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ABSTRACT

A generalization of A. Weil's notion of measurable group is for-

mulated and various properties are developed. The properties obtained
for the generalization are applied to a problem in the theory of group
representations and to the characterization of separable topological

groups possessing a measure.
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INTRODUCTION

This thesis deals with a generalization of A, Weil's notion of
"‘measurable group" ('groupe mesuré'). (See (1) and (7).) In the first
section Varibus properties of this generalized structure are obtained,
and it is shown how one can strengthen Weil's principal result on
measurable groups. In the second section our generalized concept is
used to find an extension of a result of Loomis in the theory of repre-
‘sentations of locally compact groups. In the third and last section we
apply the results of the first section to show how local compactness is
a combination of measure-theoretic properties and completeness of
the group uniform structure.

Throughout this dissertation there is presumed a familiarity with
the elementary topological notions and the approach to measure theory

(1)

expounded in Halmos' Measure Theory''. Of course, a certain num-

ber of terms which are either not well known or are taken here in a
sense different from the usual have been defined in the body of the pa-
paer. Other notions and theorems are assumed known: e.g., the defi-
nition of an integral (section 25 of (1)), the notion of a 0-finite measure
space (section 17 of (1)), the definition and existence of product mea-
sure spaces, the version of the Fubini theorem in (1).

Finally, I wish to express my gratitude to those who made this
thesis possible. First, to Doctors Dye and Bohnenblust for their ad-
vice, encouragement, and patience while my research was in progress.
Then, to my sister Maria for her constant understanding and moral

support.
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- I. THEORY OF GENERALIZED MEASURABLE GROUPS

1. Definitions

Definition 0: Given S and Tf, O .-rings of subsets of the abstract
sets S and T, respectively, we define Sx T to be the O -ring generated

by {M X N)M in §, N in T} . Itis clear that given a finite collection of

n
measurable spaces {(Si’ Si)} one may define inductively a ¢ -ring
n i=1
>< §i’ by the relation
i=1 '
m+1 _ m -
X 5= X 8 xS -
i=1 i=1

If we make all identifications necessary to insure the associa-
tivity of the process of forming Cartesian products of sets, the process
of forming products of 0 -rings is associative. This will be formulated
and proved as a lemmas:

Lemma: Let (S,S), (T, T), and (V, V) be measurable spaces.
Then

(gx -T')XTT =Sx (TXV)

Proof: Defining R(E) to be the 0 -ring generated by the family of

sets E and D x A to be the family of sets {F x AIFeD} , we make two
preliminary observations.
First, ‘
RE x A) = (RE) x A.
For, on the one hand,
R(E x A)C(R(E)) x A.
And, on the other hand, since
I-{(E) C{K‘K x A¢R(E x A)},

(RE) x ACR(E x A) .
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Second,

®UE)-7URE).
el . Kel
For,

RUEOcRU RE, )
Kel xel

cR(U RIU Eq
olel el
= R(U E, ).
wel -
We can now prove the lemma. If V {E

deI
(SxT)x V= R[UR &XxB’AeS BeT xE]
el
=, by the first observation,

[U R({AXB x E ’ AS, BET})]

xel
=, by the second observation,

'ﬁ(U{AxBxE | AcS, BeT))
(f:XIXBXC!AeS BeT CeV})

By a similar argument,

gx(fo)

'Pl( {A x B x ClAeg, Be—’f, Cev}) .
Hence, we have the desired result,
(‘—S—X_T—)xv=§x("fx~\7).
Definition 1: Given a measurable space (X, —S:) we say that a real-

valued function f on X (on Meg) is S-measurable (S-measurable on M)

if for every ¢« such that -0 £ X £ + o0 fxlf(x) 74 0, f(x) _‘.'“} €S. If it is
clear in any context that only one measurable space is being considered
then an S-measurable function will merely be referred to as measurable,

Definition 2: Given a measurable space (X, §) we define a measur-

ability-preserving transformation of (X, S) to be any one-one mapping,
T, of X onto itself such that T(E) = S. ':T_Ims for any E in S both T(E) and

T_l(E) belong to S.
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Definition 3: ‘We say that a measurability-preserving point-

transformation, T, of a measure space (X, sT, m) is non-singular if
m(E) = 0 irﬁplies m(T(E)) = 0 for all E in S.

| An important exarﬁple of a non-singular transformation on a
measu.re space is of course that of left-translation on the measure
space consisting of a locally compact topological group, its T -ring
of Borel sets §, and the Haar measure on S.

Definition 4: Given two-measure spaces (X, S, 1), (X,S,7), u

is said to be equivalent to Vv (u~V ) if p is absolutely continuous with
respect to ¥V , and vice versa.
Definition 5: A 0 -ring G of subsets of a group G is called in-
variant if the transformation
S: (x,y)—(x,xy)
on G x G is measurability-preserving relative to the product measur-
able space (G x G, G x 6).

Definition 6: By a generalized measurable group [: GMG] (G, c‘;, m)

we mean the structure composed of an abstract group G, an invariant
o -ring G of subsets of G, and a non-zero, 0O -finite measure m on G,
where left-translation by any member of G is a non-singular, measura-
bility-preserving transformation of (G, G, m).

We call (G, G, m) bounded if G is in G (namely, if (G, G, m) is to-

tally O -finite) and left-invariant if m is invariant under left-transla-

tion.
The definition of a GMG is of course suggested by that of a

measurable group (a concept due to A. Weil), which in our terminology

is simply a left-invariant GMG. (The reader is referred to (1) and (6)
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for a discussion 6f‘méasufab1'e groups.) And as with a measurable
g‘roup an exampie of a GMG is afforded by a well known structure,
namely, an arbitrary locally compact topological group G with the
Haar measure on its o-ring of Baire sets, B. The proof that B is
invariant in the sense of Definition 4 follows from the fact that the
transformation
S (x,y) —=(x, xy)

is a homeomorphism on G x G in the product topology, together with
the fact that thefamily of Baire sets of G x G coincides with B x B, (See
Theorem 51.C of (1).) The use here of the o-ring of Baire sets of G
in preference to the o-ring of Borel sets is partially motivated by the

Liemma: Let G be a compact topological group, G the Borel
sets of G, and m Haar measure on G. I (G, G, m) is a measurable
group, then the power of G is at most that of the continuum. (See
p. 261, ex. 2 of (1).)

Definition 7: Two GMG's (G, G, m),(H, H, n) are called (weakly

or strongly) equivalent if there exists a measurability-preserving group

isomorphism T of G onto H such that (weak case) mo T'1~ n or (strong -
case) mOT"‘L = an, a a positive real number.

Thus each bounded GMG is weakly equivalent to a GMG in which

m is finite,

- Definition 8: The transformation R on G x G shall be defined by

‘the relation:
R(X: Y) = (Y: x) .
R is measure-preserving on (G x G, G x G, m x m) as is clear from

the definition of this space.
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Definition 9: Two functions, f and g, on a measure space

(S,5, m) shall be said to be equal nearly everywhere (m) [= n.e. (m)]

if they are equal except on a subset of S which intersects every
measurable set in a set of m-measure zero. A statement which is a

point-function on (S, S, m) is said to be true for nearly all x (m) if it

is true except for x in a set whose characteristic function equals

zero n.e. (m).

Proposition 0: If A and B are any two sets, then

[s'rsia xB)) _=x"'al)B"!

and 1 1
-1 y Ay 7, yeB
(_ES RSHA x B)] =

d, ye(B™HE.

Proof: See Theorem 59.C of (1).

Proposition 1: Let G be a group and G an invariant o-ring of

subsets of G. If (G, E;, m) and (G, G,n) are GMG's, then S and S-1 are
‘non-singular measurability-preserving transformations on
(GxG, Gx G, mxn).

Proof: For any M in G x G one has, by the Fubini Theorem,

(m x n)(M) = 0 if and only if A(MX) dm(x) = 0 and (m x n)(S(M)) = 0
if and only if /n((S(M)) ) dm(x) = 0. But (S(M))_ = xM_ and, (G, G, n)
being a GMG, n(xMX) = 0 if and only if n(MX) = 0, Hence
(m x n)(S(M)) = 0 if and only if (m x n)(M) = 0,

If S is a measurability-preserving transformation on
(GxG, Gx G, mxn) then S-1 has the same property; thus the conclu-
sion of the preceding paragraph yields the result that S and .‘S-1 are non-
singiﬂar measurability-preserving transformations on

(GxG, GxG, mxn).
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Proposition 2: On any GMG, the transformations U and Ry’

defined by the relations
U=x—>x"and RY ! X—> XYy,
are measurability-preserving and non-singular.

Proof: Theorems 59.A, C, and D of (1), with an obvious modifi-

cation in the proof of the latter theorem, carry over to the case of a
GMG. The first two theorems are needed to prove the third, and the
third is equivalent‘ to the proposition under consideration.

Corollary 1: The function f(x) = m(xE/]JF), E and F arbitrary
members of G, is measurable for any GMG.

Proof: By Proposition 0,

Es-lRS)(E x F"l)]X -x'ENF .
Since, by Proposition 1 above, 5§ is a measurability-preserving trans-
formation on any GMG and, by Proposition 2, F-1 in G,
glx) = m([(s"'RS)(E x F'l)]x) = mx"'ENF)
is a measurable function on (G, G, m) by Proposition 2. Hence, in view
of Proposition 2, f(x) = g(x'l) = m(xE [1F) is measurable on (G, G, m).

Corollary 2: Any GMG, (G, G, m), has the property that if E and F are
in G and m(E)> 0 and m(F)> 0, then m({x|mxENF)>0})>o0.

Proof: {x’m(xE NrFy O} €G by Corollary 1. Since § and s!are
non-singular on (G x G, G x G, m x m) by Proposition 1 and R has this
property also,

(m x m)((S”'RSHE x F™1))> o,
As a .fesult,

1

0K (m x m)((S"'RSNE x F~ 1))

- [m([is"'RS)E x F'l)]x) dm(x)
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A=/rvn(x-‘1E.I NF) dm(x)
- [ 'ENF) dmE)
felmE"lENF)> o)
- [mx"'ENF) dm(x) ;
| {xlm(xE NF) > 0} !
whence, in view of Proposition 2, m( fxim(XEﬂFp o} }>0.

Corollary 3: Let (G, G, m) be a bounded GMG. Then if his a

measurable function on every member of G and if
h(xy) = h(y) n.e. (m)
for each x in G, h is constant n.e. (m) on G.

Proof: Observe that g(x,y) = h(y) is measurable on

(G x G, G x E}, m x m) as is also g(S(x,y)), in view of Proposition 1.
Since the hypothesis of this corollary implies that

g(S(x, y)) = g(x,y) n.e. (m)

fo:i each x in G, one can apply the Fubini theorem as follows:

0 =/ / lgtx, v) - g(stx, y))‘ dm(V)} dm(x)
E\"F

- /F M \g(x, y) - glsSt, y))\ dm(x)) dm(y),

where E and F are arbitrary members of G. From the arbitrariness
possible in the choice of E and F, it can be concluded that for nearly
all y in G,

glx,y) = g(S(x,y)) n.e. (m), i.e.,
remembering the definitions of g and S,

h{y) = h{xy) n.e. (m).

Thus there exists y in G such that
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| hlxy) = hiy,) n.e. (m),
so that by Proposition 2
hix) = h(yo) n.e. {m) .

- The remaining results of this section, suggested by the well-
known decomposition of an arbitrary locally compact topological group
into the family of left cosets of a certain o-compact open subgroup,
will be of fundamental importance in the remaining sections. These
results will allow us to prove a Radon-Nikodym type of theorem for
a GMG and thereby make it possible to obtain results about an arbi-
trary GMG which would otherwise be true only for a bounded GMG.

Lemma: Given a GMG, (G, G, m), G is a topological space if
the defining family, N, of neighborhoods of the identity is taken to be
the collection of all sets of the form {xfm(xEﬂE))O s 0<m(E)<oo}
and if the defining family of neighborhoods of an arbitrary element x of
G is taken to be xN. Further, taking the defining family of neighbor-
hoods of an arbitrary x in G to be Nx yields the same topology. For
any N in N, N = N-l, and N is measurable and of positive measure.

Proof: To show that we have a valid topology it is necessary only

to prove that the neighborhoo.dv axioms are satisfied relative to the mem-

bers of N, since for each x in G xN is the family of neighborhoods of x.
First, we show that given M, N in N there exists K in N such that

KCMN. Let M = xlmxENE)>0, 0<m(E)<w], and

N = {xlm(xFr'\ F)>0, 0<m(F)<oo} . Observe that by Corollary 2 to Pro-

position 2 there exists y_ in G such that yo-lF-1 NE™! has positive

measure. (yo"lF-lmE"1 is measurable by Proposition 2 and the non-

singularity of left-translation.)
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As a r)esult,
| O<m(EﬂFy‘o)<oo.
But then, letting L = EﬂFyo; K= {x'lm(xL ﬂL))O} eN. Also remem-
bering the nbn-singularity of right-translation asserted in Proposition 2,
K ClxlmxENE)> 0} ) {le(xFyo ﬂFyo)>o}
{x|mxENE)> 0} [1{x/mxFNF)> 0]
M[IN.

In order to show that given any N in N and any X in N there exists
in N a neighborhood of x,, Wwe prove first that given N in N and z in N
there exists B in N such that BZOC: N, and we prove second that given
N in N and ¥, in G there exists M in N such that MCyo-lNyo.
Let N = {xfm(xEﬂE)) 0/ €N and z_ in N be given. Then define
B = erlm( X(ZOE NeN (zoE ne)> 0} .
Since zOeN and 0<m(E)<w, BeN. And if xeB,
m((xz )E ﬂE);m((xzo)EﬂEﬂxEﬂzoE)
- m[x(zoEﬂE) Nz ENEY> o
Then, by definition of N,
BZOC N.
Let N = {xlm(xE NEY 0.} eN and yoeN be given. Note that
= yo-l {x'm(xE AE)> 0} Yo
belm(ty 2y, HENE)> d

{x‘m(x(yo -lE) ( (yo -IE)) > 0} ,

by the non-singularity of left-translation. By the d-finiteness of m
there exists DCyo-lE such that 0<m(D)<w. Consequently, if
M = {x‘m(anD)>0} eN,

then



~1i-

M C{x[m(x(yo'lE) Ny, " 'EN> 0} = yo_lNyo.

The two facts just obtained not only complete the proof that N
is a true family of neighborhoods of the identity but also show that
the same topology is formed regardless of whether a family of neigh—.
borhood at x is taken to be xN or Nx.

By the first two corollaries to Proposition 2, any set of the form
N = Irx'm(xE ﬂE)>0, 0<m(E)< oo} , is measurable and of positive mea-
sure.

Finally, if N = {x’m(xE ﬂE)>0} ¢N, then N = N'l; for xENE =
x(x'lE N E) and left translation is a non-singular measurability-pre-
serving transformation on any GMG.

It might be noted at this point that the topology constructed does
not necessarily satisfy any separation axioms nor does this topology
have, in geﬁeral, the property that the group operation is continuous
in it.

The topology constructed on an arbitrary GMG in the preceding
lemma will be called the m-topology on that GMG. It should be noted
that if (G, G, m) and (G, G, n) are weakly equivalent, then the m-topology
on G is equivalent to the n-topology.

Proposition 3: In any GMG, (G, 'd, m), there exists a subgroup

H of G with the properties that
1) HeG R
2) m(H)> 0,
3) H is open in the m-topology on (G, G, m).
Proof: LetN = {xlm(xEnE) >0, O<m(E)<oo} . N is open in the

m-topology, being a neighborhood of the identity in the m-topology, and,
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as such, is meas_ur'abie and of positive‘measure by the preceding
lemma.,
Define the set Nk for aﬁy positive integer k by the following re-
lations:
1) N =N

2) N¥

= N°TIN, Kyl

We shall prove by induction on k that for all k Nk is open in the
m-topology, measurable, and of positive measure. From the remarks
already made about N = N1 we see that it is only necessary to show the

N(ZH)

truth of our assertion for to be implied by its truth for N, for
any/g; 1.

Assume N 1is open in the m-topology, measurable, and of positive
measure. Then it is immediate that N(ﬂH) = NZN is open in the m-topo-
logy and, if measurable, of positive measure by Proposition 2. It re-

N(ZH) is measurable.

mains to prove that
Note that xN ﬂsz- ¢ implies that there exists X in G such that

for some M = {xlm(xFﬂF)> 0, O<m(F)<oo}

XOMCXN ﬂNZ s
since xN is a neighborhood of x in the m-topology and N~ is assumed to
be open in the m-topology. From the last lemma proved and the non-
~ singularity of left-translation we conclude that XOM has positive mea-
sure. xN is measurable and N is assumed to be measurable. Thus
xN{IN" is measurable and of positive measure for all x such that
xN ﬂN’Z # ¢, or,

{x]m(anN£)> o) = {xlanN'g # ¢] .

Hence, the last lemma proved having shown N = N-l,
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! .
NN

/

NN

_ )

Since N and, by the inductive hypothesis, N are in 6, then

{xim(xN N Nj) > 0}

L3

Corollary 2 to Proposition 2 applies, yielding the result that
{le(xNﬂNl))O} , and thus N[H)is in G.

This completes the proof that Nk is open in the m-topology, mea-
surable, and of positive measure for all positive integers k.

Consider H = LO_OJ Nk. On the one hand, we have, from what we
have just shown, thalft =I—ltis measurable, of positive measure, and open
in the m-topology.

On the other hand, H is a subgroup of G. First, by the last
lemma proved above, we see that N = N'1 and so Nk = (N )-1. Next,

j= Nk+/ Finally, N contains the identity of G.

Thus we have exhibited a subgroup of G which is measurable, of

positive measure, and open in the m-topology, thereby proving this

proposition.

Proposition 4: Given a GMG,(G, G, m), let H be a subgroup, mea-

surable and of positive measure. Let E in G have positive measure.
Then E intersects in a set of positive measure at most a countable
number of cosets of H, say {x H} o= :O, where i # j > x, Hﬂx H=d.
Further, m(E - LJ (EMNxH) =

Proof: Let {C } 1 be the family of all left cosets of H. By

g -finiteness E = U A where 0<m(A )<o0. Since the members of
i=1
E Cu}d ] 2F€ mutually disjoint measurable sets, so also are the mem-

bers §Aincu} If m(Aim Cy )20 for a more than countable collec-

o el’
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tion of lqt's, there"exis.ts 5 >0 and an infinite collection of «'s for which

m(AinCo()) 8, which in view of the fact that Co(ﬂ C, = ¢ for o(% B would

P
0
imply m(A.) = w0, a contradiction. So let A = fx.}. be the
‘ i ' J

=1
countable collection of «'s such that o in A implies m(CO( N Ai)>0 for
at least one i. Then m(E ﬂCd)>0 if and only if « is in A, proving the
first part of this proposition.

Now consgider the measurable set

0
F=E- (_ (ENC,).
j=1 j

)
This set, by the properties of {Co(} just obtained, intersects

every C‘x in a set of measure zeroJ. J(;b:erve that, by Proposition 0,
«tHNF = (s 'Re)m = FY]
for each x in G. On the basis of this one sees that every set of the
form
(STRSNHxF™)
is measurable and of measure zero. Then, as
1) Hx F-1 isGx G — measurable,
2) (S-'lRS)"1 = jS_lR.‘S is by Proposition 1 a non-singu-
lar measurability-preserving transformation
on (GxG, Gx G, mxm), .
3) AGx G-measurable set S has (m x m)-measure
zero if and only if
m(Sx) = 0 n.e. (m),
or
rn(SY) =0 n.e. (m),

1

we have thatm x n)(Hx F~ ') = 0. It follows by Proposition 2 that m(F) =

0, which proves the remainder of the present proposition.
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Definition 10: . A measure space (S, §, m) is said to be complete

_ if and only if for every FeS such that m(F) = 6 EeS whenever ECF,

Definition 11: Let (S, .'S-', m) be an arbitrary measure space. Then

stm) ={keslk = (& - N )UN,, Ee8,3IMsm(M) = 0 and N,U NZCM}
is a g-ring containing S, and the measure @ on -‘g‘(m‘) defined by the
equation

m((E - Nl)UN m(E)

2) =
agrees with m on 8.7 (The complete measure space (S, g(m)’ m) is

called the completion of (S, §, m).)

Proposition 5: Let (G, G, m) and (G, G, n) be a pair of GMG's

such that n is absolutely continuous with respect to m and (G, 6, m) is
a complete measure space. Then there is a non-negative function f on
G, measurable on every set in G, such that for every E in G

n(E) = / f(x) dm(x)

E ‘

If there exists a function g on G with the same properties as f, then

f=gn.e. (m).

Proof: By Proposition 4 we can dissect any E in G into a set N

of m-measure zero and the collection {El}olo -1 of the intersections of

E with a countable collection of left cosets of a subgroup H in G such

That m is uniquely defined is shown as follows. Let K in =§(m) be such
that

K=(E - N,L)UN2
(D;R)UR

where D and E belong to S and N1UN UR UR is contained in a member
Nof S having zero m-measure, Then

E - NC(E - Nl)UNZCEUN,

and
D-Nc(D-R )URZCDUN

Since m(N) = 0 and (E - Nl)UN = (D= R;)UR,, m(E)=m(D), and
m(D)g m(E), i.e. m(D) = m(E).” Thus, ﬁli(K) is uniquely defined,
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that m(H)> 0.

Let {Ca} be the family of all mutually disjoint left cosets of

el
the subgroup in question. Then we know by the Radon-Nikodym
Theorem (valid for totally O -finite measure spaces) that for every

there is a non-negative function h on G (vanishing outside Co( ) such

that 1)
: n(Flc,) / h, (x) dm(x)
FNCy

/ b (x) dm(x)

F

]

for every measurable F and 2) if k, has the same properties as h

k, =h n.e. (m).

Thus, because of the already-mentioned decomposition of the arbitrary

measurable set E,
0

n(E)= > _ n(E)

=1

i n(EﬂC

i=1

> / o () dml)

i=1

and, su’xce{ > h i is an increasing sequence of non-negative
i=1 % n=1 -
measurable functions,

o0 o0
S / h, (x) dm(x) = / (Z:lho('(x)) dm (x).
1= 1

i=1 E-N i E-
So let us define f on G by the relation:
f(x) = h‘>< (x)
for x in C . Then, since

by (x)=)(c () b (x)
i t><i i
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for allfx and

m[ - U ®ne )]s mm
i=41 i

= 0,
f is measurable on E by the completeness of (G, 6, m), and the formula

just obtained becomes:

n(E) = f(x) dm(x).
E-N

Inasmuch as m(N) = 0, we have that

n(E) = f(x) dm(x) .
E

Also, if g is a function on G with the same properties as f, g/yc is a
x
function having the same properties as ho( so that

g}Cu = h“ n.e. (m).

But, by definition,

so that

g/Y =fX n.e. (m) .

Cu Cux

" Since & was arbitrarily chosen and since every set is contained in a
countable collection of C“'s if we delete a set of measure zero,

g=1fn,e. (‘n‘l).

- n
Proposition 6: If {(Gi’ Gi’ mi)} is a collection of GMG!'s,

i=1
then the assertion of Proposition 5 is valid for the completion of mea-

sure spaces of the form .
n n
(i& Gi’%‘Gi; miX.....an).

n
Proof: We can prove by induction that X Ei is the same as
izl | }
o [, |
the ring generated by By XAy eeens X Anc:i>-_-<1 Gi'AieGi . This
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comblned with Propos1t10n 4 yields the ‘result that for every Ke >< G
i=1
_ there ex1sts Ne X G for which (m XMy X eee.. Xm )(N) = 0 and

K - NC:‘ ’(a h)H X eeees X aJ(n)H ); here H is a subgroup of G of
j=1
the sort. constructed by Proposﬂlon 4., Regarding >< G as a direct-
i=1
product group, we see that H X eoeos X H is a measurable subgroup

of 1>_<1 G having positive measure and that alH X eeoee X aan is

always a left coset of H1 X +.s.. x H and a set of positive measure.

, _ [, (M x ..o xm )

Hence, by the definition of (>< G.} :
—r:(mlx‘...xmn)izl t '

Ee (>§ Gi) there is an N in the same ¢ -ring such
1 =

that (m, % ..... x m_)(N) = 0 and E - Nc( | @ (1 M ox ... x a,™H).
j= !
This last conclusion makes it possible to repeat the argument of

, for every

Proposition 5; so, the assertion of the present proposition must follow.
Lemma: Let (S,S) and (T, T) be measurable spaces. Suppose
ACSand BCT. Then
(AxB)NSxT=(ANS) x (BNT).

Proof: We observe first that (A x B)\S x T contains all of the

. collection of sets which generates (ANS) x (BN T), namely,
{E x FCSx TI Ee(Ang), Fe(B ﬂ—‘f)} . This shows that
=(aNsS) x BNT)c(a xB)NSx T.
Now, by the same reasoning as was used to get the preceding,
EZ = (AN3S) x B°NT) (A x BS)NSx T,
R, = (A°N8) x BNT)c(A® x B)NS = T,
and
= (A°NB) x BN TIC(a® x BS) 15 x T.
Thus,

R= Z(UE CsxTIECR, , i=1, ..., 4}C§x¥.
i=1
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Since all the l-ii's‘are 7 -rings, since no two Ri's have any set in com-
mon, and since R contains every member of the family of sets gener-
ating S x f, ﬁ is a 0 -ring containing the generators of S x T, which

means that
As a result,

We see now that any member E of (A x B)ﬂ(;_s-x Tlnot belonging to

ﬁl = (ANS) x (BN T) must, being a member of (A x B)/ R, contain a
non-void subset of (A x B)c. But this contradicts the assumption that
E is a subset of A x B. Thus

(a x B)NG x T>(aNsS) x (8N T),
which, in view of the fact that tile latter family contains the former,
proves that

(AxB)N(ExT)=(ANS) x (BN T).

Proposition 7; Given two ¢ -finite measure spaces, (S; §, m) and

AT, 'i‘_, n), consider (Sx T, (Sx T)(m x n)’ m x n), the completion of
P

(SxT, Sx T, mxn). Letfbea non-negative, (S x T)(m x n)

-measur-
able function on S x T. Then, except for x in a set of m-measure zero,
f(x,y) is a T(n)-measurable function of y, and, except for y in a set of

n-measure zero, f(x,y) is «§(m)-measurable function of x. Further,

i, ) dnly)

—

is S( )—measurable, if we define it in some arbitrary manner at all x

for which f(x, y) is not '%(n)-measurable, and, with a similar qualifica-

tion,
| /Sf(x),y) dm(x)
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is S m)-measurable. Finally,

/ e, y) AEE DY) =/{/ £, y) anly)) afitx)
Sx T _ S' T

=/(/f(><,v) drTl(X)} dii(y).
T |/

S
Proof: Let us note first that by the assumption of (S x T)(m xn)_

)(m x n) there must be

measurability for f and the definition of (Sx T
a set E in § x T such that

{(x, y)eS x T E(x, y)> O}CE.
Then, since the ¢g-ring {KCS x T| 3FeS, GeT3KCF x G} contains
S x T, there must be an AeS and a BeT for which

{(x, yv)eS x T|i(x, y)>0}CA x B.
In addition, f, considered as a function on A x B, is a non-negative

function measurable relative to (A x B)ﬂ (Sx T)(m x n), which, using

) (m x n)

the lemma just proved, is identical with (Aﬂg) x (BHT . But,

A and B each being the union of a sequence of sets of finite measure,
we can apply Theorem 9.10 of (5) to f considered as a non-negative,

— _ (m x n)
. measurable function on (A x B, ((AﬂS) x (Bﬂ T)) , M X n).

Hence, remembering that (A[]S) x (B[] T) (m x n)_ i
(a x B)NE= D™ * 2, @N5™ = aN5™), ana ETTH™ =
Bﬂ %(n) and that f vanishes on (A x B)C, the assertion of this propo-
sition follows.

We now have the tools necessary to prove some uniqueness pro-
perties of GMG's and to discuss the existence of invariant measures on

the o -ring of a GMG.
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3, Uniqueness Theorems.

In this section we shall discuss certain uniqueness properties
of GMG's. We show that the family of null sets in a GMG is dependent
only on the ﬁnderlying measurable space and that the left-invariant
GMG correéponding to the measurable space (G, G) is essentially
unique if it exists,

Proposition 8: If two GMG's have the same underlying measur-

able space (G, G), they are weakly equivalent.

Proof: It follows from the definition of the transformation R

and the assumptions on S that S-lRS is a measurability-preserving

transformation on (G x G, G x G, m x n), if we consider two GMG's

of the form (G, G, m), (G,G,n). Further, by Proposition 0
[(S-lR'S)(A X B)]X — AnB'l

and
ay L yen™!

[( S_}-RS)(A X B)]Y = { ~le
4, yedB )
where A and B are arbitrary members of G. As a result the following

" formula is true:

fn(x‘lAﬂB‘l) dmix) = [ | m(ay™) dnly) .
B

Thus, since m and n are assumed to be left non-singular and since by
Proposition 2 the inverse of set of m-measure zero has m-measure
zero, we can see that if ﬁ(A) = 0, then m(A) = 0,

Interchange of the roles of m and n in the preceding argument
yields the converse result and completes this proposition.

Théorem l: Two left-invariant GMG's having the same underlying

measurable space (G, 6) are strongly equivalent.
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El_‘gg_f_: Let the fwo left-invariant GMG's be denoted by
(G, G, m), (G, G,n). By Proposition 8, they and their completions are
weakly equivalent. Also, E(m) = E(n). By Proposition 5 there exists
a noﬁ-negatiQe function h on G such that h is a(n)-measurable on every

a(n) -measurable set and

m(E) = fE h(y) dzly)

for each E in E(n). As a result, we have for any E in g(n) and any x
in G,

[ i) a5 = m(e) = mixm) = [
E

h(y) dily) = | hxy) an(y).
Therefore h(xy) = h(y) n.e. (&), so that by Proposiﬁon 4 .and Corauary 3
to Prop@‘sition Z,h,(y)f = constant'n.e. {n).: Further, the assumptions that
h; ¢ and f.tha‘ti’ m is not identicavl‘ly;,.z:ero make the constant positive. So

we have that for any E in G

(E) = m(E) = h(x) di(x) = (k) an(x) =
m m é X n{x ‘/:.E n
k* ‘/;:XE(X) di(x) = k * A(E) = k « n(E),

where k> 0. This proves the strong equivalence of (G, G, m) and (G, G, n).
It may be remarked that the preceding provides a new proof of

the uniqueness of the Haar measure on a locally compact topological

group, For if Gis a 10ca}1y compact group, G its family of Baire sets,

and m the Haar measure on 6, then as shown in Section 1 above (G, -(3, m)

is a left-invariant GMG-. Theorem 1 now enables us to say that m is

uniqué up to a multiplicative constant. Since, finally, Theorem 52.H

of (1) states that for a locally compact space agreement of two regular

Borel measures on all Baire sets implies agreement on all Borel sets,
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th'e'HaéVr measure on a locally compact group is seen to be unique to
within a multiplicative constant.

3. Existence Theorems

| The present section is devoted to showing that any GMG is weakly
equivalent to a left-invariant GMG. Since left-translation is a non-
singular, measurability-preserving transformation on a GMG, (G, G, m),

we.may apply Proposition 5 to (G, é(m)

,m), the completion of (G, G, m),
to obtain a non-negative function f(x, y), measurable in y on every set
in E(m) for each x and having the property that

FE) = [ f(x,y) dm(y)
for every E in 5(“‘). Speaking intuitively, f(x,y) is the density of the
measure. m at x relative to y. So, if for some fixed y, say y_, f(x, vy)

were measurable on every set in (—}(m), the measure on (=}(m) defined

for each E m-é(m) by the formula,
_ 1 _
n(E) = '[E m dm(xyo),

would appear to be a left-invariant measure equivalent to ﬁ. nis
" a fortiori equivalent to m on G. We shall show that this argument,
together with the assumption about the measurability properties of
f(x, y), is eésentially correct.

‘We begin with some definitions. Consider a GMG, (G,a, m), and
. the complete measure space (G, (=}(m)’ m). If
rTlX(E) = m(xE), then

d(r—nX)

f(x,y) = —— .
dm

If (m x m)S(F) = {m x m)(S(F)), then
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d(rnxrn)S ,

d(rsn_ﬁn)
Lemma: Consider (G, G, m), a GMG. If f(xl, R ) is

\ (MX. . . xM) T (mx...xm)
( X G) - measurable on every setin| X G)
i=1 -li =1

so also are f(xl. . "Xixj’ .o "Xn) and f(xl, REPESUR SRR .,xn) , 1<]e

Proof: Since the transformation S is non-singular (by Proposition

g(X, Y) =

1) and measurability-preserving on (G x G, G x G) and since the process
of forming products of o-rings is associative, the transformation on

( )( G, X G) defined by:
i=1 i=1

U: (Xl,...,xi,...,XJ,...,X )""(XI:'O'axl XJ X1+2:"': j-l’Xi-H""’Xn)

**(xl, e, S(xi, Xj ), X Xn)

14200 F A T g ot

"'.(Xl,coo,xi,-.o,xixj, ...,Xn)

is 1-1, non-singular, and measurability-preserving. Because of the

nonsingularity of U, it is then a measurability-preserving transforma-
(mXo . Xm)

tion on XlG 1X1G , MX...Xm). :E(U(xl,...,xn))z
f(xl,...,xli,...,x ) and £(U" (x,...,x )) —f(xl,...,xi-lxj,'...,Xn).

- Hence the lemma.
Lemma: Let (G, 'G, m) be a GMG. Then there exists a function
hon G x G x G such that
a) for every x in G

f(x,z) = h(x,y,z) n.e. (mx m),

b) his (Gx G x 6)(m xmx m)-measurable on every
member of (G x G x 5)‘“‘ X mx m),

)(m X m)}

c) for every xin G h(x,y,z) is (Gx G -mea-

surable on (G x ?})('m x m)
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Proof: Le;'x be a fixed, arbitrary element of G, and let E,FCG

" be arbitrary'meésurable subsets of G.
First,- note that m(yF) = m((S(E x F))Y); hence, m(xyF) is a G-
measurable function of y on E, left-translation being measurability-

N

preserving. Then, keeping Proposition 5 in mind,

/ m(xyF) dm(y) =/ (/ f(x, z) dfr'l(Z)) dm(y)
E E

yF

=/G (/G ! S(E x 7)V> 2) £ 2) dm(z) ) dm(y)

= f(x, z) d(m x m)(y, z) =,
S(E x F)

if Fx(y, z) = f(x, z), a function G x é(m % m)-measurable on every set

in G x G(m x m) for each x,

. / F_(y, =) d@=m)ly, z)

S(E x F)

=/ F_(S(y, z)) d(m x m)(S(y, z)
ExF

=/ f(x, yz) d(m x m)(Sly, z))
ExF

:/ f(x, yz)gly, z) d(m=x m)(y, z).

ExF

Second, we have that for any K in G, remembering Proposition 7,

/ m(yF) ds(y) = / ent [56 x 1] ) amiy)
K G Y

= (m x m){(S(K x F))
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= (mx m)}{S(K x F))

Ny

Kx F

- (L gly, =) da(z)>da,(y>.
K

gly, z) d(fm=xm)l(y, z)

Thus, since

{rimerer # [ gy, =) amien}
-1
=x F dm(z
{y m(yF) # ng(y,z> m(z)},
we havefor eachx, m(xyF) = f g(xy, z) dim(z) n.e. (m).
F

Consequently, for each x
| mixyr) amgy) = f (f glxy, ) dr‘ﬁ(z))drﬁ(y)-
E E\F

Then, since the assumption that left-translation is a measurability-
preserving, non-singular transformation of (G, G, m) makes
(m x m)

Gx(y, z) = g(xy, z) (G xG) -measurable on every set of

(G x 5)(m x m), Proposition 7 applies to Gx(y, z). Hence,

(xyF) dm(y) = ( (xy, )d"()>d“()
fmey m(y ‘/‘Ej];g vy, z) din(z m(y

[ ey, m aEmEmIY, 2)
ExF

The preceding paragraphs have shown that the measures defined

on (G x G)(m x m) for each x in G by

k) = [ tte, yedety, =) dEERI, 2
and

A, (M) = fM glxy, 2) AE@ETRY, 2)
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will ag‘ree on the ring ﬁlof all unions of finite, mutually disjoint col-
~lections of measurable rectangles in (é_;c_(-}—)(m x m).

We note now that R generates G x G and that, by Theorem 13.A
of _(1), that two measures coinciding on a ring and defined on the ¢ -ring
generated by j:hat wing coincide on the ¢ -ring. Hence for every x in

G and every Min G x G, N_(M) = k_(M). But it is immediate that

for-every x in G >\x = K’x on (G x 6)(‘“ x m). So, for each xin G

f(x, yz) = glxy, z)/gly, z) n.e. (m x m).
Here M(x, v, z) = glxy, z)/gly, z) is (fm)(m X mx m)-measurable
on each member of (G x G x G)(m x m x m) by the definition of g(y, z)
and the preceding lemma, and for each x K(x,y, z) is (C:}—;E)(m x m)_
measurable on each member of (ﬁ)(m x m).
Now for each fixed x in G
s {ty. =) £x, y2) £ Ko v, 2 = {2 £, 2) £y, v
and S-1 is a non-singular measurability-preserving transformation on
(G x G, (m)(m x rn)’ m x m). So, for eachx in G |
f(x, z) = (%, v, y_lz) n.e. (Mmx m),
and for each x K(x, v, y_lz) is (m)(m x m)-measurable on every set
in (m)(m x m) by the ((ﬁ)(m x m)-measurability property of
K (x,y, z) and the preceding lemma. Also, K(x,vy, y_lz) is measurable.
Lemma: If h is the function of the preceding 1emma, then

a) for every b and xin G

L = h(b, y, xz) n.e. (Mx m)
hix, vy, z) hibx,y,z) ~°°° )

b) for every b in G h(b, y, xz) and h(bx, y, z) are

——
(GxGx G)(m xmx m)—measurable functions of (x,y, z) on
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every member of (m)(m x m x m)

Proof: Using /Proposition 7, the fact that left-translation

pér’es'e;rvess E(m)-meas'ura;bil_ity, and the last two lemmas,we can per-

form the following computation. If E and F are arbitrary members

of G, then
[ mbxymdEmEmige) = [ ibxe) d@E@IY, 2)
ExF ExF

=fE([E‘£(bx, z) dm(z) ) dmi(y)

= f m(bxF) dm(y)
E

:f (f f(b, z) dﬁl(z))dm(Y)
E\"xF

=f (ff(b, xz) f(x, z) dﬁx(z))dr?l(y)
E\VF

= f f(b, xz) f(X, z) d(m X m)(Y: z)
ExF

= f h(b, v, xz) h(x, y, z) d{(im x m)(y, z).
ExF

But this means that if for every V in G x G we define

r(V) = fv h(bx, v, z) AE Ty, 2)

and

s(V) = fvh(b, 7, x2) hix, y, 2) dE@Ey, 2)

then r and s are measures of G x G which agree on all measurable
rectangles in G x G. Then, using the same reasoning as in the pre-
ceding lemma, we can conclude that r = s on all of G x G and, indeed,
on all of (-C—?;‘é)(m x m). Hence, for every b and xin G

h(bx, v, z) = hib, y, xz) h(x,y,z) n.e. (mx m),

or, what is the same, for every b and xin G
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- bbwexE) o mEE).
h(x,y, z) h(bx, y, z)

It follows from the last two lemmas and the fact that left-transla-
tion is non-singuiar and G-measurability-preserving that h(b, y, xz)
and h(bx, y, z) have the asserted measurability properties.

L.emma: The transformation T on G x G x G defined by the equa-
tior_m

T(x,y,2) = (xz,, 2)

isa (GxGx (—}—)(m xmx m)-measurabﬂity-preserving transformation,
Both T and T"1 are non-singular transformations on

(GxGxG, (éxaxa)(mxmxm),m)

Proof: We note as a preliminary that if we define the transfor-

mations L., M and N as follows they are (ax G x 6)‘“‘ xmx 1'n)-mea-

surability-preserving and they, together with their inverses, are non-

singular on (G x G x G, (gx__é——;—é)(m xmx m)’ mx m x m):
a) Lixy,2) = (<", y,27),
b) M(x,y,z) = (z,y,x),
c) Nix,vy,z) = (x,y,%3z).
To begin with, the mapping which éends x onto x-l for every x
in G is non-singular and measurability-preserving on (G, G, m); whence,
by the Fubini Theorem and the definition of GxGxG, Land L_1 are
non-singular and measurability-preserving on
(GxGxG, GxGx C_}, mx m x m). It follows that they have the same

properties relative to (G x G x G, (c_} x G x a)(m X m x m)

,mx m x m).
.,As noted after Definition 8, the mapping R on

(GxG,Gx G, m x m) such that R(x, y) = (v, x) is a measure-preserving
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’ transformation; thue it follows by . definition of (G x G x G)(m x m x m)

and M x m X m th‘atv"M and M™" are measure-preserving transforma-
 tions of (GxG x G, (E?ZWE)(In XM X M) ).
Finally, 1ét us use the fact, noted in the last paragraph, that

the transformation

(x, y) = (y, x)
is a measure-preserving transformation on (G x G,G x G, m x m), and
let ‘us remember that the transformation

(x, y) — (x, xy),
as well as its inverse, is non-singular and measurability-preserving
on (G x G,G x G, m x m). Then, by the definition of
(m)(m xmx m)’ the transformation N is (Em)(m x mx m)
measurability-preserving, and both N and N‘1 are non-singular. A

computation shows us that the transformation T is expressible by the

formula

1. -1

T = LMNM L™ ;

hence, T is (Gxéxﬁ)(mxmx m)

-measurability-preserving, and
"both T and T™" are non-singular,

Theorem 2: Given a GMG, (G, (T“z, m), there exists a measure p
on G such that (G, G, u) is a 1eff-invariant GMG and (G, G, 1) is weakly
equivalent to (G,G, m). E(GxGx G, (Gx G x G), X m X ) is the
completion of (Gx Gx G, G x G x 6, m x m x m) considered as a

measure space and if h and T are, respectively, the function and trans-

formation of the preceding lemmas, then for every E in G

1 —_—
(E) = = d m)(x, v, ).
H fExFoxKomzn o I Y =

(Here Fo and Ko are fixed sets of positive, finite measure belonging to
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o

El:_qgi: By the preceding three lemmas and Proposition 7
| _E'(T_‘t'&_f,—)) is positive and finite n.e, (M x m x m) and is
(GxGx G)(m x m x m) -measurable on any member of
(G xGx 6)(m *mx m). Thus . is well defined for all E in G and
determines a o-finite measure on G. Thus (G, G, p) is a GMG weakly
equivalent to (G, G, m), as a result of the definition of a GMG and
Proposition 8.

We now cémplete the proof by showing p to be left-translation
invariant,

Let a be an arbitrary member of G and E be any member of G.

Then,

p(aE) = dimx mx m)(x,y, z)

L1
(aE) < F < K h(T—L(X: Y: 23)
o] o

“aE) x F_xK_ h(xz't’ly’z) dm x mx mix, y, z)
{{ (f (f Tt 9Rk) )dm(y)> ami(z)
‘/I_{ (f 0(f Ha_xil_ai,;_)z) da(x)>da(y)) difi(z)
='/1‘<:0('/1;‘. xF_ h 2’(:&' };)Z) dfm=m)(x, V)> dmi(z)
) J;g f T x K, Tty ) (TR M y.2) -

The steps of the preceding computation are justified by the results

of the last three lemmas plus Propositions 5 and 7, except for the im-

= (m x m x m)

plicit assertion that h(axz-l, y,2z) is (G x G x G) -measurable

on E x Fo x KO since h(xz-l, y, z) has the same property on
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(aE) x .I,“o X Ko' But by Proposition 2 the transformations
| X — ax |

and
X - a-lx

are noﬁ-singular and measurability-preserving on (G, G, m); whence,
(x, v, 2) = (ax, y, z)

and
(x,7,2) = (2%, v, )

are non-singular and measurability-preserving on

(GxGxG,GxGx G, mxmxm), which means that
(x,y,2) =~ (ax, y, z)

is measurability-preserving on

GxGxG (ExGxg)mXmxm) F ).

Now let us examine the formula just obtained for p(aE). If

h(a, y, xz)

q, (x,y,z) = L2 Lx2

h(ax, y, z)
we know on the one hand that for all x

1 —_
T, v, 2) = qa(x: y,z) n.e. (mx m)
2 2

and we know on the other hand that

-1 h
q (T x,y,2)) = 2229, %)
h(axz vy, z)
_ I
Further, we know by the next to last lemma above that =y 2 and

(m x m x m)
) -measurable on every member of

q.a(x: Vs Z) are (5 X 6 X -G—
(G xGx G)(m *mx rn), so that by Proposition 7

1 —
e yz) - qa(x,y,z)n.e. (mMxmxm) .
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But thése facts and the fact that T and T-1 are non-singular, mea-
surability-preserving transformations on
(GxGxG,(GxGx G)(m *mx m)’ m x m x m) yield the following:

h -1
he.yex) o g (17, y, 2))
~h(axz ,vy, z)
1 —
= ——g——— n.e. (mxm=xm)
h(T (%, y, z))

As a result,

—h—(i_’-lz’—?-)—-— dimxm x m)(x, vy, z)
bffaxz""), v, =)
ExF xK
o o
- 1 dm s m
= — (m x m x m)(x, vy, z)
i B(T " (x, y, 2)
ExF xK
o o
= p(E).

Thus, remembering our formula above for p(aE),
p(aE) = p(E).
This establishes the left-translation invariance of p and concludes our
proof.,

Finally, we wish to show that our results yield a generalization
of a theorem of A. Weil on left-invariant GMG's, In order to discuss
this theorem, and,for later use in Section III of this thesis, we must
state certain definitions from the theory of uniform spaces. (See
(8).)

Definition A: Given an abstract set E, let C and D be any two sub-

sets of E x E, the cartesian product of E with itself. Then we mean by

CD the set of all (p, r) in E x E such that there exists a q in E for which
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we hax}e both (p, g) in C and (g, r) in D. Furthef, by C}-1 we mean the
set of all (p,q) in E x E such that (g, p) belongs to C.

Definition B: Given E x E, the cartesian product of an abstract

set E with itself, we shall call a family {Va}ael of subsets of E x E

a system of neighborhoods of the diagonal if and only if the following

prope'rties hold:
DNV =A={e,q9ExEp=q},

ael
2) For every pair, @ and B, in I, there exists a y inl

for which
v, CvVv V.,
y<Va (Vg
3) For every o in I there is a B in I such that
-1
vV, (V CVyq .
Vs 1=Va

Every member of{V(} ael shall be called a neighborhood of the diagonal,

An example is afforded by any topological group G. Let {U} yed be a

defining system of neighborhoods of the identity for G. Then {W)})\eJ

is a system of neighborhoods of the diagonal if we define for every N
Wy = {(p, q)eG x G qe pU)\}-

Definition C: Given a set E, let there be defined a system of

neighborhoods of the diagonal {Va}ael for E x E. Then E is a Hausdorff
space if we assign to every p in E the family of neighborhoods
{(Va)p}ael' (See p. 8 of (8).) By (Va)p we mean, in accordance with the
definition of Section 34 of (1), {q,eE (p, q.)eV(}. We define the couple

(E, {Va}ael) to be a uniform space, and, for the sake of simplicity, we

make the convention of referring to (E, {Vﬂ}ael) simply as "E",

Definition D: If (E, {Va}ad) is a uniform space, a family {Cﬁ}Sek

of subsets of E is said to be a Cauchy filter if
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1) exery subset of E containing a C, is a member of

. &
S
2) the intersection of every finite subfamily of {Cé} bk

is non-void and belongs to{C‘S} dek?

3) for every ain I there is a C. such that

)

Cﬁ x CGCVQ .

_ {C6}Sek is said to converge if there is a point p in E such that

the family of neighborhoods {(Vd)p}ael is a subfamily of {Ca} ek °

{cﬁ}ﬁek is then said to converge to p.

Definition E: A uniform space E is said to be complete if every

Cauchy filter made up of subsets of E converges.

Lemma: Given a uniform space (E, {Va}ad).there exists a
complete uniform space (E, {’\7(!} deI) such that E is equivalent to a
dense subset E' of E in the following way: there is a biunique mapping
f of E onto E' such that (f x £)(V,) = (E' x E')[1Vg for alla. Eis
unique in the sense that any other uniform space with the same proper-

ties has the form (g(‘f}), {(g x g)(va )} where g is a biunique mapping

aeI)’
of E, (See Theorem 2 of (8).)

We can now state the theorem which we desire to generalize:

Theorem 3: Let (G, G, m) be a left-invariant GMG. Then G can
be given a topology T which can be defined by requiring a family of
neighborhoods of an arbitrary element x to be the family xU
of all sets of the form:

x{ylm((yE -E)U(E - yE))<e, 0<e <2m(E)<oo};

all members of xU have positive measure and, when x is the identity,

are symmetric. The subcollection xN, consisting of the members of

xU for which m(E'l) is finite, has the properties that all its members
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have finite measure and that it is an éq.uivalent ‘family of neighborhoods
of x. Special properties of T are:
a) for any neighborhood U of the identity there exists a
neighborhood V of the identity such that
vVl u;
'b) given any neighborhood V of the identity and any a in G
there is a neighborhood W such that
aWa_lcv;
c) there exists a neighborhood of the identity coverable by
a finite number of left-translates of any other neighbor-
hood of the identity.

Suppose there is made an additional hypothesis on (G, G, m),
namely, that for every a in G there exists an E in G such that
m(aE ﬂE)<m(E). Then the topology T has the Hausdorff property, so
that G is a topological group in T. Finally, the completion G of G is
a locally compact topological group such that if G is the family of
‘Baire sets and 7 is the Haar measure on ’d then aﬂGC(—} and
A(E) = m(EG) for all E in G.

It might be noted that this is a combination of the results of Sec-
tion 62 of (1) and the remark following Theorem 10 of (7).

Our generalization is:

Theorem 4: If (G, 8, m) is an arbitrary GMG, then there exists a
unique equivalent left-invariant measure n such that the first paragraph
of conclusions of Theorem 3 hoids for (G, G,n). Further, if for every
a in G there exists an E in G such that m(aEﬂE)<m(E), then the second

paragraph of conclusions of Theorem 3 holds for G.
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Bi;ggf: The first assertion of this theorem follows from Theo-
rems 1 and 2 together with the first paragraph of conclusions of Theo-
rem 3, The second assertion follows from the eqluivélence of mton
and the second paragraph of conclusions of Theorem 3.

It can be seen that this last theorem is a true generalization of
A. Weil's theorem, for the uniqueness of n means that when m is left
invariant m(E) is positive and finite if and only if n(E) has the same
two properties; whence, if the members of a base at the identity for
the topology T all have positive, finite n-measure, then they all have
positive finite m-measure. This takes care of the only point in which

the generalization is not apparent.
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II. APPLICATIONS TO REPRESENTATION THEORY

The purpose of the present section is to prove a generalization
of the sﬁcceedi.ng theorem of L. H., Loomis:

THEOREM: Let p-_>Up be a strongly continuous representation
of alocally compact group G by unitary operators on a hilbert space
H, and let A——)PA be a non-zero Boolean g-homomorphism from the

Baire sets of G onto an Abelian family of projections on H, such that

UP, =P .U
pTA pA P

for every p in G and every Baire set A. ’Suppose first that H is ir-

reducible under the combined families {Up} and {PA} « Then

there exists a unique unitary mapping of LZ(G) onto H such that Up

corresponds to left translation through p, and PA corresponds to

multiplication by the characteristic function dA of A. That is,
T'lUpr (s) = £(p"'s),

and

TP, TE (s) = 6, (s) £(s) .

" In general H is a direct sum of subspaces each of which is identifiable

with LZ(G) in the above way.

Specifically our results are as follows, If H is an abstract group
with an invariant (in the sense of Section I) O -ring of subsets S and if
there exist a represeﬁtation of H and a & -homomorphism 7 of § which
satisfy certain assumptions, S supports a unique translation-invariant
0 -finite measure p such that the conclusion of Loomis's theorem holds
with LZ(H, g, B} substituted for LZ(G). Further, we have a result which

adds to the interest of the preceding. If to our hypothesis on H and 5

we add the requirement that for every a in H there exists an E in S
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such tHat T(E - (aE)) f 0 then H can be given a topology of the sort
that a) H is a dense subgi’oup of a locally compact group, b) the re-
presentation is a strongly \c_ontinuous-function on H, and c) the neigh-
borhood system defining the topology is equivalent to a neighborhood
system composed of members of S which have positive, finite p-mea-
sure. .

Loomis's theorem is obtained from our results by showing that
#-1(0) is identical with the family of Baire sets having zero Haar mea-
sure. This fact, combined with Loomis's assumption that the given
representation of G is strongly continuous, then yields our assumptions
on the representation and the #-homomorphism as simple consequences.

We begin the discussion by making a number of definitions.

Definition 1l: An Abelian ring of projections A on a hilbert space Y

is a family of projection operators on A: which is commutative with re-
spect to operator multiplication and has the following additional proper-
ties:

a) I P, Q belong to A then PQ and P - PQ belong to A.
0
b) Given any sequence {Pi} ; of elements of A such that

=1
n ) o
Pin =0 fori }-(j there exists a member P of A such that{ > Pi} .
i=1 n=/
o =
converges weakly to P, i.e., > (Pi’ £€,1m) = (PE,n) for all £ and nin ,C
i=1
Definition 2: Consider a non-zero element B of an Abelian ring

of projections A and any collection [A“} el of elements of A such that
AO(B = A,
and, if o</4 B
A A, =0,
xp

If for every such collection at most a countable number of Ay's are non-
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zero, then B is said to be countably decomposable relative to A. If

all elements of A are -couﬁtably decomposable relative to A then A is

said to be countably decomposable. A system which, as we shall see

later, is a very appropriate example of a countably decomposable
Abelian ring of projections is the following. (As can be perceived
from (5) this example is in most respects typical of the general
Abelian ring.) This is that subset of the L% of a measure space which
consists of projections of the LZ of that measure space, namely, the
collection of all members of L® corresponding to characteristic
functions of measurable sets.

Definition 3: An Abelian ring of projections on a hilbert space‘l

is said to be full if no non-zero vector is mapped into 0 by all members
of the ring.

As we see from the fact that the set on which a measurable func-
tion (if not equal to 0 n.e.) is non-zero has positive measure, our
example of a countably decomposable Abelian ring also provides us

with an example of a full Abelian ring.

Definition 4: The union of a family {P’X}“d of elements of an

Abelian ring of projections A is a projection P such that

1) P ,P=PF forall«,

2) I for any QinA P, Q = B, for all xthen PQ = P.
shall be denoted by U P..

€l
xel
It is a consequence of the second defining property of a union

The union of {P‘x}“

that it is unique.
Lemma 1: Let A be an Abelian ring of projections on a hilbert

(> o]
space K. If fpi}i -1 has the property that Pin =0 if i%j, then
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00 ) 3
U P ex1sts and {E P. } converges weakly to U Pi’
i=1 i=1 i

i=1
Proof: Suppose we have %P such that P, P =0if i # j.
=1
We know from the definition of an Abehan ring of projections that

there exiéts P in A with the p.roperty that {i P.} ® converges
weékly to P. Thus, to prove this lemma, \;ezslhall slznzlplly verify that
P has the two properties defining Lcj Pi’ since they define it unique-
ly. Pl

Let £ and 1 be any two vectors in ﬁ . Now we see first that for

all i

(P,PE, ) = (PE, Pyn)

n
=1lim  (( Z PJ)g: Piﬂ)

n-»o j=
“tim (3 P;P,)¢, )
L ~» 0 j=1

= (P,£, M),

which from the arbitrariness of € and n proves PiP = Pi' Next if Q

in A has the property that PiQ = Pi for all i then
(PQE, m) = (P, Qn)
n
=lim  (( Z_ P,)t, Q¢)
o1

1 -—-»00

n
im (S PRI
1=

n—>ow

il

’ n
lim  (( lei)a,n)
1=

n-—»o0

(PE, m) ,

so that PQ = P from the arbitrariness of § and po So we see that P has

the defmlng properties of the unique element U P and that, as a re-
0 =1

sult, E P converges weakly to U P..
i=1 izl *
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(The next lemma is essentially Lemma 2.5 of Part II of (5),

with appropriate modifications.)

Definition 5: - A separating vector for an Abelian ring of projec-
tions on a hilbert space R is a vector £ such that if for any P in A
PE = O'then P = 0. |

Lemma 2: Let A be a countably decomposable Abelian ring of
projectiéns with identity on a hilbert space. Then there is a separating
vector for Kcﬁnlc. ‘ |

Proof: Let F = fP“}p“K be a family of non-zero projections in
A maximal with respect to the following properties: 1) the members
of F are mutually orthogonal, 2) F",(K has a separating vector for
every P in F. The existence of such a collection follows on applica-
tion of the Maximal Principle. We see that because of the countable
decomposability of the identity projection inA {P“}O“K must be
countable. or is the empty set.

In order to construct a separating vector for A we first prove

that U Po< exists and

"t U s, -1

XeK
The existence of U P« follows from the countability of {P }
xeK oK

and from Lemma 1. The remainder is obtained thus.

Letting g be an arbitrary non-zero vector in (I - U By )

, - KXeK

not annihilated by all members of (I - U P& JA, we show the existence
- XeK

in (I - U Po( JA of a maximal projection annihilating §. To this end,

XeK
we first apply the Maximal Principle to show the existence of {QS}GeL’

a family of non-zero projections in (I - U Py );3: maximal with respect
xeK
. to the succeeding properties: 1) the members are mutually orthogonal,
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2) Q6§ = 0 for every ¢ in L., - Then we note that U QG exists and
_beL
~annihilates ; by the countable decomposibility of A and Lemma 1.

Finally, if Sin (I - U Fy )A annihilates ;, then §( U Q ) = 8, for,
aeK ' 6eL
inasmuch as

“S(I - i-ejK P, - U Qa);’” w- U e, z&{ Qa)ﬁsf) -

xeK

S(I - U B, - U Q6) must vanish due to the maximality properties
XeK Sel,

of facf.1.-

Since (I - U P );f 0 by the choice of;’ then

o
R=1- U P, - ( ) Q is a non-zero projection in A. Ris orthogo-

xeK 6eL
nal to U Py, and so by Lemma 1| orthogonal to every Po( . Further,
xeK
Q6 being maximal among those elements of (I - P )A which
6eK eK

annihilate ; RA has ; as a separating vector. But then
{P U{R} properly contains {P ] and has the same properties,

a contradiction of the maximality of {P“} eK* Hence, I - U P, 1is
x xeK
the zero-projection, or,

U s -5

e K

We can now construct a separating vector for A. From the defi-
nition of {P‘(}o(eK and the countability of K, there exists a countable

collection of vectors f& } such that 1) § is a separating vector

a yeK
for PxK for aller, 2) P“gx = g, and 3) £ = Z f; exists as a limit
oeK
in the norm. Then, if we recall that U P =1and if we remember
o eK .
that by Lemma 1 for any countable disjoint collection JQ 5 -1 of

projections in A{E Q § converges weakly to U Q then §
1 n=1 i=1
is actually a vector such as we desire. For if P{ = 0, we can conclude

that -
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ZH(PP,,; e 2 =2 llee, &)l

xeK xeK

2_ (B ¢ PE)

xeK

(£, PE)
IIpel 2
=0,

1

i

so that PP, = 0 for all @, But this means that for every n in £

([Pqlf? = (n, Pn)

= Z (Py m, Pm)

XeK

Z (PP, )n, 1)

xeK

0,
i.e., that
P =20,
Thus, by definition, £ is a separating vector for A,
Lemma 3: A full, countably-decomposable Abelian ring of pro-
‘jections A of a hilbert space A: contains a collection of non-zero pro-
jections {P“ §o<

such that 1) PO(P = 0 if o(/{ f and 2) given any P in

el g

K .
00
P =
_J ®r, )
i=1 i
for some sequence of o¢'s.

Proof : We can prove this lemma by takin {P } to be any maxi-

mal collection 67 mutually disjoint projections in A. (This exists by
the Maximal Principle.) Then, since for all B in I and every non-zero

Qin A
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Pﬁ [Q - “LGJI (QP«)] = Pp'[Q -Q o‘?ejl (QF )}

QP 70 | QP # 0
= PgQ - [(PBQ) U (er, )
x el
QR, £ 0
= PgQ - PgQ
= O,

is contradicted if Q - U (QPK) = 0.
xel

QP, /{ 0

The collection of «'s for which QPO( /Z 0 is countable in virtue

the maximality of { P(x'i( el

of our assumption of countable decomposability for A. The indicated
unions thus all exist if we invoke L.emma 1.

Definition 6: A ¢-homomorphism of a 0-ring 5 of subsets of

an abstract set onto an Abelian ring of projections Aisa mapping 7
of S onto A such that |
7 (ANB) =7 (A) 77 (B)
2)w (AUB) = (mr(a) -7 (a)n(B)) + 7 (B)
00 ‘
3) If ;Ai} is a collection of mutually:disjoint ele-

- n = 1y ' 4]
ments of S then gr 77‘(Ai) } converges weakly to7 ( { / Ai)’
i = 1 n = 1 i = ].

Definition 7: A function f on a measure space to a hilbert space ,c

is called a countably-valued step-function if there is a countable,

o0
mutually disjoint collection of measurable sets ZYEI}Z and a se-
quence of vectors in ) gi such that for every x

i=1

0
)= S & Kp 6

)
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ﬁeﬁnition 8: Let f be a function on a measurable space (M, §)
to a hilbert space ﬂ, and let 7 be a & -homomorphism on S to a family

of projections on [ Then f is said to be strongly measurable relative
00

to T if given any member E of S one can find a sequence {fn} n=1 of

countably-valued step-functions with the following special property:
00

there exists an increasing sequence ;En} of measurable sub-

n=1
sets of E such that IF'(E - d j}n) = 0 and such that on each{fn_} : -1
converges uniformly to f. nel
As an examéle of the above sort of function let us consider ¢(x)§,
where £ is an arbitrary element of LZ(G, E, 1) and where ¢ is the ''left
regular representation' of G, i.e., the representation in which each
element of G is mapped into the corresponding left-translation opera-
tor on LZ(G, E, M) (B is the 0 -ring of Baire sets of G and p is the
Haar measure on E.) Our measurable space is (G,ﬁ) and 1T is any
0 -homomorphism of B onto an Abelian ring of projections on
LZ(G, g, ). As shown on p. 41 of (8) d(x)§ is continuous at the identity.
~Clearly ¢(x)§ is uniformly continuous in the following sense: if N is
a neighborhood of the identity e such that ”q!(x)«‘; - q‘(e)é“ <e for x in
N then for y = ax in aN
lse - sell = Moant - sl
ls@seit - diardeel
sl gt - seertl
léwat - sertl
<e.

Also, B being generated by a family of compact sets, every member of

B is contained in the union of a countable collection of compact sets, so
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that anj E in B is contained in the union of a countable number of
translates of any open member of B. Adding to this the fact that any
the identity contains an open Baire set which in turn

)

contains the ‘identity, the "uniform continuity" of ¢(x)€ makes it a

neighborhood of

uniform limit of countably-valued step functions on E, and so,
a fortiori, ¢(x)€ is a strongly measurable relative to 77.

Definition 9: By a projection-measurable group we shall mean

the ordered quintuple composed of:
1) An abstract group G,
2) A o-ring S of subsets of G which is invariant in the
sense of Definition 5 of Section I,
3) A hilbert spaceﬂ,
4) A 0 -homomorphism Trof S onto a full, countably de-
composable Abelian ring of projections on /C,
5) A representation ¢ on G to a group of unitary opera-
tors on £ such that:
a) ¢(x)f is strongly measurable relative to 7 for
every £ in ﬂ,
b) For every x in G and E inS T(xE) = qf(x'l)‘tr(E)d(x).'
We shall denote a projection-measurable group by the symbol
(G, 6;5,T3R).

Proposition 1: Let (G, ¢;§,1r;£) be a projection-measurable group.

Then the following assertions are true.
First, there exists on Sa left-invariant, ¢ -finite measure p
unique up to a multiplicative constant, with the property that it vanishes

on precisely those sets of S which belong to 77'-1(0).
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Sé(.:vond, G can be given a topology T in which a family of neighbor-
hoods of the arbitrary element x is given by the family xU of all sets
'of the form:

x {Vlu((yE -E)U(E - yE))<e, 0<e <ZM(E)<oo};
all such sets have positive measure and, when x is the identity, are
symmetric, The subcollection xﬁ, consisting of those sets for which
p‘(Efl) is finite, has the properties that it is a family of neighborhoods
equivalent to the defining family xﬁ, and that each member has finite
measure. Special properties of T are:
a) for any neighborhood U of the identity there exists a
neighborhood V of the identity such that
vv-lcu;
b) given any neighborhood V of the identity and any a in
G there is a neighborhood W such that
awa " lCV;
c) there exists a neighborhood of the identity coverable
by a finite number of left translates of every other neighborhood of
the identity.

Proof: We obtain our first conclusion as follows: 1) we con-

struct on S a @-finite measure m such that left-translation is a non-
singular transformation and such that m(E) = 0 if and only if W(E) = 0;
' 2) we invoke Theorems 1 ‘and 2 of Section I to assert the existence and
uniqueness (up to a multiplicative constant) of an equivalent left-invari-
ant (-finite measure. |

Let {Pdio(el be a collection of mutually disjoint elements of T (S)

such that for any other element Q of 1T(§)
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o
o=U wp).
i=1 i

- (Such a collection exists by Lemma 3.) Then if for each « in I we
choose for P“‘rr (S) a separating vector g“ (existing by Lemma 2), we

can define a real-valued function m on S as follows: for every E in

s
2 (TER 6 TE) £ o
m(E) = T(E)B # 0
0 , T(E) = 0,

Since if V(E)/ 0 then 'I}'(E)Po( 7/ 0 for some o in I, we can see that
m(E) = 0 if and only if 7(E) = 0.

That left-translation carries a set on which m is zero onto a-
nother set on which m is zero is seen by combining two facts. The
first is that we have assumed for all a in G and E in S the formula:

7(2E) = 4" )7 (E)d(a),
from which we see 7(aE) = 0 if and only if 77(E) = 0. The second fact,
established in the preceding paragraph, is that m(E) = 0 if and only
. if y(E) = 0.
Next we show o -finiteness, In view of the properties of the

collection 51?:(} we have for any E in S and a suitable sequence of

[+.]

X's, {o(ig .

1) (n(E)Pqi)('rr(E)Pd j) =0, if}j,

el’

2) T(E)P, %o,
L

8

HmE) = U mEp, .

i=1

i
- 0
We choose a sequence of sets in S, iElg P21 such that
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ENE; =4, 17/3’
- and

T(E,) = P"(i

Then, keeping in mind the definition of 7 and the fact that Lemma 1

. n 0 0
makes ;2 T(EnEi)} converge weakly to U V(EnEi),
' n=1 i

i=1 i=1

8

rE = U rEp,
i=1 i
o0

U rENE)

i=1

o0
m((J ENE)

i=1

=mEm ) E)

i=1

8

whence,

o0 0
TE -ENLJ E)=7E) - mE)r((J E)

i=1 i=1

=0

‘or
0
m(E - (EN{J E.)) = 0.
i=1
Further, for every i

m(E) = 2 (T(E)E, £, £, )

xel
w(Ei)Pxf 0

2o (B Bty
P‘xiP:,(/:g 0

1l

.

(Pp P , .
g "‘ig"‘i : 1)
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Hence, ‘since E = (E ﬂ( U E. ))U(E - U E,), E is the union of a
' i=1 i=1
countable collection of sets for which m is finite.

Finally, we prove the countable additivity of m. Consider any

o0
countable, disjoint collection of sets, {Elg . In the case that
' i=1
m(E ) = 0 for all i, we know that 1T(E ) = 0 for all i, and this, combined

0
with the property of T requiring that {2 T(E, )} converge
o0 i=1 n=1
weakly to T( U E, ) shows T( U E. ) 0 and shows countable additi-
i=1 i=
vity. In the remaining case where m(Ei)>’ 0 for at least one i, let

={°’~€1Hif’7T(Ei)Po< # O} >

and observe that

§: m(E) = 3 Z(v(E MPu i€ s £ )

i= ‘ i=1lj=1
= Zl Z (T(E)Px sEa bt )
3— i=

"

s> U E;) P jEup bu)
j=1 i=1 J J

c

and, since T( Ei) B, # 0 if and only if F(Ei)P,x # 0 for some X ,

1

1

Ms

o0
U Ei>P¢jf;uj,§,;j)=Z(v(U E)By £y 6y)

Xel 1=

Tk o
1
i

( U E)P; #0
i=1

Thus, we have proved the existence of a left non-singular, ¢ -finite
measure on S for which m(E) = 0 if and only if T(E) = 0. Theorems 1
and 2 of Section 1 now assert the existence and uniqueness of an equiva-

lent, left-invariant, O -finite measure.



-52-

We have now ‘shown,y by proving the preceding, that fhe hypo-
theses ﬁefmitting'the first conclusion of Theorem 3 of Section I are
' sétisfied_; hence, the second conclusion of the present proposition,
which is precisely the same as the above must hold. .

Definition 10: A set E in a projection-measurable group

(G, ¢;§,W ;‘:)'shall be called measurable if and only if E belongs to

S. By the measure of a measurable set E in S we shall mean w(E).

Definition l1: By N we shall mean the family of neighborhoods
N at the identity of Proposition 1.

Definition 12: We shall say that a function on G is continuous if

and only if it is continuous in the topology T.

Definition 13: We shall say that a subset of G is a neighborhood

of a point x in G if it is a neighborhood of the point x in the topology
T.

Remark: Of the following sequence of results, Propositions 2, 3,
and 4, as well as Theorem 1, constitute what is essentially a repro-
duction of Loomis' main arguments in (3), while Lemmas 10; 11, and 12
" are known in the literature; the others are original and arise from
the necessity of using the not quite locally compact topology T to
prove results obtained by Loomis from local compactness.

Lemma 4: Given a projection-measurable group (G, ¢;'s',1r ;,{),
then for every £ ink #(x)€ is a continuous function on G tok.

Proof: Proposition 1 of this section states that an arbitrary mem-
ber of N has the form

{xlp«xE -E)YU(E - xE))<e, 0<e (Z;J.(E)(oo} .
~Accordingly, it will suffice to show fhat for every 1) 0 and every

element £ of Ic there exists a set F in S such that
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pE) 20
~ and
looe - €l <m
for e&ery x in FFL.
Let n)0 and gekbe given, Then using the definition of strong
fneasurabﬂity with respect to 7 we see that there is a K in S for which
R(K)>0
and that there is a § in A for which
[lé(x)€ - §”<n/4,
when x is in K.
Then for some fixed X in K we have
focae - st el sllseos - 5l + Mo e - 1
<n/2
for every x in K. Or, since d(xo) is unitary,
Jote - el <m/2
for every xin F = xo-lK. As a result, if r and s are any two elements

tF
B o }

flo(xs e - el  lo(xs™he - s(miel] + Jotz)t - €]
= JozsThE - diortl + lloire - €l
= Jots)E - &l + lo(nre - el
<.
But this is the same as saying that for every x in FF .
lé)t - eff<n.
Lemma 5: Given a projection-measurable group (G, ;5,7 ; k),
there exists a measurable set E having positix}e, finite measure, a non-

zero vector §O in Aj, and a positive constant k with the following proper-
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ties:
1) E is coverable by a finite number of right translates
of each neighborhood of the identity,
" 2) For every measurable subset A of E

(T(A)E, £,) £ku(A).

Proof: By Proposition 1 we can choose an F from the neighbor-

hood base N such that u(F) is positive and finite and F is coverable
by a finite number of left translates of every member of ~. By Pro-
position 1 the fact that p(F) ) 0 means that TT(F)/O, 'so that, 7)’(1‘::“:)
being countably decomposable, then on 7/(F)‘;lf(F)7r(S—)(= T (FN 8)) must
be a counéably decomposable Abelian ring of projections with identity,
It follows by Lemma 2 that T (F N S) possesses a separating vector in
TI’(F)E, a vector we shall call §O. Hence, the function n on FN S de-
fined for every EeF ) §by the equation

n(E) = (ME)E, £,)
is a measure on F /) 5, and n is equivalent to i on F N S.

The proof of our last assertion is a result of the following two
remarks. For {E1§w , an arbitrary disjoint sequence of members
of S, the definition ofl; xl'equi_res that 7 ( O Ei) be the weak limit of
{Z: 7T(Ei)§ ® ) 1. Further, from the dle;h}.ition of n and the fact that
E,: i—s a separailin_g vector for 7 (F/) S) we have that n(E) = 0 if and only
if W (E) = 0, while we know from the first conclusion of Proposition 1
that p(E) = 0 if and only if T (E) = 0.

Now by the Radon-Nikodym Theorem there existg a non-negative

function f integrable on the measure space (F, F/1S, u) such that

n(E) = f(x) dplx)
E
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for every EeF Ns.
Then, inasmuch as ‘
n(F) = (T(F)E_, £),

we know that

n(F - U {xeFlf(x)én})
It follows that for some sufficiently large ng E = {xeF’f(x) <n }

has positive, finite p-measure. So, we see that for every KinE S
(TKIE, £) = n(K)
f(x) dp(x)
K

£ ﬁ dp(x)

/ Kic) duto)

nop(K).

This is the second conclusion.
‘ To obtain the first conclusion, let us consider E, F, and V, an
arbitrary member of N. By the construction of E and the choice of F
ECF

and
n
FC ‘ ’ biV.
i=1

Since by Proposition 1 F and V, as members of N‘, must be symmetric,

we have
n
E
C:iLEJl Va, ,

\
which gives us the last conclusion of this lemma.
Lemma 6: Given a projection-measurable group (G, ¢;5,1r ;£), the

product of any finite collection of measurable sets open in the topology T
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is itself measurable,

Proof: Let R and S both be measurable and open. Then, inas-

“much as VPro'posiﬁon 1 shows that every member of ‘I:I is symmetric
and that for every x Nx is a base of neighborhoods at x for the topo-
logy T, S“1 is open as well as measurable; thus,

RS = Ixhs N R = ¢
= {x,p.(x‘s'lﬂ R 0} .
Butvthe latter set is measurable by Corollary 1l to Proposition 2 of
Section I; whence, RS is measurable.

Having proved the present lemma for the case of two open, mea-
surable sets, we see that the method used is applicable to the case of
n + 1 sets, n arbitrary, if the lemma is assumed in the case of n sets.
But this means that we have found an induction proof of our lemma.

Lemma 7: Let (G, ¢;§,7r;C) be a projection-measurable group.
Then for any N in N and any €¢>0 there is an M in N and a measurable
set K, open in the topology —'i‘., such that

K CKMM™'CN
"and
WEMM ™ - K)< ep(®RMM ™),

Prc(of: Given N in -ﬁ, then, as asserted by Proposition 1, there

is a W in N for which
wwlen
and
w=wl
As a result, we have thaf there is W in Nks.uch that

wlCeN.
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By induction we can construct the sequence {Ni} of mem-

i=1

‘ bers of N such that for all i: 1) Ni belongs to N {Neﬁ'NCW} ), 2)

w (=
N; 13CNi .

The proof is based on the following assertions of Proposition 1: 1) for

every N in N there is an M in N such that MM-1CN, 2) N = N—1 for

every N in N.

We can see that for all i

lim WN,CWN,
1+

) 1
J=» 0
- (WN. )N, .2
i+17 +1
CWNi .
And since for all i
WNiCWZCN

and since Lemmal 6 holds, the following sequence of inequalities re-

sults:

[= lim p.(WNj)
jboo
£p(WN, )

2
£p((WN; N, )

ép.(WNi)-.

Thus, ;fr;her;é is.an ib for which
2 ap(WN, )

o

2B(WN; )N, %)

o, O
(,[ +e/.
N

2

And so, .

p [(WNiO)NiOZ - (WNiO)J <ep(_WNiO)NiOZ)
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dpe
" Now, let

and

and let us remember, on the one hand, that WNi is open and measur-

o
able by Lemma 6 and, on the other hand, that Ni = Ni '1. Then we

o o
see that we have found an open, measurable set K and a set M in N
such that
K CKMM ™!
(.
and
W(BEMM ™! - K) <ep(BMM ™)
Since, further, Lemma 6 makes it clear that KMM°1 is measur-

able, and since

KMM™ = (WN, )N, (Ni)'l
(o] (o] o

= (WN, )N. 2
i 74
: o o

C WN;
b, -

CWW
C N,
our proof is complete,

Definition 14: Let A: be a hilbert space, (M, g, m) be a measure

space, and f a function on M to A\such that (n, £(x)) is integrable for
every nin K Suppose that g(n) = f (n, f{x)) dm(x) is a continuous linear
functional onﬁ This means (see p. 9 of (4)) that there is a unique §1n

A: such that
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g(n) = (n,0).
We mayj thus define the integral of f(x) over M (Adf(x) dm(x)) by the

/»f(x) \dm(x) = r.

M

 equation

. By the very definition of /f(x) dm(x) we have the following for-
M

mula holding for every 7 in IC :

(, / £(x) dm(x)) = /M (n, £6x)) dmmx).

M
Lemma 8: The following are properties of the integral defined
in Definition 14:

1) For every integrable f on M to

(n, J f(x) dm(x)) = / (n,{(x)) dm(x),
e e - o

2) The family of integrable functions I is a linear space
over the field of scalars belonging to c and the integral is a linear
operation on I,

3) If T is a bounded linear operator on A:'and f(x) is inte-

grable then T(f(x)) is integrable and .

T(f(x)) dm(x) = T / £(x) dm(x) ,
M M
4) I
o0 -
M= U A, ,
i=1 ¢

where the Ai's are measurable and i ilj AinAj = ¢, and if f is inte-

grable on M and on all Ai’ then we have for all nin R

w .
(n, / f(x) dm(x)) = Z_ (n, / f(x) dm(x)).
M Ai

i=1

Proof: The first property is immediate from our definition of in-
tegral (Definition 10), while property 4 is the result of combining the

first property with the fact that the indefinite integral of a real-valued
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integrable function (int‘egrabie in the standard sense) is a éountably
additive set functién.

We can now dispose of properties 2 and 3 by comparing our defi-
nition of integral with Pettis' definition for the same situation. Because
of the standard representation for continuous linear functionals on a
hilbert space (mentioned in Definition 10) property 1 of our integral im-
plies thaf the two definitions coincide. But properties 2 and 3 are pro-
perties of the Pettis definition, and, hence, of our definition. (See (2).
Here the underlying measure space is assumed to be totally o-finite,
but this does not affect the properties under consideration which only
require those properties of the abstract L.ebesgue integral that are
true in general .)

( Lemma 9: Let R be a set of finite measure contained in a neigh-
borhood N of the identity which ig coverable by a finite number of left-
translates of any' ofher neighborhood. Then there exists /-(d(p)g) dm(p)
for every £ in R IR= u R where the R, are measurable, then for

=1
all i (d(p)E) dm(p) ex1slts and
R.

' /w(p)g) dm(p) = ZZ / (4(p)€) dm(p) .

Proof: Since by definition of ¢(p) d(p)g is strongly measurable

relative to I on R for every £ in k , then by Lemma 4 ¢(p)€ is continu-
ous. Also, in view of Proposition 1, an N of the sort hypothesized
actually exists. Thus, ¢(p) is the uniform limit of countable-valued

3

step-functions on R, and (n, ¢(p)§) is measurable on R. Combining this

with the fact that
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,Uhdhﬂéﬂ zlinll« flateyell =Inll- Nell,

it follows that/R‘ (n, #(p)E) dm(p) exists for all n and £ inA) and defines
for each fixed £ a continuous linear functional on A’. Hence, the re-
quirements of Definition 10 are satisfied so thatﬁd(p)g) dm(p) must
‘ R
exist for every £ in A.
n

If Ri= Z R,, where the R,'s are mutually disjoint, then pre-
’ i=1
cisely the argument given above to show the existence ofﬁd(p)g) dm(p)

R

will suffice to show the existence of / (d(p)§) dm(p) for all i. Now we

R
i
see from property 3 of the integral defined in Definition 10 that

n
/Gwmadmwhqzij/}wmadmm)
R i=1 Ri

Proposition 2: In a projection-measurable group, (G, d;g, ﬂ;ﬂ),

there exist R,D, and V,three measurable sets of positive, finite measure,
with these properti\es:
1) rRD!CV,

2) There is a vector § inA: such that if

n:ﬁvy/CﬂMFmﬁ dulp)

b

then

MRmfb.

Proof: We know by Lemma 5 that there exists a measurable set

F of positive, finite measure, a positive constant k, and a non-zero
vector § in W(F)Aj such that 1) F is coverable by a finite number of
right translateé of each neighborhood of the identity, 2)

(m(E)E, £) £kp(E)

for every measurable ECF, We can assume, in addition, that
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el = wiE).

And, since ‘we know by Lemma 4 that ¢(x)§ is continuous, we can
choose by Pfoposition 1 a neighborhood W of the identity such that
W = W-l, W has positive, finite measure, and for every x in W

o)t - ell< 5 el -
Then by Lemma 7 we can find a measurable, open set K and a member
M of —1{1, both having positive measure, such that
K CKMM ™"
cw,

KMM™ " is measurable, and

1

KMM ™" - K) < (o Ju(BMM ).

Now suppose we define the vector 6 by the equation

5= —t / L1 $x)E dm(x).
LEMM ™) < KMM

(The integral exists by Lemma 9, by the fact that KMM_1CW, and by

the inequality |
WEMM ™) £ (W) <w. )

Then, observe that £ is integrable over KMM"1 and remember that our

integral is a linear operation;. we have, if ”6 - gH is positive,

5-tf®=[6-6 —q / $(p)E diip) - ——— ¢ dp(p)]
o - ¢l = pL(K:Mszr)1<:1vnv1'1'(p)g MR )Y ' o)

[6-¢ —— / ()€ - &) dpp)]

W(EMM 1) “KMM

—(_K—I\—;Fr) 4MM“ (6 - £ ¢(p)E - €) dulp)
M



<———1~——1/ Is - €l (5 1 elly apte)

L(EKMM ') TKMM

- fls - eft JLEIL

so that in every case

Is - ell <} llell.

Next, expanding (6 - £,86 - ) shows that

Re (5,8) =5 ( lIEll %+ llsll? - Ils - ll?).

Hence, combining this with the fact that

s - ell<5 el
(s, &) > Re[ (5, £)]
=2 CHEN® + Usll® - [ls - €]l?)

>ECHEN® + sl - Hilell?)
>o UlEN? + ZIEN® - lell?)
”&”2 2‘ k(F).

Now since F was chosen so as to be coverable by the union of a

finite number of right translates of every neighborhood of the identity,

n
F C:iL___J1 Wa
As a result,
n
F = Ci’
i=1

where the C.'s are measurable, mutually disjoint, and for all i

C. CWa

Further, by Lemma 9, ; = W{M d(p )']]‘(C )€ dplp) exists
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for allfi, so that by the linearity property of the integral of Definition

14 and the fact that (F)€ = §

Thus, as we know
(6,6 > 5 w(F),

it must be that for some io

(Z . al>s uc, ).
o o]

1

So, setting ;: ?i , C= ('.',i , & =a, we can say: 1)
o o o

(el >3 uc),

where
7- -——l—T—/ _, 9T (C)E dplp)
w(KMM ™ )/KMM
and
CCF\Ma;
2)
L = KMa

is a well-defined measurable set, where the measurability of L. comes

from Lemma 6. But this last assertion proves the present proposition,

if, also, F(L); %O.and LC"'is a subset of KMM™".

We can show from the preceding that 77(L)§ 7-/ 0. Suppose
W(L); = 0. Then, using properties 1) and 2) of the integral of Definition
14, the commutation relative between ¢(p) and7 (E), and the identity -

T(F)E = &,
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(£, 0)= (& § - Tw)l)

= (£, — 144M_1¢(p)7r(¢)€ dp(p) - —LTML) _19(p)7(C)E dulp))

" pEMM K] W(KMM™Y)  KMM

(5 L /

W(EMM ™) KMM

_Blerrc)e- 7 (L)é(p) 77(C)E] dplp))

(&, |d(p)r(C) -T(L)d(p)m(C)] E) du
L (& 80 I (C &) dce

1 /
Y

w(KMM™ ') "KMM

L (r e, T(pCNLO)H(R)T(C)E) dulp)

= WQMA (m(pC N F)E, m(pC N L)g(p)7 (C)E) dplp)
e

(Here L€ is the complement of L.) But L°NpC is void unless

peLSC™! = (KMa)°cT!
- (KMa.)Ca-lM'1

= (KM)°M ™
CK® ,
. so that the last integral need only to be taken over KMM‘1 - K. Further
we have
lr® N pcrtl < Viur Npc) £ Vip(pC)  =Fip(C)
and

”W(LCﬂpC)d(pm(C)gﬁgﬂn(C)g" < Ykp(C),
where we use the special properties of F and £ as well as the left in-

variance of p; this shows that

[(7(® N pc)t, TWEN pCrsie) T (CIEN € Ku(C)
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Hence, we see thé.t' ‘ o/ :
3, el =le5l- — / 1 [r@n scre, mes N pcrstormers] aute)
p(KMM )’KMM  -K

o, /
(kp(C)) dplp)
wEMM ) “KMM LK " HiP

, -1
eEMM E)) (e,
pKMM )

and, remembering the choice of K and M,

( p(KMM'l-K)

1
) kp(C) < ( ) (kp(C))
w(EMM ") 2K

I}

N —

r(C).

But since we have shown already that

ez, )l > % uicy
we see that assuming ]T(L); = 0 leads to a contradiction.
If we combine this result with thé observation that
Lc™! = ®Ma)c™!
C (KMa)(Ma)™!
- KMM™"
we see that L, C, and KMM-1 are sets of the sort proved to exist by
this proposition.

Proposition 3: Let R, D, and V be the three sets asserted to

exist in the preceding proposition. Then if E is a measurable set such
that
EC(aR)[1(bR)

for some pair of elements, a and b, of G, and if
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1
M= W)/Vd(p)W(D)é du(p),

then

- T(E)d(a)n = m(E)(b)n.
Proof: Since by our hypotheses that
ECaR/NbR
and
rRD™'CV
we have

ED™'C@v)() (bV),

it results that

/ T(E N pD) ¢(p)E dplp) = /W(E NpD)d(p)E dulp),
aVv bV

-1

T(E ) pD) being 0 except when p belongs to ED™ . Thus for all 5 inK/,

(n, /W(E NpD)d(p)€ dulp) = (n, T(E NpD)d(p)E dulp)),
aVv bV

or
| /(11, T(E TpD)d(p)E) dplp) = / (n, T(E N pD)d(p)E) dulp).
aVv bV

Then, by the left-invariance of u,

a (n, T(E NapD)d(ap)) dulp) = 411, m(E NbpD)d(bp)£) dulp),

so that

4 T(E apD)d(ap)t dulp) = 4 (E NbpD)d(bp)E dulp).

Next, since the definition of a projection-measurable group requires
the identity

d(x) m(S) = m(xS)d(x),
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44W(E)d(ap)W(D)§ dp.(p) =/VIF(E)¢(bp)TF(D)§ dulp),

"Finally, we know that ¢ is a representation of G, and we know, by
conclusion 2 of Lemma 8 that bounded linear operators commute with

the operation of integration; hence,

W(E)¢(a)v/V¢(p)Tr(D)§ dp(p) = W(E)¢(b)/V¢(P)T'(D)€ dp(p) ,

or, be the definition of n,
m(E)d(a)n = T(E)d(b)n.

Lemma 10: Let E and F be measurable subsets of G, both of
positive measure. Then there is an at most countable disjoint col-
lection of mutually disjoint, measurable subsets of F, {A“} , such

olel
that
A&C ay E
for everya« in I and
p(F - wel Ay)=0.

Proof: Since p is a O -finite measure, E and F are each the
union of an at most countable disjoint collection of sets of positive,
finite measure. Thus we need only prove the lemma in the case where
F is of finite measure.

Consider the family $ of all collections of disjoint measurable

subsets of F such that each subset is contained in a left-translate of

E. This family is non-empty since we know by Corollary 2 to Pro-

position 2 of Section 1 that
pLEEENF)> 0
for some x in G.

Let {Fa,}

be a subfamily of the above totally ordered with re-

areJ
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spect to the orderiﬁg relation of inclusion. If we define F to be the
union of all sets occurring in at least one of the ]_:"_3, 's we see that F is

" an upper bound fbr {Ff} eI Thus, we may apply the Maximal Prin-

¥
ciple to conclude that § contains an element H which is maximal with
respect to the inclusion ordering.
We shall conclude our proof by showing that H is at most counta-
ble and that, if
H= {H"‘}x 3

p(F - U H
xel

« )= 0.

The fact that H is at most countable comes from the fact that it is a
collection of mutually disjoint sets of positive measure all contained
in a set of finite measure, for the latter type of collection is known to

be at most countable. And, since we can now say that F - U Hy is mea-
_ el
surable, the second property of H follows: if

wE - UB)>0
el
then for some x

w[xeneE - U al>o0

el

fxeNer - U H )}U{H“}

el

and

xel

is a member of § properly containing {Hx} ﬁ, contradicting the

«el™

maximality of H.

. Definition 13: If (G, d; 7, S5;4) is a projection-measurable group,

let real (complex LZ(G, §, i) be the real {(complex hilbert space corres-

ponding to the family of all real (complex)-valued functions square-inte-
grable on (G, §, p). In the following, the symbol ”LZ(G, S, i)' shall be

prefixed by the adjective '"'real' or the adjective ''‘complex' only if the
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context' does not make it clear which is appropriate.

Definition 14: Let (G, §, p) be a left-invariant GMG. If f is the

element of L‘Z(G, §, i) corresponding to a square-integrable f, then
for every a in G and every E in S we can define the operators Ta and PE
by the relations: |
1) Ta(f) = fa,
where
£ (x) = £(a”x) n.e.,
2) PE(f) = fE’
where |
fE(x) = /YE(x)f(x). n.e.
Since p is a left-invariant measure, Ta and PE are both bounded opera;
tors on LZ(G, S, 1)

Lemma 11: The family of all real (complex) linear combinations of
characteristic functions of sets of positive, finite measure is dense in
L%(G, 5, u).

Proof: (See Exercise l of section 42 of (1).)

Proposition 4: Given a projection-measurable group (G, ¢;-§,7r;£),

there exists R, a subfamily of S, with the following properties:
1) for all Ain S
ANRC R;
2) forallain G
aRCR
3) the collection of all real (complex) linear combinations
of characteristic functions of members of f( is a dense subset of the |

real {complex) LZ(G, S, k)
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)

4) E canv be-:'mappedu into A by the function )\ in such a man-
ner that for all E in ﬁ |
a) If p is an arbitrary member of G
MoE) = d(e) A )],
b) If A is an arbitrary member of S
ManE) =ma [h@)],
o hEl? - wm.

Proof: Let :"E—{ the'fa'mily of all measurable subsets of left trans-
lates of the measurable set R of Proposition 2 of this section. We pro-
ceed to verify that 1thas the fou;' asserted properties,

Propefty 1) .of I-i is a consequence of the fact that R is a sub-

family of S and the fact that S is closed under the operation of intersec-

tion,
Property 2) follows from observing that if
ECbR
then
aE C(ab}R

"and that translation is a measurability-preserving transformation on a
generalized measurable group.
Property 3) results froin combining the preceding two lemmas.
For Lemma 11 shows linear cémbinations of characteristic functions of
sets of positive, finite measure to form a dense subset of LZ(G, §, K.
And we observe that Lemma 10 shows any measurable set in G to
be, up to a set of measure zero, a disjoint union of sets in R. Hence,
combining the preceding remarks, we see that any f in LZ(G, g, 1) can

be approximated arbitrarily well in the Lz-norm by a linear combinations
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of charéct(eristic functions of subsets of R.

Proof that R pbssesses the fourth property asserted will be obtained
by fi»rst‘defining a function A on R to K and then showing it to have the
desired char.acteristics.

We define A for an arbitrary member E of R by the equation,
ME) = T(E)d(a)n,
where a is any element of G such that
E CaR
and 1 is the elemént of K defined and discussed in Propositions 2 and 3
above., We observe first that by Proposition 3 N is uniquely defined
for every E in -ﬁ . Further, since by Proposition 2 IF(LRL)nf 0 and
w{R)>0, n can be assumed to be such that
lriynll? = p(r);
thus, by definition of A s
AR 2 = w(r).
We see that >\ has the first two desired properties by some com-

. putations. For, in view of the definition of A and the commutation re-

lation
d(p)}M(E) = T(pE)d(p),
we have
#e) M@ = 4o [r(®)d(a)n]
= T(pE)d(p)d(a)n
= T(pE)d(pa)n
= A(pE),
and

ma) @) = ray[mE) da)m)
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it

T(aNE)é(a)n
MAN E).

That
INE) 2 = e
for everyEin'ﬁ' will be shown as follows. We shall construct a left-invari-
ant measure V on S such that |
v(E) = [A@l?
for every E in R.. Since an invariant measure on S is unique up to a
multiplicative constant by Theorem | of Section 1, since we know that
for the set of positive measure R
w(R) = [ rlf?
= V{R},
then p and 7 are the same measure. Hence, for every E in E
I\E) % = 2 (&)
= p(E).
We construct the measure 7/ using Lemma 10, By Lemma 10, any

measurable set E has the form
0
E=P U(LJ Ei)
i=1

_ 00
where u(P) = 0 (so that by Proposition 2 w(P) = 0)and {Elz i=1 is

a mutually disjoint collection of subsets of translates of R.. Then, by
definition of R, A (Ei) exists for all Ei’ and for an appropriate sequence

o0

of elements of G, {ai} i=1°

ME,) = 7(E,)é(a,)n.

We define V for E by setting
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(E) = f:: Il 2

First of all, 7 is uniquely defined. Let the arbitrary measura-

ble E of the preceding paragraph have a second decomposition:

E - QU(U F)

i=1

. : 0
Here, of course, Q and {Fi}i -1 have the same properties as, re-
o

spectively, P and {E} , and >\(F.) = T(F.)é(b.)n. So for all i
y ii=1 i i i

Nl % = [lr(E ), ?
=”n'[@ (E, F.):(d(ai)nuz

-(n[ L_J1 &N F )l m, dlam)
b

- Zl (T(E; N F,)d(2;)n, d(a;)n)
=

= 2; Ihe, NE il 2.

n

Hence, _}:{]JA(F ) % = Z1 (T(F )é(b;)n, 6(b)n)

[v.0]
Z(vr[F n E]¢(b REICALY

i=1

(r(Ee,NF. J9(0;)n, d(bj)m)

e
1]
ooy
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Thus one could have defined V/(E) to be > //)‘(Fi)” 2 without changing
i=1

the value of the former, which shows 7/ to be a uniquely defined function
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on S.
Now, to prove that 7 is invariant under left~-translation, we must

observe first that if

EPUUE)

i=1
where P has measure 0 and the Ei's: are mutually disjoint subsets of
R, then

= (aP) uﬂ Lle (@E,) |

where the left invariance of p gives aP measure zero and the second
property of R makes the a.Ei mutually disjoint members of R. Asa

result,
Y aE)= z‘f_—: ”)\(aEi)HZ
S Ml

i= 1

b A
i -1

= V(E).

Now only the countable additivity of ¥ remains to be proved. Let
{Fkg be a collection of mutually disjoint sets in S, =2nd suppose that
=1
{K }°° is a cazllectlon of mutually disjoint subsets of U Fk’ all
k=1

belonging to R,{ such that
o 00
1 kul Fk = U =

Then for every k, {F N K } -1 has the same properties relative to
w B
Fk‘ as has {Kli i'= i relative to - U F “But this enables us to say,

remembemn@ the def1n1t1cm of ‘Vland assurmng X(Ki) =1(Ki)¢(ai)n, that
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Z V(F,) = = Z IAE )l

k=11i=1

Z ST e ara)?

k=11=1

Z: Z_' I (F T, )é ()l 2

—1 1—

‘: 21 (T(F) NK;)é(a;)n, d(a;)m)
= 1 =

1

= Z (T(F, N K)da)n, dla;)n)

i=1 =

Z (7 ( U F, NK;)é(a;)n, éla;)n)

i=1
0

> (TK)é(a;)m, d(a;)n)

i=1

> Al 2

i=1

v U F).
5

"

Thus % must be countably additive.
Having proved that V is a left translation invariant measure on
S, it follows in the manner already described above that
I MEN? = p(E)
for every E in M.
This concludes the probf of the properties asserted for A and,
hence, of those asserted for ﬁ, ending the proof of this proposition.

Definition 15: By a unitary mapping of a hilbert space ﬁl’ onto

(into) a hilbert space A:Z we shall mean a linear, homogeneous mapping
T on Kl’ onto (into) /CZ such that if § and n are any two vectors of A:l’
then

(€, m) = (T(E), T(n)).

It is clear that El' and T(Rl) are either both real or both complex.
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A familiar mapping provides a simple example of the notion
just defined. This is the well-known ‘mapping of the complex Lz(fﬂ; 7))
onto the following complex hilbert sequence space,
: - o , }
{fsn}n -1 l s complex, nzzl ]snl {oof .

Proposition 5: Let (G, d;g,ﬁ;ﬁ) be a projection-measurable

group. Let V be a unitary mapping of LZ(G, S, 1) onto R , a closed hil-
bert subspace of E-, and let V have following properties:
1) for every pin Gandf in LZ(G, S, u)
(v lg(p)V)e = T f
2) for every Ain S and f in LZ(G, 5, 1)
(i (A)V) = Pyt
Then the set of all unitary mappings of LZ(G, —§, 1) which send it onto R
and have properties 1) and 2) has the form
{o(V ! X a scalar, [«[= 1§

Proof: (In the following we shall use the symbol for the charac-
teristic function of a set of finite measure as the symbol for the corres-
ponding element of LZ‘(G, S, 1).)

We can verify directly that if &« is a scalar of absolute value 1,
then the mapping «V is unitary and has properties 1) and 2) of V. Thus,
we can restrict ourselves to‘ showing that for any unitary mapping W
of LZ(G, S, ) onto Ehaving properties 1) and 2) the unitary operator
Y(=W-1V) on LZ(G, S, 1) has the form:

Y = &1,
X a scalar. |x| must certainly be 1, W“1 being unitary.

" First, it is useful to observe two relations satisfied by Y. For
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all a iri G and all E in S we see from properties bl) and 2) satisfied

by V and W that

T =viuv-wlu w,
a a a
whence
-1 -1
VT .V =WT W ,
a a
or
T Y=YT_.
a a
Similarly,

PEY = YPE .
Using these relations, we can obtain our result once we know

that for every E of positive, finite measure

v L) = s Lp),

B being a scalar possibly depending on E. For it follows first the B is
independent of E, since the contrary would contradict the fact that for

any two sets of positive, finite measure, A and B,
Y(/}ﬁA) Y PA(){AUB)

Y NS

= Pul ﬂ(AUB)

= %A()’ZAUB)

J

and, by similar reasoning,

Y Ag) =y K

Then, inasmuch as

n

Y = &I

on all characteristic functions of sets of positive finite measure, we see
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that th;e. set on which this eq‘ua‘lity holds can be extended to the set all
linear combinations of such functions. But by Lemma 11 the latter
set is dense in L%(G, 5, 1), which, combined with the continuity of ¥
and i, meané that

Y = xI
on all of LZ(G, S, ). Thus we have proved our result knowing that
corresponding to every E of positive, finite measure there is a sca-
lar B such that

(L) = 8 Mg

Proving the above-described preliminary result is as follows.

Consider any set B of positive, finite measure, If Y(/}./B) is not a
constant multiple of /’ZB’ it must be that either Re [Y(/YB )J or
Im [Y(ﬂB)] has the property that its infimum on one subset of posi-
tive measure C (contained in B) is greater than its supremum on a-
nother subset of positive measure D, This means, in view of the
fact that some translate of C intersects D in a set of positive measure,
. that there exist in B subsets of positive measure,A and aA,for which
Ta(PAY XB) 7! PaAY /ZB' But this yields a contradiction, since the

following computation shows that Ta(PAY B) = PaAY}/B:
T,(P,Y ko) =T, YP, L,

TaY( /’KA %B)

T,y X,

vr X,

=YZaA
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Y( )Ca_A'/ZB)

Y(PaAXB)

PaAY %B'

This proves that for every set E of positive, finite measure there is a

¥ g = 8 A,

which, as already shown, proves the present proposition,

scalar B such that

Definition 16: Given a collection {A"‘}o‘el of real (or complex)

hilbert spaces we define the direct sum ( @ /C“ ) of {[“‘gel to be
®el
the family of all functions f on the index set I such that
1) f(x) is a member of A‘x for every o in I,

2) f(x) is the zero vector of A‘“ for all but an at most

0 0
countable collection of X's {(Xi} i=10 and > ‘f(c(i).2 converges.
= =

wel X is a hilbert space if we define the inner product of any two mem-

bers, f and g, by
(£, g) = 2_ (o))
xel

This provides a frequently useful method of expressing a given
hilbert space in terms of a sufficiently exhaustive collection of closed,
mutually orthogonal subspaces, if no vector of the space is orthogonal
to every member of the collection. For instance, the complex
Lz( [o, 1] ) can be mapped unitarily onto the direct sum of a countable
collection of mutually orthogonal one-dimensional subspaces corres-

ponding to the family of functions

. n = +oo0
inx
fein |

n = -0
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Also, hilbert spaces with various unusual properties are constructible
by forming direct sums of suitably chosen collections of familiar hilbert
spaces. .

‘Lemma 12: LZ(G, ‘§, i) is irreducible under the combined family
of operators {Tai aeGUiPE} EeS*

Proof: This result is known, but the proof is included for com-

pleteness.
It will suffice to prove the lemma for the case where LZ(G, g, )
is a real hilbert space. For in the case where LZ(G, E, 1) is complex

we can verify the lemma from its validity for L the real hilbert

2
R 2
space made up of those elements of LZ(G, S, 1) which correspond to
real-valued square-integrable functions. If we should have

2 -—
LG, s, p) =A‘1 ® Az:
where each of the two spaces £1 and ﬁz is carried into itself by the

family in question, L 2 would be contained in one of these two sub-

R
spaces, say Al’ But, Al being a complex hilbert space,
2 . 2 _ .2 =
AoL % +ing® =146, 5, ),

showing the irreducibility of LZ(G, §, B
So let us suppose that LZ(G, ,§, p) is real and that LZ(G, §, p) =

£1@Az’ where neither Ajl nor A:Z is a trivial space andeach is carried

Uip_}

G E EeS®
in A:Z such that both ;x’f(xp(); (= E) and fx[g(x))O} are sets of posi-

into itself by {Ta} ae Thus we may find f in A:l and g

tive measure. Further, by Corollary 2 to Proposition 2 of Section 1,

there is an s in G for which p(sE nF) is positive. Thus

(T Py, Prg) = /Agts (s ™) L p(xlgl) diat)

-1
- f(s™ 'x)g(x) dp(x
énp s 'x)g(x) dulx)
>0.
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. N .
.But, since fisinﬁ and‘giSin KZ‘ we have by definition of El and 1{2 that

1
TSPEfe ‘;l and PFgeﬁz,v so that from the assumption that £1 is orthogo-
"nal to AZ_ |
(TSPEf, PFg) = 0,
a contradiction. This concludes the proof.
. We are now in a position to prove our generalization of that
theorem of Loomis which we stated at the beginning of this section.
Theorem 1: Let (G, ¢;85, 7";/:) be a projection—méasurable group.
Then S sﬁpports a left-translation invariant measure p, unique up to a
scalar factor, such that for all E in § p(E)= 0 if and only if #(E) = 0.
Further, K is expressible as the direct sum of a family of mutually
orthogonal, closed subspaces {A“}o(el with the folllowing property:
for every & there exists a unitary mapping V (unique up to a uni-
y :

modular constant factor) of LZ(G, §, i) onto A‘“ for which we have

Ve -1¢(a)Vx =T,

and

-1
Vo T(E)V, = PE

for every a in G and E in §S. Assuming all of the other defining proper-
ties of (G, ¢;S,T; k), the following three properties form necessary and
sufficient conditions for the truth of the pfesent assertion:

1) T(8) is full,

2) m(8) is cbuntably decomposable,

3) &(x)€ is strongly measurable relative to 7 for every £

inR.

Proof: We give the sufficiency proof first. We shall devote our-
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selves completely to the proof of the assertions about the structure of
é, T, and;:, since our assertion about measure is just a restatement
of part of Proposition 1.

Using the terminology of Proposition 4 let us define the following

linear mapping T on a linear subspace of LZ(G, S, 1) to a linear sub-

n

space 'ofﬁ. For every finite sequence of scalars {o(i} i=1 and every
n

finite collection of mutually disjoint sets of positive measure ZgElz P=1

belonging to R let
n n
T 1% x, )CEi) = i?i«i)\(Ei).
First, we shall verify that T is uniquely defined by showing that

if E, F, and E UF are in R and

ENfF =4
then

MEUF) =\E) + A\ (F) .
Remembering, from Proposition 4 that for A in S and B in M

AAang) = T(A)A(B),

we have

MEUTF) = T(E UF)ME UF)

(T(E) + TENMEUF)

T(E)ME UF) + 7(F)AEU F)
ME) +A (F).

Next T is unitary on its domain of definition. Note that any par-
ticular pair of members of the domain of T may be regarded as two
linear combinations of the same finite collection of mutually disjoint

elements of R; hence, if
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Dl 2 = wm
for all E in R and if, whenever |
ENF =0
(AE), AE) =0,
it must be that -
o (Tf, Tg) = (£, g)
for any f and g in the domain of definition of T. But we know by Pro-
position 4 that
el 2 = wm
for every E in R. And if
E/IF =4
for E and F both in R the following computation shows that (/l(E), A(F))

(

vanishes:
(AE), ME) = (1(E) ME), () MEF))
= ([rm)7@®] ME), AF))
(T(E NF) ME), MF))

= 0.

i

We can see finally that for all a in Gand Ain S

T '9(@)T = T,

and
-1
T TA)T = Pg.
For in view of Proposition 4, we have
Ta XE - )'/aE

T} (aE)

T '4(2) ME)
T4 Ly
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and

PA)CEz }CAnE

' AManE)

T-lrA)A(E)

Tl

forallain G, A in S, and E in R,

Finally, since T is a unitary mapping into K of its dorﬁain of defi-
nition and the domain of definition of T is, by Proposition 4, dense in
LZ(G, S, 1), T can be uniquely extended to a unitary mapping (which we
continue to call T) of all LZ(G, g, i) onto a closed subspace of [. And,
in addition, the continuity of all operators involved being assured,
the following identities verified in the last paragraph for a dense sub-
set can be exfended to the whole of LZ(G, 5, B):

) TT'é)T =T,

2) T'r(A)T = P,

foi‘ every a in G and A in S.

Now, it can be seen from these identities that T [LZ(G, S, u)] is
invariant and irreducible under the combined families gd(a,')}aeG and
Z(F(A)} AcS* The invariance property‘comes from rewriting the two
identities just obtained as:

1) dla) = TT T '
21y T(A) = TPAT‘1

and remembering that T is a unitary mapping of LZ(G, S, 1) onto
T [LZ(G, S, }.L)] . The irreducibility property comes from combining

Lemma 12 with identities 1) and 2) of the previous paragraph.
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We can now show that Aj is the direct sum of a family of closed,
mutually orthogonal subspaces, é'A« .570(61, for each of which the results
of the preceding paragraphs are true,

For, consider a maximal collection of closed mutually orthogonal

)
subspaces of K all of which have the same properties as T [LZ_(G,E, p.)]
(Such a collectioh exists by the arguments of the preceding paragraphs
and by the Maximal Principle), and call the direct sum lof‘its members
k. |
If ﬁezf is not the zero vector, then, first of all, we know from
the definition of a projection-measurable group that 77(-5.) is full and
countably decomposable on A: and so, a fortiori, is fI\lU.\ and countably
decomposable if contracted to }{ . In addition, because F(E)E,
[qf(a)ﬁ,] is a subset of E for every Ein S [a in GJ, we have for every
Ein 8 (ain G), £ in /Z@};,, and 1 in flthat
(T(E)E, m) = (§, T(E)n)
=0
[(@(2)g, ) = (£, [¢(2)] m)

= (€, d(a”Hm)

o], |
i.e., TT(E)(A@E) [d(a)(ﬁ@}é)] is a subset of A@Kfor allE in S (a in
G). Hence, if we contract all members Of{q‘(g)}ge(} and 7r(§) toE@tE,
(G, #;5,7; ﬁ@E) is a true projection-measurable group, the other pro-
perties being clear from the definition of (G, ¢;S, W‘;K).

The methods of preceding paragraphs of this proof are clearly ap-

plicable to (G, ¢;§,W;£@E), and they yield the result that there exists
a closed subspace with the same properties relative to ¢ and 7 as those

possessed by T [LZ(G,E, p)] . But this contradicts the fact that Eis the
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direct sum of our maximal’mutually orthogonal collection of closed sub-
spaces of IC each having the same properties as T [LZ(G, §, ;-L)] . Thus
it is false to assume that A@Eis not the zero vector, which means that
Apossesses the desired decomposition. This completes the sufficiency
proof for the present theorem. |
No%;v let us give the necessity proof. We are assuming the exis-
tence of a d'-finitejleftvinvariant measure B on S such that r(E) va-
nishes if and only if T(E) vanislfies. Also, we assume the decomposition
of A‘into a family of mutually orthogonal, closed subspaces EA“ }aer
with the property that |
1) K“ - v, [L%@,5, w]
and
- 2) V4 is a unitary mapping of LZ(G, S, i) into A such that
on A
Ve T,V ' = dla)

and

1
Vi P

EVo< Tt = m(E).
The other conclusions of the present theorem will not be needed for
our necessity arguments. | |

The fact that p is a T -finite méasure on S causes EPE} EeS® ©on-
sidered as an Abelian algebra of projections on LZ'(G, g, 1), to be full
and countably decomposable. (These facts were pointed out in the pro-
cess of defining fullness and countable decomposability.) Hence, in vir-
tue of the relation between {PE} EeS and T(S), it must be that 7T(§) is

full and countably decomposable,

Next, we wish to show that d(x)€ is strongly measurable relative
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to T for every £ inA: . Because of the relation between 'I'x and ¢(x)
and the assumption that T (E) vanishes if and only if u(E) vanishes,
it follows that this will be accomplished if we show that on each mem-
ber of S (minus a subset of zero measure) Txf is a uniform limit of
countably-valued step-functions for every f in LZ(G,g, p).. Observe
that bvy Propﬁsition 1l an arbitrary neighborhood of the identity in the
~ topology T has the form A

{x IEL(XE) + p(E) - 2p(xE E)](e, 0<e<2pn(E)< oog
and that '
WE) + W(E) - 2u(xEN E) = ﬂ%ﬂ;(y) - Agl? aucn.

As a result TX(;(/E) is continuous in the topology T. T};en, linear
combinations of such characteristic functions being debnse in LZ(G, g, 1)
by Lemma 11 and TX being a unitary operator on this space, Txf is
continuous in T for all f in LZ(G, S, ). Then if we remember that
Lemma 10 decomposes any given E in S into an at most countable col-
lection of measurable subsets of left trahslafes of any given neighbor-
hood of the identity plus a set of measure zero, it follows that if we
remove a subset of measure zero from E TXf is a uniform limit of
countably-valued step-functions on the subset r‘emaining. As re-
marked, this shows that ¢(a)€ is strongly measurable relative to
for every £ in ﬁ

This completes the necessity proof and, hence, completes the
proof of Theorem 1.

Theorem 2: Let (G, ¢;§,W;R) be a projection-measurable group
such that for any E in S there is an a in G such that T(E N (aE)C) = 0.
Then G possesses a topology T such that |

1) there exists a family of neighborhoods of the identity
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equivalent to the deﬁning family and possessing the property that its
members belong to S and have positive, finite p-measure;

2) G is a topological group in the topology T such that
each neighborhood of the identity is contained in the union of a finite
number of left translates of any other neighborhood of the identity;

3) 4(x)& is continuous in T for every £ in R,

4) G is a dense subgroup of a locally compact group.

Proof: Conclusions 1, 2, and 4 of this theorem are a rewording

of the conclusions of Theorem 3 of Section 1. But, since by definition
of a projection-measurable group S is an invariant 7 -ring and by Pro-
position 1 p is a left invariant, 0 -finite measure on §, (G; ig, p) is a
left-invariant GMG, the hypotheses of Theorem 3 of Section 1 are satis-
fied, with one exception. The hypothesis which is unverified is that if
E is any member of S for which p(E) is positive then there is an a in G
for which p(aE nE) <p(E). But the new hypothesis made on a projection-
measurable group in the statement of the present theorem is just pre-
cisely equivalent to the desired hypothesis, since W e . have that for
every’ E in § w(E) vanishes if and only if 7 (E) vanishes. So all but
conclusion 3 of the theorem in hand may be considered proved.

Now if we compare the statements of Theorem 4 of Section 1 and
of Proposition | we see that under the present hypothesis they impose
the same topology in G. This)combined with the fact that Lemma 4
shows ¢(x)£ to be continuous in the topology of Proposition 1)proves the .
third conclusion of our theorem,

Remark 1: The somewhat tortuous methods used here to obtain
Theorems 1 and 2 might appear avoidable if the follo\;ving approach is

taken, First, restrict the discussion to projection-measurable groups
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of the type considered by Theorem 2, which, after all, is not really
much of a restriction. Then construct on § the left-invariant measure
p such that u(E) = 0 if and only if 7(E) = 0. Next, apply Theorem 3 of
Section I to the'resulting left-invariant GMG, so that one can consider
the locally compact group which is the completion of the GMG. (Theo-
rem 2 of thé pfe"éent section also falls out at this point.) Finally, de- _
fine T on the Baire sets of the locally compact group just constructed,
extend ¢ to all of the locally compact group, and apply L‘oo'rnis‘s theo-
rem, which would seem to make_Theorefn 1 of this section true,a forti-

/

ori. But there is one difficulty: there is no way of knowing whether

all of S or merely a proper & -subring of §c‘orres_pond‘s‘ to the Baire
sets of our locally compact group, so that in applying L.oomis's theo-
rem as above we may end up with the representation of a proper subalge-
bra of 7T(§) rather than of the whole of 7T(§). The author could see no |
way around this, with the result that he took the present approach, name-
ly, that of generalizing Loomis's argurhents.

Remark 2: It is neéessary and sufficient for the. truth of Theorem
1 that 7(S) be full and coﬁntably decomposable and that ¢(x)€ be strongly
measurable relative to 7 for every § ink, yet the mﬁtual independence
of these three conditions, in the context of the other propérties which
define a projection-méasurable group, may seem dubious. This inde-
pendence actually exists, for we shall now give three examples of
structures each one of which has all properties of a projection-measura-
ble group excepting exactly one of our group of necessary and sufficient
conditions for Theorem 1. A different condition will be violated in each

example, of course.
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Example I (Violation of countable decomposability):
Let our abstract group G be the direct product with itself of the group

R of real members under addition, i.e.,
G=RxR

Let S be the faxﬁily of Baire sets in G relative to the Euclidean topo-
logy on G. To define the hilbert space [ , we observe that G underlies
the topological group formed by giving one copy R1 of R the discrete
topology, giving a second copy R2 of R the Euclidean topology, and
constructing the product of the two topologies on the abstract product-
group R“l x R2 (=G); then, letting T and V be, respectively, the family
of Baire sets of the latter tbpological group and the Haar measure

on T, we define K to be the real LZ(G, T,V). As might be expected
now, we define the representation ¢ of G on a group of unitary opera-

tors on Aby the relation:
d(x) = TX

for all x in G. (TX is the unitary translation operator on LZ(G, T,?)
defined in Definition 14.) But, we define a -homomorphism 7 of 5

on an Abelian ring of projections on A: as follows: for every E in s

T(E) = P,

where P, is the projection operator on A: (=L2(G, —T—,V )) corresponding

E

to the multiplication of a function square-integrable on (G, T, V) by the
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. S
characteristic function of E.

The structure just exhibited certainly has all the properties of
a projection-measurable group other than those three with whose inde-
pendence we are concerned. A discussion of the last three follows.

We can show ¢(x)§ has the right measurability property for every
€ in A . In.fact, let us consider G as the absi::ct group underlying the
product topological group R’l x RZ’ R1 being the discrete roals and RZ’
the Euclidean reals. We see that since ¢(x) = Tx ¢ is represontation
of G on a group of unitary operators on the hilbert space LZ(G, -T-,l/ )
As shown in the example following the definitiokn (Definition 8) of strong
measurability relative to a # -homomorphism, ¢(x)f is 'strongly mea-
surable relative to any ¢ -homomorphism of T onto an Abelian ring of
projections on LZ(G, T,?7). Since the domain of 7 contains T, it is
nov; clear that ¢(x)§ is a strongly measurable function relative to 7T .

Next, 7T(§) is full since it contains all the projections on
LZ(G, ?,’7)) generated by characteristic functions of sets of positive,

finite 7/ -measure.

Slnce E is an arbitrary member of S, we must Justlfy the last definition
by showing that
ENTCT
for every E in §. We obtain our result by applying the following asser-
tion first to T and then to S: the family of Baire sets of the product
group G, x G generated by two Iocally compact topological groups,
G, and d 1s identical with the 0 -ring generated by the collection of all
carte51an products of the form B1 x BZ’ where B, is an arbitrary Baire
set of G,. (See Theorem 51.C of (1).) Applylng t]hls assertion to T we
see that'T consists of all sets of the form ,(J {x.} x E., where for
alli x, is an element of R, and E is a Baul'e subsét of ]}{ relative
to the Euclidean topology. "And, app1y1ng the quoted result to S, it
follows that for every F in S every section of the form F is a Baire
subset of R2 relative to the Euclidean topology. Thus fo¥ allEin S
ENTCT.
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But F(g) does not have the desired property of countable decom-
posability. For any set in S having positive Haar measure, con-
sidered as a Baire set in the Euclidean topology, contains an uncounta-
ble collection of mutually disjoint sets having positive ¥ -measure and
belonging to S, since positive V -measure is assigned to any set in G
of the form- {x} x E, x being any member of R and E being any Baire
set in the Euclidean topology having positive Haar measure, T (E) % 0
for every E in S such that E belongs to T and HE) is positive, so it
follows that there exists an F in S such that T(F) contains uncountably
many disjdint, non-zero projections of T (S). |

Example II (Violation of strong measurability property): Let us

take as G the additive group of the reals, R, and let us take as S the
family of Baire sets relative to the Euclidean topology, or, what is

the same thing, the family B of all Borel sets relative to the Euclidean
topology. Defining m to be the Haar measure on’ﬁ, i.e., Borel mea-

sure, we shall take A: to be the direct sum of a collection of continuum

A @ L

many copies of the real LZ(R,_B', m)., If we write
2
xXeR X

and define for any £ in A the projection of £ on L‘x2 to be gx, then for
every £ in £ , Ein §(=§), and x in G(=R)

(T(E)E) , = PLE,
and

WEIE), = Tty

(PE and Ta are the operators defined in Definition 14 above,

(G, 3, m)(=(R, B, m)) being after all a left-invariant GMG.)
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Noting, among other things, that (R, g, m) is a left-invariant
GMG, that {PE? EcB is a full, countably decomposable Abelian algebra
of projections on LZ(R, E, m), and that a-+Ta is a representation of
G on a group of unitary operators on LZ(R, B, m)}we see that the struc-
ture just described has all the properties of a projection-measurable
group. Properties that may be lacking are.the truth of the commu-
tation relation:

¢(2)T7(E) = T (aE)d(a)
for all a in G and all E in S and the strong measurability property of
¢(x)E.

That the commutation relation holds is seen as follows: for
every a in G, E in S, £ inﬁ , and X in R

(v(aE)g)o( P

i

ang
- T(-a)PETag((oHa)-a)

= T(-a)_PE((é(a)g)(u+a)

T(_a)(‘YT(E)qS(a)é)(“ +a)

Ty EWEE ()

| (G(-2)T(E)S(a)E) -
But there exists an element 'g' of /{ such that d(x)g is not strongly

—

measurable relative to T. £ is defined by the condition that for every

in R

z’o, x#1

% f, X=1

where f is any element of LZ(G, §, m) such that Hf ” =1, We observe

from the definition of ¢ that
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(BIE IBIE) = 5, ,
so that .

lo(a)E - sl = 2
as long as a # b. Now let us look at the definition of strong measura-
bility relative to T (Definition 8) and note that by our present definition
of T if TT(E) = 0 then E has zero Borel measure. If #(x)£ is strongly
measurable relative to w,then on a set A having positive Borel mea-
sure (hence an uncountable set) ¢g(x)£ is the uniform limit of a counta-
ble sequence of countably-valued step-functions. Thus, there is a
countable collection, F, of vectors of A such that {d(a)g‘ aeA} belongs
to the closure of F. But this means that for every a in A there is an

n, in ¥ such that

lé@g - o [ Z
But the fact that

lé(a)E - smyEll =77

when a # b means that no two na‘s can be the same vector; so {T‘a}aeA

must be countable, A being an uncountable set. This conclusion con-

tradicts the deduction that {nag a is a subset of the countable set F,

€A
which shows the falsity of the assumption that ¢(a)f is strongly mea-
surable relative to T .

Example III (Violation of fullness property): Let G be the real num-

bers under addition, S be the family of Baire sets in G relative to the
Euclidean topology, and Kbe the hilbert space which is the direct sum of
two copies of LZ(G,—S—, m), where m is the Haar measure on S (Borel mea-

sure). Further, letting (§,n) be a generic member of {, we can define a
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0 -homomorphism T on S to projections on K by the equation
7(E)(E, M) = (PEE, 0)
and a representation on G to unitary operators on A‘ by the equation
$)E, M) = (T &, ).
(PE and TX are the operators on LZ(G, §, m) defined in Definition 14.)

Now t6 describe the structure that has been set up. To begin with,
the fact that TXPX = PXE':TX makes it clear that ¢(x)7(E) =7(xE)d(x).
Since by reasoning used in Example 1 TX!'_E, is strongly measurable
relative to 'IT\for'every £ in LZ(G, _S_, m) and {PE}Eeg is countably
decomposable, then d(x)(§, 11)(=(TX§, 1)) must be strongly measurable
relative to T for every (€, ) inK , and'ﬂ'(g) is a countably decomposable
Abelian ring of projections. However, IT (§) is not full, for any element
of [ having the form (0, n), 7 75 0, is annihilated by every member of
T(S).

Thus we Have shown for a projection-measurable group the mutual
independence of the hypotheses that a) 7f(§) be countably decomposable,
b) 7T(§) be full, c) d(a)§ be strongly measurable relative to 7 for every
£ in [.

Having derived and discussed our generaiizatioh of Lioomis'
theorem, we propose now to give the actual proof that the latter is a
consequence of our purported generalization. To accomplish this we
need the following klemma and proposition.

Lemma 13: Let G be a locally compact topological group and 3
be the family of all Baire sets in G, Suppose there exists a non-zero
g-homomorphism 77 of S onto an Abelian ring of projections on a hilbert
space {, and suppose there is a representation ¢ of G on a group of uni-

tary operators on ﬁ such that
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m(aE) = d(a”r(E)d(a)
for all a in G and all E in S. If ¢(x)£ is continuous on G for all £ inﬁ« s
and if H is an open Baire subgroup of G, then for every A in HNS
T(A) = 0 if and only if A has Haar measure zero.
 Proof: For every £in A‘ let us define the measure mg on S by
the equation |
mg(E) = (T(E)E, ).
We see that (G, §, mg) is a O -finite measure space, s0 that
(G x G, S x g, P x mg) is a measure space for which the Fubini theo-
rem is valid. (p is the Haar measure on 8.) Further,‘for every A in
HNS, (‘S-lRS)(A x H) is a member of Sx8 by Proposition 1 of Section
1. (Let us remember from Section I that
5(x, y) = (%, xy)
and
R(x, y) = (v, x).)
As a result, we have by the Fubini theorem and Proposition 0 of Sec-

tion I that

/ma(x"lAnH_l) dulx) = /mg([(S-IR‘S)(A x H)] )dp.(x)
G ° G - X
- (/5-1‘_ (x, ) dmm(y)) dux
éG}C(.s RS)(AXH)va £(7)) dplx)

) 4 G %S*RS)(A x 105 ¥) 4l x )G, y)

) /( /X(S"IRS)(A « 1) ¥) dulx)) dmgly)

G
=ép,(f(s—lR‘S)(AXH)] ) dmy(y)

Q

-1
" gl k(Ay ) dme(y)
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=/H(AY_1) dmg(y).

H

And, since the fact that A belongs to H[ -S- means
/ m, (x"'A NH™) dptx) = / my (<7 'A) du(x),
G H -~

we have the following identity true for all A in H/1 § and all £ inﬁ .
-1 J// -1, 4
mg(x A) dp(x) = / plAy ) dmg(y)-.
H H

Using this identity, we show first that if A belongs to HNS and
T(A) = 0 |
then
p(A) = 0.
S being the O-ring of Baire sets, it follows from the definition of S that
each is contained in the union of an at most countable number of compact
sets, so that every member of § is contained in the union of at most
countably many left cosets of H. This means, in particular, that there
must exist an E in S such that
EN XOH =K
for some X and
T(E) = 0.
But since

-1 -1
T E) = dlx hr @),
xo—lE is a member of H/ 5 on which T does not vanish. As a result,

we know that for some §o in A« m, (M) = (W(M)go, E,o)) does not vanish
o

for every M in H' S, Yet if 7T(A) = 0 for some A in HNS, then

mg (< A) = (TG AN )
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(S)TANGTE L E)
0

il

«

for all x in H, so that
/ play™) am (y) = / m, (x"'A) dpx)
H o H o]

= 0.

The fact that mgo is not identically zero on H/)8 can now be brought
to bear with the consequence that

wlay =0
for at least one y in H. Thus, since right-translation bmaps sets of
Haar measure zero onto sets of Haar measure zero,

r(A) = 0.

Now suppose that for some A in H/S

p(A) = 05
then we can show that

m(A) = 0.
If u(A) = 0, then p,(Ay-l) = 0 for all vy, s§ that for all £ in

/mg(x—lA) du.(x) =/H(AY-1) dmg(y)
H H

= 0-d (y)
[0+ amy

= 0.
Since we know that this holds, that every neighborhood of any point in
G contains an open Baire set of positive measure, and that H is open,
we can conclude that for every £ in
£,(x) = mg(x_lA) -0

for x on a dense subset of H. Consequently, if we can show that fg(x)
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is continuous at x = e, mg(A) = 0, But the identity m(xA) = d(x—l)ﬂ'(A)d(X)
and the continuity of ¢(x)£ prove the continuity of f at e:
ltpt) - £l = meeas, &) - (m(enrg, ol
= (A x)E, d(x)E) - (T(AE, £
2 (Tt - £), 9
+ (mAaE, dx)E - £
2 lma)dx)E - d(@e)ll- [l st
+ fImaell - oot - seell
c2ell- [leot - dterel
So
mg(a) = 0

for all § in,ﬁ, which in view of the identity

me(A) = (M(A) £, €)
= [raell®
means that
m({A) = 0.

‘Thus we have shown that for every A in HNS
nAa) =0
if and only if
m(A) =0,
which is the desired result.

Proposition 6: Let G be a locally compact topological group and

S be the family of all Baire sets in G. Suppose there exists a non-zero
¢ -homomorphism 77T of S onto an Abelian ring of projections on a hilbert
space A, and suppose there is a representation ¢ of G on a group of uni-

tary operators on IC such that



-101-

-1
T(aE) = d(a ) T(E)d(a)
for all a in G and all E in 8. Then if ¢(a)f is continuous on G to
for every ; in l(\‘,, T(S) is countably decomposable.

Proof: {(Unless there is a statement to the contrary, we shall

understand "set'" to mean "Baire set' wherever it occurs in the follow-
ing.) The proof éan be reduced to showing thatjunder the present hypo-
thesesjfor every Ein §
mE) =0

ifkand only if the Haar measure on E is zero. The reduction is possible s
since the truth of the preceding assertion permits us to set up a bi-
unique union- and intersection-preserving mapping 1T(§) onto a countably
| decomposable Abelian ring of projections on LZ(G, S, 1), u being Haar
measure. For, to begin with, mapping every element of S into the
projection on LZ(G, S, 1) generated by its characteristic function is a

@ ~homomorphism of S onto an Abelian ring of projections A on

L%(G, S, ). Combining this with the hypothesis on T, it follows that
T(S) and the last-mentioned Abelian ring of p?ojectibn-s are maps of s
under O-homomorphisms relative to each of which zero has the same
inverse image. This fact, since the common inverse imagé of zero is
the family of all Baire sets of Haar measure zero, makes the mapping
of T(S) onto A which sends T(E) into the projection on LZ(G, S, p) cor-
responding to the characteristic function of E a biunique, as well as
operation-preserving, mapping. And, as pointed out in the definition
of countable decomposability, Abelian rings of the sort of A are
countably decomposable. Thus, because of the relation it permits us to
set up between T(S) and a countably decomposable Abelian ring, proof

that
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T(E) =0
if and only if
R(E) =0
yields the proof of the present lemma.
To implemént our argument, it will be useful to coﬁstr;lct an
open subgroup H of G which is a Baire set and, hence, a set of positive
p-measure., If O is an open Baire set, then the seq,uenc;e of sets

: 0
{On} n=1 defined by the recursion relation

n n-1
O " =(0" )O
is an increasing sequence of open sets of positive measure and

@ n
H= |J ©
n=1

is a subgroup of G which is a set of positive measure. We prove that
o" (2nd so H) is a Baire set by induction. Since (G,g, i) is a genera-

lized measurable group, we know by Corollary 1 of Proposition 2 of

Section I that p.(x-lo f)o‘l) is an S-measurable function on G, whence

0% = {x[u(x_lo no-Yy» 0}

_1)

is an g—measﬁrable set, i.e., a Baire set. Further, p.(x_lon O
is an g-measurable function and ,
o® 1. oMo = fxluxtoNo™ Y of
if O" is g-measurable, i.e. a Baire set, and if we again use Corollary
1 of Proposition 2. Hence, o" +1 is a Baire set. Using the Principle of
Finite Induction, every On, and so H, is a Baire set.
Now, since the family of all distinct left cosets of H constitutes

a disjoint dissection of G into open sets and since every Baire set is

contained in the union of at most countably many compact sets, every
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member of S intersects at most countably many left cosets of H.
This means, in view of t}.1e invariance of p and the fact that

T@E) = ¢(a”HT(E)d(a),
that proving

" T(E)=0
if and only if

ME) =0

for all E in S is equivalent to proving the same assertion for all E in
H(]S. But now the lemma just proved (Lemma 13) applies so that
the present proposition can be considered proved.

We can now derive a theorem which is essentiallir Loomis' theo-
rem. The only differences are: 1) a correction in his statement about
the uniqueness properties of the mapping described and 2) the addition
of the necessary requirement that the Abelian ring of projections in-
volved be full.

Theorem 3: Let G be a locally compact topological group, S be
its family of Baire sets, and p be the left Haar measﬁre on g. Suppose
there exists a non-zero -homomorphism 7 on S to a full Abelian ring
of projections on a hilbert space A, , and suppose thét there exists a
strongly continuous representation q!vof G on a group of unitary opera-
tors on A’ having the property that

7(aE) = ¢(a ™) T(E)d(a).
Then Ais expressible as the direct sum of a family of closed subspaces
{Ao( }“d such that:
1) For every « there exists a unitary mapping V, of
LZ(G, S, 1) onto A:x (unique up to a unimodular constant multiple) with

the property that for every a in G and every A in S
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V. “lga)yv, =T
o X ~ Ta

and

-1
v, TA)WV = Pys
2) Every A:o(is invariant and irreducible under the com-

bined families {d(a)z 2¢G and {W(A)} AcB

Proof: In the light of Theorem 1 of this section and the fact that

the left-invariant measure on S is unique up to a constant multiple, we
need only verify that (G, d;g,TT';K) is a projection-measurable group.

But this quickly reduces to showing that for every € in K d(x)€
is strongly measurable on S relative to T as we can see, For, to be-
gin with, §, the family of Baire sets of G, is shown in the remarks
following the definition of a generalized measurable group to be invari-
ant, . Also, the definition of a strongly continuous representation
and Proposition 6 of this section yield the result that 7(S) Ais countably
decomposable, And the truth of all other properties, with the excep-
tion of the strong measurability property desired for ¢4, are explicit
in the hypotheses of the present theorem.

To prove that ¢ has the desired strong measurability property,
we shall remember that every set of positive measure is the union of
an at most countable collection of mutually disjoint> sets of positive,
finite measure. It follows that we need only consider sets of the latter
type in proving that ¢(x)€ is strongly measurable relative to 7 for all
€. Now, since the Baire sets are generated by a family of compact
sets, every Baire set is contained in the union of a countable collection

of compact sets. Also, ¢(x)€ is continuous and so uniformly continuous
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on each such compact set. But this means that ¢(x)€ is the uniform
limit of a sequence of countably—vélued step-functions on any given
Baire set. Thus for all £ ¢(x)§ is by definition strongly measurable
relativé toT . |

This concludes the proof of the last result of this section.
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" III. CHARACTERIZATION OF SEPARABLE TOPOLOGICAL GROUPS

POSSESSING A MEASURE

In the present section we wish first to show that any separable
topological group G possessing a certain kind of measure has as its
completion a locally compact group G' such that G' - G contains no
sets of positive Haar measure, and conversely. More specifically,
we shall prove the following theorem:

Theorem 1: Let G be a separable topological group. Let m be
a o -finite measure on the ¢g-ring generated bky the family of all open
sets in G such that:

1} m(aE) = 0 if and only if m(E) = 0,
2) {x|m(xE ﬂE) > 0} contains a neighborhood of the iden-
tity for every E such that m(E) > 0.
Then the existence of m is necessary and sufficient for the existence of
a locally compact topological group G' with the property that the group
uniform. space of G' is the completion of the group uniform space of G
and G' - G contains no sets of positive Haar measure.v

The other purpose of this section is to determine necessary and
sufficient conditions that a separable topological groﬁp shall be locally
compact, In fact, the follovﬁng will be proved:

Theorem 2: Let G be a separable topological group. Then neces-
sary and sufficient conditions that G be locally compact are that:

1) there be defined on the o-ring S generated by the open
sets of G a o-finite measure m such that all left-trans-
lates of sets of measure zero are sets of measure zero,

2) the group uniform space of G be complete.
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We shall proceed to the proof of Theorem 1, beginning with
several topological lemmas.

Lemma l: Given any family {O“}o(el of open subsets of a sepa-

rable topological group G there is an at most countable subfamily

{ n £ o
o, |
i) =1

such that

n o0

Uoo( = 'Ul O
1 =

el

Proof: Since G satisfies the Second Axiom of Countability,

there is a sequence of open sets

such that for each i there is an &« with the property that
Ni CO«

and for each &«

It follows that if Oo( is any Oo( containing N., then
i _
00

n
0
{ “Ji:l

is the desired subfamily of the family {Oo(}

el
Lemma 2: If G x G is the cartesian product of two copies of a

topological group G, each endowed with the same separable topology,

then the resulting product topology TG <G on G x G is separable.
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Proof: By definition { M x NCG x G| M, Nareopen} is a basis for

‘

GxG’

T If

ng o
{o.}.
ifi=1

is an at most countable basis for the topology on G, then, clearly,

{{Oi Xoj} in= 1};:1

is an at most countable basis for T .
_ GxG
Lemma 3: If S is the o-ring generated by the family of open sets
of a,separable topological group G, then S x S is an invariant g -ring
(in the sense of Section I)..

Proof: From the definition we see that it is required to show that

the transformation

o (x, y)—=(x, xy)
simply permutes the members of § x § among themselves. This will be
clear if we show that S x S is the o -ring generated by the fémily of all
sets open in the product topology, for 0 is a homeonﬁoi‘phism relative
to the product topology.

For, if O is the ¢-ring generated the family of all sets open

GxG
in the product topology on G x G, then, first,

OG x GDP’
where P is the O-ring generated by all cartesian products of pairs of
open sets in G. Next, since every set open in the product topology is

the union of a collection generators of P (an at most countable collection

by Lemma 1),
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As a consequence,

Ccxag=7%"

But P = §x 5, for, as shown by the lemma immediately succeeding
Definition 1 of Section I, if X is the 0O-ring generated by {Ca}_ a.q.’
then X x X is the o-ring generated by | »

| {{Ca * Cﬁ} aeI} Bel’

Hence,

concluding the proof.

Proposition 1: Let m be a g-finite measure on the ¢g-ring 5

generated by the open sets of a separable topological group. Further,
let m be suc‘h that for every a in G and E in S m(aE) vanishes if and
only if m(E) vanishes. Then there exists a left-translation iﬁvariant
o-finite measure . on S which is equivalent to m, Further, ‘G can
be given a topology such that a base of neighborhoods at the
point y is the family of all sets of the form: |

y {xI(&E - E)U(E - xE))<e, 0<e<2p(E)<w} .
In this topology, G is a topological group, and the group uniform space
of G has as its completion the group uniform space of a ldcauy compact
group G' such that G' - G contains no Baire sets of positive Haar mea-
sure, In fact, if é\ is fhe family of Baire sets of H and ﬁ is the Haar
measure on §, then

H(8CS

and

pEHNE) = {(E)
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for every E in S.

Proof: We combine Lemma 3 of this section with Theorems 2

and 4 of Section I, assuming we know that for every a in G there is a
set E of positive finite measure such that m(aE ﬂE)<m(E). But the
latter is true because the topology on G is Hausdorff, sets open in the
given topoldgy have positive measure, and m is a ¢g-finite measure.
We can now show that if we strengthen the hypotheses on the
measure m of Proposition 1 then the given topology on the group G
of t