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Abstract

This thesis presents a numerical and analytical study of two problems of interest involving shock

waves propagating through elastic–plastic media: the motion of converging (imploding) shocks and

the Richtmyer–Meshkov (RM) instability. Since the stress conditions encountered in these cases

normally produce large deformations in the materials, an Eulerian description, in which the spatial

coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and

differences between the present study of phenomena driven by shock-loading in elastic-plastic solids,

and in fluids, where they have been studied extensively.

An approximate description of the motion of an elastic–plastic material processed by a cylin-

drically/spherically converging shock was obtained through the use of Whitham’s shock dynamics

(WSD) theory. Originally applied with success to various gas dynamics problems, this theory is

presented for solid media, in both elastic and plastic regimes. Comparison of the theoretical predic-

tions with numerical simulations utilizing several isothermal and non-isothermal constitutive laws

reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all

stages, even when shear deformations and plasticity are considered. While the hydrostatic part

of the energy essentially determines the strong-shock behavior, the shear modulus and yield stress

modify the compression ratio and velocity of the shock far from the axis/origin. A description of

the evolution of an initially elastic shock into the plastic regime as it is strengthened by the con-

verging geometry is also given: an elastic shock is initially followed by a plastic compression region

that exhibits a nonuniform radial profile and that becomes progressively narrower and steepens to

become a quasi-discontinuous profile as it approaches the axis/origin, finally overtaking the elastic

precursor.

An impulsive Richtmyer–Meshkov model was developed to describe the effect of the immedi-

ate acceleration of a perturbed interface separating different elastic materials. The resulting initial

boundary value problem was solved using Laplace transform techniques. Analysis of the singularities

in the complex transform domain suggests the existence of two kinds of stable interface behavior:

ringing and oscillatory decay, depending on the material parameters and boundary conditions em-

ployed. A detailed study of the vorticity distribution shows that the propagation of shear waves are

responsible for the stabilization of the interface.
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The study of the Richtmyer–Meshkov flow for elastic–plastic materials requires extensive use of

numerical simulations. An updated version of a previously developed multi-material, level-set-based,

Eulerian framework for solid mechanics is used to this effect. The revised code includes the use of

a new multi-material HLLD Riemann problem for imposing material boundary conditions, and a

new formulation of the equations of motion that makes use of the stretch tensor while avoiding

the degeneracy of the stress tensor under rotation. The case of a solid–vacuum interface in planar

geometry is first examined. Ejecta formation is appreciated under certain initial conditions while

in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-

term behavior. A linear relation between the material strength and the maximum amplitude of the

interface perturbations is recovered, in agreement with previous results in the literature.

Finally, a parametric study of the behavior of a solid–gas interface in a converging geometry

and in the presence of a cylindrically converging shock is performed. The initial growth rate of the

interface is scaled by the interface geometry, initial density ratio, and shock strength. A second phase

reversal of the interface that does not occur in the planar case appears as a result of the converging

geometry and the high density ratio between the solid and the gas. After the re-shock event, a

turbulent mixing zone, similar to what is observed in gas–gas interfaces, is created, especially when

materials with low strength driven by moderate to strong shocks are considered.
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1

Chapter 1

Introduction

Significant interest has arisen in the modeling and simulation of dynamic events that involve high-

load conditions and large deformations in solids (i.e., shock-driven motion, impacts, and implosions).

The numerical analysis of this set of problems demands the implementation of very specific capabil-

ities that enable the simulation of multiple materials and their interaction through sharp interfaces

along with accurate descriptions of boundary conditions and high-resolution shock and wave cap-

turing. Significant challenges arise for traditional computational solid mechanics when employed in

this context.

In the classical Lagrangian approach [16], the equations for mass, momentum, and energy con-

servation, in conjunction with constitutive models for the strength of the material, are solved using

a computational mesh that conforms to the material boundaries and moves with particles. The

benefits of such methods stem from the fact that typical boundary conditions (i.e., prescribed dis-

placements and stresses) are directly imposed along boundary surfaces in a simple way as well as

from material states needed to formulate the constitutive model of materials being stored in each

element. On the other hand, large relative displacements of particles with respect to each other

generally lead to a computational mesh that can get heavily distorted or twisted, resulting in a

restriction of the size of the time-steps or failure of the method due to element inversion.

Purely Eulerian formulations, in which the computational grid remains fixed, do not suffer from

grid entanglement and have been widely used in simulating the response of hyperbolic systems of

equations, especially for gases under extreme loading conditions, with very satisfactory results. These

methods are readily applicable to solid mechanics when the special set of hyper-elastic constitutive

laws, wherein stresses are derived from internal energy in a thermodynamically consistent way, are

used. It can be shown that under these conditions the system of equations becomes hyperbolic in

nature [71]. Contrary to Lagrangian approaches, this implementation comes at the expense of having

to include equations of motion for describing the deformation history of solid particles as they are

allowed to flow in the computational grid and designing an algorithm for tracking the position of

material boundaries. In addition, the computational grid must be initially allocated in a way such
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that the materials are contained in it throughout the total simulation time. All these particularities

increase computation time and are the main reason that the field of Eulerian solid mechanics has

not seen significant development until massive computational capacity has become widely available.

At the same time, the description of the motion of elastic–plastic solids in fixed grids offers several

important advantages, such as the capability of capturing shocks, triple-points, and waves naturally

and providing a smooth transition between solid and fluids in the case of phase changes.

With both Eulerian and Lagrangian approaches having potentially important drawbacks, arbi-

trary Lagrangian-Eulerian (ALE) [29, 51], methods constitute an attempt to include in one imple-

mentation the best qualities of each. In the most common approach, a Lagrangian time-step is

followed by an Eulerian remapping algorithm in pseudo-time in which the mesh is regularized and

the variables at the new nodes computed [69]. However, an optimal approach to the way this step

is performed and tailored to the needs of different problems remains an open subject of research.

Finally, other approaches attempt to reduce the mesh constraints in large deformation problems

while remaining Lagrangian in nature. Examples of these are the mesh-free [64] and free-Lagrange

methods [56]. With these latter approaches still being perfected, it makes sense to explore in depth

the capabilities of Eulerian approaches to solid mechanics for offering solutions to several problems

of interest involving large deformations.

1.1 Motivation

The aim of this research is to investigate the way in which multiple approaches that have been the

focus of attention in recent years in the field of compressible fluid dynamics can be extrapolated to

solid mechanics. In particular, this dissertation focuses on:

1. the motion of converging (imploding) shocks in cylindrical and spherical geometries,

2. the Richtmyer–Meshkov (RM) flow for elastic and elastic–plastic solids in multiple geometries

with distinct material interfaces.

The decision to use the Eulerian description of the equations of motion for solid mechanics becomes

natural in exploring these problems given its benefits in handling large deformations. In addition,

a direct comparison can often be established with the fluid counterparts of the analyzed problems,

since the vast majority of them are also commonly examined from the point of view of Eulerian

frameworks.

The problem of imploding shocks in converging geometries is of interest in the production of

high temperatures and pressures in condensed matter, with direct applications, for example, in

inertial confinement fusion [62, 11, 5]. However, experimental studies reveal complications related

to measurement techniques and the difficulty of maintaining a quasi-radially symmetric flow at all

times [118]. Previous numerical and analytical studies for elastic–plastic solids rely on the volumetric
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stress modeled using Mie–Grüneisen equations of state and neglecting shear stresses (see paragraph

1.2.3). While it is true that hydrostatic stresses become dominant in imploding situations as the

shock strength increases, the presence of shear stresses can modify the evolution of the shock wave in

weak and moderate converging shocks. These stresses are also essential for explaining the transition

from the elastic to the plastic regime as the converging geometry strengthens an initially weak shock.

The unstable effect of the passage of a shock wave on a perturbed interface separating two

fluids of different properties was named after and first described by Richtmyer [96], who constructed

an analytical solution for the growth rate of a slightly perturbed contact discontinuity using an

impulsive model that replicates the passage of a shock parallel to the main position of the interface,

and Meshkov [74], who qualitatively confirmed the predicted results using shock-tube experiments.

Baroclinic vorticity, generated by the misalignment of the density gradient (normal to the interface)

and the pressure gradient (normal to the shock) causes the interface perturbations to grow unless

there exists a mechanism that could dissipate or advect the initially deposited vorticity. This problem

was originally regarded as the impulsive limit of the Rayleigh–Taylor instability (RTI), in which a

perturbed density interface evolves under the effect of a continuous or sustained acceleration [103].

However, in recent years, the Richtmyer–Meshkov instability (RMI) has gained in relevance and

independence from RTI studies, as indicated by several annual reviews in the subject (e.g., Zabusky

[128] and Brouillete [20]) and its relevance in a myriad of fields, including compressible turbulent

mixing [75, 126, 114, 130, 66], combustion [59], magnetohydrodynamics [120], plasma physics [63],

inertial confinement fusion [63], astrophysical phenomena [6, 36, 70, 102], and solid mechanics [95,

90]. In this last field, multiple features of interest naturally appear. In the first place, shear waves

are able to carry vorticity away from the interface, reducing and even canceling the growth of

the perturbations. The effect of inelasticity is also relevant as it establishes a duality between

the aforementioned stable behavior in which the interface does not grow in the long-term and the

unstable fluid-like behavior characteristic of the plastic regime. Dynamic transitions between these

two regimes at a material interface can potentially dramatically change the stability characteristics

of the flow.

Analytical models were constructed, and numerical simulations were conducted using the multi-

material adaptive mesh refinement AMROC [25] framework as part of the Virtual Test Facility

(VTF) [26] to achieve the objectives of the project. In addition to the tangible physical relevance

of the problems studied, there exists an overarching interest in identifying the limits, weaknesses

and strengths of the newly implemented multi-material solid mechanics capabilities in AMROC

[8] as part of its validation and verification, as well as identifying and developing improvements

over the previous versions of the code. This numerical framework constitutes the central piece

of the work developed by the computational fluid dynamics (CFD) group, led by Professors Dale

Pullin and Daniel Meiron and staffed by researchers Dr. Philip Barton, Dr. David Hill, Dr. Julian
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Cummings and Dr. Manuel Lombardini, and myself as a graduate student, in the framework of the

Predictive Science Academic Alliance Program (PSAAP) at Caltech, directed by Prof. Michael Ortiz

and funded by the National Nuclear Security Administration (NNSA). The goal of Caltech PSAAP

center is to produce a “validated, large-scale, multidisciplinary, simulation-based predictive science

as a major academic and applied research program for hypervelocity normal and oblique impact of

metallic projectiles and targets, at velocities up to 10 km/s”, for which the Eulerian multi-material

solid mechanics code plays a central role in the simulation program.

1.2 Previous related work

1.2.1 Eulerian solid mechanics

The study of solid mechanics in an Eulerian framework is intimately connected to problems in which

solid media are subjected to large deformations. This analysis requires an extended system of Euler

equations for which two formulations have been historically used. The first form stems from the

work of Godunov and Romenski [43, 42] where, in addition to the five equations required to describe

mass, linear momentum, and energy conservation, the inclusion of the nine evolution equations for

the deformation tensor (i.e., the gradient of the actual configuration of the material with respect

to its initial configuration) in conservative form was proposed. For modeling inelastic effects, the

former nine equations are modified by plastic source terms and an additional equation is needed

to keep track of work hardening. The second approach proposes the employment of the inverse

deformation tensor (i.e., gradient of initial configuration with respect of the actual configuration

of the material). The equations governing this system were first discussed by Plohr and Sharp

[92] for the elastic case and subsequently expanded to include rate-dependent and rate-independent

plasticity [93], increasing the number of equations to be solved to 21: mass (1), linear momentum

(3) and energy (1) conservation, inverse deformation tensor evolution (9), plastic strain (6) and work

hardening (1).

The general framework for computational modeling of finite deformation in solids was introduced

by Trangenstein and Colella [110], who described many of the complications involved in these compu-

tations, such as the loss of hyperbolicity when using particular constitutive laws. Miller and Collela

[78], expanded the previous work clearly establishing conditions for the stability of high-order Go-

dunov methods for elastic–plastic materials when kinematic constraints of the inverse deformation

tensor are included. The proposed model involves a total of 24 equations as the plastic deformation

tensor is employed, replacing the symmetric plastic strain tensor. Barton et al. [10] later developed

a WENO finite-volume [99] algorithm based on the equations of motion in [43, 42]. The compu-

tational methods described above require the solution of approximate or exact Riemann problems

at the cell boundaries. This procedure is often challenging for elastic–plastic materials given the
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large variety of constitutive laws available and the effect of inelastic behavior in the solution of such

Riemann problems. Hill et al. [49] proposed a hybrid WENO centered-difference finite-difference

method based on the system of equations in [78] and fractional steps separating the elastic and

plastic parts of the problem that circumvents these difficulties by means of the evaluation of wall

fluxes using a third-order WENO finite-difference scheme [57] and Lax–Friedrichs flux splitting. This

method does not require the solution of a Riemann problem nor the evaluation of the eigenvectors

of the hyperbolic system. In addition to these traditional implementations, it is worth mentioning

the combined Eulerian–interface front tracking approaches developed by Walter at al. [115, 116].

Perhaps the greatest difficulty in the development of numerical methods for large deformations

is the absence of a universal constitutive law. The only a priori requirement for the closure relations

in order to preserve a hyperbolic system of equations is that they be formulated in the hyper-elastic

form. In this formulation, stresses are directly derived by differentiation of the internal energy,

written as e = e(F, ς), where F is the deformation tensor and ς the entropy, with respect to the

components of the deformation tensor in a way such that the equation of motion for the internal

energy is satisfied and the eigenvalues of the resulting system of partial differential equations are real.

Upon this prescription, a myriad of variants have been proposed, based on different materials but

also adapted to different stress conditions. Thus, the development of universal Riemann solvers able

to handle this variety of constitutive relations becomes a challenging task. Examples of isentropic

closure relations (i.e., e = e(F)) are the Mooney-Rivlin-Ogden model [82] for rubber materials and

the isentropic Miller and Collela [78] model for the flyer-plate problem. Other models, normally

used for high-pressure and temperature problems include a dependency on entropy. Some examples

are the Miller and Collela model [77] where the internal energy is divided in shear, hydrostatic,

and thermal parts, the model by Gavrilyuk et al. [37], in which the hydrostatic part that imitates a

stiffened gas, and the semi-empirical Mie–Grüneisen model with shear terms presented in [107, 10, 8].

In order to model inelasticity of materials, multiple procedures have been developed. The ap-

proaches of LeFloch and Olsson [34] and Titarev et al.[107] include inelastic effects in the solution

of the Riemann problem at the cell boundaries. The majority of approaches, however, make use of

fractional steps (i.e., [8, 78, 49]), first evaluating the homogeneous part of the problem and finally

including plastic corrections in the shape of source terms. These corrections follow closely the radial

return algorithms developed in computational plasticity [101], in which the stress state is relaxed

towards the hydrostat until the yield surface is encountered.

1.2.2 Multi-material simulations

In the last years, multiple research efforts have been directed towards the simulation of complex prob-

lems containing interactions between different media (i.e., fluid–structure interactions [12], multi-

phase flows [112]). Contrary to Lagrangian formulations, in which the problem can be naturally
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addressed by collocating nodal points at the initial position of the interface, Eulerian formulations

need an algorithm for tracking material interfaces and a way to resolve mixed cells where multiple

materials coexist. In this context, different methods for interface tracking and solving have been

proposed. The volume-of-fluid (VOF) [52, 77] method is conservative and allows diffusion, which

makes it appropriate for mixing or combustion problems. The level-set approach [86, 85] preserves

sharp interfaces between materials, making it appropriate for the modeling of solid materials despite

the fact that some formulations are not intrinsically conservative. Some attempts to address con-

servation problems in particular situations have been proposed [83]. In between the two approaches

lies the phase-field method [33], which acts as a level set except for the region close to the interface,

where boundary conditions are enforced via a partial differential equation that governs the phase

field, a function that takes two distinct values (for instance +1 and −1) in each of the respective

phases, with a smooth transition between both values in the zone around the interface, which is then

diffused with a finite width. More complex methods are also under development, such as interface

reconstruction in VOF methods [3] or moment-of-fluid (MOF) methods [31].

1.2.3 Converging shock waves

The theoretical study of converging shock waves in fluid mechanics can be tracked back to Guderley’s

work [46] on similarity solutions in cylindrical and spherical configurations, which showed that, as

the shock approaches the strong-shock limit, its radial location R(t) is proportional to a geometry-

dependent power of the time measured from the instant when the shock has imploded to r = 0.

This result was later closely matched by Whitham’s shock dynamics (WSD) theory [122]. In WSD,

the characteristic equations and Rankine–Hugoniot conditions across the shock are combined to

obtain an ordinary differential equation that approximates the shock evolution and strength in

time. This approach also offers reasonable approximations far from the strong-shock limit (even for

infinitesimally weak shocks [54]) and in diverse geometries (e.g., wedges) [14]. In addition, WSD has

been applied to converging shocks in solid media. Yadav & Singh [125] analyzed spherical shocks in

metals employing a hydrostatic Mie–Grüneisen equation of state that does not reflect the effects of

shear. The study differentiates between the behavior of light metals like aluminum, which behave

like gases in the strong-shock limit, and heavier materials like copper, which exhibit a slight variation

of this behavior.

Several examples of studies based on numerical simulations of imploding shocks in fluids and

solids exist. Payne [87] employed a finite-difference scheme to replicate the evolution of a cylindrical

shock, which was produced from an initial Riemann problem caused by the rupture of a cylindrical

diaphragm separating regions of fluid at rest with different densities and pressures, showing agree-

ment with Guderley’s solutions as the shock approaches the axis. Hiroe, Matsuo & Fujiwara [50]

simulated a cylindrically imploding shock (and its subsequent reflection off the axis) propagating
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in solid media modeled using a Mie–Grüneisen equation of state and employing a random choice

numerical method. They observed that the self-similar regime commonly observed with gases is

only achieved in extreme proximity of the axis. The same type of equation of state was used by Na-

gayama and Murakami [81] in a finite-difference Lax–Wendroff method to study converging shocks

propagating through layers of different solid materials. In particular, the authors considered systems

composed of inner iron rods and outer shells made of copper or boron nitride, observing that the

pressure profile behind the shock only deviates from a planar pattern when the shock is very close to

the origin. They also identified conditions under which the inner iron rod can enter a tension stress

state and subsequently break after the shock is reflected at the axis and interacts with the material

interface for a second time.

Experimental studies of implosive shock waves are constrained by the inherent complications of

producing an initial shock with minimal excursions from radial symmetry. In particular, potentially

unstable polygonal shock waves are commonly developed as the shock moves inwards [118, 98].

Different methods have been proposed to improve the symmetry of the shock using annular shock

tubes [55] or shock lensing techniques [28]. Several authors have achieved converging shocks in solids.

Coleburn and Forbes [24] used the high pressure produced by a shock to transform hexagonal boron

nitride into wurtzite and its cubic form, Belov et al. [11] investigated the formation of solid deuterium

using an explosion-driven shock generator that produced a spherical shock wave in an aluminum

sheet that was later transmitted into the inner core of deuterium, and Brown et al. [21] presented

an experimental method for measuring the high-pressure Hugoniot relation of solid materials that

employed a concentrical cylindrical setup consisting of an outer shell of a well-characterized material

and an inner rod made of the material of interest. In some cases, excursions from the radial symmetry

are desirable for the study of instabilities that can result in the collapse of materials. For instance,

adiabatic shear bands [106] are self-organized narrow regions of localized shear deformations caused

by a nonuniform temperature distribution in materials with plastic deformations and they are usually

responsible for catastrophic failure of materials. Due to the existence of large plastic deformations,

heat is produced that cannot be dissipated in adiabatic processes. The resulting increment in

temperature allows for additional plastic deformations as the strength of the material is decreased

by thermal softening. Xue et al. [124] conducted experiments for analyzing the nucleation and

distribution of adiabatic shear bands in thick cylindrical titanium specimens under high strain rates

( 104 s−1). In order to achieve such strain rates, the motion was induced by an implosion in a

concentrical-shell driver made of copper.

1.2.4 Richtmyer–Meshkov instability (RMI)

Most of the efforts to describe the Richtmyer–Meshkov instability by means of analytical models,

numerical simulations, or experiments have occurred in the field of fluid dynamics. A significant
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part of these studies is devoted to modeling the small-perturbation linear regime in plane geometries,

with the aim of describing the start-up process and identifying the initial growth rate of interface

perturbations [68, 45, 113, 123]. When these models are compared to numerical [68] and experimental

results [58, 53], discrepancies often arise in the case of strong shocks or large density ratios across

the interface. The evolution of the interface in the nonlinear regime was studied by Samtaney

and Zabusky [97], who thoroughly analyzed the circulation evolution of the interface and described

how the heavy fluid penetrates in the light fluid in the form of “spikes” while “bubbles” of light

fluid are formed as a result of mass conservation. Studies in curved or converging geometries are

more scarce. Mikelian [76] developed a model for the start-up process that applies to both RMI

and RTI. Zhang et al. [129] performed numerical simulations to qualitatively explain the differences

between the four possible problem configurations: heavy–light or light–heavy density ratio across

the material interface and imploding or exploding direction of the shock. Finally, Lombardini [67]

proposed an incompressible, impulse-driven, and linearized model for the problem that retains first

and second-order effects of the converging geometry.

In the field of solid mechanics, Plohr and Plohr [95] performed a semi-numerical analysis of

the Richtmyer–Meshkov flow for linearized compressible elasticity. These results included a limited

range of initial conditions and material parameters for which the interface separating two solids

was oscillatory and stable after the shock wave–interface interaction. Piriz et al., [90] developed

an oscillatory model of the interface and conducted simulations to derive an approximate result

for the long-term behavior of the perturbations. Later, Piriz et al. [91] expanded their analytical

model to elastic–plastic solids, predicting an initial fluid–like linear growth rate of the amplitude

driven by the solid exhibiting plastic behavior that eventually turns into stable behavior as stresses

are relaxed below the yield stress. However, this model needs input from numerical simulations

in order to realistically define the interface behavior. Nonetheless, results suggest the existence of

a relation between the maximum amplitude achieved by the interface before it enters the elastic

regime and the strength of the material. Dimonte et al. [27] later performed a series of simulations

using continuum mechanics and molecular dynamics codes contrasted with experiments that drew

the same conclusions with respect to the yield stress–maximum amplitude relation.

1.3 Outline of present work

Chapter 2 is mainly descriptive as it introduces the equations of motion in an Eulerian framework.

Chapter 3 introduces the different formulations available for tracking the deformations of materials

in an Eulerian framework. A new set of equations with some advantages with respect to the ap-

proaches of Godunov and Romenski [42] and Plohr and Sharp [92] is presented. Special emphasis is

given to the fact that all these formulations can be solved by a polar decomposition of the deforma-

tion or inverse deformation gradients, with benefits for the handling of certain classes of plastic flow,
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for example when material interfaces come into mutual contact. This chapter also includes a de-

scription of the elements involved in the multi-material implementation accompanied by test results

concerning mass conservation and the accuracy of the multi-material Riemann solver employed. The

remainder of chapters are devoted to applications. In Chapter 4 the effects of shear deformations

and plasticity are considered in the analytical and numerical study of converging imploding shocks

in solids. The last two chapters are devoted to the study of the Richtmyer–Meshkov flow in solid

media. Chapter 5 describes an analytical model for the impulsive Richtmyer–Meshkov flow in in-

compressible elastic solids. Finally, in Chapter 6, numerical simulations are used for studying the

Richtmyer–Meshkov flow of interfaces separating different compressible media. In particular, the

cases of a perturbed interface separating an elastic–plastic solid from a vacuum or gas are examined

in planar and cylindrical geometries, respectively. A parametric study of the latter is performed in

order to characterize the dependency of the problem on initial conditions (i.e., amplitude and shape

of the perturbations and shock Mach number) and material parameters (i.e., initial density ratio

and yield stress).
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Chapter 2

Description of the Eulerian
framework for solid mechanics

2.1 Introduction

The equations of motion for elastic–plastic solid materials in an Eulerian framework are described in

this chapter. In contrast to inviscid fluid dynamics, where the equations for mass, linear momentum,

and energy conservation are sufficient to define a closed system of equations when an appropriate

equation of state is used, the solid mechanics description requires additional expressions in order to

track the relative displacements of particles with respect to their neighbors. It can be shown that,

at least for isotropic materials, only the three invariants of the strain tensor are needed to define

a consistent elastic–plastic constitutive law. Unfortunately, since an expression for the evolution

of these invariants cannot be formulated in conservative form, the system of equations must be

extended to include the evolution of the nine components of the deformation gradient, from which

the strain tensor and its invariants can be derived. Two directions have been historically followed

for including the deformation gradient in the Euler equations. The first approach [43, 42, 8, 7, 10]

makes use of the Lagrangian deformation tensor F, which is the gradient of the mapping that

relates the actual configuration of the material with respect to its initial position. The second

approach [92, 78, 110, 49] includes in the equations of motion the inverse of the deformation tensor

(appropriately called inverse deformation tensor) g, defined as the gradient of the initial position of

the material particles with respect to the actual location. Both formulations are described in the

first part of the chapter, devoted to introducing the equations of motion and constitutive laws for

elastic media.

The form of the equations when inelasticity is considered comprises the second part of the

chapter. A multiplicative decomposition of the deformation gradient into elastic and plastic parts

is employed. A phenomenological approach consistent with the postulates of isochoric plasticity is

used to model the plastic component, which is capable of replicating visco-elastic behavior, perfect
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plasticity, strain rate hardening and thermal softening.

The last part of the chapter summarizes the hyperbolic nature of the system of equations and

offers a general recipe for computing the different families of characteristics.

2.2 Equations of motion for elastic solid media

In a fixed Cartesian frame of reference (x1, x2, x3), the equations of motion in differential form for

any material considered as a continuum are prescribed by conservation of mass, linear momentum

and energy:

∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.1a)

∂ρui
∂t

+
∂ (ρuiuj − σij)

∂xj
= 0, (2.1b)

∂ρE

∂t
+
∂ (ρEuj − σijui)

∂xj
= 0, (2.1c)

where ρ is the density, ui is the material velocity in the xi direction, E is the total energy and σij is

the Cauchy stress. Einstein index notation is employed throughout this dissertation. At this point,

the system of equations is not complete since the physical behavior of the material has not been

included. For instance, a closure is provided by the equation of state, namely σij = −p(ρ, e)δij ,
where e = E − 1

2u
2
i is the specific internal energy, in inviscid fluid dynamics. In the case of viscous

fluids, the closure relation also includes the dependency on the strain rate tensor ∂ui/∂xj :

σij = −p(ρ, e)δij + µ(ρ, e)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (2.2)

where µ is the dynamic viscosity.

The main difference between solids and fluids hinges on their response to deformations. While

fluids respond to the rate at which these deformations occur, solids respond directly to the defor-

mations themselves. For example, when twisting a small section of a large piece of rubber, the

neighboring material will attempt to restore the initial configuration. If the same experiment is

replicated in a fluid, the neighboring particles may slow down the rate at which the twisting occurs

but the initial configuration cannot be restored. In consequence, the equations of state for solids

cannot be formulated solely in terms of the density, energy, and velocity fields and additional equa-

tions need to be included to identify the displacements of particles which respect to each other in

time.
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2.2.1 Lagrangian–Eulerian mapping

The notion of the deformed and undeformed configuration of a material must be introduced in order

to measure relative displacements between particles. To this effect, a fixed Eulerian Cartesian frame

(x1, x2, x3) and a second Lagrangian Cartesian frame (X1, X2, X3) that follows particle paths are

introduced. A bijective mapping xi = xi(XI , t) defines the position in the deformed configuration,

at a particular time-step t, of the particle whose position in the undeformed configuration was XI .

In practice, it is convenient to set XI = xi(XI , 0). The inverse mapping XI = XI(xi, t) conversely

determines the initial position of a particle given its position at a particular time. Since XI is

attached to the motion of particles, this field satisfies an advection equation,

DXI

Dt
=
∂XI

∂t
+ uj

∂XI

∂xj
= 0, (2.3)

in the Eulerian frame of reference.

As was stated above, the closure of the equations of motion for a solid must depend on the relative

displacement with respect to neighboring particles. The relative change in separation between a

particle labeled XI and some neighbor XI + εeJ , where eJ is any unitary vector in the Lagrangian

frame is given by:
xi (XI + εeJ , t)− xi (XI , t)

ε
, (2.4)

and taking the limit for small ε, the definition of the deformation tensor FiJ appears:

FiJ = lim
ε→0

xi (XI + εeJ , t)− xi (XI , t)

ε
=

∂xi
∂XJ

. (2.5)

Alternatively, we can define the inverse deformation tensor

gIj =
∂XI

∂xj
, (2.6)

such that g = F−1. This tensor is considered more appropriate for Eulerian formulations since in

its definition, derivatives with respect to the fixed frame of reference x are used.

2.2.2 Equations of motion for the deformation and inverse deformation

tensors

As was observed empirically for solids, stresses are intimately related to deformations in the material.

It is necessary then to track the evolution in time of the tensors F and g defined in the previous

paragraph in order to complement the system of equations in Eq. (2.1) and provide a closure to the

problem through the appropriate modeling of a constitutive law. By the use of kinematic arguments,
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the equations of motion for the components of the deformation and inverse deformation tensors are

subsequently derived in this paragraph. Special relevance is given to the fact that both formulations

are theoretically equivalent and to the kinematic constraints that naturally arise.

2.2.2.1 Inverse deformation tensor

Given the evolution equation for the Lagrangian field XI in the fixed frame of reference (Eq. (2.3))

and differentiating with respect to xk, the conservative form of the inverse deformation tensor is

obtained:
∂XI

∂t∂xk
+

∂

∂xk

(
uj
∂XI

∂xj

)
=
∂gIk
∂t

+
∂ (gIjuj)

∂xk
= 0. (2.7)

The components of g are subject to kinematic constraints (i.e., they are not purely independent

from each other). The first of these conditions is given by the invariance with respect to the order

of the derivatives and it is directly related to the Saint-Venant compatibility principle between

displacements and deformations,

∂gIj
∂xk

=
∂XI

∂xj∂xk
=

∂XI

∂xk∂xj
=
∂gIk
∂xj

, (2.8)

or, in other words, if the initial condition is curl free, this property is maintained at all times,

GIi ≡ εijk
∂gIk
∂xj

= 0. (2.9)

The second constraint comes from the intrinsic relation between the determinant of the inverse

deformation tensor and the density.
ρ

ρ0
= det (g) . (2.10)

If Eq. (2.1a) is compared to the determinant of (2.7), one may appreciate that they are not equivalent

unless the curl constraint (2.9) is actively enforced. This detail may seem to be irrelevant given that

the curl free condition of the inverse deformation tensor should be always satisfied. In numerical

implementations this is not always the case due to numerical errors. Hence, it is preferred to rewrite

Eq. (2.7) in a way such that the mass conservation equation is recovered automatically when taking

its determinant, regardless of the value of the curl,

∂gIk
∂t

+
∂ (gIjuj)

∂xk
= εkmnumGIn. (2.11)
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2.2.2.2 Deformation tensor

The equations of motion for the deformation tensor can be derived from Eq. (2.11), which can be

rearranged in a material derivative form,

DgIj
Dt

= −gIk
∂uk
∂xj

. (2.12)

Using the inverse matrix differentiation properties, the previous expression is written as:

(F−1)Im
DFmN
Dt

(F−1)Nj = (F−1)Ik
∂uk
∂xj

. (2.13)

Finally, multiplying by F from the left and right of the expression, one obtains

∂FiJ
∂t

+ uk
∂FIj
∂xk

− FKj
∂ui
∂xk

= 0. (2.14)

Combining the expression above with mass conservation (Eq. 2.1a), a set of equations for each of

the components of the deformation tensor in conservative form is derived,

∂ρFiJ
∂t

+
∂ (ρFiJuk − ρFkJui)

∂xk
= −ui

∂ρFkJ
∂xk

. (2.15)

It can be shown that the right-hand side term, ui
∂ρFkJ
∂xk

, is identically zero in an analogy to the curl

free constraint of the inverse deformation tensor. Using the differentiation formulae for an inverse

matrix and the determinant of a matrix together with Eq. (2.10), one can obtain

∂FkJ
∂xk

= −FkMFnJ
∂gMn

∂xk
, (2.16a)

∂ρ

∂xk
= ρFnNFkJ

∂gNm
∂xk

. (2.16b)

Finally,
∂ρFkJ
∂xk

= ρ
∂FkJ
∂xk

+ FkJ
∂ρ

∂xk
= ρFiJFmN

(
∂gNm
∂xi

− ∂gNi
∂xm

)
= 0. (2.17)

In addition, the density constraint can be reformulated in terms of the deformation tensor

ρ0

ρ
= det (F) , (2.18)

since F = g−1. Similarly to the inverse deformation tensor case, the continuity equation is not

directly recovered by taking the determinant of Eq. (2.15) unless the right-hand side is included.
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2.2.3 Stretch and strain tensors

Any matrix A admits a polar decomposition A = VR = RU, in which V and U are symmetric,

definite positive matrices and R is an orthogonal rotation matrix. In the particular case of A being

the deformation tensor F, V and U are called the left and right stretch matrices, respectively. This

decomposition is useful as it separates the contributions due to the change in distance among neigh-

boring particles from the contribution of rigid-body rotations, contained in the stretch and rotation

matrices, respectively [71]. In consequence, the constitutive law in an elastic solid must exhibit

dependency on V or U only. These constitutive relations often appear formulated as functions of

the left and right Cauchy–Green strain tensors,

b = FFT = V2, (2.19a)

C = FTF = U2. (2.19b)

An equation of motion independent of F can be derived for the components of the left Cauchy–

Green tensor b:

Dbij
Dt

=
DFiK
Dt

FjK + FiK
DFjK
Dt

= FjKFmK
∂ui
∂xm

+ FiKFmK
∂uj
∂xm

= bkj
∂ui
∂xk

+ bik
∂uj
∂xk

, (2.20)

or, including the mass conservation equation (2.1a),

∂ρbij
∂t

+
∂ρbijuk
∂xk

= ρbkj
∂ui
∂xk

+ ρbik
∂uj
∂xk

. (2.21)

However, that is not the case for the right Cauchy-Green tensor C:

DCIJ
Dt

=
DFkI
Dt

FkJ + FkI
DFkJ
Dt

= FkJFlI
∂uk
∂xl

+ FkIFlJ
∂uj
∂xl

(2.22)

The above relations for the Cauchy–Green tensors cannot be expressed in conservative form

and weak solutions across a discontinuity cannot be directly determined for them. Thus, it is not

possible to substitute the nine equations of motion for the components of the deformation or inverse

deformation tensor by the six relations needed to track the evolution of the symmetric strain tensors

in a numerical implementation of the system of equations describing the motion of elastic materials.

A total of 14 equations (5 from (2.1) and 9 from (2.11) or (2.15)) must be solved concurrently. The

resultant system of equations is redundant, since the knowledge of F or g allows the computation

of the density without having to use the continuity equation. Diverse methods have been proposed,

discussed in Chapter 3, for solving this ambiguity in numerical implementations.
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2.2.4 Closure relations and constitutive laws

As discussed in the previous section, the constitutive law needed to model an elastic solid is expressed

as a function of the left or right Cauchy-Green tensors and some other thermodynamic variable. A

typical form for the internal energy is,

e = e(b, ς) or e = e(C, ς), (2.23)

where ς is the entropy. Cauchy stresses σij remain to be determined. Early production codes for

large deformations in solid media used to rely extensively on a set of constitutive laws known as hypo-

elastic [111]. The stresses for these materials were derived phenomenologically and were generally

not consistent with thermodynamic principles. In this approach, hyper-elastic constitutive laws are

used. A hyper-elastic material is defined by the acquisition of the stress state via direct differentiation

of the constitutive law for the internal energy in consistency with the energy conservation equation.

Given a general expression for e = e(gIj , ς), the equation of motion for the internal energy is:

De

Dt
=

∂e

∂gIj

DgIj
Dt

+
∂e

∂ς

Dς

Dt
=

1

ρ
σij

∂ui
∂xj

, (2.24)

One can consider an elastic particle path of constant entropy and Eq. 2.12 to obtain,

∂e

∂gIj

DgIj
Dt

= − ∂e

∂gIj
gIk

∂uk
∂xj

=
1

ρ
σij

∂ui
∂xj

, (2.25)

and by simple identification of terms,

σij = −ρgKi
∂e

∂gKj
, (2.26)

or equivalently, making use of the deformation tensor,

σij = ρFiK
∂e

∂FjK
. (2.27)

In the particular case of an isotropic material, expressions (2.23, 2.26, 2.27) can be simplified

since the internal energy and stresses are formally independent of axis orientation. In other words,

only three invariants (or eigenvalues) of the strain tensors are needed to fully determine e,

e = e
(
IM1 , IM2 , IM3 , ς

)
, (2.28)
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where IMi are the canonical invariants of the left (or right) Cauchy-Green tensor:

IM1 = tr (M) , (2.29a)

IM2 =
1

2

(
tr(M2)− (tr(M))2

)
, (2.29b)

IM3 = det(M), (2.29c)

with M = {b,C}. Equations (2.26–2.27) can also be written as functions of the matrix invariants,

σij = −ρgKi
∂e

∂IMm

∂IMm
∂gKj

, (2.30a)

σij = ρFiK
∂e

∂IMm

∂IMm
∂FjK

. (2.30b)

The derivatives of the invariants of the strain tensor with respect to the components of the deforma-

tion (or inverse deformation) tensor can be obtained from differentiation of Eqs. (2.19) and (2.29)

(see [49] and [7] for a detailed description of these expressions).

A general structure of the constitutive laws normally adopted for isotropic hyper-elastic materials

assumes an additive decomposition e = es + eh. The first term es represents the contribution of

shear to the internal energy and is normally considered a function of the three invariants of the

Cauchy-Green tensors (i.e., es = es(I
M
1 , IM2 , IM3 ), with M = {b,C}). The second term is related

to isotropic effects and hence only a function of the third invariant (i.e., the density) and entropy,

eh = eh(IM3 , ς). In following chapters, a more detailed description of the constitutive laws used for

each application will be given.

Hence, the description of the motion of elastic solids in an Eulerian frame of reference is com-

pletely defined by the Euler equations (2.1), with the addition of the deformation evolution equations

written in terms of g (2.11) or F (2.15). These relations have to be applied consistently with the

appropriate kinematic constraints (2.9, 2.10) or (2.17, 2.18). Finally, the system is closed by a con-

stitutive relation of the form (2.23), such that Cauchy stresses can be computed using Eqs. (2.26)

or (2.27). The next section will expand this system of equations to account for the inelastic effects

generally observed when solids are submitted to high stresses in particular configurations.

2.3 Plasticity

Most materials submitted to sufficiently high stress conditions undergo large strains when small stress

increments are additionally applied, and residual deformations remain even when the stresses are

removed. This defines the plastic regime [100]. Plasticity is intimately ligated to the microstructure

of the material, more specifically to the number density of dislocations in the crystalline structure.

Dislocation theory has its roots in the work of Taylor [104], Orowan [84], Gilman [41, 40], and Gillis
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[38, 39]. In most materials, as the number density of dislocations increase, additional shear stress is

required to produce more dislocations, resulting in what is known as strain hardening of the material.

Conversely, thermal softening refers to the reduced shear stress needed to create new dislocations as

the temperature of the material is increased. The limit of thermal softening is melting, in which the

material transitions to a fluid state with stresses strictly dependent on the rate at which deformations

occur.

Macroscopically, when uniaxial-stress conditions are applied to a deformable medium, the tran-

sition between the elastic state and the plastic state can be defined by a limit stress, normally called

yield stress. For stress states below yielding, deformations in the material are due to stretching of

the crystalline structure and they disappear when the loading is removed. Above the yield stress,

dislocations are created and result in permanent deformations. The formation of dislocations is

a nonreversible and dissipative process that, in consequence, increases entropy. For other stress

conditions involving more than one component of the stress tensor, more complex yield criteria

determine whether a material point is in plastic or elastic state. Yield criteria are usually based

on the deviatoric part of the stress tensor since plasticity appears to be (at least for metals) an

incompressible process (i.e., dislocations do not change the volume of the material) and is therefore

intimately related to shear deformations. To account for strain hardening and thermal softening

at a macroscopic level, the yield stress can be made dependent on the history of deformations and

entropy in the case of strain hardening and on the temperature and pressure in the case of thermal

softening.

The study of finite viscoplasticity utilizes a multiplicative decomposition of the deformation

tensor F

F = FeFp, (2.31)

where Fe and Fp are considered to be the elastic and inelastic part, respectively, of the total kine-

matic deformation. As is shown further in this section, this hypothesis allows the treatment of

elastic–plastic solids in a way similar to purely elastic solids and still consistent with experimen-

tal evidence. As suggested by experiments, plasticity is independent of the compression/tension

state of the material, hence det(Fp) = 1. Conversely, for the inverse deformation tensor, a similar

decomposition can be defined,

g = gpge, (2.32)

where ge = Fe−1 and gp = Fp−1. The specific internal energy is, under the multiplicative decompo-

sition of F, a function of the elastic and plastic parts of the deformation tensor e = e(Fgp,Fp, ς) and

stresses can be computed using Eqs. (2.26) or (2.27). However, an application of the chain rule shows
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that stresses can be obtained by simple differentiation with respect to the elastic deformations,

σij = −ρgeKi
∂e

∂geKj
, (2.33a)

σij = ρF eiK
∂e

∂F ejK
. (2.33b)

As a final simplification, the energy contribution given by Fp is likely to be small in metal plasticity

compared to the elastic strain and thermal contributions of Fe and ς. Under this consideration,

constitutive laws are often formulated as independent of the plastic part of the deformation tensor

(i.e., e = e(Fe, ς)).

The evolution of the plastic deformation tensor satisfies the general expression,

DFp

Dt
= LpFp, (2.34)

which can be written in conservative form as,

∂ρF pIJ
∂t

+
∂ρF pIJuk
∂xk

= ρLpIKF
p
KJ . (2.35)

The problem of plasticity then reduces to modeling Lp, which is called the plastic deformation

rate tensor and is normally written in terms of local variables (i.e., the plastic state at any given

particle of the material only depends on its stress state). The set of equations proposed in [78, 49]

contemplates the evolution in time of the total inverse deformation tensor and the plastic deformation

tensor (Eqs. (2.7,2.35)) for a total of 23 equations defining the motion of an elastic–plastic solid.

In contrast, the formulation of Godunov and Romenski [42] proposes to keep track of Fe alone in

the equations of motion. A differential expression for the motion of the elastic deformations Fe is

obtained from the algebraic manipulation of Eqs. (2.15), (2.31) and (2.34):

∂ρF eiJ
∂t

+
∂ (ρF eiJuk − ρF ekJui)

∂xk
= −ui

∂ρF ekJ
∂xk

− ρF eiKLpKJ . (2.36)

Alternatively, a formulation based on the elastic inverse deformation tensor results from inverting

Eq. (2.36) to obtain
∂geIj
∂t

+
∂ (geIkuk)

∂xj
= εjmnumG

e
In + LpIKg

e
Kj , (2.37)

where GeIj ≡ εjmn
∂geIn
∂xm

is the curl of the elastic inverse deformation tensor. It is important to

note that Fe and ge are not, respectively, divergence and curl free in general. If Lp is zero, then

these tensors are equivalent to F and g and comply with (2.17) and (2.9), respectively. However,

when plastic deformations exist and considering the local nature of the plastic deformation rate

tensor, the kinematic constraints for F and g are not applicable to Fe and ge. The kinematic source
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terms −ui ∂ρF
e
kJ

∂xk
and εkmnumG

e
In must always be included in Eqs. (2.36) and (2.37) so when their

determinant is taken the continuity equation is recovered.

The structure of Lp remains to be determined. Under the assumption of isochoric plasticity (i.e.,

det(Fp) = 1), the material derivative of the determinant of Fp is identically zero. If Jacobi’s rule,

D

Dt
det(M) = det(M)tr

(
DM

Dt
M−1

)
, (2.38)

is applied to Eq. 2.34, it is found that,

tr(Lp) = 0. (2.39)

The second argument that models the form of the plastic deformation rate tensor is related to

the second law of thermodynamics. Consider an specific internal energy function e, such that

e = e(Fe, ς). Applying the chain rule to the Eq. (2.24), one obtains

∂e

∂F eiJ

(
∂F eiJ
∂FaB

DFaB
Dt

+
∂F eiJ
∂F pAB

DF pAB
Dt

)
+
∂e

∂ς

Dς

Dt
=

1

ρ
σij

∂ui
∂xj

. (2.40)

Taking into account Eqs. (2.33b), (2.14) and (2.34), and the identities,

∂F eiJ
∂FaB

= δiaδMBF
p
MJ , (2.41a)

∂F eiJ
∂F pAB

= −FiK(F p−1)KA(F p−1)BJ . (2.41b)

The material derivative of the entropy can be expressed as:

ρ0
Dς

Dt
= − 1

T
ΣIJL

p
IJ > 0, (2.42)

where,

Σ = −ρ0

ρ
FeTσgeT , (2.43)

is the so-called Mandel stress and T = ∂e
∂ς |ρ is the temperature. It must be emphasized that the

entropy evolution equation (2.42) is only valid in smooth flows. In non-smooth flows, an addi-

tional increment in entropy appears across shocks satisfying the Rankine-Hugoniot conditions for

the equations of motion. In [10], it is proposed to keep track of an additional variable ςp, which

follows Eq. (2.42) and satisfies ς ≥ ςp. This variable only registers entropy increments due to plastic

work and can be used to parametrize strain hardening.

It can be easily shown that a plastic deformation rate tensor of the form,

Lp = χge
σ′

||σ′||F
e, (2.44)
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where χ is a scalar plastic-rate parameter, M′ is the deviatoric part of a given matrix M (i.e.,

M′ = M − 1
3 tr (M) I) and ||M|| =

√
MijMij , satisfies the conditions given by Eqs. (2.39) and

(2.42). Godunov and Romenski in [42] proposed a general form for χ:

χ =
1

2µτ
||σ′||, (2.45)

where µ is the shear modulus and τ is the relaxation time, such that the material deforms in a way

phenomenologically consistent to the Maxwell solid model. A general form for the relaxation time

that allows hardening and thermal softening modeling is presented, following the work in [9],

τ = τ0

(
σ0fH(σm, ς

p)fT (ρ, ς)

σm

)n1

, σm =

√
3

2
||σ′||, (2.46)

where τ0 is a reference relaxation time, σ0 is a characteristic yield stress, n1 is an exponent which

controls rate dependence, and the functions fH and fT represent the response to strain hardening

and thermal softening, respectively. The latter take the form:

fH(σm, ς
p) = 1 + fH,0

(
CH

ςP

cvσm

)n2

, fT (ρ, ς) = 1− 〈T (ρ, ς)− Tr
TM (ρ)− Tr

〉n3 , (2.47)

with 〈φ〉 = (φ+ |φ|) /2 and where fH,0 and CH are material parameters, TM is the melting temper-

ature considered as a function of the local density, and Tr is a threshold temperature below which

the temperature dependence is nonexistent. This expression for the relaxation time can be simplified

to perfect plasticity by setting fH = fT = 1, σ0 = σY (i.e., the yield stress), and n1 high enough so

the equivalent stress σm conforms to the yield surface defined by σY almost immediately. Perfect

plasticity is in many cases a convenient oversimplified model that reduces the study of inelasticity to

a single parameter. However, such model is useful for obtaining a first approximation of the effects

of plasticity. For instance, in Chapter 4, perfect plasticity is employed along with Whitham’s shock

dynamics theory in order to find a closed expression for the evolution of plastic shocks in converging

geometries. In Chapter 6, perfect plasticity is also considered as it simplifies the parametric study

of the Richmyer–Meshkov instability for elastic–plastic solids. Modeling of the strain hardening and

thermal softening terms in Eq. (2.46) allows for more realistic simulations. As Fig. 2.1 shows, the

strain hardening parameters in Eq. (2.47) for multiple materials were calibrated in a way such that

the plastic evolution deviates minimally from results of tensile tests at different strain rates reported

in [47] for OFHC copper and performed by Prof. Ravichandran’s group for aluminum and steel.
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(a) OHFC copper

(b) 304 steel

Figure 2.1: Stress–strain curves for tensile one-dimensional experiments. Experimental data in (a)
is represented by symbols and obtained from [47], data in (b) has been obtained from experiments
conducted in Prof. Ravichandran’s lab and is represented by dashed lines. Theoretical results after
calibration of parameters in Eq. (2.46) are represented by continuous lines. Figures were produced
by Philip Barton [9].
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2.4 Characteristic speeds

The system of equations formed by Eqs. (2.1) and, depending on the formulation used, Eqs. (2.11)-

(2.35), Eq. (2.37) or Eq. (2.36) is hyperbolic in nature when a hyper-elastic constitutive law is used

[71, 42]. The characteristic polynomial in the spatial directions k = 1, 2, 3 takes the form

(uk − λ)n det
(
Ω(ek)− (uk − λ)2I

)
= 0. (2.48)

where λ is the characteristic speed, ek are the standard basis vectors and Ω(v) is the acoustic tensor,

defined as,

Ω(v) =
1

ρ

3∑
k=1

(
vTFe

)
k

A(ek,v), A(w,v) =
∂σv

∂Few
. (2.49)

The derivatives of stresses with respect to deformations that appear in Eq. (2.49) can be evaluated

analytically (see [7]). The solution of the characteristic polynomial gives, in each direction, seven

distinct waves with velocities:

uk −
√
ω1, uk −

√
ω2, uk −

√
ω3, uk, uk +

√
ω3, uk +

√
ω2, uk +

√
ω1, (2.50)

where ωi are the eigenvalues of Ω. Starting in both directions from the central entropy wave uk,

they represent two shear waves and a longitudinal wave. While the eigenvalues λ = uk ±
√
ωi only

have one associated eigenvector, λ = uk is degenerate and its algebraic multiplicity depends on the

number of equations considered in the system. As will be stated in Chapter 3, the numerical scheme

employed does not require the computation of eigenvectors (see [10] for a complete description of

them).

2.5 Summary

In this chapter, the equations of motion defining the behavior of elastic–plastic solids were intro-

duced. In addition to the classical mass, linear momentum, and energy conservation, the response

of solid materials to relative displacements between particles requires the formulation of constitutive

laws that are functions of the strain tensors (or their invariants for isotropic materials). Since a

conservative form of the equations of motion for the symmetric strain tensors cannot be obtained,

it is necessary to evolve in time the nine different components of the deformation tensors, for which

diverse formulations can be used based on the Eulerian or Lagrangian mappings. Inelastic behavior

was modeled in accordance to a series of postulates empirically observed and in a way such that

perfect plasticity, strain hardening, and material melting can be captured. Finally, the hyperbolic

nature of the problem enables the application of the wide range of numerical techniques (for instance,
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see [108]) that have been developed for this type of system of partial differential equations, especially

in the field of fluid mechanics, over the last years. The particular numerical implementation of the

equations employed here is presented in the next chapter.



25

Chapter 3

Numerical implementation

3.1 Introduction

Conservative Eulerian formulations have been successfully employed for solving hyperbolic systems

of equations. In particular, the numerical simulation of the response of gases to extreme conditions

through shock capturing algorithms [44] have experienced active development in the last years as

computational capacity has increased and become widely available [4]. The application of the same

techniques to the extended system of hyperbolic equations describing the motion of solids seems

plausible, especially for cases of extreme loading where shocks appear. Eulerian methods have the

advantage of neither being affected by the grid distortion that naturally occurs in Lagrangian meth-

ods as particles move nor needing the design of a remapping algorithm like in the case of arbitrary

Lagrangian–Eulerian formulations (respectively, Chapters 4 and 7 in [13]). These advantages be-

come apparent in some of the applications described in forthcoming chapters, in which strong shocks

and vorticity naturally appear and would result in extreme distortion of a Lagrangian mesh to the

extent of requiring very small time-steps or even making the algorithm fail. In addition, these

numerical methods do not require explicit artificial viscosity and are expected to converge to the

correct entropy-producing weak solutions. As a major disadvantage, the computational cost that

involves solving an extended system of 13 to 23 equations in multi-dimensions is still relevant and

has postponed the implementation of these methods until parallel massive computing has become

widely available.

General elastic–plastic solid motion algorithms in Eulerian frameworks were developed by Miller

and Collela [78] and Hill et al. [49] but lacked the capability of handling multi-material or free-surface

problems. A literature search on the topic suggests that multi-material formulations are, in fact, an

open field [1, 17, 35, 88]. A natural division among the multiple suggested implementations is to

differentiate between those which allow mixing, and therefore can also account for chemical reaction

phenomena, and formulations that assume that materials are non-miscible and that a well-defined

interface lies between them. A second distinction can be made based on the use of the volume
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fraction of the materials (commonly used in mixing models) and the use of a level-set function,

which is commonly used for non-miscible materials, as a way of tracking the interface position.

More complex methods are still under development, such as interface reconstruction in volume-of-

fluid (VOF) methods [3], which attempts to estimate the position of an interface not only based on

the volume fraction of the materials in a particular cell but also considering the neighboring ones,

or moment-of-fluid (MOF) methods [31].

The numerical method used for the different applications described in this thesis is constructed

upon the AMROC framework [25], a parallel, adaptive mesh refinement (in space and time) scheme

[18] written in C++ for solving generic systems of hyperbolic partial differential equations. The

extension of this framework to solid mechanics and multi-material problems by means of the use

of level-set functions is described in the work of Barton et al. [8]. The current version of the code

includes some improvements with respect to the latter, which will be described in the course of

this chapter. In a multi-material simulation in AMROC, each different material is contained in the

region where an associated level-set function is positive. This level-set function is defined at all

times as a smooth distance function to the closest boundary. Boundary conditions across material

interfaces are imposed by the combined use of the modified ghost fluid method (M-GFM) [65] and

the solution of a Riemann problem based on the states of the materials in contact. The updated

version of the algorithm employs a robust algebraic HLLD solver, derived from the scheme widely

used in magnetohydrodynamics [80] for wall flux computation, while the original version in [8] relied

on the Riemann problem being approximated using a characteristic linear solver. After boundary

conditions at material interfaces are imposed, each material can be solved independently. This

chapter focuses on the implementation of the algorithm for each of the patches (i.e., rectangular

computational domains given to a particular processor), first discussing a single-material case and

consequently describing the implementation of multi-material capabilities through the level-set and

ghost fluid method. Details on the parallel implementation and communication between patches can

be found in [18, 25].

3.2 Single-material implementation

The set of equations to be solved can be written as

∂U

∂t
+
∂Di

∂xi
= S + P, (3.1)

where U is the vector of conserved variables, D is the flux vector, and S and P are source terms

associated with kinematic constraints and the plastic update respectively.

All the possible conservative formulations for solid mechanics, regardless of whether they are
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based on the deformation F or inverse deformation tensor g, must contain the equations for linear

momentum and total energy,

U1:4 =

 ρu1:3

ρE

 , Di
1:4 =

 ρu1:3ui − σ1:3,i

ρEui − σijuj

 ,S1:4 = 0,P1:4 = 0. (3.2)

Three different approaches to the way the state and flux vectors are completed to form a close system

of equations are subsequently described in this section.

3.2.1 Fe formulation

This approach was implemented in the first version of the AMROC multi-material algorithm for

solid mechanics [8] and follows previous work in [10, 42, 7]. It uses the evolution equations for the

nine components of the elastic deformation tensor Fe (Eq. (2.36)) and neglects the computation of

the continuity equation since density can be obtained from

ρ0

ρ
= det (Fe) . (3.3)

An alternate implementation in two-dimensional problems substitutes the component F e33 by the

mass conservation equation when components F e13, F e23, F e31, F e32 are identically zero (i.e., plane strain

conditions). F e33 can be obtained afterwards from Eq. (3.3). Assuming the plastic law described in

Eqs. (2.44)-(2.45), the additional components of the system of equations are given by:

U5:13 =


ρF e1,1:3

ρF e2,1:3

ρF e3,1:3

 , (3.4a)

Di
5:13 =


ρF e1,1:3ui − ρF ei,1:3u1

ρF e2,1:3ui − ρF ei,1:3u2

ρF e3,1:3ui − ρF ei,1:3u3

 , (3.4b)

S5:13 =


−u1

∂ρF ek,1:3
∂xk

−u2
∂ρF ek,1:3
∂xk

−u3
∂ρF ek,1:3
∂xk

 . (3.4c)

P5:13 =


− ρ

2µτ σ
′
1kF

e
k,1:3

− ρ
2µτ σ

′
2kF

e
k,1:3

− ρ
2µτ σ

′
3kF

e
k,1:3

 (3.4d)
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In two-dimensional cases where the continuity equation is used, the thirteenth component of the

system of equations is substituted by:

U13 = ρ, Di
13 = ρui, S13 = 0, P13 = 0. (3.5)

3.2.2 Inverse deformation tensor–plastic deformation tensor formulation

This approach includes g and Fp in the system of equations and was first implemented in the solvers

developed by Miller and Colella [78] and Hill et al. [49]. The method considers all the components of

the inverse deformation and plastic deformation tensors and also includes the continuity equation. A

density penalty term is introduced to reduce deviations from the mass conservation equation when

computing the density through the determinant of g. Finally, a curl diffusion term corrects possible

deviations from the initial curl free condition of the inverse deformation tensor (Eq. (2.9)). The

linear momentum and energy equations (Eq. 3.2) are complemented with,

U5:23 =



g1:3,1

g1:3,2

g1:3,3

ρF p1,1:3

ρF p2,1:3

ρF p3,1:3

ρ


, (3.6a)

Di
5:23 =



g1:3,kukδ1i

g1:3,kukδ2i

g1:3,kukδ3i

ρF p1,1:3ui

ρF p2,1:3ui

ρF p3,1:3ui

ρui


, (3.6b)

S5:23 =


ε1mnumG1:3,n −Dε1mn ∂G1:3,n

∂xm
+ η

(
ρ
ρ0

1
det g − 1

)
g1:3,1

ε2mnumG1:3,n −Dε2mn ∂G1:3,n

∂xm
+ η

(
ρ
ρ0

1
det g − 1

)
g1:3,2

ε3mnumG1:3,n −Dε3mn ∂G1:3,n

∂xm
+ η

(
ρ
ρ0

1
det g − 1

)
g1:3,3

0

 , (3.6c)

P14:22 =


ρ

2µτ g
e
1:3,aσ

′
abFb1

ρ
2µτ g

e
1:3,aσ

′
abFb2

ρ
2µτ g

e
1:3,aσ

′
abFb3

 , (3.6d)
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where ge = Fpg and F = g−1. The curl diffusion term and the density penalty term are, respectively,

the second and third terms in the source vector S, where D and η are coefficients with set values

that depend on the mesh and time-stepping characteristics (see [78] for more details),

D =
∆x2

4d∆t
, η =

1

6∆t
. (3.7)

3.2.3 Elastic inverse deformation tensor formulation

A novel formulation that lies in between the previously described approaches is presented here. In

this case, mass conservation and the evolution of the nine components of the elastic inverse defor-

mation tensor ge (2.37) are considered for a total of 14 equations (down from 23 in the inverse

deformation tensor–plastic deformation tensor approach). These equations are similar to the evo-

lution relations for g but the plastic source term is included in the evolution of ge (as happened

in the formulation based on Fe) and the source curl diffusion term cannot be applied since the

ge is not curl free in general. An advantage with respect to the Fe formulation is that the mass

conservation penalty term can still be enforced, controlling deviations from the density computed as

the determinant of ge with respect to the density computed from mass conservation. Deliberately

neglecting one of the equations and obtaining the missing value employing Eq. 3.3 often leads to

unphysical results (e.g., a negative density or F33 component) when numerical errors arise in extreme

compression problems. The summary of the equations for this approach is,

U5:14 =


ge1:3,1

ge1:3,2

ge1:3,3

ρ

 , (3.8a)

Di
5:14 =


ge1:3,kukδ1i

ge1:3,kukδ2i

ge1:3,kukδ3i

ρui

 , (3.8b)

S5:14 =


ε1mnumG

e
1:3,n + η

(
ρ
ρ0

1
det ge − 1

)
ge1:3,1

ε2mnumG
e
1:3,n + η

(
ρ
ρ0

1
det ge − 1

)
ge1:3,2

ε3mnumG
e
1:3,n + η

(
ρ
ρ0

1
det ge − 1

)
ge1:3,3

0

 , (3.8c)



30

P5:14 =


ρ

2µτ g
e
1:3,kσ

′
k1

ρ
2µτ g

e
1:3,kσ

′
k2

ρ
2µτ g

e
1:3,kσ

′
k3

0

 (3.8d)

where Ge represents the curl of ge.

3.2.4 Use of the stretch tensor

This subsection introduces a variation of the previous formulations that makes use of the stretch

tensor and offers computational advantages in certain problems. As was specified in Chapter 2,

the deformation tensor has a polar decomposition F = VR and, conversely, g = RTV−1. The

same decomposition can be applied to their elastic counterparts Fe and ge. Assuming a general

multiplicative decomposition ρFe = MN and the form of the plastic deformation rate tensor Lp

given in (2.44), Eq. (2.36) reads

A (M)iK NKJ +MiK
DNKJ
Dt

= 0, (3.9)

where

A (M)iJ =
∂MiJ

∂t
+
∂ (MiJuk −MkJui)

∂xk
+ ui

∂MkJ

∂xk
+

1

2µτ
σ′ikMkJ . (3.10)

Note that A (ρFe) = 0. Alternatively, for a similar decomposition of the inverse deformation tensor,

ge = pq, one obtains

pIKB (q)Kj +
DpIK
Dt

qKj = 0, (3.11a)

B (q)Ij =
∂qIj
∂t

+
∂ (qIkuk)

∂xj
− εjmnumQIn −

1

2µτ
qIkσ

′
kj , (3.11b)

B (ge) = 0, (3.11c)

where QIj ≡ εjmn ∂qIn∂xm
. A and B for identical decompositions of ρF and g take the same form with

the exclusion of the plastic source term. A solution to Eqs. (3.9,3.11a) can be obtained by simply

setting:

A(M) = 0 ,
DN

Dt
= 0, (3.12a)

B(q) = 0 ,
Dp

Dt
= 0. (3.12b)

Consider now a spatial field of symmetric, definite positive matrices Vn and a second one of

orthogonal rotation matrices Rn such that they constitute the polar decomposition of the elastic

deformation tensor (i.e., Fen = VnRn or gen = RT
nV−1

n, with M = ρVn, N = Rn, p = RT
n, and
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q = V−1
n) at a particular time-step n. The deformation field at time-step n + 1 can be obtained

by solving Eq. (3.12) for the values of Vn+1 and Rn+1 such that Fen+1 = ge−1
n+1 = Vn+1Rn+1. In

general, Vn+1 is not the stretch tensor of Fen+1 since the symmetry condition is never enforced when

Eq. (3.12) is solved. In contrast, the rotation matrix field at n + 1 is preserved by the advection

equation. This enables the construction of the stretch matrix at the new time-step:

Ṽn+1 =
√

bn+1 =
√

Fen+1F
eT
n+1 =

√
Vn+1VT

n+1, (3.13)

with its associated rotation matrix determined from

R̃n+1 = Ṽ−1
n+1F

e
n+1 = Ṽ−1

n+1Vn+1Rn+1 =

(√
Vn+1VT

n+1

)−1

Vn+1Rn+1. (3.14)

The values of Vn+1 and Rn+1 can now be updated for their use in the next computational time-step

with the real stretch and rotation matrix values,

Vn+1 ← Ṽn+1, (3.15a)

Rn+1 ← R̃n+1. (3.15b)

The same approach is directly applicable to the formulations that make use of the deformation or

inverse deformation tensor instead of keeping track of their elastic contributions. It is important to

note that knowing the evolution of the rotation matrix is not needed for the computation of the new

stretch matrix Ṽn+1, which is the only required element for formulating constitutive laws for solid

materials (i.e., e = e(V2, ς)). A summary of the proposed algorithm is:

� At t0, given the initial deformation state in terms of inverse deformation or deformation gradients,

compute V0. (e.g., V0 =
√

Fe0F
e
0
T or V0 =

√
ge0
−Tge0

−1).

� At each time-step {t0, tf}

1. Evaluate Vn+1 given Vn through an appropriate discretization of A(V) = 0 or B(V−1) = 0

(3.12) concurrently with the mass conservation, linear momentum and energy equations.

2. Since Vn+1 is not symmetric in general, obtain a new stretch tensor Ṽn+1 =
√

Vn+1VT
n+1.

3. Substitute Vn+1 with Ṽn+1.

� End

This algorithm, in the case of being applied to F or g and not just to the elastic contributions

Fe or ge, can also be regarded as an arbitrary Lagrangian-Eulerian (ALE) approach in which an

intermediate frame X̃I of reference is chosen in such a way that it is neither Eulerian nor Lagrangian
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and there exist three maps xi = xi

(
X̃J , t

)
, X̃I = X̃I (XJ , t), and xi = xi (XJ , t) that satisfy:

ViJ =
∂xi

∂X̃J

, RIJ =
∂X̃I

∂XJ
, FiJ =

∂xi
∂XJ

, with F = VR. (3.16)

A second interpretation stems from the fact that FiJ is a contravariant–covariant tensor. Thus, a

rigorous way of writing the tensor is F = F iJei ⊗ eJ = ∂xi/∂XJei ⊗ eJ . In this notation, ⊗ is

the dyadic product, superscripts and subscripts denote, respectively, contravariant and covariant

properties, and ei and eJ are, respectively, the basis co-vectors and vectors. Vectors (for instance,

the position vectors X and x) have contravariant properties, which means that under a rotation

of the coordinate system, they must be multiplied from the left by the rotation matrix in order to

remain basis-independent. Co-vectors are covariant, and under the same rotation, must be multiplied

from the right. Since F iJ is covariant with respect to rotations of the Lagrangian coordinates XJ , V

can be interpreted as a symmetric deformation tensor that results from a covariant rotation of the

Lagrangian frame of reference such that FRT = V.

The main consequence of evolving the stretch tensor instead of F or g without keeping track of

the rigid-body rotations is the loss of information about particle paths contained in the deformation

gradients (which can be recovered nonetheless by integration of the velocity field). This algorithm

effectively “re-initializes” the Lagrangian frame of reference at each time step to be aligned with

the directions of principal stretches at each point of the domain. A second consequence is that

the kinematic constraints (i.e., divergence and curl constraints) cannot be imposed over V. These

disadvantages are not especially relevant when the stretch tensor substitutes for the elastic parts

of the deformation or inverse deformation tensors. In this case, kinematic constraints cannot even

be imposed over Fe and ge since these fields are not divergence and curl free, respectively, and

information on particle paths is already lost by not keeping track of the plastic deformations.

This approach offers several advantages related to the properties of V without increasing the size

of the system or introducing new equations (i.e., A = 0 and B = 0 are the equations of motion for the

deformation tensor and inverse deformation tensor, respectively). In some multi-material simulation

examples, it was observed that impacts between sections of material contained in the same level set

(i.e., different spikes in cylindrical Richtmyer–Meshkov instability simulations converging near the

origin) were not well handled by a numerical implementation where any of the three approaches

described in subsections 3.2.1, 3.2.2, or 3.2.3 was employed. This was because, even when the two

states had similar strain states, the associated deformation tensors varied largely as one could be

rotated with respect to the other, leading in many occasions to unphysical results (i.e., negative

densities, very high wave speeds) when numerically solving equations (3.4), (3.6), or (3.8). Stretch

tensors are symmetric and definite positive, and do not reflect rigid-body rotations. In consequence,

between two colliding pieces of material, the differences in the state vector are reduced, leading to
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Figure 3.1: Initial condition for a one-dimensional problem in which two pieces of the same unstressed
elastic material are rotated π

2 with respect to each other

smoother solutions for impacts and reconnections.

To illustrate this point, consider the one-dimensional initial value problem described in Fig. 3.1.

At t = 0, two pieces of the same unstressed elastic material become attached and move with constant

velocity. The left piece of the material has been rotated with respect to the other by π
2 . The

boundary conditions between the two portions are satisfied (i.e., normal velocity and stress are

constant, tangential velocity and stress are zero). The solution of this initial value problem in time

is that the two pieces move together at constant velocity without any change in their stress state.

As shown in Fig. 3.2, the Eulerian algorithm evolves the deformation tensor creating a smooth

transition between the rotated deformation tensor states. In the third time-step, the smoothing

of the deformation tensor effectively decreases the density to about 0.6 or 0.85 of its initial value

depending on the method used, which also affects the stress state and linear momentum and energy

equations. The method employed in Fig. 3.2(a,b) is the inverse deformation tensor formulation

(Section 3.2.2) that includes the density penalty term, which stabilizes the density defects as can

be appreciated in Fig. 3.2(b). An identical test performed with the same formulation but disabling

the density penalty term leads to a more unstable solution (as observed in Fig. 3.2(c,d)). Failure of

the algorithm is possible in more demanding problems. When the stretch tensor is used, the rotated

deformation tensor of the left material is replaced by the identity tensor and all the variables of the

initial state vector are constant fields, which suffer no modification in time and prescribe the correct

solution of the problem. The only disadvantage of the use of the stretch tensor is losing track of

the position of the interface between the rotated and non-rotated pieces but this information can be

recovered from the velocity field.

3.2.5 Time and spatial discretization

This paragraph summarizes the numerical implementation of the equations of motion and is largely

based on [8]. The finite-difference spatial discretization employed considers the state vector at the

center (denoted by the subscript i, j, k) of cells of dimensions (∆x1,∆x2,∆x3) contained in the
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(a) time-step 3, with density penalty term
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(c) time-step 3, without density penalty term
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(d) time-step 8, without density penalty term

Figure 3.2: Density, components of the inverse deformation tensor, and velocity after 3 and 8 time-
steps for the initial problem described in Fig. 3.1 using the g formulation with and without density
penalty terms. Each tick in the x-axis represents a cell boundary.

computational domain D. The method of fractional steps is used whenever inelastic terms are

present in Eq.(3.1). The first fractional step corresponds to the elastic update and makes use of

explicit evaluation. The second involves the plastic update in pseudo-time. This is done implicitly

since the problem can become locally stiff if the strain rates are high enough,

Ũi,j,k = Un
i,j,k −

∫ t̃

tn

Hi,j,k (U) dt, (3.17a)

Un+1
i,j,k = Ũi,j,k +

∫ tn+1

t̃

Pi,j,k (U) dt, (3.17b)

where

Hi,j,k =
1

∆x1

(
D1
i+1/2,j,k −D1

i−1/2,j,k

)
+

1

∆x2

(
D2
i,j+1/2,k −D2

i,j−1/2,k

)
...

+
1

∆x3

(
D3
i,j,k+1/2 −D3

i,j,k−1/2

)
− Si,j,k. (3.18)
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The discretization of the elastic and plastic updates are described in this and the following paragraph,

respectively. Along x1, D1
i+1/2,j,k in Eq. (3.18) represents the intercell numerical flux function

between the cells collocated at (i, j, k) and (i + 1, j, k). Equivalent notation applies to the other

Cartesian directions. These fluxes are formed through polynomial reconstruction from cell centered

flux values Di,j,k = D (Ui,j,k) by use of the third-order weighted essentially non-oscillatory (WENO)

method for finite-difference schemes [57]. This method constructs high-order approximations of a

given scalar field in locally smooth flow regions and reduces to a monotone first-order scheme in

the vicinity of discontinuities. The method achieves this goal by constructing a convex combination

of lower order candidate stencils, with nonlinear weights assigned as functions of local smoothness

indicators. For systems of equations, WENO methods can be applied in a number of ways [99]. The

easiest approach (and the one considered in this implementation) is to treat each component of D

as a scalar field. For the purposes of this exposition, a simplified notation Di+1/2, which can be

taken as D1
i+1/2,j,k, D2

i,j+1/2,k or D3
i,j,k+1/2 as needed, is used. First, the intercell flux is considered

as the sum of the right- and left-going fluxes,

Di+1/2 = D+
i+1/2 + D−i+1/2, (3.19)

associated to positive and negative wave speeds, which are taken to be respectively left and right

WENO reconstructed values. The third-order left reconstructed value for each component of D+
i+1/2

is found according to:

D+
i+1/2 =

1∑
j=0

ωjD
+,(j)
i+1/2, (3.20)

where the candidate low-order stencils are,

D
+,(j)
i+1/2 =

1∑
k=0

γjkD
+
i−j+k, j = 0, 1, (3.21)

and

ωj =
cj/(βj + ε)2∑1
k=0 ck/(βk + ε)2

, j = 0, 1, (3.22)

are the nonlinear weights. Values for cj and γjk are presented in Table 3.1. ε is a small number

taken to avoid division by zero. Smoothness coefficients βi are given by

β0 =
(
D+
i+1 −D+

i

)2
, β1 =

(
D+
i−1 −D+

i

)2
. (3.23)

A similar formulation is obtained for the right WENO reconstruction of D−i+1/2 by mirroring the

stencils around i + 1/2. Finally, the cell centered positive and negative fluxes D+
i are given by the
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Lax-Friedrichs (LLF) splitting,

D±i =
1

2
(Di ± SmaxUi) , (3.24)

where Smax is the maximum (in absolute value) characteristic speed (Eq. (2.50)) across the range

of interest of U such that all the eigenvalues of ∂D±i /∂Ui are strictly positive and negative for D+
i

and D−i respectively. The LLF flux is simple and does not require the computation of characteristic

equations. As a negative effect, this method introduces excess dissipation, whose effects can be

minimized by increasing the order of the wall flux reconstruction.

Table 3.1: Coefficients of third-order WENO finite-difference method

i ci γi0 γi1

0 2/3 1/2 1/2
1 1/3 -1/2 3/2

With respect to time-stepping, the integral in Eq. (3.17a) is approximated by the third-order

total variation diminishing (TVD) Runge-Kutta method from [57],

∫ t̃

tn

H (U) dt ≈ ∆t

3∑
i=1

ωiH

Un −
i∑

j=1

βijH
(
U(j−1)

) , U(0) = Un. (3.25)

Coefficients for this method are shown in Table 3.4.

Table 3.2: Coefficients of third-order TVD Runge-Kutta method

i ωi βi1 βi2

1 1/6 0
2 1/6 1
3 2/3 1/4 1/4

3.2.6 Inelastic update

The implicit evaluation of Eq. (3.17b) can prove to be computationally intensive if the strain rates

are high enough such that the problem becomes stiff. In [8], it was shown that, given a particular

choice of constitutive laws and inelastic models the problem could be reduced to the solution of

two algebraic equations, in an approach that resembles a radial return algorithm. This procedure is

described here given its importance as a key element within the code in reducing computation time.

A singular value decomposition of Fe is given by:

Fe = ge−1 = UKeW, (3.26)

where U, W are orthogonal rotation matrices, and Ke = diag(ke) is the diagonal matrix of principal
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elastic stretches kei , with i = 1, 2, 3. If the stretch tensor formulation is used, W = UT and kei are,

respectively, the eigenvectors and eigenvalues of Ve. As a consequence of plasticity being modeled

as independent of changes in volume, the density Jacobian det(Ke), and the rotation matrices U

and W, remain constant. This way, given F̃e = ŨK̃eW̃, the updated elastic deformation tensor

reads Fen+1 = ŨKen+1W̃ and the problem is reduced to solving for the increment in entropy and

the updated principal stretches.

In order to being able to further reduce the complexity of the problem, a specific constitutive

law is considered. Given an additive decomposition for e = es + eh, es is expressed as a function of

the invariants of the elastic Hencky’s strain tensor He,

He =
1

2
log
(
FeFeT

)
, (3.27)

such that,

es = 2cs(ρ)2I2, I2 =
(
IH

e

1

)2

/3− IHe

2 . (3.28)

where cs(ρ) =
√
µ/ρ is the shear wave speed. Note that IH

e

1 = log(ρ/ρ0) and I = ||He′||. Derivation

of the Cauchy stress for this particular equation of state using Eq. (2.33b) shows that:

σ =

(
ρ
∂eh
∂IH

e

1

− 2

3
µIH

e

1

)
+ 2µHe. (3.29)

In consequence, the deviatoric stress σ′ becomes linear with He′, and Eq. (3.17b) can be reformulated

in terms of the principal stretches as:

ken+1 = k̃e −
∫ tn+1

t̃

1

τ
diag

(
he′keT

)
dt, (3.30)

where he′ = log(ke) + log(ρ/ρ0)/3 is the vector of principal Hencky’s deviatoric stresses. From this

last expression, it can be shown that,

he′n+1 = h̃e
′ −
∫ tn+1

t̃

1

τ
he′ dt, (3.31a)

In+1 = Ĩ −
∫ tn+1

t̃

1

τ
I dt, (3.31b)

from which,

he′n+1 = h̃e
′
(
In+1

Ĩ

)
. (3.32)

Known he′n+1 and In+1, the principal stretches are recovered as,

ken+1 = exp
(
he′n+1 − log(ρ̃/ρ0)/3

)
. (3.33)
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In [9], it is shown that the increment in plastic entropy is given by:

θ(ρ̃) exp

(
1

cv
(ς̃ − ς̃p)

)(
exp

(
ςpn+1

cv

)
− exp

(
ς̃p

cv

))
= − c̃s

2

2

(
In+12 − Ĩ2

)
(3.34)

where θ(ρ) = ∂e/∂ exp( ςcv ) and the shear wave velocity cs is considered a function of ρ only (i.e.,

c̃s = cs (ρ̃)) . Under certain circumstances, a linearization of Eq. (2.46), such that:

τ = τ0

(
σ0fH(σ̃m, ς̃)fT (ρ̃, ς̃)

σm

)n1

= τ0

(
σ̃Y
σm

)n1

. (3.35)

is sufficient to accurately model the visco-plastic response of a material and allows the analytical

determination of In+1. σ̃Y can be considered the “instantaneous” yield stress for the particular state

Ũ. In the case of perfect plasticity, σ̃Y reduces to simply σY . Given that I = ||σ′||
2µ and σm =

√
3µI,

Eq. (3.31b) becomes: ∫ In+1

Ĩ

1

In1+1
dI = −

∫ tn+1

t̃

1

τ0

(√
3µ

σ̃Y

)n1

dt, (3.36)

which leads to the analytical result:

In+1 =

(
Ĩ−n1 + ∆t

n1

τ0

(√
3µ

σ̃Y

)n1
)−1/n1

, (3.37)

representing the relaxation of a visco-elastic material. In the limit of immediate relaxation of stresses

(n1 →∞), Eq. 3.37 becomes discontinuous. If σm < σ̃Y , In+1 = Ĩ and the material is in the elastic

regime, otherwise

In+1 =
σ̃Y√
3µ
, (3.38)

which is consistent with the classical theory of plasticity. If the equations of state used cannot be

expressed in terms of the Hencky strain tensor invariants (3.28), an implicit algorithm can always

be used for the computation of the principal stretches. In that case, robustness and computational

cost of the algorithm become a concern.

3.3 Multi-material implementation

As mentioned in Section 3.1, the proposed approaches to the problem of multi-material interactions

are varied and no agreement exists on which method produces better results. The adoption of a

particular method rather depends on the characteristics of the problem to be solved and the prop-

erties that one would like to preserve. In the case of solid mechanics, a level-set implementation

appears to be the most convenient since it allows the description of the sharp interfaces normally ob-

served between elastic–plastic materials. However, level-set methods are generally non-conservative
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since the fluxes at one side and the other of a material interface are not matched exactly. Some

conservative fixes have been proposed but are limited to particular types of problems [83]. As a re-

sult, acceptable mass conservation can only be achieved in well-posed problems and under extensive

refinement of the computational domain. It is worth noting that, in the case of extreme tempera-

ture conditions, in which materials can melt and subsequently behave like a fluid, the conservative

volume-of-fluid (VOF) approach may look more appealing since it allows modeling of phenomena

normally appreciated in fluids, such as mixing. Given the general scope of the problems encountered

in this application, the level-set implementation of [8] is closely followed, with some modifications

targeted at improving the overall behavior of the method.

3.3.1 Level-set advection and reinitialization

For each material Ml in the computational domain D, a level-set function φl is defined at time t = 0

to be a signed distance to the closest material boundary in the initial configuration (i.e., interface,

free surface) such that a simple evaluation of its sign allows one to determine whether a point x away

from the interface belongs to the material. The criterion normally assumed is φl(xi, t) > 0,∀x ∈Ml

with the condition that two level-set functions cannot be positive at the same point. Level-set

functions satisfy the Eikonal condition

|∇φl| = 1, (3.39)

and easily provide geometric information, such as the local unit normals,

nl =
∇φl
|∇φl| = ∇φl, (3.40)

as long as they remain signed distance functions.

The evolution in time of a level-set function is determined by the solution of the advection

equation:
∂φl

∂t
+ vi

∂φl

∂xi
= 0, (3.41)

where v is a given velocity field. For each level set, Eq. (3.41) is discretized with values at the cell

centers (i, j, k) and solved concurrently in time with the equations of motion, using the third-order

TVD Runge-Kutta method described in Eq. (3.25). High-order spatial accuracy is achieved by the

application of a fifth-order WENO reconstruction method [99] for ∂φl

∂xi
. The discrete velocity field

vi,j,k is directly obtained from the state vector Ui,j,k of the material Ml for which φli,j,k > 0. In

the case of all level-sets being negative at a particular cell center, the state vector resulting from

the application of the M-GFM method described in the next paragraph is employed. The same

velocity field is used for all φl, thus avoiding the artificial formation of gaps or superpositions among

different level-sets. This is different from the approach in [8], which uses a velocity field interpolated
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from the solution of a Riemann problem at the material interface which is not the same for all

level-set functions and thus leads to the formation of gaps in some extreme cases, unless a corrective

algorithm is enforced.

Given that the velocity field v describes particle paths, it will only accurately describe the motion

of a particular level set at material boundaries (i.e., where φli,j,k = 0). In addition, numerical

inaccuracies may lead to further deviation of the level-set functions from satisfying Eq. (3.39) as

time progresses. Since the ghost-fluid method relies extensively on an accurate computation of

normals and distances to material boundaries, the Eikonal condition is reestablished at the end of

each sub-step of the Runge-Kutta method (3.25) using Min’s approach [79] for solving to equilibrium

the Hamilton-Jacobi equation,

∂φl

∂τ
+ sgn

(
φl
) (
|∇φl| − 1

)
= 0. (3.42)

in pseudo-time. This method approximates the second term in Eq. (3.42) considering a discretization

subcell fix for the level-set values in cells which are adjacent to the material boundary such that

the interpolated position for which φl(x, τ = 0) = 0 does not drift for τ > 0. Numerical tests

show that this method produces better results for applications described in upcoming chapters than

the original method in [8], where the level-set function in the inner band adjacent to the boundary

was kept fixed. For instance, the original method tends to produce numerical Kelvin-Helmholtz

instability in planar geometry Richtmyer-Meshkov interfaces after the passage of a strong shock.

3.3.2 Boundary conditions at material interfaces and free surfaces

The modified ghost fluid method (M-GFM) of Liu et al. [65] is used to set boundary conditions

at material interfaces. Given a material M l, the aim of this approach is to populate a subset

of cells, i.e., ghost cells, B(s) = {Ci,j,k : φli,j,k < 0
⋃
φli,j,k > s|∆x|}, where s is related to the

numerical stencil, with state variables such that the interior cells {Ci,j,k : xi,j,k ∈ M l} reflect the

desired boundary conditions. M-GFM bases the algorithm for setting the state of the ghost cells

on the solution of a Riemann problem whose initial conditions contain information on the state at

both sides of the interface. M-GFM was developed to overcome the difficulties that the original

GFM method of Fedkiw et al. [32], which sets the state of a particular ghost cell Ci,j,k using the

normal velocity and stress state from the actual state in Ci,j,k, i.e., the state for material Mm such

that φmi,j,k > 0, and the tangential velocity and entropy extrapolated from the interior cells of M l,

encountered when it was applied to problems involving interactions of strong shocks with interfaces,

such as Richtmyer–Meshkov flow.

In this particular implementation of M-GFM, an inner layer of cells A ∈ B defined as A = B(1)

adjacent to the interface are prescribed states resulting from solving multi-material one-dimensional
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Riemann problems defined locally and directed along the normal to the interface in the approximate

way described in the next paragraph. For a given ghost cell Ci,j,k in the inner band, the initial

states of such Riemann problem consist of an extrapolated state Ũ and the state vector Ui,j,k of

the material Mm such that φmi,j,k > 0. In the case of material–vacuum interactions, a second state

is not needed. State variables are rotated onto a local orthogonal coordinate system defined by

the interface normal nl. The extrapolated state Ũ is given by interpolation of the interior cells of

material M l to give Ũ = U(x̃), where x̃ is the closest boundary point to the ghost cell Ci,j,k and

can by determined as

x̃ = xi,j,k + dnli,j,k, (3.43)

where d = |φli,j,k| is the distance to the interface, provided that φli,j,k remains a signed distance

function. In the case of this assumption being not entirely correct (i.e., reinitialization of the level-

set was not effective), x̃ is determined using the trajectory tracing method of [117]. Finally, all other

cells Ci,j,k ∈ (B \A) take an extrapolated state from those in A.

Figure 3.3: Diagram of ghost cells around a two-material interface. Orange-flagged cells represent
ghost cells for material 1, with solid color and diagonal lines marking the inner band, populated by
the solution of a Riemann problem, and the outer region, populated by extrapolation from inner
band, respectively. The same pattern is used for the ghost cells of material 2, colored in blue.
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Figure 3.4: Waves and states in the approximate HLLD multi-material Riemann problem

3.3.3 HLLD Multi-material Riemann solver

The central idea in the Harten, Lax and van Leer (HLL) approximate Riemann solver [48], from

which the HLLD method is a derivative, is to assume a wave configuration for the solution that

consists of two waves separating three constant states. Assuming that the wave speeds are given

by some algorithm, application of the integral form of the conservation laws gives a closed-form,

approximate expression for the central state. This method was then modified to become the HLL-

contact (HLLC) scheme [109], which handles four states, the two central ones being separated by a

contact discontinuity. This method, although appropriate for fluids since the three waves separating

the states can be assimilated to the three families of characteristics (u− a, u, u+ a), cannot reflect

the fact that, in an elastic solid, additional families of characteristics defined by the shear wave

speeds exist. The same problem is found in the field of magnetohydrodynamics [80], where Alfvén

waves travel more slowly than longitudinal compression waves.

The HLLD approach assumes the existence of a number of slow waves between the fastest waves

in each direction and the contact discontinuity. Here, the two-dimensional version is described, in

which only one slow wave is placed between the fast wave and the interface. The core assumption

for this method is that jumps in density and normal stress can occur across fast waves, but not

across slow waves. Along the interface, normal velocity and stress are continuous. The third and

fourth interface conditions depend on the modeling of friction between materials. For the case of

free-slip, the tangential stresses are set to zero, while for no-slip, continuity of tangential velocities

and stresses is enforced.

As shown in Figure 3.4 for each material −,+, the fastest (longitudinal) waves S±L separates the

states U± and Ũ±. The slow shear waves in between Ũ± and U∗± are denoted S±S . Across these
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discontinuities, the following relations are satisfied:

S±L (U±−Ũ±) = D
(
U±
)
−D(Ũ±), (3.44a)

S±S (Ũ± −U∗±) = D(Ũ±)−D(U∗±), (3.44b)

where D is the appropriate flux vector for the formulation being used as described in Section 3.2.

Finally, SI is the interface wave speed. In this paragraph, we assume that all wave speeds are known.

Methods for wavespeed estimation are given later. Equation (3.44a) can be solved for the set of

primitive variables
(
ρ̃±, ũ±, ρ̃F

±
, g̃±, Ẽ±

)
without knowing the specific boundary conditions at the

interface when the simplifications assumed in this method are considered. For each material i, the

Ũ state can be constructed from,

ũ±1 = SI , (3.45a)

ũ±2,3 = u±2,3, (3.45b)

ρ̃± = ρ±
S±L − u±1
S±L − SI

, (3.45c)

Ẽ± = E± +
(
SI − u±1

)(
SI −

σ±11

ρ±
(
S±L − u±1

)) , (3.45d)

ρ̃F1J

±
= (ρF1J)

±
, (3.45e)

ρ̃F2J

±
= (ρF2J)

± S
±
L − u±1
S±L − SI

, (3.45f)

ρ̃F3J

±
= (ρF3J)

± S
±
L − u±1
S±L − SI

, (3.45g)

g̃±J1 = g±J1

S±L − u±1
S±L − SI

, (3.45h)

g̃±J2 = g±J2, (3.45i)

g̃±J3 = g±J3, (3.45j)

where J = 1, 2, 3 and the expressions for F and g can be used for the elastic, plastic or total tensors

depending on the formulation used.

In order to determine the U∗± states, Eq. (3.44b) must be solved taking into account the de-

sired interface boundary conditions. For a free-slip, solid–fluid, or solid–vacuum discontinuity, the

following expressions are obtained,

u∗±2 = u±2 +
σ±12

ρ̃±(S±S − SI)
, (3.46a)

u∗±3 = u±3 +
σ±13

ρ̃±(S±S − SI)
, (3.46b)
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E∗± = Ẽ± +
σ±12u

±
2 + σ±13u

±
3

ρ̃±(S±S − SI)
. (3.46c)

And in the case of no-slip boundary conditions,

u∗−2 = u∗+2 =
σ−12 − σ+

12 + ρ̃−(S−S − SI)u−2 − ρ̃+(S+
S − SI)u+

2

ρ̃−(S−S − SI)− ρ̃+(S+
S − SI)

, (3.47a)

u∗−3 = u∗+3 =
σ−13 − σ+

13 + ρ̃−(S−S − SI)u−3 − ρ̃+(S+
S − SI)u+

3

ρ̃−(S−S − SI)− ρ̃+(S+
S − SI)

, (3.47b)

E∗± = Ẽ± +
(
u∗±2 − u±2

)(
u∗±2 −

σ±12

ρ̃±
(
S±S − SI

))+ ...

+
(
u∗±3 − u±3

)(
u∗±3 −

σ±13

ρ̃±
(
S±S − SI

)) , (3.47c)

The remainder of variables can be expressed in the same way regardless of the interface conditions

used:

u∗±1 = SI , (3.48a)

ρ∗± = ρ̃±, (3.48b)

(ρF1J)
∗±

= (ρF1J)
±
, (3.48c)

(ρF2J)
∗±

= ρ̃F2J

±
+ (ρF1J)

± u
±
2 − u∗±2
S±S − SI

, (3.48d)

(ρF3J)
∗±

= ρ̃F3J

±
+ (ρF1J)

± u
±
3 − u∗±3
S±S − SI

, (3.48e)

g∗±J1 = g̃±J1 −
g±J2(u±2 − u∗±2 )− g±J3(u±3 − u∗±3 )

S±S − SI
, (3.48f)

g∗±J2 = g±J2, (3.48g)

g∗±J3 = g±J3, (3.48h)

where g and F can be elastic or total deformations depending on the formulation used. In the case

of plastic deformations, (ρFp)
∗

= ρ̃Fp, since this yields Fp∗ = Fp. Some simplifications exist for

the case of solid–fluid interfaces. If material i is a compressible fluid, the slow waves are neglected

and only the first set of equations (3.45) applies, with σ±11 = −p, where p is the pressure and

σ±12 = σ±13 = 0. The presented scheme reduces in this case to the HLLC method.

A more accurate solution to the Riemann problem can be obtained by using the U∗± states as

the new initial values in a multiple-pass algorithm. In most applications, three to four iterations are

enough to achieve convergence in the solution.
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3.3.3.1 Wave speed estimation

Since the HLL solver was developed, multiple ideas for estimating the velocity of the fastest waves

have been proposed (see Chapter 10 in [108]). The fact that this solver deals with two materials

that can have very different properties makes the task of obtaining a robust estimate even more

challenging. The method used in this algorithm uses information from the original states to obtain

the left and right fastest wave speeds such that,

S−L = min
(
u−1 − c−l , u+

1 − c+lg
)
, (3.49a)

S+
L = max

(
u+

1 + c+l , u
−
1 + c−lg

)
, (3.49b)

where c±l = max
(√
ωk
)
, with k = 1, 2, 3, is obtained from the square root of the largest eigenvalue

of the acoustic tensor Ω(e1) (see Eq. (2.49)) given by the state U±. c±lg is computed in the same

way from an “artificial” state U±g , such that,

U±g = U±g
(
u±, σ∓ij , ς

±) . (3.50)

The interface wave velocity is constructed in such a way that enforces continuity of normal stresses

across the material interface. Extracting the relation associated to linear normal momentum from

Eq. (3.44a),

S±L ρ̃
±SI − ρ̃±S2

I − σ̃±11 = S±L ρ
±u±1 − ρ±

(
u±1
)2 − σ±11, (3.51)

and equating the normal stresses at the tilde state (which are equal to the normal stresses at the

interface considering the simplifications adopted in the method) for each material, the following

relation for SI is found,

SI =
σ−11 − σ+

11 + ρ+(S−L − u−1 )u−1 − ρ+(S+
L − u+

1 )u+
1

ρ−(S−L − u−1 )− ρ+(S+
L − u+

1 )
. (3.52)

In the particular case of a solid–vacuum interface, this expression is greatly simplified to:

SI = u1 +
σ11

ρ(SL − u1)
. (3.53)

Since the slow wave speeds are not used in the first set of equations (3.45), they can be estimated

once the states Ũ± are known. A simple choice, inspired by the approach adopted in [80], is:

S±S = ũ±1 ± c̃s±, (3.54)

where c̃s
± = min

(√
ω±
)

is the slowest acoustic speed given by the eigenvalues of the acoustic tensor
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in the normal direction Ω(e1) associated to the state Ũ±.

3.3.3.2 Numerical examples

To conclude the analysis of the newly developed HLLD multi-material Riemann solver, two different

cases of interest for two-dimensional elastic solid–gas interfaces are considered and compared with

results obtained by the characteristic-based Riemann solver in [8] and an exact multi-material Rie-

mann solver which uses an iterative process involving multiple Newton–Raphson evaluations. This

last solver cannot be practically implemented in the numerical code given the high computational

cost of the iterations and its reliance on an accurate initial guess.

The elastic solid employed is defined by the Godunov-Romenski equation of state [30, 107],

e = es + eh, (3.55a)

es = 2cs(ρ)2I2, I2 =
(
IH1
)2
/3− IH2 , (3.55b)

eh =
K

2α2

((
ρ

ρ0

)α
− 1

)2

+ cvT0

(
ρ

ρ0

)γs (
exp

(
ς

cv

)
− 1

)
, (3.55c)

with cs(ρ) = µ
ρ = µ0

ρ0

(
ρ
ρ0

)β
, the Hencky strain tensor H = 1

2 log
(
FFT

)
and typical parameters for

copper, ρ0 = 8.93 g/cm3, K = 15.28 · 106 m2/s2, cv = 3.9 · 102 J/kgK, T0 = 300 K, µ0 = 39.38 GPa,

α = 1, β = 3, γs = 2 . The perfect gas is defined by its heat capacity ratio γg = 5/3.

The interface is collocated at x = 0 at t = 0 with the solid and gas materials occupying the right

and left half-plane and being denoted by s and g, respectively. For the first initial value problem,

a purely hydrostatic state is prescribed for the solid. The solution of the Riemann problem with

initial conditions,

Fs =


0.8 0 0

0 0.8 0

0 0 0.8

 , ςs/cv = 0.5, ug =

 −10

0

 km/s,

ρg = 0.1 kg/m3, pg = 0.05 GPa, ug =

 0

0

 km/s,

(3.56)

involves a longitudinal expansion in the solid and a shock propagating through the fluid and repre-

sents a typical Riemann problem that originates from a one-dimensional shock–interface interaction.

Since the free-slip boundary condition is already satisfied in the initial state and the expansion

does not modify the tangential stresses when the tangential velocity is zero, the problem is purely

one-dimensional and shear waves do not appear. Table 3.3 shows results for the adjacent states to

the interface for: a) exact Riemann solver, b) HLLD solver, c) HLLD solver with multiple passes

in which the U∗ states are used as initial conditions for the following pass, d) characteristic-based
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Table 3.3: Comparison between results of approximate Riemann solvers and exact solution for a
one-dimensional solid–gas interface Riemann problem involving an expansion wave in the solid and
a compression shock in the gas. The solid follows the constitutive law (3.58) and the gas is considered
perfectly caloric. The approximate methods considered are: a) HLLD single-pass, b) HLLD with
multiple passes, c) characteristic-based single-pass, d) characteristic-based with multiple passes.

Variable Initial condition Exact HLLD characteristic
single-pass multi-pass single-pass multi-passes

SOLID

ρ (g/cm3) 17.441 10.423 15.412 10.767 14.779 9.844
F11 0.8 1.339 0.905 1.296 0.944 1.417

σ11 (GPa) -506.271 -23.750 -255.065 -28.375 -201.883 -12.487
σ22 (GPa) -506.271 -97.081 -341.503 -108.660 -299.757 -79.011

e (km2/s2) 7.230 1.556 5.248 1.633 3.851 1.461
u1 (km/s) -10.000 -13.893 -11.918 -14.873 -12.284 -15.233

FLUID

ρ (g/cm3) 0.1 0.397 0.409 0.506 1.445 7.479
p (GPa) 0.05 23.750 19.676 28.375 1.171 12.487
u1 (km/s) 0 -13.893 -11.918 -14.873 -12.284 -15.233

WAVESPEEDS

SsL (km/s) -9.653 4.568 -8.982 2.678 -11.442
SgL (km/s) -18.510 -15.774 -26.826 -0.913 -16.901

solver, and e) characteristic-based with multiple passes. Wave speeds are also provided. The in-

termediate state Ũs is not shown since it corresponds identically to U∗s where shear waves are not

present. The first conclusion extracted from the analysis of Table 3.3 is that the multiple-pass

algorithm is advantageous compared to the single-pass. In particular, the result of the expansion

is underestimated by the latter. In addition, multiple-pass algorithms converge towards satisfying

the normal stress continuity condition across the interface, which cannot be directly enforced with

just one pass of the algorithm. Finally, the HLLD solver gives a result which is closer to the exact,

especially for the values of densities, stresses, and velocities at each side of the interface.

The second example considers an initial solid state in which tangential stresses are present. A

shear wave is then required in order to adapt the stress state to the free-slip interface conditions.

The initial configuration,

Fs =


0.8 −0.1 0

−0.1 0.9 0

0 0 0.9

 , ςs/cv = 0.5, ug =

 −10

1

 km/s,

ρg = 0.1 kg/m3, pg = 0.05 GPa, ug =

 0

0

 km/s,

(3.57)

produces a Riemann problem in which a longitudinal expansion followed by a shear shock occurs in

the solid and a pressure shock develops in the fluid and mimics the start-up process of a Richtmyer-
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Table 3.4: Comparison between results of approximate Riemann solvers and exact solution for a
solid–gas interface Riemann problem involving an expansion wave and a shear shock in the solid and
a compression shock in the gas. The solid follows the constitutive law (3.58) and the gas is considered
perfectly caloric. The approximate methods considered are: a) HLLD single-pass, b) HLLD with
multiple passes, c) characteristic-based single-pass, d) characteristic-based with multiple passes.

Variable Initial condition Exact HLLD characteristic
single-pass multi-pass single-pass multi-pass

SOLID

ρ (g/cm3) 13.975 10.339 12.919 10.498 12.211 9.754
F11 0.800 1.081 0.865 1.065 0.916 1.146
F12 -0.100 -0.135 -0.108 -0.133 -0.114 -0.143
F21 -0.100 0.109 0.252 0.109 -0.009 0.109
F22 0.900 0.874 0.856 0.874 0.889 0.874
F33 0.900 0.900 0.900 0.900 0.900 0.900
g11 1.268 0.911 1.115 0.925 1.094 0.859
g12 0.141 0.141 0.141 0.141 0.141 0.141
g21 0.141 -0.114 -0.328 -0.116 0.011 -0.107
g22 1.127 1.127 1.127 1.127 1.127 1.127
g33 1.111 1.111 1.111 1.111 1.111 1.111

σ11 (GPa) -259.168 -19.852 -145.911 -21.871 -95.872 -4.972
σ12 (GPa) -55.9012 0.000 0.28922 0.000 -0.18507 0.000
σ22 (GPa) -203.266 -47.939 -135.957 -51.625 -106.298 -35.387
σ33 (GPa) -200.093 -44.863 -132.759 -48.355 -101.521 -32.950

e (km2/s2) 3.265 0.483 2.458 0.509 1.283 0.417
u1 (km/s) -10.000 -12.363 -11.191 -12.881 -11.669 -13.259
u2 (km/s) 1.000 0.145 -0.326 0.162 0.417 -0.057

FLUID

ρ (g/cm3) 0.1 0.396 0.402 0.465 1.378 3.780
p (GPa) 0.05 19.852 17.101 21.871 1.115 4.972
u1 (km/s) 0.000 -12.363 -11.191 -12.881 -11.669 -13.259
u2 (km/s) 0.000 0.000 0.000 0.000 0.000 0.000

WAVESPEEDS

SsL (km/s) -7.162 4.568 -7.238 0.850 -8.936
SsS (km/s) -9.654 -7.928 -9.936 -6.459 -10.530
SgL (km/s) -16.518 -14.8913 -22.902 -0.913 -14.740

Meshkov flow in which the shock and the interface are not aligned, hence resulting in tangential

stresses in the direction normal to the interface. Table 3.4 shows results for the adjacent states

to the interface in fluid and gas in the same fashion as the previous example. The intermediate

state Ũs in the solid is not shown since the multiple-pass algorithms do not offer a solution for it

and the only output of the multi-material Riemann solver needed for its implementation within the

M-GFM method are the U∗ states. Results are in agreement with the previous example (Table 3.3)

with respect to differences between the multi-pass and single-pass algorithms. Moreover, the zero

tangential stress condition is not fully enforced with just one pass. As in the one-dimensional case,

HLLD is closer to the exact solution, especially for the normal stress across the interface which is

severely underestimated by the characteristic solver, fluid and gas densities, and normal velocity.
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In conclusion, the HLLD approximate Riemann solver offers results that are closer to the exact

result when compared to the characteristic-based solver for two cases of interest that mimic strong-

shock–interface interactions. A possible explanation for this is that the linearized-characteristic

solver considers infinitely weak shocks and therefore does not handle well the state in the gas, which

is processed by a shock wave of M ≈ 18. The HLLD solver in contrast considers all the waves

(shocks or expansions) as discontinuities, giving a better result in the fluid. On the other hand,

expansion waves in the solid are better represented by the linearized solver and as a result, in the

single-pass scheme, the results in the solid are closer to the exact solution for this method. However,

the implementation in multiple passes makes the HLLD a better scheme overall. It is worth noting

that, when these solvers are included in the proposed numerical scheme, they will not be submitted

in general to such strong-shock–interface interactions, as shocks are captured in a few computational

cells.

3.3.4 Effect of the Cartesian grid on the level-set method

The effect of a discretized domain on the accuracy of the level-set method is investigated in these

last two subsections devoted to the multi-material implementation. The shell collapse test proposed

in [8] is replicated here in order to examine the deviations from radial symmetry that appear in

the level-set method when a rectangular grid is employed. This test is of paramount importance to

the study of the converging Richtmyer–Meshkov instability in converging geometries (Chapter 6) as

it examines the evolution of numerically induced perturbations under mesh refinement. The next

subsection will focus on the impact of the level-set method and AMR on mass conservation.

The initial conditions specified in [8] are followed. A radially symmetric shell is described by

its inner and outer radius, respectively, Ri0 = 0.8 cm and Ro0 = 1.0 cm. The motion is started

by a radial velocity field ur0 = U0Ri0/r, where r =
√
x2

1 + x2
2. The shell is unstressed at t = 0

(gIj = δIj and ς = 0) and made of aluminum, modeled here as an elastic–perfectly plastic material

with σY = 0.2976GPa and equation of state:

e = es(H
e) + eh(ρ, ς), (3.58a)

es = 2cs(ρ)2I2, I2 =
(
IH

e

1

)2

/3− IHe

2 , (3.58b)

eh =
K

2α2

((
ρ

ρ0

)α
− 1

)2

+ cvT0θ(ρ)

(
exp

(
ς

cv

)
− 1

)
(3.58c)

θ(ρ) =

(
ρ

ρ0

)Γ∞

exp

[
3Γ1

(
1−

(
ρ

ρ0

)−1/3
)

+
Γ2

γ

(
1−

(
ρ

ρ0

)−γ)]
. (3.58d)

This constitutive law is an extension of (3.58) where the density contribution to the thermal part

of the hydrostatic energy is modeled by the relative Debye temperature determined through the
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analytic Grüneisen function found in [22]. Parameters for aluminum are: ρ0 = 2.703 g/cm3, K =

28.27 · 106 m2/s2, cv = 9.0 · 102 J/kgK, T0 = 300 K, µ0 = 26.7 GPa, α = 0.627, Γ∞ = 1/2, Γ1 = 3/5,

Γ2 = 3.2, and γ = 7/2.

With this setup, the initial kinetic energy in the solid is gradually reduced by plastic dissipation

and converted in internal energy until the converging motion is stopped. Following the analytical

solution in [56] for an incompressible and perfectly plastic material, a shell with an initial radial

velocity U0 = 0.427 km/s and the initial conditions and material parameters indicated above comes

to rest when the inner radius is Rif = 0.3.

In order to analyze the effect of the Cartesian grid on the radial symmetry of the material

boundaries, a square two-dimensional computational domain with dimensions {0, 1.1} × {0, 1.1} cm

(containing one quadrant of the shell) is defined. Grid resolution is increased by factors of 2 from

55 × 55 to 1760 × 1760 cells. At each time t, the average position of the material boundaries is

computed as

Rj(t) =
1

N

N∑
n=1

Rjn(t), (3.59)

where j = i, o for the inner and outer boundaries respectively, Rjn identifies the position of the

material boundary at a particular ray θn = arctan (x2/x1) = Cn, and N is the total number of rays.

The error in radial symmetry as a function of time is measured by:

L2 − errorj(t, Rj(t)) =
1

Rj(t)

√√√√ 1

N

N∑
n=1

(
Rjn(t)−Rj(t)

)2
. (3.60)

Figure 3.5 shows the evolution of this quantity as a function of time for the different resolutions

examined. First-order convergence is achieved as the number of cells is progressively increased, with

low-resolutions exhibiting a fractional convergence rate. This suggests that for avoiding large errors

in maintaining radial symmetry, simulations need to be run with a considerable number of cells. It

is important to remark that the errors for the inner radius are almost an order of magnitude higher

than for the outer radius. This can be attributed to the fact that the inner material boundary

intersects less cells, making the effects of employing a radial level set more noticeable. For instance,

the change in the interface normal direction from cell to cell is more acute.

Figure 3.6 shows the azimuthal change in interface position at the final simulation time tf = 3µs.

It can be clearly observed that the excursions from the average position are not considerably reduced

until the resolution is high enough. In contrast, the average position seems to converge faster towards

the exact solution. To measure this, the analytical solution in [56] is employed for computing (a) the

mean position difference |Ri(tf )−Rif | and (b) the deviation from radial symmetry, now considering
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Figure 3.5: L2-error computed using Eq. (6.7) for the inner and outer material boundary as a
function of time for the examined grid resolutions. The convergence rate is also shown.
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Figure 3.6: Position of the interface as a function of the azimuthal position for t = tf = 3µs.
Different colors are used to describe the results produced by the examined grid resolutions. For the
color legend, see Fig. 3.5(a).
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Figure 3.7: Errors in 2D simulations for different grid resolutions taking as reference the analytical
result in [56] at t = tf = 3µs. The error in the mean position of the interface is represented in (a).
Azimuthally averaged deviations from radial symmetry are shown in (b).

the analytical solution as a reference value:

L2 − errori(tf , Rif ) =
1

Rif

√√√√ 1

N

N∑
n=1

(Rin(tf )−Rif )
2
. (3.61)

In Fig. 3.7, the results for this analysis are depicted. Both measures indicate an approximately

constant convergence rate that is close to first-order.

In summary, computational simulations involving level-sets that are not aligned with Cartesian

grids suffer from distortion. The errors can be reduced when a small cell-size is employed since

first-order convergence is expected. In Chapter 6, results are shown for a similar analysis performed

for the problem of a radial solid–gas material interface processed by a radial shock wave.
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3.3.5 Mass conservation in the level-set method

To close the study of the multi-material implementation, a general analysis of the effect of the level-

set method on mass conservation is performed. Although the proposed numerical scheme is strictly

conservative in each single-material patch, adaptive mesh refinement and the usage of the level-set

method for multi-material implementations introduce mass conservation errors. The purpose of this

section is to examine the source and importance of the lack of mass conservation and how it evolves as

grid size parameters are changed. The elastic inverse deformation tensor formulation of Subsection

3.2.3 is considered in this test along with a purely elastic material which follows the Godunov-

Romenski equation of state (3.58) with the typical parameters for copper described in paragraph

3.3.3.2 . Two different two-dimensional test cases are defined on a square grid [0, 4]× [0, 4] composed

of square cells with reflective boundary conditions at all four edges.

3.3.5.1 IVP 1

For the first problem, a sinusoidal density field,

g =


1/(0.75 + 0.25 cos(πx1) cos(πx2)) 0 0

0 1/(0.75 + 0.25 cos(πx1) cos(πx2)) 0

0 0 1

 ,(3.62a)

u =

 0

0

 , (3.62b)

ς = 0, (3.62c)

is considered. A level set can be defined in a way such that different regions of the computational

domain are considered as distinct materials, even if they are de-facto the same. With this arrange-

ment, the multi-material Riemann solver is used across the interface defined by the signed distance

function and errors due to this can be quantified. The initial material interface is defined by

r = 2 + 0.5 cos(4θ), (3.63)

where r =
√
x2

1 + x2
2 and θ = arctan x2

x1
.
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3.3.5.2 IVP 2

The second initial value problem is defined by a Riemann problem,

if x1 < 2



g =


1 0 0

0 1 0

0 0 1


u =

 0

0


ς = 0

, if x1 > 2



g =


1.655 0 0

0 1 0

0 0 1


u =

 0

0


ς = 2.004

, (3.64)

which produces a shock of Ms ≈ 2.03 to the left and an expansion to the right. Density is matched

at the contact discontinuity, with g11 = 1.3640 on both sides. The level-sets for this problem are set

so the “artificial” initial material interface is located at

r = 3 + 0.8 cos(4θ), (3.65)

with r =
√
x2

1 + x2
2 and θ = arctan x2

x1
.

3.3.5.3 Test results

Below, different tests are performed using the two initial value problems previously described. Firstly,

the influence of the adaptive mesh refinement algorithm is quantified in a series of simulations in

which level-sets are not used, i.e., we perform strictly single-material simulations. This is followed

by convergence analyses in which the number of refinement levels are fixed while the base grid is

successively refined.

Influence of adaptive mesh refinement. Adaptive mesh refinement is a source of conserva-

tion errors since the fluxes at the patch boundaries (i.e., the boundaries separating different levels

of refinement) do not generally match. This issue can be corrected by a fix-up algorithm, which

reassigns fluxes at the end of each time-step in a way such that they are equal across patch bound-

aries. However, in the case of the equations of motion for solid mechanics, this fix is not exact as

it applies individually to each component of the deformation or inverse deformation tensor and, in

consequence, the reconstruction of density using the determinant of the tensors is, in general, not

strictly conservative. Another drawback of the fix-up algorithm is that, in elastic–plastic simula-

tions, a change in the deformation tensor components caused by the rearrangement of fluxes leads

to states that do not satisfy the plasticity constraint imposed. For instance, in the case of perfect

plasticity, the von Mises stress after correction may not be equal to the yield stress.
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In order to quantify these errors, Figure 3.8 shows the total mass with respect to time for IVP 2

when a purely single-material simulation is considered (i.e., a level-set function has not been defined

and the computational domain is treated as containing an unique material). Mass conservation

is exact when uni-grid (1 level) simulations are used and degrade by 0.05% when an extra level

of refinement is added. The usage of the fix-up algorithm reduces the mass error drastically but

not to the level of uni-grid simulations. This analysis reveals that convergence studies that look

at mass errors with respect to cell size should be performed with constant levels of refinement and

increasing the number of cells in the coarsest grid in order to minimize the influence of adaptive

mesh refinement errors and highlight the mass conservation errors coming from the use of a level-set

approach.
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Figure 3.8: Mass percentage with respect to the initial mass as a function of time for IVP 2 in a
single-material simulation (no level set). Uni-grid and two-level simulations with and without fix-up
algorithm are also shown. Uni-grid produces exact conservation of mass. The addition of an extra
level of refinement degrades the solution, an effect that can be partially fixed by the use of the fix-up
algorithm.

Convergence studies. The influence of separating the computational domain in two level-sets

and using the multi-material algorithm is tested following the conclusions of the previous paragraph.

A series of simulations are shown in which the number of levels is kept constant (2 for IVP 1 and 3

for IVP 2) and the base grid is successively refined by a factor of 2. The refinement criteria employed

flags a determined number of cells at each side of the material interface and also cells in which the

density gradient exceeds a threshold value.
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Table 3.5: L2-errors and convergence rate for IVP 1

2 levels total mass mass LS 1 mass LS 2
resolution L2-error C.R. L2-error C.R. L2-error C.R.

32 0.845e-2 1.281e-2 1.546e-2
64 0.663e-2 0.351 1.027e-2 0.318 1.122e-2 0.462
128 4.687e-2 -2.822 4.855e-2 -2.241 3.980e-2 -1.827
256 5.599e-2 -0.256 5.553e-2 -0.194 5.806e-2 -0.545
512 4.090e-2 0.453 3.914e-2 0.504 4.852e-2 0.259
1024 2.175e-2 0.911 2.065e-2 0.923 2.652e-2 0.871

Figure 3.9 presents results for IVP 1. The L2 mass error is computed using the expression:

εL2
=

√√√√ 1

nf

nf∑
n=1

( |mn −m0|
m0

)2

, (3.66)

where nf is the number of time samples, mn is the mass for each of the samples n, and m0 is the

initial mass. For simulations using a small number of cells, mass conservation errors are very low.

This is due to the fact that the vast majority of the computational domain gets refined up to the

finest level since the layer around the interface that gets flagged for refinement is set to have a width

that comprises a fixed number of cells, rather than being based on physical distance. Therefore,

refinement will extend further from the interface when the cell size is large. It can also be observed

that time oscillations in the mass value are high for low resolutions. As the base cell size is decreased,

the mass conservation error increases as the width of the flagged strip decreases. After achieving

a maximum for n = 256, the mass error actually starts decreasing with approximately first-order

convergence rate (i.e., L2 error slope approaches 0.9 when going from n = 512 to n = 1024, as seen

in Table 3.5).

A similar trend is appreciated in the results for IVP 2 shown in Fig. 3.10. In this case, mass

fluctuations are also more acute for cases with a lower number of cells. As in IVP 1, the total mass

conservation error in the L2-norm initially increases as the base grid is refined. After achieving a

maximum, it starts decreasing at slightly less than first-order convergence rate as shown in Table

3.6.

In conclusion, a convergence rate close to first-order for mass conservation can be expected

when this level-set method is used and the problem is well-posed. Richtmyer–Meshkov instability is

however generally ill-posed in the nonlinear regime, especially if free-slip interface conditions where

tangential velocities can be largely different at each side of the interface are imposed. Additional

mass conservation studies are performed in Chapter 6 when the solid–gas converging Richtmyer–

Meshkov instability is presented and in Appendix C.
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Figure 3.9: Mass percentage with respect to initial mass as a function of time for IVP 1. Results
are depicted for the mass contained in each of the two level-sets and the total mass. The last figure
represents the mass errors evolution in the L2-norm with the number of cells in each direction of
the base grid.

3.4 Summary

The numerical implementation of the extended set of Euler equations for solid mechanics described

in Chapter 2, which involve the solution of mass, linear momentum and energy concurrently with an

appropriate hyper-elastic constitutive law and equations of motion for describing the deformation

and inelastic state of the material, was described in this chapter. The approach follows closely the

work of Barton et al. [8] but expands the number of formulations included in the code by adding

the inverse deformation tensor–plastic deformation tensor methodology of Miller and Colella [78]

and Hill et al. [49], requiring the solution of 23 equations, and a novel approach based on the elastic

inverse deformation tensor in which only 14 equations are needed. In addition, all the mentioned

formulations can be easily adapted to the use of the stretch tensor, which leads to a more robust

algorithm for dealing with impacts between portions of a same material (i.e., reconnection, topology

changes). Some upgrades were introduced in the multi-material part of the solver. In particular,

a different reinitialization strategy in which a subcell fix for cells adjacent to the boundary and a

robust algebraic approximate Riemann solver for material interfaces based on the HLLD method for
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Table 3.6: L2-errors and convergence rate for IVP 2

3 levels total mass mass LS 1 mass LS 2
resolution L2-error C.R. L2-error C.R. L2-error C.R.

16 2.401e-3 5.892e-3 12.69e-3
32 2.620e-3 -0.126 2.414e-3 1.287 4.809e-3 1.400
64 5.332e-3 -1.025 5.329e-3 -1.142 5.734e-3 -0.254
128 5.394e-3 -0.016 5.589e-3 -0.069 5.144e-3 0.157
256 3.554e-3 0.602 3.426e-3 0.706 3.774e-3 0.447
512 1.955e-3 0.862 1.775e-3 0.949 2.253e-3 0.744
1024 1.109e-3 0.817 0.992e-3 0.839 1.302e-3 0.791
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Figure 3.10: Mass percentage with respect to initial mass as a function of time for IVP 2. Results
are depicted for the mass contained in each of the two level-sets and the total mass. The last figure
represents the mass errors evolution in the L2-norm with the number of cells in each direction of
the base grid.

MHD were implemented.

In the next two chapters, the capabilities of the algorithm are tested against analytical results

and models. In Chapter 4, an approximate theory for the motion of shocks in converging geometries

is developed. This theory is then contrasted with one-dimensional numerical Eulerian simulations

that can replicate the behavior of converging geometries by the addition of the appropriate geometric

source terms to the equations of motion. Chapter 5 describes an analytical model for the Richtmyer–

Meshkov flow in elastic solids. At the end of the chapter, comparisons with numerical results for the



59

cases of free-slip and no-slip boundary conditions are shown. Finally, in Chapter 6, computations

for analyzing Richtmyer–Meshkov problems involving an interface separating elastic–plastic solids

from other media (i.e., gas, vacuum) in different geometrical configurations are presented.
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Chapter 4

Converging shocks in
elastic–plastic solids

4.1 Introduction

Cylindrical and spherical shock waves propagating in solid materials have been recently the focus of

attention in applied physics and engineering, starting with the problem of an outgoing (exploding)

wave forced by a moving cylinder/sphere [72], as occurs in projectile penetration. The particular

study of converging shocks in solids is relevant to the production of high temperatures and pressures

in condensed matter, with possible applications to inertial confinement fusion [62]. Recent work

has actually suggested the utilization of ultra-dense deuterium with density ≈ 140 kg/cm3 for fusion

experiments [11, 5]. However, experimental studies reveal complications inherent in the measurement

techniques and the difficulty of producing a quasi-radially symmetric flow with minimal excursions

from circularity.

Guderley [46] originally considered cylindrically and spherically symmetric converging shock

waves in an inviscid ideal gas and showed that, if the shock wave is initially already strong, there

exist similarity solutions in which the radial location R(t) of the shock is proportional to a power of

the time measured from the instant when the shock has imploded to r = 0. The Guderley implosion

problem has been addressed using Whitham’s shock dynamics (WSD) theory [122], which gives

good approximations to the values of the Guderley exponent. WSD was also extended to imploding

shocks initially infinitesimally weak [54] and applied to two-dimensional gas dynamics problems [14]

such as shock diffraction by a wedge and shock stability [121].

Yadav & Singh [125] studied the propagation of spherically converging shocks in metals using

WSD and employing a Mie–Gruneisen equation of state for the hydrostatic part of the energy that

does not account for the effects of shear. Their solution for the post-shock pressure approaches

an inverse power of R, the exponent varying with the effective specific heat ratio of the metal. In

that study, a distinction was also made between the behavior of light metals like aluminum, which
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behave like gases in the strong-shock limit, and heavier materials like copper, which exhibit a slight

variation of the gas-like behavior. A similar equation of state was used by Hiroe, Matsuo & Fujiwara

[50] who simulated a cylindrically imploding shock (and its subsequent reflection off the axis) using

a random choice numerical method. They observed that the flow only falls within the self-similar

regime commonly observed with gases in extreme proximity of the axis.

This chapter presents an approximate description of the behavior of an elastic–plastic material

processed by a cylindrically/spherically symmetric converging shock, following Whitham’s shock

dynamics theory. Unique to this analysis is the introduction of shear deformations through the use of

hyper-elastic equations of state. The examined constitutive laws share a compressible neo-Hookean

[61] structure for the internal energy e = es(I1) + eh(ρ, ς), where es accounts for shear through

the first invariant of the Cauchy–Green strain tensors. The hydrostatic contribution to the internal

energy is represented by eh. In particular, an isothermal (i.e., eh = eh(ρ)) and a non-isothermal (i.e.,

eh = eh(ρ, ς)) form of this term are employed in this study. This rather simple approach reduces the

complexity of the problem to the point where analytical solutions can be obtained. More general

laws, in which the shear part depends on the three invariants of the Cauchy–Green tensors and

the material properties can vary with the density and entropy, have been formulated [37, 77] and

adapt well to a variety of stress states conditions. A summary of other constitutive laws specific

to high-compression shocks in different media (e.g., porous materials) can be found in [2], with an

emphasis on hydrostatic terms of the Mie–Grüneisen type.

To describe the large deformations in a highly compressed material, the Eulerian description of

the conservation laws governing the finite-deformation evolution of a purely elastic material under

radially symmetric conditions is introduced in Section 4.2 . After describing the general compressible

neo-Hookean hyper-elastic constitutive law employed, a WSD analytical solution is constructed and

compared against high-resolution numerical simulations for both isothermal and non-isothermal

constitutive laws. The strong-shock limits are derived analytically from the WSD solution, along

with estimations of the density, radial velocity, pressure, and sound speed immediately behind the

shock. Section 4.3 extends the study to finite-deformation plasticity and provides similar comparisons

between numerical and analytical results. This section also includes a study of the effect of the shear

modulus and yield stress on the shock trajectory. Finally, a characterization of the elastic–plastic

transition in converging shocks, which involves an elastic precursor and a plastic compression region,

is exposed by means of numerical simulations as it exceeds the scope of WSD.
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4.2 Elastic motion

4.2.1 Governing equations for radially symmetric motion

The radially symmetric motion of a continuum elastic medium induced by the collapse of cylindrical

and spherical imploding shock waves is described here. The equations for mass, linear momentum

and energy conservation (Eqs. (2.1) expressed in curvilinear coordinates and specialized to radial

motion take the form

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
= −(s− 1)

ρu

r
, (4.1a)

∂u

∂t
+ u

∂u

∂r
− 1

ρ

∂σrr
∂r

= (s− 1)
σrr − σθθ

ρr
, (4.1b)

∂e

∂t
+ u

∂e

∂r
− σrr

ρ

∂u

∂r
= (s− 1)

uσθθ
ρr

, (4.1c)

where r is the distance to the axis/origin, u the radial component of velocity vector and s the space

index, with s = 1 for planar symmetry, s = 2 for cylindrical symmetry and s = 3 for spherical

symmetry.

In cylindrical symmetry (s = 2), the inverse deformation tensor reduces to a diagonal form

g = diag(gRr, gΘθ, 1), where plane strain is assumed (no deformation in the z direction). Similarly,

g = diag(gRr, gΘθ, gΦφ) for s = 3. The density constraint J ≡ ρ0/ρ = 1/det(g), where ρ0 is

the density of the undeformed material, reduces the complexity of the problem as the non-radial

components of g are functions of gRr and ρ:

gΘθ =
1

JgRr
for s = 2, (4.2a)

gΘθ = gΦφ =

√
1

JgRr
for s = 3. (4.2b)

At this point, the system of equations (4.1) can be closed by the choice of a specific constitutive law

of the form e(IC1 , I
C
2 , I

C
3 , ς), which would then be used to determine σrr and σθθ as a function of the

inverse deformation tensor components and e. Noting (4.2), only the equation of evolution of the

inverse deformation tensor component gRr is needed,

∂gRr
∂t

+ gRr
∂u

∂r
+ u

∂gRr
∂r

= 0. (4.3)

4.2.2 Numerical method and computational geometry

A radially symmetric problem can be computed as one-dimensional when appropriate geometrical

source terms are included. The equations of motion (4.1) and (4.3) can be rewritten in a conservative
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form as functions of r for the different formulations described in Chapter 3,

∂ρ

∂t
+
∂ρu

∂r
= −(s− 1)

ρu

r
, (4.4a)

∂ρu

∂t
+
∂ρu2 − σrr

∂r
= (s− 1)

σrr − σθθ − ρu2

r
, (4.4b)

∂ρE

∂t
+
∂(ρE − σrr)u

∂r
= −(s− 1)

(ρE − σrr)u
ρr

, (4.4c)

∂gRr
∂t

+
∂gRru

∂r
= 0, (4.4d)

∂ρFrR
∂t

= −(s− 1)
ρFrR
r

. (4.4e)

The geometric source terms on the right-hand side are evaluated at the cell centers and added

concurrently with the wall fluxes. To this extent, the matrix H in Eq. (3.18) can be simplified for

the one-dimensional radial case to become

Hi =
1

∆x1

(
D1
i+1/2 −D1

i−1/2

)
− Si + Gi, (4.5)

where Gi is the vector of geometric source terms resulting from Eq. (4.4). In order to being able

to investigate the strong-shock limit, simulations were performed using the built-in adaptive mesh

refinement (AMR) as described in [49, 8]. Three levels of refinement, each one increasing resolution

by four, over an initial grid of 104 cells, were used.

The shock is initiated at the position Ri at the left boundary of the computational domain to

avoid the calculation of gΘθ at t = 0 for all r behind the shock (since gΘθ = 0 immediately behind

the shock), and propagates from left to right. The value of the initial radius Ri is not relevant

here since the problem does not have a characteristic length scale. The boundary condition at the

left-end of the domain is transmissive (zero-gradient boundary condition), while reflective boundary

conditions are applied at the axis/origin r = 0.

4.2.3 Whitham’s shock dynamics and Rankine–Hugoniot jump condi-

tions

To apply WSD, the system of PDEs (4.1) and (4.3) advecting the vector of primitive variables

(ρ, u, e, gRr) can be first decoupled into a set of ordinary differential equations (ODEs) called the

“characteristic” equations as derived in Appendix A. The essential assumption behind the WSD

approach is based on the intuition that, as the converging shock is adjusting to changes in the

geometry, the shock ignores its interaction with the flow behind it and its motion can be approx-

imated by integrating the equation governing the flow along the u + a-characteristics, a being the

sound speed. Numerical simulations confirm that the slope of the family of u + a-characteristics is

indeed close to the slope of a converging shock trajectory, especially when the shock gets stronger
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(e.g., see Fig. 4.1(b)). This intuition can be motivated by a small-perturbation analysis of the shock

propagation down a nonuniform shock tube of cross-sectional area A(r) slowly varying from A(r) to

A(r) + dA. Over the length of the shock tube, the errors might accumulate but they are neglected

in the WSD theory.

Assume that the shock is located at the radial position r = R(t) at time t. For the characteristic

curve of slope u+ a, the ODE relating the changes in the post-shock properties as r (> R) varies is

further simplified by using the Rankine–Hugoniot (RH) jump conditions across the moving shock,

which give the primitive variables immediately behind the shock in terms of the shock Mach number

M . In the frame of reference of the shock imploding at the instantaneous speed U(t) = −dR/dt > 0,

the weak formulation of the conservation equations (4.1) and (4.3) leads to the following jump

conditions normal to the shock,

ρ(U − u) = ρ0U, (4.6a)

ρ(U − u)2 − σrr = ρ0U
2 − σrr0, (4.6b)

ρ(U − u)

[
e+

1

2
(U − u)2

]
− σrr(U − u) = ρ0U

(
e0 +

1

2
U2

)
− σrr0U, (4.6c)

gRr(U − u) = U, (4.6d)

which relate the state immediately behind the shock (r = R+) to the unshocked quiescent state ‘0’.

These conditions can be reformulated as

J =
1

gRr
, (4.7a)

u = a0(1− J)M, (4.7b)

σrr = σrr0 − ρ0a
2
0(1− J)M2, (4.7c)

e = e0 −
σrr0

ρ0
(1− J) +

1

2
a2

0 (1− J)
2
M2, (4.7d)

where M = U/a0 > 1. Observe that J < 1 since the material is being compressed by the shock, and

that Eq. (4.2) and (4.7a) imply that gΘθ is unaltered by the shock. In the next sections, this theory

is applied to different constitutive laws.

4.2.4 Neo-Hookean isothermal constitutive law

Assuming an isothermal constitutive law, i.e., e independent of ς, reduces the governing equations to

Eq. (4.1a), (4.1b) and (4.3), with the jump conditions to (4.7a), (4.7b) and (4.7c), since the energy

equation is now redundant. A fairly general isothermal constitutive law proposed by Blatz and Ko

[19] is:

e(g ) =
µ

2ρ0
(IC1 − 3IC3

1/3
) +

∫ ρ

ρ0

p(ρ′)
ρ′2

dρ′, (4.8)
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with the density constraint IC3 = J2 = (ρ0/ρ)
2
,where µ is the shear modulus and the so-called

hydrostatic pressure p was assumed to not depend on ς. Using the geometrical simplifications of

the inverse deformation tensor described in Section 4.2.1 and transforming both inverse deformation

tensor g and stress tensor σ to curvilinear coordinates, one obtains:

σrr =
µ

J

(
1

gRr2
− J2/3

)
− p(ρ0/J), (4.9a)

σθθ =
µ

J

(
J4−sgRr

4−s − J2/3
)
− p(ρ0/J). (4.9b)

Unlike gases, the sound speed a in solids depends on the deformation mode: for general three-

dimensional deformations, compression (or longitudinal) waves and shear deformation waves exist,

each propagating at a different velocity. In radially symmetric motion, the eigen-structure of a

hyper-elastic material only involves compression waves traveling at speeds u± a with a referring to

the longitudinal sound speed, now simply called “sound speed”. For the isothermal constitutive law

(4.8), one obtains

a =

√
a2
µ

(
1

gRr2
+

1

3
J2/3

)
− J2

ρ0

dp

dJ
, (4.10)

where the shear modulus-based wave speed has been defined by aµ ≡
√
µ/ρ0.

The derivation of the equation for the u + a-characteristic curve and the application of the

necessary shock jump conditions are described in Appendix A.1.1 and lead to the following ODE

for any isothermal pressure form:

dR

R
= − 1

s− 1

a [a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[
a0

(
a2 − 2a2

µJ
2
)
M + a2

µa(1 + J)
] dJ, (4.11a)

M(J) =
1

a0

√
1

1− J

[
p(ρ0/J)

ρ0
− a2

µ

(
J − J−1/3

)]
, (4.11b)

where a(J) is given by Eq. (4.10) using Eq. (4.7a). This ODE can be integrated to obtain R as a

function of J

R

Ri
= exp

(
− 1

s− 1

∫ J

Ji

a [a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[
a0

(
a2 − 2a2

µJ
2
)
M + a2

µa(1 + J)
] dJ

)
, (4.12)

with Ji and Ri the initial density ratio and position of the shock. The shock velocity U = a0M is

then found using Eq. (4.11b), and integrated to obtain the shock trajectory r = R(t).
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4.2.4.1 Polynomial dependence for p(ρ)

As a first example, the expression of the pressure proposed by Miller & Colella in [78] for the Wilkins’

flying aluminum plate problem is considered:

p
(ρ0

J

)
=

3∑
α=1

cα

(
1

J
− 1

)α
, (4.13)

where µ = 27.8 GPa, ρ0 = 2.7 kg.m−3, c1 = 72 GPa, c2 = 172 GPa, and c3 = 40 GPa. In the strong-

shock limit M � 1, (4.11b) and (4.13) imply that J must tend to 0, which leads to an infinite

density at r = 0. A more general power law p = cαJ
−α with α > 1, similar to the one given by

(4.13) as M � 1, would simplify the ODE (4.11) to:

dR

R
'

√
α

2(s− 1)

dJ

J3/2
. (4.14)

Solving Eq. (4.14), and using Eq. (4.7b) and (4.11b), the strong-shock limit gives, for a shock at

r = R,

J '
(
a0
ρ0

cα

)−2/α

M−2/α, (4.15a)

u ' a0M, (4.15b)

p ' ρ0a
2
0M

2, (4.15c)

a '
√
αcα
ρ0

(
ρ0a

2
0

cα

)(α−1)/2α

M (α−1)/α, (4.15d)

with M ' 1

a0

√
cα
ρ0

[(
s− 1√
α

)
log

(
Ri
R

)]α
. (4.15e)

It is interesting to notice that the power of log(1/R) does not depend on the space index. Also observe

that for a pressure dependence p = J−α, the isentropic exponent defined by Γ ≡ ∂ log p/∂ log ρ is

exactly equal to α.

As depicted in Fig. 4.1(a), the density ratio immediately behind the converging shock predicted

by WSD compares favorably with the one obtained from high-resolution numerical simulations, even

when the shock is weak. The u+ a-characteristics obtained from the numerical simulation and the

shock trajectory predicted by WSD are displayed in Fig. 4.1(b). The characteristics behind the

shock follow a trajectory that is closer to that of the shock as one approaches the origin and the

shock becomes stronger, confirming the underlying intuition behind WSD: only a small envelope of

information carried by the u+ a-characteristics can reach the shock, and as the shock strengthens,

it has almost lost memory of the flow behind it. Figure 4.1(c) represents the shock Mach number

M as a function of the shock location R(t)/Ri, down to dimensionless radii of 10−4. The numerical

simulation shows good agreement for low Mach numbers and small discrepancy arises at moderate
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Figure 4.1: Spherically symmetric (s = 3) converging shock initially started at R = Ri with Ji = 0.9
(i.e., Mi ≈ 1.14) and propagating from left to right into a purely elastic solid medium described
by the isothermal constitutive law (4.8) with polynomial pressure form (4.13): (a) Density radial
profiles obtained from the numerical simulation at equally spaced times (dashed lines) and density
ratio immediately behind the shock (r = R(t)+) given by WSD (solid line); (b) u+a-characteristics
obtained from numerical simulation (dashed lines) and shock trajectory r = R(t) vs t obtained from
WSD (solid line); (c) Shock Mach number M as a function of the shock position R(t) plotted in a
log–log scale, from the simulation (dashed line) and WSD (solid line).
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Mach numbers (2 . M . 5). At higher Mach numbers, the slope dM/dR of both methods agree

well until the shock has reached such small radii that the resolution of the computational grid is not

sufficient to track the shock, which occurs at M ≈ 50. As a reference for later comparison with the

other constitutive laws tested, at R/Ri = 10−1, 10−2, and 10−3, the shock Mach numbers obtained

in the simulation are M ≈ 2.00, 5.23, and 16.49, respectively.

4.2.4.2 Arctanh form for p(ρ)

In this subsection, an alternate pressure term for the constitutive law defined by Eq. (4.8) is inves-

tigated:

p
(ρ0

J

)
= p0

(
Arctanh (J∞/J)

Arctanh (J∞)

)β
, (4.16)

where p0 is the unshocked pressure and β a positive integer. The material cannot be compressed

more than a limit value J∞ reached at the axis/origin which corresponds to infinite pressure. In

contrast, for the same situation, the internal energy and density were unbounded for the polynomial

pressure form (4.13). As J approaches J∞, p ∼ (− log(J − J∞))
β
, and Eq. (4.11) simplifies to

dR

R
' − 1

s− 1

dM

M
. (4.17)

As a result, the strong-shock limit M � 1 for a shock at r = R gives

J − J∞ ∝ e−2ψM2/β

, (4.18a)

u ∝ M, (4.18b)

p ∝ M2, (4.18c)

a ∝ M (β−1)/βeψM
2/β

, (4.18d)

with M ∝ R−(s−1), (4.18e)

where ψ (J∞, aµ, p0, β) is a positive coefficient. From (4.18e), the shock trajectory near the center

follows R ∝ (t∞ − t)1/s, where t∞ defines the implosion time. The exponent in (4.18e) depends on

the space index s only, not on the material properties or other parameters such as J∞. In this case,

the isentropic exponent Γ is not constant, in particular Γ ∝ e2ψM2/β

/M2/β as M � 1.

Figure 4.2 shows numerical results superposed with the WSD solution. For low values of the

integer β = 1 in (4.16), J approaches J∞ at a very slow rate dJ/dR as r → 0, and numerical

inconsistencies ultimately arise when the Arctanh argument becomes greater than 1 due to machine

precision-generated errors. This is corrected by choosing higher values of β, for example, β = 5 in

the present case. As seen in Fig. 4.2(c), the WSD solution obtained using the Arctanh law for the

pressure does not perform as well as the polynomial one because the strong-shock regime described
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Figure 4.2: Spherically symmetric (s = 3) converging shock initially started at R = Ri with Ji = 0.9
(i.e., Mi ≈ 1.02) and propagating from left to right into a purely elastic solid medium described
by the isothermal constitutive law (4.8), using the Arctanh pressure form (4.16) with the choice
J∞ = 1/6, p0 = 10 GPa and β = 5. See Fig. 4.1 for keys.
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by Eq. (4.18) (where WSD errors are expected to be minimal) is only reached for very small values

of J − J∞ as second-order terms are close to the dominant terms (this can be appreciated in the

figure as the power law is not reached for the WSD result until R/Ri < 2 · 10−4). Mach numbers

M ≈ 2.23, 8.29, and 43.27 are encountered at R/Ri = 10−1, 10−2, and 10−3, respectively. For a

given shock position, the Mach number of the shock is higher than when using a polynomial pressure

form, essentially because of the large value of the exponent β chosen and the higher rate of increment

of the Mach number with the radius.

4.2.5 Neo-Hookean non-isothermal constitutive law

Consider next the following simple non-isothermal constitutive law, to account for high-pressure

effects near the axis/origin:

e(g , ς) =
µ

2ρ0
IC1 + cvT0J

1−γexp

(
ς − ς0
cv

)
, (4.19)

where ρ0, T0 and ς0 refer to the unshocked density, temperature and specific entropy, and cv and

γ are the specific heat at constant volume and specific heat ratio, respectively. The first part of

this constitutive law represents the elastic shear deformation of the material, while the second part

simply portrays the internal energy of an ideal gas. One can expect this material to behave like an

ideal gas in the strong-shock limit (where the pressure term should be dominant) or as µ = 0. The

stress components σrr and σθθ are given by

σrr =
µ

JgRr2
− (γ − 1)ρ0

J

{
e− µ

2ρ0

[
1

gRr2
+ (s− 1)J4−sgRr

4−s
]}

, (4.20a)

σθθ = µJ3−sgRr
4−s − (γ − 1)ρ0

J

{
e− µ

2ρ0

[
1

gRr2
+ (s− 1)J4−sgRr

4−s
]}

, (4.20b)

and the sound speed reduces to:

a =

√
−γJσrr

ρ0
+ (1 + γ)

a2
µ

gRr2
. (4.21)

As µ = 0, Eq. (4.20a) indeed shows that σrr = −(γ−1)ρe, and the ideal gas sound speed a =
√
γp/ρ

is then recovered with the pressure defined by p = −σrr.
The derivation of the ODE resulting from WSD theory is more tedious than that of the isothermal

constitutive law. The u+a-characteristic equation is reported in Appendix A.2. The combination of

that expression with the RH jump conditions (4.7) gives a final ODE of the form dR/R = F (J)dJ ,

which reduces in the strong-shock limit to

dR

R
' − n(γ)

s− 1

dM

M
, (4.22a)
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with n(γ) = 1 +
2

γ
+

√
2γ

γ − 1
. (4.22b)

Manipulating the jump conditions (4.7) further and using Eq. (4.20a), it can also be shown that J

must tend to the finite value J∞ = (γ − 1)/(γ + 1) as M � 1 (similarly to the ideal gas case), and

after integration of (4.22), one obtains for a shock at r = R(t):

J − J∞ ∝ M−2, (4.23a)

u ∝ M, (4.23b)

p ∝ M2, (4.23c)

a ∝ M, (4.23d)

with M ∝ R−(s−1)/n. (4.23e)

While γ has a clear physical meaning for ideal gases, it could be expressed in the constitutive law

(4.19) as a function of the maximum compression ratio 1/J∞ that the solid can reach. The scaling law

(4.23e) corresponds exactly to the power law found by Whitham when applying his WSD method to

ideal gases [122], and gives an approximate strong-shock trajectory R ∝ (t∞− t)n/(n+s−1). Observe

in particular that the exponent is independent of µ. In other words, in the strong-shock limit, the

solid experiences a zero-shear behavior governed by the pressure part of the constitutive law (4.19).

Moreover, Γ ' γ only as M � 1, while Γ = γ for an ideal gas independently of the conditions of

compression.

The WSD prediction conforms to the numerical results at all the stages of the shock evolution

(Fig. 4.3). This is confirmed by the observation that characteristics behind the shock follow very

closely the trajectory of the shock. The shock Mach number plotted as a function of the shock

position offers the best of agreement between WSD and numerical results of the three cases studied.

At R/Ri = 10−1, 10−2, and 10−3, the shock Mach number is M ≈ 3.17, 7.71, and 19.02, respectively.

4.3 Plastic motion

In the present study, as the converging shock processes the solid with an increasing strength, the

shocked material is expected to ultimately reach its intrinsic yield stress and enter the plastic regime.

The results shown in the previous section were therefore only valid for some fictitious material with

infinitely large yield stress.

As was shown in Chapter 2, the basic assumption in finite-deformation plasticity is the mul-

tiplicative decomposition of the inverse deformation tensor into elastic and a plastic deformation

parts: g = gpge, where ge and gp are the elastic and plastic inverse deformation tensors. To meet
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Figure 4.3: Spherically symmetric (s = 3) converging shock initially started at R = Ri with Ji = 0.9
(i.e., Mi ≈ 1.07) and propagating from left to right into a purely elastic solid medium described by
the non-isothermal constitutive law (4.19) with γ = 1.4 (i.e., J∞ = 1/6). See Fig. 4.1 for keys.
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the particular geometry constraints of this problem, only the diagonal components of these tensors

are nonzero once transformed to curvilinear coordinates (as was argued in the elastic case). From

the compressibility constraints J = 1/ det g and Jp = 1/det gp = 1 (no change in volume for the

plastic deformation), and because J = JeJp, the Θθ- and Φφ-components of the total, elastic and

plastic inverse deformation tensors in spherical geometry can be expressed as functions of their radial

counterpart and J :

gΘθ = gΦφ =

√
1

JgRr
, (4.24a)

geΘθ = geΦφ =

√
1

JgeRr
, (4.24b)

gpΘΘ = gpΦΦ =

√
1

gpRR
, (4.24c)

where geRr is related the plastic inverse deformation tensor component by

geRr =
gRr
gpRR

. (4.25)

For a cylindrical problem under plain strain however, no assumption about the components geZz and

gpZZ other than gZz = gpZZg
e
Zz = 1 can simplify the problem in a way that would express the non-

radial components in terms of the radial ones. The focus is therefore set on the spherical geometry

for the remaining part of the study.

To pursue the analysis further, consider the compressible neo-Hookean isothermal constitutive

law given by Eq. (4.8). Although the energy equation is redundant, it would need to be included

to evaluate the plastic dissipation. As was stated in Chapter 2, the internal energy equation is

generally written for an elastic-plastic material as function of the elastic deformations as it accounts

for the energy stored in the solid that can be released by mean of elastic deformation. Eq. (4.8) then

becomes:

e(g e) =
µ

2ρ0
(IC

e

1 − 3(IC
e

3 )1/3) +

∫ ρ

ρ0

p(ρ′)
ρ′2

dρ′, (4.26)

with IC
e

1 , IC
e

2 , IC
e

3 the invariants of the elastic Cauchy–Green tensor Ce = (ge)−T (ge)−1. The

stresses are computed from σ = −ρgeT ∂e/∂ge:

σrr =
µ

J

(
1

geRr
2 − J2/3

)
− p(ρ0/J), (4.27a)

σθθ = σφφ =
µ

J

(
JgeRr − J2/3

)
− p(ρ0/J). (4.27b)

In general, the system (4.1a), (4.1b), (4.3) and (4.27) must be completed by an evolution equation

for gpRR, geRr being then computed using Eq. (4.25). In the following subsection, a simpler closure is
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derived for the case of perfect plasticity.

4.3.1 Perfectly plastic model

For simplicity, the material being processed by the converging shock is described by an elastic–

perfectly plastic model. In uniaxial stress, this means that plasticity occurs at a constant stress

equal to the yield stress σY (i.e., no incremental stress is needed to achieve larger deformations).

For more general stress conditions, this concept is extended to a yield criterion of the form σeff = σY ,

where σeff is an effective stress function. For example, the von Mises constraint may be expressed as

σeff ≡
√

3

2
tr (Σ′TΣ′) = σY , (4.28)

where Σ′ is the deviatoric part of the Mandel stress tensor Σ = −(ρ0/ρ) ge
−T

σ ge
T

[23]. Applying

this expression to a diagonal stress tensor σ = diag(σrr, σθθ, σφφ) and σφφ = σθθ, as the one given

by (4.27),

σY = J |σrr − σθθ|. (4.29)

For the elastic solution behind a converging shock, σrr − σθθ = µ
(
J2 − 1

)
/J < 0, since J < 1.

Numerical results (see next subsection) shows that σrr − σθθ < 0 in the plastic regime as well.

Substituting the stresses by their expressions in terms of the elastic deformations given by Eq. (4.27),

one finally obtains the following implicit dependence of geRr on J :

σY
µ
geRr

2 − JgeRr3 + 1 = 0. (4.30)

This relationship implies that the stresses (4.27) depend on J only, unlike the stresses for a purely

elastic material which also depended on gRr. The system of governing equations for an elastic–

perfectly plastic solid processed by a spherical converging shock then reduces to Eq. (4.1a), (4.1b),

(4.27) and (4.30).

4.3.1.1 Shock dynamics for elastic–perfectly plastic solids

Derivation of the u + a-characteristic equation and utilization of the RH jump conditions (see Ap-

pendix A.1.2) leads to the final ODE:

dR

R
= −1

2

[a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ, (4.31a)

M(J) =
1

a0

√
1

1− J

[
p(ρ0/J)

ρ0
− a2

µ

(
1

JgeRr
2 − J−1/3

)]
, (4.31b)
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where geRr is a function of J through Eq. (4.30). Integration of Eq. (4.31a) gives

R

Ri
= exp

(
−1

2

∫ J

Ji

[a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ

)
. (4.32)

For the polynomial law (4.13), the strong-shock limit corresponds to J � 1, for which geRr ∼ J−1 � 1

according to the constraint (4.30). For the Arctanh law (4.16), large Mach numbers are obtained

when J approaches J∞, while geRr reaches a finite value given by Eq. (4.30) when J = J∞. For both

isothermal laws, the compression effects are dominant over the shear deformation terms and the

strong-shock limits are the same as for the purely elastic case (Eq. (4.15) and (4.18)). Comparisons

with numerical simulations are provided in the following section.

4.3.2 Numerical simulation of elastic–plastic shocks

To gain generality, a numerical experiment was implemented allowing the material behind the shock

to be initially elastic and to transition to a plastic regime when processed by a stronger shock.

The system of equations (4.1a), (4.1b), (4.3), (4.25) and (4.27), which govern the deformation of an

elastic–plastic solid following a compressible neo-Hookean isothermal constitutive law, is closed in

this case following the inverse deformation tensor/plastic deformation tensor formulation described

in Section 3.2.2. The radial evolution equation for the plastic deformation tensor is expressed in

spherical coordinates as:

∂ρF pRR
∂t

+
∂ρuF pRR
∂r

= −2ρuF pRR
r

+ ρF pRRε̇
σrr − σθθ
|σrr − σθθ|

(
J |σrr − σθθ|

σY

)N
, (4.33)

where the first term of the right-hand side is a geometric source term given by the transformation to

spherical coordinates, while the second source term incorporates a form of the plastic deformation

rate tensor Lp which models the perfectly plastic model of Eq. (4.29) (see [49]) where the exponent

N is a large positive integer (i.e., N > 10) in order to obtain a fast relaxation towards the yield

surface and ε̇ is a positive constant that can be assigned freely and symbolizes a reference strain

rate. The plastic source term tends to zero rapidly when the effective stress J |σrr − σθθ| is smaller

than the yield stress σY (elastic regime) so the plastic deformation F pRR cannot increase. However,

when the effective stress overtakes the yield value, this forcing term transforms F pRR such that the

effective stress is brought back to the yield curve, given here by (4.30). Since the equation of state

(4.26) is not expressed as a function of the logarithmic strains, an analytical solution in the way

shown in Section 2.3 is not possible and the method of fractional steps with implicit evaluation of

the plastic source terms is used instead, due to the stiffness of the problem for N >> 1.

Figure 4.4 reveals good agreement between the WSD solution described in paragraph 4.3.1.1

and the numerical simulation for a converging shock in aluminum described by an elastic–plastic
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material following the isothermal constitutive law (4.26) and (4.13). The value of the yield stress is

so low that the material processed by the incident shock becomes purely plastic even for weak shock

strengths (hence the appellation of ‘plastic shock’) and no elastic–plastic transition is visible here.

It can be shown that this material enters the plastic regime for J . 0.98. Plasticity appears to have

a positive effect on the agreement between the WSD and numerical simulations when compared to

the purely elastic case for this same constitutive law (Fig. 4.1). Since plasticity is not dominant at

the strong-shock limit, this effect should be attributed to better agreement at the medium range of

Mach numbers (2 < Mshock < 5) that is where the small disagreement between WSD and simulations

appears in the elastic case. At R/Ri = 10−1, 10−2, and 10−3, the shock Mach numbers are M ≈ 1.86,

4.98, and 15.57, respectively. These values are lower than the ones obtained for the purely elastic

case with the same constitutive law, indicating that the shock travels at a slower velocity when a

finite yield stress is introduced.

4.3.2.1 Elastic–plastic transition

To highlight the elastic–plastic transition for non-weak shock waves, the yield stress was artificially

increased as the values of the coefficients in the pressure form (4.13) were decreased. Setting σY =

7 GPa and cα = 1 GPa for α = 1, 2, 3, the new material enters the plastic region at J ≈ 0.85. As

reported in Fig. 4.5(a), an initially elastic shock converges, and a plastic region forms behind as

soon as the yield stress has been reached. As the coupled “elastic precursor–plastic region” converges

towards the center, the plastic region becomes steeper and narrower while the elastic precursor keeps

a constant strength. When approaching the center further, the elastic precursor disappears and a

quasi-discontinuous plastic wave remains.

The elastic–plastic transition described in Fig. 4.5(a) can be tracked using the Hugoniot curve

for the material, expressing the response σeff for smooth compression (Fig. 4.6). As the material is

compressed along the radial direction, prior to reaching the yield point (segment OA in Fig. 4.6),

the entropy remains constant and the restoring force greatly increases (elastic compression). The

onset of plasticity is materialized by a kink in the Hugoniot (point A). During this elastic period,

the shock Mach number increases from its initial value (in the case of the simulation, Mi ≈ 1.01) to

the elastic precursor Mach number (in this case, Me ≈ 1.2). Beyond the yield point, only a slight

increase in normal stress is required to significantly compress the material as most of the additional

work is converted to entropy instead of additional restoring stress (segment AB). As a result, for a

final compression large enough that the yield point is exceeded, the initial state of the material can

be linked to the corresponding final state only by an elastic compression of fixed strength up to the

cusp (segment OA) and a plastic compression from the cusp to the final level (segment AB). The

increment in the slope of the segment initiated at A as the strength of the shock increases is related

to the acceleration of the plastic region. If the total compression is large enough, the initial state
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Figure 4.4: Spherically symmetric (s = 3) converging shock initially started at R = Ri with Ji = 0.9
(i.e., Mi ≈ 1.01) and propagating from left to right into an elastic–plastic solid medium following
the isothermal constitutive law (4.26) with the polynomial pressure form (4.13), and given the von
Mises constraint (4.28) with σY = 0.29 GPa (aluminum). See Fig. 4.1 for keys.
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Figure 4.5: Density radial profiles obtained from the numerical simulation for (a) spherically symmet-
ric converging and (b) planar motion. Elastic–plastic deformations follow the isothermal constitutive
law (4.26), using the polynomial pressure form (4.13) with c1 = c2 = c3 = 1GPa, and given the
von Mises constraint (4.28) with σY = 7GPa. Note that for the planar case an initial shock Mach
number cannot be defined since the shock is started beyond the elastic–plastic transition. The elastic
precursor Mach number is Me ≈ 1.02 for both simulations

can be directly connected to the final compressed state without going through the kink, in which

case only a plastic compression occurs (segment OD). The path OAC represents the transition from

the elastic–plastic to the purely plastic regime, in which the plastic region has overtaken the elastic

precursor.

There exist differences with the elastic–plastic transition observed in planar geometry (see [73]

for a detailed description of planar shocks in solids). In planar geometry (see Fig. 4.5(b)), a plastic

discontinuity of constant strength is directly formed behind the elastic precursor (a discontinuous

wave of constant strength as well) if the compression is such that the yield point is reached and that

both waves can exist. In this case, the elastic precursor travels faster than the plastic shock. In
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Figure 4.6: |σrr−σθθ|/σY vs J(= ρ0/ρ) immediately behind the shock for an elastic–plastic material.
The Hugoniot curve (i.e., the locus of the possible post-shock states of the material for a given initial
condition) is completed by some Rayleigh lines (i.e., the thermodynamic path connecting the initial
state with a post-shock state). Isothermal polynomial pressure form is considered, but the shape of
the Hugoniot curve and the different regions can be reproduced for other constitutive laws.

the converging geometry however, as the compression increases, a plastic wave is ultimately formed

with a compact radial extent, strengthens, narrows, accelerates, and ultimately overtakes the elastic

precursor near the center.

4.3.3 Influence of the shear modulus and plasticity on the shock velocity

In this section, the behavior of three materials is considered: i) a purely elastic material of the

aluminum kind, following the isothermal constitutive law (4.8) and (4.13); ii) its elastic–plastic

equivalent, with σY = 0.29 GPa; iii) the same material with ‘zeroshear’ (µ = 0). Previous sections

have confirmed that the compression term (as µ = 0) becomes dominant as the shock strengthens,

along with results for the converging problem that were obtained considering only the compression

part of the stress [125, 50]. Figure 4.7(a) supports the form (4.11b): the shear-related deformations

(µ 6= 0) accelerate the shock. The existence of a finite yield stress limits this effect, giving results

that are closer to the zero-shear material. This is because the existence of the finite yield stress

decreases the value of the shear part of the Mach number (second term in the square root of (4.31b))

through the constraint (4.30). The time is not non-dimensionalized in this plot since a0 depends

on µ. According to Fig. 4.7(b), for a shock at a given radial location, a purely elastic material is

slightly more compressed than its zero-shear and elastic–plastic equivalents due to a higher shock

Mach number at a given position.
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Figure 4.7: (a) Shock trajectory and (b) J immediately behind the shock vs R for a spherically
symmetric (s = 3) converging shock initially stated at r = Ri with Ji = 0.9. Comparisons between
the purely elastic, elastic–plastic and zero-shear solid simulations using the isothermal constitutive
law (4.8) or (4.26), with the polynomial pressure form (4.13). σY = 0.29 GPa was used for the
elastic–plastic case.

4.4 Summary

Exact solutions of Whitham’s shock dynamics equations for compressible neo-Hookean elastic–plastic

solids were derived. Closed expressions for the shock evolution can be obtained in terms of definite

integrals. Results show that this method is a highly accurate tool for studying converging shocks,

even when shear deformations and plasticity are considered in addition to the hydrostatic pressure

contributions commonly used.
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Analysis of the strong-shock limit reveals that the behavior of an elastic–plastic material close

to the axis/origin r = 0 is highly dependent on the pressure law that is used. For an isothermal law

with p(ρ) of the type p ∝ ρα, with α > 1, ρ is unbounded at r = 0 and M ∝ (log(1/R))α, where the

exponent depends on α but nor on other material properties nor on the geometrical space index s. As

the shock converges, its shock strength increases at a slower rate than for the two other equations

of state investigated for which the density of the shocked material remains bounded close to the

origin: M ∝ R−(s−1) for an isothermal law with p(ρ) of the Arctanh type, and M ∝ R−(s−1)/n(γ)

for the non-isothermal ‘ideal gas’-like constitutive law. For both cases, the exponent depends on s,

but the Arctanh strong-shock limit does not involve the maximum compression ratio ρ∞/ρ0 that

the material can reach at r = 0, unlike the ideal gas-like material where ρ∞/ρ0 indirectly appears

in n(γ). The study of more complex constitutive laws remains open for future research.

It has been shown that the existence of shear deformation terms accelerates the shock with

respect to the same material with a shear modulus artificially set to zero (i.e., with deformations

induced by isotropic stresses only). However, limiting the stresses by a yield value attenuates this

effect, reaching a result closer to the zero-shear case. Because weak shocks are usually sufficient to

overcome the yield stress of common materials and initiate plastic deformations behind them, one

can therefore conclude that isotropic stresses could be solely considered to describe the state of an

elastic–plastic solid processed by converging shocks.

Finally, the transition from an elastic to a plastic shock exhibits a complex structure of two

compression waves moving at different velocities that falls beyond the capabilities of Whitham’s

shock dynamics. Numerical simulations showed that the converging geometry modifies the elastic

precursor–plastic shock structure usually observed in planar symmetry, making the converging plastic

shock travel faster than the elastic precursor.

The next two chapters examine the Richtmyer–Meshkov flow in solid media. Although the topic

of converging shocks may appear disconnected from the latter, aspects of the results derived from

the analysis performed here are especially relevant for Chapter 6, where the effects of a converging

geometry are included in the study of the shock-driven motion of an interface separating an elastic–

plastic solid from a gas.
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Chapter 5

Analytical model for linearized
impulsive-driven
Richtmyer–Meshkov flow in elastic
solids

5.1 Introduction

The original Richtmyer–Meshkov problem [96] [74] describes the instability, caused by the passage

of a shock wave, of the interface separating two fluids. This problem has been the subject of

study in many fields [20], including inertial confinement fusion [63], astrophysical phenomena [6],

magnetohydrodynamics [120] and solid mechanics [95].

In the field of solid mechanics, Plohr and Plohr [95] performed an analysis based on linearized

compressible elasticity, using free-slip boundary conditions and neo-Hookean stress-strain relations.

The numerical solution of the resulting equations for a discrete range of initial conditions and

material parameters revealed that the behavior of the interface separating two solids was oscillatory

and stable after the shock wave– interface interaction, with shear waves advecting vorticity from the

interface.

Piriz et al. [90] performed both local analysis and simulations to derive an approximate result for

the long time behavior of the interface. They provide a long time approximation for the amplitude

and frequency of the interface oscillations. However, it is unclear what boundary conditions exactly

were applied.

Richtmyer–Meshkov flow has similarities with other types of flows that are unstable for fluids,

such as the Rayleigh–Taylor problem. In the field of solid mechanics, this flow has been studied

too. Plohr and Sharp in 1998 [94] used Laplace transform methods to study the instability of an

incompressible metal plate to derive an expression for the critical wavelength beyond which the flow

is unstable. They also demonstrate the existence of shear waves in the solids, which dissipate the
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vorticity deposited at the interface by an impulse. Other contributions come from Piriz et al. [89]

and Terrones [105].

In this chapter, the stability of the Richtmyer–Meshkov problem for elastic solids using an in-

compressible, linearized and impulse-driven model to obtain a simple time-dependent solution is

demonstrated. Using transform techniques, the stability calculation reduces to an analysis of the lo-

cations of singularities in the complex plane. Two distinct long-term types of behavior are identified

for both free-slip and no-slip boundary conditions: decaying oscillations and standing waves. An

analysis of the vorticity distribution shows that the shear stiffness of the solids is responsible both

for the stabilization of the interface, and also for the period of the interface oscillations. Finally,

comparisons with previous results in the literature and numerical simulations are discussed.

5.2 Problem description

The impulsive Richtmyer–Meshkov problem for solids is formulated using linearization of small

perturbations and two-dimensional, plane-strain conditions for both materials. Fig. 5.1 shows the

initial configuration and the parameters that influence the problem. The shock wave that initiates the

motion of the system in the compressible Richtmyer–Meshkov problem is replaced by an impulsive

acceleration V δ(t). The interface is described as perpendicular to the direction of the impulse with

the addition of a sinusoidal perturbation of wavelength 2π/k and initial amplitude η0. Both materials

(j = −,+) are described by their density ρj and their shear wave speeds cj =
√
µj/ρj , where µj is

the material shear modulus. The materials are taken to be purely elastic and incompressible.

Figure 5.1: Description of the problem. The interface is x1 = η(x2, t). Left and right states are
denoted “−” and “+”, respectively.

Limitations to this model are given essentially by the amplitude–wavelength interface parameter

η0k. In the first place, a shock takes a finite time to completely cross a perturbed interface, which

will produce discrepancies between the early time behavior of the model and that of a numerical

simulation using the compressible Euler equations. In addition, the interface amplitude changes as
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the shock goes through it, although this effect can be corrected by estimating the final amplitude

after shock passage and providing that value as input for the analytical model. η0k is directly

responsible as well for the strength of the shock waves, which can deviate from linearity as the

interface parameter increases. To this effect, when comparing to numerical simulations, η0k < 0.1 is

generally chosen. Another source of inaccuracies is the assumption of incompressibility. In the case

of a shock-driven motion, material density is changed. For comparison with numerical simulations,

the density observed after shock passage assuming an unperturbed interface is used as input for the

analytical model. Another effect of compressibility is the formation of acoustic waves resulting from

the distortion of the shock wave after crossing a perturbed interface, which cannot be captured by

an incompressible model. These waves are less noticeable when the shock is weak and η0k small

and as the shock moves away from the interface. With this considerations, one can predict that

the assumptions made have a large influence in the start-up and short-term behavior but that the

long-term behavior must be closer to the one observed in compressible solids.

Mass conservation and momentum equations are applied to each material in order to obtain a

system of partial differential equations for evolution of the perturbed flow while boundary conditions

relate the velocities and stresses at the interface between materials. The system is transformed in

time by a Laplace transform, and in one spatial dimension by a normal-mode assumption. The

resulting fourth-order ordinary differential equation for the transform of the velocity field in each

material is then solved. From this expression, other useful variables, such as amplitude of the

interface and the vorticity, can be calculated.

5.3 Equations of motion and boundary conditions

The general form of the conservation equations (Eqs.(2.1) and (2.7)) as functions of the set of primi-

tive variables (ρ,u,g) is described here along with the incompressibility and plane-strain constraints.

These equations are specialized in the following sections to describe the base flow and the perturbed

flow.

Mass conservation and conservation of linear momentum are expressed in Eulerian form as

∂ui
∂xi

= 0 (5.1)

and

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj
− ∂σij
∂xj

= 0. (5.2)

The evolution of the inverse deformation tensor follows:

∂gIj
∂t

+
∂

∂xj
(gIkuk) = 0. (5.3)
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Finally, the kinematic equation that describes the evolution of the interface η(x2, t)−x1 = 0 is given

by
D

Dt
(η(x2, t)− x1) = 0, (5.4)

where D/Dt = ∂/∂t+ uj∂/∂xj is the material derivative.

The assumptions of plane strain and incompressibility impose relations between the elements of

the inverse deformation tensor g. From the two-dimensionality of plane strain, these simplifications

follow:

g13 = g23 = g31 = g32 = 0, g33 = 1. (5.5)

This may be combined with conservation of mass expressed as det(g) = ρ/ρ0 to give

g11g22 − g21g12 = 1, (5.6)

for an incompressible material.

To close the problem, a constitutive law relating stresses to the material deformation is defined.

Both materials are modeled following a neo-Hookean [61] constitutive relation:

σij = −pδij + µFiKFjK , (5.7)

where pressure p is a Lagrange multiplier that enforces incompressibility, i.e., p satisfies

∂2p

∂xi2
=

∂2

∂xi∂xj
(−ρuiuj + µFiKFjK), (5.8)

for uniform ρ. Additionally one can show in this case that ∂2/∂xi∂xj(FiKFjK) = 0, leaving an

equation equivalent to its hydrodynamic counterpart.

5.3.1 Boundary conditions

Boundary conditions at the interface η relate variables from each material. Defining n and t as the

unit normal and tangent at the boundary, in a free-slip interface, the four boundary conditions are,

respectively, continuity of normal velocity, continuity of normal stress, and zero tangential stress,

[|ui|]ni = 0, (5.9)

ni[|σij |]nj = 0, (5.10)

tiσ
−
ijnj = 0 = tiσ

+
ijnj , (5.11)
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where [|q|] indicates the jump q+ − q−. In the case of no-slip boundary conditions, continuity of

tangential velocities and stresses is enforced,

[|ui|]ti = 0, (5.12)

ti[|σij |]nj = 0. (5.13)

in addition to Eqs. (5.9–5.10). Boundary conditions at infinity are imposed as radiation conditions,

requiring all waves at infinity to be outgoing.

5.4 Base flow and linearization

The trivial base flow assumes a planar interface aligned with the x2 axis and perpendicular to the

direction of the impulse. The resulting one-dimensional motion depends on x1, t only and does not

deform the material. The reference frame is chosen with the unperturbed interface located at x1 = 0

after the impulse at t = 0, so that

η = −V t (H(t)− 1) , (5.14)

where V is the impulsive velocity and H(t) is the Heavyside function. In each material the velocity,

deformation and pressure fields are given by

u1 = −V (H(t)− 1) , (5.15)

u2 = 0, (5.16)

gIj = δIj , (5.17)

p = ρV δ(t)x1 + µ, (5.18)

where the resulting Cauchy stress σij = −ρV δ(t)x1δij represents the fact that for this special

geometry the material is in an unstressed state before and after the impulse.

5.4.1 Linearization

Once the base flow variables are known, the complete value of each variable q defining the problem

is calculated by adding a perturbation term q′ to the base flow result q, i.e., Eqs. (5.14–5.18).

Substituting q = q + q′ in the equations of motion, Eqs. (5.1–5.4), and retaining terms that are at

most linear in perturbation quantities gives the following system of linear equations for the perturbed

variables:

∂u′j
∂xj

= 0, (5.19)
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ρ
∂u′j
∂t

+ u1
∂u′i
∂x1
− ∂σ′ij

∂xi
= 0, (5.20)

∂η′

∂t
− u′1 = 0, (5.21)

∂g′Ij
∂t

+ u1
∂g′I1
∂xj

+
∂u′i
∂xj

= 0, (5.22)

where u1 is given by equation (5.15).

Linearization of the neo-Hookean stress-strain relations, Eq. (5.7), produces

σ′ij = −p′δij − µ(g′ij + g′ji), (5.23)

the familiar relation for a Hookean material of linear elasticity with Lamé’s first parameter λ = 0.

The boundary conditions for the normal velocity, normal stress and free-slip conditions, Eqs. (5.9–

5.13), respectively, become,

[|u′1|] = 0, (5.24)

[|σ′11|] = − [|ρ|]V η′δ(t), (5.25)

σ′
−
21 = 0 = σ′

+
21, (5.26)

and are applied on the unperturbed interface (i.e., at x1 = 0 for t ≥ 0). In the case of no-slip

boundary conditions, the following relation is used in place of (5.26):

[|u′2|] = 0, (5.27)

[|σ′21|] = 0, (5.28)

5.5 Solution of the problem

When assuming that the interfacial perturbation is initially sinusoidal in x2, the resulting perturba-

tion solutions may be expressed as Fourier modes in x2, q′(t, x1, x2) = q̂(x1, t) exp(ikx2). In addition,

the differential expressions that have time dependence are converted to algebraic relations using the

Laplace transform. The initial conditions for the perturbations precede the impulse and are thus

zero.

Denoting the Laplace transforms of a variable q̂ with capital letters (e.g., GIj = L[ĝIj ]), the

linearized equations (5.19–5.22) become

d

dx1
U1 + ikU2 = 0, (5.29)

ρsU1 + 2µ
d

dx1
G11 +

d

dx1
P + µik(G12 +G21) = 0, (5.30)
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ρsU2 + 2µikG22 + ikP + µ
d

dx1
(G12 +G21) = 0, (5.31)

sGI1 +
d

dx1
Ui = 0, (5.32)

sGi2 + ikUi = 0. (5.33)

This system of equations is manipulated to obtain an expression for U1, which is a fourth-order

ordinary differential equation to be solved separately in each material (i.e., x1 < 0 and x1 > 0 )

d4

dx1
4
U1 −

(
s2

c2
− 2k2

)
d2

dx1
2
U1 +

(
k2s2

c2
+ k4

)
U1 = 0, (5.34)

where c2 = µ/ρ. The general solution for U1 is spanned by the fundamental solutions

{ekx1 , e−kx1 , e

√
s2

c2
+k2x1 , e

−
√
s2

c2
+k2x1}. (5.35)

Apart from the four boundary conditions imposed at the interface (5.24–5.28), regular boundary

conditions at infinity are imposed after a suitable definition of the generally multi-valued square

root. Recalling that the inverse Laplace transform is defined by a vertical contour of integration in

the complex s-plane located to the right of all singularities, the square roots are explicitly defined

to have positive real parts in the right half-plane. Boundary conditions at x1 → ±∞ then imply

U±1 (s, x1) = A±(s)e∓kx1 +B±(s)e
∓
√

s2

c2±
+k2x1

, (5.36)

where the upper sign is taken for x1 > 0 and the lower sign for x1 < 0.

The four unknowns, A±(s), B±(s), are determined by application of the four interface boundary

conditions equation transformed into Laplace space. Solving the resulting linear system in the case

of free-slip gives

Afs± (s) =
(r − 1)V η0ks(2c

2
±k

2 + s2)

Ωfs(s)
, (5.37)

Bfs± (s) = − (r − 1)V η0ks2c
2
±k

2

Ωfs(s)
, (5.38)

where Ωfs(s) is given by

Ωfs(s) = (1+r)s4 +4c2−k
2s2 +4c2+k

2rs2−4c4−k
4

(
−1 +

√
1 +

s2

c2−k2

)
−4c4+k

4r

(
−1 +

√
1 +

s2

c2+k
2

)
(5.39)

and r = ρ+/ρ−. The expression obtained for no-slip boundary conditions is more complex,

Ans− (s)Ωns(s) = (r − 1)V η0ks(c
2
+k

2r(2− 2G+(s)) + ...
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+ s2(−1 + r + rG−(s) +G+(s)) + c2−k
2(−2 + 2G+(s))), (5.40)

Bns− (s)Ωns(s) = −(r − 1)V η0k2s(c2−k
2(−1 +G+(s)) + ...

+ r(s2 + c2+k
2(1−G+(s)))), (5.41)

Ans+ (s)Ωns(s) = (r − 1)V η0ks(c
2
−k

2(2− 2G−(s)) + ...

+ 2c2+k
2r(−1 +G−(s)) + s2(1 +G+(s) + r(−1 +G−(s)))), (5.42)

Bns+ (s)Ωns(s) = −(r − 1)V η0k2s(s2 + c2−k
2(1−G−(s)) + ...

+ c2+k
2r(−1 +G−(s))), (5.43)

where G±(s) and Ωns(s) are given by

G±(s) =

√
1 +

s2

c2±k2
, (5.44)

Ωns(s) = C(s) +D(s)G−(s) + E(s)G+(s) + F (s)G−(s)G+(s), (5.45)

(5.46)

with components

C(s) = −
(
s2(1− r)− 2(c2+k

2r − c2−k2)
)2
, (5.47a)

D(s) = 4(c2−k
2 − c2+k2r)2 + 4s2(c2+k

2r2 − c2−k2r) + s4(r + r2), (5.47b)

E(s) = 4(c2−k
2 − c2+k2r)2 + 4s2(−c2+k2r + c2−k

2) + s4(1 + r), (5.47c)

F (s) = −4(c2−k
2 − c2+k2r)2. (5.47d)

From the expression for the normal velocity, the problem is solved in the complex s-plane. All other

transformed variables may be obtained from U1(x1, s) by manipulation of Eqs. (5.29–5.33).

Before analyzing the solutions in detail, physical insight is obtained by examining the evolution

of vorticity, defined for a two-dimensional flow as ω = ∂u2/∂x1−∂u1/∂x2. By taking the curl of the

linearized momentum equation (5.20) to eliminate the hydrodynamic pressure and then differenti-

ating in time to expresses the time derivative of the stress in terms of the rate of strain with the aid

of Eq. (5.22), one finds that the vorticity due to the linear perturbations satisfies the second-order

wave equation,
∂2ω′

∂t2
= c2

∂2ω′

∂xi2
(5.48)

in each material for t > 0. The fourth-order ODE, Eq. (5.34), is simply the Laplace transform of

this equation cast in terms of û1 after the normal-mode assumption has been made: u′(t, x1, x2) =

û(t, x1) exp(ikx2).

Using incompressibility (5.19), vorticity can be expressed solely in terms of the velocity pertur-
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bation û1 as

ω′(t, x1, x2) = ω̂(t, x1)eikx2 = i

(
−kû1 +

1

k

∂2û1

∂x1
2

)
eikx2 . (5.49)

From this one may readily verify that the A±(s) solution in Eq. (5.36) corresponds to an irrotational

velocity field, while the B±(s) solution identifies shear waves. Note that expression (5.49) holds

within each solid but not at the interface, where a finite jump of the tangential velocity u2 produces

an additional vortex sheet if free-slip boundary conditions are imposed. In the free-slip case, the

Laplace transform of Eq. (5.49) may be written as,

ω±(s, x1) = −2ikU1(s, 0)e
∓
√

s2

c2±k
2 +1 kx1

, (5.50)

where U1(s, 0) = U+
1 (s, 0) = U−1 (s, 0) is the transform of the normal velocity at the interface.

Excluding the vortex sheet the remaining vorticity ω is continuous at the interface. Alternatively,

vorticity is discontinuous at x1 = 0 when no-slip boundary conditions are imposed

ω−(s, x1 < 0) = −2ik2V η0
(r − 1)s3G(s)

Ωns(s)
e

√
s2

c2±k
2 +1 kx1

, (5.51a)

ω+(s, x1 > 0) = 2ik2V η0
(r − 1)s3H(s)

Ωns(s)
e
−
√

s2

c2±k
2 +1 kx1

, (5.51b)

with

G(s) =

(
c2−k

2

(
−1 +

√
1 +

s2

c2+k
2

)
+ r

(
s2 + c2+k

2

(
1−

√
1 +

s2

c2+k
2

)))
, (5.52a)

H(s) =

(
s2 + c2−k

2

(
1−

√
1 +

s2

c2−k2

)
+ c2+k

2r

(
−1 +

√
1 +

s2

c2−k2

))
. (5.52b)

Using the convolution theorem, the vorticity mode in physical space ω̂(t, x1) can be computed as,

ω̂±(x1, t) =

∫ t

0

ω̂(τ, x1 = 0)ĝ±(t− τ, x1) dτ, (5.53)

where ĝ±(t, x1) = L−1[exp(∓
√

s2

c2±k
2 + 1 kx1)] and ĝ±(t, x1) exp(ikx2) satisfies the second-order wave

equation (5.48) as outward radiating waves. This convolution expression shows how the vorticity

that is deposited at the interface is transported by the shear waves into the materials for t > 0.

5.6 Analysis of the interface behavior

To determine the time-dependent behavior of the velocity field, interface amplitude, or other quan-

tities of interest, the inverse Laplace transform of the s-dependent expressions is performed. The
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Bromwich integral offers a general way of performing this operation,

f(t) = L−1{F (s)} ≡ 1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estF (s) ds, (5.54)

where γ is a real value situated to the right of all singularities of the function F (s).

Expression (5.54) can be calculated numerically to obtain the complete evolution of the interface

η in time and such results are reported in the next section. Here, the tools of complex analysis

and asymptotics are used to examine analytically both the initial growth rate and the long-term

behavior of the interface.

5.6.1 Short-time interface behavior

From Eq. (5.21) (i.e., ∂η′/∂t = u′1(0, x2, t)), one can see that the growth rate of the linearized

interface may be computed by calculating the inverse Laplace transform of U1(s, x1 = 0). Using

Eq. (5.36), this quantity may be computed as

∂η̂

∂t
= L−1

[
(r − 1)V η0ks

3

Ωfs(s)

]
, (5.55)

for free-slip boundary conditions, or alternatively as

∂η̂

∂t
= L−1

 (r − 1)V η0ks
3
(
−1 +

√
1 + s2

c2+k
2 + r

(
−1 +

√
1 + s2

c2−k
2

))
Ωns(s)

 , (5.56)

when no-slip boundary conditions are enforced. The familiar impulsive Richtmyer-Meshkov result for

inviscid fluids can be recovered by eliminating the shear strength µ± of the materials (i.e., c± = 0).

This reduces Eqs. (5.55–5.56) to

∂η̂

∂t
= L−1

[
(r − 1)

(r + 1)

V η0k

s

]
=

(r − 1)

(r + 1)
V η0k, (5.57)

from which one sees that the perturbation amplitude grows linearly in time. The ratio (r−1)/(r+1)

is the Atwood number At.

For the case of elastic solids, the initial growth rate for any value of shear strength is also given

by Eq. (5.57) as can be seen by examining the large s limit U1(0, s) ∼ AtV η0k/s. Physically for

times much shorter than the characteristic shear wave speeds t � 1/(kc) the vorticity is located

approximately at the interface and the interface initially evolves as in the fluid example.
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5.6.2 Long-time interface behavior

From Eq. (5.55), the time-dependent behavior of the interface amplitude η̂(t) is:

η̂(t) = η0 + L−1[Ni(s)], (5.58)

where i takes the values fs or ns for free or no-slip boundary conditions respectively, and

Nfs(s) =
(r − 1)V η0ks

4

Ωfs(s)
, (5.59a)

Nns(s) =
(r − 1)V η0ks

4
(
−1 +

√
1 + s2

c2+k
2 + r

(
−1 +

√
1 + s2

c2−k
2

))
Ωns(s)

. (5.59b)

Ωi(s) is as defined in Eqs. (5.39) and (5.45). In performing the inverse transform, the analytic

properties of the denominator Ωi determine the time dependence of the solution.

With the aim of obtaining the long-time behavior of the interface, a specific representation of Ωi

is constructed and the Bromwich integral is deformed around the possible singularities.

While the square roots in Ωi have been defined to have a positive real part in Re(s) > 0, there are

several possibilities for the specific locations of the branch cuts. Fig. 5.2 shows the set of branch cuts

that was used for our analysis. This choice offers the possibility of applying linearization techniques

to calculate the long-term behavior, as is shown later in this section.

Figure 5.2: Set of branch cuts used for the analysis and deformation of the Bromwich integral. Two
poles are shown in the imaginary axis, which is not a general case. For any pole found, the contour
is deformed to surround it.

Using this disposition of branch cuts, the Bromwich integral for η can be closed in the left
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half-plane for t > 0 and computed as:

η̂(t) = η0 +
1

2πi

∑
n

Res(N(sn))esnt

+

1

2πi

+∑
l=−

∫ ∞
0

e−x1t+iclt
[
N(−x1 + icblk)−N(−x1 + ical k)

]
dx

+

1

2πi

+∑
l=−

∫ ∞
0

e−x1t−iclt [N(−x1 − icblk)−N(−x1 − ical k)
]
dx,

(5.60)

where sn are the possible zeros of the denominator; the superscripts “a” and “b” determine the value

of the function right above and below of the branch cut respectively. The part of the contour that

lies at infinity has no contribution according to Jordan’s lemma and the turning-integrals around

the branch points can be shown to contribute nothing as their radius goes to zero.

Hence, the behavior of the interface is determined by the residue of the amplitude function in

the complex s-plane at the zeros of Ωi and by the integration around the branch cuts.

5.6.2.1 The contributions of the branch cuts

It can be seen directly that the oscillatory exponentials may be taken out of the integrals in Eq. (5.60).

In addition, it can be shown that the magnitude of the integrals decays with time. This follows from

the fact that functions |N(s)| are, in general, bounded along the branch cuts, although there are

certain discrete parametric exceptions that correspond to poles of N(s) crossing a branch cut and

onto a separate sheet. In such a case, the poles are simple poles and the principal value of the

integrals is well defined.

The long-time asymptotic contributions from the branch integrals to η̂(t) may be computed using

Watson’s lemma [15]. Essentially for large t, an expansion of [N(−x1± icbk)−N(−x1± icak)] about

x1 = 0 is used. Note that care must be taken in treating the various square roots with respect to the

disposition of the branch cuts. Local to a given branch-point, such a procedure gives an expression

of the form

N(−x1 ± icbk)−N(−x1 ± icak) =
√
x1

∞∑
j=0

ajx1
j , (5.61)

where
√
x1 denotes the usual real square root. Then, expression (5.61) multiplied by exp(−x1t) and

integrated gives terms in 1/t3/2, 1/t5/2, 1/t7/2, . . . When the exponentials exp(±ickt) are included,

the resulting terms clearly oscillate with the shear wave frequency while decaying to 0 as t → ∞.

Appendix B develops an approximation for the growth rate using the first term (a0
√
x1) of this

approximation.
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5.6.2.2 The contributions of the poles

The denominator Ωi is a single-valued sheet of a multi-valued function containing square roots. A

rationalization is performed by forming the product of all sheets to obtain a polynomial of degree 16

and 20 respectively for the cases of free-slip and no-slip. The roots of this polynomial are computed

numerically but only a few are real zeros of Ωi. A simple evaluation of the denominator at the roots

allows one to determine which residues need to be computed. The number of these poles varies

depending on the parameters of the problem.

The analysis reveals that all the zeros of Ωi correspond to simple poles of N(s) and lie in

Re(s) ≤ 0, which combined with our analysis of the branch-cut integrals indicates that the interface

may be classified as stable. The positions of the poles depend on the ratio of shear wave velocities

c−/c+ and the density ratio r.

Exploring this parameter space, regions are found where there are a pair of conjugate poles that

lie in the imaginary axis (oscillatory) and regions where all poles lie in Re(s) < 0. Fig. 5.3 shows

the region in parameter space where the dominant poles produce pure oscillatory behavior and in

the region where the poles contribute at most exponentially decaying oscillatory behavior.

Oscillatory behavior is obtained when both materials have a similar shear wave speed. The region

around c−/c+ = 1 where this happens depends on the density ratio r. As the ratio c−/c+ separates

from 1, the pure imaginary poles travel along the imaginary axis towards the lowest pair of branch

points. As this happens, the amplitude of the oscillations decreases, representing a smooth transition

towards decaying oscillatory behavior. After a certain critical value of the shear wave velocity ratio,

which depends on the density ratio, the poles reach the lowest branch cut and disappear and for

such parameters, the interface amplitude oscillates while decaying with time to η0. Some differences

arise between the free-slip and no-slip cases as the region of oscillatory behavior is narrower in the

latter. In particular, one can appreciate that, in the neighborhood of r = 1, the oscillatory behavior

is restricted to situations in which the shear wave speeds are extremely close to each other.

A particular case, represented in Fig. 5.3(a), that gives oscillatory behavior of the interface is

that of one shear wave velocity being zero and the other finite (or one being finite and the other

infinite). This case is the asymptotic result of the decaying behavior and will be explained by

monitoring the location of the poles closest to the imaginary axis.

Fig. 5.4 shows the position of the closest pole with respect to the imaginary axis and relative to

the position of the branch cuts with c− ≥ c+. First, the poles lie in the imaginary axis for c− = c+

and they approach the lower branch cut as c− increases. After that, if c− keeps increasing, the poles

reappear from the superior branch cut and separate from it approaching the imaginary axis.

In conclusion, when our shear wave velocities are far from c− = c+, the behavior of the interface

is decaying. As the values of the shear wave velocities separate from each other, a pair of conjugate
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Figure 5.3: Regions of existence / non-existence of pure imaginary poles. A parametric set that lies
in the first / second region produces an oscillatory / decaying behavior of the interface, respectively.

poles tend to approach the imaginary axis. This means that the interface behavior in time looks like

an oscillatory exponential decay that decays more slowly as the values of the shear wave velocity are

more distinct. Finally, when one of them becomes 0, the pole reaches the imaginary axis and the

behavior of the interface is oscillatory in time.
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Figure 5.4: Position of the closest pole with respect to the imaginary axis and relative to the branch
cuts (horizontal dashed lines). Another conjugate pole lies in Im(s) < 0. Arrows show the direction
the poles follow when incrementing c− leaving c+ and r unchanged. When both velocities are similar,
the poles lie on the imaginary axis and the interface oscillates. After reaching the branch cut, the
pole reappears and tends to the imaginary axis as c− →∞.

5.6.3 Conclusions of the analysis

Two different long-term types of behavior for the interface amplitude η̂(t) are identified: pure

oscillatory and oscillatory decay. When discussed in terms of the interface η(t, x2) = η̂(t) exp(ikx2)

these correspond to standing oscillatory waves and decaying waves.

As the branch cut integration always results in algebraically decaying waves oscillating at the

two shear speeds, the classification of the late-time behavior is a function of the locations of poles,

i.e., the zeros of Ω. For the oscillatory case, after an initial transient due to the branch cuts, the

interfacial waves oscillate at a frequency determined by the position of the poles on the imaginary

axis. The relative amplitude of this wave depends on the position of the poles too through the

calculation of residues. This amplitude decreases as the critical value of c−/c+ is parametrically

approached. After that, the behavior changes to time-dependent decay.

Physically the free-slip condition allows interfacial shear waves to persist when the shear speeds

are similar in both materials, but when these nonzero speeds differ too greatly (Fig. (5.3(a))) such

waves decay.
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The other case that gives a late-time oscillatory behavior for η̂(t) is the extreme case of one

of the shear wave velocities being zero (which indicates that this material is unaffected by shear

stresses, equivalent to a inviscid fluid-like material). For this case, vorticity can only be carried off

the interface by the material with a nonzero-shear modulus.

Oscillatory decaying behavior occurs when the shear wave velocities are sufficiently different and

no poles exist on the imaginary axis. To analyze this region, the position of the pair of conjugate

poles that is closest to the imaginary axis is important. If the pole is very close to this axis (which

occurs when the two shear wave velocities are very different) the subdominant exponentially decay-

ing traveling wave may be present for some time as the characteristic decay rate of the resulting

wave is very small. On the other hand, when this pair of poles is far from the imaginary axis,

which happens just after reaching the critical shear wave speed ratio that separates oscillatory from

decaying behavior, the evolution of the interface is controlled by the integral around the branch cuts

and exhibits a 1/t3/2 decay.

5.7 Results

In this section, some specific results from the solution of the linearized Richtmyer-Meshkov flow are

presented with the aim of visualizing the general conclusions extracted from the analytic approach

to the problem.

The most representative variable to discuss the stability of the system is the amplitude of the

interface. For that reason, the first group of results shows the behavior of the amplitude under

changes of the parameters that control the problem. A second group describes the frequency behavior

of the long-time oscillations, comparing it with previously published approximate results [90]. The

way the vorticity is carried away from the interface and the evolution of tangential slip velocity at the

interface is shown next. The section ends with a comparison for a particular set of parameters with

fully compressible numerical simulations. These results serve as verification of the accuracy of the

analytical model and numerical algorithm and show important differences caused by compressibility

effects and the different way in which the motion is initiated.

5.7.1 Interface behavior

Fig. 5.5 shows the amplitude of the interface in time (conveniently non-dimensionalized with the

shear wave speed of the + material, the initial amplitude, and impulsive velocity) when the shear

wave velocity ratio c−/c+ is in the range 1 ≤ c−/c+ ≤ 3, leaving the density ratio fixed. As expected,

after the transient, the interface amplitude η̂(t) oscillates for the case c−/c+ = 1. For the other

cases the interface amplitude decays faster as c−/c+ is increased. A faster decay rate is observed in

the no-slip case but the frequency of oscillations for a given shear wave speed ratio is very similar
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in both cases.

Fig. 5.6 shows the amplitude of the interface when c−/c+ is increased from 0.2 to 1. A practically

oscillatory behavior is observed for c−/c+ = 0.2 and c−/c+ = 0.4. As it was already pointed out, the

interface oscillates for c−/c+ = 0. Therefore, values 0.2 and 0.4 are close enough to 0 to exhibit a very

low rate of decay. For the intermediate values (c−/c+ = 0.6, 0.8) in the free-slip case, the amplitude

of the interface decays faster, but it returns to oscillatory for c−/c+ = 1. Important differences are

noticed between the free- and no-slip for this range of parameters. In the second case, the decay rate

does not change much, with all the curves showing a behavior close to oscillatory. As a result, it can

be said that the decay rate for a given shear wave speed ratio is slower in the no-slip rate for this

particular set of parameters. This contrasts with results obtained for c−/c+ > 1 (Fig. 5.5), in which

the no-slip amplitude exhibited a faster decay rate. For c−/c+ = 1, both cases exhibit oscillatory

behavior, but the amplitude of oscillations is higher in the free-slip case. The frequency at which

the amplitude oscillates is again very similar, independently of the set of boundary conditions used.

5.7.2 Oscillation period

An attempt to perform a long-time (s → 0) approximation of Eq. (5.36) leads to the following

expression

U(s, 0) =
(r − 1)V η0ks

2(1 + r)
(
s+ ik

√
µ−+µ+

ρ−+ρ+

)(
s− ik

√
µ−+µ+

ρ−+ρ+

) (5.62)

From this last expression, the oscillation period is:

T

T0
=

√
1 + r

1 + µ+

µ−

, (5.63)

with T0 = (2π/k)
√
ρ−/µ−. This value is of the order of max[c−, c+]k, which formally contradicts

our principal assumption in performing the long-time approximation, s << (c−k, c+k). As a conse-

quence, performing an inverse Laplace transform of Eq. (5.62) leads to an inaccurate value for the

amplitude and does not reflect a possible decaying behavior. In fact, it predicts that the long-time

amplitude of the oscillations scales as 1/T (i.e., as
√

(1 + µ+/µ−) / (1 + r)) and therefore does not

decay to zero for any combination of material parameters.

Piriz et al. [90] provide a similar expression

T

T0
=

1.55√
2

√
1 + r

1 + µ+

µ−

, (5.64)

obtained by a mixture of local analysis and simulation. They also predict pure oscillation irrespective

of the material parameters, with the amplitude scaling as 1/T for the long-time behavior. This is
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Figure 5.5: Interface amplitude varying c−/c+ from 1 to 3 and r
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Figure 5.6: Interface amplitude varying c−/c+ from 0.2 to 1 and fixed r
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because the simple analytic model proposed in [90] computes the interface behavior using Newton’s

second law with a forcing term that is proportional to the amplitude of the interface and a mass

term that is proportional to its acceleration. The resulting equivalent mass-spring system does not

capture decaying oscillations.

Figs. 5.7 and 5.8 show a comparison between these approximations and the result calculated from

the complete model. The oscillation period arising from the pole that is closer to the imaginary

axis (the imaginary part of the pole position) is also compared. In spite of the inaccuracy for

calculating the expected behavior of the system (oscillating decay or pure oscillatory), the long-term

approximation in fact gives a very good result for the oscillation frequency. As expected, as the ratio

c+/c− separates from 1, the oscillation period of the complete system is closer to that associated

with the pole that is closer to the imaginary axis.

Figure 5.7: Oscillation period for fixed density ratio 6.182 and varying shear modulus. The complete
model result is calculated performing numerically the inverse Laplace transform of the interface
amplitude and counting the time between oscillations. The long-term estimate uses Eq. (5.63). The
estimate of Piriz et al. uses Eq. (5.64). The pole frequency is calculated by locating the pole in the
complex plane.

5.7.3 Vorticity

Vorticity is controlled by a wave equation. For the free-slip case at t = 0, the impulse produces

an instantaneous tangential velocity that is equal in magnitude and opposite in direction in the

materials. In the no-slip case, the analysis of Eq. (5.51) for s → ∞ reveals that the vorticity is a
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Figure 5.8: Oscillation period for varying density ratio and fixed ratio of shear modulus µ+/µ−.
The complete model result is calculated performing numerically the inverse Laplace transform of
the interface amplitude and counting the time between oscillations. The long-term estimate uses
Eq. (5.63). The estimate of Piriz et al. uses Eq. (5.64). The pole frequency is calculated by locating
the pole in the complex plane.

delta function at t = 0:

ω̂(x1 = 0−, t = 0) = L−1

−2ik2V η0
(r − 1)r

(r + 1)
(

r
c−k

+ 1
c+k

)
 , (5.65a)

ω(x1 = 0+, t = 0) = L−1

−2ik2V η0
r − 1

(r + 1)
(

r
c−k

+ 1
c+k

)
 . (5.65b)

This spike in vorticity can be regarded as the effect of attempting to achieve continuous tangential

velocities across the interface immediately after the impulse occurs. For an incompressible inviscid

fluid, vorticity lies at the interface and cannot be dissipated or transported. Therefore, the growth

rate of the interface is constant (U(t, 0) = AtV η0k, r being the density ratio). This growth rate is

observed for our solution at t = 0+. After that moment, shear waves carry the vorticity away from

the interface. Figs. 5.9 and 5.10 show how the initial vorticity is carried off the interface for two

cases: solids with equal shear wave velocity (Fig. 5.9) and solids with different shear wave velocities

(Fig. 5.10). The delta function in the no-slip cases has been truncated for better appreciation of the

rest of the curves. It can be observed that, even if no large differences are apparent in the interface

amplitude between free- and no-slip boundary conditions, the distribution of vorticity is drastically

different. In addition to not being continuous across the interface and exhibiting a delta function

for x1 = 0, t = 0 which gets advected into the materials by the shear waves, one can appreciate
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that the amount of vorticity transported into each material under no-slip boundary conditions is

not symmetric and hence depends on a function of r. This becomes evident for the case in which

c− = c+ and can be also observed by examining Eq. (5.65).
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Figure 5.9: Amplitude of vorticity at different times for c−/c+ = 1 , r = 2. Equal shear wave
velocities produce a symmetric distribution of vorticity at each time.

To close the study of vorticity, under free-slip boundary conditions, a vortex sheet is produced by

the jump in tangential velocity across the interface. Using the incompressibility condition (5.19), it
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Figure 5.10: Amplitude of vorticity at different times for c−/c+ = 3 , r = 2. Vorticity is carried off
the interface faster in the material with higher wave velocity

is easy to derive the expressions for the tangential velocities from the normal velocity. This reveals

that the behavior is similar to that of the growth rate (the parametric regions of oscillatory and

decaying behavior are the same). Fig. 5.11 shows the evolution of the jump in time for two different

sets of parameters (case 1: c−/c+ = 1 and r = 2; case 2 : c−/c+ = 3 and r = 2).
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Figure 5.11: Evolution of the tangential velocity jump across the interface for two different sets of
parameters. The first set (continuous line) corresponds to an oscillatory long-term behavior while
the second one (dashed line) corresponds to a decaying behavior.

5.7.4 Comparison with numerical results

The fully compressible numerical method described in Chapter 3 is used to test the accuracy of the

results predicted by the linear incompressible model. To this effect, the compressible neo-Hookean

[61] equation of state

e(g , ς) =
µ

2ρ0
tr(C) + cvT0

(
ρ0

ρ

)1−γ
exp

(
ς − ς0
cv

)
, (5.66)

was used to model the left and right materials. Parameters in this equation are the specific heat cv =

0.011 J kg−1 K−1, reference temperature T0 = 300 K, shear modulus µ− = 9 GPa, µ+ = 11.43 GPa

and reference density ρ0− = 2.7 kg m−3, ρ0+ = 3.375 kg m−3. The reference entropy ς0 is set to

zero. These particular values were selected so the initial normal stress across the perturbed interface

is continuous and the shear wave speeds in both materials are similar after the shock–interface

interaction. This constitutive law can be regarded as a model for an ideal gas (hydrostatic term)

which has some resistance to shear. The motion is initiated by a weak shock of compression ratio

J = 0.95 and the interface is perturbed with a sinusoidal wave of non-dimensional amplitude ηi0k =

0.03π ≈ 0.1. The shock wave–interface interaction affects the initial states, particularly by changing

the density and the amplitude of the interface. Using the hypothesis of small perturbations, a one-

dimensional Riemann problem can be solved to determine the disturbed states, and the velocity and
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amplitude of the interface after shock passage. These new parameters are used as initial conditions

for the linear model. For this particular case, c−/c+ = 0.992, r = 1.2567, V/c+ = 0.5329 and

η0k = 0.0897.

Results in Fig. 5.12 show good agreement between numerical and analytical predictions for the

no-slip case. After a short transitional period, which is produced by the effect of having a shock

wave instead of an impulse initiating the motion and the finite time required for the shock to fully

cross the interface [68], results match for the frequency and amplitude of oscillations in the long-term

behavior. A series of faster oscillations are observed and an analysis of their frequency shows that

they are related to the longitudinal wave speeds. These are acoustic waves emitted by the distortion

of the shock after the interface interaction.

In contrast, for the free-slip condition, a phase-lag is encountered for oscillations in the long-term

behavior. This phenomenon is produced by the effect of a shock passing through a free-slip boundary

condition. It can be shown that the shock interaction with an interface separating two materials with

the same properties and same state, and collocated at an angle, is very different depending on the

conditions assumed at the interface. For no-slip conditions, the shock passes through the interface

and it neither gets deformed nor are shear waves produced as a result, much as if the interface did

not exist. On the other hand, free-slip conditions induce the formation of shear waves since they

allow discontinuous tangential velocities. These additional “start-up” shear waves are present in the

results obtained in the compressible free-slip numerical example but they cannot be captured by the

impulsive analytical model. In consequence, the amount of vorticity deposited at the interface is

very different when comparing the two results in the short-term range and this affects the long-term

behavior in the way observed in Fig. 5.12(a).

5.8 Summary

An analytic approach to the Richtmyer-Meshkov flow for elastic solids allowed a simple determination

of the parametric dependence of the problem. The incompressible and linear assumptions reduce the

number of parameters under consideration to two: the shear wave velocity ratio and the density ratio.

The parameter space is then explored easily despite the complexity of the expressions encountered.

The analysis reveals the following conclusions concerning the amplitude and rate of growth of

the interface between two elastic solids with frictionless contact:

1. Solutions show a transitory period close to t = 0 followed by a regular behavior. The rate of

growth of the interface at t = 0 corresponds to the Richtmyer-Meshkov result for fluids.

2. Two different patterns are identified for the long-time behavior. The first one is purely oscil-

latory and appears when the two solids in contact have a very similar shear wave velocity or
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Figure 5.12: Comparison of interface growth rate, defined as U(0, t) between the analytical model
prediction and numerical simulation results.



108

when one of the solids has no shear strength. The second behavior is described as an oscillatory

decay that parametrically varies in oscillation frequency and rate of decay. As the ratio c−/c+

separates from 1, the decaying rate increases and then decreases as c−/c+ becomes very large

or very small, tending to the asymptotic oscillatory behavior when c−/c+ → 0 or c−/c+ →∞

3. While the model of [90] accurately predicts the oscillation frequency of the interfacial waves,

it incorrectly predicts the long-time amplitude. The amplitude should be computed using the

full expression or performing a more accurate long-time approximation considering true pole

locations and the branch cuts of the Laplace transform.

Finally, the second-order wave equation with the shear wave velocity governs the vorticity within

each material. Shear waves carry the initial vorticity deposited by the impulse at the interface

at t = 0 to the interior of the solid and away from interface. The tangential slip velocity at the

interface either oscillates or decays while oscillating, as determined by the nature of the interfacial

wave η(t, x2).

The next chapter extends the analysis of the Richtmyer–Meshkov flow in solids to cases that

consider more realistic phenomena, such as compressibility and plasticity, which exceed the scope

of this analytical model. However, it will be shown that regions of an elastic–plastic solid remain in

the elastic regime under some particular conditions. In these situations, the model derived in this

chapter is useful for characterizing the motion of the interface.
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Chapter 6

Numerical simulations of
Richtmyer–Meshkov instability in
multiple material interfaces

6.1 Introduction

The problem of examining the Richtmyer–Meshkov flow in elastic–plastic solids is of special relevance

since shocks often stress materials beyond their yield point. Unfortunately, plasticity theory is

intrinsically nonlinear due to yield criteria being based on norms (e.g., von Mises) or differences

in absolute value (e.g., Tresca) of shear stresses. For this reason, purely analytical models are

extremely difficult to formulate and the study of the problem using numerical techniques becomes

necessary. This chapter analyzes, making use of computer simulations, two relevant Richtmyer–

Meshkov problems involving the behavior of the interface separating an elastic–plastic solid from

other media: the solid–vacuum and solid–gas cases in planar and cylindrical geometries, respectively.

The study of the Ritchmyer–Meshkov flow in a solid–vacuum planar configuration is motivated

by previous numerical and experimental work by Dimonte et al. [27] and Piriz et al. [91], which

make use of this problem to postulate a way of determining the yield stress of a material by means

of measuring the conditions at the interface after relaxation of stresses occurs in the solid and the

interface evolution deviates from the initial fluid-like behavior. Results suggest a linear relation

between the yield stress, the maximum amplitude reached by the interface perturbation and the

square of the maximum growth rate. In some cases, the material interface never abandons the

plastic state and the growth becomes unbounded, leading to the formation of ejecta. The study of

this problem also serves as a way of validating the code by comparison with the cited references before

attempting the more demanding case involving a cylindrical geometry and a solid–gas interface.

The converging Richtmyer–Meshkov flow appears in experiments aiming to achieve inertial con-

finement fusion (ICF) [62], plasma generation [60], and in astrophysical phenomena such as super-
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nova formation [36]. It represents a more complex problem due to the acceleration of the shock

and interface as they approach the axis, the second shock–interface interaction (re-shock) after the

transmitted shock in the fluid reaches the axis, and the presence of secondary instabilities such as

Rayleigh–Taylor [127, 76] (interface acceleration) and Kelvin-Helmholtz (discontinuity in tangential

velocities in a non-viscous gas–solid interface). The problem has been studied extensively in the

field of fluid mechanics, starting with the classical paper of Zhang and Graham [129] in which the

four possible configurations spanned by the density ratio across the material interface (heavy–light,

light–heavy) and the direction of the shock (imploding, exploding) are qualitatively explored by

means of numerical simulations. Lombardini et al. [67, 66] studied the influence of initial param-

eters (shock strength, wave number of the interface perturbation) of heavy–light and light–heavy

systems in the imploding configuration. The study of this problem in the field of solid mechanics

is of interest for multiple reasons. In the first place, the existence of shear modifies the behavior of

the solid even when the material is in a plastic state. Moreover, a typical solid–gas configuration

exhibits an initial Atwood ratio larger than those commonly studied in fluid–fluid systems. Beyond

the physical interest, this problem represents an excellent testbed for the capabilities and limits of

the numerical implementation described in Chapter 3 and it is the reason for which the formulation

based on stretches (3.2.4) was developed after observing that simulations using the formulations

based on deformations gradients fail shortly after impacts between reconnecting regions of the same

material begin to occur.

6.2 Constitutive laws

The hyper-elastic constitutive law of Godunov–Romenski [30, 107]:

e = es + eh, (6.1a)

es = 2cs(ρ)2I2, I2 =

(
IH

e

1

)2
3

− IHe

2 , (6.1b)

eh =
K

2α2

((
ρ

ρ0

)α
− 1

)2

+ cvT0

(
ρ

ρ0

)γs (
exp

(
ς

cv

)
− 1

)
, (6.1c)

with cs(ρ) = µ
ρ = µ0

ρ0

(
ρ
ρ0

)β
and the Hencky elastic strain tensor He = 1

2 log
(
FeFeT

)
is used for

the two problems analyzed in this chapter. The material considered is copper with parameters

ρ0 = 8.93 g/cm3, K = 15.28 · 106 m2/s2, cv = 3.9 · 102 J/kgK, T0 = 300 K, µ0 = 39.38 GPa,

α = 1, β = 3, γs = 2. As stated in Chapter 3, the use of this particular equation of state admits

algebraic solutions for the plastic update that are similar to a radial return algorithm, decreasing

the computation time since an implicit algorithm is not needed. J2-perfect plasticity is considered

with a typical yield stress σY = 0.12 GPa for copper. In some examples, this value can be modified
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in order to match existing results in the literature or for the purpose of a parametric analysis. More

complex behavior, such as hardening and thermal softening can also be considered in the model but

the assumption of perfect plasticity is normally better suited for studying the effect of the plastic

model on the results. The model for gases is a simple calorically perfect model p = ρRT with

R = cp − cv, completely characterized by the ratio of specific heats γg =
cp
cv

= 5/3.

6.3 Planar Richtmyer–Meshkov instability in solid–vacuum

interfaces

The first problem to be examined in this chapter is the Ritchmyer–Meshkov instability which devel-

ops in an interface separating an elastic–plastic material from vacuum. This analysis is motivated

by previously published results in [91] and [27]. In the first publication, a semi-analytical model for

a solid–vacuum interface is developed and complemented with finite-element simulations. In the lat-

ter article, the authors make use of a multidisciplinary approach involving simulations run with the

Eulerian hydrodynamics software PAGOSA [119], molecular dynamics algorithms, and experiments

to characterize the behavior of a solid–gas interface (which mimics the solid–vacuum case for very

small values of the gas density). Both studies suggest the existence of a linear correlation between

the yield stress in an elastic–perfectly plastic solid and a non-dimensional parameter which relates

the wavelength, maximum amplitude and growth rate of the interface, and the reference density of

the material. This relation appears to be material independent since it is based on the idea that

the solid after a moderate to strong-shock–interface interaction behaves like a fluid until the stresses

at the interface are sufficiently relaxed for the effect of shear to become apparent. This effect will

appear in the form of oscillatory motion, as occurred in the elastic analytical model of Chapter 5. In

addition, results seem to indicate the existence of a threshold value of the initial amplitude, given an

initial shock strength and yield stress, for which the interface grows indefinitely leading to formation

of ejecta in a fluid-like fashion, and for which the previously stated linear relation with yield stress

does not apply since a maximum amplitude of the interface cannot be properly defined.

The study of the behavior of the interface for a range of initial conditions and material parameters

performed by Dimonte et al. [27] is replicated here using the AMROC multi-material implementa-

tion described in Chapter 3 and substituting the solid–gas interface employed in Dimonte et al.’s

simulations by a solid–vacuum interface. There exist two reasons that support this last decision.

In the first place, the solid–gas case is used in [27] to mimic a solid–vacuum interface, which may

be difficult to model in PAGOSA. Finally, making use of a solid–vacuum interface represents an

opportunity to test the capabilities of the multi-material HLLD solid–vacuum solver.

Copper is used in all the test cases and modeled following the constitutive law (6.1). A perfectly

plastic model with yield stress of 0.5 GPa, the same that is used in [27], is considered for the first
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baseline test case. In this example, the motion is started by the Riemann problem produced by

the impact of two blocks of unstressed copper approaching with a relative velocity of 5 km/s. For

copper material parameters, the solution of such a Riemann problem involves two plastic shock

waves traveling in opposite directions with velocity Us = 7.6 km/s (Ms = 1.67) with respect to the

material discontinuity. The jump in normal velocity and stress across the shocks is ∆u = 2.5 km/s

and ∆σxx = −174.8 GPa, respectively. The value of the velocity jump matches that in [27]. However,

the value of the increment in normal stress, which is reported to be 160 GPa in [27] cannot be exactly

matched. This indicates a deviation of approximately 10% that can be attributed to different

constitutive laws being employed. In the case of a non-perturbed interface, i.e., a one-dimensional

problem, the solution of the Riemann problem after the shock–interface interaction yields a copper

density of 7.9 g/cm3 and an initial interface velocity V0 = 5.2 km/s. These values match reasonably

well those reported by Dimonte et al. (8.3 g/cm3 and 5.26 km/s, respectively). It is important

to note that the release temperature obtained in our example is close to 1900 K while a value of

1300 K is obtained in [27]. The latter temperature value is barely below the melting temperature

for copper, while the value obtained in our simulations is well above the melting threshold. Since

melting is not included in this particular plasticity model, the yield stress value remains unmodified

but the observed large discrepancies for this temperature value raise the question of the accuracy

of constitutive laws used by both sets of simulations. Additional simulations run by Dr. Julian

Cummings of the PSAAP CFD group using Sandia National Laboratories CTH hydro-code indicate

an approximate value of 1800 K when the same initial conditions are considered.

Figure 6.1(a) shows the rectangular computational domain and initial disposition of vacuum

(blue) and solid (red). The solid is initially placed on the right side of the computational domain.

With this setup, one of the shocks originated by the initial Riemann problem travels to the right

and exits the computational domain while the other moves towards the interface. A start-up glitch

is produced due to the discrete treatment of the Riemann problem and for this reason the initial

position of the shock is chosen far from the interface in order to avoid excessive wave perturbations

due to the glitch (Fig. 6.1(b)). A constant velocity field is added to the whole domain in a way such

that an unperturbed interface would remain stationary upon the shock-interface interaction. The

interface is perturbed with a sinusoidal wave η = η0 cos(kx2) with k chosen in a way such that two

full waves are included in the computational domain.

In Fig. 6.1 density contour plots at different times for a numerical simulation using σY = 0.5 GPa

and η0k = 0.4 are shown. The first two figures are used to show the initial conditions and shock

propagation towards the interface. After the shock reaches the interface, an expansion fan develops

in the solid as a result of the Riemann problem originated at the free surface (with zero normal and

tangential stress boundary conditions). As expected in a heavy–light Richtmyer–Meshkov problem,

the interface experiences a phase reversal (Fig. 6.1(c)). In this particular simulation, the spike
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(a) t = 0 (b) t = 0.15

(c) t = 0.45 (d) t = 1.25

(e) t = 1.9 (f) t = 5.2

Figure 6.1: Time evolution of density contours for a solid–vacuum Richtmyer-Meshkov problem with
parameters for copper, σY = 0.5 GPa, η0k = 0.4, and Ms = 1.67. (a,b) show initial conditions and
propagation of the shock, (c) depicts the state after shock–interface interaction with interface phase
reversal, (d,e,f) show unbounded spike growth and break-up.

amplitude is unbounded and grows until the spikes break due to grid resolution and regularization (a

fracture model has not been included in the numerical implementation yet), as shown in Fig 6.1(d,e).

Finally, in the last frame, the ejected droplets, which move at constant velocity, are about to exit

the computational domain through the left boundary.

Figure 6.2 offers the first comparison with results in [27] by showing the evolution of spike and

bubble amplitudes with respect to time for different initial amplitudes η0k = {0.125, 0.18, 0.22, 0.4}.
Perturbation amplitudes are computed as differences from the interface position in time of an ad-

ditional simulation run with initial parameter η0k = 0. Time is conveniently non-dimensionalized

with k|Vbu|t with Vbu being the maximum growth rate of the bubbles. t = 0 is taken at the initial

shock–interface interaction. Following an initial growth period produced by the material being in

the plastic regime, the characteristic oscillatory (or decaying oscillatory) behavior described in the

analytical elastic model appears after the shear stresses are relaxed to a state below the yield surface.

In this long-term limit, shear waves and not plasticity control the evolution of the bubble interface,

whose amplitude converges to a mean value proportional to the initial interface amplitude in the

four cases examined.

The spikes, on the other hand, exhibit a more pronounced growth rate at early times. A lower
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initial amplitude produces a behavior close to that of the bubbles, with interface amplitudes saturat-

ing around a mean value in the long term. However, a sufficiently large initial amplitude produces

continuous growth of the interface as the material never abandons the plastic regime. As shown

in Fig. 6.2, comparison with Dimonte et al.’s results reveal good agreement in the description of

the bubble amplitudes and discrepancies for the spike amplitudes that become larger as the initial

perturbation amplitude increases, especially for the cases where ejecta are formed. These differences

may be attributed to different constitutive laws and algorithms being used since they become more

noticeable in the large deformation, nonlinear regime. Moreover, figures in [27] are small in size and

it is not easy to identify how exactly the initial time is chosen (beginning or end of shock-interface

interaction, phase reversal) and which state is used as a reference for computing spike and bubble

amplitudes. These uncertainties lead to misaligned curves in the start-up process between the two

sets of results. However, a visual examination of the maximum amplitude slope reveals similar

growth rate values in both methods and they seem to agree at the time of predicting whether ejecta

are formed or the interface reaches a constant amplitude.

Finally, in Fig. 6.3, the linear relation between the yield stress and the saturation interface

amplitude postulated in [27, 91] is constructed from discrete data points. A series of simulations

were run varying the values of η0k = {0.125, 0.18, 0.22, 0.4} and σY = {0.25, 0.5, 0.75, 1}GPa. For

all the cases in which the interface reaches a constant mean value in the long-term, this value and the

square of the maximum spike velocity are represented in the y- and x-axis, respectively, conveniently

non-dimensionalized as kηmaxsp and ρ0|Vsp|2/σY . A linear fit of the data is performed revealing that

σY ≈ Kρ0
|Vsp|2
kηmaxsp

, (6.2)

with K = 0.2 and K = 0.24 for our simulations and Dimonte et al.’s results respectively. The

difference in slope may look large at first but a closer examination of the data points reveals that for

small initial amplitudes, i.e., results closer to a linear regime, the values obtained are very similar.

It is only as the saturation amplitude grows that the obtained results exhibit an underestimation of

the linear fit while those of Dimonte et al. are consistently above the linear regression function. If

only data points with kηmaxsp < 2 are considered, the gap in slopes of the linear fits becomes smaller,

with K = 0.205 and K = 0.215, respectively. Finally, it is worth mentioning that the value reported

in [91] is K = 0.29. However, the case examined there is a light–heavy, i.e., vacuum–solid, problem

with Atwood ratio At ≈ 1 instead of a heavy–light interface (with At = −1). Under that condition,

the interface does not experience phase reversal and higher saturation amplitudes are obtained for

similar growth rates.
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Figure 6.2: Comparison between spike and bubble amplitudes with time obtained from AMROC
simulations (continuous lines) and Dimonte et al. (PAGOSA) results [27] (dashed lines) for four
different values of the initial amplitude of the interface kη0 = 0.125 (blue), 0.18 (red), 0.22 (brown),
and 0.4 (black). Material used is copper with initial shock strength Ms = 1.67 and σY = 0.5 GPa.
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Figure 6.3: Maximum non-dimensional spike amplitude (kηmaxsp ) vs. maximum non-dimensional
spike growth rate squared (ρ0|V sp|2/σY ) for different initial conditions and yield stresses. Circles
represent AMROC spike results with σY = 0.25 (green), 0.5 (magenta), 0.75 (red) and 1 (orange)
GPa. Dimonte et al. results [27] for spikes are denoted by crosses. The blue and black continuous lines
are the linear fits obtained from the data points for AMROC and PAGOSA simulations, respectively.
Finally, maximum bubble amplitudes are also shown using black squares and blue diamonds for
AMROC and Dimonte et al.’s results, respectively. Material used is copper with equation of state
(6.1).

6.4 Cylindrical Richtmyer–Meshkov instability in solid–gas

interfaces

The problem of solid–gas interfaces accelerated by an imploding shock in cylindrical geometries is

described and analyzed in this section with the main goal of studying the effect of diverse initial

conditions and material parameters on the interface stability and behavior. Parameters of interest

describing the initial geometry of the interface are given by the wave number n and amplitude η0

of the perturbations and the initial mean position R0. The initial material state is defined by the

initial density solid–gas density ratio ri = ρs
ρg

, the incoming shock Mach number Ms. A perfect

plasticity model is considered for the solid, defined by the yield stress σY . Table 6.1 summarizes the

range of parameters used in the numerical simulations.

The first part of the section introduces the initial setup and boundary conditions for the problem.

This paragraph is followed by the description of the evolution in time of a simulation run with the
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Table 6.1: Parametric study of the Ritchmyer–Meshkov flow for solid–gas interfaces in cylindrical
geometry

wave number n 4, 8 ,12, 16
initial perturbation amplitude parameter C ≡ η0n/R0 0.05, 0.1

solid–gas density ratio ri 10, 100, 1000
initial shock Mach number Ms 1.16, 1.31, 1.48, 1.65, 1.83

yield stress σY 0, 0.12, 0.5, 1.0 GPa

parameters marked in bold in Table 6.1. The purpose of this paragraph is to explain the general

features observed in the Richtmyer–Meshkov flow for solid–gas interfaces and establish a baseline

problem that serves as a reference for the parametric study. This goal is accomplished by the exten-

sive use of density contour plots and wave diagrams that support the explanation of relevant events,

such as the initial shock–interface interaction, phase reversal, and re-shock. The third part of the

section presents convergence studies based on the conservation of mass in the fluid and its evolution

at each of the phases of the problem and on the deviation from radial symmetry of a cylindrical

and unperturbed solid–gas interface. These studies are of key importance for trusting numerical

results and determining their validity. Errors close to 2% in mass conservation are demonstrated for

a problem with initial density ratio ri = 100 when the maximum resolution available given current

computational constraints is used. For higher density ratios, mass conservation becomes a major

issue as the volume occupied by the fluid diminishes. Deviation from radial symmetry is a known

drawback of the algorithm already reported in [8] for a different test case and it is therefore im-

portant to quantify is effect in the converging Richtmyer–Meshkov problem. The last part of the

section is rather extensive and contains the results of the parametric study separated in different

paragraphs (geometry parameters, density ratio, initial shock Mach number, and yield stress) that

contain tables and time evolution and contour plots in order to illustrate the main conclusions of

the analysis.

6.4.1 Computational domain. Boundary and initial conditions

A square computational domain {0, 10}×{0, 10} with grid cells of aspect ratio unity is employed for

simulating a quadrant of a full cylindrical simulation. To achieve this purpose, reflective conditions

are imposed in the left and bottom edges while zero-gradient boundary conditions are enforced in

the upper and right edges in a way such that the axis is located at (0, 0).

Figure 6.4 shows a typical initial configuration of the problem. The solid–fluid interface is initially

located at Rint(θ) = R0+η0 cos(nθ), with r =
√
x1

2 + x2
2 and θ = arctan (x2/x1). The value R0 = 5

is used in all the simulations considered in this section. At t = 0 the system is at rest. The fluid is

modeled as a perfect gas with γg = 5/3, ρg0 = 8.93/ri g/cm3 and pg0 = 0.05 GPa, which is very small

compared to the typical shock driving stress in the solid. The solid between the interface and the
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discontinuity originating the shock has an uniform state given by g = I and ς/cv = 2.365 · 10−2,

which produces a hydrostatic compression state of 0.05 GPa such that normal stresses are continuous

across the solid–gas interface. The shock is initiated by a Riemann problem set by a discontinuity

in density and radial stress in the solid at r = Rs ≡ 7 that depends on the desired shock strength.

For r > Rs, the initial state must be adapted to comply with the linear momentum equation and

curl constraint in cylindrical coordinates:

∂σrr
∂r

+
σrr − σθθ

r
= 0, (6.3a)

∂gΘθ

∂r
+
gΘθ − gRr

r
= 0. (6.3b)

This can be achieved by keeping the entropy constant and employing an explicit ODE scheme to

solve for the inverse deformation tensor components gRr and gΘθ. Note that an implementation of

the Newton–Raphson method is needed to obtain gRr once gΘθ and σrr are known. Plane strain

conditions are always considered in the z direction.

Figure 6.4: Schematic representation of boundary conditions, initial fluid and solid regions, material
interfaces, and position of the incoming shock for the converging Richtmyer–Meshkov flow in a
solid–gas interface with n = 16.

6.4.2 Baseline problem description

This paragraph describes the time evolution of a reference problem with initial parameters n = 4,

C ≡ η0n
R0

= 0.05, ri = 100, Ms = 1.65, and σY = 0.12 GPa. In order to achieve the desired initial
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Mach number, the inverse deformation tensor in cylindrical coordinates at r = Rs is

g = diag{gRr, gΘθ, gZz} = {1.655, 1, 1}, (6.4)

and ς/cv = 2.004. This state produces an elastic stress tensor,

σ = diag{σrr, σθθ, σzz} = {−655.1,−356.9,−356.9}GPa. (6.5)

The previous values were computed to obtain a shock traveling at Ms ≈ 2 in an elastic solid.

However, since the perfect plasticity model is enforced, the stress conditions behind the shock are

modified to meet the yield criterion after the first time-step and a slower plastic shock (Ms =

1.65) develops towards the solid–gas interface followed by a density (contact) discontinuity and an

expansion traveling outwards. Figure 6.6(b) shows the configuration just after the shock is produced.

Going outwards, the solid–gas interface (blue to green), incoming shock (green to orange), contact

discontinuity in solid (orange to yellow) and expansion (yellow to red) can be observed. The plastic

shock initially moves with velocity Us = 7.4 km/s (Ms = 1.65) and accelerates due to its converging

imploding motion. The jump in radial velocity and stress across the shock is ∆ur = 2.19 km/s and

∆σrr = −142.1 GPa where the minus sign indicates compression.

The state in the solid and fluid just after the shock–interface interaction varies azimuthally.

However, if one considers a purely radial problem with η0 = 0, the interface moves inwards with

velocity Ṙint = 5.14 km/s and normal stress σrr = −3.64 GPa at both sides. The solid-gas density

ratio is reduced to 23.6 and continues to decrease as the interface moves inwards. A shock with Mach

number Mg
s = 7.5 propagates in the fluid and an expansion is sent outwards in the solid, which

presents a release density at the interface of 7.95 g/cm3 (see Fig. 6.6(c), where the transmitted

shock in the fluid cannot be observed since the density jump is not enough to trigger a change in

color in the contour plot).

The evolution of the different discontinuities after the first shock–interface interaction for the

radial case (η0 = 0) can be tracked in detail in Fig. 6.5, a r − t wave diagram constructed upon the

density (grey) and stress (black) gradients. The evolution depicted in the diagram can be directly

translated to the perturbed interface case when the perturbation amplitude is sufficiently small. The

transmitted shock is accelerated, as is the interface, by the effect of the converging geometry. The

interface experiences the typical phase reversal of heavy–light Richtmyer–Meshkov configurations

(Fig. 6.6(d)). The growth rate of the interface increases with time as well. At this point, numerical

Kelvin-Helmholtz instability becomes noticeable as there exists a discontinuity in tangential velocity

across the free-slip solid–gas interface. This new phenomenon can be observed in Fig. 6.7(a) as it

creates interface oscillations of smaller wavelength and amplitude. After the transmitted shock

reaches the origin, a reflected shock travels outwards and reaches the interface producing a first re-
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shock (Fig. 6.7(b)), which makes the Kelvin–Helmholtz instability grow larger. This second shock–

interface interaction produces a bifurcation of transmitted (outwards) and reflected (inwards) shocks.

The inward-moving shock reaches the axis and reflects producing in this way a series of re-shocks

(Fig. 6.7(c)), which slow down the solid–gas interface until it finally sets in a long-term equilibrium

mean position. The deceleration process is Rayleigh–Taylor unstable. Each outward shock moves

faster than its predecessors and at the end, a single outward shock is obtained (Fig. 6.7(d)). At

this point, the effects of the multiple shock–interface interactions and instabilities described cause

the mixing zone, defined as the zone between the minimum and maximum circumferences for which

fluid and solid can be found to grow. At the end of the simulation, fluid has been confined to a

small region near the axis in pockets surrounded by solid (Figs. 6.6(e,f) and 6.7(e,f)).

Figure 6.5: r−t wave diagram for radially converging solid–gas flow constructed using density (grey)
and pressure (black) gradients. The initial Riemann problem in the solid produces a shock towards
the solid–gas interface, a contact discontinuity and an expansion. The shock–interface interaction
produces a transmitted shock in the fluid and a reflected expansion in the solid. The interface starts
moving towards the axis. As the transmitted shock reaches the axis, it is reflected as a stronger
shock which produces a secondary interaction with the interface. As a result, shocks appear in
both fluid and solid. This process is repeated with weaker shocks at each time, until the solid–gas
interface reaches an stationary position. The series of transmitted shocks in the solid finally merge
in a single outwards shock.
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(a) t = 0 (b) t = 0.05

(c) t = 0.35 (d) t = 0.85

(e) t = 1.05 (f) t = 1.5

Figure 6.6: Time evolution of density contours for the baseline solid–gas Richtmyer–Meshkov prob-
lem with parameters for copper, σY = 0.12 GPa, η0n/R0 = 0.05, and Ms = 1.65. Individual frames
show: (a,b) initial conditions and propagation of the shock, (c) state after shock–interface interac-
tion, (d) reflected shock at the axis and growth of instability before first re-shock, (e,f) state after
re-shocks and outbound shock.
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(a) t = 0.9 (b) t = 0.933

(c) t = 0.383 (d) t = 1.033

(e) t = 1.1 (f) t = 1.3

Figure 6.7: Time evolution of density contours for the baseline solid–gas Richtmyer-Meshkov problem
with parameters for copper, σY = 0.12 GPa, η0n/R0 = 0.05, and Ms = 1.65 with emphasis on the
region close to the axis. Individual frames show: (a) Kelvin-Helmholtz instability and outbound
shock after imploding shock reaches the axis, (c,d) structure of various shocks and interface instability
growth, (e,f) state after re-shocks with growing of mixing zone. Roughness in the density contours of
the first frames are due to use of rectangular grid, limitations of the approximate Riemann problem
and numerical errors when computing normals at the interface once Kelvin-Helmholtz instability
appears.
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6.4.3 Convergence studies

This section presents two convergence studies that are important in the determination of the min-

imum mesh resolution required for running accurate simulations. The first example focuses on

conservation of the mass of fluid, which is required given that the level-set method is in general

non-conservative. The second test quantifies another known inaccuracy of the level-set algorithm,

which is the deviation for radial symmetry at an initially cylindrical material interface as a simu-

lation progresses. This problem becomes more relevant in the case of inward motions (like the one

occurring in the converging Richtmyer–Meshkov instability with a solid–gas interface) as the number

of cells bisected by the material interface decreases with time.

6.4.3.1 Fluid mass conservation

Keeping an acceptable conservation of mass in the lighter material in a generally non-conservative

level-set method becomes of paramount importance for the accurate analysis of multi-material

Richtmyer–Meshkov flows. Solid–gas problems are more prone to suffer from poor mass conser-

vation since the fluid is generally more compressible than the solid. For instance, in the baseline

problem, the incoming shock propagates in the solid at Ms ≈ 1.65 but the transmitted shock prop-

agates in a fluid with a density 10 to 100 times lower than the solid at Ms ≈ 8. This effect is

aggravated by a converging geometry which accelerates the shock and increases its compression ra-

tio until it tends to extremely large values at the axis. In consequence, the volume occupied by the

fluid abruptly decreases in time and for very large density ratios (typically greater than 1000), the

final volume occupied becomes comparable to the smallest cell size that can be afforded with the

current available computational power, leading to large mass conservation errors. A second concern

is the fact that the problem with slip at the interface is ill-posed. This means that, as the mesh

resolution is increased, new and more complex scales appear, increasing the contact surface between

the two materials and therefore increasing the chance of mass conservation errors.

This paragraph is focused on mass conservation in cylindrical geometry Richtmyer–Meshkov flow

for solid–gas interfaces. For other test cases, such as solid–solid or solid–gas in planar geometry, the

reader may refer to Appendix C. A slightly modified version of the baseline problem is considered

for this example, with the only difference being an initial amplitude parameter η0n/R0 = 0.0318.

Series of simulations of the same initial, boundary value problem were run for different base-grid

resolutions and number of levels of refinement. The total mass of fluid at multiple time-steps was

computed by direct evaluation of the density field and material volumes with the help of the two-

dimensional quadrature feature integrated in the visualization software package Tecplot. Mass errors
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where computed in the L2-norm:

εmass(tnf ) =

√√√√ 1

nf

nf∑
n=1

( |mn −mn−1|
mn−1

)2

, (6.6)

where mn is the mass at time-step n, with t0 = 0. Multiple values of the final time tnf =

{0.5, 0.75, 1, 1.25, 1.5} were considered so the effect of the ill-posedness of the problem as time evolves

and interface instabilities develop can be described. Thus, this method considers that the change

in mass between time-steps gives a more accurate measure of mass conservation than computing

the difference in mass with respect to the initial value. This can be attributed to the fact that the

latter method can cancel errors due to oscillations and is not accurate in cases in which there is an

abrupt increment in mass followed by an equally abrupt loss (for instance, caused by shocks passing

through the interface). If the loss is comparable to the gain, the final mass value will be very close

to the initial value and the mass changes will be underestimated. Computing the absolute value

of the change in mass with respect to the previous time-step adequately captures the effect of the

jumps.

Figure 6.8 shows the mass conservation evolution in time. Simulations with 5 levels of refinement

are chosen with equivalent number of cells (number of cells that a uni-grid simulation would require

to equal the resolution of the finest level) in each direction ranging from 512 to 16384. The total

mass of fluid increases after the first shock–interface interaction (around t ≈ 0.25). This increment

is reduced as the mesh resolution is increased. At this point, interface perturbations are quasi-linear

and the problem is well-posed. Mass values remain stable until the first re-shock (t ≈ 0.9). After

this point, as described in Subsection 6.4.2, the interface exhibits a nonlinear behavior and the level

of detail in which flow features appear depends on the resolution used, with lower resolutions not

describing the effects of smaller wavelengths. Figure 6.9 shows how the shape of the interface for

a given time after re-shocks is clearly dependent on grid resolution. In this region, it is not clear

whether mass conservation monotonically improves with higher resolution.

Tables 6.2–6.3 and the series of plots in Fig. 6.10 illustrate with numerical results, the conclusions

drawn from the previous analysis. In the figures, different numbers of refinement levels and base-

grid resolutions are considered. In order to unify the results, the equivalent number of cells in one

direction is used in the x-axis of the plots. The mass error (6.6) is computed for different final

times, ranging from 0.5 to 1.5. For the sake of simplicity, mass errors for cases with the same

equivalent resolutions but different levels of refinement are averaged in Tables 6.2-6.3. At t = 0.5

closely after the first shock passage through the interface, first-order convergence is achieved for

the mass error as resolution is increased. Shortly after, at t = 0.75, first-order convergence rate is

maintained for coarse grids but it drops below first-order for the finer grids. This can be attributed

to the existence of numerical Kelvin–Helmholtz instability caused by the discontinuous tangential
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Figure 6.8: Mass of fluid evolution with respect to initial mass for simulations with 5 levels of
refinement and variable base-grid size. The legend values represent the equivalent number of cells
(cells in one direction that an uni-grid simulation needs in order to match the resolution of the finest
level)

(a) 512× 512 (b) 1024× 1024 (c) 2048× 2048

(d) 4096× 4096 (e) 8192× 8192

Figure 6.9: Density color-contour plots highlighting the mixing zone for five different resolutions at
t = 1.5
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velocity at the interface. This effect depends on grid resolution and is more relevant as the cell size

decreases. For results after the re-shock, first-order convergence is no longer achieved. Plateaus and

steep decrements in mass errors occur as the resolution is increased and smaller scales progressively

appear. For instance, mass error is sharply reduced from 128×128 to 512×512 and from 1024×1024

to 4096 × 4096 equivalent cells, with plateaus in between and afterwards. An explanation for this

phenomenon can be inferred from Fig. 6.9: between 512 × 512 and 1024 × 1024, the shape of the

interface changes drastically, leading to a stagnation in mass error even if resolution is increased as a

result of the increment in total length of the interface. After that, the general shape of the interface

remains relatively unchanged until the 4096× 4096 case. As resolution is increased to 8192× 8192,

more detailed features appear in the interface, specifically tiny pockets of fluid, which lead to the

second plateau in mass conservation. It is worth noting that results become more dependent on the

number of levels of refinement used for a given equivalent resolution but a trend cannot be easily

identified (for instance, it cannot be said that, in general, lower levels of refinement for a given

equivalent resolution lead to better mass conservation).

Table 6.2: L2-errors and convergence rate for t = {0.5, 0.75, 1.0}. Cases with the same equivalent
resolution but run with different levels of refinement have been averaged.

eq.resolution tnf
= 0.5 tnf

= 0.75 tnf
= 1.0

ε(tnf ) C.R. ε(tnf ) C.R. ε(tnf ) C.R.

64 5.052e-3 3.662e-3 8.672e-3
128 3.562e-3 0.504 2.435e-3 0.589 10.17e-3 -0.229
256 1.991e-3 0.839 1.381e-3 0.818 3.695e-3 1.460
512 1.096e-3 0.862 0.736e-3 0.909 1.009e-3 1.873
1024 0.538e-3 1.026 0.361e-3 1.025 1.003e-3 0.009
2048 0.265e-3 1.023 0.185e-3 0.963 0.607e-3 0.723
4096 0.136e-3 0.960 0.113e-3 0.708 0.127e-3 2.260
8192 0.076e-3 0.841 0.097e-3 0.225 0.176e-3 -0.469
16384 0.052e-3 0.539 0.103e-3 -0.089 0.180e-3 -0.039

Table 6.3: L2-errors and convergence rate averaged for t = {1.25, 1.5}. Cases with the same
equivalent resolution but run with different levels of refinement have been averaged.

eq.resolution tnf
= 1.25 tnf

= 1.5
ε(tnf ) C.R. ε(tnf ) C.R.

64 10.10e-3 9.267e-3
128 9.599e-3 0.074 8.198e-3 0.177
256 3.104e-3 1.629 2.660e-3 1.624
512 2.259e-3 0.458 1.934e-3 0.460
1024 1.604e-3 0.494 1.723e-3 0.163
2048 1.090e-3 0.557 0.885e-3 0.965
4096 0.523e-3 1.060 0.507e-3 0.804
8192 0.508e-3 0.042 0.491e-3 0.0459
16384 0.576e-3 -0.181 0.631e-3 -0.361
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(d) tf = 1.25
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Figure 6.10: Mass conservation errors given by Eq. (6.6) for multiple final times tf =
{0.5, 0.75, 1, 1.25, 1.5}. Different number of total levels (with 1 level corresponding to uni-grid)
and base-grid resolutions are considered, with results unified using the equivalent number of cells
(number of cells needed in an uni-grid simulation to match the resolution of the finest AMR level) in
each direction. First-order convergence is obtained for early times as the problem is well posed. For
later times, as multiple source of instability are present, the problem is ill-posed and an increment
in resolution does not monotonically decrease conservation errors.
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6.4.3.2 Preservation of cylindrical geometry in a multi-material level-set algorithm

Numerical limitations of the level-set advection and reinitialization algorithm (see Section 3.3) have

an effect on the time evolution of the perturbed material interface. This problem is well documented

in the test case described in Subsection 3.3.4, in which an initially cylindrical shell moves inwards

with a radial velocity field. The shell enters the plastic state and a transfer between kinetic and

internal energy occurs under the effect of plastic dissipation until the solid comes to a rest. In the

process, the cylindrical geometry is distorted as the solid moves inwards and less cells are bisected by

the material boundary. The distortion is heavily dependent on the grid resolution used but exhibits

first-order convergence rate for small cell-sizes.

In order to test the magnitude of this known effect in the simulations of the cylindrical Richtmyer–

Meshkov flow for solid–gas interfaces, a series of simulations with η0 = 0 are considered. The first six

cases are run with a single-grid, starting at 64× 64 cells and increasing resolution by a factor of two

until 2048×2048. After this point, uni-grid computations are not practical due to computation time

constraints and simulations with 4 levels of refinement are employed, with effective grid resolutions

spanning from 4096 effective cells in each direction (i.e., number of cells that uni-grid simulations

need in order to match the resolution of a multi-level simulation) to 16384 cells. The rest of initial

parameters and material properties are similar to those used in the baseline problem.

In Fig. 6.11, the deviation from the cylindrical geometry is measured by:

L2 − error(t, R) =
1

R(t)

√√√√ 1

N

N∑
n=1

(
Rn(t)−R(t)

)2
, (6.7)

where Rn is the solid–gas boundary position at a particular ray θn = arctan (x2/x1) = Cn, N is the

total number of rays, and R is the mean radial position of the interface

R(t) =
1

N

N∑
n=1

Rn(t). (6.8)

Results are shown from the time interval t = {0.26, 0.8}. The initial shock–interface interaction

(t ≈ 0.26) produces the first deviations from the radial symmetry. The convergence rate of the

errors in this period is below first-order due to the discontinuous velocity field as the shock arrives

at the interface. A second region is appreciated between t = 0.3 and t = 0.5 where the error does

not increase at a high rate, specially in high-resolution simulations. As the interface continues to

move inwards (after t > 0.5), the deviation from radial symmetry increases. This phenomenon

is accelerated as the interface approaches the origin and less cells are intersected by the material

boundary. At the same time, the numerical Kelvin–Helmholtz instability appears at the material

boundary since small perturbations from the radial symmetry produce discontinuities of tangential
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velocities between the solid and the gas. The convergence rate in this region approaches first-order

in uni-grid computations. However, it is observed that the error in AMR simulations (represented

by dashed lines) increases at a higher rate than for uni-grid computations. For instance, the error

measured for the 2048× 2048 uni-grid case is similar to that for an effective cell size of 4096× 4096

with four levels of refinement. During this period the interface is Rayleigh–Taylor stable since

the interface accelerates (see Fig. 6.5) and all the perturbations can be attributed to the effect of

the level-set advection and reinitialization algorithms in a converging geometry and the subsequent

numerical Kelvin–Helmholtz instability. Results are not shown for the time after the first re-shock

as a shock interaction with an already perturbed interface produces a strong Richtmyer–Meshkov

instability and the deceleration of the interface causes the inception of Rayleigh–Taylor instabilities.

6.4.3.3 Summary of convergence studies

The test cases analyzed suggest that very small cell sizes are required to reduce the errors in mass

conservation and deviation from radial symmetry up to acceptable limits. AMR is completely neces-

sary to achieve high-resolution with reasonable computation times, even when refinement produces

a lower convergence rate of the deviations from radial symmetry. The fact that first-order conver-

gence rate is only achieved for a small period of time reveals that an increment in grid resolution

is not accompanied by a proportionally accurate result in many phases of the simulation. With

these results, an equivalent resolution of 8192× 8192 with ∆x1 = ∆x2 = 1.2207 · 10−3 is chosen for

the parametric analysis. This is motivated by the typical simulation time (around 18 hours for an

equivalent resolution of 8192 × 8192 with 4 levels of refinement and running on 56 cores compared

to 36 hours for 16384 × 16384 with 5 levels of refinement and running on 72 cores) and the small

difference in mass conservation between the two largest resolutions tested (i.e., in the case examined

for mass conservation, 8192× 8192 has a lower mass conservation error than 16384× 16384 for the

period of time after the re-shock).

6.4.4 Interface parametric analysis

This section describes the behavior of the solid–gas interface under different initial and material

parameters. The study of the interface evolution in the impulsive and linearized analytical model

for elastic solids (Chapter 5) reveals that the growth rate of the interface is mainly affected by the

initial geometry (wave number and amplitude), the density ratio of the materials, and the initial

velocity of the impulse (which can be substituted in the shock-driven case by the Mach number of

the incoming shock). In particular, just after the impulse occurs, the interface growth rate in an

elastic solid follows the classical idealized results for fluids obtained by Richtmyer [96]:

U = AtV0η0k. (6.9)
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Figure 6.11: L2-error and convergence rate for the preservation of radial symmetry in a solid–gas
cylindrical interface processed by a shock wave. Continuous and dashed lines represent uni-grid and
AMR computations respectively. The number of cells in the legend represent the effective resolution.
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For a solid–gas interface, the Atwood ratio is defined as At =
ρg−ρs
ρg+ρs

, with ρs and ρg the densities

after the shock–interface interaction of solid and gas, respectively. In the cylindrical case, k = n/R(t)

or k = n/R0 for analysis far or close to the initial interface position, respectively. In addition to

the elastic analysis, the results for the elastic–plastic solid–vacuum planar case revealed that the

yield stress is the key parameter that controls the transition between the fluid-like and the elastic

behavior. In the forthcoming paragraphs, the effect of each of these parameters is described using

plots depicting the temporal evolution of interface parameters. The amplitude of the interface η and

the growth rate U ≡ η̇ of the perturbations can be computed by knowing at each time the volume

fraction at each point of the domain for fluid and solid. In the level-set approach, the volume fraction

can be easily computed as Xi = φi
|φi| . The amplitude is subsequently derived as

η(t) = max

(
r 3 |

∫ π
2

0

Xi(r, θ, t) dθ| ≤ 1

)
−min

(
r 3 |

∫ π
2

0

Xi(r, θ, t) dθ| ≤ 1

)
. (6.10)

This expression is valid for the initial small-perturbation regime but also helps to describe the mixing

zone formed after the re-shocks. The growth rate can be directly computed from differentiation

of perturbation amplitude with respect to time. In addition to time evolution of the interface

parameters, selected contour plots sequences are employed to visualize the observed phenomena. A

complete set of these sequences for all the parametric cases can be found in Appendix D.

6.4.4.1 Influence of the initial geometry of the interface

Variations in the initial shape of the interface Rint(θ) = R0 + η0 cos(nθ) are considered in this first

parametric analysis. The wave number takes values n = {4, 8, 12, 16} and two initial amplitude

parameter values are employed: C ≡ η0n
R0

= {0.05, 0.1}, resulting in eight different initial combi-

nations. Values of the initial mean position R0, shock strength and solid–gas initial density ratio

remain constant and match those of the baseline problem.

Figure 6.12 is used to describe the behavior of the interface by looking at the amplitude and the

growth rate conveniently non-dimensionalized by the initial perturbation amplitude, wave number,

velocity of the interface after the shock–interface interaction, and mean position of the interface.

Figures 6.12 (a,b) span the whole simulation time. After the first shock–interface interaction and

the phase reversal, the amplitude grows for all cases. However, instead of growing unboundedly or

saturating to a constant value like in the planar case, the interface amplitude reaches a peak and

then decreases. This is clearly seen for the cases n = {12, 16} in which a second interface phase

reversal occurs before the first re-shock. For the simulations with n = 8, the trend is the same, but

since the peak occurs at later times when decreasing n, the first re-shock happens before this phase

reversal could be completed. Finally, for n = 4, the peak in amplitude is not reached in the period

between the first and shock–interface interactions. In Fig. 6.13, a series of density contour plots
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Figure 6.12: Interface evolution as a function of time for n = {4, 8, 12, 16} and C ≡ η0n
R0

= {0.05, 0.1}
(see legend in (a)). Figures (a) and (b) show the whole simulation time, including events after
re-shocks. Figures (c) and (d) focus on the short-term behavior after the first shock–interface
interaction.
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depict this phenomenon for n = 16 and C = 0.1. The new spikes form in the period between the

time of the first and second plots, with previous spikes becoming bubbles. The decrease in interface

amplitude can be clearly appreciated in the contour plots. Good collapse between the cases with

different initial amplitudes in the time period before the re-shock is observed when the evolution of

the perturbation amplitude is scaled with the initial perturbation value. After the series of re-shocks

(marked clearly in Fig. 6.12(b) by sudden spikes in the growth rate from t ≈ 0.9 to t ≈ 1.1) the

amplitude increases in a fluid-like fashion, exhibiting first an almost constant growth rate that slowly

decays afterwards. In general, for this region, the cases with C = 0.05 achieve a higher value of the

amplitude when scaled to the initial one than those with C = 0.1. The density contour plots for

n = 4, C = 0.05 and n = 16, C = 0.1 (Figs 6.7 and 6.13, respectively) reveal that, at the time of

re-shock, the interface shape is not sinusoidal anymore, especially for n = 16 after the second phase

reversal. The behavior after re-shocks then resembles that of a turbulent mixing zone between the

plastic solid and the gas.

In Figs. 6.12 (c,d), the initial behavior of the interface is characterized. Time is conveniently non-

dimensionalized with the initial velocity of the interface, the position of the interface in time and the

wave number. tI is the time of the first shock–interface interaction. The growth rate is presented in

a non-dimensional form such that the value of this parameter predicted by the first-order impulsive

start-up theory (6.9) would be At ≈ 1. Results show acceptable collapse for the maximum growth

rate, with values becoming closer to each other as n increases. This is due to the fact that the effects

of the converging geometry are reduced as n becomes larger, with n→∞ corresponding to a planar

case. The maximum growth rate for n = 4 is largely affected by converging geometry effects, as it

occurs at a time in which the mean position of the interface is closer to the axis.

6.4.4.2 Influence of the density ratio

The interfacial density ratio is an important parameter in the Richtmyer-Meshkov instability since

it defines, together with the pressure gradient across the shock, the magnitude of the baroclinic

vorticity deposited after the acceleration of the interface by the passage of the shock. For the

purpose of the parametric study of the solid–gas initial density ratio, the values ri = {10, 100, 500}
were selected. The initial density of the fluid is modified, keeping the solid state unchanged, in order

to achieve these values. Since the previous section revealed important differences in the interface

behavior depending on the wave number used, each density ratio is evaluated for n = {4, 16} and

C = 0.05 for a total of 6 different cases (in Appendix D, contour plots for cases with C = 0.1 are

also shown).

The conditions resulting from the shock–interface interaction are modified due to different Rie-

mann problems at the interface being developed with each initial value of the density ratio. Table

6.4 summarizes the initial interface velocity V0, Atwood ratio after shock At (with a negative value
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(a) t = 0.8 (b) t = 0.883

(c) t = 0.917 (d) t = 0.95

(e) t = 1.0 (f) t = 1.1

Figure 6.13: Density contour plots close to the axis for the case with initial parameters n = 16 and
C = 0.1. New spikes form in the cusp of the bubbles in the period between t = 0.8 and t = 0.883
(Figures (a) and (b)). These new spikes grow producing a second phase reversal, with previous
spikes becoming bubbles. The interface is re-shocked in (c) and a mixing zone typical of gas–gas
Richtmyer–Meshkov instability is formed.
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Table 6.4: Interface parameters in shock–interface problem with different initial density ratios

ri V0(km/s) σrr(GPa) At

10 4.58 -25.4 -0.455
100 5.14 -3.64 -0.919
500 5.23 -0.88 -0.985

indicating a heavy–light interface), and normal stress σrr for each of the considered cases in an

unperturbed interface problem (C = 0).

As a result of the converging cylindrical geometry, the conditions across the interface dynamically

change as it approaches the axis. Figure 6.14 reveals that the velocity evolution is substantially

modified as the initial density of the fluid varies. In particular, less velocity is achieved upon release

as the fluid density is increased. The acceleration produced by the converging geometry is also

lower and, in the ri = 10 case, the velocity decreases when the fluid inside becomes denser than

the solid moments before the first re-shock (Fig. 6.14(d)). The differences between the two cases

with higher density ratio are less noticeable. The first re-shock occurs at a later time for lower ri

as a consequence of the slower motion of the interface and the transmitted shock in the fluid. The

normal stress at the interface is always increased proportionally to its value after the shock passage

by the converging motion.

Important features are found when comparing the interface evolution for the six considered cases.

In the first place, as Fig. 6.15 shows, the cases ri = 100 and ri = 500 exhibit a very similar behavior,

especially before the re-shock. This suggests the existence of a limiting case as the solid–vacuum

situation (At = −1) is approached. Unfortunately, with no opposition from the presence of a gas,

solid–vacuum converging simulations fail before the interface reaches the origin (since the value of

the velocity at the interface tends to infinity), exceeding the capabilities of the level-set algorithm.

A solid–gas interface with a low enough initial density ratio can be then sufficient to qualitatively

predict the evolution of the pure solid–vacuum configuration.

The evolution after re-shock, as observed in Figs. 6.15 (a,b), exhibits some differences that are

mainly a result of the volume occupied by the fluid. The case ri = 500 contains five times less

mass of fluid than the case ri = 100. Inferring from Fig. 6.14(c) a similar pressure field in both

cases after re-shock, the final volume of fluid has to be much smaller in the higher density ratio

case. The comparison between the contour plots in Fig. 6.17 and their counterparts for ri = 100

(Figs. 6.7(e) and 6.13(f)) reveals that the fluid pockets are more sparsely distributed in the first

case. Recalling that the amplitude (size of the mixing zone) is computed as the difference between

the smaller and larger radius for which fluid and solid are found when sweeping azimuthally, the

obtained η is commonly larger in the higher density ratio case even when the volume fraction of

fluid is generally lower at each radial position r. This is illustrated in Fig. 6.16, where the volume

fraction of fluid for initial density ratios ri = {100, 500} and wave numbers n = {4, 16} is shown at
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Figure 6.14: Evolution of the interface position, normal velocity Ṙ, normal stress σrr, and Atwood
ratio At at the interface as a function of time for ri = {10, 100, 500} with η0 = 0. A lower initial
density ratio reduces the initial velocity of the interface and its acceleration before the first re-shock.
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times t = {1.2, 1.4}. It is important to note that as the density ratio is increased, numerical mass

conservation errors become higher.

The comparison of the baseline problem, with an initial density ratio of 100, to the case of lower

density ratio, with an initial density ratio of 10, reveals substantial differences. In the first place,

the lower (in absolute value) Atwood ratio makes the interface grow more slowly before the first

re-shock (Fig. 6.16(c)). However, with respect to the start-up process, Fig. 6.16(b) reflects that

the non-dimensional maximum growth rate divided by the Atwood ratio after the shock passage

UR(t)/(AtV0η0n) is higher for ri = 10 and closer to the first-order theory predicted value of 1. In

the case with n = 16, the second interface inversion seen for ri = 100 before the re-shock never

occurs. This seems to indicate that the occurrence of this second interface phase inversion during

the inwards motion of the interface depends heavily on the density of the lighter material. As the

vacuum condition is approached by lowering the density of the fluid, the high compression generated

by the converging motion makes the plastic solid achieve a lower energy configuration by creating

new spikes in the bubbles. For a lower density ratio, this effect is restricted by the opposition

of a more dense fluid. Figure 6.16(d) shows that the growth rate for ri = 10, n = 16 remains

approximately constant for the period of time of inwards motion of the interface while it increases

progressively in the same period for ri = 10 and n = 4. After re-shock, the fluid becomes more dense

than the solid (Figs. 6.14(d) and 6.18(b,c)). The re-shock in this configuration is again a heavy–light

Richtmyer–Meshkov case which produces an interface phase reversal for n = 16 as shown by the

density color-contour plots in Fig. 6.14(d)(d,e,f). For n = 4, the phase reversal does not completely

occur (see density contour plot in Appendix D) and the interface exhibits no growth in this period.

6.4.4.3 Influence of the initial shock Mach number

The incoming shock Mach number controls the initial velocity of the interface for a fixed density

ratio. In this paragraph, five initial shock Mach numbers Ms = {1.16, 1.31, 1.48, 1.65, 1.83} are

examined for wave numbers n = {4, 16}, with all other parameters remaining fixed (initial density

ratio r = 100 and interface amplitude parameter C = 0.05). Table 6.5 summarizes the initial

interface conditions: velocity V0 , Atwood ratio after shock At (with a negative value indicating a

heavy–light interface), normal stress σrr, and time elapsed from the beginning of the simulation to

shock–interface interaction tI , for each of the considered cases.

As is shown in Fig. 6.19, the evolution of interface conditions with respect to time is scaled by the

initial shock Mach number, with higher values increasing the values of velocity and normal stress.

It is important to note that the Atwood ratio reaches a higher value with weaker shocks, with the

gas becoming for an instant after the first re-shock more dense than the solid in the Ms = 1.16

case. Figure 6.20 shows the evolution of the interface conditions when time, velocity, and stress are

conveniently scaled with the initial velocity of the interface. Results reflect that the acceleration of
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Figure 6.15: Interface evolution as a function of time for ri = {10, 100, 500}, n = {4, 16}, and
C ≡ η0n

R0
= 0.05 (see legend in (a)). Figures (a) and (b) show the whole simulation time, including

events after re-shocks. Figures (c) and (d) focus on the short-term behavior after the first shock–
interface interaction.

Table 6.5: Interface parameters in shock–interface problem with different initial shock Mach numbers

Ms V0(km/s) σrr(GPa) At tI

1.16 2.011 -0.661 -0.943 0.375
1.31 3.059 -1.302 -0.933 0.331
1.48 4.119 -2.174 -0.927 0.293
1.65 5.14 -3.64 -0.919 0.264
1.83 6.195 -4.768 -0.915 0.238
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Figure 6.16: Volume fraction Xf (r, t) of fluid computed by sweeping azimuthally for each r:

Xf (r, t) =
∫ π

2

0
Xf (r, θ, t) dθ. Results are shown for ri = {100, 500}, n = {4, 16} and t = {1.2, 1.4}.

(a) n = 4 (b) n = 16

Figure 6.17: Density contour plots close to the axis at t = 1.2 for ri = 500 and n = {4, 16}.
Comparison with equivalent figures for ri = 100 (Figs. 6.7(e) and 6.13(f)) shows that the volume
of fluid is reduced due to its lower initial density. However, the fluid pockets are more sparsely
distributed, leading to a higher value of the interface amplitude (computed as the size of the mixing
zone).
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(a) t = 0.85 (b) t = 0.983

(c) t = 1.033 (d) t = 1.2

(e) t = 1.3 (f) t = 1.5

Figure 6.18: Density contour plots in the region close to the axis for the case with initial parameters
ri = 10, n = 16, and C = 0.05. The fluid is more compressible than the solid, which produces
a positive At after the transmitted shock in the fluid is reflected at the axis (between figures (a)
and (b)). The re-shock is then a heavy-light Richtmyer–Meshkov case, which produces an interface
inversion ((d) et seq.).
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Figure 6.19: Evolution of the interface position, normal velocity Ṙ, normal stress σrr, and Atwood
ratio At at the interface as a function of time for Ms = {1.16, 1.31, 1.48, 1.65, 1.83} and η0 = 0. A
lower initial density ratio reduces the initial velocity of the interface and its acceleration before the
first re-shock.

the interface scaled with the initial velocity is higher for weaker shocks (i.e., a low Mach number

simulation is more sensible to the effect of the converging geometry), leading to the described more

pronounced increment of the normal stress and Atwood ratio with respect to its original values. As

a last remark, the final position of the interface after re-shocks is almost independent of the shock

strength.

Figure 6.21 shows amplitude and growth rate of the interface perturbations, which exhibit a large

dependence on the initial shock Mach number. The same features observed in the baseline problem

are found, with accelerated growth of the interface and a second phase reversal as the interface

converges towards the origin, respectively, for n = 4 and n = 16. With respect to the growth

rate after the first shock passage, a larger value throughout the inwards motion of the interface

when scaled with the initial interfacial velocity V0 is observed for the weaker shocks. This can be

appreciated in the values for phase inversion and maximum non-dimensional growth rate shown in

Fig. 6.21(f).
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Figure 6.20: Evolution of the interface position and non-dimensional normal velocity Ṙ, normal
stress σrr, and Atwood ratio At at the interface as a function of time scaled with V0 for Ms =
{1.16, 1.31, 1.48, 1.65, 1.83} and η0 = 0.
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Figure 6.21: Interface evolution as a function of time for Ms = {1.16, 1.31, 1.48, 1.65, 1.83}, n =
{4, 16}, and C ≡ η0n

R0
= 0.05 (see legend in (a,c)). Figures (a,b,c,d) show the whole simulation time,

including events after re-shocks. Figures (e) and (f) focus on the short-term behavior after the first
shock–interface interaction.
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On the behavior after re-shock, the fluid and elastic–plastic solid become more “mixed” as the

strength of the incoming shock increases, as observed in Fig. 6.22. For Ms = 1.16, the initial

structure of the perturbation remains with a number of observed spikes and bubbles equal to the

original perturbation with n = 16. This periodicity is broken as the shock Mach number increases

leading to a more “turbulent” mixing zone with lower length-scales appearing.

6.4.4.4 Influence of yield stress

The yield stress controls the strength of the solid. After this threshold value is exceeded, the solid

behaves mostly like a fluid, with hydrostatic stresses being much higher than shear ones. Given the

relatively strong shock of Ms = 1.65 that drives the Richtmyer–Meshkov instability in the baseline

problem, a very high value of the yield stress is necessary for the solid to remain in the elastic

regime. In order to remain close to physical values of yield stress normally measured for copper,

this parametric study is performed with σY = {0, 0.12, 0.5, 1}GPa, values that keep the solid in

the plastic regime. In particular, a zero yield stress corresponds to a solid with no ability to support

shear, which performs exactly like a fluid subjected to hydrostatic pressure. Additional parameters

of the problem are the wave number n = {4, 16}, the relative initial amplitude C ≡ η0n
R0

= 0.05 and

the initial solid–gas density ratio ri = 100.

Figure 6.23 shows the velocity of the interface with respect to time with C = 0 simulations for the

values of the yield stress examined in this analysis. No noticeable change of the velocity evolution

is appreciated when varying σY . The same occurs with the rest of the interface conditions, such as

Atwood ratio and the normal stress. These are not shown here since they do not provide any new

relevant information.

The evolution of the interface perturbations is depicted in Fig. 6.24. In principle, no change

in the general trends previously observed is appreciated: the amplitude increases between shock

interactions for n = 4 and suffers a second phase reversal for n = 16. However, it is observed that

decreasing the yield stress leads to higher values of the perturbation amplitude for a given time.

This is especially noticeable for n = 16 after the re-shocks (Fig. 6.24(a)). The perturbations in

the hydrostatic case with σY = 0 GPa grow faster (Fig. 6.24(b)) since no elastic behavior at all is

experienced. When the yield stress is increased, the presence of some shear deformations that carry

away from the interface some of the vorticity deposited in the shock passage reduces the growth

rate. A lower yield stress also increases the initial maximum growth rate, as shown in Fig. 6.24(d).

With the aim of analyzing the mixing zone more closely, Fig. 6.25 shows the density contour plots

for n = 4 at the final simulation time for the four examined cases. As the yield stress increases, the

instability is less pronounced, as can be observed in the shape of the small fluid pocket surrounding

the origin, which is almost axisymmetric for σY = 1 GPa. The mixing zone for n = 16 is similarly

depicted in Fig. 6.26. In this case, bigger pockets of fluid appear as the yield stress increases,
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(a) Ms = 1.16 (b) Ms = 1.31

(c) Ms = 1.48 (d) Ms = 1.65

(e) Ms = 1.83

Figure 6.22: Density contours for Ms = {1.16, 1.31, 1.48, 1.65, 1.83} and n = 16 at the end of the
simulation time. The mixing zone expands and becomes more fluid-like when increasing the Mach
number of the incoming shock.
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Figure 6.23: Evolution of normal velocity Ṙ as a function of time for σY = {0, 0.12, 0.5, 1}GPa and
η0 = 0. Differences in the evolution are indistinguishable.
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Figure 6.24: Interface evolution as a function of time for σY = {0, 0.12, 0.5, 1}GPa and η0 = 0,
n = {4, 16}, and C ≡ η0n

R0
= 0.05 (see legend in (a)). Figures (a,b) show the whole simulation time,

including events after re-shocks. Figures (c) and (d) focus on the short-term behavior after the first
shock–interface interaction.
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(a) σY = 0GPa (b) σY = 0.12GPa

(c) σY = 0.5GPa (d) σY = 1.0GPa

Figure 6.25: Density contour plots close to the axis at t = 1.5 for σY = {0, 0.12, 0.5, 1}GPa and
n = 4

indicating a less “turbulent” mixing zone. In particular, for the highest yield stress case, the central

pocket of fluid surrounding the origin is also almost circular and the initial wave number is conserved,

as four exterior pockets of fluid are visible in a quadrant.

6.4.4.5 Summary of parametric analysis

Parametric studies revealed interesting features of the converging Richtmyer–Meshkov problem in

solid–gas interfaces that are summarized in this paragraph. From the analysis of the geometrical

parameters of the interface:

� Interface parameters show good collapse when scaled with the initial amplitude.

� A second phase reversal is produced before the first re-shock when the wave number and the

Atwood ratio are sufficiently large.
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(a) σY = 0GPa (b) σY = 0.12GPa

(c) σY = 0.5GPa (d) σY = 1.0GPa

Figure 6.26: Density contour plots close to the axis at t = 1.5 for σY = {0, 0.12, 0.5, 1}GPa and
n = 16
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� As the linear perturbations break down in smaller structures, a “mixing zone” is created, which

resembles a fluid–fluid problem, especially for large wave numbers.

Variation of the initial solid–gas density ratio shows that:

� As the density ratio increases, results approach the solid–vacuum limit. A variation from ri = 100

to ri = 500 does not produce significant differences in the behavior of the interface.

� The mixing zone when the fluid is less dense can be wider, but the mass and volume fraction of

fluid in the mixing zone is lower.

� A lower density ratio makes the fluid become more dense than the solid. This changes the

characteristics of the interface, a second phase reversal does not occur before the first re-shock,

but happens after it since the re-shock is in a heavy–light configuration.

The following conclusions can be extracted from the parametric study of different initial shock Mach

numbers:

� A higher shock Mach number leads to a more fluid-like mixing zone.

� When results are scaled with the initial interface velocity, converging effects accelerate and com-

press the interface more when a low Mach number is used, thus leading to a faster growth rate

with respect to the initial velocity of the interface.

Finally, modifying the yield stress of the material has the following effects:

� A higher yield stress produces a slower growth rate and less perturbation amplitude, especially

after re-shocks.

� The mixing zone becomes more fluid–like as the yield stress decreases. A higher yield stress

reduces the instability of the interface, as expected by analyzing the elastic regime (which is the

limit of the plastic model as σY →∞).

6.5 Summary

This final chapter focused on numerical simulations of the Richtmyer–Meshkov instability in inter-

faces separating solids to other media and different geometrical configurations. The results for the

planar solid–vacuum case were compared to previous results found in the literature with acceptable

agreement, contributing to the validation of the AMROC multi-material code. It was shown that

the initial conditions of the interface and the yield stress of the material determine the formation

of ejecta. For lower initial amplitudes or shock strengths the stresses at the interface are eventually

relaxed by plastic dissipation and the interface amplitude saturates to a constant mean value in

the long term. Ejecta, defined as unbounded growth of the perturbations, are formed whenever the

initial parameters exceed some threshold values.

With respect to converging simulations of solid–gas interfaces, two goals were achieved. The first
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one was to determine the capabilities of the code. Problems in being able to run the simulations

after the first re-shock led to development and implementation of the stretch formulation described

in Chapter 3. Mass conservation in this demanding problem was deemed acceptable with errors

of the order of 2% for a high solid–gas density ratio and when using the maximum resolution

made available by computational constraints. Simulations of higher density ratios with acceptable

mass conservation may be possible by increasing computational power. The second purpose of this

study was to characterize the interface behavior under the influence of different geometrical and

material parameters. In general, results exhibit dependency on the initial wave number, density

ratio, shock Mach number, and yield stress. Conclusions for the effect of each of these parameters

were summarized in paragraph 6.4.4.5.
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Chapter 7

Conclusion

7.1 Summary

The general theme of this dissertation was the study of the Richtmyer–Meshkov flow in elastic and

elastic–plastic materials for both planar and cylindrically converging geometries. This led to the

investigations of two problems of interest in the field of large deformation solid mechanics, namely

converging shocks and Richtmyer–Meshkov flow in elastic–plastic solids, by means of analytical and

computational techniques. In the process, several improvements were implemented in the AMROC

multi-material code originally developed by Barton et al. [8], resulting in a more robust algorithm

for the type of problems examined here.

The equations that govern the motion of solid media were introduced in Chapter 2 where spe-

cial emphasis was given to the analysis of the polar decomposition of the deformation and inverse

deformation gradients, the use of hyper-elastic equations of state in order to preserve the hyper-

bolic characteristics of the system of equations, and the plasticity update, which was formulated in

consistency with the basic postulates of metal plasticity.

Chapter 3 focused on the numerical implementation of the equations of motion. A new formula-

tion based on the elastic part of the inverse deformation tensor was developed, with the advantage

of a reduced number of equations with respect to the system originally used by Miller and Colella

[78] but that accepts a density penalty term for adjusting the evolution of the determinant of the

inverse deformation tensor to the mass conservation equation. This fix cannot be included in the set

of equations developed by Godunov and Romenski [42]. In addition, it was shown that the equations

of motion for each of the components of the deformation or inverse deformation tensor can be applied

to the symmetric stretch tensor when a corrector is introduced at the end of each computational

time-step. The properties of the symmetric stretch tensor make possible the computational solu-

tion of Riemann problems between parts of the same material that have been rigidly rotated with

respect to each other. In the last part of the chapter, the description of the level-set multi-material

implementation included a new Riemann solver adapted from the HLLD scheme originally used
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in magnetohydrodynamics [80]. The new solver was compared to the previous version, which was

based on a method of linearized characteristics, for the case of a solid–gas interface with a difference

in pressure that replicated a Richtmyer–Meshkov shock–interface interaction, showing that results

were closer to the exact solution when employing HLLD. The study of the multi-material capabili-

ties was complemented with tests showing the influence of the AMR algorithm and the level set in

mass conservation. This tests revealed extremely small errors due to the restriction–prolongation

algorithm of AMR and at most first-order convergence rate in mass errors as the base grid is refined.

Chapter 4 explored the problem of cylindrically and spherically symmetric converging shocks in

elastic–plastic solids. This interesting problem was judged to be a useful precursor to the study of

the cylindrically convergent Richtmyer–Meshkov instability. Whitham’s shock dynamics equations

for compressible neo-Hookean elastic–plastic solids were derived obtaining closed expressions for the

shock evolution in terms of definite integrals. Comparison with numerical simulations revealed that

this approximate theory is extremely accurate, even when shear deformations and plasticity are

considered. Strong-shock limits were identified for purely elastic and elastic–perfectly plastic solids,

exhibiting a large dependence on the constitutive law used to model the material. This study was

closed with the numerical analysis of the transition of a shock from the elastic to the plastic regime

due to the effects of a converging geometry. Contrary to the elastic precursor–plastic shock structure

observed in planar shocks, the plastic shock travels faster in this case and eventually catches up with

the elastic precursor, producing a single imploding plastic shock.

Chapter 5 described an analytical model for the impulsive driven Richtmyer–Meshkov instability

in incompressible elastic solids. No-slip and free-slip conditions at the interface were examined.

Laplace transform and modal decomposition techniques were used to determine the stability of the

interface, which exhibits ringing or decaying oscillatory depending on material parameters and the

interface conditions considered. Stability of the interface was identified to be related to propagation

of shear waves, which carry the baroclinic vorticity originally deposited at the interface into the ma-

terials. To conclude the chapter, numerical simulations were performed and compared to analytical

results, with results exhibiting excellent agreement for no-slip boundary conditions. In the case of

free-slip, the period and amplitude of the oscillations are similar but a phase-lag appears as a result

of the differences between the impulsive and the shock-driven models.

In Chapter 6, Richtmyer–Meshkov instability in solid–vacuum and solid–gas interfaces was ex-

amined by means of numerical simulations. The first example, motivated by previous results by

Dimonte et al. [27] and Piriz et al. [91], attempted to validate the accuracy of the numerical code by

finding a postulated linear relation between the yield stress of a plastic material and the maximum

amplitude of the perturbations achieved in a Richtmyer–Meshkov experiment in which a perturbed

free surface is excited by a planar shock wave. Comparison with results in the literature was suc-

cessful. In the last part of the chapter, the more demanding case of a solid–gas configuration in a
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cylindrical geometry was employed to first describe the mass conservation accuracy of the numerical

implementation in well- and ill-posed problems and, finally, to perform a parametric study of the

characteristics of the interface under the variation of initial geometrical and physical conditions and

material parameters. Evolution of the interface was modified by the wave number of the initial

perturbation with a second phase inversion occurring in some cases. The solid–gas interface, upon

re-shock, exhibited progressively more turbulent mixing-zone features as the yield stress of the solid

was decreased and/or the Mach number of the driving shock increased. The initial solid–gas density

ratio was identified as another important parameter in the evolution of the interface, with high

values tending to the vacuum–solid limit behavior and low values making the fluid more dense than

the solid due to the difference in compressibility between the two materials.

7.2 Future work

Multiple directions have been identified for continuing the work presented in this dissertation, both

in the designing of algorithms and in the analysis of shock-driven problems in solid mechanics.

Improvements in the multi-material solid mechanics solver. Important additions to the

algorithm are being considered in the short term. A considerable effort must be placed in improving

the physics of the model. In this respect, two goals are clearly identified: the inclusion of a damage

model that could predict realistic rupture of materials (at this point this occurs by regularization

of the level set, being therefore dependent on the mesh resolution) and the development of accurate

phase-change models for different metallic materials. Another possibility for improvement lies in

decreasing errors due to mass conservation although the implementation of a conservative level-set

method seems complicated at the moment.

Converging shocks in solids More complex constitutive laws can be included in Whitham’s

shock dynamics equations. As an application of the future implementation of more realistic phase-

change models in the numerical algorithm, shock-induced melting can be investigated. During

shock compression, temperatures can rise dramatically, but due to the corresponding increase in

pressure, the solid does not necessarily melt. However, melting can occur during the post-shock

release phase. To be more precise, continuously driven shock waves are usually experimentally

difficult to maintain. For example, high-velocity flyer-plate impactors have finite momentum, and

high-intensity lasers have finite pulse times. The shock driving force ultimately vanishes and a

release wave starts propagating behind the compressed material, usually at a faster speed than the

shock front. The release is isentropic and reduces the density and pressure while maintaining the

temperature, making possible the melting of the material. In addition, the work can be extended to

the study of outward-moving shocks.
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Richtmyer–Meshkov flow in elastic–plastic solids An interest exists in developing an ana-

lytical model for converging geometries in line with the planar model described in this dissertation.

Preliminary work on the subject shows that the equations in cylindrical or spherical coordinates be-

come extremely hard to solve unless only first-order effects of the converging geometry are considered

(i.e., velocity of the interface remains constant and radial position of the interface stays extremely

close to its initial value). With these assumptions, the planar behavior is practically replicated in

converging geometries, even for low wave numbers. Options for carrying out this study certainly in-

volve the application of a semi-numerical approach. With respect to elastic–plastic solids, a detailed

study of the “mixing zone” and its similarities and differences with the fluid case will be of inter-

est for both the fluid and solid mechanics community. Other options for expanding the presented

work include Richtmyer–Meshkov numerical experiments using more complex models of plasticity

(hardening, thermal softening) or a phase-change model at the time it becomes available.
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Appendix A

Method of characteristics and
Whitham’s shock dynamics

The equations of motion for a radially symmetric flow (4.1) and (4.3) can be written in the following

matrix form,
∂W

∂t
+ A(W)

∂W

∂r
= S, (A.1)

where

W =


ρ

u

e

gRr

 , (A.2a)

A =



u ρ 0 0

−1

ρ

∂σrr
∂ρ

u −1

ρ

∂σrr
∂e

−1

ρ

∂σrr
∂gRr

0 −σrr
ρ

u 0

0 gRr 0 u


, (A.2b)

S =
s− 1

r


−ρu

(σrr−σθθ)
ρ

uσθθ
ρ

0

 . (A.2c)

W is called the vector of primitive variables, S contains the geometric terms in the right-hand side

of Eq. (4.1) and (4.3), and A is a matrix whose eigenvalues and eigenvectors define the characteristic

equations. There exist two repeated eigenvalues u associated to two convective modes (along which

ς and gRr are conserved), and two distinct eigenvalues u± a associated to compression modes. The
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system (A.1) decouples as

L
∂W

∂t
+ LARL

∂W

∂r
= LS, (A.3)

where L and R are the matrices whose rows and columns, respectively, contain the left and right

eigenvectors of A.

In the WSD approximation, the family of characteristic curves whose slope in the r − t plane is

closer to that of the shock wave is chosen. If the shock advances with positive radial velocity, the

correct family of characteristics to approximate the shock path is the one whose eigenvalue is given

by u + a. Provided that a constitutive law is prescribed, an ODE that relates the changes in the

primitive variables dWi for an infinitesimal change dr along this characteristic curve can be written.

The dWi can ultimately be related to the change in one variable, the shock Mach number, using

the RH conditions (4.7). For convenience, it is easier to use J = ρ0/ρ instead of M as the natural

variable in the problem, and differentiation of J and of the RH conditions (4.7a,b,d) gives:

dW =


dρ

du

de

dgRr

 =


−ρ0/J

2

a0 [(1− J)M ′(J)−M ]

σrr0/ρ0 + a2
0(1− J)M [(1− J)M ′(J)−M ]

−1/J2

 dJ. (A.4)

This method is now applied to different constitutive laws.

A.1 Isothermal constitutive law

A.1.1 Elastic motion

As mentioned in Section 4.2.4, the energy equation is redundant for the isothermal elastic case.

This reduces the system of PDEs to Eq. (4.1a), (4.1b) and (4.3). As a consequence, three simple

eigenvalues are found (there is no entropy mode traveling with the material velocity): (λ1, λ2, λ3) =

(u− a , u , u+ a), where a is the sound speed. For the constitutive law (4.8), the matrices A, L and

R reduce to:

A =


u ρ 0

−1

ρ

∂σrr
∂ρ

u −1

ρ

∂σrr
∂gRr

0 gRr u

 , (A.5a)

L =



a2 − 2a2
µ/g

2
Rr

ρa2
−1

a

2a2
µ

g2
Rra

2

gRr
ρa2

0 − 1

a2

a2 − 2a2
µ/g

2
Rr

ρa2

1

a

2a2
µ

g2
Rra

2

 , (A.5b)
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R =


ρ

2a2
µρ

g3
Rr

ρ

−a 0 a

gRr
2a2
µ

g2
Rr

− a2 gRr

 , (A.5c)

where the partial derivatives of σrr are given by:

1

ρ

∂σrr
∂ρ

=
1

ρ

{
a2
µ

[
1

g2
Rr

− 1

3

(
ρ0

ρ

)2/3
]
− dp

dρ

}
, (A.6a)

1

ρ

∂σrr
∂gRr

= −2a2
µ

g3
Rr

. (A.6b)

In the above expressions, the sound speed a is expressed as

a =

√√√√a2
µ

[
1

gRr2
+

1

3

(
ρ0

ρ

)2/3
]

+
dp

dρ
. (A.7)

The characteristic equation corresponding to λ3 = u+ a reads:

a2 − a2
µ/g

2
Rr

a2ρ

dρ

dr
+

1

a

du

dr
+

2a2
µ

g2
Rra

2

dgRr
dr

=
s− 1

ρa(u+ a)r

[
−
(
a2 − 2a2

µ

g2
Rr

)
ρu

a
+ σrr − σθθ

]
, (A.8)

and using Eq. (4.9) and (A.4), and the fact that r = R(t) at the shock location, leads to the ODE

dR

R
= − 1

s− 1

a [a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[
a0

(
a2 − 2a2

µJ
2
)
M + a2

µa(1 + J)
] dJ, (A.9a)

M(J) =
1

a0

√
1

1− J

[
p(ρ0/J)

ρ0
− a2

µ

(
J − J−1/3

)]
, (A.9b)

for any isothermal pressure form p(ρ).

A.1.2 Perfectly plastic motion

The existence of a finite yield stress makes it impossible to have an explicit dependency of the radial

stress with respect to gRr. In contrast, σrr depends on the density both explicitly through J and

through geRr by Eq. (4.30). Three distinct eigenvalues are obtained: (λ1, λ2, λ3) = (u− a , u , u+ a),

with the sound speed being

a =

√
−dσrr

dρ
=√

−a2
µ

(
1

geRr
2 +

2

geRr
3

dgeRr
dJ

J − 1

3
J2/3

)
+

dp

dρ
, (A.10)



158

with J = (ρ0/ρ), where the derivative of the elastic deformation with respect to the density ratio

can be obtained by differentiating Eq. (4.30):

dgeRr
dJ

=
geRr

3

2geRrσY /µ− 3JgeRr
2 . (A.11)

Then, the matrices A,L and R read:

A =


u ρ 0

−1

ρ

∂σrr
∂ρ

u 0

0 gRr u

 ,

L =
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gRr
2ρ

−gRr
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−gRr
ρ

0 1

gRr
2ρ

gRr
2a

0

 ,
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
ρ

gRr
0

ρ

gRr

− a

gRr
0
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gRr

1 1 1
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(A.12a)

After finding the left and right eigenvectors, the following ODE holds along the characteristic λ3 =

u+ a:
1

ρ

dρ

dr
+

1

a

du

dr
=

2

(u+ a)r

(
− σY
ρ0a
− u
)
. (A.13)

Using the RH conditions finally leads to:

dR

R
= −1

2

[a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ, (A.14a)

M(J) =
1

a0

√
1

1− J

[
p(ρ0/J)

ρ0
− a2

µ

(
1

JgeRr
2 − J−1/3

)]
, (A.14b)

where geRr is implicitly given by (4.30).

A.2 Non-isothermal constitutive law for elastic motion

In this case, the complete system of equations given by Eq. (4.1) and (4.3) is considered. Two simple

eigenvalues and one eigenvalue of multiplicity two are found: (λ1, λ
(2)
2 , λ3) = (u− a , u , u+ a), with

the speed of sound being:

a =

√
−γσrr

ρ
+

a2
µ

gRr2
(1 + γ), (A.15)
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where σrr is given by Eq. (4.20a). The matrices A, L and R are:

A =


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, (A.16a)
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∂e

1
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σrr

∂σrr
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− ρ2 ∂σrr

∂ρ

)
− σrr
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∂σrr
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(
gRr

∂σrr
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R =



ρ

gRr
− ∂σrr
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/∂σrr
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a
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, (A.16c)

where the partial derivatives of the radial stress are computed as follows:

∂σrr
∂ρ

=
2Jσrr − µ(γ − 1)(s− 1)(4− s)J4−sgRr4−s

2ρ0
, (A.17a)

∂σrr
∂e

= − (γ − 1)ρ0

J
, (A.17b)

∂σrr
∂gRr

=
µ

J

[
−γ + 1

gRr3
+

(γ − 1)(s− 1)(4− s)J4−sgRr3−s

2

]
. (A.17c)

The characteristic equation corresponding to λ4 = u+ a can be written as

L4,:
dW

dr
=

1

u+ a
L4,:S, (A.18)

where L4,: is the fourth row of matrix (A.16b). Writing the source term (A.2c) as S = (s − 1)S′/r

and using Eq. (4.7), (4.20) and (A.4), a closed ODE is obtained:

dR

R
=

1

s− 1

[a+ a0(1− J)M ] L4,:(J)dW/dJ

L4,:(J)S′(J)
dJ, (A.19a)

M(J) =
1

a0

√
a2
µ [2− J2 − γ(J + 2)2] + 2e0(γ − 1) + 2σrr0 [1− γ(1− J)] /ρ0

(1− J) [1 + J − γ(1− J)]
. (A.19b)
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Appendix B

Approximation for the growth rate
using linearization around branch
cuts

The symmetry of the problem allows us to only consider the integrals around the branch cuts located

in Im(s) > 0, multiply the result by 2 and take the real part of the expression:

∂η̂

∂t
= û1(t, x1 = 0) = upoles(t, 0) +

4∑
j=1

ubj(t, 0) (B.1)

where upoles is the contribution of the residues of the poles to the normal velocity and leading-order

branch cut contributions ubj are:

ub1(t, 0) = −
√
c−k
√

2eic−kt−iπ/4√
πt3/2

K1, (B.2)

ub2(t, 0) = −
√
c+k
√

2eic+kt−iπ/4√
πt3/2

K2. (B.3)

For c− > c+:

ub3(t, 0) = −AtV η0k
i
√
c−(c2− − c2+)k3

√
2eic−kt−iπ/4

√
πt3/2

K3, (B.4)

ub4(t, 0) = −AtV η0k

√
c+(c2− − c2+)k3

√
2eic+kt−iπ/4

√
πt3/2

K4. (B.5)

For c− < c+:

ub3(t, 0) = −AtV η0k

√
c−(c2+ − c2−)k3

√
2eic−kt−iπ/4

√
πt3/2

K3, (B.6)

ub4(t, 0) = −AtV η0k
i
√
c+(c2+ − c2−)k3

√
2eic+kt−iπ/4

√
πt3/2

K4. (B.7)



161

In particular, for free-slip boundary conditions the coefficients Ki are:

K1 =
4c2−(1 + r)[−48c2−c

6
+r

2 + 32c8+r
2 − 8c6−c

2
+r(1 + r) + c8−(1 + r)2 + 8c4−c

4
+r(1 + 3r)]

k2[−16c6+r
2 − 8c4−c

2
+r(1 + r) + c6−(1 + r)2 + 8c2−c

4
+r(1 + 3r)]2

, (B.8)

K2 =
4c2+r(1 + r)[32c8− − 48c6−c

2
+ − 8c2−c

6
+(1 + r) + c8+(1 + r)2 + 8c4−c

4
+(3 + r)]

k2[−16c6− − 8c2−c
4
+(1 + r) + c6+(1 + r)2 + 8c4−c

2
+(3 + r)]2

, (B.9)

K3 =
32c2−c

3
+r(1 + r)[−4c2−c

2
+r + 4c4+r + c4−(1 + r)]

k3[−16c6+r
2 − 8c4−c

2
+r(1 + r) + c6−(1 + r)2 + 8c2−c

4
+r(1 + 3r)]2

, (B.10)

K4 =
32c3−c

2
+r(1 + r)[4c4− − 4c2−c

2
+ + c4+(1 + r)]

k3[−16c6− − 8c2−c
4
+(1 + r) + c6+(1 + r)2 + 8c4−c

2
+(3 + r)]2

. (B.11)

When no-slip boundary conditions are imposed, the coefficients Ki become:

K1 = 4c2−(1 + r)(16c12
+ r

6 + c12
− (1 + r)2 − 8c2−c

10
+ r

5(1 + 5r) + ...

+ 2c4−c
8
+r

4(−11 + 14r + 17r2) + c6−c
6
+r

3(14 + 33r − 24r2 − 11r3) +

+ 2c10
− c

2
+r(−3− r + 3r2 + r3) + c8−c

4
+r

2(7− 24r − 12r2 + 4r3 + r4))/...

/ k2(−16c8+r
4 + c8−(1 + r)2 + 8c2−c

6
+r

3(1 + 3r)− ...

− 8c4−c
4
+r

2(−1 + 2r + r2) + c6−c
2
+r(−6− 3r + 4r2 + r3))2. (B.12)

K2 = 4c2+(1 + r)r(16c12
− + c12

+ r
4(1 + r)2 − 8c10

− c
2
+(5 + r) + ...

+ 2c8−c
4
+(17 + 14r − 11r2)− 2c2−c

10
+ r

2(−1− 3r + r2 + 3r3) + ...

+ c6−c
6
+(−11− 24r + 33r2 + 14r3) + c4−c

8
+(1 + 4r − 12r2 − 24r3 + 7r4))/...

/ k2(−16c8− + c8+r
2(1 + r)2 + 8c6−c

2
+(3 + r) + ...

+ 8c4−c
4
+(−1− 2r + r2) + c2−c

6
+(1 + 4r − 3r2 − 6r3))2. (B.13)

K3 = 8c4−c
3
+r

2(1 + r)2(4c6+r
3 + c6−(1 + r)− c2−c4+r2(1 + 5r) + c4−c

2
+r(−3 + 2r + r2))/...

/ k3(−16c8+r
4 + c8−(1 + r)2 + 8c2−c

6
+r

3(1 + 3r)− ...

− 8c4−c
4
+r

2(−1 + 2r + r2) + c6−c
2
+r(−6− 3r + 4r2 + r3))2. (B.14)
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K4 = 8c3−c
4
+r(1 + r)2(4c6− + c6+r

2(1 + r)− c4−c2+(5 + r) + c2−c
4
+(1 + 2r − 3r2))/

/ k3(−16c8− + c8+r
2(1 + r)2 + 8c6−c

2
+(3 + r) + ...

+ 8c4−c
4
+(−1− 2r + r2) + c2−c

6
+(1 + 4r − 3r2 − 6r3))2. (B.15)

The results shown in Figure B.1 for free-slip boundary conditions are quite accurate even using

only the first term (the term in 1/t3/2) of the approximation. Normally this approximation matches

the complete integration result earlier when the two shear wave velocities are very different from

each other. Figs. B.1(a) and B.1(b) show a comparison of both results (actual and approximate)

for c−/c+ = 2 and r = 2, and c−/c+ = 1 and r = 2, respectively.
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(a) c−/c+ = 2, r = 2.
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(b) c−/c+ = 1, r = 2.

Figure B.1: Contribution of the integral over the branch cuts to the growth rate using a numerical
quadrature method to integrate the growth rate function and using the first term of the approxima-
tion around the branch points
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Appendix C

Additional mass conservation
examples

The quality of mass conservation must be considered in all the applications in which a non-conservative

level-set method is used. Two additional mass conservation studies are exposed in this Appendix,

with the purpose of complementing the results in sections 3.3.5 and 6.4.3.1.

C.1 Planar solid–gas with no perturbation in a two-dimensional

grid

This analysis constitutes a largely simplified version of the converging solid–gas Richtmyer–Meshkov

problem. A rectangular computational domain {0, 8} × {0, 1} composed of rectangular cells with

aspect ratio 2 in which the fluid lies on the left and the solid (copper, with equation of state (6.1) on

the right is considered. The initial solid–gas density ratio is 100. Boundary conditions are reflective

and zero-gradient at the left and right boundary, respectively, and periodic for the top and bottom.

A left-moving shock is generated in the solid in the way explained in Section 6.4.2 and propagates

towards the interface, which lies parallel to the shock, constituting a strictly one-dimensional problem

simulated in a two-dimensional grid. Due to the reflective boundary conditions on the left, the fluid

is confined to a small region close to the boundary in a way similar to how the fluid is confined to a

small region close to the axis in the converging case. Figure C.1 shows the initial configuration with

gas (blue), solid (green) and driving solid (red).

Figure C.2 shows the time evolution of the fluid mass when compared with its initial value for

Figure C.1: Initial configuration for solid–gas one-dimensional shock–interface problem
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Table C.1: L2-errors and convergence rate for different levels of refinement

1 level 2 levels no fix 2 levels fix
effective resolution L2-error C.R. L2-error C.R. L2-error C.R.

64x16 1.801e-2
128x32 1.575e-2 0.193 1.519e-2 1.533e-2
256x64 0.727e-2 1.117 0.724e-2 1.070 0.737e-2 1.057
512x128 0.234e-2 1.634 0.430e-2 0.751 0.153e-2 2.268
1024x128 0.159e-2 0.561 0.288e-2 0.576 0.159e-2 -0.058
2048x256 0.078e-2 1.018 0.191e-2 0.591 0.070e-2 1.173
4096x512 0.095e-2 1.014 0.050e-2 0.493
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Figure C.2: Fluid mass conservation time evolution with respect to the initial value

uni-grid simulations. Errors and oscillations of the mass value are reduced as resolution increases.

Mass conservation is degraded, similarly to the behavior observed in the converging case, after the

re-shocks occur (after t ≈ 1.2). At that point the fluid is restricted to a very small layer. The total

errors in mass of fluid are evaluated by means of the same equation employed for the converging

case:

εmass(tf ) =
1

nf

√√√√ nf∑
n=1

( |mn −mn−1|
mn−1

)2

, (C.1)

where tf is the final simulation time and nf the total number of time points for which the mass has

been evaluated. Results are shown in Table C.1 and Fig. C.2. The convergence rate is not monotonic

for any of the cases studied (uni-grid and two-level simulations with and without conservative fix-

up). This is due to the small area occupied by the fluid, which has a length of only a few cells in the

higher resolution tested, as shown in Fig. C.4, where the left wall corresponds to the left reflective

boundary condition. Similarly to the cases tested in Section 3.3.5, enabling the fix-up algorithm

clearly improves fluid mass conservation.
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Figure C.3: Fluid mass conservation errors computed using Eq. (C.1) with tf = 2 (final simulation
time)

Figure C.4: Close up near the left boundary for the final simulation time (tf = 2) in a simulation
with effective resolution 4096 × 512 (base grid 2048 × 256 and one level of refinement). The fluid
region spans over a very small number of computational cells.
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C.2 Planar solid–solid Richtmyer–Meshkov

In this case, a rectangular domain {0, 12} × {0, 4} composed of square cells in considered with

aluminum and copper on the left and right side, respectively. The aim of this study is to examine

the effects of ill-posedness on mass conservation in a more simple configuration than the solid–gas

converging case. Some typical phenomena observed in the solid–gas converging simulations are

present, such as the development of the Richtmyer–Meshkov instability and the re-shocks. However,

the characteristic Atwood ratio is smaller and there are no converging geometry effects. Aluminum

follows the same form of constitutive law as copper (Eq. 6.1) with parameters ρ0 = 2.712 g/cm3,

K = 25.39e6 m2/s2, cv = 9.0e5 m2/Ks2, T0 = 300 K, µ0 = 27.09 GPa, α = 1, β = 3.577, γs = 2.088,

and σY = 0.297 GPa. Boundary conditions are reflective and zero-gradient, respectively, on the

left and right boundaries and periodic for the top and bottom. A shock, driven as explained in

Section 6.3, propagates from the copper into the aluminum. The interface is initially sinusoidal with

η0k = 0.4. Two different material boundary conditions are considered: free-slip and no-slip.

Figure C.5 shows the time evolution of the density for the case of free-slip boundary conditions,

starting with the initial configuration and the state before the shock passage (Figs. C.5(a,b)). In-

terface phase reversal and re-shock are depicted in Figs. C.5(c,d), with the final evolution of the

vortices in the last two frames (Figs. C.5(e,f)). Figure C.6 shows the mass evolution in time with

respect to its initial value for the free-slip and no-slip cases and multiple grid resolutions. Results

suggest that, as expected, increased resolution reduces mass errors.

Table C.2 and Fig. C.7 show mass errors as function of the grid resolution. Values are computed

using Eq. (C.1). The analysis of these results reveals that mass conservation in the no-slip case

converges monotonically (even with a converging rate greater than 1). However, this trend is not

repeated when considering free-slip boundary conditions, which exhibits an irregular behavior in

terms of convergence rate (although always decreasing) similar to what is found for the converging

solid-gas case. The examination of the final density contour plots for different resolutions for both

interface boundary conditions (Figs. C.8 and C.9) shows that, in the free-slip case, new scales, such

as thinner copper ligaments, appear as the resolution increases. This phenomenon is caused by

the Kelvin–Helmholtz instability developed due to the discontinuity in tangential velocities across

the material interface. The appearance of new features as the resolution is augmented effectively

increases the length of the interface between the two solids and thus the possibility of mass conser-

vation errors. On the other hand, for the case of no-slip, the final vortices exhibit a similar structure

in the higher resolution cases, leading to the previously described monotonic behavior.
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(a) t = 0 (b) t = 0.2

(c) t = 0.6 (d) t = 1.2

(e) t = 2.2 (f) t = 4.0

Figure C.5: Time evolution of density contour plots for the free-slip case. (a) Initial configuration,
(b) shock directed towards interface, (c) interface reversal typical of heavy–light configurations, (d)
re-shock, (e,f) vortex development
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Figure C.6: Mass conservation evolution with respect to the initial value with time. Continuous and
dashed lines represent free-slip and no-slip simulations respectively. All simulations are run with
four total levels (3 levels of refinement) with base-grid resolutions: 48 × 16 (blue), 96 × 32 (red),
192× 64 (green), 384× 128 (magenta), and 768× 256 (black).
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Figure C.7: Mass conservation errors computed using Eq. (C.1) with tf = 6 (final simulation time)

Table C.2: L2-errors and convergence rate for free-slip and no-slip boundary conditions

4 levels no-slip free-slip
base grid L2-error C.R. L2-error C.R.

48x16 2.530e-4 3.501e-4
96x32 2.472e-4 0.033 1.725e-4 1.021
192x64 1.254e-4 0.980 1.409e-4 0.292
384x128 0.583e-4 1.104 0.633e-4 1.154
768x256 0.243e-4 1.266 0.412e-4 0.621



170

(a) 48× 16, 4 levels (b) 96× 32, 4 levels

(c) 192× 64, 4 levels (d) 384× 128, 4 levels

(e) 768× 256, 4 levels

Figure C.8: Density color-contour plots for final simulation time and different resolutions in the
free-slip case

(a) 48× 16, 4 levels (b) 96× 32, 4 levels

(c) 192× 64, 4 levels (d) 384× 128, 4 levels

(e) 768× 256, 4 levels

Figure C.9: Density color-contour plots for final simulation time and different resolutions in the
no-slip case
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Appendix D

Density contour plots from
parametric studies

Selected density contour plots of the evolution of the solid–gas interface close to the origin for all

the cases considered in the parametric study performed in Chapter 6 are shown in this Appendix.

As regards to the initial conditions and material properties being modified, each section contains

the following examples:

Variation of the initial parameters:

C ≡ η0n
R0

= {0.05, 0.1}, n = {4, 8, 12, 16}, ri = 100, Ms = 1.65, σY = 0.12 GPa.

Variation of the initial solid–gas density ratio:

C ≡ η0n
R0

= {0.05, 0.1}, n = {4, 16}, ri = {10, 500}, Ms = 1.65, σY = 0.12 GPa.

Variation of the initial shock Mach number:

C ≡ η0n
R0

= 0.05, n = {4, 16}, ri = 100, Ms = {1.61, 1.31, 1.48, 1.65, 1.83}, σY = 0.12 GPa.

Variation of the yield stress:

C ≡ η0n
R0

= 0.05, n = {4, 16}, ri = 100, Ms = 1.65, σY = {0, 0.5, 1}GPa.
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D.1 Influence of the initial interface parameters

(a) t = 0.8 (b) t = 0.9

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.1: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.2: C ≡ η0n
R0

= 0.05, n = 8, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.3: C ≡ η0n
R0

= 0.05, n = 12, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.4: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.9

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.5: C ≡ η0n
R0

= 0.1, n = 4, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.9

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.6: C ≡ η0n
R0

= 0.1, n = 8, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.7: C ≡ η0n
R0

= 0.1, n = 12, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.8: C ≡ η0n
R0

= 0.1, n = 16, ri = 100, Ms = 1.65, σY = 0.12 GPa.
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D.2 Influence of the density ratio

(a) t = 0.85 (b) t = 1.0

(c) t = 1.05 (d) t = 1.2

(e) t = 1.3 (f) t = 1.5

Figure D.9: C ≡ η0n
R0

= 0.05, n = 4, ri = 10, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.85 (b) t = 1.0

(c) t = 1.05 (d) t = 1.2

(e) t = 1.3 (f) t = 1.5

Figure D.10: C ≡ η0n
R0

= 0.05, n = 16, ri = 10, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.85 (b) t = 0.983

(c) t = 1.1 (d) t = 1.2

(e) t = 1.3 (f) t = 1.5

Figure D.11: C ≡ η0n
R0

= 0.1, n = 4, ri = 10, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.85 (b) t = 1.017

(c) t = 1.1 (d) t = 1.2

(e) t = 1.3 (f) t = 1.5

Figure D.12: C ≡ η0n
R0

= 0.1, n = 16, ri = 10, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.13: C ≡ η0n
R0

= 0.05, n = 4, ri = 500, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.14: C ≡ η0n
R0

= 0.05, n = 16, ri = 500, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.15: C ≡ η0n
R0

= 0.1, n = 4, ri = 500, Ms = 1.65, σY = 0.12 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.16: C ≡ η0n
R0

= 0.1, n = 16, ri = 500, Ms = 1.65, σY = 0.12 GPa.
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D.3 Influence of the initial shock Mach number

(a) t = 1.5 (b) t = 1.8

(c) t = 2.0 (d) t = 2.2

(e) t = 2.5 (f) t = 3.0

Figure D.17: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.16, σY = 0.12 GPa.
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(a) t = 1.6 (b) t = 1.8

(c) t = 2.0 (d) t = 2.2

(e) t = 2.5 (f) t = 3.0

Figure D.18: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.16, σY = 0.12 GPa.
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(a) t = 1.2 (b) t = 1.36

(c) t = 1.52 (d) t = 1.76

(e) t = 2.0 (f) t = 2.4

Figure D.19: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.31, σY = 0.12 GPa.
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(a) t = 1.2 (b) t = 1.36

(c) t = 1.52 (d) t = 1.68

(e) t = 2.0 (f) t = 2.4

Figure D.20: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.31, σY = 0.12 GPa.
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(a) t = 0.956 (b) t = 1.089

(c) t = 1.178 (d) t = 1.267

(e) t = 1.444 (f) t = 2.0

Figure D.21: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.48, σY = 0.12 GPa.
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(a) t = 0.956 (b) t = 1.089

(c) t = 1.178 (d) t = 1.267

(e) t = 1.444 (f) t = 2.0

Figure D.22: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.48, σY = 0.12 GPa.
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(a) t = 0.7 (b) t = 0.8

(c) t = 0.9 (d) t = 1.05

(e) t = 1.15 (f) t = 1.5

Figure D.23: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.83, σY = 0.12 GPa.
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(a) t = 0.7 (b) t = 0.8

(c) t = 0.9 (d) t = 1.05

(e) t = 1.15 (f) t = 1.5

Figure D.24: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.83, σY = 0.12 GPa.
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D.4 Influence of the yield stress

(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.25: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.65, σY = 0 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.26: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.65, σY = 0 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.27: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.65, σY = 0.5 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.28: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.65, σY = 0.5 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.29: C ≡ η0n
R0

= 0.05, n = 4, ri = 100, Ms = 1.65, σY = 1 GPa.
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(a) t = 0.8 (b) t = 0.917

(c) t = 1.0 (d) t = 1.1

(e) t = 1.2 (f) t = 1.5

Figure D.30: C ≡ η0n
R0

= 0.05, n = 16, ri = 100, Ms = 1.65, σY = 1 GPa.
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