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Abstract 

The theory of radiative transfer is used to explain how a stratospheric aerosol layer 

may, for large solar zenith angles, increase the flux of UV-B light at the ground. As 

previous explanations are heuristic and incomplete, I first provide a rigorous and complete 

explanation of how this occurs. I show that an aerosol layer lying above Antarctica during 

spring will decrease the integrated daily dose of biologically weighted irradiance, weighted 

by the erythema action spectrum, by only up to 5%. Thus after a volcanic eruption, life in 

Antarctica during spring will suffer the combined effects of the spring ozone hole and 

ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by 

aerosol scattering. 

I extend subsurface radar imaging by considering the additional information that 

may be derived from radar interferometry. I show that, under the conditions that temporal 

and spatial decorrelation between observations is small so that the effects of these 

decorrelations do not swamp the signature expected from a subsurface layer, the depth of 

burial of the lower surface may be derived. Also, the echoes from the lower and upper 

surfaces may be separated. The method is tested with images acquired by SIR-C of the area 

on the Egypt/Sudan border where buried river channels were first observed by SIR-A. 

Temporal decorrelation between the images, due to some combination of physical changes 

in the scene, changes in the spacecraft attitude and errors in the processing by NASA of the 

raw radar echoes into the synthetic aperture radar images, swamps the expected signature 

for a layer up to 40 meters thick. I propose a test to determine whether or not simultaneous 



IV 

observations are required, and then detail the radar system requirements for successful 

application of the method for both possible outcomes of the test. I also describe in detail the 

possible applications of the method. These include measuring the depth of burial of ice in 

the polar regions of Mars, enhancing the visibility of buried features and, most importantly, 

the ability to map soil moisture in arid regions of the earth at high spatial resolution. 
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In Chapter II I use the theory of radiative transfer to explain how a stratospheric 

aerosol layer may, for large solar zenith angles, increase the flux of UV -8 (290-320 nm) 

light at the ground. I also determine the biological significance of this numerically 

predicted, but not yet observed, effect. The motivation behind this research is that volcanic 

eruptions can inject large amounts of aerosol into the stratosphere, increasing the flux of 

UV-8 light at the surface for large solar zenith angles with possibly negative biological 

consequences. 

This predicted enhancement of UV -8 light at the ground occurs even though 

aerosols increase the reflection of sunlight to space. As previous explanations are heuristic 

and incomplete, I first provide a rigorous and complete explanation of how this occurs. 

This effect makes Antarctica during spring the most susceptible place on earth to the 

scattering effect of volcanic aerosols, due to the combined effect of the spring ozone hole 

and the large solar zenith angles characteristic of this time of year. 

I show that an aerosol layer lying above Antarctica during spring will decrease the 

integrated daily dose of biologically weighted irradiance, weighted by the erythema action 

spectrum, by only up to 5%. Hence the effects of any significant destruction of ozone 

induced by volcanic aerosols will not be offset by aerosol scattering. Thus after a volcanic 

eruption, life in Antarctica during spring will suffer the combined effects of the spring 

ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only 

slightly offset by aerosol scattering. 

In Chapter III I extend subsurface radar imaging by considering the additional 
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information that may be derived from radar interferometry. I show that, under the 

conditions that temporal and spatial decorrelation between observaJions is small so that the 

effects of these decorrelations do not swamp the signature expected from a subsurface 

layer, with at least three radar images of the same scene taken from parallel imaging tracks, 

the depth of burial of the lower surface may be derived. Also, the echoes from the lower 

and upper surfaces, combined in a single radar image, may be separated. 

The reason I carried out this research is that this method has a number of important 

practical applications that are unique in being based on the way the method gives direct 

information about the subsurface environment, such as the depth and the strength of the 

lower and upper echoes, using the geometry of the situation. Normally, complicated 

models that predict the strength of the radar return at various incidence angles, polarization 

combinations and wavelengths, and that contain, say, the depth of the subsurface layer as a 

variable, are used to obtain such information, which is obviously a very indirect way of 

doing so that is subject to many more assumptions the interferometric method uses. 

The applications of the method, unique by not relying on complicated models with 

many variables, include measuring the depth of burial of ice in the polar regions of Mars, 

enhancing the visibility of buried features and two independent applications for soil 

moisture mapping, at the high spatial resolution afforded by synthetic aperture radar, in arid 

regions of the Earth. 

I present a method of solution, validated by extensive simulations, for both the 

depth of burial and the separation of echoes that is optimal, in the least squares sense that 
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the values found are those from which the data would most likely come. Furthermore, this 

solution is obtained without requiring knowledge of "tie points"; locations of known 

altitude usually required to use radar interferometry for practical purposes. 

I test the method using three images acquired from parallel orbital tracks by the 

Shuttle Imaging Radar (SIR-C) in 1994 of the eastern edge of the Selima Sand Sheet on the 

Egypt/Sudan border (Figure 111-21). This area intersects with that imaged by SIR-A in 

1981 when buried river channels were first observed [McCauley et al., 1982], and is the 

best possible data available to confirm the method. However, I show that temporal 

decorrelation between the images swamps the expected signature for a layer up to 40 meters 

thick. 

This temporal decorrelation, between observations acquired on consecutive days, is 

due to some combination of physical changes in the scene, changes in the spacecraft 

attitude and errors in the processing by NASA of the raw radar echoes into the synthetic 

aperture radar images. Assuming the elimination of the last factor, successful application of 

this method in the future may or may not require simultaneous observations to avoid the 

effects of physical changes in the scene. In section III.l7 I propose a test to determine 

whether or not simultaneous observations are required, and then detail the radar system 

requirements for successful application of the method for both possible outcomes of the 

test. I also describe in detail the possible applications of the method, most importantly the 

ability to map soil moisture in arid regions of the earth at high spatial resolution. 
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Chapter II 

The Effect of Volcanic Aerosols on 

Ultraviolet Radiation in Antarctica 
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11.1 Introduction 

Recent numerical solutions of the equation of radiative transfer [Michelangeli et al., 

1989; Michelangeli et al., 1992; Tsay and Stamnes. 1992] indicate that, at large solar zenith 

angles, scattering by a stratospheric aerosol layer can increase the flux of ultraviolet light 

reaching the smface. An explanation of this effect, which has not yet been observed, has 

been offered by Davies [1993]. Basically, at large solar zenith angles, scattering from a 

stratospheric aerosol layer provides a shortcut for ultraviolet light, which is strongly 

absorbed by ozone, to reach the ground. This scattered light suffers much less attenuation 

than the direct solar beam, which travels a long slant path through the atmosphere. Hence 

there is an increase in flux at the ground, even though some of the scattered light escapes to 

space, increasing that flux also. Davies uses a model of the atmosphere which treats the 

aerosol as a single scattering layer, but neglects Rayleigh scattering by the atmosphere in 

any approximation, to demonstrate that this mechanism can lead to an enhancement of 

surface flux. However, at ultraviolet wavelengths the atmosphere is strongly Rayleigh 

scattering (the Rayleigh scattering optical depth in the zenith direction is 1 at 305 nm), and 

so it has not been shown if the mechanism proposed by Davies is the one responsible for 

surface flux enhancement in a realistic, Rayleigh scattering atmosphere. 

11.2 Explanation of the Mechanism of Enhancement 

To investigate this effect, I use a 30-stream radiative transfer model of the 

atmosphere that is based on the numerical solution of the equation of radiative transfer as 
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formulated by Michelangeli et al. [1992], which is suitable for treating an aerosol layer. 

Our numerical model includes Rayleigh scattering by air, absorption by ozone, aerosol 

scattering and absorption and assumes a Lambert surface. The attenuation of the direct solar 

beam is treated using spherical geometry, while the multiple scattering is calculated for a 

plane-parallel atmosphere [Froidevaux et al., 1985]. Rayleigh scattering and ozone 

absorption cross sections, and the solar flux incident upon the top of the atmosphere, are 

taken from the World Meteorological Organi:ation [1986] report. Volcanic aerosols are 

assumed to scatter with the Henyey-Greenstein phase function [Henyey and Greenstein, 

1941], with an asymmetry parameter of 0.75 and single scattering albedo of 0.99 

[Vogelmann et al., 1992] . 

I validated our model by calculating the diffuse reflection and transmission 

functions for light incident upon a plane-parallel slab of scatterers, and comparing the 

results with the tables published by van de Hulst [ 1980], for 120 widely varied sets of 

values of the relevant parameters. The 120 calculated diffuse transmission functions differ 

from van de Hulst's tabulated values by an average of 0.13% and a maximum of 1.5%. 

Corresponding values for the 120 diffuse reflection functions are 033% and 5.6%, 

respectively, with all the differences greater than 0.60% occurring when the incident beam 

is normal to the slab, and the diffuse reflection function is calculated in the direction back 

along the incident beam. Since I only use our model to calculate the flux transmitted to the 

surface at large solar zenith angles, the results presented in this paper have a fractional error 

of less than 1-2%. 
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I have used our numerical model to calculate the factor, E, by which the surface 

flux is enhanced by a volcanic aerosol layer, assumed to spread uniformly from 25-26 km 

altitude [DeLuisi et al. , 1983] with an optical depth of 0.4 [Valero and Pilewskie, 1992]. 

This factor, calculated for a solar zenith angle of 800, is shown in the second column of 

Table Il-l. A surface albedo of 0.05 was used in the calculations, and I assumed that the 

atmosphere is the U.S. Standard Atmosphere [1976], with the amount of ozone scaled to 

200 DU. The first column of Table Il-l lists the approximate center wavelengths of the 

wavelength intervals from the World Meteorological Organi:.ation [ 1986] report. 1:;()3 is the 

optical depth of the atmosphere, in the zenith direction, due to ozone absorption. The fourth 

and fifth columns show the percentage of downward traveling light that is due to direct 

(unscattered) sunlight at 26 km altitude and at the surface, respectively, in the clear 

atmosphere. The last column gives the enhancement factor, E, for surface irradiance 

calculated using Davies ' [1993] model (the fraction of T{)3 beneath the aerosol layer is 

0.672, independent of wavelength). 

I do not make the comparison with Davies ' model to show its inaccuracy, for 

Davies' model is obviously intended to be qualitative. But its purpose is to demonstrate the 

correctness of his intuitive explanation for the mechanism responsible for the enhancement 

in a realistic atmosphere. The point I wish to make by the comparison is that Davies' model 

fails to reproduce even qualitatively the decrease in enhancement predicted at the shortest 

ultraviolet wavelengths. Also, since Davies' model does not include Rayleigh scattering by 

the atmosphere, it assumes that in the clear atmosphere the radiation at the surface is just the 
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direct radiation, attenuated by ozone absorption. The penultimate column of Table II-1 

shows that this is not a valid approximation throughout the wavelength range of the 

enhancement. For these two reasons I claim that Davies ' explanation for the enhancement 

bas not been shown to apply to a realistic, Rayleigh scattering atmosphere. 

To rigorously demonstrate the mechanism responsible for enhancement m a 

realistic, Rayleigh scattering atmosphere, I plot the direct, diffuse and total irradiance as a 

function of altitude both with and without an aerosol layer. Two diffuse irradiances are 

plotted. One (dashed curve) is the cosine weighted integration of the diffuse intensity over 

the upward hemisphere, representing the flux of diffuse light traveling up through the 

atmosphere. The other (dotted-dashed curve) is the cosine weighted integration of the 

diffuse intensity over the downward hemisphere, representing the flux of diffuse light 

traveling down through the atmosphere. The net downward irradiance is the direct 

irradiance plus the diffuse irradiance integrated over the downward hemisphere minus the 

diffuse irradiance integrated over the upward hemisphere. I consider the wavelength range 

303.0-307.7 nm, for which the surface flux enhancement factor is 2.22, as given in Table 

11- 1. The upward diffuse, downward diffuse, direct and net downward irradiance as a 

function of altitude in the aerosol free atmosphere are shown in Figure II -1. The 

introduction of an aerosol layer of optical depth 0.4, extending from 25-26 km altitude, 

causes the upward diffuse, downward diffuse, direct and net downward irradiance to 

become the functions of altitude shown in Figure 11-2. These irradiances are normalized to 

the solar irradiance incident perpendicularly upon the top of the atmosphere. 



11-6 

By comparing the Figures we see that the aerosol layer increases the downward 

diffuse irradiance at 25 km altitude by a factor of 5. This is due to the conversion of direct 

sunlight into diffuse (scattered) light by the aerosol. Since the total irradiance at the surface 

is overwhelmingly due to downward diffuse light, the decrease in direct sunlight at the 

surface due to the aerosol layer is more than compensated for by the increase in downward 

diffuse light. Hence, as long as the radiation at the altitude of the top of the aerosol layer is 

primarily direct, enhancement of surface flux occurs by the mechanism described by Davies 

[1993]. However, Davies ' model fails to predict the decrease in enhancement seen at the 

shortest ultraviolet wavelengths, because such wavelengths are both strongly Rayleigh 

scattered and ozone absorbed by the atmosphere. Therefore, little of the radiation is direct 

sunlight by the altitude of the top of the aerosol layer (most is scattered light), as can be 

seen from the fourth column of Table 11-1. Hence scattering by the aerosol layer provides 

no shortcut to the ground, and, because of back scatter to space, the flux at the surface 

actually decreases. 

I extended Davies' model to include Rayleigh scattering by the atmosphere in the 

single scattering approximation, assuming the same type of atmosphere and aerosol as was 

considered in calculating the results presented in Table 11-1. In this case no enhancement of 

surface flux occurs in any of the wavelength intervals considered in Table 11-1. This is 

because a single scattering calculation always underestimates the diffuse light reaching the 

surface; since the enhancement is due to an increase in diffuse light, no enhancement will 

be predicted if the model significantly underestimates the transmission of diffuse light to the 
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surface. 

11.3 Biological Significance 

Large solar zenith angles and the ozone hole make Antarctica during spring the most 

susceptible place on earth to the scattering effect of volcanic aerosols. Accordingly, I have 

used our numerical model to calculate the effect of a volcanic aerosol layer on indigenous 

life in Antarctica during spring. For a representative day in Antarctica during the spring 

ozone hole (October 7), and for a representative region near the edge of the pack ice where 

most indigenous life is located (70°S), I calculate the flux, from 290-420 nm, transmitted 

to the surface both with and without a stratospheric aerosol layer. The baseline atmosphere 

is the U.S. Standard Almosphere [1976], with the amount of ozone scaled to 200 DU to 

represent the effect of the ozone hole (about 35% below normal). I assume that the lower 

boundary of the atmosphere is the ocean, with an albedo of 0.05 [Doda and Green, 1980; 

Blumthaler and Ambach, 1988], assumed constant from 290-420 nm. The flux is 

calculated for 10 solar zenith angles between sunrise and noon (solar zenith angle= 64.50). 

The spectral irradiance (flux per unit wavelength interval) at each solar zenith angle 

is convolved with an action spectrum. The integrated daily dose of radiation [Lubin et al., 

1992] is approximated by the sum of the 10 convolutions weighted by the length of time 

each solar zenith angle is assumed to exist for. The convolution is calculated from 290-420 

nm in 0.1 run steps. It is necessary to calculate the change in the integrated daily dose of 

radiation, rather than just the change in the mid-day dose, because about half the daily dose 
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of radiation is acquired at times other than mid-day, and the enhancement is much larger at 

these solar zenith angles than at mid-day. 

The action spectrum is the relative effectiveness of different wavelengths in causing 

a biological response. I use the action spectrum for DNA [Setlow, 1974] for reference. 

This action spectrum is probably not representative of the effect on any biological 

organism. However, many previous studies of the transmission of ultraviolet radiation 

through the atmosphere use this action spectrum, and so I have included it for comparison 

purposes only. The action spectra I have chosen to be representative of the biological 

response of actual organisms are the phytoplankton action spectrum [Mitchell, 1990; Lubin 

et al., 1992], and the erythema action spectrum [Diffey, 1987]. The choice of a 

phytoplankton action spectrum is obvious, since the oceans off Antarctica contain abundant 

phytoplankton. I chose the erythema action spectrum as a generic representation of the 

possible biological response of the eyes of birds and the eyes and skin of marine mammals 

which may come close to the ocean surface, or out of the water entirely onto the ice. These 

three action spectra differ mainly in the strength of the UV-A (320-420 nm) "tail" of the 

spectra relative to the weighting of the action spectra in the UV-8 (290-320 run). The DNA 

action spectrum has a negligible UV -A tail, the erythema UV -A tail is more prominent 

relative to its UV -8 weighting, and the phytoplankton action spectrum has the strongest 

UV-A tail relative to UV-8 weighting. Since the flux of UV-8 is in general increased by 

the aerosol layer, while the flux of UV-A is decreased by the aerosol layer, the change in 

the integrated daily dose of radiation depends very strongly on which action spectrum is 
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used to weight the spectral irradiance. The action spectrum with the weakest UV -A tail 

relative to UV-B weighting (DNA) will produce the most pronounced increases in the 

integrated daily dose of biologically weighted irradiance. By contrast, the action spectrum 

with the strongest relative UV-A tail (phytoplankton) is expected to show a decrease in the 

integrated daily dose of biologically weighted irradiance, because the decrease in UV-A, 

relatively strongly weighted by the action spectrum, outweighs the increase in UV -B. 

The change in the integrated daily dose of biologically weighted irradiance, caused 

by a stratospheric aerosol layer being introduced into the baseline atmosphere, is given in 

Table II-2. The columns labeled "PP", "ERY" and "DNA" refer to weighting by the 

phytoplankton, erythema and DNA action spectra, respectively. The range of aerosol layer 

optical depths (t) bounds values observed after volcanic eruptions [Hofmann, 1987; Valero 

and Pilewskie, 1992]. The aerosol is assumed to be uniformly distributed within 2 altitude 

ranges representative of observations made after eruptions, 12-24 km [McCormick et al., 

1984] and 25-26 km [DeLuisi et al., 1983], the latter altitude range observed at Mauna Loa 

about 1 week after the El Chichon eruption. This layer spread vertically with time [DeLuisi 

et al., 1983], so for a similar layer to exist over Antarctica, the eruption would have to 

occur in or near to Antarctica. Observations of the aerosol cloud injected into the 

stratosphere by the Mt. Pinatubo eruption [Osborn et al., 1995] indicate that this cloud 

spread from a narrow initial height range of 22 - 24 km, observed 2 months after the 

eruption, to a much broader and lower height range of 16-24 km, observed 12 months after 

the eruption. The observations indicate that the aerosol cloud descended and spread out at a 
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roughly constant rate during this 10 month period. Hence I consider the narrow aerosol 

range considered in this paper to only be valid for one to two months following an 

eruption, requiring a volcanic eruption in Antarctica. Since volcanic aerosols may induce 

ozone destruction [Vogelmann eta!. , 1992], I repeated the calculations for the 12-24 km 

layer assuming an 8% ozone column depletion (to 184 DU), due to uniform depletion 

within the layer. This is representative of ozone column depletions observed at some 

locations after the El Chichon eruption [Bojkov, 1987]. There is not enough ozone between 

25 and 26 km altitude for an aerosol induced ozone depletion there to be significant. 

For reference, the increase in the integrated daily dose of biologically weighted 

irradiance, weighted by the DNA action spectrum (BWI-DNA), due to an aerosol layer 

extending from 12-24 km, with an 8% ozone column depletion (to 184 DU), is given in 

Table 11-2 and may be compared directly with the results of Vogelmann et al. [1992]. Their 

results were calculated for mid-latitudes, where scattering by an aerosol layer decreases the 

flux of ultraviolet light at the surface, offsetting the effects of aerosol induced ozone 

destruction [Vogelmann et al., 1992]. Vogelmann et al. predict increases of approximately 

8-15% for t = 0.4-0.1 , which if applied to Antarctica would underestimate the increase in 

BWI-DNA there by up to a factor of 2. 

Volcanic aerosols must induce significant ozone destruction in order for there to be 

an increase in BWI-DNA at mid-latitudes [Vogelmann et al., 1992]. However, the Mt 

Pinatubo eruption caused zonal-scale ozone depletions of only 2-4% within the aerosol 

layer, so that scattering by the aerosols effectively offset the ozone destruction [Vogelmann 



11-11 

et al., 1992] . By contrast, the last column in Table 11-2 shows that a narrow aerosol layer 

lying above Antarctica during spring can cause large (up to 17%) increases in BWI-DNA, 

even if the aerosols do not induce any ozone destruction. 

Fortunately, however, the effect of a volcanic aerosol layer on the integrated daily 

dose of biologically weighted irradiance is much less severe when the phytoplankton and 

erythema action spectra are used. These action spectra are expected to more realistically 

mimic the biological response of life in Antarctica to ultraviolet radiation. Phytoplankton are 

actually better off with an aerosol layer overhead, because while the flux of UV-B radiation 

is increased, the flux of UV -A radiation is decreased, and the relatively strong UV -A 

weighting of the phytoplankton action spectrum leads to an overall decrease in biological 

response, even with an 8% reduction of ozone due to aerosol induced ozone destruction. 

However, the third column of Table 11-2 shows that when the irradiance is weighted with 

the erythema action spectrum, the integrated daily dose of biologically weighted radiation 

(BWI-ERY) decreases by only up to 5% with the introduction of an aerosol layer. This is 

not enough to offset the effects of an 8% ozone depletion due to ozone destruction within 

the aerosol layer (sixth column of Table 11-2). Larger aerosol induced ozone depletions will 

be offset by only up to the same 5%, so it is possible for volcanic aerosols to cause 

significant increases in BWI-ERY in Antarctica during spring. These increases would be in 

addition to the effects of the higher than normal levels of ultraviolet radiation in Antarctica 

caused by the yearly spring ozone hole. 



II-12 

Table 11-1. Enhancement of Flux by a Stratospheric Aerosol Layer 

Wavelength E 

292 0.919 

296 1.22 

301 2.22 

305 2.22 

310 1.56 

315 1.18 

320 1.01 

325 0.939 

'tQ3 

(nm) 

5.6 

3.1 

1.7 

0.89 

0.47 

0.23 

0. 11 

0.050 

% Direct 

(26 km) 

14 

65 

86 

92 

93 

94 

94 

95 

% Direct 

(surface) 

9.4 X lQ-9 

1.6 x w-4 

4.1xi0-2 

0.47 

1.2 

1.9 

2 .7 

3.5 

E-Davies' 

model 

1.5 X 106 

8.8 X 102 

1.6 x wi 

2.0 

0.76 

0.48 

0 .39 

0.36 
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Table 11-2. Percentage Change in the Integrated Daily Dose of Biologically Weighted 

Irradiance (Positive= Increase), Due to an Aerosol Layer Lying Above Antarctica 

I2-24 km (200 DU) 12-24 km (184 DU) 25-26 km (200 DU) 

pp ERY DNA pp ERY DNA pp ERY DNA 

0.0 0 0 0 1.8 II I9 0 0 0 

0.1 -3.0 -1.5 0.0 -1.2 9.4 20 -2.4 0.8 4.8 

0.2 -5 .8 -2.7 0.3 -4.0 9.0 21 -4.7 1.7 9.3 

0.3 -8.4 -4.9 -0.8 -6.5 7.9 22 -6.7 2.6 13 

0.4 -1I -5.1 0.4 -8.9 4.5 I8 -8 .6 3.4 17 
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Figure 11-1. The upward diffuse, downward diffuse, direct and net downward 

irradiance, normalized to the solar irradiance incident perpendicularly upon the top of the 

atmosphere, in the wavelength range 303.03-307.7 nm as a function of altitude in an 

aerosol-free U.S. Standard Atmosphere [1976], weighted to 200 DU. Net downward= 

direct + downdiffuse - updiffuse. The solar zenith angle is 800. 
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Figure II-2. With the introduction of an aerosol layer of optical depth 0.4, extending 

from 25-26 km altitude, the upward diffuse, downward diffuse, direct and net downward 

irradiance become the functions of altitude shown. The aerosol layer increases the flux at 

the surface by more than a factor of 2 by converting direct sunlight into diffuse (scattered) 

light. 
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Appendix 

Al. A New Method for Validating a Multiple Scattering 

Radiative Transfer Model 

The main method I used to validate our model was to calculate diffuse reflection and 

transmission functions for light incident upon a plane-parallel slab of scatterers, and 

compare the results with the tables published by van de Hulst [1980]. This method was 

used by Michelangeli et al. [1992] to validate their multiple scattering radiative transfer 

model. It should be noted that Michelangeli et al. [1992] state that the transmission function 

they calculate includes the direct (unscattered) beam when the emergence angle equals the 

incidence angle of the light incident upon the slab. In fact, the transmission function given 

in the tables by van de Hulst [1980] is clearly a diffuse transmission function that does not 

include the direct beam. Therefore, it is both a diffuse reflection and transmission function 

that must ultimately be calculated by ones model for comparison with the tables published 

by van de Hulst . 

I have thought of a new way to validate a multiple scattering radiative transfer 

model that has not been proposed before. This may be used in addition to the methods used 

by previous authors to provide an additional test of the validity of ones model. The idea is 

to calculate the amount of diffuse light analytically in the single scattering approximation, 

and compare this with the results from the multiple scattering model being validated, using 

a small enough optical depth that the single scattering approximation is valid. I first derive 

the single scattering analytical solution and offer some relevant insights into radiative 
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transfer theory, since neither the derivation nor the insights have been found anywhere in 

the literature. I then give an example of a comparison between the analytical solution and 

our multiple scattering radiative transfer model. 

Al.l Derivation of the Single Scattering Analytical Solution 

We start with the equation of radiative transfer in a plane-parallel atmosphere, which is 

equation 1.63 in Liou, 

d l ('r:; ,u, 4J) - /( . A.) - J( . A.) f.1 dt: - T: ,f.J,,.., T: ,f.J, ,.., (A 1.1 ) 

The diffuse intensity I is the flux of diffuse light per unit steradian at an optical depth -r:, 

which is measured from the top of the atmosphere down. f.1 and 4J define the direction of 

the diffuse beam, where f.1 is the cosine of the zenith angle and 4J is the azimuth angle. The 

source function 1 represents the addition to the diffuse beam in the direction (f..£ , 4J) due to 

light being scattered into that direction by the infinitesimal layer d-r:. We multiply both sides 

of this equation by (1/JJ)e-•/ p. and integrate in optical depth from 0 tor. 

/( . A.) • I 11 - l(o· A.) - r· -d , -"t' lp. J< -r:' ;f.1,4J) 
T:,f.l ,.., r: ,f.l,.., - Jo -r: e f.1 (A1.2) 

For downward traveling diffuse radiation f.1 is negative and /(O;f..£, l/J) = 0 since there is no 

diffuse radiation incident upon the top of the atmosphere. We see by inspection that 

}( '· A.)= F -T/JJ N ( P(f.1 ,4J ;-f.1o, l/Jo)\ 
1: ,f..£,.., ;r 0 e o w \: 4;r ) (Al.3) 

wherenF0 is the solar flux incident upon the top of the atmosphere in the direction of the 

direct solar beam, and f.lo is the cosine of the angle between the zenith and a vector 

pointing towards the sun (which lies in the opposite direction of the direct solar beam). l/J
0 
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is the azimuth angle of the direct solar beam, and so the direction of the direct solar beam, 

which points down, is (-fl
0
,¢J. Assuming that the atmosphere is uniform, the single 

~ 
scattering albedo of every infmitesimallayer within the atmosphere is w = ~s , where~ s is 

the scattering optical depth of the atmosphere in the zenith direction and ~ is the total 

(scattering + absorption) optical depth of the atmosphere in the zenith direction. w is the 

fraction of the extinction of a beam by an infinitesimal layer that is due to scattering. We 

also define P(JJ' ,ql ".Jl,f/Jy 4n to be the probability of light scattering into the unit solid angle 

about the direction (p_' ,¢') from the direction (JJ,t/J). Evaluating the integral we get 

/( . tl.) _ F ,., (P(fl ,¢ ;-flo• ¢)) flo ( - T/JJ _ •IJJ) 
~.fl, 'f' - 1t: 0 w 4 e o e 

1t: fl + flo 
(A 1.4) 

This is the downward diffuse intensity at an optical depth 1:. The downward diffuse 

irradiance at this optical depth is then 

F D = ( -fll(~;fl,tfJ)dQ 
}Q' 

(Al.S) 

where Q ' is the downward facing hemisphere. Substituting the expression for I in the 

integrand and writing the integral over solid angle as an integral over fl and ¢we get 

(A 1.6) 

Now 

(A 1.7) 

where 

(Al.8) 
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where a is the scattering angle, defined as the angle between the direction of travel of the 

incident and scattered radiation. The a '1 are the expansion coefficients for the expansion of 

the phase function in terms of Legendre polynomials. We have 

a , = {o/,O + ~o /,'2 Rayleigh scatte~ing} 
1 (21 + 1) g I aerosol scattermg 

(A1.9) 

where we have used the Kronecker delta notation to write a '1 for Rayleigh scattering in 

compact form (for Rayleigh scattering a ' 0 = 1, a ' 1 = 0 , a' 2 = 0.5; a ' n = 0 for n ~ 3 ). For 

aerosol scattering I have assumed the Henyey-Greenstein phase function, where g is the 

asymmetry parameter. Substituting this expansion of the phase function in terms of 

associated Legendre polynomials into the expression for FD we get (arbitrarily putting ¢0 = 

0) 

- N f l 1-1 FD = :rF 1-L w L a ' .PI 1-L ) (e-r:IJ.lo- e--r/Jl)Pfp)d!-L 
0 ozl=O rl' 0 II -II 

J.l= O ro r 
(Al.lO) 

The quantity :rF
0

!-L
0 

is the flux of light incident perpendicularly upon the top of the 

atmosphere, and so FD/ :rF
0

!-L
0 

is the downward diffuse irradiance at the bottom of the 

atmosphere, normalized to the flux of light incident perpendicularly upon the top of the 

atmosphere, calculated with the assumption of single scattering: 

(Al.ll ) 

A1.2 The Meaning of Single Scattering 

The amount of diffuse intensity extinguished by an infinitesimal layer of total 
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optical depth d.,; is the diffuse intensity incident upon the top of the infinitesimal layer times 

dTlf.l ( f.l is now defined to be the negative of the cosine of the zenith angle, and so is a 

positive number for the downward traveling diffuse radiation we are considering). The 

source of that diffuse intensity incident upon the top of the infinitesimal layer is the single 

scattering of sunlight in higher infinitesimal layers. The point is that this diffuse intensity 

incident upon the top of the infinitesimal layer suffers attenuation due to the total -

absorption plus scattering - optical depth of the infinitesimal layer. The equation of radiative 

transfer as formulated for single scattering still includes this extinction of single scattered 

light due to further scattering. That is. the further scattering of single scattered sunlight is 

taken into account in the single scattering approximation! The difference is that, unlike a 

multiple scattering model , this further scattering is treated as a simple absorption, and so 

always overestimates the actual extinction. Hence a single scattering calculation always 

underestimates the diffuse light reaching the surface. 

A1.3 A Comparison of the Single Scattering Analytical Solution 

with our Multiple Scattering Numerical Model 

The optical depths of the US Standard Atmosphere above 26 km in the wavelength 

range 290-294 nm are 0.0255 and 1.59 for Rayleigh scattering and ozone absorption, 

respectively. This gives a single scattering albedo of 0.016 for the assumed uniform 

atmosphere above 26 km. This is small enough that a single scattering calculation of the 

diffuse light above 26 km altitude should be reasonably accurate, allowing our multiple 
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scattering numerical model to be validated by comparing the models predictions for the flux 

of diffuse light with that calculated with the single scattering analytical solution. 

In order to make the comparison between our numerical model and the single 

scattering solution, I repeated the calculations using our numerical model with the 

assumptions that the atmosphere is uniform above 26km (but has a realistic varymg 

composition below 26 km), that the radius of the earth is very large so that the attenuation 

of the direct beam occurs as if in a plane-parallel atmosphere, and that the surface albedo is 

zero. All of these assumptions serve to allow a fair comparison between our numerical 

model and the single scattering calculation, because the single scattering calculation 

assumes a uniform, plane-parallel atmosphere with no reflection from below. All the fluxes 

reported here from our numerical model and from the single scattering calculation have 

been normalized to the direct flux incident perpendicularly upon the top of the atmosphere. 

In the following Table A 1.1 I include a comparison between the results of our 

multiple scattering numerical model (the one used in our paper) and the single scattering 

analytical calculation at 9 intervening optical depths between the top of the atmosphere and 

the 1.62 total optical depth of 26 km altitude. In this Table only one direct flux is listed, 

since the direct flux is the same as calculated by our model or the single scattering 

calculation. The first two columns list the total optical depth and the approximate altitude at 

which that optical depth occurs. The third column gives the direct downward irradiance at 

that altitude. The fourth and fifth columns list the downward diffuse irradiance as calculated 

by our multiple scattering numerical model and by the analytical single scattering calculation 
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respectively. All of the direct and diffuse irradiances are normalized to the direct irradiance 

incident perpendicularly upon the top of the atmosphere. The penultimate column shows 

the percentage amount by which the single scattering diffuse irradiance is below the diffuse 

irradiance as calculated by our multiple scattering numerical model. The last column shows 

the percentage of downward traveling light at that altitude which is due to direct light. 

The percentage of direct light at 26 km altitude from the last line of the Table 

(13.3%) is slightly less than the 14% reported in Table 11-1 of the main text of this chapter 

because the direct light suffers more attenuation in the flat atmosphere I have assumed here 

than in the realistic spherical atmosphere that was assumed in the calculations carried out in 

the main text. 

The maximum percentage difference between the diffuse fluxes calculated using our 

numerical model and the single scattering calculation is 1.8%, with the diffuse flux 

calculated with the single scattering solution always less than that calculated with the 

multiple scattering numerical model, as expected. Notice that the percentage difference 

decreases as we go higher in the atmosphere. This is because as we go higher in the 

atmosphere the optical depth due to scattering of the layer we are calculating the diffuse flux 

through decreases, improving the assumption of single scattering (the chance of a photon 

suffering a second scattering decreases as the number of scatterers decreases). 

This comparison provides an additional confirmation of the validity of our multiple 

scattering numerical model, and demonstrates a new method by which a multiple scattering 

numerical model may be validated. 
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Table Al.l 

alt (km) direct diffuse (m.s.) diffuse (s.s.) 9'o diff % direct 

0.2 68 0.3160 3.739x1Q-3 3.711xiQ-3 -0.749% 98.8% 

0.4 62 9.984x1o-2 3.550xio-3 3.522x1o-3 -0.789% 96.6% 

0.6 56 3.155x 1 o-2 2.753x1o-3 2.726x1o-3 -0.981 % 92.0% 

0.8 50 9.969x1o-3 2.033x 1o-3 2.009x I o-3 -1.18% 83 .1% 

1.0 44 3.150x 1 o-3 1.489x 1 o-3 1.469x 1 o-3 -1.34% 67 .9% 

1.2 38 9.954x1o-4 1.097x 1 o-3 1.080x 1o-3 -1.55 % 47.6% 

1.4 32 3.145xJo-4 8.147x Jo-4 8.01 Ox 1 o-4 -1.68 % 27.9% 

1.6 26.5 9.938xJo-5 6.105x w-4 5.994x1Q-4 -1.82% 14.0% 

1.62 26 9.011xiQ-5 5.959x 1o-4 5.850x1o-4 -1.83% 13.3% 
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A2. A Proposed Method for Observing the Enhancement of 

Ultraviolet Light at the Surface by a Stratospheric Aerosol 

Layer. 

Here I propose a method for quantitatively confirming that a stratospheric aerosol 

layer increases the flux of ultraviolet light at the surface for large solar zenith angles. Zeng 

et al. [1994] compared measurements of the ratio of diffuse light to direct light at the 

surface made prior to and after the Mt. Pinatubo eruption with calculations of these ratios 

using the optical properties of the atmosphere at both times, including the stratospheric 

aerosols present after the eruption. Calculation and measurement mostly agree; however, I 

do not consider this to be evidence for observation of an increase in flux of ultraviolet light 

at the surface at large solar zenith angles due to the presence of a stratospheric aerosol 

layer. 

Inspection of Figure 9 of Zeng et al. [1994] shows that the measured ratio of 

diffuse to direct light increases with decreasing wavelength in a similar fashion for both the 

pre and post Mt. Pinatubo eruption measurements; the only difference is a constant shift 

between the two curves, presumably due to the different ozone column amounts present for 

both measurements, since this constant shift extends out to 4.50 nm, the maximum 

wavelength shown in the Figure, at which there could be no enhancement in the ratio of 

diffuse to direct light due to the effect in question, especially considering that the solar 

zenith angle for both observations is only around 23 °. Therefore, the constant shift 

between the two curves of diffuse/direct light for pre and post eruption measurements 



II-25 

cannot be due to the effect, and the increase in this ratio with decreasing wavelength also 

cannot be due to the enhancement effect because this increase occurs for the pre-eruption 

measurement also, where there is no stratospheric aerosol. Therefore, this comparison of 

measurement with calculation provides no evidence for the enhancement effect. 

Forster er al. [1995] found an unexplained discrepancy between modeled and 

measured values of the flux of UV -B light at the surface, measured at Reading, United 

Kingdom with clear skies. They found that including stratospheric volcanic aerosols in 

their model improved agreement between their model and the measurements for large solar 

zenith angles by increasing the flux of UV-B light at the surface predicted by the model by 

as much as 6%. They explain there could be an instrument based reason for the discrepancy 

also, and the fact that including volcanic aerosols in their model improved agreement with 

their observations is not confirmation of the effect, since the existence of volcanic aerosols 

must be an independent fact. 

In light of this history, I may state that a stratospheric aerosol layer increasing the 

flux of ultraviolet light at the surface, for large solar zenith angles, is predicted but has not 

yet been observed, and so I propose here a possible method for observation. After the next 

major volcanic eruption that injects significant quantities of volcanic aerosols into the 

stratosphere (El Chichon and Mt. Pinatubo being the most recent such eruptions in 1982 

and 1991, respectively), I propose that observations be made at sunrise and sunset of the 

flux of downward traveling diffuse light at the surface. 

By making observations at sunrise and sunset, large solar zenith angles can be 
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realized at any latitude. Therefore, this technique allows observations of the effect to be 

made from anywhere in the world. In addition to measurements of the flux of downward 

traveling diffuse light at the surface, the solar flux per unit wavelength interval (spectral 

irradiance) incident upon the top of the atmosphere must be known, since the flux at the 

surface is proportional to the flux at the top of the atmosphere. Therefore, the flux incident 

upon the top of the atmosphere must be known otherwise if an increase in flux is observed 

beyond that expected for a standard solar irradiance at the top of the atmosphere, it will be 

unknown whether this increase is due to the effect in question or simply because the 

incident solar flux at that wavelength happened to be larger than the standard amount. 

That the flux at the surface is proportional to the flux incident upon the top of the 

atmosphere may not be immediately obvious, but this follows from considering the flux 

(either direct, upward or downward diffuse) to be a certain value fat the surface for a given 

value of the flux of sunlight incident perpendicularly upon the top of the atmosphere, F. 

Now if the flux of sunlight incident perpendicularly upon the top of the atmosphere is now 

some multiple ofF, nF, then it can be seen that for each part F of the flux, the flux at the 

surface isf, so that for a total flux nF, the flux at the surface is nf. This holds as long as the 

n "components" of size F of the total incident flux nF do not affect each other's 

transmission through the atmosphere, for example by heating the atmosphere which affects 

absorption cross sections and therefore the transmission of light. If non linear effects such 

as these are ignored, then it follows that the flux of light at the surface is proportional to the 

flux of light incident upon the top of the atmosphere. 
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In addition, the amount of ozone as a function of altitude above the observing site 

must be known, as well as the albedo of the surface around the observing site. With the 

incident solar spectral irradiance, ozone density as a function of altitude and surface albedo 

known, the downward directed diffuse flux at the surface in the UV-B (290-320 nm) may 

be easily calculated numerically for a clear atmosphere. The diffuse fluxes calculated this 

way represent the non-volcanic case; that is, the diffuse fluxes that would have been 

observed on this day if there had been no volcanic eruption. For simplicity, so there are no 

complications affecting observation of the effect, I assume a clear atmosphere, meaning no 

clouds and no significant tropospheric aerosols. This requires that the observations of 

diffuse flux at the surface after the volcanic eruption be made in a cloudless sky with little 

tropospheric aerosols. The observations of diffuse fluxes can then be compared with the 

values calculated for a clear atmosphere; the effect will show up as an enhancement in the 

diffuse flux at certain UV -B wavelengths, with a characteristic diminishment at both shorter 

and longer wavelengths. 

To illustrate this method, I calculate the downward diffuse light at the surface for a 

clear U.S. Standard Atmosphere [1976] with 344.446 DU and a UV-B surface albedo of 

0.05, which happens to be characteristic of either (snow free) land or sea [Dada and Green, 

1980; Blumthaler and Ambach, 1988]. I calculate this light for both a clear atmosphere, as I 

would if I were making observations of the downward diffuse light after a volcanic 

eruption, but instead of observations of the downward diffuse light after an eruption I use 

calculations of the flux of downward diffuse light assuming a volcanic aerosol layer of 



II-28 

optical depth 0.4 [Valero and Pilewskie, 1992] spread uniformly from 25-26 km [DeLuisi 

et al., 1983]. The volcanic aerosols are assumed to scatter with the Henyey-Greenstein 

phase function [Henyey and Greenstein, 1941], with an asymmetry parameter of 0.75 and 

single scattering albedo of 0.99 [Vogelmann et al., 1992] . 

In the Table A2.1 I show the ratio of "observed" flux after the eruption f0, to the 

flux calculated for a clear atmosphere, f c, using the properties of the atmosphere and 

surface that exist when the post eruption "observations" are made. Notice that it is not 

necessary to specify the solar irradiance incident upon the top of the atmosphere (F); since 

both f 0 and fc are proportional to F, the ratio of f 0 to fc is independent of F. I show f olfc 

for 8 wavelength intervals from the World Meteorological Organi:ation [1986] report 

whose approximate center wavelengths are shown and extend from 292 to 325 nm, which 

is basically the UV -B wavelength range. The variation of fo/fc over these wavelength 

intervals is shown for three solar zenith angles; 850, 800 and 750. 

As can be seen quantitatively from Table A2.1, the wavelength interval at which the 

enhancement peaks decreases as the solar zenith angle decreases. When the sun is higher in 

the sky, the condition that the slant path of the direct beam below the aerosol layer is 

optically very thick in absorption is met at shorter wavelengths, since the slant path is less 

inclined to the vertical and so travels through less path length of atmosphere. Conversely, 

when the sun is low in the sky, the slant path is very long, and so the absorption optical 

depth along the slant path becomes quite large at relatively longer wavelengths, meaning 

that the conditions necessary for enhancement occur at longer wavelengths. 
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In Table A2.2 I have given the downward directed diffuse flux at the surface, in 

Photons cm-2s-l , for the atmosphere with the volcanic aerosol layer. For the solar flux 

incident upon the top of the atmosphere in the 8 wavelength intervals, I have used the 

World Meteorological Organi~ation Report [1986] . The purpose of this Table is to show 

the wide range in magnitudes of the transmitted diffuse flux at the surface, which would 

have to be measured, as a function of wavelength and solar zenith angle. The observer' s 

ability to measure diffuse fluxes on the magnitudes indicated will dictate the wavelengths 

and solar zenith angles at which the observer should attempt to observe the enhancement. 

The observations proposed here, made after the next major volcanic eruption that 

injects significant quantities of aerosols into the stratosphere, would detect the enhancement 

through the increase of downward directed diffuse light compared with that predicted 

numerically for a clear atmosphere. The characteristic behavior of the enhancement as a 

function of wavelength and solar zenith angle would be the telltale signs of the effect 

qualitatively; of course, if quantitative confirmation were desired, the observations could be 

compared quantitatively with the ratios predicted numerically using the observed optical 

proprieties of the volcanic aerosol layer. 
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Table A2.1. The Enhancement of Downward Directed Diffuse Flux at the Surface by a 

Volcanic Aerosol Layer at Various Solar Zenith Angles 

Solar Zenith Angle 

Wavelength 85° 80° 75° 

(nm) 

292 0.880 0 .881 0 .897 

296 0.905 0.925 1.22 

301 0.937 1.36 2.56 

305 1.14 2.40 2.47 

310 I. 71 2.17 1.62 

315 1.71 1.48 1.23 

320 1.28 1.15 1.09 

325 1.0 I 1.0 I 1.04 
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Table A2.2. Downward directed diffuse flux at the surface (solar flux incident 

perpendicularly upon the top of the atmosphere) in Photons cm-2s-l in the atmosphere with 

a volcanic aerosol layer. 

Solar Zenith Angle 

Wavelength 85° 80° 75° 

(nm) 

289.9 - 294. 1 5.6x 1 o5 (3.0x 10 13) 8.8x1o5 (6.0x1ol3) 1.3xl06 (9.0x1o13) 

294.1 - 298.5 9.0x107 (3.0x1Q13) 1.7xl08 (5.9x1o13) 3.3xl08 (8.8x 1ol3) 

298.5 - 303.0 2.6x1o9 (2.8x1Q13) 7 .5xl09 (5.6x1Q13) 2.6xl010 (8.3x1o13) 

303.0- 307.7 4.7x1Q10 (3 .7x1ol3) 2.1xlQ11 (7.3x1Q13) 6.4xto11 ( 1.1x1Q13) 

307.7 - 312.5 4.3x1o11 (4 .3x1o13) 1.9x1Ql2 (8.6x1Q13) 4.5x1Q12 (1.3xlo14) 

312.5- 317.5 2.2x1Ql2 (4.7x1Q13) 7.6xtol2 (9 .4x1Q13) 1.5x1Q13 (1.4x1Ql4) 

317.5 - 322.5 6.0x1ol2 (5.2x1Q13) 1.6xi013 ( l.Oxi014) 3.2x1o13 ( 1.5x1Ql4) 

322.5 - 327.5 1.2xio13 (6.Ix1Ql3) 3.0x1ol3 ( 1.2x1ol4) 5.2x1Ql3 (1.8x1Ql4) 
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Chapter III 

A Novel Method for Enhancing Subsurface 

Radar Imaging using Radar Interferometry 
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111.1 Introduction 

Radar imaging of buried surfaces that cannot be seen in visible light is a 

phenomenon that can occur due to the much longer wavelengths (of order IOcm) of 

imaging radar compared to visible light (around 0.5 micron). The radar wave Rayleigh 

scatters easily around particles less than about 1/lOth of its wavelength the same way 

visible light Rayleigh scatters from nitrogen molecules in the atmosphere; Rayleigh 

scattering by nitrogen molecules, much smaller than the wavelength of visible light, makes 

the sky blue but it doesn't obscure the Sun. 

There are two major factors that can prevent a strong signal from being observed 

from a buried surface: liquid water [Blom et al.. 1984] and the presence of particles. 

defined as objects with a different dielectric constant from the surroundings. of size greater 

than about one tenth of the radar wavelength [Roth and Elachi, 1975]. Liquid water is a 

good absorber of electromagnetic radiation of radar wavelengths, and so penetration of the 

radiation into the water is limited even if the water forms an infinite medium. If instead the 

water forms drops comparable in size to the radar wavelength then it will both absorb and 

strongly scatter the radiation, and penetration is limited due to both effects. Indeed, any 

"drop" of substance with a dielectric constant different from the surrounding medium of 

size greater than about one fifth of the radar wavelength will strongly scatter the radiation, 

and therefore limit penetration, even if absorption within the "drop" is negligible. 

The reason is the same reason that clouds only become visible when water vapor 

condenses into droplets ; the water vapor was always there, but only when droplets form 
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does the cloud suddenly become visibly, meaning it scatters much more light. Drops of 

liquid water and particles of a size greater than about one fifth of the radar wavelength 

essentially act like clouds, greatly scattering light of radar wavelengths much more than 

water vapor or smaller particles. The reason [F eynman et al. , 1963] is that when atoms are 

clumped together in a agglomerate less than about a wavelength, the electrons in the atoms 

move in phase in response to the electric field of the electromagnetic radiation, because for 

distances of, say, one tenth of a wavelength the phase of the wave is approximately 

constant. Being driven in phase, the electromagnetic fields radiated from the atoms combine 

in phase, so the amplitudes add, and for N atoms the scattered amplitude is N fold 

increased. The scattered intensity is then N2 fold increased, while if the N atoms were 

spread out in space the scattered intensity from each would add, since they would not be in 

phase, and so there is only aN fold increase in intensity. 

Compared to small pebbles of a similar size, so the enhancement in scattering due to 

the agglomeration effect described above is the same, water droplets interact particularly 

strongly with radar waves because water molecules are very dipolar, and so they make 

excellent linear antennas along whose axis the electrons may be accelerated by the 

electromagnetic radar wave. The accelerated electrons radiate electromagnetic radiation, and 

their motion is additionally damped by interaction with the electrons from neighboring 

molecules. These two effects are manifested as the scattering and absorption of the incident 

radar wave, respectively. 

Of course, if the water molecules form an infinite medium the scattered radiation 
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from each water molecule combines in such a way to cancel out in all directions except for 

the incident direction, so there is no net effect due to the scattering. If the water molecules 

do not form a continuous, infinite medium but a half space, then at the boundary we know 

there will be a reflected and transmitted wave. If the molecules just form a discrete drop 

then there is no cancellation of reradiated radiation in all directions except for the incident, 

as in the case of an infinite medium, or except for the transmitted and reflected directions, 

in the case of a half space. Instead, there is scattered radiation in all directions, with the 

scattering effect strongly enhanced for agglomeration of water molecules of a size greater 

than about one fifth of the radar wavelength; drops of liquid water. If the drops get very big 

then they start to approximate infinite half spaces, with cancellation of the scattered 

radiation in all directions other than the reflected and transmitted directions. Hence there is a 

range of drop sizes for most effective scattering, calculated by Roth and Elachi [ 1975] to be 

generally 0.1 A - I 001... 

Solid water, while an agglomeration only slightly Jess dense than liquid, actually 

interacts very weakly with radar waves. In ice, electrons in individual water molecules are 

tightly bound in covalent bonds to the electrons of neighboring water molecules; these 

strong bonds, like stiff springs, essentially prevent the oscillation of a molecule's electrons 

along the dipole axis by the radar electromagnetic wave. Hence there is little scattering or 

absorption of the radar wave. 

Therefore the conditions for subsurface imaging to occur are that the overlying 

material must not contain within its volume too many particles of a size greater than about 
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one fifth of the radar wavelength, or even more importantly much liquid water. Otherwise, 

the echo from the lower surface will be strongly attenuated due to scattering or scattering 

and absorption, respectively, of the incident wave. In this case the echo from the lower 

surface will not be distinguishable from the thermal noise (reflected and emitted radiation 

from the surface due to the temperature of the sky and ground, respectively, as well as the 

receiver thermal temperature). Even if the echo were distinguishable from the thermal 

noise, it may not be distinguishable from the echo due to the dielectric discontinuity at the 

upper surface. Thus, I add the final condition for subsurface imaging to occur, that the 

upper surface not be too "radar bright". 

111.2 Quantifying the Echo Due to the Dielectric 

Discontinuity at the Upper Surface 

While the requirement that the surface not be too "radar bright" has been identified 

before [Blom et al. , 1984], the magnitude of the surface echo compared to the lower echo 

has not been previously discussed. Here I calculate the relative magnitudes for a typical 

situation for the first time, using the approach developed by Elachi et al. [ 1984] who 

calculate the effect a covering layer can have on the echo from the lower surface. Elachi et 

a!. [ 1984] showed that, due to reduction of the angle of incidence and wavelength, a 

covering layer can actually enhance the lower echo. compared to a bare surface, for depths 

up to an appreciable fraction of a skin depth. However. Elachi et al. [ 1984] only considered 

the effect a covering layer with a completel,"v smooth upper surface has. The effect of a 
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covering layer with an upper surface that was as rough as the lower surface - assumed by 

Elachi eta/. [ 1984] to be only slightly rough after all - was not discussed. 

A natural surface can be simply modeled as the combination of large facets with 

small scale roughness superimposed [Elachi, 1987]. The radar echo from each of the facets 

is the same as the antenna pattern of small rectangular antenna, a three dimensional lobe, 

and since most natural surfaces have mean surface slopes less than about 30° [Elachi, 

1987], in order to be within the lobes near normal incidence angles are required. At higher 

incidence angles the echo lies outside the boundaries of the facet lobe and the echo from the 

small scale roughness dominates. The small scale roughness can be considered as a Fourier 

series of sinusoidal components of different amplitudes, and there will be a dominant 

resonance scattering, the strongest Bragg resonance, from the component whose 

wavelength is such that echoes from neighboring crests are one wavelength out of phase, 

combining constructively. 

Using this model for the radar scatter from a natural surface at a non-near normal 

incidence angle, the direct polarization (same send and receive polarizations) power back 

scatter cross section, cr, from a slightly rough surface is given by [G. R. Valenzuela, 1967; 

G. R. Valenzuela, 1968] 

(III.1 ) 

for the upper surface and 

a1 = T,{ e) T1{ e) e- 2Ud cos fl 1;1( ~~, JiJ.e-)w{2kJEI sin 8') (III.2) 

for the lower surface, where the geometry of the two surfaces is illustrated in Figure III-1 . 
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We require that the surface be only slightly rough because the derivation of the above 

expressions is predicated on the assumption that the phase of the wave is constant over the 

scale of the small scale roughness, requiring this scale to be small compared to the radar 

wavelength. 

£ 1 and £2 are the real part of the dielectric constant of the medium overlying the 

lower surface and the material comprising the lower surface, respectively. The wavelength 

of the radar wave in the atmosphere above the medium overlying the lower surface is A. (the 

wave number k = 2rt!A.), and this wave impinges upon the medium with the angle of 

incidence e. The wavelength and angle of incidence are reduced to ~ and 8' 
v£1 

respectively within the medium, in which the skin depth is d, where 8' is given 

approximately (because the upper surface is not completely smooth) by Snell 's law, 

sine= .f£1 
sin (f 1 · 
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Figure III -1: The geometry of subsurface imaging. £1 and £2 are the real part of the 

dielectric constant of the medium overlying the lower surface and the material comprising 

the lower surface, respectively. The wavelength of the radar wave in the atmosphere above 

the medium overlying the lower surface is A. (the wave number k = 2rt!A), and this wave 

impinges upon the medium with the angle of incidence e. 
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W1 and Wu are the roughness spectra- the spectral energy density -of the lower 

and upper surfaces, respectively. These roughness spectra are a function of wavenumber k 

and give the energy per unit wave number of the sinusoidal components of the surface 

roughness with wave number infinitesimally close to k. Though having no physical 

meaning when describing the waves that a rough surface can be decomposed into, the 

energy associated with a wave is the square of its amplitude, so the spectral energy density 

could be renamed the spectral "amplitude squared" density in this case. The spectral density 

gives information about the amplitudes of the different Fourier components that the small 

scale roughness of each surface can be decomposed into. W1 and Wu are evaluated at the 

wave number that gives the lowest order, and strongest, Bragg resonance, which is 

2k sin e for the upper surface and 2k.[f] sin (f for the lower surface. From Snell's law 

we see that these wave numbers are the same, so the relative values of W1 and Wu are the 

relative values of the two surfaces spectral energy densities evaluated at the same wave 

number, 2k sin e. If the surfaces are equally rough at this wave number- if the sinusoidal 

component of wave number 2k sin e of each surface has the same amplitude - the spectral 

densities will be the same. 

T,{ e) is the power transmission function for the transmission of polarization i 

through the upper surface. For a completely smooth upper surface Tl e) is given by 

Tv{ e)= sin 2e sin 2(/ (III.3) 
sin2(e+ {f) cos2(e- {f) 

for vertical polarization and 

T Me)= sin 2e sin 2(/ 
sin 2(e+ {f ) 

(111.4) 



III-I 0 

for horizontally polarized radiation [Born and Wolf, 1975]. While we have assumed that 

the upper surface is slightly rough, for such a surface there are still well defined reflected 

and transmitted beams, albeit slightly lobe shaped [Elachi , 1987]. and so the above 

expressions for the transmission function will still be valid. 

This follows intuitively by considering that the error associated with this 

approximation results from the fact that some radiation is scattered into directions other than 

the smooth surface transmitted and reflected directions, and so there is less energy carried 

away in the direction of the smooth surface reflected and transmitted beams than in the case 

of a smooth surface. However, for a slightly rough surface we know that the specular 

reflection is much brighter than the scattered return (seen from an airplane, the specular 

reflection of the sun off slightly rough water is much brighter than the surrounding water). 

Furthermore, the dielectric constant of the materials through which subsurface imaging is 

achieved is typically around 3, and for such values the transmission coefficient is near I 

and therefore much more energy is transmitted than reflected. Since little energy is 

specularly reflected compared to transmitted through the surface, and the amount of energy 

diffusely scattered at the surface is much less than the amount specularly reflected, it 

follows that the amount of energy diffusely reflected from the surface is very much less 

than the energy transmitted though the surface. The result is that very little power is 

scattered from a slightly rough surface compared with the power transmitted through the 

surface , and so the error associated with using the smooth surface expression for the 

transmission function is small. 
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.t,{ .s,A., e) is a function dependent upon the send polarization and rece1 ve 

polarizationj, and is given by 

fHJ.._ .s,A., e)= 4nk4
cos4i .s- I 2 

2 

(cos e+ J .s-sin2e) 
(III.5) 

for direct horizontal polarization (i=H, j=H) and 

(£COS e + J E -sin2e r (III.6) 

for direct vertical polarization (i= V, j= V) . 

The cross polarization (different send and receive polarizations) power back scatter 

cross section from a slightly rough surface is given by [G. R. Valenzuela, 1967; G. R. 

Valenzuela, 1968] 

(III. 7) 

for the upper surface and 

a / = T H( 11) T v(o) e- 2Udoos II' fHi ~~ , k·o} (III.8) 

for the lower surface, where It and lu are the surface roughness auto correlation functions 

of the lower and upper surfaces. respectively. JH\,{ E. A. e) is a function defined by 

( .s- 1 )
4
( .s -sin2e) 

fH~ .s,A.,e) = 2nk8cos4e 
2 2 (III.9) 

(cos 8 + J E -sin2e) ( .SCOS e + J .S -sin28) 
If the lower and upper surfaces are equally rough they will have the same spectral 

energy densities W and therefore the same surface roughness auto correlation functions I. 

In this case the surface roughness terms cancel out and the ratio R ij of the power back 
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scatter cross section of the upper surface to the power back scatter cross section of the 

lower surface for a polarization combination ij given by 

(III.I 0) 

where it is understood that 8' is a function of e via Snell's law, s.in ~ = JY!. 
Sin o 

In Figures III-2, III-3 and III-4 I plot RHH, Rvv and RHv (=RvH), respectively , as 

a function of£ 1 and £2 over a ± I range for each dielectric constant about the values £1 = 

2.5 and £2 = 8.0. The central value of £1 is characteristic of the dielectric constant of many 

powdered rocks, while the central value of £2 is characteristic of solid mafic rocks 

[Campbell and Ulrichs, 1969]. The sand in the Selima Sand Sheet on the Egypt/Sudan 

border through which subsurface imaging of dry river channels was achieved by SIR-A 

has a measured dielectric constant of about 3.5 [McCauley et al. , 1982]. I take e = 500, 

typical for the Shuttle Imaging Radar, and the depth of the over layer equal to the skin 

depth, L=d. 

From these Figures we see that with direct polarization the echo from the upper 

surface is comparable in size to the echo from the lower surface. This upper echo, 

uncorrelated with the lower echo and of a similar magnitude, would effectively make the 

signal to noise equal to one regardless of the thermal noise and prevent subsurface imaging. 

Therefore, subsurface imaging at depths near the skin depth at direct polarization will be 

impossible when the upper surface is as rough as the lower surface. If the upper surface is 

less rough the upper echo is smaller, and imaging will be possible but obviously degraded 



8 . 5 

&2 
8 

1.5 2 2.5 

&J 

III-13 

2 . 8 

2 . 1 

Rvv 

1. 4 

0 . 7 

0 

3 3 . 5 

Figure 111-2: The ratio, R vv, of the power received from the upper surface to that 

received from lower surface, respectively, for direct vertical polarization as a function of 

the dielectric constants &J and &2 (see Figure III-1 for labeling definitions). 
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Figure 111-3: The ratio, RHH, of the power received from the upper surface to that 

received from lower surface, respectively, for direct horizontal polarization as a function of 

the dielectric constants &J and &2 (see Figure III-1 for labeling definitions). 
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Figure 111-4: The ratio, RHv, of the power received from the upper surface to that 

received from lower surface, respectively, for cross polarization as a function of the 

dielectric constants &J and &2 (see Figure III- 1 for labeling definitions). 
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according to how strong the upper echo is, that is, how rough the upper surface is. 

The fact that subsurface imaging on a regional scale is only possible in the very 

driest regions of the earth, where skin depths are the deepest, shows that in general for the 

wavelengths typical of imaging radar the skin depth does not reach down deep enough to 

reach buried surfaces on the earth. Therefore, by definition when subsurface imaging is 

achieved it will be done at the skin depth, except for the very driest places on earth such as 

the Selima Sand Sheet where the depth penetrated may only be a fraction of the skin depth, 

which can be of the order of meters there [McCaulev et al. , 1982]. 

From Figure III-4 we see that subsurface imaging with cross polarization will 

minimize the power scattered by the upper surface relative to the lower surface we wish to 

image. In fact , for the nominal values EI = 2.5 and E2 = 8.0, RHv is only 0 .04, whereas 

RHH = 0.77 and Rvv = 0.93. Hence we have discovered how to minimize the effects of 

surface roughness on subsurface imaging, by using cross polarization. If direct polarization 

is used and the depth is near the skin depth, which is likely as I discussed above, then only 

if the upper surface is very smooth relative to the lower surface will the lower surface be 

imaged. In nature it will happen much more often that the upper surface has a roughness 

somewhere between somewhat rough and comparably rough relative to the lower surface 

than being very smooth relative to the lower surface, simply because there are more 

possible states in the former scenario. Therefore, if we limit ourselves to regions where the 

upper surface is very smooth relative to the lower surface in order to avoid the effects of 

surface roughness, we have greatly reduced the area over which subsurface imaging could 
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be achieved if the surface roughness is taken into account, for example by imaging in cross 

polarization. 

In fact, subsurface imaging was achieved through the Selima Sand Sheet by SIR-A 

with HH polarization [McCauley et al. , 1984; Elachi et al., 1984]. This must mean the 

upper surface is very smooth, and indeed a very smooth upper surface was reported by 

field expeditions sent there to confirm the subsurface imaging [McCauley et al., 1984]. 

Therefore, in this region the analysis by Elaclzi et al. [ 1984 ], predicated on the assumption 

of a very smooth upper surface, is valid. This analysis indicates that a covering layer can be 

beneficial to subsurface imaging for covering depths up to an appreciable fraction of the 

skin depth . However, there should also be areas within this region that have a rougher 

upper surface, and since I have SIR-C data with VV polarization, which gives the strongest 

surface echo (Figure Ili-2), it is likely that in these areas subsurface imaging is prevented 

due to a strong upper surface echo. 

Though we have discovered that by imaging with cross polarization we can 

minimize the effects of surface roughness on subsurface imaging, in reality one would not 

expect an appreciable echo at cross polarization, because at least a double scattering is 

required to create a cross polarized echo, and this would not be very common for the 

surfaces characteristic of where subsurface imaging occurs. Therefore, we are forced to 

observe with direct polarization and deal with the strong surface echo that results. 

Finally, now that I have discovered that there is such a strong surface echo in direct 

VV polarization, I exploit this fact in section III.l9 to form the basis of a method for 
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measuring soil moisture by measuring the depth of burial of significant moisture, which 

should effectively form a lower surface, using the ubiquitous upper surface echo. 

111.3 Subsurface Imaging In the Presence of an Upper Surface 

Echo 

Now that we have discovered that there will often be an upper surface echo as 

strong as the lower surface echo, and that it is desirable to separate the echoes and 

determine the depth of burial , I will describe a method for accomplishing these tasks. 

Figure III-5 illustrates the geometry of subsurface imaging in the presence of an upper 

surface echo, where three images are made from paths that are possibly displaced but 

definitely parallel. From such images, if the displacement of the imaging paths 

perpendicular to the line of sight is not too great, the change in phase of the radar echo, for 

both the magnitude and phase of a radar echo are recorded, may be related to the geometry 

of the situation. This is the technique of radar interferometry. 

In Figure lll-5 I show ray paths of the radar wave to the lower and upper surfaces 

from which echoes are recorded. The point here is that an imaging radar is "imaging" 

because the echoes received can be separated as coming from different parts of a two 

dimensional imaging plane. This separation is done by Synthetic Aperture Radar using 

range (actually time of flight) and Doppler shift, with the result that echoes which return 

with range and Doppler shift within a certain interval are are assumed to come from the 

same imaging point. Figure III-5 illustrates that the geometry of the situation is such that 
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there is an echo from the upper surface that arrives back at the radar at the same time as an 

echo from the lower surface; these two echoes are indistinguishable to the radar and their 

sum is assigned to be the echo from this range and Doppler cell (pixel). 

I may therefore write the amplitude of the same pixel observed from positions ~' 'V 

and l; as 

x = l + u + noise x 

y = LeiA + uei(A + L1) + noisey 

z = LeiC + uei(C + L1') + noisez 

(III.l I) 

(III.12) 

(III.l3) 

where the complex echoes from the lower and upper surfaces observed from ~ are I and u 

respectively. There are noises associated with each observation and A and A+~ are phase 

differences between the lower and upper echoes, respectively, measured at 'V and those 

measured at~ · Similarly, C and C+~' are phase differences between the lower and upper 

echoes, respectively, measured at z and those measured at~· 
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Figure 111-5: The geometry of subsurface imaging in the presence 

of an upper surface echo. The solid line labeled r1 to the upper 

surface, and then labeled r2 as it continues, refracted, to the lower 

surface, is the echo from the middle of a certain pixel. The dashed 

rays to either side of this ray represent the echoes from the 

extremities of this pixel: that is. all echoes from the lower surface 

bounded by the two dashed rays are recorded within the time 

resolution of the radar and are assigned to come from the same pixel. 

Displaced a distanceD across track is the solid line representing 

the echo from the lower surface of the middle of the next pixel 

across track. It subtends an angle ~Sp relative to the echo from the 

lower surface of the middle of the previous pixel. 

The solid line labeled r3 is the echo from the upper surface that is 

received at the same time as, but subtends an angle ~9 to, the echo 

from the lower surface with the rays labeled r1 and r2. It is therefore 

assigned to the same pixel as the echo with rays labeled fJ and r2. 

If there was no refraction, the echoes from the lower and upper 

surface that are received at the same time would come from positions 

X andY, respectively. The effect of refraction for values of f.J and 

theta typical of the SIR-C data used in this research is to increase the 

value of ~9 by about 30% compared with its refract ion free value. 

This is illustrated to scale in Figure III-5. 
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I emphasize that these are phase differences between lower or upper echoes observed from 

different positions, and that the effects on the phase of the echo due to scattering from the 

lower or upper surface or due to propagation through the layer are the same no matter 

which of the three positions the radar wave is transmitted and received from. 

The phase differences between the lower and upper echoes observed from the three 

different positions can be seen from the geometry illustrated in Figure ill-5 to be defined by 

the equations 

4nB1 ( ) -A-cos 8 + a 1 + <py = 2nN +A (III.l4) 

4n;:1 cos ( 8-.18 + a 1) + <py = 2nN +A+ .1 (III.l5 ) 

47rB2 ( ) I -A-cos 8 + a2 + <p <: = 27rN + C (III.l6) 

4n;:2 cos ( 8-.18 + a 2) + <p.: = 27rN' + C + .1' (III.l7) 

The first term on the left side of each equation is the phase difference that results 

from the change in path length when the ray from the lower surface is observed from \jf, the 

ray from the upper surface is observed from \jf, the ray from the lower surface is observed 

from~ and the ray from the upper surface is observed from l; , respectively. The phases <py 

and <p.: are constants that represent possible constant phase shifts between \jf and ~ and l; 

and ~. respectively. Constant phase shifts such as these would occur because the phase of 

the outgoing wave as it is sent from the radar from position~ is not necessarily the same as 

when it is sent from \jf and l;. 

The right hand side of each equation is the sum of an integer multiple of 2 7r plus the 

left hand side of the equation modulo 27r. This recognizes that the measurable phase 
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difference is the actual phase difference modulo 2rc, since the phase differences always 

appear in the equations as the exponent of the complex exponential which is periodic with 

period 2 TC. We may derive an expression for 1:1 by expanding the cosine term in (Ill. IS) to 

first order in 1:18. because this angle is very small, because the distance between the radar 

and the imaged area, r3, is large compared to the depth of the layer: 

4
": 

1 (cos ( 0 + a 1 ~osLIO + sin ( 0 + a 1 }sinLIO} + 'fly ~ l1rN +A + Ll 

:. 
4rc;:1 (cos ( e + a!}I +sin ( e + a!)Lle) + cpy = 2rcN +A+ L1 

4rcB1 ( ) 4rcB1 . ( ) :. -A-cos e + a 1 + cpy + - A- sm e + a1 L1e = 2rcN +A+ L1 

:. substituting (III.14) we get 2rcN +A + 
4

rc: 1 sin ( e + a!)L1e = 2rcN +A + L1 

4rcB1 . ( ) :.Ll=-A-sm e+ a 1 L1e (III.18) 

We may derive a similar expression for 1:1': 

, 4rcB2 ( ) L1 =-A- sin e + a2 L1e (III.19) 

Putting the times of flight for the two rays shown in Figure III-5 equal we get 

'I + r2.f£l = '3 (III.20) 

where I have used the fact that the radar wave travels a factor .f£1 slower in the layer 

covering the lower surface than in the atmosphere above. Expressing the altitude of the 

radar above the upper surface in two different ways we get 

'I sine= r3sin ( e- L1e) 

The depth of the layer can be written as 

and Snell's law gives us 

sin(~- e)= sine' .f£1 
:. cose =sine' .f£1 

(III.21) 

(III.22) 

(III.23) 
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Combining equations (ill.20) - (ill.23) we can eliminate r2. r3 and 8' to get 

L1e = sine 

cos{ + r1 .j't:-l-~-~-o-s-=-2 e- ) 
(III.24) 

Since r 1 >> L we have to a very good approximation 

.1e = -,-1 c=~-s--=-e( J e~~i::,2e) (III.25) 

I have written ~8 this way because the term in parentheses ~ 1 as t: 1 ~ 1 , and 

the resulting expression can easily be seen to be correct for the case of no refraction. For E1 

= 2.5 , typical of the dielectric constant of many powdered rocks [Campbell and Ulrichs, 

1969], and 8=400 (incidence angle= 500, which is the typical incidence angle for the 

Shuttle Imaging Radar) this term in parentheses is 1.16. This rises to 1.32 for E 1 = 3.5, 

which is the measured dielectric constant of the sand through which subsurface imaging of 

dry river channels was achieved by SIR-A [McCauley et al., 1982]. 

In Figure III-6 I plot the term in parentheses, now defined as F(EI ,8), for values of 

E 1 varying from 1 to 4 and values of the angle 8 varying from 10° to 600 (the incidence 

angle = 900 - 8 , so this corresponds to a range of incidence angles from 300 to 800). 

Since I will show that the estimates for the separated lower and upper echoes and the depth 

of burial improve as ~8 increases. we see that the effect of refraction can be quite 

beneficial (except at large incidence angles). 
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Figure III-6: The factor F by which ~8 is changed from its refraction free value. 

J;{ ) s1 sin8 
~ \. & l 8 = ---;:.=='==~= ' J s 1-cos28 

The incidence angle = 900 - 8, so a range of incidence angles from 300 to 800 is shown in 

the above Figure (the SIR-C incidence angle is 500). I will later show that the estimates for 
the separated lower and upper echoes and the depth of burial improve as ~8 increases, so 

we see that the effect of refraction can be quite beneficial (except at large incidence angles). 
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Substituting equation (lll.25) into (III.l8) we get an expression for L1 in terms of 

the geometry of the situation and the dielectric constant and depth of the layer: 

L1 =--sin 8 + a 1 
4nB1 . ( ) L ( c 1sin8 ) 

A rlcos8 ../cl-cos28 
(111.26) 

A similar expression is obtained for L1 ': 

L1 =--Sin 8 + a2 , 4nB2 . ( ) L ( E 1 sin 8 ) 
A r1cos8 .j £

1 
_ cos28 

(111.27) 

Since B; sin ( 8 +a;) is the component of the ith baseline (i=l for the~- 'V baseline and i=2 

for the ; - ~ baseline) perpendicular to the line of sight to the pixel, we will write 

B; sin ( 8 + a;)= B l..;, allowing (111.26) and (111.27) to be rewritten more informatively as 

L1 (111.28) 4nBl..1 L ( c1sin8 ) 

A r1cos8 .j EJ _ cos28 

LJ (111.29) A' 4nB 1..2 L ( £1 sin8 ) 

A 'I cos8 .j EJ - cos28 

Bl.. 
with the result that L1 = r L1' . 

.l2 

It is apparent from equations (III.14)- (111.18) that L1 and L1' result from a slightly 

different look angle to the upper surface compared to the lower surface. Because the phase 

difference between, for example, the lower echoes measured at position 'V and ; depends 

on the exact look angle to the lower surface via the path length distance difference, a 

different look angle to the upper surface results in a different path length difference between 

echoes received at 'V and; and therefore a different phase difference. We see that the lower 

and upper echoes, indistinguishable in a single radar image, now have something about 

themselves that is different- the phase difference- when we look at multiple images. 

Clearly then, the larger that L1 or L1' is the more distinct is the difference between the 
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lower and upper echoes from images~ and 'If or images~ and ~. respectively. Therefore, 

the larger that one of these phases is the better we should be able to separate the lower and 

upper echoes and determine the depth of burial. From (Il1.28) and (Ill.29) we see that 

these phases are proportional to the depth of burial and the perpendicular component of the 

baseline, and inversely proportional to the wavelength. These then are the three parameters 

which will determine, for a given level of noise, how well the lower and upper echoes can 

be separated and the depth determined. 

111.4 The Origin of Noise m the Multiple Observations of a 

Pixel 

Contaminating each observation of the pixel is an associated noise. This noise 

causes deviation of the radar echo from the model terms on the right hand side of equations 

(III. II ) - (III.l3) and can have four distinct physical origins: 

(i) reflected solar radiation , thermal emission from the ground and thermal 

emission within the receiver in the spectral region of the blackbody spectra of 

the sun, ground and receiver, respectively, near the observation wavelength. 

Together this is known as thermal noise. 

(ii) multiple observations of the pixel will cause the distance between the 

observation point and each sub resolution facet that makes up the pixel to 

change compared with some reference observation of the pixel. If the multiple 

observations are made from locations displaced perpendicularly to the line of 
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sight to the pixel from the reference observation then the distance to each sub 

resolution facet changes by a different amount, and the voltage vector raised in 

the antenna by the echo from that facet is rotated in phase (due to the different 

time of flight) by a different amount compared to the voltage vector from other 

facets. Hence the total voltage vector, being the vector sum of the voltage 

vectors from each facet, changes in phase and magnitude in general compared to 

the voltage vector observed from the reference observation. This change in the 

echo compared with the reference observation is known as spatial or baseline 

decorrelation. 

(iii) If the multiple observations of a pixel are not made simultaneously, then 

there is the possibility of physical changes in the pixel between observations, 

which can be thought of as changes in the sub resolution facets which make up 

the pixel. Hence the vector sum of the echoes from each facet is different 

compared with some reference observation, and this change is called temporal 

decorrelation 

(iv) If the multiple observations are not made simultaneously, there is the 

possibility of different path lengths through the atmosphere, and hence a 

spurious rotation in the phase of the echo, due to different amounts of water 

vapor in the troposphere [Goldstein, 1995]. 

If the observations are made near the same local time then the solar illumination and 

ground temperature will be approximately the same for each observation, and so the 
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thermal noise will be equal in size, on average, for each observation. In the next section I 

describe fundamentally why a radar echo is described as a draw from a zero mean Gaussian 

distribution. For the same reasons thermal noise is also described in the same way, for it is 

also the sum of a myriad of tiny echoes (for example the reflected solar radiation from each 

facet within a pixel), each drawn from some well behaved distribution for the size of the 

echoes. I will assume that the observations are made near the same local time (as is the case 

for the SIR-C data with which I tested the method) and so the noise terms are independent 

and described as draws from a zero mean Gaussian distribution of a certain constant width. 

Temporal and spatial decorrelation only have meaning relative to some reference 

observation; if there is only one observation, there is no such thing as temporal or spatial 

decorrelation.Therefore, to discuss these noises we must define a reference observation, 

and I define the second, or y, observation as such. This reference observation will be 

contaminated by thermal noise, but the other two observations , x and z, will be 

contaminated by noise representing change in the echoes due to spatial and temporal effects 

as well as thermal noise. I can characterize the noise associated with the temporal and 

spatial effects by considering that, with the effects of one or both of temporal and spatial 

decorrelation included, the resulting echo is still just the sum of a multitude of echoes from 

the sub resolution facets . The sub resolution facets may be altered (temporal decorrelation) 

or the echo from each may be differentially rotated in phase (spatial decorrelation), leading 

to a different total echo. 

One can see intuitively that this echo, when plotted as a vector in complex voltage 
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space, will have some random orientation relative to the reference observation echo. If the 

effects of temporal and spatial decorrelation are slight, the two vectors will lie close 

together, while if there is great temporal and/or spatial decorrelation the two vectors will be 

randomly positioned in complex space. Either way, the difference between the two vectors, 

which is defined as the spatial and temporal decorrelation noise, will be randomly oriented 

in complex voltage space. In fact, one can see that this vector has real and imaginary parts 

drawn from a zero mean Gaussian distribution of a certain width.This can be seen 

mathematically by noting that the sum (or difference) of two independent variables each 

drawn from a zero mean Gaussian distribution is a number that is described by a zero mean 

Gaussian distribution (whose standard deviation is the square root of the sum of the 

squares of the standard deviation of each of the two variables). This may also be seen more 

intuitively by considering that the difference of the two vectors can be thought of as the 

sum of the difference of the echoes from each sub resolution facet. These little difference 

vectors are randomly oriented in complex space, since the effect of spatial and temporal 

decorrelation will be random, and will have lengths drawn from some distribution with a 

zero minimum and some well defined maximum, depending on the amount of 

decorrelation. The sum of a multitude of such difference vectors is just a vector whose real 

and imaginary parts are random draws from a zero mean Gaussian distribution, as I explain 

in the next section. 

There is also noise associated with the possibility of different amounts of water 

vapor in the troposphere for each observation, which results in a different path length for 
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each observation. In testing the method with SIR-C data, however, I show that the 

predominant source of noise, which prevents the method from detecting the presence of a 

layer, is temporal decorrelation . My proposed solution to this problem of excessive 

temporal decorrelation between observations is to make the observations simultaneously, 

and this will also eliminate the possibility of different amounts of water vapor in the 

troposphere for each observation. Therefore, since temporal decorrelation is the major 

source of noise, and eliminating this noise also eliminates the effect of different amounts of 

water vapor, there is no need to separately consider the effects of different amounts of 

water vapor in the troposphere. 

For the x and z observations of the pixel , there will then be a total noise term that is 

the sum of three zero mean Gaussian noise vectors, representing thermal, spatial and 

temporal decorrelation. The total vector is the sum of these, so we see that in the most 

general case equations (Ill.ll ) - (Ill.13 ) hold, but the width of the noise terms are 

different. The noise contaminating the reference observation y is just the thermal noise, 

while the noise terms contaminating x and z are the sum of the thermal noise contaminating 

each observation plus the spatial and temporal decorrelation between the x and z 

observation, respectively, and they observation. 

I will show later in testing the method with SIR-C data of the Egypt/Sudan border 

where subsurface imaging occurs that temporal decorrelation between observations 

produces an effect over 20 times the signature expected from a layer.This effect is so large 

that it is pointless to try to model the temporal decorrelation in the hopes of separating it 
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from the effect of a layer; we would never know whether the residual signature was due to 

a layer or a fluctuation in the much larger effect of temporal decorrelation. By 

demonstrating that even data considered to be highly correlated suffers too much temporal 

decorrelation between observations to detect a realistic thickness layer I argue that temporal 

decorrelation prevents detection of a subsurface layer, and that observations must be made 

simultaneously to eliminate this effect. 

With temporal decorrelation eliminated, we are left with thermal and spatial 

decorrelation. I show in section III.l9 that spatial decorrelation may be minimized by 

making the pixel width narrow compared with the layer depth, and propose a way to do 

this, leaving thermal decorrelation, which I will show can be dealt with by making the layer 

thick in phase by using a long baseline. Having identified a regime where the signature 

from a layer is not swamped by temporal or spatial decorrelation effects, I will therefore 

concentrate on solving the equations (III.ll ) - (III.13) in this regime, that is, assuming 

only thermal noise is present and creating a method for dealing with this thermal noise. 

111.5 Extracting the Lower and Upper Echoes and Depth of 

Burial from Multiple Radar Images 

Equations (ill.ll ) to (ill. l3), which define multiple radar images of a scene where 

subsurface imaging occurs in the presence of an upper echo, contain 8 unknowns - I, u, A, 

C, C!. and C!.'. Both I and u are complex and therefore contain two unknowns each. These 

equations contain 6 known quantities; x,y and z. also complex. Clearly, while equations 
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(III.ll) to (III.13) may look superficially simple, they are in fact literally complex, 

nonlinear and under specified, and their solution in the presence of noise for the separated 

echoes I and u and the phases A, C, !1 and tl' is non trivial. 

Because for a single pixel there are more unknowns than known quantities, we are 

obviously going to have to assume that some variables do not vary from pixel to pixel. That 

way if we average over a group of pixels within which certain variables are assumed 

constant, it might be possible to gain more known quantities than unknowns and at least 

then a solution may be possible. 

We can immediately reject I and u from consideration as constant over a group of 

pixels. The reason is that a radar echo from a surface, which is what I and u are from the 

lower and upper surfaces, respectively, can be thought of as the vector sum of a myriad of 

tiny vectors that represent the complex echoes (magnitude and phase) from small facets that 

the surface can be assumed to be composed of. The orientation of each of the tiny voltage 

vectors (the echo is received by the radar antenna in which a complex voltage is raised) is 

random, reflecting the random orientation and distribution of the facets. The length of these 

tiny vectors will be described by some distribution reflecting the orientation of the facets 

and the dielectric constant of the surface, and one can see intuitively that the distribution 

will extend from zero length tapering off above some maximum value, and will be well 

behaved in between. Therefore, the total voltage vector can be described as an independent 

random walk in both the real and imaginary directions, where the length of each step of the 

random walk in each direction is described by some we11 behaved distribution function and 
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there are very many steps taken . 

In this case the position of the random walker is described by the Gaussian 

distribution function [Feynman et al. , 1963] , and one can see that the exact position and 

orientation of the small facets will change from pixel to pixel even for another pixel that is 

the same in an average sense. Therefore, the steps taken by the random walk in each 

direction are different and the final position will be totally different, so that even for a 

surface that is constant in any physical sense of the word (that is, not truly constant on a 

microscopic scale which would be bizarre for a natural surface) the echo from different 

parts of the surface will be wildly different; in fact , the real and imaginary parts will be 

random draws from a zero mean Gaussian distribution. This variation , even from a 

"constant" surface, is the phenomenon called "speckle", and reflects the fact that the echo 

from a single pixel literally contains no physically useful information; only the average of 

the echoes from a number of pixels has any physical meaning. This gives the standard 

deviation of the Gaussian distribution from which the real and imaginary components of the 

echo are drawn. 

As a result, the values of I and u will most definitely not be constant among 

neighboring pixels. We are left with considering the phases A, C, 6 and 6' . Fortunately, it 

is plausible that these phases are constant over a group of neighboring pixels. If both the 

lower and upper surfaces are flat over this group of pixels, then 6 and 6 ' are constant 

because the depth of the layer is constant. The only change in A and C is that due to the 

geometry of a flat plane, which can be removed because with radar data we know the 
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dimensions of a pixel. Hence if we assume no topographic variation of either the upper or 

lower surfaces over a patch of pixels, then the values of A, C, f). and!). ' are constant within 

the patch. If the patch contains N pixels, we see that the first pixel contributes 8 unknowns, 

I, u, A , C, f). and /). ', and 6 known quantities (the measured data): x,y and z. However, 

every additional pixel in the patch now only contributes an additional 4 unknowns, the 

unique values of I and u for that pixel (leading to a total of 8 + (N- 1) x 4 = 4(N + I) 

unknowns), while still offering 6 new known quantities; the data x,y and z for that pixel 

(leading to a total of 6N known quantities). Hence we see that with at least two pixels we 

will have as many known quantities as unknown (12), and every additional pixel adds 2 

more known quantities over unknowns, providing a redundancy that will allow solution in 

the presence of noise. 

111.6 Using "Tie points" to Reduce the Number of Unknowns 

"Tie points" are so called because they are points of known altitude within the 

image; they tie the altitude at that point. If we have such points then that is the same as 

knowing the look angle e to that point, since the altitude of the radar above the point (that 

is, the tie points are points of known altitude relative to the altitude of the radar) may be 

converted into look angle via sine= alt~ude . Now equations (III.14) - (111.17) can be 
I 

rewritten as 

4
rc:

1 
cos ( 8 + a1) + (<fly- 2rcN) =A 

4~ 1 
cos ( 8- L:\8 + a1) + (<fly- 2rcN) =A + Ll 

(III.30) 

(111.31 ) 
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4
n:

2
cos ( 8 + ~) + ( <p2 - 2nN') = C 

4~2cos ( 8- L18 + a2 ) + ( <1'.:- 2nN') = C + L1' 

(III.32) 

(III.33) 

where I have grouped the constant phase shifts with the integer multiples of 27t to form one 

unknown. The constant phase shifts are of course constant over the image, and while the 

integer multiples of 27t do vary across the image, their variation can be accounted for by 

"counting fringes": counting how many fringes - cycles of 27t in the phase difference 

between x andy or x and z- have been cycled through relative to the tie points. Therefore, 

the second term on the right hand side of each equation is effectively a constant across the 

image, and there are two such unknown constants, ( <!'y - 2nN) and ( <p2 - 2nN'). 

There are 4 other unknowns that are constant across the image; the orbital 

parameters B 1, a 1, B2 and a2 . Hence there are 6 unknowns constant across the image, and 

if one has 3 tie points at places where there is only one surface echo, say a rocky outcrop 

where subsurface imaging cannot occur, then there are 6 equations ( (III.30) and (III.32) 

for each tie point) for the 6 unknowns, with the phases A and C directly measured from the 

data, since there is only a single surface involved. The angle 8 at each tie point is known so 

these equations may be solved for the constants, and then everywhere else in the image, 

including places where there is subsurface imaging, I can now, for a given value of A, 

work out 8 from (III.30). Putting this value of 8 into (III.32) I can obtain the value of C. 

That is, I have C given A. From (Ill.28) and (III.29) we have 

B1 sin(e+ a 1) 
!!. = !!.' 

B2 sin( 8 + a2) 
(III.34) 
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so we see that even just knowing the orbital parameters allows us to express~· in terms of 

~. since only approximate knowledge of 8 is needed. which we always have. 

Tie points require knowledge of the altitude at three locations, which is often 

problematic, and require additional bookkeeping, but reduces the number of phase 

unknowns from 4 to 2. In this case three images of the same pixel have 6 unknowns, I, u, 

A and ~. which equals the number of known quantities, the data x, y and z. However, in 

order to solve for the unknowns in the presence of noise some redundancy is needed, more 

known quantities than unknowns, so we will still have to average over a patch of pixels, 

assuming constant topography. Once we have at least 2 pixels for the case of no tie points 

(4 unknown phases) or just I pixel if we have tie points (2 unknown phases) , then each 

additional pixel provides 2 more known quantities than unknowns. That is, if we have no 

tie points, we can gain the same accuracy in the solution as if we had tie points by including 

just one more pixel in our patch than when we have tie points, for this one extra pixel 

provides the additional 2 more known quantities than unknowns that tie points offer. 

Since there is no functional improvement in accuracy (since I will be averaging over 

> 20 pixels and so the additional accuracy afforded by including one more pixel in the 

average is not significant) and tie points require topographic data which can be problematic 

to obtain for the earth and unavailable on other planets, I do not use tie points. 

III. 7 Separating the Echoes and Determining the Depth of 

Burial 
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I will assume then that A, C, 8.. and 8..' are constant over a patch of N neighboring 

pixels, which we have seen is the same as assuming that the upper and lower surfaces are 

flat within this patch, and solve for the 4(N+ 1) unknown quantities, A, C, 11, 8..' , li and u i 

within this patch. 1 i and Ui are the lower and upper echoes, respectively, from the i th pixel 

within the patch. TheN pixels afford 6N known quantities, the data Xj, Yi and Zj, where i = 

1 , .. . ,N, which are the voltages raised in the radar antenna due to echoes from the i th pixel 

received at positions x, y and z of Figure III-5. 

Applying equations (III. II) - (III.l3) to each pixel within the patch we get 6N 

equations (considering both the real and imaginary components) that express the data Xj, Yi 

and Zi in terms of the unknown quantities, A, C, 11, N, li and Uj: 

x; = f; + u; + noisex-
1 

Y· = f . ei A + u · ei (A+ <1) +noise 
- I I I Yi 

z. = f. ei C + u. ei (C + <1') +noise 
I I I Zj 

(III.35) 

(III.36) 

(III.37) 

where i = l, ... ,N. We want to solve these 6N equations for A, C, /1, /1', lj and Uj. By 

doing so we will have separated the lower and upper echoes (having solved for li and Uj , 

respectively) for each pixel within the patch, having started with data for each pixel that is a 

combination of these echoes. Since the upper echo is uncorrelated with the lower echo, one 

can see that its addition to the lower echo is like adding noise, and if the magnitudes are 

comparable the lower surface will not be clearly imaged. Therefore, separation of the upper 

and lower echoes is like removing noise from the lower echo, improving the image of the 

lower surface. 

By solving for 8.. for the patch we see from equation (ffi.28) that we could get the 
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depth of burial, L, if we knew the value of the remainder of the right hand side of (ill.28); 

that is, the quantity 

(III.38) 

To evaluate the term in parenthesis we can use a generic value for £1, say £1 = 2.5 

[Campbell and Ulrichs, 1969], since we see from Figure III-6 that this term is fairly 

constant against changes in £1 at constant 8, for most angles. 8 and fJ are known 

accurately enough from the raw data for the purpose of evaluating (III.38), and the 

wavelength of the radar wave, /.., is of course known, but the baseline term, B .1
1 

, is 

unknown. 

One might think that the location of the imaging positions x, y and z would be 

known as a matter of course. but in the case of the Space Shuttle, data from which I will 

use later, the error in its known orbital position is of the order of the distance between the 

displaced orbits, on the order of I 00 meters [M. Kobrick, personal communication, 1996]. 

Since low earth orbiting satellites can accurately receive the Global Positioning Satellite 

(GPS) signal [Kursinski et al. , I 996], use of a GPS receiver on the Space Shuttle would 

allow its location to be known to within meters (for a GPS receiver of military 

specification) . and B .1
1 

could be reconstructed accurately enough from the raw data. In 

our case I could instead determine B .1
1 

through the use of tie points, discussed previously. 

However, I want to avoid using tie points because such accurate topographic knowledge 

does not exist for many regions of the earth, let alone other planets where we may wish to 
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also apply the method. 

Instead, I will estimate B J. 
1 

using the fact that the width of the pixels along the 

ground in the direction of increasing range is known. Figure III-5 shows two dashed line 

rays on either side of the ray to the lower surface with incidence angle ~ - 8. These two 

rays represent echoes from the lower surface that arrive back at the radar antenna at times 

± L1 t from the time that the echo along the ray with incidence angle ~- 8 is received. 

That is, all echoes received during the time interval 2L1 t are assumed to come from the 

same pixel, and so all echoes received from within a range interval c L1 t are assumed to 

come from the same pixel, where cis the speed of the radar wave as it travels between the 

radar and the upper surface. This length c L1 t is the range resolution of the radar, and its 

projection along the ground, D = c L1 t cose , is the width of a pixel along the ground in the 

range direction. We can see that refraction in the layer has no effect on the width of the 

pixel since the travel times of all the rays bounded by the dashed lines are identical within 

the layer. Since c is assumed to be the speed of light in a vacuum, L1 t is a parameter of the 

radar that is known and 8 is known accurately enough from the geometry of the situation 

such that the error in D is small, D is known and I can use this knowledge of D by 

considering the change in phase of pixels as we move in the direction of increasing range. 

The decrease in look angle as we move one pixel across in the direction of 

increasing range is shown in Figure III-5 as L18P. From the geometry of the situation 

illustrated in Figure III-5 we see that 

L1e = D sine 
P rl 

(III.39) 
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If A, defined by equation (ill. l4), is the phase difference between the lower echo measured 

at y and at x, respectively, for the pixel with look angle 8, then for the next pixel across in 

the direction of increasing range the phase difference will be A + D.P , where 

4trBl.
1 

LlP A. L18P (Ill.40) 

where I have used equation (III . 18 ) with D.SP substituted for D.S and 

B; sin ( 8 + a;)= B l.; . 

The phase of the quantity Xi*Yi is the phase difference between the ith pixel 

measured from positions x andy, respectively. This phase difference, shown as a color 

representing values from 0 to 27t, may be plotted for the pixels and the resulting fringe 

patterns that can result are the familiar interferometric fringes, whose shape contains within 

it topographic information [Zebker and Goldstein, 1986] . If the surface has moved between 

observations (for example an ocean surface or glacier, with the time between observations 

measured in fractions of a second and days, respectively) then the shape of the fringes 

manifests a combination of topographic and motion information, with the latter dominant 

for a flat surface [Goldstein et al., 1993]. 

If the upper surface is so smooth that we only have a lower echo then the phase of 

Xi*Yi is A, and moving across the image in the direction of increasing range will cause A to 

vary by the amount per pixel given by equation (III.39). Eventually A will change by 2tr 

which corresponds to a single interferometric fringe. By counting the number of fringes Nr 

cycled through due to moving Np pixels across track. the phase change per pixel, 2nNr/Np, 

can be accurately determined (assuming the region is basically flat so there are no kinks in 
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the fringes due to topography). Equating this phase change per pixel with equation (ill.40), 

and substituting in equation (lll.39) for iJ8P, we get an expression for B 1.
1 

: 

N f A.rl 
B = - -::--=--7---:::-

..LI NP 2D sine 
(III.41 ) 

If the upper surface is so smooth that we only have a lower echo, this expression allows us 

to determine B 1.
1 

directly from the data, without the use of tie points or accurate 

knowledge of the spacecraft ' s position. 

If the upper surface is of comparable roughness to the lower surface, so we have 

comparable upper and lower echoes, then equation (lll.4 I) can still be used to determine 

B 1.
1 

, where N f is still the number of fringes cycled through with a displacement of N P 

pixels in the direction in increasing range. This follows from considering that the phase 

difference between the Xi and Yi of equations (lll.35) and (lll.36), respectively, will be A if 

Ui = 0, and B if li = 0. One can intuitively see that that the phase will be somewhere in 

between A and B when I i and Ui are both non-zero. Due to the phenomenon of speckle 

previously discussed, it will happen that some pixels have near zero values for one of I i or 

Uj , even if the standard deviations of the Gaussian distributions from which the real and 

imaginary parts of li and Uj, respectively, are drawn are not near zero. Therefore, I expect 

the phase difference between xi and y i to retain the underlying fringe pattern of the lower 

(or upper) surface, but with the addition of "noise" representing the phase oscillating 

between A and B as speckle makes one or the other of li or Ui close to zero for that pixel. 

I confirm this intuition by simulating images acquired at positions ~ and \If, using 
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equations (III.35) and (III.36) to determine the value of Xi and Yi for each pixel. I assume a 

phase change of 0.1 radians per pixel in the direction of increasing range for the phase of 

both the upper and lower surfaces. This is the phase change of a single surface due solely 

to the geometry of the situation, which is a manifestation of the decrease in look angle due 

to a displacement in the direction of increasing range. For a single surface this phase 

change will result in interferometric fringes will a spacing of about 63 pixels. In simulating 

Xi and y i using equations (III.35) and (III.36) I use values of l i and u i that are complex 

numbers whose real and imaginary parts are all random draws from a zero mean Gaussian 

distribution with standard deviation equal to I. Therefore, the upper and lower echoes are 

taken to be equal in strength, on average. The value of A at the pixels with minimum range 

is taken as 2 radians, and the value of !1 will be taken as either 0 (one surface) or I radian. 

I simulate noisex and noisey from equations (III.35) and (III.36) as complex 

numbers whose real and imaginary parts are all random draws from a zero mean Gaussian 

distribution with standard deviation equal ton. n is taken as either 0 (no noise) or 0.3 (13.5 

dB signal to noise ratio). 

Figures III-7 to Ill-10 shows images of the phase of x*y for this simulated data, 

where the directions of increasing range and increasing distance along the imaging path are 

shown. The number of pixels shown is 500 in the direction of increasing range times 500 

in the direction of increasing distance along the imaging path. In Figure ill-7 n=O and !1=0, 

representing the baseline case of the fringes from a single surface with no noise. Figure ill-

8 shows the case n=O and !1= I, simulating fringes from two surfaces with no noise. 
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Figures III-9 and III-10 are repeats of Figures III-7 and III-8, respectively, but with n=0.3. 

We see that in all cases, including the realistic noisy images, the addition of an upper echo 

does add to the noise in the fringes, but the basic underlying spatial fringe frequency is not 

altered, confirming our intuition. Therefore, I may use equation (III.41 ) to estimate B 1.
1 

even when there are both lower and upper surface echoes. 

With B 1.
1 

determined directly from the data via equation (III.41 ), we can solve for 

the depth of burial L given !::. using equation (III.28). Therefore, solving equations (III.35) 

- (III.37), for i = 1 , ... ,N (a total of 6N equations predicated on the assumption that both 

the lower and upper surfaces of the patch of N pixels is flat), gives us the separated lower 

and upper echoes for each pixel i within the patch, and also gives us the depth of the layer, 

L, for the patch, via equation (III.28). Hence, assuming that the correlation between any 

two observations is approximately equal, which requires that the images suffer from only 

thermal decorrelation and no appreciable spatial or temporal decorrelation, we will have 

accomplished our goal of separating the lower and upper echoes and determining the depth 

of burial, in absolute terms, all without any a priori knowledge of the scene we are imaging 

or of the radar' s position at the three imaging locations ~. \jl and S· 
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Figure 111-7: The phase of x*y for the simulated noise free data (n=O) from a single 

surface (6=0). A phase change of 0.1 radians per pixel in the direction of increasing range 
is assumed. This phase change results in interferometric fringes with a spacing of about 63 

pixels. 
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Figure 111-8: The phase of x*y for the simulated noise free data (n=O) from two 
surfaces, with a phase spacing of /1= 1 between the lower and upper surfaces. The strength 

of the echoes from the lower and upper surfaces are taken to be equal in strength, on 

average. A phase change of 0.1 radians per pixel in the direction of increasing range for the 
phase of both the lower and upper surfaces is assumed. This phase change would result in 
interferometric fringes with a spacing of about 63 pixels for each surface (previous Figure), 

and it can be seen from the above Figure that the phase of the combined echo from both 

surfaces has the same basic underlying spatial fringe frequency. 
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Figure 111-9: The phase ofx*y for the simulated noisy data (n=0.3) from a single surface 

(t1=0). The power signal to noise ratio is approximately 10 dB, a typical value for imaging 

radar. A phase change of 0. 1 radians per pixel in the direction of increasing range is 

assumed. This phase change would result in interferometric fringes with a spacing of about 

63 pixels for a single noise free surface, and it can be seen that the addition of noise does 

not change the basic underlying spatial fringe frequency. 
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Figure III-10: The phase of x*y for the simulated noisy free data (n=0.3) from two 

surfaces, with a phase spacing of /1= 1 between the lower and upper surfaces. The strength 
of the echoes from the lower and upper surfaces are taken to be equal in strength, on 
average. The power signal to noise ratio is approximately 10 dB, a typical value for 

imaging radar. A phase change of 0.1 radians per pixel in the direction of increasing range 
for the phase of both the lower and upper surfaces is assumed. This phase change would 

result in interferometric fringes with a spacing of about 63 pixels for each surface (Figure 
III-7), and it can be seen from the above Figure that the phase of the combined echo from 

both surfaces, with the addition of noise, has the same basic underlying spatial fringe 

frequency. 
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111.8 Solution 

The noise terms of equations (III.35) - (III.37). noisex-, noise, .. and noise __ , 
I - I ~1 

respectively, fori = l , .. . ,N, which we are assuming represent thermal noise only, have 

two significant properties: 

(i) they are independent of each other and all other terms in the 6N equations 

(ii ) their real and imaginary parts (for they are complex) are well characterized as 

random draws from a zero mean Gaussian distribution of certain standard deviation 

These two properties are evocative of the language used to describe the requirements for a 

maximum likelihood estimate of the parameters of a function y(x) given data points y';: 

"Suppose that each data point Yi has a measurement error that is independently random and 

distributed as a normal (Gaussian) distribution around the "true" model y(x)" [Press et al., 

1992] . 

Pursuing this analogy , we consider, following Press et al. [ 1992], that we are 

fitting a function y(x) = y(x;aJ ... aM) that has M adjustable parameters aj,) = l , ... ,M , toN' 

data points (x;,y ';). Even though we are actually fitting discrete equations to data, not a 

continuous function to a set of data points, in the latter case what we are really doing is 

fitting the continuous function y(x) evaluated at the discrete points x; to the data y';- which 

is exactly the same as fitting a set of discrete equations to data. Therefore, we may indeed 

view the solution of the 6N equations (III.35) - (III.37), for i = 1 , .... N, for the 4(N+ I ) 

unknowns A, C, !::. , !::.' , li and Ui, as the fitting of a function y(x;aJ ... aM) with M=4(N+ 1) 

adjustable parameters aj to N '=6N data points y ';. The M=4(N+ 1) adjustable parameters aj 



III-50 

are the unknowns A, C, 11, 11', li and Uj , for i = 1 , ... ,N Oi and Ui contain 2 unknowns 

each since they are complex). The N'=6N data points y '; are the data Xi, Yi and Zj. fori= 

1 , .. . ,N (xi, Yi and Zi are all complex and so contain 2 unknowns each). 

We can consider the noise associated with each of the 6N equations (III.35) -

(III.37). for i=l , ... ,N, to be the measurement error, and, as I have discussed, the error for 

each data point (for each equation) y '; is independently random and is drawn from a zero 

mean (distributed around the true model (equation) y(x)) Gaussian distribution. 

Furthermore, we will assume that the standard deviations a of these Gaussian distributions 

is the same, which should be the case with radar data taken at similar times of the day (as is 

the case for the data will I use later to test the method), since the thermal noise should be 

the same. on average, and we are assuming that thermal noise is the major contributor to 

the noise contaminating each observation (relatively little spatial and temporal 

decorrelation). 

For a given set of values of the 4(N+ I ) unknowns A, C, 11, 11' , I i and u i. for i = 

1 , ... ,N, the probability that the data observed would actually have resulted given this set of 

values is the probability that all the measurement errors were such that the difference 

between the model y( x;) and the data y 'i for each data point i= 1 , ... ,N '=6N is accounted 

for by the measurement error of each data point. Since the probability of a measurement 

error lying between y and y+Ll.v is given by the Gaussian probability density times Lly : 

1 [ 1 ( y )2] 
a./2rr exp 2 a Lly (III.42) 

the probability of all the measurement errors lying within Lly of y'; - y(x;), the amount 
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necessary for each measurement error to account for the difference between the model y(x;) 

and the datay'; for each data point i. is given by 

N' { [I (y'·-y(x;)l2
] } P oc IT exp -- 1 Lly 

i = 1 2 a 
(III.43) 

Since the measurement errors are independent, the total probability of all the particular 

measurement errors for each data point occurring is the product of the probabilities of the 

measurement error for each data point occurring. 

Different sets of values of the 4(N+ I) unknowns A, C , !c:., !!:. ', li and Uj , for i = 

1 , ... ,N, will have different probabilities, given by equation (III.43), that the data observed 

would actually have resulted given these sets of values. The set of values of A, C, !!:., /;:,', li 

and Ui for which this probability is a maximum is the set of values of A, C, !c:., /;:,', I i and Ui 

from which the observed data would have most likely come. Intuitively, but with no 

mathematical basis whatsoever, as is the case for all maximum likelihood estimates [Press 

eta!., 1992], we identify this set of values from which the data would most likely have 

come as the most likely set of values given the data. The set of values of A, C, !c:., /;:,', 1 i 

and u i for which the probability given by (111.43) is a maximum are the maximum 

likelihood estimates of these values, and, being the most likely set of values given the data, 

we can do no better. 

Maximizing (III.43) is the same as maximizing its logarithm, or minimizing the 

negative of its logarithm, which is 
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N' [y'i- y (x;) ]21 
.L 2 - N log (L1y) 
z = 1 2a 

(II1.44) 

The number of data points N ' and the infinitesimal width L\y are constants, so minimizing 

(III.44) is equivalent to minimizing the first term only. Since a is assumed constant, Pis a 

maximum when 

N' 
I, [.r'.- y (x · )]2 

i = I z z 
(III.45) 

is a minimum. I will seek the set of values of A, C, t:., t:. ', li and Uj , for i = l .. .. ,N, that 

minimize (Ill.45). 

Substituting the 6N (real and imaginary) values of Xj, Yi and Zj , for i= 1 , .... N from 

equations (III.35) - (III.37) into (111.45 ) as the data values y ' ;, and substituting the 

corresponding right hand side of equations (III.35) - (111.37) into (II1.45) for the value of 

the function y(x;) , we can write (Ill.45) as 

2 
Yi- (z; ei A+ ui ei (A+ L1)) + 

(111.46) 

Now the summation is over the pixels within the patch being averaged over, with each 

pixel contributing the term x? defined in (III.46) towards the total value x2 that we wish 

to minimize (as a function of A, C, 11, 11', li and Uj, for i=l , ... ,N). 

Given a set of values of A, C, 11 and 11' , the values of I i and u i that minimize x? , 

called lm l· and uml · , respectively, may be easily determined since x? is linear in l i and Uj 
l l 

when the phases A, C, 11 and t:. ' are fixed. Equating the partial derivative of x? with 
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respect to each of the 4 real and imaginary components of li and Ui to zero, we get 4 

equations for these components that can be written as a 2 x 2 matrix equation of complex 

numbers: 
- I 

x . + e-i (A + L1) v . + e-i ( c + L1') z. 
I - I I 

x . + e-i A )'. + e-i c z . 
I I I 

(III.47) 
3 

For a given a set of values of A, C, D. and D.', each x? is individually minimum, 

and therefore their sum, x2, is minimum, when the local values of I i and Ui for that pixel 

are the values lml · and uml· , respecti vely. given by (III.47). I may therefore write x2 as a 
I I 

function of A, C, D. and D.' only, with the understanding that I have substituted lml· and 
I 

uml · for li and Uj , respectively , so that the value of x2 so formed , called Xmin2 , is the 
I 

minimum value of x2 for that set of values of A, C, D. and D.' : 

Xmin 2(A,C,L1,L1') = 

N ( 2 2 L ix·-(l f .+u 1·)1 + y--(1 , _eiA +u f . eiCA + L1)) + i= I I m I m I I m I m I 

(III.48) 

Let (Amin .Cmin.D.min .D. ' min) be the coordinates at which this function is a 

minimum, which I determine using the Fletcher-Reeves-Polak-Ribiere multidimensional 

conjugate gradient method described by Press et al. [ 1992]. These coordinates, and the 

corresponding values of li and Ui given by 
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- I 

[ ~; l = 
3 1 + e-i L1min + e-i L1' min 

I + ei L1min + ei L1' min 3 
X 

(III.49) 

x · + e-i (A min+ L1min) y· + e-i (Cmin + L1' min) Z· 
I I I 

X·+ e-i Amin )'· + e-i Cmin Z· 
I I I 

are the set of values of A, C, !!.. , !!.. ' , li and Uj , for i= 1 , ... ,N for which x2 is a global 

minimum, and are therefore the most likely set of these values given the data, which is our 

solution. 

111.9 Confirmation of the Solution by Numerical Simulation 

I can test the validity of the solution derived in the previous section by numerically 

simulating the radar echoes received from a patch of N pixels at three positions x, y and z, 

according to equations (III.35 ) - (III.37). I specify the values of A, C, !!.. and !!.. ' that 

characterize the patch, and the standard deviation On of the Gaussian distribution from 

which the real and imaginary parts of the noise in equations (III.35) - (III.37) is randomly 

drawn. I also specify the standard deviations 01 and Ou of the Gaussian distributions from 

which the real and imaginary parts of li and Ui, respectively , for i= I , ... ,N, are randomly 

drawn. 

In this case I am assuming that the lower and upper echoes are constant, on 

average, across the patch , although the method of solution I described in the previous 

section is not predicated on this assumption. Our solution is predicated on the assumption 

that A, C, !1 and !'1 ' are constant within a patch of N pixels that will be averaged over. 
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However, the lower and upper echoes from each pixel within the patch. li and Uj , 

respectively, fori= 1 , .. . ,N , could in principle be drawn from different standard deviation 

distributions for each pixel. However, for simplicity I will assume in the simulations that 

the echoes are constant, on average, across the patch. 

I applied the method of solution to the simulated data and found the most likely 

values of A , C , !:l, !:l ' . li and U j, for i= l , .. . ,N, given the simulated data. I averaged the li 

and Uj , for i=l, .. . ,N , to get the standard deviations O'J and O'u, respectively, via the 

equation 

N 
L. f. ,.* 

i= I ' ' 
2N 

(III. 50) 

with a similar equation for O'u . There is a factor of 2 in the denominator because 1 i is 

complex, so there is an estimate for the standard deviation from averaging both the real and 

imaginary parts. 

In Figures III-II - III-20 I plot the solutions for the most likely values of A , C , !:l , 

!:l ' . 0'! and O'u given the simulated data. These solutions are labeled A, C, .&, ii', cr1 and <fu, 

respectively. For each scenario in the Figure there is a different set of values of the 

parameters used to create the simulated data; A, C , !:l , !:l ' , O'J , cru. O'n and N . The power 

signal to noise ratio is given by (in dB) 

(a2+a 2) 
SNR = I 0 log 1 

2 
11 

an 
(11!.5 I) 

For each scenario I show 3 plots; A vs .&, C vs ii' and cr1 vs <fu . Each point within 

a plot represents the solution for one simulated patch of data, containing N pixels. Multiple 
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points represent solutions obtained from multiple simulated patches. Each patch is unique 

because the particular values of the lower and upper echoes and noises for each pixel within 

the patch are random, constrained only through being drawn from Gaussian distributions 

with the specified standard deviations. The scatter in the resulting plot of solutions for 

multiple simulated patches, with the parameters defining the scenario held constant, 

therefore illustrates the validity and accuracy of the solution; a solution from one simulated 

patch that happens to be close to the true values of the parameters could occur by chance, 

but if the solutions for multiple patches are all scattered around the true values of the 

parameters, rather than being scattered randomly throughout the solution space, then the 

method is working, and the accuracy of the solution is defined by the width of the scatter. 

For the cases of D.'= 0.25 some fine band like structure is visible in the scatter 

plots. This is an artifact of the method I use to find the global minimum that becomes 

manifest for thin layers, when the function being minimized is not well behaved. I alleviate 

this problem by taking many ( 18) initial guess for the starting values of D. and D.' and 

selecting the solution which has the lowest minimum. One can intuitively see from the plots 

that if we were to try more starting values the banding would be less pronounced, so the 

banding is merely a consequence of the finite spacing of the grid of starting values of D. and 

D.' that we begin the minimum finding algorithm from. This is conclusively demonstrated 

by Figure III-21 in which I repeat the simulation shown in Figure III-20 but using 756 

(instead of 18) different possible starting values - the slight banding apparent in Figure ill-

20 disappears in Figure III-21 . For thicker layers no banding is apparent, because the 
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function being minimized is more well behaved, with a more pronounced minimum, as the 

layer gets thicker. 
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111.10 An Experimental Test of the Solution 

Having derived the solution theoretically and confirmed its validity by .. numerical 

experiment", we are ready to test the solution by actual physical experiment. For our 

experimental test, we are limited to using synthetic aperture radar interferometric data that 

has been previously acquired for other purposes. Unfortunately, the best available such 

data showing subsurface imaging, as described in the next section, suffers from too much 

temporal decorrelation between observations to allow the method to detect a layer even 40 

meters thick. 

This temporal decorrelation, between observations acquired on successive days, is 

due to some combination of physical changes in the scene, changes in the spacecraft 

attitude and errors in the processing by NASA of the raw radar echoes into the synthetic 

aperture radar images. Assuming the elimination of the last factor, successful application of 

this method in the future may or may not require simultaneous observations to avoid the 

effects of physical changes in the scene. In section 111.17 I propose a test to determine 

whether or not simultaneous observations are required, and then detail the radar system 

requirements for successful application of the method for both possible outcomes of the 

test. 

111.11 The Best Previously Acquired Data Available for an 

Experimental Test of the Solution 

The best available data is 3 C-Band (5 .7 em wavelength) images acquired from 
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parallel orbital paths by the Shuttle Imaging Radar (SIR-C) over the eastern edge of the 

Selima Sand Sheet on the Egypt/Sudan border (Figure III-21). These data were acquired on 

3 consecutive days, within 50 minutes of the same local time each day, beginning October 

8, 1994. I consider this data to be the best available because these images, in addition to 

being acquired from parallel paths the requisite minimum of three times, are of the one area 

in the world where subsurface imaging is known to occur over a wide area, as first 

observed by SIR-A in November 1981 [McCauley era/. , 1982; Blom era/., 1984]. 

The braided stream channels below the oasis Bir Safsaf (lat 22036' N, long 

29030'E) were originally imaged by SIR-A at L-band (24 em wavelength), and confirmed 

by subsequent field expeditions to be buried up to 2 meters deep in sand [McCauley et al., 

1982]. These channels, referred to in Fig 2 of Elachi et al. [1984] and visible in Fig 7a of 

McCauley et al. , 1982, are visible in the C-band images of this region acquired by SIR-C 

(Figure III-22 and Schaber et al. [1997]). This is the other reason why I consider the SIR-

C data to be the best available, because subsurface imaging is achieved through possibly 

meters of sand at the shorter C-Band wavelength. This is significant because from the 

numerical simulations presented in the previous section we know that the greater ll and ll' 

are the better the method works at separating the echoes and determining the depth of 

burial. We know from equation (III .28) that ll is proportional to the depth of burial L and 

inversely proportional to the wavelength. Hence the combination of L possibly being of the 

order of meters even while the wavelength is relatively short (subsurface imaging is 

normally attempted and achieved at L-band, which is 4.2 times longer than C-Band) makes 
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this data have the thickest possible layers in terms of phase of any data set available. 

III.12 Images, Interferometric Fringes and Correlation Maps 

Formed from the Data 

In Figure III-22 I show the C-band image of the SIR-C data of the region near Bir 

Safsaf, acquired on October 8 , 1994, the first day of the three successive orbits. Figure III-

21 is a map which shows the geographical location and orientation of this image, and also 

shows the path of the L-band SIR-A images of this region acquired in November 1981. 

This map demonstrates the existence of an area of overlap between the two sets of data, 

allowing us to test the method in a region where subsurface imaging is known to occur. 

The C-Band image is actually in the form of a strip of 4 smaller images, because I 

have divided the data into these 4 segments. I do this mainly because the 3 images acquired 

from parallel orbital paths on consecutive days cover the same area, but the pixels in each 

image are in general offset from image to image by a non integer amount. In order to align 

the images so that at each set of pixel coordinates the pixel values on consecutive days 

represent the echo from the same physical location, I determine the offset of one image 

from another in the four corners of the image, and then interpolate this offset everywhere 

within the image. A smaller image allows a better approximation of the interpolation to the 

true offset, so dividing the full image into 4 smaller components allows each component to 

be better aligned with the components from other days. 

In Figure III-23 I show a Landsat TM-7 (Thermatic Mapper, a 7 band visible-to-
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near-infrared orbital imager) image of the same region shown in Figure III-22, but acquired 

on 1113/86. The dark channels visible in the radar image are not visible in the Landsat 

image. In Figure III-27 I show the non-multilooked fringes between day 1 and day 2, day 

2 and day 3 and day 1 and day 3, respectively, for a small500*2.50 pixel region centered at 

x=1250 pixels, y=7275 pixels. Unlike the radar image shown in Figure III-22, which is 

multilooked 5 pixels in each direction (25 pixels total multilooking), I do not have to 

multilook the fringes to get a physically meaningful quantity, since the speckle for each 

pixel is the same for successive observations. 

The different spacing of the fringes for the different prurs of observations is 

apparent from Figure 111-27; the component of the baseline perpendicular to the line of sight 

is larger for the x-z pair than for the y-z or x-y pairs, resulting in a finer fringe spacing. The 

correlation between the observations, much lower in the dark channel , is indicated by the 

noise in the fringes , and the scale over which the fringes are relatively straight can be seen 

to be of the order of at least 50 pixels in any direction. The pixel width on the ground is 4.4 

m square, so the absence of any appreciable kinks in the fringes on this scale indicates the 

topography is flat on a scale of about 200 m. 

In Figures III-24, III-25 and III-26 I show the correlation between the day 1 -day 2 

observations, day 2- day 3 observations and day 1 - day 3 observations, respectively. To 

calculate the correlation I use the definition 

correlation (III.52) 
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The correlation between two observations is the product of the spatial, thermal and 

temporal correlations [Zebker and Villasenor, 1994]. The spatial correlation is given by 

spatial correlation = I-# jringei pixe, (111.53) 

and the thermal correlation is 

thermal correlaJion = 1 l 
I+ SNR 

(Ill.54) 

where SNR is the signal power to thermal noise power ratio. The fringe frequency in # 

fringes/pixel is largest for the day 1 - day 3 pair of observations, and is about 30 pixels per 

fringe, so the fringe rate is 1/30 fringes per pixel. Hence the spatial correlation is at worst 

0.967 for the day 1 - day 3 pair of observations. The signal power to thermal noise power 

is at worst around 10 dB in the bright regions, so SNR=lO and the thermal correlation in 

the bright regions is at worst 0.90. For 20 dB signal to noise, which represents a very 

good signal to (thermal ) noise ratio, SNR=lOO and the thermal correlation is 99%. Hence 

the product of the spatial and thermal correlation in the bright regions is at worst about 

0 .87. 

One can see from the correlation maps that in the bright regions the correlation 

between day 1 and day 3 is typically around 0.5, so the temporal correlation in these 

regions is only around 0.57. Hence the predominant cause of decorrelation between the 

observations is temporal decorrelation - that is, physical changes in the scene between 

observations. 
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Figure 111-21: Map showing the geographical location and orientation of the SIR-C data. 
This map demonstrates the existence of an area of overlap between the SIR-C data and the 

original SIR-A observations of the region that first demonstrated subsurface imaging here. 
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Figure 111-22: C-band image acquired by SIR-C; pixels (km). Dark=low radar 

reflectivity . This image is multilooked 5 pixels in each direction (25 pixels total 

multilooking) in order to reduce the speckle. The amplitude of the radar echo is displayed. 
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Figure 111-23: False color Landsat TM image of the same area. Band 1 (0.45 ).l) = blue, 
Band 2 (! ).l) =green, Band 3 (2.45 ).l) =red. Image was acquired on 1/13/86. The braided 
stream channels visible in the previous image acquired by SIR-C are not visible in this 
visible- near-infrared image, which samples only the top few microns of the surface. 
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Figure 111-24: The correlation between the day 1 and day 2 

observations, which is determined over 8*8 pixel patches. 
Comparison with Figure III-22 shows that the lowest correlation 

regions are the radar dark areas, and vice versa, as expected. 
However, within the radar bright areas the correlation is much lower 
than expected from the combined effects of spatial(baseline) and 

thermal decorrelation (assuming a conservative signal to thermal 

noise ratio of 10 dB within the radar bright areas). The cause must 
be temporal decorrelation, which just means that the scene changed 

physically between observations. The key for the display of 
correlation as a color is shown below. 
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Figure 111-25: The correlation between the day 2 and day 3 
observations, which is determined over 8*8 pixel patches . 

Comparison with Figure III-22 shows that the lowest correlation 
regions are the radar dark areas, and vice versa, as expected. 

However, within the radar bright areas the correlation is much lower 

than expected from the combined effects of spatial(baseline) and 
thermal decorrelation (assuming a conservative signal to thermal 

noise ratio of 10 dB within the radar bright areas). The cause must 
be temporal decorrelation, which just means that the scene changed 

physically between observations. In general the correlation is higher 
than between day 1 and day 2. The day 2 - day 3 baseline is shorter 
than the day 1 - day 2 baseline, as can be seen from the greater 

spacing of the fringes between day 2 and day 3 than between day 1 
and day 2 (Figure III-27). This causes less spatial (baseline) 

decorrelation, but not enough to account for the significantly higher 

correlation between day 2 and day 3 in most bright regions. 
Therefore, there was less physical change in the scene between day 

2 and day 3 than between day 1 and day 2, perhaps due to less 
wind. The key for the display of correlation as a color is shown 
below. 
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Figure 111-26: The correlation between the day 1 and day 3 
observations, which is determined over 8*8 pixel patches. 

Comparison with Figure III-22 shows that the lowest correlation 

regions are the radar dark areas, and vice versa, as expected. 
However, within the radar bright areas the correlation is much lower 

than expected from the combined effects of spatial(baseline) and 
thermal decorrelation (assuming a conservative signal to thermal 

noise ratio of 10 dB within the radar bright areas). The cause must 

be temporal decorrelation, which just means that the scene changed 
physically between observations. The correlation between day 1 and 

day 3 represents the combined effects of temporal changes from day 
1 to day 2 and day 2 to day 3, and therefore has the lowest 

correlation of any pair. The day 1 - day 3 baseline is the longest, as 

can be seen from the finer spacing of the fringes between day 1 and 
day 3 than between any other pair of observations (Figure III-27). 

This causes more spatial (baseline) decorrelation, but not enough to 
account for the low correlation between day I and day 3 in the bright 

regions, which is only around 0.5, compared with a correlation of 

0.87 that would be expected from spatial and thermal decorrelation. 
The key for the display of correlation as a color is shown below. 
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Figure III-27: An enlargement of segment 4 showing the fringes in a 250*500 pixel region 
around a bend in the radar dark channel, centered at x= 1250 pixels, y=3 7 5 pixels. The 

different spacing of the fringes for different pairs of observations is apparent; the 

component of the baseline perpendicular to the line of sight is larger for the x-z pair than for 
the y-z or x-y pairs, resulting in a finer fringe spacing. The correlation between the 

observations, much lower in the dark channel, is indicated by the noise in the fringes . 



Ill-84 

111.13 Simulated Results Expected from Highly Correlated, One 

Surface Data 

I simulated the radar echoes from a single surface ( ~ and ~ ' = 0) by usmg 

equations (III.35) - (III.37) to generate the data for each pixel within a patch for each of 

three simulated observations. I assumed that the data remained highly correlated between 

observations, so that only thermal noise affected the observations, and I assumed that this 

noise was equal in size, on average, for all three observations of each pixel. This would be 

true if all three observations are made near the same local time, so that the reflected sunlight 

in the region of the solar blackbody spectrum near the radar wavelength and emitted thermal 

radiation from the ground due to the ground temperature are approximately the same. I also 

assumed that the signal to noise ratio was equal , on average, throughout the patch of 

pixels, which would be true for a patch covering an area of approximately constant radar 

reflectivity (cross section). 

I generated this simulated data assuming a signal to noise ratio of 10 dB, where 

SNR (dB) = 10 log (signalpowetfnoisepower), and applied the method of solution for 

separating upper and lower surface echoes (determining I and u) and determining the depth 

of burial (via solving for~ and ~') . This analogous to what I did in section III. lO, except 

there I generated simulated data that did contain echoes from an upper and lower surface, 

not a single surface as I do here. Hence I obviously don ' t expect to be able to separate 

upper and lower echoes and determine the depth of burial, since these don't exist for a 

single surface. Instead. I intuitively expect the method to find solutions for, say, the phases 
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!::. and !::. ' that vary randomly as I solve for each new patch of pixels, the thermal noise 

causing the solutions to jump randomly around. 

In Figure III-28 I show the solutions for !::. and!::.', respectively, for a total of 

10,800 patches of pixels, each patch composed of 1,024 pixels. These 10,800 patches are 

displayed in a 150*72 array, and the value of the phase, lying in the range 0 to 2n: , is 

shown as a color, the key for which is given in the Figure caption on the next page. A 

glance at the Figures confirms our intuition about the expected solutions, for the color (and 

hence the phase) varies randomly over the array of patches for both !::. and!::.'. This random 

display of color is then the qualitative solution expected when no layers are present in the 

data, provided that the correlation between any two days ' data is approximately constant 

(requiring that there be no significant temporal or spatial decorrelation between 

observations, so that the only source of decorrelation is thermal noise). On the other hand, 

when layers are present in data suffering from little spatial or temporal decorrelation, the 

scatter plots of section III.1 0, which show the solutions for the phases !::. and !::.' scattering 

around their true values, imply that the solutions for !::. and !::.' , when displayed as a color 

rather than a scatter plot, will show an approximately constant color. 
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Figure 28: The solutions for!::,. and fl' , respectively, for a total of 

l 0,800 patches of pixels, each patch composed of 1,024 pixels. 

These 10,800 patches are displayed in a 150*72 array, and the value 
of the phase, lying in the range 0 to 2rr, is shown as a color, the key 

for which is given below. A glance at the Figures confirms our 
intuition about the expected solutions, for the color (and hence the 

phase) varies randomly over the array of patches for both !::,. and !::,. ' • 

This random display of color is then the qualitative solution expected 
when no layers are present in the data, provided that the correlation 

between any two days' data is approximately constant (requiring that 

there be no significant temporal or spatial decorrelation between 
observations, so that the only source of decorrelation is thermal 

noise). On the other hand, when layers are present in data suffering 
from little spatial or temporal decorrelation, the scatter plots of 

section III. I 0, which show the solutions for the phases !::,. and !::,. ' 

scattering around their true values, imply that the solutions for!::,. and 
!::,.',when displayed as a color rather than a scatter plot, will show an 

approximately constant color. 

1 
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111.14 Results 

I applied the method to all 4 segments of the SIR-C data, with the process 

illustrated by the flowchart in Figure ITI-29. I averaged over 32*32= 1,024 pixel patches, 

over which I assume the ground is flat. This can be seen to be a good assumption by 

looking at the scale of the kinks in the interferometric fringes between observations shown 

in Figure III-27. The kinks indicate topography, and it can be seen that on the scale of a 

32*32 pixel box the fringes are generally straight. 

Even on a flat plane there will be fringes, however, since as one moves across track 

the phase difference between two observations will rise (or fall, depending on the 

orientation of the two observation points) at a constant rate with increasing distance across 

track (in the x direction). As the phase rises (or falls) through multiples of 27t, fringes 

result. Because one of our assumptions is that the phases A and C are constant over the 

patch of pixels being averaged over, I remove the variation in A and C due to geometry 

prior to processing by the method. Any remaining variation, minimal over the scale of the 

patches, is then due solely to topography. 

Averaging over 1,000 pixels would allow a layer 0.25 radians deep in phase to be 

detected for about a 20 dB SNR. This detection is achieved through observation of the 

solution for 6' scattering on either side of 0.25 radians with a scatter of about 0.2 radians 

(Figure Ill-20 and III-21 ). I can estimate the size of the phase thickness of a layer in the 

SIR-C data from the spacing of the interferometric fringes between observations, along 

with the knowledge that the maximum physical depth of a layer is about 2m [McCauley et 
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al., 1982]. 

By geometry, if one excludes the effect of refraction, the change in the look angle 8 

between the lower and upper surfaces (separated by a depth L) is L/Dtan8 times the change 

of the look angle associated with moving one pixel along the ground across track (a 

distance D). As discussed in section III.4, the effect of ground refraction is to increase the 

change in the look angle between the lower and upper surfaces by around 30% compared 

with that for no refraction. for values of the relevant parameters characteristic of the SIR-C 

imaging of this region. 

Including this effect of refraction, and using the SIR-C look angle of 8=40° and 

pixel width D=4.4 m, the change in the look angle between the lower and upper surfaces of 

a layer 2 m deep (the maximum depth expected from ground observations of this region) is 

0.70 times the change in the look angle associated with moving one pixel along the ground 

across track. But this latter quantity is not an abstract invention, for a change in the look 

angle leads to a change in the phase difference between observations of the echo from that 

look angle made from parallel but displaced locations. Equation (III.40) expresses the 

change in the phase difference in terms of the change in the look angle, where BJ.., is the 

component of the baseline between observation locations perpendicular to the line of sight. 

One can see that the change in the phase difference is proportional to the change in the look 

angle, so the change in the phase difference between echoes recorded from parallel but 

displaced locations, when recording those echoes from the upper surface compared with 

recording the echoes from the lower surface, is 0.70 times the change in the phase 
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difference between echoes that occurs when moving one pixel over across track. 

This latter quantity is just the interferometric spatial fringe frequency, in radians per 

pixel. For example, one fringe cycled through every 60 pixels would correspond to a 

change in phase difference of about 0.10 radians per pixel. In fact, for the day 1 - day 2 

and day 1 - day 3 baselines the fringe frequencies are 0.11 and 0.20 radians per pixel, 

respectively. Therefore, the expected maximum phase differences between the phase 

difference between observations of the lower echo and the phase difference between 

observations of the upper echo, which I have defined as /j_ for the day 1 - day 2 baseline 

and fj_' for the day 1- day 3 baseline, are 0.08 and 0.15, respectively. 

From the numerical simulations performed in section III. I 0 we know that halving 

the largest of /j_ and /j_ ' does not significantly affect the accuracy of the solution for a given 

number of pixels averaged over. Therefore, averaging over I ,000 pixels should allow the 

deepest 0.15 radian (2 meters) layers to be detected by the method in radar bright regions, 

if the correlation between any two days data were approximately constant. This would be 

the case for data with no temporal or spatial decorrelation between observations, just 

thermal noise- assuming the data were acquired at similar local times. Unfortunately, the 

correlation maps shown previously demonstrate that in fact the correlation between any two 

days data does vary greatly depending on which two days are used. As I explain in the next 

section, this, and not the detection of a buried layer, causes the solutions for /j_ and fj_' to be 

approximately constant. 

In Figure ill-30 I show the day I image, now multilooked to 32*32 pixels, to show 
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one of the "input'' images; the day 2 and day 3 input images look the same when 

multilooked to 32*32 pixels and displayed as an amplitude image, so it is not necessary to 

show all three input images. For the output images I show the putative lower and upper 

echoes in Figures III-31 and III-32, respectively , also multilooked to 32*32 pixels. In 

Figures III-33 and III-34 I show the output phases !1 and /1' , which have physical 

relevance through being proportional to the physical depth of the putative subsurface layer. 

The output phases A and C only contain information about the topography of the surfaces, 

which can be extracted with a priori knowledge about the scene through the use of tie 

points. This is an established application of radar interferometry, and since this thesis is 

concerned with new applications, I do not show the output phases A and C. 
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Figure 111-29: A flowchart which illustrates schematically the 

inputs and outputs of the method developed here for using multiple, 

interferometric images (the inputs day I image, day 2 image and day 

3 image, respectively) to separate the lower and upper echoes 

(outputs lower image and upper image, respectively) and determine 

the depth of burial (which is proportional to the outputs b. and b.' ) . 

The output phases A and C only contain information about the 

topography of the surfaces, which can be extracted with a priori 

knowledge about the scene through the use of tie points. This is an 

established application of radar interferometry, and since this thesis 

is concerned with new applications, I do not show the output phases 

A and C. 
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Figure 30: The day I image of the SIR-C data, multilooked to 

32*32 pixels and representing the magnitude of the amplitude. The 

multilooking reduces the spatial resolution of image to the size of the 

patches (32*32 pixels in size) that the topography is assumed 

constant over and that the method averages the data over.The bright 

regions represent regions with higher radar reflectivity, and vice 

versa. The braided stream channels are radar dark because the 

ancient stream beds were eroded smooth by running water, 

compared with the surrounding terrain. At the boundaries of the 4 

segments visible in Figure Ill-22 one can notice discontinuities in the 

appearance of this image; this is because, as discussed in the text, 

each segment is actually processed by the method individually and 

so I created the output images of each segment individually, and 

combined the 4 images into one mosaic. When creating an image for 

display I scale the display of the amplitude of a pixel from one 

standard deviation below the mean pixel amplitude to one standard 

deviation above the mean. Each pixel is then assigned one of 256 
different levels within this range. Because the mean and standard 

deviation of each segment is, in general, different, the assigned pixel 

values for a region of a constant brightness may in general be 
different for different segments, so at the boundary of the segments 

there may be a discontinuity in the brightness. 
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Figure 31: The putative lower echo output by the method, 

multilooked to 32*32 pixels and representing the magnitude of the 

amplitude. The multilooking reduces the spatial resolution of image 

to the size of the patches (32*32 pixels in size) that the topography is 

assumed constant over and that the method averages the data 

over.The bright regions represent regions with higher radar 

reflectivity, and vice versa. At the boundaries of the 4 segments 

visible in Figure III-22 one can notice discontinuities in the 

appearance of this image; this is because, as discussed in the text, 

each segment is actually processed by the method individually and 

so I created the output images of each segment individually, and 

combined the 4 images into one mosaic. When creating an image for 

display I scale the display of the amplitude of a pixel from one 

standard deviation below the mean pixel amplitude to one standard 

deviation above the mean. Each pixel is then assigned one of 256 

different levels within this range. Because the mean and standard 

deviation of each segment is, in general, different, the assigned pixel 

values for a region of a constant brightness may in general be 

different for different segments, so at the boundary of the segments 

there may be a discontinuity in the brightness. 
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Figure 32: The putative upper echo output by the method, 

multilooked to 32*32 pixels and representing the magnitude of the 

amplitude. The multi looking reduces the spatial resolution of image 

to the size of the patches (32*32 pixels in size) that the topography is 

assumed constant over and that the method averages the data 

over.The bright regions represent regions with higher radar 
reflectivity, and vice versa. At the boundaries of the 4 segments 

visible in Figure III-22 one can notice discontinuities in the 

appearance of this image; this is because, as discussed in the text, 

each segment is actually processed by the method individually and 

so I created the output images of each segment individually, and 

combined the 4 images into one mosaic. When creating an image for 

display I scale the display of the amplitude of a pixel from one 

standard deviation below the mean pixel amplitude to one standard 

deviation above the mean. Each pixel is then assigned one of 256 

different levels within this range. Because the mean and standard 

deviation of each segment is, in general, different, the assigned pixel 

values for a region of a constant brightness may in general be 

different for different segments, so at the boundary of the segments 

there may be a discontinuity in the brightness. 
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Figure 33: Image of 11 output by the method, with the key for the 

phase represented as a color shown below. The stability in the 
solution for 11 is at first glance encouraging, for stability is the 

criterion I intended to use for successful detection of a subsurface 

layer. However, the solution for 11 hovers around 2 radians. As 
previously discussed, the spacing of the interferometric fringes 

suggests a maximum size for 11 of0.08 radians for a 2m deep layer. 
The indication, therefore, of a 40 m deep layer is obviously an 
artifact. I argue that the stability in this case is not an indication of 

the detection of a layer, but rather the effect of the varying 
decorrelation between different days' observations. 
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Figure 34: Image of 11' output by the method, with the key for the 

phase represented as a color shown below. The stability in the 

solution for 11' is at first glance encouraging, for stability is the 
criterion I intended to use for successful detection of a subsurface 

layer. However, the solution for 11' hovers around 3 radians. As 

previously discussed, the spacing of the interferometric fringes 
suggests a maximum size for 11' of 0.15 radians for a 2 m deep 

layer. The indication, therefore, of a 40 m deep layer is obviously an 
artifact. I argue that the stability in this case is not an indication of 

the detection of a layer, but rather the effect of the varying 
decorrelation between different days' observations. 
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111.15 Test of Results 

I performed a test of the validity of the results, specifically testing whether or not 

the method I use to find the minimum of the X2 (the Fletcher-Reeves-Polak-Ribiere 

multidimensional conjugate gradient method) is in fact finding the minimum of the x2 . I 

have confidence in the method based on the numerical simulations performed in section 

III.l 0, but I have thought of an additional test which confirms the validity of the x2 

minimum finding method. 

For a string of 10 patches from segment 4, arbitrarily chosen to extend from 

(x= 1600,y=7680) to (x= 1888,y=7680) (each patch is an average of 32 pixels in each 

direction), I display the solutions obtained using the method for A, C, !:l and !:l', 

purportedly to be those values of A, C, !:l and !:l' for which the x2 defined by equation 

(III.48) is a minimum, as star shaped symbols (labeled "METHOD") in Figure ITI-35. For 

each of these patches I also determined the values of A, C, !:l and !::.' that minimize the x2 

by simply dividing the allowed range for the angles (0 to 21t) into a finite number of points 

(3 1, corresponding to an interval between points of 0.2) and calculating the value of x2 at 

all 314=923,521 grid points in the 4 dimensional space, allowing the grid point at which 

x2 is a minimum to be determined. This is a foolproof, if time consuming, way of 

determining the values of A, C, !:l and !:l ' at which x2 is a minimum. I refer to it as the 

grid method and display the results for the I 0 patches as diamond shaped symbols (labeled 

"GRID") in Figure Ill-35. 

As can be seen from the Figure, the results for this randomly chosen string of 
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patches from the method closely match those from the foolproof grid method, confirming 

that the method is reliably finding the minimum and that the stability in the solutions for~ 

and ~· is not an artifact of the idiosyncratic method I use to minimize the x2 . The fact that 

it would take 5 years (on a workstation class computer circa 1997) to process all 4 

segments of data using a grid based approach for minimizing x2 illustrates why I was 

forced into creating such an idiosyncratic (yet reliable) method for minimizing x2. Using 

this method it still took 10 days to process all four segments. 
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Figure 111-35: Comparison of the solutions for A, C, ~and~· for which the x2 defined 

by equation (III.48) is a minimum, using both the minimization method used in this 

research ("METHOD") and a foolproof but slow grid based search for the minimum 

("GRID"). The solutions match closely, confirming the validity of the method. 
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111.16 Explanation of Results 

At first glance the stability in the solutions for 11 and /1 ' is encouraging, for stability 

is the criterion I intended to use for successful detection of layers. However, with the actual 

data the solutions for the phases 11 and /1' hover around 2 and 3 radians, respectively. As 

previously discussed, the spacing of the interferometric fringes suggests maximum sizes 

for 11 and /1' of 0.08 and 0.15 , respectively, for a 2m deep layer. The indication, 

therefore, of a 40 m deep layer is obviously an artifact. I argue that the stability in this case 

is not an indication of the detection of a layer, but rather the effect of the varying 

decorrelation between different days' observations. A surprising, important, and 

disappointing result of the analysis is that while the method can work with the thermal 

noise and baselines of SIR-C, it requires much higher temporal correlation than had been 

anticipated. 

When presented with data with the property that different pairs of data have 

significantly different correlations (for example, the day I - day 2 pair may have a 

significantly higher correlation than the day I -day 3 pair), the solutions for 11 and /1' will 

be approximately constant over any region that the amount of decorrelation between day 1 

and day 2 and day I and day 3, respectively, is approximately constant. Furthermore, for 

these regions the size of 11 and /1' will reflect the amount of decorrelation from day 1 to day 

2 and day I to day 3, respectively, increasing with decreasing correlation. 

This behavior follows from the fact that the method of solution is predicated upon 

the assumption that the noises associated with each observation are all drawn from the same 
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standard deviation zero mean Gaussian distribution - that is, I assume that all the noises are 

equal in size, on average. If the data suffered no decorrelation and the observations were 

made at approximately the same time of day so that the magnitude of the thermal noise was 

approximately constant, the assumption of equal noises should be valid. Similarly, if the 

data were decorrelated, but any pair of observations had approximately the same 

correlation, our assumption would also be valid, and in both cases the method would return 

approximately constant solutions for~ and ~· only when two surfaces really exist. It 

would return values of~ and ~· randomly distributed from 0 to 27t when there is only one 

surface. 

However, the actual SIR-C data from Egypt/Sudan has the property that the 

correlation between any two days' data depends on which two days are considered; for 

example, the correlation between day 2 and day 3 is much higher than the correlation 

between day I and day 3. With just a single surface contributing to the echo, it is not 

possible to model such data with noises of equal magnitude (on average), for in this case 

the correlation of any pair will be approximately the same. 

However, a two surface model has the property that the correlation between 

different pairs of data depends on the values of ~ and ~'; the correlation of the day I - day 

2 pair decreases as ~ increases, the correlation of the day I - day 3 pair decreases as ~' 

increases and the correlation of the day 2 - day 3 pair decreases as the difference between ~ 

and~· increases (see Figure). 

Therefore, in order to account for the different decorrelations of different pairs of 
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data, the method will fit a two surface model to data which has the property that different 

pairs of data have significantly different correlations, and the phase thicknesses of the 

layer, !:land !:l', will be determined by the amount of decorrelation between different pairs 

of data. These values are approximately constant over regions of the data of approximately 

constant correlation because the same values of !:land !:l' can account for the observed 

decorrelation of different pairs of data while that decorrelation is approximately constant. 

Larger or smaller values of the phase differences would lead to larger or smaller 

decorrelations, respectively, for the model and would not fit the data as well. 

I confirm this intuitive argument by introducing the concept of the equivalent delta. 

By simulating the data from 2 surfaces according to equations (III.35) - (III.37), with the 

assumption that the upper and lower echoes are equal in size, on average (a valid 

assumption considering the observed output from the method for the putative lower and 

upper images - they are approximately equal), I am able to determine the correlation 

between simulated observations of 2 surfaces with varying phase thicknesses !:l and /). ', for 

a signal to noise ratio of 20 dB. The correlation between the three different pairs (x-y, y-z 

and x-z) of simulated observations is shown in Figure III-36, plotted as a color as a 

function of !:l and !:l'. 1,000 simulated pixels are used to determine the correlation for a 

given pair of values of !:land !:l'. By averaging the correlation observed for a given /). for 

all the different !:l ' values simulated, I can generate a look up table that gives the x-y 

correlation for a given !:l. By reading this look up table, Table III.1 , backwards I can get 

the phase thickness !:l, which I call the equivalent delta, that would reproduce a given 
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correlation. 

In this way I am able to generate the equivalent deltas of the correlations between 

the day 1 - day 2 and day 1 - day 3 observations and compare them with the actual deltas, 

D. and D.' respectively, solved for by the method. In Figures III-37 and III-38 I give the 

percentage difference between the D. and D.' solved for by the method and the equivalent D. 

and D.' from the correlations. The close match between the two sets of quantities confirms 

that the method is solving for D. and D.' such that they account for the observed correlations 

between observations. 
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Figure 111-36: The correlation between simulated observations of 

2 surfaces with varying phase thicknesses 6. and 6.', for a signal to 

noise ratio of 20 dB. The upper and lower echoes are assumed to be 

equal in size, on average (a valid assumption considering the 

observed output from the method for the putative lower and upper 

images - they are approximately equal). The correlation between the 

three different pairs (x-y, y-z and x-z) of simulated observations is 

shown, plotted as a color as a function of 6. and 6.'. The key giving 

the correlation as a function of color is given in the Figure. 1,000 

simulated pixels are used to determine the correlation for a given pair 

of values of 6. and 6.'. 
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DELTA CORRELA llON 

0 0 .9901076 
0 .05 0 .9897963 

0.1 0 .9888697 
0 .15 0 .9873074 

0.2 0 .9851897 
0 .25 0.9823325 

0 . 3 0 .9790478 
0.35 0 .9748722 

0.4 0.9702846 
0.45 0 .9650953 

0 .5 0 .9592941 
0.55 0 .9528806 

0 .6 0 .9458709 
0.65 0 .9381697 

0 .7 0.9304091 
0.75 0 .9211999 

0 .8 0.9121228 
0.85 0.9023329 

0.9 0.8914208 
0.95 0.8806915 

1 0 .8690355 
1 .05 0.8571105 

1 . 1 0.8440507 
1 .15 0.8309709 

1 .2 0.8173378 
1 .25 0 .8031592 

1 .3 0 .7880887 
1.35 0 .7729184 

1.4 0 .7568122 
1 .45 0 .7408752 

1 .5 0.7242196 
1 .55 0.7064513 

1 .6 0 .6883126 
1.65 0 .6710449 

1 . 7 0 .6524412 
1. 75 0 .6340641 

1. 8 0 .6148759 
1 .85 0 .5959794 

1 . 9 0 .5774811 
1.95 0.5554637 

2 0.535207 
2 . 05 0 .5151898 

2 . 1 0.4912219 
2.15 0 .4692003 

2.2 0.4499159 
2 .25 0 .4262012 

2 .3 0 .4052626 
2.35 0 .3829548 

2 .4 0.3605759 
2.45 0 .3358445 

2.5 0.31 19958 

III-113 

2 .55 0 .2891931 
2.6 0 .2663847 

2 .65 0 .240659 
2 .7 0 .2183204 

2.75 0 .1 934225 
2 .8 0.1716396 

2.85 0 .1 44639 
2.9 0.1208761 

2.95 0 .099427454 
3 0.071358211 

Table III.l: Delta equivalent look up table 

created by averaging the correlation for a 

given !:l over all the different !:l ' values 

simulated in Figure III-36. 
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Figure 111-37: The percentage difference between the 11 solved for 

by the method and the equivalent 11 from the correlation between the 
day 1 and day 2 observations. The close match between the two sets 

of quantities confirms that the method is solving for 11 such that 

they account for the observed correlations between observations. 
The key for the percentage difference as a function of color is given 

below . 

.t· IJIFF 
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Figure 111-38: The percentage difference between the f).' solved 

for by the method and the equivalent f).' from the correlation between 
the day 1 and day 3 observations. The close match between the two 

sets of quantities confirms that the method is solving for f).' such 

that they account for the observed correlations between 
observations. The key for the percentage difference as a function of 

color is given below . 

.t· LJIFF 
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111.17 Requirements for Successful Application of the 

Method in the Future 

Excessive temporal decorrelation between observations prevents the signature from 

a subsurface layer from being detected. This temporal decorrelation, between observations 

acquired on successive days, is due to some combination of physical changes in the scene. 

changes in the spacecraft attitude and errors in the processing by NASA of the raw radar 

echoes into the synthetic aperture radar images. Assuming the elimination of the last factor, 

I describe in the next section a test to determine whether or not simultaneous observations 

will be required for successful application of the method in the future (to eliminate the 

physical changes in the scene as a source of temporal decorrelation). I then detail the 

general radar system requirements for successful application of the method and the specific 

requirements for both possible outcomes of the test. 

111.17a Description of a Test to Determine Whether or Not 

Simultaneous Observations Will be Required 

The orbital period at the altitude of the space shuttle (around 200 km) is 

approximately 2 hours, which suggests the basis for a test of whether or not simultaneous 

observations must be used. The minimum time between repeat observations from orbit of a 

certain scene on the ground is one orbital period (assuming orbital corrections are made to 

compensate for the planet's rotation during the orbit). If physical changes in the scene 

during this 2 hour interval cause excessive decorrelation then we will know that 
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simultaneous observations are required. 

The test is to image a scene where subsurface imaging occurs on successive orbits, 

perfonning the required orbital corrections to compensate for the planet's rotation during 

the orbit and taking care to keep the spacecraft's attitude, specifically yaw and pitch, as 

similar as possible during the imaging. Keeping the attitude identical on the imaging runs 

minimizes decorrelation due to differences in viewing geometry. In describing the radar 

system requirements for the cases of non-simultaneous and simultaneous observations in 

the following two sections I will quantify the requirements of spacecraft attitude control. 

For the test I propose here however it is enough to say that the spacecraft's attitude must be 

kept as identical as possible for the imaging runs, for we are trying to isolate the minimum 

decorrelation between repeat observations due to physical changes in the scene. 

I also assume that the resulting radar echoes are correctly processed by NASA into 

synthetic aperture radar images. The decorrelation between the observations can now be 

ascribed to physical changes in a scene where subsurface imaging occurs, and this is the 

minimum decorrelation between non-simultaneous observations of the scene. If this 

decorrelation is comparable to or exceeds the signature expected from a subsurface layer, 

simultaneous observations will be required, otherwise repeat (non-simultaneous) 

observations may be used. 

111.17b General Requirements 

The perpendicular component of the baseline must be long enough that the phase 
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thickness of the layer, /1 , is large relative to the signal to thermal noise ratio (SNR). This 

condition was quantified by the numerical simulations of section Ill.9, with the result that 

11 should be approximately 1 radian in order to deal with a commonplace SNR of 10 dB 

(Figure III-17). 

The physical separation of the antennas necessary to realize a 11 of 1 radian may be 

quantified. The relationship between the phase thickness of the layer (/1) and the 

perpendicular component of the baseline ( Bl.
1 

) is (equation (III .28)) 

L1 4JrB..L 1 L ( t: 1sin8 ) 
A r 1cos8 J £

1 
_ cos28 

(III.28) 

where Lis the physical depth of the subsurface layer, rt is the distance from the antennas to 

the pixel , A. is the wavelength, El is the dielectric constant of the material overlying the 

lower surface and 8 is the look angle, which is 90°-incidence angle. The expression in 

parentheses is the effect of refraction. Rewriting this expression in terms of the altitude of 

the antennas, h, using the relationship qsin8=h, we get 

L1 = 4;r;Bl.J Ltan 8( t:,sin8 ) 
A h J t:1 - cos1 8 

(111.55) 

Using the values of the parameters for the SIR-C data (L=2m, h=222 km, /...=5.7 em, 

E 1 =3 .5, 8=40°) we have 

L1 = 2.20 X ](}
3 Bl. J (III.56) 

where Bl.
1 

is in meters. In order that 11 = 1 radian we must have Bl.
1 

= 455 m. 

Once the thermal noise is dealt with by using long baselines, we immediately run 

into a complication; in making the baselines long to deal with the thermal noise we have 

simultaneously made the spatial decorrelation worse. 
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These competing effects may be quantified. The spatial decorrelation ( !-spatial 

correlation) is just the spatial fringe frequency in fringes/pixel. The number of fringes per 

pixel times 2:rt is the phase change per pixel change across track, which I explained in 

section III.14 is proportional to the phase thickness of the layer. Therefore, we see that the 

phase thickness of the subsurface layer, !:!.. , is proportional to the spatial decorrelation, and 

writing out the constant of proportionality we have 

!:!.. = D L e(J E ,sinS ? ) 2:rtx( spatial decorrelation ) 
tan E - cos-8 I 

(111.57) 

Here L is the physical depth of the layer and D is the pixel width across track, and all other 

variables have been previously defined. We may simplify this expression to 

!:!.. = -k(J E ,cosS ? ) btx( spatial decorre/ation ) 
u E - cos-8 

I 

(Ill.58) 

Therefore, the phase thickness of the layer, !:!.. , which we would like to be relatively 

large to deal with the thermal noise is directly proportional to the spatial decorrelation, 

which we need to be small otherwise it will introduce a bias into the solution like temporal 

decorrelation that is larger than the signature from the subsurface layer that we are trying to 

detect. The only way to resolve these competing requirements is to make the constant of 

proportionality large. 

In (111.58) the fractional term in parentheses has a value of 1.4 for the SIR-C data, 

with an approximately linear increase to 1.88 for a 90° incidence angle, so there is not 

much room to increase the constant of proportionality by increasing the incidence angle. 

The only way to do so is to make the pixel width D narrow compared to the layer depth L. 
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As I will later quantify, the pixel width should be no larger than 114 of the layer depth, 

which translates to 50 em wide pixels for the SIR-C data, compared with the actual pixel 

width of 4.4m, an order of magnitude larger. 

In retrospect, it is not surprising that we were unable to confirm the method with 

the SIR-C data, for SIR-C, which represents the state of the art in spaceborne radars, falls 

far short of the requirements for successful application of the method. Through some 

combination of physical changes in the scene, changes in the spacecraft attitude and errors 

in the processing by NASA of the raw radar echoes into synthetic aperture radar images, 

the data suffers from too much temporal correlation between observations to allow the 

signature from a subsurface to be detected. In addition, the pixel width is 4.4 m, compared 

with a maximum expected subsurface layer depth of 2 m. Substituting these values into 

equation (III . .58) we have ~=3.95x(spatial decorrelation). A 2 meter deep layer has a phase 

thickness of 0.15 for the SIR-C x-z baseline, and so the spatial decorrelation is 0 .038 

(spatial correlation is 0.962). From the look up Table III . l we can see that this 

decorrelation would be equivalent to a layer 0.47 radians deep in phase, much less than the 

2 - 3 radian equivalent layer phase depth due to temporal decorrelation (it is the dominant 

effect), but still three times bigger than the signature from the subsurface layer. 

While the short baselines of SIR-C are not ideal - the phase thickness of 0 .15 

corresponds to a perpendicular component of baseline of 68 m - the numerical simulations 

of section III.9 confirm that, had it not been for the overwhelming effect of temporal 

decorrelation (and, to a lesser extent, spatial decorrelation), averaging over as many pixels 
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as we did (1 ,024) would have allowed the signature from the subsurface layer to be 

detected, at least in the brightest regions with the highest signal to thermal noise ratios. 

The fact that the most advanced radar system currently available falls well short of 

the requirements necessary to successfully apply the method indicates the unfeasibility of 

using the method with current radar systems. However, as we described in the introduction 

and will discuss more fully in section III.l8, this method has a number of important 

practical applications that are unique in being based on the way the method gives direct 

information about the subsurface environment, such as the depth and the strength of the 

lower and upper echoes, using the geometry of the situation. Normally, complicated 

models that predict the strength of the radar return at various incidence angles, polarization 

combinations and wavelengths, and that contain, say, the depth of the subsurface layer as a 

variable. are used to obtain such information, which is obviously a very indirect way of 

doing so that is subject to many more assumptions the interferometric method uses. 

The applications of the method, unique by not relying on complicated models with 

many variables, include measuring the depth of burial of ice in the polar regions of Mars, 

enhancing the visibility of buried features and soil moisture mapping, at the high spatial 

resolution afforded by synthetic aperture radar, in arid regions of the Earth. These 

important applications may not be realizable with the method using current radar systems, 

but I consider them of sufficient importance, and possibly not addressable by any other 

method, that it is worth describing in detail the requirements of a radar system that could be 

used to successfully apply the method and so realize these applications. 
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111.17c Specific Requirements in the Case that Simultaneous 

Observations Must be Used 

In this case the requirements for dealing with temporal decorrelation due to physical 

changes in the scene and thermal noise are, in a sense. competing, because the necessary 

simultaneous observations must be acquired over baselines hundreds of meters in length. 

This rules out the possibility of using a single spacecraft, with antennas spaced out along a 

fixed boom. Instead, satellites flying in independent orbits, but in "formation" so that the 

orbital paths are parallel but displaced by hundreds of meters, would be required to realize 

such long, simultaneous baselines; a much more complicated scenario. 

At this point I can demonstrate the generality of the method by pointing out that 

only one of !!. or !!. ' needs to be relatively large in order to combat the thermal noise; the 

other may in fact be :ero. This follows from realizing that the key point about the 

information contained in equations (III.35) - (III.37) is that they represent independent 

observations of the pixel. As long as a separate antenna is used the thermal noise will be 

different and the measurement of the pixel with provide a constraint, through the least 

squares method, on the range of possible values of the lower and upper echoes and phases. 

As long as, say,!!. is relatively large to give the requisite phase sensitivity, the other,!!. ', 

may be zero with no effect on the accuracy of the solutions. This can be further seen from 

the fact the only place in the method that zero values for !!. or !!. ' could possibly be 

problematic is in equation (III.47), since the first term on the right hand side of the equation 

is an inverse matrix, which produces a term that is the reciprocal of the determinant of the 
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matrix, which is a function of 11 and 11 '. Specifically, the determinant is 

det = 9- (1 + e-iA+ e-iA)(1 + eiA+ ei6
) (III. 59) 

Expanding the right hand side to second order in 11 and 11 ' . since the first order terms 

cancel out, we get 

(111.60) 

If we put both 11 and 11· equal to zero we run into problems, because then we are dividing 

by zero (not just to second order but exactly as can be seen from (III .59)), but if we put 

just one of 11 or 11 ' equal to zero then the determinant is still of order the square of the non 

zero term. 

Therefore, of the three independent, simultaneous observations that are required, 

two may be acquired from adjacent antennas with hardly any separation; this is obviously 

easily achievable on a single spacecraft. However, an additional , simultaneous observation 

is still required with a long baseline; hence a minimum of two satellites flying in formation 

are required. 

A further illustration of the generality of the method that has relevance now that we 

are quantifying in detail the necessary radar system requirements for successful application 

of the method is that we may use a single transmitting and receiving antenna and merely 

receive the echoes at the other two antennas, rather than having all three antennas transmit 

and receive. This generality follows from considering that the only difference in receiving 

echoes at, say, tjJ and ~ when the pixel is illuminated from ;, compared with receiving 

echoes at 1jJ and ~ when the pixel is illuminated from 1jJ and ~. respectively, is that all the 
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expressions for the phases A, C, !!. and !!. ' are halved, since there is only a difference in the 

distance traveled by the echoes on the return path, compared with both the outbound and 

return paths when all three antennas transmit their own signals. 

There is no significant difference in the spatial decorrelation between the 

observations when only one antenna is used to transmit compared with when each antenna 

transmits its own signal since the fundamental cause of spatial decorrelation is a change in 

the relative distance between the receiving antenna and the myriad of sub resolution facets 

that the pixel can be thought to be made up of. Whether the pixel is illuminated by the 

receiving antenna or another antenna doesn ' t alter these relative distances between the 

receiving antenna and the sub resolution facets of the pixel, so there is no change in the 

spatial decorrelation. There is a very slight change in the radiation pattern from a facet when 

it is illuminated by an antenna different from the receiving antenna, but the angular distance 

between ;, tjJ, and ~ subtended at the pixel is so small that the change in the radiation 

pattern from a facet is infinitesimal, and so the spatial decorrelation is unchanged. Hence, 

except for the factor of 2 difference in the expressions for the phases, the method is 

independent of whether all three antennas transmit their own signals or just one antenna is 

used to transmit a signal that is received by all three antennas. 

Hence I propose a radar system comprised of two satellites, one of which contains 

two antennas and the other a single antenna, and of the three antennas only one needs to 

transmit the radar signal. All three antennas receive the radar echoes. The satellite with the 

two antennas can have the antennas displaced by a minimal distance. However, the second 
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satellite orbits parallel to this satellite, displaced by at least 455 m in the direction 

perpendicular to the line of sight to the region being imaged in order to create a !J. of 1 

radian (the displacement parallel to the line of sight is irrelevant), assuming a C-Band 

wavelength of 5.7 em and an orbiting altitude of 222 km. In addition, I assume that the 

antenna size is the same as SIR-C, 12.1 m length and 0.8 m width, and that the radiated 

power is the same at 3.6 kW. I deliberately keep those variables for which it is possible the 

same as SIR-C, since this way the required advancements to the radar system are 

advancements to the state of the art of current spacebome radars. In addition, I am 

describing the radar system requirements necessary to successfully apply the method on the 

same region of Egypt/Sudan as was tested in this thesis with the SIR-C data, since this area 

is optimal for testing the method as I previously discussed. 

A !J. of 1 radian will be sufficient to detect the signature from the subsurface layer 

even in regions with a SNR (thermal) of 10 dB, which should be common in the brighter 

regions. Because the observations are simultaneous, temporal decorrelation due to physical 

changes in the scene between the observations is avoided. 

In order to quantify the pixel width, we note from Table III.l that the spatial 

decorrelation ( 1-spatial correlation) can be expressed in terms of the equivalent delta by the 

empirical relationship (at least for the range of equivalent deltas extending from 0 to 0.5 

radians): spatial decorrelation = 0.123x(equivalent delta)2. Substituting this expression for 

the spatial decorrelation into equation (111.58) and using the incidence angle and surface 

dielectric constant characteristic of the SIR-C data we get 
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!::. = bl.08x(equivalent delta / (lll .61 ) 

If we allow the equivalent delta due to the spatial decorrelation to be at most 0.45, 

compared to the actual delta of the subsurface layer of 1, which is an error comparable to 

that introduced by the thermal noise, we get from equation (III.61) that the pixel width D 

should be at most 22% of the subsurface layer depth. For a subsurface layer depth of 2 m, 

this translates to a pixel width of 44 em, which is ten times smaller than the actual SIR-C 

pixel width of 4.4m. 

Since the pixel width is inversely proportional to the bandwidth, a bandwidth of ten 

times the SIR-C bandwidth of 100 MHz, or I GHz (compared with the radar frequency of 

5.3 GHz), is required. Increasing the bandwidth by a factor of 10 is not a problem, the 

problem is that the signal to thermal noise ratio, hereafter called SNR, is inversely 

proportional to the square of the bandwidth. The bandwidth enters once into the 

denominator of the expression for SNR from the pixel width - the signal is proportional to 

the pixel area, which is proportional to the pixel width, which is inversely proportional to 

the bandwidth. The bandwidth also enters the denominator once because the thermal noise 

is proportional to the bandwidth. This would imply a factor of 100 increase in transmitted 

power from SIR-C; however, a common tactic for increasing the bandwidth in order to 

realize higher spatial resolutions without decreasing the SNR is the use of a linear 

frequency modulated signal, called an FM chirp signal, with a compression ratio, the ratio 

of the duration of the chirp signal to the inverse of the bandwidth, that can be over 100 

[Elachi, 1987]. The SNR is proportional to the compression ratio, so a compression ratio 
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of 100 can offset a factor of 10 increase in the bandwidth. The SIR-C signal already utilizes 

this method, so additional compression by a factor of 100 would be required to maintain 

the SNR at current levels without increasing the transmitted power from the current SIR-C 

value of 3.6 kW (increasing the radiated power of a spacebome radar is problematic 

[Elachi, 1987]), if the pixel width is reduced by a factor of 10. 

The pointing accuracy of the two satellites is defined by the requirement that there 

be a high degree of overlap of the physical area that is imaged by the two satellites, in order 

that the same area is observed by both satellites. Because the method utilizes imaging radar, 

pixels are located based on range and Doppler coordinates. As long as the same physical 

area is within the swath of the antennas the pixels can be co-located from the range and 

Doppler coordinates. Therefore it is not necessary that the two satellites have the same 

pointing angle to within a pixel width on the ground, just that the two swaths overlap 

significantly. The angle subtended by the swath width at SIR-C is 2.3°, so the pointing 

accuracy requirement is that the two satellites point to within ± 0.5° of the same direction. 

Another significant requirement for the radar system is possibly the accuracy with 

which the perpendicular component of the baseline between the two satellites is maintained. 

We can quantify this requirement by noting that the method assumes that the phases A, C, 

!1 and !1 ' are constant within a certain patch of pixels. In order that this assumption not be 

undermined by drifting of the baseline, because the phases are all proportional to the 

perpendicular component of the baseline, it is necessary that the baseline be stable to, say, 

1 part in 10 along the orbital path for a distance equal to the along track length of a patch of 
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pixels. In this case the phases will be constant to within 10% within the patch assuming the 

upper and lower surfaces within the patch are physically flat. This produces an error small 

compared with that introduced by the thermal noise. 

If we assume that a patch of 90 pixels is averaged over (because 11 is around 1 

radian so not as much averaging is necessary), then assuming a SIR-C pixel length of 4.4 

m and pixel width of 0.44 m, as discussed previously, a logical shape for the patch is 3 

pixels along track (corresponding to a length of 3x4.4=13.2 m along track) times 30 pixels 

across track (corresponding to a length of 30x0.44=13.2 m across track), requiring that the 

lower and upper surfaces be flat over an area 13 m square. The perpendicular component of 

baseline (which is nominally 455 m) must therefore not change by more than 45 m for an 

orbital path length of 13 m. 

At an altitude of 222 km the orbital velocity is 7.7 kms-1, so the time required for 

the satellites to travel down the orbital path a distance of 13 m is 1.67 milliseconds, so the 

magnitude of the relative speed of the two spacecraft in the direction perpendicular to the 

line of sight to the region being imaged must be below 27 kms-1 , which obviously occurs 

by default since this is above the escape velocity. Therefore, the drifting apart or together of 

the two orbits is not an immediate issue for the method, because the method does not 

assume the various orbital parameters are constant across the entire image, just within the 

patch of pixels being averaged over. However, if the baseline becomes too small , below a 

few hundred meters, the requisite phase sensitivity vanishes, and if the baseline becomes 

too large, over 3.5 km for the scenario I have quantified, the images become completely 
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decorrelated and hence useless, so during the imaging the baseline must be kept between 

4.50 m and 3.5 km. Variation within this range is not an issue. 

The orbital property that the method is quite sensitive to is what I call the lag/lead 

distance, and it is the distance along the orbital path that the second (arbitrarily defined as 

the one with the single antenna) satellite lags or leads the first satellite. If the second satellite 

transmitted its own signal, then this would not be an issue, as long as the lag/lead distance 

was not so great that the time between the observations by the first and second satellites 

(which is the lag/lead distance divided by the orbital velocity of 7.7 kms-1) allowed 

significant temporal decorrelation between the observations. If the second satellite transmits 

its own signal, the pixels can be coregistered with the first satellites pixels, using the 

method that I used to coregister the SIR-C data acquired on successive days. The geometry 

of the observations is the same in both cases, except of course for the displacement 

perpendicular to the line of sight. 

If, however, the second satellite merely records the echoes from the single 

transmitter on the first satellite, then any displacement along the orbital path relative to the 

first antenna creates a different observation viewpoint not only along the intentional 

baseline but also along the orbital path; the lag/lead distance acts as a second baseline that 

decorrelates the signal. One can intuitively see that this is fundamentally the same as the 

spatial decorrelation we have previously discussed, and so is proportional to the product of 

the pixel length along track and the lag/lead distance. If we are to make this decorrelation, 

say, one third that from the intentional baseline, in order to keep the accumulated effect of 
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spatial decorrelation manageable, then we must have that the product of the pixel length and 

the lag/lead distance is 1/3 the product of the pixel width (across track) and the 

perpendicular component of the (intentional) baseline. 

The latter product is 0.44 meters times 450 meters, so if the pixel length is 4.4 

meters (we do not want to make it any smaller in order to preserve the SNR) then the 

lag/lead distance must be at most 1/30 that of the intentional baseline, or 15 meters. 

Therefore, the second satellite must neither lag nor lead the first satellite by more than 15 

meters if the second satellite is to avoid carrying its own transmitter. If a second transmitter 

is used on the second satellite (no matter what the second antenna on the first satellite can 

merely receive echoes since it is fixed on the same satellite as the transmitting antenna and 

so there is no lag or lead distance problem) then this requirement is relaxed, and instead the 

second satellite must simply not observe the same scene either too much earlier or later than 

the first satellite such that significant temporal decorrelation due to physical changes in the 

scene occurs between the observations. Presumably a lag/lead time of minutes is 

acceptable. This compares with an allowable lag/lead time of 1.95 milliseconds (the 

equivalent time for a lag/lead distance of 15m) if the second antenna does not carry its own 

transmitter. 

111.17d Specific Requirements in the Case that Repeat 

Observations Can be Used 

This IS the preferable scenario, since only one spacecraft IS needed, and the 
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rrummum of three observations can be acquired from displaced orbits of this single 

spacecraft. This is in fact how the SIR-C observations were acquired. Parts of the 

discussion in the previous section about the radar system requirements in the case that 

simultaneous observations are required also apply here. Specifically. the insight that one of 

!J. or !J.' may be zero is still true. Also, the requirement that for a subsurface layer depth of 

2 m the pixel widths be around 44cm, which is ten times smaller than the actual SIR-C 

pixel width of 4.4m, still applies. The resulting discussion in the previous section 

regarding the implications for bandwidth, signal power and signal chirp applies identically 

in this case of repeat observations. 

The major difference between the radar system requirements for the cases of 

simultaneous and repeat observations, respectively, aside from the number of satellites 

needed (2 and 1, respectively), is the difference in spacecraft attitude control requirements. 

Specifically, when simultaneous observations are made from 2 satellites as discussed in the 

previous section, there is a lag/lead requirement on the second satellite flying in formation 

but no yaw requirement for the satellites beyond the pointing accuracy requirement that the 

two satellites point to within ± 0.5° of the same direction. 

In the case of repeat observations of the scene made from a single satellite, there is 

no such lag/lead requirement, but there is a more stringent requirement for the stability of 

the yaw of the satellite during the repeat observations. If the yaw of the satellite is different 

for the next observation, it is as if the ground rotated in the direction opposite to the change 

in the yaw. This causes the pixels to be viewed from different angles, which is the 
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fundamental cause of spatial (baseline) decorrelation. The maximum tolerable difference in 

look angles is the same as the angle subtended at the pixel by the maximum tolerable 

lag/lead distance quantified in the previous section ( 15 m). Using a range of 345 km from 

the SIR-C data for the distance between the spacecraft and the imaged region gives a 

maximum tolerable difference in look angles of 0.043 milliradians (9 arc seconds). The 

difference in look angles is the change in yaw angle, so the yaw angle of the spacecraft 

must be maintained on successive observations to within 9" of the yaw angle during the 

original observation. Changes in the roll and pitch of the spacecraft do not decorrelate the 

echoes. This is also true for the case of two spacecraft flying in formation acquiring 

simultaneous observations. 

Now that I have described in some detail the radar system requirements necessary 

for successful application of the method, I can further illustrate the generality of the method 

by pointing out that the method can easily be extended to the case of each antenna 

transmitting and receiving HH and VV radiation, rather than just one direct polarization 

combination. In this case there is a duplicate set of equations (III.35) - (III.37) for each 

polarization combination, with a different (in general) lower and upper echo for each 

polarization combination. However, the geometric phases A, C, 11 and 11' are the same 

regardless of the polarization combination (but if one attempts to utilize simultaneous 

observations at different wavelengths, for example, the phases do change, since they 

depend on the wavelength) and the net result is that for a single pixel we now have 12 

known quantities, the measurement of the complex voltages (x,y,z) and (x ',y',z' ) at both 
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VV and HH polarizations, respectively, and 12 unknown quantities; I and L the lower 

echoes at VV and HH, respectively, u and u' , the upper echoes at VV and HH, 

respectively, and the geometric phases A, C, 11 and /1' . This compares with 6 known 

quantities and 8 unknown quantities for a single pixel when using a single polarization 

combination, which required us to average over at least 2 pixels to gain as many known 

quantities as unknowns. Each additional pixel averaged over using both direct polarizations 

provides an increase of known quantities over unknowns of 4 , compared with an increase 

of only 2 if just one polarization combination is used. The net result is that about half as 

many pixels need to be averaged over for the same accuracy if the observations are made 

simultaneously at both VV and HH polarization combinations, compared with observing 

with just one polarization combination. This increases the spatial resolution of the method 

by the square root of 2, or about 30%. 
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111.18 Applications 

The applications of the method that could be realized by a radar system with the 

previously described specifications include measurement of the depth of burial of ice in the 

polar regions of Mars, from orbit, at high spatial resolution and over a regional scale.The 

dielectric discontinuity between the ice and the overlying clastic material forms the lower 

surface, while the surface of the planet is the upper surface. The absence of liquid water in 

the regolith of Mars eliminates the major limitation to subsurface radar penetration on Earth, 

making Mars an ideal target for subsurface radar imaging. 

A second application relevant to subsurface imaging on Earth and Mars is that the 

separation of the lower and upper echoes would allow the visibility of buried features to be 

enhanced in regions where the surface has a comparable roughness to the lower surface, as 

discussed in the introduction. This would extend subsurface imaging beyond those regions 

with a smooth upper surface relative to the lower surface, which intuitively is much rarer 

than upper surfaces with a roughness up to the roughness of the lower surface. 

Based on the method there are also two independent applications for measuring soil 

moisture in arid regions of the earth. One application is to take advantage of the ability to 

separate the lower and upper echoes by measuring the lower and upper echoes in arid 

regions where an impermeable caliche layer exists below the surface. Changes in the 

moisture of the soil above the caliche layer cause changes in the skin depth of the soil, 

which changes the strength of the lower echo. The greater the soil moisture the weaker the 

lower echo. Since the lower echo can be determined using the method, separated from the 
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upper surface echo, changes in the amount of soil moisture could be detected, at the high 

spatial resolution afforded by synthetic aperture radar, by changes in the strength of the 

echo from the caliche layer. The lower surface is protected by the overlying material and so 

would be expected to suffer much less physical change over time than the upper surface. 

Hence changes in the strength of the echo from the lower surface can be attributed to 

changes in the skin depth of the overlying material (unlike changes in the upper surface 

echo which could be due to physical changes in the surface and changes in the surface 

dielectric constant due to exposure to the elements). A stronger lower echo observed at a 

later time would correspond to a decrease in soil moisture between the observations, and 

vice versa. 

Another independent application to soil moisture mapping in arid regions of the 

earth takes advantage of the ability to measure the depth of a subsurface layer using the 

method. Moisture present below a certain depth but absent above this depth due to 

evaporation would form a layer (like a caliche layer) if the distance over which the moisture 

increases at the boundary of the evaporated zone was small compared to the wavelength, 

which is on the order of em. As the ground becomes drier the depth of the moisture layer 

will increase, and so changes in the depth of this layer, detected using the method, could 

indicate changes in the amount of soil moisture, because a decrease in depth indicates the 

soil became more moist and vice versa. 

The applications to soil moisture mapping require a very high spatial resolution 

across track, since, as quantified in the previous section, the pixel width must be no more 
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than approximately 1/4 of the subsurface layer depth. In the case of subsurface imaging on 

the Egypt/Sudan border, a relatively deep subsurface layer up to 2 meters deep can be 

expected. In arid regions of the Earth the depth of a caliche layer or water table would be 

significantly smaller than this, so a comparably narrower pixel width must be used (and 

hence a higher FM chirp compression ratio must be used if the SNR is to be maintained 

with no increase in the radiated power of the radar). 

The application to measuring the depth of burial of ice in the polar regions of Mars 

is perhaps easier to realize in terms of radar system requirements, albeit the radar system 

must be in orbit over Mars rather than the earth. The depths of burial here could easily 

exceed 2 meters, and, as mentioned earlier, the regolith is devoid of liquid water, so only 

the grain size of the clastic material overlying the ice is a factor in limiting penetration (the 

grain size should be no larger than 1/lOth of the radar wavelength, or no larger than around 

5mm if C-Band is used). 

The application of enhancing the visibility of buried features could be used on radar 

data of the Egypt/Sudan border, where I suggest attempts to confirm this method with a 

future radar system meeting the requirements I have described be concentrated, also 

relatively easily, since the depths of burial here are so large. The applications to soil 

moisture mapping are, however, the most practical and important, and so I hope that 

spacebome radar systems will soon advance to the point that the requirements I have 

described here can be met to realize the applications to soil moisture mapping at high spatial 

resolution. 
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