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ABSTRACT

A theoretical analysis was performed on the linear dynamic
equations of thin cylindrical shells to find the error committed by the
Donnell assumption and the neglect of inplane inertia.

The Donnell approximation was found to be valid at high
frequencies as compared to the ring frequencies, for all admissible
sets of boundary conditions for finite length thin shells.

The error from neglecting tangential inertia is appreciable for
long circumferential and axial wave lengths, independent of shell
thickness.

The effect of boundary conditions was investigated from an
exact solution of the linear eigenvalue problem. The inplane boaundary
conditions proved to be very influential in the neighborhood of the
minimum frequency. An approximate technique which accounts for the
inplane boundary conditions was then developed and shown to be in good
agreement with the exact solution.

Finally, the effect of an elastic end ring on the eigenfrequencies
was studied. The out-of-plane and torsional rigidities of the ring were
found to govern the overall shell stiffness. Considerable mode inter-
action was noticed at low circumferential wave numbers for low values
of ring stiffness. The computed eigenfrequencies were found to be in

good agreement with the experimental results.
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NOMENCLATURE

Area of ring cross section
Shell mean radius

Ring mean radius

Mean radii ratio

Shell flexural rigidity
Young's modulus of elasticity

Moment resultants of ring

Shell thickness

Ring thickness

2
Principal moments of inertia of ring cross section
Effective moment of inertia in torsion
Nondimensional change of curvature of shell
Shell length
Nondimensional shell length
Shell nondimensional moment resultants
St ress resultants of ring

Shell nondimensional normal stress resultants

Number of half axial waves
Number of circumferential full waves

Shell nondimensional shear resultants



Nondimensional radius of gyration of shell cross
section
Nondimensional out-of-plane radius of gyration of

ring cross section
Nondimensional inplane radius of gyration of ring

cross section

Nondimensional polar radius of gyration of ring

cross section

Nondimensional radius of gyration in torsion of

ring cross section

Out-of-plane ring stiffness factor

Inplane ring stiffness factor

Nondimensional axial wave length parameter

Time

Shell displacements

Nondimensional shell displacements

Ring displacements and rotation about its center

line (Z axis of ring)

Nondimensional ring displacements

(weight of ring /weight of shell) Weight ratio
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Orthogonal coordinate system for ring
Running coordinate in axial direction for shell

Nondimensional axial running coordinate

Rotation of ring cross section about its center line
Membrane strains of shell

Running coordinate in circumferential direction
Poisson's ratio
Density of shell material

Nondimensional time

Axisymmetric ring frequency

Nondimensional frequency
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APPROXIMATIONS IN THE EQUATIONS OF MOTION OF THIN

RINGS AND SHELLS
1. INTRODUCTION

The problem of determining the stresses and displacements of
shell structures subjected to time dependent loading, has been treated
by various methods. Techniques, such as finite elementsi or finite
differences and direct integration of the time dependent equations are
very popular. These techniques are not very well suited for parameter
studies due to the computer time involved. However, they become
essential when dealing with complex flight structures. For detailed
studies concerned with the effect of boundary conditions, isolategi rings
etc., a direct attack on the differential equations is preferable as long
as the structure studied is simple in geometry. Unfortunately, when
this is done, one immediately is faced with the difficulty of deciding
which differential equations are to be used. This same problem occurs
with the use of finite element approach, but does not add greatly to the
difficulties. If the differential equations are to be used, one would like
to simplify consistently these equations as much as possible and yet
retain their accuracy. Such a desire was the motivation for this study.

Many investigators have discussed the consistency of various
shell equations governing the static analysis (Refs. 1to 12). Most of
this work was based on a relative order of magnitude estimate of terms
in the strain energy expression. A few studies have been carried out

for the dynamic shell equations. However, most of these have been
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concerned with derivations of new sets of equations, and have not been
a consistent study on accuracy (Refs. 13, 14 and 15).

Forsberg (Ref. 16) has discussed the natural frequencies of
cylindrical shells and the effect of various parameters on these
frequencies. However some of his general conclusions are somewhat
in doubt. In addition, sufficient information is not given in his work
to estimate the error made in neglect of certain terms in.the governing
equations.

This work has as one of its major goals the determination of
the actual errors involved when one or more terms in the governing
equations has been eliminated. In order to present a complete picture
of the cylindrical shell frequency spectrum, the analysis is divigied in-
to three portions. In the first portion the ring is studied. In the
second portion the cylindrical shell with classical simply supported
edges is studied. In the final portion the influence of boundary condi-
tions is considered. The work is divided in this manner since it has
been possible to provide an accurate estimate of the error introduced
in the approximate cylindrical shell equations, by comparing the
resulting frequency to the ring frequency. This will be discussed
further. The analysis will cover a range of frequencies with mode
shapes having thirty or less full waves in the circumferential direction
and six or less half waves in the axial direction. This is the range of
interest for response modes resulting from smoothly varying external

loads.
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2. EXACT EQUATIONS AND SOLUTION FOR FREE VIBRATION

A. Method of Comparison

The exact solution of all linear elastic response problems can
be represented in the form of an eigenfunction expansion. The
generalized coordinates in this expansion are functions of the eigen-
frequencies. It seems then logical to compare the approximate
equations of motion with the exact ones, by looking at the difference
between their corresponding eigenfrequencies for the free vibration
problem. An error is defined as follows:

w
ez_aELr'_l

Wexact

B. '"Exact'" Equilibrium and Constitutive Equations

The equations of equilibrium and the corresponding set of
constitutive relations, derived by Koiter (Ref. 9) will be referred to
throughout this work, as the "exact'' equations of motion. Koiter's
derivation is based upon Kirchhoff's hypothesis and the uncoupling of
the membrane and bending energies. These dynamic equations include
the following quantities which are sometimes neglected in the simplified
equations:

1. Inplane displacements in the curvature relations

2., Transverse shear force in the inplane equilibrium

equations
)2

in the inplane shear force n

h
3. Order (; <0

(i.e., n_g = nax)



4, Tangential inertia
5. Rotary inertia
In terms of nondimensional quantities, the "exact" equilibrium

equations and constitutive relations can be written as follows:

anx i Bﬁxa i 62u
Ix EL] o 2
T
aﬁx& 3 Bnea 1 Bzv @ -
ox ae 812 6
2 2 2
9 m 9 m 9 m 2 2
5 -2 axaoxa % -+ n, = > - # _az (v2w)
ox 00 0 aT
Nex = fxx ¥ veﬂﬂ
n00 = €gp T Ve (2)
- _ 1-w
xf 2 ExB
nxG — ﬁxO + mx0
nﬂx = ﬁxﬂ
)= wk . F vk )
XX 06
m = rz(k + vk_ )
66 06 %K
2
m, =T (1-») kxo
om om
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The coordinate system and resultant forces and moments are shown in

Figure 1. The geometric parameter ''r'" is defined as:

_h
V12 a

r =

The strain-displacement and nondimensional curvature-displacement

relations are given below:

_ ou
fxx T Bx
.. u A¥
- g
_ 9v , du
‘“06 = ax ' 38
(3)
azw [
k = - —2
A ox
% .. B%
I (——2 + —)
06 EY:) 980
_ ov
k0 = ~“'mmt =

Substituting (2) and (3) in (1) we obtain:

’ ; (i,5= 1,2,3) (4)

Dij is a symmetric matrix of linear differential operators given in

Appendix Ia.
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The above operator matrix can be diagonalized in "u'" and "v"
and the resulting uncoupled differential equations are given in

Appendix Ib.

C. Exact Solution for Free Vibration

For simplicity, we assume both edges to have simple support

of the following type:
n R M =Oatx=0andx=£ (5)
XX

Such boundary condition will be referred to as ''SS1/SS1". As is well
known, system (4) with boundary conditions (5) admits an exact

solution of the form:

u(x,7) = u cos sx sin @r1
mo
(n =0)
- . ~
wi(x,7) = w sin sx sin WT
mo
v (6)
u(x, 8, 1) = u cos sx sin nf sin wr
mn
vix,0,71) = v sin sx cos nf sin@T (n2>21)
mn
wix,0,7) = w sin sx sinnf sinWT
mn

Upon substitution of (6) in (4), the following set of homogeneous

algebraic equations is obtained:

umn
] {i;3 = 1,3 for n=0)
v =0 (7)
1 e (i,j=1,2,3 forn>1)
wW
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[Lij] is a constant symmetric matrix given in Appendix Ic. System

(7) has a nontrivial solution if and only if:

det [Lij] = 0 (8)

3. THE RING

A. Asymptotic Expressions of @ and 'V‘"n for Small (rn)

For the special case of the ring (or an infinite length shell), we
put u = aix =0 in (1), (2), and (3). This leads to an eigendeterminant

of the form:

det I:Lij] =0 (i,j =2,3) ' . (9)

[Lij] in (9) is a symmetric matrix with the same coefficients as in
(8) when "'s'" is taken equal to zero.
For fixed values of the geometric parameter ''r'", the solution

of (9) leads to the following results for n =0, 1.

For n=0, '('.'»'2 =]—w-= W, ("w'' motion)
For n=1, _?.:'Z = 2——w=V2 w, ("v'"" motion)

For n 2 2, two distinct eigenfrequencies are determined;
e $HF (high frequency root, ''v'' predominant motion)

b. (low frequency root, ""w' predominant motion)

"1
The expression for @ from equation (9) is as follows

e

w —

where b, c, d, e (functions of r and n) are given in Appendix Id.
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For thin rings (r = 0(10_3)) and for n < 30, the right hand side of (10)

can be expanded in Taylor series in powers of ''rn''. This leads to

the following expressions for the eigenfrequencies:

2, 2 .2 2
'(:”Z - (rn) (D 'l) (l-(rn) ]+ 0(1‘!1)4
LF (nZ 1)
(11)
2 -

2 Z
(n2+l) (1 + (rn) 2(7n 5 1) )+ 0(rn)4
(n” +1)

The displacement ratio ?r'n can be calculated from (9):

v 2
2-g = Mlm L a5 1(12)
n 'asz-n (1+r")

Expanding this ratio in powers of ''rn'"" gives the following results:

2. 2
¥) =-= (1 + Zrn) (= '”) + o(rm)*
LF n +1
2, 2
ol =8 (1 " i"—‘%M)+ Oten) ™ (13)
HF n +1

B. Error in @ and t;n from Simplifications in the Equations

The expressions for the frequency and displacement ratio will
now be calculated when certain terms are neglected in the differential
equations. The objective is to determine the errors in these

quantities that result from these simplifications. The terms that will
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be neglected are shown in the table below.

Notation Referring to

B L kij "v!' terms in curvature
qﬂ Transverse shear

32; : 82; Tangential inertia

or or

r2 :22 (Vzw) . Rotary inertia
T

Neglection of the first two terms in the table, are the simplifications
that lead to the Donnell equations for a cylindrical shell. The third
term is the inplane inertia which is commonly neglected in dynamic
shell analysis. The last term, the rotary inertia, is neglected in
most analyses and will also be shown here not to contribute for small
wave numbers.

The complete results from a systematic study of these effects
are given in Table I and II. The conclusions are summarized in the

next section.

C. Conclusions
1. The high frequency root and its corresponding displace-
ment ratio are unaffected by all approximations except tangential inertia

which when neglected, will delete this frequency.
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2. The error in the low frequency from all approximations
except rotary inertia, is of order (n'z) for relatively large "n''. It
can thus be considered a high wave number or a high frequency
approximation. The per cent error in the ring eigenfrequencies is
shown in Figure 2.

3. is nearly unaffected by all approximations; the

ValLF
error involved is of the order (rn)4. Consequently, we conclude that
the Donnell type equations are inaccurate when calculating the low

frequencies for a ring at low circumferential wave number.

4. THE CYLINDRICAL SHELL WITH

BOUNDARY CONDITION SS1/SS1

L

The effect of the various approximations on the eigenfrequencies
of a cylindrical shell with boundary conditions SS1/SS1 will now be
discussed in detail. The governing differential equations are given in
matrix form by equation (4). The eigenvalue problem for free vibra-
tion reduces to the set of homogeneous algebraic equations given by (7).

The eigenmatrix [Lij] can be written in the form:
] = Lo~ - 3% o] - )
1] 1) 1) 1)

[I] is the unit matrix. . LY €. | and € are given in
ij ij 33

Appendix Ic. tij represent corrections to C4 when allowing for

i (14)

m O O

33

"v in k.. and LIS € is the correction in 'G,’Z when allowing for
ij qa 35 8

rotary inertia. For a nontrivial solution of system (7), the
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determinant of [Lij] must vanish. Since [Lij] is a real symmetric
matrix, its eigenvalues are all real, and the eigenvectors corres-
ponding to distinct eigenvalues, are orthogonal. Thus, for each
combination of n>0 and m, i.e., for each mode shape, there exist

three distinct eigenfrequencies:

1. :;LF (Low frequency, "w' predominant mode)
2. a‘IF (Intermediate frequency, ''u'"' predominant mode)

3. z;HF (High frequency, '"v'" predominant mode).

A. Low Frequency Root

Asymptotic expressions for the error in a;LF that results
from the different approximations, will be derived in this section. It
is shown in Appendix II that the error in G‘LF caused by the neglect
of "v in kij and qe” does not depend on whether or not tangential
and rotary inertias are included, and vice versa. As a consequence,
it is also shown in the same Appendix that the error in the low
frequency root, resulting from all approximations, is nearly equal to
the sum of the errors resulting from each approximation when per-

formed separately. Using the subscripted variables as in Table III,

we can express the above statement in symbolic form as follows:

% %

et.~_..e1 + e, + e3
(15)

'zel + e2 + e3

Thus for simplicity, two of the effects will be neglected when

discussing the third effect.
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i Sk T i " 2 " :
i. Error in @ by Neglecting '"'v in kij and dg and its

Relation to e .
ring

From Appendix II equation (5):

e*-ue = ) 2 r2 (Zsz+ nz)2 (an- 1) - lezs‘}(n2 - 2)]
: ) Co 2 r:'r(sz+n2)4 + (1 - vz)s4 (16)
In the limit when (s/\/rn4) — 0: |
n2
= a b2 wa 17
1 nZ 4 ermg (17
2. 2 \(1-+2)s? 4
If n* 3> s~ such that = = 0(n”), then:
6 a |
n
e oy (18)
1 2, 4
n8 + (1-»7)s

r

e. as given by (18), has a maximum at n =T where:

1

<8 10 s poy

2
r
(19)
e N 3 : 33/4 r1/2
1'max 4?{2 4(1_"2.)1/43

This maximum error in frequency calculated in the above equations
does not necessarily occur at low circumferential wave numbers as
has been found for static problems. In fact, it will be shown below

that this maximum error occurs very near to the minimum frequency
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for the shell. In addition, this maximum error can be related to the
error for an infinitely long shell or a ring, at a frequency equal to
the minimum shell frequency. Let "A" be the value of ''n" at which

~

o= (:)min’ then from equation (3) of Appendix III:

2.1/4
a2 o) s (20)

r {

From (19) and (20) and equation (5) of Appendix III we obtain:

3
3/4 1/2
| A - g(g— ) 2. r  _0.805 T (21)
4h B min @ min

But o 'z—f,— for n>2, thus:

ring w

(el)max ~ 0.805 ering (22)

1 a‘mi.n
where e . is evaluated at — = . A master chart for the
. ring r T

maximum error derived above is shown in Figure 3. A summary of
the above results is given in Table IV.

In further studies to be carried out in this work, it is
convenient to neglect 'v in kij" and still study consistently the
effect of neglecting both ''v in kij" and "qe". Such a simplification
is justified by the following argument.

Since Lij in (7) is symmetric, then it follows that the
effect of neglecting '"v in kij” only, is exactly equivalent to the
effect of neglecting ”qe” only. Also since e _~e, + e

t 1 2

shown in Appendix II, then neglecting any of the above terms will

£
e3 as

contribute to nearly half the total error from both effects.
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ii. Error in ?';LF by Neglecting Tangential and Rotary

Inertia
The first two differential equations in (4) can be uncoupled in
"u" and "v'" to give the following two fourth order differential

equations (Appendix Ib):

L (u)

%fl(W)

&L (v) =€2(w) (23)
2 2
L - (2. 2yl 2 9
a—rz)v = 81'2)

For free vibration, these operators take the form of equation (5b) of
5
Appendix Ib. From the nature of the operator "_f ', we note that

the effect of tangential inertia is noticeable if:

2= &%)~ 0(n®) ~0(s%) (23a)
i.e., at low circumferential and axial wave numbers
n £ 3, —j- >2 (23b)
m

For boundary condition SS1/SS1, the characteristic equation

(dispersion relation) is given by:

. & =0 (n >1) (24)
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~ 4 = L2 —
mz-CIwZ+Co =0 (n = 0)
G, Y . (25)
c =B (i S +rzs4)
(0]

Ci (i=1,2,3,0) are given in Appendix II equation (2). Asymptotic

- ~~r -
expressions for w5, and e, are now derived for small and large

2
values of "n'". For n =0, &, is obtained by solving (25). For n =1,
2
2, -f%- can be neglected as compared to ax , thus (24) reduces to:
aT : 812
~ ~4 ~ ~2 ~ _
Czwz-Clw2+Co =0
2
- 2s
C2 =, n + T o
(26)
S, = (P +n®)? +2(149)s® +n° 4 &, r%(s%+n%)?
~ 2
C.0 = (1 - 112):-';4 +r (sz+nz)4
For n 2 3, we have from Appendix II equation (4):
o JC - 4C C
s (27)
2
4C0C2 4COC2
Since ——— &£ 0(1), (27) can be expanded to 0 e o in powers
C C
1 1
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of the same quantity. The results are summarized in Table V. The
per cent error in a cylindrical shell with boundary condition SS1/SS1
by neglecting tangential inertia is shown in Figure 4.
The error in a;LF by neglecting rotary inertia is given by:

r2(s24 z)
e, 2%_“_ (28)

3 is negligible in the range of m, n and r for which this work is
valid, i,e., 0SN<30, 1Em3S86, r< 10-2.

e

B. Intermediate and High Frequency Roots

. . 5 ol s
In the characteristic equation (24), since @ and Wy are

much greater than order unity and, since

2. 2.2 w2 (iw
Co = (s +n) 04(2)
2. 4
sl = 1‘2(952+n2)Z + gl Je &£ 0(1) (29)
w4 2 2.2
(s” +n7)

thus C0 can be neglected as compared to the remaining terms in (24)

2

which are of 0(s™ + nz)z. The characteristic equation then reduces to:

+C, =0 (30)

Asymptotic expressions for a‘IF and a‘HF can be obtained by solving

for @ in (25) and (30). The results are tabulated in Table VI.
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C. Displacement Ratios

The displacement ratios u and v defined by:
mn mn

u
mn w mn w

are obtained by solving for u and v from the first two equations in

(7). The resulting expressions are tabulated in Table VII.

D. Conclusions

1. The upper bound of the error committed in the eigen-
frequencies of a cylindrical shell with boundary conditions SS1/SS1 by
neglecting '"v'' terms in curvature and transverse shear, was rcilated

to the simple expression for the error in the ring, derived previously

(el)max ~ 0.805 er.mg

The maximum error occurs nearly at the minimum frequency, showing
that the neglect of the above terms is actually a high frequency

approximation. Asymptotically when w>>wmin, the error e

1
approaches the error in the ring ering_!zﬁ ~ é). From equation (19):
n w
(e hlial Sl gD L. h
Vosx = 46 - o) 7%, J} Viza

it is clear that the maximum error is small for thin and short shells.
In fact the maximum error is less than 6 per cent for an SS1/SS1 shell

with ;-‘é = 6 and % = 144. Consequently, transverse shear and
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inplane displacements in curvature can be consistently neglected for
finite length thin shells with boundary condition SS1/SS1.

2. Tangential inertia has a noticeable effect on the low eigen-
frequencies GLF at low values of circumferential and axial wave
numbers, i.e., n £ 3 and -r—i?-Z. The error e, increases with rTl;
i.e., increases with length for fixed values of the axial wave number
m; but it is nearly independent of the thickness parameter‘ 2— . For

large values of ''n'", the error e, is asymptotic to the error in the

1
rin e
ng ering‘znz
3. W and vmn corresponding to w g are unaffected by

/4

all approximations, except tangential inertia for n< 5 and = 1.
4. @ and “HF and their corresponding displacement

ratios are unaffected by all approximations except tangential inertia,

which when neglected, will delete these frequencies.
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II. EFFECT OF BOUNDARY CONDITIONS ON THE EIGEN-

FREQUENCIES OF FINITE LENGTH CYLINDRICAL SHELLS
1. INTRODUCTION

The analysis of linear and nonlinear response of shells of
revolution due to external loading, has been studied previously without
much consideration of the boundary conditions (Ref. 17). 1Most of the
work was carried out for infinitely long shells thus deleting the
boundary effect, or by assuming the classical simply supported
boundary condition (SS1/SS1) at both ends. It is thus of interest to find
how close these approximate calculations are to some exact analysis
which includes the effect of more realistic boundary conditions. .

Before going into the complicated problem of the response, the
boundary condition effect is at first studied on the small amplitude low
eigenfrequencies of a cylindrical shell. This gives an estimate of the
effect of boundary conditions on the linear response problem, since
the low eigenfrequencies enter in the evaluation of the generalized
coordinates, when an eigenfunction expansion type solution is assumed.
Previous work in this subject was done by Arnold and Warburton (Refs.
18 and 19), and by Weingarten (Ref. 20), but their analysis was
approximate. Forsberg (Refs. 21 and 22) used the same technique as
in this work, to obtain an exact solution of the equations of motion. He
considered the effect of boundary conditions on the low frequency
spectrum envelope (i.e., the minimum frequency for all modes with

one axial half wave) without giving insight to the effect for other
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modes, ‘and the range of circumferential and axial wave numbers for
which this effect is noticeable.

Unfortunately, the exact solution is convenient only for the
special case of a cylindrical shell, since the governing differential
equations have constant coefficients. Also, a closed form relation
for the error in the eigenfrequencies by neglecting ""v'' terms in
curvature, transverse shear and tangential inertia cannot be obtained
from the exact solution for boundary conditions other than SS1/SS1.
Consequently, an approximate method is suggested, which takes into
consideration the inplane boundary conditions that proved to be most
influential. Based on such an approximate solution, an accurate
estimate of the error in the low frequencies by neglecting inplane

5
displacements in curvature, transverse shear and tangential inertia
is obtained for boundary conditions other than SS1/SS1.

Finally, a more practical boundary condition of a shell with an
elastic ring at one end and with complete fixity at the other, is
considered. The effect of the ring rigidities on the eigenfrequencies

of the ring-shell system is studied.

2. GOVERNING EQUATIONS AND EXACT SOLUTION
FOR ANY BOUNDARY CONDITION

A. Method of Comparison

The classical simply supported boundary condition (SS1/SS1),
as defined in equation (5), will be taken as a basis for comparison.
For some boundary condition and for a particular mode shape, i.e.,
for some '""m'' and '""n'"", the boundary effect will be measured by looking

at the difference between the eigenfrequency with such a boundary
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condition and the corresponding eigenfrequency of SS1/SS1. A

n"difference'' is now defined as follows:

[N
€2

= - 1 (for the same m and n)
wss1

B. Equilibrium Equations

Based on the results of Part I, the following terms will be
neglected:

1. "v'" terms in curvature and transverse shear

2. Rotary inertia
However, tangential inertia will be included since the error caused by
neglecting it is large at low circumferential wave number (n< 3)§and
for relatively long shells (ém 2 3). For free vibration, the resulting
uncoupled system of equilibrium equations in terms of displacements

is as follows:

dw0
dole) = o
(n = 0) (31)
Rywy) =
L) =& w)
n
L (v) = 82n(wn) (n 2 1) (32)

R, %)

i
I
&l
N
B‘ﬁ
€
5\-‘
»
W
] 1
(1R
N
| SRS
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The operators in the above differential equations are linear and
ordinary with constant coefficients (see equation (5d) of Appendix Ib)
where o(rz) was neglected in -gl and gz . Since the above
operators are self-adjoint, the soh.?tion of th¢:1 eigenvalue problem in
(31) and (32) leads to two and three real eigenvalues respectively for

each particular eigenfunction. This is similar to the special case of

SS1/SS1.

C. Exact Solution of the Differential Equations

The last of equations (31) and (32) admits an exact solution of

the form:

*
]
Ao X K _ )
w(x)=E A ,e W (J*-6forn-0) ? (33)
(j =8fornz21)

Upon substitution of (33) in (31) and (32), we obtain the following

""characteristic equations' (dispersion relations):

6 4 2 ) )
ColD) Agi # C(2) Aji +C(3) A+ C_(4) =0 (n=0)
(34)
8 6 4 2
Call) A5+ € (2) 20 +C (3) Ao+ C (4) AL, +C,(5) =0

(n > 1)

The coefficients Co(i) and Cn(i) (function of n, r, @, v) are given
in Appendix IV. The type of roots of (34) changes with w and n.
This is shown in Table VIII. The solution of (31) and (32) can also be

written in the following real form:
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j*
w_(x)= an P .=}
j=1 .
w (x) = &L [ m“%’] =Z 2iCn; (@) (35)
i=1
v (x) =£;l [gzn(wn)] = anHnj(x)
j=1

(j*=6 for n=0 and j*=8 for n 2 1)

F_.(x), G_.(x) and H_.(x) are real independent functions of ''x"

nj nj nj
(combinations of trigonometric and hyperbolic functions) which éhange
form with the type of roots of (34), and an are real independent
constants of integration. Substituting the expressions given by (35) in
any of the homogeneous boundary conditions of Table IX, leads to a

system of homogeneous simultaneous equations in an:

(i,j=1to 6, n=0)

[?;J] {an} -0 (36)

(L,ij=1%8, n2 1)

System (36) has a nontrivial solution if and only if:

det [T ] =0 (37)

nij

All boundary conditions, except SS1/SS1, lead to an eigendeterminant
P
(37) which depends on both geometrical parameters 4 and % , and
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which is singular only for values of @ = @) For the

resonance’

special case of boundary condition SS1/SS1, the eigendeterminant (37)
can be expressed as a product:
det [7] - Fidy - det [EZ]
nij n 2 ij
* 0. : : W
Fn(z) is formed of the independent functions Fnj(x) given in (35),
%
evaluated at x = -g ; and det ij]is independent of é . The
o
dependence of @ on g’ implies that det [9;]] cannot vanish at

2y ~ 3 - .
w=(ad) . As a consequence, F (—!—) is equal to zero. This
resonance n'2

gives rise to the well known one term trigonometric solution for

boundary condition SS1/SS1. Details of the proof, are given in

'

Appendix V.

The following boundary effects were studied:

1. Axial displacement restraint (SS2/SS2)
2. Circumferential displacement restraint (SS3/5S3)
3. Slope restraint (FX1/FX1)

4. Combined effect of slope and axial
restraint (i.e., total fixity) (FX2/FX2)
5. One free boundary (the cantilever
modes) (FX2/FR )
The symbols used in the above boundary conditions are given in detail
in Table IX.
The computations of the exact low, intermediate and high
frequencies and their corresponding eigenvectors and stress field,

were performed on an IBM 360-75 machine. Figure 5 and 6 show the
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low frequency spectrum and corresponding per cent difference (°/o d)

for a shell with boundary condition SS2/5SS2, where

@ boundary condition 1)

ED'SSl

©/o0d = 100 (

We note that the maximum °/od occurs in the neighborhood of the
minimum frequency. The range of circumferential wave number ''n'
in which the boundary condition is effective, becomes wider the
larger the axial wave number ""m'', although the O/Odmax decreases
with "m'. Figures 7 and 8 show the low frequency spectrum and
corresponding ©/od for a shell with boundary condition FX2/FR. In

this case we note that the boundary condition is effective even at
»

n = 0 and 1 for the cantilever mode (m = 0). This is in contrast to
boundary condition SS2/SS2. In both cases, the ?/od decreases with
""m' for small '""n'" and the effect is reversed for large ''n'"'. The steps
necessary to find the eigenvalues and eigenfunctions are as follows.
First the frequency is assumed. The characteristic equation (34) is
solved numerically to find the eight roots (for n> 1) or six roots

(for n = 0). Depending on the type of the roots (see Table VIII), the
form of the solution is determined. Next the coefficients of the eigen-
determinant are calculated and its value found. The frequency is

then increased by a predetermined amount and the procedure is
repeated to find the new value of the eigendeterminant. A change of
sign of the eigendeterminant indicates that an eigenfrequency lies

between the two assumed frequencies. An iterative procedure is then
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used to obtain the exact eigenfrequency to any degree of accuracy

8

(taken as 10 "). Once the eigenfrequency has been determined, the

eigenvector is found by solving a set of linear simultaneous equations.

D. Conclusions

1. The inplane boundary conditions, i.e. n__, n_,, uandyv,
xx’ x86
have an appreciable effect on the low eigenfrequencies in the
neighborhood of their minimum. The difference ''d" as defined in
Part II, Section 2A, is large even for axial wave numbers greater

than one. The range of circumferential wave number ''n" for which

the inplane boundary conditions are influential decreases with the

Sl =a

increase of -g and , although the maximum difference ''d" increases

»
a

%
with the increase of g and 5

2. Out of plane boundary conditions, i.e. , m__, wand

qX.X XX

2,/

w', are effective only for thick and short shells, (r>0(10""), = < T)s
3. Inplane boundary conditions have little influence on the
intermediate and high eigenfrequencies.
4. Boundary conditions with axial displacement restraint at
both ends, have the effect of deleting the mode with one axial half
wave in the intermediate frequencies for all ''n'", as well as the low

frequencies for axisymmetric modes with n = 0.
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3. APPROXIMATE SOLUTION OF THE
DIFFERENTIAL EQUATIONS WITH CONSIDERATION

OF THE INPLANE BOUNDARY CONDITIONS

The exact solution of the eigenvalue problem as described in
Section 2C of this part, necessitates the use of a digitial computer to
calculate the roots of the characteristic equation (34), since these
roots are complicated functions of the eigenfrequencies. Consequent-
ly, a ""closed-form'' relation for the error in the eigenfrequencies
caused by neglecting '""v in kij” and "qe" or tangential inertia, is
rather impossible to obtain when considering the exact solution,
except for the special case of boundary condition SS1/SS1 as shown in
Part I. An alternative is thus to establish the general trends usjing a
different kind of solution that retains the accuracy of the exact
solution.

The method described in this section applies only to geome-
tries for which uncoupling of the inplane displacement equations in
"u'"'" and ""v'"' is possible. For simplicity, "v'" terms will be neg-
lected in curvature. For free vibration, the governing sets of

ordinary differential equations are:

(n=0) (38)
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Ly [r] = €1y [wato]
L [vn(x)] - €, [wn(x)] (n 2 1) (39)

du_ (x)
et en s e 8 o]

Above operators are given by equation (5d) of Appendix Ib. If the
right hand side of the inplane equations in (38) and (39) is considered
as a known forcing function, then the exact solution of these inplane

equations can be obtained by the method of '""Variation of Parameters'.

This solution has the form:

2
u_(x) :Z;‘ 0 Goj® * ﬁ’ Cwo(rs)J H (x-£) & (n=0) (40a)
4 RTINS
u_(x) = 2 By Gy ) 481, |wnl®)| 1, x-)
s x (n>1) (40Db)
v (x) = : B yiCrni ™) +f Bor Lwnm? H_ (x-£) df

B_., B . are independent constants of integration; G_.(x) are known
nj nj nj

independent complementary solutions, and Hn(x) is a known kernel
whose form depends on an(x). ﬁnj can be expressed in terms of
an (for n 21) by substituting the complementary function of (40b)

in the homogeneous part of either of the inplane equilibrium equa-

tions before uncoupling.
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Let us choose the first equilibrium equation:

. aﬁ)un(x), (83 = n°- 2= 3%

n(l+v) dvn (x) =(dz
2 dx dx

(41)

We now have sufficient constants (an) which can be used to sétisfy

exactly all inplane boundary conditions. Eliminating un(x!) and vn(x)
from the last of equations (38) and (39), by the use of (40a) and (40b)
respectively, we obtain an integro-differential equation in the
unknown ”wn(x)”:

(a1 - ) w (0 +Kw (x) =0  (n20) (42)

Equation (42) is exact and the previous steps in its derivation do not
involve any approximation. Finally, wn(x) is expressed in the form
of a complete orthogonal set, chosen preferably so as to satisfy all

out-of-plane boundary conditions:

w_(x) :i ap; Woi) ;" finite) (43)
j=1

The generalized coordinates "anj" are determined by applying an
averaging method (Galerkin method) on (42). This leads to a homo-

geneous set of algebraic equations in "anj”:

[?:ij_] {anj}: 0 i = 1,200 0005 ) (44a)
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which has a nontrivial solution if and only if:

det [f] =0 | (44b)

nij

Details of the above approximate method, when applied to boundary
condition SS2/SS2, are given in Appendix VI. .

The low eigenfrequencies for a shell with = =3 and r =
5. 10'4, were computed with the approximate method for boundary
condition SS2/SSZ and compared with the exact solution in Table X.

The error in the approximate frequencies was always less than 0. 1°/0

when an eight term series was taken.

4. EFFECT OF APPROXIMATIONS ON aLF

FOR BOUNDARY CONDITIONS OTHER THAN SS1/SS1

: Mo : My 3 " ey 1
A. Error in @ by neglecting '"'v in kij and 9

for Boundary Conditions other than SS1/SS1

The approximate solution developed in the previous section
will now be used to determine the error in the low eigenfrequency
resulting from the neglect of '"v in kij" and "qe” in the governing
equations. This error can be studied consistently by looking at the
effect of “qe" only, since it has been shown previously in this work
(Part I, Section 4A)that the error committed when neglecting both

"v in kij” and "qe" is nearly twice the error resulting from the
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neglect of either "v in kij” or "qe". Furthermore, tangential inertia
will be neglected, based on the results of Appendix II.

Consider the boundary condition SS2/SS2. The governing
differential equations, solutions and corresponding eigenmatrix are
given in Appendix VI. First, we make the following change of
variables:

o2 - % 4 ron? (45)

The eigenmatrix [?;ij] can then be written in the following form:

[?..] = [M.. P R a.] (46a)
ij ij ij ij !

4
]
| ——
-4
&
]
Y]
$ (38}
(=21
Lo
o+
L
LSS
»
E)
|
b
w
. N
]

(H-v)s2
o s i 1+ 2 2 '
M = M..J= |- s V. & —— . (0" +al) R, 46b
| [ ”] (+ndy M I IR R | B
sij=1 for i =j, 5ij=o for i#]j

Pij’ sj and $i24 are given in Appendix VI, equation (20b). For

boundary condition SS1/SS1, the maximum error (el)max from the

above approximations occurs at n =T as given by equation (19):
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1/2
¥ = (3(1-v2nl/8 2 e
T

1/2 1/2
wl = 3a-,"yt/e (m"ll)/zt > 2 174
T r

(~24 for £=3, r =5.10"%

It is expected that ng L " will not change its order of magnitude from

the above estimate for boundary condition SS2/SS2. Therefore, Pij

can be expanded in powers of (lql-) for large (nf). This leads to:

4 s8.8.n
i*" goltit 5o} P & —bdo s (47a)
% J J J l(si+n)(sj+n)

[ﬁl.]] then becomes:

e (1+v)s'.?' 4 5. 5. n
Mo lwd - =~ 6. 4 et
111 =

(si 1 ) 3 l(si2+ nZ)(%+ n%

.-
(1+ v)s. 3
oo |- b (8 4 0(—) (47b)
(s.+n") J nf
J
i.e., the nondiagonal terms in [ﬁij] can be neglected to a first

approximation. The eigenvalues > corresponding to the eigen-

matrix (46a), can be expressed in the form of an asymptotic

expansion as follows:



33

(&“‘))2 = (Ea‘(lk))zu(c?:(zk))z + o(ez) (48a)
where

alk).2 k) ~=K

(mz } = (Bl , MBI) (inner product) (48Db)

E(lk) is the eigenvector corresponding to the kth eigenvalue, evaluated

from the solution to 0(1), i.e., from the solution of

[M - a(lk))za] E(lk) < 8 (48¢)
and (@ (Ik))2 is the corresponding eigenvalue. a(lk) represents the

approximate eigenfrequency when '"v in kij” and ”qe" are neglécted.

=(E) _ (1)
By © = {Bl,i}

For the first mode with one axial half wave (m = 1),

Let

(1) (1) (1) Han
B.‘l,l > Bl,i > Bl,(i+1) for all "i (49)

(49) was verified from calculations. Substituting (47b) in (48b):

~

5 ()2 - S ([M] is diagonal) (50a)

. s (1) 2
(w3 = M, +(B; %)

From (47b) we note that

M..— 0 as s;—> © andMii—*(1+v) as s—> @

il
where s. = in (50b)

-



34

hence,

(B{1))2

(1) .2 e
1,20 My <(By o) (1+v)< M

11 (50b)

Using (50b), (50a) simplifies to the following:

1,2 (50c)
Substituting (50c) and (48a) in (45) we obtain:
2
(1+v)s.
-~ 2 s 1 A (1) 2
TR Pl e LR
(si +n)
(51)
{4 adn
~2 Al @ | seld 2 i > 2
Aw )552-((01) - @ )~ (rn) . 1+2—2 = £
(si +n) 5
From Appendix II, equation (10), we have:
o & A < :
Alw )ssl ~ £ (as defined in (51)) (51a)
From (51) and (51a) we have that:
a( ’ssz alw )ssl
Awf)ssZ A('(:;)ssl z"\;ﬁxsl :
; TS = o~ - = (52a)
Wss2 Wssl “sg2 :
Using the definition of the "error'" "e', (52a) can be written as:
(el)ssl
(e}.)ssz o W (for some m and n) (SZb)
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where '"d" is the ""difference' as defined in Part II, Section 2A

~

Wgs2

Relation (52b) was checked with numerical calculations and was found
to be accurate to 0.05 °/o. As an example, if a shell with boundary
condition SS2/SS2 is taken, having a/h = 577.35 and { ='3, the
error in “:;LF for the mode with n =8 and m =1 was found to be
0.73 0/o from the exact solution as compared to 0.76 © /o when

estimated from expression (52b).

B. Error in by Neglecting Tangential Inertia for

@
LF
Boundary Conditions Other than SS1

Based on the results of Appendix II, "'v in kij” and "qe” will be
neglected. Once more, the approximate solution will be used when

applied to boundary condition SS2/SS2. The governing differential

2

For n>3 and @ = & —3—2 £0(1). Accordingly, we can

LF’

equations are given by equations (9a,b, and c) of Appendix VI.
( n ~
expand the coefficients of the eigenmatrix [Sc;ij] (equation (13b),

Appendix VI) in powers of (3)° to 0(2)%. This leads to the

following:
| Z | u® S(f) 2 '
[nij] = LMij - CtMij - 613] (53a)
ty| _ 2 Z 2
[Mij ] = Pij sj(n = vsj ) + '54i 6ij] (53b)
i1 i
& = <o), 5; = l[—
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[~(t)] [( 2 21+ u)s;_4 nz) ]
M.. = + .. +o(€)) (53¢c)
E s.2 + nz (s'.?' 2 nz)2 Y .
J J
Pij’ Gi and & ; are given in Appendix VI, equation (20b). The

i
form of [IVLI(;)] as given above, suggests that its nondiagonal terms
can be neglected to a first approximation. Following exactly the

same line of proof as in the previous section, we finally obtain:

n (sz+ nz)2 P

i

4
~ D 2(1+V)S
we o w2 ( 5 1 + - )+ 52 (54)
8. +

~

UI?’ is the eigenvalue of the eigenmatrix (53a) in the limit when" Et
tends to zero. From the definition of the error (ez) given in Table

III, (54) can be reduced to the following expression:

"
(eg) = 4% = P 14 ot HIPZL . 21 (55)
il = s. +n (s; +n") =

Comparing (55) with the expression of (eZ)ssl given in Table V for

n > 3, we conclude that:

(82)592 - (eZ)ssl (56)

Thus, the effect of tangenial inertia on a'LF is nearly the same for

all boundary conditions. Relation (56) was compared with numerical

calculations and was found to be accurate to 0.01 °/o.




37

C. Conclusion

1. An approximate method has been developed to compute the
low, intermediate and high eigenfrequencies of thin cylindrical shells
with consideration of the inplane boundary conditions. It was found to
be in good agreement with the exact solution (error £ 0.1 o/o).

2. Based on the above approximate solution, a relation was
derived between the error (el) in the eigenfre;quencies by, neglecting

"v in kij" and ”qa”, for any boundary condition, and the corresponding

error in boundary condition SS1/SSI

(e,)
1"ssl
(el)b.c.z

(1+d)%

where ''d" is the ''difference defined by:

°
g = Nb.c. -4

®ssl

This relation justifies once more that the neglect of "'v in kij” and
"qg”, is a high frequency approximation. Furthermore, it also shows
that these terms can be consistently neglectec-i for a finite length shell
with any boundary condition.

3. The error (ez) in the eigenfrequencies by neglecting
tangential inertia remains nearly unchanged for all boundary

conditions for n 2 3, i.e.,

(eZ)b. Ca = (eZ)ssl
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IIL. EFFECT OF ELASTIC END RINGS ON THE EIGEN-

FREQUENCIES
1. INTRODUCTION

Total fixity as well as classical simple supports are seldom
found in practical applications. An intermediate state with elastic
supports is more commonly encountered. A classical example is a
shell with elastic rings at the ends.

The effect of the ring elastitity on the static buckling load of
cylindrical shells was studied by Cohen, G. (Ref. 23). He assumed
a hypothetical ring with no out-of-plane stiffness and concluded that

2EI
total fixity can be realized when the stiffness factor S =——*Y reaches

t

the optimum value of 90. 5, where IY is the inplane momerﬁﬂof infértia
of the ring cross section (E, D and * are defined in the nomencla-
ture). Such an analysis is inconsistent when applied to dynamics since,
as shown previously in this work, the inplane boundary conditions of
the shell are the most effective.. Therefore, the out-of-plane stiffness
of the ring cannot be neglected. Forsberg (Ref. 24) noticed a discre-
pency between the calculated frequencies of a cylindrical shell with
elastic rings and the frequencies determined experimentally, at low
circumferential wave number, when his calculations were based on
the assumption that the shell was totally fixed at both ends. However,

no further study was done concerning the boundary effect due to the

ring elasticity or the stiffness required to reach a state of total fixity.




39

In this part, the effect of the ring elasticity is studied on a
cylindrical shell fixed at one end and with a ring at the other. In the
limit as the ring stiffness goes to zero, the shell approaches the
fixed-free condition. Also as the ring stiffness goes to very large
values, the shell reaches the condition of total fixity. Thus the above
two limiting conditions constitute the lower and upper bounds respec-
tively of the boundary condition in question. The ring cross section is
taken to be a2 symmetric '""H'" section as shown in figure 10. This type
of section was chosen since one can study the effect of eccentricity
between the loading point and the center of gravity of the section, on
the rigidity and efficiency of the ring. Such eccentricity induces a
radial as well as an axial displacement when the section rotates in
torsion about an axis normal to its plane. The axial displacemengt is
responsible for the change in the inplane boundary conditions of the
shell. The symmetry of the section also enables the uncoupling of the
inplane and out-of-plane motions of the ring. Due to the number of
ring geometrical parameters involved, a detailed analysis of the
effect of each parameter is rather impossible. As an alternative, all
geometrical parameters are fixed with the exception of the thickness
ratio "h" (thickness of ring /thickness of shell). The increase in shell
stiffness resulting from an increase in "h" can now be studied by
looking at the increase in the eigenfrequencies corresponding to a

particular mode shape.
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2. EQUATIONS OF MOTION AND EXACT SOLUTION

The effectiveness of the ring as a flexible boundary will be
measured by comparing the low frequencies corresponding to boundary
condition FX2/FXR to those of FX2/FX2 for the same mode shape i.e.,
for the same "m' and ''n''. A difference is now defined as:

wfxr

Wex2

dg -1

The difference "df” gives a quantitative measure of how close the
boundary with the ring is to its upper bound, the totally fixed case.

The stiffness of the ring depends on the principal moments of inertia

of its cross section (Ixx’ IYY) as well as its mean radius ”ar”. A
stiffening end-ring is efficient if the boundary to which it is attaéhed,
can reach the totally fixed condition with a minixnﬁm weight ratio

"Wr” (weight of ring /weight of shell). These factors affecting stiff-
ness and efficiency, therefore suggest the definition of stiffness factors

of the form:

T T
- __?_‘_ , o) -y _X ~
St = F Hy % Sty - rdwr =
where,
/ | I a
r = é..‘!'.. A}O{ s T = a.—]' A—_Y-X’ r = h—_’ '5:= _£
- T T y T r V12 a =

Ar is the cross sectional area of the ring. The out-of-plane stiffness
factor "Stx” will be taken to represent the stiffness of the ring since

it controls the axial boundary conditions of the shell.
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The coordinate system, displacements, rotation and resultant
forces and mements are shown in figure 9. The uncoupled differential
equations in terms of displacements for the shell are given by
equations (1) to (4) in Appendix Ib. The governing differential equa-
tions for the ring, derived by Love (Ref. 1) on pages 397 and 451, will
be used in this analysis. These equations include the following
quantities: |

1. Inplane displacements in curvature

2. Transverse shear in the inplane equilibrium equations

3. Inplane inertia

4. Rotary inertia
It is shown in Part I earlier in this work that the first three quangtities
have a large effect on the eigenfrequencies of the ring at low circum-

ferential wave number ''n'"' and that their effect is independent of the

radii of gyration "rx" and "r '". However the error by neglecting
2-2

i . r n . s
rotary inertia was shown to be of of > ) and since, in our case, T

and ry can reach o(10° 1), rotary inertia must be included for n > 3.
The inplane and out-of-plane motions of the ring can be
uncoupled due to the symmetry of the cross section leading to the

following two systems of differential equations:

(i) Vel oY)
LD;- ij {W,—}‘ {Frji}

() ] { el 3F‘°’-i

] r, ij > o}

(i =1,2) (57)
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{F(f).} and {F((:). } are forcing functions that depend on the non-
dimensional stress resultants of the shell at the boundary where the
r'ing is connected. The differential operators and forcing functions in
(57) are given in Appendix VII.
For free vibration, the exact solution and resulting ordinary
differential equations for the shell, are given in Appendix Ib. For the

|

ring, (57) has an exact solution of the form:

v = c n in (@
A Yo os (n8) sin (Wr)

w w
;= rm
) Ur I Yrn} sin (n8) sin (&)
Br

P

L

rm (58)

¥, ni

;F(i).g = ;F(i) f sin (n8) sin (@7)
31-“(:).[ = ZF(rC:)ni} sin (n6) sin (37)

Upon substitution of (58) in (57) we obtain the following system of

linear algebraic equations:

o, Lol e
LT,IJ- Wrn rni

- (i,j =1,2) (59)
1 u
0] fod - fetod

r, ij ﬂrn r,ni

The constant matricies in (59) are given in Appendix VII.

I




43

Solving for Vont oot Wy and Brn in (59) and rearranging terms:

rn
P M 7
(Wrn qxx(l/z)
u_ i (Lr2)
SEEML - o (i,j =1 to 4) (60)
vrn [ d, IJ] 'ﬁ'xe( l/z)
| Pen Lr'?axx(l /2) |

The right hand vector is composed of the nondimensional stress and
moment resultants of the shell evaluated at the boundary where the
ring is connected. [Md, ij:l is given in Appendix VII. The final step
in the analysis is the matching of the displacements and slope at the
boundary of the shell with the displacements and rotation of the ring.

This is given by the following relations:

(] w_(£/2)
u. un(l/Z)
"y = [MT’ij:I vn(lIZ) (i,j = 1 to 4) (61)
P | LWQ(I/Z).

[MT, ij] is given in Appendix VII. Eliminating the ring displacement
vector from the left hand sides of (60) and (61) we obtain four homo-
geneous boundary conditions relating the displacements and slope of
the shell at the ring boundary to the nondimensional normal stress

and moment resultants of the shell at the same boundary:
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Pwn(l /2| Pa‘xx( 12 |
u (£/2) 7 (L/2)

[Md' ij] v (L/2) ) [MT' ij] Aol L12) o
LW;I(EIZ)H Lfﬁxx(l /2)]

The procedure for the determination of the exact eigenfrequencies is

then similar to the one adopted in Section2 of Part II earlier in this

work.
The eigenfrequencies for a shell with % = 577.35 were
*
calculated for two different lengths, -g- = 1 and 2, and for a ring

stiffness factor Stx in the range:

5< S, < 160

tx

corresponding to a thickness ratio h in the range: 3<Th < 16. The
dimensions of the ""H'' type ring cross section are shown in figure 10.
The above computations were performed for two boundary conditions:
1. FX2/FXR: fixed totally/fixed with flexible ring
2. FXR/FXR: fixed with flexible ring at both ends.

For each eigenfrequency, the °/o df

~
°/o d, :(wf’” - ) 100
fx2

was plotted against Stx for boundary condition FX2/FXR as shown in

figures 11 and 12 for modes with n 2 4 and with one half axial wave

(m = 1). For low circumferential wave number with n =2 and
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n = 3, the corresponding to the first three modes was plotted

@
LF

against Stx as shown in figures 13 and 14.

3. CONCLUSIONS

The influence of an elastic ring on the eigenfrequencies of the
ring -shell system is different for various values of the circumferen-
tial wave number '""'n'., This results since the ring frequencies are
monotonously increasing with '"'n'"' whereas the shell low frequencies
exhibit a minimum. We distinguish three different ranges of circum-
ferential wave number ''n'':

A. For small values of ''n'"" (n = 2), both the "w'' and "u"
predominant ring frequencies are lower than the fixed/free shelll
frequencies for the range of stiffness parameters (Stx) of interest
and there is no mode interaction except for very large values of
"Stx”'

B. For intermediate '"'n'" (n = 3,4), the "w'" and "u" ring
frequencies are nearly of the same magnitude as the fixed/free shell
frequencies for the range of "Stx" of interest and considerable mode
interaction is evidenced.

C. For large values of ''n'" (n2 5), the ring frequencies are
considerably higher than the shell frequencies even for small but
finite ring stiffness parameter ”Stx”' The region of interaction is
confined to very small values of ”Stx” below the range of interest.

The most interesting range is the one with intermediate ''n"

~

and will now be discussed in more detail.  The variation of E
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with "S, " is shown in figure 14a for the first three modes with n = 3.

The ring itself has four eigenfrequencies:

i. "w'" predominant inplane eigenfrequency
5. . =0(r.n®)—>0 as S_—»0
e | y tx

ii. "v'" predominant inplane eigenfrequency

~ _ 2 172 ..
W, 5 = o(n~ + 1) (independent of Stx)

iii. "u'"" predominant out-of-plane eigenfrequency
o sififs 8 ) ag 8 )
We.3 x tx
iv. """ predominant out-of-plane eigenfrequency
L P B
w4 =013 S it
| e

— finite value as Stx —> 0

S

where (-S_E) is held constant. The asymptotic behavior of the first
ty
three eigenfrequencies of the shell-ring system is now described in

detail. Let regions """ and "II'"' be the regions in the left and right
sides of the " i.‘;'r 1" line respectively (see figure 14a).

A. The first system eigenfrequency " & .'" approaches the

s, 1
first cantilever frequency corresponding to boundary condition

FX2/FR (fixed/free) as "Stx" goes to zero in region "I'". It becomes
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asymptotic to "ar 1“ for some range of Stx then changes asymptote

’

to the first frequency of FX2/FX2 (totally fixed at both edges) in region
1I.

B. The second system eigenfrequency ":)s, ;"' approaches the
second frequency of FX2/FR as ”Stx” goes to zero in region "'I', then

becomes asymptotic to ”a;r I" in the neighborhood where " a;s l"

changes asymptote. After some range of "Stx”, % ms 2" changes

hsympiote 49 ”wr, 3” line in region "'II".

C. The third system eigenfrequency " 335, 3" approaches the
second frequency of FX2/FR as “Stx” goes to zero in region "I'"'. It
then follows the first FX2/FX2 frequency very closely and in the

neighborhood where " :-55, ,'' changes asymptote, the " 53' 3

asymptote to " z"r 1“. A second change of asymptote occurs at some

3

'" shifts

”Stx” to the second frequency of FX2/FX2 in region "II'".

The change of asymptotes for each of the above three modes
can be explained in the following way. Since the system is linear
elastic, governed by formally self-adjoint differential equations
having unmixed natural boundary conditions, each system eigenvalue
must have only one independent eigenfunction (see Appendix VIII).
This implies that crossing of the three lines representing the first
three system eigenfrequencies is impossible.

At first one might expect that four additional system fre-
quencies will be induced due to the introduction of the four ring
eigenfrequencies in the fixed/free shell spectrum. However, only two
additional system modes are excited. The first is " @ 2" and is

induced by the "' predominant ring frequency " @ ", and the
: 4 p g y r, 4
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second is a '"v'' predominant system frequency induced by the "'v'

predominant ring frequency " c?)r o' The following argument shows

»

that no system frequency can be induced by either the "w'" or the '""u"

- - - ~ -
predominant ring frequencies, ”;;r 1" and " w 3”. Assume at first
3 »

that one of these ring frequencies induces a system frequency, " 58 1’-'
’

This system frequency cannot follow ”a‘}r 1" nor "mr 3” to zero as

’ ¥ |

”Stx" goes to zero since as this limit is approached, the system
frequency must converge to a fixed/free shell eigenfrequency in a
continuous manner. The only possible ring frequency that can induce

”ms 2" is then “a'ir 4" the "B'" predominant frequency, which has a

E]

finite value at stx = 0. The "w'" motion in " 58 2” is induced by the

torsion and eccentricity of the ring cross section. Following the same
argument, we expect that the ""v'' predominant ring frequency "a')r 2”
’

induces an additional system frequency which approaches the "G)HF"

corresponding to the first cantilever mode for boundary condition
(fixed /free).
One can see from figure 14a that the third system frequency

" a'Js 3” is higher than the FX2/FX2 frequency for low values of

]

"Stx". This can be explained as follows. The " as 3" is out-of-phase

with ”a‘)r, 1" in that range of "Stx”. The ring being very weak, will
exhibit relatively large amplitudes and due to the change in phase, the
corresponding mode shape will have one circumferential node near the
ring boundary as is shown in figure 14b. The axial wave number '""'m'"’

will lie between 1 and 2. And since " ‘TJLF” is monotonously

increasing with "m'" , it follows that " :Js 3" will be higher than
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” a'JFXZ”, noting that the axial restraint has little effect on the
frequency at n =3, As Stx increases, the ring becomes stiffer and
consequently its amplitude becomes smaller, thus shifting the circum-
ferential node towards the boundary. This shift tends to decrease '""m"
hence a decrease in " a’JS, 3”.

The same conclusions apply for n = 2 with the only difference
that the change in asymptotes occurs outside the "Stx” r;nge of
interest (see figures 13a and 13b). As ''n' becomes higher (n 2 4),
the " a")r, 1” line becomes steeper, thus confining region "I'" to very
small values of “Stx” below the range of interest.

For large values of circumferential wave number '""n" (n2 5),
the FX2/FXR (fixed/free with elastic ring) eigenfrequencies are
smaller than the corresponding ones for FX2/FX2 (totally f'uced- at
both edges), as shown in figures 11 and 12. The overall shell stiffness,
which is measured by the magnitude of the eigenfrequency for some

mode shape, increases slowly and monotonously with the stiffness

factor "S,."'- The n° /o d/' defined by:

QO
o N FXR
/odf = 100 (—r = 1)

increases with ''n'"' for fixed values of ”Stx” until it reaches a

%
maximum at some n = n , after which the ”olodf” decreases with
""n''. This can be explained as follows. It is seen from figure 6 that

the

()
(°/0d) g, = 100 (_Frxz " 1)
Ss1
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exhibits a maximum at some value of '"'n'" which is smaller than ""n"
at which @@= (a’)min' This shows that at this value of ''n', the axial

restraint in the boundaries is the most effective. The ”olodf” varia-

tion with 'S, is expected to behave in a similar fashion.

/

The o/odf increases with the wave length parameter (E) as
can be seen by comparing figures 11 and 12. Consequently, a stiffer
ring is required to reach a certain "Olodf” from FX2 /FX!Z the larger
the axial wave length and the nearer the circumferential wave number
Hn" is to Tl at which the '"®/od" of the corresponding FX2/FX2
shell is maximum. It follows then that the out-of-plane stiffness of
the ring as well as its torsional rigidity (for the case of an eccentric
ring) are responsible for the stiffening of the shell. All open se%tions
are weak in torsion; a closed section is preferable if it does not
present practical difficulties.

For n2 5, the "O/Odf" for boundary condition FXR /FXR
(ring at both edges) is nearly double the ”olodf" for boundary
condition FX2/FXR (ring at one edge). This property shows that each

ring is responsible for the stiffening of nearly half the shell length.



51

IV. EXPERIMENTAL DETERMINATION OF THE FREQUENCIES
1. INTRODUCTION

An experiment was carried out to check the validity of the
previous theoretical analysis and demonstrate the effect of elastic
rings on the eigenfrequencies of a cylindrical shell.

In Part III of this work, it was shown that the rr10d<-:i shapes
with predominantly membrane energy (i.e., low circumferential wave
number modes are greatly influenced by the ring stiffness. The eigen-
frequencies associated with these modes differ greatly from those for
the totally fixed shell, even for rings that are considered stiff in
practical applications. It was also noticed that at those low circgm-
ferential wave numbers, two additional low frequency modes were
induced due to the interaction of the ring frequencies with the free
shell frequencies.

The experiment consists of finding the eigenfrequencies and
corresponding mode shapes of a cylindrical shell with integral end
rings of rectangular cross section, located on the outside of the shell.

The details of the experiment are given in the next section.

2. EXPERIMENTAL SETUP

The shell used in the experiment was machined from a seam-
less tube of Al 6061-T6 material. The tube was first turned on the
inside and then placed on a steel mandral by heating the aluminum

tube. The outside machining process was carried out on the mandral
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and the final shell removed by heating. The end rings were an
integral part of the shell. The final nominal dimensions are shown
in figure 15. The wall thickness variation from the nominal was
+ 0.0009 inches corresponding to + 6 © /o variation.

The support conditions desired for the test were a free support
for the shell-ring systemm. However, it was necessary to constrain
the rigid body motion of the shell in order that the mode ;hapes could
be readily measured. This was accomplished by mounting one end of
the shell on the base plate but making only a flexible line contact with
the end ring. For this purpose, the end plate was fitted with two
"O rings'', one to support the axial motion and the other to support the
radial motion. The "O ring" for the radial support was mounted so as
to allow a few thousands of an inch clearance. It was felt that this
provided sufficient play so as not to restrict the radial motion and in
the same time provide a reasonably good support.

The shell was oscillated using an acoustical driver, powered
by a 75 watt amplifier and variable frequency oscillator. The driver
was fitted with a conical nose which had a one quarter inch circular
opening.. The outlet of the driver was positioned approximately a
tenth of an inch from the shell surface normal to it. This type of
excitation forces only in the radial direction and therefore it is
difficult to excite modes which are not predominantly radial motion.
This will be seen in the results of the next section.

The response of the shell was measured using a reluctance
type pickup which can traverse in the axial and circumferential

directions. This equipment is described in reference 26. The signal
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from the pickup was displayed on an oscilloscope along with the input
signal to the driver. It was necessary to run the pickup signal through
a narrow band pass filter to remove the noise caused by the electric
motors of the scaning system. This was necessary only for modes
with very low amplitude (high frequencies), which in some cases was
as small as 10 micro-inches. The mode shapes were determined by
plotting the root mean square of the displacement against !t he circum-
ferential distance on an x-y plotter. A count of the nodes gave the
circumferential wave number ''n'". The axial wave number was deter-

mined by just observing the signal on the oscilloscope during an axial

traverse.
3. CONCLUSIONS

The theoretical frequencies (@ and the experimental

th. )FXR

frequencies (& for the boundary condition in the test

exp. )FXR
(FXR/FXR), as well as the theoretical frequencies for the fully fixed

shell (a;th ) with the same geometrical parameters are listed

FX2

in Table XII, for the following range of circumferential and axial wave

numbers:

2< n< 18, 1< m=< 4

The above three frequency spectrums are plotted in figure 16.

- - - N -
For low circumferential wave number (i.e., n<n at which

@ =& ), the (& are lower than the (& The
min

exp. 'FXR th. )FXR®

per cent difference '°/od' defined as:
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(0 PR

o/od =100 =3
Pexp.  FXR

reaches + 6 °/o atn=4andm =1. A possible explanation for the
positiveness of the °/o d could be the fact that the idealized ring
cross section used in the analysis is assumed to keep the! same shape
after deformation of the ring. However, the actual section will distort
under stress thus inducing more out-of-plane displacement which
softens the inplane boundary conditions of the shell and hence a
decrease in frequency.

In the neighborhood of the minimum frequency (n =~ 1), both

and (&'Sth differ by less than 0.5 °/o. Fors

JFXR

become higher than (&

(Bexp. ) FXR

n> ?1, the ( & where we

exp.)FXR th.)FXR
notice that the °/o d=~ - 3 ®/o for all n2> 11. Such a constant °/o d
suggests the following explanation for this discrepancy. The fre-

quency '""@'' can be approximated by the following relation (see

Appendix III):

2. 4
a-)Z _ (1;-3 v gsz + rZ(SZ + nZ)Z
(s +n7)
where s = %T- , m is the number of axial half waves and n is the

number of circumferential full waves. The above estimate is good
only for qualitative analysis for boundary conditions other than
SS1/8S1. The first term in this relation is the membrane contribu-
tion to the frequency and is predominant at low '"'n'" (n< 7). The

second term accounts for the bending effect and becomes predominant
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at large '""n'" (n> n). Both terms have the same order of magnitude in
the neighborhood of the minimum frequency (n~n). Thus for large
"n'', @ o~ r(sz + nZ). The possibility for a constant error in @ for

. : h
all n> n can exist from an error in r = ——— . The above argu-

ment implies that the negative /o d for n>n is caused by an under-
estimation of the shell thickness. The distribution of this thickness
was measured by a micrometer during manufacture and ‘t;Y volume
considerations after manufacture. Both methods involve unavaoidable
errors that lead to an average thickness which was relatively
inaccurate.

at low "'n"

The (&'Se differ largely from (&

xp. JFXR th. ' Fx2
(34 n< 6 47) as predicted by theory, in spite of the fact that t;he“f rings
were sufficiently stiff (weight of a ring /weight of shell = Wr = 1.77)-
This is explained by the fact that at low ''n'', the inplane motion which
governs the inplane boundary conditions of the shell, is comparable to
the radial motion. This boundary effect dies out at large values of
""n'" (n > n).

Difficulties were encountered in determining the frequencies
for n£ 3. This was probably caused by the method of excitation.
Since the speaker was normal to the shell surface, mainly radial
displacements were induced. Therefore, the forcing method was un-
able to generate inplane displacements of sufficient magnitude,
relevant with these membrane predominant modes. Much distortion
was noticed in the mode shape scans at these low circumferential

wave numbers due to the effect of initial imperfection and nonuniform

thickness distribution.
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APPENDIX Ia
DIFFERENTIAL OPERATOR MATRIX FOR

CYLINDRICAL SHELL EQUATIONS

u - -
[D..] +t = @ (i,j=1,2,3)
IJ -
82 1-» 82 82
By = g % Yy = ===y
1 9x 2 28 o7
2
SR LA
Bya = == Hae- ™ Do
9
D13 ==¥gg = Dy
2 2 2
ox 90 ox

%8 ox 96 90
2 4 8% 2 2
= I+x” W % —x {l=-2 9]
oT
. 54 54
= 3 ¥ 8 —g=—mt =
9x 9x°08 90
_ 8, o°
= —3 2
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APPENDIX Ib
UNCOUPLING OF THE INPLANE DISPLACEMENTS

EQUATIONS IN "u'"" AND ''v"

It is shown later in this work (Part I, Section 4A), that the
effect of neglecting the inplane displacement ''v'' in the curvature
expressions, is equivalent to the effect of neglecting the transverse
shear “qe" in the inplane equilibrium equation. Each effect contributes
nearly half the total error from both effects. It is now clear that the
combined effect (v in kij and qe) can be studied consistently by
using simplified equations obtained by neglecting ''v'' terms in the

curvature relations. The uncoupled system can then be written as

follows:
L) = € (W) (1)
L) = €,w) (2)
g° 2
R(w) = — H (w) + r° 5(w) (3)
oT
where,
2 2
2
L - w- v - A5 2
T oT
g _ 8, 3> o 20 0% 21w, 8% 2]
1 7 ox . 5 2 =3 ¥ |
ox 00 l-v 8T l1-v 90
€ . o 2o, 0% 2 8% a2 8% 8% 2 0%\ 2
2~ 30 Z - z °° R
ox L) l1-» 8r l-v @x~ 96 l-v 0T
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2 4
@ r2v3+3 V4+(1_”2)a

87'2 6x4

2 2 ' 2 2
Hoo Bro2 287,24, 87,02 2 37,0, 8
v - v v o s e
1-v 1-p 812 arz l-y 87 ox

Z 2 2 2

P e —3—2{(2+u) d ot az_ 2 a2 }vz |
26 ox 08 1-v 9r

If “qe” is neglected then terms of O(rz) in él’ f , and S(w) will
vanish. If tangential inertia is neglected, X (w) = 0. The system of
differential equations given by (1), (2) and (3) is valid for

"asymmetric motion' i.e., :_6 # 0. However for axisymmetric

motion, i.e., 36 = 0, v = 0, the governing set of equations is:
(iz - ._a_z) O ow
sz 872 Ix
(4)
2 2 4 2 2
(32 _ 82)(1_2 84+1+ 82)_1/2 82 w =0
ox or ox oT ox

For free vibration, an exact solution to system (1), (2), (3) can be

written as follows:

u un(x) sin (n@)
v vn(x) cos (n8) sin(&T) (5a)
w

wn(x) sin (nB@)
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Upon substitution of (5a) in (1), (2), (3) and (4), we obtain the

following two systems of linear ordinary differential equations:

afn(un) = € (wn)

In

Lov) = &, (w) (n>1) (5b)
@n(wn) = - 5,23£n(wn) + S_(w_)
dw
io(uo) =N
(n =0) {5¢)
@(w) = 0
o (o]
where
2 2
oL =(-‘i—--[32)(d_ _32)
n i L
2
=2
€1n=£iuiz+(1+u)nz-ppg-rznz(}_—j)vnf
2 2
a“ 2 2, 2 d 2 _2
R L R S A
R = 25% - w?sts . ,?) -
n T Vn - @ TR0y
e B, . B A 2 &> .2
H, = CF ¥+ TN \7n-m)+(:~;+zu);2.pz
2
> o S
Sn = n (2+V)d?-- ﬁzfvn

(5d)
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2
& +a°
dx

2 4 : 2
., +&32){r2 g #1- 5.32}- S 4,
dx dx dx

(5d)

2 R b B R E
o=@y PpRB e
a2
dxz
4 2
Plpy - L a2 L
dx dx
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APPENDIX Ic

EIGENMATRIX COEFFICIENTS FOR A CYLINDRICAL SHELL

WITH BOUNDARY CONDITION SS1/SS1

mn
[L. ] v =10
1) mn

a1 04 sl Baal
C = (I +V) sn=2¢c
12 2 21
g i el 7
55 = (12”) s2+n2
s A e &
€33 = 1+ rz(s2 + nz)2
eij = 0 except for the following:
€,, = r2(2(1-2)s% + 0%
¢,y = r BBt 38" # 0TF = €.

1 0 0
0 1 0
0 0 (1+ &
PA
r

[
=i\

| F—
1l

33)

™y

2

33 (s™ + nz)
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APPENDIX Id

CHARACTERISTIC EQUATION FOR THIN RINGS

For a thin ring, the characteristic equation is:

4 o &

CZrGS -Clrw +Cor = 0
2 2
CZr =il ¥ rn
Clr = 1+ 1'2'n4 + (1 + rz)(l + rznz)n2
Cor = - nz{(l + rznz)z - (1+ rz)(l + r2n4)}

Solving for &‘32 we obtain:

where
b = 1+r2n?+ (14250 + ron%)n?
€= {l + rzn4 - (1 + rz)(l + rznz)nz}2
d = 4n2(l + rznz)3
& = 2(1 # rznz)
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APPENDIX II
RELATIONSHIP BETWEEN THE ERROR FROM THE
DIFFERENT APPROXIMATIONS AND THE TOTAL

ERROR FROM THE COMBINED EFFECT

The error "e'" in the low frequency "Z)LF" of a cylindrical
shell with boundary condition SS1/SS1, from all approximations
(v in ki' and qe, tangential inertia, rotary inertia), is nearly equal to
the sum of the errors from each approximation when performed

1 s % s
separately, i.e., e, = e, + e, + e; = e, + e, ¥ e

PROOF

We use the same notation as in A, B and C of Table III. At

first we prove that:

o e:=°= +e2 (la)

ZJ ZJ* ~ ~ ~ 3
. Be w@y-{um, - A
12 T =% = ~ =
w w
%k i + 3k b
Bigs™ %1 T %2 (1b)
= g
3 x = My x A e
ia = e; = —
w w
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1

Expanding the eigendeterminant (8) on page 7 , we obtain the

characteristic equation (dispersion relation):

548 4
C3m -Czw + C
' ik O(xn)°

(3=v),. 2
C2 = 1+ > (s

asellls %) 2

g _z‘((S ¥
(3-v)
T =-v}

£ . -—-(li")(rz(sz

2

15* -(C_=£)=0, =n21 2)

+ nz) + l'z(sZ + nz)2 + O(rn)2

nz)2 + (s2 + nz) + 2(1 +v )ssz

rz(s2 + nz)3 + 0(r2n4))

- nz)4 +(1 -v Z)34)

£ (—-li—v)rz((ZSz $ 5 A 2 24 o (e z))

We note that C3 = 0(1) compared to C2 = O(nz). Since we are

2

* ~ %
interested in e, for n > 2 at which values w <<0(1), we conclude

1
that:

6 4
~ % ~
< &

C. @ CZ w

Equation (2) then reduces to:

(2a)
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- gt

C, w -CLw +(C -£)=0 (3)

2
Solving for @ in (3) and expanding in powers of & to 0(§)

&

- A {c -4C_C &

w*2= 1 1 °o 2 _ 5 +o(é’z)
2C Cl - 4COC

2 2

(4)
~3l 2 €
1

Z
= > + 0(€7)
1 - 4CoCZ

*
Substituting (4) in the expression for e, (Table III), and expanding

in powers of £ to 0(€):

el = £ - _1;_2 ((252+ nz)z(ZnZ- I)-Zv?'s‘l(n2 - 2)) 1 )
2C_ 2 rz(gz % n2)4 f (1 _Vz)s4

B. Determination of ela

~ %
Neglecting tangential inertia and solving for >

R
o€ ¥ % (6° 4 Bo1o0L 27" + no))

w

I

x
2

(6)

Substituting (6) in the expression for e in (la) and expanding in

la
powers of € to 0(8):

~
W, -

3

~
w

%*
2 3 2 _ €
g = 2—5(; (7)

1

la
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Comparing (5) and (7), we deduce that:

*
& e = e, (8)

s la —

Thus, relation (la) is proven.

In a similar manner, one can prove that:

(9)

e23f: ez + e

From (la) and (9), we conclude that:

Let @, bethe ©, (as defined in Table III) when "q " is included,

then:
2 2
il T 2. 2 2s 1
P Fiyla -0 (” T—z—+°(—4’)
(s” +n7)

(10)

2
~32 [~ 2 ~ % 2.2 2s
a(w ggs) -["’4 e ]= o (” —z—z—)
(s +n)
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APPENDIX III

—~,

SOME PROPERTIES OF w F FOR n » 2 FOR

L
BOUNDARY CONDITION SS1/SS1

It is shown in this work (Part I, section 4A) that tangential

inertia has a noticeable effect on @

LF only for low circumferential

wave number, n ¢ 3. Consequently, the 5LF spectrum can be

studied with sufficient accuracy for n> 2 by neglecting tangential

inertia. From Appendix II and with notations as given in Table III

2.2 . (1- »o)st

= r2(52+n) + 2 22 (1)
(s  +n’)

&2
4

- g - - N
For fixed "'s", ‘-04 has a minimum at n = n:
»

B o (il ”2)1/4 s (2)
g S

This minimum always exists if:

yZ 1/4 l/?.’.s

(1 -27) >r

which is always the case for thin shell (r = 0(10'2)) and s ¢ 6. If

(rl/2 s) « 0(1), (2) simplifies to the following:

2 s(l - w1/t
n =

(3)
. 172

Substituting (2) in (1) we obtain:

(c‘54) = a2 r(ﬁZ + sz) = (21-)”2(1 - ,,2)1/4 s (4)

min
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Solving for ﬁz in (4):

{ &)
nznz iy 5 0(52) (5)
Y2 r
The locus of minima has itself a maximum at s = s*:
2.1/4
%* o
s = %’z— ‘ (6)
2r ‘

For n » flz

Pt 2, 4

w sr2n4 + fi- v s (7)

n

For n2>7 sZ and nz» h

- A
54 ~ N o (w)ring (8)



72
APPENDIX IV

DISPERSION RELATION FOR CYLINDRICAL SHELLS
Characteristic equation (dispersion relation) for n = 0:

6 4 2 y
Co(l) A0, + G (2) NS, + G (3) Ao +C (4) = 0

Co(l) = rz

c 2 = &
C3) = 1- R
C 4 = &1 -

Characteristic equation (dispersion relation) for n>1:

8 . 4 2 r
Cl) AL+ C @YA5+ C (3) AL+ C (4) N5+ C (5) =0

c ) = r°
= 2 3—V ~2 2]
Cn(z) ks [l-v B - AR
C_(3) = 2((m4 313-r) 2 2+2~4) 1. nl
n "= N § T - 1-v - -
G ) = #o?(- 4ty 22 48 )+ 2 [2n2- 322524342
= ) e o il e
C (5) = x2at(nt. 32" 32 2, 2a*
n B mn - e n -
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APPENDIX V
CLASSICAL BOUNDARY CONDITION '"'SS1/SS1'" AS THE

LIMIT OF GENERAL BOUNDARY CONDITIONS
Boundary condition SS1/SS1 is given by:

wit by =n_ boviedy cm_ ) -0 | (1)

As an example, consider roots of the characteristic equation (34) for

n » 1, having the following form: (see Table VIII)

+ iCl ; +C2 ; +(C3 +iC4) (Cl,C2,C3,C4, real) (2)

The eigendeterminant (37) reduces to a four by four determinant due to

the symmetry of the boundary condition (1):

Fnl Fn3 Fn6 Fn’l
Ki1Fn1 ¥12Fn3  FisFne Y KiaFnr  BisFnFiaFne
det [g;ij] =
Ko1Fn1 KaaFps  KpaF o t K F iy KoF oKy Fre
K31Fn1  K32Fps  KigFpe ¥ K3gFnr  KiaFp-K3uFg
(,j=1t04) (3)

Ksp are constants which depend on (r,n, &")Z,w) only, and Fnj are the
independent functions of "'x'"" evaluated at x = -g , as defined by (35).
For antisymmetric modes, i.e., m =2,4,6,..., and with roots in the

form of (2), Fnj%) are given as follows:
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Fnl‘%’ = sin(Cl%)
Fn3(-g-) = sinh(C2 %)

(3a)
Fnﬁ(%) = sin(C4lzg) cosh(C3 %)

Fn?‘%’ cos(C4 %) sinh (C3 %)

For symmetric modes, i.e., m =1,3,5,..., the "sin'" and ""sinh" in
(3a) are substituted by the '"cos' and '""cosh'' respectively and vice versa.
The same line of proof applies for m odd as for m even. Take "m' to
be even, i.e., antisymmetric modes.

After some algebra, (3) reduces to the following simple form:

Z 2
det [?;1ij] = - Fann3(Fn6 S Fn7) det[ﬁij]

(4a)
= - #in(Cl %) sinh(C2 %—){sinz(c4 %) + sinhz(CB{-)}det[gij]
1 1 1 0
K Boya Ks K4
det[QS ij] = (4b)
Koy Ky2 K3 Kog
K31 Ki2 % Kis4

(i,j = 1 to 4)
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%

We note that [gij] is independent of the parameter % , thus if it
vanishes, this will imply that the eigenfrequencies & are independent

s
of é , which is a contradiction. Thus:
det[gij] + 0 (i, j=1 to 4) (5)

We are now left with the following three possibilities:

i Fnl(%)=0 - E#—:kw | B — (6a)
¥ ¥
2.0 F =0 — cZ Yo (6b)
2 2 ca/t

0 and =kwik=1,2,..)

(6c)

3. FL,+F ;) =0 = C3 o

Possibilities 2 and 3 must be ruled out since C2 =0 or C3 =0 =

contradict the assumption that the characteristic equation (34) has

roots of the form (2). Thus:

/ 2 2
Fn3(7) #* 0 and (Fn6 + Fn7) =+ 0 (7a)
Consequently, we are left with:
cite i Fnl(é—z) = 8in(C1 -24) = sin(kw) = 0 (7b)

£

The displacement function can be written as in equation (35):

4
w () =) B Fpil) (8)
j=1




76

1 2 3 -
Let the an s be normalized by Bnl' i.e., take Bnl = 1. The
remaining an's can now be determined from the following set of

inhomogeneous algebraic equations:

1 1,2,3)

g, ¥
[?;rs] {an} B S Byt Pt 3 9)

(s =2,3,4)
K

]

21

The matrix [?1:1'3] i s the modified [?r:ij] in (3), by excluding the

first column and fourth row. Using (7b), we get:

[? ] {an} = fr=1,2,3and 8=2,3,4) (10)

nrs

System (10) has a nontrivial solution if and only if:

2 2
det [51‘ ]: - F_, (F + F_o) det [ﬁrs} 0 (11)

nrs

The matrix [Qrs] is the modified [.‘Jij] in (4b), by excluding the

first column and fourth row. Alternatively, we can take:

r =1,2,4
or B = 134 with s =2,3,4
or *'=2,3,4

Each of the above cases will reduce to a system similar to (10). The
condition of a nontrivial solution for the B_ 's will still be repre-

sented by (11). If det[@rs] vanishes in any of the above systems, it
must vanish in all other systems since the B__'s are uniquely deter-

mined for some @ . If this happens it will imply that det [.%ij:l =0



T

(i,J = 1,2,3,4) since all its co-factors vanish. However this contra-

dicts the result given by (5). Consequently,

det [grs:l #*+ 0 (for all combinations of r)

Using the results given by (7a) and (11a) we conclude that:

nr

I
det[T s];é 0 fr=1,2,3 and s = 2,3,8

Thus, system (10) admits only the trivial solution:

{an}z 0, (s =2,3,4)

The exact solution for boundary condition SS1/SS1 is then:

wn(x) = Bnl sin(Cl x) = sin(rnTm-‘ (m even)

for antisymmetric modes. Similarly, the solution is:

mmx
)

Z

wn(x) = cos ( (m odd)

for symmetric modes. In fact, these functions are admissible

functions that satisfy both differential equations and boundary

conditions.

(11a)

(12)

(13)
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APPENDIX VI
APPROXIMATE SOLUTION OF THE DIFFERENTIAL EQUATIONS

FOR BOUNDARY CONDITION SS2/SS2

The following cases will be considered:
(I) Tangential inertia included

A - Axisymmetric vibration (n = 0) (valid for &LF and

i~

IF)
B - Asymmetric vibration (n ) 1)

f 2 - ~z
Bl - n» T w (valid for wLF for n »2)

/ 2 & 5 ; & 3
B2 - Ty @ > nya (valid for LE for n = 1, and

asIF for n > 2)
- P i CTJ = ;5
B3 - n ¢ @ (valid for IF forn=1, and HEF for
n>»1l)

(II) Tangential inertia neglected (valid for n »3 for aSLF only)
""Case (II)"" was developed due to computational difficulties encountered

~ 2. 28%F

when '"Case (I)"" was used to compute wLF for n » s

Fortunately, it was found that a;LF as calculated in (II), could be
corrected to take into account tangential inertia. This was possible

since the error by neglecting tengential inertia is nearly the same for

SS2/SS2 as it is for SS1/SS1, i.e.,

3‘3} ,,;‘3(
& )ggz (@ )gg)

where 6134 is &LF when tangential inertia is neglected. This is shown

later in Part II, section 4B.



19
CASE (I): TANGENTIAL INERTIA INCLUDED

A - Axisymmetric vibration (n = 0)

The equations of motion are:

2 dw (x)
d ~a - o
( 5 1 o )uo(x) = Y en—— (l1a)

4 o du_(x)
(rz ;4 + l-wz)wo(x) =v —2 (1b)

x 3 [0,1]

Solving for uo(x) in (la):

- i dw (E)
uo(x) = B01 sin(wx) + BOZ cos (wx) +::’;- fsuu.o(x £) ——e—— d§
@

The inplane boundary conditions for SS2/SS2 are

uo(O) = uo(l (3)
Substituting (2) in (3) and solving for B01 and BOZ:

v F ~ ~
u (x) = ——— | [sinw (£-x) cos(wEw_(£) df
sin(wf) [ o
(4)

= fsin(?ox)cos :)(I-g)wo(ﬁ)dﬁ
X

Eliminating uo(x) from (1b) using (4):

2d_+ l-vz..m w_(x) = —‘12-:3— j{os;(l x) 5(:*’&)‘” (€)dg
dx4 o B -t oc Bk o

sin(wf)

+ fcos(z)x) cos 'J:(z-g)wo(g)dg (5)
X
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Assume an expansion for wo(x) that satisfies all out-of-plane

boundary conditions i.e., w_(0) =w_({) =0 and w)(0) = wi (£) = 0:
w )= Y B; sin(l)  (j* finite) 6)

Substituting (6) in (5) and applying Galerkin's method, we obtain the

following set of homogeneous algebraic equations in aoj:

[zij] {aoj } =t Wed=lp Earradt! S

~ 2.2 2 o2 2yt
Foij = | 7 z_Z Rl = T E N T

i 4ij7r2v2¢p(cos ga 1)) -
22 2 73 (7b)
5
(i7r -9 )(J T -9 )sm.p

¢ = wl i = 1,205 0%
System (7a) has a nontrivial solution if and only if:
det [f}’;ij] =0 (8)
The eigenfrequencies of (8) are obtained by an iterative method.

B Asymmetric vibration (n>1)

The equations of motion are:

L [ux)] = € _[w_(x)] (92)

Lolvy)] = €, [w )] (9b)
du (x)

(r 2V4+ l-w )W (x) -v—-élx— -nvn(x) (9¢)

x 3 [0,¢2]
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The operators in (la, b, c) are given in equation (5d) of Appendix Ib.

2 -~
Bl. n >J_1-_v ® (Valid for . for n>2)

Solving for un(x) and vn(x) in (9a) and (9b), then substituting
the homogeneous solutions in equation (41) of the main text to find the
relation between the constants of integration of un(x) and vn(x), we

finally obtain:

un(x) =B sinh(ﬁlx) + Bn cosh(ﬁlx) + Bn sinh(ﬁzx)

nl 2 3

x &, [w_(£)] [sinhp, (x-£)
+ B_, cosh(B,x) + [ in. n ( 1 _

®F - B3) Py
sinhpz(x_g))
-— | d& 5
B, _,

B
vn(x) = r;ll—{ Bnl cosh(ﬁlx) + an sinh(ﬁlx)}+ _nE Bn3 cosh(Bzx)

g x [w _(§£)] [sinhB, (x-£)
+3?-Bn4 sinh(p,x) + [ €2n'%n ( 1

i 2
(B] - B3) P1
sinhﬁz(x-g))
X B d§
2
2 21 ~3 2 2 Zi ~2
By =n" - ", By =n" - 75 @ (10)
The inplane boundary conditions for SS2/SS2 are:

un(O) = un(l) = vn(O) = vn(l) =0 (11)

We can solve for an by substituting (10) in (11).
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Assume an expansion for wn(x) that satisfies all out-of-plane bound-
j¥

ary conditions: _lE
w_(x) =j;1 @i s1n(ij), s. = (12)

J

Eliminating un(x) and vn(x) from (9c), substituting for wn(x) the

series given by (12), then applying Galerkin's method, we obtain:

[T ] {anj} =0 (i,j=1,2,...,j%) , (13a)

nij

2.0l

(s24B2)(s2+82)

i Al vs.f .+nf_.
T.. = |:r2(s.2+n2)2 + lwwz i L ] 5.
nij i 2 ij

1-v)vy,. :
+2(-)1 nb ( ( 21 (COSh(ﬁ l) 1
| — - (=M
J] ij [32(1"'}’21) 2

2
Pr. .
Z2)71i (cosh(® z)-(-)l))
n 1

B, (1+Y | 5)

L

(l-v

nz h’
~ -v :
(1)7,, By &
¥ h,,. (—E— sinh(B, 2) - 5 sinh(ﬂll))
ol F 15 Ay (1+7,7)
, _1-v)7 5y sinhi(Byt ) ‘ Hg i B0 13b
AP T 3
(1+72i)(sj+ﬁ1)(sj+£32) (aij w4, 4 =
Si S:.L
Lk Y21 T B,
b,. = {g (B sinh B.2) - P2 sinn
1j —{gij pl s “31 ) - T 8 (pz‘!)

-gzj(cosh(plu - cosh (;321)) } © D_



83
b,. = ﬂsinh( 1)- 2 sinh (B,2)
2j = 1825\ = o e 2

-gij(cosh(pll)-cosh(pzl )) f * Dy

,;(cosh(p,1)- (- Y)

By; =
Y sTep)) (s5485)

e
fy; o= sinh (B0)
(5487 (s + 53)

- ' 1 ‘31'32 n2
Ds = . 2 (cosh(ﬁll) cosh(ﬁzl) iy (.._._-.—nz +._....__ﬁl pz)

x sinh (B,£) sinh (B,2) - 1)

- 2 2 2 1+v 2 2, 2 2
fij-(n (1+v)-v(p2+ sj)+i-_v rn (s.v.j +n ))sj

3 2 3' ‘@l @& 3 .3 43
ij = -n ([32 + (2+v )sj+r ([32+ e sj) (sj +n )) (13. ¢)
B2 - V% ©>n>% (Valid for & for n =1, and &, for n 22)

Since all steps are similar to case Bl, only the final equations will

be mentioned. Solving for un(x) and vn(x) in (9a) and (9b):
un(x) = Bnl sinh (ﬁlx) + ancosh(ﬁlx) + Bn3sin(Bzx)

+ Bn4cos(62x)

Sinh(ﬂl(x'g)) Sm(pz(x'g))

1 - ( )
+ ) dg
ﬁ‘}»ﬁi f g1n el By B2
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B
vn(x) =g—l{Bn1 cosh(le) + an sinh(ﬁlx)}+ niBn3 cos(BZx)
B, f*fzn[“'n(g)] ( sinh(B, (x-5))

~ B , sin(B,x) — +
n4 2 H ﬁf + 33 B

sin(B, (x-£)) )
o e, ¥ W
B,

2 2 2 2 2 2

5=n’-a° , gi=4153°-n (14)

The eigenmatrix [?r:ij] is as follows :

~ k3 Vs.f .+ nf ¥
F o= |l i L e D, 5.
: (s +B))(s{~B5) | ¥

i -(1-1})7i :
+Z_(l)—’ nbi-i(ﬁz_ (cos(B,f) - (-)) -

ﬁz (1-72i)
2
vB
(1- —-;—)7“ '
=~ ————y—{cosh(p, §)- (-)‘))
Bi(1+97)
2
{ = =] ¥,
(=237, 5% .
+b2. N sin(BZ[) e e Sinh(ﬂll)
J (1-75.) (1 4%,
(1-»)7,. f.. sin(B.f) (8..=0, igj)
i z le l]!z z 25 l M o (15a)
(1-72i)(sj+ﬂl)(sj -ﬂz) ( Gij =1,i=j)
X e
WG AT
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B
LT {gli(%f sinh(B §) + 5 Si“(ﬁzg))
- B (cosh(Blﬂ) - COS(BZﬂ))!
B; .
b2; = {ng'(”nL sinh(8,0) - g S‘“‘BZE))
- g5 (cosh(ﬂlj) - cos(BZ[))}Ds

£y (cos(By)) - (-)))
B1;° &

g
b (s4Bs] - B)

-Bz fl. sin(B l)

il (sj +61)(sj -65)

o 3 B
Do = (cosh(ﬁ JA cos(B, ) -3 ﬁ : 22)

n

x mnh(ﬂlﬂ) SIH(ﬂZE) - 1)

£);= j(n (1+v) + (ﬂ?_ i +i+: Bt j‘+n ))

2 2 2 2
£ = n(ﬁz - (247) s§ + r(s - 1Z_u Sj)(sj2+n2)) (15b)

B3 - n¢& (Valid for ¥ _ for n= 1, and &

o for ny» 1)

HF

The displacement functions un(x) and vn(x) are given by :

un(x) -~ Bnl sin(ﬁlx) + an cos(le) - B113 sin(Bzx) - Bn4cos(ﬁZX)

51n(ﬁ (x- §)) sin(ﬁz(x"g))
f m]( — —— ) at
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vn(x) = s—l{-Bnlcos(ﬁlx) + an sin(ﬂlx)}
A
+ ni{Bzﬁ cos(ﬁzx) + Bn4 sin(pzx)} +

TE,,[w ()] fsinB(x-€)  sin(8,(x-£))
a2 @2 B - [ ) dé
2 1 '

g.-8 2 2 2 .2 2
=8 -n , Pp=7F® -n

~t

The eigenmatrix [?r:ij] is as follows :

~

f1i+nfz:| g
2o L o ij
(s, -P3)

2. 2 29 -2 P8
nij-l:r (si+n2) +1-w + 2

5.

+2(£")1 nbl ((1 -v) 721 (COS(,Bzﬂ) w i ) ) _
B,(1 vz)
(1+ ﬁ})v
———-—(COS( ) -(-))
p (1 7 P )
2
(1 v)‘Y ( z ") i
4 b 2i sin( ) + 1 sin(ﬁ )
(’5(1 2 £ (1-75 ) £

(1-2)7,, flj sin(ﬁzl)
2, VA A
(1'721)(5.] ')61 )(S‘J_PZ)

(5ij=0, ij)

(8;;=0,i=]j)

+

=t
‘v“—pl ’ 2i ,32

(16)

(17a)
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a . B,
blj = {glj(ﬁ-l— 51n(ﬁ1£) + —; sln(pzl))
- 8; (cos(plﬂ) - cos(ﬁZZ))} D

bag= ey (B w0+ wni )
+ 815 (cos(Pll) - cos([.‘}zl))} bs
g (cos(P,f) - (D)
137 T S-ps; B3

= . 51n( )
D . X, l (17b)

Bz; <
; n(sj-plusj-p,_)

|

-1_ 4 n2 ﬂl ﬁZ )
Ds = =2 (cos(plﬁ) (pzl) 5 (pl Pz ) 51n(f3 £) mn(ﬂzﬂ) -1

and f,. have the same form as given in equation (15b).

£1; 2j

CASE (II): TANGENTIAL INERTIA NEGLECTED

(VALID FOR n2>3 FOR EBLF ONLY)

The governing ordinary differential equations are :
64 [o(x] =T w_(x)] (18a)
nt n ln[ n

Volv, ] = T, [w (%] (18b)

du (x)
{1'274 +1- '5’2}wn(x) e dxn -n vn(x) (18c)

n
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'I‘ln and TZn are the modified %’)ln and €2n respectively, given
by equation (5d) of Appendix Ib, when & is taken equal to zero in

these operators. Solving for un(x) and vn(x) in (18a) and (18b) :
un(x) :[Bnl + (nx) an] sinh(nx) +[Bn3 + (nx) Bn4]cosh(nx)

+ ﬁ"ln[wn(g)]{n(x-e) cosh(n(x-£)) -sinh(n(x-£))} d¢
2n

(x) = cosh(nx) + B [(nx) cosh(nx)+ f;z sinh(nx)]

: . 3-»
+ B , sinh(nx) + Bn4 [(nx) sinh(nx)+ E 4 cosh(nx)]

n3

[w ()
—Z—H—g——]—{n(x-g) cosh(n(x-g))-sinh(n(x-g))}dg (19)

3

~

The eigenmatrix [?1:13] can then be written as follows :

2
~ 1'["”) S.
i ~2 Z 2 ( i
i QR (it~ 1+ .4 B . f; 20
nij i4 o ( (siz+nz))f ij ij 1j fefal

8(1 - 2 )(cosh(nf) - (-)})
“H—,rr i L

P, .= :
N (1+72) [TT»‘ sinh(nf) + (-)l(n[)] (sj2+n2)2

% 2 l+v 2 2 2 2 _
flj—s(n —Vs)-?--l-—yrn sj(n+sj), (sj-[)

2. 4
&')Z _ & 2 22 (1-» )Si
bl Sl el

(si+n )
Ji.j=01f1+'] and Jijzl if i=j
S.
P R
Ti_ n ’ Si l (ZOb)
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&").14 is actually the low eigenfrequency corresponding to a mode
shape with "n'" circumferential full waves and '"i'" axial half waves,
of a cylindrical shell with boundary condition SS1/SS1, when

tangential inertia is neglected (see Appendix III).
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APPENDIX VII

DIFFERENTIAL OPERATORS AND INFLUENCE MATRICES

FOR THE END-RING

The uncoupled differential equations for the ring are:

where,

¥ell

o || {Fm.}
| 7.1 - )
r
o i (i,§ =1,2)
plo) Yr {FM.}
| T B - P |
Ir
_ e 52 1 52 82]
89 | 592 (1-2) o
_ o2 L 32 42
;;Z (1-27) ;_Z

n

(1)



{F(i)_} cl
r,i

cl

{F“’.
r,i
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£, a (¢/2)

, ane(IIZ)

““e3 96
o (U2 |

fc7 0 0 ane(l/Z)I

30

0 < fa qxx(llz)

Lm (4/2)

fck (k =1 to 7) are constant factors that depend on the cross section

properties of the ring and are given in Table XI. For free vibration,

Y

system (1) has an exact solution as given by equation (58) of this work.

Such a solution leads to a system of algebraic linear equations of the

form:

L)
r,ij

where,
(1)
L i1

(i)
L. 12

(i)
Lr, A |

( v
rn
w
rn
u
rn -
Prn
= -n(n
2
= -(n

n(r2 n2+ 1 -
Y

(2)

"w'z rz)
Yy
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(1) _ 2 4 _ 2,2 2
Lr,ZZ = ryn +1-& (ryn + 1)
(0) . RPN oe 2. 2
Lr,ll = n (rxn +m+—y)) & (1+ rxn )
I_2
(o) B PAR A 3 _ (o)
I"r,12 - - (rx+211+p)) il Lr,2.1
r2 1.'12
(o) = 2 2.2
B2z = Vo) v Hp®
-—Z ~2 ’52 ~ Ln ar
Kgh VR G e & R W e
(1-27)

T ry, T, and rp are the nondimensional radii of gyration of the ring

cross section.

{F(i) } _ | fa i } 4 (£12)
g fcl - i'c:3 ‘ﬁxQH/z)
rHxx(t’lz)
. £, -nf, O 0 T, g(4/2)
o -—
{r,ni} - £ 0 o PP q_ (£/2)
Lr“ﬁxxu.’/Z)
n__(4/2) n,_ (¢/2)
a.(€/2)} = q, (%/2) sin(n8) sin(37)
m__(£/2) m__(£/2)
nxe(fll) = 'ﬁ'xe(lIZ) cos(n@) sin(a7)



Solving for w__, u
rn

rn
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v
' "rn

and prn

in (2) we obtain:

s Gl t12)
W n_(£/2)
= M, .. (i, =1 to 4)
Vrn [ % 13] Exe (£/2)
L/arnJ -r’;l ([/2)_ |
% (i) (i) (i) (i)
¢ Lz tend 0 Gealy gty 1)) "
1 pm 0
(o) (o) (o) (o) (o)
ety 12 “Yoaly 22t 5L°12) i L hateq He Lo;z
(2) (2) (2) (2)
Dtr Dtr tr tr
o]
(i) (i) (i) (1)
» (Lr,lz'( I)"r,ZZ) o o Bl 2ot gl yn) 3
cl I (1)
Dtr Dtr
(o) (o) (o) (o) (o)
feelr 11 Yealy 21t fesle 1) Lpo21fer “faly 11
D(Z) D(Z) (2) D(Z)
34 tr tr

pit o aes [L(i.).] ., o® & de [L“?’.]
tr 1] tr i)

Finally, matching of the displacements and slope of the shell at the

boundary where the ring is attached, with the displacements and

rotation of the ring leads to the following relations:

(3)
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r Wen | Fwn({/?')
urn [ ] un(llz)
= M b
S T, v_(£]2)
/31.“ . w;l(ZIZ)
- - -
g o
o 0 0 2‘(‘7—)dahh
} %E
0 & RS
g s & o o
nhh h h
w0 amt! 2
0 0 0 1

-

(4)

(i,j =1 to 4)

The nondimensional ring parameters in the above matrix are given in

Table XI. These parameters correspond to a symmetric section

(symetric '"H" type section) that is attached in the interior of the shell

(see fig. 10). Combining (3) and (4) leads to four homogeneous

boundary conditions relating the displacements and slope of the shell

at the boundary of the ring, to the nondimensional stress and moment

resultants of the shell at the same end:

Fwn([/Z)

un(ZIZ)
[Md,ij] . [MT, ij]
vn(—f/.?.)

wl'_l(l/2)

J —

4, (€12)

?rxx(é’/Z)

n_g(£/2)

r’ﬁxx(l/z)J

(5)

(i,j=1 to 4)
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APPENDIX VIII
SIMPLICITY OF THE EIGENVALUES FOR THE

LINEAR DYNAMIC SHELL EQUATIONS

It is proved in this Appendix that for fixed values of the circum-
ferential wave number ''n', there exists only one independent eigen-
function for each eigenfrequency "& ' for all admissible homogeneous

natural boundary conditions.

PROOF:

We will first show that the problem:

L [x]
u [x]

I
o

(1a)

7 (1b)

1l
(=]

X(0) X(#)
U[x]:[hij X'(0) + [e5] X'{) (lc)

n

x(™a-1hq x (g 1)({)

]

157 1 to n4
"d

hij 0 for 1i> — and all j
n

. d .
gij 0 for id 5= and all j

det[[hij] + [gij]] # 0



96
has only one independent solution if and only if the corresponding

eigenmatrix
A= u[3] (2)

has rank (nd - 1), where "nd" is the order of the homogeneous
ordinary differential equation (la) and "' "' is the Wronskian formed
by the fo-undarnental set of independent solutions correspox{ding to (la).
" [X] " is a concise form of the homogeneous boundary conditions
imposed on (la) and is often referred to as ''the vector boundary form'!

Let

b s Byl onann ;b (x) (3)

5

be the ”nd" linearly independent solutions forming the fundamental

set for (la), then

%4
X = C. ¢i(x) (4)
=1

i
i

Substituting (4) into (lc), we get

|
U[:{,] c, [= o (5)

C
|
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F¢1 ¢2 b e ¢nd
b ¢, S
- 1 2 ny
& =
(n,-1) (n,-1)
¢1 d . ; ¢ndd

System (5) has a nontrivial solution if and only if

dget[d ] = det[U[?ﬂ]] =0 (6)

If the rank of ”,df ¥ is (nd - 1), this will imply that system (1) has
only one linearly independent solution. This is based on the theorem
which states that problem (1) has exactly "k'" (0 ¢ k & nd) linearly
independent solutions if and only if the corresponding vector boundary
form " " has rank (nd - k), where "nd" is the order of "L[X]"
(see reference 25 page 291).

We now proceed in applying the above result to the linear

~

eigenvalue problem for a cylindrical shell. For & = wLF and

n » 2, the resulting characteristic equation is given by

Cn(l) An‘}* + Cn(Z) )\nj*+ Cn(3) Anj*+ Cn(4) )*nj*+ Cn(S) =0

(7)

e

2 - . .
where Anj*_ A nj* The above coefficients "Cn(k)" are given in

Appendix IV. (j*=1 to 4 and j=1 to 8)

From previous results we know that for @ = 5LF and n>2:

1> @0y 2= it (8% (8)

ring
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The bounds on " &,’L} in (8) require that for positive A, we must have
C (1) =(+), C_(2)=(-), C_(3)=(+#), C_(4) = (£), C_(5) (=)

We see that the number of sign alternations in the ”Cn(k)" is ""three"
implying that (7) has either ''three' or '""one'" positive real root.
Similarly one can show that (7) has at most '""one'" negative, real root.
For the above range of "@ " and ''n", (7) has one complex pair of
roots thus deleting the possibility of '"three'' real positive roots. The

form of " Anj” is then:

o | . i :
Anl,Z_i 1* “n3,4=31%5 )\n5,6,7,8_i( 31 19)

The roots in (9) are distinct leading to a foundamental set of eight
distinct and independent solutions. This result implies that the eigen-
matrix columns will be linearly independent. And since the eigen-
determinant itself must vanish for a nontrivial solution to exist, thus
the largest submatrix with nonvanishing determinant will be a seven-
by-seven. We conclude that the eigenmatrix has rank '"seven'' and
thus there exists only one linearly independent eigenfunction for each

eigenfrequency.
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TABLE III
NOTATION
Terms Neglected

3 - * * ™
13 13 13
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TABLE III (Cont'd)

NOTATION

Terms Neglected

Error Notation

v in k.. azu azv 2 62 ( 2 )
& B Con e § Radleow- L
and g T or or
~ aj4
w4 X X X g, = =F -1
~ 514
w S S
1 X X € = 1
1
s 54
w X X < = —— -1
2 2 )
2
~ C‘;54
w B e W
3 X X ey = 1

w
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TABLE III (Cont'd)

NOTATION
Terms Neglected
Error Notation
o v in k.. 3211 aZV 2 82 2
o g = s =0l STy V. W
and qe oT oT o7
W
w X 3 4 '}
1 23 T 3
%)
R L %
¢ 5% X °13 = =¥ !
o
w ) ]
X X €12 "
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TABLE IV

LF FOR BOUNDARY CONDITION SS1/SS1

WHEN NEGLEGTING "vin k" AND "qy"

Valid for "el" (error when neglecting ''v inkij” and "qg"
All 2 1 2 nTy BaT 1] = 3¢ s (0 =2}
n,s =+ 0 k3 r2(82+n2)4+ (l-uz)s4
~ n6
“=Whin 2, 4
8+ (1-v7)s
r
1, 3
32) 2 r
(e,) (— ) = 0.805 e .
1'max 2 & in ring
By & L s
min ? ring
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TABLE VI

INTERMEDIATE AND HIGH FREQUENCIES

FOR BOUNDARY CONDITION SS1/SS1

n &2 1F B%HF
0 %_(1+52+\[(1_82)2+4y282) 0
>1 (lii) (52+n2) + ™ {_}—1;2)2():21“2) 1+s“+n - 8_;::_?)(:2112
N = (sz+n2)
>3 (1-11)(52+n2) l+s +n2
>10 {1-¥) & n’ (= mzHF)ring

ny»s
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TABLE VII
DISPLACEMENT RATIOS FOR THE LOW, INTERMEDIATE AND

HIGH FREQUENCIES FOR BOUNDARY CONDITION SS1/sSS1

n a4 v
mn mn
1 -\/(1-52)2+ 4P e®

o s(nz—vsz+ —155- 352) -n(n2+ (2+U)sz- 12v 33;)
g 2l Ty Yy R . T R Y
a - ~ - ~
% (rs+n)-T—_7(s+n)ﬂJ2 (s+n)-m(s+n)w2
Qo v
1 ¥
=
2 A 2 2
T 58 s(n“-vs") -n (n%+ (2+7)8°)

(s +n) (52+n2)2

s 1 ~
g o 3 n (vzvn) ring

EN
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TABLE VII (Cont'd)

DISPLACEMENT RATIOS FOR THE LOW, INTERMEDIATE AND

HIGH FREQUENCIES FOR BOUNDARY CONDITION SS1/Ssl

= umn vmn
0 27 s 0
1 +\j(1-sz)2+ 411252
54
§ S(nz- v 52+ Tz_—y ‘-‘*11? ) -n (n2+ (2+0)52- lzj mif )
o 21 gy 72 Y A
b
%
T 2
] 2vs
g 2 2{l+ ——)
> >5 ...g_ i+ n 121_ 1 - 2
E . (135) {8 “4n%) (147) (s+n°)
-nz n
»>s 5
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TABLE VII (Cont'd)
DISPLACEMENT RATIOS FOR THE LOW, INTERMEDIATE AND

HIGH FREQUENCIES FOR BOUNDARY CONDITION SS1/SS1

l
!

05 umn mn
0 0 0
2 2.2 ~2 2 2 2 ~2
A s(n"-2s +1_°"hf) -n (n"+ (2+¥)s - 15 “ng)
2 ~2 2 ~2 z2, 2
= wh - ((3+2V)s +n ) =5 PRt = ((3+27)s”+n")

High Frequency

>5 s|1- -(1-”52 -n(l+ U y)sz :
(8“4 )+ 2 _ -2(1-7)s" R T 2 - 2(1 -v)8°
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TABLE VIII

CHANGE OF ROOTS OF THE CHARACTERISTIC EQUATION

Range of @ Type of Roots
n
No. of No. of No. of
SEnes i Imaginary Real Complex
1
0 (-5 % 2 4
1
0 (1_”2)7 1.0 2 4
1.0 % 2
1
2
1-v
0 (—2——) 2 2 4
A
2
(l_g’i) 0. 962 4 4
1
=
0. 962 (n%+1) 4 4
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TABLE VIII (Cont'd)

CHANGE OF ROOTS OF THE CHARACTERISTIC EQUATION

Range of @ Type of Roots
n
oAt Las No. of No. of No. of
Imaginary Real Complex
5 .
rn 0.978 2 2 B
1
2
0. 978 (l%f) n 2 6
2
] 1
(’1‘;) “n (n2+1)f 4 4 3
i
(n2+1) 6 2
1'n2 1.0 2 2 4
.1
2
1-v
23
(_2_1- ) n (n2+1)2- 4 4
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TABLE X
COMPARISON OF EXACT AND APPROXIMATE LOW FREQUENCIES
FOR BOUNDARY CONDITION SS2/SS2

(=3, 2 = 577.35i.e., r = 0.0005)

h
m 1 2 3
n Exact Approx. Exact Approx. Exact  Approx.
not not

Sxitiant  Bxistent 0. 856654 0.857717 0.942562 0. 942644
1 0. 408208 0.408263 0.711681 0. 711681 0. 845446 0. 845447
2 0.243312 0.243436 0.469722 0. 469743 0.652761 O. 653763
3 0.155055 0.155192 0.322102 0.322173 0.487844 0.487871
4 0.105212 0.105326 0.231436 0.231536 0.369015 0.369077
5 0.075709 0.075753 0.172978 0.172848 0.285661 0.285349
6 0. 058269 0.058315 0.133945 0.133945 0.226530 0.226413

7 0. 049151 0.049182 0.107670 0.107701 0.184006 0.183980

8 0. 046531 0.046548 0.090625 0.090656 0.153402 0.153409
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TABLE XI

RING GEOMETRICAL PARAMETERS AND RELATED COEFFICIENTS

~ D
4 = n
—al  fe—s hr N hr
. b= 5
l " D a
— e ) ~ r
et
: a
I l L W
H H & 5
Tr
Nondimensional Symbol Equivalent Relation
A= — (1+2d)H
h
T
~ 1
B o= .2 h
e h &
T
1
L™ nt (1 0.6301875\ °
T aNE = \3 T Fa..3
r T T H(1+24d)
1
IR U pE [1+2823%)\2
x a VA ar 12(1+24)

I R T ~2
" L A Y 4 hh H +Zd(l+}H)
a, 12 (1 +24d)
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TABLE XI (Cont'd)

RING GEOMETRICAL PARAMETERS AND RELATED COEFFICIENTS

Nondimensional Symbol

Equivalent Relation

a

A
th_-}-l-_

_ (weight ring)
r =~ (weight shell)

tx

ty

cl

c2

1+h(l+ H)!

a .
N AN
a Ah
r
o) 2
a
7]
I'x Tr
X Jdgw 2, X Jw 3
r T r T

1
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TABLE XI (Cont'd)

RING GEOMETRICAL PARAMETERS AND RELATED COEFFICIENTS

Nondimensional Symbol Equivalent Relation
h

f.5 e

e 2(142) A_h

£ b &

c4 (T-2) c2
£ £, 2

ch (T-2) “c3

dh

fc6 2

24(1-2°) ( %) Kr’i}

IQJ
t=a|

c7 c3

™
R
o
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TABLE XII

COMPARISON OF THEORETICAL AND EXPERIMENTAL

EIGENFREQUENCIES FOR BOUNDARY CONDITION FXR/FXR

(L=1.75, & =284.93, @ =8308.4 cps)
m =1 m =2

FXR/FXR FX2/FX2 FXR/FXR | FX2/FX2

n Exper. Theory Theory Exper. Theory Theory
2 3080 3522 5992 5862
3 2240 2475 ' 4369 4566
4 1213 1286 1826 3664 3582
5 1094 1150 1405 2504 2871
6 967 1004 1131 2123 2194 5358
7 887 904 969 1854 1897 1990
8 861 868 900 1656 1680 1735
9 906 897 912 1540 1545 1578
10 1003 983 991 1485 1488 1507
11 1145 1114 1118 1524 1503 1515
12 1321 1280 1282 1615 1581 1588
13 1473 1474 1763 1711 1716
14 1747 1690 1691 1942 1884 1886
16 2265 2183 2184 2409 2326 2327

18 2860 2739 2739 2982 2868 2868
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TABLE XII (Cont'd)
COMPARISON OF THEORETICAL AND EXPERIMENTAL
EIGENFREQUENCIES FOR BOUNDARY CONDITION FXR/FXR

(f=1.75, = =284.93, w_ =8308.4 cps)

h
m =3 m = 4

FXR/FXR FX2/FX2 FXR/FXR |, FX2/FX2

n Exper. Theory Theory Exper. Theory Theory
2 6931 6899 7349 7335
3 6146 5974 6773 6726
4 5091 5067 6033 6035
5 4580 4282 5472 5352
6 3330 3444 3641 » . 4454 4729
7 2972 3037 3136 4008 4098 4190
8 2647 2687 2747 3630 3682 3741
9 2402 2423 2461 3314 3344 3382
10 2241 2242 2267 3070 3082 3109
11 2160 2141 2157 2909 2898 2916
12 2115 2125 2810 2789 2801
13 2201 2156 2163 2751 2759
14 2313 2256 2261 2779 2785
16 2696 2600 2602 3062 3006 3009

18 3196 3097 3088 3490 3416 3417
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FIG. 1| ELEMENT OF CYLINDRICAL SHELL
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GEOMETRICAL PROPERTIES
RING SHELL

167 a/h = 284.93
= |9.865 * £2=1.75

d=2
H=Th

MATERIAL PROPERTIES (AL 6061-T6)

p=0.0976 Ib/in° v = 0.3
E=107Ib/in2 wg = 8308.4 cycles/sec

Fig.l5 PROPERTIES OF SHELL AND INTEGRAL RINGS
USED IN THE EXPERIMENT.



(cycles/sec)

80005

7000

(6} (0]
O O
(@) @)
O ®)

“3 4000

FREQUENCY "

3000

2000

1000

140

FREQUENCY SPECTRUM FOR BOUNDARY CONDITION
“FIXED WITH FLEXIBLE RING AT BOTH ENDS"
£=1.75, a/h=284.93, w,=8308.4 c/s
— -— Theoretical Totally Fixed
---- Experimental "With Rings"
—— Theoretical "With Rings"
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CIRCUMFERENTIAL WAVE NUMBER "n"
Fig. 16




