masses changes the cavity’s length.

surfaces be L, (on the Caltech interferometer R = 62m, d ~ 6cm and_ L ~ 40m;
Figure 4.1). The TEMgy mode is perpendicular to the mirror surface on both
mirrors, hence if either mirror is rotated about its center of mass, the length
of the cavity will change, see Figure 4.2. The TEMy mode should coincide
with the line connecting the center of mass of each test mass, making the cavity
insensitive to the test mass rotating about the optical axis. To second order in @

the length of the TEMy, mode is :
] 1 2 1 2
BE=T% [E(R—L—d)ﬂp+ S(R+d)0%+ (R+d)0cOp|.  (41)

Since the seismic isolation of the masses should also attenuate any angular
excitation of the masses, one might expect the angular noise of the cavity mirrors
to be approximately 6 L /d. Unfortunately, this is not the case. The cavity mirrors
angular position must be servoed in order to keep the cavities aligned. The servo
senses the angular position using an optical lever. A HeNe laser beam is reflected

off the cavity mirror, and the angle of the cavity mirror is measured using a
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position sensitive diode. Any noise in the error signal of the servo is then fed
back onto the test mass. This servoloop is discussed more in Section 4.2.1.

The angular noise of the mirrors of the Caltech interferometer has been mea-
sured. This was done by measuring the error point of the servoloop. Figure 4.3
shows a fairly typical spectrum. An empirical fit to the spectral density of the

angular noise of a typical mirror is:

A ifo< f <
Se(f) = SISk (4.2)

A(f/fo)* if fo < f < 100Hz

where f; and A are adjusted for the best fit. Above 100Hz it is difficult to
accurately measure the angle. In the Caltech detector typical values for A and
fo are 4x10~°radians/v/Hz, and 16Hz respectively. Using this noise spectrum one
can calculate the approximate contribution this makes to the noise in the Caltech
gravity wave detector. The noise limit this places on the Caltech interferometer
for A = 4 x 10 °radians/ vHz and f, = 16Hz is shown in Figure 4.4. The
solid line shows the noise level when the DC alignment of the cavity is perfect,
(for = 6oc = 0). The dashed line is for when the cavity is poorly aligned,
0or = Ooc = 50uradians, (this is the maximum misalignment ever tolerated).
This assumes that the angular noise has the form given by Equation 4.2. Because
this treats the motion of the two masses as perfectly correlated, this plot shows
an upper limit to the noise. Above 100Hz the noise certainly falls off faster then
[ 2, since the seismic noise is known to be smaller at higher frequencies and the
isolation has been measured to improve faster then f~2.[26]

It is important to note that this noise source scales with the length of the
detector, so that if this were the limiting noise source of a detector, making the

detector longer would not improve one’s signal-to-noise ratio.
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4.1.2 Excitation of Off-Axis Modes

Excitation of other modes causes “phase noise,” which is indistinguishable from
a change in length of the cavity. How this causes displacement noise in the
detector is shown in detail in Appendix A. In this section a general outline of
the calculation is given.

First consider a cavity in which only the TEMgy mode has been excited.
The phase of the light leaking out of the cavity relative to the incident light is
measured using a phase modulation technique.[22] This signal is used to hold the
cavity on resonance, L = nA/2. If the cavity changes length by a small amount

AL then the signal measured is:

2
S o |14-|'ru:|z ( r2| tl | ) (47rfL) (4'3)

1-— 21”11'2 + (T]_Tz)z

where A;,. is the amplitude of the input beam, ¢; is the transmissivity of the
input mirror, and ry,r, are the mirrors’ reflectivities, (in the Caltech detector
r1 & .9997, ry &~ .99995).(25,34]

Now consider the case where the incident light does not totally agree with
the TEMgy, mode of the cavity, but is “contaminated” with some light which
spatially matches the TEMy; mode. Ainc = Aincoo +Ainco,» Where A;ney, = €Aine,
€ < 1. This would cause an error in the measurement of the phase of the TEMgo

mode, which would cause an apparent displacement signal:

1 —2riry + (rir2)? )

1 — 2ryracos(6;) + (rirz)? (+4)

A
AL = EZG sin(6;) (

where 6, = 2cos™!(1/1 — L/R). The derivation of this formula is given in Ap-
pendix A. To calculate how large AL is, one must first calculate €. This calcula-
tion has been done before, [32,35]; it is also presented in Appendix A. Suppose

that the input beam is at small angle, a, to the axis of the TEM;y, mode and
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Figure 4.5: Excitation of off-axis modes.

is displaced by a small amount, a, at the waist. To first order in a and a:

a Tmiay
€E= | — + 4.5
(& o) (4.5

(yo is the waist size of the cavity; in the Caltech detector this is .22cm). Since

a and « are the displacement and angle between the input beam and the cavity
mode, they are the sum of input beam “jitter” and motion of the TEMy, mode
caused by the cavity mirrors moving. Using a coordinate system where the 2 axis
is defined by the line connecting the two test masses center of mass, let § be the
angle between the input beam and the 2 axis, and let b be the distance between
the input beam and the % axis at the waist of the cavity, (when the input mirror
is flat, the waist is at the input mirror). The angle between the input beam and
the TEMgy mode of the cavity is @ = 8 + 0r. The displacement between the
input beam and the TEMg, mode of the cavity is a = b+ ((R — L) ¢ + Rbc),
(see Figure 4.5). In the case where the excitation of off-axis modes is due to

mass motion, then the resulting error in AL is much smaller then that discussed
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in Section 4.1.1.

Figure 4.6 shows the displacement noise spectrum of the Caltech gravity wave
detector with imposed input beam “jitter.” A 1 kHz sine wave was imposed on
the horizontal axis of the input light using a PZT mirror. The rms amplitude was
approximately .3 uradians. The peak at 1 kHz corresponds to a displacement
noise level of approximately 10~®*m,,,. There is no peak at 2kHz, which is
not surprising since Equations 4.4 and 4.5 lead one to expect a noise level of
approximately 10~*°m,,,, at 2kHz, which would be well below the noise floor of
this spectrum.

Lest one become complacent about beam jitter, Figure 4.7 shows a similar
noise spectrum taken while a 1kHz sine wave was imposed on the vertical axis of
the same PZT mirror. In this the peak at 2kHz corresponds to a displacement
noise level of approximately 10~'®*m,,,. This could be due to a number of effects,
such as scanning an imperfection in either the optics or the photodiode. In this
instance I suspect that it is due to light falling on and off the active region of the
photodiode.

It is interesting to note how this noise source scales with the size of the
detector. If the ratio of the cavity length to the mirror’s radius of curvature
remains fixed, and the storage time of the cavity is held constant then the dis-
placement noise due to this effect increases proportionally to L?. Assume that
€ =~ 1077, and that the storage time of the cavity is 1msec. In a 40 meter cav-
ity this storage time implies that r;r, = .9997. The displacement noise would
then be AL ~ 10~%° meters. In a 4km detector a 1msec storage time implies that
riry = .97, leading to an apparent displacement noise AL ~ 10~%% meters. Even
if one shortens the storage time of the cavities this effect should not limit a

detector’s performance.
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Figure 4.8: Transverse motion of a curved mirror.
4.1.3 Transverse Motion of the Mirrors

Motion of the curved mirrors perpendicular to the beam axis can also mimic
displacement noise. Perpendicular motion of a curved mirror can be represented
by a combination of a rotation and motion along the beam axis, (Figure 4.8).

The equivalent motion would be (to second order):
6z = (6y)*/2(R + d) (4.6)

0 =éy/(R+ d). (4.7)

Since the sideways motion 6y of a test mass should be approximately 6z = AL
(it would be impossible to isolate motion along the 2 axis orders of magnitude

better than motion along the § axis), the term in Equation 4.6 is negligible. ¢
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will appear as displacement noise in the same manner discussed in Section 4.1.1.

AL = %(lf‘hLd)e‘vEJ (4.8)

= Z(6v)*/(R+a)

This too would be much less then AL. Perpendicular motion of the flat mirror

should have no effect on the displacement noise.

4.2 Reducing Spatial Fluctuations

4.2.1 Reduction of Mass Jitter

In order to keep the cavities aligned, the angle of each mirror must be carefully
controlled. This must be done in a way which neither compromises the seismic
isolation nor the mechanical Q of the test masses. As mentioned earlier (in
Section 3.2.1) each mass is suspended by two wires, which provide some of the
seismic isolation. These wires are attached to a control block, which is suspended
by a single wire from the top of a lead and rubber stack, (see Figure 4.9). The
control block is free to turn and tilt. Its angular position is controlled by the use of
magnets and coils. Eight permanent magnets are mounted on the control block,
by altering the current through coils located near these magnets, the orientation
of the control block, and hence the mass, is controlled.

The angular position of the masses is sensed using optical levers, (see Figure
4.9). A HeNe laser shines light down the 40 meter pipe, where it reflects off of the
cavity mirror and comes back to a quadrant diode. By measuring where the light
hits the diode one has an accurate measure of the angle of the cavity mirror. The

dominant error in this measurement is caused by jitter in the input HeNe laser
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Figure 4.10: Angular motion, measured when the air conditioning was off.

beam. These optical levers could be made insensitive to angular beam jitter if,
instead of using the cavity mirrors, the light was reflected off of 40 meter curved
mirrors. This would require mounting additional mirrors to the test masses, and
it was feared that this would harm the mechanical Q of these masses.

The servoloop which takes the error signal from the quadrant diode and feeds
back to the coils is discussed in Mark Hereld’s thesis. [6]

The angular fluctuations of one of the test masses are shown in Figures 4.10
and 4.11. These clearly show that air currents and mechanical vibrations caused
by the air conditioning impose noise on the test masses error signal, which is then
fed back to the masses. Unfortunately, because of thermal drifts, it is necessary
to leave the air conditioning on when running the detector for long time periods,
otherwise the reliability of the detector is considerably reduced. By installing

an optical fiber feed-through from the HeNe laser into the vacuum system, the
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Figure 4.11: Angular motion, measured when the air conditioning was on.

effects of the air conditioning were reduced at very low frequencies, (see Figures
4.12 and 4.13). The fiber is a single mode fiber, it enters the vacuum through
a hole drilled in a blank, which has been sealed with epoxy. The fiber’s output
must be carefully collimated to travel the 80 meters from its output to the mirror
and back to the quadrant diode. This is done with two lenses mounted a fixed
distance apart in a brass cylinder, the distance from the fiber to the first lens is
adjustable. The remaining jitter on the control beam is due to motion of the tower
which the fiber output coupler is mounted to. This tower is not isolated from
ground noise, and has a resonance at 18Hz. The system could be improved by

replacing the tower with one which is sturdier, and perhaps seismically isolated.
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4.2.2 Reduction of Beam Jitter

A more pressing problem than angular mass motion has been reduction of motion
of the input beam. Though the detector is less sensitive to motion of the input
beam than it is to motion of the masses, the laser beam tends to be a great deal
noisier. The laser is not as well isolated as the masses, so that angular noise on
the laser beam tends to become a noise limitation first. The laser beam picks
up angular noise from both motion of the mirror mounts and air currents. The
laser mirrors are isolated from the argon tube, to reduce motion of the laser
cavity mirrors caused by the tubes cooling water.[13] All the mirrors in the main
beam path are thermally compensated, so that fluctuations in the temperature
of the lab will have a minimal e'ffecl; on the pointing of the beam. Fluctuations
were further reduced by installing a single mode fiber in the beam path. This
technique was first employed in gravity wave detectors by MIT. Since the fiber
will only transmit one spatial mode, this acts as a spatial filter. A drawback
of the fiber is its low power handling ability. It is limited to approximately one
watt incident power, and its throughput is roughly 50%. Figure 4.14 shows the
angular noise in the input beam both with and without the fiber. Another factor
of 10 reduction was achieved by placing the output coupler of the fiber in the
vacuum, and mounting the output coupler on top of a lead and rubber isolation
stack.

As discussed in Chapter 3, a mode cleaning cavity will also act as a spatial
filter.[32] Mode cleaning cavities are more difficult to employ then optical fibers
because they must be held on resonance, whereas the fiber makes no demands
on the frequency of the light. They do have some definite advantages over fibers

in that they also act as temporal filters, and they are capable of handling higher
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power. Because the Caltech detector needs the temporal filtering of a mode
cleaner, the group is currently working on optimizing one’s design. After this
has been done the fiber will be removed. It will not be removed before then
because it is easier to alter the design of the mode cleaner while the fiber is still
in the system. The mode cleaner’s length and position can be changed without
having to readjust the mode-matching lenses (the lenses which match the input
beams waist size and position to that of the 40 meter cavities). In addition the
optics between the mode cleaner and the cavity do not have to be in vacuum
as long as the fiber is present. Once the mode cleaner is installed, it should
provide even better isolation from beam wiggle at frequencies ranging from five
to a few hundred hertz because it is suspended in much the same manner as the
test masses, and is therefore better isolated from ground noise than the fiber’s
output coupler.

Currently neither beam jitter nor angular motion of the test masses is a
limiting noise factor in the detector above 200Hz. Below that the detector’s
noise is probably limited by seismic noise, which could couple in by directly
moving the test masses along the beam axis and by causing angular motion of

the masses.
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Chapter 5

Data Analysis

Approximately 36 minutes of data from the Caltech detector were thoroughly
examined for coalescing binaries. These data spanned over one hour and were
collected on the evening of March 8, 1987, when both the Caltech and Glasgow
detectors were operating. This search set a limit on the strength of gravitational
waves from coalescing binaries which varies with the mass parameter n, (see
Equation 2.4). The limits set for various values of n are discussed in chapter 6.

In this chapter the algorithm used to search for coalescing binaries, the data

run, and the data analysis are discussed.

5.1 An Algorithm to Search For Coalescing

Compact Binaries

5.1.1 Optimal Filters

Detecting gravity waves is difficult because one must search for such small, rare
events. Since the signal is so small, it is important not only to build sensitive

instruments, but also to analyze the data as carefully as possible. It is illogical
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to struggle to improve one’s detector by a factor of ten, and to then waste that
improvement through sloppy data handling.

The best filter possible is called an “optimal filter.” Suppose that one has a
detector with a power spectral noise density N,(f), then it can be proven that
the best possible filter will give you a signal-to-noise ratio (in amplitude, not

power):

df (5.1)

where § (f) is the Fourier transform of the signal S(t). Such a filter is called an
optimal filter.[36] In the case where the noise is white, then Equation 5.1 reduces
to:

[I [S(t)] dt] (5.2)
A filter which is optimal for input white noise is called a matched filter.[36]

A major problem in searching for coalescing binaries is that there are three
unknowns in the waveform, (see Equation 2.8 or 5.3), the mass parameter, 7,
the time of coalescence, r, and the phase, ¢. My goal was to develop a filter
which would be close to optimal for any value of n and 7. Since there is no way
to know the phase of the signal prior to detecting it, the filter should make no

assumptions about the value of ¢; this implies that the best signal-to-noise ratio

possible will be a factor of 1/2 less than that given by Equations 5.1 and 5.2.

5.1.2 The Signal

As stated in Section 2.3, the expected signal from coalescing compact binary

stars would have the form:

S(t) « (r —t)"% cos (27rf0(1 —t/r)5/8+¢) (5.3)
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where fo = (n7)~%/®/m; n is a function of the stars masses and 7 is the time
of coalescence, (n is precisely defined in Section 2.3). Although the strain is
largest in the binary’s last few moments, when the frequency is greatest, the
Fourier transform of the strain, S (f), doesn’t increase with frequency. Because
the frequency is changing more rapidly as the stars get closer to coalescence,
the Fourier transform of the strain is larger at lower frequencies. To optimize
the signal one should search through low frequencies and integrate the signal
for as long as possible. If one searches for binaries long before coalescence t.hen
the frequency is nearly constant. Clearly the easiest way to search through many
frequencies is to do a Fourier transform of the detector output. This will separate
the signal from background noise at other frequencies. Unfortunately, when
the frequency of the gravitational radiation is nearly constant, it is below the
frequency at which earth-bound detectors would probably be limited by gravity
gradient noise.

One’s best chance of detection is in the binary’s last few moments. At this
time the frequency is high enough to be in the detector’s frequency range. For
two neutron stars, each with mass 1.4My, the frequency is above 500Hz for
approximately .03 seconds. The frequency remains approximately constant for

only n cycles, where:

n= \/%fm'n(f — tmin) (5.4)
( fmin equals the minimum frequency of the detector, and (7 — tmin) is the length
of time from f = f,,;, until coalescence). After n cycles the phase shift is greater
than 7. No longer can the signal be efficiently separated from background noise
by doing a simple Fourier transform. Unless the change in frequency is tracked,

only a few cycles can be integrated over. For m; = m; = 1.4M_ and a detector
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which is sensitive down to 500 Hz less than five cycles can be integrated over. If
one tracks the frequency, then one is only limited by the time the signal is in the
detector’s frequency range. This means that with the same detector the signal
could be integrated over 24 cycles. Consider a detector which is sensitive down
to f = fmin, and has white noise above this frequency. The best signal-to-noise
ratio which can be obtained through filtering is calculated by replacing the lower
limit of integration in Equation 5.2 with t,,,, the time at which f,.4(t) = fmin-

This yields:

S Sa 3 1 L %
— L il —(r —ty; 3 5.5
N~ 64r rN—h" [(T tmin)? — (T — tfinal) ] (5.5)

where 24,4 is when the waveform ends, (¢inu might be less than 7 due to tidal

disruption).

5.1.3 The Algorithm

As stated earlier, a major difficulty in searching for coalescing binaries is that
n and 7 are unknown. In order to track the changing frequency, both n and 7
must be fixed, so one must search through all the possible values of n and 7. If
one assumes a value for 7, then ignorance of n is the same as ignorance of the
initial frequency fy, so searching through all values of n is equivalent to searching
through many frequencies. If the frequency were constant, this would be simple,

one would perform an FFT:
F(8,f) = j S(t)e ™" dt. (5.6)

But the frequency is not constant, so a normal Fourier transform won’t work.
The way to get around this is by changing variables. Instead of working with

real frequency and real time, characterize the signal with initial frequency, fo,
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and a timelike variable:

-2 o

then the signal will appear periodic when mapped versus x.

S(x) « x # cos(2m fox + @) (5.8)

This timelike variable x works for all binaries, regardless of the stars’ masses.

Resampling the data in even steps of x allows one to perform an FFT.

F(S, fo) = f S(x)e ™ foxdy (5.9)

This transform will track the gravity wave’s frequency, and separate it from
background noise at other frequencies. (The doppler shift due to the earth’s
motion has been neglected, but over an integration period of 100 seconds it causes
a fractional change in frequency of approximately 10~2, which is negligible.)
This filter assumes that one knows the time of coalescence, so one must search
through 7 in discrete steps. To use this filter, fix 7, then resample the data in
even steps of x. One can then perform an FFT, which will search through
all values of fp, and hence 1, simultaneously. This filter is actually a bank of
filters, each frequency channel of the FFT filters for a different value of . Using
an FFT cuts down on computation time, but at the cost of integrating all the
signals over the same time period. Since different binaries will emit signals in the
detector’s frequency range for different time periods, it is impossible to optimize
the integration period for all binaries simultaneously, (see Table 5.1). How critical
this problem is depends on the frequency range of the detector used, and how

well the noise below f,.;, is filtered out.
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M, M, Seconds from f = fn, until coalescence

(in M) " Jmin = 500Hz | fmin = 305Hz | finin = 200Hz | fpin = 50Hz
0.2 04 .43 1.6 5.0 200.
0.4 06 = .64 2.0 79.
1.0 1.0 .05 .19 .60 24.
1.4 1.4 .03 R b .34 14.
1.75 1.75 .02 .08 .23 9.4
10. 10. .001 .004 .013 .52

Table 5.1: The length of time the signal will have f > f.in if no tidal disruption

occurs.

5.1.4 Numerical Tests

Prior to collecting data with the detector, this algorithm was tested numerically.
Figure 5.1 shows the output of this filter when applied to a data set consisting of
computer-generated white noise with a gaussian distribution (to simulate noise
in a detector) plus a signal. The signal strength was approximately equal to one
standard deviation of the noise in the data set (it varied from 1.20 to 30), the
filter integrated from ¢t = .5sec (when the frequency of the signal was 173Hz) to
t = .99sec, with 7 = 1.0sec. The sampling rate was 10kHz. The peak can clearly

be seen above the background noise, its relative height is approximately:
99nc 2
[ISuc t) dt] = 30 (5_10)

N, = 1/5000Hz; S(t) = (r — t)~% cos (21rf0(1 —t/7)%).

This filter’s output gives astrophysically relevant information immediately.

When a signal is detected, fo and 7 are known. From these n can be immediately
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Figure 5.1: The output of this filter when there is no error in 7. The input was
computer generated white noise with a Gaussian distribution plus a signal equal
to that predicted for a binary made of two 1.4M neutron stars. The signal
amplitude varied from 1.20 to 30, (o is the standard deviation of the noise). The
filter analyzed from (7 — t) = 0.5 sec until (r — t) = 0.01 sec. The peak can be
seen at fo = 133Hz which implies that n = 1.0 x 10~ 7sec?/3, as expected for a
binary made of two 1.4M stars.
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calculated, giving information about the mass of the stars in the binary. The
peak in Figure 5.1 is at fy = 133Hz which implies that n = 1.0 x 10 "sect as
expected for a binary made of 1.4Mg stars. (It is important to note that there
is nothing special about m;, = m, = 1.4M,, this filter will work for any mass
combination; for example, if m; = m; = 10.Mg, a peak would appear at 39Hz.)
The filter’s performance will deteriorate if there is an error in 7. If there is a .1
second error in 7, then the peak will only be 40% as high.

The speed of this algorithm was checked on a Masscomp 500 computer; A
detector frequency range of 200 to 2000 Hz was assumed, and the filter was
optimized for two 1.4My stars. The FFT was performed from (r —t) = .34
seconds (at which time a binary with two 1.4My would have f = 200Hz) until
(r —t) = .01 seconds. This was repeated every .1 seconds. The data were
sampled at 10 kHz. The algorithm analyzed 10 seconds of data in 8.2 seconds,
(5.3 seconds were spent reading in the data and 2.9 seconds were spent performing
the calculation). The Masscomp 500 computer has an array processor which is

capable of performing a 1024 element FFT in 4.5 msec.

5.2 Analysis of the Data

Numerical simulations are nice because they allow one to simplify a problem
and check performance in an ideal case, but ideal situations rarely exist. The
data taken from the detector differ from simulated data in that they are not
white; the spectrum has many features as can be seen in the noise spectrum,
Figure 5.2. Another feature of the spectrum is that the detector’s response
varies with frequency. A white strain signal will not produce a flat response

from the detector; this can also be seen in Figure 5.2. The solid line shows the
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Figure 5.2: The noise spectrum and frequency response of the Caltech detector.
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detector’s response as a function of frequency. This is primarily due to filters
designed to keep the signal within the dynamic range of our analog to digital
converter(ADC). The data collected from the detector also contain spans where
a cavity fell out of resonance—so that the signal has no correlation with the

strain, but is merely representative of a servo trying to acquire lock.

5.2.1 The Coincidence Run

In February and March of 1987, the Caltech detector was run in coincidence with
both the Glasgow and MIT detectors. On Feb 23, 1987, a supernova occurred
in the large magellanic cloud. This seemed to be an excellent time to collect
data. Although the chances of detecting any radiation relating to the supernova
were remote, this time was as good as any other to collect data, and there
was a slim chance that something unexpected might occur. Examples of the
unexpected include gravity waves not traveling at the speed of light, so that
the radiation from the supernova would arrive after its optical discovery, the
supernova triggering another cataclysmic event, or the supernova leading to a
highly non-spherical rapidly rotating pulsar whose rotational energy would be
emitted as gravitational radiation. We convinced our colleagues at MIT and
Glasgow that it was worthwhile to collect data at this time, not so much because
of the supernova, but for the experience we would gain through a coordinated
run that could not be gained in any other manner. All three groups struggled
to get on the air as quickly as possible, the Caltech group collected its first data
two days after the discovery of the supernova. The data acquisition software
was written by A. Bostick during those two days; it is presented in Appendix B.

Table C.2 shows when the various detectors were “live.” I carefully analyzed
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the data collected on the evening of March 8 at which time both the Caltech
and Glasgow detectors were operating. The exact times the data analyzed were

collected is shown in Table C.1.

5.2.2 Data Collection

In order to distinguish between “good” data, data which are reasonably quiet,
and “bad” data, those which were collected while a cavity wasn’t resonating
or was unusually noisy for some other reason, information other than just the
gravity wave signal was recorded. Nine signals in all were recorded, five of these
on tape, and eight on a chart recorder, (there was some redundancy). The five

signals recorded on tape were:
1. The gravity wave signal.
2. The low frequency feedback to the first arm servo.
3. The WWYV signal.
4. A seismometer and microphone signal, added together.
5. The light power of the back-reflected light from the second cavity.

For simplicity all five signals which were recorded on tape were sampled at the
same frequency, 10kHz. This is not a very efficient method of recording data,
but unfortunately the data acquisition software was written in a hurry. Data
were recorded on tape in blocks of 10240 points, 2048 from each channel; there
were 2100 blocks per tape, so each tape spans 7 minutes, 10 seconds. It took

approximately 3 minutes to change tapes, and since there was only one tape
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Figure 5.3: The signals recorded on tape.
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drive, this cut down the “live” time significantly. The precise arrangement of the

signals recorded on tape is shown in Figure 5.3.

In addition to the signals recorded on tape, signals were also recorded on a
chart recorder. The chart recorder set up is shown in Figure 5.4. This record
was used to track down what was limiting the detector’s stability, but it was not

used in the final analysis, because the timing resolution on the chart was so poor.

As mentioned earlier (in Section 3.1.1 ) the gravity wave signal is the feedback
signal to the second arm followed by a few filters to keep it within range of our
ADC, without introducing digitization error. There is also a 4kHz low pass filter
to prevent aliasing.

The WWYV signal was recorded so that we could recover timing information if
necessary, and to be sure no blocks of data were “lost.” The other three signals
were recorded to help distinguish between “good” and “bad” data. “Good”
data are data which are recorded when the detector’s output is related to the
strain of space-time, and not to a servo trying to acquire lock, or to the acoustic
noise in the lab. It is important to “veto” data collected when the detector is
not resonating, or is unusually noisy. It is even more important not to veto data
because the gravity wave signal is high; if one were to do that then any real gravity
waves would be vetoed, and the data would be called “bad” because gravity waves
were present. The method used in this search, to determine which data should
be vetoed and which should be called “good,” is described in Section 5.2.3. A
program was written to examine the tapes and, using the information stored on
the auxiliary channels, create a table of what data are “good” and should be
searched for gravity waves. This table contains the block and sample number of

where the data analysis should begin and end for each stretch of “good” data.
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Signals to the Chart Recorder
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Figure 5.4: The signals recorded on the chart recorder.
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5.2.3 Vetos

Four signals were looked at to determine whether or not the data were contam-
inated by spurious effects. The most important of these was the light level of
the second arm. If the second cavity stops resonating, then the light is no longer
held on a dark fringe and the light level jumps to a higher value, therefore this
light level is a good way to know when “the gravity wave signal” is related to
the strain. Of course if the first arm stops resonating then the signal would be
equally bad, however if this arm loses resonance then the second arm will also
immediately stop resonating. This is because the light from the laser becomes
much noisier, (since it is no longer servoed to the the first arm) and this invariably
causes the second arm to lose loék, because its servo cannot cope with the higher
noise level. The cutoff was chosen by sampling at 40Hz the light level recorded
on tape, and examining a histogram of the output. This histogram should have
two clear peaks in it; the broadening of the peaks is caused by fluctuations in
the laser power and the cavity alignment, (see Figure 5.5). The threshold was
chosen to be in the valley between the two peaks. The data were rejected not
only on the basis of the DC level of the light, but also if the light level changed
too rapidly. This could be caused by the laser’s power changing suddenly, or by
bad modes in the detector, (as mentioned in Chapter 3, the mirrors were slightly
deformed at the time of this run, and this sometimes led to strange modes res-
onating in the detector). Either effect could cause the output level of the detector
to be anomalously noisy. Figure 5.6 shows the DC light level as a function of
time. The data collected at this time would be rejected on two counts: first,
the light level is too high after .5 seconds, indicating that the second cavity is

not resonating; second, the light level changes too quickly at ¢t = .23 seconds.
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Figure 5.5: A histogram of the power of the light back-reflected from the second
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contrast. The DC threshold for this tape was P=9.5mW. The broadening of the

two peaks is caused by fluctuations in the cavity’s contrast and the power of the
input light.
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Both are correlated with the detector being anomalously noisy. In addition to
rejecting the data right when the light level is high, or changing rapidly, the data
both 1 second before and .1 second after these events is rejected. The data 1
second before are rejected because usually just prior to the light level going high
the second arm servo is near the end of its range, and the gravity wave data will
be noisy. The data .1 second after are rejected because it usually takes a short
amount of time for the detector to settle down after acquiring lock, or any other
disruptive event.

The low frequency feedback signal to the first arm was recorded because we
know from experience that as this servo reaches the edge of its dynamic range,
the noise in the detector becomes worse. If the signal was within the final 5% of
its range then the data taken at that time were rejected.

A seismometer and microphone signal were added together and recorded. The
seismometer used was a ranger seismometer, located near the central tank of our
vacuum system. This was recorded so that we could distinguish between large
ground motion and a gravity wave signal. Excess ground motion did not turn
out to be a problem in this data run, so that the seismometer signal was not
used to veto any data. The microphone signal was sampled at 10kHz so that we
would have information about the acoustic noise at all frequencies of interest.
The detector is known to be sensitive to acoustic noise and it is important to be
able to distinguish between a gravity wave signal and acoustic noise, which could
be due to something as mundane as someone slamming a door. Data collected
when there was excess acoustic noise in the lab were vetoed. It was important to
sample the microphone at 10kHz so that it could also be used to reject spurious
periodic signals. [13]

The fourth signal examined was the gravity wave signal itself, however this
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was only looked at for veto purposes to be certain that the analog to digital
converter (ADC) was within range. The detector has a resonance at 212Hz.
When this was excited, there were times that it caused the gravity wave signal
to exceed the range of the ADC. The signals at other frequencies were well within
range of the ADC, so that eliminating data because of an overload of the ADC
was not going to eliminate potential gravity wave events.

The analysis of these signals is discussed in greater detail in Appendix B.

5.2.4 Whitening the Data

Before conducting a search for any burst source it is useful to “whiten” the data.
This is because an optimum ﬁiter depends not only on the signal waveform,
but also on the noise of the instrument, (see Equation 5.1). If one whitens the
data first, then one can use a matched filter, rather than the more complicated
optimum filter, (the matched filter must look for the waveform expected from
the signal after having gone through the whitening filter rather then the original
signal). The optimum filter is more complicated than the matched filter because
if one is searching for a signal which lasts only 1msec, and one’s instrument
has excess noise at 100Hz, then an optimum filter must be .0lsec long, rather
then .001sec. All the data examined were whitened separately so if these data
are later analyzed for sources other then coalescing binaries the whitening step
would already have been performed.

The whitening filter used an FFT to perform the filtering. First the data

were windowed using a Hamming window,
W (n) = .54 — .46 cos (ZWT") (5.11)

then an FFT was performed, the output of this FFT was multiplied by the
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filter, and then an inverse FFT was performed. The effects of windowing were
compensated for by using an overlap and add method.[37] N points were read
from the tape into a buffer, (where N = a power of 2), these were multiplied by
the window and then filtered. The first N/2 points were then written to disc, the
latter N/2 points were saved. The latter N/2 points of raw data were then shifted
to the beginning of the buffer and an additional N/2 points were read from the
tape. The buffer was again windowed and filtered, then the first N/2 points
were added to the last N/2 points from the previous segment of filtered data,
this compensated for the shape of the window. If one examines Equation 5.11
carefully one will notice that W(n) + W(n + N/2) = 1.08, a constant. So the
data at the edges of the window were not attenuated at the output of the filter.

The filter used was a combination high-pass and whitening filter. A high-pass
was used because the signal-to-noise ratio at frequencies below 300Hz was much
worse then at higher frequencies, (see Figure 5.2). The cutoff chosen was 305Hz
to avoid a line spike at 300Hz. The shape of the whitening filter was obtained by
averaging many FFTs from the beginning of the data set (340 1024point FFTs
were averaged). The filter is shown in Figure 5.7.

The Fourier transform of the output of this filter is shown in Figure 5.8, the
data used to make this figure were not the same data which were averaged to
make the filter. Notice that frequencies below 305Hz are attenuated by 30dB,
and that above this all the data are within 10dB.

Another advantage of whitening the data is that fewer bits of data per sample
can be stored without loss of signal-to-noise. If the data are all within 50 dB,
then only 8 bits need be stored. We do not currently take advantage of this, but
it would be important for a fully operational observatory, where data are being

collected at least twelve hours per day. In that case the problem of data storage
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becomes daunting, and one should use every technique available to improve the
efficiency of the data storage.

The whitening filter is included in Appendix B.

5.2.5 Implementing the Binary Star Filter

The computer codes used to analyze these data are all included in Appendix B.
This section outlines what each of these programs did.

There are certain parameters in this filter which must be set before applying
this filter to data. These include the integration time and the step size in 7. For
simplicity I defined 7 = 1sec. The integration time chosen was from 7 —¢ = .11sec
(to = .89sec) to 7 —t = .003sec (t fina = .997sec). At 7 —t = .11sec the frequency
of a binary made of two 1.4M stars would be equal to the minimum frequency
that the detector is sensitive to: f(.89) = fmin = 305Hz. Tidal disruption of two
1.4 M, neutron stars is expected .003 sec before coalescence. Heavier stars would
have lower frequencies at the beginning of the integration time, but because of
the prefilter this should not harm the signal-to-noise ratio too much.

The step size in 7, how often one repeats the filter, was chosen so that the
signal-to-noise would not be compromised by more then 15% (30% in power)
because of an error in 7. This is discussed more in Section 5.3. If one were willing
to accept a loss in the signal-to-noise ratio, then the speed of this algorithm could
be improved.

Only the data which were considered “good” were analyzed. This was done by
reading in a table which labeled which chunks of data were considered “good,”
and skipping over those data not included in the table. The program which

created this table is in Appendix B, and what criteria it used is discussed in



79

Section 5.2.3.

During this data run I wished to collect more information than just whether
or not the data was over a certain threshold. Whenever the data was over a low
threshold, the computer code output both the time of the event and all channels
of the FFT which were over the threshold, rather than just the channel which
“fit” the data the best (had the highest peak). In addition a histogram of each
channel was created and at the end of each tape this too was output. The time
it took for this filter to analyze the data was increased because of the time it
took to create and output this additional information. If the filter and detector
were both fully developed and tested, then the code would not need to output
all these extraneous data, and the filter’s efficiency would be improved. This
code has been altered so that only those points greater than the final threshold
used in this search were output, and the time it took to analyze one tape, (tape
# 47) improved from 202 minutes to 90 minutes, using the Masscomp computer
in both instances. This tape contained seven minutes of data; four minutes were
analyzed, the other three minutes had been vetoed.

Because the binary star filter output so much information, the final results
were obtained by reducing the output of this program. This was done in two
steps, the first (using a program called readlog.f, see Appendix B) searched for
the largest peak within the calibrated channels in a time equal to twice the filter
length (some of the channels of the FFT were not well calibrated, because the
signal corresponding to that channel would not cleanly fit within the bandwidth
of the detector during the integration time; the calibration is discussed more in
Section 5.3). The reason for a “dead-time” around each event is that if a signal
at t = O sets off the filter, then it will also trigger the filter at t = —ét and at
t = +6t (where 6t is the length of the filter). Though the output peak will not be
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as high at ¢t = +6t, it should not be counted as a separate event.” The program
readlog.f output the time of each event, the channel of the FFT that the peak
occurred in, and the size of the peak in “filter” units. Filter units are simply the
numbers output by the binary star filter. The conversion of these to strain units
depends on the channel of the FFT (which is equivalent to the value of ), this
is discussed in Section 5.3.

A second program then read through these events and output those which
had an event size above a certain threshold, given in filter units. The reason that
the threshold was set in filter units, rather than in strain, was that for most of the
channels the variance of the noise was approximately the same in terms of filter
units, but wildly different in terms of strain. Those channels which corresponded
to waveforms which have a frequency less then f,.;, = 305Hz during part of the
filtering time tended to have a lower variance because the noise below fni, was
suppressed by the prefilter. This program is also included in Appendix B, and is
called thrshevent.f.

5.3 Calibration

Calibration of this search was done in two steps. First the conversion from strain
into “tape” units had to be measured, then, using this, the output of the binary
star filter had to be converted to an equivalent strain.

We frequently collected calibration signals on tape, before or after most co-
incidence runs, we would collect some data with a calibration signal on. This

was done by putting a known displacement on one mirror in the detector, and

*For simplicity, the histograms do not have a “dead-time,” so events in the histogram are

multiply counted; one spike in the data could be counted as many as 22 times.
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collecting data in the usual fashion. We recorded both white displacement noise
and sine waves. The white noise gives the shape of the detector’s response, the
sine wave is a cleaner way to measure the absolute amplitude. The transfer
function of the detector was also measured using a Hewlett Packard signal ana-
lyzer. Fourier transforms of both the data containing white noise and the data
containing a 10fm.ms 1.53kHz sine wave were taken using the computer. Using
the same routine, the FFT of a computer-generated 1.53kHz sine wave was also
taken. When the computer-generated sine wave had an rms amplitude of 115
“tape” units, the output peaks of the two FFTs agreed, implying that at 1.53kHz
1fm=2.5 x 10~strain = 11.5%ape” units. The shape of the response was gotten
from the transfer function stored on the Hewlett Packard signal analyzer, (file
name XFER-142). The amplitude was measured every 100Hz and a spline fit
[38] was used to determine the detector response. This agreed within error with
the white noise recorded on tape. The spline fit is shown in Figure 5.9.

To calibrate the binary star filter a long file was created with a chirp waveform

in the middle,
S(t) = 107" (strain) x (1 — t/7) ™4 x d(f(t)) x cos (27 fo(1 — t/7)*%) (5.12)

where d(f) was the detector’s response at the frequency f, (d(f) converted strain
to tape units), and 7 = 1sec. This signal was then put through both the whiten-
ing prefilter and the binary star filter. The maximum peak output and the
channel of the FFT that it occurred in were recorded. This was done for many
values of 7, varying from 2.45 x 10 °sec®/® (corresponding to two .15M,, stars)
to 1.1 X 107 ®sec®/® (corresponding to two 6.Mj stars). See Table 5.2. Higher
and lower values of n led to signals which did not cleanly fall in the detector’s

frequency range over the integration time chosen. Finally a curve was fit to the
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n M; = M, || f(r —t) = .11sec | Output peak height | Channel
(in sec¥ ) | (in Mp) (in Hertz) (in “filter” units) | of FFT
2.45 x 10~° 15 1230 6750 195
3.32 x 107° .18 1100 7600 174
3.96 x 10~° 2 1030 7150 163
7.79 x 10~° 3 800 4250 127
1.26 x 1072 4 668 3900 106
1.82 K 10-* 5 582 2100 92
247 x 10°% .6 519 1600 83
3.20 x 10°8 b § . 471 2000 75
3.99 x 10°8 .8 433 1500 69
4.86 x 1078 9 403 1000 64
5.79 x 10~8 1.0 377 870 60
9.55 x 1078 1.35 312 820 50
101 5 107" 1.40 306 845 49
1.08 x 1077 1.45 298 750 48
1.84 x 1077 2.0 244 280 39
3.62 x 1077 3.0 190 130 31
5.84 x 1077 4.0 158 75 26
8.47 x 1077 5.0 138 38 23
1.15 x 10~ 6.0 123 50 21
1.48 x 10~ 7.0 112 23 21
1.85 x 10~ 8.0 103 16 20
2.69 x 10~¢ 10. 89 3.8 21
303 x 10~* 50. 33 .003 20

Table 5.2: Calibration of the filter.
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points listed in Table 5.2. This curve is shown in Figure 5.10. The fit is purely
empirical. The change in slope at channel 49 is due to the fact that at ¢t = to,
when the filter begins, the channels below 49 correspond to signals whose fre-
quencies are not yet above f,.;, = 305Hz, so that any signal corresponding to
these channels will be attenuated by the prefilter until the frequency of the signal
sweeps above fiin.

These files were also used to discover what was an acceptable error in 7.
If the error in 7 is too large then one risks missing a signal. The dependence
of the output peak height versus the error in 7, A7, is shown in Table 5.3. I
decided that an attenuation in the filter output of greater then 30% in power
was unacceptable. For this reason the step size Ar = .0005sec = 5 samples was
chosen. With A7 = .5msec the error in 7 can never be greater then .25msec,
which implies that no more than 30% of the signal power will ever be “lost.”

In converting the signal output from this filter into units of strain, it was
assumed that the the error in 7 was maximum. The conversion of “filter” units
to strain is shown in Figure 5.10.

In the next chapter the results of this data analysis, and the conclusions that

one can draw from these results are discussed.
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7 AT Loss in filter output
(in sec?) (in seconds) | Power (o k%) | Amplitude ( k)
10~* +.005 83% 60%
(e.g. My = M, = 1.4M,) +.001 45% 26%
+.0005 43% 25%
+.0004 46% 27%
+.0003 40% 22%
+.0002 28% 15%
+.0001 4% 2%
0 0% 0%
-.0001 0% 0%
-.0002 6% 3%
-.0003 23% 12%
-.0004 37% 21%
-.0005 48% 28%
-.001 55% 33%
4x107° +.0005 55% 33%
(e.g. My = M; = .2M,) +.0004 45% 26%
+.0003 30% 16%
+.0002 25% 13%
+.0001 19% 10%
0 0% 0%
-.0001 2% 1%
-.0002 13% 7%
-.0003 49% 29%
-.0004 59% 36%
-.0005 54% 32%

Table 5.3: Effect of an error in 7.
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Chapter 6

Results and Conclusions

6.1 Results

6.1.1 Events Found by the Filter

All the events over a set threshold were closely examined. The threshold was
chosen such that the total number of events was not prohibitively large. The
threshold chosen is shown in Figures 5.10 and 6.3. A list of events, the times
they occurred, the channel of the filter they appeared in, and the size of the peak
in both filter units and ¢ (the standard deviation of the channel in which the
event appeared) is given in Table 6.1.* After locating these events the raw data

were examined more closely.

*The conversion of filter units to strain is given in Table 5.2, and Figure 5.10. The output
channel is proportional to fj, the frequency of the signal’s waveform one second from coalescence,

it is a function of the mass parameter of the binary stars, n.
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Tape || Universal Time Peak Height Channel | Comments

(dd:hh:mm:ss) |l filter units (o A?) | o (x A) | of FFT

44 68:01:00:25.2 67.7 7.30 162 bump
68:01:00:27.2 63:1 1.10 151 bump
68:01:00:36.2 64.6 7.30 195 bump
68:01:00:49.1 61.8 7.00 164
68:01:00:54.5 62.3 T.10 176 bump
68:01:01:45.4 63.1 T7.10 181 bump
68:01:01:51.0 95.2 8.90 47
68:01:01:51.4 65.1 T7.20 54 spikes
68:01:02:11.9 72.0 770 55 spikes
68:01:02:43.4 68.5 1.3a 116

45 68:01:10:14.9 116.1 10.00 46
68:01:11:02.6 66.0 1.2¢0 108 bump

46 68:01:21:43.9 76.3 7.80 74
68:01:22:59.1 609.0 22.30 195 spikes

47 || 68:01:30:15.6 65.1 1.20 154
68:01:32:59.7 84.4 8.30 178 spikes & bump
68:01:35:24.7 73.6 8.0¢ 45

48 68:01:40:50.4 75.9 8.10 45
68:01:40:52.1 63.1 1.20 191 bump

49 68:01:51:17.9 89.8 8.8¢0 45
68:01:53:29.5 62.8 7.20 56 spikes
68:01:53:32.8 131.7 10.40 57 spikes
68:01:53:33.9 2104 13.7¢ 44 spikes & bump
68:01:53:46.8 63.8 740 46
68:01:54:08.2 81.8 8.40 45
68:01:56:32.8 61.5 8.30 33 spikes

50 68:02:03:54.0 85.4 8.60 45
68:02:04:40.6 72.9 7.9¢0 46 bump
68:02:06:22.6 71.6 8.1 42 212Hz oscillation
68:02:08:32.4 65.2 T.40 46
68:02:08:46.2 62.8 Jdo 128 spikes

Table 6.1: Events found by the filter.
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6.1.2 A Closer Look at the Events

Once the largest events had been located by the binary star filter, the raw gravity
wave signal as well as the auxiliary signals were extracted from the tapes. These
were examined to see if a correlation between one of the other signals and the
gravity wave signal could be found. The first thing that became apparent was
that although one might not be able to rule out the possibility that some of the
events were caused by gravitational radiation, they certainly were not coalescing
binary stars. Nine of the 31 events were not due to a “chirp,” as expected from
a coalescing binary, but to a few cycles of a very large sine wave. Many of these
could have been caused by part of the second cavity servoloop saturating. These
events are discussed more in Section 6.1.3.

Many of the events occurred when there were also “bumps” in the DC light
level,! (see Figure 6.1). These bumps could be due to a fluctuation in the input
light level, a fluctuation in the alignment, or because the cavity was falling off
the fringe, (L # nA/2). During these bumps the slope of the DC light level was
not great enough for the veto program to catch them. To see if these bumps
were truly correlated with the noise another program was written, (bumps.f, also
in Appendix B). This program did a linear fit of the DC light level, and output
the slope when it was greater than a fairly low threshold. The times at which
the light level was changing rapidly were then compared with the output of the
binary star filter. When the slope of the DC light was greater than 24mW /sec,
(.08 tape units/sample) there was a definite correlation; there were 112 bumps

in the data analyzed with a slope greater than 24mW /sec, 33 of these bumps

tThis DC light level is the power of the light back reflected from the second cavity. This is

discussed in Chapter 3.
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were coincident with signals in the gravity wave data greater than 50 “filter”
units (approximately 6.50). Cutting out all the data associated with these DC
light fluctuations removed approximately 20 seconds of the 36 minutes of data

analyzed. This eliminated ten of the largest “events.”

6.1.3 The “Spikes” in the Gravity Wave Signal

Those events which resembled short spikes, rather than a coalescing binary, were
examined more closely. The raw data for these events are given in Appendix C.
Both the chart recorder and tape signal were inspected for correlations with other
signals. The results of this examination are presented in Table 6.2. By examining
the chart recorder signals, one discovers that many of these events occurred when
the second cavity servo was near the end of its dynamic range. Because of the
poor timing resolution of the chart recorder, it is impossible to state whether the
servo actually reached its limit at the time of these events or not. All the events
which occurred when the servo was near the end of its range have the same form,
a few cycles of a damped sine wave; this is further evidence that they were caused
by the same effect. Four of these occurred when there were also bumps in the
DC light level, (though two of these were under the threshold used to eliminate
“bad” data). These fluctuations in the light level could have been caused by the
light falling off the fringe, which one would expect if the servo were saturated.
Only two of the spikes did not have this characteristic shape. One of these had
the same characteristic frequency, but only lasted for one cycle. This resembles
the detector’s response to a step impulse. The second is more mysterious. This
was the largest event found in the data; it was a few cycles of a 5kHz sine

wave with fluctuating amplitude. What makes this event so unusual is that
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Universal Time Auxiliary Signals Type of
(dd:hh:mm:ss) u Chart recorder Tape Spike
68:01:01:51.4 2"d cavity servo near limit S 1
68:01:02:11.9 || 2" cavity servo near limit | bump(16mW /sec) 1
68:01:22:59.1 —_— S 3
68:01:32:59.7 —— bump(30mW /sec) L
68:01:53:29.5 | 2" cavity servo near limit —_— 1
68:01:53:32.8 || 2" cavity servo near limit | bump(10mW /sec) iy
68:01:53:33.9 || 2”4 cavity servo near limit | bump(30mW /sec) 1
68:01:56:32.8 — —_— 2
68:02:08:46.2 — —_— 1

Type 1: Three or more cycles of a ~1kHz damped sine wave.

Type 1': A type 1 spike, with another located within .2sec, if a bump
occurred in the DC light level it was between the two spikes.

Type 2: One cycle of a ~1kHz sine wave.

Type 3: Over 10 cycles of a 5kHz sine wave.

Table 6.2: Spikes in the output.
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the output of the detector was filtered with a 4kHz 4-pole low pass filter before
being recorded on tape. Either this event was seven times larger before the filter,
(implying the spikes were 100 times as large as the background noise level), or it

was due to some electronic pick-up between the filter and the analog to digital

converter.

6.1.4 Distribution of the Output

As stated in Section 5.2.5, not only were the large events output by the ﬁiter,
but a histogram of the events was output for each channel of the FFT. The
histograms from each tape have been added together. A few samples of these
histograms are shown in Figure 6.2. From these histograms the variance of each
channel can be calculated. The variance of each channel is shown in Figure 5.10,
this is in filter units. Figure 6.3 gives o(Channel) in units of strain.

If the noise were purely gaussian, then the number of events in each bin
would fall off exponentially, following the lines shown in Figure 6.2. As in any
real detector, the noise in the Caltech prototype has a non-gaussian tail. This
is due to sporadic noise sources, such as the bumps in the light level mentioned
earlier. As mentioned in Section 5.2.5, one event in the data will appear numerous
times in the histograms; all the events above 60 filter units are due to the 31
events listed in Table 61 Some events have not been included in the histograms
because they exceeded the upper limit of the binning routine; all those omitted
were due to one “spike” in the data at universal time=68:01:22:59.1. These
histograms include data taken when there were fluctuations in the DC light level,
this accounts for some, but not all, of the non-gaussian noise. Unfortunately not

all the non-gaussian noise in the detector can be correlated with the auxiliary
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signals recorded.

6.2 Conclusions

This section will explore what the results of this data analysis imply, both astro-
physically and experimentally.

Table 6.3 shows a list of times at which the detector registered a signal, either
due to gravitational waves or due to some spurious non-gaussian noise in the
detector. These events cannot be objectively ruled out as possible gravity waves,
since they cannot be correlated with a source of noise in the interferometer, such
as the noise in the light level. Nor can one state that they definitely were due to
gravitational radiation. Two detectors are required to differentiate between noise
in one detector and gravity waves, this is because no matter how well designed
a detector is, there will always be a non-gaussian tail to its noise distribution.
This can be due to things which can be independently detected, such as acoustic
noise in the lab, or effects which are difficult to see anywhere but in the detector

output, such as a sudden release of internal stress in the test masses themselves.

Although any of the events in Table 6.3 might be due to gravitational radi-
ation, a closer look at some of them shows that they are definitely not due to
coalescing compact binaries. As mentioned in Section 6.1.2, some of the events
were caused by spikes in the detector output. If the output of the detector con-
tains large enough spikes, they will overlap with almost any filter, and appear
significantly large at the output of the filter. Seven of the twenty-one events in

Table 6.3 turned out to be due to such spikes, and not to anything in the de-
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Tape || Universal Time " Peak Height II Channel | Comments

(dd:hh:mm:ss) “ filter units h " of FFT

44 68:01:00:49.1 61.8 1x 1077 164
68:01:01:51.0 95.2 4 x 10717 47
68:01:01:51.4 65.1 3 %10~V 54 spikes
68:01:02:11.9 72.0 3 % 10~ 55 spikes
68:01:02:43.4 68.5 2 x 1017 116

45 68:01:10:14.9 116.1 5 x 1077 46

46 68:01:21:43.9 76.3 3% 1074 74
68:01:22:59.1 609.0 4 x 10 195 spikes

47 68:01:30:15.6 65.1 1x 107" 154
68:01:35:24.7 73.6 5 x 1017 45

48 68:01:40:50.4 75.9 5 x 10~ 45

49 68:01:51:17.9 89.8 5x 1074 45
68:01:53:29.5 62.8 3% 107" 56 spikes
68:01:53:32.8 131.7 4 x 10~V 57 spikes
68:01:53:46.8 63.8 4 x 10717 46
68:01:54:08.2 81.8 5x 10717 45
68:01:56:32.8 61.5 8 x 10~17 33 spikes

50 68:02:03:54.0 85.4 5x 10717 45
68:02:06:22.6 71.6 5x 10717 42 212Hz oscillation
68:02:08:32.4 65.2 4 x 10°17 46
68:02:08:46.2 62.8 1x107Y7 || 128 spikes

Table 6.3: Events which could not be vetoed.
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tector output resembling a coalescing binary.! For this reason, these events will
be neglected in any discussion of the implications one can draw from this search

about compact binaries.

6.2.1 Astrophysical Implications
Sensitivity Limits

I feel that the best way to present the limits this search sets is graphically. Figure
6.3 shows the threshold of this search, the events found, and the upper limit one
can set, all in terms of strain. It also shows o, which sets a basic limit on the
limits one can set, even if there are two detectors, or one detector whose noise is
purely gaussian. If the Caltech detector’s noise were strictly gaussian, then you
would expect only about one event greater than 25 filter units. This implies that
the limit one could set would be roughly half that shown in Figure 6.3.

Figure 6.4 shows the same results presented in Figure 6.3 but the strain has
been converted to an equivalent range, assuming that a quarter of the signal has
been lost due to the random alignment of the source and detector.

The most optimistic theoretical prediction of event rates, in which one as-
sumes all the missing mass in the galaxy is in the form of black holes, gives an
expected event rate of about three events per year at the level of this study.[9,20]
A more conservative estimate of the rate of neutron star coalescences has been
made by Clark, van den Heuvel, and Sutantyo [19]; they estimate that in order
to see three coalescences per year one must have a range of 100Mpc. To achieve
this range would require the LIGO, the Caltech prototype will not reach this
sensitivity (see Figure 2.2).

#The raw data for these events and all the others listed in Table 6.3 are plotted in Appendix C.
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Comparison with other Searches

This search represents the first attempt to use a broad band detector to look for
coalescing binary stars. Bar detectors are still more sensitive to burst sources
than interferometric detectors. They are narrow band and therefore do not carry
as much information as a comparably sensitive interferometric detector would.
The best limit set to date on coalescing binaries has been set by a coincidence run
between cryogenic bar detectors at Stanford, LSU, and Rome.[39] Stanford and
Rome ran in coincidence for approximately 35 days. Their search was approx-
imately 100 times more sensitive than the results I’ve presented. (If they were
to set a threshold which yielded one event every 36 minutes, then that threshold
would correspond to a binary a'.pproximately 100 times further away than the
largest event found in the 36 minutes of data from this run.[40]) It is possible
that they would be completely insensitive to very light and very heavy binaries
because the signal might never enter their frequency band. Light neutron stars
would tidally disrupt before reaching the bar’s resonant frequency.[18] Heavier
black holes may never reach that frequency because the approximations that
went into calculating the waveform may no longer be valid in the last millisecond

of a black hole coalescence.[15]

6.2.2 Relevance to the Detector Development

Although the likelihood of detecting anything was small, it is important to begin
developing techniques for use in the LIGO. This filter improved the detector’s
sensitivity by a factor of 20 for searches for 1.4My neutron stars. Increasing
the sensitivity by a factor of 20 increases the expected event rate by a factor of

8000. Since gravity waves are rare, and the output of any detector will probably
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be dominated by the detector’s noise, rather than gravity waves, it is important
that filters be developed to enhance the detector’s performance.

This search represents the first time that the Caltech detector was used to
search for burst sources.’ It is important to develop an understanding of what
can cause spurious noise in the detector. One result of this search is that we
now know that we must strive to cut down on the sensitivity of the detector to
acoustic noise. Many of the events in the detector output were correlated with
the light level of the second cavity. Some of the excessive noise was probably due
to non-gaussian modes in that cavity. Since these data were obtained the mirrors
in the cavities have been replaced, so that these modes are no longer present.

The light level of the second cavity could be correlated with spurious events
via two other effects. If the cavity was falling off the fringe, then not only would
the error signal be noisier then usual, but the fact that it is falling off the fringe
indicates that part of the second cavity locking servo is probably saturated. Most
of the spikes in the data were probably due to this effect. If the input light was
fluctuating, then this can come through directly, or it could indicate that the
laser was hopping a mode, which would put excessive frequency noise on the
light. (Usually when the laser hops a mode the servoloop loses lock, and both
cavities stop resonating.) It is difficult to be certain which of these effects caused
any particular fluctuation in the DC light level without more information. If
there were more information so that these effects could be distinguished, then it
would be possible to set separate thresholds for each, and thereby remove more

of the contaminated data without needlessly throwing away data collected when

§In 1983, Mark Hereld used this detector to search for periodic radiation from the millisecond
pulsar.[6] The data discussed in this thesis have also been analyzed for periodic radiation. This

sets the best limit to date on periodic sources of gravitational radiation.[13]
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the detector’s noise was low.

The “live” timeY of this experiment was limited by the dynamic range of the
second cavity servo. Since then this has been improved by replacing the PZT
transducer on the far test mass with a coil/magnet arrangement. This should
also cut down on the noise caused by this servo reaching the end of its dynamic
range.

The sensitivity of this detector to coalescing binaries could be improved by
improving its low frequency noise. The sensitivity of the detector to coalescing

binary stars is proportional to fi’:-?,.

6.3 Suggestions for the Future

In this section I make some suggestions for the future. Some are short term
tasks, and others deal with general policy on the development of this detector.
First of all, more time should be spent tracking down the cause of the non-
gaussian noise in the detector. This could be done in much the same manner
we search for what is limiting the spectral noise density. To discover what is
limiting the gaussian noise of the detector we look for correlations between the
detector’s noise spectrum and possible sources of noise. This is done in many
ways. The simplest is to impose excessive noise at a fixed frequency f on whatever
is suspected of causing noise in the interferometer, such as the angular motion
of a test mass, and see if it affects the detector output by looking at the noise

spectrum at f and harmonics of f. By studying histograms of the detector

YThe “live” time is the time that the output of the detector was not being contaminated by
spurious events, in this experiment this was 36 minutes out of 50 minutes, neglecting the time it

took to change tapes.
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output in addition to the noise spectrum, correlations between the non-gaussian
noise and other events in the lab could be searched for.l (Our Hewlett Packard
signal analyzer is capable of creating histograms as well as noise spectrums, so
that this suggestion should be trivial to implement.)

I would like to suggest that we strive to reduce one known cause of non-
gaussian noise, the detector’s acoustic sensitivity. Although acoustic noise can
be sensed directly, and events due to this can then be removed, this results in
the loss of a great deal of data. Removal of the optical fiber, which is already
planned, should help alleviate this problem.

One thing that became clear in trying to understand what was causing the
non-gaussian events was that we need more information about what else is hap-

pening in the lab. Additional data should be collected, including:

1. The low frequency feedback to the second cavity, to be certain that the

servoloop is not near saturation.
2. The intensity of the input light.

3. The DC light level of the first cavity.
4. Additional seismometers located at other positions in the lab.

5. Information about the orientation control servos.

The only signals which need to be sampled at the full detector bandwidth are
the detector output itself, and the microphone.
The low frequency feedback signal to the second cavity gives a direct mea-

sure of when that servo is near saturation and hence is a much more reliable

IThe histogram should be taken of the detector output followed by a narrow band filter, so

that the histogram will not be dominated by resonances in the detector.



104

sensor then the light level of the second cavity. When either cavity’s servo is
near saturation, the detector’s output becomes noisy; it is therefore advisable to
minimize the time that this occurs. This could be done by opening the servoloop
whenever it gets close to its saturation level. The cavity will stop resonating and
the servo will have to reacquire lock; it usually acquires lock in the middle of the
servoloop’s dynamic range. Although this will cut down on the amount of time
the two cavities are resonating, it should maximize the amount of “good” data
collected.

By more frequently studying histograms of the detector output, we should
develop intuition about what other signals are important, and how to increase

the fraction of the collected data which is not contaminated by spurious effects.
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Appendix A

Calculation of Noise due to Off-Axis
Modes

This appendix presents the contribution to the detector’s noise level caused by
coupling of light into off-axis modes in more detail than that presented in Section
4.1.2. Excitation of other modes causes “phase noise,” which is indistinguishable
from a change in length of the cavity. Other modes are excited when the input
beam does not spatially match the TEMg, mode of the cavity. The TEMjgg

mode can be described by its field distribution at the waist of the cavity:

Yoo = AincUO(z)UO(y) (Al)

Uo(y) = \/ Wiygc_(fa) g (4.2)

The TEM, mode has the form:

where:

!/)01 = AincUO(z)Ul(y) (A3)

where:

0w = () vats). (4.4
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U;(v) are Hermite-Gaussian polynomials; these polynomials form an orthonormal
set.

First consider a cavity in which only the TEMg, mode has been excited.
Suppose the incident light has amplitude A;,., and is perfectly aligned with the
cavity. Define the leakage field to be the light which has been stored in the cavity,

and leaks out the input mirror, [25,41]

Aleuk = Areﬂected = rlAim: (As)
ty |2rae®

Aleak = Lzs' Al’nc (A6)
1 — ryrzet

where t; and r; are the amplitude transmissivity and reflectivity of the cavity
mirrors.
The phase of the leakage field is measured relative to the incident light using

a phase modulation technique.|[22] The signal:

S o real(Ain:) X imag(Ajeak) (A.7)

~ 1ol ral t [ ) sin(o) (4.8)

1 — 2ryrycos(8) + (rira)?
On resonance § = 4wL/\ = 2wn, which implies that S = 0. If the cavity changes

length by a small amount AL then

L
6=2mn+ 20, (4.9)

To first order in AL :

: 2 le tl |2 (47I'AL) A 10
o e IAincl (1 - 2?17'2 + ("17'2)2 A ’ ( ' )

Now consider the case where A;,. does not totally agree with the TEMgg
mode of the cavity but is “contaminated” with some light which spatially matches

the TEM;,; mode.

Yine = AincooUo(Z)Uo () + Ainco, Uo(z) Ui (y) (A.11)
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where Ainc,, = €Ainceos € € 1. Let f, be the resonant frequency of the TEMgo

mode, and f; be the resonant frequency of the TEMy; mode.

fi=fo+ 2:L cos'\/1—- L/R (A.12)

fi=fo+Af. (A.13)

For the light in the TEMy, mode 8, = 4wL/\; = 27n, because this is the mode
which is held on resonance. For the light in the TEM,; mode §; = 4nL/A,,

{ An=1¢/Ffn)-

Yieak = AleakooUo(T)Uo(y) + Atearo, Uo(z) U (y) (A.14)
- |ty [*#
Aleakoo — (1%1’_: Aim:oo (A‘15)
I tl |2 f'zewl
eakoy —_— 73 incoo * . 6
Al ko (1 —rlrzc"‘l €A 00 (A 1 )

The photodiode measures the intensity integrated over the entire spot.

I(:l:, y) — I'lbreﬂcctcdlz = |Areﬂectcdoo Uo(x)Uo(y) + Arcﬂc:tcdeO(z) Ul (y)lz' (A'17)

Since Up(y) and U,(y) are orthonormal, when one integrates over the entire spot

the cross terms drop out and one is left with a signal,

P |"‘1re)“lectedoo|2 + lAreﬂectedculz- (A.IS)

So the light in each mode can be treated separately. Demodulating this signal
gives one the weighted sum of the phase error for each mode. The phase error for
the TEMy, mode is essentially zero, since this is the mode held on resonance.

The error signal due to the TEM,; mode is:

S o real(Aine,,) X imag(Aicako,) (A.19)
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rz| ty |2
1 — 2ryracos(6;) + (rirz)?

= |€Aineo |’ ( ) sin(6,). (A.20)

By combining Equations A.10 and A.20 one sees that the misalignment mimics

apparent displacement:

. 2
AL = é% sin(6;) ( 1= 3riry + (ryrs) ) (A.21)

1 — 2ryrycos(6;) + (ryrz)?
where 6, = 2cos_‘(m).

To calculate how large AL is, one must first calculate €. This calculation has
been done before, [32,35]; it is presented here for completeness. Suppose that
the input beam is misaligned along one dimension. If it is at a small angle, «,
to the axis of the TEMjy, mode and is displaced by a small amount, a, at the

waist, then at the cavity’s waist it can be described by:
¥ = AineUo(z)Up(y — a)e =, (A.22)

To first order in a¢ and a:

b= Ai(a) [Vo0) + (& + 22) 0,0 (423

This polynomial describes the spatial field distribution of the TEM,; mode.
Clearly:

€= (i + ’”"‘”") . (A.24)
Yo A
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Appendix B

The Computer Codes

B.1 The Data Acquisition Software

This program sampled five channels of the 12 bit analog to digital converter of
a Masscomp 500 computer. Each channel was sampled at 10kHz. The data was
written to tape in blocks of 10240 points, each point a 2 byte integer. The data
was written sequentially; every fifth point would be from a particular channel of

the ADC. This program was written by A. Bostick, and is entitled gravwave.c.
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#include <mr.h}
#include <stdio.h>
Rinclude <fcntl.h>
#def ne MNULL @
#define S~MPLES 108248
Hdef i ne NUMBUFS 28
Hdefine SHORTS 3

mains)

€
int exwrit, adpn, clkpn, ¥d. fchan, nchans, incr, gain, i;j;
int bufindex;
short butfer [ SAMPLES+NUMBUFS] ;

adpn = clkpn = -1

exwrit = 8;

printf("ODpening the A-D converter n");

mropent&adpn, " /dev. /dacp8/adfd", exwrit);

printf("Opening the tape drive\n");j;

fd = open("/dev/r1498mtoA", O_WRONLY);

printf{"Establishing the multiple buffer for the transfern");
mrbufall(adpn, buffer, NUMBUFS, (SAMPLES#*#2));

fchan = @

nchans = 53

gain = 83

incer = 13

printf("Establicshing A/D channel sampling mode\n");
mradinc(adon, fchan, nchans, i1ncr, gain’;
printf{"Starting the transfter\n"’;
mrxingladpn, SAMPLES, NULL, MNULL);

for (i=03 1{209%; i++)

1

mrbufwtCadpn, 2806808 ;

mrbufget(adpn, SHORTS, &bufindex);
write(fd, &buffer(bufindex]. (SAMPLES#*2));
mrbufrel (adpn, &bufferl(bufindex]’;

3
p

mrbufwtdadpn, 290888);

mrbufgetiadpn, SHORTS, &bufindex):

wri te(fd, &buffer(bufindex]l, SAMPLES):
printf("Closing the devices n");
mrclosalld);

close(fd)
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B.2 The Tape Scanning Program

The first step in analyzing a tape is to choose the proper limits for the veto
program. This is done with the aid of the program limits.f, which reads in the
tape and outputs DC light signal from the second cavity, and the low frequency
feedback signal from the first cavity. The tape is read using C subroutines in the
file tapesubs.c.

By plotting a histogram of the DC light level, one can find the appropriate cut
off between when the cavity was resonating and when it was not. On a few tapes,
which were not analyzed, the cut off is not clear. This could be because the cavity
would occasionally resonate in the wrong mode, or because the input light level
was fluctuating too much. Wheﬁ the cavity is resonating in the TEMgyo mode,
the contrast is usually fairly good, (the DC light level is low); when resonating
in the wrong mode, the contrast is poor and the noise in the detector is high.
Since the input light level tends to fluctuate, it is difficult to set a limit which
clearly differentiates between the TEMy, and TEM,; modes.

The low frequency feedback signal from the first cavity was recorded so that
one could detect when that servo was near saturation. By finding the highest
and lowest points in this signal, one can determine where saturation will take
place. It is not necessary to find the highest and lowest points on each tape—
one merely needs to find the overall high and low points. One can then set a
threshold so that all data collected within the final 5% of this servo’s dynamic
range is rejected.

This program takes approximately eleven minutes to analyze one seven minute

tape.
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. 1imi et . =
this program creates files of samples +from
channels 1 and 4 thv and arm 2 dc light?

to compile trype "+77 limite.f tapesubs.c"
parameter (IBLKSZ=18248)>

IBELKZZ=total rnumber of data points in 1 block,

there are IBLKSZYS gw points in a block

faszuming there are S channels of data recorded)

INC-1=points per channel to be <kipped,

INC=1 implies you zample every point in & channel

MEBLKS=number of blocks an tape minus one

integer*2 buffer(B:IBLKSZ-1)
integer i,¥d,CHA,CHB
common./buf-‘buffer
common/1b1k/LBLK
common/sfds filedescript
open tape
call copen%$
cpenill file=
openil2,file=
IMC=128
NBLKS=287%
CHAa=1
CHB=4
INCZ=5=%INC ‘
CHAa %CHB=the two channels you want campled
INCZ2=number of channels times INC
LBLK=-1
begin reading blocks of data from tzpe
LBLK=number of block last readi{starting with zerao’
o call cblock$
do 18 Jj=CHA,IBLKSZ,INCZ

lesmple.dat")

"CH
"CH4smple.dat"?

14 write(l],.%) buffer (i)
do 280 j=CHB,IBLKSZ,IHC2
2 writedlz,*®) bufferij?

i f{LBLK.Tt.NBLKS) goto S
call cclose$

closedll?

close(12)

end
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S tapesubs.c */
s% Theze routines ocpen the tape driwve, L
#% read the data, and increace LELK by one, ®
s % and close the tape drive. */

#include <stdio.h>
#include <fcntl.h>
#deftine IBLKSZ 18248
#define IFILT 2848
copent)
{
extern int fd_;
fd_ = openi"s/devsrl1s88mta", O_RDOMLY?

return;

2

cblocke)

{
extern int +d_:
extern int 1blk_;
extern short buf_[(IBLKSZ]1;
read(fd_, buf_, 2*IBLKSZ);
TBTK_=1bl1K_++3
return{liblk_>;

¥

cclosed)

L

extern int fd_;
closed(fd_2;
return;

—
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B.3 The Prefilter and Veto Routines

In order to minimize the number of times each tape must be read, one program,
pre-table.f, both creates the table of where the data are “good” and whitens the
data. A sample table for one of the tapes follows this program. This program
takes fifty minutes to analyze one seven minute tape.

The whitening filter is discussed in Section 5.2.4. The program pre-table.f
uses the Masscomp array processor to perform a 16384 point FFT. This is then
multiplied by a real filter, so that no phase distortion is introduced. The array
processor then does an inverse FFT. A Hamming window is used; this is discussed
in Section 5.2.4. In order to avoid any unnecessary digitization error, and to
improve the speed of this program, the data are not multiplied by the usual
scaling factor (1/16384). The data are converted to 2 byte integers and written to
disc. Because the filter removes the excess noise at low frequencies, the numbers
are still small enough to be written as 2 byte integers, even though they have
essentially been multiplied by 16384.

The veto table is created by the subroutine table. It is fully explained in the

program itself and in Section 5.2.3. This routine uses 9 different parameters:
LIMIT4: The threshold on the DC light level, (channel 4 on the tape).
mklimit: The threshold on the microphone.

sllimit,msllimit: The positive and negative thresholds on the change of the DC

light level.

LIMIT1low , LIMIT1up: The thresholds on the feedback signal to the first

cavity, (channel 1 on the tape).
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DLY ,NDLY: The delay (both positive and negative) between when all the sig-
nals are within the appropriate thresholds and when the data is considered

“good.” The microphone veto does not use this delay.

minlock: The minimum time the signal must be considered “good” in order to

be included in the table.

Most of these parameters are read from the standard input. This routine also
checks that the gravity wave signal was not saturating the ADC; it requires that
this signal be between +2000, (the full range of the ADC is +2048).
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pre_table.f

Fe

o
rJ

?. 1738

This orogram prefilters the data (a high pass and whitening
filter) and creates a table to locate the "good" data,

this program calls subroutines found in the file tapesubs.c
to compile: #77 pre_table.f tapesubs.c -lap —-o pre_table

Qutput 1= written to
‘uerscsher | ‘analvsis/T.tab, after running this program move T.tab
to TH.tab where #= the number of the tape."

LIMITY csets 1 imits on arm 2 light level (Ch 4 on tape):
LIMITI sets 1 imitz on arm 1 HY

LIMITY should be choszen on the basis of a histogram of channel 4 of the
tape, the data can be zampled usinQ the program limits.f

MINLOCKk=min imum number of <amples the interferometer has to be resonating
for data to be included n table, ‘MINLOCK=18088 corresponds to .l sec’
DLY=number of points to be skipped after vetos say that the data

13 "good" betcre it i1s really considered to be "good,"

“DL7=198 corresponds to .81 zec),

MDLY=number of points to be omitted from the end of a string of "qood" data.
TAPENO=number of the %tape being analrvzed.

mklimit=microphone threshold,

1zlomax=threshold on change in the DC light lewvel.
coetfs doesn’t zeem to use elements above 192 for IFFTSI=18384, or above 43
for IFFTSZ=S12 or 15824, dimension needed seems to be dim=3%(2%#(loglen,2-1)
Thiz program makes scme assumpticons about the format of the data and the =1
of the FFTe, where these assumptions are made are labelled with C:ASSUMP
followed by the azsumption being made, and how to change it.

).
e

tASSUMP this program assumes that the input 1 1n the torm of 2 bxte integers,
and that (NBLKS+1)-/4 is an integer.

Do not change IFFTSZ without also changing the size of coeffs

parameter( IAPFINC=1,[APCINC=2,IHFINC=4,IHCINC=8"
parameter(IFFTSZ=14384,1FFThal f=81?2,[FFT322=2173,laglen=13)
parameter (IBLKSZ=108248,IBLK52g=2048 . NBLK5=20%%)

complex sig(IFFTS2) ,coeffs(1?2),fourier{IFFT52)

complex siQ(IFFTSZ),coeffs(IFFT3Z) ,fouriertIFFT3I)

complex filter(IFFTSZ2)

real raw(IFFTSZ) ,window(IFFT3Z)

integer*2 buffer(@:IBLKSZ-1),b4(38) ,microlhBLKS)

integer#2 insig(IFFThalf),ovipadd(IFFThalf>

integer i, i, 11ock, Jjlock, LOCKFLAG, filedescriph ,DLY.NDLY
integer dev,mklimit

common/buf/buffer

common/ 1 blK/LBLK

common/ fd/filedescript

common/ tabl /LOCKFLAG. i lock,jlock LIMITIlow, LIMITLup

common/ tab2/LIMIT4 ,MINLOCK,DLY ,NDLY ,b4

common/ tab3/dev ,mkKlimit.micro

common/ARAYS, sig,filter,coeffs,fourier,raw,w ndow

prepare 1nput and output
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czll copens$
open(?,file="/usr/sheri1/analysi s/ Tnumpre.dat",
form="unformatted’ ,access="direct’ ,recl=IFFT32)
cpen(1@,file=" usr sheri/analysis/Thnum.tab">
openiil,file="/usr sheri/analrsis/fftavg.dat")
rewind(1@>
rewind<11>
Input Timits to determine where the data is “good"
print=,"enter LIMITllow,LIMITlup,LIMIT4,MINLOCK,DLY ,NDLY ,TAPENO:"
read®, LIMITlIlow, LIMITiup,LIMIT4 ,MINLOCK,DLY ,NDLY,TAPENO
[nitialize constants for table.
LOCKFLAG=9 when in lock, | when out =f lock
LOCKFLAG=1
writed18 ,#)LIMIT1 0w, LIMITlup ,LIMIT4 ,MINLOCK,DLY ,NDLY ,TAPENO
inirtialize constants for prefilter
dt=1..'1@6800.
df=1./(IFFTSZ»dt)
irec=1
irec=record number to be cutput next.
LOAD FILTER
first and last elements of filter must be real!
read "whitening" into filter<1),this was generated by averaging many FFTs,
and takKing the inverse,
set minimum fregquency for high pass,(in Hz)
fmin=305
call white{fmin,df)
print*,“returned from white"
Initialize AP and calculate table for FFT(coeffs)
cxll bigprep
print*,"returned from bigprep"
Calcuizte window
call Hamming
print*,"returned from Hamming"
begin main loop through data
read in sianal
loc=Key to location on the tape,
loc=8 at the beginning
loc=1 in the middle
loc=2 at the end
irec=record number of next data to be written to disc
LBLK= # of last block read in, blocks are numbered from zero to NBLKS.
loc=0
irec=l1
LBLk=-1
j 1 call loadraw(loc?
1¥{LBLK.eq.NBLKS) loc=2
window data
do 12 i=1,IFFTS2
sigCi)=raw(i)>*window(i)
2 continue
filter data
call prefiltb
output filtered data
1¥{1loc.eq.8) then
you’re at the beginning of the tape,
there is nothing to overlap and add to.

o
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do 38 i=1,IFFThalf

rsig=realisigii)

insigi)=nintirsig’
9 continue

Toc=1

you need to cutput the sum cf the first half of

€1q plus ovipaddfi)
do 31 1=1,IFFThal+

refgEreal s 9¥id)
insaglid=nintirsigi+ovipaddii)
31 continue

endi ¥

cutput insig
writev?,rec=1rec) insig
irec=irec+l

now ztore zecond half cof 21Q in cvlpadd so that 1t can be

2utput the next time around, unlezz rou're

at the 2nd of the tape then ocutput the zecond half of sid.

if{loc.eq.2) then

do 32 1=IFFThaif+1 ,IFFT32
rsig=real(sigli’?
ins1¢ 1 =IFFThalfr=nintirsq

w0

32 continue
writel?, rec=rec) inzi1q
el ze
do 33 i=1,IFFThal¥
reia=realisigli+IFFThal¢+
BN gl Sz =r oun & TE g
33 coantinue
agoto 11
endi +

call mapfreed)
1§ data at end of tape was good, ornt ot Timots of lasz
good chunk of dzta.

1¥f LOCKFLAG.EQ.9) writet 1@ .#) lcck 1back S,_BLr . i
mark end of table with 1lock=5099

wr i ke 13, %) S000,0,9,9

closei?)
close(1@)
close(1l)
call ccloses
end

subroutine biraprep

This routine prepares the arrar processor,
parazmeter( [~PFINC=1,[APCINC=2,IHFINC=d, [HCINC=3)
parameter  [FFTSI=18334,IFFT322=3123,1xgl=n=14
parameter { IBLKSZ=10240,1BLKSZg=2642 HEL 3
complex 5igiIFFTSZ),coeffs 122 ,¢ourier [FFT32:
complex s1giIFFT32) ,coeffs  [FFT3I  .fourier  IFFTSZ)
complex +ilter IFFTSZ2"
real rawt [FFT3Z) ,window. IFFT32
integer*4 rbereturn
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common/ARAYS, sig,filter ,coeffs,fourier,raw,window
call mapinit<l)
call mapbigfft(sig,coeffs,fourier,loglen,t,-1)

call mapwaitrbe()
return
end

subroutine loadraw(index)
g This routine orchestrates the handling of the raw data.
g parameter{ [APFINC=1 ,IAPCINC=2,[HFINC=4,[HCINC=2)
parameter  IFFTSZ=1&4334,.IFFThal f=31%92,IFFTSZ2=81%3,.l0glen=14)
parameter{ [BLKSZ=19240,[BLKSZg=2043 NBLKS=2879)
complex sig(IFFTS5Z) ,coeffs(1?22),fourier{IFFT52)
€ complex sigl{IFFT3Z),coeffsCIFFT3Z),fourier{IFFT32)
complex filter(IFFTSZ2)
real raw{lFFTS2) ,windowlIFFT3Z)
integer*2 buffer(@:IBLKSZ-1),b4(30) ,micro(NBLKS)
integer J3,31p
integer LIMIT4 MINLOCK,DLY ,NDLY ,dev ,mKlimit
integer 1. J, 1lock, Jlock, LOCKFLAG, filedescript
common/buf/bufter
common/1blK/LBLK
common./+d/filedescript
common/tabl /LOCKFLAG, i 1ock,ylock ,LIMITIlow,LIMITlup
common./ tab2/LIMIT4 ,MINLOCK ,DLY ,MDLY .b4
common/ tao3 /' dev . mkKl imit,micro
common/ARAYS, sig,filter ,coeffs,fourier ,raw,window
mstep=IBLK3Z-151

N

¢ index=1 implies reading 1n data from the middle of the tape,
c data 1n raw must be shifted from end to beginning and
c then new data must be read into end,

ishi ft=IFFTSZ/
1fiindex.eq.1) then
numreads=lFFTSZ/(Z#*IBLK3Ig’
do 18 i=l,1shift
18 rawdi)=raw(i+tishift) i
do 28 j=1,numreads
¢ Load b4¢this array is used by table, which needs zome points

o from the end of the last block?
do 15 m=1,38
15 bd(m)=buffer(mstep+(S*m))

call cblock$

call mike

call table
i=ishift+((j=-10*%IBLKSIZIg)+]
do 30 k=8,IBLKSZg-1

raw( i )=buffer(S=k)>

1=1+1
38 continue
28 continue

end: f
c index=8 implies reading in data for the first time, so rou don t need
< shift any data
ifiindex.eq.8> then
numreads=IFFTSZ. 1BLKSZg

to
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do 48 ;=1 ,numreads
Load &4 this array 12 used by table, which needs zcme points
trom the end of the last block)
1 FOLBLK .ne.B8) then
da 35 m=1,30

3% cdimi=butfer imetep+ S*m))
endi ¥
call chblock®
call mike
cxll table

tH3SUMP chbilock® reads n 1WZ24308 points=1 block of data, of these [BLKSZg=2843

are the ztrain signal, ~Also, rawdi)=buffer({S#+k) assumes
data 1= stored on the tape in channel 8 of S5 channels,
23ch channel written to tape at 3 time.

i=(0 j=-1)#IBLKSZq) +1

do S8 k=9 ,IBLKSZg-1

rawi i »=buffer S=k)

1=1+1

59 coantinue

443 continue
endif
return
end
subroutine white(fmin,d¥f)

This zubroutine creates the filter used in prefiltb.
parameter { IAPFINC=1,[AFPCINC=2,IHFINC=4,[HCINC=8)
parameter( [FFTSI=16394,[FFT3Z2=81%3,10glen=14>
pxrameter( IBLKSZ=14248,[BLKSIg=2043 ,NELKZ=26%2)
complex sIgQ{IFFTSZ) ,coeffs(1?2) ,fourier  [FFT32)
complex SiQCIFFTSZ),coet+fs{IFFTS2) four 1er{IFFT3Z"
complex filtert IFFTSZ2)
real raw(lIFFTS2) ,window(IFFTSZ)
comman.ARAYS/ sig,filter,coetfs,fourier,raw,window

1A55UMP

this subroutine assumes that you are using fftavg.dat for

information on how to whiten the spectrum. fftaug.dat

contains the average of 34 power spectrums, taken from
tape number 7. There are

513 points, for a B8193=IFFTSZ2 filter vou need to use

each of these points about 146 times each.

m=IFFTSZ/1824
do 18 1=1,512
readcll  ») fftavg
filt=sgrtil/fftavg)
do 20 )=1.,m
n=m#*( =13+
t=(n-1)#*df
1¥if.lt.fmin) then
firlter<n)>=cmplx(8.)
el se
filter(n)=cmplx(filt)
endi f
s continue
19 continue

that the =train
1 point from
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i)

2d{11,#) fftavg

| t=sqrti(l/fftavg>
1ter(IFFTSZ2)=cmplix 11t
sturn

d

e B N

|

zubroutine prefilth
This subroutine performs an FFT, multiplies by 3 filter
and then performs an inverze FFT. It uses the array
processaor.
parameter ( [AFFINC=1,lAFPCINC=2,IHFINC=4,[HCINC=23)
parameter{IFFTSI=15334,[FFT3I2=3173,l0glen=14)
parameter ( IBLKSZ=1032408,[BLKSI3=2048 ,NBLKS=22%%)
complex 1quIFFTSZ) ,coef+3 172 ,fourier([FFT32)
complex 21giIFFTSZ2)Y,coceffer IFFTSZ) ,fourier{IFFTS32)
complex filter(IFFT3Z2)
real rawtIFFTS2) ,windowi [FFTZ2)
common./ARAYES sig.filter coeffs,fourier.,.raw,wi ndow

fft
call mapbigfftisig,.coeffs,fourier,loglen,1.,0)
call mapwail trbev) 2

Tultiply by filter
fourieril)=¢ilter(1)*fourierdl)
do 28 1=2,IFFTSZ2
fourterd1)=f1 )l ter 1) sfourierdy )
index=[FFT3Z+2-1
fltrindx=conjg(filterc:})
fourrterd{index)=fltrindusfourier(index)

za cantinue

inserse fft
call mapbigfftifourier ,coeffs,.sig,loglen,-1,8"
call mapwali trbe()
return
end

subrcutine Hamming
This zubroutine will compute a Hamming window.

parameter (IAPFINC=1,IAPCINC=2,IHFINC=4, [HCINC=2"
parameter(IFFTSZ=14384,IFFT322=317?3,lo3len=14
parameter(IBLKSZ=10240,IBLKSIg=2043 ,NBLK3=2A7
complex $igC(IFFTS2),coeffs(192>,fourier{IFFT3Z"
complex s$1QC(IFFTS2) ,coeffs(IFFT32) ,fourier IFFT5Z}
complex filter(IFFTSZ2)
real raw(IFFTS2Z) ,windowiIFFTS2)
commonsARAYS/, sig,filter ,coeffs,fourter,raw,window
a=2.,%3.141572554/IFFT52Z
Do 18 n=1,IFFTSZ

10 window(n)=8,54-(Q . 4s=*cos{(n-1>%*a))
return
end

subroutine outgocod: g
This subroutine nutputs the table.
parameter( IBLKSZ=10248,[BLKSIg=2048,NBLKS=2877"
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integer*2 buffer<B:1BLKEZ-1),b4(33) ,micro’NBLKS)
integer J,ilock,jlock,lock,LOCKFLAG,filedescript
integer DLY, NDLY, minlockK,dev,mkl imit
common.’buf./buffer

common/ 1Bl k/LBLK

common/+¥d/filedescript

common/tabl /LOCKFLAG, 1 1ock (ulock ,LIMIT1 low,LIMITiup
common/ tab2,LIMITS ,MINLOCK,DLY ,NDLY ,b4

common. tap3/dev mkl imit,micro

LOCKFLAG=1
1 out=LBLK
Jout= -5-(S*NDLY)

31 1¥Cjout,1t.8) then
iout=i1out-1
Jout=gout+IBLKSZ
goto 31
endif

ifCiout.1t.8) return
c check microphone veto
t1=11ock
do 18 iblk=il,iout
ifimicro(iblk).eq.-1) then
z lab was too loud
imkout=iblk-1

JmKout=18235
lock=(Cimkout=1 lock)*(IBLKSZ,/ S )+ (< mkout-jlock) S
1 ¥ (1ock .OT.MINLOCK) writeild,*) 1lock, lock/S,imkout, imkout,S
1lock=1blK+1 4
J1ock=9
end: f
18 continue
lock=(icut-ilock)*¥(IBLKSZ/S)+({jout-jlock). S
¥ (1ock 6T .MIMLOCK) write¢18,%: ilock,jlock S,iout,jouts/S
return
end
e <
c

subroutine table
This subroutine creates the table of where the data is
"good."
parameter(IBLKSZ=102498,IBLKSZg=20438 NBLK3=28%7"
integer#2 buffer(B:IBLKS5Z-1),b4(30) microl(MNBLKS)
integer j,ilock,jlock,lock,LOCKFLAG,+iledescript
integer DLY, NDLY, minlock,dev,mk]l imit
integer slp,slilimit,msll imit
common/buf/buffer
common/1blK/LBLK
common/ fd/filedescript
common./tabl./LOCKFLAG, ilock, lecck ,LIMIT1 low, LIMITIup
common/tab2/LIMITS ,MINLOCK ,DLY ,MDLY ,b49
common/tab3/dev,mklimit,micro

n N

C

c set slp 1Timit = sllimit
sl imi t=48
msllimy t=-40
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rzlpmax=10234
da 28 j=1,IBLKSZ,.S
jaw=)=-1
i3=j+3
1§ (LOCKFLAG,.EQ.1)> then
data was "bad", check to see 1+ |t 1= now "good":
tgravity wave channel not szaturated,
wire pushing not near the rails, and
arm 2 light level low=second arm resonatinag)
1 f (butferd jgu, . LT,2008 .AND. bufferd  jgw),.B6T.-2088 .AND.

& butferd ) GT.LIMITIlow .ANMD. buffert jo LT.LIMITlup .AND.
& buffer 33 .LT.LIMITS: then
data 15 within dc Iimits, check zlcpe.
Calecul e slp

t
all do-dtd;3,s1p»

o

ifislp.lit.zllimit.and.slp.gt.mell imit) then

1l ock=LBLHK
Jlock=+{S=CL
23 ifvylack.ge.lBLKS2Z then
Jlock=jlock=-IBLKEZ
ilock=ilock+t

goto 332
end: f
LOCKFLAG=A
andi+
erndt
2lse
LOCKFLAG=8®, data was gocd., masre zurs (t ztil] 1z
1§ ‘buffer(igw) .GE.20080 .0OF, Du+fer: jmu LE.-Z00Y IR,
2 pufferiy) .LE,LIMITI I cw, O0F Byfter: - SE.LIMITLup . 0F,

2 buffer (13> .GE.LIMITA» then
data 13 now bad, cutput limits o+ Q000 Jata

cxll outgood(y)
else
the data 1s within dc limite but 1% mar te £23 z=xcz.32 z!zpe

of d¢c light too big

Caxlculate slp
call dbydt(;3,sl1p>

if €lp 18 bad call outgoed, which will zutput | omitsz 2ata
1fislp.ge.sllimit.or.slp.le.msll mir: cali outgs J4
end f
end +
28 continue
return
end

subroutine db-dtC 3,elp?
This routine loocks for rapid changes 1n the OC 1light by
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c comparing the light level at cone time with the light
c level .23 ceconds earlier,
parameter {IBLKSZ=102490,IBLKZIg=2045 ,NBLKS=
integer=2 buffer A:IBLEEZ-1),b0d4030) .microf
integer filedescript
integer J3,slp
integer LIMITS MINLOCK DLY MOLY ;dev mkl imit
ccmmon ‘bufs/bufter
mmaons 161k LBLK
common, fd fi1ledescriot
common s tab2/LIMITS MINLOCK ,DLY ,MOLT B4
commons tab3/dey mklimit ,micro

2099
MBLKS,

L

izlpmax=10224
c Calculate zlp
1 ¥ (LELK.eq.8.AMD. 12.12,14%) then
z1p=9
reaturn
end: f

iFLa2.1t.14%) then
k=()3+1)-95
slp=bufferd ; 3)+buffer( ) 2+S)-bdik r=bd(k+1)
endi f
(fii13.eq.19% elp=buffer’ 12 +butfer 1 2+Si-ndi 20 =bysser d
1¥0J2.9t.14% ., and, 3.1 t.1z1pmax) slp=buffer’ j3 . +bufter.  3+5

& buf+ers | I=1Sa)-butferd | 2=1 -2
c
return
end
c
csubroutine mike
z this 15 an ac power meter for
¢ channel 2 cf the tape(microphone and e smometsr)
¢ unlike other vetns there i3 no explicit delay, 21 ther
Z a block 1¢ good, in which case microvklk =1, or bad
C in which case microfblk: ==],
parameter ( [BLKSZ=108240,IBLKSZg=2043 NBLKS=207%7%)
integer=2 buffer<®:IBLKSZ-1,,b44308" ,microtfBLKS!
integer y,ilock,ylock,lock LOCKFLAG,f1ledezcript
integer DLY, NDLY, minlock
integer dev,mKlimit,sumx,sum«s ,dev
common/buf/buffer
commons 1bl1K/LBLK
commeon./+d/fi ledescript
common/ tabl /LOCKFLAG,11ock gy lock LIMITI 1 ow, LIMITIup
common/tab2/LIMIT4 ,MINLOCK ,CLy ,MOL Y, B4
common/ tab3/dev,.mkl imit . micro
¢ Mawg should be a factor of 29848
Mavg=s4
z zet threshold
mk1lim £=23000
Nloops=I1BLKSZg/Navg
c calculate standard dev over Mava points
c 1zample 1 sample number in butfer of that black
c corresponding to the micro & seirsmo sample I want.
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1sample=-3

do 38 ,=1,Nlcops

zumx=@a

sumx x=8

4o 48 k=1 ,.,Navg

isample=isample+S

sumx=sumx+buffer{isample)

SUMXX=SUMX X+ (pufferiizample) *sbuffer (isampled?

continue

dev=sumxx—¢ (sumx¥sumx) Navg)

1f{dev.at.mklimit) then
micro(LBLK)=~1
return

endi f

continue
micro(LBLK)=1
continue
return

end

T45.tab:

\,°é Q
$§> ~\9 o ¢§? o
F FFEF & P

~21@ 194 298 1880 1488 18000
2 8 79 2047
31 148 1514
219 535 2323 2047
325 @ 433 2847
440 B 536 2047
S38 @ 494 2847
494 @ 888 2047
398 8 1341 20847
1363 8 1466 2047
1443 @ 1832 1174
1839 32 1948 277
1745 1155 1942 1948
Sa@@ @ @

FLAG

45,0000
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B.4 The Binary Star Filter

This filter is discussed in Sections 5.1 and 5.2.5. The program which filters the
data for coalescing binaries is called filtFbins.f. The routines which are most
important in doing the actual analysis are FFTX and Xinterval. Most of the
rest of the program deals with manipulating the data so that only “good” data
are analyzed. FFTX performs the actual FFT, Xinterval calculates which data

should be used when resampling the data in even steps of x.
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filtFbins.¥f
parameter (IAPFINC=1,IAPCINC=2,IHFINC=4,[HCINC=3)
parameter (IDIM=S12.LOGLEN=%,IDIM2=257,JDIMt=1000088)>
parameter (IBLKSZ=2048,1BLKSZ2g=2043 ,MBLK5=28%7,numbins=?7%)
IBLKSZ= the z2ize of e2ach block on the tape,S
= size of =ach block 1n the file.
IBLK3Zg= the number of gQrawvwity wave samples on
each block of the tape.

MELKS= the number of the last block=the number of blccks on the tape-l
rnumbins=Cnumber of bins cutput 1s divided into for output histograms)-1
t17scaler=sz12e of each bin. Maximum zi2e that 12 ncluded in the
histogram='numbins+l)"scale.

The routine FFTX 1n this program differs from the routine in other
proarams because multiplication by scale takes place

tn this routine, using the AP.

In mv theszsis fi1lter units refers to output of FFT times scale.
real si1gsiIDIM)
real sight{JOIME)
implicit double precisian Cd,t, X
integer nxloctIDIM?
integer#2 buffert8:IBLKSZ-1)
integer#4 byn’ICIM2,8:numbins?

buffer haz indices running from B8 to IBLKSZ-1
integer | ,fftsrc,coef,ffttmp,abssrc,scloff
integer 4 LBLK,filedescript.dly,ndl»
common/buf ‘buffer
common. 1B1K/LBLK
caommon  fd,  filedescript
commonsAint/ndl oo
commonSARAY S, s1gXx
common/ OFFSTS, fftarc.coef,ffttmp,abesrc,sclaf¥
common./datainput.” si1gt
commonsbininfosbin,scale ,IBLKIN,JIN, icount,1thresh
prepare nput and output files
copentd,firle=""usr . sheri1. anal »si =/ Tnumpre.dat",

& form="unformatted",access="direct",recl=2#[BLK3I"
openi¥,file="filbin.dat",form="untocrmattea",
access="direct" ,recl=4*IDIM2=(numbins+1 )
cpenil3,file="/usr/sher i/ anal sis/Tnum.tab"?
rewind(l3)
read(13,#%) limitilow,limitlup.limitd,minicck,dly,ndl~,tapenc
print®*, limitllow,l imitlup,limitd ,minlock.dl»,ndlv,tapeno
print*,"idim.,loglen,idim2,J0IMt =", IDIM,LOGLEN,IDIM2,.JDIME
SET IMNITIAL VALUES (i1n sec or Hz!
txu=1.4
ta=,39
tfinal=tau-.003
scale=5.0E-A%
1thresh=38
dX=C(X(tfinal (tau)=X{ta, taudr 2/ I10DIM
df0=1 ./ IDIM=ax>
nzample=10004a
dta=.,0085
ndtAd=dt@=*nsample
prints, "tay,te,axX,dfd,ncsample ,dtd scale” , tau,td, dx,

& d¥d,nzample,dtd , scale

ol
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prints, " ,5igXCi) IBIN,IBLKIN,JIN, icount"”
FREPARE ARRAY PROCESS0R

zall apprep

SET BIMN=HISTOGRAMS TO ZERO

do 13 i=1,IDIM2

do 12 ;=1,numbins

bin{i,12=0

continue

continue

CALCULATE nxloc=location of d<*n 1n arrar sigtin)
call Xinterval{td,tau,nzsample,aX,t¥inal)d
nfinal=n{locCIDIM?

Jlmne=JOIMt=-n¢inal

Start reading 10 data

LELK=the number of the last block read In

“they are numbered from 8 to 2827 (March./1?373)

Wby

——

JLIMIT=the smallest number of consecutive points the filter wi'l analvze.
]

subroutine block reads block LBLK+l from disc and =

since 1t reads from the disc and not from tape bloc

“bad" data need not be read, but can be sKipped.

[BLRIN,JIN, IBLKOUT ,JOUT are the block and sample number

lock was acquired and lost, 0s=IBLK«<IBLKS, 8<{=J#{IBLK3Zqg

MNUMZAMP=# of gw samples in that stretch of data.

icount=sample # after JIN--used to kesp track of where 1n

yYOu are.

LBLK=-1

JLIMIT=nfinal

read(l3,%) [BLKIN,JIN,IBLKIUT,JOUT

icount=@

1 #CIBLKIN.EQ.S@88> goto 48

NUMSAMP=¢ IBLKOUT-1BLKIN)#IBLKSZg + JOUT-JIM#+1

1+ (MUMSAMP LT .JLIMITY then ‘

:ki1p these blocks entirely, they don’'t contain encugh data
goto 38

e
k

end ¥
1 (MUMSAMP . le .JDIME) then
| #LLBLK,1t,IBLKINY then
block number IBLKIN has not been read »et, zo read 1 t.
LBLK=IBLKIN-1
call block
endif
i 1=1BLKOUT
i2=JIN
1 3=JOUT
i4=1
i S=NUMSAMP
call bufsigtCil,12,i3,14,:5)
bufsigt(il,12,i3,i4,15) loads <igtin) from n=id4 to n=15 wi
current contents of the buffer beginning at sample 12, and
stops at block i1 with the sample 13,
‘sample 12 and 13 vary from 8 to IBLKSZIg-1).

ne<t ¥#i1lter the data in sigt, since this stretch of
good’ data fits 1n sigt, sigt won’t have to be shifted.
Jstep=98
Jlast=NUMSAMP-nfinal

ts LELK=LELK+!
s which contain

the i1nput

th the

file
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c ilast = last n of sigtind which has encugh data
c after 1t to apply the filter,
43 ¥ (ystep.gt. last) goto 33
do 44 =1 ,I0IM
44 sigRd Y=g 1gatinXloclid+step
call FFTX
call bins
12tep=jstep+ndtid
rcount=icount+rndt@
goto 43
send f
1 WHIUMSAMP L, gt L JDIMEY then
1 FCLBLK. 1t IBLKIN) then
LELK=IBLKIN=-1
call block
end) €
11=LBLK + 1ntCCJODIME+JINY ~IBLKSZg) -1
12=J1IN
1 3=1BLK3Zg-1
14=1
1 S=¢ [BLKSZg#*< 11 -LBLKY-JIN+[BLKSZq>
call bufsigtiil,12,13,14,:15)
47 J3tep=9
Jlast=iS-nfinal
47 1¥ (istep.gt.jlast) then
1¥ ‘LBLK.eq.IBLKOUTY goto 33
zall bloack
call zhiftcistep, 15
c subroutine shiftdil,12' moves data from sigt<nd) n=11,:2
= tonsml gt 2=114l,
¢ Next Ccalculate proper limits for bufsigt
1 2=9
1 3=]1BLKSZ2g~-1
14=iS-)step+2
11=LBLK + 1nt({JDIMt= 14> IBLKSZg~1
if Ci1l.gt.IBLKOUTthen '
1 1=[BLKOUT
1 3=JOUT
end
1S=CIBLKSZg#*(i1=LBLK)+ 13+ 4)
call bufsigQtCil,i2,i3,id,1 3
goto 4%
endi f
do 48 i=1,IDIM
43 sigX{i)=si1gt(nXloclid+jstep>
call FFTX

call bins
Jstep= step+ndti
lcount=icount+ndta
goto 47

endif

4a continue
< QUTPUT BIN

write(?,rec=1) bin

prints,"S800 Sved. S9A0 S0HA0 SAOB SAG0"

call mapfree()
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subroutine block

¢ thi=s routine does what cblock® doces, only 1t reads from

c file 4 rather then tape. It reads 1n one block and increments
¢ LBLK.

z blocks are numbered from 0 to 2899, zo block K i3 at rec=k+l

parameter (IBLKSI=2043,1BLK53Ig9=2043,NBLKS=2097)
integer <2 buffer(d:IBLKSZ-1?
integer*4 LBLK
c buffer has indices running from 8 to [IBLKSZ-1
common/buf /butfer
comman/ 1 bl K -LBLK
LBLK=LBLK+1
read{4,rec=LBLK+1" buffer
return
2nd

subroutine apprep
 This routine prepares the array processor for FFTX
parameter C[~APFINC=1,IAPCINC=2,IHFINC=4,IHCINC=3)
parameter (IDIM=S12,LOGLEN=?,IDIM2=257,numbins=?7)
real signal<IDIM)
integer#4 bin(IDIM2,8:numbins)
integer i,fftsrc.coef,ffttmp,abssrc,scloff
commaon/ARAYS, signal
common/0OFF3TS/ fftsrc,coef . ff¥ttmp,abssrc,sclaoff
commons/bininfosbin,scale ,IBLKIN,JIN,icount, | thresh
call mapinitCl)
¢ calculate where in AP memory vectors should be staored
i = and{loglen,1)
if (i .eq. 1)then
fftsrc = 2#1dim
ffttmp=idim
else
ffterc = idim
ffttmp = 2%1dim
endi f
coef = @
abssrc=(2%idim)+3
scloff=é#,dim2
: @enerate coefficient table for fft
caxll mapffttablcocef,locglen)

c Inad "scale"” into AP
call maplodfs(scale,scloff)
return
end

subroutine FFTX
This routine takes FFT, takes the absclute walue, and
multiplies by scale. The scaling factor facilitates

NN



131

filtFbinz.f Page S

c crexting the histograms.
parameter (IAPFINC=1,I&PCINC=2,IHFINC=4,[HCINC=3)
parameter (IDIM=512,LO0GLEN=?,IDIM2=257 ,numbins=?%)
real signal(IDIM
integer fftsrc,cocef ffttmp,abssrc,scloff
commonsARAYS/ signal
common/0FF3T3,/ fftsrc.coef, ffttmp.abesrc,sclofé
call mao1adfu-s|gna1.IHFINC.fﬁtsrC.IAPFINC,.dlm)
call mapsyncd(=1)
call maprfftncifftzrc,IAFFIMNC,coef,IAFCINC ,¥fttmp,I~FFINC, 1dim?

c take abs walue of fft

call maprnermsqc+vsidim, [APCINC,abssrc, [APFINC, idim2)
c divide by scaling factor

call mapmul feuiscloff,abesrc,ImPFINC, dim,IAPFINC,1dim2)
Z shi ¥t data from AP to CPU

call mapstrfuiidimIAFFINC,s1gnal ,IHFINC, idim2)

call mapbwai trbe?)

returnci)

end

subroutine Xinterval(td,taunsample,dx,.tfinal>d

This subroutine calculates which points from sigt should
be lzaded into sigxX, to swith "time" coordinate from
£ ko X
parameter (Mpower=% NxX=512)
integer nxXloc(MNX)
implicit double precision (d,%t,.0
common/sX 1 nt/ nXloc
n=1
nXloctl =n
YnEXCtA, tau)
c loop thru all tn<tfinal
za Ln=Xn+dX
n=n+1
tn=tofX{(Xn,tau)
Xloc=({tn-t@)%*nsample.+l.
nXloclrns=nintiXloc) ‘
ifitn.lt.tfinal .AND.n.TEt.NX) go to 29
return
end
e Xit,taud
function X(t,tau)
implicit double precision <(d,t, <
X==1.o%taus( (-t tau)=%{, £25
return
end
c tofXiX, tau)
function tofXI(X,tau)
implicit double preciszion ‘d,t,
tofx=tauni] ,=({(=,4825%X " taures]l o

N

[l

return

end
c SHIFEC0 L, I8
c Thiz subroutine moves data from sigtin: n=11,12
c to n=1,12=11+1.

subroutine shift{il,:12)
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parameter(JDIMt=100008,[BLKSI=2042,IBLKZZg=2R48"
real sigtC(JDIMt)

integer*2 buffer(d:IBLKEI-1)

integer#4 LBLK,filedescript

commaon. byt bu‘fer

common.” | b1k /LBLK

comman./fd/filedescript

commonSJdatainput sigt

m=11
1=1
15 sigtid=sigtim>
1=1+1
m=m+ |
ifim.le. 122 gota 1S
return
end

subroutine bufsigt
Thiz routine moves good data from the buffer to siat.
subroutine bufsigtyuil,12,:13,14,)3)
parameter (JDIMt=1880808,1ELKSI=2848,BLKSZg=2048)
real sigt{JDIMt?
integer =2 buffer(Bd:IBLKSZ-1)
integer=4 LBLK, ﬁuledeacrnpt
commons buf s buffer
zommanSfd f1 ledescript
common./ 1 b1k LBLK
common/datainputSsigt
=12
o 1 fiLBLK.eg.1 1) ¥=1173
1FOLBLK .1t 1) jf=1BLKSZg-1

1 $CLBLK.gt.11) print*, "Errcr is readina in too man» blocks”

do 18 y=y1,,¢f

this statement 13 entirely Jependent on the tape -file format! !

sigtii 4 =butferiy
1= 4+
19 continue

1 $¥{LBLK.eq.il3 then
if(id.ne.iS+1) print*,"error 1n butsigt,. 4,15, LEBLK:
return

endi f

call block

J1=8

Qoto S

end

subroutine bins
This routine creates histograms of cutput, i1 f something i3

too large for any of the histograms bins 1t prints a flag.

It also prints out any points over a lower threzhold= | thresh.

scale=step 3)1ze between bins

nrumbins = number of bins data broken I1nto

‘maximum point binned 13 numbins#*scale)
subrcutine bins
parameter (IARPFINC=1,IAPCIMC=2,IHFINC=4,IHCINC=8)
parameter {(IDIM=S12,LOGLEN=?,I0IM2=257,JDIMt=1008008)

% iy 1 Sy LBLK
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parameter (IBLKSZ=2043,1BLKS5Zg=2043,NBLKS=20%7,numbins=??%)

real sigX(IDIM)>

integer*4 bin(IDIMZ,8:numbins)

common  ARAYS/ ¢1gx

common/binintosbin,scale , IBLKIN,JIN,1count,ithresh

do 18 1=1,IDIM2

IBIMN=nint{sigx{))

if.1BIN.gt.numbins: then
print®,i,sigxXCi),IBINIBLKIN,JIN, icount "'t

else
bind) JIBINY=bind (IBINI+1
¥ IBIM.gt. 1 threshoprint®,i ,2igxX<i) IBIN,IBLKIN,JIN,icount
endi ¥
coentinue
return

end
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B.5 The Codes used to Reduce the Results

As mentioned in Section 5.2.5, the threshold in filtFbins.f was set very low, and
one section of the data could trigger many channels. The program readlog.f reads
the output of filtFbins.f and assigns to each section of the data which was over
the threshold of filtFbins.f the one event which was the best fit to a binary
star coalescence. The program thrshevent.f then reads through the output of
readlog.f and prints out only those events over a fairly high threshold. These are

the events which were reported in Chapter 6.
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c readlog.f
c this program ignores :hannelg 1-19 and 201-257 because they’'re
¢ uncalibrated in terms of strain.
integer block,dead,deltai,icount,icntmx,ichan,imx
integer isig,Jin, jmx,[BLKSZg
real sigx,sigmx
real *8 time
-4 prepare nput and ocutput files
open(?,f¥ile="Tnum.log">
open(lB8,file="Tnum.event")
rewind{?)
rewind(18)
c initialize stuff to zero
dead=2149
¢ dead=the dead time, this routine will label
c only the largest point in the dead time as
c an event,
c dead=2140=2%(the length of the binary star filter)
IBLKSZg=2048
sample=1080908.
ichl ow=28
ichhigh=200
1mx=8
sigmx=8
bl kmx=8
Jmx=@
rcntmx=9
c read in ichan, sigxX{ichan), and compare it with JmaxCichan)
write(l@,%) "ichan,sigX,block,nsmp,time"
29 read(?,%) ichan,sigX,isig,iblKin,jin,icount

¢ check for EOF, this is marked by flag:ichan=5849
i¥f (ichan.eq.5888) goto 48
if (ichan,lt.ichlow.0OR,ichan.gt.ichhigh) goto 28
del tai=(IBLKSZg#*#( iblKin=iblkmx))+{jin+iccunt=jgmx=icntmx)
if{deltai.lt.dead) then
if(sigmx.lt.siagX) then
imx=ichan
S gmx=s|gXx
iblkmx=1blkin
Jmx=jin
icntmx=icount
endi ¥
else
delta)>dead implies no longer within deadtime, cutput sigmx,
- then reset sigmx to current event
time=((iblKmx*#[BLKSZg)+imx+icntmx) /sample
block=iblkmx+int({ jmx+icntmx)/IBLKSIg"
nsmp=(time*sample)-(block®*IBLKSZg>
1fitime.ne.8) write(10,%) imx,sigmx,block,nsmp,time
imx=ichan
sigmx=sigX
iblkmx=iblkin
JMX=jin
rentmx=1count
endi f

n

goto 28

4a time=((iblkmx#*IBLK3Zg)+ mx+i1cntmx)/sample
block=iblkmx+int{( ymx+icntmx>/[BLKSZg)
nsmp=(time*sample)-{block*IBLKSZqQ)
if(time.ne.B) write(l®,#%) imx,sigmx,block,nsmp,time
write(1d,«) S@@A,SA00.,5089,5000,5000,
close(?)
close(18)
end
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thrzhevent,+

This proaram =imply reads Tnum.event and outputs
anrthing over & given threshold.

integer block, ichan

real sigX,thresh

real #8 time

prepare input and output files
cpen(l@,file="Tnum.event")
rewind(19>

thnitialize stuff to zero

check
29

49

threzh=253,

print«,"threshold=",thres<h
print#®,"ichan,sigx.block ,nsmp,time"

for EOQOF, this 1s marked by flagiichan=50@9
read(1a,») jchan,zigX,block,nsmp,time

¥ vti1chan.eq.54@0@) goto 49
1fizigX.ge.thresh corin%*, chan,s
qoto 29

continue

close 18)

end

: L Jblock,nsmp,time
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B.6 Automation

Once the limits have been chosen, the short routine dostall will run all of the
above programs. Simply type in “dostall XX” where XX is the number of the tape
being analyzed. The file tape X XIlsmits.dat contains information on the thresholds

chosen, tape4 5limits.dat is given below.

deassian

filtFbins > T$l.loqg

my filbin.dat filbin$l.dat

mv Trum.tab T#1.tab

mv Tnumpre.dat THlpre.dat

ft 7 t6@@aaa T#1.lcg *Trnum.lcg
readlog

rm Tnum.log

threshevent >T®1.thresh

mv Thnum.event T#1l.event

@
o OQ .
&,\'\v &’\ " sy Q’C)
& FE s 3, £
‘\IJ\( v 'V\' @'ﬂyo Q\, @V (?
=218 1%¥4 2?78 16683 14888 10489 45

tape45limits.dat
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The Code for Detection of “Bumps”

The program bumps.f calculates the slope of the light level using a least square

method. The slope is calculated every 25msec. The characteristic duration

of each bump was approximately 100msec; calculating the slope every 25msec

prevents one from missing a bump.

NN

N

AN NN

N

bump ~+

parameter (IBLKSI=108240,IBLKSZ2g=2048,NBLKS=20%%,lavgsz=25s)
IBLKSZ=total number of data points in 1| block, there are IBLKSZ/S gw
points in a block (axssuming there are S channels of data recorded).
NBLKS=number of blocks on tape minus one.
lavgsz=number cof points used to find slcpe.
[BLKSZQ/Tavgsz must be an integer.

tnteger#2 buffer<@:IBLKSZ-1),dclightilavgsz)

integer iblock,iavg,n.,nbuffer ,offset,fd,CHl ight

inteager IBLKIN,IBLKOUT ,JIN,JOUT,dly,.ndly,tapenc

integer*4 LBLK,filedescript

real alpha,bmpthrshp.,.bmpthreshn

common/buf /buffer

common/s1bl k- -"LBLK

common/fd/fi ledescript

common,/sloperout/dclight,alpha
open tape

call copens$

open{13,file="/usr sheri/analysis Tnum,tab")

rewind(13)

read(13,=) Timitllow,l imititup,l imitd . minlock,dlyv,ndly,tapenao

print®, limitllow,limitlup,limit4d,minlock,dly,ndl»,tapenc
SET INITIAL VALUES (1n sec or Hz)

CHl 1ght=4

LBLK==-1

numslps=IBLK3Zg/Tavgsz
bmpthrshp=.08S
bmpthrshn=-.85
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print=*, "bmpthrshp,bmpthrshn=",bmpthrshp,.bmpthrshn
print*, "BLOCK, SAMPLE(here to +",lavgsz,"), bumpslope"
read(13,%) [BLKIN,JIN,IBLKOUT,JOUT
1f (IBLKIN,eq.5808) goto 44
do 21 1block=8,NBLKS
call cblocks
do 23 iavg=l,numslips
offset=C(iavg-1)=lavgsz
nbuffer=(offset»*5) +CHlight
do 22 n=1,lavgsz
dclight(n)=buffer(nbuffer)
nbuffer=nbuffer+S
22 continue
zall slape
rfialpha.gt.bmpthrehp.0R.alpha.lt.bmpthrshn) then
¢ check if data was "good"
29 i¥(LBLK.gt.IBLKOUT) then
read{(13,#) IBLKIN,JIM,IBLFOUT , JOUT
1§ “IBLKIN.eq.S@09) goto 4@
aoto 24
end: f
1 fCLBLK.ge . .IBLKIN,and ,LELK.1e,IBLKOUT > then
c data may have been good (I don’t bother to check JIN or JOUT)
print* LBLK,offset,alpha

end: f
endi f
23 continue
2 continue
48 close(13)
call ccliose$

end

subroutine s=lcpe

calculate slope of pointe in array dclightin) vs n
by leaszt squares method
parametsr (IBLKSZ=10240,IBLK3ZIg=2048 NBLKk53=20%%,lavgsz=25s)
integer#*2 dclight(lavgsz?
real alpha.,beta,denom,sumxx ,Sumx ,Sumy , SUMx »
common-/sloperout dclight,alpha
¢ firet set sums to zero
sumx=0
sumx »=94
sumx x=8
sumy=@
do 18 )=1,lavgsz
»=realidclight<,))
SUMX=SuUmx+)
SUMXy=sumx ¥+ | ®y)
sumxx=sumxx+( j* )
SUMX=SUMy + >
19 continue
c calculate slope of v=alpha%*x + beta
denom=(sumxx#lavgsz)-{sumx#*sumx)
beta={({sumxx*sumy)=-(sumx*sumxy) ) dencm
alpha=(i{lavgsz®sumxy)—(sumx*sumy ;) denom
return
end

fnonn
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Appendix C

More information



141

Starting Time | Ending Time

Tape Universal Time

(dd:hh:mm:ss)

44 68:00:59:10 68:01:06:20
45 68:01:09:30 68:01:16:31
46 68:01:19:30 68:01:26:41
47 68:01:29:10 68:01:36:21

48 68:01:40:10 68:01:47:20
49 68:01:50:30 68:01:57:41
50 68:02:02:30 68:02:09:41

Table C.1: The time at which these data were collected.

Date Detector
(Universal Time) Caltech Glasgow MIT
Feb 27 (058) check =% —
Feb 28 (059) check — —

March 5 (064) || 20:00-21:00 | 20:00-21:00 —
March 8 (067) || 14:00-16:30 —- 14:30-16:30
March 9 (068)* 0:00-2:30 0:00-2:30 0:00-2:30

March 11 (070) 6:00-9:00 7:30-10:30 6:00-9:00

* Data analyzed, (March 8, 1988, Pacific Standard Time)

Table C.2: The times at which Caltech, Glasgow and MIT were collecting data.
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Figure C.1: The raw data for the events listed in Table 6.3.
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Figure C.2: Close-ups of the spikes in the data.
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Figure C.3: The auxiliary signals recorded during the largest spike.*
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* See pages 145 and 155 for the gravity wave signal.



165

1°66:¢z:10=Pur3 Sur3aels 1°65:Zz:10=Purl SuT3Iels

s3Tun adeg

auoydoldTy pue 1333WOUWSTIS auoydoadT pue 1233WOWSTIS
Spuo2as spuooas
Y010 201 "0 1’0 900 960 °0 E&-n 210 } 0 90°0 0 ¥0°0 20°0
SI
8!
- 4
\ ol
An ANV .
<1< f v o
c
B
@
0n
or
(0,°]
s -]
o0l




166

1°65:Z77:10=Purl 3urlaels 1°65:7Z:10=2wWT3 Surlaels

K31AB) 3ISATJ A3TAR) 3ISITJ
3yl o3 oeqpaaj Aduanbaij moT] 3yl 03 oeqpea23 Aouanbaiy moT]
Spuod3s Spu0das
Y010 2010 10 960°0 Eﬁ«- 2010 w0 9 0 0 P
05l - 0si -
>/ \./ 0ol - 1l : i b A 00} -
U VA LN \ WAL A
Y, ~ = 1\ [ 3 VR o ks
v,
c
g
=
s = os
sl os!
ook 002

satun adej



167

Bibliography

1]

(2]
(3]

(5]

(€]

[7]

(8]

J.H. Taylor and J.M. Weisberg, The Astrophysical Journal 253, 908-920,
(1982).

J. Weber, Physical Review 22, D1302, (1969).

S.P. Boughn, W.M. Fairbank, R.P.Giffard, J.M. Hollenhorst, E.R. Mapoles,
M.S. McAshan, P.F. Michelson, H.J. Paik, and R.C. Taber, The Astrophys-
ical Journal 261, L19-L22, (1982).

G.E. Moss, L.R. Miller, and R.L. Forward, Applied Optics 10, 2495, (1971).

A proposal to NSF: Caltech/MIT Project for a Laser Interferometer Gravi-
tational Wave Observatory, unpublished, (1987).

M. Hereld, “A Search for Gravitational Radiation from PSR 1937+214,”
Caltech Ph.D. Thesis, (1984).

J. Livas, “Upper Limits for Gravitational Radiation from Some Astrophys-

ical Sources,” MIT Ph.D. Thesis, (1987).

D. Dewey, “A Search for Astronomical Gravitational Radiation with an

Interferometric Broadband Antenna,” MIT Ph.D. Thesis, (1986).



168

[9] K.S. Thorne, “Gravitational Radiation” in 300 Years of Gravitation, eds.

S.W. Hawking and W. Israel, Cambridge University Press, (1987).
(10] B. F. Schutz, Nature (London) 323, 310, (1986).

[11] C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W.H. Freeman
and Company, San Francisco, (1973).

[12] S. Weinberg, Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity, Wiley, New York, (1972).

(13] M.E. Zucker, “Experiments with a 40 Meter Interferometric Gravitational
Wave Antenna,” Caltech Ph.D. Thesis, (1988).

(14] R.L. Forward, and D. Berman, Physical Review Letters 18, 1071, (1967).
[15] P.C. Peters, and J. Mathews, Physical Review 131, 435, (1963).

(16] P.C. Peters, Physical Review 136, B1224, (1964).

[17] S.L. Smith, Physical Review 36 D2901, (1987).

(18] J.P.A. Clark and D.M. Eardley, Astrophysical Journal 215, 311 (1977).

[19] J.P.A. Clark, E.P.J. van den Heuvel, and W. Sutantyo, Astonomy and As-
trophysics 72, 120, (1974).

[20] J.R.Bond and B.J. Carr, Monthly Notices of the Royal Astronomical Society
207, 585, (1984).

[21] M. Zimmerman and K.S. Thorne, in Essays in General Relativity, ed. F. J.
Tipler, p. 139, Academic Press, New York, (1980).



169

[22] R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley,
and H. Ward, Applied Physics 31, B97-105, (1983).

(23] R.W.P. Drever, “Interferometric Detectors for Gravitational Radiation,”
Gravitational Radiation, NATO Advanced Physics Institute, Les Houches,
eds. N. Deruelle and T. Piran, North Holland Publishing, (1983).

[24] R. Weiss, Internal report, unpublished, “Noise Sources in the LIGO,”
(1988,unpublished).

[25] S.E. Whitcomb, Caltech internal report, “Shot Noise in the Caltech Gravi-
tational Wave Detector—the Mid-1984 Configuration,” (1984,unpublished).

[26] G. Gutt, Caltech internal report, “Seismic Noise in the Caltech Detector,”
(1986,unpublished).

[27] C.M. Caves, in Quantum Measurement and Chaos, eds. E.R. Pike and S.
Sarkar, p. 195, Plenum, New York, (1987).

(28] R. Spero, Caltech internal report, “Optimum Modulation Index,” (1986,un-
published).

[29] C.M. Caves, Physical Review 23, D1693, (1981).

(30] M. Xiao, L.-A. Wu, and H.J. Kimble, Physical Review Letters 59, 278-281,
(1987).

[31] A. Bostick, in preparation.

[32] A. Rudiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Mais-
chberger, Opt. Acta 28, 641, (1981).



170

(33] J. Clapp, Caltech internal report, “Geometrical Fluctuations in a Fabry-

Perot Interferometer,” (unpublished).

(34] D.Z. Anderson, J.C. Frisch, and C.S. Masser, Applied Optics 23, 1238,
(1984).

[35] D.Z. Anderson, Applied Optics 23, 2944, (1984).

[36] L.A. Wainstein and V.D. Zubakov, Extraction of Signals from Noise, Dover,
New York, (1970), p. 86ff.

(37] H.D. Helms, IEEE Transactions on Audio and Electroacoustics 15, 85-90,
(1967).

(38] R.L. Burden, J.D. Faires, A.C. Reynolds, Numerical Analysis Prindle, We-
ber and Schmidt, Boston, (1981).

[39] E. Amaldi, et al., “First Gravity Wave Coincidence Experiment Between
Three Cyrogenic Resonant-Mass Detectors: Louisiana-Rome-Stanford,” in

preparation.
[40] M.E. Zucker, private communication.

(41] M. Born, and E. Wolf, Principles of Modern Optics, Pergamon, New York,
(1980).



