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ABSTRACT 

Fault-plane solutions for recent small (M1(4.6) earthquakes in the 

central Transverse Ranges, California, were determined using an 

azimuthally-varying crustal model. The dominant type of faulting 

observed is reverse faulting on east-striking planes, which suggests a 

regional stress field characterized by north-south compression. Some 

strike-slip faulting also occurs. There is some indication that 

strike-slip earthquakes may be more common than reverse-slip earthquakes 

during episodes of crustal dilatation (Sauber et al., 1983). The rate 

of north-south crustal shortening attributable to small earthquake 

deformation during 1974-1976 is two orders of magnitude smaller than the 

0.3 parts per million per year north-south contraction measured at the 

surface by Savage et al. (1978). The scatter in earthquake hypocenters 

and general inconsistency of focal mechanisms with geologically 

determined motions on nearby major faults indicate that the small 

earthquakes in this region are not associated with large-scale block 

movements along major fault systems. Rather, they appear to represent 

fracturing along random minor zones of weakness in response to the 

regional stress field, or alternatively , small-scale block movements 

that are below the resolution of this study. Earthquakes in the San 

Gabriel Moun t a i ns north of t he Santa Susana- Si e rra Ma dre-Cucamonga 

frontal fault system tend to concentrate near the eastern and western 

ends of the range where good evidence for late ~aternary movement along 

the frontal faults has been found. Seismicity is markedly lower north 
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of the central section of the frontal fault system where evidence for 

late Qlaternary movement is lacking. 

Digitally-recorded waveforms of ML 2.0-2.8 earthquakes that 

occurred in two small areas along the Imperial fault before and after it 

broke in the ML 6.6 Imperial Valley earthquake on October 15, 1979, were 

examined and compared. Eight preshocks (1977-1979) from a 41/2 by 11/2 

km area centered 4 km southeast of the mainshock epicenter have 

strikingly similar waveforms over the entire record length ('30 s), with 

an average peak cross correlation between seismograms of 0.74. The 

seismograms are well correlated at frequencies up to at least 4 Hz. 

This implies similar source mechanisms and hypocenters within lf4 of the 

4-Hz wavelengths, i.e., <200- 400 m. Five aftershocks from the same area 

show an average peak cross correlation between seismograms of only 0.23. 

Any associated changes in mechanism must be small because they are not 

reflected in the first motion data. Analysis of frequency content of 

these events using bandpass-filtering techniques showed no systematic 

temporal changes in spectral shape. 

Ten preshocks and 24 aftershocks from a 11/2 by 2 km source area 

centered along the Imperial fault 16 km northwest of the 1979 mainshock 

epicenter were also studied. First motion data suggest that all of the 

aftershocks and a swarm of six preshocks on December 7-9, 1978, were 

associated with the main fault but that four earlier preshocks were not. 

The six preshocks on December 7-9, 1978, were tightly clustered, as 

evidenced by the strong similarity of the waveforms (most peak cross 

correlations )0 .6). During this swarm the 8- to 16-Hz spectral 



amplitude increased relative to the 1- to 2-Hz spectral amplitude over 

the whole record length by about a factor of 3, suggesting a systematic 

increase in stress drop. Groups of like events are also present among 

the aftershocks in this data set. The average peak correlation for 

pairs of aftershocks, 0.43, is almost the same as that for pairs of 

preshocks, 0 .45, if all 10 preshocks are included. However, several 

sources appear to have been active simultaneously during the aftershock 

period so that no more than two to three consecutive aftershocks have 

maximum cross correlations ~0.6. 

A search was undertaken for earthquakes with similar waveforms 

within two small (<S km) areas along the San Jacinto fault zone 

northwest of the Anza gap, but none were found. Focal mechanisms for 

most of the earthquakes in these two study areas agree very well with 

the faulting observed geologically at the surface. This, together with 

the concentration of hypocenters near the San Jacinto fault zone, 

suggests that small earthquakes are occurring along the main faults 

traces here, in contrast to the situation in the central Transverse 

Ranges. 

The highly localized s ources characterized by waveform similarity 

may represent fault asperities or clusters of asperities. The 

observations above are consistent with a decrease in the number of these 

asperities as the weaker ones fail under increasing stress during the 

intervals between large earthquakes. 
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INTRODUCTION 

The problem of the relationship of small earthquakes to strain 

accumulation along major faults is closely tied to fundamental problems 

in earthquake mechanics and earthquake prediction. Most earthquakes in 

southern California larger than about magnitude 6 occur on major faults 

that are recognizable from surface or subsurface geology and have a 

history of QUaternary displacements (Allen et al., 1965). Since most of 

the seismic energy release and moment release occurs during these larger 

earthquakes, they are clearly the most important from the standpoint of 

both tectonics and earthquake hazards. Smaller earthquakes, however, 

are much more numerous than larger earthquakes and could therefore 

provide some important information if their relationship to large 

earthquakes can be understood. This thesis presents some investigations 

of this relationship using focal mechanisms, waveforms, and spectra of 

small earthquakes in southern California. 

In general, small earthquake activity and large earthquake activity 

are spatially related in only a very regional sense. During the last 

ten years, improved recording techniques and dramatic expansions of 

seismic arrays in both northern and southern California have led to much 

more accurate earthquake locations and lower detection thresholds. The 

locations from the northern and southern California arrays show 

contrasting patterns in the distribution of small earthquake hypocenters 

relative to major faults, as discussed by Allen (1981). In northern 

California (Figure I-1), most of the small earthquakes are concentrated 
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Figure I-1. Epicenters of earthquakes in central California for the 
year 1980, based on data from the U.S. Geological Survey 
Central California Seismographic Network. Figure courtesy 
of R. S. Cockerham, U.S. Geological Survey. 
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Figure I-2. Epicenters of earthquakes in the southern California r egion 
for the 6-month period January 1 to July 1, 1978. Outlined 
area is region of coverage of the California Institute of 
Technology/ U.S. Geological Survey Southern California 
Seismographic Network. Earthquake locations and magnitudes 
are from the Caltech/USGS catalog. Solid lines are major 
faults from Jennings et al. (1975). Some of these faults 
are identified in Figure I-3. 
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in narrow zones along creeping segments of major strike-slip, vertical 

faults (Wesson et al., 1977). Their focal mechanisms are, in general, 

consistent with the long-term sense of slip along these faults (e . g ., 

McNally and McEvilly, 1977). It is therefore reasonable to assume that 

most of them represent slip along the main fault traces. Other active 

fault segments in northern California are seismically quiescent at the 

present time. In southern California, the situation is somewhat more 

complicated. There are concentrations of activity along some important 

faults such as the San Jacinto and Imperial faults (Figures I-2, I-3), 

where evidence for fault creep has been found (Keller et al., 1978; 

Goulty et al., 1978). However, the seismicity elsewhere is very 

scattered. Even where lineations of seismicity exist, in detail the 

hypocenters do not always define simple fault traces. For instance, 

along t he zone of seismicity connecting the northern end of the Imperial 

fault to the southern end of the Mission Creek branch of the San Andreas 

fault (Figures I-2, I-3), detailed studies have shown that many of the 

earthquakes are associated with structures transverse to the overall 

trend of this zone (Johnson and Hadley, 1976; Johnson, 1979; Hutton 

and Johnson, 1981; Johnson and Hutton, 1982). In southern California 

as in northern California, there is a conspicuous lack of seismic 

activity along many of the active faults. In particular, most sections 

of the San Andreas and Garlock faults in southern California appear to 

be seismically quiescent (Figures I-2, I-3). 

Although spatial and temporal variations in earthquake activity are 

extremely large, the size distribution of earthquakes within a given 
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region follows the simple relation log N = a - bM, where N is the 

number of earthquakes with magnitude greater than or equal to M and a 

and b are empirical constants (Gutenberg and Richter, 1949). The 

constant b is usually close to 1. The Gutenberg-Richter 

magnitude-frequency relation does not, in general, apply to individual 

faults. This relation, with b values near 1, does appear to adequately 

describe the magnitude distribution of the smaller earthquakes on a 

single fault, which in many cases consist largely of aftershocks of the 

larger events. There is, however, evidence for a deviation to lower 

b values (relatively more large earthquakes) or perhaps even a complete 

breakdown of this relation at magnitudes approaching the maximum 

magnitude characteristic of the fault. This evidence comes from 

comparisons of observed seismic moment rates to those calculated from 

geologic data under the assumption that the Gutenberg-Richter relation 

with b=1 holds for each fault all the way up to its maximum magnitude 

(Wesnousky e t a l . , 1983; Lahr and Stephens, 1982). Thus, on a regional 

scale the earthquake frequency distribution may be primarily a function 

of t he r egional dis t ri bution of fault lengths and slip r a tes (Wesnousky 

et al., 1983). The size distribution of earthquakes along a given fault 

is probably governed by variations in stress and frictional strength 

along the fault, as proposed by Nur (1978), Hanks (1979), Andr ews 

(1980), and Von Seggern (1980). 

The tectonic interpretation of seismicity data poses a number of 

problems. One problem is how scattered 'intrablock' seismicity is 

related to the long-term deformation and to cycles of strain 
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accumulation and release along the major bounding faults. This question 

is addressed in Chapter 1 through a comparison of focal mechanisms of 

small earthquakes in the central Transverse Ranges, California, with 

geologic data concerning long-term deformation and geodetic measurements 

of short-term deformation. Despite considerable variety in the observed 

mechanisms, their compression axes cluster around a north-south, 

horizontal axis. This is consistent with the geologic and geodetic 

evidence for strong north-south compression in the central Transverse 

Ranges. Studies of small earthquake focal mechanisms in other regions 

have also found that the compression or tension axis is the most stable 

faulting parameter, and that the inferred principal stress directions 

agree well with those inferred from geologic data and in situ stress 

measurements (Zoback and Zoback, 1980). Thus, it may be useful to think 

of diffuse intrablock seismicity as fracturing of small zones of 

weakness that are favorably oriented to the applied stress field. Focal 

mechanisms of small ea~thquakes, when integrated, may be a better 

i ndicator of the regional stress field than focal mechanisms of large 

earthquakes because there is likely t o be a grea ter vari e t y of 

potential slip surfaces available for the smaller earthquakes. 

Another important question regarding seismicity data is under what 

conditions do small earthquakes occur on major, throughgoing faults, and 

what limits their size when they do. Various authors have proposed that 

small earthquakes represent the sudden failure of strong, locked 

portions of fault surfaces that are assumed to be very weak elsewhere, 

perhaps freely slipping (Kanamori, 1981; Mikumo and Miyatake, 1983). 
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The strong areas of the fault are called asperities. In these models, 

the area of fault which breaks is controlled by mechanical 

heterogeneities along the fault. Some predictions of these models 

regarding waveforms and stress drops of small earthquakes are examined 

in Chapters 2 and 3 using digital data from the Southern California 

Seismic Network. The waveform observations presented in these chapters 

provide some support for the concept of asperities. Chapter 4 reviews 

source studies of small earthquakes in the context of asperity models. 

Chapter 2 of this thesis has been published in the Journal of 

Geophysical Research (Pechmann and Kanamori, 1982). An earlier version 

of Chapter 1 was accepted in 1979 for inclusion in a U.S. Geological 

Survey Professional Paper on the Transverse Ranges and may someday be 

published. The section of Chapter 1 entitled "Evidence for Temporal 

Changes in Focal Mechanisms'' is condensed from a paper by Sauber, 

McNally, Pechmann, and Kanamori (1983) in t he Journal of Geophysical 

Research . 
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CHAPTER 1 

Tectonic Implications of Small Earthquakes 

in the Central Transverse Ranges, California 

Introduction 

The Transverse Range province of Southern California is a complex 

east-trending geomorphic and structural unit which interrupts the 

northwest -trending tectonic grain of the Pacific-North American plate 

boundary (Jahns, 1973; Bailey and Jahns, 1954). In this region the San 

Andreas fault turns sharply from its general southeast orientation and 

strikes east-southeasward across the Transverse Ranges before 

splintering into several major branches and continuing southeastward to 

the Gulf of California (Allen, 1968). South of the San Andreas 'big 

bend' is a broad zone of r oughly east-trending, north-dipping thrust and 

reverse faults including the Santa Nonica , Santa Susana, Sierra Hadre . 

and Cucamonga fron t al fault sys tems (Figure 1-1), along which mountain 

blocks of the central and western Transverse Ranges have been thrust 

upward and southward. 

Interest in the tectonics of the cent r al Transverse Ranges has been 

excited in recent years by several developments, notably: (1) The 

documen tation of right-lateral shear strain accumulation along the 

locked big bend segment of the San Andreas fault (Prescott and Savage, 

1976; Savage et al ., 1981a , b) contemporaneous with at least partial 
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Figure 1- 1. Base map showing the locations and senses of motion of 
major fault systems within the central Transverse Ranges, 
gener alized from Jennings et al. (1975). Arrows show 
strike - slip motion . 'U' and 'D' indicate up thrown and 
downthrown sides of dip- slip faults. 
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strain release along the fault sy stem to the northwest and southeast by 

creep and moderate earthquakes (Allen, 1968, 1982; Burford and Harsh, 

1980; Harsh et al., 1978). (2) The occurrence of the 1971 San Fernando 

earthquake (local magnitude, ML = 6. 4) along the western end of the 

Sierra Madre fault system (Oakeshott, 1975; Murphy, 1973; U. S. 

Geological Survey , 1971). (3) The reported f ormation between 1959 and 

1974 of a vertical crustal uplift throughout most of the Transverse 

Ranges province (Castle et al . , 1976). Leveling data indicate that this 

uplift, the so-called Palmdale Bulge, reached a maximum of 35 em within 

the boxed area shown in Figure 1- 1 and then partially subsided between 

mid-1974 and mid-1976 (Bennett, 1977; Market al., 1981). However, 

serious questions have been raised regarding the accuracy of the 

leveling data which define the uplift (Jackson and Lee, 1979; Strange , 

1981) and the Palmdale Bulge is currently a matte r of grea t controversy 

(Kerr, 1981). (4) The occurrence from 1976 to 1977 of an earthquake 

swarm along the locked section of the San Andreas fault sho~m in Figure 

1-1 . This swarm was the first observed along this section of the San 

Andreas since cataloging of instrumental data began in 1932 (~1cNally et 

al., 197 8 ) . (5) Abrupt changes in the horizontal strain accumulation 

patterns in southern California which were detected in 1978 and 1979 . 

The measured changes we re parti cularly large on geodetic networks in the 

Transverse Ranges (Savage, et al . , 1981a, b). 

During the last few years, vast l y improved data on earthquakes in 

Southern California have become available due to the increase in t he 

number of stations in the California Institute of Technology/ U.S. 
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Geological Survey seismographic network from 39 stations in 1972 to 

nearly 150 stations in 1978 (Whitcomb, 1978) to over 200 stations in 

1983. Studies of Southern California crustal structure using the 

expanded array (Kanamori and Radley, 1975; Radley and Kanamori, 1977; 

Hadley, 1978) have made possible more accurate interpretations of the 

earthquake data. Previous studies of earthquakes in the central 

Transverse Ranges have dealt primarily with the San Fernando earthquake 

and its aftershocks (Radley and Kanamori, 1978; Whitcomb et al ., 1973) 

and with microearthquake data from small temporary arrays (Cramer and 

Harrington, 1979; Murdock , 1979; Hadley and Combs, 1974) . The purpose 

of this paper is t o present seismicity and focal mechanism data for the 

entire central Transverse Ranges area and to discuss its tectonic 

signif icance in terms of the geologic evidence concerning long-term 

deformation and also the available geodetic evidence pertaining to 

short - te r m deformation . The first three sections present a regi onal 

study of seismicity and focal mechanisms completed in January, 1979 . 

The following section summarizes some results of a later study by Sauber 

et al . (1983) which suggest that changes in the regional strain 

accumulation patte r n which took place in late 1978- 1979 triggered 

changes in focal mechanisms and in the level of small earthquake 

activity near Palmdale . These two studies suggest a model fo r the 

relationship of small earthquakes in the central Transverse Ranges to 

strain accumulation on the San Andreas and frontal fault systems which 

is outlined in the concluding section . 
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Seismicity, 1933-1977 

Figures 1-2 and 1-3 show epicenters of all earthquakes located by 

the California Institute of Technology (Caltech) between 1933 and 1977 

within the boxed area shown in Figure 1-1. Faults shown in Figure 1-1 

are generalized from Jennings et al. (197 5) . Epicenters and magnitudes 

are taken directly from the Caltech/ U.S. Geological Survey southern 

California earthquake catalog (Whitcomb et al . , 1978; Friedman et al., 

1976; Hileman et al., 1973). Since location techniques and the density 

of seismographic stations have changed greatly throughout the years, 

these maps must be interpreted with care. Prior to 1961 epicentral 

determinations were done graphically and reported to the nearest minute . 

This explains the tendency of epicenters to line up in north-south and 

east-west directions in the earlier maps . The 1977 catalog is 

preliminary, meaning that hypocentral locations are subject to slight 

modification, quarry blasts have not been removed, and magnitude 

determinations for the smaller events are incomplete . Quarry locations 

are indicated by 'Q' in Figure 1-3. Earthquakes in 1977 for which 

magnitudes have not ye t been determined are plotted as having 11L~ 2 i n 

Figure 1-3 but may lie in the range 2<ML(3. 

Examination of Figure 1-3 shows that despite a much improved 

detection capability and greater l oca tion accuracy , the epicenters still 

do not show much tendency to cluster near the surface traces of faults. 

The only exceptions are along the San Jacinto fault and along a 

northeast-trending feature south of the Cucamonga fault previously 
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Hap showing epicenters of all earthquakes locat e d by the 
California Institute of Technology within the boxed area 
shown in Figure 1-1, for various time intervals . Different 
symbols indicate local magnitude ("HL) as shown . 
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Figure 1-3. r~p showing locations of focal mechanisms of Figure 1-5 and 
epicenters of all earthquakes located by t he California 
Institute of Technology within the boxed area shown in 
Figure 1- 1 for the time interval 1974- 1977 . QUarry 
locations are labelled with a 'Q' . ~gnitude symbols are 
the same as those in Figure 1- 2. Numbers next to focal 
mechanisms correspond to those in Figure 1- 5. Shaded 
quadrants a r e compressional . 
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identified by Hadley and Combs (1974) on the basis of a microearthquake 

survey . Hadley and Combs actually found two northeast-trending clusters 

in this area 5 km apart, the nor thern one being coincident with the 

Fontana water barrier. Several aftershock sequences and localized 

swarms show up very well on the seismicity maps in Figures 1-2 and 1-3. 

The San Fernando aftershock zone is a prominent feature north of t he 

Sierra Madre fault system in the western half of both the 1971-1 973 and 

1974-1977 maps. The 1972 Ontario swarm shows up very clearly as a dense 

clus ter near the southeastern corner of the 1971-1973 map. The 

epicenters in Figure 1-3 near the western end of the surface trace of 

the Santa Susana fault are mos tly aftershocks from a magnitude 4.6 event 

on April 8, 1976. This event is noteworthy because of its large number 

of aftershocks and its unusually great depth of 18 km. The 1976- 1977 

swarm just to the south of the San Andreas fault in Figure 1- 3 has been 

studied by McNally et al. (1978). The recent increase in seismicity 

here and to the northwest along the San Andreas fault has been shown to 

be real. However, it is not clear whether the apparent recent increase 

in seismicity in the Mojave Desert to the northeast of the San Andreas 

fault (compare Figures 1-2 and 1-3) is real or merely an artifact of 

improved station coverage. 

The scatter in the epicenters of small (M1 <6 . 0) shocks in Southern 

California and t he general lack of clear spacial relationships between 

these shocks and recognized faults has often been noted (Richter, 1958; 

Allen et al., 1965). Important exceptions to the rule are the 

concentrations of seismicity to the southeast of the study area 



-17-

associated with the Imperial, Brawley, and San Jacinto faults (Friedman 

et al., 1976; Whitcomb et al . , 1978) . All of these faults are 

dominantly strike-slip faults which are known to be creeping (Johnson 

and Hadley, 1976; Goulty et al., 1978; Keller et al., 1978) . Although 

the San Jacinto fault and its zone of seismicity extends into the 

southeastern corner of the study area (Figures 1-1 and 1-3), creep has 

not been demonstrated along this segment of the San Jacinto but only 

along sections to the southeast . The general scattering of epicenters 

throughou t most of the central Transverse Ranges is perhaps not 

surprising given the large number of QUaternary dip-slip faults in the 

area, most of which are either known or presumed to be of shallow dip 

(Jennings et al., 1975). Although most recent epicentral determinations 

are probably accurate t o wi thin 2-3 kilometers in t his area, comparable 

accuracy in the hypocentral depth is difficult to obtain. The available 

data are of sufficient quality to exclude the existence of a 

concentration of hypocenters along a single great megathrust outcropping 

along t he frontal fault system and dipping northward beneath the 

mountains . However, careful relocations using a master event technique 

may i n t he fu t ur e serve t o delineate and cha r acterize a series of 

separate faults, as has been done for the western Transverse Ranges (Lee 

et al., 1979). 

An interesting feature of the 1974- 1977 seismicity map (Figure 1- 3) 

is that in the mountains north of the Santa Susana-Sierra 

Ma dre-Cucamonga frontal fault systems most of the seismicity is 

concentrated to the west and to the east with comparatively few 
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epicenters located in the central part of the San Gabriel mountains 

between the eastern Sierra Madre and San Andreas fault zones. This same 

pattern is present at least as far back as 1961 when comput er location 

of earthquakes began at Caltech (Figure 1-2). Relocation of selected 

earthquakes before 1961 using arrival times on file a t Caltech has shown 

that additional work is necessa r y in order to extend this analysis 

further back in time. Available geologic evidence concerning the 

long-term seismicity correlates well with these observations . Crook et 

al. (1979) have found that evidence for late QUaternary movement is 

lacking i n the centra l part of the San Gabriel frontal fault system 

south of this gap but is present to t he east and to the west . Since 

geodolite measurements by Savage et al. (1978; 1981a, b) indicate that 

the post- Miocene north- south crustal shortening of the Transverse Ranges 

(Jahns, 1973) is still going on, it appears that within the central San 

Gabriel mountains this deformation must be at present taking place 

aseismically. This may mean that the deformation here is taking place 

at a greater depth than elsewhere . 

Focal Hechanism Determinations 

In t he determination of local earthquake focal mechanisms f r om 

P- wave first -motion diagrams, the principal uncertainty is in 

calculating the takeoff angles for first arriva l ray paths. These are 

highly dependent upon the assumed crustal structure and hypocentral 

depth. For this study a four-layer crustal model based on Hadley and 

Kanamori (1977) and Hadley (1978) was used. The model consists of a 5 
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km thick, 5.5 km/sec layer at the surface underlain successively by 6.1 

to 6.3 km/sec upper crust, 6.6-6.8 km/sec lower crust, and a 7.8 km/sec 

upper mantle halfspace beginning at a depth of 33 km (inset, Figure 

1-4). The interface between the low velocity upper crust and t he high 

velocity lower crust, the Conrad discontinuity, is located at a depth of 

about 15 km in the central part of the study area . To the northeast in 

the Mojave Desert this discontinuity is much deeper, only about 5 km 

above the Moho, but in the southwest corner of the study area in t he 

Santa Monica mountains, it shallows to a depth of perhaps 10 km . 

Although in general the Conrad discontinuity appears to dip to the 

northeast in the central Transverse Ranges, the details of its geometry 

are poorly known . This creates particular problems in locating 

earthquakes and determining focal mechanisms, especially since in some 

areas the discontinuity is l oca ted within the seismic zone which here 

ranges down to about 15 km . One approach to this problem is to employ a 

model consis ting of many horizontal layers, so that the Conrad 

discontinuity can be smoothed out into a gradient over a depth of about 

10 km. This technique was used by Hadley and Kanamori (1978) . The 

advantage of this technique is that it reduces t he sensitivity of the 

focal mechanism to changes in the depth of the source. In this study a 

different and hopefully more accurate method is used. 

Events for the regional focal mechanism study were chosen more or 

less at random, although some attempt was made to obtain a 

representative geographical distribution within the study area . 

Twenty-two events ranging in magnitude from 2. 2 t o 4 . 6 were selected for 
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study from the time period 1974 to 1978 (Table 1-1). To determine the 

focal mechanisms , arrival times and first motions were first read from 

16mm/develocorder film viewed at a scale of 1 sec/em. These data were 

supplemented in many cases by readings from helicorder paper records, 

films from temporary trailer stations, and computer-stored seismographic 

traces from the Caltech Earthquake Detection and Recording (CEDAR) 

system (Johnson, 1979). The twenty-two earthquakes were then relocated 

using the computer program HYP071 (Lee and Lahr, 1975) and a 

horizontall y-layered version of the model shown in Figure 1-4. Only 

stations within 60 km of the epicenter were used in order to maximize 

the depth resolution and minimize the use of arrival times from the 

dipping Conrad discontinuity, placed at a depth of 15 km in the location 

model. The average number of stations used for each relocation was 12 . 

Reduced trave l time, T-b / 6.0, was then plotted versus distance, b, for 

various azimuth ranges. An interpretation of each plot was made in 

terms of the Hadley- Kanamori model, and then travel-t ime information was 

used t o individually assign takeoff angles for each station. An example 

of this method is shown in Figure 1-4 for a local magnitude 4.4 event 

which occurred on August 12, 1977, at a depth of about 10 km. The 

reduced travel-time plots for azimuth ranges I and IV clearly show two 

branches. Arrivals labelled Pg are interpreted as direct waves with an 

apparent velocity near 6.2 km/sec beyond about b = 50 km. The branch 

labelled Pn corresponds to critically refracted waves from the . loho with 

an apparent velocity of about 7.8 km/sec . Refracted waves from the 

lower crust called P* are not observed as first arrivals in regions I 
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TABLE 1- 1. Events Selected for Regional Focal Mechanism Study 

Event Date Ti me ML Catalog Location Revised 
No . ~1o/Dy/Yr Latitude Longitude Depth,km Depth,km* 

1 11/07/76 1421 2. 6 34°40 . 20' 118°33.10' 8. 0 7.5 
2 12/08/76 0213 3. 3 34°28 . 13' 118°24.52, 12.4 13.3 
3 10/17/76 0538 3. 9 34°27 . 16' 118°22 . 26, 14.9 11.2 
4 12/13/76 0826 2. 2 34°28.56' 118° 0 . 60' 5. 9 8. 2 
5 1/01/77 0100 2. 8 34°27 . 49' 117°57 . 69' 5. 4 8.7 
6 3/07/77 1104 3. 0 34°27 . 68' 117°58.18' 8.0 9.1 
7 9/06/77 0508 3. 0 34°27 . 95' 117°57. 93' 7.2 8. 7 
8 6/19/78 0741 3. 0 34°37 . 07' 117°45 . 02' 6. 7 7. 6 
9 11/03/76 1741 2. 6 34°31.11' 117°46 . 40, 8.0 10. 1 

10 12/30/76 0225 2. 6 34°15.64' 117°32 . 37, 5. 0 10. 2 
11 5/29/76 2038 3. 0 34°15 . 93' 117°29 . 86' 4. 7 13. 3 
12 11/05/75 0237 3. 0 34° 9 . 66' 117°22 . 70' 7. 2 8.0 
13 1/13/75 2328 3. 3 34°10 . 64' 117°35 . 16, 3.6 8.0 
14 12/19/74 1236 3.5 34° 4. 38' 118° 4 . 80' 9.2 6 . 4 
15 11/06/74 0038 3. 0 34°11 . 71, 118° 9. 96, 1.0 3.4 
16 3/15/77 0801 2. 2 34° 6 . 94' 118°15 . 7 3, 8.8 10. 1 
1 7 11/30/76 2355 2. 5 34° 4. 76' 118°16 . 93 , 8. 0 8.0 
18 6/27/76 2211 2. 9 34° 1.86' 118° l7 . 6 7, 10.4 8. 0 
19 12/27/7 5 2108 3. 1 34°19 . 37' 118°18 . 14' 2. 1 4 . 7 
20 8/12/77 0219 4. 5 34°22 . 78, 118°27 . 52, 9. 5 10. 1 
21 8/09/76 1054 2. 8 34°19 . 62' 118°30.97, 8. 0 0.4 
22 4/08/76 1521 4. 6 34°20 . 81' 118°39 . 34' 14 . 5 17 . 9 

*The changes in epicentral locations averaged 2. 2 km and in all cases 
were less than 6 km. 
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and IV because the Conrad discontinuity deepens too quickly in these 

directions . However, to the south of the source in region III, where 

the Conrad shallows, the reduced travel times show an apparent velocity 

close to 6.6 km/sec . , indicating that all of the arrivals in this 

azimuth range are probably P*. The reduced travel-time plot for azimuth 

range II, which is roughly along the strike of the Conrad, shows three 

branches corresponding to Pg' P*, and Pn. Since the dip on the Conrad 

is not well known but is probably small, the takeoff angles for all 

three branches of the travel- time curves were calculated using the 

horizontally- layered location model . The resultant P- wave first - motion 

plot is shown in Figure 1- 5 (Number 20). 

Use of the technique just described eliminates much of the 

uncertainty in determining takeoff angles when the source depth is not 

well constrained. A problem still remains , however, if the event is 

located near a discontinuity in the velocity model, since the 

travel-time curves for a source located just above a discontinuity are 

nearly identical to those for a source located just below it, but the 

takeoff angles are quite different . When this problem was encount ered, 

the mechanisms were determined for sources located on both sides of the 

discontinuity, and the mechanism with the fewest stations in error was 

chosen. Only in one instance we r e the two mechanisms significantly 

different and of equal quality, and for this event ( Number 13, Figure 

1- 5) both solutions are shown . 
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Figure l-5. Lower hemisphere P-wave fault-plane solutions for 22 events 
in the central Transverse Ranges . Solid circles indicate 
compressional first motions; open circles indicate 
dilatational ones. The large circles represent 
good-quality readings; the small circles, fair - quality 
readings. Slip vectors, compression axes, and tension axes 
are shown with triangles. The date, local magnitude M, and 
depth H, for each event are given. Numbers correspond to 
those in Figure l-3. 
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Results of Regional Focal Mechanism Study 

Figure 1- 5 shows the P-wave first-motion plots for the events 

studied. The nodal planes were determined with the aid of the computer 

program FOCPLT developed by Whitcomb and Garmany (Whitcomb, 1973) . This 

program tests a grid of trial mechanisms spaced at approximately 5 

degree intervals on the focal sphere and then chooses a mechanism which 

minimizes the number of first motion readings in error . Less reliable 

readings are given half the weight of other readings, and a linear 

function is used to downweight stations within 3 degrees of a nodal 

plane . Most of the focal mechamisms shown in Figure 1- 5 are well 

constrained. The numbers are keyed to Figure 1- 3, whi ch shows the 

location of each mechanism. 

Examination of Figure 1- 3 shows that there is little sys tematic 

variation in mechanism from place to place within the study area . Host 

of the solutions show strike- slip faulting, reverse faulting, or a 

combination of strike-&lip and reverse faulting. In general, the 

fault - plane orientations and senses of motion do not agree very well 

with those of the major faults shown . Along the San Jacinto fault, 

mechanism No . 12 is consistent with geologic evidence for right - lateral 

strike- slip motion on a northwest- trending fault . However, 20 km to the 

northwes t along the same fault zone, thrusting is obser ved . t~chanisms 

4, 5, 6 , and 7 are especially interesting because master event 

relocations for these events by McNally et al . (1978), show that they 

all cluster within a small volume 3 km in maximum dimension, centered 2 

km southwest of the mapped surface trace of the San Andreas fault at a 
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depth of about 8 km. Although No . 4 is consistent with the long-term 

sense of motion on the San Andreas fault, the others are not and, 

furthermore, show systematic changes in mechanism with time. This swarm 

may be associated with the San Andreas fault or with one of several 

subparallel faults that splay southward from the main fault at this 

point . Focal mechanisms for events 20, 3, and 22 agree we l l with those 

determined independently by Hadley and Kanamori (1978) . The latter t wo 

are consistent with motion on either nearly vertical or nearly 

horizontal planes . Hadley and Kanamori a r gue on the basis of these 

mechanisms and other evidence that regional horizontal decollements may 

exist within the central Transverse Ranges . If the horizontal plane in 

mechanisms 3 and 22 is chosen as the fault plane, then movement of the 

upper block is towards the south or southwest. 

Although the fault - plane solutions in Figure 1- 5 show considerable 

diversity, the comp ression axes for most of them are oriented nearly 

north-south and horizontal . Other investigators have obtained similar 

r esults in the central Transverse Ranges (Whitcomb et al . , 1973; Cramer 

and Harrington, 1979) . In the western Transverse Ranges the compression 

axis is still the ~ost stable parameter, but the preferred orientation 

is closer to northeast - southwest horizontal (Yerkes and Lee, 1979 ; 

Stierman and Ellsworth, 1976) . To produce a combined plot of the 

compression axes which reflected t he degree of constraint of the 

mechanisms, I used the grid of scores calculated by FOCPLT for each 

event. Positions of the compression axes corresponding t o best-fit 

solutions with the minimum number of stations in error were assigned a 
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weight of 3. Positions which allowed less than one additional good 

quality reading or two additional fair quality readings to be in error 

were assigned a weight of 2. Positions with the number of stations in 

error beyond the minimum lying in the range 1- 2 good or 2-4 fair were 

given a weight of 1. Scores worse than this were given zero weight . 

The weights for all the events were added up at each focal sphere grid 

point and the results contoured to give the plot shown in Figure 6. A 

similar diagram for the tension axes is also shown. 

Figure 1-6 clearly demonstrates that focal mechanisms in the 

central Transverse Ranges are characterized by a horizontal north - south 

compression axis and a nea r vertical tension axis . The dominant type of 

faulting is, therefore, reve rse faulting on east-striking planes with 

dip near 45° . Even though compression and tension axes for individual 

earthquakes do not necessarily reflect the actual tectonic stress field 

(McKenzie, 1969) , the well-defined maxima in Figure 1-6 suggest that 

these parameters have physical significance in a statistical sense. The 

north-south compression suggested by the fault plane solutions is 

~onsistent with the N~~ orientations for maximum horizontal compressive 

stress measured in boreholes in this region (Zoback et al., 1980; 

Flaccus et al., 1980) . There is, in addition, abundant geologic 

evidence to suggest strong north-south compression in the Transverse 

Ranges province during post-Miocene times. This north- south compression 

has resulted in folding along east-west axes, thrust and reverse 

faulting with some components of strike - slip, and major uplift of 

several crustal blocks (Jahns, 1973) . 
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Figure 1- 6 . Contour maps showing the orientation of compression and 
tension axes on the focal sphere, taking into account 
variation of quality of mechanisms in Figure 1- 5. See text 
fo r explanation . 
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A more direct conclusion which can be drawn from Figure 1-6 is that 

the average deformation resulting from small earthquakes in this region 

is north-south crustal shortening and vertical extension, at least for 

the time period 1974 to 1978. Since this is permanent deformation, it 

constitutes a form of elastic strain relief. Geodolite measurements of 

horizontal strain accumulation by Savage et al . (1978) in the interval 

1972 to 1978 indicate a remarkably consistent uniaxial north-south 

contraction of about 0.2-0 . 3 parts per million per year (ppm/yr) 

throughout Southern California. This strain appeared to accumulate 

uniformly with time. The amount of north- south contraction attributable 

to faulting during small earthquakes is therefore relevant to the rate 

of stress accumulation across both the San Andreas and frontal fault 

systems. 

Kostrov (1974) derives an expression to describe how movements in 

separate earthquakes along numerous randomly located fractures can be 

summed in a quasi-plastic deformation process . The expression is: 

where £i j is the mean tensor of the rate of deformation due to the 

seismic flow of rock masses, 6v and 6t are the volume and time interva l, 

respectively, over which the H~~~ are summed, J.l is the rigidity, and 

tt~~ is the ij'th component of the moment tensor of the K'th earthquake . 

If H
0 

is the moment, 

H .. = M (b.n. + b.n.) 
OlJ 0 J l l J 

where ~ is a unit vector in the displacement direction and Q is a unit 
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vector perpendicular to the faul t plane . To estimate the mean tensor of 

the rate of seismic defor mation in t he central Tr ansverse Ranges , we 

assume that the ave r age ~ and Q vectors are t hose corresponding to the 

average mechanism indicated by Figure 1- 6. In a coordinate system with 

the x1-axis directed eastward, the x2- axis northward, and the x3- axis 

upward, the expression for eij r educes to 

with all other components zero. Since the mechanisms were determined 

for earthquakes during the time period 1974- 1978 , but post- 1976 

. 
magnitudes are incomplete , we calculate e 33 for the three- year period 

1974- 1976 . Define n(H) to be the number of events with l ocal magnitude 

greater than or equal to M during this period within the boxed area of 

Figure 1-1 . Since all earthquakes which occurred during this time were 

less than magnitude 5 . 0 , and eart hquakes of magnitude less than 0. 0 have 

negli gibly small moments, we can write 

- -=l_ fs . o M (M) dn(M) dM 
6~6v 0 ° dM 

where M
0

(M) is an empirical mo~ent-magnitude relationship . From Wyss 

and Brune (1968) and Thatcher and Hanks (1973) M
0

(M) is given by 

log M
0 

= 1. 5M + 16. 0 

The function n(M) was found to be given to a good approximation by 

log n = 4. 5 - 1. 0M 

Since most earthquakes in the study area occur at depths less than 15 

km , we set 6v equal to the (area of the box in Figure 1- 1) X (15 km) . 
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This gives ~v = 1.7 x 1020 cm3. Assumimg ~ = 2 x 1011 dynes/crrf and 

substituting into the above expression, t he result is E 33 

1 x 10- 9 /year . 

This number is two order s of magnitude smaller than the rate of 

north- south contraction determined geodetically at the surface for the 

same time period . We conclude that seismic faulting during 1974-1976 

within the study area can account for only a negligibly small amount of 

the measured north- south contraction . Hence , most of the cont r action 

must represent either elastic st r ain accumulation or aseismic 

deformation . 

Evidence for Temporal Changes in Focal Mechanisms 

Shortly after the r egional focal mechanism and seismicity study 

presented above was completed in January 1979 , changes were detected in 

the horizontal strain accumulation patterns in southern California 

through t wo diffe r ent g~odetic monitoring techniques: inte rferometr y 

measurements using extraterrestrial radio sources (P . F . MacDoran , 

unpublished data from the Aries Project, 1980) and ground- based 

trilateration with a laser-ranging device (Savage et al . , 198la, b) . 

The horizontal strain accumulation across all three of the U. S. 

~ological Survey trilateration networks which lie within or partially 

within the cent ral Transverse Ranges - the Tehachapi, Palmdale, and 

Cajon nets (Figure 1- 7) - was a uniaxial nor th- south contraction of 

0 . 2- 0 .3 ppm/yr from when measurements began in 1971- 1974 through 1978 

(Savage et al . , 1978) . Between late 1978 and 1979, an episode of NS and 
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Figure 1- 7. Locations of events for which a focal mechanism was 
determined by Sauber et a l. (1983) . Event numbers are 
chronological, and do not correspond to event numbers in 
Figures 1- 3 and 1- 5 or Table 1- 1. The areas covered by the 
U. S. Geological Survey Tehachapi, Palmdale , and Cajon 
trilateration networ ks are shown along with the ARIES 
baselines. JPL is the Caltech Jet Propulsion Laboratory , 
GSC is the Goldstone tracking station, and ORV is the ~·ens 

Valley Radio Observatory . 
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EW extension was observed on the Tehachapi and Palmdale networks . The 

total dilatation observed amounted to about 1 part per million on the 

Tehachapi net and about 2 parts per million on the Palmdale net (Savage 

et al., 1981a, b) . No corresponding dilatation was detected within the 

Cajon network . The measured rate of shear strain accumulation has been 

fairly constant on all three networks . 

The remarkable agreement between the principal strain directions 

determined from trilateration measurements at the surface and the 

principal axes of the deformation tensor inferred fro~ small earthquake 

mechanisms during the period 1974-1978 (Figure 1-6) suggests that small 

earthquake mechanisms may accurately reflect the regional strain field 

even though their contribution to the regional deformation is quite 

minor . A question therefore arises as to whether or not the 1978- 1979 

strain anomalies were accompanied by changes in the dominant faulting 

mechanism. In order to search for such changes, a s ystematic study of 

focal mechanisms of earthquakes during 1976- 1980 in the big bend region 

of the San Andreas fault was undertaken by several workers including the 

author (Sauber et al . , 1983) . The results of this study are reviewed 

briefly below. 

P-wave first motion studies were made for 26 events which occurred 

during the time period November 1976 through December 1980 within a 45 x 

140 km region centered along the San Andreas fault in the vicinity of 

the Palmdale trilateration network (Figure 1- 7) . Focal mechanisms could 

be determined for all but one of the 15 events of M1)2.5 in this region 

during this time period. Focal mechanisms were determined for events of 
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2.0~1<2 .5 either f r om the areas of highest seismic activity (circle and 

square, Figure 1-7) or from other areas for better temporal coverage 

around the time when rapid crustal dilatation was reported. Seven of 

the 26 mechanisms are from the regional study discussed above . The rest 

of the mechanisms were determined using a similar procedure, except that 

the bulk of the first motion readings are from computer- stored 

seismographic traces from CEDAR rather than from develocorder film . 

To facilitate comparison of the earthquake data to horizontal 

strain data, strain data from the Palmdale network (Savage et al., 

1981b) are superimposed on a time/distance plot of the seismicity in 

Figure 1-8, together with mechanisms for 13 of the 14 events of M~2 . 5 

and as many additional mechanisms as could fit on the gr aph . The 

Palmdale strain data are used for this comparison because the Palmdale 

network is located closest to the earthquakes for which mechanisms were 

done (Figure 1-7) and more frequent measurements were taken there than 

on the other networks. Figure 1-8 suggests that the strain anomaly of 

late 1978-1979 was accompanied by changes in focal mechanisms and in the 

level of microearthquake activity in the big bend region of the San 

Andreas fault . Small earthquake activity increased in this entire 

region in November 1976 concurrent with the initiation of the earthquake 

swarm at Juniper Hills (JNH in Figure 1-8, circle in Figure 1-7; see 

Mc~ally et al., 1978) . The time / dis tance plot in Figu re 1- 8 and a more 

detailed plot in Sauber et al. (1973) show an abrupt decrease in this 

activity near the beginning of 1979 to the northwest and southeast of 

Juniper Hills . Most focal mechanisms in Figure 1- 8 , like those in 
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Figure 1-8. Time/distance plot of seismicity with strain data and focal 
mechanisms -superimposed . The t op three g r aphs are strain 
data from the Pa lmdale networ k . The error bars r epresent 
one standard deviation on e ithe r side of the plotted point. 
The strain components shown a r e : £ 11 , east- west strain, 
compression is downward; £ 22 , north- south strain, 
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strain (t~ice t he tensor shea r stra i n ), r i ght - lateral 
strain accumulation on a northwest- striking plane i s 
positive . The bottom graph is north-sou t h strain f r om t he 
Cajon network. The positi ons of the f ocal me chanisms 
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s patial location on the gr aph . Their occurrence in t ime is 
more closely indicated by the arrows pointing to the 
north- south strain data . An as t erisk appears next to the 
focal mechanisms for events of 2. 0'ML( 2. 5. Figure is taken 
from Sauber et al. (1983) . 
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Figure 1-3, show reverse faulting, strike-slip faulting, or a 

combination of the two and are consistent with north-south compression. 

Reverse faulting on northeast- to southeast-striking planes appears to 

be the most common faulting mechanism, as was found for the regional 

study (Figures 1-5 and 1-6). However, there appears to be an unusually 

large number of strike-slip events around the time of the crustal 

dilatation episode. 

The temporal changes in focal mechanism are best seen by examining 

the orientations of the P (compression) and T (tension) axes (Figure 

1-9). The angles ~p and ~T between the vertical and the P and Taxes, 

respectively, are plotted versus time for all 26 events. Although there 

is some fluctuation in ~P' the P axis is generally horizontal to 

subhorizontal with no systematic changes with time. ~T' however, ranges 

from near vertical to near horizontal. There are two time periods where 

~Tis generally greater than 45 degrees, indicating that the mechanisms 

are closer to strike slip than to thrust. The first period (December 

1976 to February 1977) corresponds to the beginning of the Juniper Hills 

swarm. No strain anomaly was reported during this period, although 

measurements were only being taken about once a year . The seco~d period 

(November 1978 to April 1979) approximately coincides in time with the 

change in the trend of the strain data from uniaxial north-south 

compression to dilatation. 

Although Figures 1-8 and 1-9 suggest that a change in focal 

mechanism accompanied the strain changes, this correlation must be 

considered tentative because of the limitations of the data. First, 



-39-

13 

Figure 1-9. The angles ~P and ~T between the vertical and the P and T 
axes r espectively , plotted against time for t he 26 events 
for which locations are shown in Figure 1- 7 . The error 
bars correspond to the range of possible angles for the P 
and T axes with up to one 'good' or two 'fair' additional 
readings in error . Figure is from Sauber et al. (1983) . 
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many of the focal mechanisms for the smaller events are not well 

constrained, as illustrated by the error bars in Figure 1- 9. Second, 

the strain data are probably aliased. Prior to 1979, the strain 

measurements were taken only on a yearly basis on the Palmdale net. 

Later measurements showed significant strain changes between surveys 

taken only a few months apart. Biweekly observations of a nearby 

network with a two-color laser Geodimeter during 1980-1982 revealed 

short - term fluctuations in dilatation at rates as high as about 8 

ppm/year for periods of a month (Langbein et al . , 1982) . A further 

problem is that strain changes between individual measurements on the 

Palmdale network from 1977 to February 1979 are not statistically 

significant, although the general trend of uniaxial north-south 

contraction from 1971 to 1978 does appear significant (Savage et al., 

1981b) . For these reasons, it is not possible to define the time of 

onset of relative dilatation in late 1978- 1979 to within better than 

approximately ±6 months, or to know if the subsequent period of 

comp ress ion began before or af ter the Octobe r 1979 survey (Figure 1- 8). 

Thus, although the second group of strike - slip earthquakes (November 

1978 to April 1979) appears t o be roughly concurrent with the 

dilatation, a temporal coincidence cannot be conclusively proven or 

disproven with the data at hand. 

In the area around the big bend of the San Andreas fault, the most 

compressive principal stress is roughly north-south . Anderson's (1951) 

theory of faulting predicts strike - slip failure for this region if the 

intermediate principal stress is vertical and the least principal stress 
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is eas t-west. Thrust events can occur if the least principal stress is 

vertical and the intermediate principal stress is east - west. Therefore, 

a change in mechanism from thrust to strike slip suggests that the least 

principal stress has changed from vertical to horizontal east - west . 

Although Anderson' s theory does not take into account pr eexis ting zones 

of weakness, the variations in mechanism suggest that a wide variety of 

pot ential fault surfaces exists r egionally and that small earthquakes 

occur on those most favorably oriented to the current stress field . 

The change in mechanism from thrust (events 11 and 12, Figures 1- 8 

and 1-9) to pr edominantly strike slip (events 13 , 14, 15, and 17) during 

t he period mid-1978 to mid- 1979 is at least qualitatively consistent 

with the measured horizontal strain changes and may r eflect a change in 

the tectonic stress field. The east-west extension which began in 

1978-1979 could cause a r otat i on of the least principal stress axis f r om 

near verti cal to near horizontal , depending on the pr eexis ting stress 

and the magni tude and si gn of any changes in t he vertical stress 

component . Although north- south extension was also observed at this 

time, it was smaller in magnitude than t he north - south compressive 

strain accumulated over the previous 7 years, and hence the orientation 

of the greatest compressive principal stress probably r emained 

approximately north- south . 

A decrease in the level of seismic activity and a change in the 

predominant type of mechanism to more strike- slip motion around the time 

when t here is a change f r om relative compression to dilatation suggests 

that r egional strain changes might influence small earthquake faulting . 
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The maximum linear strain change observed on the Palmdale network is 1. 5 

~ strain. If we assume a linear relation between stress and strain and 

take the elastic modulus to be 3. 3 x 1011 dynes /cm2 , this strain change 

roughly corresponds to a stress change of 0 . 5 bar. Changes in the level 

of microearthquake activity and a change in the predominant type of 

fault mechanism might therefore occur as a result of small changes in 

stress . However, the data are incomplete, and further monitoring is 

necessary to substantiate this conclusion . 

Conclusions 

The overall seismicity within the cent ral Transverse Ranges can 

best be described as diffuse . Focal mechanisms for recent small 

earthquakes in this region similarly indicate that most of t he 

seismicity is not directly related to the major Quaternary faults 

(Figure 1-3). The dominant mechanism of faulting at present appears to 

be reverse faulting on east- striking planes . Less commonly , strike-slip 

faulting on generally northwest- or northeast-striking planes is 

observed . Most mechanisms r epresent a combination of these two 

principal fault types, which correspond to the major categories of 

active fault systems found in this region. 

Horizontal strain accumulation across geodetic networks in the 

central Transverse Ranges appears to consist of 0 . 2-0 . 3 ppm/year of 

approximately north- south compression which is occasionally interrupted 

by episodes of both north- south and east- west extension . The average 

deformation resulting from small earthquakes in this region is ve r y 
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similar to the pattern of strain accumulation inferred from surface 

measurements: north-south crustal shortening and vertical extension 

with a lesser amount of east-west extension. However, calculations show 

that the small earthquakes (ML(S) are relieving only a negligible amount 

of the accumulating strain. There is some evidence to suggest that 

strike-slip earthquakes are more common than reverse-slip earthquakes 

during periods of dilatation. If this is true, faulting in small 

earthquakes may be sensitive to small changes in the applied stress. 

The above observations suggest that a reasonable physical model for 

the deformation in between large earthquakes in this region is 

quasi-homogeneous north-sou th crustal shortening accompanied by vertical 

and east-west extension which involves elastic strain accumulation and 

brittle seismic fracturing near the surface toge ther with viscous or 

viscoelastic flow at depth. Most of the small earthquakes appear to be 

part of this quasi-homogeneous deformation process and are not 

associated with large-scale block movements along major faults . 

Detailed studies may in some cases serve to identify small earthquakes 

with small-scale block movements . However, it seems likely that a wide 

varie t y of pre-existing zones of weakness exists throughout t he region 

and that slip occurs on those most favorably oriented to the local 

stress field . 

The central Transve rse Ranges stress field inferred f r om 

fault - plane solutions and near-surface measurements appears to be 

dominated by north-south compression wi th the least principle stress 

axis near vertical. However, the origin of this stress field is not 
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well understood. Simple dislocation models of the San Andreas fault 

system predict north-northwest to north-northeast compression in the 

central Transverse Ranges, with an equal amount of horizontally directed 

tension perpendicular to the compression (Prescott and Savage, 1976; 

Rodgers and Chinnery, 1973). Bird and Piper (1980) have developed a 

plane -stress finite-element nonlinear tectoni c flow model for southern 

California which includes a weakened zone along the San Andreas fault. 

This model comes closer t o reproducing the observed stress field, but 

fails in other respects. Even more puzzling than the origin of the 

stress field is the cause of the fluctuations in the isotropic strain 

which occur despite the nearly uniform shear strain accumulation . 

Inasmuch as earthquakes are the only source of information about stress 

conditions deep within the earth, their continued study should pr ove 

useful i n investigating the above pr oblems. 
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CHAPTER 2 

Waveforms and Spectra of Preshocks and Aftershocks 

of the 1979 Imperial Valley, California, Earthquake: 

Evidence for Fault Heterogeneity? 

Introduction 

Seismological and geological observations suggest that the 

mechanical properties of a fault zone are not homogeneous. Inspection 

of active and inactive fault zones in outcrops and in tunnels has shown 

them to be very heterogeneous in geometry, pore fluid pressure, and 

fault zone material (Wu, 1980). Surface rupture accompanying large 

earthquakes is usually complex, with irregular variations in 

displacement along the fault (Das and Aki, 1977; Aki, 1979). Seismic 

body waves radiated by large events are also complex and are usually 

interpreted using multi.ple event source models (Imamura, 1937, p. 267; 

Wyss and Brune, 1967; Rial, 1978; Kanamori and Stewart, 1978). 

Detailed modeling of short-period waveforms suggests that much of the 

higher-frequency energy comes from small, high stress drop areas on the 

fault plane (Cipar, 1981; Ebel, 1981; Wallace et al., 1981). The 

highly randomized nature of strong motion accelerograms implies large 

variations in effective stress during fault rupture (Housner, 1955; 

Nur, 1978). 

Those parts of a fault with higher than average strength, commonly 

called asperities, may play an important role in the processes leading 
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up to large-scale failure. Jones and Molnar (1979) proposed that 

foreshocks represented accelerating failure of asperities due to 

concentration of stress on the unbroken asperities. Kanamori (1981) and 

Mikumo and Miyatake (1983) were able to explain with simple asperity 

models many of the longer-term spatia-temporal seismicity patterns which 

commonly precede major earthquakes. These include precursory swarms, 

quiescence, doughnut patterns, and foreshocks. Although the success of 

simple asperity models in explaining observed seismicity patterns is 

encouraging, the patterns themselves are too varied to be used reliably 

for earthquake prediction or to provide a good test of the models. 

Thus, it is desirable to examine other consequences of the models. 

The key elements of asperity models that relate small earthquakes 

to large-scale seismic strain accumulation and release, such as those 

proposed by Kanamori (1981) and Mikumo and Miyatake (198 3), are (1) 

fault surfaces are held together by a number of strong points or 

asperities, (2) weaker asperities fail during small earthquakes as 

tectonic stress increases, thereby transferring more stress to the 

remaining asperities, and (3) the fault become s unstable when most, bu t 

not necessarily all, of the asperities have broken (Das and Aki, 1977; 

Brune, 1979). These assumptions lead t o two predictions about 

foreshocks: (1) On the average, stress drops of foreshocks should be 

higher than stress drops of previous events from the area, assuming that 

stress drop is proportional to tectonic stress, and ( 2) the foreshocks 

should be concentrated along strong asperities and hence should occur as 

groups of events with very similar locations and focal mechanisms and 
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thus very similar waveforms. The extent to which this will occur 

depends on the nature of the asperities. In this paper, we will use the 

term asperity model to refer to a specific family of models in which 

concentration of stress on the stronger parts of the fault is an 

important factor controlling the locations and source parameters of 

small earthquakes. 

Efforts to test the first of the predictions outlined above have 

produced mixed results (Reyners, 1981). This may be due to problems 

with the data rather than with the model. In the numerical simulations 

of Kanamori (1981) a ratio of 4 of the stress drop of foreshocks to 

other events is enough to produce the observed seismicity patterns. 

Since frequency content depends on many other factors such as rupture 

velocity and direction, near-source velocity structure, and focal 

mechanism, it may be difficult to detect temporal changes in stress dro p 

of this magnitude, especially since data from only one or two stations 

are usually available. Furthermore, changes in anelastic attenuation 

near the fault cause d by opening or closing of cracks or movement of 

pore fluids may complicate the situation. 

Relatively few studies have been made of waveforms of foreshocks. 

Ishida and Kanamori (1978 ) obse r ved t ha t seismograms of f i ve events tha t 

occurred in the epicentral region of the 1971 San Fernando earthquake 

during the 2 years before this earthquake were remarkably similar. 

Frankel (1982a) found that six out of seven preshocks to a magnitude 4.8 

earthquake in the Virgin Islands occurred as pairs of events with very 

similar waveforms. Waveform similarity, however, does not appear to be 
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unique to foreshocks, and not all foreshocks exhibit waveform 

similarity. Hamaguchi and Hasegawa (1975) noted that many of the 

aftershocks of the 1968 Tokachi-Oki earthquake had similar waveforms and 

concluded that these similar events occurred at approximately the same 

location under the same mechanical conditions. Groups of events with 

similar waveforms that are not closely associated in time with major 

earthquakes have been reported by Stauder and Ryall (1967) in central 

Nevada and by Geller and Mueller (1980) and Spieth and Geller (1981) 

along the San Andreas fault in central California. Unpublished data 

collected by Kanamori show that waveforms of small earthquakes from the 

southeast portion of the Anza gap on the San Jacinto fault in California 

(Thatcher et al., 1975) have been nearly the same from 1933 to the 

present. Waveforms of foreshocks to the 1952 Kern County earthquake, in 

contrast to the San Fernando foreshocks, differed significantly from 

event to event (Ishida and Kanamori, 1980). The seismograms for two 

foreshocks to the 1966 Parkfield earthquake shown in Figure 2 of Bakun 

and McEvilly (1979) do not look very much alike, nor do the two 

foreshocks to the 1975 Oroville earthquake shown in Figure 5 of the same 

paper. Tsujiura (1979a) reported that seven swarms in the Kanto 

district of Japan were characterized by similarity of waveforms but that 

the waveforms of foreshocks to the 1978 Izu-Qshima earthquake showed 

substantial variation. The Izu-Oshima earthquake, however, had a very 

complicated rupture zone, and there is a strong possibility that many of 

the foreshocks were not associated with the main fault (Tsumura et al., 

1978). Furthermore, Tsujiura (1979b) notes that during one of the 
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waveforms decreased after the largest event (M 5.5) occurred. This 

suggests that even in hindsight an a priori distinction between 

preshocks, swarms, and aftershocks is not necessarily straightforward. 

It seems clear that even if the asperity model is correct, the 

number of foreshocks and the degree of waveform similarity among them 

will depend on the number, strength, and distribution of asperities 

involved. Furthermore, it is possible that failure of weaker asperities 

could produce small groups of similar events at any time. These 

complications must be considered when investigating the asperity model 

using waveforms. 

In this study we test the predictions of the asperity model 

regarding temporal variations of waveform and spectra of small 

earthquakes along major faults. The data we use are digitally-recorded 

seismograms from the CEDAR system (Johnson, 1979) of preshocks and 

aftershocks of the October 15, 1979, M1 (local magnitude) 6.6 Imperial 

Valley earthquake. The low detection threshold and high location 

resolution of CEDAR and the California Institute of Technology/U.S. 

Geological Survey southern California array enables comparison of many 

events from small (<5 km) source regions during different time periods, 

which was not possible in most previous studies of waveforms and 

spectra. Since the CEDAR system has only been in operation since 

January 1, 1977, the time span of observations is rather short compared 

to the time between the last two major earthquakes along the Imperial 

fault (39 years). Nevertheless, if we consider these aftershocks and 
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preshocks to be representative of the beginning and end of the seismic 

cycle, respectively, then some information regarding longer-term 

temporal variations can be inferred. We find some evidence to support 

both predictions of the asperity model outlined above. However, on the 

basis of this study it appears that waveform is a more reliable 

indicator of stress conditions along faults than is frequency content. 

Selection of Events and Stations 

The 1979 Imperial Valley earthquake was accompanied by 

right-lateral surface faulting along the northernmost 30 km of the 

Imperial fault (Figure 2-1), with coseismic displacements exceeding 40 

em in some places (K. Sieh, written communication, 1979). Along the 

northern half of the rupture zone, vertical slip (NE side down) of up to 

30 em also occurred. A segment of the Brawley fault, east of the 

Imperial fault, also broke during the earthquake. The 1979 faulting was 

very similar to the faulting which occurred in 1940 along the northern 

part of the Imperial fault. However, the 1940 earthquake also produced 

very large right-lateral offsets (up to 5.8 m) on the southern half of 

the fault (Richter, 1958, pp. 489-491). 

The mainshock epicenter of Chavez et al. (198 2), calculated using 

stations in both the United States and Mexico, is located in Mexico 

about 8 km SE of the nearest surface faulting. Figure 2-1 shows the 

Caltech-USGS preliminary epicenter, which is slightly too far to the 

south, together with all well-located (epicentral error of less than 5 

km) earthquakes in the area for the 31/2 months preceding the mainshock. 
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Figure 2- 1. Map of Imperial Valley and surr ounding area showing major 
faults (Jennings e t al . , 1975), key seismographic stations, 
and all well-located epicenters (epicentral error of less 
than 5 km) from the preliminary Caltech- USGS catalog for 
the period July 1, 1979, to October 15 , 1979, 2316 (the 
time of the ML 6.6 mainshock) . The small crosses are 
ML<3 . 0 events and the large crosses are events with 
3. 0<ML<4 . 0 . The l a r ge star is the pr eliminary mainshock 
epicenter. The solid boxes show the areas for which 
relocations were done (Figures 2-2 and 2- 3) . The 
north- striking fault near the northern end of the Imperial 
fault is the Br awley fault (Sharp, 1976) . The 
northwest-striking fault on the nor t heast side of the 
Salton Sea is the San Andreas fault . 
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This time period was reported by Johnson and Hutton (1982) to be 

anomalously quiet. Note that there are only three events during this 

period within -15 km of the impending mainshock epicenter. This pattern 

of quiescence over a large part of the fault, accompanied by clustering 

near the future hypocenter, is often observed before large earthquakes 

(Kanamori, 1981). The aftershocks of the 1979 earthquake were 

concentrated at the northern end of the fault, but there was also 

significant aftershock activity along the central part of the rupture 

zone (Johnson and Hutton, 1982). 

In looking for temporal changes, it is desirable to minimize 

changes in the source-receiver geometry and to compare events of roughly 

the same size. We therefore decided to select two small sections of the 

fault for study and to look at all ML)2.0 events from these areas. We 

chose this size range because most of the events in the regions of 

interest were less than magnitude 3 and the estimated uniform detection 

threshold in the border. region is magnitude 2 (Johnson, 1979). 

One place that is clearly of interest is the spot near the 

mainshock epicenter where three events occurred during the quiet period 

preceding the mainshock. In order to find previous events and 

aftershocks from this area, we relocated all ML)2.0 events from the box 

surrounding the epicenter in Figure 2-1. Relocations were done relative 

to the hypocenter of Chavez et al. (198 2) using the master event 

technique (Johnson and Hadley, 1976) with the computer program HYP071 

(Lee and Lahr, 1975). The velocity model used was the same as that used 

by Chavez et al. (198 2) (Table 2-1). It is a layered approximation to 
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TABLE 2-1. Imperial Valley Crustal Velocity Model 

P-Wave Velocity of Layer, 
km/sec 

2.00 
2.40 
2.80 
3.45 
4.10 
4.75 
5.45 
5.80 
6.75 
7.05 
7.20 

Depth to Top of Layer, 
km 

0.0 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

10.0 
10.5 
11.0 

From Chavez et al. (198 2). Based on refraction 
studies by Fuis et al. (198 2). 



-54-

the model derived by McMechan and Mooney (1980) for the southern 

Imperial Valley on the basis of synthetic seismogram modeling of 

refraction data (Fuis et al., 1982). The model matches P-wave travel 

times from these earthquakes quite well out to -120 km distance. 

Arrival time picks were made by the Caltech-USGS staff as part of the 

routine data processing. Fifteen stations were used in the relocations, 

all in the United States and all at epicentral distances of less than 90 

km . The absolute value of the average travel time residual was 0.08 sec 

or less at all these stations. 

Figure 2-2 shows relocations of earthquakes from the time of the 

installation of the Imperial Valley array in July 1973 through July 

1980. Relocated epicenters tend to be a few kilometers north and east 

of the catalog epicenters, consistent with the approximately 3 km 

north-northeastward shift of the mainshock location of Chavez et al. 

(1982) relative to the Caltech-USGS mainshock location. The relocated 

epicenters are more tightly aligned along the Imperial fault than those 

in the catalog. The depths for the relocated hypocenters are all less 

than 12 km, whereas many of the catalog depths are deeper than this, 

down to 23 km. This is because the standard locations are determined 

with an average southern California velocity model that does not include 

the thick layer of low-velocity sedimentary rocks at the surface in the 

Imperial Valley. The dashed box in Figure 2-2 shows the source area 

that we chose to investigate, 41/2 km by 11/2 km. The box includes the 

three preshocks shown in Figure 2-1, five additional preshocks for which 

digital data are available, and five aftershocks (Table 2-2). Local 
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Figure 2-2. Relocated epicenters for all M1>2.0 events in the solid box 
from July 1, 1973, to July 31, 1980. The mainshock 
location of Chavez et al. (1982 ) (star) was used as a 
master event for the relocations. The dashed box encloses 
the events selected for study (Table 2-2). 
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TABLE 2-2. Relocated Hypocenters in Dashed Box in Figure 2-2 

Date Time Latitude Longitude Depth,km ML 

May 13, 1974 1744:48.58 32°36.77' 115°15.87, 9.4 2.2 * 
April 9, 1976 2347:52.46 32°36. 73' 115°16.56' 9.5 2.2 * 
Aug. 28, 1977 1607:40.62 32°36. 85' 115°16.31' 9.4 2.4 
Sept. 15, 1977 2016:56.41 32°36. 40' 115°15. 95' 9.1 2.4 
June 8, 1978 0015:31.49 32°36.69' 115°15.93' 9.3 2.4 
Aug. 4, 1978 0059:58.29 32°37.01, 115°16.24' 9.5 2.4 
May 11, 1979 1924:32.78 32°36.84' 115°16. 20' 9.6 2.4 
Aug. 7, 1979 1637:32.59 32°37.21' 115°16.42' 9.9 2.5 
Aug. 25, 1979 0440:46 . 01 32°36.54, 115°16.19' 9.6 2.5 
Sept. 10, 1979 1527:00.35 32°36. 72' 115°15. 93' 9.4 2.2 
Oct. 17, 1979 1106:50.72 32°37. 69' 115°16. 78' 8.7 2.0 
Oct. 27, 1979 2154:40.78 32°37.12' 115°16.81, 7.6 2.8 
Nov. 10, 1979 2035:42.97 32°37.91' 115°17.53' 9.5 2.6 
Dec. 17, 1979 0918:17.33 32°36.56' 115°16.17, 10.0 2.5 
May 21, 1980 0853:55 .94 32°36. 52' 115°15.64' 9.2 2.0 

* Digital data unavailable 
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magnitudes range from 2.2 to 2.5 for the preshocks and from 2.0 to 2.8 

for the aftershocks. The calculated depths, although not well 

constrained, are all in the range 7-10 km. 

A second region of interest is shown by the small solid box just 

north of the border in Figure 2-1. We decided to select a cluster of 

events for study from this section of fault because (1) coseismic and 

postseismic surface displacements were largest there, (2) strong motion 

modeling by Hartzell and Helmberger (1982) and LeBras (1981) suggests 

large subsurface slip in this area, up to 2.5 m, and (3) this section of 

fault straddles the boundary between the Brawley seismic zone to the NW 

and a 10-15 km nearly aseismic zone along the Mexican border, which 

separates the 1979 mainshock epicenter from the 1940 epicenter (Johnson 

and Hutton, 1982). The relocation procedure for this box was the same 

as for the box to the south except that the master event used was a 

well-located ML 2.7 preshock on December 7, 1978, from the NW end of the 

box. Sixteen stations were used, all at distances less than 90 km. The 

absolute value of the average travel time residual for these master 

event relocations was 0.05 sec or less at 15 out of the 16 stations. 

The average residual for the other station was 0.20 s, probably because 

the first arrival was missed in some cases. 

Figure 2-3 shows relocated epicenters of all ML>2.0 events from 

this area for the period January 1977 through March 1981. The relocated 

epicenters are again more tightly grouped along the fault trace, and 

many of the locations are several kilometers shallower than those in the 

catalog because of the different velocity model used. Because most of 
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Relocated epicenters for all M1)2.0 events in the solid box 
from January 1, 1977, to March 31, 1981 . The master event 
used was an M1 2.7 preshock on December 7, 1978, located 
within the area selected for detailed study (dashed box). 
Magnitude key same as in Figure 2-2. 
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TABLE 2-3. Relocated Hypocenters in Dashed Box in Figure 2-3 

Date Time Latitude Longitude Depth,km ML 

Dec. 14, 1977 0317:27.72 32°45. 49' 115°25.7 5' 9.0 2.0 
Feb. 24, 1978 0636:38.37 32°44. 93' 115°25.44' 4.4 2.4 
Feb. 24, 1978 0638:10.06 32°44. 83' 115°25.44' 9.4 2.1 
Feb. 24, 1978 0758:27.44 32°44. 99' 115°25.69, 10.1 2.0 
Dec. 7, 1978 2213:22.18 32°45.49' 115°25.44' 10.2 2.7 + 
Dec. 8, 1978 0202:00.93 32°45.08' 115°25.19' 10.2 2.4 
Dec. 8, 1978 0838:23.01 32°45. 74' 115°25.61' 11.2 2.8 
Dec. 8, 1978 0842:18.57 32°45.49' 115°25.44' 10.1 2.6 
Dec. 8, 1978 0847:48.47 32°45.49' 115°25.44' 10.4 2.7 
Dec. 9, 1978 0217:41.62 32°45.24' 115°25.38, 10.9 2.8 
Oct. 16, 1979 0048:03.41 32°45. 32' 115°25.13' 10.1 3.1 ** 
Oct. 16, 1979 0953:47.57 32°45. 49' 115°26.07, 10.1 2.7 * 
Oct. 16, 1979 1703:33.04 32°45. 56' 115°26.06' 9.6 2.5 
Oct. 16, 1979 1916:51.95 32°45. 60' 115°25.56' 10.1 2.6 
Oct. 17, 1979 0506:42.96 32°45.05' 115°25.39' 10.1 2.1 
Oct. 17, 1979 0937:59.16 32°45.16' 115°25.34' 10.1 2.7 
Oct. 17, 1979 2307:03.62 32°45.28, 115°25.00' 10.6 2.2 
Oct. 19, 1979 0310:44.19 32°45. 43' 115°25.57, 10.1 2 . 6 
Oct. 22, 1979 1922:27.44 32°45.67, 115°25.71, 10.1 2 . 2 
Oct. 24, 1979 0552 :51. 21 32°45.10' 115°25. 53' 9.6 2.3 
Oct. 24, 1979 0619:04 . 68 32°45.69' 115°25.57, 10.1 2.7 ** 
Oct . 26, 1979 0911 :1 6 . 68 32°45.39' 115°25.32' 10.9 2.5 
Oct . 28, 1979 0203:43.33 32°45. 23' 115°25.54, 10.1 2.2 
Oct. 28, 1979 1621:31.41 32°45. 46' 115°25.44' 10.2 2.0 ** 
Oct. 29, 1979 0204:53.55 32°45.49' 115°25. 30' 9.6 2.3 ** 
Oct. 29, 1979 0647:55.70 32°45. 49' 115°25.46' 10 .1 2.7 
Oct. 30, 1979 2101:48.34 32°45. 36' 115°25.54' 10.1 2.7 
Oct. 31, 1979 1708:34.17 32°45.08' 115°25.56' 10.8 2.3 
Nov. 2, 1979 2145:29.24 32°45.66' 115°25.63' 10.1 2.7 
Nov. 7, 1979 0200:54.77 32°44. 95' 115°25.22' 10.1 2.4 
Nov. 7, 1979 1426:33.31 32°45.71, 115°25. 70' 10.1 2.2 
Nov. 7, 1979 1433:22.70 32°45.7 3' 115°25. 62' 10.1 2.2 
Nov. 9, 1979 2303:57.35 32°45.37' 115°25 . 48, 10 .1 3. 0 ** 
Nov. 10, 1979 0 223:41.73 32° 45.27' 115° 25. 26 ' 10 .1 2 . 2 
Nov. 11, 1979 1532:45.66 32° 45. 42' 115°25. 32' 10.2 2.7 
Nov. 11, 1979 1559:23.47 32°45.49' 115°25.31, 10.7 2.4 
Nov. 16, 1979 1435:04.95 32°44. 93' 115°25.31' 9.1 2.4 
Nov. 19, 1979 1845:00.31 32°44.86' 115°25.37, 10 . 7 2.8 
Nov. 25, 1979 0856:31.20 32°45.47' 115°25.46' 10.1 2.1 
Feb. 25, 1981 2021:02.53 32°45.06' 115°25.44, 10.1 2.1 

+ Master event 
* Digital data unavailable 
** Unuseable (multiple event) 
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the preshocks which we relocated were near the NW edge of the box, we 

selected the subset of events within the 11/2 by 2 km dashed box (Figure 

2-3) for study. These events, 10 preshocks and 30 aftershocks, are 

listed in Table 2-3. Six of the aftershocks could not be used, either 

because seismic waves from another aftershock were arriving concurrently 

or because CEDAR data were not available. The magnitude range for both 

the preshocks and the useable aftershocks is 2.0-2.8. The depths of 

most of the events are 9-11 km. In general, these hypocenters are more 

accurate t han those from south of the border (Table 2-2 and Figure 2-2) 

because the stations are closer and better distributed in azimuth. 

Selection of stations for waveform and spectral studies was 

complicated by clipping of some of the signals during telemetry and by 

changes in instrumentation during the time period of interest. Changes 

in instrumentation implemented at most of the southern Imperial Valley 

stations on July 17, 1979, unfortunately rendered them unuseable for our 

purposes. At this time ·, Airpax discriminators were replaced with 

modified J-101 discriminators equipped with antialiasing filters. Since 

the Airpax discriminators showed considerable variation in frequency 

response from one unit to another (C. Koesterer, personal 

communication, 1980), it would have been difficult to correct for the 

change by digital filtering. Modified J-101 discriminators were also 

installed at stations in the southeastern Mojave desert several months 

earlier. Some of these stations, however, were previously equipped with 

unmodified J-10 1 discriminators, for which the response is well known. 

Using analytic expressions for the modified and unmodified system 
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JIOI (FILTERED) 

MODIFIED 

SEC 
JIOI 

JIOI (FILTERED) 

J 101 

Figure 2-4. Test of digital filter to compensate for change of 
instrumentation. Traces labeled J-1 01 were re corded 
t hrough J-101 discriminators, and those labe l ed J-101 
modified were recorded through modified J-101 
discriminators. Traces labeled J-101 (filtered) were 
recorded through J-101 discriminators and then filtered 
with a digital filter that approximates the modifications 
made to the J-101. The examples shown are from an M1 1.8 
event on May 26, 1978, near San Gorgonio Pass. Top records 
are from station WWR (6=10 km), and bottom records are from 
station RMR (6=34 km). 
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responses from Archambeau (1979), we designed a time-domain digital 

filter to mimic the instrumentation change. Figure 2-4 shows a test of 

this filter. The top seismogram in each group was recorded using the 

unmodified instrumentation, and the bottom one was recorded using the 

modified instrumentation. The second trace is the digitally filtered 

version of the first trace, and in both cases it resembles the third 

trace quite closely. This procedure is valid as long as the original 

signal does not contain significant energy above 25 Hz, the Nyquist 

frequency of CEDAR. 

Good recordings of most of the events in Tables 2-2 and 2-3 were 

available at three stations for which it was possible to correct for the 

instrumentation change: YMD, CH2, and LTC (Figure 2-1). The 

standardized frequency response of these instruments is reasonably 

broadband, within a factor of 4 of the peak amplitude response (near 7 

Hz) over the range 1-16 Hz (Archambeau, 1979). These stations were used 

f or the studies of waveform and spectra discussed in the following 

sections. 

Waveforms and Focal Mechanisms 

Seismograms for events in the dashed box in Figure 2-2 (Table 2-2) 

are shown in Figures 2-5, 2-6, and 2-7. The change in instrumentation 

has been corrected for, and the instrument response has been deconvolved 

in the passband 1-16 Hz. Horizontal lines separate the pr e shocks fr om 

the aftershocks. At all three stations, the preshocks show remarkable 

similarity in waveform and in relative arrival times and amplitudes of 



YMD 5 SEC 8/28/77 

8/4/78 

12/17/79 

Figure 2-5. Vertical component seismograms recorded at YMD (6~68 km) 
for earthquakes from the dashed box in Figure 2-2. The 
instrument response has been deconvolved in the passband 
1-16 Hz. Seismograms are plotted with the same maximum 
amplitude and positioned horizontally according to the 
recalculated origin times. Note that the preshock records 
are all very similar to one another, whereas the 
aftershocks show more variability. 
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CH2 5 SEC 

12/17/79 

5/21/80 

~~~~Vr~~ 

Figure 2-6. Deconvolved seismograms recorded at CH2 (~=76 km). See 
Figure 2-5 for explanation. The data gap during the 
arrival of the third prominent phase from the September 10, 
1979, event was caused by a disk drive failure . 
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uc 5 SEC 

Figure 2-7. Deconvolved seismograms recorded at LTC (~=99 km). See 
Figure 2-5 for explanation. The data gap at ~7 sec after 
arrival of the P wave from the September 10, 1979, event 
was caused by a disk drive failure. 
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various phases over the entire record length (-30 s). Because the 

character of the record is controlled by scattering from velocity 

heterogeneities in the crust, the similarity of the waveforms implies 

similar source mechanisms and hypocenters within 1/4 of the shortest 

wavelength to which the similarity extends (Geller and Mueller, 1980). 

Available first motion data for the preshocks support the inference of 

similar source mechanisms (Figure 2-8), but by themselves are inadequate 

to constrain the solutions. However, SV/P amplitude ratios for these 

preshocks at station BON (6=9 km), together with the available first 

motions, suggest right-lateral strike-slip on a NW-striking plane or 

left-lateral strike-slip on a NE-striking plane (C. Jones, personal 

communication, 1980). 

Seismograms of preshocks from this area are much more similar to 

one another at each station than seismograms of aftershocks. To 

demonstrate this, we cross correlated the seismograms. The normalized 

cross-correlation function cxy(m) for two real time series x and y of 

length N i s given by 

1 L x(n)y(n+m) - x(n) y(n+m) 
n N-lm l 

where the bar indicates the mean 

x(n) 1 L x(n) 
n N-lml 

and the summat i on is from n=O to n=N-m-1 for ~0 and from n= lml to n=N-1 

for m<O. The maximum of c (m) for lmi(N/4 for each pair of conse cutive xy 
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FIRST MOTION OF P-WAVE 

BON 
BSC 
COA 
SGL 
RUN 
PLT 
AMS 
GLA 
SUP 
YMD 
PIC 
CRR 
CH2 
IKP 

•• 00 0~ 
•• •• LTC 0 0 0 0 0 

GOOD FAIR 

COMPRESSION e • 
DILATATION 0 o 

Figure 2-8. First motion readings for events shown in Figures 2-5, 2-6, 
and 2-7. 



events is plotted versus time in Figure 2-9. These graphs show clear 

changes at the time of the mainshock, indicated by the vertical bar. 

Figure 2-10 shows for all possible event pairs the mean of the maximum 

cxy(m) values calculated for the three different stations. Each mean 

peak correlation is represented by a circle, where the radius of the 

circle is proportional to the mean peak correlation value. Values 

greater than or equal to 0.6 are shown by open circles and smaller 

values are shown by solid circles. It is evident from this figure that 

the preshocks display much greater coherency in waveform than do the 

aftershocks. The average peak correlation between preshocks (upper left 

box) is 0.74, whereas mean peak correlations between aftershocks (lower 

right box) are all small, less than 0.3, with an average value of only 

0.23. The last two aftershocks correlate more strongly with the 

preshocks than the first three aftershocks do, but still not as strongly 

as most preshocks correlate with each other. 

Examples of the cross-correlation function c (m) are shown in xy 

Figure 2-11. For well-correlated pairs of seismograms (top four 

examples), this function is sharply peaked near lag m=O sec. For 

poorly-correlated pairs of seismograms (bottom four examples), this peak 

is small or nonexistent. Thus, the maximum value of cxy(m) appears to 

be a robust measure of the similarity of two seismograms. 

As mentioned above, the similarity of the preshock waveforms places 

a strong constraint on the maximum distance between the hypocenters. To 

help quantify this constraint, we cross correlated selected pairs of 

seismograms after bandpass filtering them in four one-octave passbands. 



-69-

• \._ ~ 
YMD 

0.5 \ 

\ 
c 
0 -0 

0 Q) 
~ CH2 ~ 

0 
u 

0.5 
E 
::J 

E 0 
X • \---- ' LTC 0 
~ 

0.5 \ 

\ 

0 
1978 1979 

Figure 2-9. Maximum cross correlation between each seismogram in 
Figures 2-5, 2-6, and 2-7 and the one directly above it, 
plotted as a function of time. The vertical bar mark s t he 
time of the mainshock. Solid circles are correlation 
coefficients corresponding to time lags where the phases 
are properly aligned. Open circles correspond to lags 
where the phases are not properly aligned, and hence 
represent upper limits to the maximum correlation in the 
sense that these numbers would decrease if the range of 
allowable lags (±1/4 of the record length) was decreased. 
Thirty seconds of record were used in the cross-correlation 
calculations, except for the December 17, 1979, event. 
Dashed lines indicate intervals containing earthquakes that 
could not be included in this analysis because the records 
were unavailable or unuseable because of data gaps (see 
Figures 2-6 and 2-7). 
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CR~SS-C~RRELATI~N MATRIX 
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0.2 1. 0 

enetn 

fU1.5/77 

E>tene 

etu7e 

5/11179 

817179 

8/2.5179 

9/10179 

10/17179 

10127179 

11/10179 

12./17179 

5/21./8Cl 

Figure 2-10. The mean of the maximum cross correlations calculated for 
seismograms from YMD, CH2, and LTC for all possible pairs 
of events in Figures 2-5, 2-6, and 2-7. Each circle 
represents the mean peak correlation for the event pair 
corresponding to its position in the matrix . The radius 
of the circle is proportional to the correlation value. 
Circles representing values less than 0.6 are solid. 



z 
0 
~ 
<! 
...J 
w 
a:: a:: 
0 
u 
I 

(f) 
(f) 

0 
a:: 
u 

-71-

5 -5 

LAG, SEC 

8/28/77 X 
9/1 5/77 

~~~ 

9/15/77 X 
6/8/78 

10/17/79 X 
10/27/79 

10/27/79 X 
11110/79 

5 

Figure 2-11. Cross-correlation functions calculated from records at YMD 
(left) and LTC (right) for two pairs of preshocks (top two 
sets) and two pairs of aftershocks (bottom two sets). 



Figure 2-12 shows cross correlations between filtered seismograms for a 

pair of preshocks (left) and a pair of aftershocks (right). The peaks 

of these cross-correlation functions are well above the noise for 

well-correlated events, such as the example on the left in this figure. 

The peak cross correlations between filtered traces are shown in Figure 

2-13 for the event pairs in Figure 2-12 and four other pairs, including 

the least well-correlated pair of preshocks (June 8, 1978; August 4, 

1978). Peak cross correlations for the unfiltered, deconvolved 

seismograms are shown for reference by the solid symbols at the left of 

each graph. The preshocks (top four graphs) are well correlated (peak 

correlations generally )0.6) up through at least the 2-4 Hz frequency 

band, whereas the aftershocks shown (bottom two graphs) are not well 

correlated at any frequency. The near-source P-wave velocity is about 6 

km / sec (Tables 2-1 and 2-2) and the S-wave velocity is probably of the 

order of 3.4 km/sec. At 4 Hz the wavelengths are therefore -1500 m for 

P waves and -850 m for S waves. The similarity of preshock waveforms at 

these wavelengths and longer implies a maximum event separation of 1 /4 

wavelength, approximately 200-400 min this case. 

The greater diversity of aftershock waveforms may be due to several 

factors such as greater variability in location, size, source mechanism, 

or pattern of stress release. However, there is very little difference 

in magnitude among these events (Table 2-2) and any changes in mechanism 

must be small because they are not reflected in the first motion data 

(Figure 2-8). The rupture time for magnitude 2-3 events is only a few 

tenths of a second long, so at the frequencies which dominate in these 
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8/28/ 77 X 9/1 5/ 77 10 11 7/79 X 10/ 27179 
~------------~ r-----~r-----~ r--------------. r--------------. 

YMD LTC YMD LTC 1.5 HZ 

-0.5 

-5 0 5 - 5 0 5 -5 0 5 -5 0 5 

LAG, SEC 

Figure 2-12. Cross-correlation functions calculated after bandpass 
filtering the deconvolved seismograms in the passbands 
1-2, 2-4, 4-8, and 8-16 Hz with third-order re cur sive 
Butterworth filters. Results are shown for stations YMD 
and LTC for a pair of preshocks (left two columns) and a 
pair of aftershocks (right two columns). 
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02 • • 

9/15/77 

8/7179, 

8/ 25/79 

10/17/79, 
10/ 27/79 

~ 
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• • 

9/15177, 
6/ 8/78 

• 

• 

6/ 8/78, 
8/4/78 

10/ 27179, 
11/10/79 

L5 3 

.t.Y MD 
e CH2 
• LTC 

6 12 

CENTER OF ONE- OCTAVE PASSBAND (Hz) 

Figure 2-13. Maximum cross correlations between filtered records (open 
symbols) for selected pairs of preshocks (top four graphs) 
and aftershocks (bottom two graphs), including the 
examples in Figure 2-12. Maximum cross correlations for 
the unfiltered, deconvolved (1-16 Hz) seismograms are 
shown for reference by the solid symbols at the left of 
each graph. 



-75-

records, 3-6 Hz, the waveforms are insensitive to the details of the 

rupture and are instead dominated by the effects of structure and 

radiation pattern. It therefore appears that location is the dominant 

factor controlling the waveforms. This phenomenon is apparently below 

the resolution of even master event locations, because there is no 

obvious relationship between waveform and location within the study 

area. 

Seismograms of events from within the dashed box of Figure 2-3 

(Table 2-3) are shown in Figures 2-14 and 2-15. These are the original 

records except that some preshocks have been filtered to correct for the 

change in instrumentation. The numbers at the left of each seismogram 

show the maximum correlation between it and the seismogram above it. 

These numbers are plotted versus time in Figure 2-16, along with 

analogous peak correlations from station YMD . The mean peak 

correlations for all possible event pairs are shown in Figure 2-17 . 

The distinction between preshocks and aftershocks from this source 

region is not as obvious as for the events from near the epicenter in 

Figures 2-5 to 2-7. The average peak correlation for pairs of 

aftershocks (lower right box, Figure 2-17) is 0 .43, nearly the same as 

the average for the preshocks, 0.45 (upper left box). Nevertheless, a 

close examination of the data suggests that differences exist between 

the preshock and aftershock periods. Three of the 10 preshocks occurred 

in a swarm on February 24, 1978, and six occurred in a swarm on December 

7-9, 1978. The events within each swarm have very similar waveforms 

(most peak correlations >0.6), but different from those of the other 



CH2 PRESHOCKS 
2/24/78 0636 

""""""'--....... ~~·. ·..- ~!24f78 0638 

~---_....,"""/* ... ·J.-·· 2/24/78 0758 

.77 12/8/78 0202 

~~ 
. 12/8/78 0842 

·~~~ 
5 SEC 

AFTERSHOCKS 
10/16/79 1703 

10/16/79 1916 

10/17/79 0506 

10/17/79 0937 

10/17/79 2307 

10/19/79 

10/22/79 

10/24/79 

10/29/79 

·~···· ··~· .. 
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10/30/79 

10/31/79 
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·~ - . '~~""--'"" ______ _ 

Figure 2-14. Vertical component seismograms for earthquakes from dashed box in Figure 2-3, recorded 
at station CH2 (~ ~60 km). Seismograms are plotted with the same maximum amplitude and 
positioned horizontally within each column according to recalculated origin times. The 
numbers at the left of each seismogram show the maximum correlation between it and the 
seismogram above it. Thirty seconds of record were used in the cross-correlation 
calculations except for the February 24, 1978, 0636 event, where only 22 sec could be 
used because of the arrival of a P wave from another event . 
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Figure 2-16. Peak correlations from Figures 2- 14 and 2- 15 and analogous 
peak correlations from station YMD (~~85 km), plotted as a 
function of time . See Figure 2- 9 for explanation . Dashed 
lines indicate intervals containing earthquakes that could 
not be included in this analysis because the records we r e 
unavailable or unuseable due to interference from other 
events . 
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Figure 2-17. The mean of the maximum cross correlations calculated for 
seismograms from YMD, CH2, and LTC for all possible event 
pairs in Figures 2-14 and 2-15 . See Figure 2- 10 for 
explanation . 
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Figure 2-18. Same as Figure 2-17 except that the order of the 
aftershocks in the matrix has been rearranged. Boxes show 
one possible way t o classify the events according to 
waveform. 
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swarm and the December 14, 1977, preshock (Figures 2-14 to 2-17). Sets 

of like events are also present within the aftershock sequence. 

However, after the mainshock it appears that several sources became 

active at once so that no more than two to three consecutive aftershocks 

have peak correlations >0.6. 

Figure 2-18 shows the same data as Figure 2-17 except that the 

aftershocks are no longer chronological but have been rearranged to put 

similar events next to each other. This rearrangement effectively 

concentrates the larger circles near the diagonal. It is evident from 

Figure 2-18 that distinct groups of similar events exist among both the 

preshocks and the aftershocks, although there is s ome overlap between 

groups. The small boxes show one possible division of these earthquakes 

into groups. Only the preshock on December 14, 1977, and the 

aftershocks on Oc t ober 16, 1979, 1703; November 16, 1979; and 

February 25, 1981, appear not to have close counterparts in this data 

set. At least two of the aftershocks have waveforms similar to those of 

the last preshocks to occur. These preshocks, the swarm on December 

7-9, 1978, appear to be unique among these 34 events in terms of the 

number of consecutive earthquakes with similar waveforms. 

The December 7-9, 1978, events are furthermore distinctive among 

the preshocks in that only these events have first motions consistent 

with the mechanism of the mainshock (Figure 2-19). The December 7-9, 

1978, preshocks and about half of the aftershocks have first motions 

consistent with pure right-lateral strike-slip motion on a vertical 

fault plane striking N4 0°W, the approximate local strike of the Imperial 
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Figure 2-19. First motion readings for the events shown in Figures 2-14 
and 2-15. Open and solid circles same as in Figure 2-8 . 
Arrows indicate aftershocks for which first motion plots 
are shown in Figure 2-20 . Asterisks indicate events for 
which first motions are consistent with pure right- lateral 
strike-slip motion on a ver t ical fault plane striking 

0 N40 W, the approximate local strike of the Imperial fault. 
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2/ 24/78 
H=9. 4 KM 

10/ 17 /79 
H=10.1 Ktv't 

(b) 12/7-9/78 
H=10. 4 KM 

(d) 
M=2 . 7. 

11 / 11 /79 
H=10. 2 KM 

Figure 2-20. Lower hemisphere P-wave fault-plane solutions for selected 
preshocks and aftershocks. (a) Composite for t he February 
24, 1978, swarm. Hypocenter of 0638 event (Table 2-3) was 
used in calculating azimuths and takeoff angles. (b) 
Composite for the December 7-9, 1978, swarm. Hypocenter 
for the December 8, 1978, 0847 event (Table 2-3) was used 
in calculating azimuths and takeoff angles. (c) Mechanism 
for aftershock on October 17, 1979, 0937. (d) Mechanism 
for aftershock on November 11, 1979, 1532. Open and solid 
circles are as in Figure 2-8. Slip vectors, compression 
axes, and tension axes for the solutions shown are 
indicated by triangles. Contours enclose the locus of 
positions for slip vectors corresponding to solutions with 
the minimum number of readings in error. H is depth and M 
is local magnitude. 
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fault. These events are identified by asterisks in Figure 2-19. Figure 

2-20 shows composite first motion plots for the two preshock swarms and 

also plots for two representative aftershocks. The contours in Figure 

2-20 enclose the locus of positions for slip vectors corresponding to 

solutions with the minimum number of readings in error (zero for 

mechanisms a, c, and d and one for mechanism b). Figure 2-20d is 

typical of the aftershocks with asterisks in Figure 2-19 and Figure 

2-20c is typical of the other aftershocks, which have different first 

motions at one or more of the following stations: COA, SGL, RUN, and 

GLA. Although the mechanism shown in Figure 2-20c, like the rest, is 

not well constrained, the data are consistent with right-lateral 

strike-slip motion on a plane deviating only about 15° - 20° in strike 

from the average N40°W strike of the Imperial fault, as shown. It is 

therefore possible that all of the aftershocks in this set and the 

December 7-9, 1978, preshocks were associated with the main fault. On 

the other hand, the COmPOSite first motion plot for the February 24, 

1978, swarm excludes mechanisms with shallowly-plunging slip vectors 

trending NW or SE. This is because of different first motions at SNR, 

SUP , and PLT (Figure 2- 20a). Hence, these events and possibly the 

December 14, 1977, event may have occurred on a small nearby branch 

fault and not the main Imperial fault. If for this reason we exclude 

these preshocks from the data set, then the only preshocks remaining are 

the six in the December 7-9, 1978, swarm, which judging from their 

similarity in waveform must have occurred in a very tight cluster 

(<-112 km). 
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The aftershock first motion plots (Figures 2-20c and 2-20d) suggest 

0 0 changes in fault strike of ~15 -20 within the region of the dashed box 

in Figure 2-3. No evidence for this was seen in the surface rupture 

(R. V. Sharp, personal communication, 1981). However, it is 

interesting to note that the slip model of Hartzell and Helmberger 

(1982) that best fits the strong motion data includes a change in fault 

strike from N37°W to N25°W (going north) at this point. They added this 

bend and others farther north to reproduce the P waveforms at the 

station nearest the fault. Their proposed change in fault strike fits 

the changes in aftershock first motions quite well except that there is 

no correlation between mechanism type and location within the box. This 

may be attributable to location error, since a comparison between 

waveforms and hypocenters suggests that location within the box is not 

well resolved by travel times. 

True location appears to be the primary factor controlling the 

waveforms, as in the case of the events examined from near the mainshock 

e pice nt e r. The classification of events by waveform in Figure 2-18 

bears no relation to the magnitudes (Table 2-3). Radiation pattern may 

be of some importance given that waveforms from the first four preshocks 

do not correlate well with waveforms from later events (Figure 2-17) and 

that the mechanisms for these four preshocks apparently differ 

significantly from the others (Figures 2-19 and 2-20). However, the 

pattern of first motions for the rest of the events is similar, and the 

differences which do exist are sometimes present within groups having 

nearly the same waveforms at YMD, CH2, and LTC (e.g., the events on 
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October 19, 1979, and October 22, 1979). We therefore conclude that 

most families of similar events originate from small (< ~1/2 km), 

distinct source areas. 

Spectral Analysis 

Although the deconvolved records in Figures 2-5, 2-6, and 2-7 show 

no obvious preseismic or coseismic changes in frequency content, we 

decided to perform spectral analysis on them to search for more subtle 

changes. At least 30 sec of record is available in most cases, which 

makes it possible to look at frequency content of individual phases as 

well as for the record as a whole. The advantage of knowing the spectra 

for different parts of the record is that any observed changes in 

spectra from one event to another can be more easily interpreted. 

Changes in the attenuation or scattering properties of the medium are 

likely to affect P and S waves differently (Lockner et al., 1977), and 

might be especially noticeable in surface-reflected phases such as pP or 

sP. Frequency changes due to directivity effects would be strongly 

dependent on azimuth and/or takeoff angle. Changes in stress drop 

should cause similar frequency changes in all phases at all stations, 

although spectral content depends to some extent on the details of the 

stress release (Knopoff and Mouton, 1975). 

Figure 2- 21 is a record section illustrating the regional coherence 

of the three phases that we decided to study. Refraction studies in the 

Imperial Valley show several kilometers of sedimentary rocks at the 

surface (P-wave velocities less than 5.65 km/sec), underlain by a 
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'basement' probably composed of metasedimentary rocks (velocities of 

5.65-5.85 km/sec), which in turn is underlain by a 'subbasement' 

(velocities greater than 6.6 km/sec) inferred to be mafic intrusive 

rocks (Fuis et al., 1982; McMechan and Mooney, 1980). Based on this 

crustal model (Table 2-1), the P phase is probably a combination of a 

refracted ray from the subbasement (apparent velocity 7.0 km/sec), a 

direct ray, and turning rays from the basement-subbasement transition. 

The strong phase that arrives 3 to 31 /2 slater is tentatively 

identified as pP, but could also be sP. The phase with an apparent 

velocity of 3.6 km/sec is S. 

We analyzed frequency content by bandpass filtering the deconvolved 

seismograms using third-order recursive Butterworth filters (Rader and 

Gold, 1967). These filters are computationally efficient approximations 

to ideal bandpass filters. There are two ways to estimate spectral 

amplitudes from filtered seismograms. Let s(t) be the seismogram of an 

arrival beginning at t=O and let S(f) be its Fourier transform, where t 

is time and f is frequency. If s(t) is filtered with an ideal bandpass 

filter in the passband f
1 

to f
2

, the filtered seismogram sf(t) is given 

by 

2J f 2 [ ] IS(f)l cos arg[S(f)] + 2nft df 
fl 

Assume that IS(f)l is slowly varying over the 

range of frequencies f
1
(f(f

2
, such that IS(f)I~IS(f 0 )1, where 

f
0
=(f

1
+f 2)/2. Let arg(S(f))=A(f) and assume that A(f) can be adequately 

approximated by a first-order Taylor expansion about f
0

: 
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A(f) !:< A(f ) + A' (f )(f-f ) 
0 0 0 

With these approximations the integral becomes 

f 
sf(t) !:< 2IS(f )If 2 cos[2nft + A(f ) + A'(f )(f-f )] df 

0 f 0 0 0 
1 

Evaluating this integral gives an expression for the filtered arrival: 

Since the filtered arrival is approximately a cosine wave of 

amplitude 2IS(f
0
)l(f2-f

1
), modulated by a (sin x)/x function, IS(f

0
) l 

can be estimated by measuring the maximum amplitude of the complex 

envelope of the filtered data (Farnbach, 1975) and then dividing by 

2(f2-f 1). Figure 2-22 shows a deconvolved seismogram filtered in four 

one-octave passbands. Since the duration of the impulse response of the 

filter is inversely proportional to the bandwidth (see expression 

above), the higher-fr.equency passbands give better time resolution. 

Thus, at high frequencies there is often more than one peak within each 

phase (Figure 2-22). In such cases, we simply measured the amplitude of 

the complex envelope of the largest one. 

In order to avoid possible problems resulting from the variation in 

time resolution from one passband t o another, we decided to make a 

second estimate of spectral amplitudes by measuring root mean square 

amplitudes within time windows 2.0 sec long for P and pP and 2.5 sec 

long for S (Figure 2-22). If, as before, s(t) is a seismogram and S(f) 

is its Fourier transform, then by Parseval's relationship (Weinberger, 
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Figure 2-22. Deconvolved seismogram (top) filtered in four one-octave 
passbands. Time windows for spectral analysis of P, pP, 
and S phases are shown. 
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1965, p. 312) 

... ... L jS(f)j 2 df L js(t)j 2 dt 

lri the case of the filtered seismogram sf(t), 

2J f2 2 IS(f)l df 
fl 

li f
0 

is the center frequency of the passband and S(f)~S(f 0 ) for 

For a time series of N samples separated by time ~T, 

N 

.!. L lsf(n~T) 12 
N n=1 

1his expression can be used to estimate jS(f
0

)1 from the root mean 

square amplitude within a time window. 

Figures 2-23, 2-24, and 2-25 show the results of spectral analysis 

of the records in Figures 2-5, 2-6, and 2-7, respectively. The plots 

show IS(f >I at each station in three passbands as a function of time. 
0 

These have been normalized to the amplitudes in the lowest-frequency 

passband used, 1-2 Hz. The crosses are the spectral amplitude ratios 

from the maximum envelope amplitudes, and the circles are the ratios 

from the root mean square amplitudes. All of the amplitudes were 

corrected for noise level by subtracting from each measurement an 

estimate of the noise amplitude taken from the 6 sec of record 
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Figure 2-23. Spectral amplitudes as a function of time at station YMD 
for events from the dashed box in Figure 2-2. Graphs show 
average spectral amplitudes in the passbands 2-4, 4-8, and 
8-16 Hz for the whole record (30 sec except for the 
December 17, 1979, event, starting with the P wave) and 
for the phases P, pP, and S. All have been normalized to 
the amplitudes in the passband 1-2 Hz. The crosses are 
spectral amplitude ratios from envelope amplitudes, and 
the circles are the ratios from root mean square 
amplitudes. Vertical lines indicate the time of the 
Imperial Valley mainshock. 
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Figure 2-24. Spectral amplitudes as a function of time at station CH2 
(see Figure 2-23). 

0 

X 

;<.. 

~ 

0 



-94-

LTC 8 - 1 
0 

p 
2 3 0 

0 
X 

~~ 0 
~ o x ~ ~~ X X 

0 0~ 0 
0 

0 0 0 X 

pP 
0 0 

5~ X~ X 
1 ~ 0 

X .1 X X~ X X 

0 0 0 
0 

s 0 0 

1 ~ s~ 0 2-R X 

~~ ~ ~ X~ X ~ 

0 0 0 
R 
E 1 ~ 0 2 0 

0 

c 00 0 oo 0 

0 0 

Figure 2-25. Spectral amplitudes as a function of time at station LTC 
(see Figure 2-23). 
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immediately preceding the P wave. Data for which the signal-to-noise 

ratio was less than three were not used. The time of the Imperial 

Valley mainshock is indicated by the arrows and vertical lines on the 

figures. The rows across correspond to P, pP, S, and the whole record 

(30 sec except for one event, beginning with the P wave). Although 

there is some scatter, all of the spectral amplitude ratios at all 

stations are stable with time. Thus, no temporal changes in frequency 

content from 1-16 Hz are observed for these records. 

Several investigators (e.g., Saito and Masuda, 1981; Frankel, 

1981 Archuleta et al., 1982) have presented evidence for a decrease 

in stress drop with moment for small earthquakes (ML< -3). These 

studies emphasize the importance of the relationship between event size 

and spectrum. This relationship is not very obvious in our data when 

spectral amplitude ratios are plotted versus amplitude in the lowest 

frequency passband used, 1-2 Hz. We therefore consider the variation in 

event size to be small enough so that it contributes relatively little 

to the scatter in Figures 2-23 to 2-25. 

The seismograms of events from the second source area studied 

(Figures 2-14 and 2-15) show considerable variation in frequency 

content, with no overall temporal trends apparent. Within the December 

7-9, 1978, swarm, however, seismograms of the later events appear to 

have more high-frequency energy than those of the earlier events. This 

observation is confirmed by spectral amplitude ratios for the whole 

record determined by the methods described above. Figure 2-26 shows 

these ratios as a function of event number for both preshock swarms. 
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Figure 2-26. Spectral amplitudes derived from the root mean square 
amplitude of the whole record for preshock swarms from 
dashed box in Figure 2-3. These have been normalized to 
the amplitudes in the passband 1-2 Hz. Thirty seconds of 
record was used in these calculations except for the 
events noted in the captions for Figures 2-14 and 2-15 . 
The effect of the instrume nt response has not been 
removed, but is the same for all records. 
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During the December 7-9, 1978, swarm the 8-16 Hz spectral amplitude 

increased relative to the 1-2 Hz spectral amplitude by about a factor of 

3 at both stations CH2 and LTC. (Ratios from YMD are not shown because 

this station was not operating for most of the preshocks.) The other 

spectral ratios for this swarm are either stable with time or else show 

small increases (e.g., 4-8Hz/1-2Hz at LTC). Examination of the 

bandpass filtered records shows that the trends toward higher frequency 

with time occur over the entire record length. This suggests a 

systematic increase in stress drop during the December 7-9, 1978, swarm, 

assuming that simple kinematic source models (Aki and Richards, 1980, 

chapter 14) are applicable, because the variation in magnitude for these 

events is small and, in any case, random with time (Table 2-3). The 

February 24, 1978, events are clearly enriched in high frequency (4-16 

Hz) relative to the December 7-9, 1978, events and show no temporal 

changes in spectra. These events, however, have predominantly dip-slip 

mechanisms (Figure 2-20a) and may not be associated with the Imperial 

fault, as discussed in the previous section. 

In summary, there are no consistent spectral differences between 

preshocks and aftershocks in the frequency band 1-16 Hz. Thus, we find 

no evidence for coseismic changes in stress drop or apparent 

attenuation. During the tightly clustered preshock swarm on December 

7-9, 1978, there is some indication of a systematic increase in stress 

drop. This was not observed for the preshock cluster near the mainshock 

epicenter. It appears that if there are increases in stress drop due to 

concentration of stress on unbroken asperities, they are not always 
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observable over these short time periods, even when the events have very 

similar mechanisms and locations within a few hundred meters. When the 

events are scattered over even a few kilometers, local heterogeneities 

in stress and velocity structure could mask this hypothesized effect if 

it is small. The relatively high-frequency events which preceded the 

1971 San Fernando and 1952 Kern County earthquakes began about 2 years 

before these earthquakes (Ishida and Kanamori, 1978; 1980), so in some 

cases the detection of changes in average stress drop may require a 

longer period of observation than was available for this study. 

Discussion 

We find much stronger evidence to support the prediction of the 

asperity model regarding waveforms than the prediction about spectra. 

In particular, the waveform data show that the preshocks of the Imperial 

Valley earthquake originated from a relatively small number of highly 

localized sources in comparison to the aftershocks. This observation 

can be explained quite well by a version of the asperity model outlined 

in the introduction. In this model, immediately after a large 

ear t hquake the fault surface cannot slip because it is pinned at a large 

number of geometrical or mechanical irregularities, i.e., the 

asperities. Small earthquake activity is concentrated along these 

asperities, which decrease in number as the weaker ones fail under 

increasing stress. If we assume, for simplicity, that each small 

earthquake represents the failure of one discrete asperity, then groups 

of similar earthquakes represent failures of tightly clustered sets of 
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asperities. The larger clusters of asperities might be expected to fail 

last since they would be stronger than isolated asperities or smaller 

clusters, other things being equal. However, variations in the loading 

stress and in the strength and number of asperities are all likely to be 

important factors in determining the order in which the asperities fail. 

An alternative interpretation of the waveform data is that each cluster 

represents one asperity, and the stronger asperities which tend to be 

the last to fail require more events to completely fracture them. In 

either case when most, but not necessarily all, of the asperities have 

broken then the fault becomes unstable and large-scale slip can be 

triggered by the failure of a critical asperity, as discussed by Brune 

(1979), Kanamori (1981), and Das and Aki (1977). 

Although we did not determine source parameters such as moment and 

stress drop for these events, standard scaling relations indicate that 

our conclusions about clustering do not imply unreasonable values for 

these parameters. Consider the case of the eight preshocks near the 

mainshock epicenter. From the similarity of waveforms we infer a 

maximum source separation of 200-400 m. If we assume that these events 

broke adjacent fault segments without significant overlap of the rupture 

areas, then the average rupture area per event is either n(200/2) 2/8 

3.9 X 103 m2 or n(400/2)2/8 = 1.6 X 104 m2, depending on which value we 

take for the maximum separation. This gives an estimated average 

rupture radius of about 35-70 m. These events have remarkably similar 

magnitudes, within ±0.2 of ML 2.4. Applying the empirical 

moment(M
0

)-magnitude relationship of Wyss and Brune (1968) and Thatcher 
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and Hanks (1973), 

log M
0 

= 1.5M1 + 16.0 

we estimate the moment of these events to be of the order of 4 X 1019 

dyne-em. The stress drop 60 for an earthquake of moment M
0 

on a 

circular fault of radius r is given by 

6o 

(Eshelby, 1957; Keilis-Borok, 1959). Applying this expression, we get 

a stress drop for these events of approximately 50-400 bars. This is 

consistent with the results of Hartzell and Helmberger (1982), who 

estimate an overall stress drop for the mainshock of about 5-10 bars but 

localized stress drops of about 200 bars. 

The calculated depths for both preshocks and aftershocks are 

concentrated within a surprisingly narrow range: 8-10 km for the 

southern study area (Figure 2-2, Table 2-2) and 9-11 km for the northern 

area (Figure 2-3, Table· 2-3). Although the depths of events from south 

of the border may not be well constrained, the station distribution 

around the northern study area is reasonably favorable (Figure 2-19) and 

nearly all of the locations are quality B, which implies vertical errors 

of less than 5 km (Lee and Lahr, 1975; Lee et al., 1979). Furthermore, 

the depths of several nearby aftershocks determined by P. German 

(personal communication, 1982) with the aid of arrival times from both 

temporary and permanent stations are all between 8 and 9 km. These 

depths agree very well with those in Table 2-3. 

The depths of the preshocks and aftershocks may give some clue as 
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to the nature of the assumed asperities or the distribution of stress. 

In both areas studied the events are concentrated within the lowermost 

few kilometers of the basement, which appears to be composed of 

metamorphosed sedimentary rock. The boundary between the basement and 

the subbasement, inferred to be mafic intrusive rock, dips about 4°NW 

along the axis of the Salton Trough (Fuis et al., 1982 ; McMechan and 

Mooney, 1980). One speculative hypothesis is that the asperities are 

related to irregularities in the basement-subbasement transition zone, 

which is being offset by the Imperial fault. Another possibility is 

that the asperities are evenly distributed and the concentration of 

activity near 10 km is due to a concentration of stress near the depth 

of the transition from brittle to ductile deformation. This transition 

is believed to occur near 10 km because this is the approximate depth of 

the seismic zone in the southern Imperial Valley and also the 

approximate depth to which faulting during the 1979 Imperial Valley 

earthquake extended (Hartzell and Helmberger, 1982) . Stresses could be 

higher near this boundary if basal s hear is i mportant as a driving or 

resistive force. A third possibility is that the 1940 earthquake 

relieved mos t of the stre ss across the upper part of t he fault in the 

regions studied. This would be consistent with the concentration of 

slip below 5 km in the model of Hart zel l and Helmberger (1982) and also 

the lack of surface faulting near the 1979 epicenter. A more 

comprehensive study of the depth distribution of earthquakes along the 

Imperial fault might help to resolve some of these questions . 

There is a significant difference between the temporal distribution 
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of the preshocks that we studied near the mainshock epicenter and those 

10-12 km north of the border. The preshocks in the southern study area 

were spread out more or less uniformly over the time period examined, 

1977-1979 (Table 2-2). In contrast, all of the preshocks in the 

northern study area with strike-slip mechanisms occurred during a 3-day 

swarm. In the context of the one asperity/ one earthquake model 

described above, these observations suggest that the asperities in the 

northern study area were comparatively weak, because the failure of one 

asperity apparently triggered the rapid failure of several others close 

by. The much larger number of aftershocks in the northern study area 

could also be explained by a tendency toward weaker and/or more numerous 

asperities there, but may also reflect a deficiency of coseismic slip 

along that section of fault as suggested by Hartzell and Helmberger 

(1982). 

Although we favor the asperity model as an explanation for the 

waveform data, there are other models that can account for the change in 

waveform similarity at the time of the mainshock. Our model is 

crucially dependent on the assumption that the preshocks and the 

aftershocks we studied represent slip along the main fault. However, 

there is evidence that much of the small earthquake activity along the 

seismogenic zone linking the Imperial fault to the southern end of the 

San Andreas fault is assoc iated with structures transverse to the trend 

of this zone and to the Imperial and Brawley faults (Figure 2-1) 

(Johnson and Hadley, 1976; Johnson, 1979; Johnson and Hutton, 198 2; 

Hutton and Johnson, 1981). Earthquake swarms along these transverse 
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structures may be activated by creep events on connecting faults 

(Johnson and Hadley, 1976; Johnson, 1979). If these transverse 

structures also exist along the central portion of the Imperial fault 

where our study areas are, then some or all of the preshocks and 

aftershocks could be associated with them. C. Johnson (personal 

communication, 1982) has suggested that the greater variety of 

aftershock waveforms could be explained by the simultaneous activation 

of many different transverse structures by the coseismic and postseismic 

movement along the Imperial fault. Since our study areas are only a few 

kilometers long, this hypothesis requires a much higher density of 

transverse features than can be inferred to exist from the pattern of 

epicenters in the seismogenic zone to the north. 

To help resolve which model best explains the difference between 

Imperial Valley preshocks and aftershocks, it is important to determine 

whether normal 'background' seismic activity is more like the 

aftershocks or the pres.hocks we studied. Some models, such as 

J ohnson 's , suggest that the diversity of small earthquake waveforms 

after the mainshock is temporary and that background seismicity and 

preshocks are both characterized by small-scale spatial clustering of 

successive events. The asperity model predicts in most cases a more 

gradual change from one waveform pattern to the other during the 

intervals between large earthquakes. Unfortunately, only a few studies 

of comparative waveform have been done, and these generally cover short 

periods of time. One of the more long-term data sets is that of Ishida 

and Kanamori (1978), who collected Wood-Anderson se i smograms recorded at 
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Pasadena for all M1<3 events which occurred within 15 km of the 

epicenter of the 1971 San Fernando earthquake (6-40 km) during the 

period 1961-1971. Master event locations for this region show diffuse 

seismicity from 1961-1964, quiescence from 1965-1968, and clustering 

near the eventual hypocenter from 1969-1970. This pattern was confirmed 

by visual inspection of the waveforms, although Ishida and Kanamori note 

that it is much more obvious on the EW component than on the NS 

component. We applied our cross-correlation tests to the hand-digitized 

records of Ishida and Kanamori. The results are shown in Figures 2-27 

and 2-28. Because of digitization noise and because only -9-11 sec of 

record had a large enough amplitude to be digitized in most cases, these 

cross correlations are not as reliable as those performed with CEDAR 

data. Nevertheless, Figures 2-27 and 2-28 confirm the observations of 

Ishida and Kanamori that the events during 1961-1964 exhibit a greater 

variety of waveforms than those during 1969-1970, at least on the EW 

component. On the EW r 'ecords, the last four events before the mainshock 

have very high peak correlations (-0.75), as do the first three events 

in 1961. Peak correlations between EW seismograms of other pairs of 

consecutive events are all less than 0.6 (Figure 2-27). The averages of 

the NS and EW maximum cross correlations for most of the event pairs are 

less than 0.6, except for average peak correlations among the last four 

events, the first three events, and events three through five (Figure 

2-28). These results suggest that tight clustering of hypocenters of 

consecutive events does not occur very often, even if such clustering is 

not limited to the time period immediately before large earthquakes. 
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Figure 2-27. Maximum cross correlation between seismograms of 
consecutive events within a 15-km radius of the epicenter 
of the 1971 San Fernando earthquake, plotted as a function 
of time . Seismograms are shown in Figs. 2 and 3 of Ishida 
and Kanamori (1978) . 9-11 sec of record were used in most 
cases, beginning with the S wave. Seismograms were 
recorded on Wood-Anderson torsion instruments located at 
Pasadena (6~40 km). 



-106-

CR~SS-C~RRELRTI~N MATRIX 
OO••• • • • • • • • • • • • • • • • 0 O••• • • • • • • • • • •• • • • • 

00 eo• • • •• • • • • • • • • • • • • • • O• • • • • • • • • • • • • • • • • • 00 • • • O•••• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • O• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • ••••• • • • • • • • • • • • • • • • • •••• • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • 
• • • • • • • • • • • • • • • • • 000 
• • • • • • • • • • • • • • • • •O 00 
• • • • • • • • • • • • • • • • •OO 0 
• • • • • • • • • • 

• • • 
0. 2 

• • • • 
0 

• • 
0 

•000 

0 
1 .. 0 

6/7/61 

7/21/61 

8 / 22/61 

12/28/61 

1/30/62 

2/3/62 

2/10/62 

3/17/62 

3/31/62 

4/10/62 

4/20/62 

5/3/62 

6/17/62 

9/17/63 

2/11/64. 

7/9/64. 

4/26/69 

7/24/69 

8 / 15 / 69 

3/21/70 

9/28/70 

Figure 2-28. Complete cross-correlation matrix for events within 15 km 
of the epicenter of the 1971 San Fernando earthquake. 
Each circle represents an average of the peak cross 
correlations determined from the EW and NS Wood-Anderson 
seismograms recorded at Pasadena (~~40 km). See Figure 
2-10 for explanation. 
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Hence, comparison of waveforms may be a useful tool for monitoring 

stress conditions along faults. 

Conclusions 

In summary, we find that preshocks of the 1979 Imperial Valley 

earthquake occurred in groups of events with strikingly similar 

waveforms over the entire length of record. The close match in waveform 

implies similar source mechanisms and clustering of hypocenters within 

1/4 wavelength (~ 1 /z km) or less. Aftershock waveforms are more 

variable from one event to the next, although groups of similar events 

were found during the aftershock period as well. These observations can 

be explained by the asperity model, which predicts localization of 

failure on strong, unbroken asperities along the fault during the period 

preceding moderate to large earthquakes. From our work and that of 

Ishida and Kanamori (1978) on the 1971 San Fernando earthquake, it 

appears that this period of enhanced clustering is at least 2-3 years 

long, but much more work needs to be done to evaluate the significance 

of this pattern. A second prediction of the asperity model, that of 

higher stress drop for preshocks, was not in general supported by our 

data. We did find evidence for increasing stress drop within a tightly 

grouped set of six preshocks from near the region of maximum surface 

displacement. However, the frequency content of these events does not 

differ significantly from that of nearby aftershocks, and no systematic 

temporal changes in spectra were found for the other preshock cluster we 

analyzed. It appears that the waveforms of small earthquakes are a more 
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sensitive indicator of seismic potential than are the spectra. 
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CHAPTER 3 

A Preliminary Study of Waveforms of Small Earthquakes 

Along the San Jacinto Fault Zone, California 

Introduction 

Chapter 2 presented evidence that the seismicity for at least two 

years preceding the 1971 San Fernando earthquake and the 1979 Imperial 

Valley earthquake was characterized by clustering within source volumes 

less than 1/ 2 km in extent. This type of clustering, deduced from 

waveform similarity, was also observed after the Imperial Valley 

earthquake in one region studied, although compared to the 

pre-earthquake period many more sources were active simultaneously. In 

light of these results, it is clearly of interest to establish to what 

extent this behavior is typical of 'background' seismic activity. A 

cross-correlation analysis of ten years of waveform data from the San 

Fernando region, discussed in the last chapter, suggests that tight 

clustering of hypocenters is not very common. However, this analysis 

and some published waveform data (see introduction to Chapter 2) show 

that not all groups of earthquakes with similar waveforms are closely 

assoc i a t ed in t ime with major earthquakes . In or der t o det e r mi ne how 

prevalent this clustering phenomenon is, it is necessary to 

systematically search for earthquakes with similar waveforms within many 

different small regions using some objective method such as the 

cross-correlation matrix technique developed in Chapter 2. Towards this 
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goal, we have determined cross-correlation matrices for small 

earthquakes within two different regions along the San Jacinto fault 

zone in southern California. This chapter reports the results of this 

study and a parallel study of focal mechanisms for the same events. 

The San Jacinto fault zone consists of several en echelon strands 

along which significant Cenozoic right-lateral displacements have taken 

place (Sharp, 1967, 1975). In terms of numbers of earthquakes, both 

large and small, it is one of the most seismically active fault zones in 

southern California. Since 1890 at least six and as many as ten 

earthquakes greater than magnitude six were associated with faults in 

this zone (Sanders and Kanamori, 1983). On current seismicity maps of 

southern California, it is one of the few active fault zones which is 

delineated by a concentration of small earthquake activity (Allen, 

1981), although in detail it is not easy to assign earthquakes to 

particular faults within the zone. The most outstanding feature of the 

distribution of seismicity along this zone is a 22 km long quiescent 

section near the town of Anza (Figure 3-1, SE of station KEE), bounded 

to the northwest and southeast by regions of exceptionally high 

activity. The quiescent section approximately coincides with one of two 

s egmen t s of t he fault zone t hat Thatcher et al. (1975) concluded were 

deficient in slip based on a study of large, historic earthquakes. 

Thus, the segment of t he faul t zone near Anza appears to be a seismic 

gap in both senses in which this term is used, and is known as the Anza 

seismic gap. 

Because different segments of the San Jacinto fault zone have 
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Figure 3-1 . Map of San Jacinto faul t zone and surrounding a r ea showing 
epicente rs of all M1 >2. 0 earthquakes from the Caltech/ U. S. 
Geological Survey catalog for the period 1977 t o 1980. The 
+'s mark locations of seismographic stations used in 
waveform studies of ear thquakes in regions A and B. Faults 
are generalized from Jennings et al . (1975) . The 
northwest-striking faults southwest and northeast of the 
San Jacinto fault zone are the Elsinore and San Andreas 
faults, respectively. 
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ruptured at various different times since 1890, and other segments do 

not appear to have slipped at all during this time, this fault zone 

presents a good opportunity to study different stages of the seismic 

cycle within the limitations of a short data set such as CEDAR. For 

this reason, and because of the abundance of small earthquake activity 

in close spatial association with the major faults in this zone, the San 

Jacinto fault zone is a particularly good place for waveform 

cross-correlation studies. We consider this study to be preliminary 

because only two small (<S km) regions northwest of the Anza gap were 

examined. Very little evidence for small-scale clustering was found 

within these regions for the period 1977-1980. Wood-Anderson 

seismograms of earthquakes during 1934-1980 in a 12 by 18 km region 

southeast of the gap look quite similar (H. Kanamori, personal 

communication, 1980), but a more quantitative analysis in this region 

using CEDAR data is desirable. 

Waveform Analysis 

Figure 3-1 shows epicenters from the Caltech/ U. S. Geological 

Survey catalog for all earthquakes of magnitude 2 and greater during 

1977-1980 within the San Jacinto fault zone and the surrounding region . 

Digitally-recorded seismograms are available for all of these 

earthquakes and for more recent ones, but the more recent data are not 

easily accessible at present. A recurrence plot for earthquakes in this 

region suggests that the catalog coverage is complete for earthquakes of 

ML>2, in agreement with the uniform detection threshold estimated by 
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Johnson (1979) for this area. Although the catalog is still preliminary 

for some of this time period, the epicenters in this area are 

sufficiently well determined (< 5 km standard error) that it was not 

necessary to relocate them before selecting groups of events for 

waveform comparisons. 

The two regions selected for study, designated A and B, are shown 

in Figures 3-1 and 3-2. All ML > 2 events in these regions were 

included in the study, except for one earthquake from region B which 

could not be used because it was a double event. The largest events are 

magnitude 3. There are six events in region A, which is a 3 by 5 km box 

located near the epicenters of two large historic earthquakes which 

occurred in 1899 (M 7) and 1918 (H 6.8) (Richter, 1958, p. 496; Sanders 

and Kanamori, 1983). Nine usable events are included in region B, a 4 

by 4 km box at the northwest edge of the Anza seismic gap. As a check 

on the accuracy of the epicenters, the ML > 2 events in regions A and B 

were relocated using the master event technique of Johnson and Hadley 

(1976) with the computer program HYP071 (Lee and Lahr, 1975) (Table 

3-1). The standard southern California velocity model (Figure 3-9) 

based on Hadley and Kanamori (1 977) was employed. Only stations within 

60 km of the epicenter were used in order to maximize the depth 

resolution. This still left at least 9 stations available for each 

location. The changes in horizontal location were all small, less than 

1 lf2 km (Figure 3-2), but as expected some of the revised depths were 

significantly different. Most, but not all, of the revised depths are 

between 12 and 16 km (Table 3-1), which is relatively deep for 
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Figure 3-2. Epicenters of earthquakes in regions A and B (Figure 3-1). 
The X's show the catalog epicenters. Arrows point to 
relocated epicenters. Small X's are events of 2.0<ML<3.0 
and large X's are ML~3 . 0 events. The boxed events are 
those used as master events in the relocations. 
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TABLE 3-1. Relocated Hypocenters in San Jacinto Study Areas 

Date Time Latitude Longitude Depth,km ML 

Region A 

Jan. 8, 1978 0839:54.56 33°47.05' 116°56.23, 8.0 2. 0 
June 9, 1978 2247:06.33 33°48.86' 116°58.27' 14.7 2.1 
June 21, 1978 1126:29.60 33°48.49' 116°57.46' 14.0 2.2 
July 18, 1978 0229:59.41 33°48.16' 116°57.56' 14. 0 2.5 + 
July 24, 1979 1020 :49.54 33°47.03' 116°57.39' 14.0 2.7 
Dec. 13, 1979 2207:28.92 33°47.95' 116°57.31' 6. 0 2.2 

Region B 

July 2, 1977 0122:37.67 33°38.27' 116°42.28' 13.6 3. 0 
Jan. 19, 1978 0055:30.81 33°38.26' 116°42.67' 12.3 2.2 
June 2, 1978 0331:18.32 33°39.28' 116°42. 96' 15.1 2.1 
Jan. 31, 1979 1825:05. 07 33°37. 90 ' 116°43.27, 15.6 2. 0 
Mar. 18, 1979 1347:59.46 33°38.11' 116° 44.7 6 ' 15.8 2.2 
Mar. 29, 1979 0217:11.24 33°39.14' 116°42.88, 15.9 3. 0 
Apr. 7, 1979 1636:02.29 33°38.12' 116°42.07' 14.1 2.6 * 
Nov. 15, 1979 0008:48.21 33°38. 00 ' 116°41. 84' 13.1 2.0 
Dec. 13, 1979 2105:10.90 33°38.83' 116°43. 04 ' 14.1 2.1 + 
Sep. 28, 1980 1727:27.39 33°37.67' 116°44.17' 2 . 5 2.7 

+ Master event 
* Unusable (multiple event) 
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earthquakes in southern California. 

The choice of the recording stations for waveform comparison was 

determined entirely by the availability of on-scale high signal-to-noise 

records for the events of interest. After examining all of the data to 

see which seismograms were usable, stations MDA, KEE, SMO, GAV, and PNM 

were selected for study of the events in region A, and stations SMO, 

SME, CPM, and PNM were selected for study of the events in region B 

(Figure 3-1). Seismograms from the 1977 and 1978 events were filtered 

with a digital filter designed to correct for changes in instrumentation 

implemented at all of these stations in late 1978 (see Chapter 2). In 

addition, all of the seismograms from stations SMO and CPM were filtered 

with a highpass Butterworth filter with a corner at 1 Hz to remove 

long-period (3 sec and greater) electronic noise present on some 

records. 

The corrected seismograms from regions A and B are shown in Figures 

3-3 and 3-4, respectively. It is evident from these figures that there 

are large variations in frequency content from one station to another. 

Seismograms in Figure 3-4 of events from region B become longer period 

with increasing distance from the source, as is expected if regional 

scattering and attenuation is controlling the changes in frequency 

content. However, the frequency content of seismograms of events in 

region A (Figure 3-3) does not correlate with source-receiver distance. 

In particular, seismograms from s t ations SMO and GAV are much higher 

frequency than those recorded at stations MDA and KEE, which are closer 

to the source region. There is no obvious connection between frequency 



-117-

SAN JACINTO REGION A 

ORIGINAL RECORDS 

5 SEC 

MDA (14KM) 
1/8/78 

-~-~-4n"'*'~"""~---~---------
6/9/78 

-JJi'.~~-1.!~~~·,.,.._~~-----------
6/21/78 _....,_.,,v,w.'rc,._.......,... ___________ _ 
7/ 18178 

_j'~'ll .... r<~~----------~--
11 . . 7/24/ 79 
-II'A'~\'11.11W,~VN·I,'p~W.v,...,....,..,.,_~----

12tl3179 2207 
~.\'i/JN,vtW··/,!(,•.·.•:,-.tJft.•,v...,..v·-···-----~~---

SMO (54 KM) 
1/8/78 

6/9/78 
p 0 

6/21/78 

7/18178 
••• ~ t ~ 'I ~l+*l•'t-'f.W. ... ,.. ' I . . •. 

7/24/79 
~~,....,·~~~J..· ..................... ..._ _____ _ 

! ~II 12/13/79 2207 ,._.. ~, •··~~w~~ 

GAV (58 KM) I 18178 
... .. ,1" .. 1.-.;~;,-..;,~ 

6/9/78 
_.-.~-~,.~·~~~~M~····~I,,~ .. ~, .. ~,~~~~·~~--------~----~ 

6/21/78 .. ,., 
7/18/78 , •• ,I I~ . .., 

.... II .,. ~*'-
7/24/ 79 

PNM (108 ~~) 118178 
-,.......-~ ............ --~\i-*'/I''J';p', ...... -_J.:~ .... --.,..~""-... _._.._.,.,_ .·-· -

I I ' 6/9/78 
-"\.;~ ! ,~/ (\~.-..,.-..,. .... .,_t'.·,_ _ ___,\.1'~1,;.,-...~~.'...,.u-.•11 ... \ .... ...,___~· .• , ... _, _ _... '..-

~ \ . . . 
I I 6/21/78 

~~.J.....,.,.,....., ,. • . _ _..,(ifi')11'Hf""'r-•··,·,w . ..-,_._,-.- --·-
7118/78 

--v-JfftW,-J.~~~It-.''I·Yor~.,·vl/i4o.r-.wr"""~~--
7/24/ 79 

--1','.,-.,~yM,.,~~.............., .. ~'ft}ll;'(/fl'."'f}.lt-.....,.,._,,~,v,w:,-......,.~ 
. 1 I 12/13/79 2207 

~"·. ,.,., . .J:•lv.,.,_._w.,.,.,..-~-".._...._ .... _...,\·:_.,,, \•:t,r/.',,\\ ..,.·y·~,..····:.v.'., -.• - -,. ·.,., 

Figure 3-3. Vertical component seismograms of earthquakes in region A. 
These are the original records except for filtering t o 
normalize instrumen t responses and remove long- period noise 
at some stations (see text). Seismograms are plotted with 
the same maximum amplitude and positioned horizontally 
within each box according to the catalog origin times. 
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content and receiver azimuth or surface geology. For instance, stations 

KEE and SMO lie at nearly the same azimuth from region A, and both are 

on the northeast side of the San Jacinto fault zone on the same type of 

material, decomposed granitic rock. Yet, the records from station KEE 

at a distance of about 33 km have dominant frequencies of-6-9Hz 

whereas those from SMO at a distance of about 54 km typically have 

dominant frequencies of -12-15 Hz. All seven stations used in this 

study have the same instrumentation except for the amplifiers, which are 

not important in determining the frequency response. Problems with the 

instrumentation cannot be ruled out without individually calibrating 

each station. It is possible, however, that the spectra of these 

seismograms are controlled by site response, as was determined by 

Frankel (1982b) for small earthquakes in the northeastern Caribbean. 

The problem of site response is discussed further in Chapter 4. 

From inspection of the records in Figures 3-3 and 3-4, it appears 

that there are no groups of events in either study area that have 

similar waveforms at all of the recording stations. Because some of 

these seismograms have much more high frequency ()6 Hz) energy than 

those used fo r the Imperial Valley and San Fernando waveform studies 

(Chapter 2), we decided to compare filtered records to see if there 

might be more similarity at the longer periods. The passband chosen for 

the filter, 1-4 Hz, was the passband within which filtered seismograms 

of Imperial Valley preshocks near the mainshock epicenter were all 

nearly alike (Figure 2-13). After filtering, the seismograms still show 

considerable variety in waveform at each station (Figures 3-5 and 3-6). 
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Figure 3-5. Filtered versions of seismograms in Figure 3-3. The filter 
used was a third-order phaseless Butterworth filter with a 
passband of 1-4 Hz. 
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Figure 3-6. Filtered versions of seismograms in Figure 3-4. 
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Although there are groups of events having similar waveforms at some 

stations, these same events have very different waveforms at other 

stations. For example, the events in region A on June 9, 1978, June 21, 

1978, and July 18, 1978, produced very similar 1-4 Hz waveforms at 

station SMO. The 1-4 Hz waveforms for the first two of these events are 

similar at MDA and KEE, but not at the other stations. These 

observations suggest that some of the differences in waveform are due to 

differences in focal mechanism. The first motion study presented in the 

next section confirms that there are differences in mechanism among 

these events. The seismograms in Figures 3-3 to 3-6 show that it is 

clearly desirable to use more than 1 or 2 stations in studies of 

waveform similarity. 

Figure 3-7 shows complete cross-correlation matrices for regions A 

and B constructed from both unfiltered (left) and filtered (right) 

seismograms. Each correlation coefficient shown represents the mean of 

the values obtained for the different stations. Not surprisingly, the 

correlation coefficients derived from the filtered records are larger 

than those obtained from the unfiltered records. Nevertheless, there is 

very little evidence for repeated events with nearly the same location 

and mechanism, such as was observed before the 1971 San Fernando and 

1979 Imperial Valley earthquakes. Figure 3-8 compares waveform 

cross-correlation matrices from this chapter and Chapter 2 for different 

small regions in southern California. It appears from this figure that 

the occurrence of consecutive small earthquakes with similar waveforms 

which preceded the Imperial Valley and San Fernando earthquakes was 
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SAN JACINTO FAULT ZONE 
CROSS-CORRELATION MATRICES 

ORIGINAL RECORDS FILTERED RECORDS 
(PASSBAND 1-4 HZ) 
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• • • • • COEFFICIENTS • • • • • 
• • • • • • • • • • 
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1/19/78 
6/2/78 
1/31/79 
3/ 18/79 
3/29/79 
II/ 15/79 
12/13/79 2 105 
9 /28/80 

Figure 3-7. Cross-correlation matrices for filtered and unfiltered 
seismograms of earthquakes in regi ons A and B. Each circle 
represents the mean peak cross correlation for the event 
pair corresponding to its position in the matrix . The 
radius of the circle is proportional to the correlation 
value, and circles r epresenting values less than 0 .6 are 
solid . Peak cross-correlation values from stations MDA , 
KEE, SMO, GAV, and PNM were averaged to obtain the matrix 
elements for region A and values from stations SMO, SME, 
CPM, and PNl-f were averaged t o obtain the matrix elements 
for region B. Thirty seconds of record were used in the 
cross-correlation calculations , except for the SME record 
of the January 31, 1979 event in region B (Figure 3- 4). 



-124-

Figure 3-8. Cross-correlation matrices for seismograms of earthquakes 
in the magnitude range 2-3 within the regions shown during 
the time periods indicated. See Figure 3-7 for 
explanation. Peak cross-correlation values from 2 to 5 
different pairs of records were averaged to obtain each 
matrix element. Whole seismograms (usually 30 sec long) 
from CEDAR were used for these cross correlations except 
for the earthquakes from the San Fernando region, for which 
S waves hand digitized from Wood-Anderson records were 
used. The order of events within each matrix is 
chronological from top to bottom and left to right. 
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unusual, although not strictly limited to the periods preceding major 

earthquakes. 

Focal Mechanisms 

To construct the focal mechanisms, first motions and arrival times 

for the events in regions A and B were reread from the digital CEDAR 

seismograms. In order to determine a realistic set of takeoff angles 

for the first-motion diagrams, plots of reduced travel time, T-~/6.0, 

versus distance, ~. were made for each event and compared with the 

predictions of various crustal models . Figure 3-9 shows a typical 

example. The Southern California model used for the relocations (inset, 

Figure 3-9a) is similar to the crustal model used for routine location 

of southern California earthquakes. It is essentially a model for the 

central Transverse Ranges based on Hadley and Kanamori (1977) . The 

Southern California model fits all travel times reasonably well out to a 

distance of about 60 km, the distance cutoff used in the locations. It 

also fits arrival times for t he more distant stations in the central 

Transverse Ranges and western Peninsular Ranges at azimuths of 135° to 

315° (Figure 3- 9b). However , this model gives a poor fit to the 

arrivals at stations in the eastern Transverse Ranges and Mojave Desert 

at azimuths of 315° to 135°, because it predicts apparent velocities of 

6.7 km/sec beyond a distance of 65 km or less for the deeper earthquakes 

( )12 km), which is much faster than the 6.2 km/sec actually observed 

(Figure 3-9a,c). The Mojave model from Kanamori and Hadley (1975) and 

Hadley (1978) shown in the inset in Figure 3-9c provides a good fit to 
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Event A5, M=2 .7, H=l4.0 km 

5 km 
20 

315°< AZ < 135° 135<AZ<315° 
28 Mojave Mode l Peninsular Range 
33 8.0 42 Model 

50 100 0 50 100 

0 istance. km 

Figure 3-9. Plots of reduced travel time, T-~/6.0, versus distance, ~. 
for the azimuth ranges indicated. The source is a local 
magnitude 2.7 event on July 24, 1979, in region A at a 
depth of 14 km. Solid curves show theoretical reduced 
travel times for various crustal models (insets). The 
location and origin time assumed is that of Table 3-1. 
Vertical arrows below some points indicate corrections for 
deep sediments determined by Raikes (19 78). 



-128-

the data at these azimuths. The Mojave model differs from the Southern 

California model only in the depth of the interface between the 6.2 

km/sec upper crust and the 6.7 km/sec lower crust, the Conrad 

discontinuity. A model that differs significantly from both of these 

was derived by Nava and Brune (1982) from a NW-SE earthquake-explosion 

reversed refraction line in the Peninsular Ranges. It predicts travel 

times that are significantly faster than those observed for these 

earthquakes at the Peninsular Range stations, assuming the master event 

relocations are correct (Figure 3-9d). The earthquake origin times and 

depths could be adjusted to improve the fits for this model at the 

Peninsular Range stations, but this would degrade the fit of the Mojave 

and eastern Transverse Range data to the Mojave model. In general, the 

Southern California model seems to provide a better fit for the 

southward and westward travel paths. This may be because the high 

crustal velocities in the Peninsular Ranges are restricted to t hat part 

of the province west of the Elsinore fault, as suggested by Hadley 

(1978). 

Based on the analysis of the travel-time curves, the takeoff angles 

for the focal mechanisms were determined from the Southern California 

(Transverse Range) model for stations at azimuths of 135° to 315° and 

from the Mojave model for stations at azimuths of 315° to 135°, using 

the master event relocations . An exception was made for the July 18, 

1978, event in region A, for which the Mojave model was used at all 

azimuths because refractions from the Conrad discontinuity were not 

observed. This is probably because the first arrivals were missed at 
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the 3 or 4 stations where, based on data from the other earthquakes, 

such refractions were expected as first arrivals. Earthquakes with 

calculated depths greater than or equal to 15 km were assigned depths of 

14 km for calculating the takeoff angles in order to put them above the 

15 km discontinuity in the Transverse Range model. This makes the P* 

branch (6.7 km/sec apparent velocity) a refracted branch for all of 

these earthquakes, which seems most likely in light of the available 

data. The depth of the December 13, 1979, event in region A, 6 km, is 

near the 5 km velocity discontinuity present in all three crustal models 

considered above. As discussed in Chapter 1, earthquakes located near 

velocity discontinuities present particular problems in determining 

focal mechanisms, because the travel-time curves for a source located 

just above a discontinuity are nearly identical to those for a source 

located just below it, but the takeoff angles are quite different. In 

this case, however, the allowable mechanisms assuming a depth of 4 km 

are similar to those determined for a depth of 6 km, so we chose to 

present only t he solution for the calculated depth of 6 km. The depth 

of the Sept. 28, 1980, event (region B) was changed from 2.5 km to 0 km 

to obtain a better fit to the observed 5.5 km/sec to 6.2 km/sec 

crossover distance . 

Figures 3-10 and 3-11 show the P-wave first motion plots for the 

Mr?2 events in regions A and B, respectively. The contours in these 

figures, determined with the aid of the computer program FOCPLT (see 

Chapter 1), enclose the locus of positions for slip vectors 

corresponding to solutions with no readings in error. The extent of the 



(A I) 
M= 2. 0, 

(A4) 
M=2. 5, 

1/8/78 
H=8.0 KM 

7/18/78 
H=14.0 KM 

(A2) 
M= 2. 1. 

(A5) 
M= 2. 7, 

-130-

6/9/78 
H=14. 7 KM 

7/ 24/79 
H=14.0 KM 

(A3) 
M= 2. 2, 

(A6) 
M= 2. 2, 

6/21/78 
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~-+--

12/13/ 79 
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Figure 3-10. Lower hemisphere P-wave fault-plane solutions for events 
in region A. Solid circles indicate compressional first 
motions; open circles indicate dilatational ones. The 
large circles represent good-quality readings; the small 
circles fair-quality readings. Slip vectors, compress ion 
axes, and tension axes are shown with triangles. The 
date, local magnitude M, and depth H for each event is 
given. The contours indicate the range of positions for 
slip vectors corresponding to solutions with the minimum 
number of readings in error. 
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(82) 1119178 
M = 2. 2, H = 12. 3 K M 

(85) 3/1 8179 
M=2. 2, H=14. 0 KM 

(88) 12/1 3/ 79 
M=2.1. H=14. 1 KM 

(83) 6/2/78 
M=-2. 1. H= 14. 0 KM 

(86) 3/ 29 / 79 
M=3. 0, H=14. 0 KM 

(89) 9/ 28 / 80 
M=2. 7, H=- 0. 0 KM 

Figure 3-11. Fault-plane solutions for events in region B. See Figure 
3-10 for explanation. 
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contoured regions on each plot is a measure of the degree of constraint 

of the mechanism, given the particular set of takeoff angles used. The 

nodal planes shown for each earthquake are, for the most part, those 

chosen by FOCPLT. These are not necessarily any more appropriate than 

other possible sets of planes that agree equally well with the data. 

Most of the first motion diagrams in both study regions are 

consistent with right-lateral strike-slip motion on steeply-dipping 

faults that strike approximately northwest. This agrees well with the 

geologically determined faulting on the major branches of the San 

Jacinto fault zone (Sharp, 1965, 1967). Mechanisms A4, B1, and B5, 

however, are clearly different from the rest and are well constrained 

(Figures 3-1 0 and 3-11). Mechanisms A4, f or the July 18, 1978, event in 

Region A, indicates normal faulting on a north- or northwest-striking 

fault plane. Region A is at the southeastern end of the San Jacinto 

Valley, a graben formed by a right step between two en echelon branches 

of the San Jacinto fault zone (Sharp, 1975). Therefore, some normal 

f au lting is not particularly surpris ing here. ~lechanisms B1 (July 2, 

1977, region B) shows reverse faulting on either a northwest-striking 

plane dipping northeast or an east-striking plane dipping to the south . 

Sharp (1965, 1967) has mapped a thrust fault within region B that 

strikes northwest, parallel to the San Jacinto fault zone, and dips 

northeast. Th i s fault provides a geologic analog to mechanism B1, 

although it may not be the same one on which the earthquake occurred. 

Similar thrust faults are found parallel to the fault zone further to 

the southeast. These thrust faults and mechanism B1 suggest compression 
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normal to the San Jacinto fault zone in the vicinity of the Anza seismic 

gap. Sanders and Kanamori (1983) hypothesize that this compression is 

due to the convergent fault geometries southeast of the gap (Figure 3-1) 

and may be responsible for locking the fault. Geodetic measurements of 

strain accumulation suggest that the regional stress field here has its 

most compressive principal stress oriented north-south (Savage et al., 

1981b). North-south compression is consistent with right-lateral 

strike-slip motion on northwest-striking faults, as is observed both 

geologically and seismologically. It is also consistent with reverse 

faulting on east-west striking planes, as is seen in mechanism B5. 

Sharp's (1965) map shows an east-west trending thrust fault in 

crystalline rocks near Hemet Reservoir just northeast of region B, but 

this fault does not cut the youngest Quaternary sediments southeast of 

the reservoir and so it may no longer be active (Hill, 1981). Thus, 

although t her e is some variation in the types of mechan i sms f ound f or 

small earthquakes in regions A and B, the overall agreement between the 

mech anisms and the surface geology at these locations is remarkably 

good. This is certainly not always the case in southern California 

(e.g., Chapter 1). 

Conclusions 

Waveform studies of small earthquakes within two small (< 5 km) 

regions along the San Jacinto fault zone support the idea that ordinary 

'background' seismic activity does not consist of clusters of similar 

events within localized source areas a few hundred meters in size. 
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However, more data are needed before the significance of such clustering, 

observed before the 1971 San Fernando and 1979 Imperial Valley 

earthquakes (Chapter 2 and Figure 3-8), can be fully evaluated. An 

especially interesting place for future studies is the region southeast 

of the Anza seismic gap where a magnitude 5.5 

February 25, 1980 . 

earthquake occurred on 

Fifteen focal mechanisms of ML>2.0 earthquakes in these two areas 

suggest that most of the small earthquake faulting in the San Jacinto 

fault zone consists of strike-slip movement on steeply-dipping, 

northwest-striking faults, in agreement with the results of Sanders and 

Kanamori (1983). Displacements across this fault zone due to large 

earthquakes (M >6) and creep are also dominated by right-lateral 

strike-slip motion on steeply-dipping faults, as inferred from geologic, 

seismologic, and geodetic evidence (Sharp, 1967; U.S. Geol ogical 

Survey, 1972; Thatcher and Hamilton, 1973; Keller et al., 1978). The 

non strike-slip mechanisms found correlate well with local complications 

in the faulting patterns. 

The concentration of small earthquake activity near the maj o r 

faults of the San Jacinto fault zone and the general agreement between 

their faulting mechanisms and fault displacements mapped at the surfac e 

suggests that many of these earthquakes may be associated with the major 

strike-slip faults of this zone. Unf ortunately, it is not possible t o 

prove this hypothesis with the data at hand. In other parts of southern 

California, such as the central Transverse Ranges (Chapter 1), the 

diffuse nature of the seismicity and the poor correlation between small 
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earthquake focal mechanisms and nearby major faults argues that most of 

the small earthquakes occur along minor faults. The degree to which 

small earthquake activity is concentrated along major faults may depend 

on the strength of these faults relative to the strength of the 

surrounding blocks. It may also depend on the manner in which the 

faults are being loaded. A strain-rate profile extending through the 

Anza gap eastward to the San Andreas fault and westward to the Elsinore 

fault shows that the rate of accumulation of right-lateral shear strain 

parallel to these faults is significantly higher near the San Jacinto 

and San Andreas faults than it is elsewhere (King and Savage, 1982). 

This implies that slip at depth on the San Jacinto and San Andreas 

faults is loading the upper parts of these faults. The high level of 

seismicity along the San Jacinto fault zone may reflect this local 

concentration of stress caused by creep on the fault zone at depth 

(Sanders and Kanamori, 1983). If this is the case, then clearly other 

factors such as mechanical properties of fault zone materials must be 

important as well, because there is no analogous concentration of small 

earthquake activity along the San Andreas fault zone in this region 

(Figure 3-1). 

It is clear that over the long term the major fault zones represent 

the primary zones of weakness because most of the deformation is taken 

up along them. Thus, if small earthquakes do occur on these faults, 

what prevents them from becoming larger earthquakes? The answer 

suggested in Chapter 2 is that the rupture dimensions are controlled by 

variations in mechanical properties along these faults. Specifically, 
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it is hypothesized that small earthquakes represent the failure of 

asperities, those parts of a fault with higher than average strength 

that prevent the fault from slipping. The next chapter discusses this 

hypothesis in light of recent source studies of small earthquakes. 
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CHAPTER 4 

Source Studies of Small Earthquakes: A Review 

If small earthquakes do indeed represent the fracture of asperities 

on faults, one might expect that some evidence for this could be 

obtained from source studies of small earthquakes . Unfortunately , the 

complexities of short-period wave propagation make it difficult to 

obtain reliable information about small earthquake source processes 

f r om local seismograms . This chapter reviews the literature on small 

earthquake source parameters and the problems involved in determining 

them. 

Several investigators have found that stress drops for earthquakes 

with moments larger than about 1021 dyne- em (ML ~ 3) are independent of 

earthquake size and gene rally lie in the range 1 to 100 bars (Thatcher, 

1972; Thatcher and Hanks, 1973; Kanamori and Anderson, 1975; Cohn et 

al ., 1982) . Results from source studies of smaller earthquakes, on the 

other hand , have led many author s to conclude that their stress drops 

decrease with moment (e . g . , Tucker and Brune , 1973; Frankel, 1981; 

Saito and Masuda, 1981, Hauksson, 1982) . Several workers have observed 

the transition between these two different types of scaling, although 

the transition does not always s eem to occur at the same threshold size 

everywhere (Chouet et al . , 1978; Rautian et al . , 1978; Archuleta et 

al . , 1982; Hasegawa, 1982) . 

The decrease in stress drop with moment for small earthquakes 
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(ML< ~3), if real, would seem to run counter to the asperity model . 

According to this model, the smallest earthquakes represent the failure 

of the smallest asperities and might therefore be expected to have 

large, although probably widely varying, stress drops . Larger 

earthquakes might tend to have lower and more uniform stress drops 

because these stress drops would represent an average over a larger area 

of the fault . An analysis by Rudnicki and Kanamori (1981) of 

one-dimensional static crack models involving asperities, however, 

indicates that the failure of an asperity can induce significant slip on 

adjacent sections of fault even if the stress drop outside the regi on of 

the asperity is zero. Thus, although the localized stress drop across a 

small asperity can be very high, the stress drop averaged over the whole 

slip zone is much lower and, in their model, is always less than the 

effective stress (the difference between the tectonic stress and the 

frictional stress along the fault) . In fact, as the stress drop across 

the asperity approaches infinity in the limit as the ratio of asperity 

length to total slip zone length goes to zero, t he average stress drop 

across the whole region of slip approaches zero . The same holds true 

for the case of a circular asperity on a circular fault (McGarr, 1981). 

However, at least in the case of the one-dimensional c rack oodel, the 

average stress drop is not greatly different from the effective stress 

(within a factor of 2) unless the ratio of asperity length to total 

crack length is very small (< . 09) (Rudnicki and Kanamori, 1981). 

At this point, it is necessary to consider how stress drops are 

estimated for small earthquakes . If a single asperity ruptured on a 
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fault, would seismological techniques measure the localized stress drop 

across the asperity o r the average stress drop across the enti r e area of 

triggered slip? Stress drops for small earthquakes are usually 

estimated from seismological determinations of t he total moment and 

fault length, using the solution for a ci r cula r crack with uniform 

stress drop in an infinite elastic medium derived by Eshelby (1957) and 

Keilis - Borok (1959) . The plane-strain results of Rudnicki and Kanamori 

(1981) sugges t that this approach should gi ve a reasonable estimate of 

t he average stress drop ove r t he whole r egion of slip even when the 

local stress drop varies consider ably within t he r egion, pr ovided that 

no unbroken segments of fault or 'barriers' remain within the slipped 

r egion . Estimates of seismic moment for small (HL<5) earthquakes are 

most commonly derived from measurements of the long- pe r iod spectral 

amplitude of P waves or S waves (Thatcher and Hanks , 1973), although the 

time windows used for the spect r al analysis generally include a rriva ls 

other than direct P or S. Other techniques used involve measurement of 

the a rea underneath the P- wave displacement pulse in the time domain 

(Frankel, 1981), measur ements of coda ampli tude on bandpass-filtered 

records (Aki and Chouet, 1975; Chouet et al ., 1978; Rautian et al., 

1978), or amplitude comparisons between obser ved and synthetic 

seismograms (Cohn et al., 1982). Because the moment is, by definition, 

equal t o the product of the elast i c rigidi t y and the integral of the 

final slip ove r the fault a r ea , this quantity is independent of the 

details of faulting and is usually one of the more well-de termined 

source parameters, pr ovided that the recording instrument has sufficient 
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bandwidth to record waves at periods that exceed the duration of the 

faulting. 

Unfortunately, seismological estimates of source dimension are much 

more difficult to obtain than estimates of moment. For earthquakes 

larger than about magnitude 5, the dimensions of the fault rupture can 

often be estimated from the i nitial aftershock distribution or from 

surface faulting . Fault dimensions for smaller earthquakes must be 

inferred from estimates of the source dur ation derived from seismic 

records . Fo r a smooth rup t ur e in an infinite, isotropic elastic medium, 

the far - field displacement signal for any component of either t he P or 

the S phase observed at some given point is a unidirectional pulse with 

a width controlled by the duration of the rupture and the angle be twee n 

the ray and the direction or di r ections of rupture propogation (Savage, 

1966; 1972) . The time history of the pulse is known as the far - field 

time function and is determined by the time histor y of the faulting. In 

general, for propagating ruptures the far - field time function will 

depend on the point of obse r vation, but for bilaterally or r adially 

propagating r uptures the effect on the total duration of the pulse is 

not too large (less t han a factor of t wo) and is often neglec ted . Thus , 

observati onally, the sour ce dur ation can be obtained f r om the width of 

the far- field time function which produces the best-fitting synthetic 

seismograms (Cohn et al ., 1982) or, after appropriate corrections for 

instrument response and propagation effects, from direct time- domain 

measurements of the width of far-field body- wave pulses (Franke l , 1981) 

or from cor ner frequencies of P- or S-wave spectra (Thatcher, 1972; 
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Thatcher and Hanks, 1973; Tucker and Brune, 1973; Saito and Masuda, 

1981) or coda- wave spectra (Chouet et al., 1978; Rautian et al . , 1978). 

The duration of a far-field body wave pulse is inversely related to the 

corner frequency of its spectrum, defined as the intersection of the 

low- and high-frequency asymptotes (Savage, 1972; Helmberger and 

Malone, 1975; ~~dariaga, 1976) . Thus, the time-domain and 

frequency- domain methods are equivalent when simple body wave pulses are 

available for analysis . In pr actice, such simple pulses are rarely 

recorded on short- period local seismograms because scattering from 

velocity heterogeneities in the lithosphere introduces multiple 

arrivals. These multiple arrivals can be either modeled or ignored when 

using time-domain techniques but must in general be included in time 

windows for spectral analysis in order to make them long enough to 

resolve the spectrum at frequencies lower than the corner frequency . 

Thus, the spectral techniques rely on an assumption that the multiple 

arrivals do not significantly affect the spectrum or, in other words, 

that the elastic Green's functions for the earth can be treated to a 

good approximation as white noise. 

Es timation of source dimensions from source duration is highly 

model de pendent. For small earthquakes wh ich do not break the surface, 

circular fault geometry and radially outward rupture propagation are 

usually assumed . Theoretically , a tiQe function is derived by sum~ing 

the time derivatives of the dislocation history at all points on the 

fault surface with time lags that suitably account for the time it takes 

for the rupture to propagate to each point and the time required for 
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propagation of the wave to the receiver. Thus, the width of the time 

function depends on both the propagation time, which is the time it 

takes for the rupture front to propagate over the entire fault surface, 

and the rise time, which is the time it takes for each point on the 

fault to slip and which may, in general, var y along the fault surface . 

For constant or nearly constant rupture velocity, the propagation time 

clearly scales with fault radius . The average rise time is also 

expected to scale with radius if one assumes t hat the stress drop due to 

faulting is equal to the effective stress accelerating the fault as it 

ruptures (Geller, 1976) . This is because the velocity of a sliding 

fault surface is roughly proportional to the effective stress (Brune, 

1970; Sato and Hirasawa, 1973) and, for a circular fault , the final 

average dislocation is proportional to both the static stress drop and 

the fault radius (Eshelby, 1957) . Numerous kinematic and dynamic source 

models are available which can be used to i nfer source radii f r om corner 

frequency or pulse width data, the most popular model being that of 

Brune (197 0 , 1971) . See Aki and Richards (1980) for a review of 

earthquake source models. 

Dynamic source models that involve heterogeneous stress drop are 

now being developed . All of these models assume a uniform tectonic 

shear stress and a uniform dynamic frictional stress . Under these 

condit i ons , nonuniformity in stress drop can result from nonuniformity 

in initial fault stress caused by preseismic slip along some sections of 

fault (the asperity model) or from nonuniformity in postseismic fault 

stress resulting f rom the presence of barriers which did not undergo 
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slip (the barrier model). Both of these scenarios implicitly assume 

some intrinsic variation in static friction along the fault . The more 

general models include random variations in static friction which, in 

conjunction with some fracture criterion, completely determine the 

faulting history (Mikumo and Miyatake, 1978) . The distinction between 

asperities and barriers in these more realistic dynamic source models is 

somewhat artificial, because when a propagating rupture hits a strong 

patch on a fault this patch can, depending on the circumstances, either 

break immediately , break after the rupture has propagated past it or 

around it, or not break at all (Das and Aki, 1977; Mikumo and Miyatake, 

1978) . 

The simplest heterogeneous faulting model, and one of the most 

appealing as far as small earthquakes are concerned, involves the 

rupture of a single asperity on an infinite fault plane (Das and 

Kostrov, 1983) or a circular fault plane (McGarr, 1981) where the sress 

drop is zero outside t he asperity. McGarr's model assumes an 

elastostatic solution for the initial and final displacenents on the 

fault and a source time history for both the asperity and the 

surrounding annulus similar to that assumed in the Brune model . The 

r esulting fa r-field time function is the superposition of two pulses, a 

relatively narrow one from the asperity and a broader one fro~ t he fault 

as a whole. Madariaga (1979) obtained numerical solutions for the 

dynamic rupture on a fault with a single zone of zero stress drop 

flanked by two asperities and for a fault composed of two subfaults 

separated by an unbreakable barrier. Both models produced similar 
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far-field time func t ions consisting of two pulses whose individual 

widths were related to the rupture propagation time through the 

asperities or subfaults, although the total width of each time function 

was related to the rupture time for the whole fault . The spectra of 

these time functions contained two corner frequencies, although poorly 

defined, which likewise corresponded to the two characteristic rupture 

lengths in the models . It is clear that more complex source models will 

produce greater complexity in both the far- field time function and its 

spectrum and that, at l east for larger earthquakes, the degree of 

complexity possible is nearly limitless (~likumo and Miyatake, 1978; Das 

and Aki, 1977) . Unfortunately, even moderate source complexity is 

difficult or impossible to distinguish from propagation effects on local 

short- period seismograms, although some progress has been made in 

unravelling source complexities from teleseismic body waves (e . g ., 

Hartzell , 1980; Ebel and Helmberger, 1982; St ewart and Kanamori, 1982) 

and from the longer-period components of near- field strong- mo tion 

r ecords (Hartzell and Helmberger, 1982) . Nevertheless, if the 

structural effects are well- known or else not very severe, as often 

appears to be t he case for direc t waves propagating through hard rock, 

and if the bandwidth of the recording instrument is appropriate for the 

size of the ea r thquake, it should be possible in most cases to estimate 

the overall duration of small earthquake sources from local seismograms . 

Returning to the problem of the apparent decrease in stress drop 

with moment for small earthquakes, the key observation is as follows . 

21 For earthquakes with moments larger than about 10 dyne- em (M1 ~3), the 
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measured source durations increase roughly in proportion to the cube 

root of the moment (Thatcher, 1972; Thatcher and Hanks, 1973; Cohn et 

al . , 1982; Archuleta et al . , 1982) . Assuming a circular fault geometry 

and a rupture time proportional to the fault radius, this implies that 

the stress drop is approximately constant for moderate to large 

earthquakes, because for a circular fault the stress drop is directly 

proportional to the moment and inversely proportional to the cube of the 

radius. Circular fault geometry is probably a reasonable approximation 

for most earthquakes, except for large earthquakes on long, narrow 

strike - slip faults which are a separate problem (Scholz, 1982) . In 

contrast to these results, studies of smaller earthquakes usually show 

that on the average their measured source durati ons increase wi th moment 

much more slowly, if at all, until some critical moment is reached 

(Tucker and Brune, 1973; Smith et al., 1974; Chouet et al., 1978; 

Rautian et al., 1978; Frankel, 1981; Saito and Nasuda, 1981; 

Archuleta et al., 1982; Hauksson, 1982; Hasegawa, 1982). This 

critical moment, the minimum source duration, and the calculated range 

of stress drops all vary somewhat from one region to another, but the 

limiting corner frequencies for S waves are generally in the 

neighborhood of 10- 20 Hz and are reached for earthquakes with moments 

less than about 1019- 1021 dyne- em. When the displacement spectra have 

corner frequencies lower than the maximum corner frequency, a more rapid 

spectral amplitude falloff for frequencies greater than the maximum cor

ner frequency can sometimes be discerned (Archuleta et al., 1982). This 

effect can be observed more easily on shear wave acceleration spectra 
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derived from strong motion records. Such spectra typically show a 

relatively flat maximum for frequencies between the corner frequency of 

the corresponding displacement spectrum and some higher frequency which, 

at least for California earthquakes, corresponds to the limiting corner 

frequency of about 10- 20 Hz usually observed for shear- wave displacement 

spectra of smaller events (Hanks, 1982) . Thus, there appears to be a 

high-frequency band limitation for seismic energy from earthquakes . 

This limit has been termed 'f ' by Hanks (1979), although it is not as max 

abrupt as the name implies. The f phenomenon has been observed in max 

source parameter studies using P waves (Saito and Masuda, 1981; 

Frankel, 1981; Hauksson, 1982), coda waves (Chouet et al . , 1978; 

Rautian et al . , 1978) and S waves (summarized in Archuleta et al., 

1982), although a study by Bakun et al . (1976) of corner frequencies 

for 0.9(M
1

(4.1 earthquakes in the Bear Valley region of central 

California suggests that fmax is not necessarily the same for P waves 

and S waves. The SH corner frequencies for these earthquakes reach an 

u pper limit of about 15- 20 Hz, but the PZ corner frequencies continue t o 

increase with decreasing moment out to almost 30 Hz . 

The most direct interpreta tion of the observation of maximum corner 

frequency (or minimum pulse width), and the one subscribed to by Chouet 

et al . (1978) and several subsequent inves t igators, is that there is a 

lower limit to the radius of faulting in earthquakes which is controlled 

by a characteristic spacing of strong barriers along faults . According 

to this hypothesis, these barriers are strong enough to stop most 

ruptures but may break in larger earthquakes . Thus, the calculated 
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stress drops decrease with decreasing moment for earthquakes which cannot 

break through the strong barriers, although it is presumed that these 

earthquakes might break weaker asperities or barriers in between. The 

problem with this hypothesis is that there is no obvious reason why a 

characteristic spacing for barriers should exist and moreover show such 

comparatively little variation from region to region. Furthermore, 

earthquake magnitude/frequency of occurrence statistics provide no 

support for the idea of a minimum rupture size for earthquakes (Hanks, 

1982). Thus, if f is a source effect , it appears t hat the simple max 

linear scaling of source duration with fault radius must break down for 

small earthquakes. One way this could happen is if the rupture velocity 

is not strictly constant but instead increases gradually to a terminal 

velocity, as expected on theoretical grounds (Andrews, 1976). Bakun et 

al . (1980) sugges ted that small earthquakes might stop before reaching 

terminal rupture velocity, and that therefore their source duration 

might approach so~e ~inimum as the radius of r upture decreased . ~~ether 

or not such a mechanism can explain all of the relevant observations 

cannot be answered without further theoretical work. 

Before concluding that f is a source effect, one must eliminate max 

other possibilities such as propagation effects or pr oblems with the 

calibration of the seismic recording instruments at high frequencies. 

Wi t h r egard to the latter, the studies cited above we re done using a 

variety of different seismometers and recorders, so unless there is some 

unrecognized and pervasive problem in determining the response of 

short-period instruments, such as significant nonlinearity, it is 
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unlikely that miscalibration can explain these results. Propagation 

effects such as anelastic attenuation, scattering and diffraction can 

have a strong effect on seismic waves . It is well known that anelastic 

attenuation and scattering combine to diminish the amplitude of seismic 

waves as they travel through the earth, and that this effect is more 

pronounced at higher frequencies. Apparent attenuation (which includes 

energy losses due to both scattering and anelastic attenuation) can be 

measured by comparing the frequency content of seismograms recorded at 

various distances from some source whose spectral characteristics are 

nearly isotropi c , although not necessarily known. Decreases in spectral 

amplitude with distance can usually be fit well with a simple 

attenuation operator of the form exp(-nft/Q) where f is frequenc y , t is 

travel time, and 2n/Q is the average fractional energy loss per unit 

cycle. Corrections for apparent Q were made using the inverse 

of this operator in most of the studies cited above, except in 

cases where the path lengths were short enough for this correction to be 

inconsequential. In the coda-wave studies, a frequency-dependent 

apparent Q was evaluated and corrected for . Thus, attenuation and 

scattering cannot explain the observations of fmax unless the energy 

loss is concentrated within a relatively small portion of t he travel 

pa t hs , such as near the source or near the receiver . Laboratory 

measurements of attenuation in rocks at ultrasonic frequencies show a 

rapid increase in Q- 1 with increasing strain when the strain exceeds 

some critical value, usually around 10- 6 or 10-5• (See Stewart and 

Toksoz, 1983, for a summary of these measurements.) Dynamic strains 
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exceeding these values are expected close to an earthquake source, so if 

this nonlinearity in attenuation also occurs at seis~jc frequencies then 

the rate of attenuation could be much greater in the near-source region 

than elsewhere. There are also reasons to believe that apparent 

attenuation could be much greater near the surface than it is deeper 

down . It is possible that frictional dissipation across cracks and 

joints is an important loss mechanism, and that the importance of this 

mechanism increases with decreasing depth (Hanks, 1982). Also, high 

frequency energy may be reflected off low velocity layers near the 

surface while low frequency energy is diffracted into these layers and 

trapped, giving the appearance of strong attenuation (Heaton and 

Helmberger, 1978). 

Two lines of evidence suggest that fmax is a propagation effect 

which is at least partially dependent on the local conditions of the 

recording site. The first is that fmax often shows a small but 

re solvable variation from one recording site to another. This has been 

shown by Frankel (1982b) for limiting corner frequencies of P- and 

S- waves of earthquakes in the northeastern Caribbean, and by Hanks 

(1982), who measured fmax on shear wave acceleration spectra of 

aftershocks of the Oroville earthquake. In the latter case, there was a 

correlation between f and gross surface geology. The other evidence max 

suggesting that propagation effects control f comes from source max 

parameter studies performed at particularly close distances (< 5 km) in 

especially competent r ock . In such studies , limiting cor ner frequencies 

are either not observed or are higher than those usually found (Hanks, 
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1982). Pearson (1981) determined corner frequencies ranging from about 

200-900 Hz for S waves and about 300-1200 Hz for P waves on recordings 

made wi thin a few hundred meters of microearthquakes generated by 

hydraulic fracturing experiments in granitic rocks. The calculated 

stress drops averaged about one bar. Spottiswoode and McGarr (1975) and 

McGarr et al. (1981) studied source parameters of tremors in a 

deep-level gold mine using a seismometer at the surface about 3 km f rom 

the activity and accelerometers in the mine at hypocentral distances of 

50 m to 1.6 km. Propagation paths were through hard crystalline rock, 

predominantly quartzites. S-wave corner frequencies exceeding 100 Hz 

were observed . Calculat ed stress drops ranged from 1 to 100 bars and 

16 showed no consistent dependence on moment down to 5 x 10 dyne-em (ML 

~ -1 ). Marion and Long (1980) found S-wave corner frequencies as high 

as 200 Hz f or earthquakes near t he Clark Hill Reservoir along the South 

Carolina-Georgia border in the Piedmont Crystalline province at 

hypocentral distances of 0 .5-5 km. There is no clear correlation 

between average stress drop (-0.1 bars) and moment for these events in 

13 18 t he ~oment r ange 10 - 10 dyne- cr. , al t hough the s ma lles t s t r ess dr op 

e stimates are for some of the smallest events. Fletcher (1980) observed 

S-wave corner frequencies of 10 to 43 Hz fo r soa ll (0 .6< M< 2. 6) 

aftershocks of the Oroville earthquake using records from a s i te on 

crystalline bedrock within 3-6 km of most of t he hypocenters. Both P-

and S- wave corner frequencies appear to reach a :naxi . tt lfi1 for th is data 

set, resulting in stress drop estimates that correlate with moment, but 

the scatter in the measurements and the relatively small size range f or 
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17 19 . these events (nearly all have moments between 10 and 10 ) make 1t 

difficult to draw definite conclusions. Finally , Fletcher (19 82) has 

recovered S-wave corner frequencies as high as 40-50 Hz for small events 

apparently induced by the filling of Monticello Reservoir i n South 

Carolina, at hypocentral distances of 1-5 km through igneous and 

metamorphic rocks. Again, an apparent increase in stress drop with 

moment for these events implies that the corner frequencies are at or 

near saturation. 

In contrast to these observations showing high limiting corner 

frequencies (>40 Hz) or no limit at all for short propagation paths 

(<5 km) through hard, crystalline rocks, S waves of microearthquakes 

associated with coal mines in eastern Utah recorded at comparable 

distances (1 - 3 km) through sedimenta r y rocks have corner frequencies 

which are nearly the same (10- 14 Hz) over two orders of magnitude of 

seismic moment (1017- 1019 dyne- em) (Smith et al., 1974). Thus, in some 

cases, limi ting corner .frequencies can be observed at very short 

distances . It must be emphasized that this phenomenon cannot be due to 

ordinary whole-path attenuation and scattering. Smith et al . corrected 

their spectra for attenuation using a ~ of 100 , which they judged to be 

an appropriate value for sedimentary rocks. Although the Q they used 

was only an estimate, at such short distances (<3 km) t he corrected 

spectra are insensitive to the exact value used as long as it is within 

a reasonable range . Furthermore, whole-path attenuation should produce 

a distance- dependent fmax' which was not observed in the study of Smith 

et al. The fact that fmax appears to be related to the material through 
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which the seismic waves have propagated suggests that the r emoval of the 

high frequencies (or possibly the enhancement of the low frequencies) is 

a propagation effect, but this cannot be conclusively demonstrated with 

the data at hand. If fmax is caused by a propagation effect, it must be 

a localized one . A detailed study of wave propagation near the earth's 

surface using instruments located at various depths within a deep 

(> 1/2 km) borehole would help to resolve some of these questions . 

In conclusion, presently available techniques for studying small 

ea r thquake sources cannot resolve such fine details as how a rupture 

starts and stops and therefore cannot provide any information about how 

individual small events are related to heterogeneities on faults . Even 

gross source parameters such as overall stress drop are not easy to 

determine reliably . Part of the difficulty is that velocity variations 

in the earth can introduce considerable complexity into short- period 

waveforms, and such complexity is difficult to distinguish from 

complexity caused by th~ source . Anot her pr obl em is that numerous 

studies have found a high frequency band limitation to seismic energy 

from earthquakes that is unrelated to magnitude or moment . It is not 

known at present whether this is a source effect or a propa3a ti on 

effect, but circumstantial evidence suggests it is the latter . Until 

t his is resolved, the widely published conclusion that stress drops 

increase with moment for small earthquakes should no t be taken at face 

value . Because some data suggest that this high- frequency band 

limitation ('fmax') may not always be abrupt, it cannot be assumed that 

spectra are completely free from this effect at frequencies less than 
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The fact that corner frequencies of smaller earthquakes (ML< -3) 

are usually found to be nearly independent of event size helps to 

explain some of the results presented in Chapter 2 . The existence of 

limiting corner frequencies implies that waveforms of very small 

earthquakes are insensitive to the details of the source and are instead 

controlled by radiation pattern, attenuation, and scattering from 

velocity heterogeneities in the crust . Thus , for earthquakes this 

small, changes in stress drop with time may be difficult to observe even 

if they occur . On the other hand, these waveforms can provide important 

information on relative source locations because t wo earthquakes in the 

same place will produce nearly the same waveforms (except for amplitude) 

as long as both are below a certain critical size . It may be possible 

to use the waveforms of very small events (ML(2) as empirical Green's 

functions to correct seismograms of larger earthquakes for path effects 

so that their source properties can be studied (Frankel and Kanamori, 

1982). Understanding source properties of snall earthquakes is 

extremely important for understanding their relationship to major fault 

systems and the cycles of strain accumulation and release which occur on 

t hem. 
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