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Abstract 

This thesis presents the study of a model cosmology based on the R +ER 2 gravita

tional Lagrangian. It may be roughly divided into two distinct parts. First, the classical 

inflationary scenario is developed. Then, the formalism of quantum cosmology is 

employed to detennine initial conditions for the classical model. 

In the work on the classical model, the evolution equations for an isotropic and 

homogeneous universe are solved to exhibit both early-time inflation and a smooth 

transition to subsequent radiation-dominated behavior. Then perturbations on this iso

tropic background are evolved through the model to provide constraints on the model 

parameters from the observational limits on anisotropy today. This study concludes 

that such an inflationary model will prove a viable description for our universe if the 

initial Hubble parameter H; is bounded from below, H; > 1 o-5 I Pl-l , and if E> 1011 I pt 

In the work on the wave function, the two boundary conditions of Vilenkin 

("tunneling from nothing") and Hartle and Hawking ("no boundary") are compared. 

The wave functions obtained are restricted to the initial edge of classical Lorentzian 

inflationary trajectories as distributions over initial conditions for the classical 

inflationary model. It is found that Vilenkin's wave function prefers the universe to 

undergo a great deal of inflation, whereas Hartle and Hawking's wave function prefers 

the universe to undergo little inflation. Finally, both boundary conditions are shown 

to require that inhomogeneous perturbative modes start out in their ground states. 



- vi-

Table of Contents 

Acknowledgments .............. .................. ................................ ... .............. ....... ... .... ... .. .. . iii 

Abstract .... ............................ .. .... ....... ............ .. ... .. ............ ........................ ......... ............. v 

Chapter 1: Introduction to the R +fR 2 Cosmology .................... ............ ...................... .. 1 

The Standard Model of Our Universe .. ............. ...... .. ........... .... ..... .... .. .................. .. 3 

Inflation ... .......................... ................................ .. .. ........ .................... ...... ...... ...... ..... 6 

Higher Derivative Gravity ............................ ............................ .. ................. .... ..... ... 9 

Quantum Cosmology ........................................... .. .................... ....... ..... ...... .......... l2 

Surmnary of Chapters 2, 3, and 4 .... .... .... ........ ...................... ................ .. .. ...... .... .. 14 

Overall Acknowledgments ........ ........................ ................ .................... ... ... ..... ..... 16 

References for Chapter 1 ...... .... .. ..... ......... .. .......................... ............ .. ... .. .... ......... . 17 

Chapter 2: The Classical R +ER 2 Cosmology ... .... ...... .. ........................ ..... ..... ... .......... 19 

Abstract ................... .. ..... ....... ............. ... ...... ...... .. .. ............... ............. ..................... 20 

Introduction ................... ...... ...... ............................................ ................................ 21 

Classical Evolution ............ ................... .. ... ..... ............ ...... ..................... .............. .. 26 

Reheating of the Universe ................ ................ .......... .................. ............ .... .... ..... 35 

Gravitational Wave Generation ..... ............. .. ....................... ................ ........ ......... . 42 

Scalar Perturbations .............................................................................................. 47 

Present Bounds on E and Possible Origins .. .................................... ................ .. .... 53 

Conclusion ............ .. ...................... ..... .... ..................................... ........ ................... 56 

Acknowledgments ......... ..... .......... ... ....................................... .......... ... .................. 60 

References for Chapter 2 ........ .. ....................................... ............. .... .. ................... 61 

Figure Caption for Figure 1, Chapter 2 .................................... .. ........... ... ............. 64 

Figure for Chapter 2 ... .. .... .......................................... ........ .... ............... ................ 65 

Chapter 3: The QuantumR+ER. 2 Cosmology ... .. .......... ........ ................................. ..... . 66 

Abstract ............... .. ... ... ... ........... ..... ................. .... ........ .. .... ............. ........... .......... ... 67 

Introduction ............. .......................... ........ .................. ..... .... ................. .. .. ...... ...... 68 

Action and the Wheeler-DeWitt Equation .................. .. .. .................... ........ .... .. ..... 71 

The Boundary Conditions .................................................. .................................... 76 

Solutions of the Wheeler-DeWitt Equation ...... ...... .............................. .............. ... 80 

Conclusion ........ .................................... ...... .... ...................... ......... ......... ............... 97 

Acknowledgments ..... .... ....... ........ .. ..... .......................................... ........ ..... .. .... ... 1 03 

Appendix: The Boundary Term for R+ER 2 Gravity ....................... .... ...... .......... l03 

References for Chapter 3 ............................ .. .. ........ .. .... .... .. .......... ............ ... ........ 108 



-vii-

Figure Captions for Figures 1, 2, 3, and 4, Chapter 3 ......................................... 111 

Figures for Chapter 3 ...................................................................................... ..... 113 

Chapter 4: Quantum Initial Conditions for Perturbations in the R +ER 2 Cosmology 117 
Abstract ................................... ............................................................................ . 118 

Introduction .......................................... ..... .............. ... ................ .................. ..... .. 119 
The Wheeler-DeWitt Equation with Perturbations .... .. .. .... ...... .................. ...... ... 121 

Solution of the Wheeler-De Witt Equation ....... ...... .............. .... ............ .... .......... . 129 

Acknowledgments ............................ .................................... ...... ............... .......... 132 

References for Chapter 4 .......................................................... ........ .......... ......... 133 



-1-

CHAPTER 1 

Introduction to the R +ER 2 Cosmology 
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In recent years, a very-early-time period of exponential expansion has become a 

standard feature in cosmology. This initial rapid expansion, known as inflation, pro

vides the theoretical solution to a number of problems that arise out of the standard 

hot Big Bang model of our universe. The inflation, in turn, is theoretically based on 

corrections to the laws of physics that underlie the standard model. This thesis delves 

into one such inflationary scenario: a scenario in which the inflationary period of 

expansion is driven by a pure-gravitational correction term to the standard Einstein 

Lagrangian, R . This correction term, denoted £R 2, is immeasurably small today. It 

might arise as the low-energy effective residual from some more complete quantum

gravitational theory. 

The three papers that follow as succeeding chapters in this thesis explore a 

cosmological model based on the R +ER 2 Lagrangian. Roughly speaking, Chapter 2 

details the early-time evolution of the classical R +ER 2 model to constrain the parame

ter regime in which this evolution successfully meets observational requirements, and 

Chapters 3 and 4 show how quantum cosmology can deliver, to the start of the classi

cal evolution, initial conditions that meet these constraints. 

In this introduction, I will discuss a handful of interlacing contexts within which 

I can place the following chapters. I will try to convey some necessary background to 

the non-specialist, explain in more detail the terms and assertions made in these open

ing paragraphs, introduce notational conventions, and provide a historical frame. 
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THE STANDARD MODEL OF OUR UNIVERSE 

The standard Einstein field equations, and the standard equations of momentum 

and energy conservation for matter in the curved spacetime of general relativity 

theory, are derivable by extremizing the action 

(1) 

Here g is the determinant of the spacetime 4-metric, R is the scalar curvature of 

spacetime (the Hilbert action), L111 is the matter Lagrangian (density), h is the deter-

minant of the spatial 3-metric on the boundary ()V of the integration region V , K is 

the extrinsic curvature on the boundary, and I will employ units throughout where 

II =c =1 and G =11 p? (sign conventions will be those of Misner, Thome, and 

Wheeler1 ). For a perfect cosmological fluid, the Lagrangian density is 

Lm=- ~ [<p+p)u).luvg).lv+p-p] ' (2) 

where p is the energy density, p is the pressure, and u ).1 is the fluid 4-velocity. Varia

tion of the action (1) with respect to the metric, g ).IV, then yields the Einstein field 

equations with fluid source. It is this action (1 ), (2) and the resulting field equations 

that govern the standard (Friedmann-type) models for the cosmological structure and 

evolution of our universe. 

That portion of our universe which lies within our cosmological horizon (i.e., is 

observable today) is seen to be homogeneous and isotropic on large scales. 

Correspondingly, the standard model is based on the homogeneous, isotropic 

Friedmann-Robertson-Walker line element, 
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(3) 

where k=+l, -1, or 0 for a closed, open, or flat universe, respectively, and a(t) is the 

scale factor (or radius). The Hubble parameter is defined by H (t) =a I a , the scalar 

curvature is R =12H 2+6H +6k Ia 2 , the extrinsic curvature of the boundary is K =-3H , 

and I write --1-g =..fh =a 3(t)f(r ,9,cj>;k), letting M(k):(3181tG)jd 3xf(r,9,cj>;k). The 

action ( 1) may then be written 

S k j f [ . 2 d 2 . 81tG l 2 . } = M ( l dt -aa +ka + dt (a a )+-
3
-L111 -(a a )boundary . (4) 

The merit of the boundary term in the original action ( 1) is here openly displayed - it 

will cancel out any variations that depend on derivatives of the metric on the bound-

ary . 

and 

The Friedmann equations , resulting from variation of the action (1 ), are 

a 41t 
- =--G (p+3p ) 
a 3 

which together imply energy conservation, 

= p a 
a 3(p+p ) 

(5a) 

(5b) 

(5c) 

The detailed evolution of such a model will depend on the detailed behavior of the 
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equation of state for the perfect fluid and the detailed response of the matter to various 

stages of thermal excitation. The complete scenario is outlined in many texts (see, for 

example, Chs. 27 and 28 of Misner, Thorne, and Wheeler1, Zel 'dovich and Novikov2
, 

or the review by Linde:''). 

Despite its tremendous phenomenological success, a number of problems with 

the scenario remain; see, e .g., the review by Linde. I wish to discuss only two, known 

as the horizon and singularity problems. For simplicity I will focus on the epoch when 

the age of the universe was ::;1 00,000 years and its energy content was dominated by 

radiation. In this epoch the equation of state is p=p/3 and Eq. (5c) gives 

4 a p=const. . (6) 

Equation (5b), then, with the k term negligible (as it is for early-time, radiation-

dominated evolution) is easily integrated to give 

(7) 

To understand the horizon problem it is illustrative to compare two time-

dependent distance scales in the evolving Universe. The first of these is the physical 

distance between fixed coordinate locations, which is just the scale factor, a (t ). The 

second of these is the "horizon size" =l!H, i.e., the distance that light could have 

traveled since t=O. The ratio of the physical comoving coordinate distance to the hor-

izon size is aH =a . This is a decreasing function of time in the radiation-dominated 

epoch [cf. Eq. (7) or Eq. (5a) with p+3p >0] (and also in today's matter dominated 

epoch). That is, the light cones associated with the horizon are catching up to the phy-

sical radius . A key consequence of this is that the roughly homogeneous region, 

which is our present horizon volume, came from causally disjoint regions in the past. 
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One might expect that the evolution of causally disjoint regions into one another 

would tend to homogenize the spacetime. But observationally, the microwave isotropy 

provides direct evidence of the homogeneity at t -1 05yr., when regions with angular 

separations 8? a few degrees on our sky were not yet in causal contact with each 

other. The problem is: Why should one expect initial conditions to provide such 

homogeneity to many causally disjoint regions at once? 

The singularity problem is even easier to understand. From Eq. (7) as t ~o. the 

radius of the universe goes to zero. From Eq. (6) as t~O. the energy density diverges . 

That is, the evolution equations demand a singularity at the origin, near which the 

evolution equations themselves can no longer be valid. That the field equations predict 

their own early-time demise is a general result for matter sources of the type in Eq. (2) 

[ cf. Hawking and Ellis4 for a thorough discussion of the singularity theorems]. 

A possible solution to the horizon and related problems is inflation (R +ER 2 being 

one particular kind of inflation); and a possible solution of the singularity problem is 

to combine inflation with a program of quantum cosmology. The fundamental-ness of 

these problems within the standard model demands a certain fundamental-ness to their 

solution. Nevertheless, the successes of the standard model request little or no change 

to the resulting phenomenology. It is desirable to marry any very-early-time innova-

tions as smoothly as possible into the subsequent evolution of the standard picture. 

INFLATION 

The general relativity action augmented by a cosmological constant, A, and with 

no matter present is written 

2A ] +-1-J d3x...fhK. 
l61tG 81tG av 

(8) 
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In a Robertson-Walker spacetime, this is 

(9) 

The field equations are 

.. 
a A 

= 
a 3 

(lOa) 

and 

(lOb) 

The solution to these equations (for the term in k neglectable) is de Sitter spacetime, 

for which a=a;exp(+..JA/3t). Here a, in contrast to the evolution of the standard 

model, is an increasing function of time, meaning that the expansion is superluminal; 

i.e. , light cones are being caught and passed by expansion of the physical comoving 

distances. An early epoch of this kind of evolution followed by standard-model evo-

lution at later times would allow a single, initially causally connected region to end up 

as the present horizon volume (or typically even a much larger volume). This initial 

period of exponential expansion has been named inflation by Guth,5 who first recog-

nized its importance in solving the horizon and related problems. 

The short history of research on inflationary cosmology has centered on various 

attempts to model a A(t) [a non-constant cosmological constant] that would dominate 

the cosmological .fluid at early times (for a long enough period to achieve a sufficient 

number of e-foldings to solve the horizon and related problems) and yet would 

become zero in some natural way, allowing the standard model to take over at later 
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times. 

The first such models attempted to achieve inflation by the use of symmetry

breaking phase transitions.6 Here, some "inflaton" field, initially sitting at the 

minimum of its potential, would be left in an excited state after the symmetry break

ing had altered its potential. The false vacuum potential sustained by this excited state 

would then act like a cosmological constant until the field could "roll down " to its 

new minimum. In the " old inflation", this transition was too fast, cutting off the 

inflation too quickly and filling our universe with many inflated bubble regions (and 

monopoles and domain walls between them) that would contradict the observed 

homogeneity . "New inflation"7 solved this problem by shaping the effective potential 

to make the roll-down much slower. This lengthened the inflationary era and placed 

the whole observable universe inside one phase-transition bubble. The idea, though, 

was still that an inflaton field, initially in the minimum of its potential, would be given 

an excited field value by a syrmnetry-breaking phase transition. This phase transition 

mechanism was removed by Linde 8 in his scheme for "chaotic inflation". In fact , 

there is no reason to assume that the inflaton field need start off in the minimum of its 

potential. At very early times, one would expect the inflaton field values to be chaoti

cally distributed throughout the quantum soup. Regions, then, with random field 

values a few times above the Planck scale would be driven to inflate sufficiently to 

produce our presently homogeneous horizon volume. 

During inflation, because of the exponential increase of the physical comoving 

distances, any initial matter content will get exponentially diluted [cf. Eq. (6)]. So, at 

the end of an inflationary phase , one would expect the homogeneous bubble to be cold 

and matterless, except for the kinetic energy gained by the inflaton field in its roll

down. This kinetic energy must then rapidly decay into particles and reheat the 
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universe to some new matter-filled state at the reheating temperature, T,., from which 

subsequent radiation-dominated evolution of the now inflated homogeneous region 

can take over. This reheating temperature parameterizes the transition from the 

inflationary era to the radiation-dominated phase and is one benchmark for any 

inflationary scenario. In addition, in inflationary models , perturbations around the 

Robertson-Walker background are assumed to evolve from quantum zero-point 

fluctuations. The amplitude and spectrum of the perturbations delivered to the present 

horizon volume provide another inflationary benchmark - a benchmark constrained 

by observational limits on the microwave anisotropy.9 

HIGHER DERIVATIVE GRAVITY 

The model that is the focus of this thesis has its action written 

(11) 

The boundary term here is different from that for Einstein gravity, as is discussed in 

the Appendix to Chapter 3 . In a Friedmann-Robertson-Walker spacetime, this action 

becomes 

[ 

0 'I [ .]2 [ ••] [ .]4 [ .] 2 [ 0 " ] 2] } 1 a d ·a a a a 2k a k a k 
+6ca · -----2 - - + - +- - +- - +- , 

a 2 dt 3 a a a a 2 a a 2 a a 4 (12) 

and the field equations are 
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[ [ ]
4 [ ]2 a 1 d 4a a d?.a a a -=-6£ ---+---+3 - +2 -

a a dt 4 a 2 dt 3 a a 

[ ] 2[ ] [ ] 2 [ ] l . .. k . k .. k 2 
-7 !!__ !!__ +2- !!__ -2- !!__ --

a a a2 a a2 a a4 
(13a) 

and 

[ [ ] 4 [ ]2 [ ] 2[ ] [ ] 2 l Ci a d-:.a a Ci a Ci k a k 2 
-=6£ -2---+3 - + - -2 - - +2- - --
a a 2 dt 3 a a a a a 2 a a 4 

(13b) 

I present the forms of these equations not for a virtuosic display of their algebraic con

tent, but rather in contrast to the field equations for a cosmological fluid source (5a,b) 

and in contrast to the field equations with a cosmological constant (10a,b). My first 

observation is that the structure of these equations, being much more complex than the 

structure of the analog Equations (5, 1 0), is correspondingly richer. (The leading 

derivative term on the right-hand side of Eq. (13a) is responsible for the sometime 

labels "fourth-order gravity" or "higher derivative gravity" attached to this model-

although models involving other terms nonlinear in the curvature added to the action 

(11) would earn much the same titles.) Second, I assert that this structure naturally 

divides into two distinct evolution regimes - one regime where the E terms are 

dynamically important, another where they are neglectable. This behavior, in which 

the order of a differential equation can be reduced in some parameter regimes is famil

iar. e.g., from the singular perturbation boundary layer theory of the Navier-Stokes 

equation. In the sense that the higher derivative terms here are important only during 

early-time inflation, it is pleasant to think of the inflationary stage in this model as an 

evolutionary boundary layer for our universe. 
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ll1at this pure gravity model exhibits inflation for a wide range of parameters and 

then smoothly shuts its inflation down, is the subject under principal investigation in 

Chapter 2 below. Here, I will just note that the tenns on the right-hand side of Eqs. 

(13a,b) mimic a slowly decaying cosmological constant [cf. Eqs. (10a,b)]. 

It is appropriate to append some historical context to this motivational introduc

tion to higher derivative gravity. Curvature-squared terms have had a surprisingly 

long history- even going back to the 20s, when such a term in the action was sug

gested in the attempt at unification of electromagnetism and gravity by Weyl and by 

Eddington.10 T11is longevity is a consequence of both a remarkable resilience of the 

theory and the fact that ER 2 is often the simplest amendment to Einstein gravity and 

therefore might be easily posited to solve any number of problems that arise in general 

relativity theory. 

After the work in the 20s, Pais and Uhlenbeck studied higher derivative gravity 

in quantum field theory in 1950.11 In the 1960s, it was hoped that higher derivative 

gravity tenns could help renormalize divergences from matter terms. 12 Then, in the 

70s it was shown that the addition of higher derivative terms could make gravity itself 

renonnalizable.13 (A debate still rages as to whether or not higher derivative gravity 

can be unitary .14) Also in the late 60s and early 70s there were hopes that the richness 

in the higher derivative field Equations (13a,b) might get around the singularity prob

lem. 15 Finally , in the 80s, alongside the development of inflation, it has been realized 

that the higher derivative terms drive a de Sitter-like expansion at early times. 16 

The classical evolution detailed in Chapter 2 below treats R +ER 2 gravity as a full 

inflationary model. Its inflation mechanism is described, its reheating temperature is 

calculated, the join to Friedmann behavior is displayed, and the evolution of perturba

tions in the model is used to constrain the model parameters. Similar investigations of 
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the inflation from higher derivative gravity have appeared at the same time as this 

work and have approached the classical model from differing points of view. 17 

QUANTUM COSMOLOGY 

I return to the field Equation (lOb) for a spacetime with cosmological constant, 

(lOb) 

For the R +fR 2 Lagrangian, the early-time evolution equation can be written in this 

form. A model based on this Lagrangian possesses an effective cosmological constant 

at early times. For a closed Universe (k=+l), this equation (lOb) predicts that the 

expansion factor a ("radius of the Universe") can never be less than a min= ...J31A. (this 

is discussed in more detail in Chapter 3, Section ill). More specifically, for a >a min• 

a 2 will be positive and there will be a Lorentzian-signatured metric of the 

Friedmarm-Robertson-Walker form (3), describing a classical evolutionary trajectory. 

If a <a min• then a 2 is negative. This can be interpreted as corresponding to a metric 

with Euclidean time signature (t E= it) along any solution to the equation of motion 

(1 Ob ). The presence of a classical turning point at a min (near which any semiclassical 

description would presumably break down) naturally invites the notion of a quantum 

amplitude connecting semiclassical domains inside and outside the barrier. Then each 

classical trajectory outside the barrier can be thought of as the path of a Lorentzian 

Universe spontaneously born near a min· I should stress that, depending on the poten

tial generating the effective A in Eq. (lOb), this amin can be far from Planck-scale, 

bounding the whole quantum cosmological scheme away from a parameter regime in 

which one would not be likely to trust the model. 
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It has been the hope of enlisting an inflationary model into a realistic quantum 

cosmological program that has spurred attempts to obtain the wave function describ

ing our universe (or the ensemble of possible universes from which ours was born). 

Canonical quantization yields a partial differential wave equation, second order in 

each degree of freedom present in the model (the Wheeler-DeWitt equation in super

space). This canonical quantization procedure is fraught with unresolved controversy 

(operator-ordering problems, non-renormalizability, the unsoundness of not beginning 

with a fundamental theory). But even after these issues have been brushed aside (in 

the hope that a zeroth-order approach will deliver some results that will survive 

refinement), there remains the fundamental question of what boundary condition to 

choose for each degree of freedom present in the wave function. There are two 

definite proposals for this boundary condition. The first is the proposal by Hartle and 

Hawking.18 that the boundary condition is that there be "no boundary" (mathemati

cally this is expressed as the condition that the wave function be given by the 

Euclidean path integral over all compact 4-geometries and regular matter-field 

configurations that have a specified 3-geometry and field strength on a fixed 3-

surface). The second proposal is the one made by Vilenkin, 19 that the wave function 

should correspond to a tunneling amplitude from ''nothing'' (mathematically he 

requests only outgoing modes at the singular boundaries of superspace and regularity 

at zero radius). The comparison and contrast of these two proposals (for the homo

geneous R +ER 2 model, which possesses an effective cosmological constant at early 

times) is the project of Chapter 3. The treatment there always tries to stay physically 

simple and interpretive. The main conclusion can be surruned up as follows: The two 

boundary conditions differ only in how they treat the expansion degree of freedom

all other degrees of freedom are required to be regular at the origin by both boundary 

conditions. In terms of the resulting wave function in the expansion degree of 
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freedom, restricted to the initial edge of classical Lorentzian inflationary trajectories, 

the Hartle-Hawking boundary condition prefers universes to be born large and spend 

only a short time in inflation, whereas the Vilenkin boundary condition prefers 

universes to be born small and undergo a large amount of inflation. 

In Chapter 4 this comparison and contrast of the boundary conditions is carried 

over into (the infinite-dimensional) perturbative superspace. The inhomogeneous 

scalar and tensor modes are added perturbatively to the wave function. For these 

modes it is shown that both boundary conditions require the same conclusion from the 

wave function- the inhomogeneous modes must start out in their ground states. This 

quantum prediction of the initial conditions for perturbations then ties back into the 

ground-state assumption as the starting point for the perturbation analysis of the clas

sical evolution in Chapter 2. 

SUMMARY OF CHAPTERS 2, 3, AND 4 

Chapter 2 is a paper written by Milan Mijic, Wai-Mo Suen, and me that origi

nally appeared as ''The R 2 cosmology: Inflation without a phase transition'' in Phys. 

Rev. D 34, 2934 (1986). fu Section I, we provide an overall introduction to the classi

cal R +ER 2 Lagrangian and field equations and we introduce Whitt's ''conformal pic

ture' ' 20 - a pretty way to display the theory as Einstein gravity plus a scalar field that 

will be exploited many times throughout this work. In Section ll, we investigate the 

classical Friedmann-Robertson-Walker evolution of the model. In particular, we 

display its ''linear phase '' inflationary behavior and summarize the results from a 

numerical investigation of the parameter space for its initial conditions. In Section Ill, 

we obtain the reheating behavior for the model and present the join of the inflationary 

phase to subsequent standard-model evolution. In Section IV, we evolve 
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gravitational-wave perturbations on the background of tllis inflationary and 

postinflationary scenario to determine the strength and spectrum of cosmological 

gravitational radiation today in terms of the model parameters. In Section V, we do 

the same for scalar perturbations, to find that tills produces our most stringent con

straints on E and the initial Hubble parameter, H; . In Section VI, we discuss possible 

theoretical origins of the ER 2 term and in the concluding Section VII, we find that 

classical R +ER 2 scenario is a viable inflationary model for E> 1011 I p/ and for 

H; > 10-5 I PJ- 1· 

Chapter 3 is a paper being submitted at the time of tills thesis. Its title for Physi

cal Review D will be ''Initial conditions for the R +ER 2 cosmology'' [Cal tech Golden

rod Preprint, GRP160, 1988], and it is written by the same three authors as in Chapter 

2. In Section I of Chapter 3, we present a general historical introduction to the wave 

function, the boundary conditions, and the methods we will use. In Section ll, we 

summarize the classical behavior from Chapter 2 and derive the Wheeler-DeWitt 

equation for the homogeneous degrees of freedom (minisuperspace). In Section ill, 

we discuss spontaneous birth of a Lorentzian Universe and introduce the two bound

ary condition proposals. Then, in Section IV, we solve the Wheeler-DeWitt equation 

in minisuperspace in the senliclassical approximation (and in the strongly inflationary 

regime) to obtain wave functions for both boundary conditions . In Section V , we 

compare predictions from the two resulting wave functions and find that Vilenkin's 

boundary condition19 prefers universes that inflate a great deal, and Hartle and 

Hawking's boundary condition18 prefers universes that undergo little inflation. We 

finally discuss the boundary term for R +ER 2 gravity in an appendix. 

In Chapter 4, I then move on to the wave function for perturbations in the R +ER 2 

model. I am submitting this paper to Physical Review D at the time of tills thesis as 
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"Initial conditions for perturbations in the R +ER 2 cosmology" [Caltech Goldenrod 

Preprint, GRP172, 1988]. In Section I, again, I present an introduction. In Section II, I 

derive the Wheeler-DeWitt equation for the perturbative superspace in all the inhomo

geneous modes. In Section Ill, I perturbatively solve this equation, verifying that, for 

both boundary condition proposals, all inhomogeneous scalar- and tensor-mode per

turbations begin in their ground states. 
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ABSTRACT 

A pure gravity inflationary model for the universe is examined, which is based 

on adding an fR 2 term to the usual gravitational Lagrangian. The classical evolution is 

worked out, including eventual particle production and the subsequent join to 

radiation-dominated Friedmann behavior. We show that this model gives significant 

inflation essentially independent of initial conditions. The model has only one free 

parameter, which is bounded from above by observational constraints on scalar and 

tensorial perturbations and from below by both the need for standard baryogenesis and 

the need for galaxy formation. This requires 1011 GeV < E- 112 < 1013 GeV. 
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I. INTRODUCTION 

The inflationary universe model, l.Z in which the universe has undergone a long 

period of exponential expansion, has successfully explained many problems in the 

standard Friedmann cosmology. A particularly attractive feature is that the model 

provides a mechanism to generate the small-scale density fluctuations in the universe 

that are needed as seed for galaxy formation. 3.4 They are the zero-point fluctuations of 

the quantum fields which get pushed into the classical regime by the large expansion. 

In the standard picture of inflation this exponential expansion of the universe is 

driven by the false vacuum energy density of a Higgs field, which acts like an effec

tive cosmological constant in the Einstein equations. Many different underlying parti

cle physics theories have been proposed. The most popular of these are the Coleman

Weinberg model,5 Witten's model with a logarithmic potential,6 and the N=l super

gravity version of Nanopoulos et al. and Linde.7 

These proposals, though, are not without their problems. First, one has to typi

cally introduce a scalar "inflaton" field, which is postulated especially for the pur

pose. This makes the whole scenario less plausible in that it is less natural. Second, 

to achieve a large enough inflation, suitable reheating after the inflation, and to make 

the material fluctuations small enough to be consistent with observation, relevant cou

plings or masses in the suggested models all have to be fine-tuned in one way or 

another. An even more serious problem has been pointed out by Mazenko, Unruh, 

and Wald.8 A quantum field that is violently fluctuating in its high temperature sym

metric state may not settle into the false vacuum state as the universe cools. This then 

may invalidate the whole picture of vacuum-energy-driven inflation. Although the 

problem might be circumvented again by fine-tuning the parameters involved,9 it is 

reasonable to assert that the idea of inflation is very attractive, whereas the "standard" 
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models that generate the inflationary phase by a false vacuum energy density are less 

satisfying. 

Is it possible to inflate the universe by a different mechanism? Linde10 has pro

posed in his chaotic inflation scenario that the inflation may be a direct result of large 

fluctuations of quantum fields in the very hot primordial universe. In the Planck 

regime, a scalar field cj> will tend to be excited to large values so that its energy density 

inside some domain will be of order Planck. If cj> has a very flat potential, i.e., a small 

"restoring force", it will remain roughly at the fluctuated value for a comparatively 

long time and hence will drive an essentially exponential expansion. Linde has shown 

that in a A.cj> 4 theory, there will be a classically tractable sufficient inflation when 

A. < 1 o-2 (for more details see Linde2). However, two new questions inunediately 

appear, which a cosmology based on chaotic inflation must answer: What is the under

lying particle model and what determines the initial fluctuations? Without these, one 

has neither a complete nor a realistic model of chaotic inflation. This is one thread 

leading to the present work. 

A second thread leads from the fact that within different frameworks one is 

repeatedly led to consider an action containing terms of quadratic or higher order in 

the curvature tensor. We will discuss this point more fully in Section 6. It is nonethe

less important to understand the implication of these higher derivative terms on the 

evolution of the early universe. In this work we will restrict our attention to terms that 

are quadratic. They can be written aR llvt..aR f.IVI..o+~R llvR llv +'yR 2~ 2+~C ,..vt..crC ~tvt..cr 

+T\XE (where XE is the density of the Euler number for the manifold and C is the 

Weyl tensor). When we consider a Robertson-Walker metric (homogeneous and iso

tropic universe), 11 
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(1.1) 

(here K = + 1, -1, or 0- although, unless otherwise indicated, we will be studying the 

case K = 0). This metric is conformally flat so that the C 2 tenn vanishes . The effec-

tive gravitational Lagrangian density yielding the evolution of the universe is then 

given by 

L=R+ER 2
. 

The evolution equation for R detennined by (1.2) can be written as 

R+3HR+-1-R=O, 
6E. 

(1 .2) 

(1.3) 

where the dot denotes a coordinate time derivative ( = d ldt) and H is the Hubble 

parameter (H =a Ia ). 

Thus , R behaves like a damped harmonic oscillator with the restoring force 

given by 116£. If E. is large, the potential is flat and R takes up the role of the 

inflation-driving field. The aim of this paper is to study the cosmology based on this 

model. We show the range of initial data and the allowed value of E. so that inflation 

can be realized in this curvature-squared model in a manner consistent with observa-

tional constraints . We consider now the generic evolution of the universe to be 

divided into four regimes: (i) There may be a quantum phase in which the universe 

begins its Lorentzian life- as described in the wave function picture 15 - with some 

expectation values for the initial conditions, but continues with strong fluctuations for 

some time. The classical evolution becomes meaningful only after fluctuations 

around the average trajectory have become small. Whether this subsequent classical 

evolution is applicable to the universe as a whole or just to an homogeneous "bubble" 
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part of it (as in Linde's chaotic inflation picture) we expect to be answered by a proper 

quantum treatment at very early times; (ii) At the start of the classical evolution there 

will quite generally be an inflationary phase of superluminal expansion in which the 

Hubble parameter decays linearly in time with small slope; (iii) When the Hubble 

parameter hits zero and bounces back the universe goes into an oscillation phase in 

which it is reheated as material fields are excited by the oscillating geometry; and (iv) 

There will be a final Friedmann phase in which our now matter-content-dominated 

model is joined to standard cosmology. We will exhibit and explain the inflationary 

solution, and will discuss reheating of the Friedmann universe and the generation and 

evolution of scalar and tensor perturbations. These considerations all place con

straints on the parameters of the model. 

The effect of higher derivative tenns on the evolution of the early universe has 

been studied by many authors. Zeldovich and Pitaevskii 12 have discussed the possi

bility of avoiding the initial singularity by including the higher-order term. Starobin

sky13 has shown that the quantum corrections for a conformally invariant free field 

will modify the Einstein equations with higher order terms such that an unstable de 

Sitter solution will result. Whitt 14 points out that the evolution equation for an 

R + fR 2 Lagrangian admits primordial inflation. Hawking and Luttre1115 have also 

shown that the wave function of the universe for this Lagrangian is peaked about clas

sical trajectories that exhibit an exponential expansion. In fact, the initial motivation 

for our work comes from the desire to understand and investigate in detail the 

inflationary phase displayed in the numerical solution of Hawking and Luttrell 's wave 

function. 

Parallel to conducting our discussion directly in the physical spacetime, we will 

make use of the fact that this theory can be rewritten as pure Einstein gravity plus 
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matter rn a conformal spacetime. Whitt 14 has shown that by a transformation, 

g J.IV = (1 +2£R )g J.lV ' we can discuss the theory as Einstein gravity described by g J.IV 

plus a scalar field, R (which is the scalar curvature in the physical space), with 

minimal coupling to gravity by means of the equation 

- 1 - -R - ---g-- - R =81tGT - -(R) 
J.IV 2 J.IV J.IV ' 

(1.4a) 

where 

- 6£
2 

[ - 1 0 R 
2 1 T- -= d-Rd-R-g --(-d Rd-R+-) . 

J.IV 87tG(1+2£R )2 J.l v J.IV 2 ° 12£ 
(1.4b) 

Here, the scalar field, R, can be given an action 

(1.5) 

In this confonnal picture - as we are working with standard Einstein gravity - we 

already have some known tools that provide for us both insight and a good check on 

the less familiar behavior of the full fourth-order model. We will appreciate its full 

power in evaluating scalar and tensor perturbations. 

In Section 2, we consider the classical evolution of a flat (K = 0) Robertson

Walker universe under the influence of an R 2 term in the effective Lagrangian. In 

Section 3, we then treat in greater detail the exit from the inflationary phase, the 

reheating of the universe, and the subsequent join to Friedmann behavior. Next, in 

Sections 4 and 5, we estimate the generation of gravitational wave and scalar pertur-

bations in the model. In Section 6, we display some present constraints on, and possi-

ble origins for, £. Finally, conclusions are presented in Section 7. 
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Throughout this work we use units in which h = c = k8 = 1. We measure all 

quantities in Planck units so that the gravitational constant, G, is equal to 1 I p 1
2 

(where /PI denotes the Planck length). 

II. CLASSICAL EVOLUTION 

We begin discussion of the universe and its evolution at the time when it 

emerges from the Planck era. The universe would then be filled with relativistic parti

cles of violently fluctuating energy density and its spacetime geometry, too, would be 

violently fluctuating . However, a region not too big compared to the Planck size 

could be approximately isotropic and homogeneous and could then be described by 

the Robertson-Walker metric (1.1). For simplicity, we consider only the case K = 0. 

We follow the evolution of this small region with the classical equations of motion 

derived from the Lagrangian density (1 .2). 

It is straightforward to write down the field equation for the effective gravita

tional Lagrangian density (1.2) with a cosmological constant term and matter field 

terms added: 14•15 

(2.1) 

=81tGT 1-1v · 

For the most part in this paper, we will set A= 0 (except briefly in Section 6) and we 

will always use a perfect cosmological fluid expression forT J.l.V• 

(2.2) 

where p = p/3 (a relativistic equation of state) and 11 = dldt (comoving 4-velocity). It 

is simple to verify that the left-hand side of (2.2) is divergence-free so that energy-
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momentum conservation is still given by 

which implies 

1 
p--4, 

a 

as in the standard Einstein cosmology. 

(2.3a) 

(2.3b) 

There are only two nonvacuous field equations. The t-t component of (2.1) can 

be written as 

R =-1- R 2 -RH _!!__+ 47t Q _£._ 
12 H 2£ 3 € H' 

and the contraction of (2.1) gives 

.. . 1 
R +3HR +-R =0. 

6€ 

The relations of R and H to the scale factor a (t ) are given by 

and 

H==il!a. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Equations (2.4), (2.5), (2.6), and (2.7) are then a complete set for describing the classi-

cal evolution of the universe. 

Next, we notice that with p given by (2.3b), Eq. (2.4) is the first integral of (2.5). 

Therefore, the system we have left is equivalent to a third-order differential equation 
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in the scale factor a (t ). We set the time coordinate origin so that our analysis begins 

at t = 0, which is the time the classical evolution begins to make sense. A complete 

set of initial conditions for the system is then given by P;, a;, H;, and R; (the sub-

script i will be used to denote quantities at t = 0). We first assume for simplicity the 

matter term on the right-hand side of Eq. (2.4) to be negligible (that is, P; :: 0)- we 

shall insert its contribution at a later point. Now the initial size, a;, of the small 

homogeneous domain does not enter the dynamical equations and it relates coordinate 

length to physically measured length at t = 0 (the equation for a (t) is trivially 

integrated in terms of H (t )). We will take E to be a free parameter, since before 

appeal to a higher theory it can be regarded as a new fundamental constant subject to 

experimental verification. So, one way to phrase the question that this paper addresses 

is : What are the allowed ranges of E and the initial data, H; and R;, so that the non-

Einstein tenn will produce a sensible inflation, give sufficient expansion to solve the 

horizon and flatness problems, command an exit from the inflationary phase, yield a 

reheating temperature high enough not to thwart standard baryogenesis but low 

enough to avoid the GUT phase transition and its associated monopole problem, and 

finally deliver the correct material and gravitational perturbation spectrum and magni-

tude? 

We study first the classical evolution by means of Equations (2.4)-(2.7). To 

ensure the classical validity of the evolution we will think of H; and R; to be both less 

than or of order the Planck scale. We may combine Equations (2.4) and (2.6) to 

derive a master equation for the classical evolution with zero matter content: 

.. l 1 . 2 . 1 
H---H +3HH+-H=O. 

2 H 12£ 
(2.8) 

The remaining dependence on the parameters H;, R;, and E can then be discussed as 
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follows: 

(A) € > 0, R; > 0, and H; > 0 

We will show that this is the only case that will be of interest, so that we will 

consider it in detail: 

(i) First, we look at the case where R starts at roughly its maximum value; that is , 

R (t =0) = 0 . Then Eq. (2.4) relates R; and H; by 

(2.9) 

The typical behavior of H (t) for this case is shown in Fig. 1. There is a long phase in 

which H decreases linearly in time with a small slope. This slope may be estimated 

from Eq. (2.8). ForE ~ 1 and H ~ 1!6...J6£, we have 

. 1 
H =--. 

36€ 
(2.1 0) 

Hence, the total expansion in the scale factor of the universe after this linear near-de 

Sitter phase is given by 

18EH·2 

a (fH =o)=a; e ' · (2.11) 

To obtain a cosmologically significant expansion - say a factor of e 75 (cf. Linde2
)

we see that we need only to have EH; 2 ~ 4.2, a perfectly natural value in our picture. 

This is explicitly the sought-for inflation in the model. When H finally gets small , as 

shown in Fig. 1, it switches from the linearly decaying phase into a damped oscilla-

tion. This oscillation will be seen to reheat the universe. 
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(ii) What if R; >>6H; 2(1+--.J 1+(1/6EH; 2))? From Equations (2.4) and (2.6) it is clear 

that both R and H will increase rapidly: 

and 

1 R/ 
R ::::.---t 

12 H; 

2 
1 f 1 R; 2 H ::::.- Rdr::::.----t . 
6 144 H; 

Therefore, 12H 2 will catch up with R at f
111

: 

[ H·] + t, ::::.5.2 R;,2 -

and 

(2.12a) 

(2.12b) 

(2.13) 

(2.14) 

Then by Eq. (2.6), H will change sign and then go into the linear decaying phase of 

the previous case (i). The total expansion accumulated during the initial rapidly rising 

period is negligible: 

fHdr ::::.-1-. 
400 

We can thus perfectly well regard HUm ) and R (!
111

) as the initial values from which 

the linear phase begins. 
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R=--

2£ 

- 31 -

(2.15a) 

(2.15b) 

Both H and R will fall rapidly. For a typical value of H, there will not be sufficient 

inflation before it bounces at zero. The universe will go into the oscillation phase 

without having been inflated. 

(B) Hi < 0 

. " 2 
From Eq. (2.8) we can see that asH --?0, H must also go to zero so that H IH is 

.. 
finite . Therefore, H is negative if H approaches zero on the negative side. Thus, 

when H hits zero it will bounce back and remain negative (on the other hand, a posi-

tive H will remain positive for the same reason). For the case H; <0 the domain in 

consideration will always be contracting until it collapses back to the Planck regime. 

(C) R; < 0, H; > 0 

From Eq. (2.6), H will be decreasing rapidly as long as R is negative. Since H 

has to remain positive as argued in case (B), R will have to cross zero and become 

positive. Again, typically the total expansion in the initial period will be negligible 

and we arrive back at case (A). 

(D)£< 0 

From Eq. (2.5), we see that when E is negative we have an antirestoring force . 

Indeed, it is easy to see that when H; is positive, the solution will go into a linearly 

increasing form asymptotic to a slope 
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. 1 
H=--->0 

36€. ' 

which is physically unacceptable. When H; is negative, H (t) will be decreasing and 

will not be interesting as described under case (B). 

We conclude that (i) € has to be positive to give a finite period of inflation (note 

that tachyonic solutions would also exist if E were negative16
). (ii) To study the 

inflation, we have only to study the case with positive H; . The inflation occurs during 

a period when H decreases linearly with a slope -1/36€. The total expansion factor in 

this phase is given by Eq. (2.11) (with H; replaced by Hm in the case of (Aii) or 

(Aiii)). (iii) The linearly decaying H (t) will bounce into an oscillation phase when it 

approaches zero. These descriptions of the evolution have been verified numerically. 

Now we return to consider the contribution of the material term which we 

neglected in Eq. (2.4). By Eq. (2.3b), the energy density p of the relativistic particles 

evolves inversely proportional to a 4 . It is then clear that once the inflationary era 

begins, p will be quickly red-shifted away. Thus, by Eq. (2.4), the effect of p on the 

evolution is just to giveR an initial kick. That is, if P; is large while H; and R; are of 

order 1, then R will quickly rise to 

[ 
161t l t -E-p; 

in a short time. The subsequent evolution is then given by case (Aii). 

It is nice to see the inflationary solution also by considering the conformal pic-

ture. In the conformal picture, the classical background consists of gravity described 

by a scale factor a (T) and a spatially homogeneous scalar field R (T ). They evolve 

according to 
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2£ dR +3H dR + R (7) =0 
[ ]

2 

1 +2€R df df 6£(1 +2€R) 
(2.16) 

and 

H = (-)+-- 2 £
2 

[ dR 
2 

R 
2

] 
(1+2€R )2 df 6£ ' 

(2.17) 

where df = (1 +2€R )112dt. It is easy to see that there is a consistent solution for 

€R»1: 

and 

- 1 
H= 2--J6£ 

r 
R(T )=R;- ~. 

3£ 6£ 

(2.18) 

(2.19) 

Transfom1ing back, we find a linearly decreasing Hubble parameter as discussed 

above. The fact that in the conformal picture one has a solution as nice as de Sitter 

makes the prospect for further analysis very promising. 

From now on we consider only the case (A) above, since the other cases either 

lead back to it or are uninteresting, and we will refer to the inflated region as "the 

universe" . In the linear phase, we have by comparing terms in Eq. (2.8) 

1 1 . 2 . 
1--H 1«13HH I . 
2H 

(2.20) 

As H decreases and becomes small, the inequality sign will eventually flip and we 

will go over to the oscillatory phase. Equation (2.8) then becomes 
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.. 1 1 . 2 1 . 
H---H +-H=-3HH=O. 

2 H 12£ 
(2.21) 

If one neglects the 3HH term in Eq. (2.21 ), the solution is given easily by 

H (t )=Const. X cos2rot , (2.22) 

where 

To do better in approximation and in particular to obtain the damping for the ampli

tude , we have to include the presently neglected term. We do this by substituting a 

form for H (t ), which is H = f (t )cos2wt and then finding f (t) in the approximation 

that the damping is slow j 2!f ::::0, Jj ::::0. The initial value off is determined by 

matching on to the linear phase - that is, requiring the two terms in (2.20) to be equal 

at t = t0 s, the time the oscillation phase begins. When this has been accomplished, we 

detennine the following approximate analytic form for the whole classical evolution 

of the universe in the absence of matter fields: 

1 
Hm---(t-tm) tm <f<::Jos 

36£ 
H(f)= 

[ 
l._+1_(t-t )+_l__sin2ro(t-t )l-l cos2r·""t-t ) 
(0 4 OS 8 (0 OS J UJ\. OS 

(2.23) 

where R(tm)=O, o:e(l t'-.124£), and t
0
s =36£H,+t,-(11(2w))=36£Hm. A simple 

approximate solution for a (t) in the oscillatory phase can be obtained by integrating 

the H averaged over a few cycles: 
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ame 

1,., 12 
H (1 - 1 )+ - (21-1 )--

'" .. 72£. '" 72£ 

(2.24) 

In the oscillation phase, R is essentially 6H (cf. Eq. (2.6)) so that we have 

[ 
2 H"' 2 2l 

6 2H111 -1/36£-9((f-f111 )+ 
36

£2 (t-f111 ) J f 111 <f <f0 s 

R (f)- [ J 1 
-6 l_+l_(f-t )+~sin2ro(t-t ) - rosin2ro(t-t ) f

0
s <t. 

(I) 4 OS 8(1) OS OS 

(2.25) 

Notice that a (t) and H (t) are matched at t = t0 s whereas R (t) is not- other-

wise, we would have had an exact solution. It is important that the oscillatory phase 

depends only on the parameter £ for size and shape- the oscillatory solution has no 

dependence on the initial conditions except in the time the phase begins (at 

t os = 36£H111 ). Eq. (2.24) shows that the scale factor expands like a matter-dominated 

universe: a (t) oc t 213 - as in the postinflationary phase of the Starobinsky model, 13 

where it is known as the "scalaron" phase. 

Ill. REHEATING OF THE UNIVERSE 

1l1ese oscillations will excite the material fields and reheat the universe. To esti-

mate the reheating, we consider the simple case of a scalar field 4> satisfying 

(3.1) 

The energy density of the scalar particles produced can be easily determined. Let 
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(3.2a) 

and 

1 1 .,. 
l (\. t) Xk(t)e'"x, (k • ' = '1/2 

(27t)· a 
(3.2b) 

where ak and ak + are the usual armihilation and creation operators. In terms of the 

confonnal time 11 = J
0

' a - 1dt, Xk satisfies17 

(3.3a) 

where 

(3 .3b) 

As we shall see, the typical wavenumber k that enters our calculation is much 

bigger than one, whereas V is of order one at early times (11- 0). Therefore, the wave 

is essentially living on a flat background at early times, and the positive frequency 

mode is then given by 

(3.4) 

Now we follow Zeldovich and Starobinsky18 and rewrite (3 .3) as an integral equation: 

(3.5) 

For a first-order iteration, we substitute Xk ti > in the integrand of (3 .5) for Xk (11'). At 

asymptotically late times the universe will be flat again and the positive frequency 
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mode function is again given by (3.4). Hence, the Bogoliubov coefficient describing 

the particle production is given by 

A s:: -i l ooV ( ') -2ikll'd ' Pkk'=ukk'- 11 e 11 . 
2k 0 

(3 .6) 

And the coordinate energy density p·(dld11) (where p =momentum per unit comoving 

volume) is given by 

(3.7) 

Note that prior to the inflation V =(116)a 2R is many orders of magnitude less than its 

value during the oscillating phase. Also V becomes small after the universe goes into 

the radiation-dominated Friedmann phase ( cf. Eq. (3 .17) below). Thus, we can drop 

the surface tenns in evaluating (3.7) and arrive at 

(3 .8) 

We restrict attention to a case where V (11) = F (11)sin(k '11) and the amplitude F (11) for 

the oscillation is only slowly varying in time, which is the case for our present model. 

Then with k'11 » 1, Equation (3.8) gives approximately the energy production rate 

k'a 4 -2 
---R. 
11521t 

(3.9) 

(3.10) 

Here, R denotes the scalar curvature (2.25) with a 7t/2 phase shift in the oscillating 

factor, and the scale factor a (t) is given by (2.24). The proper energy density, 
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!!..£.. 1 dp rt roR2 

dt = - 4pH + 
0

5 dll = -4pH + 1152n' (3.11) 

where ro = k ' Ia = 1/"h4£ is the angular frequency of the oscillation in proper time and 

is given by Eq. (2.23). 

When the final tenn in (3.11) vanishes at late times we have d(pa 4)/dt = 0 as 

radiation with an equation of state p = (113)p should give. When the R2 term is 

nonzero, the equation of state is modified. The pressure of the particles is determined 

by Equations (2.3a) and (3.11) to be 

1 (J) R2 
p=-p 

3 11527t H 
(3.12) 

The complete field equations with the back reaction of the particle generation included 

can be estimated by putting this p and p (Eq. (3.11) and (3.12)) back into the field 

equations.19 The t-t part of Eq. (2.1) becomes 

(3.13) 

87t 
= 3G Pmatter(t ), 

and the trace of Eq. (2.1) gives 

R +3HR + - 1- R = 4nGN [ roR2 l ' 
6£ f. 11527tH 

(3.14) 

where we have inserted a factor N, which denotes the number of fields that can be 
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excited by the cosmological oscillation (since massless conformal fields will not be 

excited, this N will be less than the total number of particles in the theory). 

The right-hand side of Eq. (3.13), 81tGN Pmatte/3, can be estimated using (2.24) 

and (2.25). Not too long after the universe has come into the oscillation phase, say at 

t-t0 ., - 10/<.0 == lO'h4E, we have p == 6x l0-7N /£2, which corresponds to a reheating 

temperature of 

[ l-112 

T,. == 3x1o-2;--IE = 4x 1017 GeV ~ 
1/p[ 

(3.15) 

If £ is not too much bigger than one, this particle production timescale may be shorter 

than the thermalization of the particle content. Still, the reheating temperature, T,., is a 

useful characterization of the reheating energy (we will, however, show that £ must be 

indeed large). If this temperature were higher than the GUT phase transition tempera-

ture, we would be left with the monopole problem. If this temperature were too cool, 

then baryogenesis may no longer go through. We will return to this point shortly. 

When t -t0 s » 1/oo, the time dependence of Pmatter is given by 

( t ) _ 3 3 2 N ro3 

Pmatter - -5 llS27t ( ) t-fos 

If we now neglect the back-reaction, H 2 at late times is given by (2.23) to be 

(3.16) 

Hence, at (t-t0 s) == 1200 £312/GN , the term on the right-hand side of (3.11) will be 

comparable with H 2 and the matter produced will begin to have a significant dynami-

cal effect on the evolution of the universe. The solution of Eq. (3.13) gradually goes 
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over to a radiation-dominated Friedmann expansion with 

Hoc_!__ R =0 a oct 112 and poe l!t2 
2t . . ' (3 .17) 

However, the transition from the oscillation phase to the radiation-dominated phase 

will be slow even after 81tG Pmane/3 is comparable to H 2 as a numerical integration of 

Eq. (3.13) shows. We estimate the time it takes for the Friedmann phase to begin by 

taking roughly 10 times this value so that the time the Friedmann phase begins is 

given by tF ::: t 0 s+12000 £ 312/GN. The energy density will then be 

(3.18) 

And the Friedmann Universe thus begins with the temperature 

[ l-3/4 

T < lxl0 17 GeV _€_ N 114. 
F - 1/ 2 

Pi 

(3.19) 

Notice that the ways Tr and T F depend on € are different. It is clear that any con-

straint on T F will not be significant. There are important constraints on Tr, however. 

It must be higher than 1010 - 12 Ge V so that gauge and Higgs bosons can be created 

and baryogenesis can proceed in the usual way, but lower than any GUT phase transi

tion temperature - 1016 GeV, so that the monopole problem can be avoided.2 Eq. 

(3.15) then requires € to be in the range 

(3 .20) 

These bounds will be tightened when we consider perturbations generated in the 

inflationary phase. We summarize the classical evolution of the universe as follows: 
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(i) A homogeneous and isotropic region near the Planck time with a Hubble param

eter Hm will expand with a linearly decreasing H for a total expansion factor 

- exp(l8EH111 
2). 

(ii) Particles will be created during the oscillation phase. The total expansion factor 

during this time will be 

(iii) The universe will then go over to a radiation-dominated Friedmann phase with 

the temperature TF given by Eq. (3.19). To red-shift this to the present value of 

3 ° K, we must have an expansion factor 

Therefore, the total expansion since the Planck era is obtained by multiplying the 

expansion factors under (i), (ii), and (iii), and it should be greater than the present hor

izon size, where 1/H 0 - 1055 lpr· This requires in terms of the expansion factor 

(3.21) 

(the dependence on N is very weak, so we have set N ::: 100 as a typical value). The 

expansion factor is very sensitively depending on fH
111 

2, so that unless the initial 

parameter, H m , is fine-tuned, the left-hand side of Eq. (3 .21) is likely to be very much 

bigger than 1025 . We thus expect to have much more inflation than is necessary. 
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IV. GRAVITATIONAL WAVE GENERATION 

It is crucial to study the generation of gravitational waves in the model, since it is 

well known that inflation close to the Planck time tends to yield excessive gravita

tional wave generation. 20 In the transverse-traceless gauge, a gravitational wave can 

be expressed in terms of a scalar amplitude, h . For a wave with wavenumber k the 

metric can be written as 

(4.1) 

where i ,j=1,2,3 and eij is the polarization tensor satisfying both the transverse condi

tion, e;jkj = 0 and the traceless condition, e/ = 0. The field Equation (2.1) then 

reduces to 

h+ 3H+- h--C}.2h=O. .. [ 1 fR 2 
] . 1 

6 (1+2ER )H a 2 ' 
(4.2) 

The second term in the bracket is due to the presence of the ER 2 term in the gravita

tional Lagrangian. Other than this term, h (t) satisfies the same equation as an ordi-

nary scalar field in a Robertson-Walker background. Since Eq. (4.2) is second order in 

the spacetime derivatives, the quantization can proceed in the usual way. We construct 

an actionS from which (4.2) can be derived: 

(4.3a) 

where 

(4.3b) 

(here we use the background metric of equation (1.1) (with K = 0) to compute the 
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quantities ....f_g , g f.lV' and R ). The quantization condition is then 

[ 
. dL ,]- . o\x -y ) h(t,x),-. (t,y) -IG ~ . 

dh a · 

For L given by Eq. (4.3b), we have 

[ h (t ,x ),h (t ,y )l =iG----::-0-\:.....x_-""""y-'-)
~ a\1+2ER) 

(4.4) 

(4.5) 

(note that the additional factor of 1/(1 +2ER) in the normalization enters because of the 

ER 2 term). It is straightforward to check that the evolution equation preserves this 

commutation relation. 

If h is composed of modes of more than one wave vector, it can be written as 

(4.6) 

with the creation and annihilation operators satisfying the usual relations: 

(4.7) 

Then Equations (4.4) and (4.5) determine the normalization for (4.6): 

(4.8) 

The evolution equation for hk is then 

(4.9) 

Now we consider a wave with wavelength equal to or smaller than the present horizon 
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size, l!H 0 . If the expansion factor in the linear phase is much greater than the 

minimum requirement (3.21) (cf. also text following (3 .21)), the wavenumber k of 

these waves will be much greater than 1. On the other hand, the term inside the brack

ets in Equation (4.9) is of order 1 as t ~o and is thus negligible compared to k Ia. 

Once again we are considering a wave evolving on an essentially flat background. 

Thus, the initial mode function can be chosen as 

'kfdr - 1 -

h -1 (i) a k-1k e . (4.10a) 

And the normalization hk (i >is determined by Eq. (4.5) to be 

(4.10b) 

In the linear phase, a (t) is rapidly increasing so that the wave is soon well outside the 

horizon (i.e ., k <<aH) and the third term in Eq. ( 4.9) becomes negligible, so that hk 

approaches a constant. This constant can be estimated by extrapolating (4.10) to the 

horizon crossing time. hk then remains at this value until it finally reenters the hor-

izon in the Friedmann phase. This "freezing out" of the gravitational waves often 

goes by the name of amplification,21 since it is amplification above the adiabatic 

behavior (Eq. (4.10)). The amplitude of the gravitational wave of wave number k at 

reentry is thus given by 

(4.11) 

where r,c denotes the initial horizon crossing time in the linear phase. At that time, 

H - -1/36£, so we have 
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(4.12) 

We assume that waves which reenter the horizon at late times have left the horizon 

during the inflationary epoch, so that 2fR (the) » 1 and 

lfG 
Ak ::::: -{2. ..,;24£ . (4.13 ) 

Notice that the spectrum is flat . Comparing to the !:!..T IT limit for the microwave 

anisotropy ,2° we have 

(4.14) 

or 

(4.15) 

which somewhat tightens up the bound (3 .20). Unlike usual inflationary models, it 

turns out that the microwave measurements constrain not the value of H (the ) but 

rather the value of£. This is due to the fact that the quantization condition (4.5) is 

modified by the curvature-squared coupling. 

In the conformal picture we arrive at the result quite easily because the back-

ground is de Sitter. Note that the conformal transformation maps backgrounds, but 

leaves the perturbations unchanged: A = A , so we have by conventional means 

(4.16) 

which leads to £ > 7x l06 tp/, agreeing with the above limit (4.15) to the order of 

approximation we are using. 
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Note that in this picture one matches the amplitude at iiH = k, while the true 

perturbation crosses the physical horizon at aH = k . However, the difference between 

the two is 0 (R /R ), so that with the same accuracy by which we have obtained the de 

S itter solution, we can safely evaluate the perturbation at iiH = k . 

A comparison between the two pictures sheds more light in understanding why 

the final result does not depend on H 11c as in the usual case. In the standard calcula-

tion, we can estimate the amplitude of the wave by requiring that the expectation 

value of the total energy of waves within the horizon equals the zero point energy of 

quantum ftuctuations21
, E = (112)ro = (112)(k Ia ): 

1 
-"~ <p>=E. 
H· 

(4.17) 

The amplitude of the wave at the horizon crossing is obtained by extrapolating this 

relation to t1,c , which gives A oc H1,c . Now in conformal space where the gravity is 

pure Einstein and the stress tensor for gravitational waves has the usual form, we 

require 

1 - -
~<p>=E. 
H · 

(4.18) 

However, this relation is not conformally covariant, asH ::: n.-112H, E :n.-112E, and 

p = n-1p (here 0. is the conformal factor= (1 +2f.R )). So, in terms of the physical H 

and R , this relation reads 

1 E 
- <p>=-. 
H 3 n 

(4.19) 

Since 0. = (1 +2f.R ) ::: 24fH11c 2, we have that the Hubble parameter drops from the 

final answer. 
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V. SCALAR PERTURBATIONS 

As is usual in inflationary models, rather stringent constraints on the model 

parameters arise from present observational limits on scalar perturbations. In our 

model, scalar perturbations are generated by quantum fluctuations in the scalar curva-

ture around background values. A major obstacle to evaluating these fluctuations is 

that we are dealing with a fourth-order gravity in which the quantization is not easy. 

We thus avoid the problem by working in the conformal picture. In the conformal pic-

ture there is a neat separation of the degrees of freedom, and the background is de 

Sitter, so that our result is easily obtained. From the action (1 .5), we obtain a field 

equation for OR, which is full of nonlinearities. However, we may make use of the 

fact that during the inflationary epoch, fR is large (fR = 12£H 2 ~ 20, where physical 

quantities are without tildes, conformal quantities have tildes) and the field equation 

reduces in this exponential expansion phase to 

(5 .1) 

That is, OR evolves like a minimally coupled scalar field. However, it is not really 

one, as can be seen by its stress tensor. We may use the stress-energy tensor given by 

Eq. (1.4b) to find the background energy density and pressure during this expansion 

phase (when the matter content is negligible): 

p=f,,=-64-1t_1G_E \ 2 [ 1+6£[ ~ dR]2] 
(1+-) df 

2fR 

(5.2a) 

and 

T p _ __!!,__ -1 
- a 2 - 641tGE 1 2 [ 1-6£ [ ..!._ dR l1· 

(1+-1-) R df 
2fR 

(5.2b) 
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For a scalar wave perturbation of wavenumber k , we can find the linear and 

quadratic corrections to the energy density: 

where, in particular, to leading order in -
1
- we have 

ER 

~( <2>= 3 [ .!:._]
2
[ f>R] 

2 

p l61tG a R 

(5.3a) 

(5.3b) 

Now we proceed to determine the mean-square quantum fluctuations of f>R (i.e., for 

waves much shorter than horizon) from the fact that their energy is just the zero-point 

energy. That is, 

1 ~ <1>, s:.:- <2> -E- _ 1 k -<vp -rup >- ---. 
fi :. 2 a (5.4) 

We evaluate Eq. (5.4) using (5.3) for scales much shorter than the horizon. The expec

tation value <bP (1)> is zero and we obtain 

(5 .5) 

Finally, we extrapolate tlus to the horizon crossing of the fluctuation, where it is phy-

sically matched to the classical post-horizon-crossing amplitude by 

I f>R,c 12 = 2<f>R 2>, so 

· 1 27tG 112 · 21tG 112 

lf>Rirc 1=3(-f.-) R~rc =4(-£-) H,c
2

· (5.6) 
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Now we may detennine the metric potential, A , due to a classical wave of 

amplitude 18R11c I using the "time-lag" method: 3 

(5.7) 

If we now plug (5.6) into (5.7), we obtain 

(5.8) 

We stress that this is the asymptotic value of the metric perturbation at the end of the 

inflationary phase and therefore gives the magnitude of the inhomogeneities in the 

subsequent Friedmann evolution. 

Alternatively, we proceed more cautiously, using the gauge-invariant formalism 

of Brandenberger and Kahn.4 We neglect the effect of sources outside the horizon so 

that we may use a quantity, ~ , as a conserved gauge-invariant expression between hor-

izon crossings: 

(5.9) 

where <l> H is now a gauge-invariant metric potential given by 

(5.10) 

Here, v-2 is the inverse Laplacian and T ~ v (l> is the first-order perturbation in the 

stress-energy. We may calculate from (1.4b) to leading order in - 1- (that is, during 
ER 
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the inflationary epoch after the horizon crossing so that the wave is fully classical) 

(5.11a) 

And from the stress-energy (1.4b) we find, again to leading order (this tenn is the 

same order as the first, contrary to Brandenberger and Kahn4
) 

t J .,Y \:: [ I_lz [ dR ]oR. 
r .; a df 

(5.1lb) 

We have then at the horizon crossing of Eq. (5.9) 

~Ire = (5.12) 

where opto is now calculated in (5.11a) from the classical amplitude loR,c I in Eq. 

(5.6). And we may find ~Ire by putting (5 .11a,b) into (5.12): 

26 2rtG 112 
~hc =39£ loR11c 1=-(--) (18tH,/). 

3 £ 
(5 .13) 

Tlus fixes ~ at the initial horizon crossing, which quantity is roughly conserved until 

reentry. At the reentry of the scale of interest, the universe will be in a matter-

dominated Friedmann phase (j) = 0), and we may use the Friedmann equation at reen

try , H 2 = (8/3 )rtG p, to find 

- _3~ 
~ H (T reentry)-

2 
- · 
p 

(5.14) 

We may now drop the tildes at reentry, since during this late phase the confonnal 
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factor is = 1. We have 

(5 .15) 

And finally, the metric potential after reentry is 

(5.16) 

We see that <f)H (t reentry) - A (here A is given by Eq. (5.8)) to within numerical fac

tors. In the H,c 2 factor, we have some weak scale dependence in the perturbation 

spectrum. In fact , the spectrum is scale-invariant up to a logarithmic term as in the 

case of standard inflation. We calculate this dependence in the following way -at 

both the initial and final horizon crossings, we have in the physical space 

(5 .17) 

We plug into this our evolution law (2.23)-(2.24), assuming, of course, that the initial 

horizon crossing occurs during the linear inflationary phase of the model and we 

obtain 

(5 .18) 

where , H 0 is the Hubble parameter today (we use H 0 =50 km/sec 

Mpc-1 = 9x l0-56 lp1-I, and k 0 is the scale which crosses the horizon today) . From 

this equation we may directly exhibit the logarithmic scale dependence of the pertur-

bat ions: 

A 2 · 1 [ k2] - =1- 1n-- 2 . 
A 1 18fHirc k1 

(5 .19) 
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We note that Eq. (5.18) for a given scale of observational interest completely fixes the 

horizon crossing Hubble parameter in terms of the model parameter E. That is, the 

metric potential, A , given by Eq. (5.8), again for a given scale, is dependent only on E. 

Scales that are inside the horizon today are bounded by the microwave anisotropy 

limit20 so that A :::...fix 1 o-4 and k reentry; k o = 1. we have 

(5 .20) 

If we want this primordial spectrum of density fluctuations to be a successful seed for 

galaxy formation, and we use a standard value for the scalar perturbation amplitude of 

- 10-4. then essentially our bound in (5 .20) would change into an equality. If, how

ever, we choose a different scenario,22 that is less constraining in which A > 10--<> for 

scales kreentry/k0 :: 150, we have 

(5.21) 

The bound (5.20) tightens up (3.20) considerably - although this number is to be 

taken only as very rough. Notice also that 18E(H,c (k0))2 :: 52, so that the early evolu

tion for H (t) > H,c (k 0)- 5xlo--<> I p1-
1 is irrelevant to all present observation. Putting 

it another way, with initial conditions of order Planck, the model predicts that our 

universe has been expanded something like 2xl012 e-foldings, so that the observable 

part of the universe will be the same for many future generations. 

The scales that cross the horizon at Hire > Hb = 11(12'h7tG E) have perturbations 

bigger than one today. From Eq. (5.20), 

If Hm > H b , that simply means that one has at scales much larger than the present 
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horizon fluctuations, which cannot be treated in linear theory. Of course, H,. can as 

well be less than H b -it is bounded below only by H,c (k 0). The requirement that the 

perturbations are small at the initial horizon crossing so that the use of perturbation 

theory is justified leads to only a very weak constraint on £ - well within our other 

bounds. 

Interestingly, all these numbers tell us that there is one characteristic mass scale 

present in the theory as H,c (k0)- £-112 - 10-6 I p1-
1. Perturbations in an inflationary 

model with a massive scalar inflaton have been considered by Halliwell and Hawk

ing,23 using the full wave function formalism. They found that compatibility with 

observation restricts this mass to be less than 1014 GeV. As we have seen, the scalar 

curvature does obey an equation for a massive scalar field of mass - 11-.f6E. So we see 

that despite the unusual self-couplings present in the fR 2 theory, the physical analogy 

works remarkably well. 

Finally, from Equations (4 .13) and (5 .8), the neat result follows that the contribu

tion to the microwave anisotropy of the scalar fluctuations ovetpowers that from grav

itational waves by a factor of 18c(H,c (k 0))
2 - 52. This is the reason that the bound on 

£ is much tighter from considering scalar perturbations. 

VI. PRESENT BOUNDS ON £AND POSSIBLE ORIGINS 

It may seem that the condition£> 1011 I p? places a very large unnatural limit on 

£, which in terms of Planck units it does. We would like to point out that in terms of 

any presently measured curvature, this is really quite small. 

We can manipulate the field Equation (2.1) in the usual way to get 

(6.1) 
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where 

and 

3€ R 2 · 2 
Ps=--(--RH -RH ) 

47tG 12 

€ ·· · R 2 
2 RK 

Ps=--(R+2RH+--RH - - ). 
47tG 12 a2 

(6.2a) 

(6.2b) 

This is the usual equation that is used to set a limit on the cosmological constant A in 

tenns of the presently observed H 0 (the Hubble parameter), cr0 (density parameter), 

and q 0 (deceleration parameter). If we assume A= 0, we thus obtain a cosmological 

limit on € : 

(6.3) 

Similarly , one can consider a limit on € by asserting that €R is small in all horizon-

exterior curvatures encountered presently in our universe. We may use for R typically 

M lr 3 and go to the gravitational radius of a black hole. Then €R « 1 requires only 

(6.4) 

This, of course, is a bit of a swindle, because a black hole is also a solution of €R 2 

gravity14 so that R = 0 and € will have no effect. We conclude, though, that 

€ = 1011 I p 1
2 in terms of any presently encounterable curvature is very small. 

We have not as yet addressed the question of the origin of the € term. Basically, 

there are three ways that one might imagine it arising. First, it may be that the full 

fourth-order theory should be postulated as fundamental. Such a form is naturally 

suggested if one thinks about gravity as the gauge theory of the Poincare group.24 
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Furthermore, the ER 2 terms in the field equations violate the strong energy condition 

so that the initial singularity might be avoided. 12 It has also been shown that such a 

theory is renormalizable.24 And the long-standing objection that it is nonunitary might 

not be true?5 Secondly, it may be a remnant from some more fundamental theory. For 

instance, in the superstring theory the Lagrangian of the point-particle limit of the 1 0-

dimensional full string theory contains the following terms:26 

Rllv"PR 1..1vA.p+aRilvR 1..1v+bR 2, 

where a and b are some constants, and these are 10-dimensional curvature tensors. 

After compactification this leads to 

1 GV 
L=R+(~+b)--6 R 2 

3 <I> ' 
(6.5) 

where V 6 is the compactified volume of the six "other" dimensions and <I> is the 

vacuum expectation value of a scalar field known as the dilaton. We see that this 

might directly give us an ER 2 behavior even classically in the Lagrangian with a com

pletely determined E. However, the highly preferred values27 for a and b are a = -4, 

b = 1 and then E = 0 at the classical level, and there is no R 2 term in superstring 

theory. 

Nevertheless, E should also be expected to arise in a third way- as a quantum 

effective action correction to the bare theory. Here, the specific fields will contribute 

to its value. Indeed, this is the approach of Starobinsky .13 As a quantum correction 

tenn E would be given by 

E _ G ln( Ahigh cutoff ) 

Alowcutoff 
(6.7) 
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and we would again be forced to consider a higher, more complete theory to fix£. 

VD. CONCLUSION 

We thus conclude that at a classical level a cosmology based on the R + £R 2 

Lagrangian generically has an inflationary phase with a linearly decreasing Hubble 

parameter. The total number of expansion e-foldings during tlus phase is- 18fllnr 2 (if 

R; = 0, then t; = 0 = tnr ). After the linear decaying phase, H (t) bounces off zero and 

the universe goes into an oscillatory phase. The total expansion is sufficient to solve 

the horizon and flatness problems if 18EH111 
2 > 75. At the classical level, this is a 

natural and consistent model that relies solely on a modified gravity for its dynamics. 

Here, the quadratic correction to the Hilbert-Einstein action would be expected to be 

present somewhat independently of the specific form of the matter Lagrangian 

(although a value for£ must necessarily come from a higher theory). 

The postinflation oscillatory phase yields a maximal reheating temperature which 

is small: 

in any case very much below any expected GUT phase transition, so that the mono

pole problem is avoided by the £R 2 -driven expansion. Standard baryogenesis still may 

go through at this temperature, but the details of this on the non-standard background 

will require further attention. Finally, there is a join to a Friedmarm phase at a tern-

perature 
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when the evolution goes over to a radiation-dominated expansion. 

Gravitational waves and scalar perturbations both yield bounds on the parameters 

of the model when we must set them small so as not to disturb the isotropy of the 

microwave background. The bound from gravitational waves is E > 106 lp/ with no 

restriction on H 1,c as would occur for the standard inflationary scenario. This spectrum 

of gravitational waves is scale-invariant. However, the scalar perturbations give the 

much tighter bound of E =::: 1011 I p1
2, and this in tum implies that the perturbation scale, 

that reenters the horizon today, must cross the horizon at H 11c (k 0 ) - 10-6 I p1-
1 - that 

is, at a late stage of the extremely long linear phase. The spectrum of scalar perturba

tions has only logarithmic dependence on the scale. If one wants baryogenesis to 

proceed in the usual way, there is an upper bound £ < 1015 I p?. A similar bound fol

lows from a comparison between galaxy formation and the microwave anisotropy in 

models of galaxy formation with cold dark matter. 22 However, both considerations 

carry their own difficulties, so that we place somewhat less emphasis here on the 

upper bound. The condition of sufficient inflation requires that H m > 10-51 p1-
1

- that 

is, we find that our model would work for essentially all reasonable initial conditions. 

We thus conclude that the ER 2 model satisfies all requirements for a realistic 

inflationary model as long as £ is large enough. 

To investigate the very early phase, we have attempted a preliminary wave func

tion calculation by solving the Wheeler-DeWitt equation to WKB approximation sub

ject to a tunneling boundary condition in the manner of Vilenkin.28 We thus obtain 

peak values for the wave function, assuming a closed (K = + 1) universe of 

<a>- .056/pJ, <R >- 3800 1p1-
2, and <H>- 181p1-

1 independent of E (the details 

of that calculation will be reported in subsequent work). We interpret these as typical 

of the tunneling values for the universe into the Lorentzian/classically allowed regime. 
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Also, the peak is not very strong, so that these numbers end up only as bounds. That 

is , we might say 

[ 
R- l-1/2 

0; -.06/pJ I 
2 

, 
4000 /p]-

and 

H· - 20 I -I I 

[ 

R- ]1/2 
I Pl 4000 I Pl-2 

(and t; = t, = 0). These numbers are sufficiently distant from the horizon crossing of 

interesting perturbations that the wave function offers no conflict with our lower 

bound on H,. We thus find the classical evolution to be generally independent of ini-

tial conditions. The one remaining question is whether or not there will be a long 

quantum gap separating the tunneling point from the onset of the classical model. That 

is , are quantum fluctuations large for an extended period during early times? This, of 

course, must be answered by the wave function itself. Also, after doing this further 

calculation, we can detennine whether the inflated portion of our present universe is 

the whole universe or only a fluctuated bubble part of it as in Linde's chaotic inflation 

picture. We note now only that the initial parameters preferred above indicate that the 

tmmeled universe is strongly quantum. 

The model we are considering has a lot in common with the Starobinsky 

model. 13 While our work was carried on, papers by Starobinsky ,29 Kofman, Linde, 

and Starobinsky,31 and Vilenkin28 appeared, from which we also learned about earlier 

work. 30 All of these papers treat the Starobinsky model in considerable detail, so that 
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we would like to comment here about similarities and differences between cosmolo

gies based on Eq. ( 1.2) and the Starobinsky model and also to discuss our results in 

relation to this other work. 

Starobinsky considers a model in which the one-loop quantum corrections to the 

matter stress-energy tensor of a conformally coupled scalar field are used as source 

tenns for the Einstein equations. At the Lagrangian level, this introduces a new 

parameter, Hs, and a new term to Eq. (1.2), (11H/)R 2ln(R /~) . where~ is some renor

malization scale. The important point is that Hs is completely fixed by the number of 

degrees of freedom that give quantum corrections:28 for example Hs - 0.7 /p1-
1 for 

minimal SU 5. There is an exact de Sitter solution in this case, with Hs being the ini

tial Hubble parameter. This solution is shown to be unstabl6- offering an exit from 

the inflationary phase. Vilenkin28 has shown by a wave function calculation that there 

will be sufficient inflation in the de Sitter phase. For an initial H; not bigger than H5 , 

H (t) will decrease in time. When H (t) « Hs, the decrease will be linear with time,30 

and the subsequent evolution should be the same as in the present R 2 model. In com

parison to the Starobinsky model, our work shows that the initial de Sitter phase is not 

necessary. We have shown that a generic solution of the field equations will have 

sufficient inflation based solely on the R 2 term. We have analyzed the reheating in the 

oscillation phase, showing that it is characterized by two different temperatures. The 

reheating temperature, T,., is much higher than the temperature, TF, when the Fried

mann phase begins. We have analyzed the metric perturbations both in the conformal 

picture and in the direct approach. The results obtained essentially agree with those 

obtained in the Starobinsky model. 28•30 These results indicate that the part of the 

expansion that is relevant for present observation happens at H (t) < 10-5 I p1-
1 and 

cannot be due to the de Sitter phase of the Starobinsky model. Finally, we note that as 
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the two models have very different early stage evolution, the wave function calcula

tion yields very different initial parameters. 
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FIGURE CAPTION FOR FIGURE 1, CHAPTER 2 

FIG. 1. A model cosmology for £ = 1, H; = 1 I p1-
1, and R; = 0 (corresponding to the 

case (Ai) of the text so that R; ::: 12.5 I p1-
2
}-- showing typical behavior of the Hubble 

parameter (H(t)/1/p1-
1), the normalized scalar curvature (R(t)IR;), and the inflation

normalized number of expansion e-foldings (ln a (t )/18tH/). This plot has been gen

erated from a numerical integration of the field Equations (2.4)-(2.7) with zero initial 

matter content. The Hubble parameter displays a clean separation between the linear 

inflationary phase and the subsequent oscillation phase at 

l os = 36EH111 - (l /(2co))::: 33.6/ p1 (cf. Eq. (2.23)). The slight initial rise in H (I) is real, 

since at the start, H = (1 /6)(R -12H 2) > 0. For models with a much higher value of 

the parameter £ (we are observationally constrained to £ > 1011/p1
2), the linear phase 

is stretched out to a shallow slope, and the subsequent oscillations are correspondingly 

reduced in both amplitude and frequency . 
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(by Milan B . Mijic, MichaelS. Morris, and Wai-Mo Suen) 

Submitted as "Initial conditions for the R +ER 2 cosmology " to Physical Review D. 



- 67-

ABSTRACT 

A pure gravity cosmology based on the R +€R 2 Lagrangian is known to exhibit 

inflation for a wide range of initial conditions. In this paper we use the wave function 

from quantum cosmology to describe this inflation as a chaotic inflationary phase 

immediately following the quantum creation of the universe. We evaluate, compare, 

and discuss the distributions over initial conditions that are fixed by the two boundary 

condition proposals of Hartle-Hawking ("no boundary") and Vilenkin ("tunneling 

from nothing"). We find that among all classical inflationary trajectories that begin 

on the Classical/Quantum boundary, those that lead to an inflation of at least 70 e

foldings make up a fraction of -exp[-1012] in the former case and -1-exp[-8x1010
] in 

the latter. Thus, in the simplest interpretation, the observable universe would be the 

outcome of a rare event for the first boundary condition proposal and a typical event 

for the second. 
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I. INTRODUCTION 

Inflation has become standard in modem cosmology.1 It can explain basic 

features of our present universe and can occur rather generally in particle physics 

models.2 

The question that naturally follows the development of inflation is to ask what 

came before, a question that has been embedded in a broader context by the advent of 

chaotic inflation.3·2 We shall understand by chaotic inflation that phase of the 

inflationary expansion during which some scalar field relaxes to the minimum of its 

potential, with the provision that: (i) this relaxation need not be accompanied by any 

kind of phase transition; (ii) the scalar field potential can be of classical origin as well 

as due to quantum corrections; (iii) the preinftationary phase need not be a hot, 

radiation-dominated Robertson-Walker Universe (as all models of old and new 

inflation have assumed, explicitly or implicitly); and (iv) the field's initial conditions 

have been assigned in some "random way". 

As analysis has shown,2 the typical initial conditions for chaotic inflation are 

Planck-scale, so we might expect quantum gravity to come directly to play. In fact, as 

we argue hereafter, the idea of chaotic inflation can be joined with the older concept 

of quantum creation of the universe. 4 

Two things are done in this paper: (i) We suggest a physical context, in which 

semiclassical wave functions (fixed by boundary conditions in quantum cosmology) 

can be used to compute the distribution of initial conditions for the classical 

inflationary expansion; and (ii) we apply this method to an inflationary model based 

on higher derivative gravity where, in particular, we compare predictions resulting 

from different proposals for the boundary conditions. 
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The model we study is R +fR 2 gravity. 5- 9 We provide the classical details neces

sary to our present work in Section II. One can think of this model as the relevant, 

dominant part of a renormalizable [and so far (perturbatively) nonunitary] higher 

derivative gravity.10 Perhaps a more promising context is that of an effective theory 

that describes the first short-distance corrections to General Relativity, for example, 

the low energy limit of superstrings.11 Thus, we have an inflationary model without 

introducing an additional inflaton field especially for the purpose. This point lends the 

model some advantage over others. 

The wave function for higher derivative gravity with Hartle and Hawking 's 

boundary condition has been studied analytically by Hawking and Luttrell, 6 and 

numerically by Hawking and Wu.7 They have shown that the wave function is oscilla

tory in a certain regime of superspace, corresponding to Lorentzian spacetime. We 

extend their discussion of the Hartle-Hawking boundary condition, compute the wave 

function in more detail , compare it to the wave function that satisfies Vilenkin's 

boundary condition, 12 and make contact with the scenario of chaotic inflation. We 

have earlier reported some preliminary results in the discussion following our own 

analysis of the classical model.8 

If (in this model or in any other) we follow a classical trajectory backward in 

time to when the curvature approaches values - lp1-
2 , this trajectory will hit a highly 

quantum region. Classical equations of motion cannot be used any more. In fact , as 

we shall see, there remains a substantial range of initial curvatures (€-1 <R; <I p1-
2

) in 

this model for which quantum creation of the inflationary universe may take place, 

and classical inflationary trajectories may start . This range is large because € is con

strained to be large, £::1011 I p?, by a tiny observational bound on the anisotropy of the 

microwave background. 
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As shown in the literature, 5-
9 the classical scenario of R +ER 2 cosmology is sen

sible and attractive within this parameter regime - it can give more inflation than 

minimally required and then lead smoothly to reheating of the Universe and initiation 

of a Friedmann phase. It is plausible (especially at the lower acceptable curvatures), 

though by no means necessary, that still higher order correction terms to the Lagran

gian would not change these results. In this paper we assume that whatever the true 

quantum theory of the world is, it should be well approximated in this regime by the 

quantum mechanics of the R +ER 2 model. Since we are interested in the phase when 

the Universe emerges as a classical object, the semiclassical limit of the quantum 

theory is sufficient. Hence, we do not worry about the (un)calculability of loop 

corrections . We do not consider initial curvatures below c 1 because we confine our

selves to analysis of the inflationary phase, which does not extend to such low curva

tures. And, moreover, for such low curvatures, the f.R 2 term will not be important and 

the evolution of the Universe will be strongly affected by other terms (e.g., matter 

fields ) in the Lagrangian, terms that we have not taken into account in our present cal

culation. We reject consideration of curvatures above I PI-2 because our quantum 

model is presumably not the fundamental theory. We take the Planck scale to be the 

scale above which a full theory must come into account. That is, we limit our atten

tion and our analysis to the initial edge of the region of semiclassical inflationary tra

jectories. 

Such an approach, as restricted as it is, still has the power to yield important 

infonnation. It might also survive modifications that the development of a more fun

damental theory would bring. There are, however, two obvious shortcomings of this 

work. First, in this truncated use of quantum cosmology, we have dodged the problem 

of interpretation. In particular, we have not addressed the analog of the measurement 
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problem from quantum mechanics. Second, a more teclmical weakness of our work is 

that, in order to carry out explicit calculation, we have resorted to calculating the wave 

function for Robertson-Walker models only . We reduce superspace to minisuper-

space: all that is "chaotic" now in this inflation is the stochastic choice of the initial 

values of the scale factor , the homogeneous curvature, and their initial time deriva-

tives. These four initial values for subsequent classical evolution will be determined 

by the wave function. We have ignored any distribution over inhomogeneity, aniso-

tropy, etc. . We hope that both of these weaknesses will be amended by further 

development. 

In Section IT, we summarize the classical behavior of the R +ER 2 model and 

derive the Wheeler-DeWitt equation appropriate to the two homogeneous and isotro-

pic variables of superspace. We spell out two competing boundary condition proposals 

and explore their connection with quantum creation in Section lll. In Section IV, we 

then implement both proposals for the boundary conditions and fix their respective 

wave functions for our model. We finally explore consequences of these wave func

tions in their regime of validity and state our conclusions in Section V . An appendix is 

provided to support material in Section II. 

ll. ACTION AND THE WHEELER-DEWITT EQUATION 

We study a model governed by the action, 

(2 .1) 

that represents Einstein gravity with an additional quaclratic gravitational correction 

tenn . Here R is the scalar curvature , g is the determinant of the spacetime 4-metric, 

h is the determinant of the induced spatial 3-metric on the boundary, and K is the 
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trace of the extrinsic curvature. Our sign conventions are those of Ref. 13 and we 

choose units in which h =c=1 and G=1 lp/. The parameter E will then have dimen

sions of / 2. The boundary term [displayed as the surface integral in Eq. (2.1)] is the 

expression needed to cancel out arbitrary variations of metric derivatives at the boun-

daries of the 4-dimensional action integral. It is thus dependent on the form of the 

local Lagrangian density and in the appendix we provide details of its derivation. 

For tractability we focus attention on a cosmological model described by the 

Robertson-Walker metric, 

(2.2) 

where a (t) is the scale factor, k is the sign of the spatial curvature, R is given by 

R = 12H 2+6H+6k /a 2 where His the Hubble parameter H =a la, and the extrinsic 

curvature is K = -3H. 

The present authors8 and others5
·
6

·
7

·9 have analyzed the classical behavior of 

such a model and we summarize it here. The R 2 term drives inflation. Any initial 

matter content will be rapidly redshifted, and the evolution goes over to a pure gravity 

near-de Sitter expansion. The equation of motion can be written 

. 2 [ ·· · H H kH 1 
H+3HH+--=-+- 1----

12£ 2H a 12EH 2 
(2.3) 

For a wide range of initial data, there will be a ''linear' ' phase, during which the tenns 

on the right hand side of Eq. (2.3) are neglectable and we have the solution, 

t 
H(t)=H·--. 

I 36£ 
(2.4) 
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This solution will be very nearly de Sitter if the linear decay is slow - which is the 

same requirement as for the solution's validity. The linear decay of the Hubble param-

eter self-regulates its own inflationary epoch. The near-de Sitter behavior ends after 

t e=36€1-l; and the universe then goes into an oscillation phase in which the scale factor 

increases on average as oct 213 - as in a matter-dominated Friedmann expansion. This 

"scalaron" dominated phase is unstable to particle creation. The universe will reheat 

to a temperature constrained below monopole production and above baryogenesis. 

The total number of expansion e-foldings, e, during the inflationary epoch is 

e=18€H/ . (2.5) 

By analyzing perturbations (most importantly scalar perturbations), applying to our 

model their known observational limits, and requiring the inflationary period to be of 

sufficient duration, we have found the following parameter constraints:8 

(2.6a) 

(2.6b) 

Here , R, is the curvature at which the perturbation, whose wavelength today is equal 

to the horizon size, crossed the horizon during inflation. 

The inflation exhibited by this model is not substantially different from the 

inflation exhibited by any other chaotic inflationary model. The quadratic gravitational 

term lends to Einstein gravity an additional scalar degree of freedom. There is an 

explicit and very useful way to display the structure of this extra degree of freedom 

that is due to Whitt , 14 which is to perfonn the confonnal transformation, 

g J.lV=(l +2£R )g J.lV ' (2.7) 
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The action (2.1) can then be rewritten (with geometric quantities in conformal space 

denoted by a tilde) as 

(2.8) 

with <j>=(l /2)ln(l +2f.R ). An effective cosmological constant, 11(8£), has been gen-

era ted by the quadratic term. For fR >> 1, the potential for <1> is negligible and this 

effective cosmological constant dominates. As in the scalar inflaton case, if the kinetic 

tenn were to dominate initially, it would decay away quickly as a -6. 

We study the distribution of possible initial conditions, using the wave function. 

We specialize to the line element with k =+ 1. This is a tremendous winnowing of 

many possible variables down to the two homogeneous degrees of freedom, a (t) and 

R (t ), or a (T) and cp(T ). We complete the spatial integrals in the action (2.8), 

J<-g )112d 4x=2rtJa 3df and J<ii )112d 3x=2rt2a 3
, to get the action in the simple form 

(2.9) 

From this action we can read off the Hamiltonian. First, however, we interpose one 

last change of variables to make dimensionless the scale factor and time: 

a=ii /(2G/3rt)112 and 't=l' /(2G/3rt)112, which give us 
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()L da 
1ta 

d[ ~~] 
a-d't , 

(2.1 Oa) 

dL a3d$ 1tq, 

d[~ 
d't , 

(2.10b) 

1 d a 3 d $ G a -2 2 

{ [ ]2 [ ]2 [ 2 J} S=2 Jd't - d't a+a d't +a 1- 361t£ (e L1) , (2.10c) 

and the classical Hamiltonian, 

2 2 [ J) 1ta 1tq, G 2 -2 2 H= --+--a 1---a (e Ll) . 
a a3 36m: 

(2.11) 

To quantize, we canonically substitute 1ta~Tta=-i dlda and 1tq,~Ttq,=-i did$. The 

Wheeler-DeWitt equation15•16 in the rninisuperspace governing the wave function 'I' 

over the two variables a;::=a ( 1 + 2ER ) 112-.J 3rt/2G and $=( 1/2 )ln( 1 + 2ER ) is: 

{ 
d

2 
1 ~ 2[ G 2 -2• 2] } -----a 1---a (e "'-1) 'l'(a,$)=0. 

()a2 a 2 d$2 36m: 
(2.12) 

Here we have chosen a simple factor ordering because our solution will be indepen-

dent of factor ordering to the order of accuracy we demand. We display the restricted 

region of our analysis in minisuperspace in Fig. 1. 
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m. THE BOUNDARY CONDITIONS 

The wave function of the universe is a solution of the Wheeler-DeWitt equation 

for some specified boundary condition. We discuss here the motivation for two of the 

most definite proposals for the boundary condition - the proposal of ''no boundary' ' 

that is due to Hartle and Hawking16
·
17 and the proposal of "tunneling from nothing" 

that is due to Vilenkin. 12 We will then (in Section IV) examine the specific solutions 

of the Wheeler-De Witt equation for our specific model- which will in tum help us to 

further our physical understanding of the boundary conditions. 

Both proposals apply to a spatially closed universe (k=+l) and are therefore inti-

mately connected with the concept of quantum creation of the universe. First, we 

illustrate the basic idea by considering the case of ER » 1 in Eq. (2.8), where the 

potential of the q, field is dominated by a cosmological constant, AefFli(8E). We 

display this effective cosmological constant as function of the q, field in Fig. 2. For a 

spatially closed Robertson-Walker spacetime, the classical equation of motion is 

- 2 Aeff 1 
H =----2. 

3 a 
(3 . 1) 

There will be a classical Lorentzian trajectory for i1 (T)>(3/Aeff)112 only. We can 

think4 of an initial configuration of finite size a -(3/Aeff)112 being "spontaneously" 

born from the vacuum. If fi >0, an expansion will follow. After quantization, Eq. 

(3.1) becomes a Wheeler-DeWitt equation 

(3 .2) 

For a >(3/Aerr)112
, corresponding to the Lorentzian signature classical solution, the 
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potential term is positive and the wave function will be oscillatory. For a <(3/Aecc)
112

, 

we can introduce a classical solution with Euclidean signature, the potential term is 

negative, and the wave function will have exponential mode solutions . We observe 

that at both zero size for the universe, a -0, and at the Euclidean/Lorentzian boundary, 

a - (3/Aeff)112
, the potential term in the Wheeler-DeWitt equation vanishes. Therefore, 

the creation of a Lorentzian universe is not a process that can be described in classical 

tenns, since the semiclassical approximation to the wave function breaks down in the 

boundary regions. 

There is a semiclassical regime at large a and, depending on the value of Aeff, 

there might be another semiclassical regime for I PI <<a « (3/ A eff) 
112

, where a classical 

Euclidean solution might be introduced. The oscillatory/exponential character of the 

wave function is intimately tied to the Lorentzian/Euclidean character of the classical 

trajectory . And it is the semiclassical regime on the Lorentzian side of the boundary 

(for large a ) that provides initial conditions for the Lorentzian classical universe as 

we know it. 

In the Lorentzian domain, the two oscillatory modes can be chosen to correspond 

to expanding and contracting universes. Vilenkin's tunneling boundary condition pro

posal, in this one-dimensional example, is to fix the wave function by demanding that 

it describe the expanding universe only. By the WKB matching conditions across the 

boundary , such a solution would contain both exponentially growing and exponen

tially decaying modes in the Euclidean domain. Near a =0, of course, it is the 

exponentially growing mode that dominates. Thus. we can think of this boundary con

dition as physically ascribing the origin of the universe to the result of quantum tun

neling within the Euclidean domain away from a =0. This is the main physical idea 

behind Vilenkin's proposal, and this wave function is said to describe tunneling from 
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nothing. 12 

Next we tum to Hartle and Hawking's boundary condition. Their proposal16
•
17 is 

that the wave function of the universe is given by the Euclidean path integral over all 

compact 4-geometries and regular matter fields that induce a given 3-geometry and 

matter-field configuration on a given 3-boundary. The physical motivation for the 

Hartle-Hawking proposal comes from the path integral representation for a ground 

state. In a compact spacetime, there is no preferred notion of energy, and one can 

interpret their wave function as that for the state of minimal excitation. It is practi

cally impossible, however, to compute this path integral in a closed form for any real

istic model. In this paper, we determine the Hartle-Hawking wave function in the 

semiclassical regime by a semiclassical approximation to the path integral. This pro

cedure fixes the solution that obeys the Hartle-Hawking boundary condition. 

The structure of the minisuperspace with its Euclidean and Lorentzian domains 

is naturally independent of the boundary conditions for the wave function. Both 

boundary conditions for the wave function describe quantum creation of the universe. 

The fonn of the wave function is different for different boundary conditions, however, 

and the quantum mechanical probability for creation of a universe of a certain size and 

certain matter configuration, etc., will also be different for different boundary condi

tions. It is a main goal of this work to compare the predictions that depend on the 

choice of boundary condition for the quantum cosmology of the R +ER 2 model. 

Now we can state the boundary conditions for the wave function of the universe 

in the R+ER 2 model. We will use the variables a and 4>, with 'l'='l'(a,<\>) in Eq. (2.12). 

Following the usage of Ref. 12, we implement Vilenkin's boundary condition ("tun

neling of the Universe from nothing") in our present model by choosing 
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(i) the outgoing mode in the Lorentzian regime, along the classical trajectory; and 

(ii) the wave function <!>-independent as a---70 , <I> finite. (3.3) 

We implement Hartle and Hawking's boundary condition ("the universe is without 

boundary ' ') by fixing 

'l'semic!ass.(a,<j>)={J[Da][O<j>]e -SE[a.cp]l . 

J senuclass. 
(3.4) 

Here, the path integral is to be evaluated over all compact 4-geometries and regular 

field configurations that induce a and <1> on the fixed 3-surface, and the subscript "E" 

means that the action is Euclidean. 

When the full potential is kept in Eq. (2.8) we have, 

(3.5) 

The Wheeler-DeWitt Equation (2.12) includes a kinetic term for the <1> field as well. 

At the classical level, the effect of such a term is well understood.18- 20 If the kinetic 

term were to dominate initially, it would quickly decay away and leave the effective 

cosmological constant dominant. That is, the Ae£1<1>)-driven phase is an attractor,20 

and the kinetic term becomes unimportant for classical inflationary evolution. We 

shall see that, for the quantum distribution over initial conditions as detennined by the 

Hartle-Hawking or Vilenkin boundary conditions, the kinetic term is also unimpor

tant. We simply extend the discussion with which this section began. The 

Euclidean/Lorentzian boundary in ( a,<j>) minisuperspace is the curve on which the 

potential for the Wheeler-DeWitt equation vanishes, 

(3.6) 
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We might say that a universe of given scalar field strength becomes Lorentzian when 

its size exceeds the horizon size detennined by that field strength. 

The evolution of the universe will follow classical equations of motion after the 

universe crosses the Classical/Quantum boundary in the Lorentzian regime of super

space. Creation of the universe then takes place on the Lorentzian side of the 

V wow( a,cj> )=0 curve, but spaced away from it at the boundary of the semiclassical 

regrme. The solution of the Wheeler-DeWitt equation, evaluated on this 

Classical/Quantum boundary (the "t=O" curve in Fig. 1), is the amplitude for crea

tion of a classical Lorentzian universe with given (a,cj>). The square modulus of this 

amplitude is the probability distribution over initial conditions for an inflationary 

universe. Since the values of a and q, are related to each other on the 

Classical/Quantum boundary (a curve near the Lorentzian/Euclidean curve, 

V wow=O), tllis distribution will depend on only one of the variables, and we shall take 

it to be cj>. We thus interpret its value on the Classical/Quantum boundary, cj>;, as the 

initial "displacement" of this scalar field. In this sense we arrive at the chaotic 

inflationary picture. 

IV. SOLUllONS OF THE WHEELER-DEWITT EQUATION 

We wish to find a distribution over initial conditions for the classical inflationary 

expansion described in Section II. This inflation takes place in the regime fR » 1, and 

we will linlit ourselves to exploring semiclassical quantum cosmology during this 

early epoch. 

In principle, the Schroedinger equation and the Feynman path integral are two 

equivalent ways of computing quantum amplitudes and, again in principle, we can use 

either of the two methods in quantum cosmology. However, for purposes of 
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computation and comparison of differing boundary condition proposals we prefer to 

adopt the point of view of the Wheeler-DeWitt equation. We accordingly first solve 

for the (approximate) general solution of the Wheeler-DeWitt equation. We then 

implement Vilenkin's boundary condition by a straightforward imposition of (3.3). 

And finally, we evaluate the path integral (3.4) in semiclassical approximation to 

determine Hartle and Hawking's wave function, but we shall think of this last pro-

cedure as fixing the specific Hartle-Hawking component of the general solution to the 

Wheeler-DeWitt equation. 

In general, it is not possible to solve the partial differential Wheeler-DeWitt 

equation (2.12) in closed form- even to WKB approximation. We shall study the 

general solution only for small a. For larger values of a, we treat the cp degree of free-

dom perturbatively by expanding in exp( -2cp )-1/(ER.) on top of the semiclassical 

approximation. 

A. The General Solution for Small a 

For small a, it is possible to solve the Wheeler-DeWitt Equation (2.12) to all 

orders in 1/(ER.) [with our factor-ordering choice]. For a 2«a. 2:36rtEIG, we can 

drop the a 4 term in Eq. (2.12), 

(4.1) 

We stress that this equation is, in fact, correct to arbitrary order in 1/(ER. ), since 

(e-2L1)2 <1 for the whole range of cp. Now, the equation separates. We write 

'¥( a,cp )=A ( a)<l>( cp) . (4.2) 

The a part of the wave function, A (a), satisfies 
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(4.3) 

where /...2 is the separation constant. This has the general solution, 

(4.4) 

where 

(4.5) 

Here , c 0 and c 0 are constants, D and G subscripts denote decaying and growing 

modes respectively , and K and I are modified Bessel functions with index, 

v=(l /4)(1-4/...2)112 (cf. Ref. 21). For a.«l, we find 

c a a.< lf2)(1+41vl)+coa.<ll2)(1-41vl) 

A (a.)= c 0 -{U+c o"{(J.lna. 

c a --racos(s lna.)+c0 --rasin(s Ina.) 

for 1-4/...2>0 

for 1-4/...2=0 

for 1-4/...2<0, 

(4.6) 

where s=(l/2)~4/...2-1 and the constants c 0 and c 0 are proportional to those of Eq. 

(4.4). And for l«a.<<a.., we have 

(4.7) 

independent of v as long as v«a.2/2. This form best displays the merit of designating 

the two modes decaying and growing. The corresponding solution for the <l> wave 

function is 
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(4.8) 

In this paper, we choose to apply the Vilenk.in boundary condition in the Lorentzian 

regime cx.>cx.., and this will necessitate WKB expansion combined with expanding to 

successive orders in e - 2<L 1/(f.R ). 

B. The Zeroth-Order Equation 

At zeroth-order in 1/(ER.), we can write Eq. (2.12) as 

[ <f 1 ()
2 

2 [ G 2] l --2--2 -2 -ex. 1--36 ex. '~'to>(cx.,q>)=O. 
d<X (X. ()q> 7t£ 

(4.9) 

This equation also separates. We write, as before, 

(4.10a) 

and obtain 

(4.10b) 

and 

(4.1 Oc) 

where A.2 is the separation constant. 

We focus attention on the equation for a-dependence of the wave function 

(4.10b). This may be rewritten in the form of a Schroedinger equation, 
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A.
2 

2 [ G 2] -A"(a)+U(a)A(a)=O, where U(a)=--+a 1---a 
a 2 36m: 

(4.11) 

Note that the sign of the potential in Eq. (4.11) differs from the one in the Wheeler

DeWitt equation [Eq. (2.12)], so that here the contribution of "matter" terms is nega-

tive, while for "gravity" tenns it is positive. 

The qualitative features of the potential, U (a), especially near a=O, will depend 

on the sign of the separation constant, 'A.2 . The three possible cases are displayed in 

Fig. 3 and we discuss them as follows: 

Here, there are two qualitatively different subcases, both depicted in Fig. 3(a). If 

'A2>(113)(24m:/G )2 , then the Schroedinger potential, U (a), remains negative for 

all a, and the wave function, A(a), is oscillatory. For essentially the whole 

range of a, the semiclassical approximation is valid, and the corresponding clas-

sical solution describes (for small a) a Lorentzian universe expanding (or con

tracting) in a power law manner (-'t113) out of the big bang (or into the big 

crunch) singularity. If, on the other hand, we have 0<'A2<(1/3)(24m:/G )2
, the 

potential is negative near a=O, has a positive region between the two roots of the 

equation, U (a,'A2 >0)=0, and then is negative again for large a. This corresponds 

to an oscillatory wave function near a=O, exponential modes under the barrier, 

and oscillatory modes again outside. When 'A.2»1 (recall EIG=1011
), the semi-

classical approximation will be valid even in the region near a=O. This would 

represent expanding (or contracting) Lorentzian classical behavior near a=O, 

Euclidean trajectories through the barrier, and a Lorentzian universe outside for 

large a. When 'A.2:sl, the semiclassical approximation breaks down near a::O, 

and there will be a highly quantum mechanical region in which the evolution 
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cannot be described in classical tenns . In any event, for /..2 >0, the potential 

diverges near a.=O. The field energies, 

(4.12a) 

and 

(4.12b) 

both diverge at a~O. We may think of this /..2>0 case as describing expansion of 

a universe out of (or contraction of a universe into) a region of singular field 

energy (or a highly quantum mechanical region) around a.=O, perhaps followed 

(or preceded) by a tunneling through a barrier at finite size into continued expan-

sion (or from continued contraction). 

In this case [shown in Fig. 3(b)], U (a) is positive near a.=O and crosses over to 

negative at the one real root of the equation, U (a,/..2<0)=0. The wave function 

is exponential under the barrier, switching to oscillatory for a outside the barrier. 

This corresponds to a tunneling trajectory near a=() for a universe to appear (or 

disappear) as Lorentzian at finite size. In parallel to case (i) above, if 

-A2<(1/3)(247t£/G )2, there will be both a metastable minimum and a local max

imum to the potential. And, as in the A-2>0 case, both energies (4 .12) diverge at 

a.=O. Again, the semiclassical approximation is or is not valid near a;::O, depend

ing on whether or not -A2 » 1. Here, though, the singular region is hidden under 

the barrier. 
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(iii) A-2=0 

This special case avoids a divergence of the potential U (a) at a=O, and it is 

displayed in Fig. 3(c). There are now two zeros of the potential, a root of 

U (a,A-2=0)=0 at the origin and another at a. 2=(36m:IG ). There are two extrema, 

at a=O and a 2=a/12. The first is a minimum and the second, a maximum. This 

case allows exponential solutions under the barrier connecting to oscillatory 

modes outside (denoting Lorentzian expansion or contraction). It is rather 

remarkable that this case is the only one that avoids a singularity in the potential 

at a=O. By itself, this divergence does not imply a singular wave function -just 

as the divergence of the effective potential for the radial equation in the elemen

tary quantum mechanics central force problem [/(/+1) plays the role of A-2 here] 

does not imply a divergence of the wave function at the origin. However, in both 

the hydrogen atom and our model cosmology, the case without this divergence is 

special: it corresponds to the ground state. We shall see that both the Vilenkin 

and Hartle-Hawking requirements pick the A-2=0 case. 

C. Qualitative Discussion of Solutions 

From Eq. (4.10c), we see that Vilenkin's boundary condition (3.3) picks out 

A-2=0. And, we can see that the words, "tunneling from nothing", physically 

correspond to this case from Fig. 3. Only then do we avoid the region of separately 

singular field energies near a=O and can we associate the wave function with a tunnel

ing amplitude from a classically stable minimum at the origin. Other choices for A 

correspond to wave functions that describe an origin out of the region of separately 

singular field energies followed either by "tumbling" from some finite a, or a short

lived pass through the barrier. Occasionally, 12 regularity at the origin has been 

invoked as an explicit demand, but taken literally, the "tunneling from nothing" 
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proposal (in the sense of tunneling from a state peaked at cx;:::O) physically suggests 

A 2=0. In our model, with our factor-ordering choice, this case (iii) corresponds to a 

nonsingular wave function at a=O. 

We shall see (in Section IV.D) that A.2=0 is a mathematical consequence of the 

path integral formulation of the Hartle-Hawking proposal. By looking at the potential 

for the expansion degree of freedom, this assumes a special physical significance: 

Recall first that the true potential has opposite sign from the one used for visual 

display in Fig. 3. The higher the maximum on Fig. 3(a), the lower the total potential 

energy is for the expansion degree of freedom, a (the total energy, summed over both 

the a and 4> degrees of freedom, is always zero). That is, case (iii), with A.2--t0, is the 

minimum limit of case (i) in the potential for the a degree of freedom. In case (ii), for 

A.2 not too large, the minimum is even lower, but it is then only a local minimum. 

Therefore, the top of the potential on Fig. 3(c), corresponding to case (iii) above, is the 

lowest global minimum for all gravitational and matter field configurations. Now, the 

value of the potential in Fig. 3(c) at maximum is U max=a. 2/4. Thus, when we restore 

to a. its 4> dependence, a state of lower energy will correspond to larger a. and we 

might expect the ground state wave function to prefer a larger size for the start of the 

Lorentzian evolution, and consequently lower initial curvature. 

As we shall see, the Hartle-Hawking wave function has this property. Under

stood in this way, Vilenkin's and Hartle and Hawking's boundary condition proposals 

are complementary: the former avoids the Euclidean connection between cx;:::O and the 

Lorentzian domain, while the latter is built around it (in the sense of being built from 

the path integral around trajectories in the Euclidean regime). This complementarity 

is reflected in the sign difference in the exponential of the square modulus of the wave 

function on the Classical/Quantum boundary, as we shall derive below [cf. Eqs. (5.8), 
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(5.9)]. 

One should also keep in mind that the model could be excluded from some small 

but nonzero lengthscale, <Xcutoff [pictured in Fig. 3(d)]. Then some nonzero A.2s might 

be seen to be indistinguishable from A 2=0. Other choices of A might be used to mimic 

unknown physical effects from inside the cutoff region. Indeed, even without such a 

cutoff, there is no physical necessity, other than the physical motivations for the par-

ticular boundary condition proposals and their mathematical consequences, that the 

cases of nonzero A-2 be excluded. 

D. WKB Solutions to Zeroth Order in 1/(ER.) 

The preceding discussion has shown the general behavior of the solutions, how 

they differ in describing quantum creation, and where we might find the solutions that 

obey the two boundary condition proposals. We shall now work out the A-2=0 case in 

detail and find the solutions explicitly. 

Far under the barrier, for o.2«36rtEIG, Eq. (4.10b) becomes (with A-2=0) 

(4.13) 

The general solution for small a has been studied in Eqs. (4.4H4.7). 

To take into account the other tenn in the potential ofthe Wheeler-DeWitt Equa-

tion (4.9), we use the WKB method (still requiring £R »1). The Wheeler-DeWitt 

potential, given by 

2[ G 2] V wow=-a 1--- a , 
36rt£ 

(4.14) 

vanishes at a=O and a=a,..=(367tEIG )112, so there are two WKB domains, 
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V wow(a.)<O , O<a.<a.,. and V wow(a.)>O , a.>a.,. . (4.15) 

(Note that forE large, the semiclassical approximation is valid very near the barrier.) 

The zeroth order WKB solution is obtained by 

[ ]
2 [ ] - S d S 2 G 2 AWKB-(O)(a.)=e where -- =a 1---a. 

d a 36m: 
(4.16) 

Its solutions are 

(4.17a) 

and 

(4.17b) 

The first-order WKB corrections are then obtained by 

(4.18) 

We solve to find 

C(a.) c (4.19a) 

where C is a constant. For a first-order WKB accuracy, we need keep only the leading 
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part of this correction to find 

for O<a<a. (4.19b) 

(4.19c) 

We then summarize the behavior of the first-order WKB solutions for the case f..Z=O 

by writing 

(4.20) 

where we have the ell-dependence from Eq. (4.10c), 

<I>( ell )=a ell+b , and a and b are constants. (4.21) 

For the a-dependence, we find 

(4.22a) 

and 

(4.22b) 

The modes themselves are (where constants have been fixed conveniently) 

J a2[ [ 2]3'21} Ao.WKB-{l)(o:)=o:-"2ex1--f- 1- 1-:.2 (4.23a) 

and 

J a2[ [ 2]3/21) AG.WKB-{l)(o;)=o:-II2ex1 +-f- 1- 1-:.2 ' (4.23b) 
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both under the barrier, O<a<a,.. These forms (4.23a,b) then agree with the forms 

(4.7) to within multiplicative constants for a» 1 and again, D and G subscripts denote 

decaying and growing modes, respectively. Outside the barrier we find 

a 1/2 1 a 2 a 2 [ 2 ]3/2 } • • . • a .7t AR WKB 1 (a)=--ex ----1-- ---1 +1-, -<> a 3 3 2 4 a,. 
(4.23c) 

and 

a 112 1 a 2 a 2 [ 2 ]3/2 ) • • . • a .7t AL WKB-{l)(a)=--ex +--+z-- --
2
-1 -r- . 

· a 3 3 a,. 4 
(4.23d) 

The R and L subscripts denote right and left moving modes (keeping in mind that the 

energy of the gravitational expansion is negative) and correspond respectively to 

expanding and contracting classical trajectories - as can be seen by applying the 

operator ito.=-i "dl"da (=-a(d ald't)). 

With the mode solutions in hand for the regime £R »1, we can proceed to imple-

ment the boundary condition proposals (3.3) and (3.4). Vilenkin's mode is just the 

one corresponding to the expanding classical trajectory. This is A R in the oscillatory 

domain and connects to i A 0 +exp( -2a,. 2/3 )A 0 !2 under the barrier. 22 Since the wave 

function is $-independent at a~O. we have <1>(<\>)=b (a constant) and we determine 

Vilenkin's wave function, 

for a>a,. 
'I'v,(O).WKB-( 1 )(a,$ )oc (4.24) 

e 3 
i Ao.wKB-o>(a)+ 

2 
Aa,WKB-o>(a) for O<a<a,. . 
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We see that for a small, the exponentially decaying mode dominates the other and 

hence justifies the tunneling interpretation of this solution. 

From our qualitative discussion, we have some notion of the solution that obeys 

the Hartle-Hawking boundary condition, but to find it explicitly we have to evaluate 

the path integral. In the semiclassical approximation, we may write it (employing the 

conformal rotation procedure of Ref. 16 and Ref. 23) as 

'I'senticlass.(a,$)=L,e -SE , (4.25) 

where the sum goes over all classical solutions that satisfy the imposed boundary con-

dition on the path integral. The Euclidean action [with 't£ =i 't denoting Euclidean 

time in Eq. (2.10c)] is 

This action, in turn, determines the Euclidean classical path, 

and 

A+l_ da ~=0 
d't£2 a d'tE d'tE 

(4.26a) 

(4.26b) 

(4.26c) 

We choose 't£=0 at a=O and consider paths that link a=0 to the boundary <"XQ,$0 at 

'tE >0. The path that has finite q, and d old'tE at a=O is simply $=$0, a=a.sin('tE ia.). 

(This is an expanding and contracting 3-sphere.) Inserting this into the action (4.26a), 

we find 
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a. 2 [ 2 ] 3/2 
S£(a.,<j))=-+ 1-:/ , (4.27) 

and hence, 

J a.2[ 2]3/2} 'l"•""d"'·~ex

1
-+ 1-:.2 

(4.28) 

We see that the Hartle-Hawking boundary condition has automatically picked out the 

A.2=0 case (because of the regularity of d <j)/d 'tEat a.=O). 

We can now compare this expression with the semiclassical approximation to the 

general solution of the WDW equation, Eq.(4.23), to find 

(4.29) 

A calculation of the Hartle-Hawking wave function without resorting to the semi-

classical approximation is pursued in Ref. 24 for small a. [Eq. (4.5)], where the same 

result is obtained. Thus, the growing mode, A G• is indeed the Hartle-Hawking wave 

function in the Euclidean regime, and we can connect this outside the barrier to 

exp(2a..2/3)AR+AL. We determine the wave function, 

for a.>a.* 

for O<a.<a. • . <4·30) 

As explained in the literature, 16·25·26 one can as well compute the path integral directly 

in the Lorentzian regime to find that left and right moving components should contri

bute with equal weight. Our answer [keeping in mind our normalization of the modes, 
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Eqs. (4.23)] confinns both this and our earlier qualitative guesses. 

At this zeroth order of approximation in 1/(fR) the amplitude of either solution 

is just a constant (apart from the power-law factor). Thus, we can discern the process 

of creation of an inflationary Lorentzian Universe, but we have not yet determined the 

<1> or a dependent amplitude for its generation. To obtain this, we have to go to the 

next approximation in 1/(fR ). 

E. Solutions to First Order in 1/(fR.) 

When terms of order e-2$ are left in the potential, V(a,<)>), the Wheeler-DeWitt 

equation (2.12) is no longer separable and we are confronted with a two-dimensional 

WKB problem. Instead of working out the general two-dimensional WKB solution, 

we would like to restrict ourselves to its subclass that contains both the WKB approxi-

mation to 'l'v and the WKB approximation to '~'H-H· We observe that both 'l'v (4.24) 

and 'l'H-H (4.30) are <)>-independent and yield a zero kinetic term for the <1> field in Eq. 

(2.12). When terms of order e-2$ are kept, this kinetic term will no longer be zero, 

but we expect that, for the Vilenkin and Hartle-Hawking wave functions, it will be of 

order a-2e-2'. Hence, in the region of superspace where a>>l and e-2$ is negligible, 

we can restrict ourselves to the subclass of wave functions that satisfy 

(4.31) 

where 

(4.32) 

As in Eq. (4.18), we write the WKB wave function, 

(4.33) 
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The WKB equation for S( a,4>) is 

(4.34) 

This equation for S is valid to first order in e -2~ in the region of superspace where 

l«a<a,..(<\>) and a4a,..-2e-2~»1. In this region, the terms dropped from the equation 

are negligible compared to the terms included. Indeed, it is straightforward to evalu

ate the path integral with the Hartle-Hawking boundary condition in the semiclassical 

approximation in this region of superspace to see that it satisfies Eq. (4.34). 

We solve (4.34) under the barrier to find 

a,.. 2( 4>) [ a2 ]3/2 
S(a,<\>)=± 1 2 ±/ (<\>) . 

3 a. (<\>) 

The integration constant, f (<\>),is detennined by matching this to the general solution 

of Eq. (2.12) in the limit a 2«a/(<\>) [cf. Eq. (4.7)] . We see that requiring ()2/()4>2-e-2
$ 

has restricted us to the case 1..2=0. From this we obtain 

(4.35) 

In hindsight, we have merely perfonned the rather trivial substitution of the function, 

a.(<\>), for the constant, a,.., in the zeroth-order solutions. The prefactor C in Eq. 

(4.32) can be obtained from this Sand Eq. (4.31). We summarize the semiclassical 

wave functions to first order in 1/(ER. ): Inside the barrier (for l«a<a,..(<\>)) we have 

(4.36a) 
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and 

(4.36b) 

Outside the barrier (for a.>a..(cj>)), we have, by analytic continuation, 

(4.36c) 

and 

a..- 1/2 J a..2(cj>) [ ·[ a.2 ]3/2] . 7t) 
'I'L.(li.WKB-{I)(a,<!>)~ a ex1 + 3 1+1 a,'(<!>) I _,4 . (4.36d) 

The wave function that obeys Vilenkin's boundary condition ("tunneling from noth-

ing") is 

2a. 2l cp) 
- - -

3 
i 'I' D.Ol.WKB-{ 1)( a.,cj> )+-e-

2
--'1' G,O).WKB-{ 1 )( a.,cj>) 

for 1 «a.< a..( cj>) 

'1'v.o).WKB-{1)(a,cj> )oc 'I'R.OJ.WKB-O)(a.,cj>) 

for a.>a..(cj>) . 

(4.37) 

The wave function that obeys Hartle and Hawking's boundary condition ("no bound-

ary") is 



'f' H -H .( 1 ), WKB-( 1) ( a,<j> )oc 
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'f' G,(l).WKB-(1)(a,<j>) 

e 
--

3 

for 1 «a<a.(<j>) 

'f'R.(l),WKB-( 1)( a,<j> )+'I'L,(l ),WKB-( 1)( a,<j>) 

for a>a.(<j>) . 

V. CONCLUSION 

(4.38) 

We are now in a position to find the distribution over the initial conditions for 

chaotic inflation. The classical evolution of the universe begins when the phase of the 

wave function is rapidly oscillating; i.e., S(a,<j>)» 1. The Classical/Quantum bound-

ary, a=ac , is very close to the Euclidean/Lorentzian boundary a=a.( <1>) in our present 

model because of the large parameter, EIG::::: 1011 . The evolution is classical when a is 

slightly larger than a.(<j>): 

(5.1) 

It is straightforward to determine how the initial conditions of a classical trajec-

tory (a, <j>, daJd't, and d<j>ld't) are correlated. The rapidly oscillating phase, S(a,<j>), 

of the wave function in the classical region is given by 

(5.2) 

where the upper sign($+) corresponds to 'f'R and the lower sign($_) corresponds to 
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The initial ''velocities'' of a classical trajectory are correlated to a and 4> as 

(5.3) 

and 

(5.4) 

where the right-hand sides are to be evaluated on the Classical/Quantum boundary 

a=ac:::a.($). These relations can be transformed back to the physical variables a, R , 

da /dt, and dR /dt: On the Classical/Quantum boundary, 

a=[ ~r. (5.5) 

(5 .6) 

and 

H =_!_ da :::± !i._ 
[ ]

1/2 

a dt 12 ' 
(5 .7) 

where the upper (lower) sign corresponds to 'I'R ('I'L). We see that the 'I'L component 

in the Hartle-Hawking wave function (4.38) corresponds to a collapsing universe and 

is irrelevant to our cosmological observations.26 The correlation (5.7) is particularly 

important: It indicates that the 'I' R component corresponds to a universe that begins its 

classical evolution with R; ::: l2H/, i.e., right at the beginning of the linear phase 

described by Eq. (2.4) (cf. Ref. 8 for detailed analysis of the classical evolution). If H 
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and R were not so correlated on the Classical/Quantum boundary, there would be 

some complicated dynamical evolution before the universe would follow an 

inflationary trajectory. 

With the correlations, Eqs. (5.5H5.7), the distributions over initial conditions 

are determined by the distributions over R; (or equivalently, <P; ), and we need just the 

square modulus of the wave function in the Lorentzian regime near the 

Classical/Quantum boundary. Unlike the correlations, (5 .5H5.7), which take the 

same form for both 'l'v and 'l'H-H (or the 'l'R component of 'l'H-H), the distributions 

over R; differ for the two wave functions. For Vilenkin's boundary condition, it is 

(5 .8) 

For Hartle and Hawking 's boundary condition, it is (with the irrelevant component, 

'l'L, dropped) 

(5.9) 

We express this probability distribution near the Lorentzian boundary as a function of 

(initial) curvature, R; . We have 

dP (R; )ocd J.l(R;) I 'l'(a(R; ).R;) 12 . (5.10) 

The measure d Jl(R; ) is just the line element along the Classical/Quantum boundary , 

given through the natural metric on minisuperspace,27 which can be read off the 

kinetic terms in the Wheeler-De Witt Hamiltonian (2.11 ). It is 

(5.11) 



- 100 -

For fR; » 1, the Classical/Quantum boundary is simply a.=const., and we have 

dR· 
d J.l(R; )ocd <\>=-

1 

• 

R-
1 

(5 .12) 

We finally obtain the probability distributions [using a.2(<\>)=(36nc/G )(1+1/(fR; ))] , 

and 

241t 
dR · GR 

dPvoc--' e 1 

R; 

241t 
dR; + GR 

dPH-Hoc--e ' 
R; 

(5.13a) 

(5.13b) 

We sketch the distributions in Fig. 4 . Remarkably, they are complementary. This is 

not something that we have been able to expect from the formulation of the boundary 

conditions [Eqs. (3 .3) and (3.4)], but we hope to have gleaned some qualitative under

standing through the discussion of Sections ill and IV. 

We should note that although we have called the distribution (5 .13a) Vilenkin's 

distribution, a distribution of just this type (for the specific model of a self-interacting 

scalar inflaton field) has been proposed on its own merit. 28 Namely, this distribution 

gives a preference for Planck-scale creation, which is what one might expect from 

quantum cosmology. Here, high values of the curvature are favored and the universe 

is more likely to be small after tunneling. The power-law factor that bends the distri-

bution, thereby creating a maximum, could be modified with, say, a different factor 

ordering. However, the maximum will remain very roughly on the Planck scale. The 

value of this maximum is, in fact , somewhat above the Planck scale, R; .max=247t/ p1-
2

. 



- 101 -

The Hartle-Hawking distribution prefers the universe to start out at low curva-

ture. The universe starts out in the linear phase, and R can only decrease in the subse-

quent classical evolution. In light of our earlier qualitative discussion of their bound-

ary condition (Section IV.C), this is not surprising - we expect the typical Hartle

Hawking Universe to be born large and spend not too many e-foldings in the 

inflationary phase. 

In numbers, the difference between the two proposals is dramatic. We normalize 

both distributions in our target range (see Section 1), £-1<.R; <</p1-
2 , and find that the 

likelihood of an inflationary phase that would at least be sufficient for the current hor-

izon volume (in one trial "universe") is 

or 

p (R · >R )=1-e-SxlOlo v , _ lr (5.14a) 

(5.14b) 

where R1r -10-9/P/-2 is the value of the curvature at which the perturbation, whose 

wavelength today is equal to the horizon size, crossed the horizon during inflation [cf. 

Eq. (2.6b)]. 

The simplest interpretation of this result follows: Like every quantum prob

ability, this distribution represents a set of classical outcomes. In tltis case, the set is 

the ensemble of ''all possible universes'' that could be created on the restricted 

Classical/Quantum boundary . Our universe is one such outcome, a particular result of 

a single process of quantum creation. As we understand it, our universe apparently 

attained its long age, remarkable flatness , homogeneity, and isotropy because of an 

initial inflationary phase of at least - 70 e-foldings . Thus, within this interpretation, 
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and within the adopted restrictions of the model, we can say only that if the boundary 

condition is the one proposed by Vilenkin, our universe is a highly typical product of 

quantum creation. If the boundary condition is the one proposed by Hartle and Hawk

ing, our universe is an atypical event. 

Of course, we have dealt with a severely limited model, and a better statement 

will have to await more realistic analysis (treating other degrees of freedom, both in 

the gravitational and matter sectors). However, we do not expect the basic picture to 

become very different. Studies so far in this modee0 and other models (at the classi

cal29·30 and quantum31 levels) have shown that the effects of a large initial kinetic 

term, a large initial anisotropy, and a small initial inhomogeneity all become rapidly 

unimportant. Thus, apart from the unexplored case of a large initial inl1omogeneity, 

the dominant input from quantum dynamics is in the distribution over initial curvature 

(or size), which was the subject of this work. In another approach to this model,32 the 

probability of R +ER 2 inflation is studied, using the canonical measure of Ref. 33. It is 

shown that this canonical measure leaves open the question of the predominance of 

inflationary over non-inflationary trajectories. 

As for the interpretation of (5.5H5.7) and (5.13a,b) advocated here, we con

front what may be expected to become a general feature of quantum cosmology: Two 

(or more) competing hypotheses lead to predictions (probability statements) that 

include our universe as an outcome (where "our universe" means a classical model 

that agrees with observation as far as it goes). We are left with two possible criteria to 

judge such hypotheses. First, we might prefer the hypothesis that is more readily 

extendible to more and more realistic models. Only further refinement of quantum 

cosmology can explore this possibility. Second, we might prefer the hypothesis that 

shows that our universe is the more probable outcome. This arguably more 
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observationally based criterion can be weakened when we allow the interjection of 

some form of an anthropic principle, which can exclude from our consideration 

cosmological outcomes that are not likely to be like our universe (not likely to evolve 

observers to observe them). We simply state the horns of this dilemma because our 

rather unrefined model makes any choice premature. 
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APPENDIX: THE BOUNDARY TERM FOR R +ER 2 GRAVITY 

The action (2.1), just as is well known for Einstein gravity (i.e., E=O), does not 

lead to a well-posed variational problem without a boundary term. That is, we wish to 

extremize the classical action under arbitrary variations of the metric, which vanish on 

the boundary. In general, however, the varied action can depend on variations of 

derimtives of the metric on the boundary which, indeed, need not vanish. The bound

ary term is required in order to cancel just these surface variations of metric deriva

tives. Further, as a quantitative piece of the action, the boundary term plays a neces

sary role in evaluation of the path integral for the Hartle-Hawking approach to the 

wave function. Therefore, we sketch here its derivation for R +ER 2 gravity. 
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There are two methods of derivation we consider. The first is straightforward: If 

we stay within the full fourth-order theory, we have only to rework carefully a usual 

(€=0) derivation of the boundary term. We start from the "bare" gravitational action 

(2.1) - the action without boundary term and without matter content (Lm=O) or 

cosmological constant (A=O). This bare action we write as 

(A1) 

A head-on algebraic assault will find 

8S' l J<- )112{R _ _!_ R 167tG g J!V 2 g JlV 

(A2) 

Here we see three distinct terms emerge. The first term merely displays the R +€R 2 

field equations, the second term yields a surface integral, which will give only vanish-

ing contributions on the boundary (because variations of the metric itself vanish on the 

boundary), and the last term gives also a surface integral which, however, need not 

vanish. We can, though, follow almost directly the argument of Wald34 (given there 

for the €=0 case) to rewrite the third term as 
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=--
1
-Jd 3x""h (1+2€R )8K +vanishing surface pieces. 

8nG 
(A3) 

Now ignoring the contributions that vanish by reason of vanishing metric variations 

on the boundary, we obtain the form, 

8S'= 
1 

Jd4x(-g)1' 2{ fieldequations}8gf.Lv __ l_Jd 3xih(1+2£R)8K. (A4) 
16nG 8nG 

One final twist not present in the £=0 case is readily verified: 

We thus derive the boundary tenn for the action (2.1), 

S=S'+-
1-fd 3x...fh (1+2£R )K . 

8nG 

(A5) 

(A6) 

The conformal picture inspires another derivation. Whitt14 originally transformed the 

equations of motion for the fourth-order theory into the Einstein equations and then 

read off an action for the scalar degree of freedom. Here, we shall transform directly 

the action (Al) and shall find the boundary term on the way. We are motivated in this 

approach because we know from the analysis at linearized level10 that the theory (2.1) 

has in its spectrum a scalar degree of freedom with mass, m 2=11(6c) (with f.IG large). 

We also know that the scalar curvature itself obeys an equation of motion, 

(A7) 

We can thus take the scalar curvature to be an interpolating field for that same 

scalar degree of freedom. With our conventions, a mass term will appear in the action 
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with a (-) sign. Therefore, we begin with the action in the physical picture, 

(A8) 

where b ./ . stands for the unknown boundary term. We then split the quadratic term 

according to 

R+ER 2=R (l+pER )-(p-l)ER 2 , (A9) 

to simulate a mass term (here p is some real number). The expression that multiplies 

the scalar curvature in the first term can be removed by a conformal transformation to 

leave a pure Einstein action. We need 

The special choice, 0=1 +pER, does the trick. After one integration by parts of the 

second term, we obtain a kinetic term for the R field and a surface term is generated: 

s 

(All) 

We are led uniquely to the choice p =2 to secure the correct mass term at linear order. 

The kinetic term for the scalar degree of freedom can be brought into canonical form 

by the substitution <l>=(112)1n(l+2ER) [cf. Eq.(2.8)]. Since manifestly , we have just a 

scalar field plus Einstein gravity, the original boundary term and the surface term in 

Eq.(All) should combine to give the standard boundary term for Einstein gravity . 
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In the 3+1 split of spacetime in which the boundary is a t=const. slice, we make 

use of the identity, 

(Al2) 

and find 

(A13) 

as we found in Eq. (A6). 

One remaining question is : Just what fields are to be held fixed on the boundary? 

In the conformal picture, the answer is straightforward: As the theory is only Einstein 

gravity plus a scalar field, we need only fix the field <jl and the conformal 3-metric on 

the boundary to obtain a well-posed variational problem.34 From the confonnal 

transformation (AlO), with il=1+2c.R, we see that this corresponds to fixing the physi-

cal 3-metric and scalar curvature on the boundary. 
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FIGURE CAPTIONS FOR FIGURES 1, 2, 3, AND 4, CHAPTER 3 

FIG. 1. Regions of minisuperspace. The thick line is the Euclidean/Lorentzian 

boundary, a 2=24E(l+2cR)/(2cR)2 [cf. Eq. (3.6) with cx.=(37t/2G)112(1+2ER)112a and 

tl>=(l/2)ln(1+2ER )]. Shaded regions of the figure are excluded from consideration, 

either because they are too far into the quantum domain for us to have any confidence 

in our model (region to the top of the figure with R >/p1-
2
), or because the classical 

solutions that do exist are not inflationary (region at the bottom of the figure with 

R <E-1
). Classical inflationary trajectories start at "t=O" (the dashed line -

Classical/Quantum boundary), which is slightly away from the Euclidean/Lorentzian 

boundary. 

FIG. 2. Plot of the effective cosmological constant, Aeff{t\>)=(118E)(l-e-2~)2 [cf. Eq. 

(3 .5)]. For tj> large, this is a constant, =11(8E), and we are in the regime of validity of 

the analysis of the early part of Section III. 

FIG. 3. The effective potential for the Schroedinger-like Eq. (4.11) for the expansion 

degree of freedom in the separation limit, <j>-7oo (cf. the qualitative analysis of Sec

tions IV.B and IV.C). The subfigures display the potential for different values of the 

separation constant, 1..2 (where 'A2/a3 corresponds to the kinetic energy in the tj> field): 

(a)- Typical potential curves for the separation constant positive [A2 >0, case (i) of 

Section IV.B]; (b)- Typical potential curves for the separation constant negative 

[A2<0, case (ii) of Section IV.B]; (c) -The heavy line displays the potential curve for 

the separation constant equal to zero [1..2=0, case (iii) of Section IV.B]. Dashed curves 

display the potential curves for nonzero values of the separation parameter. Only 1..2=0 

avoids the region of singular field energies at a=O; (d) - Shows the near equivalence 

of potentials with different values of the separation constant, where a short-distance 

region has been excluded from the theory (shaded region excluded for a<acutoff• cf. 
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end of Section IV. C). 

FIG. 4. The distributions over initial curvature, R; , for classical inflationary trajec

tories are plotted - as determined by the boundary condition proposals of quantum 

cosmology. The distribution derived from the wave function obeying Vilenkin 's 

boundary condition is peaked to the right, preferring large values of the initial curva

ture [cf. Eq. (5.7a)]. The distribution derived from the wave function obeying Hartle 

and Hawking's boundary condition is peaked to the left, preferring low values of the 

initial curvature [cf. Eq. (5.7b)]. We have restricted our analysis to 

£-
1==10-11 /p1-

2 <.R; <lp1-
2 for reasons elaborated in the Introduction. An inflation 

sufficient that is consistent with observations has to start at R; >R11 ==10-9 /p1-
2. 
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Fig. 2: Effective Cosmological Constant 
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Fig. 4: Probability Distributions for 
Initial Curvature 

R 1 (initial scalar curvature in units of Jp,- 2> 
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CHAPTER4 

Quantum Initial Conditions for Perturbations 
in the R +cR. 2 Cosmology 

Submitted as ''Initial conditions for perturbations in the R +€R 2 cosmology'' to 

Physical Review D. 
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ABSTRACT 

In a classical inflationary cosmology based on the R +€R 2 Lagrangian the parame

ters of the model (such as £ and the initial conditions for inflationary trajectories) are 

constrained by the observational requirement that any perturbations be delivered small 

to the present horizon volume. Previous calculations of the evolution of these pertur

bations (and hence, of the parameter constraints enforced by their evolution) have 

assumed that the modes begin in their ground state. In this paper, following the pro

cedure of Halliwell and Hawking, the Wheeler-DeWitt equation is derived for this 

model 's inhomogeneous modes in perturbative superspace. Then, the two boundary 

condition proposals of Hartle-Hawking ( " no boundary " ) and Vilenkin ("tunneling 

from nothing") are implemented, verifying that both boundary conditions require the 

inhomogeneous modes to begin in their ground states. 
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I. INTRODUCTION 

In Ref. 1, Milan Mijic, Wai-Mo Suen, and I explored a classical cosmological 

model based on the R +fR 2 Lagrangian. We showed that Robertson-Walker domains 

would inflate for a wide range of initial conditions, that this pure gravity inflation 

would smoothly shut itself down, and that the evolution of perturbations on the back

ground could be used to constrain E and the initial parameters of the model. In Ref. 2 , 

we turned to the wave function formalism and applied it to the same model to obtain 

distributions over initial conditions for the classical model. There, we derived approx

imately the general solution in minisuperspace to the Wheeler-DeWitt equation, we 

implemented the two boundary condition proposals of Vilenkin3 ("tunneling from 

nothing" ) and Hartle and Hawking4 ("no boundary" ) to obtain specific solutions, and 

we compared the resulting distributions by restricting these wave functions to the ini

tial edge of the Lorentzian semiclassical domain of inflationary trajectories. 

In Ref. 1, we showed that the classical inflation tends to smooth out scalar and 

tensor perturbations. We thus could convert the observational bound (that perturba

tions presently reentering the horizon be small) into a lower bound on E, E> 1011 I p?. 
The only necessary input was the assumption that the inhomogeneous scalar and ten

sor modes begin in their ground states. In this paper, I obtain the wave function for 

these inhomogeneous modes in the perturbative superspace approximation that the 

mode strengths are small (this on top of the approximations already made in Ref. 2 to 

determine the wave function in rninisuperspace). I then apply the boundary condition 

proposals to verify the ground-state assumption for both. This ground-state conclusion 

should not be surprising, since in work on perturbations in a model of Einstein gravity 

plus a scalar field Vilenkin5 has found his boundary condition to fix the inhomogene

ous parts of the wave function precisely the same as they are fixed in Halliwell and 
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Hawking.6 There (Einstein gravity plus a scalar field) as here (R +ER 2 cosmology), 

both boundary conditions start off perturbations in the ground state; the proposals 

differ (to semiclassical order) only in the initial state of the expansion degree of free

dom. 

I thus conceive of this paper as an application of the perturbation analysis of Ref. 

6 - an application that supports and extends the work in Refs. 1 and 2, and verifies 

the intuition gleaned from the wave function formalism applied to the scalar field 

model (Refs. 5 and 6). My notation will accordingly follow closely that of Refs. 1 and 

2. All three papers, though, should be viewed in the larger contexts of work on higher 

derivative gravity and the wave function formalism.7 

My approach here becomes straightforward after I exploit one strategic fact: 

Whitt8 has exhibited a conformal transformation that expresses R +ER 2 as Einstein 

gravity plus a scalar field. This transformation, important to the calculation and 

insight of Ref. 1 and central to the method of Ref. 2, is no less key here. The potential 

for this "conformal-picture" scalar field (which, of course, carries the extra scalar 

degree of freedom present in the scalar curvature in higher derivative gravity) is zero 

for large values of the field (the inflationary regime) and approaches the "scalaron 

mass", - 11--16£, in the linearized limit. 

Once in the confonnal picture, I can borrow (almost) wholesale the formalism of 

Halliwell and Hawking6 to set up and analyze the wave function for the perturbations. 

In their paper, Halliwell and Hawking present the mode expansion in detail for the 

perturbed Friedmann model. My application of their work requires me simply to con

sider the effect of the special form of the potential for the R +ER 2 model. Halliwell 

and Hawking require regularity of the perturbative parts of the wave function in the 

Euclidean regime to match the Hartle-Hawking compact-manifold boundary condition 
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and Vilenkin5 requires the same to enforce literally his ' 'tunneling from nothing'' pro

posal; and as I shall show, this leads to the ground-state initial conditions. Wada9 has 

analyzed the wave function tensor modes in some detail for a model of Einstein grav

ity plus a cosmological constant that is nearly equivalent to the R +ER 2 conformal pic-

ture in the inflationary limit. His methods for solution of the perturbative superspace 

Wheeler-DeWitt equation will prove useful here. 

The body of this paper is split into two sections: In Section IT, I obtain the 

Wheeler-DeWitt equation, including all the mode-strength variables out to quadratic 

perturbative order. In Section III, I solve the perturbed Wheeler-De Witt equation for 

the inhomogeneous-mode parts of the wave function (for high mode number) and 

apply the boundary condition(s), verifying that these modes begin in the ground state. 

ll. THE WHEELER-DEWITT EQUATION WITH PERTURBATIONS 

I study a model cosmology governed by the action, 1·2 

(2.1) 

which represents Einstein gravity with an additional quadratic gravitational term. 

Here, R is the scalar curvature, g is the determinant of the spacetime 4-metric, h is 

the determinant of the induced spatial 3-metric on the boundary of integration, and K 

is the trace of the extrinsic curvature. The sign conventions are those of Ref. 1, and I 

choose units in which h =c=l and G=l lp/, The parameter£ will then have dimen

sions of / 2
. Under the Whitt conformal transformation,8 

(2.2) 

the action (2.1) can be reexpressed as Einstein gravity plus a scalar field, 
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(2.3) 

Geometric quantities in conformal space are here denoted by a tilde. During the clas

sical inflationary epoch, the fR 2 term will dominate the action (2.1 ). This corresponds 

to large <j>, generating in (2.3) an effective cosmological constant, 1/(8£). The unper-

turbed Robertson-Walker line element is 

where 0:9:~1t, 0~9~1t, and O~<j>~1t. With a convenient choice of variables in the con-

fonnal picture, this can be rewritten 

(2.5 ) 

the 0 subscript denotes the homogeneous part. Now, the action (2.3) in this unper-

turbed model can be written 

1 d a 3 d <l>o a -2~ 2 l [ ]2 [ ]2 [ [ ]2 J) S0=2' Jd't -a d't +a d:r +a 1- a. (1-e ) , (2.6) 

where a.2=367t£/G. This action, and its corresponding Wheeler-DeWitt equation, 

have been studied in Ref. 2, where the 0 subscript distinction on the homogeneous 

variables was omitted. To include the effect of perturbations, I now explore the full 

action (2.3) in the manner of Halliwell and Hawking.6 In the conformal picture, the 
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3+ 1 split is written 

(2.7) 

This metric may then be expressed as a general expansion around the unperturbed 

metric (2.5), 

and 

N~ (1 6-1/2""' Qn ) =cr + ~8nlm lm ' 
nlm 

N;=cra('t)~[ 6-112knlm(P;)nlm+2112jnlm(S;)nlm] ' 
nlm 

q>=q>o ('t)+2112
1t ~~ nlm Q n lm ' 

nlm 

where 

Eij=~[61 12anlm ~ O.ijQn [m+6
112

bnlm(Pij)" /m 
nlm 

+2 t t2c(o,e ) (S .. (o,e))n +2d(o,e) (G .. (o .e ))n] 
nlm r; lm nlm IJ lm · 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

(2.8e) 

The coefficients an, bn, en, dn , fn, 8n , jn, and kn are all perturbatively small func-

tions of time. I will henceforth follow the convention of denoting all the indices n , I, 

m and the odd-even parity designators o , e by the single index n . The Q n are hypers-

pherical scalar harmonics; P ; n and S; n are hyperspherical vector harmonics of the 

scalar and vector types; P;/' , S;/', and G;/ are hyperspherical tensor harmonics of 
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the scalar, vector, and tensor types, respectively. All are defined and displayed 

(together with some of their most useful properties) in Ref. 6. The 3-metric h;jcr-2a-2 

will be used to raise and lower spatial indices. 

To simplify the calculation, I introduce the gauge choice, an =bn =en =in =0. 

Then, following the procedure of Ref. 6, I can expand the action in the conformal pic-

ture (2.3) out to quadratic order in the perturbations. The only wrinkle concerns the 

potential term, 

( -24> 1)2 
-Jd4x(-- )112 e -

g 641tG t. 
(2.9) 

The simplifying assumption I wish to make is to hold the homogeneous part of the 

scalar field, $0 in Eq. (2.8c), large, corresponding to the strongly inflationary regime. 

Indeed, in Ref. 2, the wave function is derived only up to first order in e -1
% (first 

order in 1/(fR. 0)). If I keep terms only to tlus order here and assume additionally that 

the perturbation mode strengths are small, I can rewrite the potential term as 

(2.10) 

Note that the only remaining coupling of the perturbations to the potential will come 

from perturbations of ( -g )112. The rest of the perturbed action is straightforward, if 

tedious, to obtain. 

I should stress that this method of analysis consigns the wave function to three 

successive approximations: first to small inhomogeneous mode strengths, then to first 

order in ll(tR 0), and finally (below) to first order WKB. The latter two approxima-

tions already severely restrict the realm of validity in rninisuperspace, and the wave 

functions here must then be held near the unperturbed wave functions of Ref. 2. But 
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these approximations are valid on the Quantum/Classical boundary at the initial edge 

of inflationary trajectories in the Lorentzian domain of minisuperspace. I will thus 

stay with the interpretation of Ref. 2 and will consider the wave function to give the 

amplitude for branching to a classical trajectory in the expansion degree of freedom 

on this boundary (other degrees of freedom may remain in the highly quantum regime 

long after this branching). 

The calculation sketched above gives for the action to quadratic perturbative 

order 

(2.1la) 
n 

where the unperturbed action is now 

(2.llb) 

(the dot denotes d /d 't), and 

(2.1lc) 

where 

(2.lld) 
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These equations (2.11) are now the R +ER 2 version of Eqs. (B 1 )-(B5) of Ref. 6 with 

my choice of gauge and notational conventions. At this point, it is possible to achieve 

a vast simplification to the tensor-mode parts of these equations by choosing a new 

expansion variable in the manner of Wada9 , 

- -2d 2 
a=ae " (2.12) 

Then the action (2.11) can be reexpressed as 

(2.13a) 
n 

where 

1 -..:. 2 -"' . 2 - a -2% ~ [ [ _]2 ]} S o=2 Jd -aa +a· <l>o +a 1- a. (1-2e ) (2.13b) 

and 

(2.13c) 

where 

L =_!_Ci3{ [d 2_ (n2-l) d 2] +[(j· -g ,h )2-(n2-1) fn 2] " 2 " - 2 n n n '1'0 _ 2 a a 

[ [ "] ["]2 2 j} 2 Ci kn g, (i 2 kn 2 · 
+ -3 -=- ---- -=- gn -2 2 -=-k,j n <l>o · 

a a a 3a (11 -1) a 
(2.13d) 

Now, dLn ldg, =0 and dL, ldk, =0 provide the constraints, 
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2 

(2.14a) 

and 

(2.14b) 

The only perturbative degrees of freedom are the scalar modes, carried by the f n, and 

the tensor modes, carried by the dn. 

Now, the canonical momenta are 

(2.15a) 

(2.15b) 

(2.15c) 

and 

(2.15d) 

The Hamiltonian is obtained by the usual prescription, "H==rtxi-L " : 
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2 2 [ [ ]2 l 1t;x 1t% - a -2% 
H= --=-+---a. 1- - (1-2e ) 

a. (i3 a.. 

(2.16) 

The constraint parts of this Hamiltonian (the last two sums), corresponding to the 

independent constants gn , kn must be individually satisfied by the wave function 

(since the wave function is independent of gn, kn ). They will be trivially satisfied at 

the order of approximation used here because they are of quadratic order in the pertur-

bations and 7t~0 is small . Factor-ordering worries left out (again to this order of 

approximation), canonical quantization, " nx=-i dldx " , yields finally the Wheeler-

De Witt equation appropriate to this approximation and gauge, 

(2.17a) 

where 

(2.17b) 
n 

A i{ a2 1 a2 _2[ [ a]
2 

_2%]} Ho= _ ---- --a. 1- - (l-2e ) 
2a. aa.2 a2 a<1>2 a.. , 

(2.17c) 

and 

A i{ [ 1 ()
2 -2 2 2] [ 1 ()

2 - 2 2 2] } H = _ ----+a. (n -1)f + - ---+a. (n -l)d . 
n 2a. a2 dj n 2 n a2 ddn 2 n 

(2.17d) 
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ill. SOLUTION OF THE WHEELER-DEWITT EQUATION 

To solve the infinite-dimensional Wheeler-DeWitt Equation (2.17), I follow 

Wada9 and write the wave function as 

'l'=exp(iS ) , (3 .1) 

and expandS (<i,cp0 , { dn }, {f" ) ) out to quadratic order in the perturbations, 

(3 .2) 

Separating the order of perturbation, and keeping terms to semiclassical order, I obtain 

three equations, 

uS 0 1 ()S 0 2 a 2~ 
[

:I ]2 [ ]2 [ [ ]2 l - ()(i + a2 dcVo -a 1- a. (1-2e- 0) =0' (3.3a) 

[
()So] [ dSn d] (Sn di _2 2 - -:~- --- + 

2 
+a (n -1)=0, 

ua da (i 
(3.3b) 

and 

[ 
()S0] [ dS"

1 l (S/)
2 _2 2 - -:~- --- + 

2 
+a (n -1)=0. 

ua da (i 
(3.3c) 

Now, Eq. (3.3a) has been solved in Ref. 2 in the region of minisuperspace, where the 

kinetic term in cp0 is ignorable (near the Hartle-Hawking and Vilenkin wave func-

tions). For Eqs. (3.3b,c), I can make the adiabatic approximation for large mode 

number n . Writing ()S ofd<i=na_=-a<i and assuming that a is slowly varying, Eqs. 

(3.3b) and (3.3c) can be rewritten as 
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(3.3d) 

and 

(3.3e) 

These equations (3.3d,e) are algebraically solvable to get 

(3.4) 

Now, both boundary conditions require that the wave function is regular in the inho

mogeneous modes as a.~o in the Euclidean regime. Though this procedure is admit

tedly not rigorous (as Vilenkin5 has pointed out), because f n and dn have been 

assumed small in deriving (3.4), the regularity requirement demands the positive sign. 

A final expression for the wave function may now be written down. I introduce the 

notation [based on Eqs. (3 .1) and (3 .2)], 

(3 .5a) 
n 

The homogeneous part of this wave function 'Po=exp(iS 0[<i ,<j>0]) is given by Eq. (4.37) 

of Ref. 2 for Vilenkin's boundary condition and by Eq. (4.38) of Ref. 2 for Hartle and 

Hawking's. The wave functions for the inhomogeneous modes for large n in the adia-

batic approximation, as inferred from (3 .1), (3.2), and (3.4) with the + sign, can be 

written for both boundary conditions as 

and 

1 J2-~-2 2 
--'ln'-la. f 

\IIn - J - 2 n 
I scalar< (l • n )- e (3 .5b) 
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_.l..J, 2-1a.Zd 2 

\IJrl - - 2 n 
I tensor(a.,d, )-e (3.5c) 

Both of these wave functions have the ground state form for harmonic oscillators of 

frequency w, 2::::a4(n 2-1). Indeed, from Eq. (2.17), they satisfy Schroedinger equa-

tions in the form for such an oscillator in the semiclassical approximation, 

.o n I 0 0 n "J · [ as J "J 1 a't 'I' scalar=- (i aa aa 'I' scalar 

1 a2 
-2 2 2} n -= --2 --2+a. (n -1)/, 'I' scalar(a.J,) 

(i at, 
(3 .6a) 

and 

. o n I 0 0 n -.. · [ as J "J 
I a't 'I' tensor=- (i aa aa 'I' tensor 

(3.6b) 

Here, time has been reintroduced in terms of the expansion of the classical back

ground a('t) in the Lorentzian semiclassical domain. That tensor modes should satisfy 

the same Schroedinger equation as scalar modes directly follows from the work of 

Ford and Parker, 10 who showed that odd- and even-parity gravitational perturbations 

are equivalent to massless minimally coupled scalar fields. 

The modes remain in the ground state until the adiabatic approximation breaks 

down - until they cross out of the horizon. 11 This crossing was shown in Ref. 1 to 

occur during the inflationary epoch, where the approximation of large <l>o still holds. 

The ground-state wave function (3.5) at the outgoing horizon crossing is the starting 
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point of the evolution calculations in Sections 4 and 5 of Ref. 1. 
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