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ABSTRACT 

This thesis describes investigations on the evolution 

of a region containing a cluster of three glue genes located 

at chromosomal site 68C in the Drosophila melanogaster 

genome. These studies have used a set of five closely 

related Drosophila species, all members of the melanogaster 

species subgroup. The first chapter serves as an 

introduction and summarizes this work. The second chapter 

describes the initial characterization of the glue gene 

clusters and the surrounding regions in the five Drosophila 

species. The third chapter describes the characterization 

at the sequence level of the boundary that was found between 

adjacent blocks of rapidly and slowly evolving sequences 

located at the 68C glue gene cluster. The fourth chapter 

describes the evolution of the largest of the three glue 

genes in the 68C glue gene cluster: Sgs-3. Together, these 

studies reveal that this region of the genome is evolving as 

a mosaic, with adjacent regions evolving at different rates 

and in very different ways. 
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Chapter 1 

Summary: 

Mosaic Evolution in the Drosopbi~a Genome 

Christopher H. Martin and Elliot M. Meyerowitz 

Division of Biology 

California Institute of Technology 

Pasadena, CA 91125 
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The tools of molecular biology have allowed the study 

of evolution at the molecular level. An important goal in 

the field of molecular evolution is to determine how the 

processes of mutation and selection produce evolutionary 

change . Our studies have focused on a region containing a 

small gene cluster in five closely related Drosophila 

species. We find that this region is evolving as a mosaic: 

adjacent subregions display strikingly different patterns of 

evolution. We argue that some differences between the rates 

of evolution seen in the individual subregions are due to 

local variations in the rate of mutation, while others are 

primarily due to local variations in selection pressure . 

There is also evidence that mutation can occur by a number 

of mechanisms and that the contribution of different 

mechanisms can vary in different subregions . Our studies 

indicate that one must be cautious of inferences as to the 

functional significance of a given subregion of DNA based 

solely upon the level of sequence conservation . For 

example , in the small portion of the Drosophila genome that 

we have examined, we find examples of very rapidly evolving 

subregions that are likely to be essential protein coding 

domains while also finding a large, slowly evolving 

subregion that has no apparent function. The results from 

studies in a number of laboratories indicates that the 

mosaic pattern of evolution seen in this one genomic region 

may be a general feature in the Drosophila genome . 

Our investigations have dealt with the evolution of the 

glue gene cluster located at cytological site 68C in the 

polytene chromosomes of Drosophila melanogaster. The three 



3 

genes in this cluster , Sgs - 3 , Sgs - 7 , and Sgs - 8 , code for 

components of a proteinaceous g l ue that serves to affix the 

animal in place for the duration of metamorphosis 

(Meyerowitz & Hogness , 1982 ; Crowley et al ., 1983) . These 

and other glue proteins are produced in the salivary gland 

of the animal during much of the third (and final) larval 

phase (Beckendorf & Kafatos , 1976). The three glue genes, 

along with over 30 kilobase pairs (kb ) of flanking regions , 

have been cloned from D. melanogaster (Meyerowitz & Hogness, 

1982) and also from the closely related D . simulans, 

D . erecta , D. yakuba , and D. teissieri (Meyerowitz & Martin, 

1984). These species are all members of the melanogaster 

species subgroup , one of 11 species subgroups defined for 

the melanogaster species group (Lemeunier et al. , 1986). 

The cloned regions from the five Drosophila species are 

shown in Figure 1. Each of the clusters contains either 

three or four regions that are homologous to one of the 

three glue genes located at 68C in D. melanogaster . Each of 

these regions also hybridizes to an abundant transcript in 

the late larval salivary gland from the same species 

(Meyerowitz & Martin, 1984) . 

From a comparison of the restriction maps of the cloned 

regions and the determination of the RNA sizes and 

directions of transcription, it was found that the glue gene 

region is evolving rapidly by a number of mechanisms. These 

include frequent point mutation , insertion and/or deletion, 

gene inversion , gene duplication , and the gain or loss of 

repetitive elements. In contrast, a region of at least 

13 kb that lies to the left (see Figure 1) of the glue gene 
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cluster appears to be evolving much more slowly. This 

became apparent from comparison of the restriction maps of 

the homologous glue gene cluster regions: sites are much 

more conserved among these species in this region as 

compared to the adjacent region that contains the glue genes 

(Meyerowitz & Martin, 1984). This was confirmed by 

experiments that determined the melting temperature 

depression of interspecies hybrids between restriction 

fragments from either the rapidly or slowly evolving region. 

The molecular nature of this boundary between rapidly 

and slowly evolving sequences was investigated by DNA 

sequence analysis. The region thought to contain the 

boundary was sequenced in three species: D. melanogaster, 

D. erecta, and D. yakuba (Martin & Meyerowitz, 1986). 

Alignment of the sequences reveals that the boundary between 

slowly and rapidly evolving sequences in the three species 

is abrupt: a 5- to 10-fold change in the frequency of 

nucleotide substitutions occurs over a distance of less than 

50 nucleotides. In contrast to this dramatic change in 

nucleotide substitution rate, the frequency of 

insertion/deletion events remains nearly constant across the 

boundary. Normally, highly conserved sequences are 

associated with an important functional domain, since 

mutations that occur in a conserved domain are presumed to 

be eliminated by the process of selection. In this 

instance, this would seem to require that the function of 

the well conserved region is sensitive to point mutations 

but not to small insertions and deletions. This would be an 

unusual functional entity . 
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There is as yet no evidence for a functional role of 

the conserved region. No conserved open reading frames have 

been found in the sequenced portion of the conserved region. 

The breakpoint of a chromosomal inversion, In(3L)HR15, lies 

within the conserved region; animals homozygous for this 

inversion are viable and without a visible phenotype 

(Ashburner, 1972; Crosby & Meyerowitz, 1986a). Further, a 

mutagenesis experiment designed to locate lethals and semi

lethals in the region surrounding the 68C glue gene cluster 

revealed no such mutations in the conserved region (Crosby & 

Meyerowitz, 1986b) . This region also does not appear to be 

involved in the regulation of the nearby glue gene cluster: 

P-factor-mediated transformation experiments show that 

normal patterns of glue gene expression are seen with 

constructs that contain none of the sequences of the 

conserved region (Richards et al., 198 3; Bouroui s & 

Richards, 1985; Crosby & Meyerowitz, 1986a; Vijay Raghavan 

et al., 1986). 

An alternative explanation is that the difference 

between the conserved and non-conserved regions lies not 

with the effects of selection but with a difference in the 

rate of mutation (and/or the efficiency of repair) between 

the two regions. Under this model, whatever process is 

responsible for the majority of point mutations is strongly 

affected by some property that abruptly changes at the 

boundary. In contrast, the primary mechanism responsible 

for short insertion/deletion events is not affected by the 

boundary. Models have been proposed that attribute small 

insertions and deletions to slippage of short direct repeats 
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during DNA replication (Efstratiadis et al., 1980). Several 

of the insertion/deletions seen in the sequenced regions 

occur in such short direct repeats. It is possible that 

this large, relatively well conserved region may not be a 

functional entity that is being preserved by the forces of 

selection. If this is the case, the boundary would reflect 

a sharp change in a subset of the mutational forces that are 

acting on the DNA sequences located at different parts of 

the 68C locus. 

The boundary between rapidly and slowly evolving 

sequences that is found at the 68C locus may be 

representative of a general feature of the evolution of the 

Drosophila genome. Evidence for this has been found from 

the results of studies on the reassociation kinetics of 

single copy sequences from related Drosophila species (Hunt 

et al., 1981; Zwiebel et al ., 1982; Schultze & Lee , 1986). 

These experiments demonstrate the presence of two classes of 

sequences. The first class consists of sequences that will 

cross-hybridize, with an average melting temperature 

depression that is characteristic of the level of sequence 

change. The second class consists of sequences that do not 

cross-hybridize under the conditions used in these 

experiments: these sequences represent relatively rapidly 

evolving sequences of the Drosophila genome. Further, the 

fraction of non-cross-hybridizing sequences is greater 

between species pairs that have higher average melting 

temperature depressions in the fraction of sequences that do 

cross-hybridize (Schultze & Lee, 1986) It has also been 

found that these rapidly and slowly evolving sequences are 
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present as interspersed blocks of sequence that are, on 

average, greater than 500 base pairs in length (Zwiebel et 

al., 1982) . 

A second set of investigations deals with the evolution 

of the largest of the three glue genes: Sgs-3 (Martin et 

al., 1987) The structure of this gene is shown in Figure 2. 

The three glue genes reside within a 5 kb region. The two 

smaller genes, Sgs-7 and Sgs-8, are divergently transcribed 

and produce mRNAs that are 320 nt and 360 nt nucleotides in 

length, respectively. The larger Sgs-3 gene produces a 

1120 nt transcript (Meyerowitz & Rogness, 1982). A 6.7 kb 

region that contains these three genes has been sequenced in 

D. melanogaster (Garfinkel et al., 1983) . This sequence 

reveals that the three genes possess related amino acid 

sequences in both the amino- and carboxy-terminal domains. 

However, the larger Sgs-3 gene differs from the other two by 

the presence of a third protein coding domain: a central, 

threonine-rich region that contains 37 tandem repeats of a 

five amino acid sequence with the consensus sequence of pro

thr-thr-thr-lys. The amino terminal domain of all three 

proteins contains a 23 amino acid hydrophobic leader that is 

removed during processing of the protein. The carboxy

terminal domain is 50 amino acids in length and contains 

seven cysteine residues that are conserved among all three 

of the glue genes at 68C. These genes are also related by 

the presence of a short (73 nt in Sgs-3) intron after the 

first base of the codon for the tenth amino acid. It is 

therefore likely that this gene cluster arose from the 

duplication and subsequent divergence of a single gene. 
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The investigation of evolution in this gene had two 

goals : first , to locate potential regulatory sequences by 

searching for conserved regions upstream of the Sgs-3 gene 

and , second, to look at the evolut ion of the Sgs - 3 gene, 

particularly that of the central , repeat- containing region . 

Towards this goal, the Sgs-3-homologues have been sequenced 

in three other species: D . simulans , D . erecta , and 

D. yakuba . A comparison of these sequences shows that the 

Sgs - 3 gene is also evolving as a mosaic : different regions 

in and around the gene evolve in different ways and at 

different rates . 

The most conserved regions comprise two of the three 

protein coding domains: the amino-terminal domain that 

contains the hydrophobic leader , and the carboxy-terminal 

domain that contains the conserved cysteine residues . No 

insertion/deletion events are apparent in these regions , 

thus conserving the length and reading frame of these two 

domains . However, several nucleotide and amino acid 

substitutions are apparent . Although change is occurring in 

these regions , certain features of the regions are strictly 

maintained . The hydrophobicity of the amino-terminal domain 

and the number and position of the cysteine residues in the 

carboxy- terminal domain are conserved among the four 

species. These cysteine residues are thus conserved in this 

way in at least six glue genes : the Sgs-7 , Sgs - 8 , and Sgs-3 

genes of D. melanogaster and in the three Sgs - 3 homologues 

of D. simulans , D. erecta , and D. yakuba. These features of 

the two domains are presumably important for their function; 

within these constraints however, the region can change 
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appreciably in both nucleotide and amino acid sequence. 

This pattern of evolutionary change , with limited 

insertion/deletion events and moderate nucleotide 

substitution, is typical of the protein coding portions of 

many genes (e.g., in Drosophila , Bodmer & Ashburner , 1984; 

Blackman & Meselson, 1986; Schaeffer & Aquadro , 1987). 

Introns are often examples of relatively rapidly 

evolving sequences that are located within more highly 

conserved protein coding regions of a gene. In the Sgs-3 

intron, however, the level of nucleotide substitutions is 

not much greater than that seen in the two most conserved 

protein coding regions of the gene (22.2±6.5% in the intron 

vs. 18.6±3.0% in the hydrophobic region). This is unusual, 

but could be explained by the following: (1) the amino- and 

carboxy-domains of the Sgs-3 protein are evolving moderately 

rapidly because several sequences are compatible with proper 

function and, (2), the intron, being relatively short, may 

have a significant fraction of its nucleotides that are 

directly involved in splicing. As the Sgs-3 gene is heavily 

transcribed in the salivary gland during third in star, 

efficient interaction of intron sequences with the splicing 

machinery may be required for the processing of this 

message. The intron region does show a number of 

insertion/deletions, a type of change not seen in either the 

amino- or carboxy-domains of the protein. We again find a 

sharp boundary between adjacent regions where the pattern of 

evolutionary change alters abruptly. In this case, 

nucleotide substitution frequencies are similar on either 

side of the boundary while the rate of insertion/deletion 
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changes abruptly. In contrast to the previous example, this 

one is of a familiar sort, and very likely the result of 

changes in selection forces. 

The regions flanking the coding region are evolving 

moderately rapidly and are subject to numerous nucleotide 

substitution events and both large and small 

insertion/deletion events. Thus, both types of mutation are 

occurr ing and neither is being strongly selected against. 

However, several small islands of relatively well-conserved 

sequences can be identified, primarily in the 5' flanking 

region of the Sgs-3 gene that has been implicated in the 

regulation of this gene. This conservation is particularly 

evident in the 130 bp just 5' of the mRNA start site in 

D. melanogaster. This region is capable of directing tissue 

and time-specific gene expression in the absence of any 

additional upstream sequences, although at levels reduced 

from normal (Vijay Raghavan, 1986) . 

The most rapidly changing region that has been found in 

the 68C glue gene cluster is the central threonine-rich 

repeat-containing region of the glue gene. The region 

varies greatly in size: from 139 amino acids in D. simulans 

to 250 amino acids in D. erecta (Martin et al., 1988). The 

length of this region is also known to vary among strains of 

D. melanogaster (Mettling et al., 1985; Crosby & Meyerowitz, 

1986a). In addition to the change in the length of the 

region, both the nucleotide and amino acid sequence of the 

region are evolving very rapidly. The repeat-containing 

region has changed to such an extent that meaningful 

sequence alignments of these sequences cannot be generated, 
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thus making it difficult to quantitate the levels of 

nucleotide substitution 

occurring. However, it 

evolving by both point 

and insertion/deletion that are 

is apparent that the region is 

mutation and insertion/deletion 

events. There do appear to be certain constraints imposed 

by selection on this region. First, the central regions of 

each species are rich in threonine, proline, and lysine and 

contain few acidic residues. Second, each of these regions 

begin with a threonine-rich part that is followed by a 

tandem array of a five amino acid sequence. 

The individual five amino acid repeat motifs are very 

similar within a species, but vary substantially between 

species. A likely mechanism for this is that of unequal 

crossover (Smith, 1976). This process would be capable of 

both maintaining homogeneity of the repeats within a 

species, while allowing for the rapid divergence of this 

region between species. Frequent unequal crossover events 

would also explain the dramatic length variation seen in 

this region. This region represents a case in which the 

rapid evolution appears to be driven by the sequence of the 

region itself. Such tandemly repeated sequences lend 

themselves to mutation by a mechanism that is relatively 

rare in the absence of this type of sequence. For example, 

the non-coding regions that surround the Sgs-3 gene are not 

evolving as rapidly as the central tandem-repeat region. 

Although the bulk of these sequences are unlikely to be 

under strong selection pressures, the evolutionary mechanism 

that results in the rapid evolution seen in the central 

tandem-repeat region cannot act on these non-coding 
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sequences because they lack significant amounts of tandemly 

repeated sequences . Similar examples of the rapid evolution 

of tandemly repeated sequences have been found in both non

coding regions, for example in the non-transcribed spacer 

between the ribosomal genes of Xenopus (Brown et al ., 1972) 

and in coding regions, for example in the Balbiani ring 

genes of Chironomus (Lendahl et al ., 1987). 

The 68C glue gene cluster region is thus evolving as a 

series of sharply delimited regions, each with its own 

pattern of evolution . This is summarized in Figure 3, where 

the amounts of nucleotide substitution and 

insertion/deletion are shown for each of the regions 

discussed. Some regions show both types of change , while 

others show notably less of one or the other of these types 

of mutational change. Certain patterns of evolution that are 

found at the 68C glue gene cluster are somewhat surprising. 

For example , the most rapidly evolving region consists of a 

protein-coding region of the Sgs-3 gene . This region is 

likely to code for a functionally important domain of the 

protein , as it is present in each of the species studied. 

Also, several properties of this region are highly 

conserved . It seems that the proper function of this 

protein domain can be performed by many possible amino acid 

sequences. In contrast , the least rapidly evolving region 

has no known function and is apparently not protein coding . 

Furthermore , this region is evolving slowly only in terms of 

single nucleotide substitutions; it is evolving relatively 

rapidly in terms of insertion/deletion events . This pattern 

of evolution is the opposite of that seen in the moderately 
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well conserved protein coding domains of Sgs-3 , where 

insertion/deletions are absent and nucleotide substitutions 

are fairly common . 

The results of these studies demonstrate the importance 

of recognizing the potential respective contributions of 

mutational and se1ectional processes to the overall pattern 

of evolution that is seen in a particular region of the 

genome. 

to lead 

Various combinations of these two processes appear 

to very different patterns of evolution . The 

relative influences of these processes on the resulting 

evolution pattern can change abruptly over a very short 

region of sequence, resulting in the mosaic pattern of 

evolution that is seen in this glue gene cluster region. It 

is likely that the rate of evolution found in a local region 

of the genome is itself under evolutionary control . Such 

alterations in the rate of evolution could be responsible 

for some of the discrepancies found when applying the 

molecular clock hypothesis to certain genomic regions 

(Zuckerkandl & Pauling , 1962; Margoliash , 1963 ; Britten , 

1986) . Future investigations on the patterns of evolution 

in other portions of the genome and in other phyla should 

extend our understanding of the processes that underlie the 

piecemeal evolution of genomes. 
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Figure 1. The cloned sequences of the 68C-homologous 

glue gene cluster regions. Restriction enzyme 

abbreviations are: BamHl (B), Bglll (Bg), EcoRI (R), Hindiii 

(H), Sall (S), Sacl (Sc), Xbal (Xb), and Xhol (Xh). Sites in 

parentheses are present in some strains (D. melanogaster) or 

clones (D. teissieri) but not in others (Meyerowitz & 

Martin, 1984). The arrows below each map indicate the extent 

and direction of transcription of the glue gene 

transcription units. In cases where the exact position of 

the gene is not known, the region that is hybridized by eDNA 

made from salivary gland mRNA is shown by a solid black bar. 

Hatched bars show the extent of the regions in these glue 

gene clusters that have been sequenced. The maps are aligned 

by the positions of the conserved restriction sites found 

left of the RNA coding regions. The vertical dashed line 

shows the boundary between the conserved region at the left 

and the nonconserved region at the right. 
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Figure 2. The structure of the Sgs -3 glue gene of 

Drosophi~a me~anogaster. The numbering scheme used is 

relative to the transcription start site of the gene 

(Garfinkel et al., 1983). The arrow indicates the extent of 

the mRNA transcript of the Sgs-3 gene and the location of 

the 73 nucleotide intron, near the 5' end . Above the map , a 

block diagram shows the major subdivisions of this region 

that were revealed from comparisons of the Sgs-3 genes from 

four related Drosophila species . 
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Figure 3. Change at the 68C glue gene cluster 

region. The numbers represent the average percent of 

either nucleotide substitution or insertion/deletion that 

are occurring between three pairs of species: 

D . melanogaster vs . D. erecta , D . melanogaster vs . D . yakuba 

and D . yakuba vs. D . erecta . The levels of change in the 

repeat region were not quantitated because meaningful 

sequence alignments of these rapidly evolving regions could 

not be generated . 
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Summary. The 68C puff is a highly transcribed 
region of the Drosophila melanogaster salivary gland 
polytene chromosomes. Three different classes of 
messenger RNA originate in a 5000-bp region in 
the puff; each class is translated to one of the salivary 
gland glue proteins sgs-3, sgs-7, or sgs-8. These mes
senger RNA classes are coordinately controlled, with 
each RNA appearing in the third larval instar and 
disappearing at the time of puparium formation. 
Their disappearance is initiated by the action of the 
steroid hormone ecdysterone. In the work reported 
here, we studied evolution of this hormone-regu
lated gene cluster in the melanogaster species 
subgroup of Drosophila. Genome blot hybridization 
experiments showed that five other species of this 
subgroup have DNA sequences that hybridize to D. 
melanogaster 68C sequences, and that these se
quences are divided into a highly conserved region, 
which does not contain the glue genes, and an ex
traordinarily diverged region, which does. Molec
ular cloning of this DNA from D. simulans, D. 
erecta, D. yakuba, and D. teissieri confirmed the 
division of the region into a slowly and a rapidly 
evolving portion, and also showed that the rapidly 
evolving region of each species codes for third instar 
larval salivary gland RNAs homologous to the D. 
melanogaster glue mRNAs. The highly conserved 
region is at least 13,000 bp long, and is not known 
to code for any RNAs. 

Key words: Drosophila - Genome evolution -
68C Glue gene cluster - Drosophila melanogasrer 
species subgroup 

Offpnnt requests ro: E.M. Meyerowitz 

Introduction 

Puffs are regions of polytene chromosomes that are 
actively undergoing transcription (Pelling 1964). One 
of the largest puffs found in the Drosophila mela
nogaster salivary gland polytene chromosomes is 
the 68C puff, on the left arm of the third chromo
some. This puff is present through much of the third 
larval in star, regressing several hours before the time 
of puparium formation (Ashbumer 1967). The 
regression of the 68C puff is a direct result of an 
increase in the level of the steroid hormone ecdys
terone in the larval hemolymph (Ashbumer 1973, 
1974; Ashbumer and Richards 1976). Several lines 
of evidence indicate that 68C puff regression results 
from the binding of ecdysterone, itself bound to a 
protein receptor, to the DNA of the 68C region 
(Gronemeyer and Pongs 1980; Dwomiczak et al. 
1983). 

Molecular cloning of 68C puff DNA followed by 
DNA, RNA, and protein sequence analysis has 
shown that the puff contains DNA sequences that 
are transcribed to produce three different poly
adenylated messenger RNAs whose accumulation 
is under ecdysterone control (Meyerowitz and Hog
ness 1982; Crowley et al. 1983; Garfinkel et al. 1983; 
Crowley and Meyerowitz 1984). Each of these RNAs 
is translated in the salivary gland, and each of the 
resulting polypeptides is one of the salivary gland 
secretion proteins. This is a group of at least seven 
polypeptides that are produced in salivary gland cells 
during the third larval instar; they are secreted into 
the lumen of the salivary gland near the end of this 
developmental stage, and are expelled from the Iu
man through the salivary gland duct to the larval 
substrate at the end of the third instar. The secretion 
then hardens to form a strong glue that binds the 
newly formed puparial case to a solid surface (Fraen-
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kel and Brookes 1953). The three salivary gland 
secretion proteins coded for in the 68C puff are 
sgs-3, sgs-7, and sgs-8 (Crowley et al. 1983). These 
three proteins are related in their amino acid se
quences and thus form a small, clustered gene fam
ily . The differences among the proteins have arisen 
both from single-nucleotide substitutions and from 
the appearance in one of the proteins (sgs-3) of a 
module of 234 amino acids not present in the other 
two (Garfinkel et al. 1983). 

There are two major reasons for examining the 
DNA sequence topography of the 68C puffin species 
of Drosophila other than D. melanogaster. One is 
to understand the evolution of the three members 
of this diverged gene family. in particular to inves
tigate the mechanism of modular evolution that gave 
rise to sgs-3. The other is to find those elements of 
the puff DNA that are conserved in evolution. in 
the expectation that the regions of sequence that are 
relatively conserved in related species of Drosophila 
will include those that interact with regulatory pro
teins coded elsewhere in the genome. Identification 
of conserved sequences would thus be a step toward 
understanding the relation of the 68C DNA se
quences to the regulated expression of the 68C RNAs. 

In the experiments reported here we have begun 
the analysis of the 68C glue gene cluster in the group 
of closely related Drosophila species making up the 
melanogaster species subgroup. By interspecies DNA 
hybridization and molecular cloning, we show that 
five of these species contain regions homologous to 
the 68C region of D. melanogaster that code for 
abundant salivary gland RNAs related to the D. 
melanogaster 68C glue messengers. We also discov
er that the 68C-homologous region is divided into 
adjacent blocks of sequence that evolve at very dif
ferent rates, with the gene cluster found in a region 
that is evolving with extraordinary rapidity. Our 
results show that the rate of sequence evolution is 
a local property of chromosomal regions, and also 
serve as a first step toward understanding the rela
tion of DNA sequence structure and its evolution 
to the regulated expression of the 68C glue gene 
cluster. 

Materials and Methods 

Materials. Restriction endonucleases were purchased from New 
England Biolabs. The large proteolytic fragment of Escherichw 
coil DNA polymerase I was from either New England Biolabs or 
New England Nuclear, and T4 DNA polymerase was purchased 
from New England Nuclear. T4 DNA ligase and £ . coli DNA 
polymerase I were gifts of Dr. S. Scherer. "P-Labeled nucleoside 
triphosphates were from either Amersham or ICN. Avian Mye
loblastosis Virus reverse transcriptase was a gift of G. Duyk. 
Nitrocellulose was purchased from Schleicher & Schuell. 

The Drosophila melanogaster strains used were the homo-

zygous third chromosome strain OR 16f (Meyerowit7 and Hog
ness 1982) and the Canton-S wild-type from the California In
stitute of Technology stock collection. The other fly species-D 
mauritiana, D. simulans (jv st pe), D. erect a. D. yakuba. and D. 
teiss1er1-were from the California Institute of Technology Dro
sophila stock collection. Flies were cultured on standard food 
(Lewis 1960) at J8• or 220C. 

Nucleic Ac1d Preparations. Drosophila DNA was extracted 
from adult flies by freezing the flies in liquid N, and then pow
dering them in a monar. The powder from 0.1-2 g of fhes was 
added to 2.5 ml 0.2 M Tris-HCI, pH 8.0, 0.2 M ethylenedi
aminetetraacetate (EDTA), 1% sodium N-lauroyl sarcosine, 100 
~tg/ml proteinase K(Merck). This was incubated with gentle shak
ing at 48•C for I h. and then centrifuged at 10,000 rpm for 5 
min in a Sorvall SS-34 rotor. The supernatant was brought to 
4.0 ml with 10 mM Tris-HCI, pH 8.0, I mM EDTA; then 3.7 g 
CsCI and 0.4 ml 10 mg/ml ethidium bromide were added. This 
mixture was centrifuged at 53,000 rpm for 20 h in a Beckman 
VTi65 rotor, and then the ultraviolet-fluorescent band was re
moved with a syringe and gently butanol extracted four times to 
separate the DNA from the ethidium bromide. Following this. 
the DNA was precipitated by addition of 2 volumes of ethanol 
followed by gentle hand centrifugation. The DNA pellet was 
washed with 70% ethanol, air dned, and resuspended overnight 
at 40C without agitation. The resulting DNA was pure and over 
150,000 bp in fragment length. 

Plasmid and bacteriophage DNA preparations were per
formed as described by Davis et al. (1980), with occasional mod
ifications that did not affect the results. Drosophila salivary gland 
RNA was prepared from hand-dissected salivary glands by two 
phenol-<hloroform extractions followed by two chloroform ex
tractions and ethanol precipitation. Polyadenylated RNA was 
separated on an oligo(dT) cellulose (Collaborative Research) col
umn as described by Maniatis et al. ( 1982). 

Nucleic ACid Labelmg. Nick translations followed the method 
of Rigby et al. (1977). 3'-End labeling of restriction fragments 
using T4 DNA polymerase was done as described by Maniatis 
et al. (1982). " P-Labeled eDNA was made from poly(A)• RNA 
hybridized to an oligo(dT) (Collaborative Research) primer in 
the presence of 100 ~tg/ml Actinomycin-D. in a modification of 
the reaction described by Lis et al. (1978). 

Nuclease Digesuons. Restriction endonuclease digestions of 
DNA were done as described by Davis et al. (1980). 

Recombmant DNA. All D. melanogaster genomic libranes 
used are described by Meyerowitz and Hogness ( 1982). The ge
nomic libraries from D. simulans. D. erecta. D. yakuba, and D. 
teiSSien were produced by performing partial EcoRI digestion on 
high-molecular-weight adult DNA (see above) to give DNA with 
a mean size of 15,000-20,000 bp ( 15-20 kb). This DNA was 
subjected to sedimentation in a I 0% to 40% sucrose gradient in 
0.2 M sodium acetate, 10 mM Tris, 10 mM EDTA. pH 7.6. at 
35,000 rpm in a SW41 swinging bucket rotor at 40C for 15-20 
h, and DNA in the size range 15-20 kb was isolated. This DNA 
was ligated to purified EcoRI arms of the vector >.Sep6 (Meyer
owitz and Hogness 1982) using T4 DNA ligase (see Davis et al. 
1980). The ligated DNA was treated with a>. in vitro packaging 
extract prepared using the £ . coli strains NS428 and NS433 
(Sternberg et al. 1977) and a modification of the procedure of 
Collins and Hohn (1978). The phage particles were plated on L 
agar in L soft agar with K802 cells (see Davis et al. 1980), without 
any amplification step. and screened as described below. Positive 
plaques were single-plaque purified twice more before proceed
ing. Restriction fragments of these X clones were subcloned in 
plasmid or >. vectors by standard methods (Davis et al. 1980; 
Mamatis et al. 1982). 



The system of recombinant clone nomenclature, which orig
inated in the laboratory of D.S. Hogness, IS as follows. All A 
clones are prefixed with the letter A. followed by a letter indicating 
the A vector used: a for A647 (Murray et al. 1977). b for ASep6, 
c for Charon 4 (Blattner et al. 1977), ore for Agt 10 (R. Dav1s, 
personal communication). Following this are two letters: Dm for 
Drosophila melanogaster, Ds for D stmulans. De for D. erecta. 
Dy for D. yakuba. or Dt for D. tetsstert. Last is a number iden
tifying the specific clone. Plasmid subclones begin with a single 
letter: a for pBR322 (Bolivar et al. 1977), f for pBR325 (Bolivar 
1978), or q for DOA-1, a kanamycin-resistant. high-copy-num
ber plasmid with mult1ple clon1ng snes (R.E. Prum and E.M. 
Meyerowitz. unpublished). The rest of the clone designauon is 
as for the A clones. 

Gel Elecrrophorests. Double-stranded DNA was subjected to 
electrophoresis in agarose gels cast and run m Tns--borate-EDT A 
buffer (Peacock and Dingman 1968). DNA was strand separated 
on gels as described by McDonell et al. ( 1977) and Meyerowitz 
and Hogncss ( 1982). RNA was subjected to electrophoresis in 
horizontal agarose gels buffered with 40 mM sodium 3-(N-mor
pholino)propanesulfonate, pH 7.0, 5 mM sodium acetate. I mM 
EDT A, and containing 6% formaldehyde. Running buffer was 
the same as the gel buffer, but without formaldehyde. Prior to 
electrophoresis RNA was treated at 55"C for 15 min in 50% 
formamide, 6% formaldehyde, and RNA gel running buffer. 

Size standards on Tns-borate-EDTA gels were restriction 
fragments of bacteriophage A DNA. RNA gel size standards were 
single-stranded DNA prepared from Hmfi-digested pBR322 and 
formaldehyde treated as was RNA. except that the temperature 
was 70"C. 

Filter Btnding and HybridizatiOn of Nucleic Acids. DNA gels 
were denatured and neutralized as described by Southern ( 1975). 
and were transferred to nitrocellulose by the Southern procedure, 
using 20x SSPE (180 mM NaCI. 10 mM Na H, PO,, 8 mM 
NaOH, I mM Na, EDTA pH 7.0, Davis et al. 1980). Drosophila 
genome blots had 1.5 llg restricted DNA per lane. RNA gels were 
either rinsed in water; or rinsed and then treated for 45 min with 
50 mM NaOH , 100 mM NaCI then neutralized m 100 mM Tris
HCI, pH 7 .5, before blotting. The blot procedure was as for DNA 
gels. RNA extracted from three salivary gland lobes was used in 
each lane. Plaque and colony filters were prepared as described 
by Davis et al. ( 1980). 

All hybridizations were in 50% formam ide, 5 x SSPE. 100 
~tg/ml sonicated and boiled salmon testis DNA (Sigma), 1 x Den
hardt's solution (0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% 
bovine serum albumin; Denhardt 1966). 0.1% sodium dodecyl 
sulfate (SDS), at 43" C. After hybridization, filters were washed 
in I x SSPE, 0. I% SDS. at room temperature, unless otherwise 
indicated. 

Dl\'A Sequencing. DNA sequencing was performed by the 
modtfications of the Maxam and Gilbert chemical method ( 1980) 
described by Garfinkel et al. (1983). 

Results 

Gel Blot Experiments 

The first step in our analysis of evolution of the 68C 
puff was the demonstration that species of Dro
sophila other than D. melanogaster contain DNA 
sequences homologous to the 68C genes. The species 
chosen were those of the melanogaster species 
subgroup, which contains D. melanogaster and at 
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least six other species: D. simulans, D. mauritiana, 
D. yakuba, D. teissieri. D. erecta. and D. arena. These 
are the Drosophila species most closely related to 
D. melanogaster in morphology, mitotic chromo
some karyotype, and polytene chromosome banding 
pattern (Bock and Wheeler 1972; Lemeunier and 
Ashbumer 1976; Lemeunier et al. 1978). DNAs from 
adults of all of these species except D. arena were 
purified and digested to completion with the restric
tion endonuclease EcoRI, and the resulting restric
tion fragments were separated by electrophoresis 
through an agarose gel. The gel pattern was trans
ferred to a nitrocellulose filter and this genome blot 
filter was hybridized with a series of 32P-labeled 
cloned 68C probes from D. melanogaster. Autora
diography revealed the presence and size of EcoRI 
fragments from each of the species that were ho
mologous to the D. melanogaster probes. The in
tensity of hybridization and persistence of the signal 
through successively more stringent filter washes 
gave an estimate of the sequence divergence between 
the D. melanogaster probes and the homologous 
sequences from the o ther species. 

The cloned D. melanogaster sequences used are 
depicted in Fig. I. The first probe was .\aDm 150 I
I 0, a genomic clone containing all or a substantial 
part of D. melanogaster EcoRI fragments 3.8, 4. 7, 
3.7, 2.6, and 7.0 kb long. The control D. melano
gaster lane on the filter showed strong autoradio
graphic signals resulting from hybridization to bands 
of these sizes. The lanes containing DNAs from the 
other species showed hybridization to a smaller 
number of bands. For D. simulans, bands of 4.7, 
3.8, and 3.7 kb showed strong signals, and weak 
hybridization was seen to EcoRI fragments of 2.6 
and 1.4 kb. D. mauritiana also showed strong sig
nals on bands of 4.7, 3.8, and 3.7 kb. D. erecta 
showed hybridization to bands of 4.3, 4.0, and 3.7 
kb; D. yakuba to 8.4- and 4.2-kb fragments; and D. 
teissieri to bands at 4. 7, 3.8, and 3. 7 kb. Since the 
D. melanogaster DNA in .\aDm 1501-10 extends for 
almost 18 kb, it can be seen that only a fraction of 
the .\aDm !50 1-10 insert hybridizes strongly to the 
genomic DNAs of the other species. This indicates 
that only part of the D. melanogaster probe has a 
high degree of similarity to sequences in the other 
species, with another part of the probe hybridizing 
weakly. 

To determine which regions of the .\aDm 150 I
I 0 insert were responsible for the strong cross-hy
bridization, several additional D. melanogaster 
clones were used as probes . .\bDm2031 contains D. 
melanogaster DNA repesenting the leftward part of 
the DNA cloned into .\aDm 1501-10 (see Fig: I). 
The D. melanogaster EcoRI fragments represented 
in .\bDm2031 are 3.8, 4. 7, and 3. 7 kb long, the same 
size as the EcoRI fragments of D. simulans, D. 
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mauntzana. and D. teissieri that were strongly la
beled with the XaDm I 50 I- I 0 probe. A species ge
nome blot filter hybridized with labeled XbDm203 I 
DNA gave the expected D. melanogaster pattern, 
and in the lanes containing DNA from the other 
species gave the same pattern of strongly labeled 
bands as that obtained using XaDm I 50 I- I 0 as the 
probe. Thus, the D. melanogaster sequences with a 
high degree of similarity to sequences from the other 
species are those represented in XbDm203 I, and not 
those that contain the salivary gland secretion pro
tein genes. 

This conclusion was tested by using XcDm2021, 
which includes all of the sequences found in 
XbDm2031 as well as several kilobases of additional 
DNA (Fig. 1). This clone hybridized strongly with 
the same bands as XbDm203 I did, and with small
er, additional bands that presumably were hybrid
ized by those D. melanogaster sequences present in 
XcDm2021 and not in XbDm2031. Both the 
XbDm2031 hybridized filter and the XcDm2021 fil
ter were washed at successively higher stringencies 
after the initial autoradiographic exposure. The first 
washes were in 0.0 I x SSPE at 4 7°C. On both filters, 
the hybridization patterns and intensities were un
changed by this treatment. After the first wash and 
autoradiographic exposure was a second wash of 
each filter in 0.0 I x SSPE at 52•c. This caused a 
uniform reduction in signal in all bands on both 
filters, with the signal change in the control D. mel
anogaster lanes paralleling that in the lanes repre
senting the other species. Thus, the strongly hybrid
ized regions of the 68C sequences in all of the species 
are not detectably diverged in DNA sequence, if one 
uses the melting temperature of filter-bound DNA 
duplexes as a crude divergence assay. 

One further D. melanogaster probe from the con
served region of the 68C clones was used, aDm2003. 
This plasmid clone contains most of the rightmost 
fragment of the conserved region of D. melanogas
ter, the 3.7-kb EcoRI fragment, and much of a 2.6 
kb EcoRI fragment, which is the leftmost fragment 
of the less-conserved RNA coding region. When 
hybridized to a species genome blot filter, the 
aDm2003 probe gave a strong signal at 3. 7 kb and 
a weak signal at 2.6 kb in the D. simulans Jane, a 
strong signal at 3. 7 kb and a weak one at 4.0 kb in 
the D. mauritiana lane, strong hybridization to a 
3.7-kb band and weak hybridization to a 4.2-kb 
fragment in the D. erecta track, and strong hybrid
ization to a 3.7-kb D. teissieri band. Thus, not only 
is the 3.7-kb EcoRI band highly conserved by du
plex melting criteria, but all of the species except D. 
yakuba, which was not tested in this experiment, 
appear to have the same EcoRI sites, spaced equally, 
surrounding this DNA. This indicates a very high 
degree of sequence conservation. That the remain-
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Fig. I. Drosophtla melanogaster cloned sequences used. The 
cloned D. melanogaster sequences used in this study are shown 
beneath a restriction endonuclease map of a portion of the 68C 
puff DNA of this species. The derivations of the map and clones 
are described in Meyerowitz and Hogness ( 1982) and in Garfinkel 
et al. (1983). The restriction endonuclease cleavage sites shown 
are those of EcoRI (R), Hind III (H), and Sail (S). The numbers 
on the restriction map are the sizes of each EcoRI fragment in 
kilobase pairs. The solid bars under the map show the positions 
and extents of the DNA coding for the glue proteins sgs-8, -7 , 
and -3. 

ing signal, from the 2.6-kb EcoRI fragment that in
cludes one of the glue genes, was weak confirms that 
the boundary between conserved and Jess conserved 
sequences is approximately at the EcoRI site sepa
rating the 3.7-kb fragment from the adjacent EcoRI 
fragment to the right. 

Several probes from the relatively unconserved 
glue RNA coding region of the 68C puff were also 
used in gel blot experiments. aDm2026 contains a 
1.65-kb Hind III fragment from D. melanogaster that 
includes the Sgs-7 and Sgs-8 genes. When 32P-labeled 
aDm2026 DNA was hybridized to a species genome 
blot filter, the hybridization to D. melanogaster se
quences was much stronger than that to DNA of 
any of the other species. Each of the other species 
did show binding of the labeled probe to EcoRI 
fragments of various sizes. A series of washes of the 
filter in 0.0 I x SSPE at temperatures of 43•, 49•, and 
52.5•c, with autoradiography performed after each 
new wash, showed that the aDm2026-homologous 
sequences of D. yakuba, D. teissieri, and D. erecta 
lost all binding to aDm2026 DNA between 43• and 
49°C, whereas the signals in the D. mauritiana and 
D. simulans Janes were considerably weakened after 
the 49•c wash, but not removed. A 52.5•c wash 
sufficed to remove almost all of the signal in the D. 
mauritiana and D. simulans Janes, while having lit
tle effect on D. melanogaster self-hybridization. 
Thus, the D. melanogaster sequences containing the 
Sgs-7 and Sgs-8 genes are more diverged from their 
homologous sequences in the other species than are 
the D. melanogaster sequences to the left of the glue 
genes, sequences that are not known to code for any 
Drosophila RNAs (Meyerowitz and Hogness 1982). 

The next D. melanogaster DNA used as a labeled 
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Fig. 2 Cloned sequences of Drosophila stmu/ans. The original 
A clones obtained from the D. stmulans genomic library and 
several plasmid subclones used are shown in relation to a com
posite EcoRI restriction map of the cloned D. simulans DNA. 
The number~ on the map are distances between adjacent EcoRI 
sites in kilobase pairs. The hatched bar above the map indtcates 
the maximum extent of the middle repetitive DNA element found 
in the 68C-homologous region in D. simulans. The solid bars 
below the map indicate the restriction fragments hybridized by 
eDNA made from abundant polyadenylated RNAs from the sal
ivary glands of third instar larval D. simulans. All of the recom
binant phage except AbDs007 are consistent with the composite 
map. AbDs007 has. in addition to the sequences shown, a 7.2-
kb EcoRI fragment that is not present in any of the other clones 
and is not hybridized by D. me/anogaster 68C sequences. It seems 
certain that this 68C-unrelated fragment was ligated to the 68C
homologous D. simulans DNA during the construction of the 
recombinant phage library, and that it derives from a random, 
noncontiguous region of the D. stmulans genome 

probe was aDm2023, a 2.4-kb Sail fragment con
taining the Sgs-3 gene. Again, the D. melanogaster 
self-hybridization gave much stronger autoradio
graphic signals than did the hybridization of D. mel
anogaster sequences to the homologous sequences 
of other Drosophila species. A wash in 0.0 I x SSPE 
at 48°C reduced but did not eliminate the hybrid
ization in the D. yakuba, D. teissieri, and D. erecta 
lanes. Thus, at least for some species, the RNA
coding region of the 68C putfis again less conserved 
in evolution than is the adjacent DNA. A final prob
ing of a species genome blot was performed, using 
32P-labeled XcDm2007. The bands hybridized by 
this X clone, which overlaps aDm2026 and 
aDm2023, included those hybridized by those two 
plasmid clones; the initial hybridization and sub
sequent washes at higher stringency confirmed the 
results obtained with those clones. Since XcDm2007 
includes D. melanogaster sequences to the right of 
the RNA-coding region as well as the sequences 
containing the glue genes, there was hybridization 
to fragments not seen in the aDm2026 or aDm2023 
experiments. These fragments were as intensely hy
bridized as D. melanogaster self-hybridized frag
ments of the same sizes, and after filter washes of 
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Fig. 3a,b. Hybridization of Drosophila simulans clones to D. 
s•mulans and D. me/anogaster genomic DNA. D. simu/ans (D. 
sim) genomic DNA was digested with EcoRI (R), Sail (S), Bam HI 
(B), or Hindiii (H) in four separate reactions, each with 1.5 I'll 
DNA. The digested samples were loaded in four adjacent lanes 
of a 0. 9% agarose gel. The nearby group of lanes was loaded 
similarly with identical digests of D. me/anogaster (D. mel) DNA. 
After electrophoresis the DNA in the gel was denatured and 
blotted to a nitrocellulose filter, and the filter was hybridized with 
a "P-labeled D. simu/ans A clone probe and then autoradio
graphed. In a the probe was AbDsO I I. In b the signal was washed 
from the filter in a with boiling 0.01 x SSPE, and the filter was 
rehybridized with AbDsOO 1. The size standards are from AC· 
185757 DNA digested with Hindiii 

either 48°C or 52.5°C in 0.01 x SSPE these bands 
were still equal in intensity to the D. melanogaster 
bands. This indicates that the sequences to the right 
of the RNA-coding region are not highly diverged. 
No further experiments that analyzed this rightward 
region were performed. 

Molecular Cloning 

The general picture of 68C puff evolution gained 
from the genome blot experiments is of a highly 
diverged set of sequences containing the three glue 
genes, surrounded by highly conserved sequences 
that are not known to have any function in glue 
gene expression. To Jearn more about the evolution 
of this region and to establish a basis for DNA se
quencing studies, the DNAs homologous to the D. 
melanogaster 68C sequences in D. simulans. D. 
erecta, D. yakuba, and D. teissieri were cloned. The 
first clones obtained were from D. simulans, the 
species most closely related to D. melanogaster 
(Sturtevant 1919). The strain of D. simulans used 
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Fig. 4. Restriction maps of the cloned 68C-homologous sequences. All known BamHI (B). Bglll (Bg), EcoRI (R). Hrndlll (H). Sail 
(S), Sacl (Sc), Xbal (X b), and Xhol (Xh) sites are depicted except for a single EcoRI sne in D. erecta. which is omitted for the reason 
detailed in the caption to Fig. 5. Sites in parentheses on the D. me/anoga.ster map are found in chromosomes of some wrld-type 
strains, but not in others (Meyerowitz and Hogness 1982; Garfinkel et al. 1983). The parenthetical Sail site on the D. 1e1ssien map 
is present in AbDt91 00 but not in the overlapping AbDt9200. Beneath each map are solid bars showing the extents of the restrictiOn 
fragments hybridized by ["P]cDNA derived from thtrd instar larval salivary gland polyadenylated RNA from each of the species (see 
Fig. 8 for more details). The maps are aligned b y the series of common restriction endonuclease sites found to the left of the RNA
coding region. Three vertical dashed boundaries separate the maps tnto a leftward conserved region and a rightward RNA-codrng 
region. The leftmost boundary is set at the EcoRI site that marks the left end of fDm205 7 hybridization to the clones of each species. 
and is set at this point only because D. te1Ss1en cloned sequences extend no farther to the left. Whether the conserved region continues 
beyond this point is not known, although comparison of the four species whose restriction maps do include DNA to the left of this 
boundary indicates that it probably does. The central boundary is the common Bglll site just to the left of the RNA-coding region . 
this site separates conserved from diverged sequences by criteria of hybridization and restriction mapping. The rightward boundary 
marks the right end of the restriction fragments hybridized by aDm2023, where each species except D. te1ssieri has a Sail site. In D. 
teiSSien, the boundary between hybridtzation of aDm20 23 and aDm2005 is within the BamHI-EcoRI fragment that includes the 
RNA-coding-region boundary 

was a homozygous third chromosome strain with 
the recessive third chromosome markers jv, st. and 
pe. DNA from adult flies was partially digested with 
EcoRI and 15- to 20-kb fragments were selected by 
sucrose gradient sedimentation and cloned into the 
EcoRI cloning vector >.Sep6 (see Materials and 
Methods). The resulting recombinant DNA library 
was not amplified, but was directly plated and 
screened by the plaque lift method , using the 32P
labeled D. melanogaster clones aDm2026 and 
aDm2023 as probes. Fourteen independent clones 
were isolated that hybridized to both probes. These 
are >.DsOO I, 002, 003, 004, 005, 007, 008, 0 I 0 , 0 I I, 
012, 013, 014, 016, and 018. Figure 2 is a simple 
restriction endonuclease map of the DNA repre
sented in these clones, showing the relation of the 
cloned segments. To obtain clones representing the 
highly conserved DNA adjacent to the RNA coding 
region, more recombinant phage were screened, us
ing the D. melanogaster clone fDm2057 (see Fig. I) 
as a labeled probe. The recombinant clones >.b-

Ds021 , 022, 023, 024, 026, and 028 are all hybrid
ized by fDm2057 , and are also shown in Fig. 2. 

That this collection of phage represents the se
quence organization actually found in the D. sim
ulans genome and does not result from the artificial 
joining of separate EcoRI fragments during the clon
ing procedure or from any other cloning artifact is 
shown by several facts. First, all regions of the com
posite restriction map. and all EcoRI junctions, were 
cloned more than once from a library of indepen
dent clones. In addition, the EcoRI fragments in the 
clones that hybridize to the D. me/anogaster probes 
aDm2026 and aDm2023 are the same size as the 
EcoRI fragments of whole-genome D. simulans 
DNA hybridized by the same probes. Finally, two 
of the D. simulans >.clones were 32P-labeled by nick 
translation and used as probes of genome blot filters 
containing D. melanogaster whole-genomic DNA 
digested with BamHI, EcoRI , Hindlll , and Sail in 
different lanes and D. simulans genomic DNA sim
ilarly digested in a separate set of gel tracks. The 
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Fig. S. Cloned sequences of Drosophtla erecta. A composite 
restriction map of the cloned D. erect a sequences is depicted with 
the distances in kilobases between adjacent EcoRJ (R) sites shown. 
The interval with the two numbers 0.15 and 0.4 contains two 
EcoRI fragments of these sizes; their order IS unknown. Below 
the map are indicated the positions and extents of the X clones 
and plasmid subclones used. Immediately below the map, sohd 
bars show the location of the restriction fragments of the cloned 
DNA that hybridize to eDNA derived from abundant poly(A)" 
RNAs isolated from third instar salivary glands of D. erecta. 
Above the map, a hatched bar indicates the maximal extent of 
the middle repetitive DNA element found m the 68C-homolo
gous region of D. erecta 

first probe used was AbDsO II. It hybridized to D. 
melanogasrer fragments of the sizes expected from 
the known restriction map of the 68C region in this 
species. This indicates that no additional fragments 
from other genomic regions were incorporated into 
this phage during its construction, and that the D. 
simulans 68C region does not contain the break
points of any large inversions or translocations rel
ative to the D. melanogasrer sequence. AbDsO II also 
hybridized to the D. simulans restriction fragments 
expected from the restriction map of the phage, con
firming that no large deletions or rearrangements 
occurred during the cloning of the D. simulans DNA 
(Fig. 3a). The second D. simulans A probe used in 
hybridization to the genome blot filter was AbDsOO I. 
The autoradiogram resulting from this hybridiza
tion showed a multiplicity of labeled fragments in 
all lanes from both species. demonstrating that some 
part ofAbDsOO I contains a repetitive element pres
ent in numerous copies in both the D. simulans and 
the D. melanogaster genome (Fig. 3b}. This element 
was localized to the 1.25-kb Saii-BamHI fragment 
internal to the 2.1-kb EcoRI fragment of AbDsOO I 
by annealing 32P-Iabeled, single-stranded D. simu
lans genomic DNA to a gel blot filter with lanes 
containing AbDsOO I DNA digested with EcoRI, 
Bam HI , and Sail. The autoradiogram of this filter 
showed strong labeling of the 2.1-kb EcoRI frag
ment, a 1.5-kb BamHI fragment, and a 1.65-kb Sail 
fragment; much weaker hybridization to the other 
D. simulans insert fragments; and no hybridization 
to phage vector DNA. Thus, the repetitive element 
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is in the position shown in Fig. 2. Figure 4 shows a 
detailed restriction map of the 68C region of D . 
simulans, including the BamHI and Sail sites just 
mentioned. To show that the repetitive AbDsOO I 
does represent contiguous D. simulans sequence and 
that the restriction fragments of this clone corre
spond to those at 68C in D. melanogasrer. a blot 
filter with lanes of EcoRI-, BamHI-, and Saii-di
gested AbDsOO I was hybridized with 32P-Iabeled 
DNA of .X.bDm2033, a D. melanogaster clone (see 
Fig. I) representing approximately the same region 
of 68C as AbDsOO I does. All .X.bDsOO I bands were 
hybridized except the leftmost two EcoRI fragments 
( 1.4 and 0.6 kb), which are not expected to be rep
resented in 
AbDm2033. The AbDsOOI fragments containing the 
repetitive element hybridized less than did the oth
ers, as would be expected if a substantial portion of 
these DNA pieces contained sequences not present 
in the probe. 

The next species whose 68C-homologous se
quences were cloned was D. erecta. Production and 
screening of the D. erect a libraries was done as for 
D. simulans. The first screening used aDm2026 and 
aDm2023 as probes of duplicate plaque filters; two 
different clones hybridized by both probes were ob
tained. These are AbDe002 and AbDe004. A differ
ent set of clones from the D. erect a library was then 
probed with fDm2057, and three more positive 
plaques were obtained. These contained the phage 
AbDeO II , AbDeO 12, and ADeO 13. A simple restric
tion map of the D. erecta sequences in these five 
clones and the relation of these clones to this com
posite map are shown in Fig. 5. A detailed restriction 
map of the D. erecta 68C-related region is in Fig. 
4. Several results were obtained that show that the 
restriction map derived from the cloned D. erecta 
segments does correspond to the restriction map of 
the same sequences in the D. erecra genome. The 
first is that the restriction maps of all the overlapping 
regions of the A clones are identical, thus eliminating 
rare cloning artifacts as a possibility in these regions. 
Also, hybridization of the 32P-labeled D. me/ana
gaster clones aDm2023 and aDm2026 to filter
bound EcoRI fragments of AbDe002 and AbDe004 
showed that the sizes of the EcoRI fragments ho
mologous to these probes are the same as the sizes 
of the D. erecta genomic EcoRI fragments hybrid
ized by these D. melanogasrer probes in the earlier 
species genome blot experiments. In addition , when 
AbDe004 DNA was 32P-labeled and hybridized to a 
genome blot filter containing lanes with D. erecta 
genomic DNA digested with BamHI , EcoRI , 
Hindlll, or Sail , the labeled bands on the filter cor
respond with the restriction fragment sizes expected 
from the clone restriction map. 32P-Labeled 
.X.bDe004 DNA was also annealed to a genome blot 
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filter with separate lanes of D. melanogaster ge
nomic DNA digested with BamHI, EcoRI, Hindiii , 
or Sail. In each case the labeled restriction fragments 
were of the sizes expected from the known D. me/
anogaster 68C restriction map. Hybridizations to 
D. erecta and D. me/anogaster genomic DNA di
gested with the same set of enzymes were done using 
32P-labeled AbDe002 as a probe as well. These 
showed, in addition to the expected bands, a distinct 
background smear in all lanes for both D. erecta and 
D. melanogaster. This smear, not seen in the 
AbDe004-hybridized genome blot filter, implies that 
AbDe002 contains a repetitive DNA element. Hy
bridization of 32P-labeled D. erecta genomic DNA 
to a filter blotted from a gel containing lanes of 
AbDe002 DNA digested with EcoRI, Xbai, Bglll , 
Saci, and a combination of EcoRI and each of the 
other enzymes showed that the repetitive element 
is entirely within the 2.1-kb EcoRI-Xbal fragment 
found in the 2.3-kb EcoRI fragment of AbDe002. 
Figure 5 shows the location of the repetitive element 
relative to the D. erecta restriction map. 

The next DNA cloned was from D. yakuba. The 
first labeled D. melanogaster clone DNA used as a 
probe of the D. yakuba A library was fDm2056; 
using this probe six positive plaques were obtained. 
These contained the D. yakuba genomic clones 
AbDylOI, 102, 103, 104, 105, and 107. An addi
tional clone, AbDy I I 0 , was subsequently obtained 
using aDm2023 as a probe of a separate portion of 
the D. yakuba library. Figure 6 shows the restriction 
map of the D. yakuba 68C-homologous region de
rived from the maps of these clones and the overlap 
of each A clone insert with this map. Figure 4 shows 
a more detailed map of the D. yakuba sequences. 
As with the other species, the correspondence of the 
restriction map derived from the clones with that 
in the genomic DNA was shown in a variety of ways. 
As before, all regions of the phage clones that over
lapped the same region of the composite restriction 
map showed identical restriction sites, eliminating 
the possibility of cloning artifacts in these areas. The 
sizes of EcoRI restriction fragments of D. yakuba 
genomic DNA hybridized by the D. melanogaster 
clone AcDm2021 in the earlier species genome blot 
experiments are all found in the D. yakuba clones 
that cover the left end of the composite restriction 
maps, and the sizes of the D. yakuba genomic EcoRI 
fragments hybridized by AcDm2007 in the species 
genome blots correspond to the sizes of the EcoRI 
fragments found in AbDy I I 0. AbDy I 03, when 32P
labeled and annealed to D. yakuba DNA that had 
been digested with BamHI, EcoRI , Hindiii, or Sail, 
subjected to electrophoresis, and then transferred to 
nitrocellulose, showed hybridization to fragments of 
the same sizes as are present in the clones in all 
cases. When AbDy I 03 was used as a labeled probe 
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Fig. 6. Cloned sequences of Drosophila yakuba. A composite 
EcoRI (R) map of the cloned 68C-homologous DNA of D. yak
uba is shown. Above the map, a hatched bar indicates the site 
of repetiti ve DNA; below the map, solid bars show the restriction 
fragments in the cloned DNA that hybridize to eDNA made from 
poly(A)+ salivary gland RNA from D. yakuba. Below this, lines 
depict the extent of D. yakuba DNA in the plasmid and X clones 
indicated 

of D. melanogaster DNA digested with BamHI, 
EcoRI, Hindiii, or Sail, the fragments hybridized 
were those that would be expected if the 68C regions 
of the two species are colinear. The results were 
different when AbDy II 0 was used as a labeled probe 
of genome blot filters containing restriction-endo
nuclease-digested D. yakuba and D. melanogaster 
genomic DNA samples. In this case, all D. yakuba 
lanes showed dark smears with a number of distinct 
bands superimposed. Thus, AbDy I I 0 contains some 
DNA sequences related to sequences repeated many 
times in the D. yakuba genome. The D. me/ana
gaster Janes do not show the dark smear that indi
cates hybridization of repetitive DNA; therefore the 
D. yakuba repetitive element is not highly repeated 
in the D. melanogaster genome. To localize there
petitive DNA in AbDyl!O, DNA ofthis A clone was 
digested with EcoRI, Xbai, and a combination of 
both enzymes, and then subjected to electrophoresis 
in an agarose gel. The gel was blotted to nitrocel
lulose, and the resulting blot filter was hybridized 
with 32P-labeled D. yakuba DNA. The AbDy I I 0 
fragments strongly hybridized were the 1.0-kb EcoRI 
piece and the 0 .75-kb Xbal fragment wholly con
tained in this EcoRI fragment. The repetitive DNA 
was therefore shown to reside within this small Xbai 
fragment , in the position shown in Fig. 6. 

The final A library made used DNA from adult 
D. teissieri. A portion of these clones was screened 
on duplicate plaque lift filters, with both aDm2003 
and aDm2023 as 32P-labeled probes. One phage 
clone, AbDt9000, hybridized to aDm2003 and not 
aDm2023; one other clone, AbDt9008, hybridized 
to both probes. More clones were screened using 
aDm2005 as a labeled probe; AbDt91 00 and 
AbDt9200 were thus obtained. A last set of A clones 
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Fig. 7. Cloned sequences of Drosophila teissien. A restriction 
endonuclease map of the cloned D. tetssten DNA is shown, with 
EcoRI (R) and Hind Ill (H) sites marked. The size of each EcoRI 
fragment in kilobase pairs is indicated. The hatched bar above 
the map shows the location of a repetitive DNA element; below 
the map are solid bars showing the location of the restriction 
fragments of the cloned DNA that hybridize to eDNA made from 
D. tetssteri salivary gland poly(A)' RNA. Below th is are lines 
showing the D. tetssten DNA represented in each of the clones 
used 

was probed with fDm2056 and fDm2057 on du
plicate plaque lift filters . .\bDt9300, 930 I, and 9302 
were selected by both probes. The restriction maps 
of all of the clones were consistent with the map 
shown in Fig. 7, with three exceptions. One excep
tion is the appearance of two EcoRI fragments (3.4 
kb and 3.5 kb) at the right end of the insert of 
.\bDt9000. These fragments are not hybridized by 
D. melanogaster 68C clones, and do not correlate 
with the fragments found in the analogous locations 
in .\bDt9008, .\bDt9400, and .\bDt91 00. We there
fore conclude that these fragments were ligated to 
the 68C-homologous DNA in .\bDt9000 during the 
X clone construction, and do not represent the ge
nomic DNA of the D. teissieri 68C-equivalent re
gion. The second exception is the existence of an 
additional 0. 7 kb of DNA, including a Bgiii site, in 
.\bDt9100 and centered 1-2 kb to the left of the 
EcoRI site marking the right end of the 9.0-kb EcoRI 
fragment . This additional DNA is not present in 
XbDt9008 or .\bDt9400, and may represent a poly
morphism found in the population of D. teissieri 
flies from which the DNA was obtained. Finally, 
there is a single Sail site present in XbDt91 00 but 
absent in the overlapping region of .\bDt9200 (see 
Fig. 4). The usual battery of tests to determine if the 
restriction map derived from the clones was the 
same as that in the D. teissieri genome was applied: 
XbDt9200, .\bDt9300, and XbDt9400 were each 32P
Iabeled and used as hybridization probes ofboth D. 
teissieri and D. melanogaster genomic DNA that 
had been digested with the restriction endonucleases 
Bam HI, EcoRI, Hindiii, or Sail and then subjected 
to electrophoresis in an agarose gel and blotted to a 
nitrocellulose filter. XbDt9300 and .\bDt9200 hy
bridized to fragments of the expected sizes in both 
D. ceissieri and D. melanogaster, although with some 
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enzymes both probes showed faint extra bands in 
the D. teissieri lanes. This is probably due to the 
presence of restriction-fragment-length polymor
phism in the D. teissieri fly population from which 
the DNA was derived. XbDt9400 gave a highly re
petitive signal (a dark smear with numerous discrete 
bands superimposed upon it) when hybridized to 
each of the four D. teissieri restriction digest lanes, 
indicating the presence of a repetitive DNA element 
in this clone. The D. m e/anogaster Janes did not 
show a repetitive pattern; rather, they showed frag
ments of the sizes found in the D . melanogaster 68C 
glue puff. The XbDt9400 repetitive element was lo
calized to the position shown in Fig. 7 by hybrid
ization of 32P-labeled genomic DNA from D. teis
sieri to a blot filter with lanes of .\bDt9400 DNA 
digested with both Pvull and X bal. The only strong
ly labeled band was at the position of a 0.7-kb Pvull
Xbal fragment (see Fig. 8). 

RNA-Homologous Regions oft he Cloned Sequences 

To find out if the 68C-equivalent regions in the 
species other than D. melanogaster contain DNA 
sequences that code for abundant polyadenylated 
third instar larval salivary gland RNAs, 32P-labeled 
eDNA corresponding to the salivary gland poly(A)+ 
RNA of each species was produced using oligo(dT) 
primers and reverse transcriptase. This labeled 
eDNA was than annealed to gel blot filters contain
ing various restriction digests of cloned DNA from 
the same species. The DNA sequences hybridized 
by the eDNA were detected by autoradiography, and 
the sizes of the fragments hybridized indicated the 
DNA sequences that might code for RNA in each 
species. The restriction endonucleases used and the 
results are shown in Fig. 8. Since the reverse tran
scriptase reaction was performed in limiting amounts 
of one nucleotide (the labeled one, dCTP), it is un
likely that each RNA transcript was full y copied into 
eDNA. Rather, the 3' ends are likely to be relatively 
overrepresented in the labeled eDNA; thus the sites 
indicated in the figure may not show the coding 
position of the 5' end of each RNA. The results 
clearly show that the DNA homologous to the glue 
genes of D. melanogaster hybridizes to salivary gland 
eDNA in each species. It was also found that while 
D. melanogaster, D. simulans, and D. erecta each 
have three noncontiguous DNA regions hybridized 
by the eDNA, D. yakuba and D. teissieri each have 
four. It thus appears that the D . yakuba and D. 
teissieri 68C-homologous regions may contain an 
extra gene as compared with the other species, and 
therefore that the 68C gene family may have changed 
in size since the divergence of the species under 
study. This evidence alone does not exclude the pos
sibility that the extra RNA-coding region in D. yak-
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Fig. 8. Detailed restriction maps of 68C-homologous sequences codtng for abundant third in star salivary gland RNAs. Restriction 
enzyme abbreviations are those used in Fig. 4, with the following additions: Accl (Ac), Hincll (Hi), Kpnl (K), Pstl (P), Pvull (Pu), 
Pvul (Pv), EcoRV (V), and Xmnl (Xm). Sites in parentheses are used as in Fig. 4. Sites in brackets indicate that only a 
subset of the sites recognized by the indicated enzyme are shown. The maps are aligned by the EcoRI site at the left edge. 
Filled bars below the maps indicate those restriction fragments that hybridize to " P-cDNA, as in Fig. 4. Arrows indicate the sizes of 
the RNAs hybridized by each of these regions and the directiOn of transcription of each of these RNAs. Below each arrow the size 
of each poly(A)• RNA is expressed in nucleotides. For D. melanogaster the sizes of the RNAs were determined using single-stranded 
DNA size standards. The extent of each D. melanogaster RNA was derived from DNA sequencing results (Garfinkel et al. 1983) and 
the predicted size of each mRNA [minus any poly(A) tail] is shown in parentheses. For the other species, the size of each transcript 
was determined using both single-stranded DNA and the D. me/anogaster 68C RNAs as size standards. Two bands of approximately 
equal intensity were observed for the largest RNA of D. yakuba. This may be due to allelic variation in the D. yakuba stock used 

uba and D. teissieri is due to entry of a new inter
vening sequence into a preexisting glue gene. This 
possibility would be excluded by finding that RNAs 
of different sizes are coded for by each of the four 
RNA regions in D. yakuba and D. teissieri, or by 
determining that all adjacent RNA-hybridized re
gions are transcribed in opposite directions. 

The RNA sizes were determined by subjecting 
total RNA from third instar salivary glands of each 
species to electrophoresi s in agarose-formaldehyde 
gels and then transferring the RNA to nitrocellulose 
filters by blotting. The resulting filters were hybrid
ized with a 32P-labeled restriction fragment from 
cloned DNA derived from the appropriate species, 
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Fig. 9a.b. Hybridization of cloned probes to species RNAs. a 
D. s1mulans nick-translated probes hybridized to D. me/anogas
ter (m) and D. s1mu/ans (s) total third mstar salivary gland RNA. 
Probes used were (I) fDsl21 , (2) fDsl22. and (3) fDsl24 . Both 
the IDs 122 and fDs 124 probes cross-hybrid1zed to the expected 
D. melanogaster RNAs (sgs-7 and sgs-3. respectively). The lack 
of cross-hybridizatiOn by the fDs 121 probe to any D. me/a no
gaster RNA is probably due to the low level of the sgs-8 transcnpt 
produced by the OR 16f D. me/anogaster strain used (Crowley 
and Meyerowitz 1984). Numbers on the side indicate the lengths. 
in nucleotides, of the D. simulans RNAs. b D. erec1a end-labeled 
probes hybndized to D. melanogaster (m) and D erect a (e) total 
third instar salivary gland RNA. Probes used were ( I) EcoRl 
insen ofXeDe5020, (2) EcoRI insen ofXeDe5021, and (3) EcoRI 
insen of fDe009. The probe containing the large RNA-coding 
region (fDe009) shows noticeable cross-hybridization to the 
sgs-3 transcript of D. melanogaster. The extent of cross-hybnd
ization appears to be less than that in the similar D. sunulans vs 
D. me/anogaster experiment in a. The cross-hybridization ob
served using the XeDe5020 probe is to the sgs-7 transcript of D. 
me/anogaster as determined by the size of the RNA, rather than 
to the expected sgs-8 RNA. It is not known if this indicates 
inversion of the region coding for the small RNAs of D. erect a 
in comparison wl!h that of D. melanogaster. in addition to the 
D. erecta inversion that includes the gene coding for the large 
sgs-3 homologous RNA. Numbe~ on the side indicate the lengths, 
in nucleotides, of the D. erect a RNAs 

Table 1. Xgt I 0 subclones used for transcnpuon direction map
pings 

Clone 

D. erecta 

XeDe5020 
XeDe5021 

D. yakuba 

XeDy5120 
.\eDy5121 
XeDy5122 
XeDy5123 

D. teiss1er1 

XeDt5420 
XeDt5421 
XeDt5422 
XeDt5423 

Source 

2.4-kb EcoRl-Kpnl fragment of fDe008 
1.4-kb Kpnl-EcoRl fragment of fDe008 

2.9-kb EcoRl insen of qDy5110 
1.5-kb EcoRl-Kpnl fragment of qD> 5111 
1.1-kb Kpni-EcoRI fragment of qDy51 II 
2. 7-kb £coR I in sen of qDy51 13 

2.5-kb EcoRl-Hmdlll in sen of aDt5402 
1.9-kb Hmdlll in sen of aDt5403 
2.0-kb Hmdlll insen of aDt5404 
2.6-kb Hindlll-EcoRl insen ofaDt5405 

Where necessary, £coR I Iinke~ were ligated onto the blunt-end
ed fragment. The fragments were all cloned into the £caRl site 
of Xgt 10 
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Fig. 10. Transcription direction mapping of D. reiss1eri RNAs. 
Three hundred nanograms of each of the indicated Xgtl 0 sub
clones (see Table I) was denatured with 0. 1 N NaOH at 37"C 
for 10 min, loaded onto a wide lane of a 0.4% agarose gel [2 mM 
EDTA, 40 mM Tris-acetate (pH 8.3)]. and separated by electro
phoresis at 0.75 V em 1 for approximately 24 h. Since each of 
the Xgt I 0 subclones used contains only a single RNA-coding 
block. the direction of transcription of each of the genes can be 
determined by observing which of the two separated strands 
hybridizes to a single-stranded eDNA probe synthesized from 
poly(A)' third instar salivary gland RNA. It is also necessary to 
determine the 5'-to-3' orientation of the insen DNA of each of 
the separated strands relative to the map shown in Fig. 8. This 
was done utilizing a restriction fragment of DNA homologous 
to the Xgt 10 insen DNA labeled at only one of its 3' ends. This 
probe hybridizes to the strand that has a 5'-to-3' direction op
posite to that of the end-labeled strand of the probe. After elec
trophoresis, the gel was denatured in 1.5 M NaCI. 0.5 M NaOH 
for I h and then neutralized in I M Tris-HCI (pH 8.0), 1.5 M 
NaCI for I h. The gel was then blotted to a nitrocellulose filter. 
Each lane of the baked filter was then cut into three strips. The 
leftmost strip (strip I) was hybridized with a probe labeled at a 
single 3 ' end. The middle strip (strip 2) was hybridized with a 
probe labeled at both of its 3' ends and was used to register the 
location of both of the separated strands. The rightmost strip 
(strip 3) was hybridized with the eDNA probe. The probes used 
and the transcription directions obtained are shown in Table 2 
and m Fig. 8 

from each of the RNA-coding blocks. Adjacent to 
each RNA lane on each blot fi lter was D. me/ana
gaster salivary gland RNA included to detect cross
hybridization between the DNA of each species and 
the specific glue RNAs of D. rnelanogaster. Single
stranded DNA size standards were also included in 
each gel. Autoradiograms from the D. sirnulans and 
D. erecta experiments are shown in Fig. 9. The sizes 
of the RNAs are shown in Fig. 8. The cloned DNA 
probes used in these RNA blot experiments often 
hybridized weakly to the D. rnelanogaster 68C glue 
RNAs that were in the lanes adjacent to the strongly 
labeled RNAs from the same species as the probe 
(Fig. 9). Thus, the D. rnelanogaster glue RNAs ap
pear to be homologous to, though quite diverged 
from , the similar RNAs of each ofthe other species. 

The transcription direction of each of the RNAs 
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Table 2. Summary of transcription direction mapping cxpenmcnts 

Strand hybridized 
by end-labeled Strand hybridized 

Species Single-end probe• probe by eDNA Directionb 

D. stmulans 2.2-kb EcoRI*-Xhol of IDs 12 1 Top Bottom R to L 
1.0-kb Xbal-EcoR I* of IDs 122 Top Bottom Lto R 
2.2-kb EcoRl*- BamHI of IDs 124 Top Top Lto R 

D . erecta 1.4-kb Bglll-EcoRl* of >.eDe5020' Top Top R to L 
0.4-kb EcoRl*-Xbal ofAeDe502 1' Top Top L toR 
1.0-kb EcoRl*-BamHl of fDe009 Bottom Top RtoL 

D. yakuba 1.9-kb Bgni-EcoRl* of q0y51 1 0 Top Top R to L 
1.4-kb EcoRI*-BamH I of qDy511 I Bottom To p R to L 
0.9-kb Hwdiil-EcoRl* of q0y5111 Top Bottom L to R 
1.8-kb EcoRl*-Xhol of q0y51 13 Top Top L to R 

D. II!ISSII!fl 1.6-kb Bglll-1-lwdiil* of aDt5402 Top Top R to L 
1.5-kb BamHl-Hwdill* of aDt5403 Bottom Top L toR 
0.9-kb Pvull-Htndlll* of aDt5404 Top Bottom L to R 
1.7-kb Hindlll*-Xhol of aDt5405 Top Top Lto R 

• Asterisk indicates 3' end-labeled site 
• "R to L" indicates right to left: "L to R" indicates left to right. See Fig. 8 
'EcoRl ends of >.gt I 0 subelones were generated during cloning. 

was also determined. The strategy used is shown in 
Fig. 10. The DNA fragments and probes used , and 
the results obtained, are listed in Tables I and 2 and 
depicted in Fig. 8. The transcription direction of the 
rightmost D. erecta RNA was also determined by 
DNA sequencing to confirm that it is indeed in
verted relative to the orientation of transcription of 
the similar RNA from all of the other species. The 
EcoRI fragment coding for this RNA was labeled at 
the 3' ends of both strands, using the large proteo
lytic fragment of E . coli DNA polymerase I to add 
32P-labeled residues. After digestion with BamHI, 
the larger of the two resulting fragments (see Figs. 
4 and 8), now labeled at only one end, was sequenced 
using the chemical sequencing method of Maxam 
and Gilbert ( 1980). The sequence obtained showed 
clearly that the DNA adjacent to the EcoRI site is 
homologous to the 3' end of the D. melanogaster 
Sgs-3 gene sequence and that it is indeed inverted 
relative to the D. melanogaster orientation. This 
sequence will be presented at a later date (C. Martin 
and E. Meyerowitz, work in progress). The results 
from all of the hybridizations show that adjacent 
coding regions in all of the species code for RNAs 
of different sizes or of opposite transcription direc
tions. This eliminates the possibility that the en
largement of the RNA coding region of D. yakuba 
and D. teissieri is due solely to addition of one or 
more new interv~ning sequences. 

Discussion 

Several conclusions are possible from the results 
presented. The first is that the fi ve closely related 

Drosophila species studied all do contain DNA se
quences hybridized by the 68C glue gene cluster of 
D. m elanogaster, and that in all of the species these 
sequences contain DNA that is transcribed to give 
several abundant polyadenylated RNA species in 
third instar larval salivary glands. This is consistent 
with prev ious work showing that D. simulans, D. 
yakuba, and D. teissieri all have puffs similar to that 
found at 68C in D. m e/anogaster, at the analogous 
chromosomal position (Ashbumer and Lemeunier 
1972; Ashbumer and Berendes 1978). Although all 
of the species have a 68C-homologous gene cluster, 
it is clear that the 68C gene family has evolved since 
the divergence of the species studied. That the DNA 
sequence of the genes has changed is evidenced by 
the difference in restriction endonuclease sites with
in the individual genes, by the different sizes of the 
RNAs in the different species, and by the weak cross
hybridization between the genes of the various other 
species to the D. melanogaster glue RNAs. Diver
gence is also shown by the difference in the number 
of genes (some of which may in fact be pseudogenes) 
in the species, and by the inversions of certain of 
the genes relative to the others. This divergence in
cludes more than just the RNA-coding DNA; the 
entire region of chromosomal DNA that includes 
the gene family and all of the flanking sequences is 
remarkably different in the Drosophila species stud
ied. This is shown both by the thermal elution of 
labeled D. me/anogaster DNA probes from the DNA 
representing this region in genome blot experiments 
and by the virtual absence of any conserved restric
tion endonuclease sites in the entire region, as shown 
in Figs. 4 and 8. In striking contrast is the adjacent 
DNA to the left (toward the telomere in D. me/a-



nogaster). This set of sequences shows an extraor
dinary degree of conservation from one species to 
the other for a distance of at least 13 kb, as dem
onstrated both by thermal elution of cross-species 
hybrids on genome blots and by a high degree of 
restriction site conservation. 

A quantitative estimate of nucleotide divergence 
can be obtained from comparison of restriction maps 
(Nei and Li 1979). Using Equation ( 16) of these 
authors and comparing D. m e/anogaster and D. 
simulans in both the conserved region (where D. 
melanogaster has 18 restriction sites and D. simu
/ans 19, with 18 shared) and the RNA-coding region 
(where D. m e/anogaster has 13 sites and D. simu
lans. 15, with 6 apparently shared) it can be esti
mated that the sequences in the conserved regions 
of these species are diverged by less than 0 .5%, 
whereas in the RNA-coding region the mean fre
quency of nucleotide substitution per position is 
about 18%. Thus, at least at the 68C glue locus, 
evolutionary divergence occurs at very different rates 
in adjacent blocks of chromosomal DNA sequence. 

It also appears that the processes leading to the 
observed divergence are different in the adjacent 
regions. In all five species the spacing between shared 
restriction sites is the same in most of the conserved 
reg.ion, with different unshared sites appearing or 
disappearing against an otherwise constant back
ground. This implies that the primary process in 
divergence is single-nucleotide substitution, al
though of course tiny deletions or substitutions of 
small blocks of nucleotides would not have been 
detected in our experiments. In contrast, the rapidly 
evolving RNA-coding region is subject to insertions, 
deletions, inversions, and an extraordinary number 
of apparent single-site changes. In fact , these pro
cesses are so evident that it is meaningless to try to 
estimate the levels of nucleotide divergence in this 
region between any of the species except for the 
closely related siblings D. melanogasterand D. sim
ulans. since the available methods for making such 
calculations (Nei and Li 1979; Engels 198 I) assume 
that only single-nucleotide substitutions have oc
curred. 

That Drosophila genomes contain large inter
spersed blocks of rapidly evolving and more slowly 
evolving DNA has been predicted from the results 
of thermal elution studies on interspecies hybrids 
of single-copy genomic DNA (Zwiebel et al. 1982). 
The work reported here confirms this in a specific 
instance, and also shows that the rapidl y evolving 
DNA can code for messenger RNAs. The possibility 
that mammalian genomes may also contain inter
spersed blocks of DNA with different evolutionary 
rates has been shown by analysis of the m ouse major 
histocompatibility complex (Hood et al. 1983). The 
evolutionary mechanisms that result in disparate 
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rates of sequence divergence in adjacent domains 
of chromosomal DNA are unknown. Whether the 
blocks of rapidly and slowly evolving DNA bear 
any relation to the bands and interbands of the poly
tene chromosomes, or to other chromatin features , 
is also unknown. 

What is clear is the use to which this divergence 
pattern can be put in studying the relation of DNA 
sequence to gene regulation in the 68C glue gene 
cluster. The RNA-coding region seems to serve the 
same function and to be transcribed in response to 
the same tissue- and time-specific signals in all of 
the studied species. Proof that the DNA of each 
species does indeed respond to identical intracel
lular signals will be sought in interspecies P-raetor
mediated transformation experiments. It is already 
known that the cloned Sgs-3 gene of D. melanogaster 
(including none of the conserved region sequences) 
is expressed normally after P-factor-mediated rein
troduction to the D. melanogaster genome (Crosby 
1983; M . Crosby and E. Meyerowitz, work in pro
gress). If the genes of the other species are expressed 
normally when integrated into the D. m elanogaster 
genome, DNA sequencing studies should reveal 
which, if any, regions of the genic and intergenic 
sequences have been conserved in evolution and 
thus may be functionally significant, since conserved 
islands of sequence should be evident against the 
remarkably diverged background of the surrounding 
DNA. These studies will also show if all of the genes 
are capable of coding for proteins, and ifthe prote ins 
coded for are similar to the 68C glue polypeptides 
of D. melanogaster. Sequencing studies should also 
point to the nature of the events that result in ex
tremely rapid divergence in defined chromosomal 
segments, and may show any special features of the 
DNA sequences found at the sharp boundary be
tween the rapidly and slowly evolving regions. 
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ABSTRACT 

The site of a dramatic change in the rate of DNA 

sequence evolution exists near the 68C glue gene 

clusters of several Drosophi~a species. We have 

previously determined the approximate location of 

this transition site by comparison of restriction 

maps of the regions flanking the 68C-like glue gene 

cluster of five members of the me~anogaster species 

subgroup. In the present work we report the sequence 

of the transition region in three of these Drosophi~a 

species: D. me~anogast er, D. yakuba, and D. erect a. 

Using a best-fit alignment of these sequences, we 

find that the site of transition from slowly to 

rapidly evolving sequences occurs abruptly within a 

region <50 nucleotides in length. Although frequency 

of nucleotide substitutions changes as much as 10-

fold across this boundary, frequency of small 

insertion/deletion events stays nearly constant. 
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1. Introduction 

The 68C puff of Drosophila melanogaster contains three 

genes that code for components of a protein glue that 

affixes the puparial case to a solid substrate (Meyerowitz & 

Hogness , 1982; Crowley et al. , 1983 ; Garfinkel et al . , 

1983). These genes are expressed abundantly in the salivary 

glands of third instar larvae and are controlled by the 

steroid hormone ecdysterone (Ashburner, 1973 , 1974 ; 

Ashburner & Richards, 1976 ; Crowley & Meyerowitz , 1984) . 

The homologous gene clusters from five closely related 

species of Drosophila- D. melanogaster , D . simulans , 

D. erecta , D. yakuba , and D . teissieri- have been cloned. 

These species are all members of the melanogaster species 

subgroup , which is one of eleven species subgroups defined 

for the melanogaster species group (Lemeunier et al , 1986). 

Comparison of the restriction maps of these cloned sequences 

revealed two adjoining regions with dramatically different 

levels of homology (Meyerowitz & Martin, 1984) That this 

genomic segment contains adjacent regions that have evolved 

at different rates is confirmed by experiments that 

demonstrate very different melting temperature depressions 

(~tms) of inter-species hybrids of restriction fragments 

from each of the two adjoining regions (Meyerowitz & Martin , 

1984) . The relatively nonconserved region, which is =6 kb 

(kilobase pairs) in length , contains the glue gene cluster 

and appears to be evolving by a number of mechanisms : point 

mutations, insertions and deletions , inversions , 

duplications and the gain or loss of repetitive sequences 

(Meyerowitz & Martin , 1984). In contrast , the conserved 
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region , which consists of ~10 kb of single-copy sequence, is 

not known to contain any genes and evolves through 

relatively infrequent point mutations and small insertions 

and deletions. To learn more about the boundary between the 

two regions and about any possible functions of the 

conserved DNA , we determined the DNA sequences of the 

regions from three members of the melanogaster species . 

2. MATERIALS AND METHODS 

(a) Materials. 

Restriction endonucleases were obtained from Boehringer 

Mannheim and New England Biolabs. The large proteolytic 

fragment of Escherichia coli DNA polymerase I was obtained 

from Boehringer Mannheim. T4 DNA polymerase was obtained 

from New England Nuclear . T4 DNA ligase was a gift from S . 

Scherer . 32P-labelled nucleoside triphosphates were 

obtained from Amersham. Deoxynucleotides and 

dideoxynucleotides were obtained from Pharmacia. 

(b) Clones for DNA sequencing. 

Clones for sequencing were prepared by inserting fragments 

from previously cloned Drosophila sequences into M13mp18 and 

M13mp19 (Norrander et al. , 1983); M13 vectors were a gift 

of G. Siu . The D. melanogaster clones were constructed by 

inserting the 1.95 kb EcoRI-Hindiii restriction fragment 

from aDm2003 (Meyerowitz & Martin, 1984) into vectors 

M13mp18 and M13mp19. For D. erecta , the 2.25 kb EcoRI-BamHI 

restriction fragment from clone fDe009 (Meyerowitz & Martin , 

1984) was inserted into both M13 vectors. For D. yakuba, 

the 2.9 kb EcoRI restriction fragment from qDy5110 
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(Meyerowitz & Martin, 1984) was cloned in both orientations 

into M13mp18 . Cloning was done by standard procedures 

described by Davis et al . ( 1980) and Maniatis et al . ( 1982) . 

DNA sequencing was 

termination method 

(c) Sequencing. 

performed by the dideoxy 

of Sanger et al. (1977) . 

chain-

Custom 

oligonucleotides, used to prime sequencing reactions from 

sites in the interior of a cloned insert, were provided by 

S. Horvath of the California Institute of Technology 

Microchemical Facility . These primers were purified and 

used as described in Strauss et al. ( 198 6) . All sequences 

were determined on both strands. 

(d) Computer Analysis . 

DNA sequences were analyzed using programs written by 

one of the authors (CHM) for an IBM PC-XT computer . DNA 

sequences were aligned using the algorithm of Gotoh (1982) 

as implemented by R. Pruitt on an Apple Macintosh computer. 

3. RESULTS 

The border between regions of high and low conservation 

was located by inspection of the restriction maps of the 

regions containing and adjacent to the cloned glue gene 

clusters . The broken vertical line in Figure 1 demarcates 

the transition from conserved to nonconserved restriction 

site pattern. This apparent change in relative levels of 

sequence conservation occurs over a distance of <1 kb. To 

characterize this transition, we obtained the DNA sequences 

of this region and compared them for three species: 

D . melanogaster, D. yakuba, and D. erecta. The phylogenetic 
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relationship between these species has been determined by 

Lemeunier and Ashburner (1984) by comparing differences in 

chromosomal banding patterns. D. yakuba and D. erecta seem 

to be more closely related, to each other than either is to 

D. melanogaster. 

The sequencing strategy used is shown in Figure 2. All 

sequences start at the EcoRI site (R) that lies at least 

1000 bases inside the conserved region, and each sequence 

continues at least 1800 bases toward and into the 

nonconserved region. 

The aligned nucleotide sequences are shown in Figure 3. 

Inspection of the alignment reveals a dramatic change in the 

frequency of nucleotide substitutions that occurs near base 

1354 of the D. melanogaster sequence. Substitution rates 

appear to change abruptly: there is no evidence for a region 

of intermediate divergence between the conserved and 

nonconserved regions. This site of rapid change can be used 

to divide the sequenced regions into conserved and 

nonconserved sections, a useful device in comparing the 

types and amounts of change that are occurring on each side 

of the site. 

A summary of changes occurring in the two sections is 

shown in Table 1. Two methods have been used to calculate 

divergence values (see legend for Table 1) . The first 

method counts only those events in which bases are 

substituted and ignores any base that is deleted from the 

other member of the species pair. A dramatic change in the 

frequency of point mutation occurs across the boundary in 

all pair-wise comparisons of the three species. Another 
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method of calculation used in Table 1 additionally counts 

each group of contiguous deleted bases as a single mismatch. 

While the number of point mutations varies sharply on either 

side of the boundary, the frequency of small 

insertion/deletion events is relatively constant. This is 

apparent from the similar frequencies of deletions observed 

on both sides of the boundary. 

Furthermore, near the boundary the =200 bases just 

preceding the start of the nonconserved region (bases 1154 

through 1353 in the D. melanogaster sequence) are very rich 

in A+T. This sequence shows an average of 83.4 ± 0.5% A+T 

(all values are± SD) vs. an average of 67.5 ± 0.2% A+T in 

the remaining 1153 bases of the conserved region, and an 

average of 61.0 ± 3.3% A+T in the nonconserved region. The 

value of 83.4% is far above the average of 55% A+T found in 

total DNA from D. melanogaster (Laird & McCarthy, 1968) ; 

this A+T-rich region tends to contain stretches of adenines 

and thymines as opposed to interspersed adenines and 

thymines. In the three species, ApA and TpT dinucleotides 

make up 50.4 ± 0. 8% of this region, whereas ApT and TpA 

dinucleotides comprise only 19.4 ± 0.4% of the region. 

Also, the A+T-rich region has even fewer point mutations 

than the rest of the conserved region (the average point 

mutation frequency in this region is only 0.7 ± 0.6% vs. 

2.9 ± 0.8% in the remaining conserved region). 

There is no evidence that the conserved region, despite 

its evolutionary conservation, codes for a protein. The 

frequency of transitions is consistently less than the 

frequency of transversions in both regions, with an average 
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ratio of 0.71 ± 0.03. This is comparable to the ratio of 

0.75 seen in the noncoding regions of alcohol dehydrogenase 

genes (ADH) cloned and sequenced in four members of the 

melanogaster species subgroup; a different pattern is seen 

in the ADH coding regions, where the ratio of transitions to 

transversions is 1.38 (Bodmer & Ashburner, 1984). In 

addition, a search for potential protein coding regions does 

not reveal any large open reading frame that is present in 

all three species. The largest open reading frame found 

would produce a protein 98 amino acids in length starting at 

base 162 of the D. yakuba sequence; however, the homologous 

open reading frames in D. melanogaster and D. erecta are 28 

and 74 amino acids in length, respectively. Similar wide 

disparities in potential protein products were seen in the 

other open reading frames present. 

4. DISCUSSION 

The nucleotide sequences of a region containing a 

transition from slowly evolving to rapidly evolving 

sequences have been determined. The existence of this 

boundary was inferred from the analysis of cloned sequences 

homologous to the 68C glue gene cluster of D. melanogaster 

from four closely related species. The alignment of the 

sequences (Figure 3) reveals a sharp boundary between the 

two regions: a 5- to 10-fold change in the frequency of 

nucleotide substitution occurs over a stretch of <50 

nucleotides. Additionally, while the frequency of base 

substitution undergoes a dramatic change across this 
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boundary, the frequency of insertion/deletion events stays 

approximately the same. 

One explanation for the high level of conservation of 

the conserved region is that it has been subjected to strong 

selection. However, this region probably does not code for 

a protein product: ( i) No large open reading frames are 

found in the sequenced portion of the conserved region. 

(ii) One of the breakpoints of the chromosomal inversion 

In(3L)HR15, which is viable and without a visible phenotype 

when homozygous, lies within the conserved region (but 

beyond the sequenced section) (Crosby & Meyerowitz, 1986a). 

(iii) An experiment designed to saturate the region 

surrounding the 68C glue gene cluster for lethal and semi

lethal mutations did not reveal any such mutations in the 

conserved region (Crosby & Meyerowitz, 1986b) . Thus, there 

is as yet no evidence that the region is being maintained 

because of its coding capacity. 

Another explanation is that the conserved sequences 

regulate the glue gene cluster that is located only a few 

hundred bases away from the end of the conserved region. 

However, P-factor-mediated transformation experiments of the 

glue gene cluster using constructs lacking sequences from 

the conserved region show normal tissue, time, and level of 

expression (Crosby & Meyerowitz, 1986a). The observations 

argue against any major role for these sequences in the 

regulation of the glue gene cluster. Thus, while the slow 

rate of evolution in the conserved region could be due to 

selection, a strong pressure to maintain these sequences is 

not apparent. 
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A third possibility is that the mutation rate is 

markedly different in the two regions. Thus, the high level 

of conservation seen would not be due to strong selection, 

but instead to the relative lack of mutation. This could be 

due to more efficient repair locally or to a physical 

protection of the sequences- e.g., 

these sequences with proteins. 

by the complexing of 

In contrast to the 

protection from point mutations, the rate of insertions and 

deletions seems to be constant across the boundary. Models 

have been proposed that suggest many insertion/deletion 

mutations arise from slippage of short repeated sequences 

during DNA replication (Efstratiadis et al., 1980). Many of 

the deletions seen in the aligned sequences can be explained 

by this model (e.g., the deletions in D. yakuba and 

D. erecta starting at base 1236 in D. melanogaster) . Thus, 

while the processes responsible for the generation of point 

mutations are strongly influenced by some property that 

undergoes a sharp change at the boundary, little, if any, 

effect on the process that generates insertions and 

deletions can be seen. 

Evidence for the interspersion of blocks of rapidly and 

slowly evolving sequence in the Drosophila genome has been 

obtained from experiments on the reassociation kinetics of 

interspecies hybrids of single-copy sequences (Hunt et al., 

1981; Zwiebel et al., 1982; Schulze & Lee, 1986). The 

experiments of Zweibel et al. (1982) reveal two classes of 

sequences in the Drosophila genome. The first consists of 

sequences that cross-hybridize under stringent solution 

hybridization conditions; this cross-hybridizing DNA remelts 
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with an average melting temperature depression (~tm) 

characteristic of the species pair involved. The second 

class contains sequences that do not cross-hybridize under 

the conditions used, implying the presence of sequences that 

have evolved extensively since the divergence of closely 

related species. In addition, Schulze and Lee (1986) have 

demonstrated that the amount of nonhybridizable sequences 

present between two species is correlated with the average 

melting temperature depression found for those sequences 

that do cross-hybridize. 

As a complementary approach to these studies, we have 

characterized a boundary between adjacent sequences evolving 

at very different rates. The boundary is abrupt; if this 

single boundary is characteristic, then the Drosophila 

genome consists of adjacent blocks of sequence that not only 

evolve at different rates but also are sharply delimited. 

It will require further efforts to show any general 

correlation between the location of genes and that of blocks 

of differing rates of evolution. That the genome contains 

the ability to differentially regulate the rate of evolution 

of DNA sequences in different chromosomal locations is an 

interesting possibility. 
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Table 1 . Change in the conserved versus the 

nonconserved regions. Three types of calculation were 

used to describe the differing types of change . The % 

mismatch calculation , which shows the frequency of 

nucleotide substitution only , is calculated as the number of 

mismatched bases divided by the total number of bases that 

are aligned to another base in the other sequence (matched 

or mismatched) Any bases that are deleted in either 

sequence are not counted in this calculation . The 

% deletion + mismatch calculation is a more general measure 

of divergence that also takes into account insertions and 

deletions. This second calculation (% deletions + 

mismatches ) is calculated as the sum of the number of 

mismatches and the number of contiguous blocks of deleted 

bases divided by one-half of the sum of the total number of 

bases in both of the compared sequences . The % deletions 

calculation shows the relatively constant rate of 

insertion/deletion events in both regions . The number of 

deletion events per 100 bases (% deletions ) is calculated as 

the number of contiguous blocks of deleted bases divided by 

one-half the total number of bases that are in both 

sequences . The conserved region included bases 1 through 

1353 in the D. melanogaster sequence. 
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Figure 1. Restriction maps of the cloned 68C

homo1ogous sequences. All known BamBI (B) , Bgli I (Bg) , 

EcoRI (R), Hindiii (H) , Sali (S) , Saci (Sc ), Xbai (Xb) and 

Xhoi (Xh) s i tes are depicted (except for a single EcoRI site 

in D . erecta ; see Meyerowitz & Martin , 1984 ) . Sites in 

parentheses are present in some strains (D . melanogaster) or 

clones (D . teissieri) and not in others (Meyerowitz & 

Martin, 1984) . The arrows below the D. melanogaster map 

show the location and direction of transcription of the glue 

gene transcr iption units. For the other species , solid bars 

show the extent of restriction fragments that are hybridized 

by eDNA made from salivary gland poly (A)+ RNA (Meyerowitz & 

Martin , 1984) The maps are aligned by the positions of the 

conserved restriction sites found left of t h e RNA-coding 

regions. The vertical line shows the boundary between the 

conserved region at the left and the nonconserved region at 

the right. Hatched boxes show those regions sequenced . 
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Figure 2 . Sequencing strategy . The arrows show the 

extent of individual sequencing reactions. All reactions 

were initiated from synthetic oligonucleotide primers. A 

short vertical bar at the start of a line indicates that the 

primer used is complementary to sequences in M13; all other 

primers 

insert. 

are complementary to sequences within the cloned 

Restriction enzyme symbols are the same as for 

Figure 1. D. melanogaster, Dm; D. erecta, De; D. yakuba, Dy. 
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Figure 3 . The aligned DNA sequences of the border 

region of D. me~anogaster (Dm) , D. yakuba (Dy) and D . 

erecta (De) . All pair-wise a lignments were generated by 

the algorithm of Gotoh (1982) . The mismatch penalty was 10 , 

the start de let ion penalty was 4 0 , and the deleted base 

penalty was 5 . The three- way alignment shown was generated 

by hand from the pair-wise alignments. Colons mark every 

tenth base in the D . melanogaster sequence. Spaces 

indicates that the sequence is identical to that of D . 

melanogaster . A dash represents a deleted base . The dark 

vertical bar following base 1353 of D. melanogaster locates 

the boundary between the two regions that evolve at 

different rates . 



""' Dy 
Do 

""' 120 
Dy 100 
Do 110 

""' 241 
Dy 229 
Do 231 

""' 360 
Dy 333 
Do 333 

""' 401 
Dy ... 
Do ... 
""' 601 
Dy H1 
Do 561 

""' 722 
Dy 050 
Do 650 

""' U2 
Dy 110 
Do 169 

"" .. , 
Dy uo 
Do .,. 

"" lOSt 
Dy t92 
Do ... 
"" llU 
Dy 1112 
Do 1100 

"" 1211 
Dy 1230 
Do 1215 

"" 1401 
Dy 1349 
De 1334 

""' 1521 
Dy 1454 
Do 1431 

""' 1642 
Dy 1514 
Do 1552 

"" 1751 
Dy 1693 
Do 1 ,,3 

"" 1145 
Dy 1102 
Do 17 94 

0 3 

: : : : : : : : : : : 
GA.ATTCGCAACGCTTTCTGTGTGGTTTTCTTGAGCTTTTTATTTTTTT-TCAAATCG.M.TATCGM.TATATTGTATTTTGAAGTAGTGAAG'l"GAAACTATCTCCAGTTTTCGGAGQCT't' 

C G G A T 
TA G G T 

: : : : : : : : : : : J : 

TTCTGTTACGTTTTCCATGGATAAGTGTAAACTGTATAGACiATAa.AAG.\ACAAAT~TCTTACATCTGTCCAGTGCTCCTCAMGTATTTTGTAAACAATAATGATMA~CAA 

AAGCGAMA~TCGTa,;.CA.AGTAT~GCCCTT~GCGGATA~GAATATGTA~A~ATGC~GTTCTA~ATA~~AAAATAGA~TATATC-T 
A------------ A TA 
------------ T A 

: : : : : : : : : : : : I 

AT ATATATTGTAGAA T't'TTTACACATTCTATTACAGACAACAAAGTTA TCGACTAAOGCAAA TA TTACGACTACTACTACTACTACAACGGCAGTACTAA TTG'TATA TTT"''CAA TGTATOT 
T C AT 
r c r 

GTGTGTGT~TTTAA~CCAA'M'AA~TTCAA~T'CAAATTAcluTCMTT~CGAT~CT'CAAAT-~TCGAa•d:aa.AT~AACCAACAA~ACTA<aCA~ 
r 

c c 

ACCCGAAC~TT~O.• • •• •••~•••• • • a.a.a.!a.a•AGMA~AAAACTGCA~CAATT~CCGAAAT~GTATOGCA~TCTTCGA.~ATCG.\AA~Gn'CAATTCA ----------------------T T T A 
T ---------------------- T T A 

: : : : : : : : : : : 
AACGA.TTA TCCCACCA TA TGCAA TCTGAOCCAGA TTt"CA TTA TCATTTT-CACGTTCTTAAGTTCCAGTT'TCAGAA TCA.GCTTTCA TTGGCGCCTACGCTCAATCAGTATCAGTTATGAQG 

T A- T G T G C A 
-T G T G A 

: : : : : : : : : : : 
ACTCn'AGAGCCCCTTCTTACTATCCCTCCCGAA TTTTGTCCAGttTAAA TCTGCGCCTTGTGTTTGA n'TACAACTTAAa.A.U.TAA TA TTCM.GGGAA TGAGAAA TTGTTCTAAA TACC 

C T ------ AT C ---T CA A 
T ------ A ---T CG A -

: : : : : : : : 
GTTGATAGG----------------AGTTA ~GACGAACAAATC'T"T't'A TGACAATTTCCA TTAAA---TOCA TATGTOGCAATAGGTCCATAACGAA TAAACAACTCTAAAGCG 

AGTCTGTGTTGTACACCTTGT G A T 
T AGTGTGTGTTGTACACCTTGT G A A T TATG A--

: : : : : : : : : : 
ACA TCTGAAACGAAAGA.\ TGAGAAGGGA.AA.A TA---------A«a TATATA 'M'ATATATG'TATACCCATATACTACCTA n. TGATTA TGAGTCTA TOTAATGA.U.CAAA. TGAAAAT 

A wc,auuu•T T G 
G A 

: : : : : : : : : : : : 
AAAACAAA TTTW T"Tn"AGTAGCGCTTMCW TTCTAGCAA TTTAACAAA TTTTAA TTM TCAAA TTAAACAACAAO •• • • •a • ATGCAAAAATTOCAATTTAA 'tTTTTTTCTCTOT 

GT~GTTGATT~T~TAo•••~••••CAAT~TTT1TT~TGTGAA~1'CTIATT~~CTGGTTAAT!TTCTTCT---~TCTACTAT~T 
- T C T C G T T TTGCAG C AT A A 

- A G T C ATTTGCAGCCGTTAA 

: : : : : : : : : : : : 
TATTTCGAAA TAT-TTTTTA TTTA TCTTGCAGTCTTTTGACA TTGAAA TACAATCGT'CGTGGGTAAGCATTA TTGCATAC'1TTTTAGGGAA TTTTTM'AGQ.A TAGTAACCTATTTA.A TTG 

AC A A A CCAA AG C -----------G C C A G AACAAC a:T C 
T C G G C GAC G AA ACA CC C --------------A A C G G A CC o.AGM.C - GIG C C 

: : : : : : : : : 
TTGCTATT ACG.U.TATG'TCAACA T AAACCGTCTTTGCTTGCTGT't'CAMCA Tn'GA n'ATT.u.A TGCTTTTGCTA TTGTACTCGCTTTTTATGTGC'n'A TQCC'Tt'A TGGGAAOIC:AAAAACA 

A TA C A A C A A A T A T C A A C G T A C T 
A TACG A A ATA GT AC CAA G AA.CAG 

: : : : : : : : : : : 
TAG----TAA-----AGCGAA TOCGGAAA TCTGCTTGTTTTGCTATAAAAGCAGt'GGGTATCATTTTAA TTAA TCACAACACC'TGA T'CGTTCAA TTCCAGTCGTATC-TAAAAA TCTAA 

CAAAC CAAGTA - A AG C T A CC C C C T G G 
TCAA.ACAC CAAGTA CG T A C C T AGT'CC G 

: : : : : : : : : 
TCTTATTTCAAAATG.U.GTACCTT't'TCGTGGTTGCCCTTATTGCCCTGGCCATCCAGGTGGCTTCCTCTGCTAGT----------------Acc::ACAACAACCACGGATG 
GT CA G T A A T AC ACAAC1'AC CA CAACC T C 
G CC C A T C A AC G GA Ac:::cAATACTATAGCX:GCTGCAGCCACC TT G C COC 

: : : : : 
CCACCACCACAACAAC-----------------------------------------AACCACCACTOCAGCATCMCCACAACAACAACAACGGICC 

T C C CAC--C CGG C 
A A G C TGTAGGAACTACCACGACGGCACCAGCCTCTTCCACCCACAAAAAGCGTTGTTGGTGGCG A A GT - C A CG G OC 
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1. Abstract 

A cluster of three glue genes is present at 

chromosomal site 6BC in the Drosophi~a me~anogaster 

genome. In this study, we have used a comparative 

approach to investigate both the regulation and the 

evolution of the largest of these three genes, Sgs-3 . 

The homologous genes from two related Drosophi~a 

species (D. erecta and D. yakuba) have been 

introduced into the D. me~anogaster genome by P

factor mediated transformation. When the resulting 

transformant lines were assayed for expression of the 

introduced genes, near normal patterns of expression 

were seen. This demonstrates that the cis-acting 

regulatory sequences of the introduced Sgs-3-

homologous glue genes are capable of effectively 

interacting with the transcriptional machinery of 

D. me~anogaster. We have also determined the 

sequences of the Sgs -3-homologous glue genes from 

D. simu~ans, D. erecta and D. yakuba. These sequences 

were compared and used in two ways. The first was to 

locate conserved sequence elements in regions known 

to be involved in regulation of the gene. Several 

such elements were found; they represent potential 

sites of cis-acting regulatory sequences. Second, we 

looked at the evolution of the glue gene protein

coding regions. A very rapidly evolving central 

region of the protein coding sequences was found; 

this region contains a striking series of tandem 

repeats of a five amino acid sequence in all four 
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2. Introduction 

The salivary gland of D. melanogaster is the exclusive 

site for the production of a proteinaceous glue (Korge, 

1977a) . This glue, which consists of at least eight 

different polypeptides, serves to affix the animal to a 

solid surface for the duration of metamorphosis (Fraenkel & 

Brookes, 1953; Crowley et al., 1983). Glue protein synthesis 

occurs throughout much of the third larval instar period of 

the animal's life (Beckendorf & Kafatos, 197 6) . The 

chromosomal locations of several of the glue genes are known 

to coincide with the sites of some of the prominent 

intermolt puffs which can be seen on the polytene salivary 

gland chromosomes of mid- to late-third instar animals 

(Korge, 1975; Akam et al., 1978; Muskavitch & Hogness, 1980; 

Velissariou & Ashburner, 1980, 1981; Crowley et al . , 1983; 

Guild & Shore, 1984). One of these puffs, located on the 

left arm of the third chromosome at 68C, contains the genes 

coding for three of the glue proteins: sgs-8, sgs-7 and sgs-

3 (Meyerowitz & Hogness, 1982; Crowley et al . , 1983) . These 

genes are regulated by the steroid hormone ecdysterone , 

which appears to be necessary for both induction and shut

off of glue gene transcription (Hansson & Lambertsson , 1983; 

Crowley & Meyerowitz, 1984). These three glue genes are 

subject to strict tissue, time and hormonal regulation . 

These features make this glue gene cluster an appealing 

subject for the investigation of regulated gene expression . 

Several studies have been aimed at defining the 

molecular limits of the sequences necessary for the proper 

regulation of the 68C glue genes. Many of these studies have 
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focused on the largest glue gene in the cluster, Sgs-3 

(Richards et al., 1983; Bourouis & Richards, 1985; 

Meyerowitz et al., 1985; Crosby & Meyerowitz, 1986; Vijay 

Raghavan et al., 1986). Classical genetic experiments, 

utilizing chromosomal deletions and inversions, have limited 

the required sequences to a 20 kb region which includes the 

5 kb glue gene cluster itself (Crosby & Meyerowitz, 1986). 

The use of P factor-mediated transformation has further 

delimited the necessary sequences: transformants carrying 

2.27 kb of sequences upstream from the Sgs-3 mRNA cap site 

express the gene normally. In contrast, trans formants 

containing only 130 bp of upstream sequence express the 

introduced gene at 10 to 40 fold lower levels when compared 

to endogenous expression; however, the regulation of tissue 

and time of expression appear to be normal (Crosby & 

Meyerowitz, 1986; Vijay Raghavan et al., 1986). Further 

recombinant DNA constructs, in which the Sgs-3 upstream 

sequences are fused to a ~-galactosidase gene, are also 

properly expressed with respect to tissue and time (Vijay 

Raghavan et al., 1986). The Sgs-3 glue gene sequences in 

these constructs extend to 948 bp beyond the mRNA start 

site. Thus, the cis-acting sequences sufficient for proper 

time and tissue of expression are located between -130 bp 

and 948 bp relative to the mRNA start site, while an element 

(or elements) necessary for high levels of expression lies 

within the region -2270 bp to -130 bp. 

Aside from its regulatory features, there are several 

notable evolutionary aspects of the 68C glue gene cluster. 

The sequence of the glue gene cluster at 68C has been 
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determined (Garfinkel et al., 198 3) . The two small gene 

products (sgs-7 and sgs-8, which are 74 aa and 75 aa in 

length, respectively) are related in amino acid sequence 

(47% amino acid identity). The large Sgs-3 gene (307 aa in 

length) is related to the two small genes in amino acid 

sequence at both the amino and carboxy terminal regions. 

However, the large gene contains an additional central 

region which codes for a very threonine-rich region of the 

protein. This threonine-rich region contains 37 tandem 

repeats of a five amino acid sequence. The structure of the 

68C-homologous glue gene cluster in four closely related 

Drosophila species is similar to that in D. melanogaster: 

there are two or three small genes and a single large gene 

present in each species (Meyerowitz & Martin, 1984). These 

glue gene clusters reside within a relatively rapidly 

evolving block of sequence that is adjacent to a region that 

evolves at a much slower rate; the boundary between the two 

regions is relatively abrupt and lies within 0.85 kb of the 

left end (as shown in Figure 1) of the glue gene cluster in 

D. melanogaster (Martin & Meyerowitz, 1986) . 

As an approach to learning more about both the 

regulation and the evolution of the glue gene cluster, we 

have undertaken a comparative study of the Sgs-3-homologous 

genes in four species of Drosophila. The four species used 

in this study, D. melanogaster, D. simulans, D. erecta and 

D. yakuba, are all members of the melanogaster species 

subgroup, which is one of eleven species subgroups defined 

for the melanogaster species group (Lemeunier, et al., 

1986) . The Sgs-3-like glue genes of D. erecta and D. yakuba 



70 

have been introduced into the D. melanogaster genome by P 

factor-mediated transformation. The ability of these 

constructs to be expressed in the foreign D. melanogaster 

background has been characterized. Additionally, the 

sequences of the Sgs- 3-homologous glue genes from 

D. simulans, D. erecta and D. yakuba, along with upstream 

and downstream regions, have been determined. Together, 

these studies yield insights into the processes of evolution 

acting upon these glue genes and the regulatory elements 

required for their proper expression. 

3. Materials and Methods 

(a) P-factor Transformations 

P-factor transformation experiments were performed 

using standard methods (Spradling & Rubin, 1982; Rubin & 

Spradling, 1982) and are described further in Crosby & 

Meyerowitz (1986). The host strain used in these 

transformations was ry506. Transformants were selected by 

screening the progeny of injected individuals for ry+ 

animals. Several lines were established from injections of 

each of the three constructs. The inserts were mapped to a 

specific chromosome using standard techniques. The lines 

were made homozygous by use of appropriate balancer 

chromosomes. 

(b) RNA ge~ b~ots 

RNA extraction, electrophoresis, blotting and probing 

were all done under standard conditions as described in 

Crosby & Meyerowitz (1986) . Probes were removed from filters 
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for rehybridization by 3x five minute washes in boiling 

0.01x SSPE , 0 . 1% SDS. 

(c) DNA Sequencing 

The majority of the DNA sequences presented in this 

paper were determined by the dideoxy chain termination 

method of Sanger et al. (1977) . Custom oligodeoxy

nucleotides , used to prime sequencing reactions from sites 

in the interior of the cloned inserts, were obtained from 

the California Institute of Technology Division of Biology 

Microchemical Facility. These primers , ranging in length 

from 15 to 22 nucleotides, were purified and used as 

described in Strauss et al. (1986). 

The clones used for dideoxy sequencing were constructed 

by inserting previously cloned DNA fragments (described in 

Meyerowitz & Martin, 1984) , into the vectors M13mp18 and 

M13mp19 (Norrander et al., 1983). 

Two of the D. simulans clones were derived from the 

1.3 kb Sali/Xhoi fragment of fDs024, which was inserted into 

M13mp18 in both orientations . The upstream regions 

(contained in the 0.53 kb EcoRI/Sali fragment of fDs024) 

were sequenced directly using the chemical method of Maxam & 

Gilbert (1977, 1980). 

The D. erecta sequences were from the 1.8 kb EcoRI 

fragment of fDe009 inserted into the vector M13mp18 . Only 

one orientation of this fragment was recovered. For this 

clone, a series of deletions were generated by the 

exonuclease III digestion method of Henikoff (1984). Five 

overlapping clones were selected from those generated and 
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were used to determine the entire 1. 8 kb of D. erect a 

sequence . In order to obtain clones suitable for 

determination of the sequence of the other strand, the two 

EcoRI/BamHI fragments (1.15 kb and 0.65 kb) of fDe009 were 

directionally cloned into M13mp18 and M13mp19, respectively. 

The D. yakuba gene sequence was derived 

1. 95 kb EcoRI/Xhoi insert fragment of qDy5113 

directionally into M13mp18 and M13mp19. 

(d) DNA Sequence Ana~ysis 

from the 

inserted 

one 

DNA sequences 

of the authors 

were analyzed using programs written by 

(CHM) for an IBM PC-XT computer. DNA 

sequences were aligned using the algorithm of Gotoh (1982) 

as implemented by Robert E. Pruitt for the Apple Macintosh 

computer . 

4. Results and Discussion 

(a) Inter-species transformations of the Sgs-3-~ike 

gene 

One approach towards determining if the cis-acting 

regulatory sequences required for proper regulation of a 

gene are well conserved over the course of evolution is to 

characterize the ability of a gene derived from one species 

to function when introduced into another species . In the 

experiments described here, Sgs-3-homologous genes from 

D. erecta and D. yakuba were introduced into the 

D. melanogaster genome by the technique of P-factor mediated 

transformation (Spradling & Rubin, 1982; Rubin & Spradling, 
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1982). The resulting transformants were assayed for their 

ability to express the foreign glue genes. 

The three different glue gene-containing plasmids 

constructed for P-factor- mediated transformation of 

D. melanogaster are shown in Figure 1. Previous experiments 

have shown that the Sgs-3 glue gene of D . melanogaster is 

properly regulated and expressed when 2.27 kb of upstream 

sequence is present (Crosby & Meyerowitz, 1986) It was 

considered to be possible that the pGXDy4. 9a construct, 

which contains the glue gene from D. yakuba with 3 . 0 kb of 

upstream sequence and 1.0 kb of downstream sequence, would 

contain the sequences required for proper expression. A 

second D . yakuba construct, pGXDy1.8, contains only 529 bp 

of upstream and -356 bp of downstream sequence (the amount 

of downstream sequence is approximate due to the uncertainty 

in the exact position of the 3' end of the mRNA). The third 

construct, pGXDe1.7b, contains 532 bp upstream and -37 bp 

downstream of the D. erecta Sgs-3-like glue gene. 

For each of the three recombinant DNA constructs , five 

independent D. melanogaster trans formant strains were 

established. The activity of the introduced glue genes in 

the salivary gland was assayed by RNA gel blot 

hybridization. These blots were probed with nick-translated 

plasmids that contain the introduced foreign glue gene. The 

extensive divergence between the Sgs-3-like glue genes of 

the three species (D. melanogaster, D. erecta and D. yakuba) 

make these probes species-specific under moderately 

stringent hybridization conditions (Meyerowitz & Martin, 

1984). The results of these hybridizations are shown in 
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Figure 2. It is apparent that the introduced genes are 

expressed at a lower level in D. melanogaster as compared to 

the level seen in the species from which the gene was 

originally obtained. However, this difference does not 

appear to be greater than about 2-fold. 

The hybridized probe was removed 

procedures) from the filters and the 

(see experimental 

filters were then 

hybridized with a probe specific for the D. melanogaster 

Sgs-3 glue gene. The level of expression of the endogenous 

gene in the transformed lines was similar to that seen with 

the wild-type strain OR16f (Meyerowitz and Rogness, 1982); 

an example for one set of transformants is shown in Figure 

3. It was also necessary to determine if equivalent amounts 

of RNA were present in each lane. This was done by stripping 

the blots of any hybridized material and then probing with 

nick-translated AbDm103, a phage lambda clone containing the 

18S and 28S ribosomal genes of D. melanogaster. It was found 

that similar amounts of RNA were present in all lanes by 

visual inspection of the autoradiograms (data not shown) . 

In order to determine the tissue specificity of 

expression of the introduced glue genes during third instar, 

the carcasses remaining after removal of the salivary glands 

were also used to prepare RNA blots. No reproducible 

expression of either the endogenous or introduced glue genes 

was seen (data not shown) . Occasionally, very low level 

expression of both the introduced and endogenous genes was 

seen in a particular lane; however this is not thought to 

result from aberrant e xpression of the genes in other 

tissues. It is instead believed to result from occasional 
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incomplete removal of the salivary gland from the animal, 

because the expression is not reproducible between duplicate 

experiments. In summary, the introduced glue genes are 

expressed at levels which approach normal and this 

expression is limited to the proper tissue during third 

instar, namely the salivary gland. 

The regulation of developmental stage of expression was 

also examined. RNA was prepared from second instar, early 

third in star, late third ins tar, white prepupae, tan 

prepupae and adult animals; this RNA was used to prepare RNA 

blots. Prominent expression was seen only in late third 

instar animals (Figure 4). Faint signal was sometimes seen 

in white prepupae and, in lines transformed with the 

D. erecta Sgs-3 gene, in tan prepupae as well. This could 

result from continued expression of the genes past what is 

seen for the Sgs-3 glue gene of D. melanogaster. 

Although the levels of expression were not quantitated, 

it appears that the introduced genes are expressed at less 

than full levels. Three possible explanations are: (1) there 

are further regulatory elements which lie outside the 

regions used in the constructions which are required for 

full levels of expression, (2) that the regulatory 

sequences, although in general well conserved, have mutated 

such that they interact less efficiently with the trans

acting factors present in D. melanogaster, or (3) that the 

foreign mRNA is less stable in the D. melanogaster 

background. 

These experiments demonstrate that the D. yakuba and 

D. erecta glue gene constructs that were introduced into 
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D. melanogaster contain sequence elements sufficient to 

yield near- normal patterns of gene expression. In addition, 

they show that the transcriptional regulatory sequences of 

these genes are capable of interacting with the regulatory 

factors of D. melanogaster. 

(b) Int:roduct:ion t:o sequence comparisons 

The comparison of homologous sequences which have been 

subjected to the processes of mutation and selection can be 

useful in discerning those features of a gene which are 

essential for proper expression, processing and protein 

function . Such an approach is similar to site-directed 

mutagenesis in that one goal is to identify a set of 

sequence changes that are compatible with gene expression. 

Additionally , 

processes of 

cluster. 

one may gain further understanding of the 

evolution which are acting upon the gene 

We have determined the nucleotide sequences of the Sgs-

3 homologues in three species of Drosophila: D. simulans, 

D. erect a and D. yakuba. The previously determined 

D. melanogaster sequence extends 4456 bp upstream of the 

Sgs-3 mRNA start site (this regions also contains the Sgs-7 

and Sgs-8 genes) and -1104 bp downstream of the transcript 

(Garfinkel et al., 1983). In D. simulans, the sequence of a 

region from 645 bp of upstream to -273 bp downstream was 

determined; in D. erecta from 532 bp upstream to -36 bp 

downstream; and in D. yakuba from 529 bp upstream to -356 bp 

downstream. The sequenced regions and their relationships to 

the glue gene clusters are shown in Figure 1. 
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The Sgs-3 gene of D. melanogaster can be divided into a 

series of regions, as shown in Figure 5. First, there are 

the 2270 bp of sequence 5 ' of the gene that are implicated 

in regulation (Crosby & Meyerowitz, 1986; Vijay Raghavan et 

al., 1986). Next comes the 5' untranslated portion of the 

mRNA; this region is short (29 bp) . The protein begins with 

a hydrophobic leader peptide which is removed during 

processing to yield the mature polypeptide chain (Crowley & 

Meyerowitz, 1983). The region coding for this leader is 

interrupted after the first base of the tenth codon by a 

73 bp intron. Following the sequences coding for the leader 

peptide is a region coding for a threonine rich region of 

the mature protein that is 49 amino acids in length. This is 

followed by the tandem repeats, which are also threonine 

rich. The sgs-3 protein is known to be heavily glycosylated; 

these threonine residues are presumed to be the attachment 

sites for the carbohydrate moieties. The size of the 

threonine-rich region varies among different strains of 

D. melanogaster (Crosby & Meyerowitz, 1986; Mettling et al., 

1985). The 50 amino acid carboxy-terminal domain of the sgs-

3 protein is cysteine rich; the position of the cysteine 

residues is conserved among the three related 

D. melanogaster glue genes at 68C. The termination codon is 

followed by a 3' untranslated portion of the mRNA and 

sequences 3' to the poly A addition site . What follows is a 

region by region comparison of the sequences of this gene 

and its homologues in three other species. 
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(c) 5 ' F~anking and 5' Untranslated Regions 

An alignment of the 5' flanking and 5' untranslated 

regions is shown in Figure 6. There are several relatively 

conserved 'islands ' of sequence interspersed among areas of 

lesser conservation. One notable feature is the large 

deletion present in each of the three species relative to 

the D. melanogaster sequence. Bases Dm -491 to Dm -157 (this 

notation gives the species name abbreviation followed by the 

base number relative to the RNA start site in that species) 

are absent in D. erecta and D. yakuba. Given the ability of 

the D. erecta and the D. yakuba genes to express in a 

D. melanogaster background, it is clear that these deleted 

sequences are not necessary for proper expression of the 

glue gene homologues. These sequences which are deleted in 

the other species are thus not likely to be essential to the 

proper expression of the D. melanogaster Sgs-3 glue gene . 

The sequences beyond these de let ions (i.e., towards the 

gene), between Dm -156 and Dm +29, are relatively well 

conserved : the amount of change varies from 10.6% (De vs. 

Dy) to 18.8% (Ds vs. Dy). This correlates with the likely 

involvement of these sequences in the regulation of the 

gene. In contrast, the sequences upstream of the deletion 

(Dm -815 to Dm -493) are somewhat less conserved: the amount 

of change varies from 11.5% (Dm vs. Ds) to 31 . 2% (De vs . 

Dy). However, there are islands that are well conserved; 

some examples are the sequences lying at Dm -518 to Dm -493, 

Dm -580 to Dm - 548 and Dm - 756 to Dm - 732. These data should 

be useful in the design of experiments to further delimit 
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the sequences required for normal levels of expression of 

the Sgs-3 glue gene. 

Several regions upstream of the Sgs-3 glue gene have 

been proposed as regulatory sites. Hoffman & Corces (1986) 

have observed that sites upstream of the Sgs-3, Sgs-4, Sgs-7 

and Sgs-8 glue genes are similar to a sequence in the Hsp27 

gene that has been implicated in ecdysterone-mediated 

regulation. This sequence is very AT rich; the sequence in 

Sgs-3 is 95% AT (19 out of 20 bases). The sequence resides 

at Dm -328 to Dm -309, a region deleted in each of the other 

three species. Another sequence, identified by Shermoen & 

Beckendorf ( 1982) by homology to sequences at a DNase I 

hypersensitive site upstream of Sgs-4, is located at Dm -433 

to Dm -420; this sequence is also deleted in the other 

species. The loss of these sites suggests that they are not 

necessary for the expression of the Sgs-3 gene. 

The locations of DNase I hypersensitive sites in 

salivary gland chromatin surrounding the Sgs-3 gene have 

been determined by Ramain et al. (1986). Their study found 

four such sites upstream of the gene, centered around the 

locations Dm -750, Dm -600, Dm -470 and Dm -75 (these 

locations are approximate and Ramain et al. suggest an 

accuracy of ±30bp) . DNase I hypersensitivity is considered 

to be an indicator of alterations in the chromatin structure 

at or near the area of the site, e.g., the displacement of 

histones and associated proteins by the binding of a 

regulatory factor. The site at Dm -75 is both centered in a 

region of relatively high conservation and within a region 

strongly implicated in the regulation of the Sgs-3 gene 
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(Vijay Raghavan et al. 1986). The site at Dm -750 also lies 

in an island of relatively well conserved sequence. In 

contrast to these well conserved sites, the sequences at 

Dm -470 , while present in D. simulans, are deleted in both 

D. erecta and D. yakuba. The sequences at Dm -600 were 

considered to be particularly significant by Ramain et al. 

due to the correlation of the times at which the site is 

DNAse I hypersensitive with the expression of the Sgs-3 

gene. The evolution of this region is relatively complex. In 

D. melanogaster, there is a short (ten nucleotide) direct 

repeat. Most or all of one of the repeats is deleted in 

D. simulans and D. erecta; in D. yakuba the direct repeat 

structure is less clear due to the presence of several base 

substitutions . However, because the precise location of the 

DNAse I hypersensitive site is not known, it is possible 

that the sequences responsible for the Dm -600 DNAse I 

hypersensitive site are actually located near but not at 

Dm -600 . The sequences up to 30 bp 5' of Dm -600 are poorly 

conserved. In contrast, the nearby sequences centered around 

Dm -565 are relatively well conserved. These regions should 

be attractive targets for site directed mutagenesis 

experiments aimed at determining the actual sequences which 

are required for the proper regulation of the Sgs-3 glue 

gene. 

In summary, the results of the evolutionary comparisons 

of the upstream regions argues against the importance of 

several possible regulatory sites that have been proposed 

solely on the basis of sequence similarity. In contrast, two 

out of four of the sites located by the mapping of DNase I 
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hypersensitive sites do correlate with the location of 

evolutionarily conserved regions ; an additional site is near 

such a region. Also, the presence of the large deletions 

found in the other species with respect to the 

D. melanogaster sequence , in combination with the ability of 

these foreign genes to express properly in D. melanogaster, 

suggests that a large block of D. melanogaster sequences are 

not necessary for proper regulation of the Sgs-3 gene . 

(d) The Hydrophobic Leader and Adjacent Protein 

Coding Regions 

The first part of the protein coding region to be 

discussed starts at the proposed initiator methionine codon 

at Dm +30 and extends for 28 amino acids up to the beginning 

of the AC-rich region (at Dm +187) . The alignment of this 

region is shown in Figure 7. In D. melanogaster, the first 

23 amino acids are known to be cleaved from the protein 

during processing. In all four species, there is an intron 

present after the first base of the tenth codon; the 

evolution of the intron sequences is discussed in the next 

section . 

Some of the features of the region are well conserved 

among the four species . First , there are no apparent 

insertions or deletions; this preserves both the reading 

frame and the overall length . This may be necessary to 

preserve a functional leader sequence. Second, the relative 

abumdance of hydrophobic, polar, basic and acidic residues 

is relatively constant; this is summarized Table 1. In 

general , signal sequences are primarily hydrophobic and 
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contain one or two basic residues near the beginning of the 

leader sequence (von Heijne, 1985). These properties are 

preserved , while several nucleotide and amino acid 

substitutions have occurred (see Table 2) . 

(e) The Intron 

An alignment of the introns is shown in Figure 8. The 

introns range in length from 73 bp to 77 bp. In contrast to 

the surrounding sequences, which code for the hydrophobic 

leader peptide, there is evidence of insertions and 

deletions within the intron. There are three portions of an 

intron that are currently known to be necessary for proper 

RNA splicing to occur. The 5 1 splice site is the first of 

these. The four nucleotides before and the seven nucleotides 

after the 5 1 splice site are identical in all four of the 

species. The sequence matches the consensus sequence of 

(C/A)AGGT(G/A)AGT determined by Mount (1982) in seven out of 

nine positions. The 3 1 splice site shows greater change in 

the surrounding sequence than does the 5 1 splice site. 

However, all species posess the highly characteristic AG 

sequence adjacent to the 3 1 splice site. The species match 

the consensus sequence ((C/T)nN(C/T)AGG, where n = 11 , Mount 

(1982)) at 11/16 positions (D. erecta) and 15/16 positions 

(D. simulans and D. yakuba). The third sequence is the 

lariat junction site, typically located a few tens of 

nucleotides upstream from the 3 1 splice site (Ruskin et al., 

1984) . A consensus sequence for the 3 1 splice signal, 

(C/T)T(A/G)A(T/C), has been derived by Keller & Noon (1985) 

based upon a comparison of the sequences of 39 Drosophila 
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introns. Matches to the consensus were usually found between 

18 and 35 nucleotides 5' of the 3' splice site. In their 

survey, the third and fifth bases of the sequence showed 

instances of any base, while no deviations from the 

consensus occurred in the other three positions. Using these 

criteria, matches to the sequence (C/T)TNAN were searched 

for in the appropriate region upstream of the 3' splice 

site; these potential lariat junction sites are underlined 

in Figure 8. Although matches are found in all four species 

within this region, no one site is sufficiently conserved in 

all species to match the consensus sequence. The 

determination of the actual lariat junction sites used 

during processing of the transcripts awaits further 

experiments. 

The level of nucleotide substitution in the introns is 

comparable to those seen in some of the surrounding protein

coding regions (see Table 2) . One possible explanation is 

that the intron sequences are under moderate selection 

pressures. While the assumption that intron sequences are 

free to evolve relatively rapidly may be valid when dealing 

with larger introns, there may be a significant fraction of 

the intron sequence present in small introns such as these 

which is required for proper processing . The Sgs-3 glue gene 

is transcribed at a very high rate during mid-third instar; 

it seems reasonable to expect that the primary transcript 

must be capable of efficient interaction with the components 

of the splicing machinery. This requirement could serve to 

place constraints on the changes which would be allowable in 

these intron sequences. 



84 

(f) Tbe AC-ricb Region 

In D. melanogaster, the region coding for a hydrophobic 

portion of the protein is soon followed by a large region 

which is very AC-rich on the RNA-like strand. This region 

can be subdivided into two parts: the first is very 

threonine rich and contains little, if any , repeating 

structure; the second is also threonine rich and consists of 

a variable number (37 in the OR16f strain of 

D. melanogaster) of repeats of a five amino acid sequence 

with the consensus pro-thr-thr-thr-lys (Garfinkel, et al. , 

1983). It is this central AC-rich region which distinguishes 

the sgs-3 protein from the otherwise similar sgs-7 and sgs-8 

proteins. Several questions about this region can be asked, 

including how this region arose, what function the repeats 

serve, how the repeats evolve, and what features of the 

region are conserved during evolution. 

A comparison among the corresponding regions of the 

four genes reveals several aspects which are conserved . 

First, all of the regions are noticeably A+C-rich in the 

RNA-like strand, varying from 72% A+C for D. erecta to 85% 

A+C for D. simulans. The amino acid composition of the 

region is similar in the four species; this is summarized in 

Table 3. Most prominent is threonine, which makes up from 

36% (D. erecta) to 56% (D. melanogaster) of the region. 

Proline is also abundant, along with the basic residues 

lysine, arginine and histidine. Acidic residues are either 

absent (in D. melanogaster and D. simulans) or relatively 

rare (in D. erecta and D. yakuba). Glycine, isoleucine, 
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phenylalanine, methionine, tryptophan and tyrosine are not 

present in the AC-rich regions of any of the species. 

Several aspects of these amino acid biases correlate with 

the nucleotide bias present in the regions . For example, the 

codons for threonine are ACN, which, given the prevalence of 

threonine, should require a large proportion of A ' s and C's. 

Similarly, the proline codons are CCN and the lysine codons 

AA(A/G). Some of the non-represented amino acids are coded 

for by GT-rich codons, including glycine, phenylalanine, 

methionine and tryptophan (however, the absence of 

isoleucine and tyrosine do not fit this correlation) . 

Another conserved aspect is that of the general 

structure of the conserved region: a threonine rich region 

followed by a repeat region which consists of tandem repeats 

of a five amino acid consensus sequence. 

In contrast to these conserved aspects, there are 

several noticeable differences among the species in this 

region. The region, unlike the surrounding protein coding 

regions, is variable in length (from 13 9 amino acids in 

D. simulans to 250 amino acids in D. erecta). The sequences 

of the AC-rich regions are difficult to align: computer 

generated alignments for this region are sensitive to small 

changes in the mismatch or gap penalties used by the 

algorithm. This is due to a high rate of nucleotide 

substitution and insertion/deletion events. This region is 

evolving much more rapidly than the regions either 5' or 3' 

of the central AC rich sequences; however, the level of 

change is difficult to quantitate. 

shown individually in Figure 9. 

The AC-rich regions are 

The prominent repeat-
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containing regions contained within each of the AC-rich 

regions are shown in Figure 10. 

The consensus core repeats are shown in Figure 11. It 

is apparent that within the constraints imposed by the AC

rich character of the region and the propensity toward 

threonine, proline, lysine and arginine residues, this core 

sequence is very different among the species. 

One feature is apparent in the AC-rich region of the 

species D. simulans, D. erecta and D. yakuba which is not 

present in D. melanogaster: this region contains repeats 

which are not five amino acids in length. These motifs are 

most apparent in D. simulans (see Figure lOb) and D. erecta 

(see Figure lOc) . 

The evolution of this region appears complex, with 

relatively rapid changes in overall size and in both DNA and 

protein sequence One likely mechanism is unequal crossover; 

the many tandem repeats present could be highly susceptible 

to these events. This process would be capable of producing 

the rapid change in the length of the region while 

maintaining homology within a given species, and at the same 

time allowing for the rapid divergence seen between the 

species (Cooke, 1975; Smith, 1976; Wayne & Willard, 1986). 

However, certain features (some of which may be essential 

for proper protein function) are maintained in the midst of 

this rapid change. 

Many genes code for proteins which contain tandem 

repeats. One example is the Sgs-4 gene, located at 

chromosomal site 3C in D. melanogaster; this gene also 

produces a component of the salivary gland glue. The protein 
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contains 19 (in the Oregon-R strain) to 31 (in the Hikone-R 

strain) repeats of a 7 amino acid sequence with the 

consensus: Thr-Cys-Lys-Thr-Glu-Pro-Pro (Muskavitch & 

Rogness, 1982). This sequence is rich in threonine and 

proline, as is the Sgs-3 repeat sequence . The DNA consensus 

sequences is also very AC-rich on the RNA-like strand: 76%. 

A glue protein which has been the subject of much 

research is that produced by several marine mussels, 

including Mytilus californianus and Mytilus edulis (Waite et 

al., 1985; Waite, 1986). The protein contains a high 

proportion of the modified amino acids hydroxyproline (Hyp) 

and 3, 4-dihydroxyphenylalanine (Dopa) . Digests of the 

isolated protein from M. edulis yield a 10 amino acid 

sequence: Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-Dopa-Lys (Waite, 

1983). There are apparently about 75 repeats of this 

sequence in the protein; however, it is not yet known if the 

repeats are arranged in a tandem array. 

Several structural proteins are known to contain tandem 

repeats. A few of the many examples include silk fibroin 

from the moth Bombyx mori (Sprague et al., 1979; Gage & 

Manning, 1980; Manning & Gage, 1980), zein, the seed storage 

protein of maize (Geraghty et al., 1981; Pedersen et al., 

1982) and the human involucrin gene (Eckert & Green, 1986) . 

An example of a striking tandem repeat motif in a non

structural protein has been found in the RP021 gene of 

S. cerevisiae (Allison et al., 1985). This gene codes for 

the largest subunit of RNA Polymerase II; 

tandem repeats of a heptapeptide with 

sequence: Pro-Thr-Ser-Pro-Ser-Tyr-Ser. 

it contains 2 6 

the consensus 

It would be 
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interesting to compare the evolution of this repeat with 

that of the Sgs-3 gene; if this RNA polymerase II subunit is 

under strong selection pressures , then the RP021 repeat 

region should evolve much more slowly than the repeat region 

of Sgs-3 (Allison et al., 1985). 

(g) Carboxy-termina~ Protein Region 

Following the AC-rich region in each of the Sgs-3-

homologous glue genes are the sequences which code for the 

50 amino acids which make up the carboxy terminal portion of 

the protein. An alignment of the sequences of this region is 

shown in Figure 12. This region is easily distinguished from 

the preceding region: it is not noticeably AC-rich, it is 

easily aligned among the species and it contains no apparent 

insertion/deletion events . The region also does not have a 

repeating structure. The most notable feature of this region 

is the complete conservation of all cysteine residue 

positions . Not only are the number and position of these 

residues conserved in the Sgs-3-like glue genes of each of 

the four species, but cysteines are present at the same 

positions in the corresponding carboxy terminal portion of 

the Sgs-7 and Sgs-8 glue genes of D. melanogaster as well 

(Garfinkel et al., 1983). These cysteines may play a role in 

the function of these proteins as a glue: oxidation of the -

SH groups could lead to cross- linking of the proteins and 

create an insoluble plug of glue proteins. The evolution 

rate of this region is similar to, although greater than, 

that of the hydrophobic leader sequences: see Table 2. 
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(h) 3' Untrans~ated and 3' F~anking Regions 

The final sequences to be compared encompass the 3 ' 

untranslated and 3 ' flanking regions . An alignment of the 

sequences of this region is shown in Figure 13. The poly(A) 

consensus sequence, AAUAAA, is found in three of the four 

species between 142 bp (D. melanogaster) and 166 bp 

(D. yakuba) downstream of the termination codon . However, 

the homologous sequence in D. simulans is GAUAAA. This 

particular variant was not listed among several known 

deviations of the canonical poly (A) sequence, including 

those known to function and those known to impair or prevent 

function, compiled in the review by Birnstiel et al. (1985). 

The lengths of the poly(A)+ mRNA transcripts derived 

from these genes has been determined (Meyerowitz and Martin, 

1984); the lengths of the poly(A)- message can be deduced 

from the sequence of the genes and homology to the 5 ' and 3' 

ends of the D. melanogaster Sgs-3 gene. The resulting 

prediction for the poly(A) tail lengths yield similar sizes 

for the D . melanogaster (-80 nt) and D. simulans (-90 nt) 

genes. This argues for the utilization of the GAUAAA 

sequence as a poly (A) addition site in D. simulans. A 

reasonable size for the D. yakuba tail (-100 nt) is obtained 

if one assumes that the larger of the two alleles found in 

the D. yakuba strain used was sequenced (see Meyerowitz & 

Martin, 1984). The predicted tail length for the D. erecta 

gene (-40 nt) is noticeably shorter than the others; this 

could represent the true tai 1 length, however, other 

possibilities include inaccuracies in the determination of 

the length of the D. erecta Sgs-3-like glue gene transcript 
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or, alternatively, the utilization 

transcription start or different poly(A) 

of a different 

addition site. The 

region surrounding the poly(A) addition site is relatively 

well conserved when compared to sequences further 

downstream, which display both more frequent 

insertion/deletion and base substitution events. 

(i) Comparison of amounts of change in the Sqs-3 gene 

The amount of change seen in each region of the Sgs-3 

gene in summarized in Table 2. The table does not include 

any data for the central, AC-rich region. This region is 

evolving so rapidly that no quantitation was possible. 

However, it is apparent from the sequence data that this 

region is evolving more rapidly than any of the other 

sequenced regions in and around the Sgs-3 genes. The next 

most rapidly changing regions include those sequences 5' and 

3' to the gene, along with the intron sequences. The most 

conserved regions are the 5' and 3' protein coding portions 

of the genes. 

The presence of such a rapidly evolving component 

within the coding sequences of a gene is unusual. Other 

Drosophila genes have been used in similar evolutionary 

studies but have not been found to evolve at the high rates 

seen in Sgs-3 (Bodmer & Ashburner, 1984-Adh; Blackman & 

Meselson, 1986-Hsp82). A summary of some of the data from 

two of these other comparisons are shown in Table 4. It can 

be seen that in both Adh and Hsp82, there is much less 

nucleotide substitution in the coding regions as compared to 

the introns. This not the case with Sgs-3, where the rates 
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of change are either similar or actually higher in some 

portions of the coding sequences. It appears that the Sgs-3 

coding sequences are under much less stringent selection 

pressures than are the Adh and Hsp82 genes; the rate of 

amino acid substitution in Sgs-3 is dramatically higher than 

that seen in the other two genes. One can infer from this 

that the sgs-3 protein can endure much change and still 

perform its function. However, there are several aspects of 

the Sgs-3 gene which do appear to be conserved through 

evolution and are likely to be essential for proper 

function. 

5. Conclusions 

We have taken two experimental approaches towards 

learning more about both the expression and the evolution of 

the Sgs-3 gene. First, we used P-factor mediated 

transformation to demonstrate that the Sgs-3 glue genes of 

D. erect a and D. yakuba can function properly when 

introduced into the D. melanogaster genome. Secondly , we 

determined the nucleotide sequences of the Sgs-3 homologues 

from D. simulans, D. erecta and D. yakuba. These sequences 

were compared to the previously determined D. melanogaster 

sequence and used to discover those features of the gene 

that are conserved in evolution. 

These results lead to three main conclusions about the 

evolution and expression of the Sgs-3 gene. First, the cis

acting sequences necessary for correct tissue and time of 

expression of the Sgs-3 gene in D. erecta and D. yakuba are 

sufficiently conserved that they interact appropriately with 
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the trans-acting regulators of this locus that are found in 

D. melanogaster. A corollary of this is that the trans

acting regulators of the Sgs-3-like genes found in D. erecta 

and D. yakuba are functionally conserved in evolution. The 

combination of sequence comparison with functional assays 

utilizing P-factor mediated transformation is very useful 

for studies on the evolution of the elements that control 

expression of a gene. One could presumably extend the 

studies described here and determine at what evolutionary 

distance the amount of accumulated change in control regions 

is sufficient to abolish proper regulation of the gene. Such 

investigations would utilize species that are more distantly 

related to D. melanogaster than those used here. 

Another conclusion is that sequence homology alone is 

not a sufficient criterion for the reliable prediction of 

regulatory sequences. Those proposed as Sgs-3 regulatory 

elements have been shown to be deleted in other species; 

these foreign genes, with the putative regulatory sequences 

deleted, are expressed normally when introduced into 

D. melanogaster. It is apparent that functional assays are 

necessary to determine the involvement of a particular 

sequence in the regulation of a gene. 

Finally, we have found a dramatic exception to the 

commonly seen pattern of relatively well-conserved protein 

coding sequences which are surrounded by and also contain 

(in the form of introns) less well conserved sequences. The 

central AC-rich repeat-containing region of the Sgs-3 gene 

has been found to be the most rapidly evolving portion of 

this gene. While this region is evolving rapidly in length, 
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nucleotide sequence and amino acid sequence, there are some 

properties of the region that are conserved. This 

demonstrates the highly variable behavior of genes as they 

are subjected to the processes of evolution. The commonly 

used measures of change, such as nucleotide or amino acid 

substitution rate, may not fully reflect the importance of a 

region to the function of a gene. 
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Table 1 

Amino acid contents of the hydrophobic leader regions 

hydrophobic polar basic acidic 

D. melanogaster 15 7 1 0 

D. simulans 16 6 1 0 

D. erect a 17 4 2 0 

D. yakuba 16 5 2 0 

Classes are those defined in Lewin (1985). 
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Table 2 

ComParison of change in regions of the Sgs-3-homologous glue genes 

(mismatch + deletions) I (matches + mismatches + deletions) X 100 

5' utr protein 5' intron protein 3'utr 

Drn vs. Ds 15.2% 7. 1% 10.8% 10.5% 10 . 5 % 

Dm vs. De 24.4% 15 . 5 % 30.7% 15.0% 31.5 % 

Dm vs . Dy 23.7 % 19.0% 18 . 4% 27.4 % 25.1% 

Ds vs. De 24.4% 16.7% 30.7 % 17.6% 29.9% 

Ds vs. Dy 23.5% 22.6 % 19.5% 26.8 % 25.6% 

De vs. Dy 24.2 % 21.4 % 29.5% 19.6% 28.0 % 

a.Y:e:t:ag:es Z2.6 ~ l]. Q ~ 23.2 :li 12.5:li 25 a 

Species abbreviations are the same as defined in Figure 5. 

Change is defined as shown in the formula above the column headings. A 

mismatch is defined as a base that has changed between the two 

species; this does not include bases that have been deleted. A 

deletion is any number of contiguous deleted bases . A match is any 

base which is identical in both species . The 5' utr includes all bases 

upstream of the first codon of the protein, as shown in Figure 5. The 

protein 5' region corresponds to the region shown in Figure 6 . The 

intron includes only those bases in the intron itself. No data are 

shown for the AC-rich regions; because no consistent alignments could 

be generated, the level of change could not be quantitated. The 

protein 3' regio n is as shown in Figure 11. The 3' utr region includes 

all bases following the termination codon for the Sgs-3-homologo us 

genes, as shown in Figure 12. 
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Table 3 

Amino acid compositions of the AC-rich regions 

basic acidic 

thr pro lys-arg-his asp-glu others 

Dm 55.9 % 17.9% 14.4 % 0.0% 11.8 % 

Ds 52 . 5 % 15.1% 19.4% 0.0% 13 . 0 % 

De 35.6% 11.2 % 34.4 % 0.4% 18 . 4% 

Dy 54 0 % 13 0% 18.4% 2 2 % 12 . 4% 
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Figure 1. The 68C-homologous glue gene clusters. 

Restriction enzyme abbreviations are: BamHI (B), Bglii (Bg), 

EcoRI (R), Hindiii (H), Kpni (K), Psti (P), Pvui (Pv), Sali 

(S), Saci (Sc), Xbai (Xb), Xhoi (Xh) and Xmni (Xm) . Sites in 

parentheses are present in some strains of D. melanogaster 

but not in others (see Meyerowitz & Martin, 1984). Sites in 

brackets indicate that only a subset of the sites recognized 

by the particular enzyme are shown. The maps are aligned by 

the EcoRI site present at the left edge. Some genes of the 

clusters have only been localized to restriction fragments; 

these restriction fragments are shown by filled bars . Below 

the bars , arrows showing the length of the poly (A) + 

transcript hybridized by the restriction fragment, along 

with the direction of transcription, are shown. For genes 

whose location is known from sequencing of the regions, only 

the arrows are shown. Below each arrow the size of the 

poly (A)+ RNA is expressed in nucleotides. For further 

details, see Meyerowitz and Martin, 1984. The hatched bars 

below the maps indicate the extent of the regions that have 

been sequenced. The D. melanogaster sequence was determined 

previously (Garfinkel, et al., 1983). The other sequences 

are presented in this work. The regions of the glue gene 

clusters that were used to transform D. melanogaster animals 

are shown by lines with vertical segments at each end below 

the D. erecta and the D. yakuba maps . The name of the 

constructs , in which the indicated fragments were inserted 

into the vector Carnegie - 20 (see experimental procedures) is 

shown at the left. The nomenclature for these constructs is: 

G for glue; X for xanthine dehydrogenase (rosy) used as a 
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scorable marker for identification of transformant animals; 

Dy or De to indicate that the glue gene containing fragment 

is from D. yakuba or D. erecta, respectively; followed by a 

number which indicates the length of the insert fragment, in 

kilobase pairs; and, optionally, an a or b, indicating 

orientation of the insert fragment with respect to the 

vector. 
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Figure 2. Assay 

homologous glue 

Salivary glands 

108 

for expression of the foreign 

genes in the transformant 

were dissected from late third 

Sgs-3-

lines. 

in star 

animals . RNA was isolated and fractionated on 1.5% agarose

formaldeh yde gels. The gels were blotted to nitroce l lulose 

and hybridized to 32p-labelled DNA probes specific for the 

foreign glue gene . The first five lanes in each panel 

contain RNA isolated from each of the five independent 

transformant lines that were used. The next two lanes are 

controls which contain RNA derived from non- transformant 

stocks of the species indicated. A . lines transformed with 

pGXDy4.9a , probed with nick- translated qDy5113 (see 

Meyerowitz & Martin, 1984); B. pGXDy1.8 transforman t lines, 

same probe as in pane l A; C. pGXDe1.7b transformant lines, 

probe used was nick-translated fDe009 (see Meyerowitz & 

Martin , 1984 ) . Note the lower levels of accumulation of the 

foreign glue genes in the D. melanogaster back ground as 

compared to levels seen in the control lane (D . yakuba or 

D. erecta lanes) . 
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Figure 3 . Expression of the endogenous Sgs -3 glue 

gene in transformant lines . Hybridizing material was 

washed off of the nitrocellulose filter shown in Figure 2A 

and the filter was hybridized to nick-translated aDm2023 

(Garfinkel et al., 

seen in all five 

1983) . A similar level of expression is 

transformant lines and in the non-

transformant D. melanogaster stock; as expected, no 

expression is seen in the D. yakuba stock. 
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Figure 4. Developmental expression of the pGXDy4 . 9a 

construct in two transformant lines . RNA was prepared 

from whole animals at the stages indicated above each lane. 

For second in star, 10 animals were used, for adults 3 

animals were used and for all other stages 2 animals were 

used. The two control lanes, at the right of the blot, 

contain RNA isolated from 2 late third instar animals from 

the species indicated. The RNA was fractionated and the blot 

prepared as in Figure 3. The blot was probed with nick

translated qDy5113, which is specific for the Sgs-3-

homologous gene of D. yakuba (see Meyerowitz & Martin, 

1984). The pattern of expression seen is identical to that 

of the endogenous Sgs-3 gene of D. melanogaster (data not 

shown) . 
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Figure 5. The structure of the Sgs-3 glue gene of 

Drosophi~a me~anogaster. Numbering is relative to the 

transcription start site of the Sgs-3 glue gene. A partial 

restriction map of this region of the D. melanogaster genome 

is shown. Below this map , the arrow indicates the extent of 

the Sgs-3 transcript, along with the presence of an intron 

near the 5' end of the transcript. Above the map , a block 

diagram shows the major subdivisions of this region that 

were used in comparisons of the Sgs-3 genes of the four 

species used in this study. 
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Figure 6. The aligned sequences of the 5' flanking 

and 5' non-coding regions of the Sgs-3-homologous 

glue genes . Species abbreviations are D. melanogaster (Dm), 

D. simulans (Ds), D. erecta (De) and D. yakuba (Dy). All 

pair-wise alignments were generated by the algorithm of 

Gotoh (1982). The mismatch penalty was 10, the start gap 

penalty was 40 and the deleted base penalty was 5 . The four

way alignment shown in the figure was generated by hand from 

the pair-wise alignments. Spaces indicate that the sequence 

is identical to that of D. melanogaster at that point. A 

dash represents a deleted base. A dot indicates that the 

sequence was not determined for that base. The numbering is 

relative to the transcription start site in D. melanogaster 

or to the homologous site, which is presumed to be the 

transcription start site, in each of the other species . The 

single space gap in the sequence (between - 1 and +1 in all 

species) shows the location of the mRNA start site. 
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Om -815 gaa t taca tttaqctaqaggt tqgtqta tcggctaacaaqt aaaqaaq- --------get gta tqtaa at tcgt tqa a tea a tgtca a at tqcctgtcaaagtgcaa 
Os -645 . . . . . . . . . . . . . . . . . . . . t t Q 

De - 532 caca g a t q g atgtatqta a q tct g 
oy -529 ca 9 a tt t a c q 

Om -717 acgaag-cccaaaatgtctatcctaattcgaacctaaaaatatatattt tttgaatatgcaatactataagata------------------ - ----- - --------
Os -568 c t c t t t t - ag g atttcaacaa aact 
oe -425 tt ---g ag c c acttcatcaaatgaaatagtatQtaqtata 
Oy -431 t a tt ct ---t ---t a9 c atttcaacaagat taaaggt taaaactaaaatt 

Om - 644 -------- - att-gaatagttttatggggcttatttgtaaagctaaattaagc-taaatt-taactgtccttatttatattattatatttactcagcctatattaaa 
Os -481 catatttqt q --- - ------ t gcaa 
De - 328 agtaataat ga -t q tt ta -cgac g------ ---tt g q taga cc q ac aa c 
Oy -330 tgtattaqt ca c c g at - gaca aa- q ttaactqcqc t - a a ca q a a 

Om -549 gac- - ctattat- --- -----------ttataqaatttaacgcaqtttgtctgcaaaaca tctctacacctttttctacccgttactcqtagagtaaaagggtatac 
Ds -388 
De -234 
oy -226 c 

taa aagtttaaataaaqtq ca a a a 
---c t tatttaagtatagtqaata a a a 

t QC 

c c 

9 
9 
9 

9 
9 

Om -459 

Ds -298 

De - 160 

Dy -157 

Om - 352 

Ds - 277 

De - 160 

Oy -157 

Om - 245 

Os -243 

De -160 

Oy - 157 

tcgt t tcgctgagaagtaacaqqcaqaa ta ta aagca ta ta tat tct tga t taggqtcaa taqccqaqtcqa tctgqcca tqtccqtctga t tctqt t tgccactcc 
a at cc a 

cacatttttgaaaaatgttttataattttttcatatttttattatctaaatctatcccttccacaccttagagcattaaatttaatttctttcccccaatttttacc 

a cgccq---- a cgac 9 

ga tat tcqtqaaa a a tgt ta taca t t t tcca t t tcact tga act agctaagtaacqggta tctgt tagtctcgt taqcgt tctctct tg tt t taaaa taa agtctag 
c a a CQ QQ c q qq gatatcq a age c ctct g- t c 

c 
c t 

c 
c 

Om - 138 gcgatcgaqtcgacccaaaagtatcaaacaaagqggagaa---gqcttgtqtttgcataatcgaaatactqactccatttttagaattgcagtttcaq-tgaaag- c 
Ds -137 
De - 142 a 
oy - 139 9 

9 aa 
ta tgc 

9 cac 
aac 

Om 

Os 

De 

oy 

- 36 qtacctataaaaaggtgaggtatccqcaagaaaaqt 
- 36 ac c 
- 36 ac tc 9 
- 36 a a c 9 

99C 
t 

c c 
c c 
c c 

atcagt ttgtggag a at taagt aaaaaac 

9 c 
c c c 
c c c 

c 
c 

9 c 
ag a t 

q g q at 
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Figure 7. The aligned sequences of the hydrophobic 

leader region. Alignments were generated as described in 

the legend to Figure 6. The predicted amino acid sequence is 

shown below the DNA sequence. This region begins with the 

initiator ATG triplet and ends with the last codon previous 

to the AC-rich region (see text and Figure 9) . An intron is 

present in all four species after the first base of the 

tenth codon (see text and Figure 8). The cleavage site of 

the hydrophobic leader in D. melanogaster, after the 23rd 

amino acid, is indicated in the figure . 
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IVS 

~ 
Om 30 atq aaq ctq ace att qct ace qcc eta qcq aqc ate 

met lys leu thr ile ala thr ala leu ala ser ile 

Ds 30 a tt 
val 

De 30 c tt q g 
val gly 

Dy 30 c t t 
1 ile ser 

cleveage site ,IJ. 

Om 139 ctq ctt att qgc tee get aat qtt gee aac tgt tgc 
13 leu leu ile qly ser ala asn val ala asn cys cys 

Ds 140 t cg 
13 phe ser 

De 140 c g c c q cg 
13 ala cys his gly ser 

Dy 143 c c a gt c c c c a g t 
13 leu ser val his gln gly 

Dm 175 qat tqt qga tqc 
25 asp cys qly cys 

Ds 176 
25 

De 176 c 
25 

Dy 179 t 
25 
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Figure 8 . The intron and surrounding 

10 base pairs on each end of the intron, 

sequences . The 

along with the 

sequence of the intron itself, are shown. The splice sites 

in D. melanogaster are indicated; the other species are 

aligned to this sequence on the basis of homology to the 

D. melanogaster sequence (see Figure 6). The intron lies in 

the region coding for the hydrophobic leader region of the 

protein, after the first base of the tenth codon. Potential 

lariat junction sites (Keller & Noon, 1985) are underlined. 
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Figure 9. The AC-rich regions of each of the 

species. The sequences are shown individually and are not 

aligned (see text for discussion ) . The predicted amino acid 

sequences are shown below the DNA sequences. This region 

lies between the end of the hydrophobic leader region (see 

Figure 7) and the carboxy-terminal region (see Figure 12). 

(a) D. melanogaster, (b) D. simulans, (c) D erecta, and (d) 

D. yakuba. 
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Om 187 ccc aca act aca act act tgt gcg cca cgt ace acg 
29 pro thr thr thr thr thr cys ala pro arg thr thr 

Om 223 caa cct ccg tgc aca act acg aca aca aca ace aca 
41 gln pro pro cys thr thr thr thr thr thr thr thr 

Om 259 act act tot oco cca ccc aca caa caa tct ace aco 
53 thr thr cys ala pro pro thr gln gln ser thr thr 

Om 295 caa cct cca toe aco aca tct aao ccc ace aca cct 
65 gln pro pro cys thr thr ser lys pro thr thr pro 

Om 331 aao caa act ace acq caa ctt ceo toe aca aca ccc 
77 lys gln thr thr thr gln leu pro cys thr thr pro 

Om 367 ace ace act aag gee ace ace acg aag ccc ace ace 
89 thr thr thr lys ala thr thr thr lys pro thr thr 

Om 403 act aaa occ ace ace act aao occ ace ace act aao 
101 thr lys ala thr thr thr lys ala thr thr thr lys 

Om 439 ccc ace ace act aag caa act ace acg caa ctt ccg 
113 pro thr thr thr lys gln thr thr t hr gln leu pro 

Om 475 toe aca aca ccc ace ace act aao caa act ace aco 
125 cys thr thr pro thr thr thr lys gln thr thr thr 

Om 511 caa ctt ceo toe aca aca ccc ace ace act aao ccc 
137 gln leu pro cys thr thr pro thr thr thr lys pro 

Om 547 ace ace acg aag ccc ace ace acg aag ccc ace ace 
149 thr thr thr lys pro thr thr thr 1ys pro thr thr 

Om 583 act aao ccc ace ace aco aao ccc ace ace ace aao 
161 thr lys pro thr thr thr lys pro thr thr thr lys 

Dm 619 ccc ace ace aco aao ccc ace ace act aao ccc ace 
173 pro thr thr thr lys pro thr thr thr lys pro thr 

Om 655 ace acg aag ccc ace ace act aag ccc ace ace acg 
185 thr thr lys pro thr thr thr lys pro thr thr thr 

Om 691 aao ccc ace ace aco aao ccc ace ace act aao ccc 
197 lys pro thr thr thr lys pro thr thr thr lys pro 

Om 727 ace ace aco aao ccc ace ace act aao ccc ace ace 
209 thr thr thr lys pro thr thr thr lys pro thr thr 

Om 763 acg aag ccc ace ace act aag ccc ace ace acg aag 
221 thr lys pro thr thr thr lys pro thr thr thr lys 

Om 799 ccc ace ace act aao ccc ace ace acg aao ccc ace 
233 pro thr thr thr 1ys pro thr thr thr lys pro thr 

Om 835 ace aco aao ccc ace ace act aao ccc ace aca cct 
245 thr thr lys pro thr thr thr lys pro thr thr pro 

Om 871 aag 
257 lys 
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Ds 188 cca ace aag gee aca act ace tgt gcg cca CCC acg 
29 pro thr 1ys ala thr thr thr cys ala pro pro thr 

Ds 224 aaa cct aca tgc aaa tct act tee ace aca ace aca 
41 lys pro thr cys lys ser thr ser thr thr thr thr 

Ds 260 act aca ace aca ace aca ace aca ace aca act ace 
53 thr thr thr thr thr thr thr thr thr thr thr thr 

Ds 296 cgt gcg cca CCC acg aaa cct aca tgc aaa tct act 
65 arg ala pro pro thr lys pro thr cys lys ser thr 

Ds 332 tee ace aca ace aca act ace cgt gcg cca CCC acg 
77 ser thr thr thr thr thr thr arg ala pro pro thr 

Ds 368 aaa cct aca tgc aaa tct act tee ace aca ace aca 
89 lys pro thr cys lys ser thr ser thr thr thr thr 

Ds 404 act ace cgt gcg cca CCC aca act act tgc aaa aca 
101 thr thr arg ala pro pro thr thr thr cys lys thr 

Ds 440 agt act aca act ace ace aca cac aaa CCC ace aca 
113 ser thr thr thr thr thr thr his lys pro thr thr 

Ds 476 cat tcg ace CCC aaa aca aaa CCC ace aaa cat aca 
125 his ser thr pro lys thr lys pro thr lys his thr 

Ds 512 ace CCC aaa aca aaa CCC ace aaa cat aca ace CCC 
137 thr pro lys thr lys pro thr lys his thr thr pro 

Ds 548 aaa aca aaa CCC ace aaa cat aca ace CCC aca ace 
149 lys thr lys pro thr lys his thr thr pro thr thr 

Ds 584 aca ace ace ace aca cct aag 
161 thr thr thr thr thr pro lys 
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De 188 ccc aaa aga ace act ccc aag ccc tgc ace aca gca 
29 pro lys arg thr thr pro lys pro cys thr thr ala 

De 224 agg cca act tgc gcg cca gta aca ace ace ace tgt 
41 arg pro thr cys ala pro val thr thr thr thr cys 

De 260 agg cca ccc aca act act cgc tgc ccg cca ccc aca 
53 arg pro pro thr thr thr arg cys pro pro pro thr 

De 296 act act cgc tgc ccg cca ccc aca agg cca get gaa 
65 thr thr arg cys pro pro pro thr arg pro ala glu 

De 332 tgc ace gca aca act aag cgc ccc aca get agg ccc 
77 cys thr ala thr thr lys arg pro thr ala arg pro 

De 368 aca act aga cgc ace aca qtt agg gee ace act aag 
89 thr thr arg arg thr thr val arg ala thr thr lys 

De 404 cgc gee aca act agg cgc ace act aaa cgc gee aca 
101 arg ala thr thr arg arg thr thr lys arg ala thr 

De 440 act aga cgc ace aca gtt agg gee aca act aaa cgc 
113 thr arg arg thr thr val arg ala thr thr lys arg 

De 476 gee aca act agg cgc ace aca act aaa cgc gee cca 
125 ala thr thr arg arg thr thr thr lys arg ala pro 

De 512 act agg cgt ace aca act aag cgt gee aca act agg 
137 thr arg arg thr thr thr lys arg ala thr thr arg 

De 548 cgc aac cca ace aga coc ace aca act agg cgt gee 
149 arg asn pro thr arg arg thr thr thr arg arg ala 

De 584 cca act aag cgt gee aca act aao cgt gee aca act 
161 pro thr lys aro ala thr thr lys arg ala thr thr 

De 620 agg cgc aac cca act aao coc aao aca ace aga coc 
173 aro arg asn pro thr lys aro lys thr thr arg aro 

De 656 ace act oto aoo occ ace aaa aca act aaa cgc gee 
185 thr thr val arg ala thr lys thr thr lys arg ala 

De 692 aca act aag cgt gee cca act aaa cgc gee aca act 
197 thr thr lys arg ala pro thr lys arg ala thr thr 

De 728 aag cgt gee cca act aaa cgc gtc aca ace aag cgt 
209 lys arg ala pro thr lys arg val thr thr lys aro 

De 764 gee cca act aag cot gee aca act aag cgt gee cca 
221 ala pro thr lys arg ala thr thr lys arg ala pro 

De BOO act aaa cgc gee aca act aag cgt gee cca act aag 
233 thr lys arg ala thr thr lys arg ala pro thr lys 

De 836 cgt gee aca act aag cgc gee cca act aaa cgc gee 
245 arg ala thr thr lys arg ala pro thr lys arg ala 

De 872 aca ace aag cgt gee cca act aag cqt gee aca act 
257 thr thr lys arg ala pro thr lys arg ala thr thr 

De 908 aag cgt gee aca get agg ccc ace age aag 
269 lys arg ala thr ala arg pro thr ser lys 
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Oy 191 CCC aco ace tct CCC aao CCC tOC caa aca aco Ota 
29 pro thr thr ser pro lys pro cys oln thr thr val 

Dy 227 ceo act tqt QCQ cca aca aca ace act aca aca aca 
41 pro thr cys ala pro thr thr thr thr thr thr thr 

Oy 263 ace act tot QCQ cca ccc aca aoo cca cct cca cct 
53 thr thr cys ala pro pro thr aro pro pro pro pro 

Oy 299 cca toe aca oac occ cca aco aca act aao aoo aca 
65 pro cys thr asp ala pro thr thr thr lys aro thr 

Dy 335 aco oaa aaa tee ace aca aoo aoa ace ace aca aca 
77 thr glu lys ser thr thr aro aro thr thr thr thr 

Oy 371 act aoa caa aca aca act aoa cct aca aca act aca 
89 thr aro oln thr thr thr aro pro thr thr thr thr 

Oy 407 ace aca ace ace aca act aoa cot cca aca act aoo 
101 thr thr thr thr thr thr aro aro pro thr thr aro 

Dy 443 tct aca aca act aoa cat aca aca act aca ace ace 
113 ser thr thr thr aro his thr thr thr thr thr thr 

Dy 479 aca act aoa cot cca aca act aca ace ace aca act 
125 thr thr aro aro pro thr thr thr thr thr thr thr 

Oy 515 aoa cot cca aca act aca ace ace aca act aoa cot 
137 aro aro pro thr thr thr thr thr thr thr aro aro 

Dy 551 cca aca act aca ace ace aca act aoa ctt cca aca 
149 pro thr thr thr thr thr thr thr aro leu pro thr 

Dy 587 act aoa tct aca aca act aoa cat aca act aaa tee 
161 thr aro ser thr thr thr aro his thr thr lys ser 

Oy 623 ace aca tct aao cot cca aca cat oao ace ace ace 
173 thr thr ser lys aro pro thr his olu thr thr thr 

Oy 659 aca tct aao cot cca aca caa oao ace ace aca ace 
185 thr ser lys aro pro thr oln olu thr thr thr thr 

Oy 695 act aoa cot oca aca caa oca ace ace aca cct aaa 
197 thr aro aro ala thr oln ala thr thr thr pro lys 

Oy 731 ccc ace aac aao cct 
209 pro thr asn lys pro 
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rich regions. 

that consists 

127 

The prominent repeat portions of the AC

A portion of each of the AC-rich regions, 

of easily recognizable amino acid repeat 

mot i fs , is shown . The sequences are aligned to emphasize the 

structure of the repeats . (a) D. melanogaster , (b) 

D. simulans , (c) D. erecta and (d) D. yakuba. 
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Dm 73 pro thr thr pro lys 

Dm 78 gln thr thr thr gln 

Dm 83 leu pro cys thr thr 

Dm 88 pro thr thr thr lys 

Dm 93 ala thr thr thr lys 

Dm 98 pro thr thr thr lys 

Dm 103 (ala thr thr thr lys) X 2 

Dm 113 pro thr thr thr lys 

Dm 118 gln thr thr thr gln 

Dm 123 leu pro cys thr thr 

Dm 128 pro thr thr thr lys 

Dm 133 gln thr thr thr gln 

Dm 138 leu pro cys thr thr 

Dm 143 (pro thr thr thr lys) X 22 

Dm 253 pro thr thr pro lys 
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Ds 37 ala pro pro thr lys pro thr cys lys ser thr ser (thr) X 16 arg 

Ds 66 ala pro pro thr lys pro thr cys lys ser thr ser (thr) X 6 arg 

Ds 85 ala pro pro thr lys pro thr cys lys ser thr ser (thr) X 6 arg 

Ds 104 ala pro pro thr thr thr cys lys thr ser (thr) X 6 his 

Ds 121 lys pro thr thr his ser thr pro lys thr 

Ds 131 lys pro thr lys his thr thr pro lys thr 

Ds 141 lys pro thr lys his thr thr pro lys thr 

Ds 151 lys pro thr lys his thr thr pro thr thr 
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Dy 85 thr thr thr thr thr arg gln thr thr thr arg pro 

Dy 97 thr thr thr thr thr 

Dy 102 thr thr thr thr thr arg arg pro thr thr 

Dy 112 arg ser thr thr thr 

Dy 117 arg his thr thr thr 

Dy 122 thr thr thr thr thr arg arg pro thr thr 

Dy 132 thr thr thr thr thr arg arg pro thr thr 

Dy 142 thr thr thr thr thr arg arg pro thr thr 

Dy 152 thr thr thr thr thr arg leu pro thr thr 

Dy 162 arg ser thr thr thr 
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Figure 11. The consensus repeat sequences for each 

of the species. These sequences were derived from 

inspection of the repeats present in each of the species 

(see Figure 9) . All are very AC-rich on the RNA-like strand 

(from 73.3% in D. erecta to 96.7% in D. simulans). 
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D. melanogaster 
ccc ace ace act aag CCC ace ace acg aag 
pro thr thr thr lys pro thr thr thr lys 

D. sili'RJlans 
aca ace CCC aaa aca aaa CCC ace aaa cat 
thr thr pro lys thr lys pro thr lys his 

D. erecta 
aca act aag cgt gee cca act aaa cgc gee 
thr thr lys arg ala pro thr lys arg ala 

D. yakuba 
aca ace ace aca act aga cgt cca aca act 
thr thr thr thr thr arg arg pro thr thr 
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Figure 12. The carboxy-terminal protein coding 

domain. The sequence alignments are generated as described 

in Figure 6 . The eight cysteine residues of D. melanogaster, 

which are conserved in position (relative to the last amino 

acid of the protein) in all four genes , are shown in bold 

type. The ' *** ' codon represents a translation termination 

signal . 
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Dm 874 ceo toe oot toe aao aoc toe oot cct ooa ooa oao 
258 pro cy• oly cy• lys ser cy• oly pro gly oly olu 

Ds 605 t c 
168 

De 938 a c cc c 
279 pro 

Dy 746 ggc t c tc c ata 
214 oly ile 

Dm 910 cca toe aat goa tot oct aao aoo oat gca ctg toe 
270 pro cy• asn gly cy• ala lys aro asp ala leu cy• 

Ds 641 t a 0 ao 
180 lys oly ser 

De 974 c c a c 
291 oln 

Dy 782 c 00 a c c c c 0 0 
226 gly ser pro o1n gly 

Om 946 cao oat ctt aac ggc ota etc coc a at ctg oao cgc 
282 gln asp leu asn oly val leu arg asn leu glu aro 

Ds 677 c t 0 
192 leu 

De 1010 c 0 a a a 
303 asn ile 

Dy 818 ac a a a t c 0 
238 thr olu asn leu oln 

Dm 982 aao ate cot caa toe gtc tgc oot oaa ceo caa too 
294 lys ile aro oln cy• val cy• oly olu pro oln trp 

Ds 713 c 0 c c 0 t 
204 gln val gln asp 

De 1046 0 c 0 c c 0 
315 val 

Dy 854 0 0 c 0 0 c c c oto 
250 aro val glu oln val 

Dm 1018 tto cto tga 
306 leu leu 

Ds 749 
216 

De 1082 c t a 
327 

Dy 890 t a 
262 
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Figure 13 . The aligned sequences of the 3' 

untranslated and 3 ' flanking regions. Alignments and 

formats are as described in Figure 6. The poly(A) addition 

signal , beginning at Dm +1180 , is under l ined in the 

D. melanogaster sequence. 



Om 1027 
Ds 758 
De 1091 
Dy 899 

Om 1114 
Ds 845 
De 1184 
Dy 999 

Om 1208 
Ds 939 
De 1280 
Dy 1106 

Om 1247 
Ds 978 
De 1298 
Dy 1211 

Om 1336 
Ds 1005 
De 1298 
Dy 1311 

Om 1443 
Ds 1111 
De 1298 
Dy 1399 
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agcqtc----gaaggagcqtctaatcc------actcccqtactgatcgatqtga---ctgcacccctgcgaaatatattctqtgggggagctcggccag-------
ct t c a a gc t 

q tccttg ctcg a ca a ccc - gc cggccag acttt ct c ttc 
g c t ct g g aactaa ca a ag g g t c gacttcg 

poly (A) 

-----------gactttgactacgctttqtttttqttatcatcaattgattttacqtgtaagaatt~attaqttagactgcataaattttaaaagcattt--

atttcaacttc a 

c g t g c 

c 
gc Q taa 

c q ga c t 
ga 
ga 

cg c g qt 
c g g 

g at 
gt 

-------------------------------------------------------------------attattattttacttgtattattta-tgacaaattattat 
t g g 

tttcaa tttgqttc tgaa ..... . .. . .................................................. . ..... · ........ · · · · · · · · · · · · 
t t ta ta tqt t t a qt tat tgaaactcqt taa aca a at tat tllla t t qt t t qt aagqt t t a at t ct at cat a t at t t tt t 

ttatctqttggg-ttttcgaaaatgtt-----qqttctaaattaagttt------------ggccatcatttgatcgactttttcgaatgtatctgttacttttacc 
---------- ----- t tt c g a tc-- -------------------------------------9 ----t 

ac cctct c • c aacaagt g tacc ct cggcttaaggaac t t c tg -c c 

aatgcqttggctttggctcctaqttctatgcgaagtcttaactatccgagctcttatgacttggtcaacttgtctcagctaactactgttggctcgggttcgaactt 
t ct c a t c g g 

t age to gc tgga agctgactg t gc c at cct 

cggtttgggcccgactcgaatcggcggcttttacgatccgatcqccactcga 

ta c 


